CAKDSC e - DXTASES

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

e LIBRARY
 AUTHOR/FILING ‘TITLE |

ACCESSION/COPY NO.

036 coa'T .S"f
VOL. NO. ' CLASS MARK

— N

Lofa o Oy

036000755 4

INNIHH Il JNIHIIHHIIIIIIHIIIIHI

a _-TH15 BOOK WAS SOUND BY.

... BADMINTON PRESS 4

- THE HALFCROFT -
) 0 -

FUNCTIONAL PARTITIONING OF
MULTI-PROCESSOR ARCHITECTURES

by

SAMIR S. AL-KHAYATT, BS¢, MSc

A Doctoral Thesis
submitted in partial fulfilment of the
requirements for the award of the
degree of
Doctor of Philosophy of the
Loughborough University of Technology

July 1990

Supervisor: J.E. Cooling, BSc, CEng, MIEE, MIESEE

Department of Electronic and Electrical Engineering
Loughborough University of Technology

© Samir S. Al-Khayatt

I*-Tn—- L I N QR R L AN
N o]

ll ! rrugci u;rx‘ I
E_,k,t Hhorre ey [rib iy

of Toghnnisrw is

Mo.:g "l(

e e m s

|1
1

i

l

\

x

C e .

j-z_ff 03600 o 755
WA 123 X

B T I

To My Family

SYNOPSIS
FUNCTIONAL PARTITIONING OF MULTI-PROCESSOR ARCHITECTURES

Many real-time computations such as process control and robotic
applications may be naturally distributed in a functional manner. One
way of ensuring good performance, reliability and security of
operation is to map or distribute such tasks onto a distributed,
multi-processor system. The time critical task is thus functionally
partitioned into a set of cooperating sub-tasks. These sub-tasks run
concurrently and asynchronously on different nodes (stations) of the
system. The software design and support of such a functional
distribution of sub-tasks (processes) depends on the degree of

interaction of these processes among the different nodes.

The research work carried out is concerned with the following points:

* The design and implementation of a loosely coupled multi-processor
system that has been designed and implemented for use in fault-
tolerant, real-time applications. Each processing unit (station)
consists of a single board computer, where the communication and
processing tasks are decoupled on each board. It uses a single
shared parallel bus for comunication between these stations, bus
control being fully distributed.

* The development of software environment to support functional

partitioning. This consists mainly of:

i) A real-time kemel structure to support and manage partitioned
sub-tasks on varicus processing sections of the system.

ii) A cammmication software protocol that supports commmication
between the different processing sections of the system. This
is performed using message passing techniques based on token
passing.

iii) A run-time support system for the operation of the

commnication protocol.

The cammunication and real-time kernel software have been written
mainly in Modula-2. This required the use of two different compllers.
A small amount of assembly language programming was also used. This
software is hosted on a multi-processor demonstrator system which has
been developed as part of the research programme.

ii

I wish to express my deep sense of gratitude to my supervisor Mr J E
Cooling for his guidance, inspiration, stimulating discussions, and
most of all encouragement during the preparation of this work.

Thanks are also due to the following:

* The staff, and technicians for their valuable assistance.

* My wife for her endurance and support throughout the project.

iii

Synopsis

TABLE OF OONTENTS

ListofFingeS « #® # & & @& # & 8 = 2 & & = = s &+ = = =

List of Charts T T
List of Abbreviations « . ¢ + ¢ ¢« & o . o ..
CHAPTER 1: INTRODUCTION s s s s s e 4 s s e oa s e e
1.1 Overview e e s s e e s e e e s e e e s

1.2 Research Objectives

1.3 Thesis Organisation ¢« ¢« ¢ ¢« ¢« « .+ &

Figures v e e e e e e e o e e

CHAPTER 2: METHODS OF TASK MANAGEMENT IN DISTRIBUTED
SYSTEMS &+ v & & o o o o v o = c e e e e

2.1 General . . .« v e e e e o0 .o “ e e e e

2.2 Partitioning Schemes for Distributed
Enwircnments s e e e e e e

2.2.1 Overview e v s e e e o 2 4 .

2.2.2 Designing a Distributed System as a

Single Program e e e e ke e e e

2.2.3 Functional Partitioning Schemes . . .

2.3 Task Allocation Strategies c ot e e e s e e

2.4 Inter-Process Communication in Distributed

Systems . . 4 v v 4 4 e e e e e e e e e

FIQUrES . ¢« v v ¢ 4 & o o o o o = o s o o

CHAPTER 3: FUNDAMENTAL ASPECTS OF DISTRIBUTED OONCURRENT
PROGRAMS . &« & + 4 ¢ ¢ s o & o o o « « o o. o

3.1 Concurrent Programs (Use of Processes) . . .

3.1.1 General e e s e e e e e e e e ..
3.1.2 ProcesSES .+ « « « « o« o o o o+ . e .
3.1.3 Process Interaction . . + ¢« &« ¢« ¢« o &

iv

Page No

iii

xvii

5 I VI S I I

10
12

13
15

20
20
20
20
21

3.2

3.3

3.4

3.5

3.6

CHAPTER 4:

4.1
4.2
4.3
4.4

4.5

Specifying Concurrent Execution
3.2.1 The Fork and Join Statements
3.2 2 The Cobegin Statement et s s e a s
3.2.3 Coroutines
Introduction to Synchronisation Techniques .
3.3.1 Critical Sections
3.3.2 SemaphOores . . ¢ « v o s ¢ « 2 o+ o
3.3.3 Synchronisation Technigques and
Language ClasSSes + « + « =« o o o o o «
Procedure-Oriented Synchronisation Method .
3.4.1 Monitors c e e e e e e e . .
3.4.2 Nested Monitor Calls
Message-Passing Synchronisation Primitives .
3.5.1 General = o s e e e s
3.5.2 Specifying Channels for Commmicaticon
3.5.3 Synchronisation
'Operation-Oriented' Synchronisation Methods
3.6.1 General e e e e e e s
3.6.2 The Remote Procedure Call (RPC) . .
3.6,3 RendezZvOUS .+ v o o o + o o o o o &« R
3.6.4 Messages in Distributed Systems . . .

.
Figures

A MULTI-PROCESSOR STRUCTURE TO SUPPORT

FUNCTIONAL PARTITIONING . « ¢ « « o« & N
System Overview e e e e e e © + x s e a
Functional Pescription s e & e e e e e s .
Inter-Processor Commumication
Operating System Support - the Distributed
Program Kernel e e e e e e e e e c e .
4.4.1 General = e 4 a e e e s

4.4.2 Distributed-Program Kernel

Programming Language Issues - Modula-2 . . .
4!5-1 wex‘al - L L] L] L] - LJ L] - - - - -

2 BB

24
25
25
25

27
28
28
31
32
32
32
35
37
37
37
38
42

55
55
56
57

59
59
59
61
61

5.1
5.2
5.3

5.4

5.5

CHAPTER 6:

6.1
6.2
6.3

4,5.2 Assessment of Competitors
4.5.3 Possible Competitors of the Future .
4.5-4 Why D’bdula"Z? e 4 + 4 & & o = 2 e ®

Fig‘]res *» & = = @ .« . = s LI L "

MULTI-PROCESSOR SYSTEM - HARDWARE STRUCTURE .
Overview e 2 e 8 s s e 4 e = o s = s o e
System Interfacing. e e e e e e e e e e e s
Comunication Section . .+« &

5.3.1 Commmication Processor
5.3.2 Camumication Support Module (CSM) . .
5.3.3 Temporary Memory Store (TMS)
5.3.4 AWatchdog Timer
5.3.5 SystemBus Buffers
5.3.6 Power-on Reset Circuitry

Processing Section e s e e e s s e s e .
5.4.1 CPU Section«
5.4.2 Memory
Hardware-System Cperation
5.5.1 Power-up e e s e e e e e . e
5.5.2 Initialisation

5.5.3 Operational Mode (Steady State) . . .
5.5.3.1 Transmission of a Message . .
5.5.3.2 Reception of a Message . . .

Tables e v e e e e e e e e e e e e e e .

Figures s e e e s e e e e e

MULTI~PROCESSOR SYSTEM - COMMUNICATION
Software Requirements
Design Techniques . . ¢« « ¢ ¢ « 4 o 4 « &
Implementation of the Commnication Protocol
6.3.1 Software Module Structure - Qverview

vi

Page No

a R B

68
68
68
70
71
71
73
74
74
74
75
75
77
77
78
78
79
79
80
82
84

96
96
97
98
98

6.4

6.5

7.1
7.2
7.3

7.4

7.5

6.3.2 Coamunication Software (Main Module -

Run Comms) s e e s e e e e e e e w .
6.3.3 Second Level Modules . e s s s e . .
6.3.4 Service Modules . . ¢ ¢ « o o « +

6.3.4.1 Control-Frame Modules . . .
6.3.4.2 Message-Exchange Modules ., .
6.3.4.23 Hardware Related Module -~
'Signals' . . v v e e s e . .
Implementation of the Run-Time Support System
6.4.1 General C e e h e e e e e e e e
6.4.2 CPMIOO Module . & &« & &+ o & o & & .
System Development and Operation
6.5.1 Compiling and Linking
6.5.2 Downloading into EPROMS
6.5.3 System Start-up Operation

Figures © v e e e e e e e e e e e . .

MULTI-PROCESSOR SYSTEM - KERNEL SOFTWARE

STRUICTURE = . & & & o o = o s« « «
Introduction e 4 s e e s s s e s e s e .
The Real-Time Kernel Structure . e s e e

Implementation of the Real-Time Kernel . .
7.3.1 Software Module Structure - Overview .
7.3.2 Distributed Variables Management . . .

7.3.3 Comunication Management
7.3.4 Message Management

7.3.5 Time Management
7.3.6 Hardware-Related Routines “ e e e s
The Becotstrap Routine
7.4.1 Assembler Routine

7.4.2 Modula-2 Routine e e e e e e e

System Development and Operation s e s e s

7.5.1 Compiling and Linking e e e e e
Figl.lres - - - Ll L) - - - * * » - L] L] L] L] -

vii

Page No

100
102
103
103
104

106
109
109
109
110
111
111
112
113

118
118
119
123
123
124
127
129
130
131
133
133
133
134
134
136

CHAPTER 8:
8.1
8.2

8.3

8.4

9.2
9.3
9.4
9.5
9.6
9.7

SYSTEM TEST AND VALIDATION « « « « .
General
Processing Section - Test Procedures
8.2.1 Basic Processor Test
8.2.2 Chip Select Undt Test

8.2.3 Programmable Timer Test
8.2.4 Serial Line Test (DUART) .t e e e
8.2,5 SRAM Test e e e e e e

8.2.6 DMA Contxoller Test + « « .+ .
8.2.7 Numeric Processor Extension (NPE 8087)
8.2.8 On-Board Interface (OBI) Test
8.2.9 Initial Bootstrap Test
Coammmnicaticn Section - Test Procedures . .
8.3.1 Simulation e e s e s
8.3.2 PCBChecking . « ¢« v v « ¢ « s o o « &
8.3.3 Software Testing “ e e . .
Cuverall System Test « + « ¢ ¢ ¢ ¢ v o o o « &

FigUreS * * * * * * @ & s e 4 * e e e w

COMMENTS AND CONCLUSIONS
Architecture @00 00 ..
9.1.1 Loosely-Coupled Systems
9.1.2 Functional Partitioning
9.1.3 Commmnication Features
Hardware Structure+« .+« . .
Software Structure
Applicability of Modula-2
Overall Caments e e s e e e s
Future Wwork = + v e e e e s
A Final Summary

viii

140
140
140
141
141
141
142
142
142

143
144
144
145
145
148
149
150
153

158
158
158
159
160
161
162
163
164
166
168

169

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

SYSTEM HARDWARE DESIGN . .+ & & « & &« o s

A.l Comunication Section Design
A.2 CSM Module Description . . . o o o . &
A.3 Altera Design Report s e e e e e e
A.4 Processing Section Design

CCMMUNICATION SECTION'S MODES OF CPERATION .
B.l General . ¢ ¢ v o ¢ 2 o o o e 8 s s s s
B.2 Initialisatien
B.3 No Operation - Idle
B.d Reception . v v & v v v v 4 4 o ¢ = o &
B.5 Transmission . . ¢« « ¢« & « « ¢« &+ & & &
B.6 Data Exchange with the OBI Interface . .

MULTI-PRCCESSOR SYSTEM - COMMUNICATION
SOFTWARE STRUCTURE ¢« &+ ¢« & 4 o o &
C.1 PRing Configuration and Maintenance . .
C.2 Control FrameS . . « « « « . v e e e s
C.3 Timers
C.4 Software Development and Structure

CPM ENVIRONMENT EMULATOR - CPMIOO MODULE . .

D.1 Overview« ..
D.2 CPM Campatibility« & « .
D.3 Limitaticns . . « « . . . e e .

MULTI-PROCESSOR SYSTEM - KERNEL SOFTWARE

STRUCTURE
E.1 Introduction « .+« ¢ ¢« ¢« « . &
E.2 Real-Time Kermel Structure
E.3 Power-Up . & ¢ & ¢t 4 4 ¢ ¢ v o o o = =
E.4 Initialise System e e e e e s
E.5 Run Application Software

E L] 6 Tralmission me LJ - L] » - L] - - - L] L

ix

182
182
191
217
240

259
259
259
261
262
263
265

270
270
275
276
278

314
314
316
317

319
319
319
320
320
322
324

Page No

E.7 ReceptionMode @ . . ¢ &+ ¢« v ¢ o & + & 324
E.B Remated Raltms L] - - » L] » L] » L) L » 326

LIST OF FIGURES

Page No

CHAPTER 1
Fig. 1.1: System Configuration
Fig. 1.2: Multi-Processor Node - Functional Structure 6
CHAPTER 2
Fig. 2.1t Software Development Incorporating Program

Post-Partitioning 15
Fig. 2.2: Steps in Software Develcpment in Distributed

Application (Pre-Partitioning) 16
Fig. 2.3: Functional Partitioning (Pipeline) 17
Fig. 2.4: Functicnal Partitioning 18
Fig. 2.5: E-Mode and T-Mode Messages 19
CHAPTER 3
Fig. 3.1: Process State Transitions 44
Fig. 3.2: The 'Fork' and 'Join' Statements 45
Fig. 3.3: The 'Cobegin' Statement 46
Fig. 3.4: Subroutines v's Coroutines - Conceptual

Differences 47
Fig. 3.5: Task Commmication with 'Semaphores’ 48
Fig. 3.6: Software Methodologies 49
Fig. 3.7: Monitor Structure 50
Fig. 3.8: The Monitor Concept 51
Fig. 3.9: Remcte Procedure Calls (RPC)~Implementation 52
Fig. 3.10: Rendezvous Transactions 53

Fig. 3.11: E-Mcde and T-Mode Messages 54

xi

CHAPTER 4

Fig.
Fig.
Fig.

4.1:
4.2
4,3:

CHAPTER 5

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

5.1:
5.2:
5.3:
5.4:
5.5:
5.6:
5.7:
5.8:
5.9:
5.10:
5.11:
5.12:

CHRPTER 6

Fig.
Fig.
Fig.
Fig.
Fig.

6.1:
6.2:
6.3:
6.4:
6.5:

System Configuration
Multi-Processor Node - Functional Structure
Token Passing on a Logical Ring

Functional Block Diagram of a Station
System Interfacing

The Commmication Section - Detailed Structure
Caommmnication Support Module {(CSM)

Station Configuration

Block Diagram of the Scratchpad Memory
Processing Section - Overall Structure

The Processing Section - Detalled Structure
Initialisation - Stage 1

Initialisation - Stage 2

Transmission of a Message

Reception of a Message

Camunication Software - Network's View
Comunication Software - Station's View
Communication Software - Station's View
Implemented System Modules

System Memory Map

xii

65
66
67

84
85
86
87
88
89
90
91
92
93
94
95

113
114
115
116
117

CHAPTER 7

Fig. 7.1:
Fig. 7.2:
Fig. 7.3:
Fig. 7.4:

CHAPTER 8

Fig. 8.1:
Fig. 8.2:
Fig. 8.3:
Fig. 8.4:
Fig. 8.5:

APPENDIX A

Fig. A.l:
Fig. A.2:
Fig. A.3:
Fig. A.4:
Fig. A.5:
Fig. A.6:
Fig. A.7:
Fig. A.8:
Fig. A.9:
Fig. A.10:
Fig. A.1l:
Fig. A.12:
Fig. A.13:
Fig. A.14:
Fig. A.15:
Fig. A.16:

Functicnal Partitioning
Distribtuted Variables Management
Functional Scheduling

System Memory Map

Block Diagram of the Processing Section
Minimum CPU Configuration

80188 CPU Block Diagram

Initial System Memory Map

The Camunication Section - Detailed Structure

Commmnication Secticn Hardware Design - Sheet 1
Communication Section Hardware Design - Sheet 2
Communication Section Hardware Design - Sheet 3
EP 1800 Macro Cell Structure

Macro Cell Components

136
137
138
139

153
154
155
156
157

188
189
190
206
207

Communication Support Module (CSM) Design - Sheet 1 208
Commmnication Support Module (CSM) Design - Sheet 2 209
Communication Support Module (CSM) Design - Sheet 3 210
Communication Support Module (CSM) Design - Sheet 4 211
Communication Support Module (CSM) Design - Sheet 5 212
Commmnication Support Module (CSM) Design - Sheet 6 213
Cammunication Support Module (CSM) Design - Sheet 7 214
Communication Support Module (CSM) Design - Sheet 8 215
Communication Support Module (CSM) Design - Sheet 9 216

80188 CPU Block Diagram
80188 CPU Configuraticn

xiii

250
251

Fig. A.17:
Fig. A.18:
Fig. A.19:
Fig. A.20:
Fig. A.21:
Fig. A.22:
' Fig. A.23:

APPENDIX B

Fig. B.1l:
Fig. B.2:
Fig. B.3:

APPENDIX C

Fig. C.1l:
Fig. C.2:
Fig. C.3:
Fig. C.4:

82188 Controller and 8087 Numerical Processor
Address/Data Buffers and Latches

Memory System

Serial Commmication System

On-Board Interfacing Block (OBI)

Single Step Circuit

Watchdog Timer

Data Reception Mode - Signal Timirgy
Data Transmission Mode -~ Signal Timing
Transmission Clock Signals

Token Passing on a Logical Ring
Ring Configuration Process
Addition of a Station

Deletion of a Station

xiv

252
253
254
255
256
257
258

267
268
269

293
294
295
296

LIST OF CHARTS

CIART NUMBER

c.1l: Run Comms System

C.2: Init the Board

C.3: Enter the Ring

C.4: Run in Op-Mode

C.5: Start for First

C.6: . Start for not First

C.7: Start on Plug-In

C.8: Act on Message Received

C.9: Run '"Who Follows' Routine
C.10: Run 'Who Before' Routine
C.11: Run 'Access' Routine

C.12: 'Who Follows' Routine

C.13: 'Solicit Successor' Response
C.14: Wait to Receive Tcoken

C.15: 'Token Ack' Routine

C.16: Poll Bus and Timer

E.1: Run Processing System

E.2: Initialise System

E.3: Run Application Software
E.4: Initialise Sub-Task

E.5: Initialise Distributed Variables
E.6: Initialise and Set-up Interrupts
E.7: Run a Variable Transmit Mode
E.8: Interrupts

E.9: Event Service Routine

E.10: Server 1 and Server 2

Server 3 and Server 4

XV

Page No

297
298
299
300
301
302
303
304
306
307
308
309
310
311
312
313

329
330
331
332
333
334
335
336
337
338
339

E.12:
E.13:
E.14:
E.15:
E.16:
E.17:

'Return From Interrupt' Routine
'"Transmit a Message Frame' Routine
'Validate' Routine

'Submit-Global' Routine
'Check-RecvData' Routine

"Wait For-Data' Routine

XVi

340
341
342

344
345

LIST OF ABEREVIATIONS

ASCII - American Scientific Code for Information Interchange.
1100B - Binary number,

BIT - Binary Digit.

BYTE - 8 bits.

CaD - Computer Aided Design.

CruU - Central Processing Unit (80188/64180).
cs - Count of Stations.

DMA = Direct Memory Access.

DRAM - Dynamic Random Access Memory.

DUART - Dual Universal Asynchronous Receiver Transmitter.
EPL.D - Erasable Programmable Logic Devices.
EPROM - Erasable Programmable Read Only Memory.
OFDH - Hexadecimal number.

FS - First Station.

/0 - Input/Output.

JSP - Jackson's Structured Program.

LS ~ Last Station.

NPE - MNumerical Processor Extension (8087).
NS - Next Stations.

OBI - On-board Interfacing.

PCB - Printed Circuit Beard.

PDF - Program Design Facility.

PS - Previous Station.

ROM - Read Only Memory.

xvii

RPC - Remote Procedure Call.

SRAM - Static Random Access Memory.
™S - Temporary Memory Store.
TPBAM - Tcken Passing Bus Access Method.
TS - This Station.

vCB - Variable Control Block.

VDU - Visual Display Unit.

SIGNALS

() - Active low signal.

ALE - Address Latch Enable.

ACK - Acknowledge.

CLK - Clock.

DT/R - Data Tran=mit/Receive.

DRQ - DMA Request.

EDT - End of Data Transmission.
MG - Lower Memory Chip Select.
M/I0 - Memory access/Input-Output access.
MMCS - Medium Memory Chip Select.
PCS - Peripheral Chip Select.

RD - Read signal.

RDT - Request Data Transmission.
RDY - Ready.

uMCsS - Upper Memory Chip Select.

WR - Write signal.

xviii

- CHAPTER 1

CHAPTER 1
- INTRODUCTION

1.1 OVERVIEW

Recent advances in hardware computer technology, combined with
campeonent cost reductions, have spurred on the development of new
distributed hardware systems. Eventually, future real-time
applications will be targeted toward highly distributed, multi-
processor enviromments because of their attractive cost-to-performance

ratios compared to single processor systems.

As new high performance distributed architectures are explored and
exploited, the nature of software developed for these new generations
will tend to shift from being sequential in nature to being more
parallel.

Developing software for such systems will be even more troublesame
than it is for traditional computer systems due to synchronisation
issues, new algorithms and languages. Yet, there is currently little
software support for distributed enwvironments.

Same vendors have succeeded in developing quality software for non-
sequential structures using conventional technologies. However, lack
of specialised support is already hindering long scale development of
systems with this class of architectures.

Successful software development, however, will only stem from a better
understanding of distributed systems. The design and synthesis of
software for distributed systems reguires the use of a design
methodology and programning language which builds on the inherent
parallel nature of such systems. Thus, an adequate software base
(design teools, run time enviromments, dedicated operating systems,
campilers, etc) and better software engineering techniques must be
available before future needs, for high quality software, can be met.

Intense research activity in recent years has led to a more mature
understanding of the problems of a distributed environment [1]. Still,
however, the following points need to be resolved to facilitate

advances in software development for distributed architectures [2]:

* Approaches to problem decamposition for mapping applications to the
proper distributed architecture.

* Techniques for software design partitioning and allocation.

* Language issues for distributed architectures for future systems
(e.g. language constructs to address parallel issues).

* Algorithm design and evaluation.

* Problem visualisation and animation techniques.

* Software testing to attain high reliability levels.

1.2 RESEARCH OBJECTIVES

Real-time, multi-processor, embedded systems are one application area
where response times, throughput, reliability and fault-tolerance
constitute the major design criteria [3]. Hence the distribution and

management of the application software is a critical function.

A prototype loosely-coupled multi-processor system has been designed
and implemented for use in fault-tolerant real-time applications

(Figs. 1.1 and 1.2).

This thesis discusses the organisation and structure of the +total
system, concentrating in particular on the software environment that
has been developed to support functicnal partitioning [4,5]; i.e. the
camumnication and executive (kermel) functions. The cammication
system is based on a tcken passing bus protocol for use with single
board computers connected via a fast parallel bus. The kernel is
designed to support functional partitioning of application programs,
and can be implemented using standard coampilers. No special multi-
processing features are required. Most of the software for this system
has been written in a high level, structured language (Modula-2),
though assembly language programming has been used in a few

specialised areas.

1.3 THESIS ORGANISATION

Chapter 2 presents methods of task management in distributed
environments. Partitioning schemes and allocation strategies are

highlighted in particular.

Chapter 3 gives a general review of distributed, concurrent
programming techniques. Different classifications and methods are
presented together with the evaluation of each method.

Chapter 4 is devoted to the functional description of a multi-
processor structure that is designed to support functional
partitioning. Supporting issues such as inter-processor cammunication,
operating system constructs, and choice of programing language are
discussed within this chapter,

Chapter 5 describes the implementation of the multi-processor system
developed in this research project at building block level. The
function of each block and its role in the system is demonstrated. It
introduces the idea of using two separate sub-systems; the
communication sub-system for handling communication with the network
and the processing sub-system for the execution of application tasks.

Chapter 6 and Chapter 7 concentrate on the design of the software
environment which has been developed to support functional
partitioning. Chapter 6 describes the implementation of the
communication protocol and its run-time support system, Chapter 7, on
the other hand, describes the structure and implementation of an
operating system kernel for the support of functicnal partitioning.
Software structure diagrams for Chapter 6 and Chapter 7 are given in
Appendices C and E respectively.

Chapter 8 introduces the different approaches and techniques for the
testing and validation of both the hardware system, and the
implemented system software modules.

Finally, Chapter 9 reviews and assesses the different achievements of
the research work. It also highlights areas for future research.

PROCESSING
SECTION

(A)

COMMUNICATION
SECTION

(A)

Fig. 1.1 SYSTEM CONFIGURATION

(W3ILSAS) NOLLYDINNWWOD

SYSTEM BUS

COMMS SECTION

PARALLEL BUS
DATA HOLDING BUFFERS

TEMPORARY
STORAGE RAM

TRANSMISSION / RECEPTION
CONTROL LOGIC

MAIN PROCESSOR

DATA HOLDING BUFFERS
T _‘ T

PROCESSING
SECTION

Processing-
Saction Bus

PROCESSING | 110

MEMORY |, N DEVICES

CcPU

Fig . 1.2 MULTIPROCESSOR NODE - FUNCTIONAL STRUCTUREJ

CHAPTER 2

CHAPTER 2
METHODS OF TASK MANAGEMENT IN DISTRIBUTED SYSTEMS

2.1 GENERAL

Distributed systems have inherent problems which must be overcame by
different concurrent programing methodologies. Certain demands and
requirements have to be met in the design of distributed programs.
Issues such as the camplexity of the underlying hardware, partitioning
and allocation schemes, the supporting constructs of the programming
languages and the availability of the software envircarment tools play
major roles in task management within a distributed envirorment. This
chapter highlights the main issues relating to such enviromments i.e.
those of partitioning, allocation, and commnicaticn aspects.

2.2 PARTITIONING SCHEMES FOR DISTRIBUTED ENVIRONMENTS

2.2,1 Qverview
Partitioning is the process of breaking down a task into smaller tasks
(sub~tasks), or a pregram into smaller programs called fragments or

segments.

In many cases the partitions lead t© an apparent reduction in the
camplexity of the system and reduces the problem at hand to manageable
pieces. The partitioning unit or construct used (called granularity)
should be carefully chosen as this will affect the type of system
implementation. For instance, as the number of parallel processes into
which a computational task is partitioned is increased, so the volume

of inter-process commmications for control and data interchange also
increases. This leads to a closely coupled system implementation.

Language constructs play an important part in simplifying partitioning
schemes. For instance, the language StarMod [1] allows the programmer
to partition a camputation into a collection of processes and also to
define the details of communication paths between the processors. Ada
[2] has been criticised for not providing a suitable partitioning
constructs; Thelp is required from other tcols in the support
enviromment to provide such a scheme [3,4,5].

Two basic approaches may be identified for partitioning distributed
software [6]:

i) Distribute fragments of 'a single program across processors and
use a normal intra-program communication mechanisms for

interaction;

ii) Wwrite a separate program for each processor and devise a means
for inter-program interacticon. This method is not so applicable
in distributed enwiromments since the introduction of hardware
specifications into a design at an early stage restricts program
portability. It also leads to a change in the partitioned
program structure whenever the configuration (say number of

processors) changes.

2.2.2 Designing a Distributed System as a Single Program

The fundamental concept here is that the application software is
viewed as a single program, distributed across the target system. Its
main advantage is that all the interfaces between the distributed

fragments can be type checked for compatibility by the compiler.
Within this apprecach two general strategies can be identified: post-

partiticning and pre-partitioning [5,7,8]:

1) Post-Partiticning

In this strategy, partitioning of an application program is expressed
after the design of the software is complete. The partitioning process
does not attempt to force changes in the software design in order to
achieve the required partitioning. Fig. 2.1 illustrates a typical

ordering of system development steps. Partitioning is performed
concurrently with and independently of coding.

The programmer produces an appropriate solution to the problem at
hand. It is left to the partitioning specification software (Fig.
2.1) to: '

* Describe the target configuration,
* Partition the program into components for distribution, and
* Distribute the components to individual nodes.

This method promotes portable software, i.e the same program can be
mapped onto different hardware configurations., However, it needs a
language that contains facilities for configuration management.

ii) Pre-Partitioning

This strategy is to select a particular construct as the sole unit of
partitioning, to be used throughout the design and programming process
(see Fig. 2.2). The notion underlying this strategy is that of a
'virtual node', which is an abstraction of a physical node in the
distributed system [4,9]. A virtual node consists of one or more units

(which may share memory) comunicating with other wvirtual nodes via
some form of message passing over a commnication sub-system. More
than cng virtual node, however, can be mapped onto a single physical
node.

Note that the programmer must accept any constraints the choice of
constructs entails (e.g. it might affect inter-process cammmnication
or system performance).

The notion of virtual nodes is found in most languages which have been

designed specifically for supporting distributed programming (e.g. the
'guardian' of Argus [10] and the 'processor module' of StarMod [1]).

For a language construct to be effective as a virtual node it must be
supported by [4]:

* Separate compilation.
* Library units or modules.
* Exception handling facilities to cope with process failures.

2.2.3 Functional Partitioning Schemes
Many real-time applications and tasks may be naturally distributed in

a functional manner. Functionally distributed systems are often
modelled and controlled as a set of comunicating, distributed sub-
tasks (processes) [1l]. The software for such systems invariably

reflects the distributed nature of the application.

The software design and support of such a functional distribution of
sub-tasks (processes) depends on the degree of interaction of these
processes among the different processors.

10

A simple implementation of functicnal partitioning may consist of
functional or pipelining partitioning [12] (see Fig. 2.3). Here, the
distributed processes interact occasionally, usually for transferring
data results, using message-passing techniques.

Fig. 2.4 shows a more realistic approach to, and understanding of,
functional partitidning within real-time environments. The total
system task is partiticned into a mamber of functional sub-tasks which
are then mapped onto the various nodes of a distributed system. In
real-time systems such sub~tasks imvolve plant interfacing, network
control, computation of digital control algorithms, etc. These run
asynchronously and concurrently within the distributed system.
Distributed processes, however, have to comunicate and interact
occasionally in order to achieve a comon goal [13,14]. Management and
interaction of distributed processes is usually achieved by supporting
software embedded in each node of the system [15,16]. Same of the main
advantages in using this methed are:

* The software structures mirror the application structure, this
being especially suitable for real-time application tasks. |

* The individual software units (sub-tasks) can be inplemented, type
checked and campiled using uni-processcor canpilers.,

* The granularity (unit of partitioning or sub-task), may be further
divided and partitioned into other functional sub-tasks (see Fig.
2.4). These sub-tasks can be mapped, in turm, to one or more nodes
of the distributed system.

* Finally, each sub-task can be considered as a unit sole of

- partitioning. This means, it can be separately processed, coded,
and compiled using structured languages suited or even adapted for
distributed environment.

11

2.3 TASK ALLOCATION STRATEGIES

Allocation assumes the existence of well partitioned or predefined
units or modules, and discusses how to effectively map or allocate
these units or modules to different nodes. The method of allocation
chosen should allow for an efficient and reliable implementation of
inter-process commmication mechanism [17,18].

In distributed systems this effectively means 'how different program
segments reside on different processors, and how they interact'

[5,19].

The unit of allocation depends, among other things, on the constructs
of the language use for the implementation. For instance, in Ada two
main constructs have been considered as the basis of allocation; the
'task' and the 'package' [4,9]. The task is unable to encapsulate data
in the same way as a package, and cannot be a library unit, hence its
usefulness as a unit of distribution is limited. The package, however,
is supported, by separate compilation and library units and thus
favoured as a distribution unit.

Similarly, in Modula-2 [19] a 'co-routine' and a 'module'’ are two
constructs that may be suggested as units for allcocation [20]. Again,
a co-routine fails to encapsulate data in the same way a module does,
also it cannot be a library unit or even separately compiled. But most
important, for a distributed application, the coroutine mechanism
should be modified in order to allow for remote procedure invocations
and resumptions. The semantics of remote coroutines appear to be
applicable to Modula-2 [21]. A module, on the other hand, is

inherently suitable for use as a distribution unit. Apart from

12

separate campilation, and use of library units, there are two main
reasons for using a module as a distribution unit {9]:

* Procedures of a module need efficient access to the local shared
data of the module. Hence, it is not possible to achieve efficiency
if the module is split over several nodes or processors.

* Modules often form monitors [22], where mutual exclusion of
processes 1s to be maintained. This is difficult to implement if a
module itself is spread over several nodes.

2.4 INTER-PROCESS COMMUNICATION IN DISTRIBUTED SYSTEMS

Communication constructs fall into two groups: those designed to
support processes which reside on the same node, and those used where
processes reside on different nodes (processors). For processes on the
same node, a typical and standard form of inter-process communication
mechanism is the use of shared wvariables (using monitors for
implementing mutual exclusicn). Whereas for processes on different
nodes, inter-processor commmication is frequently implemented using
the remote procedure call mechanism (RPC) [23] (this relationship can
be viewed as a 'client-server' model).

However, a more constructive way of commmnication between processes in
a distributed environment is through the use of message-passing
techniques. Process coammmnication may be implemented in both (or
either) asynchronous and synchronous forms, using channels [24] or the
rendezvous [2]. In a distributed envircnment, process communication
must be transparent, i.e, the programmer is unaware as to whether
processes reside on the same or different ncodes. It is left to the

13

supporting software (operating system kernel) to decide whether
processes need inter-process or inter-processor commmication. To
implement this structure, two types of messages can be executed in a
distributed system, E-mode and T-mode messages [25] (Fig. 2.5):

* E-mode message refer to message transactions between various
processes of a user program (inter-process commmnication).

* T-mode message refer to messages exchanged between the kemnels or
operating systems of two different nodes (inter-processor

cammnicaticon).

Usually all commmnication between the different processes are issued
first as E-mode messages. These messages are subsequently interpreted
by the underlying software (usually called a filter process) as to
whether the source and destination processes reside on the same or
different processors. If they reside on the same processor, then an E-
mode message is adequate for communication. However, if they turm out
to be on different processors, then a Kermel process (usually called a
communication process) issues a T-mode message to exchange data
between the different nodes. These modes of message communication help
constructing a 'naming' scheme in a distributed system.

14

SYSTEM

REQUIREMENTS

SOFTWARE
REQUIREMENTS

SOFTWARE
DESIGN

APPLICATION
PROGRAM

PARTITIONING
SPECIFICATION

HARDWARE
DESIGN

Fig. 21 SOFTWARE OEVELOPMENT INCORPORATING
PROGRAM POST-PARTITIONING

15

SOFTWARE
REQUIREMENTS

SOFTWARE
DESIGN

PARTITIONING
SPECIFICATION

APPLICATION PROGRAM

UNIT PAR. UNIT PAR. UNIT PAR.
1 2 N

FIG. 22 STEPS IN SOFTWARE DEVELOPMENT IN DISTRIBUTED APPLICATION
{PRE-PARTITIONING)

16

T}
. Sub-task 1

Sub-task 2

O/p,

I/

Node 1

Sub-task 3

Fig. 2.3 FUNCTIONAL PARTITIONING

(PIPELINE)

Node 3

8L

PROPULSION
SYSTEM
TASK

NETWORK
INTERFACING

PORT ENGINE
SYSTEM

STBD ENGINE
SYSTEM

POWER CONDENSER DATA POWER CONDENSER
CONTROL LEVEL CONTROL COMMS CONTROL LEVEL CONTROL
SUB-TASK SUB-TASK SUB-TASK SUB-TASK SUB-TASK

Fig. 2.4 FUNCTIONAL PARTITIONING

Fig. 2.5A E - MODE MESSAGE

Fig. 2.5B T - MODE MESSAGE

19

CHAPTER 3

CHAPTER 3
FUNDAMENTAL ASPECTS OF DISTRIBUTED CONCURRENT PROGREMS

3.1 CONCURRENT PROGRAMS (USE OF PROCESSES)

3.1.1 General

The nature of concurrent programming has changed substantially in the
past ten years. First, theoretical research activities have prompted
the definition of new programing notations that express concurrent
camputations simply and make synchronisation requirements explicit.
Second, the advances in hardware technology, and hence the
avallability of inexpensive processors, have made possible the
censtruction of distributed systems and multi-processors that were

previcusly uneconomical.

Thus, implementations of concurrent programming are no longer limited
to use in operating systems only. They are implemented in the design
of database management systems, parallel scientific computations and
real-time, embedded control systems.

3.1.2 Processes
A 'sequential program' specifies sequential execution of a list of
statements; its execution is frequently called a 'process' [1].

A process may be in three main states (see Fig. 3.1):

i) Running: _ Instructions are being executed.
ii) Blocked: The process is waiting for some event to occur (such as
input/output completion).
iii) Ready: The process is waiting to be assigned a processor.

20

A concurrent program, however, specifies two or more segquential
programs which may be executed concurrently as 'parallel processes’'.
It can be executed by two methods:

i) FRunning more than one process on an individual processor. This
is referred to as 'multi-tasking'. It has to be mentioned here,
however, that 'quasi-concurrency' is the name referred to when
processes share only one processor [2].

ii) Running each process on its own processor. This is referred to
as 'multiprocessing' if processors share a common memory, oOr as
'distributed processing' if the processors are connected by a
communications network [3]. A concurrent program that is

executed in this latter way is often called 'a distributed

program'.

3.1.3 Process Interaction

In order for concurrent processes to cooperate, they must comwmmicate
and possibly synchronise. 'Commmnication' is the transfer of data
values from one process to ancther. Inter-process commmication is
based either on the use of 'shared variables' (variables referred by

more than one process) or on 'message passing'.

'Synchronisation' is often necessary when processes communicate.
Processes are executed with unpredictable speeds. Yet, to caommmicate,
one process must perform some action that the other detects (an action
such as setting the value of a variable or sending a message). This
only works if the events 'perform an action' and 'detect an action’
are constrained to happen in that order. Thus synchronisation can be
viewed as a set of constraints on the ordering of events [3]. The

21

programmer employs a synchronisation mechanism to delay execution of a
process in order to satisfy such constraints. Synchronisation can be

more understood in an 'operational approach':

'"Operational approach': Here the execution of a concurrent program can
be viewed as a séquence of 'atomic actions', each resulting fram the
execution of an indivisible coperation [4]. This sequence may comprise
same interleaving of the sequences of atomic actions generated by the
individual component processes. For example, suppose initilally that
x=0, that process Pl increments x by 1, and that process P2 increments
x by 2:

Pl: x:=x+1 P2: x:=x+2

It would seem reasonable to expect the final value of x, after P1 and
P2 have executed concurrently, to be 3. Unfortumately, this will not
always be the case, because assignment statements are not generally
implemented as indivisible operations. So the above assignment may be
implemented as a sequence of three indivisible cperations:

* Load a register with the value of x,
* Add 1 or 2 to it,
* Store the result in x.

Thus in the program above the final wvalue of x may be 1, 2, or 3.

This odd behaviour can be avoided by preventing interleaved execution
of the two assignment statements, i.e. by controlling the ordering of
the events corresponding to the atomic actions (if ordering were thus

controlled, each assignment statement would be an indivisible

22

operation). In other words, execution of Pl and P2 must be

synchronised by enforcing restrictions on possible interleavings.

3.2 SPECTFYING CONCURRENT EXECUTTCON

3.2.1 The Fork and Join Statements

The fork statement [5,6] specifies that once a designated routine
starts executing, the invoking routine P1 and the invoked routine P2
proceed concurrently (Fig. 3.2). To synchronise with campletion of the
invoked routine, the invoking routine can execute a 'join' statement.
Executing 'join' delays the imwvoking routine Pl until the designated
invoked routine P2 has terminated (executing the 'end' statement}. A
use of 'fork' and 'join' is shown below:

Program P1; Program P2;

S1
s2

fork P2; SA
sS4 SB
S5 sC
join P2; end;
S6
S7

———— i e U e b

Pl starts executing first statements S1, S2, and S3. Execution of P2
ig initiated later when the 'fork' in Pl is executed; P1 and P2 then

23

execute concurrently (S4, and S5 in Pl and SA, SB, and SC in P2) until
either Pl executes the 'Jjoin' statement or P2 terminates. After Pl
reaches the 'join' and P2 terminates, P1 executes the statements

following the 'join' i.e. S6, S7, etc.

The UNIX operating system makes extensive use of variants of 'fork'
and 'join'.

3.2.2 The Cobegin Statement
The 'Cobegin' statement is a structured way of denoting concurrent
execution of a set of statements (Fig. 3.3). This statement was first

called 'Parbegin' [7]. Execution of:
Begin S1; Cobegin S2; S3; S4; S5; S6; S7 Coend; S8 end

Means that after the completion of S1, the statements S2, S3, S4, etc.
(up to S7) will be executed concurrently, and only when are all
executed will the execution of statement S8 be initiated [7].

Variants of 'Cobegin' have been included in Algol 68, Edison and
Argus.

3.2.3 Coroutines

Coroutines are procedures that do not necessarily execute completely
before returnirg control to their callirgy programs. A coroutine (Fig.
3.4) suspends itself and at some later point, via another call,
resunes execution from the point at which it was suspended [8].

Each coroutine can be viewed as implementing a process, hence 'quasi-
concurrent' programs may be implemented on a single processor using

coroutines. In essence, coroutines are concurrent processes in which

24

process switching has been completely specified, rather than left to
the implementation. Statements to implement corcutines have been
inciluded in Simla, Bliss and Mocdula-2.

