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Abstract

Metrics to quantify child growth vary across studies of the developmental origins of health

and disease. We conducted a scoping review of child growth studies in which length/height,

weight or body mass index (BMI) was measured at� 2 time points. From a 10% random

sample of eligible studies published between Jan 2010-Jun 2016, and all eligible studies

from Oct 2015-June 2016, we classified growth metrics based on author-assigned labels

(e.g., ‘weight gain’) and a ‘content signature’, a numeric code that summarized the metric’s

conceptual and statistical properties. Heterogeneity was assessed by the number of unique

content signatures, and label-to-content concordance. In 122 studies, we found 40 unique

metrics of childhood growth. The most common approach to quantifying growth in length,

weight or BMI was the calculation of each child’s change in z-score. Label-to-content discor-

dance was common due to distinct content signatures carrying the same label, and because

of instances in which the same content signature was assigned multiple different labels. In

conclusion, the numerous distinct growth metrics and the lack of specificity in the application

of metric labels challenge the integration of data and inferences from studies investigating

the determinants or consequences of variations in childhood growth.

Introduction

There is substantial ongoing investment in research into the early life factors that influence the

development of chronic diseases such as obesity and cardiovascular disease. Of particular

interest is the hypothesis that a child’s size at birth and the subsequent infant and early child-

hood growth (i.e., change in size over time) influence the risk of later metabolic and cardiovas-

cular conditions [1]. Epidemiologic studies of the developmental origins of health and disease

(DOHaD) hypothesis often rely on quantitative measures of early childhood growth that dis-

tinguish children with respect to their relative rates of growth (e.g., weight gain, length/height
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increases) during critical and sensitive windows of development. Studies are typically focused

on growth as an exposure causing later childhood or adult conditions [2–12], or as an outcome

caused by earlier factors [4,13–17].

The evidence that relatively slow versus fast growth in early life influences the risk of later

health conditions has been conflicting [18]. Between-study inconsistencies may be largely due

to differences in statistical methods, as exemplified by considering the variability among stud-

ies of the hypothesized association between early child growth and future blood pressure. First,

a wide range of statistical models have been used to address the association between growth

and other health outcomes; for example, a previous review of growth models demonstrated

that different approaches (e.g., lifecourse plots and models versus latent growth curve models)

can yield varying inferences regarding the association of growth with later systolic blood pres-

sure [19]. Second, discrepancies in effect estimates can sometimes be attributed to subtle dif-

ferences in the parameterization of repeated measures of size in regression models [20]; for

example, regression models that adjust for current size [21,22] and those that condition on ear-

lier measurements of size [23,24] yield different contrasts, but it can be challenging to reconcile

the nuanced distinctions in the interpretations of the regression coefficients.

The varying definitions and statistical formulations used to quantify growth metrics may

complicate efforts to integrate evidence across studies, particularly in the context of meta-anal-

yses [4]. Recent reviews have narratively described the lack of a standardized approach for ana-

lyzing growth [25–28], yet no study to our knowledge has empirically characterized the extent

of the definitional variation of growth in the recent published literature. Therefore, the specific

objectives of this review were: 1) to generate an empirical framework for categorizing opera-

tional definitions of child growth, and 2) to use this framework to describe the range and fre-

quency of metrics used to quantify early postnatal growth in recent epidemiological research.

Methods

Study inclusion and exclusion criteria

We conducted a scoping review to systematically summarize the variability in metrics of early

childhood growth in recently published human growth research, following PRISMA (Pre-

ferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines (S1 File) [29].

We sought to include peer-reviewed longitudinal studies published from January 2010 to June

2016 in which child growth was used as an exposure (independent) variable or outcome

(dependent) variable and the analytical approach used� 2 serial measures of length/height,

weight or body mass index (BMI), with at least one measure taken in the period between birth

to 5 years (up to and including 60 months of age). Multiple studies involving the same cohort

were eligible for inclusion, as the metric of growth or age interval (i.e., timing of follow-up

measures) can vary across published articles. We excluded: studies of animal growth, review

articles or meta-analyses that did not present original individual-level analyses, studies involv-

ing only data simulations/mathematical models rather than empiric analyses of individual-

level data, and studies that were published in any language other than English, as language is

essential to data extraction and classification (attaching growth labels to definitions would be

too complicated across multiple languages).

