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The social condition does not apply, the boundary condition does 



ABSTRACT 

Recent experimental investigation on FSS arrays forming waveguides (FSGs) and 

horns showed that incident electromagnetic energy can be guided and radiated at 

specific frequencies. This thesis aims to provide the theoretical understanding of the 

waves propagating inside a cylindrical FSS waveguide. With inunediate applications 

on horn antennas the research deals with cylindrical guides, made entirely from 

double periodic arrays. The theoretical analysis begins as a standard electromagnetic 

boundary value problem. The formulated system of algebraic equations is solved 

either for the complex propagation constant, by an iterative procedure or, for the 

fields. The analysis makes use of the Floquet modal expansion, the current 

representation as a set of sub-domain basis functions and the Method of Moments. 

Initially, the thesis is concerned with single periodic structures, which is a special 

case to the analysis. The efficiency of the model to provide stable and valid results is 

examined. Next the elements are finite dipoles. The effects of the dipole resonance 

to the propagating and radiating characteristics of the FSS is closely investigated. 

Other aspects include the effects of the periodicity and the element size. The 

investigation concludes with an FSG with square loop elements. Validation of the 

results for some designs is made by comparison with measured data. 
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CHAPTER 1 

Introduction 

1.1.1 Introduction to Frequency Selective Surfaces (FSS) 

FSSs are essentially array structures which consist of a plurality of resonant 

conducting elements (or apertures), often printed on a dielectric for support. The 

elementary principle of operation of FSS is, that they exhibit bandstop or bandpass 

properties when excited with an incident electromagnetic wave. Planar and curved 

FSS have found applications as antenna components in reflector or sub-reflector 

systems for dual band operation and beam shapers. The frequencies at which the 

bandstop or bandpass phenomena occur, are usually dictated by the element and 
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lattice geometry. Planar FSS have been extensively analysed, see for example [1-6], 

and their attractive properties have been well established both in academic research 

and microwave industry. 

1.1.2 Introduction to Frequency Selective Guides (FSG) 

The Antennas and Microwave Group at Loughborough University, has been 

investigating the properties of FSS both theoretically and experimentally. Novel 

contnlJUtions arising from the said group include Frequency Selective Guides 

(FSGs) and Frequency Selective Horns (FSHs). Fig. I depicts an FSG with double 

squares [7], a waveguide with the array inserts [8, 9], and an FSH [10]. 

(a) 

\ B1 
\ 

(b) 

~armangle 
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(c) 

z 

Figure 1: Various FSS geometries: a) Frequency Selective Guide, b) waveguide 

with array inserts, c) Frequency Selective Horn. 

3 

Frequency Selective Waveguides (FSGs), as the name suggests, are waveguides 

which embody the general properties of Frequency Selective Surfaces (FSSs). In 

principle they take the shape and size of traditional rectangular or cylindrical 

waveguides, but their walls are replaced by an FSS. For the rectangular hollow tube 

of Fig. l.a., measured data revealed frequencies of guidance and radiation [7]. In 

collaborating study with the Politecnico di Torino, results from the geometry in Fig. 

l.b using a transverse resonance model, agreed well with measurements conducted 

at Loughborough [8,9]. 

Due to their ease in fabrication and their performance Frequency Selective Horns 

(FSHs), find many applications where, lightweight and inherent multiband 

capabilities are desired (e. g. conical radomes). The lightweight soft horn can be 

easily fabricated by wrapping a planar section of printed dielectric. At the resonant 
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frequency the perfonnance is very close to that of a metallic wall while, away from 

resonance the horn becomes inert [10]. A multiband structure results by collocating 

two soft horns coaxially; the outer horn dictating the low frequency operation and 

the inner horn the high frequency. The integration of FSHs into image processing 

for medical diagnostics is underway by the referred group [11-13]. 

The most salient feature of the FSGs and FSHs is that electromagnetic energy can 

be guided inside an open structure due to the element resonance. Horns with 

cylindrical cross section are relatively easy to make. This thesis aims to provide the 

theoretical analysis and modelling, as well as explain the main operation properties 

of FSGs with circular cross section. The impetus behind the present study came 

from two factors: 

1. Lack of the mode content ofFSGs 

and, 

2. Design features ofFSGs 

1.1.3 Introduction to Leaky Wave Antennas 

So, what if electromagnetic energy is launched into an FSS that is formed as a 

waveguide? Is energy going to propagate by some sort of mode configuration, will 

it leak through? Undoubtedly, some will leak through at some frequencies since the 

guide is not closed. The latter lead to the introduction of another well known type 

of antenna fumily, 'leaky wave antennas'. Historically, they are first mentioned in 

the early '30s, but their existence was questioned until Marcuvitz supplied a 

mathematical interpretation of leaky waves in 1956 [14,15]. Since then, as OIiner 

notes [14], the leaky wave theory played a significant role in the explanation of 

many physical effects e.g. radiation from plasma sheaths surrounding vehicles re

entering the atmosphere, blinds spots in the radiation from large phased arrays, 

grating coupling and Wood's anomalies in integrated optics. A large number of the 
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leaky wave antennas result from open waveguides [16-30]. One class of these leaky 

wave structures involves periodic modulations on a dielectric, the modulations due 

to grooves in the dielectric or metallic strips printed on it. 

1.2 Structure of the thesis 

This thesis is organised as follows: 

In Chapter 2 the contribution is a method which provides the characteristic equation 

for doubly periodic cylindrical arrays. The solution of this equation yields the 

propagation constants of all possible modes .existing inside the FSG. Initially, 

Maxwell's equations are used to provide the field solutions for a wave excited 

inside a cylindrical FSG structure. Based on the assumption that the structure is 

infinite in the axial direction and has a natural periodicity of 27r, the tangential 

electromagnetic field components are expressed as an infinite series of orthogonal 

wave functions, the Floquet modes. In order to account for the radiation from the 

open FSG, the wavenumbers are considered complex. The application of the 

boundary conditions enables the formation of the characteristic equation, where the 

unknown is the surface current. This equation is solved using the Method of 

Moments (MoM). Roof-top basis functions are used to expand the surface current. 

Chapter 3 deals with one dimensional cases of cylindrical periodic arrays. Predicted 

results for the propagation constant are presented for free standing one dimensional 

arrays. Initially, the analysis is formulated, by collapsing the periodicity in one axis 

from the two dimensional analysis given in Chapter 2. The efficiency and the 

computational requirements of the computer model are discussed. Predicted results 

are presented for both the imaginary and the real part of the propagation constant. 

The results in this Chapter are useful in extracting the general set of rules of more 

complicated two dimensional geometries. 
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In Chapter 4, two examples of double periodic cylindrical guides are presented. The 

array elements are longitudinal and transverse resonant dipoles. The predicted 

propagation characteristics of the novel FSS guide, are presented by plotting the 

complex propagation constant. The convergence behaviour of the model is closely 

examined. Each mode configuration is identified and discussed. The effects of the 

dipole periodicity and length on the guide's propagation and radiation behaviour 

are studied. 

In Chapter 5, double square loops are proposed as array elements. New interesting 

results regarding the complex wavenumbers are derived and presented for this FSG. 

The guiding and radiating properties of the square loop array are evaluated, by 

comparing the results with the· dipole arrays shown in Chapter 4. The 

correspondence between the resonance and attenuation of the structure is discussed. 

Effects of the periodicity and element dimensions on the dominant mode are 

showri. The hybrid factor; which is a prime -factor in designing balanced antenna 

feeds, is calculated and discussed. A representative design is also compared with 

measured data. 

The conclusions and future work evolving from this thesis are presented in Chapter 

6. 

Finally, there are three Appendices included at the end of this thesis. Appentix A, 

briefly presents the standard wave analysis in cylindrical coordinates. Appentix B is 

concerned with two aspects common to open periodic antennas: the fonnation of 

radiating beams and the mode coupling effect. Finally, in Appendix C, asymptotic 

expressions are given for the Bessel functions used in the analysis. 
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CHAPTER 2 

Analysis of a cylindrical 

periodic open waveguide 

2.1 Introduction 

In this Chapter, the analysis is given for an FSG with cylindrical cross section and 

arbitrary element geometry. The aim is to determine the propagation characteristics 

of the FSG. The requirements are 

1. The structure is double periodic. 

2. The analysis must be flexible in that it should provide answers for any 

periodicity, wavelength and element geometry, including single periodic FSG. 
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3. The analysis must account for radiation losses due to the fact that the FSG 

is an open structure. 

12 

To comply with the previous requirements, the analysis uses a two dimensional 

Floquet modal expansion in cylindrical coordinates whereby, the currents on the 

elements are expanded as a set of sub-domain basis functions. Additionally, the 

FSG is viewed as a leaky wave structure. 

It is worth mentioning at this point that, as far as the writer is concerned, an 

analysis as such, has not appeared in previously published work. However, there 

are cases found in bibliography, of circular guides with some common attributes 

(open, periodic), to those of FSGs. The cases include open cylinders and circular 

guides loaded with strip-grids [1-7]. Despite the aforementioned similarities, two 

arguments can be drawn: 

1. Direct comparison of results found in [1-7] and results from the analysis in 

this thesis, is not appropriate. 

ii. The techniques used in [1-7] can not be applied for FSGs. 

The previous arguments and similarities, become more clear in the discussion 

which follows. 

In the ' 60s, longitudinally slotted circular waveguides, had been modelled using an 

equivalent circuit representation and perturbation techniques [1-3]. However, these 

techniques involve approximations for the fields in the slots and break down when 

the openings become large, or more than one slots are considered. 

The work published by Cwik [4], used Floquet modes and subdomain basis 

functions to analyse the scattering from a free standing cylindrical array of strips. 

His analysis, provided solutions only for the reflection/transmission coefficients; 

for a plane wave incident on the surface. This is an easier problem than that of the 

current study, as complex wavenumbers are not involved. 
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Lier [5], used modal analysis and entire domain current functions, to find the 

propagation inside strip-loaded waveguides. However, the array of strips, was 

singularly periodic and confined within a cylindrical plate. 

Rong, [6], obtained the propagation and radiation of surface waves, for a cylindrical 

chiral core, periodically loaded with metal grids. His analysis involved Floquet 

expansion and mode expansion and avoided the expansion of the currents. For a 

more complicated geometry though, suitable expansions may not be easily found. 

Kishk et. al. [7], introduced an asymptotic boundary condition to find the scattering 

from circular dielectric guides loaded with strip-grids. The condition by-passed the 

more complicated Floquet expansion, but it was accurate only when the periodicity 

was much smaller than the wavelength. 

This Chapter, is organised as follows 

In Section 2.2, infinitely long, cylindrical FSGs are introduced. The periodicity is 

defined in both the rp and z axis. Because the boundary area is not unifonn, all six 

field components exist - hybrid modes. Since the array is periodic, the fields are 

assigned in the area of a unit cell only. This type of analysis is referred as modal field 

analysis, or Floquet modal expansion. Floquet expansion is explained in detail in 

Section 2.3. The tangential total electric field components are expanded in Floquet 

modes at each interface in Section 2.4. In the same Section, the application of the 

electromagnetic boundary conditions in conjunction with the orthogona\ity 

properties of the Floquet modes enable the spectral representation of the current and 

the formulation of an eigenvalue equation. The latter can be solved with the 

application of Method of Moments (MoM). A brief discussion on the MoM 

applications in boundary value problems is given in Section 2.5 whereby, the current 

is expressed as a series of sub-domain basis functions, the so called roof-top bases. 

The application of the MoM yields a homogeneous system of algebraic equations. 

The homogeneous equations are reconstructed in a computer program, written in 

FORTRAN 77, so they can be solved by the computer. Section 2.6 deals with an 

iterative procedure which locates the solutions of the system. 
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In Section 2.7, a decision making for the radial propagation constant - a key factor 

to the analysis of open structures - is outlined. Due to the fact that the FSG is open, 

the propagation constant in the direction of propagation is complex [8] hence, the 

radial propagation constant is also complex and should belong to the appropriate 

Reimann sheet. Reimann sheets are extensively used in leaky wave antennas, [9-

12]. Here, a discussion on Reimann sheets is provided, as additional information to 

the analysis of an open periodic structure. 

If the propagation constant is known, then the fields and currents can be found, 

provided a voltage excitation is introduced [13]. This is discussed in Section 2.8. 

Finally, Section 2.9 deals with various numerical problems arising when using the 

computer model to study a representative array. Some numerical recipes are given 

that are useful to overcome such problems. 
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2.2 Cylindrical periodic structures (FSGs) 

Fig 2.1 shows a section of an infinite periodic surface in cylindrical coordinates. 

Periodicity is assumed in the rp and z directions. The surface consists of infinitely 

thin, perfectly conducting elements which are arranged on a cylindrical array. The 

array is located in free space, (free standing FSG), or on a dielectric rod. 

~=O 

Figure 2.1: Cylindrical FSG with elements of arbitrary shape 

The minimum distance of translation along each co-ordinate axis on the surface 

defines the period. The cylinder is also a structure with natural periodicity of2:r. For 

N metallic patches around the cylinder the periodicity in rp is equal to Drp = 2:r / N. 
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2.3 Floquet modal description 

Named after the nineteenth century French mathematician for his studies in periodic 

solutions to differential equations, the Floquet harmonics or Floquet modes are a 

complete orthogonal set of periodic functions. For infinite periodic arrays, each 

element of the array is associated with a unit cell. A boundary value problem can 

therefore, be defined and solved in the area of the unit cell only. In that area as well 

as in all space, the fields are fully described by an infinite summation 0 f Floquet 

harmonics, with associated coefficients [14,15]. In the cylindrical coordinate system, 

each individual harmonic represents a cylindrical plane wave. 

The expressions for the Floquet harmonics are found by solving the vector wave 

equation in cylindrical coordinates. The vector equation is solved for the electric and 

magnetic vector potentials so that the fields can be divided into TE and TM. By 

assuming the vector potential in one axis only, the vector equation is reduced to the 

scalar Helmholtz equation. The solutions to the scalar equation, are the wave 

functions. These wave functions, must also satisfY the Floquet condition which is 

defined in Eqn. 2.2. 

