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Abstract 

This paper presents corrections for existing hydrodynamic instability based Critical Heat 

Flux (CHF) models in pool boiling by taking into account the effect of the viscosity, 

geometry and size of the liquid-vapour interface. Based on the existing literature, the Kelvin 

– Helmholtz theory, used by the most commonly adopted CHF models, can lead to 

noticeable errors when predicting the instability conditions. The errors are mainly due to the 

inaccuracy of the inviscid flow assumptions and the oversimplification of the interface 

geometry. In addition, the literature suggests the most unstable condition predicted by the 

Viscous Correction for Viscous Potential Flow (VCVPF) theory for the cylindrical interfaces 

best match the observed air column breakup conditions in water. In this paper, the most 

unstable instability conditions predicted by the VCVPF theory are used to correct the 

existing CHF models. The comparison between the existing and corrected CHF models 

suggests that the corrected models always predict a higher CHF value. In addition, the 

corrected Zuber model predicts similar CHF value to the Lienhard and Dhir model. The 

comparison with experimental data suggests that the correction to the Zuber model can 

increase its prediction accuracy in most cases, but not necessary for the Lienhard and Dhir 

model. When compared to experimental CHF data for boiling cryogens at different 

pressures, the corrected CHF models are consistently more accurate than the original CHF 

models. 
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1. Introduction 

Boiling has many important practical applications due to its effectiveness in dissipating 

excessive thermal load by taking advantages of the liquid-vapour phase change processes 

and the associated large latent heat. Among the different boiling conditions, the critical heat 

flux (CHF) point, where the heat transfer rate starts to reduce as the surface temperature 

increases, plays a crucial role in assuring the safety of the system. When the imposed heat 

flux is larger than CHF, the surface temperature rapidly increases to the so-called burnout 

temperature, which can be well above the softening point or even the melting point of the 

heating surface, causing potential system failure.  Therefore, the ability to predict the CHF 

accurately in different operation conditions is vital for many practical applications.  
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Fig. 1 The geometry of the undisturbed interface in (a) Kelvin-Helmholtz (KH) instability 

theory used in typical hydrodynamic CHF models, (b) hydrodynamic CHF models, (c) 

KH theory used on this paper to correct for the CHF models 

Many different models have been proposed to predict the CHF, as summarized and 

compared to the experimental data by many researchers, e.g. [1–3]. Their results showed 

that the most accurate models were all containing elements from the analysis of the Kelvin-

Helmholtz (KH) instability of a Planar interface between two separate Inviscid Potential 

Flows (PIPF) of infinite sizes, as in Fig. 1(a). However, the assumed liquid-vapour interface 

in most hydrodynamic CHF models was usually cylindrical and of finite size, as in Fig. 1 (b). 
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As a result, the negligence of the effects of viscosity, the inaccurate geometry, and the lack 

of size parameter in the PIPF analysis could introduce noticeable error in predicting the 

instability condition.  

The existing theoretical and experimental analyses of the KH instability for interfaces of 

different geometry and in different flow conditions [4–7] have shown noticeable differences 

in the predicted unstable conditions when taking into account the effect of viscosity and the 

interface geometry. Therefore, all the existing CHF models based on the PIPF-KH theory 

need to be corrected to capture the physics more accurately. 

In this paper, the existing PIPF-KH theory based CHF models will be reviewed first in 

Section 2.1. Then, the effect of viscosity and system geometry on the KH theory will be 

briefly reviewed in Section 2.2. In Section 3, the corrected CHF models will be presented. 

Finally, the comparison between the results of existing CHF models, the corrected models 

and the experimental data will be presented in Section 4 to show the difference. 

2. Review of the existing CHF and KH models 

2.1 Existing CHF models 

The existing models used to predict the CHF in pool boiling can be grouped into four 

different types: (i) the hydrodynamic instability models, (ii) the hydrodynamic force 

imbalance model, (iii) the macrolayer dryout models, and (iv) the Irreversible dry Hot Spots 

(IHS) models. The formulae and the assumptions related to the KH instability underlying 

these models will be reviewed here. Discussion on the other hypothesis and assumptions 

and a few other types of models which do not build on the KH instability have been 

summarized in the established literature [1–3].   

