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ABSTRACT 

An exploding wire technique (EWT) is described, which provides high 

rates of loading by producing cylindrical blast waves of high 

reflection pressure with short duration. These waves have been used 

for internal impact of hollow polymeric cylindrical specimens. The 

EWT overcomes the small size restrictions of other high strain rate 

testing methods like the Split- Hopkinson pressure bar technique and 

drop weight. 

The experimental work of this thesis has been involved in generating 

and studying cylindrical blast waves produced In atmospheric pressure 

air by exploding a copper wire, which Is Instantaneously vaporized by 

passing a rapid discharge current from a 13.2 ~F capacitor of stored 

energy of up to 8 kJ. Measurements of the electrical characteristics 

of the exploding wire circuit have also been made by using a thick 

wire, which does not explode. 

Schlleren photography has been used in conjunction with a high speed 

image converter camera at a framing rate of 10 6 fls to study the 

exploding wire phenomenon by recording the blast waves. The blast 

waves have been observed to expand in a cylindrically symmetric 

manner, with Mach numbers up to 15. 

internal loading of hollow cylindrical 

These waves provide uniform 

specimens, the behaviour of 

which can then be studied under these Impact conditions. 

Studies have been carried out on high density polyethylene (HDPE) 

thin-wall cylinders subjected internally to the Impact of the 

explosion. The outer surface displacements, velocities, and hoop 

strains have been determined up to and beyond fracture from high 

speed photographs. Velocities up to 500 mls , and strain rates up to 

10' S-1 have been measured, with fracture hoop strain of up to 180%. 

These fracture strains are always less than the quasi-stat ic values 

quoted by the supplier. 



hee. 
Preliminary Investigations have alsoAcarrled out on freely expanding 

rings of HDPE to study the tensile stress-strain behaviour of the 

material. The freely expanding ring technique has the advantage of 

enabling the specimen stress to be obtained direct Iy from the 

photographs of the expansion. The technique requires a thin ring to 

be placed as a sliding fit on a thick-wailed cylindrical specimen. 

This prot~.cts the ring from the high temperature of the explosion and 

enables free flight of the ring to take place after the explosion 

Inside the cylider. From the ring deceleration In the absence of a 

driving pressure the true stress can be found. Ring velocities up to 

150 m/s, true strains up to 30%, and strain rates of about 10. S-1 

have been measured. The stress/strain behaviour shows the Increase 

of the flow stress when the strain rates Increases' from quasi-static 

rates of 10- 3 S-1 to 10. S-1 or 10 5 S-1 of dynamic test~. 
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1.1 General introduction 

The exploding wire technique Is one of a few methods which are 

available for mechanical testing of materials at high rates of 

loading. These methods Include: 

1) drop weight and pendulum methods for strain-rates of about 100s-'. 

2) the spIlt Hopklnson-Davles pressure bar which Is capable of 

strain-rates of about 10' s-'. This method (Parry 1988) suffers from 

several limitations, amongst which Is the need for small-sized test 

samples. 

3) the exploding wire technique, which is a different method from the 

previous methods of loading. The explosion of a wire is used to 

produce cylindrical blast waves of high reflection pressure (greater 

than 1 kbar) , low rlsetime (less than 1 p.sec) and short duration 

(=5p.s). 

The exploding wire technique is used for studying a range of 

materials at high pressure and very high rates of loading up to and 

Including fracture. 

High speed photography is generally the means used to record the 

phenomenon of wire explosion. The exploding wire phenomenon is 

similar to that of a plasma sheath which forms around a wire that is 

exploded in a vacuum, but in general the explosion of a wire is done 

at atmospheric pressure if high pressures are required. 

The present application of wire explosions is in generating blast 

waves with high impact reflected pressures to be used for loading a 

cylindrical specimen. This work Invest igates the behaviour of the 

specimen material under high rates of loading at high strain-rates 

(up to 10· s-'). In addition, current experimental work at 
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Loughborough University Is described which deals with the measurement 

of the characteristics of the exploding wire circuit by using a thick 

wire. 

1.2 Material properties 

1.2.1 Elasticity 

Materials are said to be elastic If deformations disappear completely 

on removal of load (Megson 1980). All known engineering materials 

are linearly elastic within certain limits of stress, so that strain 

within these limits, Is directly proportional to stress. The ratio 

of stress to strain Is constant and time-Independent (Rltchle 1965). 

This Is called Instantaneous or Hookean elasticity. At longer times 

the ratio of stress to strain does not depend on time, the strains 

may become large but they are recoverable If the load Is removed. 

This Is called delayed elasticity, slow elasticity, or high 

elasticity. At even longer times, some of the strain become I 

Irrecoverable showing that the material has deformed In part I ike a 

liquid rather than a solid, and that Is called flow. 

A wide range of elastic properties of polymers depend upon the 

structure and the testing conditions (Klnloch 1983). Figure (1.1) 

shows the varlat Ion of Young's modulus (E) with temperature for an 

amorphous polymer. At low temperatures the polymer Is glassy with a 

relatively high modulus (about 10 9 Nm-2). The modulus falls rapidly 

In the region of Tg ( glass transition temerature ) where the polymer 

Is vlscoelastlc and the modulus Is very rate- and temperature 

dependent. 

At a sufficiently high temperature the polymer becomes rubbery. If 

it Is cross-Ilnked,then the modulus remains approximately constant 
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with Increasing temperature at about 10 6 Nm- 2 otherwise It flows like 

a viscous liquid. 

From linear theory of elasticity, the stress-strain relation for 

Isotropic materials with changes In the temperature (Blspl inghoff 

1965) Is 

where f mn- linear strain tensor, 

E - Young's modulus, 

v Pofsson's ratio, 

urnn- stress tensor, 

5mn- Kronecker delta, 

urr- sum of normal stresses, 

a thermal expansion coefficient, 

and dT change In temperature. 

For polythene of a-2.5xl0- 4 OC-I, If the temperature Is Increased by 

10 oc, the last term of the above equation will give a normal strain 

of 0.25*. But for copper which has a-17xl0- 6 OC-I, the last term 

equals to 0.017* for the same change of temperature. 

The elast Ic behavior of polymers reflects the deformat Ion of the 

structure on a molecular level. In the high modulus polymer flbers 

and crystals the deformation takes place essentially through bending 

and stretching of the aligned polymer backbone bonds which requires 

high forces. 

1.2.2 Plasticity 

When materials are subjected to Increasing load (Ahmad 1988), they 

may reach a point before fracture occurs where, on release of stress, 

the specimen no longer returns to Its original shape. The stress at 
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which this phenomenon begins Is called the elastic limit of the 

material. For metals cd: temperatures below about half the absolute 

melting temperature, the permanent deformation may be assumed to be 

reached almost Immediately, and hence to be Independent of time. 

Time-independent deformation which remains on release of load is 

called plastic deformation. Figure (1.2) shows these processes. 

A material Is perfectly plastic If no strain disappears after the 

removal of load. Ductile materials are elastoplastic and behave In 

an elastic manner until the elastic limit is reached after which they 

behave plastlcally. When the stress Is relieved the elastic 

component of the strain Is recovered but the plastic strain remains 

as a permanent set. The elastic deformation represents a temporary 

change in the distance between atoms or molecules but plastic 

deformation represents a permanent change In their relative position 

(Roark 1954). 

1.2.3 Vlscoelastlcity 

Some materials at high temperature, and polymers under most 

conditions, continue to Increase their deformation with time even at 

constant stress. This phenomenon Is called creep (Ahmad 1988). At 

temperatures and stress levels at which creep occurs, If a 

deformation Is applied and held constant, a stress will develop with 

the application of the deformation and then fall off with Increasing 

time. This decrease of stress Is known as stress relaxation. This 

type of behaviour Is characteristic of polymeric materials, which 

possesspropertles which are a combination of those of a viscous fluid 

and an elastic solid. These are known as vlscoelastlc materials. 

Materials such as polymers respond to external forces In a manner 

Intermediate between the behaviour of an elastic solid and a viscous 

liquid, and their mechanical properties are dependent on the 

conditions of testing, such as the rate of application of load, 

temperature, and amount of strain. 
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A polymer can show all the features of a glassy, brittle solid or an 

elastic rubber, or a viscous liquid, depending on the temperature and 

time scale of measurement. At low temperatures, the polymer may be 

glass-like wi th Young's modulus of 10' 0 - 10" Pa and may break or 

flow at strains greater than 5%. At high temperatures the same 

polymer can behave like rubber with a modulus of 10 7 - 10· Pa, 

withstanding 

deformat ion. 

large extensions (= 100%) wl thout permanent 

As mentioned above, one aspect of the mechanical behaviour of 

polymers is the way in which their response to an applied stress or 

strain depends upon rate or time period of loading (Young 1983). 

Elastic materials obey Hooke's law that the stress is proportional to 

strain, whereas viscous materials such as liquids, tend to obey 

Newton's law that the stress is proport lonal to strain-rate and Is 

Independent of the strain. The behaviour of some materials like 

polymers can be thought of as being somewhere between that of elastic 

solids and liquids. At low temperatures and high rates of strain 

they display elastic behaviour, but at high temperatures and low 

strain rates they behave In a viscous manner like liquids. Therefore 

such materials are termed viscoelastlc as they display both viscous 

and elastic type of behaviour. The preflx"vlsco" Implies that the 

material has some of the features of a viscous liquid, so that Its 

properties are time dependent (Rltchle 1965). 
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2.1 A survey of exploding wire st",Ji.s 

There was, until Chace (1964), no previous review of exploding wires 

to which we may refer. The first paper on exploding wires was read 

before the Royal Society of London In December of 1773, the year 

before the first continental congress met In Philadelphia. The 

author Edward Nalre, Invented a stat le machine which he used to 

charge 64 Leyden jars with which he exploded an Iron wire of 0.15 

mils (Imll-0.025mm) diameter. Forty years later Singer and Crosse 

reported on exploding wires. This work about destructive and driving 

forces foreshadowed electric guns. 

In the 1920's Dr. John A. Anderson, who may be called the father of 

scientific exploding wire study produced high temperatures from the 

explosion of the wires. He developed a rotating mirror camera and 

time - resolved spectroscope, estimated the temperature, and made a 

general study of the phenomenon. Muller (1937) observed the 

cylindrical blast wave which Is produced by an exploding wire by 

using an optical method. He used a Schlleren Kerr cell technique to 

record the explosion which . ~ resulted from an energy of 12 joules 

per centimetre. He followed the shock wave out to a distance of 3 cm 

from the wire. 

Lln S.C. (1954) analyzed the cylindrical shock wave and got a simple 

result that could be used for estimating the propagation and decay of 

the disturbance behind the cyl indrlcal shock wave produced by the 

explosion of a long thin wire. 

Bennett (1958) used high resolut Ion rotat Ing mirror streak camera 

photography to follow the primary shock travel for several 

centimetres away from the wire. Jones and Gallet (1962) used 

microwave Doppler techniques for the same purpose. 
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Bennett and Marvln (1962) did measurements and analysis of high 

current tubular shunts and transient skin effects In exploding wire 

circuits by using Laplace transform methods. He assumed that the 

exact solution can be obtained, as well as an approximate solution 

which allows estimates to be made of the errors expected, and, to 

minimize the skin effect, the tubular shunt must be thin. At the 

same time Bennet had measured the temperature behind the head of the 

shock wave generated by an exploding wire by employing blast wave 

theory. He also did estimates of thermal-ionization times for 

electron-atom and electron-Ion collisions showing that local thermal 

equilibrium should be well approximated everywhere except near the 

arc boundary. Also (1964) he solved the equation of the power Input 

to the exploding wire as a function of change of temperature and for 

energy Input after neglecting radiation, hydrodynamic, and skin 

effects. 

The outward propagation of cylindrical shock waves produced by 

exploding wires was shown to be radlally symmetric along the axis of 

the wire and accurately reproducible (Fyfe and Ensmlnger 1964-1966). 

The response of the specimen to this loading was obtained by a 

measurement of the time variation of the outer surface displacement 

using an optical method. Good agreement with the corresponding 

theory for the case of elastic waves confirmed the validity of this 

type of measurement and the authors have since used the method to 

study the propagation of blast waves (Fyfe and Swift 1969). 

Fyfe and Ensmlnger (1964) used a cylindrical geometry for emphasizing 

the measurement because of the following advantages: 

I) the ability to observe directly the specimen response, 

11) a greater area of the specimen Is available for measurements, and 

Ill) there Is a closer approximation to one dimensional 

dlsplacements. 
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Ensmlnger and Fyfe (1966) have used an exploding wire technique to 

produce a high amplitude stress wave Incident on the Inner surface of 

a hollow cylindrical specimen. In the same year Edelson and Korneff 

(1966) observed that the under water wire explosion presents a more 

orderly structure than the explosion In air. 

In 1968 Ryszard Malewskl developed a new device with fast response 

time for current measurement In exploding wire circuits. 

Bennett published a paper In 1970 for establishing some geometrical 

techniques and mathematical relations upon which subsequent analyses 

of the metal flow In the" exploding wire are based. This paper shows 

the resulting fringe contours for both- single and multiple fringe 

cases of gas and electron distribution around the exploding wire, and 

compares these fringe contours with some actual Interferograms. 

Swift and Fyfe (1970), carried out two distinct types of experiments 

using the exploding wire technique to examine an elastic/vlscoplastlc 

constitutive theory In a radial cylindrical configuration. One 

examines the plane strain plastic response of hollow cylinders 

subjected to an Internal flnlte-rlse-tlme pressure pulse; the other 

examines the decay behaviour of the cylindrical elastic precursor 

associated with high stress level Impact loading. They cons I dered 

the vlscoplastlc strain-rate function In a linear and an exponential 

form. 

Vlostos (1973) said that a hard X-ray radiation of short duration 

could be produced by the explosion of thin tungsten wires in a vacuum 

but the recrystalllzatlon of the wire may have reduced the X-ray 

output. 

Schmlt and Fyfe (1973) used exploding wire techniques to study the 

dynamic fracture of thick hollow cylinders. 
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Schofer, Seydel and Jager (1977) recorded the pressure profiles of 

shock waves of underwater wire explosions by using 

pressure probes at different distances from the wire. 

plezoreslstlve 

Forrestal, Duggln, and But ler (1980) applied an explosive loading 

technique 

ini t fat ion 

to study the uniform plastic 

of 304 stainless steel cylinders. 

expansion and fracture 

Hwangbo, Kong, and Lee (1980) observed the inhomogeneous process In 

underwater copper wire explosions Induced by a capacitor discharge. 

Nakamura and Tsuno (1980) used a Schlieren system with high 

sensitivity and a high speed camera to measure high velocity flow 

propagating through gases due to a shock wave produced by the 

explosion the of the wire in air. 

lsuzugawa and Fujimura (1982) proposed a simulation model considered 

to be appropriate to the behaviour of the copper wire heated by the 

passing of an Impulse current untll the wire's temperature reaches 

boiling point at atmospheric pressure when it violently evaporates 

the wire. 

Ron, Rohatgi, and Rau (1983) used an exploding wire to trigger a 

vacuum gap to measure the rise time of the gap. 

So-Young and Kim (1984) employed oscillographic recordings and 

Schlieren-streak photography to observe the current dwell, explosion, 

and arc discharge stages. 

Griffiths, Parry, and Stewardson (1986) used an exploding wire as a 

method for· Impact loading to study materials at high pressures 

and very high rates of loading up to and Inducing fracture. This 

method produces a radial stress wave of high amplitude (>2kbar) and 

short rlset ime «2 p.sec) In a hollow cylindrical specimen of 10 cm 

length and 5 cm outside diameter. 
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Suhara (1986) Initiated an arc discharge by the method of exploding a 

wire In a static short gap between two electrodes. This method was 

done to describe the V-I characteristics of the discharge and to 

calculate the arc duration time of opening electrical contacts In 

Inductive circuits. 

Yaklmura (1987) gave an estimation of pressure and of energy of shock 

waves produced by a thin wire dlslntegatlon during the vaporization 

stage of the wire. He compared the results obtained In air explosions ..,it!.. 

those for underwater explosions • 

Lee (1988) measured the profiles of underwater shock wave pressure, 

current, and voltage for exploding aluminium, aluminium-lithium 

alloy, and copper wires In water when an Inductive energy store was 

discharged through the wire. 

In the Physics department at Loughborough University an Imacon high 

speed camera Is used with a Schlleren technique for optical studies 

of blast waves produced by exploding copper wires of various lengths 

and diameters connected to a 13.2 pF capacitor charged to a range of 

voltages. Studies are also being made of the material properties of 

cylindrical materials under Impact loading from the blast waves. 

2.2 Exploding wire theory 

The wire explosion mechanism (Pollard 1966) has not been fully 

understood. The phenomenon In general Is accepted as being a 

combination of several physical processes. Some parts of the 

processes (Ahmad 1985) have no explanat Ion, while others have been 

explained by a number of theories . 

A typical current waveform, as shown In Figure (2.1,B) for the basic 

exploding wire circuit of Figure (2.1,A), shows that before the 

explosion occurs (Ahmad 1985) the current follows a damped sine wave 

shape. 
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The explosion phenomenon (Pollard 1966) consists of the following 

behaviour. At to the switch Is closed and voltage Is applied to the 

wire. The current, controlled by RCL characteristics of the circuit, 

causes the wire temperature to rise thus heating It up to Its melting 

point and beyond. This stage of the process occurs In less than a 

microsecond. The physical shape of wire Is maintained by Inertia and 

magnetic pressure. As the heating of the wire Increases the 

temperature rises reaching the boiling point. However, equilibrium 

boiling does not occur at this time because the temperature must 

reach a level to supply not only the heat of vaporization but also 

the energy to overcome the phase - change barrier. The temperature of 

the wire at t, to t2 Is sufficiently high to cause the violent 

explosion. The explosive vaporization, or transploslon, causes the 

metal of the wire to transform Into colloidal form, which Is a 

cont Inuous phase of liquid meta I Interspersed with a dlscont Inuous 

phase of metal vapour. This colloidal form has a profound effect on 

the electrical properties of the wire. Now suddenly the electrodes 

are connected only by a gas with a number of metallic particles 

floating In It. The conductivity drops to low level in the interval 

between t2 and ta. 

During the Interval ta to t4 a period of low conductivity occurs the 

so-called dwell or pause time, In which (Lavrentyuk 1987) the current 

falls practically to zero. The current continues to flow at 

relatively constant low rate due to conduction by only a limited 

number of Ions or electrons. The voltage related to dwell current Is 

called dwell voltage which has an exponential relation (So-Yong and 

Klm 1984) with the dwell period. 

