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ABSTRACT

in thlis thesis numerical integration in 1- and 2-dimensions is
considered. In Chapter 2, transformation methods are considered
primarily for singular integrals and methods of computing the
transformations themselves are derived. The well known transformation
based on the IMT rule and error function are extended to non-standard
functions. The implementation of these rules and their performances
are demonstrated.

These traﬁsformations are then extended to two-dimensions and are
used to develop accurate rules for integrating singular integrals. In
addition to this, a polynomial transformation with the aim of the
reduction in the number of function evaluations 1is also considered
and the resultant product rule is applied to two-dimensional non-
singular integrals.

Finally, the use of moncmials in the construction of integration
rules for non-singular two-dimensional integrals is considered and some
rules developed. In all these situations the rules developed‘are
tested and compared with existing methods. The results sﬁow that the

new rules compare favourably with existing ones.
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CHAPTER 1

INTRODUCTION AND BACKGROUND




1.1 BACKGROUND

" Quadrature has been a very valuaﬁle branch of applicable
mathematics and the earliest evidence of this dateé back to the days
of Gauss (1866). Over the years, the areas of application have
grown in bounds. In this regard the question of integral transforms
readily comes to mind. While direct application of quadrature to the
evaluation of Laplace, Fourier, Mellin and Haﬁkel transforms has been
demonstrated by A. Erdelyi (1954) ané A, Talbot (;979), of greater
;nterest is the application to the problems arising f:dm quantum and
fluid mechaniéé; Recently, it waé realised that the integrals
occuring in the calculations of enerxgy levels of atomic and molecular
systems-caﬁ be‘simplified by Fgurier representation o:_the Green's
_functions empioyed. Hall:(l967) first employéd this idea aﬂd
evaluated the transformed integrals by using Gaussian product
gquadrature. This approach was confirmed and improved upen by the
works of M. Blakemore, G.A. Evans and Jf'Hylep (l974)._lThese later
éontributors.noticed that the transformed integrands were highly
oscillatory and achieved better results by replacing the Gaussian
quadrature with more efficient special ones. A similar approach was
applied to the Vériatioﬂ iteration method by P.M. Morse and H.
Feshbach (1953) on problems involving the Hartree-Fock selffcénsistent
field method by Eyring et al (1944). " still in the same area J. Hyslop
(1972) carried out the.calculation of the ground state energies of |
hydrogen and helium and the techniques involved required the recursive
use of efficient quadrature.

In fluid mechanics the story is almost the éame. In 1968 G.A.

Evans observed that the asymptotic form of the general Navier-Stokes



equation for slow viscous flows can be simplified by the application
of the complex Fourier transform. Inherent in his proposal was the
inversion problem which in general is a question of multiple iﬁtegrals.
Evans and Ockendon (1972) dealt with this p;oblem by using quadratures
that are well adapted to highly oscillatory integrands.

Another area where nuﬁerical qgadrature is indispensible is in
the solution of integral eguations. L.M. Delves and Mohammed (1985)
and C.T. Baker (1977) have extensive chapters in their respective books
showing that one of the most successful ways of solving integral
equations is by a procesg of successive approximation. This process
is accomplished by a judicious use of gquadrature. Closely associated
" with this is the evaigétion of_special functions by means of
quadratures, M. Abramowitz\ana I.A. Stegun (1965) offer a whole
range of such applications.k In statistics quadratures also find
useful applications as statistical distribution; which usually turn
ocut as special functions thch can only be évaluated numerically. The above
are a few applications in which quadrature is important.

Quadratures arise as a natural consequence from ordinary
differential and partial differential equations. For once the problem
of finding the solution of an ordinary differential equation has been
posed, the most obvious way of finding a solution is to integrate the

differential equation. Thus the solution of a differential equation,
y' = f(x,i_) ’ _ (1.1.1)
may be formally represented as

L= J flxyldx , (1.1.2)



from which many methods based on integration arise, such as the
linear multistep methods.

In partial differential equations, for example, the heat

equation,
: 2
aT _ 3T
3 - 5 v (1.1.3)
89X

may be solved easily (in traditional manner) for linear boundary

conditions of the form,

T -
5y tPT o= f@) . | (1.1.4)

But this problem becomes intractable when the boundary condition

is non-linear and is given for example as,

%% = T4 s at x=0 , : (1.1.5)
%5- = 0 , at x=1 . (1.1.6)

W. Sqﬁire (L970) showed that this problem can be simplified by

converting it into a non-linear integral equation of the form,

t _4
T(t) = 1 - —?jld—ﬂ; , (1.1.7)
[m{t-1)]
o]
which he solved by the successive approximation method.
From the above it is ¢lear that the basic problem is the
evaluation of integrals defined as,
Jf(_}_{_)dl{_ . : (1.1.8)
R

Here f is called the integrand which is either pilecewise

continuous or may contain finite discontinuities. The process



of evaluation of a definite integral of the form (1.1.8) by an
approximation which involves the use of a linear combinaticn of
the values of the integrand in the region of integration R, is

called quadrature. This approximation is usually represented as,

n
I F(x)dx = E wif(Ei) ' (1.1.9)
R i=1

where the wi's are the weight functions and the xi's are the
abscissas which usually lie in the region of integration R.

We resort to numerical quadrature for a number of reasons. .
First, most integ;als cannot be evaluated analytically in closed
forms and seconaly, where analytic methods are available, they are
tedious and liable to error. A further reason for using nﬁmérical
quadraturelis that theoretical methods are wholly inapplicable to
the problems of integrating experimental data.

Quadrature rules can be classified into many groups. The
broad groupings of cne dimensional and multidimensional are further
divided according to the type of integrand. 1In one dimension a
nurber of quadrature rules have been developed for weli—behaved
{smocth} integrands. Among these are Simpson, Newton-Cotes,
Clenshaw-Curtis (1960), Gauss and Patterson quadrature formulas.

P. Davis and P. Rabinowitz (1975) showed that the composite form
of Simpson is an effective integrator while the works of W.W.
Johnson (1915) and V.I. Krylov (1962} show Newton-Cotes as an
effective alternative. The problem which arises with high order
Newton—-Cotes formulae is the large alternating cocefficients which

induce numerical cancellation and hence instability. Not only this,



there are 2n degrees of freedom in an n point rule and only n of
these (the weights) are used to improve the truncation error. The
Gaussian formulae however use all 2n degrees to yieid a highly
accurate but non-progressive method. It is the introduction of a
progressive property that makes both Clenshaw-Curtis and Patterson
competitive despite some loss in accuracy over Gauss for the same
number of points. The Clenshaw—Curtis routine depends on the goed
approximation properties of Chebysﬁev polynomials to form a basis
fqr a quadratu;e rule whose abscissae are cosine weighted
(xn = cos.%g) and hence progressive. Patterson enhances a given
Gaussian formula with extra (and hence progressive),points to
yield a new fofmula. A.Hf Stroud and D. Secrest (1966) have
extensive demonstr&tions 6n the choice ana use of the Gaussian
quadrature while the works éf H. O'Hara and F.J. Smith (1969) not
only present Clenshaw—Curtis as one of the best rules for smooth
functions but go  further to show that it is one of the éuadrature
rules in which the error can be computed with some success.

For highly oscillatory integrands the above rules do not
generally yieldrgood results. Here the works of R. Piessens and
F. Poleunis (1971), Bakhvalov and Vasil'eva (1968}, A. Alaylioglu,
G.A. Evans and J. Hyslop (1973 & 1974), H. Hurwitz and P.E. Zweifel
(1959), H. Hurwitz, R.A.Pfeifer and P.F. Zweifel (19259), Y.L. Luke
(1954) , R. Piessens (1970), R. Piessens and A. Haegeman (1973) have
provided the solution. They shed light on the prcblem df'slow
convergence for increasing number of function evaluations and
offer efficient rules which are based on two strategies. In the

first strategy the zeros x, of the oscillatofy part of the integrand



+
are located and each subiptegral J ol is evaluated by a rule.
x5

Here it is advantageous to use a rule that employs the values of the
integrand at the end points of the integration interval since the
integrand is zerc at these pecints and more accuracy is cbtained
without additional computation. The second strategy splits up the
intégrand into factors such that one is oscillatory and the other a
smooth function. The oscillatory cne which is regarded as a weight
function w(x) is then treated like the n-th Legendre polynomial Pn(x)
which changes sign n times 4in [0,l1]. Piessenset al (1970) using this
device develcoped a way to circumvent the property of sign-changing
of wix) by defininé wo=sup|w(x)] for Osgsl, so that w(x)+wo does not
change sign on [0,11. With this set ﬁp.they developed Gaussian
quadratures with respéct to weight functicn w(x)+wb using in general
2n points instead of n for the evaluation of integrals. Thus these
two strategies help to circumvent the problem of oscillatory
integrands.

Success with singular quadrature is a very recent feature. As
a general principle singular integrands are subjected to techniques
which eliminate or at least change the singularity before subjecting
the integralé to numerical integration. Where singularities exist
at more than one point, it is always poésible to partition the range
into sub-intervals each containing not more than one singularity
which allows aifferent techniques to be applied to turn. So far
there has been two broad trends. One approach in which success has

been recorded is the one based on the convergence of sequences of

guadratures. The works of A. Cohen (1980), Genz and Rowland (1973),



G.A. Evans, J. Hyslep and A.P.G. Morgan (1983) are in this
direc?ion. The other strategy which has been equally successful
is that pioneered by C. Schwartz (1969}. In this approach the
singular integrand is transformed into a function which is
infinitely differentiable. With such transformations the.Frapezoidal
rule yields very accurate results bécause of the Euler-Maclaurin
summation formula. Contribuﬁions along this line inciude the IMT
rule (1970) (named after.Ifi M., Moriguti, S., Takasawa Y. who
_developed the rule), the works of M. Mori (1978 & 1985), X. Murota
and M. Iri (1982), G.A. Evans, R.C. Forbes and J. Hysiop (19855.
These aside, the gauss-chebyshev, Gauss-Log, Gauss-Jacobi,
quadrature rules afford additicnal ways of dealing with integrands
where the weight fﬁnctions contéiﬁ the singularities. Clearly these
méthods lack the generality to cope with a range of singularities and it
is quite laborious to generate new methods unless the resulting formulae
will have extended use. |

In more than one-dimension, one - line of development has been tﬁe
Monte Carlo approach which includes all those based on probabilistic
and number theoretic considerations. The 6ther main approach has been
the systematic methods which include the bulk of the methods based
principally but not exclusively on polynomial approximation. The
Monte Carloc  approach is usually applicable to problems with large
dimensions, irregular and erratic regions with integrands which may be
highly discontinuous. The accuracy that can be achieved is usually

1

low. In the main an integral [ f(x)dx is approximated by using the

o

idea of uniformly distributed n pairs of random numbers (xi,yi), such



that the following relationships hold,
(1) O < ¥y g f(xi) ’ C(1.1.10)

(ii) f(xi) < ¥y € 1, . o (1.,1.11)
For n, pairs of random numbers satisfying (i) the integral

1 .

J f(x)ax can be evaluated approximately as no/n. Hence,

0 1
I f(x)dx ¥ n /n . , (1.1.12)
0 o o

This basic idea can be extended to m dimensions. S.K. Zaremba
(1970) used the approach to calculate double and multiple
integrals, N.S.Bakhvalov N.M. Korobov and N.N. Cencou (1961}
applied it to.various classes of functiens in many dimensions.
6ther works in this area include those of R. Cerulus and RT
Hagedorn (1958), D.R. Cowdrey and C.M. Reeves (1963—1964), and
P.J. Davis and P. Rabinowitz (1956).

Under the systematic methods, there-are two main subdivisions.'
The extensiqn of the one-dimensional quadrature by product rules,
comes under the first division. The Cartesian product techniqué {as
it 1is éalled)‘which involves the recursive use of one dimensional
rules was extended to balls and spheres by W.H. Pierce (1957), to
spheres and cones by P.C. Hammer, O;J. Marlow and A. Stroud (1958)
and to spheres by A.H, Stroud and D.‘Secrest (1966) . Further
extensions of the method to cubes are due to the works of T.W. Sag
and G. Szekeres (1964), while the error inherent in the product rule was
considered by N.S. Bakhvalov in one of his theorems in 1959, Closely
related to the works on cubes is the extension of Romberg to higher

dimensions by E.B. Anders (1966). The novelty in the exténded Romberg



is that it could cope with singularities and give accurate results.
Another appreach with a fairly long history is the method of
finding formulae which achieve a given degree of precision using
the fewest possible points. Quadraturesderived from this approach
are usually called minimal point formulae. The basis of this type

of formula is usually set in a relationship of the form,

"
£ax =ja.f(x) . (1.1.13)
JR - 1 r

where (l.l.i3) is of degree say d if the following conditions are

satisfied.
f .
Ear = J ax , (1.1.14a)
R
fa st = [ alax , 1e1,2,...,4 (1.1.14b)
~r Lax 127000y ‘ .1.
R
i3 [ i 3j . .
Zargrxs = J xrxsdﬁ_, i,3=1,2,...,d (1.1.14c)
R
s+d
with a numbers of equations in n(s+l) unknowns.

.. A.H. Stroud showed that equation (1.1.14) has no sclution with

s+ [%]
n less than .

(a/2]

I.P. Mysovskih (1966) showed that minimal point formulae have
- 2s function evaluations less when compared with the Gauss product

rule of the same precision s, Thatcher (1957) and Stroud (1960) were



1o

the first to produce methods for constructing (s+l) point formulae
of degree 2 for any s-dimensional region but most of theilr points
were outside the region of iﬁtegration. G.W. Tyler (1953) invented
the (2s+l) points formula and this was improved by Stroud by his
equal weight formula which has a low error property. Other
contributions include the one by Mysovskih and the most recent ones
are those of A.M. Cohen and D.A. Gisma11a7(1985) and L.D. Jenkins
(1985). Closely related to this is the'fairly general approach for
: finding formulae of high degree of precision based on the symmetry
properties of the regicon. In this respeét the cube, ball and sphere,
centred at the origin share the property that when (xl...xn) is a
peint of the domain of integratior.x every point of the form (ixl,ixz,
...,ixn) is also in the domain. Using this as a basis J.N. Lyness
“(1965,1i,ii,iii,iv,v) produced a family of formulae of odd degree of
24+l for cubes while J. McNamee and F. Stenger (1967) developed
siﬁilar formulae for spheres and cubes.  Generally the formulae
‘frdnpartlysymmetrical region have less points than other types of
formulae. From the above it can be said that there is no general
theory that embodies all the rules in higher dimensions. Furthermore,
our discussion has been directed at established méthods with emphasis
on the efficiency of the wvarious rules and leaving out many methods,

most of which are still in their infancy.
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1.2 INTRODUCTION

In this work our main focus is primarily on the use of trans-
formations and monomials in develeoping rules for integration in
one and two dimensions. Iﬂ Chapter 2 two transformations are
generalised and effective methods of generating these transformations
are examined. Although these transformations are aimed specifically
at singular integrals, they are applied to botﬁ general and singular
integrals. This was aimed at establishing (if there are) any
advantages of this method over the conventional approach.

In Chapter 3, the generalised error function and the tanh
transformatioﬁ-are exténded to generate accurate rules for integrating
singular integrals in two dimensions_and their performance is compared
with thdse of Romberg. In.addition a different philosophy of trans-.
formation is developed for specifié usé with non-singular integrals in
two dimensions. The scle purpose here is to reduce the number of
function evaluations which is one of ﬁhe major defects of the product
rule.

In Chapter 4, the idea of monomials in line with the minimal
formula rule is used in constructing rules for non-singular integrals
in two dimensions. .As in other cases above the rules are tested and
compared with existing ones.

Finélly, Chapter 5 contains discussions, c¢onclusions and

recompendations for future work.



CHAPTER 2

| ,_TRANSFORMATION METHODS IN 1-DIMENSIONAL

~ SINGULAR QUADRATURE
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2.1 INTRODUCTION

In this chapter the use of transformations in constructing rules
for sinéular integrals in l~d@imension is examined. Two types of
transformations - the IMT type and the error function type are
generated. These examinations have been motivated by various workers
on singular guadrature. While authors like P.J. Davis and P.
Rabinowitz (1975) have given a general_over%iew of the problems
involved, specific work in this aréa includes the caufious Romberg
extrapolation approach by Cohen (1980), the accelerated quadrature
-sequence by Chisholm, Genz and Rowland (1973) and an extragolatién
procedure fof.the evaluaticon of singular integrals by G.A. Evans,

J. Hyslop and A.P.G. Morgan (1983). These references employ methods
based on the sequence of quadratures whose convergence is accelerated
by techniques such as Romberg, Shanks (1955) or Levin (1973).

ther_studies in this area include the numerical integration by

C. Schwartz (1969}, the integrafion formﬁla based on the trapezoidal
formula by F. Stenger (1973), and the works of W. Squire (1976 & 1979).
More recent works in this field include polynomial transformationéfor
singular integrals by G.A. Evans, R.C. Forbes and J. Hyslop (l9é4),

the IMT-type transformation in numerical quadrature by K. Murota and

M, Iri (1982), an IMT-type double exponential formuia for numerical
integration by M. Mori (1978), and quadrature formulas obtained by
variable transformaticon and the D=-E rule by M. Mori (1985). These
works involve finding a transformation x=G(t) which suépreSses the
singularities by suitable choicé of G'(t) which multiplies the
integrand in the transformed variables. In addition the transformations

go further in not only suppressing the singularities but also
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smoothing the integrand sufficiently to make the trapezoidal rule an
efficient integrator.

The methods that are being proposed in this investigaticn are
in the same spirit as the transformatiors in the preceding paragraph.
In addition to this attention is paid to efficient methods for

computing the transformations as the functions are no longer standard.
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2.2 FORMULATION QF THE IMT TYPE OF RULE p

Here we shall consider the integral of the form,

1
A= J £(x)dx , (2.2.1)
-1

with the transformation,
x = G(t) , _ (2.2.2}

where G(t) is defined as,

G(t) = {g(t) - g{O)}/g(0} , ' (2.2.3)
_ £ -f‘-gi*)
and g(t) = @ J e 1% 4, (2.2.4)
-1

Differentiating (2.2.2) we have,
dx = G'(t)dt . {(2.2.5)

Substituting (2.2.2) and (2.2.5) in {2.2.1) we have,

il

A J f{c(ty}G' (t)dt . (2.2.6)
-1

Since G(t) maps the interval (-1,1) on to itself, if we put,
kit) = <£{c(t)}c'(t} , (2.2.7)

then {(2.2.6) becomes,
rl
A =J k{t)at . (2.2.8)
-1

-
2
From (2.2.8) it is clear that k(t) yields a factor e 1-¢

which tends strongly to zero at the end points *1 as do all the

higher derivatives of the new integrand. Hence applying the



Euler-Maclaurin formula,

n h n-1 m
L: Blmax = Slf+E} + h kgl £l +i£lB 21 D
o] " (2i) !
+R_(my ,
m
where Rm is expressible as,
_ : 2m+2 _(2m+2)
R = "o B (&)
<
and xo £ < xn
to (2.2.8) we have,
rl A n-1
J k(t)ydt = hj_-—l k(t,) +Rm ,
-1 -
n
with kM1 =K@ =0, 6 = ke

2i-

15

(2i-1)__(24-1)

[, 5

1

(2.2.9)

(2.2.10)



2.3 DERIVATION AND IMPLEMENTATION OF THE FUNCTION g(t)

The function g(t) is defined as,
Y G

)
gty = a] e ™ & ,
-1

Ignoring the normalisation constant d defined as,

can be generated in two ways:-

(&) By Direct Integration

By using the substitution,

1

1-x

and differentiating (2.3.4) we have,

_ 2xdx
(l-xz)2

ay
(2.3.5) implies that,

ax o= ot (B S
y 1)i
2{(1-—
( Y

Substituting (2.3.5) and (2.3.6) in (2.3.3) we have,

(—3;-ﬂ
2 -cy
. 1| 1-&7 e
gl(t) = 3 I dy .

2.1
l,_......
v y)

16

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

(2.3.7)
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Using the binomial expansion of l/(l-;)% we have,

o tz oy -3 -2
. IR UV N SRR U
g (6) = -3 J o {1+(-2)( I S+
- Y y
1 .35
PP i35 1,
31! 3 {2.2.2.2)4) 4
Y Y

...} dy . (2.3.8)
By expressing the coefficients of yrlin factorial form each term

of (2.3.8) can be generalised. Hence (2.3.8) can be written as,

(2n) 1 . e Y |
g, ft) = % ! S5 —> 4 - (2.3.9)
‘ 2 (n1) 1
1-t2

[ e—zt . 3
E (z) = J = at . (2.3.10}
n 1t

Adeopting the substitution u=zt, (2.3.11)

differentiating (2.3.11) and substituting in (2.3.10) we have,

n-1 f e_u
E {z) = =z J — du . (2.3.12)
n n
u
z
Hence (2.3.9) beccmes,

v (2n)1 2. n+l '
g0 = 3 [ 2Bl oMy g . @say

n=0 2 (n!) 1-t

(2.3.13) can be further written as,
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2 ! 2. n+l
g, = 3™ xSy vy § EU Ay S
1-t n=l 2 {n!) 1-t
(2.3.14)
By using the recurrence relation nEn+l(t) = e-t—tEn(t) (2.3.15)

(2.3.14) can be impiemented in a straightforward manner with
only E2(t) requiring separate calculation. The function g(t)

generated in this manner is effective for the range -1.0 € t+ g -0.5.

-~

" For the range of £t -0.5 ¢ t £ 0.0,g(t) can be generated by series

solution.

