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Abstract 

The purpose of this study was to investigate the effects of Montmorency tart cherry juice 

(MC) on nitric oxide (NO) biomarkers, vascular function and exercise performance. In a 

randomized, double blind, placebo (PLA) – controlled, crossover study, 10 trained cyclists 

(mean ± SD; V̇O2peak 59.0 ± 7.0 ml/kg/min) acutely ingested 30 mL of either MC or PLA 

following dietary restrictions of polyphenol-rich compounds, and completed 6 min moderate- 

and severe-intensity cycling bouts 1.5 h post ingestion on two occasions for each 

experimental condition.  The severe-intensity cycling test was continued to exhaustion on one 

occasion and immediately followed by a 60 s all-out sprint on the other occasion.  Blood 

pressure, pulse wave measures, tissue oxygenation index and plasma nitrite concentration 

were assessed pre and 1.5 h post ingestion.  Time to exhaustion was not different between 

conditions (P > 0.05), but peak power over the first 20 s (363 ± 42 vs. 330 ± 26 W) and total 

work completed during the 60 s all-out sprint (21 ± 3 vs. 19 ± 3 kJ) were 10% higher in the 

MC trial compared to the PLA trial (P < 0.05). Systolic blood pressure was 5 ± 2 mmHg 

lower 1.5 h post MC supplementation compared to PLA supplementation (P < 0.05).  There 

were no differences in pulse wave measures, plasma nitrite concentration or tissue 

oxygenation between the MC and PLA trials (P > 0.05). These results suggest that acute 

supplementation with MC can lower blood pressure and improve some aspects of exercise 

performance, specifically end-sprint performance, in trained cyclists.   
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Introduction  1 

Montmorency tart cherries (MC) are a rich source of polyphenols 1-3 including the flavonoids 2 

isorhamnetin, kaempferol, quercetin, catechin and anthocyanins 4,5.  It has been well 3 

documented that these plant compounds are associated with beneficial anti-inflammatory 6, 4 

antioxidant 7 (AOX), immunomodulatory and vasodilatory properties 8.  Previous studies 5 

demonstrated the positive effects of MC concentrate on indices of cardiovascular function 6 

that included increased cell migration 9, cerebral blood flow 10 and reduced systolic blood 7 

pressure at rest10,11.  These effects might be mediated, in part by the ability of polyphenols to 8 

facilitate endothelial nitric oxide synthase (eNOS) phosphorylation, thereby increasing 9 

endogenous nitric oxide (NO) production 12. However, an increase in NO biomarkers has not 10 

been demonstrated with polyphenol-rich MC.   11 

An increased muscle blood flow may increase the oxidative energy contribution over the 12 

initial stages of exercise and reduce the development of the V̇O2 slow component (a 13 

progressive increase in O2 uptake (V̇O2) as high intensity exercise is continued) 13.  14 

Supplementation with MC might have the potential to improve aspects of the dynamic V̇O2 15 

response during exercise by enhancing endothelial function and, hence, have a positive effect 16 

on performance.  In addition, cyanidin-3-glucoside, an anthocyanin found in abundance in 17 

MC concentrate 3, has been shown to increase endothelial NO synthase (eNOS) expression 18 

and decrease inducible NO synthase (iNOS) expression 14. Such changes in the balance 19 

between eNOS and iNOS expression/activity would favour the bioavailability of the 20 

vasoactive NO. Therefore, if MC does increase NO bioavailability, it is possible that muscle 21 

O2 delivery and/or its intramuscular distribution might be enhanced which, in turn, could be 22 

advantageous at the onset of exercise and during maximal exercise.  Further to these 23 

mechanisms, other compounds in tart Montmorency cherries such as quercetin (which is 24 

reported to be present in MC 15) binds and antagonises the adenosine receptor, which could 25 

improve performance in a caffeine-like manner 16. Similarly, MC concentrate is rich in AOX 26 

compounds that also have the potential to augment performance 17.  27 

Despite the potential vasodilatory and AOX properties of tart cherries, only two studies have 28 

investigated the effect of tart Montmorency cherry supplementation on continuous exercise 29 

capacity and performance.  Clifford and colleagues 18 investigated the influence of different 30 

sources of polyphenols on sub-maximal cycling and time trial performance.  Supplementation 31 

with 200 mg of dried Montmorency cherry capsules for three days, did not improve cycling 32 



time trial performance, heart rate, respiratory exchange ratio, gross mechanical efficiency, 33 

oxygen consumption, or blood [lactate] in moderately trained cyclists (V̇O2peak 52.4 ± 8.7 34 

ml/kg/min). In contrast, when participants were supplemented with powdered tart cherry 35 

capsules for 10 days, half-marathon completion times were 13% faster than their placebo 36 

counterparts19, although the mechanism for this improvement remains unclear. It should be 37 

noted that the actual race pace was slower compared to the projected race pace in both groups, 38 

but the difference tended to be smaller in the tart cherry group compared to the placebo group.  39 

