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Production and preservation of the smallest drumlins 20 

 21 

Abstract 22 

 23 

Few very small drumlins are typically mapped in previously glaciated landscapes, which might 24 

be an important signature of subglacial processes or an observational artefact. 143 newly 25 

emergent drumlins, recently sculpted by the Múlajökull glacier, have been mapped using high-26 

resolution LiDAR and aerial photographs in addition to field surveying. In this paper, these are 27 

used as evidence that few small drumlins (e.g. height H ≲ 4 m, width W ≲ 40 m, length L ≲ 100 28 

m) are produced; at least, few survive to pass outside the ice margin in this actively forming 29 

drumlin field.  Specifically, the lack of a multitude of small features seen in other landforms (e.g. 30 

volcanoes) is argued not to be due to i) Digital Elevation Model (DEM) resolution or quality, ii) 31 

mapper ability in complex (i.e. anthropogenically cluttered or vegetated) landscapes, or iii) 32 

post-glacial degradation at this site. So, whilst detection ability must still be at least 33 

acknowledged in drumlin mapping, and ideally corrected for in quantitative analyses, this 34 

observation can now be firmly taken as a constraint upon drumlin formation models (i.e. 35 

statistical, conceptual, or numerical ice flow). Our preferred explanation for the scarcity of 36 

small drumlins, at least at sites similar to Múlajökull (i.e. ice lobes with near-margin drumlin 37 

genesis), is that they form stochastically during multiple surge cycles, evolving from wide and 38 

gentle pre-existing undulations by increasing rapidly in amplitude before significant 39 

streamlining occurs.  40 

 41 

  42 

 43 
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1. Introduction 47 

 48 

Drumlins are subglacial bedforms aligned parallel to ice flow, created by interactions in the ice-49 

sediment-water system underneath glaciers or ice-sheets [e.g. Menzies, 1979; Clark et al., 2009; 50 

Benn and Evans, 2010]. Their mode of formation remains enigmatic and debated [Smalley and 51 

Unwin, 1968; Menzies, 1979; Shaw, 1983; Boulton and Hindmarsh, 1987; Hindmarsh, 1998; 52 

Fowler, 2000], primarily because the bases of modern ice sheets are inaccessible, which results 53 

in few direct observations [King et al., 2007; Smith and Murray, 2009]. Mapped morphometrics 54 

of the numerous (i.e. ≫10,000) drumlins formed during past glaciations [e.g. Hättestrand et al., 55 

2004; Storrar and Stokes, 2007; MacLachlan and Eyles, 2013] are therefore key to 56 

understanding the subglacial interface, despite less readily yielding secure conclusions about 57 

the dynamics and mechanics of former ice sheets.   58 

 59 

Observations of bedform position and morphology are used to indicate ice extent or flow 60 

direction [e.g. Hollingsworth, 1931; Livingstone et al., 2008], for example to assess consistency 61 

with numerical ice sheet models [Evans et al., 2009]. Elongated bedforms have also been linked 62 

to fast ice flow [Clark, 1993; Stokes and Clark, 2002]. However, it is rare to directly or 63 

quantitatively use bedform morphometrics to consider the mechanics of ice-sediment 64 

interaction and flow [e.g. Chorley, 1959; Smalley and Warburton, 1994].  As a step to bridging 65 

this gap Hillier et al. [2013] proposed a conceptual model to explain the size-distributions of 66 

subglacial bedforms in terms of stochastic ice-sediment-water interaction; subsequently, a 67 

variety of statistical models have been developed to formalize the postulated stochastic 68 

behaviour [Fowler et al., 2013; Hillier et al., 2016].  Hence, as a theoretical basis emerges for 69 

interrogating bedform size observations in more depth, high-quality morphometric data are 70 

becoming more important.  71 

 72 

Drumlins have heights (H) (a.k.a. amplitude) ranging up to a few 10s of m, their widths (W) are 73 

of the order of 100s of m, and they have lengths (L) of up to a few km [e.g. Hollingsworth, 1931; 74 

Hättestrand et al., 2004; Clark et al., 2009]. Size distributions can be summarized by basic 75 

statistics (e.g. mean, minimum, maximum, modal class, skew) [e.g. Clark et al., 2009], or by 76 

one- or two-parameter functions (i.e. exponential, log-Normal, Gamma) [Fowler et al., 2013; 77 

Hillier et al., 2013, 2016] approximating a ubiquitous typical shape (Figure 1). There are few 78 

small bedforms mapped, a modal peak at sizes above this forming a ‘roll-over’, and an 79 

approximately exponential tail of frequencies decreasing towards the largest sizes. This is true 80 
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for both aggregated data and, importantly, individual flow sets that likely represent 81 

glaciological conditions at a particular location and time [Hillier et al., 2013, 2016].  82 

 83 

FIG 1 HERE 84 

 85 

The roll-over and absence of very small forms might be an important signature of subglacial 86 

processes, or be due to post-glacial degradation, or just be an observational artefact (e.g. due 87 

to low DEM resolution) [see Hillier et al., 2013]. If this absence is real it could be a key 88 

constraint on drumlin formation, for instance distinguishing between statistical models built to 89 

represent various glaciologically reasonable hypotheses [Hillier et al., 2016]. Illustratively, for 90 

landslides a roll-over has been interpreted in terms of physical processes (e.g. cohesion 91 

contributing to soil stability) [e.g. Malamud et al., 2004; Frattini and Crosta, 2013] and, 92 

contrastingly, elsewhere considered as observational under-sampling [e.g. Stark and Hovius, 93 

2001; Ten Brink, 2006]. Submarine volcanoes tend to have no roll-over  demonstrating that 94 

natural processes can also produce sizes that can be approximated by simpler distributions 95 

such as exponential or power-law [e.g. Smith and Jordan, 1987; Scheirer and Macdonald, 1995; 96 

Rappaport et al., 1997; Hillier and Watts, 2007; Bohnensteihl et al., 2008].   97 

 98 

In terms of drumlin mapping, Spagnolo et al. [2012] assert that a small drumlin of 2.1 m relief 99 

(H = 2.1, W = 150, L = 430) is reliably mapped in the 5 m resolution NEXTmap BritainTM InSAR-100 

derived DEM. Indeed, a field visit is used to verify its existence. Using the same data product, 101 

Hillier et al. [2014] use synthetic landscapes to illustrate that as much as 75% of the smallest 102 

drumlins might be missed during mapping in complex landscapes (i.e. with anthropogenic 103 

clutter and trees), and that amplitude (or height) is the key variable governing detectability 104 

(Figure 2). The designed landscapes of Hillier et al. [2014] were Digital Elevation Models (DEMs) 105 

of a real glaciated area that had 173 drumlins of realistic morphology and size placed within 106 

them. Without prior sight of the drumlins' locations, 27 operators then mapped the area to 107 

assess their effectiveness. Their study site near Loch Lomond is challenging to map, so this 108 

perhaps illustrates a conservative 'worst case' for under-detection. Thus whilst a ‘small’ feature, 109 

defined here to be less than about half the modal size of a dataset, can be mapped, an open 110 

question remains as to the completeness of mapping at these small sizes and its impact on size-111 

distributions and inferences from them. 112 

 113 

FIG 2 HERE 114 
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 115 

Individual drumlins, or small groups of drumlins, have been described under ice streams [King 116 

et al., 2007; e.g. Smith et al., 2007] and in front of contemporary glaciers in Alaska [Haselton, 117 

1966], Antarctica [e.g. Rabassa, 1987], Switzerland [van der Meer, 1983] and Iceland [e.g. 118 

Boulton, 1987; Krüger, 1987; Evans and Twigg, 2002]. The number (i.e. 143) of drumlins in the 119 

flow set at the Múlajökull surge-type piedmont glacier in central Iceland is large for a 120 

contemporary glacier and, as yet, unique for a large and active drumlin field in being both 121 

currently sub-aerial and the subject of detailed geomorphological, sedimentological and 122 

stratigraphic analysis (Figure 3) [e.g. Johnson et al., 2010; Benediktsson et al., 2016]. It is 123 

therefore a study site with the power to yield novel insights, but differences across the site in 124 

simple descriptive measures of the drumlin morphometrics (e.g. mean W) [e.g. Benediktsson et 125 

al., 2016] have not yet been verified by statistical testing, nor have the size-frequency 126 

distributions been investigated in detail. 127 

 128 

In this paper, 143 newly emergent drumlins recently created by the Múlajökull glacier (Figure 129 

3c) are used to understand the production and preservation of the smallest drumlins. They 130 

have had little time to degrade post-glacially, have no ‘clutter’ on their surfaces (e.g. trees, 131 

houses), and are mapped in high-resolution data supported by extensive ground-truthing 132 

during fieldwork [Benediktsson et al., 2016], removing many sources of observational ambiguity. 133 

Error bars, statistical significances, and distribution parameters (i.e. exponential, log-Normal, 134 

Gamma) are computed to robustly examine this Icelandic data, and drumlin mapping from the 135 

UK and Sweden are used to put it in a wider context. Physically-based statistical models of 136 

drumlin formation [e.g. Hillier et al., 2016] are used to assist in interpreting the size-frequency 137 

observations, the output of which is blended with field observations (e.g. sedimentology, 138 

stratigraphy) to offer a model that explains the scarcity of small drumlins at sites like Múlajökull 139 

(i.e. ice lobes with near-margin drumlin genesis).  140 

 141 

FIG 3 HERE 142 

 143 

2. Study area 144 

 145 

Múlajökull is a surge-type glacier in the southern part of the Hofsjökull ice cap in central Iceland 146 

[Björnsson and Pálsson, 2008] with surges recorded in 1924, 1954, 1966, 1971, 1978-79, 1986, 147 

1992, and 2008 [Björnsson, 2009]. The glacier forefield is relatively flat; it dips gently in a down-148 
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ice direction away from the glacier at approximately 1˚ [McCracken et al., 2016], is at roughly 149 