3.3 INTRODUCTION TO SYNCHRONISATION TECHNIKIES

3.3.1 Critical Sections

Within a system, coordination of processes frequently involves access
to shared data areas. Program segments that access shared data are the
most hazardous to implement and are referred to as 'Critical
Sections'. The safest general solution for sharing data is to adopt a
policy for 'mutual exclusion' where access is restricted to one
process at a time [7,9]. This policy is over-restrictive when a
number of processes wish only to read data, but should be enforced if
data is to be updated [10].

3.3.2 Semaphores
Early attampts to produce concurrent programs were based on semaphores
[7], low level primitives from which mutual exclusion and

synchronisation protocols could be constructed.

A semaphore(s) is a non-negative integer-valued wvariable on which two
operations are defined: 'P' and 'V'. P(s) (also called wait(s)): IF
s>0 THEN s:=s-1 ELSE the execution of the process that called P(s) is
suspended.

V(s) (also called signal(s)): IF scame process (Q) has been suspended
by a previcus P(s) on this semaphore (s) THEN wake-up (Q) ELSE s:=s+l

25

Test and decrement in P(s), increment in V(s) are done as indivisible
(atamic) operations (Fig. 3.5).

A semaphore assuming values 0 and 1 only is called a binary semaphore.
A semaphore which can take an arbitrary nen-negative integer wvalues is

called a general semaphore [3,7,11].

Most semaphore implementations are assumed to exhibit 'fairness'. This
is needed when a number of processes are delayed, all attempting to
execute a 'P' coperation on the same semaphore. A simple way to ensure
fairness is to awaken processes in the order in which they are
delayed.

A solution to the two process mutual exclusion problem in terms of
semaphores is shown below:

PROGRAM Mutex-Example;
VAR mutex: semaphore initial(l);

PROCESS Pl;

loop
p(mutex); (*Entry Protocol*)
Critical section;
V(imitex); (*Exit Prﬁtocol*)
Noncritical Section

end

end;

26

PROCESS FP2;

loop
P(mutex); (*Entry Protocol*)
Critical section;
V(mutex); (*Exit Protocol¥)
Non-Critical Section
end

end;

end.

3.3.3 Synchronisation Techniques and Language Classes
A number of programming methodologles and languages have been

developed to provide structured multiprocessed system (Fig. 3.6).
These started with the definition of semaphores, then were extended in
three ways:

* Constructs were defined that enforced their structured use,
resulting in critical regions, and monitors.

* 'Data' were added to the synchronisation associated with
semaphores, resulting in message-passing primitives.

* Finally, the procedural interface of monitors was combined with
message-passing, resulting in 'remote procedure call'.

Although there are a variety of different synchronisation techniques,
there are only three essentially different kinds: procedure oriented,
message oriented, and operation oriented [3,12]. These three

approaches are now considered in more detail.

27

3.4 PROCEDURE~QRIENTED SYNCHRONISATION METHOD

3.4.1 Monitors

The monitor concept, developed over a number of years [7,9,13], is
one approach towards ensuring a reliable concurrent programming
envirorment., Although the processes constituting a concurrent program
may declare individual data areas, a frequent occurrence is the
declaration of a cammon data area to be accessed by several processes.
If the processes execute asynchronously, it is possible that more than
one process will attempt to access this shared data area
simultanecusly, with unpredictable results. One such manager, known as
a mcnitor, encapsulates the shared data area and the procedures that
will act on this area (Fig. 3.7). Hence, the monitor will provide
mitual exclusion of processes to a set of procedures that act on the
sha;‘ed data, and consequently ensure the integrity of that data.

The concept of the monitor was first implemented in the language
Concurrent Pascal [14] and later in Modula [15]. These languages
define two forms of conponents: processes and moniters. Processes are
the active program elements which coperate on monitors, which are the
passive camponents containing shared data.

A monitor is a program module which encapsulates the définiticn of
some data variables with procedures for their access. It is written as
a set of global wvariables declarations followed by a set of
procedures. The monitor has a body (begin-——-end) which is a sequence
of statements executed immediately when the program is initiated.
Henceforth, the monitor exists only és a module {(data and
procedures). Processes accessing the monitor only need to know which
procedures are provided, the particular implementation details being
confined to the monitor definition.

28

A typical monitor concept is shown in Fig. 3.8. A producer process in
a program may insert items into the buffer by calling the monitor's
procedure 'produce'. The items may later be extracted by another

process calling the monitor's procedure 'consume'.

A process calling a mondtor's procedure gains exclusive use of the
monitor until it exist from the monitor. If a second process attempts
to enter a monitor that is currently in use by another process, the
secord process is delayed until the first process releases the monitor.

To impose or synchronise the cperation within a monitor most monditors
define a type of variable called a 'condition variable'. This is used
lto delay processes executing in a monitor. For instance, it may be
used to prevent a process from attempting to extract data from the
buffer before any has been inserted. It may be declared cnly within a

monitor,

If (c) is a condition variable then there are two operations that can
be applied to (c):

1) Wait(c): The calling process is blocked and is entered on a
queue of processes blocked on this condition, i.e have also
executed Wait(c) operations. Unlike semaphores we assume that
the queues are First In First Out (FIFO).

ii) Signal(c): If the queue for ¢ is not empty then wake up the

first process on the queue, otherwise continue (i.e invoker does
not returm from its monitor call).

29

Another approach to condition synchronisation has been implemented in
concurrent Pascal [14], using a slightly simpler mechanism. Variables
of type 'queue' can be defined and manipulated with the operations
'delay' (analogous to 'wait') and 'continue' (analogous to 'signal').
In contrast to condition varilables, at most one process can be

suspended on a given 'queue' at any time.

A number of other constructs for determining when a process should
delay or continue have been proposed {16,17]. In general these require
that a process accesses a monitor to evaluate an expression to
determine when to continue its operation, rather than waiting for an
explicit signal from ancother process.

Clearly the monitor is more complex than the semaphore. In practice it
would normally be implemented using a number of procedures, as follows
[(18]:

PROCEDURE InitialiseMonitor (VAR SharedResource :Monitor);
(* This allocates memory for the monitor *)

PROCEDURE InitialiseMonitorSignal(VAR Condition :MonitorSignal):
(* Thig initialises a monitor signal *)

PROCEDURE GainControl{VAR SharedResource :Monitor);
(* This allows a task to gain control of the monitor *)

PROCEDURE ReleaseControl (VAR SharedRescurce :Mondtor):
(* This defines that a task has finished with the shared resource *)

PROCEDURE WaltInMonitor (VAR SharedResocurce :Monitor;
VAR Condition :MonitorSignal);
(* This controls operation of the condition and priority queues *)

30

3.4.2 Nested Monitor Calls

Acquisition and release of exclusion leads to a problem when monitor
calls are nested. For instance, suppose that a procedure Procl of a
monitor Monl calls procedure Proc2 of monitor Mon2., If Proc2 contains
a "Wait' operation should mutual exclusion be released on both Monl
and Mon2, or Mon2 alone 7

Such nested monitor calls have caused much discussion [19,20,21,22].
There are, though, a mumber of ways to handie this prchlem:

i) Prohibit nested monitor calls completely as implemented in
SIMONE [23], or prohibit nested calls to monitors that are not
lexically nested, as implemented in Modula [24].

ii) Release the mutual exclusion on all monitors along the call
chain when a nested call is made and that process becomes

blocked.
iii) Define a monitor-like construct that allows the programmer to

specify that certain monitor procedures be executed concurrently
and that mutual exclusion be released for certain calls [25].

31

3.5 MESSAGE-PASSTNG SYNCHRONISATION FRIMITIVES

3.5.1 General

Message passing may be viewed as extending semaphores to cawey data
as well as to implement synchronisation. When message passing is used
for commmication and synchronisation, processes send and receive
messages instead of reading and writing shared variables.
Commnication is accomplished because a process, upon recelving a
message, cbtains values from sane sender process. Synchronisation is
accomplished because a message can be received only after it has been
sent. Two main issues must be discussed: specifying channels for
comunication, and message synchronisation. Both are discussed in the
following sections.

3.5.2 Specifying Channels For Camumication

A message is sent by executing:

'SEND' expression list
'TO' destination designator.

The message contains the values of the expression in 'expression list'
at the time 'SEND' is executed. The 'destination designator' gives the

programmer control over where the message goes. A message is received

by executing:

'RECEIVE' variable list
'FROM' source designator.

Where 'variable list' is a list of variables. The 'source designator’

gives control over where the message came from. Receipt of a message

32

causes, first, assignment of the values in the message to the
variables in the 'variable list' and, second, subsequent destruction

of the message.

Destination and source designators define together what is called a
'cammunication channel'. Various schemes have been proposed for naming
channels. The simplest chamnel-naming scheme is for process names to
serve as source and destination designator. We refer to this type as
'direct naming'. Thus:

'SEND' value 'TO' consumer

sends a message that can be received only by the 'consumer' process.

Similarly,
'RECEIVE' value 'FROM' consumer
permits receipt only of a message sent by the 'consumer' process.

Direct naming uses a one-to-one commumnication scheme. It makes it
possible for a process to control the times at which it receives
messages from each other process.

Two processes cammmicating through message-passing could have the
following form:

Process Producer:
VAR: Declarations of variables;

begin
loop

33

code to implement 'producer';
'SEND' value 'TO' consumer
end
end;

Process Consumer;
VAR: Declarations of variables
begin
loop
code to implement 'consumer';
'RECEIVE' value 'FROM" producer
end
end;

An important patterm for process interaction is the 'client/server!
relationship. 'Server' processes render services to 'client'
processes. A client can request that a service be performed by sending

a message to one of these servers.

Unfortunately, direct naming is not always suited for client/server
interaction since more than one 'receive' has to be required for
different clients, i.e the relation is MANY clients to ONE server (N-
to-ONE).

A more sophisticated scheme for defining commmnication channels is
based on the use of 'global names' sometimes called 'mailboxes'.

A mailbox can- appear as the destination designator in any process
'send' statements and as the source designator in any process

'receive' statements. Thus messages sent to a given mailbox can be

34

received by any process that executes a 'receive' naming that mailbox.
This method, therefore, uses an N-to-N cammmnication scheme.

A mailbox is well suited for programming client/server interaction.
Clients send their service request to a single mailbox; servers
recelve service requests from that mailbox. Unfortunately,

implementing mailboxes can be quite difficult.

A speclal case of mailboxes occurs when a mailbox name appears as the
source designator in 'receive' statements in one process only. This is
called a 'Port' [26]. This is an N-to-cne commmication scheme. Ports
are simple to implement, since all ‘receives' that designate a port

occur in the same process.

Finally source and destination designators can be fixed at compile
time (called static channel naming), or they can be computed at run
time (called dynamic chammel naming). Static channels are widely
implemented.

3.5.3 Synchronisation
General

Communication aspects may be divided mainly intco 'Synchronous

camunication' and 'Asynchronous coammmnication' [3,12,27].

a) Synchronous Caomunication

Synchronous commmnication is best understood from the perspective of
the sending process. When the sending process, the synchronous sender,
transmits a message to a receiving process, it waits until the
receiving process responds with an acknowledgement that the message
has been received (in the case of a synchronous receiver) or until the

35

receiving process explicitly returns fram performing its task (in the
case of a remote procedure call).

b) Asynchronous Comumication

In simple terms, asynchronous communication is message exchange

without acknowledgement, i.e no-wait send [28]. After sending a
message, the sending process continues executing; it does not wait for
the receiving process to respond. Furthermore the receiving process
does not issue an acceptance. Because message exchange is not
synchronised, commmication requires buffering for messages that have
been sent but not received. This buffering capability may be provided
by the interconnection network or by specially designed receiver
software.

Asynchronous commnication provides a high degree of concurrency since
the sender need not wait for the message to reach the receiver or for
message acknowledgement. It also reduces message traffic. The drawback
of the method is the need to provide message uffering facilities.

Distributed programming languages do not nomally directly support
both forms of commmication; system designers prefer to minimise the
required language features. An exception is the language SR [29],
which provides mechanisms for both synchronous communication and

asynchronous cammumnication [27].

36

3.6 ' OPERATTON-ORTENTED ' SYNCHRONISATION METHODS

3.6.1 General

To programme client/server processes that reside in different
processors, higher level message constructs have to be used. Message
passing primitives may be utilised to build such higher level message
constructs in distributed programs [3,12]. Consider, for instance,
where a client needs to 'call' a procedure for execution on a remote
processor. This is done by interacting with the server processes using
message communication techniques (SEND of message followed by RECEIVE
of results). At the remote site the 'call' message is received by a
server process (using RECEIVE), interpreted (procedure execution), and
the results sent back (using SEND) to the calling client process
(30].

3.6.2 The Remote Procedure Call (RPC)

When remote procedure calls are used, a client interacts with a server
by means of a call statement. This statement has a form similar to
that used for a procedure call in a sequential language:

CALL 'Service' (value-arguments; results-arguments) where 'Service'
is the name of a chamnel.

A remote call is executed as follows: the value arguments are sent to
the appropriate server (CALL message, Fig. 3.9), and the calling
process delays until bc;th the service has been performed and the
results have been returned and assigned to the result arguments
(Result message, Fig. 3.9). Thus such a 'call’' could be interpreted or
seen as a SEND inmediatelﬁr followed by a RECEIVE. The client waits for
the results of the requested service.

37

The SERVER side of a raemote procedure call could be specified as a
declaration (like a procedure in a sequential language), this is shown

as follows:

'Remote Procedure' Service
('IN' value-parameters:
'OUT' results-parameters)

S ks S e ke e s e

Note that the procedure arguments are optional. Variables can be
declared as being for input (IN) or output (OUT). Such a procedure
declaration is implemented as a process. This process, the server,
awaits receipt of a message from some calling process, executes its
body, and then returns a 'reply message' containing the values of the
results parameters. A remote procedure declaration might be
implemented as a single process in which case 'calls' to the same
remote procedure would execute sequentially [29]. Alternatively, a new
process can be created for each execution of 'call' [31,32,33]; these
could execute concurrently and implement mutual exclusion where

necessary.

3.6.3 Rendezvous

A rendezvous [34] is a technique for enforcing synchronisation and
message communication between two tasks. Exactly two tasks may
rendezvous at once; a client (here called a caller) and a server. The
caller calls an entry (the name of the rendezvous) in the server. The

38

server, when it is ready to do so, issues an ACCEPT statement to
receive the call (Fig. 3.10). If the caller calls an entry for which
the server has not as yet issued an ACCEPT, then the caller waits
until the ACCEPT is issued. If the server issues an ACCEPT for an
entry that the caller has not as yet called, then the server waits (at
the ACCEPT) for the caller to call the entxy.

When a call has been accepted, the rendezvous occurs. The caller
passes data to the server through parameters in the entry call. The
data are processed by the statements within the ACCEPT statement body.
Results, if any, are passed back to the caller through the entry

parameters.

The caller waits while the server executes within the ACCEPT
statement., When this processing is complete, parameters are passed
back to the caller, the rendezvous ends, and the caller and server
tasks resume independent operation.

Cne interesting aspect of the rendezvous is that the caller must know
of the existence of the server and the varicus server entries. But the
server accepts calls from any caller. Many callers may attempt to call
one server. In this sense, the rendezvous is asymmetric (as in the

case of Ada [34]).

Mutual exclusion is guaranteed by underlying system mechanisms; only
one caller at a time may rendezvous with the server. Other callers
attempting a simultanecus rendezvous are kept waiting. Synchronisation
of the tasks is implicit during the rendezvous. After a rendezvous,
any waiting callers are processed first-came-first-served. The ACCEPT
construct in the server side takes the following form:

39

ACCEPT Service ('IN' value-parameters;
'COUT' result-parameters)

Note again that the ACCEPT arguments could be declared as input 'IN',
or cutput 'OUT'. The statements within the ACCEPT...END are assumed to
be a critical section and are executed in a mutually exclusive manner.
They would normally be executed by the server process (here called
task). The ACCEPT statement represents an entry point (the name of the
rendezvous) and the calling task specifies the name of the entry point
when it wishes to synchronise with the server task.

TASK A;
VAR X:ADataltem;
BEGIN

TASK B;
VAR Y:ADataItem;
BEGIN
ACCEPT Transfer ('IN' item:ADataitem);
s=item;
END;
END;

40

In the above example task A wishes to pass information held in
variable X to a variable Y in task B. The actual data transfer takes
place using the normal parameter passing mechanisms: the actual
parameters supplied in the call, in this case the wvariable X, are
bound to the formal parameters of the ACCEPT statement, in this case
'item'. The synchronisation of the two tasks is obtained by the
requirement that the procedure call entry, B.Transfer (X), cannot be
completed until the corresponding 'ACCEPT Transfer' is executed.
Conversely, the execution of the ACCEPT statement cannot be campleted
until the entry call is executed. The actual transfer is completed
within the body of the ACCEPT statement; in this case the data
supplied by the entxry call is transferred to a variable which is

local to task B.

Guarded caommand coommication

It is possible to have a 'SELECTive-communication' form in the
receiver side of a message, i.e the server side [27]. In a 'selective-
comunication' statement, a 'guarded comand' has the form [35]:

SELECT
WHEN condition 1 ----> ACCEPT entry 1 DO statements END;
other statements
OR
WHEN condition 2 ----> ACCEPT entry 2 Do statements END;
other statements
ELSE statements
END SELECT;

41

The SELECT statement allows cne to select between several alternatives
separated by OR. The alternatives are prefixed by WHEN clauses called
'gquards'. The guards are boolean expressions which establish what
conditions must be true for an altermative to be a candidate for
execution. If there are open altematives (conditions true) then an
ACCEPT statement is chosen for execution, possibly with a process
currently waiting for a rendezvous. If, however, there are several
open alternatives with processes waiting for rendezvous, the selection
among them is done arbitrarily. The ELSE clause is executed in the
case of no open altermatives or no walting processes.

The difference between the SELECT statement and an IF statement is
seen in the case that both guards are open (conditions true). Then if
both tasks (e.g. a consumer and a producer) are waiting for a
rendezvous, it 1s immaterial which rendezwvous is executed. An IF
statement, however, must specify which statement is to be executed in

this case.

This is the essence of the 'quarded commands' style of programming. It
avolds over-specification (as in an IF statement) by allowing the
computer as much freedom of choice as possible consistent with the
correctness requirements of the program.

3.6.4 Messages in Distributed Systems

Two types of messages can be implemented in a distributed system; E-
mode messages and T-mode messages [36] (Fig. 3.11):

i) E-mode messages refer to message transactions between various
modules (data and procedures) of a user program confined to the
same processor (intra-processor cammnication). These normally

take the usual message form, as described earlier:

42

ii)

'SEND' data 'TO' module B
'RECEIVE' data 'FRCM' module A
where modules A and B reside in the same processor.

T-mode messages refer to messages exchangeci between the
operating systems of two different nodes (inter-processor

cammmication), These might take the form:

'SEND' (data, module B at node Y)

'RECEIVE' (data, module A at node X)

where module A at node X, is sending 'data'’ to module B at node
Y.

43

DISPATCH
BLOCK

WAKE UP

I Fig. 3.1 PROCESS STATE TRANSITIONS

44

Fig. 3.2 THE °FORK’ and ’JOIN’ STATEMENTS

45

9%

BEGIN

COBEGIN®

END

Fig. 3.3 THE ’COBEGIN’ STATEMENT

FOREGROUND
PROGRAM
CALL+0
SUB-ROUTINE
(Alphal. EXECUTE
| SUB-ROUTINE
~ RESUME RETURN TO

FOREGROUND POINT OF CALL
PROGRAM \

CALL AGAIN {
(TAﬂ i‘;?’ROUT'“E EXECUTE
P SUB-ROUTINE
RETURN TO
RESUME POINT OF CALL

FOREGROUND
PROGRAM

FOREGROUND

PROGRAM

{Process)

STOP

FOREGROUND

PROERAM

égfggﬁﬁm /EXEJEUTE CODE

(Beta) OF Beta
STAP AT
POINT X
ACTIVATE

RESUME FOREGOUND

FOREGROUND PROGRAM

PROGRAM \!

5 .

STOP

FOREGROUND

PROGRAM

< RESUME CODE

ACTIVATE EXECUTION AT

CO-ROUTINE POINT X

{Beta)
STOP AT
POINT Y
ACTIVATE

RESUME FOREGROUND

FOREGROUN PROGRAM

PROiRAM

Fig. 3.4 SUBROUTINES v’s COROUTINES - CONCEPTUAL DIFFERENCES

47

Fig. 3.5 TASK COMMUNICATION WITH 'SEMAPHORES'

48

PROCEDURE - ORIENTED

BUSY - WAITING

SEMAPHORE

CRITICAL REGION

MESSAGE PASSING

l

MONITORS

REMOTE
PROCEDURE CALL

OPERATION - ORIENTED

Fig. 3.6 SOFTWARE METHODOLOGIES

49

MESSAGE - ORIENTED

SHARED
PROCESS BUFFER

PROCEDURE
‘RECEIVE'

PROCESS

&Y

PROCEOURE
'SEND’

l Fig. 3.7 MONITOR STRUCTURE |

50

19

Fig. 3.8 THE "MONITOR’ CONCEPT

[4°]

’CALLING PROCESSOR’

Process

Transmit

}

Wait

}

Recelve

CALL’ Message

’RECEIVING PROCESSOR’

'SERVER’

Result’ Massagsd

Recelve Call __l
Execute
Transmit _J
Return

Fig. 3.9 REMOTE PROCEDURE CALL (RPC) - IMPLEMENTATION

Entry Call

Call-Message

ACCEPT

Return Message

Rerurn /

I Fig. 3.10 RENDEZVOUS TRANSACTIONS

53

Fig. 3.11A E - MODE MESSAGE

Fig. 3.11B T - MODE MESSAGE

54

'CHAPTER 4

CHAPTER 4
A MULTI-PROCESSOR STRUCTURE TO SUPPORT FUNCTICNAL PARTITIONING

4.1 SYSTEM OVERVIEW

Real-time, multi-processor, embedded systems are one application area
where response times, throughput, reliability and fault-tolerance
constitute the major design criteria [1]. Hence the distribution and
management of the application software is a critical function.

A prototype locsely-coupled multi-processor system has been designed
and implemented for use in fault-tolerant real-time applications. This
chapter discusses the organisation and structure of the total system,
highlighting in particular the software requirements of the
communication and executive (real-time kernel) functions. The
comunication system is based on a token passing bus protocol for use
with single board camputers comnected via a fast parallel bus. The
real-time kernel is designed to support functiomal partitioning of
application programs, and can be implemented using standard compilers.
No special multiprocessing features are required. Most of the software
for this system has been written in the structured, high level,
language Modula-2 though assembly language programming has been used

in a few specialised areas.

55

4.2 FUNCTICNAL DESCRIPTION

A prototype loosely-coupled multi-processor system has been designed
and implemented for use in fault-tolerant real-time applications
[2,3]. It is camposed of stations (nodes) linked together through a
ccmmunication bus (Fig. 4.1). Each node consists of two sections:

* The main processor (or 'processing') section. This holds the
application programs and the functional kermel.

* The communication section. This provides the interface between
the processing section and the commmication bus.

a) Processing Section

In the multi-processor concept described here, no assumptions are made
about the structure of the main processing block. However, to support
a distributed caomputing system, each processing section must have its
own memory and I/0 devices (Fig. 4.2). All application software and
supporting programs run within this area. It is isolated fram the
system (backplane) bus, having nothing to do with communicaticon
control. Each processing section merely interchanges information with
its own communication section, bus access being a transparent

function.

b) Communication Section

The main function of the communication section is to handle all
communications activities within each station. It isolates the
processing section from fhe system bus, providing a transparent
interface for message transaction within the system. Thus it removes a
considerable burden, both in terms of software and time, from the main
processor. The cammmication section has five modes of operation:

56

* Bus transmission: transfer data to the system bus.

* Bus reception: receive data from the system bus.

* Internal transmission: transfer data to the processing section.
* Internal reception: receive data from the processing section.

* Idle: No processing, ready to respond to data transfer requests.

Fig. 4.2 describes the communication section in functional block
diagram form. It consists of a number of subsystems among them are;
transmission/reception control logic, a temporary storage RAM, and a
rumber of data holding buffers.

4.3 INTER-PROCESSOR COMMUNICATION

Camumication between processing sections is performed using message
passing techniques based on token passing. Basically the method allows
a series of bus comnected units ('stations') to camunicate as a ring
structure. Such a situation is shovm in Fig. 4.3, where a number of
stations, each one having a unique address, are coupled to a shared
bus. The right to use the bus is transferred from station to station,
thus forming a logical ring. When a station has this right it is said
to hold the 'token'. At any given time one station, and only one
station, holds the token, and is obligated to pass it on when finished
with it, Each station can hold the tocken only for a limited period of
time. This means that the maximm time taken by the token to traverse
the network is defined, i.e., access to the system bus is

deterministic.

57

For the system to function correctly each station must be in
possession of three addresses: the preceding station (previous station
- PS), the succeeding station (next station - NS) and its own (this
station -TS). Station numbers d not need to be contiguous. This
feature simplifies the tasks of adding and removing stations without
re-arranging established addresses.

There is a substantial software complexity in the token bus system,
particularly with regard to ring configuration and maintenance. To
acquire station address information, a rigorous configuration process
is required. Once the ring is formed it has to be maintained.
Facilities are needed to allow new stations to enter the ring and to
cater for station drop-out. Drop-out (station exit) can occur for two
reasons: either as part of normal coperations, or as a result of a
failure. In either case, the ring must be reconfigured to accommcdate

the changes.
The token passing method has three major features [4]. It is:

* A fair access system, The method is fair; it offers each station
an equal share of the bus.

* Reconfigurable: The method handles addition and deletion of
stations easily, without any modification of the existing
hardware or communication software (the protocol).

* Deterministic: The method provides computable, deterministic,
worst case bounds on access delay for any given network. This
feature is essential in real-time systems where system response
time must be guaranteed.

58

4.4 OPERATING SYSTEM SUPPORT-THE DISTRIBUTED PROGRAM KERNEL

4.4.1 General

Generally speaking, operating systems for multi-processor networks can
be classified as either network or distributed operating systems. In a
network cperating system each camputer or station has its own private
operating system. The different private operating systems are then
augmented with communication facilities to permit interaction and
communication with the other systems in the network [5]. Network
operating systems are commonly used to connect spatially or
geographically dispersed systems. The ARPANET [6] is an example of a
network operating system.

A distributed operating system, however, is one that locks to its
users like an ordinary centralised operating system but runs on a
multiple processor system. The key concept here is transparency. In
other words, the use of multiple processors for the implementation of
the operating system should be transparent to the user {7]. These
operatirg systems are suitable for loosely or tightly coupled multi-
processor networks. Examples of distributed operating systems are MOS
[5], and Medusa [8].

In this section, however, we propese another category of operating
systems-kemels that support multi-processor, real-time systems, a

'Distributed-Program kermel' [2,3].

4.4.2 Distributed-Program Kernel

In a multi-processor environment an application task, such as process
control or robotic application, is partitioned into a set of co-

operating sub-tasks (processes). Each node of the system may be

59

allocated a single sub-task. In some cases a mumber of sub-tasks may
be assigned to one specific node. Processes residing on different
processors execute in a true concurrent fashion; processes allocated
to the same processor, however, execute in a quasi-concurrent mede.

The software design and support of a such a functional distribution of
sub-tasks (processes) depends on the degree of interaction of these
processes among the different nodes. Distributed processes, however,
have to commnicate and interact occasionally in order to achieve a
cammon goal [9,10]. In real-time applications this interaction has to
take place within quite specific timescales otherwise unsatisfactory
results might take place.

Management and interaction of distributed processes is achieved by a
kernel; it is usually termed a 'Distributed-Program Kernel'.

Unlike many scientific and commercial applications, the Kkernel
described here is not intended to support fragmented programs.
Instead, the basis of the design is that of functional partitioning.
Further, a major primary objective is to implement the kernel using
standard campilers, i.e those designed for uni-processor systems. A
second major objective is to build the kemel infrastructure using the
standard constructs of Modula-2.

In the design of the kernel we are very much concerned with
predictability of performance. Morecover, reliability of operation is
paramount [11]. The kernel is structured as a set of primitives,
replicated, if necessary, on various nodes. This provides a virtual
machine in which processes allocated to different processors are

executed concurrently. These processes cooperate and synchronise

60

themselves by means of message-passing. On the other hand, the system
inside each node is viewed as a collection of cooperating sequential
processes that share comeon data. Processes in each node synchronise
and camunicate through message-passing constructs.

4.5 PROGRAMMING LANGUAGE ISSUES - MODULA-2

4.5.1 General
The choice of a 'good programming' language plays a major role in the

design requirements of real-time computations, operating systems,
etc..[12]. In fact some of the primitives that are essential to the

design of such systems are implicitly found as built-in constructs
within high lewvel, stxuctured, languages such as Modula-2, 2da, and
C. Other facilities, however, still have to be implemented when needed
(e.g., generics , message-passing constructs, exception handling,

ete.).

Mixed language techniques have been used before to implement these
constructs efficiently. Nevertheless, currently popular real-time
systems are implemented totally using a single structured, high level,
language [5,8].

The following requirements have been identified as basic for providing
a sound language-based programming erwvircmment for real-time systems:

* The language primitives (i.e. main language instructions or
operations) must be small, simple, and well defined.

* Both procedural and data abstractions must be available.

* Separate campilation must be allowed.

61

* High level access to absolute addresses and interrupt handling
facilities must be available.

* Concurrency features and constructs should be inherent in the
language in order to allow multi-tasking and concurrent
programming [13]. This effectively minimises task execution time,
utilises more efficiently the camputer hardware, and hence gives
shorter response times.

Modula-2 satisfies all these requirements. In fact, an assesament of
several concurrent programming languages shows that Modula-2 appears
to be among the best languages for real-time programming [12].

Recent assessments consider Modula-2 as 'inherently more secure' than
Ada, C and Pascal [14]. Still, however, Pascal, C and Ada constitute a
great challenge that Modula-2 has to face, especially in the 1990's
(15]. What follows ig a brief assessment of its competitors.

4.5.2 BAssessment of Cametitors
a) C language: C has few intrinsic strengths other than its low

level programming facilities. One particular strength is the
ability to exploit target architectures, and for the low

overhead imposed by C run-time systems for embedded
applications [15]. C, however, was not designed as a software
engineering language. Using C, we cannwot 'hide' structures nor
have modules, nor are there facilities to compile individual
segments [16]. Moreover, there are no concurrent programmiryy
facilities (that was subsequently added by C++ [17], discussed
later). Moreover, as every procedure in C is global to the
whole program, there is no protection from mis-use for

variables (side effects) [18]. Finally, analysis tool support

62

b)

is poor and attempts are being made to legislate against its
use in safety critical software [15].

Pascal: Pascal has the virtue of being small and well
understoocd. It is the almost-universal pseudocode of camputing.
It has a rich range of supporting tools and high quality
implementations. On the negative side, howewver, Standard Pascal
is too small and restrictive for many. It does not have thse
type-secure separate campilation facility of Modula-2 and Ada.
Strangely, Pascal is also let down by the lack of validated
cross-canmpilers; hence, there are problems in fully exploiting
target architectures.

Ada: Ada, on the other hand, was designed to include all the
above requirements. In fact, it was designed with operating
systems features as an integral part of it. Ada probably
represents the biggest challenge to Modula-2 in the long term;
especially as the number of compilers (even for personal
camputers) continues to grow. However, its size and complexity
have been a cause of concern. The code size tends to be large,
complex and, in some cases, very slow [11].

4.5.3 Possible Caompetitors of the Fuhwre

This is a difficult category to speculate about. However, there is a

great interest shown up lately in languages like C++ and variants of
Pascal with a corresponding interest in object-orientated programming.

C++ is a special case, because of its relationship with C. We can

cbhserve C++ to C translators enabling the language to spread rather
quickly. In fact, a nunber of software houses claim to be convinced of

the benefits of developing applications using object-orientated

63

methods [15]. Despite the fact that C++ does not meet many of the
requirements ocutlined above, nor is there a large supporting tools or
libraries; Modula-2 is challenged by the object-crientated programming
languages like C++ and variants of Pascal.

4.5.4 Vhy Modula-2
In this research programme, Modula-2 has been chosen for a number of

reasonss:

* The relativ_e simplicity and flexibility of the language.

* Its wide avallability on most micro-computers, at low cost [19].

* Its good execution speed and memory requirements (efficiency).

* Its good support for software development and building systems
through the use of modules and process abstractions [20,21].

* Inbuilt device and interrupt handling facilities.

* Inbuilt low level (machine access) facilities.

* Inbuilt support for quasi-ceoncurrency (this facility has been
imitated precisely, in a recent project, in C [22]).

64

PROCESSING
SECTION

(A)

COMMUNICATION
SECTION

(A)

Fig. 4.1 SYSTEM CONFIGURATION

65

(W31SAS) NOLLVOINNWWOD

SYSTEM BUS

i COMMS SECTION

PARALLEL BUS
DATA HOLDING BUFFERS

MICROPROCESSOR-BASED
TRANSMISSION / RECEPTION
CONTROL LOGIC

TEMPORARY
STORAGE RAM

MAIN PROCESSOR

DATA HOLDING BUFFERS

PROCESSING
SECTION

Processing-
Section Bua

PROCESSING L /0

MEMORY :
CcPU ;_ DEVICES

Fig. 4.2 MULTIPROCESSOR NODE - FUNCTIONAL STRUCTURﬂ

66

L9

LOGICAL RING

—/

STATION
(NODE)

IFig. 4.3 TOKEN PASSING ON A LOGICAL RING

CHAPTER 5

CHAPTER 5
MULTI-PROCESSOR SYSTEM = HARDWARE STRUCTURE

5.1 OVERVIEW

A reconfigureable, loosely-coupled, multi-processor system has been
implemented for use in fault-tolerant, real-time applications. Each
processing unit (station) consists of a single board camputer. The
camunication and processing tasks are decoupled on each board, a
separate processor being dedicated for each task., It uses a fast,
single shared, parallel bus for commmnication between these tasks, bus
control being fully distributed. Each station has two main blocks
(Fig. 5.1), a cammunication section and a processing section. The
functions of each block are described fully in Appendix A.

5.2 SYSTEM INTERFACING

There are two interfacing stages within each station. First each
station has to manage the flow of information sent over the system
bus; secondly, within each station, data exchange hetween the
processing section and the commmnication section must be supervised
and controlled.

Interfacing and data transfer is designed to be fast and simple,

being organised as follows (Fig. 5.2);

68

a) System bus interfacing: A total of 16 lines are used on the
backplane bus (see Table 5.1). These consist of;
* Four address lines (SS0-S53)
* Eight data lines (DO-D7)
* Four control lines (START, BUSY*, SWRT*, and SSS*)

Four address lines are required to address up to sixteen stations
in the network. The four control lines (see Table 5.1) are needed
to;

* Synchronise the start operation for token bus construction
(START).

* Hold a station from transmitting data when the recipient
station is still busy (BUSY*).

* Inform other stations that a particular station wants to
transmit a data message over the system bus (SSS*).

* Control data transfer over the system bus between transmitting
and receiving stations (SWRT*).

For critical systems where fault degradation must be gradual,
single point failures need to be eliminated. In a bus-based
‘processor system the bus itself (and its associated
drivers/receivers) give rise to such a situation. Hence in such
application the bus must be duplicated. By using a simple
structure such as the one devised here the backplane bus may be
replicated at a relatively low cost for use with standard Eurocard

size backplanes.

69

b) On-Board Interfacing (OBI): This is the interface within each
station between the processing and comumication sections. A total
of fourteen lines are used within this interface (see Table 5.2).
These consist of;
* Eight data lines (DO-D7)
* Six control lines (MAINCS*, MAINWR*, MAINRD*, DMAREQ*, DMAD,
and DMA1)

This interface gives the processing section the right to access
the caommmnication section's temporary storage RAM. It enables the

processing section to:

* Access the cammunication section's temporary storage (MAINCS*)
for a read operation (MAINRD*) or a write cperation (MAINWRY),

* Signal the comunication section (DMAREQ*) for a request of
data transfer (RDT) and to indicate the end of data transfer
(EDT).

All data is exchanged between the commnication section and the
main processing section using direct memory access (DMA)
techniques, The DMA controller is located in the main processing
section and generates the required control signals (read, write,
and chip select). Control of all data transfers resides with the
camunication section(DMAO and DMAL).

5.3 OOMMUNICATION SECTION

The communication sectiocn (Fig. 5.1) consists mainly of a network
control logic for transmission/reception of data, a temporary storage
RAM, and a rnumber of data holding buffers.

70

Fig. 5.3 shows a more detailed functional diagram of the commumnication
section, the main sub-systems being:

* Communication CPU.

* A serial interface.’

* Communication Support Mcdule (CSM).
* Temporary Memory Store (TMS).

* A watchdog timer.

* System bus buffers.

5.3.1 Commmication Processor

The sub-system is centred around a Hitachi 64180 processor [1,2] which
controls the operation of all the main sub-systems (CSM, temporary
storage, etec.). It consists of a 32K RAM and 32K EPROM memory space.
The address decoding based simply on the state of one of the address
lines (line Al5). An RS232 compatible serial interface is provided for
the comnection of a terminal or VDU. A line driver/receiver pair of
devices is used to boost the 64180's asynchronous serial port 1 to
RS232 levels.

5.3.2 Commmication Support Module (CSM)
The heart of the commmnications circuitry within this sub-system is

the CSM module (Fig. 5.4), based on Eraseable Programmable Logic
Device (EPLD) technology. This module, implemented using an Altera
EP1800 device [3,4], has a number of advantages over designs based on
discrete packages. The major cne 1s a substantial improvement in PCB
(Printed Circuit Board) camponent packing density.

The module provides a wide range of functions, as follows;

71

Chip select lines for the manory devices.

A series of registers for the control of the system bus by means of
the camunication processor,

Address recognition logic.

Timing and control circuitry.

On-board interfacing.

The major features are discussed below.

a)

b)

c)

Address recognition logic: The address recognition logic provides
the ability for a station to read its own address, as set on
selector switches on the carxrd. It also provides an automatic
recognition response when this station is addressed an the system
bus.

Timing control circuitry: The timing and control circuitry operates
in either one of two modes. In receive mode it takes the strobe
signals from the system bus and latches data into the scratchpad
RAM, When transmitting, it generates timing signals for both
cutputting the data from the scratchpad RAM and also strobing it
across the system bus (this action is performed under the control
of the commnication processor).

On-board interfacing (OBI): The six handshaking lines controlling
this interface (described earlier in section 5.2) make extensive
use of the CSM module (refer to Appendix A). For commnication
between the processing section and the scratchpad RAM, the
camunication processor's data bus is released (under the control
of the CSM module) and made available to the main processor. This
action is initiated by the commnication processor. The bus is

72

subsequently retumed either by receipt of an interrupt at the end of
the transfer, or by the reception of the station's address on the
system bus.

5.3.3 Temporary Memory Store (TMS)
From Fig. 5.5 it can be seen that a major component of the

cammication section is a temporary storage RAM area (usually called
a scratchpad RAM or ™S). This is used to store data messages from the
system bus and to hold data which is ready for transmission onto the
bus (Fig. 5.5). The device used, a TMS9650 dual port RAM [5], is shown
as two sections to differentiate between its two ports., Port A is used
with the processing section of the station (Fig. 5.6), while port B is
used for communication with the system bus.

Port A interface is shared by the commnication and main processor.
Each processor accesses this port of the TS via control and data
signals (controlled by the CsSM). Port B, on the other hand, is
camnected to the system backplane bus buffers. It is used to handle
the transfer of data into and out of the TMS. Information is
transmitted and received in byte serial form, the ™S being used as a
temporary store for this information. Port B has three modes of
cperaticn; idle, transmit, and receive (refer to Appendix A for full
details).

The communication processor controls the access to both sides of the
RAM, these being mutually exclusive. Normally access to port A is
given over to the commmication processor but is transferred to the
main processor when it wishes to read or write to the scratchpad RAM.
The actual control of the transmission and reception of data is

performed by the transmission control logic, which is controlled from

73

the commnication processor (Fig. 5.5). Control of port B is given
over to the local (own station) control logic during transmission.
However, it is transferred to the remote control logic in reception
mode.

5.3.4 A Watchdog Timer
The watchdog timer circuit provides a mechanism for program recovery
in case of failure (program crash). The c:lrcm.t'(based on a monostable

device) is designed to be constantly retriggered by the software
before it times cut. If the system fails to function properly then
time-out ocours, and a non-maskable interrupt (NMI) is generated. The
resulting exception response is user defined; in this implementation a
program restart is initiated.

5.3.5 System Bus Buffers

This block includes the data and control buffers of the system
(backplane) bus. Their function is to ensure that all system bus
signals have the ability to drive the system bus and all devices
comnected onto it. These tri-state buffers are enabled only in
reception or transmission modes, their direction being determined by
the mode of operation.

5.3.6 Power-on Reset Circuitry
This circuitry provides a reset signal to the HD64180 microprocessor

after power-on and in response to a manual reset command.

74

5.4 PROCESSING SECTION

In the multi-processor system described here no assunmptions are made
about the structure of the processing sub-system. For some
applications a separate processor may not even be used (e.g. display
sub-systems). However, where the design is used to support a
distributed computing system each processing section will have its own
memory and I/0 devices. All application software runs in these sub-
systems. They are campletely isolated from the system bus, having
nothing to do with the communications activities. The processing
section merely interchanges information with the communication
section; moreover the transfer protocol is kept simple by using a
cambination of interrupt and DMA interfacing between the two sections.

The processing section (Figs. 5.7 and 5.8) consists of the following
main blocks:

* (CPU section.

* Memory.

* Serial coammmication.

* On-Board Interface (OBI).

5.4.1 CPU Section

The CPU section is based on the use of an Intel 80188 processor
together with an Intel 8087 numeric processor extension. An adwvanced
bus controller (82188) is included to provide 80188/8087 interfacing.
The complete CPU section is composed of:

* Microprocessor.
* Hardware maths unit.

75

a)

b)

c)

d)

e)

f)

Bus controller.
Address/Data buffers.
Power-on reset circuitry.
Single step control.

Watchdog timer.

Microprocesscor: Processing power is provided by an Intel 80188 high
integration 8-bit microprocessor [6], which includes the following
internal units:

i) Clock generator.

ii) Programmable interrupt controller.
iii) Programmable DMA controller.

iv) Programmable chip select unit.

v) Programable timers.