Furthermore, the authors of this study acknowledged that the participants were matched 40 

based on average reported race pace, and therefore there might be some variability amongst 41 

groups. As a result, further studies with a strong study design are needed to evaluate if 42 

supplementation with tart cherries can provide benefits to exercise performance.  43 

Similar performance-enhancing findings have been reported in other studies where 44 

polyphenolic content of a fruit-derived supplement is similar to tart cherries 20,21. Kang and 45 

colleagues20 reported that oligomerized lychee fruit extract increased the anaerobic threshold 46 

by 7.4%. More recently, Cook et al. 21 reported that following a seven-day intake of New 47 

Zealand blackcurrant extract, there was an improvement in cycling time-trial performance by 48 

2.4%. The authors speculated that this improvement might have been the result of improved 49 

endothelial function and increased peripheral blood flow. Conversely, in another study 22, 50 

supplementation with a polyphenol antioxidant for 1 week failed to improve exercise 51 

performance, cardiovascular function, and thermoregulatory control in well-trained cyclists. 52 

The lack of improvement in exercise performance may be related to the training status of the 53 

subjects, exercise modality, and/or the experimental conditions under which performance was 54 

assessed. 55 

Although the potential beneficial role of MC in expediting exercise recovery has been 56 

unequivocally demonstrated 23,24, it is still unclear whether acute MC supplementation can 57 

improve endurance exercise performance.  Given that most polyphenol compounds are either 58 

absorbed or excreted quickly 9,10,25, longer-term (10-day) supplementation periods 19 may not 59 

be necessary to observe improvements in performance.   Furthermore, the potential 60 

mechanisms that might underpin any ergogenic effects of MC consumption are yet to be fully 61 

resolved. Therefore, the purpose of this study was to investigate the effects of acute MC 62 

supplementation on plasma NO2
- concentration ([NO2

-]), a sensitive marker of NOS activity 63 
26, as well as blood pressure, V̇O2 kinetics, muscle oxygenation and exercise performance 64 

using a double-blind, cross-over experimental study design. We also used near-infrared 65 



spectroscopy to provide insight into the matching between skeletal muscle O2 delivery and 66 

utilisation 27 and, therefore the potential underlying mechanisms for improvement in V̇O2 67 

kinetics or exercise performance following MC supplementation.   68 

Methods 69 

Participants 70 

Eleven trained male cyclists volunteered to take part in the study, but one participant 71 

withdrew after the second study day (mean ± SD age; 28 ± 7 years, stature 1.83 ± 0.06 m, 72 

body mass 78.0 ± 8.5 kg and V̇O2peak 59.0 ± 7.0 ml/kg/min). Exclusion criteria for the study 73 

were: V̇O2peak < 50 ml/kg/min (determined on visit 1), smoking, food allergy (as discussed 74 

with research team), history of gastrointestinal, renal or cardiovascular disease and current 75 

use of any food supplementations. All participants provided written, informed consent prior 76 

to the commencement of the study.  For 24 h prior to and for each of the testing days, 77 

participants were asked to avoid strenuous exercise, alcohol, caffeine, nutritional supplements 78 

and any anti-inflammatory drugs. Participants were instructed to follow a low phenolic diet 79 

for 24 h prior to each arm of the trial by avoiding fruits, vegetables, tea, coffee, alcohol, 80 

chocolate, cereals, wholemeal bread, grains and spices and were asked to refrain from 81 

strenuous exercise.  Compliance with the dietary restrictions was monitored with a 82 

standardised, self-reported dietary record.  Participants were asked to arrive at the laboratory 83 

in a rested and fully hydrated state, ≥10 h postprandial.  All tests were performed at the same 84 

time of day.  The study was conducted in accordance with the Helsinki Declaration and 85 

ratified by the University’s Research Ethics Committee. 86 

Study Design 87 

Participants were required to report to the laboratory on five occasions over a 4-5 week 88 

period to complete the experimental testing (1 familiarization / V̇O2peak visit and 4 89 

experimental visits).  On the first visit to the laboratory, participants completed a ramp 90 

incremental exercise test for determination of the gas exchange threshold (GET) and peak 91 

V̇O2 (V̇O2peak).  Participants were also familiarized with the two exercise performance tests 92 

employed in the study on this visit to avoid any order effect on the performance results as a 93 

consequence of a potential “learning effect”.  Participants then returned to the laboratory on 94 

visits 2, 3, 4 and 5 to complete the experimental testing (MC × 2 trials, PLA × 2 trials).  95 

