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Abstract. A celebrated result of Schützenberger says that a language
is star-free if and only if it is is recognized by a finite aperiodic monoid.
We give a new proof for this theorem using local divisors.

1 Introduction

The class of regular languages is built from the finite languages using union,
concatenation, and Kleene star. Kleene showed that a language over finite words
is definable by a regular expression if and only if it is accepted by some finite au-
tomaton [3]. In particular, regular languages are closed under complementation.
It is easy to see that a language is accepted by a finite automaton if and only if
it is recognized by a finite monoid. As an algebraic counterpart for the minimal
automaton of a language, Myhill introduced the syntactic monoid, cf. [6].

An extended regular expression is a term over finite languages using the
operations union, concatenation, complementation, and Kleene star. By Kleene’s
Theorem, a language is regular if and only if it is definable using an extended
regular expression. It is natural to ask whether some given regular language can
be defined by an extended regular expression with at most n nested iterations
of the Kleene star operation — in which case one says that the language has
generalized star height n. The resulting decision problem is called the generalized
star height problem. Generalized star height zero means that no Kleene star
operations are allowed. Consequently, languages with generalized star height
zero are called star-free. Schützenberger showed that a language is star-free if and
only if its syntactic monoid is aperiodic [7]. Since aperiodicity of finite monoids
is decidable, this yields a decision procedure for generalized star height zero. To
date, it is unknown whether or not all regular languages have generalized star
height one.

In this paper, we give a proof of Schützenberger’s result based on local divi-
sors. In commutative algebra, local divisors have been introduced by Meyberg
in 1972, see [2,4]. In finite semigroup theory and formal languages, local divisors
were first used by Diekert and Gastin for showing that pure future local temporal
logic is expressively complete for free partially commutative monoids [1].
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2 Preliminaries

The set of finite words over an alphabet A is A∗. It is the free monoid generated
by A. The empty word is denoted by ε. The length |u| of a word u = a1 · · · an
with ai ∈ A is n, and the alphabet alph(u) of u is {a1, . . . , an} ⊆ A. A language
is a subset of A∗. The concatenation of two languages K,K ′ ⊆ A∗ is K ·K ′ =
{uv | u ∈ K, v ∈ K ′}, and the set difference of K by K ′ is written as K \ K ′.
Let A be a finite alphabet. The class of star-free languages SF(A∗) over the
alphabet A is defined as follows:

– A∗ ∈ SF(A∗) and {a} ∈ SF(A∗) for every a ∈ A.

– If K,K ′ ∈ SF(A∗), then each of K ∪K ′, K \K ′, and K ·K ′ is in SF(A∗).

By Kleene’s Theorem, a language is regular if and only if it can be recognized by
a deterministic finite automaton [3]. In particular, regular languages are closed
under complementation and thus, every star-free language is regular.

Lemma 1. If B ⊆ A, then SF(B∗) ⊆ SF(A∗).

Proof. It suffices to show B∗ ∈ SF(A∗). We have B∗ = A∗ \
⋃

b 6∈B A
∗bA∗. ut

A monoid M is aperiodic if for every x ∈ M there exists a number n ∈ N
such that xn = xn+1.

Lemma 2. Let M be aperiodic. Then x1 · · ·xk = 1 in M if and only if xi = 1
for all i.

Proof. If xy = 1, then 1 = xy = xnyn = xn+1yn = x · 1 = x. ut

A monoid M recognizes a language L ⊆ A∗ if there exists a homomorphism
ϕ : A∗ →M with ϕ−1

(
ϕ(L)

)
= L. A consequence of Kleene’s Theorem is that a

language is regular if and only if it is recognizable by a finite monoid, see e.g. [5].
The class of aperiodic languages AP(A∗) contains all languages L ⊆ A∗ which
are recognized by some finite aperiodic monoid.

The syntactic congruence ≡L of a language L ⊆ A∗ is defined as follows.
For u, v ∈ A∗ we set u ≡L v if for all p, q ∈ A∗ we have puq ∈ L ⇔ pvq ∈ L.
The syntactic monoid Synt(L) of a language L ⊆ A∗ is the quotient A∗/ ≡L

consisting of the equivalence classes modulo ≡L. The syntactic homomorphism
µL : A∗ → Synt(L) with µL(u) = {v | u ≡L v} satisfies µ−1L

(
µL(L)

)
= L. In

particular, Synt(L) recognizes L and it is the unique minimal monoid with this
property, see e.g. [5].

Let M be a monoid and c ∈ M . We introduce a new multiplication ◦ on
cM ∩Mc. For xc, cy ∈ cM ∩Mc we let

xc ◦ cy = xcy.