600 m above sea level, and contains 132 fully-exposed and 11 partially-exposed drumlins of 150 

roughly elliptical planform interspersed with small lakes [Jónsson et al., 2014; Benediktsson et 151 

al., 2016]. Even more drumlins have been reported to be beneath Múlajökull’s margin, but 152 

limited to a 0.5-0.7 km wide zone inside the 2015 ice margin [Lamsters et al., 2016]. Beyond 153 

this limit, farther from the ice margin, the GPR survey reveals no drumlins [e.g. Fig. 4 of 154 

Lamsters et al., 2016], and in the segment surveyed the bed starts dipping up ice into the 155 

prominent, ~130 m deep subglacial overdeepening located in the centre of the Múlajökull ice 156 

lobe [Björnsson, 1986]. The exposed drumlins comprise multiple till beds [e.g. Johnson et al., 157 

2010]. As such, they are examples of mainly till-cored drumlins rather than other variants such 158 

as ‘crag-and-tail’ [Phillips et al., 2010; Stokes et al., 2011; Dowling et al., 2015]. Surface till 159 

terminating at the 1992 moraine, field evidence of stagnant ice that could not have deposited 160 

substantive thicknesses of till after the 1992 surge (e.g. preserved flutes), non-deposition of till 161 

during small winter advances, and till shear fabrics that conform to drumlin morphology all 162 

indicate that tills were deposited during surges [Johnson et al., 2010; McCracken et al., 2016]. 163 

The youngest till bed roughly replicates the drumlins’ form and truncates stratigraphically lower 164 

units, particularly on the drumlins' flanks and heads [Johnson et al., 2010; Benediktsson et al., 165 

2016]. This indicates that during surge-cycles drumlins likely get progressively narrower and 166 

higher [Benediktsson et al., 2016]. 167 

 168 

The drumlins' reported sizes [Johnson et al., 2010; Jónsson et al., 2014; Benediktsson et al., 169 

2016] are similar to widespread and well-studied Pleistocene drumlin fields [Patterson and 170 

Hooke, 1995; Clark et al., 2009; Hillier et al., 2013]. Ice proximal drumlins are more elongate 171 

than distal ones [e.g. Benediktsson et al., 2016]. This study area, therefore, despite differences 172 

in spatial extent, perhaps most directly relates to Pleistocene drumlin fields where elongation 173 

ratio (i.e. L/W) increases up-ice, namely away from a margin related to a relevant maximum ice 174 

extent [e.g. Colgan and Mickelson, 1997; Stokes and Clark, 2003].  175 

 176 

This drumlin field is argued to be 'active' in the sense that it is sculpted by the current glacial 177 

regime of repeated surges and intervening quiescent phases [e.g. McCracken et al., 2016], most 178 

recently and directly evidenced by a till from the 2008 surge lying atop an erosional surface [i.e. 179 

Johnson et al., 2010; Benediktsson et al., 2016]. Subglacial morphological dynamics at any given 180 

location may be punctuated by periods without change, and therefore be inactive at any exact 181 

Page 6 of 52

URL: http://mc.manuscriptcentral.com/sgff  Email: Christian.Skovsted@nrm.se

GFF

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

instant, even under flowing ice-streams. Thus, 'active' does not refer to changes this minute or 182 

even today, but relates to present conditions and a time-scale is implied, in this case decades.  183 

 184 

The foreland of Múlajökull is comprised of minimally vegetated and essentially homogenous till 185 

and outwash deposits [Jónsson et al., 2014; Benediktsson et al., 2016]. Specifically, there is no 186 

significant vegetation inside the Little Ice Age (LIA) moraine that bounds the immediate 187 

foreland and even though the vegetation cover on the moraine and beyond is continuous, it is 188 

limited to short grasses and shrubs under a few 10s of cm in height (Figure 4). There has been 189 

no anthropogenic disturbance (e.g. houses or infrastructure) in the area. Even drumlins 190 

proximal to the glacier are not ice-cored [Benediktsson et al., 2016]. There are no large 191 

topographic variations that might dominate ice flow patterns, such as the bedrock ridge near 192 

Lough Gara in Ireland [cf. Hillier and Smith, 2008]. So variations in drumlin morphology cannot 193 

be attributed to large-scale topography, preservation impacts of internal ice melting, or till type, 194 

and there is no evidence of bedrock variation.       195 

 196 

The maximum Holocene extent of Múlajökull was reached in the LIA (1717-1758), recorded by 197 

the Arnarfellsmúlar terminal moraine [Benediktsson et al., 2015]. The most substantial surges 198 

since 1924 (i.e. 1954, 1971, 1986, 1992) have terminated approximately at the remaining 1992 199 

end moraine [Björnsson et al., 2003; Johnson et al., 2010]. Also, a small surge in 2008 was 200 

observed to create a significant ice-cored moraine just distal of the present ice margin [Jónsson 201 

et al., 2014; Benediktsson et al., 2016]. As such, a series of moraines outside the 1992 limit, 202 

including an overridden moraine, inboard of the Arnarfellsmúlar terminal moraine suggest that 203 

this area also experienced multiple surges during the LIA both before and after the maximum 204 

extent in the early to mid-1700s [Jónsson et al., 2014; Benediktsson et al., 2015]. Thus, it is 205 

convenient to divide the forefield into two zones ‘inside’ and ‘outside’ the 1992 moraine based 206 

on historical surge activity. The area inside is reported to contain more elongate drumlins than 207 

outside, with respective mean elongation ratios (i.e. L/W) of 3.0 and 1.9 [Benediktsson et al., 208 

2016]. It has been hypothesized [Johnson et al., 2010; Jónsson et al., 2014; Benediktsson et al., 209 

2016] that distal drumlins have been shaped by fewer surges than those closer to the glacier. At 210 

Múlajökull surges deposit till with a sedimentology and stratigraphy that imply net aggradation 211 

[Johnson et al., 2010; McCracken et al., 2016], so inferred thicker proglacial sediment near to 212 

the current ice margin implies more geomorphically active surges there [McCracken et al., 213 

2016]. This inference is supported by a number of lines of evidence. Topography dips away 214 

from the glacier aligned with flow parallel features (e.g. flutes) and perpendicular to terminal 215 
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moraines, indicating that it reflects ice flow rather than other controls. A break in slope exists at 216 

the 1992 moraine, where the four most recent large surges have stopped. There is no evidence 217 

for bedrock control of slope, and if it is postulated to be causing up-ice dips at this site its 218 

influence is demonstrated to be subservient to ice flow by the overdeepening just upstream of 219 

the current ice margin [Björnsson, 1986; Lamsters et al., 2016]. Thus, a powerful aspect of the 220 

Múlajökull site is that relatively strong constraints exist on the timing and duration of 221 

geomorphic work in two zones, which is rare. This constraint allows predictions by models of 222 

how subglacial bedforms (e.g. drumlins) progressively evolve with time to be considered 223 

against observations that have quite low levels of ambiguity.  224 

 225 

Neither sedimentology nor stratigraphy yet directly constrain drumlins' elongation during 226 

surge-cycles. Till fabrics and bulk densities indicate that inter-drumlin areas have experienced 227 

higher maximum effective stresses (~100 kPa), argued to represent quiescent periods under the 228 

assumption of effective and channelized drainage at these times [McCracken et al., 2016]. Then, 229 

as in other models [e.g. Hindmarsh, 1998; Chapwanya et al., 2011], increased effective shear 230 

stresses are taken to indicate higher rates of sediment transport. The basal stress distribution is 231 

asserted to be compatible with a crevasse pattern at the ice front, which is strongly related to 232 

the spatial pattern of the drumlins [Johnson et al., 2010; Benediktsson et al., 2016; McCracken 233 

et al., 2016], but the mechanics of causal relationship remain conjectural. The available 234 

observations have been consolidated and reconciled into a conceptual model [Johnson et al., 235 

2010; Jónsson et al., 2014; Benediktsson et al., 2016; McCracken et al., 2016], an extreme precis 236 

of which follows: Although sediment transport mechanisms are not uniquely constrained, 237 

surges deposit drapes of till everywhere, then in each intervening quiescent period there is 238 

erosion in the inter-drumlin areas, processes that combine to lead to increases in H and L but a 239 

decrease in W.  A mathematical model has been developed to formalize this [Iverson et al., 240 

2017]. GPR data [Lamsters et al., 2016] and the Múlajökull drumlins' proximity to the LIA 241 

terminal moraine dictate that these models are based on, and therefore most directly constrain, 242 

near-margin (i.e. < 1-2 km) drumlin formation. 243 

 244 

FIG 4 HERE 245 

 246 

3. Data and mapping 247 

 248 
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Johnson et al. [2010] use 1 m resolution gridding of airborne laser scanning (i.e. LiDAR) data 249 

from 2008 to map >50 drumlins inside the 1992 moraine, which are 90-320 m long (�� = 185 m), 250 

30-105 m wide (��  = 64 m), and 5-10 m in relief. Mean elongation ratio is 3.0.  Drumlins outside 251 

the 1992 moraine were first mapped by Jónsson et al [2014] from a 3 m resolution DEM that 252 

was created from aerial stereophotographs taken in 1995, increasing the total number of 253 

drumlins to 110. The size ranges increased, e.g. W values are 20-180 m, as is expected of a 254 

larger sample.  Most recently, 143 drumlins were mapped from 0.5 m resolution LiDAR 255 

collected in 2013 [Benediktsson et al., 2016] (see Supplementary Material), reporting broadly 256 

comparable morphometrics, which are similar to widespread and well-studied Pleistocene 257 

drumlin fields [Patterson and Hooke, 1995; Ó Cofaigh et al., 2010; Hillier et al., 2013]. The 258 

existence and conformity to expectations of shape of all drumlins mapped were verified by 259 

inspection in the field, and no additional small drumlins were identified whilst on the ground 260 