During these tests, resting blood pressure, arterial stiffness, pulmonary V̇O2 kinetics during 96 

moderate and severe intensity exercise, muscle oxygenation, and exercise performance were 97 



assessed, and venous blood samples were obtained.  The MC concentrate and placebo (PLA) 98 

drinks were administered in a randomized order as part of a double–blind, crossover 99 

experimental design.  Each supplementation day was separated by at least 3 days, but no 100 

more than 7 days. 101 

Incremental Test.   102 

During the first laboratory visit, participants completed a ramp incremental cycle test on an 103 

electronically braked cycle ergometer (Lode Excalibur Sport, Groningen, The Netherlands).  104 

Initially, participants performed 3 min of baseline cycling at 0 W, after which the work rate 105 

was increased by 30 W/min until the limit of tolerance.  The participants cycled at a self-106 

selected pedal rate, which, along with saddle and handle bar heights and configuration, was 107 

recorded and reproduced in subsequent tests.  Breath-by-breath pulmonary gas exchange data 108 

were collected continuously during the incremental tests and averaged over consecutive 10 s 109 

periods.  The V̇O2peak was taken as the highest 30 s rolling mean value attained prior to the 110 

participant’s volitional exhaustion in the test.  The GET was determined as 1) the first 111 

disproportionate increase in CO2 production (V̇CO2) from visual inspection of individual 112 

plots of V̇CO2 and V̇O2, and an increase in expired ventilation V̇E/ V̇O2 with no increase in 113 

V̇E/ V̇CO2.  The work rate that would require 90% of the GET (moderate – intensity exercise) 114 

and 70% Δ (GET + 70% of the difference between the work rate at the GET and V̇O2peak; 115 

severe intensity exercise) were calculated.  The V̇O2 peak attained in the ramp incremental 116 

test was 4.56 ± 0.3 l/min, which equated to a relative V̇O2 peak of 59.0 ± 7.0 ml·kg−1·min−1. 117 

The work rates that corresponded to 90% GET and 70%Δ were 121 ± 19 and 303 ± 28 W, 118 

respectively.  The mean response time (MRT) for V̇O2 during ramp exercise was taken into 119 

account, specifically two-thirds of the ramp rate was deducted from the work rate at GET and 120 

peak V̇O2 (i.e., 20W 28).   121 

 122 

Following the incremental test and a 45-minute rest, participants were familiarized with the 123 

exercise tests.  Participants completed a moderate- intensity and severe-intensity, step test 124 

finishing with an all-out sprint followed (after a 30-minute passive recovery period) by a 125 

severe-intensity constant-work-rate step exercise test to the limit of tolerance.  126 

Experimental tests.  127 

On all subsequent visits, participants were required to rest in a seated position for 10 min in 128 

an isolated room.  Thereafter, baseline blood pressure of the brachial artery was measured 129 

using an automated sphygmomanometer (M10-IT Omron Healthcare, UK) according to 130 



British Hypertension Society guidelines.  Additionally, pulse wave velocity and pulse wave 131 

analysis were determined by using Arterial Tonometry (SphygmoCor CPV system, ScanMed 132 

Medical, UK).  Three measurements were taken, and the mean of the measurements were 133 

calculated.  A venous blood sample was then collected into a lithium-heparin tube and 134 

centrifuged at 4,000 rpm at 4°C for 10 min, within 2 min of collection.  Lithium-heparin 135 

plasma was subsequently extracted and immediately frozen at -80°C for later analysis of 136 

[NO2
-] in duplicate via ozone-based chemiluminescence 29. 137 

 138 

Participants were then provided with standardised breakfast.  Descriptive measures and a 139 

Physical Activity Level of 1.7 was used to calculate the participant’s individual resting 140 

energy expenditure (Schofield Equation, 1985).  This subsequently identified the amount of 141 

cereal (Rice Snaps, Tesco, Manchester, UK) and semi-skimmed milk (1g/kg/bm) each 142 

individual needed to consume to meet 10% of their daily energy requirements.  This 143 

standardised fixed-energy breakfast meal consisted of a cereal: milk ratio of 30 g: 120 ml and 144 

delivered fat, protein and carbohydrate with a macronutrient composition of 14, 14 and 72%, 145 

respectively 30.  One-hour post breakfast consumption, participants received the intervention 146 

drink.  Ninety minutes after ingestion of the supplement, vascular measures were reassessed 147 

and participants completed one of the two cycle tests described below, as published 148 

pharmacokinetic data have shown that this time frame should coincide with peak plasma 149 

concentrations of phenolic acids following MC supplementation 9,11. 150 

 151 

The exercise protocol consisted of three “step” exercise tests including two moderate 152 

intensity step tests followed by one severe-intensity exercise bout.  All participants performed 153 

a total of four bouts of moderate intensity exercise and two bouts of severe-intensity exercise 154 

for each experimental condition; this protocol replicated previously work 30.  Each transition 155 

began with 3 min of baseline cycling at 20 W before an abrupt transition to the target work 156 

rate.  Each moderate intensity bout lasted 6 min.  A passive recovery of 5 min separated the 157 

transitions.  On two of the study visits (one occasion for each supplement), participants 158 

cycled for 6 min at a severe-intensity constant work rate (70% Δ), followed immediately by a 159 

