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Abstract 

This paper derives analytical solutions for the critical Kelvin-Helmholtz (KH) 

instability conditions at the interface between a cylindrical gas column and a 

pool of viscous immiscible fluid confined in a chamber of finite size. The 

analysis focuses on conditions of negligible heat and mass transfer. The 

derivations are based on the established approaches reported in the literature 

with different boundary conditions. The most unstable instability conditions have 

also been calculated numerically. Experiments designed to measure the actual 

air column break-up conditions in water have been carried out to validate the 

analytical models. Comparisons show that the most unstable conditions 

predicted by the Viscous Corrections of the Viscous Potential Flow KH model 

are the best match to the experimentally measured break-up conditions. 

Parametric investigation of the instability theories shows that the vapour column 

size has a noticeable effect on the critical conditions, but has a negligible effect 
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on the most unstable conditions when the column radius is greater than 1.2 

mm. Furthermore, the critical instability conditions are sensitive to the chamber 

size and the perturbation symmetry, while the most unstable conditions are 

insensitive to these parameters. 

Keywords: Kelvin-Helmholtz instabilities; viscosity; cylindrical interface. 

1. Introduction 

Hydrodynamic instabilities in gas-liquid systems play significant roles in a wide 

range of applications in chemical engineering and geophysics. For example, in 

boiling heat transfer, the Kelvin-Helmholtz (KH) instability has been widely 

adopted to explain and predict the occurrence of the critical heat flux condition 

(i.e. the maximum heat flux point at the end of the nucleation boiling regime), 

while the Rayleigh-Taylor (RT) instability has been applied to predict the heat 

transfer rate in film boiling regimes (Carey, 2008).  
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Fig. 1 Different geometries of interfaces and boundary conditions reported in 
the literature 

 

The widely adopted KH and RT instability theories in boiling heat transfer, as 

summarized in the literature (Carey, 2008; Zhao and Williams, 2018), are based 
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on the linear Inviscid Potential Flow (IPF) analysis of a planar interface between 

two infinitely deep pools of inviscid fluid without interfacial heat and mass 

transfer (Fig. 1 (a)). Hsieh (1978) reported the first corrections to the planar 

interface stability and interfacial heat and mass transfer due to the finite 

thickness of the gas and liquid layers. Nayak and Chakraborty (1984) later 

adopted the methodology developed by Hsieh to analyse a cylindrical interface 

with heat and mass transfer, as shown in Fig. 1 (b), a configuration which 

mimics the cooling of fuel rods in nuclear reactors. They did not derive the 

explicit solutions but instead solved the dispersion equation numerically. The 

nonlinear IPF analysis of the KH instability of a cylindrical interface, as in Fig.1 

(b), with heat and mass transfer, has been carried out by Lee (2007). Lee 

provided the explicit solution for the linear instability criteria and the numerical 

solutions for the higher-order nonlinear analysis.  

Although the IPF assumptions greatly simplify the analysis, neglecting the effect 

of viscosity limits its accuracy. Funada and Joseph (2001) introduced the first 

correction for the effect of viscosity by carrying out the so-called ‘Viscous 

Potential Flow’ (VPF) analysis on a planar interface without heat and mass 

transfer, as shown in Fig. 1 (a). Their analysis considers the normal shear 

stress without violating the assumption of irrotational flow and only considers 

the linear instability term. A comparison of the results predicted by VPF and IPF 

analyses suggests that the critical values of the relative velocities between the 

air and liquid are independent of the viscosity when the liquid viscosity is >15 

mPa ⋅ s. However, when the liquid viscosity is < 15 mPa ⋅ s, the critical velocity 

predicted by VPF analysis is lower than that of IPF analysis. Their analysis also 
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showed that the critical relative velocity was smaller in a thinner gas layer. A 

similar VPF analysis has been applied to solve the first-order KH instabilities of 

the cylindrical interface around a solid fuel rod, as shown in Fig.1 (b) (Awasthi 

and Agrwal, 2011; Asthana, Awasthi and Agrawal, 2014). Their analysis 

showed that the viscosity reduced the instability growth rate, but they did not 

compare the required critical velocity predicted by the IPF and VPF analyses. 

Recently, Awasthi et al. (2016) applied a similar VPF approach (i.e. taking into 

account the normal shear stress without violating the irrotational flow 

assumption) to investigate the non-linear KH instability of a cylindrical interface 

with heat and mass transfer, as in Fig. 1 (b). To test the accuracy of the VPF 

theory, Funada and Joseph (2002) compared the capillary instability criteria 

predicted by the VPF theory and the Fully Viscous Flow (FVF) theory for a liquid 

cylinder at rest. The FVF theory is the exact normal mode solution of the 

linearized Navier-Stokes equations. They calculated the instability growth rates 

at different Reynolds numbers, which were defined by the capillary velocity (i.e. 

𝑅𝑅𝑅𝑅 = 𝜎𝜎𝜎𝜎𝜌𝜌𝑙𝑙/𝜇𝜇𝑙𝑙2, where 𝜎𝜎 is the surface tension, 𝜌𝜌𝑙𝑙 is the liquid density, 𝜇𝜇𝑙𝑙 is the 

liquid dynamic viscosity and 𝜎𝜎 is the fluid column diameter). The equations of 

the FVF theory were solved numerically, while the VPF model has an explicit 

solution for the critical instability condition. Their results showed that the VPF 

analysis gave good approximations to the FVF results when the Reynolds 

number was > 𝑂𝑂(101) (i.e. orders of magnitude of 101) and was always more 

accurate than the IPF theory. To further correct the viscous shear force while 

still using the potential flow analysis, Joseph and Wang (2004) developed a 

dissipation approximation theory, named the ‘Viscous Correction of the Viscous 
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Potential Flow’ (VCVPF) theory. The VCVPF approach introduced a viscous 

pressure term to resolve the discrepancy between the zero shear stress 

boundary condition at a free surface and the non-zero irrotational shear stress. 

The VCVPF approach has been applied to analyse the capillary instability of a 

cylindrical liquid column in air by Wang et al. (2005). They showed that the 

VCVPF method provided more accurate predictions of the instability growth 

rates than IPF and VPF models. The VCVPF theory has also been used to 

analyse the linear KH instability for both a planar (Fig. 1 (a)) and a cylindrical 

interface around a solid fuel rod (Fig.1 (b)) with heat and mass transfer under 

both axisymmetric and asymmetric disturbance (Awasthi, Asthana and Agrawal, 

2012, 2014). Awasthi et al. (2012, 2014) derived the explicit solutions for the 

instability criteria, and their calculated results showed that the VCVPF solution 

was more stable than the VPF solution. In addition, the instability growth rate 

was found to be smaller for the asymmetric disturbance conditions when 

compared to the symmetric disturbance conditions. However, there was no 

direct comparison of the neutral curves (i.e. the critical relative velocity at 

different instability wavelengths) predicted by the IPF, VPF and VCVPF models. 

