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Abstract 

In this study, the effect of annealing pressure and time on the homogeneity and the 

formation of the CZTSe structure was investigated. The deposition of the CZTSe 

coating was carried out using an electroplating method. The morphology and crystal 

structure of the coating was investigated using SEM-EDS, XRD and Raman 

spectroscopy. CZTSe films with optimised crystallinity and uniformity were obtained 

using an annealing process performed at 10 Torr for 1 hour. The use of lower 

pressures increases the crystallinity and the purity of the CZTSe film and decreases 

the density of secondary phases and the annealing time providing an additional 

benefit.  
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1. Introduction 

Solar radiation is the cleanest and most abundant energy sources on earth1 and can be 

converted into electrical energy by means of photovoltaic cells 2-4. Thin film 

photovoltaic devices consist of p and n-type layers 2. CdTe, CIGS and CIS thin film 

absorbers are commonly used as the p-type layer5.  These materials contain toxic (Cd) 

or rare elements such as In, and Ga6. As a result, research is being carried out to 

develop solar cells, which use an alternative non-toxic and abundant materials.  

The Kesterite Cu2ZnSnSe4 (CZTSe) is a promising absorber material for photovoltaic 

modules, which contains earth abundant and non-toxic elements7. Thus, it has 

received much interest and many studies using this material have been reported. 

Many deposition methods have been used to deposit CZTSe thin films 8-12. 

Electroplating is an attractive method since it is atmospheric and the low cost 1,13 It 

can be used to deposit as single layers and multilayers 14-15. 

The CZTSe microstructure forms during an annealing process. The CZT (CuZnSn) 

layer, prior to annealing, consists of Sn, Cu and Sn precursors together with Cu6Sn5, 

CuZn and Cu5Zn8 alloys 2,16. The annealing process is carried out using a nitrogen or 

argon atmosphere at a specified temperature and pressure. CZT and Se ingots are 

placed in a graphite sample holder and Se evaporates during annealing 9, 17-19. Zhang 

et al. compared the annealing process performed by the RTA (Rapid Thermal 

Annealing) and CFA (Conventional Furnace Annealing). The results indicated that 

the RTA process facilitates the formation of single phase CZTSe absorbers with large 

grains.  The band gap energy of the film is 0.98 eV and the optical absorption 

coefficient is in the order of 104 cm-1 in the visible region. The efficiency of CZTSe 

solar cells is 4.5%. This study shows that a low-cost, non-vacuum process using co-



electrodeposition with the subsequent RTA process is a promising method for the 

fabrication of CZTSe based solar cells20. Sundara et al. prepared the CZTS thin films 

by the four-source co-evaporation technique. They investigated the effect of the 

substrate at different temperatures (523, 573, 623 and 673 K) and annealed it at 723 

K. They found that the optimum substrate temperature to obtain single phase CZTSe 

films is 623 K21. The annealing process plays a crucial role in the formation of CZTS 

crystal structure. Some scientists studied the annealing atmosphere, including H2S 

and N2 gas5, 6. But few studies has been reported investigating the effect of the 

annealing temperature and pressure together on the CZTSe crystal structure and 

uniformity 22-23. In this study, the effect of annealing temperature and pressure on the 

CZTSe crystal structure and homogeneity has been investigated by using systematic 

method.  

2. Experimental 

Cu, Sn and Zn (CZT) multilayer electroplating were carried out using a Thurlby 30V-

1A-model DC generator. The morphology and structure of the annealed films were 

investigated using XRD, Raman spectroscopy, and SEM-EDS. A Bruker D2 phaser 

model was used for XRD measurements, scanning 30 and 70o. The step was set to 

0.02 with 2 steps per second. Raman spectroscopy measurements (LabRam HR 

model) were performed using the 633 nm line of a HeNe laser as an excitation source. 

Scanning Electron Microscopy was carried out on a JEOL JSM-7800F High-

resolution analytical, Field Emission Scanning Electron Microscope (FE-SEM). 

Energy dispersive X-ray spectroscopy (EDS) microanalysis was obtained using an 

Oxford Instruments X-max 80mm2 detector, combined with Aztec software allowing 

standardless quantitative elemental analysis to be carried out.  



Molybedum-coated soda-lime glass was used as the substrate. Prior to 

electrodeposition, the sample surfaces were cleaned using 6A/dm2 cathodic current 

for 5 minutes. Cu, Zn and Sn were electrodeposited sequentially on the substrates 

(size 5x5 cm2). The chemical contents of these baths are shown in Table 1. 

