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SYmPSIS 

FUNCTIOOAL PARl'ITICNING OF KJLTI-PRCI :eSSQR ~ 

Many real-time computations such as process control and robotic 

applicatiCXlS may be naturally distributed in a functicnal manner. Cbe 

way of ensuring good performance, reliability and security of 

operation is to map or distribute such tasks onto a distributed, 

multi-processor system. The time =itical task is thus functicnally 

partitioned into a set of cooperatin;J sub-tasks. These sub-tasks run 

concurrently and asynchrc:n:lusly on different nodes (stations) of the 

system. The software design and support of such a functional 

distribution of sub-tasks (processes) depends on the degree of 

interaction of these processes am:xJg the different nodes. 

The research =rk carried out is concerned with the follCMing points: 

* The design and ilrillementation of a l=sely coupled multi-processor 

system that has been designed and ilrillemented for use in fault

tolerant, real-time applications. Each processing unit (station) 

consists of a single board canputer, where the ccmnunication and 

processing tasks are decoupled on each board. It uses a single 

shared parallel bus f= ccmnunication between these stations, bus 

control being fully distributed. 

* The development of software environment to support functional 

partitioning. This consists mainly of: 

i) A real-time kernel structure to support and manage partitioned 

sub-tasks on various processing sections of the system. 
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ii) A ccmnunicaticn software protocol that supp;:n: ts ccmnunicaticn 

between the different prooessin;J sectioos of the system. This 

is perfo:rmed using message passing techniques based on token 

passing. 

iii) A run-time support system for the operation of the 

ccmnunication protocol. 

The ccmnunicaticn and real-time ken19l software have been written 

mainly in MXIu1a-2. This required the use of two different ccrnpilers. 

A snall am:J\IDt of assanbly language progranming was also used. This 

software is hosted on a multi-processor dem:rlstrator systan which has 

been developed as part of the research progranme. 
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CHAPTER 1 



1.1 OVERVIEW 

Recent advances in hardware computer technology, combined with 

canponent cost reductions, have spurred on the deve10pnent of new 

distributed hardware systems. Eventually, future real-time 

applications will be targeted toward highly distributed, multi

processor environments because of their attractive cost-to-perfonnance 

ratios c:c:rrpared to single processor systems. 

As new high perfonnance distributed archi tectures are explored and 

exploited, the nature of software developed for these new generations 

will tend to shift fron being sequential in nature to being rrore 

parallel. 

Developing software for such systems will be even rrore troublesane 

than it is for traditional CCJlIPUter systems due to synchronisation 

issues, new algorithms and languages. Yet, there is currently little 

software support for distributed environments. 

Sane venCbrs have succeeded in developing quality software for non

sequential structures using conventional techrx>logies. Hc:Mever, lack 

of specialised support is already hindering long scale developnent of 

systems with this class of archi tectures. 
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Successful software developnent, h::Mever, will only stan fron a better 

understanding of distributed systans. The design and synthesis of 

software for distributed systems requires the use of a design 

metlx:>dology and prograrrming l~age which builds on the inherent 

parallel nature of such systems. Thus, an adequate software base 

(design tools, run time erwironments, dedicated operating systems, 

canpilers, ete) and better software engineering techniques must be 

available before future needs, for high quality software, can be met. 

Intense research activity in recent years has led to a nore mature 

understanding of the problems of a distributed environment [1]. Still, 

however, the following points need to be resolved to facilitate 

advances in software developnent for distributed architectures [2]: 

* Approaches to problem decanposi tion for mapping applications to the 

proper distributed architecture. 

* Techniques for software design partitioning and allocation. 

* L~age issues for distributed archi tectures for future systems 

( e. g. language constructs to address parallel issues). 

* Algorithm design and evaluation. 

* Problem visualisation and animation techniques. 

* Software testing to attain high reliability levels. 

1.2 RESEARCH OB.JEl:TIVES 

Real-time, multi-processor, embedded systems are one application area 

where respcnse times, throughput, reliability and fault-tolerance 

constitute the major design criteria [3]. Hence the distribution and 

management of the application software is a critical function. 

2 



A prototype l=sely-=upled multi-processor systan has been designed 

and implemented for use in fault-tolerant real-time applications 

(Figs. 1.1 and 1.2). 

This thesis discusses the organisation and structure of the total 

system, concentrating in particular on the software envirarntent that 

has been developed to support functional partitionin;J [4,5]; Le. the 

ccmnunication and executive (kernel) functions. '!he ccmnunication 

systan is based on a token passing bus protocol for use with Single 

board computers connected via a fast parallel bus. The kernel is 

designed to support functional parti tionin;J of application programs, 

and can be implemented using standard canpilers. No special multi

processing features are required. l'bst of the software for this system 

has been written in a high level, structured language (M:ldula-2), 

though assembly language programming has been used in a few 

specialised areas. 

1.3 'lHESIS ORGANISATION 

Chapter 2 presents methods of task management in distributed 

environments. Partitioning schemes and allocation strategies are 

highlighted in particular. 

Chapter 3 gives a general review of distributed, concurrent 

prograrrrn:ing techniques. Different classifications and rnetlxJds are 

presented together with the evaluation of each rneth:Jd. 
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Chapter 4 is devoted to the functional description of a multi

processor structure that is designed to support functional 

partition:!ng. Supporting issues such as inter-processor camrunication, 

operating systan constructs, and croice of prograrrming l~e are 

discussed within this chapter. 

Chapter 5 describes the :implarentation of the mu1 ti -processor system 

developed in this research project at building block level. The 

function of each block and its role in the system is dem:Jnstrated. It 

introduces the idea of using two separate SUb-systems; the 

camrunication sub-system f= handling camrunication with the network 

and the processing sub-system f= the execution of application tasks. 

Chapter 6 and Chapter 7 concentrate on the design of the software 

environment which has been developed to support functional 

partitioning. Chapter 6 describes the implementation of the 

camrunication protocol and its run-time support system. Chapter 7, on 

the other hand, describes the structure and implementation of an 

operating system kernel for the support of functional parti tion:!ng. 

Software structure diagrams for Chapter 6 and Chapter 7 are given in 

Appendices C and E respectively. 

Chapter 8 introduces the different approaches and techniques for the 

testing and validation of both the hardware system, and the 

:implemented system software modules. 

Finally, Chapter 9 reviews and assesses the different achievements of 

the research work. It also highlights areas for future research. 
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CHAPTER 2 



amPl'ER 2 

ME:lHJDS OF T1\SK ~ IN DISTRIBUl'ED SYSTEMS 

2.1 GENERAL 

Distributed systans have :inherent problems which nrust be overca:oo by 

different concurrent prograIllllinJ mettxldologies. Certain demands and 

requirements have to be met in the design of distributed programs. 

Issues such as the ~lexity of the underlying hardware, partitioning 

and allocation schemes, the supporting constzucts of the progranrning 

languages and the availability of the software enviromlent tools play 

major roles in task managanent within a distributed environment. This 

chapter highlights the main issues relating to such environments i.e. 

t:i"Dse of partitioning, allocation, and ccmnunication aspects. 

2.2 PARl'ITIOOlNG SOlEMES FOR DIS'l'RIB{Jl'ED ~ 

2.2.1 Ovel:view 

Partitioning is the process of breaking down a task into smaller tasks 

( sub-tasks) , or a program into smaller programs called fragments or 

segments. 

In many cases the partitions lead to an apparent reduction in the 

~lexity of the system and reduces the problem at hand to manageable 

pieces. The partitioning unit or CXJ11Struct used (called granularity) 

stnlld be carefully ch::Jsen as this will affect the type of system 

:irnplanentation. For instance, as the number of parallel processes into 

which a canputational task is partitioned is increased, so the volume 
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of inter-pr=ess cx:mnunications f= control and data interchan;;e also 

increases. '!his leads to a closely coupled system .implanentation. 

Language constructs play an important part in s.implifyin;J partitioning 

schanes. For instance, the language StarM:ld [1] allows the prograrrrrer 

to partition a canputation into a collection of pr=esses and also to 

define the details of cx:mnunication paths between the processors. Ma 

[2] has been criticised f= not providing a suitable partitioning 

constructs; help is required from other tools in the support 

environment to provide such a scheme [3,4,5]. 

'&u basic approaches may be identified for partitioning distributed 

software [6]: 

i) Distribute fragments of' a single program a=ss pr=essors and 

use a normal intra-program communication mechanisms for 

interaction; 

ii) Write a separate program for each pr=ess= and devise a means 

for inter-program interaction. '!his meth:xi is not so applicable 

in distributed environments since the introduction of hardware 

specifications into a design at an early stage restricts program 

pcrtability. It also leads to a change in the partitioned 

program structure whenever the configuration (say number of 

processors) changes. 

2.2.2 Designing a Distributed System as a Single ProgLdlD 

The fundamental concept here is that the application software is 

viewed as a single program, distributed across the target system. Its 

main advantage is that all the interfaces between the distributed 
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fragments can be type checked for compatibility by the compiler. 

Within this approach two general strategies can be identified: post

partitioning and pre-parti tioning [5,7,8]: 

i ) Post-Parti tiCll1.i.nJ 

In this strategy, partitioning of an application program is expressed 

after the design of the software is carplete. 'l11e partitioning process 

does =t attempt to force chan;jes in the software design in order to 

achieve the required partitioning. Fig. 2.1 illustrates a typical 

ordering of system development steps. Partitioning is performed 

concurrently with and independently of coding. 

'l11e prograrrmer produces an appropriate solution to the problem at 

hand. It is left to the partitioning specification software (Fig. 

2.1) to: 

* 
* 
* 

Describe the target configuration, 

Partition the program into canponents for distribution, and 

Distribute the CU1lfXl1l9I'1ts to individual rDdes. 

This method prarotes portable software, i.e the same program can be 

mapped onto different hardware configurations. However, it needs a 

language that contains facilities for configuration management. 

ii) Pre-Parti tiCll1.i.nJ 

This strategy is to select a particular construct as the sole unit of 

partitioning, to be used througmut the design and prograrrming process 

(see Fig. 2.2). '!he =tion underlying this strategy is that of a 

'virtual rDde', which is an abstraction of a physical rDde in the 

distributed system [4,9]. A virtual rDde consists of one or IlOre units 
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(which may share rnenory) ccmnunicatlrg with other virtual nodes via 

sane form of message passin;J over a ccmnunicaticn sub-system. M:xe 

than ens v:i.rtual node, hc::Mever, can be mapped cnto a sin;Jle physical 

node. 

Note that the progranmer must accept aT¥ constraints the choice of 

constructs entails (e.g. it might affect inter-process ccmnunication 

or system perfonnance). 

The =tion of virtual nodes is found in IlOSt languages which have been 

designed specifically for support!rg distributed prograrrming (e.g. the 

'guardian' of Argus [10] and the 'processcr module' of starM:xl [1]). 

For a language constl:uct to be effective as a virtual node it must be 

supported by [4]: 

* 
* 
* 

Separate compilation. 

Library units or nodules. 

Exception handling facilities to cope with pr=ess failures. 

2.2.3 F\Jncticnal Partitioning Schemes 

Many real-time applications and tasks may be naturally distributed in 

a functional manner. Functionally distributed systems are often 

modelled and controlled as a set of carmunicatlrg, distributed sub

tasks (processes) [11]. The software for such systems invariably 

reflects the distributed nature of the application. 

The software design and support of such a functional distribution of 

sub-tasks (processes) depends on the degree of interacticn of these 

pr=esses anong the different processors. 
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A sirople implanentation of functional parti ticn:in;J may consist of 

functional or pipelining partiticniIY::1 [12] (see Fig. 2.3). Here, the 

distributed processes interact =casionally, usually for transferring 

data results, using message-passing techniques. 

Fig. 2.4 shows a lTOre realistic approach to, and understanding of, 

functional partitioning within real-time environments. The total 

system task: is partitioned into a number of functional sub-tasks which 

are then mapped onto the various oodes of a distributed system. In 

real-time systans such sub-tasks involve plant interfacing, netM:lrk 

control, canputation of digital control algoritiIns, etc. These nm 

asynchronously and concurrently within the distributed system. 

Distributed processes, however, have to communicate and interact 

occasionally in order to achieve a CUIllUl, goal [13,14]. Managanent and 

interaction of distributed processes is usually achieved by supporting 

software E!fi1bedded in each node of the system [15,16]. Sane of the main 

advantages in using this method are: 

* The software structures mi=r the application structure, this 

being especially suitable for real-time application tasks. 

* The individual software units (sub-tasks) can be implanented, type 

checked and canpiled using uni-processor canpilers. 

* The granularity ( unit of parti ticn:in;J or sub-task), may be further 

divided and partitioned into other functional sub-tasks (see Fig. 

2.4). These sub-tasks can be mapped, in turn, to one or !TOre oodes 

of the distributed system. 

* Finally, each sub-task can be considered as a unit sole of 

partiticniIY::1. This means, it can be separately processed, coded, 

and canpiled using structured languages suited or even adapted for 

distributed environment. 

11 



2.3 TA'3K ALI.ClCl\TIOO' STRATmIES 

All=ation assumes the existence of well partitioned or predefined 

units or m:Jdules, and discusses how to effectively map or all=ate 

these units or m:Jdules to different oodes. The meth:xi of all=ation 

chosen should allow for an efficient and reliable implementation of 

inter-process COTI11llI1ication mechanisn [17,18]. 

In distributed systans this effectively means 'how different program 

segments reside on different processors, and how they interact' 

[5,19]. 

The unit of all=ation depends, arrong other things, on the oonstructs 

of the l~e use for the implementation. For instance, in Ma n..o 
main =nstructs have been considered as the basis of all=ation; the 

'task' and the 'package' [ 4,9]. The task is unable to encapsulate data 

in the same way as a package, and canrxlt be a library unit, hence its 

usefulness as a unit of distribution is limited. The package, however, 

is supported, by separate compilation and library units and thus 

favoured as a distribution unit. 

Similarly, in M:ldula-2 [19] a '=-routine' and a 'IrOdule' are n..o 
=nstructs that may be suggested as units for all=ation [20]. Again, 

a =-routine fails to encapsulate data in the same way a IrOdule does, 

also it Canrxlt be a library unit or even separately ccrnpiled. But rrost 

important, for a distributed application, the =routine mechanisn 

should be m:xlified in order to allow for rarote pr=edure invocations 

and resumptions. The semantics of remote coroutines appear to be 

applicable to Modula-2 [21]. A module, on the other hand, is 

inherently suitable for use as a distribution unit. Apart from 
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separate ccmpilation, and use of library units, there are two main 

reasons for usin3' a m::Jdu1e as a distribution unit [9]: 

* Procedures of a m::Jdu1e need efficient access to the local shared 

data of the rrodule. Hence, it is IX)t possible to achieve efficiency 

if the rrodule is split over several IXJdes or process=s. 

* Modules often fonn monitors [22], where mutual exclusion of 

processes is to be maintained. This is difficult to implement if a 

m::Jdu1e itself is spread over several IXJdes. 

2.4 INTER-PROCESS cnMJNICATION IN DISTRIBU'l'ED SYSTEMS 

Communication constructs fall into two groups; those designed to 

support processes which reside on the sane IX)de, and th::>se used where 

processes reside on different IX)des (processors). For processes on the 

sane !'Xlde, a typical and standard fom of inter-process carnrunication 

mechanism is the use of shared variables (using monitors for 

implementing mutual exclusion). Whereas for processes on different 

IXJdes, inter-processor carnrunication is frequently implemented using 

the renote procedure call mechanism (RPC) [23] (this relationship can 

be viewed as a 'client-server' model). 

However, a more =nstructi ve way of carnrunication between processes in 

a distributed environment is through the use of message-passing 

techniques. Process carnrunication may be implemented in both (or 

either) asyncI'=1ous and synchronous fonns, usin3' channels [24] or the 

rendezvous [2]. In a distributed environment, process carnrunication 

must be transparent, i.e, the programner is unaware as to whether 

processes reside on the sane or different IXJdes. It is left to the 
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supporting software (operating system kernel) to decide whether 

processes need inter-process or inter-processor c:cmnunication. To 

implement this structure, two types of messages can be executed in a 

distributed system, E-m:x'ie and T-m:x'ie messages [25] (Fig. 2.5): 

* E-mode message refer to message transactions between various 

processes of a user program (inter-process c:cmnunication). 

* T-m:x'ie message refer to messages exchanged between the ken1els or 

operating systems of two different nodes (inter-processor 

camrunication) • 

Usually all camrunication between the different processes are issued 

first as E-node messages. These messages are subsequently interpreted 

by the underlying software (usually called a filter process) as to 

whether the source and destination processes reside on the same or 

different processors. If they reside on the same processor, then an E

node message is adequate for camrunication. However, if they turn out 

to be on different processors, then a kernel process (usually called a 

communication process) issues a T-mode message to exchange data 

between the different rx:>des. These m:x'Ies of message c:cmnunication help 

constructing a 'naming' scheme in a distributed system. 
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3.1 CXHlJRRENl' PROGRAM3 (USE OF Pro fSSFS) 

3.1.1 General 

The nature of concurrent prograrrrn:in;J has chcnJed substantially in the 

past ten years. First, theoretical research activities have pruupled 

the definition of new prograrrrn:in;J IX)tatioos that express concurrent 

canputations simply and make synci=rlsation requirements explicit. 

Second, the advances in hardware technology, and hence the 

availability of inexpensive processors, have made possible the 

construction of distributed systems and multi-processors that were 

previously tn1eCCl1XIlIical. 

Thus, implementations of concurrent prograrrrn:in;J are IX) longer limited 

to use in operating systems only. They are implemented in the design 

of database management systems, parallel scientific canputatioos and 

real-time, embedded control systems. 

3.1.2 Processes 

A 'sequential program' specifies sequential execution of a list of 

statements; its execution is frequently called a 'process' [1]. 

A process may be in three main states (see Fig. 3.1): 

i) ~: Instructions are being executed. 

!i) Blocked: The process is waiting f= sane event to == (such as 

input/output campletion). 

!ii) Ready: The process is waiting to be assigned a processor. 
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A concurrent program, however, specifies two or more sequential 

programs which may be executed concurrently as 'parallel processes'. 

It can be executed by two metlx:lds: 

i) Running more than one process on an individual processor. This 

is referred to as 'multi-ta.sk:in9', • It has to be mentiooed here, 

h::lwever, that 'quasi -CCI'lCl.ll::rol' is the name referred to when 

processes share only one processor [2]. 

ii) Running each process on its = processor. This is referred to 

as 'nrultiprocessing' if processors share a cx:nm:n marory, or as 

'distributed processing' if the processors are connected by a 

communications network [3]. A concurrent program that is 

executed in this latter way is often called 'a distributed 

program' • 

3.1.3 Process Interaction 

In order for concurrent processes to cooperate, they must camrunicate 

and possibly synchronise. 'Ccmnunication' is the transfer of data 

values fron one process to arDther. Inter-process ccmnunication is 

based either on the use of 'shared variables' (variables referred by 

more than one process) or on 'message passing' • 

'Synchronisation' is often necessary when processes communicate. 

Pr=esses are executed with unpredictable speeds. Yet, to camrunicate, 

one process must perform sane action that the other detects (an action 

such as setting the value of a variable or sending a message). This 

only woJ:ks if the events 'perform an action' and 'detect an action' 

are constrained to happen in that order. Thus synchronisation can be 

viewed as a set of constraints on the ordering of events [3]. The 
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progrdlllller employs a synchronisaticn mechanism to delay executicn of a 

process in order to satisfy such constraints. Sync.hrcni.saticn can be 

!lOre understood in an 'operaticnal approach': 

'Operational approach': Here the executicn of a CCll1C\=-ent p!:ogram can 

be viewed as a sequence of 'atonic actions', each resulting fran the 

execution of an indivisible operaticn [4]. This sequence may collpLise 

scrne interleavin;J of the sequences of atonic actions generated by the 

individual cc:mp:ment processes. For example, suppose initially that 

x=Q, that process PI increments x by I, and that process P2 increments 

x by 2: 

PI: x:=x+l P2: x:=x+2 

It would seem reasonable to expect the final value of x, after PI and 

P2 have executed concurrently, to be 3. Unfortunately, this will rot 

always be the case, because asSignment statements are rot generally 

implemented as indivisible operations. So the above assigr:ment may be 

implemented as a sequence of three indivisible operations: 

* 
* 
* 

Load a register with the value of x, 

Md I or 2 to it, 

store the result in x. 

Thus in the program above the final value of x may be 1, 2, or 3. 

This odd behaviour can be avoided by preventing interleaved execution 

of the ~ assignment statements, 1. e. by controlling the ordering of 

the events corresponding to the atonic actions (if ordering were thus 

controlled, each assignment statement would be an indivisible 
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operation). In other words, execution of PI and p2 must be 

sync:hrcn1sed by enforc:ln;J restrictions en possible inter1eavin]s. 

3.2.1 '!be FO%k and Join Statenents 

The fO%k statement [5,6] specifies that cnce a designated routine 

starts execut:ln;J, the :invokin;J routine PI and the invoked routine P2 

proceed ~t1y (Fig. 3.2). To synchronise with cx:rrpletien of the 

invoked routine, the :invokin;J routine can execute a 'join' statement. 

Execut:ln;J 'join' delays the invoking routine PI tmti1 the designated 

invoked routine P2 has terminated (execut:ln;J the 'end' statement) . A 

use of 'fork' and 'join' is stxJwn below: 

Program PI; Program P2; 

SI 

S2 

S3 

fork P2; SA 

S4 SB 

S5 se 
join P2; end; 

S6 

S7 

PI starts execut:ln;J first statements SI, S2, and S3. Executien of P2 

is initiated later when the 'fork' in PI is executed; PI and P2 then 
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execute c::c&"1ClJI'reIt1y (S4, and S5 in P1 and SA, SB, and se in P2) =ti1 

either P1 executes the 'join' statement = P2 tenninates. After P1 

reaches the 'join' and P2 terminates, P1 executes the statements 

following the 'join' i.e. S6, S7, etc. 

The UNIX operating system makes extensive use of variants of 'fork' 

and 'join'. 

3.2.2 '!be Cobegin Statement 

The 'Cobegin ' statement is a structured way of denoting concurrent 

execution of a set of statements (Fig. 3.3). This statement was first 

called 'Parbegin' [7]. Execution of: 

Begin Sl; Cobegin S2; S3; S4; S5; S6; S7 Coend; S8 end 

Means that after the ccmp1etion of SI, the statements S2, S3, S4, etc. 

(up to S7) will be executed concurrently, and only when are all 

executed will the execution of statement S8 be initiated [7]. 

Variants of 'Cobegin' have been included in Algol 68, Edison and 

Argus. 

3.2.3 ~s 

Coroutines are procedures that do not necessarily execute ccmp1ete1y 

before returning control to their calling programs. A =routine (Fig. 

3.4) suspends itself and at some later point, via another call, 

reSlU119S execution fron the point at which it was suspended [8]. 

Each coroutine can be viewed as implementing a process, hence 'quasi

concurrent' programs may be implemented on a single process= using 

coroutines. In essence, =routines are concurrent processes in which 
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process switching has been canpletely specified, rather than left to 

the implanentation. Statanents to implanent coroutines have been 

included in Sirnula, Bliss and M:Jdula-2. 

3.3 INrROIXX:TICN TO S'iNOIRCN.[SATICN TEOINIQUES 

3.3.1 Critical SectialS 

Within a system, coordination of pr=esses frequently involves access 

to shared data areas. Program segments that access shared data are the 

most hazardous to implement and are refe=ed to as 'Critical 

Sections'. The safest general solution for sharing data is to aCbpt a 

policy for 'mutual exclusion' where access is restricted to one 

process at a time [7,9]. This policy is over-restrictive when a 

number of processes wish only to read data, but stnlld be enforced if 

data is to be updated [10]. 

3.3.2 Semaphores 

Early attempts to produce concurrent programs were based on semaphores 

[7], low level primitives from which mutual exclusion and 

synchronisation protocols could be constructed. 

A semaph:)re(s) is a non-negative integer-valued variable on which ~ 

operations are defined: 'P' and 'V'. P(s) (also called wait(s»: IF 

s>O THEN s:=s-l ELSE the execution of the process that called P(s) is 

suspended. 

V(s) (also called signal(s»: IF sane process (0) has been suspended 

by a previous P(s) on this semaphore (s) THEN wake-up (0) ELSE s:=s+l 
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Test and decrenent in P(s), increlent in V(s) are dcoe as indivisible 

( atonic) operatioos (Fig. 3.5). 

A senapOOre assuming values 0 and 1 cnly is called a binazy senaphore. 

A semaph:>re which can take an arbitrary rxn-negative integer values is 

called a general semaph:>re [3,7,11]. 

M:>st semaph:>re implementations are assuned to exhibit 'fain1ess'. This 

is needed when a ntm1ber of processes are delayed, all. attenpting to 

execute a 'P' operation. on the same senaph:>re. A simpl.e way to ensure 

fairness is to awaken processes in the order in which they are 

del.ayed. 

A solution to the two process mutual exclusion. prob1en in tenns of 

semaph:>res is sI'oom below: 

PR(X;RAM Mutex-Examp1e; 

VAR mutex: semaph:>re initial(l); 

PRcx:ESS Pl; 

loop 

p(mutex); (*Entry Protoool.*) 

Cd tica1 section.; 

V(mutex); (*Exit Protoool.*) 

Nancritical Section. 

end 

end; 
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PROCESS P2; 

loop 

P(llUltex); (*Entry Protoool*) 

Cri tica1. section; 

V(llUltex); (*Exit Protoool*) 

Non-Critical. Section 

end 

end; 

end. 

3.3.3 Synehrarlsation Techniques and Language Classes 

A number of programming methodologies and languages have been 

developed to provide structured IlUll tipr=essed system (Fig. 3.6) • 

These started with the definition of semaplnres, then were extended in 

three ways: 

* Constructs were defined that enforced their structured use, 

resulting in critical regions, and monitors. 

* 'Data' were added to the synchronisation associated with 

semaprores, resulting in message-passim primitives. 

* Finally, the procedural. interface of monitors was canbined with 

message-passim, resultim in 'rerrote procedure call'. 

Although there are a variety of different synchron:i.sation techniques, 

there are only three essentially different kinds: procedure oriented, 

message oriented, and operation oriented [3,12]. These three 

approaches are roN considered in !lOre detail. 
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3.4.1 Mcnitors 

The rronitor concept, developed over a number of years [7,9,13], is 

one approach towards ensuring a reliable concurrent programming 

envirorment. Al trough the processes constituting a concurrent program 

may declare individual data areas, a frequent occurrence is the 

declaration of a CCIIIlOIl data area to be accessed by several processes. 

If the processes execute a.sync::hrca'Duly, it is possible that more than 

one process will attempt to access this shared data area 

simultaneously, with unpredictable results. One such manager, known as 

a rroni tor, encapsulates the shared data area and the procedures that 

will act on this area (Fig. 3.7) • Hence, the noni tor will provide 

mutual exclusion of processes to a set of pr=edures that act on the 

shared data, and consequently ensure the integrity of that data. 

The concept of the monitor was first implemented in the language 

Concurrent Pascal [14] and later in Modula [15]. These languages 

define two forms of canponents: processes and nonitors. Processes are 

the active program elements which operate on nonitors, which are the 

passive canponents containing shared data. 

A rroni tor is a program module which encapsulates the definition of 

sane data variables with procedures for their access. It is written as 

a set of global variables declarations followed by a set of 

procedures. The rronitor has a body (begin----end) which is a sequence 

of statements executed imnediately when the program is initiated. 

Henceforth, the monitor exists only as a module ( data and 

procedures). Processes accessing the rroni tor only need to know which 

procedures are provided, the particular implementation details being 

confined to the rroni tor definition. 
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A typical rronitor concept is sh:mn in Fig. 3.8. A producer process in 

a program may insert items into the buffer by calling the m::nitor's 

procedure 'produce'. The items may later be extracted by another 

process calling the rroni tor's procedure 'c::cnsure'. 

A process calling a rronitor's procedure gains exclusive use of the 

rronitor until it exist fron the nonitor. If a sec::ood process attempts 

to enter a rronitor that is cunently in use by anJt:her process, the 

second process is delayed until the first process releases the rroni tor. 

To impose or synciual.ise the operatien within a rronitor most rronitors 

define a type of variable called a ' condition variable'. This is used 

to delay processes executing in a rronitor. For instance, it may be 

used to prevent a process fron attempting to extract data fron the 

buffer before arty has been inserted. It may be declared only within a 

rronitor. 

If (c) is a condition variable then there are two operations that can 

be applied to (c): 

i) Wait(c): The calling process is blocked and is entered en a 

queue of processes blocked on this condition, 1. e have also 

executed Wait(c) operations. Unlike semaphores we assume that 

the queues are First In First Out (FIFO). 

ii) Signal(c): If the queue for c is rot empty then wake up the 

first process on the queue, otherwise continue (Le invoker 00es 

rot rettn:n fron its monitor call). 
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Another approach to c::cIDdi ticn synchrcnisation has been implemented in 

cxncurrent Pascal [14], using a slightly simpler mechanisn. Variables 

of type 'queue' can be defined and manipulated with the operations 

'delay' (analogous to 'wait') and 'ccntinue' (analogous to ' signal' ). 

In contrast to condition variables, at most one process can be 

suspended en a given 'queue' at any time. 

A number of other constructs for determining when a process sI'oJld 

delay or centinue have been proposed [16,17]. In general these require 

that a process accesses a monitor to evaluate an expression to 

determine when to ccntinue its operation, rather than waiting for an 

explicit signal fron another process. 

Clearly the rronitor is IlOre cx:mplex than the semaph:>re. In practice it 

would nonnally be implemented using a number of procedures, as follows 

[18]; 

PRCCEJ)URE InitialiseM:Jnitor(VAR SharedResource :M:lnitor); 

(* This allocates merrory for the m:ni tor *) 

PRCCEJ)URE Ini tialiseM:Jni torSignal (VAR Condi tien :M:lni torSignal ); 

(* This initialises a rroni tor signal *) 

PROCEDURE GainControl (VAR SharedResource :M:lni tor) ; 

(* This allows a task to gain centrol of the m::ru. tor *) 

PRCCEJ)URE ReleaseControl (VAR SharedResource :M:lni tor) ; 

(* This defines that a task has finished with the shared resource *) 

PRCCEJ)URE WaitInM:lnitor (VAR SharedResource :M:lnitor; 

VAR Conditien :M:lnitorSignal); 

(* This centrols operatien of the oondi tien and priority queues *) 
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3.4.2 Nested Men! tar Calls 

Acquisition and release of exclusion leads to a p1:Oblem when m::ni tor 

calls are nested. For instance, suppose that a procedure Prcx::1 of a 

m::ni tor M:Inl. calls prooedure Prcx::2 of m::ni tor M:D2. If Prcx::2 contains 

a 'Wait' operation sh:Juld mutual exclusion be released on both M:Inl. 

and M:Jn2, or M:Jn2 alone ? 

Such nested m::nitor calls have caused much discussion [19,20,21,22]. 

There are, though, a ntm1ber of ways to handle this p1:Oblem: 

i) Prohibit nested monitor calls completely as implemented in 

SIM:lNE [23], or prohibit nested calls to m::nitors that are rx:>t 

lexically nested, as implemented in M:>dula [24]. 

ii) Release the mutual exclusion on all m::nitors along the call 

chain when a nested call is made and that process becomes 

blocked. 

iii) Define a rroni tor-like construct that allows the programner to 

specify that certain rronitor procedures be executed concurrently 

and that mutual exclusion be released for certain calls [25]. 
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3.5.1 Ge!1eral 

l'Essage passing may be viewed as extending saMpOOres to r::awey data 

as well as to iIrplement sync:l'=lisation. When message passing is used 

for ccmnunication and synclua1isation, p=esses send and receive 

messages instead of reading and writing shared variables. 

Ccmnunication is acccmplished because a p=ess, upon receiving a 

message, obtains values fron sane sender p=ess. Synchronisation is 

acccmplished because a message can be received only after it has been 

sent. Two main issues must be discussed: specifying channels for 

ccmnunication, and message synchronisation. Both are discussed in the 

following sections. 

3.5.2 Specifying Channels For COlmmicatian 

A message is sent by executing: 

, SEND ' expression_list 

'TO ' destination_designator. 

The message contains the values of the expression in ' expression_list' 

at the time 'SEND' is executed. The 'destination_designator' gives the 

prograrnner control over where the message goes. A message is received 

by executing: 

'RECEIVE' variable list 

, FRCM' source_designator. 

Where 'variable_list' is a list of variables. The '=a_designator' 

gives control over where the message came fron. Receipt of a message 
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causes, first, assignment of the values in the message to the 

variables in the 'variable list' and, second, subsequent destructicn 

of the message. 

Destinaticn and = designators define together what is called a 

'ccmnunication channel'. Various scha:nes have been proposed f= ~ 

channels. The simplest channel-namir.g schare is f= process naroos to 

serve as = and destination designator. We refer to this type as 

'direct ~'. Thus: 

'SEND' value ''!'O' consumer 

sends a message that can be received only by the 'consumer' process. 

Similarly, 

'RECEIVE' value 'FR<M' consumer 

pennits receipt only of a message sent by the 'consumer' process. 

Direct ~ uses a one-to-one camrunication scheme. It makes it 

possible for a process to control the times at which it receives 

messages from each other process. 

Two processes camrunicating through message-passing could have the 

following fonn: 

Process Producer; 

VAR: Declarations of variables; 

begin 

loop 
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CXJde to implaoont 'producer'; 

'SEND' value ''ID' consurrer 

end 

end; 

Pr=ess Consumer; 

VAR: Declarations of variables 

begin 

loop 

CXJde to implaoont 'consumer'; 

'RECEIVE' value 'FRCM" producer 

end 

end; 

An important patt9l:Tl for process interaction is the 'client/S&Ver' 

relationship. 'Server' processes render services to 'client' 

processes. A client can request that a service be performed. by senCIing 

a message to one of these servers. 

Unfortunately, direct nam:irg is =t always suited f= client/S&Ver 

interaction since more than one 'receive' has to be required for 

different clients, Le the relation is MANY clients to ONE server (N

to-oNE). 

A more sophisticated scheme for defining ccmnunication channels is 

based on the use of 'global names' sanetimes called 'mailboxes'. 

A mailbox can· appear as the destination designator in any process 

, send' statements and as the source designator in any process 

'receive' statements. Thus messages sent to a given mailbox can be 
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received by arr:I process that executes a 'receive' naming that mailbax. 

'l1ti.s meth:xi, therefore, uses an N-to-N ccmnunication scheme. 

A mailbax is well suited f= progranming client/server interaction. 

Clients send their service request to a single mailbox; servers 

receive service requests from that mailbox. Unfortunately, 

inplanenting mailbaxes can be quite difficult. 

A special case of mailbaxes occurs when a mailbax name appears as the 

scurce designat= in 'receive' statanents in one process only. 'l1ti.s is 

called a 'Port' [26]. This is an N-to-ane ccmnunication scheme. Ports 

are sinple to inplanent, since all 'receives' that deSignate a pert 

occur in the same p:r:=ess. 

Finally source and destination designators can be fixed at canpile 

time (called static channel naming), or they can be canputed at nm 

time ( called dynamic channel naming). Static channels are widely 

inplanented. 

3.5.3 Synchrcni.saticn 

General 

Communication aspects may be divided mainly into 'Synchronous 

carmunication' and 'Asynchron:Jus ccmnunication' [3,12,27]. 

a) Synchronous Ccmnunication 

Synchronous ccmnunication is best understood fron the perspective of 

the sending p:r:=ess. When the sending p:r:=ess, the synchronous sender, 

transmits a message to a receiving process, it waits until the 

receiving process responds with an acknc:Mledganent that the message 

has been received (in the case of a synchronous receiver) = until the 

35 



receiving process explicitly returns fron perf~ its task (in the 

case of a remote pr=edure call). 

b) Asynchronous Cormunication 

In simple terms, asynchronous communication is message exchange 

without acknowledgement, i.e no-wait send [28]. After sending a 

message, the sendin;J' process continues executing; it OOes rot wait for 

the receiving process to respond. F\.Jrthentore the receiving process 

does not issue an acceptance. Because message exchange is not 

synchronised, cx:nmunication requires buffering' for messages that have 

been sent but rot received. '!his buffering' capability may be provided 

by the interconnection network or by specially designed receiver 

software. 