(i) The hydrodynamic instability models 
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The precursor of the hydrodynamic instability models was first introduced in 1950 by 

Kutateladze [8] through non-dimensional analysis. The link between the Kutateladze model 

and the hydrodynamic instability was then identified by Zuber [9], and his model became 

the base model in this group. Zuber postulated that the CHF occurred when the vapour flow 

velocity reached the critical value predicted by the PIPF-KH theory, and then the vapour 

columns broke up to block the effective vapour transport routes. Lienhard and Dhir [10] 

modified Zuber’s model and extended it to different configurations, such as for small 

heating surface, cylindrical and spherical heating surfaces, as reviewed by Carey [3]. In 

addition, many other empirical coefficients have been introduced by different researchers to 

correct Zuber model when using different fluids, system configurations, and surfaces with 

different wettabilities, via curve fitting to the experimental data [11][12].  

The key assumptions behind all these models related to the KH instability were: 

1. The vapour columns were assumed to be cylindrical, as in Fig. 1 (b), and distributed 

in a rectangular array predicted by the two-dimensional Rayleigh-Taylor (RT) 

instability theory. Zuber [9] used the critical wavelength ( , ) and the most 

dangerous wavelength ( , √3 , ) predicted by the RT theory as the 

separation distance to calculate the upper and lower limits of the CHF. Lienhard and 

Dhir [10] used the most dangerous wavelength. The radius of the vapour column ( ) 

in both models was assumed to be equal to one quarter of the instability wavelength. 

2. The KH unstable wavelength ( ) imposed on the columns in Zuber’s model was 

assumed to be equal to the Plateau-Rayleigh (PR) instability wavelength for circular 

jets ( , 2 ).  in the Lienhard and Dhir model was assumed to be equal to 

the most dangerous wavelength in RT instability ( , , √3 , ).  
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The critical relative velocity ( ) between the liquid phase and the vapour phase can then be 

calculated by the PIPF-KH theory: 

| |
/

  (1) 

Since ≫ , to satisfy the continuity equation, ≅ ≅
/

. The PIPF-KH 

theory is derived by assuming infinite depth in both phases, so there is no size parameter in 

Eq. (1).  

The CHF is then calculated by assuming all the heat is used to evaporate the liquid so it 

can be calculated by 

/
   (2) 

The RH instability analysis (KH instability for a horizontal surface with negligible interface 

velocity: 0) suggests: 

, 2
/
; , √3 ⋅ ,   (3) 

The arithmetic mean of the upper limit (i.e. , ) and the lower limit (i.e. , ) 

can be calculated by [9]: 

,
, , , , 0.138

/
 (4a) 

Zuber also introduced a simpler way to get the average value, which was using ,  as the 

instability wavelength but scaled down the coefficient [9]. The result is Eq. (4b) and was 

widely adopted as the Zuber model in the literature to calculate the CHF. 

, 0.131
/

  (4b) 



6 
 

Lienhard and Dhir model [10] can be written as a function of Zuber model such that: 

, 1.14 , . 

The KH instability wavelength used in both models was not from the proper KH instability 

analysis but from either the PR instability or the RT instability analysis. However, both RT 

and PR instability conditions are different from the flow conditions in boiling. The sizes of 

the vapour columns used in these two models also could not be fully justified. Despite these 

difficulties, the analytical models developed by Zuber, and Lienhard and Dhir are able to 

predict the CHF in many saturated pool boiling conditions on smooth surfaces to within 

approximately ±20% accuracy [3]. The comparison done by Fang and Dong showed that 

the most accurate models used to predict CHF conditions were those empirical correlations 

modified from the Zuber model [1]. This suggests that the existing analytical hydrodynamic 

instability models are likely to be incomplete models and should be revised to predict the 

experimental observations better. 

(ii) Hydrodynamic force imbalance model 

Kandlikar developed a model based on the hydrodynamic behaviour of a single detached 

bubble to predict the  [13]. He hypothesised that the CHF occurred when the repulsive 

force, coming from the liquid evaporation on the interface, surpassed the surface tension 

forces and the gravitational forces normal to the liquid-vapour interface. Consequentially, 

the bubble was stretched sideways to merge with the adjacent bubble to form a vapour 

blanket which covered part or the whole heating surface. Kandlikar assumed the average 

bubble size could be taken as , /2, and the correlation can be represented as in Eq. (5) 

[13]. 

, ⋅ ⋅
/
⋅ ⋅ 1

/
  (5) 
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Comparison with the experimental data [1] [13] indicated that the Kandlikar model could 

predict the  within 30% uncertainty for various fluids when the contact angle ranged 

from 0° to 90°. Although the measurement of the dynamic receding contact angle in 

practice requires some efforts, the implementation of the model after knowing the dynamic 

contact angle is straightforward. Therefore, this model can be used to provide the baseline 

predictions for a wide range of fluids and operation conditions. However, there is no 

justification of why the average bubble diameter is half the critical RT instability wavelength. 