The rapid change of the condensed phase (\ Iquld) to gas develops a 

momentary high density In the gas so that the current carriers moving 

In the field between the wire terminals do not acquire sufficient 

energy between collisions to produce Impact lonlzat ion. This case 

Is 
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analogous to conduction by thermlonlc or field emission. The high 

density state Is Instantaneous. Therefore expansion of the gas Is 

retarded only by Its mass Inertia and the pressure of the atmosphere 

around the wire. 

In a very short time at t4 the pressure of the gas has dropped, the 

mean free path has Increased giving rise to extensive Ionization by 

Impact Ing current carriers which cause avalanchl ng to occur wl th 

attendant rise In current to a level typified by point ts' The 

current level Is controlled by RLC parameters In the circuit. The 

Interval between t4 and ts Is the restrlke or relgnltlon stage of 

exploding wire phenomenon. 

The persistence of the dwell-time between 

the energy available from the capacitor C. 

ta and t4 Is dependent on 

The duration of the dwell 

period will be greater as the residual energy Increases. 

The phenomenon 

DI fferent type 

For 

described above Is for the case of copper wires. 

of wl re (Ahmad 1985) ml ght undergo different 

some wires you may get the dwell (."wy'p'd. without phenomena. 

restrlke. The current values will also depend on the type of wire. 

2.3 Shock waves from exploding wires 

The velocity of wave propagation In solids Is a function of aulae 

(Ahmad 1988), the gradient of the curve of the stress against the 

strain. For most solids this Is constant upto the proportionality 

limit and then decreases. If aulae Increases with strain beyond the 

elastic limit then large strains travel faster than the earlier small 

ones, so that a pulse acquires a steep front as the later waves catch 

up. The gradient of this step Is limited by dlsslpative forces such 

as viscosity and thermal conduction, which become more important as 

the pressure gradient becomes steeper. The wave under these 

condlt Ions Is known as a shock wave, and It can be studied In a 

similar manner to shock waves In fluids. 
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Dilatational waves of large amplitudes can also produce a shock front 

since the compresslblllty of solids Increasesat high pressure. The 

velocity of dilatational waves Is given by the following formula 

(Kolsky 1953) 

where cd Is the dilatational or Irrotatlonal wave propagation 

velocity, k Is the bulk modulus, p Is the rigidity modulus, and p Is 

the density of the solid medium. 

The wire explosion can generate a shock wave with cylindrical 

symmetry surrounding the wire due to the passage of heavy current 

pul se. 

As mentioned In Section 2.1 various methods have been used In the 

measurements of exploding wire phenomenon. The 

commonly used Include the Schlleren technique 

cameras. 

optical methods 

with high speed 

The main purpose of using an exploding wire In the present work Is to 

generate a shock wave wl th high ampll tude which can be used for 

loading different materials for testing their behaviour under Impact 

loading. 

Fyfe and Ensmlnger (1964) have Investigated the symmetry of an 

exploding wire Inside polyethylene and aluminium cylinders to examine 

the deformation caused by the shock wave. Also In 1966 they used an 

exploding wire Inside a hollow cylinder to measure stress-strain 

relationship by measuring the outer surface dlsplacements. 

The present work as will be described In the next chapters Is 

measuring the shock wave velocity, energy, and the exploding wire 

efficiency as well as determining reflecting pressure of shock waves 
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produced by exploding wires. Further work was done In using the 

shock waves for loading a polyethylene cylindrical specimen to study 

Its behaviour under these Impact conditions. 
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3 High speed photography 

The photography of very rapid dynamic events such as shock waves from 

explosions, and electrical discharges needs short exposure duratlons 

to see the behaviour of these phenomena. A special photographic 

technique, which Is called high speed photography, is required. 

3.1 Introduction to high speed cameras 

In the measurement of pico-, nano-, or micro-second ultra high speed 

phenomena, high speed cameras (Shln-ichi 1979) are essential 

Instruments which are used In many laboratories. These cameras 

(Zukas 1982) are the most Widely used Instruments for studying 

dynamic mechanical events such as impact and explosions because of 

(a) Investigator familiarity with related conventional cameras, 

(b) availability of practical equipment, and (c) enormous Information 

storage rates achievable. 

High speed cameras have considerably exceeded the data recording 

rates of normal cameras but the principal advantages offered by high 

speed imaging technology are In the area of extending the 

time-resolving capabilities. 

The resolution time of high speed cameras approaches 10- 13 s 

(lOO fs), and cameras are available with resolution time near 10- 12 s 

(1 ps). The time resolution limit of these current photolnstruments 

Is 500 billion times faster than that of the human's vision which can 

resolve 0.05 s. 

The object's motion during the exposure period causes blurring that 

reduc2s resolution especially In the direction of the object motion. 

Very short exposure time Is required for reducing this observah.,,,, 

difficulty for dynamic events. 
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The critical factor determining exposure time requirements for 

producing usable Images Is the time for the observed object to cross 

the field of view. The ratio between this time and the exposure time 

determines the resolution limit of the resultant Image Imposed by 

motion blurring as: 

where Ro is the total resolution of the observed object (In line 

pairs); U Is the object velocity; XI Is the width of the observed 

area; and 11 Is Is the exposure time. 

Figure (3.1) shows the exposure time requirements for observing 

various types of dynamic events. 

When the photographs (George 1952) were taken at high speed, 

Initially one of the primary problems was to move the film rapidly at 

the correct speed without It vibrating, breaking or becoming abraded. 

There are several techniques used to solve these problems. These are 

described next. 

3.1.1 Optical-mechanical methods 

These methods can be divided (Zukas 1982) into two types of 

photography which are high speed cine photography, or framing 

photography, and streak photography. 

1) High speed clne photography 

The familiar, so called cine, camera Incorporates a mechanism for 

transporting unexposed film from one spool through an enclosure where 

exposure takes place while the film Is Immobilized, and collecting 
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the exposed film on another spool. If this Is done at speeds above 

50 frames per second, It can reasonably be termed a high-speed 

camera. 

a) Intermittent motion cameras 

This type (Zukas 1982) of camera Is operated with a mechanism that 

rapidly advances the film one frame at a time and stops I t while a 

rotary shutter produces an exposure. The process Is then repeated 

until the camera Is turned ·off or the film supply Is exhausted. The 

frame sequences speed of this type can be up to 500 f/s. The 

exposure time for each frame Is near 20~ of the Interframe time, so 

that 400 ~s duration exposures may be accomplished with framing rates 

of 500 f/s. 

The film advance and shutterlng mechanisms place little restraint on 

the use of objective lenses, so that almost any focal length and 

F/no. aperture may employed. A colour film is often used to produce 

spectacular image~esequences that can be viewed with motion picture 

projectors. 

b) Rotating prism cameras 

The rotating-prism type Is one In which the film Is moved 

continuously, an optical/mechanical mechanism being built In to the 

camera such that the image moves at the same speed as the film and so 

gives records which are not smeared. Instruments of this type can be 

operated successfully at speeds of up to 40,000 frames per second. 

Figure (3.2) shows a simple diagram of the optical/mechanical 

operation of rotating prism camera. 
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c) Rotating drum cameras 

Rotating prism cameras have been Improved progreslvely. The 

limitation on the speed of the rotating prism camera caused by peak 

film speed and centrifugal burst strength of the prisms (Zukas 1982) 

can be overcome to some extent by mounting a relatively short strip 

of film (attached on the Inside surface the high speed rotating drum) 

and replacing the prism mechanism for Image motion composition with a 

rotating mirror assembly. 

The drum containing the film Is accelerated to maximum velocities 

several times higher than those achieved by reel to reel mechanism 

during several tens of seconds of torque application. Drum cameras 

are capable of operating at framing rates near 10 5 frames per second 

with exposure time near 4 ps. 

The disadvantages of rotating drum cameras are: the number of frames 

that can be taken during an Individual ope rat Ion is 1 iml ted, the 

format does not lend Itself to motion picture projection without 

laborious reprinting of the Individual frames onto a single strip of 

film, the F/no. of the opt Ics system and the back focal distance of 

the lens are restricted even more severely than for rotating prism 

camera, and the use of multiple mirrors In the optical path reduces 

the optical sensitivity of the camera below that predicted by the 

F/no. and effects Image quality. 

d) Rotating -mirror cameras 

Rotating mirror cameras contain a very high speed rotating mirror 

(usually turbine-driven) which deflects the Incoming I ight onto a 

stationary strip of film via a series of fixed relay lenses. Cameras 

of this type can work at rates of up to about 2xl0 5 fls with exposure 

time down as low as 50 ns to be achieved. This type of camera was 

Invented before the World War 11 (Zukas 1982), and provided a big 

Improvement to the field of high speed photography. 
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e) Cranz-Schardln spark camera 

This type of camera (Zukas 1982) like the rot at Ing mirror cameras 

opened the possibility for taking ultra high speed clne sequences 

many years ago, of high speed dynamic mechanical events. I t I s a 

clne version of focused shadowgraph cameras as shown In Figure (3.3). 

A number of spark gaps are mounted In a plane containing the camera 

objective lens. Firing the spa.rk gaps sequentlalIy produces a clne 

sequence of Images of the event under observation by using separate 

objective lensesfor each spark gap. The advantage of this type Is 

that the framing rate may be adjusted Independently of the exposure 

time for each frame. The disadvantages are the strict limitation to 

take: shadowgraph Images, each frame having a field of view slightly 

dl fferent from the others, which complicates extract Ion of 

quantitative motion data from the photograph to some extent. The 

framing format Is not suitable for motion picture projection unless 

the relatively difficult job of reprinting the frames In a standard 

strip sequence Is accomplished. 

2) Streak photography 

In this type of photography the object of Interest will be imaged 

onto the surface of a continuously moving film transport or the 

object wllI be swept onto the film by moving its image by using 

moving reflector such as rotating mirror shutters. 

a) Reel to reel streak cameras 

The simplest (Zukas 1982) of this type Is the smear streak camera 

which consists of an objective lens that Images the object of 

Interest onto the moving film. Such types can be used for recording 
eve .. t 

a light emittlnghsuch as the beam of a cathode ray tube (CRT) with 

the sweep circuitry disabled, the film motion providing the sweep 

action so that voltage variations with time can be resolved for 
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extended time periods. 

object Ive lens such as 

Some types of these cameras employ an 

shown In Flgure(3.4); the rest have been 

developed to employ a relay lens and a narrow silt aperture. 

As shown In Figure (3.5 a,b) the relay lens Images the silt across a 

film so that continuous illumination of the slit produces a moving 

stripe from one end of the film 
"tlu 

film transports wlthA object Ive 

gate. 

to the other which are motor-driven 

lens mounted In front of the film 

The resolution time of such cameras Is basically the time required 

for the silt Image to traverse the resolution limit of the relay lens 

operating In conjunction with the film,.· :'" 0.2 ps, and can be 

shorten~by Increasing the velocl ty of the film transport. Typical 

peak speeds of about 300 mls can be achieved with this type producing 

resolution times as short as 70 ns. 

b) Rotating mirror streak camera 

A rot at Ing mirror clne camera can be used as a streak camera by 

replacing the stationary relay lenses by a silt and single relay lens 

In front of the camera, so the rotating mirror can sweep the Image 

directly on the film surface without passing through relay lens. 

This type can resolve 10- 9 seconds. Figure (3.6) shows the operation 

of a rotating mirror streak camera. The prismatic mirror Is spun at 

high speed by an air or helium-driven turbine (Hyzer 1962). 

These cameras can be used to study the explosions, and rapid movement 

of small mechanical parts that Is beyond the range of Intermediate 

speed cameras. 
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Typical top speeds for the sI It Image moving across the film plane 

are limited to 30 km/s because of system defocuslng caused by 

unavoidable mirror distortion developing at rapid rates. This 

distortion Is enough to offset the greater potential time resolution 

produced by the Increase In sIlt Image speed. 

Rotating streak cameras are restricted to using high F/no. optics 

(;oF/l0) because of the large separat Ion required between the relay 

lens and the film. 

The rot at Ing prism camera can also be " , a streak camera with 10- 7 s 

resolution time by removing the prism and leaving the Image swept 

directly onto the moving film. The rotating drum cameras primarily 

use the same mode with resolution times of about 10 ns. 

3.1.2 Electra-optical methods 

a) Electronic framing cameras 

These cameras (Hyzer 1962) have been used since the mld-1950s. The 

high speed camera systems are based on various designs of 

Image-converter and Image-Intensifier tubes. Many of these systems 

have proved to be successful and are In wide use today In fields such 

as nuclear physics, electrical discharges, lasers, detonation, shock 

and fractures. 

The electronic framing cameras (Zukas 1982) have become Important 

during the 20 th century because of their greater efficiency In use of 

light and their ultra-high speed framing rate capabilities. 

The vital part of high speed electronic cameras Is the electron-Image 

tube, as shown In Figure (3.7). The tube uses the Kerr cell shutter 

method which will be described in the next section, except that two 

sets of opposing deflection plates are used to deflect the relatively 

smal I Images of the photocathode onto dl fferent regions of a large 
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phosphor screen. The images move from point to point producing image 

sequences at up to about 3x109 f/s. Electronic framing cameras can 

be subdivided into two types: 

a) The single-picture camera, which is the simplest electro-optical 

device usable in a high-speed camera, is the proximity-focused diode 

tube. The tube which is shown in Figure (3.8) consists of an 

evacuated bul b containing a plane photoemissive surface or 

photocathode, deposited on a transparent entry window which is held 

parallel and close to the photocathode. When a positive pulse 

(usually 10 kV or more in amplitude) is applied between screen and 

photocathode, the tube acts as a shutter with an open time equal to 

the pulse duration. 

b) Multi-framing cameras consist of an electro-optical tube fitted 

with additional electrodes to enable the electron beam to be switched 

both on and off at 

action. The beam 

appropriate times to give a repetitive shutter 

is deflected and suitably synchronized to the 

shutter action, to give a sequence of stationary positions on the 

screen of the tube. One example of multiple-framing camera is the 

image converter camera which is shown in Figure (3.9) which can be 

operated in framing mode at speeds of up to 2x10 7 frames per second 

at which rate each exposure is of 10 ns duration. 

b) High speed electronic streak cameras 

High-speed streak cameras (Shin-I chi 1979) play a very important role 

in the diagnostics of laser pulses, laser-induced plasmas researches, 

etc. Electronic streak cameras (Zukas 1982) are capable of operating 

at much lower light levels than mechanical cameras because of their 

fast optics, and optical amplification. They can resolve times of 

about Ins. 
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These cameras use electron - Image tube similar to the tube which Is 

used In electronic framing cameras but without shutterlng the 

electron beam Into frames. The electron cloud generated at the 

photocathode Is accelerated towards the phosphor screen by the anode 

and Is focused on It by an electrostatic lens system. It passes 

between one set of deflecting plates on which a linearly Increasing 

ramp Is applied. The deflection of the Image across the phosphor 

screen Is continuous and travels at a constant velocity. 

The electronic streak cameras can resolve 10- 13 s (100 fs), and they 

have Intrinsic optical gains of up to a few hundred when the output 

tube Is coupled to film or other photosensitive media. 

It Is Important to obtain a linear output representation of the input 

photo-Intensity. The range of linearity must be adequate to permit 

Input peak ampll tude varlat ions to occur. Two important factors 

affect I inearlty. One Is the linearity of output current from the 

photocathode of the streak Image converter tube, relative to the 

input photo-intensity. The other factor affecting linearity is 

space-charge saturation near the cathode. 

c) Electronic X-ray high speed cameras 

X-ray high-speed Image-converter cameras (ICC) of two different types 

have been developed (Huston 1978). In the first one, soft x-ray 

radiation Is used to Illuminate the photocathode surface of a large 

x-ray Intensifier tube which converts the x-rays Into visible light 

with the aid of a 0.5 ns response time plastic sclntillator. In this 

tube the sclntlllator screen mounted on the front surface of the tube 

converts the x-rays to visible light which Is then converted to an 

electron-Image analogue at the photocathode surface. The elect rons 

from the photocathode are then focused electrostatically onto a small 

diameter output phosphor after being accelerated by 30 kV voltage. 
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The framing rates of this type exceeds 5xl04 fls, and the advantage 

of using It Is that the Image on the output phosphor Is approximately 

10,000 times brighter than the Image faIling on the photocathode 

because of the geometric demagnlflcatlon and the effects of energetic 

electrons striking the phosphor. 

The second type of camera Incorporates a photocathode which Is 

sensitive to the visible and x-ray radiation which come from the 

x-ray flash. Its calculated temporal resolution approaches 5-7 ps. 

These cameras were employed for studies of x-ray radiation emitted by 

laser plasma. 

3.2 High speed shutters 

The classification of high speed cameras sometimes depends on the 

shutter system because the shutter Is considered as the heart of the 

camera. 

Many cameras determine the effect Ive exposure time for producing 

Images by pulsing a light source. This method can not be used when a 

self-luminous event Is photographed using Its own light, or when 

exposure times shorter than those available with pulsed light sources 

are required. So mechanical shutters have been developed to be 

operated at exposure times down to 10- 4 seconds, and electronic 

shutters have been developed also, starting with Kerr-cell shutter, 

for shorter exposures. 

3.2.1 Electro-optlcal shutters 

Electro-optlcal shutters became available In 1925, when Karolus 

succeeded In making a fully effective electro- optical shutter 

capable of ext reme Iy short exposure times. The elect ro-opt I ca I 

effect had been discovered by Kerr In 1875, but the problems of using 

it as a shutter to control a I ight beam had been great and the 
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achievement of Karolus was a considerable one. The effect Is produced 

when a strong electric field Is applied to certain Isotropic liquids 

or solids. Under the correct conditions, the material becomes doubly 

refracting and Is thus able to rotate the plane of polarization of 

light passing through It. In the Kerr cetl (George 1952) an 

Isotropic liquid Is employed which becomes non Isotropic under the 

application of a powerful electric field. 

The Kerr cell which Is shown In Figure (3.10) has two filters placed 

with their planes of polarization at right angles, so that normally 

no light Is transmitted. When a sufficiently powerful pulse Is 

applied across the electrode plates In the cell, the plane of 

polarization Is turned so that light can pass through the system for 

a fraction of a second. This phenomenon (Ralph 1959) Is known as the 

Kerr effect. If an electro-optlcal cell of this nature Is placed 

between two sheets of a polaroid (polarizing filter) the arrangement 

constitutes an extremely rapid light shutter which can be made to 

respond to high-voltage pulses of less than 10- 8 seconds duration of 

maximum transmission through the second polaroid. When the voltage is 

zero the shutter Is closed. The exposure time Is the duration of the 

applied pulse. In the Kerr cell a voltage of (20-50) KV Is needed. 

The transmission efficiency of the Kerr-cell Is below 20 per cent. 