(b) The Generation of g(t) by a Series Solution

Consider gl(t) expressed as,

i - (=) -
I g = q-th? o It g e . (2.3.16)

Differentiating (2.3.16) we have,

c (o4 v o4
-(l—t2) 2 “(1—1:2) ~ 2.2 -(1-1:2) -

= =-4t(l-t }e gl(t)+(l—t ) e {gl(t) -
—Efﬁg-ﬁ—él(t)} ) (2.3.17)
(-t )

{2.3.17) implies that,
2 2~ ~ 2
(1-t ) gl'(t) - gl(t) {2€(2+c-2t")} -1 =0 . (2.3.18)

2dopting the substitution,

g0 = T att . ' (2.3.19)
k=0



Differentiating (2.3.19) implies that,

~

g (t) = ) ka, t .

k-1

- {2t(2+c—2t2)} ) a

19

(2.3.20)

{2.3.21)

By changing the index of summation and substituting for k=0(1)4

in (2.3.21) we have the following result,

I ket - ] 2028t 4 ] (et)a

k=5 k=5

+ z 4ak_4tk_l -Z 2(c+2)ak_2tk_

k=5

—2(c+2)aot+33 t2—2a t2-2(c+2)alt2+4a

3 1

3 3 3
—4a2t +4a0t —2(c+2)a2t

Equating ccefficients in (2.3.22) yields the following

relationships,
al -1 = 0
2a2 - 2(c+2)aO = 0
3a3 - 2al - 2(c+2)al = 0
c
aO = e gl(O)

From (2.3.23),

-1
&

]

a

+2
2 aotg )

l+a—l+2a t

(2.3.22)

(2.3.23)
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]
il

al(6+2c)

23]
i

${(4+c)a. - 2a_}
2 0 b (2.3.24)

and for n>4,

a = {(2n+2+2c)an_l - (n+1)an_3}/(n+1) .

n+l J

In equation (2.3.24) the two term recurrence relation is used to
generate an for n>4 and so time is saved. The sum is then used
te generate g(t) for -0.5 ¢ t £ 0.0. Symmetry is then applied to

complete the entire range (-1,1).
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2.4 IMPLEMENTATION OF THE IMT TYPE QF RULE

Consider the integral,

tb
I = J g{x)dx (2.4.1)
LY
a
Using the transformation,
Dk = _b;a_ £+ __b;a ] (2.4.2)
for t€(-1,1) and (2.2.2), {2.4.1) becomes,
/1 . - ()
b-a b-a b+a 1-t
= fi— - 2.4.3
I 25 (0) J L2 G(t) + 2] e dt { )
-1

For t<0 (2.4.3) gives,

r

2g (0) g{0)

1
_ b-a rb—a glt) _
* - ) PE e
1

and for t>0

Cc

= )

2
1} N Ei;-a-]e 1=t &t (2.4.4)

C

~(—)

1-t

1
b-a | b-a
= £ |=—
I = 250 J [2

Hence the formulaein (2.4.4) and (2.4.5) reduce

for t<0.0 and,

b-a n-1

T = h )
29 (0) ;2

for't>0.0.

_gl=t)]| , b+aj
g (0)

f[ - g"a
L g

dt (2.4.5)

2]

to,

(2.4.86)
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Using the double parameter coding to avoid cancellation (2.4.6)

is coded as,

<

- )
n-1 2
b-a ~|b-a 1-t
= £ lo——
I 73(0) h izl ’__29'(0) g(t)] e for t<0.0
and (2.4.7)
n-1 I—' =4 < 2)
b-a ~|b-a 1-t
I = 23(0) h izl £ 23(0) g(t{] e for t>0.0

and the function £{(x) is coded as,

" £f(a+x) , x < 0.0
f(x)= (2.4.8)
f(b-x} , x > 0.0
This was given an extensive test and the results are documented

in Tables A and B. The computer program for the work is listed

in Appendix (i).
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2.5 ERROR ESTIMATE IN THE IMT TYPE OF RULE

The error estimate in the proposed IMT type of rule is analysed
in two ways. The approach where the error is assumed to be
expressable in closed form and the recent approach by Masaloke Mori

(1978) and generalised by Mecrota and M. Iri (1982).

(a} Closed Form Approach

F. Hildebrand (1956) showed that the error in Euler-Maclaurin's

rule,
rtr r-1 ,
J k(t)dt = h ) kit + k(e )+k(t )]+
i=1 ‘

tO

m B '

2i 2i-1 2i-1
121‘21“ e O R (tO))+Em(r)fr (2.5.1)

is expressable in closed form as,

B
5 (x) = mr2_ 2m+2, (2m+2)

(2m+2) ! (&) , t0<£<tr . (2.5.2)

From the definition of k(t) (2.4.7) becomes,

rl n-1 '
I = J k(t)dt = h } k(e) + E_(r) . (2.5.3)
-1 i=1

Hence by successive approximation similar to that oflthe Romberg
approach Em(r) can be estimated by calculating I for h, 2h, and
4h for any particular integral. For example this principle was
used to estimate the error when the integral jl (l-x)ECOSﬁxdx

ﬁas evaluated using (2.4.7) with ¢=5.62, n=32:ﬁé, and 8. On 7

substituting in (2.5.3) and assuming k2m+2(€) is constant and

represented by U we. have,
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. 2m+2
= ~6.90€66122 .
I 6.90 n+ 328, , (2.5.4)
(2m+2) !
I = -6.90494590+ 16 B (2n) 20+, (2.5.5)
' 2m+2 ! _ ’
(2m+2) 1
_ 2m+2)
I = -6.78026862 + 8 B, ., (4h) U. (2.5.6)
(2m+2) |
Subtracting (2.5.4) from {2.5.5) and (2.5.6) from {2.5.5) we
have, .
—~ .00191532 = B UI16(2h) =2 _ 3p(n) 2mYe) (2.5.7)
2m+2 : ,
(2m+2) |
0.1265926 = B W [16(2h) 22*2 _ gan)2™*Y (2.5.8)
o 2mt2
(2m+2) )
Dividing {2.5.7) by (2.5.8) gives,
: Om+2 2m+2
— .0151297943 = l6(2h)2m+2 = 32‘h)2m+2 (2.5.9)
: 16(2h) - 8{4h)
(2.5.9) implies that,
2m+l = 6,0464972
and that,
m = 2.523234860 = 3 .
Henc rBBhBU -,
€ E (r) = —e—o . (2.5.10)
m 81

This shows that the IMT type of rule developed is of high order
and that the error in using the rule is of order 8 in this

particular case.
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(b) XK. Morota and M. Iri's (1982) approach to error estimation in
using the IMT type-of rule essentially uses an asymptotic expansion
and saddle point analysis. Applying this to the IMT type of rule,
the error can be estimated in the following way.

By the transformation g(t) the integrand, k(t) = £[G(%t)]G’'(t)
in (2.2.7) is infinitely differentiable on (-1,1) and vanishes with
all its derivatives at *1 (end points)}. Hence by Fourier series.k(t)

can be expressed as,

k(e) = -] cnein“(t+l’ , | ‘ (2.5.11)
n:—m
apd,
rt ~inm(t+l)
c = 1 J k(t)e at , (2.5.12)
-1

and {(2.5.l1ll) converges absolutely on (-1,1). Using the

Poisson's summation formula, the approximation,

N-1
2
s = 2 7 xéh (2.5.13)
=1 .
can be equated to J k(t)dt.
-1

Hence the N-1 point formula can be expressed in terms of the
Fourier coefficients as,

(o= ;
] c etmEae (2.5.14)

...l Nn==—co

2]
[}

oy * PEl(cpN *C oy - (2.5.15)

From the above, since the integral equals Co, the exror e is given by,

o

e = ) (c.+C ), (2.5.16)
p=1 BN PN
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and hence by K. Murota and M. Iri (1982},

m
]

o
2 JRe Con (2.5.17)
p=1
2 Re CN

e

[~+]
where JReC /ReC_+ O as N » ®,
1 o N
p= ’
Hence the error estimaticon is reduced to the evaluation of the
Fourier coefficients CN of k(t).

From (2.2.7) k(t) is regular in the domaiqﬂwhich includés

(-1,1) and hence by way of complex integral,

cy = [ k(gye T 4 (2.5.18)
r
Differentiating (2.3.9) we have,
| -~ (=)
gl(t) = 1] ;éﬁ?i%;g 2e(1-tH e T, (2.5.19)

By asymptotic expansion of (2.3.9) gl(t) is app;oximately

represented as, .

—{ )
2
gty 1§ 3 2 quh)™2 e It Ly L B D,
2n 2
27 (n!)
) 2.2
} c (2.5.20)
Hence 2.2 '
’ R ¢
g(t) g'(t) o - (2.5.21)
Differentiating (2.3.1l) we have that,
e .
. _(l— 2)
g'(t) = die T . |  (2.5.22)

Substituting (2.5.22) in (2.5.21) we have,



-5 2 2,2
1-t (1-t7)
= » I 7

g(t) de Stc (2.5.23)

For t>0 G(t) is defined as,
gl(-t) _
= 1 - . .5.

G(t) 9 (0) (2.5.24)
Differentiating (2.5.24) yields, N

G' (t) g (%) (2.5.25)

g(0)
Substituting (2.5.21) in (2.5.24) we have,
2.2
g'(t) (I-t5)
1 = -
G'(t) 1 Ztog (O) . {2.5.26)
-{ )
3
. - 2.2 2.2 1-t
¥ —_ -

Hence Gty = 1.8ty o, _dd-t) e (2.5.27)

2te o 2teg(0)

In order to simplify the analysis the multiplying constant
d is assumed'to be 1. Using symmetry and confining attention’

“to the first quadrant we define f for real t>0 as,

£(z) = a@-z%+o0lz|* A >—)

then k(t) = £[G(t)]G' (L)
‘ c —o c
[;l—t2)2 _(1—t2) _(1—t2)
Lz——tc'—g(—o)".e- | e - .; | (2-5-28)
(2.5.28) implies that,
_cla+l)
2 2a l--t2
k(t) = a-Li-t )a 1 = — (2.5.29)
(2tc) {g(o)}
_cla+l)
2.
< atd% 7t since (1-t2)2% ¢ & AT O

as t > 1,



_(o+l)
2 .
f ag® atl A=tT - SINT(EsD)

c. € g(o) e
(2c)®
r

N

Applying the saddle point method, we can define h(t) as,

h(t) = - Eiﬂ%ll = iNp(t+l)
t

Differentiating (2.5.31) with respect to t we have,

clg+l
h'(t) = -2——(-‘;—*-—’-iNn ,
t
and,
6c{a+l
h“(t):-————‘%‘-——’-.
t

When h'(t) = O, this implies that,

- im
e . et T
- Nt ©

In the vicinity of the saddle point,

. ={2¢(a+l)}l/3 -G

N &
therefore,
im,
20(e+n)3 "G ig
t - T e = Ge
hence, _(il) .
. 1 i
h{&%%ﬂi)/l e 6. +6Jﬁq
_ -clg+l) -
1/3 imw , 12
r{zcéz;n} re—(s) . Gelﬁ-_J
173 -5 -
iNﬂ[-{ggégiél} e 6 + GelB+{}

By binomial expansion and neglecting terms greater than

(2.5.35) becomes,

28

(2.5.30)

(2.5.31)

(2.5.32)

(2.5.33)

(2.5.34)

(2.5.35}

order 2
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2521 JE (2HN)1/3
im
/3 - . ]
iNT {:{_2_95(%;_1_’.} e © 4 geth. 1]_‘ (2.5.36)

(2.5.36) implies,

.1+ 2C(u+l)4/3

cla+l) - { m N
el LA cos{— +3B)-isin (-—+33)}
j 63(2ﬂN)l/3 6 6

2

{cosB-isinB
§

-iNn(gjégﬁil)l/s {cos(% —isin(%)} + & {cosB+isinB} o (2.5.37)

The real bart of (2.5.37) is,

_ 4/3
fiﬁ%ll cosB + 3513:31I7§ cos(% +3B8) +
§ & (27N)
- 2c{a+l) |1/3 , T .
~ Nm { 3TN } Eurré- 651n3] o (2.5.38)
. : 4/3
The dominant term in (2.5.38) for very small § is 2clarl) cos(T+38) .
3 1/3 6
§7 (27N)
Hence the maximum of (2.5.38) is when,
- .
E-+ 38 =0. {2.5.39)
(2.5.39) implies that,
m
= - —= ' .5.40
B 18 ° . ’ (2.3 )
By the Laplace method,
. sf(z )
"sf(z) /EFg(zo)e 0 16
I(s) = J glz)e dz * I (2.5.41)
c [sf (zo)l
Hence,
io
1873 -
¢, - a _ 1 _ {ZCéa.l)} e 6 T o«
(2c)” (g(0))



- A v
NT 2/3 37 2e(a+l) |1/3 ]
e_lc(a+l){2c(a+l)} e +1Nn({ N7 } e +1}]x
..{.ji)
1 {2c(a+l)}2/3 o 3
{6c(as1y}: L N7

. . Taking the real part,

o oA x{Zc(a+l)'}a/3 cos 8T
N 2g%guftt L Nm 6
Nt |2/3 T 2c{a+l) |1/3 T
e'[c(°‘+l){2c(a+1)} COSTN“{ NT } sing

2c (a+l) 12/3 T 1
T cCos—— X _—-—_—_—i-
6cf{a+l)

When a=0 the value of CN gives the intrinsic error of the IMT

type of formula.

30

(2.5.42)

(2.5.43)
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2.6 THE ERRCR FUNCTION TYPE OF TRANSFORMATION

B. Takahasi and H. Mori first used the transformation of the
form,

x = 4(8) (2.6.1)

where ¢(t)} is defined as the error function. In this investigation
this transformation is generalised. The generalised transformation

is defined as, '

gz(t) = C J e dx (2.6.2)
‘ 0]
wheré C is the normalisation constant defined as,
=]
_x2n _
1/c . = e dx . . ' ' . ' (2.6.3)
a)

The transformation gz(t) maps the interwval (-1,1l) into

{-=,®) and it is generated in two ways, valid in complimentary regions.

{a) Generation of gz(t) by Series Expansion

For small t and ignoring the normalisation constant C,gzﬁt)

¢t _.n
can be generated by series expansjon of J e* ax which is expressed as,
0
Jt x2n °z° ,(_l)mt2mn+l'
e dx = —_——— (2.6.4)
{
o =0 m! (Zmn+1)

This series suffers from instability for increasing values of t
because of large alternating terms causing cancellation before the
series falls off eventually for large m. Hence gz(t) is generated

in an alternative way as in (b).



(b} Differential Form of gz(t)

Ignoring the constant C,g2(t) can be expressed as,

2n

= e g, (t) .

bifferentiating (2.6.5) we have,

~ 2n-1~
! —— =
gz(t) 2nt gz(t) 1.
&dopt the substitution,
~ 1
gz(t) = -E ait .

&é(t) =

Substituting (2.6.7) and (2.6.8) in (2.6.6) we have,

1
© . 2n-1

—2n(aot
Equating coefficients
92(0.0) = 0.

al = 1

a2 ,a3' " 'azn_l

2na2n - 2na0

(2n+l)a2n+l -

(2n+1)a2n+i -

for terms containing t

a. + 2a2t-+ 3a t2 + 4a t3 + ...

3 4

2n+
+a. Dy g 20

k3 , . a.t2n+i—l

in (2.6.7) and (2.6.9) we have,

o

i
)

= 0
2na = 0

1

2na, = 0O
i

2n+i=-1

)

_l‘

32

{2.6.5)

(2.6.6)

{2.6.7)

(2.6.8)

(2.6.9)

(2.6.10)
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Hence,
4n+l
- U 2n+l n 2nt
= T . + ... b
g2 t+ 2n+l t * 2n+l 4dn+l (2.6 l;)

The terms in (2.6.1l) can be generalised and expressed as,

- 5
R X (2n)mt nm+l

92 7 57 L GaD (@D .. (Zme)

(2.6.12)

The series is effective for 0 £ t € 5 and n=1, for 0.0 ¢ t' ¢ 2.0
for n=2 and for 0 £ t € 1.25 and n=3. For large t,gz(t) is generated

by asymptotic expansion.

(c} Generation of gz(t) by Asymptotic Expansion

For large t,gz(t) is generated by an asymptotic expansion

formula based on the successive integration by parts of I defined

2n
as, o
f _x2n
I2n = J e dx . (2.6.13)
t .
, 2n
By putting, y = X . (2.6.14)
and differentiaﬁing (2.6.14) we have,
mx®lay = gy . (2.6.15)
Substituting (2.6.14) and (2.6.15) in (2.6.13) we have,
{+:]
[ oY
Topel = l 5oy O (2.6.16)
2nx
t
(2.6.16) implies,
rw
=y
_ die *) .
IZn—l = } T . . _ (2.6.17)
2nx
t

Integrating (2.6.17) by parts we have,
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~y -y
- e e {(-2n+1) dy
Tone1 1| | 7n Zn -1 (2.6.18)
2nx ) b'd 2nx
t t
Simplifying {2.6.18) we have,
2n r°°
I _ooe |t ey (2.6.19)
2n-1 2nt2n~-l (Zn)z x4n—l .
t
e"tzn (2n-1)
= — - T . (2.6.20)
2nt2n 1 (2n)2 4an-1
By repeating the integration we have from (2.6,20),
_t2n _t2n
1 _ e _ {(2n-1) e + {4n-1) {2n-1)
- B 2n- 2 4n-
2n-1 20t?™ Y om? Y 2m?ion)
T oefay | (2.6.21)
é6n=-1 ) T
e ¥
Hence (2.6.21) can be generalised to give,
2n . i
_ -t m+l {(2n-l)...{2mn-1) (2n(m+1)-1)
Ton-1 = ¢ Le-1) m omn-1
' (2n) t
(2.6.22)

But gz(t) = l—Ian, and hence g2(t) can be generatéd for large

t by (2.6.22).



2.7 IMPLEMENTATION QOF THE ERROR TYPE OF TRANSFORMATION
For accurate integration the distance from the curve x=gz(t)

to the asymptote %=1 needs to be computed accurately and this is

given directly by (2.6.22). On a low accuracy machine calculating

the distance l—gz(t) from (2.6.12}) can be a problem as gz(t) tends

rapidly to 1.0. This problem is handled by using a short range
Gaussian quadrature to give accurate values of the area between
x=g2(t) and its asymptote. Hence for a seven digit machine a 16

point Gauss Legéndre formula was used to evaluate the integral,

35

I =J e ¥ ax . ‘ . (2.7.1)

e = 10", | (2.7.2)

where 10 is the smallest real representation of the machine

used for the exponent. Hence,

N = exp(n(m{fn(l0)*2n) . ' (2.7.3)

Integrals of the general form,

b

s = J E(x)dx , ' R C(2.7.4)

a

where‘f(x) may have singularities at end points were considered.

Using the standard substitution,

x = }(bt+a)+i(b-a)g(t) , (2.7.5)

where g{t) is defined as,
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1 (t -x2n
gl(t) = EJ e ax , (2.7.6)
Q
{2.7.4) becomes,
1 [ _t2n
s = -z—c(b-a)J fli(b+a}+i({b-a)g(t)]e dt (2.7.7)

A
-C0

Applying the trapezoidal rule to {2.7.7) we have,

h N _t2n
5z (b-a) 1 fl¥(b+a)+}(b-a)g(t)]le = dt (2.7.8)
: e

where t=ih, i=0,%1,%2,+3,..., with the summation truncated at

i=*N when further contribution becomes iﬁsignificant. (2.7.8) is
implemented by taking an initial step size h (such as 0.5) and
stepping from 0.0 on both sides uﬁtil'further contributions to the
quadrature are no longer significant. This fixes the upper limit of
summation and yields the initial estimate cof the gquadrature.

Further intermediate points are then injected into the underlying

rule in a progressive manner increasing the accuracy until convergence

is achieved. In addition a double parameter form of f is used to
‘ 1

handle end point cancellation. For example the integralJ

0 v1-x

has a singularity at the point 1.0. Hence for £(x),

fi{x) = is coded as,
v1l-x

[ for x < 0.5
_j Yl-x

7
L-l—- otherwise. whe ol = 1-c
va

The rules developed as a result of the error type of transformation
were given an extensive test and the result is documented in Tables A

and B. Appendix (ii) contains the program for this work.
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2.8 ERROR ESTIMATE OF THE ERROR TYPE OF RULE

For the transformation

x = erfu (2.8.1)
the integral, 1
{
I = J fx)ax
. -1
becomes,
@ 2 2
I = £erf ur= exp{-u)du . {2.8.2)
<3

—00

Using the trapezoidal rule on (2.8.2), we have,

£ exf ) exp(-n>h2) . (2.8.3)

.-}

1 ~18

!
Ey defining the functien £ as,

£(x)- =‘(1-x2)'“, o<l , (2.8.4)

f

and using the saddle point analysis on the transformed integrand,

Flw) = 32 exp(-w) (l-erfow) ™%, (2.8.5)
/J’T .
N ® du Ai
where o plw) = J . } wa, (2.8.6)

-

with Ai as the coefficients and a, as the abscissae of the trapezium rule.

H. Takahashi and M. Mori (1970) establish the error in using (2.8.3), as,

eh) = 2nlow)] = 2nexpt'1§‘5) (2.8.7)
and that the truncated error e(N) is,
3
(N} = 2nexp(-3.4XV1—aN2/3)_ 7 (2.8.8)

2

When =0 the inherent error of the method was order exp(:g—).
h
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Using the generalised transformation,

ru

X = J exp(—tzn)dt ’ {(2.8.9)
QO

2
'zl
the generalised error of the trapezoidal rule can be written as,

-n*12.5 :
e(h) * 2ﬁexp(—9—h——) (2.8.10)

the generalised form of the truncated error as,

e 2
e(N) * 2nexp(-nx3.4x (l-a) N /3) (2.8.11)

and the inherent error of the method is expressible as of order

exp (~(n/m)2%) .



2.9 RESULTS
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The rules develcoped were applied to the following test integrals.

-l ~a

x dx = 10 {a=1-
"o
rl

x9'95£x dx = 1l.020
‘o
rl

-1 2

(1 + x2) l(ln x) X
J )
o]
rl _ _
"% 1/22 x(l v %) 1 ax
o

of Chrisholm et al.

[2n
Inxsinxdx = 2
F O '

rl
x3/2 dx = 0.4

‘o0

‘1 ' )
xl/zln x dx = 4/9

i)

1 :

[ x3/4 cos x dx = O.
o]

1_
[ «1/2 dx
‘0

= 2

rl -
[ 1/2 1/3] 1
J O'A'

1l
J In{(l - cos x) dx =
o]

1076

457359

1.937892293

1.237643927

.437653393

4451649239

0.8411169166

il

~-2.721065445
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11

12

{u=-1n x).