60 s all-out sprint at maximum effort.  The resistance on the pedals during this sprint was set 160 

using the linear mode of the Lode ergometer, so that each participant would attain the power 161 

output calculated to be 50% Δ when considering the participants preferred cadence (linear 162 

factor = power/preferred cadence2).  Participants were provided with a 5 s countdown prior to 163 

the sprint.  On the other two study visits (one occasion for each supplement), the severe-164 



intensity constant-work-rate bout was continued to the limit of tolerance. The time to task 165 

failure was used as a measure of exercise tolerance and was immediately recorded when the 166 

pedal rate fell by > 10 rpm below the required pedal rate. 167 

Treatments and dietary control 168 

Participants consumed either 60 ml of commercially available MC concentrate 169 

(CherryActive®, Hanworth, UK) or fruit-flavoured cordial in a double-blind, cross-over 170 

manner.  The choice to use 60 ml was based on previous work that showed a greater uptake 171 

of anthocyanin and phenolic acids in vivo post-consumption when compared to a 30 ml dose 172 
3,9,11.  The concentrate was diluted with 100 ml of water prior to consumption.  The PLA 173 

supplement consisted of a commercially available, low fruit (<1%) cordial (Kia Ora, Coca 174 

Cola Enterprises, Uxbridge, UK) cordial mixed with water, whey protein isolate (Arla Foods 175 

Ltd., Leeds, UK) and maltodextrin (MyProtein Ltd., Northwich, UK), to match the MC 176 

concentrate for volume and macronutrient content (Energy = 204 kcal, volume = 60 ml, 177 

carbohydrates = 49 g, protein = 2.2 g and fat = 0 g). 178 

 179 

Prior to study commencement, it was explained to participants that the aim of the study was 180 

to investigate the effect of a fruit juice on vascular function.  As a result, they were unaware 181 

which beverage was the experimental drink. There were no adverse events reported in 182 

response to the intervention products. Subjects consumed all doses of the supplement for each 183 

experimental condition, and all participants complied with the low-polyphenolic experimental 184 

diet according to the food diaries. 185 

Measurements  186 

During all tests, pulmonary gas exchange and ventilation were measured breath-by-breath.  187 

Participants wore a nose clip and breathed through a low-dead-space, low-resistance 188 

mouthpiece-and-impeller turbine assembly. Following calibration according to 189 

manufacturer’s recommendations, the inspired and expired gas volume was continuously 190 

sampled at 100 Hz; gas concentration signals were continuously sampled at 100 Hz using 191 

paramagnetic (O2) and infrared (CO2) analyzers (Oxycon, Care Fusion, Rolle, Switzerland). 192 

For data analysis, the moderate bouts of exercise were exported in 10-s averages and then 193 

averaged for all bouts.  End-exercise V̇O2 (average over the last 30 s and 60 s of the bout), 194 

baseline V̇O2 (average over the 60 s prior to exercise) and the amplitude (the difference 195 

between the end-exercise and baseline V̇O2) were analysed.  For the severe bouts of exercise, 196 

the data were exported in 10-s averages and then all bouts were averaged.  Baseline V̇O2 197 



(average over the 60 s prior to exercise), the V̇O2 at 120 s (the average from 110 s to 130 i.e. 198 

120 s +/- 10 s) and the end-exercise V̇O2 (the average over the last 30 s of the bout) were 199 

identified. The peak V̇O2 was identified using the end- exercise V̇O2. Furthermore, the 200 

difference between the baseline and 120 s V̇O2 provides a surrogate for the fundamental 201 

amplitude whilst the difference between V̇O2 at 120 s and end-exercise (exhaustion) was used 202 

as a surrogate of the V̇O2 slow component. 203 

The oxygenation status of the vastus lateralis of the right leg was monitored near-infrared 204 

spectroscopy system (NIRS; INVOS 5100C, Somanetics, Troy, MI, USA) at two different 205 

wavelengths (765 nm and 855 nm). The intensity of the transmitted light was continuously 206 

recorded at 1 Hz. Based on the absorption and scattering coefficients of light at each 207 

wavelength, determined by Beer–Lambert Law, concentrations were estimated for oxy 208 

