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ABSTRACT 

The condensation reaction of ;Pr2PCl with hexamethyldisilazane, HN(SiMe3)z, 

followed by oxidation with sulfur yields ;Pr2P(S)NHP(S);Pr2. Single crystal X-ray 

diffraction studies indicate it adopts a unique cisoid conformation in a hydrogen 

bonded chain. ;Pr2P(S)NHP(SiPr2 was reacted with carbonates of Zn, Cd and Ni, 

CoCh, MChCOD CM = Pd, Pt) and PtcPMe3)zCh yielding the complexes 

M[;Pr2P(S)NP(SiPr2h (M = Zn, Cd, Ni, Co, Pd, Pt), {[ ;Pr2P(S)NP(S);Pr21 

Pd[;Pr2P(S)NHP(SiPr21 } +cr and {PtcPMe3M;Pr2P(S)NP(SiPr21} +nPI4-. 

Crystallography revealed M[;Pr2P(S)NP(SiPr2h CM = Zn, Cd, Ni) to be isostructural 

tetrahedrons in which the MS2P2N rings adopted pseudo boat conformations in 

contrast to the M[;Pr2P(S)NP(S);Pr2h (M = Pd, Pt) square planar complexes where the 

MS2P2N rings adopted pseudo boat conformations for Pd[;Pr2P(S)NP(SiPr2h and 

chair type conformations for Pt[;Pr2P(S)NP(SiPr2h. In addition the unique 

{[ ;Pr2P(S)NP(SiPr21 PdePr2P(S)NHP(SiPr21 }+a- complex was also studied 

crystallographically. Furthermore variable temperature 3Ip NMR indicated a chair vs 

boat equilibrium for the Pt[ipr2P(S)NP(SiPr2h complex. 

Analogous butyl substituted compounds were synthesised via an HBr 

elimination reaction between R2P(S)NH2 and R' 2P(S)Br yielding the compounds 

R2P(S)NHP(S)R' 2 (R = nBu, iBu, 'Eu; R' = nBu, iBu, 'Bu). Further crystallographic 

studies revealed nBu2P(S)NHP(S)"Bu2 and 'Bu2P(S)NHP(S)iBu2 to be hydrogen 

bonded transoid dimers and iBu2P(S)NHP(S)iBu2 to be a transoid hydrogen bonded 

chain. These compounds were reacted with ZnCh and PdChCOD yielding the 

coordination complexes M[R2P(S)NP(S)R' 2h (R = nBu, iBu, 'Bu; R' = nBu, iBu, 'Bu; 

M = Zn, Pd) and the compounds R2P(S)NHP(S)R2 (R = nBu, iBu, 'Bu) were reacted 

with PtChCOD yielding the coordination complexes Pt[R2P(S)NP(S)R2h (R = nBu, 

iBu, 'Bu). 

The compounds (EtO)zP(S)NHP(S)Ph2, (EtO)zP(0)NHP(S)Ph2 and 

(EtO)zP(S)NHP(0)Ph2 were synthesised via an HCl elimination reaction between 

R2P(S)NH2 and R' 2P(E)Cl (R = Ph, R' = OEt; R = OEt, R' = Ph; E = S / 0). 

Crystallographic studies indicate the (EtO)2P(S)NHP(S)Ph2 and 

(EtO)zP(0)NHP(S)Ph2 compounds are hydrogen bonded dimers and 
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(EtO)2P(S)NHP(0)Ph2 adopts the cisoid confonnation in an hydrogen bonded chain. 

These compounds were reacted with ZnCh and MChCOD (M = Pd, pt) yielding the 

coordination complexes M[(EtO)2P(S)NP(E)Ph2h (M = Zn, Pd, Pt; E = S I 0) and 

M[(EtO)2P(0)NP(S)Ph2h (M = Zn, Pd, Pt). Crystallographic studies of the tetrahedral 

Zn[(EtOhP(0)NP(S)Ph2h complex displayed the effect of the oxygen donor atom on 

the MEzP2N (E = S I 0) ring geometry. Further crysta1lographic studies of the square 

planar complexes M[(EtO)2P(S)NP(S)Ph2lz (M = Pd, Pt) revealed the MS2P2N ring 

geometry for the Pd complex was pseudo boat in contrast to the analogous Pt complex 

which uniquely displayed one ligand of pseudo boat confonnation and another of chair 

confonnation. Variable temperature 31p NMR indicates both confonners are present in 

solution at room temperature for the Pd and Pt complexes and one confonner is 

favoured at higher temperatures. Furthennore {Pt(PMe3)z[ (EtO)2P(S)NP(S)Ph2] ) + 

BPht· was synthesised by reacting (EtOhI>(S)NHP(S)Ph2 with Pt(PMe3)2Ch revealing 

a complex ABCD type 31p NMR spectrum. Crystallographic studies indicated the 

MS2P2N ring geometry might be a hybrid of the pseudo boat and chair geometries. 

Molecular modelling using MOP AC MNDO was in good agreement with the 

crystal structures of the non-coordinated compounds and the two zinc complexes, 

whilst poor agreement was observed for the ADF models of Pd[ipr2P(S)NP(S),Pr2lz 

and iBu2P(S)NHP(S),Bu2' In addition the molecular weights in solution of 

nBU2P(S)NHP(S)"Bu2, iBu2P(S)NHP(S)iBu2 and 'BU2P(S)NHP(S)'Bu2 were studied in 

cyclohexane, 'BU2P(S)NHP(S)'Bu2 dissociating to a monomer in contrast to 

nBu2P(S)NHP(S)"Bu2 and iBu2P(S)NHP(S)iBu2 which revealed degrees of 

dimerisation. 
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GENERAL EXPERIMENTAL CONDITIONS 

Unless stated otherwise, all reactions were performed under an atmosphere of 

oxygen-free nitrogen using standard SchIenk procedures. All glassware was oven 

dried at 100°C or flame dried under vacuum before use. 

All solvents and reagents were purchased from Aldrich, BDH or Fisons and 

used as received. In addition toluene, THF, Et20 and petroleum ether (60-80) were 

distilled from sodium-benzophenone under nitrogen, and CH2Cl2 from CaH2. CDCl3 

(99+ atom % D), CD2Cl2 (99.6+ atom % D) and d6-DMSO (99.5+ atom % D) were as 

supplied. 

31p (36.2,109.4,101.25,161.97 MHz) and 195Pt solution NMR (53.6 MHz) 

were recorded on JEOL FX90Q, JEOL JNM EX270, BRUKER AC250 and BRUKER 

DPX400 FT spectrometers. 31p (121.4 MHz) and 15N solid state NMR (30.40 MHz) 

were recorded on a Varian Unity Plus FT spectrometer. Chemical shifts are reported 

relative to 85 % H3P04 on the JEOL spectrometers and (MeO)3P on the Bruker 

spectrometers for 31 p and Na2[PtCI6] (aq) for 195Pt solution NMR. For the solid state 

NMR, shifts are reported relative to 85 % H3P04 (aq.) for 31 p and the N03- signal in 

solid NH4N03 for 15N NMR. Infra-red spectra were recorded as KBr discs and 

dichloromethane solutions in CsI cells on a Perkin Elmer 1720X FT and a Perkin 

Elmer System 2000 FTIR spectrometer. Raman spectra were recorded on a Perkin 

Elmer 1700X FT spectrometer with a Systems NdlY AG laser (1064 nm) and a Perkin 

Elmer System 2000 FT spectrometer with a diode pumped NdlY AG laser. 

Microanalyses were carried out by the respective microanalytical services oflmperial 

College, Loughborough University and Zeneca Specialties Research Centre. FAB +ve 

mass spectra were recorded on a Vacuum Generators Autospec Q machine at Imperial 

College and by the EPSRC mass spectrometry service at Swansea and the mass 

spectrometry service at the Zeneca Specialties Research Centre. 

I am grateful to Iohnson Matthey PLC for the loan of platinum and palladium 

salts. 
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CHAPTER 1: 

INTRODUCTION 

1.1 An Introduction to the Chemistry of Diphosphine Ligands. 

TIrroughout inorganic and organometallic chemistry few ligands have been as 

widely used as diphosphines l-4. It is still perhaps true to say the most commonly used 

diphosphine to date has been bis( diphenylphosphino )ethane, Ph2PCH2CH2PPh2 

(dppe), a molecule capable of forming five membered chelate rings. Over the last 

twenty years its homologue bis(diphenylphosphino)methane, Ph2PCH2PPh2 (dppm), 

has become a popular ligand 5.7. The versatility of dppm arises from its readiness to 

coordinate to metal centres through the lone pair of electrons at one or both of the 

phosphorus atoms. The oxidised compounds Ph2PCH2P(E)Ph2 and 

Ph2P(E)CH2P(E)Ph2 (E = chalcogen) prepared either by oxidation of dppm 8,9 or from 

condensation of smaller fragments 10,11 were found to be excellent ligands through the 

coordination via the lone pairs ofE to the metal 9.11. 

Compared with the great amount of work that has been carried out on 

diphosphines in which the phosphorus atoms are linked by a carbon atom or chain, far 

less has been done on ligands where the backbone of the molecule comprises a 

heteroatom, or in our particular area of interest, fully oxidised diphosphinoamines, 

R2P(E)NHP(E)R2 (E = S, Se, 0). A review of work in this area has recently been 

published 12. Zeneca have great interest in this hitherto relatively undeveloped field of 

oxidised diphosphinoamines (particularly dithioimidodiphosphinates) for potential use 

as metal extraction reagents in a bid to find a more efficient, economical and 

enviromnentally friendly alternative to smelting for the metal mining industry. 

1.2 Synthetic Aspects. 

The first reported synthesis of a fully oxidised diphosphinoamine was that of 

tetraphenyldithioimidodiphosphinate 13, Ph2P(S)NHP(S)Ph2 in 1966. Both this and its 

methyl analogue 14, Me2P(S)NHP(S)Me2 were made via an HCI elimination reaction 

(Equation 1.1) between the dialkylaminothiophosphine and its corresponding 
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dialkylchlorothiophosphine. The reaction was performed as a melt, with temperatures 

up to 350 QC, and the product which crystallised on cooling was extracted into water 

350QC .. 
·HCI 

Eqn 1.1. 

and precipitated out as a clean solid. A second method 15 in a melt involved merely 

reacting Ph2P(S)NH2 with itself at 300 QC (Equation 1.1) with by-products of 

ammonia and hydrogen sulfide. A further synthesis ofPh2P(S)NHP(S)Ph2 was 

reported (Equation 1.2) in the form of the condensation of hexamethyldisilazane with 

chlorodiphenylphosphine followed by the simple oxidation of the resulting 

H 
H I 

.. ~ ~ R2P/N..'PR2 
R2P/ '-PR2 11 11 

s s 

Eqn 1.2. 

bis(diphenylphosphino)amine with sulfur 16. The driving force of the condensation is 

the loss oftrimethylsilyl chloride so the reaction needs to be carried out at a constant 

temperature of 80 QC. Conversion is clean and this synthesis produces far better yields 

(60 - 90 %). Furthermore by adding hydrogen peroxide instead of sui fur, the dioxygen 

species 16 or the mono-oxygen species 17 can be produced, and by adding selenium the 

diseleno 18 species can be made, all in good yields. 

In contrast hexamethyldisilazane can be used to produce ligands with mixed 

R-groups on the phosphorus centres by reacting it with one equivalent of R2P(S)CI, 

then the product is further reacted with another equivalent of a different species 19, 

R' 2P(S)CI (Equation 1.3). Another route in which ligands with mixed R-groups may 

be made is a modified version of the HCI elimination reaction 20, carried out under 
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H 
I 

/N......... + R'2P(S)CI 
~R2P SiMe3 _ Me SiC) 11 3 

S 

H 
I 

N 
.. R p/ 'PR' 

'11 11 ' 
s s 

Eqn 1.3. 

less extreme conditions in dimethylsulfoxide using potassium hydroxide as a base to 

help clip the two halves together resulting in reasonable yields (30 - 50 %). This 

synthetic route has subsequently been modified and improved 21 by using a more 

aggressive base in sodium hydride (Equation 1.4) and changing the solvent to 

tetrahydrofuran giving better yields (50 - 90 %). In many respects the driving force of 

the step which clips the two halves together is the formation of the sodium salt of the 

Eqn 1.4. 

ligand. A further advantage of this synthesis is that the effervescence of the hydrogen 

being given off is an indication of how successfully the reaction is working. In 

addition, this route can be used to make mixed sulfur oxygen ligands as long as the 

halide rather than the amine contains the phosphine oxide. If an amine with a 

phosphorus-oxygen double bond is deprotonated with sodium hydride, the negative 

charge resides on the oxygen as opposed to the nitrogen. 

1.3 Imidodiphosphinate Ligands. 

The crystal structure of Ph2P(S)NHP(S)Ph2 has been reported on three separate 

occasions 22.24. In each case the sulfur atoms in the structure were observed to be trans 

to one another. However only one of the papers reported hydrogen bonds between the 
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sulfur cis to the N-H proton and the N-H proton of another molecule 23, hence forming 

a trans dimer (Figure 1.1). In principle this compound may adopt a number of 

S~PPh 
\ 2 

N-H'---'~ I PPh2 
Ph Po-- I 2 -=S-"-'H-N 

\ 
Ph2P~S 

Figure 1.1. Structure ofPh2P(S)NHP(S)Ph2 trans dimer. 

resonance forms. The proton bonded to the nitrogen is only 0.17 A below the PNP 

plane indicating a tendency toward Sp2 hybridization of the nitrogen. The three 

possible resonance forms could then be I-Ill with I dominating (Figure 1.2). The 

positive charge on the nitrogen will increase the acidity of the hydrogen attached to it 

and enhance its ability to hydrogen bond. In addition the P-S bond of 1.950(1) A for 

an hydrogen-bonded sulfur is greater than for the other sulfur {1.937(1) A} indicating 

III is prevalent over H. 

H H H 
1 S 1 S 1 s-

....... N ....... II .. .. ....... N~ II .. .. ....... N~ I 
R2P PR2 R2P PR2 R2P PR2 

11 1 11 
S s- S 

I II III 

Figure 1.2. Resonance forms ofPh2P(S)NHP(S)Ph2• 

In contrast to these resonance forms the structure ofPh2P(O)NHP(O)Ph2 22 is 

very interesting as it is trans but it exists as the Ph2P(O)NP(OH)Ph2 tautomer in an H

bonding chain with OH"O bridging (Figure 1.3). 
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Figure 1.3. Structure ofPh2P(O)NHP(O)Ph2 observed as its tautomer. 

However the related compound (PhO)2P(O)NHP(O)(OPh)2 exists as a trans 

dimer 25 isostructural with the compound in Figure 1.1, the hydrogen bonding 

observed via the N-H proton. Evidently the different electronic effects of the more 

electronegative phenoxy substituents on the phosphorus centres are responsible for 

this. Its disulfur analogue 26 predictably has the same structure though as would be 

expected the NH""O hydrogen bond is far stronger, demonstrated by the fact that 

(PhO)2P(O)NHP(O)(OPh)2 remains as a dimer when in solution in benzene whereas 

(PhO)2P(S)NHP(S)(OPh)2 is a monomer. 

Phenyl and phenoxy substituted compounds comprise the majority of 

crystallographic data published on imidodiphosphinates until recently when the 

tetramethyl analogue Me2P(S)NHP(S)Me2 was reported 27. Again a trans 

conformation was observed, however instead of seeing a dimer, a hitherto unobserved 

hydrogen bonded ladder was found (Figure 1.4). 

s s 
\\ \\ 
PMe2 PMe2 

M"2 P-N/ Me2 P-N/ 
II \ II \ 

S R S H 
I ~ ,/ '" 

." "'s H" ". 
\\ I 

Me2P-N 

" PMe2 
I! 
S 

Figure 1.4. Structure of Me2P(S)NHP(S)Me2' 

Salts of imidodiphosphinate ligands have also yielded some interesting and 

unexpected structures. There are two reported structures 28,29 for the potassium salt of 

Ph2P(S)NHP(S)Ph2, one with the cation in 18-crown-6 ether, [K(18-crown-6)t 

[Ph2P(S) NP(S)Ph2T and K+[Ph2P(S)NP(S)Ph2T. In [K(18-crown-6)t 
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[Ph2P(S)NP(S)Ph2r the sulfur atoms are of gauche orientation which is in agreement 

with the structure otK+[Ph2P(S)NP(S)Ph2r which shows the sulfur atoms to be 

gauche also, with sulfur-potassium contacts around 3.20 A. The two structures 

significantly differ in the crystal packing, K+[Ph2P(S)NP(S) Ph2r can be described as 

possessing an inorganic core which is a ladder structure comprised of K2S2 rings 

contained within the organic substituents (phenyl rings). In contrast a third salt, 

(ph3PNPPh3)\Ph2P(S)NP(S)Ph2)" 30 is very different. The PNP bond angle of the 

anion is 180.0(1) 0 in comparison with the two above salts (pNP angle 128 _ 33 0), 

giving an anti orientation of the sui furs. This may be due to the fact the anion is "free" 

and there are no interactions between the sulfurs and the cation. 

Finally the most unexpected of all salt structures is the sodium salt of 

(PhOhP(O)NHP(O)(OPh)2, which was observed to be a hexamer 31 with a Na6012 

core (Figure 1.5). The PNP angle is 132 0 and the orientation of the sulfurs are 

gauche. 

N, 
p_N,-- \ PI 
\ '--p P 
0_. \ 19 

'. o' P "N -'-- , o· --N .~ "., . / "-'. ·N.-----o "-
"'0--_; .......... /p 
/ ---N.. N.-----.o p ...... \ . 
"-- ·O-----N.'. • 

N / , .";.... 'N 
-p : 0 "0----- ·-······0 

:1"- ""-
0p P-N-P 

k\ 
N 

Figure 1.5. N%{N[(PhO)2PSh}6 hexamer, phenoxy groups have been omitted 

for clarity. 

1.4 Coordination Chemistry of Imidodiphosphinates. 

The first substantial investigation into the coordination chemistry of 

imidodiphosphinates 32 was reported in 1978 and the ligand studied was 

Ph2P(S)NHP(S)Ph2. The main forms of characterisation were elemental analyses and 
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infra-red spectroscopy. The typical preparation for all metal dithioimidodiphosphinate 

complexes involved refluxing the free ligand or its salt with a metal dihalide (Equation 

1.5), though interestingly neutral complexes were produced in mild conditions. They 

could be converted to anionic complexes under reflux. Two further pieces of work 33.34 

H 
I 
N 

2 R -./ ....... PR 11 11 2 
+ MX2 

S S 

t\ ~ 
Base 

R2 R2 
p..;;-S, /s-p le 'M -.......,' N, /".-/l 
p-s S-p 
R2 R2 

Eqn. 1.5. 

were published studying infra-red analysis on complexes of Ph2P(S)NP(S)Ph2-

(summary of work presented in Table 1.1). Of particular interest were copper 

complexes which in the presence of water underwent substitution of one sulfur for 

oxygen producing a mixed sulfur/oxygen species. This published data 

Table 1.1. Coordination chemistry of imidodiphosphinates studied by infra-red 

22-24 

Ligand Metal complex 

Ph2P(S)NHP(S)Ph2 = HL HLCoX2 (X=CI,Br,I), HLCo(CI04)z, HLZnCh, HLCuBr, 
HLPdBr2 

(ph2PS)zN" = L COL2 ,LHgCI, HgL2, CuL2, CU3L3, C\4L3, PdL2, PtL2, FeLz 
[Ph2P(S)NP(O)Ph2r = L' CuL' 2, NiL' 2 

(MezPShN- = L" COL"2 

formed the basis of infra-red assignments of complexes in this work (typical values 

characteristic of the neutral ligand and its complexed anion are presented in Table 1.2). 

The bands indicative of the anion are PNP which increase by around 300 cm-1 

due to the change in bond order as the negative charge is delocalised over the whole 

anion and the P-N bonds are significantly shortened. As expected there is also a 

difference for the PS vibration which decreases by 60 cm-1 again due to the 
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Table 1.2. Summary of infra-red assignments for R2P(E)NHP(S)R2 (R = Me, 

Ph; E = S, 0) and their metal complexes (cm'I). 

N-H PNP PS PO NPS 

HL 3250, 1325 930,900,780 650,620 1200 -
M L' 1250 - 1190,1160,780 600,560 1070 420 

change in bond order where the P-S bond is lengthened through delocalisation. 

These changes in bond length are highlighted by the tetrahedral 

Ni[N(Ph2PS)2h complex 18 where P-N and P-S bonds are approximately 1.59 A and 

2.02 A respectively, compared to Ph2P(S)NHP(S)Ph2 where the P-N and P-S bonds 

are approximately 1.70 A and 1.92 A respectively. The geometry ofNiS2P2N ring is 

puckered (or it could be seen as a distorted boat conformation, Figure 1.6) with no 

four adjacent atoms coplanar, isostructural to that published for the tetrahedral 

Mn[N(Ph2PS)2h complex 35. Three tetrahedral complexes ofMe2P(S)NHP(S)Me2 

P,,- S 

I N-I-~ 
S_M 

Figure 1.6. Tetrahedral MS2P2N ring conformation. 

have also been reported 27.36.37, one of which is a nickel complex whose structure is 

compared to that ofNi[N(Ph2PS)2h- There do not appear to be any significant 

differences between the structures which might be attributed to steric effects. The 

PNP angles are much the same (127 - 130°) as are the NPS (115 - 118°) and NiSP 

angles (101 - 107°). The P-N and P-S bond lengths are also in good agreement, the 

only slight difference is in the Ni,S bonds, 2.27 - 2.30 A for the tetramethyl complex 

compared to 2.29 - 2.32 A for the tetraphenyl complex. It is possible the steric bulk of . 

the phenyl groups involved prevent the bonds from being any shorter. 

A far more interesting area of coordination chemistry is that of square planar 

complexes which exhibit some fascinating behaviour. The first reported were square 
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planar complexes of selenium 38 and tellurium 39 (Figure 1.7) with 

Ph2P(S)NHP(S)Ph2, the SeS2P2N ring being a slightly distorted chair as opposed to 

the TeS2P2N ring which is a near perfect chair conformation, in stark contrast to the 

puckered ring observed for the tetrahedral complexes. However a square planar 

Figure 1.7. Square planar AS2P2N (A = Se, Te, Au) ring conformations. 

species was soon observed with a puckered ring conformation (distorted boat, 

CI2Au[N(Ph2PS)2J 40, Figure 1.7 and Pd[N«(PhO)2PS)2h 21), similar to the MS2P2N 

ring observed for tetrahedral complexes. This anomaly of seemingly unpredictable 

ring conformations was investigated through the syntheses and single crystal analyses 

of the {(Me3P)2Pt[N(Ph2PS)z]) + and {(Me3P)2Pt[N«PhO)2PS)2]) + cationic 

complexes 41. The tetraphenyl complex was observed to be distorted boat and the 

tetraphenoxy complex was chair conformation. There do not appear to be any steric 

factors which favour either geometry in this case so the difference in the eIectron

withdrawing ability of the substituent groups could be significant. It is also possible of 

course that the difference in conformations may simply be a result of crystal packing. 

The MS2P2N ring adopts the boat conformation for the tris octahedral complex 

42 Bi[N(Ph2PS)2h, with the metal and the nitrogen at the highest points, in contrast to 

the distorted boat conformations observed for other geomtries (Figure 1.8). 

P,,- S 
\ N-I-~ _M s 

Td(J) SqPI (11) Qct (Ill) 

Figure 1.8. Differing MS2P 2N ring boat conformations for different 

geometries. 
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However in the dimethyl tin octahedral complex 43, Me2Sn[N(Ph2PShh the Jigands 

approximate to a square planar geometry so the form of boat conformation observed is 

equivalent to II, as is the case for the rhenium compounds 44 ReOCh[N(ph2PS)2l 

(PPh3), ReO(OEt)[N(Ph2PShh (Figure 1.9) and Mn(COMN(Ph2PSht5 where II is 

also observed. 

Me 

<Pxs-sl ....... \t-N 
p" s~ I ~s 'p"" 

Me 

a 
K\.(s_I ....... PPh3 

....... p" s~ra 
o 

OEt 

<PXs-.~\.?--N 
p" s~Tr ~s 'p"" 

o 

Figure 1.9. Octahedral Ph2P(S)NP(S)Ph2- complexes of tin and rhenium. 

