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ABSTRACT

In this paper a fixation prediction based saliency algo-
rithm is used in order to predict the head movements of view-
ers watching virtual reality (VR) videos, by modelling the
relationship between fixation predictions and recorded head
movements. The saliency algorithm is applied to viewings
faithfully recreated from recorded head movements. Spheri-
cal cross-correlation analysis is performed between predicted
attention centres and actual viewing centres in order to try and
identify prevalent lengths of predictable attention and how
early they can be predicted. The results show that fixation
prediction based saliency analysis correlates with head move-
ments only for limited durations. Therefore, further classi-
fication of durations where saliency analysis is predictive is
required.

Index Terms— 360, VR, video, omnidirectional, head,
prediction, saliency.

1. INTRODUCTION

There has been resurgence of increased interest in virtual re-
ality (VR) in the recent years, particularly with previously
expensive head mounted displays (HMD) now being more
widely available to general consumers in different forms. A
subgenre in this field is VR video (or 360°video) where an im-
mersive viewing experience can be created by providing the
users with omnidirectional videos and allowing them to select
their viewing directions interactively with the tracking capa-
bilities of HMDs. According to [18], the ideal VR experience
with stereoscopic 3D vision requires a video with 60 frames
per second frame rate at 6K resolution per eye utilized for the
whole spherical view to make full use of the currently avail-
able HMDs such as the Gear VR. Depending on the quality,
such a video needs to be encoded with 20 to 40 megabits per
second (Mbps) [18]. This makes VR videos problematic to
provide through on-line streaming services, due to both band-
width limitations and decrypting capabilities of end-user de-

vices.
An idea explored in many previous works, is to deliver

only the portion of the video which the user requires for view-
ing. One of the earlier works dealing with the partial delivery
of omnidirectional video for viewing with HMDs proposes
that the source video is sub-divided into tiles and only enough
tiles to cover the user’s field of vision is transmitted [9]. In
this type of system the same region of the video is cached and
when users change their viewing angle, they start seeing miss-
ing areas in their view due to cache failure and latency in the
network. This problem is approached in several ways. In [16],
the user is supplied with two videos, one low bandwith omni-
directional video to prevent users from seeing missing areas
and one high quality partial video to switch into in order to
provide a better experience once the user receives it at each
head direction change. In [1], bandwith adaptive streaming
techniques are proposed by making tiles of different size and
quality available and optimizing the selection of streams de-
pending on the network parameters. Several bandwidth usage
optimization algorithms are proposed in [8] where multiple
users are sharing a wireless network in a region of interest
(RoI) video streaming scenario. Based on utility functions
considering network conditions and overlapping user RoIs,
the algorithms decide on which tiles are to be streamed and
whether to use unicast or multicast. Utilizing these algorithms
are shown to increase the number of users supported by wire-
less networks for RoI video streaming. In these kind of sys-
tems the delay for the quality increase or the ratio of high
fidelity area that the user is experiencing can be used for eval-
uating the proposed methods.

Provision of quality of service (QoS) in such partial de-
livery systems can benefit from knowing where the user will
look at beforehand, which can help decrease or eliminate de-
lay for quality increase or reduce bandwidth consumption by
delivering less contingency data overall. Similar challenges
were addressed in [15] for RoI streaming of videos, where
the RoI is chosen with mouse interactions. Authors of [15]
proposed multiple predictors such as auto-regressive moving
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average (ARMA) of previous RoI centres, centering and/or
stabilizing the position of tracked visual features in the cen-
tre of the RoI and maintaining the pixels in the centre of the
RoI with the use of encoded motion vectors. Their results in-
dicate that a median of multiple predictors provide the most
robust prediction. A domain specific predictor developed for
the RoI streaming of football matches in [14] is shown to per-
form marginally better then the ARMA and motion vector
based predictors. The domain specific predictor works with
several rules designed to keep the tracked ball and players
near the RoI centre based on their distances to RoI centre and
intensities in the residual from the previous frame. In the pre-
viously mentioned [8], the authors tried modifying the utility
functions to use the access statistics of the tiles from previ-
ous viewings to help the tile selection process, however the
wrong predictions based on the probabilistic access patterns
were judged to cause too many invalid tile assignments. In
[2] and [19] models for view centre prediction are proposed
which utilize linear regression of a short window of previ-
ous view centres to estimate future view centres. In [2] and
[3], a neural network is trained over a dataset of short win-
dows of consecutive view centres and it is shown to perform
marginally better than the linear regression approach in [2].

From the previous works, it seems that approaches based
on analysis of videos are largely unexplored in the prediction
of head movements during VR video viewings. While the
visual attention modelling field has been extensively studied
and is continuing to be studied, these are mainly developed for
tasks such as visual saliency or fixation prediction and object
segmentation. For overviews and benchmarks of such models
and different visual saliency algorithms, readers are referred
to [5] and [4]. The adaptation of saliency algorithms to VR
still images is discussed in [21]. The prediction of sequential
scanpaths in still images using saliency maps are discussed in
both [13] and [11].

