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Abstract

Various types of quadrature formulae for oscillatory integrals are
studied with a view to improving the accuracy of existing techniques.
Concentration is directed towards the productién of practical algorithms
which facilitate the efficient evaluation of integrals of this type
arising in applications,

The Newton~Cotes and the Hermite-type quadrature formulae are
considered and extended to the case of oscillatory weight functions.
Algorithms for automatic generation of formulae of any order are
presented. Tbe reasons for the recommended preference for the 1;w order
formulae are pointed out. A more powerful and efficient technique based
.on the use of Chebyshev series is given which represents an extention
of thé well-known Cl;nshaw and Curtis procedure to oscillatory integrals.
Applications and numerical results are included and comparisons with
the related method of Piessens and Poleunis (1971) are made.

A practical method of evaluating oscillatory integrals over
semi-infinite ranges is presented. It is based on integration between
the zeros of the oscillatory weight functions and the subsequent use of
the convergence acceleration tecﬁnique of Shanks (1955}, and‘is also
appropfiate for the evaluation of integrals that converge in the mean
only.

A general investigation inté £he structure of Gaussian quadrature
formulae is also considered, The notorious instabiiity~associated with
the algebraic approach of generating quadraﬁure coefficients for certain
weight functions is discussed. A non-linear approach that delays the
advent of instability is introduced. Further, an accurate and reliable

algorithm, based on multilength rational arithmetic, is developed for
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the specific weight functions whose associated monomials are expressible
as rationals (apart from a suitable multiplying constant), Comparisons
with the published tables (Stroud and Secrest (1965)) are also carried

out. Algol 68 programs are presented.
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CHAPTER 1

0 BACKG

The purpose of the work is discussed with reference to the

fields of application, and the content of the thesis is described.



1.1 Introduction

Numerical quadrature forms an important branch of nuﬁerical
..analysis with applications ranging intc physics, gngineering and

applied mathematics. Considerqble wealth of methods exists in the
literature going back to early work by such authors as Gauss and

Simpson (Dafis and Rabinowitz (1967)). The methods rely on thé analytic
formulation of the Riemann integral in.which the integrals are converted
into summations. In practice this process involves "fitting" the )
integrand to a suitable and easily integrated'function (such as a
polynqmial) from which a quadrature formula will follow.

The question arises as to whether the whole integrand need be
fitted, or whether some part can be left and so be.integrated out
analytically in the prodﬁction of the quadrature formula. For instance,
an integrand with a trigonometric or exponential factor might be t:eated
in this manner. It is clear that in the former case a highly oscillatory
integrand will not be easily approximated by a polynomial over a wide
interval, but if the oscillatory part can be treated separately the
rémaining function may be "smooth" enough for accurate fitting,

Hence the problem reduces to calculating o and x; in the formula

JbF(x) dx = Jb W(x) £(x) dx = If o, f(x,) | (1)
a a i=1 _

.wﬁere F(x) represents the complete integrand and W(x) f(x) the "féctored
férm", W(x) being‘a suitable weight function. Of particular interest
are integrals with W(x) given by a trigonometric fﬁnction such as sin ﬁx
or cos px with possibly large p. This type of integral occurs in

virtually every branch of applied mathematics and is often generated
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by the use of Fourier transforms. Two particular instances of this
are discussed below, one from quantum mechanics and the other from

fluid mechanics.

1.2 Applications of Oscillatory Integrals in Quantum Mechanics

Integrals having oscillatory integrands may occur in calculations
of the energy levels of atomic and molecular systems by means of
variational procedures involving Green's functions. The integréls
occuring in the variational functionals are capable of simplification
in that the kernels may be partially separated when Fourier transform
representations of the Green's functions are employed. This method
has the advantage of removing the singularities which cause most of
the problems in the evaluation of ‘atomic and molecular integrals but
introduces the oscillatory integrands as a compensating disadvantage.
Consequently an investigation of methods of evaluation of such integrals
is of considerable importance in molecular quantum mechanics, as these
new variational procedures are being developed,

Thus, the Schrodinger wave equation for the energy E of a system

may be written in the form

(T + V)Y = EY 1)

where T is the kinetic energy differential operator, V is the potential
energy of the system and ¥ is the eigenfunction corresponding to the
eigenvalue E. TFor example, in the case of an n-electron system the

kinetic energy of the electrons may be represented by

L) 2 2 2 '
T = 2(\.‘r’l+‘3’2+...+vn) : (2)

§ 1.2
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and the potential energy by

V=V _+V_+V . (3)
nn ne ee

where V., V. and V__ represent the nuclear, nuclear-electron and
_ nn’® ‘ne ce
electronic-electrostatic interactions.

Until recently one of the main methods of solving equation (1) was
the Rayleigh-Ritz variational procedure (Eyring et al. (1944)). This
method suffers from a number of defects and recently a new principle was
proposed by Hall (1967}, which introduces a Green's function and re-writes
(1) as an integral equation. Thus, (l) is expressed as

v=uE -1 v - )

introducing an eigenvalue parameter |, whose exact physical value is
unity. If G(r,r') is the Green's function corresponding to the operator’

(E - T)_1 then the relation

[

P =n S ) vE') 6’ de' (5)

leads to consideration of the variational principle based on the

functional
ffw*(_g) V(r) 6(r,r') V(z') w(r') dr dr'

6

[] -

o' (@) V@ 0@ dr

for arbitrary trial functions w(gj.‘ This functional has been stﬁdied
by various authors (Hail (1967), Hall et al. (1969), Hali et al. (1970),
Robinson and Epstein'(1970) and Robinson et al, (1970)) and results -
indicate that accurate energy values may be obtained with very simple
trial functions in a number of important cases.

The méin difficulty associated with the functional n is the
evaluation of the integfal in the numerator. For example, in the case of

a one-electron Green's funetion

G(x,x") = - exp (-krn) (7)

21Tr12



where
E = -2k (8)
and

t,, = |-z (9)

the double volume integral may be expressed as

I = ffw*(l:_) VD) |:-exp(—kri2)/211r12:| V(") w(z') dr dr' (10)

This type of integral is notoriously difficult to evaluate, one of the

12

Michels (1967)). The use of the Fourier representation of the Green's

principal reasons being the presence of the r_, singularity (Harris and

function (Hall et al. (1970))

i s.(z-t")
G(r,x") = - fe s

ds (11)
4n s2 + k2
enables partial separation of the kernel and consequently (10) may be

expressed as

L el o
1 =--L | [F®)| - (12)
7 4n3 52+k2 :
where .
u9=Iva@e“5£g . B¢ )

represents the Fourier transform of the function m*(z) V(r). It is noted
that the T, singularity has been removed, This transformation is
equivalent to working in momentum space and similar types of integrals
occur in many other applications (for example, Mott and Sneddon'(1948),
Sacks t1953), Coulson and McWeeney (1949), McWeeney (1949)) in quantum

mechanics.

§ 1.2

In an application to the hydrogen molecular ion H; (Hall el al. (1970)),

the above relation formed the basis of the evaluation of the integrals.
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The introduction of elliptical two-centre co-ordinates reduced the

integral (12) to the form

1 v

- *

I =- 168 Im J 2+ k57 J £ sin B ar [P as an (14
: oo u

in which R is the internuclear distance, f(A) is the wave-function

adopted and is defined only for 1 £ A £ L and the variables are related

by the following equations

A @2 41 - udi

@? - 1 + ud?

<
R

In the previous work (Hall et al. (1970)) the oscillatory nature of
the integrands was avoided by changing the order of integration and
proceeding analytically by means of contour integration, thus reducing

LS

(14) to the equivalent form

2 1 n - - -
I =- SER I JV I £Q) £Q4,) [% Rk(~€)/2_ Rk(n+k)/2]dg dn du
o ‘U ‘U

- (16)

where

o= mPer-uht an
The integration was then accomplished ﬁumerically by means of a product
procedure of Gaussian type (Davis and Rabinowitz (1967)).

However, in generalizations to more complicated systems, such
analytical procedures may not be feasible and it is therefore essential
to be able to deal with integrals such as (12), (13) or (l4) directly.
Consideration has been given recently to this problem by Blakemore, Evans

and Hyslop (1974), where improved versions of the earlier work of Hall

et al, (1970) and Hyslop (1973) are presented., Consequently, accurate

§ 1.2



and efficient methods for the numerical evaluation of Fourier transforms
and also integrals with non-explicitly periodic integrands require to be
developed.

In addition, similar variational techniques involving the variation-
~ iteration method (Morse and Feshbach (1953)) are presently being applied
to problems involving the Hartree-Fock Self—Consisteﬁt Field method
(Eyring et al. (1944)) and préliminary calculatioﬁs_have been carried
out on the ground state energies of the hydrogen and hélium atoms (Hyslop
(1972)). Such techniques require the recursive use of quadrature
routines inéluding those for oscillatory integrals similar td the above.‘
Once again the development of efficient routines will be absoiuteiy |

essential in reducing computer time for the large scale iterative

investigations implied by the Self-Consistent Field method.