It is assumed that the structure is excited by a mode with an ejno<P variation 

(circular polarisation) and unit amplitude. no is an integer and it appears as an index, 

denoting the azimuthal variation of mode configurations (e.g. for no = 1, the fields 

can be TE1rn or, TMlrn). The fields are time dependent as ejt»l, a factor which is 

assumed throughout this analysis. The reduced scalar wave equation in cylindrical 

coordinates is (Appentix A) 

(2.1) 

The propagation is assumed along the z axis. Since the periodicity is in both the rp 

and z axes, :=: can be expressed as a periodic function 

(2.2) 
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According to Eqn. (2.2). all field quantities differ between adjacent cells only by 

the linear phase shifts noD<p and kzoDz . Eqn. (2.1) can be solved by the separation 

of variables method. In so doing. ::: is expressed as 

(2.3) 

Assuming a periodic function <1>'( <p) = <1>( <p)e - jno'i' • then 

so it can be expanded as a Fourier series • 

. 21r 
~ j-p<p 

<1>'(~) = I,ape Dw (2.5) 
p=-oo 

Substituting Eqn. (2.5) into Eqn. (2.4) results 

(2.6) 

where each harmonic is 

(2.7) 

and 

(2.8) 

Similarly, for the z components 

~ 

Z(z) = La~Zq (z) (2.9) 
q=-oo 

where 
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z ()_ -jk,qz q z -e (2.10) 

and 

21t 
kzq = D q+kzO (2.11) 

z 

:=: then, is a periodic function with each individual harmonic being a solution to Eqn. 

(2.1). Each harmonic is expressed as 

(2.12) 

where 

(2.13) 

are Bessel functions (see Appendix A) and, 

(2.14) 

For eachp and q in Eqn. (2,14), the following dispersion relation holds 

(2.15) 

k is the free space propagation constant. 
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2.4 Field expansions 

( 
.. , 

+ 

-_/ ..... 

Figure 2. 2: A cylindrical cross section of the FSG, denoting the outer (+) and 

the inner (-) regions. 

The total fields (scattered and incident), are expanded as an infinite series of 

periodic functions inside, as well as outside the waveguide. From this point 

onwards, the region inside the guide is denoted by the negative sign -, and the one 

outside the FSS limits by the positive sign +. In the negative region the medium has 

a permittivity £=Eo£r and a permeability /1<J. The characteristic impedance of free 

space is denoted as 

Total fields in the negative region (r<ro) 

(2.16) 

There are three field components - one in each axis- for every field harmonic 

(2.17) 
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a is a unit vector. The dispersion relation for the medium inside the guide is given 

by the equation 

(2.18) 

The z-directed E- field component, is found according to Eqn. (A.5) in Appendix A 

(2.19) 

+ 
In the latter equation, A pq are amplitude coefficients for the TM wave potential. 

To simplify the field expressions, the following are substituted in Eqn. (2. 19) 

(2.20) 

Then Eqn. (2.19) becomes 

(2.21) 

+ 
The z-directed H-field component is found following Eqn. (A.9) (assuming Bpq 

are amplitude coefficients for the TE wave potential) 

F + B+-z- = pqc,pq 

(2.22) 

where 

- k b-
B pq = --=-z pq 

kpq 

(2.23) 

The rp components of the electric and magnetic fields are (referred Eqns. (A.6)-

(A. 10» 
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or 

(2.24) 

and 

H- [A- k J' (k- ) B- - j(- jkZq )(jnp ) J (k- )]m 
<ppq = - pqer pq np pqP + pq mJ.lop np pqP T pq 

or 

(2.25) 

J is the Bessel function of first kind, of order np and of complex argument. J' is 

the derivative of the Bessel function with respect to the whole argument. Bessel 

functions of complex arguments, represent localised standing waves [16]. In the 

region (p > r 0) similar expressions are used except that the Bessel functions are 

replaced by Hankel functions of the second kind (H(2». The latter represent 

outward travelling waves only. a;q and b;q are the unknown coefficients of the 

TM and TE components respectively. 

Total fields in the positive region (r>roJ 

The total tangential field components are expressed as an infinite series of modal 

harmonics. The harmonics are 
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(2.26) 

+ - j b+ H(2)(k+ )\IJ 
H zpq - - T/o pq n p pqP T pq 

(2.27) 

(2.28) 

The total fields can be found by summing all the field harmonics over p and q from 

--00 to +00. Next, the expressions can be obtained for the unknown amplitude 

coefficients. In doing so, the first step is to apply the continuity condition for the 

tangential electric field components across the waveguide boundary, at P = ro. The 

boundary condition is expressed as 

E;(ro) = Ei(ro) 

E;(ro) = E;(ro) 

(2.30) 

(2.31) 

It should be noted that Eqns (2.30) and (2.31) refer to the air boundary; the metallic 

interface boundary conditions are covered by Eqn. (2.56) in Section 2.5 .1. 

Using the boundary condition, Eqn. (2.30), in conjunction with Eqn. (2.26) and 

Eqn. (2.21) yields 

(2.32) 

For brevity, the following substitution is used in place of the argument in the BesseI 

functions: z: = ktqro. Eqn (2.31) in conjunction with Eqns. (2.24) and (2.28) 

yields 
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(2.33) 

The next step, is to apply the boundary condition which relates the tangential 

magnetic field components to the conductor's induced surface current. This is 

expressed as 

(2.34) 

Braking the last equation to its component parts results 

p=ro (2.35) 

p=ro (2.36) 

The following simplifications of the magnetic field expressions at p=ro will now be 

introduced 

H - H+ I -(b-'" - }jnp'P -jk",z zpq - zpq p=ro - pqv.:.zpq + a pqc7lzpq e 
(2.37) 

H - H+ I -(b- ." - _" ) jnp'P - jk,qZ <ppq - 'Ppq p=ro - pqv.:.<ppq + a pqC/l'Ppq e e 
(2.38) 

where 

(2.39) 

c7l",,, =_~{ker J' (z-)-
Y't'q TJ k- np q o pq 
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(2.40) 

(2.41) 

(2.42) 

If the medium inside and outside the guide, is the same, then Zq = z;, and 

The tangential components, 'I' pq , of the hannonics are orthogonal over the area of 

the periodic cell due to 

where the delta function is 1 for p = p' only; 0 otherwise. 'I';'q' is the complex 

conjugate of the tangential field 'I' pq , of hannonic number p', q'. The integration 

is over the area of the periodic cell. 

The field coefficients a~q and b~q can be expressed in terms of the unknown 

surface current by combining Eqns (2.35)-(2.38). Moreover, due to the· 

orthogonality, each side of the Eqns. (2.37), (2.38), is multiplied by the complex 

-jnq>jkz . 
conjugate of 'I' , (e P e zq ) and integrated over the area of the periodic cell 

roD q/Jz with respect to q; and z. This procedure yields the spectral coefficients of 

the current 
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where 

I zpq = J I zrod4x1z 
unit cell 

I zpq , is the spectral coefficient of the z directed current, and 

where 

I rppq = J I rprodqxiz 
unit cell 

25 

(2.43) 

(2.43a) 

(2.44) 

(2.44a) 

I rppq' is the spectral coefficient of the rp directed current The tilde denotes the 

Fourier transformation of the expanded current over the periodic cell. Eqns. (2.43) 

and Eqn. (2.44), are written as a linear system of equations, in matrix form, which 

can be solved for the unknown field amplitude coefficients 

(2.45) 

Izpq J3rppq 

Iq>pq J3zpq 

dlrppq J3rppq 

-dlzpq J3zpq (2.46) 

dlq>pq Izpq 

bpq = 
-dlzpq lq>pq z 

dlrppq J3q>pq 

-dlzpq J3zpq (2.47) 
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From the two last equations the coefficients a pq and b pq can also be expressed as 

(2.48) 

(2.49) 

where 

. (2.50) 
, ' 

(2.51) 

(2.52) 

.:g~q = -.:gtppq / U (2.53) 

and 

(2.54) 
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2.5 The Method of Moments 

Since it is not possible to know the actual current distribution on the unit cell a

priori, a set of suitable current expansions is employed, to approximate the total 

current. These current expansions, are given as a set of weighted functions, say 

{hn } , which also form a complete set. The current may therefore, be expanded as 

00 00 

1= lz + lrp = L Czn !:!'zn + L crpn !:!.rpn (2.55) 
n=-oo n=-oo 

The condition for completion is met when {hn } converges for Inl-+ a:J , and there is 

always a finite limit in the domain in which they are defined. The domain is the same 

as that for the current, and is important that the functions are linearly independent. If 

the functions are linearly independent, then the Method of Moments generates a 

system of linearly independent equations. The Moments Method analysis has been 

dealt extensively elsewhere, for example [17,18]. In the following Section, a set of 

sub-domain basis functions is employed to analyse the currents on the elements of 

the FSG. 

2.5.1 Sub-domain basis functions 

The remaining boundary condition on the waveguide surface is that the total, 

tangential electric field components, vanish on the conductor 

(2.56) 

(2.57) 

E; and E;, are found by surnrning an infinite number of the field harmonics given 

in Eqn. (2.21) and Eqn. (2.24) respectively. Since it is not possible to perform an 
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infinite summation by means of a digital machine, the summations are truncated. The 

truncated limits are P and Q and Eqns. (2.56), (2.57) become 

(z- component) 

(2.58) 

(rp- component) 

(2.59) 

or with Eqn. (2.48) and Eqn. (2.49) 

:L( J3;pqIzpq + J3Wq I<ppq )Jnp (Zq)'I' pq (z,q:» = 0 
pq (2.60) 

(2.61) 

The last two homogeneous equations, are weighted (or tested), by the same current 

basis function, (Ritz-Galerkin case) and in an average sense, by taking the inner 

product. Eqns. (2.60) and (2.61) become 
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I(JS;pqIzpq +JSif,pqIq;pq )Jnp (Zq )h';:pq = 0 
pq (2.62) 

(2.63) 

where, hnzpq is the testing function. 

The last two equations fonn a homogeneous system where, the unknowns are the 

currents in both directions. The analysis presented in this thesis, uses the so called 

'roof-top' basis functions to expand the currents (see Section 2.5.2). In theory, an 

infinite number of bases must be used to equal the actual current distribution. Since, 

it is not possible to represent an infinite series by means of a computer, a truncated 

number of roof-top functions is used. The Method of Moments will then produce a 

number of linearly independent equations as the number of the truncated bases. 

2.5.2 Roof-top functions in the Method of Moments 

Roof-top bases have been used extensively in the past to analyse the current on the 

elements in periodic screens. A plethora of communications have dealt with roof-top 

functions analysis, of which only a representative part is cited in this thesis [19-22]. 

The roof-top functions, are defined as a product of triangular (piecewise linear) 

functions along the direction of current flow and of step (piecewise constant) 

functions in the orthogonal direction. As shown in Fig. 2.3, in the direction of 

current flow, the triangular function goes to zero smoothly at the edges of the 
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conductor whereas, the current flowing parallel with the edges is not zero. 

Therefore, the singularity at the edges is preserved [19]. 

The linear element in Fig. 2.3, centred at the origin with dimensions L", and Lz. is 

discretised in the z and rp directions as 

then, the representations for the rp current take the form 

(5-11/2-1 (K-I1/2 

Itp(rp,z) = I I CSktpA s +O.5 (rp)IIk (z), 
-(5-1)/2 -(K-I1/2 

(2.64) 

(2.65) 

There are K(S-l) unknown current functions for the I?"directed current. Each roof

top occupies an area 2L1zLlrp, in a manner so that adjacent roof-tops overlap to allow 

the continuation of the current. Moreover, each of the roof-top functions is 

weighted by unknown current coefficients {csktp} . Note that, in order to signifY the 

two dimensions involved, the subscript n in Eqn. (2.55) has been substituted by the 

subscripts k and 5; both k and s are used to index the roof-top basis. The z directed 

roof-top functions are defined over rectangles of area equal to those of the rp 

directed roof-tops, but having z-orientation. For the z-directed current the 

representation is as follows 

(K-I1/2-1 

lz(rp,z)= I 
-(K-I1/2 

(5-11/2 

I CkszAk+O.s(z)IIs(rp), 
-(S-11/2 (2.66) 
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z- directed roof-top 

~- directed roof-top ------------------, ---- ----,---------, , , , 
I , : 

---- --------------'~,-,--------: ------- .... 

:g~ 
", : -'-, '-",: 

- -- ----- ----- -..,- -- - -', --- - ------- --,----
: " 

Figure 2.3: Roof-tops for the current expansion on a linear element K=3, 5=7 

A, is the triangular function which is defined as 

1
1 IX-IDxI 

Dx' AI(X) = 0, 
IX-IDxI<Dx 

elsewhere, 

and IT is the step function defined as 

Dx 
Ix-IDx!<-T 
elsewhere, 

(2,67) 

(2.68) 
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The transforms of the roof-top functions required in Eqns. (2.48) and (2.49), are 

]- 1 rS
+O.5)&q> ( ) - jn rpd t:12 ( ) jk zd = A e P c IT ze pq z 

skpqrp roDzDrp (-S+O.5)&q> srp rp rp -k&/2 skrp kz = 

(2.69) 

] = IT e P d c A z e pq dz - 1 illrp12 ( ) - jn rp ~k+O.5)1lz ( ) jk z 
kspqz roDzDrp -SIlrpl2 srp rp rp -k+O.5)/lz ksz kz = 

(2.70) 

Following Eqns. (2.69) and (2.70), the transformation of the current in each 

direction, when using roof-top functions expansion, is 

(8-1)/2-1 (1<-1)/2 

L L I skpqrp =1 <ppq 
-(S-I}/2 -(1<-1)/2 (2.71) 

(1<-1)/2-1 (8-1)/2 

L L Ikspqz = Izpq 
-(1<-1)/2 -(S-I}/2 (2.72) 

By substituting Eqns. (2.71), (2.72) back in Eqns. (2.60) and (2.61) and using roof

top bases as the testing functions, 2SK-(S + K) equations are obtained. These 

equations can be written in a matrix form as 
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[z][c] =[0] (2.73) 

where 

Is the unknown column matrix of the current coefficients and [Z) is the 

2SK - (S + K) x 2SK - (S + K) impedance matrix with submatrices 

where 

(2.74) 

(2.75) 

(2.76) 

(2.77) 
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In order to ensure reliability of the results when MoM is applied, the relative 

convergence phenomenon should be studied. The phenomenon sterns from the 

double truncation; the first truncation is on the number of bases and the second on 

the number of Floquet harmonics. Depending on the choice of these numbers, the 

results may not converge. The issue of relative convergence phenomenon has been 

dealt extensively elsewhere, e.g. when solving a boundary value problem for a 

rectangular waveguide [23] or, when calculating the reflection from micro strip

patch arrays [24] and planar FSS [20]. The transform of the bases is important as it 

enters the calculations for the matrix elements in Eqn. (2.76) to Eqn. (2.79). To 

guarantee stable results, one should include in the summations, the spectral 

components of each basis that contribute the most to the series. If the transform of 

the bases exhibits tendency to converge after a few terms, then higher spectral 

components will decay rapidly. Therefore, if these terms are left out from the 

summations, there will be no significant effect and convergence of the result is easily 

assured with only a few terms. However, it is known, that roof-top functions are 

smooth enough to produce convergent series [19,20]. 