[Johnson et al., 2010; Jónsson et al., 2014; Benediktsson et al., 2016]. 261 

 262 

A first source of uncertainty in the drumlin morphometrics at Múlajökull might be DEM 263 

resolution or quality. Whilst the 1995 DEM is based on stereophotogrammetry and is of a low 264 

resolution and accuracy [Jónsson et al., 2014], LiDAR data are widely regarded as a good basis 265 

for producing high quality DEMs in glacial and pro-glacial areas [e.g. Favey et al., 1999]. Even 266 

the 2008 LiDAR data have a point density of 0.33 m-2, an average of 10 data per 5x5 m grid cell, 267 

and estimated horizontal accuracy of <0.5 m [Jóhannesson et al., 2014] much below drumlins' 268 

planform dimensions (i.e. L, W).  This assertion is supported by close agreement (i.e. mean 269 

vertical difference of 0.132 m) between the 2008 and 2013 LiDAR DEMs on two selected 270 

profiles (Figure 5). Of particular interest is the inter-survey agreement between the size of the 271 

undulations shown, with variance in amplitude on the order of 0.1 m, which is less than the H 272 

of even the smallest mapped drumlins. Thus, uncertainty in drumlin morphometrics from DEM 273 

creation will be small. Accurate DEM creation is, at least in part, due to minimal vegetation 274 

cover. Vegetation present within the area of the 2013 LiDAR DEM is mainly in the form of 275 

mosses that are limited to streams, shallow ponds and wet ground (Figure 4), and will typically 276 

be penetrated by the LiDAR sensing method.  277 

 278 

FIG 5 HERE 279 

 280 

A second potential discrepancy between mapped drumlins and the population of subglacially 281 

produced forms they preserve and reflect is post-glacial alteration. Plan view comparison 282 
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(Figure 6) indicates that surface alteration in the foreland between 2008 and 2013 is relatively 283 

small (i.e. < 0.5 m, dark green) with respect to drumlin dimensions. Exceptions to this are 284 

readily explicable, namely the lowering of the level of ice-marginal lakes by 0.5-2 m 285 

[Benediktsson et al., 2016] and the degradation of the 2008 ice-cored moraine, which is 286 

superimposed on some drumlins. In terms of ground-truthing, terrain profiles surveyed using a 287 

TopCon GTS-236N total station between 2011 and 2014 show 0.4-0.8 m lowering of the 2008 288 

ice-cored moraine crest due to melting, but negligible (i.e. <0.1 m) surface alteration on drumlin 289 

surfaces outside the degrading moraine. A similar conclusion is reached by comparing change 290 

between 2008 and 2013 for 'high' and 'low' stretches of profiles P1 and P2 extracted from the 291 

LiDAR data in locations shown on Figure 5. In P1 high and low areas changed by +0.073 and 292 

+0.055 m, respectively, apparently indicating an amplitude increase of ~2 cm, which is 293 

inconsistent with gravity driven mass-wasting. In P2, an amplitude decrease of ~1 cm is implied. 294 

Taken together, minimal change at the limit of observational resolution is demonstrated. This is 295 

consistent with stability at bedform scales (i.e. few 100s of m) over decades observed in other 296 

Icelandic till plains such as at Brúarjökull [Korsgaard et al., 2015]. Thus, there is no evidence of 297 

post-glacial degradation substantively impacting drumlins at this site.  298 

 299 

FIG 6 HERE 300 

 301 

A third source of disagreement has the potential to arise in the methods used in mapping 302 

[Podwysocki et al., 1975; Siegal and Short, 1977; Smith and Clark, 2005; Gardin et al., 2011; 303 

Ardelean et al., 2013; Van Coillie et al., 2014] and then calculating the metrics of drumlins [e.g. 304 

Spagnolo et al., 2012; Hillier and Smith, 2014; Jorge and Brennand, 2017]. During fieldwork [e.g. 305 

Jónsson et al., 2014] an ambiguity of 1-10 m was identified in setting the location of boundaries 306 

that were not at shorelines, making a GIS approach [e.g. see Smith et al., 2006; Spagnolo et al., 307 

2012] the most consistent and reproducible way of delimiting drumlins. Conceptual ambiguity 308 

exists where lakes conceal the land surface, with a debate as to whether drumlins are best 309 

defined as isolated features or waveforms [Stokes et al., 2013b], but no DEM mapping 310 

approach is a solution for this.  Benediktsson et al. [2016] identified and mapped the drumlins 311 

at a scale of 1:3000-1:6000 in ArcGIS 10.2.2 using a hillshade model of the 0.5 m LiDAR DEM 312 

from 2013 with 1.5-4 times vertical exaggeration, 20-30°solar angle and illumination azimuths 313 

at 45°and 315°. A combination of slope analysis and visual inspection was used to delimit the 314 

drumlins at a break in slope, which could either be abrupt (e.g. lakes, outwash) or gradual. Only 315 

where both axes of a putative drumlin (long, short) were upstanding from the landscape was 316 
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the planform shape considered delineated and a drumlin defined [Dowling, 2016]. However, if 317 

small forms have similar morphology to their larger companions, this will not impact the size-318 

frequency distribution of drumlins (see Section 6.1). 319 

 320 

Drumlin length (L) and width (W) were derived by measuring the length of the longest lines 321 

parallel and perpendicular to ice flow, respectively, within each drumlin [Benediktsson et al., 322 

2016]. Being recently deglaciated, ice-flow direction was determined by flutes and other 323 

streamlining in the forefield. Drumlin relief (H) was defined by the range in elevation of each 324 

drumlin. Whilst this is a simple approach [e.g. see Hillier and Smith, 2012, 2014; Spagnolo et al., 325 

2012], lakes bounding all but 3 drumlins inside the 1992 moraine make a horizontal basal plane 326 

a natural choice, with consistency requiring the same to be done outside the 1992 moraine.  In 327 

this particular site, the use of drumlin elevation range to represent drumlin height (i.e. H) will 328 

cause relatively minor artefacts since the slope of the foreland is shallow (i.e. 0.007-0.023) 329 

[McCracken et al., 2016].  At least, the shape of the size distributions for H (Figure 7) will likely 330 

be minimally affected (see Section 4.4).   331 

 332 

A fourth and final source of ambiguity in drumlin morphometrics inside the 1992 moraine is the 333 

presence of pro-glacial lakes. Draining these may increase mapped estimates of H, L, and W for 334 

lake-bounded features. The magnitude of this is difficult to constrain without additional 335 

information as it will depend on drumlin shape in the flooded areas, which is currently 336 

unknown, and is possibly influenced by lake drainage itself. However, the scarcity of many small 337 

drumlins between larger ones mapped outside the 1992 moraine indicates that this ambiguity 338 

will not impact the existence or otherwise of a roll-over in size frequency distributions.  339 

 340 

4. Statistical analysis of the Múlajökull drumlin dataset 341 

 342 

The median, range (i.e. minimum and maximum), standard deviation, and mean of drumlin 343 

sizes have been reported for Múlajökull [Benediktsson et al., 2016], but the uncertainty 344 

associated with size measurements has not. Here selected error bars, statistical significances, 345 

and distribution parameters (i.e. exponential, log-Normal, Gamma) are computed. Two-346 

parameter distributions are a more sophisticated description of size-distributions [e.g. Hillier et 347 

al., 2013; Ely et al., 2017], and are reported for use in future compilations and analysis (Table 1). 348 

The statistical analysis also allows a robust evaluation of sizes observed at Múlajökull (Section 349 

6).  In particular, Section 4.1 reports error bars and sensitivity tests for the measures of central 350 
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tendency (i.e. mean of H, L, and W) that are a key part of the design of the conceptual model at 351 

Múlajökull [i.e. Johnson et al., 2010; McCracken et al., 2016; Iverson et al., 2017]. Sensitivity to 352 

the measure of central tendency used (i.e. mean, median or mode) is also considered. Section 353 

4.2 determines if a roll-over exists, thereby permitting comment on whether or not small 354 

drumlins are scarce. To test posited models of drumlin formation that have been statistically 355 

formalized [Fowler et al., 2013; i.e. Hillier et al., 2013] Section 4.3 summarizes key variations in 356 

the relevant metrics of the two-parameter distribution. Finally, Section 4.4 considers a potential 357 

systematic (i.e. not due to randomness and sampling) issue with the method used to calculate 358 

H. 359 

 360 

4.1 Robustness of Observations 361 

 362 

Given the relatively small number of data inside and outside of the 1992 moraine (i.e. 77 and 363 

55) it is possible that an apparent trend or observation does not actually exist (i.e. is not 364 

statistically significant). It could arise simply due to random variation in the selection of a 365 

sample; conceptually, observed data are a sample reflecting a parent population of what could 366 

be produced under identical glaciological conditions. A convention of considering a 5% chance 367 

of the result occurring by random variation in sampling (i.e. 95% level, p < 0.05) is arbitrary 368 

[Wasserstein and Lazar, 2016], so both 5% and 10% levels are reported. 369 

 370 

The mean (i.e. �) is perhaps the most commonly computed statistic for this type of bedform 371 

data, and relates to the Normal distribution (Table 1). A Welch t-test (2-tailed) confirms the 372 

observations of Benediktsson et al. [2016] that drumlins inside the 1992 moraine are longer (P 373 

≪ 0.01) and narrower (P = 0.011) than those outside, and strengthens their view that there 374 

appears to be no increase in heights.   375 

 376 

All of the dimensions (i.e. H, W, L) for both data sets appear positively skewed, indicating 377 

distributions with a more heavily populated right-hand tail than a Normal distribution, and 378 

most of the skews (4 of 6) are statistically significant (P < 0.05). In other words, the distributions 379 

are not Normal, so a different measure of central tendency may be a more appropriate 380 

indicator of where the distribution is located on the x-axis if plotted (e.g. Figure 1a). However, 381 

there is consistency (Table 1) between measures of central tendency (i.e. mean, median and 382 

mode) alleviating any concern about previous uses of the mean.  383 

 384 
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4.2 Existence of a roll-over 385 

 386 

To determine the existence, or otherwise, of a roll-over the exponential [Hillier et al., 2013], 387 

log-Normal [Fowler et al., 2013; Hillier et al., 2016] and Gamma [Hillier et al., 2016] 388 

distributions are fitted to the observations (Figure 7). Reassuringly, the variations in parameters 389 

of these distributions (µL, σL, α, β and λ) also show broad consistency with change in � between 390 

the zones inside and outside the 1992 moraine. Namely, between the two areas H is similar and 391 