BN <

1.3 Applications of Oscillatory Integrals in Fluid Mechanics

Another source of oscillatory integrands occurs in slow viscous flow

§ 1.3

problems in fluid mechaniecs. The general Navier-Stokes' equations simplify

for slow viscous flows, the important parameter being the Reynolds'
number R which is smali in these cases. The Reynolds' number arises as
follows:

If § is the velo;iﬁy vector at any point in the fluid, § its density,

ﬁr-its pressure and V the kinematic viscosity, then the steady Navier-—

Stokes equations are given by

. (1).

j<a>
o
+
< >
<] »
oy

@ 4§ =-

T =
Lo ]
|

i.g =0 | - ()
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~
~

where V is the usual operator with respect to variables %, §, £,

The equations are non-dimensionalized by using the transformations

d. = Ug ‘ (3)
2. 0= 2&x (4)
go= 2y (5)
2. = 2z (6)
.= vpUp/L (N
. yielding
g2

'Ei(i-F)&“Y.Pr*‘E q (8)
v ]

Y.9 =0 | | (9

where U and & are typical physical 'quantities in the problem under

consideration. The non~dimensional constant UL/v is called the Reynolds'
number and symbolized by R.

| For very small R the term on the left hand side of equation (8)
which contains the non-linearity may be expected to become unimportant
and the solution might be close to that of the right hand side alone.
The_équations forméd by the right hand side are called Stokes' equations
and are soluble by separation of the variables in many cases,

" However, if an attempt is made to set up an asymptotic series.for
the solution of the form

q = 30+R-g_1+_R2 32+..Q (10)

the solutions obtained from tﬁe differential equations satisfied by each
term of the series are valid only in a limited region. Just what
happens away from the region oé validity can be discovered by using a

different scaling and applying the theory of matched asymptotic expansions



(Van Dyke (1964)). Such expénsions give a measure of the influence
of the non-linear part even though the equations being solved are
themselves linear,
A geﬁeral way of tackling these problems is to apply a.complex
Fouriér integral transform in three variables to the differential
equations fér a given term of the asymptotic series (Evans (1969),
Evans and Ockendon (1972)5. The inversion of this' problem is in
general a multiple integral of a highly oscillatory nature — often
only convergent in the mean for some of the relevant parameter values.
Many practical problems have a further non-dimensional parameter in
addition to the Reynolds' number and the interaction between the two
parameters results in a long séries of problems of the above type. Oﬁe,
which is of current interest, is an extension of the work of Saffman. (1964)
in which Be considers the forces ;n a sphere in a viscous fluid of infinite

extent across which is imposed a linear shear as illustrated in Figure 1.

\
0 sphere radius a




With the notation in the diagram, the full problem satisfies the

equations
@Dg =-Tp,+Tg aD
Vg =0 _ (12)
with .
g -0 e x = oo (13)

q (1+B2)i at =

which have been non-dimensionalized using v/U as a typical length and

U as a typical velocity, In the equations € and B are two parameters
and different problems arise depending on their reiétive sizes. For

€ << 1 and 1 << B'<< 15 the inner and outer expansions are theose of
Saffman. The require;ent is to find the force on the sphere. This
force follows directly from taking the limit of the ﬁuter so}ution near
to the sphere (Evans (1969)). Consider the ﬁase where B is order of

unity. Then the asymptotic series

2 inertia (1 +Bz2)i+e ﬂf%) *oees ' (14)

will result in problems for the individual terms which cannot satisfy

all the boundary conditions, Hence, the inner problem is introduced

and is presented by

r = er (15)
2

e(g_&_)g_=-gpr+%’ q , (16)

Vg = 0 - ' a7)

qg = 0 on ¥ =1 - : 7 (18)‘

g = (L+B8ePi at o - (19)

10
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with the series solution of the form

S-inner - _9_0 + € ql ) (20)

where g is the Stokes' solution for a uniform stream, that is

. 1
= i+ 0 (x) at infinity. (21)

o ¥

Further q(l) must satisfy
: (1) :

Q+8) B wguD angp By gD (22)
g = o @
1 ( (1)

where w is the z-component of q"°/, with the limit as r + 0 of ¢ ~“being
a Stokeslet, This matching can be achieved automatically using a delta

function, (Ockendon and Evans) to give the equations

(1)
9q :
(1+82) o= +8 S y_pﬁl) + 2 M vem i 6(m 6() 8(2)
(24)
7.qM = o (25)
The complex Fourier transform of this equation is
2 - = = - %
-k"gqg+ik p.= Bwi-i kl_g_— g kl 5E5 + 6T 1 (26)
kg = 0 _ (27)
g _
a » 5"3‘1{_3 + w = 0 (28)

and hence the solution for the force in the z-direction is

S A G s k | . B
force = §-—2- r J J J E-l- axp [—t(k2 - ikl):[
: 4T =/ =0/ —0/ g T2 _

2 .2
‘ * 5 k1 £t :
{(k3+k1t8) exp [}t (k1k38 + 3 _i] -kB}dt dkl dk2 dk3

(29)
11
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This force is 67 times the limit of the fluid velocity at the centre

of the sphere. The integral (29) can be reduced to a real one given

by

-Smmoocokl 9
force = “hE‘J_mJ_wJ Io —5 exp (-tk™) cos ktl {(k3 + kltB)

an =® k
: 2
2 kg gt
exp [—t (k1k38 + —-—5—-—)]-1:3}& dkl dk, dk3 (30)

where the term cos tkl causes the oscillatory difficulties in the
numerical evaluation of the integral. This integral is typiéal of the
sort which result in pursuing other cases of B and €, It is clear that
an efficient algorithm for evaluating oscillatory integrals is necessary
so that this four dimensional integral can become tractable numerically.
The integral (30) bears marked similarity to the two céntre quantum
mechanical Fourier transforms arisi;g from equation (1,2.13).

A furthér problem, in the same field, arises in the study of the
inter;ction of sets of small spheres and results in an integral,
convergent in the mean, The basic problem, in this casé, is to find the
force on one sphere due to the presence of aﬁothef when both have
general velocities in the fluid stream, which has a uniform velocity U.

By extending the work of Evans, the transformed equations are obtained

in the form

_ 2 — _ A i(k1 sin o + k2 cos Q)
-1k1 Usy R+k Uy = 1k1 pr01- Gﬂ[l + lurl e ] {31)
T 9 _ _ i(kl sin o + k2 cos o)
—1k1 Uny R+ k us = 1k2 prOI- 6T A u., e (32)

12
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--11{1 Wop R * k Wo1 = 1k3 P, . (33)
01
kl u., + k2 Vo * k3 Wy = 0 » (34)

ol

where the bars indicate transforms of fluid velocity components and

—

'1'1'01, Vo1 501 and P, respectively, u . and u_, are components

ressure
P ' rl r2

of relative velocities of the two spheres, A is the ratio of their radii
and

R = UR/V

where £ is distance between spheres. The solution of these equations is

_ ri(kl sin o + k, cos o)
P =61Tk1[1+kur1e ]
01

i(k, sin o +k, cos )

+ 6m A u., € k (35)

2 2

- 9 2 i.(kl sin o + k2 cos o)
Uy T { 6Tr(l-c2 + k3) |:1 + A u e ‘ ‘

e

K2 - ik, &) (36)

1(1:(1 sin o + k2 cos )
172

6ﬁlu k.k, e
. rl

<
I

' i(kl sin o + kz cos a)
ol = {611’ k1k2- l:l + A uge ]

2
3 €

:i.(k1 sin o + k2 cos Cl.)}
2

Sem A, (2 4k pEad - ik B (37)

vhere the forces required can again be obtained directly from the limits

of the inverse transforms of these expressions as x, v, z + 0. All,

13



except the second integral for Vop can be found analytically by using
rotations in the complex plane and contour integration., The integral

for the second part of Vo1 is

. g i(k; sin a +k, cos o) - i(k.r)

2
w o (kT 4+ k) e
1 3 .
[ - —w o
- J =0 S ey k (k - 1 kl R) R

and it can be reduced, by considerable manipulation, to

Zﬂz(sin ¢~ 1+ sin a cos a}/R cos2 o
2 . . -1 -1
+ 1 exp (R sin a/2) aexp (-y sina) ¢.” y
. o ,
[%(c + az)Jo(a cos 0) - 2a Jl(a cos a)/cos a]da (39)
where
y = (% + B2/4)} | (40)

¢ = Ry + R%/2 : o (81)

for sin o > 0, and a similar form for sin & < O, Except when a is close
to zero this integral is perfectly well-behaved and can be integrated
numerically with little trouble. However the integral converges only
in the mean when o = O, A method is suggested in Chapter 5 to deal with

this difficulty and also the non-trigonometric nature of the periodicity.

14
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1.4 Qutline of Present Work

.In the present work, therefore, concentration has been largely
on the development of practical techniques for the evaluation of integrals
with oscillétory integrands, although some attention has been paid to
more general weight functions. For instance, a suitable choice of
weight functi&n can often deal directly with a singular integrand, or an
integrand with some singular derivatives in which convergence of a
numerical quadratpre may be slow.

The work is arranged as follows. Chapter 2 is concernéd with the
comparison and systematization of the classical quadrature methods,
starting with a description of the work on the non-oscillatory case. The
classical methods such és that of Filon (1928) are in some cases inadequate
to deal accurately with the oscillatory integrals encountered in the
applications and a method of improving the‘fegults of the low-order
- quadrature formulae is investigated.