Hardware maths unit: Support for fast maths coperation is provided
by an 8087 numeric co-processor [7].

82188 advanced bus controller: This controller is included to
support 8087 interfacing with the 80188 [8].

Address/Data buffers: Buffers are included to increase the driving
capability of the address and data signals.

Power-on reset circuitry: This circuitry provides a reset signal to
the 80188 after power-on and in response to a manual reset command.

Single step control: A single step circuit is provided to allow for
initial hardware testing and de-bugging.

76

g) Watchdog timer: A watchdog timer is included to provide a means for
exception handling should program malfunction occurs.

5.4.2 Memory
The memory for the processing section consists of EPROM, static RAM

(SRAM) and optional dynamic RAM (DRAM) (mounted on a pilggy back
board). Various sizes of EPROM (from 16K to 64K Byta) and SRAM (from
2K to 32K Byte) may be used in this design. The main board (processing
section) currently uses the following configuration:

* One EPROM (size 8K byte) - used as a bootstrap.

* (One SRAM (size 8K byte) - used as a memory for the application
program's stack, data, and heap.

* One EPRCM (size 32K byte) - used for the application software.

5.4.3 Serial Conmmication
Two RS-232 campatible serial commmication chamnels are implemented
using a Dual Universal Asynchronous Receiver/Transmitter (DUART)

(Signetics 2681 [9]), together with appropriate line interface

circuits.

5.5 HARDWARE-SYSTEM OPERATION

From the hardware point of view, the station's cperation within the
system can be divided into three phases; power-up, initialisation, and
cperaticnal mode (i.e steady state). The initialisation sequence is
performed by a station after power-up or reset procedure, a steady
state or normal operational follows afterwards. The following sections
highlight the sequence of hardware operations during such phases.

77

5.5.1 Power—up
When an individual station powers—up, the communication section starts

up action first, holding the processing section in a reset state. This
is an essential point in order to ensure that the system starts up in

a safe mode. Only when the station has established itself in an

operational network is this reset action released.

5.5.2 Initialisation

This phase consists of setting-up both the communication and the

precessing sections in each station.

a)

Stage 1 -~ Communication section set-up (Fig 5.9): This consists of
two main stages; hardware initialisation and token bus

construction. Hardware initialisation consists of setting-up the:

* Communication processor.
* CSM module.
* Temporary Memory Store (TMS).

The communication processor set-up includes; the internal
registers, wait state generator, serial line interface, watchdog
timer, and the intermal timers and interrupts required by the
software. The CSM and ™S modules set-up consists of resetting and
initialising the internal mode registers of each module.

The second stage is the construction of the token bus. This is the

process whereby a number of bus comnected stations can commmnicate
as a ring structure (refer to chapters 4 and 6 for more details).

78

b) Stage 2 -~ Processing section set-up (Fig. 5.10). This mode starts
after the token bus has been constructed and the stations are set
in an operational mode. It consists of setting-up the Intemal
mode registers and units of the main processor (timers,
Interrupts, walt states, etc), the watchdog timer, the serial line

interface, the DMA channels for transmission and reception.

Finally it creates the program background process.

5.5.3 Operational Mode (Steady State)

When the network enters the normal operational mode, i.e the steady
state condition, data messages may be exchanged between stations and
task processing is performed by the system.

In an operational mode the commnicaticn section monitors the system
bus for any message broadcast and the processing section for amy data
transfer request. The system bus is given priority over the processing

section, in case of message reception.

5.5.3.1 Transmissiocn of a Message

To transmit a data message a sequence of operations takes place. In
the following discussion it is assumed that the token is currently
held by another node, while this node is preparing for message
transmission. The sequence of operations is given in a chronological
order (refer to Fig. 5.11). For simplicity, the processing and
camunication sections are abbreviated as PS and CS respectively:

* PS and CS are in operational mode, rumning background processes
(T0).

* PS requires to send a message; it sets chamnel for transmissicn
(T1).

* PS requests for data transmission - RDT (T2).

79

Request is received by CS (but no response).

PS resumes background process (T3).

A broadcast message is monitored and received by CS over the system
bus, hence no immediate response to PS request (T4).

CS responds to message request: sets scratchpad RAM area (TS).

CS generates DMA signal to start transfer (T6).

PS invokes data transfer to scratchpad RAM (T7).

PS sends an end of data signal (EDT) to CS at the end of transfer
(T8).

EDT signal is received by CS.

PS and CS resume background processes (T9).

CS receives the token (T10).

CS transmits the message across the network (hardware generated
signals are used to cutput data from the scratchpad memory and to
activate the bus buffers and bus control signals) (T11).

CS sends the token to its successor station (T12).

CS resumes background process (T13).

5.5.3.2 Reception of a Message

In case of message reception, chanmnel of the processing section is
already set for reception. Further, the comunication section monitors

the state of the system bus continuocusly. If it detects its own

address, or a broadcast address (address for all stations) it prepares

for a reception. The following steps are taken by both sections of the

recipient station (see Fig. 5.12):

*

PS and CS are in operational mode, ruming background processes
(TO).

CS monitors a system bus message (T1).

CS initiates the receive data routines for message reception (T2).
CS checks message and prepares for message transfer into the

processging section, in case of a data message (T3).

80

CS generates DMA signal to start transfer (T4).

PS invokes data transfer to scratchpad RAM (T5).

PS sends an end of data signal (EDT) to CS at the end of transfer
(T6).

CS resumes background process (T7).

PS starts processing received data (T8).

PS resumes background process (T9).

81

TABLE 5-1: SYSTEM BUS LINES

LINES

DESCRIPTION

DO-D7

SS0-8S3

SSS*

SWRT*

BUSY*

START

These eight lines form a data bus over which all traffic
between stations take place. The most significant bit is
D7.

These four lines carry the address of the station onto
which data is being transmitted. They are controlled by
the transmitting station.

This is one of the four lines used teo control the action
of different stations with respect to the data on the
address bus. This line indicates that an address is being
output by a station trying to transmit. When it is active
all stations should compare address lines to see if they
are being addressed.

This line acts as a write strobe. It is controlled by the
station transmitting a message and is used by the
receiving station to clock the data from the bus into the
scratchpad RAM.

This line is used in the synchronisation process at the
start of a transfer of a data frame. The line is
controlled by the station to which the data is being sent.
When a station wishing to transmit sends an address then
the addressed station holds this line active until it is
ready to receive the data. It then de-activates this line.

This line is only used during initialisation of the
system. After power up the logical ring must be formed for
token passing. This signal is used to synchronise this
action.

82

TABLE 5-2: ON-BOARD INTERFACE (OBI)

LINES

DESCRIPTION

DO-D7

MATINCS*

MATNWR*

MATINRD*

DMAREQ*

An eight bit data bus.

A chip select line from the processing secticon. When this
line goes active it indicates that the main processor is
reading or writing across the interface. This signal
should only be activated cnce the commmication processor
has indicated a start of transfer.

This line is used to indicate a write operation by the
main processor.

This line is used to indicate a read operation by the
main processor.

This line, pulsed by the main processor, is used both to
request a transfer of data and also to signal its
completion to the cammunication processor.

This line is set by the camunication section to indicate
that the processing section should start a transfer of
data. This can either be after a DMAREQ* signal from the
main processor or after a data frame has been received
from the system bus.

This is an alternative line used to indicate that the
main processor should start a transfer of data,

83

SYSTEM BUS

PARALLEL BUS
DATA HOLDING

TEMPORARY

STORAGE

DATA HOLDING

MAIN PROCESSOR

COMMS SECTION

PROCESSING
SECTION

Fig. 5.1 FUNCTIONAL BLOCK DIAGRAM of a STATION|

84

SYSTEM BUS

SWRT* START S8SS§* BUSY* DATA ADDRESS

DATA

MAINCS*

MAINRD*

MAINWR*

DMAREQ*

S8

DMA 0

DMA 1

Fig. 5.2 SYSTEM INTERFACING

VDU

SNd WHILSAS

[Fig. 5.3 THE COMMUNICATION SECTION - DETAILED STRUCTURE)|

86

L

SYSTEM
BUS

COMMS
Ccru

Fig. 5.4 COMMUNICATION SUPPORT MODULE (CSM)

87

88

Fig. 5.5 STATION CONFIGURATION

SNd WNWHLSAS

68

RECEPTION TRANSMISSION
STCRAGE STORAGE
AREA AREA

PORT B

D e

{1 SYSTEM BUS

PORT A

_ |scraTcuPAD MEMORY |

Fig. 5.6 BLOCK DIAGRAM OF THE SCRATCHPAD MEMORY (TMS MODULE)

06

SYSTEM BUS

COMMUNICATION
SECTION

PROCESSING SECTION |

CPU BUS

MAIN CPU

1/0

DEVICES

MEMORY

Fig. 5.7 PROCESSING SECTION - OVERALL STRUCTURE

L6

CPU SECTION

MEMORY SECTION

ADDRESS

BUS >

DATA BUS

r

CONTROL

Fig. 5.8
THE PROCESSING SECTION - DETAILED STRUCTURE

BUS

SERIAL
COMM.

RS 232

CONTROL DATA SIGNALS

NODE A

SYSTEM BUS

COMMS SECTION

CHANNEL 0

PROCESSING
SECTION

Fig. 5.9 INITIALISATION - STAGE 1

£6

NODE A

PROCESSING

COMMS SECTION

SECTION

CHANNEL 0

READY FOR

TRANSMISSION

CHANNEL 1

READY FOR

RECEPTION

Fig. 5.10

INITIALISATION - STAGE 2

SNd WHLSAS

|

PROCESSING SECTION |COMMUNICATION SECTIONI

TIME
RUNNING BACKGROUND | 1o RUNNING BACKGROUND PROCESS
PROCESS

REQUIRE TO SEND T1
MESSAGE - SET
CHANNEL FOR

TRANSMISSION
, T2
SET REQUEST FOR
DATA TRANSMISSION |
(RDT) REQUEST RECEIVED
RESUME BACKGROUND | T3
PROCESS T4 | BROADCAST MESSAGE RECEPTION
T5 | RESPOND TO (PS) MESSAGE
REQUEST - SET RAM STORAGE
AREA
T6 |
GENERATE DMA SIGNAL TO
INVOKE DATA TRANS- + START DATA TRANSFER
FER TO SCRATCHPAD
RAM
SEND END OF DATA ' TT
SIGNAL (EDT)
SIGNAL (EDT) RECEIVED
RESUME BACKGROUND |T8 T8 | RESUME BACKGROUND PROCESS

PROCESS
T9 RECEIVE THE TOKEN

T10 | TRANSMITT PROCESSING SECTION’'S
MESSAGE

T11 | SEND TOKEN TO SUCCESSOR

T12 | RESUME BACKGROUND PROCESS

Fig. 5.11 TRANSMISSION OF A MESSAGE

94

I PROCESSING SECTION I

RUNNING BACKGROUND
PROCESS

INVOKE DATA TRANS-

FER FROM SCRATCHPAD
RAM

SEND END OF DATA
SIGNAL (EDT)

PROCESS RECEIVED
DATA

RESUME BACKGROUND
PROCESS

TS5

T7

T8

TIME

TO

T1

T2

T3

T4

Té

I COMMUNICATION SECTIONl

RUNNING BACKGROUND PROCESS
MONITOR A BUS MESSAGE

INITIATE RECEIVE ROUTINES
FOR MESSAGE RECEPTION

PREPARE FOR DATA MESSSAGE
TRANSFER INTO PROCESSING

SECTION

«— ¥ GENERATE DMA SIGNAL TO

START DATA TRANSFER

SIGNAL (EDT) RECEIVED

RESUME BACKGROUND PROCESS

Fig. 5.12 RECEPTION OF A MESSAGEJ

95

CHAPTER 6

CHAPTER 6
MULTI-PROCESSOR SYSTEM - OOMMUNICATION SOFTWRRE

6.1 SOFTWARE REQUIREMENTS

As stated previocusly, the main function of the commmication section
is to support system commumnication activities. Its functions, at a
detailed level, are to:

* Establish address informaticn.

* Support all commmication access functions of the network.

* Perform memory management of a fast message buffer (the
scratchpad RAM).

* Control data exchange with the processing section.

These tasks are implemented mainly in software through the use of a
communication protoccl. The protocol controls and coordinates
information flow between the processing section of a station and the
system bus.

The communication scoftware is designed in a modular, structured
manner, being implemented using the Jackson Program Design Facility
(PDF) package. The core element of the comunication section is a
Hitachi 64180 processor, which includes 280 code as a sub-set of its
instructions. Programs for this were developed using the FTL
campiler, the application software being programmed into EPROM. A
description of the program modules and their corresponding diagrams is
fully shown in Appendix C,

96

6.2 DESIGN TECHNIQUES

There is a major difference between getting a program to work and
getting it right. Thus, it is very important in the development of
reliable software to have a camplete and correct understanding of what
the system is expected to carry ocut. The design method used to conwvert
the specified requirements into software code also affects the
reliability of the software [1].

The basic software design method used here 1s that of structured
design [2], a technique which contains the merit of both Top-Down

design and Modular programming [3].

Structured design is a technique that significantly increases the
reliability and readability of program, while decreasing the required
testing of such programs. It is a set of concepts amd guidelines whose

purpose is to reduce cost, time and effort in developing and

maintaining computer programs.

Diagramming techniques are used throughout the software design
described here, sgpecifically that based on the Jackson Structured
Procgram technique (JSP) [4]. Each program structure diagram (e.g. Fig.
6.3) is read from top to bottom to obtain more detail on program
activities and from left to right tc get the time sequences. Such
techniques are excellent at describing what needs to be done rather
than how it should be carried out. Furthermore, sections can be added
or removed as the work proceeds without disturbing the rest of the
diagram. This greatly assists programme development and modification

activities.

97

The Jackson chart is constructed to describe the software to a
specific level of detail. The lowest levels represent simple functions
that can be translated into program format. Generally the recommended
control structures of structured programming have been used in the
writing of the program source code.

JSP can be automated using software packages such as the Jackson
Program Design Facility (PDF) [5]. These can be used to construct
program structure diagrams (PSD); from these code may also be
automatically generated if suitable code generators are available
(unfortunately not for Modula-2 at the present time). In the system
implemented here the PDF package was used to construct PSDs and the
program control structure. These diagrams were subsequently used to
write the program code. It can be seen (Appendix C-software diagrams)
that, at the lowest levels, there is a one-to-~one correspondence

between the diagrams and the code.

6.3 IMPLEMENTATION OF THE COMMUNICATION PROTOCCL

6.3.1 Softwvare Module Structure - Overview

The communication software (protocel) code is implemented in a

mocdular, structured way using Modula-2. The structure consists of:

* Main (program) module.

* Second level (functional) modules.
* ILower level (service modules).

98

a) Main module - 'Run Comns'

This is the highest level module. It holds the commmication software
executable code. It consists of a single program module (named 'Run
Camms') that is functionally decomposed into a number of second level
modules that are called within the main module.

b) Second level modules

The second level modules are:

* INITIAL module.

* STARTUP module,

* STEADY mocule.

These modules make use, in tum, of lower level service modules.

¢) Service modules

A number of lower level modules (service modules) are available to
provide specific software services to higher level modules (i.e main
and second level modules). These modules are: |

* Control-frame modules.
* Message-exchange modules.
* Hardware-related module.

~i) Control-frame modules: These modules (SENDLIB, RECLIB, etc.)
consist mainly of control frames necessary for the implementation
of the Token Pass.'Lng. method. They are called (imported) by the
main module and make use of other lower service modules;

'Messages' and 'Mains'.

99

ii) Message-exchange modules: Their main function is to implement
commmnication functicns between the system bus, the commnication
section and the processing section. These modules make use of a
lower module, 'Signals', for the control of hardware. They consist
of two modules:

* 'Messages' - For message-exchange with the system bus.
* 'Mains' - For message-exchange with the processing section.

iii) Hardware-related module: This module, 'Signals', is the lowest
level of applicaticn. It controls the different hardware signals
(i.e enabling and disabling).

Finally, there is one routine that supports the Modula-2 protocol code
discussed above. This is the run~time support module 'CPMIOO0', which
is written totally in assembly language. This is discussed in a
separate section.

6.3.2 Camumication Software (Main Module - Run Camns)

This module holds the commmication software code. Its function is to
implement the token passing protocol described earlier in chapter 4.
It makes use of second level (functional) modules, and a mutber of

service modules. The different control message~frames (imported from
Message-exchange module) are used extensively for initialisation,

operation, and maintenance of the token passing protocol.

Generally speaking, from the network's point of view, operation of the
main module can be divided into three main parts (Fig. 6.1):

*¥ Initialisation.
* Steady state.
-* Maintenance.

100

From the station's point of wview, however, the system may be

functionally decamposed into three top level functions (Fig. 6.2):

* Initialising the board (station).
* Entering the ring.
* Running in operational mode.

These, in turn, are divided into sub-functions (Fig. 6.3). This sub-
division is further continued until a satisfactory lowest level of
functional representation is obtained. These lowest level functions
are usually simple and easily translated into program source code.
Routines shown in Fig. 6.3 are listed below. For full module

description and diagrams refer to Appendix C:

a) Initialise the board (station)

In this mode, the station initialises the comunication section and
synchronises its operation with respect to other stations (ready for
constructing the token ring). This is done by setting various hardware
control lines, timers and defining the station's address (TS).

b) Enter the ring
Once all the stations are indtialised and synchronised, they activate
their response timers (RT) in order to construct the token ring. Each

station then monitors the bus for message reception, the result

producing one of three possible courses of action:

* If the RT timer times out before any message is received, the
station follows the routine for entering the ring as 'The First
Station'.

* If the station receives a claim token frame message then the
station follows the routine for entering the ring as 'Not The
First Station'.

101

* If a message frame other than a claim token is received then the
station follows the routine for entering the ring as ' a plugged-
in station’'.

In the variocus cases shown above, stations follow different paths to
achieve the same task (i.e ring construction). Once a station knows
its own address (TS), the previous station address (PS), and the next
station address (NS), it passes the token to the next station in the
ring. When the last station in the ring (LS) acquires the information
and connects with the first station (FS), the token 1s said to be
constructed. When this has been achieved, each station should be in
possession of: number of stations in the ring, its own address (TS),
and cther stations' addresses (PS, NS, FS and LS)

c) Run in gperation mode
Once the ring has been constructed the stations are said to be running

in the operational mode. During this mode, the token is received
periodically for message passing between the network stations. In
normal operations the station has to respond also to other messages
that may arrive as a result of adding a new station (insertion) or a
station drop-out (deletion). In this case, as the ring construction
has changed, token information-update has to take place.

6.3.3 Second Level Modules
These modules are imported by the main module (described earlier) and

represent the functional decomposition of the main module. The
functional structure shown in Figs. 6.2 and 6.3 are implemented fully
through routines imported from these second level modules. They, in
turn, make use of lower level service modules. A brief description of
these modules is given below (see also Fig. 6.4):

102

* INITTAL module.
* STARTUP module.
* STEADY mcocdule.

a) INITIAL module: This module is the first one called in by the

main program module. Its main purpose is to initialise the
hardware of the communication secticn.

b) STARTUP module: This module implements the second mode of ring
construction, i.e entering the ring. It has four routines (see
Fig. 6.4).

c) STEADY module: This module implements the third mode of operatich,

the 'run in operation' mode.

6.3.4 Service Modules

6.3.4.1 Control-Frame Modules

These are the highest service modules, most of the their routines
being imported by the second level modules. Their main function is to
initialise, construct, and maintain the token ring through a set of

control-frame service routines. They are grouped functionally in
separate modules, hence soame precedence occurs in their call or even
in their processing (compilation process, refer to section 6.5).
Control-frame modules rely for operation on the lower modules.
'Messages' and 'Mains'. A list of these modules is given below (see
Fig. 6.4):

* SENDLIB module.

* RECLIB module.

* TIMER module.

* ROUTINES module.
* GLOBALS module.

103

a)

b)

c)

d)

e)

SENDLIB module: This module contains an extensive set of routines,

whose main function is to 'send' control frames across the

network.

RECLIB module: This module is built in a similar way to SENDLIB.

It encapsulates all the 'receive' control frames received over the

system bus.

TIMER module: This module consists of various 'timer' operations.

It has a set of routines for setting, loading, and polling the
different timers of a station (see Fig.6.4).

ROUTINES module: This module contains a group of repeatedly used

control-frame routines, used for implementing the token ring.

GLOBALS module: This module contains all the global variables and
constants needed for the operation of the token ring. It is called
(imported) by many of the above modules.

6.3.4.2 Message-Exchange Modules
These consist of two sets of modules, 'Messages' and 'Mains’.

a)

'Messages'

This module is dedicated to network communication activities. It
consists of two routines: one to send a data frame across the system
bus (to another station) and the second to receive a data frame from

the system bus. To achieve this, use is made of the 'Signals' module
for the control of the hardware.

104

i)

ii)

b)

TransmitMessage: This routine transmits a data message in the
communication processor's memory at location 'Start', of length
"Duration’, to the system station 'SystemAddress’.

ReceiveMessage: This routine functions similarly to the above
except that it receives a data frame fram ancther station. This
is stored in a specified address in the Scratchpad RAM.

"Mains'

This mocdule software is dedicated to support commumication functions

with the processing section. Its construction is similar to that of
'Messages'. The module consists of two procedures, 'MessageFromMain'
and 'MessageToMain'. Again, use is made of module 'Signals' to control
the hardware.

i)

ii)

MessageFromMain: This routine transfers data messages from the

processing section of each station into its communication
section, using DMA techniques. Each message is stored, for
subsequent bus transmission, in a temporary buffer (in the

scratchpad RAM) at a specific address ('ScratchPadArea’).

MessageToMain: This routine is used to send data messages

received fram the bus to the processing section of the station
using DMA transfer methods. Again, it is buffered in a temporary
storage (Scratchpad RaM), at an address 'Start' and of length
'Duration’.

105

6.3.4.3 Hardwere Related Module - 'Signals'

This module contains the initialisation routines for the commmication
section hardware. It also contains routines which control the transfer
of information across the system bus by activating backplane (bus)
control lines. A brief discussion of these routines is given below:

a) S8tart: This procedure returns the state of the system
initialisation line (START*) as a boolean value. TRUE is returned
when the system start line is true.

b) Rxen: This routine returns the state of the receive enable line
of a station (RXEN*). This line is set TRUE by the communications
hardware when ancther station has placed its address on the system
address bus and activated the wvalid address line (SSS%).

c) TmsInt: This routine returns the state of the temporary memory
module (TMS) interrupt latch. This latch is set by the interrupt
line from the TMS module, but can only be set during a

transmission.

d) MainInt: This routine returns TRUE if the main interrupt latch
has been set, indicating that the processing section is requesting
or stopping the transmission of data to the ™S module.

e) TmsWrite: This routine writes a block of data of specified length
('Duration') into the scratchpad area. The address of the data is
given ('Start'). The address of the data in the scratchpad is
specified also ('TmsAddress'). This routine alsoc sets the SELECT
1line.

106

£)

q)

h}

i)

K)

1)

TmsRead: This routine reads a block of data, of a specified
length ('Duration') into the commmication section at a given
address ('Start'). The address of the data in the scratchpad is
also specified ('TmeAddress').

TmsWriteRegister: This routine is used to write the data passed
to the ™S register specified. This routine also sets the priority
of access line (SELECT) before attenpting the write.

TmsReadRegister: This has a similar effect with respect to the
above routine. It reads, however, from the specified register. The
same condition is true regarding the priority line (SELECT).

Ready: This is the first of a series of routines to set
individual hardware lines to a defined state. This state is
determined in the boolean parameter passed to the procedure.
Positive logic is used for all routines i.e TRUE sets the line
active while FALSE resets the line.

Stx: This routine sets the state of the transmission process line
(STX).

Wait: This routine controls the initialisation state, indicating
whether the station is ready to start ring initialisation. Setting
this routine FALSE indicates that the commmication section is
ready to start initialisation.

Select: This routine sets the priority access line for the
scratchpad RAM into a specified state. When access is TRUE the
communication section has access to the RAM, when FALSE the

processing section has pricrity.

107

m)

n)

o)

p)

q)

r)

Saen: This routine is used to send a station address across the
system address bus. The address specified is sent if the boolean
variable is TRUE. If it is FALSE, however, this removes the
address data previcusly written from the system address lines.
During this action the data specified for the system address is
disregarded.

StationAddress: This routine returns the address of this station,
as set on the station address selector switches on the board.

ClearMainInt: This routine is used to reset the processing
section interrupt request latch. Such interrupts are usually used
to request the start or end of tranamission of a data block from
the processing section to the TMS module.

ClearTmsInt: This routine clears the latch holding a TMS
interrupt request set to indicate the end of a transmission cycle.

DmaZero: This routine initiates a transfer between the processing
section and the temporary memory module (TMS). When this routine
is called the commumnication section relinquishes control of its
bus. It can only regain control of the bus if the station is
addressed by the system address lines, or the processing section
sets the main interrupt latch to indicate the end of the data
transfer. For this reason the main interrupt latch should be

cleared befcore this routine is called.

DmaOne: This is an altermate routine which initiates transfer
between the processing section and the TMS module. It functicns in
a similar way to the above routine.

108

6.4 IMPLEMENTATION OF THE RUN-TIME SUPPORT SYSTEM

6.4.1 General

Since the FTL campiler [6,7] is designed for a CP/M envirorment, it
makes certain assumptions concerming its run-time enwiromment. These
did not apply to the actual target system. Thus, to enable code to run
successfully and reliably within the communication sub-system, a
special run-time module had to be developed (in addition to the system
and application software). It is called 'CPMIOO’. In particular, the
console device software had to be modified to handle compiler
generated exception handling messages (these are automatically routed
to the console).

6.4.2 CPM100 Module
This program is a CPM envirorment emulator, and is written in assembly

language. Its purpose is to provide a basic initialisation sequence
for the communication section. It provides routines to driwve the
serial interface as a replacement for the CPM console device. A
replacement for this device had to be provided as code generated by
the campiler ocutputs exception handling error messages, such as divide
by zero, to the console. The commnication software would have mig-
functioned, and crashed at some point, if the emulation hadn't been
provided, as it would expect certain initialisation and exception
handling routines, necessary for its execution, within the
ernvircrment. The CPM functions emulated by the CPMIO0 program are
described in Appendix D. All other calls to CPM produce the message
'CPM ERRCR' on the device attached to the serial interface.

109

The functions specified provide all the support required by the system
module within the Modula-2 code and also the Terminal module, and any
users of it such as SmallIO. They do not support ReallO unless the
module is modified to drive the Terminal device, as described in the
ReallO definition file.

The CPMIO0 program uses a small portion of RAM which must not be
overwritten by any application program. This is the top 20H bytes of
RAM avallable in the system. If this is not done then the stack will
be placed on top of the CPMIOO; wvariables would then corrupt the
stack and calls to CPMIOO0 would fail to return to the calling program.

CPM100 also supports the use of a watchdog timer. This causes an NMI
interrupt 1f the watchdog timer times ocut. When an NMI interrupt
occurs a jump is made to a specific location. This causes a jump to
the CPMIO0 start and the entire system is re-initialised.

CPM100 provides a faithful emulation of the functions mentioned above.
It will also preoduce an erxor mess\age if an illegal function is
called. The more severe problem is if an gpplication program makes use

of some other part of CPM. If this occurs the results will be

unpredictable.

6.5 SYSTEM DEVELOPMENT AND OPERATION

The commnication software has been written mainly in Modula-2, using
the FIL compiler. The RQMable code generated (i.e the executable main
module) occupies approximately 16 Kbytes, and the assembler code
(CPM100) occupies 256 bytes. Fig. 6.5 shows the memory mep of the
cammmication system.

110

6.5.1 Compiling and Linking
In the compilation process, the definition modules mast be compiled in

a specific order; starting with the lower level (service modules) and
ending up with the higher level (functional modules). The order of

these is as follows:

* SIGNALS.DEF
* MAINS.DEF

* MESSAGES.DEF
* GLOBALS.DEF
* SENDLIB.DEF
* TIMERS.DEF

* RECLIB,DEF

* ROUTINES.DEF

Then follows the functional modules:

* STARTUP.DEF
* INITIAL.DEF
* STEADY.DEF

The implementation modules can be compiled in any order once the
corresponding definition modules have been campiled. When linkirgy, the J
top-most level modules need to be specified only. Linking options must
be specified so that the code generated can nun correctly on the
target system (see Appendix C for details).

6.5.2 Downloading into EPROMS
The linking process produces an executable file (a COM file). Before
dovn-loading into the target system, the code has to be conwverted into

INTEL HEX format.

111

To develop a program in FIL Modula-2, the code is written on the
development system and tested as far as possible. It is then linked to
start at 01l00OH. The available memory space is partitioned as
appropriate for code and data management. The application code is
then down-loaded into EFROM together with the run-time program CPMI0O.
These two programs require no linking as the entxry points for each are
pre-defined. The CPMIO0 program is loaded at OO00OH and the (Modula-2)
application code (commmication software) at 0100H. Using the standard
CPM entry point of Ol00H for the Modula-2 code solves one other
potential problem. The utility supplied with the FTL compiler,
UNLOAD2, would normally be used to conwert the OOM file into HEX
format for subsequent transfer into the EPROM programmer. This
autocmatically assumes that the code has been linked for O100H entry
and hence writes this address into the hex file produced later on for
down-loading.

6.5.3 System Start-Up Operation

On power-up or reset the commumication processor starts executing code
from address OCOCCH. This is the start address for the CPMI00 program
and contains a jump into the application program. Thus the CPM100

starts executing before the main application program. The serial
interface and the wailt state generator are set up (by CPMIO)) before
control is handed over to the Modula-2 applicaticon program (at address
Ol0CH). This is the usual start for a CPM application program (refer
to Fig. 6.5).

112

eLl

COMMUNICATION
SOFTWARE

INITIALISATION STEADY STATE MAINTENANCE

Fig. 6.1 COMMUNICATION SOFTWARE (NETWORK’S -VIEW)

FLL

COMMUNICATION
SOFTWARE

RUN IN
OPERATION

INITIALISE ENTER

THE BOARD THE RING MODE

Fig. 6.2 COMMUNICATION SOFTWARE (STATION’S VIEW)

SLL

COMMUNICATION
SOFTWARE

ENTER
THE RING

INITIALISE
THE BOARD

START FOR| [START FOR®| | START ON°
FIRST NOT FIRST PLUG-IN

RUN IN

REQUEST FOR
INFORMATION

OPERATIONAL MODE

UPDATE
REGISTERS

Fig. 6.3 COMMUNICATION SOFTWARE

(STATION’S VIEW)

STARTUP . MOD

EnterRing
INITIAL . MOD StartForFirst

StartNotFrst
InitialiseBoard StartPlugIn

STEADY . MOD

RuninOpMode

SENDLIB . MOD

RECLIB . MOD

SendClaimToken
SendWhoFollows
SendToken
SendSetSuccessorl
SendSetSuccessor2
SendTokenAck
SendSetLast
SendSetFirst
SendMemberCount
SendInitDone
SendWhoFirst
SendWhoLast
SendSolicitSuce
SendMemberCount
SendNewMember
SendData
SendDelMember
SendSetPrevious

ReadMessage
Update
RecClaimToken
Rec¢Data

RecToken
SolicitSucResponse
WhoFollowsResponse
RecTokenAck
RecWhoFollows
RecSetSuccessor 1
RecSetSuccessor 2
RecSetPrevious
RecNewMember
RecDelMember
RecMemberCount
RecMemberRequest
RecSetLast
RecSetFirst
RecInitDone

TIMER . MOD

LoadTimerZero
LoadTimerOne

ROUTINES . MOD

StartTimerZero
StartTimerOne
PollBusAndTimerZero
PollBusAndTimerOne
SetTimers

TokenAckRoutine
WaitForTokenRoutine
WaitToFinishRoutine
WhoFollowsRoutine
WhoBeforeRoutine
AccessRoutine

MESSAGES . MOD

ReceiveMessage
TransmitMessage

MAINS . MOD

MessageFromMain
MessageToMain

GLOBALS . MOD

SIGNALS . MOD

Fig. 6,4 IMPLEMENTED SYSTEM MODULES

116

FFFF H

E000 H

BFFF H
BFE0 H

A0OO H
9FFF H

7FFF H

0100 H

0000 H

EXTENDED RAM

RESERVED FOR CPM 100

l

STACK DATA

8k

—_

8§k

8k

8k

RAM
32k

APPLICATIONS SOFTWARE

(COMMUNICATION’S PROTOCOL)

CPM 100 RUN TIME

EPROM
32k

Fig. 6.5 SYSTEM MEMORY MAP|

117

CHAPTER 7

CHAPTER 7
MULTI-PROCESSOR SYSTEM -~ KERNEL SOFTWARE STRUCTURE

7.1 INTRODUCTICN

As stated earlier, the main function of the multi-processor system is
to process and manage real-time application tasks that are
functionally partitioned and distributed onto the system nodes as sub-
tasks. The main functions of the various processing sections, at a
detailed level, are to:

* Process and manage the time-critical sub-tasks in each node.

* Contxol data exchange with other processing sections through the
use of message-passing techniques.

* Perform memory management of RAM (on buffered data, messages, and
distributed variables).

* Provide management of timed/event interrupts within each node.

These tasks are implemented mainly in software through the use of a
real-time kernel structure that supports and manages partitioned sub-
tasks on various processing sections of the system.

The real-time kernel software is designed in a modular, structured
manner, being implemented using the Jackson Program Design Facility
{PDF) package. The core element of the processing section is based on
an Intel 80188 processor together with an Intel 8087 numeric processor
extension for mathematical operaticons. Programs for this are developed
using the Logitech compiler, the application software being programmed
into EPROM. A description of the program structure and the
corresponding diagrams is fully shown in Appendix E.

118

7.2 THE REAL-TIME KERNEL STRUCTURE

In the design of the real-time kermnel we are very much concerned with
predictability of performance. Moreowver, reliabllity of operation is
paramount [1]. The kernel provides a wvirtual machine in which

processes allocated to different processors are executed concurrently.

Process cooperation and synchronisation are achieved by means of
message passing. On the other hand, the system inside each node is
viewed as a collection of co-operating sequential processes that share
common data. Unlike many scientific and cammercial applications, the
kernel described here is not intended to support fragmented programs.
Instead, the basis of the design is that of functional partitioning
(2]. Further, a major primary objective is to implement the kernel
using standard compilers, i.e. those designed for uni-processor
systems [3]. A second major objective is to build the kernel
infrastructure using the standard constructs of Modula-2. It consists
of the following structure:

* Program partitioning.

* Commmication and synchronisation.

* Management of distributed variables.
* Process scheduling.

* Time-Server routines.

These have been designed to be independent of processcor hardware.

119

a) Program Partitioning

The total system task is partitioned into a mumber of functional sub-
tasks (processes); these run asynchronously and concurrently within
the multi-processor system (Fig. 7.1). Functional partitioning is
favoured over other schemes used for partitioning simply because:

* The software structures mirror the application structure, this
belng especially suitable for real-time application tasks,

* The individual software units (sub-tasks) can be implemented, type
checked and campiled using uni-processor campilers.

* The granularity (unit of partitioning or sub-task), may be further
divided and partitioned intc other functional sub-tasks (see Fig.
7.1). These sub-tasks can be mapped, in turn, to ocne or nmore
nodes of the distributed system.

* Finally, each sub-task can be considered as a unit sole of
partitioning. This means it can be separately processed, coded,
and compiled using structured languages suited or even adapted for
distributed environments.

In real-time systems such sub-tasks involve plant interfacing, network
control, computation of digital control algorithms, etc. Each sub-

task forms the main process within a specific node.

b) Commnication and Synchronisation

Inter-processor commmication is implemented using message-passing
primitives. In line with the overall strategy cutlined abowve, inter-
processor communication can be viewed in a 'client-server' model
[4,5]. The message actually passes through several intermediary
processors or subsystems (i.e. ocommunication section, system bus,
commmnication section, and finally, the receiving processing section).

120

Delays are experienced within the system at various points. Thus
commmnication between the distributed sub-tasks is seen fundamentally
as an asynchronous operation. Furthermore, it is non-blocking, i.e.
the application software will continue after the message has been put
out for transmission. The lower level cammumication aspects (physical,
medium access control, logical link control) are considered to provide
a2 highly reliable service. For improved levels of security, detection
and correction of message errors must be implemented in the main

process. In the same way, task synchrondisation is the responsibility
of the application programmer.

Data transfer between the processing and cammumnication sections is
done through two high speed DMA channels.

c) Management of Distributed Variables

Tasks commmicate by passing control signals and data over the system
bus. For simplicity each variable is defined to have a specific owner
(sub-task). The owner is responsible for maintenance and updating of
its own variables, and may export these - as required - to other
processes (Fig. 7.2). The receiving process treats these as it would a
value parameter; it can modify the copy but not the original. It can,
of course, request updating of the original by the owner.

d) Process Scheduling

Because the overall system has already been partitioned, sub-tasks are
likely to consist of only a few operaticnal processes. In these
circumstances a very simple and traditional approach to 'scheduling'
is adopted. Each sub-task congsists as a single background process
(Fig. 7.3) - which runs continuously - and a set of timed and/or event
driven processes. These are activated by hardware interrupt signals.

121

Setting priorities, disabling interrupts, etc., is the responsibility
of the application programmer. By using this approach the time arnd
canplexity overheads of a real-time executive are avoided; morecover
context switch times are minimised.

The cammunication handler is itself interrupt driven, activated only
on receipt of incoming messages. It functions as a single thread

sequential program, consisting of a set of mutually exclusive server
procedures.

e) 'Time-Server' Routines
Apart from using timed interrupts for purposes such as setting control
loops as mentioned earlier, it can be used to establish a sense of

'program-time’.

A certain activity may need to be activated after a certain time
within a node or even after some elapsed time with respect to an
activity or process in another node. Hence, to maintain this sense of
'program-time' across the system, the kernel provides a set of 'timed-
interrupt service routines' in each node. These routines provide
functions which can be used to establish a real-time clock.
Synchronisation of local clocks is essential for future development.
One way of achieving this task is to choose one clock as a master and
update the others periodically with respect to this.

122

7.3 IMPLEMENTATION OF THE REAL-TIME KERNEL

7.3.1 Software Module Structure - Overview

The real-time kernel code is structured as a set of primitives,
replicated, if necessary, on each node. It is implemented in a main
module called 'MAIN-DISTKERMNEL'. What follows is a list of primitives
provided by the kernel:

* Init-MasterGlob * SerMess-Setup

* Init-CopyGlob * RecvMes-Decode

* Request-Global * Set-Timer

* Submit-Global * Set-ClockTimer

* Check-RecvData * Setup~-Send

* WaitFor-Data * Setup-Receive

* Validate * DMA-Stopped

* Init-Send * Send-Handshake

* Send-Data * Setup-DMAInterrupt
* Init-Receive * Setup-TimerInterrupt

* Send-Receive

The module 'MAIN-DISTKERNEL' relies in its operation on a number of
functionally grouped modules. These are:

* MAIN-CCDE module.
* MAIN-DIST module.
* MAIN-BUILD module.
* MAIN-TIME module.
* MAIN-HARD module.
* T88Indut module.

123

Same of the kermel primitives are called within other higher lewvel
structured primitives to provide specific services. The variocus kemel
primitives are functicnally distributed to provide the following
functions:

* Manage distributed variables within the network.

* Manage commnication of one station (i.e. the processing section)
with ancther.

* Manage message encoding and decoding within each station.

* Manage time services in each station.

* Manage hardware-access and set-up services in each station (i.e.
hardware-related rocutines).

The function of each category and the related primitives are discussed
in the following sections. For full details refer to Appendix E.

Finally, there is a 'Bootstrap' routine. This routine is not part of
the real-time kernel. It i1s used, however, to set-up and initialise
the system before transferring control into the application program.
This module is written partially in assembly code and partially in
Modula-2 code. It is discussed in a separate section.

7.3.2 Distribluted Variables Management

Management of distributed variables across the network is implemented
using a number of functionally grouped procedures. Before going
further in the discussion, the following important points have to be
clarified:

* A distributed wvariable is referred to as either a master or

'original variable’.

124

* A request of an original variable by another station is referred to
as either a distributed variable copy or simply a 'copy variable'.

* A distributed variable can be exported {as a copy) to another
process or station according to a request. This is treated similar
to a value parameter. |

* An 'original variable' cannot be distributed unless it is
initialised, then calculated (or updated) according to a particular
process in the application program.

* Similarly, a 'copy variable' cannot be accepted or received unless
a variable is created and initialised in the requesting station.

Management of distributed variables is implemented in the following
group of procedures:

* Init-MasterGlob.
* Init-CopyGlob.

* Request-Global.
* Submit-Global.

* Validate.

* Check-RecvData.
* WaitFor-Data.

These set of routines have the responsibility of initialising,
maintaining, updating and exporting copies of variables which are held
locally in a process within a station to others on request. The name
and size of each variable has to be declared, by a call to the
appropriate procedure, if the variable is to be shared across the
network (i.e. distributed). Distributed variables are referenced by
names specified by the user when the main module, MAIN-DISTKERNEL, is
being called. These names are used by other stations' prbcesses when

125

updates of the warilables are sent across the network. A distributed
variable, being used either as a master (i.e. original) or a copy,
mist be static in memory as it is declared to the module by its

address and size. The type of the variable, however, is ignored.
Routines here keep a list of variables which may need initialisation
or even updating by ancther station. This data structure mechanism is
transparent to the user. A description of these routines is given
below:

a)

b)

c)

d)

e}

Variable Control Block (VCB): VCBs are records used within the

kernel module to hold information about the status of each
distributed variable (i.e. whether original or copy). This
includes the name of the variable, size, status (criginal, or

copy), ete.

Init-MasterGlob: This routine is used to set up a variable control
block for locally held variables (i.e. original). This means a

control block for a variable calculated at this station and

distributed subsequently to other stations on request.

Init-CopyGlob: This routine is used to set up a variable control

block for a copy variable, i.e. to hold a copy for a variable that

is calculated on a remote station.

Request-Global: This routine is issued by a requesting station for

a copy of an initialised, updated original variable from a

particular station.

Submit-Global: This routine is used to send a copy of an original
variable, calculated by this station, to a list of requesting
stations.