L is different, with a weaker signal for W reflecting a smaller magnitude of change. Both log-392 

Normal and Gamma distributions fit the data comparably well, whilst the exponential fits the 393 

upper tail (i.e. larger forms) only and not the roll-over. In other words, there are fewer small 394 

drumlins than expected by simple extrapolation (i.e. using the exponential) from larger 395 

drumlins, which are typically more reliably observed than smaller drumlins. For completeness, a 396 

conservative correction for under-sampling to bend the exponential model towards the data 397 

(i.e. potentially account for the roll-over) is shown (dashed grey line) to allow for a direct 398 

comparison with analyses for other areas (see Section 5). Even were this correction for 399 

cluttered, hilly, 5 m resolution, InSAR-derived data applicable, it is insufficient to explain the 400 

roll-over; a factor of x10 (i.e. 10% recovery) equates to 2.3 on the vertical scale, which is a 401 

natural logarithm. In short, a roll-over exists in the data from Múlajökull, indicating a scarcity of 402 

small drumlins either side of the 1992 moraine. 403 

 404 

4.3 Quantities Relating to Statistical Models 405 

 406 

Distribution parameters that can be related to physically-based statistical models of drumlin 407 

formation are µL, σL, α, β and λ [Hillier et al., 2016]. The models predict how these parameters 408 

will change as the Múlajökull area evolved geomorphologically, a time-progression represented 409 

by the difference between drumlins outside as compared to inside the 1992 moraine. Although 410 

individual changes should be treated with caution where they are not statistically significant, 411 

patterns or trends across multiple dimensions (i.e. H, W, L) might not be coincidental; 412 

illustratively, if an observation about H and W both agree with the model but each with a 20% 413 

chance of occurring through random variation (i.e. P = 0.2), then the chance of them both 414 

occurring randomly is only 4% (i.e. P = 0.2*0.2 = 0.04). In Table 1 α consistently decreases as 415 

drumlins evolve, as does β in H and L. Unsurprisingly, being a similar quantity (i.e. rate in the 416 

statistical models), λ follows the same pattern as β, except there some statistical significance 417 

for the increase in W even when considered in isolation. As required, being a very similar 418 
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quantity, µL behaves as �; L increases as drumlins evolve, W decreases and H is apparently 419 

roughly stable. Whilst not readily understandable out of context, these variations invalidate one 420 

of the two main physically-based statistical models of drumlin formation [Hillier et al., 2016] 421 

(see Section 6.2.3). 422 

 423 

4.4 Impact of Relief Quantification Method 424 

 425 

Benediktsson et al. [2016] use range to quantify drumlin height, a method that has been called 426 

into question [e.g. Smith et al., 2009; Hillier and Smith, 2012; Spagnolo et al., 2012]. To 427 

approximately assess the impact of a more sophisticated H computation [e.g. Hillier and Smith, 428 

2012], a correction of Hc = H - (L/2)*g is applied, where g is slope. 0.01 is an approximate 429 

central value for the slope of the foreland, which varies between roughly 0.007 and 0.023 [see 430 

McCracken et al., 2016]. Slopes of the fitted trends from P1 and P2 are 0.89˚ and 0.38˚, 431 

respectively. The dip direction aligns with drumlin elongation. The lowest point, used in the 432 

vertical range quantification, will typically be near the drumlin's distal end, whilst the highest 433 

will be somewhat central. Thus, removing the slope between the centre and edge of each 434 

drumlin approximates the overestimation of H when range is used [e.g. see Spagnolo et al., 435 

2012]. After applying the correction, the shape of curves equivalent to those in Figure 7a,d is 436 

not substantively or visibly different, supporting the idea that using range [Benediktsson et al., 437 

2016] is insufficient to invalidate the conclusions reached here about the scarcity of small 438 

drumlins. Indeed, even correcting for more detailed effects, such as applying a different slope 439 

either side of the 1992 moraine [McCracken et al., 2016] cannot alter the shape of a size-440 

frequency distribution further. With the correction 	� becomes 6.8±0.3 (2 s.f.) both inside and 441 

outside the 1992 moraine, with no significant difference (p = 0.942). Using a different slope 442 

either side of the 1992 moraine, however, may alter mean values (e.g. Section 4.1), even if such 443 

complexity in a correction likely exceeds the validity of the approximate assessment used here. 444 

To be safe, a full re-computation of H values is recommended in future. 445 

 446 

 447 

FIG 7 HERE 448 

TABLE 1 HERE 449 

 450 

5. Statistical analysis of UK and Swedish drumlin datasets 451 

 452 
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To place the observations at Múlajökull in a wider context, the extent to which they are 453 

mirrored in other mapping datasets is briefly explored. If data elsewhere are consistent with 454 

Múlajökull then conclusions drawn in this paper might apply to other sites globally. Of 455 

particular interest are whether under-sampling is sufficient to explain the roll-over at other 456 

sites (i.e. UK and Sweden), and how under-sampling might distort statistics. So, Section 5.1 457 

employs a correction for under-sampling to verify the existence of roll-overs, whilst Section 5.2 458 

considers the impact of the correction on µL as it is commonly calculated [e.g. Ely et al., 2017] 459 

and has implications for understanding the rate at which drumlin height equilibrates with ice 460 

conditions (Section 6.2.4).  461 

 462 

5.1 Widespread existence of a roll-over 463 

 464 

The widespread existence of a roll-over is tested by the application of a conservative correction 465 

for under-sampling [Hillier et al., 2014], in particular the mean curves on Figure 2. As in Section 466 

4.2 the correction is applied to the exponential model to ascertain if it can be bent downwards 467 

sufficiently to explain the roll-over. If the roll-over can be replicated by the correction, then the 468 

observation is in some doubt. The correction is likely an illustrative 'worst case' for under-469 

detection because the area is hilly and cluttered (i.e. with trees, woods, houses, infrastructure) 470 

and the 5 m resolution NEXTmap BritainTM DEM is derived from InSAR observations. Critically, 471 

InSAR radar pulses reflect off vegetation, with the returns therefore capturing the top of 472 

features such as trees, which must either be statistically removed to estimate a bare earth 473 

terrain for mapping [e.g. Sithole and Vosselman, 2004; Clark et al., 2009] or visually 474 

compensated for when mapping [e.g. Smith et al., 2006]. This is non-trivial especially, for 475 

example, if patches of woodland have greater amplitude and similar spatial scale to drumlins 476 

[e.g. Fig 2b of Hillier and Smith, 2012]. The correction curve of Hillier et al. [2014] is used as it is 477 

derived from mapping on synthetic DEMs, and thus the only one available that gives absolute 478 

values (i.e. not just relative efficacy between mappers) for under-sampling.  479 

 480 

The widespread existence of a roll-over is examined first in UK data. UK drumlins [Clark et al., 481 

2009; Spagnolo et al., 2012] are to a first-order approximated by either a log-Normal or a 482 

Gamma distribution for H, W and L [e.g. Fig. 1 of Hillier et al., 2016].  Additionally, for large 483 

drumlins above modal size, data are approximated by an exponential tail [Hillier et al., 2013]. 484 

Correcting for under-sampling is manifestly inadequate to alter this, namely the correction is 485 

not sufficient to explain the roll-over and mapping of few small bedforms in terms of L and W 486 
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(Figure 8). For H the correction (dashed line) to the exponential model (solid line) appears to be 487 

overly pessimistic for drumlins between 5-10 m in relief, which still fit the exponential trend, 488 

and even so cannot explain a relative absence of the smallest forms (Figure 8a). Similar applies 489 

for the flow set of 173 drumlins located at a site near Loch Lomond [Hillier and Smith, 2012] 490 

(Figure 9). This is both the site at which the correction was created, and demonstrates that the 491 

observation also applies to flow-set level datasets. All these studies use the NEXTmap BritainTM 492 

DEM. 493 

 494 

Secondly, the roll-over is examined in Swedish data. 20,041 drumlins from Sweden mainly 495 

conform to roughly log-Normal size distributions in H, W and L (Figure 10), reaffirming previous 496 

statistical analysis [supp. mat. in Dowling et al., 2015]. The roll-over occurs at relatively small 497 

sizes in these typically (~94%) rock-cored forms. Mapping was from LiDAR-based DEMs. Again 498 

(see Figure 8a), the under-detection correction may be too conservative, but still cannot 499 

entirely account for the roll-overs.  A factor of x10 (i.e. 10% recovery) equates to 2.3 on the 500 

vertical (natural) logarithmic scale so that the fraction of drumlins that would need to be 501 

missed to eliminate the roll-overs is considerable.   502 

 503 

In short, whether in the UK or Sweden, using InSAR or LiDAR data, for aggregated or individual 504 

flow sets, for whichever dimension (i.e. H, W, L), a roll-over exists.  505 

 506 

FIGS 8,9,10 HERE 507 

 508 

5.2 Distortions to distribution statistics 509 

 510 

The extent to which distribution statistics are potentially distorted by under-sampling is 511 

examined by using five UK flow sets selected in Ely et al. [2017]. This is not intended as a 512 

criticism of this particular data set, which has been extensively and carefully quality controlled 513 

[e.g. Clark et al., 2009; Spagnolo et al., 2012]. But, this in itself demonstrates the general 514 

applicability of any caution needed. The under-sampling correction is applied to the 515 

observations so that any impact on distribution shape can be assessed visually (Figure 11). H is 516 

selected for plotting as it is most sensitive to the under-sampling correction. The applicability of 517 

a log-Normal distribution [Ely et al., 2017] is to a first order a shown to be valid with or without 518 

the correction. The curves, however, are altered with the possibility that the statistics might be 519 

notably altered. Visually, the concave-up shape on the below ln(H) of 1 (i.e. ~2.7 m) is not 520 
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typical of more apparently complete observed distributions (e.g. using LiDAR) or the upper tail 521 

of these ones. This is perhaps a qualitative indicator that under-sampling has taken place, and 522 

the effect of the correction is more pronounced the lower the mode of the flow-set's size 523 

distribution (see dashed box). 524 

 525 

In terms of quantitative assessment the mean of log-transformed data (i.e. µL) is, illustratively, 526 

the statistic focussed upon. It is relatively commonly used, relates to physically-based statistical 527 

models, has implications for arguments about rates of equilibrium of drumlins with ice flow 528 