In order to ensure convergence, the practice is, to start with a given number of 

bases and increase the number of Floquet harmonics until there is no change in the 

results. Then, try with a different number of bases and increase the Floquet 

harmonics until there is no change in the obtained results. Also, one can find a 

criterion for convergence, this ratio: 2SK-(S + K)/PQ (number of bases In umber of 

Floquet modes), [15]. This ratio will be defined in later Sections, for particular 

FSGs. It should be noted though, that convergence tests add to the expense of 

computational time. In this thesis, such tests constitute an important part in the 

presentation of the results. 
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2.6 Deriving a solution 

When the determinant of [Z] in Eqn. (2.73) is zero, the homogenous system has 

non-zero solutions. The mode content is then found using an iterative procedure in 

which the determinant is computed with the help of an appropriate numerical 

routine. Here, the F04ADF Numerical Algorithm Group routine, is employed. The 

determinant is calculated as a function of both the real propagation constant p and 

the attenuation constant a. The numerical procedure, uses different values of p and 

a as inputs until it finds a zero for the determinant. p and a are usually normalised 

with respect to the free space propagation constant k or, the periodicity in z. In 

order to reduce computational time each mode can be derived individually. In doing 

so, it is sufficient to find an initial point on a dispersion curve and then follow that 

point closely. Natura\ly, other parameters such as the number of Floquet harmonics 

and the number of total roof-top bases add to the computational time. These 

parameters are quantified in the numerical results in the following Chapters. 

2. 7 Complex roots introduced in open periodic structures 

In open structures, the electromagnetic energy is carried along the direction of 

propagation by waves, which are not only confined inside the guiding structure. 

These waves can also radiate energy outside at a particular angle (see Appendix B). 

Mathematically this radiation leakage is expressed in terms of complex waves or, 

waves with complex wavenumbers. 

In the case of periodic arrays, the Floquet modal analysis introduces an infinite 

spectrum of wave harmonics. These harmonics may possess different propagation 

characteristics or the same, i.e. mode coupling effect (see Appendix B). 

Electromagnetic energy propagating inside the periodic structure, is associated with 

all of these harmonics, resulting in a complex wave or B10ch wave [9]. Individual 

harmonics may represent fast waves or slow waves, which depending on the 
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operating frequency may become significant. Slow waves, are usually referred to as 

surface waves. These are waves which propagate longitudinally to a surface whilst, 

transversely to this surface, they decay as they travel towards infinity. Since they 

satisfy the radiation condition (radiated field is zero at infinity), slow waves 

represent the proper discrete spectrum of the radiated field. Pure radiation though, 

is associated with fast waves. Fast waves travel inside the guide with speeds greater 

than the speed of light and since the structure is unbounded, they loose energy in 

the direction of propagation. This energy loss should be compensated as energy 

gain in the transverse (radial) direction where, the wave is increased in amplitude as 

it travels towards infinity. This mathematical representation describes leaky waves 

which are known to characterise the improper, or non-spectral radiated field [10]. 

According to the dispersion relation, Eqn. (2.15), the radial wavenumber kpq is a 

doubled-value function of kw For each value of k,q on the complex plane, kpq can 

be uniquely specified if two Reimann sheets can be visualised. Together, they 

define an unusual surface, the Reimann surface. The top Reimann sheet 

corresponds to proper or surface waves with Im{kpq}S;O. The" bottom, 

corresponds to non-spectral or leaky wave solutions with Im{ k pq } > O. In the 

following Section, the decision making for the choice of the complex radial 

wavenumbers is presented. 

2.7.1 On the choice of the transverse wavenumber kpq 

The procedure for choosing the correct square root value for the radial 

wavenumber, is closely related to the iterative procedure which finds the zero of the 

determinant. For every value of /3, the choice of kpq must provide a better physical 

interpretation of the waves travelling outside the guide. The other solution is on a 

different Reimann sheet. If chosen, it yields another set of wavenumbers that also 

stands as a mathematical solution to the formulated characteristic equation. 



'. 
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Consider the complex propagation constant f3 - ja , of the fundamental harmonic. 

If ~ < 1, then the harmonic is a fast wave. Assuming er = 1, Eqn. (2.15) results 

(2.80) 

ex is positive to denote attenuation in z. Also 

(2.81) 

This means that Im( k:o ) > 0 so the real and imaginary parts of kp must be of the 

same sign. The two possible solutions are in the first and the third quadrant of the 

complex plane respectively. The first represents a leaky outward travelling wave 

that increases in amplitude as it travels away from the guide. The other solution 

represents an inward travelling wave. Since, second kind Hankel functions of 

complex argument represent the fields outside the FSG region, the first solution is 

suitable. The full decision making when all harmonics are considered in [25] 

a. (2.82) 

It represents a wave that is gaining power as it travels to infinity. Otherwise called 

an improper wave. 

b. (2.83) 

Represents a proper surface wave travelling in the forward direction with speed less 

than the speed oflight (slow wave). It decays away from the structure. 

c. (2.84) 

Usually, for a representative design, there are several periodicities considered per 

wavelength. This means that the real part of the wavenumber for a higher harmonic, 

as calculated in Eqn. 2.11, is grater that k. For q > 0, k pq is located in the third 
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quadrant of the complex plane and on the top Reimann sheet. It represents a surface 

wave that decays away from the structure. The radiation is end-fire. 

d. 

(2.85) 

Consider first in Eqn (2.85), the case Re{ kZq } < -k < O. In this case, the choice of 

k pq represents a proper surface wave travelling in the backward direction 

(radiation angle _90°). As frequency increases, Re{ k Zq } is in the 

range: - k < Re{ k zq } < O. In this case, the qlh harmonic becomes fast and radiates 

energy in the backward direction but it remains proper (Im{kpq}<O). When 

Re{ kZq } = 0, the radiation is from broadside 0°. As Re{ kzq } becomes greater than 

o and if it is less than k, the choice for k pq represents a wave radiating in the 

forward direction (improper leaky wave). Usually, the preceding case for which the 

wavenumber for a negative harmonic is positive, is met when the periodicity is 

large enough; greater than half the wavelength. 
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2.8 Deriving the fields 

In order to solve for the fields the current coefficients must be found. Therefor, a 

voltage excitation matrix is formed in the right hand side of Eqn. (2.73). The 

procedure is to set aOO=l, and normalise all field quantities with respect to it [13]. 

Eqn. (2.73) becomes 

[z,][ c] = [V] (2.86) 

Similarly, Eqns. (2.76)-(2.79) become 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

(2.92) 

The linear system of algebraic equations Eqn. (2. 86) can be solved with the help of 

an appropriate NAG library routine for matrix inversion. More specifically, the 

routine S 17 AEF is employed, which inverts complex matrices using Crout's 

factorisation [26]. Substitution of the resulted current coefficients into Eqn. (2.47) 
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and Eqn. (2.48) yields the normalised (to 0(0) amplitude field coefficients. The 

fields can then be calculated. 

The p components for the electric and magnetic fields, have not been used so far in 

the analysis but they are useful for deriving the field lines. Their expressions are 

E - - - .,,[ - kzq J' (k- ) b- knp J (k- ) 1 jnp'P - jkzqz p - ] L...J 0 pq _ np pqP + pq 2 np pqP e e 
pq kpq kN P 

(2.93) 

1 [ kq kn l' Ok H - - -- '" b- _z_J' (k-) - p J (k- ) Jnp'P - J zqZ P - L...J pq _ n pqP +Opq 2 n pqP e e 
17 k p k- p 

pq pq pq P (2.94) 
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2.9 Numerical considerations 

This section deals with a discussion about any potential difficulties which may arise 

in the computations. For instance, a machine overflow may arise when trying to 

calculate a high order field harmonic; n p »1 and/or q» 1. Then, the 

corresponding Bessel function will be one of a large order and/or of a large 

argument. Bessel functions of very large order and/or very large arguments have 

values which may cause the computer to overflow. The possibility for overflow 

becomes more pronounced, if the periodicities of the structure are small (Le. close 

packing of the elements). Then, the order and/or the argument of the Bessel 

functions becomes large, rapidly. Quite often, restrictions are also imposed by the 

NAG algorithms which are used to evaluate the Bessel functions. For all the results 

presented in this thesis the programs were run in the VPX Fujitsu machine at 

Manchester Computer Centre. The argument (modulus) of the Bessel, should not 

exceed the value of 167 every time the S17 family of NAG routines is called by the 

VPX [16]. Another factor which can result to numerical difficulties is, the 

limitation by the computers to represent very large or, very small numbers. For 

example, the limits in the representation of a number in the VPX computer, span 

from ± 10-75 to ± 1077 . To overcome the aforementioned adversities, the 

following have been used: 

1. J3zpq' J3<ppq' c1twq and d\zpq given in Eqns. (2.39) to (2.42) are 

divided by Jnp (z;). Following this throughout the next set of 

equations, the left hand terms in Eqns. (2.58) - (2.63) as well as 

the right ones in Eqns. (2.76) to (2.79) are divided by J np (z;). 

2. When the limits for the machine overflow are reached, asymptotic 

expressions are employed to calculate the Bessel functions [27]. 

A detailed description of the asymptotic expansions for Bessel functions is given in 

the end of this thesis, in Appendix C. 
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2.10 Conclusions 

In this Chapter, the theoretical analysis and some numerical aspects needed to 

describe the problem of propagation inside an FSG's were given. The starting point, 

was the modal expansion of the total electric and magnetic fields. Next, the induced 

surface current was expressed by an infinite series of sub-domain basis functions. 

Using the orthogonal properties of the Floquet series over the periodic unit cell, the 

spectral coefficients of the current modes were derived. Since an infinite series can 

not be represented in a digital computer, the total number of Floquet harmonics, as 

well as the total number of current functions, are defined as a truncated sum. The 

total field vanishes on the conductor. The latter is tested by the Galerkin procedure, 

and a system of equations is derived. The number of the equations equals the 

number of the unknown current coefficients. An iterative procedure locates the 

values of the complex propagation constant for which the determinant is zero. By 

setting one harmonic to unit amplitude, the resulting non-homogeneous system is 

solved for the unknown current coefficients and fields. In order to overcome 

numerical difficulties associated with computers, all field harmonics are normalised 

to the corresponding Bessel function whereby, analytic asymptotic expressions are 

employed to calculate higher order field harmonics. 
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CHAPTER 3 

FSG Cylindrical 

dimensional case 

3.1 Introduction 

46 

- one 

This Chapter deals with the guiding characteristics of cylindrical FSGs, whereby the 

array is periodic in one direction only. The elements of the FSG are infinitely 

longitudinal strips or transverse rings. The FSGs are shown in Fig. 3.1 and Fig. 3.8. 

The cylindrical FSG geometry with longitudinal strips is presented in Section 3.2. 

Initially, the analysis is formulated by using the periodicity in one axis for the 

Floquet expansion whereby, one dimensional triangular or step basis functions are 

used to approximate the surface current. To simplifY things, the propagation 



CYLINDRICAL FSG- THE ONE DIMENSIONAL CASE 47 

constant is considered real. Predicted dispersion curves are presented for a set of 

geometric parameters. The convergence of the results is assured by increasing the 

number of bases and the number of Floquet modes. The propagation constant is 

then used to derive the fields and the mode patterns. The aforementioned results

assuming real propagation constant- have also been presented in publications [1,2]. 

Having established some familiarity with the model of single periodic FSG, the 

following task is to search for the complex propagation constant using the two 

dimensional analysis. In doing so, a dummy periodicity in the z direction is 

assumed. The strips result from dipoles that have their length equal to the dummy 

periodicity. Two dimensional roof-top basis functions are employed to approximate 

the current on the dipoles. Predicted results for the complex propagation constant 

are presented. In order to validate the results, a boundary condition checking is 

performed. 

In Section 3.3 the orientation of the strips is shifted by 90°, so it produces the FSG 

with a transverse geometry. As for the longitudinal geometry, one dimensional 

Floquet and current analysis are employed to model the transverse geometry. 

Predicted results for real {3, are presented and the convergence behaviour of the one 

dimensional model is closely examined. The two dimensional model, is also 

applied by assuming a dummy periodicity in the qJ axis. Predicted results, obtained 

by the latter model, are presented for the complex propagation constant and the 

mode patterns. 

Finally, some conclusive remarks are given in Section 3.4. 

3.2 Longitudinal geometry 

Fig 3.1 shows the geometry of the one dimensional FSG. The periodicity is defined 

in the qJ axis as Drp = 2rc / N, N the number of strips placed around 2rc. The strips 

are of infinite length, width w and infinitesimal radial thickness. It should be noted 

that from this point of the thesis on, metal conductivity is infinite and that in all 



CYLINDRICAL FSG- THE ONE DIMENSIONAL CASE 48 

cases the arrays are free standing (no dielectric in the body of the waveguide). 

Hence, the array of strips is considered to be free standing. 

z=O 

• (' • 
• 
• 
• ro ----.... ------ ---- ~=O 
• • • • 

face-on 

Figure 3.1: Geometry of cylindrical Frequency Selective Guide with z-directed 

strips (longitudinal geometry). 

3.2.1 The J-D analysis 

Ploquet modal expansion of the fields, is employed. Due to the absence of the 

periodicity in z, the summation over q in Eqn. (2.16) is removed (Q = 0). The 

summation over p, indicates the number of wave harmonics, (Floquet modes), in qJ. 

The azimuthal variation of these harmonics is determined by the Floquet number 

In the above relation, the subscript no denotes the excitation field and N is the 

number of strips. 

Current is induced in the z and qJ directions for a z-directed TM and a z-directed TE 

respectively. Because the strips are infinite in length, there is no dependency in z 

for the current. Fig. 3.2 shows the one dimensional triangular and step functions, 

which are used to expand the current on the strips. 
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~I 

-2 -1 5=0 1 2 

Figure 3.2: Triangular (a) and step (b), basis functions 

The strip width is discretised to 5 equal subsections. The rp current component is 

written as a series of 5-1 triangular functions weighted by unknown amplitude 

coefficients csrp' At the edges this current component, approaches zero. 

