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Abstract The study of various decision problems for logic fragments
has a long history in computer science. This paper is on the membership
problem for a fragment of first-order logic over infinite words; the mem-
bership problem asks for a given language whether it is definable in some
fixed fragment. The alphabetic topology was introduced as part of an ef-
fective characterization of the fragment Σ2 over infinite words. Here, Σ2

consists of the first-order formulas with two blocks of quantifiers, start-
ing with an existential quantifier. Its Boolean closure is BΣ2. Our first
main result is an effective characterization of the Boolean closure of the
alphabetic topology, that is, given an ω-regular language L, it is decid-
able whether L is a Boolean combination of open sets in the alphabetic
topology. This is then used for transferring Place and Zeitoun’s recent
decidability result for BΣ2 from finite to infinite words.

1 Introduction

Over finite words, the connection between finite monoids and regular languages is
highly successful for studying logic fragments, see e.g. [2,19]. Over infinite words,
the algebraic approach uses infinite repetitions. Not every logic fragment can
express whether some definable property P occurs infinitely often. For instance,
the usual approach for saying that P occurs infinitely often is as follows: for every
position x there is a position y > x satisfying P (y). Similarly, P occurs only
finitely often if there is a position x such that all positions y > x satisfy ¬P (y).
Each of these formulas requires (at least) one additional change of quantifiers,
which not all fragments can provide. It turns out that topology is a very useful
tool for restricting the infinite behaviour of the algebraic approach accordingly,
see e.g. [3,5,10,22]. In particular, the combination of algebra and topology is
convenient for the study of languages in Γ∞, the set of finite and infinite words
over the alphabet Γ . In this paper, an ω-regular language is a regular subset
of Γ∞.

Topological ideas have a long history in the study of ω-regular languages.
The Cantor topology is the most famous example in this context. We write G

? This work was supported by the German Research Foundation (DFG) under grants
DI 435/5-2 and DI 435/6-1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288362259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


for the Cantor-open sets and F for the closed sets. The open sets in G are the
languages of the form WΓ∞ for W ⊆ Γ ∗. If X is a class of languages, then
Xδ consists of the countable intersections of languages in X and Xσ are the
countable unions; moreover, we write BX for the Boolean closure of X. Since
F contains the complements of languages in G, we have BF = BG. The Borel
hierarchy is defined by iterating the operations X 7→ Xδ and X 7→ Xσ. The
Borel hierarchy over the Cantor topology has many appearances in the context
of ω-regular languages. For instance, an ω-regular language is deterministic if
and only if it is in Gδ, see [8,21]. By McNaughton’s Theorem [9], every ω-regular
language is in B(Gδ) = B(Fσ). The inclusion BG ⊂ Gδ ∩ Fσ is strict, but the
ω-regular languages in BG and Gδ ∩ Fσ coincide [17].

G

F

BG = BF Gδ ∩ Fσ

Gδ

Fσ

B(Gδ) = B(Fσ)

open

closed

⊆

deterministic

⊆

ω-regular

Let FOk be the fragment of first-order logic which uses (and reuses) at most k
variables. By Σm we denote the formulas with m quantifier blocks, starting with
a block of existential quantifiers. Here, we assume that x < y is the only binary
predicate. Let us consider FO1 as a toy example. With only one variable, we
cannot make use of the binary predicate x < y. Therefore, in FO1 we can say
nothing but which letters occur, that is, a language is definable in FO1 if and
only if it is a Boolean combination of languages of the form Γ ∗aΓ∞ for a ∈ Γ .
Thus FO1 ⊆ BG. It is an easy exercise to show that an ω-regular language is
in FO1 if and only if it is in BG and its syntactic monoid is both idempotent and
commutative. The algebraic condition without the topology is too powerful since
this would also include the language {a, b}∗ aω, which is not definable in FO1.
For the fragment BΣ1, the same topology BG with a different algebraic condition
works, cf. [10, Theorems VI.3.7, VI.7.4 and VIII.4.5].

In the fragment Σ2, we can define the language {a, b}∗ ab∞ which is not
deterministic and hence not in Gδ. Since the next level of the Borel hierarchy
already contains all ω-regular languages, another topology is required. For this
purpose, Diekert and the first author introduced the alphabetic topology [3]: the
open sets in this topology are arbitrary unions of languages of the form uA∞

for u ∈ Γ ∗ and A ⊆ Γ . They showed that an ω-regular language is definable
in Σ2 if and only if it satisfies some particular algebraic property and if it is open
in the alphabetic topology. Therefore, the canonical ingredient for an effective
characterization of BΣ2 is the Boolean closure of the open sets in the alphabetic
topology. Our first main result, Theorem 2, shows that, for a given ω-regular
language L, it is decidable whether L is a Boolean combination of open sets in
the alphabetic topology. As a by-product, we see that every ω-regular language
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which is a Boolean combination of arbitrary open sets in the alphabetic topology
can be written as a Boolean combination of ω-regular open sets. This resembles
a similar result for the Cantor topology [17].