(Section 6.2.4), and is intuitively understandable (i.e. location of the distribution). µL for L varies 529 

by ±0.622 (2
) (Table 2). This likely reflects a range created by glaciological processes as the 530 

mean magnitude of the under-sampling correction is 0.035 or ~6% of this. For W the value is 4%, 531 

but rises to 56% for H with data varying by ±0.465 (2
) and a mean correction of 0.258. Thus, 532 

observations of relief might contain materially significant distortions in some cases, perhaps 533 

contributing to why a trend in µL for H predicted by statistical modelling has not been observed 534 

[Ely et al., 2017] (Section 6.2.4).  535 

 536 

FIG 11 HERE 537 

TABLE 2 HERE 538 

 539 

6. Discussion 540 

 541 

6.1 Are small bedforms produced? 542 

 543 

The primary purpose of this paper is to rigorously examine the apparent roll-over in drumlin 544 

size-distributions and the associated scarcity of small drumlins (i.e. < half modal size), which 545 

might be an important signature of subglacial processes. As a purely empirical descriptor of the 546 

distribution shape, an exponential distribution fitted above the mode can predict how many 547 

small drumlins might naively be expected [Hillier et al., 2013]. Furthermore, a physically-based 548 

statistical model producing exponential distributions can be conceived [Hillier et al., 2016]. It is 549 

therefore of interest to determine whether or not under-sampling can explain the existence of 550 

the roll-over. 551 

 552 

132 recently and fully emergent drumlins at Múlajökull glacier, Iceland, are shown to exhibit 553 

the roll-over (Section 4.2) in highly-accurate LiDAR data in an essentially stable, un-vegetated, 554 
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and non-anthropogenically influenced till plain where post-glacial degradation is minimal 555 

(Section 3). Mapping in GIS follows best practice, is ground-truthed, and details in the methods 556 

of quantification of the morphometrics (e.g. H) are shown to be insufficient to alter this 557 

conclusion (Section 4.4). Moreover, even applying a conservative correction for under-sampling 558 

during manual mapping is equally insufficient to invalidate the result (Section 4.3).  Some doubt 559 

might exist as a conservative mapping method was used [Benediktsson et al., 2016; Dowling, 560 

2016], requiring each drumlin to be elevated above its surroundings on all sides. This could miss 561 

subtle drumlins that are low relief, but wide and long, because if they are on a gentle larger-562 

scale (i.e. 'regional' [see Hillier and Smith, 2008]) slope then the up-dip face of the drumlin may 563 

only be shallower and never actually slope downward. However, this situation is scale-invariant, 564 

reflecting only shape and not scale. Thus, such omissions could be argued to reduce the 565 

number of small forms found only if small drumlins are also typically flatter; however, there is 566 

no evidence that H/W decreases with W either inside or outside the 1992 moraine (i.e. r2 < 0.1). 567 

Two other elements of the data presented here also point to a relative scarcity of small 568 

drumlins. Firstly, the dominant topographic variations in profiles across the LiDAR DEM viewed 569 

at high vertical exaggeration (i.e. x32, inset panels in Figure 5) are at the horizontal scale of 570 

drumlins (i.e. ~100 m), without a significant high-amplitude contribution from variations 571 

between this scale and ~10 m. Namely, there is no evidence of a progression from the mapped 572 

drumlins towards many increasingly small drumlin-like forms. Certainly, it is difficult to see 573 

where 10 times the amount that are currently mapped might originate from in order to 574 

eliminate the roll-over. Secondly, the mapping [i.e. Benediktsson et al., 2016] suggests that 575 

many small drumlins are not going to be revealed by draining the lake-filled interfluves inside 576 

the 1992 moraine; this is simply because small drumlins have not been revealed in these 577 

locations outside the 1992 moraine. Thus, in summary, at Múlajökull where observational 578 

ambiguity is eliminated or minimized, the roll-over is not to be due to i) source data via DEM 579 

resolution or quality, ii) 'detectability' or mapper ability in complex (i.e. anthropogenically 580 

cluttered or vegetated) landscapes, iii) quantification method to determine morphometrics (e.g. 581 

H), or iv) post-glacial degradation. In other words, with preservation and observation accounted 582 

for it is possible to clearly state that if small drumlins are created then few survive to pass 583 

outside the ice margin. In this sense, they are not 'produced' by the glacier for preservation in 584 

the geomorphological record.  585 

 586 

It is also possible to comment on the earlier-stage, subglacial production of small drumlins. 587 

Without sub-ice evidence, it could be possible that drumlins originated significantly further up-588 
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stream under the ice and always grew, merged, or were destroyed before being exposed, 589 

thereby not ultimately being preserved in the geomorphological record. GPR data preclude this 590 

for Múlajökull [Lamsters et al., 2016]. In common with the LiDAR of the forefield (Figure 5), 591 

dominant topographic variations in the near-margin basal sub-ice topography are at the scale 592 

of the streamlined ridges that are being interpreted as drumlins (see Figs. 2a & 3 of Lamsters et 593 

al. [2016]).  Namely, there is no evidence of many small drumlins. With respective horizontal 594 

and vertical accuracies of <1 m and 12 m in these GPR data, possible drumlins well within the 595 

roll-over (e.g. W  ~40 m) would be detectable if they existed.  At Múlajökull, at least, it is 596 

therefore not any ice-sediment interaction that occurs during a passage out from under the ice 597 

[e.g. Benediktsson et al., 2016; Lamsters et al., 2016] that eliminates small drumlins and causes 598 

their scarcity. 599 

 600 

Finally, Múlajökull [Johnson et al., 2010; Benediktsson et al., 2016; McCracken et al., 2016] 601 

provides insights into whether or not many small drumlins ever existed. Everywhere at 602 

Múlajökull, including under current ice, small drumlins are scarce. Thus, if any of the three 603 

zones (i.e. 'inside', 'outside', currently subglacial) can be argued to reflect the earliest stages of 604 

drumlin formation, drumlins must have formed by streamlining pre-existing landforms rather 605 

than through progressive growth from small to full-size features. Sedimentology and 606 

stratigraphy have been used to create an understanding of the spatial distribution of the 607 

cumulative intensity of geomorphic work done by surge-cycles at Múlajökull [Johnson et al., 608 

2010; Benediktsson et al., 2016; McCracken et al., 2016]; specifically, the ice-proximal area 609 

inside the 1992 moraine is argued to have experienced more surges, more geomorphological 610 

work, and it contains more evolved and elongate (i.e. mean L/W ratio of 3.0) drumlins, than the 611 

distal area outside it (mean L/W = 1.9).  Also, at Múlajökull the influence of a number of other 612 

factors that could affect drumlin morphology (e.g. bedrock, till variation, large-scale 613 

topography) is likely minimal. Thus, since the Múlajökull drumlins have demonstrably elongated 614 

in surges, and yet the distal ones have not elongated much (i.e. L/W < 2.0), it is possible to 615 

argue that the distal drumlins are comparatively geomorphologically 'immature' and represent 616 

an early stage of drumlin formation. As such, observing few small drumlins in the till plain 617 

outside the 1992 moraine strongly implies that few were produced or existed in the earlier 618 

stages of drumlin genesis. A first explanation for the scarcity of small drumlins in apparently 619 

immature zones (e.g. elongation ratio ≲2.0), at least at sites similar to Múlajökull (i.e. lobes 620 

with near-margin drumlin genesis), is that drumlins form by streamlining pre-existing landforms 621 

(e.g. moraines, debris fans) rather than through progressive growth from small to full-size 622 
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features. A second explanation is that small bedforms grew and/or merged rapidly before 623 

significant streamlining had occurred. In terms of all H, L and W small drumlins are scarce even 624 

in the apparently immature area outside the 1992 moraine [Benediktsson et al., 2016], which 625 

has low elongation ratios (i.e. <2.0), so if they once existed they must have disappeared by this 626 

stage. A third, and our preferred, explanation is that drumlins at Múlajökull initiate as relatively 627 

broad and shallow features that increase in amplitude notably faster than they elongate, and 628 

grow and/or merge rapidly before significant streamlining has occurred. In addition to the other 629 

constraints (e.g. such as mean sizes µL in Section 6.2.1), this is supported by an interpretation of 630 

the spread of size-frequency observations (i.e. σL,) in the context of statistical modelling that 631 

give insights into rates of change (see Section 6.2.3).  In the later two explanations, regularity 632 

could emerge through the aspects of the process of growth (e.g. stochasticity) rather than 633 

reflecting initial conditions [see Hillier et al., 2016]. In the first explanation, pre-existing features 634 

with some regularity in spacing, are required to conform with this tendency in drumlins [Clark 635 

et al., 2018]. 636 

 637 

Away from Múlajökull, the complication exists that drumlin fields are produced substantially 638 

away from an ice margin.  Thus, the possibility exists for sub-ice modification or destruction of 639 

any small drumlins produced before they emerge. Additional sub-ice evidence (e.g. GPR) is 640 

needed to constrain this possibility further. Seismic [King et al., 2007] and radar [King et al., 641 

2009] data collected in Antarctica are of a different character and lower horizontal resolution 642 

(~50 m) than LiDAR, and of mega-scale glacial lineations (MSGL), but it is interesting that they 643 

are reported as visually indistinguishable from relict bedforms of the Dubawnt palaeo-ice 644 

stream bed captured in Landsat images. The Dubawnt flow set lacks the many small bedforms 645 

expected of the exponential extrapolation [Hillier et al., 2013; Stokes et al., 2013a], and 646 

combining this with the Antarctic geophysics gives a first tentative indicator of potential scarcity 647 

under ice streams.  A final possibility, that is difficult to constrain, is that Múlajökull's foreland 648 

may simply represent an atypical phase of drumlin field evolution where small drumlins are 649 

under-represented. 650 

 651 

Observational certainty is higher for forms that are currently exposed. A compilation of various 652 

datasets from the UK and Sweden [Clark et al., 2009; Hillier and Smith, 2012; Spagnolo et al., 653 