(iii) Macrolayer dryout models 

The macrolayer dryout model was initially proposed by Haramura and Katto [14]. This 

group of models assumed that large bubbles were hovering above a macrolayer which 

consists of numerous small vapour jets dispersed inside the thin liquid film.  The 

evaporation of the liquid film in this layer fed the vapour to the large bubbles above them. 

The model assumed that CHF occurred when this macrolayer was evaporated completely 

before the bubble grew large enough to escape from the surface. Therefore, the  can 

be calculated as the total amount of heat required to evaporate all the liquid films inside the 

macrolayer. 

This group of models assumed: 

1. The macrolayer layer thickness ( ) must be proportional to the KH instability 

wavelength ( ). The original model assumed /4.  

2. The intervals between bubbles were the most dangerous wavelength ( , ) 

predicted by the RT instability.  

The  can then be calculated as [14]: 

, , ⋅

/ /
1 /

/ /
/

/

  (6) 
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The Haramura and Katto model was in good agreement with Zuber’s model when /

0.584 / .  [14]. The Haramura and Katto model has been revised by many researchers 

based on the different hovering period and macrolayer thickness models to fit the 

experimental data better, as detailed in ref. [1].  

(iv) Irreversible dry Hot Spots (IHS) models 

The hydrodynamic instability based IHS model was newly introduced by Zhao and Williams 

based on some of the latest experimental observation of the critical heat flux conditions [2]. 

This model was based on the experimental observations that CHF occurred when there 

were IHS which were triggered by consistent instability-induced bubble ‘necking’ and 

separation processes [15–17]. These IHS grew with time due to the significantly increased 

surface temperature nearby and eventually permanently covered a large part of the surface 

to trigger the CHF. The model assumed that the bubble ‘necking’ process was triggered by 

the KH instability. Assuming the sensible heat was negligible, the base equation of the 

model can be represented by: 

,

,
∈ 1, 3/2 , , 	    (7) 

1 corresponds to the critical velocity predicted by the PIPF-KH theory, and 3/2 

corresponds to the most unstable velocity predicted by the PIPF-KH theory (i.e. where the 

interface perturbation grows at the maximum rate). Comparison to the experimental 

visualization data reported in literature suggested  was close to 1.1, which was 

approximately the mean value of the upper and lower limit [2]. 

The height of the ‘necking’ position  was taken as the KH instability wavelength since 

only the perturbation with dominant wavelength equals to  would most likely cause the 

break up at this position.  
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When the heater size is larger than the most dangerous wavelength predicted by the RT 

instability (i.e. ,  in Eq. (3)), the bubble base area will be ultimately limited by the RT 

instability so  	 ⋅ , /4. When the heater size is smaller than , , the actual 

heater area is used.  

The value of ,  were based on the analysis of a simplified bubble nucleation and 

merging process, as illustrated in Fig. 2. 

t = 0: The Large Coalesced Bubble (LCB) 
starts to depart from the surface

t = τw:  New Nuclei Bubble (NB) 
starts to grow

Sre

RNBRneck

o
O’

Bubbles at t = 0 Bubbles at t = τw

RLCB‐Base

RLCB

t = τw+τg :  NB starts to merge 
with LCB

Bubbles at t = τw+τg

hneck

 

Fig. 2 Cross-sectional view of the threshold condition for the bubble merging (spatial and 

temporal averaged behaviour) [2] 

The bubble necking occurs when the vapour flow velocity in the neck position and the  

satisfy the KH instability criteria at , i.e. when the bubbles start to merge so that 

more vapour is fed to the neck position. Therefore, the height and the radius of the neck 

can be calculated by Eq. (8): 

⋅ 1 cos ; 

  ,    (8) 

 is calculated by the existing bubble growth models which all share the same form of the 

formula, as follows: 

⋅ ; ⋅ ; 		
⋅ , ⋅

⋅
; Δ   (9) 
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As reviewed by Zhao and Williams [2],  was reported to be equal to 0.5 in most models 

and experiments. The bubble growth coefficient  was found between 1.4 and 1.7 for the 

horizontal surface at atmospheric pressure. The fitting of the IHS to the experimental data 

reported by Bailey et al. [18] suggested a simple linear correlation between  and pressure 

(in unit of bar): 

1.21 ⋅ 0.19;  (10) 

The excess surface temperature was calculated based on the established nucleation boiling 

correlation, such as the one suggested by Rohsenow [19], i.e. Eq. (11).  