(5-1)12-1 

Irp(rp) = L Csrp A s+O.5(rp) 
-(5-1)/2 (3.1) 
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The z current component, is written as a series of S step functions, weighted by S 

unknown amplitude coefficients csz. Since the current flowing parallel with the strip 

axis is not zero near the edge, the edge singularity is preserved. 

(5-1)/2 

/z{tp) = L cszIIs{tp} 
-(5-1)/2 (3.2) 

The transform of the basis functions (or more accurately the spectral coefficient of 

the bases), enters the solution process through the calculation of the total fields at 

the boundary in Eqns (2.60) and (2.61). For the sth triangular function the p spectral 

coefficient is found from the transform 

(3.3) 

and similarly for the sth step function the transform is 

(3.4) 

The expression for the spectrum of the tp and z current, as in Eqns. (2.71) and (2.72) 

is 

(3.5) 

(S-I)12 

L Ispz=Izp 
-(5-1)12 (3.6) 
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3.2.2 Solving for the real propagation constant 

In this Section, the mode content for the FSG with longitudinal strips is found by 

ignoring the attenuation constant. The assumption here is, that the attenuation 

constant a for the propagating modes is small so, it can be ignored by the solution 

without affecting the actual values for fJ. In so doing, the results are obtained with 

less calculation effort since, the numerical procedure scans only in fJ. 

There are 36 strips around 2,. for the free standing array, and the strip width to 

periodicity ratio is 0.1. The latter parameters appear in reference [3], for a strip 

loaded circular waveguide. It is assumed that the waveguide is excited by a mode 

having an ejno'P variation with no = 0, 1, 2. This no appears later as an index in the 

identification of the modes for example Hnom-type or Enom-type. 

The width of the strip is discretised in seven equal subsections. Six triangular 

functions represent the current flowing in the (jJ direction. For the other current 

component, there are seven step functions. To calculate the impedance matrix 

elements in Eqn. (2.75), 701 Floquet modes have been used, in the sumrnations over 

p. The ratio number ofFloquet modes to number of bases, d, is about 100. In Fig. 

3.3 the dispersion curves are shown for the lowest order hybrid modes. For the 300 

frequency steps used to obtain the curves, approximately 1.5 hrs of CPU time was 

needed. The iterative procedure, scans in fJ / k between 0.0001 and 1.5 (any 

solutions above 1 indicate a surface wave) with a step d(fJ / k) = k / 5000, and 

locates the zeros of the determinant. 

For all no, a TEM mode is found to be a solution. This mode is due to the coupling 

between the strips as, such TEM are found in parallel plate waveguides and coupled 

striplines, [4]. The other mode solutions found, are fast E-type hybrid modes. 
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Figure 3.3 : Hybrid modes inside the FSG with longitudinal strips 

The numerical convergence of the values of fJin Fig. 3.3, is examined by running the 

program with a different set of input parameters. With 8=1, p=-25 to 25 (51 

Floquet modes) and A(fJ / k) = k /500 the saving in CPU time is massive; the 

program takes less than 2 minutes to produce the dispersion curves (instead of 1.5 

hrs). Moreover, the curves are identical to the ones ofFig.3.3. The latter is justified 

since, the width of the strips is narrow and one current term is sufficient to represent 

the current flowing across. Additionally, 51 spectral harmonics are sufficient, to 

include the spectra of the current which mostly contributes to the summation (see 

also Section 2.5.2). 



CYLINDRICAL FSG- THE ONE DIMENSIONAL CASE 53 

3.2.3 Calculation of the fields 

The predicted propagation constant can be used in order to solve for the current 

coefficients and the fields, following the method described in Section 2.8. The 

electric field lines on a transverse plane for each mode are plotted and the modes are 

identified by observing the patterns. 

The transverse electric field components of the single-periodic structure, are written 

as 

E - ,,[ - kzonp J (k- ) b- k J' (k- )] jnpf{J - jk z 
f{J=L"Gpo_ 2 np pOP+pO--::-np pOpe e ,0 

p kpO P kpO 
(3.7) 

[ k kn l' E - - _." - 2Q...J' (k- ) b- p J (k- ) jnpf{J - jkzoz 
p - } L" Gpo _ n pOP + pO 2 n pOP e e 

kpO p k- p 
p pO P 

(3.8) 

To calculate the fields outside, Bessel functions have to be substituted by Hankel 

functions of second kind and of the same order. The transverse components ofthe 

electric field in Cartesian coordinates are 

(3.9) 

Following Eqns. (3.7) to (3.9), the electric field lines on a transverse plane inside the 

FSG are plotted for f3 = 0 (cut-oft) and for each mode. From these patterns is 

concluded that the hybrid modes are E-type modes, due to their resemblance with 

the TM modes in a complete cylinder. The mode patterns shown in Fig. 3.4, belong 

to the HEll, HE2I, HE12 and HE22 • In these plots, the disturbances of the lines near 

the boundary at P = ro, are due to the fact that the condition for the tangential 
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electric field to vanish on the conductor is not entirely satisfied. In Section 3.2.6, a 

boundary condition checking is performed. 

Figure 3.4: 

HE12 

Transverse electric field patterns for hybrid modes at cut-off 

frequency. 
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3.2.4 The 2-D model on a single periodic FSG 

The theoretical analysis in Chapter 2, can be applied to model the FSG with 

longitudinal strips, by considering a dummy periodicity in z. The parameters are: 

Dtp = 2nro /36, Dz = 0.2ro and w = O.lDq:>' The strips result from an infinite 

number of joint dipoles. One roof-top function in each direction is used to 

approximate the currents on the dipole. The roof-top functions, are shown in Fig. 

3.5. 

" 

Figure 3.5: 

" " 

Unit cell 

" " " 
-dz 

" 

• 

" " 

Roof-top bases for the currents on joint dipoles (l-D case) 

Following from Chapter 2, Section 2.5.2., S = I, K = I. The z-directed roof-top top 

extends to the adjacent cell, in order to represent the continuation of the current. 

The roof-top bases, are centred at the points rp = 0, z = O. 5lx51 Floquet modes are 

used in the summations over p and q, in Eqn. (2.75). 
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3.2.4.1 Predicted results for complex waves 

Fig. 3.6 illustrates the normalised complex propagation constant versus ro /?. of 

the lowest order hybrid modes and for different excitations. The upper x axis 

corresponds to the normalised attenuation constant. The results are obtained by 

using the two dimensional model with the dummy periodicity. The numerical 

procedure of Chapter 2, Section 2.6, scans for different values of f3-ja. and locates 

the zero of the determinant. It is evident from this graph, that the values of f3 are 

identical to those predicted by the one dimensional model (referred to Fig.3.3). 

In the same graph, the normalised dispersion curves of the TM modes inside a 

complete cylinder are also shown. They are obtained from the two dimensional 

model, by setting t:.q> = Dtpo and extending the q> roof-top function to the adjacent 

cell. Since the curves are identical with those found in literature [4], the conclusion 

is that the two dimensional model can be used successfully in the case of a 

complete cylinder. 

The cut-off frequencies of the hybrid HE modes, are below the cut-off frequencies 

of the TM modes in a closed waveguide. The attenuation constant for these modes 

in the region near cut-off is high. As frequency increases, the attenuation drops 

exponentially and tends to zero as frequency increases further. Therefore, the FSG 

can be used as a uniform leaky wave antenna having the dominant HEll mode, 

radiating in free space. 
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Figure 3.6: Normalised complex propagation constant versus nyA for different 

excitations (a) no = 1, (b) no = 0, (c) no = 2. (N = 36, W = 0.1 D",). 

3.2.5 The highly attenuated EH modes 

58 

EH modes have not been plotted in Fig. 3.6. Such modes are found to be solutions, 

but are highly attenuated. Their attenuation constant is much greater than for the 

one shown in the range of Fig. 3.6. An explanation for the weak guidance of EH 

(H-type) modes, can be found in previously published references for strip-grids, for 

example [5]. In EH modes the polarisation is TE-like (electric field along rp). An 

,incident plane wave having its electric field polarised vertically to a planar grid is 

transmitted; if the electric field is parallel with the grid then is reflected. Therefore, 

more than the EH, HE modes will be reflected, (and finally guided), by the internal 
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walls of the FSG. As shown in Fig. 3.7, Ez is the dominant electric field component, 

i.e. TM polarisation. 

3.2.6 Checking of boundary condition 

For all the predicted values of IHa, the tangential E-field components must vanish 

on the conducting strip, to ensure the validity of the answer. Fig 3.7 shows these 

components for the HEll mode at cut-off frequency (f3 = 0, a = 0.75k). Each 

component is shown across the strip width (enlarged plot) and across one period. 

The results for these graphs, have been obtained by using the one dimensional 

model. Different number of current bases are considered and in each case, the 

number of bases to number of harmonics ratio is 1151. It becomes apparent from 

this graph, that the main electric field component is the one parallel with the strip 

axis. For the orthogonal electric field component, an edge singularity is observed. 

An immediate conclusion, from this graph also is, that even though convergence has 

been accomplished for the values of fJ-ja, with one basis and 51 Floquet modes, the 

boundary condition is better satisfied if the number of bases and Floquet modes is 

increased. 
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3.3 Transverse geometry 

The geometry is shown below in Fig 3.8. The FSG, is a free standing array of 

circular rings. The distance between successive rings in z, is the periodicity Dz• In 

the same direction the FSG is infinite in extent. The rings have a width w and 27rro 

circumference. They also have infinitesimal radial thickness so that resistive losses 

can be ignored. 

Figure 3.8: 

z=O 

-$=0 

Geometry of cylindrical Frequency Selective Guide with q>

directed rings. 
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3.3.1 The 1-D analysis 

The transverse strip geometry can be analysed similarly to the one with longitudinal 

strips. As in Section 3.2, the fields are expanded in a series ofFloquet harmonics but 

in the z direction. The Floquet wavenumber in z is 

(3.10) 

Due to the absence of the periodicity in <p, (except the natural 2n), only the basic 

azimuthal harmonic is present. In the summation in Eqn. 2.16, P = 0, and np is 

changed to no. 

The current expansion follows also from the longitudinal geometry, by changing the 

summation limit for the bases from S to K and the dependency from <p to z. K is the 

number of subsections across the width of the ring. Triangular functions are used to 

expand the z current component and step functions to expand the <po 

(K-l)/2-1 

Iiz) = L ckzA k+O.5(Z) 
-(K-l)/2 

The transforms of the basis functions, lkqz and Ikqq:>' are 

1- Ilz. 2 (kZqllz) - j(k+O.5)kzq6z =-smc ckze 
kqz D 2 z 

and 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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3.3.2 Solving for the real propagation constant 

For the array in Fig. 3, Dz = 0.2ro and w is 0.1 Dz. It is assumed that the waveguide 

is excited by a mode having ejnof{J variation, with no = 0, 1, 2. This no also appears 

later, as an index in the identification of the modes. Since the width is small, one 

triangular function represents the current flowing in the z direction and one step 

function represents the current flowing in rp. The limits for the number of Floquet 

harrnorncs q, are -25 and 25; 51 modes in total. The ratio basesIFloquet modes is 

1/51. The convergence for flwas examined by i) increasing the number of harmonics 

to101 and ii) by increasing the number of bases and Floquet modes to 13 (K = 7) 

and 351 respectively. However, the difference in the results was negligible. Fig. 3.9 

shows the dispersion diagrams of the lowest order, fast hybrid modes. The modes 

are H-type and their patterns are shown in the following Section 3.3.4. 
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Dispersion curves for the hybrid modes inside an FSG with 
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A surface wave mode, is also found to be a solution for no = I (Fig 3.10). This 

mode is excited by the discontinuity (in z) at the boundary, due to the rings. The 

surface wave does not have a cut-off frequency and at rolJe = 0.1685, it reaches a 

higher cut-off, due to the coupling between the -1 order harmonic and the 0, i.e. 

kzQ = -kz- 1 (see Appendix B). 
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3.3.3 Complex waves inside the FSG 

The excitation is chosen for no = 1 which is the excitation producing the dominant 

TEll mode inside a complete guide. Figure 3.11 illustrates the predicted complex 

wavenumbers. One roof-top basis is employed for each current and 51x51 FIoquet 

modes. The attenuation of the lowest order mode, EHll , has a minimum at cut-off 
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(f3 = 0) and, starts increasing with frequency until f3 = 0.6k. From this point 

onwards, the attenuation decreases exponentially as frequency increases. The 

minimum of the attenuation at cut-off, can be identified as a kind of resonance, due 

to the sensitivity of the mode to the internal angle of incidence (normal incidence at 

cut-off). For the other modes, the attenuation is relatively high at cut-off and then 

decreases rapidly as frequency increases. In the same graph the TE modes of the 

complete cylinder are also shown. These modes are found by the two dimensional 

model, setting w = Dz and adding an extra basis function in z, which crosses to an 

adjacent cell. It should be noted, that the cut-off frequencies of TE, occur after 

those of EH. 
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3.3.4 Field patterns for transverse geometry 

After solving for the fields inside the FSG and plotting the transverse electric field 

lines, the modes are classified as hybrid H-type modes. The illustrated patterns in 

Fig 3.12, belong to the EH", Ho!' EH2!, EHI2 and EH22 modes. These modes 

exhibit TE properties at cut-off, i.e. similar patterns to those of TE modes inside a 

complete cylinder. 
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3.4 Conclusions 

In this Chapter, the propagation inside FSGs with longitudinal and transverse strips 

has been determined. The general two dimensional analysis, was applied. By 

collapsing the periodicity in one axis, the one dimensional model was also fonned. It 

was shown, that one can begin to get the picture of P for the less radiating modes, 

by ignoring the imaginary part. The ability of the analysis to produced stable results 

was verified by convergence tests. With one basis function for each current, the 

results are predicted with very little demands in computational time. The modes are 

hybrid and share similarities for the patterns, with the modes of a complete cylinder. 

In the case of FSG with longitudinal strips, the TM-like modes are the less 

attenuated modes whereas for the transverse rings, the polarisation is shifted by 90°. 

At the examined frequency range, the modes were always leaky, i.e. leaky wave 

antenna. The attenuation reduces as frequency increases, except at the region near 

the cut-off of the EH\I. FSGs with strips also excite a TEM mode whereas, FSGs 

with rings, excite a surface wave. 

Finally, it was concluded that in order to ensure that the electric field is zero on the 

conductor, more current bases and Floquet modes must be included in the 

calculations. In the calculation of the propagation constant, the number of current 

bases and Floquet modes is not so important as, convergence was easily reached. 
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69 

with dipole 

In this Chapter, the complex propagation constant is found for FSG with dipoles. 