2012; Dowling et al., 2015; Ely et al., 2017] in Section 5 demonstrates that the roll-over exists 654 

for data from varied locations, with varied data sources, and for both aggregated data and that 655 

at the level of individual flow sets, which potentially represent glaciological conditions in a 656 
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single place and time. Predominantly, this is valid even with a correction for under-detection 657 

applied (Section 5). Thus, behaviours similar to that at Múlajökull (i.e. whatever leads to few 658 

small forms) may be more widespread than just that site. The roll-over is least apparent in rock-659 

cored drumlins recorded in LiDAR data [i.e. Dowling et al., 2015] where, in contrast to other 660 

data, a log-Normal distribution does not well explain the very largest forms and a Gamma 661 

distribution is visibly less adequate (Figure 10). It therefore remains entirely possible that the 662 

balance of physical processes that dictate bedform sizes changes along a spectrum from hard-663 

cored to soft-cored features, with small rock-cored features being easier to produce.  664 

 665 

6.2 What can size-frequency observations say about drumlin evolution? 666 

 667 

With the robustness of the size-frequency data at Múlajökull established (Sections 4 & 5), they 668 

can be taken as a firm constraint upon drumlin formation models (i.e. statistical, conceptual, or 669 

numerical ice flow) intended to apply at this site. It is open to debate how representative the 670 

Múlajökull site is, but it must be incorporated for a theory to have general applicability, and so 671 

the implications of the statistical size analysis are discussed below with this taken as read.  672 

 673 

The current conceptual model for Múlajökull [Benediktsson et al., 2016; McCracken et al., 2016] 674 

is considered first (Section 6.2.1). After this only the 132 currently exposed drumlins are 675 

considered as, at present, they are the observations that most reliably isolate the evolution of 676 

bedforms through time with other conditions held constant (see Section 2). Early, proto-677 

drumlin morphology is noted in Section 6.2.2, with implications for the initiation of any 678 

numerical or statistical model. Then, the applicability or otherwise of statistical models to the 679 

Múlajökull site is evaluated, constraining which remain tenable. Finally, rates at which the 680 

dimensions (i.e. H, W, or L) equilibrate is considered, contributing to our overview of how 681 

drumlin formation functions. 682 

 683 

6.2.1 Múlajökull conceptual model 684 

 685 

The current conceptual model of [Johnson et al., 2010; Benediktsson et al., 2016; McCracken et 686 

al., 2016] (see Section 2) is based on sedimentary and stratigraphic observations, and the 687 

reported mean changes in H, W and L at Múlajökull. Thus, it cannot be tested by these changes, 688 

but the increase in L with exposure to more surges (i.e. inside the 1992 moraine), decrease in W 689 

and probable invariance in H are all verified statistically (Table 1, Section 4). Namely, the model 690 
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is not based on a falsely confident misinterpretation of summary statistics from small samples 691 

of data in the foreland.  692 

 693 

The five drumlins measured under Múlajökull by Lamsters et al. [2016] tentatively suggest that 694 

the trends observed in the foreland do not continue beneath the glacier; they are higher and 695 

wider rather than narrow and of similar height as simple extrapolation would suggest. Without 696 

detailed explanation this was attributed to either i) more till layers, ii) more sediment due to 697 

unspecified ice-stress differences, or iii) variation in till composition (e.g. stiffer till more 698 

resistant to erosion). A smoother transition appears to exist between the swales and crests of 699 

the current subglacial drumlins than on the foreland. Without yet being subject to being 700 

interspersed by proglacial lakes and their associated sedimentation, these subglacial drumlins 701 

lack clear breaks in slope at their margins, and thus the former glacier bed is likely not directly 702 

comparable to its foreland [e.g. Finlayson, 2013]. Some metrics (e.g. inter-crest spacing) appear 703 

little affected and similar to the exposed drumlins, whilst H in particular is more sensitive. It is 704 

clear, however, that the model of Múlajökull cannot ultimately only be based on data from the 705 

foreland.  706 

 707 

6.2.2 Initial conditions for numerical and statistical modelling 708 

 709 

Observations at Múlajökull imply that drumlins may not initiate as perturbations that are very 710 

small in all dimensions (i.e. H, L, W), a simplifying assumption commonly used in both numerical 711 

ice-flow [e.g. Hindmarsh, 1998; Dunlop et al., 2008; Chapwanya et al., 2011] and statistical 712 

[Fowler et al., 2013; Hillier et al., 2016] modelling. The current model for Múlajökull [Johnson et 713 

al., 2010; Benediktsson et al., 2016; McCracken et al., 2016; Iverson et al., 2017] postulates that 714 

drumlins initiate as wide, rounded and relatively low amplitude topographic features (i.e. H is 715 

small but L and W are not), and the inferences from the size-frequency observations at 716 

Múlajökull in the context of the Stochastic Instability statistical model are consistent with this 717 

(see Section 6.2.3). Exploring fully the implications of this initial condition used in models is 718 

outside of the scope of this paper, so it is simply noted that future modelling should consider 719 

the sensitivity of outputs to the initial size distribution selected for the modelling [e.g. see 720 

Hillier et al., 2016]. 721 

 722 

6.2.3 Statistical models 723 

 724 
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As a step to bridging the gap between geomorphological form and process Hillier et al. [2013] 725 

proposed a conceptual model to explain the size-distributions of subglacial bedforms in terms 726 

of stochastic ice-sediment-water interaction. This has led to a variety of physically-based 727 

statistical models being developed to formalize the postulated stochastic behaviour [Fowler et 728 

al., 2013; Hillier et al., 2016]. The statistical models include various elements (e.g. initial size 729 

distribution, growth rate law) and predict size-frequency distributions and how they evolve 730 

through time as the drumlins evolve. In making specific predictions about observable quantities 731 

(e.g. µL), they are testable and falsifiable. 732 

 733 

A statistical model based on waiting time (i.e. Poisson) randomness and a single episode of 734 

drumlin building, that might be a surge, can produce an exponential size-frequency distribution. 735 

Illustratively, this is model M8 of Hillier et al. [2016]. However, a securely evidenced roll-over at 736 

Múlajökull (Section 4.2) and more widely (Section 5) now firmly precludes any statistical model 737 

that produces an exponential size-frequency distribution from being a viable model. Two 738 

statistical models that include randomness through time in drumlin growth, and are based on 739 

glaciologically plausible physical conditions, can explain size-frequency distributions with a roll-740 

over, but these are difficult to distinguish in aggregated UK data [Hillier et al., 2016]. A powerful 741 

aspect of the Múlajökull site is that it contains a progression from less evolved drumlins outside 742 

the 1992 moraine to more evolved ones inside, effectively two snapshots of drumlin growth at 743 

two different times. This constraint allows tests of predictions of how subglacial bedforms (e.g. 744 

drumlins) progressively evolve with time, which gives more potential to distinguish between 745 

models. 746 

 747 

The first physically-based statistical model that can explain a roll-over is the Waiting Time (WT) 748 

model [Hillier et al., 2016]. The WT model is based on Poisson randomness and creates a 749 

Gamma distribution with two parameters (i.e. �, �).   � is the rate at which conditions in the 750 

ice-sediment-water switch between those suitable for growth and those that cause bedforms 751 

to shrink, and is expected to remain constant through time in the WT model as constructed. No 752 

change in � with time for H and W at Múlajökull is therefore in agreement with the WT model, 753 

but the statistically significant decrease for L is difficult to reconcile with the model. � reflects 754 

the number of growth episodes (e.g. surges) experienced on average by the bedforms, and so is 755 

expected to grow with time.  Thus, a tendency to decrease in H and W even through not 756 

statistically significant, especially combined with the statistically significant decrease in � for L, 757 

produces an observation that is inconsistent with the WT model. The WT model as currently 758 
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constructed is therefore falsified, although it is worth emphasizing that as with mathematical 759 

models of drumlin formation [e.g. Hindmarsh, 1998; Chapwanya et al., 2011; Hooke and 760 

Medford, 2013; Iverson et al., 2017] variants that remedy this might be constructible. 761 

 762 

The second physically-based statistical model that can explain a roll-over is the Stochastic 763 

Instability (SI) model created by Fowler et al. [2013] and re-formulated and generalized by 764 

Hillier et al. [2016]. The SI model creates log-Normal distributions with two parameters (i.e. �
, 765 



). �
  has already been interpreted at Múlajökull in terms of the state of the drumlin sizes at 766 

two times (Section 6.2.1), but 

 can offer additional information on the rate of changes at the 767 

two times. 

 for H is greater than that for W or L implying that growth rate (k) is fastest in this 768 

dimension both inside and outside the 1992 moraine [see Eq. 27 of Hillier et al., 2016], in 769 

agreement with aggregated UK data [Hillier et al., 2016]. Outside the 1992 moraine, where 770 

fewest surges have sculpted the morphology, 

 values imply �� exceeds �
. At face value, this 771 

implies that drumlins outside the 1992 moraine are getting less elongate with time. 772 

Alternatively, it can be interpreted as being consistent with W values not initially starting small 773 

as assumed in the SI model, within which the only way to become wide is to grow to be wide. 774 

This second interpretations is much easier to reconcile with the Múlajökull site (see Section 2). 775 

Inside the 1992 moraine 

 values imply �
 exceeds �� as for the UK data [i.e. of Clark et al., 776 

2009], indicating that drumlins have elongated with time. Observations in the two zones can be 777 

reconciled if drumlins elongate with time, but with streamlining taking a little time to become 778 

dominant as the signal of the initial conditions (i.e. broad gentle proto-drumlins) is 779 

progressively over-printed. This is entirely consistent with suggestions in Hillier et al. [2016] 780 

that different dimensions might behave differently (i.e. L continuing to grow after W is 781 

restricted). Overall, the observations do not falsify the SI model, indeed the most logical 782 

interpretation of the size-frequency data places it into agreement with initial conditions 783 

recently postulated in mathematical model for drumlin formation at Múlajökull [e.g. Johnson et 784 

al., 2010; Iverson et al., 2017]. Thus, it is clear that statistical models will have greater 785 

explanatory power if used in conjunction with site-specific conceptual or mathematical models.  786 