Search strategy

MEDLINE and Embase electronic databases were searched for relevant articles in June 2016.

The search syntax included a comprehensive list of keywords, medical subject heading

(MeSH) (MEDLINE) and Emtree terms (EMBASE) identifying the study design, participant

age group, anthropometric measure, and growth metrics (S2 File).
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Study selection

Study selection was conducted in two stages. The first stage consisted of title and abstract

screening based on the eligibility criteria. Abstracts were excluded if they did not meet all the

inclusion criteria. If there was insufficient data or if it was unclear from the title and abstract

whether a study met the inclusion criteria, it was included in the full-text screening. In the sec-

ond stage, we conducted full-text screening for 1) a 10% random sample of studies identified

from the title and abstract screening, as it was unfeasible to full-text screen all articles given the

large numbers identified in the electronic databases, and 2) all studies identified in the most

recent 9 months of the search (October 2015 to June 2016) to ensure we did not miss any up-

to-date strategies due to our random sampling approach.

For title/abstract and full-text screening, two reviewers independently screened each article

using the web-based platform, COVIDENCE [30]. Any disagreements about inclusion/exclu-

sion at the screening stage were flagged for a third reviewer to make the final decision on the

eligibility of the study.

Data abstraction

Data from eligible studies were abstracted using a standardized data abstraction tool designed

for this study. The tool captured the relevant information on key study characteristics and

detailed information on all metrics used to estimate/describe growth based on at least two data

points per child/group (even though our tool can accommodate metrics based on cross-sec-

tional analyses) anywhere in the article, including metrics that were mentioned in the narrative

yet for which results were not shown. The metric ‘label’ was considered to be the word or

phrase used by the study authors to identify a particular growth metric (e.g., “weight gain”,

“length velocity”), where one metric could potentially have multiple labels. The metric ‘con-

tent’ consisted of the conceptual and statistical properties of the metric (i.e., the derivation/

estimation, application and interpretation of the growth parameter), which we deconstructed

into a 6-component (8 digit) ‘content signature’ (Fig 1): standardization (metric based on raw

measurements or z-scores), level of analysis (individual or group as the unit of analysis), metric

type (expressed as a continuous or categorical variable), quantity of data (minimum number

of size measurements per individual/group that were used in the derivation of the growth met-

ric), metric subtype (further classification of the manner by which the metric was quantified

and expressed) and analytical approach (categorization, calculation or estimation method). As

Fig 1. Components and ranges of possible values of the 8-digit content signature. Each component of the signature is represented by a 1- or 2-digit

code, and the component codes were concatenated to generate the 8-digit content signature for each metric.

https://doi.org/10.1371/journal.pone.0194565.g001
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an example, Escribano et al. (2016) operationalized growth in weight as an incremental rate of

change (grams per month) by taking the difference in unstandardized weight between birth

and 6 months and dividing it by the duration of time, which they described as ‘weight gain

velocity’ [31]. Using our framework (Fig 1), this metric would be classified as follows: ‘1-Raw’

for standardization, ‘2-Individual’ for level of estimation, ‘1-Continuous’ for metric type, ‘2–2

data points’ for quantity of data, ‘14-Incremental rate of change’ for metric subtype and

‘11-Manual or simple calculation’ for analytic approach. These component codes can then be

concatenated to generate the content signature for this metric: ‘12121411’. More detailed

descriptions of the 6-component framework can be found in S3 File.

Two reviewers independently extracted data from each eligible article. Any disagreements

were resolved through discussion between the two reviewers or further adjudication by a third

reviewer. Data abstraction was implemented using REDCap [32], a customizable informatics

systems-based web software.

