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Communication: Unambiguous comparison of many-electron
wavefunctions through their overlaps
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A simple and powerful method for comparing many-electron wavefunctions constructed at different
levels of theory is presented. By using wavefunction overlaps, it is possible to analyze the effects
of varying wavefunction models, molecular orbitals, and one-electron basis sets. The computation
of wavefunction overlaps eliminates the inherent ambiguity connected to more rudimentary wave-
function analysis protocols, such as visualization of orbitals or comparing selected physical observ-
ables. Instead, wavefunction overlaps allow processing the many-electron wavefunctions in their full
inherent complexity. The presented method is particularly effective for excited state calculations as it
allows for automatic monitoring of changes in the ordering of the excited states. A numerical demon-
stration based on multireference computations of two test systems, the selenoacrolein molecule and an
iridium complex, is presented. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4958462]

A common task in quantum chemistry is the comparison
of electronic structure computations performed at different
levels of theory. This is unavoidable when comparing a
cheaper method against a high-level benchmark or when
testing a newly developed computational protocol. Specifically
for excited state calculations, it is important to have a
quick and reliable method to monitor whether changes
in the wavefunction characters occur between calculations
carried out with different methods. A common practice is to
compare the energies and selected other physical observables
derived from the particular wavefunctions. While this is a
straightforward and physically sound approach, it requires a
careful choice of the properties to be considered. Alternatively,
qualitative insight into the wavefunction character can be
obtained through visualization of the canonical orbitals or
by application of some specific visualization protocols.1–3

However, the assignment of state characters based on
orbitals alone is challenging in many cases, e.g., when the
orbital character is not clearly visible, when the orbitals
are delocalized, when many configurations are involved,
or when partial double excitation character is present.
To overcome some of these problems, different phenom-
enological descriptors have been introduced that monitor
diverse specific properties, such as the number of unpaired
electrons,4–6 double excitation character,3,7 charge transfer,8–12

excitonic effects,13–15 collectivity,16 entanglement,17,18 and
orbital relaxation.19 While these certainly provide important
insight, the sheer number of such descriptors shows how
challenging it is to grasp many-electron wavefunctions in their
full complexity. In this communication we want to promote
a more fundamental and unbiased mode of comparing two
many-electron wavefunctions: Computing the scalar product
between the two wavefunctions, i.e., their overlap. Despite its
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simplicity, this idea does not seem to have received appreciable
attention so far, aside from some formal discussions20,21 and
a partially related investigation of transition density matrices
between arbitrary state functions.22

The starting point for the discussion is the electronic
Schrödinger equation

H |Ψ⟩ = E |Ψ⟩ , (1)

where H is the electronic Hamilton operator, E is an energy
eigenvalue, and |Ψ⟩ is the corresponding antisymmetric
many-electron eigenfunction. Given two sets of individually
orthonormal approximate eigenfunctions of H , denoted
{|ΨI⟩} and

��
Ψ′J

�	
, we propose to compute the overlap

between two such functions,

SI J = ⟨ΨI | Ψ′J
�
, (2)

to answer the question of how much they resemble each other.
Computing wavefunction overlaps is a rather involved

task in the general case of varying orbitals that requires
either an explicit construction of the Slater determinants23–25

or a transformation of the orbital bases.26,27 We have
recently introduced an algorithm for the computation of
such overlaps, using a very general formalism based on
Slater determinants.28 Aside from its original intention of
computing overlaps between varying geometries along a
molecular dynamics trajectory, this formalism allows to
compute the overlap between any pair of wavefunctions given
in a Slater determinant expansion. The code is used here to
compute overlaps between wavefunctions constructed using
varying one-electron basis sets, molecular orbitals (MOs), and
wavefunction expansions.

A detailed discussion of the properties of the overlap
matrix S is presented elsewhere.28 Here, only one crucial
property is highlighted. For this purpose, the wavefunction
|ΨI⟩ is expanded in the form

0021-9606/2016/145(2)/021103/5/$30.00 145, 021103-1 Published by AIP Publishing.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288362171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.4958462
http://dx.doi.org/10.1063/1.4958462
http://dx.doi.org/10.1063/1.4958462
http://dx.doi.org/10.1063/1.4958462
http://dx.doi.org/10.1063/1.4958462
http://dx.doi.org/10.1063/1.4958462
http://dx.doi.org/10.1063/1.4958462
http://dx.doi.org/10.1063/1.4958462
http://dx.doi.org/10.1063/1.4958462
http://dx.doi.org/10.1063/1.4958462
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:felix.plasser@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
mailto:leticia.gonzalez@univie.ac.at
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4958462&domain=pdf&date_stamp=2016-07-11