Δ ⋅ ⋅
.

⋅
⋅ ⋅

,
  (11) 

Since Δ  is proportional to /  so it will not be sensitive to the small change of ′′. The 

coefficients  and 	depend on the combination of fluids and surface and has been well 

documented in the literature , e.g. [3]. 

 was calculated by considering the force balance on the Large Coalesced Bubble 

(LCB) between the inertial force due to bubble growth and buoyancy. Based on the 

experimental observation that the maximum LCB size was close to the critical wavelength 

in RT instability (i.e. , ) at different pressure [20], the formula for  was derived as 

[2]: 

, ⋅
.

;
, / / ⋅

⋅
;  (12) 

Based on the experimental observation that the superheated layer thickness in saturated 

water pool boiling conditions was consistent to be ~ 1 mm [21]. The Nuclei Bubble (NB) is 

assumed to start to grow in the position where the microlayer underneath the LCB is 1 mm.  

The characteristic waiting time for bubble nucleation ( ) can be calculated based on the 

bubble inception condition described by Davis and Anderson [22], and its formula has been 
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derived by Zhao and Williams [2]. In saturated boiling condition, Zhao and Williams showed 

that ≪  so can be ignored. 

Equation (7) – (12) can then be solved simultaneously by applying the bubble merging 

condition observed by Chu et al. [17]:   , where  is the distance 

between the nucleation sites and the bubble base. There are multiple solutions to this 

equation sets since the heat flux larger than CHF can still satisfy the criteria described by 

Eq. (7). Therefore, the CHF condition is corresponding to the solution with the lowest heat 

flux value. 

The IHS model couples the observed bubbling process with the KH instability and takes into 

account the effect of wettability and the heater size. Although the IHS model was based on 

the simplified bubble nucleation and merging process and several established semi-

empirical correlations, it has been shown to be able to trace the effect of heater size and 

geometry (i.e. horizontal flat surface and horizontal cylinders), the surface wettability (both 

hydrophobic and hydrophilic surface), and the pressure much better than all the other 

existing CHF models [2]. In addition, the predicted detailed bubble grow and merge process 

were found in good agreement with the experimental results reported in the literature [2]. 

In summary, all these four different types of CHF models are based on the critical condition 

predicted by the PIPF-KH theory (i.e. the condition where the interface perturbation will start 

to grow with time). Theoretical analysis and experimental observations showed that the 

PIPF-KH theory could lead to large errors in predicting the actual instability conditions [7]. 

2.2 KH instability theories 

The KH instability occurs when two fluids separated by a well-defined interface flow at 

different velocities. The simplest form of the KH instability is based on a planar interface 

between two inviscid fluids with infinite depth, i.e. the PIPF-KH theory. The critical condition 

when any perturbation of the interface starts to grow with time can be predicted by the 
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PIPF-KH theory as in Eq. (1). The most unstable condition occurs when the perturbation of 

a known wavelength grows at the highest rate. It has been shown by Zhao and Williams 

that 3/2 ⋅  [2]. 

However, in practical boiling systems, the liquid-vapour interface is closer to a cylindrical 

shape, as in Fig. 1 (b), and both the vapour columns and the space between vapour 

columns are of limited sizes. In addition, although the vapour phase has a very small 

viscosity, the liquid phase can have high enough viscosity to affect the instability. The 

assumptions and formulations of three different KH theories which applied to the cylindrical 

interface will be briefly reviewed in this session. A detailed review of the assumptions and 

formulations on different types of KH theories can be found elsewhere [7,23]. 

The corrections for the finite size has been tackled by Lee [24]. The formulation of a 

cylindrical vapour column with finite size and with negligible interfacial heat and mass 

transfer, as in Fig. 1(c), has been given by Zhao and Bhabra [7] and is named Inviscid 

Potential Flow (IPF) KH theory on this paper. The perturbation growth rate ( ) 

can be calculated using the following equation: 

0 (13) 

; 2 ;  

1 ;  

; ; ;  

The critical condition can then be found when 0: 

1 ⋅   (14) 
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The most unstable condition (i.e. ) can be found by finding the maximum value of  

using Eq. (13) when different values of perturbation wavenumber ( ) are used. Equation 

(13) is too difficult to solve analytically to get the explicit solutions so it will be calculated 

numerically.  