As expected there are differences in typical S-M-S bond angles within the 

MS2P2N ring for 1(110 - 113°), II (96 - 100°) and III (84 - 93°), these give an 

interesting comparison to the chair conformation where the S-M-S angle is 86 _ 88 0, 

more closely matching those angles found in a tris octahedral complex with near 

perfect chair MS2P2N ring conformation than the square planar complex with distorted 

boat conformation. These different angles may produce differing v (MS) bond 

vibrations in the infra-red 32. For typical tetrahedral complexes of Ph2P(S)NP(S)Ph2-

values observed are 270 - 300 cm-I. However for platinum and palladium complexes of 

Ph2P(S)NP(S)Ph2· there are values between 300 - 330 cm-! tentatively assigned to v 

(MS). 

A further complex of [Ph2P(S)NP(S)ph2r with differing geometry is 

CU4[N(Ph2PShh 46, a very unusual structure where each sulfur is bound to two copper 

atoms and the MS2P2N ring adopts the chair conformation (Figure 1.10). The Cu-S 

bond lengths (2.25 - 2.30 A) and P-N-P (135 - 143°), M-S-P (102 - 103°), S-P-N 

(117 - 119°) bond angles are all in good agreement with other Ph2P(S)NP(S)Ph2-

complexes. However the S-Cu-S angles within the MS2P2N rings are 123 - 124°, 

much larger than any S-M-S angle for a typical tetrahedral (110-113 0) or even square 

planar (91 - 10 1 ") complex. 
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Figure 1.10. Structure ofCu4[N(Ph2PShh with phenyls omitted for clarity. 

Furthermore the square based pyramidal ReNCI[N(Ph2PS)21(PPh3) complex 47 

in which the MS2P2N ring adopts conformation II (Figure 1.8), in contrast to its 

dioxygen analogue VO[N(Ph2PO)2h 48 (Figure 1.11) where the ring is nearly planar. 

As expected the V -0 (1.98 - 1.99 A) and P-O (1.52 - 1.53 A) bond lengths are 

significantly shorter than Re-S (2.38 - 2.45 A) and P-S (2.02 - 2.06 A) distances 

(Table 1.3). The P-N-P (124 0) and the O-V-O (88 - 89 0) bond angles are smaller 

than those for the rhenium complex, P-N-P (126 0) and S-Re-S (96 0). The greatest 

difference is found in the V-O-P angle (135 - 137°) versus Re-S-P (105 - 113°) or 

indeed any M-S-P angle (97 - 115°). This is probably due to the near planarity of the 

Figure 1.11. Square based pyramidal structures ofPh2P(E)NP(E)Ph2- (E = S, 

0). 

M02P2N ring through the presence of oxygen instead of sulfur as the donor atom. The 

O-P-N (115 - 117°) and S-P-N (117 - 118°) angles are in good agreement. 

Further comparison can be made with Fe[N(Ph2POhh 49, the octahedral 

dioxygen analogue ofBi[N(ph2PS)2h. Again the main differences are the Fe-O (1.99 -

2.04 A) and p-o (1.50 - 1.52 A) bond distances are notably shorter than the Bi-S (2.73 
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- 2.85 A) and P-S (2.00 - 2.03 A) distances, and the Fe-O-P bond angle of 128 - 132° 

is far greater than the 99 - 107 ° found for Bi-S-P. The difference in angles between 

Table 1.3. Bond lengths (A) and angles (") of Bi[N(ph2PS)2h, 

Fe[N(Ph2POhh, ReNCl[N(Ph2PS)2J(PPh3) and VO[N(Ph2PO)2h-

E-S,O Bi[N(PhzPShh Fe[N(PhzPO)2h Re[N(PhzPShJ 
NCI(PPh3) 

M-E 2.73 - 2.85 1.99 - 2.04 2.38 - 2.45 
P-E. 2.00 - 2.03 1.50 - 1.52 2.02 - 2.06 
P-N 1.59 - 1.60 1.57 - 1.60 1.57 - 1.60 

E-M-E 84 - 93 89 - 90 96 
M-E-P 99 - 107 128 - 132 105 - ll3 
E-P-N ll7 - 120 ll6-ll7 ll7-ll8 
P-N-P 133-137 124 - 126 126 

VO[N(Ph2PO)2J 

2 

1.98 - 1.99 
1.52 - 1.53 

1.59 
88 - 89 

135 - 137 
ll5-Il7 

124 

Fe-O-P and V -O-P is probably due to the greater steric strain in the octahedral 

complex preventing the M02P2N ring from being so near to planar. Further octahedral 

structures Sn(I2)[N(Ph2PO)2h so and Sn(nBu)2[N(Ph2PO)2h 51 (Figure 1.12) contain 

equatorial M02P2N rings which compare well with Fe[N(Ph2PO)2J3.1t is interesting to 

note the nBu groups occupy the two axial positions of the octahedron in 

Sn(nBu)2[N(Ph2PO)2h as opposed to Sn(I2)[N(Ph2PO)2h where the iodines occupy 

both an axial and equatorial position. The M02P2N ring with oxygens occupying both 

equitorial and axial positions also shows good agreement with other values except for 

the P-N-P angle (123 0) in contrast to values in Table 1.3 and the P-N-P angle (130 0) 

for the axial ring. 

Figure 1.12. Octahedral tin complexes of Ph2P(O)NP(O)Ph2-. 
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Further comparison can be made with the octahedral tin complexes of the 

mixed chalcogen ligand 52, Ph2P(S)NP(O)Ph; (Figure 1.13). When one oxygen is 

replaced by a sulfur the planarity of the ME2P2N ring (E = S, 0) is lost and a boat 

Figure 1.13. Structure ofSnR2[Ph2P(S)NP(0)Ph2h for R = Me, Ph. 

conformation is observed. The bond lengths and angles are in good agreement (Table 

1.4). It is interesting to note the isomer in which the sulfur and oxygen are trans to 

one another is preferred. This may be explained by the fact that the M-S and P-S 

bonds are generally 0.5 A longer than M-O and p-o bonds, and the Sn-O-P angle is 

almost 30 0 greater than the Sn-S-P angle. The trans geometry probably reduces steric 

hinderance and any ring strain. 

Table 1.4. Bond lengths (A) and angles (") of Me2Sn[N(ph2PS)2h. 

nBu2Sn[N(Ph2PO)2hand Me2Sn[Ph2P(S)NP(0)Ph2h with E = S, O. 

Me2Sn[N(ph2PShh nBU2Sn[N(ph2PO)2h Me2Sn[Ph2P(S)NP(0)Ph212 

Sn-S 2.73 - 2.74 - 2.76 
Sn-O - 2.20 2.20 
P-S 2.10 - 2.02 - 2.02 
P-O - 1.52 - 1.53 1.52 
P-N 1.58 1.58 - 1.60 1.58 - 1.60 

E-Sn-E 98 89 91 
Sn-S-P 106 - 105 
Sn-O-P - 103 - 131 132 
S-P-N 119 - 118 
O-P-N - 118 116 
P-N-P 136 130 132 
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The palladium complex of the mixed sulfur/oxygen tetraphenoxy compound 53 

(Figure 1.14) is of significant interest. With the strong electron withdrawing effect of 

the phenoxys, the phosphoryl groups become too "hard" to coordinate to the metal, 

instead four membered PdSPN rings are observed. 

(PhOh (OPh)2 
/p, /P.:::::. 

S N 0 , / 

Pd 
/ " N S 

O,::::,p/ 'p/ 
(PhOh (OPhh 

Figure 1.14. Coordination of mixed tetraphenoxy ligand. 

When the Ph2P(O)NP(O)Ph2-ligand is reacted with tin (II) acetate 50 the 

resulting structure is a trigonal bipyramid (Figure 1.15) which is distorting towards a 

square pyramid, with all angles at the tin reduced by a lone pair effect. The selenium 

a b 

Figure 1.15. Structures ofSn[N(Ph2PEhh for E = Se, o. 

analogue 54 exists in two forms, a distorted square (tetragonal) pyramid with the 

MSe2P 2N ring adopting the boat conformation ({ a}, red crystals), and a square planar 

complex with the the MSe2P2N ring adopting the chair conformation ({b}, yellow 

crystals). The two isomers crystallised from the same yellow chloroformlhexane 

solution ofSn[N(Ph2PSe)212, suggesting the difference in energy between the two 

conformers is very little. Selected bond lengths and angles (Table 1.5) reveal again the 

large difference in Sn-E-P angles, again the M02P2N ring is far more planar. 

Furthermore the P-N-P angles for the diseleno compounds (129 0, 136°) are 

respectively less and greater than those of the neutral ligand. 
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Table 1.5. Bond lengths (A) and angles (0) of Sn[N(Ph2PE)2h for E = Se, O. 

E..:. 0, Se Sn[N(ph2POhh a Sn[N(ph2PSe)2h b Sn[N(Ph2PSehh 

Sn-E 2.13 - 2.38 2.80 -2.94 2.64 - 2.66 
P-E 1.51 - 1.53 2.16-2.19 2.17 -2.18 

E-Sn-E 86 89 88 
Sn-E-P 127 - 134 - 97 
P-N-P 125 - 128 129 136 

A further dioxygen complex of particular interest is MoClzeOMHN(Ph2PO)2], 

the only reported structure of a protonated ligand complex 55. The structural data made 

for an interesting comparison with the fully deprotonated octahedral complex 51 and 

the free neutral ligand 22 (Table 1.6). In the free neutral ligand the proton is in 

exchange between the two oxygens rather than being bound to the nitrogen, thus the 

p-o bond lengths are equal (1.52 A) compared to Ph2P(S)NHP(S)Ph2 where the P-S 

bond lengths are different as one sulfur is pendant and the other is involved in 

hydrogen bonding. This may explain why, although bound to a molybdenum atom, 

the p-o bond lengths are so similar for the free neutral ligand and the protonated 

ligand complex. However it is somewhat surprising that the M-O bonds (2.20 A) are 

Table 1.6. A comparison of selected bond lengths (A) and angles (0) for 

Ph2P(O)NHP(O)Ph2, Mo(Clh(OM(OP Ph2hNH] and nBu2Sn[(OPPh2)2Nh. 

Ph2P(OH)NP(O)Ph2 Mo(Clh(OM(OP Ph2hNH) nBU2Sn[(OPPh2hNh 
P-O 1.52 1.50 1.52 - 1.53 
P-N 1.54 1.66 1.58 - 1.60 
M-O - 2.20 - 2.21 2.20 

O-P-N 117 110 -111 118 
P-N-P 180 123 130 
M-O-P - 139 - 141 103 - 131 
O-M-O - 78 89 

also equal. The P-N bonds for the molybdenum complex are considerably longer at 

1.66 A than in both other structures, probably due to the fact that they are truly single 

bonds as opposed to the free neutral ligand where the exchange of the proton between 
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the two oxygens increases the P-N bond order, and the tin complex where 

deprotonation of the ligand produces a change in bond order due to the delocalisation 

of the negative charge over the ligand. There is a degree of distortion in the 

molybdenum octahedron as the O-M-O angle (78 0) falls well short of the right angle 

observed for the tin complex. However the M-O-P angles are significantly greater 

(140 0) than those for the tin compound (103 - 131 0) ensuring the planarity of the 

M02P2N ring. In contrast the O-P-N angle (110°) is 7 ° less than both the free ligand 

and the anionic complex. Finally its P-N-P angle (123 0) again is smaller by 7 ° than 

the octahedral complex, but cannot be compared with the neutral ligand which has a 

linear P-N-P backbone. 

1.5 Uses of Imidodiphosphinates. 

Compounds tested of the general formula Ph2P(E)NP(SR)Ph2 (for E = S, 0; R = alkyl; 

Equation 1.6) were unsuccessful as fungicides 56. The tetraphenyl dioxygen complex 

H 
I 

_/N, N 
Ph2.t' PPh2 R-X Ph p/ .::::.p Ph 

11 11 -:::8-'ase:;";' =THF=-." 211 I 2 
E S E SR 

Eqn.1.6 

tris(tetraphenylimidodiphosphinato) praseodymium 57 was considered to possibly be a 

new method for determining the enantiomeric purity of carboxylic acids by reacting it 

with salts of carboxylic acids to give dinuclear dicarboxylato complexes (Figure 

1.16). 
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Figure 1.16. Structure of tetrakis(tetraphenylimidodiphosphinato )di(3-

phenylproprionato)dipraseodyrniurn complex with phenyls on the ligands omitted for 

clarity. 

The ability of the ligands Ph2P(S)NHP(S)Ph2, Ph2P(S)NHP(O)Ph2 and 

Ph2P(O)NHP(O)Ph2 to extract the metals Ag, Au, Hg, Yb, Hf, Pd and Sc, and their 

stability to gamma radiation has been reported 58. All the ligands and their complexes 

underwent decomposition when exposed to gamma radiation. 

Aqueous acidified solutions of salts of the metals were stirred with benzene 

solutions of the above ligands. Ph2P(S)NHP(S)Ph2 was more selective than 

Ph2P(S)NHP(O)Ph2, which again was more selective than the dioxygen ligand, in fact 

Sc and other rare earth metal extraction was suppressed and the uptake of Ag and Hg 

was better for Ph2P(S)NHP(S)Ph2• The best ligand for Sc extraction was 

Ph2P(O)NHP(O)Ph2• Starting concentration of the ligand solutions of 

Ph2P(S)NHP(S)Ph2 and Ph2P(S)NHP(O)Ph2 were found to affect the efficiency of 

extraction, whereas Ph2P(O)NHP(O)Ph2 remained reasonably constant Evidently 

scandium prefers hard donor atoms in the oxygens to the soft sulfurs. However there is 

possibly a more subtle factor that may contribute to the reduced efficiency at higher 

concentration. Considering the main structural difference in the solid state between the 

ligands is the acidic proton sits on one of the oxygens instead of the nitrogen for 

Ph2P(OH)NP(O)Ph2, and the ligand does not exist as a trans dimer but as an hydrogen 

bonded chain, in contrast to the other ligands which are trans dimers. It is likely that 
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in a reasonably non-polar solvent such as benzene at increasing concentrations the 

compounds Ph2P(S)NHP(S)Ph2 and Ph2P(S)NHP(O)Ph2 may form trans dimers in 

solution, thus reducing their ability to coordinate to a metal. 

1.6. Metal Extraction Technology. 

As a result of the research at Zeneca into metal extraction technology, the technique 

that was developed for copper is now tried and tested and very efficient. There are 

five principal stages (Figure 1.17). 

'1. The metal ore is taken straight from the mine and fashioned into a heap. 

2. The heap of ore is leached with aqueous acid producing a solution 

containing a mixture of metal ions. 

3. The acidic solution is combined with an organic solution of the extractant 

reagent and stirred (Figure 1.18). The two phases are subsequently separated, the 

aqueous phase with some or all of the desired metal ions removed and returned to the 

heap to leach more metal. 

4. The organic phase containing solely the desired metal in the form of a 

complex with the extraction reagent is combined with more aqueous acid to strip the 

metal back into the aqueous acidic phase. The organic phase containing the extraction 

reagent is then returned to stage 3. 

5. The aqueous solution of pure metal ions is piped into electrolytic cells and 

pure metal is collected at the cathode. The remaining acid is then returned to stage 4. 

At every stage there is no waste as thereagents involved are recycled making 

this method of metal extraction far more environmentally friendly than smelting. 
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CHAPTER 2: 

TETRAISOPROPYLDITHIOIMIDODIPHOSPHINATE 

AND ITS COORDINATION CHEMISTRY 

2.1 Introduction 

Th h b I d· 1832·353840· th d" h' f ere ave een severa stu les' , mto e coor matlOn c emlstry 0 

Ph2P(S)NHP(S)Ph2 since this type of ligand is readily prepared and provides an 

inorganic analogue of l3-diketonates. There is rather less work on alkyl analogues of 

R2P(S)NHP(S)R2 although some studies on Me2P(S)NHP(S)Me2 and its complexes 

have been reported 27,36,37. In addition the remarkable conformational differences that 

have been observed for MS2P2N rings 3840,42,43 have therefore prompted us to 

investigate the synthesis and coordination chemistry ofipr2P(S)NHP(S) iPr2 (1). 

Structurally 1 adopts a uniquely gauche arrangement of sulfur atoms in contrast to 

those reported for the phenyl 5.21,22 and methyl 15 analogues both of which have anti 

conformations of the sulfur atoms. In addition the platinum and palladium complexes 

reveal contrasting square planar structures where the six membered MS2P 2N ring 

adopts "chair" and distorted "boat" conformations. Indeed fluxional behaviour was 

observed for the platinum complex and was investigated by variable temperature 

NMR. Where possible products were characterised by NMR, FTIR, FT Raman, FAB+ 

mass spectroscopy, microanalyses and X-ray crystallography. 

RESULTS AND DISCUSSION 

2.2 Ligand Synthesis. 

The synthesis of 1 was based on a literature preparation of related 

compounds l6 involving the reaction of diisopropy1chlorophosphine with 

hexamethyldisilazane, followed by oxidation with sulfur (Equation 2.1). 1 precipitated 

analytically pure upon cooling of the toluene solution and crystals were grown from 

the diffusion ofhexane into a dichloromethane solution of 1. 
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H 
Toluene I 

8QOC •• N. 
IPr2P/ 'PIPr2 

2S • 
I> 

Eqn.2.1. 

A signal was observed in the solution 31p NMR (CDCI3) at 91.2 ppm, 

contrasting with the solid state 31p NMR where a doublet was observed (91.0, 89.2 

ppm, 2Je lp)lp) 213.6 Hz) indicating two different phosphorus environments were 

present. However 15N solid state NMR gave one peak at -322.0 ppm indicating only 

one conformation of 1 exists in the solid state. It is likely the two different phosphorus 

environments are caused by the hydrogen bonding array observed in the crystal 

structure, where one phosphorus is pendant and the other is bound to the sulfur 

involved in the hydrogen bonding. This data is supported by FTIR, the v (N-H) 

vibration in the solution (3320 cm-I) and solid state (3243 cm-I) of 1 indicates a 

significant decrease in hydrogen bonding in solution. Other characteristic bands found 

in the FTIR, were v (PNP) 936, 906, 776 and v (PS) 646 cm-I. F AB +ve mass spectra 

revealed the expected parent ion (314 rnIz) and a dimer ion (627 rnIz). 

1 has a gauche arrangement (Figure 2.1) of the sulfur atoms with the S-P ... P-S 

'torsion angle' being 79°; P(I)-S(I) and P(2)-S(2) are rotated by 36° and 43° (in 

opposite directions) with respect to the P-N-P plane. The geometries about each 

phosphorus centre are essentially the same; there are noticeable distortions from 

tetrahedral with a slight enlargement of the S-P-C angle and a marked asymmetry in 

the N-p_(S/ipr) angles with the N-P-C angles being contracted and the N-P-S angles 

being enlarged from ideal tetrahedral. The angle at nitrogen [131.6(1 )0] is enlarged 

somewhat from trigonal but comparable to that observed in the methyl and phenyl 

analogues. The P-N bond lengths are equivalent Bnd similar to those reported for 

related systems. The molecules in 1 pack (Figure 2.2) to form H-bonded chains that 

extend in the crystallographic a direction [S(2) .... N 3.57, S(2) .... H 2.60 A, S ... H-N 

170°]. 
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H1n 

Figure 2.1. Crystal structure of ipr2P(S)NHP(S) ipr2. 
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Figure 2.2. Hydrogen-bonded chain observed for 1. 

This arrangement, which is similar to the methyl analogue is in contrast to the phenyl 

analogue which is known to form dimer pairs. Although the difference in P=S bond 

lengths is small [1.949(1) cf. 1.941(1) A] and at the margin of significance the longer 

bond is associated with the H-bonded suIfur atom. 

2.3.1 Tetrahedral Complexes of 1. 

Reaction of 1 with zinc, nickel and cadmium carbonates and cobalt dichloride gave 

M[ipr2p(S)NP(S) iPr2h {M = Zn (2), Ni (3), Cd (4) and Co (5)} in good yields. In 

each case reflux was required to produce coordination except for the zinc complex 

which was approximately 70% reacted (by 31p NMR) merely upon stirring for 1 hour. 

All of the compounds gave satisfactory elemental analyses and display the expected 

spectroscopic properties. F AB +ve mass spectra revealed the expected parent ions. 

Deprotonationlcomplexation of 1 to give 2, 3 and 5 resulted in a coordination 

shift of the phosphorus nuclei of approximately 30 ppm. In addition there is a marked 

increase in the frequency of the Vas (PNP) vibration (Table 2.1) for 2, 3,4 and 5 

coupled with a decrease in the frequency of the V (PS) vibration compared to the free 

-I) cm . 

Table 2.1. IR assignments for MCPr2P(S)NP(S) ipr2h (M = Zn,Cd,Ni,Co / 

v (NH) v (PNP) v (PS) v (NPS) 
1 3243,1322 936,906,776 646 -
2 - 1226, 775 563 -
3 - 1230, 765 548 408 
4 - 1225, 783 558 400 
5 - 1228, 779 560 417 
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ligand, as has been previously observed in related systems32-34_ These observations are 

indicative of changes in bond order upon removal of the amine proton, higher for P-N 

and lower for P-S bonds due to the delocalisation of the negative charge over the 

ligand_ This agrees with the crystallographic data of the neutrailigand and its metal 

complexes (Table 22)_ 

Table 2.2. Selected bond lengths (A) and angles (0) for ipr2P(S)NHP(S) ipr2 

and M[ipr2P(S)NP(S) ipr2h (M = Zn,Cd,Ni)_ 

LH M-Zn 2 M-Cd3 M-Ni 4 
P(I)-S(I) 1.941(1) 2.032(1) 2.018(2) 2.027(1) 
P(2)-S(2) 1.949(1) 2_032(2) 
P(3)-S(3) 2.023(2) 
P(4)-S(4) 2.022(2) 
P(1)-N(1) 1.682(3) 1.581(2) 1.585(3) 1.581(2) 
P(2)-N(I) 1.684(2) 1.580(3) 
P(3)-N(3) 1.573(3) 
P(4)-N(3) 1.592(3) 

M-S(I) 2.345(1) 2.526(2) 22844(9) 
M-S(2) 2.516(2) 
M-S(3) 2.531(2) 
M-S(4) 2.514(2) 

S(I)-P(1)-N(1) 114.14(9) 118.5(1) 119.0(1) 118.0(1) 
S(2)-P(2)-N(1 ) 114.76(10) 118.5(1) 
S(3)-P(3)-N(3) 119.2(1) 
S(4)-P(4)-N(3) 119.2(1) 
P(1)-N(1)-P(2) 131.6(1) 140.5(3) 1432(2) 137.1(2) 
P(3)-N(3)-P(4) 141.0(2) 
M-S(I)-P(I) 107.1(1) 103.4(1) 111.00(4) 
M-S(2)-P(2) 103.8(1) 
M-S(3)-P(3) 1042(1) 
M-S(4)-P(4) 103.8(1) 
S(1 )-M-S(2) 112.4(1) 110.6(1) 109.86(2) 
S(3)-M-S(4) 109.4(1) 
S(I)M-S(4) 108.0(1) 108.1(1) 108.69(4) 
S(2)-M-S(3) 107.3(1) 
S(1)-M-S(3) 11 1.8(1) 
S(2)-M-S(4) 109.5(1) 
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2,3, 4 are essentially isostructural (Figure 2.3) indeed the zinc and nickel 

compounds are isomorphous. 2 has crystallographic S4 symmetry, the Zn-S distance 

being 2.345(1) A. The S-Zn-S bite angle is 112.4(1)° and the other s-Zn-s angle is 

108.0(1)° . The ZnS2P2N rings have puckered geometries with a pseudo boat 

conformation. This conformation appears to be the most commonly adopted for 

complexes containing [R2P(S)NP(S)R2r ligands although other conformations have 

been reportedI3
•
14. The P-S bond lengths in 2 are enlarged and the P-N bond lengths 

reduced with respect to 1 reflecting the increased electronic delocalisation as a 

consequence of deprotonation. The distortions in the geometries at phosphorus that 

were observed in the free ligand (angles ranging from 101-115°) are also present in 2 

with angles in the range 104.9-118.5°; the largest distortions are associated with N-P-S 

in both cases. On complexation the P-N-P angle is substantially increased [140.5(3) in 

2 versus 131.6(1) in 1] which is in striking contrast to the change in geometry upon 

comp1exation to cobalt for the methyl analoguelS [128.0(3)° Co{SPM~)2Nh versus 

133.2(2)° for M~P(S)NHP(S)Me2]' The reasons for this difference are not 

immediately apparent and cannot be attributed simply to steric interactions associated 

with the ipr substituents. As mentioned above, 2, 3 and 4 are essentially isostructural 

with 2 and 4 being isomorphous. A least squares fit of the core atoms in 2 and 3 

reveals only very minor differences. Inspection of the packing of the three complexes 

does not reveal any significant intermolecular approaches to either the sulfur or 

nitrogen atoms. 