Data analysis

We quantified the heterogeneity among growth metrics by comparing the relative frequency

of use of each unique content signature in six strata defined by anthropometric parameter

(length/height, weight or BMI) and whether the metric was used as an exposure or outcome

variable in the growth analysis. In the stratified analyses, we also examined label-to-content

concordance by constructing a matrix of the content signatures by the author-assigned labels.

We also used the content signature components to construct decision trees to illustrate the

most common approaches to growth analyses in the literature given the relative frequency of

use of each unique metric based on content signatures only for a particular anthropometric

parameter.

Results

Among 6477 articles retrieved from electronic databases, 122 studies of child growth were eli-

gible and randomly selected for inclusion in the scoping review (Fig 2; S4 File for details).

Most of the studies included in this review were cohort studies, conducted in the Americas or

the European regions, and enrolled pregnant women or infants within the first month of life

(Table 1).

In the 122 included articles, we identified a total of 235 early childhood growth metrics,

among which there were 40 unique metrics based on content signatures (Fig 3). There was

substantial overlap in the use of these 40 metrics across the three anthropometric parameters

(length, weight, BMI) and between exposure and outcome variables. Of the 40 unique metrics,

3 were only used as exposure variables, 24 were only used as outcome variables, and 13 were

used at least once as both exposure and outcome variables. Among 16 unique metrics used at

least once as an exposure variable, 2 were used only for length, 3 only for weight, 3 only for

BMI, and 8 for more than one anthropometric parameter. Among 37 unique metrics used at

least once as an outcome variable, 3 were used only for length, 7 only for weight, 8 only for

BMI, and 19 for more than one anthropometric parameter. All unique content signatures are

listed in S5 File, and decision trees constructed on the basis of the content signature compo-

nents are shown in Figs 4–6.

Overall, the most common approach to quantifying growth (31% of all 235 metrics) was a

simple calculation of each child’s incremental change (i.e., arithmetic difference in size

between two time points spanning a specified interval) using a standardized expression of the

anthropometric parameter (i.e., z-score) (Fig 3). This finding remained consistent when strati-

fying by the anthropometric parameter (i.e., length, weight or BMI) and whether the metric
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Fig 2. Flow of study selection.

https://doi.org/10.1371/journal.pone.0194565.g002
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was used as an exposure or outcome (Tables 2 and 3). The second most common approaches

varied across the different strata defined by parameter and usage as an exposure/outcome vari-

able. For example, the second most frequently used metrics for growth in length and weight

(as an exposure) were conditional growth in standardized length (15%) and the incremental

rate of change in unstandardized weight (17%), respectively (Table 2). For other strata, there

were no other dominant approaches; e.g., for length and BMI as an outcome, three different

content signatures were used 11% of the time, and two different content signatures were used

13% of the time, respectively (Table 3).

Table 1. Characteristics of studies included in the scoping review of metrics of early childhood growth in epidemiological research.

Study Characteristics All, n (%) Length, n (%) Weight, n (%) BMI, n (%)

Total 122 (100) 64 (100) 78 (100) 39 (100)

Study design

Cohort 82 (67) 40 (63) 48 (62) 26 (67)

Trial 36 (30) 23 (36) 27 (35) 11 (28)

Othera 4 (3) 1 (2) 3 (4) 2 (5)

Age of earliest enrolment

Prenatal 20 (16) 12 (19) 14 (18) 4 (10)

0–1 month 44 (36) 17 (27) 32 (41) 10 (26)

1–24 months 30 (25) 20 (31) 23 (30) 10 (26)

24–60 months 28 (23) 15 (23) 9 (12) 15 (38)

Sample size

<100 34 (28) 15 (23) 21 (27) 10 (26)

100–500 39 (32) 21 (33) 27 (35) 10 (26)

>500 49 (40) 28 (44) 30 (38) 19 (49)

Region of study populationb

African 8 (7) 7 (11) 8 (10) 0 (0)

Americas 38 (31) 17 (27) 19 (24) 17 (44)

South East Asia 6 (5) 4 (6) 4 (5) 1 (3)

European 48 (39) 24 (38) 32 (41) 15 (39)