Asynchronous cx:nmunication provides a high degree of concurrency since 

the sender need rot wait for the message to reach the receiver or for 

message acim.::M'ledgement. It also reduces message traffic. The drawback 

of the meth:xl is the need to provide message buffering' facilities. 

Distributed programmin;J languages Cb rot oormally directly support 

both forms of cx:nmunication; system designers prefer to minimise the 

required language features. An exception is the language SR [29], 

which provides mechanisms for both synchronous communication and 

asynchronous cx:nmunication [27]. 
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3.6.1 Ge!leral 

To programme client/server processes that reside in different 

processors, higher level message constructs have to be used. Message 

passing primitives may be utilised to build such higher level message 

constructs in distributed programs [3,12]. Consider, for instance, 

where a client needs to 'call' a procedure for execution on a rem::>te 

processor. This is 00ne by interacting with the server processes using 

message carmunication techniques (SEND of message follCMed by RECEIVE 

of results). At the rem::>te site the 'call' message is received by a 

SeJ:Ver process (using RECEIVE), interpreted (procedure execution), and 

the results sent back (using SEND) to the calling client process 

[30]. 

3.6.2 '!he Reoote Prooedure Call (RPC) 

When rem::>te procedure calls are used, a client interacts with a server 

by means of a call statement. This ststement has a form similar to 

that used for a procedure call in a sequential language: 

CALL 'Service' (value-arguments; results-arguments) where 'Service' 

is the name of a channel. 

A rem::>te call is executed as follOWS: the value arguments are sent to 

the appropriate server (CALL message, Fig. 3.9), and the calling 

process delays until both the service has been performed and the 

results have been returned and assigned to the result arguments 

(Result message, Fig. 3.9). Thus such a 'call' =uld be interpreted or 

seen as a SEND immediately follCMed by a RECEIVE. The client waits for 

the results of the requested service. 
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The SERVER side of a rarote procedure call could be specified as a 

declaration (like a procedure in a sequential language), this is shcMn 

as follows: 

'Rerrote Procedure' Service 

( 'IN' value-parameters; 

'CXJT' results-parameters) 

statements 

END Service; 

Note that the procedure arguments are optional. Variables can be 

declared as being f= input ( IN) or output (CXJT). Such a procedure 

declaration is :l.mplanented as a process. This pr=ess, the server, 

awaits receipt of a message fran sane calling pr=ess, executes its 

body, and then returns a 'reply message' containing the values of the 

results parameters. A remote procedure declaration might be 

implanented as a single pr=ess in which case 'calls' to the same 

rerrote procedure would execute sequentially [29]. Alternatively, a new 

process can be created for each execution of 'call' [31,32,33]; these 

could execute concurrently and implement mutual exclusion where 

necessary. 

3.6.3 Rerldezvous 

A rendezvous [34] is a technique for enforcing syncirralisation and 

message communication between two tasks. Exactly two tasks may 

rendezvous at once; a client (here called a caller) and a server. The 

caller calls an entry (the name of the rendezvous) in the server. The 
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sen>er, when it is ready to do so, issues an Aa:::EPT statement to 

receive the call (Fig. 3.10). If the caller calls an entry for which 

the server has not as yet issued an Aa:::EPT, then the caller waits 

until the Ao::::EPl' is issued. If the server issues an Aa:::EPT for an 

entry that the caller has not as yet called, then the sen>er waits (at 

the ACCEPT) for the caller to call the entry. 

When a call has been accepted, the rendezvous occurs. The caller 

passes data to the server through parameters in the entry call. The 

data are processed by the statements within the Aa:::EPT stataoont body. 

Results, if arry, are passed back to the caller through the entry 

parameters. 

The caller waits while the server executes within the ACCEPT 

stataoont. When this processing is C01ll1ete, parameters are passed 

back to the caller, the rendezvous ends, and the caller and server 

tasks remnne independent operation. 

One interesting aspect of the rendezvous is that the caller nrust kn::lW 

of the existence of the SeI:Ver and the various server entries. But the 

server accepts calls fron arry caller. Many callers may attempt to call 

one server. In this sense, the rendezvous is asynmetric (as in the 

case of Ada [34]). 

Mutual exclusion is guaranteed by underlying system mechanisms; only 

one caller at a time may rendezvous with the server. other callers 

attempting a s:imul taneous rendezvous are kept waiting. Synchronisation 

of the tasks is implicit during the rendezvous. After a rendezvous, 

arry waiting callers are processed first-cx::me-first-SeI:Ved. The Ao::::EPl' 

construct in the server side takes the following fonn: 
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ACX:EPr Service ( 'IN' value-parameters; 

'cur' result-parameters ) 

statements 

END Service; 

Note again that the ACX::EPI' argurrents could be declared as :inpJt 'IN', 

or output 'cur'. The statements within the ACX::EPI' ••• END are assumed to 

be a critical section and are executed in a nrutually exclusive manner. 

They would nonnally be executed by the server pr=ess (here called 
, 

task). The ACX::EPI' statement represents an entry point (the name of the 

rendezvous) and the calling task specifies the name of the entry point 

when it wishes to sync!=lise with the server task. 

TASK A; 

VAR X:ADataltem; 

BEBIN 

B. Transfer(X); 

END; 

TASK B; 

VAR Y:ADataItem; 

BEBIN 

Aa::EPI' Transfer ('IN' item:ADataitem); 

Y:=itemi 

END; 

END; 
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In the above example task A w~shes to pass information held in 

variable X to a variable Y in task B. 'nle actual data transfer takes 

place using the normal parameter passing mechanisms: the actual 

parameters supplied in the call, in this case the variable X, are 

bound to the formal parameters of the ACX::EPl' statement, in this case 

'item'. The synchronisation of the two tasks is obtained by the 

requirement that the procedure call entry, B. Transfer (X), canoot be 

completed until the corresponding 'ACCEPT Transfer' is executed. 

Ca'lversely, the execution of the ACX::EPl' statement canoot be ccmpleted 

until the entry call is executed. 'nle actual transfer is ccmpleted 

within the body of the ACCEPT statement; in this case the data 

supplied by the entry call is transferred to a variable which is 

local to task B. 

Guarded ccmnand ccmrunicatian 

It is possible to have a 'SELECTive-communication' form in the 

receiver side of a l\'eSSage, Le the server side [27]. In a 'selective

ccmnunication' statement, a 'guarded ccmnand' has the form [35]: 

SELECT 

WHEN condition 1 ----> Acx:EPI' entry 1 DO statements END; 

other statements 

OR 

WHEN condition 2 ----> Acx:EPI' entry 2 Do statements END; 

other statements 

ELSE statements 

END SELECT; 
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The SELECl' statement allows one to select between several alternatives 

separated by OR. The alternatives are prefixed by WHEN clauses called 

'guards'. The guards are boolean expressions which establish what 

conditions nrust be true f= an alternative to be a candidate f= 

execution. If there are open alternatives (conditions true) then an 

Acx::EPT statement is crosen for execution, possibly with a pr=ess 

currently waiting f= a rendezvous. If, lDwever, there are several 

open alternatives with processes waiting for rendezvous, the selection 

arn::Jn;J them is d:Jne arbitrarily. The ELSE clause is executed in the 

case of rx> open alternatives or IX) waiting pr=esses. 

The difference between the SELECl' statement and an IF statement is 

seen in the case that both guards are open ( conditions true). Then if 

both tasks (e.g. a consumer and a producer) are waiting for a 

rendezvous, it is immaterial which rendezvous is executed. An IF 

statement, lDwever, nrust specify which statement is to be executed in 

this case. 

This is the essence of the 'guarded cc:mnands' style of prograrrming. It 

avoids over-specification ( as in an IF statement) by allowing the 

canputer as much freedcrn of ch:Jice as possible consistent with the 

correctness requirements of the program. 

3.6.4 Messages in Distributed Systems 

'l'I-.u types of messages can be implemented in a distributed system; E

m::x:1e messages and T-m::x:1e messages [36] ( Fig. 3 . 11 ) : 

i ) E-rrode messages refer to message transactions between various 

nodules (data and procedures) of a user program confined to the 

same processor (intra-processor cx::mnunicaticn). These rx>nnally 

take the usual message fonn, as described earlier: 
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, SEND' data "ro' rrodule B 

'RECEIVE' data 'FRCM' rrodule A 

where rrodules A and B reside in the same processor. 

ii) T-mode messages refer to messages exchanged between the 

operating systems of two different nodes (inter-processor 

ccmnunication). These might take the form: 

'SEND' (data, nodule B at n:xle Y) 

'RECEIVE' (data, rrodule A at n:xle X) 

where nodule A at node X, is send:in;1 'data' to nodule B at node 

Y. 
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I Fig. 3.2 THE 'FORK' and 'JOIN' STATEMENTS I 
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I Fig. 3.8 THE 'MONITOR' CONCEPT I 
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CHAPTER 4 



0Il\Pl'ER 4 

A foIJLTI-PRO "SSQR S'l'IM:'lURE TO SUPPORl' ruNCl'ICHU. P.!\Rl'ITICN.ING 

4.1 SYSTEM O\lEl{\llEW 

Real-tlloo, multi-processor, embedded systa:ns are ale applicaticn area 

where response times, throughput, reliability and fault-tolerance 

constitute the major design =iteria [1]. Hence the distributicn and 

management of the application software is a =itical functicn. 

A prototype lccsely-ooupled multi-processor system has been designed 

and implemented f= use in fault-tolerant real-tlloo applications. This 

chapter discusses the organisation and structure of the total system, 

highlighting in particular the software requirements of the 

communication and executive ( real-time kernel) functions. The 

ccmnunication system is based on a token passing bus protocol for use 

with single board ccmputers connected via a fast parallel bus. The 

real-tlloo kernel is designed to support functional parti tianing of 

application programs, and can be implemented using standard ccmpilers. 

No special multiprocessing features are required. MJst of the software 

for this system has been written in the structured, high level, 

language M:Jdula-2 though assembly language progranming has been used 

in a few specialised areas. 
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A prototype loosely-coupled multi-processor system has been designed 

and implemented for use in fault-tolerant real-time applications 

[2,3]. It is ~ of stations (oodes) linked together through a 

ccmnunication bus (Fig. 4.1). Each rode consists of tw:> sections: 

* The main processor (or 'processin]') section. This oolds the 

application programs and the functional kernel. 

* The ccmnunication section. This provides the interface between 

the processin;J section and the ccmnunication bus. 

a) Pn=lssin] Section 

In the multi-processor concept described here, [X) assumptions are made 

about the structure of the main processin;J block. HcMever, to support 

a distributed ccrnputing system, each processing section must have its 

own merrory and I/O devices (Fig. 4.2). All application software and 

supportin] programs run within this area. It is isolated fron the 

system (backplane) bus, having nothing to do with communication 

control. Each processin] section merely interchanges infonnation with 

its own communication section, bus access being a transparent 

function. 

b) Comtunication Section 

The main function of the communication section is to handle all 

communications activities within each station. It isolates the 

processing section from the system bus, providing a transparent 

interface for message transaction within the system. Thus it removes a 

oonsiderable burden, both in tenns of software and time, fron the main 

processor. The ccmnunication section has five modes of operation: 
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* 
* 
* 
* 
* 

Bus transnission: transfer data to the systan bus. 

Bus reception: receive data fron the system bus. 

Internal transnission: transfer data to the processing secticn. 

Internal reception: receive data fron the processing secticn. 

Idle: No processing, ready to respood to data transfer requests. 

Fig. 4.2 describes the communication section in functional block 

diagram fonn. It ccnsists of a nunber of subsystems arron;;r than are; 

transmission/reception control logic, a temporary storage RAM, and a 

number of data holding buffers. 

4.3 INTER-PROCESSOR aMoIlNICATION 

Camlunication between processing sections is perfonned. using message 

passing techniques based on token passing. Basically the method all= 

a series of bus connected units (' stations') to camrunicate as a ring 

structure. Such a situation is shc:Mn in Fig. 4.3, where a number of 

stations, each one having a unique address, are coupled to a shared 

bus. 'l1le right to use the bus is transferred fron station to station, 

thus fonning a logical ring. When a station has this right it is said 

to hold the 'token'. At any given time one station, and only one 

station, holds the token, and is obligated to pass it on when finished 

with it. Each station can hold the token only for a limited period of 

time. This means that the maximum time taken by the token to traverse 

the network is defined, i.e., access to the system bus is 

detenninistic. 
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For the system to function correctly each station must be in 

possession of three addresses: the preceding staticn (previous staticn 

- PS), the succeeding station (next station - NS) and its CMl'l (this 

staticn -TS) • Staticn numbers Cb rot need to be exntiguous. This 

feature simplifies the tasks of adding and renoving staticns witoout 

re-arranging established addresses. 

There is a substantial software canplexity in the token bus system, 

particularly with regard to ring configuraticn and maintenarx:e. To 

acquire station address information, a rigorous configuraticn process 

is required. Once the ring is formed it has to be maintained. 

Facilities are needed to allow new staticns to enter the ring and to 

cater for station drop-out. Drop-out (station exit) can occur for two 

reasons: either as part of rormal operations, or as a result of a 

failure. In either case, the ring nrust be reconfigured to accc:rrm:Jdate 

the changes. 

The token passing method has three major features [4]. It is: 

* A fair access system. The metlxxi is fair; it offers each station 

an equal share of the bus. 

* Reconfigurable: The method handles addition and deletion of 

stations eaSily, without any modification of the existing 

hardware or CXl11TIUIlication software (the protocol). 

* Detenninistic: The metlxxi provides canputable, deterministic, 

worst case bounds on access delay for any given network. This 

feature is essential in real-time systems where system response 

time must be guaranteed. 
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4.4 OPERATING SYSTEM SUPFORl'-'lHE DISTRlllUTEII PAOGRl\M KERNEL 

4.4.1 General 

Generally ~, operatirg systems for multi-processor networks can 

be classified as either neu..ork or distributed operatirg systems. In a 

neu..ork operatirg system each cc:mputer or station has its own private 

operatirg system. The different private operatirg systems are then 

augmented with camrunication facilities to permit interaction and 

communication with the other systems in the network [5]. Network 

operating systems are commonly used to connect spatially or 

geographically dispersed systems. The ARPANET [6] is an example of a 

neu..ork operatirg system. 

A distributed operatirg system, b:Mever, is one that looks to its 

users like an ordi.nazy centralised operatirg system but runs on a 

multiple processor system. The key concept here is transparency. In 

other M:lrds, the use of multiple processors for the implementation of 

the operatirg system sh::mld be transparent to the user [7]. These 

operatirg systems are suitable for loosely or tightly coupled multi

processor netM:lrks. Exarrples of distributed operatirg systems are MJS 

[5], and Medusa [8]. 

In this section, h::Jwever, we propose another category of operatirg 

systems-kernels that support multi-pr=essor, real-time systems, a 

'Distributed-Program kernel' [2,3]. 

4.4.2 Distributed-Program Kernel 

In a multi-processor environment an application task, such as process 

control or robotic application, is partitioned into a set of co

operating SUb-tasks (processes). Each node of the system may be 
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all=ated a sin;!le sub-task. In sane cases a rn.unber of sub-tasks may 

be assigned to one specific n::lde. Pr=esses residing en different 

processors execute in a tnJe c:oncmnmt fashicn; processes allocated 

to the same processor, however, execute in a quasi -c:oncmnmt nr:Jde. 

The software design and support of a such a functional distributicn of 

sub-tasks (processes) depends on the degree of interacticn of these 

processes arrong the different n::ldes. Distributed processes, h:Jwever, 

have to ccmm.micate and interact occasionally in order to achieve a 

cx:tIllOll goal [9,10]. In real-time applications this interactien has to 

take place within quite specific timescales otherwise unsatisfactory 

results might take place. 

Managerrent and interaction of distributed processes is achieved by a 

kernel; it is usually tenned a 'Distributed-Program Kel:nel' . 

Unlike many scientific and commercial applications, the kernel 

described here is not intended to support fragmented programs. 

Instead, the basis of the design is that of functional part! tioning. 

Further, a major primary objective is to inplerrent the kernel usin;! 

standard carpilers, Le tmse designed for uni-processor systems. A 

second major objective is to build the kernel infrastnJcture using the 

standard constnJcts of M::>dula-2. 

In the design of the kernel we are very much concerned with 

predictability of performance. M:lreover, reliability of operaticn is 

paramount [11]. The kernel is structured as a set of primitives, 

replicated, if necessary, on various nodes. This provides a virtual 

machine in which processes allocated to different processors are 

executed concurrently. These processes cooperate and synchronise 
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themselves by means of rressage-passing. en the other hand, the systan 

inside each !'Xlde is viewed as a =llecticn of cooperating sequential 

processes that share camon data. Pl:=esses in each !'Xlde synchronise 

and camrunicate through message-passing constructs. 

4.5 PROGRl\loMING L!\NGUAGE ISSUES - M)OOLA-2 

4.5.1 Genera1 

The choice of a 'good programning' language plays a major role in the 

design requirements of real-time canputations, operating systems, 

etc •• [12]. In fact sane of the primitives that are essential to the 

design of such systems are :implicitly found as built-in ccnstructs 

within high level, structured, languages such as M::ldula-2, Ma, and 

C. Other facilities, h:Jwever, still have to be :implemented when needed 

( e.g. , generics , message-passing constructs, exception handling, 

etc. ). 

Mixed language techniques have been used before to implement these 

constructs efficiently. Nevertheless, currently popular real-time 

systems are :implemented totally using a single structured, high level, 

language [5,8]. 

The following requirements have been identified as basic for providing 

a sound language-based programning envi:ronment for real-time systems: 

* The language primitives (Le. main language instructions or 

operations) must be small, s:imple, and well defined. 

* Both procedural and data abstractions must be available. 

* Separate canpilation must be allowed. 
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* 

* 

High level access to absolute addresses and internJpt handling 

facilities must be available. 

Concu=ency features and constructs sh::luld be inherent in the 

language in order to allow multi-tasking and concurrent 

prograrrm:!ng [13]. This effectively minimises task executicn time, 

utilises IlDre efficiently the CClIPJter hardware, and hence gives 

sOOrter respoose times. 

Modula-2 satisfies all these requirements. In fact, an assessment of 

several ~t prograrrm:!ng languages sh::Iws that M:ldula-2 appears 

to be anong the best languages for real-time prograrrm:!ng [12]. 

Recent assessments consider M:ldula-2 as 'inherently IlDre secure' than 

Ads, C and Pascal [14]. Still, however, Pascal, C and Ads constitute a 

great challenge that M:ldula-2 has to face, especially in the 1990's 

[15]. What follCMS is a brief assessment of its cx::mpetitors. 

4.5.2 Assessment of Cbmpetitars 

a) C language: C has few intrinsic strengths other than its low 

level prograrnning facilities. One particular strength is the 

ability to exploit target architectures, and for the low 

overhead imposed by C run-time systems for embedded 

applications [15]. C, however, was oot designed as a software 

engineering language. Using C, we canoot 'hide' structures oor 

have IOCldules, oor are there facilities to canpile individual 

segments [16]. MJreover, there are 00 ~t prograrnning 

facilities ( that was subsequently added by C++ [17], discussed 

later) . MJreover, as every procedure in C is global to the 

whole program, there is no protection from mis-use for 

variables (side effects) [18]. Finally, analysis tool support 
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is poor and attenpts are be:InJ made to legislate against its 

use in safety critical software [15]. 

b) Pascal: Pascal has the virtue of being small and well 

understood. It is the almost-universal pseucb::ode of CCITIJ;ut:InJ. 

It has a rich range of supporting tools and high quality 

implementations. On the negative side, however, Standard Pascal 

is too small and restrictive for many. It 00es rx:>t have the 

type-secure separate cx:mpilation facility of M:ldula-2 and Ma. 

Strangely, Pascal is also let d::lwn by the lack of validated 

cross-cx:mpilers; hence, there are problems in fully exploit:InJ 

target archi tectures. 

c) Ma: Ma, on the other hand, was designed to include all the 

above requirements. In fact, it was designed with operat:InJ 

systems features as an integral part of it. Ada probably 

represents the biggest challenge to M:Jdula-2 in the Ion;!' term; 

especially as the number of compilers (even for personal 

ccmputers) continues to grow. However, its size and cx:rnplexi ty 

have been a cause of concern. The code size tends to be large, 

cx:rnplex and, in sane cases, very sICM' [11]. 

4.5.3 Possible Calpeti tors of the Future 

This is a difficult category to speculate about. However, there is a 

great interest sh:::x-In up lately in languages like C++ and variants of 

Pascal with a correspond:iIg interest in object-orientated prograrnning. 

C++ is a special case, because of its relationship with C. We can 

observe C++ to C translators enabling the language to spread rather 

quickly. In fact, a number of software muses claim to be convinced of 

the benefits of developing applications using object-orientated 
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metrods [15]. Despite the fact that C++ does not meet many of the 

requirements outlined above, r= is there a large supporting tools or 

libraries; MXlula-2 is challEmJed by the object-orientated prograrrming 

languages like C++ and variants of Pascal. 

4.5.4 tohy Modula-2 

In this research prograrrme, MXIula-2 has been chosen f= a number of 

reasc::ns: 

* The relative simplicity and flexibility of the language. 

* Its wide availability on llOSt micro-cx:rnputers, at low cost [19]. 

* Its good execution speed and merrory requirements (efficiency). 

* Its good support for software developnent and building systans 

through the use of rrodules and process abstractioos [20,21]. 

* Inbuilt device and interrupt handling facilities. 

* Inbuilt low level (machine access) facilities. 

* Inbuilt support for quasi-concurrency (this facility has been 

imitated precisely, in a recent project, in C [22]). 
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CHAPTER 5 



0IAPl'ER 5 

KJLTI-PROCESSOR SYSTEM - lmRrMARE STmX:'lURE 

5 .1 OVERVIElol 

A reconfigureab1e, loosely-coupled, mlti-processor system has been 

implemented for use in fault-tolerant, real-tiIoo applicaticns. Each 

processing tmit (station) consists of a single board ccmputer. The 

ccmnunication and processing tasks are decoupled on each board, a 

separate processor being dedicated for each task. It uses a fast, 

single shared, parallel bus for ccmnuni.cation between these tasks, bus 

control being fully distributed. Each station has tw:> main blocks 

(Fig. 5.1), a ccmnunication section and a processing section. The 

functions of each block are described fully in Appendix A. 

5.2 SYSTEM INTERF1\CING 

There are two interfacing stages within each station. First each 

station has to manage the flow of infonnation sent over the system 

bus; secondly, within each station, data exchange between the 

processing section and the ccmnunication section IllUSt be supervised 

and controlled. 

Interfacing and data transfer is designed to be fast and simple, 

being organised as follows (Fig. 5.2); 
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a) System bus interfacing: A total of 16 lines are used on the 

backplane bus (see Table 5.1). These c:::oosist of; 

* Four address lines (SSO-SS3) 

* Eight data lines (00-D7) 

* Four control lines (START, BUSY*, SWRT*, and SSS*) 

Four address lines are required to address up to sixteen statiCl'lS 

in the network. The four control lines (see Table 5.1) are needed 

to; 

* Synchronise the start operation for token bus construction 

(START). 

* Hold a station from transmitting data when the recipient 

station is still busy (BUSY*). 

* Inform other stations that a particular station wants to 

transmit a data message over the system bus (SSS*). 

* Control data transfer over the system bus between transmi tt:in;J 

and receiving statiCl'lS (SWRT*). 

For critical systems where fault degradaticn must be gradual, 

single point failures need to be eliminated. In a bus-based 

processor system the bus itself ( and its associated 

drivers/receivers) give rise to such a situation. Hence in such 

application the bus must be duplicated. By using a simple 

structure such as the one devised here the backplane bus may be 

replicated at a relatively low cost for use with standard Eur=ard 

size backplanes. 
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b) On-Board Interfacing (OOl): This is the interface within each 

staticn between the proce.ssin;J and cc:mmmicaticn sectiO'lS. A total 

of fourteen lines are used within this interface (see Table 5.2). 

These consist of; 

* Eight data lines (DO-D7) 

* Six control lines (MAINCS* , MAINWR* , MAINRD* , I:MAREQ* , LMAO, 

and I:WI.l.) 

This interface gives the processing secticn the right to access 

the cc:mmmication section's temporazy storage RAM. It enables the 

processing section to: 

* Access the ccmnunication section's terrpJrazy storage (MAINCS*) 

for a read operation (MAINRD*) or a write operaticn (MAINWR*), 

* Signal the ccmnunication section (I:MAREQ*) for a request of 

data transfer (ROT) and to indicate the end of data transfer 

(ED'!') • 

All data is exchanged between the cc:mmmicaticn secticn and the 

main processing section using direct memory access (DMA) 

techniques. The DMA controller is located in the main processing 

section and generates the required control signals (read, write, 

and chip select). Control of all data transfers resides with the 

ccmnunication section( DMAO and I:WI.l.). 

5.3 cnMlNICATIOO' SmrIOO' 

The ccmnunication secticn (Fig. 5.1) consists mainly of a network 

control logic for transmission/reception of data, a terrpJrazy storage 

RAM, and a number of data oolding buffers. 
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Fig. 5.3 shows a nore detailed functicnal. diagram of the ocmrunicaticn 

section, the main sub-systems being: 

* Cc.mnunication CPU. 

* A serial interface. 

* Cc.mnunicaticn Support M:::rlu1e (CSM). 

* TatpOrary Marol:y Store ('!MS). 

* A watchOOg timer. 

* System bus buffers. 

5.3.1 camunication Processor 

The sub-system is centred around a Hitachi 64180 processor [1,2] which 

controls the operation of all the main sub-systems (CSM, tatpOrary 

storage, etc.). It consists of a 32K RAM and 32K EPRQI1 merro:ry space. 

The address decoding based sinply on the state of one of the address 

lines (line Al5). An RS232 canpatible serial interface is provided for 

the connection of a tenninal = VDU. A line driver/receiver pair of 

devices is used to boost the 64180' s asynchrooous serial port 1 to 

RS232 levels. 

5.3.2 camunicaticn Suppod tbrule (CSM) 

The heart of the ccmmmications circuitry within this sub-system is 

the CSM module (Fig. 5.4), based on Eraseable Programmable Logic 

Device (EPLD) technology. This IrC>dule, inplemented using an Altera 

EP1800 device [3,4], has a mnnber of advantages 0<Jer designs based on 

discrete packages. The maj= one is a substantial improvement in PCB 

( Printed Circuit Board) ccnp:ment packing density. 

The IrC>dule provides a wide range of functions, as follows; 
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* Chip select lines for the IIIeflOI:y devices. 

* A series of registers f= the control of the system bus by means of 

the ocmnunicaticn processor. 

* Address recogniticn logic. 

* Timing and control ci=ui tzy. 

* On-board interfacin]. 

The maj= features are discussed below. 

a) Address recognition logic: The address recognition logic provides 

the ability f= a staticn to read its own address, as set on 

selector switches on the card. It also provides an automatic 

recognition response when this station is addressed on the system 

bus. 

b) Timing control ci=uitzy: The timing and control ci=uitzy operates 

in either one of two m:Jdes. In receive m:Jde it takes the strobe 

signals fron the system bus and latches data into the scratchpad 

RAM. When transmitting, it generates timing signals for both 

outputting the data fron the scratchpad RAM and also strobin] it 

across the system bus (this action is perfonned under the control 

of the ocmnunication processor). 

c) On-board interfacin] (OBI): The six haru:1shaki.n;1 lines controllin] 

this interface (described earlier in section 5.2) make extensive 

use of the CSM lOCldule (refer to Appendix A). F= ocmnunication 

between the processing section and the scratchpad RAM, the 

ocmnunication processor's data bus is released (under the control 

of the CSM lOCldule) and made available to the main processor. This 

action is initiated by the ocmnunication processor. The bus is 
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subsequently retun1ed either by receipt of an intenupt at the end of 

the transfer, = by the reception of the station's address on the 

system bus. 

5.3.3 TaIP?LafY Mei.ocy store ('!MS) 

From Fig. 5.5 it can be seen that a major component of the 

ccmrn.mication section is a temporary storage RAM area (usually called 

a scratchpad RAM or '!MS). This is used to store data messages fron the 

system bus and to oold data which is ready f= transmission onto the 

bus (Fig. 5.5). The device used, a '!MS9650 dual P=t RAM [5], is shown 

as two sections to differentiate between its two P=ts. Port A is used 

with the processing section of the station (Fig. 5.6), while port B is 

used f= ccmrn.mication with the system bus. 

Port A interface is shared by the ccmrn.mication and main processor. 

Each processor accesses this port of the '!MS via centrol and data 

signals (controlled by the CSM). Port B, on the other hand, is 

=ected to the system backplane bus buffers. It is used to handle 

the transfer of data into and out of the TMS. Infonnation is 

transmitted and received in byte serial fonn, the 'IMS beinJ used as a 

temporary store for this infonnation. Port B has three modes of 

operation; idle, transmit, and receive (refer to Appendix A for full 

details). 

The ccmrn.mication processor =nt:rols the access to both sides of the 

RAM, these being mutually exclusive. Normally access to P=t A is 

gi van over to the ccmnunication processor but is transferred to the 

main processor when it wishes to read or write to the scratchpad RAM. 

The actual control of the transmission and reception of data is 

perfo:rmed by the transmission =ntrol logic, which is =ntrolled fron 
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the cc:mnunicatien processor (Fig. 5.5) • Centrel of port B is given 

=er to the local (own statien) centrel logic during transnissien. 

However , it is transfe=ed to the renote =ntrel logic in receptien 

rrode. 

5.3.4 A watchdog Timer 

'!he watchOOg timer circuit provides a mechanisn f= program recovery 

in case of failure (program =ash). The circuit (based en a m::xostable 

device) is designed to be constantly retriggered by the software 

bef=e it times out. If the system fails to function properly then 

time-out occurs, and a non-maskable inten:upt (l'M[) is generated. The 

resulting exception response is user defined; in this iIrplementatien a 

program restart is initiated. 

5.3.5 System Bus Buffers 

This block includes the data and control buffers of the system 

(backplane) bus. Their function is to ensure that all system bus 

signals have the ability to drive the systan bus and all devices 

connected onto it. These tri-state buffers are enabled only in 

reception or transnission rrodes, their direction being determined by 

the rrode of operation. 

5.3.6 Power-on Reset Circui 1:J:y 

This circuitry provides a reset signal to the HD64180 microprcx::essor 

after power-on and in response to a manual reset cx:mnand. 
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5.4 l'RlXESSING SEX:TICN 

In the multi-processor systan described here IY) assumptions are made 

about the structure of the processing sUb-system. For some 

applications a separate processor may rnt even be used (e.g. display 

sub-systems) • However, where the design is used to support a 

distributed canputlng system each processing secticn will have its own 

mem:J~ and I/O devices. All application software runs in these sub

systans. They are ccmpletely isolated fron the systan tus, having 

nothing to do with the communications activities. The processing 

section merely interchanges information with the communication 

secticn; moreover the transfer protocol is kept s~le by using a 

ccmbination of interrupt and !:MA interfacing between the two sections. 

The processing section (Figs. 5.7 and 5.8) consists of the following 

main blocks: 

* CPU section. 

* Menory. 

* Serial ccmmmication. 

* On-Board Interface (OBI). 

5.4.1 CPU Secticn 

The CPU section is based on the use of an Intel 80188 processor 

together with an Intel 8087 rn.nneric processor extension. An advanced 

bus controller (82188) is included to provide 80188/8087 interfacing. 

The ccmplete CPU section is ccmposed of: 

* Microprocessor. 

* Hardware maths unit. 
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* Bus controller. 

* Mdress/Data buffers. 

* Power-cn reset circuitry. 

* Single step control. 

* WatchCbg timer. 

a) Microprocessor: Processing pcmer is provided by an Intel 80188 high 

integration 8-bi t microprocessor [6], which includes the following 

internal units: 

i) Cl=!< generator. 

11) Prograrnnable inten:upt controller. 

i11) Prograitlllable rr.1A controller. 

iv) Prograrnnable chip select unit. 

v) Prograrnnable timers. 

b) Hardware maths unit: Support for fast maths operation is provided 

by an 8087 numeric co-processor [7]. 

c) 82188 advanced bus controller: This controller is included to 

support 8087 interfacing with the 80188 [8]. 

d) Address/Data buffers: Buffers are included to increase the driving 

capability of the address and data signals. 

e) Power-on reset circuitry: This circuitry provides a reset signal to 

the 80188 after pcmer-on and in response to a manual reset ccmnand. 

f) Single step control: A single step circuit is provided to allow for 

initial hardware testing and de-bugging. 
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g) Wat:chcbg tilTer: A wat:chcbg tilTer is included to provide a means for 

excepticn handling should program malfuncticn occurs. 

5.4.2 MellOX:Y 

The mem::n:y for the processing secticn consists of EPRCM, static RAM 

( SRAM) and optional dynamic RAM (DRAM) (mounted on a piggy back 

beard). Various sizes of EPRCM (fron 16K to 64K Byte) and SRAM (fron 

2K to 32K Byte) may be used in this design. The main beard (processing 

secticn) currently uses the following con£iguraticn; 

* One EPRCM (size 8K byte) - used as a i:x:lotstrap. 

* One SRAM (size 8K byte) - used as a mem::>ry for the application 

program's stack, data, and heap. 

* One EPRCM (size 32K byte) - used for the application software. 

5.4.3 Serial Camunicaticn 

Two RS-232 canpatible serial ccmnunicaticn channels are implemented 

using a Dual Universal Async:hron:lus Receiver/Transmitter (DUART) 

(Signetics 2681 [9]), together with appropriate line interface 

circuits. 

5.5 Hl\RI:MARE-SYSTEM OPERATION 

Frcm the hardware point of view, the station's operation within the 

system can be divided into three phases; power-up, initialisaticn, and 

operational rrode (i. e steady state). The initialisation sequence is 

performed by a station after power-up or reset procedure, a steady 

state or n::mnal operational follows afterwards. The following sections 

highlight the sequence of hardware operations during such phases. 
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5.5.1 Pooer-up 

When an individual station powers-up, the c:amrunicaticn secticn starts 

up action first, holding the processin] secticn in a reset state. This 

is an essential point in order to ensure that the systan starts up in 

a safe mode. Only when the station. has established itself in an 

operational ne~ is this reset action released. 

5.5.2 Initialisaticn 

This phase consists of setting-up both the communication and the 

processin] sections in each station. 

a) stage 1 - Camrunication section set-up (Fig 5.9): This consists of 

two main stages; hardware initialisation and token bus 

=nstruction. Hardware initialisation consists of settin]-up the: 

* Camrunication processor. 

* ($M nodule. 

* Tempormy Mem:>ry Store ('!MS). 

The communication processor set-up includes; the internal 

registers, wait state generator, serial line interface, watchdog 

timer, and the internal timers and interrupts required by the 

software. The CSM and '!MS nodules set-up consists of resettin] and 

initialisin] the internal node registers of each nodule. 

The second stage is the construction of the token bus. This is the 

process whereby a number of bus =nnected stations can c:amrunicate 

as a rin] structure (refer to chapters 4 and 6 for more details). 

78 



b) stage 2 - Processing section set-up (Fig. 5.10). 'Itrl.s I!Dde starts 

after the token bus has been cc::nsb:ucted and the stations are set 

in an operational !lOde. It consists of setting-up the internal 

mode registers and units of the main processor (timers, 

interrupts , wait states, ete), the watchdog timer, the serial line 

interface, the DMA channels for transmission and reception. 

Finally it creates the program background process. 

5.5.3 Qperatiooal. Mode (Steady State) 

When the ne~rk enters the nonnal operational !lOde, Le the steady 

state condition, data messages may be exchanged between stations and 

task processing is perfo:rmed by the system. 

In an operational !lOde the camrunication section m::ru. tors the system 

bus for any message broadcast and the ~ssing section for any data 

transfer request. 'l1le system bus is given priority over the processing 

section, in case of message reception. 