Test inﬁegrals

of

1
J x_l/2 In x dx = -4
o |
® 2.-1 L 2 -1 '
[ we Y(1+u) Tau = J u(l+u’) Tdx = 0.3433779615
Q 8]
w 1
J z'“(1+u)'1/2au = J (1+u)'1/2dx = 0.7578721561
O o]
® _a 1/2 L o9/
J 2w %qu = J dx = 11.63172840
O O
® u ~1/2 -1 Ly -1
J g% Y1) tan = I » (L+u) “ax
0 ! O

= 1.343293422

Harris and Evans,
1
j'xl/z ax = 2
3
0]
1
-1/3 3
J X . dx = >
0
N _.
J X 2/3 dc = 3
Q
1
7/2 2
J X | dx = 3
0
rl 2
(lnx) dx = 2
"o
‘1 4
(In x) " 8 = 24
"o
-l _
(l+x2) dx = '741
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. 1
K = J xfl/2 Inxdx = -4

8
O
L -1 -1/2

Ry = J (1-1n x) (-ln x) /“ax = 1.343293422
o |

Test integrals with singularities at end points,

1
J x-1/2(l _ x)—l/2

Ll = ax =7
0
1 _1/2 -1 .
L2 = j X In 1n x dx = 0.2318630313
0
1 -2 -1
L3 = (L + x}) "In 1n x dx = -0.06281647981
0
1 -1 -1/2
L4 = (1 - 1In x) “(-1n x) dx = 1.343293422
4 . .
o}
1 ' :
L5 = J In x In{(l - x) d@x = 0.3550659332
Lo 0
rl -1
L6 = J (1 - x) In x.dx = =1.644934067
o}
1 -1 -1/4 -3/4
L7 = (x = 2) (1 -x) " (1+x) dx =
"o

= =1.949054259166746

H. O'Hara and Francis J. Smith hon-singular'test integrals,

1
dx
os, = J T, = 0-69314718
o]
1
0s, = J q__EE*__Z = 1.,14366727
1 - 0.5
0
l .
os, = ! — . 5.147112768

1l + lOOx2
0
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fzx, x < %
1 3
054 = f ¢p(x)dx , $i{x}=43(1+L7),x = 1}
© 5 x> g
1
os, = [ 4 o&x s~ = 0.17979846
1 + 256(x - 3/8)
1
os, = J dx = 1.89633557
1 - 0.98x
0
1
os, = J --% = 0.785398148
o 1 + !

-and the results compared with known methods.

Tables A and B show a comparative performance of the new rules
ﬁith singular and non-singular integrals respectively. In Table B
the rules were compared with Clenshaw Curtis.

In general the new rules compare very well with existing methods.
The IMT tybe of rule is very difficult to apply at its best efficiency
because there is no way of knowing the appropriaté choice of C before-
hand and this experiment has demonstrated that there is no discernable
trend in the way of choosing the value of C. B2Among the erf class, the
erf function which is recovered fdr n=1 failed in 52, K4 and L8. The
eff_class with n=2 appears to be the best in that the number of
function evaluations is generally less than when n=3. However the
new rules compare favourably with other existing methods.

In addition the new rules are also robust for non-singular
integrals but they require too many function evaluations (as
demonstrated in Table B). So the recommendation 1is that where possible

the new rules should be used for singular integrals only.



INTEGRALS

1 2 3 4 1 2 3 4 5 6 7
Method 1 - Evans G.A., Hyslop J. ' ‘
1 1
and Morgan A.P.C.(1982) 21 27 111 27 57 29 59‘ 51 45 33 B7
Method 2 - Evans G.A., Forbes F.C. , ’ '
and Hyslop J.(1985) - 1§ 31 15 31 15 15 15 3 15 15
Methed 3 - Evans G.A., Forbes F.C.
and Hyslop J.(1984) 25 31 29 33 25 21 29 21 21 25
IMT TYPE - 16 16 32 16 16 16 16 16 16 16
WITH C VALUES 5.2 6.01 5.23 3.55 5.205 5.2 5.233 4.49 3.324 5.19
erf CLASS
WITH n = 1 - 13 21 13 29 - 15 13 25 21 17
n=2 - 17 21 21 33 13 17 17 21 21 17
n=3 - 25 33 33 25 25 25 25 33 33 25
TABLE A

£v



INTEGRAILS JB J9- JlO Jll le Kl K2 K3 K4 KS K6
Method 1 - Evans G.A., Hyslop J. ‘
and Morgan A.P.C. (1982) 75 79 79 141 127 45 45 45 17 97 141
Method 2 - Evans G.A., Forbes F.C. '
and Hysiop J.(1985) 31 31 15 31 31 7 3 3 15 15 31
?
Method 3 - Evans G.A., Forbes F.C.
and Hyslop J.(1984) 25 33 25 25 25 25 23 25 29 25 25
IMT TYPE 16 16 16 16 32 16 16 16 16 32 32
WITH C VALUES 5.19 4.671 5.201 5.04 1.691 3.389 3.185 3.537 3.37 3.37 3.635
erf CLASS
WITH n = 1 27 33 17 21 15 15 21 29 - 21 21
n=2 25 17 17 21 17 17 21 25 13 21 21
n=3 33 33 33 33 33 25 33 13 25 33 33
TABLE A {(continued)

%A%



IN‘I‘E_GRALS K7 K8 _ K9 Ll L2 L3 L4 . L5 L6 L,7 L8
Method 1 -~ Evans G.A., Hyslop J.
and Morgan A.P.C. (1982) 29 75 129 127 135 -110 127 54 a8 150 105
Method 2 - Ewvans G.A., Forbes F.C.
and Hyslop J.(1985) 31 31 31 . 31 31 31 31 31 31 31 63
Method 3 - Evans G.A., Forbes F.C.
an- Hyslop J.(1984) 29 25 .25 21 25 29 25 17 17 33 41
IMT TYPE 32 32 32 16 16 16 32 32 32 32 32
WITH C VALUES 3.6 3.63 3.63 5.53 1.64 1.53 1.0922 1.092 1.077 4.8 5.62
erf CLASS |
WITH n = 1 33 27 15 25 27 19 15 13 19 33 -
n=2 17 25 17 21 25 21 17 17 21 25 21
n=3 33 33 33 33 33 33 33 25 33 33 33

TABLE A(continued)

- S¥



INTEGRALS , os, ©s, o©0S; . Os, os,
Method 4 - Clenshaw C.W. and Curtis A.R. 8 16 16 16 32
(1960)
IMT TYPE A ) 32 32 32 32 -
WITH C VALUES 5.1 5.1 5.2 1.745
erf CLASS
WITH n = 1 17 33 37 129 257
n=2 17 17 41 129 129
n=3 33 33 65 129 129
TABLE B

9%



CHAPTER 3

TRANSFORMATION METHODS IN

2~-DIMENSIONAL QUADRATURE
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3.1 INTRODUCTION

For accurate work, separate rules are usually developed for
singular and non-singular integrals. The first part of this chapter
is devoted to singular 2-dimensional quadratures while the second
half deals witﬁ non-singular quadrature in 2-dimensions.

Unlike the situation in one-dimension there has not been much
progress in developing systematic'rules for multi-dimensional singular
integrals. Some of the attempts so far include the numerical
evaluation of higher dimensional integrals by T.W. Sag and G. ézekéres
(1964), the Gauss-Legendre and Gauss-Hermite product rules, and the
variational principle for integrals by C. Schwartz (1969). T.W. Sag
and G. Szekeresdeveloped rules similar to the IMT rule fof the
interval (-1,1) by choosing a transformation which ensures that the
integrand and its derivatives vaniéh at the end poiﬁts of the interval.
Using the trapezoidal product rule, they produced a formula which
could be easily extended to higher dimensions. Iﬁ order to operaﬁé
their new rule in higher dimensions and transfer the advantages of
the vanishing derivatives and the transformed integrand at the
bounda?y, they established that the unit sphere was the most suitable
region for which such transformations were valid. In this way they
produced a guadrature formula which was more reliable than the Monte
Carlo methed and alsc produces better results. The Gauss-Legendre
and Gauss-Hermite product rules have also been used with a limited
amount of success. Heré the idea is to exploit the higher accuracy
which these rules enjoy with one-dimensional singular integrals
despite the éingularity reducing the effective ordexr of the quadratu;e.

For this approach to be of any use, the integral in question has to
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be translated into iterated integrals to which the relevant Gauss-
Legendre and Gauss-Hermite method can be applied.

In the variational method by C. Schwartz, every integral is
treated as a special and separate case. Here a given integral such
as,

1 .
I = J ﬁ r (3-1.1)

is transformed into a functicnal of the form,

(&
i

[ .
2[ ¢ - J oW ., (3.1.2)
By a careful choice of basis function Un(x), ¢ is expressed as,
¢ = ZCnUn . (3.1.3)
n
Hence by variational principle,
83 = 2 J oL - Wol , {3.1.4)

(3.1.4) vanishes for ¢=%,

and the stationary value of J is then given as,

J(¢¥%) = J % =1 . {3.1.5)

Hence,

J(¢=%'+A) = I- J AWA s {(3.1.6)

By expressing Mn- as,

Moo= J UnWUn' (3.1.7)
and r = J u (3.1.8)
n. n
C. Schwartz established that QE- =0 {3.1.9)

8C
n
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{3.1.9) implies that,
I = }C xr_ . (3.1.10)
n n

This method is cumbersome and restrictive. It may be available to
only the specialist and can never be used as a black box. So far
the most successful approach i1s the extensicn of the Romberg method
of numerical integration to multi-dimension by E.B. Anders (1966).
In his Ph.D. thesis Anders showed that an n-dimensional integral
could be approximated in a manner similar to thé approach by Romﬁerg
in cne dimension.

These metﬁods above have their shortcomings. While the work of
T.S. Sag and G. Szekeres can be easily extended to higher dimensions
the accuracy is poor. The Gauss—Legend?e and Gauss-Hermite product
rulesrequire special care to translate a given integral into suitable
form especially where variable-iimits and singular points and lines
need to be handled. Romberg in high dimension enjoys some measure
of success but it requires a high number of function evaluations
for ény accﬁracy to be achieved. 1It is the desire to overcome some
of these shért-comings above that has led to the work presented here.

In Chapter 2 the tanh and error functions were shown as very
good transformations for dealing with singular inteérals. They do
this by spreading the integrands over the infinite interval where
their values fall off rapidly away from the origin. In addition they
also smooth the integrand sufficiently to make the trapezoiaal rule
an efficient integrator because the vanishing end point derivatives
make the rule high order from the Euler Maclaurin sumﬁation formula.

It is the success associated with these properties that has



notivated us to investigate how these capacities translate into
domains of more than cné dimension.

In this investigation the aim is to demons£rate that the'taﬁh and
error transformations are capable of dealing with singularities in 2-

dimensional integrals and producing accurate results.
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3.2 THE FORMULATICON OF SINGULAR QUADRATURE IN 2-DIMENSIONS —~ tanh RULE

Consider the integrai,

rlrl
I = flx,y)dxdy , {3.2.1)
2 = || v

-1 -1

For other finite ranges of integration, transform into the interval
(-1,1) by using the relation:

s = (b;a)t + b;a (3.2.2)

for each variable, where S €(a,b) and t€ (-1,1). Using the

transfbrmations,
n
X = tanh a . (3.2.3)
and, n '
y = tanh 8 ’ (3.2.4)

and differéntiating (3.2.3) and (3.2.4) we have,

-1

dx sechzan.n.an da | (3.2.5)

]

sech®g®.n.5" tag . (3.2.6)

dy

Substituting (3.2.3), (3.2.4), (3.2.5) and (3.2.6) in (3.2.1)

we have,

H
n

n2 I J f[tanhan,tanth](aB)nflsechzan.sechZBn dadf

- OO - 00

(3.2.7)

This equation is now transférmed to pelar coordinates by putting
0 = ¥ cosé and B = vrsing , (3.2.8)
and substituting (3.2.8) and the Jaccbian of the transformation

into (3.2.7). Hence,
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2 (23" n n, 2 n-1
12 = n J J fltanh{rcosd) tanh{rsing) '} (r sintcosn)
0 0 ‘
sech2(rcos@)nXsechz(rsine)andrde (3.2.9)
If we put,
f[tanhan,tanhﬁn] = g(o,B) , (3.2.10)

and substitute (3.2.10) into (3.2.9) we have,

@ 27
) -
12 = n2 J J g{af) (r sinecose)n lsech2(rcose)nsechz(rsine)nrdrde
00
(3.2.11)
(3.2.11) can be simplified by setting,
Gle,8) = gla,Bla” g% eech®asechZs” . (3.2.12)
Hence (3.2.11) becomes,
5 % 2m
I, = n J J G(rcos8,rsing) rdrdd (3.2.13)
00

From (3.2.12), séchzansechzﬁn will be véry small away from the
origin. This implies that the transformed integrand will fall off
rapidly and all the higher derivatives will also be small away from
the origin. Hence just as in one dimension the trapezoidal rule
will work well in the infinite range. So applying the trapezoidal
rule to (3.2.13) from 0.0 to some limit M in m steps where the step

. Mo
size h = — gives
m
) m-1 r2'ﬂ' N r2'ﬂ'
I. = n { h ) J G(ihcos8,ihsing) ihde + E’J G (mhcos§,
L i=l o o

mhsine)mhde} : {3.2.14)
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Finally, applying Clenshaw Curtis to (3.2.14) on the range J

0
gives the new rule. 1In this way the efficiency of the trapezoidal

and Clenshaw Curtis rules is exploited to give an efficient

integrator for 2-dimensional singular integrals.

53
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3.3 IMPLEMENTATION OF THE tanh RULE

The resultant rule from (3.2.14) is applied with odd values of
n=1,3 and the integration is carried out along concentric circles as
we step out from the origin until further contribution to the
quadrature is insignificant. Each Clénshaw applicétion yields an
accurate quadrature round a circle in a progressive manner. An
initial step size h (say 0.5) is taken and steps from 0.0 are made
until further contribution is no longer significant. This initial
step then fixes the upper limit of summation and yields an initial
estimate of the quadrature. Intermediate points are then injected
into the underlying rule in a progressive manner increasing the
accuracy until convergence is obtained. This inveolves new Clenshaw
Curtis applications te intermediate circles. (See Appendix (iii) for

the computer program used).



3.4 ERROR ESTIMATE OF THE TANH RULE

The error ig using (3.2.14) as an integrator of two-dimensional
singular integrals is due to the following:
(a) The error introduced as alresulf of using Clenshaw
(b) The error inherent in the use of the transformation method and

the error due to the truncated use of the trapezoidal rule. -

Applying Clenshaw Curtis to (3.2.14) the result can be represented

formally as,

2 [®
I = n J {QN(r) + EN(r}}dr . (3.4.1)

0

Using an m point trapezoidal rule on (3.4.1) gives,
I = + e +n2mE o (3.4.2)
= 9 ™ n ' : tE

S0 the error E2 of applying the new rule is,

E. = e +nmE . ' (3.4.3)
m N

Clenshaw and Curtis showed that if an integrand can be expanded

in an infinjte Chebyshev series as,
= I '
F(t) LAT (), (3.4.4)

where E' denotes a summation in which the final term is halved,

then the error EN is defined as,

[

EN=I-IN=Jf-QN, | (3.4.5)

(QN is the approximation by Clenshaw Curtis rule} is given as,
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I 3IN-1 2A2N-r \ in-1 2A2N+2r
N 7 r=0 4r2—l r=0 4r2-l
N-1 2A
! (le;iil) (N+2r-1) : (3.4.6)
r=1
By assuming that N is even they showed that (3.4.6) can be
simplified to take the form,
16.1.N 16.2.N
E = A + A
2 .2 2 2 2
N (N2-12)(N -3% N+2 (N°-1) (N2-5%) N+4
16(N/2-1)N 2
+ A - (2 + YA
3(2N-1) (2N-3) ~2N-2 4N2—l N+2
12 - 2 ) P (3.4.7)

3 T (aneL) (2ne3) ) Pone 2

From the above Clenshaw and Curtis suggested two methods of error
estimate. For integrands whose Chebyshev expansion converges quickly

they stated that the error estimate should be expressed as,

|aN]“ S | 1 —\
A+l 32(8-1) |22 5yl 128(N-3) laN-4_aN—2|_|

E = max
N !

(3.4.8)
where the quantity a is defined as,
2 N s 2rsw
a0y = & SEO (-1fF(cos <) cos == (3.4.9)

and for an integrand whose Chebyshev expansion converges slowly EN

is bounded as shown below,

< 2k /N 3.4,
By Yo ( 10)

where the value of kN is shown in Table C.
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N 4 6 8 12 16 24 32 48 64 96 128 192

x_ lo.28 o0.12 0.14 0.21 0.24 0.28 0.28 0.28 0.29 0.29 0.29 0.29

TABLE C

H. O'Hara and F.J. Smith gave other error estimates arising from
{3.4.7). For an integrand where the singularity is far from *1 they
expressed the errcor bound as,

32N I

| . (3.4.11)
(Nz—l)(N2-9)

|E

NI AN+2

-By alsc expanding the integrand in Chebyshev series of the second
kind, they arrived at an estimate equivalent to (3.4.8). But of
relevance to this work is their third error estimate. This estimate
is bésed on the assumption that the integrand is continuous and
differentiable. Hence they stated that at worst the coefficients
Ar in (3.4.7) falls as l/r2. Oon equatiﬁg Ar=kN/r2 for r>N, summing

up the right hand side of (3.4.7) to infinity and putting,

(kN/Nz) [1+3%+5% ...1 (3.4.12)

a
they. established a new error estimate written as,

.| <cC , (3.4.13)

nl

where the values of CN are given in Table D,

N 4 8 16 32 64 128 256

C 0.586 0.628 0.646 0.654 0,658 0.660 0.662

TABLE D
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When |aN] is very small, then |EN] takes the form,

5l = ¢y maxtlagl,2lay . lr -1 11 (3.4.14)

From (3.4.2) nszN can be estimated roughly since EN the error
due to the use of Clenshaw Curtis can be estimated using (3.4.13)
or (3.4.14) for small aﬁ.

em is difficult to estimate analytically and can be done if
QN(r) in (3.4.1) which is the result of applying Clenshaw Curtis can
be representéd as a function of r. If this is pessible the error

em may be estimated by the error analysis approach due to H. Takahasi

and M. Mori (1970).
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3.5 THE FORMULATION OF A SINGULAR QUADRATURE RULE IN 2-DIMENSICHNS -

ERROR FUNCTION TYPE OF RULE

In this paragraph integrals of the form,

, 1,1
I, = { J £(x,y)dxdy , (3.5.1)
-1

are considered.
As in (3.2.1) any other finite interval of integration

can be transformed into the interval (-1,1) by,

(b-a)t + b+a

S > > ' {3.5.2)
for each variable where 5 € (a,b) and t € (-1,1). Again put,

x = glu} : (3.5.3)
and vy = glz)} , ' (3.5.4)
where the function g{u) is defined now as,

u _ 2n S
glu) = C J e dw |, (3.5.5)
(0]

Differentiating (3.5.3) and (3.5.4) we have,

dx = Ce du , ’ (3.5.6)

_zzn

dy = Ce dz , (3.5.7)
Substituting (3.5.3),(3.5.4),(3.5.6) and (3.5.7) in (3.5.1)
gives,

: foo 2n  2n :
2 [ -u -z
12 = C J j flg(u),g(z)]e e dudz . (3.5.8)
' -l -0

Adopt the substitution,

u = xcosb - {3.5.9)
and z = rsin® . (3.5.10)
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Differentiating (3.5.9) and (3.5.10) and substitutirng in (3.5.8),

we have,
2T poo 2n . 2n
I, = 02 J J flg(rcosb) ,g(xrsinb)le (rcost) e (rsind) rdrads
°© 0 (3.5.11)
put, - flg(u),g(z)] = blu,z) . (3.5.12)
Then (3.5.11) beccmes,
(2T e B 2n _ . 2n
1, = ch Jb(u,z)e (rcosb) = =(rsin®) " 4 49 . (3.5.13)
o O
If we put,
2n 2n .
-u -z
B{u,z) = blu,z)e e ’ (3.5.14)
llence (3.5.1) becones,
2 2TTr°°
12 = C J J B{rcosh,rsind) rdrdd . {3.5.15)
0 0
2n . 2n
From (3.5.13) e-(rcose) e—(r51n6) becomes very small away

from the origin and hence the value of the transformed integrand
falls off even more rapidly than the situatioﬁ in {3.2.11). Again
the efficiency of the trapezoidal rule under this situation is
exploited. So applying the trapezoidal rule on ¥ from 0.0 to some
limit M in m steps where the step-size h = E, to (3.5.15) we have,
5 m-1 27
I = C {h z J B(ihcosg,ihsing)ihdd +
i=1l ‘0

h 2m
= J B(mhcose,mhsine)mhde} (3.5.16)

2 C
The Clenshaw-Curtis rule is finally applied to (3.5.16) to give
the new rule. So as in (3.2.14} a judicious combination of two
standard rules is used to produce an efficient integrator for 2-

dimensional singular integrals.



3.6 IMPLEMENTATION OF THE ERRCR FUNCTION TYPE OF RULE

The integrator derived from (3.5.16) is implemented in
exactly the same way as in (3.2.14). The integration is carried
out along concentric cirecles continuing until further contributions

to the guadrature are insignificant. The rule can only be used for
m 2n

" the function g(u) = C J eV dw for values of n=1l and 2. This is

O
because the values of the integrand falls off so rapidly that it is

impossible to use the rule for higher values of n. Clenshaw-Curtis
is applied progressively and it is found that a maximum of 64 points

is sufficient even in difficult problems.
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3.7 ERROR ESTIMATES

The error associated with the integrator in (3.5.16) is similar
to that in (3.2.14). It is made up of a combination of the inherent
error of the transformation methods, the error due to the approximation
by Clenshaw-Curtis and the error due to the application of the
truncated trapezoidal rule. So fhe application of Clenshaw-Curtis

to (3.5.15) can be represented formally as,

rm
I, = c2J [BN(r) -t-EN(r)]dr . (3.7.1)
o]

Applying an m point trapezoidal rule to (3.7.1) we have,

I = b + e + CmE . ' ' (3.7.2)
m N

Hence (em + szEN) the error of this guadrature rule can be

analyzed as in (3.4).
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3.8 THE GRID METHOD OF EVALUATING 2-DIMENSIONAI SINGULAR INTEGRALS

The integral I. in (3.2.7) was defined as,

2
rw roo

I, = n2 J J f[tanhan,tanhsn](aB)n-lsechzan.sechzﬁndadﬁ (3.8.1)

oo =00
As indicated in %3.2. the valueé 6f the integrand in (3.8.1)
will fall off in the infinite plane as one moves away from the
origin. So instead of applying another transformation as in-33.2
andu§3.5‘ the trapezoidal product rule is applied to (3.8.1) to

give accurate results,
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3.9 IMPLEMENTATION OF THE GRID APPROACH )

To evaluate (3.8.1)‘using a trapezoidal product rule, it was
necessary to establish the extent of a grid in the infinite plane,
the boundary of which is determined by careful monitoring of the
values of the-integrand. The grid was set up by analogy with thé
implementation of the tanh rule transformation in oneadimeﬁsion.