The correction for the effect of viscosity was first carried out by Funada and Joseph [25] 

through the approach they called Viscous Potential Flow (VPF) analysis. Their analysis 

takes into account the normal component of the viscous stress without violating the 

assumption of the irrotational flow. This approach has been taken by Awasthi and Agrawal 

[26] to analyse the cylindrical liquid-vapour interface in flow conditions around a solid 

cylindrical fuel rod. The formulation they derived has been modified based on the difference 

in boundary conditions by Zhao and Bhabra [7] for the vapour column illustrated in Fig. 1 

(c), i.e. 

0 (15) 

; 2 ;  

2 ; 1 ;  

2 ;  

1 ; 1   

The critical condition in the VPF-KH theory can be calculated by using the expression: 

 
/ ⋅

  (16) 

The most unstable condition (i.e. ) can again be obtained by solving Eq. (15) 

numerically. 
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Further correction for the tangential shear viscous stress has been done by Joseph and 

Wang [5] through a new approach named Viscous Correction of the Viscous Potential Flow 

analysis (VCVPF). They introduce a viscous pressure term to resolve the discrepancy 

between the zero-shear-stress boundary condition at a free surface and the non-zero 

irrotational shear stress. The comparison carried out by Wang et al. has shown that the 

VCVPF are in remarkably good agreement with the exact full viscous flow solution [27]. 

This approach has been taken by Awasthi et al. [23] to analyse the flows around a solid 

cylindrical fuel rod, and their formulation was modified by Zhao and Bhabra [7] for the 

cylindrical vapour column.  

0 (17) 

; 2 ;  

2 ; 1 ;  

2 ; ;  

The critical condition in the VPF-KH theory can be calculated by: 

 
/ ⋅

  (18) 

In a similar manner to the VPF analysis,  can be calculated by solving Eq. (17) 

numerically. 

The comparison of the KH theories developed using the PIPF, IPF, VPF and VCVPF by 

Zhao and Bhabra [7] showed that the PIPF always overestimated the required relative 

velocity for the critical instability condition, especially when the instability wavelength was 

big. They also found that the PIPF theory could predict the most unstable condition 

accurately when the vapour column had radius >10 mm, and when the water chamber had 

radius >15 mm. In addition, their analysis showed the symmetry of the perturbation had a 
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negligible effect on the most unstable condition. Furthermore, they compared the theoretical 

predictions with the experimental data collected from a gas blowing rig and found that most 

of the gas columns broke up at the most unstable condition predicted by the VCVPF-KH 

theory. Considering the perturbation in the critical condition neither grows or attenuates 

while it grows at the highest rate in the most unstable condition, it is understandable that 

the most unstable condition is much more closed to the actual break up condition. 

Therefore, instead of using the critical condition predicted by the PIPF-KH theory as in 

existing CHF models, the most unstable condition predicted by the VCVPF-KH theory will 

be implemented to correct for the CHF prediction. 

3. Corrected CHF models based on VCVPF-KH theory 

All different hydrodynamic CHF models, including the Zuber model, and Lienhard and Dhir 

mode are based on the Eq. (2). Without changing the assumptions on the vapour column 

sizes and distributions, the model is revised by modifying the relative velocity terms. The 

corrected Zuber’s model can be written as: 

, , ⋅ 	when	 ⋅ , 	 (19) 

The corrected Lienhard and Dhir model is: 

, , ⋅ 	when	 ,  (20) 

As reviewed in session 2, the Haramura and Katto macrolayer dryout model, although built 

upon a different physical process, can be calculated by the same equation as the Zuber 

model due to the specific assumption of area ratio, so it will be represented by the corrected 

Zuber model in Eq. (19). The Kandlikar hydrodynamic forces imbalance model does not rely 

on the KH instability to calculate the CHF, so it remains unchanged. 

The IHS is based on the Eq. (7), which can then be corrected as: 
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, , ⋅ 	 	when	  (21) 

The corrected CHF value can be calculated by solving Eq. (21) together with Eq. (8) – (12) and Eq. 

(15) simultaneously.  

4. Results and discussions 

In this session, the comparison of the instability conditions predicted by different theories 

will be presented first. Then, the calculated CHF values from the existing models and the 

corrected models will be compared to the experimental data collected from different pool 

boiling conditions. The experimental data source and the related system configurations and 

conditions are summarized in Table 1.  

