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SUMMARY

Reduction of aircraft loads, arising as a result of manoeuvre commands or atmospheric
turbulence, by means of active control is an important problem in flight control. A variety of
methods of designing appropriate control systems to achieve such reduction are available, but not
every method is effective. A feature of this research work is the use of an eigenvalue/eigenvector
assignment method using full state variable feedback, to design aircraft load alleviation control

systems.

It is known that an eigenvalue associated with a mode determines the overall speed of the
response, its corresponding eigenvector distributes the mode in the response. The inadequacies
of a eigenvalue assignment method using the generalised control canonical form and of the linear
quadratic design method, to achieve the desired eigenvectors was demonstrated by considering
the performance of lateral feedback controllers designed using these methods, for the model of
L-1011 Tristar aircraft. For the same aircraft model it was demonstrated that the specified
eigenvalues and eigenvectors could be achieved through eigenvalue/eigenvector assignment

method.

The effectiveness of the technique of an eigenvalue/eigenvector assignment, for load alleviation
control in manoeuvres and in atmospheric turbulence, was demonstrated using a mathematical
model of a large flexible transport aircraft, the C-5A Galaxy. The model description included the
rigid body dynamics, the first six flexural modes, unstcadj aerodynamic effects, and the
dynamics of the actuators. Atmospheric turbulence was simulated by passing white noise
through a Dryden filter, Assessment of the reduction achieved was based on the steady-state
and the root mean square (RMS) values of the bending moments and torsional moments at five
specific wing stations. These moments were represented by output equations, related to the state

equation used to represent the C-5A.
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Finally, the robust nature of the proposed feedback laws was demonstrated by considering
reduced order feedback laws derived from the reduced order models. It was shown that if at least
Law Gamma is available for feedback then manoeuvre load control and gust load alleviation
would be possible. It was shown that if some state variables of the aircraft are unavailable for
measurement then a full order observer could be designed by using the eigenpair assignment
method. Full order observers were used to reconstruct the complete state vector from available
measurements. The effect of observer dynamics on the observed states and hence on load
alleviation was demonstrated by considering three separate observers. It was also shown that the
error between the actual states and the estimated states converged to zero more rapidly as the
dynamics of the observer are made fast. The estimated full state variable feedback control system
was synthesised digitally by using the simulation language ACSL. The effect of differeﬁt
sampling frequencies on the dynamics of the observer and hence on load alleviation was also

demonstrated.
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1.1 Introduction

When an aircraft is in flight, it experiences accelerations at various body stations as a result of,
(1) control surface deflections
(ii) variations in engine Thrust

(iii) encountering atmospheric turbulence.

The accelerations thus developit‘xganslate directly as the loads on the aircraft structure. In the
prediction of design loads on an airplane structure in an accelerated flight condition, it is usually
assumed that the airplane is perfectly rigid. Structural components designed by loads computed
on this basis may fail due to dynamic overstress. External loads that are applied not only cause
translation and rotation of the aircraft as a whole, but tend to excite the natural modes of vibration
of the structure. The additional inertial forces associated with these vibrations produce the
dynamic overstress. Dynamic stresses are usually manifested in the form of increased bending

and torsional stresses in the structural components of the wing and fuselags.

Dﬁﬁng flight, dcﬂ-ections of the structure tend to distribute the aerodynamic loads and may cause
their distribution to be significantly different from that computed on the basis of rigidizy . The
altered load distribution may cause degradation of the performance and handling qualities.
Structural flexibility may not be objectionable; aeroelastic phenomena arise when structural
deformations inducé other aerodynamic forces. The elastic and aerodynamic interaction may
become smaller as equilibrium is attained or diverge resulting in destruction of structural
components. The aerodynamic and elastic interactions and théir influence on modern airplane

design are fully discussed by Bisplinghoff et al [1955].

Modem aircraft are designed to attain maximum aerodynamic efficiency with minimal structural
weight. A primary result of search for higher performance is that, with greatly altered geometry
of recently designed aircraft, a new class of flight control problems has emerged and has required

methods of solution substantially different from those employed to solve conventional problems



of flight control.! The need to minimise the loads on the aircraft, either overall, or at specific
locations, the suppression of flutter §, or the minimisation of the effects upon the motion of

aircraft when it encounters atmospheric turbulence are all members of this new class of problems.

To solve these problems of flight control and to enhance the performance of the aircraft, it is now
considered more effective to use active control technology (ACT) rather than to employ hardware

modifications. ACT encompasses six major control functions, namely

(1) Relaxed Static Stability (RSS)
(i) Manoeuvre Load Control - (MLO)
(ii) Fatigue Reduction (FR)
(iv) Ride Control (RC)
) Flutter Mode Control (FMC)
(vi) Gust Load Alleviation (GLA)

The two control functions of interest in this research study were MLC and GLA. The purpose of
MLC is to redistribute the lift on the wing during manoeuvring flight. By deflecting control
surfaces symmetrically (such as flaps and ailerons) on the wing, it is possible to reduce
in(;rcmcntal strt:ssés through the shift inboard of the centre of lift of the wing. Thus enabling a
reduction of the wing root bending moment. MLC is referred to in some publications as active
lift distribution control system (ALDCS), Stone et al[1972]. GLA techniques are concerned with
reducing the peak loads and the number of cycles on the airframe when encountering turbulence.
It involves controlling ( reducing) the contributions of the rigid-body dynamics and/or of the

structural deformations to the aircrafts motion.

1 Conventional methods of synthesising flight control systems include Root-Locus and frequency response

methods which have been used essentially for single input single output (SISO) systems.

§ An aeroelastic phenomenon.



The amplitudes of the response caused by the structural flexibility can be reduced if,

(i) the amount of energy transferred from the gust input to the structural modes is

reduced.

(i) any energy absorbed by the structural modes is dissipated rapidly.
Both methods should be employed simultaneously because the only method of reducing the
energy transfer is to apply a countering force from another source, say, the deflection of a control
surface. Such a method requires an accurate knowledge of the stability derivatives which govern
the equations of motion of the aircraft. Since these derivatives can change their values
extensively and quickly due to variations in the mass of the vehicle, in the dynamic pressure and
in the nature of atmospheric turbulence, the dynamics of the aircraft are known too imperfectly to
admit perfect cancellation of the forces. Once the energy has been absorbed by the structural
modes, the dissipation can be controlled effectively by augmenting their damping. Other control

functions of ACT are discussed by Holloway [1973].

Aircraft having flexibility can develop both large amplitude motion and accelerations due to
structural modes over and above that due to the rigid-body modes. These accelerations as
pr;:viously stated may arise due to turbulence or due to manoeuvres. In any event, the magnitude
of disturbances can seriously affect the aircrafts structural life, crew fatigue (due to increased
work load), and passenger comfort and safety of a transport aircraft. Furthermore repeated high
levels of stress and high peak loads influence the structure from both the ultimate strength and
fatigue standpoints, Newberry [1969). These facts, along with the increasing capabilities of
ACT in accomplishing the control of rigid-body and structural dynamics to alleviate these areas of
concern, was dominant motivation for initiating the Load Alleviation and Mode Stabilisation
(LAMS) program. The work on LAMS was conducted on the Boeing B-52 aircraft to
demonstrate the capabilities of an advanced flight control system to alleviate gust loads and to
control the structural modes using aerodynamic control surfaces as force producers, Burris &

Bender [1969].



Applications of ACT to achieve MLC, RC, and GLA are numerous. For example Erkelens &
Schuring [1975] proposed a ride control system fro the Fokker F-27 aircraft. Reductions in the
vertical accelerations arising due to atmospheric turbulence, of up to 50% were obtained by the
use of fast moving flaps, commanded by a vertical acceleration sensor. Other benefits of ACT
have been realised on a derivative of the 1.-1011 Tristar {L.-1011-3 (ACS)} by design of a control
system which offers improved fuel efficiency. An increase in the wing span of nine feet is
responsible for the improved fuel efficiency. In order to minimise the impact of increased wing
span on the structural loads and structural weight, an Active Control System (ACS) has been
developed concurrently with the increased wing span. The ACS provides MLC and GLA

through symmetric deflection of ailerons, commanded by acceleration sensors, Gould [1985].

The C-5A is the largest transport aircraft manufactured by Lockheed Corporaﬁon, of America. It
first entered service with the United States Air Force in September 1969. Just before delivery
there was a technical setback when in July 1969 a wing test specimen failed structurally, at 1.25
times the design load limit. This load figure was significantly below the strength required for
demonstration of aircraft's planned structural life. A modification programme to introduce
reinforcement at eleven points in the wing was undertaken resulting in a reduction of the payload
carrying capacity by 7.5% , (Air Intcmatio;lal [1984]). Even after these modifications, there
remained a problem in the wing durability that threatened reduce the operational life to less than
7500 hours rather than the intended 30,000 hours. Since sixty sets of wings had already beeﬁ
produced, attention was given urgently to achieving alleviation of wing loads by the means of

ACT.

Conventional methods of designing feedback control systems, such as the use of Root-Locus,
frequency response etc, are ineffective for the structural load alleviation problcm being
considered, since conventional methods are essentially for single input single output (SISO)
systems. It is known (to be shown later) from system dynamics that such alleviation can be
obtained by simultaneous use of additional control inputs. Thus modern control methods, which

explicitly take into account the multivariable nature of the load alleviation problem, have to be



used.

1.2 Review of Feedback Methods

The equations of motions governing a dynamical system can be represented by a state equation

viz:

x=Ax+Bu, 1.1
Y=Cx, 1.2

where x is the state vector € R u is the control vector € R™, y is the output vector € RP

(where p<n), A is the coefficient matrix of order [ n * n], B is the control driving matrix of
order [n * m], C is the output matrix of order [p *n]. The purpose of multivariable control is to
alter the system dynamics when the loop is closed. The closure of the loop is accomplished by a

feedback law of the type,

=K x , ' L3

where K is a feedback matrix of order [m * n]. Such a method of feedback control is termed state

variable feedback. After the introduction of feedback, equation 1.1 clearly assumes the form,
X =(A+BK)x . 1.4

The roots of the characteristic equation, det{s I - (A+BK)}=0, are termed the poles (or the
eigenvalues) of the closed-loop system and are associated with the dynamical modes of the
cIosed-loop'system. The mechanism of obtaining a control law which results in the closed-loop

system having the desired eigenvalues is termed Eigenvalue Assignment.



Wonham [1967] showed that the poles of a closed-loop system may be placed arbitrarily using
state variable feedback if and only if the system is controllable (N.B. If rank(A,B)=n then the
system is said to be fully controllable). Similar results were presented by Simon & Mitter [1968]
and Porter & Carter [1968]. Often, all of the state variables of the system are not available for
measurement instead only the output vector is available for feedback. Brasch & Pearson [1970]
presented a method of arbitrarily assigning 'p' poles of the closed-loop system by using output
feedback (u = K y), assuming that matrix C is of full rank. The approach used by Brasch &
Pearson was not to estimate inaccessible states [ N.B. The work of Luenberger [1966] involved
design of observers in which the inaccessible states were estimated] and then use these estimates
to control , but rather to simply control an unaugmented system using available measurements.
Independent, but similar results were presented by Davison [1970]. Since 1970 there have been
numerous publications on the subject of eigenvalue assignment, and the methods have been.

applied to various problems of flight control.

It is known that a free response of a dynamical system is given by a linear combination of the
mbdes of the system, where the mode shapes are determined by the eigenvectors and the
time-domain characteristics by the corresponding eigenvalues, Porter & Crossley [1975]. A
feedback method which assigns not only the prescribed closed-loop eigenvalues but also the
corresponding eigenvectors will obviously be better than the pure eigenvalue assignment. Moore
[1976], identified the freedom offered by state variable feedback beyond specification of
closed-loop eigenvalues in the case where the closed-loop eigenvalues are distinct. Moore's
results included a method of computing the feedback matrix which yields the prescribed
eigenvalues and the eigenvectors. The assumption of distinct eigenvalues was dispensed with in

a later paper by Klein & Moore [1977].

Porter & D'Azzo [1978]12 and Srinathkumar [1978] were among the early researchers in the
area of eigenvalue/eigenvector assignment. Since 1978, Broussard et al [1980], Daywansa &

Mukundan [1982], Fahmy & O'Reilly [1982], Owens & Mielke [1982], Andry et al [1983],



Shapiro & Chung [1984], Soroka & Shaked [1983], Fahmy & Tantawy [1984] and Mielke &
Tung [1985] have presented papers on the subject. Although some of the methods have been
applied to design stability augmentation systems for aircraft, none of the methods have been

applied to design control systems appropriate to MLC, SLA and GLA.

It is not feasible to discuss in detail here every published method but a number of features of
some of the methods are outlined. Moore [1976] derived the necessary and sufficient conditions
for the existence of a real feedback matrix such that the resulting closed-loop system would
exhibit the specified eigenvalues and eigenvectors. A necessary condition required the
computation of the closed-loop eigenvectors such that they spanned the null space of the matrix
[M-A|B]. The method is restricted by the requirements, that all the specified closed-loop
eigenvalues must be distinct. The closed-loop eigenvectors are calculated as a solution of
simultaneous linear equations. Porter & D'Azzo [1978] presented.a method of calculating a
feedback matrix which assigned not only the closed-loop Jordan canonical form, but also the
eigenvectors and the generalised eigenvectors. Such vectors are generated from a sequence of
equations, the method depends upon selecting from a computed set linearly independent
eiécnvectors. Moore's method, however, required the specification of distinct closed-loop
eigenvalues; while Porter's method is capable of assigning eigenvalues of certain geometric and

algebraic multiplicities.

Owens & Mielke's work is essentially the same as Moore's work, in which an achievable
closed-loop eigenvector is obtained by projecting the desired closed-loop eigenvector on to the
null-space of the matrix [AI-A |B]. Once a feedback gain matrix is determined by the initial
eigenvalue/eigenvector assignment, the feedback gain matrix is checked for elements whose
magnitudes are not acceptable. If reduction in the elements is required, then a new set of
eigenvectors is obtained by a gradient search procedure. The extent of gain reduction is
dependent upon the specified eigenvalues, the desired eigenvectors and the system dynamics.
The method presented by Owens & Mielke does enable such gain modifications. However,

incorrect specification of the eigenvectors will, in general, result in large gains. Therefore it is



because of the need to reduce the magnitude of the gains, that a modification procedure is
required. It will be shown later (Chapter 3) that eigenvectors cannot be assigned rozally arbitrarily

but have to be selected according to the dynamical considerations.

The work of Andry et al is a straightforward extension of Moore's work; the closed-loop
eigenvectors are required to belong to the sub-space of the matrix [(A 1 - A)'IB]. An achievable
closed-loop eigenvector is obtained by projecting the desired closed-loop eigenvector on to this
sub-space by minimising the 2-norm of the difference between the desired eigenvectors and the
achievable eigenvectors. The restriction of the method lies in the fact that the specified
closed-loop eigenvalues must be distinct. Clearly if an eigenvalue belonging to the open-loop
spectrum is spe'cified for the closed-loop, the inverse of the matrix (A X - A) is not defined.

Moreover the method is dependent upon selecting suitable eigenvectors in the first instance, for
if the selected eigenvector is orthogonal to the sub-space of the matrix [(AI- A)1B] then the

achievable eigenvector cannot be made to span this sub-space.

The freedom to assign the eigenpairs associated with the flexural modes can be useful in
achieving SLA, by assigning the dynamic characteristics of the flexural modes. A new
eigenvalue/eigenvector assignment method (EPAM) is presented in this thesis which is
subsequently applied to obtain MLC & GLA. The method presented uses complex singular
value decomposition method to compute the basis for the null space of [AI-A | B]. The
method presented is a "direct method", in which null space eigenvectors are assigned in the

closed-loop thus avoiding the method of eigenvector projection commonly in use.

The question of when to use state or output feedback is a matter of system considerations. For
example, in the design of stability augmentation systems (SAS) for aircraft, state variable
feedback may be employed. The mathematical models on which the SAS are based, usually
comprised of only the rigid-body dynamics. The state vector is usually measurable and therefore
state variable feedback posses no great difficulty. However, in some cases the entire state vector

is usually unavailable for feedback and therefore output feedback techniques have to be used.



Srinathkumar [1978] and Porter & Bradshaw [1978] have shown that the
eigenvalues/eigenvectors of a linear continuous-time system can be assigned by using output
feedback. However it suffices to say that if the missing states can be estimated from the
knowledge of the available measurements then state variable feedback is not so objectionable,

provided the robustness properties of the feedback scheme can be demonstrated.

1.3 Problem Description

A number of methods of synthesising control systems by the use of modemn control techniques to
achieve MLC and GLA have been proposed by Stone et al[1972], Konar et al[1976],
McLean[1976], Harvey & Pope{1977] and Prasad[1980], for example. Most of the published
work has been concerned with the design of control systems for structural load alleviation (SLA),
manoeuvre load control (MLC) and gust load alleviation (GLA), using the solution of the Linear
Quadratic Problem (LQP)ﬂ. However, a deficiency of the LQP method for the purposes of SLA
lies in the fact that the modal characteristics of the flexural modes, such as frequency and
daﬁping, are arbitrarily assigned and that the selection of the weighting matrices used in the
scalar performance criterion do not relate to the required system performance; thus a trial and

error approach is often adopted for the selection of the weighting matrices.

1 The method is based on minimising a scalar performance index of the type,
1 T T .
J=5'J.{y Qy+u G u}dt ,
0

where the matrices Q and G, are termed the weighting matrices. The control law is calculated as,
-1 ,T
u=- G0 B Sx ,

where S is the solution of the algebraic Riccati equation.
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Since the precise assignment of the eigenvalues and eigenvectors is not possible by the use of
feedback controllers designed by the LQP method, the effect of altering the modal characteristics
of the flexural modes has not previously been studied in a direct way. The aim of this research
study was the development of an eigenvalue/eigenvector assignment [eigenpair assignment
method (EPAM)] method to achieve SLA. In particular the effect of altering the characteristics
of the flexural modes and effects of such eigenpair assigrument on the structural loads on the
wing of the C-5A which may arise owing either to manoeuvre commands or to atmospheric
turbulence were to be studied. It is known that, if structural loads on the aircraft being studied
are to be reduced, then the rates and the displacements associated with the flexural modes must
be reduced. The problem therefore is the assignment of appropriate eigenpairs (associated with

the flexural modes) by EPAM which will result in the desired reductions.

One of the prime objectives of this research study was to obtain reductions in the bending and
torsional moments observed at five specific wing stations. Since these moments are related to the
flexural modes any reductions realised in the peak and root mean square (RMS) values of the
rates and displacements of the flexural modes will reflect in the bending and torsional moment
rc;ponsc. A set of-control system design objectives appropriate to SLA defined earlier by Stone
et al[1972]. In order to quantitatively access the reductions in the bending and torsion moments
.and also to validly compare the merits of control systems designed for SLA, by the use of LQP
‘method aﬁd those designed by the proposed EPAM, same objectives as those defined by Stone et
al [1972] were used in this study. These are listed below:

1)  For MLC, a 30% reduction is required in the steady state value of the bending moment
(BM) observed at Wing station one (W.S.1).

2)  For GLA a 30% reduction is required in the RMS value of the BM at W.S.1, with an
increase of not more than 5% in the RMS value of the Torsional moment (TM) observed at

the same station.

3)  Handling Qualities of the aircraft must not be impaired by feedback.

11



The percentage figures in objectives (1) and (2) though arbitrary if achieved, represent a

substantial improvement in the durability of the aircraft's wing.

- 1.4 Scope of the thesis

In chapter 2, equations of motion are presented for an aircraft considered as a rigid-body. The
assumptions relevant to the inclusion of flexibility effects of the aircraft structure are also
presented. Considerations pertinent fo the identification of the stability derivatives, for the case
when the aircraft is considered as a rigid-body are also presented. For an aircraft whose
dynamics is modelled by an appropriate state equation the matrix equations which determine the
time response, are developed in terms of eigenvalues and eigenvectors for the cases relating to
manceuvre commands and initial conditions on the state vector. A state space model is presented
in this chapter describing the rigid body lateral dynamics of the L-1011 Tristar aircraft. The
model, which is of a relatively low order, is presented primarily to assist in the understanding of
the role of eigenvalues and eigenvectors in the dynamic performance of the aircraft, merely to
illﬁstra_te the nurﬁerical effectiveness, and to facilitate comparisons of results obtained by

feedback controllers designed by the methods presented in chapter 3.

Three feedback methods for obtaining control laws using full state variable feedback (FSVF) are
presented in chapter 3. The first method involves assignment of specified closed-loop
eigenvalues, termed eigenvalue assignment. The second method is based on the solution of the
linear quadratic problem (LQP). And the third method assigns both the closed-loop eigenvalues
and eigenvectors; this is referred to as the Eigenpair Assignment Method (EPAM). To the
knowledge of the author this particular method has not been presented before. FSVF controllers
are designed for the lateral dynamics of the L-1011 using each of the three feedback methods to
augment the stability. Comparisons of the performance when using fecdback control are

presented, both in terms of the dynamic response and the closed-loop eigenpairs which result.

12



The advantages of designing a feedback controller using the proposed eigenpair assignment are
demonstrated here. It is shown that the prescribed eigenvalues and the corresponding
| eigenvectors are achie%red by the EPAM. The specification of eigenpairs is based on physical
requirements rather than on arbitrary selection. The dynamic model of the lateral motion of
the L-1011 is of a relatively low order, and is used merely to illustrate the numerical effectiveness

of the various methods and to facilitate comparisons between them.

Incorporation of the dynamic effects corresponding to the structural flexibility and unsteady
aerodynamics into the model based upon rigid-body dynamics tend to increase the complexity of
the resulting model. A mathematical model which takes into account these effects for a large

transport aircraft, the CS5-A Galaxy is presented in detail in chapter 4.

In chapter 5 the design of feedback controllers appropriate to SLA, MLC, GLA using the
proposed EPAM is dealt with. The effect on the bending and torsional moments, of altering the
damping ratios associated with the flexural modes is investigated. Two schemes for specification
of eigenvectors corresponding to the flexural modes are presented; the computed feedback laws
coﬁesponding to reach of the schemes results in a radically different dynamic response. The
extent of reductions obtained in some bending and torsional moments by using the controller
designed by EPAM and using those desigﬁcd by Prasad[1980] using the LQP method are also

compared.

In chapter 6 the same FSVF control law designed in chapter 5 is applied to the off-nominal
system having altered stability derivatives associated with the flexural modes. The effects of
such changes in the aircraft 's dynamic representation are presented here. The robust nature of
the proposed feedback laws designed by EPAM is demonstrated by considering reduced order
feedback laws derived from the reduced order models. These reduced order controllers are
applied to the model of the aircraft presented in chapter 4. Itis shown here that if at least Law
Gamma (lowest order of FSVF control law which required 6 states to be measured) is available

for feedback then SLA would be possible. It is also shown that if some of the aircrafts states are

13



unavailable for measurement then a full order observer can be designed by using the EPAM. To
the knowledge of the author such a method of synthesis of a full order observer using the EPAM
does not appear to have been presented by any author before. The effect of observer dynamics
on the observed states and hence on load alleviation is demonstrated by considering three separate
observers. It is shown in this chapter that the error between the actual states and the estimated
states converges to zero more rapidly as the dynamics of the observer are made fast. The
estimated full state variable feedback (EFSVF) control system is synthesised digitally by using
the advanced continuous simulation language (ACSL). The effect of different sampling
fréquencies on the observer dynamics is also demonstrated. Finally, considerations for practical

implementation of EFSVF controllers using a single chip microcontroller are presented.

The outcome of this research is summarised in chapter 7, where recommendations for further

work are also presented.
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2.1 Aircraft Rigid Body Motion

In the analysis of stability and control of an aircraft, considered as a rigid body, the equations of
motion are usually derived in stability axis system, see for example figure 2.1. The motion of

an aircraft is usually separable into two distinct components:

a) Longitudinal:(symmetric), involves aircraft motion in the plane of symmetry, especially

pitching and heave motion.

b) Lateral: (asymmetric), involves aircraft motion out of plane of symmetry, for example, roll,

yaw sideslip, ete.

Shown in figure 2.1 are the notation and definition of the angular rates, the transiational
velocities, and the forces and moments about each axis. The primary flight control surfaces,
namely ailerons, rudder and elevators are also shown on figure 2.1. The equations of motion,
based on small pe_rturbation derived in stability axis system, in terms of dimensional stability

derivatives, can be shown to be (McRuer et al[1973]):

Longitudinal perturbed equations

m

1'1=qu+X‘;J'\5v+wa+X(fc'i-g6+g‘:X,éiiii 2.1
m

w=Zu+Z w+Z,w+ (Z, +U°)ci+i=lzsi 3, | 2.2

. o

Q=Muu+M¢v'v+Mww+Mééi + 2 M, § 2.3

0=4 24
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Lateral perturbed equations

Im
Q:va+Ypp+(Yr -Uo)r+gct)+z,Y8 8, 2.5
. ' ‘ , =z , i=l i 1
P=LVV+LPP+LI“+§L5i5i ) 2.61
.r=va+Npp+Nrr +i§iN5i8i 2.7
G:p 2.8
y=r | | 29

The equations above are for equilibrium flight condition, with assumptions that the steady pitch
rate Q,, roll rate P, yaw rate R, lateral velocity V, and vertical velocity W are equal to zero.
The perturbation variables, u, v, w, p, §, 1, 8, @, v are denoted in figure 2.1. Each of the
stability derivatives X(_), Y(_) and Z(.). denotes a change of force (about respective axis) due to
changes in (.). Similarly stability derivatives ﬂ(_), M, and NE_) denotes a change of moment
(about respective axis) due to changes in (). Finally, §; represents the deflections of the i
control surface. It is convenient to represent the system of first order linear differential equations

(equations 2.1 - 2.9) by a state variable equation, viz;
x=Ax +Bu , 2.10

where x is the state vector € R®, u is a control vector € R™, A is a coefficient matrix of order

fn*n] , Bis a driving matrix of order [p*m].

S g is the acceleration due to gravity (m/s2 )

I I
XZ XZ
Lot T No N+ T;Lu
1 Ly= — 0z Noy=—""—=—
(1 - XZ ) (1 - Xz )
Ixx IZZ Ixx IZZ

¥ (.} denotes any of the variables u, v, w, p, 4, , 8
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Variable

Definition Units
P, 4, T | Roll rate, Pitch rate, Yaw rate rad/s
L, M, N| Rolling Moment, Pitching moment, Yawing moment{ N-m
X,Y,Z| Longitudinal,Lateral , Vertical Forces N
u, v, w Long..itudinal,lateral, vertical velocities m/s

Figure 2.1 : Aircraft stability axis system and vartable definition
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In AFCS work the state vector usually consists of the aircraft's state variables, such as
‘perturbation velocities, angular rates and displacements, The coefficient matrix A contains the
stability derivatives X(.), Y(_) , Z(‘), I:(_), M(_), NE.) and also quantities such as U_, and g, where
() has been defined earlier. The driving matrix B usually consists of the derivatives X5, Ys,
Zs, I:a, M; and Ng. The state equation can be used to model an aircraft's longitudinal, or its

lateral dynamics, or both.

2.1.1  Identification of the Stability Derivatives

Although the stability derivatives X ,M etc in equations 2.1 - 2.9 can be predicted by
theoretical analysis or by means of wind tunnel measurements, the requirement for more precise

experimentally determined stability and control derivatives is based on the following applicaticns:

(i) Producing the data needed for comprehensive flight simulations. This applies to the
fixed, moving-base flight simulators and basic computer simulations.

(i) Design of stability augmentation systems (SAS). The stability and control
derivatives, which are used to define the model of the aircraft, have to be known
accurately before any control synthesis procedure can be used.

(1ii) Providing data for comparisons which result purely from analytical techniques and
wind tunnel testing.

(iv) Proving the flying qualities of the aircraft as laid down in the specifications.
(v) Improvement of testing and data evaluation methods. The necessity of this

application is based on economic considerations and the fact that the results from the
testing of prototype aircraft contribute more and more towards production decisions.

The identified data can lead to a mathematical model with which investigations may be made of

specific flight condition of interest. The extraction of the stability derivatives entails three

elements:
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- excitation of the modes of motion,

- measurement of the response variables,

- extraction of derivatives from measured data.
The type of flight test manoeuvres used to extract the stability and control derivatives is very
important. A manoeuvre which excites all of the aircraft modes and tends to isolate the effects of
the individual derivatives is highly desirable. The measured response of the aircraft has to be
sensitive to, the derivatives that are being identified. This is necessary for obtaining good
estimates of the derivatives from the flight data. The dynamic range of the instruments/sensors
and their signal-to-noise ratio characteristics impose limitations on the type and magnitude of the
manoeuvre. The relationship between input design and instrumentation specification have been
emphasised by Sorenson [1972]. Many methods of extracting the stability derivatives from
flight data have been proposed %8, Limitations and applicability of some of the methods is

outlined below;

Time Vector Method
The time vector methods for derivative extraction are derived from the time-invariance of
the amplitude and phase relations between the state variables of an damped second order
system and the derivatives and integrals of the state variables. This invariance is then
used to determine the values of the amplitude-phase relations, thereby determining the
aircraft stability and control derivatives. The main disadvantage of the method is that it
can only be applied to stick-fixed transient-oscillations. The method works only if the

damping ratios of the responses are less than or equal to 0.3.

f Methods for Aircraft State and Parameter Identification. AGARD-CP-172, 1974
Papers presented at a specialist's meeting of the flight mechanics panel of AGARD held at NASA Langley

Research Center, Hampton, Virginia, USA 5-8 November 1974,

§ Parameter Estimation Techniques and Applications in Aircraft Flight Testing. NASA TN D-7647, 1974

A Symposium held at the NASA flight Research Center, April 24-25, 1973
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Analogue-Matching Methods
The analogue matching technique in principle is an output error method, because the
method strives to iteratively minimise the errors between the simulated responses and the
measured responses. This is accomplished by manually manipulating the derivatives in
the analogue representation of the aircraft (NB. The initial values of the derivatives in the
analogue model are usually obtained from analytical methods or by wind tunnel
measurements). The method works most successfully only when a single control

surface is moved and then only when the manoeuvres are simple.

Equation Error Methods
The equation error methods are basically least squares techniques in which the square of
thq equation error is minimised. The procedure is, by using the equations of motion, to
express the stability and control derivatives as functions of the measured responses, this
results in # or more linear equations in n unknowns. Since these methods do not take
into account the measurement or instrumentation noise, they result in biased estimates of

the stability and control derivatives.

Quiput Error Methods
Qutput error methods minimise the square of the the error between the measured aircraft
responses and the output of a model used to represent the aircraft. Some of the output
error methods are based on Newton-Raphson, Gradient Methods and the Kalman
Filtering techniques. These methods assume measurement noise but do not cater for
measurements made in the presence of atmosphcn’c turbulence. The main disadvantage
of the output error methods is that, because they do not include process noise (gusts,
modelling errors etc) in their performancc criterion, the results are degraded when

process noise exists.
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Maximum Likelihood (ML)
The ML technique of extracting stability and control derivatives, for linear or non-linear
aircraft models, from flight data containing both measurement and process noise is
widely used, Stepner & Mehra [1973]. The method involves three steps: (1) Kalman
Filtering to estimate the states and generate a residual sequence, (2) a modified
Newton-Raphson algorithm to estimate the derivatives, and (3) an algorithm to estimate

the mean and variance of the measurement and process noise.

Since neither flight testing facilities nor measured flight data were available to the author, the
stability and control derivative data used were taken from published sources. The data pertinent
to the rigid-body lateral dynamics of one of the aircraft studied in this work (the L-1011 Tristar
aircraft) were taken from Andry et al [1983]. The mathematical model representing the
rigid-body lateral dynamics of the L-1011 is presented in section 2.3. The other model was

obtained from Harvey & Pope [1977].

All aircraft have observable structural modes which usually cause no problems because their
frequencies are much higher than those of the rigid-body modes. Generally, if the frequencies
of the structural modes are more than a factor of five to ten times the highest frequency of the
rigid-body mode, they can be neglected. The estimate of the stability and control derivatives are
unaffected by high frequency structural noise. However, if the frequencies of the rigid-body
modes and the structural modes are close then special care is required in the estimation of these
derivatives. Two approaches can be taken. The structural modes can be treated as known and
their effect subtracted from the data before the derivatives are extracted. The second and more
difficult approach is to model the structural modes as well as the rigid-body modes and estimate

the unknown coefficients for all the modes as in Schwanz & Wells [1974].
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2.2 Flexibility Effects

In the case of an aircraft considered as a rigid-body, the motion of a body-element in Newtonian
space is fully defined when its position vector in body-fixed axes system is known,and the
motion of that axis system relative to an axis system fixed on earth is also known (the equations
of motion presented in the preceding chapter are in stability axes system, which are a
simplification of the equations of motion in body-fixed axes system. The assumptions necessary
to transform the equations in body-fixed axes to stability axes are given in McRuer et al [1973]).
Within the body-fixed frame of reference there is no motion of body-elements relative to one
another. In the case of flexing bodies such as deformable aircraft, however, it is apparent that a

local deformation motion will be superimposed on an overall spatial motion.

But it is by no means obvious how the respective contributions, from the two sources, to the total
motion of a body-element are precisely to be defined. As in the case of rigid aircraft the total
motion is ultimately referred to a set of earth-fixed axes, while it is reasonable to suppose that
local deformations will be referred to a set of axes moving, in a general way, with the aircraft.
As in the rigid aircraft case the complete motion may be referred fo the same set of moving axes,
which may be regarded as a generalisation of the body-fixed axes used to represent rigid-body
dynamics. To quote Milne [1964], 'The specification of such an axes system is not obvious or
unique’. Since (in general for a flexing body) the centre of mass does not remain coincident with
a particular material point, it is not so obvious a choice for origin as in the case of

rigid-body. Furthermore, even if the origin is fixed at a material point, it will not be possible to
select rectangular axes which contain the same éggregates of material points at all stages of

motion.

Milne [1964], Taylor [1971] favoured the mean-body axes for representation of flexibility
effects, with origin of this axis system at the c. of g. of the aircraft. An alternative approach is
the use of attached-axes [Milne [1964]]. These are body-fixed axes whose origin and orientation

are fixed in an in-finitesimally small material portion of the aircraft. It is assumed that one can

23



find a small portion of the aircraft which is either essentially rigid or otherwise is such that the
axes always remain mutually perpendicular. This axis system is called the body-fixed axis, and
can be thought of as a generalisation of the body-fixed axes used for the rigid aifcraft. It is noted
that, even if the origin of the plane of reference is at the c. of g. when the aircraft is undeformed,

it will not necessarily remain so when deformation occurs.