5.5.3.1 Transmission of a Message 

To transmit a data message a sequence of operations takes place. In 

the following discussion it is assumed that the token is currently 

held by another node, while this node is preparing for message 

transmission. The sequence of operations is given in a chronological 

order (refer to Fig. 5.11). For simplicity, the processing and 

camrunication sections are abbreviated as ps and CS respectively: 

* ps and CS are in operational rrode, :running background processes 

(TO) • 

* ps requires to send a message; it sets channel for transmission 

(T1). 

* PS requests for data transmission - ROT (T2). 
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* Request is received by CS (but IX) respoose). 

* PS resurres backgramd process ('1'3). 

* A broadcast message is monitored and received by CS over the system 

bus, hence IX) imnediate respoose to PS request (T4). 

* CS responds to message request; sets s=atchpad RAM area (T5). 

* CS generates IMA signal to start transfer (T6). 

* PS invokes data transfer to scratchpad RAM ('I7). 

* PS sends an end of data signal (EDT) to CS at the end of transfer 

(TS) • 

* EDT signal is received by CS. 

* PS and CS restmlE! background processes (T9). 

* CS receives the token (TlO). 

* CS transmits the message across the netM::>rk (hardware generated 

signals are used to output data fron the s=atchpad menory and to 

activate the bus buffers and bus control signals) (T11). 

* CS sends the token to its successor station (T12). 

* CS resumes background process (T13). 

5.5.3.2 Reception of a Message 

In case of message recepticn, channel of the processing secticn is 

already set for reception. Further, the ccmnunication section narltors 

the state of the system bus continuously. If it detects its own 

address, or a broadcast address (address for all stations) it prepares 

for a reception. The following steps are taken by both sections of the 

recipient station (see Fig. 5.12): 

* PS and CS are in operational rrode, running background processes 

(m). 

* CS monitors a system bus message (Tl). 

* CS initiates the receive data routines for message reception (T2). 

* CS checks message and prepares for message transfer into the 

processing section, in case of a data message ('1'3). 
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* cs generates IMA signal to start transfer (T4). 

* PS invokes data transfer to s=atchpad RAM (T5). 

* PS sends an end of data signal. (EDT) to CS at the end of transfer 

(T6). 

* CS resumes background process (T'7). 

* PS starts processing received data (T8). 

* PS resumes background process (T9). 
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TABLE 5-1: SYSTEM BUS LINES 

LINES DESClUPI'ION 

OO-D7 These eight lines form a data bus over which all traffic 
between stations take place. The m::JSt significant bit is 
D7. 

SSO-SS3 These four lines carry the address of the station onto 
which data is being transnitted. '!hey are controlled by 
the transnitting station. 

SSS* This is one of the four lines used to control the action 
of different stations with respect to the data on the 
address bus. This line indicates that an address is being 
output by a station hying to transnit. When it is active 
all stations sh::>uld canpare address lines to see if they 
are being addressed. 

SWRT* This line acts as a write strobe. It is controlled by the 
station transmitting a message and is used by the 
receiving station to clock the data fron the bus into the 
scratchpad RAM. 

BUSY* This line is used in the synchronisation process at the 
start of a transfer of a data frame. The line is 
controlled by the station to which the data is being sent. 
When a station wishing to transni t sends an address then 
the addressed station holds this line active until it is 
ready to receive the data. It then de-activates this line. 

START This line is only used during initialisation of the 
system. After ~ up the logical ring must be formed for 
token passing. This signal is used to synchronise this 
action. 
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TABLE 5-2: ON-BOARD INI'ERFACE: (OBI) 

LINES DESCRIPI'ION 

00-D7 An eight bit data bus. 

MAINCS* A chip select line fran the processing section. When this 
line goes active it indicates that the main processor is 
reading or writing across the interface. This signal 
sh:)uld only be activated once the carnrunication processor 
has indicated a start of transfer. 

MAINWR* This line is used to indicate a write operation by the 
main processor. 

MAINRD* This line is used to indicate a read operation by the 
main processor. 

IlMlIRa:l* This line, pulsed by the main processor, is used l:x:>th to 
request a transfer of data and also to signal its 
canpletion to the cx::mnunication processor. 

This line is set by the cx::mnunication section to indicate 
that the processing section should start a transfer of 
data. This can either be after a IlMlIRa:l* signal fran the 
main processor or after a data frarre has been received 
fron the systan bus. 

This is an alternative line used to indicate that the 
main processor sI'nlld start a transfer of data. 
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CHAPTER 6 



CE\Pl'ER 6 

KJLTI-PRCI :esscm SYSTEM - CXJoHJNICATIOO SOFlWARE 

6.1 SOFlWARE ~ 

As stated previously, the main functioo of the OCIIIlUJIlicatioo section 

is to support system ccmnunicatioo activities. Its functioos, at a 

detailed level, are to: 

* 
* 
* 

* 

Establish address informatioo. 

Support all ccmnunicatioo access functions of the ne~rk. 

Perform memory management of a fast message buffer (the 

scratchpad RAM). 

Control data exchange with the processing sectioo. 

These tasks are implemented mainly in software through the use of a 

communication protocol. The protocol controls and coordinates 

infonnatioo flow between the processing section of a station and the 

system bus. 

The communication software is designed in a modular, structured 

manner, being implemented using the Jackson Program Design Facility 

(PDF) package. The core element of the camrunication section is a 

Hitachi 64180 processor, which includes Z80 code as a sub-set of its 

instructions. Programs for this were developed using the FTL 

canpiler, the application software being programood into EPR(lJI. A 

des=iption of the program rrodules and their corresponding diagrams is 

fully sOOwn in Appendix C. 
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6.2 DESIGN TEOINI~ 

There is a major difference between getting a program to work and 

getting it right. Thus, it is very important in the developnent of 

reliable software to have a canplete and =rrect understanding of what 

the system is expected to carry out. The design metood used to cc:nvert 

the specified requirements into software code also affects the 

reliability of the software [1]. 

The basic software design method used here is that of structured 

design [2], a technique which contains the merit of both Top-J:la.m 

design and M:Jdular prograrTIllinJ [3]. 

structured design is a technique that significantly increases the 

reliability and readability of program, while decreasing the required 

testing of such programs. It is a set of concepts and guidelines wrose 

purpose is to reduce cost, time and effort in developing and 

maintaining canputer programs. 

Diagramming techniques are used throughout the software design 

described here, specifically that based on the Jackson Structured 

Program technique (JSP) [4]. Each program structure diagram (e.g. Fig. 

6.3) is read fron top to bottan to obtain more detail on program 

activities and fron left to right to get the time sequences. Such 

techniques are excellent at describing what needs to be clone rather 

than h:Jw it should be carried out. Furthermore, sections can be added 

or removed as the oork proceeds wi tix)ut disturbing the rest of the 

diagram. This greatly assists prograrrme developnent and modification 

activities. 
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The Jackson chart is constructed to describe the software to a 

specific level of detail. The lowest levels represent sinple functions 

that can be translated into program fonnat. Generally the reccmrended 

control stzuctures of stzuctured progr~ have been used in the 

writing of the program source CXJde. 

JSP can be automated using software packages such as the Jackson 

Program Design Facility (PDF) [5]. These can be used to construct 

program structure diagrams (PSD ) ; from these code may also be 

autcmatically generated if suitable code generators are available 

(unfort:tmately not f= M:Jdula-2 at the present time). In the system 

inplemented here the PDF package was used to construct PSDs and the 

program control stzucture. These diagrams were subsequently used to 

write the program code. It can be seen (Appendix C-software diagrams) 

that, at the lowest levels, there is a one-to-one correspondence 

between the diagrams and the CXJde. 

6.3 lMPLEMENI'ATION OF THE cnHJNICl\TION POOroCXlL 

6.3.1 Software Module structure - Overview 

The communication software (protocol) code is implemented in a 

modular, structured way using M:xlula-2. The structure consists of: 

* Main (program) module. 

* Second level (functional) modules. 

* Lower level (service modules). 
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a) Main rn::xlule - 'Run Com1s ' 

'!his is the highest level nodule. It oolds the cc:mm.micatian software 

executable code. It oonsists of a single program rn::xlule (named 'Run 

Cc:mns') that is ftn1ctianally decc:mposed into a number of second level 

rn::xlules that are called within the main rn::xlule. 

b) Second level rn::xlules 

The second level rn::xlules are: 

* INITIAL rn::xlule. 

* STARTUP rn::xlule. 

* STEADY rn::xlule. 

These rn::xlules make use, in turn, of lower level service rn::xlules. 

c) Service rn::xlules 

A number of lower level rrodules (s9l:Vice rrodules) are available to 

provide specific software services to higher level rrodules (Le main 

and second level rrodules). These rn::xlules are: 

* 
* 
* 

Control-frame nodules. 

Message-exchange rrodules. 

Hardware-related rrodule. 

i) Control-frame modules: These modules (SENDLIB, RECLIB, etc.) 

oonsist mainly of control frames necessary for the implarentation 

of the Token Passing metood. They are called (imported) by the 

main module and make use of other lower service modules; 

'Messages' and 'Mains'. 
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H) Message-exchange nodules: 'I11eir main function is to :!nplanent 

ccmnunication functioos between the system bus, the a::mnunication 

section and the PI=9Ssing section. 'lhese m:xlu1es make use of a 

lower m:xlu1e, 'Signals', for the control of hardware. They ooosist 

of tw:J m:xlu1es: 

* 
* 

'Messages' - For message-exchange with the systan bus. 

'Mains' - For message-exchange with the processing section. 

Hi) Hardware-related m:xlu1e: This m:xlu1e, 'Signals', is the lowest 

level of application. It controls the different hardware signals 

(i.e enabling and disabling). 

Finally, there is one routine that supports the M:Jdula-2 protocol code 

discussed above. '!his is the nm-tim3 support m:Jdule 'CPMlOO', which 

is written totally in assembly language. This is discussed in a 

separate section. 

6.3.2 Camu'lication Software (Main Module - Run Calms) 

'!his m:Jdule oolds the ccmnunication software code. Its function is to 

:!nplanent the token passing protocol described earlier in chapter 4. 

It makes use of second level (functional) m:Jdules, and a number of 

s9l:Vice rrodules. 'I1le different control message-frames (imported fron 

Message-exchange rrodule) are used extensively for initialisation, 

operation, and maintenance of the token passing protocol. 

Generally speaking, fron the netw:Jrk's point of view, operation of the 

main rrodule can be divided into three main parts (Fig. 6.1): 

* Initialisation. 

* Steady state • 

. * Maintenance. 
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From the station's point of view, however, the system may be 

functionally decc:IrqxlSed into three top level functioos (Fig. 6.2): 

* In! tialising the board (station). 

* Entering the ring. 

* ~ in operational ll'Ode. 

These, in turn, are divided into sub-functioos (Fig. 6.3). This sub

division is further continued until a satisfactory lowest level of 

functional representation is obtained. These lowest level functioos 

are usually simple and easily translated into program source code. 

Routines shown in Fig. 6.3 are listed below. For full module 

description and diagrams refer to Appendix c: 

a) Initialise the board (station) 

In this ll'Ode, the station initialises the CCI1111UI'Iication section and 

synchronises its operation with respect to other stations (ready for 

constructing the token ring). This is 00ne by setting various hardware 

=ntrol lines, timers and defining the station's address (TS). 

b) Enter the ring 

Once all the stations are initialised and synchronised, they activate 

their response timers (RT) in order to construct the token ring. Each 

station then monitors the bus for message reception, the result 

producing one of three possible courses of action: 

* If the RT timer times out before arq message is received, the 

station follows the routine for entering the ring as 'The First 

Station' . 

* If the station receives a claim token frame message then the 

station follows the routine for entering the ring as 'Not The 

First Station' . 
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* If a message frame other than a claim token is received then the 

station follows the routine f= entering the ring as ' a plugged

in station' . 

In the various cases shcMn above, staticns follow different paths to 

achieve the same task (Le ring ccnstructicn). Once a staticn kn:Jws 

its own address (TS), the previous staticn address (PS), and the next 

station address (NS), it passes the token to the next staticn in the 

ring. When the last station in the ring (LS) acquires the infonnation 

and connects with the first station (FS), the token is said to be 

canstructed. When this has been achieved, each station sh:luld be in 

possession of: number of stations in the ring, its own address (TS), 

and other stations' addresses (PS, NS, FS and LS) 

c) Run in operation rrode 

Once the ring has been constructed the stations are said to be running 

in the operational mode. During this mode, the token is received 

periodically for message passing between the ne~ staticns. In 

normal operations the station has to respond also to other messages 

that may arrive as a result of adding a new staticn (inserticn) or a 

station drop-out ( deletion) . In this case, as the ring construction 

has changed, token information-update has to take place. 

6.3.3 Second Level MOdules 

These modules are imported by the main module (described earlier) and 

represent the functional decomposition of the main module. The 

functional structure shcMn in Figs. 6.2 and 6.3 are illlplemented fully 

through routines imported fron these seccnd level rrodules. They, in 

turn, make use of lower level service rrodules. A brief descripticn of 

these modules is given below (see also Fig. 6.4): 
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* INITIAL rn:Jdul.e. 

* STAR'ruP rn:Jdul.e. 

* STEADY rn:Jdul.e. 

a) INITIAL rn:Jdul.e: This rn:Jdul.e is the first cne called in by the 

main program module. Its main purpose is to initialise the 

hardware of the cc:mntmicaticn secticn. 

b) STAR'ruP rn:Jdul.e: This rn:Jdul.e implanents the seccnd node of rin;J 

CXJnStructicn, Le enterin;J the rin;J. It has four routines (see 

Fig. 6.4). 

c) STEADY rn:Jdul.e: This rn:Jdul.e implanents the third rrode of operaticn, 

the 'run in operation' node. 

6.3.4 ~ice M:xfules 

6.3.4.1 Cbntro1-Frame M:xfules 

These are the highest s&vice nodules, !lOSt of the their routines 

bein;J imported by the second level nodules. Their main functicn is to 

initialise, construct, and maintain the token rin;J through a set of 

control-frame service routines. They are grouped functionally in 

separate nodules, hence sane precedence occurs in their call or even 

in their processing (compilation process, refer to section 6.5). 

Control-frame modules rely for operation on the lower modules 

'Messages' and 'Mains'. A list of these nodules is given below (see 

Fig. 6.4): 

* SENDLIB rn:Jdul.e. 

* RECLIB nodule. 

* TIMER rn:Jdul.e. 

* ROOTINES rn:Jdul.e. 

* GLOBALS rn:Jdul.e. 
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a) SENDLIB rrodule: This rn:Jdule contains an extensive set of routines, 

whose main function is to 'send' control frames across the 

network. 

b) RECLIB rn:Jdule: This rrodule is built in a similar way to SENDLm. 

It encapsulates all the 'receive' control frames received over the 

systan bus. 

c) TIMER rn:Jdule: This rrodule consists of various 'timer' operations. 

It has a set of routines f= setting, loading, and polling the 

different timers of a station (see Fig. 6.4) • 

d) RCXJTINES rn:Jdule: This rn:Jdule contains a group of repeatedly used 

control-frame routines, used f= implementing the token ring. 

e) GLOBALS rn:Jdule: This rn:Jdule contains all the global variables and 

constants needed for the operation of the token ring. It is called 

(imported) by many of the a1:xJve rn:Jdules. 

6.3.4.2 Message-Exchange Modules 

These consist of two sets of rn:Jdules, 'Messages' and 'Mains'. 

a) 'Messages' 

This module is dedicated to network communication activities. It 

consists of two routines; one to send a data frame across the system 

bus (to another station) and the second to receive a data frame fron 

the systan bus. 'Ib achieve this, use is made of the 'Signals' rn:Jdule 

for the control of the hardware. 
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i) TransnitMessage: This routine transnits a data message in the 

camrunication pr=essor' s rnerrory at location ' start', of length 

'Duration', to the system station 'SystemAddress'. 

ii) ReceiveMessage: This routine functions similarly to the above 

except that it receives a data frame fran arxJther station. This 

is stored in a specified address in the Scratchpad RAM. 

b) 'Mains' 

This module software is dedicated to support ccmnunication functions 

with the pr=essing section. Its construction is similar to that of 

'Messages'. The module consists of ~ procedures, 'MessageFrarMain' 

and 'MessageTc:Main'. Again, use is made of rrodule 'Signals' to control 

the hardware. 

i) MessageFrarMain: This routine transfers data messages fran the 

processing section of each station into its communication 

section, using DMA techniques. Each message is stored, for 

subsequent bus transmission, in a temporary buffer (in the 

scratchpad RAM) at a specific address (' ScratchPadArea' ). 

ii) MessageToMain: This routine is used to send data messages 

received fran the bus to the pr=essing section of the station 

using !)MA transfer methods. Again, it is buffered in a temporary 

storage (Scratchpad RAM), at an address 'start' and of length 

'Duration' . 
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6.3.4.3 Hardware Related Module - 'Signals' 

This m:Jdul.e CCI'ltains the ini tialisatien raJtines far the ccmnunicatien 

section hardware. It also CCI'ltains routines which control the transfer 

of infonnation across the systan bus by activattn:. backplane (bus) 

cx:ntrol lines. A brief discussien of these raJtines is given bel=: 

a) start: This procedure returns the state of the system 

initialisation line (START*) as a \:xx)lean value. TRUE is returned 

when the systan start line is true. 

b) Rxen: This routine returns the state of the receive enable line 

of a station (RXEN*). This line is set TRUE by the ccmnunications 

hardware when an::>ther station has placed its address en the systan 

address bus and activated the valid address line (SSS*). 

c) TmsInt: This routine returns the state of the ternporaI:Y rrarory 

nodule (iMS) interrupt latch. This latch is set by the interrupt 

line from the TMS module, but can only be set during a 

transmission. 

d) MainInt: This routine returns TRUE if the main interrupt latch 

has been set, indicating that the processing section is requesttn:. 

or stopping the transmission of data to the iMS nodule. 

e) TmsWrite: This routine writes a block of data of specified length 

('Duration') into the scratchpad area. The address of the data is 

given ('Start'). The address of the data in the scratchpad is 

specified also (' TmsAddress' ). This routine also sets the SELEel' 

line. 
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f) 'nnsRead: '!his routine reads a block of data, of a specified 

length ('Duration') into the ccnmunication section at a given 

address (' Start' ). The address of the data in the s=atchpad is 

also specified (''I\nsAddress'). 

g) TmsWriteRegister: This routine is used to write the data passed 

to the '!MS register specified. This routine also sets the priority 

of access line (SELECI') before attellpting the write. 

h) TmsReadRegister: This has a similar effect with respect to the 

above routine. It reads, 00wever, fron the specified register. The 

same condition is true regarding the pri=i ty line (SELECI'). 

i) Ready: This is the first of a series of routines to set 

individual hardware lines to a defined state. This state is 

determined in the boolean parameter passed to the procedure. 

Positive logic is used for all routines i.e TRUE sets the line 

active while FALSE resets the line. 

j) stx: This routine sets the state of the transmission process line 

(STX). 

k) Wait: This routine controls the initialisation state, indicating 

whether the station is ready to start ring initialisation. Setting 

this routine FALSE indicates that the ccnmunication section is 

ready to start initialisation. 

1) Select: This routine sets the priority access line for the 

s=atchpad RAM into a specified state. When access is TRUE the 

communication section has access to the RAM, when FALSE the 

processing section has priority. 
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m) Saen: This routine is used to send a staticn address across the 

system address bus. The address specified is sent if the boolean 

variable is TRUE. If it is FALSE, however, this removes the 

address data previaJSly written fron the system address lines. 

During this action the data specified for the system address is 

disregarded. 

n) StationMdress: This routine retu:rns the address of this station, 

as set on the station address selector sw! tches on the board. 

0) ClearMainInt: This routine is used to reset the processing 

section interrupt request latch. Such interrupts are usually used 

to request the start or end of transmission of a data block fron 

the processing section to the 'IMS nodule. 

p) ClearTmsInt: This routine clears the latch holding a TMS 

interrupt request set to indicate the end of a transmission cycle. 

q) DmaZero: This routine initiates a transfer between the processing 

section and the temporary mem:xy module ('IMS). When this routine 

is called the ccmnunication section rel~shes oontrol of its 

bus. It can only regain oontrol of the bus if the station is 

addressed by the system address lines, or the processing section 

sets the main interrupt latch to indicate the end of the data 

transfer. For this reason the main interrupt latch should be 

cleared before this routine is called. 

r) DmaOne: This is an alternate routine which initiates transfer 

between the processing section and the 'IMS module. It functi= in 

a similar way to the above routine. 
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6.4 :IMPI.EMNI'ATIOO OF 'mE RUN-TIME SUPPORl' SlISTEM 

6.4.1 Ge!1eral. 

Since the FTL CXlIlliler [6,7] is designed f= a CE'/M envircnnent, it 

makes certain assumptions concenling its nm-time envircnnent. 'Illese 

did =t apply to the actual target system. 'Ihus, to enable CXlde to nm 

successfully and reliably within the communication sub-system, a 

special nm-time nodule had to be developed (in addition to the system 

and application software). It is called 'CFMlOO'. In particular, the 

console device software had to be modified to handle compiler 

generated exception handling messages (these are autallatically routed 

to the oonsole). 

6.4.2 CFMlOO Module 

This program is a CfM environment emulator, and is written in assanbly 

language. Its purpose is to provide a basic initialisation sequence 

for the communication section. It provides routines to drive the 

serial interface as a replacement for the CPM console device. A 

replacement for this device had to be provided as code generated by 

the CXlIlliler outputs exception handling error messages, such as divide 

by zero, to the oonsole. The ccmnunication software would have mis

functioned, and crashed at some point, if the emulation hadn't been 

provided, as it =uld expect certain initialisation and exception 

handling routines, necessary for its execution, within the 

environment. The CfM functions emulated by the CFMlOO program are 

described in Appendix D. All other calls to CfM produce the message 

'CfM ERROR' on the device attached to the serial interface. 
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'!he functiCXlS specified provide all the support required by the system 

nodule within the M:ldula-2 =de and also the Tenninal. nodule, and any 

users of it such as SmallIO. They do IDt support RealIO unless the 

nodule is I!Ddified to drive the Tenninal. device, as described in the 

RealIO definition file. 

'!he CFMlOO program uses a small portion of RAM which must IDt be 

overwri tten by any application program. This is the top 20H bytes of 

RAM available in the system. If this is IDt d:Jne then the stack: will 

be placed on top of the CFMlOO; variables would then =rnJpt the 

stack: and calls to CFMlOO wa.tld fail to retuJ:n to the calling pL~am. 

CFMlOO also supports the use of a watchdog t:lmer. This causes an NMI 

inte=upt if the watchdog timer times out. When an NMI interrupt 

== a jump is made to a specific location. This causes a jurnp to 

the CFMlOO start and the entire system is re-initialised. 

CFMlOO provides a faithful emulation of the functiCXlS menticoed above. 

It will also produce an error mess~ge if an illegal function is 

called. '!he IlOre severe problem is if an application program makes use 

of some other part of CPM. If this occurs the results will be 

unpredictable. 

6.5 SYSTEM DEVELOPMENT AND OPERATION 

'!he carmunication software has been written mainly in M::ldula-2, using 

the FI'L ccmpiler. '!he RGlable oode generated (Le the executable main 

module) occupies approximately 16 Kbytes, and the assembler code 

(CFMlOO) occupies 256 bytes. Fig. 6.5 sl'ooIs the memry map of the 

ccmnunication system. 
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6.5.1 Calpiling and Linking 

In the ~lation process, the definition lIOdules must be ocmpiled in 

a specific order; starting with the lower level (service lIOdules) and 

end:in;J up with the higher level (functional lIOdules). The order of 

these is as follows: 

* SIGNALS.DEF 

* MAINS.DEF 

* MESSIIGES.DEF 

* GLOBAI,s. DEF 

* SENDLIB.DEF 

* TIMERS.DEF 

* RECLIB.DEF 

* ROOTINES. DEF 

Then follows the functional lIOdules: 

* STAR'IUP. DEF 

* INITIAL.DEF 

* STEADY.DEF 

The implementation modules can be compiled in any order once the 

corresponding definition modules have been ocmpiled. When linking, the 

top-most level modules need to be specified only. Linking options nrust 

be specified so that the code generated can run correctly on the 

target system (see Appendix C for details). 

6.5.2 Downloading into EPRG1S 

The linking process produces an executable file (a CXM file). Before 

d::lwn-loading into the target system, the code has to be converted into 

INl'EL HEX format. 
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To develop a program in FTL M:ldula-2, the code is written on the 

developnent system and tested as far as possible. It is then linked to 

start at OIOOH. The available memory space is partitioned as 

apPLopriate for code and data management. The application code is 

then down-loaded into EPRCM together with the nm-time program CEMlOO. 

These two programs require ro 1inkin;J as the entry points for each are 

pre-defined. The CEMlOO program is loaded at OOOOH and the (M:ldula-2) 

application code (camrunication software) at OIOOH. Using the standard 

CPM entry point of OIOOH for the Modula-2 code solves one other 

potential problem. The utility supplied with the FTL compiler, 

UNLOI\D2, would rormally be used to cx:rnrert the a:M file into HEX 

format for subsequent transfer into the EPROM programmer. This 

autanatically assumes that the code has been linked for OIOOH entry 

and hence writes this address into the hex file produced later on for 

down-loading • 

6.5.3 Systan Start-Up (?peraticn 

On power-up or reset the ccmmmication processor starts executing code 

fron address OOOOOH. This is the start address for the CEMlOO program 

and contains a jlDl1P into the application program. Thus the CEMlOO 

starts executing before the main application program. The serial 

interface and the wait state generator are set up (by CEMlOO) before 

control is handed OIler to the M:ldula-2 application program (at address 

0100H). This is the usual start for a CFM application program (refer 

to Fig. 6.5). 
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Fig. 6.4 IMPLEMENTED SYSTEM MODULES 
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CHAPTER 7 



KJLTI-PR(1I :fSSOR SYSTEM - KERNEL SOFlWARE STRlX:TURE 

As stated earlier, the main functicn of the multi-processor system is 

to process and manage real-time application tasks that are 

functionally partitimed and distributed cnto the system oodes as sub

tasks. The main functicns of the varioos process:in;;J secticns, at a 

detailed level, are to: 

* Process and manage the time-critical sub-tasks in each lXlde. 

* Control data exchange with other process:in;;J secticns through the 

use of message-pass:in;;J techniques. 

* Perform mem::>ry management of RAM (on buffered data, messages, and 

distributed variables). 

* Provide management of timed/event interrupts within each lXlde. 

These tasks are irrplemented mainly in software through the use of a 

real-time kernel structure that suppcrts and manages parti timed sub

tasks on various process:in;;J secticns of the system. 

The real-time kernel software is designed in a rrodular, structured 

manner, be:in;;J irrplemented us:in;;J the Jackson Program Design Facility 

(PDF) package. The core element of the process:in;;J secticn is based on 

an Intel 80188 processor together with an Intel 8087 nurreric processor 

extensicn for mathanatical operaticns. Programs f= this are developed 

us:in;;J the Logi tech ~iler, the applicaticn software be:in;;J progranmed 

into EPROM. A description of the program structure and the 

corresponding diagrams is fully shown in Appendix E. 
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7.2 '!HE REAL-TIME KERNEL STROCTURE 

In the design of the real-time kernel we are very much concemed with 

predictability of perfcmnance. tJbreover, reliability of operatioo is 

paramount [1]. The kernel provides a virtual machine in which 

pr=esses allocated to different processors are executed c:cn::urrently. 

Process cooperation and synchronisation are achieved by means of 

message passing. On the other hand, the system inside each node is 

viewed as a collection of co-operating sequential processes that share 

CCIlI10Il data. Unlike many scientific and ccrrmercial applicaticns, the 

kernel described here is rot intended to support fragn-ented programs. 

Instead, the basis of the design is that of flIDCtiooal partitiooing 

[2]. Further, a maj= prirnctty objective is to :!mplarent the kernel 

using standard compilers, i.e. those designed for uni-processor 

systems [3]. A second major objective is to build the kernel 

infrastructure using the standard constructa of M:ldula-2. It consists 

of the following structure: 

* Program parti tiooing. 

* Ccrrmunication and synchronisatioo. 

* Managarent of distributed variables. 

* Process scheduling. 

* Time-Server routines. 

These have been designed to be independent of pr=essor hardware. 
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a) Program Partiticning 

The total systan task is parti tiooed into a nunber of functiooal sub

tasks (processes); these nm asynchrcnously and ccrx:u=ently within 

the 1lU.1l ti -processor systan (Fig. 7.1) • Functiooal parti ticn:ing' is 

favoured over other schanes used for partiticn:ing' simply because: 

* 

* 

* 

* 

The software structures mi= the application structure, this 

bein;)' especially suitable for real-time application tasks. 

The individual software units (sub-tasks) can be implemented, type 

checked and cx::mpiled usin;)' uni-processor cx::mpilers. 

The granularity (unit of partiticn:ing' = sub-task), may be further 

divided and partitioned into other functional sub-tasks (see Fig. 

7.1) • These sub-tasks can be mapped, in turn, to one or rrore 

nodes of the distributed system. 

Finally, each sub-task can be considered as a unit sole of 

partitioning. This means it can be separately processed, coded, 

and cx::mpiled using structured languages suited = even adapted for 

distributed environrrents. 

In real-time systems such sub-tasks involve plant interfacin;)', network 

control, ccrnputation of digital control alg=ithms, etc. Each sub

task: fonns the main process within a specific node. 

b) Cormunication and Synchronisation 

Inter-processor cannunication is implemented using message-passing 

primitives. In line with the overall strategy outlined above, inter

processor communication can be viewed in a 'Client-server' model 

[4,5]. The message actually passes through several intermediary 

pr=essors or subsystems (Le. cannunication section, systan bJs, 

cannunication section, and finally, the receiving processing section). 
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Delays are experienced within the system at various points. Thus 

ccmnunication between the distrib..lted sub-tasks is seen fundamentally 

as an asynchrorx:lus operaticn. Furtherm::lre, it is rxn-block:!ng, Le. 

the application software will continue after the message has been put 

out for transmission. The lower level ccmnunicaticn aspects (~ical, 

medium access control, logical link control) are considered to provide 

a highly reliable service. For improved levels of security, detecticn 

and correction of message errors must be implemented in the main 

process. In the same way, task synchrcnisation is the respoosibili ty 

of the application programrer. 

Data transfer between the processing and ccmnunication sections is 

done through two high speed DMA. channels. 

c) Management of Distributed Variables 

Tasks ccmnunicate by passing control signals and data over the system 

bus. For simplicity each variable is defined to have a specific owner 

(sub-task). The owner is responsible for maintenance and updating of 

its own variables, and may export these - as required - to other 

processes (Fig. 7.2). The receiving process treats these as it \'O.lld a 

value parameter; it can modify the =py but =t the original. It can, 

of course, request updating of the original by the owner. 

d) Process Scheduling 

Because the overall system has already been partitioned, sub-tasks are 

likely to consist of only a few operational processes. In these 

circumstances a very simple and tradi ticnal approach to ' scheduling' 

is acbpted. Each sub-task consists as a single background process 

(Fig. 7.3) - which runs continuously - and a set of timed and/or event 

driven processes. These are activated by hardware interrupt signals. 
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Settin;J pri=ities, disabl.in;J ini:enupts, etc., is the respoosibUity 

of the application prograrrmer. By us.in;J this approach the time and 

ccmplexity overlleads of a real-time executive are avoided; noreover 

context switch times are minimised. 

The ccmnunication handler is itself interrupt driven, activated cnly 

on receipt of incoming messages. It functions as a single thread 

sequential program, consist.in;J of a set of IllUtually exclusive S6%ver 

procedures. 

e) 'Time-Server' Routines 

Apart fron using timed inter.rupts f= purposes such as sett.in;J control 

loops as mentioned earlier, it can be used to establish a sense of 

'program-time' . 

A certain activity may need to be activated after a certain time 

within a rode = even after sane elapsed time with respect to an 

activity or process in aIXlther rode. Hence, to maintain this sense of 

'program-time' across the system, the kernel provides a set of 'timed

interrupt service routines' in each node. These routines provide 

functions which can be used to establish a real-time clock. 

Synchronisation of local clocks is essential for future developnent. 

One way of achieving this task is to choose one clock as a master and 

update the others periodically with respect to this. 
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7.3 IMPLEMENl'ATIGl OF 'mE REAL-TIME KERNEL 

7.3.1 Software Module StJ:ucture - Ove%view 

The real-time kernel code is structured as a set of primitives, 

replicated, if necessazy, en each n:XIe. It is implenented in a main 

rrodule called 'MlUN-DISTKERNEL'. What follows is a list of primitives 

provided by the ke=el: 

* Init-MasterGlob 

* Ini t-CopyGlob 

* Request-Global 

* Suhni t-Global 

* Check-RecvData 

* WaitF=-Data 

* Validate 

* Init-Send 

* Send-Data 

* Init-Receive 

* Send-Receive 

* SenMess-Setup 

* RecvMes-Deoode 

* Set-Timer 

* Set-ClockTimer 

* Setup-Send 

* Setup-Receive 

* !:MA-Stopped 

* Send-Handshake 

* Setup-rMAInterrupt 

* Setup-TimerInten:upt 

The rrodule 'MAIN-DISTKERNEL' relies in its operation on a number of 

functionally grouped rrodules. 'Ihese are: 

* MAIN-CODE rrodule. 

* MAIN-DIST rrodule. 

* MlUN-BUILD rrodule. 

* MAIN-TIME rrodule. 

* MAIN-HARD rrodule. 

* T88InOut rrodule. 
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Sane of the kernel primitives are called within other higher level 

structured primitives to provide specific services. 'l1'le various kernel 

primitives are functionally distributed to provide the following 

functions : 

* Manage distributed variables within the net=:rk. 

* Manage ccmnunication of one station (Le. the processing' section) 

with anJther. 

* Manage message encod:in;J and decoding within each staticn. 

* Manage time services in each station. 

* Manage hardware-access and set-up services in each staticn (i. e. 

hardware-related routines). 

The function of each category and the related primitives are discussed 

in the following' sections. For full details refer to Appendix E. 

Finally, there is a 'Bootstrap' routine. This routine is not part of 

the real-time kernel. It is used, h:Mever, to set-up and initialise 

the system before transferring control into the applicaticn program. 

This rrodule is written partially in assembly code and partially in 

M:Jdula-2 oode. It is discussed in a separate secticn. 

7.3.2 Distributed Variables Management 

Management of distributed variables across the net=rk is implemented 

using a number of functionally grouped procedures. Before going 

further in the discussion, the following important points have to be 

clarified: 

* A distributed variable is referred to as either a master or 

'original variable'. 
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* A request of an original variable by arot:her statien is referred to 

as either a distributed variable copy = siInply a 'copy variable'. 

* A distributed variable can be exported (as a copy) to another 

process or statien a=rding to a request. '!his is treated similar 

to a value parameter. 

* An 'original variable' cannot be distributed unless it is 

initialised, then calculated (or updated) a=rdin;:J to a particular 

process in the applicatien program. 

* Similarly, a 'copy variable' cannot be accepted = received unless 

a variable is =eated and initialised in the requesting' statien. 

Management of distributed variables is iInplemented in the following' 

group of procedures: 

* Init-MasterGlob. 

* Init-CbpyGlob. 

* Request-Global. 

* Submit-Global. 

* Validate. 

* Check-RecvData. 

* WaitFor-Data. 

These set of routines have the responsibility of initialising, 

maintaining, updating' and exporting' copies of variables which are held 

locally in a process within a station to others en request. The name 

and size of each variable has to be declared, by a call to the 

appropriate procedure, if the variable is to be shared across the 

network (i. e. distributed) • Distributed variables are referenced by 

names specified by the user when the main rrodule, MAIN-DISTKERNEL, is 

being' called. These names are used by other stations' processes when 
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updates of the variables are sent across the ne~. A distril:uted 

variable, bein] used either as a master (i.e. original) or a et:::ffJY, 

must be static in mem::>ry as it is declared to the IrOdule by its 

address and size. The type of the variable, however, is ignored. 