 787 

6.2.4 Equilibration with flow conditions 788 

 789 

Ely et al. [2017] speculatively interpret a lack of trend in �
 and 

for H in UK flow sets as rapid 790 

stabilisation, consistent with inferences by Hillier et al. [2016] using aggregated UK size data 791 

that H grows and evolves relatively more rapidly that W or L. The other likely explanation for an 792 
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absence of a trend in the data of Ely et al. [2017], which cannot yet be excluded (Section 5.2), is 793 

observational uncertainty in H (e.g. due to under-detection or the measurement technique 794 

used); i.e. a trend might still be present, just masked by noise. However, the lack of a 795 

distinguishable change in H between two areas either side of the 1992 moraine at Múlajökull 796 

that have experienced similar glacial conditions but a different number of surges adds weight 797 

from a better constrained site to the view that H stabilises rapidly. Specifically, stabilisation 798 

here is refined to mean that H has finished increasing or decreasing, does this rapidly with 799 

respect to L or W, and perhaps implies equilibrating with ice-flow conditions. In this context 800 

rapid must mean short compared to the ~400-800 year LIA time frame available at Múlajökull 801 

indicated by formation of the Arnarfellsmúlar terminal moraine. This adjustment might even be 802 

on the decadal timescale [e.g. Hillier et al., 2016], based on geophysical evidence [e.g. Smith et 803 

al., 2007], sediment flux [Rose, 1989] and geometrical arguments [Goldstein, 1994; Dowling et 804 

al., 2016].  Stabilising H in the absence of a sharp spike in observational frequency at a 805 

postulated capping height requires any upper limit on dimensions to be 'fuzzy' or probabilistic 806 

[Hillier et al., 2016].  807 

 808 

7. Conclusions 809 

 810 

From statistical analysis of 143 newly emergent drumlins, recently created by the Múlajökull 811 

glacier, in conjunction with on the order of 100,000 drumlins mapped in the UK and Sweden, 812 

the following main conclusions can be drawn. 813 

 814 

• Few small drumlins are produced in the active Múlajökull drumlin field.  815 

• Our preferred explanation for the scarcity of small drumlins at Múlajökull is that 816 

drumlins form stochastically, during surge cycles, by wide and gentle pre-existing 817 

undulations rapidly increasing in amplitude before significant streamlining occurs. The 818 

scarcity of small drumlins in the less evolved (i.e. 'immature') zone outside the 1992 819 

moraine requires the rapidity, whilst size-frequency observations (i.e. �
  ,σL) in the 820 

context of statistical modelling give insights into rates of growth and imply the proto-821 

drumlin morphology.  822 

• In the UK and Sweden, and in a variety of data types, size-frequency distributions have a 823 

‘roll-over’ similar to that at Múlajökull, providing wider evidence that few small drumlins 824 

exist in previously glaciated landscapes. Thus, behaviours similar to that at Múlajökull 825 

may be more widespread than just that site. 826 
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 827 

It is also interesting to note that the first-order properties (i.e. approximately log-Normal 828 

shape) of size-frequency distributions is likely not altered substantially by under-sampling, 829 

although most care is needed for relief (i.e. height). Size-frequency distributions for H remain 830 

most sensitive to under-detection, and might still have materially significant distortions in some 831 

cases, which should be accounted for when interpreting data or derived statistics. Finally, it 832 

seems clear that statistical models are useful companions to their numerical ice-flow 833 

counterparts as tools to assist our understanding of ice-base processes, especially if placed into 834 

a site-specific context. For example, a mathematical model focused on physical behaviours at 835 

Múlajökull [e.g. Johnson et al., 2010; Iverson et al., 2017] might be blended with statistical 836 

modelling (i.e. Stochastic Instability model) [Hillier et al., 2016]. With a statistical model ground-837 

truthed at a site, the modelling could be used to extrapolate and thereby be tested for 838 

consistency with observations across Earth. In particular, observations at Múlajökull add weight 839 

to a model previously posited for testing by Hillier et al. [2016] in which H evolves relatively 840 

rapidly [Hillier et al., 2016] to be at equilibrium with ice-sediment-water conditions [Ely et al., 841 

2017], W changes more slowly constrained geometrically by interactions with neighbouring 842 

bedforms [e.g. Hillier et al., 2013, 2016; Clark et al., 2018], but L is free to grow. Thus, 843 

statistically enhanced modelling could feed into the longstanding debate on a subglacial 844 

bedform continuum [e.g. Aario, 1977; Rose, 1987] and be a step towards using drumlin fields as 845 

proxies for the critical parameters used in ice sheet reconstructions and modelling. 846 

 847 

 848 

 849 
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Table 1: Parameters of the drumlin data from Múlajökull. Shading indicates a statistical 1098 

significance of differences; light shading P < 0.1, dark shading P < 0.05. Bold numbers indicate if 1099 

skew is different from 0 (P < 0.05). Uncertainties are 1σ, and tests 1-tailed. Note that all 1100 

parameters are estimated from the underlying data, and binning for visualization (i.e. Figure 7) 1101 

is solely for that purpose. 1102 

 1103 

Distribution 
4
Parameter 

2
H L W 

Inside  Outside Inside  Outside Inside  Outside 

Normal 3µ (m) 7.6 ≈ 7.4 219.5 > 168.9 80.5  < 93.8 
  ±0.3  ±0.3 ±9.4  ±5.8 ±2.7  ±4.0 

 skew 0.258  0.193 0.861  0.764 0.228 < 1.011 
  ±0.153  ±0.214 ±0.379  ±0.248 ±0.250  ±0.397 

Log-Normal µL 1.963  1.940 5.373 > 5.099 4.342 < 4.495 
  ±0.045  ±0.048 ±0.041  ±0.033 ±0.036  ±0.041 

 σL 0.393  0.354 0.362 > 0.245 0.315  0.303 
  

±0.032  ±0.043 ±0.029  ±0.021 ±0.027  ±0.031 

Gamma α 7.270  9.029 8.074 < 16.908 11.046  11.201 
  ±1.146  ±1.691 ±1.265  ±3.186 ±1.753  ±2.103 

 β 0.952  1.226 0.035 < 0.100 0.137  0.119 
  ±0.155  ±0.236 ±0.006  ±0.019 ±0.022  ±0.023 

 1φ (i.e. mode) 6.3  6.4 210.5  161.6 72.3  82.5 

Exponential 3
λ 0.359  0.417 0.013 < 0.026 0.046 > 0.032 

  ±0.050  ±0.072 ±0.002  ±0.005 ±0.007  ±0.006 

Non-parametric 5median 7.5  7.0 220 > 164 79 < 85 
 1104 
1 estimated from the Gamma distribution as Hillier et al. [2013], but using maximum likelihood 1105 

estimates. Derived from α and β so significance of any differences not estimated. 1106 
2 1992 and 2008 moraines removed if H increased by >2 m  1107 
3 Significance calculated using Welsh t-test, 2-tailed; 1/λ is a mean [e.g. see Hillier et al., 2013].   1108 
4 Unless otherwise stated, significance by non-parametric bootstrapping; resampling is with 1109 

replacement within sub-sets, n = 10,000. 1110 
5 Two-sample Wilcoxon test; strictly, a non-parametric test of difference in distribution location, 1111 

not difference in medians, but it is a useful and relevant indicator.  1112 

 1113 

 1114 

 1115 

 1116 
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Table 2: Means of the logarithms of size data (i.e. µL) for various global data, both before and 1118 

after a conservative correction for the completeness of mapping is applied i.e. Fig. 1c of  [Hillier 1119 

et al., 2014]. 1120 

 1121 
Data Set Flow 

Set ID 

Before  After 

n H L W H L W 

[Ely et al., 2017] 

UK flow sets 

9 - - 6.034 - - 5.997 - 

10 976 1.808 6.656 5.495 1.527 6.621 5.520 

15 471 1.895 6.334 5.323 1.631 6.314 5.338 

23 461 1.868 6.217 5.318 1.632 6.206 5.336 

29 1473 1.856 5.720 4.913 1.671 5.691 4.904 

40 239 2.090 5.920 5.123 1.933 5.883 5.126 

45 1407 1.639 6.293 5.195 1.358 6.273 5.201 

65 152 1.807 6.441 5.503 1.563 6.453 5.533 

[Hillier and Smith, 2012] 
Loch Lomond, UK 

- 
 

173 1.505 5.819 4.547 1.101 5.723 4.405 

[Clark et al., 2009] 

UK, aggregated 

- 37043 - 6.263 5.271 - 6.208 5.288 

[Spagnolo et al., 2012] 
UK, aggregated 

- 25848 1.728 - - 1.446 - - 

[Dowling et al., 2015] 
Sweden, aggregated 

- 20,041 1.255 5.704 4.380 1.006 5.573 4.314 

 1122 

 1123 

 1124 

  1125 
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Figure Captions 1126 

 1127 

 1128 

Figure 1: The typical shape of size-frequency distributions for mapped drumlins. These 1129 

probability density functions are similar to normalized histograms, and are plotted on semi-log 1130 

axes for graphical purposes (i.e. an exponential distribution plots as a straight line).  a) Size-1131 

frequency data for two studies, as black dots [Clark et al., 2009] and a grey line [Hillier and 1132 

Smith, 2012], illustrated with length. Selected statistical distributions are fitted to them: 1133 

exponential distribution (solid blue line); gamma distribution (dashed line) [Hillier et al., 2016]; 1134 

log-Normal (dotted lines)[Fowler et al., 2013]. b) The typical distribution shape [Hillier et al., 1135 

2013], with possible explanations for it annotated in bold text next to the part of the 1136 

distribution they may impact.  1137 

 1138 

Figure 2: Recovery rate (i.e. ‘completeness’) as a function of size, with the use of realistic 1139 

synthetic DEMs allowing absolute values for recovery to be determined [Hillier et al., 2014]. 1140 

Solid black line is for height, H, and grey lines are for width W (solid) and length L (dashed). 1141 