This procedure is not generally successful and a systematic method
of extending the order of the quadrature prescriptions is investigated
in Chapter 3. An algorithm for the automatic generation of Filon-type
formulae of any order is presented and numerical instabilities associated
with the calcuiation of the higher‘order quadraﬁuré coefficients are
discussed. |

These instabilities stimulated the search for z more powerful
and efficient quadrature technique based on the use ofVChebyshev series
and this method is presented in Chapter 4, and represents an extension
of the well-known Clenshaw and Curtis (1960) procedure-to oscillatory
integrands. Critical comparisons are carried out with the Newton-Cotes
based methods of Chépter 3 and aisp with the related earlier work of

Piessens and Poleunis (1971),Bakhvalov and Vasil'eva (1968),
' 15



In Chapter 5 a practicallmethod of evaluating oscillatory integrals
over semi-infinite ranges is given. This method ié based on the
convergence acceleration procedure provided by the non-linear
transformations of Shanks (1955) and it is shown that the method applies
also to integrals which converge énly in the mean,

In the éemainder of the thesis, a rather more general class of
integrals is studied. An effective method for the systematic generation
of the Gaussian quadrature formulae is presented for integrals with weight
functions whose associated monomiais are expressible as rationals. Using
rational arithmetic, accurate quadrature coefficients are obtained for
integrals for which the traditional methods are notoriously unstable.

| In the course of this workrseveral papers based on the éontents have
already been prepared and published and are listed in the References

(Alaylioglu, Evans and Hyslop (1973, 1974a, 1974b, in press)).

-

16
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CHAPTER 2

PRELIMINARY DISCUSSION

The structure of certain basic quadrature formulae is investigéted
by considering their derivation using both interpolatory polynomials
and Taylor expansions, particular attention beihg Qaid to the forms
of the respective error terms. Initjally, the familiar Newton~Cotes
formulae fof non~oscillatory integrals are treated and then general-
izations to integrals with oscillatory components are considered.
Numerical results are given to illustrate tﬁe accuracy of the two
different aﬁproaches in this case and the possibility of improving

the results by means of the extrapolation technique of Romberg (1955)

is also considered.

17



2.1 Introduction

Quadrature formulae of the interpolatory type for general weight
functions are usually produced by the integration of interpolation
formulae ('most commonly of Lagrangian type ), the general formuiation
together with error terms being quoted, for instance, by Davis and
Rabinowitz (1967). In the case of oscillatory integrands, an approach
based on the interpolation property of the non-oscillatory factor for
the calculation of integrals over finite intervals, has been used by
Filon(1928), Luke(1954), Flinn(1960), Clendenin(1966) and Tuck(1967).
‘Filon has fitted a second order interpolatidn pélynomial to the middle
and the end points of each double section of the sub-divided interval,
whereas Luke has considered an n—th-ofder polynomial and has given
formelae primarily suitable for hand calculations using tabulated
functions, Flinn has modified Filon's method by fitting a fifth order
polynomial to the values of the function and of its first derivative
at the Filon abscissae. Clendenin has defived integration formulae
based on the linear interpolation property. An indepenaent development
leading to a similar result has been given by Tuck.

Taylor series may also be employed to produce alternative quadrature
rules {for instance, Squire (1970)) but these obviously suffer from the
defect that derivatives are involved in the final forms, whereas only
function valueslappear in the interpolatory rules (although deriﬁatives
appear in the error terms for both classes of formulae). However, the

"use of the more familiar Taylor series, as opposed to an interpolatory‘
polynomial whether of the Lagrange, Newton, Béssel or étirling type

(Hildebrand, 1956), has the great advantage of directness.

18
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In the present chapter a'preliminary investigation is carried out
into the derivation and structure of both Taylor and interpolatory types
of formulae.

Initially, attention is confined to the derivation of the familiar
Newton-Cotes formulae in the case of non-oscillatory integrands.
Particular aétention is paid to the derivation of error terms using
Taylor series expansions.

A similar.investigation is then performed on the structure of the
first and second order formulae developed by Clendenin and Filon for
the oscillatory case, with a view to setting up a quadrature extrapolation

scheme of the Romberg type.

.

2,2 Investigation of the Structure of the Newton-Cotes Formulae

To begin with, the derivation of Newton-Cotes quadrature rules is
considered using both the usual Newton interpolating polynomial and,
for comparison purposes, a corresponding Taylor polynomial.

a) The Use of Interpolating Polynomials

The standard method (Hildebrand (1956) or Scheid (1968)) of obtaining

Newton—Cotes quadrature formulae for the evaluation of the integral

n :
I = J f(x) dx ' (1)
X

o
using x, = x + ih with i = 1,2,.,.n, is to replace f(x) by the n-th

order Newton polynomial

. n A .
P_(x) = izo (emx ) (%) ea (2% _p) At fol(ilhl)

[ t ] I : | : (2)
0 .

19
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where fi = f(xi) and x = X, * th, with the usual notation.

The result is the n~th order Newton-Cotes approximation

.__' i _
N -—h-.g cn’iA £, (3)
1=0 :

where ) :
= t
i ~ '0 (;) ac | | (4)

The error term is conveniently obtained by successive applications

oerolle's Theorem to a function of the form

£(x) - Pn(x) - cﬂn(x) ' (5)
" in which

Hn(xj = (x—xo)(x-xl)....-.(x-xn). | (6)

. .

The final expression may be written as

I =N +e(N) (7

where the error e(Nn) in Nn is expressed as

E(Nn),= hn+2 Cn’n+1 f(n+1)(£n) . (8)

with 0 < En < x, assuming the derivatives exist,

For example, the familiar trapezoidal rule

_ 1 1 .3 _(2) ‘
I, = ghiE_+£)- FZh £7() )

follows immediately.

As is well known, the case of even n requires special treatment, in
that it is easily seen that cn,n+1 .
- is that equation (8) is valid only for odd values of n and modification

-
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vanishes when n is even, The implication



is required in the even case. In fact, in equation (5), cHn(x) is

replaced by cHn+l(x) and gives a non-vanishing error term of the form

n+3 (n+2) :
h Cn,n+2f (En) for even n,

Expliecitly, the error is given by

_ .2n+3 (2n+2)
ey = b7 Gy one2 €)n)>, (10)
an example of this modification being the much used Simpsoﬁ's rule
= L -1 .5 .(4)
I;2 -fh(fo + 4f1 + fZ) 30 h™ £ (Ez) (11)
b) The Use of Taylor Series
Instead of the Newton interpolating polynomial of the previous
section, a Taylor polynomial is used and yields the formula
Io=T o+ e(T) | | (12)
where
n *n (x—xo)1 (i)
T = ) J e £ (x ) dx o (13)
n i: o
i=0 “x
o
and
X n+l - .
n (x—xo) (n)
S(Tn) = I W £ (En) dx (14)
G .
These expressions may be reduced to the forms
T i (1)
T =h J B .h £ 7(x) (15)
n . n,i o
1=0
and : _
_ 02 (n+l)
e(Tn) h Bn,n+1 £ (En) | (16)
with
mi+1 '
B ., = mrr—my : (17)
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For instance, the first order result may be quoted as
= .1 (1), , 1.3 .(2)
I, =h {f +5h fq b +gh” £ (18)
and it Wili be noted that, by comparison with equation (9),

e (Tl) | =2 ] ¢ ) | (19)

showing that the magnitude of the error in the Taylor series result is
twice that for the trapezoidal rule., A comparison of the error terms

for general n is now considered,

¢) Comparison of the Error Terms

dB

‘A dire omparison of the error coefficients
A direct c mP ison of t rroxr coeffici cn,n+1 an n,n+l

is

is not meaningful in general, since, as mentioned above Cn n+y *
: ]

- effectively replaced by Cn 042 when n is even. Also, symmetry has not
3
been taken into account in the derivation of the Taylor series results,

since expansion has been carried out about the end-point X » For this

reason, attention is confined to even order formulae which, in the case

of the Newton-Cotes interpolatory results, involve the coefficient

' c2n,2n+2
by expanding about the mid—point'xh of the interval Exo, x2n].

The modified result is written as

2n Son (x—xn)i (i) }
'].'zn = igo I —Tr £ B (xn) dx _ (20)

x
o
and, noting that all odd terms in the summation vanish on integrationm,

it follows immediately that

T, =h

2n B

ey ) (21)

[ R=]

520 2n,21
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of equation (10)., In addition, the Taylor expansion is symmetrized



where the coefficients are now defined as

- 2n21+1

13.2![1’21 = J(21i+1)! (22)

The error term is also readily obtainable in the form

L 2n+3 f(2n+2)(52n)

| e(T2n)'.= h B2n,2n+2 (23)

which may now be compared directly with the cofrespbnding Newﬁon—Cotes
result (10).

A useful examﬁle of this formula is the case n = 1 which yields
the "Taylor-Simpson" result

1

w i 2 _(2) 1 05 (4)
‘Iz—h{2fl+3-h £ ‘}+€6h £777(8,) | (24)

in contrast with equation (11). It will be noted that the magnitude
of the error term is once again lé;ger than the cdrresponding Newton~
| Cotes result, the facﬁor this time being 3/2, as opposed to 2 for the
trapezoidal case.

The first few values of the coefficients are shown in the following

table for comparison purposes.

Table 1. Comparison of error coefficients in Newton-
Cotes and Taylor series quadrature formulae.

- § 2.2

Order Newton-Cotes Taylor Series Ratio
(2n) Con, 2n+2 Bon,2n+2 130, 20427/ Con, 2042
2 ~1/90 1/60 3/2
4 . =8/945 16/315 _ .6
6 -9/1400 : 24372240 135/8
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d) Generation of Newton—-Cotes Formulae Using Taylor Series

Although the error terms in the'Taylor series quadrature formulae
are larger than the corresponding Newton-Cotes results the analysis
required in their derivation is considerably simpler. Consequently the

possibility of using the simple Taylor series approach to generate the

Newton-Cotes results is now investigated., As an example, if the Taylor-

(1)

Trapezoidal rule (18) is considered and the first derivative term h fo
is effectively replaced by its finite difference approximation (fl - fo),

according to the relation
W _ . 1.2 (2)

then the trapezoidal rule (9) is obtained immediately.