2.3.2 Square Planar Complexes of1. 

Reactions of 1 with the cycloocta-I,5-diene metal dichlorides (Equation 2.2) gave 

M[,Pr2P(S)NP(S) ipr2h {M = Pd (6) and Pt (8)) in good yields. 6 and 8 have 

satisfactory microanalyses and reasonable spectroscopic properties with the exception 

of the NMR spectrum of 8 which, with a trace of 1 present appears to behave in a 

fluxional manner, we speculate that this is probably due to the PtS2P2N ring changing 
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Eqn.2.2 

between the "chair" and the "boat" conformation in the solution phase and some sort 

of protonationldeprotonation exchange. This would explain the broad peak at 59.7 

ppm. 

Again the infra-red shows the expected changes in V (PNP) and V (PS) bond 

vibrations (presented in Table 2.3) due to the changes in bond order. 

Table 2.3. IR assignments for M[iprzP(S)NP(S) iPrzh (M = Pd, Pt I cm·'). 

V (PNP) V (PS) v (NPS) 
6 1200 543 408 
8 1221 583 414 

The structures of 6 and 8 (Figure 2.4) are of particular interest, 6 shows the 

more common pseudo "boat" conformation for the PdSzPzN ring whereas the "chair" 

formation is observed for the PtSzPzN ring in 8. The structures make for an interesting 

comparison between the two conformations (comparative bond lengths and angles for 

2,6,7,8 are presented in Table 2.4). M-S distances are almost equal, P-S bonds are 

slightly longer and P-N bonds slightly shorter for 8. The most substantial differences 

are found in the S-M-S and M-S-P angles which are around 100 smaller in both cases 

for the "chair" conformation. The M-S-P angles for the different conformations will 

become important later in judging the amount of s orbital character that can be 

attributed to these bonds. The S-P-N bond angles are nearly equal and the P-N-P angle 

is 5 0 smaller for 6. The structures compare favourably with that of 2 with the 

exception of S-M-S and P-N-P bond angles which are smaller for the square planar 

complexes. 
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The crystallisation of [Pd(ipr2P(S)NP(S) ipr2)( ipr2P(S)NHP(S) ipr2)tCr (7). 

from a dichloromethane solution of 6 and its resulting structure (Figure 2.5) allows us 

the opportunity to compare coordinated neutral and anionic ligands. Structurally, the 

bond angles are all fairly similar, the differences as expected are in the bond lengths, 

for the protonated PdS2P2N ring the M-S (2.35-2.36 A) and P-N (1.64-1.65 A) bonds 

ZnL22 PtL28 PdL26 [Pd(L)(HL}f 7 

Ring (l)a Ring (2)b 
M-S(I) 2.345(1) 2.338(3) 2.341(1) 2.359(3) 2.329(3) 
M-S(2) 2.334(2) 2.347(1) 2.353(4) 2.314(3) 

S(I) - P(I) 2.032(1) 2.034(3) 2.030(2) 2.008(5) 2.045(4) 
P(I) - N(I) 1.581(2) 1.586(4) 1.597(4) 1.65(1) 1.587(10) 
N(I) - P(2) 1.581(2) 1.575(4) 1.588(4) 1.64(1) 1.590(10) 
P(2) - S(2) 2.032(1) 2.038(2) 2.023(2) 1.976(5) 2.040(5) 

S(I) - M - S(2) 112.4(1) 90.9(1) 100.7(1) 99.2(1) 100.5(1) 
M- S(I) - P(I) 107.1(1) 99.6(1) 114.0(1) 103.4(2) 110.6(1) 

S(I) - P(I) - N(I) 118.3(1) 116.5(1) 119.1(2) 111.6(4) 114.0(4) 
P(I) - N(I) -P(2) 140.5(3) 135.0(2) 130.2(2) 128.7(6) 128.2(7) 
N(I) - P(2) - S(2) 118.5(1) 118.3(1) 117.1(1) 115.8(4) 117.1(4) 

P(2) - S(2) - M 107.1(1) 104.1(1) 108.6(1) 115.5(2) 110.5(2) 

a Ring (1) is protonated bRing (2) is sequentially numbered, i.e. S(3) corresponds 

to S(I) in Ring (1) 

are longer and the P-S bonds (1.98-2.01 A) are shorter than those of the deprotonated 

PdS2P2N ring (M-S 2.31-2.33; P-N 1.59; P-S 2.04-2.05 A) in agreement with the 

absence of delocalisation of a negative charge. 

Having observed both the "chair" and "boat" conformations and seemingly 

straightforward protonation of square planar complexes, these two topics were 

investigated by variable temperature 31 p_{IH} NMR (Figure 2.6). A sample of8 in 

CD2CI2 with a trace of 1 present was cooled from 298 K down to 193 K, with spectra 
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being taken at increments of 10 K from 293 K downwards. The coalescence 

temperature appeared to be 273 K where the broad peak separated into two singlets of 

near equal intensity at 59.5 ppm eJ f lp_195Pt) 86.6 Hz] and 58.8 ppm eJ f lp_195Pt) 

71.5 Hz]. On further cooling more peaks emerged and their satellites were observed at 

233 K (Figure 2.6, Table 2.5). 

Table 2.5. Chemical shifts and [Pt-P] coupling constants for Pt[ipr2P(S)NP(S) 

ipr2h in CD2Ch at 233 K together with tentative assignments. 

o/ppm 1J (,lp_195pt) 1Hz 

Pt[N(ipr1PS)lh "chair" 58.2 72.0 
Pt[NCPr1PShh "boat" 59.5 84.8 

[HN(ipr2PSh]Pt[NCPr1PSh] + 62.4 88.5 
[HN(ipr1PS)Z]Pt[NePr2PSh] + 81.5 104.1 

The "chair" and "boat" isomers of the fully deprotonated complex, 

{Pt[N(ipr2PShh} are at lower frequency than any of the other peaks (59.5 and 58.2 

ppm). The two geometries have significantly different M-S-P bond angles with those of 

the "boat" geometry in 6 (108.6-114.0 ") being greater than the "chair" 8 (99.6-104.1 

0). The larger angle may imply a greater proportion of s character in the hybridised 

sulfur. This greater proportion of s character is likely to increase the magnitude of the 

platinum-phosphorus coupling 59, therefore it can be deduced that the peak at 59.5 

ppm with the larger coupling corresponds to a complex exhibiting the distorted "boat" 

geometry and the peak at 58.4 ppm is its isomer in the "chair" conformation. 

The other resonances observed (62.4 and 81.5 ppm) are assigned as being due 

to protonation of the complexed ligand by the free ligand which acts as a proton 

donor. Its is likely the signal at 81.5 ppm of the highest frequency and closest to the 

neutral ligand peak (89.1 ppm) is that of the protonated ligand complexed, 

{Pt[HN(ipr1PSh][N(ipr2PS)2]} +, and the signal at 62.4 ppm is that of the 

deprotonated ligand co-ordinated to the platinum, {Pt[HN(ipr2PS)2] [N(ipr1PSh] } +, 

respectively in the platinum analogue of 7. In addition, a solution of 8 in CDCh was 

treated with a few drops of 85% HBF. solution in ether at room temperature, 
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the only signal observed in 3Ip_{ IH} NMR was a w;ry broad peak at 85ppm, consistent 

with a doubley protonated complex {Pt[HN(ipr2PS)2h}2+. 

With the knowledge that these complexes can be protonated by acid, it is 

possible a trace of Hel in dichloromethane behaved as a proton donor while 6 was 

being crystallised such that a very small proportion of the crystals grown were 7. 

However, assuming that the mechanism by which the neutral ligand coordinates to the 

metal involves initially replacing the cycloocta-I,5-diene, the possibility that on the 

coordination and deprotonation of the second ligand to replace the chlorines, the 

previously coordinated ligand failed to deprotonate cannot be discounted (Equation 

2.3). 

Eqn.2.3. 

A further square planar complex was formed from the reaction of 1 with 

bis(trimethylphosphine)platinum dichloride to give {Pt(PMe3h [N(ipr2PS)21} + BP14' (9) 

in reasonable yield and with satisfactory elemental analysis. Notably the 31p NMR 

showed no 3J phosphorus-phosphorus coupling between the trimethylphosphines and 

the phosphorus centres in the ligand, merely two singlets with satellites at 59.0 ppm 

eJ(lp-195pt) 70.4 Hz} for the ligand and -21.9 ppm eJ(lp_195pt) 3053 Hz} for the 

trimethylphosphines were recorded. 
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2.4. Experimental. 

ipr2P(S)NHP(S)ipr2 1. This method is based on a literature preparation of related 

compounds 16 • the reaction was performed under nitrogen. A solution of ipr2PCl 

(4.87 g. 5.0 ml. 32 mmol) in toluene (lOO ml) was added dropwise to a solution of 

HN(SiMe3h (2.58 g. 3.4 ml. 16.0 mmol) in hot (50 QC) toluene (50 ml) over 30 

minutes. Heating and stirring was continued for 3 hours after which time the reaction 

was cooled to room temperature and sulfur was added (1.0 g. 31 mmol). The reaction 

was then refluxed for a further 6 hours and cooled to OQC. The resulting white 

precipitate was filtered off and washed with CS2 (2 x 10ml) and light petroleum ether 

(2 x 10 ml). The crude product was recrystallised from CH2Ch and hexane ( 2.90 g. 

9.27 mmol. 58 % yield. mp 165-6 QC). Microanalysis calculated for C12H29NP2S2: C 

46.0; H 9.3; N 4.4; S 20.5; P 19.8 %. Observed: C 45.9; H 8.5; N 4.5; S 20.4; P 20.9 

%. 3Ip_eH} NMR (CDCb): 91.2 ppm. FTIR (dichloromethane solution. Cs! plates at 

100 microns): v (N-H) 3320 cm'l; (KBrdisc): v (N-H) 3243; 1) (N-H) 1322; V (PNP) 

936.906.776; V (PS) 646 cm'l. Ff Raman (capillary sample): V (N-H) 3245; v (PNP) 

944; v (PS) 656 cm'l. FAB +ve MS: mlz 314 corresponds to {HN(ipr2PSht; mlz 627 

corresponds to {[HN(ipr2PS)2h}+. 

Zn[N(ipr2PShJ2 2. ZnC03.2Zn(OH)2.H20 (0.10 g. 0.29 mmol) was added to a 

solution of 1 (0.30 g. 0.96 mmol) in dichloromethane (20 ml). and the mixture was 

refluxed for two hours. The cloudy/white mixture was filtered and the filtrate was 

reduced by two thirds and cooled overnight to give the product as clear crystals (0.30 

g. 0.43 mmol. 90% yield. mp 144 0C). Microanalysis calculated for C24Hs6N2P4S4Zn: C 

41.9; H 8.2; N 4.1; S 18.6; P 18.0 %. Observed: C 42.6; H 7.4; N 4.4; S lS.6; P IS.7 

%. 3lp_eH} NMR (CDCh): 64.4 ppm. FTIR (KBr disc): v (PNP) 1226,775; V (PS) 

563,541. Ff Raman (capillary sample): V (PNP) 1254. 1167,776; 1) (NPS) 50S. 443; 

V (MS) 257 cm'l. FAB +ve MS: mlz 689 corresponds to [Zn{N(ipr2PS)2ht. 

Cd[N(ipr2PShh 3. CdC03 (0.10 g, 0.58 mmol) was added to a solution of 1 (0.363 g. 

1.16 mmol) in dichloromethane (30 ml). and the mixture was refluxed for two hours. 
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Again the mixture was cloudy white and it was filtered, the filtrate being evaporated . 

to dryness as a white solid, then colourless crystals were obtained from 

dichloromethane/Iight petroleum ether (0.368 g, 0.50 mmol, 86% yield, mp 161°C). 

Microanalysis calculated forC24Hs~2P4S4Cd: C 39.2; H 7.7; N 3.8; S 17.4; P 16.9 %. 

Observed: C 38.7; H 6.5; N 3.8; S 17.0; P 18.0 %. 3Ip_CH} NMR (CDCh): 63.09 

ppm, Jel p)llI113Cd) 25 Hz. FTIR (KBr disc): V (PNP) 1230, 1157,765; v (PS) 548; 0 

(NPS) 408 cm-I. FrRaman (capillary sample): v (PNP) 768; 0 (NPS) 500, 438; v 

(MS) 256 cm-I. FAB+ MS: rnlz 739 corresponds to [Cd{N(ipr2PShht. 

Ni[N(iPr2PS)2h 4. 2NiC03.3Ni(OH)2.4H20 (0.10 g, 0.17 mmol) was added to a 

solution of 1 (0.16 g, 0.51 mmol) in dichloromethane (30 rnl), and the green mixture 

was refluxed for two hours then filtered. The filtrate was evaporated to a green solid, 

then green crystals were obtained from dichloromethanellight petroleum ether (0.144 

g, 0.21 mmol, 83% yield, mp 126°C). Microanalysis calculated for C24Hs6N2 P4S4Ni: C 

42.3: H 8.3; N 4.1; S 18.8; P 18.2 %. Observed: C 42.6; H 7.9; N 4.1; S 18.7; P 19.3 

%. FTIR (KBr disc): v (PNP) 1253, 1225,783; v (PS) 558; 0 (NPS) 400 cm-I. FAB 

+ve MS: rnlz 683 corresponds to [Ni{N(iPr2PShht. 

Co[N(ipr2PS)2h 5.1 (0.10 g, 0.319 mmol) was added to a blue solution of Co Ch 

(0.02g, 0.154 mmol) in dichloromethane (30 ml). The mixture was refluxed for 1 hour. 

The solution was then evaporated to dryness and recrystallized from dichloromethane 

(0.102 g, 0.149 mmol, 97% yield). Microanalysis calculated for C24Hs6N2P4S4CO: C 

42.2; H 8.3; N 4.1 %. Observed: C 39.7; H 7.7; N 4.1 %. FrIR (KBr disc): v (PNP) 

1254, 1228,779; v (PS) 560, 541; 0 (NPS) 417 cm-I. FAB +ve MS: mlz 684 

corresponds to [Co{N(ipr2PS)2ht. 

Pd[N(ipr2PShh 6.1 (0.220 g, 0.703 mmol) was added to a solution ofPdChCOD 

(O.lg, 0.350 mmol) in dichloromethane (30 ml), which immediately turned from 

yellow to red/orange. The mixture was stirred for a further thirty minutes. The solution 

was then evaporated to dryness then recrystallized from dichloromethane, giving 

red/orange needles (0.245 g, 0.336 mmol, 96% yield, mp 138°C). Microanalysis 

calculated for C24Hs6N2P4S4Pd: C 39.5; H 7.7; N 3.8 %. Observed: C 38.3; H 6.9; N 
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3.6 %. 3Ip _{ IH} NMR (CDCh): 64.8 ppm. FTIR (KBr disc): v (PNP) 1200, 1159; v . 

(PS) 543; 1) (NPS) 408 cm·l . FAB +ve MS: mlz 731 corresponds to 

[pd {N(iPr2PS)2 ht. 

[Pd {N(ipr2PSh}{ HN(ipr2PSh }]+C1' 7. From crystals grown from the dich10romethane 

solution of 6, the first crystal selected for X -ray single crystal diffraction studies gave 

the unexpected structure of the mono-protonated complex 7. This compound has only 

been characterised by single crystal analysis. 

Pt[N(ipr2PS)2h 8.1 (0.084 g, 0.268 mmo1) was added to a solution of PtChCOD 

(0.05 g, 0.134 mmo1) in dich10romethane (30 cm\ which was stirred for 2h, after 

which the solution had turned from clear to yellow. The solution was evaporated to 

dryness and recrystallized from acetone, giving yellow plates (0.10 g, 0.122 mrno1, 90 

% yield, mp 145°C). Microanalysis calculated for C24H56N2P4S4Pt: C 35.2; H 6.9; N 

3.4 %. Observed: C 34.5; H 6.7; N 2.8 %. 3Ip_eH} NMR (CD2Ch): 61.3 ppm, 2J 

ct95Pt _3Ip) 71.7 Hz. FrIR (KBr disc): v (PNP) 1221; v (PS) 583; 1) (NPS) 414 cm·l. 

FAB +ve MS: mlz 819 corresponds to [Pt{N(ipr2PShht. 

[Pt(PMe3h{N(iPr2PSh}tcr 9. KOtBu (0.013 g, 0.118 rnmo1) and 1 (0.037 g, 0.118 

mmo1) was added to a solution of cis Pt(PMe3)2Ch (0.050 g, 0.120 mmo1) and NaBP~ 

(0.040 g, 0.117 mmo1) in 1HF (20 m1) and stirred overnight. The mixture was 

evaporated to dryness, washed through1y with dich10romethane and filtered. The 

filtrate was evaporated to dryness giving a white solid (0.049 g, 0.071 mmo1, 60 % 

yield). Microanalysis calculated forC42~NP4S2BPt: C 51.5; H 6.8; N 1.4 %. 

Observed: C 51.2; H 6.7; N 1.6 %. 3Ip_eH} NMR (CDCh): 59.0 ppm, 2J(lp)95Pt) 

70.4 Hz, -21.9 ppm, IJ(lp_195pt) 3053 Hz. FrIR (KBr disc): v (PNP) 1260, 1226, 

1152; v (PS) 624, 534; 1) (NPS) 412 cm·l. 
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CHAPTER 3: 

TETRABUTYLDITHIOIMIDODIPHOSPHINA TES 

AND THEIR COORDINATION CHEMISTRY 

3.1 Introduction. 

The results of the work on ipr2P(S)NHP(SiPr2 prompted us to look in more 

detail at tetraalkyldithioimidodiphosphinates and how differing steric bulk produced by 

(1, and ~ branching in the alkyl substituents might affect the neutral ligand structures 

and their coordination complexes, in particular the MS2P2N ring conformations. 

Consequently the ligands nBU2P(S)NHP(S)"Bu2 (10), iBu2P(S)NHP(SiBu2 (11), 

'Bu2P(S)NHP(S)'Bu2 (12), nBU2P(S)NHP(SiBu2 (13), nBU2P(S)NHP(S)'BU2 (14) and 

iBu2P(S)NHP(S)'BU2 (15) were all synthesised and coordinated to Zn, Pd and the 

symmetrical compounds coordinated to Pt 

RESULTS AND DISCUSSION 

3.2.1. Attempted Ligand Syntheses. 

A variety of different synthetic routes were attempted to make 10. Having 

observed the high yield of the synthesis of 1 from reacting ipr2PCl with HN(SiMe3)z 

the synthesis of nBu2PCl was attempted. The first route investigated was refluxing PCh 

with pnBU3 under anaerobic conditions hoping for a rearrangement of substituents to 

give nBu2PCl (Equation 3.1). On cooling the mixture was distilled 

Eqn.3.1 

under vacuum, the distillate giving a signal in the 31 p NMR at 110 ppm (IWBu2PCl} 

50 ppm). Another direct route was attempted by adding the stoichiometric amount of 

Grignard reagent to PCh at low temperature (Equation 3.2), however we were unable 

to control the stoichiometry by using low temperatures or concentrations and as 

a result the reaction consistently followed through to pnBU3. Another approach was to 
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Eqn.3.2 

replace substituent groups on a phosphine oxide with Grignard reagent and then reflux 

with a tenfold excess ofPCI3 to produce the dialkyIchlorophosphine (Equation 3.3). 

This route produced at least fifteen products on the first stage and was therefore not 

pursued. 

O~ OMe 
~/ Et,OX~ 
/p" + 2 nBuMgBr .78 OC 

HOMe 

Eqn.3.3 

It was evident there was no control over the stoichiometry if PCI3 was used so 

in order to exert some control one of the chlorines was replaced by diethylamine 

(Equation 3.4). CI2P(NEt2) could then be reacted with Grignard under stoichiometric 

control to form "BU2P(NEt2) in excellent yield. However the amine group then proved 

·78 QC + 2 "B"MgCI + HCI X 
Et2NH + PCI3 ~ (Et2N)PCI2 Et,O I 0 OC ~ (Et2N)pnBu2" CIpnBu2 

Eqn.3.4 

very difficult to replace with a halide and "BU2P(NEt2) would not react with 

HN(SiMe3)2' Indeed on addition ofHCI solution in ether an unknown air sensitive 

product formed in good yield e1p NMR 110 ppm), evidently the same as that formed 

by refluxing PCI3 with P"BU3' 

3.2.2. Ligand Synthesis. 

10 was eventually made via a different approach. Instead of attempting to 

produce "Bu2PCI, the alternative synthetic strategy of making "Bu2P(S)NH2 and 

"BU2P(S)Br and "clipping" the two halves together in the presence ofNaH via an HBr 

elimination reaction was adopted (Equation 3.5). An excess of3 moles of "BuMgBr 
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was reacted with P(S)Cb to give the dithiodiphosphine nBU2P(s)p(S)nBu2 (40 % yield) 

which was then cleaved with Br2 and distilled under vacuum to give nBU2P(S)Br 60 (90 

% yield). This was then reacted with NH3 to give nBU2P(S)NH2 (lOO % yield). This 

Et20/0 cc 
6 BuMgBr+ 2 P(S)Clj A !thr 

H 
1 Na+ 

_/N.,... ......-N, 
2 BU2l' PBU2 ... f-'2",HB::..:.:F4:.c,O.::Et..:'_2 BU21' PBU2 

11 11 I( 11 11 
S S ~ S 

+ 2 Bu'p(S)Br 

4 3NaH/TlIF 

Eqn.3.5 

process was repeated to make the iBu and 'Bu analogues. The tert-butyl analogue 

would not react with NH3 due to steric hindrance. The amine and halide were then 

reacted with a 3 mole excess of NaH, the driving force of the reaction being the 

formation of the sodium salt, Na +[Bu2P(S)NP(S)Bu2r (60 % yield). The salt could 

then be protonated with HBF4.OEt2 to give the neutral ligand in overall yield of 22 %. 

Whilst allligands emerged as oils, they crystallised from the minimum amount of 

dichloromethane in a freezer. 

Signals observed in the 31p NMR in CDCb (Table 3.1) show the shift of 12 at 

87.0 ppm is at a significantly higher frequency than those for 10 and 11, 71.0 and 68.3 

ppm respectively. Whilst one might expect some difference with the increased steric 

bulk, such as 3 ppm for the difference between n-butyl and iso-butyl substituted 

ligands, 16 ppm is an unexpectedly large variance in comparison. In addition the 2JC l p-

31p) coupling observed in the AX type spectra for the mixed substituent ligands also 

reflects the effect of the sec-butyl group, 14 and 15 having a coupling 4 Hz greater 

than 13. It is also interesting to note the reduction in frequency of the signal for the 

sec-butyl substituted phosphorus in 14 (84.7 ppm) and 15 (87.8 ppm) in 
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Table 3.1. Chemical shifts and [P-P] coupling constants in 3Ip NMR (CDCI3) 

for tetrabutyldithioimidodiphosphinate compounds. 