In summary, compared to the IPF and VPF theories, the VCVPF theory has 

been shown to be a more accurate approximation to the FVF solution for 

predicting the capillary instability of a cylindrical liquid column on an infinite 

liquid reservoir with an axisymmetric disturbance. However, in practical systems 

-- such as in boiling and in fluidised beds -- the perturbation can hardly be 

strictly axisymmetric, and the instability can be induced not only by the capillary 

force but also by the velocity difference due to forced convection. The effects of 
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symmetry and interfacial velocity on the instability of the two-phase flow around 

a cylindrical fuel rod, as shown in Fig. 1 (b), have been analysed theoretically by 

Awasthi et al. (2012, 2014). However, there are no direct experimental data to 

test the validity of these solutions. Moreover, no analytical solutions can be 

found to predict the KH instability at the interface between a finite-sized 

cylindrical gas column and a pool of viscous liquid confined in a finite-sized 

chamber (Fig. 1 (c)), as in typical boiling systems. Furthermore, there is still a 

debate on whether the break-up of a gas column occurs more consistently in 

the critical condition (i.e. when the instability just starts to grow with time) or in 

the most unstable condition (i.e. when the instability growth rate is highest) due 

to the lack of direct experimental data.  

In this paper, the IPF, VPF and VCVPF solutions of the KH instability for a 

cylindrical interface shown in Fig. 1 (c), with negligible heat and mass transfer 

across the interface, will be presented. These solutions will be compared to the 

experimental data gathered from a gas blowing rig. Finally, a detailed 

comparison and parametric analysis of the IPF, VPF and VCVPF solutions for 

both the critical condition and the most unstable condition will be reported and 

discussed. 

2. Formulation of the Kelvin-Helmholtz (KH) Instability  

The KH instability occurs when there is a velocity difference across the interface 

between two fluids. The analysis presented here is based on a vertical interface 

between a finite-sized cylindrical column occupied by fluid 1 and a cylindrical 

finite-sized reservoir occupied by fluid 2, as shown in Fig. 1 (c). Cylindrical 
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coordinates (𝑟𝑟, 𝜃𝜃, 𝑧𝑧) are used for the analysis. When in equilibrium, fluid 1 

occupies the space between 𝑟𝑟 = 0 and 𝑟𝑟 = 𝑅𝑅, while fluid 2 occupies the space 

between 𝑟𝑟 = 𝑅𝑅 and 𝑟𝑟 = 𝑏𝑏. The properties of fluid 1 are labelled with the 

subscript 1 (e.g. density - 𝜌𝜌1, dynamic viscosity - 𝜇𝜇1, flow velocity - 𝑈𝑈1 and 

thermal conductivity - 𝑘𝑘1), while the properties of fluid 2 are labelled with the 

subscript 2.  

The instability growth rates can be derived from the normal model analysis, as 

detailed in Appendix 1, together with the following boundary conditions: 

(1) No slip condition on the rigid chamber wall.  

(2) Finite value of the velocity in the central axis.  

Following the IPF approach, the following dispersion equation, which is similar 

to the one suggested by Lee (2007), can be derived: 

𝑎𝑎0𝑤𝑤2 + 𝑎𝑎1𝑤𝑤 + 𝑎𝑎2 = 0 (1) 

𝑎𝑎0 = 𝜌𝜌2𝐸𝐸1𝑅𝑅 − 𝜌𝜌1𝐹𝐹1𝑅𝑅;𝑎𝑎1 = 2𝑘𝑘(𝑈𝑈1𝜌𝜌1𝐹𝐹1𝑅𝑅 − 𝑈𝑈2𝜌𝜌2𝐸𝐸1𝑅𝑅);  

𝑎𝑎2 = 𝑘𝑘2(𝑈𝑈22𝜌𝜌2𝐸𝐸1𝑅𝑅 − 𝑈𝑈12𝜌𝜌1𝐹𝐹1𝑅𝑅) + 𝑘𝑘𝑘𝑘
𝑅𝑅2

(𝑘𝑘2𝑅𝑅2 − 1 + 𝑚𝑚2);  

𝐸𝐸1𝑅𝑅 = 𝐸𝐸1(𝑘𝑘𝑅𝑅);𝐹𝐹1𝑅𝑅 = 𝐹𝐹1(𝑘𝑘𝑅𝑅); 𝐸𝐸1(𝑘𝑘𝑟𝑟) = 𝐼𝐼𝑚𝑚(𝑘𝑘𝑘𝑘)𝐾𝐾𝑚𝑚′ (𝑘𝑘𝑘𝑘)−𝐾𝐾𝑚𝑚(𝑘𝑘𝑘𝑘)𝐼𝐼𝑚𝑚′ (𝑘𝑘𝑘𝑘)
𝐼𝐼𝑚𝑚′ (𝑘𝑘𝑅𝑅)𝐾𝐾𝑚𝑚′ (𝑘𝑘𝑘𝑘)−𝐼𝐼𝑚𝑚′ (𝑘𝑘𝑘𝑘)𝐾𝐾𝑚𝑚′ (𝑘𝑘𝑅𝑅); 𝐹𝐹1(𝑘𝑘𝑟𝑟) = 𝐼𝐼𝑚𝑚(𝑘𝑘𝑘𝑘)

𝐼𝐼𝑚𝑚′ (𝑘𝑘𝑅𝑅) 

where 𝑘𝑘 is the instability wavenumber and is correlated to the instability 

wavelength (𝜆𝜆) by 𝑘𝑘 = 2𝜋𝜋/𝜆𝜆; 

𝑤𝑤 = 𝑤𝑤𝑘𝑘 + 𝑖𝑖𝑤𝑤𝑖𝑖 is the complex growth rates; 

𝐼𝐼𝑚𝑚 is the modified Bessel function of the first kind;  
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𝐾𝐾𝑚𝑚 is the modified Bessel function of the second kind;  

𝑚𝑚 is the symmetric index along the 𝜃𝜃 direction. 

The function 𝐹𝐹1𝑅𝑅 in the solutions derived by Lee (2007) is different from that in 

Eq. (1) due to the different boundary conditions. Substituting 𝑤𝑤 in Eq. (1) with 

𝑤𝑤𝑘𝑘 + 𝑖𝑖𝑤𝑤𝑖𝑖, the following equation can be derived to solve for 𝑤𝑤𝑖𝑖 to determine 

whether the instability will grow or decay: 

4𝑎𝑎03𝑤𝑤𝑖𝑖
4 − (4𝑎𝑎02𝑎𝑎2 − 𝑎𝑎0𝑎𝑎12)𝑤𝑤𝑖𝑖

2 = 0  (2) 

The most unstable condition corresponds to the condition where 𝑤𝑤𝑖𝑖 reaches its 

maximum value. Both the most unstable wavelength and the instability growth 

rate for different relative velocities can be calculated from Eq. (2). 