The practicability of the technique depends upon the purity and 

optical clarity of the material used, upon the availability of an 

efficient polarlzer and analyzer to use with It, and upon the 

evolution of a circuit for producing a high-voltage pulse of suitably 

short duration. As no mechanical parts are Involved, exposures can 

be extremely short. 
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3.2.2 Optical-mechanical shutters. 

a) Moving lens shutters 

The most obvious method Is to move the lens during the period of 

exposure (George 1952). In this case the lens and film should move 

together at the same speed. Figure (3.11) shows the rotating lens 

shutter. 

b) Moving-mirror shutters 

These types of shutters depend on rotating reflectors such as In the 

mirror drum shutter which Is shown In figure (3.12), and the single 

rotating mirror which Is shown In Figure (3.13). 

The framing rate of the camera depends on the speed of rotat ion of 

the reflector mirror In these shutters. 

c) Rotating plane prism shutters 

This type of shutter ( Figure 3.14 ) depends on the rotating movement 

of the transparent plane prism. The film should be moved at the same 

speed as the prism. 

d) Also there Is another type of high-speed shutter, the "Gas Motor 

Gun", which Is a simple and efficient rapid opening shutter, is 

capable of opening an area about 7.5 mm square In under 0.5 ms. The 

gas motor Is designed to push a simple aperture plate rapidly out of 

the way to let the light come In through the aperture to reach the 

camera (McVeagh & Newbreg). 



30 

3.2.3 Image converter shutters 

The modern system for producing electronic shutters Is by using 

electron-Image tubes which vary In their methods of focusing and 

shutterlng. These tubes are evacuated and consist of a photocathode 

where the opt Ical Images are focused on, and a phosphor screen 

against which the electrons are accelerated by high electrostatic 

potent lal. These two parts are separated by some distance and use 

electrostat Ic lenses to provide the required electron focusing and 

shuttering by applying appropriate' voltages on sets of deflection 

plates. 

There are two types of Image converter tube shut ter as In sect ion 

(3.1.2): 

a) the single frame shutter which Is shown In figure (3.8) is the 

simplest and contains a photocathode and phosphor screen connected to 

a pulse generator which gives a high potential difference (usually 

between 5 and 20 kV). 

b) the multiple frame shutter tube, which employs electrostatic 

lenses between the photocathode and the phosphor screen (Figure 

(3.9». These lenses do the focusing and shutterlng of the images as 

will be described In Chapter 4. Finally this tube has a good optical 

gain and can be operated with exposure times down to 10- 9 seconds. 
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3.3 The shadowgraphlc technique 

Methods of experimental flow analysis can be used which Involve the 

use of additives to the fluid. This has several disadvantages, 

Including Inertia effects, pollution of the fluid, and deviation of 

the flow pat tern by the very presence of the addl t Ive or Indicator 

(Hyzer 1962). The shadowgraphlc method depends only on the density 

variations within the fluid which Is under study. The refractive 

Index (n) for a gas or vapour was found by Gladstone and Dale to be 

related to Its density (p) by the law (Dlrwlsh 1979) 

kp - (n-l) 

where k Is Gladstone-Dale constant. Light travels at a speed 

Inversely proportional to the refractive Index of the medium through 

which It Is passing. Thus, If a light-wave of given form enters a 

region In which the density varies It wlll travel slowest through 

zones of high density and high refractive Index. If these density 

variations are perpendicular to the direction of travel of the 

wave front , there will be a deviation of the beam which will cause a 

variat Ion In I I lumlnat Ion over a screen placed in the light beam 

(Ralph 1959). 

This effect Is ut Illzed in the shadowgraphy method for determining 

the positions and shapes of shock waves (Dlrwlsh 1979). In the 

shadowgraphy system (Hyzer 1962), a point source of light, usually a 

short duration spark, Is used to Illuminate a screen or photographic 

plate. If the medium between the spark and the plate Is free of 

disturbance, the plate will be evenly illuminated. However when a 

disturbance Is produced In the medium by the passage of a 

high-velocity project lIe or by a heated object, density gradients 

occur throughout the affected area and cause the rays of light to be 

deviated to produce corresponding changes In plate Illumination. It 

can be shown that the variation In illumination on the screen is 
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proportional to the second derivative of the fluid density normal to 

the ray through the disturbance, ie, a2/ay~ 'The shadowgraphy method 

is sensitive only to high-density gradients of the type that 

accompany severe shock waves and is not applicable to low-energy 

disturbances that easily fall within the sensitivity range of the 

Schlleren technique (to be described in the next sect ion). The 

resolution and sensitivity obtained by the spark method are: 

1) inversely related to the diameter of the spark, 

2) directly related to the distance between the disturbance and the 

photographic plate. The advantage of shadowgraph method is Its 

simplicity in the study of intense shocks. The principal 

disadvantages of the conventional unfocused shadow method of shock 

wave photography are the requirements for: 

1) complete darkness during the test, 

2) a large film size approximating that of the area to be studied. 

Figure (3.15) shows a diagram of a shadowgraph system which includes 

a DC power supply to a capacitor which feeds the spark gap after the 

trigger pulse from the trigger part, and a photographic plate. When 

the projectile passes through the light beam it will block the beam 

to the photo tube for a moment and that causes a sUdden pulse to go 

into the amplifier and inductance coil to produce a suitable pulse to 

trigger the flash. This illuminates the plate enabling the 

projectile and wave front to be seen as dark regions. Two methods of 

using shadowgraphy: 

1) Unfocused shadowgraph 

This method is (Zukas 1982) used with the oldest single frame 

technique. An open sheet of film is placed close to the object, and 

small diameter pulsed light source such as an electronic flash or 

electrical spark gap Is mounted behind the object. By using very 
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simple spark circuits the system can give an exposure time of 10- 6 s 

duration. which recently has" been reduced to be 10-" s by using the 

pulsed laser. Figure (3.1S a) shows unfocused shadowgraph optics. 

2) Focused shadowgraph 

The disadvantage of the unfocused shadowgraph Is Its requirements of 

nearly total darkness. and the placing of the film close to the 

object can damage the film If the event under study Is violent 

enough. Because of these dl fflcul ties a focused shadowgraph system 

which Is shown In Figure (3.1S) can be used. The film Is loaded 

In an ordinary camera which Is focused on the object. A condenser 

lens placed between the object and the spark Images a small light 

source on Iris of the camera lens after 

object area. 

passing through the 

In this system the effective diameter of the camera objective lens Is 

the diameter of the light source Image focused by the condensing 

lens rather than the iris diameter. Because the image is small. the 

effective F/no. of the camera lens is high, and produces a substanial 

depth of field. 

3.4 Schlleren photography 

The simple Schlleren system (Ahmad 1988) which Is shown In Figure 

(3.16) Includes a point source of light behind a small circular 

aperture. a simple single lens and another circular aperture in front 

of the camera. This method (Llpson 1964) Is equivalent to cutt ing 

off half the transform Including the central peak of the light by 

deviating the light because of the differences In the medium 

density. 
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Also It displays (Brown 1965) the density gradient In the fluid. 

Observation of details of the flow of air or other gases about a high 

velocity body requires making visible (or detectable) the variation 

of refractive Index associated with the 

created as a result of the flow. As 

sma II changes of pressure 

Indicated previously, the 

refractive Index of a gas Is related to density P by 

n-l - kp 

where k Is the Gladstone-Dale constant, and p Is the gas density. 

This can be written as 

or n-l - (no-l)-E- - c-E-
Po Po 

where C Is a quantity, which for air In visible light ranges from 

about 2.9xl0-4 to about 2.98xl0-4. When light passes through (Ahmad 

1985) a gas in which there Is a variation of density, and therefore 

of refractive Index, it will suffer from deflections given by: 

8 - t~; 
where 8 Is the angle of refraction, and t is the width of the 

disturbance. We can express the above equation as: 

8 -
t C ap 
--P;;""'(ly 

or 

o - kt
ap 
ay 

k c ---where 
Po 
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Since the value of kpo Is, In general, small, deviation Is also small 

unless ap/ay Is very large. 

The system which makes use of small deflections obtained when ap/ay 

Is not very large Is known as a Schlleren system (Parry 1976). In 

Figure (3.16) If the circular aperture A In front of the camera lens 

Is moved up Into the focused beam at s, the screen illumination is 

reduced in such a way that the screen darkens evenly, since all the 

light which reaches s' has come In a evenly distributed manner from 

the whole Schlieren lens area. The aperture placed at positions 1 or 

2 would produce uneven darkening. 

Consider the effect of a disturbance at D situated so that it and the 

camera screen are conjugate planes. Point p Is Imaged at p' and any 

rays leaving p will be focused at p'. Thus, when a change in n at p 

deflects the ray in any direction, it partly misses A but stilI 

focuses at p'; a darker stop Is recorded at p, larger In Illumination 

than the surrounding screen. The Toepler Schlieren method, (as it Is 

known) therefore records changes in n gradients through changes of 

illumination on a screen. 

3.5.1 Electronic flash 

The use of special equipment and techniques (Quick 1972) Is necessary 

for high speed photography. The exposure rate of high speed cameras 

normally requires greater illumination of a non luminous object than 

Is normal in standard cinematography. The I ight must be of greater 

contrast for high speed work to make the action more apparent. 

In many respects the operation of an electronic flash bulb is 

Identical to a lightning flash where electrical energy is accumulated 

slowly in the cloud-earth system and Is suddenly released in a 

terrific surge of electrical power. The air Is quickly heated by the 

lighting stroke and a flash of light of high Instantaneous brilliance 

and short duration is produced (Edgerton 1953). The single 



36 

electronic flash has a very high peak light output, but usually a 

very short duration, so that the camera shutter has no other function 

than to keep out any ambient light that may be present. The 

electrical energy Is obtained from a rectified mains power system, or 

from a battery, and stored In an electrical capacitor until the flash 

Is desired. The capacitor Is the equivalent element to the cloud -

earth energy storage system of the lightning stroke. The amount of the 

energy which Is stored Is given by 

1 W - ~ CE2 watt-second (Joule) 

where C Is the capacitance of the capacitor (In farads) and E Is the 

voltage to which the capacitor Is charged before the flash. However, 

the light output of a flash unl t depends not only on the amount of 

the stored energy but also upon the efficiency of the flash tube. 

Basically the flash system (Wakefleld -1952) Includes a capacitor 

which Is slowly charged by a suitable source and then discharged 

rapidly through the tube by means of a triggering circuit. 

The triggering action should take place while the camera Is ready to 

take the photograph of the event, so synchronlzat Ion between the 

flash and the camera Is required to ensure that the camera shutter Is 

fully open when the flash output Is fully effective (Wakefleld 1952). 

The best way to do this with a flash which Is not connected directly 

with the camera Is by using a photodlode pointing at the flash to 

trigger the camera. 

3.5.2 Electronic flash duration 

There Is no standard definition of duration for an electronic flash, 

but the common definition Is that the duration Is the time between 

half peak points on the rising and failing portions of the light 

output curve. 
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The duration of the flash Is an Important criterion In motion 

analysis when a blur-free Image Is required. The flash durat Ion 

(Ralph 1959) Is determined by several factors which Include: 

a) flash-tube design; 

b) capacitor size; 

c) capacitor voltage; 

d) values of resistance and Inductance In the flash-tube circuit. 

In most practical cases the total output duration Is much longer than 

described In the above definition because of the long decay time of 

the light after glow characterizing the discharge. The durat I on 

might be more realistically based on one-tenth of the peak value. 

Simple flash guns have a hal f-peak output of about 1000 I's; such 

devices are not suitable for many scientific applications, where the 

subject moves at high speed, e.g. photographing shock waves. 

The flash duration can be measured or estimated by the following 

ways: 

a) by using a photodetector connected to an oscilloscope to record 

the flash output as a function of time. The above definition can 

then be used to establish the half-peak duration, 

b) from the relat lonshlp T - dlv (Edgerton 1979), where T Is the 

appropriate flash duration In seconds, d Is the blur of subject 

movement, and v Is the velocity of the subject, and 

c) by using the equation 1- lmax e-t/RC (Hyzer 1962), where I Is the 

flash tube current (amp), R Is the flash tube resistance (ohms), t Is 

the time (seconds), and C Is the capacitance (farads). The duration 

T In seconds based on a light level half of the peak can then be 
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calculated from the equation as T - 2RC/3 assuming negligible 

rlsetlme. The resistance can be calculated by using the Initial 

capacitor voltage E In volts, and the maximum Instantaneous discharge 

current Imax to give 

R - E/lmax 

Alternatively, the resistance Is given by 

R - pL/A 

where p Is the xenon plasma resistivity (ohm-cm), L Is the arc length 

and A the cross-sectional area. From Edgerton (1979), 

p - 1.13(J)i 

where J Is the current density (amp/cm». 

Hence R - 1.13L(IA) i 

where I Is the Instantaneous discharge current. 

Flash tubes are operated most commonly In one of the following two 

types of discharge circuits: capacitor discharge, and 

Inductor-capacltor discharge. The first type Is the simplest flash 

circuit In common use the flash tube acting as Its own switch. The 

advantage of Introducing an air-core Inductor-capacltor discharge 

circuit Is to: 

a) reduce the peak current of the simple capacitor discharge 

b) lengthen the pulse duration 

c) Increase the life of the flash tube, the flash durat Ion In this 

type being given by T-r(LC)i (Edgerton 1979). 
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3.6 Conclusion 

High speed photography is required for Invest Igat Ing rapid events 

which were previously unseen by the scientists, such as the movement 

of fast small mechanical particles, shock waves generated by 

explosion and Impact loading, plasma behaviour, and electrical 

discharges. Resolution time of the high speed cameras can approach 

10- 13 s, and the speed rate can be ranged from 500 f/s for 

Intermittent motion camera, to 3xl0 9 f/s for the electronic camera 

which can be operated with exposure time down to Ins. 

The flash output that Is required for such photography should be 

powerful with a short duration. 

In this chapter several types of high speed camera have been 

described as well as electronic flash, shadowgraph and Schlleren 

techniques. 

An Image converter camera which will be described specifically In 

Chapter 4 Is used In the present work In association with Schlleren 

photography and a xenon electronic flash, which will also be 

described In Chapter 4. These devices are suitable for the demands 

of the present work, which requires a short duration flash and high 

speed camera as well as Schlieren photography which is used to show 

the disturbance caused by the explosion clearly and hence to measure 

the shock wave expansion. 
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4.1 High speed photography equipment 

Figure (4.0) shows general diagram of equipment which is, used In the f·, 
present measurements and~synchronizing the whole system. 

4.1.1 Imacon Camera 

The Imacon is a high speed image converter camera (Al-mallky 1989). 

It can be operated In both multiple framing and streak modes. The 

framing rate can be varied from 2.Sxl04 to 2xl0 7 frame/sec as 

determined by interchangeable plug-in modules. In the streak mode, 

the image is swept across the film with sweep rate range from 

millisecond/cm to nanosecond/mm. 

The Imacon camera uses an electric field for deflecting an electron 

beam in a CRT (cathode ray tube) as previously described in Chapter 

3. by means of deflecting plates mounted inside the tube. the shutter 

of the camera being. effectively. an electric oscillating field. The 

Imacon makes use of a speciai Image tube which has three pairs of 

deflector plates in the drift space between anode and screen. In the 

framing mode the first pair of plates act as shutter plates and, when 

a sinusoidal oscillation is applied to them. deflect the electron 

beam up and down across an aperture slit. Figure (4.1) shows the 

tube and the signals across the plates. 

The electron beam can oniy get through the aperture plate when it 

passes through this narrow slit and this effects repetitive 

shuttering. However. this produces blurred pictures on the phosphor 

screen. The beam comes from the photocathode which is supplied with 

a negative potential of 20 kV from a stabilized EHT generator mounted 

within the camera. When the light is incident on the photocathode it 

causes it to emit an electron beam from the inside surface of the 

photocathode and this beam is focused by the focusing cone (at 

negative potential) and accelerated by the anode which is earthed. 
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In front of the camera there Is an objective lens which forms an 

Image of the event on the photocathode. At the rear of the camera 

there Is a combined mirror/relay lens system for focusing the screen 

Images on to a camera back containing 3000 ASA polaroid film. 

The exposure time Is related to the framing rate of the camera. It 

equals 0.2/framlng rate,i.e. one - fifth of the total time between 

each two frames. The Image resol ut Ion Is 10 II ne pal rs/mm for 

exposure times down to 0.1 Ils (2xl0 6 f/s) , and 5 line pairs/mm for 

shorter times. 

When the camera Is swl tched on and put on focus mode, an Image Is 

formed on the photocathode. The resulting electron beam Is focused 

by the focusing cone. The beam then passes through the shutter plates 

which now have zero voltage, after acceleration by the anode (with 

zero voltage, but positive relative to the cathode voltage). The 

electron beam then falls on the screen, and the Image on the screen 

Is focused by adjusting the objective lens. After focusing, in order 

to use the camera to photograph a moving event, the camera is put on 

operating mode. This lets the shutter deflect the electron-beam up 

to prevent It passing through the aperture. When an external pulse 

Is applied to the oscillator, the oscillator makes the shutter 

deflect the beam down, which lets the beam pass through. The 

compensating plates then shift the beam up to make the upper Image on 

the screen, which Is the first Image on the picture. After this half 

cycle the shutter deflects the beam upward to do the lower Image In 

the same way and so on. The compensating plates are used to shift 

the beam up and down to produce the lower and upper Images; this is 

why the Imacon is referred to as a mUltiple framing camera. The 

shift plates shift the electron-image horizontally after each upper 

and lower Image; that means It steps horizontally after every second 

exposure, thus, forming two rows of Images on the screen such as 

shown In Figure (4.2). The framing speed of the camera depends on 

the plug In modules used (e.g. lOs, SxlO S , 10 6 , 10 7 f/s). 
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Fig (4.1.) Framing sequences of high speed Imacon camera. 
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The camera back was originally made for Polaroid roll film (type 47) 

with speed of 3000 ASA. However we have modified It to use flat pack 

film (type 667, ISO 3000/36 0 ) by changing the original back to a 

suitable back for the flat film. The reasons for this modification 

are the easier availability of the flat film, the lower film cost, 

and the better quality. 

4.1.2 Flash unit 

The flash source Is of type HL03 (20 or 50 ps duration). The unit as 

shown In Figure (4.3) contains high voltage capacitors which can be 

discharged by triggering the lamp. It gives a maximum energy of 240 

joules per flash. The intrinsic delay of the unit between the 

triggering pulse and the flash output is dependent on the operating 

voltage and the triggering pulse amplitude and risetime. 

The flash can be triggered by a positive pulse of 20 - 200 V applied 

to the 'pos -pulse' socket or by pressing the 'Test' push button as 

shown in Figure (4.4). 

The flash source is housed in a rectangular box. A limiting aperture 

of variable diameter Is placed In front of the source to allow the 

light to come out from the lamp almost as a point source, which Is 

Important for a Schlleren system. The small diameter aperture gives 

a better defined light beam through the event and better sensitivity. 