A major breakthrough in the theory of regular languages over finite words is
due to Place and Zeitoun [14]. They showed that, for a given regular language
L ⊆ Γ ∗, it is decidable whether L is definable in BΣ2. This solved a longstanding
open problem, see e.g. [13, Section 8] for an overview. To date, no effective
characterization of BΣ3 is known. Our second main result, Theorem 4, is to show
that this decidability result transfers to languages in Γ∞. If V2 is the algebraic
counterpart of BΣ2 over finite words, then we show that V2 combined with
the Boolean closure of the alphabetic topology yields a characterization of BΣ2

over Γ∞. Combining the decidability of V2 with our first main result, the latter
characterization is effective. The proof that BΣ2 satisfies both the algebraic and
the topological restrictions follows a rather straightforward approach. The main
difficulty is to show the converse: every language satisfying both the algebraic
and the topological conditions is definable in BΣ2.

Missing proofs of some elementary lemmas are given in the appendix.

2 Preliminaries

Words

Let Γ be a finite alphabet. By Γ ∗ we denote the set of finite words over Γ ;
we write 1 for the empty word. The set of infinite words is Γω and the set of
finite and infinite words is Γ∞ = Γ ∗ ∪ Γω. By u, v, w we denote finite words
and by α, β, γ we denote words in Γ∞. In this paper a language is a subset
of Γ∞. Let L ⊆ Γ ∗ and K ⊆ Γ∞. As usual L∗ is the union of powers of L
and LK = {uα | u ∈ L,α ∈ K} ⊆ Γ∞ is the concatenation of L and K. By
Lω we denote the set of words which are an infinite concatenation of words in
L and the infinite concatenation uu · · · of the word u is written uω. A word
u = a1 . . . an is a scattered subword of v if v ∈ Γ ∗a1Γ ∗ . . . anΓ ∗. The alphabet of
a word is the set of all letters which appear in the word. The imaginary alphabet
im(α) of a word α ∈ Γ∞ is the set of letters which appear infinitely often in α.
Let Aim = {α ∈ Γ∞ | im(α) = A} be the set of words with imaginary alphabet
A. In the following, we restrict ourselves to the study of ω-regular languages.
A language L ⊆ Γ ∗ is regular if it is recognized by a (deterministic) finite
automaton. A language K ⊆ Γω is ω-regular if it is recognized by a Büchi
automaton. A language L ⊆ Γ∞ is ω-regular if L ∩ Γ ∗ is regular and L ∩ Γω is
ω-regular.

First-Order logic

We consider first order logic FO over Γ∞. Variables range over positions of the
word. The atomic formulas in this logic are > for true, x < y to compare two
positions x and y and λ(x) = a which is true if the word has an a at position x.
One may combine those atomic formulas with the boolean connectives ¬,∧ and

3



∨ and quantifiers ∀ and ∃. A sentence ϕ is an FO formula without free variables.
We write α |= ϕ if α ∈ Γ∞ satisfies the sentence ϕ. The language defined by ϕ
is L(ϕ) = {α ∈ Γ∞ | α |= ϕ}. We classify the formulas of FO by counting the
number of quantifier alternations, that is the number of alternations of ∃ and
∀. The fragment Σi of FO contains all FO-formulas in prenex normal form with
i blocks of quantifiers ∃ or ∀, starting with a block of existential quantifiers.
The fragment BΣi contains all Boolean combinations of formulas in Σi. We
are particularly interested in the fragment Σ2 and the Boolean combinations of
formulas in Σ2. A language L is definable in a fragment F (e.g. F is Σ2 or BΣ2)
if there exists a formula ϕ ∈ F such that L = L(ϕ), i.e., if L is definable by some
ϕ ∈ F . The classes of languages defined by Σi and BΣi form a hierarchy, the
quantifier alternation hierarchy. This hierarchy is strict, i.e., Σi ( BΣi ( Σi+1

holds for all i, cf. [1,20].

Monomials

A monomial is a language of the form A∗0a1A
∗
1a2 · · ·A∗n−1anA∞n for n ≥ 0, ai ∈ Γ

and Ai ⊆ Γ . The number n is called the degree. In particular, A∞0 is a monomial
of degree 0. A monomial is called k-monomial if it has degree at most k. In [3]
it is shown that a language L ⊆ Γ∞ is in Σ2 if and only if it is a finite union of
monomials. We are interested in BΣ2 and thus in finite Boolean combination of
monomials. For this, let ≡∞k be the equivalence relation on Γ∞ such that α ≡∞k β
if α and β are contained in exactly the same k-monomials. Thus, ≡∞k -classes are
Boolean combinations of monomials and every language in BΣ2 is a union of
≡∞k -classes for some k. Further, since there are only finitely many monomials of
degree k, there are only finitely many ≡∞k -classes. The equivalence class of some
word α in ≡∞k is denoted by [α]∞k . Note, that such a characterization of BΣ2 in
terms of monomials does not yield a decidable characterization.