Again, when the Taylor-Simpson rule (24) has the term h f(z)

replaced according to the relation quoted by Abramowitz and Stegun (1965)

(2) = (£, ~ 26, +£) -1z h f(4)(£2), (26)

Simpson's rule (11) follows at once.
Care is needed with the highey order formulae to enéure that finite
difference forms of the correct order ‘are employed for the derivatives,

Thus, the case n = 2 yields

= (2) (4) 7 (6)
4h (f + = h £ h f ) + —— 315 f2 (54) 27

1 305 15

4

The fourth derivative term is replaced according to the natural relation

quoted by Abramowitz and Stegun as

b g - s _1.6 (6 o
h f2 = (f4 4f3 + 6f2 4f1 + fo) gh f (54) (28?
However, in the case of the second derivativate term, a three—point

formula of a similar form to equation (26) is not applicable and must

24
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be replaced by the five-point formula

2 (2 _ o . eyl _ i,
h f2 = (f3 2f2 + fl) 12(f4 4f3 + 6f2 4f1 + fo)
1 .6 _(6)
+ash £00(8,) (29)
(Abramowitz and Stegun)
When equations (28) and (29) are substituted in (3) the result is

4 8 .7
I, = 50 h (7fo + 32f

4 + 12f2 + 32f£

1 3 945
which is the usual four-strip or Boole's rule (Abramowitz and Stegum).
The possibility exists of generalizing this method to integrals
involving oscillatory weight functions as in the integral
b sin ' '
J £(x) cos PX 4% : (31)
a
The resulting formulae are generalizations of those quoted by Squire

(1970) and it will be shown that they are entirely analogous to the

interpolatory procedures established by Filon, Tuck and Clendenin,

2.3 The Generalized Quadrature.Rule with Oscillatory Weight Functions -

Thus, on sub-dividing the interval [a, b] into m sub-intervals

each of width 2h where
h = (b-a)/2m ‘ (1)

and using a linear Taylor expansion (n = 1) about the mid-point X of

the i-th sub—interval, where

x, = at (2i-1)h (2)

25
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it is apparent that

I
§t~g

b
J £(x) cos px dx
a

h

12
1~

i=1 =h

m

+

i=1

m

- 2 sin Eh
P i=1

h
J f(x.+t) cos p(x,+t) dt (3)
1 /1 i i

£(x;) J cos p(x,+t) dt
(1) h
o (%) J t cos p(x,+t) dt (4)
1 -h 1.

Z f(xi) cos px.

2, T
- —E-(sin ph - ph cos ph) Z £ (xi) sin PX,

p

1=1

(5)

This quadrature rule has been quoted by Squire (1970) and the method °

of generalization by introducing higher order Taylor series is obvious,

For example, if a quadratic expansion (n = 2) is utilized about the

mid-peint X, the result is

R

b 2 sin ph =
J f(x) cos px dx L3101 z f(xi) cos px,

a i=1

Zf (sin ph - ph cos
P .

+ 13 {2 ph cos ph + pzhz sin ph - 2 sin
P

. The finite difference approximations

f(l)(xi) = {£(x,*h) = £(x;)}/n

26

m
ph).z f(l)(xi) sin PX;

i=1

o .
ph)iz1 f(z)(xi) cos px,

(©®

(7)
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.f(z)(xi) o {f(xi+h) - 2f(xi) + f(xi-—h)}/h2 (8)

yield the Newton-Cotes type quadrature formula

b
J f(x) cos px dx = hu.[%(b) sin pb ~ f(a) sin p;]
a .

m
+ hy E f(xi) cos px.
i=1

+ 2hB [% f(a) cos pa + %-f(b) cos pb
+ f(at2h) cos p(a+2h) + f(a+4h) cos p(atéh)+ ...]

9
vhich is, of course, the well-known formula of Filon, The parameters

appearing are given by

a= (6" + 0 sin 0 cos 6 - 2 sin”0)/6°, (10)
B = [ B(1 + cos26) - 2 sin O cos g]/e3, Q1)
Y = 4(sin 8 - 6 cos 9)/6°, ©(12)
with
8 =ph ‘ 3)

Clendenin's formula which is a first order quadrature rule of the

" Newton-Cotes type results from the linear approximation

b m-1 <h ' (1) .
J f(x) cos px dx = Z J {f(a+ih) +t £ (a+ih)} cos p(a+ih+t)dt
. o .

'a i=0
. (14)
together with the finite difference representation
f(l)(a+ih) ™ {f(a+ih+h) - f(a+ih)}/h ' (15)
where the step-size is defined by the equation
h = (b-a)/m \ - (16)

27
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§2,3

It is expressed by the following relation which is analogous to

equation (9)

1]

b
J f(x) cos px dx = £(a) {— sin pa/p + z sin p(a+h/2)}
a

£(b) { sin pb/p - z sin p(b-h/2) }

+
m-1
+y Z f(a+ih) cos p{a+ih) (17)
i=1 '
where
2, .2 . o
y = (4/hp”) sin”(ph/2) (18)
z = (2/hp?) sin (ph/2) (19)

For referencé purposes, the formulae derived by Taylor expansions

of ordexrn =1 and n = 2 and depicted in equations (5) and (6) respectively

1 2

Cotes type derived by Clendenin and Filon shown in equations (17) and

are referred to as T, and T,. The.corresponding formulae of the Newton-

1 and N2.

The local truncation errors associated with these formulae are

{(9) are referred to as N

denoted by a(Tl), E(Tz), E(Nl) and E(NZ). Clearly, the higher order
terms left out in the Taylor expansion of the integrand provide estimates
of the errors in (5) and (6). Thus, quoting only the leading terms, the

estimates of the errors are

2
) he . h_ 1.
E(Tl) = f (xi) 75 sin p(xi+h) + —5 cos p(xifh) =3 sin p(xi+h)
: P P
- Ez;sin (x.-h) + E—-cos p(x.-h) +Al— sin p(x -hi
2p Pixy 2 i 3 S PAFy
P P
(20)
and
3 2
P &) h™ . h _h . !
e(TZ) = f (xi) &p sin p(xi+h) + ;gi-cos p(xi+h) P3 sin p(xiih)
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1 h3 h2
- =F cos p(x.+h) + =—=— sin p{(x,~h) - — cos p(x.-h)
i 6p i 2 i
P 2p
- b éin p(x.~h) + L cos p(x.-h) (21)
p3 i p4 i

The error estimates E(Nl) and E(NZ) are based on the difference between
‘the interpolatory formula and the corresponding exact formula obtained

by integrating the Taylor's expanéion of the integrand.

| Manipulation of the coefficients of the formulae yields the required

egtimates,

L@ [n L oL i ot + L o
E(Nl) = f (xi) 5 cos p(xi+h) 7 sin p(ki+h) + 3 sin px;

P P P
-'E—E cos p(x.+h) + B——-cos pX. } {22)
1 2 i
2p 2p
and ' "
ey = £y P--z-—-cs (x.+h) - 2= sin p(x.+h) - = cos p(x.+h)
2 * 7 cos pl¥; 3 PRy g €08 PiXg
3p P P
2
- & cos plx;-h) = 5 sin p(x;-h) + = cos p(x;~h)
5 cos pix, 3 sin p(x; 7 cos px;
3p P P
(23)

2.4 Numerical Results

The four quadrature rules were applied to the integral
1 x .
j e cos px dx (1)
(o] i S

for p = 101, i =0 (1) 4 using sub-division formulae with m = 5,10,20,40.
The calculations were carried out in double precision arithmetic, and

the relative errors are tabulated in Table 2. It is apparent from the

29
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Table 2, Relative Errors

in the Evaluation of j

1

(o]

X
cos px dx

Rule p 5 10 20 40
T, 16639574 4164977 1041561 260410
N, - 8336996 | ~ 2083562 |- 520848 |- 130209

. ,
T, - 13543 |- 852 |- 53 |- 3

N, 9031 568 37 2
T, 13917390 4000589 1031376 259775
N, - 8373977 | - 2085898 |-~ 520993 |- 130218

10 '

T, 625461 37215 2299 143
N, - 438930 |- 25210 |- 1537 |- 95
T, 55042187 100957 86 1293879 196852
N, - 2594599 | - 4505568 |- 587402 |- 133868

2
10 o
T, 2188942 | - 155962 |~ 21602 |- 874

N, - s2441 | - 57911 21518 619
T, 4599306 10159454 1227177 |- 1004217
N, - 1706786 | - 1737642 | - 1745312 |- 1747227

10°
T, 1166842 316106 80029 19527

N, 11037 2261 | - 13 |- 590
T, 59383630 15906375 3062169 730171
N, 135039 | - 5232 |- 14746 |- 16750

10”
T, - 4699039 | - 1636898 29455 18372
Né 14144 3548 897 218

10

The entries have a multiplying factor of 10 ..

Tl’

N

1’

(2.3.17), (2.3.6) and (2.3.9) respectively.
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table that for small p (p ~ 1) the magnitude of the error in the
Clendenin formula is a half of that of L Similarly it is noted that

the error in the Filon‘formula is 2/3 that of T2. This result is to be
expected as the present formulae reduce to the Newton-Cotes formulae as
p tends to zero. In fact it can be easily shown that the error terms
quoted in eqﬁations(2.3.20)*(2.3.23)reduce as p + 0 to the results given
in section 2,2, On the other hand for large p it i8 clear from formulae
2.3.20) - (2.3.23) that the prescriptions N, and N, are to be preferred to

Tl and T2 respectively, and that this is borne out by the errors shown
in the table. Indeed it is apparent that the interpolatory formulae are

to be preferred fgr all values of p, the second order Fiion formulae being,
of course, preferable to the fifst order Clendenin formula, The |
interpolatory formulae have the added practical advantage of not needing
analytic forms of the derivatives ;f f(x). Extension of the interpolatory
formula approach to higher orders is analytically extremely involved and,
in addition, numerical instabilities arise in a manner analogous to the
usual Newton-Cotes formulae., This is the well-known effectlin which some
‘of the higher order coefficients become negative. This problem is
discussed further in the next chapter. Heré, attention is confined to

the low order formulae (n = 1,2) and an attempt to improve the results is
made by employing tﬂe éxtrapolation technique of Romberg.