At the back of the source there are the operat ing systems. The 

charging Indicator is scaled from 0 to 3 kV, with the scale between 

2.5 and 3 kV coloured in red. This means that if the voltage is more 

than 2.5 kV the flash might trigger by itself. Beside the scale 

there is the regulator which Is connected to the variac transformer 

to adjust the charging voltage. In the lower part there is the test 

push-button which is used to trigger the flash manually. To trigger 
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the flash remotely a posit Ive-pulse of about (20-200) volts can be 

applied to the 'pos.pulse' socket; the rate of rise of this pulse 

should be greater than 10 V/psec. Alternatively, a -10 V pulse can 

be applied to the '-ve pulse' socket. 

4.1.3 The trigger photodlode 

The photodlode and Its associated circuit are housed In a die-cast 

metallic box. In front of the box there is a slot to allow the light 

to come Into the box onto the cell. The circuit diagram is shown in 

Figure (4.5). When the light strikes the photocel1 (A) it conducts 

and allows a pulse through the 0.01 pF capacitor (B) which switches 

on an avalanche transistor In an emitter arrangement. The output 

pulse Is used for triggering the camera when the flash output reaches 

a suitable level for photohgraphy. 

4.1.4 Lite Mike detector 

The main part of the Lite Mike (Dirwish 1979) Is the photodlode (D) 

which acts as a current generator where the current depends linearly 

on the intensity of the received light. The circuit diagram of the 

Lite Mike Is shown In Figure (4.6). This detector was used to 

measure the flash output amplitude and duration, as will be described 

In Chapter 5. 

4.1.5 The opto-Isolator trigger unit 

One feature of the Imacon camera is the ability to trigger It by an 

electrical signal derived from the event. InltlaJly a photodlode 

detector was used to catch the light from the explosion itself to 

produce a suitable pulse to trigger the camera. One disadvantage of 

this system is the difficulty of pointing the detector In the right 

direct ion, and the imposslbi Ii ty of varying the triggering time 

delay. To avoid these problems, the opto-Isolator circuit Is now 
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used which Is shown In Figure (4.7). It can give a similar pulse for 

triggering the camera but with variable delay times by using a pulse 

generator. 

A pulse of (S - 20 )V applied to the Input 10 kO resistor will open 

the transistor T1 to allow current to pass through It to earth 

causing the diode D1 to emit light. This light will be received by 

the diode D2 which then generates a pulse which Is applied to IC1. 

By the voltage +5 V lCI gives output pulse to IC2 which In the same 

way will give a very short rise time pulse to the base of the 

transistor T2 to open It. An 80 V signal will appear across the 1 kO 

resistor as a sharp pulse with a rise time of 0.3 I'sec, and +80 V 

peak. This pulse Is sufficient to trigger the camera. 

4.1.6 The pulse generators and the oscilloscope 

The system Includes two pulse generator units as shown In Figure 

(4.8). One Is a Venner pulse generator which Is used for triggering 

the flash unit by using a +18 V, 51'sec width, and 1 I'sec delay pulse 

which Is Itself used as a reference pulse In the oscilloscope record. 

The second pulse generator Is a Farnell double pulse generator with 

two separate channels. One channel Is used to trigger the 

oscilloscope with a +26 V, 5 I'sec width pulse without delay, and the 

second one is used to trigger the Opto-isolator unit by a +10 V,' 

0.3l'sec width pulse with variable delays (usually a 20 I'sec delay) 

and a rise time of 0.02 I'sec. 

A dual beam oscilloscope Tektronix type 556 is employed to display 

the di/dt, Imacon monitor, and the pulse generators signals in both 

of Its channels. Also a flat film Shackman scope camera is used to 

record the signals and the screen grid of the oscilloscope. 
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Figure (4.8) General view of high speed photography system 
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A new storage Phlllps oscilloscope has recently been used (Instead of 

the Tektronlx oscilloscope) Is association with Graphtek 8 colour pen 

digital plotter to record the signals and the screen grid of the 

oscilloscope. 

4.2 Exploding wire equipment 

Figure (4.9) shows that the exploding wire system can be divided Into 

two parts, the outer part In the main laboratory controlling the 

second part which Is Inside a separate room. The Inner part, which 

Is called the exploding wire laboratory, Includes the charger unit, 

the bank, and the flash as shown Figure (4.10). This room also 

Includes a Schlleren setup of xenon flash, lens and trigger 

photodlode as shown In Figure (4.11). The charger contains the 

varlac transformer which Is supplied by mains A.C power supply 

through the fortress safety and mode selector switches. The varlac 

Is followed by a D.C charging unit which charges the condenser bank 

through a series of high resistors of 100 kQ In total In series with 

10 rectifiers by using the charge contactor switch. This switch Is 

controlled by the control unit In the main laboratory by means of a 

position sensor and a two-ways valve which employs pressurized dry 

air. The same charging cable Is connected to two switches which are 

moved by another valve which Is similar to the first one. These 

switches, called earth or dump switches, are used for bleeding any 

residual charge on the bank to earth after the experiment. 

Discharging the bank requires a fast and low Inductance switch; 

therefore the exploding wire system employs a spark gap switch which 

i's triggered by a separate high voltage pulse supplied to the third 

electrode In the gap to Ionize the air between the main electrodes 

and so cause a rapid discharge. 
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Figure (4.11) General view of the optical set-up inside EW room 
f- Xenon flash, t- Trigger photodiode, 
m- Mirror, 1- Schlieren lens, b- EW and bank terminals 
box, c- Capacitor. 
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The second part of the laboratory Is the main laboratory outside the 

explosion room. Th~ most Important feature here Is the control unit 

that controlsall the system. It controls the bank charging voltage, 
I 

the triggering of the spark gap (using the E.H.T and H.V trigger 

units) and the pneumatic control unit. It also controls the 

triggering of the high speed camera, the flash, and the oscilloscope 

through the pulse generators. 

The pneumatic system Is supplied by pressurized dry air from two 

bottles. 

4.2.1 Power supply 

The power supply (Figure (4.12» Is an 80 kV, 8kVA single phase 

transformer with varlac control which feeds a chain of 10 rectifiers 

through. 14 resistors In serles,of 100 k!l In total and 180 W each, 

to limit the current. The output voltage can be varied up to 50 kV 

to charge the capacitor by using the varlac In the primary of E.H.T 

transformer. The charger Includes dump and charge Isolating switches 

operated by pneumatic rams, and a poteriHometer to sense the voltage; 

by this part of the voltage we can measure the actual voltage by a 

digital voltmeter after multiplying by the ratio 1050 which Is the 

the potential divider ratio of 1050;1. 

The charging unit Is operated by push buttons on the control unit. 

The bank charging voltage can be set at the control unit, and when 

the voltage reaches the set value the charging unit is Isolated from 

the capacitor automatically. 

The safety feature of the unit Is the ability to discharge or dump 
, 

the capacitor charge by short clrcultlng the capacitor through a 

switched low resistance (500 n ). The system is connected to an 

independent earth strap for safety reason. 



, 

Figure (4.12) A view of the charging system 
a- Variac, b- DC transforner, c- Resistance, 
d- Charging switch, e- Potential divider, 
f- Earthy dump switch. 
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4.2.2 The bank unit 

The capacitor bank, which Is shown In Figure (4.13) (Ahmad 1985), is 

of 13.2 p.F a combined Inductance of 30 nH, and a maximum current 

rat Ing of 500 kA peak. It can be supplied to a maximum vol tage and 

energy of 40 kV (10 kJ). 

The capacitor wlndlngs (Stewardson 1984) use an oil/paper dielectric 

system, and are housed In a metallic rectangular case with dimensions 

of (i.12xO.4xO.39 m). The capacitor elements are connected In 

parallel to H. T terminals in the centre. of an Insulat Ing lid to 

obtain a low inductance configurat Ion by using external parallel 

plate transmission lines. 

This design contains also an additional transmission line between the 

case and the high voltage connections to allow the spark gap and the 

load to be placed at opposite ends of the bank. 

The top aluminium plate Is taken to earth. It makes a good 

electrical connection to the rest of the case, and screens the high 

voltage connections. 

4.2.3 Spark gap 

The spark gap which Is shown In Figure (4.14) consists of a three _ 

electrode distortion pressurized air gap. It is mounted at the end 

of the capacitor. The main two electrodes are discs separated by 

Insulation sheets but joined In the centre by an air gap. A third 

electrode (trigger electrode) Is Inserted through the discs and 

should be set to 60% of the travel from bottom electrode and 40% from 

the top one. 



Figure (4.13) Capacitor bank (c), Spark gap (s), 
Bank terminals (t), and Flux probe (b). 



Electrodes 

Figure (4.14) Spark gap unit. 
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The electrodes are covered by two Insulating lids. When a voltage 

pulse Is applied to the trigger electrode, the spark gap breaks down 

between the two main electrodes rapidly. 

The clean dry air which used to pressurize the gap and the products 

of the arc must be removed Immediately after firing by flushing with 

dry air; this Is done automatically by the control unit. The gap 

pressure should be set by the pneumatic control unit between 8 p.s.1 

and 14 p.s.1 at the voltages of 20 kV and 30 kV respectively. 

The following are the manufacturer's rating for the spark gap only: 

Inductance - 16 pH 

operating voltage - 15 - 60 kV 

peak current - 550 kA 

maximum operating pressure - 6.5 atmospheres 

maximum Coulombs Idlscharge (cid) -15 

electrode life max. - 1.3xl0s dlc 

min. - 3xl0· dlc 

for capacitor with spark gap: 

measured capacitance - 13.2 pF 

max. voltage - 40 kV 

. Inductance of capacitor Ispark gap - 45 nH 

life - 3xl0· shots at SO kV 

50% reversal 

stored energy kJ 40 kV 50 kV 

10 15 

maX. voltage reversal 70% 50% 
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4.2.4 Thyratron and trigger pulse generator 

The trigger pulse generator and thyratron are shown In Figure (4.15) 

and 4.16) respectively. The single thyratron unit Is connected to 

the spark gap by 10 m long cable for carrying the triggering pulse to 

the spark gap. The thyratron Is operated b~ a controlled rectifier 

control signal to start conduction. When a suitable current pulse Is 

passed through the thyratron, . _ conduction is achieved. The output 

pulse from the trigger unit generator Is +200 V for about 1ps 

followed by -200 V for about 1.5 ps applied onto a load connected to 

the thyratron. The thyratron acts as a virtual short circuit. The 

output Is -10 kV, "Wh.ich doubles to be -20 kV '" .'.' down the 

cable to trigger the spark gap. The cable must be' 10 m long or more 

to provide adequate width and energy In the pulse to be applied to 

the trigger electrode of the spark gap. 

4.2.5 Control unit 

To operate and control all the equipment which is associated with the 

system and because of the danger of the high voltage, a good control 

system must be used. So the control unit, shown In Figure (4.17), 

plays a very Important role In the operation of the exploding wire 

system. 

A nine push-button control unit placed outside the discharge ,room 

controls the ope rat Ion of the charge and discharge sequence of the 

bank as shown In Figure (4.18). It contains Indicator lamps showing 

the mode of the Interlock circuits and the conditions In the firing 

sequence. Also It Includes 16 relays to operate the pneumatic valves 

and ensure fall safe operation. The set volts control Is used to 

determine '_ the charging voltage which can be read on a meter. The 

circuit diagram Is shown In Figure (4.19). 
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The control unit senses the bank voltage so that when it reaches the 

set value an Isolating relay Is operated disconnecting the charging 

unit from the bank. It Is easy to start and stop charging and to 

lower or raise the earth In case of emergency. 

4.2.6 Delay Unit 

It Is most Important to get the timing right to study the explosions. 

It is necessary to trigger the camera at least 2 /Lsec before the 

explosion (see Chapter 5), and the (50 /LS duration) flash about 18 -

20 /Lsec before the camera to enable the flash to reach a suitable 

output for photography. Therefore, a delay unit has to be used to 

delay the explosion by delaying the triggering pulse from the control 

unit to the E.H. T generator to trigger the spark gap after a set 

delay time. 

Figure (4.20) shows the circuit diagram for the delay unit. It 

consists of two le units which control the delay by the use of 

several resistors and capacitors. Three external control knobs vary 

the delay, and one switched Input socket Is used for either a 5 or 

250 V pulse. The latter pulse Is attenuated and then limited by a 

zener diode to a value of 5.1 V. This pulse Is applied to the Input 

of the first le to give a delayed pulse to the second le which 

triggers the transistor to let the +5.1 V pass through to Induce a 

pulse In the pulse transformer. 

This pulse opens the thyrlstor to let a +200 V pulse reach the output 

socket through the positive or negative pulse switch. The +200 volts 

pulse comes from the mains power supply after modifying It from AC to 

DC by the shown rectifier circuit In Figure (4.20). 
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4.2.7 The pneumatic control system 

The pneumatic system Is provided by two-position valves and 

cylinders on the charging unit Inside the exploding wire room. It Is 

supplied by pressurized air at 80 p.s.1 from the bottle Bl which Is 

shown In Figure (4.9). The second bottle B2 supplies the spark gap 

with air at a pressure of 60 p.s.1 to pressurize and flush the gap. 

A pressure sensor at the input to the unit operates a relay interlock 

in the control unit and when all the Interlocks are made and SlO is 

operated by raising the dump switch. the input control valve Is 

opened allowing air to go to the spark gap (S4) via the H.P flushing 

valve. The pressure gaJ.;LJe(Gl) and the regulator ll.Y€ used to set the 

gap pressure. 

The H.P flushing valve leads the set pressure to the spark gap (S4). 

and it is opened after the firing for a set period by a timed relay 

to clean the gap of the arc products. 

be 
The flushing is done automatically but the HoP flush cant operated 

manually by depressing the HoP flush push button on the control unit 

to allow the HoP flushing valve to direct the full pressure from the 

bottle to the gap. 

4.2.8 Mixing Unit 

Figure (4.21) shows the circuit diagram of the mixing unit whi"ch Is 

used for attenuating the many pulses which are displayed together on 

the oscilloscope screen even though the oscilloscope has two channels 

only. The Venner pulse generator pulse Is recorded on both of the 

channels of the 

of the traces. 

oscilloscope at the same time ·for accurate alignment 

The Venner pulse is at tenuated by 180 9S toward ChI 

and 6.32 toward Ch2. The oscilloscope Is triggered 
th. 

pulse with zero delay from~Farnell pulse generator. 

~ 

externally by~ 23V 
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The I/P2 Is the Input of the camera monitor pulses. These pulses are 

then attenuated by 8.89 for display on the CRO. 

The Input I/P3 Is for the dl/dt pulse, which comes from the flux 

probe, for display on the CRO. An attenuation of 47 Is used to 

protect the CRO Input. A part of the dl/dt pulse Is also picked up 

by ChI by the mixing resistors of the Venner Input. 

The 124 n resistor Is used to attenuate the monitor pulses which go 

to the CRO to be reduced to a small value, The 47.3 n resistor Is 

used to prodect the camera monitor by reducing the dl/dt pulse which 

comes through the 150 nand 2.16 kil resistors. It also protects the 

camera from the plckup pulse which comes from the trigger Input of 

the flash unit by reducing It to a smal1 value. The flash unit Is 

usually triggered by the same pulse from the Venner pulse generator 

which Is used as a reference pulse. So the 47.3 n resistor is a 

protector for the monitor of the camera from any high voltage pulses 

from the flash unit trigger input circuit or the dl/dt pulse from 

flux probe. 



L 2000 220 K . 

330 O/P, 

HT + 
. Trigger BTX 0.22 IlF 

gate 48000 . 

1K 

Figure (4.15) Trigger pulse generator. 

Input 220 '-11-:--1 - - -
• CV2520 

+200V 

Figure ( 4.16 ) Single thyratron unit type 80041 



a- control unit 
b- delay-time unit 
c- gas cylinder 
d- pressur gauge 
e- thyratron & pulse generator 

Figure (4.17 ) General view of the control system. 
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Figure ( 4.18 ) Diagram of the control system. 
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5.1 Xenon flash unit measurements 

Figure ( 5.1 ) shows the present experimental set-up for the 

following measurements: 

I) time constant of the flash unit, 

11) output duration, and 

Ill) the dependence of the Intrinsic delay In the flash output upon 

the flash tube voltage and the triggering pulse amplitude. These 

measurements are essent lal for the best object I Ilumlnat ion In the 

exploding wire experiments. A 9 V battery was used for triggering 

the flash. 

5.1.1 Time constant 

The time-constant of the charging capacitor circuit in the xenon 

flash source may be defined as the time required to reach 63.2% of 

the final charging voltage according to the charging equation of the 

capacitor circuit which Is: 

where V Is charging voltage at any time t, Vo Is the final voltage, 

and T Is the time-constant. To calculate the time-constant from this 

equation put t-T which gives 

V - Vo(l-e-') - 0.632 Vo 

This has been applied to find T from Figure (5.2), which shows a plot 

of the voltage in kV as a function of time In seconds (readings being 

taken every 10 seconds). Table (1) shows results of several setting 

volt ages . 