Routines here keep a list of variables which may need initialisation 

or even updatin] by another station. This data structure mechanism is 

transparent to the user. A description of these routines is given 

below: 

a) Variable Control Block (VCB): VCBs are records used within the 

kernel module to hold information about the status of each 

distributed variable (i.e. whether original or copy). This 

includes the name of the variable, size, status (original, or 

copy), etc. 

b) lnit-MasterGlob: This routine is used to set up a variable control 

block for locally held variables ( 1. e. original) • This means a 

control block for a variable calculated at this station and 

distributed subsequently to other stations on request. 

c) lnit-CopyGlob: This routine is used to set up a variable control 

block for a copy variable, i.e. to mId a copy for a variable that 

is calculated on a rerrote station. 

d) Request-Global: This routine is issued by a requestin] station for 

a copy of an initialised, updated original variable from a 

particular station. 

e ) Submit-Global: This routine is used to send a copy of an original 

variable, calculated by this station, to a list of requestin] 

stations. 
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f) Validate: This routine ~ on both original and copy variables. 

It checks whether a particular variable has been calculated (Le. 

updated) before starting to distribute requested =pies across the 

network. Alternatively, it checks whether a distributed copy 

variable has been received before being used in a specific 

operation. 

g) Oleck-RecvData: This routine checks received data, anong a list of 

requested copy variables. If a request exists then the variable is 

validated and stored afterwards. 

h) WaitF=-Data: This routine is called to wait for a requested copy 

variable until that particular variable is being calculated and 

hence distributed across the network. It relies on 'Validate' 

routine in executing this task. 

7.3.3 camunication Management 

Cannunication management between the different processing sections is 

implemented using message-passing techniques. The communication 

section in each station, however, provides a transparent interface for 

message transaction with the system bus. There are two modes of 

operations within each station Le. the transnission and reception 

modes. A number of routines is used to implement the sequence of 

operations in each case. Those routines discussed here present the 

high level interface with the application program. other, hardware

related, procedures are called within these procedures to implement 

the hardware interface (Le. access and set-up of hardware). 
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a) Transmission m:Jde 

In this mode, the operation is viewed as non-blocking, i.e. the 

application software will continue after the message has been put out 

for transmission. The transmission mode of operation can be 

irrplanented usin;J the follCMi.n;J pair of routines: 

* Init-Send. 

* Send-Data. 

i) !nit-Send: This routine is called first when an attarpt is made to 

transfer data to the ccmnunication section. It first sets-up a 

block of data then calls a hardware-related procedure (Setup-Send) 

to in! tialise a channel for a transmission m:Jde. 

ii) Send-Data: This routine is used to transfer message or data frames 

into other stations. First, it checks whether any IM\ transfer is 

in progress. It then requests the ccmnunication section for data 

transmission (through the use of a hardware-related proceCb Ire 

, Send-handshake' ). 

b) Reception m:Jde 

Reception of a data message is performed as part of the • Multi-process 

ccmnunication handler' which is an event-driven interrupt handler. The 

ccmnunication handler receives, decodes and acts upon message. The 

application program resumes execution afterwards. 'I'M:> routines are 

used in reception m:Jde: 

* Init-Receive. 

* Receive-Data. 
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i) Init-Receive: 'Ibis routine is similar to 'Init-Send' menticned 

earlier. It is used to set-up the channel for receptic:n m:x'le. 

ii) Receive-Data: This routine checks whether a successful data 

transfer has taken place. If so, it reads the data block into a 

buffer and starts deooding. 

7.3.4 Message Management 

The pr=edures discussed here implement the code to build a message 

frame for transmissic:n out of its oc:nsti tuent data segments. They are 

also used to split a received message into its cc:nstituent parts. 

These procedures also contain the type definitic:n for all messages 

sent over the system bus, 'MessageType'. '!WO routines are used for 

these operations: 

* SendMes-Setup. 

* RecvMes-Decode. 

a) SendMes-Setup: 'Ibis =tine is used to build or assemble a data 

frame out of its constituent parts. Frame type (data = message), 

address pointers, destination address, etc. fonn parts of the 

frame structure. 

b) RecvMes-Decode: 'Ibis =tine works on a received message frame. It 

splits the message into its constituent parts (Le. message or 

data frame, request or reply of a distributed variable, etc.). A 

transfer is subsequently made to an appropriate server when the 

deooding process is over. 
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7.3.5 Time Management 

Time routines seIVe for tI..u purposes; 

* 'Ib set timers for timed inter.rupts (e.g. level and actuator loops 

of Fig. 7.3). 

* 'Ib maintain the sense of 'plOogxam-time' across the systan, hence 

establishing the basis for a real-time clock in each station. 

'Ib implement these tasks it uses tI..u program-interfaced routines that 

call other hardware-related routines in turn. These routines are 'Set

Timer' and 'Set-ClockTimer'. 

a) Set-Timer: This routine is used to load and set a timer for a pre

defined time. On time out, an interrupt occurs and a service 

routine (Timer-Proc) is called to service the interrupt. 

b) Set-ClockTimer: This routine is used to establish the basis for a 

real-time Clock. Once called, the routine sets a timer to call 

arx:>ther routine (Timer-Proc) on every interrupt. This routine 

requires a parameter giving the number of milliseconds that sh::luld 

elapse between each interrupt and also the processor clock speed 

in MHz. It also requires the address of a routine to be called as 

part of the interrupt handler. This routine performs aIr:! counting 

that is required using global variables. 

c) Timer-Proc: This routine is called on every interrupt to set-up 

the timer control registers and update counters. 
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7.3.6 Hardware-Related Routines 

This set of routines ~ise of the lowest level of routines, Le. 

they form the interface with the hardware system. All data is 

exchanged between the ccmmmicaticn secticn and the processing secticn 

using direct IIlEfI=Y access (rMA) techniques. The rMA ccntraller is 

located in the processing secticn and generates the required central 

signals (read, write, and chip select). Contral of all data transfers 

resides with the ccmnunicaticn secticn( rw.o and i:MAl). 

Two rMA channels are utilised for data transfer. O1annel 0 is used for 

rMA transfer fran the processing to the ccrrmunicaticn secticn. O1annel 

1 handles DMA transfers from the communication to the processing 

secticn. A variety of procedures are used to initialise, set, and 

central rMA transfers and interrupts in the main secticn (these are 

discussed belCM). Finally, it sOOuld be pointed out that the buffers 

dedicated for rMA transfer must be declared global variables as they 

are handled by the rMA unit asynchronously. The main objectives here 

are to: 

* set-up and central channels in each staticn for transrnissicn and 

reception of data. 

* Set-up an interrupt service routine to handle an interrupt fran an 

event interrupt (Multi-process ccrrmunicaticn handler). 

* Set-up the interrupt service routines to handle interrupts fran 

timed interrupts Le. timers. 

The follCMing set of routines are used to implement the above: 

* Setup-Send. 

* Setup-Receive. 
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* IM\.-Stopped. 

* Send-Handshake. 

* Setup-JlIIJAInterrupt. 

* Setup-TimerInterrupt. 

a) Setup-Send: This routine is used to initialise and set-up the 

control registers of a IM\. channel for a transmission rrode. 

b) Setup=Receive: This routine is used to initialise and set-up the 

control registers of a IM\. channel for a reception rrode. 

c) IM\.-Stoppeci: This routine is used to check whether a IM\. transfer 

has been successfully finished. 

d) Send-Handshake: This routine forms a handshake with the 

ccmnunication section. It sends a request-of-data signal (ROT) and 

an end-of-data signal (EDT) to the ccmnunication section at the 

start and end of a ~ transfer respectively. 

e) Setup-IMI.Interrupt: This routine is used to plant an interrupt in 

the vector address area. This address points to a service routine 

that is to be executed later on when an interrupt takes place. 

f) Setup-Timerlnterrupt: This routine is similar to 'Setup

DMAlnterrupt' mentioned above. The vector type and priority, 

ixlwever, are different. 

other initialisation functions are required, these being part of the 

bootstrap routine. This is discussed next. 
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7.4 '!HE BXJlSl'RAP RaJl'lM: 

The function of the bootstrap loader is to initialise and set-up the 

systan before control is handed over to the application program. It 

consists of two sections, an assembler part and a M:ldula-2 part. The 

reason f= this is to use M:ldula whenever is possible. M:ldula-2 CXJde 

is clearer, easier to understand, and is likely to be more reliable. 

It cbes mean, however, that two separate bootstrap files have to be 

produced f= EPRCM prograIllllinJ. It is imperative that the link between 

the two, a jump location, is set correctly. One EPRCM is used to hold 

bath the assembler and the M:ldula-2 bootstrap object CXJde. 

7.4.1 Assembler Routine 

'!his routine starts first with the initialisation of the hardware 

system. It consists of the follCMing procedures: 

* set-up the different segment registers (Le. CXJde, data, extra, and 

stack pointer registers). 

* set-up the appxopriate marory partitions (Le. upper chip select, 

lower chip select, middle chip select, etc.). It is essential to 

set-up the register data before execution of the application 

programs and merrory management takes place. 

A jump is then made to the M:ldula-2 initialisation routine. 

7.4.2 ~-2 Routine 

'!his routine is located at the batten of the boot EPRCM. Its main 

function is to minimise the use of assembler for system 

initialisation. It consists of two main functions: 
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* Initialise serial line interface. 

* Plant an interrupt retun1. vector. 

When the M:ldul.a-2 initialisation is over, a jump is made to the start 

of the application software. 

7.5 SYSTEM DEVELOPMENT AND OPERATICN 

The real-time kernel software has been written mainly in M:ldul.a-2, 

using the Logitech compiler [6]. The code size generated is 

approximately 5 Kbytes. The I:xJotstrap code (assembler and M:ldul.a-2 

initialisation code) occupies less than 1 Kbyte. The RCMable code size 

depends, eventually, on the size of the application program 

implemented and the imported kernel routines. A 32 Kbytes EPRQ.! is 

dedicated for this task. Fig. 7.4 shows the memory map of the 

processing system. Kernel primitive interactions, and operations 

within an application program are fully described in Appendix E. 

7.5.1 Ca!piling and Linking 

The m::x:lule 'MAIN-DISTKERNEL' relies in its operation on a number of 

imported, functionally grouped, m::x:lules. In their cx::rnpilation process, 

the definition m::x:lules must be cx::rnpiled in a specific order: starting 

with the lower level (hardware-related m::x:lules) and ending up with the 

higher level (functional tmdules). The order of these is as follows: 

* MAIN-HARD.DEF 

* MAIN-TIME.DEF 

* MAIN-OODE.DEF 

* MAIN-BUILD.DEF 

* MAIN-DIST.DEF 
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The implementation modules can be compiled in any order once the 

correspc:rldinJ definition rrodules have been canpiled. When l~, the 

top-IIOSt level rrodules need to be gpecified only. Linking options such 

as code and data segrrents must be gpecified so that the code generated 

can :nm =rrectly on the target systan (code and data segments used 

are 9800H and 83H regpectively). 
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CHAPTER 8 



8.1 GENElUIL 

In this chapter a number of system test procedures relatin:;J to the 

process of system design and validation are discussed. Sane of these 

routines validate the applicability of Modula-2 in such an 

environment. 

The various test procedures are designed and :lIrplemented in a specific 

order, startin:;J with the s:lIrplest procedures and ending up with the 

rrost sophisticated ones. This appnJaCh is :iIrportant since the final 

test procedures depend upon the initial test results. These tests are 

organised in the following order: 

* Processing Section - test procedures. 

* Camrunication Section - test procedures. 

* Overall System test. 

In this section a variety of hardware test procedures are discussed. 

These were developed to support the maximum processor configuration, 

i.e. the combination of the 80188 cpu, 8087 math unit, and 82188 bus 

controller (see Fig. 8.1). Nevertheless, most of the programs 

( excluding' the 8087 test programs) will run perfectly well on the 

minimum configuration, i.e. cpu 80188 cnly (see Fig. 8.2). 

140 



The main testing procedure CCI'lSists of the followi.n;J sections: 

* Basic processor test. 

* Oll.p select unit test. 

* 80188 timer test. 

* Serial line interface (DUART) test. 

* SRAM test. 

* !:MA cxntroller test. 

* Numeric processor extensicn (NPE 8087) test. 

* On-Board Interface (OBI) test. 

* Initial Bootstrap test. 

8.2.1 Basic Processm' Test 

The aim of this simple program is to check the operaticn of the 

follCMing sections and signals (refer to Fig. 8.3): 

* Address/data bus buffers. 

* Upper merro:ty block (EPRCM). 

* Single-step circuit. 

* Signal buffers. 

8.2.2 Chip Select Unit Test 

The purpose of this test is to validate the operation of the chip

select unit and signals through accesses (Le. memory and I/O 

read/write modes) to the different rnenory partition blocks. 

8.2.3 Prog:!allluable Timer Test 

In this test the different modes of the prograrnnable timer are checked 

for proper functioning. 

141 



8.2.4 Serial Line Test (1Xll\R'l') 

This test is needed in the early stages of systan test:in;J as it is 

used in subsequent testing. This, when functional, allcms test results 

to be displayed on a visual display unit (VDU). A list of the tests 

perfonned is sh:Mn below: 

a) Auto eclx>-rrode test. 

b) Transni tter tests. 

c ) Receiver-Transmitter test (CPU registers access). 

d) Receiver-Transmitter test (RlIM locations access). 

8.2.5 SRl\M Test 

In this test various memory search techniques are carried out to 

validate the access of mem:>ry blOOm (SRlIM). Ck1e of the routines is 

used to write a block of rand::m data to a specified Ill€IlDry area. The 

data is then read back and cx::rrpared to the data written. If the two 

data sets are different then an error message is diSPlayed on the VDU 

terminal. 

8.2.6 DMA Controller Test 

This test checks the operation of the DMA controller. The DMA 

controller can be programmed to be activated internally (un

synchronised) or externally (synchronised). In this test both cases 

are evaluated. 

a) Internally programmed [)MA requests 

[)MA requests are programmed to be internally activated using the [)MA 

control register. In this case, the output request lines (Le. DRQO 

and DRQ1) are cleared. Internal triggering of the [)MA transfer can 

originate with two sources, either fron the DMA controller itself or 

fron timer 2. Both cases are tested. 
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b) Exte=ally progranrned rM". requests 

External. I:WI. requests are activated by signals en outpJt request Unes 

(i. e. DRQO and DRQl). The rM". registers are first ] oaded with the 

source and dest.1natien addresses and then with the appropriate central 

~rd. An extemal rM". request has to be simulated, 00wever, for the 

rM". transfer to take place. 

8.2.7 Ntmeric Processor Exte!lsial (NPE 8087) Test 

The purpose of this test is to validate the operatien of the 8087 

processor and its interaction with the main 80188 CPU. The 8087 NPE is 

IX>t a stand-alone processor, but functicns as a =-processor with the 

8086 family of microprocessors. It has a separate instructien set 

being inter-mixed with the 00st instructicns as and where required. 

With such a configuratien sane mechanisn is needed to synchronise the 

operation and interaction of the NPE with the main processor. When an 

Intel 80188 is used as the main processor (as in this case) an 82188 

bus centraller provides the synchronisaticn mechanisn. 

Two cases make it necessaxy to synchronise the execution of the main 

processor to the NPE: 

a) An instruction that is to be executed by the NPE must IX>t be 

started if the execution unit of the NPE is still busy executing a 

previous instruction. 

b) The main processor should IX>t execute an instruction that accesses 

a marory operand being referenced by the NPE until the NPE has 

actually accessed the location. 
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Test programs are :in1;)lanented successfully to achieve both CCI1diticns 

above. Numerical processing is carried out by the NPE en data segrrents 

already stored in the main processor. Results are then stored in main 

mem:>ry. 

8.2.8 en-Board Interface (OB1) Test 

The purpose of this routine is to test the en-board interface (OBI) 

block. This is accomplished through message exchange using DMA 

transfer. These transfers are requested externally using lines DRQO 

and DRQl. The Serial camnmicaticns facility is used to provide a 

display of transmitted and received messages. Two main routines are 

:in1;)lanented: 

a) Transmit-rrode routine 

This routine is used to transni t messages fran the processing section 

to the OBI block. Messages may be requested through VDU keyboard. 

b) Receive-rrode routine 

The purpose of this program is to transmit messages fran the OB1 back 

to the pr=essing section. 

8.2.9 Initial Bootstrap Test 

Prior to constructing the full 1:x:lOtstrap loader, mentioned earlier in 

O1apter 7, tests were carried out to validate the sui tabili ty and 

applicability of M::Jdula-2 programs in such an environment (see Fig. 

8.4). These routines are located in the upper 8 Kbytes EPROM, 

subsequently dedicated for the 1:x:lOtstrap loader. The test procedure is 

as follows (see Fig. 8.4): 
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* Jump to upper 1 Kbyte area. 

* Set-up the various segment registers (Le. code, data, stack, ete). 

* Set-up the llleIllXY partiticn required. 

* In! tia1.ise the re10caticn register for llleIllXY map of CXl\1.trol block 

(once this is done, the control block can be accessed and 

prograrmted usin;1 llleIllXY-referenced instructions). 

* Jump to the start of the upper 8 Kbytes EPRGl area. 

* start executin;1 the M::ldula-2 test routines. 

8.3 aHl.N.ICATICN SEX:TICN - TEST PROCEOORES 

This section deals with the testing of the communication section 

hardware and the verification of the design (Fig. 8.5). The various 

elements of the design are split into their snall CXIDStituent parts. 

These are, then, tested individually. The main testing procedure 

consists of the fOllowing sections: 

* Simulation of the hardware operation. 

* PC8 checking. 

* Software Testin;1. 

8.3.1 Simulation 

Simulation pr=esses in the EPLD design package, Altera, facilitate 

hardware design verification. This simulation facility enabled the 

function of the CSM module to be tested before any hardware was 

CXIDstructed. The simulator provides only functional. simulaticn. These 

results are used durin;1 the implementation process to validate the 

design requirements. The timin;1s for the CSM m:XIu1e are provided in 

Appendix A. 
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PHOTO 1: THE ALTERA EPLD DESIGN PACKAGE USED FOR DESIGNING 
THE 'CSM' MODULE OF THE COMMUNICATION SECTION 

PHOTO 2 : A HARDWARE SCHEMAT I C ENTRY PROCESS USING LOGICAPS -
A UTILITY WITHIN THE ALTERA PACKAGE USED FOR HARD
WARE DESIGN 





PHOTO 3 : A DISPLAY SHOWING THE COMPLETION OF THE HARDWARE 
DESIGN PROCESS OF THE VARIOUS SECTIONS OF THE 
'CSM' MODULE 



To simplify the test process, tests are divided into several 

functional blocks. Although the llOdule is simulated as a unit, this 

division simplifies the understand:in;J of the test results. 

The following functional simulation tests are carried out (for a full 

des=iption refer to Appendix A): 

* Reset test. 

* Bus control test. 

* JlI1A centrol transfer test. 

* Receive node test. 

* Transmit node test. 

* Data read test. 

a) Reset test 

For every simulation nm, the CSM llOdule has to be reset before any 

active simulation takes place. This effectively simulates the action 

of the RESET* signal. The simulation =nsists of applying the RESET* 

signal for a ntm1ber of cycles and checking all signals then settle at 

the =rrect defined state. Various other inputs have to be specified 

( e. g. the processor bus control lines). 

b) Bus control test 

This test is deSigned to check the operation of the CSM module 

interface, that is the data driving circuitry for the processor data 

bus. Operations of the CSM nodule like data latch and data read are 

checked here. 
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c) DMA cont=l transfer test 

This test checks the operation of the latches responsible for the 

transfer of cont=l of the processor data bus during a processing 

section transfer. The triggering action is checked first. This 

involves check:!n;J the operation of the latch requesting bus control 

fran the CCI11l11ll'lication processor. Next, the two possible meth:lds for 

re-gaining bus control are tested. These being either an interrupt 

fran the processing section or a reception of the station's address by 

the system bus. 

d) Receive !lOde test 

This test sinrulates the action of a message reception. This starts 

with the station address being applied to the system address lines. An 

RXEN* is generated then. The Il'Odule under test then generates a BtJSY* 

signal until a write fran the processor sets the READY line. At this 

stage a transfer of several bytes is simulated. Finally, station 

address is rem::JVed fran the system bus. 

e ) Transmit rrode test 

This is the longest test which sinrulates the action of a message 

transmission across the system bus. The first step is a write 

operation by the p:r=essor to place the destination address on the 

system address lines. Then, a transmission is started when the 

simulator releases the BUSY* line. Transmission is ended by the 

sinrulation of an interrupt signal fran the '!MS Il'Odule. This has the 

effect of halting the transmission of data and also causing an 

inten:upt to the processor. 
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PHOTO 4 : A DISPLAY OF INPUT/OUTPUT SIGNALS OF ONE OF THE 
FUNCTIONAL SIMULATION TESTS IMPLEMENTED USING 
THE ' ALTERA ' PACKAGE 



f) Data read test 

The final test checks the rest of the llOdul.e sections. This includes 

the address recognition, and readin;} of intenupt status registers. 

8.3.2 POJ Checking 

After thorough inspection and finalisation of the hardware design and 

simulation, a decision was made to build a POJ of the ccmnunication 

section. The POJ was laid out marrually and then entered into the 

package (i. e. the 'Canputamation system') for plDtographic quality 

arm::,rk production. It MJUld have been possible to introduce autanatic 

checking of the design if this has been required. This is not 

attempted for t= reasons: 

* The highest level of checking would have involved the enhy of a 

description of the design, either in schematic or net list form. 

The production of which may take a very long time due to the very 

specific requirements of the package. 

* The lower level would have checked for physical violations, e. g. 

track spacing. 

P03 package entry is perfo:rrred in a logical fashion, based on entering 

functional groups of signals simultaneously. When the art design is 

entered, a multi-layer plot is produced for checking. This is done at 

a large scale (3:1) to aid the inspection of track clearances. At this 

stage both the physical and electrical routings of all tracks are 

checked. 
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PHOTO 5 : A COMPUTER AIDED DESIGN (CAD) PROCESS USED FOR 
GENERATING A ' PCB' LAYOUT FOR THE COMMUNICATION 
SECTION OF A STATION 

PHOTO 6 : A PRINTED CIRCUIT BOARD (PCB) VERSION OF THE 
COMMUNICATION SECTION OF A STATION 



8.3.3 Software Testing 

This sectioo. consists of a set of routines which are used to check the 

function of the various blocks of the communication section, as 

follows: 

* In! tial test routines. 

* QMlOO test routines. 

* Linetest routines. 

a) In! tial test routines 

These are similar to the test routines used in the processing sectioo.. 

They are established to test the processor and peripherals f= proper 

functioning. These include: 

* Basic pr=essor test. 

* Serial line interface. 

* SAAM test. 

b) QMlOO test routines 

In this stage, it is decided to use M:Jdula-2 in the testing pr=ess. 

To achieve this, the QMlOO routine had to be written and subsequently 

tested to support the M:Jdula-2 code. 

To check the QMlOO functioning, a program is written to test all the 

functions of the QMlOO emulation. This program is first tested on a 

a:M system and then on the target system. This is to ensure that the 

output is the same in both environments. 
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c) Linetest routines 

Once the OM emulation is successfully tested, the remai.n:ln;1 test 

programs are written totally in M:XIula-2. The 'linetest' routine is a 

general purpose, menu driven, test routine that checks access rrodes 

(Le. read = write operation) of variCXJS peripherals. The available 

functions are: 

* Write to Marory. 

* Read fron merrory. 

* Test a block of merrory. 

* Output to I/O device. 

* Input from I/O device. 

* start watchdog timer. 

All the above tests are s:imilar to th:>se described earlier in the 

previCXJS section (section 8.3.3-a), except f= the watchdog timer 

test. The purpose of this test is to check the watchdog timer 

operation. This routine sets up a DMA transfer to start the watchdog 

timer. When an NMI interrupt occurs, the proces= resets the section 

totally. This action is handled by code in the CFMlOO routine. 

8.4 OVERALL SYSTEM TEm' 

This section involves testing the various functions of the station as 

part of a system, Le. its interaction with other stations. Various 

denonstration tests ( called here 'Daro' tests) are established, all 

being written in M:)dula-2. What follows is a brief description of 

these demos: 
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PHOTO 7: A COMPLETE WORKING STATION (NODE) OF THE 
NETWORK - CONSISTING OF PROCESSING AND COMMU
NICATION SECTIONS 

PHOTO 8: THE MULTI-PROCESSOR DEMONSTRATOR SYS,TEM DEVELOPED 
AS A TEST RIG 



a) Dem:> one: 

This test validates the following functicns: 

* Message-exchange within the same station (i.e. between the 

camrunication and the processing section). 

* Message-exchange within the network (i.e. with other staticns). 

* Test and set-up the various hardware control signals in the 

camrunication section of a station. 

This demo is initiated and controlled from a keyboard/display 

interface, using menu driven facilities. This gives access to all 

routines supplied by the dare m:x'iule, being implemented at two levels: 

* 
* 

Upper level. 

LcMer level. 

i) The upper level is used to test for the =rrectness of message 

transmission. When a menu is selected for transmission, the 

destination and message form are asked for by the program. The 

program continually rronitors the system bus when waitirg for an 

input. If it detects a message addressed to the station, it 

receives the message then display on the VDU terminal 

subsequently. It then sends the message back to the calling 

. station, as an ackrx:Mledgement. This ackrx:Mledgement is, again, 

displayed as an ina::rniD;J message by the transmittirg station. An 

excessive use is made of the kernel and protocol routines in this 

level. 
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11) The lower level, selected by the upper merru, provides a direct 

access to the routines in the 'Signals' m::ldule. These procedures 

enable any of the hardware lines to be set, reset or tested. It 

also enables blcx::ks of data to be transferred into RAM lcx:atioos. 

b) Daro t;w:): 

'Ihis test dem:mstrates the o::mnunication and message-passing between 

the various stations of the network using the token passing bus access 

metood (TPBAM). The deITo is constnlcted using three network stations. 

The various stages of the token bus constnlction, described earlier in 

OJapter 6, are shown clearly in this deITo. 'Ihis includes: 

initialisation process (i.e. initialising the different boards), 

entering the ring (Le. start for first, start for not first, and 

start on plug-in), and finally ~ in operation node. Message

frame exchange is shown clearly in this demo. All messages are 

displayed on various VDU terminals. 
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CHAPTER 9 



9.1 

9.1.1 Loosely-Coupled Systens 

Both 100se1y-ooup1ed and tightly-coupled multi-processor structures 

are applicable to the area of real-time, multi-processing systans. The 

decision to use a loosely-coupled structure was based on the need to 

host a functionally partitioned environment. This stems from the 

following points: 

* 

* 

Loosely-coupled systans generally perform quite well as the rrumber 

of processors is increased. In cc:ntrast, most tightly-coupled 

systems experience severe performance rolloff fairly quickly with 

the addition of extra processors. One of the sources of this 

performance degradation is that the mechanisms ccmnonly used for 

concurrency control wo:tk by specifically restricting parallelism, 

thereby limiting the value of additional processors [1]. 

Loosely-coupled systems communicate only through the use of 

message-passing primitives. A spectrum of constructs are widely 

implemented. In tightly-coupled systems, !xlwever, message-passing 

and shared variable constructs may both be implemented. In 

practice the message-passing approach is used only infrequently, 

as in [1]; rrost tightly-ooupled systems actually implement the 

shared variable model [2]. This approach has a number of 

weaknesses due to the interaction of processes. First, bus 
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ccntentien can result fron process schedulin;1; f= :instan:::e, tasks 

may be engaged in a nonit= queue. Sec::c:od, ccntext or process 

switch mechanisms occupy the <XllllUl bus. This may also cause bus 

contentien f= a considerable period of t:ine, thus degrading the 

response times of other processes [2,3]. 

9.1.2 Functiooal Part! tiooing 

The importance of aoopt!ng a functional part! ti~ schane for real

t:ine embedded systems was laid 00wn in O1apters 4 and 7. The primary 

reasons for developin;;J a real-t:ine, distributed-program kernel f= 

such an environment are as follows: 

a) For real-t:ine systems, fast and deterministic resp:mses are 

essential. In this scheme this is achieved by implementin;1 a 

simple schedulin;1 policy that relies on allocatin;1 each sin;;Jle 

functional sub-task, together with a collection of user/server 

inten:upts, to a specific process= rx:de of the multi-process= 

structure. Carmunication between the rx:des takes place in a 

fast, secure and deterministic manner. This also eliminates the 

overhead and complexity associated with an intra-node 

schedulin;1 scheme. 

b) In nonnal distributed systems user PJ:ograms ccmnuni.cate through 

the use of remote-procedure-calls (RPC). This mechanisn is used 

because access to shared resources is frequently ccntrolled by 

specific procedures. Furthermore, some node functions are 

implemented not on the user rx:de, but as procedures en remote 

nodes. Thus, various procedures are distributed across the 

multi-process= system, where access to and execution of such 

procedures is carried on demand by the user programs remotely. 
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This policy is in direct contradiction with the nature of 

functicnal. parti ticning'. Here the functicnal. tasks are mapped. 

ento the various IXldes of the systan, which necessitates a 

similar distribution of system variables. Hence the kernel 

designed f= this project must manage inter-task ccmnunicatien 

and associated distributed variables efficiently and safely. 

This is quite different frcm the classical RPC method mnnally 

used with =dinary distriwted systems. 

c) The kernel structure used here eliminates the need f= the use 

or developnent of special multi-processin;1 c:anpilers (usually 

required by closely-coupled distributed processin;1 schemes). 

Individual software units (sub-tasks) may be implemented, type 

checked and c:anpiled usin;1 uni-processor ccmpilers. This was 

done successfully in developin;1 the real-time kernel. 

d) The implementatien of 'Time-SeIVer' routines within the kernel 

to provide synchronisatien of processes and local clocks across 

the multi-process= systan are simple and effective. This idea 
• is mt necessarily implemented in real-time ken1els. 

9.1. 3 Camunicaticn Features 

Inter-process= ccmnunicatien is implemented usin;1 an asynchron::lus 

message-passing mechanism. Simple and efficient constructs were 

implemented, allowin;1 both blocking (Le. wait) and non-blocking (Le. 

m wait) schemes within the applicatien task. Synchronous ccnstructs 

such as rendezvous and channels were not implemented. These are 

inappropriate to such a loosely-coupled systan (where messages pass 

through several intermediary sub-systems) as they impose a heavy 

demand en the real-time kernel software for their implementatien [4]. 
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The use of a ocn-c:ontenticn token passing bus access IOOtlxxi (TPBIIM) 

has been sh:Mn to be an effective ccmrunicaticn mechanism f= real

time systems. The TPBIIM is clearly well suited f= use in hard real

tirne envircnnents where deteJ:min:istic operaticn and system reliability 

are of the utnost :tmportance. 

9.2 JmRI:Ml\RE S'l'RlX:lURE 

During the course of this research progranme a loosely-ca.tpled llUllti

prooessor system was designed and iJrplemented. The system has been 

developed for use in distributed, real-time applications, three 

prccessor nodes (stations) being built to prove the concept. Each 

station consists of two processors, a Hitachi 64180 for handling 

ccmrunications and an Intel 80188 f= executing application programs. 

The follCMing are sane ccnments on the hardware: 

a) Processor node - hardware arch! tecture 

The hardware of each station is iJrplemented as a set of functional 

blocks. This design philosophy was adopted to facilitate future 

developnents. M:)reover, the design is prccess=-independent to allCM 

for replacement by enhanced of the same type or by new, various 

types. This applies for both the main and the communication 

prccessors . 

b) Use of advanced prograrrmable logic 

The use of advanced, high density progranmable logic devices in this 

project made a significant impact on the hardware aspects of the 

design. It minimised the chip =t and significantly reduced the 

circuit, hardware canplexity. This speeded up the developnent of the 

system and siJrplified the production of a PCB version of the system. 

161 



9.3 SOFlWARE STROC'lURE 

A software envirornlent to support functiooal partiticnin;J has been 

developed and implemented successfully on the multi-processor 

dem::Jnstrator system. 

The software has been developed and written mainly us~ the high 

level language Modu1a-2. This required the use of two standard 

ccmpilers; Fl'L and Logitech. No special multi-process:in;J features were 

required. The fOllowin::J carments apply to this software envirornlent: 

a) Use of c:::aT$?ilers 

'l'= ccmpilers were used in this envirornlent, Fl'L and Logitech. These 

are standard compilers, their library functions lacking features 

required by the software of embedded systems. Havever, the developnent 

of both system and application software for use in embedded system was 

successfully achieved in this project. Pri= to this an investigation 

was made into the sui tabili ty of these ccmpilers for use in er(1hedded 

systems. For the FTL compiler a run-time environment (CPM100) 

emula~ features of the CP /M operat~ system had to be specially 

developed f= the project. 

Similarly, the Logitech ccmpiler package required adaption; particular 

system IrOdules had to be modified for use in this embedded application 

(e.g. the I/O nodule and the Storage nodule). A bootstrap loader was 

also developed, partly in M:x:lu1a-2, f= use with application tasks. 
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b) Software envi:ccnnent 

The CCIIIl1IJIlicaticn protocol nodule and its run-time supper l have been 

developed and run successfully. M:x'eover, the real-time kernel nodule 

is fully designed and inplemented, ready for use with an approptiate 

application task. The flexible software methods of handling data 

within the system eliminate certain synchra1isin;J operatioos which are 

essential parts of sane other distributed-kernels [5]. Overall systan 

functional demonstrations have been developed to prove the 

applicability of this envi.rorInent. 

9.4 APPLICABILl'IY OF MJlXJlA-2 

The reasons for adopting M:Jdul.a-2 in this project were already given 

in Olapter 4 (refer to secticn 4.5.4). M:xhila-2 has been found to 

provide a suitable envi:ccnnent for the design of the software for a 

real-time, aTIbedded multi-processor system. It provided a sound basis 

for constructing a software design based on functional parti ticnin;J 

and message-passin;J primitives. 

The adoption of 'M::ldules' as the main unit of partitionin;J of software 

canponents was found to be rrost helpful in processin;J and allocating 

software components on different target processors. Further, the 

ability to separately ccmpile such nodules considerably speeded up the 

developnent process. 

The followin;J enhancements to the lan;}Uage sOOu1d be made to further 

support work in the area of real-time, distributed applicatioos: 
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* An exception handling mechanism. 

* Rerote procedure invocation and resunptien (using a m::x:lified 

ooroutine mechanism). 

9.5 OVERALL aMoIENl'S 

The following points are based en the experience gained in designing 

and developing the IIU.llti-pr=essor system: 

a) 

* 

* 

* 

* 

Architecture 

Loosely-coupled, multi-processor systems readily and simply 

support real-time, functional partitioning schemes. 

The system can be used for geographically distributed processing; 

this is facilitated through the use of its in-built serial 

ccmrrunications feature. 

A real-time, distributed-program kernel is an essential feature 

of functional partitioning schemes implemented within loosely

coupled systems. 

Asynd=nus message-passing is a suitable means for distributed 

programs to ccmrrunicate in a distributed environment. Synchromus 

oonstructs such as rendezvous and channels are not appropriate 

for use by loosely-ooupled systems. 

* For distributed hard real-time systems, detenninistic use of the 

communication medium is considered to be an essential 

requirement. The token passing metood, being a non-contention 

detenninistic scheme, is clearly well suited for use in such 

environments . 
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b) 

* 

* 

c) 

* 

* 

* 

* 

* 

Hardware structure 

Significant flexibility is achieved by allowinJ the hardware 

design to be specified and irnplanented in functional blocks. This 

enables future modifications to take place easily and more 

efficiently. 

EPLD devices minimise hardware CCII'plexity, and reduce chip COlIDt 

imnensely. 

Software structure 

Standard CCII'pilers can be IlOdified and used efficiently in real

time, embedded applications. 

Modula-2 is a highly suitable language for use in the prograrnning 

of real-time systems. 

Modula-2 can be adapted for use in distributed processor 

environments, despite its lack of full =t constructs. 

Managanent of inter-task camrunication and associated variables 

is implemented efficiently and safely through the use of 

'Distributed-Variables' within the real-time kernel. 

The camrunication modes of operation (transmission and reception) 

are effectively irnplanented in the real-time kernel. Transmission 

mode is serviced as part of the background process, whereas 

reception m:Jde is serviced through an interrupt handler. 
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9.6 :ruruRE t«lRK 

The following hardware rrodifications sOOul.d be made to :iIrprove system 

perfonnance: 

* 

* 
* 

Increase the data transfer rate between the oc:mnunication and the 

processing sections (LW>. rate increase). 