Our characterization of languages L ⊆ Γ∞ in BΣ2 is based on the characteri-
zation of languages in BΣ2 over finite words. For this, we also introduce monomi-
als over Γ ∗. A monomial over Γ ∗ is a language of the formA∗0a1A

∗
1a2 · · ·A∗n−1anA∗n

for n ≥ 1, ai ∈ Γ and Ai ⊆ Γ . The degree is defined as above. Let ≡k be the
congruence on Γ ∗ which is defined by u ≡k v if and only if u and v are contained
in the same k-monomials over Γ ∗. Again, a language L ⊆ Γ ∗ is in BΣ2 if and
only if it is a union of ≡k-classes for some k.

Algebra

In this paper all monoids are either finite or free. Finite monoids are a common
way for defining regular and ω-regular languages. A monoid element e is idem-
potent if e2 = e. An ordered monoid (M,≤) is a monoid equipped with a partial
order which is compatible with the monoid multiplication, i.e., s ≤ t and s′ ≤ t′
implies ss′ ≤ tt′. Every monoid can be ordered using the identity as partial or-
der. A homomorphism h : (N,≤)→ (M,≤) between two ordered monoids must
hold s ≤ t⇒ h(s) ≤ h(t) for s, t ∈ N . A divisor is the homomorphic image of a
submonoid. A class of monoids which is closed under division and finite direct
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products is a pseudovariety. Eilenberg showed a correspondence between certain
classes of languages (of finite words) and pseudovarieties [4]. A pseudovariety
of ordered monoids is defined the same way as with unordered monoids, using
homomorphisms of ordered monoids. The Eilenberg correspondence also holds
for ordered monoids [12]. Let V3/2 be the pseudovariety of ordered monoids
which corresponds to Σ2 and V2 be the pseudovariety of monoids which cor-
responds to languages in BΣ2. Since Σ2 ⊆ BΣ2, we obtain V3/2 ⊆ V2 when
ignoring the order. The connection between monoids and languages is given by
the notion of recognizability. A language L ⊆ Γ ∗ is recognized by an ordered
monoid (M,≤) if there is a monoid homomorphism h : Γ ∗ → M such that
L = ∪

{
h−1(t)

∣∣ s ≤ t for some s ∈ h(L)
}

. If M is not ordered, then this means
that L is an arbitrary union of languages of the form h−1(t).

For ω-languages L ⊆ Γ∞ the notion of recognizability is slightly more tech-
nical. For simplicity, we only consider recognition by unordered monoids. Let
h : Γ ∗ → M be a monoid homomorphism. If the homomorphism h is under-
stood, we write [s] for the language h−1(s). We call (s, e) ∈M ×M a linked pair
if e2 = e and se = s. By Ramsey’s Theorem [15] for every word α ∈ Γ∞ there
exists a linked pair (s, e) such that α ∈ [s][e]ω. A language L ⊆ Γ∞ is recognized
by h if

L =
⋃
{[s][e]ω | (s, e) is a linked pair with [s][e]ω ∩ L 6= ∅} .

Since 1ω = 1, the language [1]ω also contains finite words. We thus obtain
recognizability of languages of finite words as a special case.

Next, we define syntactic homomorphisms and syntactic monoids; these are
the minimal recognizers of an ω-regular language. Let L ⊆ Γ∞ be an ω-regular
language. The syntactic monoid of L is defined as the quotient Synt(L) = Γ ∗/≈L
where u ≈L v holds if and only if for all x, y, z ∈ Γ ∗ we have both xuyzω ∈
L ⇔ xvyzω and x(uy)ω ∈ L ⇔ x(vy)ω ∈ L. The syntactic monoid can be
ordered by the partial order �L defined by u �L v if for all x, y, z ∈ Γ ∗ we
have xuyzω ∈ L⇒ xvyzω and x(uy)ω ∈ L⇒ x(vy)ω ∈ L. The syntactic homo-
morphism hL : Γ ∗ → Synt(L) is given by hL(u) = [u]≈L

. One can effectively
compute the syntactic homomorphism of L. The syntactic monoid Synt(L) sat-
isfies the property that L is ω-regular if and only if Synt(L) is finite and the
syntactic homomorphism hL recognizes L, see e.g. [10,21]. Every pseudovariety
is generated by its syntactic monoids [4], i.e., every monoid in a given pseudova-
riety is a divisor of a direct product of syntactic monoids. The importance of
the syntactic monoid of a language L ⊆ Γ∞ is that it is the smallest monoid
recognizing L:

Lemma 1. Let L ⊆ Γ∞ be a language which is recognized by a homomorphism
h : Γ ∗ → (M,≤). Then, (Synt(L),�L) is a divisor of (M,≤).

3 Alphabetic Topology

As mentioned in the introduction, combining algebraic and topological condi-
tions is a successful approach for characterizations of language classes over Γ∞.
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A topology on a set X is given by a family of subsets of X (called open) which
are closed under finite intersections and arbitrary unions. We define the alpha-
betic topology on Γ∞ by its basis {uA∞ | u ∈ Γ ∗, A ⊆ Γ}. Hence, an open set
is given by

⋃
AWAA

∞ with WA ⊆ Γ ∗. The alphabetic topology has been intro-
duced in [3], where it is used as a part of the characterization of Σ2.