An initial step size h (say 0.4) was used to step‘along the o
axis for a given 8. Steps were taken until the values of the integrand
fall below a significant value from two successive steps (to account
for zeros in the integrand). The process was carried out both towards
+o and -« and B increased cutwards from the origin in both directions.
The whole process is terminated when the initial point gives no
contribution so determiniﬁg the end point in the B direction.

The trapezium rule in 2-dimensionsgives weights as shown in the
diagram below for a uniform grid (Fig. 1) and as there is no edge
contribution, we can evaluate the integrals as{

h. xh

1 2
5 4y £, (3.9.1)

H
"

and hence the integral can be accumulated simultaneously with the
search pattern as is the case in l-dimension. The final grid has an

irregular outline as shown overleaf,



X 1indicates points with the initial step size
0 indicates intermediate points.between initial steps

©- indicates the points along u~line search for mid-peint B values.

A subdivision scheme is then implemented with new poiﬁts
progressively added to.the lower order rule. There are two types of
added point. Firstly along existing B values the mid-points are
simply‘added in and secondly the mid-point B values require a whole
new 0-line search at the fine grid level. Hence convergence to a
given accuracy can be obtained. Appendix (iv) is the computer program

for this scheme.
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3.10 RESULTS AND CONCLUSIONS

In general the new rules perform very well. However it is less
easy to achieve a reguired accuracy by successive doubling of points
than in' one-dimension as the number of points used will grow
impractically after one doubling. 1In the tanh product rule the
underlying grid is fixed in the initial choice of h and the doubling
in each dimension yields the results quoted in Table G. The tanh
product rule is most efficient with the values of n=3 and 5; the
doubling problem is less marked with the Clenshaw-Curtis and
trapezium rule combination as each integral along a circle is:
accurately evaluated and no more extra points are then needed if sub-
division in the trapezium rule takes place. As in one-dimension,
increasing nlto 7 or above makes the integrand very steep sided and
accuracy falls off.

16 and 17 are different from the earlier exampléé having singular
derivativesalong a curve In the range of integration. lAS'dne might
expect a trapezium preduct rule with no transformation performs quite
well in that a 64X64 rule yields 1.864304 for I6 and 0.532604 for 17.
The error depends on f" rather than_some higher singular derivative.
The Clenshaw-Curtis, trapezium rule combination gives very good
accuracy for these examples as the tanh transformation enhances thé -
effectiveness of the trapezium rule because it is operating on a set
of Clenshaw-Curtis quadratures which are well-known for coping with

derivative singularities.



TANH FUNCTION
{CLENSHAW-CURTIS AND
POINTS OF . ANALYTIC ‘ ROMBERG : TRAPEZQIDAL RULE
I h
NTEGRALS SINGULARITIES ANSWER
ANSWERS NO.QF FUNCTION ANSWERS NO.OF FUNCTION
EVALUATION EVALUATION
1.1 axdy 18
I, Toxy x=y=1 1.644934 1.6446286 2 1.64491078 3840
0 0
1l dxdy
I, — X=y=#1 : 4.3551723 4.3547947 32060 4.35516707 3840
/S 22 ' :
-1-1 Y1-x"y
dxdy ’ -
13 x=y=1 3.12419433 | 3.124216 32060 3.1241953 3840
_x_y . .
I, I J x=y=1 .| 2.5790076 2.5792585 32060 2.5790076 8153
——x—
1,1
| Al 1 .
I, J J xy) ™ dxdy *o?g ines 4 3,9424276 32060 4.0004645 6786
X=y=0 : ]
00 , .
1p1 2 Along the circle | 1.8630162 1.8630151 212 3% 1.86301629 2944
I [x +y ~0.25|dxdy : '
' of radius .5
-1 :
1,1 1 ‘ : 14
I, | x-y| “axdy Along x=y .5333333 .533300 2 : .533333369 7119
00

TABLE E

L9




ERROR TYPE OF FUNCTION
{CLENSHAW-CURTIS AND

INTEGRALS POINTS OF ANALYTIb ROMBERG TRAPEZOIDAIL, RULE
SINGULARITIES ANSWER
ANSWERS NO.OF FUNCTION ANSWERS NO.OF FUNCTION
EVALUATION EVALUATION
S .
1 I ixi§ x=y=1 1.644934 | 1.6446286 218 1.64490010 26980
4 - .
0O 0
rlrel ’ .
1, dxdy x=y=*1 '4.3551723 | 4.3547947 32060 4.3551086 27474
J /2 2 .
-1-1¥l=-x ¥y
1r1 :
I, j I _dxdy x=y=1 3.12419433 | 3.,124216 32060 3.12418592 70332
V2~x-y
14
1/1 : -
1, J J _axdy x=y=1 2.5790076 | 2.5792585 32060 2.5790047 69804
V3-x-2y ;
1.
‘el . . )
- _ 3.9424276 320 3.973452 4032
I, J (xy) idxdy AEO{"Ig lines 4 9424 60 00 3
P x_y—'
00
\lcl Co12 .2
2ev?oo 25]axa Along the 1.8630162 | 1.8630151 2°°.3 1.86301634 3904
Ie ) l Y : ¥ circle of
-1 -1 ~radius .5
' L4 ]
Along x=y .53333333 .533300 2 3870

.533333942

TABLE F
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TANH ' PRODUCT RULE

of function evaluations

ANALYTIC GAUSS-~LEGENDRE
I
NTEGRALS ANSWERS ROMBERG PRODUCT RULE
n= n=3 n=5
I Iljl dxdy 1.644934 1.644628 1.644741 1.6449328 1.64493325 1.64493744
l_
1 R (218 (4096) (8213) (3597) (1975)
Ll axay
I, —_—t 4.3551723 4,3547949 4.355164 4.35517223 | 4.35517228 4.35517271
2 -
L {“xzy (32060) (4096) (88009 (3653) (1973)
1l dxdy ‘ '
I — 3.12419433 | 3.124216 3.124191 3.12419072 | 3.12419385 3.12419418
S 2y (32060) (4096) (7660) (3535) (1958)
Lel dxdy
1, 2.5790076 2.5792585 2.579004 2.57900488 | 2.57900685 2.57900709
: _1/3-x-2y (32060) (4096) (7558) | . (3514) (1956)
1 J J (xy) “dxdy 4 3.9424276 3.946186 3.99999562 | 3.99999899 3.99999928
0o ‘ (32060) (4096) (8864) (4532) {3542)
el o 2 .
I J I |x“+y“~0.25|dxdy | 1.8630162 1.8630151 |* 1.862980 1.8630477 - | 1.86303155 1.86393924
| 2
Al-1 242.3% (4096) {10057) (4453) (1961)
) S N '
1, I I Ix-ylidxdy .53333333 .533300 .532197 .532373518.| .530764960 .52827057
‘0’0 (214) (4096) {10057) (3441) (2751)
*The enclosed figures represent the number TABLE G
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3.11 TEE TRANSFORMATION METHOD FOR 2 DIMENSIONAL NON-SINGULAR

INTEGRALS - INTRODUCTION

puadrature for a multidimensional integral is not a straight-
forward affair. In one dimension it is usually sufficient to develop
rules for standard intervals [0,l1],[0,~] and [-»,»] since Ehe
transformation which takes intervals into one of these leaves almost
all the properties of a quadrature unchanged. 1In higher’dimengion the
equivalent -of such transformations are difficult to come by and there
is the need to develop rules for each affine class of regioﬁ. The
earliest success in higher dimensions was recorded with simple
regions like the n-dimensional éube, ball, spheres and simplex. In
general it will be‘necessary to transform a given region into one of
these special regions and this may be non-trivial. As a general
procedure any integration region may be enclesed in one for which
formulae have been developed. For example any bounded region may
be enclosed in a cube and the integration treated by extending the
definition of the integrand to the whecle enclosing region by defining
it as zeroc on the compliments of the original region. Good as this
seems, the modification introduces discoﬁtinuity which is a problem
;n its own right.

One of the most successful approaches over the n-dimensional unit
cube and in general n-dimensional‘integral is to regard the integralj'
as an n-fold iterated integral and apply a l—dimensional‘quadrature
formula for each variable separately. Thus if Ql'QZ""'Qn are
quadrature formulae for the interval [0,l1], we might write the integral

to ke evaluated as,
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f J [ f(x ,...,xn)dxl,...,dxn . (3.11.1)

Applying 9 to {3.11.1) we have,

1
o b
R

n

By successive application OE'QZ""’Qh we have,

1 ,
J Q(f,xl)dxz,...,dxn . (3.11.2)
0

:
IR N OO N C R ER I (3.11.3)
R .

n

The R.H.S. of (3.11.3) can be represented by Q=Q1.Q2...Qn a

cartesian product since the set of points at which £ is

evaluated in (3.11.3}) is the Cartesian product of the set of

evaluation points of the Qi formula. The precision of @ is the

minimum of {dl'd2'°"'dn} where for each i, di is the degree of precision
of Qi'

The Cartesian product technique can be modified to produce
quadraturé formﬁiae for regions other than the cube. PieXce (1957)
showed that it can be applied to the ball and spherical shells, while
Hammer, Marlow and _Stroud (1956) applied it to cones and simplexes.

In these extensions the contributors demonstréted that it was necessary
to use the l-dimensicnal gquadrature formulae with reépect to certain
weight functions.--They further established that the maximum error

estimate of the product rule is given by the expression,

Il £- ¢ Q)f| $E +AE, ... +A E > (3.11.4)
, ) 2 n=1n
n .
and that if for a given M,
%
£
A cm, i=L,2,00m (3.11.5)
(axi) .

% whee A ae Ay umﬁy& and E¢ wﬂ.@nﬁ'fbmm&,.¥wz¢c5'éhm&h0dm



throughout Rn such that £ is uniformly continucus in xis for

Ql=Qz,...,=Qn (3.10.4) becomes,

. .2 - -
IJ - anl < (1 +a+2° ... +a" 1)kn v, (3.11.6)
R .
n
N.S.Bakhvalov (1965) established the lower bound for the quadrature

error of Q over a region r € En‘for a family of functions and showed

that there exists a C such that,

II -off >¢c . N | (3.11.7)
Rn ‘

The product rule is efficient butlthe number of function evaluations
increases rapidly with increase in dimension. So other competitive
methods have to be devised., Among the rules devised to reduce the
number of function evaluations are the minimum point rule and the
associated symmetric rules which are &eferred to in more detaiioin
Chapter 4. |
Ancther approéch for constructing rules for multiple quadrature
that is aimed at reducing function evaluationsis the one pibneered
by Bakhvalov. By Bakhvalovs theorem the error in approximating an
integral by a quadrature can be minimised and the resultant rule is
-called the minimum-no;m formila. He further established that the

L/

minimum error in such a formula is bounded by kN /% when an N point
formula is used. 1In the main he considered a function which is

square integrable in R € En and where the § derivative exists. By

defining an inner product as,

(£.q) =I § gl W | (3.11.8)
IRTY) |

where |iJ=£ indicates a sum over all the Rth derivatives of £,

with the norm,
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L2k
} [
el = el - { [ €47
2 R|1]=2
he defined a Hilbert space C: {R}. The quantity,
3.2

EQ(f) = JRf - Q(f? ’
i

defines a linear functional on C° (R) angd,
2L
IEQ(f)[
= sup

| —
Y@\l

E
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(3.11.9)

{3.11.10)

{(3.11.11)

defihes the norm of the functional EQ' If E. is not infinite then

Q

E_ is a bounded functicnal and its value is known.

Q

simple error bound is given as,

r
: £f-0f| g ||B N RFd N
| IJR of| < eyl L-tlell,
If Q is an N point formula Bakhvalov proved that,
1/5

l[EQ|| > kN ,

for some k.

{3.11.12)

(3.11.13)

S0 the object here is to make ||EQ|I as small as possible. He

then posed this problem in two ways viz:

{a) Given N points X Xy N N

Qi) = Zarf(xr) - fRnf ’
has as small as possible values of ||E

ol

{b) Determine x

1,22,...,xN N

has IIEQ[I as small as possible.

. X in E , determine a

l,az,...,aN

such that the quadrature formula Q(f) defined by,

{3.11.14)

and 2 185400002 such that (3.11.14)
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The soluticen to (a) gives the minimum-norm formula while the solution
to (b) is called a relative minimum norm formula. Sard and Scholoy
outlined the main elements of the theory and set out the procedure
for solving (3.11.14) as follows. They stated that the error in

(3.11.14) could be written as,

E (f) = J f(x)L(x)dx , (3.11.15)
o R | \ ,
where, n
N
L(x) = Ep(x) - rzl a slx—x) . (3.11.16)

Here ER is the characteristic function of the region Rn and § is

the Dirac delta - the generalised function with the property that

f ) : , X
J f(x)d(x-xo)dx = f(xo) R (3.11.17)

R
for any £ in the space under consideration. Given a Q, gquadrature
formula of degree 24~1l, from Scbolov's theorem they established that
EQ is bounded if 1>s/2. So to determine |]EQ[| is to loock for a

function £ in Cs such that,
0 2r2

I]EQ(fO)[|/||fO[[£'2 = fupl]EQ(f)I]/||f||2,2 (3.11.18)
From the above they established that finding fo is equivalent to.
finding‘gO € Cf'2whiph minimizes,
H(g} = [g,9] +2 J gL . (3.11.19)
R

{3.11.192) is a variational problem for if go minimises H, then

]
for
any £ €<i’z
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a
3¢ Higg + tf)[t=O = 0, (3.11.20)

(3.11.20) is exactly,

[go.f] = f fL~EQ(f) ' (3.11.21)
R

Sobolov by expressing dp @5 a convolution established that,

. .
9o x) = J G(x-y)L(y)dy . (3.11.22)
s
E
when, 1 s odd
ex) = kilx||?*S « { (3.11.23)
1og||xI| 8 even T

as the solution of the equation AEq with‘k=k(£,s) being a constant.

. Then,. 3 :
Egll = laglly 5 = [lEgtad [1* - (a2

Babushka (1963) showed that in the situation where (xl,xz,..;,kn)'
were gi@en_for na(szl) the so-called relative.minimum norm- formula
‘has the property that its extreme function will take on at the polnt
'(xl,xz,...,xN) the same values as some polynomial,
Zbixg
|i]<e-1 (3.11.25)
This ensures that the L.H.S. of (3.11.22) is equal to (3.11.25).
Hence the problem in (a) is reduced to solving a system of N linear
algebraic equations. For large N the procedure is different. This
procedure and that for dealing with the problem in (b) is ignored in
this write—ﬁp because they are strictly of very little practical
importance as well as being tedious to operate.
From the foregoing it is clear that the product rule is still

one of the most efficient methods as far as smooth functions are
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concérned. However this éfficiency is hampered by the rapid growth

in the number of function évaluations as the dimensions become higher.
It is the desire fo retain some of the advaﬁtages of the product rule

. and minimise the astronomical gr0wth in the number of function
evaluations that has given rise to the search for a good transformation
method. In the numerical evaluation of high-dimensional integrals,

T.W. Sag and G. Szekeresproposed the following series of transformations,

x = 3(l+t)
t = tanh u/(l—u2)
u o= 2y-1

which maps the interval (0,l) into itself. They established that with
smooth func;ions the trapezoidal rule was more efficient without such
a transformation. This inefficiency is due to the violent influence
of the transformation near the end points of the interval before the
integrand.and the derivatives vanish at the end points.

In this investigation we are proposing a polynomial transformation

with some of the properties above with in-built tuning capacity. .
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3.12 THE FORMULATION OF THE TRANSFORM TRAPEZOIDAL PRODUCT RULE

Ceonsider the integral,

17l _

I, = J I flx,y)ldxdy . _ (3.12.1)
o ©

For all other intervals of integration the interval (Q,b) is

transformed by using the relation,
t = (b-a)s +a , : (3.12.2)

for t € {a,b) and s € (0,1l) for each variable. The polynomial

transformation,

{1-(1-u®) PP

Y
[l

: (3.12.3)

and,’ : % nem )
{1-(1-v")"}" is now applied. (3.12.4)

o
i

This transformation maps the interval (0,1} into itself.

By differentiating (3.12.3) and (3.12.4) we have,

£.n m-1

gannf (1-(1-09) "1 v P e e

dx

' (3.12.5)

and, gnm-l o

gamf (1-(1-v9 )" (1 -H P10 Ty

fl

ay ) .  (3.12.6)

Substituting (3.12.3), (3.12.4), (3.12.5) and (3.12.6) in (3.12.1)

gives,

-

11 “g.on.m L n-m 2
12 = J EL(1-(1-u™}7) ,(1=-(1=v") "} 1x(nmg)
00

{(1-(1-1:2) By (1—t1-v2>“}m'1{ a-u® 1v52 z-l}dudv
(3.12.7)

The integrand and its derivatives vanish for u=0 or 1 and v=0 or 1
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for any polynomial of degree mnf or less. By putting,
i nmn £.n m.
gfu,v) = £[(1=(1-u) )} ,(1-(1-v} )1 , (3.12.8)
and substituting {(3.12.8) in (3.12.7) we have,
el %.n 2. n\m-1 2 %, m-1
12 = J J(mnﬁ) g(u,v){(l-(l-u 1 {1-(1-v ) } [(L-u )x(1l-v )]m

0-0

x(uv)gfldudv . ' (3.12.9) -

Hence applying an s point trapezoidal product rule to (3.12.9)

gives,

. . s s —
1, = o'’ § | g(uiij[(1—(1—ui)nx(1-(1—v§)“1m 1

2 j=1 i=1

xtl-uf)x(1-v§)1n‘lx(uivj)£‘l 5 C(3.12.10)

with conbribubions From tha cube, ,?_Cxlﬂe of khe regon 189 a0,

Since the integrand and its derivatives wvanish for u=0 or 1 and
5=0 o;“l for the integrand of degree mni or less (3.12.10) gives an
32—4(5-1) point formula. So for s=9 we have a formula in which the
number of function eyaluations is 49 instead of the usual 81 in a
preduct rule. Morecver the violent behaviour of the transformation
by T.W. Sag and G. Szekeresnear the end points is now mellowed
down by the polynomial since exponential functions decrease or

increase rapldly compared with other functions.
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3.13 IMPLEMENTATION

The transformation inveolved in (3.12.10) is a polynomial and
in order to get the desired effect the integrand dictates the value
of m,n and £ to be used. The harder the integral the higher the
values of m,n and £ to be chosen. in our experiment the values of
m%7, nz8 and 122 were good encugh to give comparable accurate
?esulﬁs. Hénée (3.12.10) islimplemented directly with the above

caution in mind.



3.14 ERROR ESTIMATE OF THE PRODUCT RULE

As shown in (3.11.6) the error En in approximating the

integral,
1.l . |
In = JI f(xl,xz,..;,xn)dxl,dxz,...,dxn ’ (3.14.1)

00

by a product rule defined as,

n
I = (11ﬂbi)f , | ' (3.14.2)
i

is given as,

n .
E = lJf - (TTeptl < w+a+a? .. ahxa™ (32403
R i .
agf
where 5;1 <k for f continuocus in each variable and A the sum of
i _

the absolute values of the coefficients of Q=(Q1,Q2,...,Qn).
Putting Q1=Q2=... =Qn and adopting (3.14.3) we have that the erfor ‘

En in uéing {3.12.10) as an integrateor is bounded and defined as,

E, ¢ (1 + A*)k*g « %

2 {3.14.4)

where A* is the sum of the absolute values of the coefficients

of an n point trapezoidal product rﬁle, s* the number of variables
2 .

in the function, Q=QlQ2=Ql and k* is defined as,

2

k* ¢ (mn2)2 —QE-(G(u,V)) ’, (3.14.5)
: Ju
and,
v = g [A-(l-u) 1~ "1™ x

(1= (1=v 1 e ¥ 1. (3.14.6)
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3.15 RESULTS AND CONLLUSION

The rule in (3.12,10) was tested on a number of integrals and
the results compared with known methods as shown in Table'(H).
The results show that the new rule is quite competitive and achieves
some economy. However for the test integrals considered the other
rules are ﬁore efficient in that they achieve the accuracy quoted in
the table with a maximum number of function evaluations of not more
than 10. This notwithstanding the new rule has the advantage of
wider applications and greater flexibility because of its in-built

.tuning capacity.