The critical condition (i.e. 𝑤𝑤𝑖𝑖 = 0, where the instability is neither growing or 

deteriorating, often referred to as ‘the neutral curve’ in the literature), as is 

shown in Eq. (3), can be obtained based on the condition: 𝑎𝑎12 − 4𝑎𝑎0𝑎𝑎2 = 0, i.e., 

𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼2 = (𝑈𝑈1 − 𝑈𝑈2)2 = 𝑘𝑘
𝑘𝑘𝑅𝑅2

(1 − 𝑘𝑘2𝑅𝑅2 − 𝑚𝑚2) ⋅ 𝜌𝜌1𝐼𝐼1𝑅𝑅−𝜌𝜌2𝐸𝐸1𝑅𝑅
𝜌𝜌1𝜌𝜌2𝐸𝐸1𝑅𝑅𝐼𝐼1𝑅𝑅

 (3) 

where 𝑉𝑉 is the relative velocity between fluid 1 and fluid 2. 

In comparison, the inviscid KH instability theory used in the existing boiling 

critical heat flux model is based on the planar vertical interface shown in Fig. 1 

(a). This theory will be referred to as the ‘Planar Inviscid Potential Flow’ (PIPF) 

theory in this paper, and it takes the following form (Carey, 2008): 

𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼−𝑝𝑝2 = (𝑈𝑈1 − 𝑈𝑈2)2 = 𝜎𝜎𝑘𝑘 ⋅ 𝜌𝜌1+𝜌𝜌2
𝜌𝜌1𝜌𝜌2

 (4) 
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The most unstable condition predicted by the PIPF can be calculated by Eq. (5), 

which is derived by taking 𝜕𝜕𝑤𝑤𝑖𝑖/𝜕𝜕𝑘𝑘 = 0 to find the maximum growth rate 

condition, viz: 

𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼−𝑝𝑝2 = (𝑈𝑈1 − 𝑈𝑈2)2 = 3𝑘𝑘𝑘𝑘
2
⋅ 𝜌𝜌1+𝜌𝜌2
𝜌𝜌1𝜌𝜌2

 (5) 

Following the VPF approach (i.e. taking into account the pressure term caused 

by the normal viscous force), the dispersion equation can be derived as: 

𝑎𝑎0𝑤𝑤2 + (𝑎𝑎1 + 𝑖𝑖𝑏𝑏1)𝑤𝑤 + (𝑎𝑎2 + 𝑖𝑖𝑏𝑏2) = 0 (6) 

𝑎𝑎0 = 𝜌𝜌2𝐸𝐸1𝑅𝑅 − 𝜌𝜌1𝐹𝐹1𝑅𝑅;𝑎𝑎1 = 2𝑘𝑘(𝑈𝑈1𝜌𝜌1𝐹𝐹1𝑅𝑅 − 𝑈𝑈2𝜌𝜌2𝐸𝐸1𝑅𝑅);  

𝑏𝑏1 = 2𝑘𝑘2(𝜇𝜇2𝐸𝐸2𝑅𝑅 − 𝜇𝜇1𝐹𝐹2𝑅𝑅); 𝑎𝑎2 = 𝑘𝑘2(𝑈𝑈22𝜌𝜌2𝐸𝐸1𝑅𝑅 − 𝑈𝑈12𝜌𝜌1𝐹𝐹1𝑅𝑅) + 𝑘𝑘𝑘𝑘
𝑅𝑅2

(𝑘𝑘2𝑅𝑅2 − 1 + 𝑚𝑚2);  

𝑏𝑏2 = 2𝑘𝑘3(𝜇𝜇1𝑈𝑈1𝐹𝐹2𝑅𝑅 − 𝜇𝜇2𝑈𝑈2𝐸𝐸2𝑅𝑅);  

𝐸𝐸2𝑅𝑅 = 𝐸𝐸1R �1 + 𝑚𝑚2

𝑘𝑘2𝑅𝑅2
� − 1

𝑘𝑘𝑅𝑅
;𝐹𝐹2𝑅𝑅 = 𝐹𝐹1R �1 + 𝑚𝑚2

𝑘𝑘2𝑅𝑅2
� − 1

𝑘𝑘𝑅𝑅
  

The critical instability condition can be found when 𝑎𝑎0𝑏𝑏22 − 𝑎𝑎1𝑏𝑏1𝑏𝑏2 + 𝑎𝑎2𝑏𝑏12 = 0, 

that is, where 

𝑉𝑉𝑉𝑉𝐼𝐼𝐼𝐼2 = (𝑈𝑈1 − 𝑈𝑈2)2 = 
[𝑘𝑘𝑘𝑘(𝑘𝑘2𝑅𝑅2+𝑚𝑚2−1)/𝑅𝑅2]⋅[2𝑘𝑘2(𝜇𝜇1𝐼𝐼2𝑅𝑅−𝜇𝜇2𝐸𝐸2𝑅𝑅)]2

4𝑘𝑘6�𝜌𝜌1𝜇𝜇22𝐼𝐼1𝑅𝑅𝐸𝐸2𝑅𝑅
2 −𝜌𝜌2𝜇𝜇12𝐸𝐸1𝑅𝑅𝐼𝐼2𝑅𝑅

2 �
  (7) 

The functions 𝐹𝐹1𝑅𝑅 and 𝐹𝐹2𝑅𝑅 in the solutions reported by Awasthi and Agrwal 

(2011) are different from those in Eqs. (6) and (7) due to the different boundary 

conditions. 

Following the VCVPF approach introduced by Wang et al. (2005), the following 

dispersion equation can be derived: 
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𝑎𝑎0𝑤𝑤2 + (𝑎𝑎1 + 𝑖𝑖𝑏𝑏1)𝑤𝑤 + (𝑎𝑎2 + 𝑖𝑖𝑏𝑏2) = 0 (8) 

𝑎𝑎0 = 𝜌𝜌2𝐸𝐸1𝑅𝑅 − 𝜌𝜌1𝐹𝐹1𝑅𝑅;𝑎𝑎1 = 2𝑘𝑘(𝑈𝑈1𝜌𝜌1𝐹𝐹1𝑅𝑅 − 𝑈𝑈2𝜌𝜌2𝐸𝐸1𝑅𝑅);  

𝑏𝑏1 = 2𝑘𝑘2[𝜇𝜇2𝐸𝐸3𝑅𝑅 − 𝜇𝜇1𝐹𝐹3𝑅𝑅]; 𝑎𝑎2 = 𝑘𝑘2(𝑈𝑈22𝜌𝜌2𝐸𝐸1𝑅𝑅 − 𝑈𝑈12𝜌𝜌1𝐹𝐹1𝑅𝑅) + 𝑘𝑘𝑘𝑘
𝑅𝑅2

(𝑘𝑘2𝑅𝑅2 − 1 + 𝑚𝑚2);  