Use transparent dual port RAM. 

Increase the oc:mnunication processor (64180 CPU) clock speed. 

The data transfer rate can be increased by using a 16 MHZ clock for 

the 80188 CPU. 'Ihis increases the LW>. transfer rate to 1 M Byte/s. 

The system perfonnance can also be improved by replacing the current 

dual port RAM ('lMS9650) by one which allows simultaneous access fron 

the two ports. 'Ihis will reduce the delay experienced when a station 

is transmitting a message to a station which is busy exchanging 

information with its processing section. 

The 64180 CPU speed can be increased to 10 MHZ. 'Ihis rrodification 

reduces the set-up time needed to prepare a message for transmission. 

On the software side, the following enhancements are highly desirable: 

a) Integration of a multi-tasking, real-time executive 

In the model developed so far for functional partitioning the total 

system function is defined as a set of cooperating sub-tasks. Each 

sub-task: is then mapped onto one n:xle (or processing section) for 

further processing. 'Ihis sub-task runs as one main process (refer to 

Fig. 7.3 ) • I f this main process was further structured as a 
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=llecticn of cx:x:pera:t:!n;J processes a 'nul.ti-taskin;J' kernel wa.lld, 

then, be needed to schedule and manage the processor resources, 

leading to increased software CCIIPlexi ty and add! ticnal overheads. 

Nevertheless, in larger applications, where more than CI1El sub-task may 

reside in each node, the introduction of such a nul.ti-tasklng' kernel 

is highly desirable. Hence, this facility sl'xJuld be integrated with 

the distributed kernel already developed. 

The nul.ti-taskin;J executive has already been designed and developed 

for an anbedded system usin]' M:ldula-2 [6]. 

b) Improving the software develcpnent env1ronrrent 

Developnent and testin]' of the system software is a CCITplex, time 

=nsuming task. Six processors (excludin]' 8087 math =-processors) 

have to be monitored simultaneously. Furthermore, six EPRCMs have to 

be blown in each modification. Improvements to the development 

environment in general can be achieved through points mentioned 

earlier in O1apter 1 (refer to section 1.1). Specific iJrq;lrovements, 

h:Jwever, can be achieved by: 

* 

* 

DownloadinJ programs directly into the target system. '!his is 

achieved through the use of an EPRQI1 emulator to speed up EPRQI1 

developnent process. 

The introduction of program debugging t=ls dedicated for use 

within distributed environments. These, at a minimum, should 

consist of a traditional debugger for sequential processes, 

together with a master debugger residin]' on a h:>st system fron 

where the user interacts with the system. The system should 

support symbolic level debugging on the h:>st, and slDuld have 
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knowledge about component and process relationship. More 

sophisticated techniques sOOuld be developed to derive perfonnance 

analysis results fran the target systan. 

c) Fault rec:ove;Y methods 

Currently, a watchdog timer mechanism is used to provide system 

restart in case of program failure. This is a powerful, defensive 

mechanism used in fault reo:::NerY. With less catastrophic situatioos, 

~, a fault reo:::NerY mechanism sOOuld be developed to handle 

errors as they arise during task execution. Thus, the need for 

exception handling mechanism in such cases is essential. One way of 

implementing this mechanism is to enhance Modula-2 with such a 

construct. 

9.7 A FINAL SI.M1ARY 

The outcane of this research project has been the developnent and 

implementation of a fully operational multi-processor systan for use 

in hard real-time applications. The conceptual and practical aspects 

of a new technique for program structuring, that of functional 

partitioning, have been proven. A distributed-program kernel has been 

designed and implemented to support this technique. Considerable 

enhancements have been made to the software structure of the inter

processor conununication mechanism. Extensive hardware design, 

developnent, build and test have been carried out in order to produce 

a 3-node processor system. Programning was perfonned in both assembly 

and high level languages. Tt..u high level language c::arpilers were used; 

both required extensions to fully cater for the needs of real-time 

embedded applications. 
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Al'PElmIX A 

SYSTEM lmRDWARE DESIGN 

A.1 aMoIlNICATIW smrrw DESIGN 

Des=iption of the camrunication section is sh:Mn in three successive 

sheets. Circuit diagrams are sh:Mn at the end of the section. 

A.I.1 Sheet 1 (refer to Fig. A.1) 

This consists of three main parts: 

* 
* 
* 

CPU block. 

Menory block. 

Main-processor buffer. 

a) CPU block 

'The design is centred a=und a 64180 Hi tachi processor. 'The system 

runs at 6 MHz derived fran a 12 MHz crystal. 'The processor requires a 

lOW' reset signal. This is generated fran a standard RC ccmbination 

with a time constant of 100 mS. 'The diode is added to discharge the 

capacitor faster in the event of a sh:lrt collapse of the power rails. 

'The processor can be reset m::rnentarily by a switch SWl. 'The reset 

signal generated is also used to reset the CSM nodule. 

'Two interrupt lines are used in this design; INl'1* and NMI*. INl'1* is 

driven by the CSM nodule on sheet 2. 'The rx:nnaskable interrupt, N'lI*, 

is controlled by the circuitry on sheet 3. 

182 



'n1e processor has two asynchroncus serial COTI11UI'lication channels. A 

use is made of one channel only. 'n1e channel is used for m::nitorin;J 

the system status. The TX and RX lines from the processor are 

buffered/transmitted via the RS232 driver/receiver rrodules, M6 and M7. 

b) Malo!)' block: 

Two main mellory devices are used by the processor. 'n1e system is 

designed to utilise a 64 Kbytes out of the available 512 Kbytes merrory 

address space. This is equally divided between a 32 Kbytes EPRCM, Ml, 

and a 32 Kbytes RAM, M2. It is possible to use a smaller RAM if 

desired (e.g. 6262) this has to be positioned, 00wever, in the secxxld 

and fourth 8 Kbytes segment of the 32 Kbytes space. 

'n1e 64 Kbytes of memory address space is repeated throughout the 512 

Kbytes of available address space. Both merrory devices are enabled by 

the processor signal MEM* • 'n1e action required by the appropriate 

device, Le. read/write operation, is controlled by the CSM rrodule on 

sheet 2. This activates the EPR01 and RAM via the lines EPRCMRD*, 

RAMRD* and RAMtJR*. 

c) Main-processor buffer 

This buffer, 74HCl'245 , represents the interconnection between the two 

processors' data buses. The OBI interface control circuitry is 

described on sheet 2. This buffer is =nnallY disabled by the BUSAa<* 

signal. When a transfer of infonnation is requested, 00wever, the CSM 

enables the BUSREQ* signal low. The communication processor then 

responds by enabling the BUSAa<* signal thus enabling the buffer. 'n1e 

direction of the buffer is controlled by the OEA* signal. 
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A.l.2 Sheet 2 (refer to Fig. A.2) 

This sheet contains the CSM module, the TMS RAM, their support 

cx:rnponents, and the system bus drivers. Description of the CSM here is 

limited to its input and output lines. Full details, h:Jwever, are 

given next section (A.2). 

The CSM rrodule interface with the carrnunication processor is based on 

the following lines:-

LINES 

IOE* 
EINP 
avR* 
CRD* 
Al3-Al5 
INl'l* 
RESET* 
DO-D4 

TABLE A-I: CSM INI'ERFACE LINES 

DESCRIPl'ION 

A line indicating a read/write to I/O address space. 
A synchronous clock: signal fron the processor. 
Processor's write line. 
Processor's read line. 
Processor's address lines used for decoding. 
Processor's interrupt line driven by the CSM rrodule. 
A line used to reset the CSM rrodule. 
Part of the processor's data bus. 

The CSM module also drives back three lines EPROMRD*, RAMRD* and 

RPM'JR* used for address decoding of the memory block:. 

The CSM rrodule =ntrols the interface between the processing section 

and the '!MS rrodule via the lines MAINRD*, MAINWR* and MAINCS*. The 

processing section interrupts the carrnunication processor via the line 

DMAREQ. The carrnunication processor initiate transfers between the '!MS 

rrodule and the main processor via the lines I:MAO and I:MAl driven by 

the CSM rrodule. 
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Eight systan bus lines are directly coonected to the CSM m::XIu1e as 

sb::lwn in Table A-2 belCM. These initiate actions within the CSM m::XIu1e 

and may be interrogated by the ccmnunication processor. 

LINES 

SSO-SS3 

SSS* 

SWRT* 

BUSY* 

START 

TABLE A-2: SYSTEM BUS LINES 

DESOUPl'ION 

The systan address lines. 

This is one of the four lines used to exntrol the action 
of different stations with respect to the data on the 
address bus. This line indicates that an address is 
be~ output by a station trying to transnit. When it is 
active all stations should canpare their address lines 
to see if they are being addressed. 

This line acts as a write strobe. It is exntrolled by 
the station transni ~ a message and is used by the 
receiving station to clock the data fron the system bus 
into the scratchpad RAM. 

This line is used in the synchronisation process at the 
start of a transfer of a data frame. The line is 
exntrolled by the station to which the data is be~ 
sent. When a station wishing to transmit sends an 
address then the addressed station holds this line 
active until it is ready to receive the data. It then 
de-activates this line. 

This line is only used during the initialisation process 
of the system. After power up the logical ring must be 
formed for token passing. This signal is used to 
synchronise this action. 

All the lines sh:lwn are either driven by tri-state buffers or by tri

state buffers connected to act as open =llector drivers. 

The station address is set by a set of select switches. An oscillator, 

either 16 or 8 MHz, is sb::lwn in this sheet. This is used within the 

CSM module to generate the timings for data transmission by this 

station. 
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· 'I1le two ports of the 'IM> block are controlled by the CSM rrodule. Port 

A is used for communication with the communication and main 

processors. It is controlled by the three lines CSA*, OEA* and WEA* 

generated by the CSM rrodule f= read/write control. 'I1le 'IM> rrodule has 

eight registers that must be addressed using the ASO-2 lines. 'I1lese 

are latched outputs from the CSM module. The TMS interrupt line 

'IM>INr* is used to generate an interntpt at the end of a transfer. 

Port B interface is connected exclusively to the system data bus. Its 

operation is again controlled by the CSM rrodule through the lines 

CSB* , OEB* and WEB*. Generation of these lines is cOntrolled by an 

oscillator during a transmission cycle, once operation is enabled by 

the communication processor. During message reception, lines are 

controlled by the system line SWRT* and the recognition of the 

station's address on the system address lines. Port B address lines 

are permanently grounded since the only action required is a 

read/write operation. All other control information is written into 

the 'IM> rrodule via P=t A. 

Port B data lines are connected to the system bus through a bi

directional buffer, M4. This buffer is controlled by the same signals 

used to control port B interface. It is enabled by CSB* line, the 

direction of transfer bein;1 controlled by the OEB*. 

The 'IM> rrodule has additional features l'Xlt being required by this 

design. Also certain signals have to be pulled to certain levels to 

enable the operation in a desired mode. In particular the LOCKIN 

signals for both ports are pulled high and the signals Ml and M2 are 

connected to a CR canbination to provide a reset signal f= the 'IM> 

rrodule. The time constant is small en:l\lgh to allow block reset before 

initialisation starts on. 
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A.1.3 Sheet 3 (refer to Fig. A.3) 

This sheet sOOws the watchd:Jg tiloor which may IDt be required for all 

applications. If it is rDt required, hcMever, then the r-MI* inten:upt 

line may be pulled high via the IlD\Iable link en the card. 

The watchdog timer is in fact a ITO£X:lStable formed around the 74Hcrl23, 

nodule M12. The trigger input of the ncn::>stable is coonected to the 

canparator M11. This canparator generates an output when the =rrect " 

action takes place en the bus. This has the effect of triggering the 

rron:JStable. If the m:n:>Stable is allowed to time out then an r-MI 

interrupt =. The idea of the circuit here is designed to be 

oonstantly retriggered by the software before it times out. If the 

system fails to function properly then t:ime-out =, and a n::n

maskable interrupt (NMI) is generated. The resulting exception 

response is user defined; in this irrplementation a program restart is 

initiated. 

To trigger the monostable, the comparator needs to be enabled by 

reading the correct address in menory. The CCJIl)arator is enabled by a 

read to the EPID1 address space via the EPRa1RD*. This read operation 

must also have the address lines AO-A6 and Al8 set high to generate an 

output fron the canparator. Lines AD to A6 are relatively easy set 

high during this read operation. Line Al8, hcMever, never goes high 

during rDrmal system operation. To enable this to occur the memory 

management un! t within the camrunicatien processor would have to be 

prograrrmed to locate 4K of the logical menory address space in the 

upper half of the physical address space. Alternatively, a DMA 

operation has to be initiated. This, in fact, may be the best way to 

reset the tiloor as all the ~ pointers may be left set up and a one 

byte transfer is sufficient to accanplish the task. 

187 



~ 

(Xl 
(Xl 

-

-

I-

f-

l-

c-

I-

l-

l-

l-

I I ~ I I I I I _I I I I I 
/1 

HIGH • OENOTES I~ PULL UP TO +5V 
SHEET i! 

I .. IUSIIUlo .. , .. , 
!.!" U 01 ." IUUU- .UU(.::-
~. 11 J!!. 

2 :s , .. It • • .. ~scu "1151"1 ~ ~ , .. 
~tStT· , • ~ "T&t i!! It 7ItHCT , .. f2!. ,- ~fi ~ s C!1t.5 IS~ 

51 
UI .... L... 

r: [lHf" SHEET i! i!! .. "" I"'~ .. ,·,0 lt'AI,. • ~ • 11f!!-.. Hit- CIlIt" 

ItO- ClIo- f!! • .1 f!!. 
~J 

.. 
--

15~ •• .. .. f!! 
11 ,.,' - L- ',. to!! ., ... 

• [ T 
.. T b~18~ " r!.! 

N till.!.:. -L .. f!! 
tU " .. ,_ -

.. ",- , N3 

" ~ ~ HI6H HlITa· • .. ~ 
~ '""- 'NT!' .. .. ~ ,!!. .. , '" '50 ~. v. HI6H 'ftTt-

" .. Ht"-
~ .. ~" It..!! f!!.. .. ru- t!!.s , .. SS 1"~ 
r!!.' ~ ... • IS..!! • , 'U·I ., 
~ ... .. .D< f-!!.7 .. III~ t!l • j.!!. 

11~ 
t!!. • ~" CSWAY 0 CONNECTOR 

II~ to!!. • 2725b 11 01 t.!!. .. b225b , .. eq ." r!!- ~ u~ ~ .. .. 
! .... , u~ HI N2 • , .. t!! ,. 

u~ t!! .. 
"' , ll~ 

~ ~ .. O> IS~ .. " ,., u~ 
I t!!-'" n~ r!!. '" 

'~ - 1'1 j!!! r , 
17 r-- r • - to. j!!! 

f!. .. II~ r .. - n~ - f!. " '''F f!!." I 
tIo~ 
17~ 
II AIS 

JI~ 

J ~ J j J---J I I J I I I I 

Fig. A.l COMMUNICATION SECTION HARDWARE DESIGN - SHEET 1 

I I 
OU'-

riM 01 , 
> f!!'H 01 Z ,..-

r!!'" Of: ~ 
~ 

~I" DJ 0 
n 
~ 

"AI'" 0'" ~ 
~ 

~I" os 0 I-~ 

~I" 0110 

I!!I" 07 

- ~ 

"]! I-
1t"'"1t0- "" 

111,""'.- 1\1 

~.us ... 
E~ 

l-

I-

.. ru- -.. ~ 
" ~ -
I1 01 

Il~ 
I-11 t2!-

IS t!-
I. r2!-
17~ 

I-I'~ 
I'I~ 

SHEETS 2 :t 3 

AOOQ(SS IUS 
I-

I I 



I I I I I I I I I I I L ~ ..l .1 
HAIN PROCESSOR 

I - I I r-
HIGH IIIGH 

f- , .. '5= ..l.l "" ... r lOC':IN" -H" ,,, , " DSC --• • 
= · " " • " 0 • • 

= 
• • : • : "lA- 11 " 

101(1' • • ~ ~ , , , • • cs,,· e5l-

JlI"'LI~ ~ ; ~ " • " SHEET I • f- DU- , " on· DU' r-

" "''''SlII~'1 !Ii" n SI 

r- ID[' .. 
[IN" 

... • .. ~ 
r- .. t-.. ~ '" , 

" .!.!L. cwt· 11 
tlO- " cs.' m • " ~ .. 

,us'ro- u DU.' 
~::-, [SM 9b 50 • .. '" '"SIIIT' .. - BAnPLAN( 'IS 

f- I - .. r-... , 'SI 
MS .. ... "' ~ 

MEl ... 
'" .. .. .!! It .. ... .. 11 , .. . .. .. .. - I"" . .. 'HSIIIT-

;!.!. ... .. .. .. , 
HIIH --1 " .. " • " IUf" . , .!! .. " 

... .. .. • .. " .. l- t-[~'O".o· .. .. STIr,1T .!! 11 .. ... .. IS 71ooHc:T I .. .. , . 
• ,,"to- .. " 

lUST' .!! .. .. ... " .. , .. • " " .. 
1,1./11'.- .. .. SWIf' t!! " .. ... " " M, , " " " '- " , 51t 17 IS 1"15""5551> bl 11 ~7 t!l " .. 

sss· .!! 11 .. ... o. If • .. o. .. f- r-OIOllnlnlh ; ; ; 1: ~ I~ I~ I~ 
.!! .. .. '" " " 

, " " ,. 
0 • • : ! • • ... ... ... ... 

IIU" • • ... "" ... lit . - '" ... 
HIGII Shl!l .,. 
HIGH _ I-

I- IIIGM _ IUS" co· r-
• • • , swllT • ," s", 

555 . .n , • , • I I I I I r-

-:!:- ea·, 
~HEEl I SS. ell -

Ca~' O.l.U 'uS 
L!.!!oc~ t-

I I I I I I I I I I I -.l I ..1 I 

Fig. A.2 COMMUNICATION SECfION HARDWARE DESIGN - SHEET 2 



I I I I I I I I I I I I I I I 

f- -

- -

- c--
r"o"lo· I ·,1 fDul _HIGH .. 0' ,,' .. 

" ~ .. O • S • t!!...... f- ;: " O. .. .. ~ C-

. ; - .. 0, , lit-HeT • ~ ... •• 0' .. bBB .. ~ . , O. 7 H' I .. • t!!...... - •• O. 
" ~ 

-.. . " os • • ~ l-

f- c-

c-- I-
SHEET I 

""I-.. , .. 0 

I- ~." f-1ltHeT • • u .,c • 
.. A""LIUTlDH SPfCI'IC , .. 

CLIt· I 

"" I\~· 
- -

f- -

I I I I I I I I I I I I I I I 

Fig. A.3 COMMUNICATION SECTION HARDWARE DESIGN - SHEET 3 



A.2 CSM MJruLE DESCRIPl'Ia-I' 

The CSM EPLD module, an Altera EP1800, controls most of the 

processor's support functions and the system bus interface. What 

follCMS is a descripticn of the nodule circuitry. 

A.2.1 MOdule structure 

The EP1800 has 48 macro cells each containing a logic array, a 

register and an output buffer (refer to Figs. A.4 and A.5). There are 

also 16 dedicated inputs. '!he nodule is divided into four quadrants of 

twelve macro cells each. Feedback is possible between the different 

ma= cells of each quadrant. Within the different quadrants, feedback 

is limited to four output feedback lines per quadrant. These must be 

fron the I/O pins, as opposed to a functicn before the output buffer. 

This limits the flexibility of fi ttin;;J a circuit into the rroduIe as 

there is a high degree of inter-connectivity required in the circuit. 

A.2.2 Sheet 1 (refer to Fig. A.6) 

This sheet contains all the address decoding circuitry apart fron the 

watchdog timer. The Hitachi 64180 has two main address spaces, Crl9 for 

the merrory and the other for the I/O space. The merrory address space 

is 512 Kbytes while the I/O space is 64 Kbytes. In this design 64 

Kbytes of the merrory address space is used and is divided into two 

segments by the decoders on this sheet. Five registers are decoded in 

the I/O space to control the hardware. The sixth register is used 

internally by the pr=essor to control timers, etc. 

Three signals are generated to control the 64 Kbytes of address space 

used. These repeat within the available space (512 Kbytes). The lower 

merrory space is used to mId the EPRCM, while the upper is used .mb7 
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f= the RAM. When the processor attempts to access the mem:uy space it 

enables the MEM* signal which is taken direct to the IlIEIIOZY block, 

i.e. both EPRa1 and RAM. Different marory operations are oontrolled by 

the signals EPRCMRD*, RAMRD* and R1\M>IR*, generated by the CSM module. 

These are decoded fron the address line A15, used to separate the two 

rnefIOJ:Y devices. 

The 5 registers within the CSM nodule, each =cupying 8 Kbytes block, 

are decoded in this sheet. They are addressed using the address lines 

Al5, Al4, and Al3. These are gated with the IOE* line from the 

processor specifying that an operation is required in the I/O space. 

These five registers, activated f= both read/write operations, are; 

'!MS DATA REGISTER, '!MS ADDRESS REGISTER, STATION ADDRESS REGISTER, 

CXM1S CONI'ROL REGISTER and IMA INl'ERRUPT REGISTER. 

Three other oontrol lines lie within this sheet. The EINP line is the 

E line fron the pr=es=. This is a synchrc:lrxJus clocking line used in 

association with the other lines on the bus to latch-in data. The CRD 

and CWR lines are used for read/write operations. 

A.2.3 Sheet 2 (refer to Fig. A.7) 

This sheet oontains the logic design for the ccmnunications oontrol 

register (CXM1S CONI'ROL REGISTER). This handles rrost of the signals to 

start or stop actions and also to enable the read operation of various 

status lines. The register select line fron sheet 1 is sh:::Mn at the 

top of the sheet and is gated with CXM1SRD line to determine if a read 

operation is required. This generates the CXM1S REG RD line which 

enables the appropriate status lines to pass data to the OR gates, 

oontrolling the output of the processor bus on sheet 7. When l'X) read 

operation is taking place these remain at logic zero. The status lines 

are as follows: 
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TABLE A-3: o::r-M) OJNI'ROL RroISTER (READ) 

BIT 

DO 
D1 
D2 
D3 

RroISTER 2 ADDRESS 4000H 

DESCRIPI'ION 

START 
'lMSINr 
RXEN 
MAININl' 

The line START is a system bus line used dur~ initialisation to 

indicate the status of the overall system. 'lMSINr is the interrupt 

line fron the 'lMS9650 s=atchpad RAM. This is only enabled dur~ data 

transnission and is latched elsewhere in the CSM m::XIu1e bef=e be~ 

read via this register. The RXEN line indicates that a valid system 

address, corresponding to this station, is indicated on the system 

bus. MAININT line indicates an interrupt by the main processor 

normally requir~ a It<1A action. The last three lines also activate 

the processor's INr1* line. 

Four latches are sh::lwn in this sheet, be~ used when the processor 

writes to the register. Shown also is the wait latch. The signal is 

inverted and then latched when a '1' is written to the wait latch. If 

the output of this latch is a '0' then this activates the buffer and 

pulls the START line low. This indicates that· this station is not 

ready to start r~ initialisation. Data is inverted before be~ 

latched to avoid problems at power up or reset. When the CSM m::XIu1e is 

reset, the RESET line, goes high for a shxt period of time. This has 

the effect of c1ear~ this latch and so indica~ that this station 

is not ready. 
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Latches ooonected to Dl am D2 are of a standard D-type used f= the 

control signals READY and SELECl' used elsewhere in the llOdule. These 

latches are clocked by the same signal as the WAIT latch. 

Data line D4 is used for the STX latch. This latch is fanned fron a 

cross coupled NAND gate latch as it requires special clear inpJts. The 

latch effectively has cne generated clock inpJt, a data inpJt and two 

clear inpJts. The effect of the series of AND/NAND latches is to reset 

the STX output of the latch whenever the llOdule RESET Une = the 

'!MSIN!' line are active. When neither of these lines is active, data is 

clocked into the NAND latch by a clock signal. The STX line requires 

two resets; one is needed to set to a reliable state after a llOdule 

reset and the other is needed at the end of a system transnission 

cycle. This rem::J\I9S arry constraints placed upon the processor as to 

the order in which the STX, READY and interrupt lines nrust be cleared. 

Clocking the 4 data latches is generated by the COMMS CONTROL 

REGISTER, CXlVMS WR and EINP lines. The CXlVMS CONTROL REGISTER and 

ro.MS WR lines go active at the start of a write operation to this . 
register. Data at this time, h::Mever, is =t guaranteed stable on the 

data lines. The EINP line, generated by the processor, is a delayed 

synctrrooous clock that delays clock:in;J the data latches until data 

lines are guaranteed stable. The 4 written latches are: 

TABLE A-4: CXM1S CONTROL REGISTER (WRITE) 
REGISTER 2 ADDRESS 4000H 

BIT DESCRIPTION 

DO WAIT 
Dl READY 
D2 SELECl' 
D3 
D4 STX 
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A.2.4 Sheet 3 (refer to Fig. A.8) 

This sheet contains the logic design responsible for sett:in;l' this 

station's address and also the driving and reception of the system 

address lines. 

AND gates, on the right hand side of the sheet, are used for readin;J 

the station's address lines ADDRO-3. Signals from address select 

sw! tches pass both to these AND gates and to sheet 8 for address 

reoogni tion. AND gate outputs reflect the state of the ADDR lines when 

the register is correctly addressed and a RD operation is in action. 

This is determined by the state of lines STATION ADDRESS REGISTER and 

CXM1S RD, which generate the line STAT REG RD. AND gate outputs pass 

to OR gates controlling the system bus output on sheet 7. 

System address lines are controlled by a set of 4 latches shown in 

this sheet. Four address lines are driven by this station. Buffers are 

controlled by the line SAEN, generated by a latch. All five latches 

have a CCllIlOI1 clock line generated by a write action, being determined 

by CXMVIS WR and the register select signal STATION ADDRESS REGISTER. 

At the rising edge of this clock signal, data is latched-in by the 

five D-type latches fron the data lines 00-4. If a '1' is written to 

the SAEN latch bit 04, then the output of this latch will place the 

output of the other four onto the system address lines INPSSO-3 by 

enabling the tri-state buffers. The value of these lines is also 

passed to sheet 8 for address recognition. This is the signal used for 

reading other station's address placed on the system bus. 

The SAEN latch is cleared by the IOOdule RESET line, disabling the four 

address line buffers. This avoids any conflicts between stations 

during a reset or power on. Address latches are not reset as their 
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state is changed by the write operation enab1in;J the SAEN line. Data 

read/written to this register is: 

TABLE A-5: STATIOO ADDRESS RmISTER 
RmISTER 3 ADDRESS 6000H 

BIT READ WRITE 

DO ADDRO INPSSO 
D1 ADDRl INPSS1 
D2 ADDR2 INPSS2 
D3 ADDR3 INPSS3 
D4 SAEN 

A.2.5 Sheet 4 (refer to Fig. A.9) 

This sheet contains the logic design for the 'IMS block read/write 

access operations, both by the main and cc:mnun1cation processors. 

Processor control over the '!MS module is detenni.ned by the SELECl' line 

status; a '1' for the cc:mnun1cation pr=essor and a '0' for the main 

processor. In the case of a ccmnunication processor's access, the '!MS 

CSA* line is enabled when the 'IMS DATA register is addressed. Then, 

determined by the state of the rotMS RD and CXM'lS WR lines, either the 

OEA* or WEA* lines to the '!MS module are activated. In the case of a 

main processor's access, the CSA* line is now controlled by the 

MAINCS* line. The OEA* and WEA* lines are controlled by the MAIN RD* 

and MAIN WR* lines fran main processor. Nonnally, the SELECT line is 

set high givin;J the ccmnunication pr=essor the right to access the 

'!MS module and set up the address line regiSters. The SELECT line 

resets 1=, h::Jwever, enab1in;J the main processor to access the '!MS 

module after a reset operation. 
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A.2.6 Sheet 5 (refer to Fig. A.lO) 

'I1rls sheet contains the logic necess~ to control the transfer of 

data over the system bus. 

A cl=k signal, supplied to pin XTALl6, is used to control (i.e. 

cl=k) data across the system bus. The cl=k signal is divided by 2, 4 

and 8 to give the three timing lines A, B and C. Frcm these t:1m:!n;1 

lines three further lines are generated. The 'l'XCLClCK line is generated 

when A, B and C are all lcw, its rising edge indicates the start of a 

transmission cycle. This clock line is used to clock a latch 

in! tiating transmission on sheet 9. 

Two further signals are generated at specific times during a 

transmission cycle. If the signal TXEN, fron sheet 9, is active then 

these timing signals drive both the OEB* and SWRI'* lines to the 'IMS 

and system bus respectively. 'I1rls line is, then, used by the receiving 

station to latch-in data. If the system is in a reception mode, 

however, then the SWRT* line is routed to drive the WEB* line of the 

'IMS nodule to latch-in data fron the system bus. 

A.2.7 Sheet 6 (refer to Fig. A.ll) 

This sheet contains two separate logic sections; management of 

processors control over the data bus, and the generation of the 'IMS 

address lines. 

Data transfer between the 'IMS nodule and the processing section is 

requested either by the ccmnunication or the main processors. Prior to 

a 'IMS access, the ccmnunication processor releases the bus preparing 

for a data transfer. Following this, the communication processor 

monitors two states: an end of transmission signal (EDT) by the 
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pr=essing sectien, and a P'SSibl.e netwar:k tnessage received by the 

systan bus. In case of a IOOSSag9 receptien by the systan bus, the '!MS 

transfer is suspended until. the netwar:k message has been serviced. 

For a rMA transfer to take pl.ace, the ccmnun:I.catioo pr=essor writes 

to the rMA intenupt register. This is indicated by the rMA INl'ERRUPl' 

RmISTER and CXM1S WR l.ines fron sheet l. go:in;;J active. Data is then 

routed to l.ines DO and 01 through to the crRO and CTRl. lines 

respectivel.y. A pul.se en these l.ines indicates that the main processor 

may start its transfer. The BUSRm* latch is set if either DO or 01 is 

high when this write operaticn occurs. The ccmnun:I.catien pr=essor 

then releases the bus within 4 cycles (700nS). The process:in;;J section 

llD..ISt, therefore, wait at least 700nS before it attempts to start the 

transfer. No physical damage occurs if it attempts to start too earl.y 

but an external set of buffers, controlled by the BUSAO<* line, will 

=t be enabled and the transferred data is corrupted. 

Data transfer is tenninated when the process:in;;J sectioo activates the 

~ line. This sets the MAImP latch, resett:in;;J the BUSRm* l.atch, 

and so releas:in;;J the data bus. 'I'I-.o other oonditicns may release the 

ccmnun:I.cation processor's bus; activat:in;;J either the RXEN line or the 

module RESET line. These three oondi ticns are ORed to fonn the reset 

input to the BUSRm* latch. Al.tlx:Jugh this is sl'nm as a NAND l.atch, 

when implemented in the EPLD, it is in fact a ccmbination of AND and 

OR gates. In this configuration if both signals are active then the 

latch is reset enabl:in;;J the camrunication processor to investigate the 

state of the system. 

198 



'Ihe MAIN:)P latch is reset by two CXlOditions. One is a write operation 

to the IMA intenupt register and the other is a m::ldule reset. The 

NAND latch making up this latch is configured so that the reset 

CXlOdi tions ove=ide the set CXlOdi tions. 

There are two interrupt registers that can be reset by a write 

operation. When a write is detected and the IMA intenupt register is 

selected as sh:Jwn by CXMo1S WR and IMA INI'ERRUPT RffiISTER then the data 

on lines D2 and D4 is gated onto the reset lines for the MAIN:)P and 

'!MSIN!' latches. 'Ihe timing of this is oontrolled by the EINP line to 

ensure that data lines are valid before being applied to the latches. 

Data on these lines must be '1' to reset the appLupLiate latch. The 

TMSINT latch is shown on sheet 9. The DMA interrupt register is 

described below: 

BIT 

DO 
Dl 
D2 
D3 
D4 

TABLE A-6: IMA INI'ERRUPT REnISTER (WRITE) 
REnISTER 1 ADDRESS 2000H 

DESClUPTlOO' 

rw.o 
IMAl 
Clear IMARm Latch 

Clear '!MSIN!' Latch 

A seoond register is sh:Jwn in this sheet. This handles the address 

lines for the '!MS m:xlule. The '!MS m:xlule has eight registers selected 

by three address lines. These are driven by a latched register, the 

'!MS address register. Latches used are clocked by the '!MS ADDRESS 

REnISTER, CXM-1S WR and E lines. These latches are all cleared to zero 

on a m:xlule reset by the RESET line., 
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A.2.B Sheet 7 (refer to Fig. A.12) 

This sheet contains the driving circuitry for the camrunicatiCl'lS' data 

bus. When CSM data is read four buffers are activated. Only two 

registers in the CSM nodule can output data, these being registers 2 

and 3. The read condition for either one is given by a '1' on A14, a 

'0' on A15 and the signals CX'M'1S Rn and IOE. This is used as the 

gating signals for the output drivers. Signals on these pins are also 

routed back into the module when the communication processor is 

writing to the CSM nodule and its output drivers are disabled. 

Data line D4 is never driven by any register within the CSM nodule and 

so is only connected as an input. Input to the RESET line, sra.m. here, 

is inverted so that the processor reset line can be used to reset this 

nodule. 

A.2.9 Sheet B (refer to Fig. A.13) 

This sheet shows the logiC Circuitry used to compare a station's 

address with the system address lines. 

'IW::l addresses must be recognised by any station, its own address and 

the broadcast address, OFH. The station's own address is recognised by 

the EXOR of the system address lines and the station's address Hnes. 

The broadcast address is recognised by the four input AND gate at the 

bottan of the sheet. These signalS are then canbined to shcM that an 

address has been recognised. These are then gated with the SAEN and 

the system line SSS*. If the SAEN line is asserted then it pulls the 

system SSS* line low showing that this station is outputting an 

address on the system bus. This also has the effect of preventing the 

RXEN line going active as the address recognition signal is gated off. 

If the SAEN line is rot enabled, lowever, then the address recognition 

signal drives the RXEN line active, shcMing that aoother station has 

placed an address on the system address bus. 
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A.2.10 Sheet 9 (refer to Fig. A.14) 

This sheet contains the logic to control interrupts from the TMS 

nodule. 

The IN!'l* line, sh:Mn at the top, is formed by an OR cx:mbinaticn of 

RXEN, '!MS interrupt and MAININI' signals. BalCM' this, is the '!MSIN!' 

latch. This is set by the intenupt signal fran the '!MS nodule, only 

when a transmission cycle is enabled. Latch is reset by a write 

operation to the IM\ interrupt register setting the signal CLEAR cnMS 

IN!'. It is also reset by the nodule reset line. 

The circuitry used to control the generation of the systan BUSY* line 

and the TXEN signal is sh:Mn in the middle. The BUSY* line is pulled 

lCM' by this IlOdule if the RXEN line is active. This occurs when the 

station recognises its address but is not ready yet to commence 

transmission. When this station wants to transmit data, the STX line 

is set and the systan BUSY* line is m:::lI'rl.tored. When the BUSY* line 

goes inactive, the STX signal is applied to the TXEN latch. This latch 

is clocked by the TXCLOCK signal. Latch controlling this line may be 

reset for two conditions; a nodule reset indicated by the RESET line, 

or a TMS interrupt line going active, indicating the end of 

transmission. 

The logic at the botten of this sheet controls the enable line to the 

'!MS port B, CSB*. This signal is enabled when either RXEN or TXEN is 

enabled and the READY line is set. 
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A.2.ll CSM Module Signal Descripticn 

The follCMing' signals are used intemal.ly within the CSM nodule: 

SIGNAL 

RlIMRD* 
RJIMoIR* 
EPR<MID* 
EINP 

IOE 

Al4 
Al5l'Ul' 

DESOUPl'ICN 

A signal used to access RAM f= a read operaticn 
A signal used to access RAM f= a write operaticn 
A signal used to access EPRa-1 f= a read qlE!I'atic:n 
A synchrooous clock signal fron the CCIIIllll'licaticn 
processor used f= wri tirYJ to registers in the CSM 
nodule 
An inverted versicn of the I/O space access line 
fron the cx:mnunicaticn processor. 
An inverted version of the ccmnunication processor's 
read line 
An inverted versicn of the ccmnunicaticn processor's 
write line 
A ccmnunicaticn processor's address line 
An inverted versicn of the ccmnunicaticn processor's 
Al5 address line 

'IMSDATARffiISTER 
A register select line f= the 'IMS data register 

'IMSADDRESSREGISTER 
A register select line f= the 'IMS address register 

STATIONADDRESSREGISTER 
A register select line for the station address 
register 

aM1SCXlNTROLREGISTER 
A CCIIIllll'licaticn control register select line 

I:MAINl'ERRl.JPISTER 
A IMA interrupt control register select line 

'IMSUNLTClilNI' An unlatched inverted 'lM3 nodule interrupt signal 
STX A line set by the ccmnunication PJ==essor to start a 

SELECI' 

START 

MAININ!' 

