
"

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

. LIBRARY

AUTHOR/FILING TiTlE

,_ll.l:l6.£J:l __ 1L_ & ___________________________ -_ .
. J'

- i1
I

I

I

ACCESSION/COPY NO .

VOL. NO.

!JI;····~, ,~
£/.;";')0'

• JLO'CL~_3_~-I-0-b.. ________ _______ _

CLASS MARK

L-oAiV CoP

..
000 0636 02

IIIIIIIIIIIIIIIIIIIIIIIIIIIII~IIIIIIIIIIIIIIIIIIIII
, :~

This book was bound by

Badminton Press
18 Half Croft, Syston, Leicester, LE7 8LD
Telephone: Leicester (0533) 602918.

.

EXPERIMENTS IN REDUCTION TECHNIQUES

FOR

LINEAR AND INTEGER PROGRAMMING

by

j A. N. Ahmed

A doctoral thesis submitted In partial

fulfilment of the requirement for the award of

the degree of PhD. of the Loughborough University of Technology

September. 1986

i

Alaa Aldln Noorl Ahmed, 1986

f-t~~-; .--~~.'-:~ ;.~ ': ~ .~.~ j ~ ~~;~I!
! ;.,~. "j.,: ·r:· ... ~;:·1;,'f ! :.r-':r! : - . . '" ,- -.... _ ... -,.~~ ... ~.-,.-,- ..
':... rJ..b 87 I
~-- ,--.. ---,~,"------,---.--;
I'LC,; :

G;~~~ ~:£?~_~c: /~ }..~,

TABLE OF CONTENTS

Page

Acknowledgement
Abstract .•...•.•...••...•..••••..•..•.•••••.••.•....•• li

CHAPTER I

Introduction ..
1 • 1 Redundancy I • 2

1.2 A Survey of the Literature •..•........••...•. 8

1. 3 Proposed Resea rch •.•.•••....•..•...•.••.•.••• 16

CHAPTER II

2.1 Mathematical Foundation and Notation ••••••... 17

2.2 Some Common Theorems......................... 23

CHAPTER III

3.1 Group One Methods

3.1.1 Boneh and Golan's method

3.1.2 Lotfi's methods:

Extended Sign

Hybrid method

Test method .••.•........

3.2 Group Two methods

3.2.1 Holm and Kleln's method

3.2.2 Wil 1 lams' procedure

3.2.4 Reduce method ..

3.3 Group Three methods

3.3.1 Thompson and Sethi's method

-

25

31

36

42

49

57

62

3.4 Group Four Methods

3.4.1

3.4.2

Bradley et ~. method

Crowder et al. method --

...

..

70

73

Improvements and Extensions

CHAPTER IV

4.1

4.2

CHAPTER V

5. 1

5.2

5.3

CHAPTER VI

..

Extended Reduce Method•..•..•..•...........•

Extended Wi 11 iams procedure•.•••.....•••.•......

..

Preprocessing Reduction Procedure for·ILPP's .••.....

The Implication of implementing Preprocessing
Reduction Procedure to "Dynamic-Presolve" .••.•.• ,

Reduction Techniques for Special Order Sets .•••.•.••

79

80

88

96

97

102

103

6.1 Programming the Methods 106

6.2 Performance of. Methods 113

CHAPTER VII

7. 1

7.2

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

Boneh and Go I an's method

Holm and Klein's method

Extended Sign Tes t method

Hybrid Method ..

Reduce Method ..

117

118

118

119

120

6.2.6 Williams' procedure 123

6.2.7 Extended Reduce Method •...........•........• 127

6.2.8 Extended Williams Procedure•..•.•••....• 130

6.2.9 PreProcessing Reduction Procedure for ILPP's. 134

Summary and Conclusions

Recommendations for Future Research •..••.....•...•.•.

139

141

Appendix A

Appendix B

..

..
144

148

References and Bib1 iography 186

DECLARATION

The work of this thesis follows on from work of other authors on

reduction techniques. The applications and extensions of these works

are claimed as original and all other parts of the text except where

otherwise noted and referenced.

The author also certifies that neither the thesis nor the original

work contained herein has been submitted to any other institution for

a degree.

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to Or J M Wilson for

his most valuable advice and guidance. His friendship provided an

ideal environment for my dissertation research.

Also, grateful acknowledgement to Basrah University, Iraq for financial

support.

Finally, I wish to thank my wife Suhalr for her patience and understanding

over the past three years.

ABSTRACT

This study consisted of evaluating the relative performance to a

selection of the most promising size-reduction techniques. Experiments

and comparisons were made among these techniques on a series of tested

problems to determine their relative efficiency, efficiency versus time

etc. Three main new methods were developed by modifiying and extending

the previous ones. These methods were also tested and their results are

compared with the earlier methods.

(iI)

CHAPTER I

I nt roduct ion

Redundancy in mathematical programming is defined as a characteristic

associated with a part of a system which permits deleting that part

without any consequence for the system as a whole. After eliminating

the redundant characteristics, the system may reduce to a simpler one

having the same properties.

Over the past twenty years, investigations of redundancy in linear and

integer programs have been made by various authors. In this thesis we

have selected the most promising size-reduction techniques and conducted

experiments with these on a series of problems obtained from different

sources. Secondly, we have extended and improved some of the more

efficient methods and have compared them with the earlier methods.

In this chapter, we consider the concept of redundancy, define the forms

it may take, and discuss its causes as well as its consequences and its

applications. Finally, we present a survey of the literature and the

proposed areas of our research.

1.1 REDUNDANCY

A I inear programming problem generally consists of an objective function

which is to be maximised or minimised subject to a set of constra!ints.

The constraints as well as the objective function are constructed by

using a set of variables and appropriate coefficients. Consider the

following LPP:

Max Z = CX

S. t. AX < b

X>O •••• (1.1.1.)

in which AERmxn , bERm, CERn and X£Rn. Based on the definition presented

in the next chapter, we may refer to constraints and/or variables as

being redundant. For example, in the following problem:

Max xl + 2x -2 x3

S. t. 3xI + 2x2 + 2x3 < 20

xl' x2' x3 ~ 0

x3 turns out to be redundant.

We divide redundancy into two general categories. The first type, called

absolute redundancy is associated with constraints and/or variables which

may be dropped without changing the problem structure in any way. The

second type, called relative redundancy is associated with constraints

and/or variables which may be dropped without changing certalin aspects of

the problem, for example the optimal solution.

2

Redundancy often occurs In practice (already noted in Hoffman (1955»

at various steps in modelling and solving the (programming) problem.

In the modelling process of an LP problem, a certain amount of abstraction

from the real system is necessary. It is this process which may cause

redundancy. "How far should the abstraction go?", "Which aspects should

be Included and which not?". and so on, naturally, have to be cOl")sidered

and the decision policy used In dealing with these concepts directly

affects the inclusion of redundant Information in the model. This

problem is especially evident as the size of the problem becomes so

large that the formulator loses sight of the entire problem. Faced

with such a problem, the formulator often "i"ncludes aspects of the

problem which may prove redundant.

Another reason for the occurence of redundancy is the ease of formulation

in the modelling process. An example of this is the use of deflnltional

equaltUes "'eg. summing the quanti ties of raw material that go into a

final product).

It is useful in the problem formulation stage to keep in mind the method

that will be used in solving the problem as well as the purpose of

formulating and solving the problem, since sometimes there is a distinction

between problem formulators and problem solvers. Some techniques require

the specification of extra information, which may cause redundancy.

These techniques including all cutting plane methods so far linear

(Dantzig-Wolfe decomposition, dual form, Dantzig and Wolfe (1960», integer

(Gomary (1958», mixed integer (Benders (1962»and. convex nonl inear

programming (Kelly (1963» and all Branch-and-Bound methods (eg. Garfinkel

and Nemhauser (1972)~ In parametric programming (eg. Gal (1979»

redundant constraints may become non redundant and vice-versa (see

Gal (1975». Further details are Included in Karwan et al (1983).

3

A direct consequence of redundancy in LP programs is the increase in

$i~e. The larger size has two major disadvantages. First, the problem

may be so large that conventional computer programs may not be able to

solve the problem. Secondly, the solution process may be more difficult

and more expensive. The higher cost Is associated with computational

effort on redundant information which could otherwise be unnecessary.

Regarding the size of the problem, more storage space will be required

which may be critical if the problem cannot be solved by an in-core

code.

Regardless of the size of the problem, redundant constraints may cause

degeneracy. This degeneracy In turn may result in degenerate pivot steps
I

(ie. steps in which the objective function value does not improve); Such

occurance for a number of consecutive pivots is called "near cycl ing"

(see Thompson ~~ (1963)). Although the relation between redundancy

and cycling is not yet fully understood, Zionts (1965) and Telgen (1980)

conjecture that cycling is possible only by virtue of redundancy.

In addition to the computational difficulties caused, redundancy tends

to conceal certain Information and possibilities, namely knowing that

something is redundant might lead to a different decision. For example,

in a production planning problem, If a capacity constraint is redundant,

it generally indicates excess capacity which might be used In some other

way.

The consequences of redundancy are not all disadvantageous. The best

example of this is transforming an LP problem by adding constraints and

variables to a transportation problem (see Charnes and Cooper (1961).

As is well known, the latter problem is much more easily" solved than

the general LP problem. Other examples of the advantages of redundancy

5

are included in Karwan et ~ (1983). However, it is the author's

conviction that the disadvantages of redundancy generally outnumber its

advantages.

Now, once a problem is formulated, a question will arise, whether it is

worthwhile to implement the size reduction techniques or not. .Actuaily,

certain factors such as the costs in implementing such techniques and

the derived benefits should be determined. However, there is always

a positive result from identifying redundancy, but there are cases in

integer programming problems where the presence of redundant constraints

can accelerate the solution process. The identification of redundancy in

a problem is ju~t as difficult as solving the linear programming problem

itself, where it is "easy" in linear constraints, but it is "hard" if

we have to take into account integrality constraints.

Size-reduction techniques have other desirable properties when used to

solve certain I inear programming problems. For example, in Z·lonts (1965)

certain problems are solved for which an ordinary simplex method computer

code did not produce correct results (even with repeated runs) because of

the accumulation of round-off error. In addition to that, size-reduction

techniques can provide a means for altering (possibly improving) particular

mathematical programming solution methods.

The application of size-reduction techniques to mathematical programming

problems in general depends on the specific goal of the techniques and the

type of problem. For example, a Branch-and-Bound procedure for solving

integer linear programming problems may require the LP relaxation to be

solved many times. Thus, identifying and removing a redundant constraint

from the original integer linear programming may result in a significant

decrease in the overall solution time.

6

Another example is an LP problemin which one set of constraints is changed

regularly and the other set remains the same (eg. Generalised Upper Bound

(GUB) constraints). Then, it may prove economical to determine whether

any of the fixed constraints are redundant. This has two advantages. One

is that the removal of such a redundant constraint has a mUltiple effect

in reducing the computation. time. Secondly, the modeller may want to

replace the redundant constraint with other constraints which were left

out due to the large size of the problem.

In addition to reducing the size of the problems, the removal of redundant

constraints may remove the computational complexities associated with

certain problems. For example, removing the redundant constraints may

prevent a problem from cycling (see Zionts (1965) and Telgen (1979) for

more details).

Other applications include obtaining the lower and upper bounds on variables

from the problem structure (eg. Will iams' method (1983)). These bounds may

be of major interest to the problem formulator.

7

1. 2 A SURVEY·OF. ·THE LITERATURE

A number of interesting results were derived for solvability and the

geometric properties of a system of linear constraints without considering

the constraints individually.

Fourier (1926) and Motzkin (1936) , presented an elimination method which

solves the LP problem directly. Except for solving very small problems

or problems of a special structure, the method is rather cumbersome.

Unl ike the el imination method, Charnes et.!!. (1953), presented the

ratio-analysis method, which has been used only for problems which possess

certain structures.

Wolfe (1955) describes a method to reduce a problem to a "simplest problem

ins tanda rd form".

Dantzig (1955) suggests using a prior knowledge of linear programming

problem to predict the solution. Some constraints can be anticipated

to be non-binding and (equivalently), certain activities are anticipated

to be in the optimum solution. The slacks of the non-binding constraints

and these essential variables can be brought into the basis. The constraints

in which they are basic, together with the variables, can then be dropped

from the problem. When the optimum solution is found, these assumptions

can be checked, and, if they are violated, the constraints reintroduced

and more iterations taken. If the number of errors in anticipating

nonbinding constraints is relatively small, great savings are achieved. If

the variables are known to be present in the optimum solution, then no

additl:onal iterations need to be made. A similar approach is due to

Thompson and .,5ethi (1983) (presented in this thesis). Thetr technique

uses mathematical information to make a prediction about the solution by

8

defining a candidate constraint and checking this prediction at every

step, Incorporating a modification of the simplex method in which only

the current candidate constraints are updated. Thompson and 5ethJ'

(1984), also presented another way to take advantage of the fact that most

constraints are never candidates. They begin by solving a relaxed linear

program consisting of the constraints of the original problem which are

initially candidates. Also they introduce the idea of a probe, that Is,

a line segment ,joining two vectors for the primal problem, using it to

identify a most-violated constraint, which is added to the relaxed problem

which is solved again. Their computational experiments indicate that

time saving of 50% - 80% over the simplex method could be obtained by this

method, whlc~they call PAPA, the Pivot and Probe Algorithm.

From the early 1960's systems were studied from the redundancy point of

view, since it is hardly disputed that redundancy exists in practical

mathematical problems. Before proceeding, we note that the redundancy

discussed by some authors used the terl1lS "trivial" (Boot (1962)),

"superfluous" (Thompson.!!.!.!.!. (1966)), "irrelevent" (Matthesis (1973)),

"inessential" (Zeleny (1974)), essentiallyall mean "redundant".

Balas (1962), identifies nonbinding constraints and extraneous variables

on the basis of "dominance" relationships among rows and columns. Balinski

(1961), gives an algorithm to determine all extreme points of the polyhydron

to identify redundant constraints. Since that path*is quite large

depending on the order of Introduction of hyperplanes that generate

the path, and the number of extreme points grows exponentially with the

size of the problem, and so this approach is very cumbersome for large

problems. The same basic approach was followed by Shefi (1969) (see also

Luenberger (1973)), who developed another algorithm for determining all

extreme points.

'" Convf.'1. pCllh
He also proposed certain minimality properties for systems

~o\ution .
9

of I inear constraints. However, Telgen (19111), later developed a minimal

representation theory in which Shefi's proposals could be considered as

special cases.

Matthelss ((19,73) and (198~» implements a vertex finding algorithm to

enumerate the vertices associated with a system of linear inequal i ties.

At each vertex, the active constraints are nonredundant (assuming there

is no degeneracy). Therefore, when the enumeration process is completed

the unidentified constraints are labelled as redundant. The number of

vertices was shown to be significantly less than the number of vertices

of the original space (see Matthelss and Schmidt (1980». The vertices

are enumerated by a variant of tbe.simplex method noting active constraints,

which are nonredundant. This method was not efficient in practice, because

a large number of vertices had to be processed, each vertex corresponding

to a basic feasl.ble solution for which the usual simplex tableau had to

be constructed, the process having to be repeated until no new unlabelled

vertex was found.

Greenberg (1975), develops a method for.determining redundant Inequlltles

and all solutions to convex polyhedra. In his algorithm, he is seeking

to eliminate the extraneous solutions obtained when using the Motzkin

method (Motzkin (1936) and Motzkin ~~ (1953» for solving homogeneous

solutions, which are possible to obtain in some situations, where the

condition In one his theorems Is necessary but not sufficient, as was

pointed out in an example by Shermain (1977) Later it was corrected In

Dyer and Proll (1980). A computational comparison by Dyer and Proll, (1977)

showed that Mattheiss' method generally outperformed Greenberg's method.

10

Boot (1962), was the first published paper related entirely to redundancy.

His method provides algebraic tests on the solution space which makes it

possible to determine whether or not a variable is extraneous or a

constraint is redundant. It is based on checking the feasibility of the

LP problem obtained when one of the constraints is violated by a small

amount. If a feasible solution to the peturbed problem can be found,

then the violated constraint is nonredundant. Otherwise, the constraint

is redundant. The major disadvantage of this approach is that systems of

linear constraints have to be checked for feasibility in order to check

a constraint for redundancy. Therefore, the computations are much too

laborious, and although the me.thod is interesting, it is too cumbersome

to be of any general use. Zionts (1965) and Thompson ~~ (1966) gave

a simplified version of Boot's technique, that instead of violating a

constraint and eliminating a variable, only sets the slack variable to

-£ and checks for a feasible solution. But, since there is no known simple

waY,of checking a constraint set to determine feasibi I ity, this simpl ified

version still faces the same difficulty.

Dale O.Cooper (1962), presents four methods for initially reducing the

size of linear programming problems. One of them determines certain

variables that will be strictly positive in an optimal solution. The

reamalining three methods are heuristic in nature, and require making

i nte 11 i gent guesses as to wh i ch var;i ab 1 es are 1 i ke 1 y to be bas i c or

nonbasic in an optimal solution. These guesses are subsequently revised

if they are false.

Zionts (1965) developed two methods. The first method is called the

11

Geometric Definition method which is of major importance to the concept

of size-reduction in LP problems. The basic feature of this method is

the establishment of situations where several simple sign tests on any

row or column of the simplex tableau show that redundancy can be recognized

immediately without any fOrther computations. The method may be employed

at the beginning of a linear porogramming solution porcedure, or it may also

be employed during the course of solving a linear programming problem.

The second method is the heuristic method (or convex path method) based on·

a theoretical development for which certain sufficiency conditions cannot

always be assumed to hold. The heuristic assumes that these conditions do

hold. It then fixes certain variables (ie. it avoids removing them from

the solution basis) on the supposition that they will form part of an

optimal solution. In a sImilar way, certain other variables are forced

to remaIn out of the solution basis. In eIther case, whether variables

are fixed or whether they are forced to remain out, both types of variables

are completely ignored in subsequent iterations. Once an apparently final

solution to the problem (either optimal, infeasible or unbounded) has been

found, the ignored variables are restored. Checks are then performed for

optImality and feasibIlity and if these are not satisfied, then further

iterations are taken if necessary. Obviously, If the required sufficiency

conditions could be guaranteed to hold, the method would not be a heuristic,

and the further iterations would never be needed.

The results of the Geometric Definition method were implemented by many

researchers. Lisy (1971) used these simple sign tests to identify all

redundant consttftints in an LP problem. Zionts (1972), also extended some

concepts of redundancy to integer programming. Rubin (1973) extended some

of the results of Thompson!!~ (1966), to integer programming by

modifying theorems and· theIr proofs. Gal ((1975) and (1978)) elaborated

on this approach by adding new rules for identIfying non redundant constraints

"

as well. Telgen (198:1) extended the approach by considering degenerate

cases including redundant constraints which pass through an extreme

point. Also, Rubin (1983} developed another version of Telgen's method

to identify all redundant constraints. Zionts and Wallenius (1980),

presented a new version based on the same concepts of Zionts (1965), to

identify all redundant constraints. Karwan~!l (1983) presented full

details about the above four methods and their comparison in experimental

tests, and mentions them as Sign Tests methods.

A number of other researchers have addressed the possibility of redundancy

by virtue of a structural constraint and nonnegativity constraints on all

variables. Llewellyn (1964), presented rules (see also Zeleny (1974)) to

recognise this situation. These rules were generalized by Eckhardt (1971).

However, Telgen (1979) showed that the rules are valid only for positive

coefficients and other very special cases.

A totally different approach was developed by Boneh and Golan (1979). The

method is based on determining the constraints having the closest distance from

an interior point in a randomly chosen direction. Such constraints are

clearly nonredundant. Then, after a large number of trials all constraints

which have not been hit are declared to~edundant. The latter results

are not necessarily correct (ie. a nonredunaant constraint may not be hit

within the given number of trials). Telgen (1981) suggested the use of

co-ordinate directions instead of randomly chosen directions. We will

present Boneh and Golan's method In this thesis.

Lotfi (1981), presented three methods, the first of which is called the

"Extended Sign Test", which is an improved version of the earlier sign

test methods. The second method is called "Hybrid" which is combined wi th

the Extended Sign Test method and Co-ordinate Direction method (the

improvement of Boneh and Golan's method using Telgen's suggestion). The

13

third method is called "Reduce" and appl ies the Extended Sign test·

method to both the primal and dual problem while solving the problem.

Atl three methods are presented in detail in this thesis.

Brearley ~~ (1975) described the REDUCE option of many commercial

mathematical programming packages, which is essentially an extension

of the "Geometric Definition Method" of Zionts (1965), which was developed

independantly. The extended geometric method is based on a collection of

theorems which make it possible to compute bounds on primal and dual variables

from the problem structure. Then, given these bounds, extraneous varlables

and nonbinding constraints are identified. The process is repeated until no

further reduction is possible. More details given by Williams (1983) are

presented in this thesis.

Klein and Holm (1975) suggest a similar approach utilizing the complementary

slackness theorem of linear programming in combination with bounds on the

primal and dual variables to identify extraneous variables and nonbinding

constraints. In the absence of these bounds, a method is proposed for

calculating them. The problem however, must have a special structure.

All coefficients of the matrix must be nonnegative, and all inequalities

must be less than or equal to (~. The details of the method are presented

in this thesis.

A number of papers discussed redundancy in large scale problems.

Bradley, Brown and Graves' (1983) discussed automatic detection and

exploitation of structural redundancy in large scale linear programming

(as well as mixed integer programming) problmes, where such redundancy

represents an embedded special structure which can give significant insight

to the model proponent as well as greatly reduce solution effort. Various

14

identification techniques for economic application to large problems

were developed and tested.

in this thesis.

The details of these techniques are presented

Finally, some other papers relate only to the class of (0-1) linear

programs. Wilson (1983), developed a procedure to reduce the set of

(0-1) linear inequalities to a smaller set by examining pairs of

inequalities and then deriving an implicit inequality, based on the

fact that, any explicity (0-1) linear inequality may be expressed as

a set of k(k>l) implicit inequalitieswithunit coefficients in the A

matrix.

Crowder ~ ~(1983) presented a method which included problem preprocessing

and constraint generation, to get the optimal solution of sparse large-

scale (0-1) linear programming problems. In problem preprocessing, variables

could be fixed at either 0 or I, and Inactive constraints could be

determined. The constraint. generation is performed by generating cutting

planes which are satisfied by (0-1) solutions of the problems. The details

of the method are presented in this thesis.

15

1.3 PROPOSED RESEARCH

The objective of this thesis is to ascertain how successfully Size-reduction

techniques could be implemented in Commercial Mathematical Programming

Packages. By studying the most promising techniques, and improving some

of them, new ones are developed which are more practically efficient and

economical In their implementation.

The thesis consists of seven chapters. The present chapter provides an

introduction to the concept of redundancy, its applications and a survey

of the literature.

Chapter 11 Intends to present the definitions, notation, and some common

theorems which are frequently used by the methods presented in the thesis.

Nine selected size-reduction techniques to be studied are presented In

detai I in chapter Ill.

New improvements to most of these selected methods are presented.

Chapter IV contains two Improvements in methods for general linear

programming problems. Chapter V contains an improved method. to reduce

general integer problems and its implication to the "Dynamic-Presolve"

procedure, wh i ch is.afeature of the SC I CON I C package. Then, a procedu re

to reduce subproblems having Special Order Sets (SOS) is presented.

Chapter VI presents the programming aspects of some of the methods

presented in chapter I11 and our improvements to methods. A discussion

and comparison based on the experimental results of our improvements

methods and the earlier method follows.

Finally, conclusions and recommendations for future research are discussed

in chapter VII.

16

CHAPTER 11

In this chapter we present definitions and notation that will be used

throughout this thesis. as well as some common theorems which are

frequently used by the methods to be discussed.

2.1 MATHEMATICAL FOUNDATION AND NOTATION

We consider the follwing linear programming problem:

Max z = CX ... (2.1.1)

S.t. AX< b

x > 0 ... (2.1.2)

in which AERmxn. bERm. XERn and CERn•

We denote S = (SI' S. S l' S). where the set (Si ... •• Srn) m m+ ffi+n

contains.; the slack variables of the structural constraints. and the set

(S l' ••••• S) contains the slack variables of the nonnegativity m+ m+n

constraints.

Adding the slack variables of structural constraints. pre-multlplying by

the inverse of an appropriate basis. we partition (A • I) into (B : N)

and redefine the variables (both sla<;:ks and structural variables) as xJ~

B

or

Xj according to their status (Nfornonbasic and B for basic). yielding the

equivalent system

N x

B
x

The matrix B-
1
N is usually referred to as a contracted simplex tableau

(Dantzig (1963)).
-1

We refer to the elements of B N as a •• and denote
I J

the "updated right-hand side" elements by bi •

The feasible region corresponding to the system of linear constraints

(2.1.2) Is defined as:

•.• (2.1.3)

and thorughout it is assumed that the Feasible region exist~, ie; FL ~ t.

Also we define the set:

F,(k)= {X~Rn/A.x<b., i ~ k and x_>O }
L. I - I

••• (2.1.4)

where AI denotes to the ith row of A.

Analogously, we define Fl and F1(k) with the additional restriction

that x be integral.

Defln i t Ion 2.1

The constraint Akx~bk is redundant in LP(lP) if

The above definition may be utilised for the nonoegativity constraint

XjLO as well. Note that FL(k) = FL if and only if Akx~bk for all

xfFL(k); hence an equivalent definition in which

18

.•• (2.1.5)

makes it easy to see that Akx~bk is redundant in the system of linear

constraints (2.2), if and only If

... (2.1.6)

This definition is especially useful because we may consider every

variable as a slack (the struc·tural variables are the slacks of their

nonnegativlty constraints) •

.
Now, if Sk • 0, then the constraint is termed weakly redundant, if
.
Sk>O it is termed strongly redundant.

Throughout, we will use the term redundant referring to both strong and

weak redundancy and will refer to each type explicitly when the need

arises. The following example clarifies the concepts of strong and

weak redundancy. Consider

Xl + x2 < 4 (1)

2xI + x2 < 6 (2)

xl - X < 2- 3 0)

Xl < 2 - (4) ... (2.1.7)

- X <-1
2 -

(5)

Xl > 0 (6) -
x2 > 0 (])

which is presented in Figure 2.1. In the above system of inequalities,

constraint (3) and the nonnegativity constraint (7) are strongly redundant,

constraint (2) is weakly redundant.

19

__________ ~----~~------+_--------~--------~--~xl
'" 4.0

0.0

2.0

FIgure 2.1 Feasible Region for system (2.7)

20

Unti.l now, we have considered mainly the system of I inear constraints

(2.2). There are other kinds of constraints which are called "non-

redundant" constraints and we subdivide these into two groups of "non-

binding" and "binding" constraints, for which we need to introduce the

objective function (2.1.1) into the system (2.1.2.)

Definition 2.2

A constraint is nonbinding if and only if it is nonredundant and its

associated slack variable is positive iri every optimal solution.

Definition 2.3

A constraint is binding if and only if it is neither redundant "nor

nonbinding.

11 'f ..
A ".bindin9 .:. conshaint i8tU'med SJITIIIJ.1if its associated slack variable

is zero at every optimal solution; if it is zero in some but not all

optimal solutions, the constraint is termed "weakly binding".

For example, suppose the objective in Figure 2.1 is parallel to constraint

(4) and an increasing factor of Xl' Then, constraint (4) is strongly

binding, constraints (1) and (5) are weakly binding, while the only non

binding constraint is the no~negativity constraint (6).

It should be noted that dropping the redundant constraints does not change

the feasible region and of course the set of optimal solutions remains the

same. Dropping the nonbinding constraints increases the feasible solution

region but not the set of optimal solutions.

21

Looking at the results of redundancy from the dual ity vl~~ point, one

could see that in any solution to the linear programming problem (and

thus optimal solutions too) a redundant constraint in the primal problem

which implies by the complementary slackness theorem (see ego Dantzlg

(1963)) that the corresponding dual variable equals zero in the optimal

solution and we can delete such a variable but the feasible region of

the dual problem will not be increased. We refer to such a variable as

extraneous. In order to define the extraneous variables mathematically,

let us present the following notation:

••• (2.1.8)

Definition 2.4

A variable Xj is extraneous in LP(IP) if and only if

= ~)

If X. is zero in every optimal solution, then x. is strongly extraneous.
J J

If it is zero In some but not all optimal solutions, then it is weakly

extraneous. Note that the status of a redundant constraint is not changed

for a different choice of the objective function. However, a different

choice of the right-hand side may change the status of the extraneity of

the variable.

As with non redundant constraints, we refer to variables which are not

extraneous as nonextraneous, and these may be divided further into free,

inessential and essential variables. Karwan ~~. (1983) gives further

details.

22

2.2 SOME COMMON THEOREMS-

The following theorems are frequently used by most methods presented in

this thesis, to identify the redundancy status of constraints (and variables

if applied to the dual problem). Therefore, to avoid repetition, we present

them in this section. For associated theorems (if any), these will be

discussed as part of a method itself. Also, throughout this thesis we

will refer to the application of each theorem as a "Test" with its

corresponding number (eg. by test one we mean the application of theorem

one).

Theorem 2.1 Gal (1975)

A constraint is redundant if and only if its associated

slack variable sk has the property:

B
sk = xr in a basic feasible solution in which a .<0

rJ-

for all j = 1, •••• , n.

Theorem 2.2 Zionts (1965), Thompson ~~. (1966)

A constraint is redundant if its associated slack variable

Sk has the property:

N
Sk = xp in a basic solution in which for some i, b.<O,

1-

a ..)o for all j = 1, , n, j f. p and a. <0.
IJ- Ip

Theorem 2.3 Telgen (1979), Zionts and Wallenius (1980)

A constraint is not redundant if its associated slack

variable Sk has the property:

Sk = x~ in a basic feasible solution in which

a. >0 for all i with b'
l

= O.
Ip-

23

Theorem 2.4

Theorem 2.5

Rubin (1972). Mattheiss (1973) and Gal (1975)

A constraint is non redundant if its associated slack

variable is nonbasic in a nondegenerate basic feasible

solution.

Telgen (1977)

A constraint is not redundant if its associated slack

variable Sk has the property:

B S - x in some basic feasible solution which
k r

b la = min {b./a. la. >O} is unique for some s. r rs I I S IS

Proofs of these theorems are contained in the appropriate references.

24

CHAPTER I I I

In this chapter we will present the details of the most promising

size-reduction techniques. These methods are classified according

to their main objectives. Namely, Boneh and Golan's, Lotif's

(Extended Sign Tests, and Hybrid) methods are categorised as one

group which attempts to Identify redundant (or equivalently non

redundant constraints). The second group consists of Klein and

Holm's.Williams'and Lotfi's (Reduce) methods, which attempts to

identify redundant and nonbinding constraints as well as extraneous

variables. The third group consists of Thompson and Sethi's method

which uses a variation of the simplex method. Finally, the fourth

group consists of the methods of Bradley ~~.and Crowder ~~.

which attempt to discuss redundancy in large-scale problems.

3.1 GROUP ONE METHODS

3.1.1 Boneh and Golan's method

Boneh (1983), describes a probabillstic method, developed by Boneh

and Golan which attempts to identify nonredundant constraints. Then,

after sufficiently many iterations, the remaining unidentified constraints
. ,

are declared as redundant (possibly erroneously). The method is based

on the premise that for a given non-empty polyhedral set, the closest

constraints to an interior point are non-redundant. In order to identify

such constraints, first an Interior point is determined. Then, a random

direction is generated and the distance between. the Interior point and

each constraint (along the random direction) is computed. The constraints

25

with smallest positive distance and the largest negative distance are

closest constraints to the interior point (one on each side). Hence,

these constraints are labelled as non-redundant. For the next iteration

the Interior point is moved uniformly along the random direction (within

the feasible region) and a new random direction is generated. This

process is repeated until a certain stopping criterion (eg. certain

number of iterations) is satisfied. If so, the non_redundant constraints

identified (accurately) are output along with the remaining constraints

labelled as redundant (possibly erroneously).

The algorithm requires two initial steps. In the first step, all the

cons t ra i nts of Type "~'ar. changed to "~', and the prob 1 em becomes the

general form:

A.X>b.
I - I

=l, ... ,m ... (3.1.1.1)

The second initial step, is to determine an interior feasible point for

the· system (3.1.1), either by generating some arbitrary point XO and

check for feasibil ity, or generating a random direction and move XO

along this direction to a.point which satisfies more constraints.

The basic approach is to evaluate and (if necessary) sort the intersection

points of a specified straight line in n-dimensional space with each

and everyone of the constraints. Therefore, if XO£Rn, dERn are the

interior point and the direction, respectively, the scalar tERl is the

parameter of the straight line passing through the point XO in the

direction d, then ti is evaluated by the following equation:

= (i=l, ... , m+n) ... (3.1.1.2)

The algorithm has two options for generating straight lines, randomly

26

generated and co-ordinate direction as suggested by Telgen (1981). In

the co-ordinate direction the above computation in (3.1.1.2) could be

reduced more. and the equati.on (3.1.1.2) reduces to:

(I = 1. .. •• m+n) ... (3.1.1.3)

In both options. the algorithm generates a new interior point Xl as follows:

... (3.1.1.4)

where tt' tk are the distances assocJated with the closest cons1:caints '

to xO (one on each side) and ~ is a random uniform deviate in the unit

interval. Clearly. when d is a co-ordinate direction. the equation

(3.1.1.4) may be updated at each successive iteration. that is •

... (3.1.1.5)

Now. we present the main steps in Boneh and Golan's method (note that

Initially all of the constraints are labelled as redundant).

Step 1:

Step 2:

Step 3:

Generate a random direction dERn with d.~ N{O.l)
J

Compute

=
A.d

I

Determine tk • mln {tilti>O}

(i-l m+n)

and t(= m~x {tllti<O}
I

(note that b. ~ 0 ~i since xO is not allowed to be a boundary
I

point). label constraints k and e as non-redundant. If all

constraints have been identified as non-redundant. stop. other-

wise go to step 4.

27

Step 4: Generate a random multiplier ~E{O,l)and compute:

(note that xO is moving along the line xO + td), relabel Xl

as xO and go to step 5.

Step 5:· Stop if one or both of the following conditions are met:

(a) Total number has exceeded lO{mxn) log (m+n)

(b) The number of consecutive unsuccessful iterations

(iterations in which no new constraints are identified)

ismore than 2{m+n). Otherwise go to ·step 1.

Now we present a numerical example to illustrate the use of Boneh and

Golan's method. Consider the following system:

xl + x2 < - (1)

xl + x2 < 3 (2) -
x, < 2 (3) (3.1.1.6) - ...

4xl +3x2 < - 12 (4)

xl > ° (5)
-'

x2 > - ° (6)

Which is shown in Fig. (3.1)

...... __________________ 28

Figure 3.1 Feasible Region for System (3.1.1.6)

29

Initial Step (1): Changing the direction of the inequalities (1)

through (4) and adding the non-negativity constraints.

we have:

x -1 - x2 .:: -1 (1)

-x --l x2 .:: -3 (2)

-Xl > -2 (3) -
-4x1 - 3x 1 > -12 (4)

Xl > 0 (5)

x2 .:: 0 (6)

Initial Step (2): Let xO = (0.5. 0.5) be an interior feasible point.

Step (1):

Step (2):

Step (3):

Step (4):

Step (1):

Step (2):

Step (3):

Step (4):

The following are two representative iterations of

the main steps:

Let d • (0.2. 0.1)

t ~ (-10. 6.7. 7.5. 7.7. -2.5. -5)

k = 2. t = -2.5.
t

R. = 5:

constraints 2 and 5 are non-redundant.

1 0 Let)l ~ 0.7. X • (1.3. 0.9). X = (1.3. 0.9)

Let d = (0.3. 0.2)

t • (2.8. -8.0, -2.3, -6.8. 4.3. -4.5)

tk = 2.8 k ~ 1. tt =-2.3. i =3:

constraints 1 and 3.are non-redundant

1 0 Let)l· 0.2, X = (1.7. 0.6), X = (1.7, 0.6)

The above steps are repeated until a stopping criterion is satisfied

in which case the remaining unidentified constraints are declared as

redundant.

.0

3.1.2 Lotfi I S Methods

Lotfi (1981) presented two improvement methods within this group.

Extended Sign Test Method

This method is an improved version of the earlier sign test method. The

method is developed from some modifications (some tests are eliminated

during the course of testing process) to the earlier sign methods. Since

there is no new mathematical theory involved, he utilised the theorems

presented in chapter 11.

Now, we present the details of the various steps:

Initial Step: Determine a basic solution and let H· {ili ·1, ••• , m+n}.

Step (1):

Step (2):

H is a set containing the indices of all variables. The

first m elements correspond to the original constraints

and the next n elements, the non-negativity constraints.