In the 1imit as p * O the errors in the formulae of Filon and
Clendenin tend to the classical Newton-Cotes errors. Hence it is
reasonable to expect a Romberg extrapelation technique to be viable
when p is small, say order 1. The Romberg proéess can.be defined by the

recurrence re lation

s$9 = gy 5= sy ()
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(%)

in which So is the wvalue of the required integral with step-size
[ .. ,L i , .
h/2”, and q, is 27 where the error of the integration formula is of

order hL. The constant q; is defined by 221 q, and, a triangular array

of the form

50

s 5V

5@ 52 () | -
5 5 5 5

is generated, in which the first column is calculated using the
“underlying integration formula. From Tables 3 and 4 it is clear that
the natural choice of q, = 4 and q = 16 give the relevant Romberg
schemes for the Clendenin and the Filon formulae respectively., However,
for larger values of p the Romberg scheme gives na improvement. In Table
5 the reverse process of using the exact value of the integral to
determine the value of a4 for convergence is illustrated. The previous
results with 45 being 4 and 16 respectively.appears for p = 1, 10 whereas
for large p the Filon quadrature formula appears to behave in a way in
which q, = 4 gives good results,
As can be seen from the error formula (2.3.23) no simple error form

exists for intermediate p so explaining the random results in this range.
However fbr large p one of the terms of (2.3.23) becomes dominant and

an error of the form

2 .
- ghf sin ph sin PX; ' (4)
3p

arises, which confirms the choice of 4= 4 above.

- 32
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Table 3.

Successive entries in

the "Romberg" Table based on Clendenin's results.

a

"Romberg factor”, q, = 4 is used to generate 8, column.

p S, 5 s, s,
1.3791734721421101
. 1.3783117335795986 1.3780244873920948 |
1.3780963876398794 1.3780246056599730 1.3780246135444982
1.3780425567036133 1.3780246130581913 1.3780246135514058 1.3780246135515155
-0.1790494129925933
Lo | ~0-1789369195149376.  -0.1788994216890524
~0.1789089234281732 ~0,1788995913992517 ~0.1788996027132650
~0.1789019324672310  -0.1788996021469169 -0.1788996028634279  —0.1788996028658115
-0.0136322158640257 |
e ~0.0136348202625880 ~0.0136356883954421
~0.0136294803192005 -0.0136277003380713 ~0.0136271678009133
~0.0136288622118381 ~0.0136286561760506 -0.0136287198985826 ~0.,0136287445350535
0.0022486018085984 |
5| 0.0022486087458047 0.0022486110582068
1071 0.0022486104701918 0.0022486110449875 0.0022486110441062
. 0.0022486109006772 0.0022486110441723 0.,0022486110441180 0.0022486110441182
~0,0000831093631055
4 | ~0-0000831105289031 ~0.,0000831109175023
101 _5.0000831106079747 ~0.,0000831106343319 ~0.0000831106154539
~0.0000831106246301 ~0.0000831106301819 ~0.0000831106299052 ~0.0000831106301346

The accuracy of the approximation is indicated by exhibiting inaccurate figures underlined.
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in the "Romberg" Table based on Filon's results.

Table 4. Successive entries
P 5, Sy 83 en
1.3780233689966924
1.3780245352574705 1.3780246130081890 ,
i 1.3780246086389876 1.3780246135310887 1.3780246135331393
1.3780246132329714 1.3780246135392370 1.3780246135392689 1.3780246135392704
-0.1789074553099737
-0.1789000538868263 ~0.1788995604586165
101 -0.1788996303698235 -0.1788996021353566  =0,1788996022987948
~0.1788996C45747147 -0.1788996028550408 °  =-0.1788996028578631 ~0.1788996028579996
-0.0136293944731869
102 | ~0-0136287586923291 -0,0136287163069386
-0.0136286504419882 -0.0136286432252988 -0.0136286429387041
-0.0136286789235519 -0.0136286808223228 -0.0136286809697621 ~-0.0136286809790493
0.0022482156046106
103 0.0022482175777242 0.0022482177092651
0.0022482180888616 0.0022482181229374 0.0022482181245597
0.0022482182185763 0.0022482182272239 0.0022482182276329 0.0022482182276581
-0.0000831103678694
4 -0.0000831104559307 -0.,0000831104618015
1071 _5.0000831104779658 -0.0000831104794348 -0,0000831104795040
~0,0000831104836067 -0.0000831104839828 -0.0000831104840006

a

b

~0.0000831104840017

The accuracy of the approximation is indicated by exhibiting inaccurate figures underlined.

"Romberg factor”, q; = 16 is used to generate S, colum.
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Table 5. "Romberg factors" for Clendenin's and Filon's results,
Rule .| p Romberg factor
Nl 4.0013 4.0003 4.0001
1 .
N2 15.8967 15.9503 15.6123
N 4.0146 4.0037 4.0009
1o
N2 17.4108 16,4045 16,1919
N -0.5759 7.6703 4.4879
1 102
N2 9.0556 -2.6913 4.3737
N 4| 0.9822 0.9956 0.9989
10 .
N2 4.8823 . =175.0600 0.021¢9
N -25.8097 0.3548 0.8804
1 104 o
N, 3.9864 3.9567 . 4,1138
a

value of the integral in the S, and S

respectively,

used in Table 3, and the second row implies the qi value of Table 4,

.35

"Romberg factors" are calculated using (2.4.2) to yield the exact

columms of Tables 3 and 4

For each value of p, the first row implies the value of qolto be
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It is thought that a useful algorithm could be developed if ph was
chosen to keep sin ph sensiblf consﬁant. The error is then available
in a Romberg form. In practice, however, this algorithm proved
unsatisfactory, ag;in because of the involved dependence on p of the
error formula in general, |

Hence, it was conéidered worthwhile to find systemétic methods for
extending the order of the quadrature rules for oscillatory integrals

"and this topic is investigated in the following Chapter.

36
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CHAPTER 3

G Qu
EOR_0SCILILATORY INTEGRALS

An effective method of automatically generating ﬁigher order
Filon-type formulae is presented, and is based on the technique of
systematically producing product comhinations arising from the
Lagrangian interpolation formulae employed. The familiar Newton-Cotes
quadrature férmulae for the special non-oscillatory case afe reproduced
for checking purposes (Abramowitz and Stegun (1965)), and examples of
Filon-type quadrature coefficients are quoted.' An application of the
method to the evaluation of an oscillatory integral is presented.
Hermite-Filon type quadrature formulae are also considered and numerical
results are given for the test integral. Algol 68 versions of both
" Filon and Filon—Herﬁite type quadrature methods are presented in the

Appendix,
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3.1 Introduction

In the preceding chapfer it was pointed out that the formulae of
Clendenin and Filon are not always adequate for the accurate evaluation
of oscillatéry integrals. Howevef, generalization of Filon's method
of derivation in order to produce higher order quadrature formulae
(for example, Flinn (1960)) involves tedious analysis, The present
chapter is concerned with obtain%ng a rapid method for the systematic
generation of such higher order formulae. The derivations are based on
the use of Lagrangian interpolation formulae with equally-spaced
abscissae. The Newton-Cotes formulae arise as special cases and hence
are treated initially and act as a check for the accuracy of the method.
Numerical results are given for Filon—-type formulae of ordexs n & 10 and
the accuracy is discﬁssed.- A Hermi?e*Filon type quadrature procedure
arising from the use of Hermite's interpolation formula which involves

derivatives is also generated by the same technique.
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. 3.2 Systematic Generation of the Newton-Cotes Formulae

To evaluate the integral

b
I = J £(x) dx , (1)
. .

an attempt is made to develop an algorithm for the rapid and systematic
computation of the quadrature coefficients, associated with the Lagrangian
polynomial Lj(x) in the approximation of the integrand according to
n )
£(x) = ] L.(x) £f(x,) +¢ - (2)
j=0, 3 3 n . .