(i {ppm "J C'P-·'P) {Hz 

PI P2 P3 
DBu2P(S)NHP(S)"Bu2 71.0 - - -
'BU2P(S)NHP(S) BU2 - 68.3 - -
'BU2P(S)NHP(S),Bu2 - - 87.0 -
nBU2P(S)NHP(S) BU2 72.3 70.4 - 26.4 
nBU2P(S)NHP(S),Bu2 79.0 - 84.7 30.8 
'BU2P(S)NHP(S)'Bu2 - 76.1 82.8 30.8 

P I denotes the n-butyl, P2 the iso-butyl and P3 the sec-butyl substituted phosphorus 

atoms. 

comparison to the shift for 12 (87.0 ppm) of around 4 ppm is significantly less than 

the increase observed for the n-butyl and iso-butyl substituted phosphorus centres in 

14 and 15 (79.0, 76.1 ppm) of8 ppm in comparison to 10 (71.0 ppm) and 11 (68.3 

ppm). 

In contrast doublets were observed in the 3Ip solid state NMR spectra of 10 

and 11 (c.f. 1), though the 2J phosphorus coupling was far greater than 1 (Table 3.2, 

Figure 3.1). The implication is hydrogen bonding in 10 and 11 is significantly 

stronger than in 1 thus making the difference between the pendant and the "bound" 

phosphorus centres much greater. 12 gave an unexpected spectrum of three main 

Table 3.2. 3Ip solid state NMR for R2P(E)NHP(S)R2 (R = nBu, iBu, 'Bu and 

ipr). Chemical shifts and coupling constants .• denotes tentatively assigned coupling 

constants. 

(i {ppm "J CP-~P) {Hz 

nBU2P(S)NHP(S)"Bu2 77.8,67.8, 1214.7 
'BU2P(S)NHP(S)'Bu2 75.0,64.3 1294.0 
'BU2P(S)NHP(S),Bu2 89.7,88.3,86.7,84.9 170.8,219.8 
'Pr2P(S)NHP(S)'Pr2 91.0, 89.2 213.6 
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Figure 3.1.'lp solid state NMR spectra of R2P(S)NHP(S)R2 for R = "Bu:Bu:Bu 
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peaks and a shoulder, implying the compound exists in the solid state in two 

independent forms. This was confirmed by the solid state 15N NMR which showed 

two distinct peaks at - 322 and - 325 ppm. However the [P-P] coupling is low so again 

the implication is weaker hydrogen bonding within the solid state forms of 12. There 

is supporting evidence from solution and solid state FTIR (Table 3.3). Once in 

solution the v (NH) band is observed around 3320 cm·1 for all four compounds. 

Therefore the fact the v (NB) band is 50 - 70 cm·1 lower for 10 and 11 in the solid 

state implies there is a significantly higher degree of hydrogen bonding which is in 

agreement with the hydrogen bond lengths, 10 (2.44 A) and 11 (2.51 A) being 

significantly shorter than 1 (2.60 A). 

Table 3.3. Solid state (KBr disc) and solution (dichloromethane, CsI cell) 

FTIR ofR2P(E)NHP(S)R2 (R = "Bu, iBu, 'Bu, iPr / cm·l ) and crystallographic S"H 

hydrogen bond lengths ofR2P(E)NHP(S)R2 (R = "Bu, iBu, ipr) for comparison. 

v (NH) solid v (NH) solution vsolution - S""H(A) 

vsolid 

"BU2P(S)NHP(S)"Bu2 3172 3325 153 2.44 
'BU2P(S)NHP(S)'Bu2 3180 3323 143 2.51 
'BU2P(S)NHP(SrBu2 3225 3319 94 -
'Pr2P(S)NHP(S)'Pr2 3243 3320 77 2.60 

The characteristic v (PNP) bands 32-34 were also observed in the FTIR, 782 -

768 cm-I and tentative assignments at 744 -753 cm-I. However no v (PS) vibrations 

were observed that could be confidently assigned. All of the compounds gave 

satisfactory elemental analyses and F AB +ve mass spectra revealed the expected 

parent ions (M + H 370 m/z). Ofthe crystals obtained only those of 10, 11 and 15 

were suitable for single crystal analysis. 10 was observed to be a trans dimer (Figure 

3.2) similar to Ph2P(S)NHP(S)Ph2
23 with an S-P ... P-S torsion angle of 179.0 0 

indicating the planarity of the SPNPS backbone. The P(l)-S(l) bond length at 

1.941 (2) A is significantly longer than that for P(2)-S(2) at 1.929(2) A. This maybe 

because the S(l) is hydrogen bonded to the NH proton of the molecule that forms the 

other half of the dimer whereas the S(2) atom is pendant. The P-N bonds were 
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1.681(4) and 1.686(3) A and the P-N-P bond angle was 132.1(2) 0 as expected. The . 

S····H hydrogen bond is very strong at 2.439(4) A. 

o H1n* 

S1* 

Figure 3.2. Crystal structure ofnBu2P(S)NHP(S) nBU2 dimer. 

In contrast 11 has the structure of a trans hydrogen bonded chain (Figure 3.3) 

which has previously been observed for Me2P(S)NHP(S)Me2 27. The S-P ... P-S torsion 

angle is 179.8 0 again indicating the planarity of the SPNPS backbone. The P(2)-S(2) 
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bond length at 1.948(3) A is very much longer than the P(l )-S(I) bond length of 

1.931(3) A, again due to the fact the S(2) sulfur is involved in the hydrogen bonding 

whereas the S(I) sulfur is pendant. Surprisingly the P(I)-N(I) bond length at 1.657(5) 

A differs significantly from the P(2)-N(I) bond length which is 1.706(6) A though the 

P-N-P bond angle is an expected 133.0(4) 0. In addition the S····H hydrogen bond is 

quite short at 2.513(4) A. 

Figure 3.3. Crystal structure of iBu2P(S)NHP(S)iBu2' 

a 1'-0 o 

15 is another trans dimer (Figure 3.4) with an SP ... PS torsion angle of 179.4 0. 

Again there is a difference between the P(l)-S(l) bond length of 1.943(1) A and the 
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P(2)-S(2) bond length of 1.935(2) A. The P-N bonds were 1.69-1.70 A and the P-N-P . 

angle was 133.1(2) 0 as expected. The S····H hydrogen bond is 2.668(3) A. It is 

interesting to note the phosphorus atom attached to the sulfur which is involVed in the 

intermolecular hydrogen bond has iso-butyl substituents and the phosphorus with sec

butyl substituents is pendant, probably due to the higher degree of steric bulk. 

S2* 

o 

S2 

Figure 3.4. Crystal structure ofSBu2P(S)NHP(S)iBu2 trans dimer. 

A comparison ofP-S bonds (Table 3.4) for the trans dimers 10 and 15 shows a 

difference between P(1 )-S(I) and P(2)-S(2) of 0.008 - 0.013 A due to the fact that one 

sulfur is pendant and the other is involved in intermolecular hydrogen bonding. This 
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difference is significantly greater for 11 and M~P(S)NHP(S)Me2 27 (0.017 - 0.023 A). 
The S···H distances for 11 and M~P(S)NHP(S)M~ are in excellent agreement at 

Table 3.4. Selected bond lengths (A) and angles (0) for R2P(E)NHP(S)R2 (R = 

"Bu, iBu), 'BU2P(S)NHP(SiBu2 and M~P(S)NHP(S)Me2 27. 

HN("Bu,PSh 'Bu,p(S)NHP(S),Bu, HN(,Bu,PSh HN(Me,PS), 
10 15 11 

P(1)-S(1) 1.941(2) 1.943(1) 1.931(3) 1.939(2) 
P(2)-S(2) 1.929(2) 1.935(2) 1.948(3) 1.962(2) 
P(l)-N(l) 1.681(4) 1.686(3) 1.657(5) 1.679(3) 
P(2)-N(1) 1.686(3) 1.695(3) 1.706(6) 1.675(3) 

S(l)-P(l)-N(1) 109.3(1) 107.5(1) 114.4(3) 114.0m 
S(2)-P(2)-N(1) 114.6(1) 113.9(1) 107.1(2) 107.9(1) 
P(1)-N(1)-P(2) 132.1(2) 133.1(2) 133.0(4) 133.2(2) 

S(1)-P(l ) ... P(2)-S(2) 179.0 179.4 179.8 176.9 
S···H(1n) 2.439(4) 2.668(3) 2.513(4) 2.513(5) 

N(1)-H(1n) 1.070(3) 1.077(4) 1.243(5) 0.894(5) 

2.513 A and the two trans dimers differ at 2.439(4) and 2.668(3) A, the closer contact 

being with the straight chain n-buty1 substituted ligand, which has significantly less 

steric bulk and thus would allow the two halves of the dimer to approach more closely. 

The P-N-P bond angles (132 - 133°) are all in good agreement as are the P-N bond 

lengths with the exception of 11 (1.657(5), 1.706(6) A) where the difference between 

P-N bonds does not correlate in any way with those for M~P(S)NHP(S)Mez. There is 

a common trend for S-P-N bond angles, the larger angle (113.9 - 114.6°) refers to the 

pendant sulfur and the smaller angle (107.1 - 109.3°) refers to the sulfur involved in 

the intermolecular hydrogen bonding. The S-P ... P-S torsion angles (176.9 _ 179.8 0) 

show just how planar the SPNPS backbone is in the trans conformation. 

3.3. Coordination Complexes of 10, 11, 12, 13, 14 and 15. 

Two moles of each neutral ligand were refluxed in THF with two moles of 

KO'Bu and one mole of ZnC\z for 30 minutes, then on cooling the solutions were 

evaporated to dryness and the residue was dissolved in the minimum of 

dichloromethane and filtered. The filtrate was evaporated to dryness revealing a 
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colourless oil in every case. The complexes decompose on silica and alumina and are 

extremely soluble. Furthennore the potassium salts of the ligands are soluble in ether 

making product purification extremely difficult. Reasonable elemental analyses were 

observed except for 20 and the expected parent ion was observed in F AB +ve mass 

spectra (M + H 801 mlz) for all the zinc complexes; Zn[nBu2P(S)NP(S)nBu2h (16), 

Zn[iBu2P(S)NP(S)iBu2h (17), ZnLBu2P(S)NP(S)'Bu2h (18), Zn["Bu2P(S)NP(S)iBu2h 

(19), Zn[nBu2P(S)NP(S)'Bu2h (20) and Zn['Bu2P(S)NP(S)iBu2h (21). 

Square planar complexes were produced by the same procedure. Two moles of 

each neutral ligand were reacted with one mole ofPdCl2COD (10, 11 and 12 were 

also reacted with PtCI2COD). Again the products proved to be impure oils, dark red 

for the palladium complexes and yellow for the platinum complexes, which readily 

decompose on silica and alumina. Reasonable elemental analyses were observed and 

the expected parent ion was observed in F AB +ve mass spectra (pd complexes: M + H 

843 mlz; Pt complexes: M + H 931 mlz) for each complex; Pd[nBu2P(S)NP(S)"Bu2h 

(22), Pd[iBu2P(S)NP(S)iBu2h (23), Pd['Bu2P(S)NP(S)'Bu2h (24), 

Pd[nBu2P(S)NP(S)iBu2h (25), Pd["Bu2P(S)NP(S)'Bu2h (26), PdLBu2P(S)NP(S)iBu2h 

(27), Pt[nBu2P(S)NP(S)"Bu2h (28), Pt[iBu2P(S)NP(S)iBu2h (29) and 

Pt['Bu2P(S)NP(S)'Bu2h (30). 

Signals observed in 31p NMR (CDCI3, Figure 3.5) showed a decrease in 

frequency upon deprotonationlcoordination to the metal centres of around 20 ppm 

(Table 3.5) as was the case with 1. Generally the shifts of the zinc and palladium 

complexes are in good agreement though the platinum complexes all have a chemical 

shift 5 ppm lower than their corresponding palladium complexes (compared to 8 

which is 3.5 ppm lower than 6). In addition the 2J platinum phosphorus coupling 

constants are around 12 Hz greater than 8. 

It is interesting to note the [P-P] coupling of Zn[nBu2P(S)NP(S)iBu2h is a 7 

Hz less than the mixed substituent ligand complexes involving the sec-butyl group 

and that such a variance is not observed for the palladium complexes. In addition the 

2J phosphorus coupling of the palladium complexes of the mixed substituent ligands is 

generally of a lower value than the zinc complexes: Despite running the spectra at a 

higher field strength and using zero filling, no 4Je1p_3Ip) trans or cis couplings were 

observed for these complexes. 
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Table 3.5. Chemical shifts and coupling constants in 31 p NMR (CDCI3) for 

coordination complexes ofR2P(E)NHP(S)R' 2 (R = nBu, iBu, 'Bu; R' = nBu, iBu, 'Bu) . 

• denotes spectra run at 161.97 MHz, all others were run at 36.2 MHz. 

o/ppm 
PI P2 P3 2J eIp_3Ip) / Hz 

Zn["Bu,P(S)NP(S)"Bu,h (16) 52.2 - - -
Zn['Bu,P(S)NP(S)'Bu,h (17) - 49.1 - -
Zn["Bu,P(S)NP(S)'Bu,h (18) - - 63.0 -
Zn["Bu,P(S)NP(S)'Bu,h (19) 51.5 49.6 - 19.8 
Zn["Bu,P(S)NP(S)'Bu,h (20) 50.4 - 64.0 26.4 
Zn['Bn,P(S)NP(S)'Bu,h (21) - 48.7 63.4 26.4 
Pd["Bu,P(S)NP(S)"Bu,h (22) 51.8 - - -
Pd['Bu,P(S)NP(S) Bu,h (23) - 49.7 - -
Pd['Bu,P(S)NP(S)'Bu,h (24) - - 62.2 -
Pd["Bu,P(S)NP(S)'Bu,h (25) 52.0 50.2 - 16.8 
Pd["Bu,P(S)NP(S) Bu,h (26) 50.8 - 64.9 19.3 
Pd['Bu,P(S)NP(S)'Bu,h (27) - 49.1 64.3 18.2 

- - 2J eIp_ I95pt) / Hz 
Pt["Bu,P(S)NP(S)"Bu,h (28) 47.1 - - 92.4 
Pt[,Bu,P(S)NP(S)'Bu,h (29) - 43.8 - 88.0 
Pt['Bu,P(S)NP(S)'Bu,h (30) - - 58.1 88.0 

PI denotes the n-butyl, P2 the iso-butyl and P3 the sec-butyl substituted phosphorus 

atoms. 

Characteristic bands in the FTIR 32·34 were observed indicating the change in 

bond order that occurs upon removal of the amine proton (Table 3.6), in particular the 

marked increase in the Vas (PNP) vibration to 1200 - 1230 cm·I as the negative charge 

is delocalised over the ligand and the P-N bond lengths shorten. There is good 

agreement for the v (PS) vibration for all complexes. Two general observations are the 

v (PNP) values for the square planar complexes are slightly greater than those for the 
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Table 3.6. FTIR assignments (cm'l ) for the coordination complexes of 

R2P(E)NHP(S)R' 2 (R = nBu, iBu, 'Bu; R' = nBu, iBu, 'Bu). 

Zn complexes v (PNP) v (PS) v (NPS) 
16 1227,776 553 -
17 - ,782 558,538 398 
18 1211,773 537 437 
19 1225, 770 552 421,401 
20 1204, 780 550 432,401 
21 1207, 780 525 438 

Pd complexes 
22 1218 525 -
23 1258 544 401 
24 1246 537 -
2S 1220 542 -
26 1260 532 401 
27 1248 531 -

Pt complexes 
28 1226 529 -
29 1246 541 400 
30 1261 533 437 

tetrahedral zinc complexes and the v (NPS) bands seem to be observed more easily for 

the tetrahedral zinc complexes. These observations may well be due to the differing 

geometries of the complexes which were highlighted by the structures of2, 3, 4, 6 and 

8. 
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3.4. Experimental. 

nBU2P(S)Br. iBu2P(S)Br and 'BU2P(S)Br were all synthesised by the same procedure 

illustrated here for nBU2P(S)Br. Under anhydrous conditions a solution ofP(S)CI3 

(58.38 g, 35.0 ml, 0.34 M) in Et20 (lOO ml) was added dropwise at 0 °c to a solution 

of BuMgBr (0.85M) in Et20 agitated by an overhead stirrer. Upon completion of 

addition and warming to room temperature of the mixture it was refluxed for 2 hours. 

On cooling the mixture was quenched with aqueous 2M HCl (300 ml). The ether layer 

was then separated offand the aqueous layer washed with Et20 (3 x 100ml). The ether 

layers were combined and evaporated to a very strongly smelling oily residue 

(BU4P2S2) which was subsequently dissolved in dichloromethane (200 ml). The 

solution was cooled to 0 °c and a solution ofBr2 (27.92 g, 9 ml, 0.17 M) in 

dichloromethane (200 ml) was added dropwise with stirring turning the mixture a 

pinkibrown colour. On warming to room temperature the now pungently smelling 

mixture was evaporated to dryness and the dark brown oily residue was distilled under 

vacuum (bp 118-125 °c at 3-4 mmHg) to give nBU2P(S)Br, a faintly yellow coloured 

liquid, (34.3 g, 0.133 M, 39.2 % yield). 3Ip_eH} NMR (CDCI3): 92.0 ppm. 

For iBu2P(S)Br, yellowlbrown liquid (bp 116-120 °c at 2-3 mrnHg, 57.27 g, 

0.223 M, 42.3 % yield). 3Ip_{IH} NMR (CDCI3): 89.1 ppm. 

For 'BU2P(S)Br, yellowlbrown liquid (bp 102-104 °c at 0.5-1.5 mmHg, 34.64 

g, 0.135 M, 37.3 % yield). 3Ip_{IH} NMR (CDeI3): 124.5 ppm. 

nBU2P(S)NH2. iBu2P(S)NH2 and 'BU2P(S)NH2 were all synthesised by the same 

procedure illustrated here for nBU2P(S)NH2. NH3 gas was bubbled through a solution 

of nBu2P(S)Br (10.0 g, 38.9 mmol) in Etp (200 ml) with stirring for 15-30 minutes. 

The mixture was then filtered and the NH4Br solid residue was washed thoroughly 

with Et20 (3 x 30 ml). The filtrate was then evaporated to dryness yielding a 

colourless oil (7.50 g, 38.9 mmol, 99.9 % yield). 3Ip_eH} NMR (CDeI3): 66.3 ppm. 

For iBu2P(S)NH2, white solid, (15.13 g, 78.4 mmol, lOO % yi'eld). 3Ip_eH} 

NMR (eDCI3): 67.0 ppm. 

For 'BU2P(S)NH2, faintly brown oil, (8.21 g, 42.5 mmol, 98.6 % yield). 31 p_ 

eH} NMR (CDCI3): 81.0 ppm. 
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nBU2P(S)NHP(S),Bu2 10. A slurry of NaH (60% dispersion in paraffin oil 1.24 g, 31.0 

mmol) in 1HF (10 ml) was added dropwise to a solution ofnBu2P(S)NH2 (2.00 g, lOA 

mmol) in 1HF (40 ml) at 0 QC with stirring. On warming to room temperature the 

mixture was left for a further 30 minutes, then it was cooled again to 0 QC and a 

solution of nBU2P(S)Br (2.66 g, 10.4 mmol) in THF (10 ml) was added dropwise. The 

mixture was then refluxed overnight On cooling, MeOH (10 ml) was cautiously added 

dropwise to destroy off any excess NaH. An excess of 85 % HBF4.OEt2 in Et20 (8 ml) 

was then added with stirring to protonate the Na+ [N("Bu2PS)2r salt. The mixture was 

evaporated to dryness and washed with dichloromethane (3 x 20 ml). The resulting 

filtrate was evaporated to dryness giving a clear oily residue. This was then dissolved 

in the minimum of dichloromethane and cooled overnight in a freezer yielding 

colourless crystals (2045 g, 6.63 mmol, 64 % yield, mp 61 QC). Microanalysis 

calculated for CI6H37NP2S2 : C 52.0; H 10.1; N 3.8 %. Observed: C 52.1; H 1004; N 

3.5 %. 3Ip_eH} NMR (CDCh): 71.0 ppm; IH NMR (CDCh): 3.15 ppm NH proton. 

FTIR (dichloromethane solution, CsI cell at 100 microns): v (N-H) 3325 cm· l
; (KBr 

disc): v (N-H) 3172; I) (N-H) 1319; v (PNP) 930, 907, 767 cm-I. FT Raman (capillary 

sample): v (N-H) 3166; I) (N-H) 1344; v (PNP) 971; v (PS) 587 cm-I. Cl +ve MS: mJz 

370 corresponds to {HN("Bu2PSh}+. 

Zn[N("Bu2PS)2h 16. A solution of 10 (0.080 g, 0.217 mmol), ZnCh (0.015 g, 0.109 

mmol) and KO'Bu (0.024 g, 0.214 mmol) in THF (20 ml) was refluxed for 1 hour. On 

cooling the mixture was evaporated to dryness and dichloromethane added. The 

mixture was then filtered and the filtrate evaporated to dryness, giving a colourless oil. 

Microanalysis calculated for C32HnN2P4S4Zn: C 47.9; H 9.0; N 3.5 %. Observed: C 

48.2; H 8.8; N 304 %. 3Ip_{ IH} NMR (CDCh): 52.0 ppm. FTIR (KBr disc): v (PNP) 

1227, 1186,775; v (PS) 553 cm-I. FAB +ve MS: mlz 801 corresponds to 

{Zn[N(nBu2PShh} +. 

Pd[N("Bu2PS)2h 22. A solution of 10 (0.10 g, 0.271 mmol), PdChCOD (0.039 g, 

0.137 mmol) and KO'Bu (0.030 g, 0.271 mmol) in THF (20 ml) was refluxed for 1 

hour changing colour from yellow to red/orange. On cooling the mixture was 

evaporated to dryness and dichloromethane added. The mixture was then filtered and 
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the filtrate evaporated to dryness, giving a dark red oil. Microanalysis calculated for . 

C32HnN2P4S4Pd: C 45.6; H 8.6; N 3.3 %. Observed: C 48.9; H 9.2; N 3.3 %. 31p_ 

eH} NMR (CDCh): 51.8 ppm. FI1R (KBr disc): v (PNP) 1218, 1151; v (PS) 606, 

525 cm·l. FAB +ve MS: rnlz 843 corresponds to {Pd[N(nBu2PS)2ht. 

Pt[N(nBu2PS)2h 28. A solution of 10 (0.083 g, 0.225 mmol), PtChCOD (0.042 g, 

0.112 mmol) and KOtBu (0.025 g, 0.225 mmol) in THF (20 ml) was refluxed for 1 

hour changing colour from clear to yellow. On cooling the mixture was evaporated to 

dryness and dichloromethane added. The mixture was then filtered and the filtrate 

evaporated to dryness, giving a yellow oil. Microanalysis calculated for 

C32HnN2P4S4Pt: C 41.2; H 7.8; N 3.0 %. Observed: C 46.0; H 8.5; N 2.4 %. 3lp_eH} 

NMR (CDCh): 47.1 ppm, 2Je
l p)9Spt) 92.4 Hz. FI1R (KBr disc): v (PNP) 1226; v 

(PS) 529 cm·l. FAB +ve MS: rnlz 931 corresponds to {Pt[N("Bu2PShht. 

iBu2P(S)NHP(siBu2 11. 11 was prepared with the same procedure as 10 giving a clear 

oily residue. This was then dissolved in the minimum of dichloromethane and cooled 

overnight in a freezer yielding colourless crystals (2.35 g, 6.37 mmol, 41 % yield, mp 

66-68 0c). Microanalysis calculated for CI6H37NP2S2 : C 52.0; H 10.1; N 3.8 %. 

Observed: C 52.0; H 10.3 ; N 3.2 %. 3lp_eH} NMR (CDCh): 68.3 ppm; IH NMR 

(CDCh) 3.12 ppm NH proton. FTlR (dichloromethane solution, CsI cell at 100 

microns): v (N-H) 3323 cm·l; (KBr disc): v (N-H) 3180; S (N-H) 2720, 1367; v (PNP) 

916, 782 cm·l . 

Zn[NCBu2PS)2h 17. A solution of 11 (0.075 g, 0.203 mmol), ZnCh (0.014 g, 0.103 

mmol) and KOtBu (0.023 g, 0.205 mmol) in THF (20 ml) was refluxed for I hour. On 

cooling the mixture was evaporated to dryness and dichloromethane added. The 

mixture was then filtered and the filtrate evaporated to dryness, giving a colourless oil. 