Check all the basIc variables x~ = Sk k~H for the property

a •• < 0, j • 1, ••• , n. If this holds, then constraint k
IJ -

is redundant, (Theorem 2.1); remove k from H and drop row i.

B Determine the set Q = {flx i = Sk and bi ·O}. If Q. ~, then

all non-basic variables x~ = Sk are slacks of non-redundant

constraints (Theorem 2.4); remove these k from H and go to

step (5). Otherwise continue with step (3).

31

Step (3):

Step (4):

Step (5):

Step (6):

Step (]):

B Check all the basic variables xi • Sk' i ~ Q for the property

a •. > 0, j = I, ••• , m, j r p and a
l
• p <0. If this holds, then

IJ -

S = X N is a slack of a non~redundant constraint (Theorem 2.2); q p

remove q from H.

N For every non-basic varaible xp • Sk kEH. Check the property

a. > 0 for all I~Q. If this holds, then constraint k Is
Ip -

non-redundant (Theorem 2.3); remove k from H.

If H a ~,stop. Otherwise find the row with the lowest

index k, such that x~ = Sr and r~H. I f no such row is found

continue" with step 7. In row k. find the column p with

ak = max ak •• Determine the minimum quotient
p j J

bt/ak = mln {bl/a l la. >Q}.
PiP IP··'

If this quotient Is unique, then, Sq is the s lack of

a non-redundant constraint (Theorem 2.5); remove q from H.

Further, If q = r (le. the unique quotient is in the current

objective row), then repeat step 5. Otherwise continue with

step (6).

Perform a simplex pivot on a and drop row t if the con-basic
tp

variable in column p was a slack of a redundant constraint.

Go to step (1).

N
Introduce a non-basic variable Xj = Sk with kEH into the

basis and then go to step (1).

Now, we present the following numerical example:

32

T
0

The problem is as follows:

=

Xl - x2 < - 2 (1)

2x -1 x2
< - 7 (2)

xl < - 2 (3)

-x + 2x2 < 4 (4) 1 -
2x2

< 5 (5) -
xl + x2 < 4 (6) -
xl > 0 (7) -

x2 > 0 (8) -

Initial Step: A basic feasible solution is given by (5
7

,58) = (0,0)

and the corresponding contracted tableau TO is:

RH5

51 -1 2

52 2 7

53 0 2

54 -1 2 4

55 0 2 5

56 4

with index set H = (1, 2, 3, 4,5, 6, 7, 8).

33

Step (2):

Step (5):

Step (6):

Step (1):

Step (2):

Step (5):

Step (6):

Q = a, 57 and Sa are slacks of non-redundant constraints,

H = (1, 2, 3, 4, 5, 6);

Select 51 as the slack of the objective function. In column

1, there is a tie for the minimum quotient;

Pivoting on a
31

we get tableau T1:

RHS

-1 -1 o

-2 3

o 2

2 6

o 2 5

-1 2

51 is a slack of redundant constraint, drop row 1, H = (2,3,4,5,6);

Q = ~, 53 is a slack of a non-redundant constraint, H· (2,4,5,6);

Select 52 as the slack of the objective function. In column 2,

the pivot element a62 = is unique; 56 is a slack of a non

redundant constraint, H : (2,4,5).

Pivot on a62 to obtain tableau T2:

T2 =

T3 =

RHS

S2 -1 -1

S7 0 2

S4 3 -2 2

Ss 2 -2

Sa -1 2

Step (1): S2 is a slack of a redundant constraint, drop row 1,

H - (4,5);

Step (5): Select S4 as the slack of the objective function. In column

1, the pivot element a41 = 2 is unique, Ss is a slack of a

non-redundant constraint, H = (4);

Step (6): Pivoting on a41 , we get tableau T3:

S5 S6 RHS

S7 -0.5 1.5

S4 -1.5 0.5

S3 0.5 -1 0.5

Ss 0.5 0 2.5

Step (5): S4 is still the slack of the objective function. In column 2,

the minimum quotient is unique arid is in the row containing S4'

Hence, S4 is a slack of a non-redundant constraint, H - $; stop.

Hybrid Method

Considering the major dlfflciences for the co-ordinate direction

method, there Is no guarantee that the remaining unidentified constraints

are actually redundant, and the extended sign test method results in more

extreme points to be determined in order to Identify non-redundant constraints.

Therefore, a Hybrid method (Lotfi (1981)) was developed which consists

of two parts. In the first part, the co-ordinate direction method, Is

used to identify some of the non-redundant constraints. In the second

part, the extended sign test method Identifies the remaining constraints.

Each part requires a different initial solution. The co-ordinate

direction method requires an interior point, whereas the extended sign

test method needs a basic feasible solution. Therefore, one solution

is obtained from.another by using sensitivity analysis to overcome this

d i ff i cu I ty.

Once a basic feasible solution for the system

AX < b
•.. (3.1.2.1)

x > 0

has been found,perturb the above system by two vectors (El' E2) containing

small positive values, Then an Interior feasible solution is obtained

by letting

o A

X = S + E2
.•• (3.1.2.2)

A

where S denotes the values of the slacks of the non-negativity constraints

in a basic feasible solutIon to (3.1.2.1).

Compute the change in the right-hand side ~S as follows:

and
... 0.1.2.4)

Then a basic feasible solution to (3.1.2.1) Is simply:

.
S + ~S . .. 0.1.2.5)

Now, we present the details of the steps for the Hybrid method as

follows:

Initial Step: let H " {II i = I, .•• , m+n}, where H is the set of

Step 1:

Step 2:

Step 3:

indices for all variables. Store AX ~ b, and compute

~b and store it. Find XO and go to step 1.

Retrieve AX ~ b, put it in proper form;

Using xO as the starting Interior feasible solution; perform

the co-ordinate direction method for a pre-specified number

of iterations. Remove the indices of Identified constraints

from H. If H • '~,. stop, all constraints are non-redundant.

Otherwise continue with step (3).

Retrieve the tableau and ~b, update the right-hand side and

go to step (4).

Step 4: Apply the extended sign test method to classify the constraints

starting with the above tableau. Continue until H .~. Then,

37

stop and output the status of all constraints.

The first part of the above algorithm requires a stopping criterion as

in the co-ordinate direction method. It is suggested that one co-ordinate

direction Iteration seems to be a reasonable upper limit to the number of

such Iterations.

Now, to illustrate the use of the Hybrid method, consider the same numerical

example presented for Boneh and Golan's method.

As before, H = (1,2,3,4,5,6). Adding the slacks, the initial contracted

tableau is:

55 56 RH5

51 -1

52 3
TO:

53 0 2

54 4 3 12

wl th El (• 01 , .01, .01, .01) T and E2 (. 01 , T
= = • 01) ,

(.01, .03, T flb = • 02, .08) •

The perturbed problem is tableau Tl which is feasible.

38

T 1 :

RHS

SI -1 0.99

S2 2.97

S3 0 1.98

S4 4 3 11.92

Store ~b and the above tableau for later use. o T X = (.01, .01) since

slacks of non-negativity constraints are zero. Now begin with part one

of the algorithm.

Step (1):

Step (2):

Step (3):

x -1 x2
> -1 (1)

-xl - x2 > -3 (2) -
-x 1 > -2 (3)

-4x 1 - 3x 2
> -12 (4)

xl > 0 (5) -
x2 > 0 (6)

Using one iteration of the co-ordinate direction method,

constraints one, three, five and six are identified as

non-redundant. H = (2,4).

Retrieve Tl and ~b and update Tl by adding

-1 the right-hand sides (in this instance B

matrix. The updates tableau is TO.

39

-1
B ~b:: ~b to

is the i dent i ty

T2 :

T3:

The contracted tableau is T
2

:

$s $6 RH5

51 -1 t

52 3

53 0 2

$4 4 3 12

Taking 52 as tlie slack of the objective function and pivoting on a = 1,
31

obtaining T
3

•

53 56 RH5

51 3

52 -1

53 0 2

54 -4 3 4

5elect the· second column for pivoting. In this column, there

is a unique pivot in the row containing 52. Thus, 52 is a slack

of a non-redundant constraint, H = (4). 50 select $4 as the slack

of the objective function and pivot on a22 = 1 to get T4 which

implies 54 is a slack of a redundant constraint. Then H = ~,
so the algorithm stops.

$1 2

$6 -1

T 4:

$S

$4 -1

S
2

-1

0

-3

41

RHS

2

2

3.2 Group Two Methods

As mentioned earlier, the objective of the methods in group two is to

identify extraneous variables and non-binding constraints. Before

presenting the detai·ls of these methods we restate our (primal) linear

programming problem as:

max ex

S.t. AX < b

X > 0

Then, the dual problem associated wi·th system (3.2.1) is

min Wb

S.t. WA- ~ e

W ~ 0

'" (3.2.1)

•.• (3.2.2)

where A- is an (nxm) matrix transposed from the original matrix A. e

and X are n vectors, band Ware m vectors.

3.2.1 Klein and Holm's Method

Klein and Holm's method utilises the complementary slackness theorem

(eST) of linear programming (see for example, Jarvis and Balaraa (1977))

in combination with bounds on the primal and duals variables. Such bounds

are di rectly avai lable in problems wi th bounded vadilbles and some

probl.ems with special structure, ie. problems with posit.ive. coefficients

and problems with Leontief structure (for details see Klein and Holm: (1975)).

42

In order to present the mathematical theory used In this method, , we

define the following notation. Let pos(.) and neg(.) denote two operators

which select the posiitl,ve and negative elements of,a matrix or vector.

For example, If v Is a vector then pos(v) Is a vector which contains

the positive elements of v and zeros for non-positive elements of v,

le. v = pos(v) + neg(v). Let A(I.) and A(.J) denote the Ith row and

jth column of the matrix A, respectively. Finally, let "J., X
U and w~, W

u

be lower and upper bounds on the optimal sqlutions. X* and w* of (3.2.1)

and (3.2.2) respectively.

"

The following two theorems and associated corollarles,establlsh sufficient

conditions for Identifying extraneous variables and non-binding constraints.

the reader may refer to the reference for the proofs.

Theorem (3.1)

If there exists column Index sets Rand T, and vectors P>O and q>O such

that

••• (3.2.1.1)

then there exists a column Index t~T such that Xt Is extraneous (le. It

has a value of zero for every optimal solution of (3.2.1) • . '

Coroll ary (3.1)

If there exlst,column Indices rand t such that

C, - Ct > wUpos (A(.r) - A(.t» + w~'neg (A.r) - A(.t) ... (3.2.1.2)

then xt Is extraneous.

43

R.
Note that when w = 0 then (3.2;L2)reduces to:

C - C > wU pos(A(.r) - A(.t» re t

Theorem (3.2)

'" (3.2.1.3)

If there exist row index sets K and L and vectors P>O and q>O such that

.•• (3.2.1.4)

then there exists a row Index k'K such that constraint k is non-binding.

Corollary (3.2)

If there exist row indices rand t such that

br - bt > pos(A(r.) - A(t.»xu + neg(A(r.) - A(t.»)- •. ' (3.2.1.5)

Note that in the system (3.2;1))- = 0 resulting in (3.2.I:S)reduces to

br - bt > pos(A(r.) - A(t.»xu .• , (3.2.1.6)

Klein and Holm's algorithm searches by making pairwise comparisons through

rows and columns of system (3.2.1) to find row and column indices

satisfying conditions (3.2.1.3) and (3.2.1.6). Clearly, these conditions

are sufficient, but not necessary for'iaentifying extraneous variables and

non-binding constraints. The effectiveness of the approach depends g~eatly

on the tightness of the required bounds on variables in systems (3.2.1)

and (3.2.2).

1.1.

Theorem (3.3)

If A>O, b>O and c>O then

(a)

(b)

j=l, ... ,n •.• (3.2.1.7)

is an upper bound on the optimal value of the structural variables

in system (3.2.1).

i)

I I)

I I I)

u
{c./a •. } (3.2.1.8) wl : max i:l, . . . , m ...

. J I J
J;a IJ >0

u
(lib I) 1: c.x~ 1=1, (3.2.1.9) wl : , m ...

jfk J J

where K Is the set of column Indices corresponding to the

K largest values of c.x~ and K : min (m,n)
J J

w~ : (lIb.) m I n
I I k~M

I : I , , m ••• (3.2.1.10)

where M is the set of row indices which correspond to strictly

positive rows, le.

M=U1aIJ>0, j:I, •.• ,n}

The following steps represent the details of Kleln and Holm's algorithm:

Initial Step: Determine the upper bounds for both primal and dual

variables.

Step (I): Let j = I, and set the logical variable IRD : o.

45

Step (2):

Step (3):

Step (4):

Step (5):

Step (6):

Step (7):

Step (8):

Let t be the index of the smallest element of C;

Let r be the Index of j-th largest element of C;

If condition (3.2.1.3) is satisfied go to step (6);

If there are more columns to be compared with Ct set

j = j + I and go to step (3) otherwise continue with step (8).

Delete column t from the problem, set IRD = 1 and go to

step (8).

Remove Ct temporarily, if no more columns are left, go to

step (8), otherwise continue with step (1).

Let = 1 and set the logical variable IRD = O.

Step (9): Let t be the index of smallest element of b;

Step (10): Let r be the index of the i-th largest element of b;

Step (11): If condition (3.2.1.5) holds !io to step (13).

Step (12): If there are more rows to be compared with bt set i=i+l and

go to step (10); otherwise continue with step (14).

Step (13): Delete row r from the problem, set IRD=1 and go to step (1).

Step (14): Remove bt temporarily, if no more rows left go to step (15).

Otherwise continue with step (8).

Step (15): If IRD:O stop, no more reduction is possible. Otherwise

continue with Step (10).

Now, we present a numerical example (taken from Klein and Holm (1975» to

Illustrate the above algorithm. Consider the following system:

Initial Step:

Steps 2 - 4:

Steps 9 - 11:

Steps 9 - 11:

Steps 9 - 11:

max. 23x1 + 23x2 + 22x3 + 18x4 + Xs
S. t.

22x1 + 18x2 + x3 "" 23x1 < - 6 (1)

17x2 + 22x
3

+ Ilx
5

< - 6 (2) .

15xl + 21xS < - 13 (3)

23x1 + 14x2 + 14xS < 14 (4)

3x4 < - 18 (5)

x.>O j=I, ••• ;5
J

Clearly, the lower bounds on both primal and dual variables

are zero.

Xu = (0.27, 0.33, 0.27, 0.26, 0.55)

Wu = (4.16, 1.35, 1.53, 1.64, 1.40)

t " 5, r = 3: condition (3.2.1.6) holds,

row 5 is e I imimated.
J

t = 1, r = 5: condition (3.2.1.6) holds,

row 5 is eliminated.

t ~ 1, r = 4: cond it ion (3.2.1.6) ho I ds,

row 4 is eliminated

t = 1, r :3: condition (3.2.1.6) holds,

row 3 is eliminated.

47

Steps 2 - 4: t = 4, r = 1: cond I t ion (3. 2. 1 • 2) ha I d s

column 4 is eliminated.

No further reduction Is possible, the problem reduces to:

s. t.

22x1 + 18x2 + x3 < 6

17x3 + 22X3 < 6

Xj > 0 j = 1,2,3

(1)

(2)

As Kleln and Holm point out, further reductions may be achieved If the

bounds are updated after each reduct Ion. For Instance" in the above

example the lower bound and the previous upper bounds, column 2 can be

eliminated (condition (3.2.1.2». Computational results are reported in

Kleln and Holm (1975) and (1976» for LPPs with posl,tive coefficients.

3.2.2 William$~ Method

The second technique in this group is proposed by Will lams (1983).

Williams~ method is similar to an earlier algorithm developed by Zionts

(1965) called "The Extended Geometric Method". The extended geometric

method is based on a collection of theorems which makes It possible to

compute bounds on primal and dual variables from the structure of the

problem. Then, according to' these bounds extraneous variables and non-

binding constraints are identified and dropped. The tightening of the

bounds on all remaining variables" continues unti I no further reduction

is possible in which case a simplex pivot is performed. The above

process continues until optlmality Is achieved.

Willlams~ modification to the above alogrithm consists of eliminating the

simplex pivot step and adding other steps which remove singleton columns

and rows (defined as columns or rows with exactly one noo-zero entry

excluding the cost coefficients and right-hand sides). In order to

present the mathemat i ca I theory used in Wi II i amt" method we wi 11 ut i I i se

the teminology implemented in the previous section. To reiterate,

consider the system (3.2.1) and denote the lower and upper bounds on x. ,
J

b 1 d u '1 '1 y Xj an xj' J = , ••• , n. respect I ve y. Similarly, denote the lower

and upper bounds on.the dual variables wi (system (3.2.2)) by wi and w~,

i:l, ••• ,m. We will frequently refer to the w,' s as shadow prices, and

refer to their associated bounds as shadow price bounds. Also, for each

of the primal constraints we introduce the concept of "activity level".

For each row, the lower activity (L i) and upper activity (U I) are given

as

49

L. ? 0
£ I: u

i = I , (3.2.2.1) = a .. x. + a .. Xj ... , m. ...
I IJ J <0 IJ J :a .. > j : a I j I J

I: u
+ I: R-

i = I , (3. 2. 2. 2) Ui = aij x. a •. Xj ... , m ...
J j :alj <0 IJ

J : a •. >0
IJ

Similarly, for each column j we define the "imputed cost" and denote its

lower and upper values by Pj and Q
j

respectively. The lower and upper

imputed costs are given as:

+ I: R-
a .. w.

I J J o

j=l, ... , n .•. (3.2.2.3)

j:l, ... , n .•• (3.2.2.4)

Now, we present the mathematical theory implemented in Williamc' method.

Initially, for all of the variables (primal as well as the dual) the

lower bounds are set to zero (because of the non-negativity constraints)

and the upper bounds at a sufficiently large real number M. Since all of

the tests in this method have their dual counterparts we will describe the

tests In pairs with the primal test followed by the dual test:

Primal Test One (PI): A singleton row may be replaced by a simple bound.

According to the nature of a •. a new simple bound
I J

t -u of X'. or x is given to x. as follows:
J j J

b.
I

x~
_R- -R- R-

= x. if a I j <0 and x. -- > x. (3.2.2.5) J J J J ...
a •.

IJ

50

bl
If a >0 -u < and x

J
:: -' Ij a .. ••• (3.2.2.6)

I J

Also, the sIngleton row must have the orIgInal shadow prtce bounds (O.M).

The reason Is that, tIghter shadow prIce bounds IndIcate that sIngleton

columns may have been removed temporarIly. It should be noted that If the

new bound obtaIned by test PI IS'cfe!>1i strict thal'l the existing value, the

row ~Ill be found redundant according to test P2 below:

Dual Test One (01): A sIngleton column. may be replaced by a shadow

prIce according to the nature of a lJ a new shadow

prIce bound w~ or w~ Is gIven to wl as follows:

and ~ ••• (3.2.2.7)

••• (3.2.2.8)

SImilarly, the sIngleton colum~ must have the original primal bounds

(~,M). The reason Is that tIghter prImal bounds Indicate that sIngleton

rows may be removed remporarlly. As with the primal bounds, when the

new shadow price bound Is less strict than the exIsting value, Xj will

be set to one of the bounds according to test 02 (below) and the above

test not applied.

Primal Test Two (P2): A constraint taken In conjunctIon with primal

bounlls.may demonstrate a "redundant" or infeasible

constraint. According to the values of lower

activity (L I) and upper actIvIty (U I), the

followIng actIons are taken:

<:1

LI > bl and u • M constraint i(and hence model) Infeasible wl
> bl

u u I from objective LI and wl < M subtract wl times constraint

and remove constraint I

UI < bl and 9. wl • 0 constraint I I s redundant. remove constraint I.

UI < bl and w' > I 0 subtract w; times constraint I from objective

and remove constraint I.

Dual Test Two (02): A column taken In conjunction with shadow price

P
J

> C. and x~ = 0
J J

P. > C. and x9. ? 0
J J I

QJ < CJ and u M xJ =

QJ < Cj
and' u < M xJ

bounds may demonstrate that the corresponding

variable can be set nt one of Its bounds. By

comparing PJ and QJ with CJ' the following actions

are taken:

x
J

is extraneous. remove column J.

set x.
J

to its lower bound and substitute out.

variable (and hence model) unbounded. x.
J

set x
J to Its upper bound and substitute out.

PrImal Test Three (P3): A constraint together with primal bounds on

some of the variables may imply bounds on

other varIables. The new bounds are readily

computed by using the lower and upper actIvities •

••• (3.2.2.9)

••• (3.2.2.10)

It should be noted that the new bounds Xj and XJ may be less strict

than the existing value In whIch case they are ignored. Moreover, the

new bounds may result In the followIng actIons to be taken: If ~j s xj

or xj, or xj = xi or xi set variable xJ at the common value and substItute

fo r It.

Dual Test Three(D3): A column together wIth bounds on some of the

shadow prIce bounds. The new bounds are readIly

computed by using the lower and upper Imputed costs,

.•• (3.2.2.11)

••• (3.2.2.12)

SImilarly, these new bounds may be less strIct than the exIstIng values In

whIch case they are Ignored. Also, the new bounds may result In the

11 I I k I f - 1 u -u - u 1 -1 fo ow ng act on to be ta en: wl a wl or wl ' or w
l

• wI or wl set

wl to this common value and use as a multiple of the constraint to subtract

from the objective function.,

The above six tests may be implemented for reducing the size of the problem

by making successive passes over the model. Oneach pass the columns of the
•

model are examined sequentlally. For each column: Tests P3 (except for

first pass), 02, 01, 03 are applied In this order. At the end of each pass,

Tests P2, PI are applied In this order. However, performing-these tests

. ~Ithout any systematic-approach may prove dlsadvantageous.The reason Is, In

~ a loose sense tIghtening the-boundS on prImal va~lables and dual variables

simultaneously have opposite effects on the model. In order to resolve

the dilemma over whether to relax or tIghten the bounds a two phase procedure

Is suggested. In the flest phase, primal bounds are tIghtened and shadow

price bounds are relaxed. In the second phase, primal bounds are relaxed,:

and shadow price bounds are tightened. A phase of the procedure terminates

when two successive passes yield no simplification. Furthermore, when

singleton columns replaced by shadow price bounds or constraints with

non-zero shadow prices removed by subtracting from the objective, It is

ultimately necessary to restore them. This is to ensure that the variables

are at their optimal values, and the model will not reduce any further. The

whole procedure is repeated In part two, however, singleton columns are not

replaced by shadow price bounds and constraints with non-zero shadow prices

are not subtracted from the objective function.

In order to illustrate the use of Williams~ method, we present a numerical

example (taken from Will lams (1983)). Consider

max- 2x1 + 3x2 - x3 - x4

S.t.

RI : xl + x
2

+ x - x4 < 4 .~ u
3 w. w.

I I

R2: -x - x + x - x4 < 0 M 1 2 3

0 M
R3: xl + x4 < 3

0 M

£
0 0 0 0 0 M x.

J

u
M M M M x.

J

Part 1:

Phase 1: Pass 1: P
3

> C3, x3 is extraneous; remove x3

U2 < b2, R2 is redundant;· remove R2

54

Pass 2:

Pass 3:

Pass 4:

x~ is tightened to 3.

singleton column x2;,replaced by ~ = 3

u
x4 tightened to 3.

Ul < b.,
I

multiply RI by ~ • 3 and subtract from the

object i ve, remove RI'

The model is now 5~4 + 12 w~
u max w

I u

R3 x4 ~ 3 0 M

~
0 x.

J

u
3 x.

J

3, and substituted.

The model is now: max 27

S.t. nothing

Clearly the remaining two passes and Phase two will

not have any changes. Then, the algorithm enters the

second part. The singleton column x2 and constraint

RI (which was removed with non-zero shadow price) are

restored. Now the model is:

3~2 - 3 w~ u max w.
I I

RI x2 ~ 10 0 M

R,
x. 0

J

u
M x.

J

Part 2:

Phase 2; Pass 1:

Pass 2:

u
Singleton row RI' replaced by x2 - 10.

u = x2 =10, and substituted.

Other passes and phases are completed with no action.

The solution: Xl = 10, x2 = 10, x3= 0, x4 • 3, objective = 27.

56

3.2.3 Reduce Method

The third method in this group is proposed by Lotfi (1981). which

identified non-binding and/or non-redundant constraints by applying

tests one and two to the primal problem. Then, the dual counterparts of

these theorm are used to identify extraneous variables. The use of the

tests one and two was illustrated in previous method. To present the

application of these tests to the dual problem, given a basic feasible

N solution,. the non-basic variable Xj is extraneous if

(i = 1, ••• , m) and z j - c J > 0 .•. (3.2.3.1)

where z. - c. is the reduced cost. The correctness of the above test
J J

may be illustrated by noting that the j-th dual constraint is redundant.

The dual counterpart of test two, however, is somewhat different. Recall

that test two would identify a redundant constraint one pivot away from

test one. In fact, the simplex method works towards attaining dual

feasibil ity. Therefore, a violated dual constraint may satisfy the

condition as well. That is, in a basic feasible s6lution with

ai .<0, i ;. r, a .>0 andz. - c. < 0
J- rJ J J

the basic variable x
B

is extraneous. The proof of the above is the r

same as that of test two, pivoting on a rj will give the condition proposed

in (3.2.3.1).

In addition .. to the above two tests for identifying the extraneous variables

one may identify such variables in a special-type impl ici t equal ity,

baving non-negative entries and a zero right-hand side. Then, a variable

with a positive entry In this row is extraneous. That is. if

then

a .. >O j=l n
IJ-

wi th b. = 0
I

The proof of this test Is rather simple:

... (3.2.3.3)

There are many algorithms to Implement the above tests. and in each

algorithm. more than one course of action may be Implemented at certain

tests. For example. suppose that condition (3.2.3.2) Is satisfied at

certain tableau. then the course of action which ,ts adopted in this

method. is to mark the variables appropriatly when they were identified

and drop the row (column) when the variable entered (left) the basis.

Now. we-present the details of the Reduce method in algorithmic form:

Initial Step: Determine a basic feasible solution.

Step (1):

Step (2):

are the sets of indices of slack variables in rows and

columns still remaining in the problem.

If the current solution is optimal go to step (8). Otherwise

continue with step (2).

For every row I with x~ = Sk and k,H. check the property

a
ij

> 0 for all j and b l • 0

If this holds remove all r with Sr

drop a 11 such co I umns.

N = x.
J

and a .. >O.'frGlm G
I J

Step (3):

Step (4):

Step (5):

Step (6):

Step (7):

Drop row I and remove k from H.

B For every row i with xi s Sk and kfH, check the property:

a i j < 0 f or all j.

If this holds, then drop all these rows and remove the

indices of their slacks from H.

For every row with x~ = Sk and kEH, check the property

a •. > 0
IJ

N If this holds, then mark xp as the slack of a non-binding

constraint.

N For every column j with Xj = Sr and rfG, check the property

a I.) 0
J -

for alii, and z - c.) 0
j J

If this holds, then drop column j and remove r from G.

For every column j with x~ • Sk and k(G, check the property

a .. < 0
IJ -

I F r a .>0 and z. - c. < O.
rJ J J -

If this holds, then mark Sq B : xr as extraneous.

Determine the non-basic variable X~ • Sk' kEG with the most

negative reduced cost Zj - cj . If no such variable exists

go to step (8). Otherwise compute:

a . = min {b./al.la .. >O}
r J I I J I J

and perform a simplex pivot on

co 1 umns still rema i n i ng in the

59

a . updating the rows and
rJ

problem. Then, drop the row

and/or the column if the respective variables have been

marked and remove their indlices from G and H. Update G

and H for the indices.

5tep (8): If no rows or col'umns have been removed, stop. Otherwise

update the right-hand sides for the rows and Zj - cj for

the columns which were dropped, then stop.

It should be noted that steps 2 - 6 may be repeated untIl no further

changes are made. In chapter VI we will present the results of this

method on the tested problems.

Now, we will illustrate the use of the above algorithm by the following

numerical example. Consider

max xl - 2x2 + x3 + SX4 - 4xS

S. t.

xl + x2 + x3 < 10 (1) -
x2 - x3 + x4 + Xs < 12 (2) -

xl + x4 < 3 (3) -

adding slack varia&les, the tableau for the initial basic feasible

so I ut ion is:

54 5
S 56 57 58

z -1 2 -1 -S 4 0

51 0 0 10

52 0 -1 12

53 0 0 0 3

60

with H = {1,2,3}, G : {4,5,6,7,8}.

Step (5): S5 and S8 are extraneous variables, drop columns 2 and 5:

G • {4,6,?};

Step (6): Mark Sl as extraneous (denoted by (*));

Step (7): The pivot element is a3~ = 1. The updated reduced tableau is:

z

*Sl

S2

S7

Step (3):

Step (5):

Step (?):

S4 S6 S3 RHS

4 -1 5 15

0 10

-1 -1 -1 9

0 3

withH:{1,2,?} and G = {4,6,3}

Row 2 is non-binding: drop row 2, H: {1,7};

S4 arid S3 are extraneous, drop column 1 and 4 and

H: G· {6};

Pivoting on a13 = 1, getting the optimal solution as

S6 = 10, S7 = 3, S2 = 19, with Z = 25.

61

3.3 Group Three Methods

The method in this group Is presented by Thompson and Sethi (1983) which

is unlike other methods. They attempt to solve LPP's by defining certain

constraints called "non-candidate constraints" as those which never contain

a potential pivot element during the course of solving a linear program.

Keeping these constraints in updated form Is of no value. A "Candidate

Constraint" is one that, for at least one pivot step, contains a potential

point.

The method Is merely a modtfication of the standard simplex method In which

only constraints which currently are candidates are updated, taking _

advantage of the fact that only some of the candidate constraints will be

binding at the optimum solution. Therefore, no new theoretical results

are needed to establish the correctness of the approach. Hence, in order

to present the method, we restate the linear programming problem as:

Max CX

S.t. AX < b ... (3.3.1)

X~O

without loss of generality, assume that b > O. Adding slack variables

to AX ~ b and using matrix notation below:
i

-C

[: A
... (3.3.2)

Any instance of the above problem may be obtained by choosing a proper

basis B and mUltiplying the right-hand side vector b by B- 1

62

That B -1 -1 is, x = B b, hence Z = CBB b which may be written as:

o -1
B

o

b ••. (3.3.3)

Therefore multiplying the left side of equation (3.3.2) by this same

matrix or

o -1
B

-C

o A

o

=
o -1

B

... (3.3.4)

which gives the desired matrix form of the syste~ (3.3.2) after any

iterations as

o -1
B

Z

x = ... (3.3.5)

S

Note that the system (3.3.5) Is a full tableau of the simplex method

which is required by Thompson and Sethi's method. For the purpose of

simpl icity, redefine the above system. Let x . = S " n+, i:l, ... , m.

are of proper dimension.

system (3.3.1) as

-1 Also, Let y = B b, then we may rewrite the o

63

m+n
C B- 1b max Z + L (Z. - C.) x. -

J J J - B
j -I

S. t. m+n

L YI·x. = YIO i = 1 , ... , m ... (3.3.6)
j :1

J J

Associated with system (3.3.6), the superscript (k) will denote the k-th

iteration of the problem (eg. x(k) denotes the solution at k-th iteration).

Because this method utilises the maximum objective rule, the pivot

element In every column with a non-negative reduced cost must be identified.

The set of variables with a negative reduced cost is represented by:

}k) = OIZj - C
j

< 0, j:l, ... , m+n} ..• (3.3.])

Clearly, if j(k) = $ the optimal solution has been found.

The set of leaving basic variables Is found by the usual minimum quotient

rule, ie.

R(k) {·I (k)/ (k)
- 1 y.O y ..

I IJ
i a l, ... ,m}

.•. (3.3.8)

Now, we may define the set of "Candidate constrai'nts" at iteration k

as

Then, the set of non-candidate constraints at iteration k is

-(k)
S

64

... (3.3.9)

.•. (3.3.10)

To determine the pivot element when J(k) # 0, the following computation

must be performed

Y
(k)/y(k)
10 Ij (e. - Z.)

J J
... (3.3.11)

which Increases the objective function by S(k) •

As mentioned before, a permanent non-candidate constraint need not be

updated at all during the course of the solution. At each i,teratlon the

set of non-candidate constraints S(k) is not updated with the hope that they

wl.1I never become violated. Obviously because the choice of pivot row i is

by the minimum ratio rule (3.3.8) and (3.3.11), no non-candidate constraint

at step k Is ever violated at step k+l. However, such constraints may be

violated In subsequent Iterations. All that needs to be done to prevent

such infeasiblllties from occurlng Is to update the right-hand side vector

(call this partial pivoting) for a given pivot element YIJ~ In other words,.

Y6k+l) may be computed from Y6k) and a constraint I is violated If

y~~) <0. In this case, the pivot step Is not performed, Instead the i-th

constraint would be violated, a new pivot element is identified and the above

process is repeated. When no constraint is violated for a given choice of

a pivot element, a simplex pivot is performed, but the non-candidate

constraints are not updated. This 'procedure Is repeated unti I /k) = 0,

which implies that optlmallty Is achieved.

It should be noted that in

unboundedness. (ie. y .< 0, rJ-

t I h R(k) f cons ruct ng t e set J ,one may ace

rcS(k-I». However, this unboundedness may

be false since a non-candidate constraint, say' could contain a positive

entry In column j if updated. Therefore, when the above condition occurs,

the non-candidate constraints are updated one at a time until either a pivot

element if found or there is no such constraint left, and the problem Is

indeed unbounded.

65

Now, we present the details of the method In algorithmic form:

Step (1):

Step (2):

Step (3):

Step (4):

Step (5):

Step (6):

Step (7):

Step (8):

Find /O! if J(O): ~, stop, the solution is optimal. Otherwise

find s(O), let k = 0 and go to step (2).

Find (i, j) the row and column of the pivot element obtained

from (3. 3. 11) .

Pivot on Yij In the tableau restricted to the rows In S(k).

If the solution is optimal update the right-hand side Yio'

tfS(k) and stop. Otherwise continue with step (5).

Identify the non-candidate constraints in the updated tableau,

remove them from S(k) to get s(k+l).

Find (i ,j), the row and column of the pivot element by (3.3.11)

in the tableau restricted to S(k+l).

Do a partial pivot on Y6k) restricted to S(k+1) to get

(k+l) d (k+1)
YO an x •

U (k+l) (k) se x to see if any constraint ifS is violated. If

not, replace k by k+l and go to step (3). Otherwise, continue

wl th step (9).

Step (9): Update the violated constraint and put in the current tableau.

Add its index to S(k) and go to step (5).

66

To Illustrate the use of the above algorithm, we will present a numerical

example. Consider the problem:

max 2x1 + 2x2 + 3x
3

S.t.
2x 1 + x2 + x3 < 9 -

x2
+ 2x

3
< 6 -

-Xl + 2x . - x3 < 5 2 -
-x 1 + 3x2 + x3 < 12

Xl , x2 , x3 > 0 -

after adding the slack variables, the following initial tableau:

X5 x6 x 7 I RHS
-----.------.----------- ,----.------ . ---- ------------, .. _'- ." .. -'------------------1--'-

o 0 0 I 0 z -2 -5 -3 o

2 o o o 9

o 2 o o o 6

-1 2 -1 o o o 5

-1 3 o o o 12

The potential candidates for entering into the basis are J(O) = {1,2,3}

with the candidate constraints. st~) = {1,3,2}.

From equation (3.57)

updating constraints

denoted by a (*)):

the pivot element is Y32 = 2.

. (0) (d' In S to get non-can Idate

67

We pivot on Y32

constraints are

XI x2 x3 x4 Xs x6 x
7

RH5
-----. ,._-_ ... _-- --.. ----------

z -4.S 0 -S.S 0 0 2.S 0 12.S

x4 2.S 0 I.S 0 -O.S 0 6.S

Xs O.S 0 2.S 0 -O.S 0 3.S

*x 2 -O.S -O.S 0 0 O.S 0 2.S

*xI -I 3 0 0 0 12.0

and the incoming variables for this tableau are J(I) = {1,3}, with

cand i date constra i.nts 5 (I) = {1,2}.

The pivot element with the maximum objective function change is Y23 = 2.S.

SO, we perform a partial pivot In the right-hand side to check for any

violations.

X(I) __ 14
3 .,

Since no constraint will be violated we perform a pivot only on 5(1) and

the X-row.

XI x2 x3 x4 Xs x6 x
7

.. '. RHS

Z -3.4 0 0 0 2.2 1.4 0 20.2

x4 2.2 0 0 -0.6 -0.2 0 4.4

*x3
0.2 0 0 0.4 0.2 0 1.4

*x7 -I 3 -1 0 0 0 12.0

Now there is only one incoming variable x and one candidate constraint. ,
The pivot element is y" = 2.2, so we do a partial pivot, X~2)= 2.0.