Table 1. Summary of the experimental data source and related system conditions 

Author  Surface/fluids  Pressure (bar)  Chamber size   (cm  

Bailey et al. [18]  Nickel coated 
copper / water, 
methanol 

Water: 0.2 ‐ 3 
Methanol: 0.2 ‐ 5 

N/A, diagram 
shows >> the heating 
surface 

1 x 1 

Lienhard et al. 
[28] 

Copper/Methanol 
Copper/Distilled 
water 

Methanol: 0.446 ‐ 
0.981 
Water: 0.145 ‐ 
0.427 

Disc heater: 6.35 cm 
in radius 
Square heater: 2.16 ‐ 
0.89 cm in width 

6.35 in radius; 
Square: 2.16, 
1.84, 1.52, 
1.21, 0.89 

Bewilogua et al. 
[29] 

Copper/He, H2, N2  0.03 < p/pc < 0.9   N/A, diagram 
shows >> the heating 
surface 

N2: 2.9  
H2 & He: 4.9 

 
4.1 Comparison of the instability conditions predicted by different KH models 

The comparison of the instability conditions for the interface between the saturated liquid 

water and water vapour at 1 bar pressure predicted by different KH models is shown in Fig. 

3. It can be clearly seen from Fig. 3 that the PIPF theory overestimates the required relative 

velocity at the critical condition but can predict the required relative velocity at the most 

unstable condition accurately when the instability wavelength is less than 15 mm. It also 

shows the viscosity contributes to stabilize the interface by reducing the instability growth 

rate. These results indicate that, when compared to the existing CHF models which based 
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on the PIPF critical condition (i.e. Eq.(2)), the viscosity and size-corrected CHF models 

based on the critical instability condition will predict a lower CHF value since the CHF value 

is proportional to the velocity, while the corrected CHF based on the most unstable 

condition will predict a higher CHF value. 

 

Fig. 3 The required relative velocity and instability growth rate at the critical condition and 
the most unstable condition for saturated water vapour column. , /4, 

, /2 at 1 bar system pressure, 0 (axisymmetric perturbation).  

4.2 Effect of heater size on the CHF  

The effect of the heater size on CHF has been experimentally investigated by Lienhard et 

al. [28], and they also suggested corrections for the original Lienhard and Dhir model by 

using the actual heater area, as in Eq. (22).  The corrections applied to the Lienhard and 

Dhir model can also be applied to correct the Eq. (22). 

,

,
1.14 ⋅ , 	when	

,
√2   (22a) 

,

,
1.14 ⋅ , ⋅ ,

,
	when	

,
√2	and	 ,    (22b) 

Zhao and Williams have compared the results predicted by Eq. (22) with other existing CHF 

models [2]. A similar comparison together with the corrected CHF models and the 

experimental data is shown in Fig. 4. It shows that the corrected CHF models always 

predict a higher CHF because the required vapour velocity at the most unstable condition 
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predicted by the VCVPF-KH theory is higher than the velocity at the critical condition 

predicted by the PIPF-KH theory. In addition, it shows that Eq. (22) overestimates the CHF 

significantly when the heater is small. The corrected IHS model can predict the effect of 

heater size most accurately (~ 10% error on average), which is marginally better than the 

original IHS model.  

 

Fig. 4 The effect of heater size on the critical heat flux when boiling methanol at 1 bar 
pressure. , 17.4	mm. The error bars represent ±10% error, percentage values 
on the legends are the average errors in predictions, and legends with “-DV” are 
corrected CHF models 

4.3 The effect of system pressure on CHF 

The effect of system pressure on CHF when boiling different fluids has been investigated 

experimentally by many researchers. In this session, all the contact angle values are taken 

from the literature documenting the original CHF models. The justification of the contact 

angle values can be found from the original literature. 

Figure 5 shows  the CHF results measured by Bailey et al. [18] and Lienhard et al. [28] 

when boiling water on the horizontal surface. It shows that the corrected IHS model with 35° 

contact angle, the corrected Zuber model and the original Lienhard and Dhir model fit the 

data collected by Bailey et al. best (< 5% error on average). The Kandlikar model with 85° 

contact angle fits the data collected by Lienhard et al. best. The contact angle was not 
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reported by the authors. Based on the work done by Horsthemke and Schrijder [30], the 

contact angle between water and freshly cleaned copper and nickel surface was less than 

20° and the contact angle gradually increased to 40° after 4.5 hours exposure to oil-

saturated air due to surface contamination, which was much smaller than the value used by 

the best fit Kandlikar model. The original IHS model incorporates a linear empirical 

correlation (i.e. Eq. 10) between the bubble growth rates and pressures based on the 

experimental data shown in the top plot in Fig. 5, so the good fit is no surprise.  