11a.5 CJ\,..-----ok·-- 41· 5cm--~I--- 41· 3cm.--.-.I 
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Figure (5.1 ) Block diagram of experimental set-up for flash output mesurements. 
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Table (1) 
~~~!~~_~!~~!~~ ~D_i~~L ~_i:L:_Q~Q~L_~_ 

60 

65 

70 

75 

80 

85 

5.1.2 Flash output 

1.60 

1. 76 

1.92 

2.10 

2.25 

2.36 

26 

25 

25 

25 

24 

24 

Flash output duration and delay measurements, which are required for 

the high speed photography system have been made by using the trigger 

photodiode and Lite-Mike detectors. From Figure (5.3) It Is seen 

that the Intrinsic delay between the trigger pulse to the flash unit 

and the output flash pulse recorded by the Lite Mike decreases as the 

xenon set vol tage Increases. The half peak duration Increases to 

output 50 ps as the set voltage Increases. The results are tabulated 

In Table (2). 

Table (2) 
~~!~~8~_i~~) ~!!~Li1!~~L ~~!~:E!~~_~~~~~!~~i1!~L 

1.25 103.1 26.0 

1.50 35.3 28.0 

1. 75 27.0 31.2 

2.00 15.5 35.0 

2.30 12.0 45.0 

The output pulse measurment at the input of the flash unit contains a 

small pulse of about 8 ps duration due to the battery trigger pulse 

followed by a large sharp pulse of 1.2 ps total rise time and 168 V 

amplitude. This large pulse is due to a pulse that is fed back from 

the Input of the flash. 



Q:) trlggtr PUI'Sf (A), ·lltt ... ~lk. putse (8). Mon: 20 U $fe/dIy, 

Vert: 10 V/dlv (Al, S V/dlv (Bl, flash vol.ag. I.SkY. 

b) A. trigger pulSf. 8, Lite-Mike pulSf, Horz: 20 J,luc/dlv, 

Vtrt: 20 V/dlv (A), 5 V/dlv (8), flash voltage Is 2kV. 

C) A. trlggH pulu. B, Llte-\lih puis., Horz: lO IJSec/dlv. 

V.rt: 20 V/dfy (A), 10 V/dfv (9). fI.:ash \t01t3St Is 2.Jr.V. 

Figure ( 5. 3 ) Flash output atdifferent setting voltages. 
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The delay measurements were taken between the beginning of the small 

pulse and the beginning of the output flash pulse recorded by the 

Lite-Mike detector. Ignoring the constant 8 ps duration of the small 

pulse, and starting from the sharp pulse, the results agree well with 

the manufacturer's stated delays for the xenon tube which Is used In 

this flash unit. 

The delay also decreases with 

amplitude, which can be varied between 

Increasing triggering pulse 

6 - 200 V by us Ing dl fferent 

pulse generators Instead of the battery like Farnell pulse generator 

or the output of the delay unit, which Is 260 V or the pulse produced 

by the control unit which Is 250 V. 

5.2 Photodlode and opto-Isolator trigger unit output 

A trigger photodlode or an opto-Isolator trigger unit are required to 

synchronize the camera with the flash unit. 

Figure (5.4) shows the trigger photodlode output. This has an 

Initial sharp part with a total rise time of 0.2 ps, 74 V height, and 

half peak duration of about 0.33 ps. This pulse Is used for 

triggering the camera at a time such that 

suitable level to illuminate the object. 

the flash output reaches a 

The trigger delay of this 

depends however on the position of the photodlode with respect to the 

light source, so this can cause difficulty In triggering the camera 

at the right time when the light from the wire explosion Is used. To 

avoid this, an opto-Isolated trigger unit with the same output level 

and variable time-delay was designed to trigger the camera as 

described In Chapter 4. 

11,.. 
The opto-Isolator output and Its triggering pulse fromhFarnell pulse 

generator are shown In Figure (5.5) which shows that the Intrinsic 

delay of this unit Is 0.2 ps, the rise time Is 0.3 ps, and the 

amplitude Is +70 V peak. 



a) Trln" PhOlodlode pulse with flash "oII1S' or ~kV. 

Kot:: 10 ~ .. c.dlv, VerI: 10 V/dlv. 

b) The (ltSl pare or the pholodlod. pulse. Kotz: 1 ~ see/dlv, 

\'tTt: to V/dlv. 

Figure ( 5.4 ) Trigger photodiode output. 



A- 5 V S- 10 V TS-I.2Sus TO-- 160 
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Figure(5.5)Opto,..isolator output(S); and 
a trigge .... pulse(A). 
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5.3 High speed camera measurements 

5.3.1 Time Interval calibration and Intrinsic delays 

Figure (5.6) shows the calibration of the time Interval between the 

photograph frames of the Imacon by using an output from a standard 

In this figure the IMHz crystal oscillator In a time counter unit. 

upper traces show the monitor output of the 

monitor pulses are related to the frames I, 

first and second monitor pulses are combined 

pulse In the case of 10· f/s framing rate. 

monitor time Intervals with the standard 1 

Interval was found. 

Imacon camera. The 

3, 5, 7, 9 etc. The 

together In one large 

By comparing these 

MHz, the true frame 

From the trace of the 10· f/s framing rate, where the interval 

between the monitor pulses should be 2 J1.s, t he measured· time· between 

the monl tor pulses 1-3, 3-4, 4-5 etc are 2.33, 1.93, 1.93 J1.s etc 

respectively. Thus the true timing Interval Is 96.5% of the 

manufacturer's value for the plug-In which controls the framing rate 

In the camera. The delay In this unit between the triggering pulse 

(lower trace) from the opto-Isolator and. the first pulse of the 

monitor Is about 450 ns as shown In Figure (5.7). The Input 

Impedance of the camera, which Is connected In parallel with the eRO 

reduces the triggering pulse to a small pulse. The delay to the 

first picture Is 595 ns as stated by the manufacture. 

For the 5xlO s f/s framing rate unit the time Interval should be 4 J1.S 

between the monitor pulses but the measured values are 3.9 J1.S between 

1-2, and 3.86 J1.S between each pair of the succeeding pulses, making 

the time Interval 96.5% of the stated value for this plug-In unit. 

The delay to the first monitor pulse Is 0.7 J1.s from the triggering 

pUlse. 
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Figure ( 5.6) Monitor pulses of Imacon camera with crystal oscillator 
(1 MHz) output. 
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The framing unl t of 10 5 fls was checked, giving 20 ps Interval 

between the first and the second monitor pulses, and 19.3 ps between 

each pair of the following pulses, making the time Interval 96·5~ of 

the stated value of this unit. The delay between the trigger pulse 

and the first monitor pulse Is 1.7 ps. 

5.3.2 Image size measurement and amplification 

Figure (5.8) shows a photograph of a grid and wire, at the framing 

rate of 10 6 fls, with the xenon flash at 2 kV by using (green + blue 

+ black) filters In front of the objective lens of the camera. The 

distances are as following: lens-grid -32.5 cm, grld-camera-131.5 cm, 

and flash-lens -44 cm. The grid which Is used Is divided Into 

centimetres, and each centimetre Is subdivided Into five divisions, 

each division equalling 2 mm. The field of view Is 6.4 cm In the 

vertical direction and 4.4 cm In the horizontal direction. The 

measurements were taken of 4 cm In the vertical direction and 2 cm In 

the horizontal direction covering the middle of the field of view. 

The magnification M Is giving by: 

£P~I~c~tu~re~d~lm~e~n~s~l~o~n M - -:: actual dimension 

which gives an equivalent magnification of 0.25. The overlapping was 

caused by the large number of frames In the photograph and the large 

field of view (a smaller field of view andl or fewer frames would 

gives no overlap). 



Figure (5.8) Calibration photograph for a grid 
and wire by Imacon high speed camera at framing 
rate of 105 fls with xenon flash at 2 kV. 
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f.4 Synchronizat Ion measurements 

In examining the oscilloscope traces of an exploding wire experiment 

several Signals are seen which belong to different devices connected 

together and which operated at various times. Correct synchronization 

~s required for a successful experiment. Figure (5.9) shows that the 

process starts working by using the signals from the control unit. 

The control unit gives two pulses at the same time. One of them, of 

250 V amplitude, triggers the E.H. T. pulse generator which then 

triggers the spark gap after a delay time of 20 ps. The second pulse 

of 6 V triggers both the Farnell and Venner pulse generators. This 

pulse is delayed by the pulse generators as required. It Is delayed 

by 20 ps before It goes In the opto-Isolator, 1 ps for the CRO 

reference pulse and the flash unit, and without delay to the CRO 

external trigger through the Farnell pulse generator. 

As described previously, with a 2 kV operating voltage the flash unit 

has an Intrinsic delay In its Input circuit of 8 ps, and about 8 ps 

more to give the light output, so the total Intrinsic delay Is about 

16 ps until the light output. Actual delay to reach the suitable 

flash output for photograph Is 18 - 20 ps. 

The Intrinsic delay of the opto-Isolator Is 0.21 ps after the 

triggering pulse as shown In flgure(5.5), and the Intrinsic delay of 

the camera with the framing unit of 10 6 Is 0.47 ps compared with the 

manufacturer's value of 0.595 ps. Table (1) shows the various pulse 

values with the actual delays between the units. 
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Table ( 1 ) 
The present pulses and delay settings. 

pulse value from to delay tlme(ps) wldth(ps) 

250 V cont. unit delay unit 0 
260 V delay unl t E.H.T. 20 
20 kV E.H.T spark gap 0 
6 V cont. unit Farnel1 p.g 0 1 
6 V cont. unit Venner p.g. 0 1 
23 V Farnell eRO. 0 5 
10 V Farnell opto-Isolator 20 0.3 
80 V Opto-Isolator camera ( Tt ) 0.2 0.78 
18 V Venner p.g. flash 1 5 
18 V Venner p.g. mixing unit 1 5 

Figure (5.10) shows the signals at the trigger Input (a) of the xenon 

flash unit, and the monitor pulses (b). The first part of the signal 

(a) beIng the trigger pulse from the pulse generator (5 ps width). 

There Is a clear delay between the trigger pulse and the monitor 

pulses of the camera, which Is Itself triggered by the opto-solator 

trigger unit directed towards the flash. The delay time between the 

Initiating trigger pulse and the first monitor pulse Is about 

20.98ps. This delay Is caused mainly by a combination of (I) the 

delay In the Input circuit of the flash unit before a flash starts, 

(Al-mallky, Aug.1989). (11) a delay of the opto-Isolator to let the 

flash output reach Its suitable level for photography. Also there Is 

0.47 ps delay between the opto-Isolator pulse and the monitor pulse 

as shown in Figure (5.7). The opto-Isolator trigger unit was used to 

trigger the camera Instead of the trigger photodlode. 
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Figure (5.10) a, signals at the flash input 
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s.s Discussion 

Figure (S.2) shows that the charging of the xenon flash capacitors Is 

Initially fast but when the voltage reaches about 63.2~ of the final 

value, the rate Is much slower. The time for the flash unit to be 

ready to give Its full Illumination Is then ) 2S sec. 

The half-peak output duration of the flash unit has been measured as 

SO ps, which agree with the specification of SOps. 

The Imacon camera Is designed to be triggered by a short rise time 

pulse. This pulse has been obtained using a trigger photodlode or an 

opto-Isolator, the latter being better because of the easy 

variability of delay time, and the stability of Its output level. 

Image size measurements of a grid placed 

would later be situated were made to 

magnification of the camera. 

magnification In any direction. 

There was 

where an exploding wire 

calibrate the optical 

no difference In the 

Measurements of true framing Intervals are required to give accurate 

measurements of blast wave velocity and energy, which are re.'a.I-~J 

directly to the time Intervals between the frames. The calibration 

showed that the framing Intervals were about 4~ lower than stated on 

the camera. Velocity and blast wave energy would then be 

significantly higher than the values using the manufacturer's data. 

The measurements described In this chapter are all essent lal pr€

requlstes for the application of this system, as in the next 

chapters. 
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6.1 Electrical characteristics of the exploding wire circuit 

Figure (6.1) shows the present set-up of the complete system for 

measuring the exploding wire (EW) circuit characteristics by using a 

thick copper wire. This system as described In Chapter 5 Includes a 

control unit which controls the charging and discharging of the bank 

as well as triggering the other devices. Three delay units are used 

to trigger the E.H.T trigger unit, the flash, opto-Isolator, and the 

ocsllloscope. The opto-Isolator, flash and the camera are not used 

In measuring the electrical characteristics of the EW circuit. 

The basic electrical characteristics of an exploding wire circuit 

have to be measured using a thick wire which does not explode, le. 

one for which the energy Input Is Insufficient to cause melting and 

vaporisation. The basic circuit and Its typical current waveform are 

shown In Figure (6.2). 

In discharging the capacitor through the wire, the circuit may be 

assumed to behave as an RLC circuit where R Is the total resistance 

of the circuit including the exploding wire as a load, L Is the total 

Inductance, and C Is the capacitance. 

Assuming ( Stewardson 1984 ) that the effect of the transient process 

can be Ignored after the first half cycle, and that 

the time expression for the discharge current 

damped sine wave as In the following equation: 

where 

I-Ae-otslnwt 

w-(LTC) -i 

o - ~IT ,the damping factor 

Is then a lightly 
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T --r- ' the period 

w-2"f frequency 

Ly-total Inductance 

6S 

Ry-total resistance of the discharge path 

C -bank capacitance. 

By differentiating the equation for I and putting the initial 

condition (di/dt-Vo/LT at t-O) to find A gives: 

I-V (~)ie-Qtslnwt 
o LT 

where Vo is Initial bank voltage. 

Assuming eQt-l+Qt for Qt<O.34 the equation can be simplified to give 

values accurate to within 5%. It Is then reduced to be (Stewardson 

1984): 

To obtain the constants of the discharge circuit, the period and 

ratios of the peak values of the output waveform of the inductance 

flux probe (lower trace in Figure (6.3» were measured and used in 

the above equations to get LT, Q, and RT. 

The waveform of dl/dt contains two functions of time which are the 

coswt that causes the cosine wave osclllat ion, and the exponent ial 

function e-at that causes the decay In the signal. Assuming the 

exponential function Is 

V - a e-Qt 
p 
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at 20 kV discharged through 16cm long copper wire 
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then In(Vp)-ln(a)- at 

and the slope of In(Vp) versus time t equals -a, the damping factor 

of dl/dt. 

A thick copper rod with diameter of 6.3 mm, and 16 cm length was used 

as a low resistance load to the bank. The rod was clamped directly 

Into the electrode holders. Figure (6.3) shows a CRO record for 

dl/dt waveform (lower trace) from the bank discharge at voltage (Vo) 

of 20.107 kV. The upper t race I s a part of the dl/dt pi cked up by 

the mixer unit, and monitor pulses appear on this signa\. The di/dt 

signal Is attenuated by the rat 10 of 47. A graph of In(Vp) against 

time Is also shown In Figure (6.3). 

From the record 

period T - 14.5 ~sec . 

frequency f - 68.62 kHz 

a - 1.570xl04 S-1 damping factor (from the graph) 

LT - 407.5 nH total Inductance obtained from 2 .. f-(LTC)-~, where 

C-13.2~F 

RT - 2LTa - 0.0127955 n - 12.79 run 
m - 8.74 nH mutual Inductance obtained from 

4.,.NA 
m xl0- 7 

W 
(where from design the number of turns N-150, cross sect Ion of the 

coil A with diameter of 3 mm, and width of the strip line W-15.25cm) 

Vp 
dl/dt---'-S.0Ixl0 'o amp/s, where Vp-14x47 v-658 V the first peak. 

m 
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To calculate Imax ' I, and VL(the voltage across the load) the 

following expres,slons were used: 

VL-Voe-at (I-Ls/LT), where LB Is the bank Inductance (20 nH 

from the manufacturers). 

VL-19.12 kVat t-O, and 20 kV bank voltage. 

At to' the first peak, dl/dt - 8.01xl010 amp/s from dl/dt-Vp/m. 

The second +ve peak (t-14/ts), dl/dt 2 11' - 8.18xl010 amp/s, and the 

third peak (t-28.6/ts), dl/dt 4 11' 7.26xl010 amp/so 50 the first peak 

Is smaller than the second one 

In the case of a damped sine wave discharge current through a 
d~ ~(:I,,"'iG 

thick-wire, If theAclrcult resistance Is larger than the steady-state 

value by a factor of 2.5 In the first quarter-cycle, the first 

current peak will be too low by 25% (Bennet 1962). It follows that a 

higher average resistance over a shorter time Interval can accomplish 

the same result. 

6.2 Blast wave measurements 

To produce blast waves a thin copper wire was used as a load in the 

high voltage capacitor discharge. The wire explodes rapidly when 

the discharge current passes through and produces a cylindrical blast 

wave pushing the vapour symmetrically outside with It. By using the 

5chlleren method, this blast wave could be photographed by the Imacon 

high speed camera to show the fast expansion of the wave. 

For call1iratlng the time Interval and the synchronization of the 

system, the corresponding eRO records were used. A typical eRO record 

is described in Figure (6.4). 
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6.2.1 Blast wave velocity 

Blast wave velocity measurement is desirable in exploding wire 

applications (Dirwish 1979), since it enables a theoretical 

determination to be made of the pressure produced by a wire explosion 

inside a hollow cylinder. This method Involves the measurement of 

the shock front with respect to radial distance. This is facilitated 

by the large and rapid change in pressure, density, and temperature 

associated with the shock front (Ahmad 1988). Voltages of 20, 25, 

and 30 kV have been used to explode copper wires of sizes 22 and 24 

swg (standard wire gauge) of diameters 0.71 and 0.559 mm 

respectively. The lengths of the wire used were 8 and 13cm. 

The measurements were made by measuring the increasing diameter of 

blast wave fronts from high speed photographic records. High speed 

photographic records of typical exploding wires together with their 

corresponding oscillograms are shown in Figures (6.5) to (6.10). 

Graphs of radii of the shock fronts versus time have been drawn for 

each wire. The corresponding oscillogram Includes two traces, the 

lower one showing from left to the right the reference pulse from ike 

Venner pulse generator, a large pulse from the flash, and the dl/dt 

pulse" . ", from the flux probe. The upper pulse contains extra 

pulses which are from the camera monitor placed on the part of di/dt 

pulse which Is picked up by the mixer unit. Monitor pulses are used 

for calibrating time intervals of high speed photographs, as shown in 

Figure (6.4). 

The blast wave velocity is obtained by calculating the slope of 

radlus-t Ime graph. This has been done by drawing tangents to the 

graph at various points or by differentiating a polynomial equation 

which Is fitted to this graph; both methods give the same results. 

Figures (6.11 to 6.16) show velocity versus radius plots which will 

be discussed later. 



reference 
pulse 
(Venner pulse 

fIsh trig. pulse, monitor ~ulseS 

di/dt 

Figure (6.4) eRO record for an 8cm/22swg exploding wire at 20 kV. 
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The cylindrical blast wave generated by a wire explosion has a Mach 

number (M) which can be calculated by dividing the wave velocity by 

the sound speed In air at room temperature, e.g. the sound speed Is 

345 m/s at 20 0C. High speed camera times were calibrated as In 

Chapter 5 to give the exact time Intervals, which are 0.96 p.s for 

11's- camera Interval, and 1.96 I's for 2 I's camera Interval. Using 

this calibration the result Tables (I), and (2) show the true 

calibrated results of the measurements. 

6.2.2 Calculation of blast wave energy 

Strong blast waves from wire explosions were treated theoretically by 