Since no constraint will be violated we perform a pivot on y", updating

only the first row.

x, x2 x3 x4 x5 x6 x
7

RHS

---------------_._---

Z 0 0 0 , • 5 1.3 1., 0 27.0

x, 0 0 0.45 -0.27 -0.09 0 2.0

*x3
-2 0 0 0.4 0.5 0 1.4

*x2 -0.5 -0.5 0 0 0.5 0 2.5

*x
7

-, 3 0 0 0 , 2. 0

The above solution is optimal so we perform the final update on the

right hand side

3.4 Group Four Methods

As mentioned earlier, the objective of the methods In group four is to

consider redundancy in larger-scale mathematical programming problems.

3.4.1 Bradley .=.! .!.!..Method

Bradley.=.!.!.!.. (1983) discussed an automated method for the exploitation

of structural redundancy in a large-scale mathematical programming models.

Their work deals primari Iy with row facro.risation methods (eg. McBride

(1973) and Graves and McBride (1976» to identify the best embedded

structure'.in any particular model. These structures are considered

in increasing order of maximum row Identification complexity. The efficient

polynomial algorithms are operationally defined here as low-order polynomial

in terms of intrinsic problem dimension (eg. number of rows, columns and non-

zero elements), and not in terms of the total volume of model information.

(eg. total number of bits in all coefficients). The efforts of Bradley

~.!.!.. are devoted to two issues: analysis of the LP, and solving it

efficiently. The analysis is confined to reductions that do not change

the feasible region. The analysis can also be called "O r thogonal" In that

the reduction tests are made on the current problem with no pivotal

transformations actually performed.

The analysis is appl ied to a fully ranged,; and bounded I inear program.

Min Lc.x.
J J

S. t. r. < L
1-

R. x. <
J -

a •. x.
1 J J

x. <
J

<

u x.
J

r l V. (ranged constraints)
1

Vj (simple upper bounds)

0.4.1.1)

Some range s and bounds may be m I ss I ng (that is + ClOor - 00) •

Bradley ~~. presented a number of reduction analyses. Simple

reduction tests are applied on the LP model. The same reduction tests

have been reported by Brearley, Mltra and Williams (1975).

The elimination of an equation and column with a non-zero coefficient

in the equation Is discussed in the transformation reduction analysis.

In particular, transformation reduction can generate a "reduced, equivalent

LP" which is actually denser, and not necessarily as well-scaled as its

progenitor.

Determining the set of Generalised Upper Bound (the set of rows for which

each column has at most one non-zero coefficient restricted to the rows)

have been dlcsussed. An effective method to find maximal GUB sets was

developed by Brearley ~~. (1975). Also, Brown and Thomen (1980) have

developed bounds on the size of the maximum GUB set which are sharp and

easily computed.

Heuristic identification methods are presented, where an extension of

GUB can be used to achieve NET ("Pure Network Rows" are a set of rows

for which each column has at most two non-zero coefficients (restricted

to those rows) are +1 and -1) factorisations. First GUB set is

determined (Brearley ~~. (1975), Brown and Thomen (1980». Then

second GUB set i,s found"from an e.Ugi~le subset of remaining rows, such

that its row members must process non-zero coefficients of opposite sign

in each column for which the prior GUB set has a non-zero coefficient.

, 71

Brown and Wright (1980) developed a method for direct NET factorisation

of Implicit network rows. With the same procedure by simple screening

of admissible candidate rows, can be identified pure NET rows.

This heuristic Is designed to perform network facotrisation of a signed

matrix (0,1 entries only). It Is a deletion heuristic which Is, feasibility

seeking. The measure of infeasibility at any point is a matrix penalty

computed as the sum of individual row penalties. The algorithm is two

phased, one pass and non-backtracking. The first phase yields a feasible

set of rows, while the second phase attempts to improve the set by

reincluding rows prevlousl~ excluded. Each iteration in Phase either

deletes a row or reflects it (multipl ies it bY. -1) and guarantees that

the matrix penalty will be reduced. Thus, the number of iterations in

phase 1 Is bounded by the initial value of the matrix penalty, which is

polynomially bounded. The details of the method .are included in Bradley

~~. (1983).

3.4.2 Crowder et al. Method

Crowder et ~.(1983) presented a method incorporated in PIPX (an

experimental software package that they designed to solve pure (0-1)

programming proplems.), which Includes automatic problem preprocessin3

and constraint generation. Problem pre-processing inspects the user-

supplied formulation of a (0-1) linear program and improves on the

associated linear programming formulation by "tightening" the constraint

set, "spotting" variables that can be fixed at either 0 or 1, and

"determining" constraints of the problem that are rendered inactive.

constraint generation essentially generates cutting-planes that are satisfiec

by (0-1) solutions of the problem and that chop off part of the feasible

set of the linear programming relaxation and utll ises the Branch.-anal ... · .

Bound strategy to find good integer solutions quickly. This procedure

is used repeatedlyandlutillses information contained in the reduced costs

associated with the optimal solution of the linear programming relaxation

to fix variables to 0 or 1.

Crowder ~~. attempted to establish the usefulness of these method

oligical advances - when combined with clever Branch-and Bound strategies

for automatic solution of sparse large-scale (0-1) linear programming

problems.

The following problem has been considered

mln ex

s. t. AX < b

x. = 0 or 1 for j -1, ... , n
J

73

.. 0.4.2.1)

where A = (a ij) is mxn matrix, with aij • 0, ±1, Vi,j, band c are vectors

of length m and n, respectively.

Problem Preprocessing

(I) Constraint Classification:

The inequalities of the problem (3.4.2.1) are classified into two

types: type (1) constraints are special ordered set constraints,

ie constraints of the type

x.<I-IHI
J

••• (3.4.2.2)

where Land H are disjoint index sets and IHI denotes the cardinality of

the set H. Clearly x.
J

: 1 for some j , implies xk = o for all k(L, k ~ j,

and xk = for all kEH, while Xj = 0 for some j~H implies xk = 1 for all

k~H, k r. j , and xk = 0 for a 11 kEL. Type (2) constraints a re all other

constraints of problem (3.4.2.1) •

(11) Variable Fixing and Blatant Infeasibility check:

Suppose, for notational simplicity, that type (2) constraint of
•

(3.1j..2.1)is written as:

L a.x·+L a.x. < b
HP J J j~N J J

••• (3.4.2.3)

where P and N are the index sets of coefficients· with positiv.e and negative

values respectively. If

a.>b
J

••• (3.4.2.4)

holds, then constraint (3.4.2.3) does not have a feasible:solution and

the overall problem (3.4.2.1), of which (3.4.2.3) Is but one constraint,

is blatantly Infeasible. On the other hand if

a. <b
J

... 0.4.2.5)

holds, the constraint (3.4.2.3) Is inactive because every possible (0-1)

vector x satisfies it. Such an inequaltiy can be dropped from the constraint

set of (3.4.2.1) because It does not exclude any (0-1) solution. Let

.1fP and suppose that

... 0.2.4.6)

holds, then Xj = 0 in every feasible (0-1) solution to (3.4.2.1) and

we can fix variable Xj at the value 0 and drop it from the problem (3.4.2.1).

Likewise, if for some j~N we have

-a.
J

> b - L
k~N

... (3.2.4.7)

then x. = 1 holds in every feasible (0-1) solution to (3.4.2.3). We can
J

fi~ variable x. at value 1, adjust the right-hand side vector b of (3.4.2.1)
J

and drop the variable x. from the problem 0.4.2.1). If a variable
J

that is fixed at value 1 also appears in a type (1) constraint with a

positive coefficient, the remaining variables in this special ordered

set are fixed as discussed In the previous section; a similar argument

holds if a variable that is fixed at value o appears also in a type (1)

constral,nt with a negative coefficient. Al I type (2) constraints of

problem (3.4 .. 2.1) are examined one at a time in the order in which they

appear in the formulation.

75

3.4.2.1.3 Coefficient Reduction

Consider an arbitrary linear inequality in the form

r
I
j = 1

a.x. > b
J J

••• (3.4.2.8)

where all aj for j:l, "', r are positive. If we have ak>b for

some' kE{1 I'" ,r}, then we can replace ak by b and the inequality

r

bXk + I > b, ••• (3.4.2.9)

j=l, j;lk

has the same solution set in terms of (0-1) solutions as (3.4.2.8)

but fewer real solutions in the unlt-hypercube. Thus (3.4.2.9) is a

"tighter" inequal ity that (3.4.2.8) for the associated I inear programming

relaxation. Of course, the constraints of (3.4.2.1) are not always of

the form (3.4.2.8), but using the substitution x: :: 1 - x. where
J J

necessary, we can bring every constraint of (3.4.2.1) into this form,

apply this reasoning and check each coefficient of each type (2)

constraint for a possible coefficient reduction.

Constraint Generation

The constraint generation procedure is the second computational phase

of PIPX, to produce and solve a linear programming problem with a better

optimal continuous objective function value. The real measure of the

effectiveness of the constraint generation procedure is determined by

how much it cl oses the "gap" between the optimal I inear program relaxation

objective function value and the optimal (0-1) objective function value.

76

In a large-scale (0-1) programmIng problem with a sparse matrix A

and with no apparant specIal structure,lt is reasonable to expect that

the Intersection of the m knapsack polytopes P~ (*CONV{X(Rnlalx<b.,
-I

Xj~O or 1 for J=I, ••• , n}) provide a fairly good approximation to the
m I

(0-1) polytope P1 (~n Pr) over which to minImise a linear objective
1=1

function. On the other hand, If the matrIx is dense, then the different

rowS of A interact and cutting planes from individual" rows of A, while

certainly valid and .In,,:some instances useful, cannot be expected to

produce the same impressive results that would come from sparse large-

scale (0-1) problems with no apparent special structure. This is the

first difference between Crowder ~~. method and the traditional

cutting-planes described In the text books on Integer programs. The

second difference, I s the I nequa II ties that Crowder ~~. generate

preserve the sparsity of the constraint matrix; on the other hand, the

traditional cutting planes are typically rather dense and as Integer

programming folklore has It - lead to explosive storage requirement.

Crowder et at. modified the standard Branch-and Bound algorithm to

facilitate the search, by computing the upper bound on the optimal

solution and measuring the gap between the continuous optimal solution

and the optImal (0-1) objective value to provide a good way of guiding

to Mathematical Integer Programming Software to find Integer solutions, -

and finally using the continuous reduced cost implication to fix the

variables in the current Branch-and-Bound tree.

Finally, Crowder ~~. mentioned that there are some computational

difficulties In their constraint Identification procedure because

of the computer storage requirements. The other difficulty Is the

design and implementation of an effective and efficient interface

77

between the computational procedure and the mathematical software for

solving linear and integer programming problems.

(*CONV.The convexlfied solution).

I M PRO V E MEN T S

AND

E X TEN S ION S

CHAPTER IV

In the previous chapter'we presented the mast promising size-reduction

techniques. While the results of some of these techniques will be

presented in chapter VI, we suggest here some changes which result in

improving the performance of these techniques.

In this chapter, we present the details of two extended methods which

have evolved from the previous ones. The. first lJlethod called "Extended

Reduce" is an improved version of the earlier Reduce method, in order to

identify extraneous variables as well as redundant constraints. The

second one is called "Extended-Williamil'. Procedure" for linear and integer

programs, which is an extended version of Williamc' procedure.

Before we proceed with the details of each method, and to avoid any

repetition in the terminology and notations, we restate our (primal)

linear programming problem as:

max

S.t

z • CX

AX < b

X > b

and the dual problem associated with the above system is:

... (4.1)

min Y = Wb ... (4.2)

s. t. W~ > c

W > 0

where A is an mxn matrix, A' is the transpose of A, C and X are n vectors,

band Ware m vectors.

4.1 Extended Reduce Method

As mentioned before, the Extended-Reduce method is an improved version

of the earlier Reduce method presented in chapter Ill. The method is

to identify extraneous variables and redundant constraints. Also,

redundant constraints are identified by implementing a modified version

of the co-ordinate direction method a~certain steps if necessary. Based

on the following modifications involving more efficient tests from some

theorems present"ed in chapter lion both primal and dual, together with a

modified version of the coordinate direction method, the Extended

Reduce method is developed.

We utilise the same notation developed in chapter 11 and in Boneh and

Golan's method presented in chapter 11 I. Namely, we use the constructed

tableau A(mxn) and denote its elements by a .•• The updated right-hand
I J

side vector is denoted by b(mxl) and its associated elements by b.. The
I

reduced cost vector is denoted by Z - C (lxn) and its associated elements

Also, the vector of basic variables is x~ and that of non
J

N basic variables is x
j

.

The results from experiments on Extended Sign Tests, Hybrid and Reduce

methods, presented in chapter VI, show that test two and its dual test

are unhelpful and expensive (in terms of computation times), hence they

are not considered here. On the other hand, test one and its dual test

as.well as step two of Reduce method (le. a constraint having non-negative

entries and a zero right hand side; then a variable with a positive entry

in this row is extraneous) are found most useful. Test five is found

most efficient when it is used as part of the simplex step.

80

We especially attempt to make use of this test to identify redundant

constraints, by implementing the modified version of the co-ordinate

direction method with it.

The results of the co-ordinate direction method from experiments on

the Hybrid method seems very efficient :(in terms of computations time).

However, identifying non-negativity constraints as redundant tells us

very little about their variables, since their values may turn out equal

to zero or not. Also, the existence of extraneous variables in the problem

may affect the results by classifying some redundant constraints as non-

redundant and this occurs because of perturbing the problem where

extraneous variables could have small positive values in an interior

feasible point. Secondly, when the direction from the interior feasible

point to all constraints is along one of the extraneous variables, difficultie~

can also arise. To explain this, let US consider the following example:

max Xl - x2 + 2x
3

s.t.

Xl + x2
< 2 RI

~xl + 3x2 + x3 ~ 2.5 R2

Xl + x2 + x3 < 2 R3

by perturbation of the p~oblem, the interior feasible point is

(0.01, 0.01, 0.01). Clearly x2 is extraneous, but i:f the direction

from the interior feasible point to all constraints moves along x2 ' R
Z

is classified as non-redundant, which it is in fact redundant.

As a result of the above difficulties, we modify the co-ordinate direction

method to be used with test five and only when the pivot ratio is not

unique, in order to identify redundant constraints before we perform a

81

simplex iteration. First we consider only the structural constraints

having the same pivot ratio' value, and positive coefficient corresponding

to the varlabl,e, which has been taken as a current direction. Second,

in order to be sure that the direction is not along any of the extraneous

variables, perform the test along the next pivot column, which is

easy to identify by simply updating the objective function. Third, in

order to be sure that none of the extraneous variables could have any

positive number, we start with the boundary point instead of the interior

point, and we perturb only the slacks of non-negativity constraints which

are in the basis, and all other variables must have zero value.

Given a boundary or interior feasible point XO, the distance ti between

° any constraint and X along the j-th direction is given as follows:

t. •
1

b - A XO
i I

a ..
IJ

a .. >0
IJ

... (4.1.1)

where i is the constraint index having the same pivot ratio value; of

course Ai is the i-th constraint of the original problem (4.1).

Therefore, if the i-th constraint has a minimum value ti' then the other

constraints classify as redundant. Moreover, the i-th constraint

becomes a pivot row for the simplex iteration.

As a result of tests, such modification is computationally beneficial,

since it is less expensive (in terms of computations time) to identify

redundant constraints, where great saving in time and storage space have

been achieved, since the total number of arithmetic operations to

82

compute (4.1.1) reduces from (m+n)(2n+2) for computing equation (3.1.1.3)

to at most m(2n+2). Furthermore, there is no need to convert the original

matrix problem into the form of ">". Finally, the number of simplex

Iterations to reach the optimum solution could be reduced, and that is

due to the right choice of pivot constraint (when the pivot ratio Is not

unique).

Now, we present the Extended-Reduce method in algorithmic steps:

Initial Step: ! B N
Let H • {k Sk = xI} and G = {r! Sr : xj } where Hand G

Step (1):

Step (2):

Step (3):

Step (4):

are the set of indices of the slack variables In rows

and columns still remaining in the problem.

Store AX~b, find a basic feasible solution to the system

(4.1).

If all Zj - cj ~ 0, stop. Otherwise continue with step 2.

N For every column j with Xj = Sand rfG, check the property:
r

a •. > 0 for all i and %. - c. > 0
IJ - J J -

If this holds, drop column j and remove r from G.

For every row B
with xi = Sk and kfH, check the property:

a.. < 0 for all j
I J -:

If this holds, drop row I and remove k from H.

B For every row I with xi = Sk and kfH, check the property:

aij > 0 for all j and bi : 0

83

Step (S):

Step (6):

Step (]):

If thIs holds, drop all columns with a .. >O and remove all
IJ

their indices from G. Then drop row i and remove k from H.

Determine the non-basic variable S = x~ with the most
r J

negative reduced cost Zp - Cp. Compute:

bt/a t = mln {b./a. la. >O} p I I Ip Ip

If the above ratio is unique then,S k = x~,.kEH is a slack

of a non-redundant constraint, and go to step 7. Otherwise

continue with step 6.

Determine the latest boundary or Interior feasible point,

and the next pivot column j. Among only constraints having

the same ratio. value, determine the constraint with minimum

t i • Drop the other constraints from the problem, and their

indices from H.

Perform a simplex pivot iteration, and update the table.

If no rows or columns have been removed, stop. Otherwise

go to step 1.

Now, to illustrate the use of our extended reduce method, we consider

the following numerical example:

max

s. t.

xl + x2 + Xs < -
2x

3 + 2x4 + Xs < 4 -
-x + x3 + x4 < 4 1 -

84

Xl + 4x4 - X S
< 8

Xl + x2 + x3 + 3x4 < 6

Xj > 0 for all j.

Initial Step: In what follows. we label the slack variables as SI

through Ss and Xl through Xs as $6 through s10 respectively.

The constructed tableau is:

b

SI

2 2 4

-1 4

4 -1 8

6

The index sets H = {1.2.3.4.S} and G = {6.7.8.9.10}

Step (2): S8 is extraneous. we drop column 3. G = {6.7.9.10}

Step (S): The pivot ratio is chosen for cotumn four (with most

negative Z4 - C4 = -3), and It is not unique.

Step (6): The next pivot column j = 1 (Z, - Cl = -1).

XO = (0.01. O. O. 1.99. 0)

ts = 0.02

3

Therefore constraint S is non-redundant. constraints 2 and

4 are redundant.

Step (7): After pivoting on aS4 = 2. we get the following updated

tab le:

S6 S7 Ss S10 b
--_. __ ._--------_ .. _------- - ~-------

z. - C
j J

SI

S3
T 1 :

S9

Step (2):

s.tep (3):

-1 2 3 -6
-----,'_ .•. _--_ .. ----

Q]

- 4 - 1 2

3 3

1 1 2

3 3 3 3

H = {1.3.9} G = {6.7.S.10}

S7 and S10 are extraneous. we drop columns 2 and S.

G - {6.S}

Row 3 redundant. we drop row 3. H:{1.9}

86

Step (5):

Step (7):

Step (1):

The pivot ratio on column one is .chosen (with most negative

Zl- Cl = -1), and It is unique.

After pivoting on all' we get the following updated table:

SI S5 I b
... ---.----.- '-----'-1------

-1

3

I

3

and H : {6,9},

i

i
3

G:{1,5}

All z. - c. > 0, the solution is optimum, stop.
J J -

The test results of Extended-Reduce method are presented in chapter VI.

87

4.2 Extended Williams Procedure

Unlike the previous improved method, the size of linear (and integer)

programming problems has been reduced prior to applying the simplex

method. The procedure presented here is an extended version of Williams'

procedure achieved by combining another test based on theorem (3.1)

presented in Holm', and Klein's method in chapter Ill, in order to

identify extraneous variables. More suggestions have been made to reduce

the course of process ing. Based on the above:;, we developed "Extended

Wi 11 i ams Procedure".

In order to present the mathematical theory used in the extended procedure

we will utilise the same terminology implemented in WilliamS' procedure

and Holm and Klein's method presented in chapter 11 I. initially, for all

the variables (primal and dual) , the lower bounds are set to zero (because

of the non-negativity constraints) and the upper bounds a~ a sufficiently

large real number.

As a result of testing Willlams' procedure presented in chapter VI, the

structure of the tested problem (redundancy and degeneracy) is affected

on its reduction processing, and that is due to unsuccessful tightening
,

of the bounds of primal and,dual variables. Then, the required conditions

in test 02 to fix variables at their bounds are affected and not easy to

hold. The results show that most of the variables having non.zero

coefficients in all constraints with zero lower bounds in shadow prices

are not fixed to their bounds. To demonstrate this, consider the following

example

88

max Z = xl + ..•

s. t.

xl + < 5 RI -
-xl + < 8 R2

Suppose that = 0 the optimal solution, R. R. W IIII ams'" xl at and wl = w2 = o.

procedure is unable to fix such a variable at its lower bounds zero,

such variables may affect the whole procedure of size reduction.

Holm and Klein (1975) identify extraneous variables by paitwise

comparisons between variables, based on theorem (3.1) presented in

chapter Ill, which we may restate as a test as follows:

If there exists column indIces rand j such that

pos(A(.r) - A(.j)) + w"R. neg(A(.r) - A(.j))

then x. Is extraneous.
J

The basic idea of the above test is from the Complementary Slackness

Theorem, ie. a varIable x~ = 0 whenever c. - wOA(.j) < 0 where XO
J J

and wO are the optimal solution to (4.1) and (4.2), repsectively.

However, as the test covers most of the situations, and the pairwlse

and

(4.2.1)

comparison needs a little more processing, we decided to combine such

a test with Williams' procedure, in a way to reduce the pairwise

comparisons time processing in the whole procedure, by not repeating

the pairwise comparisons processing in each pass, if neither any

singleton columns are replaced by shadow price bounds nor any constraints

removed nor any shadow price bounds tightened.

89

In fact. we are using the same names for tests as in the original

Williams' procedure. such as test PI. test 01 ••••• etc (see Williams'

procedure In chapter Ill) in presenting the algorithmic steps of Extended

Williams procedure. As in Wllliams' procedure all the tests are implemented

in the same systematic approach. and our procedure also has two phases. to

resolve the dilemma over whether to r~!~x or tighten the bounds on primal

and dual variables. On the other hand. as a result of testing Williams'

procedure. we suggest. fir$Zc a phase of the procedure is terminated when

one pass yields no simplification. Second. there is no need to repeat

the whole procedure processing in part two. If neither singleton columns

are replaced by shadow price bounds nor constraints with non-zero lower

shadow price bounds are removed by subtracting from the objective function.

We now present the details of our extended procedure in an al'gorithmic

form. The following logical variables are used as switc~es for various

steps

PART = F for part

• T for part 2

PHASE • F for phase

= T for phase 2

PSACT = T changes made during the current pass

=Fetherwise

PROSC = T changes made either by replacing singleton column or removing

constraint with non-zero shadow price bounds

• F otherwise

90

Initial Step

Step (1):

Step (2):

Step (3):

Step (4):

Step (5):

Set all logical variables to F, all lower bounds

(primal and dual) to zero and all upper bounds to

a large real number M.

Let K = 1

Let j be the k-th index of smallest element of C;

Compute xJ and xj (equations 3.2.2.9 - 10)

If x~ > xj or xj, or xj < x~ or xj, the model is infeasible,

stop

I f x~ :
J

u -u -u x
J
' or x., or x.

J J
= x~ or -~ set to this common J x j ' Xj

value, substitute out, set PSACT = T and go to step 2.

Step (6):

Step (?):

Step (8):

Step (9):

If PHASE if T, go to step 8.

If the new primal bounds are more strict than existing values,

update these bounds and set PSACT = T. Otherwise go to step 9.

If the new primal bounds are more strict than existing values,

restore the initial bounds to x .•
J

Compute Pj and Q
j

(equations 3.2.2.3 - 4).

Step (10): Perform test 02, if changes made set PSACT = T, and go to

step 2. Otherwise, continue with step 11.

91

Step (11):

Step (12):

Step (13):

Step (14):

Step (15):

Step (16):

Step (17):

Step (18):

Step (19):

If PART is T, go to step 13. Otherwise, continue with step

12.

Perform test 01, if changes made, set PSACT • PROSC • T,

and go to step 23. Otherwise continue with step 13.

C -£ ompute wl and w~ (equations 3.2.2.11 - 12)

or w~ < w~ or w;, the model is either

unbounded or infeasible, stop.

If w~ = w~ or w~, or w~ = w~ or w~ mUltiply the constraint

by this common value, subtract from the objective function,

remove the constraint i, set PSACT = PROSC • T, then go to

step 19.

If PHASE is F, go to step 18.

If the new shadow price bounds are more strict than

existing values, update these bounds, and set P9ACT = T.

Otherwi se fo to step 19.

If the new shadow price bounds are more strict than existing

values, restore the initial bounds to the dual variables.

Let L=O.

92

Step (20):

Step (21):

Step (22):

Step (23):

Step (24):

Step (25):

Step (26):

Step (27):

Step (28):

Step (29):

Step (30):

Step (31):

If there are no more columns to be compared with c., go
J

to step 23. Otherwise, set L = L+l, and continue with

step 21.

Let r be the L-th Index of largest element of C

If condition (4.2.1) Is satisfied, remove column j, set

PSACT = T, and go to step 24. Otherwise go to step 20.

Compute LI and U, (equations 3.2.2.1 - 2).

If there are no more columns left (le. K equals N), go to

step 25. Otherwise set k • k+l and go to step 2.

Perform test P2, If changes made, set PSACT • T, moreover

if removed constraints have non-zero shadow price bounds

set PROSC = T.

Perform test PI, If change made, set PSACT = T.

If PSACT is F, go to step 29.

Set PSACT = F and go to step 1.

If PHASE is F, set PHASE = T and go to step 1.

If PART is T, stop.

If PROSC = T, restore all singleton columns and constraints

93

with non-zero shadow price bounds subtracted from the objective

function, set PART = T, PHASE = F and go to step 1. Otherwise,

stop.

To illustrate the use of the above algorithm, let us consider the following

numerical example taken from Willlams (1983), after modification. Without

affecting the feasibility or the optimal solution, further reductions are

found, where Will lams' procedure failed to reduce its size:

2~1 + 3x2
+ x . wJ/, u max 3 I wl

S. t.
RI -x + 1 x2 + x3 + x4 - 2x

S
< 4 0 M

R2 -xl - x2 + x3 + x4 - Xs < 0 M -
R3 xl + x4 + ,xS ~3 0 M

J/,
0 0 0 0 0 x.

J

u
M M M M M x.

J

94

Solution:

PART ONE

PHASE ONE

PASS (1)

PASS (2)

PASS (3)

PASS (4)

PASS (5)

PASS (6)

PHASE TWO

PASS (1)

PASS (2)

PART TWO

PHASE ONE

PASS (1)

STOP

X4 extraneous

X3 extraneous

constraint 2 redundant

u
X = 3.
5

Lower shadow price bound on constraint I is 3.

constraint I redundant

XI extraneous

constraint 3 redundant

nothing

u
X2 = 10.0

X2 = 10.0 and the problem solved.

The results of the Extended Willlams' procedure are presented In chapter VI.

CHAPTER V

In the previous chapter, two reduction methods are presented, mainly

for Linear programs. In this chapter extended techniques are presented

mainly for integer programs.

The requirement that the variables must take integer values is a mathematical

extenSion of Linear programming, which is known as Pure Integer Programming.

There are many ways of solving such problems, however, there is only

one method which purports to be applicable to all such problems and

is sometimes presented as a simple extension to cope with integer variables

in the LP algorithm of commercial packages - the so-called "Branch-and-Bound"

algorithm.

As the problem size increases, the amount of work needed to produce

an integer optimum solution may increase exponentially, where, subproblems

are generated and the number of branches increases as the number of

integer variables increases in the problem. In general, there are unnecessary

variables and rows in a model formulation which increase the number

of branches and the solution time. Therefore, reducing the size of

the problems by removing unnecessary variables and rows will reduce

the number of branches required in order to solve the problems, using

Branch-and-Bound algorithm efficiently.

In this chapter, we present a preprocessing reduction procedure for

general integer linear programming problems, and discuss its implications

for Dynamic-Presolve which is a feature of the SCICONIC package. Also,

reductions to subproblems having Special Order Sets (SOS) will be presented.

96

Before we proceed with the details, to avoid repetition we state our

(primal) integer 1 inear programming problem as follows:

n
Max Z = 1: c.x.

j=l J J

s.t.
1: a .. x. (b'

l I J J
1=1 , ... ,m

x.) 0 and integers
J -

...(5.1)

and for each variable there are finite integer lower and upper bounds

... (5.2)

5.1 Preprocessing Reduction Procedure for ILPP's

A preprocessing technique is developed to reduce the size of general

ILPP's using the primal bounds to fix variables at their bounds and

identify extraneous variables and redundant constraints prior to applying

the simplex and Branch-and-Bound algorithms.

In order to present the mathematical theory used in our procedure,

we use the same termlnologies as in "Holm and Klein's" and "Williams'"

methods presented in Chapter I I I.

With integer variables it is generally advantageous to tighten the bounds

rather than relax them since it may be possible to tighten the bound

to the next appropriate integer value. The bounds have been tightened

in our procedure in a fashion similar to that of Williams' techniques,

that is, a constraint together with bounds on some variables may imply

-u u bounds on another variable (equations 3.2.2.9-10), and If Xj (xj ' the

upper bound u -u x. is replaced by [x + E.J.
J

-R, t R, If x.)x., the lower bound x.
J J J

is replaced -R.
by [x.-~J+l, where E is a small

J
positive number. Should

-R, -u
Xj be equal to xj ' the variable Xj may be fixed at this common value

and removed from the problem by replacing bi by (bi-a ij xj) for all

i and adding the constant CjXj to the objective function.

97

However, Brearley et al. [1975] and Wi II iams [1983] Identify constraint

in a system (5.1) as redundant if Ui i bl provided that it does not

have a nonzero lower shadow price. Williams [1978] mentioned that,

in integer problems, if a constraint has a positive slack it does not

necessarily represent a "free good" (i.e., in one sense it is not worth

anything) and may therefore have a positive economic value (see Wllliams

[1978], Ch. 10).

Rubin [1972], extended the results of test one to apply to integer problems,

by presenting the following theorem:

Theorem Rubin [1972]

If row i is a structural constraint having

a.. (0 for a 11 J. and B.) 0
I J - I -

.•. (5.1.1)

then it is redundant in IP.

Since no simplex iterations have been performed during the course of

our procedure, all rows are structural constraints, therefore, we decided

to use the above test to identify redundant constraints.

As a result of the above test, many redundant constraints could not

be identified, because condition (5.1.1) was not satisfied. We decided

to implement Holmand Kleln's test, presented in chapter 11 I, in order

to identify redundant constraints by palrwise comparisons between constraints,

based on theorem (3.2), (condition 3.2.1.6). However, as the palrwlse

comparisions need more time processing, we combined and performed this

tes tin a way to reduce the pa I rwl se compa r isons time process i ng as

much as we can, such as terminating the test as soon as the right-hand

side of (3.2.1.6) becomes greater than or equal to the left-hand side.

98

,', t ~ •;.,.

,
•

In our procedure we construct formulae using

only primal bounds to fix the variables at their bounds, as follows:

Case (a): IfkEP,and

a ik) bi - (E a ij xj + Ea ij xj) ••• (5.1.2)

j€P jEN
jtk

holds, then xk=O at every feasible solution to (5.1)

Case (b): If k€ N, and

x~)
J

••• (5.1.3)

holds, then xk = x~ at every feasible solution to (5.1)

where P and N are the index sets of coefficients with positive and negative

values, respectively. The correctness of the above two cases comes

from the feasibility of the system (5.1).

The above two formulae need good tightened bounds to fix more variables,

therefore one may identify extraneous variables by the dual test to

condition (5.1.1), which may be stated in the following corollary:

Corollary:

If column j is not a slack of a structural constraint and has

a •.) 0 for all i and c.(O
I J - J-

••• (5.1.4)

then Xj is extraneous in a system (5.1)

99

The correctness of the above corollary is from the validity of its duality.

Now, let us present our procedure in algorithmic steps:

Initial Step: Set PASS = 1, PSACT = F

Step 1: let j =1,

Step 2: If condition (5.1.4) is satisfied, remove column j, set PSACT=T

and go to step 9. Otherwise continue with step 3.

Step 3: If any of conditions (5.1.2-3) is satisfied, update the problem,

remove column j, set PSACT = T and go to step 9. Otherwise,

continue with step 4.

Step 4: If PASS = 1, go to step 8. Otherwise, continue with step 5.

Step 5: Compute -R. -u (equations 3.2.2.9-10) ; x. and x.
J J

Step 6: -R. u -u -u
(R. -R. the problem is infeasible, I f x.) x. or xj , or x. x. or x j' stop.

J J J J

Step 7: I f the new bounds are more strict than existing values, update

these bounds, set PSACT = T, and if the lower and upper bounds

on x. are equal, set x. to this common value, update the problem,
J J

remove column j, then go to step 9. Otherwise, continue with

step 8.

Step 8: Compute L. (equation 3.3.3.1);
I

Step 9: If no more col umns left, continue with step 10. Otherwi se,

set j=j+l and go to step 2.

Step 10 : let k = 1,

Step 11 : let i be the k-th index of largest element of b;

Step 12 : If condition (5.1.1) is satisfied, remove row i , set PSACT=T

and go to step 17. Otherwise, continue with step 13 •.

Step 13: let L = 1,

Step 14: let t be the L-th index of smallest element of b;

Step 15: If condition (3.2.1.6) is satisfied, remove row i, set PSACT=T

and go to step 17. Otherwise, continue with step 16.

100

Step 16: If there are no more rows to be compared with bi , go to step 17.

Otherwise, set L=L+l and go to step 14.

Step 17: If there are no more rows left, go to step 18. Otherwise,

set k=k+l and go to step 11;

Step 18: If PASS = 1, set PASS = PASS + 1, PSACT = F and go to step 1.

Otherwise, if PSACT = T, set PASS = PASS +1, PSACT = F and

go to step 1. Otherwise, stop.

Now, we present the following numerical example to demonstrate our procedure:

Max 2 xl + 3x2

s. t.

Xl + x2

-x - X2 1

xl

2 xl

So I ut ion:

Pass 1 :

Pass 2:

- x 3 -x4

+x -2
3)(4 (

+ X -3 x4 i

+ x4
(

+ x3- 2x4 i

o (

u 3, u
xl = x4

x(3) = 0

X(4) = 3

Constraint

x(l) = 0

x(2) = 10

Stop

101

If

3

x. 10 for all j, and integers
J -

= 3

2 redundant

5.l The implication of implementing Preprocessing Reduction Procedure

to "Dynamic-Presolve"

Integer problems can be solved by the SCICONIC Package (an algorithmic

advanced Mathematical Programming Package), by call ing the command "GLOBAL",

and wi th the parameter "PRESOLVE" a Dynami c-Preso I ve is performed on

each sub-problem in the Branch-and-Bound search. It attempts to reduce

the discrepancy between the linear solution to each sub-problem and

the true optimum for which we are searching, and makes the current sub-problem

easier to solve by fixing continuous variables at their lower bounds

and tightening the bounds on the variables.

Unfortunately, the Dynamic-Presolve technique becomes less powerful

when a branching decision is made on a variable with negative coefficients

in many or all constraints. Implementing our preprocessing reduction

procedure within the Dynamic-Presolve technique on each sub-problem,

could make the whole hybrid processing more powerful in making the current

sub-problem much easier to solve, and saving more work in less CPU time.

To show how our procedure, works and could improve the processing of

the Dynamic-Presolve technique, let us consider the following example:

Example:

Suppose at a certain subproblem the integer variables XI' Xl and x3

wi th lower bounds zero and upper bounds 3, appear in the following constraints:

RI: lX I + 4Xl - x
3

(7

Rl: -5x I + lXl - x 3
(

and at some branch, we might make the branching decision x
J

) l.

102

Now as far as we know, Dynamic-Presolve technique is unsuccessful in

tightening the bounds of these variables, but our procedure may continue

the processing by fixing xl to 3, tightening the upper bound of x2 to 2,

then removing constraint two, making the current sub-problem much easier

to solve than implemented only the Dynamic-Presolve technique.

5.3 Reduction techniques for Special Order Sets.

Special Ordered5eh (SOS) are sets of variables with an explicitly or

implicity given order and a specified additional condition. They were

introduced by Beale and Tomlin [19701, as a practical device for efficiently

handling special cl~sses of non convex optimization problems by Branch-

and-Bound with LP relaxation and are now implemented In most commercial

codes for mathematical programming. There are two types:

Type 1 (5051 set), where only one variable in the set can have a nonzero

value. If the variables Xj are not 0-1, indicator 0-1 variables 61 •••• 6n

are introduced and linked to the x. variables. Type 2 (5052 set), where
J

up to two adjacent variables in the set can have nonzero values. The

model is slightly more complicated, and the problem can be subdivided

into two sub-problems by choosing a suitable value of j, say r, in a

suitable reference row. So in 5051 • in one branch 6.=0 for all j r
J

and in the other I) • = 0 for all j (r, wh i 1 e 5052: either 6.= 0 for
J J

all j) r, or I) • = 0 for all j (r.
J

The strategy of fixing several variables to zero simultaneously is one

reason for the success of the special ordered set (SOS) branching rule

(see Beale and Tomlin [19701, Forrest et.al.[19741, Gauthier and Ribiere

[19771 and Tomlin (19701)on integer programs with multiple choice constraints.