Theorem 1 ([3]). Let L ⊆ Γ∞ be an ω-regular language. Then L ∈ Σ2 if and
only if Synt(L) ∈ V3/2 and L is open in the alphabetic topology.

The alphabetic topology has by itself been the subject of further study [16]. We
are particularly interested in Boolean combinations of open sets. An effective
characterization of a language L being a Boolean combination of open sets in
the alphabetic topology is given in the theorem below.

Theorem 2. Let L ⊆ Γ∞ be an ω-regular language which is recognized by h :
Γ ∗ →M . Then the following are equivalent:

1. L is a Boolean combination of open sets in the alphabetic topology where each
open set is ω-regular.

2. L is a Boolean combination of open sets in the alphabetic topology.

3. For all linked pairs (s, e), (t, f) it holds that if there exists an alphabet C and

words ê, f̂ with h(ê) = e, h(f̂) = f , alph(ê) = alph(f̂) = C and s · h(C∗) =
t · h(C∗), then [s][e]ω ⊆ L⇔ [t][f ]ω ⊆ L.

Proof. “1 ⇒ 2”: This is immediate.
“2 ⇒ 3”: Let L be a Boolean combination of open sets in the alphabetic

topology. Note that for P,Q ⊆ Γ ∗ and A,B ⊆ Γ it holds PA∞ ∩ QB∞ =
(PA∗ ∩QB∗)(A ∩B)∞. Therefore, we may assume

L =

n⋃
i=1

(
(PiA

∞
i ) \

(
mi⋃
j=1

Qi,jB
∞
i,j

))

for some Pi, Qi,j ⊆ Γ ∗ and alphabets Ai, Bi,j ⊆ Γ .
Let (s, e) and (t, f) be some linked pairs, C ⊆ Γ be an alphabet such that

s ·h(C∗) = t ·h(C∗) holds and there exist words ê, f̂ with h(ê) = e, h(f̂) = f and

alph(ê) = alph(f̂) = C. Assume [s][e]ω ⊆ L, but [t][f ]ω 6⊆ L. Since h recognizes
L, it suffices to show that [t][f ]ω ∩L is nonempty to obtain a contradiction. Let
uêω ∈ [s][e]ω ⊆ L for some u ∈ [s]. Since s · h(C∗) = t · h(C∗), we may choose
x, y ∈ C∗ such that s · h(x) = t and t · h(y) = s.

The idea is to find an increasing sequence of words u` ∈ [s] and sets I` ⊆
{1, . . . , n} such that u`C

∞ ∩
(
PiA

∞
i \

(⋃mi

j=1Qi,jB
∞
i,j

))
= ∅ for all i ∈ I`. We

can set u0 = u and I0 = ∅. Consider the word u`ê
ω ∈ L. There exists an index i ∈

{1, . . . , n}\I` such that u`ê
ω ∈ PiA∞i \

(⋃mi

j=1Qi,jB
∞
i,j

)
. Choose a number k, such

that u`ê
k ∈ PiA∗i . Since C = alph(ê) ⊆ Ai, we conclude β` = u`ê

kxf̂ω ∈ PiA∞i .
By construction we have β` ∈ [t][f ]ω and therefore, assuming [t][f ]ω ∩ L = ∅,
there exists an index j such that β` ∈ Qi,jB

∞
i,j . Analogously, there exists k′
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s = h(u`) t = h(u`ê
kx)

h(x)

h(y)

h(ê) h(f̂)

Figure 1. Part of the right Cayley graph of M in the proof of “2 ⇒ 3”.

such that u`ê
kxf̂k

′
yC∞ ⊆ Qi,jB∞i,j . Hence we can choose u`+1 = u`ê

kxf̂k
′
y and

I`+1 = I` ∪ {i}. Figure 1 gives an overview of the construction.
Since u`[e]

ω ⊆ L ∩ u`C∞, this construction has to fail at an index ` ≤ n.
Therefore, the assumption is not justified and we have [t][f ]ω ∩ L 6= ∅, proving
the claim.

“3⇒ 1”: Let α ∈ [s][e]ω ⊆ L for a linked pair (s, e) and let C = im(α) denote
the imaginary alphabet of α. By α ∈ [s][e]ω and the definition of C, there exists
an ê ∈ C∗ with alph(ê) = C and h(ê) = e. Define

L(s, C) = [s]C∞ \

( ⋃
D(C

Γ ∗D∞ ∪
⋃

s6∈t·h(C∗)

[t]C∞

)
.

We have α ∈ L(s, C) and L(s, C) is a Boolean combination of open sets in the
alphabetic topology where each open set is ω-regular. There are only finitely
many sets of the type L(s, C). The idea is to saturate L with sets of this type,
i.e., it suffices to show L(s, C) ⊆ L. For C = ∅, we have L(s, C) = [s] ⊆ L. Thus,
we may assume C 6= ∅. Let β ∈ L(s, C) be an arbitrary element and let (t, f) be
a linked pair such that β ∈ [t][f ]ω. Since β is in L(s, C), there exists a prefix u
of β such that β ∈ uCω and u ∈ [s].