021103-2 F. Plasser and L. González J. Chem. Phys. 145, 021103 (2016)

|ΨI⟩ =
N
J=1

�
Ψ
′
J

� 

Ψ
′
J

�
ΨI

�
+ *
,
1 −

N
J=1

�
Ψ
′
J

� 

Ψ
′
J

�+
-
|ΨI⟩

=

N
J=1

�
Ψ
′
J

�
SI J +

�
Ψ
⊥
I

�
. (3)

Here, N denotes the dimension of the space spanned by the��
Ψ′J

�	
, and

�
Ψ⊥I

�
is the component of |ΨI⟩ that belongs to the

orthogonal complement of this space. The wavefunction |ΨI⟩
is thus decomposed into the individual projection components
and the “missing part”

�
Ψ⊥I

�
. As a next step, the above equation

is projected onto ⟨ΨI |,

1 = ⟨ΨI |ΨI ⟩ =
N
J=1

SI J
2 +

�
Ψ
⊥
I

�2
. (4)

This shows that the combined weight of the projection
components is normalized to unity and consequently that
the sum of the squared overlap values along a column (or a
row) of the overlap matrix is less or equal to one. To visualize
this decomposition, we plot the SI J

2 values in pie charts with
a missing piece corresponding to the

�
Ψ⊥I

�2 term (see below).
Two examples29 are provided to illustrate the power of this

wavefunction analysis protocol (cf. Fig. 1): selenoacrolein,
a molecule with rather simple electronic structure,28,30 and
an iridium complex whose theoretical description is highly
challenging.19,31 For selenoacrolein, a geometry close to an
avoided crossing between the lowest two triplet states is
chosen by setting the C==C torsion angle to 55◦. It is well
known32–34 that the relative energies of nπ∗ and ππ∗ states
strongly depend on the treatment of dynamic correlation
and therefore we expect the state-ordering to be sensitive
to the method. To evaluate this hypothesis, the T1 and
T2 states are computed at five different levels of theory
using various complete active space self-consistent field
(CASSCF) and multireference configuration interaction (MR-
CI) expansions.35–38 First, an active space of 6 electrons in 5
orbitals and the ANO-RCC-VDZP basis set (abbreviated D)39

are chosen and the maximum excitation level is varied using
the CASSCF(6,5), MR-CIS(6,5), and MR-CISD(6,5) levels of
theory. Then the active space is increased to the MR-CISD(8,7)
level, and the basis set is enlarged to the triple-ζ level (MR-
CISD(6,5)/T). Corresponding energies, dipole moments, and
qualitative wavefunction characters are presented in Table I.
The energy difference between the T1 and T2 states is below
0.1 eV in all cases, in agreement with the assumption of
a nearby crossing. However, discrepancies are found with
respect to the characters of the states. At the CASSCF(6,5)
level the T1 state is of ππ∗ character while MR-CIS predicts

FIG. 1. Structural formulas of (a) selenoacrolein and (b) Ir(C3H3N)3 as
studied in this work.

TABLE I. Energies (E , eV) relative to the ground state minimum, dipole
moments (µ, D), and wavefunction characters for the lowest two triplet states
of selenoacrolein at a torsion angle of 55◦ computed at different levels of
theory.

T1 T2

Methoda E µ Char. E µ Char.

CASSCF(6,5)/D 2.399 2.24 ππ∗ 2.491 0.86 nπ∗

MR-CIS(6,5)/D 2.670 0.37 nπ∗ 2.758 2.42 ππ∗

MR-CISD(6,5)/D 2.505 2.17 ππ∗/nπ∗ 2.561 0.67 nπ∗/ππ∗

MR-CISD(8,7)/D 2.547 2.24 ππ∗/nπ∗ 2.612 0.59 nπ∗/ππ∗

MR-CISD(6,5)/T 2.484 2.05 ππ∗/nπ∗ 2.529 0.80 nπ∗/ππ∗

aBasis set: D=ANO-RCC-VDZP, T=ANO-RCC-VTZP.

it to be nπ∗. In contrast, all MR-CISD calculations show a
mixture with predominant ππ∗ character. The dipole moments
are consistent with respect to the qualitative state characters:
they are somewhat above 2 D for the predominant ππ∗ states
and well below 1 D for the nπ∗ states.

