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ABSTRACT 

Superheated water has been used successfully as an eluent in liquid 

chromatography and has been coupled to various modes of detection, 

ultraviolet (UV), fluorescence, and nuclear magnetic resonance spectroscopy 

(NMR) and mass spectrometry (MS). A number of compounds were 

examined on poly(styrene-divinylbenzene) (PS-OVB), polybutadiene (PBO), 
\ 

and octadecylsilyl bonded silica (OOS) column with isothermal and 

temperature programmes. The PS-OVB column was mostly used throughout 

the project as it was the most stable. Not only pure water could serve as 

superheated water mobile phase; inorganic buffered water and ion-pairing 

reagent with a concentration of 1-3 mM of the buffer and reagent were also 

exploited. It was shown that the pH could be controlled during the separation 

without salt precipitation and the separations followed a conventional 

reversed-phase HPLC method. Results from fluorescence detection showed 

good separation of a series of vitamins, such as pyridoxine, riboflavin, 

thiamine, and some analgesics. The relationship of riboflavin using the 

detection was linear and the detection limit was seven times higher than that 

of a conventional method. Simultaneous separation and identification using 

. superheated water chromatography-NMR was demonstrated. With using a 

stop flow method, NMR spectra of model drugs, namely barbiturates, 

paracetamol, caffeine and phenacetin were obtained and the results agreed 

with reference spectra, confirming a perfect separation. A demonstration to 

obtain COSY spectrum of salicylamide was also performed. The method was 

expanded to the coupling of superheated water LC to NMR-MS. Results from 

the hyphenated detection method showed that deuteration and degradation 

happened in the superheated water conditions. The methyl group hydrogens 

of pyrimidine ring of sulfonamide and thiamine were exchanged with 

deuterium. Thiamine was decomposed to 4-methyl-5-thiazoleethanol and 

both were deuterated under the conditions. 
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Chapter 1 

Introduction 

In our planet, water is ubiquitous, covering about 71 % of the surface and 

plays an essential role in climate, the environment and all living things. 

Terrestrial organisms are largely comprised of water in which nutrients are 

dissolved and transported around their bodies. Water serves as a main 

solvent in the world and water can dissolve a variety of compounds, organic 

and inorganic. In organic chemistry, liquid water is classified as a weak 

solvent, compared to commonly used solvents, such as methanol, acetonitrile, 

and dichloromethane, because of its higher polarity. Since the ancient world, 

people have made use of hot water and steam to extract various drugs, 

remedies, etc. Attention was drawn to superheated water in the engineering 

field, which utilised its power to drive motors and mechanical equipment, but 

the use of superheated water in chemistry has been very rare. 

In this study, we will examine the use of water as a clean eluent in 

chromatography, in particular the range of detection methods that can be 

employed for superheated water chromatography. 
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1.1 Introduction to superheated water 

"Superheated" as a definition [1] means "thermodynamically at a temperature 

above which a change of state would normally occur (e.g. the change of water 

from a liquid to a vapour.), without this change having taken place" (usually 

because a pressure higher than atmospheric has been applied to the system). 

At elevated temperatures and pressures the water may become supercritical, 

which is defined as water above the critical temperature (T = 374.3 QC) and 

pressure (P = 221 atm) [2). 

Superheated water throughout this thesis is defined as water under elevated 

pressure (>15 bars) and temperature (>100 QC). The alternative term 

"subcritical water" also refers to the state of water as a liquid between the 

critical point and boiling point. Under these conditions, the polarity of water 

decreases as the temperature increases (Figure 1.1) [3]. Therefore, by 

raising the temperature to 210 QC (0 = 32.93) water can imitate some organic 

solvents, such as methanol, whose dielectric constant is 32.7 at 20 QC. The 

dielectric constant of water at 180 QC (0 = 37.12) is equivalent to that of 

acetonitrile (0 = 37.5). However, the dielectric constant alone cannot 

determine the eluting power of the solvent or of the eluent in reversed-phase 

separations. Factors, such as solvent strength, acid-base properties, etc. 

must be also counted. Among those solvents, superheated water is 

considered to be the weakest [4]. 

In chemistry, an ideal solvent possess qualities, such as low cost, low toxicity, 

high solvent strength, non-flammable, high auto-ignition temperature (CSz has 

an auto-ignition temperature at 100 QC [5]). Among those qualities, though 

acetonitrile is inexpensive and has high solvent strength, it is considered to be 

inflammable, toxic, and hazardous. Methanol has similar qualities, except 

higher toxicity [6]. 
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Figure 1.1 The dielectric constant of water as a function of the absolute 

temperature [3]. 

1.2 Background of superheated water and superheated water 

chromatography 

Nowad~ys, superheated water or subcritical water is very well known in the 

physics and engineering fields. An internet search readily found valuable 

information, such as general steam data which contains a range of factors, 

e.g. specific volume, enthalpy of saturated steam in a range of 32-212 of, 

viscosity, and total heat of steam for a generating plant [7]. Water near its 

critical point has also been used for many purposes in organic chemical 

reactions [8]. For example, it has served as a reaction medium, a reactant or 

a catalyst in alkylation [9], hydrolysis [10] and oxidation [11]. 

In environmental science, superheated water can occur naturally, in a typical 

hydrothermal vent system when cold sea water is heated by a body of magma 

in the ocean depths [12-13]. Supercritical water has been utilised safely in 
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oxidation technology as an alternative to incinerators for the disposal of 

hazardous waste and sludge for more than 15 years [14). However, corrosion 

of such disposal units by acidic gases and salts has prevented the 

widespread commercial or military adoption of such an approach. 

In the past few decades, supercritical fluids have been utilised in extraction 

technology. Most of publications used carbon dioxide (C02) as a supercritical 

fluid (SF) with and without modifiers (e.g. methanol or CHCb) and were 

applied in the fields of environmental, pharmaceutical, polymer, natural 

product, and food science [15-16]. Various sophisticated SFE instruments 

were launched, for example, 7680TlSFE (Hewlett-Packard, Wilmington, DE, 

USA), SFE-400 (Supelco, Bellefonte, PA, USA), etc. It was noticed that all of 

these instruments were designed purposely for the CO2 fluid mobile phase or 

fluids with low critical temperatures (Te), such as Xe (Te = 17°C), ethane (Te = 

32.3°C), N20 (Tc = 36.5 °C), propane (Tc = 96.7 °C), because the maximum 

allowable temperature is 150-200 cC. Temperatures between 100-250 °C, 

which normally needed for superheated water, hence, cannot be obtained 

with these instruments. 

Recently, the use of supercritical and subcritical water for chemical extraction 

has become more interesting. Subcritical water has been used to extract 

organic compounds, such as organic pollutants [17-18] and hydrocarbons [19-

20] from solid matrices including soil and waste. 

Temperature has a primary effect on extraction efficiency [17, 20-22]. A study 

by Hawthorne et al. [17] showed that with an increase in the extraction 

temperature, the number of extracted compounds range from polar organics, 

e.g. chlorophenol (50°C), to non polar organics (> C20 alkanes) (400°C). 

Crescenzi et al. [21] evaluated the feasibility of using hot water (50, 90 and 

120°C) to extract herbicide residues in soil and also found that with 

increasing extraction temperature the less polar herbicides were removed. 



CHAPTER 1: Introduction 5 

Even at a lower temperature (T < 100°C), the temperature still has a great 

impact on the extraction efficiency of fungicides from agricultural products 

[22]. Increasing temperature also increased the percentage removal of 

organic components in solid matrices [23-24], soil and waste [20). Johnson et 

al. [20] studied absorption equilibria of organic carbon on soil samples using 

superheated water and steam at 150-250 cC. They described that liquid 

water removed more carbon from soil than steam, because of many polar 

functional groups of the humic organic matter that readily associate with 

water. 

Increasing temperature of subcritical water also increases the solubilities of 

scarcely soluble organic compounds [25-26], as well as higher molecular 

weight compounds [27). Miller et al. [25-26] revealed that the solubilities of 

PAH and pesticides increased 4-5 orders of magnitude when raising 

subcritical water from 298 K to 498 K A study by the same research group 

show that at high temperature the percentage extraction of chlorinated 

biphenyls was consistent with their solubilities in water at ambient conditions 

which depend on their molecular weights [17, 19, 27-28). For example, less 

chlorinated biphenyls are more water-soluble at ambient temperature, at 200 

°C they were easier to extract than the highly chlorinated biphenyls [27]. High 

molecular weight alkanes also fall into this category. The higher molecular 

weight of alkanes, the less the percentage extraction by water [19). High 

molecular weight alkanes (> C20), which are easily extracted using 

supercritical C02, at 300°C could not be extracted by water. Nevertheless, 

those alkanes could be effectively and quantitatively removed by steam 

extraction (250°C and 5 atm). 

In contrast to effect of temperature on solubility, a large increase in pressure 

(40 to 400 bars) lowered the solubilities, but had much smaller effect than 

temperature and caused only a very small change in PAH solubilities [25]. 
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Subcritical water extraction was compared to conventional extraction 

methods, such as Soxhlet extraction [21, 28], ultrasonic extraction [21] and 

steam distillation. Again, the study by Hawthorne et al. [28] showed that the 

percentage removal of PAHs and aromatic amines from soils from rail-road 

beds and industrial sites using a subcritical water extraction (250 ac, 15 and 

60 min) on-line with solid-phase microextraction were in a good agreement 

with a 24 hr conventional Soxhlet extraction with dichloromethane. Whereas, 

, Crescenzi et al. [21] found that subcritical water extraction is more efficient 

than Soxhlet extraction for non-acidic herbicides and more than ultrasonic 

extraction for more polar acidic herbicides. Superheated water extraction of 

aroma compounds from rosemary plants gave higher yields than steam 

distillation, as reported by Basile et al. [29]. By using water between 125 and 

175 ac, rapid extract of oxygenated fragrance and flavour compounds could 

be achieved while leaving behind monoterpenes, high hydrocarbons and 

lipids. 

Elution of organic solutes absorbed on glass beads, Florisil, alumina, C18 and 

XAD-4 column by water at 50-250 ac was demonstrated by Yang et al. [23, 

27]. By using the matrix effect, they described that water at low temperatures 

(more polar) can elute the solutes from glass bead, Florisil and alumina 

because it can break inert or dipole interactions between the solutes and 

sorbents. While high temperature water is required to elute the same 

compounds from C18 and XAD-4 columns because more energy is needed to 

break the van der Waals and 1t-electron interactions between the solutes and 

C18 sorbent [27]. When coupling a sorbent trap (silica-bonded C18 column) 

on-line to RP-HPLC after subcritical water extraction of aromatics and PAHs 

[23], the chromatogram showed no difference in the peak shape of all 

components, compare to a normal HPLC calibration without the extraction. 

Jimenez-Carmona et al. [24] found that the leaching kinetics of fluorescent 

compounds from solid matrices by subcritical water were accelerated when 

using silica instead of diatomaceous earth, due to the polarities of the 

sorbents. 
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When using subcritical water as an extraction technique, some problems may 

occur, for example, corrosion and damage to the packing material by hot 

water [18]. a deposition of extracted species at high temperatures (>100 °C) 

after the extraction cell [23], as well as reactions at high temperature. 

Hageman et al. [29] found that anthracence converted to anthraquinone at 

250 ·C, despite of the initial removal of dissolved oxygen from the system. 

They showed a real concern of a possible potential degradation when using 

high temperature water extraction. The catalytic hydrolysis of phenyl urea 

herbicide on silica at high temperature (>90 °C) was also reported by 

Crescenzi et al. [21]. 

Modifying the water extractant by introducing addtives is also possible. 

Additives, such as 20% acetone or salts, were added to water for the 

extraction of herbicide residues from soil but no Significant improvement was 

found in the recovery of the analytes [21]. 

1.3 Superheated water chromatography 

In chromatography, superheated water has been employed as a mobile 

phase, allowing it to imitate a mixture of organic solvent and water in RP

HPLC [30-32, 34-35]. Smith and Burgess [30-31] studied the separation of 

polar to less polar analytes using superheated water at the temperature up to 

210 °C on PRLP-S (or PS-OVB, poly(styrene-divinylbenzene», octadecylsilyl 

bonded silica (OOS), porous graphitic carbon (PGC) and polybutadiene (PBO) 

- zirconia columns. As the temperature was increased, the retention of 

organic compounds decreased but the efficiency increased. They also found 

that higher temperatures, at which water behaved like an acetonitrile-water 

mixture, were needed to elute more hydrophobic compounds and the 

retention followed conventional reversed-phase LC. A plot of 1fT against 

retention factor was non-linear, suggesting that not only a conventional ~H 

effect but dielectric constant also dominated the retention [30]. Analytes were 
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eluted from silica aDS column with lower temperature than from PS-DVB 

column, this agreed with a conventional RP-mode that retention is weaker 

when using aDS than PS-DVB column with the same eluent [31]. Prolonged 

use of aDS column decreased the retention because of the column instability 

but no hydrolysis or degradation of the analytes were observed. 

Miller and Hawthorne (32) demonstrated the use of subcritical water 

chromatography with a flame ionisation detector (FID) on a PRP-1 (PS-DVB) 

column. Increasing temperature improved the peak shape and decreased the 

retention time of all components. A temperature gradient was reported to 

have similar effect on retention as a mixture of acetonitrile (or methanol) -

water. By programming from 120 to 150 QC, the polarity of water was reduced 

and the separation of seven alcohols, ranging from relatively more polar 

(methanol) to less polar (butanol), was achieved. Quantitative determination 

of alcohols in beverages was also demonstrated. No degradation was 

observed on the column. 

Yang et al. (33) investigated the retention behaviour of some aromatic 

compounds in a subcritical water separation. By using water at 200 QC, the 

separations of chlorinated phenol and anilines were similar to those obtained 

by 68-69% organic solvent-water mixtures. They found the retentions of both 

polar and non-polar analytes were shortest on alumina, moderate on silica

bonded C18, and longest on PRP-1 (PS-DVB) column. Good thermal stability 

of the commercial RP-columns and UV detector were observed in this work. 

Haddad et al. (34) used pure hot water with a temperature gradient up to 65 

QC as a pure mobile phase for the separation of nuc\eosides and their bases 

on an aDS column. They confirmed damage to the aDS column at high 

temperature (> 70 QC) but if the separation was performed at below 70 QC, the 

efficiency of the column was retained without any serious effects on the 

column. They also described thermal effects on the separation. Elevating the 

temperature enhanced the thermal mobility of the bonded-phase and then 
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reduced the hydrophobicity between the stationary phase and analytes, 

therefore, the distribution of analytes to mobile phase increased. In spite of 

the use of unbuffered water, no significant changes in the retention of ionised 

species were observed, perhaps because of the narrow range of temperature 

change. 

Pawlowski and Poole [35] studied the influence of temperature between 75-

180°C on the properties of pressurised water mobile phase on PRLP-S 100 

column. In their system, 1 % acetonitrile was added to pure water to maintain 

the peak shape of all solutes at low temperature and it had little effect on 

solvation properties of water. A comparison with different RP-mobile phase 

systems showed that the elution strength of 1 % acetonitrile-water at 180°C 

corresponded to 15-25% acetonitrile-water, 25-35% propanol-water, or 50-

60% methanol-water. However, a decrease in retention by increasing 

temperature of 1 % acetonitrile-water is different from that by increasing 

organic solvent composition in those three mobile phases. It was also noted 

that temperature programming with water as a mobile phase is less powerful 

than using a solvent composition gradient. They confirmed that water at 75-

·180 °C, compared with acetonitrile and methanol, possess a relatively weak 

eluting power in RP-HPLC. 

As superheated water can damage chromatographic columns, Burgess [36] 

compared the stability of a number of columns including octadecylsilyl bonded 

silica (ODS), porous graphitic carbon (PGC) and polybutadiene (PBD) -

zirconia column. The polymeric, polystyrene divinyl benzene or PS-DVB, 

column was found to be the most stable, whereas ODS silica based columns 

were the least stable due to the dissolution of silica base material at high 

temperature. Porous graphitic carbon (PGC) which is made of an inert 

graphite crystallite material was more promising, as it was inert and therefore 

could tolerate acidic and alkaline eluents in the whole pH range (1-14). 

However, it tended to give a poor separation, as shown by long tailing peaks, 

although these could be improved by operating at higher temperatures. 
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Because of the dissolution of the silica base at high temperatures, a trial was 

performed on a PBD zirconia based column. It was believed to have good 

mechanical strength and similar physical properties to a silica-based column. 

With this column, a good separation with less retentivity compared to PS-DVB 

column was obtained. 

For controlling the temperature of the column, most approaches have made 

use of typical GC ovens [30-32, 35-36], as they could be programmed 

isothermally or gradient temperature. A different type of thermostat bath for 

controlling the temperature was designed by Liu et al. [37]. They utilised a 

long cylinder metal thermotank (32 cm x 28 mm id. carbon-steel tube with one 

end sealed) packed with aluminium chips for rapid-heating and temperature 

distribution, then placed in a thermostat oven. This design seemed to work 

well to rapidly raise temperature in a range 20-210 °C but it needed a long 

equilibration time (more than 30 min) and seemed not be able to cool 

temperature down quickly. 

1.4 Methods of detection in high temperature liquid chromatography 

Since superheated water chromatography is similar to conventional reversed

phase chromatography at high temperature, it is of interest to consider if 

detection methods that are used for conventional HPLC could also be coupled 

on-line to the superheated water system. However, there was a concern 

about the feasibility of the coupling and whether the detector performance 

may be affected by the conditions of superheated water and the sensitivity 

. differences. A number of those detection methods, such as UV, fluorescence, 

NMR and MS will be described, particularly the effects of high temperature, 

pressure, solvent, difficulties and problems in on-line coupling the detectors to 

a liquid chromatograph. Some detector characteristics, such as sensitivity, 

selectivity, etc., will also be given. 
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Figures of merit of detectors [38-39] 

Sensitivity 

The sensitivity of a detection method is defined as the slope of an output 

signal response to the analyte concentration. A high slope represents a high 

sensitivity, which generally suggests an efficient detector. 

Detection limit 

Detection limit is usually defined as a minimum concentration or mass of an 

analyte that gives a signal significantly different from the background noise (or 

blank signal). 

If x = the analyte signal and XB = the background signal, the signal at the 

detection limit can be given by the equation below. 

X-XB = 3 SOB 

Where SOB = a standard deviation of the background signal. A detection limit 

of a detector depends on the sensitivity and noise of the detector. For 

example, if the sensitivities of two detectors are identical, the detector with a 

lower noise allows a lower detection limit. 

Minimum detectable quantity (MDQJ 

Minimum detectable quantity is defined by a quantity of sample that gives 

peak height three times over background noise. In practice for an integrator, 

it requires a signal (peak height) to noise ratio = 3. 

Selectivity 

Selectivity of a detector is the ability of a detector to discriminate between 

analyte species of different types or compositions. 

Noise 

Noise is the baseline signal fluctuation which occurs from electronic parts of 

instrument, for instance a weak UV source, a long-time used lamp or dust on 
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optical surface, a degraded optical coating, etc. It can arise from chemical 

responses in the separation system or the immediate environment. 

Drift is a type of noise of which slope is measured the absorption over a 

period of one hour (absorbance unit per hour). 

Dynamic range and linear dynamic range 

On a calibration curve, detector response changes with a concentration or 

mass of analyte. The entire range of measured concentration or mass is 

called a dynamic range that is possibly either linear or non-linear response. A 

linear dynamic range is usually a part of the whole range that gives a linear 

detector response to mass or concentration. The minimum point of the range 

is the detection limit (LOO) and the maximum point is the highest mass at 

which the response is equal to 5% deviation from the intersection of this linear 

line [40]. 

1.4.1 Ultraviolet spectroscopic detection 

Detection by ultraviolet absorption spectroscopy is the most commonly used 

method in liquid chromatography (both HPLC and SFC). The popularity of 

this method is due to the ability of most organic compounds to absorb UV, the 

simplicity of instrumentation, low cost for purchase and maintenance of the 

instrument, as well as being a non-destructive detector. 

Ultraviolet radiation is usually absorbed by a compound containing one or 

more covalent unsaturated functional groups, which are called 

"chromophores". When irradiated, these compounds absorb the light and 

change the molecular transition. Polyaromatic hydrocarbons are examples of 

highly polyconjugated systems that strongly absorb UV light. 
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Saturated hydrocarbons with only single bonds absorb the energy of a 

transition of <r-M"* type which occurs at a very short wavelength in the 

vacuum ultraviolet. Hence, they do not present absorption in the UV and 

visible region. 

The equation of the absorption of the light by the compounds is given by 

Beer-lambert's law: 

I 1 
log.....!!.= log- = A = ebc 

I T 
'" ............. (1) 

Where 10 = the incident beam intensity, I = the transmitted beam intensity, T = 
the transmittance, A = the absorbance, e = molar absorptivity (l mor' cm-\ b 

= path length (cm) and c = concentration (Molar). 

1.4.1.1 Solvent effect 

An important consideration in using UV absorption detector is that the mobile 

phase must be transparent at the wavelength at which the detector is 

operated. 

When UV absorbed analytes are dissolved in a solvent, the electronic ground 

state and excitation state of the compounds can be stabilised by the polarity 

of the solvent. This results in a phenomenon of the solvent shift of the n~7t* 

transition of polar compounds, such as carbonyl groups dissolved in polar 

solvent, to lower energy. However, the effect on Am •• and em •• for a series of 

hydrocarbon solvents is slight and can be ignored. 

More important criteria in using the HPlC solvent is the UV absorption of the 

solvent itself at low UV wavelengths. The solvents for RP-HPlC therefore 

have a UV cut-off wavelength (defined as "The wavelength at which the 
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absorbance of the solvent versus air in 1-cm matching cells is equal to unity." 

[41]). Practically, the cut-off occurs when the transmitted beam intensity is 

less than 10% of the incident beam intensity. Beyond this wavelength, it is 

not recommended to use the solvent as it gives high background absorbance. 

Acetonitrile has a UV cut-off at < 190 nm, which is a very low wavelength but it 

is hard to purify to this quality and practically affordable grades usually cut off 

at higher wavelengths 205 or 230 nm. Methanol has a wavelength UV cut-off 

at 205 nm. In fact, the absorption of methanol is long tailing, at 215 nm 

methanol has an absorbance of more than 0.3. On working with gradient 

elution using a mobile phase containing methanol, care should be taken, 

since it causes baseline drift, which is predominantly caused by methanol 

composition changes. Consequently, this leads to a decrease in overall 

analytical accuracy and precision. Tetrahydrofuran (THF) possess a 

spectroscopic quality like methanol but has a higher UV cut-off «212 nm) and 

its spectrum is strongly shouldered and long tailing. This make THF less 

useful when working at a longer wavelength, such as 250 nm, with a high 

content. Supercritical carbon dioxide is transparent even at 190 nm and gives 

no absorption along a range of UV. 

In general, when a mobile phase comprising an organiC modifier, such as 

acetonitrile, is mixed with water or buffers it can cause bubbles [42], leading to 

a cloudy solution which behaves as if it absorbs the UV light, eventhough the 

measurement is performed at a wavelength more than the UV cut-off. The 

mixed mobile phase, therefore, must be degassed before use: 

Water has been utilised in almost all separations by RP-HPLC. The quality of 

HPLC grade water must be pH 7, very low UV absorption, very low content of 

inorganic and organic contaminants, and contain no bacteria. When a sealed 

bottle of water is opened, microorganisms starts to multiply unless the water is 

mixed with more than 10% of organic modifier or is at very low pH (pH < 4). 

Bacteria can multiply in aqueous systems, for example in the pump, mobile 

phase reservoir, filter and column frits. Hence, special care must be taken 
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when dealing with low content water mobile phase. 

Types of buffer are also important. Buffers, such as formate, acetate and 

carbonate, can absorb UV light, hence, they are not very useful when 

operated at short wavelengths [43]. In some circumstances, impurities in ion

pair reagents can be a source of UV-absorbing contaminants. 

1.4.1.2 Temperature effect 

For detection by UV spectroscopy, the detection compartment of a typical UV 

detector is not temperature-controlled. This is because temperature changes 

can only induce slight effects in the molar absorptivity (Emax) of a compound 

[44]. However, when the UV detector is connected to a chromatographic 

system, the temperature should be controlled. Temperature of the mobile 

phase, entering the flow cell is often different from temperature of the flow cell 

in a UV absorbance compartment and a temperature alteration can cause a 

refractive index change [45). In a UV compartment, when the incident beam 

is entering the flow cell, it must pass a quartz window which possesses two 

interfaces, air-quartz and quartz-liquid. The light paSSing through quartz-liquid 

interface is a function of the refractive index difference between two media 

[45]. As the refractive index difference increases, the light is more scattered 

and the light reaching the detector changes, thus altering the intensity. This 

phenomenon produces the same effect as an absorption by a compound and 

then increases the noise. Refractive index is not only a characteristic of each 

compound but is a function of temperature, and changes by 10-3 per degree 

Celsius. Hence, in the UV compartment, a heat exchanger must be placed 

prior to or clamped around the flow cell for thermal equilibration [46], 

particularly when the column oven is operated above ambient temperature. 

Those designs include wrapping the flow cell compartment with a long inlet 

narrow tubing, wrapping the inlet tubing around an aluminium block or 

embedding an inlet tubing coil in a lead block. However, an increase in 

extended tubing can cause extra band broadening. 
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1.4.1.3 Pressure effect 

As seen from Beer-Lambert law in equation (1), A = ebc, the pressure does 

not predominantly affect UV absorption. In HPLC, the high pressure flow cell 

is, however, designed to eliminate air bubbles which can cause an unstable 

background noise in mobile phase by increasing the pressure on the flow cell 

to a sufficient level to suppress the bubbles [45]. 

In SFC, pressure does not directly affect the absorption, but the density of 

liquid containing in the flow cell. The change of mobile phase density of the 

fluid in the flow cell can cause a fluctuation of refractive index and this 

contributes to an unstable baseline. This effect arises in SFC more than 

conventional HPLC because the fluid density change in SFC is more than 

HPLC. The density change is directly related to pressure and inversely 

reciprocal to temperature. Density programming in SFC is thereby achieved 

by positive pressure programming and/or negative temperature programming. 

With pure C02 mobile phase density programming in SFC can result a 

baseline drift [47-48]. To solve the problem a programmed baseline by a 

detector is applied to compensate the shift or adding an organic modifier to 

CO2 may help a stabilisation of the baseline signal [47]. 