The equations of motion using the body-fixed axes are conveniently derived using Lagrange's
equation for a non-inertial frame of reference, in conjunction with the equations based on
principle of momentum. For the application of this form of Lagrange's equation it is necessary
that the linear and angular velocities of the frame of reference should be independent at all instants
of the deformational degrees of freedom (N.B. the motion of the frame of reference defined by
the body-fixed axes, relative to an inertial frame, will be a function of the generalised
co-ordinates of the body freedoms only). Thus these freedoms should consist only of
displacements relative to the frame of reference. In particular any natural modes will have to be
modified by the addition of certain amounts of rigid-body motion. This introduces a certain
amount of ill-conditioning, [Woodcock [1971]]. However, this can be normally avoided by a
su‘itable‘ choice of the origin of the body-fixed axis. The following points are observed while

carrying out an analysis for a deformable aircraft:

1) A convenient geometrical point of the aircraft is chosen as the reference point of the aircraft.t
is chosen to avoid ill-conditioned equations of motion, which may result from an

inappropriate choice.

2) Body-fixed axes are used whose orientation is fixed in an in-finitesimally small portion of the

aircraft which include the reference point. This portion is assumed to be effectively rigid.
3) The motion of the aircraft is considered to be a perturbation of some given motion. The

datum motion is not necessarily level flight with constant linear velocity and zero angular

velocity. If the datum motion is one in which no deformation of the aircraft occurs then
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equations of motion will be ones with constant coefficients. If only a small amount of
deformation occurs during the datum meotion then the equations of motion for small
perturbations of datum motion will again be ones with constant coefficients but for large’

perturbations time-varying coefficients appear.

4) The equations of motion are obtained from Lagrange’s equations for a non-inertial frame and
from the principle of momentum. Displacements are used as the unknowns. The generalised
co-ordinates of the deformational degrees of freedom have to be such that the position of

reference point and the orientation of the body axes are both independent of them.

For details of the derivation of equations of motion, see Milne [1964]}, Taylor [1971}, Woodcock
f1971] and Schwanz [1972], for example.

In actuality, a flexible aircraft structure has an infinite number of degrees of freedom making the
exact analysis almost impossible. Approximations are often used to reduce the system to a system

having finite degrees of freedoms. The following approximations are often used:

Quasi-Static : The motions of the structure are assﬁmed to be in phase with the rigid body
motion; with the acceleration of the elastic motion being taken as instantaneous. The method is
used primarily for handling qualities, studies particularly for the design of stability augmentation
systems for elastic aircraft where there is a wide frequency separation between the rigid body

- modes and the flexural modes.

Modal Substitution + The motions of the structure are assumed to be related to the

orthogonal, in-vacuum eigenvectors (which are real),

Residual Stiffness : The mode shapes representing the elastic motion in the modal

substitution formulation are separated into 'retained’ and 'deleted’ modes. The deleted modes are

represented in the dynamic stability analysis as quasi-static aeroelastic corrections, using a
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correction factor related to the deleted modes and the stiffness of the 'free-free' structure.

Residual Flexibility : Similar to residual stiffness formulation, except the quasi-static
aeroelastic correction factor is related to the retained modes and the flexibility of the 'free-free’

structure.

Modal Truncation : The deleted modes of residual flexibility are not represented by any

comrecton factor.

The motion of the structure is represented by modes of vibrations, which are infinite in number.
Using one of the approximations described earlier, the motion of the structure is usually
described by the retained modes of vibration. A model of C-5A Galaxy was used in this research
study to demonstrate that SLA could be achieved by feedback control. A 79t order model
representing the longitudinal dynamics of the C-5A Galaxy, was originally formulated by
Honeywell Systems Incorporated, Minneapolis. The model contained the description of the
longitudnal rigid-body dynamics, first fifteen flexural modes of the wing, Wagner dynamics*,

~ Kiissner dynamics' , Padé approximations?, actuator dynamics and the gust dynamics.

In the work of Harvey and Pope [1977], this model was reduced to a 428 order model using the
method of Modal truncation (the Wagner dynamics were omitted). The 42“d.order model was
then reduced to a 24 order model, which included only the first six flexural modes of the wing,
other modes in the model being the same as in the 427 order model. The 24" order model was
derived by Residualisation, The data pertinent to the model were taken from Harvey & Pope.

The flight condition parameters and details of the model are presented in chapter 4.

* Wagner dynamics relate to the development of lift on an lifting surface due to step change in the angle of

attack of the surface.
t Kitssner dynamics relate to the development of lift on an lifting surface when it encounters a step gust.

§ Padé approximation is a ratio of polynomials used to represent a pure time delay.
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2.3 Lateral Mode! of the L-1011 Tristar

The mathematical model of one of the aircraft studied in this research work, the L.-1011 Tristar, is

the same as that used by Andry et al{1983], for the design of a lateral feedback controller. The

stability-axes model includes the rigid body aircraft dynamics, the actvator dynamics, and the

dynamics of a washout filterd whose input is yaw rate. The lateral equations, which are valid for

a particular cruise flight condition, may be represented by an state variable equation such as

equation 2.10. The state and control vectors are defined as :

.8 T
T
%
x=i}T
-X7-
8rc
us= 5
L acJ

1]

i

X - . 2.11

2.12

8_ is the rudder deflection, in rads; 8, is the aileron deflection, in radians; ¢ is the roll angle, in

radians; r is the yaw rate, in rad/s; p is the roll rate, in rad/s; B is the sideslip angle, in radians ( B

=v/U,, v is the sideslip velocity) and x, is the washout filter state,

S

. and Oa_are the rudder

and aileron commands.

i
If the washed out yaw rate is defined as,
r,.(s)

r =r-x, ,wherex.isawashout filter state, then the transfer function ——e— can
w.0 7 7 r(s)
beexpressed as,
r. (s X4(3) (s)
Jﬁ: - . If the transfer function 5 _ A then,

1(s) (s) (s) s+a

RO a s . . .

— =] -—— = ——, is the transfer function of the washout filter.

1(s) s+ a s+a
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Rigid body loads arise when any of the aircraft's states is disturbed from its trim value by some
atmospheric disturbance or when the pilot applies a manoeuvre command. Whenever an aircraft
is disturbed, accelerations are produced at various body stations. For lateral motion acceleration

at the c. of g. 1s given by,

ayq: UB-go + Uo‘i ) 2.13
Let, |

Ys= ay:’, 2.14

then the output y5 can be expressed by an equation related to the states and controls such that,
y=Cx+Du , 2.15

. % . . . .
where y is the output vector € RP, x and u we#e defined in equation 2.10, C is a coefficient

matrix of order [p*n], D is a coefficient matrix of order [ p*m]. The matrices A, B, C,D

for the L-1011 are presented in appendix A. For the L-1011 the output vector was defined as,

ol [¥,
P Y,
y= B =Y 2.16
? Y4
K | s ]

where r,, , is the washed out yaw rate, see footnote on previous page.
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2.4 Uncontrolled Dynamics of the L-1011 Tristar.

For the model of the L-1011 Tristar, described in section 2.3, the corresponding eigenvalues of
the coefficient matrix A are shown in table 2.1. Associated with these eigenvalues are the

following modes of motion:

1. Alightly damped oscillatory mode,the Dutch roll mode'.
A monotonic mode, of relatively long time constant, the 'Spiral mode'.

A monotonic mode, of relatively short time constant, the Roll subsidence mode.

S

The real modes associated with, the rudder and the aileron actuators and the washout

filter.

MODE EIGENVALUE
Rudder -20.0
Aileron -25.0
Dutch Roll -0.12+j1.27
Spiral -0.009
Roll Subsidence -1.087
Washout -0.5

Table 2.1: Open-loop eigenvalues

The time response of the output variables r,, , p, B, ¢ and a, to an initial condition on the
<9
sideslip angle of 0.02 radians is shown as figure 2.2. Although the aircraft's dynamic response

is seen to be stable, it is very lightly damped. From figure 2.2 it is seen that the response of a, is
°g

oscillatory. Since persistent levels of acceleration can cause passenger and crew discomfort, it
means that the damping should be augmented, i.e., the eigenvalues corresponding to the dutch
roll mode, the spiral and the roll subsidence modes must be modified. The damping ratio of

the dutch roll mode can be inferred from table 2.1 to be 0.094 and the undamped natural
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frequency” is 1.276 radss.

From inspection of equation 2.15, it is seen that damping in the lateral acceleration response will
be augmented if any of the variables 3, r and ¢ have added damping. Since the variables [ and
r constitute the dutch roll mode (which is seen to be very lightly damped), any improvement in

the dutch roll damping would reflect in the lateral acceleration response.

* . .
If an eigenvalue is represented as,

then,
o =0, (@)

an1—§2 = . (i)

Therefore from (i) and (it),

(=% . and mn=J02+m2-
o)
n
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2.5 Influence of Eigenvalues/Eigenvectors on Dynamic Response
Consider the state equation defined earlier as equation 2.10, viz;

x=Ax+Bu.
The numerical solution of the state equation may be obtained after diagonalisation, usually
obtained by the eigenvalues and the eigenvectors of the coefficient matrix A. The eigenvalues A,
and eigenvectors v; of the coefficient matrix satisfy the following equation, viz;

Av.=A.v. , fori=1,..,n0. 2.17

The non-singular modal matrix V, whose columns are the eigenvectors of the matrix A is
defined by,
V=[vV;, ¥,V 1. 2.18

=1

By using the modal matrix diagonalisation of the state equation can be obtained by the

transformation,
x=YV z,, 2.19

where z, is the transformed state vector € ™. After substitution of equation 2.19, the

transformed system is given by,
Vz=AVz+Bu. 2.20

Multiplication of equation 2.20 by V-! yields,
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z=VIAVz+ VIBu. 221
Equation 2.21 can be simplified by equating the matrix V-1A V to the matrix A such that,

A=VIAV 222
Substitution of equation 2.22 in equation 2.21 yields,

z,=Az+V!Bu. 2.23

Since matrices A and A are similar§, their eigenvalues are the same. A is a diagonal matrix

whose principal elements are the eigenvalues of matrix A, ie., A =diagonalA, , A, , .., A ).

The solution of equation 2.23 can be shown to be,

t

z,(t) = €"'2,(0) + Ie"“"" V!B umdr | 2.24
0

§ Definition : If there exist a non-singular matrix V such that V-1 AV = A, then A is said to be similar to A,
Theorem : Similar matrices have same characteristic equation and same eigenvalues.
Proof: Since
Det V' Det V=Det (V'V)=DetI=1
we have
Det (A-AD)=Det{ V' (A-AI)V}
=Det V"' Det(A - AI) Det V
=Det(A-AD

proved,
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Where z,(0) consists of the initial values of the transformed state variables. Transforming back

into the original state space via equation 2.19, results in,
t .
x()=VeMvIix0)+Vv IeA(t VB umdr . 2.25
| 0

The first term on the right hand side of equation 2.25 is the zero input response, and the second

term is the zero state response. Expansion of the first term yields,

At
e! 0 1
X(t)=[!15Y2: rery !nl ' . [yl’ yza ey ynl X(O) . 2.26
At
0 el

Simplification of equation 2.26 can be obtained by defining,

=1V, ¥y, e ¥y 171x(0) 2.27

Expansion of equation 2.26 after substitution of equation 2.27 yields,

At At At

Xx(t=v e‘a +v.e ¢ +...+V, e «

1 11 1 12 2 la n
. . . 2.28
At it At

xW=v.e'a +v.eia + +V e o

n nl 1 n2 2 un n

Expansion of the zero state response is performed, by assuming that the input vector u(t) is
a vector of unit. step functions u,. The zero state response term of equation 2.25 can be

written as,
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t
x(t) = Vet {J.e'mdr} v's u, -
0

t
After integration of {_]'e-’*“ dt } equation 2.29 becomes,

0

x()=Ver{-I/A(e™-1)}VIBu, .

Simplification of 2.30 can be obtained by defining,

R =-UA (VB uy),

hence equation 2.30 can be written as,

xt)=V(1-er)p .

Equation 2.31 can be expanded into,

X At
x @=v (l-¢ MtV (l-e ), +. ..

At At
x O =v (1-¢ )],Ll+vn2(1-c )u2+ ..
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At
+ v, (1-¢ )un

At
v (e )u

2.29

2.30

2.31
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The terms, eM

in equations 2.28 and 2.32 are termed the modes of the system. From an
examination of equations 2.28 and 2.32 it is seen that the eigenvalues” must be negative if the
state variables are to have a stable response (as positive values would imply an increasing
exponential function with time). The eigenvalues A, determine the rate of decay of the modes,
hence influencing the settling time of the state variables. Whereas the eigenvectors govern the
participation of the modes in the state variable response. For example, if eigenvector component
V,, » in equation 2.28 is zero, then the mode e‘xl‘ will not participate in the response of the state

variable x,. In order to examine the extent of mode participation, in this research work, the

eigenvectors v, were normalised such that,
ly;ll,=1.0 2.33
If the diagonal elements v;; of the modal matrix V are unity and the remaining elements are zero

(which implies V is an identity matrix), then the i mode will participate only in the i state

| variable response. In such an event full decoupling of the modes of the motion will result.

» . . . .
So far it has been assumed that the eigenvalues are real. Whenever eigenvalues occur as complex conjugate

_pairs the corresponding eigenvectors are also complex.
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2.6 Open-loop Eigenvectors of the L-1011 Tristar

The uncontrolled dynamics of the L-1011 is explained in terms of its open-loop eigenvectors. It
was shown in section 2.5, how the eigenvectors distribute the modes in the state variable

response. The open-loop eigenvectors of the L-1011 are presented in table 2.2.

MODE DutchRoll | Roll Subs.| Spiral Rudder Aileron | Washout
Eigeovalud -0.117 +j 1.269 | -1.087 | -0.009 | -200 | -25.0 -0.5
States E I GENUV ECT O R §*

5, 0.0 0.0 0.0 0.999 | 0.0 0.0
5, 0.0 0.0 0.0 0.0 0.999 0.0
¢  }-0050-j0.574 | -0.677 | 0998 | 0.001 | -0.002 0.0

r -0.213 +j 0.160 | -0.016 | 0.038 | 0.037 | 0.001 0.0

P -0.734 0.736 { -0.009 | -0.018 | 0.047 0.0
B -0.135-j0.172 | 0012 | 0.004 | o0.001 0.0 0.0
x, 10346 +j0.09%4 | 0.014 | 0039 | -0.001 0.0 1.0

Table 2.2: Open-loop eigenvectors of the L-1011

Eigenvector components have been rounded to three decimal places. For a complex eigenvalue, eigenvector

corresponding to only the positive imaginary part is shown.
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The response of roll rate due to an initial condition on any of the states, by using the eigenvector

components presented in table 2.2 and by using equation 2.28 can shown to be:

-0.1174§1.269) t 0.177-§1.269) t -1
4 o011741.269) 177-§1.269) 1087t

p(t) = - 0.73 o - 0.734 e’

o, - 0018 g0t

a, + 0.736 ¢

-0.009 t

- 0.009 ¢ 0t +0.047 e‘”‘a6+ 00e®te

7

which can be approximated to,

-1.087 t
(¢4

0:2 + 0736 e

p(t) = - 0.734 c(-0.117+j1.269) t o - 0.734 e(-0.177-51.269) t

where the constants @, &, @5 are defined by equation 2.27. From the equation presented

above it can be seen that the dutch roll mode will participate in the response of roll rate. Thus
coupling the rolling and the yawing motions of the aircraft. If the yawing and the rolling motions
are to be decoupled then it would be necessary to modify the eigenvectors corresponding to the
dutch roll mode. Roll subsidence and the spiral modes are seen to be predominantly contributing
to the rolling motion variables. The lack of damping in the dutch roll mode and lack of stability in
the other modes translates into the L-1011 having a very lightly damped response, as indicated by

figure 2.2. In order to improve the dynamic response full state variable feedback is required.
2.7 Concluding Remarks

Three methods for obtaining full state variable feedback (FSVF) control laws are presented in
chapter 3. The first method assigns the specified closed-loop eigenvalues, termed eigenvalue
assignment. The second method is based on the solution of the linear quadratic problem (LQP).
And the third method which assigns both the closed-loop eigenvalues and eigenvectors termed as
Eigenpair assignment method (EPAM) . At this stage however it is sufficient to mention that a
feedback control law which assigns both the specified closed-loop eigenvalues and the

eigenvectors will, result in the closed-loop system having the desired dynamic performance.
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3.0 Introduction

Conventional methods of designing feedback control systems, essentially for single input single
output (SISO) systems, are ineffective for the structural load alleviation problem being
considered, since it is known from a study of system dynamics that such alleviation can be
obtained by the simultaneous use of number of control inputs. In this chapter three modern

methods of obtaining multivariable feedback control are presented and discussed.

3.1 EigenvalueAssignment by Generalised Control Canonical Form

The dynamic performance of a linear multivariable control system whose plant is described by
equation 2.1 can be assessed by examining the eigenvalues of the coefficient matrix A. The time
constants of a real modes are the inverse of the associated real eigenvalues, and the damping and
frequency of oscillatory modes can be inferred from the associated complex conjugate
eigenvalues. If the performance of the dynamic system is unsatisfactory, then it may be
ne-cessary to alter the system eigenvalues by feedback such that the eigenvalues of the closed-loop

reflect the desired performance requirements.

Canonical forms for multivariable systems, such as those presented by Luenberger [1967] for
example, can be used in eigenvalue assignment techniques, and it is known that, by using state
variable feedback, the eigenvalues of such linear multivariable systems can be assigned
arbitrarily. Computational algorithms to arrive at the Luneberger canonical form have been
presented by Applevich [1974] and, Jordan & Sridhar [1973]. The algorithm proposed by

Applevich was used in this research.
The Luenberger canonical form, which exhibits inherent properties of the mathematical structure

of a control system which are particularly advantageous in the design of control systems using

full state variable feedback. The generalised Control Canonical form (GCCF) may be obtained
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directly from the Luenberger canonical form. The GCCF while not the only form (others include
the phase-variable or Jordan forms) can be used in eigenvalue assignment schemes. The GCCF
form is well suited for higher order systems, because the process of arriving at the required
form involves elementary matrix row and column operations. Consider the state variable
description of the dynamic system as defined by equation 2.1,
x=Ax+Bu.
The state equation may be transformed into the Generalised Control Canonical form,viz.
z=Gz+Fe, ' . 3.1
where, z is the transformed state vector € RY, ¢ is a command vector e R™®, G is the coefficient

matrix of order [a*n ], F is the driving matrix of order [n*m]. The matrices F and G have the

following forms,

G= Blockchagonal[G G G ""’me] ’ .32

F = Blockdlaoonal[F ¥ an,..., Fxm]. i3

Where the sub-matrices Gxi and in, are of the order [;*x;1and [y * 1] respectively.
The subscripts ¥; are called the control invariants [ Wonham & Morse [1972] ] and can be

computed from the controllability matrix, Z, viz,
Z =[B|AB |A2B|A3B[.| A*! B] . 3.4

Assuming controllability, let the left-most n linearly independent columns of the matrix Z, be

rearranged to form a matrix Z , i.e.,
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2 ! P
Z,=[b, Ab,A%b,, .,A" b, by, A b_] 35

where b; denotes the column in the matrix B. The control invariants, ¥; for i=1,2...m are an
ordered set of integers, equal in number to the dimension of the control vector u, (i.e., m) and

have properties such that,
Y2 A2 A3 2 e Xpy20, 3.6
X+ Xot X3+ ot Xy = rank(AB)<n. 3.7
To arrive at the GCCF, equation 3.1 must be transformed in the following manner,

1. Transformation of the state vector

The state vector x can be transformed into another vector by the transformation,

z=Tlx,

or,

Substitution of equation 3.8 in equation 2.1 yields

Tz=ATz+Bu, | 3.9
multiplication of equation 3.9 by T-! yields,

z =T!ATz+ T'Bu. 3.10

The transformation matrix T, can be calculated using the algorithm presented by Applevich,
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based on elementary row and column operations operations.

2. Transformation of the control vector

The control vector u can be transformed into another vector by the transformation,

d=Plu,
or,

u=Pd . 3.11

Where P is a non-singular matrix of order [ m*m], d is the transformed control vector € R®,

Substitution of equation 3.11 in equation 3.10 yields,
z=T1ATz+ T'BPd. 3.12

3, Introduction of transformed state variable feedback

In order to transform equation 3.12 in the GCCF, feedback control law of the type,

d=c-K, z, 3.13

[+

is required. The matrix K in equation 3.13 is a feedback matrix of order [ m *n] and ¢ is some

command vector € R™. Substitution of equation 3.13 in 3.12 yields,

72=T!ATz+ T'BP(c-K_2) . 3.14
Remmging equation 3.14,

2=(T!AT-T'BPK )2+ TBPc, 3.15

which can be simplified into,
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z=Gz+Fc 3.16

only if the matrices K and P can be found. The matrices Gand F of order [n*n]and [o*m]
respectively can be formed directly from the knowledge of the control invariants, with each
sub-matrix defined in equations 3.2 and 3.3 having the following generalised control canonical

form,

0 100 0
0 010 0
G =|. . . .. 3.17
1o 000 . . . 1 '
0 00O 0

F=1.1" 3.18
1

each block in is of the order of [ x; * 1], itis noted from equation 3.18 that,

-

To determine the matrices K and P, equations 3.15 and 3.16 are compared resulting in,

G=T'AT-T!'BPK,, 3.19
F=T!BP . 3.20

Substitution of equation 3.20 in 3.19 and after rearangement yields,
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FK =T!AT-G. 3.21

Equation 3.21 is a simultaneous matrix linear equation from which the feedback matrix K can

be found as follows,
K,=F(T'AT-G) 3.22

where FT is the generalised inverse of F and is of the order of [ m*n). Matrix P can be

determined from equation 3.20. Equation 3.16 represents the open-loop transformed system.
The eigenvalues of matrix G are, located at the origin, and if the eigenvalues are required to be
relocated then feedback is required. In order to assign the eigenvalues, to the desired locations,

consider a feedback law of the type,
c=Qz+WwW, | 3.23

where Q is a feedback matrix of order [m*z ], and w is a command vector € R™ which drives

the closed-loop system. Substitution of equation 3.23 in 3,16 yields,

z=(G+FQ)z+ Fw , 3.24
alternatively,
z=Apz+ Fw . 3.25

Where Ay is the desired closed-loop matrix, selected to have the form,

' Ap=Block diagonal[ADl’ AD;’ T ADm] ' 3.26
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Each block ADi is in companion form and has the order [ ), * x;]. Comparing equation 3.24

and 3.25,

G+FQ=A;. 3.27
Since FT F =1 equation 3.27 can be written as,

Q=FT[A,-G]. 3.28

Transforming into original state space by means of equations 3.11, 3.13 and 3.23 and assuming

that the system is driven by initial conditions on the states, the control u (for w = 0) is given by,
u=Pd=P(Q-K)z. 3.29

The non-singular matrix P, is determined as a solution of simultaneous matrix linear equation

3.20 , VizZ.,

(T''B)P=F . | 3.30
Since, x =T z, equation 3.29 becomes,

u=P(Q-K)T!x, 3.31
which can be written in the form,

u=Kx . 3.32

Where K=P (Q - Ko)’l"1 is a feedback matrix of order [ m*n]. The closed-loop system

described by equations 2.1 and 3.32 will possess the prescribed eigenvalues. Some noteworthy
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features of eigenvalue assignment method are summarised below;

Although the specified eigenvalues may be complex, the determination of the feedback matrix

K requires only real arithmetic (this is illustrated in later sections).

An important property,viz, controllability, of the pair (AB) can be assessed from examining
the control invariants. For example, if the sum of invariants in equation 3.7 is equal to o,
then full state controllability is indicated; whereas if the sum of invariants is T, then »-T state

variables are uncontrollable.

¢) If some of the states are uncontrollable, then the matrix T-IAT equation 3.10 has the form,

3.

All AI2

-1 A '
T AT=A= ’ 3.33
AZ] A22

where the matrix A;, contains the controllable part and matrix A,, of order [o-1 * o-1],
contains the uncontrollable part. Matrix A,, is carried through the analyses; therefore the
eigenvalues of the matrix A,,, which are also the uncontrollable eigenvalués of matrix A,
are unchanged by feedback. (N.B. Matrix T-!AT = A is similar to matrix A, since
similar matrices have the same eigenvalues, therefore eigenvalues of A will be exactly those

of A, Noble & Daniel [1977]).

Linear Quadratic Problem ( LQP )

It is well known that LQP method, has been successfully appiied to various problems, including

some problems of aircraft stability and control. Numerous publications listed as a bibliography

can be found in the paper by , Mendel & Gieseking [1971]. These references serve to illustrate

the applicability of the LQP method, there have been many more publications, for example see

Prasad [1980], AlKhatib [1985].
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In flight control work, the optimal control u®, is obtained by minimising a quadratic performance

index of the type,
=zi_[(xTQx +uTG°u)dt, 3.34
0
subject to constraint,
x=Ax+Bu. - 335

Where X is the state vector e R, u is the control vector € R™, A is the coefficient matrix of
order [n*a], B is the driving matrix of order [n*m], Q is the state weighting matrix of order
[hn*a] and G, is the control weighting matrix of order [m*m]. It can be shown that the
optimal control u® , which minimises equation 3.34 subject to a number of conditions which will
be discussed later, is given by,

u’=-G,/1BTSx , 3.36
where S is an [n+*n] symmetric matrix and is the solution of the algebraic Riccati equation,

SA +ATS-SB GO'IBTS +Q=0. 3.37
Equation 3.36 may be expressed alternatively as,

uw=Kx 3.38

where, K = - G, ' BT S.
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The detailed solution can be found in Athans & Falb [1966]. It can be seen from equation 3.38
that for a feedback matrix to exist, the inverse of the weighting matrix G must exist. The matrix
G, is chosen to be positive definite to ensure invertibility. The conditions on the matrix Q can be
evaluated by considering the Hamiltonian associated with the performance index J (equation

3.34). The Hamiltonian is defined as,
H=12(x"Qx+u'G,u) +¥T(Ax+Bu) 339

where, ‘¥ is the co-state vector e R, For equation 3.36 to be true (i.e., for the system to be at
least locally optimal), the associated Jacobian matrix of the second variation of J, must be

positive definite,viz.,

a3 '

Q ox du

823{ ‘ az}f, > 0. 3.40
dJu dx 3 2

The partial derivatives in equation 3.40 are evaluated by partially differentiating equation 3.39,

%=Gou + BTy, 3.41
%:Qx+AT‘f R 3.42
%=Q, 3.43
%{EG0 : 3.44

and,
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FH  IH

Juox oxou =0 3442

Substitution of equations 3.43, 3.44 and 3.44a in equation 3.40 yields,

Q 0
0 G > O " 3.45

Since G is selected to be positive definite, it is seen from equation 3.45, that for the Jacobian

matrix to be positive definite, Q must be at least positive semi-definite?.

A variety of methods are available for obtaining numerical solutions of the Riccati equation. In
this thesis the solution of Riccati 'equation was obtained by means of a method based on matrix
diagonalisation, proposed by Marshal & Nicholson [1970]. The method is purely algebraic and
depends only upon having a good procedure for determining the eigenvalues and eigenvectors of
the canonical® matrix. An efficient procedure for inverting a complex matrix is also needed. One
disadvantage of the method ‘is that, if the canonical matrix has repeated eigenvalues, then the
modal matrix (whose columns are the eigenvectors of the canonical matrix), which is used in the

diagonalisation becomes singular, hence its inverse is not defined.

i A matrix G, is said to be positive definite, if for a vector u the inner product, (u, G u) >0
3 A matrix Q is said to be positive semi-definite, if for a vector x the inner product, (x, Qx)=0
¥ The canonical matrix is defined as,
' -l 5T
A 1 -BG B
1 0
————— -’- - e -
l T
-Q ' A
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3.3 Design of Lateral Feedback Controllers for the L-1011

The intention of this section is to demonstrate the effectiveness of the methods discussed in
sections 3.1 and 3.2. The GCCF and the LQP methods are used here to obtain two independent
feedback controllers. Each lateral feedback controller is to serve the purpose of decoupling the
yawing and the rolling motions, and of attaining stability augmentation. The uncontrolled rigid
body motion of the L-1011 aircraft, for an initial sideslip angle of 0.02 radians (see figure 2.2),
indicated that although the aircraft is stable its damping would need to be augmented. For the
aircraft to have desired performance, the eigenvalues associated with its modes must be modified.

To meet the design objective, following eigenvalues were specified for the closed-loop.

Eigenvalue Mode
20£j15 Roll/Spiral mode
-15+j1.5 Dutch roll
-20 Rudder mode
-25 Aileron mode
-0.5 Washout filter mode

Table 3.1 : Specified Closed-loop Eigenvalues

Andry et al [1983], specified the same eigenvalue set as given in table 3.1, in the design of a
lateral feedback controller for the same model of the L-1011 Tristar aircraft, using their
eigenvalue/eigenvector assignment method. To make valid comparisons between the results
obtained from the methods described in section 3.1, section 3.2, Andry's eigenvalue/eigenvector
assignment and the proposed eigenpair§ assignment method, eigenvalue set as given in table 3.1

was specified for the closed-loop.

¥ A method of assigning the closed-loop eigenvalues and the closed-loop eigenvectors is presented in section 3.4,

The method is referred in this thesis as eigenpair assignment method(EPAM).
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It can be seen from table 3.1, that Andry et al have specified a complex eigenvalue,
corresponding to the roll subsidence mode and the spiral mode, roll/spiral modes being tightly
coupled, albeit heavily damped. This choice is contrary to the usual flying qualities requirement
as typified by discussion of secrion 3.3.1.4 , Chalk & Neil et al [1969]. It is plainly stated that
coupled roll/spiral mode is not permitted. Nevertheless the designs to be discussed I::}ter, adopted
Andry's specifications in order that proper comparisons between the methods could be made,
However, it was always the intention that any method used must be firmly related to the physical
requirements of the aircraft, so that the choice of eigenvalues/eigenvectors could then be related to

the flying qualities.
3.3.1 GCCF Method

The method described in section 3.1 is used here to assign the required closed-loop eigenvalues .
All the pertinent matrices in the evaluation of the feedback law are presented below.

Transformation matrix T defined in equation 3.8, is found to be,

Too o0 044104 046102 013107 0.1749 0.3488 |
00 00 068102 06110 018.10%  .0.0231 -0.1744
00 00 0.894103  -0.0641 0.67.102  0313-102  0.8720
T=|005 -00055 0.12:10° 00521 074102 -0.1343 -0.0436 3.46
00 00 -0.035 043-103  0.12:10%  0.0160 0.0
00 00 062102 -0016 -0.035 021-102 00
00 004 082104 042102 00359 0.159 00 |

The control invariants were found to be, %, =4, and X, = 3 ; the sum of invariants is 7;
therefore the system has full state variable controllability. The Transformation matrix P ( defined

in equation 3.11) is found to be,

1.0 0.137 | |
P- 3.47
0.0 10
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The feedback matrix which results in the system being in the GCCF , was found to be,

-20.933 -46.785 -20.028 -20.879 -8.332 1.130 0.732

K = 3.48
o1 29.660 65.110 11.766 0.388 11.614  -23.344 -25.952

The matrices G and F defined in equations 3.2 and 3.3, with one block as determined by

%; = 4 and the other by Xz =3, are,

0100(000
0010000
000 1,000
G=|.0.0.0_0:!0_0 0_ 3.49
0700 07010
000000
0000i00C0
010
0;0
0:0
F=(1),'8 3.50
0:0
0:1

Since the control invariants are ¥, = 4 and y, = 3 respectively, a polynomial of order 4 and
another of order 3 are constructed from the specified set of eigenvalues, table 3.1. It was found
convenient to group the two complex eigenvalues to form a polynomial of order 4 and also the
remaining eigenvalues to form a polynomial of order 3. The polynomial of order 4 is given by,
(A+20+j15)(A+20-j15)(A+15+j15)(A+15-}1.5)=0,

which after expansion, is :

A= -70A3-22.75A2-36.75 A - 28.125 . ' 3.51
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The polynomial of order 3 is given by,

(A+200 (A +25 (A +05=0 ,

which after expansion, is:

A3=-455%2-522.5)-2500 . 3.52

The required closed-loop matrix defined in equation 3.26 is selected to have one companion

block of order 4 and the other of order 3; it is constructed from the polynomial coefficients as,

0 1 0 0 o+ 0 0 0
0 0 1 0 10 0 0
0 0 ] 0 1 L0 0 0
A =1-28125 3675 _-2275_ _-70_: _O__ _ O _ ___ 0O )
o ) 0 0-"T-0 i 0" 353
0 0 0 0 ! o0 0 1
0 0 0 0 1+ -2500 -5225 -455

Finally, the control law in the original state space using equation 3.32 is,

u=Kx=06914 -02130 09461 20673 2.2095 -4.7072 -5.1013{ x 3.54
-0.0184 -0.7799 84899 8.6075 16.825 -9.9131 0.0

The results of using the control law (equation 3.54) are presented in section 3.3.3 and 3.3.4.