𝑏𝑏2 = 2𝑘𝑘3[𝜇𝜇1𝑈𝑈1𝐹𝐹3𝑅𝑅 − 𝜇𝜇2𝑈𝑈2𝐸𝐸3𝑅𝑅]; 𝐸𝐸3𝑅𝑅 = 𝐸𝐸1𝑅𝑅 + 𝐸𝐸2𝑅𝑅;𝐹𝐹3𝑅𝑅 = 𝐹𝐹1𝑅𝑅 + 𝐹𝐹2𝑅𝑅 

The neutral curve can be found based on the condition 𝑎𝑎0𝑏𝑏22 − 𝑎𝑎1𝑏𝑏1𝑏𝑏2 + 𝑎𝑎2𝑏𝑏12 =

0, as in Eq. (9). 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝐼𝐼2 = (𝑈𝑈1 − 𝑈𝑈2)2 = [𝑘𝑘𝑘𝑘(𝑘𝑘2𝑅𝑅2+𝑚𝑚2−1)/𝑅𝑅2]⋅[2𝑘𝑘2(𝜇𝜇1𝐼𝐼3𝑅𝑅−𝜇𝜇2𝐸𝐸3𝑅𝑅)]2

4𝑘𝑘6�𝜌𝜌1𝜇𝜇22𝐼𝐼1𝑅𝑅𝐸𝐸3𝑅𝑅
2 −𝜌𝜌2𝜇𝜇12𝐸𝐸1𝑅𝑅𝐼𝐼3𝑅𝑅

2 �
  (9) 

The functions 𝐹𝐹1𝑅𝑅, 𝐹𝐹2𝑅𝑅 and 𝐹𝐹3𝑅𝑅 in the solutions derived by Awasthi et al. (2014) 

are different from those in Eqs. (8) and (9) due to the different boundary 

conditions. 

3. Experimental Setup and Data Processing 

Experiments designed to measure the actual vapour column break-up 

conditions where there is negligible heat and mass transfer have been 

conducted to validate different KH instability models. The experimental setup is 

shown in Fig. 2. It includes a transparent water chamber, an air chamber 

connected to an air delivery line, a perforated plate sealed between the water 

and air chambers, and control and measurement instruments. The key premise 

is to feed the air through the perforated plate into the water chamber, and 

quantify the air column break-up conditions through a high-speed backlit 

shadowgraph imaging system. The imaging system consists of two frame-by-

frame synchronised high-speed cameras. The water chamber and air chamber 
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are made of transparent acrylic tubes of 76.7 mm outer diameter and 3.2 mm 

wall thickness. The perforated plates are changeable, and they have different 

hole patterns. Four different hole patterns, which consist of a series of 0.5 mm 

diameter holes distributed uniformly in areas of different diameter at 0.5 mm, 2 

mm, 5.6 mm and 10.2 mm, were used in tests. 

 
Fig. 2 Schematic experimental setup of the vapour column instability rig 

The air delivery line, which consists of a high-pressure air feed, a pressure 

regulator, a needle valve and a mass flow controller, can deliver up to 10 𝑙𝑙/min 

air flow. Leak tests using a water-based leak detector were undertaken before 

each test to ensure there was no air leakage. 

An absolute pressure transducer and a type T thermocouple were fitted to the 

bottom plate to monitor the air chamber pressure and temperature. The top of 

the water chamber was left open to the atmosphere and was filled with purified 

water up to a depth of 10 cm. The temperature of the water was monitored by a 

Type K thermocouple immersed in the water to ensure there was a negligible 

temperature difference between the air and the water. 
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A series of tests, which were set under different flow conditions and using 

different perforated plates, were conducted at the conditions summarised in 

Table 1.  

Table 1 Summary of experimental conditions 

 Plate 1  Plate 2 Plate 3 Plate 4 

Flow rate range 
(𝑙𝑙/min) 

1 - 3 1 - 5 1 - 8 6 -8 

Air chamber pressure 
(bar, absolute) 

1.04-1.13 1.03 –1.04 1.02-1.03 1.022 

Before each test, both cameras were calibrated against a calibration target to 

align their imaging centres and calibrate their magnifications. The two cameras 

were both set at 2000 frames per second and 1280 x 800 pixel resolution to 

capture the detailed air column break-up processes. The generated pairs of 

images were then digitally cropped and enhanced before being used to 

reconstruct the three-dimensional structures of the air column using an 

algorithm developed by Sechenyh et al. (2017), as shown in Fig. 3.  

   

(a) Original           (b) Cropped and enhanced  (c) Reconstructed  

Fig. 3 The air column necking process shown from two orthogonal angles. 

The cross-sectional area and the height of the break-up position were then 

obtained from the reconstructed air column when it just starts to neck before 

original - front view

original - side view

Enhanced - front view Enhanced - side view
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breaking up. Although the air column was subjected to perturbations of different 

wavelengths, it was assumed to break-up at heights equivalent to the dominant 

wavelength predicted by the KH instability, i.e. ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘 = 𝜆𝜆. The air velocity was 

then calculated as the air volume flow rate divided by the measured cross-

sectional area. The measured height of the necking position was compared to 

both the critical instability wavelength and the most unstable instability 

wavelength predicted by different KH instability models to determine which was 

most accurate when applied to practical systems. The air mass flow rate 

controller was calibrated to have an error of within 1%. The camera and optical 

system can achieve a resolution of better than 10 µm. The errors in the 

measurement of the dimensions were mainly due to the reconstruction 

algorithm that only utilizes two orthogonal views (i.e. assuming an elliptical 

cross-section) and is thus dependent on the shapes of the vapour column. The 

original paper that introduced this algorithm (Sechenyh et al., 2017) suggested 

that the uncertainty should be less than 5% for objects with smooth surfaces 

and up to 10% for objects with complex surface features. 

4. Results and Discussion 

The critical and the most unstable instability conditions predicted by different KH 

instability theories are presented in this section together with the measured 

break-up conditions. The results from the parametric analysis of different KH 

models are also shown in this section to demonstrate the effects of vapour 

column size, water chamber size and perturbation symmetry on the instability 

conditions. 
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4.1 Instability of the Interface with Axisymmetrical Perturbation  

The air and water properties used in the calculations are listed in Table 2. The 

liquid velocity is assumed to be negligibly small compared to the air velocity. In 

practical systems, the air column interface is subjected to perturbations of 

different instability wavelengths. Among these, only the perturbations at 

wavelengths larger than the critical wavelength predicted by the instability 

theories can grow with time. At a specific relative velocity, the perturbation of 

the most unstable wavelength predicted by the instability theories would grow at 

the highest rate. 

Table 2 The fluid properties used in the calculation 

Properties Density 
(𝜌𝜌), kg/m3 

Dynamic viscosity 
(𝜇𝜇), Pa ⋅ s 

Surface tension 
(𝜎𝜎), N/m 

Air 1.1308 1.7798 × 10−5 0.059 Water 997.08 8.9307 × 10−4 

A comparison between the critical and most unstable conditions predicted by 

different KH instability theories is shown in Fig. 4.  