TEST INTEGRALS

11 1,1 1,1 (Ll
oo N N U - B R I D=
070 -1-1 3-x2-y2 -1 1 vex-y
ANATLYTIC ANSWERS Q.796599%6 2,6555866 1.0464963 2;0958446
NEW METHOD
49 PTS 0.79659920 2.65599740 1.04649323 2.,0958249
s2-4(s-1) '
GAUSS 9 POINT
PRODUCT RULE 0.7965995 2.6514268 1.0464731 2.0953358
COHEN AND
GISMALLA 0.7965994 2.6541559 1.0464845 2.0913961
L. JENKINS 0.7965995 2.6556216 1.0464947 2.027067
RADCN ©.7965800 2.6472813 1.0453342 2.094937
ALBRECHT AND , )
COLLATZ 0.7965700 2.6472812 1.0463703 2.094441
TABLE (H)

‘28



EAPTER 4

THE CONSTRUCTION OF MINIMUM POINT FORMULAE

FOR 2-DIMENSIONAL NON-SINGULAR INTEGRALS
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4,1 INTRCDUCTION

This chapter is devoted to the construction of minimum point
quadrature rules for two-dimensional non-singular integrals. As
referred to in the introductory chapter of this thesis, the minimum
point procedure is the oldest method of finding formulae which
achieves a given preciéioﬁ using the fewest possible peoints.. In the

main a minimum point guadrature of the form,

n
ff =) afx) ’ (4.1.1)
R r=1

is of degree a if it satisfies,

n
z a_ = J ax {4.1.2)
r=1 Rn '
N r .
I oax | xax o, i=1,2,...,8 (4.1.2(1))
r=1 R-"v
i i3 .
Z %x?rx; = [R x"x) ax : 1,3=1,2,...,s (4.1.2(2))

N

Stroud showed that the system of equations in (4.1.2) has no

solution with n less than,
{ |
S + [34

[Eﬂ

He further showed that (4.1.2) can only become a linear system in

n unknowns a, ,a,,--.,&_ 1f we choose x_ in advance in R_ and thus
1’72 n r n

make the coefficient matrix of the linear system non-singular. So

for a one point formula of degree of precision 1 the peoint is the
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centroid of the domain and the coefficient a measure of the domain

of integration. If the domain of integration is not convex its
centr@id may lie ouﬁside it. In general there is ne assurance that
when (4.1.2) has a soiution, the point definedrby the soluticon will
lie in the region Rn' This raises serious objections to such formulae
because in scme cases the function being integrated may not be

defined ocutside the domain of integration. So formﬁlae of this nature
may be impractical. 1In this connection Tha cher (1957) and Stroud
(1960) have developed a nuﬁber of (n+l) point formulae of degree 2

for any s dimensional symmetric region. Although some of the points
in their formulae lie outside the region of integration they have one
point going for them in that most of the formulae have equal weights
which maintain good stability characteristics.

Another aspect in the construction of minimal point formulae is
the fairly general method of finding efficient formulae of high degree
based on the symmetric properties of certain regions. Here the cube,
ball and sphere when centred at the origin, show the property that

whenever (x,,x

1 2,...,xn) is a part of the domain every point of the

form (ixlixz...,txn) is also in the domain. Such a region is fully

symmetrical if for any permutation of 1,2,...,n, g(xl,...,xn)='

_g(ixp(l),...,ixp(n)). By a similar reasoning a quadrature formula

is fully symmetrical if it contains the points (xl,x ,...,xn) with

2
the associated coefficients and it contains all the points (ixl,ixz,
...,ixn). For example the formula,
4
J £ = af(0,0 +a, ] f(x), (4.1.3)

r=1
Ry
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where x are the four vertices of R, is fully symmetrical.

1'%y 2

Thus if Rn is a fully symmetrical region and Q is a fully
symmetrical formula §4.l-2(l)), (4.1.2(3)),(4.1.2(5)),... are
automatically satisfied since each side of the equations is
identically zero. In addition s(s+l)/2 equations {4.1.2(l)) become
equivaleﬁt'to,
y ar(xi)z = j ) 2ax (4.1.4)

Re

f
and each of EZﬂ equations of (4.1.2(4)) is equivalent to one of

these two sets of equations,

2 22 % 22
D) ar(xl)(xz) = f (xi)(xz) ax (4.1.5)
[ R
) ar(xd)4 = J ot dax . (4.1.6)

Hence in a fully symmetrical situation the conditieon in (4.1.2)
becomes greatly simplified and the number of equations to be
satisfied by a formula of degree d becomes independent of the nunber
of variables. Using this approach J.N. Lyness (1965, i,ii,iii,iv,v)
produced some families of formulas with odd degrees 2d+l for Gn‘n-dualc&mhedrw1
while J. McNamee and F. Stenger (1967) also obtained formulae for Gn
and other regions. What is common to the works above is thaﬁ.the
final rule‘génerated may incorporate a basic rule or its -composite
form. The most recent contributionsin this direction include the
construction of quadrature rules by parameter optimization by A.M.
Cohen and D.A. Gismalla (1985) and a note on the papers by Cohen and
Gismalla on quadrature formulae for symmetric integrands by L.D.

Jenkins (1985). The added novelty of these contributions is that the
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square of the error of approximating an integral by a given rule is
mininised.

For a fully symmetric region Tha cher (1857} in his optirum
quadrature formulae in s dimensiors generated (4.1.2). By defining

a set of m*m diagonal matrices,

G = [Vciéhil . | {4.1.7)
(i) (3
X
and [Xi .Ghi]'

he expressed (4.1.2) as,

s -(,)n. '
tI{G ITx JG} = I (4.1.8)
j=1 l,nz,...,ng

with,
0 if at least one nj is odd
5$ {4.1.9)

I n
nll"'l 5

if no nj is odd

s
(n_ +1)

Titng
Hence he established that for a second degree formula,

]

tr{GG} = 2 (4.1.10a)

erfex e} = o (4.1.10b)

tr{Gx(j)X(k)G} = i 8 {4 1 10c)
T 85 - 1.

He converted (4.1.10) into vector equations by defining £=G €

where € has all unit elements. So that (4.l.i0) becomes

ng = 2° (4.1.11a)

£T€j = 0 (4.1.11b)
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S
T 2

. =~—328 . 4.1.11
§]k€k 7 %5k { c)

By the orthogonal relationship of the vectors, he established a second
degree formula for (4.1.l). For férmulae of higher degrees he

noted that the condition of orthogonality was not sufficient and

that additional conditions of s($+l)/2 pew vectors Ejk;SUCh that E%s

- .are o:i’thogonal to ‘c‘_,’k but not to £ while s{s-1}/2 Ejk(j;ék)-arerr'thogonal
to both sets or else the null vector.

The difference in all these methods is the strategy of solving
the resultant equation from (4.1.2). Stroud's method doeg not
guaranfee that the solution peints will lie in the region of
integration. Thatcher's approach is similar to Stroud's and requires
considefable amounts of work. The work of Cochen et al is geared
mainly at symmetric integrands.

. The method that is being proposed in this investigétion accepts
the basic approach in (4.1.2) but adopts a different strategy in
solving the resultant equations. Moreover it introduces an element
of consistency into the set of equations (4.1.2) by using an extra
set of equations which can in turn ensure that the weight functions
are positive and that all the solution points lie in the region of

integration.
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4.2 PORMULATION OF THE Z2-DIMENSIONAL MINIMUM POINT RULE

The approach here is té consider the integration of the function
f(x,y) (in two variables) defined in a standard region -lsx<l and

-lgy<l,i.e.,

1.1

J [ fix,vy)dxdy , -l¢xgl and -1€<ysgl {(4.2.1)

14 1 2 :
The strategy is to- force J J f(x,y)dxdy to be equal to Ewixiyi;

. 34 i=l
Hence,

rlrl n

J J f(x,y)dxdy = Z w.qug ' (4.2.2)

o Fitd

-1 -1

for fix,y}) = XaYB;

where wi's are weights Oga, 0<B, 1l<n<® and ¢ ,8and n are integers.

This implies that {4.2.2) becomes,

fl 1 .
J I <y = ¢, (4.2.3)
-1-1
where, ( O if g or B is odd
c = 1
€ 4
TEIETTE:IT octherwise.

Substituting (4.2.3} in (4.2.2), we have,

e B _ _
) W XIYS c, - (4.2.4)

In the model above the total number of unknowns is 3n, i.e.
(xi,yi;w;), i=1,n. From theory (A.H. Stroud) it is known that a

true multidimensional Gaussian formula in which all 3m degrees are
used to satisfy equations of the form (4.2.2) exactly does not exist.
Hence extra equations are introduced to invoke symmetry conditions.

(based often on the spatial geometry) and some equations of the form
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(4.2.2) are dropped. Moreover not all equations of the form,

(4.2.2) are independent. For example with the cubic region above

choosing o=0, B=2 and o=2, B0 gives the same egquation.. This is

also a symmetry effect.

Hence three ways of increasing the number of equations without

introducing dependence are considered.

A{a)

(b}

(c)

We could use further independent equations of the form (4.2.2).
(Note even though some of the sequence of equations in this set
are o@itted due to symmetry they will be satisfied identically).
In fact (a,B) takes on the series of values such as (0,0)},(0,1),
(2,0y,1,1),(0,2) with symmetrically dependent terms missing.
Symmetry conditions on the abscissas can be inveked directly.

For example,

X. = X

i 3 .
v, = yj ‘ (4.2.5)
xi = yj

‘where isisn, lsjsn} i,j and n are integers.

Finallf Qeigh£ éymmetry can be used. For example wi=wj,

l<ign, 1gjsn, i,j and n are integers and n the number of points
in.the ?uie.

The third option could result in the extreme case of Gauss-
Chebyshev type of formulae with equal weights although the
effectiveness of such formulaein multidimensional quadrature is

not well known.
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In solving fbr Wis' xis and yis, the first set of n equations is

treated as linear in wis so that the Wis can be expressed in terms

of #is and yis (by Gaussian elimination). On substitution the

remaining set of 2n equations is then treated as a non-linear set of
equations in xis and yis. This is then solved by using Newton's

method. Both processes are treated fully numerically, the matrix
element representing the coefficients of wis being declared as functions
of xi and yi so that the non-linear equations being fed to the.Newton
algorithm contains a dynamic Gauss eliminator in their codes.

In order to monitor any ill-ceonditioning the condition numbers
of the various sets of linear equations involved were found after
off-lcading the relevant coefficients. In all cases quoted the
level of ill-conditioning was found to be very small, though clearly
increasing for higher point number formulae. The program for this

routine is displayed in Appendix (v).
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4.3 THE NEW MINIMUM POINT RULES

{1} The model in (4.2.2) was used to produce the Z2-point Gauss
product rule. The exact set of equations for the 2-point product
rule are as shown below.

From {(4.2.2) we have that,

1,1 o B
j J f(x,y)dxdy = Ewixiyi
-1

The first set of 4 equations and second set of 8 equationg are as

follows:

4 3
(1) Z w, = 4

, i

4

{2) E WX, = 0 " |
1 set of 4 equations treated
4 r
. = 3 3 [}

(3) Z WY o as linear in wys.

i

4
@ ] wxy, =0

i=1 )

22 _ 4 .
(5) Ew xiyi =3
(6) xz‘ = x4
(7) X, = %y
. Z?d i
(8) X, = x, _ set of B equations
equations from treated as non-linear
‘(9) %2 - ¥3 symmetry conditions [ after sub. for the
1

(10) x, = xs values of wis.
(11) ny =¥
(12) X, = ¥, )
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Using Gaussian elimination in the first set of 4 equations and
substituting for wis, the resulting equations in {5}-(12) are
treated as non-linear in xis and yis and are solved using Newtons
methed.

With starting values of,

X, = 0.6
Yy = -0.6
X, = .6
¥y = -0.6
Xy = 0.6
xg = 96
Y, = 0.6

We have the following result:

ifw, Xy Y5

1 ]1.0 |-0.57735026918962576467 -0.5773502618962576467

2}11.0 1 0.57735026918962576467 -0.5773502618962576467
311.0 |~0.57735026918962576467 0.5773502618962576467

4[1.0 | 0.57735026918962576467 0.5773502618962576467

This result is in total agreement with the two-point Gaussian
product and so the above model formed a validated basis for this work.
Hence the starting values for x and y are dictated by the symmetry of

the region cof integration.
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{ii) 5 points rule

11

In 5 points rule the integral of the form J J £ (x,y)dx=dy

=1°-1
was considered. As indicated in the model above, we have that,

171 ' |
[[ron =1t

~1-1
. The two sets of equations are made up of the following:

. 5
(1) ] ow, o= 4
i=1 i
(2) ¥ wx, = 0
- . St + I - '
(3) ) wy, =0 - 1~ set of 5 equations linear in w:s
(4) ) WXy, = 0
, 2 4
() Lowgx =3 )
2 — . b
(6) L WXy, =0
2
(7) ) w.xy, = O
2.2 _ 4
(8) L owxy] = 3
3 _
(9) I wy, =0
nd
3 2 set of 10
(10) ] wx =0
equations treated
(11) X, = X, ) L as non-linear in
T 1
(12) X = g equations from x;s and y;s
[ e "
= - ymmetry conditions
(13) i xl x2
(14) X =¥
(15) X4 = y4 )
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Treating the first set of 5 equations as linear in wis, the wis are

then expressed in terms

of x!s and y!s.
i i

Substituting for wis

in (6)={15) and treating these as non-linear equations in xis and

yis the equations are again solved using Newton. With starting

values of,

xl = -0.5, yl = =0.5
X, = 0.5, y2 = -0.5
X3 = -0.5, Yy = 0.5
Xy, = 0.5, Y, = 0.5
.;xs = 0.0, yg = 0.0
we have the following results:
5{a)
i *i Y3

0.64265722402873640779
0.85704591459275138404
0.85704591459275138426
©.64265722402873640704

1.0005937227570244172

~0.66673264565535991723
©.6667326456553599734

-0.66673264565535991745
0.66673264565535991745

0.0

-0.66673264565535991723
-0.49995052065537574118
0.49995052065537574107
0.66673264é65535991752

0.0

(iii) Another 5 point rule can be produced with weight conditions

introduced. Here the first set of 5 equations is the same as in (ii)

but with the 2nd set of ten eguations taking the form below.

\




(e)
(7)
(8)
(9)
(10}
(11)
(12)
(}3)
(14)

. {15)

2
AR

) wixiyi

22

L Wiy

£
I
=

X4 =

Using starting

we have the

|
(o)

wt eguation

Yy

values of:

following results:

r 2nd set of 10

eqgquations



5(b

96

)
i w, Xy Yy
1 [0.68465843842649082437 {-0.65339533882747565289 |-0.65339533882747565213
2 .|0.87689437438233944937 | 0.65339533882747565289 | -0.51015566461111166064
3 ]0.87689437438233945078 |-0.6533953388274755258 ©.51015566461111165977
4| 0.68465843842649082556 | 0.6533953388274565267 '0.65339533882747565228 |
5 {0.87689437438233944981 | 0.0 0.0
(iv) 5 points rule with equal weights

By imposing the condition that all the weights be equal the set

of equations we have for a five peint rule are:

(1)

(2}

(3)

(4)

(5)

(6)

(7)

(8)

(9)

5
bt
L owxy =0
I wyy =0
I vy, =0
) Wi"i B 513“
v =3
LoV ;'Z.Yi =0
) ixiyi =0
) Wixi = 0

st
1 . set of 5 equations linear in
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. 3
oy ) wy, = O

3 =
(11) ] wxiy, = O

3 3 21')d set of 10 equations
(12) W, = W,
(13) w = w
3 4 wt equations

(14) WS = wl
(15) w2 = wa ]

With the introducticn of weights the abscissas are freed and starting

with the following values,

xl: = —0;5, v, = 0.5
x, = 0.5, ¥y = -0.5
X, = ~0.5, Y3 = 0.5
x4 = 0.5, y4 = 0.5
xS = 0.0, Ye = C.0
‘We have the following results:
5(c)
Lol %y Ys

1 0.8 —0.64549722436790281442 —0.64549722436%90281431
2 c.8 0.64549722436790281399 -0.64549722436790281442
3. .0.8 ~0.6454972243679081442 0.6454972243679028149%21
4 0.8 0.6454972243679028143) 0.64549722436790281420

5 | 0B 0.0 0.0
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{v) 6-point rule

With the 6 points rule (with equal weights) we have the following

sets of equations:

) :
v ) ow, o= 4 )
i=1 *
(2) I wx, =0
y 1 set of 6 equations
(4) ¥ wx.y, = 0
2
%) 1 wixy, =0
: 2 _ 4
€ ) Wy =3 J
4 _ 4 7
I
. ‘ 2. )
(8) } wxy, =0
C) ) wixi =0
5
(10) ) wx; = O
an 3 Wiyi = o ' 2" set of 12 equations
r treated as non-linear in
3
12 Xy, = 0 :
12 X Vi*i¥3 x,'s and y!s
. i i
4 4
(13} Z wY, = 3
- 3
(14) wy = W,
(15) Wy =W,
(16) ws = w6 r¥ wt eguations
(17 w4 = w2
{18) w, o= W J
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Solving_these eguations with the follqying starting values of:

X

X

we have the following results:

1

4

H

-0.5, yl

-0.5, y4

~0.5, %, = 0.0, y, =

= 0.5, x

= 0.0, Yy = 0.8, %

6

0.8, %, = 0.5, y; =

-0.5,

= 0.5, y6 = 0.5,

6 points

i wi xi yi

1 | 0.66666666666666666620 [-0.74008280449228525035 {-0.35002117458154067810
2 | 0.66666666666666666685 | 0.0 —0.568890300722201204915
3 | 0.66666666666666666641 | 0.74008280449228525024 |-0.35002117458154067815
4 | 0.66666666666666666631 [ -0.74008280449228525089 | 0.35002117458154067818
5 | 0.66666666666666666639 | 0.0 0.86889030072220120495
6 | 0.66666666666666666685 0.74003280449228525057 0.35002113458154067761

{vi)a 7-points rule

sets of equatiocns:

(1)

(2)

(3)

(4}

(5)

(6)

(7)

With the 7 points rule (with equal weights) we have the following

1
=
=3
]
=
il

Wik B

(RPN

st .
y 1  set of 7 equations




(8
(9)

(10)
(11)
(12)
(13?
(14)
(15)

(16)
(17)
(18)
(19)
(20)

(21)

With

i~
:«
"
<o
l_h
1

-’
o
"
P.
&%
P-
]

Yo )

welght equations

values of:

Y, = -0.3
Y, = 1.0
Yy = -0.3
Yy = 0.3
y5 = 1.0
Y = 0.3
y, = 0.0

100

nd

27" set of 14 equatiocns

treated as non-linear



101

We have the following results:

i W, ' X. o
1 : 1 Y.'l.

1 [0.57142549470901745452 |-0.7637763415032655887). [-0.29834285118026504075

2 10.57142906531711892620] 0.0 -0.994303573074995978
3 |0.57142549470901745474 0.76377634150326558827 -0.29834285119026503994

4 [0.57143164836930384893|-0.7637748899020107145 | 0.29836108534558329668

5 10.57142806588149074965( 0.0 0.99430285531030323598
6 | 0.57143164336930384796] 0.763374889902010 0.29836108534558329510
7 10.5714285264474771877 | 0.0 -0,0004043936282357150

WMW w;arn(?‘(ktﬂn\lmﬂ 0(4.4([0 L, WA«{

(vi)b wWhen the equations (9),(10) and (11) in (vi) are replaced by

25

(9 Jwy® = o0
25 11

(10) z wixi Yy = 0
11 25

(1) JwxyT = 0

and using the same starting values we have the following results:

i Yy X5 Yy

- 1 |0.57142857066576083983 |-0.76376261922451045344 |-0.299999502852020127785
2 |0.57142857155633176749 | 0.0 £0.9933126218235589107
3 |0.57142857066576084016 | 0.76376261922451045810 [-0.29999950285020127687

4 10.57142857219138202998 [—-0.76376261242743619996| 0.29999950738891820168
5 10.57142857130419388910| 0.0 0©.99331125910324016284

6 10.57142857219138203074 | 0.76376261242743619562( 0.29999950738891820374

7 0.57142857142518860313 0.0 -0 .0000000716192790792
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(vii) OS-point rule with equal weights

For a 9-point rule the set of eguations involved are as follows:

9
1y ) w, = 4 )
i=1 7t
(2) ¥ WX = 0
3) ] wy, =0
(4) ] wxy, =0
4 st .
(5) 1 wix, = 3 } 17" set of 9 equations linear in
2 4 ;s
© It -3
2
(7) y WXy, = 0

® J wxy = o0

iii
22 _ 4
@9 I wxy; = 3
3 -_ b
(lo) } w;xy = 0
3
1)} wy; = ©
(12) 2 w x3y = 0
itify
5
(13 § wy; o
' 6 4
s § el o= 3
(15) '} w y' = o
i
3.2
(16) Z WXy, = o

(17} 2 w x3y3 = 0




{18) z w,x?y3

(19)

{20)

(21)

(22)

(23)

(24)

(25) -

(26)

(27) -

With starting

i.i°i

L w x0y?

itifi
w, = o,
vy = w4
WS = W6
W77 Vg
Wy =Wy
w3 = ws
We = W,
Wg = W,

( weight equations

values of:

—0-78’ yl = -0.78
0.0  y, = -0.78
0.78 y3 =- -0.78
~0.78 y, = 0.78
0.0 ys = 0.78
0.78 yg = ©0.78
-0.78 ¥, = C.0
0.0 y8 = 0.0
0.78 yg = 0.0

We have the following results:

103

2nd set of 18 eguations

treated as non-linear

in x!s and y!s.
i i
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i i % Yy
y

1 {0.4444241582707352855 -0.8137089875143209672  [0.6146905493843060025
2 |0.4444518803265492236 | 0.00031081203690234615 1-0.86279453582773435807
3 {0.4444130287316860095 | 0.8140162587744951551 |0.61435756439783453006
4 |0.4448050817388163561 |-0.812338166693188049714| 0.61534747325323288633
5 | 0.4444248869405269037 | 0.0003176478368327890L | 0.86212930789494299406
6 | 0.4444308630563611389 |-0.81269280438417541379 | 0.61500983479212011016
7°| 0.44415956445468844269-0 4223717321 2933225069 | 0.00485904890168844906
8 | 0.44463381551067402060-0.00083786962247918029 |-0.01042840689288041142
9 | 0.44454080958780152911] 0.42007286129450621307 | 0.0048861036966911564

ity Longiny doppad eng g i (Vi)a,

{vii)b.

and using the same starting

When equation (10)

; Py s 9_
in (vii) is changed to z wiyi O

values we get the following results:

w [}
i

*y

¥

0.444444444444446292°

0.444444444444433895

0.4444444444444550278

0.4444444444444336165

0.4444444444444530779

0.4444444444444443316

0.44444444444444564536

0.4444444444444464019

0.44444444444444325848

-0.71730585014582323527
-0 . 000C000000000001 4943
0.71730585014582331365
-0.71577695410879641109
0 .000C0000000a00012946
0.71577695410873648200
-0.68784858022192045686
-0 .0000000000000003002 4