3.3.2 LQP Method

A feedback control law, such as equation 3.38 is obtained using the LQP method outlined in
section 3.2. A few methods have been proposed for the selection of the weighting matrices, but
adisadvantage of these methods is that they do not relate to the time domain characteristics of
the system, nor the physical requirements. Hence empirical methods of selection are invariably
resorted to. The requirement for Q to be positive semi-definite, is met by choosing a diagonal

matrix such that the elements Q; 2 0. The requirement for G to be positive definite is met by
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selecting a diagonal matrix such that the elements G"ﬁ > 0. However, this technique cannot
guarantee the specified closed-loop eigenvalues are achieved; hence the elements of the
weighting matrices have to be arbitrarily adjusted until the specified closed-loop eigenvalues are
achieved. Since there is no direct correlation between the choice of the weighting matrices, and
the achievable eigenvalues, and thence the time response, the process can be cumbersome and

time consuming. The following arbitrary choice of weighting matrices was considered to

iHustrate the method,
Q = diagonal [1.0, 1.0, 10.0, 10.0, 1.0,1.0, 1.0] » 3.55
G, = diagonal [5.0, 5.0] - 3.56

The control law was determined to be,

-0.091 -0.0176 0.2993 20383 0.3416 -1.3427 0.0026

=Kx = X 3.57
-0.0220 -0.0509 0.5642 0.8976 0.5855 -1.4804 -0.0003

3.3.3 Comparison of Feedback Gains

The rudder command 5rc and aileron command Sac for the controlled aircraft, can be expressed

by the following equations,viz;

= * * * * * . "

B, = K18 + K1, %8, + K1 *g + KIfr + K1 %+ KI*B + K1 *x, 3.58b
= * * % * * % *

83(:..K28r S, +K2sa 83+K2¢ ¢ +K2*r+ K2, p+K2[3 ]3+K2x7 Xy 3.58¢

where the feedback gains ( Klsr , K25r etc.,} in the GCCF and LQP control laws are presented
in table 3.2.
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3, 3,
Gain| GCCF LQP Gain | GCCF LQP
Klar 0.6914 -0.0919 K%-,r -0.0184 -0.0220
Klsa -0.2130 -0.0176 Kzsa -0.7799 -0.0509
K1, | 0.9461 0.2993 K2 | 8.4899 0.5542
Ki_| 2.0673 2.0383 K2, | 8.6075 0.8976
K1, | 22095 0.3416 K2, | 16.8250 0.5855
K1, | -4.7072 13447 | K2, | -9.9130 -1.4804
K1 -5.1013 0.0026 K2 0.0000 -0.0003

Table 3.2: Comparison of feedback gains

It is known that the effect of feeding back yaw rate to rudder is to increase the dutch roll
damping. From table 3.2 it can be noticed that the feedback gains K1_for both methods being

nearly the same.

The effect of feeding back yaw rate to ailerons is to stabilise the spiral mode. Examination of the
gain K2 in the LQP control law suggests that the stability in the spiral mode would be
augmented§. Since the specified damping of the roll/spiral mode is much greater, because of the
nature of its complex eigenvalue used for the GCCF method, the yaw rate to aileron feedback

gain, K2, in the GCCF control law is much higher (see table 3.2).

Sideslip to aileron feedback has the effect of increasing the damping of the dutch roll mode
(N.B. gain K2[3 is negative in both cases). In order to achieve a high degree of damping in the

dutch roll mode, high values of K2]3 are desirable, McRuer et al [1973].

§ vaw rate to aileron feedback system corresponds to the alteration of the stability L. This is an effective method
of stabilising the spiral mode by making the augmented value of L sufficiently negative. This is achieved by

making K2, positive (this can be confirmed from values given in table 3.2], McRuer et al (1973).
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Since the gains K1_(feedback of yaw rate to rudder) in both control laws are nearly equal, and
the gain K213 in the GCCF control law being nearly seven times that in the LQP control law, it
is inferred that damping augmented in the dutch roll mode by GCCF control law will be
considerably higher compared to the LQP control law (IN.B. this can also be inferred form an
examination of the closed-loop eigenvalues presented in table 3.3, section 3.3.4). The effect of
feeding back both the roll rate and bank angle to ailerons, is to obtain the closure of the roll
attitude loop. Both feedback gains K2p and KZQ are large in the GCCF control law, compared
to those in the LQP control law. Such high gains suggest a much tighter control of both the

motion variables p and ¢ i.e., roll rate and bank angle.
3.3.4 Comparison of the Closed-loop Eigenvalues and the Time Response
In table 3.3 are shown the eigenvalues of the controlled aircraft, the block diagram representation

of which is shown as figure 3.1. The closed-loop eigenvalues were computed separately for the

GCCF and LQP control laws, from the characteristic equation,viz;

det[AI-(A+BK)=0. 3.58a
EIGENVALUES
Mode Open-loop | Closed-loop | Closed-loop
GCCF LQP
Rudder -20.0 -20.0 -20.48
Aileron -25.0 -25.0 -25.61
Dutchroll | -0.12%j1.27 | -1.5%j1.5 | -0.61%j1.44
Spiral -0.009 -0.89
Roll Subs. -1.087 -1.236
~ Roll/Sprial -2.0£1.5
Washout -0.5 -0.5 -0.5

Table 3.3 : Comparison of the closed-loop eigenvalues
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Figure 3.1 Closed-loop System
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From table 3.3 it can be seen that, the prescribed closed-loop eigenvalues (shown in table 3.1)
have been achieved using the GCCF control law. However, control law based on the solution of
the LQP method, computed for an arbitrary choice of weighting matrices, failed to achieve the
desired closed-loop eigenvalues. The LQP control law has augmented the stability in both the
spiral and the roll subsidence mode. Also, the damping ratio of the dutch roll mode has been
increased from 0.09 to 0.3%. Eigenvalues corresponding to the rudder and aileron modes are
very much the same compared to the open-loop values. A complex eigenvalue for the
roll/spiral mode was specified by Andry et al, contrary to the requirements as discussed in section
3.3. It is interesting to note from table 3.3, that the eigenvalues comresponding to the roll

subsidence and of the spiral mode, obtained from the use of LQP control law, are both real.

It is seen from table 3.3 that the control law based on GCCF method assigns every specified
eigenvalue. The damping of the dutch roll mode has been increased from 0.09 to 0.7. The
damping of the rolling motion, i.e., the combination of roll/spiral mode, is augmented by
specifying a complex eigenvalue. The damping ratio chosen for the roll/spiral mode was 0.8.
Since the GCCF control law assigned every eigenvalue, its closed-loop response will have the

desired time domain characteristics.

The response of the controlled aircraft for an initial sideslip angle of 0.02 radians is presented in
figures 3.2 and 3.3. By maintaining the same test conditions for each method the effectiveness
of the feedback control laws can be demonstrated. An examination of figures 3.2 and 3.3
reveals, that the GCCF control law (equation 3.54) produces a faster response compared with
the LQP control law (equation 3.57). Although, the GCCF control law produces a damped
system response, peak values of the output variables the washed out yaw rate and lateral
acceleration were higher than the corresponding response obtained using LQP control law,
see figures 3.1, 3.2. For the GCCF control law, the rolling response was improved while some
degradation of the yawing response occurred compared to the uncontrolled response (see figure
2.2). One of the reason for such a loss of response may be the fact that the rolling motion and

the yawing motion were coupled, ie., variables associated with the rolling motion were
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influencing the yawing motion variables. The lateral acceleration, largely depends on sideslip
velocity and yaw rate, therefore any deterioration in either has a marked effect upon lateral

acceleration.

Presented in figures 3.4 and 3.5, are the reductions in percent in the root mean square (RMS)
values and the absolute peak values of the output variables. The LQP control law produces a
better yawing response, achieving a peak reduction of 42%, of washed out yaw rate and a
reduction of 56% in the peak value of sideslip angle, see figure 3.4 and 3.5. Approximately 38%
reduction was achieved in the RMS value of lateral acceleration with only a slightly increased
peak value, see figure 3.5. The rolling response ( roll angle and roll rate) was 65% on average,

better than in the open-loop.

Based on a eigenvalue comparison alone, the time domain characteristics, such as the damping
and the speed of the response of the system can be inferred. The GCCF control law which
assigned every eigenvalue, produced the desired dynamic response. On the other hand, a
different set of weighting matrices in the LQP method could have produced a different set of
eigenvalues, and hence altered response. It is also feasible that the same feedback law of
equation 3.57 could have resulted, for some other choices of weighting matrices. It is shown
later that if reductions in the peak and RMS values of the motion variables are required, then the
performance of a multivariable control system cannot be judged solely on the examination of

eigenvalues, corresponding eigenvectors have to be examined as well.

3.3.5 The Eigenvectors of a Closed-loop System

Although the same set of eigenvalues can be achieved by different control laws, the
corresponding eigenvectors will be different. An eigenvector governs not only the amplitude of

the response, but also determines the influence of the corresponding eigenvalue on the state

variable response. The time response of a closed-loop system,
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x=(A+BK)x, 3.59

to a known initial state vector x(0), is determined to be ( see section 2.5, in which the open-loop
time response of the state variables to initial conditions on the state variables and control inputs

was developed)
x(t) =V, eA V. 1x©0) , 3.60

where V_ is the closed-loop modal matrix, whose columns are the eigenvectors of the matrix
(A+BK) and is of the order [ a*n], Ais a diagonal matrix whose principal elements are the
eigenvalues of the matrix (A+BK). The eigenvalues, A,,and eigenvectors, v;, of the

closed-loop system satisfy the relation,

The participation of an eigenvalue associated with a mode, in the state variable response is
gdvemed by the elements of the corresponding eigenvector in the modal matrix V_. It was
shown in previous section that, response of yaw rate, sideslip angle and lateral acceleration had
deteriorated as a result of using feedback matrix (equation 3.54). In order to identify the cause
of degradation, the closed-loop eigenvectors obtained when using the GCCF control law are

presented in table 3.4.

An examination of the dutch roll mode and roll/spiral mode eigenvectors, in table 3.4, reveals
that the two modes are coupled. The roll/spiral mode is seen to be participating predominantly in
yaw rate and rudder deflection. This is inferred from inspecting the magnitude of roll/spiral
mode eigenvector components, associated with yaw rate and rudder deflection which are seen to
be large . It is also seen from the table 3.4, that the dutch roll mode not only participates in the
yawing motion variables, but also in the rolling motion of the aircraft, a small contribution

to the rolling response would be expected due to the nature of the dutch roll motion, but it is seen
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that magnitude of dutch roll eigenvector components, corresponding to roll rate, bank angle and
aileron deflection are fairly large. Since both the dutch roll mode and roll/spiral mode are
participating in the yawing response, this observation translates into the degradation of the
yawing and lateral acceleration response, figures 3.4 and 3.5. Reductions in the peak and RMS
values,particularly of the yaw rate, lateral acceleration and sideslip angle can be obtained if the
rolling and yawing motions are decoupled. This can be achieved not only, if the roll/spiral mode
eigenvector components, corresponding to the yaw rate,sideslip and rudder deflection are small,
but also if the dutch roll mode eigenvector components, corresponding to aileron deflection, roll
rate and bank are small. In specific terms, if each mode is only allowed to participate in its

constituent motion variables, decoupling of the aircraft motions will then be possible.

Dutch Roll Roll / Spiral Rudder Aileron Ww.0
Eigenvalue -15+j15 20+j 15 -20.0 -25.0 -0.5
State EIGENVECTOR S§*

3, 0.810 +j0.000 | 0.895 +j 0.000 0.1118 0.1112 0
3, 0.002 - j0.459 | -0.044 - 0.310 0.9921 0.9928 0
¢ 0.018 + j0.062 { 0.022 +j 0.044 -0.0028 -0.00138 0
r 0.264 +j 0.129 | 0.236 +j 0.109 0.0056 0.0046 0
-0.122 -j 0.066 | -0.110 - j 0.054 0.0564 0.0447 0
0.033 +j0.134 | 0.042 +j 0.093 0.0002 0.0001 0
X7 -0.011 - ; 0.081 | -0.021 -j 0.058 -0.0001 0.0000 1

Table 3.4: Eigenvectors of the closed-loop system, GCCF control Law

It has been shown in previous sections that, although a satisfactory control law could be obtained
using either the eigenvalue assignment or the LQP method, they cannot completely satisfy
simultaneously every design objective. A method in which not only the eigenvalues but also the

eigenvectors were assigned, would be advantageous in the light of the above results,

* In the case when an eigenvalue is complex, eigenvector corresponding to only the positive imaginary part is

shown in the table.
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3.4 Eigenpair Assignment Method (EPAM)

In recent years the design of feedback control systems by eigenvalue/eigenvector assignment has
received considerable attention. Moore [1976], Klein & Moore [1977], Porter & D'Azzo [1978],
Srinathkumar [1978], Broussard et al [1980], Daywansa & Mukundan [1982], Fahmy &
OReilly [1982], Andry et al [1983], Shapiro & Chung [1984], Soroka & Shaked [1983],
Fahmy & Tantawy [1984] and Mielke & Tung [1985] have presented papers on the subject.
The objective of such methods is to assign the closed-loop eigenvalues to desired locations in the
complex frequency plane, subject to achieving appropriate corresponding eigenvectors. It has
been shown by means of a numerical example in section 3.3.5 how an eigenvector govems the

contribution of its corresponding eigenvalues to the state variable response.

It is not feasible to discuss in detail here every published method but a number of features of
some of the methods are outlined. Moore [1976] derived the necessary and sufficient conditions
for the existence of a real feedback matrix such that the resulting closed-loop system would
exhibit the specified eigenvalues and eigenvectors. A necessary condition required the
computation of closed-loop eigenvectors such that they spanned the null-space of the matrix
[(AI-A) B]ﬂ . The method is restricted by the requirementsy that all the specified closed-loop
eigenvalues must be distinct. The closed-loop eigenvectors are calculated as a solution of

simultaneous linear equations.

f A, is the required closed-loop eigenvalue and the matrices A and B are as defined earlier in the equation 2,10, I

is an identity matrix of order [n x n]
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Porter & D'Azzo[1978]12 presented a method of calculating a feedback matrix which assigned
not only the closed-loop Jordan canonical form, but also the eigenvectors and the generalised
eigenvectors. Such vectors are generated from a sequence of equations, the method being
dependent upon selecting appropriate eigenvectors from a computed set of linearly independent
eigenvectors and the generalised eigenvectors. Moore's method, however, required the
specification of distinct closed-loop eigenvalues; Porter's method is capable of assigning repeated

eigenvalues.

The work of Andry et al is a straightforward extension of Moore's work; the closed-loop
eigenvectors are required to belong to the sub-space of the matrix [(A I - AY'IB]. An achievable
closed-loop eigenvector is obtained by projecting the desired closed-loop eigenvector on this
sub-space. The restriction of the method lies in the fact that the specified closed-loop
eigenvalues must be distinct. Clearly if an eigenvalue belonging to the open-loop is specified in

the closed-loop, the inverse of the matrix (A I - A) is not defined.

The method presented in section 3.4.1 uses complex singular valve decomposition to compute
thé basis for the null space of a matrix. The computed null vector space has its dimension equal
to that of the control vector. The method presented is a "direct method”, in which a closed-loop
eigenvector corresponding to the required eigenvalue is chosen from this null space in a way
which chiefly reflects the desired closed-loop system performance. The eigenvectors in this
research work were normalised such that their 2-norms equalled unity. The advantages of
normalisation are two-fold: first, the distribution of the mode can be represented as a percentage
contribution to each of the state variables; second, the magnitude of the eigenvectors can be

arranged to be in the range zero to unity.
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34.1 Theory of Eigenpair Assignment (EPAM)
Consider the following state equation,

x=Ax+Bu, 3.62
where, x is the state vector € R®, u is the control vector e R%, A is the coefficient matrix of
order{n *n],B is the driving matrix of order [n*m]. Given a set of any conjugate scalars

[ 2y, Ay, ., AL, the closed-loop eigenvalues, there exists a feedback matrix K of order

[m*n] such that,

u=Kx, 3.63
and,
x=(A+BK)x . 3.64

If A;is a closed-loop ecigenvalue, then the associated eigenvector v, satisfies the

eigenvalue/eigenvector property, Maxwell [1965].

(A+BK)v,=4, v, fori=12,.,n . 3.65
Re-expressing equation 3.65,

Av,+BKvy,-Lv.=0, 3.66
which can be written as,

(?L;I-A)yi-BKyi=0. 3.67
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Equation 3.67 can be expressed alternatively as,

V.
[m1-a 18] oo 3.68

Equation 3.68 is a simultaneous matrix linear equation of the form , H b= 0. One interesting
point to note from equation 3.68 is that the matrix (A I-A | B ] is rectangular. The system
defined by equation 3.68 is under-determined, i.e there are n equations in n+m unknowns. If the
rank [A; I-A | B ] =k, where k=n+m, then obviously the null space is just [ 0. However if
k<n+m, a basis for the null space of [ ).i I-A | B ] can be constructed from the row echelon
form? of [ I-A I B ]. It can be shown ( Noble & Daniel [1977] ) that the null space is of
dimension n+m-k, and that the vectors which constitute the basis are linearly independent. If itis
assumed that A is full rank, i.e n, and that B is also full rank, i.e m (number of independent

controls), then it is observed that the dimension of the null-space is also m.

The feedback matrix K which will result in the closed-loop system having the prescribed

eigenvalues and the associated eigenvectors can be found as follows. Let,

S,=[A1-A|B]. 3.69

§ The row echelon form is not the only way of computing the nuil space of [ li I-A | B 1. For example the
algorithm proposed by Porter & D'azzo [19'!8]1'2 can also be used. In addition to these methods the basis may
also be constructed by augmenting the marix [ A, T- A l B ] by m rows of zero's, which is then reduced into
the Hermite Normal Form (HNF). All the zero's on the leading diagonal are replaced by -1. These columns can
be shown to form the basis for the null space of | 7Li I-A I B ]. However the method breaks down if the

matrix [A; T- A | B ] is not reducible to the HNF.
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Augmenting equation 3.69 by m rows of zeros to form a square matrix of order [(a+ m)*(n +m)],

for computational convenience,

S\.iI-A |
s |— = +—
SAT= O.. O I O 3.70
0...0 | o
and let,
_
N
}_i
R = 71
M M 3
li-t

where the columns of Rki form the basis for the null space of Sli. The matrix in is of the
order [(n+m) *m ], whereas the order of in is [0 *m ] and the order of M"i is [m*m]. The
matrix Rli is computed form the singular value decomposition® of the matrix Sxi . The vectors

mn Nli and Mli are defined as,

N Py P2+« - Py

;\1 _ ' ' 5 ,{Fortc=1, ey T e 3.72
M |I=l-- -- -- am e

S

Singular Value Decomposition (SVD) is discussed in section 3.4.2, The reason for choosing SVD method
for computing the basis for the null-space is that if matrix B is not full rank, then the dimension of the null-space
can be determined from the computed singular values. Hence avoiding the necessity for determining the rank of the

matrix [ }"i I-A | B ] by a seperate procedure.
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If one of the eigenvectors is chosen from Rli » to reflect the desired influence of the eigenvalue

A, , such that,

- , 3.73

o
f
1<

3.74a
’ v, ' 3.74b

The process of selecting the appropriate column from Nki and the corresponding column from

M).i is repeated for i=1,2,...,n. The feedback matrix K can then be computed as,

-1
K=-[@"1’®K2’“"@Knl[ v 22,---,an : | 3.75

To satisfy equations 3.65, 3.68 and 3.75 following must hold,

* ® * .
a} whenever li = lj then y,; = Y; and @, = W, (*) denotes complex conjugate,

b) v, must belong to the null-space of [ ATL-A I B 1. Since Rli form the basis for the null
space of Sli, and since the selected vector Px; e in € R}.i and since Px, = v,, it follows

that v, will belong to the null-space of [A, I- A l B1,

c¢) for an inverse to exist in equation 3.75, v, i=1,2,..,n must be linearly independent.
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Equation 3.75 holds if all eigenvalues specified are real. If however a complex eigenvalue is
specified, such that A, = 7\1* » it follows from the requirements above that v, = !z* and

¥ . v
D¢, =%, therefore fori=12...a, equation 3.74b can be written as,
-K [!1R+ Yip Y¥p Y3 - o "!n] = [&‘)Km+ 0—)1{11 » Dy ® @K”’ (-l-)xs’"’@xu] . 3.76

In practical implementation of any control law, a feedback gain matrix with complex elements is
not admissible. To obtain a feedback gain matrix of real elements, equation 3.76 is multiplied on

both sides by a non-singular matrix of order [z *zn ],

e ] 3.77
i..

In the case when only one complex eigenvalue is specified, the order of the identity matrix I

equation 3.77 is [(n-2) * (n-2)]). After multiplication equation 3.76 can be written as,

-K[ym,y“, Ygs e ,yn] =[@,¢1R’ Qe 2 @ v @"n] ’ 3.78a
or,

K=-w, v, . 3.78b
The matrix W is composed of selected vectors @y, and is of the order [ m *n) and the matrix

. V,is composed of selected vectors v; and is of the order { n *n]. For additional complex

eigenvalues equation 3.78a is trivially modified.
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3.4.2 Singular Value Decomposition

The singular value decomposition (SVD) method is one of the most powerful and important tools

of modern numerical analysis which finds applications in,

-~ solving a system of linear equations,
- computation of the generalised inverse,

- determination of the numerical rank of a matrix.

However, in recent years, the technique of SVD has been applied in the analysis of control
systems. For example, Lehtomaki et al [1981] developed criteria, based on the minimum
singular value of the return difference matrixi, for predicting guaranteed stability margins of
multi-loop systems; these were expressed in terms of either gain or phase change in all feedback
loops. Mukhopadhyay & Newson [1984] extended Lehtomaki's results to include the

imuitaneous gain and phase changes in all loops.

*In general for a system described by the following equations
x=Ax+Bu (i}
u=Kx (ii)
the return difference matrix is given by
T(s) =1+ G(s)
where
Gis)=K(sI-AylB
G(s) is termed the loop-transfer matrix. And a system modelled in a different way from (i) and (ii) above

would have a different return difference matrix,
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The classical approach in determining the stability margins of a linear system was to use the
Nyquist diagrams in which either gain or phase change in any single loop could be examined.
However, for a control engineer with a bias towards classical methods of synthesis, the use of

the minimum singular value of the return difference matrix is invariably an important tool.

The use of SVD for the synthesis of feedback control laws has been outlined in the preceding
section. The method denoted EPAM relied upon generating a basis for the null space of a matrix.
It will be shown next that such a basis can be constructed from a knowledge of the singular
values. The constructed basis has all the necessary properties for successful computation of

feedback laws.

3.4.2.1 SVD Theorem?

Theorem: Let the matrix SA_LE Co+mm+m have rank k. There exist unitary matrices

Uge C™™ "0 and V, € Co*™ ™% such that,

_1H |
ZZ—U!j Sle, 3.79
s —uzvH 7.80
Yo s s ' ‘
where,
W 0
= : 381
0 0 _

¥ See Noble & Daniel [1977] for a slightly different treatment of the subject

i The subscript i on A and circumflex on S has been dropped here for convenience,
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Proof : Since 5,8, 2 0, the singular values¥ of the matrix SlH S, will lie between 0 and

infinity, i.e.,
o) (SHS )e [0, + ©9]
s\ 9y O ey i 3.82

. 2 -
denoting o ( SlH S\ by {%.i=1,2...,0+m} the singular values can be arranged in the

form,

..,0 . 3.87

Let{ v}, vy, . . , ¥} be a corresponding set of orthonormal{ gigenvectors, and let

A% =[V1"’2’ ’Vk] g
51
Vs = [vk+1’ ? vn+m]
Z
If the singular values 9s;,i=1,2,. . .,k are arranged in the form,

then,

] |
S8, V, =V, W . 3.84

f The positive square roots of the eigenvalues of S;LH Sl are termed the singular values.
l Two vectors u and v are said to be orthogonal when (u, v} = 0. A set of vectors is said to be orthogonal when
every pair of vectors is orthogonal. Moreover, if, in addition each vector satisfies [| . |l = 1, then the set of vectors

is said to be orthonormal.
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From equation 3.84, it follows that

1 HQH |1 t
W Vslsn. SAVSIW =1, 3.85
also,
sis v =v .0 3.86
3 A. 52_ 52. ] .
so that,
H.H
Vs: Sx SJL Vsz.—. 0. 3.87
thus,
SJL Vs2=0 . 3.88

From equation 3.88 it is seen that the matrix V32 will form the basis for the nunll space of the
matrix S, . Let,

-1
Us = Slel\V ’ 3.89

1

then from equation 3.85,

i Since
H 2
Sl S?L Vsl = Vsl wo,

then the quantity ,

wivi v whwlawhivPEv ywor.
| 5 5 5

N.B: Since V_ is unitary the product Vi{l Vsl =I.
[
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u H . H %1
U, skvs=[Usl,USZ] S iy | 3.90
5y
H H
UsI SJL Vs1 US; Sh vSz
_ i 3.91
tisv vuvlsv

Using equation 3.88 ie., Sx v52 = 0, equation 3.91 reduces to,

H

USI Sx Vsl 0
= 3.92
H
U s, SJL Vsl 0
Since S2L V, = UsH W ( from equation 3.89), equation 3.93 becomes,
1 1
H
Usl Sz. VsI 0
- 3.93
viu w 0
5 05

Since UI: U, = 0, and by using equation 3.89, equation 3.92 becomes,
2 % _

I U SV, 0 =[w 0]=Z
s VA s 0 0 0 0 ’
hence,
S =UzV],
as desired.
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The columns of U are called the left singular eigenvectors of S, (or the orthonormal
eigenvectors of S;hSkH ), while the columns of V are termed the right eigenvectors of S, (or the
orthonormal eigenvectors of S,LHS,L). The matrix S,LH has n+m singular values, i.e. the positive
square roots of the eigenvalues of the matrix S,S,!. The choice of Sy, rather than §,S,H is
arbitrary. Since SlHS ; can be computed quite easily, which will be shown in the next section,
the singular values are always determined from the matrix S,5S,. The unitary matrices V and

U, provide information about two fundamental sub-spaces viz:

§
ImV,_ =Ker (5 3.94
ie, V 5 forms a basis for the null space of S N

Im Usl =Im Sl 3.95

ie, U . forms a basis for the exact range space of S7L

From equation 3.88 it is seen that the matrix Vs2 forms the basis for the null space of S,. If the
eigenvalues and the orthonormal eigenvectors of the matrix S,MS, can be computed, the
orthonormal eigenvectors corresponding to the singular values which approach zero can then be

used to form the matrix \

s, . Hence singular values which are potentially zero are of
éigniﬁcance. The computational problems in determining the singular values, and the decision as
to when a singular value is zero computationally, are well documented in Kelma & Laub [1980].
The decision about when a singular value is zero affects both the determination of the rank of S,

and the computation of the sub-spaces defined by equations 3.94 and 3.95.

3.4.2.2 Calculation of R,
The required basis R, ( equation 3.71) can be obtained by means of the QR-factorisation (see
footnote on the next page) method viz:

S =QR, , 3.96

§ Abbreviation Im denotes the Image .
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where Q e C°*+™ ™™ g a unitary matrix and R is an upper triangular matrix. S7LHS,L is

calculated as follows;

H HnpH
5.5, =Q R’ QR,

HAH
=RQ QR
-RAR .

s S

3.97

Hence from equation 3.97, the singular values (which are the positive square roots of the

eigenvalues of SlHSl) and the corresponding orthonormal eigenvectors (i.e. matrix , V) can be

computed directly. The orthonormal eigenvectors corresponding to the zero singular values are

then used to construct the matrix Vsz, which also is the required basis R,. The matrix U, can

then be calculated using equation 3.89, thus providing the full decomposition of the matrix S, as

defined by equation 3.80. The algorithm for computing the SVD of a complex matrix based on

the QR-fzu:torisau:ioni proposed by Bussinger & Golub {1969] was used in this research study.

1 The matrices QS and Rs in the QR-factorisation of SA. are defined as,

QS= [qsi’ T qsnﬂ:u] !

and
1 T2 - - TLaem
r2,2 . v r2, n+m
R < :
rn+m, n+m_

rj.i=(qu’ai) y for 15j<i,
and ,

Tibs, =3 1,09, " - " T,i sy
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3.4.3 Applicability of EPAM

The method of computing, by SVD, the closed-loop eigenvectors which satisfy equation 3.68,
avoids the restriction of specifying some open-loop eigenvalues in the closed-loop 5. Since the
control driving matrix B is assumed to have full rank, i.e. m, the dimension of the computed
null-space is m. Therefore, from m eigenvectors in equation 3.72, a closed-loop eigenvector
corresponding to an eigenvalue A, can be chosen to reflect the desired mode distribution in the
state variable response. Consequently, it is also possible to assign an eigenvalue having a
multiplicity of m. The method presented is "direct”, since the null-space vector with appropriate

mode distribution, is chosen as a closed-loop eigenvector.

If rank(AB) < n, i.e., some states are uncontrollable, an eigenvalue associated with a mode
identified with the uncontrollable states may also be specified in the closed-loop with the freedom
of selecting an appropriate corresponding eigenvector from the computed null space vectors,
equation 3.72. An open-loop eigenpair comresponding to an uncontrollable mode may be
specified in the closed-loop, because the eigenpair satisfies equation 3.65, and can be assigned in
the closed-loop via equation 3.78a, by equating the vector @“i equal to zero and by equating the
vector V; to the open-loop eigenvector. The feedback matrix thus obtained then results in the
closed-loop possessing the open-loop eigenpair. The following steps are observed in the

computation of the feedback matrix;

YIn Andry et al's work a closed-loop eigenvector was obtained by projecting the desired closed-loop eigenvector on
to the sub-space of the matrix (AI - A)'1 B. Clearly, if an open-loop eigenvalue is specified, then the inverse of
the matrix (Al - A) is not defined, The null-space computed by SVD does not requires the inversion of (AI - A),
making it possible to compute the null-space corresponding to some open-loop eigenvalue, thereby enabling the

selection of an appropriate corresponding closed-loop eigenvector.
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Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

The matrix Sli is formed for the specified eigenvalue A, .

The SVD of Sxi is obtained from equation 3.79. Decomposition for only A, = -0 +j @

is required if eigenvalue is complex.

Basis, in, is constructed, from the matrix V, equation 3.79,i.e., vectors in V,

corresponding to the singular values which have a value of zero.

The desired eigenvector is selected form the matrix N A;, with appropriate column in
M
li‘
The selected vectors Px; and @x, equation 3.72, are stored as the i column in
matrices V, and W,. For A, = -0 +j @, the real part of the eigenvector Px; is stored
in the i column and the imaginary part in the (i+ 1) column of matrix V. The

vector P, is stored in the matrix W, in a similar way.

Step 6: The process is repeated for n eigenvalues.

Step 7: Feedback matrix is obtained from equation 3.78b.
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3.5 Feedback controller for the L-1011 using EPAM

A model of the Tristar L-1011 aircraft described in Chapter 2 is used to demonstrate the
effectiveness of EPAM. It was shown in section 3.3 that the closed-loop lateral acceleration and
the yawing motion, arising form the use of the control law based on the GCCF method, had
deteriorated because of coupling between the rolling and the yawing motions. Moreover, the
control law based on the LQP method failed to achieve the required closed-loop eigenvalues. A
feedback controller is now designed to assign the same specified closed-loop eigenvalues as

given in table 3.1.

Since the order of the matrix B is [7*2], with rank(B)=m=2, the dimension of the null-space is
also 2. The vectors E“i and (—Dxi contained in Rli , which forms the basis for the null space of gli
, viz equation 3.71, are presented in tables 3.5 through to table 3.8. The physical reasons for the
choice of the appropriate eigenvector in R).i is presented as a footnote to the tables. Also
presented in the tables is the magnitude of the components of the eigenvectors as a percentage,

enabling the contribution of the mode to the state variable response to be examined at a glance.
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Eigenvalue : -2.0 + j 1.5 (Roll/Spiral Mode) i = 1

State Eigenvector p L % Eigenvector Pzi %
Rudder Deflection 0.707 +j 0.000 49.9 0.000 + j 0.000 0.0
Aileron Deflection 0.017 - j 0.064 0.4 0.658 - j 0.045 433
Bank Angle 0.063 +j 0.026 0.5 0.004 - 0.164 2.7
Yaw Rate 0.186+50.089 | 43 | 0.009+i0.003 | 0.0
Roll Rate -0.165 + j 0.043 2.9 0.237 +j 0.333 16.8
Sideslip Angle 0.032 +j 0.074 0.6 0.000 + j 0.005 0.0
W.O Filter State -0.016 - j 0.046 0.2 -0.001 - j 0.002 0.0

@li % @2i %

-0.636 - j0.053 | 40.7 0.000 + j 0.000 0.0
-0.020 +j 0.058 0.4 -0.608 +0.002 | 37.0

Table 3.5: Assignable Roll/Spiral mode eigenvectors

Footnote : Inspection of vectors _P 1,and P2, reveals that if eigenvector P2, is chosen then the
roll/spiral mode will contribute, as indicated by percentages, minimally to the yawing response
variables i.e., the yaw rate and sideslip angle. Since the control of rolling motion is usually
accomplished by the ailerons, the roll/spiral mode appears in aileron deflection. The roll/spiral
mode is seen to be contributing chiefly to the aileron deflection, bank angle and roll rate. If
however, eigenvector _Pli is chosen then the roll/spiral mode contributes, as indicated by
percentages, to the yawing response variables, this has the undesirable effect of coupling the

yawing and the rolling motions of the aircraft. Eigenvector Pzi was deemed to be an appropriate

choice for the roll/spiral mode. Vector ‘92i was chosen as required in equation 3.73.
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Eigenvalue: -1.5 + j 1.5 (Dutch Roll Mode)i=3

State Eigenvector P, % Eigenvector P, %
1 .