Here En is the associated error

E:n - IIn+1

@ £ gy /1) (a < E<b) (3)

. w

and : e

Hn+1(x) = (x—xo)(x-xl)....(x—xn) {4)
(Hildebrand (1956)). Integral (1) may be expressed as

n
I = { c_ . f(xj) *e ) | . (5)

where {x.} denotes the (n+l) distinct points in [},b]. The numbers

Cn F (0 £ j € n) are the Cote's coefficients, given by
-]

b b H&(x)
Cn . = J L.(x) dx = J dx (6)
23 a J a II' (x.)
o J
where the primes denote that the terms (x-xj) and (xj—xj) are omitted
respectively from the products HA(x) and H;(xj). Introducing the

‘symbol cn;z(x) to represent the sum of all possible different products

§ 3.2

. _ % eleax i (n=£) at a time, .
of the n_quantltles {x} {xo, XppeooXs 15 Xg,q7 xn} taken {(n-2)} v
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the coefficients (6) can be expressed in a form suitable for automatic

computation, namely,

b n o
Cn . = 1 J E (---1)n o xz Un-l(x) dx
I mrx.) Ja 2=0
nj
) n L+1 2+1
"1 ; -£ b -
- [ (L™ i o

' =
Hn(xj) =0

3.3 Extension to Oscillatory Integrals

(7

(8)

The result of 3.2 can be extended to derive quadrature coefficients

for the oscillatory integrals of the form

b n ca+(i+l)h

1 = j £(t) cos pt'dt = ] I £(t) cos pt dt

(o] ' A B
a i=0 7 a+ih

The subinterval width h is given by
h = (b-a)}/(m+1)

The transformation

t =a+ ih + x

leads to 7 ’
m ' : rh
I = E {cos p(atih) f(a+ih+x) cos px dx
¢ i=0 Jo '
h
- sin p{a+ih) f(at+ih+x) sin px dx}
‘o

(1)

(2)

(3)

(4)

Lagrangian type interpolation formulae applied to the integrals in (4)

yield a result of the form
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m n
1= } {cosp(a+ih) 7 ¢t £ (atibex,)

¢ i=0 j=o TJ
% sin
- sin p(a+ih) X coo. f(a+ih+x.)} (5)
j=0 n,1 3 :

The location of the abscissae, xﬁ, in (5) is not restricted and may be
specified quiée generally. For example, equally spaced points may be
chosen (Clendenin, Filon, Flinn), or, alternatively, prescriptions of
the Gaussian type may be employed (Bakhvalov and Vasil'eva (1969)). In
this chapter attention ié confined to equally spaced ordinates so that
dirécé comparison with existing quadrature procedﬁres of the Filon type
is possible. Generalizations involving automatic generation of Chebyshev
and Gaussian type formulae are discussed in Chapters 4 and 6.

Thus, assuming equidistant abscissae

RS

%, = jb/o | | (6)

the Lagrangian coefficients are expressed by

h ' (x)
J n” w(x) dx ' - (M

o H&(xj)

where the weight function w(x) is taken to be cos px for Czog and sin px
?
for CSl?.
n,]

It is noticed that in (5) the terms cos p(a+ih) and sin p(a%ih)

. , . . cos
appear outside the summations. Consequently the coefficients Cno.
]

and C§1§ may be calculated independently of i, This has the effect of
]
reducing considerably the computation time,
The computation of the coefficients is facilitated by the following

- relations (Gradshteyn and Ryzhik (1963), p.183).
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cos 1 h o n-% . £
Cn 3 = Z (-1) G- (X) x7 cos px dx
i ' (x.) 70 =0 ,
n" )
| 1 s n-% % xz-k
= (-1 Oy X & z 1 SiP
I'{x.} 2=0 k=0 (4=k)ip
o j
and
. h n
:1? =21 J Z' (*l)n_£ O g 6:9) xﬂ sin px dx
2] I'(x.) ‘o £=0 _
n
2 A~k
e N G DLl N ¢ SR TN [
H'(xj) =0 k=0 {&-k)!p
where

X,

x
J

{x} = {xo, SRR

Y

-1? xj+1:°ao

H' 3 = -, . - [ XX ; - (XN}
a0 = Gy Jeeelmymmy g Mxym g )y
Similar analysis shows that the integral

I
s

b
J f(t) sin pt dt
a

may be evaluated from the formula

|2 cos
1 ¢ f
520 M

[H

I 1R

{sin p (at+ih) (a+ih+xj)
0

1

n .
+ cos p(a+ih) Z ¢ f£(atihex,)
: j=o N,] J )

42

=_ )u

h

(ox + %E)] (8)

o

h
kT
————5T ©os (px + 5—{] (9)
(o)

(10)

(11)

(12)

(3

§ 3‘3



In a similar way, a Hermite-Filon quadrature formula is derived
using a Hermite interpolation formula (Hildebrand (1956)). The
interpolation polynomial of degree (2n+l) now collocates with both £(x)

and its derivative £'(x) at the points Xj’ j = 0(n, as in

n ) n (2n+2) _
£(x) = jz hoG) £(x,) + jzo B £ () 4 f(ﬁ%%‘“ 2 o a8
where

‘ 2 . :
hj (x) = [1 -2 Lj (xj)(x—xj)] I:Lj (x):i | (15)
' 2
h.(x) = (x—xj) Lj(xi] 7‘ (16)

Lj(x) is the polynomial of degree n in the Lagrange formula defined by

S

Lj(x) = H;(x)lﬂé(xj) 17

and £ is in the range bounded by the extreme values of {X}.

The oscillatory integral may be expressed as

_ b n n _
I - L £(x) w(x) dx = jgo Ho £0x) + jéo H £'(x) +E (18)
where
H. = J h, (x) w(x) dx (19)
i),
b —
H. = J h, (x) w(x) dx (20)
(D P |

and E is the error term in the approximate quadrature formula. From

(15) and (19).we get
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S 2 {1+ 2 bR ]E I B @ @ jbx“iur(x) @
J H'(x )] J r=0 x_] =0 i=0 n=2 i a
r#j
-2 E Z Z (- 1)2n =iy (Xo__. X be£+i+1 w(x) dx} (21)
r=0 x_']_xr 2=0 i=0 _ _'.'Q' Rl a
r#j

Similaxrly, (16) and (20) give

n n | . b .
H - —t { I S s I .o J L dx
EH;(xj)] =0 i=0 a
- X E % P oo be’“i (x) dx} (22)
3920 120 - nmd n-i f v

The quadrature coefficients Hj and ﬁj have been written in a convenient
form for programming. The integrals that appear in these equations are

computed making use. of the results

: r r-% : :
Ixr cos px dx = ) R&! ['r]T—Sln (px+—£.1T) +C (23) .
2=0 |
r T r-4 1
Jx sin px dx =-J z:(z)%ﬁcos (px + 5 2m) + C (24)
. == _ p .

(Gradshteyn and Ryzhik (1965))..

The subdivision formula for the integral Ic may be expressed in

the form
e T oe Feos
Ic = Z {cos p(a+ih)[z H o8 f(a+1h+x ) + Z » £' (a+ih+x, ):l
i=0 J=0 J J__o ’J
® sm o in’
~ sin p(a+ih) [Z H f(a+1h+xJ) + ) —:; 3 £' (a+ih+x, ):'} (25)

j=0
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vhere the coefficients are

h ‘ . < ¢h :
cos sin .
H, = h .(x) cos px dx H™, = | h .(x) sin px dx 26
oo Jo 0,30 cos p , HY JO o5 GO sin p (26)
and
~—c08 h_ =sin h
H, = h .(x) cos px dx H ", = R .(x) si d 27
cos jo LS00 cos px ax , T j 580 sin px ax 27)

with hn,j and hn,j as defined by (15) and (16).

Similarly, the subdivision formula for I is expressed by

m n n’
- . . cos . =CO8 .4 ]

I .Z {51n p(a+1h)[:b Hn,j f(a+1h+xj) +.§ Hn,j £ (a+1h+xji]
i=0 . =3=0 320

n s n’ R
+ cos p(a+ih)[2 B3 f(atihex,) + ) Hooo f'(a+ih+x.):|} (28)
4=0 n,J . J j=0 0,3 J 4. :

3.4 Results and Discussion

To begin with, for checking purposes, the Newton-Cotes coefficients
were calculated for n £ 10 using formula (3.2.8) and comparison was made

with the standard coefficients quoted, for example, by Abramowitz and

. Stegun (1965).

In Table 1, representative quadrature coefficients for oscillatory
integrands are presented, These coefficients deﬁend, of course, on the
angular frequency p and the interval [é,b], and are given, by way of
illustration, for the special case p = 10 and the interval [b!WIZJ' It.is
noted that the results need only be quoted for j € [b/Z] because of the

symmetry relations
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CCO? = - CCOS (1)

n,j a,n-j
¢t = ¥, - )
I, J n,n=j

which hold in this case. The further relations

n cos .
Cn?j = 0 : (3)
j=O .
3 sin ' |
Ioe L o= 2/ (4)
j=0 s

are als§ true here and were extensively employed for checking purposes.
Instability appears in the higher order coefficients (n = 9,10) due to
cancellation effec?s, though this could be eliminated by using higher
precision arithmetic. However, it is well known that such high order
formulae of the Newton-Cotes type exhibit instability in use and, in
practice, are unlikely to be employed., The use of the coefficient§
appearing in the columns with n = 1,2 and 5 will give rise to the existing

quadrature formulae of Clendenin, Filon and Flinn, respectively.
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Table 1. Quadrature coefficients cCO3

interval_[ 0, m/2 ].

S
n,Jj

]

and Czl? for the case p = 10 and

n j=0 j=1 j=2 j=3 =4 j=
. 0.127324
1.000000
0.127324 | 0.000000
2 0.967577 | 0.064846
0.399870 |-0.817639
3 0.963524 | 0.036376
0.450342 |-0.646036 0.000000
4 0,759835°| 0,830968 | ~1.181606
5 0.603496 |-1.119071 | ©.976355
0.714746 | 0.754441 | ~0,469187
0.643445 | -0.974299 | 0.400236 | 0.000000
6 0.409050 | 2.299471 | ~4.171137 | 4.925232
0.535871 | 0.116622 | -2.840417 ] 5.078313
? 0.326363 | 2.232637 | -2.854676 | 1.295676
0.509818 | 0.382441 | ~2.770556 | 2.863816 | 0.000000
8 0.220719 | 2.405823 | -2.821639 | 1.583885 | -0.777578
0.431563 | 1.018550 | -4.286255 | 5.403157 | ~4.646193
9 0.183226 | 2.087470 | -1.333411 | -0.685093 | 0.747835
0.406737 | 1.065879 | ~3.382305| 2.329711] -0.172780 | ~0.000084
10 0.135033 | 2.003227 [ -1.262378| 1.021923 ] ~3.964286 | 6.133096
x10"1 x10"1 x10~ 1 x1071 x10" 1 €10 1

{ ¢ denotes c°8
. n,j

S

i
and s denotes CIS1
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As an example of the use.of the quadrature formulae (3.3.5) and
(3.3.13) and alsé to provide a check on the accuracy of the computed
;oefficients, consideration is given to the evaluation of the integral

1 X ' . 2 -1

j e’ cos pxdx=[e (cosp+ps:mp)--1:|(p + 1) 5)

o
forp = 1oi, i = 0(1)4 and n £ 10, by the method described.