The elements are aligned either transversely (rp dipoles) or, in parallel with the 

direction of propagation (z dipoles). Dipole elements have been previously used in 

FSS studies, e.g. [1,2], or, as elements in array antennas, [3-5]. They are an 

attractive choice due to their manufacture simplicity, resonant behaviour and 

polarisation purity. Additionally, as a radiator, dipole offers reasonably good 

bandwidth. 
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When dipoles constitute the FSG array, the geometry is simple and relatively 

straightforward to compute. The computational simplicity, is due to the fact that the 

roof-top function expansion on linear elements, such as dipoles, does not lead to an 

impedance matrix of large dimension. Arrays of more complex elements can be 

formed as a superposition of dipole elements, e.g. tripoles, square loops. 

Section 4.2 begins with the introduction of the FSG geometry with ({J dipoles. The 

expansion of the current on a dipole is presented in Section 4.2. I. Convergence tests 

are performed, in order to choose the proper number of basis functions and Floquet 

harmonics. In Section 4.2.2, predicted results are given for the complex propagation 

constant of a representative array. The array has 4 elements fitted around the 

circumference. The separating distance in z is 1.047ro. The knowledge of the 

complex propagation constant, is helpful in investigating the radiating properties of 

the FSG. This is shown in Section 4.2.3. In 4.2.4, the importance of the design 

parameters such as, dipole length and periodicity, on the propagation behaviour of 

the FSG, is studied. 

Section 4.3, deals with FSGs with z dipoles. As in Section 4.2, the subsectionaI 

current expansion is outlined, followed by convergence ratios and numerical results 

for representative arrays. The propagation characteristics of the z-dipole FSGs are 

examined for different element lengths and periodicities in ({J. In Section 4.3.3, the 

propagation of higher order harmonics is also investigated. 

Finally, conclusions from this study of dipole arrays are presented in Section 4.4. 
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4.2 FSG with lfJ-dipoles 

Fig 4.1 shows the geometry of the FSG with transverse dipoles. The dipoles have a 

length L in rp, narrow width w in z, and negligible radial thickness. The radius of the 

waveguide is 7.85mm, slightly bigger than the conventional J-band waveguide 

radius. 
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Geometry of cylindrical Frequency Selective Guide with rp

directed dipoles. 
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4.2.1 Roof-top functions and convergence tests 

The roof-top bases on a dipole are shown in Fig. 4.2. Following from Chapter 2, 

Section 2.5.2.1, K = 1, S = 7. The dipole is discretized into seven equally sized 

segments. A total of six ~directed bases are defined in order to represent the 

current flowing along the length. These bases are centred at the points z = 0, rp = 

(S+0.S)Llqt2. For the current flowing in the z-direction, there are seven roof -top 

functions centred at z = 0, rp = sLlqt2. The z -directed bases are defined over a 

single segment whilst, the ~directed bases are defined over two, in order for the 

current to be zero outside the conductor. 

~\;\~\ ~?:c.,-o~+-", -':::------.-~1'+\ -'3::~2--1-'\-'~~3'--\-,\-1$ 
'" Z 

Figure 4.2: Roof top bases on a dipole element 

In all simulations presented in the next Section, the parameters are K = 1, S = 7, P 

= Q = 30. With these parameters, results for the complex propagation constant 

were produced. Convergence of the results was verified by: 

i.) changing the truncation limits P and Q 

and 

ii) changing the number of bases. 
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A summation of 17xl7 Floquet terms, (P = Q = 16), gave results for the complex 

propagation constant, slightly different (about 5%), from those obtained by a 

summation over 31 x31 modes whereas, the difference between results obtained by 

a summation over 31 x31, and 10 I x 10 1 terms was found to be insignificant. 

In order to increase the number of bases, the dipole length was descritised to 11, 15 

and 21 subsections, (K = I, S = 11, 15,21). For each segmentation, IOlxlOl 

Floquet modes were used, but the difference in the results was found to be 

insignificant. 

To derive the points on a dispersion curve the iterative procedure proposed in 

Chapter 2, (Section 2.6), was used. Approximately I minute of CPU time in the 

VPX computer was needed for each frequency scan, when, 31x31 Floquet modes 

and 13 bases were used. 

4.2.2 Numerical results for representative array 

Plotted in Fig. 4.3 are predicted results for the propagation and attenuation 

characteristics, of the basic (q = 0) harmonic, of an FSG with a cp dipole 

arrangement. The dipole array has the following parameters: L = 11.75mm, D<p = 

12.33mm, Dz = 8.22mm, L/ Dq> = 0.952. w = 0.1 Dz and there are 4 elements 

around 21t. f3 and a are normalised with respect to the periodicity. 

At low frequencies the numerical procedure finds only real solutions. These 

solutions represent a proper surface wave mode with no cut-off. The surface wave 

is excited by the discontinuity of the dipole array. Due to the same discontinuity, 

the surface wave becomes unbounded and finally stops when mode coupling effect 

occurs. The condition for mode coupling is met at 11.3 GHz (upper cut-off). After 

this frequency, the surface wave becomes complex and a stop band occurs. The 

attenuation constant near the upper cut-off is depicted in Fig. 4.5. 
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The cut-off frequency of the first fast wave mode is at 12.4 GHz. The wave has 

complex propagation constant and at cut-off, the attenuation is high. The mode is 

identified as the hybrid EH" mode, from the transverse electric field lines shown in 

Fig. 4.4. The other curve shown in Fig. 4.3 is the TEll line of the complete cylinder 

having the same radius. 
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Figure 4.3: Dispersion curves for an FSG with 4 dipoles in rp. (L = 11.75mm, 

Drp = 12.33mm, Dz = 8.22mm apart, W = 0.1 Dz ). 
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The resonance of the element is identified by inspecting the dispersion curves. At 

12.8 GHz, the imaginary part of the complex propagation constant goes to a 

minimum. Close to that frequency, at 13 GHz, the curve of the real propagation 

constant of the mode, crosses the TEll line of the complete cylinder. The latter can 
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be justified, since at resonance the dipole array becomes more reflective, 

approaching the behaviour of a continuous wall. In this case, more power is guided 

inside the FSG and less is allowed to radiate outside. The element length to the 

wavelength of resonance ratio is t:; 05, which agrees with the resonance 

condition applied to general FSS dipoles. 

Figure 4.4: 
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Transverse electric-field patterns of EH" mode at cut-off 

frequency (referred Fig. 4.3). 
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The complex coefficients of the roof-top bases can be found, by introducing a 

voltage excitation and inverting the impedance matrix. (Chapter 2, Section 2.8). 

Plotted in Fig. 4.6 is the calculated magnitude of a rp- directed roof-top function, 

against periodicity in z over wavelength. The roof-top basis is centred at z = 0 and (jJ 

= LJ.rpl2. In the same figure the attenuation curve is also shown. The conclusion is 

that current reaches a maximum as the attenuation descends before the resonance 

thus, augmenting the reflecting properties of the FSS wall. The amplitude of the 

current function starts decreasing at resonance and continues to drop as a increases 

after resonance. 
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Figure 4.6: Relation between the main roof-top for the current flowing 

in the qJ direction and the attenuation constant 

4.2.3 The dipole array as a leaky wave antenna 

77 

The knowledge of the complex propagation can yield the angles of the radiating 

beams from the FSG. The angle 8 (Appendix B) of the main radiating beam for the 

ERn mode, is found with the aid of the formula 

e . -1 f3 
=sm -

k 

and is plotted against frequency. At cut-off the radiation is from broadside at 0°. As 

frequency increases, there is always a radiating beam scanning in the forward 
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direction from 0° towards 90° as f3 approaches k. It should be noted, that in this 

frequency range, the only fast radiating harmonic is the basic (zero order). Higher 

order harmonics are slow and do not contribute to the radiating field, e.g. for the 

next higher order harmonic Re{k,_dD, 127r = (PD, 127r) - I < -{)5 (slow). 
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4.2.4 Parametric study on q>-dipole arrays 

In this Section the design parameters dipole length, number of elements' in q> and 

the periodicity in z, are varied. The impetus is to study the effects of these 

parameters on the propagation behaviour of the FSG. The different designs are 

marked A, B, C, D and E and their parameters are shown in Table 4.1. 
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N 
D(J) 
L 
Dz 
w 

N 
D", 
L 
Dz 
w 

• 

Case A CaseB 
4 6 
12.33 8.22 
11 7.8 
8.22 8.22 
0.822 0.822 

number of elements in qJ 

periodicity in qJ • 

length of the dipole' 
periodicity in z • 
width of the dipole' 

CaseC 
6 
8.22 
7.85 
2.355 
0.2355 

Dq> L, Dz, W are measured in mm 

CaseD CaseE 
2 2 
24.66 24.66 
23.55 23.55 
2.355 8.22 
0.2355 0.822 

Table 4.1: Parameter variations for the five cases of FSGs with 

~poles modelled. 
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CASE A 

Fig. 4.8 shows, the complex propagation curves for the dimensions of Fig. 4.3 and 

one where the dipoles have been reduced in length (from 11.75mm to Ilmm). The 

periodicities in z and qJ are kept as before: Dz = 12.33mm and Drp = 12.33mm 

respectively. The effect is that both the higher cut-off of the surface wave mode and 

the cut-off of the hybrid EH!! mode, have been shifted at higher frequencies i.e. the 

higher cut-offfor the small dipole array is at 12 GHz, about 0.7 GHz higher than the 

one for the longer dipole. The cut-off frequency of the EHl1 is at 13 GHz whereas, 

at 13.75 GHz, the short dipole resonates and a goes to a minimum. This is because 

the smaller dipole resonates at higher frequencies. In both cases the ratio dipole 

length to wavelength of resonance is about 0.5. 
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CASEB 

By increasing the number of elements around 21t, the size of the dipoles can be 

reduced. For the results shown in Fig. 4.9, 6 dipoles are fitted around the 

circumference (Drp = 8.22mm). The ratio L/ Drp is kept as before (=0.952), thus 

the new length is 7.8mm. The resonance for the hybrid EHII mode is shifted at 17 

GHz and the upper cut-off for the surface wave mode is shifted at 14.6 GHz. 

Additionally, comparison of the a curves in Fig. 4.9, indicates lower attenuation at 

resonance for the case ofDrp = 8.22mm 
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CASEC 

Next the periodicity in z for the 6 dipole array is decreased resulting in closer 

packing of the elements. Fig. 4.1 0 shows predicted results for the complex 

propagation constant when the parameters are: Dip = 8.22mm, L = 7.85mm and Dz 

D 
= O.3ro = 2.355mm. The condition ; = 05 is met at about 64 GHz. The surface 

wave which propagates at low frequencies, reaches a higher cut-off due to the effect 

of the periodicity at 19 GHz. The following three leaky wave modes are the hybrid 

H-type modes EHII , EHI2 and EH'3. The attenuation constant at cut-off frequency 

for each of these modes, is very large. These cut-off frequencies could not be 

derived due to numerical deficiencies of the model, e.g. the starting point for the 

EHII curve is at 15 GHz for which P / k = 0.4 and a / k = 0.25. 

The E-type hybrid modes are highly attenuated and therefore, not plotted. The case 

is similar to that of the ring FSG of Chapter 3. 

The element resonance for the H-type modes are identified in the familiar way, by 

determining the minima of a curve. For the EHII mode the element resonates at 25 

GHz ,37.5 GHz and 50 GHz. The ratios D z for these frequencies are about 0.2,0.3 
A, 

and 0.4 respectively. For the EH'2, mode the first resonance is at Dz = 0.3 and the 
A, 

second resonance at Dz = 0.44. For the EHI3 mode the resonance is found at Dz 
A, A, 

= 0.48. 

Summarising observations from the previous paragraph, one can say that closer 

packing of elements shifts the resonance of the dipole array at higher frequencies. 

By reducing the periodicity in z, more frequencies are included until the condition 

Dz / 2 = 05 is met. For each hybrid mode, the dipole resonates more than once. 
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Figure 4.10: Complex propagation constant for FSG with q>-dipole 

arrangements (D", = 8.22mm, L = 7.85mm, Dz = O.3ro = 2.355mm, 

ro=7.85mm) 

CASED 

82 

The dipole is increased in length. Two dipoles are placed around the circumferance 

which results in a periodicity of 24.66 mm. The periodicity in z is 2.355mm. The 

dipole length extends to the 95 % of the periodicity in rp (= 23.5mm). A,. = ~ gives 

a frequency f, =2.55 GHz Fig. 4.11 shows the predicted real part of the 

propagation constant for the modes propagating inside the FSG. In the same graph 

the corresponding TE and TM modes of the complete cylinder are also plotted. The 
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imaginary part of the propagation constant for these modes is shown in a different 

graph in Fig. 4.12. The surface wave reaches a higher cut-off condition at about 

12.8 GRz. The cut-off for the ERn mode is found at lOA GRz whereas, the cut-off 

of the TEll mode of the complete cylinder is at about I 1.3 GRz. The resonance for 

this mode is very close to the cut-off frequency, at a wavelength which is about 4A.

(10.5 GRz). In Fig. 4.13, the area near the cut-off of the first ERn mode in Fig. 

4.12 has been enlarged to depict the resonance. 
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Figure 4.11: fJ curves for FSG with two dipoles and the complete cylinder. 
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dipole arrangement of Figs 4.11 and 4.12. The dotted line is the 

cut-off of the TEll mode in the complete guide. 

The following graph, illustrates the transverse electric field lines for the first three 

hybrid H-type modes at cut-off frequency. Similarities with the field line patterns of 

TE", TE12, and TE13 became apparent from this graph. It should be noted that the 

discrepancies of the lines near the boundary for (p = ro) are due to the fact that the 

boundary condition on the conductor is not entirely satisfied and current bases and 

Floquet modes need to be included in the field calculations. 
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Transverse Electric field patterns for the first three hybrid H-type 

modes for the FSG of Fig 4.1 O. 
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In Fig. 4.12 both E and H -type hybrid modes have been shown. It is evident, that at 

all frequencies, the attenuation of the HEll is at least 4 times greater than that of the 

EHII • Another interpretation of the above argument is, that dipole arrays tend to 

transmit the polarisation orthogonal to the strips and reflect the polarisation parallel 

with the strips. The case is similar to the strip-grids which was discussed in Section 

3.2.5. The less attenuated modes, have the main E-field component aligned along 

the dipole length and the main H-field component orthogonal to the dipoles. 