Rudder Deflection 0.660 + 0.000 43.6 0.000 + j 0.000 0.0
Aileron Deflection 0.025 -;0.117 1.4 0.633 - j0.058 40.4

Bank Angle 0.092 + j 0.086 1.6 0.085-30.190 4.3
Yaw Rate 0.213 +j 0.009 5.8 0.012 +j 0.005 0.0
Roll Rate -0.268 +j 0.009 7.2 0.156 +j 0.412 19.4

Sideslip Angle 0.025 +;0.109 1.2 0.002 +; 0.007 0.0
W.O Filter State -0.007 - j 0.068 0.2 -0.001 - j 0.004 0.0
Q. % 9, %

1 1

-0.611-j0.050 | 37.5 0.000 + j 0.000 0.0
-0.030 +j 0.108 1.3 -0.598 + 0.016 35.8

Table 3.6: Assignable Dutch Roll mode eigenvectors

Footnote : Inspection of eigenvectors P1, and P2, reveals that if eigenvector P2, is chosen, the
dutch roll mode, as indicated by percentages, contributes heavily to rolling motion variables i.e.,
bank angle, roll rate and aileron deflection. The choice of eigenvector fzi will result in coupling
between the rolling and the yawing motions of the aircraft. It is interesting to note that if
eigenvector P 1; is chosen then, the dutch roll mode contributes mainly to the the rudder
deflection, yaw rate and sideslip angle; nevertheless some contribution to the rolling response is
noted (the dutch roll motion usually arises as a result of rudder deflection, the aircraft yaws and
due to dihedral effects has a tendency to roll). Therefore, the choice of eigenvector Pli was

made alongwith the choice of vector @1, as required in equation 3.73.
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Eigenvalue : -25.0 (Aileron mode)i=35

State Eigenvector Bli % Eigenvector £2i %
Rudder Deflection -0.970 94.0 0.000 0.0
Aileron Deflection -0.001 0.0 -0.97% 05.8
Bank Angle -0.001 0.0 0.002 0.0
Yaw Rate -0.029 0.1 -0.001 0.0
RollRate 0.014 0.0 -0.047 0.2
Sideslip Angle 0.000 0.0 0.000 0.0
W.O Filter State 0.001 0.0 0.000 0.0

2, % @2i %
-0.242 5.9 0.000 0.0
0.000 0.0 0.000 0.0

Table 3.7: Assignable Aileron mode eigenvectors

Footnote : Eigenvector Bzi is chosen because the aileron mode contributes solely to aileron
deflection, from the table above the contribution is seen to be nearly 96% . This enables control
decoupling between the ailerons and the rudder. If however eigenvector?li is chosen, then the
aileron mode contributes to rudder deflection substantially (from the table above it is seen to be
94%) and will result in a strong coupling of rudder and aileron modes . The choice of vector

@2, was made, as required in equation 3.73.
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Eigenvalue : -20.0 (Rudder mode) i=6

State Eigenvector P % Eigenvector P, %
Rudder Deflection 0.998 99.8 0.000 0.0
Aileron Deflection 0.001 0.0 0.979 95.8
Bank Angle 0.001 0.0 -0.003 0.0
Yaw Rate 0.037 0.1 0.002 0.0
Roll Rate -0.018 0.0 0.058 0.3
Sideslip Angle 0.001 0.0 0.000 0.0
W.O Filter State -0.001 0.0 0.000 0.0

g)li % c_t)2i %
0.000 0.0 0.000 0.0
0.000 0.0 -0.196 3.8

Table 3.8 : Assignable Rudder mode eigenvectors

Footnote : Eigenvector P1. is chosen because the rudder mode contributes solely to rudder
deflection, from the table above the contribution is seen to be nearly 100% . This enables control
decoupling to be achieved between the rudder and the ailerons. If however, eigenvector P2, is
chosen then the rudder mode contributes to aileron deflection substantially (from the table above
it is seen to be 96%) and will result in a strong coupling of rudder and aileron modes . The

choice of vector @2, was made, as required in equation 3.73.
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The open-loop eigenvector corresponding to the washout network mode was found to be
satisfactory, hence it was specified in the closed-loop. The feedback gains computed using

equation 3.78b are presented in table 3.9,

K1 K1 X1 K1 Kt K1 K1
5 8, ® r P B X4
-0.134 0.001 -0.302 3.582 -2.938 0.131 0.0
: 2 ‘ 2 9
K2, K, K2 Ky K3, Ky Ky
-0.034 -0.120 5.382 2.276 2.731 -7.947 0.0

Table 3.9 : Feedback gains EPAM control law

Inspection of feedback gains Klﬁa and K25r revealsr.hat the rudder and the ailerons have been
decoupled, whereas an examination of the fcedbacklgains Klﬁa and K26r presented in table 3.2
for the GCCF method shows a strong coupling between the ailerons and the rudder. It is noticed
from table 3.2 that the gain Klﬁa corresponding to the feedback of aileron deflection to rudder
was -0.213,'thc same gain from table 3.9 can be seen to be 0.001. It is also noticed from table
3.9 that feedback is not required from the washout filter state. The gains K1 g and K2; are of the

same order as those of the GCCF control law (table 3.2). As already mentioned, feedback of

sideslip especially to ailerons has the effect of increasing the dutch roll damping.
3.6 Comparison between the Feedback Methods

The response for an initial sideslip angle of 0.02 radians is shown in figure 3.6 using the EPAM
control law. The response is better damped compared to that obtained using the LQP control law
(figure 3.3). The reductions in the RMS values of the output vector are presented in figure 3.7,
for the three design methods considered. The reductions obtained from usiﬁg EPAM were

greater for every variable compared with the values obtained from both the GCCF method and
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Figure 3.6 : L-1011 closed-loop response forf,
using EPAM control law.
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the LQP method. Reduction of lateral acceleration is significant as persistent levels of
acceleration add to the crew and passenger discomfort. A reduction of 48% in the RMS value of

the lateral acceleration was achieved by using the EPAM control law.

Presented in figure 3.8 are the reductions in the RMS values for the full state variable feedback
(FSVF) control law based on EPAM, and the FSVF control law using the eigenvalue/eigenvector
assignment method of Andry, Shapiro &Chung [1983], for the same dynamic model of the
L-1011 Tristar aircraft. The results of EPAM compare most favourably with the published
results. The rolling response is almost the same for the two methods compared in figure 3.8,
with the yawing response being improved by EPAM. The reduction in the RMS level of lateral
acceleration by the use of EPAM was greater then that obtained by Andry's method. Also
compared in figure 3.8 are the RMS and the absolute peak values values of control deflections.
Although the peak and the RMS values of aileron deflection are the same for the two methods,

the rudder activity is lower for the EPAM control law.

The closed-loop eigenvectors and eigenvalues associated with roll/spiral mode for the GCCF,
LQP and EPAM are presented in table 3.10 for comparison. The closed-loop roll/spiral mode
eigenvector resulting from the EPAM control law (table 3.10), however, is not the same
numerically as the prescribed vector in table 3.5. This arises because the matrix Rki, equation.
3.71, which is partitioned into two sub matrices, Mxi and in has its columns (the eigenvectors)
normalised. To obtain correspondence between the closed-loop roll/spiral eigenvector obtained
by EPAM control law(table 3.10) and the prescribed cigc:nvector_f?zi (table 3.5), cigenvector_?zi
has to be re-normalised such that, || P2, |l,=1.0. This means multiplying the chosen vector P2,
by a scalar. Multiplication of the chosen vector Pzi in table 3.5, by 1.26, will result in the
EPAM roll/spiral vector in table 3.10 (N.B. the vector in table 3.5 is approximate due to

roundoff).
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Roll/Spiral | Roll Subs. Spiral Roll/Spiral
Eigenvalue 20+j 1.5 -1.24 -0.89 20+ 1.5
State Variables EIGENVECTOR S*
Rudder Deflection | 0.89+j0.00 0.046 0.055 (0.00+j0.00
Aileron Deflection | -0.04-j0.31 0.065 0.049 0.83+j0.03
Bank Angle 0.02+j0.04 -0.627 0.743 0.02-j0.21
Yaw Rate 0.24+j0.11 0.002 0.036 0.01+j0.00
Roll Rate -0.11-j0.05 0.775 -0.662 0.27+j0.44
Sideslip Angle 0.04+j0.09 0.024 0.008 0.00+j0.01
W.O Filter State -0.02-j0.06 -0.002 -0.046 0.00-j0.00
Method GCCF LQP EPAM

Table 3.10: Comparison of roll/spiral mode eigenvectors

It was shown in section 3.3.5, that the roll/spiral mode was influencing the yawing motion. It
can be seen from an examination of the eigenvector corresponding to the roll/spiral mode
obtained when using the EPAM control law (see table 3.10), that roll/spiral mode's contribution
to the yawing variables, i.e. the yaw rate and the sideslip angle has been reduced. This is
inferred from examining the eigenvector components corresponding to the yawing variables,
which are small when compared to the same components of the GCCF eigenvector. The time
response in figure 3.6 shows that the closed-loop system not only has a faster settling time but
also produces less peak excursions compared to responses in figures 3.2 and 3.3 respectively.
The improvement in the reductions of peak and RMS values of yawing variables was possible

due to decoupling of the rolling and yawing motions of the aircraft, through the specification of

appropriate roli/spiral mode and dutch roll mode eigenvectors.
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3.7 Concluding Remarks

The advantages of designing a feedback controller using the proposed eigenpair assignment,
were illustrated in this chapter. It was shown that the prescribed eigenvalues and the
corresponding eigenvectors could be achieved by EPAM based on the physical requirements
rather than on arbitrary selection. The dynamic model of the L-1011 which was of a relatively
low order, was used merely to illustrate the numerical effectiveness and to facilitate the

comparison between the various feedback methods.

Incorporation of structural flexibility dynamics and unsteady aerodynamics alongwith the rigid
body dynamics, tends to increase the complexity of the model. Such a model of 2 large transport
aircraft, the C5-A Galaxy is presented in chapter 4, The EPAM is used to design feedback
controllers, with the aim of reducing structural loads which result from both applied manoeuvre

commands and from encountering atmospheric turbulence. The results are presented in chapter 5.
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4.1 Introduction

The C-5A is the largest transport aircraft manufactured by the Lockheed Corporation of America.
It is a high-wing monoplane with a T-tail, powered by four General Electric TF39 turbofans
mounted on pylons under the wings. The first C-5A entered into service with the United States
Air Force in september 1969. Just before delivery to the USAF, Lockheed suffered a major
technical setback, when there was a structural failure of a wing test specimen in July 1969, at

1.25 times the design load limit, Air International[1984] .

This load figure was significantly below the strength required for demonstration of aircraft's
planned structural life. A modification programme to introduce reinforcement at eleven points in
the wing was undertaken resulting in a reduction of the payload carrying capacity by 7.5% .
Even after the modifications, however, there remained a problem in the wing durability that
threatened reduce the operational life to less than 7500 hours rather than the intended 30,000
hours. With some sixty sets of wings already produced, attention was then given to achieving

alleviation of wing loads by the means of active control technology.

Methods of reducing, by feedback control, the structural loads on the wing of the C-5A arising as
a result of manoeuvre commands or encountering atmospheric turbulence, have been proposed
by Stone et al [1972] ,Konar et al [1976], McLean (1976) and McLean & Prasad [1980].

Before any control scheme is implemented to reduce loads on an aircraft structure the theoretical
feasibility of a control scheme, using as comprehensive a mathematical description of the aircraft

as possible, has to be demonstrated.

4.2 State Variable Representation of the C5-A Galaxy

Numerical data needed to describe the rigid body dynamics, the significant flexural modes of the

wing, the actuator dynamics and the approximate functions which account for the unsteady
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aerodynamic effects was available in the work presented by Stone et al [1972], Harvey & Pope
[1977]. The numerical data available can be used to model the first fifteen flexural modes of the
wing of the C5-A. Prasad [1980] showed that for work on automatic flight control systems
(AFCS), the first six flexural modes were adequate to represent the significant dynamics of the
flexible wing. The data for the model considered in this research, concerns only longitudnal

motion and was evaluated at a single flight condition, to which the following parameters relate;

Parameter Value Units
Weight 3.107 % 10° Newtons
Mach Number 0.488
Altitude 2300 meters (m)
Dynamic Pressure 9150 N/m
C. of G. 31% M.A.C
Trim angle of attack 0.0515 radians
Load Factor 1.0
Alr speed 143 m/s?

Table 4.1: Flight condition parameters

The mathematical model of the C5-A , was represented by the following state equation,
x=Ax+ Bu +Gn‘n, 4.1

where, X is the state vector € R, u is the control vector € R™, A is the coefficient matrix of
order [n*n), B is the driving matrix of order [n*m], Gn is the noise driving matrix of order

[n*1] and m is scaler noise.
Since the aim of the research was to provide a control system to alleviate the structural loads on

the wing of the C-5A, an appropriate output vector was defined which included the bending

moments and torsional moments at five specific wing stations, which was related to the state
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vector and the control vector as shown in equation 4.2,
y=Cx+Du, 42

where y is the output vector € RP, Cis the coefficient matrix of order [p*a1, D is the driving

matrix of order [p *m], X and u were defined earlier.
The state vector x used in the study was of dimension 24, and the corresponding control vector
u was of dimension 2 and the the dimension of the output vector defined in equation 4.2, was

38. The matrices A, B, C, D are given in Appendix B. The state and output vectors are

described in detail in sections 4.3 and 4.4,
4.3 Definition of the State Vector

The state vector x was defined as,

23
24 |

ol

The state variables X;,i=12,..24 are defined in table 4.2,
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Definition State Symbol Units
Vertical Velocity X w in/s (0.0254 m/s)
Normalised pitch rate % a in/s (0.0254 m/s)
Flexural mode velocity XgreesXg éx x=1,...,6 in/s (0.0254 mv/s)
Flexural mode displacement | Xg»---»X14 éx x=1,...,6 in (0.0254 m)
Aileron deflection X5 S, radian
Inboard elevator deflection X16 Se_ radian
Outboard elevator deflection { *17 6; radian
Kiissner gust states Xigre--1Xgy i
Dryden filter state Xys
Vertical gust velocity X4 W' in/s (0.0254 m/s)

Table 4.2: State Variable definition

4.3.1 Rigid Body Motion with Flexibility Effects

The rigid body longitudnal motion of the C-5A, which represents the short period small
perturbation motion, with the addition of the first six flexural modes of the wing derived in the

body-fixed axes , was represented by the following equations,

8 The model of the C-5A was in imperial units, whereas in this thesis S.I units are used throughout.
Equivalent S.I unit and an appropriate conversion factor is given within the parantheses, to convert Imperial

units to S.I units.
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w=Zw+Uq+ Y, Z, 8+ > ngx ¥ 22‘5,( & . 4.4°

q =M+ Mg+ Mg+, Msiq+ Y, M&EK + ZM%K&K , 458

where, w is the vertcal velocity, g is the normalised pitch rate, é_,c is the flexural mode rate
associated with the x" mode , &, is the flexural mode displacement associated with the k™ mode,
Z(_)i is the dimensional stability derivative,which denotes the change in vertical force due to
changes in (). M,, is the dimensional stability derivative, which denotes the change in pitching
moment due to changes in (). §;'s represent the deflections of the control surfaces. Substitution

of equation 4.4 in equation 4.5 yields,

4= (MM Z)w + (MM U g + (M 3208+ ng:Mﬁz 6

X .
FOM +MZE . 46
éx "‘"éx X

(i=1,..,3 and x=1,...,6)

If equation 4.4 and equation 4.6 are compared with equations representing only the rigid body

short period oscillation, viz;

$ Inclusion of the unsteady aerodynamics is deferred until section 4.3.4
1 The normalised pitch rate q is defined as
q = pitch rate in rad per sec/ ny
where n, is a conversion factor equalling 0.6066 * 10-3 radrm

Y The subscript (.) is used to denote any of the variables w, q, &;, éi and &;
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w=Z w+Ugq+ 228.81 ,
1

q= MW-FMWZW)W + (Mq+MWU°)q + Z(M51+M“‘.'Zai)6i .

It is observed that equations 4.4 and 4.6 are virtually the same as the rigid body equations, except
for the addition of the aerodynamic terms coupling them to flexural modes. The state variable x,

was defined as w, and x, was defined as q.

4.3.2 Representation of Flexural Modes

The structural flexibility effects were represented by the equation in terms of dimensional stability

derivatives,viz:

e . for j=1,...,6
2% _E v
§j+2Cjwj§j+coj &= Ejﬁrw+ijw+quq+ > E 9, + > E; 7; + E; ﬁ {for i=1,..

for x=1,. ,6

Alternatively the equation above can be expressed as,
. - . - - 2 .
§j = Ej\;’w+ijw+quq+ zEjs 8, + > Ejg §{}+{ZEJ.§. ﬁr - 2Cjcoj§j- o E . 4.7
i » » i
Substituting equation 4.4 (expression for w ) in equation 4.7 yields,

J

§ = Ej‘.v{wa +U g+ Z Zsi 3+ Z Z&fn: + Z Zéx &,K}+ijw+quq+ ZEjS 85+

i

(55,50 (35, 80 %ok d e
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which after simplification becomes,

3 173

i o4 \ \ . o,
& ijw+quq+ ZEj&aiq{z EjgéK}+{2Ej€_ g }-200k- o 5,- .49
1 X X

The circumflexed coefficients Ej(_) which appear in equation 4.9 are defined as,

E = Z,+E ), B =@ Z +E ), E =€ U +E )
iy ie W Iy J&K Y Gr JEK Jq v © Jq
=(E-.Z. +E ), ﬁ = . Z +E .
. W S, J§K Is. (E]»if 5 J5.)

1 1

E.
T

Each circumflexed coefficient Ej(_) is a dimensional stability derivative which denotes a change in

the vertical force in the j* mode due to changes in (.)§.

The second order differential equation (equation 4.9) was reduced to two first order differential

equations, for implementation in the state variable form, through the substitution of,

xj+2=f§j, j=1,2,..,6 » 4.10
J+S=§j, j=L2..,6 . 4.11

() denotes either of the variables &K, EK, 81’ w, q
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The six flexural modes, were represented in the state variable form by the following equation,

X3 Xy
x4 x4
N IER A gl Unsteady Aerodyn. eff 4.12°
.= + o+ ns . ts .
: 0 xz I 0 . 0 5§ + ed Y ACIO yn ellec
X3 X3
_x14_ | %14

where, I is an identity matrix corresponding to ?éj = fEJ , and the matrices A}, A,, A,, and A, are

given as,
CE g
ly 1
4.13
A =
Es Es
wooq
1. - 1, .
% %10 % lgs
: E
A, Ezg E%; -25,@, - 256 4.14
= 1 2
EG . E6 . '2C6 (1)6
L E"l éé

§ Unsteady aerodynamic effects are delt with in section 4.3.4,
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El‘5 - 0)21 Elg El
1 2 gs
Eze_, Ezg A E2g 4.15
A, = 1 2 _ 6 _ ’
E E 2
6 . . 6. -
5
| l’;1 “;6 -
E E B ]
Is 15 Ezs
1 2 3
4.16
A4 =
E E E
s S5 %
" 1 2 3

4.3.3 Control Surface Deflections

The deflection of the control surfaces were considered to arise as a result of commands being
applied to the servo-actuators. The mathematical models of the actuators were considered to be
linear and of first order, being represented by simple time lags. The three control surfaces

modelled were,
a) symmetrically deflected ailerons,

b) inboard elevator,

¢) outboard elevator.
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The actuator dynamics associated with the control surfaces were represented by;

Ailerons
8,(s) 6.0
- s + 6.0 417
5, (s) '
Inboard elevator
S (s)
ac =3 1'575 4.18
5 .
,,ic()
. Qutboard elevator
3, (s)
° 1> __ . 4.19

8 (S) = s +- 7.5
eo

c

However, in this research only commands to the actuators associated with the ailerons and the

inboard elevator were considered , the command input Be was equal to zero, therefore equation

[+]

4.19 was written as,

5, =-1.58, 4.20

X|s» X1 and X, were defined as 5, . Bci and 8co respectively. The dimension of the control

vector was 2, and B matrix was of the order (24 *2].
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4.3.4 Kiissner Dynamics

Kiissner dynamics account for the unsteady aerodynamic effects associated with the change of lift
with time, experienced by a lifting surface when it is disturbed by a unit step gust, Bisplinghoff
et al [1955]. The Kiissner function W, (t) is better approximated by the Sear's function, which

for aerofoils of aspect ratio of greater than 6 is given by,

-C
IH=1-05¢  °-05¢ °» 421
where,
U t
c,= 9 . 422
05yc

Equation 4.21 is the expression for the output obtained when a unit step input ,such as the edge

of a gust, strikes the aerofoil, for the C-5A following data applied;

Y = 1.38 ( mach number correction factor )
Cp = 9.429 m  (mean aerodynamic chord of the wing )
& = 4.660 m ( mean aerodynamic chord of the tail )
U, = 1430 m/s (forward airspeed )
AR = 7.75 ( aspect ratio of the wing )

After substitution of numerical values for the wing and tail equation 4.21 can be shown to be,
I () =1.0-05e2857t . 052197t 4.23

Ip{t) = 1.0 - 0.5 3781t - 0.5 ¢44470L . 4.24
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The transfer function of equations 4.23 and 4.24 for a unit step gust input, can be shown to be:

J.(s) (0.198s + 1) 425
W) (0387s + 1) (004555 + 1) ’

similarly,

I (s) _ (0.098s + 1) 426
w(s) T 0.173s + 1)(0.0225 + 1)

The frequency response diagrams of the transfer functions in equations 4.25 and 4.26 are shown
as figures 4.1 and 4.2 respectively for a unit step gust input. Approximations to the transfer
functions of equation 4.25 and 4.26 were made which are also shown on figures 4.1 and 4.2 as

dashed curves. The approximate transfer function from figure 4.1 can be seen to be:

G0 _ 1O 10098 .
O = TE D T T+ 0.0915) G + 10.98) 27
and from figure 4.2,
— 1.0 1.0 22.2
= = = 4.
i) = 55D " T+ 0059 - G+ 223 28
In state variable form equations 4.27 and 4.28 can be written as,
Tail :
X;g = 222 x5 + 22.2 Wy . 4.29
Wing :
X,, = - 1098 x,, + 10.98 W, - 4.30
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Since the nose of the aircraft penetrates the gust field before its wing or its tail the gust effect will
be delayed - a pure transport delay. For the tail,at a distance of 56.1 m behind the nose the time

delay, at the given forward airspeed U ,was:

56.1
Tp =5

o

= (0.393 seconds . 431

A pure transport lag is characterised by the transfer function,viz:

-5T
Gs) =e ° . 4.32°

Equation 4.32 cannot be incorporated in the state equation in its exponential form. The Padé
table for e‘STd furnishes a particularly simple algebraic function(Wall {1948}, Truxal [1955]).
The Padé approximation is a rational algebraic function, with numerator polynomial of orderp,
and a denominator polynomial of order p_, such that the maximum number of terms in the Taylor
series expansion of the approximant agree with similar terms in the expansion of the exponential
function of equation 4.32. The choice of the order of the polynomials depends on the required
accuracy of the approximation, if T, is small then the higher order terms in the Taylor series
expansion of equation 4.32 can be neglected, and hence a low order Padé approximant may be

used.

To represent the time lag Ty (equation 4.31) a first over second order Padé approximant was

used, viz:
. 1 - 15T,
G. (s) = 3 . 4,33
T.
T 1 +33TT+152T.?.

8 T, is the time delay in seconds and s is the Laplace variable.
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Equation 4.33 after substitution of T, becomes:

GT s) = 1 -0.131s ’ 434
T

1 + 02625 + 0.02574 ¢

division of the numerator by 0.131 and division of the denominator by 0.02574 yields,

4.35

296.6 (5.098 - s)
GTT(S) - 2
s + 10.18s + 38.85

The Pad€ approximant to represent the transport lag to the tail as given in Prasad[1980], is,

1985 (1 + 0.4585)

T 2
s + 10.19 + 38.95
Re-expressing equation 4.36,
90.913 (2.184 + s) 437

GTT(s) ==
s + 10.19s + 38.95

Clearly, the transfer function of equation 4.37 does not agree wi_th the first over second order
Padé approximant of equation 4.35 (especially the numerator polynomial). However, in order to
validly compare the results obtained by Prasad (i.e,.reduction of bending and torsional moments
arising as a result of manoeuvre commands and atmospheric turbulence) and results presented in
chapter 5, the transfer function of equation 4.37 was employed to represent the time delay T, In

state variable form the transfer function can be written as:

Xyp = Xy - 5.096 x4 4.38

X, = 90.891 x,, - 38.95 x,; - 10.19 x,, 4.39
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The block diagram of the gust effect on the tail is shown as figure 4.3. Similarly the delay on
the gust appearing at the leading edge of the wing, 16.702 m aft of the nose, at the given

airspeed, was,

16.702
Ty = 5

a

= (.1168 seconds . 4.40

This delay was represented by a zero' over first order Padé approximant, whose transfer
function was,
1.0 1.0
= = 4.41
Cr,® = T3 Ty (1 + 0.11685)
where,
X,6(8)
15
= 4.42
OO = H
In state variable form, equation 4.39 can be expressed as,
X,q = -8.549 x4 + 8.549 Xpy 4,43

The block diagram of the gust effect striking the leading edge of the wing is shown as figure 4.4.
Equations 4.5, 4.6 and 4.12 do not contain the effect of gust delays and the unsteady
aerodynamic effects associated with the wing and the tail. State variables x4 and x4 are added

to equation 4.5, 4.6 and 4.12 via the appropriate stability derivatives.
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18 le(S)
— s +22.2 . s+ 10.19 s + 38.95 3
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Figure 4.3 : Block diagram representation of the gust effect on the tail.
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Kiissner dynamics Time delay

Figure 4.4 : Block diagram representation of the gust effect on the wing,
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4.3.5 Mathematical Model of Atmospheric Turbulence

The most widely used models to simulate atmospheric turbulence in aeronautical engineering
studies, produce signals with power spectral densities (P.S.D's) which match those obtained

from experimental investigations. These models are:

a) The Von Karman model
b} The Dryden model

Since only the vertical component of the gust was used in this research study, the appropriate

power spectral density of the vertical gust velocity, for the two models is,

Yon Karman

o2 L[12667(1.339L 0)’]

_ B
P, (@) = T ’ 4.44
(1+1.339Lw)°
Di‘yden |
o, L[1+3 Lw?
D, (0) =—=& , 445
14

2
[1+@ o]

where L= L_/U,, 02, is the variance of the gust velocity, L,, is the scale length of turbulence, U,
9
is the aircraft forward speed, w is the spatial frequency. Following data applies for the two

models,

U, 143 m/s
L, 576 m

g, 0.3048 m/s
L f LJ/Y, 4.028
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The power spectral densities ( P.S.D) of the two models are shown as figure 4.5, It is seen
from figure 4.5 that the Dryden model produces a P.S.D which closely approximates that
produced by the Von Karman model. Inclusion of the Von Karman mode! in the state equations,
to produce a P.S.D such as that of equation 4.44 is very difficult on account of the non integer
exponent. As a result of this difficulty it is common practice (and has been followed in this

work) to employ the Dryden model.

It is known (Chang [1955] ) that the power spectral density of a random signal is completely

determined by the filter characteristics and is given by,

<I)w (W)= IGw(jCD) r D (W) 4.46
g z n

where Uwg(‘”) is the power spectral density of the gust velocity, @, (w) is the power spectral
density of the input white noise and ng(jco) is the filter transfer function. From equations 4.45

and 4.46, it can be shown that,

4.48

G, 6)=0, JL 1+ 1.73:Ls)
¢ s (1+Ls)

The appropriate block diagram of the filter is shown as figure 4.6, whose input is white
noise and the output is the vertical gust velocity. A model of the Dryden filter was incorporated

in the state equation as follows, from figure 4.6

4.43

We® _ o JCa+1732L5)
ns) s q+Ls)

Re-expression of equation 4.48 yields,
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2. . 3.
L, + 2ng+wg=cwgffn+ﬁowg\/L q

Division of equatidn 4.49 by L? throughout, and re- arrangement yields,

. . +
g L 8 L2 g L3.!2 L1!2

Let,
Xp4= Wg
and ,
5o,
Xp=Wg~ "1z

L

Differentiation of equation 4.51 and 4.52 yields,

x24 “‘Wg )

. . ‘13 0‘Wg N
X =W _ -

23 g 172 n

n
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substitution of equation 4.50 (with Xoq= wg) in 4.54 yields,

2.1 Ow,
Xyg === Xpy === Xpy + =1 4.56
L2 L312

substitution of equation 4.55 in 4.56 yields,

2 1 @-fHo,
_— + —

T Xy5 = ?’54 ]_,3’2 . 4.57

With L= 4.028, and © ;= 0.3043, equation 4.55 and 4.57 can be expressed in the matrix form

as.

k.| [0497 -0.062][x5} [-0.093
_ + n . 458
1%, 1 0 ||x.] | 0262

State variable x,, was defined as the vertical gust velocity w, .
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4.4 Definition of the Output Vector

The output vector was defined as,

[ BM,, T™M,  i=12345 Yy 0o - ¥
BM,, TM1 1=1,2,3,4,5 Yips «« ¥z
§x k=1,2,..6 Yaqs + « +s¥2g
gx k=12 .6 Yops + - +s¥32
y= S, Y33
3, Y34
1
Ba Yis
S, Y36
1
w Y37
_ q i I R

where BM, denotes Bending moment at the i wing station, and TM; is the torsion moment at
the i"! wing station, &i is the mode rate associated with the ith flexural mode, &, is the mode
displacement associated with the ith flexural mode. Sa, sei, Sa,and Sei are aileron and inboard
elevator deflection rates and displacements respectively. Henceforth the subscript i to denote the
inboard elevator is dropped for convenience. w and q are rigid body vertical velocity and the

normalised pitch rate .The five specific wing'stations at which each of the bending and torsion

moments are defined [ Stone, Ward, Harvey et al (1972) ] are shown as figure 4.7.

4.5 Excitation Cases

In order to evaluate the performance of the uncontrolled aircraft model and the controlled aircraft

model artificial test situations were used. Table 4.3 shows the test situations employed. Test
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Figure 4.7 : Location of wing stations
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case SCI relates to the case when the model was excited by an initial condition on the
perturbation vertical velocity, w(0)=7.15 m/s, whilst initial conditions on other states, the
command vector and 11 (white noise) were zeroatt=0. In test case SC2 the model was
disturbed by a step aileron command, Sac = 0.025 radians , whilst initial conditions on the
states, inboard elevator command, and white noise were zero. Test case SC3 relates to the case
when x(0)=0, Sac =0.0, n=0, and a step elevator command, 8ec = (.01 radians, was applied.
For simulation of atmospheric turbulence, test case SC4 was employed, in which white noise of
zero mear, having a standard deviation of 0.3048 m/s, was applied at the input of the Dryden

filter whose output was the vertical gust velocity. For case SC4 , x(0)=0, u(®)=0.

CASE |w (mss) | O, (rad)| 3¢ (rad)| n® ()
SC1 7.15 0 0 0
SC2 0 0.025 0 0
SC3 0 0 0.01 0
SC4 0 0 0 0.3048
Table 4.3: Excitation cases
4.6 Manoeuvre Commands
It was shown in chapter 3 that a feedback control law of the type,
u=Kx 4.60

could be obtained by assigning both the eigenvalues and the eigenvectors. This method was used

3 The standard deviation of white noise of 0.3043 corresponds to moderate levels of turbulence.
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in the design of feedback controllers to achieve load reduction on the C-5A, i.e. to achieve a
reduction of bending and torsional moments at the five wing stations in response to the test cases

described in section 4.5.

In order to make a valid comparison of the performance of the uncontrolled aircraft, with that of
the controlled aircraft, the rigid body motion variables namely, vertical velocity, w , and the
normalised pitch rate, q, were forced in the closed-loop system to the same steady-state levels as
those of the uncontrolled variables w and q, for test cases SC2 and SC3. Since the response of
the aircraft due to manoeuvre commands and atmospheric turbulence was considered separately,
the state equation representing the dynamics of the C-5A, in the absence of any white noise, was

represented by equation,
x=Ax+Bu, 4.61

at steady state, x=0 andx=x

.o therefore from equation 4.61, for a command input u,

x._. =-A1Bu . ‘ 4.62

55

Substitution of equation 4.60 in 4.61 yields the closed-locop system,viz:
x=(A +BK)x . 4.63

In order to force the closed-loop rigid body variables w and q to the same steady-state open-loop
values, equation 4.63 was forced by a command vector re R, rT = I, T, ... I ], acting

through a suitable matrix E of the order [a * m], such that,
x=(A+BK) +Er . . 4.64

At steady state, X =0, X =X, , the controlled steady-state vector, from equation 4.64
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therefore is,
X, = (A + BK) ‘1Ep . 4.65

If the steady state values of w & q of the uncontrolled aircraft are to be identical to the values of

w & q for the controlled aircraft, then from equation 4.62 and 4.65,
r=E'(A + BK)A'lBu , 4.66

where Etis the gexfr’aliscd inverse of E. The matrix E was selected to be,

1 0
0 1
o
_b 0

If only one closed-loop variable is required to be forcéd, then the matrix E is of the order [n* 1]
and r is then a scaler. The element ¢, in E is set to unity corresponding to the i state. Since

two variables were required to be forced, the dimension of the forcing vector was chosen to
be 2, and the choice of the elements in E was made such that, w was forced by command r, and
q was forced by command r,. The forcing vector r could be determined for a known command
vector u (used for exciting the uncontrolled aircraft) and feedback matrix K. The output vector,

equation 4.2, for a control law of the type u = K x can be written as,
y=(C+DK)x . 4.67

At steady-state, x=x_.., therefore substitution of equation 4.65 in 4;67, yields,

$8¢?
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y = -(C + DK)(A + BK)Er . 4.68

Equation 4.68 was used to calculate the steady-state values of the output vector y, enabling a
comparison of the uncontrolled steady-state levels of the bending and torsional moments with the
steady-state levels of the bending and torsional moments of the controlled aircraft, for test case

SC2 and SC3. The block diagram of the forced closed-loop system is presented as figure 4.8

4.7 Analysis of the Dynamic Response of the Uncontrolled Aircraft

In order to determine, in the absence of turbulence, dynamical characteristics of the uncontrolled
aircraft, represented by equation 4.61, the eigenvalues of matrix A, namely A, i=1,2,.0 were

found from the characteristic equation, viz:
Det[Al-A]=0 - 4.69

The eigenvalues as determined from equation 4.69, are presented in table 4.5. The complex
conjugate pair A,, A, is associated with the short period rigid body motion of the C-5A; A,,..,
A, are associated with the first six flexural modes and are listed in the order of ascending
frequency; complex conjugate pair A4, A, is associated with the first flexural mode, whereas the
complex conjugate pair A4, Ay, is associated with the sixth flexural mode. Eigenvalues A,s,
A¢ and A, are associated with the aileron, inboard elevator and outboard elevator
modes.Eigenvalue A4 is associated with the Kiissner dynamics of the tail. Eigenv'alue Ao is
associated with the first order Padé approximation, representing the time delay on the gust
appearing at the leading edge of the wing. The pair A, A,; is associated with the second order
Padé approximation, representing the time delay on the gust appearing at the tail. Eigenvalue 4,,
is associated with the Kiissner dynamics of the wing. A, and A, are associated with the

Dryden filter modes.
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Figure 4.8 : Block diagram representing the closed-loop

dynamics of the C-5A Galaxy.
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Eigenvalue Natural Damping
Frequency Ratio
Ctjo  (rad/s) 'S
Ay Ay -0.88+j 1.27 1.55 0.571
Ay Ay -0.51+j 5.46 5.48 0.093
Mg » Ag 023%j11.12 11.12 0.021
Ay s Ay 0.57+j13.80 13.81 | 0.042
Ay s hpg -0.61+j 15.59 15.61 0.039
S 0.43+j17.48 17.49 0.024
A Ay -0.62+18.78 18.79 0.033
Ais -6.0 - -
M -15 - -
A7 -7.5 - -
7L11;& -22.25 - -
Ao -8.549 - -
e 5.1%j3.6 6.24 0.816
Ay -10.98 - -
Ays -0.247 - -
sy -0.249 - -

Table 4.4: Eigenvalues of the uncontrolled aircraft

From table 4.5 it is observed that the flexural modes are lightly damped. The damping ratio of
the first flexural mode being 0.09 which possessed best damping, all other modes have damping
ratio of less than 0.05. It was assumed by Harvey & Pope[1977]1 that the damping ratios

associated with the flexural modes were all equal to 0.1.