1.4.1.4 Sensitivity of UV detection 

UV detection method is moderately high sensitive [47], hence, it can be used 

for the analysis of trace components with chromophores. A relatively wide 

linear dynamic range enables it to be used for both qualitative and quantitative 

analysis. Due to its performance criteria, for example the selectivity and the 

simpliCity of the method, the inexpensive cost and maintenance, etc, it 

enables the use of this technique to be the most popular among LC and SFC 

detection [39]. A comparison between UV and other method of detection in 

LC is given in Table 1.2. 
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1.4.2 Fluorescence detection 

Use of the fluorescence method of detection in liquid chromatography (both 

HPLC and SFC) has increased during the last few decades. This is attributed 

to three aspects of fluorescence: selectivity, specificity, and sensitivity. 

Selectivity and specificity are realised in that they are related to compounds of 

which molecules or species give fluorescence (or so-called ·contain 

fluorophore") at different excitation and emission wavelengths. 

Fluorescence has many aspects in applications in both organic and inorganic 

compounds [49]. In general, a native fluorescent molecule has a 

characteristic of containing an extensive It electron system with rigid 

molecules, such as aromatics, highly conjugated molecules, polynuclear 

aromatic compounds, etc. However, not all rigid molecules give fluorescence. 

A number of applications of fluorescence to inorganic analysis involve metals, 

non-metals and chelates of metal ions. Applications are also to qualitative 

and quantitative analysis of organics, for instance, proteins and amino acids, 

polynuclear aromatic hydrocarbons, vitamins, drugs, steroids, and many 

chemicals in agriculture and the environment. 

An effective and useful technique to determine a species that does not give 

fluorescence, is to make a fluorescent derivative (see section 1.4.2.4). 

Various derivatising agents are commercially available [50-51]. Some of 

these fluorescence derivatives are rather stable at high temperature, for 

instance dansyl derivatives. 

The reaction of those derivatising agents with analytes is normally rapid, 

complete and selective for a specific functional group. Some factors that have 

to be considered, however, are the stability of the derivatives to hydrolysis, 

solvolysis, and thermal decomposition. To detect non-fluorescence 

compounds in HPLC, derivatisation is performed into two approaches: pre

column and post-column derivatisation. The pre-column mode is preferable 
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since it lessens band broadening and sample loss during dilution as in the 

post-column procedure. 

A relationship between fluorescence intensity and the concentration of sample 

can be described using an equation, which was derived from the 8eer

Lambert law as follows: 

Ir = 2.303 10«Pft b c ................ (1) 

Where If = the intensity of fluorescence, 10 = the intensity of incident light 

beam, «Pr = quantum yield which is the fraction of photoexcited molecule to 

lose their excess energy via the fluorescence mechanism, t = molar 

absorptivity (I mor' cm-\ b = path length (cm), and c = the molar 

concentration. 

From the equation, it seems that the relationship between fluorescence 

intensity and concentration is linear over a long range, but in practice, at very 

low concentrations it shows a deviation which may be caused by a breakdown 

in mathematical assumptions [52]. Not only the compound itself can result the 

effect of fluorescence, environmental effects such as solvent, oxygen 

quenching, pH, temperature, inner filter effect, can contribute to a dramatic 

decrease in fluorescence intensity [53]. 

1.4.2.1 Solvent effect 

Fluorescence intensity and wavelength often vary with the solvent. Several 

factors involving the solvent, such as pH, temperature, viscosity, solvent 

polarity and quenching, can affect fluorescence [54]. 

Some fluorescence compounds contains ionisable groups. Changing in the 

pH of a system affects the fluorescence intensity to compounds whose 

ionisation are in the range of pH change [38]. For example, most barbiturates 

fluoresce in 0.1 M base, but not in acidic media [54]. Phenol gives 
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fluorescence at pH 7 but at pH 12 it is converted to non-fluorescent species. 

Aniline fluoresces at pH 7 and 12 but when protonated at pH 2, it gives no 

fluorescence [38]. This can be explained by the neutral form and cationic 

form of aniline. In acidic solution, the nitrogen atom of aniline is protonated 

and then give a similar resonance form as benzene, it therefore fluoresces 

only in UV region. Whereas in neutral and basic solution, it generates three 

resonance forms, resulting a more stable excited singlet state and a longer 

wavelength fluorescence emission. 

When most polar aromatic molecules dissolve in a polar solvent, both 

absorption and fluorescence spectra shift to a lower energy wavelength, 

called "red shift". This is a result of a stabilisation of the more polar excited 

state than the ground state of 1t~1t. singlet state and a minimisation energy of 

a solute/solvent system [43, 53]. 

Quenching occurs by collision between fluorescence mOlecule and the 

quenching species, giving a reduction in fluorescence intensity. If the solvent 

molecule contains unpaired electrons or heavy atoms (especially the heavy 

halogens), these can act as efficient quenching agents [38, 55]. The best

known quenching compound is molecular oxygen, which is a paramagnetic 

species presented in most solutions. 

Molecular oxygen can quench excitation singlet and triplet states of many 

molecules, such as aromatic hydrocarbons. It can be a major source of error 

in fluorescence measurement but fortunately it is reversible in many cases. 

Oxidation of the solute can also cause "oxygen quenching". Removal of 

oxygen therefore is needed by purging with a more inert gas, i.e. nitrogen, 

argon, etc, but in a system which is highly sensitive to oxygen, a more 

complicated degassing system is needed [53]. Figure 1.2 shows the 

fluorescence of fluoranthene quenching by oxygen [56]. 
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Figure 1.2 Fluorescence spectra of vapour-phase fiuoranthene. On 

increasing the oxygen pressure, the intensity is reduced [56]. 

In many circumstances. water has a great effect on quenching fluorescence 

intensity [571. for example dansyl-tryptophan which gives a strong 

fluorescence intensity when dissolved in ethanol but gives a much weaker 

signal in water as shown in the Table 1.1. This is because the ionised dansyl

tryptophan does not fluoresce. 

Table 1.1 Fluorescence data for dansyl DL-tryptophan at a concentration of 

1 U6 M. [57]. 

Solvent dielectric Emission 
Solvent Quantum yield 

constant, D Amax, mJl 

78.5 Water 0.068 578 

31.2 Methanol 0.37 533 

25.8 Ethanol 0.50 529 

21.5 Acetone 0.35 513 

5.14 Chloroform 0.41 508 
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1.4.2.2 Temperature effect 

Many fluorescence compounds are very thermally sensitive, for example a 

change in temperature from 15-30 °C affects the fluorescence intensity of 

some compounds by 1-5% per degree C (Figure 1.3) [53]. Usually 

fluorescence intensity is inversely proportional to temperature, which is due to 

an increase in internal and external conversion and intersystem crossing to 

the triplet state (43). Besides, high temperatures cause a decrease in 

viscosity, resulting an increase in collisional quenching in the media and thus 

a decrease in fluorescence intensity [52, 58]. An increase in temperature can 

also cause a "red shift" of the emission wavelength [43]. 
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Figure 1.3 Variation of the fluorescence intensity of several compounds as a 

function of temperature. All compounds were dissolved in 0.1 M 

phosphate buffer, pH 7.0 except quinine. • Tryptophan or 

indoleacetic acid, 0 indoleacetic acid in buffer saturated with 

benzene, - quinine in O. 1 N sulphuric acid. 
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1.4.2.3 Pressure effect 

Fluorescence detection in HPLC has not been reported to be significantly 

affected by pressure. Only a few papers have been published using the 

fluorescence detection method in SFC [59-64] Where higher pressures are 

used but no changes with pressure have been reported. 

1.4.2.4 Sensitivity of fluorescence detection 

Although, the fluorescence detector is not so widely applicable as the UV 

detector but it is several orders of magnitude much more sensitive than UV 

[65]. A derivatisation method can be used When the analyte is not fluorescent 

[50]. This method has two practical techniques, pre-column and post-column 

derivatisation. If the analyte has completely reacted with a fluorescence 

derivatising agent before injection onto the column, it is called 'pre-column" 

derivatisation. Less satisfactory separation on the column may come from 

modifying the chemical properties of the analyte. This problem does not 

occur in post-column technique Where an excess of derivatising agent is 

injected into the eluate [45]. However, post-column derivatisation process can 

cause band broadening and sample loss due to adsorption and dilution 

effects. 

1.4.2.5 Fluorescence detection in SFC 

Only a very few papers [59-64] have described the use of fluorescence 

detectors in SFC. This is mainly due to lack of a commercial fluorescence 

detectors [62]. However, the research concerning SFC-fluorescence was 

mostly applied to capillary column SFC. It was found that the sensitivity of the 

detector would be better, if the supercritical fluid was allowed to be in a liquid 

state before entering the detector because light is more collimated. This is 

because of the increased refractive index of the liquid and band compression 

that occurred from returning from supercritical fluid to liquid state. In addition, 



CHAPTER 1: Introduction 23 

the detector does not have to be heated to the same supercritical fluid 

temperature as the column. 

Recently Grayeski et al. [62] developed a post-restrictor interface for SFC, 

allowing the use of conventional LC detectors for packed-column SFC. With 

their "sheathing flow interface" design, the detection limit of the fluorescence 

detector was much improved and a wide range of pressure could be used for 

separation. They extended the application of the interface to solution based 

chemiluminescence detection, giving a detection limit of perylene sample 

separated on a packed cyano column much lower than determined by 

fluorescence [63]. Fjeldsted and Lee [60-61] analysed carbon black extracts 

by capillary SFC and detected napthalene and pyrene by fluorescence 

detection. 

In preliminary studies in the present work of SFC, the use of a two stage 

pressure reduction was examined [64] and the sensitivity of propanolol 

detected by fluorescence detector was comparable to that obtained from 

HPLC with fluorescence detection. 

Comparison of UV and Fluorescence detectors for liquid 

chromatography 

It is clearly seen from Table 1.2 that generally the detection limit of a 

fluorescence detector is approximately ten times better than UV detector. 
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Table 1.2 Comparison of LC detectors [39] 
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Ultraviolet Refractive Index 

(UV) (RI) 

Selective Universal 

10-10 g mr1 10-7 g mr1 

Yes No 

Non-UV 
Low sensitivity, 

active 
precise 

temperature 
solvents only 

control required 
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Fluorescence Electrochemical 

Selective Selective 

10-11 g mr1 10-11 g mr1 

Yes No 

Compound 

Limit dynamic adsorption, no 

range electroactive 

solvents 

1.4.3 On-line nuclear magnetic resonance (NMR) spectroscopy-liquid 

chromatography 

Nuclear magnetic resonance spectroscopy is very powerful method for 

identifying the structure of organic compounds. When a radio frequency (v) is 

applied to nuclei with a spin (J;>: ~) immersed in a magnetic field, if they 

absorb the energy which resonate to the energy difference (till) between low 

an high energy state, it promotes a population difference of nuclei between 

those two states. Nuclei that are active to the radio frequency in the magnetic 

field are 1H, 13C, 19F, 31p and 15p, etc. The energy difference (till) between 

two states is given by the equation: 

and 

flE = hv 

V= rBo 
2" 

................ (3) 

................ (4) 
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Where y = the gyromagnetic ratio (a constant differing for each nucleus), Bo = 
magnetic field strength, and h = Plank constant. 

The mechanism by which nuclei transfer energy from higher to lower state is 

called the relaxation process and is characterised by a relaxation time, T, 

which is equal to the time to bring half of the nuclei back to equilibrium. In 

spin-lattice relaxation, Tt. the energy is lost to ·inter- or intramolecular 

component in the sample ("lattice"). This process is of importance, if it is 

operating efficiently; it produces narrow lines on a NMR spectrum, called high

resolution spectra. Spin-spin relaxation, h is less important and it gives 

broad-line spectra. This process occurs by losing energy to neighbouring 

spins usually in solid state. 

By collecting the current induced from energy decay to lower state as a 

function of time, a time-domain spectrum or generally called free-induction 

decay (FID), can be achieved. FID yields a NMR spectrum by Fourier 

transformation using a computerising system, allowing an increase in 

sensitivity and resolution of NMR as a function of time. Thus, a 2-dimensional 

NMR plot or a COSY (Correlated SpectroscopY) spectrum can be obtained. 

The on-line coupling of liquid chromatography to NMR is very powerful, and 

convenient as components in a mixture can be separated and the structures 

can be identified simultaneously by NMR [66-75]. However, since the first on

line couplings of LC-NMR were achieved by Watanabe [67] and Bayer [68], 

some serious problems involved with the method have arisen, for example a 

lack of knowledge in the measurement of the spectra in flowing system, 

solvent signals problem, a low sensitivity of the technique, etc. Some factors 

therefore must be taken into consideration when coupling those two 

techniques. 

There are a few requirements in the NMR probe head construction. These 

are a relatively large volume to accommodate the analyte concentration for 
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NMR measurement, and the detector volume should not exceed the volume 

of a separation peak, an optimal synchronisation of the flow cell geometry with 

the measuring coil so that no turbulent flow arises in the flow cell [68]. The 

configuration of a Bruker NMR flow-probe head compared to a conventional 

NMR probe is shown in Figure 1.4. 

37mm 

Flow-cell 

5mm t-IMR-t1Jbe 
Ri-coils 

IU'-coils 

Figure 1.4 Geometry of conventional and continuous-flow NMR probes [69]. 

A commercial "inverse" continuous-flow NMR probe from Btuker consists of a 

non-rotating glass tube to which the 1 H radio frequency coil is directly fixed at 

the centre of a conventional probe body. The glass wall of the tube (2, 3, or 4 

id. mm) is 18 mm long parallel to the coil and tapered at both ends to fit 0.25 

mm id. PTFE tubing. The lH coil is surrounded by an additional coaxial coil of 

which frequency is matched to 13C resonance frequency for heteronuclear 

lH/13C shift correlated experiments. With this probe configuration, very 

sensitive NMR measurements can be performed without rotation of the NMR 

tube. A large number of applications have been published on the coupling of 

LC-NMR. such as pharmaceutical [70-74]. and environment samples [75]. 
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1.4.3.1 Solvent effect 

Changing the solvent means altering the environment of the solute, thus it 

may affect the chemical shift of the nuclei in a compound. This effect is 

found mostly in polar compounds. It arises especially if the solvent molecules 

arrange themselves around the solute molecules in a different orientation or if 

there is hydrogen bonding. Table 1.3 gives some example of chemical shift 

differences due to different solvents [66). It can be seen that aromatic 

solvents shift the signal to higher field strength for many of the solutes, this is 

because the solute tends to interact mostly at the ring face of aromatic ring. 

Table 1.3 Chemical shifts 0 of solutes in different solvents [66] 

Solvent 
Solute 

CDCb (C~)zSO Pyridine Benzene CF3COOH 

Acetone 2.17 2.12 2.00 1.62 2.41 

(CH3)zCO 

Chloroform 7.27 8.35 8.41 6.41 7.25 

CHCI3 

DMSO 2.62 2.52 2.49 1.91 2.98 

(CH3)zSO 

Cyclohexane 1.43 1.43 1.38 1.40 1.47 

CeH12 

Chloroform molecules as pure liquids are bound by dipole-dipole interaction 

but at infinite dilution in an inert solvent, the bond is weakened and the 

resonance then shifts to a higher field. 

As solvents with protons cause difficulties in NMR measurements, to 

suppress the solvent signal, a deuterated solvent or solvent without proton, 

i.e. deuterochloroform (CDCb) or carbon tetrachloride, is usually employed 



CHAPTER 1: Introduction 28 

[46]. However, in some circumstances, it is unavoidable to work with aqueous 

media, and deuterium oxide seems to be the most suitable solvent to replace 

normal water, despite the trace HOD signal at --4.8 ppm which occurs from 

atmospheric deuterium exchange of 020 to HOD. If this signal is large, it 

tends to hinder the signal of the solute, leading to some difficulties such as: . 

• some solute signals may be hidden. 

• integration in that region is difficult and probably not possible. 

• a difficulty in computer processing of weak signals with strong signals. 

If the relaxation time of the solvent is greater than of the compounds, a useful 

method to suppress the solvent signal is by using a pulse sequence [76]. For 

example the water signal (H20 or HOD) has TJ -value about 3 s and is greater 

than the value for protons in organic molecules. By using the same pulse 

sequence as for TJ measurements, the delay time is chosen so that the water 

signal disappears. Protons of the compounds can subsequently undergo the 

relaxation mechanism and exhibit the signal. 

Another method to suppress the solvent signal is irradiation with a field of 

greater amplitude at the frequency of solvent signal, resulting in a decrease in 

signal intensity. The drawback is that the intensity of any sample signals lying 

in this region will also be suppressed. An alternative to solve the solvent 

suppression is by switching off the decoupler of the system a few tenths 

second before recording data. The suppression is more effective if a reduced 

decoupler power is used with compensation by a cyclic repetition of irradiating 

and waiting phases before each pulse [76]. 

Although the change in solvent composition can affect the chemical shift of 

the analyte, a number of studies in LC-NMR were performed using gradient 

elution and then suppressing the solvent signal by a nuclear Overhauser 

effect spectroscopy (NOESY) pulse sequence method [70-75,77]. Lindon et 

al. [70] evaluated the effects on H-1 NMR chemical shifts of pH and of varying 

proportions of acetonitrile and water as occurred during the gradient elution 

HPLC run. 
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AIl alternative solvent for suppression of the solvent signal is the use of liquid 

carbon dioxide, which is generally used as a main mobile phase in SFC. The 

C02 fluid does not give a NMR resonance signal, when employed without any 

modifiers. Methods to suppress the solvent signal background are therefore 

unnecessary and the observation of the whole spectrum is possible [78]. 

However, the need of a back pressure regulator and heating system to 

maintain the liquid in the probe-head under supercritical C02 conditions 

complicates the system [69]. 

1.4.3.2 Temperature effect 

Because the resonance position of most signals is slightly effected by 

temperature, a typical NMR detection cell is generally kept at constant 

temperature. In some circumstances, a variation in temperature affects the 

chemical shift [79]. To understand the reason of a drift in chemical shift with 

temperature, we have to consider averaged chemical shifts of rotating 

isomers and their population variation with temperature. For example, in a 

study of dimethylformamide ((CH3)2NCHO), at +22.5 °C two methyl signals 

are observed at 2.79 and 2.94 ppm (Figure 1.5) [76]. When the temperature 

is raised to +100 °C, those two signals broaden and at 120°C they became 

one broad peak. The broad peak became narrow, as the temperature is 

raised further. This phenomenon can be explained by a different magnetic 

environment of the two methyl groups at low temperature and as temperature 

raised the C-N bond of dimethylformamide allows rotation. The rotation rate 

is faster with temperature so that the two methyl groups cannot be distinguish 

by NMR. 
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Figure 1.5 56.4 MHz 1H NMR signals of the methyl protons in 

dimethylformamide, recorded at different temperatures [76J 

Compounds with hydroxyl groups always exhibit the proton of OH resonance 

at low field (4-10 ppm). Raising the temperature can cause the OH, NH, and 

SH protons to resonate at a higher field [SO] because it reduces the degree of 

hydrogen bonding. For example, water gives a very strong solvent signal and 

the signal is temperature dependent, at 24°C the resonance is ca. 4.S ppm, 

when the temperature raised to SO °C the resonance is shifted to higher field 

(ca. 4.4 ppm) [76). Thus, sometimes it is useful to increase or decrease the 

temperature to uncover a hidden peak in that region. 
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A change in temperature can also affect the spin-lattice relaxation, TJ [81]. 

For instance, in the case of dimethylformamide, at 215 K the cis- and trans

methyl group to CO exhibit the TJ = 4.3 and 1.3 s, respectively, but on raising 

the temperature to 304 K the TJ of both isomers increases to 17.1 and 11.4 s. 

In SFC good agreement was found in an investigation by Albert et al. [82] that 

with CO2 as the mobile phase, increasing the temperature caused an increase 

in TJ value. Changing from liquid to supercritical state also increases TJ value, 

owing to a decrease in viscosity; consequently data acquisition takes longer 

because it prolongs the time that the excited nuclei need to equilibrate back to 

equilibrium. For butyl-benzene, the TJ of methyl, methylene, ester and 

aromatic group, which are 2.8, 2.5, 2.3, and 4.1 s at 304 K increased to 4.3, 

3.7, 3.0, and 7.5 s, respectively, at 321 K, at constant pressure in liquid state 

and then further increased to 8.0, 8.6, 8.8, and 19.6 s in the supercritical 

state. 

With an SFC-NMR instrument, to obtain good resolution NMR spectra, the 

NMR probe must be a pressure-stable flow cell with a temperature controlling 

system in order to keep the fluid under supercritical conditions [48] for several 

hours, particularly when using the stop-flow mode*. Imperfect temperature 

control during experiment can cause a drift of the signal in NMR contour 

spectrum. 

An investigation by Alien et al. [83] was contradictory. They found that as 

temperature increased the spin-lattice relaxation time decreased. For example 

the spin-lattice relaxation time of benzene dissolved in CO2, at constant 

pressure 2500 psi and 296 K, TJ was 31.6 s, whereas increasing temperature 

to 355 K and constant pressure can decrease TJ to 6.7 s but this findings has 

not been confirmed. It was also noted in their experiment that NMR line 

broadening could be caused by a thermal gradient in SFC-NMR probe. At a 

* see also the section "Sensitivity of NMR detection" •. 
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flow rate of 2 ml min-1, the line width increases from -2.9 Hz at ambient 

temperature to 3.4 Hz at 49 °and 69°C. 

1.4.3.3 Pressure effect 

Generally a NMR measurement is performed at ambient temperature and 

pressure, a study of pressure effect on NMR therefore is of great interest in 

the chemical physics field, since compression slows down all motions in 

normal fluids [84], leading to an investigation of the in dynamic properties of 

the fluids. 

Changing pressure by compression has an effect on the density of a liquid, 

therefore the spin-lattice relaxation time (TJ) is altered [85]. This effect is most 

obvious in SFC-NMR. Albert et al. [48, 82] revealed that on increasing the 

pressure of C02 mobile phase in SFC-NMR, the signal shifts to higher field. A 

contour plot of proton chemical shifts of chloroform in supercritical C02 with a 

pressure gradient ranging from 90 bar to 244 bar showed that the relationship 

was not linear and approximately inversely proportional to the pressure 

change. This cause could be related to only a change in density of C02 with 

pressure because no other chemical process was involved. The investigation 

revealed that the use of on-line coupling between SFC and NMR can be done 

at a certain range of optimal pressure, otherwise the spectrum would exhibit 

an extreme signal line broadening. He also confirmed that reducing the 

viscosity of supercritical liquid mobile phase could cause an increase in spin

lattice relaxation time, TJ [48]. 

1.4.3.4 Sensitivity of NMR detection 

Compare to other spectroscopic method, e.g. UV or fluorescence, NMR is 

relatively insensitive because the energy gap between ground and excited 

state is very small. Therefore, developments are aimed at sensitivity 

improvement. From the Boltzman distribution relationship, a method to 
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improve the sensitivity of NMR is to increase the population by increasing the 

magnetic field strength. In practice, increasing the field strength from 100 

MHz to 400 MHz, which is equivalent to changing field from 2.3 to 9.2 Tesla, 

can improve a signal to noise ratio from 50:1 to 800:1 but improving this 

technology causes construction and operational costs [86]. 

Low sensitivity of NMR detection seems to be the main problem since the 

early stages of the coupling to LC. Despite of the problem, 8ayer [68] could 

detect anisole at a detection limit of 0.5 ~mol with the on-flow method. 

A dramatic improvement in LC-NMR sensitivity was a contribution to NMR 

probe designed by Wu et a/. [87]. Very small radio frequency coils wrapping 

directly around 75-530 ~m id. x ca. 1 mm fused silica capillary were used as a 

NMR detection cell with a volume of ca. 5-200 nL and less than 50 ng of limit 

of detection of amino acids were achieved for 1 min data acquisition times. 

With this new design, they claimed that the limit of detection of CE-NMR could 

be reduced to near 1 mg mrl concentration of nanoliter volume of analyte. 

However, this design seems to be not practical for routine analysis. 

Thanks to a development in Fourier Transform technology in computerising 

system, a sensitivity improvement can be achieved by an accumulation of a 

positive responses of true NMR absorption data [86]. This process however 

requires a long measurement time. Therefore, for an on-line separation, the 

LC separation is stopped when the analyte is in the NMR flow cell and the 

data acquisition is then started. This method is known as a stop-flOW mode 

and is recommended for the examination low concentrations of analytes. A 

number of papers have been published using this method to determine 

samples from urine [72-73], and natural products [74]. Spraul et al. [77] 

observed that the detection limit of on-line HPLC-NMR in their experiment 

was ca. 1 ~g on column for a stop flow method and ca. 10 ~g for a continuous 

flow method. A study by Albert et al. [69] also confirmed that a detection limit 

of a continuous flow is ten times lower than a stop flow method. 
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Recently, on-line quantitative HPLC-NMR was achieved for the first time to 

analyse real environmental sample by Godejohann et al. [75, 88]. They used 

extremely low flow rate at 0.017 ml min-1 but with a large volume of injection 

(400 ~L) of nitroaromatic compounds. They also improved the sensitivity by 

decreasing the flow rate of mobile phase in continuous flow HPLC-NMR, 

achieving a detection of 1,3-dinitrobenzene 5 ~g on column. They proposed 

two internal standard methods for quantitation but there were some 

limitations, i.e. an error of quantification results caused by integration of 

overlapping signals of co-eluting compounds, a relaxation time that need to be 

determined prior to quantification, and a drastic decrease in precision with 

decreasing SIN ratio. 

The most novel approach in developing a NMR flow cell to improve the 

sensitivity is to use a saddle-type radio frequency (rf) coil (2 mm id.) wound 

directly on a glass tube (2 mm od.) inserted with a 60 ~m id. fused-silica 

capillary tube, as a NMR probe [89-91]. The configuration is different from 

one designed by Wu et al., as the rf coil is not permanently attached to the 

fused silica. Therefore, the fused silica is easily exchanged without damaging 

the coil but the detection volume is higher (240 nL) than Wu' s design and the 

detection limit of 336 ng (or equivalent to 2.3 nM) of amino acid was achieved. 

1.4.4 Mass spectrometry (MS) 

Mass spectrometry is one of the most useful methods in analytical chemistry 

today. Compared to other molecular spectroscopic techniques; mass 

spectroscopy possess a high sensitivity in determination, identification and 

quantification of trace amounts of compounds [65]. A useful application is 

extended by coupling to gas and liquid chromatography on-line for 

simultaneous separation and quantification [92-93]. 
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In brief, the functions of mass spectrometry are described by the following 

basic tasks: (1) vaporise compounds into gas phase, (2) ionise the gaseous 

compounds to produce ions, (3) separate the ions according to their mass to 

charge ratio by a mass analyser and (4) detect and record the separated ions. 