Table 1.  

Varying pressures and times were used during the annealing process following 

electrodeposition. The experimental parameters are presented in Table 2. The 

samples were annealed using a nitrogen atmosphere at 540 oC in a graphite sample 

holder containing 0.6 Se ingots in a quartz tube. 

Table 2.  

3. Results and discussion 

The annealing pressure and time are important parameters to obtain pure and 

homogeneous crystals of CZTSe. Thus, the optimum annealing conditions were 

investigated by varying the pressure and time of heat treatment. Six different 

annealing conditions were studied. The samples were named as in Table 2. In order to 

characterise the CZTSe crystals of these samples, XRD and Raman scattering 

measurements were evaluated together, because the peaks of ZnSe and Cu2SnSe3 

secondary phases in XRD patterns are very similar to CZTSe and are difficult to 

distinguish 5. 

The peaks at 171, 193 and 233 cm-1 in the Raman spectra confirm the formation of 

CZTSe and the intensity of peaks indicate the crystal quality 29. Fig. 1 shows the 3 

points on the CZTSe deposition taken the Raman measurements and the results are 

presented in Fig. 2 (a-f). The current distribution on the substrate surface in the 



electroplating process is not uniform. Thus, the CZTSe thickness and the alloy ratio 

across the samples are different. This causes a drop in the quality and homogeneity of 

the CZTSe crystal during annealing 27,29. S1 in Table 2 had the density and 

uniformity of CZTSe crystal structure and secondary phase was not observed (Fig. 

2a). When the annealing time was raised to 2 hours, the density of CZTSe structure 

increased slightly, but the homogeneity was not altered (Fig. 2b).  In region 1 of S3, 

the density of CZTSe was very high, but the density in the other regions reduced 

drastically. The homogeneity of the surface was too low (Fig. 2c).  ZnSe secondary 

phases were also observed in the same region.  When the annealing time in S4 was 

raised to 2 hours, the homogeneity of the CZTSe crystal structure grew significantly 

and the secondary phase was not detected (Fig. 2d).  S5 and S6 (Fig. 2e-f) were 

annealed using 300 Torr pressure for 1 and 2 hours respectively. Although the CZTSe 

structure was observed in S5, the density of the CZTSe was too low. In addition, the 

density of the ZnSe secondary phase was too high. In order to confirm the CZTSe 

peak at 193 cm-1 in the Raman spectrum, an XRD measurement was carried out on 

the S5. Even though the peaks corresponding to CZTSe in the XRD spectrum were 

observed, the number of secondary phases and intensity were too high (Fig. 3). In S6 

(Fig. 2f), when the annealing time was increased to 2 hours, the intensity of the 

CZTSe peak became distinct. But its density was still too low and CuSe secondary 

phase was observed. The surface homogeneity of samples improved when the 

annealing time increased.  

Fig. 1. 

Fig. 2. 

Fig. 3.  



As is commonly known, the evaporation rate of materials is directly affected by the 

gas pressure. As the gas pressure decreases, the evaporation rate rises. Se has the 

lowest evaporation temperature among the elements in the CZTSe structure. 

Therefore, it is expected that the consumption of Se will be faster than the other 

elements during the annealing process. Fig. 4 shows the effect of changing the 

annealing pressure and time on the consumption of Se. The concentration of Se was 

51.8 %, 51.3 %, and 50.4 %, respectively, when the annealing pressure increased 

from 10 to 300 Torr and the annealing time was 1 hour. When the annealing time was 

increased to 2 hours, the concentration of Se decreased to 49.1 %, 51.0 %, and 51.0 % 

respectively. The largest decrease in the Se quantity occurred when the gas pressure 

was 10 Torr and the annealing time was 2 hours. However, this decrease is not 

significant for the formation of CZTSe. 

Fig. 4.  

The effect of the annealing process on the morphology of the CZTSe coating is 

presented in Fig. 5. S1, S2 and S4 (Fig. 5 (a, b, d)) have a more uniform and compact 

morphology and the sizes of grain are smaller. In S3, S5 and S6 (Fig. 5 (c, e, f)), the 

sizes of the grains are not homogeneous and agglomeration has taken place. This may 

result from the secondary phases such as ZnSe, CuSe, etc. SEM micrographs and 

Raman scattering measurements revealed that the purest and the most homogeneous 

CZTSe crystal structure was obtained with the annealing conditions of S1. 