By β ∈ [t][f ]ω, one gets β = vβ′ with v ∈ [t], β′ ∈ [f ]ω. Using tf = t and
C 6= ∅, we may assume that u is a prefix of v, which implies β′ ∈ Cω. Hence we
have t = h(v) ∈ h(uC∗) = s · h(C∗). By construction β 6∈

⋃
s 6∈t·h(C∗)[t]C

∞ and

therefore s ∈ t · h(C∗). It follows s · h(C∗) = t · h(C∗). Since β 6∈
⋃
D(C Γ

∗D∞,
there must be a preimage of f of full alphabet C. Therefore, β ∈ [t][f ]ω ⊆ L. ut

The alphabetic topology above is a refinement of the well-known Cantor
topology. The Cantor topology is given by the basis uΓ∞ for u ∈ Γ ∗. An ω-
regular language L is a Boolean combination of open sets in the Cantor topology
if and only if [s][e]ω ⊆ L⇔ [t][f ]ω ⊆ L for all linked pairs (s, e) and (t, f) of the
syntactic monoid of L with s R t; cf. [3,10,21]. Here s R t denotes one of Green’s
relations: s R t if and only if s · Synt(L) = t · Synt(L). Theorem 2 is a similar
result, but one had to consider the alphabetic information of the linked pairs.
Hence, one does not have s R t as condition, but rather R-equivalence within a
certain alphabet C.

Remark 1. The strict alphabetic topology on Γ∞, which is introduced in [3],
is given by the basis

{
uA∞ ∩Aim

∣∣ u ∈ Γ ∗, A ⊆ Γ} and the open sets are of
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the form
⋃
AWAA

∞ ∩ Aim with WA ⊆ Γ ∗. Reusing the proof of Theorem 2
it turns out, that it is equivalent to be a Boolean combination of open sets in
the alphabetic topology and in the strictly alphabetic topology. Since uA∞ =⋃
B⊆A uA

∗B∞ ∩ Bim, every open set in the alphabetic topology is also open in
the strict alphabetic topology. Further, one can adapt the proof of “2 ⇒ 3” of
Theorem 2 to show that if L is a Boolean combination of open sets in the strict
alphabetic topology, then item 3 of Theorem 2 holds.

4 The fragment BΣ2

Place and Zeitoun have shown that BΣ2 is decidable over finite words. In par-
ticular, they have shown that, given the syntactic homomorphism of a language
L ⊆ Γ ∗, it is decidable if L ∈ BΣ2. Since every pseudovariety is generated by its
syntactic monoids, the result of Place and Zeitoun can be stated as follows:

Theorem 3 ([14]). The pseudovariety V2 corresponding to the BΣ2-definable
languages in Γ ∗ is decidable.

Our second main result charaterizes BΣ2-definable ω-regular languages. We use
Theorem 3 as a black-box result.

Theorem 4. Let L ⊆ Γ∞ be ω-regular. Then the following are equivalent:

1. L is a finite Boolean combination of monomials.

2. L is definable in BΣ2.

3. The syntactic homomorphism h of L satisfies:

(a) Synt(L) ∈ V2 and

(b) for all linked pairs (s, e), (t, f) it holds that if there exists an alphabet

C and words ê, f̂ with h(ê) = e, h(f̂) = f , alph(ê) = alph(f̂) = C and
s · h(C∗) = t · h(C∗), then [s][e]ω ⊆ L⇔ [t][f ]ω ⊆ L.

Note that item 3 of Theorem 4 is decidable: 3a is decidable by Theorem 3
and 3b is decibable since we can effectively compute the syntactic homomor-
phism h and h(C∗) for all alphabets C. 1 We start with the difficult direction
“3 ⇒ 1” in the proof of Theorem 4. This is Proposition 1. The following lemma
is an auxiliary result for Proposition 1.

Lemma 2. For all k there exists a number ` such that for every set {M1, . . . ,Md}
of k-monomials over Γ ∗ and every w with w ∈ Mi for all i ∈ {1, . . . , d}, there
exists an `-monomial N over Γ ∗ with w ∈ N and N ⊆

⋂
Mi.