Lln (1954), who established a relation between the time and position 

of the cylindrical shock wave front as shown In the following 

formula: 

where t is the time, R Is the distance from the explosion to the 

shock front, Po (-1.205 kg.m- 3 at 1 atm, 20 OC) is the density of air 

ahead of the shock, E Is the energy In the explosion per unit length, 

and B Is a dlmenslonless energy parameter of constant value 3.94 for 

air, dependent on r, the ratio of specific heats. Therefore, a 

linear relationship between t and R2 Is predicted. The conditions 

for the valldl ty of the aboveequat Ion are: 

1) the energy Is assumed to be suddenly released and the shock 

disturbance Is similar at all times, 

2) the gases are supposed to be perfect with constant specific heat 

ratios, and 

3) the energy losses from ionization and radiation are neglected. 
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Shock wave data corresponding to the 22 and 24 swg wires have been 

fitted to the Lln equation by plotting R2 versus time, and then the , 
best straight line after about 6 /,S (linear R2-t relat lonshlp) """'-5 

selected graphically that has a slope m equal to: 

R2 
m--

t 
2(-}-)! 

Po 

From the slope the axial energy E (joule per unit length) can be 

obtained. 

Typical examples of R2/t plots In the present study are shown In 

Figures (6.17 to 6.22). which will be discussed later. From these 

figures can be seen that the early part of the graphs show a slow 

rise in R2, and indicates that as the wire explodes, 2 - 6 I's elapse 

while energy is being fed Into the explosion before the shock front 

reaches its maximum velocity. Therefore, the shock wave behaviour 

accords with blast wave theory after this Initial period. 

6.2.3 Determination of the efficiency of the exploding wire 

The highest velocity of the blast waves produced by the wire 

explosions usually corresponds to the highest energy transfer process 

from the capacitor. For 30 kV the stored energy in the 13.2/,F 

capacitor is 5.94 kJ with the discharge current reaching its peak 

after about 3 - 5 /'S as shown in the eRO records (e.g. Fig(6.9), 

Flg(6.23c), and F1g(6.27c». The 13cm/24swg wire requires about 

1.72kJ to be vaporized (Stewarson 1984), which means that 

vaporization and blast wave formation are so rapid that only part of 

the stored energy Is available for the formation of the blast wave, 

The energy needed for vaporization depends on the wire material and 

Its diameter. The 13cm/22 swg wires need 2.7 kJ for complete 

vaporization. Therefore, the blast wave formation for the 22swg wire 

occurs later than for the 24 swg in the discharge process. The 24swg 

wire gives the highest velocities and highest blast wave energies as 
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shown In the velocity/time and R2/tlme graphs. For wires of greater 

diameter, more of the energy Is used for vaporization, such as In 

22swg wire which requires 2.7 kJ, leaving less energy to energize the 

blast wave. From the dl/dt signal In the corresponding CRO records, 

at 20 kV there Is only a small residual current In the circuit as 

Indicated after the negat Ive peak of dl/dt. At the higher vol tages 

(e.g. Fig 6.7) greater energy In excess of vaporlzat Ion energy Is 

supplied. The current then will cont Inue. to pass through the plasma 

under 're-strike' conditions as described In Chapter 2. The plasma 

has a low resistance and the circuit behaves as an LC circuit. 

The explosion efficiency can be defined as the ratio of the output 

energy (blast wave energy) to the Input energy from the capacitor. 

The blast wave energy can be found by the theory of strong blast 

waves (Sakural 1965 and Lln 1954) as described before In Sect ion 

(6.2.2). Graphs of R2 versus time give the output energy of the 

blast waves. The Input energy Is (CV2/2), where C and V are the bank 

'capacltance and voltage respectively. Tables (1) and (2) show the 

results for 24 and 22 swg wires with 13 and 8 cm lengths respectively 

by applying 20, 25, and 30 kV. 

6.2.4 Pressure determination 

oV! t"" 
The pressure generated~lnslde wall of cylindrical specimens Is that 

due to the reflected shock wave (DI rwl sh 1979). The peak pressure 

can be determined from blast wave theory. The reflected pressure can 

be obtained by knowing the Mach number (as In Section 6.2.1) and by 

applying standard plane shock wave theory (Gaydon and Hurle 1963). 

However at the high temperatures associated with the reflected shock 

wave at high Mach number air does not behave as an Ideal gas. 
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Figure (6.34) shows the theoretical curves of reflected shock 

pressure as a function of Mach number of the Incident shock for air 

as a real gas taking Into account changes In r caused by vibration 

and dissociation (Law and Brlstow 1969). Another method can be used 

for measuring the reflected pressure directly, e.g. by using a 

piezoelectric pressure probe which measures the pressure from the 

wave reflect Ion off the Inside of a cylinder placed symmetrically 

around the wire. Such a probe, as shown In Figure (6.35) (Grlfflths 

et al 1986), consists mainly of a piezoelectric crystal sandwiched 

between two high strength stainless steel bars. The wave 

transit-time of about 0.1 Ils through the crystal ensures a fast 

response while the steel bars reduce radial oscillation (Parry 1988). 

The bar system Is enclosed within an earthed brass housing which 

reduces the electromagnetic noise to a low level. Such direct 

measurements of pressure have not been made In the present work. 

6.2.5 Electrode and effects 

Figure (6.32) shows a plot of the propagation of the shock wave 

between the electrodes around the exploding wire. The photographs In 

Figure (6.31) show that the wave front Is not plane near the holders 

which were flat ended. The small ripple In the graph Is because of 

the small different In the timing of the two shots. The shots were 

taken by applying 20 kV to 24 swg wl res wl th lengths of 8 cm, and 

photographed from the right and the left sides of the wire. 

During photographing the shock waves near the ends of the wire holder 

two features have been seen. These are the effect of shape of holder 

end on the shape of the shock wave front, and the short spark which 

starts before the explosion takes place. If the same voltage is 

applied to the exploding wire, but with a variation In the shape of 

the holder, differences clearly appear In the end of the shock wave 

between the exploding wire and Its holders. The shock wave front has 

curved edges wl th dl fferent radii corresponding to the dl fferent 
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shapes of holder as shown In Figure (6.33). The best cylindrical 

shock wave front Is given by the wire holder with the hemispherical 

shaped end. To reduce the effect of the holder shape slightly, high 

voltage would be applied to give a cylindrical shock wave. The 

second feature Is the short spark which starts about 1 p.sec before 

the explosion. It causes a spherical shock wave faster than the 

cylindrical shock wave, which then decays qUickly. The first time It 

was observed, It was not clear If It was because the melting point of 

the soft solder Is less than of the copper. The shot was repeated 

several times and gave the same result. 

Hard si Iver brazing solder, less hard brazing solder aluminium 

metal, and the soft ordinary solder (multlcore 60/40 tin/lead alloy 

solder with melting point of 188 DC) were then used to connect the 

exploding wire Into the holders. All gave the same Iitt le circular 

spark before the expansion takes 

them as shown In Figure (6.33) 

place. The only difference between 

(records 3, 4, and 5) Is that the 

spark starts 1 p.sec earlier for the aluminium with respect to the 

brazing solder, and In the soft solder It starts earlier than in 

aluminium. It is clear that the occurrence of the spark Is related 
$oY'i':T 

to the fact that the )melts and vaporises before the copper: the 
i""-

harderAsolder the more time Is required before melting. The melting 

points of si Iver btazlng , aluminium, and ordinary soft solder are 

about 1230, 930, and 460 DK respectively. The Intense electric field 

at the end of an electrode will then generate a spark at a time which 

depends on the solder. The resistance of the contact region of the 

wire with solder and the solder with the holder may be added to the 

previous reasons. 
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6.3 Discussion 

Figures (6.5) and (6.6) show photographs of the explosion and the 

corresponding CRO records of syncronlzatlon and calibration signals. 

Graphs of distance versus time are also shown. The experiments were 

done by applying a 20 kV voltage to explode 24 swg and 22 swg copper 

wires of 13 cm length. The photographs were taken by the Imacon high 

speed camera with a nominal 1 p.s interval. All the graphs use the 

nominal time Intervals. The true time Intervals, however, were used 

for subsequent calibration. The graphs give a maximum velocities of 

3.16 and 2.1 km/s (max. M. no. of 9.2 and 6.1) for 24 and 22 swg 

wires respectively as shown In Figures (6.11) and (6.12). This means 

the 22 swg wire produces slower blast waves than the 24 swg because 

the 22 swg wire requires more energy for vaporization leaving less 

energy to energize the. blast wave. 

Figures (6.7) and (6.8) show the photographs, corresponding CRO 

records as well as graphs of the radial expansion of the blast waves 

from 24 and 22 swg wires exploded at 25 kV giving maximum velocities 

of 4.14 and 3.58 km/s respect Ively, as shown In Figures (6.13) and 

(6.14). 

Figures (6.9) and (6.10) show photographs and graphs of the radius 

against time of 24 and 22 swg wires exploded at 30 kV. These give 

maximum blast wave velocities of 4.58 and 4.08 km/s respectively, as 

shown in Figures (6.15) and (6.16). The velocity plots versus radius 

show that the blast velocity goes up quickly to reach a maximum vlaue 

and then decays slowly. 

Figures (6.17), (6.18), and (6.19) show plots of R' versus time for 

exploding wires with conditions of 24 swg and 13 cm length exploded 

at 20, 25, and 30 kV. Calculations from these graphs give blast wave 

energies of 102.43, 156.94, and 211.07 J/cm respectively. The same 

voltages were applied to 22 swg wires. The graphs of R' against time 
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are shown In Figures (6.20), (6.21), and (6.22) and give blast wave 

energies of 54.2, 101.82, and 133.08 J/cm respectively. 

In addlt Ion 8 cm long wires were used to 

using 20,25, and 30 kV to explode the wires. 

generate blast waves by 

Figure (6.23) shows the 

photographs and CRO records for 8 cm/24 swg exploding wires at the 

above voltages. The photographs show that at higher voltages, the 

wire exploded faster. Also at 30 kV the vapour emits light because 

of the high energy which It receives after re-strike. 

Figure (6.24) shows graphs of radius versus time of blast waves 

generated by the above voltages applied to 24 swg wires. Maximum 

velocities of 4.42, 4.90, and 5.03 km/s respectively are achieved as 

shown In the velocity versus radius plots In Figure (6.25). The 

slope of graphs of R2-tlme as shown In Figure (6.26) are 120xl0., 

167xl0., and 152xl0· cm'/s for 20, 25, and 30 kV respectively to give 

efflclencles of 51.85, 64.48, and 37.31 per cent. 

Figure (6.27) shows photographs and CRO records for 8 cm/22 swg wire 

at 20, 25, and 30 kV, while Figure (6.28) shows the corresponding 

radl us versus t I me plot s. 

3.10, 4.04, and 4.95 km/s 

(Mach no. of 9.01, 11.73, 

These plots give maximum velocities of 

respectively as shown In Figure (6.29) 

and 14.36). The photographs and the 

corresponding osclllograms give a good guide of the start of the 

bursting of the wire which coincides with the maximum negative value 

of the dl/dt pUlse. 

Figure (6.30) shows the graphs of R'-tlme for 22 swg wires exploded 

at 20, 25, and 30 kV from which It can be seen that the slope 

Increases In accord with Increasing applied voltage. Efflciencles of 

29.3, 29.5, and 41.6\1 respectively are produced. The results are 

tabled In Tables (1) and (2). 



Table (1) 

Shock wave results from 13cm exploding wire. 

Print swg D Voltage Max. v Temp Max. M Slope Output Input EfL Max. re~l. 

no. (mm) (kV) (km/s) C no. 104 energy energy (%) pressure 
(cm2/s) (J/cm) (J/cm) (kbar) 

72 24 0.559 20.0 3.18 20 9.25 91.2 98.6 203.1 48.5 0.92 

73 = = = 3.17 = 9.24 88,5 92.8 = 45.8 0.92 

75 = 0.55 = 3.04 21 8.82 91.3 98.9 = 48.7 0.82 

77 = 0.54 = 3.17 = 9.15 92.6 101. 7 = 50.0 0.89 

78 = = = 3.10 20 8.93 92.2 100.9 = 49.6 0.84 

86 = 0.549 25.0 4.13 22 12.00 114.6 155.8 317.3 49.1 1. 78 

89 = 0.55 = ' •• 38 = 12.73 118.9 167.8 = 52.9 2.09 

92 = 0.54 30.0 1 •• 56 2/. 13.19 132.9 209.6 456.9 1.5.9 2.31 

79 22 0.692 20.0 1.40 = 4.04 62.6 46.5 203.1 22.9 0.12 

83 = 0.678" = 2.10 25 6.07 67.3 53.8 = 26.5 0.35 

84 = 0.700 = 1.45 = 4.20 44.1 23.0 = 11.3 0.14 

85 = 0.694 25.0 3.57 21 10.37 97.5 112.9 317.3 35.6 1.22 

88 = 0.699 = 3.14 = 9.14 112.2 149.4 = 1.7.1 0.90 

90 = = 30.0 3.67 = 10.67 127.7 193.7 1.56.9 42.4 1.31 

91 = 0.702 = 4.06 22 12.34 127.5 193.0 = 42.2 1.92 



. Table (2) 

Shock wave results from 8em exploding wire. 

Print swg D Voltage Max. v Max. M Slope Output Input Elf. Max" refl. 

no. (mm) (kV) (km/s) no. x 104 cm2/a energy energy (%) pressure 
(J/cm) (J/cm) (kbar) 

94 a 24 0.54 20.0 4.85 14.12 115.8 159.2 330.08 48.2 2.79 

97 • • 0.534 • 3.84 11.14 116.5 161.2 D 48.8 1.46 

98 b • D - 4.82 13.87 121.6 175.6 - 53.2 2.66 

100 c • - · 4.65 13.43 119.1. 169.2 - 51.3 2.43 

103 d · - - 4.42 12.84 119.4 169.4 - 51.3 2.14 

105 c - · · 4.97 14.45 124.0 182.5 - 55.3 2.98 

116 g - • · 4.39 12.74 106.6 154.0 D 46.7 2.10 

117 f - - · 4.37 12.67 118.6 166.9 D 50.5 2.10 

118e · · · 4.27 12.38 113.2 152.1 · 46.1 I. 94 

99 b - - 25.0 5.01 14.52 137.8 225.5 515.64 43.7 3.02 

107 c · • · 5.09 14.76 131.4 205.0 · 39.7 3.17 

119 • - - - 4.90 14.19 166.5 329.1 · 63.8 2.83 

120 c · • - 4.63 13.1.5 168.2 335.9 · 65.2 2.41. 
. 

112 c • · 30.0 5.71 16.56 144.8 248.9 71.2.42 33.5 2.40 

113 c · · - 5.03 14.59 151.9 274.2 · 36.9 3.10 

. 101 c 22 0.702 20.0 3.10 8.87 74.6 66.1 330.08 20.0 0.83 

108 c · 0.695 · 3.10 9.01 90.3 93.3 · 29.3 0.86 

110 c .. - 25.0 4.25 12.35 114.1 154.6 515.64 29.9 1.93 

111 c - · · 4.04 11.73 113.3 152.3 - 29.5 1.70 

114 c · - 30.0 5.03 11 •• 61 163.1 315.8 742.42 42.5 3.07 

115c - - - ' •• 95 14.36 161. 2 308.5 - 41.6 2.93 

Shots conditions: 
a Lefthand side. flat ended holder, soft solder. 
b Righthand s1.d~. :! _... 

c Middle -

cl Righthand si-de-, hcmi-sphericnl ended holder. soft solder. 
e • • silver solder. 
f .... •• aluminium solder. 
g pointed cnd holder. silver solder. 
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6.4 Conclusion 

High speed Schlleren photography has been used for showing that blast 

waves generated by exploding copper wires are both radlally and 

axially symmetric over most of their lengths for the wire sizes and 

capacitor voltages used. This study shows that 8cm/24 swg wires give 

the highest blast wave velocities up to 4 - S.S km/s (Mach no. about 

13) at 30 kV discharge voltage. The exploding wire technique has 

been shown to produce symmetrical blast waves of sufficiently high 

pressure to satisfy the requirements of impact loading of hollow 

cylindrical specimens, which will be described in next chapter. 

The exploding wire technique involves a fast discharge capacitor bank 

providing energy via a pressurized triggered spark gap to explode the 

wire, which is soldered to brass electrodes with diameter of 6.3 mm, 

and usually with flat ends. These electrodes are attached to the 

bank terminals. Figure (6.36) shows the electrodes and the electrode 

holders. Flat ended electrodes have been used as well as hemi

spherical and pointed ends to give more uniform cylindrical blast 

waves. Different types of solder also have been used to fix the 

exploding wires into a small hole in the electrodes, e.g silver 

brazing solder, aluminium, and ordinary soft solder. These types of 

solder used to study their effect on the shape and delay of the blast 

wave as well as stUdying the short spark before the wire explosion. 

The results in Table (2) shows there is no big difference caused by 

using different types of solder. 
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Figure (6.31) High speed photographs (10 6 ifs) of shock wave propagation 
around the right and the left holders of 8cm/24swg exploding wire 
at 20 kV. Both holders are flat ended and connected with the wire 
by a soft solder. 
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(silver solder). 
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ended holder, aluminium solder. 
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ended holder, hard brazing solder. 

Figure (6.33) High speed photographs (106 f/s) shows the shock wave 
propagation and the small spark near the holder of the 
exploding wire with different end shapes and solders. 
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Figure (6.34) Reflected shock front pressure against Mach number. 
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7.1 Introduction 

The mechanical behaviour of materials at high rates of strain has 

Importance to many practical and theoretical problems (Ahmad 1988). 

One of the methods used to determine the mechanical behaviour of 

materials Is that of a hollow cylinder expanded by means of an 

Internal pressure applied rapidly. 

Several Invest Igators have used the expanding cylinder method to 

study different materials at high strain rates. Swift and Fyfe 

(1970) carried out two distinct types of experiment using the 

exploding wire technique to examine an elastlc/vlscoplastlc 

constitutive theory In a radial cylindrical configuration. One 

experiment examined the plane-strain plastic response of thick hollow 

cylinders subjected to an Internal flnlte-rlse-t Ime pressure; the 

other examined the decay behaviour of the cylindrical elastic 

precursor associated with high stress level impact loading. A linear 

and an exponential form of the vlscoplastic strain-rate function were 

considered. 

Schmit and Fyfe (1973) used the exploding wire technique to study the 

dynamic fracture of thick hollow cylinders. This experiment 

Investigated the influence of biaxial strain on the dynamic fracture 

of metals. 

Dlrwlsh (1979) used a method, proposed by Ensmlnger and Fyfe (1966), 

to measure the small dlsplacements of the outer surfaces of thick 

nylon cylinders subjected to Internal pressure waves due to the 

reflection of blast waves from an exploding wire. This involved 

monitoring the displacement by using a laser beam which is Inte~epted 

by the outer surface of a cylinder. 
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Ahmad (1988) used a strain gauge method to study plastic deformation 

of polymer cylinders also by using exploding wires to provide high 

pressure Internal Impact loading. 

Fyfe and Rajendran (1980, 1982) combined experiment and theory to 

examine the Influence of strain-rate Inert lal effects and dynamic 

pre-straln on the ductile fracture of thin cylinders and thin rings. 

High speed photography was used to study the deformation of 

cylindrical specimens of high density polyethylene (HDPE) at high 

strain rates of 10. s-'. 

Forrestal, et al (1980) applied a high explosive loading technique to 

study the uniform plastic expansion and fracture initiation of 

stainless steel cylinders. 

In this chapter, a prellmary study of the expansion of high density 

polyethylene (HDPE) tubes Is described. High speed photography in 

association with the Schlleren technique Is employed to monitor the 

radial dlsplacements of the tubes. The expansion of the specimens 

has been produced by using an exploding wire Inside a hollow cylinder 

along its axis. 

7.2 Experiments and discussion of results 

Figure (7.1) shows a simple diagram of the exploding wire system used 

for loading hollow cyllndrica I specimens. The cylinder is placed 