103

In fact. in implementing Branch-and-Bound strategies for SOS in commercial

codes for MP. the members of an SOS must form a monotonic ascending

or descending sequence which is defined by weights w. and maintained
J

throughout the whole branching process. Otherwise. there is no suitable

way developed to determine the branching point. Determining an average

weight w:

o 0 w = E w. x./E x.
J J J

... (5.3.1)

where xO are the values of the set variables in the optimal solution

of the LP relaxation. the branching point r is then defined either by

We present some techniques to identify which variables of an SOS set

could have zero values or nonzero values. in order to reduce the sub-problem.

even if the SOS set does not have a suitable reference row.

Suppose (x 1 •••••• xn) is an SOS set. and they are a part of the problem.

appearing in the following constraints:

Ea .. x. +
I J J

jEP

x. (b.
J I

..• (5.3.2)

where P and N are the index set of coefficients with positive and negative

values. respectively.

The following tests may be. used to reduce the SOS set in a sub-problem:

(i) If-Y-j

•.• (5.3.3)

then x. = 0 in every feasible solution at SOSI set.
J

(I I) If 3 a un i que j 3

... (5.3.4)

104

then:

u (a) - x. = Xj in every feasible solution at 5051 set.
J

(b) - x. will take a nonzero value qxU (qi1) in every feasible solution,
J

, u
and either x. 1 or x.c.' could take a nonzero value (l-q)x at

J- J+

5052. Moreover, if all variables are integers, one may use conditions

(5.1.2-3) to fix xj _1 and xj +1 at their values.

Now,we present the following examples to demonstrate our tests:

Example (1):

Suppose (x l ,x2 ,x
3

,x4) are 5051 and form a part of the problem,

and appear in the following constraint:

with bounds of 2.

Implementing our tests may fix xl = x3 = x4 = 0 and x2 = 2.

Example (2):

Suppose (x 1,x2,x
3

,x4) are 5052 and form a part of the problem,

and appear in the following constraint:

4xl - 2x2 + x3 + x4 i -

with bounds of 2, and all are integers.

Implementing our tests may fix Xl = x4 = 0 and x2 ' x3 to nonzero values.

Note: It was not possible to test all the procedures of this Chapter
within the Sciconic computer code because the modular capability of

the LP code does not extend to the Branch and Bound part.

105

CHAPTER VI

Programming the Methods and Experimental Results

Some of the size-reduction techniques presented in chapter I11 and all

the el<ten'de'dmethods presented in chapters IV and V have been programmed

and tested on the Prime Computer System at Loughborough University.

In this chapter, we present some important basic techniques in programming

the size-reduction techniques. The structural tested problems, the results

and discussion of the results will be the subject of the remainder of this

chapter.

6.1 Programming the Methods

The FORTRAN 66 computer language was used for programming the methods,

following adviee from staff at SCICON Computer. Services Ltd.

The SCICONIC package is an algorithmically advanced Mathematical Programming

Package developed by SCICON. Its purpose is to provide the mathematical

programmer with a conven.ient and cost-effective way to solve I inear, integer

and non-linear programming problems. In particular SCICON developed SATL

Sciconic Algorithmic Tools library) which allows the user to assemble

modules of SCICONIC to his own specification.

We bui It programs in the form of a sub-routine called "SUBROUTINE USER"

which was loaded into a space already designated for a trivial subroutine

called "USER" in the package. Then we applied this subroutine as a

preprocessor after loading and converting the input data file, and before

executing the main LP algorithm (for more details see appendices).

106

Sciconic stores non-zero elements of the data matrix in column order.

All the non-zero matrix column elements are stored in an element pool

"array POOL" (the element pool is based on an idea of Kalan (1977»·

which only contains unique values; individual matrix elements may be

accessed from the pool via the arrays of pointers. This enables the input

data to be stored in a very compact form, taking the maximum advantage of

matrix sparsity and any non-uniqueness of the matrix elements. Matrix

entries are accessed from the POOL by two parallel arrays, the entries

within which are stored by columns. If the column has a cost row and/or

an upper bound, then there is an additional entry in the parallel arrays.

For certain manipulations, In some tests (such as singleton row "Wi II iams'

procedure", the number of non-zero elements and their signs in each row

"sign tests" and in order to perform the pairwise comparison columns "Holm

and KI e in's method"). it is conven i ent to have the elements eas i I y access i b I e

in row order as well as in column order. Therefore, some additional storage

arrays were created to store the elements of the matrix in a different way.

This would letus build the programs using one dimensional arrays instead of

using two dimensional arrays as some problems occured in the storage methods

with the two dimensional arrays. The one dimensional arrays are packed

to save as much space as possible.

We can explain how we managed to store the matrix in one chmensional arrays,

by considering the following example.

107

Max. Xl + 2x2 + 4x3 + 10x4 + X5

s. t.

RI Xl + x2 + x3 + x4 + x5 < 25 -
R2 2x

1
+ x4 = 10

R3 x2 + x3 + x5 < 5 -
R4 2x

1 + 4x3 + x5 > 15 -
R5 BX3 + x4 < 10 -

Let there be three arrays ROWELL "rea 1", I ROWNO "i nteger" and I ROWMK

"integer". IROWMK has a dimension of 512, the other two have dimensions

of B192 (equivalent to 16 X 512). IROWNO is created as follows:

I ROWNO (1) tell us how many non-zero elements are in RI,

I ROWNO (2), (3), tell us the columns in which the non-zeros occur. So

I ROWNO (1) • 5, I ROWNO (2) = 1 , I ROWNO (3) • 2, I ROWNO (4) • 3,

I ROWNO (5) • 4, I ROWNO (6) = 5.

The next i tem,.i n I ROWNO name I y I ROWNO (7) tells us how many non-zeros

occur in R2 and IROWNO (B), (9), ... tell us where they are. The procedure

then repeats for R3, R4 and R5.

Tha actual values of coefficients are now stored in the corresponding

positions of array ROWELL:

lOB

RI: ROWELL (2) = 1.0, ROWELL 0) • 1.0, ROWELL (4) • 1.0,

ROWELL (5) = 1.0, ROWELl (6) = 1.0

R2: ROWELL (8) = 2.0, ROWELL (9) • 1.0

R3: ROWELL (11) = 1.0, ROWELL (12) = 1.0, ROWElL (13) .1.0

R4: ROWELL (15) = 2.0, ROWELL (16) = 4.0, ROWELL (17) = 1.0

R5: ROWELL (19) • 8.0, ROWELL (20) = 1.0.

ROWELL (I), 0), (10), (14) and (18) are not used (but could be set to

indicate 1, 0, - 1 for!, =.! If required).

The third array· I ROWMK tell us where the set of Information In one row

actually begins in I ROWNO. Hence IROWMK(I) = 1, IROWMK(2) = 7, I ROWMK(3) = 10,

IROWMK(4) = 14 and IROWMK(5) • 18.

For certain other purposes it is also convenient to store the columns of

data in a similar way to aid testing. Again we have three arrays ICOLNO,

ICOLMK and COLELL which perform similar roles for columns as the IROWNO,

I ROWMK nad ROWELL performed (repsectively) for rows. However, these fit

in more naturally with existing SCICONIC storage. They are set as follows:

ICOLNO(I) = 3, ICOLNO(2) = 1, ICOLNO(3) • 2, ICOLNO(4) • 4

ICOLNO(5) = 2, ICOLNO(6) • 1, ICOLNO(7l =3

ICOLNO(8) = 4, ICOLNO(9) • 1, ICOLNO(10) .3, ICOLNO(II) ,. 4

ICOLNO(12) ,. 5

109

ICOLNO(13) = 3, ICOLNO(14) = I, ICOLNO(15) -2, ICOLNO(16) = 5

ICOLNO(17) = 4, ICOLNO(18) = I, ICOLNO(19) = 3, ICOLNO(20) = 4, ICOLNO(21) = 5.

ICOLMK(1) • I, ICOLMK(2) = 5, ICOLMK(3) = 8, ICOLMK(4) = 13, ICOLMK(5) = 17.

COLELL(2) = 1. 0, COLELL(3) ~ 2.0, COLELL(4) = 2.0

COLELL(6) = 1 .0, COLELL(7l = 1. 0,

COLELL(9) = 1. 0, COLELL(lO)= 1. 0, COLELL(11) = 4.0, COLELL(12) = 8.0

COLELL(14) = 1. 0, COLELL(15) = 1. 0, COLELL(16) = 2.0

COLELL(18) = 1.0, COLELL(19) = 1. 0, COLELL(20) = 1. 0, COLELL(21) = 5·0.

An impo(ltant point .should be noticed that, when we make a deletion or any

change we must update both types of stored data.

Now, we discuss how simplex operations interact with this type of storage

in our programs. If we look at the row storage, we can find pivot elements

etc. and start the simplex operations. There might be a problem when we

update coefficients as often a zero becomes non-zero and will need to be

stored. In fact this is straightforward because the trick is that iROWMK

tells us where row data starts and we can move around these values.

Obviously, we need a duplicate copy of I ROWMK, I ROWNO, ROWELL calling them

JROWMK, JRWONO, ROWELJ for tableau 2.

Let row 3 be first pivot row, we set JRWOMK(3) = I, then adjust the elements

of row 3, store them In positions 2,3,4 .•. and set up JROWNO, ROWELJ. Now

we update another roweg. row 1, row 2, etc. We now proceed towards a

feasible solution or perturbation method or whatever is required.

110

I

When performing simplex we might wish to update part of the column arrays

so that we can find pivot points more easily. But the column arrays can

always be created from the row arrays If necessary.

With the above way an efficient method of .. storage and carrying out of all

tests is achieved.

Now, two important points have to be mentioned:

In programming the methods, care was taken to minimize the effects of the

round-off errors on the results of some methods (eg. the simplex pivot,

classifiying some redundant constraintsas non-redundant). We solved the

above problem by considering any number with an absolute value less than

-8 or equal to the relative zero 10 as zero.

As most of the methods required an Initial basic feasible solution, and

some difficulties arise in getting it due to the techniques used by SCICONIC

package, we considered the linear programming problems as being re-expressed

wi th constra ints of type "'::'.

In order to understand the specifics such as memory space requirements
.

and the order of operations,:we now present four miscellaneous points of

the programming process used for some methods.

(a) In sign tests (Extended sign tests, Hybrid, Reduce and extended Reduce

and extended reduce methods), we stopped the given test before the

entire row or column was scanned. For example, we stopped the process

of test two as soon as a second negative entry was found. The minimum

quotient to perform a simplex pivot as well as updating the tableau

I

were written in the program. Cycling problems could occur, but

our problems do not generally contain such cases. Consequently,

we did not Implement a check for Identifying such cases. The

computational effort for this process is negligible and does not

affect the results reported in this chapter.

(b) In the extended reduce method we propose to stop the tests if the

amount of the Identification is less than 10% of the number of rows

and columns during the pass (unless on the first pass).

(c) In Williams' and extended Williams procedures we utilised the

lower bounds of shadow prices at zero, and at some sufficiently

positive large real number for the upper bounds of the shadow

prices. The bounds on the prim~l variables were also initialised

at zero or at some sufficiently large real number if they had not

been set already in the problem file.

(d) As the extended Williams procedure and preprocessing reduction

procedure for integer problems implements Klein and Holms' tests

in which the pairwise comparisons between rows and columns are

performed, we order the cost coefficents and the right-hand side

values before starting the test processing and only the values of

the right-hand side are re-ordered If there is any change in their

values during the preprocessing reduction procedure. While, in

programming the pairwise comparisons between columns the original

cost coefficients are stored In ascending order, and the updated

cost coefficients are not used in this pairwise test. Also, the~.Qlumns

1 1 ?

I

chosen in the comparisons should not have any non-zero elements corresponding

to "redundant" constraints with non-zero shadow prices which are removed

from the problem.

6.2 Performance of Method

Karwan ~~. reported computational tests on most of the common size

reduction techniques (the methods of Zionts and Wallenius, Telgen, Gal,

Rubin, Boneh and Golan, Mattheiss, Holm and Klein, Williams, Thompson and

Sethi as well as Lotfl's Improvements. i.e. Extended Sign tests, Hybrid and

Reduce methods) in a comprenenslve experiment to determine the relative

performance of the various tests.

As our objective study is to ascertain how successfully, size-reduction

techniques could be Implemented in mathematical programming packages, and

to avoid any repetition of the results of the performance of the methods,

we concentrated our experiments onthe methods which we extended (ie. Reduce

method and Will iams' procedure). These are described in detail In the tables

of results later In this chapter. However, Boneh and Golan's, Holm and

Klein~, Extended sign tests and Hybrid methods are discussed briefly in this

chapter. The performance of these methods Is also discussed in more detail

in Karwan ~ 2.!.. (1983).

In order to evaluate the performance of the methods, items such as the

relative time, number of iterations, the structure of the tested problem

in hand, size, degeneracy and other factors, if known, were noted.; A comparison

In terms of CPU time was made to solve the tested problems with and without

the reduction methods Implemented.

, "

A number of problems used were obtained from different sources and most

cif them have been modified after changing "'::' and "." to "<" in order to

ensure the problem still has a feasible all-slack selution. The

characteristics of these problems are presented in table 6.1 for testing

all reduction methods except the pre-processing reduction procedure for

integer problems for which the characteristics of the tested problems are

presented in table 6.6.

Characteristics of the tested problems

Problem Dimension I No of non-zero Starting No. of CPU time (**) Source
No. Row Column , elements Percent Simplex (sec)

I Degenerate (*) Iterations

!
20 30 r 76 0 24 2.0 Farm Planning. Williams, N (1967) !

:
2 27 48 169 0 21 4.0 Production Planning. Williams, N

(1967)

3 17 40 191 0 5 3. 1 Mixing Problem. Will i ams, N (1967)

4 45 37 140 40 12 3.3 Tischer, H. J (1968)

5 30 44 139 0 21 4.8 AHMED, A. N (1977)

6 35 50 136 14 25 4.8 SCICON Ltd, Company

7 46 63 217 0 26 4.8 AHMED, A. N (1977)

8 59 79 281 13 60 10.0 Brunei University. Private
Commun i cat ion.

9 40 94 941 0 14 6.0 Chvatal, V (1984)

10 21 115 900 0 8 5.8 Oil Company

11 56 125 416 0 36 17.8 Brunei University. Private
Comminication

12 64 133 415 0 12 6.8 London School of Economics.
Private Communication

Problem
No.

13

14

15

16

17

18

19

Mean

Dimens ion·
Row Col umn

90

100

100

140

180

200

230

137

130

140

180

249

290

300

78.95 120.21

No of non-zero·
elements

463

380

471

890

830
. ". , ..

1010

1070

Starting
Percent
Degenerate (*)

o
55

o

o

60

65

27

14.42

No. of
Simplex
I terat Ions

13

20

25

27

108

161

158

40.84

CPU time (**)
(sec)

7.0

8.8

7.3

22.0

35.0

45.0

57.0

13.44

Source

Oil Company

Brunei University. Private
Communication

SCICON Ltd, Company

SCICON Ltd, Company

Brunei University. Private
Communication

Brunei University. Private
Communication

Brunei University. Private
Communication

The starting percent degenerate, a measure of a problems' degeneracy, is the percentage of starting "Right-hand
side" vector entries that are zero.

(**) Average CPU time to get an optimal solution by a series of runs is considered to take into account variations in
timing caused by the business of the Prime Computer System

-

I

6.2.1 Boneh and Golan's method

As mentioned earlier, this method attempts to identify the non-redundant

constraints and labels the remaining unidentified constraints as

redundant (possibly with some errors). The method, as originally suggested

by Boneh, would stop after a certain number of iterations. The results

show that more than 90% of the non-negativity constraints and more than

70% of the structural constraints are identified as non-redundant. The

method did very well in Identifying almost all the non-redundant constraints

especially in terms of computation time, since it did not require any

simplex pivots.

The existence of extraneous variables in the problems affects the results

by classifying some redundant constraints as non-redundant. This occured

because of perturbing the problem where extraneous variables could have

small positive values Inan interior feasible point. Also, the above

results can arise when the direction from the interior feasible point

to all constraints is along one of the extraneous variables.

Also, as we mentioned.above· most of the non-negativity constraints are

labelled as non-redundant, and that tells us very little about their

variables since their values may turn out to be equal to zero or not.

We believe that such a method with its design and purpose is not useful

for Implementation in mathematical programming packages as a size-reduction

technique. Therefore, we modified this method and implemented it in our

extended reduce method to Identify redundant constraints instead of non

redundant constraints, which becomes more helpful.

117

I .

6.2.2 Klein and Holm's method

This method attempted to identify extraneous variables and non-binding

constraints by consecutive pairwise comparisons of columns and rows. As

the tested problems.were different from the ones in the other methods in

that they all had non-negative A matrix for this method, consequently we

could not solve all the tested problems presented in table 6.1, using

this method.

The efficiency of this method depends on the rate of degeneracy and the

number of variables with non-positive cost cdefficients. First, because

of the non-negativity condition on the A matrix, any variable with a

negative cost coefficient is extraneous. Secondly, in the non-negative

constraints with a zero right-hand side, every positive entry corresponds

to an extraneous variable. These variables and constraints may be

dropped immediately, and therefore lower average execution times apply.

The results show that this method Is not efficient in terms of size reduction

rate and the computation time used, and that is due to the weakness in

tightening the bounds on both primal and dual. Therefore, we believe

this method is not helpful to be implemented alone as a reduction method

in mathematical programming packages. We combined their tests in our

improvements methods, within which they become more helpful in their

reductions (see extended Williams procedure,chapter 4 and preprocessing

reduction procedure for integer problems, chapter 5).

6.2.3 Extended Sign Test Method

As we mentioned earlier the extended sign test method Is an improved

version of the sign test (Zionts and Wallenius, Telgen, Gal and Rubin)

methods. A full comparative efficiency of each test and the extended sign

method is reported In Ka rwan ~ 2.!.. (1983).

The results show that test three Is not performed well in both degenerate

and non-degenerate problems, In terms of nuumber of identifications. Although,

test four performed very well in identifying a large number of the non-negatlvit~

constraints as non-redundant, it is not helpful for reducing the problem

size, as we mentioned before regarding Boneh and Golan's method. The

performance of test five is efficient in terms of number of identifications.

The method identified more than 70% of the non-redundant constraints but not

more than 40% of the redundant constraints in the early iterations (an

iteration is a, series of tests between two pivots of the simplex algorithm).

The method becomes less powerful as the number of Iterations increases,

since the number of unsuccessful iterations (an iteration which didn't

identify any constraints at its tests) increases and therefore more wasteful

execution time is used.

6.2.4 Hybrid Method

This method is an improvemen't on the sign test methods, and consists of

two parts. In the first part, one iteration is performed using the co

ordinate direction method to identify some non-redundant constraints. In

the second part, theE.S.,T.:, method is used to determine the status

of the remaining constraints.

The results show that the performance of this method is better than the

extended sign test method in terms of the execution times. The efficiency

of the method is due to the power of the first part which identified more than

119

65% of the total constraints at an average execution time about 10%

of the total testing time. However, in the second part of the method

the number of iterations is less than the number of iterations performed

in the extended sign tests method. The unsuccessful iterations and the

method of identifying redundant constraints In the Hybrid method have the

same characteristics as In the extended sign test method.

6.2.5 Reduce Method

The Reduce method reduces the problem size (when possible) While solving the

problem. The reductions are achieved by identifying redundant as well as

non-binding constraints and extraneous variables. The results of this

method are presented in table 6.2

As can be seen from table 6.2, the size reduction ranges between zero

(problem 9) and 99% (problem 17) and the overall size reduction is 58.21%.

The times range between -14% le. 14% more execution time used (problem 13)

and 90% (problem 17) and the overall reduction is 34.53% (about 51. less

than in the simplex methods). The reasons which affect the success of the

reduce method are the extra execution time due to repeating the processing

of the tests (steps 2 - 6) with no more identifications, the unhelpful

tests (step 4 and step 6), and more unhelpful. iterations (the iteration with

fewer number of identification, comparing with the size of the reduced

problem). Also, the number of iterations of the reduced problem is about

15% lower. Finally, the structure of the problemsat hand have greatly

affected the results of the reduce method.

120

oblem

(20x30)

(27x48)

(17x40)

(45x37)

(30x44)

(35x50)

(46x63)

(59x79)

(40x94)

(21xl15)

(56x125)

(64xI33)

(90x137)

(100x130)

(100x140) I
(140xI80) I

I (180x249) I
(200x290)

I
!
I

(230x300)
I
I
I
I

In I

Table 6.2

Results of the Reduce Method

Dimension
Row Col umn

17 23

17 25

17 14

17 14

29 25

24 29

38 35

49 42

40 94

21 32

20 40

59 106

89 126

49 48

33 30

123 137 •.
29 16

175 68

130 128

51.37 54.32

'Size (mxn)
Actual Reduced

600 391

1296 425

680 238

1665 238

1320 1015

1750 696

2898 1330

4661 2058

3760 3760

2415 672

7000 800

8512 6254

12330 11214

13000 2352

14000 990

25200 16851

44820 464

58000 11900

69000 16640

14363.53 4120.42

121

I .

% Size Reduction

35

67

65

86

23

60

54

56

0

72

89

27

10

82

93

33

99

79

76

58.21

Problem I terat ions

(20x30) 17

2 (27x48) 19

3 (17x40) 5

4 (45x371 8

5 (30x44) 19

6 (35x50) 24

7 (46x63) 21

8 (59x79) 40

9 (40x94) 14

10 (21xI15) 5

11 (56xI25) 36

12 (64xI33) 12

13 (90x137) 13

14 (100xI30) I 17

15 (100xI40) I 14

16 (140x180)
\

25

17 (180x249) i 20
I

18 (200x290) I 70

19 (230x300) 90

Mean 24.37

Table 6.2 (continued)

Time (sec)
Testing .. Total

0.727 1.227

0.860 2.4

1.0 2.2

1.0 1.95

0.9 3.3

0.9 3.75

1.3 3.6

1.3 5.0

0.25 6.25

1.3 4.0

2.7 10.5

1.5 6.5

1.4 8.0

1.7 5.6

2.0 3.4

1.5 15.75

2.2 3.7

2.4 15.75

3.75 21.9

1.51 6.57

122

% Time Reduction

39

40

28

41

30

20

23

50

-6

32

41

4

-14

37

51

29

90

59

62

6.2.~ Williams' Procedure

Williams' procedure attempts to reduce the size of the problem by

removing extraneous variables and non-binding constraints. Moreover,

singleton rows and columns are replaced by primal and dual variable bounds,

respectively. The results of Wllliams' procedure are summarised in table

6.3.

As can be seen the procedure reduces the size of the problems to about "'.

49.31%. The overall average execution time reduction is 25.78%, with

an average of 9.1 seconds (about 33% less than in simplex methods). The

average number of iterations for all the problems is 27.0 (about 34%

less than in simplex methods).

The success of Wllliams' procedure depends on the~tent of tightening of

the bounds on the dual variables and the structure of the problems, such

as degeneracy (on the optimality) and redundancy. Also the number of

variables which have been fixed are non-zero values (problems 4, 11 and 15)

affects the number of iterations and consequently the execution time. Also

it should be noted that the average reducing time is 0.75 seconds which is

about 50% less than the reducing'time in the Reduce method (an"ave,age

of 1. 5. second)

finally, the performance of Wllliams' procedure could be better with

problems of mixed types of constraints (le. ~, = and ~) where more and

better bounds are tightened on both primal and dual variables.

123

Table 6.3

Results of Williams' Procedure

Problem DImension· Size (mxn) % Size Reduction
Row Column c Actual Reduced

1 (20x30) 20 21 600 420 30

2 (27x40) 17 34 1296 578 55

3 (17x40) 6 26 680 156 77

4 (45x37) 37 22 1665 814 51

5 OOx44) 15 31 1320 465 65

6 05x50) 22 29 1750 638 64

7 (46x63) 19 44 2898 836 71

8 (59x70) 30 62 4661 1860 60

9 (40x94) 28 94 3760 2632 30

10 (21xllS) 21 115 2415 2915 0

11 (S6x125) (*) 7000 100

12 (64x133) 64 133 8512 8512 0

13 (90xI37) 89 126 12330 11214 9

14' (100xI30) 20 105 13000 2100 84

15 (100xI40) 26 23 14000 598 96

16 (140x180) 100 148 25200 14800 41

17 (180x249) 134 221 44820 29614 34

18 (200x290) 170 262 58000 44540 23

19 (230x300) 152 265 69000 40280 42

Mean 51.05 92.69 14363.53 8551.16 49.31

(*) Problem is solved during the reduction procedure.

124

Table 6.3 (continued)

Problem I terat ions Time (sec) % Time Reduction
Reducing Total

(20x30) 15 0.4 1.55 23

2 (27x48) 17 0.4 2.3 43

3 (17x40) 5 0.4 2.8 10

4 (45x37) 5 0.4 2.6 20

5 (30x44) 15 0.4 3.0 38

6 05x50) 20 0,4 3.5 25

7 (46x63) 20 0.5 3.6 22

8 (59x79) 40 0.5 5.3 47

9 (40x94) 14 0.5 6.75 -10

10 (21xl15) 8 0.8 6.55 -13

11 (56x125) (*) 0 1.15 1 ; 15 94

12 (64x133) 12 0.6 7.4 -9

13 (90xl37) 13 0.7 7.'),. -3

14 (100x130) 16 0.7 6.5 27

15 (100x140) 9 0.8 2.5 66

16 (140x180) 25 1.2 17.5 20

17 (180x249) 80 1.3 29.0 17

18 (200x290) 100 1.5 32.0 29

19 (230x300) 100 1.7 32.0 44

Mean 27.0 0.75 9·10 25.78

(*) Problem is solved during reduction procedure

125

6.2. Z Extended Reduce Method

The extended reduce method reduces the problem size (when possible) while

solving the problem and this Is achieved by removing redundant as well as

non-binding constraints and extraneous variables. This method Is an

improvement on the earlier Reduce method made by not considering some

unsuccessful tests and implementing a modified version of the co-ordinate

direction method at certain steps if necessary to identify redundant

constra ints.

Table 6.4 presents the results of the extended reduce method. As can be

seen from table 6.4, the overall average size reduction is 56% which is

about the same as the reduce method achieved, and that is due to

performing less Iterations during processing than the Reduce method. The

extended reduce method attempts to minimise the number of unhelpful iterations

(defined in section 6.2.4) by terminating the processing tests after one

unhelpful iteration. Step six (modified co-ordinate direction method) is

helpful in Identifying more redundant constraints (if possible) at earlier

iterations than in the Reduce method. Also, this step depends on the

structure of the problem, since such redundant constraints exist only when

the pivot ratio Is not unique (problems 13, 18 and 19). Removing such

redundant constraints at early iterations could lead us to identify more

extraneous varIables (problem. 19) earlier than in the Reduce method.

An important consequence of the extraneous variables and non-binding

constraints is the decrease in the number of simplex iterations. This

may be explained by comparing the results of the extended reduce method

with those of the simplex method (table 6.1). As can be seen from these

tables, in the problems with lower reductions (problems 1 and,), the

numbers of iterations are the same or only slightly different. On the

126

I

other hand, In problems with higher reductions (problems 17, 18 and 19)

large differences are found In the number of Iterations between the extended

reduce method and the simplex method. However, the number of Iterations overal

for the problem is about 50% (averaging 23.90) less than that of the simplex

methods (averaging 40.84). The reason that the extended reduce method has

fewer iterations Is the elimination of more extraneous variables.

Minimising th~ number of unhelpful iterations during the tests may avo,ild

extra wasteful execution time by not repeating the tests for more than

one pass at each Iteration, and not considering steps 4 and 6 of the

Reduce method in our extended reduce method. Also step 6 is successful

(modified co-ordinate direction method) in identifying redundant constraints

(if they exist) and achieving more el iminations of extraneous variables,

with· consequently smaller numbers of iterations to be performed. The

total execution times to solve overall the problems has been reduced by

44.42%. The overall average reducing processing time Is 0.52 seconds

(about 67% less than in reduce method). The overall average total execution

time is 5.74 seconds (about 13% less than in the reduce method and 57% less

than In"the simplex methods.

127

Table 6.4

Results of the Extended Reduce Method

Problem Dimension Size (mxn) % Size Reduction
Row Co I umn Actual Reduced

1 (20x30) 17 23 600 391 35

2 (2]x48) 17 25 1296 425 67

3 (17x40) 17 14 680 238 65

4 (45x37) 44 17 1665 748 55

5 (30x44) 29 35 1320 1015 23

6 (35x50) 25 29 1750 725 59

7 (46x63) 44 40 2898 1160 39

8 (59x79) 49 43 4661 2107 55

9 (40x94) !la 94 3760 3760 0

10 (21xl15) 21 32 2415 672 72

11 (56xI25) 53 50 7000 2650 62

12 (64x 133) 60 90 8512 5400 37

13 (90xl37) 69 126 12330 8964 29

14 (100x130) 51 48 13000 2448 81

15 (100xI40) 33 33 14000 1089 92

16 (140xI80) 123 137 25200 16851 33

17 (180x249) 29 16 44820 464 99

18 (200x290) 120 68 58000 8160 86

19 (230x300) 111 131 69000 . 14541 79

~ean 50. 11 55.32 14363.53 3782.53 56.21

·128

Table 6.4 continued

Problem Iterations Time (sec) % Time Reduction
Testing Total

(20x30) 17 0.3 1.1 45

Z (27x48) 19 0.4 1 • 15 71

3 (17x40) 5 0.4 1.8 42

~ (45x371 9 0.15 1.8 46

5 (30x44) 19 0.25 2.45 50

) (35x50) 24 0.3 3.2 34

7 (46x63) 22 0.4 3·0 38

B (59x79) 40 0.35 4.5 55

~ (40x94) 14 0.15 6.15 -2

10 (21xI15) 5 0.35 3.4 42

11 (56xI25) 36 0.45 9.0 49

12 (64xI33) 12 0.45 6.0 12

13 (90xI371 13 0.5 7.4 -5

14 (100xI30) 17 0.5 5.0 44

15 (100xI40) 14 1.0 2.7 63

16 (140xI80) 25 0.75 15.5 30

17 (180x249) 16 1.0 3.0 92

18 (200x290) 65 1. 15 14.0 69

19 (230x300) 82 1.1 18.0 69

Mean 23.90 0.52 5.74 44.42

129

6.2.S Extended Williams Procedure

As we mentioned before this procedure is a new version of Will lams'

procedure by combining the test of Klein and Holm (1975) to identify

extraneous variables.

The results of this procedure are presented in table 6.5. As can be

seen from table 6.S, the overall average size reduction is 74.47% which

is about 25% more than Wllliams' procedure reduced. Specifically, as

can be seen from table 6.3, Williams' procedure had 0% size reduction

on problems 10 and 12. On the other hand, the extended Williams'

procedure reduced the size problems 10 and 12 by 72% and 37% respectively.

The results from these two problems explain many reasons such as the

difference in size reductions between the two procedures. Williams'

procedure fails to tighten any bounds on the dual variables and only

bounds on the primal variables have been tightened; with fewer redundant

constraints being removed. While the extended procedure (on these problems

10 and 12) identified more extraneous variables and more "redundant"

constraints have been removed consequently, some bounds on the dual variables

have been tightened In the successive passes, giving the whole procedure

more strength in fixing more variables.

To discuss the performance of extended Williams' procedure in terms of

the execution time, Table 6.5 shows that the overall average execution

time reduction is 54% (about 28% more than Williams'procedure). The

average number of iterations over all the problems is 18.27 (about 8.33%

less than in Williams' procedure). The average of the total execution

is 5.5 seconds (about 40% less than in Williams' procedure and 60% less

than in simplex methods).

130

The success of the extended Will iams procedure over Williams'

procedure, as the results show is due to the size reduction, the number

of iterations and the amount of the execution time used in reducing the

problems. It is quite clear that more size reduction achieved may

result in less execution time to solve the reduced problems (problems

4 and 11 have been reduced and solved during the procedure). However,

the number of iterations is affected by the number of variables (extraneous

and non-extraneous) which have been removed from the problems (problems

5 and 16). Consequently, such effects on the number of iterations will

lower the execution time to solve the reduced problems. However, the

amount of execution time used In reducing the problems is not affected

by the computation times used in the pairwise comparisons between

columns. The average amount of such execution times by the extended

Williams'procedure is 6% and 5% by Williams' procedure of the average

amount of the execution time by the simplex methods, and that is due

to programming and designing such pairwise comparisons in a way to avoid

wasted execution time. Also, the phase is terminated after one

unsuccessful pass, and part two Is not to be performed if neither any

singleton columns nor "redundant" constraints with non-zero shadow

prices have been removed. Finally, the structure of the problems may

affect both WIIliams' and extended Williams' procedure.

131

Table 6.5

Results of the Extended Williams Procedure

Problem Dimension Size (mxn) % Size Reduction
Row Column Actual Reduced

1 (20x30) 17 21 600 420 30

2 (27x48) 17 20 1296 340 74

3 (17x40) 6 23 680 138 80

4 (45x37) (*) 1665 100

5 (30x44) 13 12 1320 156 88

6 (35x50) 21 5 1750 105 94

7 (46x63) 19 21 2898 399 86

8 (59x79) 24 8 4661 192 96

9 (40x94) 28 80 3760 2240 40

10 (21xI15) 21 32 2415 672 72

11 (56xI25) (*) 7000 100

12 (64xI33) 60 190 8512 5400 37

13 (90xI37) 89 126 12330 11214 9

14 (100xI30) 20 65 13000 900 93

15 (100xI40) 23 13 14000 299 98

16 (140xI80) 84 35 25200 2940 88

17 (180x249) 133 44 44820 5852 87

18 (200x290) 118 160 58000 18880 67

19 (230x300) 126 130 69000 1638Q 76

Mean 48.37 54.15 14363.95 3591. 95 74.47

(*) Problem is solved durin!L reduction procedure

Table 6.5 (continued)

Problem I terat ions Time (sec) % TIme Reduction
Reducing Total

1 (20x30) 15 0.45 1.6 20

2 (2]x48) 17 0.50 2.1 50

3 (17x40) 5 0.55 2.2 30

4 (45x37) (*) 0 0.65 0.65 80

5 OOx44) 11 0.55 2.0 59

6 (35x50) 5 0.55 1.5 69

7 (46x63) 13 0.60 1. 55 68

8 (59x79) 8 0.65 1.55 85

9 (40x94) 14 0.70 5.75 5

10 (21xI15) 5 0.75 2.5 57

11 (56xI25) (*) 0 1.0 1.0 95

12 (64xI33) 12 0.75 6.0 12

13 (90xl37) 13 0.70 7.3 -2

14 (100xI30) 17 0.75 5·5 38

15 (100xI40) 8 0.85 1.8 76

16 (140xI80) 9 1.3 2.8 88

17 (180x249) 44 1.4 10.0 72

18 (200x290) 65 1.65 24.0 47

19 (230x300) 90 1. 85 24.0 58

Mean 18.27 0.85 5.5 54.0

(*) Problem is solved during the reduction procedure

133

6.2.9 Preprocessing Reduction Procedure for Integer Problems

This procedure reduces the size of integer problems (when possible) by

tightening the bounds on primal variables and constructing new formulae

to use only the primal bounds to fix the variables at their bounds.

Extraneous variables and redundant constraints as well as non-binding

constraints are removed, where the test of Klein and Holm (condition 3.2.1.6)

is used to identify non-binding constraints. This reduct10n procedure

is Implemented prior to solving the integer problems by the established

techniques.

The results of this reduction procedure are summarised in table 6.7. As

can be seen from this table, the overall average size reduction is 65.67%

and the overall average execution time is 50%. The performance of the

procedure in terms of the size is dependent on the structure of the problems,

where tighter bounds on the primal variables required ·by the formulae

(5.1.2 - 5.1.3) to fix integer variables at their bounds, and condition

(3.2.1.6) to identify non-binding constraints. However, the amount of

size reduction is affected by the performance of the reduction procedure

in terms of the execution times. The numbers of branches and iterations

have much effect on the total execution times. The overall average of

the total execution times is 18.86 seconds (about 55% less than by the simplex

methods and Branch-and-Bound algorithms). Also, as can be seen from the table

6.7, in problem 5, 62% of Its size has been reduced, while 30% of its former

execution time has been reduced,· and that is due to no change in the number

of branches and iterations. Also, the effectiveness of the number of branches

and iterations may be seen from problem 9, where 41% of its size has been

reduced and 76% of its former execution time has been reduced and that is due

to the changes in the number of branches (about 78% less) and in the number

of iterations (about 74% less). Therefore, the reduction process will

134

result in problems which require fewer branches and iterations and

consequently much less execution time.