 
 

Fig. 4 Comparison of the critical and most unstable conditions predicted by 
different instability theories (𝑅𝑅𝑖𝑖 = 10 mm, 𝑅𝑅𝑅𝑅 = 30 mm) 
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As can be seen from Fig. 4, both VPF and VCVPF theories predict a lower 

relative velocity compared to the IPF theory at the critical instability conditions, 

so the viscosity contributes to destabilising the interface. Fig. 4 also shows that 

the PIPF theory commonly used in the critical heat flux model always 

overpredicts the required velocity at the critical conditions. As a result, the 

predicted critical heat flux could be an overestimation. In the most unstable 

conditions, Fig. 4 shows that the predictions from the IPF, VPF and VCVPF 

methods overlap, which indicates that the viscosity has a negligible effect in this 

regime. Moreover, Fig. 4 shows that the PIPF theory is a good agreement with 

other viscous theories for the most unstable conditions. 

 

Fig. 5 The effect of the air column size on its surface instability predicted by the 
VCVPF theory and the experimental data 

The effect of the air column size on the interface instability is shown in Fig. 5. At 

the critical conditions, Fig. 5 shows that the required relative velocity to trigger 

the instability is reduced significantly as the air column becomes smaller, 

especially when the radius of the air column is < 10 mm. Fig. 5 also shows that 

the required relative velocity is less sensitive to the air column size when the 
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dominant instability wavelength is small. Moreover, Fig. 5 suggests that there is 

a threshold instability wavelength, beyond which instability occurs regardless of 

the relative velocity. This threshold instability wavelength becomes smaller as 

the air column shrinks.  

Fig. 5 shows that the most unstable wavelengths are always larger than the 

critical instability wavelength at the same relative velocity. In the most unstable 

condition, Fig. 5 shows that the PIPF always overpredicts the required relative 

velocity, especially when the radius of the gas column is < 10 mm. When the 

radius of the gas column is > 10 mm, both VCVPF and PIPF theories predict 

similar relative velocities. Similar to the critical condition, the required relative 

velocity for the most unstable conditions is insensitive to the air column size 

when the instability wavelength is small and the radius of the air column is > 1.2 

mm. 

 

Fig. 6 Percentage difference of the critical relative velocity calculated by the IPF 
theory and VPF theory compared to the VCVPF theory 

The percentage differences in the critical relatively velocity predicted by the IPF 

and VPF models, when compared to the VCVPF model, are shown in Fig. 6. 
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This figure indicates that the commonly adopted PIPF theory can significantly 

overpredict the critical relative velocity, especially when the gas column is small. 

The IPF model overpredicts the relative velocity by 8 – 15 %, depending on the 

gas column size. In comparison, the VPF theory overpredicts the relative 

velocity by less than 6% in most cases. 

The comparison between the measured break-up conditions and the conditions 

predicted by the PIPF and VCVPF models is shown in Fig. 7. The air column 

size can vary in the different experiments, so the 𝑅𝑅𝑖𝑖 values shown in Fig. 7 are 

chosen to be the minimum and maximum values observed during the 

experiments.  

 
 

Fig. 7 Comparison of the measured air column break-up conditions in water and 
the instability condition predicted by the VCVPF KH model. Error bars 
represent a 10% uncertainty margin 
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In tests using plate 1 (comprising a single 0.5 mm diameter hole), the majority 

of the air columns break-up very close to the surface due to the imposed 

instability on a tiny air column next to the surface (ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘 ≤ 0.5 mm), as is shown 

in Fig. 8 (a). The data point in the top-left coner of the plot in Fig. 7 (a) 

represents the typical instability wavelength and velocity. Very occasionally, the 

initial rapid expansion of the air column close to the surface can lead to break-

up at higher positions. As can be seen from Fig. 7 (a), the most unstable 

conditions predicted by the VCVPF model best match the break-up conditions 

at higher positions. The air columns in tests using plate 2 have similar break-up 

patterns to those observed with plate 1, but their sizes are slightly larger.  

                                                                             

(a) Common break-up mode: plate 1        (b) Highly distorted vapour column: plate 4 
 
Fig. 8 The typical vapour columns when using plate 1 and plate 4 

In tests using plate 3, more air columns break up at higher positions because 

the intensive bubble merging processes close to the surface produce a larger 

and more resilient air column. Fig. 7 (c) shows that the vapour columns were 

mostly breaking up in conditions close to the most unstable conditions predicted 

by both the PIPF and VCVPF models. In tests using plate 4, the air columns 

behaved quite differently. Fig. 7 (d) shows that the actual break-up occurs at 

much lower velocities than all the model predicted. Fig. 8 (b) shows a typical 

vapour column observed during the tests. It shows that the air column surface is 

𝑡𝑡 = 0 𝑡𝑡 = 0.5 𝑚𝑚𝑚𝑚 
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highly distorted and the surrounding liquids are highly turbulent. Therefore, part 

of the reason for the larger discrepancy in the required velocity is the 

overestimated cross-sectional area due to the assumption of an elliptical 

column cross-sectional area in the reconstruction algorithm. A further reason for 

the discrepancy could be the oversimplified boundary conditions used in the 

existing VCVPF model (i.e. the use of potential flow velocity fields and neglect 

of the effects of gravity on the interface). 

  
(a)        (b) 

 

Fig. 9 The change of instability growth rates due to (a) the effect of the air 
column size (𝑉𝑉 = 10 m/s), and (b) the effect of relative velocity (𝑅𝑅𝑖𝑖 = 10 
mm) 

 
The effect of the air column size on the instability growth rate is shown in Fig. 9 

(a) which shows that the VPF and VCVPF models always predict a marginally 

lower instability growth rate compared to IPF models, so the viscosity helps to 

damp the perturbation. As the column size shrinks, the instability growth rate 

will increase and, as a result, the air column breaks up faster, which is 

consistent with the experimental observations. Fig. 9 (b) shows that the 

instability growth rate increases as the relative velocity increases.  
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The effect of the changing water chamber size on the air-water interface 

instability is shown in Fig. 10, which indicates that the change of chamber size 

(𝑅𝑅𝑛𝑛) has a negligible effect on the required relative velocity at the critical 

condition when 𝑅𝑅𝑛𝑛 > 1.5𝑅𝑅𝑖𝑖. For the most unstable condition, the increase of the 

water chamber size requires a higher velocity when 𝑅𝑅𝑛𝑛 ≤ 2𝑅𝑅𝑖𝑖, but has a 

negligible effect when 𝑅𝑅𝑛𝑛 > 2𝑅𝑅𝑖𝑖. In addition, as the chamber becomes smaller, 

the discrepancy of the predicted relative velocity between the VCVPF theory 

and the PIPF theory becomes larger. 

 

Fig. 10 The effect of the water chamber size on the air-water interface instability 
predicted by the VCVPF theory 
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𝑚𝑚 in Eq. (9) on the shape of the disturbed air column is illustrated in Fig. 11, 

which shows a highly distorted column at large 𝑚𝑚. 