A similar explanation can be given based on the fact that current flows mainly in the 

rp direction (H-field is along z). By increasing the element width, a substantial 

current will also flow in the z direction hence, E-type modes can also be guided. The 

latter is quantified in Fig. 4.15, which shows the predicted values for the attenuation 

factor of the EHII and the HEll modes against wlDz• In this case, three roof -top 

functions were used to represent the current in the z direction. It is evident that as w 

increases, the attenuation of the HE modes decreases faster than that of the EH 

modes. The element geometry though, deviates from a dipole array, to that of an 

array of square patches. 
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Figure 4.15: Attenuation factor a, strip width for the HEll and EHII modes 
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Summarising observations on case D, one can point that all cut-off frequencies of 

the EH modes are below the cut-off frequencies of the TE modes of a complete 

guide. For the HE modes though, the cut-off frequencies are above the 

corresponding to the TM modes of the complete guide. 

CASEE 

Fig. 4.16 shows the real and imaginary parts of the propagation constant for two 

dipole arrays with D~ = 24.66mm and L = 23.5mm. The difference lies in the 

periodicity of the arrays along the propagation axis. The continuous line represents 

dispersion curves for Dz = 2.355mm and the dotted for Dz = 8.22mm. The f3-k 

diagrams are with respect to Dz = 8.22mm. The surface wave mode results are 

almost identical. For Dz = 2.355mm the EHlI mode has the cut-off frequency at lOA 

GHz and the resonance at 10.5 GHz . For the other periodicity, the cut-off 

frequency and resonance are at 8.9 GHz and 9.1 GHz respectively. The conclusion 

in this case is, that decreasing D, while keeping the same length, shifts the cut-off 

and resonance at lower frequencies. More pronounced, is the difference in the 

attenuation factor which is shown in Fig. 4.16b. As, Dz decreases the attenuation 

falls. IfDz = 0, the attenuation approaches zero (Le. guidance of EH modes) [6]. 
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4.3 FSG with z-dipoles 

The FSG with dipoles placed in the direction of propagation, is shown in Fig 4.17. 

The dipoles have a length Linz, narrow width w in (fJ and negligible radial thickness. 

The radius of the waveguide is 7.85mm. 

z=0 

.. • -- • -- • .. -- • • --
~DzW 

.. ro 
• • • • 

cross face-on 
section 

Figure 4.17: Geometry of cylindrical Frequency Selective Guide with z

directed dipo les. 
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4.3.1 Roof-top functions and convergence ratios 

Roof top basis functions are employed to approximate the currents on the z dipole. 

The expansion follows directly from Section 4.2.1. In the z direction, the dipole is 

discretised to seven equally sized segments; K = 7 and S = 1. Six z-directed roof top 

bases represent the current flowing along the length. The ~current component, is 

represented by seven roof -top functions. 

In all the sirnulations for z-dipole arrays, 13 roof-top bases and 31 x31 Floquet 

modes are sufficient to achieve convergence for ~ja. 

4.3.2 Numerical results for representative arrays 

In this Section predicted results for the complex propagation constant are presented 

for different z-dipole FSG designs. According to the number of elements in rp, the 

designs are designated case A and B. 10 elements are arranged around rp in case A 

and 20 in case B. 

CASE A 

Plotted in Fig. 4.18 are predicted results for the propagation and attenuation 

characteristics of FSG with the following parameters are: Dz = 8.22mm, L/ Dz = 

0.952, Drp = 4.932mm, w = 0.1 Drp. The first solution represents the unattenuated 

TEM mode. The same mode was obtained for the free standing strip grating FSG, 

discussed in Chapter 3 (Section 3.2.3). 



CYLINDRICAL FSG LOADED WITH DIPOLE ELEMENTS 

---- aDzf2rt 
0.00 0.Q2 0.04 0.06 0.08 0.10 0.12 0.14 

0.6 • 22 
1 

20 _ ........ ; 
0.5 "", 18 

' ... 16 

~ ... 
~ 

0.4 " 14 , 
C:! , ;>; 

N 
, 

12 8 
~ 0.3 " ~ ...... 10 ...... u.. ...... 8 

0.2 
...... ... 

6 

0.1 4 

2 

0.0 0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 

~D/2rt 
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The other solution, represents a complex wave which is shown for frequencies 

above 7 GHz. At this frequency, the attenuation is extremely high (107 Np m-I). 

Below this frequency (7 GHz), the attenuation increases, exceeding the graph 

limits. However, simulations at lower frequencies were performed. From the 

predicted data, it was evident that the mode does not posses a cut -off frequency, 

but emerges at a speed greater but close to the speed of light. As the frequency 

increases the attenuation factor decreases. However, the rate of descent is slow 

compared to that of fast leaky waves discussed previously (e.g. FSG in Chapter 3, 

and qJ dipole FSG in Section 4.2). There is no evidence of resonant behaviour for 

this mode until f3Dz /2:n: = 0.5 (Dz I A = 0.505), where the attenuation goes to 

zero. A sudden zero or minimum in the attenuation appears to be the general 
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periodic structures when p approaches k and Dz / A = 05 [7]. This mode is referred 

in this thesis as quasi (complex) TEM. In a separate diagram, Fig 4.19, the complex 

propagation constant for the first fast wave mode is shown. The curves correspond 

to two different dipole lengths: 7.825mm and 7.07mm. For the longer dipole the 

cut-off frequency of the HEll mode is at 22 GHz and the resonance is at 23 GHz. 

For the other dipole, the cut-off of the mode is at 22.5 GHz and the resonance at 

23.2 GHz. Both HEll curves appear below the TMIl line of the complete guide. 

Plotting the transverse electric field lines for the HEll mode at cut-off, reveals the 

TM properties of the hybrid mode. 

H-type modes are highly attenuated and therefore, not plotted. The case is similar to 

the z-strip FSG discussed in Chapter 3 (Section 3.2.5). 
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- l/Dz = 0.952 23 
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The first hybrid HEI leaky wave mode for a z-dipole 

arrangement. The periodicity in ther and tp direction is 8.22mm 

and 4.932mm. Results are shown for two different dipole lengths. 
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CASEB 

The number of elements around f(J is increased by a factor of 2. The parameters are: 

Dz = 8.22mm, L/Dz = 0.912, L = 7.5 mm, Dtp = 2.465mm, w = 0.2Dtp. Fig. 

4.20 shows the propagation and attenuation constant for the first hybrid HEll mode. 

The mode has a cut-off at 23.5 GHz and it crosses the TM!l line at 24.75 GHz. At 

this frequency the attenuation factor has almost a zero value (a = 0.23 Np/m). The 

transverse electric field lines of the mode, are shown in Fig. 4. 21. The mode holds 

strong TM properties at cut-off. Another resonance is found at 28.1 GHz, where the 

curve of real fJ crosses the TMll line for the second time. The attenuation factor 

however, is relatively high at this point. 
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Figure 4. 20: HEll mode for Dz=8.22mm and D",=2.45mm. The length is 

7.5mm and the width is 0.2Dz. 
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Comparing results from cases A and B, it is evident, that the attenuation for the 

propagating modes is reduced when the periodicity in (jJ is reduced. 

4.3.3 The grating lobes 

Dz Since the Bragg frequency T = 0.5 is exceeded, the -1 space harmonic may 

become fast and contribute to the radiating fields (see also Appentix B). The 

complex propagation constant for the -1 harmonic can be found according to the 

. 21r 
Floquet relatIOn: kz - 1 = 13- ja --. 

Dz 

Fig. 4.22, shows the Brillouin, ~k, curves for the basic (0 order) harmonic and the -

1 harmonic, for the z-dipole FSG of case B. The 13.\ curve is identical with that of 13 

and simply shifted in the direction of the fJDz -axes by -\. It is evident that 
21r 
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immediately after resonance, the curve of /3-1 crosses the line of -k and becomes fast 

(lP-Xi < 1)- As a result, another radiating beam will emerge which belongs to the-l 

harmonic_ The beam radiates in the backward quadrant as long as /3-1 < 0 

(radiation angle between _90· and 0)_ The angle of the grating lobe is given by 

() _ - -1 /3-1 
-1 - sm k-

Figure 4_ 22: ~k diagrams for the basic and the -1 leaky harmonics, for the 

FSG with z-dipoles (D z= 8.22mm and D~= 2ASmm, L = 7_Smm 

w=O.2Dz)_ 



CYLINDRICAL FSG LOADED WITH DIPOLE ELEMENTS 97 

4.4 Closing remarks 

This Chapter has dealt with open FSGs with dipole arrays. Using the two 

dimensional analysis of Chapter 2, the current on the dipole is expanded in two 

dimensional basis functions. Predicted results for the complex propagation constant 

are given for representative geometries. Their stability is verified with the aid of 

convergence tests. Several effects are addressed including, lattice geometry, leakage 

properties and element resonance. The latter can be considered as the most 

important feature ofthe dipole geometries. 

Summarising the propagation behaviour of transverse dipoles, there are two types of 

modes that can be excited: unattenuated surface waves and fast leaky wave modes. 

The surface wave is the dominant mode at low frequencies and is excited by the 

discontinuity of the interface due to the dipoles. A stop band appears for the surface 

wave when the Bragg condition is met. Fast waves appear before the surface wave 

stop band. These modes are hybrid and radiate energy in free space (leaky). The 

singular polarisation behaviour of the tp-dipoles means that only the H-type modes 

are properly excited. These modes resemble TE modes. It was pointed that the other 

set of modes (TM like), can also propagate by increasing the dipole width. The 

similarities with the designs ofFSG with rings of Chapter 3 are obvious. 

The leakage constant is frequency depended. The elements resonate at frequencies 

which are close to Ll2, near which the attenuation drops and more energy is guided 

within the FSG. The cut-off frequency (and the resonance frequency) of the EHll 

mode, can be lowered by increasing the dipole length. The advantage is that the 

FSG maintains its size (alternative ways to lower the cut-off of a mode would be to 

increase the FSG radius). By decreasing the separating distance in z, the attenuation 

can be lowered. Finally, other resonant frequencies are found in wavelengths 

multiple of L14. In those resonances however, the attenuation constant is not 

significantly reduced. 

In the case of z-directed dipole FSGs, the basis functions are expressed similarly to 

the rp dipoles, by exchanging the role of rp and z. There are three solutions to the 

characteristic equation. The TEM and the HEll are in agreement with the solutions 
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of the FSG with longitudinal strips of Chapter 3 (Section 3.3). However, there is a 

frequency where the element resonates and the attenuation decreases. The resonant 

frequency depends on the length of the dipole and the periodicity in <po When more 

elements are included around <p, both the resonance and the cut-off frequencies of 

the HEll mode are shifted at higher frequencies. For a design with 20 elements in <p, 

the attenuation drops to zero at resonance and the HEll mode is guided. 

Immediately after resonance, the -1 harmonic becomes fast and contributes to the 

leakage. The condition for the presence of grating lobes, is the periodicity to be half 

the wavelength. The other solution represents a complex quasi TEM. The 

attenuation constant for this mode goes to zero near the Bragg condition, when f3 

approaches k. 
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CHAPTERS 

Cylindrical FSG with square

loop elements 

5.1 Introduction 

In this Chapter, the investigation of FSG with square loop elements is presented. 

The geometry can result from the combination of the qJ and z dipole arrays 

presented in Chapter 4. It has been shown, that the operating hybrid modes inside 

the dipole FSG, are associated with the dipole's resonance and polarisation 

behaviour. With the square loops, the electric field can be polarised in both 

directions. The FSG geometry is discussed in Section 5.2. Section 5.3 deals with the 

roof- top functions expansion, in order to express the current on a square loop. 

With the view to minimise computational effort, a technique is introduced and 
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discussed for the roof- top bases. In Section 5.4 predicted results are shown, for the 

complex propagation constant of representative arrays. A variety of square loop 

arrays is chosen (cases A, B, C), in order to explain the effect of the size of the 

elements and the periodicity, on the propagation behaviour. The complex 

propagation constant is utilised to obtain the currents and fields and plot the mode 

patterns. In Section 5.4.1, the performance of the model is examined by checking 

the boundary condition for the tangential E-fields. The hybrid factor, which is a 

prime factor in designing balanced antenna feeds, is calculated and discussed in 

Section 5.4.2. In Section 5.4.3, the predicted dispersion curves are shown and 

discussed in comparison with the dipoles' FSG. In Section 5.4.4, results for 

representative square loop arrays with different periodicities are shown. In Section 

5.4.5, the performance and accuracy of the model are tested by measurements, for a 

particular design. The last Section, 5.5, is concerned with closing statements and 

suggestions for the applications of the square loop array. 

5.2 Square-loop geometry 

Fig. 5.1 shows a cylindrical FSG with square-loop elements. The radius of the 

waveguide is 7.85mm. The structure is unbounded in the z direction and has a 

natural periodicity of 2",. The element consists of four equally sized arms, each of 

length L. D'f! and Dz are equal and define the dimensions of the unit cell. The general 

theoretical analysis described in Chapter 2, is applied here, in order to model the 

FSG, with some modifications in the roof-top function expansion method. 
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Figure 5.1: Geometry of cylindrical Frequency Selective Guide with square 

loop elements. 

5.3 Current functions on the square-loop 

~=O 

The current on the element is approximated in a subsectional manner, as discussed 

in Chapter 2, (Section 2.5.2), for a conducting element. The bases on the square 

loop are shown graphically in Fig. 5.2. Each current component is expanded as a set 

000 roof-top functions. The representation has been suggested by Rubin et. aL [1], 

for a MoM analysis of the scattering from infinite periodic arrays. With 30 bases for 

each current, the dimension of the impedance matrix is 60x60. The latter are 

prohibitively large, in a sense that the iterative procedure becomes impractical, due 

to excessive computational requirements. Additionally, there are restrictions in the 

size of the element since, the width of each arm has to be 217 of its length (as is the 

case of Fig. 5.2 with seven bases in each arm). To simulate elements with smaller 
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widths, or perform convergence tests, the number of roof-top functions should be 

increased; resulting to a further increase in computational demands. As an example, 

with 9 segments on each arm, the total number of roof-top functions is 84. For 84 

bases and 961 Floquet modes 70min of CPU time was needed, to obtain a point on 

the dispersion curve. 