1~

Problem
No.

2

3

4

5

6

7

8

9

19

11

12

Mean

Table 6.6

* Characteristics of Tested Integer Problems

Dimension
Row Col umn

9 19

15 11

13 20

19 20

20 25

27 28

20 44

29 63

56 80

89 137

109 160

140 180

45.5

No. of non-zero
Elements

78

88

70

87

61

96

139

217

320

463

519

582

226.67

,.

No, of No, of CPU time
Iterations Branches (sec)

17 43 7.5

34 37 7.0

30 13 4.2

11 3 2.20

8 2.0

7 5 2.9

30 39 7.5

125 217 42.0

291 483 123.5

136 210 188.0

114 99 70.53

64 60 50.45

71.42 100.83 43.32

* These problems are modified versions of the problems in Table 6.1

136

Problem

I (9xI9)

2 (15xl1)

3 (13x20)

4 (10x20)

5 (20x25)

6 (27x28)

7 (20x44)

8 (29x63)

9 (56x80)

10 (89x137)

11 (109xI60)

12 (140xI80)

Mean

Table 6.7

Results of Preprocessing Reduction Procedure

Dimension
Row Column

6 2

3 3

11 8

11 7

10 19

10 16

17 25

11 20

53 50

88 109

62 136

110 140

32.67 44.58

137

Size (mxn)
Actual Reduced

1 71 12

165 9

260 88

380 77

500 190

756 160

880 425

1827 220

4480 2650

12193 9592

17440 8432

25200 15400

5354.33 3104.58

% Size Reduction

93

95

66

80

62

79

52

88

41

21

52

59

Table 6.7 (continued)

Problem No of No of Time (sec) % Time Reduction
I terat Ions Branches Reducing Total

(9xI9) 3 5 0.5 3.0 60

2 (15x 11) 9 9 0.7 3.0 57

3 (13x20) B 2 0.8 1.65 61

4 (19x20 4 0.3 1.36 3B

5 (20x25) 8 0.35 1.4 30

6 (27x2B) 7 3 0.4 1.95 33

7 (20x44) 16 9 0.5 4.0 47

B (29x63) 64 87 0.80 18.0 57

9 (56xBO) 76 lOB 1. 35 29.0 76

10 (B9x137) 148 175 1.66 100 47

11 (1 09x 160) 43 62 1.77 30.0 57

12 (140x180) 48 46 2.0 32.0 37

. Mean 30.17 42.33 0.9318.86 50.0

138

CHAPTER VII

Conclusions and Recommendations For Further Research

The principle objective of the research reported in this thesis was to ascertain

how successfully, size-reduction techniques could be implemented in mathematical

programming packages. To achieve this goal, we selected the most promising

size-reduction techniques studied them and tested some of them on some Linear

programming problems with different characteristics,obtained from different

sources. Consequently, we were able to determine the performance of these

techniques.

The test process enabled us to determine the most efficient size-reduction

techniques. During this process we determined some modifications for extensions

and improvements to these techniques.

The test process enabled us to determine the most efficient size-reduction

techniques. During this process we determined some modifications for extensions

and improvements to these techniques. The details of our extensions were

presented in Chapters IV and V. We then tested these methods and compared

their results with the earlier ones. The results and the discussion on all

techniques are presented in Chapter VI.

Now we present a summary of the conclusions made for the various techniques.

Also we discuss possible changes for future improvements and extensions.

7.1 Summary and Conclusions

Although Boneh and Golan's method did very well in terms of computation

time, their results indicated some error in the identifications.

139

Holm and Klein's method required problems with non-negative constraint coefficients

and right-hand side sectors. The results show that, this method is not so

efficient in terms of size-reduction rates and computation times.

The extended sign tests and Hybrid methods performed equivalently, but their

results are not useful for our objective study.

The results of the Reduce method indicated that the success of this method

over the simplex ·depends on the structure of the problem.

However, the results of the extended reduce method are slightly different

from the Reduce method in terms of size reduction. The extended reduce method

is more successful over the Reduce method in terms of computation times.

Moreover, it was indicated that on the average, both methods have a faster

convergence rate than the simplex method.

However, the results of Williams' and the extended Williams procedures indicated

that tightening of better bounds on primal and dual variables depends on

the structure of the problems, and affects the performance of reductions.

The extended Will iams procedure showed consistent superiority over the Williams'

procedure in terms of size and time reductions.

The improvement called preprocessing reduction procedure for integer problems

attempted to reduce the size of integer problems using only the primal bounds,

prior to solving the problems by the establ ished techniques. The results

indicate a reasonable success over the simplex and Branch-and-Bound techniques.

From the proceeding a general conclusion may be reached that implementing

such ~~duction techniques in mathematical programming packages could be

desirable with large. size problems rather than small problems from the economical

view.

140

7.2 Recommendtions for Future Research

In the previous section, we presented the conclusions of some of the size-reduction

techniques studied in this thesis. In this section we present some ideas

which may result In further extensions and improvements to the existing methods.

We restrict our discussions to those methods which appear most useful in

our objective study.

The Reduce and the Extended reduce method may be utilized in a number of

different ways. Among the most promising approaches is one in which a certain

number of tests are no longer employed when their efficiency falls below

a specified level. Of course, the level at which the test is discontinued

must be determined empirically.

Another approach is to use these two methods for partial classification.

This may be achieved by terminating the methods after a certain ~umber of

iterations. The number of iterations at which the processing stops is a

function of the problem size and should be determined through further investigations.

Also, another extension to these two methods consists of obtaining the maximum

possible reduction for a given problem. In that case, the Reduce and the

Extended reduce methods are used in a fashion similar to that of the Extended

sign test method. Namely, we attempt to minimize the slack variable associated

with each constraint. However, we include the tests which identify the extraneous

variables and update the objective function at each iteration as well.

As in Thompson and Sethi 's method the candidate constraints were those which

contained a pivot element in columns with potential variables for entering

into the basis.

141

These constraints were updated at each iteration. The remaining constraints,

called non-candidate, were not updated with the hope that they would never

become violated. In fact, we may implement the tests which are used in Extended-

Reduce method to identify redundant constraints on the set of the non-candidate

constraints only.

Now, we discuss the possible improvements to Holm and Klein's method, Williams

and Extended Williams procedures.

Holm and Klein's method was restricted to the specially-structured problems

due to the lack of bounds on variables in the other problems (those with

a general A matrix). However these bounds may be obtained in a fashion similar

to that of Williams' procedure. One may utilize the complementary slackness

theorem to obtain better bounds on all of the variables. That is, the optimal

objective function value may be written as

* * ex = W b

* * where X and Ware the values of the primal and dual variables at optimality.

Using the above relationship in conjunction with bounds on some variables

we may obtain bounds on the other variables. The above equality may be written

as an inequality in either direction (I.e., i, l) depending on the existing

bounds and the desired new bounds.

The above utilization may be implemented to improve the bounds in Williams'

and Extended Will iams procedures.

Finally, another extension to Williams' procedure and Holm and Klein's method

is to combine the methods with each other and utilize the above procedure

for obtaining better bounds as well.

142

In that case, after the bounds have been tightened Holm and Klein's method

may be used to remove some extraneous variables and nonbinding constraints.

Then, Williams' procedure is applied to the remaining constraints and variables

to reduce the problem further.

143

APPENDIX A

In this Appendix, some details of the necessary arrays used in the Sciconic

Algorithmic Tools Library (SATL) and the specification of the commands to

run the package are presented.

SCICONIC/VM was designed to be implemented in a highly modular fashion, so

that extensions and enhancements could be easily incorporated. In order

to help the user to be able to create FORTRAN routines of his own employing

the primitives of the SCICONIC/VM SATL, the user must have an understanding

of the design concepts behind SC1CONIC/VM, in particular those behind SCICONIC/VM's

algorithmic routines.

The variables used by SCICONIC/VM may be accessed via their associated ACCESS

KEYS. The inclusion statement takes the form:

include keyword) <file name specification)

where <include keyword) is $INSERT (in Prime Computer System),

<filename specification) may well be filename. In almost all cases,

the filename for an entity with access key AAAAAA will be of the form PDPAAAAAA.

An example, suppose the array PARAMS is required in a routine. Then the

statement

$INSERT SCICON) S) PDPPARAMS

should appear in the Source Code.

To describe the data structure created in core ready for an algorithmic routine

to access, first, some preliminary sizing definitions are given:

144

NROW The number of rows in the in-core matrix (including the

objective function row which is row KPTOBJ)

NSEQ - The total number of vectors in the in-core matrix (i.e.

slacks, structural vectors and any range vectors (q.v.)

created).

Now, we describe some of the main necessary Arrays used in the SATL for the

access of matrix elements:

NAME TYPE ACCESS KEY USE

POOL real*8 POOL Pool of unique element values

BETA " BETA Right-hand sides

MRKEY integer*2 MRKEY Key information of variable

basic in this row.

MCKEY integer*2 MCKEY Column key information.

MRWME i nteger;'2 MATRIX) Parallel arrays, MRWME contail
)

MPTME " ") row number whose element in
)
) POOL is indexed by MPTME.

MSMEL integer*4 " Start of column information

in MRWME/MPTME.

MSKMEB integer*2 " Skip value: 0 for rows

if no UB/Cos t

2 if UB and/or Cos

The input for the simplest SCICONIC run can be considered as being made up

of two parts:

1. Input Data: This contains the actual problem to be solved in coded form.

The data of the LP problem has to be input from the matrix fo coefficients.

145

The data must be Input to a file created by the editor and then the file

created is used by SCICONIC. In fact, we shall not discuss the details

of the input data in this Appendix.

2. Control Commands: Within this part commands required to run the package

are made. Assuming we have a file of data and we wish to run the LP

problem. We start by accessing the package. We type

SCICONIC

we get a prompt of (these prompts continue throughout the run)

1 I)

we type INFILE = 'MYOATA'

(MYOATA is the file in the UFO to which we are attached, quotes are mandatory)

and it prompts

21)

and we type CONVERT

(this command will load the input data from the data-file on the problem

file and it will focus on possible data errors), and it replies with

information and them prompts

31)

we type SETUP (MAXIMISE/MINIMISE)

(this command will load the problem into core from the problem file)

and it replies with information and then prompts

41)

we type PRIMAL

(it will try to solve the problem, printing out some information such

as number of iterations •.•• etc) and then prompt

146

51)

we type PRINTSOLN

(It will. print out detai Is of the solution). When complete we received

the prompt

61)

we conclude the Session with STOP

It replies ****STOP then OK.

To run an integer program, basically the same procedures are used as

for LP. The main exceptions are:-

(i) In the input data, each variable must be declared as integer and

specified under the bounds section.

(i il In the program commands, the PRIMAL is followed by the command GLOBAL.

This performs the Branch-and-Bound algorithm until a solution is

reached (or the problem is declared infeasible). Subsequent solutions

are found by repeating the GLOBAL command.

Now, if we wi5h to execute the 'SUBROUTINE USER' which the tests have been

built into, we type USER after the problem has been loaded into core by SETUP,

and before we type PRIMAL or GLOBAL.

All the above commands will be shown by solving the problem in Appendix B.

147

APPENDIX B

In this Appendix, one tested problem is selected. Its original data

and computer results to get an optimal solution with and without reducing

the problem by Extended Williams procedure, are presented. Then the program

listings of the three main extended methods (Extended Reduce method, Extended

Williams procedure and Preprocessing Reduction procedure) respectively, are

presented.

All computation work was carried out on the PRiME 400 Computer System at
<.

Loughborough University of Technology.

148

1E
IS
_ ROOOl
_ R0002
_ R0003
_ R0004
_ R0005
_ R0006

R0007
_ R0008
_ R0009
_ R0010
_ ROOl1
_ R001Z
_ R0013
_ R0014
_ R0015
_ R0016
_ R0017
_ R0018
_R0019
_ R0020
L R0021
_ R0022
L. R0023
L. R0024
L R0025
L R0026
L ROOZ7
L R0028
L R0029
L R0030
L R0031
~ R0032
L R0033
_ R0034
Co R0035
_ R0036
L k0037
_ R0038
L R0039
L. R0040
L R0041
L R0042
L R0043
L R0044
I.. R0045
L R0046
L R0047
L R0048
L R0049
L R0050
L R0051
L R0052
L R0053
L,R0054
L R0055
L R0056
N OBJ

QA4RT32

149

JMNS
COOOl ROOOl 1,000000
COOOl ROOO2 1,000000
COOOl ROO06 1,000000
COOOl ROO07 1,000000
COOOI R0048 1,000000
COOOI R0054 0,880000
COOOl R0056 0,880000
COO02 ROO03 1,000000
COO02 ROOO4 1,000000
COO02 ROOO5 1.000000
COO02 ROO07 1,000000
COO02 ROO08 1,000000
COO02 R0049 1,000000
COO02 R0054 0,926667
COO02 R0056 0,926667
COO03 ROO03 1,000000
COO03 ROOO4 1,000000
COO03 ROO05 1,000000
COO03 ROO18 1,000000
COO03 ROO19 1,000000
COO03 R0049 1,000000
COO03 R0054 0,948889
COO03 R0056 0,948889
COO04 ROOO3 1,000000
COO04 ROOO4 1,000000
COO04 ROOO5 1,000000
COOO4 R0020 1.000000
COO04 R0021 1,000000
COO04 R0022 1,000000
COO04 R0049 1,000000
COO04 R0054 1,000000
COO04 ROOS6 1,000000
COO05 ROOO3 1,000000
COO05 ROO04 1,000000
COO05 ROO05 1.000000
COO05 R0021 1,000000
COO05 R0022 1,000000
COO05 R0049 1,000000
COO05 R0054 0,948889
COO05 R0056 0,948889
COO06 ROO07 1,000000
COO06 ROOO8 1,000000
COO06 ROO13 1,000000
COO06 ROO14 1,000000
COO06 ROO15 1,000000
COO06 R0049 1,000000
COO06 R0054 0,971111 j

COO06 R0056 0,971111
COO07 ROO13 1,000000
COO07 ROOl4 1,000000
COO07 ROO15 1,000000
COO07 R0020 1,000000
COO07 R0021 1,000000
COO07 R0022 1,000000
COO07 R0049 1,000000
COO07 R0054 1.044444
COO07 R0056 1,044444
COO08 ROO13 1,000000
COO08 ROO14 1,000000

COO08 ROO15 1 .000000
COO08 R0021 1.000000
COO08 R0022 1.000000
COO08 R0049 1.000000
COO08 R0054 0.993333
COO08 R0056 0.993333
COO09 ROO16 1.000000
COO09 ROO17 1.000000
COO09 R0031 1.000000
COO09 R0032 1.000000
COO09 R0051 1.000000

. COO09 R0055 0.906667
COOI0 ROO08 1.000000
C0010 R0010 1.000000
COOI0 ROO11 1.000000
C0010 ROO12 1.000000
COOI0 R0052 1.000000
C0010 R0056 0.860000
C0011 ROO08 1.000000
C0011 ROO36 1.000000
COO11 R0037 1.000000
COOll R0038 1,000000
COO11 R0052 1.000000
COO 11 R0056 0.824444
COO12 ROO08 1.000000
COO12 ROO09 1.000000
COO12 ROO11 1.000000
COO12 ROO12 1.000000
COO12 R0052 1.000000
COO12 R0056 0.837778
COO13 ROO08 1.000000
COO13 . ROO09 1.000000
COO13 R0037 1.000000
COO13 R0038 1.000000
COO13 R0052 1.000000
COO13 R0056 0.824444
COO14 ROO08 1.000000
COO14 ROO09 1.000000
COO14 R0039 1.000000
COO14 R0040 1.000000
COO14 R0041 1.000000
COO14 R0052 1.000000
COO14 R0056 0.891111
COOlS ROO08 1.000000
COOlS ROO09 1.000000
COOlS R0040 1.000000
COOlS R0041 1.000000
COOlS R0052 1.0UO(JOO
COOlS R0056 0.866667
COO16 ROOlO 1 1 000000
COO16 ROO11 1.000000
COO16 R0026 1 + OOi)OOO
COO16 R0027 1.0(H)OOO
COO16 R0028 1.000()(lO
COO16 R0052 1.000000
COO16 R0056 0.915556
COO17 ROOI0 1.000000
COO17 ROO11 1.000000
COO17 ROO12 1.000000
COO17 R0026 1.000000

151

COO17 R0027 1.000000
COO17 R0028 1.000000
COO17 R0052 1.000000
COO17 R0056 1.044444
COO18 R0024 1.000000
COO18 R0025 1.000000
COO18 R0026 1 .000000
COO18 R0027 1.000000
COO18 R0028 1.000000
COO18 R0052 1.000000
COO18 R0056 0.882222
COO19 R0026 1.000000
COO19 R0027 1.000000
(:0019 R0028 1.000000
COO19 R0030 1.000000
COO19 R0031 1.000000
COO19 R0052 1.000000
COO19 R0056 0.920000
C0020 R0026 1.000000
C0020 R0027 1.000000
C0020 ROO28 1.000000
C0020 R0037 1.000000
COO20 R0038 1.000000
C0020 R0052 1.000000
C0020 R0056 0.831111
C0021 R0026 1.000000
C0021 R0027 1.000000
C0021 R0028 1.000000
C0021 R0039 1.000000
C0021 R0040 1.000000
C0021 R0041 1.000000
C0021 ROO52 1.000000
C0021 R0056 0.897778
COO22 R0023 1.000000
C0022 R0024 1.000000
COO22 R0025 1.000000
COO22 R0033 1.000000
C0022 R0034 1.000000
C0022 R0053 1.000000
COO22 ROO56 1.064444
C0023 R0029 1.000000
COO23 R0030 1.000000
C0023 R0032 1.000000
COO23 R0033 1.000000
C0023 R0034 1.000000
C0023 R0053 1.000000
C0023 R0056 1.055556
(0024 R0029 1.000000
C0024 R0030 1.000000
C0024 R0042 1.000000
C0024 R0043 1.000000
C0024 R0044 1.000000
(0024 R0053 1.000000
(0024 R0056 1.000000
C0025 R0029 1.000000
(0025 R0030 1.000000
C0025 R0031 1.000000
C0025 R0043 1.000000
C0025 R0044 1.000000
C0025 R0053 1.000000

152

C0025 R0056 1.011111
C0026 R0029 1,000000
C0026 R0030 1,000000
C:0026 R0031 1,000000
C0026 R0046 1,000000
C0026 R0047 1,000000
C0026 R0053 1.000000
COO26 R0056 1,035556
C0027 R0032 1,000000
C0027 ROO33 1,000000
C0027 R0034 1,000000
C0027 ROO35 1,000000
C0027 ROO36 1 f 000000
C0027 R0037 1,000000
C0027 R0053 1,000000
C0027 R0056 1,000000
C0028 R0035 1,000000
C0028 R0036 1,000000
C0028 R0037 1,000000
C0028 R0042 1.000000
C0028 R0043 1,000000
C0028 R0044 1,000000
C0028 R0053 1,000000
C0028 R0056 0,944444
C0029 R0035 1,000000
C0029 R0036 1,000000
C0029 R0037 1,000000
C0029 R0045 1,000000
C0029 R0046 1.000000
C0029 R0047 1,000000
C0029 R0053 1,000000
C0029 R0056 0,940000
C0030 R0033 1,000000
C0030 R0034 1,000000
C0030 R0035 1,000000
COO30 R0036 1.000000
C0030 R0037 1,000000
C0030 R0038 1,000000
C0030 R0053 1,000000
C0030 R0056 1,020000
C0031 R0035 1,000000
C0031 ROO36 1,000000
C0031 R0037 1,000000
C0031 R0038 1,000000
C0031 R0045 1,000000
C0031 ROO46 1,000000
C0031 R0047 1,000000
C0031 R0053 1,000000
C0031 R0056 1,095556
UOOOl ROOOl 1,000000
UOOOl OBJ -1.827095
UOOO2 ROO02 1,000000
UOO02 OBJ 1.483520
1)0003 ROO03 1,000000
UOO03 OBJ -1,196927
UOO04 ROOO4 1,000000
UOO04 OBJ 1. 312849
UOO05 ROO05 1,000000
UOO05 OBJ 1.312849
1I0006 ROO06 1,000000

153

1)0006 OBJ 1.115922
1)0007 ROO07 1,000000
1)0007 OBJ 1.0502'19
1)0008 ROO08 1,000000
1)0008 OBJ 1,050279
1)0009 ROO09 1,000000
1J0009 OBJ 1,050279
1)0010 ROO10 1,000000
IJOOIO OBJ 1.181564
1)0011 ROOll 1,000000
1J0011 OBJ 1.247207
1)0012 ROO12 1,000000
1J0012 OSJ 1.050279
IJOO13 ROO13 1,000000
1)0013 OBJ -1.853352
1)0014 ROOl4 1,000000
IJOO14 OBJ 1,115922
IJOO15 ROO15 1.000000
1J0015 OSJ 1.115922
1J0016 ROO16 1.000000
1J0016 OBJ 1.247207
IJOO17 ROOl7 1.000000
1J0017 OSJ 1,181564
1J0018 RO')18 1,000000
1J0018 OSJ 1.050279
IJOO19 ROO19 1.000:)00
IJOO19 OBJ 1.181564
1J0020 ROO20 1,000000
1)0020 OBJ -1.131285
1J0021 R0021 1,000000
1)0021 OBJ 1,115922
UOOZ2 R0022 1,000000
1)0022 OBJ 1.115922
1J0023 ROO23 1.000000
1)0023 OBJ 1,050279
1)0024 R0024 1.000000
1)0024 OBJ 1,115922
1)0025 R0025 1,000000
1)0025 OBJ 1.115922
1)0026 ROO26 1.000000
1J0026 OBJ -1,262570
1)0027 ROO27 1,000000
1)0027 OBJ 1,115922
1J0028 R0028 1.000000
IJOO28 OBJ 1.050279
1J0029 ROO29 1,000000
IJOO29 OBJ 1 t 260335
1J0030 R0030 1,000000
1J0030 OBJ 1.168436

, IJ0031 R0031 1,000000
1J0031 OBJ 1.286592
IJOO32 ROO32 1.000000
UOO32 OBJ -1. 800838
U0033 R0033 1.000000
1)0033 OBJ 1.0502'79
U0034 R0034 1.000000
U0034 OBJ 1,404749
U0035 R0035 1.000000
U0035 OBJ -1.262570
U0036 R0036 1.000000

154

U0036 08J 1.050279
U0037 R0037 1.000000
1)0037 08J 1.076536
U0038 R0038 1.000000
U0038 08J -1,853352
ll0039 R0039 1.000000
U0039 08J -1.078771
U0040 R0040 1.000000
U0040 08J 1.129050
U0041 R0041 1.000000
1)0041 08J 1.050279
U0042 ROO42 1.000000
U0042 08J 1.220950
U0043 R0043 1.000000
U0043 08J 1.050279
UOO44 R0044 1.000000
U0044 08J -1.656425
U0045 R0045 1.000000
U0045 08J 1.050279
U0046 R0046 1.000000
1)0046 08J 1.050279
U0047 R0047 1.000000
U0047 08J -1.800838
00001 ROOm 2.500000
00001 08J -1.827095
00002 ROO02 2.500000
00002 08J 1.483520
00003 ROO03 2.500000
00003 08J -1.196927
00004 ROO04 2.500000
00004 08J 1.312849
00005 ROO05 2.500000
00005 08J 1.312849
00006 ROO06 2.500000
00006 08J 1.115922
00007 ROO07 2.500000
00007 08J 1.050279
00008 ROO08 2.500000
00008 08J 1.050279
00009 ROO09 2.5000(1)
00009 08J 1.050279
00010 R0010 2.500000
00010 08J 1.181564
00011 ROOll 2.500000 .
00011 08J 1.247207
00012 ROO12 2.500000
00012 08J 1.050279
00013 ROO13 2.500000 j

00013 08J -1.853352
00014 ROO14 2.500000
00014 08J 1.115922
00015 ROO15 2.500000
00015 08J 1.115922
00016 ROO16 2,500000
00016 08J 1.247207
00017 ROO17 2.500000
00017 08J 1.181564
00018 ROO18 2.500000
00018 08J 1.050279
00019 ROO19 2.500000

..
155

00019 OBJ 1.181564
00020 R0020 2.500000
00020 OBJ -1.131285
00021 R0021 2.500000
00021 OBJ 1.115922
00022 R0022 2.500000
00022 OBJ 1.115922
00023 R0023 2.500000
00023 OBJ 1.050279
00024 R0024 2.500000
00024 OBJ 1.115922
00025 R0025 2.500000
00025 OBJ 1.115922
00026 R0026 2.500000
00026 OBJ -1.262570
00027 R0027 2.500000
00027 OBJ 1.115922
00028 R0028 2.500000
00028 OBJ 1.050279
00029 R0029 2,500000
00029 OBJ 1.260335
00030 R0030 2.500000
00030 OBJ 1.168436
00031 ROq31 2.500000
00031 OBJ 1.286592
00032 R0032 2.500000
00032 OBJ -1.800838
00033 ROO33 2.500000
00033 OBJ 1.050279
00034 R0034 2.500000
00034 OBJ 1. 404749
00035 R0035 2.500000
00035 OBJ -1.262570
00036 R0036 2.500000
00036 OBJ 1.050279
00037 R0037 2.500000
00037 OBJ 1.076536
00038 R0038 2.500000
00038 OBJ -1.853352
00039 R0039 2.500000
00039 OBJ -1.078771
00040 R0040 2.500000
00040 OBJ 1.129050
00041 R0041 2.500000
00041 OBJ 1.050279
00042 R0042 2.500000
00042 OBJ 1.220950
00043 R0043 2.500000
00043 OBJ 1.050279
00044 R0044 2.500CO()
00044 OBJ -1,656425
00045 R0045 2,500000
00045 OBJ 1,0502"79
00046 R0046 2,50000U
00046 OBJ 1.050279
00047 R0047 2,500000
00047 OBJ -1,800838

RHS ROO01 1.000000
RHS RI)002 1.000000

156

RHS ROO03 1,000000
RHS ROO04 1,000000
RHS ROOOS 1,000000
RHS ROO06 1,000000
RHS ROO07 1,000000
RHS ROO08 1,000000
RHS ROO09 1,000000
RHS R0010 1,000000
RHS ROOll 1,000000
RHS ROO12 1,000000
RHS ROO13 1,000000
RHS ROO14 1,000000
RHS ROOIS 1,000000
RHS ROOl6 1,000000
RHS ROOl7 1,000000
RHS ROO18 1,000000
RHS ROO19 1,000000
RHS R0020 1,000000
RHS R0021 1,000000
RHS ROO22 1,000000
RHS R0023 1,000000
RHS R0024 1,000000
RHS R002S 1,000000
RHS R0026 1,000000
RHS R0027 1,000000
RHS R0028 1,000000
RHS R0029 1,000000
RHS R0030 1,000000
RHS R003t 1,000000
RHS R0032 1,000000
RHS R0033 1,000000
RHS R0034 1,000000
RHS R003S 1,000000
RHS R0036 1,000000
RHS R0037 1,000000
RHS R0038 1,000000
RHS R0039 1,000000
RHS R0040 1,000000
RHS R0041 1,000000
RHS R0042 1,000000
RHS R0043 1,000000
RHS R0044 1,000000
RHS R004S 1,000000
RHS R0046 1,000(:00
RHS R0047 1,000000
RHS R0048 1,000000
RHS R0049 2,000000
RHS ROOSt 1,000000
RHS ROOS2 2,000000
RHS ROOS3 3.000000
RHS ROOS4 3,000000
RHS ROO5S 1.000000
RHS ROOS6 8,000000

JNDS
I BNDVAL COOOI 1,000000
I BNDVAL COOO2 1,000000
I BNDVAL COO03 1,000000
I BNDVAL COO04 1,000000
I BNDVAL COOOS 1,000000
I BNDVAL COO06 1,000000

157

I BNDVAL COO07 1,000000
I BNDVAL COO08 1,000000
I BNDVAL COO09 1,000000
I BNDVAL C0010 1,0000<)0
I BNDVAL COO11 1,000000
I BNDVAL COO12 1,000000
I BNDVAL COO13 1,000000
I BNDVAL COO14 1,000000
I BNDVAL COOlS 1,000000
I BNDVAL (:0016 1,000000
I BNDVAL COO17 1,000000
I BNDVAL COO18 1,000000
I BNDVAL (:0019 1.000000

BNDVAL (:0020 1,000000
I BNDVAL (:0021 1.000000
I BNDVAL COO22 1,000000
I BNDVAL C0023 1.000000
I BNDVAL (:0024 1,000000
I BNDVAL (:0025 1,000000
I BNDVAL (:0026 1,000000
I BNDVAL C0027 1.000000
I 'BNDVAL C0028 1,000000
I BNDVAL C0029 1,000000
I BNDVAL COO30 1.000000
I BNDVAL C0031 1,000000
lATA

158

SCICONIC

SCICONIC/VM VERSIOI~ VM/P1.32
COPYRIGHT SCICON LTD. 1983

AUTHORISED FOR USE AT:
UNIVERSITY OF LOUGHBOROI)GH

,I NFI LE=' MTSP10'
,CONVERT
:W PROBLEM QA4RT32
IS VECTOR - RHS
IUND VECTOR - BNDVAL
tOBLEM HAS 57 ROWS, 125 COLUMNS AND 416 NON- ZERO ELEMENTS
INVERT TOOK 3.87 SECONDS
,SETUP(MAXIMI SE)
tOBLEM QA4RT32 ON FI LE
tEATED ON 13-JUL-1986 AT 12:40:28
iOBLEM HAS 57 ROWS, 125 COLUMNS AND 416 NON- ZERO ELEMENTS
IS - RHS
IUND - BNDVAL
IJECTI VE - OBJ
ICORE MATRI X HAS 57 ROWS AND 125 COLUMNS
:TlJP TOOK 1.34 SECONDS
PRIMAL

NITS
o

36

OBJECT
0.000000

-41.275975

SOLI)TI ON IS OPTI MAL
PRINTSOLN

INFEAS
O.OOOOOO(
O.OOOOOO(

0)
0)

SECS
1.58
4.50

PROBLEM QA4RT32 - SOLUTI ON NUMBER 1 - OPTIMAL

CREATED ON 13-JUL-1986 AT 12:41tl0 t AFTER 36 ITERATIONS

PRINTED ON 13-JlIL-198b AT 12:41:19

•• • NAME ••• •• ACTIVITY •• DEFINED HS

FUNCTIONAL 41.275975 OBJ
RESTRAINTS RHS
BOI)NDS •••• BNDVAL

• ,ROW ••• AT •••• ACTIVITY ••••
OBJ BS -41.275975
ROO02 UL 1.000000
ROO04 I)L 1.000000
ROO05 I)L 1.000000
ROO06 UL 1.000000
ROO07 I)L 1.000000
ROO08 I)L '1.000000
ROO09 I)L 1.000000
R0010 UL 1.000000
ROOll I)L 1.000000
ROO12 UL 1.000000
ROO14 I)L 1.000000

159

ROO15 UL 1,000000
ROO16 UL 1,000000
ROO17 I)L 1,000000
ROO18 UL 1,000000
ROO19 I)L 1,000000
R0021 I)L 1,000000
R0022 I)L 1,000000
R0023 lIL 1,000000

7' · ,

• • ROW ••• AT ••• ,ACTIVITy ••••
R0024 lIL 1,000000
R0025 I)L 1,000000
R0027 I)L 1,000000
R0028 I)L 1,000000
R0029 I)L 1,000000
R0030 lIL 1,000000
R0031 I)L 1,000000
ROO33 lIL 1.000000
R0034 I)L 1.000000

. R0036 UL 1,000000
R0037 lIL 1,000000
R0040 lIL 1,000000
R0041 lIL 1,000000
R0042 UL 1,000000
R0043 UL 1,000000
R0045 UL 1,000000
R0046 UL 1,000000

*** END OF ROWS ***
7' · ,

,COLUMN, AT ••• ,ACTIVITY t. I'
UOO02 SS 1 ,':>00000
1)0004 BS 1,000000
1.10005 BS 1,000000
1)0006 BS 1,000000
1.10007 SS 1,000000
lIOO08 BS 1,000000
1)0009 SS 1,000000
1)0010 BS 1,000000
1.10011 BS 1,000000
1)0012 BS 1,000000
lIOO14 BS 1,000000
UOO15 SS 1,000000
UOO16 BS 1,000000
UOO17 BS 1,000000
1)0018 BS 1,000000
1)0019 BS 1,000000
U0021 BS 1,000000
UOO22 BS 1,<)00000
1)0023 BS 1.000000
1)0024 BS 1,000000

7' · ,

,COLUMN, AT .- I •• ACTIVITY t •••

1)0025 as 1,000000
U0027 SS 1,000000
1)0028 as 1,000000
U0029 as 1,000000
1)0030 BS 1,000000

160

1I0031 SS 1,000000
1I0033 SS 1,000000
1I0034 SS 1,000000
1I0036 SS 1,000000
1)0037 SS 1,000000
1)0040 SS 1,000000
1)0041 SS 1 ,000000
1)0042 SS 1,000000
1)0043 SS 1,000000
1I0045 SS 1,000000
1I0046 SS 1,000000

** END OF COLUMNS ***
)STOP

** STOP

161

C #SCIMY
SEG

G R~v, 19,4,4 J
o * liSCIMY
L B-EXTWILM
TA It: SMALLER REDEFI NI n ON OF COMMON
OL It: SMALLER REDEF I NI TI ON OF COMMON
X4CM It: SMALLER REDEFINITION OF COMMON
X3CM It: SMALLER REDEFINITION OF COI':MON
X2CM It: SMALLER REDEFI NI TI ON OF COMMON
X 1 CM It: SMALLER REDEF I NI TI ON OF COMMON
KEY It: SMALLER REDEFI NI TI ON OF COMMON
D COMPLETE

SEG liSCIMY

SCICONICIVM VERSION VM/P1.32
COPYRIGHT SCICON LTD, 1983

AUTHORISED FOR USE AT:
UNIVERSITY OF LOUGHBOROUGH

INFILE=' MTSP10'
CONVERT

:W PROBLEM QA4RT32
IS VECTOR - RHS
]UND VECTOR - BNDVAL
IOBLEM HAS 57 ROWS, 125 COLUMNS AND 416 NON-ZERO ELEMENTS
INVERT TOOK 3,76 SECONDS
·SETUP (MAXI MI SE)
IOBLEM QA4RT32 ON FI LE
IEATED ON 13-JUL-1986 AT 12:28:17
IOBLEM HAS 57 ROWS, 125 COLUMNS AND 416 NON-ZERO ELEMENTS
is - RHS
)UND - BNDVAL
lJECTI VE - OBJ
~CORE MATRIX HAS 57 ROWS AND
,TUP TOOK 1,36 SECONDS
>USER

57 182
PART A
PHASE 1
PASS 1
X (44) =
X (69) =
X(91)=
X(116)=
XI 32)=
XI 79)=
XI 63)=
XI 78)=

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

125 COLUMNS

X(110)= 0,000
X(125)= 0,000
X (75) = 0,000
X (122)= 0,000
X(57)= 0,000
X (66) = 0,000
X (104)= 0,000
X(113)= 0,000
X(34)= 0,000
X(81)= 0,000
X(51)= 0,000
X (98)= 0,000
X(70)= 0,000
X(!17)= 0,000
X(1) EXTRANEOUS
X(2) EXTRANEOUS
X(3) EXTRANEOUS
X(4) EXTRANEOUS
X(5) EXTRANEOUS
X(6) EXTRANEOUS
X(7) EXTRANEOIJS
X(8) EXTRANEOUS
X(9) EXTRANEOUS
X(10) EXTRANEOUS
X(11) EXTRANEOUS
X(12) EXTRANEOUS
X(13) EXTRANEOUS
X(14) EXTRANEOUS
X(IS) EXTRANEOUS
X(16) EXTRANEOUS
X(17) EXTRANEOUS
X(18) EXTRANEOUS
X(19) EXTRANEOIJS
X(20) EXTRANEOUS
X(21) EXTRANEOUS
X(22) EXTRANEOUS
X(23) EXTRANEOUS
X(24) EXTRANEOUS
X(25) EXTRANEOUS
X (26) EXTRANEOUS
X(27) EXTRANEOUS
X(28) EXTRANEOUS
X(29) EXTRANEOUS
X(30) EXTRANEOUS
X(31) EXTRANEOUS
LOWER SHADOW PRICE ON CONSTRAI NT< 7)= 1,050
LOWER SHADOW PRICE ON CONSTRAINT(8)= 1,050
LOWER SHADOW PRICE ON CONSTRAINT(9)= 1,050
LOWER SHADOW PRICE ON CONSTRAI NT< 12)= 1,050
LOWER SHADOW PRICE ON CONSTRAINT(18)= 1,050
LOWER SHADOW PRICE ON CONSTRAINT(23)= I,O~O