 
Fig. 11 Air column with different perturbations defined by Eq. (12), 𝑅𝑅𝑖𝑖 = 5, 𝜂𝜂0 =

0.5) 
 

 

Fig. 12 The critical and most unstable conditions for air columns under 
axisymmetric (𝑚𝑚 = 0) and asymmetric (𝑚𝑚 > 0) perturbations, 𝑅𝑅 =
10 𝑚𝑚𝑚𝑚,𝑅𝑅𝑛𝑛 = 30 𝑚𝑚𝑚𝑚   

The effect of the perturbation symmetry on the critical and most unstable 
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from the results is the existence of a stable region for all instability wavelengths 

when 𝑚𝑚 ≥ 2. This region is defined by a threshold relative velocity that 

corresponds to the minimum relative velocity for both the critical and the most 

unstable conditions. When then relative velocity is smaller than this threshold 

value, the air column is always stable. The threshold relative velocity increases 

as the perturbation becomes more asymmetric (i.e. larger 𝑚𝑚). This implies that 

in applications affected by the instability of gas columns, controlling the 

pertubation symmetry by adjusting the liquid flow could be a potential way to 

generate highly stable gas columns. The most unstable conditions calculated 

from the IPF and VPF theories are very close to the conditions calculated by the 

VCVPF theory and are thus not shown here. 

 

Fig. 13 The instability growth rate for air columns under axisymmetric (𝑚𝑚 = 0) 
and asymmetric (𝑚𝑚 > 0) perturbations, 𝑉𝑉 = 10 m/s 

The effect of perturbation symmetry on the instability growth rate is shown in 

Fig. 13. It shows that the asymmetric perturbation has a smaller growth rate 
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In this paper, the Kelvin-Helmholtz instability conditions for a cylindrical 

interface between two viscous immiscible fluids with finite depths have been 

investigated both theoretically and experimentally. Following the established 

IPF, VPF and VCVPF analysis approaches reported in the literature, but using 

different boundary conditions, the critical condition (neutral curve) has been 

derived analytically, and the most unstable conditions have been calculated 

numerically. The comparisons between the predictions of different models, the 

measured break-up conditions and parametric analysis of the different models 

show the following significant conclusions: 

(1) The viscosity reduces the required relative velocities at the critical 

instability conditions, but has negligible effects on the most unstable 

conditions. 

(2) The relative velocity required to trigger the critical instability condition is 

reduced significantly as the radius of the cylindrical interface falls below 

10 mm. Moreover, there is a threshold instability wavelength, above 

which the instability occurs regardless of the relative velocity. This 

threshold value reduces as the air column shrinks. 

(3) The required relative velocity at the most unstable condition is insensitive 

to the size of the cylindrical interface when the interface radius is > 1.2 

mm.  

(4) The most unstable conditions predicted by the VCVPF model match well 

with the measured air columns break-up conditions in water when the 

interface is not exposed to highly turbulent flows. 
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(5) Both the critical and most unstable conditions are insensitive to the 

chamber size as long as the chamber radius is greater than twice the 

radius of the cylindrical interface. 

(6) The perturbation symmetry has a noticeable effect on the critical 

conditions but has a negligible effect on the most unstable conditions. 

The newly developed and validated viscous KH instability models presented in 

this paper aim to improve the prediction of the instability conditions of the 

cylindrical interface shown in Fig. 1 (c), where there is negligible interfacial heat 

and mass transfer, such as in saturated boiling. In conditions where there is a 

noticeable temperature gradient across the cylindrical interface, such as in 

subcooled boiling, more detailed theoretical and experimental investigations into 

the interfacial heat and mass transfers need to be conducted. One of the 

challenges when conducting a detailed heat transfer analysis on the 

configuration shown in Fig. 1 (c) is the lack of an axisymmetric heating source. 

As a result, a transient multi-dimensional heat transfer analysis will need to be 

carried out to calculate the time- and space-dependent temperature and heat 

flux profiles. Therefore, a unified transient heat/mass transfer model and a 

viscous instability model are likely to require a numerical model. Moreover, the 

effects of turbulence and gravity on a highly distorted interface need further 

investigation. 
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Appendix 1 Derivation of the linear instability equations  

With a disturbance, the interface is represented by Eq. (A1.1). 

𝑆𝑆(𝑟𝑟, 𝑡𝑡) = 𝑟𝑟 − 𝑅𝑅 − 𝜂𝜂 = 0  (A1.1) 

where 𝜂𝜂 is the displacement of the interface caused by the perturbation.  

Assuming both fluid 1 and fluid 2 experience irrotational flow, their velocity 

potentials should satisfy the Laplace equation, i.e. Eq. (A1.2). 

∇2𝜙𝜙𝑖𝑖 = 0;𝒖𝒖𝒊𝒊 = ∇𝜙𝜙𝑖𝑖; (𝑖𝑖 = 1,2) (A1.2) 

where 𝑖𝑖 = 1 refers to fluid 1 and 𝑖𝑖 = 2 refers to fluid 2. 

The fluids are considered to flow with uniform velocity 𝑈𝑈1 and 𝑈𝑈2, respectively 

along the 𝑧𝑧-axis. Therefore, in the initial state, the potential functions can be 

written as: 

𝜙𝜙𝑖𝑖0 = 𝑈𝑈𝑖𝑖𝑧𝑧, (𝑖𝑖 = 1, 2) (A1.3)  

In cases where fluid 1 and fluid 2 are immiscible, the conservation of mass 

across the interface is given as follows: 

�𝜌𝜌(𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇𝜙𝜙 ⋅ ∇𝑆𝑆)� = 0;   (A1.4) 

where ⟦𝐴𝐴⟧ represents the difference in any quantity 𝐴𝐴 across the interface, i.e. 

⟦𝐴𝐴⟧ = 𝐴𝐴2 − 𝐴𝐴1. 

The conservation of momentum across the vertical interface with negligible 

gravity is given by: 
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�𝜌𝜌(∇𝜙𝜙 ⋅ ∇𝑆𝑆) × �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇𝜙𝜙 ⋅ ∇𝑆𝑆�+ 𝑝𝑝� = −𝜎𝜎∇2𝜂𝜂  (A1.5) 

where 𝑝𝑝 is the pressure due to the viscous forces; 𝜎𝜎 is the surface tension 

between fluid 1 and fluid 2. 

When there is a phase change of fluid 1 across the interface, and there is a 

negligible change of sensible heat, the conservation of energy across the 

interface can be written as:  

ℎ𝑓𝑓𝑓𝑓𝜌𝜌1 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇𝜙𝜙1 ⋅ ∇𝑆𝑆� = 𝑄𝑄(𝜂𝜂) (A1.6) 

where 𝑄𝑄(𝜂𝜂) is the net heat flux across the boundary; ℎ𝑓𝑓𝑓𝑓 is the latent heat when 

fluid is transformed from phase 1 to phase 2. 