The above adversities can be reduced by using the roof-top functions illustrated in 

Fig. 5.3. Each arm is divided into seven equal segments. Six roof-top functions 

represent the current flowing along the length. These are centred at z = ± (K-I) 

.&/2, q> = (s+O.5)Llip'2, for the q> directed arm or, at q> = ± (S-I) Llip'2, z = 

(k+0.5).&/2 for the z arm. In the roof-top basis functions which represent the 

current terms across the width, the triangular function is defined in one increment 

'&(,ilq» (as opposed to 2'&(Llq»). These functions are centred at points z = ± (k-I) 

,&/2, q>= sLlip'2 and q> = ±(s-I) Llip'2, z = k.1z/2. In total, there are 22 roof-top 

bases for each current component and the dimension of the impedance matrix is 

44x44. 

Two factors which can be considered as limitations of the above expansion are: a) 

the discontinuity embedded by the different size roof- top functions at the arm 

junction (area A, in Fig. 5.3) and b), the width to be 117 of the arm. When trying to 

perform a convergence test with more currents, the physical size changes as the 

width of the element changes. For example, if K = S = 9 and K = S = 7, the 

difference in the area covered by the bases is 10%. 

The only convergence tests performed for square loop arrays were for the number 

of Floquet modes. For the number of currents, convergence tests were impractical 

to apply. As explained earlier in this Section, finer segmentation of the square loop 

arm, results to a large impedance matrix and changes the size of the element. In all 

simulations for square loop arrays, convergence was ensured when 961 Floquet 

modes were used (31 modes per Floquet number). When the number of Floquet 

terms increased to 61 x61, the difference in the results was found to be insignificant. 

With 961 Floquet terms, approximately 3 minutes of CPU time in the VPX machine 

is needed to obtain a point on the dispersion curve. 
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~-directed roof top 

z-directed roof top 

Figure 5.2: Roof-top functions representing the current on the square loop. 
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$-directed roof top 

z-directed roof top 

Figure 5.3: Roof-top functions approximate representation for the current on the 

square loop. The bases have different size. 
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5.4 Numerical results/or representative arrays 

CASE A 

Fig. 5.4 shows the dispersion characteristics for the lowest order hybrid modes of an 

FSG with square loops. There are 10 elements fitted around the circumference of 

the guide. Each arm of the square loop is 95% of the periodicity; D<p = Dz = 0.62831 

ro = 4.932mm and L=4.68mm. The width w is 0.668mm. At low frequencies, the 

dominant mode is a surface wave excited by the discontinuity at the interface due to 

the square loop array. Similarities to the surface waves excited for the FSG with 

rings or transverse dipoles (numerical examples in Chapter 3 and Chapter 4 

respectively), are obvious. The surface wave starts at 0 frequency and becomes 

loosely bound, as it approaches a higher cut-off condition; due to mode coupling 

effect. The coupling occurs at 19.2 GHz, when the -1 backward travelling harmonic 

propagates with the same rate as the dominant forward 0 harmonic i.e. 

- kZ-l = kzo (see also Appendix B). The first fast wave mode has a cut-off at 

13.75 GHz. It is a complex wave (EHII) and the plotting of the transverse electric 

field lines at cut-off, reveals strong TE characteristics. At cut-off, the leakage 

constant for the mode, is high and decreases rapidly as frequency increases. It 

reaches the lowest value (zero) at 20.1 GHz, the frequency which is identified as the 

resonance. At resonance the wave sees the structure as a complete reflective wall 

and its energy is guided within the waveguide. This is justified since p has the value 

for the p of the TEll of a closed cylinder (TEll and EHII curves are crossed). The 

relation between element arm length and wavelength at resonance is: L = 0.315 ,4". 

After resonance, the attenuation constant increases with frequency and the FSG 

switches back to a leaky wave antenna. The next mode is the hybrid HE" mode 

which starts propagating at 23 GHz. For this mode, the attenuation constant holds 

relatively large values even at resonance. The latter occurs at 24 GHz. In the same 

graph, the TM" curve is also shown for the complete guide. The cut-off of the HE" 

mode, is below to that of the TMII for a complete cylinder, and the curves never 

meet. 
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Figure 5.4: Propagation and attenuation plots for an FSG with 10 square loops 

along <p. (D<p= Dz= 4.932mm, L = DzI 1.05, ro = 7.85mm, w = V7). 

Fig. 5.5 illustrates the attenuation in dBm-1 for the first hybrid mode, the EHn, as a 

function of frequency. Between 19.5 GHz and 20.7 GHz, the attenuation drops to 

zero as a result of the resonance. The guidance bandwidth is 

AI 1.2 
BW=-=-",6% 

le 20.1 
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Figure 5.5: Expanded version of the attenuation for the EH]] mode of case A. 

CASEB 

Fig. 5.6 shows the dispersion curves, ofFSG with different sized elements to that of 

case A. The periodicity is kept at 4.932mm, but the length of the square loop arm is 

reduced to 83.3% of the periodicity. The width of the square loop is 0.587mm. To 

depict the resonance, only a part of the dispersion curve for the EH]] mode is 

plotted. The FSS wall resonates at 24 GHz and the ERII mode is strongly guided 

within the FSG. The ratio square loop arm length to wavelength of resonance is, L = 

0.328 A" which is about the same as for that of case A. 
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. Figure 5.6: Complex propagation plots for FSG with elements of different 

length than that of case A (Drp= Dz= 4.932mm, L = 4.11mm, ro = 

7.85mm, w =0.58mm). 

The other fast wave is the HEll hybrid mode. The resonance for this mode is found 

at 26 GHz; the frequency the attenuation goes to a minimum. At the same 

frequency, the f3 curve of the HEll mode, crosses the TMII line of the complete 

cylinder. Also at the same frequency, the EHII mode has become leaky, i.e. the FSG 

is guiding one mode while radiating another (multimode operation). 

The surface wave mode starts at 0 frequency and becomes loosely bound at 18 

GHz. At approximately 21 GHz, the surface wave reaches the higher cut-off. 
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The complex propagation constant is known and the fields inside a cross section of 

the FSG can be calculated by the method described in Chapter 2 (Section 2.8). The 

simulation is run with 22 roof-top functions for each current, and 961 Floquet 

harmonics. Fig. 5.7 illustrates the plotted transverse electric field lines for the hybrid 

EHII mode at three different frequencies near resonance. Below the resonant 

frequency the hybrid mode is leaky and exhibits strong TE properties (H-type). At 

resonance, the Ez component almost vanishes and the mode becomes pure TE. It is 

notable, that in the plots above cut-off, the electric field lines are less curved than 

the lines of the TE 11; almost linearly polarised in a Cartesian x-axis. There are 

discrepancies of the lines near the boundary at p = ra. The discrepancies appear 

because the condition for the tangential electric field to vanish over the conductor is 

not entirely satisfied. In the next Section a boundary condition checking is 

performed. 
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Figure 5,7: Transverse electric field line patterns ofEHtt mode at 

various frequencies near cut-off for the FSG of case R 
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5.4.1 Boundary condition checking 

The boundary condition that enforces the total electric field to be zero over the 

conductor, must be satisfied for all cases and all solutions of ~ja, to ensure the 

validity of the predictions. In Fig. 5.8, the dominant transverse E-field component of 

the EHII mode for case B, at cut-off, is shown. The fields are calculated for all rp 

between 0 and 21t and z = - L /2. 22 bases are used for each current and 961 

Floquet harmonics. The unit cell centred at the origin, extends from _18° to 18° and 

the rpdirected arm of the element, extends from _15° to 15°. The main component of 

the electric field is the azimuthal, since the polarisation is TE. This component is 

plotted for one period. It is evident, that the component has the lowest values over 

the conductor but is not zero especially, near the edges. Following observations 

discussed in Chapter 3 (Section 3.2.6), the present amount of current functions and 

Floquet modes is adequate to guarantee convergence of the solutions for the 

complex propagation constant. However, these are not enough to entirely satisfY the 

boundary condition. The problem may be addressed in the same way, as in the one 

dimensional case, by increasing the number of roof-top functions, i.e. finer 

descritization of the conducting area. Then, the number of Floquet modes must be 

increased until convergence is ensured. The penalty to pay when performing such 

tests, is added computational time. In the case of the square loop array, these 

requirements become excessive and therefore, not performed. 
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5.4.2 The hybridfactor 

In this paragraph, the hybrid factor is discussed, aiming to examine future 

applications of the FSG with square loops, as an antenna feed. In reference [2], the 

importance of the hybrid factor is highlighted in determining the radiation from 

corrugated wave guides with circular cross section. The corrugated waveguide 

makes an excellent antenna feed, due to the ability to provide the hybrid HEll mode 

with low cross-polar field components. This is possible if the transverse electric 

field lines are linearly polarised. For linear polarisation, the hybrid balanced 

condition must be satisfied and /3/ k to approach 1. 

Assuming only the lowest order mode (p, q = 0) propagates, the hybrid factor is 

b-
defined asA = ~. Hybrid balanced condition is reached when A= I. In Fig. 5.9 

aoo 

and Fig. 5.10, IAI is plotted against frequency for the first two hybrid modes of case 

B. 

The hybrid factor for the EHll starts from a relatively large value which is the case 

for modes with strong TE properties (for TE modes A ~ -00, [2]). At resonance 

this value increases significantly as the FSS wall becomes totally reflective and the 

mode turns to a pure TE. After resonance, the hybrid factor for the mode decreases 

as attenuation increases. 

For the HEll mode, the hybrid factor has a small value near cut-off and exhibits 

strong TM properties (for TM modes A = 0, [2]). At resonance, the hybrid factor, 

drops to zero as the Hz component vanishes. Twice before resonance and once 

after resonance, the hybrid balanced condition is met. The ratio {3!k after resonance 

is 0.5. Since the condition /3/ k = 1 is not met, the advice is to increase the radius 

of the FSG, while keeping the periodicity and element dimensions.· Thereby, 

lowering the cut-off of the HEll mode whilst,. keeping the same resonance The 

latter is a suggestion for future work. 
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5.4.3 Square loop results compared with results from dipole 

arrays 

In Fig. 5.11 the dispersion characteristics of two representative arrays are shown for 

comparison: one is with square loops and the other with dipoles. In each case, the 

periodicities in both z and rp are 8.22mm. The dipole length is equal to that of the 

square loop arm. It can be observed, that the cut-off of the first mode for the square 

loop geometry, is at lower frequencies compared to that of the dipole array. This is 

justified since, the array of square loops becomes resonant at L = ..1, r /3 whilst, the 

array of dipoles resonates at wavelengths for which L = ..1, r / 2. The effect is 

similar on the upper cut-off frequencies for the surface waves. For the square loop 

array, the surface wave stop band appears at a lower frequency than that of the 

dipole. What is most notable though, is the difference in the attenuation factor 

which is significantly smaller for the square loop array in the area near resonance. 

As more conductor is included in the area of the unit cell, it is reasonable to say that 

the approach of a complete wall for the square loops is better than that of the 

dipoles so, the guidance is better. Finally, due to the symmetry of the square loop, 

both the TE and TM polarisations are properly excited. 
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Figure 5.11: Dispersion diagrams for FSG with 6 square loops and those of 

6 dipoles of same length in fP. (Dip = Dz= 8.22mm, ro = 

7.85mm, w = U7, DzI'A = 0.4, D/L = 1.05) 

5.4.4 Square loop array with different periodicity 

This Section aims to discuss the effects of the periodicity on the propagation, inside 

an FSG with square loops. The geometry is chosen so that 6 square loops can be 

fitted around the FSG circumference (Dz = 8.22mm). There are two different sizes 

D . 
of elements. For the first, the ratio l = 1.05 and the results are shown in Fig. 

D 
5.12. The second has a ratio l = 1.2 whose results are shown in Fig. 5.13. In 

both cases the width is w = ~ and ro = 7.85mm.Using observations from cases A 
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and B, the wavelength of resonance can be calculated beforehand according to 

A r = ~ . In so doing, the resonances are expected at 12.5 GHz, and 14.5 GHz for 

case A and B respectively (i.e. lowering ofthe resonance). 

CASE C (D/L = LOS) 

Predicted results for the complex propagation constant of the first mode are shown 

D 
in Fig. 5.12 for the frequencies between l = 0.15 to 0.45. The surface wave 

Figure 5.12: Dispersion diagrams for FSG with 6 square loops in rp. 

(D", = Dz = 8.22mm, L = 7.82mm ro= 7.85rnm, w = U7, 

Dz/'A. = 0.4). 
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CASE D (Dz/L = 1.2) 

For this geometry, the stop band for the surface wave appears at 13.7 GHz. The 

resonance for the hybrid EHlI mode is at 14.9 GHz. At this frequency, the 

attenuation is small but not zero. Part of the a curve (between point A and B) is 

shown in Fig 5.14, translated in dBm-1
• It is evident that even at resonance, there is 

still 4.75 dBm-1 radiation loss . 

Figure 5.13: . Dispersion diagrams for FSG with 6 square loops in rp. 

(Drp = Dz = 8.22mm, L = 6.85mm, ro= 7.85mm, w = V7). 

Finally, it is worth pointing out, that there is a good agreement between the 

predicted resonance and the one computed by the model. 
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5.4.5 Measured results 

In an attempt to validate some predicted results, an FSG was fabricated and 

measured in an anechoic chamber by a member of the Antennas and Microwaves 

Group at Loughborough University (see Acknowledgements). A J-band waveguide 

fed the FSG with a TEll mode. The operating frequency range for the TEll mode in 

theJ-band is 12-16 GHz. Since, the resonance of the EHII is at 15 GHz, for case D, 

the latter was chosen for testing. The square loop elements were printed through a 

lithographic process on a thin (.071mm) dielectric with dielectric constant 8r = 3. 
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The printed surface was rolled to a 7.85mm radius and 30cm long cylinder. There 

are 36 periodic cells included in that length and at least 12 wavelengths. It should 

be mentioned that in FSS studies, the analysis of surfaces of electric size greater 

than 10 wavelengths is carried out under the assumption that they are infinite in 

extent [3]. Fig. 5.15 shows the predicted and measured results for the propagation 

constant f3 and the attenuation constant a for the excited EHII mode. The results are 

normalised with respect to the periodicity. Measurements for f3 are obtained by 

measuring the angle of the main radiating lobe () and then use the relation 

f3 = k sin (). It can be observed, that there is an excellent agreement between the 

predicted and measured results for f3. In order to measure the attenuation, a short 

circuit was placed on the other end of the FSa. The reflected wave due to the short 

circuit, appeares as a secondary lobe in the backward direction. The radiation N in 

dBs, of the secondary lobe at peak, was measured and the attenuation constant was 

obtained according to 

N -at =e 

where 1= 30cm is the length of the FSa. As illustrated in Fig. 5.15, the difference 

between the predicted and the measured resonant frequency is about lOO MHz. 