126

f) Validate: This routine works on both original and copy variables.
It checks whether a particular variable has been calculated (i.e.
updated) before starting to distribute requested copies across the
network. Alternatively, it checks whether a distributed copy
variable has been received before being used in a specific

operaticn.

g) Check-RecvData: This routine checks received data, among a list of
requested copy variables. If a request exists then the variable is
validated and stored afterwards.

h) WaitFor-Data: This routine is called to wait for a requested copy
variable until that particular variable is being calculated and
hence distributed across the network. It relies on 'Validate'
routine in executing this task.

7.3.3 Commmication Management
Commmunication management between the different processing sections is

implemented using message-passing techniques. The communication
section in each station, however, provides a transparent interface for
message transaction with the system bus. There are two modes of
operations within each station i.e. the trangmission and reception
modes. A number of routines is used to implement the sequence of
cperaticns in each case, Those routines discussed here present the
high level interface with the application program. Other, hardware-
related, procedures are called within these procedures to implement
the hardware interface (i.e. access and set-up of hardware).

127

a) Transmission mode

In this mode, the operation is viewed as non-blocking, i.e. the
application software will continue after the message has been put out
for transmission. The transmission mode of operation can be

implemented using the following pair of routines:

* Init-Send.
* Send-Data.

i) Init-Send: This routine is called first when an attempt is made to
transfer data to the comumication section. It first sets-up a
block of data then calls a hardware-related procedure (Setup-Send)
to initialise a channel for a transmission mode.

i1i) Send-Data: This routine is used to transfer message or data frames
into other stations. First, it checks whether any DMA transfer is
in progress. It then requests the commnication section for data
transmission (through the use of a hardware-related procedure
'Send-handshake').

b) Reception mode
Reception of a data message is performed as part of the 'Multi-process

camunication handler' which is an event-driven interrupt handler. The
commnication handler receives, decodes and acts upon message. The
application program resumes execution afterwards., Two routines are
used in reception mode:

* Init-Receive.
* Receive-Data.

128

i1} Init-Recelve: This routine is similar to 'Init-Send' mentioned
earlier. It is used to set-up the channel for reception mode.

ii) Receive-Data: This routine checks whether a successful data
transfer has taken place. If so, 1t reads the data block into a
buffer and starts decoding.

7.3.4 Message Management

The procedures discussed here implement the code to build a message
frame for transmission cut of its constituent data segments. They are
also used to split a received message into its constituent parts.
These procedures also contain the type definition for all messages
sent over the system bus, 'MessageType'. Two routines are used for

these operations:

* SendMes-Setup.
* RecvMes-Decoda.

a) SendMes-Setup: This routine is used to build or assemble a data
frame out of its constituent parts. Frame type (data or message),
address pointers, destination address, etc. form parts of the
frame structure.

b) RecviMes-Decode: This routine works on a received message frame. It
splits the message into its constituent parts (i.e. message or
data frame, request or reply of a distributed variéble, etc.). A

transfer is subsequently made to an appropriate server when the
decoding process is over.

129

7.3.5 Time Management

Time routines serve for two purposes;

* To set timers for timed interrupts (e.g. level and actuator loops

of Fig. 7.3).

* To maintain the sense of 'program-time' across the system, hence

establishing the basis for a real-time clock in each station.

To implement these tasks it uses two program-interfaced routines that
call other hardware-related routines in turmn. These routines are 'Set-
Timer' and 'Set-ClockTimer'.

a)

b)

c)

Set-Timer: This routine is used to load and set a timer for a pre-
defined time. On time out, an interrupt occurs and a service

routine (Timer-Proc) is called to service the interrupt.

Set-ClockTimer: This routine is used to establish the basis for a

real-time clock. Once called, the routine sets a timer to call
arother routine (Timer-Proc) on every interrupt. This routine
requires a parameter giving the number of milliseconds that should
elapse between each interrupt and also the processor clock speed
in MHz. It also requires the address of a routine to be called as
part of the interrupt handler. This routine performs any counting
that is required using global variables.

Timer-Proc: This routine is called on every interrupt to set-up
the timer control registers and update counters.

130

7.3.6 Hardware-Related Routines
This set of routines comprise of the lowest level of routines, i.e.

they form the interface with the hardware system. All data is
exchanged between the commmnication section and the processing section
using direct memory access (DMA) techniques. The DMA controller is
located in the processing section and generates the required control
signals (read, write, and chip select). Control of all data transfers
resides with the communication section(DMAO and DMAL).

Two DMA chanmnels are utilised for data transfer. Channel O is used for
DMA transfer from the processing to the comumication section. Charmel
1 handles DMA transfers from the communication to the processing
secticn. A variety of procedures are used to initialise, set, and
control DMA transfers and interrupts in the main section (these are
discussed below). Finally, it should be pointed cut that the buffers
dedicated for DMA transfer nust be declared global wvarilables as they
are handled by the DMA unit asynchronously. The main objectives here

are to:

* Set-up and control channels in each station for transmission and
reception of data.

* Set-up an interrupt sexrvice routine to handle an interrupt from an
event interrupt (Multi-process cammunication handler).

* Set-up the interrupt service routines to handle interrupts from
timed interrupts i.e. timers.

The follewiryy set of routines are used to implement the above:

* Setup-Send.

* Setup-Receive.

131

* DMA-Stopped.

* Send-Handshake.

* Setup-DMAInterrupt.
* Setup-TimerInterrupt.

a) Setup-Send: This routine is used to initialise and set-up the
control registers of a DMA channel for a transmission mode.

b) Setup~Receive: This routine is used to initialise and set-up the
control registers of a DMA chamnel for a reception mode.

¢) DMA-Stopped: This routine is used to check whether a DMA transfer
has been successfully finished.

d) Send-Handshake: This routine forms a handshake with the
camunication section. It sends a request-of-data signal (RDT) and
an end-of-data signal (EDT) to the commnication section at the
start and end of a DMA transfer respectively.

e) Setup-DMAInterrupt: This routine is used to plant an interrupt in
the vector address area. This address points to a service routine
that is to be executed later on when an interrupt takes place.

f) Setup-TimerInterrupt: This routine is similar to 'Setup-

DMAInterrupt' mentioned above. The wvector type and priority,
however, are different.

Other initialisation functions are required, these being part of the
bootstrap routine. This is discussed next.

132

7.4 THE BOOTSTRAP ROUTINE

The function of the bootstrap loader is to initialise and set-up the
system before control is handed over to the application program. It
consists of two sections, an assembler part and a Modula-2 part. The
reason for this is to use Modula whenever is possible. Modula-2 code
is clearer, easier to understand, and is likely to be more reliable.
It does mean, however, that two separate bootstrap files have to be
produced for EPROM programming. It is imperative that the link between
the two, a jump location, is set correctly. One EPRCM is used to hold
both the assembler and the Mcdula-2 bootstrap object code.

7.4.1 Assembler Routine
This routine starts first with the initialisation of the hardware
system. It consists of the following procedures:

* Set-up the different segment registers (i.e. code, data, extra, and
stack pointer registers).

* Set-up the appropriate memory partitions (i.e. upper chip select,
lower chip select, middle chip select, etc.). It is essential to
set-up the register data before execution of the application

programs and memory management takes place.
A jump is then made to the Modula-2 initialisation routine.

7.4.2 Modula-2 Routine

This routine is located at the bottam of the boot EPROM. Its main
function is to minimise the use of assembler for system

initialisation. It consists of two main functions:

133

* Initialise serial line interface.
* Plant an interrupt return vector.

When the Modula-2 initialisation is over, a jump is made to the start
of the application software.

7.5 SYSTEM DEVELOPMENT AND OPERATION

The real-time kermel software has been written mainly in Modula-2,
using the Logitech compiler {[6]. The code size generated is
approximately 5 Kbytes. The bootstrap code (assembler and Modula-2
initialisation code) occupies less than 1 Kbyte. The ROMable code size
depends, eventually, on the size of the application program
implemented and the imported kermel routines. A 32 Kbytes EPROM is
dedicated for this task. Fig. 7.4 shows the memory map of the
processing system. Kernel primitive interactions, and operations

within an application program are fully described in Appendix E.

7.5.1 Compiling and Linking
The module 'MAIN-DISTKERNEL' relies in its operation on a number of

imported, functionally grouped, modules. In their compilation process,
the definition modules must be compiled in a specific order: starting
with the lower level (hardware-related modules) and ending up with the
higher level (functiocnal modules). The order of these is as follows:

* MAIN-HARD.DEF
* MAIN-TIME.DEF
* MAIN-CCDE.DEF
* MAIN-BUILD.DEF
* MAIN-DIST.DEF

134

The implementation modules can be compiled in any order once the
corresponding definition modules have been compiled. When linking, the
top-most level modules need to be specified only. Linking options such
as code and data segments must be specified so that the code generated
can run correctly on the target system (code and data segments used
are 980CH and 83H respectively).

135

gelL

PROPULSION
SYSTEM
TASK

NETWORK
INTERFACING

PORT ENGINE
SYSTEM

STBD ENGINE
SYSTEM

DATA
COMMS

SUB-TASK

POWER
CONTROL

SUB-TASK

CONDENSER
LEVEL CONTROL

SUB-TASK

POWER
CONTROL

SUB-TASK

CONDENSER
LEVEL CONTROL
SUB-TASK

Fig. 7.1 FUNCTIONAL PARTITIONING

PROCESSING PROCESSING
SECTION SECTION

VAR B

INIT - COPY GLOB
REQUEST - GLOBAL
VALIDATE

-- INIT - MASTER GLOB
-- SUBMIT - GLOBAL

-- VALIDATE -- WAIT FOR - DATA
-- CHECK - RECV DATA
NODE A NODE B

Fig. 7.2 DISTRIBUTED VARIABLE MANAGEMENT

BACKGROUND

PROCESS

ACTUATOR
LOOP

MULTIPROCESS
COMMUNICATION
HANDLER

MULTIPROCESS
COMMUNICATION |
HANDLER

R

| Fig. 7.3 FUNCTIONAL SCHEDULING|

138

FFFFF H

FFFFO0 H Boot Strapping Routine
Start-up vector

Start-up 1k area

FFC00 H Upper chip select

-

pgion (programmed

e e . . For 8k EPROM)
Initialisation Routine

FEO000 H

9FFFF H

KERNEL & APPLICATION

93000 H Region 3
Region 2 Mid-Range
90000 H Chip select
. Area (128k)
33000 H Region 1
30000 H Region 0 |

0IFFF H

Lower Chip select
region (Programmed

INTERRUPT VECTOR TABLE & for 8k RAM)
STACK INITIALISATION

| Fig. 7.4 SYSTEM MEMORY MAP |

139

CHAPTER 8

CHRPTER 8
SYSTEM TEST AND VALIDATION

8.1 GENERAL

In this chapter a mumber of system test procedures relating to the
process of system design and validation are discussed. Some of these
routines validate the applicability of Modula-2 in such an
environment.

The various test prooedures are designed and implemented in a specific
order, starting with the simplest procedures and ending up with the
most sophisticated ones. This approach is important since the final
test procedures depend upon the initial test results. These tests are
organised in the following order:

* Processing Section - test procedures.

* Communication Section - test procedures.
* Qverall System test.

8.2 PROCESSING SECTION - TEST PROCEDURES

In this section a variety of hardware test procedures are discussed.
These were developed to support the maximum processor configuration,
i.e. the cambination of the 80188 cpu, 8087 math unit, and 82188 bus
controller (see Fig. 8.1). Nevertheless, most of the programs
(excluding the 8087 test programs) will run perfectly well on the
minimum configuration, i.e. cpu 80188 only (see Fig. 8.2).

140

The main testing procedure consists of the following sections:

* Basic processor test.

* Chip select unit test.

* 80188 timer test.

* Serial line interface (DUART) test.

* SRAM test.

* DMA controller test.

* Numeric processor extension (NPE 8087) test.
* On-Board Interface (OBI) test.

* Initial Bootstrap test.

8.2.1 Basic Processor Test

The aim of this simple program is to check the operation of the
following sections and signals (refer to Fig. 8.3):

* Address/data bus buffers.

* Upper memory block (EPROM).
* Single-step circuit.

* Signal buffers.

8.2.2 Chip Select Unit Test
The purpose of this test is to wvalidate the operation of the chip-

select unit and signals through accesses (i.e. memory and I/O

read/write modes) to the different memory partition blocks.

8.2.3 Programmable Timer Test
In this test the different modes of the programmable timer are checked

for proper functioning.

141

8.2.4 Serijial Line Test (IXIART)

This test is needed in the early stages of system testing as it is
used in subsequent testing. This, when functicnal, allows test results
to be displayed cn a visual display unit (VDU). A list of the tests
performed is shown below:

a) Auto echo-mode test.

b) Transmitter tests.

c) Recelver-Transmitter test (CPU registers access).
d) Receiver-Transmitter test (RAM locations access).

8.2.5 SRAM Test

In this test varicus memory search techniques are carried out to
validate the access of memory blocks (SRAM). One of the routines is
used to write a block of random data to a specified memory area. The
data is then read back and compared to the data written. If the two
data sets are different then an error message is displayed on the VDU

terminal,

8.2.6 IDMA Controller Test

This test checks the operation of the DMA controller. The DMA
controller can be programmed to be activated internally (un-
synchronised) or extermally (synchronised). In this test both cases

are evaluated.

a) Internally programmed DMA recquests
DMA requests are programmed to be intermally activated using the DMA
contrel register. In this case, the output request lines (i.e. DRQO

and DRQl) are cleared. Internal triggering of the DMA transfer can
originate with two sources, either from the DMA controller itself or
from timer 2. Both cases are tested.

142

b) Externally programmed DMA requests

External DMA requests are activated by signals on output request lines
(i.e. DRQO and DRQl). The DMA registers are first loaded with the
source and destination addresses and then with the appropriate control
word. An external DMA request has to be simulated, however, for the
DMA transfer to take place.

8.2.7 MNumeric Processor Extension (NPE 8087) Test

The purpose of this test is to validate the operation of the 8087
processor and its interaction with the main 80188 CPU. The 8087 NPE is
not a stand-alone processor, but functions as a co-processor with the
8086 family of microprocessors. It has a separate instruction set
being inter-mixed with the host instructions as and where required.
With such a configuration same mechanism is needed to synchronise the
operation and interacticon 6f the NPE with the main processor. When an
Intel 80188 is used as the main processor (as in this case) an 82188
bus controller provides the synchronisation mechanism.

Two cases make it necessary to synchronise the execution of the main

processor to the NPE:

a) An instruction that is to be executed by the NPE must not be
started if the execution unit of the NPE is still busy executing a
previous instruction.

b) The main processor should not execute an instruction that accesses

a memory coperand being referenced by the NPE until the NPFE has
actually accessed the location.

143

Test programs are implemented successfully to achieve both conditions
abova. Numerical processingg is carried out by the NPE on data segments
already stored in the main processor. Results are then stored in main
memory.

8.2.8 On-Board Interface (OBI) Test
The purpose of this routine is to test the on-board interface (OBI)

block. This is accomplished through message exchange using DMA
transfer. These transfers are requested externally using lines DRQO
and DRQl. The Serial commnications facility is used to provide a
display of transmitted and received messages. Two main routines are
implemented:

a) Transmit-mode routine
This routine is used to transmit messages from the processing section
to the OBI block. Messages may be requested through VDU keyboard.

b) Receive-mode routine

The purpose of this program is to transmit messages from the OBI back
to the processing section.

8.2.9 Initial Bootstrap Test

Prior to constructing the full bootstrap loader, mentioned earlier in
Chapter 7, tests were carried cut to validate the suitability and
applicability of Modula-2 programs in such an envircnment (see Fig.
8.4). These routines are located in the upper 8 Kbytes EPROM,
subsequently dedicated for the bootstrap loader. The test procedure is
as follows (see Fig., 8.4):

144

* Jump to upper 1 Kbyte area.

* Set-up the variocus segment registers (i.e. code, data, stack, etc).

* Set-up the memory partition required.

* Initialise the relocation register for memory map of control block
(cnce this is done, the control block can be accessed and
programmed using memory-referenced instructions).

* Junp to the start of the upper 8 Kbytes EPRCM area.

* Start executing the Modula-2 test routines.

8.3 OOMMNICATION SECTION - TEST PROCEDURES

This section deals with the testing of the communication section
hardware and the verification of the design (Fig. 8.5). The various
elements of the design are split into their small constituent parts.
These are, then, tested individually. The main testing procedure

consists of the following sections:

* Simulation of the hardware operation.

* PCB checking.
* Software Testing.

8.3.1 Simulation

Simulation processes in the EPLD design package, Altera, facilitate
hardware design verification. This simulation facility enabled the
function of the CSM module to be tested before any hardware was
constructed. The simulator provides oanly functional simulation. These
results are used during the implementation process to wvalidate the
design requirements. The timings for the CSM module are provided in

Appendix A.

145

PHOTO 1: THE ALTERA EPLD DESIGN PACKAGE USED FOR DESIGNING
THE 'CSM' MODULE OF THE COMMUNICATION SECTION

N & CowaiPa TN CU TR T TN —— S I

8

Nindow Drawi
Orawing Load

PHOTO 2: A HARDWARE SCHEMATIC ENTRY PROCESS USING LOGICAPS -
A UTILITY WITHIN THE ALTERA PACKAGE USED FOR HARD-
WARE DESIGN

Altera Prograssable
Applications assistance:

wen [NFO-F1T7- Promoted “TXENOP" from COCF to COIF
wun[NFO-F17- Promoted "MAINOP" from COCF to COIF
wuu [NFO-ADP-Des ign [itting complete

wnn [NFO-ADP-JEDEC file output

ADP cycle successfully completed

Uould you like to implement another design [Y/MNIT _

PHOTO 3: A DISPLAY SHOWING THE COMPLETION OF THE HARDWARE

DESIGN PROCESS OF THE VARIOUS SECTIONS OF THE
'CSM' MODULE

To simplify the test process, tests are divided into several
functional blocks. Although the module is simulated as a unit, this
division simplifies the understanding of the test results.

The following functional simulation tests are carried out (for a full
description refer to Appendix A):

* Reset test.

* Bus control test.

* DMA control transfer test.
* Receive mode test.

* Transmit mode test.

* Data read test.

a) Reset test

For every simulation run, the CSM module has to be reset before any
active simulation takes place. This effectively simulates the action
of the RESET* signal. The simulation consists of applying the RESET*
signal for a number of cycles and checking all signals then settle at
the correct defined state. Various other inputs have to be specified
(e.g. the processor bus control lines).

b) Bus control test

This test is designed to check the operation of the CSM module
interface, that is the data driving circuitry for the processor data
bus. Operations of the CSM module like data latch and data read are
checked here.

146

c) DMA control transfer test
This test checks the operation of the latches responsible for the
transfer of control of the processor data bus during a processing

section transfer. The triggering action is checked first. This
involves checking the operation of the latch reguesting bus control
from the communication processor. Next, the two possible methods for
re-gainingy bus control are tested. These being either an interrupt
from the processing section or a reception of the station's address by
the system bus.

d) Receive mode test

This test simulates the action of a message reception. This starts
with the station address being applied to the system address lines. An
RXEN* is generated then. The module under test then generates a BUSY*

signal until a write from the processor sets the READY line. At this
stage a transfer of several bytes is simulated. Finally, station

address 1s removed fram the system bus,

e) Transmit mode test
This is the longest test which simlates the action of a message

transmission across the system bus. The first step is a write
operation by the processor to place the destination address on the
system address lines. Then, a transmission is started when the
simulator releases the BUSY* line. Transmission is ended by the
simulation of an interrupt signal from the ™S module. This has the
effect of halting the transmission of data and also causing an

interrupt to the processor.

147

PHOTO 4: A DISPLAY OF INPUT/OUTPUT SIGNALS OF ONE OF THE
FUNCTIONAL SIMULATION TESTS IMPLEMENTED USING
THE 'ALTERA' PACKAGE

f) Data read test
The final test checks the rest of the module sections. This includes
the address recognition, and reading of interrupt status registers.

8.3.2 PCB Checking
After thorough inspection and finalisation of the hardware design and

simulation, a decision was made to build a PGB of the cammmication
section. The PCB was laid out manually and then entered into the
package (i.e. the 'Computamation system') for photographic quality
artwork production. It would have been possible to introduce autcmatic
checking of the design if this has been required. This is not
attempted for two reasons:

* The highest level of checking would have involved the entry of a
description of the design, either in schematic or net list form.
The production of which may take a very long time due to the very
specific requirements of the package.

* The lower level would have checked for physical violations, e.g.
track spacing.

PCB package entry is performed in a logical fashion, based on entering
functional groups of signals simultanecusly. When the art design is
entered, a multi-layer plot is produced for checking. This is done at
a large scale (3:1) to aid the inspection of track clearances. At this
stage both the physical and electrical routings of all tracks are
checked.

148

F3— B = :
" PRI EEEER N LA LY L

PHOTO 5: A COMPUTER AIDED DESIGN (CAD) PROCESS USED FOR
GENERATING A 'PCB' LAYOUT FOR THE COMMUNICATION

SECTION OF A STATION

PHOTO 6: A PRINTED CIRCUIT BOARD (PCB) VERSION OF THE
COMMUNICATION SECTION OF A STATION

8.3.3 Software Testing
This section consists of a set of routines which are used to check the

function of the wvarious blocks of the communication section, as

follows:

* Initial test routines.
* CPMIOO test routines.

* Linetest routines.

a) Initial test routines
These are similar to the test routines used in the processing section.
They are established to test the pi:ocessor and peripherals for proper

functioning. These include:
* Basic processor test.
* Serial line interface.

* SRAM test.

b) CPMI00 test routines

In this stage, it is decided to use Modula-2 in the testing process.
To achieve this, the CPM1C0 routine had to be written and subsequently
tested to support the Modula-2 code.

To check the CPMI00 functioning, a program is written to test all the
functions of the CPMIO0 emulation. This program is first tested on a
CMM system and then on the target system. This is to ensure that the
ocutput is the same in both environments.

149

c) Linetest routines

Once the CPM emulation is successfully tested, the remaining test
programs are written totally in Modula-2, The 'linetest' routine is a
general purpose, menu driven, test routine that checks access modes
(i.e. read or write operation) of variocus peripherals. The avallable
functions are:

* Write to Memory.

* Read from memory.

* Test a block of memory.
* Output to I/0 device.
* Input from I/0 device.
* Start watchdog timer.

All the asbove tests are similar to those described earlier in the
previcus section (section 8.3.3-a), except for the watchdog timer
test. The purpose of this test is to check the watchdog timer
operation. This routine sets up a DMA transfer to start the watchdog
timer. When an NMI interrupt occurs, the processor resets the section
totally. This action is handled by code in the CPM100 routine.

8.4 OVERALL SYSTEM TEST

This section involves testing the various functions of the station as
part of a system, i.e. its interaction with other stations. Various
demonstration tests (called here 'Demc' tests) are established, all
being written in Modula-2. What follows is a brief description of

these demos:

150

PHOTO 7: A COMPLETE WORKING STATION (NODE) OF THE

NETWORK - CONSISTING OF PROCESSING AND COMMU-
NICATION SECTIONS

PHOTO 8: THE MULTI-PROCESSOR DEMONSTRATOR SYSTEM DEVELOPED
AS A TEST RIG

a) Demo one:

This test wvalidates the following functions:

Message~exchange within the same station (i.e. between the
communication and the processing section).

Message-exchange within the network (i.e. with other stations).
Test and set-up the varicus hardware control signals in the

communication section of a station.

This demo is initiated and controlled from a keyboard/display

interface, using menu driven facilities. This gives access to all
routines supplied by the demo module, being implemented at two levels:

*

*

Upper level.
Lower level.

i) The uppei‘ level is used to test for the correcitness of message

transmissicon. When a menu is selected for transmission, the
destination and message form are asked for by the program. The
program continually monitors the system bus when waiting for an
input. If it detects a message addressed to the station, it
receives the message then display on the VDU terminal

subsequently. It then sends the message back to the calling

. station, as an acdkowledgement. This acknowledgement is, again,

displayed as an incoming message by the transmitting station. an
excessive use is made of the kernel and protocol routines in this

level.

151

ii) The lower level, selected by the upper merm, provides a direct
access to the routines in the 'Signals' module. These procedures
enable any of the hardware lines to be set, reset or tested. It
also enables blocks of data to be transferred intoc RAM locations.

b) Demo two:

This test demonstrates the communication and message-passing between
the various stations of the network using the token passing bus access
method (TPBAM). The demo is constructed using three network stations.
The various stages of the tcoken bus construction, described earlier in
Chapter 6, are shown clearly in this demo. This includes:

initialisation process (i.e. initialising the different boards),
entering the ring (i.e. start for first, start for not first, and
start on plug-in), and finally running in operation mode. Message-
frame exchange is shown clearly in this demo. All messages are

displayed on various VDU terminals.

152

€61

CPU SECTION

MEMORY SECTION

ADDRESS

BUS

DATA BUS

-

CONTROL

Fig. 8.1
BLOCK DIAGRAM OF THE PROCESSING SECTION

SERIAL
COMM.

BUS

RS 232

CONTROL DATA SIGNALS

451
Lt B

[k

S BSISIR AR BIRIRIC|ISIBIB |~ | m] w2 N F] 8] ~| 2] w]wo|=]|"
m N~ o 321.0654354321098m65m._32m0 e
Mnumnunuywyumunntnn v, T g2 < @IS nd
< <<X% oiNIf= [
wn
1nO¥ DR 33338 599, 01
135317 ¥33dnd 99,01
= o
A S o
© IS[S
2 o)
o —_— __.
952d o Agys|m _
$53d o 5 1S0/uM [433908 599, OL
| 453d Q. 0S0/3W Iz ¥33918 699,00
— U VoM {2 _
I
004 _
& .
OWSO/0Y [IS, 00
4 uygg 2% wo= N m S 5 %, & Liny13
5838 28 x % EZZZ = EE 5 AW d3LS 30NIS 01
.u_q_m_m_um_v a| = 93 ¢ sl ol = 3|&
> ' = ¥344n8 549,01
"oog| |8 oo | Ho ot
]
___..,1._ 1 _ 0 o]
g 4 Ho ol—e ¥33dn9 575, 01
—= 2 "
- b
-

MINIMUM CPU CONFIGURATION

Fig. 8.2

154

WTNTAL

HTYNTER
LT Yo GNO s THAOUT Y THAOUTS
TN | TMRIN
..0. e T 1 I L]
] |
‘ i) R
5, X 1 ¢ 13
“-y f MAK COUNT J
[' REGISTEA B }\\\
‘ bahliningptd MAX COUNT
Txmu . M CONTROLLER NECATER A
=N conmxseauens
L} COKTROL
REGISTERS 1 REGISTERS m,‘l‘;‘;m“
WYER [13 (———_
LY PROGRAMMARLE
L} DA UST
5 <] 1 1
CHRSELECT 287
saov o (3 SOURCE POMTERS
ANDY i -y
TeET — RS ITERACE o DeE T
_ SEGMENT POMTERS
HoLD RECISTERS
g aae couTmoL TRANSFER CouKT
PREFETCH AEGITE
NESEY 1 auEue i

CONTROL.
—l REGISTERS
1
[2+] R 4 =1 FCEA2
ADO- ag. 3

o sy s g \

[Fig. 8.3 80188 CPU BLOCK DIAGRAM

155

PR JMP TO FFCO0 H -
FFFFO H
JMP TO FE000 H
INIT. OF STACK SEGMENT Start-up 1k byte area
INIT. OF LMCS
INIT. OF UMCS
FFCO0 H +
Upper chip select'
region (programmed
MODULA 2 For 8k EPROM}
PROGRAMS
FE0O00 H |
= e
00000 H

Fig. 8.4 INITIAL SYSTEM MEMORY MAP

156

SN9d WHLSAS

Fig. 8.5 THE COMMUNICATION SECTION - DETAILED STRUCTUREJ

CHAPTER 9

CHAPTER 9
COMMENTS AND CONCLUSIONS

9.1 ARCHITECTURE

9.1.1 loosely-Coupled Systems

Both loosely-coupled and tightly-coupled multi-processor structures
are applicable to the area of real-time, multi-processing systems. The
decision to use a loosely-coupled structure was based on the need to

host a functionally partitioned environment. This stems from the

following points:

* Loosely-coupled systems generally perform quite well as the number
of processors is increased. In contrast, most tightly-coupled
systems experience severe performance rolloff failrly quickly with
the addition of extra processors. One of the sources of this
performance degradation is that the mechanisms commonly used for

concurrency control work by specifically restricting parallelism,
thereby limiting the value of additicnal processors [1].

* Loosely-coupled systems communicate only through the use of
message-passing primitives. A spectrum of constructs are widely
implemented. In tightly-coupled systems, however, message-passirg
and shared variable constructs may both be implemented. In
practice the message-passing approach is used only infrequently,
as in [1]; most tightly-coupled systems actually implement the
shared variable model [2]. This approach has a number of

weaknesses due to the interaction of processes. First, bus

158

contention can result from process scheduling; for instance, tasks
may be ergaged in a monitor queue. Second, context or process
switch mechanisms occupy the common bus. This may also cause bus
contenticn for a considerable period of time, thus degrading the

response times of other processes [2,3].

9.1.2 Functional Partitioning

The importance of adopting a functional partitioning scheme for real-
time embedded systems was laid down in Chapters 4 and 7. The primary
reasons for developing a real-time, distributed-program kemel for

such an erwvironment are as follows:

a)

b)

For real-time systems, fast and deterministic responses are
essential. In this scheme this is achieved by implementing a
simple scheduling policy that relies on allocating each single
functional sub-task, together with a collection of user/server
interrupts, to a specific processor node of the multi-processor
structure. Comunication between the nodes takes place in a
fast, secure and deterministic manner. This also eliminates the
overhead and complexity associated with an intra-node

scheduling scheme.

In normal distributed systems user programs communicate through
the use of remote-procedure-calls (RPC). This mechaniam is used
because access to shared resources is frequently controlled by
specific procedures. Furthermore, some node functions are
implemented not on the user node, but as procedures on remote
neodes. Thus, various procedures are distributed across the
multi-processor system, where access to and execution of such
procedures is carried on demand by the user programs remotely.

159

c)

d)

This policy is in direct contradiction with the nature of
functicnal partitioning. Here the functional tasks are mapped
onto the various nodes of the system, which necessitates a
similar distribution of system variables. Hence the kernel
designed for this project must manage inter-task cammmication
and associated distributed variables efficiently and safely.
This is quite different fram the classical RPC method normally
used with ordinary distributed systems.

The kernel structure used here eliminates the need for the use
or development of special multi-processing campilers (usually
required by closely-coupled distributed processing schemes).
Individual software units (sub-tacks) may be implemented, type
checked and compiled using uni-processor campilers. This was
done successfully in developing the real-time kernel.

The implementation of 'Time-Server' routines within the kernel
to provide synchronisation of processes and local clocks across
the multi-processor system are simple and effective. This idea
is not necessarily implemented in real-time kernels.

9.1.3 Caommmication Features
Inter-processor commmnication is implemented using an asynchronous

message-passing mechanism. Simple and efficient constructs were
implemented, allowing both blocking (i.e. wait) and non-blocking (i.e.
no wait) schemes within the application task. Synchronous constructs

such as rendezvous and channels were not implemented. These are

inappropriate to such a loosely-coupled system (where messages pass

through several intermediary sub-systems) as they impose a heavy
demand on the real-time kemel software for their implementation [4].

160

The use of a non-contenticn token passing bus access method (TFPBAM)
has been shown to be an effective cammmication mechanism for real-
time systems., The TPBAM is clearly well suited for use in hard real-
time environments where deterministic operation and system reliability
are of the utmost importarce.

9.2 HARDWARE STRUCTURE

During the course o_f this research programme a locsely-coupled malti-
processor system was designed and implemented. The system has been
developed for use in distributed, real-time applications, three
processor nodes (stations) being built to prove the concept. Each
station consists of two processors, a Hitachi 64180 for handling
comunications and an Intel 80188 for executing application programs.
The following are same camments on the hardware:

a) Processor node - hardware architecture
The hardware of each station is implemented as a set of functional

blocks. This design philosophy was adopted to facilitate future
developments., Moreover, the design 1s processor-independent to allow
for replacement by enhanced of the same type or by new, various
types. This applies for both the main and the communication

Processors.

b) Use of advanced programmable logic .
The use of advanced, high density programmable logic devices in this

project made a significant impact on the hardware aspects of the
design. It minimised the chip count and significantly reduced the
circuit, hardware complexity. This speeded up the development of the
system and simplified the production of a PCB version of the system.

161

9.3 SOFTWARE STRUCTURE

A software envircnment to support functional partitioning has been
developed and implemented successfully on the multi-processor
demonstrator system.

The software has been developed and written mainly using the high
level language Modula-2. This required the use of two standard
campilers; FIL and Logitech. No special multi-processing features were
required. The following comments apply to this software enwvircrment:

a) Use of compilers
Two compilers were used in this enwviromment, FIL and Logitech. These

are standard compilers, their library functions lacking features
required by the software of embedded systems. However, the development
of both system and application software for use in embedded system was
successfully achieved in this project. Prior to this an investigation
was made into the suitability of these compilers for use in embedded
systems. For the FTL compiler a run-time environment (CPM100)
emuilating features of the CP/M operating system had to be specially
developed for the project.

Similarly, the Logitech campiler package required adaption; particular
system modules had to be modified for use in this embedded application
(e.g. the I/O0 module and the Storage module). A bootstrap loader was
also developed, partly in Modula-2, for use with application tasks.

162

b) Software envircnment

The communication protocol module and its run-time support have been
developed and run successfully. Moreover, the real-time kermel modhule
is fully designed and implemented, ready for use with an appropriate
application task. The flexible software methods of handling data
within the system eliminate certain synchronising operations which are
essential parts of some other distributed-kemmels [5]. Overall system

functional demonstrations have been developed to prove the

applicability of this environment.

9.4 APPLICABILITY OF MODULA-2

The reasons for adopting Modula-2 in this project were already given
in Chapter 4 (refer to section 4.5.4). Modula-2 has been fourd to
provide a suitable enwiromment for the design of the software for a
real-time, embedded multi-processor system. It provided a sound basis
for constructing a software design based on functional partitioning
and message-passing primitives.

The adoption of 'Modules' as the main unit of partitioning of software
camponents was found to be most helpful in processing and allocating
software components on different target processors. Further, the
ability to separately compile such modules considerably speeded up the
development process.

The following enhancements to the language should be made to further
support work in the area of real-time, distributed applications:

163

An exception handling mechanism.
Remote procedure invocation and resumption (using a modified
coroutine mechanism),

9.5 OVERALL COMMENTS

The following points are based on the experience gained in designing
and developing the multi-processor system:

a)

*

Architecture

Loosely-coupled, multi-processor systems readily and simply

support real-time, functional partitioning schemes.

The system can be used for geographically distributed processing;
this is facilitated through the use of its in-bullt serial
communications feature.

A real-time, distributed-program kernel is an essential feature
of functional partitioning schemes implemented within loosely-
coupled systems.

Asynchronous message-passing is a suitable means for distributed
programs to communicate in a distributed enwviromment. Synchronous
constructs such as rendezvous and chamnels are not appropriate
for use by loosely-coupled systems.

For distributed hard real-time systems, deterministic use of the
communication medium is considered to be an essential
requirement. The token passing method, being a non-contention
deterministic scheme, is clearly well suited for use in such
environments.

164

b)

c)

Hardware structure
Significant flexibility is achieved by allowing the hardware
design to be specified and inplemented in functional blocks. This

enables future mecdifications to take place easily and more

efficiently.

EPLD devices minimise hardware complexity, and reduce chip count
immensely.

Software structure
Standard compilers can be modified and used efficiently in real-
time, embedded applications.

Modula-2 is a highly suitable language for use in the programming
of real-time systems.

Modula-2 can be adapted for use in distributed processor
envirorments, despite its lack of full concurrent constructs.

Management of inter-task commmication and associated wvariables
is implemented efficiently and safely through the use of
'Distributed-Variables' within the real-time kernel.

The communication modes of operation (transmission and reception)
are effectively implemented in the real-time kernel. Transmission
mode is serviced as part of the background process, whereas

reception mode 1s serviced through an interrupt handler.

165

9.6 FUTURE WORK

The following hardware modifications should be made to improve system

performance:

* Increase the data transfer rate between the commmication and the
processing sections (DMA rate increase).

* Use transparent dual port RAM.

* Increase the commmication processor (64180 CPU) clock speed.

The data transfer rate can be increased by using a 16 MHZ clock for
the 80188 CPU. This increases the IMA transfer rate to 1 M Byte/s.

The system performance can also be improved by replacing the current
dual port RAM (TMS9650) by cne which allows simultanecus access from
the two ports. This will reduce the delay experienced when a station
is transmitting a message to a station which is busy exchanging
information with its processing section.

The 64180 CPU speed can be increased to 10 MHZ. This modification
reduces the set-up time needed to prepare a message for transmission.

On the software side, the following enhancements are highly desirable:

a) Integration of a multi-tasking, real-time executive
In the model develcoped so far for functional partitioning the total

system function is defined as a set of cooperating sub-tasks. Each
sub-task is then mapped onto one nwde (or processing section) for
further processing. This sub-task runs as one main process (refer to

Fig. 7.3). If this main process was further structured as a

166

collection of cooperating processes a 'multi-tasking' kernel would,

then, be needed‘to schedule and manage the processor resources,
leading to increased software camplexity and additional overheads.
Nevertheless, in larger applications, where more than one sub-task may
reside in each node, the introduction of such a multi-tasking Kernel
is highly desirable. Hence, this facility should be integrated with
the distributed kernel already developed.

The multi-tasking executive has already been designed and developed
for an embedded system using Modula-2 [6].

b) Improving the software develcpment environment
Development and testing of the system software is a complex, time

consuming task. Six processors (excluding 8087 math co-processors)
have to be monitored simultanecusly, Furthermore, six EPROMs have to
be blown in each modification. Improvements to the development
environment in general can be achieved through points mentioned
earlier in Chapter 1 (refer to section 1.1). Specific improvements,
however, can be achieved by:

* Downloading programs directly into the target system. This is
achieved through the use of an EPROM emulator to speed up EPRCM

development process.

* The intrcduction of program debuggingg tools dedicated for use
within distributed environments. These, at a minimum, should
consist of a traditional debugger for sequential processes,
together with a master debugger residing on a host system from
where the user interacts with the system. The system should

support symbolic level debugging on the host, and should have

167

knowledge about component and process relationship. More
sophisticated techniques should be developed to derive performance
analysis results from the target system.

¢) Fault recovery methods

Currently, a watchdog timer mechanism is used to provide system
restart in case of program fallure. This is a powerful, defensive
mechanism used in fault recovery. With less catastrophic situations,
however, a fault recovery mechanism should be developed to handle
errors as they arise during task execution. Thus, the need for
exception handling mechanism in such cases is essential. One way of
implementing this mechanism is to enhance Modula-2 with such a

construct.

9.7 A FINAL SUMMARY

The cutcome of this research project has been the development and
implementation of a fully operational multi-processor system for use
in hard real-time applications. The conceptual and practical aspects
of a new technique for program structuring, that of functional
partitioning, have been proven. A distributed-program kernel has been
designed and implemented to support this technique. Considerable
enhancements have been made to the software structure of the inter-
processor communication mechanism. Extensive hardware design,
development, build and test have been carried out in order to produce
a 3-node processor system. Programning was performed in both assembly
and high level languages. Two high level language campilers were used;
both required extensions to fully cater for the needs of real-time
embedded applicaticns.

168

REFERENCES

Chapter 1

1.1

1.2

1.3

1.4

1.5

Whiddet, D. 'Distributed programs: An Overview of
Implementations', Microprocessors and Microsystems, Vol.10,
No.9, pp.475-484, Nov. 1986.

Cavano, J.P. 'Software Issues Facing Parallel Architectures’,
CMPSAC 88, the 12th. Annual International Computer Software and
Applications Conference, Chicago, I.E.E.E. Conputer Society
Press, pp.300-301, 5-7 Oct. 1988.

Cooling, J.E. and Al-Hasawi,W. 'Tcken Bus Cammmications Within
a Multiprocessor System', Mlcroprocessors and Microsystems,
(11), 4, May 1987, pp.l187-195.

Cooling, J.E. and Al-Khayatt, S.S. 'A Functionally Distributed-
Program Kermel for Embedded Real-Time Multi-Processor Systems',
COMP EURO 89 Canf., IEEE Proc., Hamburg, pp.170-173, May 1989.

Cooling, J.E. and Al-Khayatt, S.S. 'Software Management in a
Modula-Z2 Environment for a Multi-Processor, Enbedded, System',
First International Modula-2 Conf., Bled, pp.145-149, Oct.
1989.

Chapter 2

2.1

2.2

Coclke, R.P. '*MOD-a Language for Distributed Programmnig', IEEE
II\I.anS- SOf‘tT#I. Ek’g-, SE"G (6).r pp0563-571, 1980.

Department of Defense, U.S. 'Programming Language Ada: Reference
Manual', Vol.106, Lecture Notes in Computer Science, Springer-
Verlag, N.Y, 1981,

169

2.3

2.4

2.5

2.6

2.7

2.8

2‘9

2.10

2.11

Downes, V.A. and Goldsack, S.J. 'The Use of the Ada Language for
Programming a Distributed System', in Hasse, V.H. 'Real Time

Programming', Pergamon, Oxford, U.K., 1980.

Jessop, W.H. 'Ada Packages and Distributed Systems', Sigplan
Not., Vol.17, No.2, pp.28-36, 1982.

Hutcheon, A.D. and Wellings, A.J. 'Ada for Distributed Systems',
Computer Standards and Interfaces, Vol. 6, No.l, pp.71-81, 1987.

Burns, A. et al, 'A Review of Ada Tasking ', YCS.78, Dept. of
Canputer Science, Univ. of York, 1985.

Hutcheon, A.D. et al. 'Distributing Programs Written in

Imperative Preogramming Languages', Dept. of Computer Science,
Univ. of York, 1986.

Snowden, D.S. and Wellings, A.J. ' Debugging Distributed Real-
Time Applications in Ada, Dept. of Computer Science, Univ. of
York, 1987.

Tedd, M. et al. 'Ada for Multi-Microprocessors', The Ada
Campanion Series, Cambridge Univ. Press, 1984.

Liskov, B. and Scheifler, R. 'Guardians and Actions: Linguistic
Support for Robust, Distributed Programs', ACM Trans. on
Prograrming Languages and Systems, Vol.5, No.3, pp.381-404, July
1983.