symmetrically around an exploding wire by using t_ nylatron holders 

which are fitted on the wire holders and the cylinder as shown In 

Figure (7.2). 

High density polyethylene (HDPE) tube expansion was studied using a 

10 5 fls framing rate In an Imacon camera with 10 ~s nominal Intervals 

and 2 ~s framing exposure, the Illumination being provided by a small 

electronic flash of half-peak output duration of 204 ~s as shown In 



R(100M) 

46- kV 

s 

C 
13.2)JF Exploding 

wire . 

Figure (7.1) Simple diagram of exploding wire system 
employed for testing cylindrical specimens. 

Tested tube 

Electrode 

Holder (Nylatron) 

~igure. (7.2»Nouriting arr.angernentof thin-walled. expanding tube. '. . 
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Figure (7.3). The flash unit could be triggered either manually by 

pressing a push-button to short the flash circuit, or by an external 

pulse (In this case a 10 V pulse from a pulse generator) to fire a 

solid state thyrlstor, which does the same job of shortlng the 

trigger circuit of the flash. As the oscilloscope record In Figure 

(7.3) shows the flash has delay of 18 ps from the triggering pulse to 

reach half-peak output. 

The experiments were carried out mainly for HDPE-thln-walled 

cylinders subjected Internally to an 8cm/22swg wire explosion using 

capacitor voltages of 20, and 2S kV. The outer radius of the tube 

surface was measured and plotted with respect to time In order to 

determine the velocity by differentiating the polynomial fit equation 

of the graph. Engineering hoop strain has been measured directly 

from the photographs and plotted against time to calculate the strain 

rate from the polynomial equation of the graph. 

The tube wall thickness at break was measured after the experiment by 

using a digital micrometer for the middle part of the fractured tube. 

Also the breaking thickness was measured from the particular Imacon 

photograph which Indicated the fracture start Ing, by measuring the 

outer .radlus (Ra) of the tube and assuming the volume Is constant 

during the deformation of the tube. The Inner radius can then be 

calculated by the following method: 

For a length L of tube, assuming plane strain, 

V1- ~(ro'-rl')L Initial volume 

V,- ~(Ra'-RI')L final volume 

where Vl-V, constant volume for plastic flow. 

Ri'-Ro'-(ra'-ri'), 

where ra and ri are the Initial outer and inner radii, 

Ra and RI are the final outer and Inner radii. 

The wall thickness Is then ~R - Ra-RI. 



B- iO v TB- 40u. re-- i.OD 
RA- iO V Rre- 40u. Rrc-- i.OD 

/ " I " I ~ 
~ 
~ -S 

. 

Figure (7.3) Electronic flash output (B), and the 
triggering pulse (~~). 
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The direct measurements from the photographs are usually smaller than 

the measurement by micrometer for the tested tube because of the 

recovery of the tube radlally after the experiment. 

The estimation of the values of the thickness Is made by drawing 

slopes before and after the fracture from the radlus-t Ime or the 

velocity-radius graphs which show a large increase in the radius 

after the fracture, the mean of the radius being used to give the 

outer radius of the tube at the fracture point. The above 

expressions are then used to determinate the breaking thickness. 

The measurements have been made from the Imacon photographs by using 

an eye-piece magnifier which can be used to measure small distances 

to about t 0.2 mm, and these measurements are converted to the actual 

values by multiplying them by the magnification ratio of the camera 

optics. The error bars which are drawn on the radius-t ime curves 

Indicate the maximum error variation. 

Figure (7.4a) shows a graph of outer radius-time of an HDPE tube of 

13.56 mm outer diameter with thickness of 3.5 mm, and length of 8cm. 

This tube was loaded by an 8cm/22swg wire explosion at 25kV. From 

the fourth order polynomial equation of this graph, the outer surface 

velocity was obtained by differentiation. The velocity-radius graph 

Is shown In Figure (7.4b). The engineering hoop strain against time 

graph Is shown In Figure (7.4c). The calculations from this 

experiment give the maximum velocity of the outer surface of the tube 

as 404 m/s before the fracture, as shown In Figure (7.4b). The tube 

has fractured at an engineering hoop strain of 340%, engineering 

strain-rate of 4.94xl0· s-', velocity of 200 m/s, and radius of 

29.5mm at 80 ps after the explosion. The breaking thickness of this 

tube has been estimated to be 0.6 mm compared with the measured value 

of 0.74 mm. Figure (7.4d) shows the tube after the test. The 

fracture appears 80 ps after the expansion starts at radius of 

about 30 mm as shown in high speed photograph in Figure (7.4a). The 
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t~rov;)\..O..;t 
fractured part of the cylinder has about same thlckness,(except the 

.ends which remain /l1taC.t w1tk. Ct.. small deformation. The feature of 

plane str«ln Is clear In this case C,,-"-s·i~ u.~("'ri" deformat Ion In the 

middle part of the cylinder., .~. 

Figure (7.5a) shows the outer radius-time graph of an HDPE cylinder 

of 6.78 and 3.39 mm outer and Inner radii respectively with a length 

of 8cm. It has 

wl re fI red at 

been loaded by an explosion 

25 kV. From the first 

from an 8cm/22swg copper 

differentiation of the 

polynomial fit equation of the graph, the velocity of outer surface 

of the cylinder was obtained, which Increases rapidly at the fracture 

point, as shown In Figure (7.5b). This also shows the velocity 

keeping at a constant value of 450 m/s before the fracture. First 

differentiation of 

strain-time graph 

the polynomial 

(Figure (7.Sc» 

equation of the 

gives the peak 

engineering 

engineering 

strain-rate of 8.71xI0· S-I, and a maximum engineering strain of 

334%. This cylinder fractured at an engineering strain of 232% with 

an estimated thickness of 0.83 mm compared with the final measured 

value of 1 mm. The outer radius was 21 mm at the fracture point 3Sps 

after the explosion. The fractured tube Is shown In Figure (7.5d). 

In the above experiments the direct blast wave loading creates a high 

temperature on the Inner surface of a cylinder. To protect the 

tested HDPE cylindrical specimen from the high temperatures of the 

explosion, experiments have been done where the thin-waIled tube 

specimen has been placed as a sliding fit on another tube. The Inner 

tube's dimensions are 7, 3.9, and 9.9 mm outer, Inner radii and 

length respectively, while the tested tube's dimensions are 9 and 7 

mm outer and Inner radii respectively with a length of 8 cm. Loading 

by an 8cm/22swg wire at 2S kV produced the record in Figure (7.6a). 

The estimated thickness at the fracture point Is 0.6 mm and the final 

measured value is 1.1 mm. As shown In Figure (7.6a) the tube 

fractured at radius 27.9 mm at 105 ps after the explosion. The 
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velocity at the fracture point is 379 mls as shown in Figure (7.6b), 

and the engineering hoop strain is 212% as shown in Figure(7.6c) 

which gives a strain-rate of 4.24xl04 s-1. The peak engineering 

strain-rate Is 6.3xl04 S-1, and the maximum engineering strain Is 

264.3%. The double tubes are fractured symmetrically as shown In 

Figure (7.6d). The photograph shows the breaks in all the direction 

around the tubes. 

In addition to the possible temperature rise from the explosion, tube 

temperature can increase due to Its strain. Assuming that the hoop 

stress Is uniform for a thin-waIled tube with short rise time at high 

rate of plane strain, and considering that volume V remains constant, 

the work done on the tube can be found. Equating the mechanical to 

the thermal energy, then 

V lcrdE - msaT 

aT-(V/ms) lcrdE (lIps) ludE 

where m Is the mass of the material, p Is the densl ty, s Is the 

specific heat, and E Is the true strain. 

For HDPE (Ahmad 1988), flow stress of 4S MPa. 

strain of E-157% 

45xl0·xl.S7 
then aT 9S5x2400 - 31°C 

For a true fracture 

This value Is the temperature rise due to the strain of the tube. 

Thus, the temperature of the tube for a room temperature of 210C 

will be at least 52 cC. The temperature Increase causes an increase 

In the elongation of the polymers (Hlgglns 1977). $,-,,,-,,,- Ot 

temperature rise of the tube would effect - Its material behaviour. 

Results of the expanding tubes experiments are shown in Table (I), 

which show that the estimated thicknesses of cylinders are less than 
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the measured ones. This because of the thickness measurements have 

been made some time after the experiment letting the fractured 

cylinders recover. The maximum strain rate Is about 6xl0 4 s-'. 

7.3 Conclusions 

The thin expanding tube method has been employed to study HOPE 

cylindrical specimens subjected to a high pressure pulse from 

exploding wires. The expansion was photographed by using the high 

speed photography system, which was described before, but with slower 

framing rates and using an electronic flash of long duration to 

provide enough Illumination of the tested tubes. Measurements have 

been carried out to study the conditions that affect the fracture 

behaviour of the above material. These are the Impact velocity 

(>200m/s), the strain and the strain-rate. The tubes have been 

broken at engineering hoop strains between 212% and 380% compared 

with the supplier's typical quaslstatlc values of about (100-500)%. 

From table (1) the results Indicate that the breaking thickness of 

the tubes decreases when the engineering hoop strain at the fracture 

point Increases, and that the tubes are broken at engineering hoop 

strain-rates above 4xl0 4 s-'. Velocities of the outer surfaces of the 

tubes which have been broken are more than 200 m/so 

The pressure pulse amplitude Inside a thin tube decreases with time 

because of the expansion of the cylinder and the variation of 

temperature with time, so It Is not possible to make an accurate 

estimation of the pressure to calculate the stresses on the tube 

wall. Another method has been Investigated to study HOPE tubes which 

can allow measurements of stress to be made. This method Is the 

freely expanding ring technique which will be described in the next 

chapter. 



Print Material Outer Inner Length 

number radius radius 
mm I11III cm 

1 HDPE 7.04 3.93 10 

2 IIDPE 7.01 4.06 9.95 

5 - 6.78 3.28 8.0 

6 - 6.78 3.39 -
7 - 6.79 3.62 -
8 - 6.96 3.36 -

II ** . 9.00 7.00 . 

- ---- -

* maximum values • . 

Table (I) 
Expanding tube results. 

Voltage Outer R. Breaking thickness 

at break measured estimated 
kV mm mm mm 

20 8.73 * no break , 
25 33.65 0.7 0.53 

- 29.5 0.74 0.60 

- 21.0 1.00 . 0.83 

20 8.72 • no break 

• 9.56 * no break 

25 26.2 1.10 0.62 

** double tubes. the measurements have been made for the outer tube. 

Eng. hoop Eng. hoop 

strain strain 
% rat.Us) 

19.64 * 1.93x104 

380 4.44x104 

340 4.94x104 

232 6.3x104 

25.1 * 2.56x104 

37.4 * 9.74x103 

212.2 3.5x104 

Velocity 

at break 
m/s 

116.2 • 
268.0 

200.0 

490.0 

178.1 * 
74.0 * 
310.0 

Max. velo. 

before 
break rn/s 

-----

381 

404 

440 

----
-----
200 

00 ..... 
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Figure (7.4a) Outer radius against time of HDPE tube, 13.56mm o.d., 
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Figure (7 . 4d) Fractured HDPE tube, 13.56 mm o . d ., and 3 . 5 mm thick 
fired by an 8cm/22swg wire a t 25 kV . 
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Figure (7 . 5d) Tested HDPE tube of 6.78 and 3.39 mm outer and inner radii 
fired by 8cm/22swg wire at 25 kV. 
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8.1 Introduction 

The expanding ring technique Is a method of obtaining high 

strain-rate properties of materials (Zukas 1982). The ring can be 

shown to be under a state of unlaxlal stress, while a cylinder Is in 

a state of plane strain, when loaded with a symmetrical radial 

pressure. 

Clark and Duwez (1950) used the expanding ring as well as the 

cylinder geometry for testing materials at high-strain rate. Their 

method of securing a uniform high strain rate was to use a 

thin-walled hollow cylindrical specimen In which circumferential 

strain Is Induced by an Internal fluid pressure by means of a piston 

moving at constant velocity. They computed the maximum fluid 

pressure from the value of the maximum force. 

find the stress Is 

ra 
rF p-

d 

The formula used to 

where p Is the pressure, d the wall thickness, and ra Is the average 

radius of the cylinder. 

Nlordson (1965) developed a dynamic deformation method for a ring by 

using an electromagnetic force generated by a 24 wlndlngs coil 

supplied by a discharge current from 12 ~F capacitor. 
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Hoggatt, et al (1967) used the deformation caused by explosive 

charge. In 1969 he and Recht approxImated the true hoop stress of 

the thin rings by the following formula 

o2R 
er - - pR---

ot 2 

where p Is the mass density of the material, R the outer radius of 

the ring, and o2R/ot 2 Is the radial deceleration of the ring flight. 

They calculated the true strain rate from: 

• _O:.:.R'i;-/O:..;t_ 
E - R 

where ~ Is the strain-rate, and oR/at is the ring velocity. 

Circular aluminium rings were impulsively loaded with axlsymmetric 

short duration pressure pulses by Forrestal and Wall ing (1972) who 

compressed the rings into 

ga\1gcs. 

the plastic regime and measured their 

They did comparisons of the measured response by strain 

strain-time history with two theoretical predictions, one using an 

elastic-perfectly plastic stress-strain law, and the other using a 

strain-stress law suggested by Llndberg (1968), (1970). The closest 

comparison was the first prediction. 

An experimental method for Impulsively loading structural rings with 

a simultaneously applied, short duration pressure 

presented by Wall ing, Forrestal, .and Tucker (1972). 

pulse has been 

They ut i Ilzed a 

fast discharge capacitor bank and a current pulse shaping technique 

to provide a pressure pulse with a duration of about 2 ps, which is 

sufficiently short that loading can be considered impulsive for most 

structural ring experiments. 

A magnet ic pressure pulse has been used by Wall ing and Forrestal 

(1973) to expand 6061-T6 aluminium rings dynamically. The magnet ic 

pressure pulse was used to load the ring for a short durat ion, and 
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the ring response was measured by strain gauges. The gauge output 

was subjected to interference for the first 20 p.s from electrical 

noise from the capacitor bank switching and current shaping. The 

ring response depends on Its geometry and the stress-strain law of 

the material. To avoid the noise they achieved a pulse of less than 

10 p.s duration that provided clean signals from the strain gauges 

that were used for measuring circumferential strain In the ring. 

Wesenberg and Sagartz (1977) used the same technique of generating a 

magnetic pressure pulse from a capacitor discharge to study the 

dynamic fracturing process in aluminium cylinders at strain rate of 

up to 104 s-'. 

Fyfe and RaJendran (1980) used a thin cylinder configuration 

accelerated by an exploding wire system and laser-photomultlpller 

system for displacement measurements to study strain-rate and strain 

history effects on the fracture of metals. 

Forrestal et al (1980) developed a new explosive loading technique 

for producing nearly unl form expansion of thick-wailed cylinders. 

Strain-rates achieved on AISI 304 stainless steel cylinders were in 

axcess of 4000 s-'. 

The expanding ring method has been improved by Warnes et al in 1980 

for determining dynamic material properties. This Improvement is 

centred around the incorporation of a direct velocity-measuring 

device (velocity interferometer) to remove the necessity of double 

differentiation of the experimental data. 

Carden, et at (1980) used the expanding ring method by subjecting a 

6061 aluminium ring to unlaxlal loading to obtain the stress-strain 

dependence from the radial-velocity versus time behaviour. 
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Daniel, LaBedz, and Llber (1981) tested a 

strain rates In the lOO s-' to 500 s-' regime. 

composite material at 

Their method employed 

a thin ring specimen loaded by 

explosively through a liquid. 

an Internal pressure pulse appl led 

They based their analysis on a 

numerical solution of the equation of the motion Involving smoothing 

and approximation of the strain data, strain-rate and strain 

accelerations. 

The freely.expandlng ring technique was used by Warnes, Karrp, and 

Follansbee (1985) for determining the stress-strain behaviour of 

materials at large strains and at high strain-rates. This technique 

consists of placing a thin ring of test material In a state of 

uniform radial expansion by pressing the ring carefully onto a high 

strength steel driving cylinder. The ring moves outward without the 

action of external forces. Radial ring velocity decreases, however, 

because of the action of Internal circumferential flow stresses. By 

this technique they extended the test of the materials to strain 

rates of 2.3x104 s-'. The experiments used copper rings subjected to 

an Internal explosion. The measurement of the expanding ring 

velocity oR/ot was taken directly by a laser velocity Interferometer. 

They used three thin rings Instead of one to reduce the time required 

for the central ring (the ring to be tested) to achieve the 

one-dimensional motion necessary for the equation u--pRo2R/ot 2 to be 

correctly applied. 

Gourdln (1989) has also used the expanding ring method to study the 

const Itut Ive propert les of copper and tantalum at high rates of 

tensile strain. 

In the Physics department, Loughborough University, the freely 

expanding ring method has been examined since the expanding tube 

experiments require measuring the loading pressure accurately if the 

stress Is to be found. So to avoid the difficulty of pressure 

measurement the free expanding ring was studied. The method involves 
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placing a thin ring around a thick-walled cylinder and subjecting the 

cylinder to Internal blast wave loading. The shock wave propagates 

through the cylinder and Is then partially transferred Into the ring, 

which then moves at high velocity away from the cylinder and then 

decelerates under the action of the hoop stress. By measuring the 

dlsplacements by high speed photography, the true stress can be 

determined by the equation which was used by Hoggatt and Recht (1961) 

(<T--pRa 2R/at 2). 

8.2 Expanding ring theory 

The wire explosion has been used for providing an Impulsive loading 

for a cylindrical specimen. The explosion produces a short duration 

pressure pUlse. In the freely expanding ring system the' energy 

propagates through the wall of the cylinder, and then transfers Into 

the ring, which Is a slldlng fit on the cyllnder. The ring expands 

at high Initial radial velocity, and then decelerates because of the 

opposing radial component of the circumferential stress. This method 

has been used to produce a uniform deformation by a symmetrical 

expansion of a thin narrow ring or tube avoiding the problem of wave 

propagation. 

The ring leaves the Inner cylinder, which can be considered as a 

driver, the loading pressure being zero after the separating of the 

ring from the driver. The ring continues to expand by Its own radial 

Inertia. The movement of the ring is opposed by the radial component 

of the circumferential (hoop) stress, causing decelerating of the 

ring. Consider a ring as shown Figure (8.0), at zero driving 

pressure. The equation of motion is F-MA (Hoggatt and Recht 1969), 

where F is the force, M is the mass, and A Is the acceleration. 
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For a small element of the wall of the ring: 

dFI - dmA - rp(Ro2-ro2)Lo(d8/2r)(a2R/at2) 

dFq - -2u(R-r)L sln(d8/2) 

where dFI Inlt lal radial force 