T on page 217 of Harvey's report the open-loop eigenvalues corresponding to the six flexural modes indicate that

the damping ratios associated with the six flexural modes are not all equal to 0.1, contrary to the assumption made

by Harvey.
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Itis evident from table 4.5 that the damping ratios are not all equal to 0.1; these computed values
match those given in Harvey and Pope. The damping of the modes can be augmented by state
variable feedback, using the eigenpair assignment method described in chapter 3. To examine,

which of the modes can be altered by F.S.V.F., the controllability matrix is constructed viz:
L=U,'B , 4.70

where U, is the modal matrix, whose columns are composed of the eigenvectors of the matrix A.
It was found that only the modes associated with eigenvalues A, . . ., A,; were controllable
i.e, they can be altered by feedback. It has been suggested by McLean [1976], Harvey &
Pope[1977] and Prasad{1980] that although the second flexural mode is controllable, the
eigenvalue associated with the second flexural mode remains unchangcﬁ by feedback. This
implies that either the second mode is uncontrollable or the weighting matrices, in the LQP
formulation, used by McLean, Harvey and Prasad to compute the fec‘:dback control law were
inadequate. The Iatfe::r is more likely, because the weighting matrices were choosen by trial and
error method. It is shown in chapter 5, that their observation on the controllability of the second
flexural mode is not valid. Although the modes associated with eigenvalues A,4,.., A,, are
uncontrollable, they are seen to be stable, i.e., all eigenvalues have negative real parts, see table

4.4,

The time response of bending and torsion moments of the uncontrolled aircraft for test case SC1
is shown on figure 4.9 and figure 4.10 respectively. It is observed that the response is
oscillatory, which from the fatigue point of view for the subject aircraft is not desirable, Konar et
al [1976]. The time responses of the bending and torsion moments for test cases SC2 an SC3 are
presented as figures 4.11, 4.12, 4.13 and 4.14 respectively. It is observed from these figures
that the time response is oscillatory. Design of full state variable feedback controllers, for
structural load alleviation (using the.eigenpair assignment method) is presented in the next

chapter.
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5.1 Introduction

Alleviation of structural loads arising as a result of manoeuvre commands or atmospheric
turbulence, on aircraft such as the C-5A Galaxy, can be beneficial from both the ultimate strength
and fatigue damage standpoint by increasing the structural durability and improvement in the
fatigue life of the structural components. A number of methods of synthesising control systems
by the use of modem control techniques to achieve such alleviation have been proposed by Stone
et al [1972), Konar et al [1976], Harvey & Pope [1977] and Prasad [1980), for example.

Most of the published work has been concerned with the design of control systems for structural
load alleviation (SLA), manoeuvre load control (MLC) and gust load alleviation (GLA), using the
Linear Quadratic Problem (LQP) method. However, a deficiency of the LQP method for the
purposes of SLA lies in the fact that the characteristics of the flexural modes, such as frequency
and damping, are arbitrarily assigned and that the selection of the weighting matrices in the LQP
design do not relate to the physical requirements; thus a trial and error approach is often adopted
for the selection of the weighting matrices. Since the precise specification of the eigenvalues and
ciécnvectors is ndt attainable using the LQP design, the effects of altering the flexural mode
characteristics, on the structural loads on the C-5A, has not previously been studied in a direct

way.

It has been shown by Prasad that for SLA, the feedback control law obtained by the LQP
method, required the time constant associated with the inboard elevator dynamics to be 3.0 * 1074
seconds, which is too fast for the capabilities of the present day control surface actuators. In
‘thc same work it was also noted that the second flexural mode always remained unaffected by
feedback. This result may have been due to the choice of weighting matrices considered in that
work, It was shown in chapter 3 of this dissertation that, for the L-1011 Tristar, the
mathematical model of which consisted solely of the rigid body dynamics, a feedback control law
could be realised by the use of an eigenpair assignment method. This method was shown to

provide a feedback control superior to any obtained by other design methods.
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If structural loads on the aircraft being studied are to be reduced, then the rates and the
displacements of the flexural modes must be reduced. Since the bending and torsional moments
are related to the aircraft’s state variables, any reduction of peak and RMS values reflects in the

responses of the bending and torsional moments.

5.2 Specification of the closed-loop eigenstructure

It is well known, (Bisplinghoff, Ashley & Halfman [1955]), that to reduce the displacements of a
mode of a vibrating cantilevered slender beam (the wing of the C-5A may be regarded as a
slender beam) either Young's modulus should be increased or the moment of inertia should be
increased, or both should be increased. “The form of open-loop control is to employ hardware
modifications, for example by making the wing stiffer (i.e., increasing the moment of inertia},
The disadvantage of such changes is the inevitable increase in the weight of the structure, thereby
causing a reduction in the payload carrying capacity of the aircraft. The other form of open-loop
control is to increase the Young's modulus, which results in increased structural damping. The
effect of increase in the stiffness or the Young’s modulus is to increase the frequencies or the

damping of the flexural modes.

It is known that SLA can only be possible if the frequencies of the flexural modes are well
separated from the frequencies of the rigid-body modes or the flexural modes ;é have sufficient
damping. The damping in the flexural modes allows any absorbed energy to be dissipated
rapidly. Instead of employing the form of open-loop control (i.e., hardware modifications), the
frequencies and the damping of the flexural modes can be altered by the use of feedback control.
This surmounts to altering the eigenvalues associated with the flexural modes by feedback

control.

It was shown in section 4.7, that the first sixteen state variables of the C-5A Galaxy were

controllable. The modes identified with the controllable state variables were,
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- rigid body mode (short period pitching oscillation),
- first six flexural modes,

- aileron and inboard elevator modes.

Furthermore, the first twenty state variables are observable (in control sense) in the bending and
torsional moments at the five specific wing stations. Hence any shift in the eigenvalues of the

controllable modes will reflect in the bending and torsional moment responses.

It was seen from the dynamic response of BM and TM, figures 4.9 to 4.14, that the responses
were lightly damped. The oscillatory nature of these responses was attributed to insufficient
damping in the flexural modes, the corresponding damping ratios shown in table 4.5 all being
low. Toincrease damping of the TM and BM responses ’the damping in the flexural modes had

to be increased.

It is also required that the controlled aircraft should have the same handling qualities (usually
expressed in terms of the eigenvalues associated with the short period mode) as the uncontroiled
aircraft. Therefore:’ it was specified that the closed-loop system should have the same short period
dynamics as the uncontrolled aircraft. Since the eigenvalues associated with the Kiissner
dynamics, the outboard elevator and those associated with the Dryden filter, were uncontrollable,
no attempt was made to alter them. However the possibility of assigning the eigenvectors
associated with the uncontrollable eigenvalues was considered. Although the eigenvalues
éssociated with the aileron and the elevator modes could be controlled, they were specified in the
closed-loop as having the same numerical values as in the open-loop. Since any changes in the
eigenvalues of the closed-loop would have implied the use of actuators with different dynamic
properties from those in actual use on the aircraft. Therefore, there only remained the problem of

specifying the eigenvalues associated with the six flexural modes.
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5.2.1 Specification of the closed-loop eigenvalues

To illustrate the effect of the increase in the damping ratios of the flexural modes on the BM and

TM response, the set of eigenvalues as given in table 5.1, was specified for the closed-loop.

Mode Eigenvalue Frequency Damping Ratio
1 -2.54=+j 4.86 5.48 0.465
2 -1.16+j11.06 11.12 0.104
3 -2.86 £j13.51 13.81 0.207
4 -3.03+j15.31 15.61 0.194
5 -2.13+£j17.36 17.49 0.122
6 -3.10+j18.53 18.79 0.165

Table 5.1: Specified closed-loop eigenvalues

It can be seen .from table 5.1, that while specifying the closed-loop damping ratios associated
* with the six flexural modes, the frequencies are the same as they were in the open-loop (see table
4.5). An arbitrary increase in the values of the damping ratios, of five times that of the
uncontrolled values is speciﬁedﬂ. The damping ratio of the first flexural mode is required to be
augmented from 0.093 (the uncontrolied value) to 0.465 (controlled value) , see table 5.1. An
arbitrary increase of five times the computed value in the damping ratio, especially that of the
first flexural mode, will result in a favourable bending moment response. It is shown later that

the first flexural mode has a dominant influence on the bending moment response.

5% excessive damping is required, then not only will the control activity be high but the corresponding control
deflections will be high as well. Therefore, an increase of five times in the values of the damping ratio was

considered to be adequate.
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5.2.2 Specification of the closed-loop eigenvectors

Case A: The equations which determine the influence of eigenvectors on the state variable
response, due to initial conditions on the states and due to control inputs were developed in
section 2.5. Although the equations for zero input and zero state response i.e., equation 2.28
and 2.32 were developed for the open-loop case, similar expressions can be obtained for the
closed-loop response, by replacing matrix A with the matrix (A + BK) which is the closed-loop
matrix. It has been pointed out (see section 5.1 ) that if structural loads are to be reduced, then
the amplitude of the flexural modes must be reduced. An eigenvector selection scheme which
enabled some reductions in the amplitude of motion variables, pertinent to the lateral dynamics of
the L-1011 Tristar, was presented in section 3.5 of this thesis. The eigenvectors (chosen from
the computed null space vectdrs) corresponding to the specified eigenvalues allowed the

participation of each mode in the dominant mode variables.

For example, for the C-5A, the short period mode is mainly composed of the vertical velocity and
the normalised pitch rate (state variables x, and x,); some contribution from flexural modes will
also result as the rigid body motion is seen to be coupled to the elastic motion, see equations 4.4
and 4.6. State variable x, and x, are termed a< the dominant mode variables of the short period
mode. The overall amplitude of the variables x, and x, can be reduced if the specified
eigenvectors inhibit the participation of the remaining modes in the response of x; and x,.
Similarly the amplitude of the variables x, and xg i.e., 1% flexural mode rate and displacement;

(Note that for this mode x4 and x, are termed as the dominant mode variables ) can be reduced if
the specified eigenvectors inhibit the participation of the short period mode, the second flexural
mode , the third flexural mode, the fourth flcxurai mode, the fifth flexural mode and the sixth
flexural mode to the response of the motion variable x5 and x,. This would imply that the
specified eigenvectors allow only the 15t flexural mode to participate in the response of x; and

xy. If the eigenvectors corresponding to the remaining flexural modes are specified in a similar

way, decoupling of the flexural modes will result.
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The null space eigenvectors of equation 3.72 are presented in table 5.2 to 5.8 corresponding to
the short period eigenvalue and the specified eigenvalue set of table 5.1. The contribution of a
specific mode to the motion variables is presented as a percentage in these tables, enabling the
choice of an appropriate eigenvector from the computed null space eigenvectors , even though the
eigenvector components may be complex. This is possible due to normalisation of eigenvectors,

as discussed in section 2.5 and 3.6.

From Table 5.2 Py, is chosen, because the short period mode is seen to be contributing
predominantly to the vertical velocity and the pitch rate (the percent contributions being 86.5 and
13.3 respectively). From table 5.3 P2, is chosen because the 15¢ flexural mode is seen to be
contributing mainly to the 1% flexural mode rate and displacement (the percent contributions are
seen to be 96.0 and 3.2, respectively). For the 2° flexural mode eigenvector P1; was chosen
from table 5.4, although it is seen that the second flexural mode is contributing heavily to the
third flexural mode rate, some contribution to the rigid body variables and higher frequency
flexural modes is also noted. Nevertheless, if cigcnvector_Pzi were chosen then it would seem
that the second mode would certainly contribute to the first flexural mode rate. As most of the
bending energy is thought be contained in the first flexural mode rate and displacement, any
contributions from the higher frequency modes to these variables is not desirable. Hence the
choice of P1. would decouple the first and the second flexural modes. From table 5.5 the third
mode is seen to be contributing mainly to the third flexural mode rate, therefore P1, was chosen.
From table 5.6 Bzi is chosen. It is seen that the contribution of the fourth mode to the 4th |
flexural mode rate is 49%. Some contribution to other motion variables is also noted. From
tables 5.7 and 5.8 eigenvectors P2, was chosen for the fifth and P2, was chosen for the sixth
flexural mode. The open-loop eigenvectors corrcsponding to the remaining uncontrollable
eigenvalues were specified in the closed-loop. Also presented in tables 5.2-5.8 are the vectors
@xi . Since xi_s either 1 or 2 (because the dimension of the control vector is 2), whenever
eigenvector P1. is selected eigenvector @1, is also chosen. Similarly, whenever eigenvector P2, is

selected eigenvector "-92i is selected as well. This enables definition of equation 3.73.
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EIGENVALUE A; = -0.88 + j 1.273 Short Period Mode i=1

R

Eigenvector
Pz,

Eigenvector
2

13

State variable

0.000
0.116
0.487
0.003
0.022
-0.023
-0.001
0.007
-0.537
-0.004
-0.026
0.026
0.001
-0.008
0.005
-0.001
0.000
0.000
0.000
0.000
0.000
g.000
0.000
0.000

Vertical Vel 0.930
Pitch rate : -0.073
Flexural mode 1, rate -0.020
Flexural mode 2, rate -0.001
Flexural mode 3, rate -0.002
Flexural mode 4, rate 0.009
Flexural mode 5, rate 0.001
Flexural mode 6, rate -0.003
Flexural mode 1, disp -0.009
Flexural mode 2, disp 8.001
Flexural mode 3, disp 0.003
Flexural mode 4, disp -0.006
Flexural mode 5, disp -0.001
Fiexural mode 8, disp 0.002
Aileron Dfln 0.000
Inb. Elev Dfln 8.000
Otb. Elev Dfln 8.000
Kiissner Dyn 0.000
Kissner Dyn 0.000
Kissner Dyn 0.000
Kissner Dyn 0.000
Kiissner Dyn 0.000
Dryden state 0.000
Gust Velocity 0.000

s * % a4 & @
[=1]
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0.000 , 0.000 . -0.004 , -0.001
0.000 , 0.000 . 0.001 , 0.000

Table 5.2: Assignable eigenvectors
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EIGENVALUE A3 = -2.537 + j 1.486 First Flexural Mode i =3

State variable

Eigenvector
Lo

R

Eigenvector

Pz,

R

Vertical Vel

Pitch rate

Flexural mode 1, rate
Flexural mode 2, rate
Flexural mode 3, rate
Flexural mode 4, rate
Flexural mode 5, rate
Flexural mode 6, rate
Flexural mode 1, disp
Flexural mode 2, disp
Flexural mode 3, disp
Flexural mode 4, disp
Flexural mode 5, disp
Flexural mode 6, disp
Aileron Dfln

Inb. Elev Dfln

Otb. Elev Dfln
Kiissner Dyn

Kiissner Dyn

Kiissner Dyn

Kiissner Dyn

Kiissner Dyn

Dryden state

Gust Velocity

0.506
-0.177
0.043
0.025
0.147
0.096
0.020
-0.028
-0.008
-0.003
-0.019
-0.014
-0.003
0.004
0.000
0.001
0.000
0.060
0.000
0.000
0.000
0.000
0.000
0.000

@1,

=3 b3
SC~MNOoOOOoW
* 4 & e * = =

. . .

. . ¢« e+ =
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0.000
0.062
0.850
0.004
0.030
-0.042
-0.003
0.013
0.007
-0.001
-0.005
0.006
0.000
-0.002
0.001
0.000
0.040
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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0.000
-0.001

Table 5.3: Assignable eigenvectors
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EIGENVALUE A5 = -1.156 + j 11.06 Second Flexural Mode

State variable

Eigenvector

2y,

R

Eigenvector

Pz,

Vertical Vel

Pitch rate

Flexural mode 1, rate
Flexural mode 2, rate
Flexural mode 3, rate
Flexural mode 4, rate
Flexural mode 35, rate
Flexural mode 6, rate
Flexural mode 1, disp
Flexural mode 2, disp
Flexural mode 3, disp
Flexural mode 4, disp
Flexural mode 5, disp
Flexural mode 8, disp
Aileron DfIn

Inb. Elev Dfln

Otb. Elev DflIn
Kiissner Dyn

Kissner Dyn

Kiissner Dyn

Kiissner Dyn

Kiissner Dyn

Dryden state

Gust Veloeity

-0.121
-0.104
-0.155
-0.249
-0.024
-0.088
-0.008
0.016
0.018
0.010
0.063
0.032
0.006
-0.008
0.000
-0.002
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

et

.

— oh
- L] L) L]

« 4 .

OO 0O OO0 OHCLKdOD~Ide ~I1howdnin

.

0.000
-0.058
0.815
-0.082
-0.315
0.329
0.019
-0.079
-0.030
-0.004
0.016
0.006
0.001
-0.001
-0.001
0.000
6.008
0.000
0.000
0.000
0.600
0.000
0.000
0.000

Wy

N M W WM W W W WM WM WM M OM W WM MW W M M WM M N

0.001
0.002

*
’

0.000
0.003

0.0
8.0

-0.004
0.001

’
¥

0.003
0.000

Table 5.4: Assignable eigenvectors

143

Pk pd ]
OO0V OOOOCOOOOCOOM D LR O
. = . - . & & = 0 -

L LI R |
OO OO0 00O MHOM~IHOYLRNOD

*




EIGENVALUE A; = -2.858 + j 13.511 Third Flexural Mode i=7

R
R

Eigenvector Eigenvector

State variable

P, . Pz

0.000
0.060
0.395
0.015
0.118
-0.574
-0.042
0.080
0.033
-0.001
~0.020
0.029
0.003
-0.010
0.002
-0.001
0.000
0.000
0.000
0.000
¢.000
0.000
0.000
0.000

Vertical Vel -0.066
Pitch rate -0.071
Flexursl mode 1, rate -0.282
Flexural mode 2, rate -0.058
Flexural mode 3, rate -0.826
Flexural mode 4, rate ~0.358
Flexural mode 5, rate -0.042
Flexural mode 8, rate 8.070
Flexural mode 1, disp 0.003
Flexural mode 2, disp -0.002
Flexural mode 3, disp 0.024
Flexural mode 4, disp 0.010
Flexural mode 5, disp 0.004
Flexural mode 6, disp -0.004
Aileron DfIn -0.001
Inb. Elev Dfln -0.001
Otb. Elev Dfln 0.000
Kiissner Dyn §.000
Kiissner Dyn 0.000
Kiissner Dyn 0.000
Kiissner Dyn 0.000
Kiissner Dyn 0.000
Dryden state 0.000
¥Gust Velocity 0.000
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0.002 , 0.001
6.000 , 0.002

Table 5.5: Assignable eigenvectors
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EIGENVALUE Ag = -3.03 +j 15.61 Fourth Flexural Mode i =9

R

Eigenvector Eigenvector

State variable

igF B2,

0.000
0.089
0.288
0.016
0.183
-0.572
-0.120
0.226
0.024
-0.001
-0.018
-0.017
0.001
-0.009
0.002
-0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Vertical Vel 0.065
Pitch rate 0.098
Flexural mode 1, rate 0.441
Flexural mode 2, rate 0.041
Flexural mode 3, rate 0.693
Flexural mode 4, rate 0.142
Flexural mode 5, rate 0.092
Flexursgl mode 6, rate -0.099
Flexural mode 1, disp 0.003
Flexural mode 2, disp 0.002
Flexural mode 3, disp 0.011
Flexural mode 4, disp 0.016
Flexural mode 5, disp -0.003
Flexural mode 6, disp -0.001
Aileron Dfln 0.002
Inb. Elev Dfln 0.001
Otb. Elev Dfln 0.600
Kiissner Dyn 0.000
Kiissner Dyn 0.000
Kiissner Dyn 0.000
Kiissner Dyn 0.000
Kiissner Dyn 0.000
Dryden state 0.000
Gust Velocity 0.000

-
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Table 5.6: Assignable eigenvectors
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EIGENVALUE \;; = -2.134 + j 17.359 Fifth Flexural Mode i = II

R

Eigenvector Eigenvector
By P2

State variable

0.000
0.110
0.120
0.023
0.325
-0.182
-0.166
0.372
0.024
-0.001
-0.011
-0.035
-0.005
-0.008
0.001
-0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Vertical Vel -0.065
Pitch rate -0.112
Flexural mode 1, rate -0.463
Flexural mode 2, rate -0.037
Flexural mode 3, rate -0.595
Flexural mode 4, rate 0.008
Flexural mode 5, rate -0.161
Flexural mode 6, rate 0.143
Flexural mode 1, disp -0.008
Flexurzl mode 2, disp -0.002
Flexural mode 3, disp ~0.020
Flexural mode 4, disp -0.018
Flexural mode 5, disp 0.004
Flexural mode 6, disp 0.003
Aileron DfIn -0.001
Inb. Elev DflIn -0.001
Otb. Elev Dfln 0.000
Kissner Dyn 0.000
Kiissner Dyn 0.000
Kiissner Dyn 0.000
Kiissner Dyn 0.000
Kiissner Dyn ¢.000
§Dryden state 0.000
Gust Velocity 0.000

*
]

- N (-]
» L] L) [ ] [ ] [ . - » L] - L[] - . .‘-p'.o?‘.ho

- W - (]
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0.007 , 0.003
0.001 , 0.001

Table 5.7: Assignable eigenvectors
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EIGENVALUE A;3 = -3.10 +j 18.53 Sixth Flexural Mode =13

R
R

Eigenvector
P2

Eigenvector
o1,

L

State variable

0.000
0.084
0.320
0.018
0.249
-0.345
-0.126
0.422
0.020
-0.001
-0.013
-0.023
-0.004
-0.003
0.002
-0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
¢.000

Vertical Vel -0.072
Piteh rate -0.136
Flexural mode 1, rate -0.459
Flexural mode 2, rate -0.041
Flexural mode 3, rate -0.581
Flexural mode 4, rate -0.059
Flexural mode 35, rate -0.158
Flexural mode 6, rate 0.139
Flexural mode 1, disp -0.005
Flexural mode 2, disp -0.002
Flexural mode 3, disp -0.017
Flexural mode 4, disp -0.016
Flexural mode 5, disp ¢.000
Flexural mode 6, disp 0.006
Aileron Dfln -0.002
Inb. Elev Dfln -0.001
Otb. Elev Dfln 0.000
Kiissner Dyn 0.000
Kissner Dyn 0.000
Kissner Dyn 0.000
Kiissner Dyn 0.000
Kissner Dyn 0.000
Dryden state 0.000
Gust Velocity 0.000
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0.007 , 0.004
0.001 , 0.003

Table 5.8: Assignable eigenvectors
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CASE B : From the computed null space eigenvectors, corresponding to the short period
eigenvalues and the specified eigenvalue set of table 5.1 (tables 5.2-5.8), appropriate
eigenvectors were chosen such that the short period mode was allowed to contribute to the
vertical velocity and pitch rate response, the contribution from the six flexural modes to vertical
velocity and pitch rate being small. The eigenvectors thus specified should completely decouple
the rigid body motions and the elastic motions. Eigenvectors shown in table 5.9 were chosen for

this case.

Table Number Mode Eigenvector
52 Short Period mode Bli i=1
5.3 First Flexural mode b 2, i=3
5.4 Second Flexural mode P 2 1= ]
55 Third Flexural mode P 2, 1T 7
5.6 Fourth Flexural mode _i?zi i=9
5.7 Fifth Flexural mode P g, 1Tl
5.8 Sixth Flexural mode Py i-13

Table 5.9 : Specified closed-loop eigenvectors : Case B

The eigenvector choice of case B differs from case A on two counts: firstly eigenvector 22, has
been specified for 20d flexural mode, secondly eigenvector P2, has been specified for 3rd
flexural mode. The choice of the eigenvectors corresponding to the short period mode and other
flexural modes is same for both cases. As in case A, the eigenvectors corresponding to the

uncontrollable eigenvalues were specified for the closed-loop.

The aileron command Sac and inboard elevator command Sec for the controlled aircraft, can be

expressed by the following equations,viz:
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£3a=1<7.1x *x1+K11*x +...+ Kl * Xy ) 51

o 1 2 2 %4
Sec= szl* X, + K2x2* Xydouu KZXZ;“ X4 . 5.2
The feedback gains le1 K2xl tc., are given in table 5.9, and the state variables x,, x, etc.,

have been defined in table 4.2.

CASE A CASE B CASE A CASE B
Kl -0.00065 -0.00063 K2, -0.00027 -0.00004
Kly, 000082 -0.00179 K2y, -0.00045 -0.00024
Kly, 0.00134 0.00092 K2y, -0.00006 -0.00011
Kly, 0.01381 -0.05776 K2y, -0.00828 0.01271
Klye 000883 -0.00617 K24 -0.00159 0.00840
Klze  -0.00858 -0.00242 K2y -0.00140 -0.00088
Kly, 011414 -0.05241 K2y, 0.03754 0.03929
Klyg  -0.00468 -0.00685 K2xg -0.00814 -0.00474
Klyy  -001054 -0.00259 K2y 0.00337 0.00196
Klyo 003067 -0.08797 K210 0.12186 -0.24687
Klyy 002194 2024107 K21 -0.02153 0.02095
Klyis 030891 0.09128 K215 -0.12755 -0.07652
Kly;s 019803 -0.66197 K23 -0.47339 . 0.19664
Ky s 071917 0.31820 K2x 14 -0.23943 -0.20997
Klys 140000 -1.42180 K2xs 0.17116 -0.39238
Kly g 233750 -1.48620 K2 6 2.09120 207370
Kly, 048027 -0.43605 K247 -0.51838 0.47782
Klyg  -0.00015 000144 K28 0.00089 0.00087
Kixig 000143 0.00276 K219 0.00051 0.00543
Rlyg 001117 -0.01776 K20 -0.01152 -0.00658
Kly,, 000006 -0.00153 K21 000024 0.00051
Klyyy 000487 0.00599 K2y 0.00182 0.00001
Kly,s  0.00530 0.00146 K243 -0.00103 -0.00027
Klyy  -001678 0.00083 K24 0.00379 -0.00405

Table 5.9 : Feedback gains of Law A and Law BS

¥ e gains have been rounded off to 5 decimal places. However double precision (14 significant decimal plhces)

was used throughout in the computer programs.
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5.2.3 Effect of feedback on Flexural modes

The rates and displacements of the first three flexural modes for control law A, test case SC1 are
presented in figures 5.1 to 5.6. From inspection of figures 5.1 and 5.2 it can be seen that the
controlled response is damped, and has smaller peak values, than the uncontrolled response. The
desired damping ratio for the first mode of 0.463 being assigned exactly (see table 5.11). From
figure 5.3 and 5.4 it can be seen that, a slight increase in the peak values of the second flexural
mode has occurred, although the damping ratio has increased from 0.021 to 0.104, this
represents an increase of five times the uncontrolled damping ratio (see table 5.11). It is obvious
from figures 5.3 and 5.4 that the second mode has been controlled. Figures 5.5 and 5.6 indicate
an increase in the peak values of the rate and displacement associated with the third flexural

mode; nevertheless, the RMS vatues of the controlled response were much l.ower.

The dominance of the first bending mode can be inferred from an examination of figure 5.1 and
5.2. The peak values of the mode rate and displacement of this mode are much higher than the
peak values of the second and third flexural modes. For example, the peak bending displacement
of the first mode is seen to be 0.4 m, whereas, that of the second and the third modes are 0.0071
m and 0.021 m respectively. Therefore, the first flexural mode is likely to affect the bending
moment response more than the second and third flexural modes (the deduction is based on an
examination of the matrix [ C+ DK ] i.e, the closed-loop output matrix, in conjunction with

peak values of mode rates and displacements).

Although the responses of the other high frequency flexural modes are not shown, the peak
values of the 4, 5t and 6™ flexural modes were found to be 0.04 m, 0.005 m and 0.003 m
respectively. The specified damping ratios of 4%, 5" and 6™ flexural modes were assigned

exactly (see table 5.11).
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Mode Eigenvalue Frequency Damping Ratio
Short Period -0.88+j 1.27 1.55 0.569
First Flexural mode -2.53%+j4.86 5.48 0.463
Second Flexural mode -1.16 £ 11.06 11.12 0.104
Third Flexural mode -2.86£j13.51 13.81 0.207
Fourth Flexural mode -3.02%£315.31 15.61 0.194
Fifth Flexural mode -2.13+j17.36 17.49 0.122
Sixth Flexural mode -3.10%£;18.53 1879 0.165
Adleron -6.0 - -
Inboard Elevator 7.5 - -
Outboard Elevator -7.5 - -
Kiissner Dynamics : Tail -22.25 - -
Kiissner Dynamics : Wing -10.98 - -
First Order Padé approx. -8.54 - -
Second Order Padé approx. | -5.10%j3.60 6.24 0.816
Dryden Filter -0.247 - -
Dryden Filter -0.249 - -

Table 5.11: Eigenvalues of the closed-loop system, using Law A

5.3 Comparison between feedback laws A and B

These feedback control laws were obtained primarily to establish the validity of the eigenpair
assignment method for structural load alleviation in particular the eigenvector selection scheme of
case A (as discuésed in section 5.2.2 of this thesis). The BM responses at W.S.1, W.S.2 and
W.S.3 for control laws A and B, for test case SC1, are shown as figures 5.7 and 5.8,
Comparison of figures 5.7 and 5.8 shows that the application of control law B results in a greater
reduction of beﬁding moments compared to the reductions obtained by using control lIaw A,
from consideration of both the peak and the RMS values. The TM responses for control laws A
and B (for test case SC1), are shown as figures 5.9 and 5.10, it is evident from these figures that
the peak values of TM responses for law A are lower then those obtained by law B. The
controlled responses for both laws are more damped than the uncontrolled response, which is

highly oscillatory. The controlled response is satisfactory from the consideration of fatigue
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standpoint, since only low frequency components are present with high frequency components

having being reduced.

The reductions, expressed as percentages in the RMS values of the BM and TM at the five wing
stations for both control laws, are presented as figures 5.11 and 5.12. From figure 5.11 it may
be noted that the bending moment reduction is greatest near the wing tip, whereas the
corresponding torsional moment at W.S.5 has increased. The increase in TM is due largely to
the fact that the ailerons are situatéd near the wing tip; the symmetric deflection of ailerons which
helps to decrease the bending moments, results in an increase in the torsional moments. A
reduction of 22% in the RMS value of the BM, together with an increase of 7.5% inthe RMS
value of the TM at W.S.1 was achieved for control law A. From figure 5.12 it is seen that
control law B results in greater RMS reductions of the bending moments when compared to the

reductions obtained for control law A.

Presented as figures 5.13 and 5.14 are the peak values of the bending and torsional moments for
laws A and B respectively. It is seen from figure 5.13 that the reductions in the peak values of
the bending moments for law B are much greater than for law A. Nevertheless, from figure 5.14
it is seen that the peak torsional moments are considerably greater for law B compared to the

values resulting in the uncontrolled case.

One noteworthy feature of the BM response presented in figure 5.7 is its similarity to the shape
of the displacement response of the first flexural mode (see figure 5.2), which confirms the

dominance of the influence of the first flexural mode upon the bending moment response.

From the results presented so far, the use of control law A produced better results than obtained
by using control law B. It has been shown that although the use of law B can produce the
desired reductions in bending moments, an associated increase in the torsional moments is
always observed.It was decided therefore to use control law A in the further studies relating to

manoeuvre load control (MLC) and gust load alleviation (GLA).
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5.4 Manoeuvre Load Control

The method described in section 4.6 was used to force the closed-loop system. The effect of
commands to both the ailerons and the inboard elevator is studied. The forcing vector (equation

4.66) computed for test cases SC2 and SC3 was found to be,

Test case SC2
-2.24
r=[-11.21] ' 33
Test case SC3
1.667
r=[-22.11] ' 5.4

The steady-state values for test case SC2 and SC3, of the vertical velocity (w) were found to be
-0:48 m/s and -0.83 m/s respectively these values are comparable to the values for the
uncontrolled aircraft, being within 0.2% of the uncontrolled values. The steady-state values of
the normalised pitch rate (g ), for test case SC2 and SC3 were found to be -0.075 m/s and -0.146

m/s respectively, which are within 5.0% of the uncontrolled values.

The controlled responses of the normalised pitch rate and the vertical velocity are shown as
figures 5.15a and 5.15b respectively. It is seen from these figures that the controlled response
closely follows the uncontrolled response. Since a pilot's motion cues are based on the rigid
body motion variables, by forcing the controlled rigid body variables to the same steady-state
values as in the open-loop system, it is then possible to assess any reductions in the

bending and torsional moments which may arise due to command inputs.

From figure 5.15a and 5.15b it is also seen that the dynamic response of the controlled variables
w and q are almost identical to those of the uncontrolled variables. This is because the short

period eigenvalues have not been altered in the closed-loop. Minor differences occur due to
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difference in the closed-loop eigenvectors corresponding to the short period eigenvalues.

The assessment of bending and torsional moments is based on the peak values and the RMS
values. For the controlled aircraft (control law A, test case SC2), the responses of the bending
and torsional moments at the five wing stations, are presented in figure 5,16 and 5.17. From
both these figures it is seen that the settling time is small when compared to the uncontrolled
response. The oscillatory nature of the uncontrolled response is not evident in the controlled
response. The reductions in the RMS and peak values, in percentages are presented in table

5.12.