Eastern Mediterranean 2 (2) 1 (2) 1 (1) 0 (0)

Western Pacific 16 (13) 8 (13) 12 (15) 6 (15)

Multiple 4 (3) 3 (5) 2 (3) 0 (0)

Publication year

2010 11 (9) 6 (9) 6 (8) 3 (8)

2011 10 (8) 4 (6) 6 (8) 3 (8)

2012 26 (21) 17 (27) 14 (18) 9 (23)

2013 10 (8) 7 (11) 7 (9) 2 (5)

2014 26 (21) 11 (17) 18 (23) 7 (18)

2015 29 (24) 15 (23) 18 (23) 13 (33)

2016c 10 (8) 4 (6) 9 (12) 2 (5)

Number of growth metrics reported per study

1 growth metric 60 (49) 45 (70) 60 (77) 33 (85)

2 growth metrics 36 (30) 16 (25) 15 (19) 3 (8)

3+ growth metrics 26 (21) 3 (5) 3 (4) 3 (8)

a Other study designs include retrospective chart reviews (n = 3) and non-randomized interventional cohorts (n = 1)
b Based on WHO classifications
c The search strategy was last performed on June 2, 2016 and therefore did not include all of 2016.

https://doi.org/10.1371/journal.pone.0194565.t001
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Overall, few studies specifically derived ‘conditional’ growth metrics (10/235; 4% of all met-

rics), referring to model residuals from the regression of size at the end of an interval on size at

the beginning of the interval; the majority of these metrics were applied to length (6 of the 10

uses of conditional metrics). However, in studies that generated ‘unconditional’ metrics (e.g.,

change in z-score between two time points), 31% of these metrics were subsequently used in

regression models in which there was adjustment for size at the beginning of the age interval of

interest, thereby ultimately generating estimates that were conditional on baseline/earlier size.

Notably, only 6 of the total 122 studies in the review (5%) explicitly reported any methodologi-

cal considerations for regression to the mean when examining growth using longitudinal data.

Label-to-content discordance was common due to distinct signatures carrying the same

author-assigned label, and because of differently assigned labels to the same content signature

between authors (Tables 2 and 3). For example, the most common 8-digit signature for growth

in length as an exposure (22121311; incremental change between 2 points) was labeled as

‘change’, ‘gain’, and ‘growth’ (Table 2). However, these same labels were also commonly used

to refer to the second most common signature for growth in BMI as an outcome (22131417;

child-specific rate of change estimated from a linear mixed model) (Table 3). Label-to-content

matrices can be found in S6 File.

Discussion

In the present scoping review, we found that a diverse array of statistical metrics has been used

in recent published literature to quantify early childhood growth. Metrics with simple

Fig 3. A Sankey diagram to illustrate the heterogeneity among published metrics for child growth in length, weight or body mass index (n = 235)

and relative prevalences overall and within each component. Moving from left to right, content signatures are deconstructed into their individual

components (i.e., standardization, level of estimation, metric type, quantity of data, metric subtype, analytic approach), where the width of the band is

proportional to the frequency of the approach. The most common approach was the calculation of each child’s incremental change in the standardized

anthropometric parameter, which is represented by the band that flows through the following nodes: ‘standardized parameter’ (dark blue), ‘individual

level of analysis’ (dark red), ‘continuous variable’ (dark green), ‘2 data points’ (light purple), ‘incremental change’ (dark orange), and ‘manual

calculation’ (pink). The range of growth metrics presented is based on a random sample of published studies, and therefore is not exhaustive.

https://doi.org/10.1371/journal.pone.0194565.g003
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Fig 4. Decision tree for selection of metrics of growth in length (n = 87). Percentages represent the relative

prevalence of the approach at each branching point. For example, the most common approach for growth in length as

an exposure with 2 data points is to first standardize the anthropometric parameter, then calculate the incremental

change.