Microanalysis calculated forC32HnN2P4S4Zn: C 47.9; H 9.0; N 3.5 %. Observed: C 

51.5; H 9.5; N 3.0 %. 31p-eH} NMR (CDCh): 49.1 ppm. FTIR (KBr disc): v (PNP) 

1251, 1163,782; v (PS) 558, 538; v (NPS) 398 cm·l. FAB +ve MS: mlz 801 

corresponds to {Zn[N(iBu2PShht. 
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Pd[N(;Bu2PS)2h 23. A solution of 11 (0.050 g, 0.136 mmol), PdChCOD (0.019 g, 

0.067 mmol) and KO'Bu (0.015 g, 0.134 mmol) in THF (20 ml) was refluxed for 1 

hour changing colour from yellow to red/orange. On cooling the mixture was 

evaporated to dryness and dichloromethane added. The mixture was then filtered and 

the filtrate evaporated to dryness, giving a dark red oil. Microanalysis calculated for 

C32HnN2P4S4Pd: C 45.6; H 8.6; N 3.3 %. Observed: C 47.8; H 8.9; N 2.7 %. 3'p_ 

(,H) NMR (CDCb): 49.7 ppm. FTIR (KBr disc): v (PNP) 1258, 1165; v (PS) 544; v 

(NPS) 401 cm-I. FAB +ve MS: m/z 843 corresponds to {Pd[N(;Bu2PS)2h}+. 

Pt[N(;Bu2PShh 29. A solution of 11 (0.050 g, 0.136 mmol), PtChCOD (0.025 g, 

0.068 mmol) and KO'Bu (0.015 g, 0.134 mmol) in THF (20 ml) was refluxed for I 

hour changing colour from clear to yellow. On cooling the mixture was evaporated to 

dryness and dichloromethane added. The mixture was then filtered and the filtrate 

evaporated to dryness, giving a yellow oil. Microanalysis calculated for 

C32HnN2P4S4Pt: C 41.2; H 7.8; N 3.0 %. Observed: C 45.9; H 8.1; N 2.5 %. 3'p-eH} 

NMR (CDCb): 43.8 ppm, 2Je'p_'95pt) 88.0 Hz. FTIR (KBr disc): v (PNP) 1246, 

1159; v (PS) 557, 541; v (NPS) 400 cm-I. FAB +Ye MS: m/z 931 corresponds to 

{Pt[N(;Bu2PShhj'. 

'BU2P(S)NHP(S),Bu2 12. 12 was prepared with the same procedure as 10 giving a 

clear oily residue. This was then dissolved in the minimum of dichloromethane and 

cooled overnight in a freezer yielding colourless crystals (1.99 g, 5.39 mmol, 52 % 

yield, mp 93-95 QC). Microanalysis calculated for C'6H)7NP2S2 : C 52.0; H 10.1; N 3.8 

%. Observed: C 52.4; H 9.9; N 3.7 %. 3'p_{ 'H) NMR (CDCb): 87.2 ppm; 'H NMR 

(CDCb) 2.80 ppm NH proton. FTIR (dichloromethane solution, CsI cell at 100 

microns): v (N-H) 3323 cm-I; (KBr disc): v (N-H) 3180; 0 (N-H) 2720, 1367; v (PNP) 

916,782 cm-I. FAB +ve MS: m/z 370 corresponds to {HN('Bu2PSM+. 

Zn[N('Bu2PS)2h 18. A solution of 12 (0.108 g, 0.292 mmol), ZnCh (0.020 g, 0.147 

mmol) and KO'Bu (0.033 g, 0.294 mmol) in THF (20 ml) was refluxed for 1 hour. On 

cooling the mixture was evaporated to dryness and dichloromethane added. The 

mixture was then filtered and the filtrate evaporated to dryness, giving a colourless oil. 

72 



Microanalysis calculated for C32HnN2P4S4Zn: C 47.9; H 9.0; N 3.5 %. Observed: C . 

48.7; H 9.0; N 2.9 %. 3lp_eH} NMR (CDCh): 62.8 ppm. FTIR (KBr disc): v (PNP) 

1211,773; v (PS) 587,537 cm·l. FAB +ve MS: m1z 801 corresponds to 

{Zn[N('Bu2PShh}+. 

Pd[N(,Bu2PShh 24. A solution of 12 (0.130 g, 0.352 mmol), PdChCOD (0.050 g, 

0.175 mmol) and KO'Bu (0.040 g, 0.357 mmol) in THF (20 rnI) was refluxed for 1 

hour changing colour from yellow to redlorange. On cooling the mixture was 

evaporated to dryness and dichloromethane added. The mixture was then filtered and 

the filtrate evaporated to dryness, giving a dark red oil. Microanalysis calculated for 

C32HnN2P4S4Pd: C 45.6; H 8.6; N 3.3 %. Observed: C 49.5; H 9.0; N 2.6 %. 3!p_ 

{IH} NMR (CDCh): 62.2 ppm. FTIR (KBrdisc): v (PNP) 1241, 1206; v (PS) 575, 

537 cm·l. FAB +ve MS: m1z 843 corresponds to {Pd[N(,Bu2PShh}+. 

Pt[N('Bu2PShh 30. A solution of 12 (0.050 g, 0.136 mmol), PtChCOD (0.025 g, 

0.068 mmol) and KO'Bu (0.015 g, 0.134 mmol) in THF (20 ml) was refluxed for 1 

hour changing colour from clear to yellow. On cooling the mixture was evaporated to 

dryness and dichloromethane added. The mixture was then filtered and the filtrate 

evaporated to dryness, giving a yellow oil. Microanalysis calculated for 

C32HnN2P4S4Pt: C 41.2; H 7.8; N 3.0 %. Observed: C 40.7; H 7.4; N 2.5 %. 3lp_eH} 

NMR (CDCh): 58.1 ppm, 2JClp_195pt) 88.0 Hz. FTIR (KBr disc): v (PNP) 1261, 

1208; v (PS) 578, 533; v (NPS) 437 cm·l. FAB +ve MS: m1z 931 corresponds to 

{Pt[N(,Bu2PShh}+. 

nBU2P(S)NHP(S)iBu2 13.13 was prepared with the same procedure as 10 giving a 

clear oily residue which was cooled in a freezer and over two months crystallised into a 

very low temperature melting solid. Microanalysis calculated for C I6H37NP2S2 : C 

52.0; H 10.1; N 3.8 %. Observed: C 54.5; H 10.3; N 3.1 %. 3lp_eH} NMR (CDCh): 

I)(P A) 72.3(d), I)(px) 70.4(d) ppm. 2JC!PA-3!px) 26.4 Hz. FTIR (KBr disc): I) (N-H) 

1340; v (PNP) 909, 745 cm'!. FAB +ve MS: m/z 370 corresponds to 

{nBU2P(S)NHP(S)iBu2} +. 
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ZnrBu2P(S)NP(siBu2h 19. A solution of 13 (0.050 g, 0.136 mmol), ZnCh (0.010 g, 

0.073 mmol) and KOtBu (0.015 g, 0.134 mmol) in THF (20 ml) was refluxed for 1 

hour. On cooling the mixture was evaporated to dryness and dichloromethane added. 

The mixture was then filtered and the filtrate evaporated to dryness, giving a colourless 

oil. Microanalysis calculated for C32HnN2P4S4Zn: C 47.9; H 9.0; N 3.5 %. Observed: 

C 51.9; H 9.7; N 3.0 %. 3Ip_eH} NMR (CDCh): Ii(P.0 51.5(d), 1i(pX) 49.6 ppm. 

2Je l pA-3Ipx) 19.8 Hz. FTIR (KBr disc): v (PNP) 1248, 1225,807; v (PS) 588, 552; v 

(NPS) 421, 401 cm-I. FAB +ve MS: mJz 801 corresponds to 

{ZnrBu2P(S)NP(SiBu2h} +. 

Pd[nBu2P(S)NP(S)iBu2h 25. A solution of 13 (0.130 g, 0.352 mmol), PdChCOD 

(0.050 g, 0.175 mmol) and KOtBu (0.040 g, 0.357 mmol) in THF (20 ml) was refluxed 

for 1 hour changing colour from yellow to red/orange. On cooling the mixture was 

evaporated to dryness and dichloromethane added. The mixture was then filtered and 

the filtrate evaporated to dryness, giving a dark red oil. Microanalysis calculated for 

C32HnN2P4S4Pd: C 45.6; H 8.6; N 3.3 %. Observed: C 53.0; H 9.3; N 2.5 %. 31p_ 

{IH} NMR (CDCh): Ii(P.0 52.0(d), Ii(Px) 50.2(d) ppm. 2Je l p A_3Ipx) 16.8 Hz. FTIR 

(KBr disc): v (PNP) 1220, 1164; v (PS) 542 cm-I. FAB +ve MS: mJz 843 corresponds 

to {Pd[nBu2P(S)NP(SiBu2h}+_ 

nBU2P(S)NHP(S)'Bu2 14. 14 was prepared with the same procedure as 10 giving a 

clear oily residue which was cooled in a freezer and over a period of two months 

crystallised into a very low temperature melting solid. Microanalysis calculated for 

C16H37NP2S2: C 52.0; H 10.1; N 3.8 %. Observed: C 52.0; H 9.9; N 2.6 %. 3Ip_eH} 

NMR (CDCh): Ii(P.0 79.0(d), Ii(Px) 84.7(d) ppm. 2Je l p A.3 I Px) 30.8 Hz. FTIR (KBr 

disc): Ii (N-H) 1347; v (PNP) 913,744 cm-I. FAB +ve MS: mlz 370 corresponds to 

{nBU2P(S)NHP(S)'Bu2} +. 

Zn[nBu2P(S)NP(S)'Bu2h 20. A solution of 14 (0.050 g, 0.136 mmol), ZnCh (0.010 g, 

0.073 mmol) and KOtBu (0.015 g, 0.134 mmol) in THF (20 ml) was refluxed for 1 

hour. On cooling the mixture was evaporated to dryness and dichloromethane added. 
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The mixture was then filtered and the filtrate evaporated to dryness, giving a colourless 

oil. 3Ip_CH} NMR (CDCb): S(P.0 50.4(d), S(Px) 64.0(d) ppm.2JClPA-3Ipx) 26.4 Hz. 

FTIR (KBr disc): v (pNP) 1259, 1204, 780; v (PS) 579, 550; v (NPS) 401 cm·l. FAB 

+ve MS: mlz 801 corresponds to {Zn[nBu2P(S)NP(S)'Bu2ht. 

Pd["Bu2P(S)NP(S)'Bu2h 26. A solution of 14 (0.050 g, 0.136 mmol), PdChCOD 

(0.019 g, 0.067 mmol) and KO'Bu (0.015 g, 0.134 mmol) in THF (20 ml) was refluxed 

for 1 hour changing colour from yellow to red/orange. On cooling the mixture was 

evaporated to dryness and dichloromethane added. The mixture was then filtered and 

the filtrate evaporated to dryness, giving a dark red oil. Microanalysis calculated for 

CnH72N2P4S4Pd: C 45.6; H 8.6; N 3.3 %. Observed: C 47.1; H 9.3; N 2.1 %. 31p_ 

CH} NMR (CDCb): S(p.0 50.8(d), S(Px) 64.9(d) ppm. 2JClpA-3Ipx) 19.3 Hz. FTIR 

(KBr disc): v (PNP) 1260; v (PS) 532; v (NPS) 401 cm·l. FAB +ve MS: mlz 843 

corresponds to {Pd[nBu2P(S)NP(S)'Bu2ht. 

'Bu2P(S)NHP(S),Bu2 15. 15 was prepared with the same procedure as 10 giving a 

clear oily residue which was cooled overnight in a freezer yielding colourless crystals 

(0.213 g, 0.577 mmol, 5.6 % yield, mp 20-30 0c). Microanalysis calculated for 

C16H31NP2S2: C 52.0; H 10.1; N 3.8 %. Observed: C 51.5; H 10.1 ; N 3.7 %. 31p_ 

CH} NMR (CDCh): S(PA) 76.0(d), S(px) 82.7(d) ppm. 2JClpA-3IPX) 30.8 Hz. FTIR 

(KBrdisc): S (N-H) 1337; v (PNP) 918, 772 cm·l. FAB +ve MS: rn/z 370 corresponds 

to {'BU2P(S)NHP(S),Bu2}+' 

Zn['Bu2P(S)NP(S),Bu2h 21. A solution of 15 (0.050 g, 0.136 mmol), ZnCh (0.010 g, 

0.073 mmol) and KO'Bu (0.015 g, 0.134 mmol) in THF (20 ml) was refluxed for 1 

hour. On cooling the mixture was evaporated to dryness and dich10romethane added. 

The mixture was then filtered and the filtrate evaporated to dryness, giving a colourless 

oil. Microanalysis calculated for CnHnN2P4S4Zn: C 47.9; H 9.0; N 3.5 %. Observed: 

C 50.0; H 9.3; N 3.5 %. 3Ip_CH} NMR (CDCh): S(p A) 48.7(d), S(Px) 63.4(d) ppm. 

2JClp A_3Ipx) 26.4 Hz. FTIR (KBr disc): v (PNP) 1259, 1207,780; v (PS) 525; v 

(NPS) 438 cm·l. FAB +ve MS: mlz 801 corresponds to {Zn['Bu2P(S)NP(S),Bu2ht. 
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Pd['Bu2P(S)NP(S),Bu2h 27. A solution of 15 (0.050 g, 0.136 mmol), PdChCOD 

(0.019 g, 0.067 mmol) and KO'Bu (0.015 g, 0.134 mmol) in THF (20 ml) was refluxed 

for 1 hour changing colour from yellow to red/orange. On cooling the mixture was 

evaporated to dryness and dichloromethane added. The mixture was then filtered and 

the filtrate evaporated to dryness, giving a dark red oil. Microanalysis calculated for 

C32HnN2P4S4Pd: C 45.6; H 8.6; N 3.3 %. Observed: C 44.5; H 8.5; N 3.1 %. 31p_ 

CH} NMR (CDCh): o(p.0 49.1(d), o(Px) 64.3(d) ppm. 2Je l pA-3Ipx) 18.2 Hz. FTIR 

(KBrdisc): v (PNP) 1248, 1164; v (PS) 531 cm·l . FAB +ve MS: m/z 843 corresponds 

to {Pd['Bu2P(S)NP(S),Bu2h t. 
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CHAPTER 4: 

DIETHOXY-DIPHENYL-DITIDOIMIDODIPHOSPIDNATE, 

ITS MIXED SULFUR I OXYGEN ANALOGUES AND THEIR 

COORDINATION CHEMISTRY 

4.1. Introduction. 

Further to our work on alkyl substituted dithioimidodiphosphinates with 

varying steric effects, we have also studied imidodiphosphinates with varying 

electronic effects, namely substituent groups of differing electronic character (ethoxy 

and phenyl), and differing donor atoms on each phosphorus. The three compounds 

(EtO)zP(S)NHP(S)Phz (31), (EtO)zP(S)NHP(O)Phz (32) and (EtO)zP(O)NHP(S)Phz 

(33) were synthesised and coordinated to platinum, palladium and zinc. 

RESULTS AND DISCUSSION 

4.2. Ligand Syntheses. 

The syntheses of31, 32 and 33 were based upon a literature preparation for 

preparing compounds with mixed substituent groups ZI (Equation 4.1). The amine and 

halide are "clipped" together with sodium hydride in THF. It should be noted the 

mixed S I 0 compounds are unstable to heat. The salts were then protonated with 

dilute hydrochloric acid giving the neutralligands as oils which were recrystallised 

from the minimum of dichloromethane and petroleum ether giving colourless crystals 

(70 - 80 % yields) pure by elemental analyses. Characteristic bands were observed 

Hel (dil.) .. 

for R = Ph, R' = EtO. R = EtO, R' = Ph. E = S 10 
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in the FTIR, v (NH) 3060, S (NH) 1344 -1315, v (PO) 1196 - 1186, v (PNP) 976 - . 

936, 787 - 754 and v (PS) 646 - 630 cm>l. v (NH) could not be confidently assigned 

for 31. 

The 31p NMR spectra (CDCI3, Table 4.1) are of the AX type. For 31 the 

phosphorus centre with ethoxy substituents appears around 64 ppm as opposed to 53 

ppm for the phenyl substituted phosphorus with 2J phosphorus coupling of22.0 Hz in 

reasonable agreement for disulfur compounds of this type. However it is interesting to 

note the decrease in frequency for the phosphorus centres when the sulfur is replaced 

by an oxygen. In 32 the phenyl substituted phosphorus centre is reduced by 33 ppm 

Table 4.1. Chemical shifts and [P-P] coupling constants in 31 p NMR (CDCI3) 

for (EtO)2P(E)NHP(S)Ph2 (E = S/O) and (EtO)2P(S)NHP(0)Ph2· 

S/ppm 
PI 

(EtO)2P(S)NHP(S)Ph2 31 63.6 
(EtOhP(S)NHP(O)Ph2 32 64.1 
(EtOhP(O)NHP(S)Ph2 33 0.1 

P I denotes the ethoxy substituted phosphorus atoms. 

P 2 denotes the phenyl substituted phosphorus atoms. 

P2 
53.3 
19.7 
53.3 

"' J C'P-"P) 1 Hz 

22.0 
17.6 
13.2 

and the 2J [P-P] coupling is reduced by around 4 Hz in contrast to the ethoxy 

substituted phosphorus in 33 where the decrease is 64 ppm and the 2J phosphorus 

coupling is reduced by 9 Hz. Evidently the larger differences seen in the case of 33 are 

due to a greater electron withdrawing effect. Furthermore solid state 31p NMR was 

studied for 31 giving a doublet as expected (63.5,52.6 ppm, 2J elp_3Ip} = 1324.5 Hz) 

for the two inequivalent phosphorus environments. 

All three compounds were studied by X-ray single crystal analysis> 31 was 

observed to be a unique cisoid dimer (Figure 4.1), the phosphorus with the phenyl 

substituents being pendant thus reducing any steric crowding. The SP ... PS torsion 

angle is 87.0 0 which is comparable to the cisoid 1 (79 0
). The P(l)-S(l) bond at 

1.937(1) A is considerably longer than the pendant P(2)-S(2) bond length of 1.920(2) 
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A as expected. Indeed the S""H hydrogen bond is relatively strong at 2.452(3) A while 

the N(I)-H(ln) bond length is 1.063(2) A in good agreement with the alkyl 

substituted dimers from Chapter 3. The P-N bonds are 1.67 - 1.68 A and the P-N-P 

bond angle is 129.9(2) 0. 

Q X 
\ 0 ~ S1* 

01'~ 
~--a~,-="",,~ ~ 

02;jP2' • ~ N1' ~ ~ 
S2* H1n* ~O~ 

O~ H1n S2 
I 0 0 0 
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01 0 
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Figure 4.1. Crystal structure of (EtO)2P(S)NHP(S)Ph2 dimer. 

33 was found to be a typical (rans dimer (Figure 4.2) with a SP ... PO torsion 

angle of 172.3 0, much closer to the planar SPNPS backbone as has been observed 

previously. As expected the hydrogen bonding contact to form the dimer is through 

the oxygen, again with the phenyls substituted on the pendant phosphorus. The P(I)-
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S(I) bond length is 1.931(1) A and the P(2)-O(I) bond length is 1.457(2) A. The P(2)~ 

N(1) bond length of 1.632(3) A is short compared to the P(1)-N(1) length of 1.679(3) 

A. The N(I)-H(ln) bond length is 0.925(2) A, the O···H hydrogen bond is 1.876(4) A 

and the P-N-P bond angle is 130.5(1) 0. 
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Figure 4.2. Crystal structure of (EtOhP(O)NHP(S)Ph2 dimer. 

In contrast to the trans dimers, 32 is a cisoid structure (Figure 4.3) with a 

SP ... PO torsion angle of79.5 0 and exists as an hydrogen bonded chain similar to 1. 

Whilst the hydrogen bonding is through the oxygen, there is far too much steric 

hindrance from the phenyl substituents on the phosphorus to allow the formation of a 

dimer. The P(2)-S(I) bond length at 1.895(3) A is slightly shorter than previously 

observed P-S bonds and the P(2)-N(I) bond length of 1.662(4) A is not significantly 

80 



different to the P(I)-N(I) bond at 1.673(4) A. The P(I)-O(1) bond is 1.476(3) A, the. 

N(I)-H(ln) bond is 1.064(3) A and the P-N-P angle is 122.6(2) 0, the smallest angle 

P-N-P observed in this work. 

S1 

o 

02 

03 

o 

Figure 4.3. Crystal structure of (EtO)2P(S)NHP(O)Ph2. 

It is interesting to note (Table 4.2) how short the P-S bond length is for 32 

(1.90 A) in comparison to those for the other compounds (1.92 - 1.94 A). Similarly 

the P-O distance for 33 is 0.02 A shorter than that for 32 and the P-N bond lengths 

vary greatly in 33, from 1.63 A to 1.68 A. All these 'observations can be explained by 

the electron withdrawing effect of the ethoxy groups. The short P-S bond length in 32 

is due to two factors; the pendant sulfur and the electron withdrawing effect of the 
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Table 4.2. Selected bond lengths (A) and angles (0) for (EtO),P(E)NHP(S)Ph2 

(E = SI 0) and (EtO),P(S)NHP(0)Ph2• 

31 33 32 
(EtOhP(S)NHP(S)Pbz (EtOhP(O)NHP(S)Pbz (EtOhP(S)NHP(O)Pbz 

S(1)-P(1) 1.937(1) 1.931(1) -
S(2)-P(2) 1.920(2) - 1.895(3) 
O(I)-P(1) - - 1.476(3) 
0(1)-P(2) - 1.457(2) -
P(1)-N(I) 1.681(3) 1.679(3) 1.673(4) 
P(2)-N(l) 1.667(3) 1.632(3) 1.662(4) 

P(1)-N(I)-P(2) 129.9(2) 130.5(1) 122.6(2) 
S-P ... P-E 87.0 172.3 79.5 

N(1)-H(1n) 1.063(2) 0.925(2) 1.064(3) 

ethoxy groups. Similarly the shortest P-O and P-N bonds are observed in 33 due to 

the combined electron withdrawing effects of the ethoxy substituents and the oxygen 

on the phosphorus involved. There is no obvious reason to explain the shortness of the 

N-H bond for 33, the small P-N-P bond angle of 122.6(2) ° observed for 32, or the 

varying S-P ... P-E torsion angles. It is unlikely to be due to steric effects, both 31 and 

33 contain a bulky phenyl substituted phosphorus with a sulfur donor atom, yet their 

torsion angles are 87.0 and 172.3 ° in contrast to the angle of 79.5° for 32 where the 

phenyl substituted phosphorus is attached to the much smaller oxygen donor atom. 

4.3.1 Zinc Complexes of31, 33 and 32. 

One mole of zinc chloride and two moles of KO'Bu were refluxed with two 

moles of 31 or stirred at room temperature with two moles of 33 and 32 in THF. The 

solvent was then evaporated off, dichloromethane added and the mixture was filtered. 

The filtrate was evaporated to dryness yielding in each case an opaque white oil. For 

Zn[(EtO),P(0)NP(S)Ph2h (36) the oil yielded a small amount of crystals from the 

minimum of dichloromethane at - 10°C which were subsequently studied by single 

crystal analysis. All complexes gave reasonable elemental analyses and the FAB +ve 

mass spectra revealed the expected parent ions of Zn[(EtO),P(S)NP(S)Ph2h (34) as 

well as (36) and Zn[(EtO),P(S)NP(0)Ph2h (35). Characteristic bands were observed 
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in the FTIR (Table 4.3). Again the characteristic shifts in the v (PNP) vibration from 

around 950 to 1239 - 1262 cm-I, the v (PO) band from around 1190 to 1050 cm-I 

Table 4.3. FTIR assignments for Zn[(EtO)2P(E)NHP(S)Ph2h (E = S/O) and 

Zn[(EtOhP(S)NHP(0)Ph2h (cm-I). 

v(PNP) v (PO) v (PS) v(NPS) 
34 1239, 764 - 552 416 
36 1255, 747 1057 583 421 
35 1262, 747 1049 562 402 

and the v (PS) vibration from 640 to 552 - 583 cm-I all signify the change in bond 

order within the ligand due to the delocalisation of the negative charge. 