Variable RMS Peak
BM W.S.1 19.7 67.8
BM W.S.2 61.0 81.2
BM W.S.3 91.0 94.0
BM W.S.4 96.4 99.3
BM W.S.5 89.1 94.0
TM W.S.1 38.6 36.8
TMW.S.2 48.8 47.0
T™ W.S.3 56.8 57.0
™ W.S4 474 43.5
™ W.S.5 53.4 48.9

Table 5.12: Percent reduction in RMS and peak values

From table 5.12 it is evident that, by using control law A, substantial reductions have been
achieved in both the bending and torsional moments. The bending and torsional moments
(control law A, test case SC3) are presented as figures 5.18 and 5.19. It is interesting to note
that for test case SC3, although the bending moment response has been greatly improved, the
torsional moment response has deteriorated both in terms of peak values and as well as
steady-state values. Nevertheless, the absence of oscillatory motion from the responses of the
bending and torsional moments indicates the suitability of the control law from the structural

fatigue standpoint. Although steady-state values of the torsional moments for the controlled
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aircraft for case SC3 are higher than the uncontrolled values, the peak TM at W.S.1 is almost
identical to the peak TM at W.S.1 for test case SC2 for the uncontrolled aircraft (see figures 5.17
and 5.19). If the ultimate torsional strength at various wing stations is known, only then can a
quantitative assessment can be made of whether the controlled peak or the steady-state TM's are

within the ultimate strength requirements.

The steady-state value of 0.094 MN-m of TM at W.S.1 (figure 5.19), compares favourably with
the controlled steady-state value of 0.106 MN-m of TM at W.S.1 obtained by Prasad [1980], for
the same test conditions, using a full state variable feedback control law obtained from the use of
LQP. The control law devised by Prasad was based on the optimal output regulator, in which all
the quantities in the output vector (see section 4.4) were weightéd. Since the objective was to
cause reductions in the torsional and bending moments, optimal output regulator has advantages
over the optimal state regulator, in that the moments can be weighted directly in the performance
index. It known (Newberry [1969]) that to effect reductions in the TM and BM, the
peak amplitudes of the flexural modes have to be reduced, and such reductions can be
ac_complished by use of the eigenvector specification scheme discussed earlier (see section
5.2.2). The results presented so far are better in every respect, than those presented before by
other authors using optimal control. Therefore it can be said that the control law synthesised by
EPAM has all the features required for SLA: it achieves the desired load reduction without
causing any deterioration in the basic handling qualities of the aircraft and it is still possible to

manoeuvre the aircraft to any desired operating point.
5.4.1 Requirements for MLC

The deflection rates and angular deflections of a control surface are important parameters in
judging the effectiveness of any control scheme, for securing reductions in structural loads. If
the required rates and deflections exceed the capabilities of the existing hardware (servos,
actuators etc), then either the existing hardware has to be changed or some new control law has to

be found to conform to the specifications. For the MLC (using control law A) the rates and
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deflections associated with the ailerons and the inboard elevator were found to be within the
capabilities of existing actuators. Presented in figure 5.20 to 5.27 are the rates and deflections
associated with the ailerons and the elevator for the two test cases SC2 and SC3. It is observed
from these figures that the values of these the rates and deflections are not excessive. For
example, 2 maximum aileron deflection of 9.0*1073 rads and maximum elevator deflection of
1.7%1073 rads are required for test case SC1 (figure 5.21 and 5.23). For test case SC3 peak
aileron and elevator deflections were 1.6%¥10°% and 0.3*1072 rads respectively (see figures 5.23
and 5.27). The eigenvalues associated with the actuator modes, in the closed-loop were chosen .
to be identical to those in the open-loop (see table 5.11). Since the time constants of the actuator
modes are the same, the alleviation of structural loads was achieved without the need for the use

of faster acting actuators than those already used on the aircraft.
5.5 Gust Load Alleviation

The digital simulation language, Advanced Continuous Simulation Language (ACSL), was used
torsimulate atmospheric turbulence, primarily because of the availability within the package of
MACROS which facilitated the generation of white noise, which is required as the input to a
Dryden filter. The standard deviation of the white noise was selected to be 0.3048 m/s with a
zero mean value. This choice corresponds to moderate levels of turbulence. Test case SC4
represented the situation of an aircraft traveling in its trimmed flight state and suddenly
encountering atmospheric turbulence. Some selected responses are presented as figures 5.28 to
5.34. It can be seen from figure 5.28, that test case SC4 produces a larger value of bending
moment at W.S.1 compared to the levels produced for the deterministic cases SC2 and SC3. The
selected responses presented are for the uncontrolled aircraft (curves marked A), and for the
FSVF control law A (curves marked B). The bending moment response at W.S.1, W.S.2 and
W.S.3 are presented as figures 5.28 , 5.30 and 5.32. It is evident that the peak values of the
controlled response are much lower than the uncontrolled values, and the controlled response is
better damped. From the response of the torsion moment shown in figures 5.29 and 5.31 it is

evident that the peak values are almost the same for both the controlled and the uncontrolled
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response.In the design specifications, however, it was required that at W.S.1 at least 30%
reduction of the bending moment with no more than 5% increase in the torsional moment, should
result. A reduction in the RMS value of the BM at W.S.1 of 63.5 % was achieved using control
law A. The reduction in TM at W.S.1 was 17.2 % . From figures 5.33 and 5.34 it is seen that
the controlled rigid body motion variables have lower peak values compared to the uncontrolled

rigid body variables.

5.7 Concluding remarks

Although no attempt was made to augment the rigid body stability, by altering the eigenvalues
associated with the short period mode, it was shown that the effect of reducing mode
displacements resulted in reduction of structural loads. Part of the reduction being due possibly
to the decoupling of the modes of motion effected by the eigenvector selection scheme of case A.
It is also known that structural loading and fatigue damage rates are reduced with stability
augmentation by reducing the peak loads and the number of cycles of loading, Newberry
[1969]. It was shown that not only were the peak loads effectively reduced by using control law
A but the absence of any high frequency oscillations in the dynamic response of bending and
torsional moments, in the case of MLC, indicates the quality of control law A from structural

fatigue standpoint.

It was shown that the influence of the first flexural mode on the bending moment response is
dominant. And that the shape of the bending moment response matches that of the first flexural
mode displacement. The displacements of the first flexural mode were an order of magnitude

higher than those of the other high frequency structural modes.

It was also shown that the choice of eigenvectors for SLA, for the two cases considered,
produced radically different responses and very different degrees of load alleviation. The
eigenvector choice of case A which allowed each mode to participate in the dominant mode

variables proved to be more effective method for SLA.
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It was also shown that all the specified goals (required reductions in the BM and TM observed at
W.S.1, appropriate to MLC and GLA) were achieved without impairing the response of the rigid
body motion variables and the handling qualities of the aircraft. It is also known that a gust
alleviation system that uses only elevator control is not completely effective, Ochman [1973]. An
elevator is primarily a device for controlling the pitch rate and the angle of attack and does not
provide adequately the changes of force in the z-direction that are necessary for good gust load
alleviation. The reductions in the bending and torsional moments due to manoeuvre commands
and atmospheric turbulence, were as a result of using a combination of both the elevator

deflection and symmetrically deflected ailerons to provide direct lift.

The results presented in this chapter apply only to one flight condition. The suitability of law A
when changes in the stability derivatives occur due to changes in the flight conditions are
investigated in the next chapter. Moreover, the requirement of measuring all of the state variables
required for the feedback of law A is dispensed with, by considering reduced order feedback
derived by using the reduced order models. The design of a full order observer by using the
EPAM to estimate the unavailable signals, and the digital implementation of the observed system

is delt with in chapter 6.
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6.1 Effects of Changes in the Stability Derivatives of the C-5A

The 24t order model of the C-5A presented in chapter 4 applies only to a single flight condition.
No other information is available in the open literature concerning any variations which arise as
the flight condition changes. Nevertheless, it is well known that the stability derivatives of the
rigid-body motion of any aircraft are profoundly influenced by the speed and height at which the
aircraft travels. The effects offelastic motion of the wings and the fuselage are no less important.
To ensure that the proposed control laws, such as Law A, remain effective at off-nominal
conditions, an investigation was carried out to consider the effects upon the dynamic perfonnange

of the aircraft due to the changes in the elements of the A matrix.

It is intended to demonstrate in the next section that even if the coefficients in the A matrix
describing the structural dynamics are changed, to take into account the modelling inaccuracies,

the aircraft remains stable and that SLA is still possible using control Law A.

6.1.1 Changes in the Frequencies of the Flexural Modes.
From appendix B, and equations 4.14 and 4.15, the elements A, ; and A; ¢, are seen to be

Ay, = é‘e' .24, @ = -0.98741 6.1a
{

B —@? =-29 , 6.1b
A, Elg o =-29.851

1

The values of Aq 4, Aqggy correspond/ to the nominal uncontrolled system; for-shieh the
frequency and the damping ratio of the first flexural mode being 5.48 rad/s, 0.093 respectively.

The new value of the element A, 4 can be calculated as:
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A33 =é _zc 0] N . 6.1C

“(new) EI (new)

where (new) signifies the new value. Similar expression can be obtained for the element A, 4 by

using equation 6.1b. The new value of the frequency of the first flexural mode is calculated by
the expression viz;

m :CD _m . Gold

!
@ew)  Logina)  '(change)

where (change) signifies the required change in the frequency of the flexural mode. Note that this
change is being subtracted. If the change is additive, it would imply that there will be a greater
frequency separation between the rigid-body and the first flexural mode. Whereas a subtractive
change brings the frequencies of the two modes closer together, hence making the flexural mode
prone to being excited by the rigid-body motion. If the control Law can cope with this situation it
will cope with the additive change§. If it is assumed that the frequency of the 15t flexural mode
is in error by say -15% (while the damping ratio is correct) , then by using equations 6.1a, 6.1b,

6.1c, and 6.1d the new values of A3,3 and A3.9 are found to be,

-0.835
-21.536 .

o
[ %]
[

I

o
»
1

These new elements represent a frequency of 4.66 rad/s and a damping ratio of 0.093 associated

with the first flexural mode.

§ Separation between the frequency of the rigid-body mode and of the first flexural mode will result due to the

additive change, hence making the flexural mode less prone to being excited by the rigid-body motion

183



The eigenvalues of the coefficient matrix (i.e., the open-loop eigenvalues of the off-nominal
system) and the closed-loop eigenvalues, when using control Law A, associated with the
rigid-body mode and the six flexural modes are presented as table 6.1. From which it may be
seen that the damping ratios associated with all the flexural modes (except the first flexural mode)
are approximately the specified values (see table 5.3). The damping ratio of the first flexural
mode has been increased to 0.75, an increase in its frequency is alsomnoted. With the damping
ratio and frequency of the rigid-body mode essentially fixed at the specified values, the increase
in the damping ratios associated with the first flexural mode and the remaining modes will reflect

very favourably in the bending moment response.

Nominal Off-Nominal Off-Nominal

Uncontrolled Uncontrolled Controlled

Mode 4 © g © g ©
Short Period 155 | 057 | 154 | 057 | 1.61 | 0.58

Flexural Mode 1 5.48 | 0.09 46 | 009 | 489 | 075
FlexuralMode2 1312 | 0.02 | 11.12 | 0.02 | 11.12 | 0.10
FlexuralMode3 | 1381 | 0.04 | 13.84 | 0.04 } 13.82 | 0.21
FlexuralMode4 | 1561 | 004 | 1560 | 0.04 | 1659 | 0.19
Flexural ModeS | 1749 | 0.02 | 1749 | 0.02 | 17.47 | 0.12
Flexural Mode 6 | 1879 | 0.03 { 18.79 | 0.03 | 18.81 | 0.16

Table 6.1: Comparison of the open and closed-loop eigenvalues of
the nominal and off-nominal system.

The bending and torsion moment response observed at W.S.1 for test case SC2 ( which relates to
an step aileron command of 0.025 radians ) are shown as figure 6.1 and 6.2. It is not surprising
that the responses presented are better damped than those presented for the same test condition in
figure 5,16 and 5.17, this is mainly due to the additional damping in first flexural mode. From a
comparison of figure 5.16 and 6.1 it is noted that the peak value of the uncontrolled bending
moment response at W.S.1 has been increased from 4.0 MN-m to 6.0 MN-m. This increase is
mostly due to the fact that the frequency of the first flexural mode and the rigid-body mode are

much closer together, and that the two modes have been much more tightly coupled.
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Another test in which the frequency of the first flexural mode was changed by -15% and the
frequency of the second flexural mode by -10% simultaneously, showed very little difference
from the results discussed previously. For example, the percent reductions in the peak values of
the bending and torsion moment at W.S.1 are shown in table 6.2. Tests of a similar nature were
carried out to determine by how much the frequency of the first flexural mode could be changed
before the response was affected. A change of -50% (i.c., lowering the frequency by 50%)

proved to be disastrous in that the closed-loop system became unstable.

* +
BM W.S.1 75.3 75.7
™ W.S.1 45.4 46.9

* Change of -15% in the frequency of the first flexural mode

+ Change of -15% and -10% in the frequency of the first and
second flexural modes respectively.

Table 6.2: Percent reductions in peak values of BM and TM at W.S.1

It is noted from table 6.2 that the percentage reduction obtained in the peak values of bending and
torsion moments at W.S.1 aré greater to those obtained when using Law A on the nominal
system ( see table 5.12). However, the peak value of bending moment observed at W.S.1 of the
nominal controlled system of 1.3 MN-m is lower than the corresponding value of the off-nominal
controlled system of 2.5 MN-m (see figures 5.16 and 6.1). It is evident from the results
presented so far that there must be adequate frequency separation between the rigid-body motion
and that of flexural dynamics, otherwise excessive peak loads will result due to the coupling of
the rigid-body mode with the flexural modes. The reduction in peak values of the bending
moments is a matter of specification. For example, if the frequency and damping ratio associated
with the first flexural mode of the controlled off-nominal system ( see table 6.1 ) were specified
for the controlled nominal system instead of the values given in table 5.3, reductions tabulated in

table 6.2 resulted.
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6.2 Reduced Order Feedback

In the previous section it was shown that control Law A ( 24th order FSVF control Law )
performed very well even when some of the coefficients in the A matrix were changed. These
changes represented modelling inaccuracies or changes in the flight condition. One of the
disadvantage in synthesising Law A for MLC is that all the states associated with Kiissner
dynamics, Padé approximations and the Dryden filter have to be measured. Since in the absence
of turbulence for example, when demonstrating MLC i.e., load alleviation due to pilot commands
only, these states remain zero, then feedback from these states is not essential. In order to study
the effect of excluding feedback from these states, reduced order models are defined in the next
section. The reduced order feedback laws derived from these reduced order models are then

subsequently applied to the full order 24™ order model of the C-5A.

6.2.1 Definition of the Reduced Qrder Models

Three reduced order models derived from the original 24" order model ( see chapter 4 ) are
presented in this section. Each model is derived from reducing the 24™ order model by the
method of modal truncation. The retained modes in each of the models are not represented by
any aeroelastic correction factors which relate to the deleted modes of vibration. The three

models are designated Alpha, Beta and Gamma respectively.

The model Alpha comprises of the rigid-body dynamics the dynamics of the six flexural modes
and the aileron and the elevator dynamics. The model Beta was the same as the model Alpha,
except that only the first two flexural modes were included. The model Gamma differed from the
model Beta in that only the first flexural mode was included. Consequently the dimension of the
state vector of models Alpha, Beta and Gamma is 16, 8, and 6 respectively. The definition of the
state vectors for each models are shown in table 6.3. The composition of the output vector

corresponding to each model shown in table 6.4.
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Alpha Beta Gamma
Vertical Velocity w w d
Pitch Rate q q 4
Rate & Disp. I EM F‘1’ r;l 2::‘1’ 51 gl’ E"l
Rate & Disp. 7 M éz’ éz 52, é2 -
Rate & Disp. T EM ‘23: 5-3 - -
Rate &Disp. 4' FM | &, &, - -
R isp. 5 FM ' - -

ate & Disp 5 55, §5

Rate &Disp. 6 FM | ¢ ¢ - -

6’ 78
Aileron Deflection 5 8 8

a a a
Elevator Deflection 5 5 5

[ ] -4

Table 6.3 : VYariables included in the state vector for each of the models

Alpha

Beta

(Gamma

BMi , 'IMl i=1,...,5
BMi, TM1 i=1,..,5

g x
&K x=1,.,6

63.
5

1,....6

(1]

o
d
w

e
a
q

BMi . 'I'M1 i=1,...,5
BMI, TM{ i=1,..5

g, «
éx kK=1,...,2

5

a

.

)
0
o

(]

w

e
a
q

BMi y M i=1,..,5
BMi, TM1i= 1,...,5
ﬁx k=1

gx k=1

88
5

114

3
3
W

e
a
q

Table 6.4 : Output vector definition for the reduced order models

189




6.2.2 Reduced Order Feedback Laws

Reduced order feedback control laws are derived in this section using the reduced order models
described in section 6.2.1. The objective is to demonstrate that when the feedback controllers
derived from the reduced order models are applied to the 24" order model, the degree of
alleviation achieved is comparable to the alleviation achieved when using the FSVF control Law

A. The feedback controilers were designed by the EPAM method presented in chapter 3.

The eigenvalues specified for the closed-loop for each of the models are shown in table 6.5.

MODE Alpha Beta Gamma
Short Period | -0.88+j1.27 |-0.88+j1.27 {-0.88+j1.27
First FM 254+7486 |-2.54+j4.86 |-2.54+j4.86

Second FM | -1.16+j11.06 |-1.16 +j 11.06
ThidFM | -2.86+j 13.51
Fourth FM | -3.034j1531
Fifth FM | -2.13%j17.36
Sixth FM | -3.10 +j 18.53

Table 6.5 : Specified closed-loop Eigenvalues.

From Table 6.5 it is seen that the closed-loop eigenvalue set specified for the flexural modes of
the model Alpha is the same as the set specified for the 24 ¥ order model ( see table 5.1). Itis
also noted from table 6.5 that the eigenvalues corresponding to the short period mode are
identical to the uncontrolled values. Since it is desired that the handling qualities, normally
expressed in terms of the short-period eigenvalues, remain unaffected by feedback it is essential

that the same eigenvalues are specified for the closed-loop.
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The eigenvectors corresponding to the short-period and the flexural modes are chosen from the
null-space vectors (equation 3.72) such that the chosen eigenvector corresponding to the mode
resulted in the mode to confribute mainly to the dominant motion variables. Such a method of
eigenvector selection has already been discussed in section 5.2.2, where it was shown that such
an eigenvector selection scheme results in load alleviation and also in the decoupling of the modes
of motion. However, in the present section only the consequences of using the reduced order
control laws are discussed. The control laws were determined in cxactiy the same manner as
previously outlined ( see sections 3.473 for the computational steps involved and section 5.2.2
for the eigenvector selection scheme ). The three control laws designated as Law Alpha, Law

Beta and Law Gamma are presented below §;

Law Alpha
-0.0003 | -0.0005 | 0.0012 0.0168 0.0091 | -0.0024 | -0.1286 | 0.0058
-0.0106 | -0.0176 0.0183 0.3236 0.5073 0.8822 | -1.2584 | 3.0125
0 0 0 0 0 0 0 V]
u= X
-0.0004 | -0.0005 } -0.0000 | -0.0082 } -0.0016 } -0.0033 0.0316 } -0.0127
0.0033 {-0.0951 | -0.0180 | -0.1087 | -0.7131 -0.2344 | 0.1402 | -2.1569
0 0 0 0 0 o 0 0
Law Beta
-0.0005 § -0.0005 0.0010 0.0021 0 0 0 0
-0.0051 | -0.0409 0 0 0 0 -0.6234 | 0.2964
0 0 0 0 0 0 0 0
u= X
0.0001 0.9000 } -0.0001 | 0.0053 0 0 0 0
0.0017 | -0.0895 0 0 0 0 0.0336 | -0.2814
0 0 0 0 0 0 0 0

§ The feedback matrices are presented by rows. For example, in law Alpha the feedback gain element
K1’1=-0.0003, K1,2 = -0.0003, Kl.9= -0.0106 etc. The elements Kz,l' Kz,z’ K2,9 are seen to be -0.0004,
-0.0005, 0.0033 respectively.
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Law Gamma§

-0.0005 | -0.0005 | 0.0010 a 0 0 0 0
-0.0052 0 0 0 0 0 -0.5841 | 0.3883
0 0 0 0 0 o ] 0
u= X
0.0001 | 0.0001 | -0.0001 ¢ 0 0 0 0
0.0015 0 0 0 0 0 0.1305 } -0.0691
0 0 0 0 0 0 0

The order of the feedback matrices in each case was [2 * 24]. In each of the feedback matrices
the gains have been rounded to four significant decimal places. From the laws presented above it
is noted that there have been inserted in the various laws zeros which correspond to the variables
not included in the reduced order models. This has been done to ensure dimensional
compatibility when applying these laws to the 24% order model. Moreover, the presence of zeros
in the gain matrices indicate the non-availability of the corresponding variables for feedback.
This corresponds to sensor failure conditions. The frequencies and the damping ratios of the
various modes obtained when using the reduced order feedback laws are presented in table 6.6.
Note from this table that, when Law Alpha is used, the frequencies and damping ratios of the
rigid-body and the flexural modes are almost the same as those obtained when using Law A.
However, it is noted from table 6.6 that there is a marked change in the closed-loop damping
ratios associated with the second, third, fourth, fifth and the sixth flexural modes when Law
Gamma is used. These values are seen to approach the uncontrolled values. It is inferred that the
Law Gamma has little or no effect on the high frequency modes. However, the frequency and
the damping ratios of the short-period and of the first flexural mode are nearly the same as the

specified values.

§ The feedback matrix is presented by rows. For example, in law Gamma the feedback gain element
K1 1=-0.0005, K1 o = -0.0005, Kl g= -0.0052 etc. The elements Kz,l' Kz,zi K2’9 are seen to be 0.0001,

0.0001, 0.0015 respectively.
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Open-Loop Law A Law Alpha Law Beta Law Gamma
W g @ g © g ® g o £

ShortPeriod | 1,55 | 057 | 155 | 057 | 155 | 057 | 145 | 058 | 149 | 0.57
First FM 548 | 0.09 | 548 | 047 | 548 | 047 | 548 | 041 | 547 | 041
Second FM | 11.12 ] 002 | 1112 | 0.2 | 11.12 | 010 | 11.25 | 008 | 11.12 | 0.02
Third FM 1381 | 004 | 13.81 ]| 020 ; 1381 | 021 | 13.77 | 0.05 | 13.81 | 0.04
Fourth FM 1561 ] 004 | 1561 ) 019 | 1561 | 0.19 | 1558 | 0.04 | 1562 | 0.04
Fifth FM 17491 0.02 | 17.4% | 0.12 | 1749 | 0.12 | 1749 | 0.02 | 17.49 | 0.02
Sixth FM 1879 003 | 1879 { 017 | 1879 | 0.17 { 1879 | 0.03 | 18.79 | 0.03

MODE

Table 6.6 : Comaprison of the closed-loop eigenvalues obtained for various
control laws.

It was shown in chapter 5 that the first flexnral mode has a predominant effect on the bending and
torsion moment response. Hence, provided the damping in the first flexural mode is significantly
augmented ( this can be seen from table 6.6 ) load alleviation must be possible (N.B. This is

shown graphically in the next section ).

6.2.3 MLC using Reduced Order Feedback Controllers

In order to make a valid comparison of the reductions obtained in the values of the bending and
torsional moments as a result of using Law A and using the reduced order feedback laws, test
case SC2 was employed. This test case involves an aileron step command of 0.025 radians. The
method described in section 4.6 of forcing the loop was used to force the closed-loop rigid-body
variables to the same steady-state values as in the open-loop case. Since reductions in the
bending and torsional moments are required, without impairing the rigid-body dynamics, the

method of forcing the loop proved to be very useful in assessing the reductions obtained.
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Presented in figure 6.3 and 6.4 are the closed-loop bending and torsional moment responses at
five wing stations using Law Alpha. It should be noted from these figures that the bending and
torsional moment responses are almost the same as those obtained with Law A. This is owing to
the fact that Law Alpha assigned the same eigenstructure as that assigned by Law A. It is noted
from figure 6.5 and figure 6.6 that the use of Law Gamma does not produce a bending and
torsional moment response which is radically different to the response obtained by either Law A
or Law Alpha. Itis inferred from these figures that provided Law Gamma is at least available for

feedback, then MLC will always be possible.

The percentage reduction in the RMS and peak values of the bending and torsional moments at
various wing stations for Law A and reduced order feedback laws are given in table 6.7. From
which it is seen that the reduction in the bending and torsional moments for Law A and Law
Alpha are almost the same. However, reductions caused in the bending moments by the use of
Law Gamma are somewhat reduced, but a corresponding increase in the reduction of the
torsional moments is also to be observed. The slight increase in the reduction of the torsion

moments is at the expense of the decreased reduction in the bending moments.

The use of Law Beta produces approximately the same levels of reduction as those obtained by
the Law Gamma. This merely implies that feedback of the displacement and the rate of the
second flexural mode is unnecessary provided the variables associated with the first flexural
mode are available for feedback. The degree of reduction in the bending and torsional moment
response obtained when using Law Beta or Gamma indicate that the first flexural mode indeed

has a dominant effect on the structural loads.
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Figure 6.4 : C-5A controlled response, control law Alpha, test case SC2, showing torsional
moment response at W.S.1 - W.5.5.
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Law A Law Alpha Law Beta Law Gamma
RMS | Peak | RMS | Peak | RMS | Peak | RMS | Peak
Bending Moment W.S.1 | 197 | 678 | 192 | 674 53 | 612 53} 612
Bending Moment W.S.2 | 61.0 | 812 { 60.5 | 809 | 49.0 | 75.0 | 49.0 | 75.0
Bending Moment W.S3 | 91.0 | 940 | 903 | 93.8 | 81.1 | 88.2 | 81.1 | 88.2
Bending Moment W.S.4 | 964 | 993 | 96.7 | 96.1 | 93.0 | 94.7 | 93.0 § 947
Bending Moment W.S.5 | 89.1 | 940 | 89.6 | 91.2 | 958 | 950 | 958 | 95.0
Torsion Moment W.S.1 | 386 | 36.8 | 388 | 37.1 | 43.1 | 41.7 | 43.1 | 417
Torsion Moment W.S2 | 488 | 47.0 | 40.0 | 473 | 540 | 52.7 | 54.0 ) 527
Torsion Morment W.83{ 56.8 | 57.0 | 570 | 573 | 625 | 63.0 | 625 | 63.0
Torsion Moment W.S.4 | 474 | 43.5 | 47.7 | 438 | 523 | 49.1 | 523 1 49.1
Torsion Moment W.S.5] 534 | 489 | 537 | 493 | 58.6 | 55.1 | 586 | 551

VARIABLE

Table 6.7 : Percent reductions in the RMS and peak values of moments observed at
various wing stations, using FSVF law A and reduced order feedback.

It is worth emphasising that the control laws proposed are extremely effective for the purpose of
MLC and SI.A. For example the entry in table 6.7 relating to bending moment at W.S.1 shows
that when Law A is used the reduction in the RMS value of bending moment was about 20%
with an associated reduction in the peak value of nearly 70%. It should be also noted that when
Law Gamma or Beta have to be used, although the reduction in the peak values remain about the
same the reduction achieved in the RMS values is significantly reduced. Nevertheless, from a
flying point of view, the reduction in the peak values for structural loads is what a SLA control
system has to achieve to provide the degree of safety required. The loss of RMS performance
simply reflects in the fatigue life of the airframe which it is stressed is not lessened, for some

reduction in the RMS values has been achieved.
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The entry in table 6.7 relating to torsional moment at W.S.1 shows that when Law A is used the
reduction in the RMS value of torsional moment was about 39% with an associated reduction in
the peak value of nearly 37%. The reductions obtained in the bending and torsional moments
when using Law Gamma or Beta are 43% and 42% respectively, it is noted that these values are
slightly higher than the corresponding values obtained when using Law A. These results are not
in the least surprising; for reduction in the bending moments is caused by symmetric deflection
of ailerons. Achievement of higher levels of reduction in the bending moments must inevitably
involve large aileron deflections. This in turn will cause increased torsional moments about the
wing center line. Hence, a decrease in the reduction of bending moments would invariably
result in a increased reduction of the torsional moments, which is exactly what the results

presented above suggest.

6.2.4 GLA Using Reduced Order Feedback Control Law Gamma

It was shown in chapter 5 that GLA was possible when using the FSVF Law A. Required
reductions in the RMS values of the bending moment at W.S.1 were achieved. Law A required.
the measurement of all the states associated with the 24" order model. Reduced order feedback
control laws which did not required feedback of the states associated with the unsteady
acrodynamics were sucessfully applied to achieve ML.C. It is shown in this section that even
when the reduced order feedback control Law Gamma is used in the presence of atmospheric
turbulence, GLA can be achieved. To demonstrate GLA test case SC4 (see table 4.3) was
employed. The response of the bending moment observed at W.S.1 (y-axix annotated YY1)is
shown as figure 6.6a. Also shown on the same figure is the RMS response of the bending
moment at W.S.1 (y-axis annotated RMSBM). The curves labelled A are for the open-loop and
curves labelled B are for the closed-loop. From the bending moment response presented in
figure 6.6a it can be seen that not only is the controlled response more damped, it produces lower
peak values when compared to the uncontrolled response. Substantial RMS reductions are also

seen to result.
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Figure 6.6a : Wing root bending moment response in moderate levels of
turbulence (standard deviation of gust velocity of 0.3048)
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6.3 Full Order Qbservers

In the preceding section it has been demonstrated that structural loads, arising due to manoeuvre
.commands or owing to atmospheric turbulence, can be effectively reduced by using reduced
order feedback controllers designed by means of EPAM. It was shown that SLA could still be
achieved when using the Law Gamma. The basic requirement for SLA is that every aircraft state
variable is simultaneously available for measurement. However, even when reduced order
feedback is employed, Law Gamma for example, there remains a difficulty of measuring directly
the rate and displacement associated with the first flexural mode. The state vector describing the

model Gamma was defined as,

x =[wq8,5,8,8,]

For implementation of a feedback control such as Law Gamma, variables associated with the
flexural modes, for example, could be constructed from the knowledge of the measurable state

and control variables.

A method for obtaining an estimate of the state vector is by means of the Kalman-Bucy filter.
The design of such a filter takes explicit account of measurement noise in sensors in addition to
any noise arising as a result of atmospheric turbulence, and is obtained as a solution of the Linear
Quadratic Gaussian (LQG) problem. Another method of state estimation is to use a full-order
observer, the theory of which is due to Luenberger {1966, 1971]. The proposed EPAM,
described in chapter 3, can also be used to design such full order observers. The methods of
state estimation are well documented, and the feasibility of their being applied to SLA has already

been demonstrated by Prasad [1980].
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6.3.1 Theory of Observers

Consider the following state equation

x=Ax+Bu, 6.1e

where x, u, A, B have been defined earlier. Let the measurable outputs be defined by the

relationship,

¥,=C, %, 6.2

m

where y_, is the measurement vector eRf ,and C_ is an [f * n] output matrix which, if Law

Gamma is to be implemented, has the following form,

1 0 0 0 0 0
0 1 0 0 0 0

““=lo 0 0 0 1 o 63
0 0 0 0 0 1

Equation 6.3 assumes that the variables w, g, 8, and J, associated with the model Gamma are

available for measurement. Let the dynamic equation of the observer be defined by,

xe=Fexe+chm+Bu , 6.4

where F, is a coefficient matrix of order [n*n ], G is of order [n*[] and is termed the
observer gain matrix. Let the difference between the actual state vector and the estimated state

vector be defined by,
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differentiation of 6.5 yields,
e=k -, . 66
Substitution of 6.1e and 6.4 in equation 6.6 yields,
é:ft-ie.=Ax+Bu-Fexe-Geym-Bu. l6.‘!
Substitution of equation 6.2 in 6.7 yields,

e=x -fce=Ax+Bu-Fexe-Geme-Bu

=(A-GC_)x-F,x, . 6.8
At steady state the vector e must equal to the null vector, consequently from equation 6.8
(A-GC )x=Fx, . 6.9

The actual state vector and the estimated state vectors can be equal if and only if

F,=A-GC,_ 6.10

then from equation 6.8 and equation 6.10
x-x, =e=(A-G, Cox-(A-G.CHx,
=(A-GC H(x-x)
e= (A-G,C )e . 6.11
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For a stable observer to exist the real parts of the eigenvalues of the matrix (A - G,C_)) must be
negative. The observer gain matrix G, can be found by a number of ways. Such as, from the
solution of the Linear Quadratic Problem (LQP), Prasad [ 1980] or by using the eigenvalue

assignment method based on the GCCF (see section 3.1).

For example, since the eigenvalues determine how the error modes will decay, it is essential that
any method used must assign the specified eigenvalues. If LQP method is used then the choice
of the weighting matrices eventually determine what the observer eigenvalues will be. Since the
choice of weighting matrices and the eventual observer eigenvalues are not directly related the
observer design can be very cumbersome. Moreover, complex observer eigenvalues may result

as a result of choosing inappropriate weighting matrices. Conéider the following figure,

A

At

error
[

Time

the figure shows the error plotted against time. Since the error is defined as being the difference
between the actual state and the estimated state, it is greatest at t=0. If the error is required to
decay monotonically, then, obviously, a real and negative eigenvalue has to be specified, the rate
of decay being determined by how far it is located to the left from the origin in the s-plane.
Obviously if some of the error states are required to decay monotonically at the same rate, then
repeated eigenvalues must be specified. However, it is the intention to use the EPAM described

in chapter 3 to determine the observer gain matrix.