https://doi.org/10.1371/journal.pone.0194565.g004
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Fig 5. Decision tree for selection of metrics of growth in weight (n = 99). Percentages represent the relative prevalence of

the approach at each branching point. For example, the most common approach for estimating growth in weight as an

outcome with>2 data points was to calculate the incremental rate of change of unstandardized weight using a linear mixed

effects model.

https://doi.org/10.1371/journal.pone.0194565.g005
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Fig 6. Decision tree for selection of metrics of growth in BMI (n = 49). Percentages represent the relative prevalence of the approach at

each branching point. For example, the most common approach for expressing growth in BMI as an exposure with>2 data points was to

first standardize BMI, then analyze it in relation to an outcome using latent class analysis.

https://doi.org/10.1371/journal.pone.0194565.g006
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derivations, such as the estimation of the incremental change in an anthropometric parameter

between two time points, were much more commonly used than those that require either

more complex statistical methods, such as latent class analysis, or a deeper understanding of

the theoretical assumptions required to make inferences, such as conditional growth models.

Investigators in the field of human growth research are often aware of the nuances that

influence the selection of particular analytical approaches that best suit the research question.

However, we found that an explicit justification of the choice of approach—e.g., raw BMI “is

more appropriate for analyzing change over time” [33], or the use of the Berkey-Reed 1st-order

model to “reflect the actual pattern of change that child health practitioners will observe” [34]–

was the exception rather than the norm. That is, specific growth model selection was not well

justified with a narrative rationale, even if investigators selected a suitable analytical approach

to address their research question (e.g., the use of conditional growth models to investigate

independent associations between consecutive growth periods and later health outcomes).

In principle, the use of distinct metrics or statistical approaches to growth analyses may

partly explain the inconsistent findings relating child growth to later health and economic out-

comes. For example, the adjustment for size at the beginning of the growth interval in a regres-

sion model or the use of the classical formulation of ‘conditional growth’ [23,35–37] (two

approaches that are algebraically interchangeable) yield estimates of growth effects that are

Table 2. Common content signatures and their associated author-specified labels for growth as an exposure, by anthropometric parametera.

Parameter n/Nb (%) Signature description Author-specified labels

Signature

Length

22121311 7/20 (35) Estimation of the incremental change in standardized anthropometric

parameters between 2 time points using simple/manual calculation

change, gain, growth, linear growth

22121819 3/20 (15) Estimation of the conditional change in standardized anthropometric

parameters between 2 time points using a conditional regression (residual

estimated by regressing current height-for-age-z-score (HAZ) on previous

HAZ)

conditional change, conditional gain, conditional growth, gain,

growth, growth trajectory, linear growth, velocity

12121411 2/20 (10) Estimation of the incremental rate of change in unstandardized

anthropometric parameters between 2 times points using simple/manual

calculation

gain velocity, velocity

12131417 2/20 (10) Estimation of the incremental rate of change in unstandardized

anthropometric parameters on the basis of >2 data points using a linear

mixed effects model

growth, growth trajectory, linear growth, rate of growth

Weight

22121311 6/24 (25) Estimation of the incremental change in standardized anthropometric

parameters between 2 time points using simple/manual calculation

change, gain, growth, growth velocity

12121411 4/24 (17) Estimation of the incremental rate of change in unstandardized

anthropometric parameters between 2 times points using simple/manual

calculation

gain, gain rate, gain velocity

12222312 3/24 (13) Creation of classes in unstandardized anthropometric parameters using

threshold values with 2 data points

gain, growth

BMI

22121311 2/11 (19) Estimation of the incremental change in standardized anthropometric

parameters between 2 time points using simple/manual calculation

change, gain

21232322 2/11 (18) Creation of classes in standardized anthropometric parameters on the basis of

>2 data points using latent class analysis

growth, growth trajectory class, longitudinal growth, pattern of

change, trajectory class, trajectory group, trajectory pattern

class, velocity

a ‘Common’ refers to the 3 most frequently used signatures, excluding any signatures that were used only once
b ‘n’ refers to the number of times the metric was used, ‘N’ refers to the total number of metrics, and the % reflect the prevalence of the content signature

https://doi.org/10.1371/journal.pone.0194565.t002
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conditional on baseline size; therefore, inferences from these models are expected to differ

from analyses of the same growth-outcome association in which there was no adjustment for

baseline or earlier size [38]. Conversely, many growth metrics that appear superficially distinct

(and were assigned different content signatures in our analysis) are in fact interchangeable re-

parameterizations of the longitudinal data, such that the between-child variance in growth

may be similarly captured by the different approaches. For example, inferences from an incre-

mental change over time calculated manually may be similar to a child-specific slope derived

using a linear mixed effects model.