In many cases, the first and second tasks are combined into one step. There 

are a number of ionisation methods, for instance electron impact (El), 

chemical ionisation (Cl), fast atom bombardment (FAB), thermospray (TS), 

atmospheric pressure ionisation (API), electrospray (ES), etc. The details of 

how to process the ions by each methods have been given elsewhere [94-96] 

and a comparison of each method is given briefly in Table 1.2. 

Table 1.4 Comparison of ionisation methods for MS [97]. 

Ionisation Sample Thermal input Information Sample Molecular 

method preparation associated available type weight 

for ionisation with ionisation limit 

Electron As vapour Relatively high Fragment ions Nonpolar or 750 

impact (El) and often moderately 

molecular ion polar 

Chemical As vapour Relatively high Molecular ion Nonpolar or 1,000 

ionisation (Cl) and sometimes moderately 

fragment ions polar 

Thermospray Dissolved in Relatively low Molecular ion Nonpolar or 2,500 

with discharge solvent and sometimes polar 

ionisation fragment ions 

Fast atom Dissolved in Virtually none Molecular ion Usually 10,000 

bombardment matrix such as and sometimes polar 

(FAB) glycerol fragment ions 

Electrospray Dissolved in Virtually none Molecular ion Polar 50,000 

(or ion·spray) solvent only 
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1.4.4.1 Solvent, flow rate and pressure 

Because the molecules or ions that transfer to MS must be in the gas phase 

and the sample from liquid chromatography is in a liquid or solution, when 

coupling the Le to MS, an interface for changing the liquid sample to gaseous 

sample is therefore necessary. However, there is not a perfect interface and 

ionisation technique in all applications, since each interface and ionisation 

technique is appropriate in some conditions and is compound dependent. It 

is also extremely difficult to achieve a solvent evaporation and a solute 

transference to ion source at the same time without loss of sample or 

degradation. Evaporation of the liquid mobile phase into a gas expands the 

volume, for example a the flow rate 1 ml min-' of mobile phase generates 100-

1000 ml min-' of gaseous flow [45]. A vapour flow of 6.25 ml min-' is 

equivalent to water at a flow rate of 5 III min-' and acetonitrile at a flow rate of 

15 III min-'. Only a small flow of vapour about 5-7.5 ml min-' is admitted to the 

ion source under normal circumstances, hence the input of the Le effluent to 

the interface requires a splitting device. 

All the flow that enters the ion source is ionised and then partly pumped away 

at the source housing (see Figure 1.6). A mass spectrometer is typically 

operated under high vacuum (1 x 10-4 torr in the source region and 1 x 10-5 

torr in the analyser) and the Le operates at a high pressure mode (>1.0 x 103 

torr), therefore an evacuation system (usually between 1-10 ml min-') in the 

MS instrument is necessary and the selected operating pressure depends on 

many factors, such as the nature of the mobile phase. 
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Figure 1.6 Schematic representation of a mass spectrometer vacuum system 

[97]. 

Table 1.5 Comparison of LC-MS interfaces in terms of allowable flow-rate 

and mobile phase composition [97] 

Maximum 

Interface flow-rate Mobile phase Composition 

(ml min·') 

Moving-belt 2 Organic solvent 

0.5 Reversed phase solvents, no buffers 

Direct liquid introduction 0.05 Reversed phase solvents, no buffers 

Thermospray 2 Reversed phase solvents with volatile buffers 

Continuous f1ow-FAB 0.015 Reversed phase solyents with volatile buffers 

Particle beam 0.5 Reversed phase solvents (not too aqueous) 

with volatile buffers 

Electrospray/lonspray 0.5 Reversed phase solvents with volatile buffers 

Heated nebulizer/APCI 2 Reversed phase solvents with volatile buffers 

Non-volatile components of the mobile phase are one of the major problems 

in most interfaces and ion sources [96-97]. Volatile buffers can be used and 

generally contain ammonium acetate, ammonium formate, ammonium 
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hydroxide, acetic acid or trifluoroacetic acid. The long term use of non-volatile 

buffers, such as phosphate buffers and ion-pairing reagents, are not 

acceptable in most interfaces and ion sources, but some interfaces, such as 

atmospheric chemical ionisation (APCI) with counter-current drying gas, are 

more tolerant than others [96]. To meet this requirement step, such as the 

removal of all non-volatile modifiers or changing the mobile phase system, 

must be adopted for a particular application, although it is sometimes 

extremely difficult from the chromatographer's point of view. 

Nevertheless, the recent design of some interfaces, namely electrospray or 

APCI, can deal with involatile buffers. The detail of electrospray interface and 

the mechanism of ionisation will be given later (section 1.4.4.4). 

1.4.4.2 Sensitivity of MS detector 

Since the sensitivity of Le-MS depends on many factors, i.e. the interface, the 

flow rate of mobile phase, the nature of analytes, the operating conditions, 

etc., hence, to identify the sensitivity of the technique by judging from one 

particular application is not acceptable. Also, a selection of interface to be 

used for one application depends on the type of application, for example in 

qualitative work informative fragmentation is desirable, hence, a particle beam 

interface with an El source is most attractive. For a quantitative analysis, only 

a few peaks on a MS spectrum are sufficient and if maximum sensitivity is 

required, atmospheric pressure chemical ionisation (APel) offers the best 

choice [97]. Table 1.4 demonstrates a comparison of detection limit with 

various interfaces, revealing that APel gives the lowest detection limit for N

methyl carbamates with the highest flow rate 1 ml min-1• However, some 

applications may be different from the trend given in the table. 
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Table 1.6 Comparison of single-ion detection limits in the LC-MS analysis of 

N-methyl carbamates with various interfaces [97] 

Interface Detection limit (ng) Flow-rate 

Methomyl Aldicarb Carbofuran Carbaryl (ml min-1) 

Moving-belt - 6 25 3 0.5 

(methane Cl) 

Direct liquid - - 50 40 0.02 

introduction 

Thermospray 2.8 0.9 0.8 0.8 1.0 

lonspray 0.4 1.5 1.5 1.0 0.05 

after 20: 1 split 

APCI 0.06 0.07 0.05 0.05 1.0 

Particle-beam 250 500 55 10 0.4 

with El I after 3:2 split 

In this decade, electrospray has grown in application, due to biochemical 

studies, but it is typically only used as a sample introduction device in an on

line LC-MS. 

1.4.4.3 SFC-MS 

In on-line coupling of SFC with MS, Cl is the most favourable technique in 

ionisation, as the MDQ is in a range of picogram level and comparable to 

GC/MS [98-99). In the case that the liquid passing through the ionising 

chamber is supercritical fluid such as C02, in El mode the detector is normally 

scanned from m/z 100 because the [C02], and [(C02)2]' are formed at m/z 44 

and 88. The formation of CO2 cluster ions can be prevented by a heat 

expansion region in which the temperature was raised 50-150°C higher than 

the mobile phase temperature. The details of the effects of temperature and 

pressure on CO2 cluster ions have been reported [100]. 
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A restrictor at the end of the column is also needed to maintain the pressure. 

It was reported that the best flow conditions of capillary SFC were obtained 

when short restrictors were employed [101] and additional heat must be 

applied to the end of restrictor to compensate for the cooling during 

decompression, to prevent solute precipitation and, to some degree, to initiate 

the vaporisation. The restrictor tip temperatures are typically 250-400 QC. If 

the temperature is too high, it increases in the expanding gas viscosity, 

resulting in a decrease in the column flow. The injected split ratio then 

increases and the signal disappears [47]. Therefore, the optimal temperature 

must be adjusted, depending on the supercritical fluid and the analyte. In 

addition, to improve the sensitivity in capillary SFC/MS the choice of the 

restrictors must be considered [101]. 

By increasing the ion source temperature, the fragmentation of ions can be 

increased [94] but the effect of temperature on fragmentation can be minimal 

when supercritical methane is used. 

With increasing the source pressure in El SFC/MS, a loss in sensitivity is due 

to the scattering of the ions from the entrance to the mass analyser by the ion 

source [47]. Cousin et al. [102] revealed that the loss in sensitivity with 

increasing pressure of high molecular weight compounds was because of the 

higher collision of the heavy ions than the lighter ions. 

Since a narrow bore column generates a smaller gas volume from the mobile 

phase fluid than a conventional column, it gives less interface problem and 

allows all the eluent from SFC to pass to MS. 

1.4.4.4 Electrospray LC-MS 

As mentioned earlier recently the application of the electrospray interface has 

been increasing, this is a consequence of a new exploration of a potential of 

the electrospray and its application to the characterisation of non-volatile 
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macromolecules, such as nucleotides, peptides, and proteins. A molecular 

weight of more than 400,000 daltons can be determined by using electrospray 

[103], whereas it is more difficult to ionise those molecules by other methods. 

The first experiment with the electrospray as a sample introduction method for 

MS was carried out by Dole et al. [103] in 1968. At that time, heating a 

macromolecule could result degraded products before it evaporated. By 

using electrospray, as the solvent evaporates, the drop shrinks and becomes 

electrically unstable and breaks down into smaller drops. The charged drops 

repelled each other and prevent aggregation. When a macromolecule 

solution was electro-sprayed into a vacuum, the drops would not evaporate 

within less than a second because of the strong evaporative cooling of the 

drop, therefore, heat must transfer to the drop to accelerate the evaporation. 

Because of the Van de Waals attraction between macromolecules, two 

macromolecules colliding in the gas phase will associate and then aggregate 

during evaporation. However, if the macromolecules are charged, the 

electrostatic force will keep them apart and prevent aggregation. To 

distinguish between high mass macro-ions and low mass solvent molecules, a 

repeller grid were adopted and applied voltage on the grid would screen out 

due to a difference between electric repulsive energy of low and high mass 

ions. In this approach, macromolecules of molecular masses up to 411,000 

could be detected 

The first commercial electrospray interface for le-MS was developed by 

Whitehouse et al. [104] (Figure 1.7). The sample was introduced through a 

hypodermic needle to the electrospray chamber with a flow rate of 5-20 III 

min-'. To produce positive ions, voltages were applied to the needle (ground 

potential), the cylindrical electrode (-3.5 kV), the metallized inlet (-4.5 kV) and 

exit ends (+40 V) of the 0.5 mm. id. glass capillary, the skimmer between first 

and second vacuum stage (-20 V), and the ion lens in front of the quadrupole 

(-1.0 kV). The surface of the introduced liquid was charged by the high field 

at the hypodermic needle tip and became dispersed by coulombic forces into 
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a fine spray of charged droplets (Figure 1.8). Under the electric field potential, 

the droplets flowed to the inlet of the glass capillary through a hot stream (50 

- 80 QC) of nitrogen gas at a pressure of ca. 1000 torr, allowing solvent 

evaporation from each charged droplet. The solvent vapour and uncharged 

droplets were swept away by the flow of bath gas, whereas each charged 

droplet decreased in diameter. The charge density thus increased on its 

surface until coulomb repulsion becomes stronger than surface tension [105]. 

'Coulomb explosion" fractured the droplets, forming charged daughter 

droplets and evaporation happened again. This process was repeated until 

charged molecular ions in ambient gas were formed. Some of them are 

entrained in dry bath gas that entered the capillary inlet and are transported to 

the first vacuum chamber, emerging at the exit end as a supersonic molecular 

beam and passing through a second vacuum chamber to the quadrupole 

analyser. 
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Figure 1.7 Schematic diagram of the apparatus for mass spectrometry with 

an electrospray ion source [104]. 



CHAPTER 1: Introduction 

Electronsl 

Oxidation 

High-voltage 
power supply 

43 

Reduction 

Electrons 

Figure 1.8 Schematic representation of processes in electrospray MS [106J 

The ion-spray source developed by Bruins et al. [107] in 1987 had a similar 

ionisation mechanism, but has the advantage of a higher flow rate over the 

conventional source. A flow rate of 200 III min·1 can be employed. Nitrogen 

gas flowed around the sample orifice to prevent clogging by non-volatile 

material. In some approaches, in order to improve ion transmission efficiency 

and to dissociate the cluster ions, three-stage differentially pumped vacuum 

systems were used [108-110] and a drift voltage was applied between two 

skimmer-shaped electrode [110]. In a system design by Vestec, ambient gas 

replaced nitrogen gas, no counter current gas is employed and the skimmer 

was heated to 200-250 °C [109]. 

In a conventional electrospray, the spray device is positioned axially to 

sample orifice, as seen in Figure 1.7. An ES introduction system developed 

by Hewlet!-Packard [111] placed the spraying device in orthogonal position. 

This set-up showed many advantages, i.e. a reduction in the contamination of 
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the orifice, more intense signals, and the use of high flow rates up to 4.4 ml 

min-1 without experimental difficulties. 

To improve the tolerance for non-volatile materials, different designs of 

electrospray source from Micromass, such as a crossflow device (Figure 1.9 

a) or ·Z· spray (Figure 1.9 b), were introduced [112). A crossflow device 

contains a deep well, where the non-volatile species are collected, and then 

the spray is blown across through the crossflow electrode to the orifice of 

sampling cone. In the ·Z" spray device, ions are produced and orthogonally 

flow from the outlet into the high vacuum chamber. Mobile phases containing 

phosphate buffer can be used with this system. 

Crossflowelectrode 

Involatile material 

Sampling 
Cone 

Ex~caction Cone 

Hexapole 

IO-4mbar 

(a) 

(b) 

Figure 1.9 Schematic diagram of the Micromass (a) crossflow, and (b) "Z" 

spray electrospray source. 
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1.5 Aim of research 

As adding modifiers to a mobile phase has a potential effect on many 

separations in conventional LC [113], the present INOrk was aimed to 

investigate the use of modifiers, such as inorganic buffers and ion-pairing 

reagents, in a superheated water mobile phase. A series of sulfonamides 

were examined and the separation was compared to that of conventional LC 

separations. The pKas of some sulfonamides at elevated temperature were 

also examined and compared to those investigated under ambient conditions. 

The successful on-line coupling of liquid chromatography (LC and SFC) to a 

number of widely used detectors, namely fluorescence, NMR and MS, lead to 

an interest in the feasibility of employing these coupled detection methods to 

superheated water chromatography. In this INOrk, the investigation will be 

further expanded to the use of buffer mobile phases with the coupled system. 

An examination of the separation of a number of model compounds, 

analgesics, sulfonamides, some B-vitamins, etc., and their identification by 

using those detectors will be carried out. The feasibility of the hyphenation of 

on-line superheated water chromatography-NMR-MS will also be examined. 
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Experimental 

2.1 Chemicals 

2.1.1 General chemicals 

Phosphoric acid (H3P04) and disodium hydrogen phosphate (Na2HP04) were 

of laboratory reagent grade obtained from Sigma (Sigma Chemicals, Poole, 

Dorset, UK). 

Potassium dihydrogen phosphate (KH2P04), sodium hydroxide (NaOH), 

sodium carbonate (Na2C03), acetic acid and citric acid were of laboratory 

reagent grade, boric acid, and sodium hydrogen carbonate (NaHC03) were of 

analytical grade. Acetonitrile and tetrahydrofuran (THF) of HPLC grade were 

used without further purification. All of these chemicals were obtained from 

Fisons Scientific (Loughborough, UK). 
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Tetrabutylammonium bromide of more than 98% purity was from Lancaster 

Synthesis (Morecombe, England). Tetramethylammonium bromide of 98.5% 

purity and sodium acetate were from BOH (BOH Chemicals Ltd., Poole, 

England). Deuterium oxide (020) was of 99.9% purity from Fluorochem (Old 

Glossop, UK). 

2.1.2 Standard chemicals 

Sulfonamides used in this study were laboratory reagents obtained from 

various suppliers: sulfanilic acid, sulfacetamide and sulfisomidine (Sigma, 

Missouri, USA); sulfamethoxazole, sulfachloropyridazine and sulfaphenazole 

(Sigma, St.Louis, MO, USA); sulfanilamide (Hopkin & Williams, Essex, 

England); sulfaguanidine and sulfathiazole (BOH, Poole, England); 

sulfadiazine, sulfapyridine, sulfamerazine, succinylsulfathiazole and 

phthalylsulfathiazole (May & Baker, Oagenham, England); and 

sulfamethazine (K & K Laboratories, USA). N4-acetylsulfanilamide and N', 

N4-diacetylsulfanilamide were synthetic laboratory samples. 

Barbitone, amylobarbitone and heptabarbitone were from the reference 

collection of the Home Office Forensic Science Service (Aldermaston, Berks, 

UK). Salicylamide, caffeine, phenacetin and dansylglycine, dansyl-OL-valine 

and dansyl-OL-Ieucine were obtained from Sigma (Sigma Chemicals Co., 

St.Louis, USA). Paracetamol, quinine sulfate and riboflavin were laboratory 

reagents from BOH (BOH Chemicals Ltd., Poole, England) and pyridoxal 

hydrochloride was from May & Baker (Oagenham, England). 

Thiamine hydrochloride was obtained from ACROS (Acros Organics, Geel, 

Belgium) and 4-methyl-5-thiazole-ethanol was from Sigma-Aldrich (Aldrich

Chemical Co., Gillingham-Oorset, UK). 
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2.2 Instrumentation, Equipment and Materials 

2.2.1 Superheated water chromatography 

An initial superheated water chromatographic system composed of a typical 

HPLC system equipped with a GC oven is shown in Figure 2.1. In this set up 

the detectors were connected in 3 different configurations, A, B, and C, as 

follows. 

10 

8 

~------------------------------, 

I Configuration A I 

11 
UV/Fluo 
detector 

: L..-___ .... 

12 
Back pressure 

controller 
L ______________________________ ~ 

Figure 2.1 Superheated water chromatographic system with detectors as 

Configuration A type. 

The superheated water chromatographic system comprised a LC-10AD 

Shimadzu pump (Shimadzu, Japan) (4) which delivered mobile phase from a 

reservoir (2) in a constant-flow mode (1.0 ml min"1) to a HPLC column (9) 

through a preheating coil (6) made of a 100 cm x 0.01-inch Ld. stainless steel 

tubing. The solvent was flushed with nitrogen (1) to deoxygenate it. The 
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column and preheating coil were placed in a GC oven (Series 104, Pye 

Unicam, UK) (8) whose temperature was programmed using a programmer 

controller (Series 104, Pye Unicam, UK) (3) and the temperature was read 

using a thermometer (7). Sample was injected via a Rheodyne HPLC injector 

(Model 7125, Rheodyne, Cotati, USA) (5) (external to the oven) fitted with a 

20 III sample loop. A set of copper cooling fins (3 cm x 12 cm x 0.05 mm) 

(10) was attached to the exit tubing to cool the mobile phase down to ambient 

temperature before the detector(s) (11). A back pressure controller (Jasco 

880/81) set at 35 kg cm-2 or a 0.13 mm Ld. x 3 m length of PEEK tubing were 

used to maintain the pressure of superheated water in the column (12). 

2.2.2 UV detector 

In the configuration A of Figure 2.1, a Jasco UVNisible detector (Model 870, 

Jasco, Japan) with a HP 3395 integrator (Hewlett Packard, USA) was 

operated at wavelength 254 nm to detect compounds. 

2.2.3 Fluorescence detector 

A SFM25 fluorescence detector (KONTRON, Switzerland) was placed 

between the UV detector and the back pressure regulator and the signal was 

detected using a HP 3396A integrator (Hewlett Packard, USA). 
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2.2.4 Nuclear Magnetic Resonance Detector 

I Configuration BI 

n 
16 

13 11 

El 

From 15 
column -+-H;;rj~W---1"""':'1-I 

Figure 2.2 A configuration B type extended from the superheated water 

chromatographic system in Figure 2.1. 

In order to connect the NMR detector to the superheated water 

chromatographic system, a Rheodyne injector (Model 7125, Rheodyne, USA) 

(14) was added after the UV detector and used as a switching valve to 

redirect the flow on demand to a Jasco 880/81 back pressure regulator (12) 

set at 35 kg cm·2 or to a 0.13 mm i.d. x 3 m PEEK tubing to maintain to 

pressure in the column. A second 0.13 mm Ld. x 3 m PEEK tubing (15) from 

the switching valve was led to a Bruker DRX-500 NMR spectrometer (Bruker 

UK Ltd., Coventry, UK) (16-18) with a detection cell volume of 120 Ill. Under 

these conditions the transfer time of a selected peak from UV-detector (11) to 

the NMR probe was 33 s at mobile phase flow rate of 1.0 ml min"1. 

NMR was performed in the stopped-flow mode on selected peaks and the 

spectra were measured at 500.13 MHz CH). Free induction decays (FID) 
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were collected over a spectral width of 8278 Hz into 16384 data pOints using 

an acquisition of 0.99 s using the NOESY-type presaturation 

(NOESYPRESAT) pulse sequence (Bruker). The residual water resonance 

was suppressed using pre-irradiation during the relaxation delay of 2.0 sand 

mixing period of 0.10 s. 

For the 2D-COSY NMR experiment, 1 K data points were used in the F2 

domain with the number of experiments set to 256 (TD1). In both dimensions 

90 pulses were used over a sweep range of 4990 Hz with a relaxation delay 

of 1.5 s. A sine-bell window function in both dimensions was applied and 

data were zero-filled in the F1 dimension, Fourier transformed, and then 

symmetrised about the diagonal. 

2.2.5 NMR and Mass spectroscopic detectors 

1 Configuration C I· 

From 
column 

Figure 2.3 A configuration C type extended from the superheated water 

chromatographic system in Figure 2.1. 
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The hyphenated system of superheated water chromatography-NMR-MS 

(Figure 2.3) comprised the chromatographic system in Figure 2.1 connected 

to NMR and MS by an outlet tubing from the UV detector. This was equipped 

with an injection valve (14) (Rheodyne model 7125, Rheodyne, USA) used as 

a switching valve, which was connected either to PEEK tubing (3 m x 0.13 

mm i.d.) or to a second PEEK tube (3 m x 0.13 mm i.d.) (15) leading to a T

piece (19). The two outlets of the T-piece were connected to the NMR 

spectrometer by PEEK tubing (0.5 m x 0.13 mm) (16-18) and to a Quattro MS 

detector (3 m x 0.13 mm) (20-21) 

The Quattro LC mass spectrometer (Micromass Ltd, Altrincham, Cheshire, 

UK) was fitted with a Z spray source running two cone voltages (25 and 60 V) 

in positive electrospray. With a 0.1 s interscan delay, at 25 V the mass range 

from 80 to 450 amu was scanned over 1 s and at 60 V the mass range from 

35 to 450 amu was scanned also over 1 s. The capillary voltage was set at 

3.45 kV. The source block temperature was maintained at 80°C and the 

desolvation temperature was operated at 150°C. The nebuliser gas flow and 

the desolvation gas flow were controlled at 80 and 564 I h(l, respectively. 

2.2.6 Chromatographic Columns 

The following chromatographic columns were employed. 

• 15 cm x 4.6 mm i.d. Column packed with 5 Ilm PRLP-S (polystyrene

divinylbenzene, PS-OVB), Polymer Laboratories, Shropshire, UK 

• 15 cm x 4.6 mm Ld. Column packed with 5 Ilm Nova-pak C18 (octadecyl, 

OOS) (Waters, USA). 

• 15 cm x 2.1 mm i.d. Microbore-column packed with 3 f.1m ZirChrom-PBO 

(Polybutadiene) column (ZirChrom Separations, Anoka, Minnesota, USA). 
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2.2.7 Mobile phase 

Triply deionised water was treated through a HPLC purification unit (Elga 

Wycombe, Bucks, UK) at an output of >17 Mn. The pHs of buffer solutions 

were measured by using 3 digit pH-meter (Model 520A, Orion Research, 

Boston, USA). 

The mobile phases were degassed by using an ultrasonic bath and/or purged 

with nitrogen gas (1). When an ion -pair reagent was used a guard column 

modified as a filter was placed between the pump (4) and the injection valve 

(5) to trap dust and particulates. 

2.3 Preparation of standards 

Salicylamide was prepared at a concentration of approximately 10 mg mr' in 

acetonitrile. A mixture of analgesics consisting of 10 mg of each 

paracetamol, caffeine and phenacetin and a mixture of 10 mg mr' of the 

barbiturates were both prepared in 1 ml 80% v/v acetonitrile-D20. 

A mixture of approximately 1 mg mr' of each sulfonamide in a mixture was 

prepared in 20% THF - water. For the NMR studies, a mixture of 

sulfacetamide, sulfadiazine, sulfamerazine and sulfamethazine consisted of 

10 mg each was prepared in 3 ml 80% acetonitrile-D20. 

The solutions of riboflavin, thiamine hydrochloride, 4-methyl-5-thiazole

ethanol, pyridoxal hydrochloride, quinine sulfate and dansyl amino acid were 

prepared by dissolving the pure standards in deionised water, D20 or 

deuterated buffers. 
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2.4 Extraction Procedure of kava root sample 

The dry roots of Piper methysticum from Suva, Fiji, were ground and 

approximately 1.0 g was weighed into a vial, then 10 ml methanol was added. 

The mixture was stirred for a few hours and subsequently filtered through 

Whatman Filter paper No.1. The filtrate was collected and evaporated to 

dryness by a stream of nitrogen or air. Afterwards, the residue was dissolved 

in 5 ml ethyl acetate and passed through a 10 cm Pasteur pipette column 

packed with silica gel 60-150 mesh followed by 5 ml ethyl acetate. The 

yellow eluent portion was collected, evaporated to dryness by a nitrogen 

stream and dissolved in ca. 1 ml methanol. The extract was further separated 

by superheated water chromatography with UV and NMR detection. 

2.5 Preparation of mobile phase 

2.5.1 Preparation of buffer pH 3-12 

Phosphate buffers at a range of pH were prepared from a combination of 

phosphoric acid (H3P04), potassium dihydrogen phosphate, disodium 

hydrogen phosphate (Na2HP04) and sodium hydroxide, depending on the pH 

required, in deionised water or deuterium oxide. Citrate, borate, acetate and 

carbonate buffers were prepared from individual pairs of citric acid - sodium 

hydroxide, boric acid - sodium hydroxide, acetic acid - sodium acetate, 

sodium carbonate - sodium hydrogen carbonate, in water, respectively. 

All buffers were prepared at the concentration of 1-3 mM of the anion, namely 

phosphate, citrate, borate, acetate or carbonate. The pH of every buffer was 

measured and adjusted during preparation. For example, phosphate buffer 

pH 7 was prepared by dissolving 0.285 g Na2HP04 in 1 I deionised water. 