In practice, it is customary to investigate empirically the effect
of truncation and round-off errors by increasiné either the number of
subdivisions of the range of integration, or the order of thé formulae
used. To demonstrate these effects, the number of points at which the
integrand is evalugted is chosen so that, within any block of Table 2,
the number of function evaluatioﬁs is approximately constant, (10, 20 and
30). In general, the formulae of order four, five and six give the best
results for this example, It is ci;ar that the accuracy falls off for
the higher order formulae. This is mainly due to the increased
oscillations of the weights of the quadrature formulae as the order n
increases. Moreover, for small p the evaluation of the ﬁonomials introduces
instability. This effect is more pronounced when n is large, as seen in
the case of p = 1 using the formula of order 10, and 30 function evaluations.
Also, for large p subsequent subtractions of multiples of 2m involved in
the evaluation of trigonometric functions introduce substantial errors in
_the results. However, some improvement in the accuracy of thé formula can
be experienced if the trigonometric functions and the monomials (3.3.23)
~ and (3.3.24)‘are evaiuated using higher precision., These effects arise

again in the algorithm presented in Chapter 4.
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Relative errors in the numerical evaluation of

Table 2,
1 X
J e” cos px dx by Filon type rule
(o]
n | mtl p=1 p=10 p=100 p=1000 p=10000
1 10 8337 8374 2595 1707 - 134
2 5 - g 439 524 11 - 14
3] 3 19 5 9 13 1
4| 3 0 1 1 1
5 2 0 0 -1 1
6 | 2 o | - 1 0 o | - 1
7 1 - 1 - 5 1 1 - 7
8 1 - 1 - 3 16 13 3
9 1 - 16 99 127 43 213
10 1 - 314 - 1311 310 804 - 1140
1 20 2084 2086 4506 1738 12
2 10 - 1 25 58 2 - 3
3 7 1 1 0 0 4
4 5 0 0 0 4] 1
5 4 0 0 0 0 0
6| 3 0 0 0 1 1
7 3 1 1 2 4 0
8 3 2 - 3 9 0 5
9 2 2 63 66 51 446
10 2 - 116 - 2295 1644 910 - 6099
1 30 926 926 1171 108 - 145
2 15 0 5 224 1 - 3
3 10 o 0 -1 0 1
4 8 0 0 0 0 1
5 6 0 0 0 0 - 4
6| 5 0 0 1 0 0
7| 4| - 1| - 1 3 2 | - 15
8 4 1 - 5 8 12 28
9 3 - 82 3 76 275 - 113
10 3 - 3791 22 1878 1470 - 565
7

The entries have a multiplying factor of 10

(n = order, (m+l) = number of subdivisions) "
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The calculations outlined in Table 2 were alsé performed using

. the Hermite formulae defined by (3.3.25), (3.3.26) and (3.3.27), as shown
in Table 3. The quadrature resulté of order n > 4 are inferior to those
obtained from the Lagrangian interpolation formulae (3.3.5) and (3.3.13)
and serious instability occurs in the quadrature coefficients beybnd
order n = 4. Thus the use of the Hermite formulae is not recommended,
except for low order, especially when it is recalled that the derivatives

f'(xj) are also required.
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Table 3. Relative errors in the numerical evaluation of
1 x _
j e” cos px dx by Hermite-Filon type rule.
o]
n m+1 p=l p=10 p=100 p=1000 p=10000
1 10 -1 -1 1 1
2 5 0 o 0 1
3 3 0 0 1
4 3 -1 -6 -2 14 7
5 2 48 =190 93 ~102 =114
6 2 113612 -10230 -4631 -2218 -20678
1 20 0 0 0 5 7
2 10 0 0 -0 1
3 0 0 0 0 4
4 =143 2 4 -6 ~-14
5 59912 -194 ~115 222 -1924
1 | 30 0 ) 0
2 | 15 0 0 0 0- -2
3| 10 -1 0 0 0 0
4 8 =233 3 =20 -17 =41
7

The entries have a multiplying factor of 10~

(n = order, (m+l) = number of subdivisions).
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Appendix

The heart of the computational method is the routine to
. L n-% ,
evaluate on_g(x), the coefficient of x (~1) in

(x-xo)(x-xl)...(x—xj_l)(x-x )...(x-xn) in equation (3.2.7).

i+l

2 n—2_

There is no loss of generality if the coefficient of x  (-1)
in (x—xl)(x-xz)...(x-xn) can be found. This latter product expands to
give:

n-2

n n-1
x (x1+x2+...+ xn) X +_(x1x2+xlx3+...+x2x3+...) X

n-2 :
) x + c.e X X K. ...X

- (. X.X.*.uo 1%0%3 n

17273

and it is clear that the required coefficient is the sum of the

n quantities {X} .= { IR YRTRN % } taken (n-£) at a time.

With a computational language, such as Algol 68, available, which
can efficiently compile recursive algorithms, the calculation of the

above coefficients can be elegantly programmed. There are (n-&) x's

5 34

in each product, which suggests that to scan through all the combinations

required in the final summation one of the (n-2) x's could be chosen
at each level of the recursion. The process may be represented

diagrammatically as
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Enumeration of elements in each product

Stages of process |1 2evietessnnsaronvasass(n=2) level of recursion
1 *1 20000 Pl Faeg
. xl xz . (] xn—jl,—]_ xn
. *1 T ) %n
. xl x3 . e e xn_l xn
. *2 3 00 *n-2 Xn-g+1
n L ] ] x x
n-2 o+l Faa2t n-1 n

That is to say, the array of x's,X, would be global to tﬂe
scanning routine but the indices would be fixed according to the loecal
variables, Il, at each lqvel of the recursion., A for loop at each level -
would then effect the search for the combinations, and only when the
level of the recursion had reached (n—-£), would the complete product
be added into the summation accumulator.,

Hence the following Algol 68 procedure is produced.

proc sigma = (ref[ ]reaz X, int n,k) real:
begin

int pd; [1:kﬂ int itrans, id;
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proc prod = real: (real pr;

for I1 to k do (pr times Xl:itrans [Il:]] 9 I

proc sum = reaf: (real s+0.0; pd minus 1;
for Il from pd+l to id[pd+1] do
(itrans [pd+1:|+11; (pd#0 ] id[pd]**ll-l);

s pius (pd=0 | prod | sum)); pd pfus 1; s);

pd«k; (k#0 | id[pd]<n); (k=0 | 1.0 | sum)

end;

The parameters of the procedure sigma are: X, the array of x's, n,
the number of x's in the array X and k, the number of.x's in each product,
i.e. (n-2). The procedure prod simply forms the product of the relevan£
x's whose k subscriﬁts are stored in the array itrans. The elements of
the array itrans are set in the procedure sum, one at each level of tﬁe
recursion. The upper limit of the for loop, id[bd+i], is fixed in the
previous level of the recursion and effects the correct search for the
required combinations, the final product being added into the summation
accumulator s. -The.level of the recursion is counted by pé. It starts
at the value k and becomes zero when the indices of k x's are fixed.

Up to this point the procedure sum calls itself and when pd is zero the
procedure prod is called. The case k=0 is.a trivial special case dealt
with in the final line whére the required real is delivered by sum.

For comparison purposes, the same algorithm was programmed in
Algol 60. A test program, using sigma repeatedly, took 65 time units
using Algol 68 and 120 time units using Algol 60.

Clearly thg algorithm can be programmed in a non-recursive manner,

although the resulting programs are less elegant. A version of this
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The flow chart

<>

itrans [I1] = 11
11 =1,(1), k

Yes

Yo

L3

Il=k

<— No

itrans [Il] #fn-k+IT>

No

s=s+prod

I1=I1-1

itrans[12] =itrans [12]+1

itrans[I1]=itrans[I1l-1]+1
I1 = 1241, (1), k

itrans [k] =itrans [k +1
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approach was coded in both Algol 60 and Algol 68, In these programs

the scanning order for the x combinations was the same as in the recursive

program. The Algol 68 version took 75 time units against 80 time units

for the Algol 60 version. It is thought that these time differences

are explained in the main by the relatively poor procedure and parameter

mechanism of Algol 60 compared with Algol 68. Small language refinements

such as the operators pfus and times also cut the time factor_é little.
An equivalent non-recursive iterative program is described below.

It involves an explicit count to determine the number of repetitions.