We found wide variability in label and content signature combinations. Many content sig-

natures were associated with the same label, and there were also instances in which the same

content signature was assigned multiple different labels (S6 File). Many commonly used

generic labels (e.g., growth, gain) are suitably applied to a range of metrics, but lack precision.

The use of the term ‘velocity’ was widely used with highly variable meanings. For example, a

conventional use of the term refers to a ‘rate of change’ implying a denominator that repre-

sents a time interval; however, in other cases it was used to describe changes in z-scores, yet

Table 3. Common content signatures and their associated author-specified labels for growth as an outcome, by anthropometric parametera.

Parameter n/Nb (%) Signature description Author-specified labels

Signature

Length

22121311 23/67 (34) Estimation of the incremental change in standardized anthropometric

parameters between 2 time points using simple/manual calculation

catch-up growth, change, deficit, difference, gain, growth,

improvement, rate, velocity

12121311 7/67 (11) Estimation of the incremental change in unstandardized anthropometric

parameters between 2 time points using simple/manual calculation

change, difference, gain, growth, increment

12121411 7/67 (11) Estimation of the incremental rate of change in unstandardized anthropometric

parameters between 2 times points using simple/manual calculation

gain, growth, growth rate, growth velocity, linear growth

velocity, trajectory, velocity

12131417 7/67 (11) Estimation of the incremental rate of change in unstandardized anthropometric

parameters on the basis of >2 data points using a linear mixed effects model

change, growth, growth rate, growth trajectory, growth

velocity, linear growth, rate of growth

22121819 3/67 (5) Estimation of the conditional change in standardized anthropometric

parameters between 2 time points using a conditional regression (residual

estimated by regressing current height-for-age-z-score (HAZ) on previous HAZ)

conditional change, conditional growth velocity,

conditional velocity, growth, growth trajectory, linear

growth, velocity

22222312 3/67 (5) Creation of classes in standardized anthropometric parameters using threshold

values with 2 data points

catch-down growth, catch-up growth, change, growth,

growth pattern, recovery from stunting

Weight

22121311 23/75 (31) Estimation of the incremental change in standardized anthropometric

parameters between 2 time points using simple/manual calculation

catch-up growth, change, difference, gain, growth, growth

pattern, growth rate, improvement

12121311 15/75 (20) Estimation of the incremental change in unstandardized anthropometric

parameters between 2 time points using simple/manual calculation

change, delta, difference, gain, growth, increment

12121711 6/75 (8) Estimation of the proportional rate of change in unstandardized anthropometric

parameters between 2 time points using simple/manual calculation

fractional growth rate, gain, gain velocity, growth, growth

velocity

BMI

22121311 12/38 (32) Estimation of the incremental change in standardized anthropometric

parameters between 2 time points using simple/manual calculation

change, delta, difference, gain, growth

12131417 5/38 (13) Estimation of the incremental rate of change in unstandardized anthropometric

parameters on the basis of >2 data points using a linear mixed effects model

change, growth trajectory, rate of change, rate of growth,

trajectory

22131417 5/38 (13) Estimation of the incremental rate of change in standardized anthropometric

parameters on the basis of >2 data points using a linear mixed effects model

change, change over time, gain, growth, rate of change,

rate of gain, rate of weight gain, trajectory, trend, velocity

12121311 3/38 (8) Estimation of the incremental change in unstandardized anthropometric