(8]



The eigenvalues and the eigenvectors of the matrix (A - G,C, ) satisfy the relationship viz:

A-GC vV, =Ny, ,fori=1,2...,n, 6.12

i=1 !

where A; is an observer eigenvalue and v, is an associated eigenvector. Equation 6.12 can be

altematively expressed as,
T Y
[n1-aT1c] s Lo 613
G v
[ ]

Since the eigenvalues of the matrix (A - G_C ) are the same as of (AT - Cm'r G,T) equation 6.13

can be written in the form as shown. Let,
S, =[%I-AT|C.T], 6.13a

where I is an identity matrix of the order [n*n]. Augmenting equation 6.13a by £ rows of

zeros (for computational ease) to form a square matrix of order [(n+£) * (n +L)],

_ T T
kiI-A [ C,
A i _i'_
Sli= 0...0 I 0 ' 6i4
0...0 | o
and let,
N)Li
-1 6.15
Rki"
MJLi




The columns of R).i form the basis for the null space of Sxi_ The matrix R?Li is of the order [(a
+[) *L ], whereas the order of N’“i is [z *{ ] and the order of Mli isfr+t]. The matrix Rli is
computed form the singular value decomposition of the matrix S?Li (see section 3.4.2). The

vectors in in and MAi are defined as,

N Py P2
Wil b 7

Fori= 1,2,....n
For x=1,2,..L . 6.16

If one of the eigenvectors is chosen from Rli , to reflect the desired influence of the eigenvalue

?Li ( on the dynamic response of the error states), such that,

—_ | =] --- » Forx=1eor2or..L , 6.17

BKI-_‘YI L] 6.18
o = Gyv. . 6.19

T
Ge...—. [@Kl, Q_)Kz,...s@xn][ \_’_1, !,--., !ﬂl . 620
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To satisfy equations 6.12, 6.13 and 6.20 following must hold,

* * * 8 .
a) whenever A, = lj then v;=v; and@;=@; , (*)denotes complex conjugate.

b) v, must belong to the null-space of [ A, I - AT | Cm'r 1.

c) Foran inverse to exist in equation 6.20, v; i=12,..a0 must be linearly independent.

If the specified eigenvalues are real then equation 6.20 must hold. Equation 6.11 is a vector

differential equation whose solution to an initial error vector can be shown to be,
e(t) =V erVile©) , 6.21

where Vis the modal matrix whose columns are the eigenvectors of the matrix (A - G,C_).

Equation 6.21 can be expanded in the form,

At

el . . 0 1
&t) = [yl,yz, yn]j S, [‘—’1’1’2’ l’nI e(0) . 6.21a
At
0 e’
Equation 6.21 can be simplified by defining,
o =[Vs ¥y, ¥, 171e0) . 6.22

Expansion of equation 6.21a after substitution of equation 6.22 yields,

A t At

t
1
e ()= +V. e'a +...+V, e o
1(® v“c al 12 2 In n
623

AL At : At
cn(t)=vnle al+vn2e cc2 t.o. .tV e an
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It is seen from equation 6.23 that the error e(t) will converge to zero if and only if the error
modes converge. This implies that the eigenvalues must have negative real parts. Furthermore
the error states will decay monotonically provided énly that the specified eigenvalues are real and
negative. A rapid convergence of the error vector can be obtained by specifying the observer

eigenvalues to be located far to the left of the origin of the s-plane.

Assuming that suitable observer eigenvalues can be specified, however, there remains a problem
of specifying appropriate corresponding eigenvectors which will distribute the error modes in the
response of the error states. It has been shown in chapter 3, and also in chapter 5 , that the
amplitude of the response is governed by the eigenvectors. It was also shown in section 5.3 that

different choice of eigenvectors produces a radically different control system.

From a choice of { computed null-space vectors (equation 6.16) it would be possible to select an
appropriate eigenvector so as to distribute the mode in the response of the error vector. One
possible methed of specifying the eigenvectors for the observer would be to ensure that a specific
mode participates only in the constituent mode variables. For example, if in equation 6.23, A,
is ch‘osen to be sufficiently negative and if the eigenvector components v,,, ..., V;,are arranged
to be zero, then only the mode e’“l‘participates in the response of the error state e, (t), the extent
of such mode participation being controlled by v,, and the overall amplitude being governed by

o,



6.3.2  Specification of Observer Eigenvalues and Eigenvectors

It is assumed that variables w, q, 8,, 8, of the model Gamma are available for measurement.

Therefore the matrix C , was chosen to be,

1 0 0 0 0 O
01 00 0 0
“2=lo 0 0 0 1 o0
000 0 0 1

To determine the effect of the observer dynamics on the resulting structural loads, the following

three sets of eigenvalues were specified for the observer.

Set 1 Set2 Set 3
A 1 5 25
A, 1 5 25
Ay -1 -5 -25
3\4 -1 -5 -25
A -6.0 -6.0 -6.0
A 75 .75 7.5

Table 6.8 : Eigenvalues specified for the observer

Note particularly from table 6.8 that repeated eigenvalﬁes have been specified. Since four states
are available for measurement, the dimension of the null-space is four. Hence, the four linearly
independent null-space eigenvectors can be assigned corresponding to the repeated eigenvalues
(A Ay Aqy &), Ttis worth noting that if the method proposed by Shapiro et al [1983] was used
to synthesise the observer gain matrix, the assignment of repeated eigenvalues would not have
been possible. However, eigenvalue/eigenvector method proposed by Porter [1978] does enable

such repeated eigenvalues to be assigned.
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Eigenvalues corresponding to the aileron and elevator error modes are specified as having the
same values for the three sets. Since an observer eigenvalue merely determines the speed of
convergence of the mode it is associated with, the choice may be arbitrary. The obvious
limitation is that an eigenvalue of multiplicity greater than [ may not be specified, because the
inverse in equation 6.20 does not then exists. The eigenvectors corresponding to A and A can
be chosen from the respective null-spaces such that ,*s*and <" participate only in the response

of es and e,. The observer gain matrix for each of the specified sets was calculated as,

-1

T
G=| 0,0, 0,0 ,0,,0 [ P sPasPuasPus . 624
e [ i Q2 BBy 0 Rap 5] 911.921.931?41345_946]

6.3.3 Modelling the Observed System

The system of equations describing the observer, the aircraft and the control Law are:

i(e=Fexc+Geme+ Bu , 625
x=Ax+Bu , 6.26
u=Kx_, 6.27

where the feedback matrix K is the same as in the control Law Gamma. The matrix F, is defined

by equation 6.10. Substitution of equation 6.27 in 6.26 and 6.25 results in,

ke=Fexe+Geme+ BKx, , 6.28

x=Ax+BKx, - 6.29
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The vector differential equations 6.28 and 6.29 can be written in the compact form, viz:

X A BK X

= . 6.30
% GeCm Fc + BK X,

In order to access the reductions in the bending and torsional moments at various wing stations

when using estimated full state variable feedback (EFSVF), the output equation was defined as,
y=Cx+DKx, . 6.31

The block diagram representing equation 6.30 and 6.31 is shown as figure 6.7.

6.3.4 Dynamic Response of the Observed System

Test case SClwhich represents an initial condition on the vertical velocity was used to excite the
controlled system. Time histories of bending momeﬁt at W.S.1,, torsion moment at W.S.1,
displacement of the first flexural mode and vertical velocity are presented in figures 6.8, 6.9,
6.10 and 6.11 respectively. Presented on each figure is the uncontrolled response, controlled

response when using full state variable feedback (FSVF) and controlled response using EFSVF.

From these figures it should be noted that as the observer dynamics is made faster (i.e., the
eigenvalues are increased negatively) x,approaches x much more quickly. Even with an
observer having comparatively slow dynamics, i.e., eigenvalue Set 1, some reduction in the peak
values of the bending and torsional moment at W.S.1 are still achieved. However, if the same
degree of of alleviation is required as that obtained when using the FSVF Law Gamma, the
obécrver dynamics have to be very fast, i.e., eigenvalue Set 3. It is worth noticing from the

figures corresponding to Set 3 that the EFSVF responses closely follow the FSVF responses.
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6.4 Digital Synthesis of the Observed System

It was shown in thid previous section that the states required for feedback of Law Gamma could
be constructed by using a full order observer. It was also shown that provided the estimator
dynamics are fast, load alleviation could be achieved by using EFSVF. The levels of reduction
obtained were the same as those obtained when using FSVF Law Gamma. If it is assumed that
all of the states required for feedback of Law Gamma are available for measurement, then, by
observing these states, redundancy can be demonstrated. Digital systems provide an advantage,
from the point of view of the design of redundant systemsﬁat logical and arithmetic

comparisons can be made.

However, the information upon which a digital flight control system operates is derived from the
sensors which are essentially analogue devices. Moreover, the actuating elements in an AFCS
are also analogue. Hence, in order to pass information to the computer and obtain from it the
control signals, an analogue-to-digital converter (ADC) and an digital-to-analogue converter
(DAC) are required. Advanced Continuous Simulation Language (ACSL) was used to simulate
the three elements i.e. the ADC, computer and the DAC . The block diagram representing the
digital estimated state variable feedback control system is shown as figure 6.12. Itis seen from
the figure that the available states are being fed to an sﬁamplc and zero order hold circuit. The

sampled signals are then used to obtain the full state vector, essentially by solving equation 6.30.
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6.41 Effect of Sampling on Structural Loads

It is well known that sampling frequency adversely affects the performance of a digital control
system. Some selected responses, which highlight the effect of sampling on the dynamic
response of the aircraft, are presented in figures 6.13, 6.14 and 6.15. The observer gain matrix
corresponding to set 3 and Law Gamma were used. The responses presented on each figure are
the bending moment at W.S.1 (y-axis annotated YY1), the torsional moment at W.S.1 (y-axis
annotated YY2) and the rigid-body vertical velocity (y-axis annotated YY37). The responses are
for test case SC1 which relates to an initial condition on the vertical velocity of 7.15 m/s (281

in/s).

Shown in figure 6.13 are some selected responses when using EFSVF. The measurable states
W, q, 0, and O, were sampled at the same rate of 14 Hz. It can be noticed from this figure that
the response of vertical velocity is almost the same as the response obtained for the equivalent
analogue situation (see figure 6.11). It is noticed that the bending moment and the torsion
moment response have become oscillatory and the peak values are much higher compared to

those in figures 6.8 and 6.9.

Presented next is the response obtained for a sampling frequency of 100 Hz. From figure 6.14
it is noticed that the responses obtained at the sampling frequency of 100 Hz are almost the same
as the uncontrolled case. It appears that EFSVF has little or no influence on structural loads.

This can only imply that sampling has a degrading effect on the observer dynamics, and hence

on the alleviation of the structural loads being achieved.
Tests carried out at the same sampling frequency without the observer, i.e., the basic FSVF

control system using Law Gamma, indicated no difference between the comparable analogue

case. This test proved beyond doubt that the observer was sensitive to the sampling frequency.
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Presented in figure 6.15 are the responses obtained for sampling frequency of 1000 Hz. Ttcan
be seen from this figure that the BM and TM responses are essentially the same as those for the
analogue situation (see figure 6.8 and 6.9). It is clearly evident from figures 6.13, 6.14, and
6.15 that the observer is very sensitive to the sampling frequency. In order to demonstrate SLA @

minimum sampling frequency of 1000 Hz would be required.

6.4.2 Gust Load Alleviation

To demonstrate that gust load alleviation would be possible when using the EFSVF Law
Gamma, the ACSL simulation program which modelled the observed control system was
modified to include the dynamics of the Dryden filter, the Kiissner dynamics and the gust delays.
The gust effects were then injected in the equations of motion via appropriate stability derivatives.
The program was run using an initial condition on w of 7.15m/s (281in/s) and with white noisé (
which is the input to the Dryden filter) having a standard deviation of 0.3m/s. The wing root
bending moment and the RMS bending moment response is shown as figure 6.16. The curves
mérked A are for the uncontrolled case and the curves marked B are for the controlled case when
using EFSVF, It can be noted from this figure that even when EFSVF is employed GLA can be
achieved. Substantial reductions in the RMS values are seen to result. An RMS reduction of
58% was achieved. Although this value is somewhat lower when compared to FSVF control
Law A (63% reduction was achieved), nevertheless is above the required value of 30% at wing

-station 1.

6.4.3. Hardware Requirements

The simulation results presented in section 6.4.2 indicated that sampling frequency 1kHz was
required to achieve SLA and GLA. The conversion of analogue signals at this rate would

obviously require a fast ADC. The required sampling frequency is by no means beyond the
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capabilities of the present day ADC's, which can provide sampling frequencies of up to 100 k
Hz. Synthesis of digital control systems requires three discrete components, i.e. an ADC,
microprocessor and a DAC. The design of such a control computer is expensive. It is now
feasible to employ a single chip microcontroller which essentially encompass the three basic

elements as indicated earlier.

Unlike microprocessors, microcontrollers are generally optimal for specific application. The
MCS™ - 96 range of microcontrollers has been designed for high speed/high performance
control applications. INTEL's 8097 microcontroller is 2 member of MCS™ - 96 family which
uses a 16-bit Arithmetic Logic unit (ALﬁ) and operates on a 256 byte register file instead of an
accu}mulator. Any of the locations in the register file can be used as a sources or destinations.
Thi‘s:t:alled the register to register architecture. In the lower 24 bytes of the register file are the
register-mapped input/output (I/O) control locations, also called the special function registers
(SFR's). These registers are used to control the on chip I/O features. The remaining 232 bytes

are general purpose RAM. Some other features of the 8097 microcontroller.are outlined next:

- 16 Bit architecture, 64K addressable space
-  Clock frequency 12MHz
- 8 bit wide digital Port (quasi-bidirectional)
This port can be used either as an input port or an output port.
- hardware serial channel
The hardware serial channel can be configured to the RS-232 or RS-422
specifications.
- Two 16-Bit hardware counters/timers
- Eight multiplexed analogue channels, 10-Bit ADC (with sample and hold)
- One variable duty Pulse Width Modulated output (PWM)
- 6 or 4 high speed outputs (HSQO)
By using the hardware timer PWM outputs can be generated on the HSO pins by

setting the on-times and the off-times. Integration of the PWM signals by using an
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active or a passive RC filter will provide analogue outputs. Analogue
volfage can also be obtained by generating a 50% duty cycle PWM signal of variable
frequency on the HSO pin, which can be converted by using a frequency to voltage
converter,

- 2 or 4 High speed inputs (HSI)
HSI are provided for measurement of pulses of 2-ms duration or greater.

- 6.25 ps 16-bit x 16-bit multiply, 6.25 ps 32-bit / 16-bit divide

- 1to 2 ps average instruction time

A single board computer (SBC) based on the 8097 microcontroller has been designed by the
author for dedicated control applicat_ionsﬂ. The 8097 has a single 10-bit ADC with sample and
hold, convertions on a single channel take 22us. If the SBC based on the 8097 is used to
synthesise the EFSVF control system, then the requirement of sampling the four measurements
at a frequency of 1 kHz can be met easily. If all the eight channels were being sampled then a
maximum sampling frequency of.5.7 kHz on each channel would be possible. It was merely an
intention here to indicate that SBC based on an microcontroller can be used for the digital
synthesis of EFSVF control systems to provide SLA, MLC and GLA. However much work still

needs to be done as far as practical implementation is concerned.

| The design of a single board computer (SBC) based on the INTEL 8097 microcontroller was started in January
1986 and was completed in November 1986. The work was sponsored by the Department of Transport
Technology, Loughborough University. The SBC is intended to be used in aerospace and automotive applications.
Typical areas df usage are likely to be;

- flight control

- engine management systems

- drive train control

- data acquisition
Software development is done on the INTEL Series IV and Series IIT 16-bit microprocessor development systems

(MDS), in conjunction with the in circuit emulation (ICE) facility.
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6.5 Concluding Remarks

The robust nature of the proposed feedback laws was demonstrated by considering reduced order
feedback laws derived from the reduced order models. It was shown that if Law Gamma at least
is available for feedback then SLA would be possible. Load alleviation in manoeuvres and in
turbulence was demonstrated. It was shown that if some of the aircraft's states are unavailable
for measurement then a full order observer could be designed by using the EPAM. The efféct of
observer dynamics on the observed states and hence on load alleviation was demonstrated by
considering three separate observers. It was also shown that the error between the actual states
and the estimated states converged to zero more rapidly as the dynamics of the observer are made
fast. The EFSVF control system was synthesised digitally by using the simulation language
ACSL. Thc effect of different sampling frequencies on the observer dynamics was
demonstrated. Finally it was indicated that a microcontroller may be used to implement the

EFSVF control system digitally.
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7.1 Concluding remarks

Reduction of the aerodynamic loads which arise on the aircraft owing to responding to
manoeuvre commands or when encountering atmospheric turbulence, is an important
problem in flight control. The reductions can be beneficial from both the ultimate structural
strength and the fatigue life of the airframe. Such reductions increase the structural durability
and improvement in the fatigue life of structural components. The eigenpair assignment
method (EPAM) described in chapter 3, was successfully applied to design feedback
controllers, which resulted in the reduction of the loads on the wing of the C5-A. All design
objectives were met i.e. there was achieved the required alleviation of the steady state and
RMS values of bending and torsional moments at W.S.1., These reductions were caused by
effectively controlling the first flexural mode. The EPAM was used to augment the damping
in the first flexural mode from an uncontrolled value of 0.093 to 0.465. Another factor for
such reductions was the choice of eigenvector selection scheme, which cnabied the reduction

of the peak and RMS values of the displacement and rate of the first flexural mode.

The robust nature of the proposed feedback laws was demonstrated by considering reduced
order feedback laws derived from the reduced order models. It was shown that if at least
Law Gamma is available for feedback then SLA would be possible. It was shown that if
some of the aircraft,s states are unavailablelfor measurement then a full order observer could
be designed by using the EPAM. The effect of observer dynamics on the observed states
and hence on load alleviation was demonstrated by considering three separate observers. It
was also shown that the error between the actual states and the estimated states converged to
zero more rapidly as the dynamics of the observer are made fast. The EFSVF control system

was synthesised digitally by using the simulation language ACSL. The effect of different |

L ]
sampling frequencies on the observer dynamics was also demonstrated.
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. a)

It was shown in chapter 2 that the dynamic response of the aircraft, owing to control inputs
or due to disturbances on the aircraft's state variables, can be determined by using the
eigenvalues and the eigenvectors of the coefficient matrix A. It was shown that the
eigenvalues determine the rate of decay of the modes, whereas the associated eigenvectors
determine the extent of mode participation in the state variable response and the amplitude of

the response.

A mathematical model describing the dynamics of the L.-1011 Tristar aircraft was presented
in chapter 2. The lack of damping and the coupling between the modes of motion of the
L-1011, was explained in terms of the eigenvectors of the uncontrolled aircraft. The dutch
roll mode was found to be very lightly damped, and the time constant associated with the
spiral mode was found to be very large. It was also noted that the rolling and yawing
motions of the aircraft were coupled. The lack of damping in the Dutch roll mode is due to
the coupling of the rolling and yawing motions of the aircraft. It was suggested that in order
to augment the damping and possibly to decouple the modes of motion, feedback would be

required.

Three feedback methods for obtaining full state variable feedback control laws were
presented in chapter 3. The first method presented assigned the specified eigenvalues, A
generalised control canonical form derived from the canonical forms for multivariable
systems, such as those presented by Luenberger[{1967] was used in the eigenvalue
assignment technique and it was shown that by using state variable feedback, the eigenvalues
of such linear multivariable systems can be arbitrarily assigned. The specified eigenvalues for
the L-1011 Tristar, being achieved exactly. The method presented is purely algebraic, and

offered features such as;

The indication of the controllability of the pair (A, B).
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b) Computation of a feedback matrix using real arithmetic, even if the specified eigenvalues

are complex.

c) The procedure of determining the feedback matrix does not require inversion of the modal
matrix (a matrix whose columns are composed of eigenvectors), therefore making it
possible to assign repeated eigenvalues, or eigenvalues which also belong to the open-loop

spectrum of A.

The second method briefly outlined in chapter 3 was solution of the LQP. The method is based
on obtaining a control which minimises a chosen performance index. The feedback gains are
obtained as a solution of the algebraic Riccati equation. It was shown in chapter 3, that although a
satisfactory control law could be obtained using the LQP method ( a lateral feedback controller
for the L-1011 was designed by using LQP method), exact assignment of the specified
eigenvalues and eigenvectors, which translate into the dynamic performance of the system, could
not be achieved. It was also shown that the choice of weighting matrices could not be related to

the attainable dynamic characteristics of the aircraft.

Based on an eigenvalue comparison alone, the time domain characteristics, such as damping and
the speed of response of the system éould be inferred. In the case when the eigenvalue is real,
the time constant of a monotonic mode associated with it can be inferred. Whereas if the
eigenvalues occur as complex conjugate pair then the frequency and the damping of a mode
associated with the eigenvalues could be obtained. Although the GCCF control law assigned
every specified eigenvalue, some degradation of the yawing response of the L-1011 was
observed. The degradation of the yawing motion was explained from an examination of the

closed-loop eigenvectors resulting from the use of GCCF control law. The coupling of the
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yawing and rolling motions of the aircraft still persisted, even under the influence of the control
law using the GCCF control law. The coupling of the modes of motion (yawing/rolling arising
due to the use of GCCF control law) and the arbitrariness associated with the selection of the
weighting matrices in the LQP method was overcome by the use of eigenpair assignment method

(EPAM), in which the required closed-loop eigenvalues and the eigenvectors were assigned.

It was shown in chapter 3 that the lateral feedback controller for the L-1011 designed by using
the EPAM improved the dynamic response of the aircraft. The controller was shown to be
superior to the controllers designed by the GCCF, the solution to the LQP and the method
proposed by Andry et al[1983]. It was also shown that the performance of a multivariabie
control syétem cannot be solely judged on the examination of eigenvalues alone: corresponding
eigenvectors have to be examined. The results presented in chapter 3 indicate the suitability of the

EPAM for the design of stability augmentation systems and for improving the handling qualities .

A requirement of Andry's method of eigenvalue/eigenvector assignment is that the specified
closed-loop eigenvectors must belong to a sub-space of the matrix (AI- A)!B. The desired
closed-loop eigenvector is projected on to this sub-space and an achievable closed-loop
eigenvector is obtained by minimising the least squared error between the achigvable and the
desired closed-loop eigenvector. It is quite obvious, that, if the desired closed-loop eigenvector is
orthogonal to the sub-space, it can never be made to span it. From this basic consideration a
suitable choice of the closed-loop eigenvector has to be made in the first instance. Moreover, the
projected eigenvector may not span the sub-space exactly, it will do so in the least squared error
sense. Another disadvéntage of the method is that if an eigenvalue which beldngs to the
open-loop spectrum is specified in the closed-loop the inverse of the matrix (AI- A) is not
defined hence the appropriate sub-space corresponding to the specified open-loop eigenvalue
cannot be formed. The method of computing by SVD the closed-loop eigenvectors which satisfy

equation 3.68 in the EPAM, has following features:
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b)

d)

The method does not depend on the inversion of the matrix (AI - A). Therefore a

controllable open-loop eigenvalue can be specified for the closed-loop.

The eigenvectors in the computed null-space are linearly independent, and from this set of
gigenvectors a suitable eigenvector could be chosen to reflect the desired distribution of the
mode in the state variable response. Since EPAM assigns an nuli-space eigenvector in the

closed-loop, the method of ' eigenvector projection’ in common practice can be avoided.

If the rank(A B) < u, i.e., some modes are uncontrollable, eigenvalues identified with the
uncontrollable modes may be also specified in the closed-loop There is freedom to select

appropriate corresponding eigenvectors from the computed null-space.

An eigenvalue having a multiplicity of m can be specified for the closed-loop system.
Since the dimension of each null-space is m, it is possible to select m eigenvectors

corrésponding to m eigenvalues which do not to make the modal matrix singular,

It was shown in chapter 3, that the peak values of the dynamic response, of the L-1011 Tristar

were substantially reduced by the use of feedback controller designed by the eigenpair

assignment method. The specified eigenstructure (which consisted of some open-loop eigenpairs,

and the dutch roll and roll/spiral eigenpairs) was assigned exactly in the closed-loop, resulting in

the L-1011 having the desired dynamic response.

Methods of reducing by feedback control, the structural loads on the wing of the C-SA, arising as

a result of manoeuvre commands and atmospheric turbulence, have been proposed by many

authors, see for example Stone et al[1972], Konar et al[1976], McLean[1976] and Prasad[1980].
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Before any control scheme is implemented on an aircraft, the theoretical feasibility of a control
scheme, using as comprehensive a mathematical description of the aircraft as possible, has to be
demonstrated, For this purpose a model of the C-5A was presented in chapter 4. The model
included the longitudinal rigid body dynamics, the description of the first six flexural modes of
the wing, the unsteady aerodynamics associated with the lifting surfaces namely the wing and the
tail was modeled by Kiissner functions. Transportation Jlags (pure delay associated with the
aircraft penetrating the gust field, in which the edge of the gust strikes the wing first before
striking the tail some finite time later) were modeled by Pide approximations. Actuator dynamics
were modeled by linear first order time lags and atmospheric turbulence modelled by a Dryden
filter. This total model was represented by a state variable equation. The main objective of this
research study was the reduction of the wing loads. For this purpose bending and torsional
moments related to the aircraft's state and control variables were defined at five specific wing

stations.

It was shown in chapter 4, that when the aircraft was excited from initial conditions on the
vertical velocity the uncontrolled response of the bending moments and the torsional moments
was highly oscillatory, which is highly undesirable from the fatigue life standpoint. The
oscillatory nature of the BM and TM response was attributed to the insufficient damping
of the flexural modes. Furthermore, it was shown that the eigenvalues associated with the rigid
body mode (the short period mode), the first six flexural modes, the inboard elevator and aileron
modes were controllable. Most of the published work concerned with the design of control
systems for structural load alleviation (SLA), manoeuvre load control (MLC), and gust load
alleviation (GLA), has made use of the LQP method. However, a particular deficiency of the
LQP method for structural load alleviation lies in the fact that the characteristics of the flexural

modes such as damping and frequency are arbitrarily assigned in the closed-loop.
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The arbitrary assignment of the closed-loop eigenstructure can be related to the selection of the
weighting matrices. However, with an intuitive knowledge of the SLA problem it is possible to
select appropriate weighting matrices which will result in a suitable control law for the purposes
of SLA. Since it is known that most of the bending energy is contained in the first flexural
mode, control of this mode will result in the reduction of the bending moments. For example,
the SLA control system proposed by Prasad [1980] assigns the frequency and the damping ratio
associated with the first flexural mode in the closed-loop to be 15.4 rad/s and 0.25 respectively.
The frequency of the first flexural mode is effectively separated from the rigid-body mode
(mnsppo =1.55 rad/s) by a factor of approximately 10, and the damping ratio of this mode was
augmented from the uncontrolled value of 0.093 to 0.25. From a knowledge of the system
dynamics it is known that SLA can only be possible; if either the frequencies of the flexural
modes are separated from the frequencies of the rigid-body modes, or the flexural modes have
sufficient damping to dissipate any absorbed energy rapidly. Since the frequency and the
damping ratio associated with the first flexural mode assigned by the SLA control system
proposed by Prasad, reflected these requirements, load alleviation was possible. However, the

computation of feedback laws which result from a choice of weighting matrices determined by

intuition or by trial and error approach, can be both cumbersome and time consuming.

From these considerations a method of synthesising feedback controllers which assigns the
frequencies and the damping ratios of the flexural modes in the closed-loop and affects the
distribution of the modes in the dynamic response would be advantageous. The design of the
controller for the purposes of SLA can thus be accomplished in a single design iteration. The
effectiveness of full state variable feedback controllers designed by the EPAM, for SLA, MLC

and GLA was demonstrated in chapter 5.

It was shown in chapter 5 that, although no attempt was made to augment the rigid body stability

by altering the eigenvalues associated with the short period mode, the effect of reducing the
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displacements and rates associated with the flexural modes resulted in reduction of structural
loads. Part of the reduction being due possibly to the decoupling of the modes of motion,
effected by the eigenvector selection scheme of case A. It is also known that structural loading
and fatigue damage rates are reduced with stability augmentation, by reducing the peak loads and
the number of cycles of loading, Newberry{1969]. It was shown that not only were the peak
loads effectively reduced by using control law A, but the absence of any high frequency
oscillations in the dynamic response of bending and torsional moments indicates the quality of

control law A from structural fatigue consideration.

It was shown in chapter 5 that the second flexural mede is controllable, and that both the
damping ratio and the frequency of this mode could be altered by feedback. It was also shown
that the choice of eigenvectors for SLA, for the two cases considered, produced radically
different responses and very different degrees of load alleviation. The eigenvector choice of
scheme A relates to the case in which the eigenvectors are chosen from the null-space such that
they allow each mode to contribute to the dominant mode variables. For example, the rigid-body
mode ‘mainly consists of the rigid-body vertical velocity and the rigid-body pitch rate, the
eigenvector for this mode was chosen such that it allowed the short period mode to contribute
mainly to the rigid-body variables. Similarly, the eigenvectors chosen corresponding to the
flexural modes allowed the flexural modes to contribute mainly to the dominant variables
associated with the flexural modes. Such a choice results in the decoupling of the rigid-body
and the flexural modes. The eigenvector choice of scheme A provides a design procedure for

structural Ioad alleviation.

It was also shown that all the specified goals (required reductions in the BM and TM observed at
W.S.1 appropriate to MLC and GL.A) were achieved without impairing the response of the rigid
body motion variables and the handling qualities of the aircraft. It is also known that a gust

alleviation system that uses only elevator control is not completely effective, Ochman [1973]. An
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elevator is primarily a device for controlling the pitch rate and the angle of attack and does not
provide adequately the changes of force in the z-direction that are necessary for good gust load
alleviation. The reductions in the bending and torsional moments due to manoeuvre commands
and atmospheric turbulence were as a result of using a combination of both the elevator

deflection and symmetrically deflected ailerons to provide direct lift.

It was shown in chapter 3, that the influence of the first flexural mode on the bending moment
response is dominant and that the shape of the bending moment response matches that of the first
flexural mode displacement. The displacements of the first flexural mode were an order of
magnitude higher than those of the high frequency modes. Since the first flexural mode has a
pronounced effect on the bending and torsional moment response, the effects higher frequency
flexural modes can be neglected from the dynamic representation of the aircraft. Moreover
provided the variables associated with the short period mode, the first flexural mode and the
control surface deflections are available for fe:edback SLA will be possible. Results to this effect,

using reduced order models, were presented in chapter 6.

It was shown in section 6.1 that the proposed control laws, such as Law A, remain effective at
off-nominal conditions. The off-nominal conditions were simulated by altering the elements of
the A matrix. These changes represented changes that would occur due to varying flight
conditions or due to modelling inaccuracies. A change of -10% in the frequency of the first
flexural mode was made. The new elements in the A matrix represented a frequency of 4.66
rad/s and a damping ratio of 0.093 associated with the first flexural mode. The eigenvalues of
the off-nominal closed-loop system when using control Law A, associated with the rigid-body
mode and the six flexural modes, indicated that the damping ratios associated with all the flexural
modes (except the first flexural mode) were approximately the specified values (see table 53.3).
The damping ratio of the first flexural mode had increased to 0.75. Since the damping ratio and

frequency of the rigid-body mode were essentially fixed at the specified values, the increase in
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the damping ratios associated with the first flexural mode and the remaining modes reflected very

favourably in the bending moment response.

From a comparison of figure 5.16 and 6.1 it was noted that the peak value of the uncontrolled
bending moment response at W.S.1 had increased from 4.0 MN-m to 6.0 MN-m. This increase
was mostly due to the fact that the frequency of the first flexural' mode and the rigid-body mode
are much closer together, and that the two modes have been much more tightly coupled. It can be
inferred from the results presented in section 6.1 that there must be adequate frequency separation
between the rigid-body motion and that of flexural dynamics, otherwise excessive peak loads will
result due to the coupling of the rigid-body mode with the flexural modes. The reduction in peak
values of the bending moments, is a matter of specification. For example if the frequency and
damping ratio associated with the first flexural mode of the controlled off-nominal system ( see
table 6.1 ) were specified for the controlled nominal system instead of the values given in table

5.3, reductions tabulated in table 6.2 will result.

In section 6.2 three reduced order models were derived from the original 24 order model ( see
chapter 4 ). Each model was derived from reducing the 24" order model by the method of modal
truncation. The retained modes in each of the models were not represented by any aeroelastic
correction factors which relate to the deleted modes of vibration. The three models were
designated Alpha, Beta and Gamma respectively. The model Alpha comprises of the rigid-body
dynamics the dynamics of the six flexural modes and the aileron and the elevator dynamics. The
model Beta was the same as the model Alpha, except that only the first two flexural modes were
included. The model Gamma differed from the model Beta in that only the first flexural mode
was included. Consequently the dimension of the state vector of models Alpha, Beta and Gamma

was 16, 8, and 6 respectively.
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The reduction in bending and torsional moments at five wing stations using Law Alpha were
almost the same as those obtained with Law A. This was owing to the fact that Law Alpha
assigned the same eigenstructure as that assigned by Law A, It was noted that the use of Law
Gamma does not produce a bending and torsional moment response which is radically different
to the response obtained by either Law A or Law Alpha. It was inferred from results obtained

that provided Law Gamma is at least available for feedback, then MLC will always be possible.

The percentage reduction in the RMS and peak values of the bending and torsional moments at
various wing stations for Law A and Law Alpha were almost the same. However, reductions
caused in the bending moments by the use of Law Gamma were somewhat reduced, but a
corresponding increase in the reduction of the torsional moments was observed. The slight
increase in the reduction of the torsion moments was at the expense of the decreased reduction in
the bending moments. The use of Law Beta produced approximately the same levels of reduction
as those obtained by the Law Gamma. This merely implies that feedback of the displacement and
the rate of the second flexural mode is unnecessary if the variables associated with the first
flexural mode are available for feedback. The degree of reduction in the bending and torsional
moment response obtained when using Law Beta or Gamma indicated that the first flexural mode

indeed has a dominant effect on the structural loads.

It is worth emphasising that the control laws proposed are extremely effective for the purpose of
MLC and SLA. For example, it was shown that when using Law A the reduction in the RMS
value of bending moment was about 20% with an associated reduction in the peak value of nearly
70%. When Law Gamma or Beta have to be used, although the reduction in the peak values
remained about the same, the reduction achieved in the RMS values was significantly reduced.
Nevertheless from a flying point of view the reduction in the peak values for structural loads is
what a SLA control system has to achieve to provide the degree of safety required. The loss of

RMS performance simply reflects in the fatigue life of the airframe which it is stressed was not
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lessened, for some reduction in the RMS values had been achieved,

It was shown in the same section that when using Law A, reduction in the RMS value of
torsional moment was about 39% with an associated reduction in the peak value of nearly 37%.
The reductions obtained in the bending and torsional moments when using Law Gamma or Beta
were 43% and 42% respectively, it was noted that these values were slightly higher than the
corresponding values obtained when using Law A. These results are not in the least surprising;
for reduction in the bending moments is caused by symmetric deflection of ailerons.
Achievement of higher levels of reduction in the bending moments must inevitably involve large
aileron deflections. This in turn will cause increased torsional moments about the wing center
line. Hence, a decrease in the reduction of bending moments would invariably result in a

increased reduction of the torsional moments, which is exactly what the results suggest.