0.687848580221920294131

0.698291634125419729

 0.7246311372027099358

0.00215427648444910291

-0.00483761335568257135

—0.69729904195857098220
-0.72608726096049206855

-0.697299041958%7097130

-0.69829163403125419501

0.00215427648444912185




{(viii) 13-points rule

With the 13 points rule the two sets of equations considered

are as follows:

13

(1) iEl w, = 4

(2) I wx, =0
{3) 2 Wy, = 0
(4) Z WXy, = 0
(5) E wixi = %
(6) } wiyi = %
(7 Il Wix?.yi =
8 3 wixiyi =‘ o)
® ] wixzyi B %
(10) § wixiyi = 0
(1) § wixiy:;_ = 0
(12) § wixiyi = 0
R
(14) z wixi = 0.
(15) § wixiyi - o

{(16) E w.y? = -%

t
ls

set of 13 equaticns

105



(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)

(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38}

(39)

5 7
i¥5

I

r ond set of 26 equations treated

as non-linear in xis and yis.
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With starting

values of:

107

X, = -0.78, y, = -0.78

X, = 0.0, Yy, = -0.78

x3‘ = 0.78, y, = -0.78

X, = -0.78, Y, = 0.78

Xe = 0.0, Yo = 0.78

x6 = 0.78, y6 = .78

x7 = =7.8, ¥y, = 0.0

x8 = 0.0, y8 = 0.0

xq = 0.78, Yg = ©.0

10 = -0.3, Y9 -0.3

X, = 0.3, Yy, = -0.3

Xyg = -0.3, y12 = 0.3

X135 = 0.3, yl3; = 0.3
i W, X, Y,
1 10.30769230769230767800 |-0.76492418809482633755 |-0,77961330614441911929
2 10.30769230769229711896 |-0.00000000000000003445 |-0.799989947422098803
3 {0.20769230769230774002 | 0.76492418809482622035 |~0.77961330614441910758
4 10.30769230769230764981 |-0.76478878273873230665 | 0.77964109428407462144
5 10.30769230769230497286 |-0.00000000000000003252 | 0.90480195105775847795
6 {0.30769230769230770787 0.7647887é273873218175 0.7796401942840746134
7 0.307692307692307527751 -0.93862453720499981497 | 0.0058691718660076066715
8 10.30769230769231965155 | -0.00000000000000282922 1-0,21807561721437668665
9 [0.30769230769230778160 | 0.9386245372050008732 | 0.0058691718660075783340
10(0.30769230749230846757 | -0.26554040812044791067 |-0.28816497264435434155
1110.30769230769230750794 | 0.26554040812044637002 |-0.28816497264435351154
12{0.30769230769230955004 | -0.21243361490974740905 {-0.33890071944012364501
1310.30769230769230664692 | 0.21243361490974539734 | 0.33890071944012322444
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It is noted that the monomials for equal weights are not
symmetric especially in the higher powers. The resulting formulae
therefore have slightly off symmetric points for this reason. These
choices were fbrced upon us by either linear aependen;e or lack of
existence of a solution, as all these formulae depend on the full,
exact, solution of the defining equations. Figures (.2 }oto (7))
show the spread of points in the region defined by -1.0sxgl.0 and

~1.0¢yg1.0 for the respective 5,6,7,9 and 13 point rules,
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FIGURE (2} FIGURE (3}
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FIGURE (6) : FIGURE (7)
9 points ' 13 points
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4.4 EXPERIMENTAL RESULTS AND CONCLUSIONS

The rules developed were applied to various integrals I

defined by:

[
1]

1l
J f -8 . = 2.0958446
13 V{(d-x-2y})

11
} axdy  _
T J J 721;157 1.0464963

1]

I = _dxdy 2.6555866

’ J—1'-1~/'(3-x2-yz)

lrlx - ’
1, = [ J e“cosydxdy = 3.955591

-1-1

rllx
I5 = J I e sinydxdy = O

-1 -1 |

1l Xy
I, = J J e fdxday = 4.2290035

-1 -]

The results in Table V1 and V2 show that the new rules developed
compare favourably with existing ones. The 13 point rule seems to

be the best of the new rules, 1In addition to this the performance of
these rules appears to improve with increase in the number of points.
This is consistent ﬁith the model used in developing the abkove rules
since the IJ f(x,y)dxdy can only be evaluated exactly by the rule

when the integrand f is defined as,

£lx,y) = x%yP

So the higher the values of the number of points used, the more

accurate the approximation.
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GAUSS 9 PTS PRODUCT 2.0953358 '1.0464731 .6514268
RULE
RADON 2.094937 1.0453342 .6472813
ALBRECHT AND COLLATZ 2.094441 1.0463702 .642812
COHEN AND GISMALLA 2.0913961 1.0464845 .6541559
NEW FORMULAS
5 POINTS RULE (A) 2.076392958 | 1.040921313 | 2.591229547
5 POINTS RULE (B) 2.077946837 | 1.041465851 | 2.594184682
5 POINTS RULE {(C) 2.093217447 | 1.04651128 .635852121
6 POINTS RULE 2.090753844 | 1.046450669 | 2.636952733
7 POINTS RULE 2.092437918 | 1.044414799 ] 2.633849630
9 POINTS RULE 2.093028943 | 1.046085180| 2.638122727
13 POINTS RULE 2.097414898 | 1.04625322 .655895646
TABLE V1
ﬁEw FORMULAS I, I I
5 POINTS RULE (C) 3.907445679 | 0.0 .281819883
6 POINTS RULE 4.083778656 | 0.0 .0B9973626
7 POINTS RULE 4.047420824 | -0.000000461 | 4.233577168
9 POINTS RULE 3944323412 | -0.00007166 4.226890560
13 POINTS RULE 3.960338146 | -0.01193567 | 4.228784968

TABLE V2
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CONCLUSION



113

The purpose of this chapter is to bring together the conclusions
reached in the previous chapters and draw attention to possible
directions in which further investigation could be made,

In Chapter 2, two methods of transformation - the IMT type of
rule and the Error type rule were generalised. The rules developed
were applied to various test integrals and their performance compared
favourably with existing metheds. The results also showed that the
. new rules are also.robust for non-singular integrals but are not
competitive with conventicnal rules such as Patterson or Clenshaw-
Curtis. This seems to indicate that rules based on transformations
should be usged where possible for singular integrals, where
conventional rules perform badly. Moreover, since the transformations
used were not standard fﬁnctions, attention had to be paid to
effective means of computing them.l Previous work had been based
primarily on standard functions and as long as methods to compute
" suitable non-standard functions were available it seemed workable

to investigate these possibilities. Hence one af the recommendations
of this work is for a further investigation into the use of non-
standard functions as a means of dealing with singular integrals,

In addition, the performance of the IMI type of rule as revealed by
_the tests depends on the appropriate choice of ¢ and so far, the way
of choosing this beforehand has not been established. So a seaxch
for a way of choosing the values of ¢ for different classes of
function will certainly be of interest if the full power of the IMT
type of rule is to be realised. These investigations could just
result in a transformation method competitive with Clenshaw-Curtis

or Patterson on a smecoth integrand.
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Chapter 3 is divided into two sections, While the first part
deals with 2-dimensional singular integrals, the second half is
devoted to non-singular integrals in 2-dimensions.

In the first part two transformations - the tanh transformation
and the Error transform were employed to develop efficient rules
for 2-dimensional singular integrals. The performance of the rules
was compared with Romberg and a standard Gauss-Legendre product
rule which is one of the best known methods and the results show
_that the new rules are more efficient and more accurate. With
regard to the new rules two strategies were adopted. First a
further transformation was introduced and this enabled us to conbine
the efficiency of the trapezoidal and Clenshaw-Curtis rules. So by
integrating in concentric circles it was possible to scan the area
of significant contribution to the quadrature easily. The
alternative approach was to use thé trapezoidal product rule in
" the infinite plane and monitoring the contribution in each node of
the grid, The results showed that both strategies have their uses.
The first gives very accurate results with integrals having
derivative singularities within the region of.integration while
the second strategy is clearly more efficient and more acéurate
when applied to integrais with boundary singularities. However
-ﬁhese rules have been develcped for 2 dimensional integrals with
a view to extending them to higher dimensions. So the recommendation’
hére is an investigation of this approach to high dimensional
singulaf integrals. The simplicity of the grid approach may well
Prove inviting in this context.

In the second part of Chapter 3, the polynomial transformation
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was uéed to improve the trapezoidal product rule for non-singular
2-dimensional iﬁtegrals. This resulted in the reduction of the
nﬁmber of functicn evaluations as well as improved accuracy.

This investigation has been restricted to 2-dimensions and so

far it appears to be successful. It will be of interest to know
what happens in higher dimensions and the efficiency of other
similar transformations should be investigated.

In Chapter 4, various minimum point rules were developed using
-moncmials and the results showed that the efficiency of the rules
increaseé with the number of points. Beyond the 13 points rule
it was observed that‘ill—conditioning begins to set in while using
the dynamic Gaussian elimination in the ¢ode. The way to deal
with tﬁis is to employ multiple precision codes which will prove
expensive, but no more so than the generation of high order Patterson

rules for example.
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PROGRAM getest
BPGIN
INT n,ip,ic,enn;
REAL x,gw,c,gc0,gcw,gwl,capc;
BOOL con:
[1:5] REAL te;
PROC psi=(INT n)REAL:
BEGIN _
REAL s,g8amma:=0.5772156649;
IF n=1 THEN -gamma
ELSE
s:=-gamma;
FOR i1 TO n-1 DO s PLUSAB 1.0/i1 0OD;
]
FI
END;

PROC en=(INT n,REAL xJREAL:
BEGIN :
IF ABRS x >1.0 THEN
INT nd:=8+ ENTIER{(80/x);
REAL x0,y0:=1.0
FOR i1 FROM 0 TO nd-1 DO
Xx0:={nd-11)/(x+y0);
yO0:=(nd+n-i1-1)/(1.,0+x0)
OD;
exp(-x)*(1.0/(x+y0))
ELSE
IF ABS x<1.0e-8 AND (n=0 QR n=1} THEN
print{(newline,"Singular E0 or Ei1",outline)};
0.0 :
ELSE
REAL s,xmi=~x,1t:=1.0,t%;
IF ABS x<1.0e-8 THEN
5:=0.0
ELSE
s:=psi{n)-1ln(x);
Lt:1=5%10.,0;
FOR i1 TO n-1 DO s TIMESAB xm/it 0D
FI;
{(n/=1!'s MINUSAB 1.0/(1.0-n));
FCR i1 WHILE ABS tt>ABS s=t. Oe—10 DO
t TIMESAB xm/11;
(i1/=n-11'tt: -t/(11 n+l};s MINUSAB L)
0D;
s
FlI
FI
END;

PROC coef={INT m,n)REAL:
BEGIN
IF n=1 THEN 1.0
ELIF m=0 THEN 1.0
ELIF m=1 THEN n
ELSE
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REAL ©:=0.0,%t:=1.0;
FOR I TO (n<minim) DO
t TIMESAB (n-i+1)/1;
s PLUSAB txcoef (m-1i,1i)
0D;
s
FI
END;

PROC curtclena=( PROC ( REAL ) REAL f, REAL a,b,prec,sc,econ,
INT max,BOOL rel,REF BOOL con) REAL:
BEGIN
REAL sa:=1.0,s8b:=0.0,h1:=b-a,w:i=b,s1;
REAL fac:=0.0; o
con:;= FALSE ;
INT ic:=1,icc;
{O:max] REAL xa,wa,fa;
BOOL outb;
outb:= TRUE ;
WHILE
ic TIMESAB 2;
IF ic=2 OR ic=4 THEN TRUE
ELSE
con:=con OR ABS (sa-sb)«<=fac;
ic<=max AND NOT con

F1
Do
BEGIN
sa:=sb;
IF ic=2 THEN xal0l):=1.0;:xal1]:=0.0;xal2]:=-1.0
ELSE . ' ‘
FOR it FROM icc BY -1 TO 1 DO xal2xi1]:=xali1] OD ;
FOR 11 TO icc DO xaf2%i1-1):=cos(pi*(it+i1-12/ic) 0D
FI ; - ’
FOR i1 FROM 0 TO ic DO
BEGIN
51:=0,0;
FOR i2 FROM O TO ic DO
IF i2=(1i2%2Y%2 THEN
IF i2=0 OR i2=ic
THEN s1 PLUSAB cos(pi=i1*i2/ic)/(1~-i2%12)/2
ELSE s1 PLUSAB cos(pi*i1#i2/ic)/(1-i2%1i2)
FI 0D ;
wali1l:=(i1=0 OR i1sic!2tU)*s1/ic
END OD ;
IF i¢=2 THEN fal0l:=f(w)sfal1l}:=Ff(w-h1/2);fal2]:=f(a)
ELSE
FOR i1 FROM icc BY -1 TO 1 DO fal2*i1l:=fali1] OD ;
FOR i1 TO icc DO fal2%i1-1):=f(w+(xal2%i1-11-1)%h1/2) OD
FI ; :
sb:=0.0;
FOR i1 FROM O TO ic DO sb PLUSAB walitl]xfali1] OD ;
icc:=ic;

foutb!printf (($lvic="+3z2d5x,"int="+d.9%de+z2d$,ic,sb*h1/2)}))
END O©OD ;
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sbxh1/2
END ;

FORMAT fori=$318x"X"lax*i220xr3n20"10w20x"2Q"
2155(5x+22zd.34d,4(5x+d.,7de+zd 1) $;

PROC ge=(REAL tJREAL:
BEGIN
INT uplim:=200;
IF £¢<-0.991 THEN 0.0
ELSE
REAL enc,tt,s,2z:=1.0/(1.0-t%t),s0,tw, twO gm,rem,ep: T.Oe—10;-
BOOL con: ‘FALSE dir:=FALSE;INT m:=1; e :
print((newllne,"inflnlte series and appl1cat1on by knops",
outline));
enc:=en(2,z);
tt:=1.0/2z;
s:=enc#*#tt;s50:=8;twl:=5;
FOR i1 TO uplim WHILE NOT con DO
(iT=uplim!'print(f(newline,"i1 limit reached in ge",outlinel));

IF dir THEN
enc:=en(il+2,z)
ELSE
enc:=f{exp(-z)-zxenc)/(i1+1)
FI:
tt TIMESAB (2.0*11-1)/2.0/11/2;
co
print((newline,"enc=",enc,space, "tt-" tt))-
Co

tw:-enc*tt;
s PLUSAB tw;
em: =ABS(tw/tw0};
IF gm>1.0 THEN con:=FALSE
ELSE
rem:=ABS{(tw)/ (1.0-gm};
con:=rem<ABS s xep
Fl;
co
print((space,space,"gm=",gm,outline) };
co
tw0:
0D;
s/2.0
Fl
END;

PROC ge1=(REAL t)REAL:

BEGIN
REAL a0:=0.6034502,a1:=1,22,s,tw,a3,al,aS5,gm,rem,ep:=1.0e-12;
BOOL con:=FALSE;
a3:=8.0%a1/3.0;a2:=3.0%a0;al4:=(10.0%a32-4,0*50)/4.0;
g:zal+at*t+a#*t*xt+ad=xtxirxtbralxrtxtrtrt;
twe=txtxt*xt;

FOR i1 FROM 4 TO 100 WHILE NOT con DO
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(i1=100!print({nevwline,"i1 1limit reached in gei",outlinel}));

aS:=((2.0%i1+4,0)xa3-(i141)xa1)/(i1+1);
Co
print((newline,vil=",i1,space,"a=",a5,outline)l};
co :
tw TIMESAB t:
s PLUSAB abS#*tw;
at:r=a2;a2:=ad;ad:~al;al:=a5;
gm: =ABS(alxt/a3);
IF egm>1.0 THEN con:=FALSE
ELSE :
rem:=ABS(tw)}/(1.0-gm);
con:=rem<ABS s*ep
Fl
0D
twe=(1.0-t%t);
s TIMESAB twxtwrexp(-1.0/twW);
s
END;

PROC ge2= (REAL t)REAL:
BEGIN

INT itw,i2w;
BOOL cont:=FALSE,con2:=FALSE;
FOR i1 TO 100 WHILE NOT conil DO
twti=-twt/il1; :
gs2:=t;tw2i=y;
FOR i2 TO 100 WHILE NOT conz2 DO
i2w:=12;
tw2 TIMESAB ts;
te2:=coef (i2,11}xtw2/(2%1i2+1);
s2 PLUSAB te2;
con2:=ABS te2 <1.0e-8%ABS s2
0D;
IF i2w=100 THEN print((newline,"i2 loop not converged
te2,outline)) FI;
tel:=s2xtwl;
i1wes=i13
st PLUSAB teil;
conl:= ABS tel<1.0e-8xABS s1
0D
print((newline,ilw,space,tel,outline));
g0-31
END;

PROQC gec=(REAL c,t)REAL:
BEGIN
INT uplim:=200;
IF £t<-0.,991 THEN 0.0
ELSE

REAL g0:=0.22199691,s1:=t,tw1:=1.0,sz,tw2,tsi=t*t,pe2,te1;

ta2="

REAL enc,tt,s,z:=1.0/(1.0-t%t),s0,tw,twl,gm,rem,ep:=1.0e-10;

REAL cz:=c#*z;

BOOL con:=FALSE,dir:=FALSE;INT m:=1;
enc:=en(2,cz);

tt:=1.0/2;



s:=encitt;80:=3;twl:=3;
FOR i1 TO uplim WHILE NOT coen DO

130

(ifT=uplim!print((newline,"it limit reach in gec",outlinel)));

IF dir THEN
enc:=en(il+2,cz)

ELSE
enc:=lexp(-czl-cz¥enc)/(i1+1)

FIl: }

tt TIMESAB (2.0%i1-1)/2.0/11/23; "

. COo
print((newllne,"enc=",enc,space,"tt=“,tt));
Cco

twi=enc*tt;
s PLUSAB tw;
gm:=ABS(tw/tw0);
IF gm>1.0 THEN con:=FALSE
ELSE
rem:=ABS(tw)/(1.0-gm};
con:=rem<ABS s *ep
Fl;
co
"print((space,space,"gm=" ,gm,outline)};
€o
twlr=tw
0D;
5/2.0
FI
END;

PROC gcf 0= (REAL x)REAL
BEGIN
REAL y:=1 .0e-36;
REAL xl:=-s5qrt(t1.0-c/1In{1.0/y)1};
IF x <x1 THEN
0.0
ELSE
expl{-c/(1.0-x%x))
FI
END;

PROC setgc{=(REAL ¢, REF REAL gc0,g0}) VOID
BEGIN

g0:=curtclena(gecf0,-1.0,0.0,1.0e-7,1.0,1.0,64,FALSE, con)

gcO:=expi{c)=*g0
END;

PROC geci1={(REAL c,t)REAL:
BEGIN

REAL aO:=gc0,at:=1,82,s,tw,a3,ad,a5,gm,rem,ep:=1.

BOOL con:=FALSE;
az2:={(4.0+2.0%c)*a0/2.0;
a3:=(6.0+2.0%c)*al1/3.0;

4:=((8.0+2,0%c )*a2-4.0*%aQ)/4.0;
s:=al0+alst+a2xtxt+aldetstrxt+alrtrtstxt;
tus=txtxtet:

FOR i1 FROM 4 TO 100 WHILE NOT con DO
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(i1=100!print{(newiine, i1 limit reacned in geclt,cutline)));
a5:=((2.07i1+2.0+2.0%c)*a3-(i1+1)xal1}/0i14+7);

Cco

print((nevwline,vi1=",11,space,"a=",a5,0utline));

Cco

tw TIMESAB 1;
s PLUSAB ab#*tw;
al:=a2;a2:=a3;a3d:=ald;al:=a5;
gm: =ABS(alix*t/a3);
IF gm»1.0 THEN con:=FALSE
ELSE
rem: =ABS(tw)/(1.0-¢gm);
con:=rem<ABS sxep
FI :
0D:
twe=(1.0-t%t);
s TIMESAB twxtwxexpl({-c/tw);
5 .
END;

PROC spexp=(REAL x )REAL:
BEGIN
IF x>-87.0 THEN
exp(x)
ELSE
0.0
FI
END;

PROC gn={(INT n,REAL t)REAL
BEGIN
REAL tw,s,t2n;
BOOL con:=FALSE;
~ INT j1;
L2ns=tx%x(2%xn);
s:=t;
twe=t;
FOR i1 TO 200 WHILE NOT con DO
twTIMESAB t2n/(-1i1); j1:=1i1;
s PLUSAB tw/(2. O*n*11+1)
con:= ABS (tw/(2. 0*n*11+1))< 1. Oe 8xAB3 (s+1.0e-6)
0D;
{j1=100!print((newiine,"series halted in gn*,outline)));
s¥capc
END;

PROC gni=(INT n,REAL t) REAL:
BEGIN

REAL tw,s,t2n,twl;

BOOL con:=FALSE;

INT j1;

t2n:=t*#(2%n);

tw:=1.0/2/n/t%%(2%n-1);

s:=tw;

FOR i1 TOD 100 WHILE NOT con DO

twl:i=tw;
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v TIMESAB (2.0xn=211-10/(-2.0)¥/n/42n;
5 PLUSAB tw;jl:=11%;.
con:= ABS tw <= 1.0e-8%xABS(5+1.Ce-8)
0h;
s TIMESAB exp(-t2nl;
(j1=100!'print({newline,"series limit reached in gni",outlinel})
(ABS tw> ABS twil!print({newline,"series not asymptotic in gniv,
ocutlinel)); _
print{(newline,"s=",s,outline));
capcxs
END;

PROC gn2=(INT n,REAL t) REAL:
BEGIN
REAL s,tw,tp;
BOQL con :=FALSE;
INT jt,n2:=n+n;
tpi=1.0;
FOR i1 TO n2 DO tp TIMESAB t 0OD;
=t
twi=s L3
FOR i1t FROM n2+1 BY n2 TC 200 WHILE NOT con DO
tw TIMESAB n2/il*%p;
g8 PLUSAB tw;
Jre=in;
con := ABS tw <= 1.0e-10 % ABS (s+1.0e-8)
oD; .
s TIMESAB exp(-tp);
“{(j1>=147!'print((newline,%series limit reached in gn2",
outline)));
s%capc
END;

PROC gnq=(INT n,REAL t)REAL:

BEGIN
INT m;
REAL capn:=exp(ln(38+1ln(10.03)/2.0/n);
.CO
'print((newline,"capn=",capn,outline));
co

PROC gngf=( REAL y) REAL:

BEGIN
REAL w,pr:=1.0;
wislcapn-t}/2.0xy+(capn+t)/2.0;
FOR i1 TO 2%n DO pr TIMESAB w 0OD;

expl(-pr)
END;
m:=9;

[1:mIREAL wt,ab:

wt:=(0.17944647,0.17656271,0.168004102,0.15404576,0.13513637,
0.11188385,0.085036148,0.055459529,0.024148303);

ab:=(0.0,0.,17848418,0.35123176,0.51269054,0.65767116,0.78151400,
0.88023915,0.95067552,0.99057548);

REAL s:=wt[1lxgngf (abl11);
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FCR i1 FROM 2 70 m DO
s PLUSAR wtli1l=(gngf (abli11)+gnel (-abli1 1))
oD;
5 TIMESAB (capn-t}/2.0%capc
END;

PROC setcapec=(INT n) REAL:
BEGIN
REAL ul;

PROC gnf0O=(REAL x)REAL:
BEGIN

exp(-(x%*%(n+n)))
END;

ul:=exp(ln(10.0%1ln(10.01))/2.0/n);
capc:=1.0/curtclenal{gnf0,0.0,ul,1.0e-7,1.0,1.0,64,FALSE,con);
print((newline,"capc=%",capc,space,"for n=*,n,outliinel);
capc

END;

PROC spgen=(REAL t,INT n)REAL:
BEGIN
REAL tt,wt;
IF t<0.0 THEN
tti=-t
ELSE
tti=t
FI;
IF tt<{n!1.5,1.0,1.0) THEN
wt:=1.0-gn2(n,tt)
ELSE
wti=gnqgin,tt)
FI;
wt
END;

PRQOC spfe=(PROC(REAL,REAL)IREAL f,REAL a,b,t,INT n,REF REAL wi,
w2)VOID:

BEGIN . ‘
REAL em:=(b~a)/2.0,ce:=(b+al}/2.0,w0;
print{(newline,"spfe t=",t)};
wO:=emsspgen(t,n);
print ((" wO=1_w0));
wirsf((L>0.0!b-w0la+w0),w0);
print((" wi=",wl1l});
w2:=zexp(-(L*%{2xn)))
rprint ((® w2=v w2,cutline))

END:

PROC eint=(PROC(REAL,REAL)REAL {,REAL a,b,prec,INT n)REAL:
BEGIN

REAL sumt,sum2,quadl,quad2,tj,h0,h,w!,w2,0dd;

INT nn,npts;

BOOL con;

h0:=0.5;
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he=h0y
setcapc(n);
spfe(f,a,b,0.0,n,wi,w2};
suml :=wil*w2;con:=FALSE;
FOR i1 TO 100 WHILE NOT con DO
spfe(f,a,b,i1*h,n,wt,w2);
tirowlxw2;
suml PLUSAB tj;
spfe(f,a,b,-i1=xh,n,wt,w2);
tje=wlixw2;
suml PLUSAB tj;
nn:=11; _
con:=ABS(tj) < prec* ABS (0.5%sumil)
0D; . ‘
print((newline,"First search complete " nn,outline));
IF nn=100 THEN prlnt((newllne,"h too small",outline)) FI;
nptsi=2%nn+1;
quadi:=h#*(b-a)*capc*sum1/2.0;
print{(newline,"npts=",npts, space,"quad1-",quad1 outline));
con: =FALSE;
FOR i1 FROM 2 TO 8 WHILE NOT con DO
nnTIMESAB 2;
h DIVAB 2.0;
odd:=0.0;
FOR i2 BY 2 TO nn-1 DO
spfe(f,a,b,i2*h,n,wl ,w2);
odd PLUSAB wixw2;
spfel(f,a,b,-12%¥h,n,wl,w2);
odd PLUSAB wil¥w2
oD;
sum2:=suml +oddgd;
quad2:=h*(b-a)*capc*sum2/2.0;
npts:=2%nn+1t; )
print({newline,"npts=*",npts,space,"quad2=",4quad2,outline));
con:=(ABS{quad)-quad2)<ABS (precxgquad2));
quadl:=quad2;
sumil:=sum2
OD;
quad?
END;

PROC spge=(REAL t)REAL:

BEGIN .

REAL tt,g0:=0.22199691,wge;

IF t<-1.0 THEN
print((newline,"t<-1.0",outline)’;
0.0

ELIF t>1.0 THEN
print(t(newline,"t>1.0",0outline));
¢.0

ELSE
IF +t>0.0 THEN tt:=-t
ELSE tt:=t
FIl;

IF tt<-0.5 THEN



"135

wge:=ge(tt)
ELSE
wge:=get (tt)
FI;
Co
IF t>0.0 THEN
{g0~-wge) /g0

ELSE
{wge-g0) /g0
FI
co
wge/ g0
Fl
END;

~PROC gint= (PROC(BOOL,REAL)REAL f,REAL a,b,INT n,ip,ic)REAL:
BEGIN :
REAL h,s,em,ce,t,g0:=0.22199691,w1,w2,h1,s1};

PROC spf=(REAL t,REF REAL wt1,w2) VOID:
BEGIN .
REAL wl:=spcel(t);
:=f (£L>0.0,emxw0);
w2 =gpexp(- 1 0/(1.0-t%t));
print{(newline,"t=",t,space,"wl=",wt, space,"w2 ",w2, space,
*wO=",vw0, outllne))
END;

em:=(b-a)/2.0;

ce:=(b+al)/2.0;

h:=2.0/n;

5:=0.,0;

FOR i1 TO n-1 DO
t:=11%h-1.0;
spf(t,wl,w2);

s PLUSAB wil*w2

OD:;

s TIMESAB hxem/g0;

coO

h1:=h/(ip+1);
1=20.0;°

FOR i1 TO 1c*(1p+1) 1 DO

t=itxht-1,

spf(t wil, w2)'

st PLUSAB Wl*yw2

0D; ‘

t:=ic*h-1.0;

spf(t,wl,w2);

s1 PLUSAB wixw2/2.0;

s PLUSAB w1*w2/2.0;

FOR i1 FROM ic+1 TO n-ic-1 DO
t:=i1*h-1.0
spf(t,wl,w2);

s PLUSAB wixw2

QD;

:=(n-ic)%h-1.0;
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Sprit,wl ,w2l;

s PLUSAB wi=xw2/2.0;

s TIMESAB h;

51 PLUSAB wi*w2/2.0;

FOR i1 FROM t TO ilc*(ip+1)-1 DO
t:=(n-ic)*h+i1xh1-1.0;
spf(t,wl,w2);

51 PLUSAB wixw2

0D;.

s1 TIMESAB h1;

3 PLUSAB st;

5 TIMESAB em/g0;

co

s

END;

PROC spgec=(REAL c,t)REAL:
-BECIN
REAL tt,g0:=gw0,vwge;
iIF t£<-1.0 THEN
print((newline,"t<-1.0",outline)l};
0.0
ELIF t>1.0 THEN
print{{newline,"t>1.0",outline)l);
0.0
ELSE
.IF t>0.0 THEN tt:=-t
ELSE ‘tt:=t
FI; :
IF tt<-0.5 THE
" wge:=gec(c,tt}
ELSE
- wge:sgecl(c,tt)
FI:
Cco
‘IF t>0.0 THEN
(g0-wge ) /g0
ELSE
{wge-g01)/g0

FI
CcO
wge /g0
F1
END;

PROC gintc=(PROC(BOOL,REAL)REAL f,REAL a,b,INT n,ip,ic)REAL:
BEGIN
REAL h,s,em,ce,t,g0:=gw0,wt,w2,hl1,s1;

PROC spf={REAL t,REF REAL wi,w2) VOID:
BEGIN '
REAL wO:=spgec(c,t);
Wl:=f(t>0.0,em*w0);
w2:=spexpl(-c/{1.0-t*xt));
print((newline,"t=%,t,space,"wl=%",yl,space,"w2=",u2,space,
"yuQ=",w0,outline))
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END;

em:= (b-a)/2.0;

ce:={b+al/2.0;

h:=2.0/n;

5:=0,0;

FOR i1 TO n-1 DO
t:=i1%h-1.0;
spf(t,wl,w2);

s PLUSAB wil#w2

OD;

s TIMESAB hxem/g0;

. s

END;

PROC =spfc=(PROC(REAL)IREAL f,REAL t,REF REAL wt,w2) VQID:
BEGIN :
REAL wWO:=gpge(t);
wi:=((ABS 1t -1.0)<1.0e-6!10.01f(w0));
Ww2:=((ABS t -1.0)<1.0e-6!0.0!spexp(-1.0/(1.0~-t*t)));
print({newline,"t=",%t,space,"wl=",wl ,space,y2=",w2,space,
"w0=*",w0,0outline))
END;

PROC out1=(REF [ ] REAL t,REF [ , ] REAL b,INT no) VOID:
BEGIN
FORMAT furil=-$+d.8de+zd3x$;
INT nn:=no%2+t;
newline(stand out};
FOR i1 TO no DO
printf{(furt,t[i13));
FOR i2 TO
1F i1<6 AND i1<nn THEN i1-1
ELIF i1>no-5 AND i1>=nn THEN no-it
ELSE 5
F1
DO ‘
printf ((fur1,b[i1-i2,121))
- 0D; _ '
newline({stand out)
oD
END;

PROC epal=( INT k, REF [ 1 REAL t) REAL :
BEGIN
INT no:=2xk+1;
REAL eps;
eps:=1.0e-8;
[0:no]l REF [ 1 REAL ep;
[0:no] REF [ 1 BOOL bp;
INT ic:=0;
l1:eplicl:= LOC [-1:no-ic-11 REAL ;
bplicl:= LOC [-1:no-ic-1] BOOL ;
{(ic PLUSAB 113)<=no! GOTO 11);
FOR i1 FROM O TO no DO
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FOR 12 FROM -1 ~0 5no-i1-1 DO bplif1lliz2l:= FALSE. 0D 0 ;
FOR i1 FROM © TO no DO epli1ll-13:=0.0 QD
FOR i1 FROM ¢ TO no-1 DO ep{it1t]ll0l:=tli1+1} OD
FOR i1 TO no-1 DO FOR i2 FROM 0 TO no-11-1 DO
IF bpli2+13[i1-1) OR bpli2][i1-1] OR bpliz2+t11[i1-2]
THEN epf{izliitl:s=epli2+1J[i1-2];bpli2]1[i1):= TRUE
ELIF ABS (epliZ2+131[i1-1]-epli2][i1-1])<1.0e-16
THEN :
IF ODD i1 THEN epli2}[i1):=1.0e+37;bpli2)[i1]:= TRUE
ELSE epli2}[it1l:=epl{i2+1]J[i1~-2];bpli2][i1]:= TRUE FI
ELSE
ep[i2lfi1l:=1.0/(epli2+1){i1-1]-epli2][i1-1 D) +epl[i2+1]1[i1-2]
FI oD 0D ;
epl[O][2xk]
END :

PROC eptable=( INT no, REF [ 1 REAL t) REAL
BEGIN
INT nc:={no+1)%2;
[O0:no] REF [ ] REAL ep;
[0:no] REF [ ] BOOL bp:
f1:no-2,1:nc] REAL b;
INT ic:=0;
lisep{icl:= LOC [-1:no-ic-1] REAL ;
bplicl:= LOC [-1:no-ic-1] BOOL ;
({ic PLUSAB 1)<=no! GOTO 11};
FOR i1 FRCM 0 TO no DO
FOR i2 FROM -1 TO no-i1-1 DO bpli1ili2l):= FALSE OD oD ;
FOR i1 FROM O TO neo DO epli1l[-11:=0.0 0D ; .
FOR it FROM O TO no-1 DO epli1]i0):=t[11+1]1 OD
FOR i1 TO no-1 DO FOR i2 FROM O TO no-i1-1 DO
IF bpli2+1]1Li1-1] OR bpl[i2l[it-1] OR bpliz2+11[i1~-2]
THEN epli2]f{it]:zepli2+13[it1-2];bpli2]1fit1]):= TRUE
ELIF ABS (epli2+1]1[it-1]-epli2][it1-11)¢<1.0e-16
THEN ep(i2](i1l:=1.0e+37;bpli2){it]l:= TRUE
ELSE : ‘ -
epli2){i1}:=1.0/(epli2+1][i1-1]~epli2]li1-1D)+epli2+1][i1-2]
FI oO©OD 0D ;
FOR i1 TO nc DO
FOR i2 TO no-2xi1 DO s
b[i2,i1):=epli2-1][2%i1]} OD OD ;
IF ip>=2 THEN outl{t,b,no) FI ;
FOR it FROM 2 TO nc DO -FOR i2 TO no-it1-1i1 DO
bli2,i1):=epal (1 ,bli2:i2+2,11-1]) OD OD ;
IF ip>=1 THEN outl1(t,b,ne) FI ;
{(ip=-1!'print({newline,bl1,ncl)?¥};
b{1,nc]
END ;

PROC levinv=( INT k, REF [ ] REAL acap,asm) REAL :
BEGIN

INT nk:=k+1,fac:=1;

REAL 51:=0.0,52:=0.0,W,Www;

FOR i1 TO nk DO

BEGIN
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wisil/nk;
wwizt,0;
FOR i2 TO k-1 DO ww:=wwxw 0D ; )
w:=facxww*fasml[i1+71)-asmfi1])/asmlitl/asm(it+1];
g2 PLUSAB w;
s1 PLUSAB w*acapliil;
fag:=-fac*(nk-i1)%i1

END OD ;

s1/82

END ;

PROC insp=(REAL y)REAL:

BEGIN
REAL s:=y,t:=Yy; .
FCR i FROM 2 TO 30 WHILE ABS t > ABS s#1.0e-8 DO
t+ TIMESAB y; s PLUSAB t/i
0D;
S

END; '

PROC f1=(BOCL tO,REAL x) REAL: ((tO!exp(1.0-x)lexp(-1.0+x)));

PROC f11=(REAL x)REAL: (exp(-x));

Co :
PROC fel=(REAL x,d}REAL: (exp(~-x));
co .
PROC fel=(REAL x,d)REAL:
BEGIN
REAL w3
IF x < 0.0 THEN
cos(pixx)/sqri(2.0-d)
ELSE
cos(pixx)/sqrt(d)
FI-
END;
PROC £2=(BOOL tO,REAL x )REAL: ((10!sin(pi/U-x)!sin(x)));

PROC £22=(REAL x) REAL: (sin(x));

PROC f3=(BOCL t0O,REAL x REAL:
BEGIN

REAL w:= In((tO!x?1.0-x1}));

wxw/ (1 .0+ (LOYx*x?(1.0-X)%(1.0-x)))
END;

Cco
PROC fed={(REALx,d)REAL:
BEGIN

REAL w;

IF x<0.5 THEN
wi=ln(d};
WE¥W/ (1 ,0+x%xX)

ELSE
wi=ln{1.,0-d’;
WEW/ (1, 0+%X%xX)
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FI
END;

PROC fe3=(REAL x,d)REAL:
BEGIN
REAL w,w1;
IF x<0.5 THEN
In(ln(1.0/x))/(1.0+4x)/7/(1.0+x)
ELIF d ¢ 1.0e-02
THEN Iln(insp(d})/(2.0-d)/(2.0-d)
ELSE
in(ln(1.0/(1.0-d)))/(2.0-d)/(2.0-d)
Fi
END;

co
PROC fe3=(REAL x,d)REAL:
BEGIN
REAL w,wl:
IF ¥ <0.5 THEN
insp(1.0-cos(d})
ELSE
In{1.0~-cos(x}))
+ F1
END;

PROC £33=(REAL x)REAL:

BEGIN '
REAL w:=1n(x):
wxw/ (1 .0+x%x)

END;

PROC f3c=(REAL 1) REAL:

BEGIN -
REAL wi1,w2;
spfc(f33,t,wl,w2);
wil*w2

END:

PROC fu4=(BOOL tO,REAL xI}REAL:
BEGIN

1.0/sart(x)/sqrt(1.0-x)
END;

co

printf (for1);

FOR iz TO 55 DO .
x:=(12¢101i2%0.11{(i2-10)%0.2+1.0);
printf(x);

FOR i3 TO 4 DO
n:=(i311,3,10,20);
printf(en(n,x))

oD

CD;

printf (fort);

FOR i2 FROM ¢ TO 20 DO



x:1=12%¥0.01;
printf (x);
FOR i3 TO 4 DO
n:=(i311,3,10,20);
printf (enf{n,x})
8]0
0oD;
Cco
FOR i1 FROM 0 TO 20 DO
X:=-1,0+11%0.05;
gw:=ge(x);
print((newline,x,space,space,gw,outline))
CD;
co
c:=1.,0;
FOR it FROM 0 TO 20 DO
:==1,.0+11%0.05;
gw:=gecic,x);
print({(newline,x,space,gvw,outline))
0oD; |
setgcO(c,gc0,gwld);
FOR it FROM 20 BY -1 TO 5 DO
x:=-1.0+i1%0.05;
gw:=gecl(c,x);
print({newline,x,space,gw,outline})
oD;
c:=2.0;
FOR it FROM 0 TO 20 DO
X:=-1.0+i1%0.05;
gw:=geclc,x);
print({newline,x,space,space,gw,outline))
0D; .
print((newline,"True Value=",exp(1.0)-1.0,0utline));
curtclena(f14,-1.0,0.0,1.0e-7,1.0,1.0,64,FALSE,con);
setgel0(c,gcl0,gwl);
FOR i1 FROM 20 BY -t TO O DO
X:=-1.0+11%0.05;
guw:=gecl(c,x);
print{(newline,x,space,space,gw,outline))
oD;
FOR i1 FROM -20 TO 20 DO
X:=11%0.05;

0D;

c:=2.0;

setgcO(c,gc0,gwl};

FOR i1 FROM -20 TO 20 DO
:=i1%0.,05;

print{(newline,"x=%,x%,space,space,spgec(c,x),outline))

0D;

FOR i1 TO 8 DO
c:=1.0+11%0,25;
print((newline,"c=",c,outline));
getgcO(c,gc0,8w0);
enn:=1;
FOR 12 TO 5 DO

print{(newline,"x=%,x,space,space,spge(x),outline))
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enn TIMESAB 2;
teli2):=gintc(f1,-1.0,1.0,enn,ip,ic);
print((newline,i?2, space,teli2],cutline})
0D
eptable(5,te);
enn:=1;
¥OR i2 TO 5 DO
enn TIMESAB 2;
tef{iz2]:=gintc{(f3,0.0,1.0,enn,ip,ic);
print((newline,i2,space,teli2],outline))
0D; '
eptable(5,te)
OD;
ic:=1;
1=2;
prlnt((newllne,“True value=",2 .350402389,0utline});
curtclena(f11,-1.0,1.0,1.0e~ 7 1.0,1.0,64,FALSE,con);
FOR i1 TO 5 DO ‘
ip:=n;
"n TIMESAB 2;

print((newline,gint(f1,-1.0,1.0,n,ip,ic),ocutline))

0D;
n:=2;
print((newline,"True value=",0.2928932186,0utline)l);
FOR i1 TO 5 DO d
ip:=n;
n TIMESAB 2;

-print((newline,gint(f2,0.0,pi/u4.0,n,ip,ic),outline’)

oD;
n:=2;
print((newline,"True value=",1.9378932186,0utline)});
curtclena(f3c,-1.0,1.0,1.0e-7,1.0,1.0,64,FALSE,con?;
FOR i1 TO 5 DO .
ip:=n; .
n TIMESAB 2;
print((newline,gint(f3,0.0,1.0,n,ip,ic),outlinel)
QD;
n:=2;
FOR i1 TO 5 DO
ip:=n;
n TIMESAB 2;
print{(newline,gint(f4,0.0,1.0,n,ip,ic), outllne))
0D;
FOR i1 FROM 1 TO 3 DO
setcapc (it);
FOR i2 FROM 0 TO 140 DO
x:=12%0,05;
gw:=gnqtitl,x);
print((newline,"x=",x,space,"gnq=",gw,outline))
0D;
pr1nt((new11ne,"11-".11 outline));
FOR 12 FROM O TO (i1!80,60,40) DO
Xx:=i2 *0.05;
gw:=gn(it,x);
print((newline,"x=",x,space,"gn=",gw,outline))
0D;
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FOR 12 FROM 140 BY -1 T0 (11:1860,40,35) DO
X:=12x0,095; .
gWwi=gnl(it,x);
print((newline,"x=",x%,space,"gni=",gw,outline’)
0D;
FOR i2 FROM O TO (11!100,40,40) DO
x:=i2#0,05; : '
gWw:=gn2(il1,x);
print({newline ,"x=",x,space,"gn2=",gw,outline)l)
oD
0OD; :
print((newline,eint(fet1,-1.0,1.0,1.0e-7,1),0utline)l);
co
print((newline,eint(fe3,0.0,1.0,1.0e-7;1),0utline));
SKIP '
END
FINISH
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PROGRAM twodint
BEGIN
REAL h,s1,al,be,wl,w2,w3,c1;
INT en,ie,count:=0,em;
BOOL con ;
h:=0.25;
en:=5;
em:=8;

PROC tanh={REAL x)REAL:
BEGIN

REAL w;

IF x<0.0 THEN
wicexp(x+x);
-1.0+2.0=w/(1.0+w)

ELSE
wisexp(-x-x);
1.0-2.0%*w/(1.0+w)

FI

END;

PROC sech=(REAL x)REAL:
BEGIN

REAL w;

IF %<0.0 THEN
wi=expi{x);
2.05w/ (wxw+1.0)

ELSE
wi=zexp(-x};
2.0%W/ (1. 0+wxw)

Fl

END;

OP P = (REAL x,INT n)REAL:
BEGIN
REAL p:=1.0;
FOR i1 TO n DO p TIMESAB x 0D;

P
END;

PROC f1=(REAL %,y )REAL:
BEGIN .

count PLUSAB 1;

REAL w,w1;
wi={1.0+x1/2.0;
wli={(1.0+y)/2.0;

ABS (x*x+y*y-0.25)
END;