parameters between 2 time points using simple/manual calculation

change, change score, difference, gain, growth pattern

a ‘Common’ refers to the 3 most frequently used signatures, excluding any signatures that were used only once
b ‘n’ refers to the number of times the metric was used, ‘N’ refers to the total number of metrics, and the % reflect the prevalence of the content signature

https://doi.org/10.1371/journal.pone.0194565.t003
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since z-scores are centered on zero rather than being consistently positive, the term ‘velocity’

may be less intuitive when used to quantify the extent to which a child’s growth curve deviates

from the trajectory predicted on the basis of a population growth reference/standard. The dis-

cordance between metric labels and their statistical formulations poses a particular methodo-

logical challenge for systematic reviews and meta-analyses, in which the terms used in a search

strategy may not fully capture the true scope of the relevant literature. For instance, a system-

atic review summarizing the effect of probiotics on child growth only used the terms ‘growth’

and ‘stunt’ in their search strategy [39], while another review assessing factors associated with

accelerated growth in childhood only used the terms ‘catch-up’ and ‘rapid weight gain’ [40].

The limited range of search terms used by investigators may bias the selection of studies for

inclusion, and therefore may have implications for evidence synthesis.

The content signatures that we designed to classify growth metrics in this review may be

used to formulate decision trees to inform investigators of the most common approaches to

growth analyses in the literature, given the particular anthropometric parameter of interest

and the data available for analysis (Figs 4–6). For example, in a study to investigate early

growth in length as a risk factor for a future health outcome, such as blood pressure in mid-

childhood, whereby length was assessed at only two time points across the age interval of inter-

est, it may be instructive for investigators to know that most previous studies with the same

data structure standardized the anthropometric parameter and then calculated an incremental

change (Fig 4). Alternatively, in a study to examine growth in weight in relation to a set of

antecedent risk factors, in which weight is assessed at more than two time points in the age

interval of interest, the most commonly used approach among previous studies was to estimate

the incremental rate of change in the unstandardized anthropometric parameter using a linear

mixed effect model (Fig 5). The routine reporting of analyses using the most common metric,

if it appropriately addresses the question of interest, may promote more straightforward com-

parisons and synthesis of results across studies, even if authors additionally report other less-

common or novel analytical approaches that they consider to be particularly suited to their

research question or study design. However, we also suggest that authors be as explicit as possi-

ble with regards to their research question and provide suitable justification for their specific

choice of growth metric and modeling approach, so that the coherent fit of the modeling

approach to the research question is apparent.

Several limitations of the review should be acknowledged. First, we may have missed recent

or relatively uncommon methods used to analyze early childhood growth due to our sampling

approach as it was not feasible to screen and data abstract from all published articles given the

large numbers identified in the electronic databases and the laborious process of extracting

and classifying each metric. For example, the SITAR method [41–43] or the use of WHO

velocity charts [44] have been used in some recent studies, but due to the low frequency of

their uses, they did not appear in our random selection of studies. However, since our pool of

studies is comprised of a random sample, we considered it to be a fair representation of vari-

ability with which researchers currently operationalize and quantify growth. Another weak-

ness of the review was our focus on growth in length, weight and BMI only, yet there are

numerous other anthropometric parameters that may be relevant to human growth research

(e.g., head circumference, weight-for-length, ponderal index, skin-fold thickness), for which

there may be different content signatures. Thus, we may have underestimated the true hetero-

geneity in growth metrics in the recent literature. Finally, our classification of growth metrics

was based on six components; there may be other relevant components that we did not incor-

porate in our analysis that would further differentiate metrics.

In summary, this scoping review was not designed to identify a set of ideal metrics to sum-

marize growth, as the choice of growth model is contingent on both available data and the
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specific research question. However, our findings indicate the need for greater consensus on

standardized approaches to summarizing growth for specific questions of interest. Variations

in growth metrics complicate comparisons of findings across studies, and discordance between

metric labels and their statistical formulation further challenges the integration of inferences.

We conclude that the implications of child growth metric heterogeneity should be considered

when aggregating and/or designing studies of the causal determinants or consequences of vari-

ations in early childhood growth.
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