(HbO2), deoxy (HHb), and total haemoglobin.   The leg was initially cleaned around the belly 209 

of the muscle, and the optodes were placed 20 cm above the fibular head.  The probes were 210 

secured to the skin surface and covered with an elasticized, tensor bandage to minimize the 211 

influence of extraneous light, and to avoid movement of the probe relative to the skin, while 212 

allowing unrestricted movement.  The NIRS data were acquired continuously throughout the 213 

exercise protocol and output every 5 s and recorded for later offline analysis.  The NIRS data 214 

output was time stamped at the start of each task segment to assure that data corresponded to 215 

the relevant period of task performance. To provide information on muscle oxygenation, 216 

NIRS data was averaged at the time points of interest and relative concentration changes in 217 

HbO2 and HHb were calculated.  218 

The tissue oxygenation index (TOI) was calculated using the following equation 30 219 

TOI =    [HbO2]  220 

 [HbO2] + [HHb] × 100                 Equation 1 221 

Pulse wave velocity (PWV) and pulse wave analysis (PWA) were determined by using 222 

Arterial Tonometry (SphygmoCor CPV system, ScanMed Medical, UK).  The aortic pulse 223 

waveform and augmentation index were derived at the radial artery and PWV was 224 

determined between carotid and femoral sites.  A pencil-type probe was used for all 225 

measurements and was held at the base of the neck over the carotid artery and at the inguinal 226 

crease over the right femoral artery.  Recordings were taken when a reproducible signal was 227 

obtained with a high amplitude excursion.  The distance between carotid and femoral sites 228 



was measured and electrocardiogram gating permitted the time lapse between pulse waves at 229 

the carotid and femoral sites to be calculated. Inter- and intra-trial % coefficient of variation 230 

(CV) for this method was 3.3 and 3.1%, respectively. 231 

During the exercise trials, a blood sample was collected from a fingertip into a capillary tube 232 

at baseline, over the 20 s preceding the step transition in work rate, the 20 s preceding the 233 

completion of 360 s of moderate- and severe-intensity cycling exercise, immediately 234 

following the 60-s all-out sprint and immediately after exhaustion during the severe-intensity 235 

constant-work-rate trial.  These whole blood samples were analysed to determine blood 236 

lactate (Biosen C_Line, EKF Diagnostic, Barleben, Germany).  Intra-sample coefficient of 237 

variation for this instrument was 1.8%. 238 

Plasma [nitrate] and [nitrite] determination 239 

All glassware, utensils, and surfaces were rinsed with deionized water to remove residual NO 240 

intermediates prior to [NO2
-] and [NO3

-] analysis.  Plasma samples were deproteinized using 241 

zinc sulfate/sodium hydroxide precipitation prior to determination of [NO3
-]. Firstly, 500 μL 242 

of 0.18 N NaOH was added to 100 µL of sample followed by 5 min incubation at room 243 

temperature.  Subsequently, samples were treated with 300 μL aqueous ZnSO4 (5% w/v) and 244 

vortexed for 30 s before undergoing an additional 10 min incubation period at room 245 

temperature. Samples were then centrifuged at 4,000 rpm for 5 min, and the supernatant was 246 

removed for subsequent analysis.  The [NO3
-] of the deproteinized plasma sample was 247 

determined by its reduction to NO in the presence of 0.8 % (w/v) VCl3 in 1 M HCl within an 248 

air-tight purging vessel.  Plasma samples were introduced to the vessel via 50 µL injections 249 

into the septum at the top of the vessel.  The spectral emission of electronically excited 250 

nitrogen dioxide, derived from the reaction of NO with ozone, was detected by a 251 

thermoelectrically cooled, red-sensitive photomultiplier tube housed in a Sievers gas-phase 252 

chemiluminescence nitric oxide analyzer (Sievers NOA 280i. Analytix Ltd, Durham, UK). 253 

The [NO3
-] was determined by plotting signal (mV) area against a calibration plot of sodium 254 

nitrate standards.  The [NO2
-] of the undiluted (non-deproteinized) plasma was determined by 255 

its reduction to NO in the presence of glacial acetic acid and aqueous NaI (4% w/v) from 256 

sodium nitrite standards.  100 µL injections were used for plasma [NO2
-] determination.   257 

Statistical Analysis 258 

Statistical analysis was performed using PASW Statistics 21.0 for Windows (SPSS, Inc., 259 

Chicago, IL.).  All group characteristics were reported as means ± standard deviations, unless 260 



otherwise stated.  A 2 (MC vs. PLA) × 2 (pre vs. post) repeated measures analysis of variance 261 

(ANOVA) was employed to assess between–intervention differences in V̇O2, NIRS–TOI, 262 

blood pressure, arterial stiffness and lactate. Mauchly’s Test of Sphericity was used to check 263 

homogeneity of variance for all ANOVA analyses and where necessary, violations of the 264 

assumption were corrected using the Greenhouse–Geisser adjustment. Significant main 265 

effects were followed up using LSD post hoc analysis.  Exercise performance and NO2− and 266 