Carpenter, G.F., et al 'Guidelines for the Synthesis of Software
for Distributed Processors', Proceedings of the 3rd.
Programmable Electronics Systems Safety Symposium [PES 386],
pPpP.164-175, 1986.

170

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

Price, C.C. 'The Assignment of Computational Tasks Among
Processors in a Distributed System', Proceedings of the NCC,
1981.

Ng, K.W. 'Message-Passing Primitives for Multi-Microprocessor
Systems',__ Microprocessors and Microsystems, Vol.10(3), pp.156-
160, April 1986.

Ng, K.W. 'A Kernel for Distributed Programming Languages',
Interfaces in Camputing, (3), pp.199-216, 1985.

Cooling, J.E., and Al-Khayatt, S$.S. 'A functionally Distributed-
Program Kermel for Embedded Real-Time Multi-Processor Systems',
COMP EURO 89 Conf., IEEE Proc., Hamburg, pp.170-173, May 1989,

Cooling, J.E., and Al-Khayatt, S.S. 'Software Management in a
Modula-2 Environment for a Multi-Processor, Embedded, System’,
First International Modula-2 Conf., Bled, pp.145-149, Oct. 1989,

Evans, D.J. and Rahma, A.M. 'Notes on Parallel Processing',
Dept. of Camputer Studies, Loughborough Univ., 1984.

Ma, P.R. et al. 'A Task Allocation Model for Distributed
Camputing Systems', IEEE Trans. on Computers, Vol.c-31, pp.41-
47, 1982.

Wirth, N. 'Programming in Modula-2', Springer-Verlag, Third
Edition, 1985.

Mellor, P.V. et al. 'Adapting Modula-2 for Distributed Systems',
Softw. Eng. Journal, pp.l184-189, Sept. 1986.

Gligor, V.D. et al. 'An Assessment of the Real-Time Requirements

for Programming Envirorments and Languages', Proc. of Real-Time
Symposium, IEEE, Arlington, Virginia (USA), pp.3-16, Dec.1983.

171

2.22 Hoare, C.A.R., 'Monitors: an Operating System Structuring
Concept', CAOM (17), No.10 , pp.549-557, 1974.

2.23 Birrell, A.D. and Nelson, B.J. 'Implementing Remote Procedure
Calls', ACM Transactions on Computer Systems, Veol.2, No.l,
pp.39-59, 1984.

2.24 Hoare, C.A.R. 'Communicating Sequential Processes', CAMM (21),
No.8, pp.667-677, 1978.

2,25 Marshall, R. 'The Creation, Dispersal and Execution of

‘ Concurrent Modules in a Distributed System: Methodological
Considerations', IEEE Proc., pp.119-127, 1986.

Chapter 3

3.1 Deitel, H.M. 'An Introduction to Operating Systems', Addison-
Wesley, 1984.

3.2 Wirth, N. 'Programming in Modula-2', Springer-Verlag, 1985.

3.3 BAndrews, G.R. and Schneider, F.B. 'Concepts and Notations for
Concurrent Programting', Computing Surveys, Vol.1l5, No.l, pp.3-
43, 1983.

3.4 Lamport, L. 'The Mutual Exclusion Problem', Op.56, SRI
Intermaticnal, Menlo Park, Calif., 1980.

3.5 Dennis, J.B. and Van Horn, E.C. 'Programming Semantics for

3.6

Multiprogrammed Computations', CACM (9), No.3, pp.143-155, 1966.
Conway, M.E. 'A Multiprocessor System Design', In Proc. AFIPS
Fall Jt. Computer Conf., Vol.24 Spartan Books, Maryland, pp.139-
146, 1963.

172

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.1

3.16

3.17

Dijkstra, E.W. 'Cooperating Sequential Processes', In F.Gemuys,
Programing Languages, Academic Press., N.Y., 1968.

Stankovic, J.A. 'Software Commmication Mechanisms: Procedure
Calls Versus Messages', Conputer (USA), 1982.

Brinch Hansen, P. 'Operating System Principles', Prentice-Hall,
Englewood Cliffs, N.J., 1973.

Courtois, P.J. and et al. 'Concurrent Control with 'Readers' and
'Writers'', CACM (14), No.l10, pp.667-668, 1971.

Ben-Ari, M. 'Principles of Concurrent Programming', Prentice-
Hall, 1982.

Whiddet, D. 'Distributed Programs: an Overview of
Implementations', Microprocessors and Microsystems, Vol.l0,

No.9, pp.475-484, Nov. 1986.

Hoare, C.A.R. 'Monitors: an Operating System Structuring
Concept', CAOM (17}, No.l0, pp.549-557, 1974.

Brinch Hansen, P. 'The Programming Language Concurrent Pascal',
IEEE Trans. Soft. Eng., Vol.SE-1, No.2, pp.199-206, 1975.

Wirth, N 'Modula: a Language for Modular Multiprogramming',
Soft. Prac. Exper.(7), pp.3-35, 1977.

Lampson, B.W. and Redell, D.D. 'Experience with Processes and
Monitors in Mesa', CACM (23), No.2, pp.l105-117, 1980.

Kessels, J.L.W. 'An Alternative to Event Queues for
Synchronisation in Monitors', CAMM (20), No.7, pp.500-503, 1977.

173

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

Cooling, J.E. 'Software Dsign for Real-Time Systems', Chapman
and Hall, June 1990.

Haddon, B.K. 'Nested Monitor Calls', Oper. Syst. Rev., Vol.ll,
No.4, pp.18-23, 1977,

Lister, A. 'The problem of Nested Monitor Calls', Oper. Syst.
Rev., Vol.1ll, No.3, pp.5-7, 1977.

Parnas, D.L. 'The Nonn Problem of Nested Monitor Calls', Oper.
Syst. Rev., Vol.12, No.l, pp.12-14, 1978.

Wettstein, H. 'The Problem of Nested Monitor Calls Revisited?',
Oper. Syst. Rev., Vol.12, No.l, pp.19-23, 1978.

Kaubisch, W.H. and et al. 'Quasi-Parallel Programming', Soft.
Prac. Exper.(6), pp.341-356, 1976.

Wirth, N. 'The Use of Modula', Soft. Prac. Exper.(7), pp.37-65,
1977.

Andrews, G.R. and McGraw, J.R. 'Language Features for Process
Interaction', In proc. AM Conf. Language Design for Reliable
Software, Sigplan Not., Vol.1l2, No.3, pp.114-127, 1977.

Balzer, R.M. 'PORTS -~ a Method for Dynamic Interprogram
Communication and job Control’', In Proc. AFIPS Spring Jt.
Computer Conf., Vol.38, AFIPS Press, Arlington, pp.485-489,
1971.

Shatz, S.M. 'Communication Mechanisms for Programming
Distributed Systems', Computer (USA), pp.21-27, June 1984.

Liskov, B. 'Primitives for Distributed Programming', Proc.
Seventh AQM Symp. on COperating Systems, pp.33-42, 1979.

174

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

Andrews, G.R. 'The Distributed Programming Language SR-
Mechanisms, Design, and Implementation', Soft. Prac. Exper.,
Vol.12, No.8, pp.719-754, 1982.

Carpenter, B.E. and Caillian, R. 'Experience with Remote
Procedure Calls in a Real Time System', Soft. Prac. Exper.,
Vol.14, No.9, pp.901-907, 1984.

Brinch Hansen, P. 'Distributed Processes: a Concurrent
Programming Concept', CAOM (21), No.l1ll, pp.934-941, 1978.

Coclk, R.P. '*MOD-a Language for Distributed Programming', IEEE
Trans. Soft. Eng., SE-6, No.6, pp.563-571, 1980.

Liskov, B. and Scheifler, R. 'Guardians and Actions: Linguistic
Support for Robust, Distributed Programs', In Proc. 9th. A(M
Symp. Principles of Programming Languages, N.Y., pp.7-19, 1982.

Department of Defense, U.S. 'Programming Language Ada :
Reference Mamual', Vo0l.106, Lecture Notes in Computer Science,
Springer-Verlag, N.Y., 198l.

Dijkstra, E.W. 'Guarded Commands, Nondeterminancy and Formal
Derivation of Programs', CACM (18), No.8, pp.453-457, 1975.

Marshall, R. 'The Creation, Dispersal and Execution of
Concurrent Modules in a Distributed System: Methodological
Considerations', Dept. of Computer Science, U.S. Naval Acadenty,
Amnapolis, IEEE Proc., pp.l119-127, 1986.

Chapter 4

4.1

Cooling, J.E. and Al-Hasawi,W. 'Token Bus Communications Within

a Multiprocessor System', Microprocessors and Microsystems,
(11), 4, pp.187-195, May 1987.

175

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

Cooling, J.E., and Al-Khayatt, S.S. 'A Functionally Distributed-
Program Kernel for Embedded Real-Time Multi-Processor Systems',
OOMP EURO 89 conf., I.E.E.E. Proc., Hamburg, pp.170-173, May
1989.

Cooling, J.E., and Al-Khayatt, S.S. 'Software Management in a
Modula-Z2 Envirorment for a Multi-Processor, Embedded, System',
First Internaticnal Modula-2 Conf., Bled, Yugoslavia, pp.l145-
149, Oct. 1989.

IEEE Standard 802.4-Token Passing Bus Access Method and Physical
Layer Specifications, Draft D., IEEE Caomuter Society, Dec.
1982.

Barak, A. and Litman, A. 'M0S: A Multicomputer Distributed
Operating System', Softw. Prac. Exper., Vol. 15(8), pp.725-737,
Aug.1985.

Mcquillan, J.M., and Walden, D.C., 'The ARPA Network Design
Decisions', Comput.Network, vol.l, pp.243-289, Aug. 1977.

Tanenbaum, A.S. and Renesse, R.V. 'Distributed Operating
Systems’, Computing Surveys, vol.17(4), pp.419-470, Dec.1985.

Ousterhout, J.K., Scelza, D.A. and Sindhu, P.S. 'Medusa: An
Experiment in Distributed Operating System Stxucture', CAQM,
rp.92-105, Feb.1980.

Ng, K.W. 'Message-Passing Primitives for Multi-Microprocessor
Systems', Microprocessors and Microsystems, Vol.10(3), pp.156-
160, April 1986.

Ng, K.W. 'A Kernel for Distributed Programming Languages',

Interfaces in Camputing, (3), pp.199-216, 1985.

176

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

Cooling, J.E. 'Software Design for Real-Time Systems', Chapman
and Hall, June 1990.

Gligor, V.D. et al. 'An Assessment of the Real-Time Requirements
for Programming Envirconments and Languages', Proc. of Real-Time
symposium, IEEE, Arlington, Virginia (USA), pp.3-16, Dec. 1983,

Davies, A.C. 'Features of High Level Languages for

Microprocessors', Microprocessor & Microsystems (11), 2, pp.77-
87, March 1987.

Cullyer et al. 'The Choice of Computer Languages for Use in
Safety Critical Systems', Softw. Prac. Exper., Under Publication
1990.

Souter, J. 'The position of Modula-2 Among Programming
Languages' First International Modula-2 Conf., Bled, Yugoslavia,
pp.89-94, Oct.1989.

King, N. 'Building Bridges to Better Software', Computing Tech.,
pp.37-43, April 1987.

Stroustrup, B. 'The C++ Programming Language', Reference Manual,
AT & T Bell Laboratories, Jan.l1984.

Djavaheri, M., Osborne, S. 'Modula-2: An Alternative to C for
System Programming', Journal of Pascal, Ada & Mcodula-2 (5),
No.3, pp.47-52, 1985,

Feldman, M.B. 'Modula-2 Projects for an Operating-Systems

Course: Racing Sorts and Multiple Windows', IEEE Proceedings,
pp.283-288, 1986.

177

4.20 Ford, G.A. and Wiener, R.S. 'Modula-2: A Software Development
Approach', John Wiley and Scons, 1985.

4,21 Wiener, R.S8. and Sincovec, R.F. 'Software Engineering with
Modula-2 and Ada, John Wiley and Sons, 1984.

4.22 Binding, C. 'Cheap Concurrency in C', ACM SIGPLAN Notices,
Vol.20, No.9, pp.21-26, Sept.l1985.

Chapter 5

5.1 HD64180 family microprocessor software designers reference
manual, Hitachi 1986,

5.2 0S 8 bit microprocessor, HD64180 user's manual, Hitachi 1985.

5.3 Altera data bock, Altera corporation, 1987.

5.4 Altera design processor user's manual, Altera corporation, 1987.

5.5 TS 9650 data manual, texas instruments, 1984, No.1602208-9701.

5.6 Intel iAPX 86/88, 186/188 user's manual-hardware reference,
Intel 1985, No. 210912-001.

5.7 Intel iAPX 86/88,186/188 user's manual-programmer's reference,
Intel 1985, No. 210911-002.

5.8 82188 Data Sheet, Intel 1985.

5.9 SCN2681 Dual Asynchronous Receiver / Transmitter (DUART),

Mullard, Signetics 1985, No. 9397 093 66422,

178

Chapter 6

6.1 Gilbert, F. 'Software Design and Develcpment', Scilence Research
Assoclates Inc., Chicago, 1983.

6.2 Stevens, W.P. 'Using Structured Design', Wiley-InterScience,
1987.

6.3 Jones, G. 'Structured Programming Design', Hodder and Stoughton,
1985.

6.4 Storer, R. 'Practical Program Development Using JSP', Blackwell
Scientific Publications, 1987.

6.5 Jackson, M. 'Jackson PDF User's Guide', Michael Jackson Systems
Ltd., 1987.

6.6 Moore, D. 'FIL Modula-2 Language Reference', Workman and
Assoclates, 1987.

6.7 Moore, D. 'FTL Modula-2 Z80 User's Manual', Workman and
Associates, 1987.

Chaptexr 7

7.1 Cooling, J.E. 'Software Design for Real-Time Systems', Chapman
and Hall, June 1990.

7.2 Cooling, J.E. and Al-Khayatt, S.S. 'A Functionally Distributed-

Program Kernel for Embedded Real-Time Multi-Processor Systems',
COMP EURO 89 Conf., IEEE Proc., Hamburg, pp.170-173, May 1989.

179

7.3

7.4

7.5

7.6

Cooling, J.E. and Al-Khayatt, S.S. 'Software Management in a
Mociila-2 Envircnment for a Multi-Processor, Embedded, System',
First International Modula-2 Conf,, Bled, Yugoslavia, pp.145-
149, Oct. 1989.

Tanenbaum, A.S. and Renesse, R.V. 'Distributed Operating
Systems', Camputing Surveys, vol.l17(4), pp.419-470, Dec. 1985.

Andreswrs, G.R. and Schneider, F.B. 'Concepts and Notations for

Concurrent Programming', Computing Surveys (15), No.l, pp.3-43,
1983.

Logitech Modula-2/86, 'User's Marmal LU-GU101-2', Logitech,
Inc., 805 Veterans Blwd., Redwood City, CA 94063, USA.

Chapter 9

9.1

9.2

9.3

9.4

Olson, R.A. et al. 'Messages and Multiprocessing in the ELXSI
System 6400', Proc. I.E.E.E, Parallel Processing Conf., pp.21-
24, 1983.

Lionel, M.N. et al. 'Design Tradeoffs for Process Scheduling in
Shared Memory Multiprocessor Systems', IEEE Trans. on Software
Eng., vol. 15, no.3, pp.327-334, March 1989.

Campenhout, J.M. et al. 'A stochastic Model for Clesed Loop
Preemptive Microprocessor I/0 Organisations', IEEE Trans.
Camput., vol.c-27, Dec. 1978.

Shoja, G.C. et al. 'A Control Kernel to Support Ada Intertask

Caomunication on a Distributed Multiprocessor Computer System’,
Softw. and Microsystems, vol.l1(5), pp.128-134, August 1982.

180

9.5

9.6

Ng, K.W. 'A Kernel for Distributed Programming Languages',
Interfaces in Camputing, (3), pp.199-216, 1985.

Cooling, J.E. and Cooling, N. 'Design and Implementation of an

Bmbedded Real-Time Executiwve', First International Modula-2
Conf., Pre-Conference Workshop, Bled, Yugoslavia, Oct. 1989.

181

APPENDIX - A

APPENDIX A
SYSTEM HARDWARE DESICGN

A.l COMMUNICATION SECTION DESIGN

Description of the commmicaticon section is shown in three successive
sheets. Circuit diagrams are showm at the end of the secticon.

A.1.1 ¢&heet 1 (refer to Fig. A.1l)
This consists of three main parts:

* CPU block.

* Memory block.
* Main-processor buffer.

a) CPU block

The design is centred around a 64180 Hitachi processor. The system
runs at 6 MHz derived from a 12 MHz crystal. The processor requires a
low reset signal, This is generated from a standard RC combination
with a time constant of 100 mS. The diode is added to discharge the
capacitor faster in the event of a short collapse of the power rails.
The processor can be reset momentarily by a switch SWl. The reset
signal generated is also used to reset the CSM module.

Two interrupt lines are used in this design; INT1* and NMI*. INT1* is

driven by the CSM module on sheet 2. The nonmaskable interrupt, NMI*,
is controlled by the circuitry on sheet 3.

182

The processor has two asynchronous serial commmnication chamnels. A
use is made of one channel only. The channel is used for monitoring
the system status. The TX and RX lines from the processor are
buffered/transmitted via the RS232 driver/receiver modules, M6 and M7.

b) Memory block

Two main memory devices are used by the processor. The system is

designed to utilise a 64 Kbytes ocut of the available 512 Kbytes memory

address space. This is equally divided between a 32 Kbytes EPROM, ML,

and a 32 Kbytes RAM, M2, It is possible to use a smaller RAM if

desired (e.g. 6262) this has to be positioned, however, in the second
and fourth 8 Kbhytes segment of the 32 Koytes space.

The 64 Kbytes of memory address space is repeated throughout the 512
Koytes of available address space. Both memory devices are enabled by
the processor signal MEM*, The action required by the appropriate
device, i.e. read/write operation, is controlled by the CSM module on
sheet 2. This activates the EPROM and RAM via the lines EPROMRDY*,
RAMRD* and RAMWR*,

¢) Main-processor buffer
This buffer, 74HCT245, represents the interconnection between the two

processors' data buses. The OBI interface control circuitry is
described on sheet 2. This buffer is normally disabled by the BUSACK*
signal. When a transfer of information is requested, however, the CSM
enables the BUSREQ* signal low. The communication processor then
responds by enabling the BUSACK* signal thus enabling the buffer. The
direction of the buffer is controlled by the OEA* signal.

183

A.1.2 sheet 2 (refer to Fig. A.2)

This sheet contains the CSM mcdule, the ™S RAM, their support
campenents, and the system bus drivers. Description of the CM here is
limited to its input and output 1lines. Full details, however, are
given next section (A.2).

The CSM module interface with the commmication processor is based on
the following lines:-

TABLE A-1: CSM INTERFACE LINES

LINES DESCRIPTION

ICE* A line indicating a read/write to 1/0 address space.
EINP A synchronous clock signal from the processor.,

CWR* Processor's write line.

CRD* Processer's read line.

Al3-AlS Processor's address lines used for decoding.

INT1* Processor's interrupt line driven by the CSM module.
RESET* A line used to reset the CSM module.

DO-D4 Part of the processor's data bus,

The CSM module also drives back three lines EPROMRD*, RAMRD* and
RAMWR* used for address decoding of the memory block.

The CSM module controls the interface between the processing section
and the ™S module via the lines MAINRD*, MAINWR* and MAINCS*, The
processing section interrupts the cammmnication processor via the line
DMARE(. The communication processor initiate transfers between the TMS
module and the main processor via the lines DMAO and DMA1l driven by
the CSM module.

184

Eight system bus lines are directly camected to the CSM module as
shown in Table A-2 below. These initiate actions within the CSM module
and may be interrogated by the camunication processor.

TABLE A-2: SYSTEM BUS LINES

LINES DESCRIPTION

580-533 The system address lines.

S85* This is one of the four lines used to control the action
of different stations with respect to the data on the
address bus. This line indicates that an address is
being cutput by a station trying to transmit. When it is
active all stations should campare their address lines
to see if they are being addressed,

SWRT* This line acts as a write strobe. It is controlled by
the station transmitting a message and is used by the
receiving station to clock the data from the system tus
into the scratchpad RAM.

BUSY* This line is used in the synchronisation process at the
start of a transfer of a data frame. The line is
controlled by the station to which the data is being
sent. When a station wishing to transmit sends an
address then the addressed station holds this line
active until it is ready to receive the data. It then
de-activates this line.

START This line is only used during the initialisation process
of the system. After power up the logical ring must be
formed for token passing. This signal is used to

synchronise this action.

All the lines shown are either driven by tri-state buffers or by tri-
state buffers comected to act as copen collector drivers.

The station address is set by a set of select switches. An coscillator,
either 16 or 8 MHz, is shown in this sheet. This is used within the
CSM module to generate the timings for data transmission by this
station.

185

‘The two ports of the T™MS block are controlled by the CSM module. Port
A 1s used for communication with the communication and main
processors. It is controlled by the three lines CSA*, OEA* and WEA*
generated by the CSM module for read/write control. The T™MS module has
eight registers that must be addressed using the ASO-2 lines. These
are latched outputs from the CSM module. The TMS interrupt line
TMSINT* is used to generate an interrupt at the end of a transfer.

Port B interface is comnected exclusively to the system data bus. Its
operation is again controlled by the CSM module through the lines
CSB*, QEB* and WEB*, Generation of these lines is controlled by an
oscillator during a transmission cycle, once coperaticn is enabled by
the communication processor. During message reception, lines are
controlled by the system line SWRT* and the recognition of the
station's address on the system address lines. Port B address lines
are permanently grounded since the only action required is a
read/write operaticn. All other control information is written into
the ™S module via port A.

Port B data lines are comnected to the system bus through a bi-
directicnal buffer, M4. This buffer is controlled by the same signals
used to control port B interface. It is enabled by CSB* line, the
direction of transfer being controlled by the OEB*.

The ™S module has additional features not being required by this
design. Also certain signals have to be pulled to certain levels to
enable the operation in a desired mode. In particular the LOCKIN
signals for both ports are pulled high and the signals Ml and M2 are
comnected to a CR cambination to provide a reset signal for the ™S
‘module. The time constant is small encugh to allow block reset before
initialisation starts on.

186

A.1.3 Sheet 3 (refer to Fig. A.3)

This sheet shows the watchdog timer which may not be required for all
applications. If it is not required, however, then the NMI* interrupt
line may be pulled high via the movable link on the card.

The watchdog timer is in fact a monostable formed arocund the 74HCT123,
module Ml2. The trigger input of the monostable is comnected to the
comparator Mll., This comarator generates an output when the correct -
action takes place on the bus. This has the effect of triggering the
monostable. If the monostable is allowed to time ocut then an NMI
interrupt occurs. The idea of the circuit here is designed to be
constantly retriggered by the software before it times ocut. If the
system fails to function properly then time-out occurs, and a non-
maskable interrupt (NMI) is generated. The resulting exception
response is user defined; in this implementation a program restart is
initiated.

To trigger the monostable, the comparator needs to be enabled by
reading the correct address in memory. The conparator is enabled by a
read to the EPROM address space via the EPROMRD*. This read operation
mist also have the address lines AQ-A6 and Al8 set high to generate an
output from the comparator. Lines A0 to A6 are relatively easy set
high during this read operation. Line Al8, however, never goes high
during normal system operation. To enable this to occur the memory
management unit within the commmication processor would have to be
programmed to locate 4K of the logical memory address space in the
upper half of the physical address space. Alternatively, a DMA
operation has to be initiated. This, in fact, may be the best way to
reset the timer as all the DMA pointers may be left set up anxd a one
byte transfer is sufficient to accomplish the task.

187

88l

—

SHEET 2

EUSREQ:

EUSRED -

HIGH

- DENDTES §X PULL UP TO +5Y

FUSACE -

ETa
™ II
£XTAL

SHEEIS 2 ¢ 3

2SHAY O CONNECTOR

1w69

1 2 mxay

I8 FF

(3]

b% 180
H3

by L SYSELE i

naiy HIGH

g L1DE- 1gg=

4 Eine

HE - [T

—e U, L

» LR CRO-

SHEET 2

AALH OB
RAlN DI
naln 02
LT b!'

nalu oy

HOSSIAI0NG HIVH

Halk 05

MALIN On

NAIN BY

EPRONRD -

RAHRD -

Rarmal-
CATA BUS

E x 2 S133HS

SHEETS 2 2 3

ADDRESS ERUS

Fig. A1 COMMUNICATION SECTION HARDWARE DESIGN - SHEET 1

68l

1 L13HHS

MAIN PROCESSOR
1

HiGH —] #IGH
e o=
Ha ' Wi |n2| LOCKIRA LUCKINE
osc e 1 s 3
. EBEEIE ERER N weas |y 3y luEs:
zZ |z |2 |0 |@ = [] .)
sElele =iy 87 1E58 SHEET 1
. . o€s-
XTALSS DEA- 1 3z |oEx
” MM SE S M E 3y YN
LI P
T ass | as [s58
[9.033 5 %] HEA= ast |y - T
CEp~ 1" L1 C3a: ASE Ig u3 832
A~
EUSREQ- v
]
S . I: S M bl |238 IHSINT: Jay quB BACKPLANE
- ASL ‘
—_—t_ 2 ' MS ol |-
— e M B " £ ie za 500 PANY ¢ oan e PP —an
oo [TnsENT- » ® oL
wr- |y I t] [T RLLY iy R L =11
131450 N HigH i o7 |sr2 821,y v oz LU
ErRouRp. [, up |START 1] oo 1803 93148 yuncys 122 2 e
Rankb- |y g |BUSY. Y as |50 L2 7S 25 » Dy v s
amuk: [og FTY Ll ” gLl o511y a7 |03 BS e
o 58 % 3u 27 ES 1% 3¢ S So wa 1@ o7 2a e [S350 1. 25 1808 Lo lie [LN L DY
z F 2z |sor .24 M . |07 LTS
START 2y
BUSY:_ —ran
SWRT- s
3 e
p31]
SHEET 1
OATA BUS 332

Fig. A2 COMMUNICATION SECTION HARDWARE DESIGN - SHEET 2

06l

SHEET)

ErRONRD- I -ll tnul e
A8 o7 |, By e
a1 o |, e |
AR o),y sl
A3 ai |y 7wHCT e
av osly 680 yles
a3 oel, mi1. e
Ap o i wle
£18 [TH N s |2
L3 132
. TOHEY i
.5 : 123 '3 lreg '
niz .
Ty I

SHEET |

* AFFLICATION SFECIFIC

i

I

i

]

Fig. A3 COMMUNICATION SECTION HARDWARE DESIGN - SHEET 3

A.2 CSM MODULE DESCRIPTION

The CSM EPLD module, an Altera EP1800, controls most of the
processor's support functions and the system bus interface. What

follows is a description of the module circuitry.

A.2.1 Module Structure

The EP1800 has 48 macro cells each containing a logic array, a
register and an ocutput buffer (refer to Figs. A.4 and A.5). There are
also 16 dedicated inputs. The module is divided into four quadrants of
twelve macro cells each. Feedback is possible between the different
macro cells of each quadrant. Within the different quadrants, feedback
is limited to four cutput feedback lines per quadrant. These must be
fram the I/0 pins, as opposed to a function before the cutput buffer.
This limits the flexibility of fitting a circuit into the module as
there is a high degree of inter-comnectivity required in the circuit.

A.2.2 Sheet 1 (refer to Fig. A.6)

This sheet contains all the address decoding circuitry apart from the
watchdog timer. The Hitachi 64180 has two main address spaces, cne for
the memory and the other for the I/O space. The memory address space
is 512 Kbytes while the I/0 space is 64 Kbytes. In this design 64
Koytes of the memory address space is used and is divided into two
segments by the decoders on this sheet. Five registers are decoded in
the I/O space to control the hardware. The sixth register is used
internally by the processor to control timers, etec.

Three signals are generated to control the 64 Kbytes of address space
used. These repeat within the available space (512 Kbytes). The lower
memory space is used to hold the EPROM, while the upper is used .mb7

191

for the RAM. When the processor attempts to access the memory space it
enables the MEM* signal which is taken direct to the memory block,
i.e. both EPROM and RAM. Different memory cperations are controlled by
the signals EPROMRD*, RAMRD* and RAMWR*, generated by the CSM module.
These are decoded from the address line Al5, used to separate the two
memory devices,

The 5 registers within the CSM module, each cccupying 8 Kbytes block,
are decoded in this sheet. They are addressed using the address lines
Al5, Al4, and Al3. These are gated with the IOE* line from the
processor specifying that an operation is required in the I/0 space.
These five registers, activated for both read/write operations, are;
TS DATA REGISTER, TMS ADDRESS REGISTER, STATION ADDRESS REGISTER,
OOVMS OONTROL REGISTER and DMA INTERRUPT REGISTER.

Three other control lines lie within this sheet. The EINP line is the
E line from the processor. This is a synchronous clocking line used in
association with the other lines on the bus to latch-in data. The CRD
and CWR lines are used for read/write operations.

A.2.3 Sheet 2 (refer to Fig. A.7)
This sheet contains the logic design for the commmnications control
register (COMMS CONTROL REGISTER). This handles most of the signals to

start or stop actions and also to enable the read operation of variocus
status lines. The register select line fram sheet 1 is shown at the
top of the sheet and is gated with COMMSRD line to determine if a read
operation is required. This genérates the COMMS REG RD line which
enables the appropriate status lines to pass data to the OR gates,
controlling the output of the processor bus on sheet 7. When no read
operation is taking place these remain at logic zero. The status lines

are as follows:

192

TABLE A-3: OOMMS OONTROL REGISTER (READ)

REGISTER 2 ADDRESS 400CH
BIT DESCRIPTION
DO START
D1 TMSINT
D2 RXEN
D3 MAININT

The line START is a system bus line used during initialisation to
indicate the status of the overall system. TMSINT is the interrupt
line from the TMS9650 scratchpad RAM. This is only enabled during data
transmission and is latched elsewhere in the CSM module before being
read via this register. The RXEN line indicates that a wvalid system
address, corresponding to this station, is indicated on the system
bus. MAININT line indicates an interrupt by the main processor
normally requiring a DMA action. The last three lines also activate

the processor's INT1* line.

Four latches are shown in this sheet, being used when the processor
writes to the register. Shown also is the wait latch. The signal is
inverted and then latched when a 'l' is written to the wait latch. If
the output of this latch is a '0' then this activates the buffer and
pulls the START line low. This indicates that this station is not
ready to start ring initialisation. Data is inverted before being
latched to avoid problems at power up or reset. When the CSM module is
reset, the RESET line, goes high for a short period of time. This has
the effect of clearing this latch and so indicating that this station

is not ready.

193

Latches caomected to D1 and D2 are of a standard D-type used for the
control signals READY arx]l SELECT used elsewhere in the module. These
latches are clocked by the same signal as the WAIT latch.

Data line D4 is used for the STX latch. This latch is formed fram a
cross coupled NAND gate latch as it requires special clear inputs. The
latch effectively has one generated clock input, a data input and two
clear inputs. The effect of the series of AND/NAND latches is to reset
the STX output of the latch whenever the module RESET line or the
TIMSINT line are active. When neither of these lines is active, data is
clocked into the NAND latch by a clock signal. The STX line requires
two resets; one is needed to set to a reliable state after a module
reset and the other is needed at the end of a system transmission
cycle. This removes any constraints placed upon the processor as to
the order in which the STX, READY and interrupt lines must be cleared.

Clocking the 4 data latches is generated by the COMMS CONTROL
REGISTER, OOMMS WR and EINP iines. The COOMMS CONTROL REGISTER and
CvMS WR lines go active at the start of a write operation to this
register. Data at this time, however, is mt'guaranteed stable on the
data lines. The EINP lins, generated by the processor, 1s a delayed
synchronous clock that delays clocking the data latches until data
lines are guaranteed stable. The 4 written latches are:

TABLE A-4: OOMMS CONTROL REGISTER (WRITE)

REGISTER 2 ADDRESS 400CH
BIT DESCRIPTION
DO WATT
D1 READY
D2 SELECT
D3
D4 STX

194

A.2.4 Sheet 3 (refer to Fig. A.8)

This sheet containg the logic design responsible for setting this
station's address and also the driving and reception of the system
address lines.

AND gates, on the right hand side of the sheet, are used for reading
the station's address lines ADDRO-3. Signals from address select
switches pass both to these AND gates and to sheet 8 for address
recognition. AND gate outputs reflect the state of the ADDR lines when
the register is correctly addressed and a RD operation is in action.
This is determined by the state of lines STATION ADDRESS REGISTER and
CoMVS RD, which generate the line STAT REG RD. AND gate cutputs pass
to OR gates controlling the system bus cutput on sheet 7.

System address lines are controlled by a set of 4 latches shown in
this sheet. Four address lines are driven by this station. Buffers are
controlled by the line SAEN, generated by a latch. All five latches
have a caomon clock line generated by a write action, being determined
by COMMS WR and the register select signal STATION ADDRESS REGISTER.
At the rising edge of this clock signal, data is latched-in by the
five D-type latches from the data lines DO-4. If a 'l' is written to
the SAEN latch bit D4, then the ocutput of this latch will place the
output of the other four onto the system address lines INPSSO-3 by
enabling the tri-state buffers. The value of these lines is also
passed to sheet 8 for addregss recognition. This is the signal used for
reading other .é:tation's address placed on the system bus.

The SAEN latch is cleared by the module RESET line, disabling the four
address line buffers. This avoids any conflicts between stations

during a reset or power on. Address latches are not reset as their

195

state 13 changed by the write operation enabling the SAEN line. Data
read/written to this register is:

TABLE A-5: STATICN ADDRESS REGISTER
REGISTER 3 ADDRESS 6000H

BIT READ WRITE
DO ADDRO INPSSO
331 ADDR1 INPSS1
D2 ADDR2 INPSS2
D3 ADDR3 INPSS3
D4 SAEN

A.2.5 Sheet 4 (refer to Fig. A.9)
This sheet contains the logic design for the ™S block read/write
access operations, both by the main and commmnication processors.

Processor control over the TS module is determined by the SELECT line
status; a '1' for the comunication processor and a '0' for the main
processor. In the case of a commnication processor's access, the TMS
CSA* line is enabled when the TS DATA register is addressed. Then,
determined by the state of the COMMS RD and OOMMS WR lines, either the
CEA* or WEA* lines to the ™S module are activated. In the case of a
main processor's access, the CSA* line is now controlled by the
MAINCS* line. The OEA* and WEA* lines are contxrolled by the MAIN RD*
ahd MAIN WR* lines from main procegsor. Normally, the SELECT line is
set high giving the communicaticn processor the right to access the
™S module and set up the address line registers. The SELECT line
resets low, however, enabling the main processor to access the T™MS
module after a reset operation.

196

A.2,6 Sheet 5 (refer to Fig. A.10)
This sheet contains the logic necessary to control the transfer of
data over the system bus.

A clock signal, supplied to pin XTAL16, is used to control (di.e.
clock) data across the system bus. The clock signal is divided by 2, 4
and 8 to give the three timing lines A, B and C. From these timing
lines three further lines are generated. The TXCLOCK line is generated
when A, B and C are all low, its rising edge indicates the start of a
transmission cycle. This clock line is used to clock a latch

initiating transmission on sheet 9.

Two further signals are generated at specific times during a
transmission cycle. If the signal TXEN, from sheet 9, is active then
these timing signals drive both the CEB* and SWRT* lines to the ™S
and system bus respectively. This line is, then, used by the receiving
station to latch-in data. If the system is in a reception mode,
however, then the SWRT* line is routed to drive the WEB* line of the
™S module to latch-in data from the system bus.

A.2.7 Sheet 6 (refer to Fig. A.1ll)

This sheet contains two separate logic sections; management of
processors control over the data bus, and the generation of the TMS
address lines.

Data transfer between the TMS module and the processing section is
requested either by the commmication or the main processors. Prior to
a ™S access, the communication processor releases the bus preparing
for a data transfer. Following this, the communication processor

monitors two states: an end of transmission signal (EDT) by the

197

processing section, and a possible networkk message received by the
system bus. In case of a message reception by the system bus, the ™S
transfer is suspended until the network message has been serviced.

For a IMA transfer to take place, the commmication processor writes
to the DMA interrupt register. This is indicated by the DMA INTERRUPT
REGISTER and OQOMMS WR lines from sheet 1 going active. Data is then
routed to lines DO and D1 through to the CTRO and CTR1 1lines
respectively. A pulse on these lines indicates that the main processor
may start its transfer. The BUSREQ* latch is set if either DO or D1 is
high when this write operation occurs. The commnication processor
then releases the bus within 4 cycles (700nS). The processing section
must, therefore, wait at least 700nS before it attempts to start the
transfer. No physical damage occurs if it attempts to start too early
but an external set of buffers, controlled by the BUSACK* line, will
not be enabled and the transferred data is corrupted.

Data transfer is terminated when the processing section activates the
DMAREQ line. This sets the MAINOP latch, resetting the BUSREQ* latch,
and so releasing the data bus. Two other conditions may release the
camunication processor's bus; activating either the RXEN line or the
mcdule RESET line. These three conditions are ORed to form the reset
input to the BUSREQ* latch. Although this is shown as a NAND 1latch,
when implemented in the EPLD, it is in fact a combination of AND and
OR gates. In this configuration if both signals are active then the
latch is reset enabling the communication processor to investigate the
state of the system.

198

The MAINCP latch is reset by two conditions. One is a write operation
to the DMA interrupt register and the other is a module reset. The
NAND latch making up this latch is configured so that the reset
corditions override the set conditions.

There are two interrupt registers that can be reset by a write
operation. When a write is detected and the DMA interrupt register is
selected as shown by COMMS WR and DMA INTERRUPT REGISTER then the data
on lines D2 and D4 is gated onto the reset lines for the MAINOP and
TMSINT latches. The timing of this is controlled by the EINP line to
ensure that data lines are valid before being applied to the latches.
Data on these lines must be 'l’' to reset the appropriate latch. The
TMSINT latch is shown on sheet 9., The DMA interrupt register is
described below:

TABLE A-6: DMA INTERRUPT REGISTER (WRITE)
REGISTER 1 ADDRESS 2000H

BIT DESCRIPTION
Do DMAO

D1 DMAL

D2 Clear DMAREQD Latch
D3

D4 Clear TMSINT Latch

A second register is shown in this sheet. This handles the address
lines for the ™S module. The ™S module has eight registers selected
by three address lines. These are driven by a latched register, the
™S address register. Latches used are clocked by the TMS ADDRESS
REGISTER, OOMMS WR and E lines. These latches are all cleared to zero
cn a module reset by the RESET line.

199

A.2.8 Sheet 7 (refer to Fig. A.12)
This sheet contains the driving circuitry for the caommmications' data

bus. When CSM data is read four buffers are activated. Only two
registers in the C3M module can cutput data, these being registers 2
and 3. The read condition for either one is given by a '1' on Al4, a
'0' on Al5 and the signals OCOMMS RD and IOE. This is used as the
gating signals for the cutput drivers. Signals on these pins are also
routed back into the module when the communication processor is
writing to the CSM module and its output drivers are disabled.

Data line D4 is never driven by any register within the CSM module and
so is only conmnected as an input. Input to the RESET line, shown here,
1s inverted so that the processor reset line can be used to reset this
module.

A.2.9 sheet 8 (refer to Fig. A.13)

This sheet shows the logic circuiltry used to compare a station's
address with the system address lines.

Two addresses must be recognised by any station, its own address and
the broadcast address, OFH. The station's own address is recognised by
the EXOR of the system address lines and the station's address lines.
The broadcast address is recognised by the four input AND gate at the
bottom of the sheet. These signals are then cambined to show that an
address has been recognised. These are then gated with the SAEN and
the system line SSS*. If the SAEN line is asserted then it pulls the
system S8S* line low showing that this station is outputting an
address on the system bus. This also has the effect of preventing the
RXEN line going active as the address recognition signal is gated off.
If the SAEN line is not enabled, however, then the address recognition
signal drives the RXEN line active, showing that another station has
placed an address on the system address bus.

200

A.2.10 Sheet 9 (refer to Fig. A.14)

Thig sheet contains the logic to control interrupts from the TMS
module.

The INT1* line, shown at the top, is formed by an OR cambination of
RXEN, TS interrupt and MAININT signals. Below this, is the TMSINT
latch. This is set by the interrupt signal from the TS module, only
when a transmission cycle is enabled. Latch is reset by a write
operation to the DMA interrupt register setting the signal CLEAR COMMS
INT. It is also reset by the module reset line.

The circuitry used to control the generation of the system BUSY* line
and the TXEN signal is shown in the middle. The BUSY* line is pulled
low by this module if the RXEN line 1s active. This occurs when the
station recognises its address but is not ready yet to commence
transmission. When this station wants to transmit data, the STX line
is set and the system BUSY* line is monitored. When the BUSY* line
goes inactive, the STX signal is applied to the TXEN latch. This latch
is clocked by the TXCLOCK signal. Latch controlling this line may be
reset for two conditions; a module reset indicated by the RESET line,
or a TMS interrupt line going active, indicating the end of

transmission.
The logic at the bottom of this sheet controls the enable line to the

™S port B, CSB*, This signal is enabled when either RXEN or TXEN is
enabled and the READY line is set.

201

A.2.11 CsM Module Signal Description

The following signals are used internally within the CSM module:

SIGNAL DESCRIPTION

RAMRD* A signal used to access RAM for a read operation

RAMWR* A signal used to access RAM for a write operation

EPRCMRD* A signal used to access EPROM for a read operation

EINP A synchronous clock signal from the commumnication
processor used for writing to registers in the CSM
module

I10E An inverted version of the I/0 space access line
from the communication processor.