This operation is well-defined since x′c = xc and cy′ = cy implies x′cy′ = xcy′ =
xcy. For cx, cy ∈ Mc we have cx ◦ cy = cxy ∈ Mc. Thus, ◦ is associative
and c is the neutral element of the monoid Mc = (cM ∩Mc, ◦, c). Moreover,



M ′ = {x ∈M | cx ∈Mc} is a submonoid of M such that M ′ → cM ∩Mc with
x 7→ cx becomes a homomorphism. It is surjective and hence, Mc is a divisor of
(M, ·, 1) called the local divisor of M at c. Note that if c2 = c, then Mc is just
the local monoid (cMc, ·, c) at the idempotent c.

Lemma 3. If M is a finite aperiodic monoid and 1 6= c ∈ M , then Mc is
aperiodic and |Mc| < |M |.

Proof. If xn = xn+1 in M for cx ∈ Mc, then (cx)n = cxn = cxn+1 = (cx)n+1

where the first and the last power is in Mc. This shows that Mc is aperiodic. By
Lemma 2 we have 1 6∈ cM ∩Mc and thus |Mc| < |M |. ut

3 Schützenberger’s Theorem on star-free languages

The following proposition establishes the more difficult inclusion of Schützen-
berger’s result SF(A∗) = AP(A∗). Its proof relies on local divisors.

Proposition 1. Let ϕ : A∗ → M be a homomorphism to a finite aperiodic
monoid M . Then for all p ∈M we have ϕ−1(p) ∈ SF(A∗).

Proof. We proceed by induction on (|M | , |A|) with lexicographic order. The
claim is obvious for A = ∅. For p = 1 we have ϕ−1(1) = {a ∈ A | ϕ(a) = 1}∗.
Here, the inclusion from left to right follows from Lemma 2 and the other in-
clusion is trivial. By Lemma 1, we conclude ϕ−1(1) ∈ SF(A∗). This also covers
both the case |M | = 1 and the situation where ϕ(a) = 1 for all a ∈ A.

Let now p 6= 1 and let c ∈ A with ϕ(c) 6= 1. We set B = A \ {c} and we let
ϕc : B∗ →M be the restriction of ϕ to B∗. We have

ϕ−1(p) = ϕ−1c (p) ∪
⋃

p = p1p2p3

ϕ−1c (p1) ·
[
ϕ−1(p2) ∩ cA∗ ∩A∗c

]
· ϕ−1c (p3). (1)

The inclusion from right to left is trivial. The other inclusion can be seen as
follows: Every word w with ϕ(w) = p either does not contain the letter c or we can
factorize w = w1w2w3 with c 6∈ alph(w1w3) and w2 ∈ cA∗∩A∗c, i.e., we factorize
w at the first and the last occurrence of c. Equation (1) is established by setting
pi = ϕ(wi). By induction on the size of the alphabet, we have ϕ−1c (pi) ∈ SF(B∗),
and thus ϕ−1c (pi) ∈ SF(A∗) by Lemma 1.

Since SF(A∗) is closed under union and concatenation, it remains to show
ϕ−1(p) ∩ cA∗ ∩A∗c ∈ SF(A∗) for p ∈ ϕ(c)M ∩Mϕ(c). Let

T = ϕc(B
∗).

The set T is a submonoid of M . In the remainder of this proof, we will use T as
a finite alphabet. We define a substitution

σ : (B∗ c)∗ → T ∗

v1c · · · vkc 7→ ϕc(v1) · · ·ϕc(vk)



for vi ∈ B∗. In addition, we define a homomorphism ψ : T ∗ → Mc with Mc =
(ϕ(c)M ∩Mϕ(c), ◦, ϕ(c)) by

ψ : T ∗ →Mc

ϕc(v) 7→ ϕ(cvc)

for ϕc(v) ∈ T . Consider a word w = v1c · · · vkc with k ≥ 0 and vi ∈ B∗. Then

ψ
(
σ(w)

)
= ψ

(
ϕc(v1)ϕc(v2) · · ·ϕc(vk)

)
= ϕ(cv1c) ◦ ϕ(cv2c) ◦ · · · ◦ ϕ(cvkc)

= ϕ(cv1cv2 · · · cvkc) = ϕ(cw). (2)

Thus, we have cw ∈ ϕ−1(p) if and only if w ∈ σ−1
(
ψ−1(p)

)
. This shows ϕ−1(p)∩

cA∗ ∩ A∗c = c · σ−1
(
ψ−1(p)

)
for every p ∈ ϕ(c)M ∩ Mϕ(c). In particular,

it remains to show σ−1
(
ψ−1(p)

)
∈ SF(A∗). By Lemma 3, the monoid Mc is

aperiodic and |Mc| < |M |. Thus, by induction on the size of the monoid we
have ψ−1(p) ∈ SF(T ∗), and by induction on the size of the alphabet we have
ϕ−1c (t) ∈ SF(B∗) ⊆ SF(A∗) for every t ∈ T . For t ∈ T and K,K ′ ∈ SF(T ∗) we
have

σ−1(T ∗) = A∗c ∪ {1}
σ−1(t) = ϕ−1c (t) · c

σ−1(K ∪K ′) = σ−1(K) ∪ σ−1(K ′)

σ−1(K \K ′) = σ−1(K) \ σ−1(K ′)

σ−1(K ·K ′) = σ−1(K) · σ−1(K ′).