NO3- were analysed using a paired samples t-test. Statistical significance was accepted when 267 

P < 0.05. 268 

Results  269 

Eleven physically active males volunteered to take part in the study, but one participant 270 

voluntarily withdrew after the second study day (n=10).   271 

Pulmonary V̇O2 kinetics 272 

The pulmonary V̇O2 data for the moderate- and severe-intensity cycle tests are reported in 273 

Table 1.  There were no significant between-supplement differences for the baseline and end-274 

exercise V̇O2 during the moderate-intensity step exercise tests (P > 0.05).  Accordingly, the 275 

fundamental V̇O2 amplitude was not significantly different between the conditions (0.55 ± 276 

0.09 and 0.60 ± 0.07 l/min with MC concentrate and PLA respectively, P > 0.05). 277 

 278 

The baseline and end-exercise V̇O2 during severe-intensity exercise were not significantly 279 

impacted by the dietary interventions employed in this investigation (P > 0.05 for all 280 

comparisons).  The V̇O2 at exhaustion was not significantly different between experimental 281 

conditions and was also not significantly different from the V̇O2peak attained in the ramp 282 

incremental test (P > 0.05).  No significant differences were reported between MC and PLA 283 

in V̇O2 amplitudes from baseline to 120 s of exercise.  No differences in V̇O2 slow component 284 

were observed across the experimental conditions (Table 1). There were no differences in 285 

V̇CO2 between the conditions during moderate- or severe-intensity cycle exercise (P > 0.05 286 

for all comparisons). 287 

 288 

     >>>> Table 1 <<<< 289 

Exercise performance  290 

The time to exhaustion during the severe-intensity constant-work-rate cycle trials (the 291 

exercise tolerance test) are presented in Fig 1; while the power profiles for the two 292 



experimental conditions during the 60-s all-out sprint that followed the 6-min bout of severe 293 

intensity exercise (the exercise performance test) are presented in Fig 2.  There were no 294 

significant differences in time to exhaustion during the exercise tolerance test between the 295 

MC (772 ± 34 s) and the PLA conditions (733 ± 34 s, P = 0.323).  A significant main effect 296 

for supplement was observed for the peak power over the first 20 s and total work completed 297 

during the 60-s all-out sprint that followed the 6 min severe intensity preload (P < 0.002).  298 

Follow-up analyses demonstrated that, compared with PLA, MC concentrate supplementation 299 

increased the test peak power by 9.5% (363 ± 42 vs. 330 ± 26 W, P = 0.034; Fig 2) and the 300 

total work completed during the 60 s sprint by 10% between conditions (21 ± 3 vs. 19 ± 3 kJ, 301 

P = 0.021).  302 

 303 

     >>>> Figure 1 <<<< 304 

     >>>> Figure 2 <<<< 305 

 306 

NIRS  307 

The tissue oxygenation index data during moderate- and severe-intensity cycle exercise with 308 

PLA and MC supplementation are reported in Table 2.  There were no significant differences 309 

between the experimental conditions during the moderate or severe-intensity exercise (P > 310 

0.05).   311 

     >>>> Table 2 <<<< 312 

 313 

Vascular measures 314 

There was a significant interaction effect for supplement on SBP (P < 0.05), with follow-up 315 

analyses showing that SBP was lower 1.5 h post MC supplementation, with reductions of 5 ± 316 

2 mmHg compared to the placebo trial.  No other vascular variables (DBP, mean arterial 317 

pressure (MAP), PWV, augmentation index (AIx) and AIx corrected for HR at 75 bpm) were 318 

altered after consumption of the MC concentrate compared to the placebo treatment.  The 319 

absolute values for all variables are presented in Table 3. 320 

 321 

  322 



     >>>>Table 3<<<< 323 

 324 

Plasma [NO2
−] and [NO3

−] 325 

Due to sampling error, blood was analysed in 8 participants.  The plasma [NO2
−] and [NO3

−] 326 

for the MC and PLA conditions are reported in Table 4.  There were no changes for NO2
− or 327 

NO3
− in the MC supplemented trial when compared to the placebo (P > 0.05). 328 

 329 

     >>>> Table 4<<<< 330 

 331 

Lactate  332 

There was no treatment or treatment × time interaction effect observed in blood [lactate], 333 

however there was a significant time effect identified during both the exercise performance 334 

and tolerance test (P < 0.001).   No other differences were reported.  Absolute values are 335 

presented in Table 5.   336 

     >>>> Table 5<<<< 337 

 338 

  339 



Discussion 340 

The principal novel findings from this study are that, compared with an energy-matched 341 

placebo, acute MC supplementation enhanced end-sprint performance following a 6 min 342 

severe-intensity preload in trained cyclists without changing V̇O2, plasma [NO2
-] or muscle 343 

oxygenation variables. In addition, SBP was lower 1.5 h post MC consumption but not with 344 