RXEN 

'IMSIN!' 
SSO-3 

transmission operaticn 
A line set by the ccmnunication PJ==BSsor to control 
PJ==essor's access to the 'lM3 nodule, a high level 
den:>tirYJ the ccmnunications pr=essor 
A line set by the ccmnunication processor when be~ 
ready for transmissicn or recepticn of data 
A system bus line indicat~ when the staticn is 
ready to start system in! tialisaticn 
A latched version of the z:r..1AREQ signal, generated by 
the main processor as an interrupt to the 
ccmnunicaticn PJ==Bssor 
A signal indicatirYJ that the staticn' s address has 
been placed on the system address lines 
A latched versicn of the 'lM3 nodule interrupt line 
The system address lines 
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/ccntinued 

SIGNAL 

ADDRO-3 
SAEN 

COMMSDO-3 

STATDO-3 

MAINCS* 

MAIN 

A,B,C 

TXCLOCK 

BUSREQ* 

CLEARCXM-1SINl' 

ASO-2 
SWRT* 
OEB* 
WEB* 
CI'RO-l 

DO-D4 
RESET 
SSS* 

TMSINl'* 
INl'l* 
BUSY 

CSB* 

DESClUPI'ICN 

This station's address lines 
A line set by the processor enabling the station to 
place an address onto the systan address lines 
Lines containing the data read from the comms 
control register 
Lines containing the data read fron the station's 
address register 
A chip select line fron the main processor used for 
ccmm.mication between the processing section and the 
'!MS ITOdule 
The main processor read line 
The main processor write line 
A line indicating the ccmm.mication processor is 
accessing the '!MS nodule 
A line indicating that the main processor is 
accessing the '!MS ITOdule 
Three clock lines used for the generation of 
transnission timing, generated by the XTALl6 clock 
signal 
A clock Signal indicating the start of a 
transnission cycle and used to clock the TXEN latch 
A bus request signal fron the CSM nodule to the 
ccmm.mication processor 
A line set by the processor to clear the interrupt 
latch set by the '!MS ITOdule 
Address lines for port A of the '!MS ITOdule 
The system write line 
Output enable signal of port B of the '!MS ITOdule 
Write enable signal of port B of the '!MS ITOdule 
The rMA lines fron the processing section indicating 
the start of a data transfer with the '!MS nodule, 
also Im::lwn as rMAO and rMAl 
The ccmm.mication processor's data bus lines 
The ITOdule reset line 
A system line indicating the value on the system 
address lines is a valid address 
lm interrupt signal fron the '!MS ITOdule 
lm interrupt line to the ccmm.mication processor 
A system line used to hold a transni tting station 
until the receiving station is ready 
Port B select line of the '!MS ITOdule 
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TABLE A-7: REl3ISTER MAP 

ADDRESS REl3ION FUNCTION 

2000H 1 I:Mt\ and Interrupt Centre1 Register 

Bit write 

DO I:Mt\O In! tiate 
D1 I:Mt\l In! tiate 
D2 Clear Main Inten:upt Latch 
D3 
D4 Clear '!MS Interrupt Latch 

4000H 2 Carms Centre1 Register 

Bit write Read 

DO WAIT START 
D1 READY '!MSIN!' 
D2 SELECT RXEN 
D3 MAININl' 
D4 STX 

6ClOOH 3 Station Address Register 

Bit write Read 

DO INPSSO ADDRO 
D1 INPSS1 ADDRl 
D2 INPSS2 ADDR2 
D3 INPSS3 ADDR3 
D4 SAEN 

8000H 4 '!MS Address Register 

Table A-7 (continued) 
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Bit Write 

00 ASO 
01 AS1 
02 AS2 

5 'JM) Oata Register 

Bit Write 

00-07 To 'JM) M:>dule 
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Quadrant A 
Main Bus 

QuadrantB 

VO 

-:=! --+--+ --~ -:=! ---
VO 

- ---:=! ---
I , 
I ~ 
I ~ 

Input $ I ~ Inputs 
I ~ 
I ~ 

I ~ 
I ~ 

:::: ---+--+ ---:=! ------VO 
vo --:::: --:=! ----

QuadrantC Quadrant 0 

= 1Macro Cell 

Fig. AA EP1800 MACRO CELL STRUCTURE 
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Register Output Buffer 

D- D-
D- D-
D- D-
D-

D-D-

1 
- -

- -
I 

s.fl,'-<' D. T "01-ataIe DrIVer 
10 ProductTenns "!We 

Fig. A.S MACRO CELL COMPONENTS 
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A.3 Altera design report 

This section presents the report generated by the Altera 
design processor. Also included at the end of this section are 
the files used with the functional simulator to test the design. 
No actual results from this are presented as this was displayed 
using the VIEW program which produces no hardcopy. 

1. Design processor report 

ALTERA Design Processor Utilization Report 
@(#) FIT Version 4.52 1/15/87 16:39:33 34.1.1.1 

••••• Design implemented successfully 

Loughborough Univ. 
26TH FEB, 1988. 
1. 00 
C 
EP1800J 
CS!1 Mk 1 
LogiCaps Schematic Capture Ver 1.5 
OPTIONS: TURBO = ON 
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R B E 
B E U S P S 
U S S S R S B W 

I S I E R 1 0 0 S U A S 
N R N R E L C C M L T S I T 
P E T V Q T A T G T R T X Y T A A 
D Q 1 E 0 C S R N R D C 0 0 0 R S 
1 - - D P H 1 1 D 0 - H P P P T 0 

-----------------------------------------------------
/ 9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61 

INPSS1 10 60 INPSS0 
RXENOP 11 59 BUSY-

READYOP 12 58 INPD0 
SAENOP 13 57 TXENOP 

CRn- 14 56 ADDR3 
CWR- , 15 55 ADDR2 
EINP 16 54 ADDR1 

XTAL16 17 53 IOE-
Vcc 18 EP1800J 52 Vcc 

ADDR0 19 51 DMAREQ 
A15 20 50 MAINCS-
A14 21 49 MAINRD-
A13 22 48 MAINWR-

INPSS3 23 47 INPSS2 
TXCLKOP 24 46 SSS-

INPD4 25 45 RESET-
TMSINT- 26 44 MAINOP 

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 
------------------------------------------------------

I R R R S S 0 W G I S S C A 0 W C 
N A E A W S E E N N E S S S E E S 
P M S !1 R 3 B B D P L 2 B 2 A A A 
D W E R T L D E L - - - -
3 R R D - T 2 C T 

- V - C T C 
E H 0 H 
D P 
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"OUTPUTS" 
FdBck 

Name Pin Resource MCel1 PTerms Group Sync Clock 

RAMRD- 30 CONF 20 1/ 8 2 
RAMWR- 28 CONF 18 1/ 8 2 

EPROMRD- 67 CONF 47 1/ 8 4 
START 62 COIF 42 1/ 8 4 

READYOP 12 ROlF 11 1/ 8 1G 
WAITOP 63 RORF 43 1/ 8 4 

SELECTOP 37 ROlF 26 1/ 8 3 
STXOP 65 COCF 45 8/ 8 4 

SS0LTCH 66 RORF 46 1/ 8 4 
lNPSS3 23 COIF 13 1/ 8 2G 
lNPSS0 60 COlF 40 1/ 8 4G 
INPSS1 10 COIF 9 1/ 8 1G 
INPSS2 47 COIF 36 1/ 8 3G 

SS1LTCH 4 RORF 3 1/ 8 1 
SS2LTCH 38 RORF 27 1/ 8 3 

SAENOP 13 ROIF 12 1/ 8 1G 
SS3LTCH 32 RORF 22 1/ 8 2 

WEA- 42 CONF 31 2/ 8 3 
CSA- 43 CONF 32 2/ 8 3 
OEA- 41 CONF 30 2/ 8 3 
OEB- 33 CONF 23 3/ 8 2 

TXCLKOP 24 COIF 14 1/ 8 2G 
SWRT- 31 COIF 21 3/ 8 2 

WEB- 34 CONF 24 2/ 8 2 
CTR0 68 COCF 48 2/ 8 4 
CTRl 2 COCF 1 2/ 8 1 

AS0 61 RONF 41 1/ 8 4 
ASl 3 RONF 2 1/ 8 1 
AS2 40 RONF 29 1/ 8 3 

BUSREQOP 5 COCF 4 2/ 8 1 
BUSREQ- 8 COCF 7 5/ 8 1 

MAINOP 44 COIF 33 3/ 8 3G 
INPD3 27 COlF 17 2/ 8 2 
INPD2 36 COIF 25 3/ 8 3 
INPD1 9 COlF 8 2/ 8 1 
lNPD0 58 COIF 38 2/ 8 4G 

RXENOP 11 COIF 10 8/ 8 IG 
SSS- 46 COIF 35 1/ 8 3G 

BUSYOP 64 COCF 44 2/ 8 4 
lNTl- 7 CONF 6 4/ 8 1 
BUSY- 59 COIF 39 2/ 8 4G 

CSB- 39 CONF 28 8/ 8 3 
TXENOP 57 COIF 37 3/ 8 4G 
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"BURIED REGISTERS" 
FdBck 

Name Pin Resource MCell PTerms Group Sync Clock 

A NORF 15 1/ 8 2 
B NORF 16 2/ 8 2 
C NORF 19 3/ 8 2 

.7108029 NOCF 34 2/ 8 3 
TMSINT NOCF 5 8/ 8 1 

"INPUTS" 
FdBck 

Name Pin Resource MCell PTerms Group Sync Clock 

A15 20 INP 
A14 21 INP 
A13 22 INP 

CRD- 14 INP 
CWR- 15 INP 
IOE- 53 INP 
EINP 16 INP 

ADDR3 56 INP 
ADDR2 55 INP 
ADDR1 54 INP 
ADDR0 19 INP 

MAINCS- 50 INP 
MAINRD- 49 INP 
MAINWR- 48 INP 

XTALl6 17 INP 
DMAREQ 51 INP 

INPD4 25 INP 0/ 8 
RESET- 45 INP 0/ 8 

TMSINT- 26 INP 0/ 8 

• 'PART UTILIZATION" 

48/48 MacroCells (100%) 
19/19 Input Pins (100%) 

PTerms Used 28% 
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'ocell Interconnection Cross Reference 

lACKS: M M M 
MMMMMMMMMIII 
121456789112 

COCF @KI -) • 
ROBP @M2 -) 

:CH .. RORP @Ml -) 
iQOP • COCF @HI -) 
IT ... ROCF @H5 -) 
..... cm @M6 -) 
,Q- .. COCF @K7 -) 
1 .... CO IF @M8 -) • 
!1 ... COIF @M9 -) 
lP ... CO IF @Mli-> 
lOP •• ROIF @MII-) 
OP ROIF @MIH 

Sl COIF @MI1-) 
lOP ,. COIF @KII-) 

•• 

• • • 
• • 
• • 

• • 

• • 

NORP @KI5-) I I I I I I I I I I I I 
NORP @KIH I I I I I I I I I I I I 

1 .... CO IF @KIH I I I I I I I I I I I I 
R- , .• CORF @MI8-) I I I I I I I I I I I I 
•. , ••• RORF @M19-> I I I I I I I I I ::: I I 

D- ... CONF @Mli-) I I I I I I I I I I I I 
CO IF @K21-) I I I I I I I I I : I I 

rCH •• RORF @K22-) I I I I I I I I I I I I 
CORF @M21-) I I I I I I I I I I I I 
CONF @K2\-) I I I I I I I I I I I I 

12 .... COIF @K25-) I I I I I I I I I I I I 
:CTOP , ROIF @M2H I I I I I I I I I I I I 
,tCH ., RORF @K27-) I I I I I I I I I I I I 

CORF @M28-) I I I I I I I I I I I I 
RORF @M29-) I I I I I I I I I I I I 
CONF @Mli-) I I I I I I I I I I I I 
CONP @M1I-) I I I I I I I I I I I I 
CONF @M12-) I I I I I I I I I I I I 

iOP , •• COIF @Kll-) • • • 
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2. Simulation test patterns 

This section contains 
functional testing of the 
sections. First the command 
and secondly the vector file. 

2.1. CSMINIT command file 

listings 
design. 

file used 

of the files used in the 
Each listing is in two 
to control the simulation 

This file is used by all the simulations to initialise the 
module. 

echo Starting CSM init test module; 
group hex inputdata = 1NPD4 INPD3 INPD2 INPD1 INPD0; 
group hex address = A15 A14 A13; 
vec @csminit; 
cycle 2; 
init TMSINT- = 1; 
sim 10; 

2.2. CSMIN1T vector 

PATTERN: 

RESET- = 000 0 o 1 1 

CWR- = (1) * ; 

CRn-- = (1)*; 

1OE- = (1)*; 

EINP = (0)' ; 

XTAL16 = (1 0)*; 

TMSINT- = (1)*; 

DMAREQ = (0)*; 

MAINCS- = (1)*; 

MAINRD- = (X) *; 

MAINWR- = (X)*; 

file 

1 1 1; 
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ADDR0 = (0)' : 

ADDRl = (1), : 

ADDR2 = (1)" : 

ADDR3 = (1)": 

START = (Z)' ; 

BUSY- = (Z)": 

INPSS0 = Z (X)"; 

INPSSl = Z (X)" : 

INPSS2 = Z (X)': 

INPSS3 = Z (X)' : 

SSS- = Z (X)' ; 
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2.3. CSMTEST1 command file 

This simulation tests the reading and writing of data by the 
microprocessor to the module. 

echo Starting CSM module functional test 1: 
echo TMS data read and write test; 
exec @CSMINIT; 
echo 40 step simulation ..... ; 
log @csmtestl: 
group hex inputdata = INPD4 INPD3 INPD2 INPD1 INPD0: 
group hex address = A15 Al4 Al3: 
vec @csmtest1: 
cycle 2: 
plot AS0 ASl AS2 INPD4 INPD3.INP INPD2.INP INPDl.INP INPD0.INP 

A15 Al4 A13 CWR- CRD- EINP IOE- SELECTOP 
CSA- OEA- WE A- CSB- OEB- WEB- SWRT-
TXCLKOP TXENOP: 

sim 40: 
view; 
save @CSMTESTl: 

2.4. CSMTEST1 vector file 

PATTERN: 
address = o 2 2 2 2 2 2 2 0 o 4 4 4 4 4 4 4 4 4 o 0 4 4 4 4 4 4 4 4 4 0 

o 1 1 1 1 1 1 1 0 o 5 5 5 5 5 5 5 5 5 0055555 5 5 5 5 0 
(0) *: 

inputdata = Z44444 440 o 2 2 2 2 2 2 2 2 200 5 5 5 5 5 5 555 \) 
o 4 4 4 4 4 440 \) X X X X X X X X X 0 \) X X X X X X X X X 0 
(0)*: 

Ell-iP = (J 0 0 1 1 1 1 1 0 o 0 0 0 1 1 1 1 1 o 0 0 0 0 (J 1 1 1 1 o 0 0 
000 1 1 1 1 0 0 o (J 0 1 1 1 1 o 0 o 0 0 0 0 0 1 1 1 1 o 0 0 
(0) *: 

IOE- = 110000 0 1 1 1 1 000 000 1 1 1 1 1 1 o 0 0 0 0 1 1 1 
1 1 0 0 0 0 0 1 1 1 1 o 0 000 1 1 1 1 1 1 1 000 0 0 1 1 1 
(1)*: 

CWR- = 11000001 1 11000001 1 1 1 1 1 1 o 0 0 0 0 1 1 1 
11000001 1 11000001 1 1 1 1 1 1 111 1 1 1 1 1 
(1)*: 

CRD- = 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 o 0 0 0 o 1 1 1 
(1)*: 

:026 



ADDR13 = (13)'; 

ADDR1 = (13)'; 

ADDR2 = (13)'; 

ADDR3 = (13)'; 

MAINCS- = (i)'; 

MAINWR- = (i)'; 

MAINRD- = (i)' ; 

XTAL16 = (1 13)'; 

DMAREQ = (13)'; 

TMSINT- = (i)'; 

START = Z Z (Z)' ; 

BUSY- = Z Z (Z)'; 

INPSS13 = Z (13)'; 

INPSS1 = Z (i)'; 

INPSS2 = Z (i)' ; 

INPSS3 = Z (i)'; 

SSS- = Z (i)' ; 

RESET- = (i)' ; 
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2.5. CSMTEST2 command file 

This simulation checks the transfer of control of the data 
bus between the main and communications processors. 

echo Starting CSM module functional test 2; 
echo DMA transfer control test; 
exec @CSMINIT; 
echo 50 step simulation ..... ; 
log @csmtest2; 
group hex inputdata = INPD4 INPD3 INPD2 INPDl INPD0; 
group hex address = Al5 Al4 Al3; 
group hex addr = ADDR3 ADDR2 ADDRl ADDR0; 
group hex ssaddr = INPSS3 INPSS2 INPSSl INPSS0; 
vec @csmtest2; 
cycle 2; 
plot INPD4 INPD3.INP INPD2.INP INPD1.INP INPD0.INP 

Al5 A14 Al3 CWR- CRD- EINP IOE-
BUSREQ- CTR0 CTRl DMAREQ MAINOP INTl-
SSS-.INP INPSS3.INP INPSS2.INP INPSS1.INP INPSS0.INP 
ADDR3 ADDR2 ADDRl ADDR0 
MAINCS- MAINRD- MAINWR-
CSA- OEA- WE A-
RXENOP BUSYOP READYOP; 

sim +50; 
view; 
save @CSMTEST2; 

2.6. CSMTEST2 vector file 

PATTERN: 
address = 0 1 1 1 1 1 1 1 0 

00000 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 
00000 0 000 0 0 0 000 
01111 1 1 1 0 0 0 0 000 0 0 0 0 0 0 0 0 0 
(0)'; 

inputdata = 0 1 1 1 1 1 1 1 0 
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 
o 0 0 0 0 0 000 000 000 
05555 5 550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
(0)'; 

EINP = 0 0 0 1 1 1 1 1 0 
00000 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 
00000 0 0 000 000 0 0 
000 1 1 1 1 100 0 0 0 0 0 000 0 0 0 0 0 0 
(0)'; 
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IOE- = 1 1 0 0 0 0 0 0 1 
11111 1 111 1 1 1 1 1 1 1 111 1 1 1 1 1 
111 1 1 1 1 1 1 111 111 
11000 0 001 1 1 1 111 111 1 1 1 1 1 1 
(1)'; 

CWR- = 1 1 0 0 0 0 0 0 1 
11111 1 1 1 1 111 1 1 1 111 1 1 1 1 1 1 
11111 1 1 1 1 111 1 1 1 
1 1 000 0 001 111 1 1 1 1 1 1 1 1 1 1 1 1 
(1)'; 

CRD- =111111111 

DMAREQ 

11111 1 1 1 1 1 1 1 1 111 111 111 1 1 
111 1 1 1 1 1 1 1 1 1 1 1 1 
(1)' ; 

= 0 0 0 000 000 
000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 
o 0 0 0 0 0 0 1 1 1 1 000 0 
000 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
(0)' ; 

addr = (3)'; 

sss- = 1 1 1 1 1 1 1 1 1 

ssaddr 

1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 111 1 1 1 1 1 1 1 1 1 1 1 
1 111 1 1 1 1 1 1 1 1 1 1 1 1 000 011 1 1 
(1)' ; 

= 0 000 0 0 0 e 0 
o 000 0 0 0 0 000 0 0 000 e 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 000 000 0 
000 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 0 0 0 
(0)'; 

MAINCS- = 1 1 1 1 1 1 1 1 1 
1 100 0 0 0 0 000 0 0 0 0 0 0 0 0 000 1 1 
(1)'; 

MAINWR- = 1 1 1 0 1 1 1 1 1 
1 1 100 1 1 1 1 1 1 001 1 1 1 1 100 1 1 1 
(1)' ; 

~~INRD- = 1 1 1 1 1 1 0 1 1 
1 1 1 1 1 1 1 0 011 111 100 1 1 1 1 111 
(1)'; 

XTAL16 = (1 0)'; 

TMSINT- = (1)'; 

START = (Z)'; 
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BUSY

RESET-

= (0)"; 

= (1)"; 
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2.7. CSMTEST3 command file 

This simulation checks the receiving of data from the system 
data bus. 

echo Starting CSM module functional test 3; 
echo System bus data receive test; 
exec @CSMINIT; 
echo 50 step simulation; 
log @csmtest3 
group hex inputdata = INPD4 INPD3 INPD2 INPDl INPD0; 
group hex address = A15 A14 A13; 
group hex adr = ADDR3 ADDR2 ADDRl ADDR0; 
group hex ssaddr = INPSS3 INPSS2 INPSSl INPSS0; 
vec @csmtest3; 
cycle 2; 
plot INPD4 INPD3.INP INPD2.INP INPD1.INP INPD0.INP 

A15 A14 A13 CWR- CRD- EINP IOE-
BUSREQ- CTR0 CTRl DMAREQ MAINOP INT1-
SSS-.INP INPSS3.INP INPSS2.INP INPSS1.INP INPSS0.INP 
ADDR3 ADDR2 ADDRl ADDR0 
RXENOP BUSY- BUSYOP SWRT-.INP READYOP RESET- TXENOP 
CSA- OEA- WEA- CSB- OEB- WEB-; 

sim +50; 
view; 
save @CSMTEST3; 

2.8; CSMTEST3 vector file 

PATTERN: 
address = 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
(0)'; 

inputdata = 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 000 
(0)'; 

EINP = 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 000 000 000 0 000 000 
(0)'; 

IOE- = 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 
1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
(1)'; 

CWR- = 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 
1 1 1 1 1 111 111 1 111 1 1 1 1 1 1 1 1 1 
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(1)"; 

CRD- =111111111111111111111111 
(1)"; 

DMAREQ = (0)"; 

addr = (3)"; 

SSS- = 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 000 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 1 1 
(1)"; 

ssaddr = 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 330 
(0)" ; 

MAINCS- = (1)"; 

MAINWR- = (1)"; 

MAI~q(D- = (1)"; 

XTAL16 = (1 0)"; 

TMSINT- = (1)"; 

START = (Z)"; 

BUS¥- = 1 Z Z Z Z Z Z Z Z Z Z Z Z 1 1 1 1 1 1 1 1 111 
1 1 111 1 1 1 1 111 1 1 1 1 1 1 1 1 1 111 
(0)'; 

SWRT- = X X X X X X X X X X X X X X X X X 1 1 0 0 1 1 1 

RESET-

1 0 0 1 1 1 100 1 1 1 100 1 1 1 100 1 1 X 
(X)' ; 

= (1)"; 
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2.9. CSMTEST4 command file 

This simulation tests the transmission of data from the 
station across the system bus. 

echo Starting CSM module functional test 4; 
echo System data transmit test; 
exec @CSMINIT; 
echo 60 step simulation ..... : 
log @csmtest4; 
group hex inputdata = INPD4 INPD3 INPD2 INPD1 INPD0: 
group hex address = A15 A14 A13: 
group hex addr = ADDR3 ADDR2 ADDR1 ADDR0: 
group hex ssaddr = INPSS3 INPSS2 INPSS1 INPSS0: 
vec @csmtest4: 
cycle 2: 
plot INPD4 INPD3.INP INPD2.INP INPD1.INP INPD0.INP 

A15 A14 A13 CWR- CRD- EINP IOE-
INT1- TMSINT-
SAENOP SSS- INPSS3 INPSS2 INPSS1 INPSS0 
ADDR3 ADDR2 ADDR1 ADDR0 
CSB- OEB- WEB- SWRT- BUSY-.INP 
XTAL16 A B C 
TXENOP TXCLKOP STX RXENOP BUSYOP READYOP: 

sim +60: 
view; 
save @CSMTEST4: 

2.10. CSMTEST4 vector file 

PATTERN: 
address = 0 3 3 3 3 3 3 3 0 0 2 2 2 2 2 2 2 0 0 0 0 0 0 0 

o 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 000 0 
(0)*27 
000 0 0 0 0 0 0 0 2 222 2 2 200 
(0)*: 

inputdata = 0 17 17 17 17 17 17 17 0 0 12 12 12 12 12 12 12 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 000 0 
(0)*27 
000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
(0)*: 

EIN~ = 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
(0)*27 
o 0 0 0 0 0 0 0 0 0 001 1 1 1 1 0 0 
(0)*: 
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IOE- = 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 
(1)*27 
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 
(1)*; 

CWR- = 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

CRD-

Dl1AREQ 

1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 
(1)*27 
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 
(1)*; 

= 1 1 111 1 111 111 111 1 1 1 1 1 1 1 1 1 
(1)*: 

= 0 0 0 0 0 0 000 000 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 
(0)*; 

addr = (3)*; 

SSS- = Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 

ssaddr 

Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 
(Z)*; 

= Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 
(Z)*; 

MAINCS- = (1)'; 

MAINWR- = (1)*; 

MAIN~ = (1)*; 

XTAL16 = (1 0)*; 

Tl1SPiT- = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
(1)*29 0 0 0 0 

START 

BUSY-

RESET-

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
(1)'; 

= CZ)*; 

= Z Z Z Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 1 
(1)'27 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
(1)*; 

= (1)*; 
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2.11. CSMTEST5 command file 

This simulation test the reading of data by the main 
processor. 

echo Starting CSM module functional test 5; 
echo CSM module data read tests; 
exec @CSMINIT; 
echo 70 step simulation ....• ; 
log @csmtest5; 
group hex inputdata = INPD4 INPD3 INPD2 INPD1 INPD0; 
group hex address = A15 A14 A13; 
group hex addr = ADDR3 ADDR2 ADDRl ADDR0; 
group hex ssaddr = INPSS3 INPSS2 INPSSl INPSS0; 
vec @csmtest5; 
cycle 2; 
plot INPD4 INPD3 INPD2 INPDl INPD0 

A15 A14 A13 CWR- CRD- EINP IOE-
BUSREQ- CTR0 CTRl DMAREQ MAINOP INT1- START.INP START 
SSS-.INP INPSS3.INP INPSS2.INP INPSS1.INP INPSS0.INP 
ADDR3 ADDR2 ADDRl ADDR0 
RXENOP BUSYOP READYOP; 

sim +70; 
vie~; 

save @CSMTEST5; 

2.12. CSMTEST5 vector file 

PATTERN: 
address = 0 2 2 2 2 2 2 2 0 

o 3 3 333 3 300 333 3 3 3 3 0 0 0 0 0 0 0 
(0 2 2 2 2 2 2 2 0)*3 
011 III 1 1 0 
o 2 2 2 2 2 2 2 0 
(0)*; 

inputdata = 0 0 0 0 0 0 0 0 0 
o z z z z z Z Z 0 0 Z Z Z Z Z Z Z 0 0 0 0 0 0 0 
(0 Z Z Z Z Z Z Z 0)*3 
04444 4 4 4 0 
o Z Z Z Z Z Z Z 0 
(0)*; 

EINP = 0 0 0 1 1 1 1 1 0 
000 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 000 
(0 0 0 1 1 1 1 1 0)*3 
000 1 1 1 1 1 0 
000111110 
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(0)"; 

IOE- = 1 1 0 0 0 0 0 0 1 
1 1 000 000 1 1 1 000 0 001 1 1 1 1 1 1 
(1 1 0 0 0 0 0 0 1)"3 
1 1 000 0 001 
1 1 0 0 0 000 1 
(1)" ; 

CWR- = 1 1 0 0 0 0 0 0 1 
1 1 1 ill 1 1 1 1 1 ill ill 1 1 1 1 ill 
(1 1 1 1 1 1 1 1 1)"3 
110 000 001 
1 1 ill 1 1 1 1 
(i)"; 

CRD- =111111111 

DMAREQ 

1 1 0 000 0 0 1 1 100 0 0 0 0 1 1 1 1 1 1 1 
(1 1 0 0 0 0 0 0 1)"3 
1 1 ill 1 ill 
1 1 0 0 0 0 0 0 1 
(1)" ; 

= 0 0 0 0 0 0 0 0 0 
o 0 0 000 0 0 000 000 0 0 0 0 000 0 0 0 
o 0 0 000 0 0 0 
o 0 0 000 0 0 0 
1 1 1 100 0 0 0 
000 0 000 0 0 
(0)"; 

addr = 2 2 2 2 2 2 2 2 2 
222 222 2 2 2 2 D D D D D D D D D D D D D D 
(3)"; 

sss- = Z Z Z Z Z Z Z Z Z 

ssaddr 

Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 
o 0 0 0 0 0 0 0 0 
000 0 0 0 0 0 0 
ill 1 1 1 1 1 1 
ill ill 1 1 1 
1 1 1 1 1 1 1 1 1 
(Z)' ; 

= z z z z z Z Z Z Z 
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 
3 3 3 3 3 3 3 3 3 
3 3 3 3 333 3 3 
(Z); 

MAINCS- = (i)"; 

MAINWR- = (i)"; 

MAINRD- = (1)'; 
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XTAL16 = (1 0)"; 

TMSINT- = 111 1 1 1 1 1 1 111 111 1 1 1 1 1 1 1 1 1 
(1)" ; 

START = o 0 0 o 0 0 0 0 0 
000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 
(1)"; 

BUSY- = CZ)'; 

RESET- = (1)'; 
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2.13. CSMTEST6 command file 

This simulation tests the reset function of the device. It 
does not require the initialisation routines. 

echo Starting CSM module functional test 6; 
echo Reset test; 
echo 15 step simulation ..... ; 
log @csmtest6; 
group hex inputdata = INPD4 INPD3 INPD2 INPDl INPD0; 
group hex address = A15 A14 A13; 
vec @csmtest6; 
cycle 2; 
plot AS0 AS1 AS2 STX SELECTOP READYOP WAITOP START SAENOP 

BUSREQ- MAINOP TXENOP TMSINT INT1- RESET-; 
sim 15; 
view; 
save @CSMTEST6; 

2.14. CSMTEST6 vector file 

PATTERN: 

RESET- = 1 1 1 1 1 o 0 0 0 0 1 1 1 1 1 (1)' ; 

ClfR- = (1)' ; 

CRD- = (1)'; 

IOE- = (1)' ; 

EINP = (0)' ; 

A"TAL16 = (1 0)'; 

TMSINT- = (1)' ; 

DMAREQ = (0)' ; 

HAINCS- = (1)'; 

HAINRD- = (X)'; 

HAINWR- = (X)' ; 

ADDR0 = (0)' ; 

ADDR1 = (1)' ; 
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ADDR2 = (1)" ; 

ADDR3 = (1)"; 

START = (Z)"; 

BUSY- = (Z)"; 

INPSS0 = Z (X)" ; 

INPSS1 = Z (X)" ; 

INPSS2 = Z (X)" ; 

INPSS3 = Z (X)" ; 

SSS- =ZZZZZ 1 1 1 1 111 1 1 1 (1)"; 
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A.4 PlO FSSING SEX:TICN DESIQ{ 

A.4.1 '!be CPU Section 

a) The 80188 Processor 

The 80188 is a highly integrated micLOpLocessor which a::mbines a large 

number of the rrost <XllllUl 8088 systan <XlIIP ... uents on a sin;;Jle chip. A 

block diagram of the 80188 is sh:Mn in Fig. A.15. As sh:Mn here it 

consists of the a DMA unit, timers, interrupt controller, clock 

generator, and a chip select unit. All are housed in a 64 pin package, 

external circuit connections bein;;J sh:Mn in Fig. A.16. 

i) Clock Generator 

The inputs Xl and X2 provide an external connection for a fundamental 

mode parallel resonant crystal for the oscillator. The crystal 

frequency selected is OOuble the CPU clock frequency. Here an 8 MHz 

crystal is used to generate a 4 MHz clock signal for the 80188. 

ii) Interrupt Controller 

The 80188 progranunable interrupt controller (PlC) can handle 

interrupts which are generated by either software or hardware. A table 

containing up to 256 pointers defines the proper interrupt service 

routine for each interrupt. Interrupts 0-31 are reserved for 

predefined interrupts which may be activated either by software or 

hardware. The software interrupts are generated by specific 

instructions (IN!', ESC, unused OP, etc.) or the result of conditions 

specified by instructions (DIV, IDIV, etc.). The hardware interrupts 

are divided into two groups; internal and external. The internal 

interrupts are: 
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J:I'II\ 0: 

J:I'II\ 1: 

Used in channel 0 (transm1ssicn). 

Used in channel 1 (receptic:n). 

TIMER 0: Used in applicatic:n software. 

TIMER 1: Used in application software. 

TIMER 2: Used in applicatic:n software. 

The external inte:nupts are; 

INI'O: 

INn: 

INT2: 

IN1'3: 

l>MI: 

O::Innected to the 8087 runeric processor 

O::Innected to the 2681 DUART 

Not used 

Not used 

WatchOOg timer 

All these interrupts are maskab1e except the I'l-1I inte:nupt which is 

ccnnected the watchOOg timer. 

The internal inten:upts J:I'II\ 0 and J:I'II\ 1 are used in this design to 

detect r:MA transfer termination (in channel 0 and 1). The external 

interrupt INl'O is connected to the 8087 which uses it to indicate that 

unmasked exceptions have occurred during numeric instruction 

execution. INl'1 is ccnnected to the 2681 DUART to support interrupt 

handling of the ccmnunication process instead of polled operatic:n. 

i11) r:MA Unit 

The r:MA unit provides two high speed r:MA channels. Data transfer can 

be performed to or fron any canbination of merrory and IIO space in 

byte fo:an. A transfer count is also maintained in order to allow 

termination of DMA transfers after a pre-progranuned number of 

transfers. Each data transfer COI'lS1..D1l9S 2 bus cycles (a m:in:imum of 8 

clock periods), one cycle to fetch data and the other to store data. 
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The two external Il>1A request ~ts, DRQO and DRQI, are cc:rmected to 

the OB! interface. DRQO is activated when data is to be transferred 

from the processing to the communication section, while DRQI is 

activated when data is to be transferred fron the ccmnunicatic:n to the 

processing section. The controller has the optic:n of producing an 

internal interrupt when the transfer count reaches zero. This 

interrupt is used to inform the main p=essor that message transfer 

has been e:x::xnpleted. 

iv) OUp Select Unit 

The integrated chip select unit provides progranmable chip-select 

logic which can be used to select mem:>ry or peripherals (6 mem:>ry and 

7 peripherals are provided) during processor controlled read or write 

operation. Note that these beccme inactive if the processor is f=ed 

into the "Hold" state. 

The memory chip select lines are split into three groups for 

separately addressing the major marory areas in the system: 

* I Upper merrory (UCS*) - for reset EPRCM (bootstrap). 

* I Lower merrory (LCS*) - for lower RAM area (stack, data, and heap). 

* 4 Mid-range merrory (MCSO* - MCS3*) - for the application software. 

The size of each of these areas, and the starting location of the mid

range merrory are user programnable, with sane restrictions. 

Each of the peripheral chip select lines (PCSO* to PCS6*) address one 

of seven adjacent 128 byte blocks wtxJse base address is progranmable. 

This block can be programned to be part of the mellory or in a separate 

I/O block. 
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The chip select lines are camected as follows; 

UCSO* 

LCSO* 

M:SO* 

M:Sl* 

M:S2* 

M::S3* 

PCSO* : 

PCSl* 

PCS2* 

PCS3* 

PCS4* 

PCS5* 

PCS6* 

EPRCM 

RAM 

ReseI:ved for application software. 

ReseJ:VeCi f= application software. 

ReseI:ved f= application software. 

OJrrently used f= M:xlu1a-2 application software. 