The solution was stirred, measured pH and then added conc. H3P04 drop by 

drop until pH = 7.0. 
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2.5.2 Preparation of ion pairing mobile phase 

1 mM tetramethylammonium bromide (or tetrabutylammonium bromide) pH 7.0 

0.280 g Na2HP04 and 0.160 g (-1 mmole) tetramethylammonium bromide (or 

0.330 g (-1 mmole) tetrabutylammonium bromide) were dissolved in 1 I 

deionised water. The solution was stirred and measured pH, then conc. 

H3P04 was added dropwise until pH = 7.0 

2.6 A calculation of pKa value using retention factor 

To calculate pK. value of the sulfonamides at elevated temperatures, the 

retention times at different pH were examined, then transformed into retention 

factors (k) by using an equation of retention factor, k = (tdo)/to, where tR = 
retention time of any analytical species and to = retention time of unretained 

species. 

The equation relating the retention factor [114] to pH is given by 

k = .................. (1) 

where, k = retention factor at a given hydrogen ion concentration, ko = 
retention factor of the neutral species, k'1 = retention factor of the 

deprotonated species, K. = ionisation constant, and [H+] = hydrogen ion 

concentration. 
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Then the equation (1) is derived by giving A = K •. 
[H+] 

Hence, k = ko + k_1 

(1+A) (1+ ~) 

k = ko + k_1 

(1+A) (A;1) 

k = ko + k_1A 
(1+ A) (A+1) 

k = ko + k_1A 
(1 + A) 

.. --,.-~. .. .----- --"-'" .. - - "._-

k + k_1K. 
o [W] 

56 

.................. (2) 

ko and k.1 were determined and replaced in equation (2). K. was calculated 

by using Solver function from Excel computer programme. For example, if 

the retention time of unretained species (to) was 1.29 min, the retention 

factors of sulfacetamide at different pH were calculated from its retention 

times (Table 2.1). 
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Table 2.1 Retention times and factors of su/facetamide at different pHs. 

pH 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

6.5 

7.0 

8.0 

The values in circles are the maximum and minimum retention 

factors, which were determined for the retention factors of neutral 

and deprotonated species, respectively. 

tR Retention factor (k) 

(min) expt. Predicted Difference 

22.30 16.29 19.50 -3.21 to= 1.29 

25.30 18.61 19.24 -0.63 

26.60 ,-19.62) 18.46 1.16 

22.84 16.71 16.36 0.35 

18.21 13.12 12.04 1.08 

8.81 5.83 6.59 -0.76 ko= 19.62 

3.23 1.50 2.75 -1.25 k-1 = 0.09 

2.09 0.62 1.02 -0.40 k.tKa2 - 5.71x10· 

1.54 0.19 0.39 -0.20 Ka2 = 6.34x1 0-<> 

1.41 ( 0.09) 0.12 -0.03 PK.2 = 5.20 

ko = the retention factor of neutral species which was equal to 19.62. k.1 = the 

retention factor of deprotonated species which was 0.09. We set the 

equation of predicted k equal to equation (2) and used Solver function from 

Excel to minimise the summation of the squares of the difference between the 

experimental and predicted values by changing Ka2 value. The Ka2 was 

estimated to be 6.34 x 10-6 and hence the experimental pKa value of 

sulfacetamide was 5.20. 
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Effect of Additives in the 

Mobile Phase 

3.1 Introduction 

Recently superheated water was utilised successfully as a pure mobile phase 

for chromatography with a number of different columns, including 5pherisorb 

0051, PRP-1, PRLP-5, PBO-zirconia and Hypercarb [32, 36], and the elution 

order followed reversed-phase HPLC. A study by Burgess [36] showed that a 

silica based column, such as 5pherisorb 0051, was not suitable because of 

the dissolution of silica packing material at high temperatures. A porous 

graphitic carbon (PGC) column gave only fair separations, whereas a 

polymeric column, such as PRLP-5, looked more promising because of its 

better stability at high temperature. However, it was the most retentive phase 

when using superheated water. PBD-zirconia column was the least retentive 

for non-polar compounds and therefore required lower temperatures. This 

column seems to be the most favourable. However, using pure superheated 
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water, the efficiency of the columns from his study had to be improved. Polar 

compounds, such as phenol and resorcinol, were separated on PGC column 

but the peaks were found to be very tailing. With the PBD-zirconia column, 

the strong interactions of some analytes with active sites on the stationary 

phase also caused poor peak shape and unresolved peaks. 

To improve peak tailing, Miller and Hawthorne [32] chromatographed seven 

alcohols using a temperature gradient, which was similar to the use of 

temperature programme in GC methods. By increasing the temperature from 

120-150 oC, the resolution of the three last peaks of sec-, iso- and n-butanol 

were improved during a 10 min run. Burgess [36] compared the use of 

isothermal and temperature programme in a separation of para ben 

homologues. With isothermal 200 oC, a mixture of parabens was separated, 

giving 4 tailing peaks. The peaks were much improved when using 

temperature programme (initial temperature 150 °C held for 10 min, followed 

by ramping 20 °C min-1 to 240 °C). 

An increase in flow rate may improve the peak tailing in HPLC at ambient 

temperature but not in superheated water chromatography because of a 

differential temperatures. The reason of this was described by Burgess [36]. 

He observed that with PRLP-S column at 200 °C an increase in flow rate from 

0.9 to 1.6 to 2.0 ml min·1 caused a peak distortion of phenol which was 

considered to be probably due to a differential temperature between a cooler 

in coming mobile phase and the hot column and/or by a viscosity difference 

between an organic-aqueous sample solvent and the mobile phase. 

However, when the study was repeated, the same effects were not observed 

[115]. 

One of the ways to improve the chromatographic qualities in RP-HPLC is to 

introduce additives to the mobile phase. It was of interest to determine if a 

number of additives, such as buffers and ion-pair reagents, which are widely 
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used in aqueous-organic mobile phases to improve peaks shape and control 

ionisation, would work in a superheated water system. Some questions 

arose; for example if those additives could work with superheated water and 

improve the peak shape, if they were capable of controlling ionisation at 

elevated temperatures as efficiently as in reversed phase LC, if the 

separation still followed RP-HPLC at ambient temperature or they gave a 

different chromatographic separation. Therefore, in this chapter we report an 

examination of the effects of additives. 

In a preliminary investigation of the coupling of a UV detector to superheated 

water, we utilised a conventional HPLC system, with a flow cell with a 

detection volume of 4 Ill. With the system in operation the temperature of 

eluent leaving the column was elevated and might affect the light path 

through the detection flow cell and result in an unstable baseline. A set of 

cooling fins was therefore attached to the tubing leading from the column to 

detector to cool the eluent. However, if the oven temperature was greater 

than 120°C and the flow rate exceeded 1 ml min-\ there was still a 

temperature increase in the flow cell, resulting in noise in the detection, as 

the UV detector is partially thermal sensitive [45]. It was more apparently if a 

temperature programme was used, since the baseline drifted more with a 

higher temperature ramping than with a lower one. Hence, even with the 

cooling fins it is recommended not to operate a flow rate more than 1.0 ml 

min-1
. In this work usually the cooling fins could disperse the heat well 

enough to cool down the mobile phase and give a sufficiently stable baseline 

at the recorder. 
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3.2 Unbuffered superheated water 

The preliminary investigation was to study pure superheated water as a 

mobile phase without additives to separate the sulfanomide compounds. 

Sulfonamides, a generic name for derivatives of p-aminobenzenesulfonamide 

(sulfanilamide), are antibacterial compounds that have a wide range of 

antimicrobial activity against gram-positive and gram-negative bacteria [116]. 

They are pH-sensitive and UV absorbing compounds. These drugs have 

attracted considerable analytical interest over many years and a great 

number of papers have been published on methods of determination, 

including GC [117-119], TLC [120-122], SFC [123-124] and HPLC [122,125-

134]. In HPLC, various methods have been used to analyse sulfonamides in 

both normal phase [125] and reversed phase, with silica C,s bonded [126-

131], CN [127], and PS-OVB [132-134] columns. With C,s columns the 

amount of methanol or acetonitrile in mobile phase ranged from 10-25%, 

whereas with PS-OVB column the amount was slightly higher (10-70%) [126-

134]. For an isocratic run to give the best separation of 22 sulfonamides in a 

mixture an optimal modifier concentration in mobile phase was 16% methanol 

or 10% acetonitrile [128-129]. Recently new instrumental methods such as 

capillary zone electrophoresis (CZE) [135-137] and capillary electrophoresis 

(CE) [138] have also been employed to analyse the sulfonamides. 

In the present work, a set of sulfonamides were initially prepared as single 

components to determine the optimum conditions that gave a good 

symmetrical peak in each case. At a water flow rate of 1.0 ml min" and back 

pressure 30 Kg cm-2
, the sulfonamide compounds could be separated 

isothermally at a range of temperatures (Table 3.1). 
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Table 3.1 The retention time of sulfonamides at different temperature of 

superheated water. 

Retention Time (min) 
Compounds Structure 

70·C 150 ·C 170 ·C 

0 

Sulfanilic acid HN-Q-M-OH 1.0 , - 11 
0 

N',N4-diacelyl 
R -OJ R H C-C-N ~ 11 S-N-C-CH 4.8 

sulfanilamide 3 H 11 H 3 
0 

o 0 
-0-

11 
11 Sulfacelamide H N ~ 11 5-N-C-CH 6.2 , 11 H 3 

0 

Succinylsulfathiasole =()- -o-R 5) o N ~ 11 5-N---{ I 
OHOH gHN 

9.3 

o NH 
-0-

11 
11 Sulfaguanidine H,N ~ !J fl-~-C-NH, 9.6 

0 

-o-R 
2.7, 

Sulfanilamide H,N ~ 11 ft-NH, 14.3 
0 8.3 (smal~ 

N4-acetYI 
o 0 

3.4, 11 -0-11 
H3C-C-~ ~ 11 ft-NH, 29.5 

sulfanilamide 0 8.1 (small) 

qj' Phthalylsulfathiazole ~ 11 - R 5 ~-o-fl-~---{ ) 5.4 
(thalazole) OH 0 N 

0 

-o-R 5) Sulfathiazole H,N ~ !J ft-~---{ I 5.4 
o N 

-o-R --n- 5.5, 
Sulfachloropyridazine H,N~!J 5-~ ~ h Cl 4.0 g N-N 7.9 (small) 

-o-ft N) Sulfadiazine H,N ~ 11 ft-~---{ !J 5.9 
o N 
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Table 3.1 (continued) 

Retention Time (m in) 
Compounds Structure 

70·C 150·C 170 ·C 

o -NCH, - 11 
Sulfamethoxazole H,N-o-W-~ ~-: 6.0 

0 

CH, 
-o-~ N=( 

Sulfisomidine H,N ~ /; r~~N 8.2 

CH, 

-o-~ --0 Sulfapyridine H,N ~ /; W-~ ~ /; 14.7 6.0 
0 

Sulfamerazine -o-~ N=JH' 
H,N ~ /; r~-<~ /; 15.2 

-o-~ '~"' Sulfamethazine H,N ~ /; ~-~-<\ /; 18.3 
o N 

CH, 

-o-~ f.~ 
Sulfaphenazole H,N ~ /; ~-~ 0 19.3 

o {/ 
\ 

~ 

As the conditions were varied to examine the optimal temperature to separate 

each sulfonamide, some compounds were readily eluted at a moderately low 

temperature (70 ·C), for example, sulfanilic acid, N\N4-diacetyl sulfanilamide, 

sulfacetamide, succinylsulfathiasole, sulfaguanidine and sulfanilamide. 

Whereas at 150 ·C a number of compounds gave similar retention times, for 

example phthalylsulfathiazole (5.4 min), sulfathiazole (5.4 min), 

sulfachloropyridazine (5.5 min), sulfadiazine (5.9 min) and sulfamethoxazole 

(6.0 min). In spite of varying the temperature, the flow rate and the injection 
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volume, a mixture of these compounds could not be separated. At a higher 

temperature (170°C) a only few sulfonamides were retained; sulfapyridine 

(6.0 min), sulfamethazine (18.3 min), and sulfaphenazole (19.3 min). 

A number of sulfonamides, namely sulfanilic acid, 

sulfanilamide, N4-acetylsulfanilamide, sulfacetamide, 

sulfaguanidine, 

sulfathiazole, 

sulfisomidine, sulfapyridine, sulfamethazine, were selected to prepare a test 

mixture, which should be well resolved. Because they covered a range of 

elution temperatures, different temperature programmes were examined to 

separate the mixture of those nine sulfonamides from 70-190 °C. The results 

in Figure 3.1 showed that the baseline drift increased with the rate of ramping 

temperature. At the rate of 4 °C min-\ the sulfanilamide and N4
_ 

acetylsulfanilamide peaks were unresolved and gave only one peak, as did 

sulfisomidine and sulfapyridine. A better separation was obtained by using 

an increment of 2· °C min-1
, in which the peaks of those pairs were only 

partially overlapped. An optimal rate 2 °C min-1 was therefore selected which 

was enough to separate all components in the mixture. Although the 

increment of 1 °C min-1 was possible in the instrument, the increase was too 

slow and it took a longer time to obtain a chromatogram. 

However, as the experiment was repeated, we found that the separation 

pattern and retention time of these compounds were not consistent, in spite of 

operating the same programme conditions within the same day. It was 

suspected that this effect was a result of the uncontrolled pH of the water, 

since sulfonarnides are pH-sensitive compounds. The use of a buffer in the 

mobile phase system to control ionisation was therefore considered. 
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Figure 3.1 Chromatograms of a mixture of nine sulfonamides separated 

using pure superheated water chromatography. 

Conditions: column, PRLP-S column, mobile phase, 100% 

water at flow rate 1 ml min-t; back pressure, 30 kg cm-2
; 

detection, absorption wavelength, 254 nm; oven temperature 

programmed at (a) 70 ·C 40 min, 2 ·C min-t, 190 ·C inf. 

(b) 70·C 35 min, 4 ·C min-t, 190 ·C inf. 
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3.3 Buffered superheated water 

Because of a decrease in the polarity of water as the temperature increases, 

if there were any inorganic salts present in the superheated water 

chromatographic system there was a real concern that they might precipitate. 

However, a solution of dipotassium hydrogen phosphate in water has been 

successfully utilised by Marshall et al. [139] at 100-400 QC. He reported that 

phosphates at extremely low concentration could be employed as corrosion 

inhibitors in a boiling vessel. However, their presence at high concentrations 

(10 - 63 wt%) can be very corrosive, as it was noticed that there was a rapid 

production of hydrogen gas at titanium-alloy vessels, a green colour at nickel 

and/or iron at stainless steel vessels and a gelatinous silica precipitate in 

Pyrex glass and silica tubes. Wofford et al. [140] also studied the titration of 

(0.025 m) boric acid with (0.2 m) KOH at high temperature (300-380 QC) and 

pressure (24.1 - 41.3 MPa) but there was no report of corrosion in the study, 

although a titanium titration cell with sapphire windows and titanium tubing 

were used. The titration of a strong acid and base, such as (5x10-4 _10.2 M) 

sulfuric acid and (0.4465 M) ammonia, under sub- and supercritical water 

conditions at temperatures ranging from 200-400 °C and pressures from 

3500-6000 psi were also investigated by Xiang et al. [141]. He found that at 

380°C and 5000 psi the system H2S04 - NH4 - HS04 may be used as a 

buffer at pH 3.5 ± 0.25. He also observed corrosion of a sapphire window 

that was more severe in alkaline solution (pH > 9) than in acid or neutral 

solutions. 

It was therefore expected that the phosphate-water buffer could be used in a 

superheated water chromatographic system and this could also be expanded 

to the use of other inorganic buffers as mobile phases in the system. In the 

present study inorganic buffers were thought to be preferable to organic 

buffers because some organic buffers might give rise to problems at elevated 
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temperature [142]. For example, bicarbonate/C02 buffers needed a closed 

system for equilibration. Several organic buffers, i.e. Tris, aliphatic amines, 

etc., have high temperature coefficients, thus, on raising the temperature the 

pHs of the buffers decrease. There was also a concern about the optimal 

concentration of inorganic buffer to be used. If the buffer concentration was 

too low, it would not be utilised to buffer the solution and if it was too high, it 

might cause corrosion in the hardware system. 

3.3.1 Separation of sulfonamides in acid, neutral and basic buffered 

superheated water 

The mobile phase system was prepared using a low concentration (1-3 mM) 

of inorganic salts, sufficient to maintain the pH but low enough to prevent the 

precipitation and corrosion that might occur in the system if the phosphates 

were present at high concentration. As a result, chromatography was 

achieved without salt precipitation in the system. 

Ten sulfonamides were prepared as a mixture and separated in acidic, 

neutral and basic buffers at pH 3.0, 7.0, and 11.0 prepared from phosphate 

salts (Figure 3.2 and Table 3.2). 
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Figure 3.2 Chromatogram of a separation of 10 sulfonamides in phosphate buffer 

pH 3.0,7.0 and 11.0. Conditions: column, 4.6 x 150 mm 5pm PRLP

S, mobile phase, 1 - 3 mM phosphate buffer at flow rate 1 ml min"; 

oven temperature programmed at 70 ·C 30 min, 2 ·C min-', 190 ·C; 

back pressure, 30 kg cm-2
; detection, absorption wavelength, 254 nm. 

Peaks: 1, sulfanilic acid; 2, sulfaguanidine; 3, sulfanilamide; 4, N4
_ 

acetylsulfanilamide,5, sulfacetamide; 6, N' ,N
4-diacetylsulfanilamide; 7, 

sulfathiazole; 8, sulfisomidine; 9, sulfapyridine; 10, sulfamethazine 
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Table 3.2 Retention times and factors (k) of 10 sulfonamides at different pH 

buffers 

Retention at pH 

Compounds 3.0 7.0 11.0 

tR k tR k tR k 

Sulfanilic acid 1.72 1.86 1.18 0.97 1.21,2.18 1.02 

Sulfaguanidine 9.97 15.62 10.15 15.92 9.77 15.28 

Sulfanilamide 14.69 23.48 14.82 23.69 7.21 11.01 

N4-acetylsulfanilamide 31.36 51.27 31.13 50.88 7.21 11.01 

Sulfacetamide 51.72 85.19 1.96 2.26 1.21 1.02 

N' N4 _ , 63.00 103.9 1.96 2.26 2.18 2.63 

diacetylsulfanilamide 

Sulfathiazole 65.94 108.9 53.30 87.83 1.94 2.23 

Sulfisomidine 74.10 122.5 62.35 102.9 2.18 2.63 

Sulfapyridine 76.66 126.7 74.61 123.3 7.21 11.01 

Sulfamethazine 89.36 147.9 79.15 130.9 7.21 11.01 

At pH 3.0, all ten sulfonamides were well separated and resolved with 

satisfactorily symmetrical peaks, except for sulfisomidine and sulfapyridine 

which slightly overlapped at 74.1 and 76.6 min. Changing the mobile phase 

buffer from acid (pH 3.0) to neutral (pH 7.0) altered the retention, order of 

elution and separation pattern. Some compounds changed retention 

markedly, for example sulfacetamide and N\N4-diacetylsulfanilamide, which 

had been retained at 51.7 and 63.0 min in acid but were virtually unretained 

at neutral pH (the retention times were less then 2.0 min). A slight decrease 

in retention was found in sulfathiazole, sulfisomidine, sulfapyridine and 

sulfamethazine, whereas sulfanilic acid, sulfaguanidine, sulfanilamide and 

N4-acetylsulfanilamide remained unchanged. It should be noted that using 

buffer on a run to run daily basis, the retention times and chromatographic 

separation pattern of all sulfonamides were more consistent than using only 
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pure water. For example, at 70°C the retention time of sulfanilamide was 

15.14, 13.90 and 16.93 min within three consecutive runs when using pure 

water mobile phase but was 14.69, 14.82, 14.43 min when using buffer pH 

7.0. 

On changing the buffer to pH 11.0 the retentions of almost all of sulfonamides 

were greatly decreased. They were virtually unretained, poorly separated 

and were all rapidly eluted within 10 min. This phenomenon was possibly 

described by the primary pH effect over sulfonamides, according to pK. of the 

compounds. 

Because sulfonamides are amphoteric and have two dissociation equilibria as 

shown in Figure 3.3, changing the mobile phase to low pH causes 

protonation at the anilinium group and converts a neutral sulfonamide to be in 

a protonated form. Whereas changing the mobile phase to high pH results 

an ionisation of the sulfonamide nitrogen and transforms the neutral 

sulfonamide to be a deprotonated one. The dissociation constants and 

structures of the sulfonamides are given in Table 3.3. 

acid is 3.23 and the structure is given in Table 3.1. 

The pK. of sulfanilic 

o 

V ii 
R-N :-.. I S-N-~ 

1 H2 " 11 II H o 

II 
-o-~ 

R-N \ I S-N-~ 
1 H \\ 11 11 H 

o 

II 0 
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protonated form 

neutral form 

deprotonated form 

Figure 3.3 The association and dissociation of a su/fonamide in water. 
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Table 3.3 Structure and pK. of some sulfonamide compounds. pI<. data 

were obtained from references [136-137]. 

Compounds 

Sulfaguanidine 

Sulfanilamide 

N4-acetylsulfanilamide 

Sulfacetamide 

N' N4_ , 

diacetylsulfanilamide 

Sulfathiazole 

Sulfisomidine 

Sulfapyridine 

Sulfamethazine 

-o-~ 
Rl~ ~ !J W-~-Rz 

o 

General structure in neutral form 

RI R2 

NH 
H 11 

-C-NH 2 

H H 
0 
11 H HC-C-3 

0 
H 11 

-C-CH 3 

0 0 
11 11 

HC-C-3 -C-CH 3 

S 

H ~J 
N 

CH3 
N=< 

H ~N 
C~ 

H {) 
CH3 

H -i~ 
CH3 

pK'1 pK.2 

- -

2.36(137) 10.43(137] 

- -

1.78(137) 5.38(137) 

- -

2.08('361 7.07('361 

2. 68(136( 7.26(1361 

2.58(137) 8.43(137) 

2.36(137) 7.3i'37) 
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At pH 3.0 each sulfonamide whose pKa1 is less than 3.0 and whose pKa2 is 

more than 5.0 would be in the neutral form. Therefore, these compounds 

should be strongly retained in the polymeric based column. The change of 

pH from 3.0 to 7.0 dramatically dropped the retention of the acidic 

sulfacetamide (pKa2 = 5.38) and N1,N4-diacetylsulfanilamide. Although the 

pKa2 of N1,N4-diacetylsulfanilamide is not reported in the literature, it was 

presumably similar to that of sulfacetamide, as they contained the same -

S02-NH-CO-CH3 functional group that dominates the pKa2 of sulfonamides. 

Sulfathiazole, sulfisomidine, and sulfamethazine whose pKa2 s are 

approximately 7 were partly deprotonated and were eluted faster than 

sulfapyridine whose pKa2 = 8.43. Meanwhile both sulfanilamide (pKa2 = 10.43) 

and N4-acetylsulfanilamide in which R2 is unsubstituted and presumably has a 

pKa2 at approximately 10, was in a neutral form and thus maintained their 

retention. 

At pH 11.0, all of the sulfonamides Were ionised; they were therefore only 

slightly retained in the column, resulting the drops in retention time. 

Nevertheless, there were two sulfonamides that did not change their retention 

in acid, neutral or basic circumstances. Those were sulfanilic acid and 

sulfaguanidine. Unfortunately, the pKa of sulfaguanidine has not been 

reported. Sulfanilic acid is moderately acid and the pKa1 and pKa2 are very 

low, therefore it was totally ionised and deprotonated at pH less than 3.0. 

Hence, the sulfanilic acid was always rapidly eluted. 

The elution orders of separated sulfonamides in each pH were found to be 

similar to those obtained by a conventional RP-HPLC method with PS-DVB 

columns at room temperature [132-1331. For example, with XAD-2 column 

and at pH 2.80 (which can be comparable to pH 3.0 in this work) Rotsch et al. 

[1321 found that the elution order was sulfaguanidine(2), sulfanilamide(3), 

sulfacetamide(5), sulfathiazole(7), sulfapyridine(9), and sulfamethazine(IO). At pH 

6.73 (compare with pH 7.0 in this work) the elution order was sulfacetamide(5), 
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sulfaguanidine(2), sulfanilamide(3), sulfathiazole(7), sulfapyridine(9), and 

sulfamethazine(10)·. This result also agreed with a latter study by Lee et al. 

[133], with PRP-1 column at pH 3.1 he found the order of elution was 

sulfanilic acid(I), sulfaguanidine(2), sulfanilamide(3), sulfathiazole(7), and 

su Ifamethazi ne(1 0). 

A recent study of the separation with a C18 column and an isocratic run with 

16% methanol- 84% 0.1 M phosphate buffer (pH 2.8), Ricci and Cross [128-

129] reported an order of elution: sulfanilic acid(I), sulfaguanidine(2)1 

sulfanilamide(3) (co-eluted), sulfacetamide(5), sulfisomidine(8), sulfathiazole(7), 

sulfapyridine(9) and sulfamethazine(IO). Whilst with an isocratic 10% 

acetonitrile - 90% 0.001 M phosphate buffer at the same pH, they found that 

the, elution order was sulfanilic acid(I), sulfaguanidine(2), sulfanilamide(3), 

sulfisomidine(8), sulfacetamide(5), sulfathiazole(7)/sulfapyridine(9) (co-eluted), 

and sulfamethazine(IO). It is noticed that with the same pH but a different 

modifier sulfisomidine gave a different elution order. This is possibly due to 

the pKal of sulfisomidine (2.68) and the susceptibility of the compound to the 

pH of conditions. At pH 2.8 sulfisomidine was not entirely deprotonated, 

hence it was less retained in the column. 

As the dissociation constant of water (pKw) is higher as the temperature is 

increased, the sulfonamide mixture might be being separated at different pH 

from ambient conditions or the dissociation of sulfonamides may have 

changed under superheated water conditions. Hence, it is of interest to 

investigate the dissociation constant of selected sulfonamides. 