PLA.  345 

Influence of MC supplementation on performance  346 

In the current study, peak power output and total work done during a 60-s sprint increased by 347 

9.5 and 10%, following MC relative to the PLA supplementation.  While tart cherry 348 

supplementation has been shown to improve exercise recovery 23,24 and decrease markers of 349 

inflammation and oxidative stress 1,3, studies investigating the effects of tart cherries on 350 

exercise performance are limited and equivocal.  Of the two studies investigating the 351 

influence of MC supplementation on exercise performance to date, one reported improved 352 

performance in males completing a half marathon (21.1km) run, as evidenced by a faster 353 

overall race pace compared to the PLA group 19. However, as previously mentioned, there 354 

were some limitations to the study design and therefore these results should be interpreted 355 

with a degree of caution.  While Levers et al.19 designed an experiment to assess the influence 356 

of ingesting 480 mg of powdered tart cherries for 10-days, including supplementation on race 357 

day up to 48-hr post-run, we investigated the effects of a single dose (60 ml) of MC 358 

concentrate on exercise performance using a cross over study design.  Despite the differences 359 

in dosing strategies, both studies reported improvements in performance.  Therefore, our 360 

findings suggest that acute as well as chronic supplementation with MC concentrate has the 361 

potential to improve performance, specifially end-sprint performance. Conversely, an earlier 362 

study by Clifford and colleagues 18 reported no difference in time trial performance in 363 

moderately-trained individuals following the ingestion of 200 mg of powdered tart cherries 364 

for 3-days.  These conflicting findings might be due to the differences in dosing procedures 365 

(480mg versus 200mg) and exercise tests performed (20 km cycling time trial versus half 366 

marathon).  The current investigation used a MC concentrate as opposed to the powdered 367 

capsules used in both previous studies.  The MC concentrate was found to contain 73.50 368 

±0.20 mg cyanidin-3-glucoside /L and 178.75 ± 0.87 mean gallic acid equiv/L 11. The 369 

exercise protocol used in the current study also differed to the two previous studies.  370 



 There were no differences observed for time to exhaustion between the MC and the PLA 371 

trial in the current study.  Trinity and colleagues also reported that polyphenol 372 

supplementation did not improve performance during prolonged exhaustive exercise (one 373 

hour of exercise including a 10 min time trial) or during shorter duration high intensity 374 

exercise (time to fatigue at VO2max).  There remains a debate surrounding the applicability 375 

and repeatability of the time to exhaustion test as there is a larger day to day variability when 376 

compared to a time-trial 32.  However, a recent addition to the literature concluded that a time 377 

to exhaustion test is regarded as a more useful measure of cycling performance compared to a 378 

time trial 33.   379 

There were no changes in V̇O2, blood [lactate] or muscle oxygenation in the current study 380 

suggesting that the ergogenic effects of MC supplementation were not linked to improved 381 

metabolic responses or better matching of muscle O2 supply to O2 demand. Furthermore, 382 

plasma [NO2
-] was not different between the two trials and since plasma [NO2

-] is a sensitive 383 

biomarker of eNOS activity 26, the performance improvements with MC supplementation 384 

appear to be independent of NO-mediated signalling.  It is more likely that the enhanced 385 

performance might be mediated through the AOX and vasodilatory properties of polyphenol-386 

rich MC.  When undertaking high intensity exercise, ROS are produced causing cellular 387 

damage and oxidative stress 34. AOX have the ability to prevent or reduce the extent of 388 

oxidative damage to other molecules.  It is therefore possible that the AOX effects of MC 389 

concentrate were only significant when skeletal muscle contractions were most likely to be 390 

compromised by increased oxidative stress 34.  In agreement, an investigation by MacRae and 391 

Mefferd 35 reported that the addition of a flavonoid quercetin to a liquid AOX supplement 392 

significantly enhanced the AOX effect of the supplement and resulted in a 3.1% performance 393 

improvement during a 30 km cycle time trial.  Hence, it is possible that a combination of 394 

AOX compounds may induce larger effects on exercise performance.  It is also possible that 395 

this increase in AOX defence from the MC concentrate relative to the PLA may have been 396 

amplified by the lowering of dietary sources high in AOX’s i.e. dietary restrictions imposed 397 

on participants. Previous literature has reported that the baseline antioxidant profile of an 398 

individual is an important determinant of the ergogenic effectiveness of an antioxidant 399 

treatment 36.  400 

Given that MC concentrate has been shown to possess numerous AOX and polyphenolic 401 

compounds 1,2, it seems reasonable that the improvement in exercise performance in the 402 

current study might be as a result of these AOX compounds. It is worth noting that MC 403 



supplementation could have prolonged the duration for which the participants were in the 404 