2681 DUART 

OBI interface - MAINCS* 

OBI interface - ~* 

watchdog timer 

reseJ:Ved 

reseJ:Ved 

reserved 

Each of the prograrrmed chip select areas has a set of prograrrmable 

ready bits associated with it. These ready bits oontrol an integrated 

wait state generator which is progranmable to provide 0 to 3 wait 

states for all accesses to the area of mem::>ry associated with a chip 

select Signal. 

v) ProgL aHllldble Timers 

The timer unit provides three independent l6-bit timers/counters. Two 

of these timers are available for use external to the CPU whilst the 

third timer is available only for internal use. All three timers 

operate independently of the CPU. In this design all external 

connections of the timer signals are unused. 
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b) Numeric Processor Extensicn (8087) 

The 8087 is a numeric processor extensicn that provides ari thnetic and 

logical inst:ructicn support for a variety of numeric data types. It 

executes numerous built-in functions such as tangent, log, 

expcoential, etc. 

The 8087 can execute numeric instJ:ucticns approx:irnately 100 tiIOOs 

faster than a 80188 operatirYJ' at the sane speed. 

As a ooprocessor to the 80188, the 8087 is wired in parallel with the 

CPU (see Fig. A.17). The CPU's status (SO-S2) and queue status lines 

(QSO-QSl) enable the 8087 to monitor and decode instructions in 

synclualisaticn with the CPU and witoout any CPU overhead. All 8087 

instructions appear as ESCAPE inst:ructicns to the 80188. Both the 

80188 and 8087 decode and execute the ESC instruction together. The 

start of the numeric operation is acoanplished when the CPU executes 

the ESC instruction. The 8087 can interrupt the CPU when it detects an 

error or exception, its interrupt being connected to INTO of the 

80188. 

c) Advanced Bus Controller (82188) 

The Intel 82188 generates system cx:mnand and control timing signals as 

determined by the bus status lines signals (Fig. A.17). It also 

provides HOLD/HLDA -RQ/GI' bus protocol exchanges; this allCMS it to be 

used where bus control mechanisms between devices differ, such as 

between the 80188 and the 8087. In this design sane of the control 

signals are buffered to increase the drive capability. 
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d) Power-On Reset 

ille 80188 has a RES* inp..tt pin and a synchrcnised RESET ootput pin 

(Fig. A.16). ille RES* inp..tt is provided with a Schnitt-trigger to 

allow power-on reset via an R-C network, the corresponding RESET 

ootput lasting an integer Il1.IlIber of clock periods determined by the 

lenJtl1 of the RES* Signal. 

e) Address/data Bus Buffers 

ille 80188 has a time multiplexed address/data bus CC41Sistin;1 of 8 

lines (A/OO-A/D7) together with varioos control and status signals. 

ille mul tiplexed lines are cccmected to latches (74LS573) which provide 

a demultiplexing function f= the address bus signals (Fig. A.18) .. 

'l11ese are exntrolled by the advanced bus controller ( 82188 ) which 

generates the demultiplexing signal. 

The high address bus (A8-A19) is also buffered (74LS645); this, 

together with the address latches, ensures that the address bus has a 

high drive capability on all its signal lines. 

A.4.2 Mellmy 

Three 28 pin rnenory sockets are provided to rost EPRCM or static RIIM 

(SRIIM) devices (Fig. A.19). Varioos sizes of EPRCM (frc:m l6K to 64K 

Byte) and SRIIM (frc:m 2K to 32K Byte) may be used in this design. The 

main board (processing section) currently uses the following 

configuration; 

* One EPRCM (size 8K byte)- used as a bootstrap. 

* One SRIIM (size 8K byte)- used as a rnenory (for stack, data and 

heap). 

* One EPRCM (size 32K byte)- used for the application software. 
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On reset the 80188 begins execution at address FFFFOH, thus a j~ 

instruction must be inserted at this location to transfer execution to 

a bootstrap program. Consequently an EPRG1 chip must be mapped into 

the top of the memory (i.e. first EPROM). It contains the 

initialisation for the main program software , its chip select pin 

being =nnected to UCS*. 

The 80188 uses locations OH-3FFH (lK Byte) for its inter:rupt vector 

table. This vector table allows different interrupt types to be 

serviced. The 80188 also needs RAM for the storage of data variables, 

flags and stack. In this design an 8K SRAM is placed in location OH to 

lFFFH, its chip select pin being connected to LCS*. 

The dynamic RAM store (DRAM) is located on a separate piggy back board 

as an option. It consists of sixteen 256K x 1bit DRAM I.C.s (1/2 mega

byte total), controlled by an Intel DRAM controller (8208), a set of 

data bus buffers (74LS245's) and associated control circuitry. 

A.4.3 Serial Cmm..micaticns 

The Signetics 2681 DUART provides two independent full-duplex channels 

in a single chip (channels A and B). The DUART has a software 

programnable transmission fonnat (number of data bits, stop bits, 

parity, ete), programnab1e baud rate, error detection, multifunction 

counter/timer, 7-bit input port, 8-bit output port, interrupt system 

and on-chip oscillator. The circuit diagram of the serial 

ccnmunication system is sOOwn in Fig. A.20. 

To provide signalS to meet RS 232C specifications a MC1488 line 

driver and a M:1489 receiver are used. 

246 



To ensure that the outplt slew rate of the line driver oc:ofonns to the 

RS232C specifications (3OV/us) 390pF capacitors are o:nnected between 

the outputs of the line drivers and 01/. 

A.4.4 CBI Interface 

The aim of this interface (Fig. A.2l) is to transfer data between the 

main processor and the on-board interface block by using the DMA 

controller in the 80188. 

The following table lists the interface signalS with their functions; 

TABLE A-8: OBI Interface Signal Description 

Signal Type Function 

PCS2* 0 Sets a !:MA request flag to the OBI (~*) 
DRQO I Olannel 0 !:MA request 
DRQl I Channel 1 !:MA request 
PCSl* 0 Orlp select signal to the CBI (MAIN:S*) 
WR* 0 Data write enable (MAIN WR*) 
RD* 0 Data output enable (MAIN RD*) 
00-D7 I/O Data signals 

The OBI interface gives the processing section the right to access the 

communication section's temporary storage RAM. It enables the 

processing section to; 

* Access the ccmnunication section's tanporary storage (MAINCS*) for 

a read operation (MAINRD*) or a write operation (MAINWR*), 

* Signals the ccmnunication section (~*) for a request of data 

transfer (ROT) and at the end of data transfer (EDT). 
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All data is exchanged between the cx:mnunicatien sectien and the main 

processiIg sectien using direct rneilcry access (IM\.) techniques. 

A.4.5 IIncill.aJ:y Cirt::ui ts 

a) SiIgle Step Central 

The siIgle step circuit (Fig. A.22) is included to aid de-buggiIg and 

testiIg of both hardware and software. UsiIg this, a program can be 

executed one step at a time, making examinatien/test:!Ig of en-board 

devices more convenient. When the siIgle step central is switched in 

the processor enters a continuous wait state. By pressiIg the "step" 

push button the wait (Le. "oot ready") signal is temporarily raroved, 

allowing the processor to canplete one bus cycle cnly. At this point 

it re-enters the continuous wait condition. 

The siIgle step circuit is switched into the ARDY line by the toggle 

switch. Two NAND gates are used to OObounce the push-button switch, so 

that when it is pressed and then released a siIgle positive pulse is 

produced. When flip-flop 1 receives a positive goiIg edge fron the 00-

bounce circuit its Ql output is set high. This takes the D2 input of 

flip flop 2 high. On the next positive goiIg edge of the CPU clock the 

Q2 output of 2 goes high, sending ARDY high, and the 02* output of 2 

goes low, cleariIg flip-flop 1. Since flip-flop 1 has OCM been cleared 

the D2 input to flip-flop 2 is OCM low. On the next positive goiIg 

edge of the CPU clock the Q2 output of 2 (AHOY) goes back low. Thus 

the AHOY line has gone high f= one CPU clock cycle. When the push

button is released flip-flop 1 receives a negative goiIg edge fron the 

debounce circuit, but this has 00 effect. 
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b) Watchd:?g Timer 

The watchdog timer provides a l1'eChanisn of program rect::NerY in case of 

failure (program =ash). This is d::lne usin;} a rxn-maskable inter:rupt 

(NMI). The watchdog timer (Fig. A.23) comprises a retriggerable 

monostable (74LS123) which is triggered by writing to a specific 

address. This is ci:rle repeatedly under program centrol so that, in 

rormal circtm1stances, the IlcuJstable is always retriggered before its 

period expires. If the program crashes, the timer expires and so 

causes a rxn-maskable inter:rupt (N'1I). 

In normal operation, when the IlOOClstable receives a negative goin;} 

edge on its Al input (fron decoded address and PCS3*) the CXltput Q* 

goes low. This assumes that OP5 fron the 2681 is low, otherwise Q* 

remains high. It stays low for a time determined by the resistor/ 

capacitor combination. Provided the timer is selected (addressed) 

before the end of its time-out period Q* stays high, the timer bein;} 

re-triggered (normal operation). If the timer is not re-selected 

before the end of the time-out period Q* goes low, causin;} a I'M[. 

This forces the processor to go through a pre-programmed internIpt 

service routine to recover fron the fault conditicn. The values clx:Jsen 

for the timi.n;1 canpanents (R3 and C2) are selected to give a one 

second time-out period. The primary purpose of the control signal fron 

the 2681 DUART (OP5) is to allow power-on initialisation to be 

canpleted without havin;} to cope with an instantaneCXls N'1I request. It 

also ensures that the watchdog timer doesn't cause accidental 

internIpts when rot in use. 
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Fig. A.15 80188 CPU BLOCK DIAGRAM I 

250 



RESET 
POWER-ON 

Rl 

v. 

43 VCC 
9 VCC 
26 GND 

GND 

o-.:::64~ N/U 

0-.;;;48., LOCK 

e2T20p 

59 Xl 

= 
..... _..::58=-1 X2 

. .I.20p 

74132 24 
b-=~=-=--77l m 

FROM WDT 46 NMl 

-1l.!aJ,.g!21-..::4~4 INn 

0-_ .... ---:::4=-12 INT2 

LK4 

YI' 

lOOK 

111-0 
LK3 

o-~~_---:::441 INn 

3031 32 

IC6 

c.P.U. 80188 

TO WATCHDOG 
TlHER 

peS3 29 

PCS2 ~-oCS8 
peSl ~-OCS7 
PCSO J.'l.-o ill 
Les 33 m 
UCS 34 rn 
MeS3 ",3~5-o m 
RCS2 36 
MeS1 37 
Meso 38 

A19/56 
A18/55 
A17/54 

A16/53 
A15 

A14 
A13 
A12 

All 
Al0 
A9 
A8 

65 
66 

1 
3 
5 
7 
10 
12 
14 

CS2 
CSl 
m 

A8-A19 

LK5 - - lK6 AD7 
AD6 

ADS 
AD4 
AD3 
AD2 
ADl 
ADO 

16 

2 
4 

6 
8 
11 
13 
15 
17 

'-..... -1-----:;:18'-1 DRQO 

__ ..,,19'-1 DRQ 1 

o--+--+---,,4~0 DTlR 

o-++~3~9 DEN I ~ 
I~ I~ 

~- I-dV) ::> 
...... d >- ~ 0 11-w ..... c Cl) CV) 

-' ~ a: Idl-I'" w :s I-z W 
<,.:loll') V)V)CI)a:L..J_t-

62 50 51 61 63 49 52 53 5 

Fig. A.16 

TO MAIN OBI 
INTERFACE 

L-__ ~' L. ____ ~ 

TO 
82188 

TO 82188 
AND 8087 

80188 CPU CONFIGURATION 

251 

ADO-AD7 

TO 8087 



13/20 
,/33 

.... ... 
'" z 

FROM 80188 
Vi 
ro.. 0< >-
elL'-' .....jco_c 
""'""" 0 ... """ ~IViI N u...cJ) :::r.:I: Od V) 

.J! ARDY IC4 HOLD fL 
HLDA +-~ V(C QSO 

'I~ GND QSl 2 
16 SRO 

SO 27 
Cl:) 

Sl 26 
Cl:) 

12 (SOUT .-- S2 25 
N 

13 rnR Cl:) QSOO 3 

,Jl-12. AEN 
III QS10 4 
:::> 
CD RQ/G70 8 

ex RQ/G71 11 
w (LK 15 
.....J 
.....J RESET 5 
0 20 ex DTlR 
I- DEN 21 

,11. SRDY Z 22 0 WR 
w RD 23 

ALE 24 

SYS HOLD 

LK2 
I~ ... 1 I. 
1 1 III 

°It-t-'" Z .... _ t-

LK7 
0 

1 
11' 

t- IC10 A19 35 .... 
"'>0: 36 ....... 
o: L.I 

37 

I""- 38 
Cl:) 39 
0 
Cl:) 2 

23 ex 3 
BUSY 0 4 

32 INT III 5 Vl 

# READY w 6 SO u 
Sl 0 7 

c:: Aa 8 a. 
28 S2 -I A9 9 

< 10 
25 QSO u 

11 
24 QSl c:: 

12 w 
31 RU/GTll l: 13 
33 RQ/GTI ~ 14 
19 (LK 15 

,.l1 RESET ADO 16 
SHE/S7 34 -

.;;:;""r __ v. 
10 20 

GND Vee 

~ 
3 18 RESET 

17 CLK 
4 IC11 16 DTlR 

5 15 DEN 
6 74LS645 14 WR 

7 13 lm 

8 12 ALE 

at D1R 

t Isv 
SHOLD 
SRDY 

Fig. A.17 82188 CONTROLLER AND 8087 NUMERICAL PROCESSOR 

252 

Vl 
:z 
a: 
=> 
Q. 
I..J 

o ... 



c.n 
~ 
a:l 

'" c.n .-
c.n« 
UJ I 
0::CX) 
0« 
o « 

t
O « 

I 
o 
o « 
c.n 
~ 
CC 

« 
I« 
o 

CX) 
CX) .
o 
CX) 

L 
o 
0:: 
u... 

HeS2 

HeSl 
Meso 

-

-

":F - r-

...L 11 ~ 19 20 - O£ 
~ 

DIR ~ 
17 3 Hffi 
16 4 HCSO 
15 IC7 5 

~ 74LS645 
6 

-1!. 7 

-J!. 8 

-1!. 9 

- ,10 VT20 ~ 11 

.....2!. GNO VCC 2 

--1!. 3 L-
16 4 
15 Ica 5 

~ 74LS6t.5 6 r--
----ll 7 

12 8 

-ll. 9 
L..-

19 AlE 
11 I 

~ 
1 

G DE 2 19 
3 

IC9 
18 

4 17 
5 LATCH 16 
6 15 
7 74LS573 Ill. 

8 13 
9 12 

10 20 -
J..l.. -

L...-

r--

Fig. A.1a ADDRESS/DA T BUFFERS AND LATCHES 

253 

A19 

AO 

ADO 

AD7 

Vl 
~ 
ID 

Vl 
Vl 
UJ 
0:: 
o 
o « 

Vl 
~ 
a:l 

« 
I« 
o 



-- 122 CS4 (UCS) 20 
14 

SV i-'7 A14 
or 

'6 

X 
11 28 PIN 21 

X 

24 SOCKET 
X 

ADDRESS BUS 3 IC12 07 4 
5 
6 
7 BOOTSTRAP T 
9 
10 AO DO 

RD -
CSOUT 

20 E1R 
122 

OE" 

- '6 A13 X 

~ 
X 

ADDRESS 21 

BUS n. 
25 IC13 ~ D7 
4 
5 
6 
7 
8 RAM 
9 
10 AO 

RD I..-. DO 
CS3 20 122 

27 
7h CS G or 

Al 

+-0 ? A12 
(~ LK8 8 23 X 

.:-': 
21 X 

~~ 
24 
25 
~ 
4 1(14 D7 
5 
6 

I, 
1" MEM 

SYS 
28 . I 

LJ I 

AD 

ORY 
TEM 

O-AD7 
19 -
18 
17 
16 
15 
13 
12 
11 

14 
28 
1 

14 

28 
1 

-

DATA 
BUS 

" ,I,. 
I 

-

--' 

I. 11· , 
T 1 

-

.... 

AD O-AD7 

DATA 
BUS 

ADO -AD7 

DDRESS 7 APPLICATION 8 
A DATA 
B BUS US 9 SOFTWARE 

10 AO 
DO - -

Fig. A.19 MEMORY SYSTEM 

254 



IC16 -L-

~) RXB 

~A3 , RESEl 
6 IC17 390p PR' I 1 I 

TXB 5 OP5 
AO-A3 3 Al RXB 10 

1 AO 11 e ./110 RXA 
XL }\Q 32 Xl 2681 TXB 
= XTAL RXA 31 TXA J C3 3.684 MHz 33 X2 

lOp SP 07 25 IC15 TXA 30 2 
CTSA .... _ r DO 

IPO 7 11 ", --.-J \1 ~ 1 RTSA 
III 
III 

OPO 
13 

IP2 n · OTRA 
07 OP7 5 

WR . UO '-
el WR 

R);4:e ]11 
• I USRA I RO 9 RO ~. I CN 

6_ ./'15 
21 

INTt 

Fig. A.20 SERIAL COMMUNICATION SYSTEM 



DROl eTRl 

0 0 

DROO CTRO 

0 0 

PCS2· DMA REO * 
0 0 

PCS1· MAINCS .. 

0 0 

WR '.1\ MAIN WR >ij, 

0 0 

RD* MAIN RD * 
0 0 

<DATA BUS 00 - 07 > 
Fig. A.21 ON -BOARD INTERFACING BLOCK (oBn 

256 



5V 

5V 1 

2 IC3 7 I· 
R4 4K7 01 

5 lSOO LS74 Ql 
3 ClKl 

---
'12 02 02 9 

11 CLK2 02 8 

PR2 CLR2 

V. R5 4K7 10 13 

5V 

AROY 
CLOCK FROM CPU 

TO 82188 

Fig. A.22 SINGLE STEP CIRCUIT 

257 



.sv 

LS30 
1 AO 

100K 2 

.sv '3 
R/C 4 

0.11'f 
LS123 

5 

R2 10K C2 C1 IC1 1 A6 

OPS FROM I(S(b) 
2681 f14 

12 

I(S(c) 

NMI TO 80188 

P(S3 FROM 80188 

Fig. A.23 WATCHDOG TIMER 

258 



APPENDIX - B 



APPENDDt B 

CXMIlNICATICN SEX:TICN'S H)DES OF OPERATICN 

B.1 

'!his section describes h:M the ccmnunication software is set up to 

manipulate the hardware f= transnission and reception of data frames 

over the network. The communication section has five modes of 

operation; initialisation, no operation (idle), reception, 

transmission, and data exchange with the processing section's 

interface (OBI). The selected mode of operation is determined by the 

cx:mnunication section which receives requests for each mode. Each mode 

is explained in the follow:in:;r sections. 

B.2 INITIALISATION 

On power-up or reset, the cx:mnunication CPU and the CSM m::xiules are 

cleared to a basic initial state, as explained in sections B.2.1 and 

B.2.2 below, with most actions disabled. '!his means that only a few 

actions need to be taken to set up these devices. The '!MS m::xiule, 

ixMever, is only cleared after a power-up. '!his requires sett:in:;r up 

all its registers appropriately after a CPU reset. 

B.2.1 Comunication CPU 

The main functions that must be set up in the communication CPU 

include: wait state generator, handling of interrupts, serial 

interface, watchdog timer, and the internal timers required by the 

software. 
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'!be wait state generator autx::matically resets to the maxim.Jm number of 

wait states for both nellory and I/O space accesses. This means three 

wait states for mem:>ry and four wait states for I/O accesses. '!be 

number of wait states actually required by memory is largely 

detennined by the speed of storage devices fnqJlanented. Devices with 

access times of 200 nS or less, require one wait state only. In I/O 

access, the number of wait states required depends greatly en the 

speed of the CSM and '!MS ll'Odules. 'lbeoretically, one wait state is 

sufficient. For safety purposes, however, an extra wait state is 

inserted with very little effect on system performance. 

Interrupts are generated both internally and externally. External 

interrupts are generated by the CSM ll'Odule and the watchd:Jg timer. 

Watchd:Jg timer generates a oon maskable inten:upt (NMI). '!be inten:upt 

vector set-up is also fixed, so IX> further actien is required after a 

reset. '!be only action required is to initially trigger the watchd:Jg 

timer. '!be required registers for this action are set up durinJ the 

initialisatien sequence, transfer beinJ initiated when required. 

All other inten:upts are masked after a reset. Signal operations that 

generate an INI'1 signal fron the CSM ll'Odule do rx>t have to be handled 

by interrupts. All lines can be examined by read operations to 

appropriate registers within the CSM nodule. For cx::mplex operations, 

however, it is suggested that signal operations are implemented 

through inten:upts as this renoves the need for pollinJ the system bus 

continuously. 
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For most applications, the serial line interface is required for 

monitoring the system operations. This requires setting up the 

appropriate baud rate, and possibly an internal interrupt for data 

reception. 

B.2.2 CSM module 

M::lst lines of this module, apart fron the WAIT signal, are set to an 

inactive state by the reset signal. This ensures that no system 

initialisation takes place before activating the WAIT Signal. All the 

other lines connected to the system bus are set to a tri-state 

condition to avoid any contention. The only action required is to set 

the SELECI' line, allCMing the cx::rnnunication O'U to access the '!MS 

module. 

B.2.3 TMS module 

This module requires a complete reset by software. Functions not 

required by the module are also cleared by software due to their 

undefined state as described earlier. M:lst of the registers within 

this module change state, depending on the operation bein;} carried 

out, and hence there is IX> need for a reset. The only exception is the 

interrupt control, which can be left enabled at all times as it is 

gated off externally. 

B.3 NO OPERATICX'{ - IDLE 

In this state the cx::rnnunication section carries IX> operation ( i. e. 

data transfer) with any destination. It simply keeps monitorin;} the 

state of the RXEN line, checkin:J' for either system bus activity, or a 

request by the processing section to access the TMS module. Both 
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activities are indicated by an interrupt to the c::arrmmicatic:n CPU. If 

inten:upts are oot enabled, however, then the ca:mrunicatic:n CPU has to 

poll the CXM-1S CONTROL REGISTER at regular intE=7als to detect either 

of these activities. 

B.4 kECEP1~ON 

Reception llOde is requested when RXEN signal is active caus~ an 

inten:upt to the 64180 CPU. When the c::arrmmication section is in the 

idle llOde then the message ccming fran a rerrote station can be handled 

imnediately. If the ca:mrunication section is in aoother llOde, however, 

!:MA transfer is then suspended and bus control is returned to the 

ca:mrunicatic:n CPU. Data transfers to/fran the process~ section are 

checked. DMA transfers are re-issued, should data transfers are 

==pted. 

When RXEN signal is invoked, it generates a BUSY signal CNer the 

system data bus. This holds back the transmi ~ static:n until BUSY 

is rem:JVed fran the system bus. This is acccmplished by the recei~ 

static:n sett~ the READY line in the CSM rrodule. This must only be 

done when the ccmnunication CPU has set up the '!MS nodule to receive 

data. This includes se~ up the data pointers in RAM. To set up the 

'!MS rrodule, the SELECI' line in the CSM rrodule must be set, enabl~ 

the ccmnunication CPU to access the '!MS rrodule. 

Once the READY line is set, the transmission cycle to this station 

ccmnences, under the control of the transmi~ station, as sl'n-m. by 

time T2 in Fig. B .1. During this time 00 access is required to the '!MS 

rrodule. 
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The end of data reception is signalled by rese~ the RXEN signal. 

This occurs when the transmi~ staticn removes the address off the 

system bus and the SSS* line goes inactive. To detect end of 

transmission, the RXEN signal nrust be polled durin;J the transmission 

cycle. Durin;J this time the .interrupt line will be continually active 

and so must be masked off by the CPU until the end of transmission to 

this station, as signalled by clearing RXEN. 

After a reception of data CNer the system bus, data sOOuld be cleared 

fron the 'IMS rrodule as soon as possible, so as to enable an:Jther 

reception to take place. If this is rot 00ne then bus traffic may be 

delayed. 

B. 5 TRlINSMISSlOO' 

This m:x'!e is entered when there is a message to be sent to a rarote 

station by the station which holds the 'Token'. In this case the 

cx:mnunication CPU sets 'IMS9650 to point to the start of the message to 

be sent and programs the TMS9650 through its control register to 

activate an interrupt when last byte of the massage has been 

transmitted. 

The first action of the transmitting station is to place the address 

of the receivin;J station on the system address lines and enable the 

SSS* line. This is achieved by writing the address to the station 

address register and enablin;J the SAEN signal which, in turns, enables 

the output buffers. 
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After the address lines have been set, the oc:rnm.mication section JrUSt 

set up data pointers of the '!MS m::x:lu1e. To do this the SELECI' line 

must be set to allow the oc:rnm.mication section access the '!MS m::x:lu1e. 

The address pointers in the '!MS m::x:lu1e JrUSt be set so that port B 

points to the start of data and port A points to the end of data. The 

TMS module is programmed to activate an interrupt at the end of 

transmission. 

The next operation is to set the STX and READY centrol lines through 

the c:x:mnunication centrol register. '!his action will then in! tiate the 

transmission sequence as soon as the receiv~ station releases the 

BUSY line. Once the BUSY line has gone inactive then transmission will 

start at the beginning of the next transmission cycle as detennined by 

the signal TXCLK. This then sets the TXEN signal to start 

transmission. 

The end of transmission operation is signalled by the '!MS m::x:lu1e when 

the two address pointers are equal. '!his generates an interrupt frcm 

the 'IMS m:Jdule. When this is detected by the CPU, two actions must be 

taken. The CPU must reset the '!MS interrupt line in the '!MS m::x:lu1e and 

also the 'IMS interrupt latch by wri ~ to the appropdate interrupt 

control register. It must also reset the READY line as shown by Tl in 

Fig. B.2. If this is not cleared and another station attanpts to 

transmit to this station, no busy signal will be generated until this 

station is ready. 
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B.6 D!l.TA ~ WIm '!HE OBI INTERFACE 

Data transfer between the processinJ section and the '!MS rrodule may 

result fron ~ cx::clditioos. A request is initiated by the processinJ 

section when it has a message to transmit to a remote station. 

Alternatively, a request is initiated by the ccmmmication section 

when a network data frarre has just been received in the '!MS rrodule. 

The processing section signals its request for a transfer to the 

cx:mnunication section by activatin;J the IMAREQ line so settin;J up an 

inten:upt to the cx:mnunication section. The interrupt must be cleared 

by writing to the IW\ interrupt register. This must be cbne before arq 

other action takes place, as the sarre interrupt latch is used to 

signal the end of the transfer. 

Once the communication section has determined that a transfer is 

required, it must set up the '!MS data pointer, of port A, f= the 

transfer. The next action is to clear the SELECT line to enable 

processing section's access. It must then signal to the processinJ 

section to start the transfer. Two lines are provided for this 

transfer; IW\O and Il'1Al. One is used for transfers of data fron the 

'lMS rrodule to the processing section and the other f= transfers fron 

the processinJ section to the 'lMS nodule. These signals are activated 

by write operations to the appl:opriate registers. 

When a request for a transfer is sent by the ccmmmication CPU, the 

CSM rrodule activates the BUSREQ* signal. The ccmmmication section 

will, then, release its data bus f= the transfer, after a delay not 

exceeding 1 uS. This means that the processing section should wait at 

least 1 uS before startinJ the transfer. otherwise, the buffer between 
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the process~ and ccnmunication sections may =t be enabled. Dur~ 

transfer, the ccnmunication section sh:lul.d poll the roM3 OJNl'ROL 

RroISTER in the CSM m:xiule. It sh:lul.d check f= a MAININl' signal 

generated by a DMAREQ signal. This signal is activated by the 

process~ section at the end of a transfer. Dur~ !:MA transfer, the 

communication section is disabled as the processing section has 

control of its data bus. This operation is transparent to the 

ccmmmication software. It is suspended dur~ the transfer and is re

initiated after the canpletion of the transfer when the MAININl' line 

is set again. 

Data transfer between the '!MS m:xiule and the process~ section may 

end prematurely by the RXEN signal activated by the CSM m:xiule. This 

generates an INl'1 signal to the ccnmunication section, releas~ its 

bus fron the transfer process. Hence, the ccnmunication section must 

poll the roM3 CXlNI'ROL RroISTER in the CSM m:xiule to detect whether an 

end of transfer is caused by a valid end signal fron the process~ 

section or else by an RXEN signal indicat~ the start of a reception 

!lOde over the system bus. 
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Fig. B.1 DATA RECEPTION MODE - SIGNAL TIMING 

267 



start of Transmission 

SAEN 
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READY 
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End of Transmission 
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READY 

Fig. B.2 DATA TRANSMISSION MODE - SIGNAL TIMING 
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Fig. B.3 TRANSMISSION CLOCK SIGNALS 
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Al'E'mIDIX C 

MJLTI-l'OOCfSSOR SYSTEM - cnMlNIc\TICN SOFlWARE STRlX:'lURE 

C.l RING cnwIGURATICN AND MI\INl'El'mtCE 

The basic concepts of token passing bJs access metood (TPBAM) were 

laid Cbwn in Olapter 4. In this section, token ring ccnst:ruction and 

maintenance are described. Before a station can start exchanging 

messages with other stations, it must kn::M sane infonnation about 

other stations in the ne"Mrk (Fig. C.l). 'l11is can only be achieved 

once the logical ring has been established. Hence there must be an 

active configuration process (refer to Fig. C.2). 

Once the ring is formed it has to be maintained. Stations may be 

allowed to enter or leave the network. Each station nrust periodically 

allow new stations to enter the ring. On the other hand, a station may 

ex! t the ring either as part of a =nnal operation or as a result of a 

failure. In either case, the ring nrust be reconfigured to accamcdate 

such a change. 

C.l.l Ring configuration 

On power-up, each station is supplied with its own address. To 

establish sane information about other stations in the ring, each 

station uses a hardware timer called the response timer (RT). RT is 

directly proportional to the station's address. All stations activate 

their response timers (RT) Simultaneously. The time-out period is 

directly proportional to the station's address. 'l11is means that the 

station with the lowest address has the shortest time-out period. In 

the example illustrated in Fig. C.2 this would be station 4. When 
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station 4 times-out, it sends a bus message to all staticrlS called 

'claim token' informing them that it is the first station in the ring. 

When other stations receive the message, they set their first 

station's address (FS) and wait f= further bus messages. At this 

point station 4 has the token but still has no information cc:n:::ernin;J 

its success= (NS) or predecess= (PS). 

The first station next sends a 'wh:> foll=s' message. Included in this 

is the address of the sending station. On reception of this message, 

other stations activate their response timers once more. The first one 

to time-out is that with the next highest address in the network 

(station 9); it responds by sending a ' set successor' frame to the 

sender of the 'wh:> foll=s' frame informing it of the next station in 

the ring. station 4 "{'ON sets its NS address, and station 9 its ps 

address. Once this process has been 00ne, the token can be passed on 

to station 9. station 9, then, ackrDN1edges reception with a 'token 

ack' frame. Hence, the link between station 4 and station 9, at this 

stage, has been patched. 

station 9 rt::M goes through the same procedure to link with station 13. 

Note that, however, when station 9 issues a 'wh:> foll=s' frame, only 

stations which have =t already established a PS value may respond. 

Further, since station 4 has the lowest time-out period, it must reset 

its time-out to the maximum possible period once it has patched the 

link with its successor. If this has =t been 00ne, station 9 v.ou1d 

patch a link to station 4 and the ring v.ou1d appear to be formed 

=rrect1y, even though only two stations are involved. 
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This process is repeated at each station. The logical ring is 

a:mpletely farmed when the first station receives the tc:ken fron the 

last one in the ring (station 13). CA1ce the final link is patched the 

first station sends a 'set last' frame to all the stations defining 

the last station in the ring. This is followed by a message which 

specifies the total number of stations in the ring. 

Configuration is a:mpleted when the first station finally sends an 

, ini t done' message at which stage the system enters the operational 

node. 

C.1.2 Addition of a Staticn 

During rnnnal operations a station h:Jlding the token will periodically 

send a 'solicit successor' frame. This invites stations with an 

address between itself and the next station in logical sequence into 

the ring (see Fig. C.3). The transmitting station then waits for a 

time relative to the next station's address (the address of any 

station between TS and NS canIXlt exceed NS). 'IW:> events can occur: 

* No response - there are m stations wishing to enter the ring. The 

token is passed-on as rnnnal. 

* A response - If there is a station that wishes to enter the ring it 

then sends a 'set successor' frame. The token h:Jlder sets its NS to 

the new station and passes the token to the new station. The station 

that was next to the station that has sent the ' solicit successor' 

frame sets its PS value to the address of the new station. 

In the addition of a new station, the following points have to be 

taken into consideration (refer to Fig. C.3): 
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* If a number of statioos between TS and NS are wai tin;; to enter the 

ring, the CX1e w1 th the lowest address respcnds first and gains 

entl:y. The others, however, have to wait for arx:>ther invitation. 

* All stations increase their re=rd of the number of statioos by 

one. 

* If the new station's address is less than the first station then 

all statioos update their FS address to be the new station. 

* If the new station's address is greater than the last station then 

all statioos update their LS address to be the new station. 

C.l.3 Deletion of a Station 

A station may exit the ring if either a fault occurs or as part of its 

n:Jrmal operation (i. e. drop-out). The tt-.u cases are described belOW': 

a) Station failure 

Failure may be detected in CX1e of tt-.u ways. In the first case, if the 

token is transmitted to a defective station and n:J response has been 

detected (i.e. 1"0 acIm::Mledgement has been received). The sender will, 

then, start reoonfiguring the ring. It does this by sending a 'wOO 

follOW'S+' frame (see Fig. C.4). The next operational. station respa1ds 

by sending a 'set successor' frame. The sending station then passes 

the token to what is currently its new NS. 

Alternatively, a station may fail whilst holding the token. This is 

detected by the next station in the ring waitin;; f= the token. Its 

token rotation timer will time-out if it does n:Jt receive the token 

within a preset time. When this occurs, it claims the token by sending 

a 'claim token' frame. 
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b) static:n drop-rut 

If a static:n wishes to drop-out as part of its rxmnal. operatic:n, it 

waits tmtil it receives the token. Then it issues a 'set successor' 

frame to its predecessor so that the link can be patched and the 

static:n clroppinJ out can be by-passed. 

A deletion of a station fron the rinJ gives rise to the following 

chan;Je of information held by each station (refer to Fig. C. 4 ) : 

* All stations decrease their record of the m.nnber of stations in the 

rinJ by one. 

* The sender of the 'wh:) follows' frame sets its NS to be the station 

next to the failed static:n. 

* The static:n which was the next in successic:n to the failed station 

sets its PS to be the station that has sent the 'wh:) follows' 

frame. 

* If the failed station is the last station in the rinJ, then all 

stations update their LS to be the station that has sent the 'wh:) 

follows' frame. 

* Similarly, if the failed station is the first station in the rinJ 

then all the other stations update their FS to be the station next 

to the sender of the 'wh:) follows' frame. 
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C.2 CXNmOL FRl\M&l 

This section describes briefly the frame formats used in sending 

messages between statiCX1S ~ the cxnfiguraticn and maintenance 

procedures. The general frame format is: 

SD DA SA DATA 

where: SD is the Start Delillliter - one byte 

DML is the Data Message Length - one byte 

FT is the Frame Type - one byte 

DA is the Destination Address - one byte 

SA is the Source Address - one byte 

DATA is the Data Transmitted - 1. •• 120 bytes 

En is the End Delimi ter - one byte 

The data message length field contains the number of bytes in the data 

field. 

The frame type field detennines the resp:JnSEl needed when a message has 

been received. The following is a canplete list of the frame types: 

* Claim Token 

* Token 

* Token Ack 

* Wh:> Follows 

* So1io1 t Successor 

* Set Successorl 
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* set Success0r2 

* set Previous 

* New Member 

* Del Member 

* Member Request 

* Member Camt 

* Wh:l Last 

* Wh:l First 

* set Last 

* Set First 

* !nit Dcoe 

* Data 

Refer to Table C-l for full description of the control frames. 