With most of the previous saliency studies focusing on
still images and not at all on VR video viewings, the pur-
pose of the work presented here is to investigate the utiliza-
tion of saliency maps for the prediction of head movements
of VR video viewers which can later be used for the interac-
tive streaming of VR videos. Focussing on this area, a corre-
lation analysis between real recorded head movements from
VR video viewings and sequential fixations predicted from
a saliency model is proposed in order to gauge and measure
the predictive ability of that saliency model. The details of
the fixation prediction method used and the analysis method-
ology is presented in the following sections followed by the
acquired results.

2. FIXATION PREDICTION AND ANALYSIS

As mentioned before, predictive techniques used in streaming
VR videos suffer from erroneous predictions. Therefore, in
order to design a prediction algorithm utilizing saliency maps,

the nature of the relationship between the saliency maps and
the head rotations of the user needs to be investigated. The
VR video viewing dataset presented in [2] is used in order to
perform this investigation. This dataset has been collected us-
ing 16 VR videos in total, including documentary style videos,
sports and dance performances, extreme sports videos and
roller-coaster rides. The head orientations of the users are
recorded in degrees in terms of yaw, pitch and roll with a pe-
riod of approximately 100ms for a duration of 30 seconds.
A minimum of 47 and an average of 61 users participated in
each video.

According to [21], gazes in the scene are succeeded by
head movements towards the same region. Therefore, if such
gazes in the scene can be predicted, they might also be used to
predict head movements. In order to estimate the accuracy of
such a prediction, the method proposed in this work involves
performing cross-correlation analysis between sequential pre-
dicted fixation locations and past head movements. Below,
the details about the fixation prediction method based on the
saliency algorithm are presented, followed by the approach
for measuring the relationship between the predicted fixation
sequences and the recorded head movements.

2.1. Saliency Calculation

GBVS [12] is chosen as the saliency prediction algorithm to
perform correlation analysis. While there are more recent al-
gorithms proposed in the literature specialized for videos such
as the one presented in [20], GBVS is well cited, readily avail-
able, can include a motion feature channel to include temporal
cues for use with videos and it runs relatively fast compared
to more computationally complex algorithms.

Fixation prediction based saliency algorithms such as GBVS
are designed for images presented to subjects on traditional
2D displays, therefore, some additional processing is required
in order to create saliency maps for omnidirectional scenes.
Since it is not possible for a subject to be influenced by bottom-
up features that they cannot see, the fixation prediction al-
gorithm is run on the captured viewport images of each sub-
ject for each viewing session, instead of the whole omnidirec-
tional scene. This is achieved by replicating the viewing con-
ditions and using recorded viewing directions where spherical
linear interpolation is employed to calculate viewing direc-
tions for frames in between recorded samples. The dataset
used in this study was presented previously in [2], where it is
stated that the data was recorded while the subjects were using
an Oculus DK2 headset. While the field of view (FoV) sub-
jects experience may differ with eye distance to lens and eye
seperation distance, they will usually be similar [6]. There-
fore the default values provided by the Oculus SDK [17] are
used while recreating the viewports of the users, where view-
ports have vertical FoV of 106.19°and binocular horizontal
FoV of 95.06°. Given that the vertical resolution (h) of the
used headset covers the vertical FoV (fovv) of the subject,



Fig. 1. Actual recreated viewports and overlaid saliency maps for 2 viewers (left and right) from roller coaster and forest
documentary videos (up and down). The predicted fixation points are indicated as white circles in the overlaid saliency maps.

the horizontal resolution (w) required to cover the binocular
horizontal FoV (fovh) that would be experienced with the
headset can be calculated as below.

w = h ∗
tan fovh

2

tan fovv

2

(1)

Using VR video projection, the viewports of the subjects
are recreated for the durations of their viewings and a saliency
map video is created by using GBVS on each viewport frame.
With this process 985 saliency map videos in total are cre-
ated matching the head movements recorded. Examples of
extracted squences of saliency maps can be seen in Fig. 1.
The techniques presented in [10] are used to identify a sin-
gular centre of attention on each frame of the saliency map
video, where the pixel with the maximum saliency value in
each frame is chosen as the location of attention in a winner-
take-all manner.

2.2. Cross-Correlation Analysis

In order to understand the possible association between the
predicted attention centres and head movements, the work
here aims to identify 2 separate aspects of such relationship.
The first is the size of the predictive lookahead margin (δ)
that this relationship has and the second is the duration of
strong association (Tw) required to identify a predictive as-
sociation. Therefore, the qualitative test proposed here mea-
sures the cross-correlation between the series of predicted at-
tention centres and actual recorded view centres across many
different window widths of samples and delays. Higher corre-
lation coefficients found with higher delay values could point
to the predictive ability of the fixation prediction method.