Sulfonamidel': • = the elution number that given to 5ulfonamide in Figure 3.2. 
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3.3.2 pK. Determinations of some sulfonamides in superheated water 

conditions 

To examine the dissociation of sulfonamides across the temperature range 

from low to high, a number of sulfonamides were chosen on the basis that 

they were separated at different temperature and represented compounds 

whose pK.2 were acidic (sulfacetamide), neutral (sulfathiazole and 

sulfamethazine) and basic (sulfanilamide). The pH of the mobile phase was 

increased from 3.0 to 13.0 with increments of 0.5 using a range of buffers, 

phosphate, citrate, borate, carbonate, acetate, and the retention times and 

retention factors of the sulfonamides were recorded (Table 3.4). Although 

some sulfonamides could be separated over a range of temperature, there 

was a certain range of pH in which the retention changed dramatically. For 

example, the retention of sulfanilamide was greatly altered at a pH range of 

8.0 - 12.0, but at pH 3.0 - 8.0 it was virtually constant at ca. 8.0 min when 

separated at 90 °C and at ca. 4.2 min when separated at 120 °C. The large 

retention change was a result of a change of neutral to deprotonated form. 
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Table 3.4 Retention time of sulfonamides at various pH 

Retention time (min) 

pH Sulfacetamide Sulfanilamide Sulfathiazole Sulfamethazine 

60°C 90°C 60°C 90°C 120°C 120°C 150°C 

3.0 - 22.30 - 7.90 4.24 26.23 50.00 

3.5 - 25.30 - - - 26.28 -
4.0 - 26.60 - - - 26.01 49.94 

4.5 - 22.84 - 8.15 4.19 25.02 -
5.0 - 18.21 - 8.50 4.30 24.91 46.25 

5.5 - 8.57 - 7.97 4.19 22.88 38.79 

6.0 - 3.23 - 8.00 4.16 12.70 26.55 

6.5 - 2.09 - 8.17 4.21 9.58 25.16 

7.0 - 1.54 21.29 7.89 4.00 5.08 14.18 

7.5 - 1.41 - - 4.13 2.59 6.61 

8.0 1.68 - 21.34 - 4.00 2.10 4.31 

8.5 - - - - - - -
9.0 - - 18.85 - - 1.29 2.54 

9.5 1.23 - 17.82 - - - 2.32 

10.0 1.14 - 15.98 - - - 2.02 

10.5 1.10 - 13.91 - - - -
11.0 1.13 - 9.81 - - - 1.54 

11.5 1.25 - 5.31 - - - -
12.0 1.37 - 3.14 - - - -
12.5 1.55 - 2.18 - - - -
13.0 - - 1.60 - - - -
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In the range of pH that the retention changed, we calculated retention factors 

(k) using the equation, k = (tR-tO)/to , where tR = the retention time of the 

compound of interest, and to = the retention time of non-retained species. In 

this experiment, sodium nitrate was used and gave the retention time at ca. 

1.29 min. The results (Table 3.4) were used to calculate the relationship 

between hydrogen ion concentration effect and retention factor (1) [115] by 

using the Solver function of Excel computer programme to model the non

linear least square relationship (see section 2.6). 

k = ko + k_1 

1 K. [W] +- 1+-
[W] K. 

........... '" .... (1) 

Whereas, k = retention factor at a given hydrogen ion concentration, ko = 

retention factor of the neutral species, k.1 = retention factor of the 

deprotonated species, K. = ionisation constant, and [H+] = hydrogen ion 

concentration. 

The resulting equation was then used to calculate the predicted retention 

factors (k) and the dissociation constant of each sulfonamide. All of the 

calculated values of retention factors, predicted retention factors and 

dissociation constants are shown in Table 3.5 - 3.8. 
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Table 3.5 pK. Determination of sulfacetamide (T = 90 CC) 

~ Retention factor (k) 
pH 

(min) ex pt. predicted Difference 

3.0 22.30 16.29 19.50 -3.21 to- 1.29 

3.5 25.30 18.61 19.24 -0.63 

4.0 26.60 19.62 18.46 1.16 

4.5 22.84 16.71 16.36 0.35 

5.0 18.21 13.12 12.04 1.08 

5.5 8.81 5.83 6.59 -0.76 ko= 19.62 

6.0 3.23 1.50 2.75 -1.25 k., = 0.09 

6.5 2.09 0.62 1.02 -0.40 k.,*Ka2 = 5.71x10'7 

7.0 1.54 0.19 0.39 -0.20 Ka2 - 6.34x1 0-6 

8.0 1.41 0.09 0.12 -0.03 PK.2 = 5.20 

Table 3.6 pK. Determination of sulfanilamide (T = 60 CC) 

tR Retention factor (k) 
pH 

(min) expt. predicted Difference 

7.0 21.29 15.50 15.54 -0.04 to- 1.29 

8.0 21.34 15.54 15.51 0.03 

9.0 18.85 13.61 15.24 -1.63 

9.5 17.82 12.81 14.64 -1.83 

10.0 15.98 11.39 13.02 -1.63 

10.5 13.91 9.78 9.67 0.11 

11.0 9.81 6.60 5.39 1.21 ko= 15.54 

11.5 5.31 3.12 2.36 0.76 k,- 0.24 

12.0 3.14 1.43 0.98 0.45 k.,*Ka2- 4.72x10"< 

12.5 2.18 0.69 0.48 0.21 Ka2 = 1.97x10'" 
.--• 

13.0 1.60 0.24 0.32 -0.08 pKa2 = 10.71 
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Table 3.7 pK. Determination of su/fathiazo/e (T = 120 "C) 

tR Retention factor (k) 
pH 

(min) expt. predicted Difference 

3.0 26.23 19.33 19.35 -0.02 to- 1.29 

3.5 26.28 19.37 19.32 0.05 

4.0 26.01 19.16 19.21 -0.05 

4.5 25.02 18.40 18.87 -0.47 

5.0 24.91 18.31 17.86 0.45 

5.5 22.88 16.67 15.31 1.36 

6.0 12.70 8.84 10.62 -1.78 

6.5 9.58 6.43 5.59 0.84 ko= 19.37 

7.0 5.08 2.94 2.53 0.41 k.1 = 0.60 

7.5 2.59 1.01 1.26 -0.25 k.,*Ka2 - 5.24x1 0'1 

8.0 2.10 0.62 0.81 -0.19 Ka2 = 8.73x10'1 

9.0 1.29 0.00 0.62 -0.62 pKa2 = 6.06 
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Table 3.8 pK. Determination of 5ulfamethazine (T = 150 "C) 

tR Retention factor (k) 
pH 

(min) expt. predicted Difference 

3.0 50.00 37.76 37.74 0.02 to= 1.29 

4.0 49.94 37.71 37.56 0.15 

5.0 46.25 34.85 35.88 -1.03 

5.5 38.79 29.07 32.38 -3.31 

6.0 26.55 19.58 24.78 -5.20 

6.5 25.16 18.50 14.26 4.24 

7.0 14.18 9.99 6.17 3.82 

7.5 6.61 4.12 2.31 1.81 

8.0 4.31 2.34 0.89 1.45 ko- 37.76 

9.0 2.54 0.97 0.26 0.71 k-1 - 0.19 

9.5 2.32 0.80 0.21 0.59 k.tK.2 = 1 x1 0-1 

10.0 2.02 0.57 0.20 0.37 K.2 = 5.28x10-1 

11.0 1.54 0.19 0.19 0.00 PK.2 = 6.28 

From Table 3.5-3.8, the pK.2 obtained from the experiment was determined to 

be 5.20 for sulfacetamide, 10.71 for sulfanilamide, 6.06 for sulfathiazole and 

6.28 for sulfamethazine. A correlation between each sulfonamide is shown 

the predicted retention factors plotted against the whole range of pH in Figure 

3.4. A solid line represents the extrapolation curve of the calculated retention 

factor obtained from the non-linear least square equation and each point 

represents the experimental k value. All of predicted curves fitted the 

experimental data set reasonably well but there is a slight deviation of the 

sulfanilamide data set from the predicted curve. At pH 3.0 - 4.0 the 

experimental data of sulfacetamide shows the decrease in retention which 

was possibly caused by a partial protonation of sulfacetamide at the pH 

range, as pK.1 of sulfacetamide = 1.78. 
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Figure 3.4 Comparison of experimental retention factors (k) to the calculated 

values predicted by equation (1). 

In Table 3.9, the calculated pKa2 of sulfonamides are compared with the 

reported pK. values [136-1371, and the difference between those values is 

also shown in the table. pH differences of ± 0.2 could arise from 

experimental variations but the pH difference of approximately 1.0 pH for 

sulfathiazole and sulfamethazine at the higher temperatures is too significant 

to be ignored. When relating the pK. difference to the temperature used for 

separation, it is clearly noticed that as the temperature increased gradually 

from 60°C to 150°C, the pK. difference of sulfonamide increased. In other 

word, as the temperature increases, the measured pK. of the sulfonamides 

under superheated water conditions decreases, compare to the pK. of the 

same compounds investigated under ambient conditions. 
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Table 3.9 Comparison of pK.2 value calculated from the experiment and 

from the reference. 

Compounds 
Temperature pKa pKa pI(. 

(OC) (exp.) (ref.) difference 

Sulfanilamide 60 10.71 10.4311371 +0.28 

Sulfacetamide 90 5.20 5.38[137] -0.18 

Sulfathiazole 120 6.06 7.0yl136[ -1.01 

Sulfamethazine 150 6.28 7.37[137] -1.09 

To describe this phenomenon we need to consider a few factors that possibly 

affect the change in pK. determined under superheated buffered water 

conditions. The first factor is the pH of pure water, which also changes with 

temperature. As the temperature of water is raised, its dissociation 

increases, resulting in a decreased pKw, as shown in Figure 3.5 [1431. In 

theory water dissociates into two species, hydronium and hydroxide ions, and 

the pH (which represents the hydronium ions concentration) of pure water at 

any temperature is equal to half of the pKw at that temperature. For example, 

the pH of water at 150°C is equal to 5.8 (half of pKw (11.6) [143]) at the same 

temperature, as a result, the pH of water is also decreased as the 

temperature increases. 
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Figure 3.5 Dissociation constant of water, presented in pKw, as a function of 

temperature. (Data obtained from Ref.143) 

The second factor is the dissociation and association at high temperature of 

the salts and acids added to formulate the buffers. Although we prepared the 

buffers to the exact pH at ambient temperature (ca. 22°C), the dissociation of 

the acids and salts may be altered, as the temperature is raised. This effect 

was reported by Kryukov et al. [144], who studied the pH change of various 

buffers from low to high temperature. Some of the pH values in their study 

were summarised in Table 3.10. As the temperature was elevated from 25°C 

to 150°C, phosphate, phthalate, tartrate and tetraoxalate buffer were slightly 

increased in pH, except borax buffer of which pH was slightly decreased with 

temperature. 
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Table 3.10 pH experimental value and estimation value of various buffers in 

water from ambient temperature to 150 "C (Data obtained from 

reference [144].) 

T, 
KH2P04+ 

Tetraoxalate Tartrate Phthalate Borax 
Na2HP04 QC 0.05 M (sat'd at 25 QC) 0.05 M 0.01 M 
0.025 M 

pH pHut. pH pHut. pH pHut. pH pHIit. pH pHIit. 

25 1.67 1.68' 3.57 3.56' 4.01 4.01' 6.86 6.86' 9.16 9.18' 

60 1.72 1.73' 3.57 3.57' 4.09 4.10' 6.83 6.84' 8.93 8.96' 

90 1.80 1.80' 3.67 3.65' 4.21 4.20' 6.90 6.88' 8.83 8.85' 

100 1.82 - 3.69 3.68' 4.24 - 6.92 6.88' 8.81 8.82' 

125 1.90 - 3.79 3.80' 4.37 - 6.96 6.92' 8.73 8.75' 

150 - - 3.92 3.95' 4.50 - 7.08 7.04' 8.66 8.65' 

t R. G. Bates. Electrometric pH determination. N. Y., 1954. 

* M. Le Peintre. Bull. Coc. electriciens franc., 1, 9, 584 (1960). 

As a result, if we considered solely the pH of the buffer it should give only a 

minor effect in the pK. shift of sulfonamides. Any difference in the shift in pK. 

could be mainly due to the dissociation of sulfonamides themselves at high 

temperature. The higher the temperature, the more dissociated is the 

sulfonamide. In addition, these results supported the theory that the 

dissociation of organic compounds varies with temperature [145]. The 

decrease in pK. of sulfonamides with temperature in this study was in 

agreement with a decrease in pK. of sulfanilic acid and its isomers (Table 

3.11) [146]. From 0 to 50 QC, the decreases in pK.2 of aniline-2-sulfonic acid, 

aniline-3-sulfonic acid and aniline-4-sulfonic acid (or sulfanilic acid) were 

found to be 0.3, 0.6 and 0.5 pH-unit. The similar decrease was confirmed by 
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an investigation in nitrogenous bases (including alkylamines, aniline and 

pyridine) (Table 3.12), however, in this case the temperature change caused 

only a small effect to those bases [145]. Thermodynamically, we could say 

that the dissociation of sulfonamides in water is an endothermic reaction, 

since the raised temperature caused more dissociated species [147]. 

It should be noted that after a prolonged use of various buffers in the present 

system, no severe corrosion was noticed, except a slight green colour at the 

top of the column. 

Table 3.11 pK.2 of sulfanilic acid and its isomers at 0-50 "C [146] 

Aniline-4-sulfonic acid 
pK.2 Aniline-2-sulfonic acid Aniline-3-sulfonic acid 

(Sulfanilic acid) 

0 2.63 4.07 3.52 

5 2.59 4.00 3.46 

10 2.55 3.93 3.40 

15 2.52 3.86 3.34 

20 2.49 3.80 3.28 

25 2.46 3.73 3.23 

30 2.43 3.67 3.17 

35 2.40 3.62 3.12 

40 2.38 3.57 3.08 

45 2.35 3.51 3.03 

50 2.33 3.46 2.99 
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Table 3.12 Temperature coefficients for nitrogenous bases between 0 and 

40 CC [145] 

Subtract for each Subtract for each 
If the pK. is 

"C rise 
IfthepK.is 

"C rise 

3.3 0.011 6.6 0.017 

4.2 0.013 7.5 0.018 

4.6 0.014 9.0 0.020 

5.0 0.015 10.0 0.021 

5.8 0.016 11.0 0.022 

3.4 Ion-pair chromatography in superheated water 

Some organic compounds are ionised in water and then, when 

chromatographed, they are not retained on a reversed phase column. One of 

many methods to analyse mixtures of these compounds is ion-pair RP-HPLC 

[148-149), in this method the analyte forms a complex with a counterion (from 

an ion-pairing reagent) or makes a cluster to neutralise the charge of the 

analyte. Reversed phase ion-pair chromatography has been applied to 

pharmaceuticals [150-154], amino acids [155], nucleotides [156], alkaloids 

[157], food additives [158], vitamins [159], etc. 

When pure superheated water was tried to separate some of those organic 

compounds, such as dansyl amino acids, the resolution was very poor and 

chromatographic result was unfavourable. It is therefore of interest to 

determine if ion-pair superheated water without an organic solvent can be 

used as a mobile phase to separate those compounds and improve the 

resolution. Dansyl-glysine, dansyl-valine and dansyl-Ieucine were chosen as 

the test mixture. Dansyl amino acids are derivatised to enhance their 
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sensitivity for fluorescence detection and have been separated previously by 

ion-pair RP-HPLC [155,160-161). 

In this study the ion pairing mobile phase was prepared at the lowest possible 

concentrations of ion-pairing reagent, tetrabutylammonium bromide, and 

buffer sufficient to maintain the conditions. To investigate the separation 

effect in superheated water conditions, the concentration of the ion-pairing 

reagent was varied in a range of 0.0, 0.5, 1.0 mM. Since the ion-pair reagent 

caused bubbles in the pump and to eliminate this problem, a guard column 

replaced the filter. 

It is clearly seen in Figure 3.6 that with or without the ion-pair reagent each 

peak was well separated and appeared in the order of increasing carbon 

number of the side chain of the amino acids. The retention order seemed to 

follow that of the ion-pair reversed-phase chromatography of dansyl amino 

acids studied by Grego and Hearn [161). On a I!Bondapak-alkylphenyl 

column with a gradient elution from 25-65% acetonitrile-water with 2 mM 

dodecylamine, 15 mM orthophosphoric acid, they found the elution order: 

dansyl-glysine, dansyl-valine, and dansyl-Ieucine. 

On increasing the concentration of tetrabutylammonium bromide from 0.0 to 

0.05 to 1.0 mM (Figure 3.6 a-c), the retention in superheated water increased 

proportionally to the concentration of the ion-pair reagent. This result also 

agreed with the effect in conventional ion-pair RP-HPLC that an increase in 

counterion concentration increases retention factors [149). 

The effect of the chain length of the counterion was also studied; 

tetramethylammonium bromide replaced tetrabutylammonium bromide. The 

retention of all the components in the mixture decreased dramatically (Figure 

3.7). For example dansyl leucine which gave a retention time at 35.31 min 
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dropped to 5.15 min when changing the counterion from tetrabutyl- to 

tetramethyl- ammonium ion. This effect was due to a decrease in the 

lipophillic moiety of the counterion, leading to less interaction with the non

polar stationary phase and corresponded to the effects which arise in a 

conventional ion-pair method [148] 
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Figure 3.6 The chromatogram of separation of dansyl amino acid mixture in 

phosphate buffer pH 7.0 with 0.0 mM (a), 0.5 mM (b), and 1.0 mM 

(c) tetrabutylammonium bromide as ion-pair buffered superheated 

water. Conditions: column, 4.6 x 150 mm 5 J1fT1 PRLP-S, mobile 

phase flow rate 1 ml min·1
; oven temperature, 190 DC; detection, 

absorption wavelength, 254 nm 

Peaks: 1, dansyl-glysine; 2, dansyl-valine; and 3, dansyl-Ieucine. 
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Figure 3.7 The chromatogram of separation of dansy/ amino acid mixture in 

1.0 mM tetramethvlammonium bromide in phosphate buffer pH 

7.0. Chromatographic conditions and peaks are as in Figure 3.6. 

It should be noted that after a prolong use of the Novapak C18 column, a 

dramatic decrease in retention was observed when using ion-pairing mobile 

phase more than that when using non-ion-pairing mobile phase. This could 

be a result of the collapse of the stationary phase due to the higher ionic 

strength of the mobile phase with ion-pair reagent than without ion-pair 

reagent. On increasing the concentration of ion-pairing reagent, the column 

was likely to cause more collapse. Burgess [36] explained that a temporary 

collapse was caused by an "unwetting" of the hydrophobic surface by water 

and this can be recovered, but a collapse caused by a dissolution of the silica 

based material was a permanent damage. 
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3.5 Summary 

In initial studies we coupled a UV detector with the superheated water 

chromatographic system and observed the operation of the system. The 

detector was found to be thermally sensitive, as it exhibited a baseline drift 

when temperature was raised quickly. A set of COOling fins was utilised to 

cool down the mobile phase provided that the flow rate did not exceed 1.0 ml 

min·' when using high temperature. Either pure water or buffer could be 

employed as the mobile phase but more consistency in retention and 

separation pattern were found when using the buffer. The use of many 

buffers were allowed but at low concentration in order to prevent corrosion 

ariSing in the system. However, inorganic buffers were preferable, as organic 

buffers possess high temperature coefficients. In addition, no severe 

damage of the hardware system was noticed when using buffered 

superheated water. 

Under superheated water conditions with a low buffer concentration of 1-3 

mM, the retention of sulfonamides changed with temperature and primarily 

with pH. The elution order of sulfonamides at pH 3.0 (acid), 7.0 (neutral) and 

11.0 (alkali) followed conventional RP-HPLC at ambient conditions. The 

retention change of sulfonamides with pH was due to their dissociation 

constants. The pK. of some sulfonamides were then examined at high 

temperature and compared the result at ambient condition, resulting a more 

understanding in a dissociation of sulfonamide that increased as temperature 

increased. 

Not only pure buffer but ion-pair reagents with buffer could be used as 

additives for superheated water mobile phase. Because they caused bubbles 

in the pump and to eliminate this problem, the guard column was needed to 

replace the filter. For silica based column such as Novapak C18, the mobile 

phase seemed to cause a permanent collapse in the column but a similar 
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damage was not found when the polymeric column was employed. Using the 

ion-pair superheated water mobile phase, a series of dansyl amino acids 

were eluted in the order: dansyl-glycine, -valine and -leucine. The result 

showed an agreement with a separation by conventional ion-pair RP-HPLC 

method. 



Chapter 4 

Fluorescence Detection 

4.1 Introduction 

Fluorescence detection has been utilised successfully as a detector in liquid 

chromatography for decades [46] and the system has been used to analyse 

samples from various sources, including pharmaceuticals, agrochemical, and 

the environment. In this decade recently developed chromatographic 

techniques, such as SFC [47, 63-64], CE [162-165], CEC [165-167], have 

also employed fluorescence detection. Hence, the use of fluorescence 

detector for superheated water chromatography should be possible. As both 

UV and fluorescence detectors are non-destructive, those two detectors can 

be connected subsequently to other detector(s). 

Because organic compounds give fluorescence at specific excitation and 

emission wavelength, a fluorescence detector is considered to be a highly 

selective detector [168]. The response of fluorescence detector is thermally 

sensitive and the fluorescence intensity may be reduced by heat. In our 
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configuration, the fluorescence detector was placed after the UV detector 

(section 2.2.4 and Figure 2.1). The heat from the eluent from the column (if 

any remained after the cooling fins) should be transferred to the environment 

and UV flow cell, before arriving the fluorescence flow cell 

Unlike the coupling of SFC to fluorescence detection where there was a 

problem in keeping the temperature and pressure of the flow cell above the 

supercritical point or (at least retaining the eluent in the liquid state) [61-62], 

detection in superheated water can be carried out under ambient conditions. 

In our investigation, a number of fluorescent organic compounds typically 

analysed by LC-fluorescence spectroscopy were examined. 

4.2 Separation of vitamins 

The 8 group vitamins (riboflavin: B1, thiamine: 82 and pyridoxine: B6) was 

investigated initially as they are soluble or slightly soluble in water and give 

fluorescence, except vitamin B12 (cobalamine) which gives very little 

fluorescence. Some B vitamins are not stable in water at high temperature 

[170, 179-180]; for example thiamine may be oxidised and this is investigated 

in more detail in later chapters (see section 4.1.2 and 6.4). 

4.2.1 Separation of riboflavin 

Riboflavin (Figure 4.1) is a naturally fluorescence vitamin which functions in 

the body in the form of a coenzyme [169]. A lack of riboflavin caused humans 

to suffer from cracking at the mouth corners, to develop a shark like skin and 

a magenta coloured tongue [170]. Pure riboflavin is a yellow coloured solid 

soluble in alkaline pH but slightly soluble in ethanol and water. Only 1 gram 

of riboflavin is soluble in 3000-15,000 ml of water [171]. Light and alkali can 

decompose riboflavin [170]. 
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o 

Figure 4.1 Structure of vitamin Bl (riboflavin) 

Separation of riboflavin by reversed-phase HPLC with isocratic [172-173) or 

gradient elution [174-176) on ODS columns has been reported. With 

isocratic elution, the use of acetonitrile 13-25% in the mobile phase has been 

utilised at pH 2.7-4.0. Using superheated water mobile phase on PRLP-S 

column, we expected riboflavin to be more retentive. 

Riboflavin was initially studied using the wavelength maxima for excitation 

and emission, which have been reported at 435 and 530 nm, respectively 

[177). A riboflavin solution was prepared and chromatographed at 200°C on 

PRLP-S column with a flow rate of 1.0 ml min-1 (Figure 4.2) using a system 

(Figure 2.1) in which a fluorescence detector was added after the UV 

detector. This system gave a symmetrical fluorescence peak at 3.78 min with 

a very smooth background. 
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Figure 4.2 Chromatogram of superheated water chromatography with 

fluorescence detection of 5 pi 0.05 mg mrl riboflavin, 

corresponding to 0.25 pg. Conditions: column, PRLP-S 5 pm; 

mobile phase, deionised water; flow rate, 1.0 ml min-1; 

temperature, 200 ·C; back pressure, 15 kg cm·2
; detection, 

excitation wavelength, 450 nm, emission wavelength, 530 nm. 

A number of riboflavin concentrations close to the detection limit were 

prepared and chromatographed to obtain the peak areas, which were 

averaged (Table 4.1). The responses were plotted with the mass of riboflavin 

on column (Figure 4.2), obtaining a linear relationship with a correlation 

0.9899. 

To find the limit of detection, 5 III of a very low concentration of riboflavin 

0.00048 mg mr1 (equivalent to 2.4 ng per injection) was chromatographed 10 

times, then an average peak area, standard deviation (SO) and 3S0 were 

calculated as shown in Table 4.2. By SUbstitution the 3S0, slope (m) and 
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intercept value into the equation, Y - YB = 3SD, whilst Y is a signal correlated 

to the true detection limit and YB is a signal correlated to the concentration of 

blank (or intercept in this case), and the equation Y = mx, the detection limit 

(x) was determined to be 3.6 ng. This detection limit was approximately 7 

times higher than the LOO (0.5 ng) found for a conventional RP-HPLC 

method with a Spherisorb ODS column using 0.1 M phosphate buffer (pH 4) -

acetonitrile (87:13) mobile phase, with the same detector (A..x== 466 and A.m= 

524 nm) (173), although the conventional method gave a sharp riboflavin 

peak at the longer retention time, 6.0 min. 

Table 4.1 Peak area of riboflavin mass range 4.8 - 24 ng on column 

detected by superheated water - fluorescence detection 

Mass (ng) 4.8 9.6 14.4 19.2 24 

101652 172423 256128 305111 411719 

86478 171680 296278 295149 394409 
Peak area 

79281 142559 248575 296881 380507 

111946 

Average 94839 162221 266994 299047 395545 
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Figure 4.3 Riboflavin 4.8 - 24 ng on column plotted against peak area. 

Table 4.2 Peak area of multiple injection of 2.4 ng riboflavin. 

Peak area of 2.4 ng riboflavin on 

column 

57290 28571 

30684 45697 

28791 40457 

36644 33282 

40818 58573 

Mean = 40081 

SO = 10937 

3S0 = 32812 

LOO = 3.6 ng 

96 



CHAPTER 4: Fluorescence Detection 97 

4.2.2 Separation of thiamine 

Vitamin Bl (Thiamine) acts as a coenzyme in carbohydrate metabolism 

[178]. Thiamine deficiency in humans causes beriberi, resulting loss of deep 

tendon reflexes, abnormal sensitivity of the skin, muscular pain and 

weakness, mental confusion and, in severe cases, cardiac failure [170]. 