Signals observed in the 31p NMR in CDCI3 (Table 4.4) were two doublets of 

the AX type spectrum. The shift has decreased by 17 - 20 ppm for both phosphorus 

centres in the disulfur ligand, however somewhat surprisingly the 2 J phosphorus 

coupling has increased slightly. The shift of the ethoxy substituted phosphorus of36 

(with the oxygen donor atom) increased by 5 ppm upon coordination / deprotonation 

whilst the phenyl substituted phosphorus is in good agreement with 34. Furthermore 

the 2J phosphorus coupling has increased by 9 Hz from 33. In contrast the shift of the 

phenyl substituted phosphorus of35 (with the oxygen donor atom) has increased by 

only I ppm and the 2J phosphorus coupling has increased by 6.5 Hz. 

Table 4.4. Chemical shifts and [P-P] coupling constants in 31 p NMR (CDCI3) 

for Zn[(EtO)2P(E)NHP(S)Ph2h (E = S/O) and Zn[(EtO)2P(S)NHP(0)Ph2]2' 

o/ppm 
PI P2 2J elp}lp) I Hz 

Zn[(EtOhP(S)NP(S)Ph2h 34 46.9 36.3 26.4 
Zn[(EtOhP(0)NP(S)Ph2h 36 5.4 35.6 22.0 
Zn[(EtOhP(S)NP(0)Ph2h 3S 43.4 21.6 - 24.2 

.. 

PI denotes the ethoxy and P2 denotes the phenyl substituted phosphorus atoms. 
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The P-S and p-o bonds in the crystal structure of 36 (Figure 4.4) lengt.lten and 

the P-N bonds shorten upon deprotonation / coordination as indicated by the increase 

of the v (PNP) vibration in the FTIR. The Zn-S bond is 0.025 A shorter for 36 than for 

2 and the S-P-N angles compare well. The S-P-N and O-P-N angles for 36 are equal 

and the P-N-P angle increased by 4 0 upon coordination. 

Table 4.5. Selected bond lengths (A) and angles (") for 

(EtO)2P(0)NHP(S)Ph2, Zn[(EtO)2P(0)NHP(S)Ph2h and Zn[ipr2P(S)NP(S) ipr2h. 

33 36 2 
(EtO),P(O)NHP(S)Ph, Zn[(EtO),P(O)NP(S)Ph,I, Zn[ipr,P(S)NP(S)ipr,I, 

P(I)-S(I) 1.931(1) 2.013(2) 2.032(1) 
P(2)-0(1) 1.457(2) 1.47.9(3) -
P(I)-N(I) 1.679(3) 1.579(3) 1.581(2) 
P(2)-N(I) 1.632(3) 1.551(3) -
Zn-S(I) - 2.318(1) 2.345(1) 
Zn-O(I) - 1.946(3) -

S(I)-P(I)-N(I) 114.24(10) 118.4(1) 118.5(1) 
0(1)-P(2)-N(I) 111.0(1) 118.5(2) -
P(1)-N(I)-P(2) 130.5(1) 134.1(2) 140.5(3) 
Zn-S(I)-P(1) - 97.98(5) 107.1(1) 
Zn-0(1)-P(2) - 129.0(2) -

The Zn-S-P angle is 97.98(5) 0, unexpectedly low for a tetrahedral complex, 

9 0 less than 2. Such a small angle has ;mly previously been observed for square 

planar complexes with an MS2P2N ring in the "chair" confonnation. In contrast the 

very large Zn-O-P angle at 129.0(2) 0 is the main reason for the Zn-O-P-N-P atoms to 

be in plane, indeed the MEzP2N ring (E = S / 0) is only prevented from being planar 

by the sulfur atom. 
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4.3.2 Square Planar Complexes of 31, 33 and 32. 

One mole of MCI2COD (M = Pd, Pt) and two moles of KOtBu were refluxed 

with two moles of 31 or stirred at room temperature with two moles of 33 and 32 in 

lBF. The solvent was then evaporated off and after the addition of dichloromethane 

the mixture was filtered. The filtrate was evaporated to dryness yielding deep red oils 

for the palladium complexes and yellow oils for the platinum complexes with the 

exception ofPd[(EtO)2P(S)NP(S)Ph2h (37) and Pt[(EtO)2P(S)NP(S)Ph2h (38) which 

yielded red and yellow solids. All were dissolved in the minimum of dichloromethane 

and hexane was added, though only 37 and 38 crystallised (95 % yield). In addition 

one mole of31, KOtBu and NaBP", were refluxed with one mole ofPtCliPMe3h in 

THF producing Pt(pMe3h[(EtO)2P(S)NP(S)Ph2t BP",- (43) which was isolated by 

evaporating to dryness, washing with methanol then recrystallising from acetone (76 

% yield). Satisfactory elemental analyses were observed for all complexes and 

expected parent ions in the F AB +ve mass spectra were observed for the palladium 

complexes Pd[(EtO)2P(S)NP(O)Ph2h (39) and Pd[(EtO)2P(O)NP(S)Ph2h (41) at 843 

rn/z, and the platinum complexes Pt[(EtOhP(S)NP(O)Ph2h (40) and 

Pt[(EtO)2P(O)NP(S)Ph2h (42) at 932 rn/z. Bands observed in the FTIR for v (PNP) 

were 1206 - 1259 cm-!, v (PS) were 539 - 570 cm-! and v NPS vibrations at 420 - 426 

cm-! were only observed for 37 and 38. Surprisingly no bands were observed that 

could be confidently assigned as v (PO). Furthermore 37, 38 and 43 were studied by 

single crystal analysis. 

37 was observed to be a typical square planar complex with the MS2P2N ring 

adopting the distorted boat formation (Figure 4.5). Interestingly the Pd-S(I) bond at 

2.325(1) A is shorter than the Pd-S(2) bond, whereas the S(I)-P(I) bond at 2.207(1) 

A is longer than the S(2)-P(2) bond, and the P(I)-N(I) bond is approximately 0.028 A 

longer than the P(2)-N(I) bond of 1.566(3) A. The electron withdrawing effect of the 

ethoxy substituents causes the S(2)-P(2) and P(2)-N(I) bonds to be slightly shorter. 

Pd-S-P bond angles are 101.09(5) and 110.08(5) 0, the S-P-N angles are 116.7(1) and 

117.4(1) 0 and the P-N-P angle is 125.1(2) 0 as expected for a square planar distorted 

boat type structure. 
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Figure 4.5. Crystal structure ofPd[(EtO)2P(S)NP(S)Ph2h. 
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In contrast 38 showed a completely novel structure (Figure 4.6), one MS2P2N 

ring adopting the distorted boat fOlmation and the other MS2P 2N ring adopting the 

chair fonnation, so both known confonnations of the MS2P2N ring for square planar 

complexes are observed in the same compound. Comparing values for the boat and 

chair confonnations in the molecule (Table 4.6), the only significant bond length 

difference is between the P-N bonds where the P(2)-N(I) length is 0.1 A less than 

P(I)-N(l) whereas the P-N bonds are very nearly equal for the chair part of the 

molecule. The more characteristic differences between the two confonnations are in 

the bond angles. The M-S-P angles for the boat confonnation are 105 - 112 ° as 

opposed to 100 - 102 ° for the chairconfonnation. The S-P-N angles are all very 

similar at 116 - 120 ° in contrast to the S-M-S angles which differ quite greatly by 8 ° 

implying the square planar geometry at the metal centre is somewhat distorted for the 

boat confonnation. The boat P-N-P angle is 2.5 ° greater at 127.8 o. 

Table 4.6. Selected bond lengths (A) and angles (") for 

M[(EtO)2P(S)NHP(S)Ph2h (M = Pd, Pt). 

37 38 
"Boat" "Boat" 

M-S(l) 2.3250(9) 2.338(4) M-S(3) 
M-S(2) 2.345(1) 2.330(4) M-S(4) 

S(l)-P(l) 2.027(1) 2.028(6) S(3)-P(3) 
S(2)-P(2) 2.011(l) 2.008(6) S(4)-P(4) 
P(l)-N(l) 1.594(3) 1.60(1) P(3)-N(2) 
P(2)-N(1) 1.566(3) 1.49(2) P(4)-N(2) 

S(1)-M-S(2) 81.66(3) 100.4(l) S(3)-M-S(4) 
M-S(l)-P(l) 110.08(5) 105.2(2) M-S(3)-P(3) 
M-S(2)-P(2) 101.09(5) 111.9(2) M-S(4)-P(4) 

S(I)-P(I)-N(I) 116.7(1) 116.1(6) S(3)-P(3)-N(2) 
S(2)-P(2)-N(I) 117.4(1) 118.1(6) S(4)-P(4)-N(2) 
P(l)-N(l)-P(2) 125.1(2) 127.8(9) P(3)-N(2)-P(4) 

-
Bond lengths for the two MS2P2N rings of the boat confonnation are 

"Chair" 
2.330(4) 
2.339(4) 
2.027(5) 
2.008(6) 
1.60(1) 
1.57(1) 
92.8(1) 
101.8(2) 
99.5(2) 
116.4(5) 
119.9(5) 
125.1(7) 

comparable with the exception of the P(I)-N(I) and P(2)-N(l) bonds which for 37 are 

1.57 - 1.59 A compared to 1.49(2) A {P(2)-N(l)} and 1.60(1) A {P(I)-N(l)} for 38. 
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Figure 4.6. Crystal structure ofPt[(EtO)2P(S)NP(S)Ph2h 
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Furthennore the bond angles are quite different, the S-M-S angle for 37 is 18 0 less 

than for 38. The M-S-P angles are slightly smaller for 37 at 101 - 110 0 compared to 

105 - 112 0 for 38. The S-P-N angles are comparable at 116 - 118 0 and the P-N-P 

angle for 38 at 127.8 0 is 3 0 greater than 37. 

In contrast the structure of the square planar bis(trimethylphosphine)platinum 

complex (Figure 4.7, Table 4.7) shows attributes that have been observed in square 

planar "chair", "boat" and tetrahedral complexes. The Pt-S bond lengths differ by 0.02 

A and are 0.03 - 0.05 A longer than those observed for 38. In comparison the S(2)

P(2) bond length is 0.04 A shorter than S(I)-P(1) and the P(2)-N(I) bond is 0.08 A 
shorter than the P(1)-N(I) bond. These differences may best be explained by the 

electron withdrawing effect of the ethoxy substituents on the P(2) phosphorus, which 

Table 4.7. Selected bond lengths (A) and angles (") for 

{Pt(PMe3MCEtOhP(S)NP(S)Ph2] }+. 

Bond lengths Bond angles 
Pt-S(1) 2.371(3) S(I)-Pt-S(2) 88.7(1) 
Pt-S(2) 2.395(3) Pt-S(1)-P(l) 97.3(1) 

S(1)-P(1) 2.026(4) Pt-S(2)-P(2) 108.1(2) 
S(2)-P(2) 1.987(5) S(l)-P(1)-N(1) 116.4(4) 
P(1)-N(1) 1.608(9) S(2)-P(2)-N(1) 120.1(4) 
P(2)-N(1) L522(10) P(I)-N(1)-P(2) 132.0(6) 

as a result produce a slightly longer Pt-S(2) bond. The difference in Pt-S-P angles is 

significant, Pt-S(I)-P(I) at 97.3(1) 0 is consistent with a "chair" type confonnation for 

the PtS2P2N ring whereas the Pt-S(2)-P(2) angle of 108.1(2) 0 implies a "boat" type 

confonnation. Furthennore the large angles of S(2)-P(2)-N(I) at 120.1 (4) 0 and P(1)

N(l)-P(2) at 132.0(6) 0 are more consistent with a tetrahedral "boat" type MS2P2N 

ring confonnation rather than any sort of square planar complex. In this case the 

PtS2P2N ring can only be described as puckered. 

Signals observed in the 31p NMR revealed an ABeD type spectrum (Figure 

4.8, Table 4.8, Figure 4.9) with much 3J (3!p_3Ip) coupling which was not observed for 

{Pt(PMe3h[N(ipr2PS)21} +. 
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Figure 4.7. Crystal structure of {Pt(PMe3M(EtOhP(S)NP(S)Ph2]} +. 
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Figure 4.8. Phosphorus atoms labelled for 

{Pt(PMe3MCEtOhP(S)NP(S)Ph2]} +. 

P A> PB and Pc all give well resolved doublets of triplets, the platinum satellites 

were partially obscured for P A and PB' Cis 3J [P-P] coupling was found to be of equal 

magnitude to trans 3J [P-P] coupling for P A and PB' Despite the partial overlap of the 

triplets in the Po signal seven peaks were observed as the difference between the 

3J[po-PB] trans and the 3J[Po-p Al cis coupling constants was resolved as 2.0 Hz. It is 

Table 4.8. 31p NMR parameters for {Pt(PMe3h[(EtO)2P(S)NP(S)Ph2]} +BPh.j. 

Sfppm [J(P-P)]fHz [J(P-Pt)]fHz 
PA PB Pc Po Pt 

PA 45.9 - 65.4 
PB 34.3 25.8 - 57.5 
Pc -19.8 7.9 9.9 - 3104.3 
Po -18.0 7.9 9.9 21.8 - 3062.7 

interesting to note the difference of 8 Hz between the 2J(lp A)95pt) and 2J(lpB_195Pt) 

coupling constants. Despite the different electronic effects of the substituent groups on 

P A and PB, it could further be explained by the Pt-S-P bond angles (Pt-S-P A 108.1°, 

Pt-S-PB 97.3 0). Given that a larger angle may imply a greater proportion of s 

character in the hybridised sulfur, this greater proportion of s character is likely to 

increase the magnitude of the platinum-phosphorus coupling 59. This assumption is 

supported by the crystal structure data. 

Two sets of two doublets (AX type spectra) were observed for 37,38 and 41, 

in each case the chemical shifts were very similar as was the coupling (Table 4.9). For 

37 and 38 this is most likely due to the presence of the MS2P2N ring "chair" and 
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Figure 4.9. 3Ip_eH) NMR spectrum ofPt(PMe3M(EtO)2P(S)NP(S)Ph2]}+ 
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"boat" conformations (Figure 4.10). The crystal structure of 38 indicates there is very 

little energy difference between the two conformers in the solid state. Indeed 

considering the intensity of the two sets of doublets is approximately equal the two 

Table 4.9. Chemical shifts and [P-P] coupling constants in 31p NMR (CDCb) 

for M[(EtO)2P(E)NHP(S)Ph2h (M = Pd, Pt; E = S/O) and M[(EtO)2P(S)NHP(0)Ph2h 

(M =Pd, Pt). 

o/ppm ZJe1p_31p) I Hz 

PA Px PA' px' [PA-Pxl [PA·-PX·] 

Pd[(EtOhP(S)NP(S)Phz]z 50.5 40.5 50.4 40.9 27.5 26.7 
Pt[ (EtO)lP(S)NP(S)Ph1h 44.2 37.8 44.1 38.3 25.6 25.3 
Pd[(EtO)lP(O)NP(S)Ph1h 3.9 3.6 28.4 27.4 24.5 29.7 
Pt[(EtOhP(O)NP(S)Ph1Jl 0.4 24.9 - - 23.4 -
Pd[(EtO)lP(S)NP(O)Ph1]1 58.6 21.8 - - 13.4 -
Pt[(EtO)lP(S)NP(O)Ph1Jl 65.4 19.7 - - 18.7 -

PAl A' denotes the ethoxy and PX/X' denotes the phenyl substituted phosphorus atoms. 

conformers may well be in equilibrium. Unfortunately no platinum satellites could be 

confidently resolved or assigned for any of the spectra, however 37 was studied by 

variable temperature 31p NMR (d6-DMSO) increasing the sample temperature to 85°C 

(Table 4.10). The two AX type spectra observed for 37 were not clearly resolved in 

d6 -DMSO at 298 K, it is possible the stronger polarity of the solvent affects the "boat" 

versus "chair" conformational equilibrium of the MS2P2N ring. At 318 K the doublets 

observed as signals representing the A and A' phosphorus atoms had merged into a 

single doublet whilst the signals representing the X and X' phosphorus atoms remained 

as two doublets. At 338 K the two remaining doublets had coalesced. We propose that 

at this temperature one MS2P2N ring conformation predominates. 
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d6 DMSO, 318 K 

Figure 4.10. 3Ip_eH} VT NMR spectra ofPd[(EtO)2P(S)NP(S)Ph2h-
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Table 4.10. Chemical shifts and phosphorus-phosphorus coupling constants in 

3Ip VT NMR ofPd[(EtO)2P(S)NP(S)Ph21z. 

a/ppm J[P-P] / Hz 
Pd[(EtO)2P(S)NP(S)Ph2h PA Px PA' PX' [PA-Pxl [P A'-PX'] 

298 K (CDCI3) 50.5 40.5 50.4 40.9 27.5 26.7 
298 K(dV-DMSO) 54.1 44.3 - 44.1 26.9 25.1 
318 K (d"-DMSO) 54.2 44.4 - 44.2 26.9 25.1 
338 K(dV-DMSO) 54.3 44.5 - - 26.0 -

PAl A' denotes the ethoxy and PX1 x' denotes the phenyl substituted phosphorus atoms. 

In regard to 41 there are many possible explanations for its two sets of 

doublets. It may simply be cis and trans isomers of the square planar complex or the 

"chair" and "boat" equilibrium. The most plausible explanation is probably differing 

donor atoms. The oxygen donor atom bound to the phosphorus with ethoxy 

substituents is quite "hard" so it may be pendant while coordination occurs through 

the sulfur and nitrogen atoms (Figure 4.11), similar to the reported palladium complex 

53 Pd[(PhO)2P(S)NP(O)(OPh)2h- Stronger 2J [P-P] coupling might be expected as the 

ethoxy substituted phosphorus is pendant and the phenyl substituted phosphorus is 

directly involved in the coordination which would explain the strongest 2J coupling 

observed in all the square planar complexes of29.7 Hz for this compound. However 

Ph2 
p-s 0 
1 1 11 

(EtO)2P-N-Pd-N-P(OEth 
11 1 1 
o S-PPh2 

Figure 4.11. Proposed structures of Pd[(EtO)2P(O)NP(S)Ph2h-

the shifts for the ethoxy substituted phosphorus atoms differ by only 0.3 ppm where a 

larger difference might be expected. The second compound present with 2 J coupling 

of 24.5 Hz is most likely the expected complex (Figure 4.11) with sulfur and oxygen 

acting as the donor atoms. 
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The corresponding platinum complex has the lowest shift for the ethoxy 

substituted phosphorus (0.4 ppm) and similarly the lowest shift for the phenyl 

substituted phosphorus with sulfur donor atom (24.9 ppm), a decrease of 13 ppm from 

38. This contrasts with the marked increase in the shift of the ethoxy substituted 

phosphorus for 40 to 65.4 ppm, IS ppm greater than for 38. By the same token the 

phenyl substituted phosphorus does not decrease as greatly when attached to the 

oxygen donor atom. These differences may be due to the different electronic character 

of the substituents, most noticeably the electron withdrawing affect of the ethoxy 

groups. 
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4.4 Experimental 

Ph2P(S)Cl was fonned by anaerobically refluxing diphenylchlorophosphine (12.30 g, 

10.0 ml, 0.053 mol) with sulfur (1.70 g, 0.053 mol) overnight in toluene (30 ml). The 

solvent was evaporated off and the residual clear oil (13.31 g; 3Ip_eH} NMR 

(CDCI3): S 79.4 ppm). 

Ph2P(S)NH2 was fonned by bubbling ammonia gas through a solution of 

Ph2P(S)Cl ( 4.00 g, 15.84 mmol) in ether (100 ml) for 20 minutes. After filtering the 

reaction mixture through celite, the filtrate was evaporated to dryness giving a white 

solid (3.62 g; 3Ip_eH} NMR (CDCI3): S 59.7 ppm). 

(EtO)2P(S)NH2 was fonned by bubbling ammonia gas through a solution of 

diethylchlorothiophosphate (24.00 g, 20.0 ml, 0.127 mol) in ether (100 ml) for 20 

minutes. After filtering the reaction mixture through celite, the filtrate was evaporated 

to dryness giving a residual oil (21.36 g; 3Ip_eH} NMR (CDCI3): S 74.2 ppm). 

(EtO)2P(S)NHP(S)Ph2 31. Under anhydrous conditions, sodium hydride (60% 

dispersion in paraffin oil 1.69 g, 0.042 mol) was added to a solution of 

(EtO)2P(S)NH2 (2.38 g, 0.014 mol) in THF (30 ml) at 0 GC. The mixture was allowed 

to warm to room temperature and stirred for 30 minutes, then Ph2P(S)CI (3.53 g, 

0.014 mol) was added dropwise at 0 GC. After addition was complete the mixture was 

warmed to room temperature and then refluxed overnight. Upon cooling methanol (5 

ml) was added dropwise to destroy any excess sodium hydride. The volume of the 

THF was then reduced by half under vacuum and 2M aqueous HCI (50 ml) was 

added, producing a cloudy white mixture which was washed with dichloromethane (3 

x 20 ml). The dichloromethane was dried over MgS04 then evaporated to dryness to 

give a white solid 31 which was recrystallised from dichloromethane and hexane 

(4.22 g, O.Qllmol, 78.3 % yield, mp 62°C). Microanalysis calculated for 

CI6H21N02P2S2 : C 49.9; H 5.5; N 3.6 %. Observed: C 49.8 ; H 5.4 ; N 3.6 %. 31p_ 

eH} NMR (CDCI3): S(P A) 63.6(d), S(Px) 53.3(d) ppm. 2J elp A_
3I PX) 22.0 Hz. FTIR 

(dichloromethane solution, CsI plates at 100 microns): v (N-H) 3331 cm-I; (KBr disc): 

v (N-H) 3200, S (N-H) 1298; v (PNP) 976, 768; v (PS) 646, 634 cm-I. 
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Zn [(EtO)2P(S)NP(S)Ph2h 34. A solution of 31 (0.100 g, 0.260 mmol), KO'Bu (0.029 

g, 0.260 mmol) and ZnCh (0.018 g, 0.132 mmol) in THF (20 m!) was refluxed for 1 

hour. On cooling the mixture was evaporated to dryness and dichloromethane added. 

The mixture was then filtered and the filtrate evaporated to dryness yielding a 

colourless oil. Microanalysis calculated for C32RION204P4S4Zn: C 46.1; H 4.8; N 3.4 

%. Observed: C 49.3; H 6.1; N 3.1 %. 3Ip·eH} NMR (CDCh): o(p,0 46.9(d), o(px) 

36.3 ppm. 2JelpA)lpx) 26.4 Hz. FTIR (KEr disc): v (PNP) 1239,764; v (PS) 552; 0 

(NPS) 416 cm-I. FAB +ve MS: m1z 833 corresponds to {Zn [(EtO)2P(S)NP(S)Ph2h}+. 

Pd[(EtOhP(S)NP(S)Ph2h 37. PdCODCh (0.050 g, 0.175 mmol) was added to a 

solution of 31 (0.135 g, 0.351 mmol) and KO'Bu (0.039 g, 0.348 mmol) in THF (20 

ml) and refluxed for 1 hour. The reaction changed colour from yellow to red/orange. 

On cooling the mixture was evaporated to dryness and dichloromethane added. The 

mixture was filtered and the filtrate evaporated to dryness. Crystals of 37 were grown 

from dichloromethane and hexane (0.145 g, 0.166 mmo1, 94.7 % yield). Microanalysis 

calculated for C32&oN204P4S4Pd: C 43.9; H 4.6; N 3.2 %. Observed: C 43.6; H 4.6; 

N 2.8 %. 3Ip·CH} NMR (CDCh): o(P,0 50.5(d), o(px) 40.5(d) ppm. 2J e lpA•3Ipx) 

27.5 Hz. o(P A') 50.4(d), o(Px,) 40.9(d) ppm. 2J elpA,·3IPx') 26.7 Hz. FfIR (KBr disc): 

v (PNP) 1206,773; v (PS) 563, 555; v (NPS) 420 cm·l. 