OCMMSRD An inverted version of the caommumnication processor's
read line

COMMSWR An inverted version of the communicaticn processor's
write line

Al4 A cammmnication processor's address line

A1SNOT An inverted version of the commmication processor's
Al15 address line

TMSDATAREGISTER
A register select line for the ™S data register

TMSADDRESSREGISTER
A register select line for the TS address register

STATIONADDRESSREGISTER
A register select line for the station address
register

OQOMMSOONTROLREGISTER
A commnication control register select line

DMATNTERRUPTREGISTER
A DMA interrupt control register select line

TMSUNLTCHINT An unlatched inverted ™S module interrupt signal

STX A line set by the cammmication processor to start a
transmission operation

SELECT A line set by the commmication processor to control
processor's access to the ™S module, a high lewvel
dencting the coonmmnications processor

READY A line set by the cammmnication processor when beiryg
ready for transmission or reception of data

START A system bus line indicating when the station is
ready to start system initialisation

MAININT A latched version of the DMARED signal, generated by
the main processor as an interrupt to the
cammunication processor

RXEN A signal indicating that the station's address has
been placed on the system address lines

TMSINT A latched version of the ™S module interrupt line

SS0-3

The system address lines

202

/continued

SIGNAL DESCRIPTICON

ADDRO-3 This station's address lines

SAEN A line set by the processor enabling the station to
place an address cnto the system address lines

COMMSDO-3 Lines containing the data read from the comms
control register

STATDO-3 Lines containing the data read from the station's
address register

MATINCS* A chip select line from the main processor used for
cammunication between the processing section and the
™S module

MATNRD* The main processor read line

MAINWR* The main processor write line

covMsS A line indicating the commmication processor is
accessing the ™S module

MAIN A line indicating that the main processor is
accessing the ™S module

A,B,C Three clock lines used for the generation of
transmission timing, generated by the XTAL16 clock
signal

TXCLOCK A clock signal indicating the start of a
transmission cycle and used to clock the TXEN latch

BUSREDQ* A bus request signal from the CSM module to the
camunication processor

CLEARCOMMSINT A line set by the processor to clear the interrupt
latch set by the ™S module

ASQ-2 Address lines for port A of the ™S module

SWRT* The system write line

OEB* Output enable signal of port B of the TMS module

WEB* Write enable signal of port B of the ™S module

CTRO-1 The IMA lines from the processing section indicating
the start of a data transfer with the ™S module,
also kywn as DMAO and DMAL

DO-D4 The camunication processor's data bus lines

RESET The module reset line

SSs* A system line indicating the wvalue on the system

‘ address lines is a valid address

TMSINT* An interrupt signal fram the ™S module

INT1* An interrupt line to the communication processor

BUSY A system line used to hold a transmitting station
until the receiving station is ready

CSB* Port B select line of the TS module

203

TABLE A-7: REGISTER MAP

ADDRESS REGION FUNCTION
2000H 1 DMA and Interrupt Control Register
Bit Write
DO DMAOC Initiate
D1 DMAl Initiate
D2 Clear Main Interrupt Latch
D3
D4 Clear ™S Interrupt Latch
4000H 2 Camns Control Register
Bit Write Read
DO WAIT START
Dl READY TMSINT
D2 SELECT RXEN
D3 MATNINT
D4 STX
600CH 3 Station Address Register
Bit Write Read
DO INPSSO ADDRO
Dl INPSS1 ADDR1
D2 INPSS2 ADDR2
D3 INPSS3 ADDR3
D4 SAEN
800CH 4 ™S Address Register

Table A-7 {continued)

204

Bit Write

DO ASO
Dl ASl
D2 AS2

TS Data Register

Bit Write

DO-D7 To TMS Module

205

Maln Bus

Quadrant A QuadrantB
—P — d—p! [—D
-+ f—— 4 >
vo -+ > 4 [
a— - | 4—
-« «—— b -
a— > D —
< — DRI >
— [— > 4
- — —
P < > i A o
[- [
Inputs + fnputs

<P e P 4—
—pd L | H—
- M —— D e . H—
i & S— ! [
— -——] H—

le— > L ¥o
. —d [f—— 1
- b q > > L¢—>
“— ——> >«] -
-« d M e L¢—>=
D = -t e

Quadrant C Cuadrani D
]« = 1Macro Cell

Fig. A.4 EP1800 MACRO CELL STRUCTURE

206

Loglc Array Reglster Cutpt Buffer

CJUVOU0
P QU0

4 L |
I
SRH D, T I'f - state Driver
10 Product Terms Type
_J \. S \. _/

Fig. A.5 MACRO CELL COMPONENTS

207

80¢

EiNPELE

A15R20

A14e21

A13922

CRO-FL4

£ {EPROMRD-BET

RANWR-E28

v B L U]
e il o [RAHRD-030
corersaD ‘_lil) l)c I.-.E:

=
e
= A3y
1y
o=
e
ey MIHT_ |_AHDY
Ll Ty TISDATAPEG ISTER
—
HoT ’
- D" THSADDRE$SXES IS TER
F.LOGT o
A STATIQMADDRESSFECISTER
104
COMHSCONTTOLEEG ISTER
I
LD
DHAIMTEREUSTREL 1S TS
- o
E {.
— I'"‘-';‘g cotRtsUm
{
1 -
— J-ier connE ez
o 1 e
i "

Fig. A6 COMMUNICATION SUPPORT MODULE (CSM) DESIGN - SHEET 1

602

3T

CHNZEONTROLEELLSTER

: :l m)—-.—--—‘

CHRISREFRD

U

INSANLTCHINT
4 aor
< ._l > ‘——{)o—— ComisEn
LM pISHE \FL"».
0 S|
- or 1z [~ WREYE T
| =
!~5"‘J I H o2 ——':l _ ---------)"l_ ------ i
TR
—[,»—«:srxumss
* an:nurea;
NSO S NN I~ I TR
: o T o} sy lRERDYOPRIZ
L
e m— - ——.]
[-52
REaDy L_,.c
n = e |
| Lo | —-<==J'.munreaz I
yeser VT

I IR INT copprEn
113
EXEH B
nr
—Tus by —D&
A2
_)____4_____|rr_umsm
E-OIF- 1: . .
MPIS 1ARTHEZ

Fig. A7 COMMUNICATION SUPPORT MODULE (CSM) DESIGN - SHEET 2

oLe

,—BQ

STATREERD
ADDA3
COrutS D
2
STAT {QHADDRESSRES ISTER ADDRIESE = 315 CE]
STATIONRITE L
3
COYRISHR .E.ﬂ
E ADDRS
2
ADDR20SS - i }__:_w__m
INP 4
1 onF]
o E'eu»-[;'—o 553LTCHRA2 IR
l)-1~——cllﬂ?553€23
Lti_ 3
453 ADDRY
4
ADDR1ESA = 4':"5_4_@!;_
RORF W 1
bz 'uh»&—: SS2LTCHESS 1 corr |
L}—«'—-o INPSS2R47
A J
ADDED
58T
D2
ADDROR1Y e sTatme
e
R ISR -
AORF tF i
oL }SSILTCHE& [~ g i INFS5 1010
I T J
51
""""" Tworr §
b T ol "s-p-isnENOPR12
O e) S s 1 ;
T \ H 4 onr r [:
e {So0LTCHeEE —-] ;——-—::Empssorssa L d
e g L R
S R N - PESET SAFY

L350

Fig. A8 COMMUNICATION SUPPORT MODULE (CSM) DESIGN - SHEET 3

lr..m‘l'

HEINCS-858 o
j L 4
I.ET x4
HAINRD-04%
it b vog
2
o [_‘}-r S loEA-2a1
nse oz beemem e d
CATAREG
REBDY ﬁ"’g _TMICATANEG ISTIR
s =
-
g
29
— —{ % [, lcsa-043
Tie]
5"{{ 1 N 1At
— N
N
—
—t
Ledraa B3] DT
oo
R
{ e —{ Co MEA-@4D
ot Lemramemmmnnes J
ke
HalNUE-R4g — -
1
Hee

Fig. A9 COMMUNICATION SUPPORT MODULE (CSM) DESIGN - SHEET 4

[A%4

-y

cotF |
P-—(DETXCI.KOP@Z!

*

==L >— —
) i 2 ot oz or -i
. p iDEB-Eaa
TXEM b T
rmf
1~ m
5 , .
<HO' i I
ez - ——{>-y—isurT-ea1
2
5
wr - _ I
{o——i MEB-831
: B - = i
READY
c
3
A
I s
P -JoT £ or
- S]
l_' DL
FTAL16R1T r.g18
e IE 1~

Fig. A.10 COMMUNICATION SUPPORT MODULE (CSM) DESIGN - SHEET 5

DA THTERRUF TREE IS TER

TRMBLYISH] peeeqresmmm——-
{ 1
—t—[{sﬂ::»iausazn-ea
z
fsom et e T I M-~ S J

0PRSS

€Lz

po '—rpm\z ol | {:5“3’_

S=tle = [Teg s

—S i :
‘ B! Lol : ,—_ﬂi‘! S 1 R T
nt _——D_‘m’ {;:3] %- J& L

1 S .J __pler
o esgr | F’" - e M
JWA P e

DMAREGES] S . 1f£_—a°°'" HATHOPZAY
[T | [) b
RESET T @ “
l;m + I .-

T e T

b .

-------- -
ny) CLEARCGHUIE [T o F o —-{;_LEEIEP.S 183

rZ
[it - -'-"'ﬁ'
SR e [E1re i 27 o —{'_,","1-——;:-!"152&#@
TUEADDEESuEEE TSTER rj——-" - t 4 IE
FESEY Dttt]L """"""" :
£ veo . FESEY

Fig. A.11 COMMUNICATION SUPPORT MODULE (CSM) DESIGN - SHEET 6

4%4

STATDY

INPIMR2S
[

ooHRISHY

Lomsn2

FTATDY

COMmIShY

$Tatne

HP
_:1- -------- "
L oorF
|y INPR2R2T
03
1
cotF
&—-—-—e.-:- INPD2€36
p
coyr
p——c>{INPD1RY
L:2]

copIsrg

INPDORSE

VRV

CARISED

_—

ALY

f R wesry

RESET- =
INF

Fig. A.12 COMMUNICATION SUPPORT MODULE (CSM) DESIGN - SHEET 7

L~

SLe

STATIOMMITE T oz \m,“}
> t
o+
T cotF |
saed + {_,‘:»o——{_‘j,u-—e:sisss-ess
NOT
DS
[f T
£53
n
ADDRY :
552
l'::)[5—-———
ALDEZ] o4 o Ty lvera! .
%j—] Yo [Sa ez faxeiorels ~
13
_______________ .
€51
=
ADDRL
by
I
St ————irl
ADDED l L”
r—ﬂ%
J
Fig. A.13

COMMUNICATION SUPPORT MODULE (CSM) DESIGN - SHEET 8§

MDZ

EXENR

917

MATHINT

PREH

. M
D2
-HOT
THSINT-026 lr_;x DrsmLTCH T
INF

rrsey [HOT

CLEARCOMMS IHT &g

4ot i1 ooor
A 4 T

> IBUSYOPEEA

P
—QiﬂUSY"ES?

BYEN

A
- J—L"‘

e
I__l-"kz

EEADY |]

"“{ L——{:)“;;;"}INTI-E'I

DI

STX
THXEHSLOCE
EN THEN
FTAPY
3 gomm e ———— 4
= ConF
—_— [-0T - ; L,- [TXENOPRST
L% vty L H
' T S = S
i L
[0 —] 7 {csB-a39
. —1. ;
[p—— -4

E*’ s
e

Fig. A.14 COMMUNICATION SUPPORT MODULE (CSM) DESIGN - SHEET?9

A.3 Altera design report

This section presents the report generated by the Altera
design processor. Also included at the end of this section are
the files used with the functional simulator to test the design.
No actual results from this are presented as this was displayed
using the VIEW program which produces no hardcopy.

1. Design processor report

ALTERA Design Processor Utilization Report
@(#) FIT Version 4.52 1/15/787 16:39:33 34,1.1.1
*x*x*x Design implemented successfully

Loughborough Univ.

26TH FEB, 1988.

1.00

C

EP1800J

CSM Mk 1

LogiCaps Schematic Capture Ver 1.5
OPTIONS: TURBO = ON

217

<N S

[l o Bl = o

= O A
RO O
0O
nnoe Ao m
Mmoo A
DB

U=aA

O oA

=2 03—

nui- Ao T
MO COCO A
PR EMA>M[AA
HZEFE
[OI

AR

9 B8 7 6 5 4 3 2 168 67 66 65 64 63 62 61
EP180G0J

27 28 29 36 31 32 33 34 35 36 37 38 39 40 41 42 43

INPD4

INPSS3
TMSINT-

TXCLKOP

O |
M

O

< U1 N

onm |
NN AdFH O
N AROUEO M
HZE AN

L= A

Mmoo

QR M
nwn AR o m
0 E e
[l =i
MAEDRAR>A
M E M

2L OoMm

218

**QUTPUTS*»*

FdBck

Name Pin Resource MCell PTerms | Group ! Sync Clock
RAMRD- 30 CONF 20 i/ 8 | 2 : -
RAMWR- 28 CONF 18 1/ 8 i 2 ' -
EPROMRD- 67 CONF 47 i/ 8 1 4 i -
START 62 COIF 42 1/ 8 | 4 | -
READYOP 12 ROIF i1 17 8 : 16 | -
WAITOP 63 RORF 43 i/ 8 H 4 H -
SELECTOP 37 ROIF 26 1/ 8 | 3 ! -
STXOP 65 COCF 45 6/ B8 i 4 ! -
SSOLTCH 66 RORF 46 1/ 8 i 4 ! -
INPSS3 23 COIF 13 1/ 8 ! 2G| -
INPSS0 60 COIF 40 1/ 8 ; 4G -
INPSS1 10 COIF 9 1/ 8 i 1G 1 -
INPSS2 47 COIF 36 1/ 8 i 3G 1 -
SS1LTCH 4 RORF 3 i/ 8 i 1 i -
SS2LTCH 38 RORF 27 1/ 8 1 3 H -
SAENOP 13 ROIF 12 1/ 8 | 16 | -
SS3LTCH 32 RORF 22 1/ 8 i 2 : -
WEA- 42 CONF 31 2/ 8 | 3 : -
CSA- 43 CONF 32 2/ 8 | 3 ' -
OEA- 41 CONF 30 2/ 8 | 3 ' -
OEB- 33 CONF 23 3/ 8 2 : -
TXCLKOP 24 COIF 14 1/ 8 H 2G : -
SWRT-~ 31 COlF 21 3/ 8 1 2 : -
WEB- 34 CONF 24 2/ 8 | 2 ' -
CTRO 68 COCF 48 27 8 | 4 H -
CTR1 2 COCF 1 2/ 8 1 d -
AS0 61 RONF 41 i/ 8 i 4 I -
AS1 3 RONF 2 1/ 8 i 1 ' -
AS2 40 RONF 29 1/ 8 | 3 ' -
BUSREQOP 5 COCF 4 2/ 8 | 1 : -
BUSREQ- 8 COCF 7 5/ 8 | 1 | -
MAINOP 44 COIF 33 i/ 8 | 3G | -
INPD3 27 COIF 17 2/ 8 | 2 ' -
INPD2 36 CO1F 25 3/ 8 | 3 ! -
INPD1 9 COIF 8 2/ 8 1 i -
INPDO 58 COIF 38 2/ 8 4G | -
RXENOP 11 COIF 10 8/ 8 16 | -
885~ 46 COIF 35 1/ 8 i 3G i -
BUSYOP 64 COCF 44 2/ 8 4 ! -
INT1- 7 CONF 6 47 8 | 1 : -
BUSY- 59 COIF 39 27 8 4G | -
CSB- a9 CONF 28 8/ 8 ; 3 ' -
TXENOP 57 COIF 37 3/ 8 i 4G H -

219

BURIED REGISTERS

Name

A

B

C
.7108029
TMSINT

xTNPUTS»
Name

Al5

Al4

Al3
CRD-
CWR-
I0E-
EINP
ADDR3
ADDR2
ADDR1
ADDRO
MAINCS-
MAINRD~
MAINWR-
XTAL16
DMAREQ
INPD4
RESET-
TMSINT-

Pin

Pin

20
21
22
14
15
53
16
56
55

‘54
19
59
49
48
17
51
25
45
26

Rescurce

NORF
NORF
NORF
NOCF
NOCF

Resource

INP
INP
INP
INP
INP
INP
INP
INP
INP
INP
INP
INP
INP
INP
INP
INP
INP
INP
INP

PART UTILIZATION

48/48
19/19

MacroCells (100%)
Input Pins (100%)

PTerms Used 28%

MCell

15
16
19
35

220

PTerms

i/
2/
3/
2/
8/

o oo

PTerms

@

FdBck
Group

=W NN

Svnec Clock

Synec Clock

‘oceil

Interconnection Cross leference

iACES: HHH
' NENHENHNNLLL
1234567890112
..... COCF g1 =) * ., .
«ovos RONE BH2 -3 G
WE ., BORF @N3 > oty
Q0P , COCF @M& -»
iT ... 50CFgis ..., %, 2 .
s COREANE <> o 0 v 0 0 v s o0 .
i0- .. COCR gNT -3 . . . 4 o
lL.oooo COIF QMG <> * 22 0 L L, '
31 ... COTF @9 = 1 t
... COTF AMI18=) L
f0P .. ROIF @XIL-) . . o v oo v i v s
0P ... ROIF @QHI2-> L
83 ... COIF g¥13<», L :
0P ., COIF QLG o o o L 0 v o o v
...... HORF AHIS-) rxrrrrrrrzry
...... FORF GNI6-) rrrrxrrITITIIOCY
3. COP RNt rrrxrrrrrrzry
R- . CORF MM rr 11T ITTIIZIOIZL
...... FORF @M19-) rrrrzrzrrrzrzx
D- .. CONF QM) rrrrTIYITICIIX
-~ COIFENIIY rrrrrrrrrzrra
TCH .. RORF @22y rrrrrrIrTIYICY
...... CONF @)-) rrrrrrrrrrtr
..... COFF @M2¢-) rrrrrrrrzzey
R COIFENS-Y rrrrrrrrrrax
CTOP . ROTF @M26-) rxrrIXTITIICTIICY
OO . RORF AKQ?-) rrrxrrrrccrec
...... CORF R¥28-) rzyrrrrrzrzrrc
...... ROFF @¥M9-) rzrrrxrzrrrz
...... CONF M=) rrxzrrrrrxrr
..... CONF @M~y rrrrrrrrrxzze
...... CONF @32 rrrrrrzrrrrx
102 ... COIF @K33-) * L
8829 . NOCF @M3é-) rxrrrrrrrzrzrz
...... COIF QM35,
182 ... COIF §M36-) t 1 :
0P ., COIF RN3T> o o L o' oo o s v
Mo COIF AM38-Y . . . v
(= oo COTF RMM9) L 0L 0
330 ... COIF fK&9-> . ., .. LI
...... RONF @M&1-) rxrzrzrrztr:
RE . COTP EM§2-Y rrrrrrzzrrrs
TOP ... RORF BM&3-} s rrrxrzxzrrrzz:
POP ... COCF fAM&4-} rrrrsrTrTIcrrizs
0P ... COCF @Md5-) rxrrrrxrrzzre
LTCH .. RORF @M46-) t 1 rrrrrrrrrz

HXHAMNKEN LMK
r1rtr1111212122
JE5678901213%
IIrrIIrIrIILx
TIIrIIITrIry
ITITIIITITIIIY
IIrIrtIrrIry
ITIIIIIYIIII
fTIrrIrIIYIICX
ITITITIIIXIX
rtrIrrIrrTII
L I 1
...... ' .l
........... H
b e e e e e . H

L)
Ty
]] ll.t
e e et e 1}
R
e
1
trrrrrrrrrzy
ITIITITIIIILI
IrIrrrIrrIl
rryrrrtrriin
IIIIITITIEIL
TITIIIIIIIII
ITIIrrTIIIII
ITIIITIIIINI

i

|||||||

...........

221

KNEXMNENHUH
1222211331313
567898123545
ITIrrrrIIrzI
IIYIrrrrrxzl
I IIYIIIXITII
IIYIIIITIITI
IIIYXXIIIIztl
ITIrIIYrrrItl
IIIrIrIyrrrzx
IXIIYYIITITIZX
|3 % e e s .
L 0‘| [+
. 'a'lli '
1 ‘l. . L I 2 §
1 1 e e e e
IITy!IIITIIIIII
IIIIr:rrIxrIIrITIl
IITIr:rIrriIrIrIrzr
IIrrrrrrrryr
Irrrrrryrrrzrzx
IrTrrrrirxrri:
I ITIrIrfrry1rrIy
IrYyrIrrrrrrizy
IYTYTIITIITIIX
ITYIrrryrIiIrzx
1 i . A
..... 11 1 .
1
e
SRR ,
b L e e e
' ey e
[}
Do
IrryIrrrrrrIir
ItTIrrIrrIcrr
IXIrrrrrrrrrzx
IrrrrrrrIxIIzr
IrrrrrrxrIil1zr
IITIrrrirIrrr

Lo T B o N S R B B S B o - L BN - 4

P P el P N 3 L R
- - o e M P OR o TR
LT I S T T O B B B B~ L S =

ot R ord bk M 4

(=~

R I S B I = R R R
Ok M P M M P N — e TR
P e . T L B B I
- OP s P MM M MY L e I
I = T . B B I~ I IR BT -
- s s L I R R R R L. I i
Lo T I = B I B B B R - Y- e
L L T S U B R~

(o]

=

[y

»

Lo L T S T T I S I I]
[BN B B e T B B B o
L A N T]
L T T T R T R L A - B]
L I T T T T T B S I]
Ea T o T o B o R B o N o B . B B o
L T T O B RV S L R T
LS TS I R ST S T S I T]
e B T T R I S R)
L T T B e B I B B B o I]

A (o)

—

-~

=y

—

Lo T S T T B B B o B |
Lo T S T B B B B B |
L T T o I S I B B
rd g bt Pt e P4 P g
Lo I I T . B R B |
Lo IS T o B B O B B |
Lo SO S T T I - B I B
Lo B I T B I B B]
Hoyq M
[I C N o T o A

(]

&

-

-

(2]
- ey -
-
-
- = pq
L L |
o g -
"t
(]
e

uuuuuuuuuuu

uuuuuuuuuuu

nnnnnnn

IrIrrrrrrrziz

TIXIIIrIITIritzl

JCORRENT) rrrrryrzIzee

MRD-

[SRCE - T |
D 0T o8 D e O o
M OCD G - Bl T
[- - PR — B]

o Yy

o mom

LI - B B B TR -
™ Ty M oo B)

[R~]
-

b s el Wt e opexd 0
o B oA, e
L]

[]

MO P 3 D bt O AL
b s I O, O3 DD ™

oty -) 28 O A
oo (2 e SO D OO O
ool o O Oy
bt — IE Ay O O3 e
o R S e
LI - R T R i |
Pl s % fet —

M X g3 o o
oo ool B e OO
e oD R e] D
b ot O3 e

L el —

COCF R448-)

222

HAKN MHMMHENNN HEN HNANXNHNANNN

(s

8 O =

-— = .

T a .

HEHKNNN
[234367

NP A4 =)

. . . -
- . e e e e e e . -
- - = - - - -
- - o om om e e - -
- = ™M = = - - -
-t - e = - - - -
- - - - - - = - - e -
- - - = - - -
- - .
- ow - M owm e = e e e s
- - - - - -
- - e o
. . . .
- . . - .
- - e o om = o= - -
. . e . - .
- - . * & - @ -
.- . - - . e .
- - s e e -
- - - om - -
. - -
- - - . .
. . .
- @ v 8w a a = -
- - o o- -
- . - . . .
. . e m m . - -
- - + e = .
.
“ w4 e e wm w e o W o= . . .
- e M om e e s e e e .
- . = = o M = - - = a = a
- - * s @& = " - o - = = =
@ e e e @ @ e e o+ e e .
P e N e e A S e P e e e e
[R R R e R N T
CS S SISO NSSTTIND
oL oy O A R R O G O o D oo G2 s
O P B Ol B By B O By B B B B e
EEmEEREEREEEREEESE
4 e e e e e e e e e e e .
LT
Il T Dt ke
—_ x et B B ool €5 £

LT = 2= =

E NN T U U A)

s E=t bt T 42 bl €O O
= — o= Oy oy Y 3

- 03 - (2] he O O
- e A = B Sy
s m owm O bd P m OO O,

-
.
-
1 1
-y
uy
o o
Pa P
B o

e 4 T Pl G O amd
- — o oA, Ty —

I s I — i e B e B = L B]
- w2 e]

- B W o3 v B B

- PO = TDoexd fR OO
L - R R i -

223

2. Simulation test patterns

This section contains 1istings of the files used in the
functional testing of the design. Each listing is in two
sections. First the command file used to control the simulation
and secondly the vector file.

2.1. CSMINIT command file

This file is used by all the simulations to initialise the
module.

echo Starting CSM init test module;

group hex inputdata = INPD4 INPD3 INPD2 INPD!1 INPDG;
group hex address = Al3 Al4 Al3;

vec @csminit;

cycle 2;

init TMSINT- = 1;

sim 10;

2.2, CSMINIT vector file

PATTERN:
RESET- =0000011111;
CWR- = (1)*;

CRD- = (1)*;

I0E- = (1)*;

EINP = (@)*;
XTAL16 = (1 0)*;
TMSINT- = (1)%;
DMAREQ = (0)*;
MAINCS- = (1)*;
MAINRD- = (X)*;
HAINWR- = (X)*;

224

ADDRG

ADDR1

ADDR2

ADDR3

START

BUSY-

INPSS0

INP3S1

INPS52

INPSS3

3SS-

{0)*;

(1)*5
()=
(1)*;
(2)*;
(2)*;
Z (X)*3
Z (X)*;
Z (X)*;
Z (X)*;

Z (X)*;

225

2.3. CSMTEST1 command file

This simulation tests the reading and writing of data by the
microprocessor to the mocdule.

echo Starting CSM module functional test 1;
echo TMS data read and write test;
exec @CSMINIT;
echo 40 step simulation.....;
log @csmtestl!;
group hex inputdata = INPD4 INPD3 INPD2 INPD1 INFPDO;
group hex address = Al5 Al4 Al13;
vec (@csmtestl;
cycle 2;
rlot ASQ® AS1 AS2 INPD4 INPD3.INP INPDZ2.INP INPD1.INP INPD@.INP
Al5 Al4 A13 CWR- CRD- EINP IOE- SELECTOP
CSA— OEA- WEA- CSB- QOEB- WEB- SWRT-
TXCLKOP TXENQP;
sim 40;
view;
save @CSMTESTL!L;

2.4, CSMTEST! vector file

PATTERN:

address =022222220 04444404444 00444444 64440
1111111005555 555550055555555548
(@)*;

inputdata = Z 4 4 4 4 4 44 00 222222222005555555550
044444 4400XXXYXYXXYXXX00XYXYXXXXXXYO
(B)*;

EINP =00011111000001111100000801111000
602111102000@111100000020001111000
(@)*;

I0E- =11000020111100000011111100000111
110000011110006060111111100000111
(1)*;

CWR- =11006000111160000111111100000111
11000001 111000001311111111111111
(1)*;

CRD- =1111111111111311111111111111111
111111111311111111111111060000111
(1)*;

z26

ADDR@
ADDR1
ADDR2
ADDR3
MAINCS-
MAINWR-
MAINRD-
XTAL16
DMAREQ
TMSINT-
START
BUSY-
INPSSQ
INPSS1
INPSS2
INPSS3
SSS-

RESET-

(@)*;
(@x*;
(0)*;
(@)*;
(1)*;
(1)*;
(1)*;

(1 e)~;
(0)*;
(1)*;

L (Z)*
Z7 (L)%
Z (0)*;

Z (1)*;

Z (1)*;

Z (1)*;

Z (1)

(1)*;

227

2.5. CSMTEST2 command file

This simulation checks the transfer of control of the

bus between the main and communications processors.

echo Starting CS5M module functional test 2;

echo DMA transfer control test;

exec @CSMINIT;

echo 50 step simulation.....;

log @csmtest2;

group hex inputdata = INPD4 INPD3 INPD2 INPD1 INPDO;

group hex address = Al5 Al4 Al3;

group hex addr = ADDR3 ADDR2 ADDR1 ADDRO;

group hex ssaddr = INPSS3 INPSS2 INPSS1 INPSSG;

vec {@csmtiest2;

cycle 2; :

plot INPD4 INPD3.INP INPD2,INP INPD1.INP INPD@.INP
AlS Al4 Al3 CWR- CRD- EINP IOE-
BUSREQ- CTR¢ CTR1 DMAREQ MAINOP INT1-

SSS-.INP INPSS3.INP INPSS2.INP INPSS1.INP INPSS@.INP

ADDR3 ADDRZ ADDR1 ADDRO
MAINCS- MAINRD- MAINWR-
CSA- OEA- WEA-
RXENOP BUSY(QOP READYOP;
sim +50Q;
view;
save @CSMTEST2;

2.6. CSMTEST2 vector file

PATTERN:
address

1l
—~ e e &
~ S S
-0 O

eoROOQEOQO

QO
H & QK
H e o
Lol I I
e
DO

Q000000020

i
N QAN

— SN
we N Y

inputdata
ZLLZLZZILLLlL1

L6 o B
(S I
L~
U Q=
[B R I g
SN
[

=]

[y
[~I~R

00000Q0O000

EINP =
geoeeeo00

[]
S S
[l N~
- oo
-0 e
Lol - I]
28 o
@

[
[~
2]
(v o o)
S

6oQ2C0O000O0O0

—_—~e e e &
-0 e

228

data

=110000001

I10E-

11111111111111111
11111111
01111111111111111

111
111
o0

— S

— o S es
~ o~
L B B B

10000001

CWR-

11111111111111111

11111111
1111111111111111

- o

111111111111111

111111

CRD-

poeOOoORROOO

DMAREQ

P0000Q000CQ000R0CQRQQOCROOR0OD0OD0

200000021111 000080

2000000000000 000020Q00000000

(@)*;

= (3)*;

addr

=111111111

S5S5-

113:1111111111111111111111

111111111111 111

1111111111111111000601111

(1)*;

=D BQOBO0OOO0

ssaddr

o I I v T O O o I I O L R

PeeoroeEReROQQO
Q000D 0QORO0OROROO33333300280

(@)*;

111111111

-

MAINCS-

110000000000000000000011

(1)*;

111011111

MAINWR-

111929111111 0606111111660111

(1)*;

111111011

MAINRD-

11111110011 11110@1111111

(1)*;

(1 @)*;

u

XTAL16

= (1)*;

TMSINT-

= (1)*;

START

229

BUSY-

(@)*;

RESET-

(1)*;

230

2.7. CSMTEST3 command file

This simulation checks the receiving of data from the system
data bus.

echo Starting CSM module functional test 3;

echo System bus data receive test;

exec @CSMINIT;

echo 50 step simulation;

log {@csmtest3

group hex inputdata = INPD4 INPD3 INPD2 INPD1l INPDOQ;

group hex address = Al5 Al4 Al3;

group hex adr = ADDR3 ADDR2 ADDR1 ADDRGOG;

group hex ssaddr = INPSS3 INPSS2 INPSS1 INPSSOQ;

vec {dcsmtestd;

cycle 2;

plot INPD4 INPD3.INP INPD2.INP INPD1.INP INPDO.INP
AlDS Al4 AL3 CWR-—~ CRD- EINP IOE-
BUSREQ~- CTRQ CTR! DMAREQ MAINOP INT1-
SSS~.INP IKPSS3.INP INPSS2.INP INPSS1.INP INPSS@.INP
ADDR3 ADDR2 ADDR! ADDRO
RXENOP BUSY- BUSYQP SWRT-.INP READYOP RESET- TXENOP
CSA- OEA-~ WEA- CSB- OEB- WEB-;

sim +5@;

view;

save @CSMTEST3;

2.8. CSMTEST3 vector file

PATTERN:

address =02 OQOROOQRO22222222000000
2000000002000 00DCGORRBG0ORO
(@)*;

inputdata = 00 2 Q0 22 Q@0 22222222000000
2020000 ROOOD0DRRERDQROCO
(8)*;

EINP 00002 RROBOER1L1I1110000000
200200002002 000000000000000
(@)*;

I0E- =11111111111000600@01111111
1t11111111111111111111111
(1)*;

CWR- =1111111111192060@6060601111111
111111%111111111111111111

231

(1)}*;

111131111111111111111111

(1)*;
= (0)*;

CRD-

DMAREQ

= (3)*;

addr

[|
[|
[~
S o
[)
[
[
[
[
[
[
[
[
[~
L)
[
[
[
[
[+
S e
O D -
- S ~
L B~ B
n

SS5-

X+

(1)

- MAINCS-

(1)*;
= (1)*;

MAINWR-

MAINRD-

= (1 0)*;

XTAL16

= (1)*;

THSINT-

= (2)*;

START

1222222722272 Z222227211111

BUSY-

111111111111111111

(0)*;

s X XXXXYXXXYXXXXXXYXXXXXX1100111

SWRT-

10611112061 111011110011X

(X)*3

= (1)*;

RESET-

232

2.9. CSMTEST4 command file

This simulation tests the transmission of data from
station across the system bus.

echo Starting CSM module functional test 4;
echo System data transmit test;
exec @CSMINIT; ,
echo 60 step simulation..... H
log @csmtests;
group hex inputdata = INPD4 INPD3 INPD2 INPD1 INPDO;
group hex address = Al3 Al4 Al3;
group hex addr = ADDR3 ADDR2 ADDR1 ADDRO;
group hex ssaddr = INPSS3 INPSS2 INPSS1 INPSS@;
vec ({@csmtest4;
cycle 2;
plot INPD4 INPD3,INP INPD2.INP INPD1.INP INPDO.INP
Al5 Al4 A13 CWR—~ CRD- EINP IOQE-
INT1- TMSINT~
SAENOP SSS—~ INPSS3 INPSS2 INPSS1 INPSSO
ADDR3 ADDR2 ADDR1 ADDRO
CSB- OEB- WEB- SWRT- BUSY-.INP
XTAL16 A B C
TXERQP TXCLKOP STX RXENOP BUSYOP READYOP;
sim +60;
view;
save (@QCSMTEST4;

2.10. CSMTEST4 vector file

PATTERN:

agddress =033333330@090222222200000020
o0 ODOCOEEOOOC0O0ODORODOOORROOO
(@)y*27
@O0 Q00RQOO0D0O222222200
(0)*;

inputdata = 0 17 17 17 17 17 17 17 ¢ @ 12 12 12 12 12 1212 002 0 0 ¢ 0
20OQQORQOODROOCRORROOOOOOO0ROO
(@)*27
PO0ROROOORLODODOOOQRRROO
(0)*;

EINP =0020@11111200021111100000032%90
0000002000000 00C@QQRCOQAOORRARD0
(@)*27
02000 CGROEOEGOOO1111100
(@)*;

233

the

lieceeeeelieoeeoonoo01111111

IOE-

11111213111111311111111111

(1)*27
11111111110060000011

(1)*;
=11000000211000000@e@11121111

CWR-

111111111111 1113111111111

(1)*27
1111111111200000011

(1)*

11111111311113111111111111

(1)*;

CRD-

= (3)*;

addr

2727271271222 712112721L11%
ZLLZ2222L2L1T21L2TTLL11L

(Z)*;
=122221L1TZ7T1LZZ27T17Z7T71L11111L

385~

Z1
Z2

A
Z

2222211212122 7TLLLLLIZTI1

(2)*;

ssaddr

= (1)*;

MAINCS-

= (1)

MAINKR-

(1)*;

MAINRD-

(1 8)%;

H

XTAL16

111111111111111111111

TMSINT-

2GeQR00C000Q00Q2B00000000021

(1)=;

i111113111111111111111
= (Z)*;

(1)*29 0 20 @ ©

START

2171710000000 0000000000000

BUSY-

1111111111111 11111111111

111111111111111111111111
(1)*;

(1)*27

(1)*;

RESET-

234

2.11. CSMTESTS5 command file

This simulation test +the reading of data by the

pProcessor.

echo Starting CSM module functional test 5;
echo CSM module data read tests;
exec @CSMINIT;
echo 70 step simulation.....;
log @csmtest5;
group hex inputdata = INPD4 INPD3 INPD2 INPD1 INPD@;
group hex address = Al15 Al4 Al3;
group hex addr = ADDR3 ADDR2 ADDR1 ADDRG;
group hex ssaddr = INPSS3 INPSS2 INPSS1 INPSS0;
vec (@csmtest5;
cycle 2;
plot INPD4 INPD3 INPD2 INPDI INPDO
Al5 Al4 Al3 CWR- CRD- EINP IOE-
BUSREQ- CTRQ CTR1 DMAREQ MAINCP INT1- START.INP

585-.INP INPSS3.INP INPSS2.INP INPSS1.INP INPSS@.

ADDR3 ADDR2 ADDR1 ADDRO
RXENQP BUSYOP READYOP:;
sim +70;
view;
save @CSMTESTS;

2.12. CSMTESTS5 vector file

PATTERN:

address =022222220
P33333330033333330000000
(02222222 0)*3
11111118
02222222290
(@)*;

inputdata =2 00 0 Q02000
B ZZ22L27177001Z 2727171712717 0000000
(0ZZZ 727777 0)*3
Q4444 4 4 40
222722170
(@)*;

EINP =@00Q111110
PD0Q111110200011111000000020
(002 111110)*3
202111110
2o@111110

START
INP

main

(9)*;

l1i1ee00002091111111

™
®
~
~

—- ~ -~
[

[[
S

S e [
Q

[[
(<]

o6 [~
o

xR (R
[+~

QG QS -
— x

— ~ v~
~l i

[IR o B B S

n

&

o

—

@
o
<

1
1

L e Bl o B B

CWR~

111111111111111

2001
1111
111111111)*3

—
—
-

1
1

[]
=
o -
o
=R

S o -

1
1
1)*

1111
2001110000001 111111

(3}
«
~
—{
— e
(=}
-
(=]
-
=]
L B
)
— S - o
[
- S Lo)
=
- S — S .-
—
~ =~
—

o e o s

CRD-

000200 Q0Q0QQRO0Q0QO0OOD

[I ™ R R]
e E
e ®
SO ®
DOV OE
DA
DO A -
@@@glew
[R I S

DMAREQ

2DDDPDDDDDPDDDDDD

addr

2221221727117 7LZL21171

MNNOE A
MNMNOE
NN Ao
MMNEe O A A
NN O A
NNES O - A
N O A A .
_....u?u@ﬂullluu/
Zzaelllﬁlb\

3558~

2221721127217 171111

MAINCS-

(1)*;

MAINWR~-

= (1)*;

MAINRD-

236

XTAL16

TMSINT-

START

BUSY-

RESET-

(1 0)*;

11111111131 111113111111111

(*;

PeR2O0RROOQRROQCBB0O0OQ

237

2.13. CSMTEST6 command file

This simulation tests the reset function of the
does not require the initialisation routines.

echo Starting CSM module functional test 6;

echo Reset test;

echo 15 step simulation..... :

log @csmtestéd;

group hex inputdata = INPD4 INPD3 INPD2 INPD1 INPDQ;
group hex address = Al15 Al4 Al3;

vec @csmtest6;

cycle 23

device.

plot AS@ AS1 AS2 STX SELECTOP READYOP WAITOP START SAENOP

BUSREQ- MAINQOP TXENOP TMSINT INT1- RESET-;
sim 15; .

view;

save @CSMTESTS6;

2.14. CSMTEST6 vector file
PATTERN:
RESET- =111110000011111 (1)
CWR- = (1)*;
CRD- = (1)*%;
I0E- = (1)*;
EINP = (@)*;
XTAL16 = (1 0)*;
TMSINT- = (1)*;
DMAREQ = (9)*;
MAINCS- = (1)%;
MAINRD- = (X)*;
MAINWR- = (X)*;
ADDRO = (0)*;
ADDR1 = (1)%;

238

It

ADDR2 = (1}*;

ADDR3 = (1)*;

START = (2)*;

BUSY- = (2)*;

INPSSO = Z (X)*;

INPSS1 = 2 (X)*;

INPSS2 = 2 (X)*;

INPSS3 = 7 (X)*;

SSS- =Z7717271111111111 ()%

239

aA.4 PROCESSING SECTION DESIGN

A.4.1 The CPU Section

a) The 80188 Processor

The 80188 is a highly integrated microprocessor which cambines a large
nutber of the most common 8088 system coamponents on a single chip. A
block diagram of the 80188 is shown in Fig. A.15. As shown here it

consists of the a DMA unit, timers, interrupt controller, clock
generator, and a chip select unit. All are housed in a 64 pin package,
external circuit connections being shown in Fig. A.16.

1) Clock Generator
The inputs X1 and X2 provide an external comnection for a fundamental

mode parallel resonant crystal for the oscillator. The crystal
frequency selected is double the CPU clock freguency. Here an 8 MHz
crystal is used to generate a 4 MHz clock signal for the 80188.

ii) Interrupt Controller

The 80188 programmable interrupt controller (PIC) can handle
interrupts which are generated by either software or hardware. A table
containing up to 256 pointers defines the proper interrupt service
routine for each interrupt. Interrupts 0-31 are reserved for
predefined interrupts which may be activated either by software or
hardware. The software interrupts are generated by specific
instructions (INT, ESC, unused OP, etc.) or the result of conditions
specified by instructions (DIV, IDIV, etc.). The hardware interrupts
are divided into two groups: internal and external. The internal

interrupts are:

240

DMA O: Used in channel 0 (t{ransmission).
DvA 1: Used in channel 1 (reception).
TIMER O: Used in application software.
TIMER 1l: Used in application software.
TIMER 2: Used in application software.

The extermal interrupts are;

INTO: Connected to the 8087 mumeric processor
INT1: Cornnected to the 2681 DUART

INT2: Not used

INT3: Not used

NMI: Watchdog timer

All these interrupts are maskable except the NMI interrupt which is
commected the watchdeg timer.

The internal interrupts DMA 0 and DMA 1 are used in this design to
detect DMA transfer termination (in channel O and 1), The external
interrupt INTO is cocnnected to the 8087 which uses it to indicate that
unmasked exceptions have occurred during numeric instruction
execution. INT1 is connected to the 2681 DUART to support interrupt
handling of the communication process instead of polled coperation.

iii) DMA Unit

The DMA unit provides two high speed DMA chamnels, Data transfer can
be performed to or from any combination of memory and I/O space in
byte form. A transfer count is also maintained in order to allow
termination of DMA transfers after a pre-programmed number of
transfers. Each data transfer consumes 2 bus cycles (a minimm of 8
clock periocds), one cycle to fetch data and the other to store data.

241

The two extermal DMA request inputs, DRQO and DRQY, are comected to
the OBI interface. DRQO is activated when data is to be transferred
from the processing to the communication section, while DRQ1 is
activated when data is to be transferred from the commmication to the
processing section. The controller has the option of producing an
internal interrupt when the transfer count reaches =zero. This
interrupt is used to inform the main processor that message transfer
has been completed. | |

iv) Chip Select Unit
The integrated chip select unit provides programmable chip-select
logic which can be used to select memory or peripherals (6 memory and

7 peripherals are provided) during processor controlled read or write
cperation., Note that these becane inactive if the processor is forced
into the "Hold" state.