 

The exact expression to describe the heat flux should be derived from the heat 

transfer equation based on the specified boundary conditions. This paper will, 

however, focus on conditions where there is negligible heat and mass transfer 

across the interface, i.e. 𝑄𝑄(𝜂𝜂) = 0, so the energy equation will be bypassed. 

The boundary conditions are summarised as follows: 

(3) The rigid chamber wall: 𝜕𝜕𝜙𝜙2
𝜕𝜕𝑘𝑘

= 0 at 𝑟𝑟 = 𝑏𝑏. (A1.7) 

(4) Finite value of the velocity in the central axis: 𝜕𝜕𝜙𝜙1
𝜕𝜕𝑘𝑘

< ∞ at 𝑟𝑟 = 0. (A1.8) 

The normal mode analysis is used to solve the above equations by considering 

the interface disturbance displacement: 

𝜂𝜂 = 𝜂𝜂0 ⋅ exp�𝑖𝑖(𝑘𝑘𝑧𝑧 + 𝑚𝑚𝜃𝜃 −𝑤𝑤𝑡𝑡)� + 𝑅𝑅. 𝑅𝑅. (A1.9) 
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where 𝜂𝜂0 is the disturbance amplitude; 𝑖𝑖 = √−1; 𝑘𝑘 is the instability wavenumber 

and is correlated to the instability wavelength (𝜆𝜆) by 𝑘𝑘 = 2𝜋𝜋/𝜆𝜆; 𝑤𝑤 = 𝑤𝑤𝑘𝑘 + 𝑖𝑖𝑤𝑤𝑖𝑖 is 

the complex growth rates; 𝑅𝑅. 𝑅𝑅. stands for the complex conjugate.  

The first-order solution of Eq. (A1.2) in cylindrical coordinates is given by: 

𝜙𝜙11 = �𝐴𝐴 ⋅ 𝐼𝐼𝑚𝑚(𝑘𝑘𝑟𝑟) + 𝐵𝐵 ⋅ 𝐾𝐾𝑚𝑚(𝑘𝑘𝑟𝑟)� ⋅ exp�𝑖𝑖(𝑘𝑘𝑧𝑧 + 𝑚𝑚𝜃𝜃 − 𝑤𝑤𝑡𝑡)� + 𝑅𝑅. 𝑅𝑅. (A1.10) 

𝜙𝜙21 = �𝐶𝐶 ⋅ 𝐼𝐼𝑚𝑚(𝑘𝑘𝑟𝑟) + 𝜎𝜎 ⋅ 𝐾𝐾𝑚𝑚(𝑘𝑘𝑟𝑟)� ⋅ exp�𝑖𝑖(𝑘𝑘𝑧𝑧 + 𝑚𝑚𝜃𝜃 −𝑤𝑤𝑡𝑡)� + 𝑅𝑅. 𝑅𝑅.  (A1.11) 

where 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝜎𝜎 are coefficients that need to found; 

𝐼𝐼𝑚𝑚 is the modified Bessel function of the first kind;  

𝐾𝐾𝑚𝑚 is the modified Bessel function of the second kind;  

𝑚𝑚 is the symmetric index along the 𝜃𝜃 direction; 𝑚𝑚 = 0 corresponds to the 

axisymmetric disturbance. 

By solving Eqs. (A1.4), (A1.10) and (A1.11) together with the boundary 

conditions defined by Eqs. (A1.7) and (A1.8), the following solutions for the 

velocity potentials are obtained: 

𝜙𝜙11 = 𝜂𝜂0
𝑘𝑘
�𝑖𝑖(𝑈𝑈1𝑘𝑘 − 𝑤𝑤)� ⋅ 𝐹𝐹1(𝑘𝑘𝑟𝑟) ⋅ exp�𝑖𝑖(𝑘𝑘𝑧𝑧 + 𝑚𝑚𝜃𝜃 − 𝑤𝑤𝑡𝑡)� + 𝑅𝑅. 𝑅𝑅. (A1.12) 

𝜙𝜙21 = 𝜂𝜂0
𝑘𝑘
�𝑖𝑖(𝑈𝑈2𝑘𝑘 − 𝑤𝑤)� ⋅ 𝐸𝐸1(𝑘𝑘𝑟𝑟) ⋅ exp�𝑖𝑖(𝑘𝑘𝑧𝑧 + 𝑚𝑚𝜃𝜃 − 𝑤𝑤𝑡𝑡)� + 𝑅𝑅. 𝑅𝑅.  

where 𝐹𝐹1(𝑘𝑘𝑟𝑟) = 𝐼𝐼𝑚𝑚(𝑘𝑘𝑘𝑘)
𝐼𝐼𝑚𝑚′ (𝑘𝑘𝑅𝑅), 𝐸𝐸1(𝑘𝑘𝑟𝑟) = 𝐼𝐼𝑚𝑚(𝑘𝑘𝑘𝑘)𝐾𝐾𝑚𝑚′ (𝑘𝑘𝑘𝑘)−𝐾𝐾𝑚𝑚(𝑘𝑘𝑘𝑘)𝐼𝐼𝑚𝑚′ (𝑘𝑘𝑘𝑘)

𝐼𝐼𝑚𝑚′ (𝑘𝑘𝑅𝑅)𝐾𝐾𝑚𝑚′ (𝑘𝑘𝑘𝑘)−𝐼𝐼𝑚𝑚′ (𝑘𝑘𝑘𝑘)𝐾𝐾𝑚𝑚′ (𝑘𝑘𝑅𝑅) ; 𝐼𝐼𝑚𝑚′ (𝑘𝑘𝑅𝑅),𝐾𝐾𝑚𝑚′ (𝑘𝑘𝑅𝑅) are the 

first-order derivatives of 𝐼𝐼𝑚𝑚(𝑘𝑘𝑟𝑟) and 𝐾𝐾𝑚𝑚(𝑘𝑘𝑟𝑟) at 𝑟𝑟 = 𝑅𝑅 respectively. 
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Different assumptions have been made and different approaches have been 

developed to calculate the viscous pressure term (i.e. 𝑝𝑝 in Eq. (A1.5)). This is 

now discussed. 

Inviscid Potential Flow (IPF) Analysis 

The IPF ignores the viscous pressure term, so 𝑝𝑝 in Eq. (A1.5) equals zero.  

Based on Eqs. (A1.5) and (A1.12), the following dispersion equation can be 

derived: 

𝑎𝑎0𝑤𝑤2 + 𝑎𝑎1𝑤𝑤 + 𝑎𝑎2 = 0 (A1.13) 

where 𝑎𝑎0 = 𝜌𝜌2𝐸𝐸1𝑅𝑅 − 𝜌𝜌1𝐹𝐹1𝑅𝑅;𝑎𝑎1 = 2𝑘𝑘(𝑈𝑈1𝜌𝜌1𝐹𝐹1𝑅𝑅 − 𝑈𝑈2𝜌𝜌2𝐸𝐸1𝑅𝑅); 

𝑎𝑎2 = 𝑘𝑘2(𝑈𝑈22𝜌𝜌2𝐸𝐸1𝑅𝑅 − 𝑈𝑈12𝜌𝜌1𝐹𝐹1𝑅𝑅) + 𝑘𝑘𝑘𝑘
𝑅𝑅2

(𝑘𝑘2𝑅𝑅2 − 1 + 𝑚𝑚2);  

𝐸𝐸1𝑅𝑅 = 𝐸𝐸1(𝑘𝑘𝑅𝑅);𝐹𝐹1𝑅𝑅 = 𝐹𝐹1(𝑘𝑘𝑅𝑅) . 