Circles are means, shown with their standard errors across 10 synthetic DEMs. Dashed black 1142 

line is for medians for H. H, W, and L have bin widths of 2.5, 25 and 100 m, respectively. At the 1143 

upper end, bins with two or fewer input data are omitted, giving maxima of 20, 275 and 800 m, 1144 

respectively. All data are plotted centrally within bins.  1145 

 1146 

Figure 3: a) Location of Múlajökull (white square) on the southern edge of the Hofsjökull ice cap. 1147 

b) Overview photograph, July 2011, with view from the SE. Photo courtesy of Sverrir A. Jónsson. 1148 

c) Múlajökull glacier and surrounding area, adapted from Benediktsson et al. [2016], who also 1149 

detail the data and mapping methods. Background map is the 2013 LiDAR hillshade in a mosaic 1150 

with 2014 orthophotos. Drumlins (red with white outlines) are all within limits of the 2013 1151 

LiDAR data coverage. P1 and P2 are terrain profiles shown in Figure 5. The LIA, 1992, 2008 and 1152 

2013 ice limits are labelled. Dashed white line on ice surface indicates the approximate edge of 1153 

the overdeepening beneath Múlajökull and the up-glacier limit of the drumlin field [Lamsters et 1154 

al., 2016]. UTM (zone 27N) coordinates used. d) A drumlin emerging from the central margin of 1155 

Múlajökull in 2014. Ice flow is towards the viewer. 1156 

 1157 

Figure 4: a) Extract from a 2014 orthophoto showing the sparsely to non-vegetated area inside 1158 

the LIA moraine and the contrast to continuous vegetation beyond it. b) Extract from a 2015 1159 
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high-resolution orthophoto recorded with an unmanned air vehicle showing exposed and non-1160 

vegetated drumlins in front of the ice margin in 2015 (photo courtesy of Jez Everest, British 1161 

Geological Survey). c) View of the distal slope of the LIA terminal moraine, exemplifying the 1162 

continuous but low vegetation on and beyond the moraine. Ice flow was from left to right. The 1163 

location of the photograph is indicated with a black asterisk on a). 1164 

 1165 

Figure 5: Profiles illustrating DEM data quality of the 2008 (grey line) and 2013 (black line) 1166 

LiDAR surveys, and stability through time of the till plain. Spatial extent is limited to inside the 1167 

1992 moraine as the 2008 data only extend that far.  Thin vertical lines are the limits of the 1168 

numerical comparison, dashed lines the trends fitted by ordinary least squares to the 2013 data, 1169 

and grey horizontal bars indicate where 2013 heights are 'high' (i.e. above the trend).  1170 

 1171 

Figure 6: Elevation change between 2008 and 2013 LiDAR DEMs where they overlap (i.e. inside 1172 

the 1992 moraine). All changes shown in colour are decreases in elevation, whilst greys within 1173 

the polygon of coincident LiDAR are increases. Black and blue solid lines show the 2008 and 1174 

2013 ice margins, respectively. Background map is the 2013 LiDAR hillshade. Profiles in Figure 5 1175 

are P1 and P2. Coordinate system is UTM zone 27.  1176 

 1177 

Figure 7: Semi-log size-frequency plots for H, W, L for inside (a-c) and outside (d-f) the 1992 1178 

moraine at Múlajökull with exponential (grey line), Gamma (blue dashed line) and log-Normal 1179 

(pale blue dotted line) distributions fitted.  Data (black dots) are from Benediktsson et al. [2016] 1180 

(H, W, L triplets given in Supplementary Material), binned to illustrate the empirical density 1181 

function, and distribution parameters are in Table 1. Extent to which a conservative correction 1182 

for detectability and mapping ability (i.e. Figure 2 or Fig. 1c of  [Hillier et al., 2014]) can 1183 

influence the exponential model is shown as a grey dashed line. 1184 

 1185 

Figure 8: Potential for incomplete mapping to explain the roll-over in a) height, b) length, and c) 1186 

width for aggregated UK data [Clark et al., 2009; Spagnolo et al., 2012]. Data are black dots. 1187 

Plots are semi-log and of count density, with an exponential model fitted to drumlins larger 1188 

than the mode as Hillier et al. [2013] (grey line). Exponent is λ. Extent to which a conservative 1189 

correction (i.e. Figure 2 or Fig. 1c of  [Hillier et al., 2014]) can influence this model is show (grey 1190 

dashed line); if dashed line descends below the data at smaller sizes this indicates a potential 1191 

magnitude exceeding that of the roll-over. 1192 

 1193 
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Figure 9: Potential for incomplete of mapping to explain the roll-over in a) height, b) length, and 1194 

c) width for drumlins near Loch Lomond [Hillier and Smith, 2012].  1195 

 1196 

Figure 10: Potential for incomplete of mapping to explain the roll-over in a) height, b) length, 1197 

and c) width for drumlins Swedish drumlins; extended dataset based on Dowling et al. [2015]. 1198 

d), e) and f) expand section of these plots around the roll-over. Exponential (grey line), Gamma 1199 

(blue dashed line) and log-Normal (pale blue dotted line) distributions fitted.  Possible 1200 

correction for detectability is as in Figure 7. 1201 

 1202 

Figure 11: Probability distributions for log-transformed heights (H) for selected UK flow sets 1203 

from Ely et al. [2017] (Fig. 7f), in which a Gaussian shape illustrates a log-Normal distribution. a) 1204 

is uncorrected observations, whilst b) has had the under-sampling correction applied.   1205 
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Drumlins INSIDE the 1992 moraine

Height (H), Width (W) and Length (L) triplets for the 132 fully exposed

drumlins as mapped 

and estimated by Benediktsson et al (2016). Each HWL triplet is on a row. 77

drumlins.

All measurements are in metres.

Benediktsson et al [2016] Boreas, 45, 567-583.

Column 1 = Height (m)

Column 2 = Width (m)

Column 3 = Length (m)

8.200 59.000 169.000

4.600 28.000 117.000

2.600 41.000 74.000

9.200 86.000 166.000

4.300 47.000 145.000

8.100 93.000 133.000

7.200 80.000 250.000

6.100 78.000 165.000

6.300 74.000 220.000

9.200 99.000 275.000

7.000 79.000 278.000

4.900 78.000 164.000

7.700 95.000 320.000

5.900 68.000 239.000

11.900 118.000 236.000

9.000 75.000 305.000

7.800 67.000 200.000

12.100 75.000 254.000

8.900 46.000 349.000

4.100 63.000 133.000

5.700 74.000 236.000

12.400 82.000 267.000

3.000 40.000 162.000

6.900 67.000 216.000

8.500 80.000 273.000

5.600 67.000 184.000

8.700 78.000 262.000

7.800 76.000 335.000

11.700 107.000 368.000

7.000 62.000 220.000

8.100 77.000 251.000

8.000 96.000 384.000

7.700 62.000 192.000

7.700 86.000 244.000

4.100 51.000 179.000

6.800 83.000 206.000

7.500 102.000 225.000

10.300 103.000 354.000

8.900 95.000 221.000

11.500 115.000 361.000

2.500 47.000 144.000

7.200 85.000 259.000

3.800 57.000 116.000

11.400 95.000 344.000

6.600 101.000 276.000

5.300 63.000 185.000
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6.900 98.000 122.000

3.300 55.000 160.000

8.400 115.000 381.000

4.900 77.000 217.000

6.700 128.000 323.000

6.100 92.000 218.000

5.800 43.000 132.000

11.400 43.000 292.000

7.800 88.000 214.000

11.600 54.000 319.000

5.900 109.000 180.000

7.200 101.000 135.000

5.000 68.000 175.000

8.800 97.000 250.000

7.900 80.000 192.000

9.200 113.000 267.000

10.800 113.000 283.000

9.100 107.000 372.000

4.700 79.000 123.000

7.300 54.000 156.000

6.500 93.000 191.000

3.400 65.000 167.000

11.500 150.000 545.000

10.500 99.000 184.000

13.100 70.000 193.000

5.700 59.000 153.000

6.000 83.000 166.000

13.100 96.000 220.000

12.400 86.000 257.000

3.800 54.000 116.000

13.400 127.000 311.000
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Drumlins OUTSIDE the 1992 moraine

Height (H), Width (W) and Length (L) triplets for the 132 fully exposed

drumlins as mapped 

and estimated by Benediktsson et al (2016). Each HWL triplet is on a row. 55

drumlins.

All measurements are in metres.

Benediktsson et al [2016] Boreas, 45, 567-583.

Column 1 = Height (m)

Column 2 = Width (m)

Column 3 = Length (m)

6.000 54.000 138.000

10.000 77.000 146.000

7.000 77.000 140.000

7.000 100.000 176.000

4.000 70.000 112.000

4.000 84.000 186.000

2.000 46.000 110.000

6.000 69.000 232.000

5.000 68.000 126.000

6.000 78.000 179.000

9.000 69.000 130.000

6.000 83.000 139.000

7.000 72.000 177.000

10.000 133.000 241.000

9.000 109.000 281.000

4.000 65.000 109.000

7.000 65.000 192.000

9.000 74.000 132.000

4.000 41.000 106.000

12.000 138.000 286.000

5.000 85.000 141.000

4.000 82.000 140.000

8.000 148.000 205.000

7.000 79.000 153.000

6.000 76.000 138.000

7.000 96.000 176.000

7.000 80.000 163.000

4.000 87.000 181.000

7.000 116.000 154.000

9.000 91.000 178.000

12.000 125.000 224.000

9.000 80.000 205.000

5.000 69.000 102.000

5.000 77.000 169.000

6.000 83.000 183.000

10.000 118.000 200.000

8.000 115.000 158.000

11.000 118.000 185.000

8.000 96.000 164.000

9.000 93.000 134.000

6.000 124.000 144.000

8.000 132.000 180.000

6.000 109.000 181.000

6.000 57.000 125.000

6.000 80.000 145.000

10.000 151.000 228.000
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12.000 149.000 257.000

12.000 198.000 229.000

8.000 102.000 117.000

7.000 103.000 144.000

8.000 95.000 146.000

9.000 95.000 180.000

8.000 75.000 166.000

11.000 97.000 201.000

7.000 104.000 154.000
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