Thiamine hydrochloride (Figure 4.4) is hygroscopic and has a solubility in 

water of 1 g mrl [171, 178]. Thiamine structure contains pyrimidine and 

thiazole rings linked with a methylene bridge. It decomposes in aqueous 

solution at pH > 5.5 or on heat, generating a degradation product 4-methyl-5-

thiazoleethanol (Figure 4.4) [179]. Thiamine is easily oxidised to the tricyclic 

structure thiochrome, a strongly fluorescent compound [179-180]. 

CH3 

JlX6CH2CHPH Cl 

H3C N NH2 
HCI 

Thiamine hydrochloride 

Thiochrome 

4-methyl-5-thiazoleethanol 

Figure 4.4 Structures of thiamine hydrochloride, thiochrome and 4-methyl-5-

thiazoleethanol 
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A preliminary study of thiamine hydrochloride was undertaken to investigate 

the fluorescence spectra, and the optimal excitation and emission 

wavelengths were found to be 365 and 430 nm which corresponded to 

literature report [181], although the UV absorption spectrum in our 

measurement indicated a maximum absorption at 243 nm. Thiamine 

hydrochloride solution was chromatographed under the conditions given in 

Figure 4.5 and was monitored by both UV and fluorescence detector. The 

resulting thiamine peak in the UV response showed a retention time at ca. 4.2 

min but the fluorescence detector showed a peak with a retention time of ca. 

7.0 min. The retention time difference between the peaks from two detectors 

was too great to assume that they were of the peaks of the same compound 

as the time lapse between those two detectors should be very small (6-7 sec 

or ca. 0.1 min). It appeared that either a partial oxidation of thiamine to 

thiochrome or a degradation to 4-methyl-5-thiazoleethanol was possibly 

occurring. 

We carried out a few experiments to examine if oxidation of thiamine to 

thiochrome occurred, for example using the mobile phase with and without 

purging with N2 gas. If oxygen present in the mobile phase had caused the 

oxidation of thiamine, we would expect the sample eluted with mobile phase 

without purging with N2 gas to give a bigger peak than with purging N2. The 

results, however, were opposite. With the same concentration of thiamine 

sample on-column, the peak with purging N2 was 3-4 times bigger than 

without purging N2. This was possible due to the presence of oxygen in the 

mobile phase. As oxygen can quench fluorescence, purging with N2 could 

remove the oxygen therefore the fluorescence intenSity was higher. We 

therefore tried the effect of oxidising thiamine to thiochrome. 

In a conventional reversed-phase HPLC method, the determination of 

thiamine by oxidation to thiochrome prior to column injection has been 

studied [182-183]. The former method [182] needed up to 30% methanol in 
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the buffered mobile phase to elute thiochrome from a Polygosil 60 C18 

column, whereas the later method [183] used 30% acetonitrile in phosphate 

buffer pH 7.0 as the mobile phase on Spherisorb C-8 column. We expected 

the same performance could be achieved by using superheated water without 

buffer and organic solvent and with the same detection method. 

Oxidation of the thiamine sample by potassium ferricyanide follolNed by a 

solvent extraction [181] and subsequently injection of the oxidised thiamine 

resulted in a single peak ascribed to thiochrome at retention time 7.27 min, 

which could be seen only in a fluorescence chromatogram (Figure 4.5). We 

concluded that initially thiochrome had probably been a significant impurity in 

the thiamine sample. Even small amount of thiochrome present in a sample 

can give high fluorescence [173]. '" 
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Figure 4.5 Chromatogram of superheated water chromatography-

fluorescence detection of oxidised thiamine (thiochrome). 

Conditions: column, PRLP-S 5 f.JfTI; mobile phase, deionised 

water; flow rate, 1.0 ml min· l
; temperature, 190°C; back pressure, 

15 kg cm·2
; detection, excitation wavelength, 365 nm, emission 

wavelength, 430 nm. 
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Thiamine and its degradation product was further investigated using a 

hyphenated technique by coupling the superheated water chromatographic 

system to NMR and MS, yielding more information that could explain what 

was happening in the superheated water system (see section 6.4). 

4.2.3 Separation of pyridoxine 

Vitamin 8 6 (Pyridoxine) (Figure 4.6) takes part in the metabolism of amino 

acids [178]. The active co-enzymes are in the form of pyridoxal-5-phosphate 

and pyridoxamine-5-phosphate. Deficiency symptoms in pyridoxine are 

similar to lack of riboflavin in humans [170]. 

One gram of pyridoxine hydrochloride is soluble in 4.5 ml water, giving a 

fluorescent solution [171]. Pyridoxine Hel is more stable when present in an 

acidic solution but the stability was reduced when it is exposed to light, like 

riboflavin [179]. 

Figure 4.6 Structure of pyridoxine hydrochloride 

The determination of pyridoxine in foods and feeds has been studied 

previously utilising an ODS Hypersil column with a mobile phase of 0.1 M 

KH2P04 at pH 2.15 containing 3% methanol and 1.25 mM 1-octanesulfonic 

acid [184]. We expected pyridoxal hydrochloride would be much more 

retained on the PRLP-S polymeric column with pure water mobile phase at 

ambient temperature. The column temperature in superheated water system 
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needed to be raised up to 180 QC and gave a slightly tailing peak at 2.93 min 

(Figure 4.7). 

It was noticed that all of the vitamins B had been separated using the PRLP-S 

column with the temperature between 180-200 QC. This corresponds to the 

dielectric constant of ca. 34-38 reported by Arkelof et al. [3] and 

corresponded to a 80-90% methanol-water mixture [185]. 

o 
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tit 
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Figure 4.7 Chromatogram of superheated water chromatography-

fluorescence detection of 5 J.d 0.001% pyridoxal hydrochloride, 

corresponding to 0.05 pg. Conditions: column, PRLP-S 5 fJIT/; 

mobile phase, deionised water; flow rate, 1.0 ml min-1
; 

temperature, 180 ·C; back pressure, 15 kg cm-2
; detection, 

excitation wavelength, 317 nm, emission wavelength, 376 nm. 



CHAPTER 4: Fluorescence Detection 102 

4.3 Separation of aspirin, salicylamide and quinine 

Salicylamide (Figure 4.8) is an analgesic, antipyretic and anti-inflammatory 

drug, which has similar effects to any other drugs in the salicylate group 

[186]. The most widely prescribed agent in these groups is aspirin 

(acetylsalicylic acid). Salicylamide gives not only effects similar to aspirin but 

sedative and hypotensive effects also [187]. Salicylamide is very soluble in 

alcohol, slightly in water, but it gives fluorescence in both media at excitation 

and emission wavelength 300 and 430 nm, respectively. 

o 
11 

(YC .... NH2 

~OH 
Figure 4.8 Structure of salicylamide 

Salicylamide was excellently retained by using superheated water 

chromatography at 180 °C, giving fluorescence at a retention time at 5.22 min 

(Figure 4.9). A more detailed study was subsequently carried out using one 

dimensional and two dimensional NMR and a MS detector (section 6.2). 

Aspirin (acetylsalicylic acid) is classified to be in the same analgesic drug 

group and has a similar structure to salicylamide. When we tried to use the 

same conditions to separate aspirin, it was hydrolysed on the column. For 

example at 100 °C aspirin gave a broad tailing peak at 1.71 min, whereas 

salicylic acid gave a symmetrical sharp peak with similar retention at 1.77 min 

(Figure 4.10 a-b). If the temperature was raised to 120 °C, aspirin also gave a 

similar peak shape at a retention time of 1.25 min as at 100 °C but with a 

shorter tail and salicylic acid gave a sharp peak at 1.16 min. It was therefore 

thought that aspirin was probably readily hydrolysed to salicylic acid. Aspirin 

is known to be unstable towards hydrolysis and degrade even in the solid 

state [171]. 
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Figure 4.9 Chromatogram of superheated water chromatography -

fluorescence detection of 2 pi 0.1060% salicylamide, 

corresponding to 2.12 p.g_ Conditions: column, PRLP-S 5 pm; 

mobile phase, deionised water; flow rate, 1.0 ml min-!; 

temperature, 180 ·C; back pressure, 15 kg cm"2; detection, 

excitation wavelength, 300 nm, emission wavelength, 430 nm. 
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Figure 4.10 a-b Salicylic acid (a) and aspirin (b) separated by using 

superheated water chromatography with fluorescence detection. 

Conditions: column, PRLP-S 5 pm; mobile phase, deionised 

water; flow rate, 1.0 ml min"!; temperature, 100 'C; back pressure, 

15 kg cm"2; detection, excitation wavelength, 300 nm, emission 

wavelength, 430 nm. 
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Quinine (Figure 4.11) is prescribed as an antimalarial drug which affects 

parasites, many bacteria and other unicellular organism [187]. Quinine 

sulphate is a white powder, soluble in water and gives UV adsorption at 347.5 

nm [177]. A stability in a wide range of pH has drawn its interest to be used 

as a standard compound for fluorescence spectrometry [53]. 

Figure 4.11 Structure of quinine 

For a separation by a conventional RP-HPLC method, quinine previously 

needed up to 40% acetonitrile in phosphate buffer pH 2.1 containing 10 mM 

sodium dodecyl sulphate and 0.1 mM tetrabutylammonium bromide on an 

aDS column [188]. Using superheated water without additives for 

separation, it required a rather high temperature (240°C) but the resulting 

chromatogram was satisfactory, although the peak was slightly tailing (Figure 

4.12). This temperature is probably the maximum permissible temperature 

for the superheated water system with PRLP-S column because of softening 

of the stationary phase [36]. This corresponds to the use of 40% acetonitrile

water [36]. It was noticed that the chromatogram gave a more unstable 

baseline at very high temperature than at the moderately high temperature 

«200°C). This could be a result of an excessive heat that affected the 

physical properties of polymeric column and might be causing degradation, or 

an insufficient cooling system of eluent. 
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Figure 4.12 Chromatogram of superheated water chromatography

fluorescence detection of 5 pi 0.011% quinine sulphate, 

corresponding to 0.55 pg. Conditions: column, PRLP-S 5 pm; 

mobile phase, deionised water; flow rate, 0.8 ml min·1
; 

temperature, 240 ·C; back pressure, 15 kg cm·2
; detection, 

excitation wavelength, 335 nm, emission wavelength, 390 nm. 
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4.4 Summary 

In this study coupling between superheated water chromatography and 

fluorescence detection was achieved and lead to a comparison of the limit of 

detection for riboflavin with conventional HPLC. The detection limit by this 

method (3.6 ng) was approximately 7 times higher than the LOO (0.5 ng) 

found for a conventional RP-HPLC method with a Spherisorb ODS column. 

In the separations of B vitamins, salicylamide and quinine on PRLP-S column 

with superheated water, the use of moderately high temperatures were 

required. Riboflavin, thiamine, pyridoxine and salicylamide needed 

temperature between 180-200 °C, whereas quinine needed up to 240 °C, 

which was close to the maximum allowable temperature of the column. This 

is not only because superheated water is a weak mobile phase but PRLP-S 

column is also highly retentive. The baseline was found to be more stable 

when lower temperature than 240 °C was employed. However, from the 

results in this chapter, it can be confirmed that superheated water could 

replace a mixture of organic mobile phase-water in the chromatography and 

gave no problem in the detection method. In superheated water conditions, 

there might be a decomposition and/or oxidation with sensitive analytes. In 

the next chapters more powerful detection methods such as NMR and MS will 

be coupled to the system to investigate the structure change of a number of 

compounds and what was happening under the superheated water condition. 



Chapter 5 

Nuclear Magnetic Resonance 

(NMR) Detection 

When coupling on-line between liquid chromatography and NMR 

spectroscopy, solvent compatibility must be considered. In general, the 

mobile phase used for LC-NMR should be a non-proton containing solvent, 

for instance deuterated chloroform, methanol or acetonitrile, or carbon 

dioxide, because solvents with protons can mask the signals of the analyte 

[47). For reversed-phase LC-NMR detection the typical mobile phase is a 

combination of deuterium oxide and a deuterated organic solvent. It was 

therefore expected that deuterium oxide would be able to be substituted for 

normal water mobile phase in superheated water LC-NMR. However, as the 

separation is performed under superheated water conditions, there is a 

possibility of deuteration or exchange reactions occurring. This may be 

determined by the NMR spectroscopy. 
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5.1 Deuterium oxide 

Since the beginning of on-line coupling of conventional RP-HPLC to NMR, 

deuterium oxide has been employed to replace normal water as a mobile 

phase component. Its properties, for example the critical temperature, 

pressure and volume, are similar to those of water (Table 5.1). Even at 

elevated temperatures, deuterium oxide and water possess almost equal 

values of relaxation times and viscosities (Table 5.2). 

Table 5.1 Critical parameters of H20 and 0 20 [189] 

Tc.OC pc. bars 

374.23 221.15 55.2 

371.5 217.2 54.8 

371.5 221.2 55.3 

Table 5.2 Comparison of relaxation times and viscosities of H20 and 0 20 

[189] 

T,OC 

10 

20 

30 

40 

t(D20)/t(H20) 

1.30 

1.27 

1.24 

1.21 

T\(D20)/T\(H20) 

1.29 

1.25 

1.22 

1.19 

At elevated temperatures, it is also important to know if some important 

properties, such as the dielectric constants and dissociation constants, of 

deuterium oxide are similar to those of water. Data obtained from the CRC 
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Handbook confirm the fundamental similarity in the dielectric property of 

water and deuterium oxide [190]. The values were plotted against 

temperature and are shown in Figures 5.1 and 5.2. It is clearly seen that the 

dielectric constants of deuterium oxide and water decrease as temperature 

increases and they are almost the same at each temperature, though the 

values at more than 100°C were not reported. 
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Figure 5.1 Comparison of dielectric constant of water and deuterium oxide 

between 0-100 OC (Data obtained from the reference [177J). 

Figure 5.2 shows a com~arison of the dissociation constants of deuterium 

oxide and water. It is obviously seen that between 10-50 °C the dissociation 

constant of deuterium oxide is approximately 1 pH lower than that of water in 

the same temperature range. 
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Figure 5.2 Comparison of ionisation constant of water and deuterium oxide 

from 0 to 60 'C (Data obtained from the reference [177]). 

It is postulated that most properties of deuterium oxide and water are similar. 

Deuterium oxide is expected to be used without any difficulties, except that it 

is easily converted to H20 or HOD at ambient conditions by exchange with 

atmospheric water and may give a solvent interference signal at 4.7-4.8 ppm. 

An advantage of using deuterium oxide rather than the deuterated organic 

solvents for LC-NMR is that deuterium oxide is considerably cheaper (Table 

5.3). 
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Table 5.3 A comparison of the price of deuterium oxide and other deuterated 

solvents [192] 

Deuterated Purity Price per 10 g 

solvent (atom %) (pounds) 

Deuterium oxide 99% 3.69 

Acetonitrile-d3 99% 18.60 

Methanol-d3 99% 148.40 

Tetrahydrofuran-d4 99% 150.60 

5.2 Coupling superheated water chromatography with NMR 

Because of a need to position the LC away from the NMR magnet, a 3 m 

polyethyl ether ketone (PEEK) tubing was used to couple the UV detector to 

the NMR flow cell. This length also created enough back pressure to 

maintain a liquid state in the chromatographic column. The reported 

differential pressure of the 0.13 mm (or 0.005") PEEK tubing per 5-foot length 

is 165 psi (ca.11.4 bars) at 1 ml min-1 [193], therefore over the length of the 3 

m tubing, the pressure should decrease by approximately 23 bars, this 

pressure met the requirement of more than 15 bar in the column under 

superheated water conditions to maintain a liquid state. For example, at 200 

°C and a flow rate of 1.0 ml min-1 with 3m PEEK tubing to back-up the 

pressure, the column pressure is about 40 bars. The 3 m long tubing to the 

NMR also enabled the detection at ambient conditions because the pressure 

and temperature of the eluent decreased along the length of the tubing, 

therefore a standard low-pressure NMR probe was sufficient to handle the 

decreased pressure and temperature and to detect the sample. Also, the 

NMR results can be compared to reference spectra obtained under ambient 

conditions. 
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The transfer time between the UV flow cell and the NMR probe was first 

investigated. By introducing 1 mg salicylamide to the system, it was found to 

be 33 s with the 3 m PEEK tubing. 

Samples were prepared at high concentrations because the sensitivity of 

NMR is moderately low [77, 194]. To increase the sensitivity, the stop-flow 

mode was employed by turning the switching valve to bypass the flow to the 

NMR spectrometer, a certain time (transfer time, i.e. 33 s) after we saw the 

peak appear on the UV integrator. 

Initially, a back pressure regulator had been used (Figure 2.2) but we found 

the pressure dropped suddenly when the switching valve was turned. The 

same phenomenon did not happen when the regulator was replaced by a 

second 3 m PEEK tubing to back-up the pressure. 

For a sample containing one major component, the NMR spectrum could be 

measured without any trouble using the stop-flow mode. For a mixture, not 

all the separated compounds could be detected in one run using the stop-flow 

mode, depending on the time required for signal acquisition. For example, in 

a chromatographic run with three major peaks at 5.0, 8.0, and 14.0 min, the 

NMR detection of the first peak can certainly be performed using stop-flow 

mode. If the NMR data acquisition time of the first peak requires less than 

3.0 min, the second peak may be measured by switching back the valve, to 

fill the NMR flow cell with the second component. If the time requirement is 

between 3.0-9.0 min, measurement of the second peak is then not possible 

but the third peak may be trapped. Additionally, if the time required is more 

than 9.0 min, only first component can be achieved. Repeated injections 

permit the measurement of the remaining peaks. 
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5.3 Application of superheated water chromatography - NMR of 

analgesic and related drugs (paracetamol, caffeine, and 

phenacetin) 

Paracetamol (or acetaminophen) and phenacetin are generally used as 

analgesic drugs and undergo the same function as aspirin. Both of them also 

have antipyretic effect but are only weakly antiflammatory [202]. Caffeine (or 

1,3,7-trimethylxanthine) has a pharmacological action of therapeutic interest. 

It can relax smooth muscle, stimulate the central nervous and cardiovascular 

system, and enhance diuretic action. Paracetamol, caffeine and phenacetin 

have been extensively analysed by HPLC method [88, 195-198], particularly 

with octadodeCYI (ODS) columns [88, 197-198]. 

An octadecyl (C18) silica column is generally considered to be a highly 

efficient reproducible column. However, it is slightly less polar and 

considerably less thermally stable than the PS-DVB column [36]. The 

temperature to be used to separate the analgesics could be slightly lower 

than for PS-DVB column. In this experiment, to imitate the gradient elution of 

RP-HPLC, a temperature programme was applied for better separation. By 

ramping the temperature of the oven from 80 ·C to 130 ·C at 8 ·C min·1, the 

mixture was well separated, giving symmetrical peaks of paracetamol (0.94 

min), caffeine (3.05 min) and phenacetin (4.57 min) (Figure 5.3). The 

- resulting chromatogram shows a successful separation on C18 column at the 

high temperature (80-130 QC). Nevertheless, subsequent runs indicated a 

degradation of C18 column, as the retentions of the analytes gradually 

decreased. Flushing with acetonitrile for hours afterwards did not recover the 

column and the retentions of all components now overlapped. On opening 

the column, we noticed a big void, approximately a half of column length, at 

the top and also a green brown colour at the column frit. However, 

regardless of the shorter retention, the separation patterns were reproducible, 

all peaks were symmetrical, sharp and the baseline was minimal. Figure 5.4 
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shows the NMR spectra of those analytes by operating a stop flow mode 

spectral collection on each peak, confirming that the compounds were 

separated without degradation in the column. 
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Figure 5.3 Superheated water chromatogram of 100 pg on column of each 

analgesic drug in a mixture: A = paracetamol; B = caffeine; C= 

phenacetin. 

Chromatographic conditions: column, 15 cm Novapak C1S; 

mobile phase, deuterium oxide at flow rate 1.0 ml min-1
; UV 

absorption, 254 nm; temperature ramped at 8 "C min-1 from 80° 

C to 130 "C; transfer time from UV to NMR detector, 33 s. 
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Figure 5.4 NMR spectra of each analgesics obtained using stop-flow mode 

for the peaks in Figure 5.3. 
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From the NMR spectra in Figure 5.4, the first, second and third peaks from 

the chromatogram in Figure 5.3 were assigned to paracetamol, caffeine and 

phenacetin, respectively. These could be identified by their spectral 

fingerprints. For example, paracetamol gave two doublets (J = - 9 Hz) at 6.8 

and 7.1 ppm, which represented H of aromatic ring, and a singlet (3H) at 2.0 

ppm which corresponded to a methyl group attached to an -NHCO(CH3) 

amide. Caffeine gave three singlets at 3.2, 3.4 and 3.8 ppm (Figure 5.4 b) 

that could be assigned to the three methyl groups on the xanthine ring, and a 

singlet at 7.7 ppm which was attributed to HC=N group of the xanthine. Since 

phenacetin is a derivative of paracetamol, NMR spectrum in Figure 5.4 c 

gave almost the same pattern, except for a triplet at 1.2 ppm (J = - 7-8 Hz) 

and a quartet at 4.0 ppm (J = - 7 Hz) that corresponded to the CH3 and CH2 

of an ethyl group (-OCH2CH3). An extra peak at 1.95 ppm in the paracetamol 

spectrum is attributed to CH3CN solvent peak. All three spectra were 

confirmed by comparison with reference NMR spectra [199-201]. 

The results reflected a success in coupling superheated water 

chromatography and NMR spectroscopy. The study also demonstrated that 

deuterium oxide could substitute normal water mobile phase in superheated 

water chromatography without any problems. No decomposition of the drug 

compounds was found during the separation, as each spectrum agreed with 

the corresponding pure compound spectrum and no additional signals were 

seen, as well as the chromatogram showed pure intense peaks. 

5.4 Application of superheated water chromatography - NMR to 

barbiturates 

Since barbiturates have been introduced in 1903 as long-period sedative

hypnotic drugs [116, 202], their poisoning, such as self-poisoning, 

overdosage, has been also reported [202]. Although the extensive use of 

barbiturates has now been reduced and replaced by safer drugs, some 
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barbiturates, such as phenobarbital and butabarbital, are still available in a 

combination with other drugs as a sedative for a treatment of gastrointestinal 

disorders, urethral inflammation, asthma, hypertension, and coronary artery 

disease [116]. 

Reversed phase Le is generally the methods to analyse barbiturates [203-

205]. In earlier work at Loughborough a series of barbiturates (100 Ilg of 

each) were separated by using superheated water chromatography with UV 

detection [30]. In order to confirm the structures, the same compounds 

separated by superheated water were detected by NMR spectroscopy. The 

chromatographic results and NMR spectra of three barbiturates were 

illustrated in Figure 5.5 and 5.6. 

Figure 5.5 Superheated water chromatogram of 100 W of each barbiturate 

in a mixture: a = barbitone; b = amylobarbitone; c = 
heptabarbitone. 

Chromatographic conditions: column, 5 J.lfTI PS-DVa column; 

mobile phase, deuterium oxide at flow rate 1.0 ml min-l
; UV 

absorption, 254 nm; oven temperature, 200 CC; transfer time from 

UV to NMR detector, 33 s. 
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Figure 5.6 NMR spectra obtained of each barbiturate using stop-flow mode 

for the peaks in Figure 5.5. 
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The spectrum of the first peak (Figure 5.6 (a)) was easily assigned to 

barbitone by showing a triplet at 0.7 ppm and a quartet at 1.8 ppm, which 

were attributed to CH2 and CH3 of the ethyl groups of barbitone. These 

fingerprints matched the reference spectra [206-207]. The spectrum of 

amylobarbitone in Figure 5.6 (b) is slightly more complicated. The four 

signals near 0.7 ppm suggested the CH3 groups of both side chains of 

amylobarbitone; whereas a multiplet at 1.8 ppm indicated two CH2 groups 

attached to the ring. Meanwhile, the resonance of CH and the second CH2 of 

the pentyl side chain contributed to the multiplets at 0.9 and 1.3 ppm, 

respectively. The spectrum is similar to a 60 MHz NMR spectrum of 

amylobarbitone measured by Avdovich et al. [206), except it exhibited higher 

resolution fingerprints. The reference spectrum showed peaks at 0.9 ppm 

(doublet), 1.8 ppm (triplet) and 2.5 ppm (a small multiplet), including a 

moderately high background signal between 0.9-1.8 ppm. 

The spectrum of the third peak (Figure 5.6(c)) was assigned to 

heptabarbitone. This was indicated by a triplet at 0.7 ppm (CH3 of ethyl 

group), a quartet at 2.1 ppm (CH2 next to olefinic bond of heptenyl ring) and 

three quintets at 1.2, 1.3, and 1.6 ppm (CH2 groups of the ring). A multiplet at 

1.9 ppm was attributed to the overlap of CH2 peaks of ethyl group and 

heptenyl ring. In addition, there was a triplet at 6.0 ppm, which was attributed 

to the olefinic hydrogen of the side chain ring. Compared to the reference 

spectrum [206), some signals were matched to those of reference, for 

example two triplets at 0.7 and 6.0 ppm. However, because the 60 MHz NMR 

reference spectrum exhibited multiple broad peaks in the range of 1.0-2.5 

ppm, it is not possible to match all the resonances in this work. The amide 

NH hydrogens attached to each N of the main barbiturate rings normally give 

singlets about 11.5 ppm [206), but as our working range is 0.0-10.0 ppm, it 

could not be seen if there was a deuterium exchange or not. Except for a 

weak HOD peak (- 4.7 ppm), no additional peaks were observed. 



CHAPTER 5: Nuclear magnetic resonance detection 120 

The NMR spectra clearly show that all the barbiturates were successfully 

separated in the column with no degradation. 

5.5 Application of superheated water chromatography - NMR to natural 

products 

Several pharmaceutical compounds from natural products are soluble in hot 

water, for example, the kava lactones from Piper methysticum [208-209]. The 

root of this narcotic plant is ground, mixed with water and served as a muddy 

brown drink among Polynesian people [208]. Recently, this plant has 

attracted considerable interest. It has been processed to produce anti

depressant and sedative drugs [209]. Analysis of these products have been 

performed by using GC [210] and HPLC [211-212]. It is therefore of interest if 

the identification by using superheated water chromatography-NMR can be 

applied to these compounds. 