Proof. Since the number of k-monomials over Γ ∗ is bounded, this induces a
bound on d and one can iterate the statement. Therefore, it suffices to show the

1 During the preparation of this submission, we learned that Pierron, Place and
Zeitoun [11] independently found another proof for the decidability of BΣ2 over
infinite words. For documenting the independency of the two proofs, we also include
the technical report of our submission in the list of references [6].
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case d = 2. Consider two k-monomials M1 = A∗0a1A
∗
1a2 · · ·A∗n−1anA∗n and M2 =

B∗0b1B
∗
1b2 · · ·B∗m−1bmB∗m. Since w ∈ M1 and w ∈ M2, it admits factorizations

w = u0a1u1a2 · · ·un−1anun and w = v0b1v1b2 · · · vm−1bmvm such that ui ∈ A∗i
and vj ∈ B∗j . The factorizations mark the positions of the ais and the bjs and
pose an alphabetic condition for the factors in between. Thus, there exists a
factorization w = w0c1w1c2 · · ·w`−1c`w`, such that the positions of ci are exactly
those, that are marked by ai or bj , i.e., ci = aj or ci = bj for some j. The words
wi are over some alphabet Ci such that Ci = Aj ∩Bk for some j and k induced
by the factorizations. In the case of consecutive marked positions, one can set
Ci = ∅. Thus, we obtain a monomial N = C∗0 c1C

∗
1 c2 · · · cp−1C∗p−1cpC∗p with

Cp = An∩Bm. An illustration of this construction can be found in Figure 2. By
construction N ⊆ M1, N ⊆ M2 and w ∈ N holds. Since there are only finitely
many monomials of degree k, the size of the number ` is bounded. ut

u0 a1 u1 a2 u2 un−1 an un
w = | ...

w0 c1 w1 c2 c3 w3 c4 wp−2 cp−1wp−1cp wp
w = | ...

v0 b1 v1 b2 vm−1 bm vm
w = | ...

Figure 2. Different factorizations in the proof of Lemma 2. In the situation of the figure
it holds C0 = A0 ∩ B0, C1 = A1 ∩ B0, C2 = ∅, C3 = A2 ∩ B1, Cp−2 = An−1 ∩ Bm−1,
Cp−1 = An−1 ∩Bm and Cp = An ∩Bm.

An analysis of the proof of Lemma 2 yields the bound ` ≤ nk ·k, where nk is the
number of distinct k-monomials over Γ ∗. Next, we show that a language which
is in V2 and is a Boolean combination of alphabetic open sets is a finite Boolean
combination of monomials. One ingredient of the proof is Lemma 2: we are able
to compress the information of a set of k-monomials which contain a fixed word
into the information of a single `-monomial that contains this fixed word.

Proposition 1. Let L ⊆ Γ∞ be a Boolean combination of alphabetic open sets
such that Synt(L) ∈ V2. Then L is a finite Boolean combination of monomials.

Proof. Let h : Γ ∗ → Synt(L) be the syntactic homomorphism of L and consider
the languages h−1(p) for p ∈ Synt(L). By Theorem 3 we obtain h−1(p) ∈ BΣ2.
Thus, there exists a number k such that for every p ∈M the language h−1(p) is
saturated by ≡k, i.e., u ≡k v ⇒ h(u) = h(v). By Lemma 2 there exists a number
` such that for every set {M1, . . . ,Mn} of k-monomials and every w with w ∈Mi

for all i ∈ {1, . . . , n}, there exists an `-monomial N with w ∈ N ⊆ ∩ni=1Mi. Let
α ≡∞` β and α ∈ L. We show β ∈ L which implies L = ∪α∈L[α]∞` and thus that

9



L is a finite Boolean combination of `-monomials. Using Boolean combinations
of monomials of the form Γ ∗aA∞, one can test the imaginary alphabet of α and
β. Hence we obtain im(α) = im(β) for the imaginary alphabets. For simplicity,
we write C = {c1, . . . , cm} for the imaginary alphabet of α and β.

Let u′ ≤ α and v′ ≤ β be prefixes such that for every `-monomialN = N ′·C∞
with α, β ∈ N we have that some prefix of u′, v′ is in N ′. Further, let α = uα′

and β = vβ′ such that

– u′ ≤ u = u′u′′, v′ ≤ v = v′v′′,

– (c1c2 · · · cm)k is a scattered subword of u′′ and v′′,

– and there exists linked pairs (s, e) and (t, f) such that s = h(u), t = h(v),α′ ∈
[e]ω and β′ ∈ [f ]ω.

Note that, by the choice of u′, v′, we have α′, β′ ∈ C∞. We show that s ·h(C∗) =
t · h(C∗), which implies β ∈ L by Theorem 2. By symmetry, it suffices to show
t ∈ s ·h(C∗). Consider the set of k-monomials Ni = N ′iC

∞ which hold at u, i.e.,
such that u ∈ N ′i and α′ ∈ C∞. By the choice of `, there exists an `-monomial
N ′ such that u ∈ N ′ and N ′ ⊆

⋂
iN
′
i . Since u ∈ N ′, we obtain α ∈ N := N ′C∞

and by α ≡∞` β the membership β ∈ N holds. By construction of v, there exists

a word v̂ with v̂ ≤ v′ ≤ v, v̂ ∈ N ′ and β̂ ∈ C∞ with β̂ being defined by β = v̂β̂.
Let v = v̂x, then x ∈ C∗. The situation is depicted in Figure 3. We show that
ux ≡k v which then implies t ∈ sh(C∗).

u′ ∈ N ′
u α′α = | | ...

v̂ ∈ N ′ v′ v β′

x
β = | | ...