dFu radial component of hoop 

dm element mass 

a 2R/at 2 deceleration of the ring 

u true hoop sress 

p - density 

R external radius 

r Internal radius 

8 solid angle 

Lo Initial length 

and L axial length 

At all stages 

dFI - dFO". 

stress 

By solving the equation for stress It becomes, for small e, 

0" - - P 
2 (R-r) 

For an Isotropic material, the radial and axial strains are equal, 

which gives 

Lo Ro-r 0 

-- -----
L R-r 

and under unlaxlal stress condition, 

Vol 0" vO" 2 

- (1+ -) (1- --) 
(Vo I) 0 E E 



where 
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Vol - ~(R2-r2)L the volume 

E - Young's modulus 

• - Polsson's ratio. 

By combining the above equations and slmpll~lng, the resulting 

equation for true stress can be closely approximated for a thin ring 

to be : 

(1 - -pR 

True strain is given by 

• - In(R/Ro), which gives a true strain-rate of 

By a polynomial curve fitting of the radius-time measurements and 

double differentiation of this curve, true stress can be obtained. 

Also from velocity a true strain-rate can be determined. The 

advantage of the expanding ring method is that stress can directly be 

evaluated and no pressure profile is required. Also the ring 

behaviour is not affected by the variation of the pressure pulse with 

time. 
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8.3 Experiments and discussion 

As mentioned before, the freely expanding ring method has been used 

In order to avoid estimating the pressure pulse which Is required to 

calculate the stress for the cylinder method. When the ring Is In 

free flight It Is In a state of unlaxlal stress, and the stress can 

be found from the surface displacement, as shown previously. 

Several experiments have been carried out to test different 

dimensions of tube and the ring to define the dimensions which el'\,,-ble 

the free expansion of the tested ring. 

Figure (S.l) shows the mounting arrangement of the expanding ring 

placed as a sliding fit on a thick-waIled tube. 

In one experiment an HOPE ring 2mm thick, 5.S mm wide, and 17.S2mm 

outer diameter, has been placed on a thick HOPE tube 3.3 mm thick, 10 

cm long, and 13.S2 mm outer diameter. This ring has been fired by an 

Scm/22swg wire at 20 kV Inside and along the axis of the tube. The 

expansions of the ring and tube were photographed at a nominal 

Interval of lOps. The ring outer radius versus time graph with high 

speed photograph and eRO record are shown In Figure (S.2a). The 

first dlfferentaltlon of this graph gives the velocity of the outer 

surface, which reaches a maximum value of 70.4 mls and then decreases 

as shown In Figure (8.2b). The ring behaves together with the Inner 

cylinder as one thick expanding tube. So the freely expanding ring 

method Is not valid in this case. An engineering hoop straln-t ime 

plot Is shown In Figure (S.2c). This graph gives a maximum hoop 

strain-rate of 7.9x103 s-', and a maximum engineering hoop strain of 

34.7%. The tested specimen Is shown In Figure (S.2d). 

Figure (S.3a) shows the high speed photograph, eRO record and the 

outer radius versus time plot for a 2mm-thlck HOPE ring with a length 

of 5.S9 mm, and outer diameter of 17.75 mm placed on an HOPE cylinder 



~R/)t 

Figure (8.0) Dynamic symmetrical expansion of a thin ring. 

Thick cyliner 

Figure (8.1) Mounting arrangement of a thin ring placed 
on a thick-walled cylinder. 

~: 
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of 13.75 mm o.d, 3.1 mm thickness, and 10 cm length fired by an 

Scm/22swg wire at 25 kV. The first derivative of the polynomial fit 

equation of radius-time plot gives a maximum velocity of IS6.3 m/s as 

shown In Figure (S.3b) of velocity vesus outer radius graph. Figure 

(S.3c) shows a graph of engineering hoop strain against time. This 

gives a maximum engineering hoop strain of 136.7%, and the first 

derivation of the plot polynomial equation of the degree 4 gives a 

maximum value of engineering hoop strain-rate of 2.1xl04 S-I. The 

ring strengthens the Inner cylinder as shown In Figure (S.3d). 

In the above experiments, the hoop stress can not be calculated 

because of the loading pressure is unknown and there Is no free 

expansion condition. 

Figure (S.4a) shows the high speed photograph, corresponding eRO 

record and the outer radius against time for a ring and cylinder. 

The measurements have been made for a 0.83 mm thick HDPE ring of 6.1 

mm length, and 13.3 mm o.r, placed as a sliding fit on a thick HDPE 

tube of 12.43 mm o.r, 8.2 mm thickness, and 8 cm length fired by an 

Scm/22swg wire at 25 kV. The separation between the ring and the 

outer surface of the cylinder Is clear as shown In the high speed 

photograph and the r/t graph. Also as the graph shows the ring 

expands faster 

condition that 

than the tube, which provides the free expansion 

Is required for calculating the stress directly 

without knowing the internal loading pressure. 

The radius/time graph of the freely expanding ring In Figure (8.4a) 

has been made by fltt Ing the measured values of the outer radius 

against time Into a third order polynomial equation. The ring 

velocity has been determined and plotted against time In Figure 

(S.4b), giving a maximum velocity of 14S m/so The second derivative 

of the radius-time polynomial equation Is required to calculate the 

true hoop stress, which Is plotted against true hoop strain In Figure 

(S.4c). This graph shows that the maximum true hoop strain is 34.1% 
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at a true hoop of 3S.4 MPa. Figure (S.4d) shows a graph of 

engineering hoop strain against time, which gives a peak engineering 

hoop strain-rate of 1.12x104 s-' and then decreases with time 

becoming zero at zero velocity when engineering strain Is 40.6%. 

Figure (S.4e) shows a photograph of the tested ring around the 

unfractured cylinder. After the experiment, the Inner diameter of 

the ring Is larger than the outer diameter of the cylinder because of 

the free flight of the ring away from the cylinder, and the fast 

recovery of the cylinder. Several hours later the ring recovery is 

noticeable, becoming almost a sliding fit on the cylinder. 

Figure (S.Sa) shows outer radius-time plots of another thin ring and 

Inner tube system. The dimensions of the HDPE ring are 13.3, 0.7, 

and 5.92mm outer radius, thickness, and length respectively. This 

ring was placed on an HDPE thick-walled tube of 12.6 mm outer radius, 

9.41 mm thickness, with length of 63 mm. The ring moves outward 

wl thout external forces by the energy which Is received from the 

tube. The radial velocity of the ring decreases, however, because of 

the action of the circumferential flow stresses. The separating of 

the ring from the cylinder, which Is shown in Figure (S.5a), provides 

the free expansion condition. The radius against time data have been 

fitted into a third order polynomial equation which Is required to 

determine the velocity and the deceleration of the ring. The first 

derivative of the equation gives the ring velocity as shown in Figure 

(S.Sb), which gives a maximum velocity of about 146 m/s, decreasing 

to zero after 62 p.s. There Is an almost constant deceleration. 

Figure (S.Sc) shows the engineering hoop strain against time plot for 

the ring. There Is a maximum strain-rate of 1.ISx104 s-'. and a 

maximum engineering strain of 36.S%. True hoop stress Is obtained by 

double differentiation of a cubic polynomial R/t equation. True hoop 

stress against true strain has been plotted 

quasi-static properties obtained using an 

strain-rate of 10- 3 s-. as in Figure (S.Sd). 

for compar I son wi t h 

Instron machine at 

This shows the marked 

Increase of the strength of the material at higher strain-rates. 
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Figure (S.Se) shows a photograph of the tested ring and the cylinder. 

The volume of the ring has been measured before and after the 

experiment as 334.23 mm3 , which means that It remains at the same 

value without change after the deformation. This Indicates that the 

ring deformation was In a plastic manner. The ring as In the 

previous test continues In slow recovery after the experiment. 

8.4 Conclusion 

The expanding ring test Is a simple method of obtaining material 

properties In unlaxlal tension at high strain-rate by monitoring the 

uniformly expanding ring. The stress-straln-straln rate response of 

the ring material can be calculated from the equation of ring motion 

and the recorded data. The true stress determination requires a 

double differentiation with respect to time of the ring displacement. 

Hence, great ca~e must be taken In fitting a polynomial to the 

1nl t lal radlus/t Ime data from the photographic records. In order to 

achieve better resolution In the early stages of the expansion, 

future work should use a higher framing rate for the camera. 

This method provides direct measurement of stress from the record 

avoiding the difficulty of measuring or estimating the Internal 

pressure which Is required to calculate the stress on the wall of the 

tube. To slow down the movement of the cylinder and leave the 

expanding ring to flyaway, a thick-wailed cylinder and a thin ring 

are required. The freely expanding ring method provides a 

strain-rate above 10· S-1 in the early part of the test, the rate 

then decreasing with time to become zero at zero velocity at a true 

strain of about 30%. A marked Increase In material strength at these 

high strain-rates can be observed as shown In the comparison with 

conventional quasi-static tests at 10- 3 S-1 using an Instron machine. 
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Figure (B.2a) High speed photograph(105f/s) with corresponding eRO record and outer radius/time graph 
for HOPE ring B.91mm o.r., 6.91mm i.r., and 5.Bmm length placed on HOPE cylinder 
6.91mm o.r., 3.2mm thick, and 9.9 cm length fired by Bcm/22swg wire at 20 kV. 
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Figure (8.2) Velocity/radius (b), and engineering strain/tim~t}plots for HDPE ring (8.91mm o.r, 6.91mm Lr, 
and 5.8mm length) placed on an HDPE cylinder, 9.9cm long, and 3.2mm thick fired by an 8cm/22sw~ 
wire at 20 kV, as in Figure (8.2a). 



Figure (8.2d) Tested HDPE ring of 8 . 91mm o.r., and 6 . 91~ i . r, 
placed on an HDPE cylinder , 6 . 91mm o .r and 3 . 2mm thick 
fired by an 8cm/22swg wire a t 20 kV . 
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Figure (8.3d) Tested HDPE ring of 17. 55 mm o.d, and 13 . 75 mm i .d pl aced 
on an HDPE cylinder of 13. 75 mm o .d fired by an 8cm/22swg wire 

a t 25 kV. 
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Figure (8.4d) Engineering hoop strain/time plot for a freely expanding 
ring of 13.3 mm o.r, and 12.43mm i.r, placed on a 
thick-walled cylinder and fired by an 8cm/22swg wire at 25kV. 



Figure (8.4e) Tested HDPE thin ring of 13 . 3mm o.r, and 12.43mm i . r, 
placed on a thick cylinder of 12 . 43mm o.r, and 3 . 25mm i . r, 
fired by an 8cm/22swg wire at 25 kV . 
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Figure (8.5a)High speed photograph and corresponding CRO record with outer radii against time plot 
of HDPE freely expanding ring and a thick cylinder fired by an 8cm/22swg wire at 25 kV. 
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Figure (8.5) Velocity/time(b) and engineering strain/time(c) plots for an HDPE ring of 13.3mm o.r, 0.7mm thick, 
placed on a thick-walled cylinder of 9.41mm thick fired by an 8cm/22swg wire at 25 kV. 
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9.1 General conclusions 

The work described in this thesis relates to the study of blast waves 

and their use in impact loading of materials to high strain-rates up 

to and beyond 10 4 s-'. 

The exploding wire technique (EWT) has been used to produce 

cylindrical, axially symmetrical, blast waves. The exploding wire 

was photographed before and during the explosion by a high speed 

camera with a short duration flash. The blast wave generated by the 

explosion Is a high pressure pulse of low rise time and short 

duration, which is applied to a hollow cylindrical specimen In order 

to study the response to Impact. 

The wire explosion takes place when a heavy discharge current of up 

to about 100 kA passes through a copper wire In approximately 5 ~s. 

This causes rapid vaporisation and a consequent explosion. 

In order to generate a wide range of blast wave energies a 13 ~F 

I s used at different vol tages of 20, 25, 30 kV, and 

through 22 swg or 24 swg copper wires of lengths 8 or 

capacl tor 

discharged 

13cm. 

High speed photography of the exploding wire was executed using the 

schlleren technique in conjunction with an Imacon high speed 

Image-converter camera operated at the nominal framing rate of 10 6 

fls with exposure time of 0.2 ~s. The object was illuminated using a 

50 ~s duration xenon flash. 

The 13.2 I'F capacitor was fired by triggering a 20 kV step pulse, 

Initiated by a 250 V pulse from a control unit across an asymmetric 

spark gap containing pressurised dry air. The 250 V pulse was 

delayed by 20 ~s before It reached the EHT trigger unit, while at the 

Initial time another pulse of 6 V triggered a pulse generator to fire 

the flash to let It reach a usable output before the wire explosion. 
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The camera was triggered by a 70 V pulse of short rise time from an 

opto-Isolator after a 20 ps delay by a pulse generator. The charging 

and discharging of the capacitor was operated by a pneumatic control 

system controlled by an efficient control unit. 

The review of high speed photographic techniques In Chapter 3 shows 

the electronic framing camera Is the Ideal Instrument for 

photographing the rapidly expanding blast waves generated by the 

exploding wire. The time Interval calibration of the camera 

Indicated that the true time Interval Is about 96.5% of the nominal 

time marked on the unit. 

The xenon flash unit used for the illumination was shown to have a 

charging time constant of about 25 s and duration of about 50 ps with 

the delay time depending on the triggering pulse level and the 

operating voltage. 

A vital step In this work was the synchronization measurements 

required for sett Ing the delays and the voltages of the high speed 

photography and the exploding wire systems as described In Chapter 5. 

A thick non-exploding copper wire of 6.3 mm diameter was used as a 

load In the discharge current circuit for studying the electrical 

characteristics of the exploding wire circuit. The study Indicated 

that the damping factor of the damped sine waveform of the discharge 

current was about 1.57xl0 4 s-', the current frequency Is 69 kHz, and 

the total resistance of the circuit was 12.8 mfl. The capacitor 

discharge at 20 kV gave a maximum current of about 114 kamps and the 

voltage across the wire was about 19.12 kV. The maximum dl/dt was 

8.18xl0'o amp/so 

Thin copper wires were made to 

voltage capacitor discharge. 

explode In a few microseconds by high 

The wl re explodes rapl dly when the 

discharge current passes through It. Its vaporisation causes Intense 

heating of the surrounding air, generating high velocity cylindrical 
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blast waves (up to .. Mach 15) of high energy, and short duration. 

This pulse was used for loading hollow cylindrical specimens to study 

the material's response to Impact loading. 

The blast waves wer~ observed to expand in a cylindrically symmetric 

manner with maximum Mach numbers of up to 15. The 24 and 22 swg 

copper wires of 8 and 13 cm lengths were used to give different blast 

wave velocities and energies, the energy being calculated by using 

strong shock wave theory. From the calculation of the blast wave 

energy, the efficiency of the energy transfer from the capacitor to 

the wire varied from a maximum of 64% to a minimum of about 29%. The 

24 swg copper wires gave greater blast wave energies for all lengths 

and discharge voltages. The shorter length of wire gave greater 

blast wave energy because a smaller proportion of energy Is required 

for the vaporisation. 

The exploding wire technique has been employed for studying material 

behaviour at high strain-rates. The exploding wire produces axial 

and radially symmetrical blast waves which load the Inside wall of a 

test cylinder giving a reasonable durat Ion (about 20 p.s) of plane 

strain in the middle of the cylinder. The high stress Is capable of 

causing fracture In the cylinder at high rates of loading. Studies 

have been carried out on high density polyethylene (HDPE) thin-waIled 

cylinders, the outer surface expansions, velocities, and hoop strains 

being determined up to and beyond fracture from the high speed 

photography. Velocities up to 500 m/s, and hoop strain-rates up to 

10 4 S-1 were measured with fracture engineering hoop strains of about 

380%. These fracture strains were less than the quasi-static values 

quoted by the supplier. For tube expansion the high speed 

photography was carriled out at lower framing rates of 10 5 f/s, with a 

long duration electronic flash (= 200 p.s) used for Illumination. 
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It was not possible to measure the loading preasure on the expanding 

cylinder wall because of the pressure variation with time and 

distance. To avoid this difficulty, the freely expanding thin ring 

method was used for studying stress-strain behaviour of HDPE 

material. 

The freely expanding ring technique has the advantage of enabling the 

specimen stress to be obtained directly from the high speed 

photographs of the expansion. This method Involved placing a thin 

ring on to a thick-waIled cylinder and subject Ing the cylinder 

Internally to blast wave loading from the wire explosion. 

Measurement of the deceleration of the ring from 

used to determine the stress. 

radlus/t Ime was 

Several experiments have been made to establish the dimensions of the 

rings (0.8 or 0.1 mm thick, and 13.3mm o.r) and the cylinders (8 or 

9mm thlckm, and 3.2mm I.r) required for free expansion conditions. 

The maximum true stress obtained using this method was about 38 MPa, 

which gave 34% true strain. The ring velocity reached a maximum of 

about ISO m/s within a time of 5-10 ps and decreased with a constant 

deceleration. The engineering hoop strain-rate was about 1.2x104 s-' 

at the start and eventually became zero at zero velocity, after about 

62 ps. 

The flow stress which Is given by freely expanding HDPE rings at 

Ititlal strain-rates of about 1.12xl04 s-', Is about 13% higher than 

that given by quasi-static testing at 10- 3 s-' strain-rate. 
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9.2 Recommendations for future work 

1) The present work was carried out without direct pressure 

measurements of the pre"ssure loading of the cylinders. Future work 

should Include measurement of the blast wave pressure profile on the 

Inner wal I of thick cylinders by using a piezoelectric pressure 

gauge. This could then be used In a finite element program to 

predict the stress-strain behaviour of the material In the form of a 

thick cylinder. 

2) In addition to multiple-framing high speed photography, straln

time measurement using a different optical method could be used for 

measuring the displacement of the expanding ring and the cylinder. 

This method could employ a laser beam scanning the outer surface to 

give a continuous record of the displacement. 

3) Further work Is needed on the freely expanding ring technique 

using higher voltages for the wire explosion to give even greater 

strain rates. 

4) Measurements of temperature variation through a test sample could 

be attempted by Insert Ing at least two fast response thermocouples 

Inside the cylinder wall. 

5) A variety of polymers and metals could be examined using the 

freely expanding ring method since this is one of the few techniques 

available for obtaining tensile properties of materials at very high 

strain rates. 
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