Pt[(EtOhP(S)NP(S)Ph2h 38. PtCODCh (0.050 g, 0.134 mmol) was added to a 

solution of 31 (0.103 g, 0.267 mmol) and KO'Bu (0.030 g, 0.267 mmol) in THF (20 

ml) and refluxed for 1 hour. The reaction changed colour from clear to yellow. On 

cooling the mixture was evaporated to dryness and dichloromethane added. The 

mixture was then filtered and the filtrate evaporated to dryness. Crystals of 38 were 

grown from dichloromethane and hexane (0.118 g, 0.123 mmol, 94.4 % yield). 

Microanalysis calculated for C32&oN204P4S4Pt: C 39.9; H 4.2; N 2.9 %. Observed: C 

41.2; H 3.9; N 3.0 %. 3Ip·eH} NMR (CDCh): O(PA) 44.2(d), o(Px) 37.8(d) ppm. 2J 

flpA·3IPX) 25.6 Hz. o(PA') 44.1(d), o(Px,) 38.3(d) ppm. 2J flpA,·3IPX') 25.3 Hz. No 
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2J(19Spt_3Ip) coupling was observed that could be confidently assigned. FTIR (KBr 

disc): v (PNP) 1255, 1203; v (PS) 576, 552, 542; v (NPS) 426 cm·l. 

[Pt(PMe3h{ (EtO)2P(S)NP(S)Ph2}t BP14· 43. Pt(PMe3)2Ch (0.060 g, 0.144 mrnol) 

and NaBP14 (0.049 g, 0.143 mrnol) were added to a solution of31 (0.055 g, 0.143 

mmol) and KO'Bu (0.016 g, 0.143 mmol) in THF (30 ml) and refluxed for 1 hour. On 

cooling the mixture was evaporated to dryness and washed with methanol (2 x 5 ml). 

A white solid was filtered off and crystallised from acetone (0.114 g, 0.109 mmol, 75.6 

% yield). Microanalysis calculated for C46Hs8P 402S2BNPt : C 52.6; H 5.6; N 1.3 %. 

Observed: C 52.2; H 5.6; N 1.1 %. 3Ip_CH} NMR (CDCh): o(P.0 45.9(dt), O(PB) 

34.3(dt), o(Pc) -19.8(dt), o(po) -18.0(m) ppm. 2JelpA-3IPB) 25.8, 2Jelpc-3Ipo) 21.8, 

3JelpA)lpc) 7.9, 3JelpA-3IPo) 7.9, 3Je lpB)lpo) 9.9 Hz, 3JelpB-3Ipc) 9.9 Hz; 2JelpA-

195Pt) 65.4, 2JelpBy spt) 57.5, IJelpc_19Spt) 3104.3, IJe lpo-'9Spt) 3062.7 Hz. FTIR 

(KBr disc): v (PNP) 1267, 1206, 784; v (PS) 570, 539 cm·l. 

(EtO)2P(S)NHP(0)Ph2 32. A further amount of the amine made in the synthesis for 31, 

(EtO)2P(S)NH2 (1.80 g, 10.6 mmol) was dissolved in THF (50 ml) and 3 molar 

equivalents ofNaH (60% dispersion in paraffm oi11.26 g, 31.2 mmol) was added 

drop wise at 0 °C. The mixture was allowed to warm to room temperature and stirred 

for 30 minutes,then Ph2P(0)O (2.50 g, 10.6 mmol) was added dropwise at 0 °C. 

When the mixture was again at room temperature, it was stirred overnight Methanol 

(5 ml) was then added dropwise to destroy any excess sodium hydride. The mixture 

was reduced by half under vacuum before 2M aqueous HCl (50 ml) was added, 

producing a white precipitate which was extracted with dichloromethane (3 x 20 ml). 

The dichloromethane was dried over MgS04 then evaporated to dryness to give a 

yellow oil which was recrysta11ised from the minimum of dichloromethane and 

petroleum ether (40-60) yielding colourless crystals upon cooling (2.87 g, 7.77 mmol, 

73.1 % yield, mp 84°C). Microanalysis calculated for CI6H21N03P2S : C 52.0; H 5.7; 

N 3.8 %. Observed: C 52.5; H 5.7; N 3.6 %. 3Ip_{'H} NMR (CDCh): o(P.0 64.l(d), 

o(Px) 19.7 ppm. 2J (31p A_
3I px) 17.6 Hz. FfIR (dichloromethane solution, CsI plates at 
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100 microns): v (N-H) 3342 cm-I; (KBrdisc): v (N-H) not observed, 0 (N-H) 1344; v 

(PNP) 936, 913, 787; v (PO) 1196, 1128; (PS) 607 cm-I. 

Zn [(EtOhP(S)NP(O)ph2h 35. A solution of 32 (0.050 g, 0.135 mmol), KOtBu (0.015 

g, 0.134 mmol) and ZnCh (0.010 g, 0.073 mmol) in THF (20 ml) was stirred for 1 

hour. The mixture was then evaporated to dryness and dichloromethane added which 

was ftltered and the ftltrate evaporated to dryness yielding a colourless oil. 

MicroanaIysis calculated for C32RION206P4S2Zn: C 47.9; H 5.0; N 3.5 %. Observed: C 

45.9; H 4.9; N 3.3 %. 3Ip_CH} NMR (CDC!,): o(P.0 43.4(d), o(Px) 21.6(d) ppm. 

2JClpA-3Ipx) 24.2 Hz. FTIR (KEr disc): v (PNP) 1262, 1182,747; v (PO) 1161, 

1127;v (PS) 562; 0 (NPS) 402 cm-I. FAB +ve MS: rn/z 801 corresponds to 

{Zn[(EtO)2P(S)NP(O)Ph2h} +. 

Pd[(EtO)2P(S)NP(O)Ph2h 39. PdCODCh (0.019 g, 0.067 mmol) was added to a 

solution of 32 (0.050 g, 0.136 mmol) and KOtBu (0.015 g, 0.134 mmol) in THF (20 

m1) and stirred for 1 hour, changing colour from yellow to red/orange. The mixture 

was then evaporated to dryness and dichloromethane added which was ftltered and the 

filtrate evaporated to dryness giving a dark red oil. Microanalysis calculated for 

C32fuoN206P4S2Pd: C 45.6; H 4.8; N 3.3 %_ Observed: C 45.4; H 5.0; N 3.1 %. 31p_ 

CH} NMR (CDC!,): o(P.0 58.6(d), o(px) 21.8(d) ppm. 2J ClPA-3IPX) 13.4 Hz. FTIR 

(KBr disc): v (PNP) 1240; v (PO) 1126; v (PS) 625, 547 cm-I_ FAB +ve MS: rn/z 843 

corresponds to {Pd[(EtOhP(S)NP(O)Ph2ht. 

Pt[(EtOhP(S)NP(O)Ph2h 40. PtCODCh (0.020 g, 0.053 mmol) was added to a 

solution of 32 (0.039 g, 0.106 mmol) and KOtBu (0.012 g, 0.107 mmol) in THF (20 

ml) and stirred for I hour, changing colour from colourless to a yellow solution. The 

mixture was then evaporated to dryness and dichloromethane added which was filtered 

and the filtrate evaporated to dryness giving a yellow oil. Microanalysis calculated for 

C32fuoN206P4S2Pt: C 41.3; H 4.3; N 3.0 %. Observed: C 39.2; H 4.3; N 2.4 %. 31p_ 

CH} NMR (CDCb): O(PA) 65.3(d), o(Px) 19.7(d) ppm. 2J ClPA-3IPX) 18.7 Hz. No 2J 

Clp_195pt) coupling was observed that could confidently be assigned or calculated. 
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FTIR (KBr disc): v (PNP) 1259, 1161; v (PO) 1125; v (PS) 548 cm-I. FAB +ve MS: 

m/z 932 corresponds to {Pt[(EtOhP(S)NP(O)Ph2ht. 

(EtO)2P(O)NHP(S)Ph2 33. Ph2P(S)NH2 (3.62 g, 15.54 mmol) was dissolved in THF 

(50 mI) and 3 mole equivalents ofNaH (60% dispersion in paraffin oil, 1.86 g, 46.61 

mmol) was added dropwise at 0 ·C. The mixture was allowed to warm to room 

temperature and stirred for 30 minutes, then (EtOhP(O)CI (2.68 g, 2.25 ml, 15.54 

mmol) was added drop wise at 0 ·C. When the mixture was again at room temperature, 

it was stirred overnight. Methanol (5 ml) was then added dropwise to destroy any 

excess sodium hydride. The mixture was reduced by half under vacuum before 2M 

aqueous HCI (50 mI) was added, producing a white precipitate which was extracted 

with dichloromethane (3 x 20 ml). The dichloromethane was dried over MgS04 then 

evaporated to dryness to give another yellow oil which was recrystallised from the 

minimum of dichloromethane yielding colourless crystals upon cooling (4.62 g, 12.52 

mmol, 80.6 % yield, mp 174 ·C). Microanalysis calculated for CI6H21N03P2S : C 52.0; 

H 5.7; N 3.8 %. Observed: C 51.1 ; H 5.5; N 3.6 %. 3Ip_eH} NMR (CDCh): o(PA) 

O.I(d), 8(px) 53.3(d) ppm. 2J elpA-3Ipx) 13.2 Hz. FTIR (dichloromethane solution, 

Cs! plates at 100 microns): v (N-H) 3334 cm-I; (KBr disc): 0 (N-H) 1315; v (PNP) 

754; v (PO) 1186; v (PS) 630 cm-I. FT Raman (capillary sample): v (PO) 1159; v (PS) 

616 cm-I. 

Zn [(EtOhP(O)NP(S)Ph2h 36. A solution of 33 (0.050 g, 0.135 mmol), KOtBu (0.015 

g, 0.134 mmol) and ZnCh (0.010 g, 0.073 mmol) in THF (20 ml) was stirred for 1 

hour. The mixture was then evaporated to dryness and dichloromethane added which 

was filtered and the filtrate evaporated to dryness yielding a colourless oil. 

Microanalysis calculated for C32~oN206P4S2Zn: C 47.9; H 5.0; N 3.5 %. Observed: C 

47.0; H 4.8; N 3.5 %. 3Ip_eH} NMR (CDCh): Ii(P A) 5.4(d), Ii(Px) 35.6(d) ppm. 

2J(lp A_3Ipx) 22.0 Hz. FTIR (KBr disc): v (PNP) 1255, 1165,747; v (PO) 1112; v 

(PS) 583; Ii (NPS) 421 cm-I. FAB +ve MS: m/z 801 corresponds to 

{Zn[ (EtOhP(O)NP(S)Ph2h} +. 
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Pd[(EtO)2P(O)NP(S)Ph2h 41. PdCODCIz (0.019 g, 0.067 mmol) was added to a 

solution of 33 (0.050 g, 0.136 mmol) and KO'Bu (0.015 g, 0.134 mmol) in THF (20 

ml) and stirred for 1 hour, changing colour from yellow to redlorange. The mixture 

was then evaporated to dryness and dichloromethane added which was fIltered and the 

fIltrate evaporated to dryness giving a dark red oil. Microanalysis calculated for 

CnH.toN206P4S2Pd: C 45.6; H 4.8; N 3.3 %. Observed: C 44.4; H 4.9; N 3.1 %. 31p. 

eH} NMR (CDCh): O(PN 3.9(d), o(P0 28.4(d) ppm. 2J elpA•3lp0 24.5 Hz. O(PA') 

3.6(d), o(Px') 27.4(d) ppm. 2J elpA··3Ipx·) 29.7 Hz. FTIR (KBr disc): v (PNP) 1231, 

1165; v (PO) 1112; v (PS) 570,513 cm·l. FAB +ve MS: mlz 843 corresponds to 

(Pd[(EtO)2P(O)NP(S)Ph2h)+. 

Pt[(EtO)2P(O)NP(S)Ph2h 42. PtCODCIz (0.020 g, 0.053 mmol) was added to a 

solution of 33 (0.039 g, 0.106 mmol) and KO'Bu (0.012 g, 0.107 mmol) in THF (20 

ml) and stirred for 1 hour, changing colour from colourless to a yellow solution. The 

mixture was then evaporated tu dryness and dichloromethane added which was fIltered 

and the fIltrate evaporated to dryness giving a yellow oil. Microanalysis calculated for 

C32H.toN20 6P4S2Pt: C 41.3; H 4.3; N 3.0 %. Observed: C 41.9; H 4.5; N 2.5 %. 31p. 

eH) NMR (CDCh): o(PA) O.4(d), o(P0 24.9(d) ppm. 2J e lpA·3lp0 23.4 Hz. No 2J 

e lp.195pt) coupling was observed that could confidently be assigned or calculated. 

FTIR (KBrdisc): v (PNP) 1240, 1164; v (PO) 1181; v (PS) 618, 551 cm·l . FAB +ve 

MS: mlz 932 corresponds to {Pt[(EtO)zP(O)NP(S)Ph2ht. 
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CHAPTERS: 

MOLECULAR MODELLlNG STUDIES AND A CRYOSCOPIC 

lNVESTIGATION lNTO MOLECULAR WEIGHTS IN SOLUTION 

5.1 Introduction. 

Molecular modelling has been closely involved with the metals extraction 

research effort at Zeneca and in recent years progress in the application of computer 

assisted modelling has allowed the rapid development of a great variety of molecular 

modelling techniques which have now become powerful tools. Therefore most crystal 

structures have been studied with the semi-empirical MOP AC 93 program 61 using the 

MNDO 62 method. The square planar complex, 6, was studied with the ab initio ADF 

program 63 because there are no MNDO transition metal parameters with the exception 

of Zn, Cd and Hg. In order to compare the two methods 11 was also studied with 

ADF. 

In addition one area of particular interest has been whether the compounds 

which exist as hydrogen bonded trans dimers in the solid state are dimers in solution, 

particularly in a non-polar solvent such as cyclohexane. Some studies were performed 

to calculate heats of formation in solution using the COSMO methodology. These 

were then used to evaluate the solution dimerisation energies. The five compounds 1, 

10,11,12 and 31 were studied cryoscopically and their molecular weights in solution 

determined. All calculations were carried out on a Silicon Graphics Indigo 2 at the 

Zeneca Specialties Research Molecular Modelling Section. 

RESULTS AND DISCUSSION 

5.21 MNDO Models of Neutral Ligands. 

For the best comparison the neutralligands have been split into different 

structural groups (Figure 5.1), the cis hydrogen bonded chain, the trans hydrogen 

bonded dimers and the trans hydrogen bonded chain. The starting point for all of the 

semi-empirical calculations was the crystal structure of each compound. 
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Figure 5.1. Differing types of structure in the solid state. 

For the eisoid structures (Table 5.1) the agreement between calculated and 

observed P-S, P-O and P-N bond lengths is good, the greatest difference being 0.04 A 

for the P-S bond in (EtO)2P(S)NHP(O)Ph2. The P-N-P bond angles are also accurately 

predicted, differing by no more than 3 0. However the calculated S-P ... P-S torsion 

angle for ipr2P(S)NHP(S)ipr2 is out by 45 0 (Figure 5.2), closer to a trans geometry 

rather than eis, whereas the O-P ... P-S torsion angle for (EtO)2P(S)NHP(O)Ph2 agrees 

well. 

Table 5.1. Comparison of bond lengths (A) and angles 0 of the crystal 

structures and MNDO modelled structures of ipr2P(S)NHP(S)ipr2 and 

(EtO)2P(S)NHP(O)Ph2· 

'Pr2P(S)NHP(S)'Pr2 (EtOhP(S)NHP(O)Ph2 
Bond lengths/angles Structure MNDOModel Structure MNDOModel 

E(I)-P(l) 1.94 1.92 1.48 1.51 
S(2)-P(2) / S(l )-P(2) 1.95 1.92 1.90 1.94 

P(I)-N(I) 1.68 1.68 1.67 1.69 
P(2)-N(l) 1.68 1.70 1.66 1.66 

P(l)-N(I)-P(2) 131.6 134.6 122.6 125.4 
E(1 )-P(l) ... P(2)-S(2) 79.4 125.7 79.5 77.2 
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Figure 5 . 2 . Comparison of the MNDO modelled structure (in blue) 
i i with the observed crystal structure of Pr

2
P(S)NHP(S) pr

2
. 
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Heats of fonnation were calculated in two ways, one from the model of the 

crystal stmcture (AHFJ) and a further one from modelling the structure with the 

backbone of central atoms (S, P and N) constrained (AHd so that the S-P ... P-E (E = 

S / 0) torsion angle observed in the crystal structure remained the same whilst the rest 

of the structure was allowed to "relax", the purpose being to reduce any steric clash in 

the substituent groups present in the crystal structure. 

The heat of fonnation (AHFl) calculated for ipr2P(S)NHP(S)ipr2 with the S, P 

and N atoms constrained is -71.06 kcalmorl, much lower than AHFI value of - 4.35 

kcalmorl. This large discrepancy indicates there is a great deal of steric clash in the 

iso-propyl substituents in AHFI> however the AHFJ value may in part be due to the 

different torsion angle (125.7 0). In contrast the AHFI value for (EtO)2P(S)NHP(0)Ph2 

(- 71.06 kcalmorl) is 9 kcalmorl lower than the constrained AHFl value of - 62.42 

kcalmorl, possibly due to the changes in the P-N-P angle and E-P ... P-S torsion angle 

in the unconstrained model. 

For the butyl substituted trans dimer type compounds (Table 5.2), only the 

mono mer was modelled. The agreement between calculated and observed P-S, P-O 

and P-N bond lengths is again very good. Moreover the P-N-P angle and S-P ... P-S 

torsion angle are modelled better than for the cis type compounds, the largest 

difference being 1 0. AHFJ values for "BU2P(S)NHP(S)"Bu2 (Figure 5.3) and 

'BU2P(S)NHP(S)iBu2 are around 5 kcal morl lower than their AHFl values (Table 5.4), 

again this may be due to the changes in the P-N-P and the S-P ... P-S torsion angles. 

Table 5.2. Comparison of bond lengths (A) and angles (") of the crystal 

stmctures and MNDO models of "Bu2P(S)NHP(S)"Bu2 and 'Bu2P(S)NHP(S)iBu2' 

"BU2P(S)NHP(S)"Bu2 SBU2P(S)NHP(S)'Bu2 
Bond lengths/angles Structure MNDO Stmcture MNDO 

Model Model 
S(I)-P(I) 1.94 1.92 1.94 1.92 
S(2)-P(2) 1.93 1.92 1.94 1.92 
P(l)-N(I) 1.68 1.67 1.69 1.68 
P(2)-N(I) 1.69 1.66 1.70 1.66 

P(l )-N(l )-P(2) 132.1 133.2 133.1 134.2 
S(l )-P(1 ) ... P(2)-S(2) 179.0 179.8 179.4 179.2 
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Figure 5 . 3. Comparison of the MNDO modelled structure (in blue) 

with the observed crystal structure of ~U2P(S)NHP(S)nBU2 . 
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The modelled monomers of the trans dimer type compounds with ethoxy and 

phenyl group substituents (Table 5.3) also compare well with the observed structures 

with the exception of the S-P ... P-S torsion angle for (EtO)2P(S)NHP(S)Ph2 which 

Table 5.3. Comparison of bond lengths (A) and angles (") of the crystal 

structures and MNDO modelled structures of (EtO)2P(S)NHP(S)Ph2 and 

(EtO)2P(0)NHP(S)Ph2· 

(EtOhP(S)NHP(S)Ph2 (EtO)2P(O)NHP(S)Ph2 
Bond lengths/angles Structure MNDO Structure MNDOModel 

Model 
S(I)-P(I) 1.94 1.93 1.93 1.93 

S(2)-P(2) / 0(1 )-P(2) 1.92 1.94 1.46 1.50 
P(I)-N(I) 1.68 1.68 1.68 1.67 
P(2)-N(I) 1.67 1.66 1.63 1.66 

P(l )-N(1 )-P(2) 129.9 134.0 130.5 131.9 
E(l )-P(1 ) ... P(2)-S(2) 87.0 75.2 172.3 175.3 

differs by 12 0 from the model. It is somewhat surprising that this compound is a trans 

dimer at all with such a small torsion angle, however the AHFl value (Table 5.4) of -

20.69 kcalmorl is significantly lower than the constrained AHF2 value of - 14.90 

kcalmorl indicating the change in the torsion angle produces a calculated structure of 

lower heat of formation. Similarly AHFl for (EtO)2P(O)NHP(S)Ph2 (-75.05 kcalmor 

I) is lower than its constrained AHF2 value of - 68.81 kcalmorl. 

Table 5.4. Heats of formation values for the modelled crystal (AHFl) and 

constrained (AHF2) structures of the trans dimer type compounds (kcalmorl). 

nBu,p(S)NHP(S)"Bu, 'Bu,P(S)NHP(S),Bu, (EtO),P(S)NHP(S)Ph, (EtO),P(O)NHP(S)Ph, 

AHFI - 45.238 - 22.998 - 20.690 -75.049 

AHF2 - 39.881 - 17.705 - 14.903 - 68.814 

The general trend for the trans dimer type compounds is that structures 

modelled with a constrained S, P and N backbone are less preferred than the 

conventionally modelled structures. 
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Figure 5 .4. Comparison of the MNDO modell ed structure (in blue ) 

with the observed crystal structure of (EtO)2P(S)NHP(S)Ph2 . 
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The iBuzP(S)NHP(S)iBuz compound was modelled both by MNDO and ADF 

in order to compare the two different methodologies (Table 5.5). Again the MNDO 

model (Figure 5.5) is in excellent agreement with the crystal structure with the 

exception of the S-P ... P-S torsion angle which is 172 ° as opposed to the planar 

Table 5.5. Comparison of bond lengths (A) and angles (") of the crystal 

structure with the MNDO and the ADF modelled structures of iBuzP(S)NHP(SiBu2' 

'BU2P(S)NHP(S)'Bu2 
Bond lengths/angles Structure MNDOModel ADF Model 

S(I)-P(I) 1.93 1.92 2.09 
S(2)-P(2) 1.95 1.92 2.08 
P(I)-N(I) 1.66 1.67 1.74 
P(2)-N(I) 1.71 1.68 1.75 

P(I)-N(I)-P(2) 133.0 132.4 129.6 
S(1 )-P(I) ... P(2)-S(2) 179.8 172.2 171.6 

torsion angle of 180 o. However the ADF model is in poor agreement for bond 

lengths, the P-S bonds are 0.13 - 0.16 A and the P-N bonds are 0.04 - 0.08 A longer 

than observed in the crystal structure. The P-N-P angle and S-P ... P-S torsion angle are 

both smiiller than those observed but more comparable with the errors observed 

previously for MNDO. For a compound that is not a metal complex the ADF model is 

far less accurate than MNDO. 

FurthercaIculations have been made relating to the heats of formation of the 

dimers (AHFD ) compared to those of the monomers (AHFM ) (Table 5.6). All 

compounds of the trans geometry have been studied plus a MNDO model of 

'BU2P(S)NHP(S)'Bu2' These compounds prefer the dimer state if AHFoI2 is more 

negative than the AHFM value, ie. (AHFD/2) - AHFM < O. From the calculations all the 

compounds appear to prefer the dimer state, though it is interesting to note the 

{(AHFD/2) - AHFM} value for iBu2P(S)NHP(S)iBu2 is - 2.91 kcalmor1 despite the fact 

iBu2P(S)NHP(S)iBu2 is known not to be a dimer in the solid state. This figure is 

notably greater than those for the known trans dimers (- 0.82 to - 1.91 kcalmor\ 

Furthermore the {(AHFD/2) - AHFM} value for the trans dimer type model of 

'BuzP(S)NHP(S)'Bu2 is even larger at - 3.51 kcalmorl. 
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Figure 5 . 5. Comparison of t he MNDO modelled structure (in blue ) 
i i with the observed crystal structure of BU

2
P(S)NHP(S) BU

2
. 
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Calculated (Mlm/2) - MlFM values relating to trans dimers observed in 

crystallography are no more negative than - 2.0 kcalmorl, implying the compound 

'BU2P(S)NHP(S)'Bu2 is unlikely to exist as a trans dimer in the solid state. 

Table 5.6. Monomer (MlFM) and dimer (MlFD) heats of formation for transoid 

compounds (kcalmor\ Calculations of unobserved structures in italics. 