Despite the fact that the analysis of Table I is probably
sufficient here, there are inherent limitations with respect to
the strategies used. First, a comparison of orbital transitions
requires that the orbitals produced by the different methods
resemble each other, and if the wavefunctions are mixed,
e.g., having ππ∗/nπ∗ character, additional care is necessary.
Then, the application of operator expectation values requires
a priori knowledge of the relevant properties to analyze. It
is, thus, clearly beneficial to have an automated strategy
for comparing two wavefunctions that does not require
any problem-specific adjustment or a priori knowledge of
the results. We argue that wavefunction overlaps provide
just that. As an illustration, the overlaps of the T1 and T2
MR-CISD(6,5)/D wavefunctions with respect to the other
computational methods are shown in the pie charts in Fig. 2.
These overlaps evidence the effects of lowering the excitation
level, on the one hand, and of increasing the active space
or basis set, on the other hand. The two columns of Fig. 2
correspond to the wavefunctions,

�
Ψ′1

�
and

�
Ψ′2

�
, computed with

the indicated respective methods. The pie charts represent the
square of the overlap values of these states with respect to
the ⟨Ψ1| (blue) and ⟨Ψ2| (red) states computed at the MR-
CISD(6,5)/D level. Each pie chart thus corresponds to one
column of the overlap matrix. The weight of the orthogonal
complement, i.e., the

�
Ψ⊥I

�2 term in Eq. (4), is shown as
the missing piece of the pie. At the CASSCF(6,5)/D level
(Fig. 2(a)), one immediately sees that the state ordering is
the same as provided by MR-CISD(6,5)/D, in agreement
with Table I. There is a squared overlap of 82% between
the T1 wavefunctions and 4% mixing with T2. However,
the orthogonal complement (14%) plays an important role,
highlighting that dynamic correlation alters the wavefunction.
The T2 state is basically the mirror image of the T1 state, due
to the simple nature of the excited states in this case. The
MR-CIS(6,5)/D level of theory (Fig. 2(b)) induces a reversal
in state ordering and the squared



Ψ2

�
Ψ′1

�
term amounts to

58% while


Ψ1

�
Ψ′1

�2
= 31%. The weight of the orthogonal

complement is 11%, slightly smaller than CASSCF (14%).
The T2 state is again the mirror image of T1. In the case of
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FIG. 2. Squared overlap terms


ΨI

�
Ψ′J

�2 between wavefunctions computed
at different levels of theory using the example of the two lowest triplet
states of selenoacrolein at a torsion angle of 55◦. The pie charts correspond
to individual ket states computed by the method indicated above them.
The overlap terms of the ⟨Ψ1| and ⟨Ψ2| wavefunctions computed by the
MR-CISD(6,5)/D method are shown in blue and red, respectively, while the
orthogonal complement corresponds to the sector missing in the chart.

MR-CISD(8,7)/D (Fig. 2(c)) a 99% overlap is observed for
both the T1 and T2 states and it is clear that the increase of the
active space is irrelevant here. A somewhat more pronounced
effect is observed upon increasing the basis set to the triple-ζ

level (MR-CISD(6,5)/T, Fig. 2(d)) where only a 96% squared
overlap is obtained. While the previous analysis of Table I is
consistent with these results, the overlap computation provides
the added benefit of a well-defined quantitative analysis.

A second, more demanding example is provided
by analyzing the excited state wavefunctions of the
fac-tris(3-iminoprop-1-en-1-ido)iridum complex [Ir(C3H3N)3]
shown in Fig. 1(b). The wavefunctions of transition metal
complexes are well-known to strongly depend on the
computational method.40,41 Therefore, two active spaces
(using 12 electrons in either 9 or 12 orbitals) and two different
excitation levels are considered. Overall, we have performed
CASSCF(12,9), CASSCF(12,12), MR-CIS(12,9), and MR-
CIS(12,12) calculations, in connection with the LANL2DZ
pseudopotential.42,43 In all cases state-averaging over the
lowest ten singlet states, corresponding to four states of A and
six of E symmetry, is carried out. For simplicity, the analysis
is restricted to the four non-degenerate A states. As shown
in Table II, already the excitation energies of these states
exhibit strong deviations depending on the method used. The
21A energies vary between 4.17 eV for CASSCF(12,9) and
3.56 eV for CASSCF(12,12), and in the case of the 41A state
the difference between CASSCF(12,9) and MR-CIS(12,12)
exceeds 1 eV. These excited states are combinations of ligand-
centered (LC) and metal-to-ligand charge transfer (MLCT)
states. However, the precise character of each state is difficult
to pinpoint because several excited state configurations are
involved in most cases. The relevant orbitals, in turn, possess
mixed Ir-d/ligand-π character. A better comparison of the
results can be achieved by inspecting the Mulliken charges on
the iridium atom qIr. For the ground state, a variation from
1.20 to 1.30 is observed when going from CASSCF(12,9)
to MR-CIS(12,12). For the first and second excited states
the opposite trend is observed and the CASSCF method
gives higher charges. Both trends combined mean that the
proportion of MLCT is significantly enhanced by CASSCF
(see also Ref. 31). For example, in the case of the 11A → 21A
transition the charge transferred from iridium to the ligands
amounts to 0.46 e in the case of CASSCF(12,9) while
only half of this value is obtained for MR-CIS(12,9).
The 41A states generally possess reduced MLCT character
and again some discrepancies between the methods are
observed.