In the separation of the kava extract, the polybutadiene (PBO) zirconia 

column was found to be the most efficient and durable column, whereas the 
" 

aDS column was thermally unstable and PS-OVB column was less efficient 

and gave broad peaks for those extracted components. Since the PBO 

column had an internal diameter of 2 mm, the flow rate of mobile phase was 

reduced. A flow rate of 0.25 ml min-' gave a back pressure in the column on 

approximately 55 Kg cm-2 at 80°C. As a consequence, the transfer time 

between UV detector and NMR was increased to 2 min 12 s. 

The temperature programme was carried out with an initial temperature of 80 

°C, increasing to second level temperature at 100°C at 8 °C min-\ then to the 

final temperature at 160°C at 2 °C min-'. The temperature programme was 

manually operated because the programmer controller provided only one 

level temperature ramping program. 
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When 10 III of the root extract in methanol was analysed by superheated 

heavy water chromatography with UV and NMR detection, the UV 

spectroscopic detection showed five major peaks (Figure 5.7). The main 

peaks showed a retention time at 13.70 (second peak), then 16.92, 12.89, 

27.15 and 30.66 min, decreasingly by size. Unfortunately the fifth peak 

(30.66 min) was too small to be detected by NMR. Using the stop-flow mode 

in NMR flow cell with a volume of 120 Ill, the first peak (12.89 min) 

overlapped with the second peak, the spectrum was dominated by an influx of 

second massive peak. 

A major component that gave the large second peak in the chromatogram 

was identified as kawain (Figure 5.8). This was confirmed by NMR 

spectroscopy. Since the spectrum was complicated and has a range of 

interesting resonances, the entire spectrum was enlarged and divided into 

three ranges (Figure 5.8 a-c). The first multiplet that appeared on the 

spectrum at 2.7 ppm was assigned to be a geminal coupling of H5a and H5~. 

The two H5 resonances also affected a vicinal coupling to H6, resulting a 

multiplet of H6 at 5.2 ppm. A singlet at 5.3 ppm was attributed to H3 of 

olefinic bond, whereas the two four resonances at 6.4 and 6.8 ppm were 

assigned to the coupling of H7 and H8 and a long range coupling to H6. 

Meanwhile, the methoxy hydrogens gave a singlet at 3.8 ppm and the 

aromatic ring contributed to two doublets at 7.5 ppm (0-) and 7.35 ppm (p-), 

and a triplet at 7.4-ppm (m-). A singlet at 5.9 ppm seemed to be 

contamination, due to an overlap between the main component and the 

following peak, and the singlet at 3.75 was unidentified. 
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Figure 5.7 Separation of the extract of kava root in methanol by using 

superheated water chromatography. 

Chromatographic conditions: column, 15 cm microbore paD 

column; mobile phase, deuterium oxide at flow rate 0.25 ml min-1; 

UVabsorption, 254 nm; oven temperature kept constant initially at 

80 "C then increased to 100 "C (8 "C min·1) after 8 min then 

ramped to 200 "C (3 "C min·1) after 15 min,1; transfer time from 

UV to NMR detector, 2 min 12 s. 
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Figure 5.8 NMR spectrum obtained using stop-flow mode for the second 

peak in Figure 5.7. 
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Figure 5.8 a-c NMR spectrum of Figure 5.8 enlarged in the range 2.0 - 4.0 

ppm (a), 4.0 - 6.0 ppm (b), and 6.0 - 7.6 ppm (e). 
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The spectrum was confirmed by a comparison to a 400 MHz NMR 

measurement reported by Shao et al. (211). Kawain resonances* were 

exhibited: 2.55 ppm (dd, H5a), 2.68 ppm (dd), 3.78 ppm (s, -QCH3), 5.08 

ppm (ddd, H6), 5.21 ppm (s, H3), 6.27 ppm (dd, H7), 6.74 ppm (H8), and 

7.29-7.41 ppm (m, Harotmlic). The resonances of kawain in this work show a 

similarity to those reported, except the multiplet of H5, which exhibited two 

double doublets at 2.55, and 2.68 ppm in the report. In addition, the 

resonances of Harormtic in the present work could be distinguished as two 

doublets of 0- and p-, and one triplet of m-phenyl ring. This is owing to a 

higher efficiency of NMR magnet used (500 MHz) in this work. 

The second largest peak (Peak 3) in the chromatogram was proved to be 

methysticin (Figure 5.9). The resonance in a range of 2.0-5.8 ppm which 

represented the main ring and olefinic bond of methysticin exhibited exactly 

the same pattern as kawain and the chemical shifts were assigned to H3, H5, 

H6 and methoxy group (Figure 5.9 a-b). A singlet at 5.95 ppm indicated the 

two H12 of dioxy 5-membered ring side chain. In Figure 5.9 c, the resonance 

of H7 appeared as a double doublet at 6.2 ppm. The dioxy 5-membered ring 

has a significant shielding effect on the phenyl group. As a result, the 

resonances of aromatic hydrogens shifted to higher field. This was indicated 

by two doublets at 6.85 ppm (H9) and 6.95 ppm (H10), and a singlet at 7.1 

ppm (H11). In addition, a doublet at 6.7 ppm (H8) of conjugated olefinic bond 

was also slightly shifted to lower shielded frequency. 

* Abbreviations of the resonance: s = singlet, d = doublet, dd = double 

doublet, ddd = double double doublet, and m= multiplet. 
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Figure 5.9 NMR spectrum obtained using stop-flow mode for the third peak 

in Figure 5.7. 
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Figure 5.9 a-c NMR spectrum of Figure 5.9 enlarged in ranges of 2.2 - 4.0 

ppm (a), 4.0 - 6.0 ppm (b), and 6.0 - B.O ppm (c). 
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Shao et al. [211] reported the resonances of methysticin*: 2.53 ppm (dd, 

H5a), 2.66 ppm (dd, H5~), 3.77 ppm (s, -QCH3), 5.03 ppm (ddd, H6), 5.20 

ppm (s, H3), 5.97 ppm (s, H12), 6.09 ppm (dd), 6.64 ppm (d, HB), 6.77 ppm 

(d, H9), 6.B4 ppm (d, H10), and 6.93 ppm (d, H11). A comparison between . 
the resonances of the present work to those reported showed a similarity 

except for the signals of H5 at 2.7 ppm that exhibited a multiplet instead of 

two double doublets as reported. 

Demethoxyyangonin is present in the root extract at high concentrations (ca. 

21 %) [212]. The NMR spectrum suggested that the third peak was likely to 

be demethoxyyangonin as shown in Figure 5.10. Compare to the NMR 

spectrum of kawain (Figure 5.B c), the aromatic resonances gave almost the 

same pattern and chemical shift in the range of 7.3-7.6 ppm. The hydrogens 

at H5 and H6 were substituted by double bond; therefore the multiplet at 2.75 

ppm disappeared and assigned a singlet at 6.7 ppm (H5) instead. A 

deshielding effect of the olefinic bond (C5-C6) and aromatic ring contributed 

to the shift of H7 and HB resonances to lower field (6.B5 and 7.5 ppm, 

respectively), so did the effect of olefinic bond to H3 singlet (5.7 ppm). The 

singlet at 2.9 ppm was attributed to a methoxy group of the main ring, like 

kawain spectrum. 

Again, compared to the NMR spectrum of demethoxyyangonin measured by 

Shao et al. [211], the resonances* was reported at 3.B3 ppm (s, -QCH3), 5.01 

ppm (d, H3), 5.96 ppm (d, H5), 6.59 ppm (d, H7), and 7.34-7.54 ppm (m, HB 

and Haromatie). The spectrum in this work is slightly different from that reported. 

The H3 and H5 exhibited two singlets instead of two doublets and a doublet 

assigned to 0- aromatic hydrogen could be distinguished from the multiple 

resonance of HB, m- and p- aromatic hydrogen. 

* Abbreviations are as previously described. . 
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Figure 5.10 NMR spectrum obtained using stop-flow mode for the fourth 

peak in Figure 5.7. 

(a) = A whole range spectrum between 2.3 - 8.0 ppm. 

(b) = An enlarged spectrum of (a) in a range of 5.5 - 7.7 ppm. 
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The spectra of the major component peaks of kava extract confirmed by 

comparison with reference spectra demonstrated that the separation and 

simultaneous identification using superheated water chromatography-NMR 

method for natural products were feasible. Applications of the method for 

environmental, food, Industrial and other real samples may also be possible. 

5.6 Application of superheated water chromatography - NMR to 

riboflavin 

Riboflavin analysed by superheated water chromatography with NMR 

detection method is more of interest, since riboflavin may change under the 

superheated water conditions. Riboflavin has a very low solubility in water (1 

g I 3000-15,000 ml water) [171] and negligible solubility in any organic 

solvents, resulting in difficulties in preparing a riboflavin solution for 

identification by NMR. 

As the solubility of riboflavin in water is very low, the saturated solution of 

riboflavin in deuterium oxide was prepared and introduced to the system 

under the same conditions (e.g. 200°C) as previously mentioned in Figure 

4.2. The data acquisition time needed to be longer to obtain NMR spectrum 

(Figure 5.11). As with many other NMR spectra of compounds detected at 

very low concentration, water (HOD) peak was always present at 4.6-4.7 ppm 

with two spinning side bands at 4.3 and 5.0 ppm. The singlets at 2.35 and 

2.45 ppm were assigned to two methyl groups on the aromatic ring. and 

aromatic hydrogens resonated as two singlets at ca. 7.9 ppm. A more 

complicated signal in a region of 3.4 to 5.2 ppm, (Figure 5.11), represents the 

proton on the ribityl side chain of riboflavin. The four resonances at 3.6 ppm 

were attributed to 5b' and the split doublet peak at 3.7 ppm was assigned to 

5a'. This was the result of the magnetic inequivalence of the two geminal 

hydrogens at position 5'. The multiplet at 3.75-3.9 ppm was ascribed to an 
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overlapping of the two resonances of H3' and H4' of the side chain. 

However, the spectra assigned to the structure of ribityl side chain and its 

analogs has been studied [213]. An extra peak appeared at 1.95 ppm was 

attributed to CH3CN peak which was a carryover of solvent residue from the 

instrument. All resonances corresponded to those from reported NMR 

spectrum of the ribityl side chain of riboflavin measured under ambient 

conditions [213). 

Unexpectedly, the spectrum shows a doublet at 4.85 ppm of H2' resonance 

instead of a quartet and no resonance for two H1' which were expected to be 

at 5.0-5.1 ppm from earlier work [213]. Hence, it was thought that there might 

be a deuterium exchange of two H1' hydrogens. As there was no information 

by mass spectrum or other methods, the reaction could not be confirmed. 

However, no degradation product of riboflavin was found in our investigation. 
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Figure 5.11 NMR spectrum of riboflavin separated by superheated heavy 

water chromatography. Enlarged NMR spectrum is in the range 

of 3.4 - 5.2 ppm. 
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5.7 Summary 

The coupling of superheated water chromatography to NMR spectroscopy 

was highly successful, although there was a little trouble with the difference in 

UV and NMR sensitivity. Compare to UV detection, the sensitivity of NMR is 

very low. The detection was carried out by using the stop-flow mode with an 

exact transfer time and a preparation of high concentration sample. Due to 

the use of a 3 m PEEK tubing for system connection and for supporting the 

pressure, the detection was carried out at ambient conditions. With the on

line method, compounds can be separated and simultaneously identified by 

NMR. As a result, the perfect spectra of separated components, such as 

analgesics and barbiturates, were achieved and compared to literature. The 

comparison showed a similarity in resonance frequencies and patterns of 

sample and reference spectra for each compound. An application of the 

method to separate and identify kava lactone natural products was also 

achieved, demonstrating the feasibility of the method for other applications, 

for example environmental, food, industrial, etc. No degradation products 

were found but a deuteration of riboflavin was possible. To confirm the 

deuterium exchange reaction additional information, such as mass spectrum, 

may be needed. In the next chapter, a hyphenated method of on-line 

coupling between superheated water-NMR and mass spectrometry (MS) will 

be demonstrated and some reactions that might take place will be explained. 



Chapter 6 

Hyphenated Methods of Detection 

In the previous chapter, we demonstrated the coupling of superheated water 

chromatography to NMR spectroscopy. The chromatographic and NMR 

results showed that the hyphenated system worked well. A further coupling 

of the system to mass spectrometer (MS) can be more interesting, since MS 

provides additional information to confirm the identification, particularly if a 

reaction occurs under superheated water conditions. 

6.1 Coupling superheated water to NMR and mass spectrometer (MS) 

The configuration of the instruments was changed to couple the MS 

instrument to the superheated water chromatography-NMR system (Figure 

2.3). Because MS is very sensitive technique and requires only a very small 

amount of sample, a T-piece for splitting the eluent was inserted before the 

NMR spectrometer, one way leading to the NMR spectrometer (20 cm) and 

the other way to the MS (200 cm). In addition, there was a capillary leading 
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to the ionisation chamber of MS, giving a split ratio of the eluent of 20:1 

between the NMR and the MS. Because the time for the sample to reach the 

NMR spectrometer was shorter, when the flow was stopped to measure the 

NMR spectrum (in stop-flow mode) the sample being transferred to the mass 

spectrometer was still residing in the connecting tubing. When the flow was 

resumed, the sample was then transferred to the MS and detected. 

Although many mass spectrometers have a problem if there are any solid 

salts in the eluent, the instrument used in the present study has a Z 

configuration (Figure 1.9 b) so that the buffer salts accumulated on a guard 

plate (112). 

6.2 Application to salicylamide 

Salicylamide was successfully separated using superheated water 

chromatography with fluorescence detection as shown earlier (Section 4.2). 

Using these conditions it was decided to use salicylamide to demonstrate that 

a separation by superheated deuterium oxide could yield 10 and 2D-NMR 

spectra and MS detection. 

For the first trial with salicylamide, a deuterium oxide mobile phase was 

employed, resulting a well-shaped peak at a retention time of 4.7 min with UV 

detection at 254 nm. The peak was very similar to the one detected by the 

fluorescence detector in Figure 4.5. The eluent was then transferred for NMR 

and MS detection. To increase the sensitivity by NMR, the stop flow mode 

was employed with the transfer time from UV detector to NMR of 33 s. A 

spectrum of salicylamide with very low background noise was then obtained 

(Figure 6.1 A). 
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In a second trial, the mobile phase was changed to deuterated phosphate 

buffer pH 3.0, the temperature was raised to 190°C isothermally and the 

other conditions remained the same. Under these conditions, salicylamide 

gave a well-shaped peak at 3.87 min. However, the NMR spectrum was 

slightly different from the one separated by pure superheated deuterium 

oxide (Figure 6.1 B). 

NMR spectrum of salicylamide separated in pure deuterium oxide in the first 

trial showed very low background noise and high resonance intensity (Figure 

6.1 A). All resonances could be assigned: two triplets at 6.7 ppm (H3) and 

7.1 ppm (H2), two doublets at 6.75 ppm (H4) and 7.6 ppm (H1). However, 

the chemical shifts of many compounds can be affected by the solvent or the 

mobile phase used [66, 214). As the dissociation constant of salicylamide is 

4.3 x 10-9
, in unbuffered water, salicylamide is present in its undissociated 

molecular form [214). Changing the mobile phase to deuterated phosphate 

buffer pH 3.0 caused a change in the ionic strength of the mobile phase. In 

this spectrum the H3 triplet and H4 doublet overlapped at 6.9 ppm (Figure 6.2 

B) and H2 resonated at higher field (7.4 ppm). The signals showed a good 

agreement with the reference spectrum [199). 

The collection of two-dimensional NMR spectra have been reported by the 

on-line coupling of SFC-NMR and HPLC-NMR [48, 69). It was of interest to 

determine if such spectrum could be obtained by using superheated water 

chromatography coupled to NMR. Salicylamide is not symmetrical 

compound, as the structure shown in Figure 6.1, it was therefore used as an 

example for the demonstration. 
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Figure 6.2 Two dimensional NMR spectra obtained using stop-flow mode 

for 100 pg salicylamide separated on the column with 

deuterated phosphate buffer pH 3.0 mobile phase. 
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From the contour spectrum (Figure 6.2), the spectra at the upper and the left 

edges of the plot are the normal one-dimensional spectra. Three resonances 

on the diagonal line correspond to the three signals on the normal spectrum. 

From off-diagonal peaks, it is clear that the H3 and H4 coupled with both H1 

and H2, whereas the H1 and H2 did not coupled to each other. It is assumed 

that, by choosing appropriate experimental conditions, on-line separation and 

COSY spectrum of more complicated compounds could be achieved using 

the same technique, and a long range coupling of small resonances could be 

seen. 

When the eluent flow was resumed, the MS experiment was performed, 

yielding the signals from mass spectrometric detector shown in Figure 6.3. 

The resulting spectrum showed strong signals at mlz ratio of 142, 163, and 

179. The mOlecular mass of salicylamide is 137 but once salicylamide was 

dissolved and separated in acidic deuterium oxide, deuterium exchange 

occurred at the amino (-NH2) and hydroxy groups (-OH) and a 0+ adduct was 

formed. As a result, the molecular ion was increased to 142 which indicated 

a deuterated salicylamide ion ([MOn. Since the buffer contained also 

sodium and potassium phosphate to adjust the pH, with the use of 

electrospray MS, the Na+ and ~ adducts of salicylamide were also formed 

(by replacing 0+) and formed the MS peaks at m/z 163 ([MNan and 179 

([MKn respectively (Figure 6.3). 

Thus a demonstration using salicylamide as an example· has shown a 

successful on-line coupling of a superheated water chromatography-NMR-MS 

hyphenated system. With the stop-flow NMR, the salicylamide spectrum 

could be obtained and the resonances agreed with those of the reference. A 

demonstration to obtain COSY spectrum of salicylamide was also· performed. 

The MS result showed a successful use of phosphate buffer mobile phase 

with the electrospray, resulting the m/z of 0+, Na+ and ~ adduct of 
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salicylamide. It should be noted that although buffers was used, there was 

no contamination of the ion source because of the "Z· spray design) 

Salicylamide 

[MD]+ 

'" 

'" 

10' 

[MNa]+ 

[MK]+ 

171 

,&4 

'80 

18' 

Figure 6.3 MS spectra of salicylamide separated using deuterated 

phosphate buffer pH 3.0. 
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6.3 Application to sulfonamide compounds 

The sulfonamide compounds were previously investigated in Chapter 3. 

They were successfully separated on PS-OVB column using both pure and 

buffered superheated water as a mobile phase with ultraviolet detection. In 

addition, the pK. of some sulfonamides were determined under the 

superheated conditions. 

In this section, some homologous and isomeric sulfonamides were studied in 

the coupled system. Sulfacetamide, sulfadiazine, sulfamerazine, and 

sulfamethazine were separated by using buffered deuterium oxide pH 3.0 and 

with a temperature programme (Figure 6.4). A good separation was obtained 

as well as using normal buffer in the previous experiment and 4 well-resolved 

peaks could be assigned to sulfacetamide, sulfadiazine, sulfamerazine and 

sulfamethazine at retention times of 4.33, 8.24, 12.54, and 17.92 min, 

respectively (Figure 6.4). With a stop flow mode, NMR spectral data of the 

first and third peak were collected on the first chromatographic run and on the 

second run the spectral data collection of the third and fourth peak were 

performed (Figure 6.5-6.8). In each case the MS spectra were determined 

(Figure 6.9). 
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Figure 6.4 Chromatogram of a mixture of each 100 pg sulfonamide on 

column separated by using superheated deuterium oxide pH 

3.0: 1 = sulfacetamide; 2 = sulfadiazine; 3 = sulfamerazine; 4 = 
su/famethazine. 

Chromatographic conditions: column, 5 pm ps-ova column; 

mobile phase, deuterated phosphate buffer pH 3.0 at flow rate 

1.0 ml min"; oven temperature programmed at 160 "C then 

increased to 200 "C at 2 "C min"; UV absorption, 254 nm; 

transfer time between UV and NMR, 33 s. 
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Peak 1 = Sulfacetamide 

HOD 

0- m-

". 6 • . . , 

Figure 6.5 NMR spectrum obtained using stop-flow mode for the first peak 

in Figure 6.4, corresponding to sulfacetamide. 
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Peak 2 = Sulfadiazine 

HOD 
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". • • , 

Figure 6.6 NMR spectrum obtained using stop-flow mode for the second 

peak in Figure 6.4, corresponding to sulfadiazine. 

(a) = 0.0 - 9.0 ppm. 

(b) = Enlargement of the spectrum in a range of 6.5 - 8.5 ppm. 
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Figure 6.7 NMR spectrum obtained using stop-flow mode for the third peak 

in Figure 6.4, corresponding to sulfamerazine. 

(a) = 0.0 - 9.0 ppm. 

(b) = Enlargement of the spectrum in a range of6.6- 8.3 ppm. 
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Peak 4 = Sulfamethazine 
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Figure 6.8 NMR spectrum obtained using stop-flow mode for the second 

peak in Figure 6.4, corresponding to su/famethazine. 

(a) = 0.0 - 9.0 ppm. 

(b) = Enlargement of the spectrum in a range of 6.5 - 8.0 ppm. 
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Figure 6.9 MS spectra obtained for four sulfonamide mixture separation in 

pH 3.0 phosphate buffered superheated deuterium oxide. 
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The NMR spectra of the first and second peaks were interpreted to be 

sulfacetamide and sulfadiazine, respectively. In acid buffer, the NH2 and -

CO-NH- groups of each sulfonamide were deuterated very quickly. Hence, 

no signals were observed from those groups. 

In Figure 6.5, the acetyl CH3 of sulfacetamide gives a strong intensity singlet 

at 1.9 ppm. Two doublets at 7.65 and 6.8 ppm indicated the 0- and m

hydrogens of aromatic ring. For sulfadiazine (Figure 6.6), those aromatic 

hydrogens also resonated at similar frequencies, 7.7 (0-) and 6.8 (m-) ppm. 

The nitrogens of the pyrimidine ring resulted in a deshielding effect on the 

attached H1 and H3 hydrogens. As a result, the doublets of H1 and H3 

shifted to higher field, 8.35 ppm. In addition, the triplet at 6.95 ppm indicated 

the H2 of pyrimidine ring. These results agreed with those signals of 

sulfacetamide and sulfadiazine in the NMR reference spectra [199]. 

The MS spectra of the first and second peaks also indicated sulfacetamide 

and sulfadiazine. The molecular mass of sulfacetamide and sulfadiazine are 

214 and 250. However, because of the deuterium exchange at NH2 and -

S02-NH- groups, including a D+ adduct, the molecular ions appeared at m/z 

219 for sulfacetamide and m/z 255 for sulfadiazine. In addition, since the 

buffer was prepared by using potassium hydrogen phosphate and 

tripotassium phosphate, a K' adduct of sulfonamides could be formed. 

Hence, the major peak of sulfacetamide appeared to be m/z 256 and of 

sulfadiazine at m/z 292. 

NMR spectra of both the third and fourth peaks (Figures 6.7 and 6.8) showed 

two doublets at 7.7 and 6.9 ppm that were attributed to 0- and m- aromatic 

hydrogens of sulfamerazine and sulfamethazine. In Figure 6.7 two doublets 

at 8.1 and 6.75 ppm were aSSigned to H1 and H2 of pyrimidine group of 

sulfamerazine and in Figure 6.8 a singlet at 6.6 ppm was of H2 of 

sulfamethazine. The fingerprints in aromatic regions were as expected, as 
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they were similar to the reference NMR spectra [199]. However, the 

spectrum of sulfamerazine, which was expected to contain a singlet peak for 

the methyl group of pyrimidine at 2-3 ppm, as given in the reference spectra, 

showed no such resonance. A similar finding was found for sulfamethazine 

where there should be two methyl group signals but both were absent. 

Interestingly, the MS spectra of the third peak show ions at mJz 272 and 309 

and of the fourth peak at m/z 289 and 326. Both masses were higher than 

expected for sulfamerazine and sulfamethazine molecular mass (264 and 

278, respectively) even allowing for the anticipated deuterium exchanges. It 

was, therefore, suspected that deuteration was occurring not only at the Nth 

and -S02-NH- groups but also at the methyl groups attached to pyrimidine 

ring of both compounds. Included the 0+ adduct, the molecular mass would 

increase to 269 for sulfamerazine and 283 for sulfamethazine. Because of 

the deuteration of the methyl group(s), the molecular ion of sulfamerazine 

increased further to m/z 272, and for sulfamethazine to m/z 289. Like 

sulfacetamide and sulfadiazine, the K'" adduct of sulfamerazine and 

sulfamethazine also contributed to the spectra at m/z 309 and 326, 

respectively. 

The protons of methyl groups at C2, C4 and C6 of pyrimidines are labile and 

chemically active [215-216], in comparison to those of normal methyl groups 

on aromatic rings. The deuteration could occur via tautomerisation of the 

methyl pyrimidine (Figure 6.10). This suggested tautomerism agreed with a 

study of the base catalysed deuteration of pyrimidine (pH 5-11) by Batterham 

et al. [215]. Other studies revealed that the hydrogens of heteroaromatic 

compounds could be deuterated under superheated water conditions [217-

219], for example at 80-120 cC, 48-52 % of the methyl groups of 2,4,6-

trimethylpyridine was deuterated using polymer supported acidic catalysts 

[218]. 
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Figure 6.10 A predicted deuteration of methyl group of pyrimidine ring. 

The deuteration of methyl group(s) was confirmed by changing the mobile 

phase to (1 : 1 ) buffered deuterium oxide/H20 and the sulfonamide compounds 

were detected by mass spectrometer (Figure 6.11). As expected, the 

sulfonamide mass ions showed peaks with discrepancies for partial 

deuteration and adduct formation. For example, protonated sulfamerazine, 

which has m/z 265 without deuteration and m/z 272 with deuteration, gave 

equal intensity of mass ions at m/z 268 and 269, 167 and 270, 166 and 271, 

decreasing by size. Whereas the K' adduct (m/z 303 without deuteration and 

309 with deuteration) showed the highest intensity peak at m/z 306 which 

was a result of half deuteration. 

The same phenomenon occurred in sulfamethazine. A highest peak at m/z 

284 was a result of a half deuteration and D+ adduct of sulfamethazine (m/z 

279 without deuteration and m/z 289 with deuteration). The peaks at m/z 321 

and 322 occurred in the same way when the D+ adduct was substituted by K' 
adduct. 
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Figure 6.11 MS spectra obtained using (1:1) buffered superheated 

deuterium oxide - superheated H20 as an eluent for four 

sulfonamide mixture. 
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For sulfacetamide and sulfadiazine, the deuterium exchange occurred at only 

NH2 and -S02-NH- groups, the mass difference between deuterated and non

deuterated compounds was 3 m/z. Hence, sulfadiazine gave the highest 

intensity of D+ and K'" adduct peak at m/z 253 and 291, or about a half 

deuterium exchange (m/z 252 and 289 without exchange and m/z 255 and 

292 with exchange), respectively. Similarly, sulfacetamide yielded the K'" 
adduct peak at m/z 255 which was a result of a half of deuterium exchange. 