∃

Figure 3. Factorization of α and β in the proof of Proposition 1

Let M be a k-monomial. If ux ∈ M , then there exists a factorization M =
M1M2 where M1,M2 are k-monomials with u ∈ M1 and x ∈ M2. Since uβ′ ∈
M1C

∞, we obtain v̂ ∈ N ′ ⊆ M1 by the definition of N ′. We conclude that
v = v̂x ∈M1M2 = M .

If v = v̂x ∈M , then there exists a factorization of the monomial M = M1M2

where M1,M2 are k-monomials with v̂ ∈ M1 and x ∈ M2. Since (c1c2 · · · cm)k

is a scattered subword of x, there must be some A∗i in the monomial M2 such
that C ⊆ Ai by the pigeonhole principle. Thus, there exists a factorisation
M2 = M21M22 in k-monomials M21,M22 such that M21 ·C∗ = M21. Let x = x′x′′

such that x′ ∈M21 and x′′ ∈M22 and consider β = v̂xβ′ ∈M1M21 · C∞. Since
α ≡∞` β, we obtain α ∈ M1M21 · C∞. By construction, some prefix of u is in
M1M21 and by M21 · C∗ = M21 and x′ ∈ C∗, we obtain ux′ ∈ M1M21. Thus,
ux = ux′ · x′′ ∈ M1M21 · M22 = M holds. We conclude ux ≡k v and thus
t = h(v) = h(ux) ∈ s · h(C∗). ut
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It is well-known, that the direct product (g × h) : Γ ∗ → M × N,w 7→
(g(w), h(w)) of the homomorphisms g : Γ ∗ → M and h : Γ ∗ → N recognizes
Boolean combinations:

Lemma 3. Let L and K be languages such that L is recognized by g : A∗ →M
and K is recognized by h : A∗ → N . Then, any Boolean combination of L and
K is recognized by (g × h).

Next, we show that the algebraic characterisation V2 of BΣ2 over finite words
also holds over finite and infinite words simultaneously. The proof of this is based
on the fact that the algebraic part of the characterisation of Σ2 over finite words
and finite and infinite words is the same [3] and on the fact that every language
of Σ2 is in BΣ2, i.e., V3/2 ⊆ V2.

Lemma 4. If L ⊆ Γ∞ is definable in BΣ2, then Synt(L) ∈ V2.

Proof. By definition, L ∈ BΣ2 implies that L is a Boolean combination of lan-
guages Li ∈ Σ2. We have Synt(Li) ∈ V3/2 ⊆ V2 by [3]. Since L is a Boolean
combination of Li, the direct product of all Synt(Li) recognizes L by Lemma 3.
In particular, Synt(L) is a divisor of the direct product of Synt(Li) by Lemma 1.
Hence, we obtain Synt(L) ∈ V2. ut

The proof that monomials are definable in Σ2 is straightforward which yields:

Lemma 5. Every monomial L ⊆ Γ∞ is definable in Σ2.

Combining our results we are ready to prove Theorem 4.

Proof (Theorem 4). “1⇒ 2”: Since BΣ2 is closed under Boolean combinations, it
suffices to find a Σ2-formula for a single monomial. This is provided by Lemma 5.

“2 ⇒ 3”: 3a is proved by Lemma 4. Since A∗0a1A
∗
1a2 · · ·A∗n−1an is a set of fi-

nite words, a monomial A∗0a1A
∗
1a2 · · ·A∗n−1anA∞n is open in the alphabetic topol-

ogy. The languages in Σ2 are unions of such monomials [3] and thus languages
in BΣ2 are Boolean combinations of open sets. This implies 3b by Theorem 2.

“3 ⇒ 1”: This is Proposition 1. ut

Example 1. In this example we show that Synt(L) ∈ V2 for some language L ⊆
Γ∞ does not imply L ∈ BΣ2, i.e., the topological property 3b of Theorem 4 is
necessary. For this define L = ({a, b}∗ aa {a, b}∗)ω. We show that Synt(L) ∈ V2,
but L is not a Boolean combination of open sets of the alphabetic topology.
Computing the syntactic monoid of L yields Synt(L) = {1, a, b, aa, ab, ba}. The
equations b2 = b, xaa = aax = aa and bab = b hold in Synt(L). In particular,
(ab)2 = ab and (aa)2 = aa. Thus, (s, e) = (aa, aa) and (t, f) = (aa, ab) are
linked pairs. Let h denote the syntactic homomorphism of L. Choosing aab
as a preimage for aa ∈ Synt(L) yields the alphabetic condition alph(aab) =
alph(ab) = C on the idempotents. Since s = t, we trivially have s · h(C∗) =
t ·h(C∗). However, [aa][ab]ω ∩L = ∅ but [aa][aa]ω ⊆ L. Thus, L does not satisfy
the topological condition 3b of Theorem 4. It remains to check Synt(L) ∈ V2.
It is enough to show that the preimages are in BΣ2.
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– [1] = 1