Fig. 5.  

The surface morphology of S1 is presented in Fig. 6. It reveals that the CZTSe 

coating has a compact and non-porous structure with triangular grains, whose size is 

generally between 0.5 and 1µm. 



Fig. 6. 

Fig. 7 shows the deterioration of the CZTSe coating surface. It is believed that the 

defects formed on the coating are due to hydrogen gas evolution trapped in the 

coating during electrodeposition, which creates internal pressure and results in cracks 

in the coating.  It is known that when the electrodeposition process is carried out in 

water-based solutions, hydrogen gas evolves at the cathode due to water hydrolysis. 

If the evolved hydrogen gas does not leave the surface quickly, it may be trapped in 

the coating 26. 

Fig. 7.  

Fig. 8 shows the XRD peaks from S1. The peaks corresponding to the crystal 

structure of CZTSe are observed in the XRD spectrum.  Also, the peak corresponding 

to MoSe2 is present due to the reaction between Mo and Se elements. The intensity of 

this peak is weak. It has been reported that MoSe2 increase the adhesion strength 

between substrate and coating 27. XRD peaks confirm the Raman measurements. 

Fig 8. 

4. Conclusions 

In this study, the effects of annealing pressure and time on the formation and the 

homogeneity of the CZTSe structure were investigated. The results obtained from 

this study are summarized as follows: 

 The concentration and homogeneity of CZTSe decreased when the annealing 

pressure was raised. In addition, the number and density of secondary phases 

increased. 



 The purest and most homogeneous crystallinity of CZTSe was obtained when 

the annealing pressure was held at 10 Torr for 1 hour.  

 The annealing process performed at low pressure enhanced the quality and 

homogeneity of the CZTSe structure and decreased the annealing time 

required significantly. 

 When the annealing pressure was raised from 10 to 100 Torr, the uniformity 

of the CZTSe deteriorated. However, when the annealing time was extended, 

the uniformity improved. 

 The decrease in the concentration of Se in the coating was negligible at the 

low annealing pressure. 

 The Mo-coated substrate deteriorated (Fig. 9b) when the pressure was raised 

to 300 Torr. However, when the annealing pressure was decreased to 10 Torr, 

the Mo- coated substrate did not deteriorate at 540 oC (Fig. 9a). The low 

annealing pressure prevents the deterioration of the Mo-coated substrate. 

Consequently, the results show that it is possible to obtain the most uniform and 

purest CZTSe structure using a low annealing pressure and time.  

 Fig. 9.  

In addition, hydrogen gas evolution due to water hydrolysis causes some defects on 

the surface because hydrogen gas is trapped in the coating. In order to prevent these 

defects, surfactants can be used to decrease the surface tension, which facilitates the 

release of hydrogen from the surface. 
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Table 1. The composition of Cu, Zn and Sn electrodeposition baths. 

Cu bath Zn bath Sn bath 

10 g/L CuSO4.5H2O 80 g/L ZnCl2 10 g/L SnSO4 

100 g/L K4P2O7  (potassium 
pyrophosphate) 

150 g/L NH4OH 100 g/L K4P2O7  (potassium 
pyrophosphate) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Annealing pressures and times applied to the samples S1 to S6. 

 S1 S2 S3 S4 S5 S6 

Pressure (Torr) 10 10 100 100 300 300 

Time (hour) 1 2 1 2 1 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure Captions 

Fig. 1. The position of measurements of the Raman spectra. 

Fig. 2. Raman spectra of S1-S6 taken from the positions shown in Fig. 1.  

Fig. 3. The peaks of XRD spectrum from sample S5. 

Fig. 4. The concentration of Se (At %) in the CZTSe coating at the annealing 

pressure of 10, 100 and 300 Torr.  

Fig. 5. The surface morphology of the CZTSe samples obtained at different pressures 

and annealing times; a) 10 Torr 1 hour b) 10 Torr 2 hours c) 100 Torr 1 hour d) 100 

Torr 2 hours e) 300 Torr 1 hour f) 300 Torr 2 hours. 

Fig. 6. Surface morphology of S1. 

Fig. 7. Micrographs of defects formed on the CZTSe surface. 

Fig 8. The XRD peaks obtained from sample S1. 

Fig. 9.  Optical images of samples following an annealing process performed at a) 10 

Torr and b) 300 Torr. 

 

 

 