Viscous Potential Flow (VPF) Analysis 

The VPF model takes into account the pressure term caused by the normal 

viscous force. For Newtonian fluids, the viscous pressure term can be 

represented as: 

𝑝𝑝𝑖𝑖 = 2𝜇𝜇𝑖𝑖 �
𝜕𝜕2𝜙𝜙𝑖𝑖

1

𝜕𝜕𝑘𝑘2
� ; 𝑖𝑖 = 1, 2 (A1.14) 

where 𝜇𝜇 is the dynamic viscosity. 

Based on Eqs. (A1.5), (A1.12) and (A1.14), the following dispersion equation 

can be derived: 

𝑎𝑎0𝑤𝑤2 + (𝑎𝑎1 + 𝑖𝑖𝑏𝑏1)𝑤𝑤 + (𝑎𝑎2 + 𝑖𝑖𝑏𝑏2) = 0 (A1.15) 
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where 𝑎𝑎0 = 𝜌𝜌2𝐸𝐸1𝑅𝑅 − 𝜌𝜌1𝐹𝐹1𝑅𝑅;𝑎𝑎1 = 2𝑘𝑘(𝑈𝑈1𝜌𝜌1𝐹𝐹1𝑅𝑅 − 𝑈𝑈2𝜌𝜌2𝐸𝐸1𝑅𝑅); 

𝑏𝑏1 = 2𝑘𝑘2(𝜇𝜇2𝐸𝐸2𝑅𝑅 − 𝜇𝜇1𝐹𝐹2𝑅𝑅); 𝑎𝑎2 = 𝑘𝑘2(𝑈𝑈22𝜌𝜌2𝐸𝐸1𝑅𝑅 − 𝑈𝑈12𝜌𝜌1𝐹𝐹1𝑅𝑅) + 𝑘𝑘𝑘𝑘
𝑅𝑅2

(𝑘𝑘2𝑅𝑅2 − 1 + 𝑚𝑚2);  

𝑏𝑏2 = 2𝑘𝑘3(𝜇𝜇1𝑈𝑈1𝐹𝐹2𝑅𝑅 − 𝜇𝜇2𝑈𝑈2𝐸𝐸2𝑅𝑅);  

𝐸𝐸2𝑅𝑅 = 𝐸𝐸1R �1 + 𝑚𝑚2

𝑘𝑘2𝑅𝑅2
� − 1

𝑘𝑘𝑅𝑅
;𝐹𝐹2𝑅𝑅 = 𝐹𝐹1R �1 + 𝑚𝑚2

𝑘𝑘2𝑅𝑅2
� − 1

𝑘𝑘𝑅𝑅
  

Viscous Correction for the Viscous Potential Flow (VCVPF) Analysis 

The VCVPF theory corrects the VPF theory by including the extra term for the 

viscous shear stress so the viscous pressure term (𝑝𝑝) can be written as: 

𝑝𝑝𝑖𝑖 = 2𝜇𝜇𝑖𝑖 �
𝜕𝜕2𝜙𝜙𝑖𝑖

1

𝜕𝜕𝑘𝑘2
� − 𝑝𝑝𝑖𝑖𝑣𝑣; 𝑖𝑖 = 1, 2 (A1.16) 

where 𝑝𝑝𝑖𝑖𝑣𝑣 is the shear stress term and has been shown by Wang et al. (2005) to 

satisfy the Laplace equation in the linear mode analysis: 

∇2𝑝𝑝𝑖𝑖𝑣𝑣 = 0 (A1.17) 

Based on Eqs. (A1.5), (A1.12) and (A1.17), the following dispersion equation 

can be derived: 

𝑎𝑎0𝑤𝑤2 + (𝑎𝑎1 + 𝑖𝑖𝑏𝑏1)𝑤𝑤 + (𝑎𝑎2 + 𝑖𝑖𝑏𝑏2) = 0 (A1.18) 

where 𝑎𝑎0 = 𝜌𝜌2𝐸𝐸1𝑅𝑅 − 𝜌𝜌1𝐹𝐹1𝑅𝑅;𝑎𝑎1 = 2𝑘𝑘(𝑈𝑈1𝜌𝜌1𝐹𝐹1𝑅𝑅 − 𝑈𝑈2𝜌𝜌2𝐸𝐸1𝑅𝑅); 

𝑏𝑏1 = 2𝑘𝑘2[𝜇𝜇2𝐸𝐸3𝑅𝑅 − 𝜇𝜇1𝐹𝐹3𝑅𝑅]; 𝑎𝑎2 = 𝑘𝑘2(𝑈𝑈22𝜌𝜌2𝐸𝐸1𝑅𝑅 − 𝑈𝑈12𝜌𝜌1𝐹𝐹1𝑅𝑅) + 𝑘𝑘𝑘𝑘
𝑅𝑅2

(𝑘𝑘2𝑅𝑅2 − 1 + 𝑚𝑚2);  

𝑏𝑏2 = 2𝑘𝑘3[𝜇𝜇1𝑈𝑈1𝐹𝐹3𝑅𝑅 − 𝜇𝜇2𝑈𝑈2𝐸𝐸3𝑅𝑅]; 𝐸𝐸3𝑅𝑅 = 𝐸𝐸1𝑅𝑅 + 𝐸𝐸2𝑅𝑅;𝐹𝐹3𝑅𝑅 = 𝐹𝐹1𝑅𝑅 + 𝐹𝐹2𝑅𝑅  

The neutral curve can be found based on the condition: 𝑎𝑎0𝑏𝑏22 − 𝑎𝑎1𝑏𝑏1𝑏𝑏2 + 𝑎𝑎2𝑏𝑏12 =

0, as in Eq. (A1.19). 
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𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝐼𝐼2 = (𝑈𝑈1 − 𝑈𝑈2)2 = [𝑘𝑘𝑘𝑘(𝑘𝑘2𝑅𝑅2+𝑚𝑚2−1)/𝑅𝑅2]⋅[2𝑘𝑘2(𝜇𝜇1𝐼𝐼3𝑅𝑅−𝜇𝜇2𝐸𝐸3𝑅𝑅)]2

4𝑘𝑘6�𝜌𝜌1𝜇𝜇22𝐼𝐼1𝑅𝑅𝐸𝐸3𝑅𝑅
2 −𝜌𝜌2𝜇𝜇12𝐸𝐸1𝑅𝑅𝐼𝐼3𝑅𝑅

2 �
  (A1.19) 
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