LOWER SHADOW PRICE ON CONSTRAI NT< 28)= 1,050
LOWER SHADOW PRICE ON CONSTRAINT(33)= 1,050
LOWER SHADOW PRICE ON CONSTRAINT(36)= 1,050
LOWER SHADOW PRICE ON CONSTRAINT(41)= 1,050
LOWER SHADOW PRICE ON CONSTRAINT(43)= 1,050
LOWER SHADOW PRICE ON CONSTRAINT(45)= 1,050
LOWER SHADOW PRICE ON CONSTRAINT< 46)= 1,050
X(85)= 0,000
X(86)= 0,000

163

x (87)= c)f(l(JO

X(90)= 0,000
X(96)= 0,000
X(101)= 0,000
X(106)= 0,000
X(111>= 0,000
X(114)= 0,000
X(119)= 0,000
X(121)= 0,000
X(123)= 0,000
X(124)= 0,000
LOWt:R SHADOW PRICE ON CONSTRAINT(37)= 1.077
X(115)= 0,000
LOWER SHADOW PRICE ON CONSTRAINT(6)= 1,116
LOWER SHADOW PRICE ON CONSTRA I NT(14)= 1. 116
LOWER SHADOW PRICE ON CONSTRAI NT(15)= 1,116
LOWER SHADOW PRICE ON CONSTRA I NT(21>= 1,116
LOWER SHADOW PRICE ON CONSTRAINT(22)= 1,116
LOWER SHADOW PRICE ON CONSTRAINT(24)= 1,116
LOWER SHADOW PRICE ON CONSTRAINT(25)= 1,116
LOWER SHADOW PRICE ON CONSTRAINT(27)= 1,116
X(84)= 0,000
X(92)= 0,000
X(93)= 0,000
X (99)= 0,000
X(IOO)= 0,000
X(102)= 0,000
X(103)= 0,000
X(105)= 0,000
LOWER SHADOW PRICE ON CONSTRAI NT(40)= 1,129
X(118)= 0,000
LOWER SHADOW PRICE ON CONSTRAI NT(30)= 1,168
X (l08)= 0,000
LOWER SHADOW PRICE ON CONSTRAINT(10)= 1,182
LOWER SHADOW PRICE ON CONSTRA I NT(17)= 1,132
LOWER SHADOW PRICE ON CONSTRAI NT(19)= 1.182
X (88)= 0,000
X(95)= 0,000
X(97)= 0,000
LOWER SHADOW PRICE ON CONSTRA I NT(42)= 1.221
X(120)= 0,000
LOWER SHADOW PRICE ON CONSTRAI NT(11)= 1,247
LOWER SHADOW PRICE ON CONSTRAINT(16) = 1,247
X(89)= 0,000
X (94) = 0,000
LOWER SHADOW PRICE ON CONSTRAINT(29)= 1.260
X(107)= 0,000
LOWER SHADOW PRICE ON CONSTRAINT(31)= 1.287
X(109)= 0,000
LOWER SHADOW PRICE ON CONSTRAINT(4)= 1 t 313
LOWER SHADOW PRICE ON CONSTRAINT(5)= 1,313
X(82)= 0,000
X(83)= 0,000
LOWER SHADOW PRICE ON CONSTRAINT(34)= 1,405
X(112)= 0,000
LOWER SHADOW PRICE ON CONSTRAI NT(2)= 1,484
X(80)= 0,000
PASS 2
PHASE 2
PASS 1

164

PASS 2
PART B
PHASE 1
PASS 1
UPPER BOUND X(33) = 1,000
X (33) = 1,000
UPPER BOUND X(35) = 1.000
X(35) = 1,000
UPPER BOUND X(36) = 1,000
X (36) = 1,000
UPPER BOUND X(37) = 1 ,000
X (37) = 1,000
UPPER BOUND X(38) = 1,000
X (38) = 1,000
UPPER BOUND X(39) = 1,000
X(39) = 1 ,000
UPPER BOUND X(40) = 1,000
X(40) = 1,000
lJPPER BOUND X(41) = 1,000
X(41) = 1,000
UPPER BOUND X(42) = 1,000
X(42) = 1,000
UPPER BOUND X(43) = 1.000
X(43) = 1,000
UPPER BOUND X(45) = 1 ,000
X(45) = 1,000
UPPER BOUND X(46) = 1 ,000
X (46) = 1.000
UPPER BOUND X (47) = 1,000
X(47) = 1,000
UPPER BOUND X (48) = 1,000
X(48) = 1,000
UPPER BOUND X(49) = 1,000
X(49) - 1,000
UPPER BOUND X(50) = 1,000
X(50) = 1,000
UPPER BOUND X (52) = 1,000
X(52) = 1,000
UPPER BOUND X(53) = 1,000
X(53) = 1,000
UF'PER BOUND X (54) = 1,000
X(54) = 1,000
UPPER BOUND X(55) = 1,000
X(55) = 1,000
UPPER BOUND X(56) = 1,000
X(56) = 1,000
UPPER BOUND X(58) = 1,000
X(58) = 1,000
UPPER BOUND X(59) = 1.000
X(59) = 1,000
UPPER BOUND X(60) = 1,000
X(60) = 1,000
UPPER BOUND X(61> = 1,000
X(61) = 1,000
UPP!::R BOUND X(62) = 1,000
X(62) = 1,000
UPF'E:R BOUND X(64) = 1,000
X (64) = 1,000
UPPER BOUND X(65) = 1,000
X(65) = 1,000

165

UPPER BOUND X(67) = 1,000.
X(67) = 1,000
UPPER BOUND X(68) = 1,000
X (68) = 1,000
UPPER BOUND X(71) = 1.000
X(71) = 1,000
UPPER BOUND X(72) = 1,000
X(72) = 1,000
UPP~R BOUND X(73) = 1,000
X(73) = 1,0(1)
UPPER BOUND, X(74) = 1 ,000
X (74) = 1,000
UPP~R BOUND X(76) = 1,000
X (76) = 1,000
UPPER BOUND X(77) = 1.000
X(77) = 1,000
PROBLEM IS SOLVED OBJ = 41,275

I>STOP

*** STOP
K,

166

:~(~o;: SUBROUTINE I)SER
'0002: $INSERT SCICON)"S>F'DPF'FtRI'IMS
{I003: $INSERT SCICON>S>PDPMCKEY
'0004: $INSERT SCreON)S'; F'DF''''R~:~Y
0005:$INSERT SCICON>S>PDPITER
0006:~INSERT SCl(.IJrv'd;-PDF'BL'3
,0007 t $ i NSC:~T sel COl >S;'-PDPI)SEFVL
0008: $1 NSERT SCUX~N.~ S) PDF''1A-;i\I X
0009: 'INSERT 3:: 1 cr.:.1'< ;S>F'8""p!~~c~
0010: $Ir,SERf SCICO~:-'S)~'u:'=ETA

EXTENDED REDUCE METHOD

0011: REAL*8 C'~L~L.L ~ ::~:4.s) ,R(·' .. E!...L (2(A81 ,:; ~" .. ELJ(2048) ,RC'WGLL (~1)48) ,
')I)!<:: * RHS(5~;:} ,;';:,~S1, :i1::) ,X\:':i~':).~;:'ij:21 ,:::;512} ,F': (;:;;.;) ,CST(~~:Z),
'),)13: Af4X ,AMIN, BOV, ~,(':-tIN, GM! N. ~C-.;, DEF
(,(: 14: : NTEGER"'~ .. (:I)LNO(2(48) ,1RC",,~<i)\ ~().:.~ I, ;·;':OwNI); :::(,'1~)) : F'l~..."~O (;2') .. 2. i ,

0')15:" ! COI_,':Y (St:.:!) t ~ :-:<1) ;··"',: '5:::) t"·<::'~'\.,i~~, (::.:Z) , i.;':GWI~I' ~ :'1 ~), .
()01.!): *" NRO(5~~ I, : ::. (:;:;::; ,I Si 5 ~.:) ,:.:;CL; =;. 2) ,1::~', :::;,:; , :JJX '. S-~Z) ,
0017:" NCDC5!Z).~SS(S:2),LRT(512),

1)018: ~ J:'IlEG,: :5:2) ,J':-V:::: 5.21 ,~r"~;, '.:5: ';;.' ,.,,'NC o{ 5~2 J

0019: I NTEGEi=\-1-Z ., l.'1(28)
0020: ::G~M:)N/882:::0M/COi ... L ... :.... RO""tL:'" ,ROWE,-J ,';;w~GLL
')021 ~ ',:OMM('.N/ALAA2/1 COL~JI ... :,; i\G'.oINO,! ROWNO, JRSWNO
0022: CC:,"1Mor~/ALAI-\31 X, 1.0, C,RHS, Rr:Sl,Pl.DS ~
1)023:
0024:
1)025:
0026:
)027:
:)028:
)0291994
)030:
)031 :e
)032:C
)033:e
)034:e
)035:C
)036: C
)037:
)0381
)039:
)040:
:0 4 1 :
)042:
)043:
)044:
)04~:

)046:
)047:
)048:
)049:
)050:
1051 :
1052:
1053:
1054: 1600
1055:
1056:
1057:
1058:
'059:
'060:
'061 :
062: 1660
063:
064: 1500
065:
066:
067:
068:
069:
070:
071 :
072:
073:
074:
075:
1.)76:
077:
078:
079:
080:
0811
082:
0831
084:
085:
086:
087:
088:
089: 1900
090:1800
091 :
)92:
093:
)94;
)95:1700
)96:
)97:C
)98:C
199:C
oo:e

Ci)MMON/ALAA4/1 CCLI"1I{,: RCwM!<,: ;;";:,.,;1'11, :::':':"';"'1!\
COr-:M,~N/ALflflSI ~ S, IG, I 5S,1 R; ,:~x ,NRD. NCO ,;....S ,

... NRDD, I DDX, J,'.£GT ,JPVG, ; ?\If,; , Jr-.Cr-..

WRITE(l,994) NRI)W,NSEQ
FORMAT(2X,I3,3X,I3)
XX=10C;(;OO!) ,0

NNRCW=NROW+l
N::l
V,=1
DO 1500 JSEQ=m-1KOW, N5EI~
J=JSEO-NROW
rc (J /=';3S;:.t
I C:JL";I((J) =1-<
KLr'!EL=,'1SMi;;.1.... (JS::':~) tMSf<f'1£8 (';'2,::: . .:;)
LL~EL.=MSi"'lEL (JSEQ+ 1)

DO 1600 I:.....'1EL=-<~~EL.LLMEL

IROW=~RWME(ILME~)

I PIJOL=MPTME (ILMEL1
N=N+l
L=L+l
COt-E~L(NI=POOL(:;:POOL)

ICOLNO(N):::IROIoJ
CONTINUE
ICOLNO(K)=L
NCDtJ)=L
I F (AND (MCKEY (JSEQ) ,XCBUBC / ,E:.:),(l) ,;':1

IPOOL=MPTME(KLMEL-1)
COLELL(K)=POOL(IPOOL)
CtJ)=COLELL(K1
IF(C(j).LT .-O,lE-B) ';Q2=1
K=K+L+l
N=N+1
CONTINtJE
K::1
DO 1700 I=2,NROW
RHSCI)=BETA(J)
IOX<l)=1
15(1)=1
IR=K
IROWMKCI)=K
IRGWMI-«!)=;.<
L=O
DO 1800 J'S£Q=NNRCW,NSi:~
J=JSE''::-NROW
I<LME!....=MSMEL C JS£G) +MSKMEB (JSEQ;
LLMEL=MSMEL(JSEQ+l)
DO 1900 ILMEL"'I-!LMEL.LL.'1I;:L
IROW=MRWMECILMEL)
IF(lROW,NE,I) ·~o TO 191')0
L==L+l
K=I<+1
IPOOL=MPTME(1 LMEL)'
ROWELL(K)=POOLCIPOOL1
ROWGLLtK)=ROWELL(I-()
lROWNI)(Kl:aJ
IRGWNO(K)=J
ILMEL""LLMEL
CONTINUE
CONTINUE
IROWNO(JR)=L
IRGWNO(IRl=L.
NRD<I)=L
K=K+l
CONTINUE
NRW=NROw

167

101:(:
102:103
103: 104
104: 105
I1JS: 107
106: 1
t')7:2
!Od:~
11)9:4
110:5
111 :6
112:7
113:(;
114:C
L Is:e
[16~C
L17:C
118: 10
L19:
L20:C
121 :e
L22:C
L23:C
124:
12~:

1;::6:
.27:C
,:::3:1;
29:C
30:(:

F'~IRMAT (ZX,' C(;N57Rfl! NT' ,; 3,' Rc.=::::l.JNDANT')
FO~:"1AT (::::X, ' :< (' , r:,') t::.crERANEOVS')
FCF.MAT(;::)(,'S(' ,!.?:,') S.J.T;l;"!~:EC :3')
';;CRMAT(ZX,'PASS(' ,.2,' 1')
F"::E~AT;::::X,'5~·EP ")
FORMAT C:X,' SrEi" Z' J

';-'_:R,'1AT(ZX,' STEP :')
F·:IRMAT(2X,'STEP 4')
F.~:::~."I"!(:::x,·sr:::? S')
F0F:MAT (2X,' STt:P 6')
F,:·r;.I'1AT(ZX,'STEP 7')

! PASS::f P,qss +-1
wRITE(1.107) IPASS

STEP (1)

'~·.qI;E(!,l)

IOCOR::tO
IF(J~~:,::::::;,')J GO n 100

31:(: S;-E? '.Zl ...
32::::,..,....
-.J-.J, '

34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:25
50:
51:C
52:(;

~o :: J:::.=: ,;\ICOL

IF:r:J2:=O
JNCD(j'Z/=O
~F(NCD(J2i,EQ.O) GO 'fO 2.1
rF(C(J2) ,LT ,1),0) GO ro 21
JX=ICOL!'1K(J2)
JY::ICOLNOUX)
NS::JX+-1
NL::JX+-J'r'
DO 25 K::NS,NL
IF(COLELLClO ,CE,O,O) GO TO :':S
JNEG=l
K::tNL
CONTINUE
IF(JNEG,£Q,ll GO TO 21

53: DO 22 Kl=NS,NL
54: rF(COLELL(;<!J..S'~!,i).O) GO T(: .:..'::'
55: COLELLi~l)==0,0
56t I2.::I(",:,U.O('r<U
57:
58:
59:
60:
bl :
~2:

b3:
~4:

~5:

~6:23
~7:22

~8:

~9:

ra:
rl :
r2:
r3:
r4:24
rs:
'6:
77:
78:21
79:C
~O: c
H:e
~2:C
~3:e

~4:C
~s:e
~6:
~7:

~8:

~9:

~O:
~ 1:
12:
13:
14:

'5:
'6,
'7:
8:
9:
0:

I X::I Ri)WM!< (12)
IY::; ROI,Jt\:j(: x I
:XX==IX+-l
:YY=!XtIY
DO 23 ,{2=IXX,IYY
:F(rRO,,,ij'';C(;'<Z) ,N!::,:':/ GO re ~,",

;:;I)Wt::..:..;\\2)=O,O
NRD(!::):::"lRD<l2) -1
K2=IYY
CONTINUE
CONTI NIJE
NCO(J21=O
:F(lC(J21,GT.NROW) GO TO 24
INR=IC(J21-1
WRITE(l,lOSl INR
MRKEY(IC(J211 =OR(KRBFRE.MRKEV(ICU": 1)
GO TO 21
I NR=IC(J2) -~JRO\ol
WRITE(1,1041 INR
MCKEV(lC(JZl)=AND(MCKEYU21) ,1(C3P.,:;: I

rOCOR=l
CONTINtJE

STEP (3) ",

WRITECl,31
IRD::O
DO 31 I~=2,rml..l
IPOS::tO
IPVR(IZ.)=O
IFCIS(I3) .CT ,NROW) GO "1) 31
IF(NRD(I3),~Q,O) GO TO :1
IX"'IROWMK{I31
1 Y==IROWNO(I X 1
JS=IX+l
JL=I;(+IV
00 30 K=JS, JL
IF(ROWELL(K),LE,O,O) GO TO::>O
IPOS=l
K:c:JL

168

01 ::0
02:
03p'::
04:C
05:

CONTINI)E
rF(IPOS,El~,l) ·;0 TO ';1

NRO(I3)=O
1)6: rOe-OR=!
~7: DO 33 K=JS,JL
:18: IF<RO'.,JELL(lU ,EQ,O,(:) GO TO ...:...:.
09: ROWELLtK)=O,O
IQ: ;=IROI.,JNOU<)
U: JS'=rC:::":1f{(J)
12:
13:
14:
15 :
16:
17:
18:
19:
20:34
::1:::3
22;
23:
~4 :
~5:

~6:31

~7:C
!8:1;

JT=:COLN\)(JRl
;,~=J:,+l

~ y::-1R+,n
j)i) :4 ;"\,=:X,IY
IF'(l':::'1..~'C(~:K.\ ,:1.1:£,:';) N re .,N

1."~::..Ell.. (:<..:) =O,!)
NCDI';:=N::D(..iJ ••
"';,,=IY
(\":Tl \i;;~:'
c:.:';"II1 r,\'·;~
RHS \ ::;;) ='),0
INA=IS1I3J-1
'~'F:r'"S(lt1!)3) INI~

,'lRKEY(I 3 (13)) :::(rRl Kf'EW,,'E, ,"'~"~EY (IS I ~::) J

CONT!M)S

Z9:C STEP (4) ,',
~o:e

H:e
~2: WFUTE(l,o+)
53: DO 41 I5=2,NROW
~41 IPOZ=!)
~5: IF(NRO<IS) ,EO,O) GO TO 41
S6: IF(RHS(J5) ,NE,O,c) GO TO '+1
$7: IX=rROWMK(I5)
~8: IY"'IRI)WNO(IX)

10:
H:
12:
13:
14:
15:40
16:
~7: C
f8:C
19:
w:
il:

JS=IX+l
JL=lX+IY
DO 40)(=J8 I JL
IF(RC'.,JELl..On ,GE,O,O) GO T') <+(;

IPOZ=l
K=JI_
CON7r,',;!:::
LF(:F"::Z,~'~,lJ GO ",".

DO 42 f<=JS,JL
!FtROwEl..L(K) ,£0,0,0) GO ro 42
i':OI..JELL (~< I =0,0

>'2.: '!s=!q::I.,J',Q(K)
>3: JX=!C8L.~,·:(J5J

>4: JY=ICOLNOtJXI
;5: IX=JX+:
:6: IY=JX-I-JY
i7: DO 43;.<1=:l(,IY
:8: IF(C::::..EL~(Y.1 I ,£Q,O,(I) GO if') .,.::;

:9: COLELUKl)=0,0
,0: IR=IC:)I_~(J\){:)

,1: II';=IRO""r:~<Wi)

,2:
,3:
,4:
.s:
,c:
,7:
8,
9:44
0:43

" 2,
31

" " 0145
7:
8:
9:Stb
0,
1:42
2:
3:

" " 6:41
7:C
8:e
9:C
O:C
t :e
z:e
3150
4:C
5:C
6:C
7:5t
8,

" "

IM=IROWN\)(!N)
IXX=IN+l
IYY=[!\I+IM
DO 44 K2=IXX,IYY
IFtIROWNOtKZ),NE,J5) GO TO 44
ROWELL(K2)=O.0
K2"'IYY
CONTINUE
CON"f.INUE
IF{IC(JS),GT,NRQW) GO TO 45
INR=IC(J5)-1
wRITE(l,!CS) INR
!'i~)!EY(ICt J5) 1 =OR(KRBFRE, "1Rf.:EY (L C 1.:5) ;
GO ;-'J 516
I NR=I::: <':5) • Ni'\I)W
WRlTE(1,104) !~~

i'1C~:EY(!(. (J5) J =AND(M::::f~::Y(re <.:'5; • Ki.:Srt,:.:-r)
NC!)tJS)=O
IOCOR=l
C(tNTINUE
NRD(rSJ=O
~,.,'R=IS(r5)·1

WRITE<1,103) !:'4:;:
MRv'EY(!S(IS»=OR(KRBFRE,MRKEY(IS(IS»)
CONnNl)E

STEP (5) '"

WRITE(1,S)

FINDING THE PIVOT COLUMN '"

J·o
CMIN=XX
DO 5~ J5 .. 1 ,NCOL
IF(JPVC(JS),EQ,lI GO TO S5

169

301: IF(NCD<JSJ,EQ,O) ';0 TO 55
~Q2: IF(O::(J~),GE,-I),.S-~J ,~O '":;::S
::;03: IF(C:J5) ,GT ,CMI:'Il! .j;) 1'0 ':"5

:05:
3uo: ~S
:;07:
~08:(:

31)9:1.:

..'=J5

::;13: Iu!)=!)
3.4: ,~,,,::~,::~X

~15: i~:IC0L~~~Jl
~:b: ;":::r:))U~Cllt.l

~17: JS::: IX + 1
318: JL:IX+!y
H9: 01) S2 ~""'..'S.Jl
~20: I i::(C';l..'::U_tK; ,L<:',O,1':-8) GO fO 52
S21: IA:IC(ILNQ(K)

125:
:26:
:21:
:28: 53
,29:
~:o: 54
;31 :
;:;2:52
;::3:
,::4:
;35:
;36:
;37:C
;38:C
;39:C
;40:C
;41 :60
;42:C
;.43:C
;44:C
;45:
;46:
;47:
;48:
;49:
;50:
;51 :
"52:
,53:
54:67
55,
56:C
57:C
58:e
59:C
60:C
61lC
62:
63:
64:

72:
73:
74:
75:
7~:68

77,
78:65
79:
80:
!HI
82:64
8~1
84:
B~:C
B.,
B7:
B8:

'91
'0'
~1 :66
n:6!
~3:C
~4:C
?~:C
?6:
?7:C
181C
19:69
lO:

BOV=i,J""S i rH) ICOL£LL (K)
iJEF::::t;MIN-BOV
IF(r:EF,GT,I),1E.-5) GO TO 53
IF(DEF,LT,-O,:E-S) GI) T,) 52
IvQ=iUQ+l
GO TO 54
rUi)=l
GMIN=BI;V
!Q""IA
K -=K

IF(Il.II~,EQ,lI GO "!,t) 80
IF(IUQ,~E,O) GO ~0 to
JPVC (";) =1
GO :'':: 5!

FINDING ''-:-£ NEW INTER1:::R F'OI~T '"

• ;(O(J)=RHS(IQ)/CCLE~L<;~J)
~O 67 K=';S, JL
IA=!COLNO(I<)
;FfIA,EQ,IQ) GO ~o 67
IFfNRDfIA) ,EQ,Ol GO Et 67
IF(ISfIA),LE,NRi)\..I) GO TO 67
JV=ISf!A)-IIlROW
XO(JV) =RHS(I A) -XO(J) *COL=:LL ".I":)
XO(JV):XO<JVl-O,01
CONTINUE
XO(J)"'XO(J) -1),01

UPDATING THE ;;'Iver ROW

G.'1IN=O,U
IN!:"=O
1)(=1 R(lI",oMK (I Q)

!Y=IR')W~;C(l"i

JA=IX+1
JB=IX+IV
K::cJA
DO 64 J6=1,NCOL
IFfIRQWNOOO .NE,J6) GO TO 65
IFfNCOfJ6) ,EI),O) GO TO 68
IC=C (,]6) _t': (J ,. (RQWELL (Kl/CC'LZ:":.; ... ~ .. '
IF{ZC.GE,O.O,OR.lC,GE.CMIN) GO TO ,,13
Ci"I i'\=ZC
JNC=J6
K=;'(+l
GO TO 64
IFfNC;)fJ6) ,EQ.O) t;:) TO Q4

IF(CfJ6) .GE,CMIN) GO TO 64
C~!~=C(J6)

JNC=J6
CONTINIJE
IFfJNC,EO.O) GO TO 80
XOfJNC)=O.Ol

DO·61 K=JS,JL
IF(COLELLfK) .LE.O.1E-SI GO TO 61
IA:IC:JLNO(KI
DOv=RH8fIAI/COLELL(K)
IF(GMIN.NE,DOV) GO TO 61
IPVRfIA)=l
CONT1NVE

FINDING THE DISTANCES BETWEEN 'HE !~TERW~ P("~:'-IT
AND THE CONSTRAINTS '"

NT=O
AMI N=XX

170

)0401:
1l)4QZ:
)(.J403:
uj4(14:
)1)405:
)0406:
1')407:
10408:
:(140Q:
10410:
10411 :
10412:
0413:
'0414:63
0415:
0416:
0417:
0418:
(:419:62
0420:
0421 :
0 .. 1.2:
0423:
0424:
042S~C
042Q;(
(>427;70
0428:
04:9:
(1430:
0431:
0432:
~)4~3:

:1434:
)435:
)436:
)437:
)438:
)439:
)440:
)441 :
)442:
)443:
)444:
)445:
)446:
)447:

:)0 6: r 6::::, ,\.RW
;:~(I~VR(!Q).~E.~) '~'''' ~,:. 1-":

~:S=O
FlA:(:::(I,()

I;;=::JX;: !:d
I X=!;',~(",-·.~ (: I,)
II(:::;"GWN!J(;;()
r .(.I=~ HI
L(y=!;<+IY
:)063 K=IX):,IYY
JF""I~GWNO(KJ

;;:'(JR,EQ,JNCJ K!i=K
FlAX:::AAx+XO (JR) 1:;;:(iWGI.. ... (K)
CONTrN:.:1;:
:F(){S,EQ,O) G;) Tt) 6:
DST (I.!::I):.(BETA (I R) -AFlX) IR((WGLL(li,'61
1~(DST(r6!,GT,~M!~) :~O TO bZ
A~IN=C3T(I6)

CC,N"I~I.'E

!F"(~M:N.NE,XXl GO ~:) ,,)
IF{~T.E:~.:) :;:) r(: 3(1

NT=l

DI) 71 ;<S:::]S,JL
! =: ,:::::'u~:)(t\SJ
:,=(:PVR(J) ,:::Q,O) GO ~:,) 71
~;:'iDST(I),EQ.AM'N) GO TO
!\:F:~(I)=0
rO(DR=l
r f\(R=l S Cl)-1
'"IRiTE(l,:V';l :i>lft
,"R~<EY (IS! I) l=(,1fo.'lI<:iSFRE,I'IRKEY(I3 (r))
I X=IR')I..JI'1~{(:)
lY:::!R:.)WNO(IX)
IXX=IX+l.
IYY:IX+IY
DO 72 Kl:::IXX,lVY
IF(RDWELLO<tl,EQ,O,O) GO TO 7:
ROWELL(V,l)=O,O
JR=IROWNO(K1)
JX=ICOLMK(JR)
JY=ICOLNOCJX)
JSS=JX+l
JLL:JX+JY

1448: DO 73 ~,2=JSS,JlL
)449: IF<ICJU,I(I(K21.NE,I) GCI TO 73
)4501 COLELL(~(2)::0.0

1451: NCD(';Rl=~CD(Jr;)-1

1452: 1'2=J ;..
1453:73
1454:72
1455:
'45&:74
'457:
458:71
459~C.

460:C
461lC
462:80
463:
464:
465:C
466:C
467:C
468:C
469:C
470:C
471:C
472:81
473:
474:
475:
~76\
q77:
~78:

,79:
~80:

~81 :
;82:
~83:

;84:
;85:
~86:

;87:
;88:
;89:
;90:
;911
192:
:93:
.94:
,95:8117
,96:
,91:
98: .. ,
00,

"::GNi !N~·E
(':j;';';-;:\:Je.

GO TO 71
K';=~',S

IQ=I
c.:',~(fINt)E

::=,(r,:,',:":"R,E'~.l) :~I) T(I cl
IF(IF'ASS,!:JJ.ll GQ TO 81
GO TI) 101)

STEP (7) •••

PERFORMING THE SIMPLEX ITERATION •••

. WRITE(1.7)
R=1/COLELLCKJ)
IE=O
I W::: 1
I RO(,J='Z,
JROWML«(IROW)""I W
JX=IROWMK(lQI
JY,=IROWNO(JXl
JR:::JX+l
JQ=JX+JY
RowELJ (!Wl =ROWELL(JX)
IW=IW+l
DO 8017 j.{:zJR,JQ
IF(RCWELUKI.EQ,O.OI GO TO 8017
JA::IROWNO(K)
IF(JA,NE,J) GO TO 8117
ROW ELL (K):::R
ROWELJ(IW)=R
JROWNO (r W) "'JA
HJ=IW+1
IE=IE+l
JNCD(JAl=JNCD(JA)+l
GO TO .g'):7
ROWELL(K)=R*ROWELL(K)
ROwELJeIW1=ROWElL(K)
JROWNOeIW1-JA
lW=I1,,/+1
IE=IE+l
JNcoeJA):::JNCO(JA)+1

171

ov501:
00502:8017
00503:
00504:
C!;5~~5 :C
005')6: C
1);:'507:
')0508 :
~~')S09 :
JI)S10:
'~:~511 ; ':-

)0513:
)(;5:4:

)1,l51~:

)0517:
)0518:
)1-,51'';:
)('520:
)0521 :
)0522:

)0524:
)0525:
)0526:
)0527:
)0528:
)0529:
)0530:8770
)0531:8170
10532:C
Iv533:C
10534:
10535:
10536:
10537:
10538:
11)539:
:0540:
:0541 :
10542:
'0543:
10544:8172
'0545:C
0546 :e
0547:
0548:
0549:
0550:
0551 le
0552:8178
0553:C
0554:C
0555:
0556:
0557:
0558:
~)S59:

0560:8173
)561:
0562:
)563:
0564:8174
)565:
)566: 8177
0567:
0568:
0569:8175
0570:
)571 :
)572:
)573:8176
)574:
)575:8119
)576;
)577:
,1378:
)519:
)S8O:
)581 :
)582:8171
)583:C
)584:C
)585:
)586:
)587:
)588:
1589:
1590:8771
1591 :
1592:
1593:8070
1594:
1595:
'596:C
'597:C
598:C
'599:C
'600:C

JNCD(JA)=JNCD(JA)+l
CONTI NI)E
RHS(IQ) =F,·RHS (r i)
JRt)WNI)(lJ=[E

ErS: (IRI}W) =M.HS \ : I~)
[SS(rr::::",)"::-3; :':';
':-,;)C(:RCW)=:E
[;:to'!;' :::;,.:',i,:}:::~ ':Ix (~,~,

!:C 31;':'0 !,Q=:,:.C:',J
!F(IA,EQ,1')) 1;(1 "'0 80','':,
IF(j,!:i:G(:~) ,£'~,l): 'x' TO 13,:'';'0
: ,~:,}.,= ~ RI~\J ~ l
:S:::1)
! Z=~ ...
r:";=IW-+-l
: X::IR')I,.;,"'""(ili)
:':'-:!R(lI.ON'){:X)
RGI..EL.J(I l) ::Ri)',JE~L: I X)
JP'J=O
JS=D.+:
JL=IX-+-IY
DO 81 70 ~:S=J'd, JL
IF(lROWNOn'.S) ,NE,J) I)) 1'":' 817(,
IF(ROWELUKS) .EO,'),!)) GO ':1) 137'/,)
JPV=KS
~:S=JL

CONTINUE

v'=JS
DO 8171 JA=I,NCOL
IF(JA,EQ,J) GO ';~i 31",'"1

JR=2
,j::-=1 +JROWNO (1)
DO 8172 1o'.1=-1fl,JC

:PV"'v.~
;.'.l=JO
CONTI N';~

rF(I~T(JAI,EO.1) GO TO 8178
IF<Ipv,':i;,,)J :~:) c:) 8178
C (JI1>=C (JI1) -R(:i..;EL; (I PV) '1-(.: J)
~R" (JA)=-1

IF(ROWELL(Kl,£Q,O,t,)1 CO TO 8173
IF(JPV,EI~,O.UR.IPY.E,~.(I) GO 'ro Si. 11

ROWELJ (rWI=ROIo:ELL(~:) -ROI.o;E~L (':,;;':~') <t ;:,w:'~J,': (.-\))
[F(R(,WELJ(IiIi\ .L.E,O,lE-3,AND.RC! ... ~'_ (:',)\ ,.;~. -0 •• ::-5)
co TO 8175
IF(NCO(JAI.=O,U) GO TO 8176
IF(JPV,EQ,O.·}R.IPv,~Q,O) ,:;,,:; Tu tl-~~6

,~C·JE;"J(1',J) '" -ROWtL .. (J? I; "''''::::,~=L! (: :'
Gl) T') 8175
ROWELJ(IW):~OWELLI~)

G(: TO 8175
IF(lROWNO(K),NE.JA) GO TO 8171
IF(JPV,EQ,Q) GO TO 8176
ROWELJ(IW) =·f*ROWELL(JPV)
JROWNO(IW)::JA
IW=IW+1
IE:IE+l
JNCO(JA)""JNCD(JA) ~:
K=I<+!
cc TO at71
IF(NCO(JA).EQ,O) GO TO 8171
IF'UPV.El,:,O;OR.[PV.EQ,O) G':, ",) 6,"',
ROWELJ (! 'iJl=-':"(:WELL (';PV) f!-ROWELJ, :;- ,.'
';ROWNO{!W)::JA
ll"J=Iw+l
IE=rS+l
';NCD(JA)=';NCD(JH)+1
CONTIN:)E

JROWMK(IROW):IZ
JROWNO(lZ)"'IE
NROO (I ROW) =JROWNO (I Z)
IF(JPV.EQ.O) GO TO 8771
RHS(IA)=RHS(IA)"ROWELL(JPV)*RHS(IQI
RHSl (IReIJ) =RHS (lA)
ISS(IRQW)=1 S (lA)
I COX (I ROi,J) =1 OX I I H)
CONTINUE
C(J):-R*C(J)
NRW=IROW

172

'J601 :
~o02:

J603:
)604:
)605:
)606:
)607:
)~08:

)60Q:

)610:
)611:
)612:
)613:9(:92
)614:8U91
\615:C
J616:C

JQ2::1()

Or) 8091 I1=2,NRW
IROWMK(I 1)=JRi)l,,)MK(I 1)
IX=IR')',o,IMK(IIJ
R'Y"ELL (I X) =ROWELJ , I X)
rROWN')(I X)=JRC''''~jO' ! X)
IY=IRO!..oNO(IX)
1:<:<=!X+l
I'!Y=TX+IY
DO 8(192 K2:::1[(X •• ""
[ROWNO(Y.2) :::IJ~I)WNO (1<2)
ROWELL (.:2) =F.;IJWELJ (KZ)
(,:JNT! ,\lI.iE
C:_,,'\I"NUE

1617: :.-I=!
)618: DO 81)93 ,;t=l.NC'IJ_
1619: ':'::-V(IJ1)=:)
1620: NCD(JU=,;'N(JL.ill
)621: IF('\iCOUl;,::'J,O) i~O T,) :!')93
1622:
1623:
1624:
'625:
'626:
'627:
628:
629:
630:
631:
632:
633:
634:
635:
636:8095
637t8094
638:
639:
~40:8093

641 :c
~42:C

~43:C

~44:

~45:

~46:

,47:C
~48:C

,49:C
~SO:

:'51 :
~52:

,53:
,54:
,55:8096
,56:C
,57:C
,58:e
,59:
,60:e
,61 :
,02:
,63:C
,64:C

IC[ILMI< (J1):::IN
I Z=-."l
N::N+!
00 80'<4 Il::2,iliRW
Jx"'IROWMK(i1)
':Y=fROWNOCJX)
JXX=JX+1
JvY"'.!X+JY
DO 131)95 ~","'JXX,J'(Y
IF(IROWNI)(K) ,NE,J1) GO TO 8(195
COLELL \ N) "ROWELL (11.)