MlFMonomer MlFDimer (Mlm/2) - MlFM 
nBU2P(S)NHP(S)"Bu2 -45.24 -94.29 -1.91 
'BuzP(S)NHP(SYBuz -25.80 -57.41 -2.91 
'BuzP(S)NHP(S/Buz -10.81 -28.64 -3.51 
'BU2P(S)NHP(S)'Bu2 -23.00 -49.27 -1.64 

(EtO)2P(S)NHP(S)Ph2 -20.69 -43.02 -0.82 
(EtO)2P(O)NHP(S)Ph2 -75.05 -153.72 -1.81 

Further heats of formation calculations were carried out using the COSMO 

method64 for the monomers and dimers of nBU2P(S)NHP(S)nBu2, iBu2P(S)NHP(S)iBu2 

and 'BU2P(S)NHP(S)'Bu2 in cyclohexane solution (fable 5.7) in an effort to predict 

whether these compounds might exist as dimers in solution. Again a large difference in 

the (MlFD.f2) - .6.HFM' values is observed for 12 in comparison to 10 and 11. Given 

that 10 and 11 adopt the trans geometry in the solid state, the results might tentatively 

suggest that 10 and 11 will be trans dimers in solution whilst 12, with such a large 

(MlFD,/2) - .6.HFM, value will be a monomer. 

Table 5.7. Monomer (MlFM,) and dimer (MlFD,) heats of formation for 

transoid compounds in solution in C6HI2 (10, 11, 12) (kcalmorl). 

MlF (solution) (MlFD.f2) - MlFM' 
Monomer Dimer (solution) 

(10) nBu2P(S)NHP(S)"Bu2 (C6Hd -53.70 -108.47 -0.54 
(11) iBu2P(S)NHP(S)iBu2 (C6Hn) -33.29 -68.17 -0.80 
(12) 'BU2P(S)NHP(S)'BU2 (C6H12) -17.99 -40.16 -2.09 
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5.22 MNDO Models a/Tetrahedral Zinc Complexes. 

The coordination complexes Zn[ipr2P(S)NP(SiPr2h (Figure 5.6) and 

Zn[(EtO)2P(0)NP(S)Ph2h (Figure 5.7) were also modelled with MNDO (Table 5.8). 

The bond lengths calculated for Zn[ipr2P(S)NP(S)ipr2h all differ from those observed 

in the crystal structure by 0.05 - 0.06 A, significantly less accurate than those 

calculated for the neutralligands. For Zn[(EtO)2P(0)NP(S)Ph2h the P-S, P-O, Zn-S, 

and Zn-O bonds all differ by 0.02 - 0.05 A, again in reasonable agreement. The 

exceptions are the P-N bonds which differ by 0.07 - 0.08 A from the crystal structure. 

Table 5.S. Comparison of bond lengths (A) and angles (") of the crystal 

structures and MNDO models of Zn[ipr2P(S)NP(S)ipr2h and 

Zn[(EtO)2P(0)NP(S)Ph2h· 

Zn['Pr2P(S)NP(S)'Pr212 Zn[(EtO)2P(O)NP(S)Ph212 

Bonds/angles Structure MNDOmodel Structure MNDOmodel 
S(I)-P(I) 2.03 1.97 2.01 1.98 
0(1)-P(2) - - 1.48 1.53 
P(I)-N(l) 1.58 1.64 1.58 1.65 
P(2)-N(I) - - 1.55 1.63 
Zn-S(I) 2.35 2.30 2.32 2.34 
Zn-O(l) - - 1.95 1.92 

S(1 )-Zn-S(2) 112.4 98.2 - -
S(I)-Zn-O(1) - - 109.5 97.1 
Zn-S(I)-P(I) 107.1 116.0 98.0 113.3 
Zn-O(1 )-P(2) - - 129.0 137.8 

S(I)-P(l )-N(I) 118.5 117.8 118.4 117.8 
0(1)-P(2)-N(I) - - 118.5 119.6 
P(I)-N(I)-P(2) 140.5 125.3 134.1 121.4 

By comparison the bond angles show very poor agreement. Calculated S-Zn-E 

angles (E = S / 0) are around 12 ° smaller and P-N-P angles are approximately 14 ° 
smaller than those observed in the crystal structures. In contrast the calculated Zn-E-P 

angles are 9 - 15 ° greater than in the crystal structures. The only calculated angles 

that are at all accurate are the E-P-N angles which are all within 1 o. These differences 

may be due to crystal packing effects as bond angles are believed to be easier to 

deform than lengths. 
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Figure 5 . 6 . Comparison of the MNDO modelled structure (in blue) 
i i with the observed crystal structure of Zn [ pr

2
P(S)NP(S) Pr

2
1
2

. 
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Figure 5 . 7. Comparison of the MNDO modell ed structure (in bluel 

with the observed crystal structure of Zn [ (EtOl 2P(OlNP(SlPh212. 
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5.23 ADF Model of a Square Planar Palladium Complex. 

Calculated P-S bond lengths for the ADF model ofPdCPr2P(S)NP(S)ipr2h 

(Figure 5.8) differed by 0.15 A from observed values (Table 5.9). The P-N and Pd-S 

calculated bond lengths were more accurate being 0.07 - 0.09 A greater than observed 

lengths. In contrast the bond angles compared reasonably well, the S-Pd-S and S-P-N 

angles differ by only 2 ° from observed values and the P-N-P angle differs by 5 o. 

These calculated angles are certainly more accurate than those found for the zinc 

complexes using MNDO. The exceptions are the Pd-S-P angles where the calculated 

angles were 6 - 12 ° smaller than those observed. Indeed the Pd-S(2)-P(2) angle at 

96.4 ° might be expected in a "chair" type MS2P2N ring conformation observed 

previously for platinum complexes. In many ways the calculated structure could be 

considered as a mixture of the "boat" and "chair" conformations producing an hybrid 

MS2P2N ring conformation. The only possible example of such an hybrid previously 

observed in this work is the crystal structure of 43, where Pt-S-P bond angles were 

97.3 and 108.1 0, surprisingly similar to those calculated here. A tentative observation 

might then be made that the program implies the difference in energy between the 

"boat" and "chair" conformations of the MS2P2N ring is extremely small. 

Table 5.9. Comparison of bond lengths (A) and angles (") of the crystal 

structure and ADF modelled structure ofPd[ipr2P(S)NP(SiPr2h-

Pd(,PrzP(S)NP(S)'Przlz 
Bond lengths/angles Structure ADFmodel 

S(l)-P(l) 2.03 2.19 
S(2)-P(2) 2.02 2.17 
P(l)-N(l) 1.60 1.68 
P(2)-N(2) 1.59 1.68 
Pd-S(l) 2.34 2.41 
Pd-S(2) 2.35 2.41 

S(l )-Pd-S(2) 100.7 102.6 
Pd-S(l)-P(l) 114.0 108.4 
Pd-S(2)-P(2) 108.6 96.4 

S(l )-P(I )-N(l) 119.1 120.8 
S(2)-P(2)-N(I) 117.1 117.4 
P(l)-N(1)-P(2) 130.2 125.3 
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Figure 5 . 8 . Comparison of the ADF modelled structure (i n blue) 
i i with t he observed crystal structure Pd [ Pr2P(S)NP(S) Pr212. 

118 



5.31 Studies on the Conformation of Neutral Ligands in Solution. 

The compounds of particular interest were the symmetrical propyl and butyl 

substituted dithioimidodiphosphinates and (EtO)2P(S)NHP(S)Ph2. It is interesting to 

note in the FAB +ve mass spectrum of ipr2P(S)NHP(S)ipr2 the parent ion peak was 

627 mlzcorresponding to a dimer [HN(ipr2PS)2h- This was somewhat surprising as in 

the solid state this compound is observed in the cisoid form in a hydrogen bonded 

chain. However it is possible that when the solution of ipr2P(S)NHP(S)ipr2 is ionised 

the dimer is formed. 

In order to determine whether these compounds exist as monomers or dimers 

in solution, analytical techniques were used where spectra could be observed from the 

sample in both the solid state and solution (NMR, FTIR). Having observed the solid 

state 31p NMR spectrum of the trans dimer type "Bu2P(S)NHP(S)"Bu2 compound 

where the two phosphorus atoms were observed to be inequivalent (77.8,67.8 ppm) 

due to hydrogen bonding, a solution 31p NMR spectrum of the same compound was 

run in a non-polar solvent (cyciohexane). A singlet was observed (71.0 ppm) 

indicating the phosphorus centres were equivalent and that no dimer was present. It is 

likely this is due to a rapid exchange between monomer and dimer in solution that is 

.. too fast to resolve. 

Comparing the difference in values observed for the v (NH) vibration in 

solution IR (DCM, CsI cell) and solid state IR spectra (KBr disc) with S"U hydrogen 

bond lengths of the compounds indicated a general trend (Table 5.10, Figure 5.9). 

Table 5.10. Comparison of the shifts in v (NH) vibrations from solution and 

solid state FTIR (cm .1) with S"U hydrogen bond lengths in the crystal structures (A). 

v (NH) solid v (NH) solution vsolution - S'''H(A) 

vsolid 

'Pr2P(S)NHP(S)'Pr2 3243 3320 77 2.60 
'BU2P(S)NHP(S),Bu2 3225 3319 94 -

(EtOhP(S)NHP(S)Pb2 3200 3331 131 2.45 
'BU2P(S)NHP(S)'Bu2 3180 3323 143 2.51 
"BU2P(S)NHP(S)"Bu2 3172 3325 153 2.44 

(EtOhP(O)NHP(S)Ph2 3059 3334 275 1.88 
(EtOhP(S)NHP(O)Ph2 3057 3342 285 1.60 
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Figure 5.9. Plot OfV,olution - V,olid (x axis) versus s"n (y axis). 

The greater the value OfVsolution - V,olid the shorter the hydrogen bond. Not 

swprisingly the compounds which hydrogen bond through oxygen donor atoms have 

far greater Vsolution - V solid values as there is a significant reduction in the strength of the 

hydrogen bonding when the compounds are in dichloromethane solution, implying 

therefore that these compounds do not exist as dimers in dichloromethane. 

Furthermore from a line of best fit we can estimate the S'''H hydrogen bond for 

'BU2P(S)NHP(S)'Bu2 will be between 2.60 and 2.70 A. 
However the results of the compounds modelled as transoid dimers in 

continuum with the same dielectric constant as cyclohexane ("Bu2P(S)NHP(S)"Bu2, 

iBu2P(S)NHP(S),Bu2 and 'BU2P(S)NHP(S)'BU2) to simulate a solution of the 

compounds in their respective solvents (fable 5.7) do imply the nBU2P(S)NHP(S)"Bu2 

and iBu2P(S)NHP(S),Bu2 compounds will probably be dimers in solution and the 

'BU2P(S)NHP(S),Bu2 compound will probably be a monomer in solution. 

120 



5.32 Introduction to Solution Molecular Mass Determinations on 

Tetrabutyldithioimidodiphosphinates and Related Compounds. 

The solution structures of the imidodiphosphinates (1,10,11,12 and 31) were 

investigated by cryoscopic (depression of freezing point of a solvent) determination of 

their relative molecular masses in order to ascertain whether the association found in 

their solid state structures (mediated by the N-H'-S hydrogen bond) is maintained in 

solution. Selected compounds were examined at various concentrations in cyclohexane 

and benzene solution. 

5.33 Experimental for Cryoscopy. 

Cryoscopic molecular mass measurements provide an accurate means by which 

solution molecular mass (Mr) and thereby the degree of association (n) [where n = Mr 

I Mr (monomer)] may be determined. Where non-integer values of n are found, 

variable-concentration cryoscopic measurements are able to identify equilibrium 

species present in solution. The apparatus used (Figure 5.10) consists of a flat

bottomed inner glass sample tube surrounded by an outer cooling jacket filled with 

circulating ethanol (whose temperature is maintained at around 3 °C by a cryostat). An 

air jacket separates the inner tube from the cooling jacket to prevent supercooling of 

the solution. Standard inert atmosphere techniques were used throughout, the side-arru 

of the apparatus allowing a dry, oxygen-free argon atmosphere to be maintained during 

measurements. The freezing point of each solution was recorded using a Beckmann 

thermometer (reading to ± 0.002 

°C with the aid of an eyepiece). Benzene (specifically purified for cryoscopic 

measurements) and cyclohexane (spectrophotometric grade) were pre-dried over 

molecular sieve and purged with argon prior to use. Initially the freezing point of pure 

solvent was determined before a known mass of the compound was introduced into the 

apparatus under a stream of dry argon. The freezing point of the resulting solution was 

then determined and hence the freezing point depression (~T). From the cryoscopic 

equation 65 (Equation 5.1) Mrcould then be calculated. 
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Mr = 1000 x K x Ws 
~T x wb 

(where K = cryoscopic constant specific to the solvent, 
Ws = mass of solute and Wb = mass of solvent) 

, . ..,.... -
"' ....... --1-1 

Figure 5.10. The cryoscopy apparatus. 

5.34 Cryoscopic Results and Discussion. 

I 
.J 

Eqn 5.1. 

For benzene K was determined by measuring ~T for a known mass of (C6Hs)2, 

Mr = 154.22 g, (K = 5.18 gK). For cyclohexane time constraints dictated that the 

literature value (K = 20.0 gK) was used. For all cryoscopic experiments freezing 

points were determined at least three times until consecutive readings were consistent 

The errors quoted are due to a precision of ± 0.004 °C in ~T. All other errors (eg., in 

w" Wb, etc) were deemed relatively insignificant. For some of the measurements made 

in cyclohexane difficulty was experienced in achieving consistent temperature readings 

(probably due to unavailability of ultra·pure solvent). In these cases an average of up 
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to seven readings was taken and errors in dT were assumed to cover the range of 

these readings. This treatment results in the high errors reported in these cases. 

In benzene solution (Table 5.11) all the compounds except 

nBU2P(S)NHP(S)"Bu2 are, within error, monomeric, that is to say at the concentrations 

studied none of the intermolecular N-H"S hydrogen bonding found in the solid state is 

maintained in benzene solution). This lack of association in benzene is supported by the 

variable-concentration measurements of iBu2P(S)NHP(S),Bu2 and 

'BU2P(S)NHP(S)'BU2 which show no increase in n on increasing concentration. In 

comparison nBU2P(S)NHP(S)"Bu2 exhibits a measurable degree of oligomerisation in 

Table 5.11. Cryoscopic results in benzene. 

Compound w, (g) Wb (g) Mr Mr • conc. n 
(M) (monomer) (expt.) (degree of 

association) 
'Pr2P(S)NHP(S)'Pr2 0.151 27.50 0.0153 313 332±15 1.06±O.05 

nBu,p(S)NHP(S)"Bu, 0.159 24.47 0.0154 369 427±15 1.l6±O.05 
'BU2P(S)NHP(S)'Bu, 0.200 26.40 0.0179 369 386±14 1.05±O.04 
'BU2P(S)NHP(SiBu, 0.286 26.40 0.0257 369 381±10 1.03±O.03 
'BU2P(S)NHP(S)'Bu, 0.100 25.00 0.0095 369 371±24 1.O1±O.06 
'B U2P(S)NHP(S)'B u, 0.203 25.00 0.0192 369 377+13 1.02±O.04 

(EtO),P(S)NHP(S)Ph, 0.209 24.13 0.0197 385 385±13 1.00±0.03 

Table 5.12. Cryoscopic results in cyclohexane. 

Compound w, (g) Wb (g) Mr Mr • conc. n 
(M) (monomer) (expt.) (degree of 

association) 
nB U2P(S)NHP(Sj"Bu2 0.050 22.78 0.0046 369 610±32 1.65±O.08 
nBu,p(S)NHP(S)nBu, 0.106 22.78 0.0098 369 655±18 1.78±O.06 
'Bu,P(S)NHP(S)'Bu, 0.053 21.59 0.0052 369 446±47 1.21±O.13 
'Bu,P(S)NHP(S)'Bu, 0.096 22.79 0.0089 369 415+27 1.12±O.08 

n* = Mr(monomer) I Mr (experimental). 
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benzene solution. In view of its solid state structure it is reasonable to assume that 

such oligomerisation is mediated by the N-H··S hydrogen bonding. 

The measurements made in cyclohexane solution suggest that all three butyl

substituted compounds oligomerise to some extent, that is to say in this less polar 

solvent a greater degree of hydrogen bonding is maintained on dissolution. The 

greatest degree of association is observed for nBu2P(S)NHP(S),Bu2 which is consistent 

with observations made of the benzene solutions. Furthermore an increase in 

concentration results in an increase in n. This is indicative of a monomer I dimer 

equilibrium operating in solution. 
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APPENDIX 

Single Crystal X-Ray CrystaUograpby. 

Details of crystallographic parameters, data collections, reflections (measured 

reflections, independent reflections, observed reflections, reflection / parameter ratio) 

and refinements <E {ooo}, minimum / maximum transmission, final R and R' , maximum 

/:;./0', largest difference peak / hole) for the crystal structures of 10, 11, 15, 31, 32, 33, 

36,37,38 and 43 are summarised in Table I. Details of crystallographic parameters, 

data collections, reflections and refinements for the crystal structures of 1, 2, 3, 4, 6, 7 

and 8 have recently been published 66.61. Crystals were mounted on quartz fibres using 

araldite. Data were collected using Cu radiation and co scans at room temperature with 

a Rigaku AFC7 S diffractometer. Intensities were corrected for Lorentz-polarisation 

and for absorption (DIFABS) 68. The structures were solved by the heavy atom 

method 69.10 or by direct methods 71. In all cases except 32, all of the non-hydrogen 

atoms were refined anisotropically. In 32, the 30 % oxygen atom in the disordered 

region was refined isotropically. All other non-hydrogen atoms in 32 were refined 

anisotropically. The positions of the C-H hydrogen atoms were idealised whilst the N

H atoms were allowed to refme isotropically. Refmements were by full matrix least 

squares based on Fusing teXsan 12. 

125 



Table I 

nBU2P(S)NHP(S)nBu2 (10) iBu2P(S)NHP(SiBu2 (11) 'BU2P(S)NHP(S)iBu2 (15) 
Empirical formula C!6H31NP2S2 C!6H31NP2S2 C!6H31NP2S2 

M 369.54 369.54 369.54 
Crystal colour, habit clear, prism clear, plate clear, block 

Crystal dimensions I mm 0.32 X 0.32 X 0.25 0.30 X 0.02 X 0.30 0.20 X 0.20 X 0.30 
Space group P-l (#2) ndn (#14) P-l (#2) 

al A 10.035(4) 12.339(4) 10.812(3) 
hI A 12.298(2) 9.033(6) 12.218(2) 
cl A 9.225(3) 2l.681(3) 9.792(2) 
alo 93.13(2) 90. 112.48(1) 

131" 96.06(3) 106.28(2) 99.79(2) 
y/O 94.32(2) 90. 7l.91(2) 

UIN 1126.7(5) 2319(1) 1134.2(5) 
Dcl gcm·3 l.089 l.058 l.082 

JlI cm'! 34.33 33.35 34.1 

29 maxI ° 120.2 120.1 120.1 
F. (000) 404.00 808.00 404.00 

Measured reflections 3583 3903 3209 
Independent reflections (Ri•t ) 3360 (0.064) 3712 (0.027) 3003 (0.049) 

Observed reflections [I> 3.00'(1)] 2304 1335 2224 

Reflection I parameter ratio 12.06 6.99 10.25 
Minimum I maximum transmission 0.53/1.00 0.5111.00 0.90/1.00 

FinalR, R' 0.075,0.064 0.060, 0.050 0.055, 0.050 
Maximum LlI 0' 3.78 0.34 7.12 

Largest difference peak hole I eA'3 0.32 0.18 0.40 
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(EtO)2P(S)NHP(S)Ph2 (31) (EtOhP(S)NHP(O)Ph2 (32)- (EtO)2P(O)NHP(S)Ph2 (33) 
Empirical fonnula C!6H2!N02P2S2 C!6H2!N03P2S C! 6H2! N03P2S 

M 385.41 369.35 369.35 
Crystal colour, habit clear, block clear, block clear, block 

Crystal dimensions I mm 0.21 X 0.21 X 0.32 0.15 X 0.15 X 0.40 0.26 X 0.30 X 0.32 
Space group P2dc (#14) P-1 (#2) P2dn (#14) 

al A 13.648(4) 10.196(4) 9.275(3) 
bl A 9.393(3) 19.301(2) 8.688(3) 
ciA 15.209(3) 10.080(1) 23.438(2) 
Cl. I ° 90. 102.93(1) 90. 

I3r 95.27(2) 98.40(2) 98.54(1) 

'11° 90. 83.25(2) 90. 
UIN 1941.3(9) 1905.4(8) 1867.8(8) 

Del ~ cm·3 1.319 1.287 1.313 
~ I cm'! 41.03 32.08 32.72 

29 max/o 120.3 110.2 120.1 
F (000) 808.00 776.00 776.00 

Measured rellections 3247 5168 3205 
Independent reflections (R int) 3103 (0.060) 4800 (0.064) 2999 (0.093) 

Observed reflections [1> 3.00"(1)] 2295 3717 2232 
Reflection I parameter ratio 10.98 8.77 10.68 

Minimum I maximum transmission 0.77 11.00 0.68 11.00 0.80 11.00 
FinalR, R' 0.041,0.039 0.057,0.050 0.043, 0.043 

Maximum !J. I 0" 0.20 0.58 0.06 
Largest difference peak hole I ek3 0.28 0.30 0.35 
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Zn[(EtOhP(O)NP(S)Ph2h (36) Pd[(EtO)2P(S)NP(S)ph2h (37) Pt[(EtOhP(S)NP(S)Ph2h (38) 
Empirical formula CnH!o06P4S2N2Zn CnH4004P4S4N2Pd CnH400 4P 4S4N2Pt 

M 802.07 875.21 963.90 
Crystal colour, habit clear, block yellow, needle yellow, plate 

Crystal dimensions I mm 0.10 X 0.10 X 0.33 0.12 X 0.17 X 0.33 0.20 X 0.20 X 0.10 
Space group C2/c (#15) P-l (#2) P-l (#2) 

al A 19.614(4) 9.710(3) 11.342(6) 
bl A 10.468(1) 12.554(4) 20.813(5) 
cl A 19.780(2) 8.890(3) 8.630(6) 
a/ o 90. 98.95(3) 93.66(3) 
PlO 108.32(1) 91.19(3) 105.44(6) 
y/O 90. 112.74(2) 89.51(3) 

UIN 3855.6(9) 983.3(5) 1959(1) 
Dc I g cm,3 1.382 1.478 1.633 
III cm'! 38.41 76.30 102.84 

28 maxI 0 120.1 120.2 120.1 
F (000) 1664.00 448.00 960.00 

Measured reflections 3161 3102 6160 
Independent reflections (R;nl) 3058 (0.122) 2906 (0.074) 5818 (0.122) 

Observed reflections [I> 3.00'(1)] 2322 2569 3467 

Reflection I parameter ratio 10.85 11.95 8.16 
Minimum I maximum transmission 0.67/1.00 0.77 11.00 0.64/1.00 

FinalR, R' 0.044, 0.039 0.030,0.041 0.060, 0.059 
Maximum 11 I 0' 0.28 , . 0.09 2.58 

Largest difference peak hole I eA'3 0.31 0.40 1.36 
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Pt(PMe3)z[(EtO)2P(S)NP(S)Ph2tBP~- (43) 
Empirical formula C46H58NB02P 4S2Pt 

M 1050.88 
Crystal colour, habit clear, plate 

Crystal dimensions I mm 0.15 X 0.05 X 0.50 
Space group P-l (#2) 

al A 14.776(3) 
hi A 17.332(4) 
cl A 9.726(4) 
alo 102.63(3) 

~/o 96.39(3) 

'Y 10 93.65(2) 

UI A3 2405(1) 
Del g cm-' 1.451 
III cm-l 78.69 

28max/ o 119.8 

F(OOO) 1064.00 
Measured reflections 7413 

Independent reflections (Rint) 7094 (0.135) 

Observed reflections [I> 3.00-(1)] 5272 

Reflection I parameter ratio 9.89 
Minimum I maximum transmission 0.38/1.00 

FinalR, R' 0.060, 0.068 

Maximum Cl. I (j 0.08 

Largest difference peak hole I eA' 1.55 
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