Other differences, occur for the values of the attenuation. It is evident that, 

throughout the frequency range, there is more leakage measured than predicted. 

This can be justified as follows I) Manufacturing difficulties: it proves difficult to 

have an FSa where the radius is kept constant throughout its length and the 

structure to be perfectly curved. Other imperfections which occur in the process of 

printing the elements with the exact dimensions to those of the model. 2) Losses in 

the dielectric which are not taken into account by the model. Moreover, there is 

some energy scattered at the junction of the Fsa with the feed. When a reflective 

surface was placed near the feed junctions, the receiving signal was stronger. 3) 

Inaccuracies of the model. Such inaccuracies may involve errors due to the 

truncation in the double summation of the number of bases, the number of Floquet 

terms and the approximation for the roof- top functions. Unfortunately, it is 

impractical to perform convergence tests properly as, the computing demands when 

the number of bases is increased are massive. 4) Inaccuracies of the measurements 
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at resonance. When the FSG is guiding, less energy radiates outside, so that the 

level of the reflected secondary lobe is very small. As seen in Fig. 5.15, there is a 

discrepancy in the measurements just after the resonant frequency. 
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Figure 5.15: Measured and predicted results for the complex propagation 

constant for the FSG of case D. 
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5.5 Conclusions 

In this Chapter, FSGs with square loop geometry have been studied. The theoretical 

model presented in Chapter 2 has been applied with the necessary modifications to 

the roof-top expansion to account for the more complicated element geometry. The 

efficiency of the model, in terms of computing requirements, is improved by 

introducing different sized roof- top functions. At low frequencies, the FSG behaves 

as a surface wave structure. Due to the periodicity, this surface wave stops 

propagating. Fast hybrid leaky wave modes can then carry the energy. There are 

frequencies where the FSS resonates and there is excellent guidance. The FSG can 

be designed to guide in a desirable frequency by choosing the correct element size. 

Additionally, the FSG is suitable to operate with two modes (one is guided and the 

other is radiating). For the HEll mode, balanced hybrid condition is met in the area 

near resonance. To meet the condition for symmetrical mode pattern, it is advised to 

increase the radius. 
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CHAPTER 6 

Conclusions and future 

considerations 

In order to find the mode content of cylindrical FSGs, a boundary value problem 

was solved with two conditions. The first condition required that the structure is 

double periodic and the second, that the structure is open. By considering modal 

Floquet expansion and complex fields, the two former conditions became inclusive 

in the analysis. The fields were represented by space harmonics and in the inner 

region, each harmonic represented a localised standing wave. In the outer region, 

the space harmonics represented travelling waves. Other requirements were for the 

model to have an unlimited degree of freedom, in incorporating any element 

geometry. Therefore, the current on the conducting elements was expressed as a set 

of subdornain basis functions, the roof-top basis functions. Since the roof-top bases 
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represent current quantities over a small part of the conductor, accurate 

approximation of the current on any element can be achieved, by increasing the 

number of bases. 

An eigen-value equation was derived by applying the electromagnetic boundary 

conditions in conjunction with a spectral representation of the current. Two systems 

of algebraic equations were obtained by applying MoM to the eigen-value equation. 

One system was solved for the complex propagation constant and the other for the 

currents and aperture fields. It became apparent from the analysis, that two 

important features required special attention: 

1. The choice of the transverse wavenumber from the double value 

dispersion relation. Sometimes, the choice of the wavenumbers 

represents leaky waves which do not satisfY the radiation condition 

(improper solutions). 

2. The use of asymptotic expansions for Bessel functions in order to 

overcome numerical difficulties. 

The study began with modelling FSGs of infinitely long strips and transverse rings. 

Examining one dimensional cases proved useful, as it lessens the computational 

demands in understanding, the propagation inside cylindrical FSGs and the 

efficiency of the model. In pursuit of an easy to obtain solution, the imaginary part 

was removed from the complex propagation constant and the problem was solved 

for the real {3. Numerical results for particular designs showed that the polarisation 

of the elements was dominating the type of the propagating modes. Longitudinal 

strips gave rise to hybrid modes with TM properties whereby, rings sustained the 

TE-like hybrid modes. Additionally, a TEM mode can propagate along the metal 

line of the strips whereas, the discontinuity due to the rings excites a surface wave. 

The values for {3 were not affected when the attenuation was searched for, mostly 

because the elements' separating distance was small compared to the wavelength. 

Solving for the attenuation, showed that the fast waves inside FSGs, radiate energy 

continuously, i.e. leaky wave antennas. The numerical stability for fJ-ja, was verified 
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by increasing the number of bases and the number of Floquet harmonics. The 

convergence for the propagation constant was easily accomplished whereas, the 

boundary condition checking proved that more currents and Floquet modes were 

needed to satisfy the condition. 

Since this study aimed to serve, as a precursor to the study of FSGs with resonant 

elements, the effects of changing the periodicity and the strip widths were not 

examined and could be considered for future work. 

The investigation, continued with FSGs with dipole elements. Results showed 

similar behaviour to the one dimensional case, as the less attenuated modes had the 

E-field parallel with the dipoles. In addition, a guiding region appeared due to the 

element resonance. The guidance can be reinforced by arranging the elements close 

to each other. As it is closely associated with the element's length, the guidance can 

be frequency controlled. Increasing the element's length, resulted in lowering the 

cut off frequencies of the modes. For the FSG with two dipoles in rp, it was found 

that the TEn-like mode, starts propagating at a lower frequency than that of a 

complete guide. For the FSG with z-dipoles, the periodicity was such that, both the 

zero and the first higher order mode became leaky at the same frequencies. In order 

to use the FSG for single beam scanning, the advice is to reduce the periodicity in z. 

For the FSG with square loop elements dual polarisation is achieved at wave 

guidance. The simulations predicted a surface wave region, a guiding region and 

leaky wave regions. The· predicted regions, agreed well with experimental 

knowledge for wave guidance in hollow rectangular tube made from an FSS with 

square loop elements. The guidance of the dominant ERn mode is excellent at 

frequencies where the element resonates. The resonant wavelength can be predicted 

beforehand, since it was consistently as one third of the square loop arm. The 

resonant wavelength and the predicted values for the complex propagation constant 

agreed very well with measurements for a particular design. The next higher order 

mode, is the HEll mode, which is also guided at a higher resonance. The FSG can 
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be used as an alternative to corrugated feeds provided, the HEll mode is balanced. 

For the feed to be balanced, the hybrid factor should be 1, and the phase constant of 

the mode to approach the propagation constant in free space. The first condition 

was found to be satisfied but was met close to the cut off. A solution would be to 

increase the radius of the FSG and lower the cut-off frequency of the mode. If one 

needs to use the FSG simultaneously both as a guide and an antenna, bandwidths 

and band spacing ratios become important. The latter observations were not 

addressed quantitatively in this thesis and could be aspects of future work. 

In terms of choosing the proper element and size geometry the answer is dependent 

on the application needs. This thesis showed that in terms of guidance the square 

loop element is superior to the dipole. However, dipole arrays can also find 

applications in leaky wave antennas and they are easier to model. For a dipole 

application, the advice would be the elements to be close to each other in order to 

lower the attenuation and avoid interference from grating lobes. Other 

considerations for future work, could begin with the calculation of the near fields or 

far fields, and the co-polar or cross-polar components, so as to evaluate a particular 

leaky wave antenna. A research project already has been initiated to study the 

feeding of the FSG and model the transitions of the fields in a junction. 
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APPENDIX A General wave analysis in cylindrical co-ordinates: 

an overview 

From Maxwell's equations the electric and magnetic field intensities in a source free 

lossless and homogeneous medium can be expressed in terms of magnetic and 

electric vector potentials E and 4 respectively. Each one of these vector potentials 

satisfies the general vector wave equation [1,2] 

(A.I) 

Where 1: is either 4 or E and k is the wavenumber of the medium. TM or TE wave 

excitation in the z direction is defined, by assuming the only component of the above 

vector wave potentials, in the z direction of the standard cylindrical coordinate 

system p, rp. z. Then the wave equation is reduced to the scalar Helmoltz differential 

equation. The differential equation can be solved in the cylindrical coordinate system 

by the standard method of separating the variables. Solutions then take the form of a 

product which are the wave potentials. They represent cylindrical plane waves. 

Here, they are denoted as :=: where, 

Helmoltz: 

and 

(A.2) 

Bessel functions represent the solutions in p 

Bn(kpp) for an unbounded media represents iriward or outward travelling waves; 

for a closed structure it represents standing waves. '1'( <p,z) = ejnq> e - jk,z are plane 
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waves in rp and z. The solutions to the differential equation, must satisfy the 

dispersion relation defined as 

(A3) 

must be satisfied. k = 2; is the free space wavenumber and kp is the propagation 

constant along the radial axis p and is incorporated in the argument of the Bessels. 

It should be noted that all wave quantities expressed here are time varying as e - jrot ; 

a factor which will be assumed from this point onwards. The electric and magnetic 

fields can now be written as a combination ofTM and TE waves in the z direction 

In the above expression it is assumed that 

and 

The symbol /\ denotes a unit vector. Solving (A.4) and separating If;. to its 

component parts yields 

1 er Az E = - jroJ.L4 - j---
z Z roE 8z2 (AS) 

(A6) 

(A7) 



Similarly 

So 

References 

1 B2F. 
H . F.. z z = - l OJB z - 1 --2-

OJ!! Bz 

BAz . 1 B2Fz 
H =---1---

<P Bp OJ!!P BcpBz 
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(A9) 

(AIQ) 

(All) 

[1] BALANIS, C. A: 'Advanced engineering electromagnetics', Wiley, N.Y. 
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[2] HARRlNGTON, R. F.: 'Time harmonic electromagnetic fields', Ch. 5, 

McGraw Hill, New York 1961. 
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APPENDIXB: Grating lobes and mode coupling effect 

As already mentioned (Section 2.7), the radiation from an open structure which is 

also periodic, is solely associated with fast harmonics. At some frequencies these 

harmonics may become dominant. The number of the radiating beams equals the 

number of harmonics which satisty the condition: 

(B.I) 

Moreover, the knowledge of the complex propagation can yield the angles of the 

radiating beams i.e. the angle Bq of the q,h radiating beam is found by the use of the 

approximate formula, [1] 

k 
B. 

. -\ zq 
q=sm k (B.2) 

Bq is the angle of the peak of the beam measured from broadside as shown in Fig. 

B.1 

p 
Bacward 
waves 

Forward 
waves 

----------~~--------~~ 

Figure B.l: Angle of the radiating lobe 
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There are frequencies where the spectral harmonics couple in pairs. As a result a 

higher cut-off occurs similar to that in a closed structure. For instance the -1 

backward travelling harmonic propagates couples with the dominant forward 

travelling 0 harmonic when the condition /kz-d = /kzo/ is satisfied. The latter is 

met when f3 Dz = 0.5 and is referred as the Bragg condition. The condition k D z 
2n 2n 

= 0.5, also is referred as Bragg condition. It defines a threshold frequency above 

which, higher order harmonics, may enter the visible spectrum (fast waves) and 

become dominant. The radiating beams which belong to higher order harmonics, 

are also referred as grating lobes or, higher order diffracted waves [2]. 
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APPEND/XC: Asymptotic expansions for Bessel functions 

According to numerical recipes the most powerful asymptotic expressions for the 

Bessel functions are the uniform asymptotic expansions. These expansions involve 

the use of Airy functions which in tum are difficult to evaluate. Instead, the Bessel 

functions can be written in terms of the modified BesseI functions of integer order 

and of complex argument [I] 

-:r<argzq ~:r (C.I) 

K ( +) = _1. . -np 7ti/2 H(2)(_ . +) 
n Zq 7lJe n }Zq 

p 2 p 
(C.2) 

In the previous expressions I and K are the modified Bessel functions of first kind. j 

is the imaginary unit number. According to step I in Section 2.9, the Bessel 

functions are incorporated in the field coefficients by dividing all the relative 

expressions with the BesseI function. Therefore, the required asymptotic expressions 

are for the following ratios 

J~p (Zq) 
Jnp (Zq) 

and 

(C.3) 

(CA) 

Following the relative properties of the Bessel function, Eqns. (C.3) and (CA) can 

be written as 



J~p(Zq) J~p(-jZq) 
In)Zq)=-J In)-jZq) 
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(C.S) 

The prime denotes the derivative of the Bessel (or modified Bessel) function with 

respect to the who le argument in parenthesis. According to [I 1 

(C.6) 

Similarly, for the second order Hankel functions the connecting relation is 

K~ (z) 
p 

Kn (z) 
p 

In the previous expressions 

. K~p(jz;) 
} KnpVz;) 

and 

- jZq Z=-
np 

.+ 
- JZq 

or z=-
np 

(C.7) 

(C.8) 

and both asymptotic 

expressions hold for largzl S; ~jr - 8, 8 is an arbitrary positive number. Also 

t = 1/ ~1 + z2 , and the polynomial components are defined up to the fourth order as 



uO(/)=l 

ul (I) = (31 -5(3)/24 

u2 (I) = (8lt2 
- 462/4 + 385(6)11152 

U3(/) = (30375/ 3 - 36960315 + 7657651 7 -425425/9 ) 1 414720 

vO(/) = 1 

Vl(/) = (-91 + 7( 3) 124 

l.i2{/) =(-135/2 +594/4 -455(6)11152 

VJ (I) = (- 42525/3 + 45173715 
- 88357517 + 475475(9

) 1 414720 
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(C.9) 

The previous expressions can be tested against the values returned by the NAG 

routines, (within the NAG limits). Fig. Col shows the ratio asv/asr plotted (a) for 

large arguments and (b) large orders, where, 

is calculated by asymptotic expansions for the Bessel functions, and 

is calculated by the appropriate NAG routine. As shown in Fig. C.1, the difference is 

negligible even when the order of the Bessel function is zero (np = 0) or, when the 

argument of the function has the smallest value (q=O). In both cases though, both 

the order and the argument are always within the calculating capacity of the NAG 

routines. 
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" 

Figure C.1: Bessel functions (a) oflarge arguments and (b) oflarge orders 

calculated using asymptotic expansions and nonnalised to the values 

returned by the NAG routines. The argument values are calculated by 

the dispersion relation and for the parameters: DzlA = 0.4, Dz = 

8.22rum, Zo = 1.25 - j 0.007, k,o = (0.38 - j 0.004) k. 
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