The identified sequential attention centres are calculated
in different 2D viewport spaces and therefore cannot be anal-
ysed together to represent attention shifts in 3D. In order to
perform a time-series cross correlation analysis, all the atten-
tion centres need to be transformed into the same coordinate
system. Firstly, they are projected to the unit sphere in 3D
cartesian coordinates using the reverse of the VR video pro-
jection process. Second, their axis are aligned compensating
for the head orientation at the moment of calculation with the
following. Given the subject’s head orientation at moment t
is defined by yaw, pitch and roll values, projected attention
centres on the unit sphere can aligned using a single yaw-
pitch-roll rotation matrix.

With this, the attention centres for the whole viewing ses-
sion are aligned with each other and are limited to being on
the unit sphere’s surface, same as the subject’s actual view
centres. Since the points being analysed can move all around
on the sphere, performing correlation analysis on any single
dimension might not reveal the nature of the relationship be-
tween predicted attention centres and head movements. There-
fore, the spherical correlation coefficient described in [7] is
deemed appropriate for this type of analysis. The spherical
correlation coefficient measures the correlation between two
series of spherical data. Positive and negative correlations are
measured as having values of 1 and −1 respectively while a
value of 0 is interpreted as having no correlation, similar to
Pearson’s correlation coefficient. In the context of spherical
data, this coefficient measures how well the two series can be
matched with an orthogonal transformation, where a positive
correlation corresponds to the transformation being a rotation.
In other words, this coefficient measures the similarity of the
shapes of the paths drawn by the two sequences on the sphere.

In order to identify the look-ahead duration (δ) where the



(a) Tw ∈ [0.06s− 2s]

(b) Tw ∈ [2s− 24s]

Fig. 2. Averages of the measured correlations for different
window sizes, δ ∈ [0s− 2s].

prediction method is most effective at and the lengths of at-
tention windows (Tw) that the prediction method is accurate
at, cross correlation is run with different values for both vari-
ables where the window of actual attention is slid over the
whole viewing session for all viewings. Coefficients are eval-
uated for window widths (Tw) ranging from 0.06s to 2.0s and
delay values (δ) ranging from 0.0s to 2.0s, with a granular-
ity of 0.03s until 0.4s and a granularity of 0.4s until 2.0s
for both of the variables. As the identified attention centres
are always within an approximately 50° radius of the actual
viewing centre, there’s a trend being forced between the two
sequences. In order to get a baseline measure of this trend,
window widths between 2.0s and 24.0s are also evaluated.

(a) Percantage of correlations higher than 0.8

(b) Percantage of correlations higher than 0.9

Fig. 3. Percantage of high correlations over different (δ, Tw)
value pairs.

3. RESULTS AND DISCUSSION

The results shown in Fig. 2 (a) are not very encouraging as the
highest average measured correlation is approximately 0.14
which is very low and since the (δ, Tw) pair that yields this
result is measured for no delay (0s) and the widest window
tested (2.0s). It is suspected that the increase in average mea-
sured correlation as the window width increases is due to the
expected trend which was discussed in the previous section.
This is seen more clearly in Fig. 2 (b), where the increase
in the number of samples in the analysis window causes the
smaller dissimilarities in the two sequences to be less appar-
ent in the larger context. A subjective comparison of the dis-
tributions of measured correlations for different (δ, Tw) value
pairs show that even though there are highly correlated se-
quences measured, they are not significant among any other
measured sequences. With wider Tw values, the distributions



are more dense towards the higher mean, which is expected
again due to the viewport trend.

From the results acquired here, it seems that a frame based
winner-take-all approach to predict sequential fixation applied
on saliency maps from GBVS is not robust enough. This
is supported by the visual inspection of the predicted fixa-
tion points on extracted viewport videos, where the predicted
points move around too much and too fast due to the flickering
in the extracted saliency map. Compared to the smooth head
movements of real viewers, this seems to be at least one of
the obstacles for utilizing the predicted fixation spots for the
prediction of head movements. There are indeed a certain per-
centage of sequences where the correlation is measured to be
high as shown in Fig. 3, although the percentage not chang-
ing significantly with the changing delay is cause for caution
since it indicates that the amount of delay might be insignif-
icant. Therefore, the analysis performed here is deemed to
be insufficient to identify a clear method to model the head
movements after the predicted fixations.

4. CONCLUSION AND FUTURE WORK

The first contribution in this paper is a novel method to ap-
ply saliency algorithms to VR video viewings. Second, the
relationship between sequences of fixations predicted from
saliency maps and actual head movements of individual users
is investigated. An inherent similarity due the viewport lim-
itation is identified between the two sequences. This find-
ing may benefit future works performing similar analysis, in
disregarding the trivial correlations. A predictively meaning-
ful relationship could not be identified between the two se-
quences.

In the future, other saliency algorithms which are more
successful with videos such as the one in [20] will be explored
together with a more robust sequential fixation prediction ap-
proach as proposed in [11]. As there is not an expectation
of saliency maps to be accurate all the time for all users, a
more detailed and continuous analysis will be performed to
identify instances where the saliency map will be useful. The
challenge here therefore is the real time evaluation of the ac-
curacy of the saliency approach.
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