ICOLNO(N)=I1
N=N+l
K=JYV
CONTHM~
r:;ONTINUE
ICOLNi)(IZ)::N-IZ-1
IF(CUi l.L T ,-'),lE-S) J1)2=1
CO;'llTINlJE

rS;I~8=rSS(:::)

ISSi.2)=!C(J)
IC(jJ=LS,OR

DO 8\.196 r.;'G:,J:Z, NRW
I S< I ROW):1 SS (IROW)
RHS i I ROW)=RHSl (l.=iOWI
Nf::O(!~,)\~) :N!~!,)O (IROW)
! OX (:ROW):1 Dt'X ('R':-W)
CONTINUE

GO TO !O

RETURN
END

173

!)Ol: SVBROUT~NE ')5cO:;:
002:'SINSERT 5Cl(ON>S>PDPHR~MS
00:::: $INSERT SCIC('N>S>PDPMCKE'(
0!)4:'SINSER'f' SC!':::;~CS;P::WI E~\

005:$INSERT ::?CI(::,N. '3~PDF"BIT5
!J06: $INSERT '~C: ':':'N; S;I:'D:~'uS!:::: ."'_
001:*:NSERT ~,:!("::~J: 3>F'Df-'M FlT"'!X
008: '$ r ';S~", T ~,.,.": .. ,' S >':·DF':'(.':_
:)09: 1;!\iSERT 21: !ccr:;-S,' '?-'r;F'fE":"A

EXTENDED WILLIAMS METHOD

01V: :;:=,~:","3 ~!'"!S(5L~)

011: ,;:::=lL *8 COU:!..:'" \ :::;'8 1
012: r.E~L~·3 :;":'WELLC:04d)
013: ~EAL*8 ':::;:')~di

014: r(tHL*8 SN(,;::'48:
015: ·.'::,4t ... S '.)(5l2)

016:
017;
013:
019:
020;
021 :
OZZ:
023:
OZ4:
025:
026:
027:
1)28:
029:
030:
031:
032:
033t
034:
035:
0~6:

037:
033:
039:
040:
041:
042:
043:
044:
045:998
046:
047:C
048:C
049:
050:
051:
052:
053:
)54:
)55:
)56:
)57:
)58:
)59;
)60~

)61;

)62:
)63:
)6lt:
)65:
)66:
)67:
)68:
)69: 1600
)70:
)71 :
)72:
)73:
)74:
)75:
)76:
)71:
)78:
)79:
)80: 1650
)81 :
)82:1660
)83: 1670
)84:
)85: 1500
)86:
)87:
)88:
)89:
)90:
)91 :
)92:
)93:
)94:
)95:
)96:
)97:
198:
)99:
,00:

REA:..*8 ~"'P(512)

RE.'=IL",g ':;:'.0.1'::51:)
RE.'\L~'3 '-,-;::(512)
REAL"e RW(512)
REAL"'!! RU(512)
REAL*8 P(512) ,PP(SlZ)
REAL*8 Q(~1Z) ,QPtS12)
REAL*8 Se(512)
RE.'IV8 C(5tZ)
REAL*8 G':(512)
REAL*S X(S:2)
REAL*8 PS ,I~S. WT ,UT, DFC, OF'), DF!::, E:"'Ml.E!...:'12, AI"1~ N
INTEGER.Z ICOLN(i(2048)
INTEGE.~*2 I ROW~JO (2048)
! ~!TF::GER.2 !I.~OL '11\ \ 512)
[~.f'!'EGE.R*2 I RQWMK (~t;;:)
:r.:7EG~~:t2 ·.{K(SI2)
INTEGE~.2 KZ(S12)
:N:·E'~~:R*:": 18C(::.2)
J~;~GE~.2 JGN(~12)

:~J~~I;':f;""~ lnN(S:~2)

!.'JTEI~E:'::-tZ JV(51::J
!~I'EGERt2 rC(jl~:

r :'IJTEGER*2 JSC (512)
('::~MON/P.Lf,~ ~ ICOLE:L:" ,RO!")ELL, lC.j~tI!.:,. ! ;';'~"'NO, (COt.r.K, : ':':;':'"-IMf<
COMt'!ONlALAA2/SC, S, :~, j~~S, x, c, ':::: .
COM.''l':'N/ALAA3/~~K, KZ,! SC.JCN, r:;:~, JV. I (", :<;:::
COt'!MON/ALAA4/U ,I)F', ~"~C, RUC, F', Q, ::;:i~ ,~U, ~'~. ,~p
',JR. -E(! ,79),3) ~IR:)W, !I.'S::'Q
FOR!"1AT(Z,X, 13,::;X,! 3)
X'l.=lOO:)0;)O,r)

NNROW=NROW+l
N=1
~:"'1
DO 1500 JSt:::~=NNROW,;~·:3':'Q

J=JSEQ-!'lROW
IC(J)=J
ICOLI"':I<CJ)=f{
KLMEL=~SJ"lr::L (JSEQ) +:-'ISK:1::8i J'3t::'~)
LL~F.L=MSMEL(JSEQ+l)

L'=")

DO 1600 I 1_1"::L=;.<L,'o:SL, ,-U'IEL
t R('w=MRWME '. ! LMEL)
IP'X'L=~P'!'~E (IL~EL)

~'='I"l

:...=L'"l
I (:!JLNO (N);I;;IJt.l
;';:JLELL (N) =PI)i)L (l f'(:Ol)
:F(Ci)LELI..(NJ ,CT ,0,0) GO ~C ,60:')
JCN(J)=JeN(J) + 1
I RN(IROW)=IRN(IROWl" 1
CONTINUE
tCOLNO(i.';)=L
KI«J):::L
rF(ANO(I"'C~<EY(JSEI..'I ,;,Cf!U8C) ,EQ,~~i '~'.'

I ~'OOL=MPTMr::(KLM£L-l)
GOLE_:... (;{) ::::POOL (I POOL)
C(J)=-COLELL(Kl
3~..:(';)=<GLSL:"(K)

CC(J l=-COLELL(Kl
rpOOL=M~WMC: (KL,"tEL-l)
IF(IPOOL,NE,I<PTF'U) \;:::: "'0 :,~.sO

U(J)=XX
CO TO 1670
U(JI=POOL(IPOOL)
K=K+L+l
N=N+l
CONTINUE
~<=1

DO 1700 I=2,NRUW
~HS<I)=BETA(I)
Q(I)=XX
PH)=').0
L=O
IROWMK(I)=1.{

IR=K
DO 1800 ,J3E'~=NNROW, NSEQ
J=JSEQ-NROW
KU1EL=MSMEL: ':SEQ) +MSKMES(JSE';:)
LLMEL=MSMELeJ3eQ+l)
DO 1900 I:"~EL=KLMEL,LL~SL
IROW=MRWME(ILMEL)
IF(IRIJW,NE,I) GO TO 19(1)

174

01:
0:;
03:
1)4:
os:
06:
07u9QI)
08: IdOl)
09:
10 :
11:
12: 1700
13:C
!4:C
15:C
16 :
.7:2001

19:21)02

21:

<-:::L+l
;<=~+1

IPCOL:::MPTME(lLMtl)
ROWE<-L,;<) :::POOl (: peel)
IROWNO(K):::J
IL.i"'EL:LL:-:EL
(.ClNTINUE
CGI\. :-::I;!)E
IR01")NO(lR)=L
-'.Z (r):::L
K=K+1

wRI rEi 1,';:')01)
FORMAT(3X,'r-'AkT A')
IoIRI T::: (I,'::C()2)
FORMAT (3X,' PHASE 1')
!F~\,'"",l)

IF'riA3f.:='::
22: !PASS=l
23: :F'SACT=O
24: I!)SC2:::1
~S:2003 FC:RMAT(3X,'j-:'ASS' ,!2)
:':6:, ..
~7 le
;::8: C SETT! .'~G T:-:: G'~U)MNS ! ~ nN ;.~':3::::JO: "V, _ ::;::::.'\ :-,:..:,,~.~ ;.:!): ,,;

29: ,0 THE:R COST CO::::;: . .:':::-!E~l:S ",
:O!C
:'a:c

~S:

~6:
~7:

~8:

~9:2

~O:

H:
~2:1

n:c
~4:C
~5 :(;
~6: 1009
~7 :
~8:
;9:
50:
sue
52:C
53:C
54:C

Dr) 1 Jl=l,~CCl
AMIN:::XX
,)0 2 J2= 1 ,:.eel
rF(IC(J2) ,EQ,l)) G:) TO 2
r:=(AMI~,LE,C\':Zl) (;:) ~(I 2
AMIN==C(J2)
J=J:
CONTINUE
JV(Jl l=J
IC(J)=O
CONTINUE

I.'RITE(l,201)':;; I?ASS
DO 1000 JG1:::1,NU)L
rC(JGl i""JGl
J=JV<JG1)
rF(!SC(J),:SQ.l,(OR,~SC(J),:::'~,.2) GO TO !OOO

55: j\;::ICOlM~~(J)

;6: ~:::!'.)'::L"+':-(:'I;)

57: IN:::N+l
18: ! ,'!=N+M
;9: :F(KV.U) ,EQ,O) G;J :':~ 1004
,0: rF(I?AS3,~'~, 1) Go) T') ~:)Q4

A:e TIGHTENING T~E ."'~UI'!AL 3(:~INDS '"
,SIC
,6:
.7:
,8:
,9:
'0:
'1:
'2:
'3:
'4:901
'5:C
'6:C
'7 :e
8, 9,
,0:
,1:
,2:
3:902
,4:
5, ..
7,
8:590
9:e
O:C
tIC

UP(Jl=V(J)
DO 901 K=IN,[M

"IF(COlElL<Kl,lE,O,OI GO TO 901
1:ICOLNO(KI
IF(RWC(l) ,EQ.~XXl GO TO 901
UT=(RHS(I) -RIMC(Ill/COLELL(V,)
IF(UP(J),LE,UT) GO TO YOl
VP(J)=UT
CONrINlJE

IF<uP(J) ,NE,O,Ol GO ~o 902
VCJ)=O,O
X(J)=U(J)
WRITE(1,202) J,X(J)
GO TO 140
IF(IPHASE,EV.l) GO TO 1004
IF<vP(JI,GE,\J(J) GO TO 10011-
U(J)=UP(J)
IPSACT:1
WRITE(l,590lJ,VP(J)
FC'R:1AT<3X,'I)PPER BOUND (f ,13,')TIG~:::,,';E~ .;;, ,.~:';',3_\

2:C CAl(:tJLATIIIIG -;";-tE vPF'ER AND L.OWER ':::::'ST ':F-' :-;~E VAF.:::"'S!..-=: ...
3:C
4:1004

" .,
7,
8,

" ':20

PS=o,o
Q8=O,O
IF(KKtJ) .EQ,O) GO TO :006
DO 10 K=IN,IM
I:ICOLNO(K)
IF(COLELL(K») 30,10,20
JF=K

175

0201 :
0202:
020.!:
0204: 13
')205: 14
0206:
;}207:
f)2!)8: 30
02v9:
'nl l)!
0;::11:
1)212: ~::5
0213:16
0214:
:)215: :~:
~:Zl·~:C

:)217:'';
:J::13:C
)219:C
)220:::::
)221: ::)1)6
)2:2:
)223:
)224: 120
)225:
)226:
)227n60
)228:
)229: 130
)230:
)231:
)232:
)233: 140
)234:
,235:
)236:
1237: .
)238:
)239:
)240:
'241 :
'242:
:243:
1244:
'245:
'246:
1247:
1248:
'249:
1250:
'251: 6666
'252:6
'253:
1254:
'255:
'256:
'257:
'258: 170
259: 150
260:
261:C
262:C
263:C
264:1005
265:
266:
2671
268:C
269:C
270:C
271lC
272:C
273:C
274:
275:
276:3:8
277:
278:
279:
280:
28lt
282:
283:
284:314
285:
286:
287:
288:
289:319
290:
~91 :
292:
=93:
~94:

~95:
~96 :
:97:311
:98:
·99:
:00:

IF/I)<I),E,~,XX,OR,QS,EQ,XX) GO TO
QS=:)S+(OLELL(K) *Q' ! J

GO TO 14
QS=x.;(
~~(PS,EQ,-XX) GO TO lO
PS=F·2+(OLELi... (K) *F'(I J

GO fQ lO
JF=K
!FCQ(I),EQ,XX,OR,PS,~Q,-~O GO TO 15
':·S=::-S+CO'_ELl(·"'1 +.'! i: i
GO "'0 to
F-·-:=-d
IF(QS.~'~.XX) GO TO ~(l

f:·S=·:'S ~':;O'-~_:..:;.:) ·Pl r)
·:::·r.T!."\J'.:E.

;:':::(PS,,;T,C<J» CO TO ~.::O

IF(':IS,'.T,C(J» GO fO 130
GI) TO 1005
X(J)=O,O
IPSnCT=1
WRITE(1.t60) J,X(JJ
F'JRf'lAH3X,'X(' ,13,')::' ,F"14,3.':X,' IV';
GO TO 140
I~(l:(j),EO,XX) GO TO 170
XU)"'U(.JI
IPSACT=1
WRITE(1,t6(» J,X:J)
DO 6 ;t:..1N.JM
I=!COLNOtll.)
IF(3<K) ,NE,O,O) ,": SCI J=RHS(J)-S(l.O*;«J;
8(;0=0,0
!F«(i)LEl:..nO,E~I.:).l)J G:) m 6

COL.EL!...'''{)=O.O
:\It,= I ,~(:wt"~ ,!)
MM=IROWNO(NN)
r ~)I,;"'IIJN+ 1
:MM=I\r;,+I'j:"1
DO 6666 I,{=L\lN,r:",'1
IFCIRr)WNO(lK) ,Ni;;";.J) G:) rc ·.J606

."i"HS(':: J=Rl"i5C I) -ROWELl(I K)"'X (J)

BETA(I) =BETA (I) -ROW!::LLC U.O*XU)
:F (ROWEl..L(UO ,L7 ,0,0) IRN(!)=rRi~(!)-1
ROI..lE!...L (r~:) =0,0
KZ(1)=t{Z(I)-1
li~=I ~,"1

CONT;NlJE
CO"TIN,):::'
KI<(Jl=O
ISC(J)=l
JSEQ=NROW+J
MCI<EY(]SEQ) =ANOtMCKEY(JSEQ) ,KCBFlRl)
GO 10 lOCO
WRITE(1,1S0l J
FORMAT(3X,' XC' ,13,') IS !)NBOt:NDE[;')
GO TO 999

IFqPART,E!J,ll GO TO 301
IF(CtJ),EQ.O,O) CO TO 301
IFO<K(JI,~<E,l) CO TO 301
IF(UtJ),NE,XX) GO TO 301

REPACING SINGLETON COLVMN BY SHADOW F:~:ICE ",

!=ICCLNOC,;F)
IF«(:OL!::ll(JrJ J 318,301,319
:.n=c (J) ICOLEL:" (JF)

·IF(lJT.GE,Q(J)) GO ro 3000
SNCJF)=COLELl(JFl
lSC(J)=2
Q(Il=VT
IPSAeT=1
I,'IIROW=l -1
WRI1E(l,314lINROW,Q(I)
FORMAT(3X,'UPPER SHADOW PRICE ON CC: .. S~;;,nrNT(' ,13,')=' ,F14,3)
IPS=1
I OS=<1
I OSC2"'" 1
GO TO 3200
WT=C(J)/COlELL(JF)
IF(WT,LE,PtI» GO TO 3000
SN(JF)=COLELL(JF)
ISC{J)=2
PtI)=WT
IPSACT=1
INROW=!-l
WRITE(!,317)INRO~,P(I)

FORMAT(3X,JlO~ER SHADOW PRICE ON CONSTRAINTt' ,[3,' J=' ,F14,~)
IPS=1
I DS:z1
IOSe:=1 176

:;O::C
30.1:1.::
:04:''::
:05:C
>6:C
:;07:C
':;)8: 30!
309:
310:C
311 :C

313:
:;14:
315:
316:
317:
318:
319:
320:732
321:
!;2Zt
323:
324:
325:731
326:
327:
~28:
~29:'133

:= ~3.£~.1XI a: 78 :000
;F\C(JI,Ew,u,O,A~O,~S.EQ,O,O) GO TO ~ooo

DO 7:;':) ;<=IN,IM

! :::=0
t=I('O:"~~:~(;.t,

PP(!)=P(I 1
QP(I):::1)(t)
rF(O)LELLOO) 731!7"::O,732
~T~O(I,+CC(J)-QS'/COLELL(K)

IF(WT,LE,PPII») GO TO 7::;(1
PP(I):::WT
IP=l
GO TO n:·
~;=~(I)+(C(:)·Q9;!COLELLCK)

IFClIT,GS,QP(I)) G;) TO 730
OPC:)::.IT
IQ=1

530: ~F(I':'F'(:),'I':,~'·'(l») G:) ro ?::.s
~31: P(l)=P!"',I)
;32: ')(Ii-<'::-UI
~33: JX"'l;·;w~~«I)
)34: JY=!Ro(~r;O(JX)

~:5: JS=JX+1
:36: ,]:..=J)+-;Y

;)0 7:;4 ;<;,;;".:~,J:"

I F(ROwE::.....·. (:.z-":J ,;;;»,0,:::; :;::'
:Q:::IRC(.;~~G('~2)

J5:: (.."~) ... 3
,41: C (..':~ ,,,(: ~ .";;) -R:):JE:....L..\ .(2) ~'~'\!)
;42: ROWEL:....(~::}=O,O

;43: IX=ICOLMKIJQ)
;44: IY.::ICOLNOla)
;45: IS=IX+l
;46: IL=rXQY
,47: DO 736 ;C::::S,IL
;48: IFIICOLN(!(~'.3),r,E.!) <:0 TO 7':'6
;49: IF(COLELL (lC) ,LT. 0,0) JCN(JQ)=JCN(J;~)-1
;50: S(1<3)::':'OLELLIK3)
:5'1: COLELlIK3)=I),O
;52: kK(Jr)=~'.~:(Ji,JJ·l

:53: v.3=lL
54:736
55:734
56:
57:
58:
59:
60:
61:735

63:
64:
05: '
66:
67:
68:
69:
70:737
71:
72\
73:
74 :
75:

(.(lNTtNUE
CONTINUE
Kzn)=1)

IRN(I)=0
!PSAC:=l
INQOw=I -1

IF(?F'(I1,!....E,?(U: co 1'(',7::;0
PC;)'-=PP(!)
IP5t-iG :"=1
INROw:: -1
WRITE(!,763) !NROW,P(I)

I IOSC2=1
GO TO 730
IF<IQ.EQ,O) GO TO 730
IF(QP(I) ,GE,QII» G:) TO 730
Q<I)=QP(l) j

IPSACT=l
INROW=I-l
WRITE (1 ,765) I NROW, Qcr)
IOSC:=t
CONTINUE

76:
77:730
781C
79:C
!30!763
!H:
!3Z:765
!33:

FORM.'=!T (3X , 'LOWER S:iADOW PRI CE ::'N . -': '-: -. , : : , ' T! G:-JTE~lEj) TO' ,

!34:C
!ISle
!!b:c
!l71C
!l81C
!39:3000
~O:

~1 :
~2:

~3:

14:C
IS:C
~6:C

17:
'8:
'91
'0:

*F14,3)
~ORMAT(:X,' I.;PPER SHADOW ~'~I CE ON (":.,'.: ;,: ro'';-:-' ,13,' rr GhTENED TI}' ,

*F14,3)

A CC:~lPARISON SE:!o:EEN THE COLUMtJS

IF(JSC(J) .EQ,:;) GO TO 3:00
IB=O
IFIlDSC2.EG,O; (~O TD .3200
IF(CClj) , c:, 0,0 .AND,JCN(J) ,EQ,O) I;') T8
IF(JC1,EQ,~COLl GO TO 3201)

JCL"'JGl+1
DO 3100 JG2-JCL,NCOL
J2=JV(JC2)
IFIgK(J21,EQ,O) GO TO 3100 177

401: rFtlSCCJ2l,EO,!,t)R,ISCCJZ).t:Q,:' ,;0 -,-, ::')0

40~:C

40":C
405:C
406: ~j!"C:::(C(J:)-':((J)

407: ;:F(OFC,LT,O,o) 1;0 TO :;100
408: C'FU=r) , r)
409: I E:::r)
410:)0 :;:::;20 I=Z,NROI..I
411: IF(I.(l(I),EQ,o) G(r TO :;:220
412: :":':=':"'0,0
U3: ELII11=O,O
414: ~L~:=0,O

:1.:5: JX::::fROW~l<fU

11- Ib~ :'~"'~ ;'~' .. :.O(JX)
H7: J5=J)'+1
~18: ~'l,"',:~"';Y

H9: C-:: ::::::1 I<=JS1JL
4'·"~· ~F(r<C;..LLi...(;O .~,~.~~.~). GO ~·O ::::1
4:::: .jF':lR;).II~IO:;{'

1122:
423:
~24: :;::2!
~:::S :
~:Z6:

r:={jR.E'~.":::) -;;::..,"':"',~-:,'!:li_~;-:_\

;:1=' (JR ,EQ. J, EL..M2=R!::t,.:EL ... ',1<)
,,:':)NT! '-JI JE

OF~=r:::!..j'l1-E::L:12

! F <oFE. L.=- ,0. 1E -::.)
~27: r::(Q\I),~IJ.Xx) G:) To) .:;;2:3
~28: DFI)=OFU+DFE'Q (1)
~29:

~31 :
132:
~33~3224

.34:3220
135:
~36:

137:(:
138:C
139~e

~40: 3222
)41:
)4Z:3101
~43:
)44:
145:
146:
)47:

)49:
):;)0:
151:
~s::

,53:
:54:
,55:
,56:
57:
58:
59:
60:
61 :
62:3033
63:3011
64:
65:
66:e
67:C
68:310tl
691
70:C

C;) TO 3:21)
rE=1
I=NROW

DFU=OI='UtDFE*P([)
CONn~VE

IFfIE,EQ,lJ GO TO .31~~O

IF<DFC,LE,DFI) GO TO 3i')r)

IPSf1Ci=~

'.rJ::::ITEf1 1 3!Oll J
!:':~'RMAT(3X,'X(' 113,') EXTRANEOUS')
JSEQ=NRO'~+J
i':ChE'f (':SSQ)=AND (i1CKC'I' (]s:::':;,: • ,;(,:;:'~,~T)
KK(J):::O
!SCU)=i
DO 3011 Kl=!N,II1

O)LELL< K 1)::0 ,0
SO<l)::0 ,0
fl"'IC)I_:\C(l{l)
:X=!~C:"MI{!I')

JY=IR:)WNCfJXl
';8=JX t 1
JL=JX+JY
:)(1 :':'\)33 :·c>':::i, JL
IF(IR('iJNOfK2),8:::,J) GO .0 :~;;:;
IF{f;:0Wc~:...(,<2) ,;"'[,0,1) ::::::r.(!! 1< ;.\:! 1)-1
ROWELL(KZ):::(j,O
,\l<Il)=KZ(I1J-l
:.<2=JL
CONTIN:,.'t:
CONTINUE
18=1
JG2=NCOL

CONTINUE
IF(IB.EQ,l) GO TO 1000

71 :e
72:C
n:c
74:C
75:C
76:3200
77:

CALCULATING THE U?!='ER AND LQ~}E:; 4CTIVITY c:oNsTRArNT •• ,

78:
79:810
80:
81 :
82:
83:8101
84:
8'5;812
86:
87:
88;
89;8120
90 :811
91 :e
n:c
~l:C
?4: 1000
?5:C
?6:C
?7:
18:
>91
>01

DO 811 K:;I.'lJ1:M
[= [COLNO 0-0
r;:(':'~LE'~L(;':) ~:01811IB12

IF(Uf]) ,EQ.XX) GC: fO 81'0t
!e(:':W(I),EQ.-XX: G:) ';") 811
RWf I)=RW(i) +COL;;:LL< K) *u (J)

GO TO .311
RW(I)::z-XX
GO TO Bu
IFfU(J) ,EQ,XX) GO ji) 81::0
IF(HUfl),EQ,XX) GO TO 811
RU (I) =RUt r) +COLELL 00 *U (J)

GO TO 811
RUf Il::XX
CCNTIN.)E

CONTINUE

DO 1028 I=2,NROW
RWCII)=R\oHIl
RUC(I)::zRU<I 1
RW(I)=0,0 17R

01: RI)(IJ=O,O
t)Z: 1028 C :)NTl Nt.:E
03: IDse:=o
(14:C
(15: .::
06: ! = , ~ PART ,Sl~ , :) ,;:) ',', ::0(1)
07::::
013:(:
09:(: REMovI,\G .-';ED~INDI1Ni CQ~'Si'\rl~.-":TS '"

11 :C

l:::;: .O=oa::i;,£'~,O) :;:.:' E: :;406
l4: :x:::rRC\.,o~!{d II

10:
17:
18:
19:
20:
21 :

rS=:'(~l

rL=r~+rY

IF(P(:1),~E,O,0) GO -~ :::
IF(RHS(I 1) ,EQ,O,o,AND, LP:"Hi 1) ,EQ,:)l
!F(Q<I1) ,NE,XX) I~O- T') :12
[FIRu(:(Il),I..T,;:,:.,S(lll) GO TO 11')

;;:2:112 IF(RIJC(!11,Lf,r.:hS(Il),:O!'.!D,P(!:),G'T,O,:))';) ~,:, 1~1

23: CO TO 3400
:4:C
:5:C
26:110
Z7:
28:
29:

31:
!:2:

DO 125 IK=I5,IL
IF<ROWELl(HO ,EQ,O,Q) GO 70 125
Rr)wELL(I~<)=0,0
JR:::IR('\1JNO(.110
~=I(:JLMK(';R)

M=ICOLNCI(N)
N5="Pl
MS:::NH'1

:;5: r;:(l((IU' •.)\iO,:o.JE,:i.: ~;) 7:) :'".:':'3
!:6: !r-'(COL::LL<Kl,LT ,~\.O) JCN(;R)"':'~\ :i\)-:
37: COLELL(,,)=O,O
:i8: \<K(JR)=!(~q-'R)-~

~9: ~{=MS

~O::::55

U: 125

~4 :
~5 :
~6 :
.7:
~8 :
~9 :
50: 111
H;
52:
;3:
~4 :
)5:
)6:
>7:
>8:
i9:
10:
,1 :
,2:
.3:
14:
15:
,6:
,'7:1155
,8:115
,9:
'0:
1:
2:
3:
4: 113

" 6:
7'
8:
9:
0,
1:
2:
3,
4:
5,
6:
7:
8:
9,
0,
I:
2:
3,
4:

" 6:121
7:119
9:
9:

"

::C'NTI~,UE

CONT~.'~UE

KZ<!l)=O
IRNd:)=O
!PSrC=1
1~t\GW=[1-1

WRIT~(!.116)rNROW

MRKEY (11) =O~ (KR8FRE. MR;,:'::'y (: ;.))
IDSC2=1
GI) TO 3400
DO 115 IK=IS,IL
IF(RCWELL<iK) ,EQ,O,Ol GO TO 115
Jt=IROWNO(IK)
JS=ICIJU1K(Jll
C(Jl)=C U1) -ROWELl{ 1)<: "tp(I 1)
ROWELL(IK)=Q,Q
JL"ICOLNO(JS)
N5=JS+l
:-.JL"'J5+JL
Or) 115'5 K=NS,Nl.
IF<I(;OU_G(j.I,) .. ~E,II) GO:O 1~5:'5

IF (::·':' .. :~LL<K) ,LT ,0,01 JCNc":l)-=JC~\d':~)
S(I-<)<C':"'E~L~}<)

CO!...EI..\.. (I-{) =0. ()
:<K(J 1)=ttlt. LT!) - I
J5C(.:':)=3
:·~=\;L

CONTI;IIUE
CONTINUE
KZ(I1)=O
IRN(Il'=O
QtI1l=P(Il)
108=1
GO TO 114
DO Il7 IV.=!5,IL
IF(ROWELI..(lK),t::Q,O,OJ Go:ro 117
!=IROWNOI.IKl
JX=ICOLMK{JI
JY=ICI)LNOC!X)
JS=JX+l
JL=JX+JY
DO 119 Kl=J5,JL
rF(COLELUKt),EO,O,O) GO TO !!9
COLELUKll=O,O
S(I".1)=0,0
I2=lCI)LNO(Kl)
!X=IROWMlf(I2)
IY"'IROWNiJ(IXl
IXX=!X+l
IYY=IX+!Y
DiJ 121 K~=IXX.IYY
IF(IROI"tNO(K2',NE,J) GO TO 121
! F (ROWELU ~'2) ,LT, 0, Ol I RN(I 2l =IRN(J:2J -!
ROWE:LL (K2) =0,0
KZ (12)=KZ (!2)-1
K2=IYY
CONTINUE
CONTlN!)E
ISC(JJ=l
KK(J'=O
V(J)=o,O

179

')iJ601 :
':('602 :
OUb03:117
00604:
00605:
00606: 114
00607:
0(16(,8: ~:5
00609:116
0('610:
00011 le
O()61Z:::4I)O
00613:e
00614:(
0!)o15:C
00616:8
00617:C
',")!:.lil:Z'~()O

00619:
0'-'62'):
Q(l62! :
l~0622:

00623:
()~)624:

00625:
')<)626:
0062'7:
('0628:
00629:
')()630:

.(;J=U(;,
WRITE(1,2021 J,X(Jl
C(:NTI Nl.:E
",Z (I ~ 1-=0
i.;:'!'.j(lll=O
!F-'SA('T=l
INRO'.ll=il-l
' .. ~!T:::I!.1:6) 1,,,;;:('1,,1
r:I)RMFHt3X,'·.-O".SfRAINT ',13,X,''lS r:EDI"/IIDANP~
LDseZ"'l

DO 201) 1=2, ~!Rr:::1.rJ

If(:!=lr.J(I).;~E.')\ ';0 ro 200
IF(F'U i ,clE,Q,O,OR,f~I(~) ,NE,XX) ::}
;!="..,,)
'\;~=[f",::(.~."''':(I)
~"1=I ~::;.. ';':' ('.I~~)
1: ~IN:;;~-IN+ 1

;:)':: .::8G :1<=INN,IM",
:f!"(R(I'~I!=:!..l...(r~.;),L::,,~,'':} ';1) :.-, ':3')
J',>~.~'~':~";'~ t, I)~)

';<=":1:.<

';.0631 :280 CONT':N\)S
OC63Z: !F(JF .£Q.') G·) ~'': ;;::.,t')
Of)6Z3:
00634:
00635:
00636:
00637:
00638:Z9:
006:9:
OU640:
00641 :
C0642;
00643:204
00644::05
00645:
00646::0Z
00647:203
00648:
00649:
00650:
00651:
00b52:
00653:
01)654:
00655:
00656:
00657:
:)0658:
00659:201
00660;200
00661 ;C
00662:C
00663:C
00664: 1(101
00665:
00666:
00667:
00668:
00669:
00670:
00671 :
00672:
00673:
00674:
00675:
00676:
00677:
00678:
00679:
00680:
00681 :
00682:
00683:
00684:
00685:
00686:
00687:
00688:
00689:
00690:
00691:
00692:
00693;1336
00694: 1036
00695: 1035
00696:
00697: 1008
00698:
00699:
00700:

'PI .JZ)=!;r'j (:) /RC".,ISLL(-J~)
rFWPIJ2).GE,t.H]2») GO ~J ,:'~r.'.

IPSFlCT=l
U

'
J2)=I)P(J2)

'.JRtTE(1,Z91) J2,U(J2J
F~RM~T(3X,'UPPER BOUND x:' ,13,') =' ,~14,3,;;:: •• 'rr')
II="O<K(J2J,NE,l) GO 7Q 21)3
IF(C(J21,LT,0.01 CO TO 204
X\J~) ... l)(J2)
co El 2')5
I(J2)=O,O
rSC(J2i::l
WRI'"E(1,202) J2,X(J2)
FORMFlT(3X,'X(, ,13,' I ",' ,F14,3)
ROWELL(JF)=v,O
KZ(I)=O
JX=IC')U'!K(J2)
JY"'ICOLNO<JX)
JXX ... ';X-H
.!yv:::JX+JV
DO 20. '''.2:=JXX,.!'I'I

COLEL (~I.2;:;;<), 0
3(1.(2)=0,0
KK (:2) '"f(K (J2) -1
.{2= ;yy
CONYINVE
::_;:,~;"' ~ ~"t.:~

~>:'(IPSACT ,E),O) r;O:: ~'() 100,~

I F'SAC-;-=,)
r !"ASS=IPI'ISS+ 1
IF! IPART ,Er),1) GO TO 1009
IF(IPS,EQ,O) GO TO 1009
IPS=O
DO 1035 J3=1,NCOL
IF(ISCfJ3I,NE,21 GO TO 1035
IFfKK(J3) ,EI),O) GO TO 1035
N=lCOLMK(J3)
M=ICOLNO(N)
NS::;N+l
MS=N+M
DO 1036 1J.=r..:S,MS
rF(SN(K),EQ,O,O)GO TO 1036
r F(COLELL<K) ,LT, 0,0) JCN <J3)=JCN (,;:; i-1
COU::!...i.. (K) =\),0
KK(J3)=O
~=I(.8!"';-":O(K)

NN=I ROWM!-< (I)
MM=I~OWNO{"'N)

INN=NN+l
. IMM"'''JN+MM
DO 1336 !K=:NN,rMM
IF(lROWNO<IK) ,.'lE,J3) GO :0 1:::!;
IF(RI)WELL.(IK),..f,O.O) IRN<I;=IRN(l.)·l
ROWELL{!K)=O,O
KZ<t)=HZ(l)-l
IK=IMM
CONTINUE
CONTINUE
CONTINUE
GO 10 1009
IF(IPASS,GT.l) GO TO 1010
IPSACT"'O
IPASS·IPAS~+1
GO. TO 1009

.On

'070t: tOl0
10702:
I070~:

'0704:
'0705:
'0706:
m07:
0708:
0709:
;)710~

0711 :
I)::::
071~:

0714:
t:715:
(1716:
1)717:
0718:
0719:
0720:
0721:
0722;
0723;
0724:
0725:
07:6:
0727:
0728;
0729:6888
0730:
0731:608
(1732:
0733~

0734:
0735:
0736;
0737:
:)738:
0739:
:)740:
:)741 :
.)742:
)743:
)744:
)745:6088
)746:609
0747:606
)748:605
)749:
)750~

)751 :
)752:607
)753;
)754:
)755:2004
)756:
)757;
/758:
)759:
)760:
)761 :
)762:
)763: 1 113
)764:
>765: 1012
1766;
176712005
1768:
1"/69:
1770:
1771 :999
1772:
1773:C
1774:C
1?7SIC

IF(IPHASE,EQ,O) GO -:-0 1012
!~(IPART ,EQ, 1 H;C: TO 999
IF(r:'S,EQ,I) GO TO 999
DO 61)5 J=l,~~COL
JsceJl=O
IF(ISC(J),S'),~) GO "0 =_)5
N:I COL~'Y. (.;)
r"=ICJ)U'Oe[\::
r.S-=N+ 1
:-;5:1'<+'"
[{1 6(;6 K:::~'.3.:' ... 3
r::1 .:,::".~.;O(!-{)

:SCeJ)=I)

'~"·:~LC:':,..L (~~ J =Sj~ (:~ J
.rl._:·')' .• :::I..L<~) ,LT ,('.',l) :':~U.:)~,;,:::,

"At,j ,=,.:\; (J) +1
r8:::IR(I\,J!"t«:)
!G:::IRC!,,;;\iC t ZS 1
.!8=I I? ';.

DO h88,3 !D-=JB,JG
I::'(::;'I:,~,' ..)(rDl,NE,Jl <,;.) 'T'::: e...383
KljwELL{ ID) =SN (K)
IF(RI)W!:LU ID) ,LT ,'),0) ::'::N(: :"rR~(r J +t
~:z (r l-:\IZ (I) + 1

ID=JG
CO~T:~lU:

GO TO 60Q
IF{sn~) ,EI),Q,Q) GO TO oO.~

COLELL (I<) =8\1< J
I F(CDLELLOO ,LT ,0 ,0) JC~,{!) "''::':."J(J) ~'.
1<1(J)=~'.K(J)+l

I.'(=IRO{J~Kn)
IV=lRCI..;~.O(!X)

JS=IX+l
JL=I;(+lY
[;0 6038 :;:-=18,J:..
rF(J:~(iWNO(IZl,."E,n -;!) -;:; t,,!)fd
t::(!'"ELL(IK) -=8 (K)
Ii:(RCwEI..:...\!sl ,L.T ,0,0) n::~(I J=lRNU) ~l
1(Z(!)-=!-'Z(t)+l
IZ::JL
C~~NTINIJE

::(';:::SC(J)
::::NT!~I!.'E

C::':-';T!~.US

:)13 607 !:::2, ~~:~Ol,,;
PC !)=:),:)

OII)=X;(
CONTINIJE
IPI'IRT::l
WRITE(1,20041
FORMAT(~X,'PART E')
IPI1HSE:::O
WRlTE(l,200l1
I PASS=O
I PSA('T:::(i
I PASS= I PASS+ 1
00 1113 J=l,NCOL
JSC(J) =1)

CONTINtJE
GO ro 1()Q9
I PHASE:: 1
WRITE(1,200S)
FORMAT(3X,'PHASE 2')
I PASS:::l
IPSACT=O
GO T:J 1009
REfURN
END

181

ur)f)l: S~_2f:::Ot_,.r;:JE 1.:SE.~

{I(I()~: 'INSERT SCICON)S>PDPPARAr'15
0003: $1 NSERT se: ':::!N_'S>F"DF-~O:EY
0004t 'INSERT S(:~('-:-~L S' ,po;;' ~ ";" '::-"';.
0005:$INSERT SCI::C~LS>PDF'8!TS
0006: $1 "OSERT .~.: :::;:,~!>s> O::·~~VS~~l.lL

1)1)1.)7: ,! NSERT '3::1 ':I:'~>S>PDPI"1Fr,'RI x
i)(If)!: '$1 ~lSERT 3'~ : ::"::~l S'; ~'D'::'f:":r':lL
(::)[)9: 'I NSERT seI CON.;S;'F'['pBETA
(1010: r::E~'_~~ RHS(512)
00 1 1 : h'E.9L *8 COL ELL " 2(48)
0012: RE~L*-3 R(iJEL.L;2C-1-·g)
'JOI3: REAL*8 W(512)
0014:
0015:
0016:
01)17:
0018:
0019:
0020:
0021:
0022:
l)023:
1)024:

REFlL ~a \,:1= (SI".!!
REAL*8 lH512)
REAL·a l-,~(512)

REAL*8 RUSt2)
REAL*8 RLC(512)

REAL*8 X(SI2J
REAL*8 DFE
~ErlL*8 OFR
F·EflL·~ OFl.!

i"\EAL*8 UT
REAL*8 WT
""EAL*8 E:"'Ml
Ri::AL"',g KM::::
p.r;-E'~S~*2 ~ COLNO (2:)48)

INT~G;::;''':::: ~;:'i)LMK'jl:':)

r."l-:-EGER'"'2 : ~OWNC: (2048)
r~. TSGER*::: ! "OW;"l~:: '5 ~:.:)
r.'lTEGES:+Z '!~«S12)

rN~~GER'*:::: KI\5~":i

r,-,(;"EC':::R*:::: :.(Z~~:::;;..)