PROC g=(REAL th)REAL:
BEGIN
REAL al,be,wt,w2,w3,vwl;
al:=ziexh*cos(th);
be:=iexh*sin(th);
wi:=al P en; :
w2:=be P en;
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wd:rsechl(wi);
wh:=sech(w2);
enren*wi*uw3xwixyyxf1 (tanh(wl),tanh(w2))x(al P {en-1))*(he P f(en-1))
END; _
PROC curtclena=( PROC ( REAL REAL f,REAL a,b,prec,sc,econ,lNT max,
BOOL rel,REF BOOL conl)REAL:
"BEGIN '
REAL sa:=t.0,sb:=0.0,ht:=b-a,w:=b,s1;
REAL fac:=0.0;
con:= FALSE:
INT ic:=1,icc;
[0O:max] REAL xa,wa,fa;
BOOL outb;
outb:= TRUE;
WHILE
ic TIMESAB 2;
IF ic=2 OR ic=4 THEN TRUE ~
ELSE
con:=con OR ABS {(sa-sb)<=fac:
ic<=max AND NOT con

FI
DO
BEGIN
sa:=sb;
IF ic=2 THEN xaf0l:=1.0;:xal11:=0.0;xal2]):=-1.0
ELSE
FOR i1 FROM icc BY -1 TO 1 DO xal2%i1]1:=xal[i1] ©D;
FOR i1 TO icc DO xal2%i1-1l:=costpi*(it+i1-1)/ic) OD
FOR i1 FROM O TO ic DO
BEGIN
51:=0.0;
"FOR i2 FROM 0 TO ic DO
IF i2=(i2%2)%2 THEN
IF i2=0 OR i2=i¢
THEN s1 PLUSAB cos(pi*i1#i2/ic)/(1-i2%3i2)Y/2
ELSE s1 PLUSAB cosipix*i1*i2/ic)}/(1-12%i2)
FI
FI
0D; :
walill:=(i1=0 OR i1=ic!2!4)#%st/1ic
- END OD;
IF ic=2 THEN fafO0J:=f(w);fal1l:=f(w-h1/2);fal2]:=f(a)
ELSE ’ '
FOR i1 FROM icc BY -1 TO 1 DO fal[2xit]J:=fa[i1] OD;
FOR i1 TO icc DO fal2*xi1-11:=F(ws+(xal2%i1-1]-1)%h1/2) 0D
FI; :
sb:=0.0; .
FOR i1 FROM 0 TO ic DO sb PLUSAB walitll*fali1] 0D;
icc:=ic; '
(outb!printf (($1"ic="+3zd5x,"int="+d.9de+zd$,ic,sbxh1/2.0)))
END OD;
sbxh1/2.0
END;

PROC g1=(REAL x)REAL: {(exp(-x));
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curtclena{g1,0.0,2.0%xp1,1.0e-06,1.0,1.0,64,TRUE,con?’;

print((newline,"1=",1.0-exp(-2.0%pi),outlinel);

FOR i2 TO 3 DO
ie:=5%i2;

FOR i1 FROM © TO 50 DO
Wl:=i1/50%2.0%pi;
print((newline,wl ,space,g(wl),outline)}

0D

OD;

51:=0.0;
FOR i1 TO em-1 DO
ies=i1; ‘

s1 PLUSAB curtclena(g,0.0,2.0%pi,1.0e~-6,1.0,1.0,128,TRUE,conl*ie
OoD;
ie:=em;

s1 PLUSAB curtclena(g,0.0,2.0%pi,1.0e-6,1.0,1.0,128,TRUE,con)*em;
81 TIMESAB h«¥h; :
print((newline,"count=",count,ocutline)};
print((newline,"s!1=",s1,0utline))
END .
FINISH
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PROGRAM twotlrap
BEGIN
INT count;

PROC tanh=(REAL xJ)JREAL:
BEGIN
REAL we=exp(x);
(Ww-1.0/w)/(wa+t.0/W)
END:

PROC sech={REAL x)REAL:
BEGIN
REAL w:i:zexpi(x);
2.0/(w+1.0/w)
END;

PROC tint2=(PROC(REAL,REAL,REAL,REAL)REAL f,REAL a1,b?,a2,b2,ht,h2,
REAL prec,INT nJREAL :
BEGIN
REAL s8:=0.0,daph:=0.0,gw,l1d,rd,ep:=1.0e~-9,val,hl11,h22,h15,h25,
caph,ulim,llim,fmax;
INT np,flim,iwt,iw2,nsub,jwl,jw2;
np:=1000;flim:=50;nsub:=1;
[~-np:nplREAL lar,rar;
BOOL dontrib,girst, dlog out?:
out2:=TRUE;

PROC floc=(REAL al,be)REAL:
BEGIN ‘
REAL alw,bew,alw!,bew!,ex, ey,alf bet xx,yy,qw1 sw2:
REAL dal,dbe,exa, exb cal ,cbhe;
alw:=1.0;bew:=1.0;
FOR i1 TO n-1 DO
alw TIMESAB al;
bew TIMESAB be
GD;
alwl:=alwxal;
bewl:=bewxbhe;
x:=tanh(alwl);
ey:=tanh(bewl);
exa:=explalwl);
exb:=exp(bewl);
~dal:={b1-a1})/(1.0+exaxexa);
dbe:=(b2-a2)/(1.0+exbxexb):
cal:=(b1-a1t)/1{1.0+1.0/exa/exal;
cbe:=(b2-a2)/(1.0+1.0/exb/exb);
X:=(bl1-a1)%ex/2.0+(b1+a1)/2.0:
Yy:=(b2-a2)%ey/2.0+(b2+a2)/2.0;
swl:=gech(alwl);
sw2:=gech(bewl);
alw*bewxzwl ¥swl*¥sw2*sw2%xl (cal,che,dal,dbe)
END;

PROC scan=(REAL hO,bet0O,REF REAL lend,rend,fmax)VOID:
BEGIN
REAL caph,fw,ep:=1.0e-9;
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BOOL contrib,first,clog,outl,out?;
INT elim:=100; :
fmax::=0.0;
outl:=TRUE;
out2:=TRUE; .
(out1!print((newline,"betl=",bet," "}y);
contrib:=TRUE;caph:=0.0;first:=FALSE;out1:=TRUE;
TO elim WHILE contrib DO
caph PLUSAB hO;
fw:=floc(caph,bet0);
(ABS fw > fmax!fmax:=ABS fw);
(out2!'print ((newline,"caph=Y,caph," fw=",fw,outline)));
s PLUSAB fw;
contrib:=NOT{(first AND (clog:=ABS(fw)<=epl);
first:=clog :
oD;
rend:=caph;
caph:=0.0;contrib:=TRUE;
first:=FALSE;
TO elim WHILE contrib DO
caph MINUSAB hO;
fwi=floc (caph,bet0);
(ABS fw > fmax!fmax:=ABS fw);
s PLUSAB fw; - ‘
contrib:=NOT(first AND (clog:=ABS(fw)<=ep));
first:=clog B
oD;
lend:=caph; i
{cut1!print ((*rend=",rend," lend=",lend,outline)))
END;-

5:=f10oc(0.0,0.0);
dontrib:=TRUE;
girst:=FALSE;
scan(h2,0.0,1d,rd,fmax);
lar{0l:=1d;rar{0]l:=rd;iw1:=0;
TO flim WHILE dontrib DO
daph PLUSAB ht;
gw:=floc{(0.0,daph);
s PLUSAB gw;
scanth2,daph,ld,rd,fmax);
dontrib:=NQT(girst AND (dlog:=ABS(fmax)<=ep));
girst:=dlog;
iwi PLUSAB 1;
(out2!print{((newline,"iwl=",iwt,outline))):
lar[iwt]:=1d;
rarfliwl1}:=rd
oD;
ulim:=daph;
(out2!print{(newline,ulim=%_,ulim,outlinel}));
daph:=0.0;
dontrib:=TRUE;
girst:=FALSE;
iw2:=0;
TO flim WHILE dontrib DO
daph MINUSAB hit;
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gw:=floc(0.0,daph);
s PLUSAB gw; .
scan(h2,daph,ld,rd,fmax);
dontrib:=NOT(girst AND (dlog::=ABS(fmax)<=ep));
girst:=dlog;
iwz MINUSAB 1;
(out2!print((newline,®iw2=",iw2,0utline)));
larfiw2]:=14d;
rar[iw2):=rd
0D;
1}im:=daph;
(out2!print((newline,"llim=*,11im,outline)));
print{(newline,"End of first scan",outline));
val:=n*n#*(bt-at)*#(b2-a2)xh1xh2%s;
print((newline,"First value=",val,outline));
h11:=ht;h22:=h2;
TO nsub DO
h15:=h11;
h25:=h22;
h11 DIVAB 2.0;
h22 DIVAB 2.0;
caph:=h22;
WHILE :
gw:=floc(caph,0.0);
s PLUSAB gw;
caph PLUSAB h25;
caph<rar(0]
DO SKIP 0D;
caph:=-h22;
WHILE
gw:=floc{caph,0.0);
s PLUSAB gw;
caph MINUSAB h25;
caph>larl(0]
DO SKIP 0OD;
daph:=h11; jw1:=0;
WHILE daph<ulim DO
‘ gw:=floc(0.0,daph);
s PLUSAB gw;
scan(h22,daph,ld,rd,fmax);
Jw1l PLUSAB 1;
(out2!print({newline,"jwi=v,jwl,outlinel));
FOR i1 FROM iw! BY -1 TO jwil+jwi-1 DO
lar{it+1):=1lar[i1];
. rarfit+1]:=rar(it1]
OD;
lar{jwl+jwt-11:=1d:
rarfjwi+jwi-11:=rd;
(out2!print((newline,"Check positive lar and rar",newline,
lar[0:iwl+1],newline,rarf{0:iwl+1]),0utline)));
daph PLUSAB h11;iwl PLUSAB 1;
CO New intermediate line done
onto corresponding existing line
for £ill in CO
caph:=h22;
WHILE
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gw:=floc{caph,daph);
s PLUSAB gw;
caph PLUSAB h25;
caph<rarljwl+jwl]
DO SKIP OD;
caph:=-h22;
WHILE
gw:=floc(caph,daph);
s PLUSAB gw;
caph MINUSAB h25;
caph>lar(jwl+jwl]
DO SKIP 0OD;
daph PLUSAB hi1
0D;
daph:=~h11;
Jw2:=0; '
WHILE daph>llim DO
gw:=floc(0.0,daph);
s PLUSAB gw;
scan(h22,daph,ld,rd,ffmax);
Jw2 MINUSAB 1; :
(out2!print{(newline,"jw2=",jw2,0utlinel));
FOR i1 FROM iw2 TO jw2+jw2+1 DO
lar{i1-11:=1larli1];
rar(i1-11:=zrarl(il]
0D;
larljw2+jw2+1):=14d;
rar(jw2+jw2+1):=rd;
(out2!print((newline,"Check negative lar and rar",newline,
lar(iw2-1:0],newline,rarfiw2-1:0]3,0utline))};
daph MINUSAB ht1;
iw2 MINUSAB 1;
caph:=h22;
WHILE
gw:=floc(caph,daph);
s PLUSAB gw;
caph PLUSAB h25;
caph<rarl[jw2+jw2]
DO SKIP OD;
caph:=-h22;
WHILE
gw:=floc{caph,daph);
s PLUSAB gw;
caph MINUSAB h25;
caph>larljw2+jw2]
DO SKIP 0OD;
daph MINUSAB hi1
0D; .
val:=n#n%x(bt1-al)¥*{b2-a2)*h11*h22%s/4.0;
print{{newline,"Val=",val,outline))
0D;
val
END;

PROC f1=(REAL cx,cy,dx,dy)REAL:
BEGIN
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REAL wrscx*cx»cy*cy;
count PLUSAB 1;

CO

(ABS w<1.0e-5!
1.0+w/2.0!
1.0/sqre(1.0-w))

Co

1.0/ (dx+dy-dxxdy)
END; :

PROC f2=(REAL c¢cx,cy,dx,dy) REAL:
BEGIN
REAL w,w!l;

count PLUSAB 1;

wi=-1.,0+cx;

Wwl:=-1.0+Cy;

1.0/sgrt(cx*cy)

END;

count:=03
print{(newline,tint2(£2,0.0,1.0,0.0,1.0,0.55,0.55,1.0e-6,1),
outlinel);

: print((newline,"count=",count,outliney)

END
FINISH
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PROGHEAM twaint
BEGIN
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INT n,.m,nss,ns,nsvw,uip,intger,ifail,ia,iw;

m:=2;

n:=18;

nss:=19;

nsw:=18;

ns:=5;

uip:=3;

LONG REAL xt,y1,z1,vi,ul;
[t:n] LONG REAL ex ;

[1:n] INT col;

nnH

FORMAT ft2:=%14(+d.19de+zd3x)$;
MODE EFPROC = PROC
MODE ARPROC = PROC {
[1:m+n] LONG REAL b,bb;
f1:m] LONG REAL ae;
[1:nss,1:2) INT pair;

LONG REAL w1,t ;
{1:n) LONG REAL r,e;
PROC

ia:=18;.
intger:=18;
ifail:=0;
(1:n,1:n} LONG REAL u;
PROC tp=(REF [,] LONG REAL a,u)VOID:
BEGIN.
[1:n,1:n) LONG REAL a,u;
FOR i TO n DO
FOR J TO n DO
uli,jl:=LONG 0.0;
FOR k TC n DO
uli,j] PLUSAB afli,kixaflj,k]
0b
oD
0D
END:

PROC lgaussp=( REF [,] LONG REAL a,

BEGIN
INT n:= UPB x,ml;
LONG REAL ep= LONG 1.0e-18;
BOOL cont,fout;
fout:= TRUE
cont:=TRUE;
LONG REAL max,w;

( REF [ 1 LONG REAL
REF [ 1 LONG REAL

REF

, INT,INT) LONG REAL ;
. INT) LONG REAL ;

(REF {,] LONG REAL,REF INT,REF INT,REF [] LONG REAL,REF []
LONG REAL,REF INT)VOID fO2aaf=ALIEN"f02aaf";

[ 1 LONG REAL b,x) VOID

print({newline,"Enter lgaussp",newline,"n=",n,newline));

co :

{n=18!tp(a,u)l;
fo2aaf (u,ia,n,r,e,ifail);
FOR 1 TO n DO

print(tnewline,"r[(i]=",rfil,newline)) 0OD);

Co

FOR r TO n-1 WHILE cont DO
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max:= ARS alr,rl;ml:=r;
CO
(n=18%iw:=colimll;
colfmlj:=collrl;
collrl:=iw;
print((newline,"collrl=",collrl},outline)});
co
FOR i1 FROM r+1 TO n DO
IF ABS ali1,rl>max THEN
max:= ABS alil,rl;ml:=i1
Fl
0D ;
IF ml/=r THEN
FOR i1 FROCM r TO n DO
w:=alml,it);alml,i1}:=alr,it];alr,it}:=w

oD ; )
wiz=blmll;blmll:=bl{rl;blrl:=
FI ;

IF ABS alr,rl<= ep THEN
print{f{newline,"Singular set",outline)};
FOR {1t TO n DO x[i1]:= LONG 0.0 QD;
cont:=FALSE

ELSE . :

FOR i1 FROM r+1 TO n DO
wi:=-alitl,rlzair,rl;
FOR i2 FRON r TO n DO afi1,i2] PLUSAB wxalr, 12] 0D ;
b[it] PLUSAB wxbirl}

0)3)

Fl

oD ;

IF ABS aln,nl<= ep THEN
print((nevwline,"Singular set",newlinel});
FOR i1 TO n DO x{i1]:= LONG 0.0 OD

ELSE

x[nl:=bInl/aln,nl;

FOR i1 FROM n-1 BY -1 TO 1 DO
x[i1):=bli%]1; - '

FOR i2 FROM i1+1 TO0 n DO x[i1] MINUSAB x[i2]+ali1,i2] 0D ;
x[11}) DIVAB alil,i1] '

oD

FI

END ;

PROC 1lndnewt=( ARPROC f, REF [ } LONG REAL xg, LONG REAL err,
h) VOID:
BEGIN
INT n:= UPB xg,nn,stepno,count;
[1:n,7:n)] LONG REAL a;
[1:n] LONG REAL b,xgg,xgegg,fg;
BOOL fout;
fout:=TRUE;
stepno:=18:
count:=0;
nn:=n%3+1;
FORMAT ft2=8l4(+d.19de+2d3x)$;
FORMAT ft1=¢$1lnt(nn){+d.18de+zd,2(+d.18de+2d)1)%;
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FOR it TO n DO xegeglitvi:=xglitls LONG 1.0 OB ;
WHILE
BOOL bb:= FALSE 3
count PLUSAB 1;
FOR i1 TO n WHILE NOT bb DO
IF ABS (xglitl-xgglill)>err* ABS xggl(ii]
THEN bb:= TRUE FUI
oD ; '
bb AND count<{=stepno
DO
Xgg: =xg;xgeg =xX¢g;
FOR i1 TO n DO fglitl}:=f(xegg,i1) OD ;
print{{(newline,"aet=",ae)); ‘
FOR i2 TO n DO
xgggfi2] PLUSAB h;
FOR i1 TO n DO a[11,12]'~(f(xggg i1)-feliti}s/h QD ;
xgegl{i2] MINUSAB h
oD
FOR i1 TO n DO
bli1]:=-fpii1]:;
FOR i2 TO n DO b[i1] PLUSAB alit1,i2])xxeggli2] 0D
CcD ;
lgausspl(a,b,xg);
print({(newline,"ae=",ae))
oD
END ;

~EFPROC ef;
PROC ce=( INT n,m) LONG REAL :
BEGIN
REAL rn,rm;
ro:=n+lirm:=m+1;
IF ODD n OR ODD m THEN
LONG 0.0
ELSE
LONG 4.0/ LENG rn/LENG rm
FI ,
END ;

ef:=¢( REF [ 1 LONG REAL xd,INT i1,i2) LONG REAL :
BEGIN
IF i1<=nss THEN

LONG REAL p:= LONG 1.0;

INT ie, ja,en,em; ‘
je:=2%i2-1;ja:=2%i2;
en:=pairlit,1);em:=pairli1,2];

FOR i3 TO en DO p TIMESAB xd[iel] OD ;

FOR i3 TO em DO p TIMESAB xd[jal 0D ;
P

Co
ELIF i1=7 AND i2=2 THEN LONG 1.0

ELIF i1=7 AND i2=3 THEN -LONG 1.0
ELIF i1=8 AND i2=1 THEN LONG 1.0

ELIF 11=8 AND i2=4 THEN - LONG 1.0
co
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ELIF
ELIF
ELIF

i1=20 AND i2=1
11=20 AND i2=2 THEN
AND i2=3 THEN LUONG 1.0
it=21 AND i2=4 THEN

i1=21

THEN LCHNG 1.0

-LONG 1.0

-LONG 1.0

ELIF i1=22 AND i2=5 THEN LOKNG 1.0

ELIF i1=22 AND i2=6 THEN -LONG 1.0
ELIF 11=23 AND 12=7 THEN LONG 1.0
ELIF i1=23 AND i2=8 THEN -LONG 1.0
ELIF 1i1=24 AND i2=9 THEN LONG 1.0
ELIF i1=24 AND i2=1 THEN -LONG 1.0
ELIF i11=25 AND i2=3 THEN LONG 1.G
ELIF i1=25 AND i2=5 THEN -LONG 1.0
ELIF 11=26 AND 12=6 THEN LONG 1.0
ELIF i1=26 AND i2=7 THEN -LONG 1.0
ELIF i1=27 AND i2=8 THEN LONC 1.0
ELIF i1=27 AND i2=2 THEN -LONG 1.0
ELSE

LONG 0.0
FI
END;
pairlt1, J:=(0,0);
pairl[2, J:=0(1,0);
pairl(3, J:=2(0,1);
pairft, l:=(1,1);
pairls, 1:=(2,0);
pairl6, 1:=(0,2);
pairi?7, J:=(2,1);
pairis, l:=(1,2);
pairf(9, 1:=(2,2);
pairi10, 1:=(3,0);
pairl1t, 1:=(0,3);
pairf{i2z, l:=(3,1);
pairl13, 1:=(1,613;
pair[ty, J1:=01,7);
pairf1s, 1:=(0(1,5);
pairf16, 1:=2(3,2);
pair[17, 1:=(3,3});
pairf18, J:=(2,3);
pair(19, l:=(5,11;

FOR i1 TO nss DO bblill:=ce(pairiii,1],pairfit
FOR i1 FROM nss+1 TO n+m DO bb[i1}:=LONG 0.0 0D;

ARPROC £

f:=( REF [ ] LONG REAL xd,INT i1} LONG REAL

BEGIN

IF i1¢=n

LONG R

s:=-bbl[i1
IF i1=1
{1:m,1

FOR i

FO

oD
oD
b:=bb;

sw THEN
EAL s;
+ml;

THEN

:m] LONG
2 TO m DO
R i3 TO m
ar[iz,i3]):

REAL ar;:

DO

,21) 0D;

=ef (xd,i2,i3)

lgaussp(ar,bl1:ml,ae)
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F1 ; - :
FOR i2 TO m DO
s PLUSAB aeliZ2]l*ef (xd,i1+m,i2)
oD
s
0]
ELIF i1=2 THEN xd[2]-xdlh&]
ELIF i1=3 THEN xd[1]-xdf2]
ELIF i1=4 THEN xd[(3)+xdlu4]
ELIF i1=5 THEN xd[5]+xd[6]
ELIF i1=6 THEN xd{73}-xdi8]
ELIF i1=7 THEN xd[1]-xd{5]
ELIF i1=8 THEN xd[3]1-xd[7]
ELIF i1=% THEN =xd[2]+xd[6]
ELSE
xd{yl+xd8]
Co
ELSE
LONG 0.0
FI
END;
¥1:=LONG 0.0;
x1:=LONG 0.78;
ex:=(-xX1,-%7,y1,-21,%X1,-%1,-x1,X1,¥yT,xt,x1,x1,-x1,y1,y1,y1,x1,y1);
lndnewt(f ,ex,LONG 1.0e-15,LONG 0.001);
FOR.i1 TO n DO print{(newline,exl[i1]),outline)}) 0QOD
END :
FINISH.