optimal cellular redox state for force production 37 such that when they were required to 405 

produce an all-out sprint, they produced a higher peak power and completed more work.  In 406 

addition, muscle blood flow is considered an important limiting factor during high intensity 407 

exercise 38, and it is possible that the improvement in exercise performance might be linked, 408 

in part, to an increase in blood flow. Previous research has demonstrated the vasodilatory 409 

effects associated with anthocyanin intake 39 and more recently, MC supplementation has 410 

been shown to alter vascular function and behaviour 9,10,11 .   411 

Influence of MC supplementation on plasma [NO2
−] 412 

Nitric oxide is a key regulator of vascular integrity.  This multifaceted physiological 413 

signalling molecule can be synthesized endogenously through NOS with plasma [NO2
-] 414 

reflecting NOS activity 26.  No significant difference in plasma [NO2
-] was reported between 415 

the MC and PLA trials in the current study.  This is somewhat in agreement with the findings 416 

from Keane and colleagues 11, where no main effect for plasma NO3
- or NO2

- was observed 417 

following 60 mL MC supplementation using an ELISA kit.  Importantly, the lack of a change 418 

in plasma [NO2
-] in the current study extends our previous findings by using a more sensitive 419 

method to detect plasma [NO2
-] in the nM range and this better reflects NOS activity than 420 

plasma [NO3
-] 26.  Since trained endurance cyclists were recruited in the current study, and 421 

since endurance training increase NOS expression 40, it is likely that eNOS-derived NO 422 

production was already optimal in this cohort and therefore no changes were observed after 423 

MC supplementation.  It is also noteworthy that the resting plasma [NO2
-] was relatively low 424 

in the current study when compared with previous literature 31. This could be as a result of the 425 

dietary restrictions imposed on the participants on the day preceding the trial and/or a low 426 

intake of nitrate-rich foods in the period leading into the trials. 427 

Influence of MC supplementation on blood pressure  428 

A primary outcome of enhanced NO synthesis is a reduction in blood pressure owing to NO-429 

induced smooth muscle relaxation 41.  The current study reported a significant reduction in 430 

SBP 1.5 h post MC ingestion relative to placebo, however this augmented modulation 431 

occurred in the absence of changes in NO biomarkers.  These results are consistent with a 432 

recent study demonstrating that supplementation with the NOS substrate, L-Citrulline 31, 433 

lowered blood pressure in the absence of a change in plasma [NO2
-].  Mechanistically, it 434 

would appear that the lowering of BP with acute MC supplementation in the current study is 435 



largely NO-independent and is more likely to be a function of the increase in circulating 436 

phenolic metabolites post MC ingestion 11. There was no change in arterial stiffness observed 437 

in the current study.  This observation is in line with previous studies reporting improved 438 

SBP following MC consumption in males with early hypertension 11 and middle aged adults 439 
10, with no improvement in arterial stiffness.   It has previously been reported that concurrent 440 

improvements in all measures of vascular function are not always observed 11. Further 441 

research is required to investigate the mechanisms by which MC supplementation might 442 

positively affect vascular and other physiological responses. 443 

A limitation of the current study is the lack of polyphenol analysis and oxidative stress 444 

biomarkers. Conceivably, there are a number of mechanisms that could contribute to the 445 

physiological effects exerted by MC, and further research is needed to address the underlying 446 

mechanisms for these observations.  In addition, participants in the current study were asked 447 

to adhere to strict dietary guidelines in the days preceding the trials and future work should 448 

attempt to investigate the potential synergetic effects of MC supplementation within habitual 449 

dietary practices.   450 

In conclusion, this study has shown that acute supplementation with MC juice can lower 451 

blood pressure and improve exercise performance, specifically end-sprint performance, in 452 

trained endurance cyclists.  There were no changes in plasma [NO2
-], pulmonary V̇O2, or 453 

muscle oxygenation after ingesting tart cherry juice so the improvements in blood pressure 454 

and exercise performance in this study might be mediated through the potent antioxidant 455 

properties of MC juice.  The results of this study suggest that supplementation with MC 456 

concentrate might represent, a practical, non-pharmacological, dietary intervention to reduce 457 

blood pressure and enhance end-sprint performance in trained individuals.  458 

Perspectives 459 

The improvement in end-sprint performance in the current study could prove advantageous in 460 

sporting situations where very little separates opponents.  After completing exercise that was 461 

deemed metabolically strenuous, participants performed better over a 60-s sprint when 462 

supplemented with MC compared to placebo. Consequently, MC supplementation might be 463 

of interest to athletes, coaches and applied sport scientists.  Also, the marked reduction in 464 

systolic blood pressure we observed with MC supports previous studies 10,11 and underlines 465 

the potential importance of MC as an adjunct to the management of hypertension.   466 
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