 

Fig. 5 The effect of pressure on the critical heat flux when boiling water. Percentage values 
on the legends are the average errors in predictions, and legends with “-DV” are 
corrected CHF models 

Figure 5 also shows that the corrected Zuber model, and the original Lienhard and Dhir 

model fit reasonably well with the data reported by Bailey et al. but they overestimate the 

data reported by Lienhard et al. significantly. The model developed by Lienhard et al. to 

correct for the effect of heater size (i.e. Eq. (22)) also predicts a much higher CHF value 

compared to the experimental data. 
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Figure 6 shows the CHF results measured by Bailey et al. [18] and Lienhard et al. [28] 

when boiling methanol on a horizontal surface. It shows that all the model except for the 

original Zuber and IHS model can fit most of the experimental data reported by Bailey et al. 

within ±10% error. The best fitting data is the Kandlikar model and the revised Lienhard and 

Dhir model. When fitting the data reported by Lienhard et al., all the model except for the 

corrected Zuber, the original and revised Lienhard and Dhir model result in less than 10% 

error on average. The best model is the original Zuber’s model. 

 
Fig. 6 The effect of pressure on the critical heat flux when boiling methanol. Error bars 

represent ±10% difference. Percentage values on the legends are the average errors 
in predictions, and legends with “-DV” are corrected CHF models 

The CHF when boiling different types of cryogens has been experimentally investigated by 

Bewilogua et al. [29]. Comparison between their results of boiling helium and the CHF 

predicted by the CHF models is shown in Fig. 7.  When using the IHS model, because there 

is no information about the  found in existing literature, it is calculated by fitting the 

corrected IHS model to the data at 1 bar and assuming 5° contact angle. This extreme 

small contact angle also leads a very thick superheated microlayer where the nucleation 

can take place. Throughout the calculation, the superheated microlayer where the 
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nucleation takes place is assumed to be 10 . Figure 7 shows that although all the 

models can predict the shape of the CHF – Pressure curve well, the IHS model is the only 

model to be able to predict the CHF of boiling helium close to 95% accuracy on average. 

The second closest model is Kandlikar model with 0° contact angle and the average 

discrepancy between the predicted CHF and the measured one is 13% difference. The 

authors did not provide any contact angle information. The literature survey by Bald [31] 

concluded that the contact angle between the typical cryogens (e.g. liquid hydrogen, liquid 

nitrogen and liquid helium) and metal surface would be very small (< 10°) due to the much 

larger surface energy of the metal compared to that of cryogens. The corrections made to 

the Zuber model and Lienhard and Dhir model help to reduce the discrepancy between the 

predicted CHF and the measured ones. However, it is difficult to make a judgement on 

whether the corrected IHS model is more accurate than the original one because a smaller 

 value can be used to increase the CHF predicted by the original IHS model.  

 

Fig. 7 The effect of pressure on the critical heat flux when boiling helium. Error bars 
represent ±5% difference. Percentage values on the legends are the average errors 
in predictions, and legends with “-DV” are corrected CHF models 

The predicted and measured CHF value when boiling hydrogen is shown in Fig. 8. It shows 
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Dhir model and the Zuber model can predict CHF more accurately. The CHF predicted by 

the corrected Lienhard and Dhir model is ~ 15% error on average. 

 

Fig. 8 The effect of pressure on the critical heat flux when boiling hydrogen. Error bars 
represent ±10% difference. Percentage values on the legends are the average errors 
in predictions, and legends with “-DV” are corrected CHF models 

 

Fig. 9 The effect of pressure on the critical heat flux when boiling nitrogen. Error bars 
represent ±5% difference. Percentage values on the legends are the average errors 
in predictions, and legends with “-DV” are corrected CHF models 

The predicted and measured CHF value when boiling nitrogen is shown in Fig. 9. It shows 

that all models except for the original Zuber model can predict the CHF within ±10% error 

on average. 
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In summary, the corrections made to the Zuber model, the Lienhard and Dhir model help to 

reduce their errors in predicting the CHF condition when boiling different types of cryogens. 

All the models can well predict the shape of the CHF – pressure curve. The existence of a 

maximum value of CHF is likely due to the competing effect of significantly reduced surface 

tension and the increased vapour density when the pressure increased. The reduced 

surface tension results in the less stable interface, so the required vapour velocity to induce 

the hydrodynamic instability is reduced. Meanwhile, the increased vapour density requires 

more mass of liquid to evaporate so a larger amount of heat will need to be absorbed. 