IN7E,;ER*;:: ;l.'~(::~:i!

INTEGER"'Z I:JCRU(S12)
:N:t::'~ER*2 Ir)CRL',:i'Z)
!IIlTE';ER*2 LV(512)
INTEGER*2 :llij~2)

':OI"MONI'))Mrll IC:JLElL I ':;:C'\..'E~!...

COMMCN/GOM81 iI .:-0:....-.8, fRCW;\!1)

PREPROCESSING REDUCTION PROCEDURE

J025:
:)026:
)021:
)028:
)029:
)030:
)031 :
)032:
)03~:

)034:
)035:
)O~6:

)037:
)038:
)039:
)040:
)041 :
)1)42:
)043:

COMMON/COMe 1/! COLMK,! ROW:-:V., x:-~, ~',l, :'::.Il, .JZN, : ':":,RI),! CC;OL.., I V,!R
COMMON/CC'MOI/I..!, '.JP, U, ur.:', X

)044:
)045:998
)046:
)047:
)048:
)049:
)050:
1051 :
1052:
1053:
1054:
lOSS:
'056:
'057:
058:
059:
060:
061 :
062:
063:
064:
065:"
066:
067:
068~

0691
070:1600
071 :
072:
073:
074:
075:
076:1650
017~
078:
0791
:)80:1660
081 :
082: 1500
083:C
084:C
)85:
)86:
)87:
)88:
)89:
)90:
)91 :
)92:
)93:
194:
195;
196:
197:
198:
199:
00:

COMMON/COME 1/RL, RLC, RHS
WRI TE (1 (998) NROW, NSE:~
FORMAT(2X ,I 3,3X ,13)
XX=10000I)O.0
NNROW=,,<ROW+ 1
IPAS3=1
N=l
K=l
00 1500 ':SEIj=NNROI"l,NSEQ
J=JSEQ-NROW
I COLM~!. (J) =I{
KU"'EL=MS;"'\EL (JSEQ) +MSKI"EB (JSEC.)
LLMEL=MSNEL (":SE~+ 1)
L=O
DO 1600 LLMEL=I·L"!EL,:":":"1EL

rFu.'~.ow.EQ,l) GO TO 1600
rpOOL=MP-:-"':;: (!!..M:L)
N=N+I
:....=:...., 1
COLEL:" (N) =P'JOl (I ~'OOL)
rcou,,,:: (N) =IROW
KI{(.n=I<)«J)+l
KZ (IRCY) :::KZ (IROW) + 1
IF(COLELUN) ,c;T ,0, lE-8) GO TO 1601)
JZN(J)=JZN (J) + t
KZN(IROW)=KZN(IROW'+l
CO,'\liINlJE
ICOLNO(K'=L
LF(ANO(MCI<EY (JSEQ) .KCBUBC! I!:Q ,0)
IPOOL=MPTME(KLMEL-t)
COLELL(KJ=POOLtIPOOL)
COLELL(K)=-COLELL(K)
IPOOL=NRWME (KLMEl-l)
IF(lPOOL,EQ,KPTPLI) GO TO 1660
U(J)=POOL(IPOoL)
UP(J)=\)(J)
K=K+L+l
N:::N+l
CONT!NUE

LL:::1
K=1
DO 1400 I:::2,NROW
IR(f)=!
RHS<I)=8ETA!l)
IROWMK(I)::.(
lC:::O
~o 1401 J=l,NCOL
N::::ICQLMK(J)
,'1:::ICQLNO(N)
IN=N+l
IM=N+M
DO 1402 L"IN,IM
!F(ICOLNO(ll,NE,J) GO TO 1402
IC=IC+1
LL=Ll+l 182

0101 :
0102:
0103:
0104:
0105:
!)106: 14')2
011)7: 1401
01(18:
0109:

ROWELl<Ll)=COl£LL(Ll
IROINNO{LL)"J
L=tM
IFIF.CWELL(i...LJ,G""!",O,r)) GCI rc, !41)2
RL,{ I 1 =Rl(t 1 +ROW£lL{ LU *"1)(JJ
CC"NTr~I\)E

CC'NTl~lUE

1)11 0: '_'-:;::_~ .• 1
0111:1400 CONT:NUE
)1::: :'7=1
vU3: re;;-..:i.
I):;, 14::::
0ItS:(;
01. :~~.:
Ol17::'X{l ',.;R!"TEI1 ,:'::!)<)1)! :F'~SS

0118:2000 :·.~"'~·-·:x,'l-·1-'·3:::' ,:2.)
0119:C
.)~ 20: (-
(ll;':I:C
01Z2:
0123:
:)1:4:
()12S:
0126:
1)127:
0128:(.
0129:C
')130:
1)131 :e
1)132:C
:)133:900
:)1·34:
)135:
:)136:
)137:
:)138:
)139:
)140:902·
)141:
)142:
)143:
)144:
)145:C
)146:C
)147:C
)148:595
)149:590
)l50:S85
)151:580
)lj::570
)153:C
)154:C
)155:C
)156:7('.5
)157:
)158:
1159:
1160:
1161 :706
1162:
1163:
1164:707
1165:
1166:
1167:
1168:
11M:
1170:
,t 71:
'172:
'In:
'174:
'175:
'176:
177:
1'78 :
179:
180:
181 :715
182:714
183:
'184:
'185:
'18b:
187:C
t8s:e
189:C
190:901
191:C
192:C
193:C
194:C
195:C
196:C
197:
198:
199:
wo:

::c ! ~=1 ,~~':C'L
rF(~~K\':).EQ.I): (..... -(!

DO 9.)1 ¥.=IN,IM
I:o"(COLELLOO ,EQ.O.(J) GO T8 '701
I=!COl.!lJI)(")
:F(COU;:~L(K),LT,O.O) GO TO 90'::::
DFE=RHS (I) -Rl (1)
IF{:::CLElL(-<).GT.!)FE) GO TO:' '1(15
';0 10 901
RlM=RL(I)-COlELL(K)rfol)(J\
DFE"Rf1S(Il-RL!'1
ELM=-COLELL (K)

IF (EL'1,';"[,DFEl GO -:-0 706
GO TO 91)!

r:::RMH:(3X,'~':WER BC~~D (. ,::::,' -' -:-:'~:-r:-=.' .. c:J TO' ,F14.31
FCRMAT(3X,'I)PPER E:JV:-.:D ~. ,!3,') T::;H;S~JS!) TO' ,F14,3)
FC~,~AT(::;X,'X(' ,13,') (x:.'I,~~;ECUS')

FORMAT<3X,'X(' ,r.:,')=' ,~~';',3)
FCR~AT(:::X,'C:rNS,.~qINT(' ,~:::,') f,;;:DUr:DANT' ~

'hRLE(1,S8S) J
JSEQ=NROW+J
I'1U·:::"Y (JSEQ) =Ar,;) (~("KEY (JSE'':;! ,~:::r·fR7 ~
X (J 1 =;..; CH
GO T,] ;')7
.~(Jl=IJ(J)

WRITE(1,580) J,X(J)
JFX=l
DO 714 K2:::IN,IM
I 2"'I(.OLNi)U.;2)
IF(COLELL{1-:2) ,EQ,O,O) GO TO 714
RL(12)=Rl(IZ)-COLElL(K2)*X(J)
RHS(I2)=RHS(IZ)-COLELL(KZ1*X(J)
BETACIZ)=BETA1I2)=COLELL(K2)*X<J)
COLELL(K2)=O,O
N=IROWNK(I2)
M=IROWiIIO(N)
IN:::N+l
JM"'N+M
DO 71S K~=J~j,JM
IFC.:;:CWNO(K3) ,NE .. il GO TO '115
IF(RCWELL<K3) .LT • 0, 0) f<ZN(12) =KLN \ ; ~ ~ . :
::;;OWELL (L<3) =1) ,I)
KZ(IZ)=KZ(lZ)-l
x:;"'.i M

:':':ONTI iIIlJE
i)}N;I\lUE
!f'HASE=1
IDR=l
v'K(J)=O
K=!M

CONTINUE

IF(KK(J),EQ,O) GO TO 1
N=ICOLMK(J)
M:::IIICOLNO(N)
IN=N+l

183

)<)201 :
)0,02:
)0:03:
)(),()4:
)f)Z05:C
)1),06:C
)0207:
10:08: C
;(12(19:(:
::~2:!):

::)211 :
-(;21:2:;
11)213:
1(:214:
10215:C
1(12:6:8
:0217;4
10:18;
11)2:9;
10220:
11)221 :e
10222 ~C
10223:3
'0224;C
0225:C
0226:
0227:
0228:
0229:
02:;0:
02311
0232:5
0233:
0234;
0235;
0236;
0237:
0238;C
0239:C
0240:C
0241;903
0242:
0243;
0244;
0245:
0246;
r)247;7
0248:2
0249:C
0250;C
nSI:C
0252:1
)253:e
)254:C
)255:C
)256;
)257;
)258:
),59:6
)260:e
)261 :e
)262:e
)263:
)264:
)265;
)266:
)267;
)268;
)269;
1270:
1271 ;
1272:t02
)273;
1274:
1275; 101
1276:e
1277:e
1278: 103
1279~

1280:
1281 :
1282;
1283:
1284:e
1285:e
1286:e
1287:
1288:
12891
'2901
'2911
'292:C
293;e
2941
295;
296:
297:
298;
2991
300:

IM::::lN+M
DO ::; ;.':::N~II'!

rF(COLELLCK) ,;:':',0,0) GO TO 3
!::I':-OLNI)(K)

'"::,;:,,,:.:' 4:;!-ISf! ~-RLf!))/(:C'LE!..:..()·',)
I:='\":T,Li::,I.:PtJI) (,;C ~O ::;
,.;F' \J)::I NTt ' .. 'T) 'I
!I)CRL(JI=l
r;e TO 3

UT=\tJ(J}+ (:':HS (r ; ·"IL (.I i) /C(.LEl.~ ~;o
!F(UT,GE,UP(J») GO TO 3
1)f-~tJ)"rr,T(VT)

IOCR!)tJ):!

CONTINUE

r~t::JCRl\J),EQ,O) GO rCI 5
W(J):WP(J)
WRITEtl,595) J,WtJ)
IO(RLfJ):()
I F'~'A::E= 1
10R=1
~!:i:C'C~U(J),EI~,:;) ,~~ .. TO 903
~1(':)=I)PtJ)

WRITE~!,:90) !,~(J)

IO':'RU(J)=O
rpf't.t-~E:l

IDR=l

iJO 2 i<=:N, P!
:F(COLEU.(}:) ,I.;:Q,~),(1, Cl) -:-0 2
:=ICOLNl)lX)
:~(C::·:"'E:"':"'(J.<) ,GT ,0,0) GI) TO 7
RLC (I) =>:':LC (! : ·r:O'..SLL t iO .!)(,j)
1;0 TO 2
':lLC (r) ::RL~: f I) +CC-LELl(K) *W(J)
CONn~ll!E

CONTINUE

DO 6 I=Z,N~OW
RUI)=RLC(l)
RLCIl)::0,0
CONTINIJE

IF(JFX,E:),O) GO TO 103
JFX=O
DO 101 n=2,NROW
AMAX::O,O
DO 102 12=2,NROW
IF(IRtI::l,EQ,O) GO TO 102
IFtAMAX,GE.RHS(12» GO TO 102
AMAX=RHS(lZ)
1=12
CONTINUE
IV<I1>"'1
!R(I)::0
CGNTINlJE

IFt!:::R,EQ,O) GO TO 999
DO 104 IGla2,NROW
IRtlGll::!Gt
l"IVCIGll
IF(KZCJ) ,E(:J,Ol GO TO 104
IFCKZtI),EQ.KZNtI» GO TO loa

IF(IGl.EQ,NROWl GO TO 104
IRL"'lGl+l
DO 105 IG2=IRL t NROW
12=IV(lG21
IF(KZ(I2),EQ.Ol GO TO 105

DFR=RHStII-RHStJ2)
OFU"'O.O
DO 106 J=l,NCOl.
IF(V.K(J),EI~.O.O) GO TO 106
DFE=O.O
ELMl'"O.O
ELM2=O,0

184

(10301 :
(;·):;02:

00303:
00304:
00::;05:
00306:
00307:
00308:
00309: 107
01).:::;1 L):

00311:
00312:
00313: 100
O:):;14:C
OO:lS~C

01),316:
00317:
00318:(
00319:C
01)320: H'8
00321:
00322:
00323:
I)lj::;:4:
~)0:25 :
00;:;26:
0032.,:
G(,328:
00329:
00:;30:
00331:
00332:
00333:
00334:
00335: .
01)336:
00337:
00338;
00339:
00340:
00341 ;
01)342: 110
00343: 109
01)344 :
00345:C
00346:C
00347:105
00348: 104
~0349:C
~l)350 :
)0:51 :
)0,352 :
)0353:
)0354;
)03SS:C
)1.1356 :e
)0357: c
)0358:C
)0359:999
'10360:
)0301 :e
1(:362:C
l036~:C

IX=fCOLMYotJ)
:-!~rCOUWt~,(}

!S=[X'l
i~=r";+I'{

DO 1:}7 K=IS.!l..
r::;=!I:Cl..Nl)t,{}
: ~(t3 ,EQ, I) ELM! =': -:'l..!:':l..li. r:)
r~(I':,EL.J.!2) ::::"I":;C,:~L:.~·_(,O

::-ONTI,'J!.'E
D,·;"E=t::l..i"l-~1..M::::

IF<DFE.:..=:.O.I,') G') -ro !(l6
DFV:OF!)+DFElI-vtJI
CONTINUE

IFtOFR.LT ,DFlJ) GCI rl..: 1('5
! G:2 '~;'~'UI'"

• ~1C::=I-1
wRITE(1.57')) bh
:1RJ-<EY(I)=t)R(KF:9FRE ,,"R!-<EY' (!) ;
:X=IRC'..JI'1I«!)
Jy=IROI"lrJO(]X)
~-S=.;)(~ ~

JL=J)(+JY
:)0 .M ~'.l=JS.:""
:::(~':-' .. ~ ___ n{!) .S-:.0,0) GO 7':: :1)9
Jl:Ifi.I')!.,N(iO{i)

~!:'(!;:':-\I;=:LLlKl) ,i..T ,0,0) JZ'I;(:',: =!l~H,:"l -."
RIJ:"';eL~(I{l J =0, ,)
~;()(=[':'C'L:1'-<tJl ,I

IY'(=ICGL,\iI)(IXi)
ISS=IXX+l
ILl..=lXx+!YY
DO 110 ~<2"'ISS.Il..l..
IF(ICOLNOtk2),NE,I) GO TO 110
COLELL(K2):0,0
I<K(Jl)"',;«Jll-l
KZ:rILL
r.:':I:-.TINUE
CONTINUE
kZ<I)=0

CONTINUE
CONTINUE

!F<:PHASE,E'~.(.'; GI~ ~'J 999
!PHASE=O
IPASS-=:;::=-ASS+l
!DR=O
GO TO 101)1)

RETURN
.E~~D

185

REFERENCES AND*BIBLIOGRAPHY

* A • ustln, L. M., and Michael, E. H. (1983), "A Bounded Dual (All Integer)
Integer .. Programming Algorithm with objective cut, " Naval Res.
Logtcs. Quarterly, Vol. 3D, pp.271-281.

* Austin, L. M., and Michael, E. H. (1985), "An Advance Start Algorithm
For All-Integer Programming, " Comput. & Ops. Res. Vol. 12,
No. 3, pp.301-309.

if.

Ahmed, A. N. (1977), "Appl ication of Linear Programming to Transportation
Problem in Iraq", MSc Thesis, Baghdad University, Iraq.

Ahmed, A. N (1984),
P rob I ems, "
University.

"A Modified Reduction Procedure for Linear Programming
Working Paper, Management Studies Department, Loughborough

* Ahmed, A.N. (1985), "A Reduction Procedure for Integer Programming
Problems," Working Paper, Management Studies Department, Loughborough
Uni vers i ty •

..
Ahmed, A.N. (1985), "Size Reduction of Linear Programs," Working Paper,

Hanagement Studies Department, Loughborough University.

Balas, E. (1962), "An Additive Algorithm for Solving Linear Programs with
Zero-One Variables," Ops. Res., Vol. 13, No. 4, pp.517-546.

Bal insky, M. L. (1961), "An Algorithm for Finding All Vertices of Convex
Polyhedral Set," Journal of the Society for Industrial and Appl ied
Mathematics, Vol. 9, No. I, pp.72-88.

Benders, J. F. (1962), "Partitioning Procedures for Solving Mixed Variables
Programming Problems, Numerische Mehtmatik, Vol. 4, pp. 238-252.-

Beale, E. M. L. and Forrest, J. J. H. (1976), "Global Optimisation Using
Special Ordered Sets", Mathematical Programming, No. la, pp.52-69.

Beale, E. M. L. and Forrest, J. J. H. (1978), "Global Optimisation as an
Extension of Integer Programming," in Towards Global Optimisation 2,
eds., L. C. W. Dixon and G. P. Szego, North-Holland, Holland.

Beale, E. M. L. and Tom I in, J. A. (1970), "Special Facilities in a General
Mathematical Programming System for Non-convex Problems Using
Ordered Sets of Variables," in Proceeding of the Fifth International
Conference on Operations Research, ed. J. Lawrence, pp.447-454.

Bixby, R. E. (1981), "Hidden Structure in Linear Programs," in Computer
Assisted Analysis and Mole Simplification, ed. H. Greenberg and
J. Maybee, Academic Press, New York, pp.327-360.

Bixby, R. E. and Cunningham, W. H. (1980), "Converting Linear Programs to
Network Problems," Maths. of Ops. Research., Vol.5, pp.321-357.

Boneh, A. (1981), "Minimal Representation of Nonl inear Inequal ities by a
Probabilistics Set Covering Problem Equivalence", Technical Report
TRCS8-05, Computer Sc i ence Department. Un i vers I ty of Ca I i forn i a.
Santa Barbara. .

186

Boneh, A. (1983), "PREDUCE - A Probabi I istic Algorithm Identifying
Redundancy by a Random Feasible Point Generator (RFPG) ," in
Redundancy in Mathematical Programming ed. M. H. Karwan,
V. Lotfi, J. Telgen and S. Zionts, Springer-Verlag.

Boneh, A. and Golan, A. (1979), "Constraints Redundancy and Feasible
Region Boundedness by Random Feasible Points Generator," paper
presented at EURO Ill, Amsterdam.

Boot, J. C. G. (1962), "On Trivial and Binding Constraints in Programming
Problems," Management Science, Col. 8, No. 4, pp.419-441.

"Boot, J. C. G. (1963), Quadratic Programming, Amsterdam, North Holland.

Bradley, G., Brown, G. and Galatas, P (1980), "An Interactive System
to Analyse Large-scale Optimisation Models", Naval Postgraduate
School, Technical Report NPS52-80-00S.

*Bradley, G., Brown, G. and Graves, G. (1977), "Design and Implementation
of Large-scale Primal Transshipment Algorithms," Management Science.,
Vol. 24, No. 1.

*Bradley, G., Borwn, G. and Graves, G. (1977), "Preprocessing Large-scale
Optjmisation Models," in Redundancy in Mathematical Programming,
ed. M. H. Karwan, V. Lotfi, J. Telgen and S. Zionts, Springer-Verlag.

Bradley, G., Brown, G. and Graves, G. (1983), "Structural Redundancy in
Large-Scale Optimisation Models", in Redundancy in Mathematical
Programming, ed. M. H. Karwan, V, Lotfi, J. Telgen .and S. Zionts,
Springer-Verlag.

Brearley, A. L., Mitra, G and Wi 11 iams H. P. (1975), "Analysis of Mathematical
Programming Models Prior to Applying the Simplex Algorithm,"
Mathematical Programming Vol. 8, pp.S4-83.

Brown, G. and Thomen, D. (1980), "Automatic Identification of Generalised
Upper Bounds in Large-scale Optimisation Models," Management Science,
Vol. 26, No. 11,00.1166-1184.

Brown, G. and Wright, W. (1980), "Automatic Identification of Network Rows
in Large-scale Optimisation Models," in Proceeding of the Symposium
of Computer Associated Analysis and Model Simplification, Boulder.

Charnes, A. and Cooper, W.; W. (1961), Management Models and Industrial
Appl ications of Linear Programming, Vol. 1 and 11, John Wi ley &

Sons, New York

Charnes, A. Cooper, W. W. and Farr, D. (1953), "Linear Programming and Profit
Performance Scheduling for a Manufacturing Firm," Journal of the ORSA,
Vol. 1.

Charnes, A., Cooper, W. W. and Thompson, G. L. (1962), "Some Properties
of Redundant Constraints and Extraneous Variables in Direct and
Dual Linear Programming Problems," Ops.·Res., Vo1.10, No. 5,
pp.711-723.

187

"Cheng, M. C. (1980), "New Criteria for the Simplex Algorithm," Mathematical
Programming, Vol. 19, pp.230-236.

Chvatal, V. (1984), Linear Programming, W. H. Freeman and Company, New York.

Cooper, Dale O. (1962), "Techniques for Reducing the Size of Process
Plant Models for Linear Programming," Bonner and Moore Associates,
Houston.

Crowder, H., Johnson, E. L. and Padberg, M. W. (1983), "Solving Large-scale
Zero-One Linear Programming Problems," Ops. Research., Vol. 31,
No. 4.

"Dantzig, G. B. (1948), "Programming in a Linear Structure," Comptroller
USAF, Washington, D.C.

Dantzig, G. B. (1955), "Upper Bounds, Secondary Constraints, and Block
Trianguarity," Econometrica, Vol. 23, No. 2, pp.174-183.

"Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton:
Princeton University Press.

Dantzig, G. B. and Wolfe, P. (1960), "The Decomposition Principle for Linear
Programs," Ops. Res., Vol. 8, pp.l0l-ll1.

Dyer, M. E. and Proll, L. G. (1977), "Vertex Enumeration in Convex Polyhedra
a Comparative Computational Study," in T. B. Boffey, ed, Proceeding
of the CP77 Combinatorial Programming Conference.

Eckhardt, U. (19.0, "Redundant Ungleichungen bei I inearen Ungleichungssytemnr
Unternehmenforschung, Vol. 12, pp279-286.

" . Ferguson, R. O. and Sargent, L. F. (1958), Linear Programming: Fundementals
and Applications, McGraw-Hill Book Company Inc, New York.

Forrest, J. J. H. and Toml in, J. A. (1972), "Updating Triangular Factors
of the Basis to Maintain Sparsity in.the Product-Form Simplex Method,"
Mathematical Programming, Vol. 2, pp.263-278.

Forrest, J. J. H., Toml in, J. A. and Hi rst, J. P. H. (1974), "Practical
Solutions of Large Mixed Integer Programming Problems with UMPIRE,"
Management Science, Col. 20, pp.736-773.

*Fourier, J. B. J. (1926), "Solution .d'une question particul iere du calcul
des inequal itles."

Gal, T. (1975), "Redundancy Reudction in the Restrictions Set Given in the
Form of Linear Inequal ities," Progress in Cybernetics and Systems
Research, Vol. 1, pp.177-179.

*Gal, T. (1977), "A General Method for Determining the Set of All Efficient
Solutions. to a Linear Vectormaxlmum Problem," European Journal of
Operational Research, Vol. 1, pp.307-329.

Gal, T. (1978), "Redundancy in Systems of Linear Inequalities Revisited,"
Discussion Paper No. 19, Fernuniversitat, Hagen.

188

it

*

*

Gal, T. (1979), "Postoptimal Analysis, Parametric Programming and Related
Topics, McGraw-Hill.

Gal, T. (1983), "Another Method for Determining Redundant Constraints,"
in Redundancy in Mathematical Programming, ed. M. H. Karwan,
V. Lotfi, J. Telgen ami S. Zionts, Springer-Verlag.

Gal, T., and Leberl ing, H. (1977), "Redundant Objective Functions in Linear
Vecotrmaximum Problems and Their Determination," European Journal
Of Operational Research, Vol. 1, pp.176-184.

Gale, D. (1960) The Theory of Linear Economic Models, New York:Mc Graw
HIlI.

Gale, G. (1979), "How to Solve Linear Inequal ities" American Mathematical
Monthly, Vol. 76, pp.589.599.

Garfinkel, R. S. and Nemhauser, G. L. (1972), Integer Programming,
John Wi ley.

Gauthier, J. M. and Riblere, G. (1977), VExperi~ents in Mixed-Integer
Linear Programming Pseudo-Costs," Mathematical Programming, Vol. 12,
pp.26-47.

Gomory, R. E. (1958), "Essentials of an Algorithm for Integer Solutions to
Linear Programs, Bull. American Mathematical Society, Vol. 64,
No. 5, pp.275-278.

Graves, G. and McBride ,R. (1976), "The Factorisation Approach to Large
Scale Linear Programming," Mathematical Programming, Vol. 10,
No. 1, p.91.

Graves, G. and Van Troy, T. (1979), "Decomposition for Large-scale Linear
and Mixed Integer Linear Programming," UCLA Technical Report.

Graves, R. and Wolfe, P •. (1963), Recent Advances in Mathematical Programming,
New York:McGraw-HIII.

Greenberg, H. (1975), "An Algorithm for Determining Redundant Inequal ities
and All Solutions to Convex Polyhedral," Numerische Mathematlka,
Vol. 24, pp.19-26.

Hoffman, A. J. (1955), "How to Solve a Linear Programming Problem," in
H. A. Antosiewlcz, ed. pp.397-423.

Holm, S. and Kleln, D. (1975), "Size Reduction of Linear Programs with
Special Structure," Working Paper, Odense University.

Holm, S. and Kleln, D. (1976), "Identification of Nonbinding Constraints
and Zero Variables in Linear Programming." Ops. Res. Verfahren,
Vol. 25, No. 1, pp.58-65.

Holm, S. and Kleln, D (1979), "Size Reduction of Linear Programs Using
Bounds on Problem Variables," Working Paper, Florida International
University.

189

* Jackson, R. and O'Nei 11, R. (1983), Mixed Integer Programming In
Mathematical Systems, ORSA/committee on Algorithms Publ ication.
Special Issue.

Jarvis, J. J. and Bazaraa, M. S. (1977), Linear Programming and Network,
John Wi ley·& Sons Inc., New York.

Karwan, M. H., Lotfi, V., Telgen, J. and Zionts, S. (1983), Redundancy
in Mathematical Programming, Lecture Notes in Economics and Mathematical
Systems, No. 206, Springer-Verlag.

Kalan, J. E. (1977), "Aspects of Large-scale In-core Linear Programming"·;
in Proceeding of the ACM conference, Chicago University Press.

Kelly, J. E. (1963), "The Cutting Plane Method for Solving Convex Programs,"
J, Soc. Ind. Appl. Math., Vol. 8, No. 4, pp.703-712.

'"Land, A. H. and Powell, S. (1981), "A Survey of Avai lable Computer Codes
to Solve Integer Linear Programming Problems," Rapport de recherche
No. 81-09, Montreal University, Canada.

L1sy J. (\9711 In (Ekonomiko Matematlcky Obzor, Vol. 7, No. 3, pp.285-298)
Lotfl, V. (198 1, A Study of Size-Reduction Techniques in Linear Programming,

PhD Dissertation, State University of New York, Buffalo.

*

Luenberger, D. G. (1973),
Addison-Wesley.

Mattheiss, T. H. (1973),
and All Vertices in

. No. 1, pp.247-260.

Introduction to Linear and Non-Linear Programming,

"An Algorithm for Determining Irrelevant Constraints
Systems of Linear Inequal ities," Ops. Res., Vol. 21,

Mattheiss, T. H. (1983), "A Method for Finding Redundant Constraints of a
System of Linear Inequalities," In Redundancy in Mathematical Programming,
ed. M. H. Karwan, V. Lotfi, J Telgen and S. Zionts, Springer-Verlag.

Mattheiss, T. H. and Rubin, D. S. (1980), "A Survey and Comparison of Methods
for Finding All Vertices of Convex Polyhedral Sets," Mathematics of
Ops. Res., Vol. 5, No. 2, pp.167-185.

Matthelss, T. H. and Schmidt, B. K. (1980), "Computational Results on an
Algorithm for Finding All Vertices of a Polytope," Mathematical
Programming, Vol. 18, pp.308-329.

McBride, R. (1973), Factorisation in Large-Scale Linear Programming, PhD
Dissertation, UCLA.

Meyerman, B. G. (1979), "Some Results of a Reduction Algorithm for Linear
Programming Problems," Department of Ops. Research. Groningen
University.

Musalem, S. (1979), Converting Linear Models to.Network Models, PhD
Dissertation, UCLA.

Motzkin, T. S. (1936), "Beitage Sun Theorle Ider Linearen Ungleichringen,"
PhD Dissertation, University of Zurich.

190

Motzkin, T. S, Raiffa, H. Thompson, G. L. and Thrall, R. M. (1953), "The
Double Description Method," in Contribution to the Theory of Games,
ed. by Kuhn, H. W. and Tucker, A. W., Vol. 2, Annals of Mathematics
Studies, No. 28.

Rubin, D. S. (1972), "Redundant ConstraInts and Extraneous Variables in
Integer Programs," Management Science, Vol. 18, No. 7, pp.423-427.

Rubin, D. S. (1983), "Redundant Constraints in Linear Programs," in
Redundancy and Mathematical Programming, ed. M. H. Karwan, V. Lotfi,
J. Telgen andS. Zlonts, Springer-Verlag.

SCICDNIC VM (1983), Scicon Services Ltd, Milton Keynes, England.

Sethi, A. P. and Thompson, G. L. (1983), "The Non-Candidate Constraint
Method for Reducing the Size of a Linear Program," in Redundancy
in Mathematical Programming, ed. Karwan, M. H., Lotfi, V, Telgen, J.
and Zionts, S.

Sethl, A. P. and Thompson, G. L. (1984), "The Pivot and Pr\obe Algorithm for
Solving a Linear Program," Mathematical Programming, Vol. 29,
pp. 219-233.

Shefi, A. (1969), Reduction of Linear Inequality Constraints and
Determination of All Possible Extreme Points, PhD Dissertation,
Stanford University •

. Sherman, R. F. (1977), "A Counterexample. to Greenberg's Algorithm for
Solving Linear Inequalities," N~merlsche Mathematik, Vol. 27,
pp. 491-492.

* Spronk, J. and Telgen, J. (1979), "A Note on Multiple Objective Programming
and Redundancy," Report No. 7906, Centre for Research In Business
Economics, Erasmus University, Rotterdam.

* Telgen, J. (1977), "On Redundancy in Systems of Linear Inequal ities,"
Report 7718, Econometric' Institute, Erasmus University, Rotterdam.

* Telgen, J. (1977), "Redundant and Nonbinding Constraints in Linear
Programming Problems," Report 7720, Econometric Institute, Erasmus
University, Rotterdam.

Telgen, J. (1979), "On Llewellyn's Rules to Identify Redundant Constraints
In Systems of Linear Equallties," Zeitschrift for Ops. Res., Vol. 23,
pp.197-206.

Telgen, J. (1980), "Identifying Redundant Constraints and Implicit
Equallties in Systems of Linear Constraints," Working Paper 90,
College of Business Administration, University of. Tennessee.

Telgen, J. (1981), "Minimal Representation of Convex Polyhedral Sets,"
Journal of Optimlsation, Theory and Appl ications.

Telgen ,J. (1981), Redundancy and Linear Programs, Mathematisch Centrum,
Amsteradam.

Telgen, J. (1983), "Identifying! Reundancy in Systems of Linear Constraints,"
in Redundancy in Mathematical Programming ed. M.H. Karwan, V. Lotfi,
J. Telgen and S. Zionts, Springer-Verlag.

191

Thompson, G. L., Tonge, F. M. and Zionts, S. (1966), "Techniques for
Removing Nonbinding Constraints and Extraneous Variables from Linear
Programming Problems," Management Science, Vo1.l12, No. 7, pp.588-608.

Tischer, H. j. (1968), Mathematische Verfahren Zur Reduzierung der Zeilenund
Spaltenzahl Linearer Opimierrungsaufgaben, Dissertation, Zentralinstitut
fur Fertigungstechnlk des mMaschinenbaues, Karl Marx Stad.

*" Tom I in, J. A. and Welch, J. S. (1983), "A Pathological Case in the Reduction
of Linear Programs," Opes. Res., Letters, Vol. 2, No. 2.

"Toml in, J. A. and Welch, J. S. (1983), "Formal Optimisation of Some Reduced
Linear Programming Problem," Mathematical Programming,. Vol. 27,
pp.232-240.

*Williams, H. P. (1973), "Simplifying Linear Programming Problems,"
Research Report, No. 73-2, University of Sussex.

*Williams, H. P. (1975), "Further Simplification of Linear Programming
Problems," Research Report 75-1, University of Sussex.

Wi II iams, H. P. (1978), Model I ing in Mathematical Programming, J. Wi ley,
New York.

Wi II iams, H. P (1983), "A Reduction Procedure for Linear and Integer
Problems,' In Redundancy In Mathematical Programming, ed. M. H. Karwan
V. Lotfl, J. Telgen, S. Zlonts, Springer-Verlag,

Wi II iams, N. (196]), Linear and Non-I inear Programming in industry.
. ed. by S. Vadja (A Series of 'Topics in Operational Research').

Pi tman.

Wilson, J. M. (1983), "Removing
(0-1) Linear Inequalities,"
Loughborough University.

Certain Redundancies from a Set of
Management Studies Department,

Wolf, P. (1955), "Reduction of Systems of Linear Relations (abstract),"
In H. A. Antosiewicz, pp.449-451.

Wright, W. (1980), Automatic Identification of Network Rows In Large
Scale Optimisation Models," MSc Thesis, Naval Postgraduate School.

Zeleny, M. (1974), Linear Multiobjectlve Programming, Lecture Notes in
Economics and Mathematical Systems, No. 95, Springer-Verlag.

~.

Zionts, S. (1965), Size Reduction Techniques of Linear Progranming and
Their Application, PhD Dissertation, Carnegie Institute of Technology.

*Zionts, S. (1960), "Toward a Unifying Theory for Integer Linear
Programming," Ops. Res. Vol. 17, No. 2, pp.359-367.

Zionts, S. and Wallenius, J. (1976), "An Interactive Programming Method
for Solving the Multiple Criteria Problem," Management Science,
Vol. 22, No. 6, pp.652-663.

Zionts, S. and Wallenius, J, (1980), "Identifying Efficient Vectors:
Some Theory and Computational Results," Ops. Res. Vol, 28,
pp.785-793.

Zionts, S. and Wallenius, J. (1983), "A Method for Determining Redundast
Constraints and Extraneous Variables in Linear Programming Problems,"

Zionts, S. and Wallenius, J. (1983), "A Method for Determining Redundant
Constraints and Extraneous Variables in Linear Programming Problems,"
In Redundancy In Mathematical Programming, ed. M. H. Karwan,
V. Lotfi, J. Telgen ald S. Zionts, Springer-Verlag.

193