– [a] = (ab+)∗a

– [b] = (b+a)∗b+

– [ab] = (ab+)+

– [ba] = (b+a)+

– [aa] = {a, b}∗ aa {a, b}∗

One can find BΣ2 formulas for these languages, e.g., [ab] = L(ϕ) with

ϕ ≡ (∃x∀y : x ≤ y ∧ λ(x) = a) ∧ (∃x∀y : x ≥ y ∧ λ(x) = b) ∧
(∀x∀y : x ≥ y ∨ (∃z : x < z < y) ∨ (λ(x) 6= λ(y))

and thus Synt(L) ∈ V2. ♦

5 Summary and Open Problems

The alphabetic topology is an essential ingredient in the study of the fragment
Σ2. Thus, in order to study Boolean combinations of Σ2 formulas, i.e., the
fragment BΣ2 over infinite words, we looked closely at properties of Boolean
combinations of its open sets. It turns out, that it is decidable whether an ω-
regular language is a Boolean combination of open sets. This does not follow
immediately from the decidability of the open sets. We used linked pairs of the
syntactic homomorphism (which are effectively computable) to get decidability
of the topological condition. Combining this result with the decidability of V2

we obtained an effective characterization of BΣ2 over Γ∞, the finite and infinite
words over the alphabet Γ .

In this paper we dealt with BΣ2, which is the second level of the Straubing-
Thérien hierarchy. Another well-known hierarchy is the dot-depth hierarchy. On
the level of logic, the difference between the Straubing-Thérien hierarchy and the
dot-depth hierarchy is that formulas for the dot-depth hierarchy may also use the
successor predicate. A deep result of Straubing is that over finite words each level
of the Straubing-Thérien hierarchy is decidable if and only if it is decidable in
the dot-depth hierarchy [18]. Thus, the decidability result for BΣ2 by Place and
Zeitoun also yields a decidability result of BΣ2[<,+1]. The fragment Σ2[<,+1]
is decidable for ω-regular languages [5]. This result also uses topological ideas,
namely the factor topology. The open sets in this topology describe which factors
of a certain length k may appear in the “infinite part” of the words. The study
of Boolean combinations of open sets in the factor topology is an interesting line
of future work, and it may yield a decidability result for BΣ2[<,+1] over infinite
words.

Another interesting class of predicates are modular predicates. In [7] the
authors have studied Σ2[<,MOD] over finite words. The results of [7] can be
generalised to infinite words by adapting the alphabetic topology to the modu-
lar setting. As for successor predicates, we believe that an appropriate effective
characterization of this topology might help in deciding BΣ2[<,MOD] over infi-
nite words. To the best of our knowledge however, modular predicates have not
yet been considered over infinite words.
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A Missing proofs

In this appendix we give the omitted proofs of the main paper.

Lemma 1. Let L ⊆ Γ∞ be a language which is recognized by a homomorphism
h : Γ ∗ → (M,≤). Then, (Synt(L),�L) is a divisor of (M,≤).

Proof. We assume that h is surjective and show that Synt(L) is a homomorphic
image of M . If h is not surjective, we can therefore conclude that Synt(L) is
a divisor of M . We show that h(u) ≤ h(v)⇒ u �L v. Let u, v be words with
h(u) ≤ h(v) and denote h−1(h(w)) = [h(w)] for words w. Assume xuyzω ∈ L,
then there exists an index i such that (h(xuyzi), h(z)ω) is a linked pair. Thus,
[h(xuyzi)][h(z)]ω ⊆ L and by h(u) ≤ h(v) also [h(xvyzi)][h(z)]ω ⊆ L. This
implies xvyzω ∈ L. The proof that x(uy)ω ∈ L⇒ x(vy)ω ∈ L is similar. Thus,
u �L v holds which shows the claim. ut

Lemma 3. Let L and K be languages such that L is recognized by g : A∗ →M
and K is recognized by h : A∗ → N . Then, any Boolean combination of L and
K is recognized by (g × h).

Proof. Since L ∩ [s][e]ω 6= ∅ implies [s][e]ω ⊆ L for some linked pair (s, e),
we obtain L = ∪

{
[s][e]ω

∣∣ [s][e]ω ∩ L 6= ∅
}

for the complement of L. Thus, it
suffices to show that L ∪K is recognized by (g × h). Obviously, L is covered by
[(s, t)][(e, f)]ω, where (s, e) is a linked pair of M with [s][e]ω ⊆ L and (t, f) is
any linked pair of N . Similiarly one can cover K and thus M × N recognizes
L ∪K. ut

Lemma 5. Every monomial L ⊆ Γ∞ is definable in Σ2.

Proof. Let L = A∗0a1A
∗
1a2 · · ·A∗n−1anA∞n . The Σ2-formula

∃x1 . . . ∃xn∀y :

n∧
i=1

λ(xi) = ai ∧
n−1∧
i=1

xi < y < xi+1 ⇒ λ(y) ∈ Ai ∧

(y > xn ⇒ λ(y) ∈ An) ∧ (y < x1 ⇒ λ(y) ∈ A0).

defines L. ut
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