5. Conclusion  

Many of the most widely adopted CHF models are based on the hydrodynamic instability of 

the liquid-vapour interface, i.e. the Kelvin – Helmholtz (KH) instability. The KH theory used 

in these models are based on the analysis of the critical instability condition of a planar 

interface between two inviscid flow with infinite depths. However, in most boiling conditions, 

the interface of a vapour column is closer to a cylindrical surface, and the liquid phase 

always has noticeable viscosity. In addition, the literature suggested the vapour column 

mostly broke up in the most unstable condition instead of the critical instability condition. 

Therefore, to better match the actual physical process, the unstable condition predicted by 

the VCVPF theory has been applied to correct the existing CHF models. The comparison 

between the CHF conditions predicted by the existing models, the corrected models and 

the experimental data indicates the following significant findings: 

1. The correction based on the unstable condition predicted by the VCVPF theory 

results in a higher CHF value in all cases. In addition, the corrected Zuber model 

predicts similar CHF value to the Lienhard and Dhir model. 



24 
 

2. The corrected IHS model can predict the effect of heater size on CHF marginally 

better than the original IHS model. These two models are much more accurate than 

all the other models, including the model developed by Lienhard et al. [28] which 

tends to overestimate the CHF values for a small heater.  

3. The corrected Zuber model, the original Lienhard and Dhir model, together with the 

original and revised IHS models, can predict the effect of system pressure on water 

and methanol boiling CHF conditions within ±10% error when compared to the CHF 

measured by Bailey et al. [18]. However, they can lead to larger errors when 

compared to the water boiling CHF value reported by Lienhard et al. The Kandlikar 

model can well predict the CHF values on different pressure by choosing different 

values of contact angle. However, some of the contact angles, which lead to the best 

match, are much higher than the typical contact angle reported in the literature.  

4. The corrections made to the Zuber model and the Lienhard and Dhir model 

consistently help to reduce the discrepancy between the predicted CHF and 

measured CHF when boiling different type of cryogens (e.g. liquid helium, liquid 

nitrogen and liquid hydrogen) across a wide pressure range.  The IHS and the 

revised IHS models are the only models to be able to predict the CHF when boiling 

helium within ±5% error. The choice of the  value and the correlation to predict the 

surface temperature needs further verification. The Kandlikar model can predict the 

CHF when boiling nitrogen and hydrogen with 10% on average. However, the 

contact angle leads to the best fit of nitrogen CHF-pressure curve in Kandlikar model 

is higher than the typical contact angle reported in the literature. 

Nomenclature 

 = area 

 = constant 
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 = bubble growth constant 

 = heat capacity 

 = gravitational acceleration 

 = height 

 = enthalpy of evaporation 

 = the modified Bessel function of the first kind 

 = the 1st order derivative of the modified Bessel function of the first kind 

	 = Jakob number 

  = instability wavenumber (=2 / ) 

 = the modified Bessel function of the second kind 

 = the 1st order derivative of the modified Bessel function of the second kind 

	  = symmetry index (0 is for axisymmetric perturbation) 

 = pressure 

 = Prandtl number 

′′ = heat flux 

 = radius 

 = distance 

 = time 

 = temperature 

Δ  = excess temperature 

 = uniform velocity 

 = velocity 

 = perturbation growth rate 

Greek 

 = heat and mass transfer coefficient in KH theory 

 with subscript 	or  = thermal diffusivity 

 = contact angle 

 = bubble growth coefficient 

 = macrolayer thickness 

 = instability wavelength 
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 = dynamic viscosity 

 = density 

 = surface tension 

 = characteristic time 

 = surface inclination angle (0 for horizontal surface) 

Subscripts 

 = critical instability condition 

 = critical heat flux condition 

 = most unstable condition 

 = bubble grow 

 = Haramura and Katto model 

 = irreversible hot spot model 

	 = Inviscid potential flow analysis 

 = Kandlikar model 

 = Kelvin-Helmholtz instability 

 = liquid phase 

 = length 

 = large Coalescence bubble 

 = Lienhard and Dhir model 

 = Corrected Lienhard and Dhir model 

 = neck position in the merged bubble 

 = nuclei bubble  

 = receding 

 = Rayleigh-Taylor instability 

 = planar inviscid potential flow analysis 

 = surface 

 = saturation condition 

 = vapour phase 

 = Viscous correction for the viscous potential flow analysis 

	 = Viscous potential flow analysis 
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 = wait for bubble nucleation 

 = Zuber model 

 = corrected Zuber model 
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