In section 6.3 it was shown that the state vector required for the feedback of Law Gamma could
be reconstructed from the knowledge of the measurable state and control variables. The
proposed EPAM was used to design such full order observers. It was shown that provided the
observer dynamics are fast, load alleviation could be achieved by using EFSVF. The levels of
reduction obtained were the same as those obtained when using FSVF Law Gamma. If it is
assumed that all of the states required for feedback of Law Gamma are available for

measurement, then by observing these states redundancy can be demonstrated.

In section 6.4 the observed control system was digitally synthesised using the advanced
simulation language (ACSL). The effects of sampling on the dynamics of the observer were
investigated in this section, where it was shown that when the measurable states w, g, 8, and 5,
were sémplcd at a frequency 14 Hz the bending moment and the torsion moment response
became oscillatory and the peak values were much higher compared to analogous analogue case.

The responses obtained for a sampling frequency of 100 Hz were almost the same as the
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uncontrolled case. It was inferred that at this frequency EFSVF has little or no influence on
structural loads. In order to demonstrate SLA a minimum sampling frequency of 1000 Hz was
required. It was shown that at a sampling frequency of 1000 Hz, GLA can be achieved when
using EFSVF. Substantial reductions in the RMS values were seen to result. An RMS reduction
of 58% was achieved. Although this value was somewhat lower when compared to FSVF
control Law A (63% reduction was achieved), nevertheless was above the required value of 30%
at wing station 1. Finally, it was indicated that a single chip microcontroller which essentially
encompasses the three basic elements ie, an ADC , microprocessor and an DAC could be used to
synthesise the EFSVF control system for load alleviation. However much work still needs to be

done as far as practical implementation is concerned.
7.2  Recommendations

1. For the purposes of structural load alleviation, there remains a clear need for designing
feedback controllers using the eigenpair assignment method described in chapter 3, for flight
conditions other than investigated in this work. Furthermore, the theoretical results should be
verified by the practical implementation of the proposed reduced order feedback laws, such

as law Gamma on the aircraft or, at second best, a flight simulator.

2. In this study (the only model available to the author) only the longitudinal dynamics were
considered?. However, there is a need to demonstrate the effectiveness of the EPAM on a
model which incorporates, the longitudinal and lateral dynamics of both the rigid-body and
the structural modes of the wing and fuselage (only the fundamental flexural modes need be

considered),

§ It is the most comprehensive model available. No cther models could be obtained, relating to flight

conditiorf$ other than investigated in this work, infpite of exhaustive searching.
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3.

For the purposes of SLA, in the specification of the eigenstructure (which resulted in the
reduction of structural loads) no attempt was made to alter the frequencies of the six flexural
modes. The effect of changing the frequencies by feedback is the same as having a wing of
higher stiffness. The effect of altering the frequencies of the flexural modes must be
investigated. But note that some preliminary consideration of the problem is discussed in

chapter 6 in relation to the robusiness properues of the reduced order feedback controilers.

An attempt should also be made to synthesise a reduced order observer by using the EPAM (
in a full order observer not only the unavailable state variables are estimated the available
state variables are estimated as well, whereas in a reduced order observer only the
unavailable state variables are reconstructed and are fed back alongwith the available state
variables). The advantage of synthesising such reduced order observers, would be to reduce

the computational burden.

To demonstrate SLA only state variable feedback was considered in this thesis. However,
SLA using output feedback has been demonstrated in this thesis indirectly by the studies
connected with reduced order feedback, which may be regarded as an form of output
feedback. From the bcn’i‘fjéial results obtained with this technique it is worth proposing that
an investigation into SLA on the complete mathematical description using output feedback
directly should be undertaken. Algorithms which assign the complete eigenstructure by
using output feedback, such as, proposed by Srinathkumar [1978] or Porter and Bradshaw
[1978] may be used. Alternatively the proposed EPAM could be appropriately modified to

realise control laws using output feedback.
The effectiveness of the estimated full state variable feedback (EFSVF) control system

should be verified, on a flight simulator, using the INTEL 8097 microcontroller, in relation

to various sampling frequencies.
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APPENDIX A

L-1011 TRISTAR MODEL DATA
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Coefficient matrices A, B, C, D for the L.-1011 Tristar model are presented

below, for cruise flight condition, U,=834.0 ft/sec.
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APPENDIX B

C-5A GALAXY MODEL DATA
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Coefficient Matrix A

1
~0,55140D+00
-0, 14863D+01

0,45522D-01
0.510600-01
-0.11068D+01
~0,20164D+00
0.46358D400
0.00000D+00
0,00000D+040
0,00000D+00
0,00000D+00
0,.00000D+00
0,00000D+00
0, 00000D+00
0.00600D+00
0.00000D+00
0,00000D+00
0.00000D+00
0. 00000D4+00
0.00000D+00
0,00000D+00
0, 00000D+00
0.00000D+00

Note The

For

2
0.32791D+01%
-0, 11746D+01
0.10534D+00
-0, 88309D-01
-0,85213D+00
-0.98721D+00
~0,23495D+00
0,42046D+00
0.00000D+00
0.00000D+00
0,00000D+00
0,00000D4+00
0,00000D+00
0.00000D+00
¢.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0, 00000D+00
0.,00000D+00
0,00000D+00
0,00000D+00
0,00000D+00D

3

-0,35615D-01

0.39579D-01

~0.98741D+00

0,14416D-01
0.51344n-01
0.75927D-01
0.60625D-01

=-0,10741D+00

0,10000D+01
0.00000D+00
0,00000D+00
0.00000D+00
@.00000D+00
0.006000D+00
0.00000D+00
0.,00000D+00
0.00000D+00
0,000000400
0,00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0.00000D+00
0,00000D+00

l
«0.71438D-02
=0, NNT09D-01
~0,24874h-01
-0.1657hD+00
-0,.72981D-01
-0.39164n-01
~0,21022D-01

0.18093D-01
0.00000D+00
0,10000D+01
0,000000400
0,00000D+00
0,00000D+00
0.00000D4+00
0.00000D+00
0, 000000400
0.00000D4+00
0,00000D+00
0.00000D+00
0, 000000400
0.0000004+00
0.00000D4+00
0.0000Q0D4+00
0.00000D+00

5
~0,241330-01
~0. 329900400
=0, 146620400
-0,67265D-01
~0,12857Nn+01
=0,27h15N4+00

0.48689D-01
0,35634D-01
0,00000D+00
0,00000D4+00
0, 10000D+01
0,00000D+00
0.,00000D+00
0,000000+00
0,00000D+00
0.,00000n4+00
0,00000D+00
0.00000D+00
0,00000D4+00
0,00000n+00
0.00000D4+00
0,00000D+00
0,00000n+00
0.00000D+00

6
0.21332D-01
~0,32436D+00
0,51128p+00
~0.56908n-01
-0,40920n4+00
=0,10890n+01
=0,10753D+00
0.18846D4+00
0,00000n+00
0.00000D4+00
0,00000D4-00
0.10000D+01
0.,00000D+00
0.00000D+00
0.000000+00
(.00000D+00
0.0000004.00
0,00000D4+00
0,00000D+00
0.00000D400
0,00000D4+00
0. 000000400
0.00000D+00
0.00000D+00

7
=0, 2h04n-01
=0,11995D400
0. 113250-01
-0,7611MD-02
-0, 3482901
=0,1706204+00
~0,86125D4+00
0,997h2h-01
0.,00000N+00
0.00000D+00
0,00000D+00
0,00000D4+00
0, 10000D4+ 01
0, 000000+00
0,00000D+00
0.00000D4+00
0,00000D4+00
0,00000D+00
0,00000D4+00
0,00000D400
0.000000+00
0,00000D+00
0,00000D+00
0.00000D4+00

a8
0.17797D~-01
0.25113D+00

-0,25652D+00
-0, 30630002
-0.61113D-01

0.43783D+00
0,12357D+00

=-0,11481D+01

0.00000D+00
0,00000D+00
0,00000D+00
0,.00000D+00
0.000000+00
0. 10000D+01
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0.,00000D+00
0.00000D+00
0.00000D+00
0,00000D4+00
0.00000D+00

data presented in this appendix is the computer representation of real numbers.

example the number -0.35615D-01 (row 1, column 3) represents the number -0.035615,
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9
~0.63975D+00
=0, 10850D+00
~0.29851D+02

0.26632D+00
0.13958D+01
-0.19816D+00
0,23384D+00
-0, 11571D+00
0.00000D+00
0.000000+00
0,00000D+00
0.00000D+00
0.00000D+00
0.,00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D4+00
0,00000D+00
0.00000D+00
0.00000D+00

10
-0,65316D+00
=0, 16757D+01
-0, 408580401
~0.1238uD4+03
=0.60TH5D4+00
-0,67868D+00
=0, TH504Db+00

0,20060D+01
0,00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0,00000D+00
0.00000D+00
0,00000D+00
0.,00000D+00
0.00000D4+00
0,00000D+00
0,00000D+00
0,00000D+00

"
~0,17082D+01
~0,10304D+02
-0,16621D+02
~0,86920D+00
-0.19318D+03
~0,93687D+01
-0.12963D+01

0.14987TD+01
0.00000D+00
0,00000D400
0,00000D+00
0.00000D+0Q0
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0, 00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0.00000D+00
0.,00000D+00
G, 00000D+00
0.00000D+00

12
0. M4958D4+01
~0,57006D+01
0.M0631D+02
=0.158230+01
-0, 1500UD4+02
-0,202520+03
-0,32269D+01
0.4150630+01
0.00000D+00
0,00000D4+00
0,00000D+00
0,.00000D+00
.,00000D+00
(,00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
4, 00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
-0,000000+00

13
~0,1360104+01
=0, H9434D4+01
~0.5001D+01
~0,156920+00
"’0- 9789701‘00
~0,. 718340401
-0.306250+03

0. 877100401
0.00000D+00
0, 00000D+00
0,00000D+00
0.00000D4+00
0.00000D4+00
0.000000+00
0.00000D+00
0.00000D+00
0.0000004+00
0. 000000400
0.00000D+00
0.00000D+00
d.00000D+00
1.00000D+00
0.00000D+00
0.00000D+00

L
0.18068D4+01
0,91053D+01

=0, 669030401
0,15112D+01
=0,31528D+0
0,17025D+02
0.60832D+M
-0,35230n+03
0.00000D+00
0.00000Dh+00
0.00000N+00
0,00000D+00
0.00000D+00
0.000000+00
0.00000D+00
0, 000000+00
0.00000N+00
0.00000D+00
0,00000D+00
0.00000D4+00
0, 00000D+00
0,00000n+00
0.000000R4+00
0,00000D+00

15
-0,23106D+03
~0.57617TD+03
~0.33801D+0N
=0,133230+03
=0, 10152D40N

0.060351P4+03
-0, 13080D+02
~0.%1074D+03
0.,.00000D4+00
0.000000+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000N+00
=0, 600000401
0,00000D+00
0,00000D+00
0. 00000D4+00
0,000300D+00
0.00000D+00
0, 000000400
0.00000D+00
0, 00000D+00
0,00000D+00

16
-0, 19002ND4+03
~0,25322D+01
0. 11194D+0N
-0,29227D4+03
=0.25753D+04
=0,25292D+00
~0,65296D+03
0. 11165D+00
0.00000n+00
0.00000D+00
0,00000D+00
0.,00000D400
¢.00000D+00
0.00000n+00
0.00000N4+00
<0.75000n+01
0.00000D+00
G.00000D+00
0.00000D+00
0.00000D+00
0.00000n+00
0.00000D+00
.00000D+00
0,00000D+00
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17

! ~0.30107D+02
2 -0, 41066D+03
3 0.25982D+03
h ~0,63867D+02
5 -0,58207D+03
6 ~0,6250U0403
7 -0.1794304+03
8 0.32318D+03
9 0,00000D+00
10 0.00000D+00
11 0.00000D+00
12 0,00000D+00
13 0,00000D+00
10 0.00000D+00
15 0.00000D+00
16 0,00000D4+00
17 ~0.75100D401
18 0.00000D+00
19 0.00000D+00
20 0.00000D+00
21 0.000000+00
22 0.00000D+00
23 0.00000D+00
24 0.00000D+00
IRE RN} A2ENR RNERN

18
-0, 18273D+00
0.270530+01
0.62979D+00
-0,21372D+00
~0,23009D+01
~0,10079D+01
-0,32801D+00
0,43848D+00
0.00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
0, 00000D+00
0.00000D+00
0,00000D+00
0,00000D+00
-0,22185D+02
0,00000D+00
-0,50960D+01
0.90891D+02
0.00000D+00
0.,00000D+00
0,00000D+00

19
-0,70523D+01
-0,10493D+01
-0,23132D+02
0.16827D+01
0,111630+02
~0.142601D+01
~0.42523D-01
0.16316D+01
0,00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
0.00000D+00
-0,85192D+01
0,00000D+00
0,00000D+00
0.00000D+00
0.00000D+00
0,00000D+00

20
~0,910890D+00
=0.1%185Up+02

0,66833n+01%
=0,132560+01
~0.11851D+02
=0,11528h+02
=0,29517D+01
0.50301D401
0.00000D+00
0.00000D+00
Q,00000D+00
0.000000+00
0.000000+00
0, 00000D+Q0
0.00000D+00
0,000000+00
0.00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
~0,38953D+02
0,000000+00
0,000000+00
0,00000D+00

21
0.00000D+00
0.00000D+00
0,00000D+00
0,00000D+00
0.00000D+00
0,00000D+00
0,00000D+00
0,00000D4+00
0,000000h400
0,00000D+00
0,000000+00
0.00000D4+00
0,00000D+00
0.00000D+00
0.000000+00
0.00000D+00
0.00000D+00
0,00000D+00
0,00000D0+00
0.10000D+01

~0,10192D+02

0,00000D4+00
0,000000+00
0.00000D+00

22
0, 000000400
0, 000000400
0,00000D+00
0., 00000D+00
0, 00000D+00
0,00000D+00
0.00000D4.00
0.,000000+00
0. 000000+00
0, 000000400
0, 00000N+00
0, 000000400
0, 00000N4+00
0, 000000400
0,00000D+00
0, 000000400
0,.00000D4+00
0. 00000D+00

C0.85192D4+01

0.00000h+00D
0.00000D4+00

~0,10983D+02

0.00000D+00
0, 000000400

23
0, 00000D+00
0, 00000D+00
0, 000000400
0,00000D+00
0. 00000D+00
0.00000D+00
0, 000000400
0.00000D4+00
0, 000000400
0.00000D+00
0,000000+00
0. 000000400
0, 000000400
0.00000D+00
0, 00000400
0, 00000D+00
0.00000D+00
0, 00000D+00
0,000000+00
0,00000N+00
0.00000D+00
0,00000D+00

-0,19524D+00

0, 10000D+01

24
0.,00000N4+00
0.00000D+00
0,00000n+00
0.00000D4+00
0.00000D4+00
0,000000+00
{}.00000D+00
0.00000n+00
0.00000D+00
0.00000n+00
0. 00000D+00
0, 000000400
0.00000D+00
0, 00000D4+00
0,00000D+00
0.,000000+00
0.00000D+00
(,22185D+02
0.00000D4+00
0.00000D4+00
0.00000D+00
0,10983n+02

-0,61315D-01

0,00000D+00
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13
14

15
16
17

18
19
20
21

22
23
2H
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Output Matrix C

=0, 11H400D+05
-0, 16800D+05

0.21600D+04
-0.86900D+04

0.32500D+0H
=0.45700D+04
-0.20200D+04
~0.63700D+04
-0.17600D+0M
~-0.36400D+04
0.18100D+06

0.3540004+04

0.10600D+06
0.58500D+03
0.50200D+05
~0.k1200D+04
0.26B800D+05
-0.26000D04+03
0.11000D+05
-0.27780D+03
0.00000D+00
0.00000D+00
0,00000D+00
0,00000D+00
0, 00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0, 00000D+00
0,00000D0+00
0,00000D+00
0,00000D+00
0,00000D+00
0.10000D+01
0,00000D+00

2
<0.21000D+0Y
=0, 17600D+0N

0,94467D+03
=0,12300D+04
0.86850D+03
~0,45730D+03
-0,36970D+03
-0, 11000D+00
~0.51300D+03
~0.70180D+03
0.44700D+06
-0,80794D+03
0.27300D+06
0,81100D+04
0,13000D+06
~0,48800D+0HY
0.59000D+05
~0.12400D+04
0.25000D+05
-0,19670D+03
0,00000D+00
0.00000D+00
0.,00000D+00
0.00000D4+00
0.,00000D+00
0, 000000400
0,.00000D+00
0,00000D+00
0,00000D+00
0.00000D+00
0.,00000D+00
0.00000D+00
0,00000D400
0.00000D+00
0,00000D+00
0,00000D4+00
0,00000D+00
0, 10000D+01

3
0.11900D+05
~0,13700D+04
0.87700D+0N
=0,17300D+04
0.54000D+0U
=0.19300D+04
0.28400D4+04
~0, 17900D+04
0.13600D+014
-0, 13300D+04
0.12400D+07
~0.52000D+05
0.98200D+06
=0.55400D+05
0.63800D4+06
~0,52100D+05
0.38400D+06
~0.77000D+04
0.18200D+06
~0,THTO0D+0N
0.10000D+01
0,00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
0,00000D+00
0,00000D+00
0.00000D4+00
0,00000n+00
0.00000D+00
0.00000D400
0,00000D+00
0.00000D+00
0.00000D+00
0,00000DP+00
0.00000D+00
0.00000D+00
0,00000D+00

]
-0, 11200D+0N
=0, 10200D+04
~0,40629D4+03
«0, 107000404
0.57900D4+02
=0,10800n+04
0.17200D+03
-0.21580D+03
0,996000+02
-0,15300D+03
-0,25900D+06
=0,20600D+06
~0,99500D+05
-0,25200n406
0.18700D+05
~0,20700D+06
0,53100D405
=0,270000+05
0. 382000405
-0, 166000405
0, 00000D+00
0, 10000D+01
0.00000D+00
0,00000D+00
0.00000h+00
0.00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
0.00000D+00
0,00000D+00

0,000000+00 .

0,00000D+00
0,00000n+00
0,00000p+00
0,00000D+00
0.00000D+00

5
-0, 10500D+05
~0.17100D4+04
~0,43700D+04
~0,204800D4+04
0., 106000404
=0, 17100D4+0h
0,302000+04
-0,65703n+03
0,20200n4+0U
~0.820300+03
-0, 322000407
~0,52100D406
~0, 139000407
-0,55600D+06
0.39900D+06
~0,40100D+06
0,10600D4+07
=0, 154000405
0,792000+06
-0, H5000D+05
0.00000D4+00
0.00000n4+00
0.10000D+01
0, 000000+00
0.00000D+00
0,000000400
0.00000D4+00
0, 000000400
0,00000D4+00
0.00000D+00
0.00000D+00
0.00000h+00
0,00000b4+00
0,000000+00
d.00000h.4+00
0.00000b+00
0,00000b+00
0, 00000h+00

)
0.59600D+0N
0.62100D+04
0, 40200p4-0U
0.50800D+04
0,90920n4+03
0.39800D 04

=0, 10700D+04
0, 13200D4.04
~0.7T770D4+03
0,85790D+03
0.20400D+07
0.15200D407
0.15000D4+07
0. 150000407
0.31800D+06
0, 107000407
-0.51500D+06
0. 11900D+06
-0,39800n4+06
0.79800D+05
0.00000D+00
0.00000D+00
0.00000D+00
0. 10000D4+01
0.00000D4+00
0.00000D+00
0.00000D+00
0.000000+00
0.00000D4+00
0,00000D+00
0,00000D.4+00
0,00000D4.00
0.00000D+00
0.00000D4+00
0.00000D4+00
0.00000D4.00
0.00000D4+.00
0,00000D4+00

7

0. 378000401
~0,89423D4+03

0.26300D4+01
-0, 104000404
-0, 103000404
-0, 161000+04
-0, 14640D+03
~0.34020D4+03
~0.339100+03
~0,67800D4+02

0. 173000407
-0, 38700D+06

0.11700D4.07
=0, 37900D+06
-0, 125000406
-0, 610000406
~0,39800D.405
~0,55300D405
-0, 142000406
-0, 158000406

0. 000000400

0,00000D4+00

1, 00000D 400
0. 00000D4+00
0, 10000D401
0.00000D400
0.00000D400
0. 000000400
0, 00000D4+00
0, 00000D4+00
0,00000D4+00
(.00000D4.00
0.00000D+00
0.00000D4-00
0.00000D+00
0,00000D+00
0.00000D4+00
(.00000D4+00

f
=}, 96000ND4+0N
~0,30200D+0Y4
~0.52800D+00
0,326000h4+04
~0,75760D+03
0,87790D+03
~0.19400Dn+0N
0.21615D+03
0,21100D+04
-0,1236004+03
-0, 45100D4+07
0.15800D+07
~0,25000D+07
0. 151000407
~0,35500D+06
0.55200n+06
0.86100D+06
0.57300n+05
0,11000D+07
~0,249000+05
0.00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
0.00000D+00
0. 10000D+01
0.00000D4+00
0. 00000N+00
0, 000000400
0,00000D+00
0, 00000D+00
0, 00000D4+00
0.00000D+00
0., 00000D+00
0.00000N+00
0, 00000D+00
0.00000D+00
0,00000D+00
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9
0,12700D+07
-0,79600D+05%
0.10000D+07
-0,78100D+05
0,64700D4+06
-0, 70600D+05
0, 384000+06
=0. 260000405
0,18100D+06
=0,17700D+05
=-0.31200D+06
-0, 12400D+0%5
~0.23700D+06
~0,20600n4+04
=0.15300D+06
0,43500D+0H
~0,87700D+05
0,36800D+04
-0, 44N00D+05
0,770000+04
0,00000D+00
0,00000D+00
0,00000D+00
0.00000D+00
0,00000D+00
0.0000CD+00
0, 10000D+01
0.00000D+00
0.,00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00

10
-0,27TN00D+06
~0,27000D+06
=-0,.10400D+06
=0,27600D+06

0, 17200D+05
=0,.26H00D+06
0.46900D+0%
=0,41200D+05
0.32700D+05
-0, 25000D+05
0,70600D4+06
0.13600D+06
0.39100D+06
0.13600D+06
0.15500D+06
0. 111000406
0.56200D+05
0,12300D+405
0,132000+05%
0.10100n+0%
0.00000D+00
0.00000D+00
0,00000D4+00
0,00000D+00
0.00000Nn+00
0,00000D+00
0,00000D+00
0,10000D+01
0,00000D+00
0,00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0,00000D+00
0.00000D+00
0,00000D4+00
0,00000D+00
0.,00000D+00

1

-0, 33500D+07
~0.57000D+06
=0, 14700D+07
-0,60700D+06
0.35800D+06

-0, 45100D+06
0,10300D4+07

~0,98000D4+05
0,78200D+06

-0,77500D+05
0.56800D+07

0.26200D+06

0,30700D4+07

0,30200D+06

0,85T700D+06

0,13200D+06

-0, 10800D+06
=0,14200D+05
-0, 254000406
0.75100D4.0%

0,00000D4+00

0,00000D+00

0.00000D+00

0,00000D+00

0.00000D+00

0.00000D4+00

0.00000D4+00

0.000000+00

0.10000D+01

0.00000D+00

0,00000D+00

0.00000D+00

0.00000D+00

0,00000D+00

0.00000D+00

0.00000D+00

0.00000D+00

0.00000D+00

12
0,19600D407
0,16300D+07
0., 14h00D+07
0,16000D+07
0,.32100D+06
0,11600D407

=0.50000D+06
0.2530004+06
=0,39300D4+06
0. 145000406
0.13900D+07
=0, 105000407
0.71000D406
-0,90600D+06
0,60000D4+06
~0,684000406
0,71700D4+06
-0,89100D+05
0.H2600D4+06
~0, 704000405
0,.00000D400
0.00000n4+00
0.00000D+00
0,00000D400
0,00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
0, 10000D+01
0,00000n+00
0.00000D+00
0.00000D+00
0.00000D4+00
0,00000D+00
0,00000D+00
0,00000D+00
0.00000D+00

13
0. 165000407
=0, h0200D+06
0. 11100D+07
*0. 388000"‘06
-~0,13600D0+06
~0.614800D+06
-0, 197000405
~0,Th300D405
~0, 150000406
~0,2810004.05
0,57200D+06
0,.26800D4+06
0.24700D4+06
0.29850D406
0,81100D+06
0.459000406
0.31100D406
0,60100D+05
0,20M00D406
-0,79000D40N
0.00000N4+00
0, 000000400
0,00000D400
0, 000000400
0,00000D400
0.00000D+00
0.00000D4+00
0, 000000400
0, 00000D4+00
0.00000D400
0, 100000401
0,00000D+00
0.00000D4+00
0. 000000400
0.00000D4+00
0,000000400
0,00000D4+00
0.00000D400

k|
~0.143300D407
0.1560004+07
=0,20600D407
0.15000D+07
-0,3320004+06
0.52100D.4.06
0.862000+06
0. 19800D+05
0,11100D407
~0,.30100D4+05
~0,13000D4+06
=0.12800D+07
=0,19700D4+06
~0,12900D407
~0.70500N4+06
=0, 16000D4-06
=0,12600D4+07
-0, 14700D+06
=0.105000+07
0,116000406
0,00000D4+00
0,000000+00
0,0000004.00
0.00000Dn+00
0.00000b+00
0. 00000N+00
0. 000000400
(.00000N4+00
0.00000D+00
0.00000D+00
0, 00000n+00
0.10000D+01
0.00000D+00
0.000000h4+00
0,00000D4+00
0.00000D+00
0.00000D+00
0.00000D+00

15
<0, 19200D407
0, 355000405
«0,98600D+06
0,73200D+05%
0, 162000407
0, 10500D4+07
0,.54200n4+06
0,.59100D+07
~0,78100D+06
0,53100D+07
0.20800D4+09
0,15000D+08
0,11600D409
0.12800D4+08
0, 935000408
0.82100D+07
0,128000+08
0.97700D+06
0, 107000407
«0,28700D+07
0.,00000D+00
0.00000D+00
0,00000D+00
0.00000n4+00
0,00000N+00
0.00000D4+00
0.00000D+00
0.00000D4+00
0,00000D+00
0,00000D+00
0, 000000+00
0.00000D+00

~0,60000D+01

0, 00000N+00
0, 10000D4+01
0.00000D+00
0.00000D4.00
0.00000D4+00

16
=0, 02700D+07
0,23200D+06
0. 15600D+07
0,N9600N+06
0.16M00N+07
0, 15500n4+07
0. 116000+06
0, 46600N+06
«0,63200D+06
0,29400n+06
0,979000+09
0.21800D+08
0.59000D0+09
0, 11100D+08
0,28000D+09
=0, 131000408
0. 13400D+09
-0,21900D+07
0.53100D+08
~0.12200D+07
0.00000D4+00
0,00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0.000000+00
0.00000D4+00
0.00000D+00
0,00000D+00
0.00000D+00
0,00000D+00

~0,75000D+01

0.00000D+00
0.10000D+01
0, 000000400
0, 000000400
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17
=0, 372000406
0, 14200D+06
0.10300D+07
0, 186000406
0,60200D+06
0,46500D+06
-0,55700D+05
0,15200D+06
~0,32600D+06
0,10100D+06
0.17300D+09
0.37200D+07
0.10300D+09
0.261000+07
0, 4B8400D+08
~0,244000D+07
0,23900D+08
=0,47800D+06
0,96500D+07
-0,.30300D+06
0,00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0. 00000D+00
0,00000D+00
0.00000D+00
0,00000D+00
0.,00000D+00
0.00000D+00

18
0, 74600D+0N
0.B7800D+04
~0,27900D+04
0.62900D+04
-0.181000+04
0.13900D+04
0,15100D+04
0.52330D+03
0. 19400D+0Y
0.17237D+03
~0,10100D407
~0.68800D405
~0, 6260004086
~0.22000D+0%
=0, 30500D+06
0,16300D+05
-0, 13200D+06
0.38600D+0M
-0.53700D+05
0.38800D+04
0,00000D+00
0,00000D+00
0,00000D+00
G.00000D+00D
0,00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
0.000007+00
0.00000D+00
0.00000D400
0.00000D+00
0,00000D+00
0.00000D+00

19
-0, 13200D+06
~0.21100D+06
0.21000D+05
~0,11200D+06
0.,35900D+05
~0,61000D+05
-0.26200D+0%
-0.78300D+05
-0, 21200D+05
~0,48800D+05
0. 44200D+06
0.894000+06
-0,85000D+05
0,82700D+05
-0, 12300p+06
-0, 16300D+05
0.14200D+06
0.16800D4+05
~0.141000D+05
~0,24000D+05
0,00000D+00
0.,00000D+00
0.00000D+00
0, 000000400
0,00000D+00
0,00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0,00000D+00
0,00000N+00
0.00000D+00
0.00000D+00
0,.000000+00
0,00000D+00
0.00000D+00
0.00000D+00

20

-0, 183000405
0.11200D+04
0,68300D4+04
0, 22900D4+04
0.71000D+0M
0,69600D+0U
0.63790D+03
0.20500D+0MU
~0,27100D+04
0. 129000404
0.45900D+07
0.10300D+06
0.276000+07
0.67900D4+05
0, 131000407
~0, 60700D+05
0,62700D4+06
-0, 10800D+05
0.24900D+06
~0,57900D+0H
0.00000D+00
0,00000D400
0.00000D+00
0.00000D4+00
0.00000D400
0,00000D+00
0.00000D400
0.00000D40D
0,00000p400
0.00000D400
0.00000D4+00
0.00000D40D
0,00000D400
0.00000D4+00
0.00000D+00
0.000000400
0.00000D+00
0,00000D+00

21
0.00000D+00
0,000000400
0.000000+00
0.00000D400
0.00000D400
0,0000004+00
0.00000D+00
0,00000D+00
0.00000D+00
0.00000D+00

~0.144300D+0M

-0,17021D403
0. 188000401
0.480000403
0.50000n4+03
0.31680D403

-0, 15300n4+0M
0.39390D4+03

~0.91700D4+02
0.159000403
0.00000D+00
0.00000D4+00
0,00000n+00
0. 00000D400
0.0000004+00
0.00000D+00
0.000000400
0,00000D4+00
0.,00000D400
0, 000000400
0, 00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0.00000D4+00
0,00000D4+00
0,00000D+00
0.00000D+00

22
0.00000D+00
4.00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0,00000D4+00
0,00000D4+00
0.00000D+00
0.00000D+00
0,00000Dn+00

=0, 16100D406
-0, 898000406
0.12500D4+05
=0.10700D+06
. 1070004006
=0, 6TR00D+0N
~0.11500n+06
=0, 14100D+05
0.56700D+05
0,23100D+05
0,00000n4+00
0.,00000D+00
0.00000D4+00
0.000000+00
0,00000D+00
0,00000D4+00
0.,.00000D+00
G.000000+0Q0
0.00000D4+00
0,00000D400
0.00000D+00
0,00000D4+00
0.,00000D4+00
0.,00000D400
0.00000D400
0.,00000D400
0.00000D+00
0.00000D4+00

23
0. 00000D+00
0, 00000D4+0Q0
0. 00000D+00
0,00000D4+00
0, 000000400
0,00000D4+00
0,00000D+00
0.00000D4+00
0,000000400
0.,000000400
0.0000004+00
0.00000N+00
0,00000n4+00
0.00000n4+00
0.00000D4+00
0, 00000D4+00
0,00000N+00
0.,00000D4+00
0.00000D4+00
0.00000D+00
0,00000D4+00
0. 00000D+00
0,00000D4+00
0,.00000D4+00
0. 00000D4+00
0.00000D4+00
0. 00000D+00
0.00000D400
0, 00000D4+00
0.,00000N4.00
0, 000000400
0,000000400
0.,00000D4+00
0,0000004+00
0, 00000D+00
0, 08000N4+00
0.00000D4+00
0,00000D+00

o1t
0,00000D4+00
0. 00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0.,00000D+00
0,00000D+00
0.00000D+00
0,00000D+00
0, 000000400
0,23600D+05
0, 15100D+05
0.68501D+03
0.30800D+01
0.75900D+0"
-0,55000D+04
-0, 31100D+0M
-0, 415000404
~0, 28700D+04
~1, 31300D+0N
0.00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0, 00000D+00
0.00000D+00
0. 00000D+00
0,00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0,00000R4+00
0,00000D+00
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Driving matrix D

)
0,00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0,00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
G.00000D+00
0,00000D+00

-0,84900D+07

-0.12700D+08

~0.61700D+06

~0,10400D+08
0.87000D+06

-0.55500D+07

-0, 60800D+06

-0.17500D+07

-0.12300D+07
0.90200D+07
0,00000D+00
0,00000D+00
0,00000D+00
0.00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.60000D+01
0,00000D+00
0.00000D+00

0.00000D+00

0,00000D+00
0.00000D+00

2
0, 000000400
0.00000D+00
0,00000D+00
0,00000D+00
G, 00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0.00000D+00
0,00000D+00
0.31800D+07
0.24700D+06
0.75600D+06
0,82000D0+06
0.11200b+06
-0, 14100D+06
=0,51800D+05
0,11500D+06
-0.48900D4+05
(,00000D+00
0,00000D+00
¢,00000D+00
0.00000D+00
0.00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0.000000+00
0, 000000400
0,00000D+00
0.00000D+00
0,00000D400
0.75000D+01
.0.00000D+00
0.60000D+00
0.000000+00
0.00000D+00

Controlt

Driving Matrix B

1
0,00000D+00
0, 000000400
0,00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0,000Q0D+00
0, 00000D400
0.00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0.60000D+01
0,00000D+00
0,40000D+00
0,00000D400
G,00000D+00
0.00000D+00
0. 000000400
0.00000D+00
0.00000D+00
0,0000GD+00

2
0,00000D+00
0,00000D4+00
0,00000D+00
0.00000D+0D
0.00000D+00
0,00000D+00
(,000000+00
0,00000D4+00
0,00000D+00
0.00000D+00
0,00000D400
0, 00000D+00
0,00000D+00
0,00000D+00
0,00000D+00
0,750000+01
0.000000+00
0,00000D+00
0,000000+00
0.00000D+00
0, 00000D+00
0.00000D+00
0,00000D+00
G, 00000D+00
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