The memory chip select lines are split into three groups for
separately addressing the major memory areas in the system:

* 1 Upper memory (UCS*) - for reset EPROM (bootstrap).
* 1 Lower memory (LCS*) - for lower RAM area (stack, data, and heap).
* 4 Mid-range memory (MCSQ* - MCS3*) - for the application software.

The size of each of these areas, and the starting location of the mid-
rarge memory are user programable, with same restrictions.

Each of the peripheral chip select lines (PCS0* to PCS6*) address one
of seven adjacent 128 byte blocks whose base address is programmable.
This block can be programmed to be part of the memory or in a separate
I/0 block.

242

The chip select lines are connected as follows;

UCcs0* : EPROM

LCSO* : RAM

MCSO* : Reserved for application software.
MCS1* : Reserved for application software.
MCS2* : Reserved for application software.
MCS3* : Currently used for Modula-2 application software.
PCSO* : 2681 DUART

PCS1* : OBI interface - MAINCS*

PCS2* : OBI interface - DMAREQ*

PCS3* : watchdog timer

PCS4* : reserved

PCS5* : reserved

PCS6* : reserved

Each of the programmed chip select areas has a set of programmable
ready bits associated with it. These ready bits control an integrated
wait state generator which is programmable to provide 0 to 3 wait
states for all accesses to the area of memory associated with a chip

select signal.

v) Programmable Timers
The timer unit provides three independent 16-bit timers/counters. Two
of these timers are available for use external to the CPU whilst the

third timer is awvailable only for internal use. All three timers
operate independently of the CPU. In this design all external
comnections of the timer signals are unused. '

243

b) Numeric Processor Extension (8087)
The 8087 is a numeric processor extension that provides arithmetic and
logical instruction support for a variety of mumeric data types. It

executes numerous built-in functions such as tangent, log,

exponential, etc.

The 8087 can execute numeric instructions approximately 100 times
faster than a 80188 operating at the same speed.

As a coprocesscr to the 80188, the 8087 is wired in parallel with the
CPU (see Fig. A.17). The CPU's status (S0-S2) and queue status lines
(QS0-051) enable the 8087 to monitor and decode instructions in
synchronisation with the CPU and without any CPU overhead. All 8087
instructions appear as ESCAPE instructions to the 80188. Both the
80188 and 8087 decode and execute the ESC instruction together. The
start of the numeric operation is accomplished when the CPU executes
the ESC instruction. The 8087 can interrupt the CPU when it detects an
error or exception, its interrupt being connected to INTO of the

80188.

c) Advanced Bus Controller (82188)

The Intel 82188 generates system command and control timing signals as
determined by the bus status lines signals (Fig. A.17). It also
provides HOLD/HLDA -RQ/GT bus protocol exchanges; this allows it to be
used where hus control mechanisms between devices differ, such as
between the 80188 and the 8087. In this design some of the control

signals are buffered to increase the drive capability.

244

d) Power-On Reset

The 80188 has a RES* input pin and a synchronised RESET output pin
(Fig. A.16). The RES* input is provided with a Schmitt-trigger to
allow power-on reset via an R-C network, the corresponding RESET
output lasting an integer number of clock periods determined by the

length of the RES* signal.

e) Address/data Bus Buffers

The 80188 has a time multiplexed address/data bus consisting of 8
lines (A/DO-A/D7) together with various control and status signals.
The multiplexed lines are connected to latches (74LS573) which provide
a demiltiplexing function for the address bus signals (Fig. A.18)..
These are controlled by the advanced bus controller (82188) which
generates the demultiplexing signal.

The high address bus (A8-Al19) is also buffered (74LS645); this,
together with the address latches, ensures that the address bus has a
high drive capability on all its signal lines.

A.4.2 Memory
Three 28 pin memory sockets are provided to host EPRCM or static RAM

(SRAM) devices (Fig. A.19). Various sizes of EPRCM (from 16K to 64K
Byte) and SRAM (from 2K to 32K Byte) may be used in this design. The
main board (processing section) currently uses the following

configuration;

* One EPROM (size 8K byte)- used as a bootstrap.

* One SRAM (size 8K byte)- used as a memory (for stack, data and
heap).

* One EPRM (size 32K byte)- used for the application software.

245

On reset the 80188 begins execution at address FFFFOH, thus a jump
instruction must be inserted at this location to transfer execution to
a bootstrap program. Consequently an EPROM chip must be mapped into
the top of the memory (i.e. first EPROM). It contains the
initialisation for the main program software, its chip select pin
being connected to UCS*.

The 80188 uses locations OH-3FFH (1K Byte) for its interrupt wvector
table. This vector table allows different interrupt types to be
serviced. The 80188 also needs RAM for the storage of data variables,
flags and stack. In this design an 8K SRAM is placed in location OH to
1FFFH, its chip select pin being connected to LCS*.

The dynamic RAM store (DRAM) is located on a separate piggy back board
as an option. It consists of sixteen 256K x lbit DRAM I.C.s (1/2 mega-
byte total), controlled by an Intel DRAM controller (8208), a set of
data bus buffers (74L5245's) and associated control circuitry.

A.4.3 Serial Commmications

The Signetics 2681 DUART provides twe independent full-duplex channels
in a single chip (channels A and B). The DUART has a software
programmable tranamission format (mumber of data bits, stop bits,

parity, etc), programmable baud rate, error detection, multifunction
counter/timer, 7-bit input port, 8-bit output port, interrupt system
and on-chip oscillator. The circuit diagram of the serial

commmication system is shown in Fig. A.20.

To provide signals to meet RS 232C specifications a MC1488 line
driver and a MC1489 receiver are used.

246

To ensure that the output slew rate of the line driver conforms to the
RS232C specifications (30V/us) 390pF capacitors are comnected between
the cutputs of the line drivers and QV.

A.4.4 0BI Interface
The aim of this interface (Fig. A.21) is to transfer data between the

main processor and the on-board interface block by using the DMA
controller in the 80188.

The following table lists the interface signals with their functions;

TABLE A-8: OBI Interface Signal Description

Signal Type Function

PCS2* 0 Sets a DMA request flag to the OBI (DMAREQ*)
DRQO I Channel 0 DMA request

DRD1 I Channel 1 DMA request

PCS1* 0 Chip select signal to the OBI (MAINCSY*)

WR* 0 Data write enable (MAIN WR*)

RD* o] Data cutput enable (MAIN RD*)

DO-D7 I/0 Data signals

The CBI interface gives the processing secticn the right to access the
communication section's temporary storage RAM., It enables the
processing section to;

* Access the comunication section's temporary storage (MAINCS*) for
a read operation (MAINRD*) or a write operation (MAINWR*),

* Signals the commmication section (DMAREQ*) for a request of data
transfer (RDT) and at the end of data transfer (EDT).

247

All data is exchanged between the camumication section and the main
processing section using direct memory access (IMA) techniques.

A.4.5 BAncillary Circuits

a) Single Step Control

The single step circuit (Fig. A.22) is included to aid de-bugging and
testing of both hardware and software. Using this, a program can be
executed one step at a time, making examination/testing of an-board
devices more convenient. When the single step control is switched in
the processor enters a continucus walt state. By pressing the "step”
push button the wait (i.e. "not ready") signal is temporarily remowved,
allowing the processor to complete one bus cycle only. At this point
it re-enters the continuous wait condition.

The single step circuit is switched into the ARDY line by the toggle
switch. Two NAND gates are used to debounce the push-button switch, so
that when it is pressed and then.released a sirgle positive pulse is
" produced. When flip-flop 1 receives a positive going edge from the de-
bounce circuit its Q@ ocutput is set high. This takes the D2 input of
£1ip flop 2 high. On the next positive going edge of the CPU clock the
02 ocutput of 2 goes high, sending ARDY high, and the Q2* cutput of 2
goes low, clearing flip-flop 1. Since flip-flop 1 has now been cleared
the D2 input to flip-flop 2 is now low. On the next positive going
edge of the CPU clock the Q2 cutput of 2 (ARDY) goes back low. Thus
the ARDY line has gone high for one CPU clock cycle. When the push-
button is released flip-flop 1 receives a negative geoing edge fraom the
debounce circuit, but this has no effect.

248

b) Watchdog Timer

The watchdog timer provides a mechanism of program recovery in case of
failure (program crash)., This is done using a non-maskable interrupt
(NMI). The Watchdog timer (Fig. A.23) comprises a retriggerable

monostable (74L5123) which is triggered by writing to a specific
address. This is done repeatedly under program control so that, in
nommal circumstances, the monostable is always retriggered before its
period expires. If the program crashes, the timer expires and so
causes a non-maskable interrupt (NMI).

In normal operation, when the monostable receives a negative going
edge on its Al input (from decoded address and PCS3*) the output Q*
goes low. This assumes that OP5 from the 2681 is low, otherwise Q*
remains high. It stays low for a time determined by the resistor/
capacitor carbination. Provided the timer is selected (addressed)
before the end of its time-cut period Q* stays high, the timer being
re-triggered (normal cperation). If the timer is not re-selected

before the end of the time-out period O* goes low, causing a NMI.

This forces the processor to go through a pre-programmed interrupt
service routine to recover from the fault condition. The values chosen
for the timing components (R3 and C2) are selected to give a one
second time-ocut period. The primary purpose of the control signal from
the 2681 DUART (OP5) is to allow power-on initialisation to be
campleted without having to cope with an instantanecus NMI request. It
also ensures that the watchdog tiher doesn't cause accidental

interrupts when not in use.

249

&5

THER

wryinTin

— DRO0
= pRat

HTLHRTEY
CLKOUT V¢ GND wrt TMROUT t TMAGUT §
TR | TMRW
L] [al] ; ?
m—— I
[ASLE
EXECUTION Usit | pab ey
;A X I [1)
s 1 MAE COUNT \\\‘
Ll ! PIOGAAMMASLE REGISTER 84
WTERRUPT
MAK COUMT
“m : CONTROLLER REGISTER A
P i CONTROL REGISTERS]
PURPOSE 1 CONTROL
[
REGISTERS 1 GISTERS COUNT WEGISTER
TTERNAL BUS
PROGRAMMASLE
- OMA LT
[] 1
LM, 08T
oo {SOURCE PO TERS]
087
BUS IMTERFACE | 1687 OEETINATION.
SEGMENT POIMTERS
REGISTERS
L e TRAKSFER COUNT
PREFETCR NECILTERS
oveue CONTROL
AEGISTERS
L]
2] ﬁ“‘ ws (o= T8
24 o Ao an- | e
o [~ ADYS arg W W
HCss-) =7]

[Fig. A.15 80188 CPU BLOCK DIAGRAM |

250

RESET
POWER-ON

T0 WATCHDOG

T T TIMER
Ve Tao 31[32
63 -
vCe lﬂlglg pcs3 129
3_}ve elate pes2 128 o0SE
26 1 GND pcs1 |El—o (ST
E GND pcso |25 oSe
= tes P oS
oS4{Nru ucs B ol
_ oY rocx MCS3 %OQ
T RCS2 |—=— (52
cz_1 20p mesy 131 oS
X1 Mcso |38 %
A19/56 |65 -
X2 A8/55 |66 _
A17/56 |67
]C6 A16/53 §8
RT3 Aas |1
| NM1 | AT A
[INT1 C.P.U. 80188 A3 |3 |As-Ate
INT2 | Az P
FUTRE Ll
A0 P2
ICE L
INT3 as 16 |
AD? 21
ADS L&
ADS :—-
ADL [—— |ADO-AD
—1—#1 orao a3 | 0-ADT
o—121 sra1 anz (B
15
o 501 pT/R el)
| o |2 o o AD0
° > Ig o< S > 53 _ -
aQ ~ P e N TH a w) vy
I% I8 22255IQImInES 2la
55 [62 [50[51]61]63 49.52 53 5A|51 56[45[47
|
R l
To TO 82168 TIO 8067
1 82188 AND 8087
TO MAIN OB!
INTERFACE
80188 CPU CONFIGURATION

Fig. A.16

25

1

o FROM 80188
=
@A
Tn a< > - 1C10 " Am |38
O JoeoSs-«—0 o
& 2233810 g8 £3 3‘7‘
o~ L
aQ
o 39
«© 2
o 3
BUSY & Py
32|INT g‘; 5
22|READY L Is
Py 26150 () \
® 27151 oO: 7
a. As |8
1 28ks2 &, A9 19
< 10
z Qso = In
ast Y 12
1ira/6To X 13
BIrRa/6GTT = {16
9 lck 15
|21 JRESET
8 |aroy IC4 Howo [ADO ;i
HLDA 6 BHE/ S? _o
]ﬁ vee aso [
| 14 as1 |2
|I GND
s L
S0 27
o) 26
P 5
3720 RlEsoor & sz S == Ve
33 Bleem ® asoo {3
it Yl 9 aswo 10 |20
@ rasGro |8 GND Ve
e RosG7 (! $- - 18 RESET
W gk 15 CITE
=1 RESET |5 _G.__QL&_:
8 ot/r |20 4 IC11 (16 DI/R
— 7 5 15 DEN
DEN B
TispoYy S wr 122 s 74LS665 [wr
- RO 23 7 13 _RD__
ae |2 8 12 ALE
SYS HOLD
LK7 Ot DR
° ¢ "
1o of— - SHOLD
SRDY

Fig. A17 82188 CONTROLLER AND 8087 NUMERICAL PROCESSOR

252

T0 €PU PINS

ADDRESS BUS
A8-A19

DATA BUS AD0-AD7

L |To_{w]:
—sf DR OF |2 FCSZ
% 2_H
s| IC7 —
— 14 6
I T4LLS64LS5 P
1] B
MCS2 . _nj 9
MCS1
MCSO o (L Vir-20 A19
— __“’_. GND VCC |2
_1 3
16 [
3 IC8 5
—l 741.5645 |8
_ 1] 1
12 8
_n] 9 A0
o 19 ALE
g rﬂ 'y
o - B! G B |y
-
=) 3 16
S Tt g 09—
= ’ | LATCH [
1 . 71 7418573 [w_
. 0 N
9| 12
10 20 el
L L ____ ADO
- AD7

Fig. A18 ADDRESS/DAT BUFFERS AND LATCHES

253

ADDRESS BUS

DATA BUS

RD

j

T
sy ——f— AlL
2 X a3 .
—2]| 28PN xf] |
—2.]1 | SOCKET
__§$_. ADO-AD7
ADDRESS BUS . IC12 m 1‘;_—
5 e —
e — DATA
——| | BooTSTRAP| [12— BUS
:° A0 00 “11%—
RD = —
CsouT ”] 22 "
i gf’n * X T—II'I
> A13 y 1] 1
ADDRESS j;:
BUs s 3 | . AD0-AD7
= I
: — DATA
: RAM I BUS
= jﬁ" AO 0o —
s =2 il ,Gzo |22
\'TR-—O -—_-;‘Eﬁz OE ZB_II.
@ |uke) 8 —Z X T
M’;_‘S 24
—&1 ADO0-AD7
—— IC1e o7
2 I
ADDRESS I |appLicATION| |— DATA
BUS —9] [SOFTWARE | [BUS
91 40 ——
0o pb—
Fig. A19 MEMORY SYSTEM

254

q9Z

TO WATCH DOG TIMER (wWDT)

, e
RESET s v -
CS6_(PCSO) | . 1"29 4 RXB _(
35 3 390p
A3 G RESET Tt ic17 ™ | -
— >]az ' _ -
AQ-A3 13 A1 RXB 1688 Iov!Al
—_—1AO 8 10 RXA r
X2 32 TX8 &
g A0 Thy 2681
XTAL 31 1489

— RXA 1488 XA | ~
3684 Mz 33 |, -9- = —(

|10P =% D7 » IC15 xaf22___2 0K =
—2 {00) tsA |
oV ro L1 &

4—1-? 29 12 1489 RTSA
— 1 OPO 1 1 'd
AD0O-AD7 3 7T +SV .

Pz 136 188 1 (8 —
-~ "‘%] 1489 OV(A} 10K DTRA C

po L—1¥7 oP7)3 = RS

0 8 Jwr 2 ! USRA
21RD INTR m 8 T -
7 ‘ 1488 o

Fig. A.20 SERIAL COMMUNICATION SYSTEM

ORQ1

(TR
0

O_

DRQO

CTRO
0

O

PCSZ*

DMA REQ *
ﬂ

G

PCS1*

MAINCS *

O_

WR *

40

MAIN WR %

—0

O_

RD %

MAIN RD *
O

o

<FJATA BUS DO - m:>

Fig. A.21 ON -BOARD INTERFACING BLOCK (0BI)

MODE
SWITCH

ARDY
TO 82188

NORMAL

L L1
'D 1 |C3 7 —ll-
5
LS74 ad
LK1
0z az 9
akz azf8
f PRZ CLR2
10 13

:

CLOCK FROM CPU

Fig. A.22 SINGLE STEP CIRCUIT

+5V
A0

,_
(74]
L¥7)
<
,\1_A

W

~

mpt 8f

R [k o 6] C1LS|1CZ13 |, Fit

T

r
>
o

0PS FROM 1 2 ICS(b)
2681

F4
ki ICSIA) 3 12

_;_T_ i ICS(c)

NMI TO 80188
PCS3 FROM 80188

Fig. A23 WATCHDOG TIMER

258

APPENDIX - B

APPENDIX B
COMMUNICATION SECTION'S MODES OF OPERATION

B.1 GENERAL

This section describes how the commnication software is set up to
manipulate the hardware for transmission and reception of data frames
over the network. The communication section has five modes of
operation; initialisation, no operation {i1dle), reception,
transmission, and data exchange with the processing section's
interface (OBI). The selected mode of operation is determined by the
communication section which receives requests for each mode. Each mode
is explained in the following sections.

B.2 INITIALISATION

On power-up or reset, the commmication CPU and the CSM modules are
cleared to a basic initial state, as explained in sections B.2.1 and
B.2.2 below, with most actioné disabled. This means that only a few
actions need to be taken to set up these devices. The ™S module,
however, is only cleared after a power-up. This requires setting up
all its registers appropriately after a CPU reset.

B.2.1 Comumication CPU

The main functions that must be set up in the communication CPU
include: wait state generator, handling of interrupts, serial
interface, watchdog timer, and the intermal timers required by the

software.

259

The wait state generator automatically resets to the max:lmm nmmber of
wait states for both memory and I/0 space accesses. This means three
wait states for memory and four walt states for I/0 accesses. The
number of wait states actually required by memory 1s largely
determined by the speed of storage devices implemented. Devices with
access times of 200 nS or less, require one wait state ocnly. In I/0
access, the number of walt states | required deperds greatly on the
speed of the CSM and ™S modules. Theoretically, one wait state is
sufficient. For safety purposes, however, an extra wait state is
inserted with very little effect on system performance.

Interrupts are generated both internmally and externally. External
interrupts are generated by the CSM module and the watchdog timer.
Watchdog timer generates a non maskable interrupt (NMMI). The interrupt
vector set-up is also fixed, so no further action is required after a
reset., The only action required is to initially trigger the watchdog
timer. The required registers for this action are set up during the
initialisation sequence, transfer being initiated when required.

All other interrupts are masked after a reset. Signal operations that
generate an INT1 signal froam the CSM module & not have to be handled
by interrupts. All lines can be examined by read operations to
appropriate registers within the CSM module. For camplex operations,
however, it is suggested that signal operations are implemented
through interrupts as this removes the need for polling the system bus

continuously.

260

For most applications, the serial line interface is required for
monitoring the system operations. This requires setting up the
appropriate baud rate, and possibly an internal interrupt for data

reception.

B.2.2 CSM module

Most lines of thils module, apart from the WAIT signal, are set to an
inactive state by the reset signal. This ensures that no system
initialisation takes place before activating the WAIT signal. All the
other lines connected to the system bus are set to a tri-state
condition to avoid any contention. The only action required is to set
the SELECT 1line, allowing the commmication CPU to access the TMS
module.

B.2.3 TS module

This module requires a complete reset by software. Functions not
required by the module are also cleared by software due to their
urdefined state as described earlier. Most of the registers within
this module change state, depending on the operation being carried
ocut, and hence there is no need for a reset. The only exception is the
interrupt contzrol, which can be left enabled at all times as it is
gated off externally.

B.3 NO OPERATION - IDLE

In this state the communication section carries no operation (i.e.
data transfer) with any destination. It simply keeps monitoring the
state of the RXEN line, checking for either system bus activity, or a

request by the processing section to access the TMS module. Both

261

activities are indicated by an interrupt to the comumication CPU. If
interrupts are not enabled, however, then the commmication CPU has to
poll the OOMMS QONTROL REGISTER at regular intervals to detect either
of these activities.

B.4 RECEPTTION

Reception mode is requested when RXEN signal is active causing an
interrupt to the 64180 CPU. When the cammunication section is in the
idle mode then the message coming from a remote station can be handled
immediately. If the commmication section is in another mode, however,
DMA transfer is then suspended and bus control is returned to the
commmication CPU. Data transfers to/from the processing section are
checked. DMA transfers are re-issued, should data transfers are

corrupted.

When RXEN signal is invcked, it generates a BUSY signal over the
system data bus. This holds back the transmitting station until BUSY
iz removed from the system bus. This 1s accomplished by the receiving
station setting the READY line in the CSM module., This must only be
done when the commmication CPU has set up the ™S module to receive
data. This includes setting up the data pointers in RAM. To set up the
™S module, the SELECT line in the CSM module must be set, enabling
the comunication CPU to access the TS module.

Once the READY line is set, the transmission cycle to this station
camences, under the control of the tranamitting station, as shown by
time T2 in Fig. B.l. During this time no access is required to the TMS
module.

262

The end of data reception is signalled by resetting the RXEN signal.
This occurs when the transmitting station removes the address off the
system bus and the S8SS* line goes inactive. To detect end of
transmission, the RXEN signal must be polled during the transmission
cycle. During this time the interrupt line will be continually active
and so must be masked off by the CPU until the end of transmission to
this station, as signalled by clearing RXEN,

After a reception of data over the system bus, data should be cleared
from the TS module as soon as possible, so as t0 enable ancther
reception to take place. If this is not done then bus traffic may be

delayed.

B.5 TRANSMISSION

This mode is entered when there is a message to be sent to a remote
station by the station which holds the 'Tcken'. In this case the
camumication CPU sets TMS9650 to point to the start of the message to
be sent and programs the TMS9650 through its control register to
activate an interrupt when last byte of the massage has been

transmitted.

The first action of the transmitting station is to place the address
of the receiving station on the system address lines and enable the
SSS* line. This is achieved by writing the address to the station
address register and enabling the SAEN signal which, in turns, enables
the output buffers.

263

After the address lines have been set, the camunication section must
set up data pointers of the ™S module. To do this the SELECT line
must be set to allow the communication section access the T™MS module.
The address pointers in the ™S module must be set so that port B
points to the start of data and port A points to the end of data. The
™S module is programmed to activate an interrupt at the end of
transmission.

The next operation is to set the STX and READY control lines through
the cammunication control register. This action will then initiate the
transmission sequence as soon as the receiving station releases the
BUSY line. Once the BUSY line has gone inactive then transmission will
start at the beginning of the next transmission cycle as determined by
the signal TXCLK. This then sets the TXEN signal to start
transmission.

The end of transmission operation is signalled by the ™S module when
the two address pointers are equal. This generates an interrupt from
‘the TMS module. When this is detected by the CPU, two actions must be
taken. The CPU must reset the ™S interrupt line in the ™S module and
also the TS interrupt latch by writing to the appropriate interrupt
control register. It must also reset the READY line as shown by Tl in
Fig. B.2. If this is not cleared and another station attempts to
transmit to this station, no busy signal will be generated until this
station is ready.

264

B.6 DATA EXCHANGE WITH THE OBI INTERFACE

Data transfer between the processing section and the TS module may
result from two conditions. A request is initiated by the processing
section when it has a message to transmit to a remote station.
Alternatively, a request is initiated by the commmnication section
when a network data frame has just been received in the ™S module.

The processing section signals its request for a transfer to the
commmmnication section by activating the DMARED line so setting up an
interrupt to the conmmmnication section. The interrupt must be cleared
by writing to the DMA interrupt register. This must be done before any
other action takes place, as the same interrupt latch is used to
signal the end of the transfer.

Cnce the communication section has determined that a transfer is
required, it must set up the T™MS data pointer, of port A, for the
transfer. The next action is to clear the SELECT line to enable
processing section's access. It must then signal to the processing
section to start the transfer. Two lines are provided for this
transfer; DMAQ and DMAL, One is used for transfers of data from the
™S module to the processing section and the cther for transfers from
the precessing section to the ™S module. These signals are activated
by write operations to the appropriate registers.

When a request for a transfer is sent by the comumication CPU, the
CsM module activates the BUSREQ* signal. The commnication section
will, then, release its data bus for the transfer, after a delay not
exceeding 1 uS. This means that the processing section should wait at
least 1 uS before starting the transfer. Ctherwise, the buffer between

265

the processing and communication sections may not be enabled. During
transfer, the commnication section should poll the OOMMS CONTROL
REGISTER in the CSM module. It should check for a MAININT signal
generatéd by a DMAREQ signal. This signal is actiwvated by the
processing section at the end of a transfer. During DMA transfer, the
communication section is disabled as the processing section has
control of its data bus. This operation 1s transparent to the
camunication software. It is suspended during the transfer and is re-
initiated after the completion of the transfer when the MAININT line
is set again.

Data transfer between the ™S module and the processing section may
end prematurely by the RXEN signal activated by the CSM module. This
generates an INT1 signal to the comunication section, releasing its
bus from the transfer process. Hence, the camumnication section must
poll the COMMS CONTROL REGISTER in the CSM module to detect whether an
end of transfer is caused by a valid end signal from the processing
section or else by an RXEN signal indicating the start of a reception
mode over the system bus.

266

Start of Receptlion

S8S

RXEN

BUSY

READY

End of Reception

SSS

REN

Fig. B.1 DATA RECEPTION MODE - SIGNAL TIMING

Start of Transmission

SAEN

BUSY

READY

TXCGK

End of Transmission

TMSINT

TXEN

STX

READY

Fig. B.2 DATA TRANSMISSION MODE - SIGNAL TIMING

268

o

SN B - S

500 nS

Fig. B.3 TRANSMISSION CLOCK SIGNALS

269

APPENDIX - C

APPENDIX C
MULTI-PROCESSOR SYSTEM - COMMUNICATION SOFTWARE STRUCTURE

C.1 RING OONFIGURATION AND MATINTENANCE

The basic concepts of token passing bus access method (TPBAM) were
laid down in Chapter 4. In this section, token ring construction and
maintenance are described. Before a station can start exchanging
messages with other stations, it must know some information about
other stations in the network (Fig. C.1). This can only be achieved
once the logical ring has been established., Hence there must be an
active configuration process (refer to Fig. C.2).

Once the ring is formed it has to be maintained. Stations may be
allowed to enter or leave the network. Each station must periodically
allow new stations to enter the ring. On the other hand, a station may
exit the ring either as part of a normal operation or as a result of a
failure. In either case, the ring must be reconfigured to accommodate

such a change.

C.1.1 Ring configquration

On power-up, each station is supplied with its own address. To
establish some information about other stations in the ring, each
station uses a hardware timer called the response timer (RT). RT is
directly proportional to the station's address. All stations activate
their response timers (RT) simultaneously. The time-out period is
directly proportiocnal to the station's address. This means that the
station with the lowest address has the shortest time-ocut period. In
the example illustrated in Fig. C.2 this would be station 4. When

270

station 4 times-out, it sends a bus message to all stations called
'claim token' informing them that it is the first station in the ring.
When other stations receive the message, they set their first
station's address (FS) and wait for further bus messages. At this
point station 4 has the tcken but still has no information concerning
its successor (NS) or predecessor (PS).

The first station next sends a 'who follows' message. Included in this
is the address of the sending station. On reception of this message,
other stations activate their response timers once more. The first one
to time-out is that with the next highest address in the network
(station 9); it responds by sending a 'set successor' frame to the
sender of the 'who follows' frame informing it of the next station in
the ring. Station 4 now sets its NS address, and station 9 its PS
address. Once this process has been done, the token can be passed on
to station 9. Station 9, then, acknowledges reception with a 'token
ack' frame. Hence, the link between station 4 and station 9, at this
stage, has been patched.

Station 9 now goes through the same procedure to link with station 13.
Note that, however, when station 9 issues a 'who follows' frame, only
stations which have not already established a PS value may respond.
Further, since station 4 has the lowest time-cut period, it must reset
its time-ocut to the maximum possible period once it has patched the
link with its successor. If this has not been done, station 9 would
patch a link to station 4 and the ring would sppear to be formed
correctly, even though only two stations are involved.

271

This process is repeated at each station. The logical ring is
campletely formed when the first station receives the token fram the
last one in the ring (station 13). Once the final 1link is patched the
first station serxds a 'set last' frame to all the stations defining
the last station in the ring. This is followed by a message which
specifies the total number of stations in the ring.

Configuration is completed when the first station finally sends an
'init done' message at which stage the system enters the operational
mode.

C.1.2 Addition of a Station
During normal operations a station holding the tcken will periodically

send a 'solicit successdr' frame. This invites stations with an
address between itself and the next station in logical sequence into
the ring (see Fig. C.3). The transmitting station then waits for a
time relative to the next station's address (the address of any

station between TS and NS cannot exceed NS). Two events can occur:

* No response - there are no stations wishing to enter the ring. The
token is passed-on as normal.

* A respanse - If there is a station that wishes to enter the rirg it
then sends a 'set successor' frame. The token holder sets its NS to
the new station and passes the token to the new station. The station
that was next to the station that has sent the 'solicit successor'
frame sets its PS value to the address of the new station.

In the addition of a new station, the following points have to be
taken into consideration (refer to Fig. C.3):

272

* If a mmber of stations bebtween TS and NS are waiting to enter the
ring, the one with the lowest address responds first and gains
entry. The others, however, have to wait for ancother imwvitation.

* All stations increase their record of the mumber of stations by
one.

* If the new station's address is less than the first station then
all staticns update their FS address to be the new station.

* If the new station's address is greater than the last station then
all stations update their LS address to be the new station.

C.1.3 Deletion of a Station
A station may exit the rirng if either a fault ocours or as parl: of its

normal operation (i.e. drop-out). The two cases are described below:

a) Station failure

Failure may be detected in one of two ways. In the first case, if the
token is transmitted to a defective station and no response has been
detected (i.e. no acknowledgement has been received). The sender will,
then, start reconfiguring the ring. It does this by sending a 'who
follows+' frame (see Fig. C.4). The next operational station responds
by sending a 'set successor' frame. The sending station then passes
the token to what is currently its new NS.

Alternatively, a station may fail whilst holding the token. This is
detected by the next station in the ring waiting for the token. Its
token rotation timer will time-out if it does not receive the token
within a preset time. When this occurs, it claims the token by sending
a 'claim tcken' frame.

273

b) Station dropout

If a station wishes to drop-ocut as part of its normal coperation, it
waits until it receives the token. Then it issues a 'set successor'’
frame to its predecessor so that the link can be patched and the
station dropping cut can be by-passed.

A deletion of a station from the ring gives rise to the following
change of informaticn held by each station (refer to Fig. C.4):

* All stations decrease their record of the number of stations in the
ring by cne.

* The sender of the 'who follows' frame sets its NS to be the station
next to the failed station.

* The station which was the next in succession to the failed station
sets its PS to be the station that has sent the 'who follows'
frame.

* If the failed station is the last station in the ring, then all
stations update theixr LS to be the station that has sent the 'who
follows' frame.

* Similarly, if the failed station is the first station in the ring
then all the other stations update their FS to be the station next
to the sender of the 'who follows' frame.

274

C.2 OONTROL FRAMES

This section describes briefly the frame formats used in sending
messages between stations during the configuration and maintenance
procedures. The general frame format is:

| sp | . |FFr | DA | SA | DATA | ED|

where: SD is the Start Delimiter - o byte
DML, is the Data Message Length - one byte

FT is the Frame Type - one byte
DA is the Destination Address - one byte
SA is the Source Address - one byte
DATA is the Data Transmitted - 1...120 bytes
ED is the End Delimiter - one byte

The data message length field containg the mumber of bytes in the data
field.

The frame type field determines the response needed when a message has
been received. The following is a complete list of the frame types:

* Claim Token

* Token

* Token Ack

* Who Follows

* Solicit Successor

* Set Successorl

275

* Set Successor2
* Set Previcus

* New Member

* Del Member

* Member Request
* Member Count

* Who Last

* Who First

* Set Last

* Set First

* Init Done

* Data

Refer to Table C-1 for full description of the control frames.

C.3 TIMERS

There are a number of logical timers that are used in implementing the
Token Passing Bus Access Method (TFBAM). These are:

* Token Hold Timer (TH)
* Tcken Lost Timer (TL)
* Response Timer (RT)
* Token Ack Timer (TA)
* Who Follows Timer (WF)
* Solicit Successor Timer {(88)

a) TH: This is the time that a station i1s allowed to hold the token
for. It can only transmit data and control frames during this

period.

276

b)

c)

d)

e)

£)

TL: This is also known as the token rotation timer. It is the time
that a station has to wait before it receives the token again. If
the token is not received by this time, the station assumes it has
been lost and, hence, claims the token with a 'claim tcken' frame.

TL = (TH * C3) + SM SM = Safety Margin

RT: This time is used to determine the position of a station in
response to a 'who follows' and 'solicit successor' frames. RT is
directly proporticnal to the address of the station.

RT = TS * constant

TA: This is the time taken by a station waiting to receive a 'tcken
ack' frame when the token has been transmitted to its successor.

WF: This is the time taken by a station to recelve a 'set
successor' frame fram its successor after issuing a 'who follows'
frame. It is set with the response time of the last station in the
ring, i.e. RT(LS). In this case it is the response time of the
station with address 15.

WF = RT(LS) + SM

8S: This is the time taken by a station to receive a 'set
successor' frame from a station wishing to enter the ring after a
'solicit successor' frame has been issued. It is the response time
of the next station, i.e. RT(NS).

S8 = RT(N3) + sM

277

C.4 SOFTWARE DEVELOPMENT AND STRUCTURE

The communication scftware is designed in a meodular, structured
manner, being implemented using the Jackson Program Design Facility
(PDF) package. The Jackson chart is constructed to describe the
software to a specific level of detail. The lowest levels represent
simple functicns that can be translated into program format. Generally
the recommended control structures of structured programming have been
used in the writing of the program source code.

The explanation that follows refers to a station's software and not to
the ring as a wiole.

The system consists of the three top level functions [Chart C.1]
* Initialise the board (hardware and software).
* Enter the ring.

* Fun in operational mode.

C.4.1 Initialise the Board [Chart C.2]
In this mode each station reads its own address and set TS immediately

when the power is applied, the appropriate variables being
initialised. These include setting the member count to one and the
TokenHeldBit to FALSE. The response time of the station is calculated

from the station's address.

In order for the stations to be synchronised, each station sets its
WAIT line to FALSE. When this is done, the START line goes high. This
is shown on Chart C.2. Once this process is over, the station enters

the ring.

278

C.4.2 Enter the Ring [Chart C.3]

When the START line goes high, each station starts its response timer
(RT). It, then, monitors the system bus for any messages within its
time-out period. There are three possible routes that a station can

follow:

* If the timer times-out and there is no bus activity, then the
station has to follow the routine for entering the ring as the
'first station'.

* If the station receives a 'Claim Token' frame, then the station has
to follow the routine for entering the ring as 'not the first
station'.

* If a frame other than 'Claim Token' is received then the station
has to follow the routine for entering the ring as a 'plugged-in

station'.

C.4.2.1 The First Station [Chart C.5]

When the response timer (RT) times-out, the station sends a 'Claim
Token' frame. This informs other stations that the token has been
claimed by the first station and to wait for further messages. This
frame contains the address of the first station in the ring i.e this

station's own address.

In order to establish the successor, a 'who follows' routine is
executed, as described in section C.l1. Once the NS address has been
established, the station must reset its response time to the maxirmm
possible value. Then it has to wait while other stations in the ring
patch links together. The 'who before' does this waiting and at the
same time it locks for a 'Who Follows' frame from its predecessor. It,
then, waits for the tcken and acknowledges reception with a 'Token

279

Ack' frame. At this point the ring has been totally patched. Before
the station can enter the operational mode it must inform other
stations in the ring of the address of the last station in the ring.
The station then sets the timer values. It then broadcasts the 'Init
Done' frame starting to enter the operational mode. Table C-2 shows .
when the addresses are set by the first station.

C.4.2.2 Not the First Station [Chart C.6]

When the station receives a 'Claim Tcken' frame, it sets the first
address (FS) and wait to patch the 1link with its predecessor. The 'who
before' routine shows the activities it performs while it is waiting

for such an event. Once the link with previcus station has been
formed, it links with the next station using the 'who follows'

routine.

The station walts until the complete ring has been formed. Mearwhile,
every time it monitors a 'Set Successor' it counts the number of
stations in the ring. It, then, waits to receive the 'Set Last' frame
followed by an 'Init Done' frame from the first station (FS). It can
then set its timer values and enter the cperational mode. Table C-3
shows the addresses being set for the station that is not the first in
the ring.

C.4.2.3 A Plugged-In Station [Chart C.7]
When a station has just been plugged into an already established ring,
it starts monitoring system bus messages. It is invited to the network

when it receives a 'Solicit Successor' frame from a particular
station. First, it must check whether its address lies between the
inviting station's address and the next station's address (NS). If
this is not true, it must then wait again for another invitation. If

280

this is true, however, it has to check whether it is the first in
line, i.e there may be other stations wishing to enter as well., It
achieves this by starting its response timer and locking for a
response in the same way as i1f all the stations had just been powered

up, starting to enter the ring.

The station with next lowest address gains entry first and all others
must wait again for other invitations. Once the new station enters the
ring and holds the tcken it sends a 'New Member' frame to the other
stations, incrementing their record of the number of staticons in the
ring. When the tcken is passed on and the timer values have been set
the station will enter the operational mode. Table C-4 defines the
setting of addresses by a plugged-in station.

C.4.3 PRuming in Operational Mode [Chart C.4]

Once a station has entered operational mode it will periodically
receive the tcken. The period is defined by the Token Rotation Time.
If the token is not received by this time, it is assumed to be lost
and the station will claim the tcken by issuing a 'Claim Token' frame.
During normal operations the station also has to respond to any other
messages that may arrive as a result of a station exiting or joining
the ring. Table C-5 shows the response to a particular frame.

C.4.4 Repeated Routines
These are various routines that are called repeatedly throughout the
main module (i.e program module). A list of them is shown below:

281

*

*

a)

b)

Who Follows Routine.

Who Before Routine.,

Wait For Token Routine.
Taken Ack Routine.

Who Follows Response.
Solicit Successor Response.
Access Routine.

Poll Bus and Timer Routine.

Who Follows Routine [Chart C.9]: This routine is used in the
initialisation process. When a station is holding the 'token' it
sends a control frame in order to identify its successor. It sends
a 'Who Follows' frame and waits for a response within the who
follows time. If there is no response within this time then
scmething is wrong and the ring has to be reconfigured. A response,
within the time period, will be the 'Set Successor' frame from the
next station in sequence. This frame includes the address of the
next station (NS). Now when a successor has been established, the
tcken is passed on to it. Once the 'Token Ack' frame has been
received the link has been made.

Who Before Routine [Chart C.10]: This routine is used in the
initialisation process. It is used to identify the predecessor of a
station. When this station receives a 'Who Follows' frame, it
starts its response timer. If this expires before any of the other
station's timers then it replies with a 'Set Successor' frame and
the previocus address (PS) address can be set. If, however, the
timer does not expire and a 'Set Successor' frame is received, the
station will increment its record of the nmumber of stations in the
ring and wait again for a 'Who Follows' frame. This is repeated
until its timer expires before any of the other and is therefore
next in the ring.

282

c)

d)

e)

£)

Wait For Token Routine [Chart C.14]: This routine simply loops,
polling the bus until the station receives the token frame. Then
it sets the 'TokenHeldBit' and exits the routine.

Token Ack Routine [Chart C.15]: This routine is used both in the
initialisation and operaticnal modes. It is used by a station after
passing on the token frame onto its successor, waiting for an
acknowledgement. The station waits for a 'Token Ack Time'. If the
acknowledgement has not arrived within this time, it assumes that

NS has failed and hence claims the token again. Otherwise it

proceeds.,

Who Follows Response [Chart C.12]: This routine is used by a
station, in the operational mode, when it wishes to exit the token
ring. This station has to check to see if the drop—out station is
its predecesscor. If so, this station (TS) sends a 'Set Successor2!'
to the predecessor of the failed station informing it of its new
successor., If the failed station is not the previous station,

however, then there is o action to be taken.

Solicit Successor Response [Chart C.13]: This routine is used by a
station, in the operaticnal mode, to check whether a new station
has joined or entered the ring. If a 'Set Successor' frame is
received then there is a new station in the ring and the TS will
account for it by incrementing the record of the number of stations
in the ring. If nothing happens within the maximum wait time then
TS goes back into the operaticnal mode.

283

g) Access Routine [Chart C.11]: This routine is executed by a station,

h)

once every 'N' token rotation cycles ('N' being set or defined by

the programmer). It is used to invite any waiting station to enter

the ring. This is done after holding the token N times. A 'Solicit
Successor' frame is issued. If there is no reply then there are no
stations wishing to enter. If a station does wish to enter,
however, TS receives the 'Set Successor' frame, resets its NS
address, clears the TokenHeldCount, transmits any data and then
finally pass on the token. \

Poll Bus and Timer Routine [Chart C.16]: This routine simply keeps
polling the bus and the station timer simultanecusly. An action is
taken when either a message is received on the bus, or the timer

expires.

284

TABLE C~1: DESCRIPTION OF CONTROL FRAMES

What follows is a description of the control frames used in implementing

the token passing bus access method (TPBAM) during;

a)

b}

Configuration process
Operational mode.