Only the last equality requires justification. The inclusion from right to left is
trivial. For the other inclusion, suppose w = v1c · · · vkc ∈ σ−1(K ·K ′) for k ≥ 0
and vi ∈ B∗. Then ϕc(v1) · · ·ϕc(vk) ∈ K · K ′, and thus ϕc(v1) · · ·ϕc(vi) ∈ K
and ϕc(vi+1) · · ·ϕc(vk) ∈ K ′ for some i ≥ 0. It follows v1c · · · vic ∈ σ−1(K) and
vi+1c · · · vkc ∈ K ′. This shows w ∈ σ−1(K) · σ−1(K ′).

We conclude that σ−1(K) ∈ SF(A∗) for every K ∈ SF(T ∗). In particular,
σ−1

(
ψ−1(p)

)
∈ SF(A∗). ut

Remark 1. A more algebraic viewpoint of the proof of Proposition 1 is the fol-
lowing. The mapping σ can be seen as a length-preserving homomorphism from
a submonoid of A∗—freely generated by the infinite set B∗ c—onto T ∗; and
this homomorphism is defined by σ(vc) = ϕc(v) for vc ∈ B∗c. The mapping
τ : Mϕ(c) ∪ {1} → Mc with τ(x) = ϕ(c) · x defines a homomorphism. Now, by
Equation (2) the following diagram commutes:

(B∗c)∗ T ∗

Mϕ(c) ∪ {1} Mc

σ

ϕ ψ

τ



The following lemma gives the remaining inclusion of SF(A∗) = AP(A∗). Its
proof is standard; it is presented here only to keep this paper self-contained.

Lemma 4. For every language L ∈ SF(A∗) there exists an integer n(L) ∈ N
such that for all words p, q, u, v ∈ A∗ we have

p un(L)q ∈ L ⇔ p un(L)+1q ∈ L.

Proof. For the languages A∗ and {a} with a ∈ A we define n(A∗) = 0 and
n({a}) = 2. Let now K,K ′ ∈ SF(A∗) such that n(K) and n(K ′) exist. We set

n(K ∪K ′) = n(K \K ′) = max
(
n(K), n(K ′)

)
,

n(K ·K ′) = n(K) + n(K ′) + 1.

The correctness of the first two choices is straightforward. For the last equation,
suppose p un(K)+n(K′)+2q ∈ K ·K ′. Then either p un(K)+1q′ ∈ K for some prefix
q′ of un(K

′)+1q or p′ un(K
′)+1q ∈ K ′ for some suffix p′ of pun(K)+1. By definition

of n(K) and n(K ′) we have p un(K)q′ ∈ K or p′ un(K
′)q ∈ K ′, respectively. Thus

p un(K)+n(K′)+1q ∈ K ·K ′. The other direction is similar: If p un(K)+n(K′)+1q ∈
K ·K ′, then p un(K)+n(K′)+2q ∈ K ·K ′. This completes the proof. ut

Theorem 1 (Schützenberger). Let A be a finite alphabet and let L ⊆ A∗.
The following conditions are equivalent:

1. L is star-free.

2. The syntactic monoid of L is finite and aperiodic.

3. L is recognized by a finite aperiodic monoid.

Proof. “1 ⇒ 2”: Every language L ∈ SF(A∗) is regular. Thus Synt(L) is finite,
cf. [5]. By Lemma 4, we see that Synt(L) is aperiodic. The implication “2⇒ 3”
is trivial. If ϕ−1

(
ϕ(L)

)
= L, then we can write L =

⋃
p∈ϕ(L) ϕ

−1(p). Therefore,
“3⇒ 1” follows by Proposition 1. ut

The syntactic monoid of a regular language (for instance, given by a non-
deterministic automaton) is effectively computable. Hence, from the equivalence
of conditions “1” and “2” in Theorem 1 it follows that star-freeness is a decidable
property of regular languages. The equivalence of “1” and “3” can be written as

SF(A∗) = AP(A∗).

The equivalence of “2” and “3” is rather trivial: The class of finite aperiodic
monoids is closed under division, and the syntactic monoid of L divides any
monoid that recognizes L, see e.g. [5].

Acknowlegdements

The author would like to thank Volker Diekert and Benjamin Steinberg for many
interesting discussions on the proof method for Proposition 1.



References

1. V. Diekert and P. Gastin. Pure future local temporal logics are expressively com-
plete for Mazurkiewicz traces. Information and Computation, 204:1597–1619, 2006.
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