The deuteration of the methyl group of pyrimidine ring was also confirmed by 

a study of sulfisomidine. Sulfisomidine or N'-(2,6-dimethyl-4-pyrimidinyl) 

sulfanilamide is an isomer of sulfamethazine (N'-(4,6-dimethyl-2-

pyrimidinyl)sulfanilamide) and was also separated previously by buffered 

superheated water (Chapter 3). In this experiment, it was chromatographed 

using deuterated phosphate buffered pH 3.0 at 160°C, resulting a 

chromatogram with a peak at 12.87 min (Figure 6.12). Using a stop flow 

mode, the NMR spectrum was obtained (Figure 6.13). MS detector also 

detected the peak, yielding a spectrum (Figure 6.14). 

The NMR spectrum of sulfisomidine (Figure 6.13) showed similar aromatic 

resonances to the spectrum of sulfamethazine (Figure 6.8), the two doublets 

at 7.60 and 6.75 ppm were attributed to 0- and m- aromatic hydrogens and a 

singlet at 6.5 ppm was assigned to H4' of pyrimidine ring. Nevertheless, a 

singlet at 1.9 ppm seemed to be due to partially deuterated methyl groups of 

pyrimidine ring (H1' and H3'), since it showed one singlet instead of two 

singlets (199) and the signal was weaker than expected without deuteration. 

The MS spectrum also confirmed the deuteration, as shown the m/z 289 and 

326, which were the same mass ions as those of deuterated sulfamethazine 

(Figure 6.9). The m/z 289 was a D+ adduct of sulfisomidine deuterated at 

Ntk and -S02-NH- and two methyl groups of pyrimidine ring. In addition, the 

m/z 326 was a K'" adduct of the deuterated sulfisomidine. 
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Figure 6.12 Chromatogram of 106 pg sulfisomidine on column 

Chromatographic conditions: column, 5 pm ps-ova column; 

mobile phase, deuterated phosphate buffer pH 3.0 at flow rate 

1.0 ml min-1
; oven temperature 160 "C; UVabsorption, 254 nm; 

transfer time between UV and NMR, 33 s. 

It can be concluded that the deuteration occurred at N!::b and -S02-NH- and 

two methyl groups of pyrimidine ring of sulfanilamide derivatives under 

superheated water conditions, as the NMR resonances in the expected 

region were very weak or disappeared. MS spectra also confirmed the 

reaction, as shown the ions with extra masses from deuteration. On-line 

NMR and MS technique worked perfectly and provided very useful 

information for the reaction that happened. 

It should be noted that if the experiment was repeated using off-line mode 

NMR, we found the deuterated methyl groups were stable at room 

temperature and did not exchange back even in undeuterated water [115]. 
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0-
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4' 

Figure 6.13 NMR spectrum obtained using stop-flow mode for sulfisomidine 

in Figure 6.12. 

Sulfisomidine 

Figure 6.14 MS of sulfisomidine separated by buffered superheated 

deuterium oxide pH 3.0 in Figure 6.12. 
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6.4 Application to thiamine 

Thiamine, an essential vitamin B, contains pyrimidine and thiazole groups 

linked by a methylene bridge as the structure shown in Figure 4.19 and 

Figure 6.17. Thiamine was separated using superheated water 

chromatography with fluorescence detection as previously mentioned in 

section 4.1.2. According to the difference in retention time of the major peak 

detected by UV and fluorescence, it was thought that the two signals were the 

result of the oxidation of thiamine to thiochrome and that the two different 

compounds respond in the different detectors. 

Thiamine is decomposed by heat or in basic solution [179]. Its degradation 

generates more than 60 products, some contain aromas and many of them 

remained unidentified [220-221]. A list of several degraded products has 

been reported [220-223]. 

6.4.1 Separation at 160°C with buffered superheated deuterium oxide 

Freshly prepared thiamine was re-examined on the superheated water 

chromatography-NMR-MS system at 160°C (Figure 6.15), resulting a 

chromatogram with a big tailing peak at 3.77 min slightly overlapping with a 

small tailing peak at 8.55 min. By using a stop flow mode for the main peak 

at 3.77 min, the NMR spectrum was obtained (Figure 6.16). When the flow 

was started again, MS detection was performed and a spectrum obtained 

(Figure 6.18). 

The NMR spectrum of pure thiamine in cold deuterium oxide without the 

superheated water separation (Figure 6.17) was also measured and all the 

resonances matched the reference NMR spectrum [199]. The resonances 

were assigned: two singlets at 2.5 and 2.6 ppm (methyl H4 and H8 of thiazole 
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and pyrimidine ring), two triplets at 3.2 and 3.8 ppm (H2 and H3 of ethanolic 

group), three singlets at 5.5 ppm (H6 of methylene bridge), 8.0 ppm (H9 of 

pyrimidine ring) and 9.7 ppm (H1 of thiazole ring). 
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Figure 6.15 Chromatogram of 105 pg thiamine on column eluted by 

deuterated phosphate buffer pH 3.0. 

Chromatographic conditions: column: 5 fJfT1 ps-ova 
column; mobile phase, deuterated phosphate buffer pH 3.0 at 

flow rate 1.0 ml min·1
; oven temperature 160 CC; UVabsorption, 

254 nm; transfer time between UV and NMR, 33 s. 
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Figure 6.16 NMR spectrum obtained using stop-flow mode for the first large 

peak in Figure 6. 15. 

(a) = 0.0 - 10.0 ppm. 

(b) = Enlargement of the spectrum in a range of 2.0 - 4.0 ppm. 
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Figure 6.17 NMR spectrum of pure thiamine. 

The resonances of the separated thiamine NMR spectrum (Figure 6.16) were 

then compared tQ. those of non-separated thiamine spectrum. Similar 

resonances were found: two triplets at 3.05 ppm (H2) and 3.75 ppm (H3), two 

singlets at 5.45 ppm (H6) and 7.85 ppm (H9), and a singlet of methyl H4. 

Interestingly, the resonances of H1 (hydrogen of thiazole ring) and H8 

(methyl group of pyrimidine ring), which had been expected at -9.5 and -2.6 

ppm, respectively, were absent. It was believed that those two groups were 

deuterated because methyl protons of pyrimidine ring (H8) were labile and 

active for deuteration [215], as happened to sulfonamides in the previous 

section, and H1 was also labile. 
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Mass spectra were measured at different retention times (Figure 6.18 a-c). At 

3.56 min, it showed m/z 144, 145, 146 and 172 (Figure 6.18 a), and at 4.26 

min the ions at m/z 136, 146, 147 and 269-274 were analysed (Figure 6.18 

b). Scanned at 7.85 min (Figure 6.18 c), higher mass at m/z 161,177,283, 

and 299 were detected. 

In order to assign the peaks in Figure 6.18, the MS spectrum of pure thiamine 

without separation was obtained. Fresh prepared thiamine in 020 was 

directly introduced to the MS, resulting in two main peaks of thiamine 

molecular ion ([C12H17N40Sr, m/z 265) and its fragmented ion (m/z 144) 

(Figure 6.19). The small peaks at m/z 266, 267, and 268 were likely to be the 

first, second and third deuterium exchange of thiamine at H7 of amino and -

OH of ethanolic group. A very small peak at mlz 287 was a Na+ adduct of 

deuterated thiamine, as sodium phosphate buffer was used. Since thiamine 

can be decomposed to generate a major product, 4-methyl-5-thiazoleethanol 

(CSH9NS, m/z 143) [179], the peak at m/z 144 seemed to be the mass of 

protonated 4-methyl-5-thiazoleethanol {[CSH10NSn. In addition, the product 

was deuterated, shOwing m/z 145, 146, and 147. The m/z 122 corresponded 

to the mass of the pyrimidine fragment. 

A mass spectrum of 4-methyl-5-thiazoleethanol in 020 buffer was also 

investigated (Figure 6.20). By directly introducing the solution to the MS, the 

result showed a main peak at m/z 146 which was thought to be a result of a 

deuterium exchange at the ethanolic group and 0+ adduct of 4-methyl-5-

thiazoleethanol, [CSHS02NSr. The Na+ and K'" adduct were also formed, 

giving m/z 167 and 183, as sodium and potassium hydrogen phosphate 

buffer were used. 
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Figure 6.18 a-<: MS spectra obtained for the first large peak (a and b) and 

the second following peak (c) in Figure 6.15. 
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Figure 6.19 MS spectra of thiamine in deuterated phosphate buffer pH 3.0 

and injected directly to MS. 
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Figure 6.20 MS spectrum of 4-methyl-5-thiazoleethanol in deuterated 

phosphate buffer pH 3.0 and injected directly to MS. 
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Hence, by comparing the peaks of the MS spectrum in Figure 6.18 (a-b) with 

those of Figure 6.19 and 6.20, the m/z 144 was a protonated 4-methyl-5-

thiazoleethanol ([CSH10NSn, whereas, mlz 145 and 146 vvere its deuterated 

products and D+ adduct [CsHgDNSr and [CsHsD2NSt. The m/z 147 could 

occur from deuteration at the ethanolic group and H1 hydrogen of thiazole 

ring, including a D+ adduct, [CSH7D3NSt As there was trace of methanol in 

the mobile phase, the m/z 172 was thought to be a formylation of 4-methyl-5-

thiazoleethanol, hovvever, there was no further evidence for this addition. 

Figure 6.18 b also shovved ions at mlz 269-274 which confirmed that 

molecular thiamine existed after the separation. The m/z 271 peak 

corresponded to ([C12H1,DsN40Sr that indicated deuteration at the methyl 

group of pyrimidine (H8), amino hydrogen (H7) and ethanolic hydrogen. The 

m/z 136 ion could not be identified. In Figure 6.18 c, two main peaks at mlz 

177 and 299 vvere thought to be formylation of 4-methyl-5-thiazoleethanol 

and thiamine, respectively. However, the other peaks remained unidentified, 

since they vvere not matched the reported thiamine degraded products [220-

223). 
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Figure 6.21 Thiamine and 4-methyl-5-thiazo/eethanol and their deuterated 

product. 
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The separation of 4-methyl-S-thiazoleethanol by buffered superheated 

deuterium oxide and on-line detection by NMR and MS was also studied. 

The experiment was carried out by introducing 4-methyl-S-thiazoleethanol 

solution in phosphate buffer to the system at 160°C. The resulting UV 

chromatogram showed only one large peak with a retention at 8.27 min 

(Figure 6.21). The NMR spectrum (Figure 6.22) exhibited two triplets of the 

ethanolic group at 2.9 ppm (H2) and 3.7 ppm (H3), and a singlet of methyl 

group (H4) at 2.2S ppm. All resonances matched the reference NMR 

spectrum of 4-methyl-S-thiazole-ethanol [199], except two singlets at -8.S 

ppm (-OH) and at -4.0 ppm (H1) were absent. Since the hydroxy hydrogen 

and H1 were labile, it was postulated that deuterium exchange occurred at 

both positions. This confirmed by the MS spectra of 4-methyl-S

thiazoleethanol (i=igure 6.23) which. gave only one peak at mlz 147 of a D+ 

adduct of deuterated 4-methyl-S-thiazoleethanol, [CSH7D3NSr. 

1 I I I I I I I 
o 4 • 12 .1n 

Figure 6.22 Chromatogram of 100 pg 4-methyl-5-thiazoleethanol on column 

eluted by deuterated phosphate buffer pH 3.0. 

Chromatographic conditions: 5 pm ps-ova column; mobile 

phase, deuterated phosphate buffer pH 3.0 at flow rate 1.0 ml 

min·1
; oven temperature 160 "C; UV absorption, 254 nm; 

transfer time between UV and NMR, 33 s. 



CHAPTER 6: Hyphenated Methods of Detection 165 

4 

3 

2 

(b) 

~ 0 ~ 
pp. :!I.8 3.8 3.' 3.2 3.0 2.8 2.8 2.' 2.2 

4 

~. . f .NH 
HO-H2G-H2C J 

3 2 S 1 

-CH3 (a) 

HOD 

I 

... • , 2 

Figure 6.23 NMR spectrum obtained using stop-flow mode for 4-methyl-5-

thiazoleethanol in Figure 6.21. 

(a) = 0.0 - 10.0 ppm. 

(b) = Enlargement of the spectrum in a range of2.0 - 4.0 ppm. 
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Figure 6.24 MS spectra obtained for 4-methy/-5-thiazo/eethano/ separated 

by buffered superheated deuterium oxide in Figure 6.21. 

It was concluded that under buffered superheated water conditions at 160 oC, 

thiamine was partly degraded on the column, resulting in 4-methyl-5-

thiazoleethanol. The main peak (3.77 min) on the chromatogram showed that 

thiamine was the main constituent but it was deuterated at -Nth. -OH, and 

methyl hydrogens of pyrimidine ring. The methyl hydrogens of pyrimidine are 

also very active [2151, as detailed in the previous section. This was 

confirmed by the NMR spectrum. When introduced to the ES-MS, 

(deuterated) thiamine was further degraded to (deuterated) 4-methyl-5-

thiazoleethanol and some unidentified products. It could not be determined if 

the deuteration was taking place before the degradation or afterwards. 
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6.4.2 Separation at 190°C with buffered superheated deuterium oxide 

The experiment was further investigated by raising the temperature to 190 GC. 

Freshly prepared thiamine was chromatographed, resulting a major large 

peak (1.59 min) and a fronting minor peak (4.44 min) (Figure 6.25). 

The NMR measurement could be only obtained from the first large peak of 

chromatogram (Figure 6.26). By comparing the resonances of separated 

thiamine (Figure 6.16) and the separated 4-methyl-5-thiazoleethanol (Figure 

6.22), it was thought that this peak contained a mixture of thiamine and 4-

methyl-5-thiazoleethanol and the spectrum was a result of an overlap of the 

two spectra. The resonances were assigned for deuterated thiamine at 

singlets at 5.4 (H6) and 7.9 (H9) ppm and the triplets at 3.05 (H2) and 3.75 

(H3) ppm, whereas, a singlet at 2.35 (H4), two triplets at 3.0 (H2) and 3.7 

(H3) ppm were of 4-methyl-5-thiazoleethanol. This was confirmed by MS 

spectra in Figure 6.27 a, the large peak at 1.59 min on the chromatogram 

contained m/z 144, 145, and 146, which were protonated and deuterated 4-

methyl-5-thiazoleethanol, and m/z 269-272, which were deuterated thiamine. 

Figure 6.27 b is the MS spectrum of the second fronting peak at 4.44 min on 

the chromatogram in Figure 6.25. It is obviously seen that there was only 

one component in the peak. It was deuterated 4-methyl-5-thiazoleethanol, as 

its D+ adduct showed m/z 147. 

It can be summarised that in phosphate buffer pH 3.0 at 190°C, thiamine was 

degraded and separated, resulting the first large peak which contained a 

mixture of deuterated thiamine and protonated 4-methyl-5-thiazoleethanol, 

whereas, and the second peak contained only deuterated 4-methyl-5-

thiazoleethanol. 
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Figure 6.25 Chromatogram of 100 Jig thiamine on column eluted by 

deuterated phosphate buffer pH 3. O. 

Chromatographic conditions: column, 5 pm ps-ova column; 

mobile phase, deuterated phosphate buffer pH 3.0 at flow rate 

1.0 ml min·1
; oven temperature 190 "C; UVabsorption, 254 nm; 

transfer time between UV and NMR, 33 s. 
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Figure 6.26 NMR spectrum obtained using stop-flow mode for the first large 

peak in Figure 6.24. 

(a) = 0.0 - 10.0 ppm. 

(b) = Enlargement of the spectrum in a range of2.0 - 4.0 ppm. 
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Figure 6.27 MS spectra of the first and second peak of thiamine 

hydrochloride separated in buffered superheated deuterium 

oxide at 190°C in Figure 6.24. 

(a) = The first large peak 

(b) = The second peak 
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6.4.3 Separation at 190°C with unbuffered superheated deuterium 

oxide 

Further investigation was carried out using pure superheated deuterium oxide 

mobile phase at 190°C. The resulting UV chromatogram of thiamine showed 

a major peak (4.78 min) overlapping with an unresolved smaller broad peak 

(5.95 min) (Figure 6.28). The NMR measurement could be performed only on 

the major peak, yielding a spectrum (Figure 6.29) whose fingerprint was 

exactly the same as that of deuterated 4-methyl-5-thiazoleethanol spectrum 

(Figure 6.22). The second broad peak (5.95 min) of the chromatogram gave 

very weak NMR signal, therefore, it could not be identified. The main 

component contained in the major peak was, therefore, deuterated 4-methyl-

5-thiazoleethanol which was confirmed by MS spectrum of the major peak 

with m/z 147, (Figure 6.30 a). 

The mass spectrometer could detect peaks of m/z 268, 269 and 270 (which 

corresponded to deuterated thiamine) at 5.6 min after the first peak detection. 

Intensities of these peaks were approximately 20 times lower than of 4-

methyl-thiazoleethanol. This suggests that ca. 95% thiamine had been 

degraded and deuterated during the separation in superheated deuterium 

oxide at 190°C, resulting in the product, deuterated 4-methyl-thiazoleethanol 

which was eluted as the first major peak. While a small amount (-5%) of 

thiamine remained undegraded and was separated later as deuterated 

thiamine. 
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Figure 6.28 Chromatogram of 105 pg thiamine on column eluted by 

deuterium oxide. 

Chromatographic conditions: column, 5 pm ps-ova column; 

mobile phase, deuterium oxide at flow rate 1.0 ml min-1
; oven 

temperature 190 'C; UV absorption, 254 nm; transfer time 

between UV and NMR, 33 s.; MS split ratio, 20:1. 
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Figure 6.29 NMR spectrum obtained using stop-flow mode for the first major 

peak in Figure 6.27. 
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Figure 6.30 a-b MS spectra of thiamine hydrochloride separated in 

superheated deuterium oxide: (a) = Degraded thiazole, (b) = 
Thiamine 
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It can be concluded that thiamine was separated under buffered pH 3.0 

superheated deuterium oxide, at 160 oC, resulting in the main product, 

deuterated thiamine, 4-methyl-5-thiazoleethanol and some unidentified 

products. Thiamine was deuterated at -Nfu, -OH, and the methyl hydrogens 

of the pyrimidine ring and 4-methyl-5-thiazoleethanol was deuterated at -OH 

and at the hydrogen on thiazole ring. On raising the temperature to 190 oC, 

thiamine seemed to degrade more, giving a mixture of deuterated thiamine 

and 4-methyl-5-thiazoleethanol contained in the main peak and a small 

following peak containing deuterated 4-methyl-5-thiazoleethanol. When the 

mobile phase was changed to deuterium oxide at 190 °C, thiamine degraded 

even more, as the NMR spectrum no longer showed the resonances of 

thiamine and the MS spectrum of the main peak showed only deuterated 4-

methyl-5-thiazoleethanol peak. A trace of deuterated thiamine was found in a 

very small amount (5%) by MS detection. The result of degradation of 

thiamine agreed with reports that thiamine can be degraded by heat or in 

basic solution at pH > 5.5 [179]. Its degraded products are more than 60 

components, including the main component, 4-methyl-5-thiazoleethanol [225-

226]. Although, many degraded products have been characterised, only a 

few of them matched the degraded compounds in this work. In addition, the 

oxidation of thiamine to thiochrome was not found in this experiment. This 

was probably because thiochrome was initially present in thiamine sample at 

low proportion. 
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6.5 Summary 

The on-line coupling of superheated water chromatography-NMR was 

expanded to the use of MS spectroscopy as an additional on-line detector. 

The detection of reactions occurring in superheated water conditions was 

possible, as NMR and MS provided very useful information. No problem in 

the use of buffer were found with ES technique, but the buffer salt ion 

adducts were formed, i.e. D+, Na+, and K'" adduct. The great success of the 

hyphenated system was shown by the separation and identification of 

salicylamide, sulfonamides and thiamine. Two-dimensional NMR spectra was 

achieved using a stop-flow mode NMR for salicylamide and the resonances 

of the compound matched the reference spectrum. A number of sulfonamide 

samples, namely sulfacetamide, sulfadiazine, sulfamerazine, sulfamethazine 

and sulfisomidine, were investigated. NMR and MS could detect deuteration 

of the compounds under superheated conditions, as some expected NMR 

resonances disappeared and the ions detected by MS showed extra mass. 

We found deuterations occurred at NJ:::k and -S02-NH- and methyl groups of 

the pyrimidine rings. 

NMR and MS could also trace the reaction and degradation of thiamine under 

the conditions. In buffer pH 3.0 at 160°C, thiamine was deuterated and 

partly degraded to 4-methyl-5-thiazoleethanol and other trace components. 

At higher temperature (190 QC), thiamine was further degraded and the 

degraded product, 4-methyl-5-thiazoleethanol, was also deuterated. The 

degradation increased when changing the mobile phase from pH 3.0 to 

normal deuterium oxide. All of the results from these experiments were owing 

to a successful on-line separation and detection by superheated water 

chromatography-NMR and MS spectroscopy. 



Chapter 7 

Conclusions and Future Work 

Superheated water has been utilised successfully as a mobile phase for liquid 

chromatography. The application of buffers, the effects of additives to the 

mobile phase and the feasibility of coupling of the chromatography to a number 
. ' 

of detection methods: UV, fluorescence, NMR and MS were demonstrated, 

7.1 Using modifiers and buffers 

Buffered (i.e. phosphate, borate, etc.) water was shown to be attractive for the 

separation of ionisable compounds as it could control the pH during separation, 

without salt precipitation in the system, The separations were more consistent 

on a run to run basis and no damage was found in the hardware system. A 

comparison between the separation with buffered superheated water 
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chromatography and a conventional reversed-phase chromatography showed 

that the retention order of compounds was very similar. It was shown that there 

was little change in the pH of the buffer at elevated temperature. The 

dissociations of model compounds increased at elevated temperature, compared 

to those measured at room temperature. 

Ion-pair reagents, could also be added to the mobile phase and the separations 

of ionised analytes followed those the conventional reversed-phase LC mode. 

Most of the work was performed on PS-DVB columns because aDS columns 

collapsed. It was found that the superheated water caused a permanent 

damage to silica-based column. 

7.2 Detection methods 

Most LC spectroscopic detectors were found to be compatible with the 

superheated water chromatographic system. Both UV and fluorescence 

detection methods were employed. However, the fluorescence of some 

compounds, i.e. dansyl amino acid, was quenched by heat from the system. The 

response for riboflavin using a fluorescence detection was linear and the 

sensitivity of this method was comparable to a conventional RP-HPLC. 

Despite of the sensitivity difference between UV and NMR detection, the on-line 

linking of superheated heavy water chromatography-UV with NMR was very 

successful. The sensitivity of NMR was improved by using the stop flow method. 

Unlike SFC-NMR, the detection could be carried out at room temperature and 

pressure. This provides additional benefits as the spectra can be compared to 
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reference spectra obtained by conventional NMR measurement. Deuterium 

oxide proved to be a perfectly substitute for water when on-line coupled to the 

NMR. The NMR spectra of a series of model compounds, such as barbiturates, 

some analgesics, and a separated kava extract were confirmed by the reference 

spectra and demonstrated successful separation and simultaneous 

identification. By using the stop-flow mode, COSY spectrum of salicylamide 

could be obtained. An extension of superheated water LC-NMR to MS detection 

was also achieved, as we could monitor reactions occurring under superheated 

water conditions. Separation and on-line identification of a series of 

sulfonamides and thiamine were studied. The deuteration of sulfonamide 

compounds and a degradation and deuteration of thiamine were observed. The 

spectra of the separated sulfonamides showed that protons of methyl group(s) of 

pyrimidine ring were exchanged. A similar reaction occurred to the methyl group 

on pyrimidine ring of thiamine. Thiamine might be oxidised to thiochrome during 

separation. The NMR and MS results showed that the major degradation 

product was 4-methyl-5-thiazoleethanol and both compounds were further 

deuterated under superheated water conditions. The NMR measurement of 

separated riboflavin resulted in a. spectrum which corresponded ta those of the 

reference but a signal was absent. Since the separation was under superheated 

water conditions, we suspected those hydrogens had been exchanged with 

. deuterium. As the time was limited, a confirmation by MS result could not be 

performed but should be the subject of further study. As the spectra obtained 

from NMR and MS were very informative for structural elucidation, this method 

could be applied to a study of natural products. No problem was found in using 

buffered superheated deuterium oxide in the hyphenated system. 
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Future work 

Although quite a number of detection method were demonstrated in the present 

work, some detectors were not examined, for example refractive index (RI) 

detector. As the RI detector is very thermally sensitive [45], we postulated that it 

might not be suitable for the detection system, unless a highly efficient cooling 

system can be used. Other detection methods, such as infrared (IR) 

spectrometer, electrochemical detector, etc. may be possible. Problems that 

may arise when coupling to IR detector are an unavoidable strong -OH 

transmission band of superheated water mobile phase [45], the low sensitivity of 

IR detection [46], a suitable water resistant flow cell, etc. Electrochemical 

detector would be more suitable, however, it is necessary to have an extremely 

pure mobile phase with free of oxygen [46]. Other detection techniques, 

including flame ionisation detector (FIO), thermionic detector(TID) and flame 

photometric detector (FPO), from gas chromatography may be of more interest. 

Recently, superheated water chromatography with FIO has been exploited in a 

separation and detection of volatile and non-volatile compounds [32, 227-228]. 

Applications of the coupled superheated water LC-NMR-MS system to 

complicated or unknown compounds, such as hormone and drug identifications 

is a positive future role. As well as the coupling of the system to 1 H NMR, 

coupling to 19F NMR may be possible, though the sensitivity of 19F NMR is lower. 

As deuteration occurred under superheated water conditions, this reaction could 

be employed to form deuterated compounds which might make an internal 

standard for mass spectroscopy. 

Pawlowski et al. added very small amount of organic additives, such as 

acetonitrile to superheated water to improve the peak shape. [35]. They 
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revealed that by using PRLP-S column and an addition of 1 % acetonitrile in 

superheated water could reduce the interfacial tension and promote the mass 

transfer but it did not change the solvation properties of water. Similar 

experiment will be also interesting for PBO-zirconia and other columns. 

However, a major problem still facing superheated water is a good thermally 

stable column. 
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