The analysis of the excitation energies and the Mulliken
charges certainly provides some insight into the states
of Ir(C3H3N)3; however, some important questions remain
unanswered. Of particular interest is the problem of whether

TABLE II. Excitation energies (∆E , eV) and Mulliken charges on the iridium atom (qIr, e) for the first four
totally symmetric singlet states of Ir(C3H3N)3 computed at the CASSCF and MR-CIS levels of theory using
different active spaces.

CAS(12,9) CAS(12,12) MR-CI(12,9) MR-CI(12,12)

∆E qIr ∆E qIr ∆E qIr ∆E qIr

11A . . . 1.20 . . . 1.23 . . . 1.27 . . . 1.30
21A 4.17 1.66 3.56 1.63 3.97 1.50 3.76 1.54
31A 4.49 1.60 3.93 1.58 4.66 1.47 4.46 1.50
41A 6.19 1.35 5.36 1.37 5.01 1.42 4.96 1.44



021103-4 F. Plasser and L. González J. Chem. Phys. 145, 021103 (2016)

FIG. 3. Squared overlap terms


ΨI

�
Ψ′J

�2 between wavefunctions computed
at different levels of theory using the example of the four lowest singlet states
of the Ir(C3H3N)3 complex. The pie charts correspond to individual ket states
computed by the method indicated above them. The overlap terms of the ⟨Ψ0|,
⟨Ψ1|, ⟨Ψ2|, and ⟨Ψ3| wavefunction computed by the MR-CIS(12,12) method
are shown in blue, red, green, and yellow while the orthogonal complement
corresponds to the sector missing in the chart.

the overall state-ordering is preserved in all calculations
despite the large shifts in energies. Equally important is
to know whether there is a convergence of the wavefunctions
when improving the level of theory. These two questions can
be easily addressed by computing wavefunction overlaps. In
this particular case, the MR-CIS(12,12) level of theory is
used as a reference. The results are presented in Figure 3.
As opposed to Figure 2, it is observed that the overall state
ordering agrees in all cases. However, large pieces of the pies
are missing illustrating that no convergence is reached. The
lowest level used here, CASSCF(12,9), provides a reasonable
description of the ground state with a projection weight of
84% while the agreement for the excited states is significantly
lower with a minimal value of 57% in the case of the 41A state.
Some mixing among the excited states further suggests that
the CASSCF(12,9) description is insufficient. The agreement
is somewhat better with CASSCF(12,12). Here, the projection
weights to MR-CIS(12,12) vary between 87% and 70%
and no significant mixing between the states is observed.
Better agreement is observed between MR-CIS(12,9) and
MR-CIS(12,12), but even in this case the overlaps are not
higher than about 90%. This analysis reveals that discrepancies
are present for the different wavefunction models used here
to describe Ir(C3H3N)3. They are related to variations in the
amount of MLCT character, and a more detailed analysis
shows that the MLCT character is in turn affected by orbital
relaxation effects.19,31

In conclusion, it has been shown that the computation of
wavefunction overlaps provides a simple and powerful method
for comparing wavefunctions constructed at different levels
of theory, that is especially useful in the case of excited state
computations. Wavefunction overlaps are suitable to examine
changes in wavefunction character not only at a qualitative, but
also at a quantitative level. This method is directly applicable
to models producing explicit wavefunctions, i.e., the CI and
multiconfigurational SCF methods, as used above. Extensions
to time-dependent density functional theory, coupled cluster,
and other response theory methods are straightforward using
approximations that have been described previously23,24,44

allowing for at least semi-quantitative results in these
cases. There are no formal limitations on the wavefunctions
compared, as long as they possess the same number of α
and β electrons, and can be expanded in Slater determinants.
Comparisons between different electronic structure packages
are accessible if proper care is taken of the ordering and
normalization conventions of the basis functions. The tools
described here will be released as part of the S molecular
dynamics package45,46 and as a standalone module. Interfaces
to the C,47 M,48 ADF,49 and T 50

electronic structure packages are available.

This paper is based on work supported by the
VSC Research Center funded by the Austrian Federal
Ministry of Science, Research, and Economy (bmwfw). The
computational results presented have been achieved in part
using the Vienna Scientific Cluster (VSC), Project Nos. 70719
and 70726. We thank COST Action No. CM1405 (MOLIM)
for providing a basis for early discussions on the topic of this
manuscript.
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