C.3 TIMERS 

There are a number of logical timers that are used in impl€lOO!lting the 

Token Passing Bus Access MetlxJd (TPBI\M). These are: 

* Token Hold Timer (TH) 

* Token Lost Timer (TL) 

* Response Timer (RT) 

* Token Ack Timer (TA) 

* Wh:l Follows Timer (WF) 

* Solicit Successor Timer (SS) 

a) TH: This is the time that a station is allooed to oold the token 

for. It can only transmit data and control frames during this 

period. 
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b) TL: This is also known as the token rotation timer. It is the time 

that a station has to wait before it receives the token again. If 

the token is =t received by this time, the station 8SS1.lIOOS it has 

been lost and, hence, claims the token with a 'claim token' frame. 

TL = (TH * CS) + SM SM = Safety Margin 

c) RT: This time is used to detennine the position of a station in 

respcnse to a 'wb::> follows' and 'solicit successor' frames. RT is 

directly proportional to the address of the station. 

RT = TS * constant 

d) TA: This is the time taken by a station waiting to receive a 'token 

ack' frame when the token has been transrni tted to its successor. 

e) WF: This is the time taken by a station to receive a 'set 

successor' frame fron its successor after issuing a 'wb::> follows' 

frame. It is set with the response time of the last station in the 

ring, 1. e. RT( LS ) . In this case it is the response time of the 

station with address 15. 

WF = RT(LS) + SM 

f) SS: This is the time taken by a station to receive a ' set 

successor' frame fron a station wishing to enter the ring after a 

'solicit successor' frame has been issued. It is the response time 

of the next station, Le. RT(NS). 

SS = RT(NS) + SM 
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C.4 SOFl'WARE DEVELOFMENl' AND STRU::ruRE 

The communication software is designed in a modular, structured 

manner, beinJ inplanented usinJ the Jackscn Program Design Facility 

(PDF) package. The Jackson chart is constructed to describe the 

software to a specific level of detail. The ICMeSt levels represent 

sinple functions that can be translated into program fonnat. Generally 

the reccmnended control structures of structured progranming have been 

used in the writin] of the program source code. 

The explanation that follows refers to a station's software and rot to 

the rin;J as a w\'x)le. 

The system consists of the three top level functions [Olart C.I] 

* Initialise the 00ard (hardware and software). 

* Enter the rin;J. 

* Run in operational rrocle. 

C.4.l Initialise the Board [Olart C.2] 

In this rrocle each station reads its own address and set TS iIrmediately 

when the power is applied, the appropriate variables being 

initialised. These include settin;J the member =unt to one and the 

TokenHeldBit to FALSE. The response time of the station is calculated 

from the station's address. 

In order for the stations to be synchronised, each station sets its 

WAIT line to FALSE. When this is done, the START line goes high. This 

is shown on 01art C.2. Once this process is CNer, the station enters 

the rinJ. 
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C.4.2 Enter the Ring [Chart C.3] 

When the START line goes high, each staticn starts its respoose timer 

(RT). It, then, llOlitors the systan bus for arr:t roossages within its 

time-out period. There are three possible routes that a staticn can 

follow: 

* If the timer times-out and there is ro bus activity, then the 

station has to follow the routine for entering the ring as the 

'first station'. 

* If the station receives a 'Claim Token' frame, then the station has 

to follow the routine for entering the ring as 'not the first 

station' • 

* If a frame other than 'Claim Token' is received then the station 

has to follow the routine for entering the ring as a 'plugged-in 

station' • 

C.4.2.l '!be First staticn [Qlart C.5] 

When the response timer (RT) times-out, the staticn sends a 'Claim 

Token' frame. This infonns other stations that the taken has been 

claimed by the first station and to wait for further messages. This 

frame =ntains the address of the first station in the ring Le this 

station's own address. 

In order to establish the successor, a 'who follows' routine is 

executed, as described in section C.l. Once the NS address has been 

established, the station must reset its response time to the maximum 

possible value. 'I11en it has to wait while other stations in the ring 

patch links together. The 'wtxJ before' does this waiting and at the 

same time it looks for a 'wtn Follows' frame fron its predecessor. It, 

then, waits for the token and aclm::Mledges reception with a 'Token 
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Ack' frarre. At this point the r:!nJ has been totally patched. Before 

the station can enter the operational mode it must inform other 

stations in the riIg of the address of the last station in the riIg. 

The station then sets the timer values. It then broadcasts the 'Init 

Done' frame sta.rtirg to enter the operational node. Table C-2 sl'x:lWs 

when the addresses are set by the first station. 

C.4.2.2 Not the First Statim. [Olart C.6] 

When the station receives a 'Claim Token' frame, it sets the first 

address (FS) and wait to patch the link with its predecessor. The 'wOO 

before' routine ~ the activities it performs while it is waitiIg 

for such an event. Once the link with previous station has been 

formed, it links with the next station using the 'who follows' 

routine. 

The station waits until the ccmplete riIg has been foDOOd. Meanwhile, 

every time it IIOI1itors a 'Set Successor' it counts the number of 

stations in the riIg. It, then, waits to receive the 'Set Last' frame 

follOwed by an 'Init Done' frame fron the first station (FS). It can 

then set its timer values and enter the operational node. Table C-3 

sl'x:lWs the addresses beiIg set for the station that is rot the first in 

the riIg. 

C.4.2.3 A Plugged-In Station [Olart C.7] 

When a station has just been plugged into an already established riIg, 

it starts IIOI1itoriIg systan bus messages. It is invited to the network 

when it receives a 'Solicit Successor' frame from a particular 

station. First, it must check whether its address lies between the 

invi tiIg station's address and the next station's address (NS ) . If 

this is rot tnle, it must then wait again for anJther invitation. If 
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this is true, h:mever, it has to check whether it is the first in 

line, i.e there may be other staticns wishin3 to enter as well. It 

achieves this by starting its response timer and looking for a 

respoose in the same way as if all the staticns had just been ~ 

up, start:in;J to enter the ring. 

'!he staticn with next lCMeSt address gains entry first and all others 

must wait again for other invitaticns. Cklce the new staticn enters the 

ring and holds the token it sends a 'New Member' frame to the other 

stations, incrementing their record of the number of staticns in the 

ring. When the token is passed on and the timer values have been set 

the station will enter the operational node. Table C-4 defines the 

setting of addresses bY a plugged-in station. 

C.4.3 Rurming in Operational Mode [Olart C.4] 

Once a station has entered operational mode it will periodically 

receive the token. '!he period is defined bY the Token Rotaticn Time. 

If the token is rot received bY this time, it is assumed to be lost 

and the station will claim the token bY issuing a 'Claim Token' frame. 

During rx:>rmal operations the station also has to resp:a1d to any other 

messages that may arrive as a result of a staticn exiting or joining 

the ring. Table C-5 shows the response to a particular frame. 

C.4.4 Repeated Routines 

These are various routines that are called repeatedly througixlut the 

main module (1. e program m:ldule). A list of them is sh:lwn below: 
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* WI"o Follows Raltine. 

* WI"o Before Raltine. 

* Wait F= Token Raltine. 

* Token lICk Raltine. 

* WI"o Follows Respcose. 

* Solicit Successor Response. 

* Access Routine. 

* Poll Bus and Timer Routine. 

a) Who Follows Routine [Chart C.9]: This routine is used in the 

initialisation px=ess. When a station is ool~ the 'token ' it 

sends a control frame in =der to identify its successor. It sends 

a 'WI"o Follows' frame and waits f= a response within the wtx> 

follows time. If there is no response within this time then 

sanething' is wrong and the ri.n;J has to be reconfigured. A response, 

within the time period, will be the 'Set Successor' fraIOO fron the 

next station in sequence. This fraIOO includes the address of the 

next station (NS). NcM when a successor has been established, the 

token is passed on to it. Once the 'Token lICk' fraIOO has been 

received the link: has been made. 

b) Who Before Routine [Chart C.lO]: This routine is used in the 

initialisation px=ess. It is used to identify the predecessor of a 

station. When this station receives a 'Who Follows' frame, it 

starts its response timer. If this expires before arty of the other 

station's timers then it replies with a 'Set Successor' frame and 

the previous address (PS) address can be set. If, however, the 

timer does =t expire and a 'Set Successor' frame is received, the 

station will increment its record of the number of stations in the 

ri.n;J and wait again for a 'WI"o Follows' frame. This is repeated 

until its timer expires before arty of the other and is therefore 

next in the ri.n;J. 
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c) Wait For Token Routine [Olart C.14]: This rartine s~ly loops, 

polling' the bus until the staticn receives the token frame. Then 

it sets the 'TokenHeldBit' and exits the routine. 

d) Token Ack Routine [Olart C.15]: 'Ihis routine is used both in the 

initialisation and operaticnal 1OCldes. It is used by a staticn after 

passing on the token frame onto its successor, waiting for an 

ackn:lwledganent. The staticn waits for a 'Token Ack Time'. If the 

ackn:Mledganent has rot arrived within this time, it assurres that 

NS has failed and hence claims the token again. Otherwise it 

proceeds. 

e) Who Follows Response [Chart C.l2]: This routine is used by a 

station, in the operational node, when it wishes to exit the token 

ring'. 'Ihis station has to check to see if the drop-out staticn is 

its predecessor. If so, this staticn (TS) sends a 'Set Successor2' 

to the predecessor of the failed staticn infcmning it of its new 

successor. If the failed station is not the previous station, 

h::Jwever, then there is ro action to be taken. 

f) Solicit Successor Response [Olart C.13]: 'Ihis routine is used by a 

station, in the operational node, to check whether a new station 

has joined or entered the ring'. If a 'Set Successor' frame is 

received then there is a new station in the ring' and the TS will 

account for it by incranenting the record of the rn.unber of stations 

in the ring'. If rothing' happens within the maximum wait time then 

TS goes back into the operational node. 
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g) Access Routine [Olart C.ll]: This routine is executed by a station, 

once fN6ry 'N' token J:Otation cycles ('N' being set = defined by 

the programner). It is used to invite any waitllg station to enter 

the ring. This is done after I'olding the token N times. A 'Solicit 

Successcr' frame is issued. If there is no reply then there are no 

stations wishing to enter. If a station does wish to enter, 

however, TS receives the 'Set Successor' frame, resets its NS 

address, clears the TokenHeldCount, transmits any data and then 

finally pass on the token. 

h) Poll Bus and Timer Routine [Olart C.16]: This routine simply keeps 

p::>lling the bus and the station timer simultaneously. An action is 

taken when either a message is received on the bus, = the timer 

expires. 
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TABLE C-l: DESCRIPl'ICN OF CXNI'ROL FRAMES 

What follows is a description of the centrol fraIOOS used in :!.mplaoonting 

the token passing bus access metOOd (TPBAM) during; 

a) Configuration process 

b) Operational node. 

WHEN TRANSMITTED 

1. Claim a) In the ring ccnfigu-
Token ration by first 

station (FS). 
b) If the token is lost 

by TS. 

2. Token a) When the NS address 
has been set up. 

b) When TS has finished 
transmitting data. 

3. Taken a) On reception of 
Ack token frame. 

b) Same as in (a). 

4. Who a) When TS oolds token 
Follows and wishes to find 

NS. 

b) If NS does not send 
token ack frame, Le. 
it has failed. 

5. Solicit a) NJt used. 
Successor 
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ACI'ICN CN RECEPl'ICN 

a) Stop response timer 
and wait f= 'Who 
Follows' • 

b) Reset taken rotation 
timer. 

a) Ackrx:Mledge reception 
with taken Ack frame. 

b) Same as in (a). 

a) Assume NS has received 
the token. 

b) Same as in (a). 

a) start response timer 
and if it times out 
before the others, TS 
sends a set successor. 

b) If failed station is 
PS, TS sends a set 
successor. Otherwise 
TS behaves as in (a). 

a) If TS lies within the 
invited region, start 
response timer and if 
first to timeout send 
set su=ess=. Other
wise wait f= another 
solicit success=. 



WHEN TRANSMITl'ED ACl'ICN CN RECEPTICN 

b) After h:Jl~ token b) Look for messages en 
a preset rrumber of bus. If a reN statien 
times. To invite a joins the r~ incre-
statien into the r~. ment CS. 

6. Set a) If respoose timer is a) Set NS address to the 
Successorl first to tiIooout address of the sender. 

either after a who 
follows or after a 
so11ei t successor. 

b) As in (a) but only b) As in (a). 
after a who follows. 

7. set a) Not used. a) Not used. 
Successor2 b) When TS wishes to b) Set NS address to NS 

exit the r~, send of exit~ station. 
this to PS. 

8. Set a) Not used. a) Not used. 
Previous b) When TS wishes to b) Set PS address to PS 

exit ring, it sends of exi~ station. 
this to NS. 

9. New a) If TS is new station a) Not used. 
Member in r~. 

b) Not used. b) TS increments CS. 

10. Del a) Not used. a) Not used. 
Member b) If TS wishes to exit b) TS decrements CS. 

r~, it sends this 
to all stations. 

11. Member a) If TS is a new sta- a) Not used. 
Request tion, it sends this 

to NS to find CS. 
b) Not used. b) TS responds with a 

member count frame. 

12. Member a) When TS is FS and a) If TS is new it sets 
Cotmt the r~ is const- its CS address. 

rueted. 
b) If TS receives the b) Not used. 

member request frame. 
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WHEN TRlINSMI'l'l'ED 

13. Who Last a) If TS is new, it 
sends this to NS to 
get the LS address. 

b) Not used. 

14. Set Last a) If TS is new and 
greater than PS it 
sends this to all 
tatioos informing 
than to reset their 
LS address. If TS is 
the first station then 
before the system 
goes into operational 
ITOde, this frame is 
sent. 

b) If the TS is the 
predecessor of the 
LS and LS fails to 
respond. 

15. Who First a) If TS is new to the 
ring, it will send 
this to NS. 

b) Not used. 

16. Set First a) If TS is new to the 
ring and is the new 
FS , it sends this to 
all the stations. 

b) If TS is successor 
to FS and FS fails, 
TS will send this. 

17. Ini t!):)ne a) If TS is the first 
station in the ring, 
once the ring has 
been cc:migured and 
it has received the 
token it will inform 
the other stations. 

b) Not used. 
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a) Not used. 

b) Reply with the set 
last frame. 

a) When TS receives this 
it sets the LS as its 
LS address. 

b) Same as (a). 

a) Not used. 

b) When TS receives this 
it respcnds with the 
set first frame. 

a) When TS receives this 
it sets its FS value. 

b) Same as (a). 

a) TS will enter the 
operational ITOde. 

b) Not used. 



18. Data 

WHEN TRANSMITI'ED 

a) Not used. 
b) Data is transni tted 

only in the operat
iooal mx1e when the 
staticn holds the 
token. 
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a) Not used. 
b) TS transfers data 
to Processin;;1 secticn. 



TABLE C-2: ADDRESS SETI'IN:; BY THE FIRST STATIOO 

ADDRESS 

Own - TS 

First - FS 

Next - NS 

Previous - PS 

Last - LS 

Member Count - CS 

WHEN ADDRESS IS ESTABLISHED 

This is set when the staticn is powered-up. 

Since this is the first staticn in the rirg 
FS is TS. 

The next station will resp::a1d to a 'Wh:> 
Follows' with a 'Set Successor' frame. The 
NS address will be included in the frame. 

When TS receives a 'Wh:> Follows' frame and 
if its response timer times out before the 
other stations, it can set PS fran the 'Wh:> 
Follows' frame. 

Since TS is the first station in the rirg 
then LS is the same as PS. 

Whenever TS receives a 'Set Successor' 
frame CS is incremented. 
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TABLE C-3: ADDRESS SETl'IN3 BY A OOl'-FIRST STATICN 

ADDRESS 

Own - TS 

First - FS 

Previous - PS 

Next - NS 

Last - LS 

Member Count - CS 

WHEN ADDRESS IS ESTABLISHED 

This is set when the station is powered-up. 

When TS receives a 'Claim Token' frame FS 
is included within it. 

When TS receives a 'Wh:J Follows' frame 
and if its resp:>nse timer times out before 
the other stations, it can set PS fron the 
'Wh:J follows' frame. 

The next station will respond to a 'Wh:J 
Follows' with a 'Set Successor'. The NS 
address will be included in the frame. 

The first station will send the 'Set Last' 
frame specifying LS. 

Whenever TS receives a 'Set Successor' 
frame CS is increnented. 
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TABLE C-4: ADDRESS SETTIl'G BY' A PLtmED-IN STATICN 

ADDRESS 

OWn - TS 

Previous - PS 

Next - NS 

First - FS 

Last - LS 

Member Count - CS 

WHEN ADDRESS IS ESTABLISHED 

'Ihis is set when the stalien is pooered-up. 

When TS receives a 'Solicit Successor' frame 
and it is next in sequence in the rin;J, PS 
will be set by the frame. 

The sender of a ' Solicit Successor' frame 
includes the address of its old NS, this 
beo::mes the NS of this statien. 

If TS is less than PS then TS is the new FS 
and it will send a 'Set First' frame. If not 
it asks NS with a 'Wl'x> First' frame. 

If TS is greater than NS then TS is the new 
LS and it will send a 'Set Last' frame. If 
not it asks NS with a 'Wl'x> Last' frame. 

When TS has entered a rin;J it will ask NS 
for the stalien' s member count by sending 
a 'Member Request' frame. 
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TABLE C-5: RESPONSE ID FRAMES RECEIVED IN OPERATlOOAL MDE 

FRAME RECEIVED 

CLaim Token 

W\"x) Follows 

Solicit Successor 

W\"x) First 

W\"x) Last 

Member Request 

Del Member 

New Member 

Set Successor2 

Set Successorl 

Set Last 

Set First 

Set Previous 

Token 

RESPCNlE 

Clear TokenHeldBi t and reset Token 
Rotation Timer. 

Run W\"x) Follows Response routine 
(described in section C.4.4). 

Run Solicit Successor Response routine 
(described in section C. 4.4) • 

Send the Set First frame. 

Send the Set Last frame. 

Send the Member Count frame. 

Decrement the station =t record. 

Increment the station =t record. 

Reset next station address. 

Il'1CI'€IOOnt the station =t record. 

Reset last station address. 

Reset first station address. 

Reset previous station address. 

Set WaitBit, send Token Ack and run 
Access routine [section C.4.4]. 
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APPENDIX - D 



D.l ~ 

'Ihe CPMlOO module is written to provide a basic ini tialisaticn pr=ess 

for the ccmm.mication secticn. 'Ihis nodule is designed f= use in an 

embedded system nJl1l'lin;J' code generated by the FI'L M:Jdula-2 c.anpiler. 

Code generated by the FTL compiler expects to run in a CPM 

env:ironm:mt. The appropriate CPM functicns required by the code are 

being anu1.ated by this nodule. The anu1.ated CPM functicns are listed 

below in Table D-l: 

FUNCTION N) 

o 
1 
2 
6 
9 
A 
B 

TABLE D-l: CPM FUNCI'IONS EMlLATED 

DESOUPTION 

Warm boot, resets system fron 00Cl0H 
Console input, fron serial interface 
Console output, to the serial interface 
Direct I/O, via the serial interface 
Display message, to the serial interface 
Line input, fron serial interface 
Console status, fron serial interface 

'Ihis nodule is designed for a 64180 processor with the code positioned 

in an EPRCM at address OOOOOH and for a RAM positioned between OAClOOH 

and OBFFFH. 'Ihe code generated by this routine nrust be positioned at 

address OOOOOH in the EPRCM. 'Ihis IlOdule also uses a small section at 

the top of the RAM. The code is written so that this address can be 

rroved if desired. The lowest address used in RAM is "rop OF RAM' -
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OFH. This address is actually used as the start of the stack • CPM 

requires the stack en an entry to an applicatien program to be at 

least 8 levels deep so that the highest byte of RAM bein;J used is 16 

bytes below this locatien, i.e 'TOP_OF_RAM' - OlFH. Table D-2 gives 

the full des=iptien of the functioos emulated. 

TABLE D-2: CPM FUNCTIONS EMlLATED 

00. FUNCl'ION DESOU?I'ION 

0 This has the same effect as a reset, 
junpin;J to locatien OOOOOH. 

1 <XlNIN Read a character frcm the c:cosole and 
then ecI'x:> to the screen. Wait if no 
character is available. 

2 (x)l'UJT Output a character to the screen. 

6 DIRECI'IO If E is OFEH return status; Le. OOOH 
if no character is ready and OFFH if 
character is ready. 

If E is OFFH, h::lwever, return character 
frcm console, do not wait if no character 
is available but return OOOH. 

Do not ecI'x:> character read to c:cosole. 
For any other value of E output that 
value to the console. 

9 MESSAGE Output a message pointed to by DE to the 
console. '!he message is tenninated by 
024H. 

A READBUF Read a text buffer frcm the console. The 
buffer address is passed to DE. '!he first 
byte gives the maximum length of the 
buffer, while the seccnd byte is set to 
the actual length of the buffer, Le. 
characters actually read. '!he rest of the 
buffer contains the text read. '!he 
process of text readin1 into the buffer 
is terminated by a return, ODH. 

B STATUS Detennines if a character is available 
frcm the c:cosole. '!he result being: 

OOOH no character. 
OFFH character ready. 
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Data required by these routines is passed via the E = DE registers, 

and retw:ned subsequently to the accumu1ator. The c:nl.y exception to 

this is the buffered input and message output functicns where DE is 

used to point to the data. The required function is placed in the C 

register and a call is, then, made to 00005H. 

If arr:l call is made to a function which is not supported by the 

functions mentioned above then an error message is output to the 

=le and control is retun1ed to the application pLogram. 

These routines preserve all registers apart fron the accumu1ator when 

called. The accumu1ator, h:Jwever, is altered even if it is not used to 

pass data back fron the function. 

CFMlOO also supports the use of a watchdog timer. An interrupt handler 

is incorporated into the program to handle an I'M[ interrupt fron the 

watchdog timer. This has the same effect on the 64180 CPU as a j\.D11P to 

OOOOH. The processor is subsequently re-initialised by the program 

before control is passed to the application program at address OlOOH. 

D.2 OM <n1PATmILI'lY 

What follows is a brief outline of how the environment set up by this 

set of routines, i.e. CPM module, varies from the standard CPM 

environment. 

There is no support for BIOS calls. No vector table is produced and 

the value at location OOOOlH which OM nonnally expects to point to 

the BIOS vector table points else where. Because of this situation, 
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arq attarpt to call a BIOS routine will crash the application program 

and the system may well lOO< up. 

The ~ space (OOO5OI - OOOFFH) is usually used as buffers by OM. 

Code produced by these routines is actually placed in this space. The 

application program will fail to write to this area as it is in EPRCM 

address space. Sane programs may try to read the default buffers on 

entry to determine if arq ccmnand line parameters are bein:J passed to 

them. If this =curs, results are unpredictable and could well crash 

the system. 

CPM specifies that on entry to an application program, the stack 

pointer must be left pointin:J to an 8 level stack with the return 

address left on this stack. Implemented routines abide by this rule. 

The returned address, placed on the stack, is actually OOOOOH to cause 

the same action as a reset if an application program exits. 

It is believed that FI'L MJdula-2 cnly calls OM functions supported by 

these routines and makes rx> calls to the BIOS, unless directed to do 

so by the user. These routines are also believed to supply 9IXlUgh 

support to allow use of the Tenninal and SmallIO nodules as supplied 

with the canpiler. 

D.3 LIMITATIONS 

CPMlOO provides a faithful emulation of the functions mentioned above. 

It will also produce an error message if an illegal function is 

called. The more severe problem is if an application program makes use 

of some other parts of CPM. If this occurs the results will be 

unpredictable. Sane of the more likely problems are detailed below: 
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The page zero area is nonnally used to hold certain buffers. 

Applicatien pxograIils sh::luld IDt directly address these bJffers. The 

ccmnand line parameters and the default FCB's are held in this area. 

They are examined by sane programs to see if arq parameters have been 

set up en the ccmnand line. l>J:q program which tries to examine this 

area is, in fact, accessing the code of CPMlOO itself. Ca1sequently, 

application programs must not be allowed to examine this area. 

In additien to the standard entry point of CfM at locatic:n 0005H, 

there is a second batch of entry points. These give access to the BIOS 

routine, as opposed to the BIXJS at locatic:n 0005H. The BIOS routines 

give a program access to a lower level of device driver. The BIOS 

actually has llUlltiple entry points, one for each function. These entry 

points are nonnally near the top of menory, in a proper CfM system. No 

attempt is made to emulate this function, hence arq pxograIil attempting 

to access the BIOS will =ash. It sh::luld also be noted that the usual 

pointer to the address of these routines, nonnally at locatien OOOlH, 

is rot set up. 
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APPENDIX E 

KJLTI-PRIXtSSOR SYSTEM - KERNEL SOFlWARE ~ 

The real-time kernel software is designed in a JIDdular, structured 

manner, bein;J in1;llemented usin;J the Jackson Program Design Facility 

(PDF) package. In the following discussicn, a full descripticn of the 

real-time kernel primitive operations is laid dcmn. The Jackson chart 

is =nstructed to describe the software to a specific level of detail. 

The lavest levels represent sin1;lle functions that can be translated 

into program fonnat. Generally the recx:mnended ccntrol structures of 

structured progranming have been used in the wri tin;! of the program 

source code. 

The kernel JIDdule, MAIN-DISTKERNEL, differs fron the ccmnunicaticn' s 

main program JIDdule, RUNCXM1S, in that it does rot remajn in control 

once called. Instead, however, it provides entry points (kernel 

primitives' calls) where it may be called by the applicaticn software. 

Once called it performs the necessary ccmnunicaticn or management 

routines before returning to the application program, in the shortest 

time possible for the required action. 

E.2 REAL-TIME KERNEL STRlX:'lURE 

The kernel structure oonsists mainly of three top level functions 

[01art E.l]: 
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* ~Up. 
* Initialise System. 

* RIm Application Software. 

E.3 POOE;R-UP [Cllart: E.1] 

On power-up the system points to a specific location for code 

execution (FFFFOH). Initially the IIIeIl=Y is mapped cnly for the top 1 

Kbyte of rnerrory (FFO)()H). This area is not sufficient to acccmnodate 

the initialisation routines and the application pJOD,Jram. H~, the 

system has to be transfe=ed to a larger ~ area. This is d::ne by 

a jump instruction to the top 1 Kbyte of rnem::>ry area, where the 

execution of the next stage of system initialisation starts on. 

E.4 INITIALISE SYSTEM [Chart E.2] 

Initialising the system consists of running the bootstrap loader. This 

consists of tv.o sections, an assembler part and a M:ldula-2 part. The 

reason for this is to use M::ldula whenever is possible. M:ldula-2 code 

is clearer, easier to understand, and is likely to be mre reliable. 

It does mean, however, that tv.o separate bootstrap files have to be 

produced for EPRCM prograrrrning. It is .in]perative that the link: between 

the tv.o, a jump location, is set =rrectly. One EPRCM is used to hold 

both the assembler and the M:ldula-2 bootstrap programs. 

a) RIm Assembly Routine 

This routine starts first with the initialisation of the hardware 

system. It consists of the following functions: 
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* Set-up the different segment registers (i.e. code, data, extra, 

and stack pointer registers). 

* set-up the appLOpdate matDJ:Y parti ticns (i. e. upper chip select, 

lower chip select, middle chip select, etc.). These are important 

to be set at this point. The different matDJ:Y ranges are used as 

follows: 

* Upper mem:>ry range for bootstrap loader. 

* Middle mem:JLY range for appl.icaticn programs. 

* Lower mem:>ry range for RAM management. 

A jump is then made to the M:ldula-2 initialisaticn routine. 

b) Run M:xlula-2 Routine 

This routine is located at the bottan of the boot EPRa1. Its main 

function is to minimise the use of assembler for system 

initialisation. 

When the absolute linker is run the data settin;J should be '83H'. This 

ensures that the inten:upt vector area (and the planted return for a 

system inten:upt) is not affected by this rrodul.e. It ccnsists of two 

main functions: 

* 
* 

Initialise serial line interface. 

Plant inten:upt return vector. 

When the M:ldula-2 initialisaticn is 0<Jer, a jump is made to the start 

of the application software. This is acccmplished through the use of a 

software interrupt (SWI) planted at the end of the M:ldula-2 routine. 
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E.5 Rl.IN APPLI~TICN SOFIWARE [Olart: E.3] 

Application software is the partitiCXJed task am::n;;J the different n:Jdes 

of the system (Le. a sub-task on each node). 'Ihis is written totally 

in M:ldul.a-2 language. It CXXlSists of two parts: 

* Initialise Sub-Task. 

* Run in Operation M:Jde. 

E.5.1 Initialise Sub-Task [Cllart: E.4] 

'Ihis is cancerned with the initialisation of: 

* Distributed variables. 

* O:mnunication channels. 

* Interrupts. 

a) Initialise Distributed Variables [01art E.5] 

In this part initialisation of all distributed variables takes place. 

'Ihis consists of setting up pointers and variable control blocks (VCB) 

for all variables. VCl3s are defined for all distributed variables 

whether defined in this station (Le. originals) or being imported 

fron other stations (Le. copies). VCBs are records used within the 

rrodu1e to hold infonnation about the status of each variable i. e. the 

name of variable, its size, its status (original, or copy), etc. 

b) Initialise Olannel for Carmunication Reception 

'TIle camrunication channel has to be set first for reception m:x1e. 'Ihis 

is essential as any one of the system stations may expect data fron 

others at unpredictable time. (The transmission m:x1e, however, is set 

always when the application program issues a transmit mode - see 

below) • 
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c) Initialise and set-Up Interrupts [01art E.6] 

A variety of interrupts are in! tial.ised and set before startin;J with 

the main sub-task. These consist of: 

* Timed interrupts for control loops (i.e. level, or actuator 

loops). 

* Timed intenupt for program-time purposes (Le. a real-time 

clock). 

* Event interrupt for the multi-process ccmnunication handler. 

E.S.2 Rlm in Operation l-bde [Cllart E.3] 

This mode starts first with enabling the different interrupts, 

starting timers, and then finally running a background process. The 

background process keeps looping indefinitely, until process 

termination, where tv.u main things are achieved: 

* Prcx::ess Data Available. 

* Act on Results. 

a) Process Data Available 

Prcx::ess, here, acts on the dedicated task which has been partitioned 

for, i. e. executing and processing whatever procedures and data are 

needed for. 

b) Act on Results 

In the oourse of action, a process may need, 1xMever, to execute a 

transmit routine. This happens in tv.u cases: 

* 
* 

Send a Message for Display. 

Run a Variable Transmit M::de. 

323 



In both cases above a transni t routine is issued after a preparatioo 

of the JreSSage is carried out. Preparatioo f= a variable transnit 

mode is nore c:arplex, h:lwever. This is discussed below. 

E.6 TRl\NSMISSlOO MJDE - RUN A VARIABLE TRANSMIT MJDE [Cllart E.7] 

A variable transni t mode is needed in either of "boo cases: 

* 

* 

To request a distributed variable copy from another station 

(Request-Global) • 

To subnit a calculated (Le. updated), =iginal, distributed 

variable by this station (Subni t-Global ) • 

Request-Global 

In this case, a variable value is requested fron arDther IXJde by 

issuing a transmit routine. Two modes of operation are possible. 

Either control is re1:unled back to the application program or else it 

is retained by the transnit routine until data is available (WaitFor

Data). These two cases are designed to allow for different program 

implementations (Le. Wait = oo-Wait). 

Subnit-Global 

This routine is issued whenever an =iginal distributed variable has 

been evaluated by the station (refer to section E.8 for I1Dre details). 

E.7 RELEPrION MJDE - EVENl' SERVICE ROOTINE [Cllart E.9] 

A reception l1Dde is entered whenever an event interrupt is received, 

following a message transfer. A service routine called a 'multi

process communication handler' receives and decodes the message. 
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~ to the decoded message, a transfer is made to the prqler 

server to take the required action. The following se:tVerS currently 

exist: 

* 
* 
* 
* 

Receive a Message for Display - Server l. 

Reply for a Distributed Variable (=w) - Server 2. 

Request for a Distributed Variable (origina1) - Server 3. 

Request to Sync:h='lise All Local Clocks - Server 4. 

Similar acticns are taken at the start and at the end of each server; 

i.e. acknowledge message reception at the start and return from 

interrupt at the end. 

a) Receive a Message for Display - Server 1 

This server is used to receive and then display a message. 

b) Reply for a Distributed Variable (copy) - Server 2 

This server uses a 'Oleck-RscvOata' routine to check a reply for a 

requested variable copy, needed by this station, then stores the 

variable =w. 

c) Request for a Distributed Variable (original) - Server 3 

This server is used to deal with a variable request issued by another 

station. A check is made first whether the particular variable has 

been updated. If so, a transmit routine is issued and a =w of the 

variable is sent. Alternatively, the request message is stored for 

subsequent processing Le. whenever the variable is available. 

d) Request to Synchronise All Local Clocks - Server 4 

This server implements the synchronisation of all local clocks 

a=rding to a pre-defined master clock (chosen in any one of the 

system staticns). The infonnation received is an update frcrn the 

master Clock. This is used to update a global register variable. 
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E.B REPEATED ROOTlNES 

These are various routines that are called repeatedly through:lut the 

main kernel module, MAIN-DISTKERNEL, and used by the application 

program. A list of than is given below: 

* Return Fron Interrupt Routine. 

* Transmit a Message-Frame Routine. 

* Validate Routine. 

* Subni t-Global Routine. 

* (l)eckRecv-Data Routine. 

* WaitFor-Data Routine. 

a) Return Fron Interrupt Routine [Olart E.12] 

'!his routine is used excessively by the multi-process camrunication 

handler. It achieves three main thin;Js: 

* 
* 
* 

b) 

set-up the channel and buffers for a reception mode. 

Enable interrupts for further activation and hence servicing. 

Return to background process. 

Transmit a Message-Frame Routine [Olart E.13] 

'!his routine is used whenever a message frame is to be transmitted. 

It, first, assembles the message a=rding to its constituent parts 

(Le. frame type, number of data bytes, data segment, address of both 

source and destination, etc.). Then it sets-up a channel and buffers 

for transmission mode. Finally, it sends the message frame by issuing 

a 'Send-Data' routine, then returning to the background process. 
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c) Validate Routine [Olart: E.l4] 

This routine acts on distributed variables, whether originals or 

copies. It updates flags in the variable control block (V03). This 

routine is used excessively by the application program before 

accessing variables f= further processing. 

d) Subnit-Global Routine [Olart: E.l5] 

This routine is used to transmit a copy of an original variable, after 

being evaluated by this station. A transmit llOde process is issued for 

an original variable in two cases: 

* 
* 

A request is received fron other stations (1. e. Request-Global). 

An =iginal variable has been evaluated in the =rent station. 

In both cases, however, the following series of actions are taken 

before 'Transmit a Message-Frame Routine' is issued: 

* 
* 
* 
* 

e) 

Oleck whether the variable has been evaluated (i. e. Validate). 

Check if there is any request for that variable. 

Transfer variable name and data into an output buffer. 

Prepare and set-up for transmitting the variable. 

Oleck-RecvData Routine [Olart: E.l6] 

This routine is used to check and subsequently store requested oopies 

of variables. A check is made first on the variable, ccrnpared with a 

list of variables, to ensure two points: 

* Such a variable exists within the requested list of that 

particular station. 

* The variable has not been updated prior to this time. 
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Having accanplished the above tasks, the variable is stored in its 

data OOffer, and the variable centrol block (V03) is set indicating 

the validity of the variable for subsequent use and access. 

f) WaitFor-Data Routine [Olart E.l7] 

This routine is used whenever the application pzogram waits while a 

copy of a variable (i.e. a variable copy) is being requested. 

N::>rmally, the application program sends = requests for a variable 

early in the program, that is before intending to use the variable 

iIrIoodiately. This, in fact, ooincides with the camrunication strategy 

of the system, Le. non-blocl<i.n] transmission. In sane cases, ~, 

the application program has nothing to do, at later stages, than 

waiting for variables update (supplied by other stations) to proceed 

further in the program. Hence, this routine is used to centrol such 

an action. It actually relies on 'Validate' routine to achieve its 

task. It keeps looping and checking the flags in the variable centrol 

block (V03) until the variable is valid f= use. 
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