FRAME WHEN TRANSMITTED ACTION ON RECEPTICN
1. Claim a) In the ring configu- a) Stop response timer
Token ration by first and wait for 'who
station (FS). Follows'.
b) If the token is lost b) Reset token rotation
2. Token a) When the NS address a) Acknowledge reception
has been set up. with token Ack frame.
b) When TS has finished b) Same as in (a).
transmitting data.
3. Token a) On reception of a) Assume NS has received
Ack token frame. the tcoken.
b) Same as in (a). b) Same as in (a).
4. Who a) When TS holds tcken a) Start response timer
Follows and wishes to find and if it times ocut
NS. before the others, TS
sends a set successor.
b) If NS does rot send b) If failed station is
token ack frame, i.e. PS, TS sends a set
it has failed. successor. Otherwise
TS behaves as in (a).
5. Solicit a) Not used. a) If TS lies within the
Successor invited region, start

response timer and if
first to timeout send
set successor. Other-
wise walt for ancther
solicit successor.

285

b)

ructed.
If TS receives the
member request frame.

FRAME WHEN TRANSMITTED ACTION ON RECEPTICN
b) After holding tcken b) Look for messages on
a preset number of bus. If a new station
times. To inwvite a joins the ring incre-
station into the ring. ment CS.
6. Set a) If response timer is a) Set NS address to the

Successorl first to timecut address of the sender.
either after a who
follows or after a
solicit successor.

b) As in (a) but only b) As in (a).
after a who follows.
7. Set a) Not used. a) Not used.

Successor?2 b) When TS wishes to b) Set NS address to NS
exit the ring, send of exiting station.
this to PS.

8. Set a) Not used. a) Not used.

Previous b) When TS wishes to b) Set PS address to PS
exit ring, it sends of exiting station.
this to NS.

9. New a) If TS is new station a) Not used,

Member in rirg.

b) Not used. b) TS increments CS.
10. Del a) Not used. a) Not used.

Member b) If TS wishes to exit b) TS decrements CS.
ring, it sends this
to all stations.

. 11. Member a) If TS is a new sta- a) Not used.

Request tion, it sends this

to NS to find CS.
b) Not used. b) TS responds with a
manber count frame.
12. Member a) When TS is FS and a) If TS is new it sets
Count the ring is const- its CS address.

b) Not used.

286

FRAME WHEN TRANSMITTED ACTION ON RECEPTION

13. Who Last a) If TS is new, it a) Not used.
sends this to NS to
get the LS address.

b) Not used. b) Reply with the set
last frame.

14, Set Last a) If TS is new and a) When TS receives this
greater than PS it it sets the LS as its
sends this to all 1S address.
tations informing
them to reset their
LS address. If TS is
the first station then
befcre the system
goes into operational
mode, this frame is
sent.

b) If the TS is the b} Same as (a).

predecessor of the
LS and LS fails to
respond.

15. Whe First a) If TS is new to the a) Not used.
ring, it will send
this to NS.

b) Not used. b) When TS receives this
it responds with the
set first frame.

16. Set First a) If TS is new to the a) When TS receives this
ring and is the new it sets its FS value.
FS, it sends this to
all the stations.

b) If TS is successor b) Same as (a).

to FS and FS fails,
TS will send this.
17. Init Done a) If TS is the first a) TS will enter the

b)

station in the ring,
once the ring has
been configured and
it has received the
token it will inform
the other stations.
Not used.

b)

operational mode.

Not used.

287

FRAME WHEN TRANSMITTED ACTION CN RECEPTION

18. Data a) Not used. a) Not used.
b) Data ig transmitted b) TS transfers data
only in the operat- to Processing section.

ional mode when the
station holds the
token.

288

TABLE C-2: ADDRESS SETTING BY THE FIRST STATION

ADDRESS WHEN ADDRESS IS ESTABLISHED

Own - TS This is set when the station is powered-up.

First - FS Since this is the first station in the ring
FS is TS.

Next - NS The next station will respord to a 'Who

Previous - PS

Last ~ LS

Member Count - CS

Follows' with a 'Set Successor' frame. The
NS address will be included in the frame.

When TS receives a 'Who Follows' frame and
if its response timer times ocut before the
other stations, it can set PS from the 'Who
Follows' frame.

Since TS is the first station in the ring
then LS is the same as PS.

Whenever TS receives a 'Set Successor!
frame CS is incremented.

289

TABLE C-3:

ADDRESS SETTING BY A NOT-FIRST STATION

ADDRESS

WHEN ADDRESS IS ESTABLISHED

Own - TS

First - FS

Previcus - PS

Next - NS

Last - LS

Member Count - CS

This is set when the station is powered-up.

When TS receives a 'Claim Token' frame FS
is included within it.

When TS receives a 'Who Follows' frame
and if its response timer times out before
the other stations, it can set PS from the
'Who follows' frame.

The next station will respond to a '"Who
Follows' with a 'Set Successor'. The NS
address will be included in the frame.

The first station will send the 'Set Last'
frame specifying LS.

Whenever TS receives a 'Set Successor!'
frame CS is incremented.

290

TABLE C-4:

ADDRESS SETTING BY A PLUGGED-IN STATION

ADDRESS

WHEN ADDRESS IS ESTABLISHED

Oown - TS

Previous - PS

Next - NS
First - FS
Last - LS

Member Count - CS

This is set when the station is powered-up.

When TS receives a 'Solicit Successor' frame
and it is next in sequence in the ring, PS
will be set by the frame.

The sender of a 'Scolicit Successor' frame
includes the address of its old NS, this
becanes the NS of this station.

If TS is less than PS then TS is the new FS
and it will send a 'Set First' frame. If not
it asks NS with a 'Who First' frame.

If TS is greater than NS then TS is the new
LS and it will send a 'Set Last' frame. If
not it asks NS with a 'Who Last' frame.

When TS has entered a ring it will ask NS
for the station's member count by sending
a 'Mamber Request' frame.

291

TABLE C-5: RESPONSE TO FRAMES RECEIVED IN OPERATIONAL MODE

FRAME RECEIVED

RESPONSE

CLaim Token

Who Follows

Solicit Successor

Who First

Who Last
Member Request
Del Member
New Membexr

Set Successor2
Set Successorl
Set La.st

Set First

Set Previous

Token

Clear TokernHeldBit and reset Tolen
Rotation Timer.

Fun Who Follows Response routine
{described in section C.4.4).

Run Solicit Successor Response routine

(described in section C.4.4).

Send the Set First frame,

Send the Set Last frame,

Send the Member Count frame.
Decrement the station count record.
incxment the station count reoord
Reset next station address.
Increment the station count record.
Reset last station address.

Reset first station address.

Reset previcus station address.

Set WaitBit, send Token Ack and run
Access routine [section C.4.4].

292

€62

LOGICAL RING

e

STATION
(NODE)

| Fig. C.1_TOKEN PASSING ON A LOGICAL RING

Time Station 4 Station 9 Station 13
——— —— 1 — e — —
————————————— T e ——
Power " Read Own Address Read Own Address Read Own Address
Up T=90 '
T=1 Start Response Start Response Start Response
Timer Timer Timer
T =2 I Time out Still Running " Still Running
T =3 Send Claim Token " Stop Timer " Stop Timer
T =4 Send Who Follows Start Response Start Response
Timer Timer
T =5 Wait for Response Time out Still Running
T =6 Set NS Address Send Set Successor Stop Timer
Set PS Address
m
T = 7 Send Token to 9 Receive Token Wait
T = 8§ Receive Token Ack Send Token Ack l Wait ‘
m_——___—__
T =9 Start Response Send Who Fellows Start Response
" Timer Timer
T = 10 Still Running Wait for Response Time out
T = 11 Stop Timer Set NS Address ||Send Set Successor
I Set PS Address
T = 12 Wait Send Token to 13 Receive Token

T = l3l

Send Token Ack

T = 14| Start Response Wait Send Who Follows
Timer N
T = 15 Time out |r=== Wait ::" Wait for Response
T = 16|{Send Set Successor Wait] Set NS Address
Set PS5 Address

T = 17| Receive Token Wait Seﬁ§=;oken to 4

T = 18:==5end ;gien Ack Wwait Receive Token Ack
-=T = ;; Send Init Donim__J ReceI;; Init Done)| Receive Init Done

T = 20 Go into Op Mode Go into Op Mode Go into Op Mode

I Fig. C.2 RING CONFIGURATION PROCESSJ

294

S6T

LOGICAL RING

TS = THIS STATION
NS = NEXT STATION

PS = PREVIOUS STATION
FS = FIRST STATION

LS = LAST STATION

CS = NUMBER OF STATIONS THE INVITED STATION
» AFTER RECONFIGURATION.

THE *SOLICIT SUCCESSOR’
SENDE

4

| Fig. C.3 ADDITION OF A STATION |

96¢

LOGICAL RING

[Fig. C.4 DELETION OF A STATION |

TS = THIS STATION
NS = NEXT STATION
PS = PREVIOUS STATION

FS = FIRST STATION

LS = LAST STATION

CS = NUMBER OF STATIONS
» AFTER RECONFIGURATION.

4 THE’®* WHO FOLLOWS’
SENDER

THE DELETED STA

6\

I CHARTS l

RUN

COMMS
SYSTEM
RUN IN
INIT ENTER OPERATION
THE BOARD THE RING oo
€2 . 3 C4

CHART C1 RUN COMMS SYSTEM

INIT

THE BOARD
INCR | |SET GET WAIT TO
GET owN| |MeB | |TokenteLol |response| | ceear | [enTer | |seT
ADDRESS| |count | |To FALSE | | TiME WAIT BIT | [RING WAIT BIT
wAIT To ¥
ENTER THE
RING
START BIT
HIGH
exir ° 0
START —_—
BIT HIGH
CHART C.2 INIT THE BOARD

298

ENTER

THE RING
LOAD DEFINE
AND START STATION ACT ON
POLL 0 ctam O cam ©
BUS AND TIMER TOKEN TOKEN NOT
TIMER E£XPIRED RECEIVED RECEIVED
C.16
START START START
FOR FOR NOT ON
FIRST FIRST PLUG-IN
C5 Cé 7

CHART C.3 ENTER THE RING

299

RUN IN

LOAD
TOK ROT
TIMER

OPMODE
»
LOOP
FOR EVER
WAIT
FOR ACT ON
RESPONSE RESPONSE
B
— > 5
POLL ACTION
BUS AND TIMER IF
TIMER EXPIRED MESSAGE
C.16
SEND RUN ACT ON
CLAIM ACCESS MESSAGE
TOKEN ROUTINE RECEIVED
cn cs

CHART C.4 RUN IN OPMODE

300

START
FOR FIRST

a8

[

SEND RUN WHO RELOAD RUN WHO LINK FINISH
CLAIM FOLLOWS R_TTO BEFORE WITH LAST INIT
TOKEN ROUTINE MAX ROUTINE STATION PROCESS
() C.10] Below
SEND WAIT TO SEND
SET RECEIVE TOKEN
suct TOKEN ACK
C.14
FINISH
INIT
PROCESS
From Above
r T T 1
SET ‘ RUN
SEND TIMER SEND SEND TOKEN ACK
SET LAST VALUES INIT DONE TOKEN ROUTINE
C.15

r

CHART €5 START FOR FIRST

301

START
FOR NOT
FIRST

L T 1

RECEIVE RUN WHO[| LINK RUN WHO FINISH
CLAIM BEFORE || WITH FOLLOWS| | WAIT TO INIT
TOKEN ROUTINE | { PREVIOUS|{ | ROUTINE { | FINISH PROCESS
.10 c9
STOP SEND | [warT To ‘ * SET
RESPONSE| |SETFS || SET RECEIVE | | SEND PoLL | | RECEIVE | | TIMER
TIMER ADDRESS | | sucCt TOKEN TOKEN ACK{ { BUS INIT DONE| | VALUES

C1

EXIT ON
INIT
RECEIVED

SeT o0 [{seT oll mT 0
SUCH LAST DONE
Recelven| | Receiven|| RECEIVED

INC SET
MEMBER | | LAST
COUNT STATION

CHART C.6 START FOR NOT FIRST

302

START
ON PLUG
IN
WAIT WAIT To| | GET SEND RUN FINISH
FOR RECEIVE | | uknown | | NEW SEND | | Toxen Ack|| mit
souio)t | | Token | | NFo MEMBER | | TOXEN | |ROUTINE PROCESS
C.1% C.15]
» ||cer GET GET SET SET
POLL FIRST LAST MEMBER TIMER INIT DONE
BUS ADDRESS! | ADDRESS{ { COUNT VALUES BT
RECEIVE
soLiCIT
SUCCESSOR
CHECK
ADDRESS
S VALID
)
YES NO
LOAD CHECK
RESPONSE | | STATION ACT ON
TIMER IS NEXT RESPONSE
pott 0
BUS AND| | TIMER -
TIMER EXPIRED
C.16

CHART C.7 START ON PLUG IN

303

ACT ON
MESSAGE
RECEIVED
0 0 0
REQUEST UPDATE ANYTHING
FOR INFO REGISTERS ELSE
BELOW C8a Ca
0
REQUEST
FOR INFO
From Above
0 0 0) 0 0
RECEIVE RECEIVE RECEIVE RECEIVE
CLAIM WHO SOLICIT RECEIVE RECEIVE MEMBER
TOKEN FOLLOWS SUCCESSOR WHO FIRST WHO LAST REQUEST
CLEAR RUN WHO SOLICIT SEND
TOK_HELD FOLLOWS SUCCESSOR SEND SEND MEMBER
BIT RESPONSE RESPONSE SET FIRST WHO LAST COUNT
a2 i3

CHART C.8 ACT ON MESSAGE RECEIVED

304

0
UPDATE

REGISTERS
From I C.8
_ , |
receve®| | Rreceve o1 | receve®| | recave °| [receve ©
NEW DELETE | | RecENvE SET SET LAST | |SET FRST
MEMBER | | MEMBER | | seT succz| | Previous
INC DEC SET FIRST
MEMBER | | MEMBER | | RESET RESET SET ADDR
COUNT COUNT NS PS LAST AODR
0
ANYTHING
FLSE
From] C8
0 0 RECEIVE
RECEIVE RECEIVE ANYTHING
TOKEN DATA ELSE
RUN XFER GO INTO
SET SEND ACCESS AcTIVATE | | pataTo | | op MonE
WAITBIT | | TOKEN AcK| | ROUTINE DMA1 MEMORY AGAIN
e

CHART C.8a ACT ON MESSAGE RECEIVED

305

RUN WHO
FOLLOWS
ROUTINE

. —

START CHECK LINK
OTHER WE'RE NOT ACT ON WITH NEXT
R_Ts ALONE RESPONSE STATION
SEND PoOLL * 0j| SET 0 TOKEN
WHO LOAD WF| | BUS AND| | TIMER suct SEND ACK
FOLLOWS| | TIMER TIMER EXPIRED | | RECEIVED| { TOKEN | | ROUTINE
C.16 C1s
RUN
RE-INIT UPBATE
ROUTINE

CHART C.9 RUN WHO FOLLOWS ROUTINE

306

WHO
BEFORE
ROUTINE
o
LOOP
LOAD WAIT
MAX WAIT | | FOR WHO ACT ON
TIMER FOLLOWS RESPONSE
» 0 0
POLL WHO
BUS AND | | TIMER FOLLOWS
TIMER EXPIRED RECEIVED
C16
LOAD WAIT
RELOAD | | RESPONSE| | FOR ACT ON
TIMER TIMER RESPONSE | | RESPONSE
* 0
POLL SET
BUS AND | | TIMER SUCT
TIMER EXPIRED | | RECEIVED
C16 I
LINK WITH
PREVIOUS
STATION
1
EXIT INC
MAIN MEMBER
LOOP COUNT
EXIT
MAIN
LOOP

CHART C.10 'WHO BEFORE ROUTINE

307

RUN
ACCESS
ROUTINE
INC TEST TEST SEND ||RUN
TOKENHELD | | TOKENHELD MESSAGE| | TOKEN |[TokeN ack
COUNT COUNT FLAG ROUNTINE
15
o) Q 0 0
COUNTER COUNTER | | FLAG FLAG
EQUAL TO LESS THAN| | NOT SET| | SET
TEN TEN
ZER0 SEND Loan | |poLt Bus||acT oN SEND | | CLEAR
TOKENHELD] | soLiciT AND RUN| | AND RESPONSE | | RETURN DATA | | MESSAGE
COUNT SUCCESSOR| | SS.T TIMER | fLas
€16 I
mmer ©| | ser °
expiRen| | successor
RECEIVED
‘ RESET
RETURN NEXT
STATION

CHART C.11'RUN ACCESS’ROUTINE

308

WHO
FOLLOWS
RESPONSE

CHECK
ADOR OF
FAILED ST

[

FAILED ¢ FAILED 0
IS IS NOT
PREVIOUS PREVIOUS
LOAD LOCK
SEND SET NEW RESPONSE FOR ACT ON
SET SUCC2 PS TIMER RESPONSE RESPONSE
-
POLL ¥ 0 0
BUS AND TIMER MESSAGE
TIMER EXPIRED ON BUS
C.16
SEND RETURN
SET SUCC2

CHART (.12 WHO FOLLOWS RESPONSE

soLICIT
SUCCESSOR
RESPONSE
WAIT
LOAD SS FOR ACT ON
TIMER RESPONSE RESPONSE
L - !
POLL } SET
BUS AND TIMER suCct
TIMER EXPIRED RECEIVED
16
INC RESET
RETURN MEMBER PREVIOUS
COUNT ADDRESS

CHART C.13 'SOLICIT SUCCESSOR RESPONSE

310

WAIT 10
RECEIVE
TOKEN

LooP

WAIT
LOAD FOR ACT ON
TIMER RESPONSE RESPONSE
. 0 0
POLL
BUS AND TIMER TOKEN
TIMER EXPIRED RECEIVED
C.16
SET
Logp TOKENHELD RETURN
AGAIN BIT
CHART C.14 WAIT TO RECEIVE TOKEN

3N

TOKEN
ROUTINE

ACT ON

RESPONSE

TIMER
EXPIRED

LOAD WAIT
TOKEN ACK FOR
TIMER RESPONSE
POLL
BUS AND
TIMER
C.16

SEND
CLAM
TOKEN

CHART C15 'TOKEN ACK ROUTINE

312

TOKEN
ACK
RECEIVED

RETURN

POLL

BUS AND
TIMER
POLL POLL
TIMER BUS
0 0 0
TIMER —_ MESSAGE
EXPIRED RECEIVED

CHART C.16 POLL BUS AND TIMER

313

APPENDIX - D

APPENDIX D
CPM ENVIRONMENT EMULATOR - CPM100 MODULE

D.1 CVERVIEW

The CPMI00 module is written to provide a basic initialisation process
for the communication section. This module is designed for use in an
enbedded system running code generated by the FIL Modula-2 campiler.
Code generated by the FTL compiler expects to run in a CPM
envircnment. The appropriate CPM functions required by the code are
being emulated by this module. The emilated CPM functions are listed
below in Table D-1:

TABLE D-1: CPM FUNCTIONS EMULATED

FUNCTION NO DESCRIPTION
0 Warm boot, resets system from O000H
1 Console input, from serial interface
2 Cansole output, to the serial interface
6 Direct I/0, via the serial interface
9 Display message, to the serial interface
A Line input, from serial interface
B Cansole status, from serial interface

This module is designed for a 64180 processor with the code positioned
in an EPROM at address O0000H and for a RAM positioned between OAOQOOH
and OBFFFH. The code generated by this routine must be positioned at
address O000CH in the EPROM. This module also uses a small section at
the top of the RAM. The code is written so that this address can be
moved if desired. The lowest address used in RAM is 'TOP OF RAM' -

314

OFH. This address is actually used as the start of the stack . CPM
requires the stack on an entry to an application program to be at
least 8 levels deep so that the highest byte of RAM being used is 16
bytes below this location, i.e 'TOP_OF RAM' - OlFH. Table D-2 gives
the full description of the functions emulated.

TABLE D-2: CPM FUNCTICNS EMULATED

FUNCTION

DESCRIPTION

COoNOUT

DIRECTIO

MESSAGE

READBUF

STATUS

This has the same effect as a reset,
Jumping to location OOOOCH.

Read a character from the console and
then echo to the screen. Wait if no
character is available.

Output a character to the screen.

If E 1s OFEH return status; i.e. OO00H
if no character is ready and OFFH if
character is ready.

If E is OFFH, however, return character
from console, do not wait if no character
is available btut return O00H.

Do not echo character read to console.
For any other value of E cutput that
value to the console.

Output a message pointed to by DE to the
console. The message is terminated by
024H.

Read a text buffer from the console. The
buffer address is passed to DE. The first
byte gives the maximum length of the
huffer, while the second byte is set to
the actual length of the buffer, i.e.
characters actually read. The rest of the
buffer contains the text read. The
process of text reading into the buffer
is terminated by a return, CDH.

Determines if a character is available
from the console. The result being:

O0CH no character.
OFFH character ready.

315

Data required by these routines is passed via the E or DE registers,
and returned subsequently to the accumilator. The only exception to
this is the buffered input and message output functions where DE is
used to point to the data. The required function is placed in the C
register and a call is, then, made to OOOOSH.

If any call is made to a function which is not supported by the
functions mentioned above then an error message is output to the

console and control is returned to the application program.

These routines preserve all registers apart fram the accumilator when
called. The accumulator, however, is altered even if it is not used to
pass data back from the function.

CPM100 also supports the use of a watchdog timer. An interrupt handler
is incorporated into the program to handle an NMI interrupt from the
watchdog timer. This has the same effect on the 64180 CPU as a jump to
OO00H. The processor is subsequently re-initialised by the program
before control is passed to the application program at address O100H.

D.2 CpM OOMPATIBILITY

What follows is a brief outline of how the environment set up by this
set of routines, i.e. CPM mcdule, varies from the standard CPM

environment.

There is no support for BIOS calls. No vector table is produced and
the value at location 00001H which CPM normally expects to point to
the BIOS vector table points else where. Because of this situation,

316

any attempt to call a BIOS routine will crash the applicaticn program
and the system may well lock up.

The memory space (O005CH - OOOFFH) is usually used as buffers by CPM.
Code produced by these routines is actually placed in this space. The
application program will fail to write to this area as it is in EPRGM
address space. Some programs may try to read the default buffers on
entry to determine if any comand line parameters are being passed to
them. If this occurs, results are unpredictable and could well crash

the system.

CPM specifies that on entry to an application program, the stack
pointer must be left pointing to an 8 lewvel stack with the return
address left on this stack. Implemented routines abide by this rule.
The returmed address, placed on the stack, is actually 0000CH to cause
the same acticn as a reset if an application program exits,

It is believed that FTL Modula-2 only calls CPM functions supported by
these routines and makes no calls to the BICS, unless directed to do
s0 by the user. These routines are also believed to supply enough
support to allow use of the Terminal and SmallIO modules as supplied
with the campiler.

D.3 LIMITATIONS

CPM100 provides a faithful emulation of the functions mentioned above.
It will also produce an error message i1f an illegal function is
called. The more severe problem is if an application program makes use
of some other parts of CPM, If this occurs the results will be
unpredictable. Scme of the more likely problems are detailed below:

317

The page zero area is normally used to hold certain buffers.
Application programs should not directly address these buffers. The
comand line parameters and the default FCB's are held in this area.
Theyamexaminedbysarepmg;arrstoseeifmmyparanetershavebeen
set up on the command line. Any program which tries to examine this
area is, in fact, accessing the code of CPMIOO itself. Consequently,
application programs must not be allowed to examine this area.

In addition to the standard entry point of CPM at location ODOSH,
there is a second batch of entry points. These give access to the BIOS
routine, as opposed to the BDOS at location OOOSH. The BIOS routines
give a program access to a lower level of device driver. The BIOS
actually has multiple entry points, cne for each function. These entry
points are normally near the top of memory, in a proper CPM system. No
attempt is made to emulate this function, hence any program attempting
to access the BIOS will crash. It should also be noted that the usual
pointer to the address of these routines, normally at location OOQ1H,

is not set up.

318

APPENDIX - E

APPENDIX E
MULTI-PROCESSOR SYSTEM - KERNEL SOFTWARE STRUCTURE

E.1 INTRODUCTION

The real-time kernel software is designed in a modular, structured
manner, being implemented using the Jackson Program Design Facility
(FDF) package. In the following discussion, a full description of the
real~-time kernel primitive coperations is laid down. The Jackson chart
is constructed to describe the software to a specific level of detail.
The lowest levels represent simple functions that can be translated
into program format. Generally the recommended control structures of
structured programmirxg have been used in the writing of the program

source code.

The kernel module, MAIN-DISTKERNEL, differs from the communication's
main program module, RUNOOMMS, in that it does not remain in control
once called. Instead, however, it provides entry points (kernel
primitives calls) where it may be called by the application software.
Once called it performs the necessary commmication or management
routines before returning to the application program, in the shortest
time possible for the required action.

E.2 REAL-TIME KERNEL STRUCTIURE

The kermel structure consists mainly of three top level functions
[Chart E.1]:

319

* Power-Up.
* Initialise System.
* Run Application Software.

E.3 POWER-UP [Chart E.1l]

On power-up the system points to a specific location for code
execution (FFFFCH). Initially the memcry is mapped only for the top 1
Kbyte of memory (FFCOOH). This area is not sufficient to accammodate
the initialisation routines and the application program. Hence, the
system has to be transferred to a larger working area. This is done by
a jump instruction to the top 1 Kbhyte of memory area, where the
execution of the next stage of system initialisation starts on.

E.4 INITIALISE SYSTEM [Chart E.2]

Initialising the system consists of running the bootstrap loader. This
consists of two sections, an assembler part and a Modula-2 part. The
reason for this is to use Modula whenever is possible. Modula-2 code
is clearer, easier to understand, amxd is likely to be more reliable.
It does mean, however, that two separate bootstrap files have to be
produced for EPROM programming. It is imperative that the link between
the two, a jump locaticn, is set correctly. One EPROM is used to hold
both the assembler and the Modula-2 bootstrap programs,

a) Run Assembly Routine
This routine starts first with the initialisation of the hardware
system. It consists of the following functions:

320

* Set-up the different segment registers (i.e. code, data, extra,
and stack pointer registers).

* Set-up the appropriate memory partitions (i.e. upper chip select,
lower chip select, middle chip select, etc.). These are important
to be set at this point. The different memory ranges are used as

follows:

* Upper memory range for bootstrap loader.
* Middle memory rarnge for application programs.
* Lower memory range for RAM management.

A jump is then made to the Modula-2 initialisation routine.

b) Run Modula-2 Routine
This routine is located at the bottom of the boot EPROM. Its main

function is to minimise the use of assembler for system

initialisation.

When the absclute linker is run the data setting should be '83H'. This
ensures that the interrupt vector area (and the planted return for a
system interrupt) is not affected by this module. It consists of two

main functions:

* Initialise serial line interface.

* Plant interrupt return wvector.
When the Modula-2 initialisation is over, a jump is made to the start

of the application software. This is accamplished through the use of a
software interrupt (SWI) planted at the end of the Modula-2 routine.

321

E.5 RUN APPLICATION SOFTWARE [Chart E.3]

Applicaticn software is the partitioned task among the different nodes
of the system (i.e. a sub-task on each node). This is written totally
in Modula-2 language. It consists of two parts:

* Initialise Sub-Task.
* Run in Operation Mode.

E.5.1 Initialise Sub-Task [Chart E.4]
This is concermed with the initislisation of:

* Distributed wvariables.
* Communication channels,
* Interrupts.

a) Initialise Distributed Variables [Chart E.S5]

In this part initialisation of all distributed variables takes place.
This consists of setting up pointers and variable control blocks (VCB)
for all variables. V(Bs are defined for all distributed wvariables
whether defined in this station (i.e. originals) or being imported

fram other stations (i.e. copies). V(Bs are records used within the
module to hold information about the status of each wvariable i.e. the
name of variable, its size, its status (original, or copy), etc.

b) Initialise Channel for Commmication Reception

The communication channel has to be set first for reception mode. This
is essential as any one of the system stations may expect data from
others at unpredictable time. (The transmission mcde, however, is set
always when the application program issues a transmit mode - see

below).

322

c) Initialise and Set-Up Interrupts [Chart E.6]
A variety of interrupts are initialised and set before starting with
the main sub-task. These consist of:

* Timed interrupts for control loops (i.e. level, or actuator
loops).

* Timed interrupt for program-time purposes (i.e. a real-time
clock).

* Event interrupt for the multi-process commmnication handler.

E.5.2 Rum in Operation Mcde [Chart E.3)

This mode starts first with enabling the different interrupts,
starting timers, and then finally ruming a background process. The
baékground process keeps looping indefinitely, until process

termination, where two main things are achieved:

* Process Data Available.
* Act on Results.

a) Process Data Available _
Process, here, acts on the dedicated task which has been partitioned
for, i.e. executing and processing whatever procedures and data are
needed for.

b) Act on Results

In the course of action, a process may need, however, to execute a
transmit routine. This happens in two cases:

* Send a Message for Display.
* Run a Variable Transmit Mode.

323

In both cases above a transmit routine is issued after a preparation
of the message is carried ocut. Preparation for a variable transmit
mode is more couplex, however. This is discussed below.

E.6 TRANSMISSION MODE - RUN A VARTAELE TRANSMIT MODE [Chart E.7]

A variable transmit mode is needed in either of two cases:

* To request a distributed variable copy from another station
(Request-Global).

* To submit a calculated (i.e. updated), original, distributed
variable by this station (Submit-Global).

Request-Glchal

In this case, a variable wvalue is requested from ancther node by
issuing a transmit routine. Two modes of operation are possible.
Either control is returned back to the application program or else it
is retained by the transmit routine until data is available (WaitFor-
Data). These two cases are designed to allow for different program
implementaticons (i.e. Wait or no-Wait).

Submit-Global

This routine is issued whenever an original distributed variable has
been evaluated by the station (refer to section E.8 for mcre details).

E.7 RECEPTION MODE - EVENT SERVICE ROUTINE [Chart E.9]

A reception mode is entered whenever an event interrupt is received,
following a message transfer. A service routine called a 'multi-

process communication handler' receives and decodes the message.

324

According to the decoded message, a transfer is made to the proper
server to take the required action. The following servers currently
exigt:

* Receive a Message for Display - Server 1.

* Reply for a Distributed Variable (copy) - Server 2.

* Request for a Distributed Variable (original) - Server 3.
* Request to Synchronise All Local Clocks - Server 4.

Similar acticns are taken at the start and at the end of each server;
i.e. acknowledge message reception at the start and return from

interrupt at the end.

a) Receive a Message for Display — Server 1

This server is used to receive and then display a message.

b) Reply for a Distributed Variable (copy) — Server 2

This server uses a ' ~-RecvData' routine to check a reply for a
recquested variable copy, needed by this staticn, then stores the

variable copy.

¢) Request for a Distributed Variable (original) - Server 3

This server is used to deal with a variable request issued by another
station. A check is made first whether the particular variable has
been updated. If so, a2 tranamit routine is issued and a copy of the
. variable is sent. Alternatively, the reguest message is stored for
subsequent processing i.e. whenever the variable is available.

d) Reguest to Synchronise All Local Clocks - Server 4

This server implements the synchronisation of all local clocks
according to a pre-defined master clock (chosen in any one of the
system stations). The information received is an update from the
master clock. This is used to update a glcobal register variable.

325

E.8 REPEATED ROUTINES

These are various routines that are called repeatedly throughout the
main kernel module, MAIN-DISTKERNEL, and used by the application
program. A list of them is given below:

* Return From Interrupt Routine.

* Transmit a Message-Frame Routine.
* Validate Routine.

* Submit-Global Routine.

* CheckRecv-Data Routine.

* WaitFor-Data Routine.

a) Return From Interrupt Routine [Chart E.12]

This routine is used excessively by the multi-process communication
handler. It achieves three main things:

* Set-up the chamnel and buffers for a reception mode.
* Enable interrupts for further activation and hence servicing.

* Return to background process.

b) Transmit a Message-Frame Routine [Chart E.13]

This routine is used whenever a message frame is to be transmitted.
It, first, assembles the message according to its constituent parts
(i.e. frame type, number of data bytes, data segment, address of both
source and destination, ete.). Then it sets-up a chamnel and buffers
for transmission mode. Finally, it sends the message frame by issuing
a 'Send-Data' routine, then retuming to the background process.

326

c) Validate Routine [Chart E.14]

This routine acts on distributed variables, whether originals or
copies. It updates flags in the variable control block (VCB). This
routine is used excessively by the application program before
accessing variables for further processing.

d) Submit-Global Routina [Chart E.15]
This routine is used to transmit a copy of an original variable, after

being evaluated by this station. A tranemit mode process is issued for
an original variable in two cases:

* A request iz received fram other stations (i.e. Request-Global).
* An original variable has been evaluated in the current station.

In both cases, however, the following series of actions are taken
before 'Transmit a Message-Frame Routine' is issued:

* Check whether the variable has been evaluated (i.e. Validate).
* Check if there is any request for that variable.

* Transfer variable name and data into an output buffer.

* Prepare and set-up for transmitting the variable.

e) Check-RecvData Routine [Chart E.16]
This routine is used to check and subsequently store requested copies
of variables. A check is made first on the variable, campared with a

list of variables, to ensure two points:
* . Such a variable exists within the requested list of that

particular station.
* The variable has not been updated prior to this time.

327

Having accamplished the above tasks, the variable is stored in its
data buffer, and the wvariable control block (V(B) is set indicating
the validity of the variable for subsequent use and access.

f) WaitFor-Data Routine [Chart E.17]
This routine is used whenever the application program waits while a

copy of a variable (i.e. a variable copy) is being requested.
Normally, the application program sends or requests for a variable
early in the program, that is before intending to use the wvariable
immediately. This, in fact, coincides with the commmnication strategy
of the system, i.e. non-blocking tranemission. In some cases, however,
the application program has nothing to do, at later stages, than
waiting for variables update (supplied by other stations) to proceed
further in the program. Hence, this routine is used ‘bo control such
an action. It actually relies on 'Validate' routine to achieve its
task. It keeps leooping and checking the flags in the variable control
block (VCB) until the variable is wvalid for use.

328

I CHARTS ‘

RUN

PROCESSING
SYSTEM
RUN
POWER-UP m;'?‘é;ff APPLICATION
SOFTWARE
E2 £E3

CHART E.1 RUN PROCESSING SYSTEM

329

INITIALISE
SYSTEM

RUN
BOOTSTRAP
LOADER

1

ROUTINE

RUN ASSEMBLY

1

ROUTINE

RUN MODULA-2

SETUP SEGMENT
REGISTERS

SET THE MEMORY
PARTITIONS

INIT!IALISE
SERIAL INTERFACE]
{DUART)

PLANT INTERRUPT
RETURN VECTOR

CHART E.2 INITIALISE SYSTEM

330

RUN
APPLICATION
SOFTWARE
INITIALISE RUN IN
SUB-TASK OPERATION
_ MODE
£
RUN #
BACK-GROUND
PROCESS
EXIT ON
PROCESS
TERMINATION
PROCESS DATA ACT ON RESULTS

AVAILIBLE

l___L__L

0
SEND A MESSAGE
FOR DISPLAY

|

TRANSMIT A
MESSAGE FRAME
ROUTINE

£13

0
RUN A VARIABLE
TRANSMIT MODE

E7

CHART E.3 RUN APPLICATION SOFTWARE

331

INITIALISE

SUB-TASK
INITIALISE e SN INITIALISE
DISTRIBUTED COMMUNICATION AND SET-UP
ES E6

1

INIT-RECEIVE

.

SET UP-RECEIVE

CHART E.& INITIALISE SUB-TASK

332

INITIALISE
DISTRIBUTED
VARIABLES

[

INITIALISE
POINTERS VAR,

-

INITIALISE INITIALISE
DISTRIBUTED DISTRIBUTED
VARIABLES VARIABLES
{ORIGINAL) (COPY)

Loop * LooP *
EXIT EXIT

ON LAST INITIALISED

VARIABLE

VARIABLE

ON LAST INITIALISED

—

INIT-MASTER
GLOB

ADD TO A LIST OF
EXPORTED ?L[;BCDPY
VARIABLES

ADD TO A LIST OF
IMPORTED
VARIABLES

CHART E.5 ‘INITIALISE DISTRIBUTED VARIABLES

333

INITIALISE AND
SETUP TIMED-
INTERRUPTS

SETUP TIMED-INTERRUPT
FOR
(CONTROL LOOP)

—

SetT- TMER-
TIMER -
INTERRUPT

INITIALISE AND
SETUP INTERRUPTS

INITIALISE AND
SETUP EVENTS
INTERRUPTS

SETUP CLOCK-INTERRUPT
FOR
(PROGRAMME -TIME)

SETUP INTERRUPT FOR
MULTI-PROCESS
COMMUNICATION HANDLER

——

SET- SET UP-
CLOCK TIMER-
TIMER INTERRUPT

SETUP-DMA
INTERRUPTS

CHART E.6 INITIALISE AND SETUP INTERRUPTS

334

0
RUN A VARIABLE
TRANSMIT MODE

|

ACT ON TYPE OF

VARIABLE
REQUEST A CoPY OF 0 SUBMIT AN UPDATED 0
DISTRIBUTED VARIABLE DISTRIBUTED VARIABLE
{COPY VAR) (ORIGINAL VAR)
REQUEST- SUBMIT—
GLOBAL GLOBAL
E15
0 0
TRANSMIT TRANSMIT
AND NO wAIT AND WAIT

| | Jj

TRANSMIT A TRANSMIT WAIT
MESSAGE FRAME A MESSAGE FOR
ROUTINE FRAME DATA
ROUTINE
E13 E13 E17

CHART E.7 RUN A VARIABLE TRANSMIT MODE

335

INTERRUPT SIGNAL
CCCURS

ACT ON INTERRUPT
RESPONSE

¢
TIMED-INTERRUPT

0
CLOCK-INTERRUPT

1

0
EVENT-INTERRUPT
RESPONSE

CALL EVENT

HANDLER)

SERVICE ROUTINE
(COMMUNICATION

£9

RESPONSE RESPONSE
CALL TIMED CALL CLOCK
SERVICE ROUTINE SERVICE ROUTINE
(TIMER-PROC)
CHART E.8 INTERRUPTS

336

MULTI-PROCESS
COMMUNICATION
HANDLER

RECEIVE
DATA

ACT ON
RECEIVED DATA
FRAME

TRANSFER DATA
INTO A BUFFER

RECV MES-DECODE

0

RECEIVE A ° REPLY FOR A °1 |reauesT For | REQUEST TO
MESSAGE FOR DISTRIBUTED VARIABLE DISTRIBUTED VARIABLE | | SYNCRONISE ALL
DISPLAY (COPY VAR) {ORIGINAL VAR) LOCAL CLOCKS
SERVER 1 SERVER 2 SERVER 3 SERVER &
E10 E10 £N E11

337

CHART E9 EVENT SERVICE ROUTINE

SERVER 1

REQUEST FOR A
MESSAGE DISPLAY

ACKNOWLEDGE
RECEPTION

1

DISPLAY
MESSAGE SENT

L

SEND-HANDSHAKE

SERVER 2

|

REPLY FOR A
DISTRIBUTED COPY

VARIABLE

1]

RETURN FROM
INTERRUPT

E12

ACKNOWLEDGE
RECEPTION

CHECK-REC DATA
ROUTINE

RETURN FROM
INTERRUPT

:

SEND-HANDSHAKE

El6

£12

CHART E.10 SERVER 1 AND SERVER 2

338

SERVER 3

:

REQUEST FOR A
DISTRIBUTED ORIGINAL

VARIABLE
SEND- s e s CHECK VARIABLE RETURN FROM
HANDSHAKE CALCUL ATED STATUS INTERRUPT
| E 37
0 0
VALIDATE TRUE FALSE
Efh J |
SUBMIT- | | STORE A

GLOBAL VARIABLE REQUEST

SERVER &

1

REQUEST TO SYNCHRON!SE
ALL LOCAL CLOCKS

SEND- RETURN FROM
E12
UPDATE TIME

GLOBAL VARIABLE

CHART E.11 SERVER 3 AND SERVER &

339

RETURN FROM

INTERRUPT
SET-UP CHANNEL

ENABLE RETURN TO BACK-
AND BUFFERS FOR
RECEPTION INTERRUPT GROUND PROCESS

[|

INIT-RECEIVE SET UP-RECEIVE

CHART E.12 'RETURN FROM INTERRUPT' ROUTINE

340

TRANSMIT A
MESSAGE
FRAME

SETUP CHANNEL AND RETURN T0

,Pﬁh%“ MESSAGE | B\)rFeRs FOR SEND-OATA BACK-GROUND
TRANSMISSION PROCESS

SEND MES

Senn ! INIT-SEND SET UP-SEND

CHART E.13 'TRANSMIT A MESSAGE FRAME' ROUTINE

341

VALIDATE

ACT ON DISTRIBUTED
VARIABLE TYPE

-0
ORIGINAL

0
CoPY

ACT ON 'ORIGINAL*
VARIABLE STATUS

UPBATE THE VAR.
CONTROL BLOCK
FLAGS

ACT ON 'COPY"
VARIABLE STATUS

UPDATE THE VAR.
CONTROL BLOCK
FLAGS

CHART E.14 'VALIDATE' ROUTINE

342

SUBMIT-GLOBAL

TEST VARIABLE

VALIDATE FLAGS

0
FALSE TRUE

:

CHECK FOR A
VARIABLE REQUEST

I IJ

0 0
FALSE TRUE

PREPARE VARIABLE PREPARE AND

FOR TRANSFER SET-UP FOR
TRANSMISSION

COPY DATA INTG TRANSMIT A

AN QUTPUT BUFFER MESSAGE-FRAME
ROUTINE

E13

CHART E.15 'SUBMIT-GLOBAL' ROUTINE

343

CHECK-RECV
DATA

]

ACT ON RECEIVED
DATA VARIABLE

READ NAME OF
VARIABLES FROM
HEAD OF DATA

COMPARE WITH A

LIST OF REQUEST
VARIABLES

VARIABLE IS

NOT REQUESTED
ON LIST

0

VARIABLE 15 ©
ON LIST OF
REQUEST

IN BUFFER

UPDATE VARIABLE
USING THE DATA

CHART E.16 'CHECK-RECVDATA' ROUTINE

344

SET VARIABLE
CONTROL BLOCK

]

VALIDATE

WAIT FOR-
DATA

ACT ON SPECIFIED
VARIABLE

CHECK VARIABLE
CONTROL BLOCK
STATUS

|

»
Logp

——

ACESS SPECIFIED
VARIABLE

0 0

FALSE TRUE

EXIT LOOP

CHART E.17 'WAIT FOR-DATA' ROUTINE

345