The parameters are as follows: n denbtes the number of x's which form

the array X and k is the number of x's in every product. The products

‘are calculated by the procedure prod, when the current subscripts of

the x's in each combination are fixed. This choice of subscripts is

made using the array itrans, containing k elements each of which sets a

subscript for x in the current combination. Initially, the k elements

of the array itrans [ii] are set to Il. TIn the do-loop labelled L3

the upper limits for each element itrans [ii] of itrans are checked

starting at itrans Dﬂ, and I2 is set up to indicate the highest index

still to reach its upper limit. At this point control moves to label L1

ﬁhich updates the I2-th element, and the succeeding do-loop resets

itrans[Il] for Il > I2, i.e. the elements which have ﬁreviously reached

their maximum. If the eleﬁenﬁ is still below n-k+Il for itrans[I1] this

subseript is further incremented until the range of possibilities is

exhausted. The products of the combinations are added into the summation

accumulator, s, and the final result is delivered at the label L2, The

‘Algol 68 code for this routine is:

3A



proc sigma = (ref[ ]Jreat X, int n,k) reag:

begin
real s<0.0; [l:k] int itrans; int 12;
proc prod = reaf: (reag pr;

for Il to k do pr times X[itrans [Il]]; pPY);

for Il to k do itrans{Il]«Il;

if k=n then s pfus prod; goto L2 fi;
L3:for Il from k by -1 to 1 do

if itrans I:Il:la4 n~k+I1 then I2¢Il; goto Ll fi’

goto L2;
‘Ll:_i_f_ I2#k then itrans L-IZ:[-(-itrans [12] +1;

for Il from I2+1 to k do itrans[I1]«itrans |j1-1:|+1 £i;
L4:s pfus prod;

if itrans I:k:|=n then goto L3 else itrans [k:l plus 1; goto L4

1L2: s

end;
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The recursive version of the procedure sigma is used in the

following programs,

proc generalized fifon = (proec(real)real f,real a,b,p,int nl,bool type)

[ ]rea!’,:
begin

b
¢ This is a procedure to evaluate J Flx) zz: px de for n=1,2,....,nl
‘ e a

order quadrature formula of Filon-type with step-size h, and the boolean
type 18 true if cos px is the weight function and false if sin px is
the weight function. ¢ |

int m,n; real partc,parts,h,hl,ax,fax,ah,csl,cs2; [:l:nlj real integ;

|:1;n1:| ref[]reaﬂ cnje,cnjs,x;

. . PV cos sin .
¢ enje and enjs refer to the coefficients ¢, 3 and Crz i defined
3 3

as in § 3.3 ¢

proc ge =(int j,n,boo% sorc,ref[ ]ref[]reaz X)real:
¢ Self-generation of Cz ,o:; or Cz :’3 for the boolean sorc being true
and false respectively c |

[l:n:l real xx; real ¢+0.0; int k;

proc sigma = (ref[]reall x,int n,k)real: begin . ., . énd;

proc pr=real:

(reaf r<l.0;
for il from 0 to n do ( il=j | skip | r times x[n] [j] - =[n] [il:l ))s
c This procedure evaluates H'n(xj) defined by (3.3.11}. ¢

r);
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proc fun =(int r, real p,q) real:

begin

¢ This is a procedure to evaluate J @ w(z) de at x=q, using

equations (3.3.23) and (3.3.24) with sorec being true for

w(x)=cos px, and false for w(x)=sin px. ¢

int i,iz<0; real y«0.0,pl<l.0,p2<1,0; [@:i] real vy;

proc msin=(reaf x) reaf: (reaf s« -sin(x); s);

proc mcos=(reaf x) reaf: (real s+ -cos(x); s);

proc tsin=(int i) proc(reaf) real:(i | sin,cos,msin,mcos | skip);

proc tcos=(int i) proc(reaf) reaf:(i ] cos,msin,mcos,sin | skip);

¢ Procedures tsin and tcos deliver one of the trigonometric

procedures sine, cosine, —sine, or ~cogine for the evaluation of

{zzz [%m +-% (i—l)%]} 1 =1,2,...r in equations (3.3.23) and

(3.3.24). ¢

(r=0 [ y<+(sorc | sin(p*q)/p I -cos {p*q)/p); goto 21);

c The series is summed in the reverse crder. c

for im to r do (p2 times p; pl times im}; p2 times p;

yy[r]«pl/p2;

for i2 from r by -1 to 0 do

begin

(2¢r | yy[iz]eyy[i2+1]*(p*q) / (r-i2));
(12<4 | i+i2+41 | ize(i2+1)=((i2+1)#4)*4; i~(i2=0 | &4 | iz));

(soxe | v plus yy[ig]*tsin(i)(p*q) l y minus yy[ig]*tcos(i)(p*q))

end;

D4

end; c end of procedure fun c
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for i ton do
¢ The array xx, 'z.s formed by leaving out the mj.'th term, as in
equation (3.3.10), and emumerating the terms from 1 to n. c

if i=j then if j < n then xx[i]«x[n] [i-1]£i

etse if i < j then xx[l:]-efx[n:] [i-l:l else xx[i]*—x[n] [1:] fi

£i
end;
for & from O to n-1 do
ken-2;
¢ plus (fun(ll',p,h))—fun(l,-p,0.0)*sigma(xx,n,k)*(k=(k%2)*2l1.0|—1.0)
end; '
c plus (fﬁn(n,p,h)—fun(n,p,0.0));
c div pr;
c

end; ¢ end of procedure ge ¢

for n to nl do
¢ This do loop generates n=1,2,....n1 order formula. ¢
integ[n]+ 0.0; E.. the integral c
hl«(b-a)/ round (10/n); c initially estimated step—size c
meentier ((b-a)/hl+0.5);
he(b-a)/(m+1);
¢ Hence h now divides (b-a) exactly m times. ¢
enje[n]<toc[0:n] reat; e €% |

: ] ] in
ans[n:IfE_c_:_[O.rﬂ real; ¢ Cft,j c
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x[n]+goc[0:n]reat; 5 the abscissae _(_:_
for j from 0 to ndo
x[n:l [j]+h*j /n
¢ if equally spaced abscissae are used ¢
end;
for §j from 0'to n'do
enjc[n] [§]«ge(d ,ﬁ,m;x);
cnjs [n___] [j:]*—ge G ,'n,f_g_@_ég,x)
end;
for i from 0 tom do
partc+0,0; parts«0,0; ahtat+i*h; cslecos(p*ah); cs2«sin(p*ah);
for j from 0 to n do
ax<ah+x [n] [_]:I ; faxef(ax); .
p.alrtc plus cnjc[n] [j]*fax; parts pius cnjs[n] [j]*fax;
end;
integ[n]_;ﬂ._ug__i_f_ type then
" ¢ the weight function is cos px ¢
partc*csl-parts*cs2

“else

¢ the weight function <s sin px c

partc¥*cs2+parts¥csl

end

end; ¢ end of n do loop ¢
integ

end 61
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proc hermite f£ifon=(proc(real)real f,fd,reaf a,b,p,int nl,bool type)

[ Jzeas:

b . '
¢ This ts a procedure to evaluate J fx) gii px dr using each of
the n=2,....,nl1 point quadrature foimulae of Hermite-Filon type with
step~size h, and the boolean type is true if cos px ts the weight
funetion and false if sin px is the weight function. fd represents
the first derivative of flz). c
int m,j,n,ml,m3,m4;
rea? partl,partz,h,hl,sm3,sm&,den,fax,fdax,ax,ah,bar,fcrl,fcrﬁ,csl,csZ,ad,
d1,d2;
¢ d1 and d2 refer to the double sumations in (3.3.2.2). ¢
I-_-Z:nﬂ reaf integl; [2:11];' _Ef_[:lge_a_ﬂ_ x,hj,hbj,hjs,ﬁbjs;
c hf and hbj refer to the coefficients Hf; fj and ﬁcnfj , and his ar;d

hbjs refer to H-U: and Ho'y respectively. c
’ Ry d ) n,d =

proc he=(int j,n,bool sorc,ref[]ref[]reak x,ref real ¢2) real:
begin

¢ Self-generation of the coefficients (3.3.26) and (3.3.27). If the

o8

3

boolean sorc is true the coefficient Hﬁ O; 18 delivered while 'EI:

18 assigned to c2, and if sorc is false HZ 1’; 18 delivered and
> .

ﬁf:'?; ts assigned to e2. ¢

3

[O:m]] real sigarray; ¢ ml <s n-1 c

I:l:lﬁ]:[ real xx; real cl;

proc sigma=(ref[]rea2 x,int n,k)real: begin ... end;

proc fun=(int r,real p,q)real: begin ... end;
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proc sum= real:
c This is a procedur'i to evaluate LJ'. (:nj) n .(3.3.1‘5) frqm the
relation LJ{. (xj) =££1 1/(xj-o:£)_ c
1#d
real s+0.0; for i to n do
(i#j | s plus 1.0/(x[n] [j]—x[n] [i:l) | s pfus 0.0); s

end;

proc pr2= real:
begin
¢ This procedure calculates the product
' . — — -
I, (xj) (w=2i,)0ee (x xj__l)(m j+1)“‘ (z-z ) ¢

reaf rl«1.,0; for i to n do

(i=j | skip rl times (x[n][35] =-x[n] [i])); rl

end;

for i2 to ml do
begin
if i2=j then if j<n then xx[i2]«x[n] [i2+1] esse skip fi

efse if i2<j then xx|:i23+x[n:| I::LZ:I else xx[iZ]-(-x]:n] |:12+1:| £fi

¢ The array xx zs formed by leaving out the x 'th term and
enumerating the terms from 1 to n-1 ¢
end;

d1«d2+0,0;

for in from 0 to ml do sigarray[in]+sigma(xx,m1,in);

< The product combinations are stored in an array, sigarray. c
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for 13 from 0 to ml do

m3«ml~i3; sm3«sigarray[mi]; ferle (m3# (m3+2)*2 | -sm3 | sm3);

for i4 from O to ml do
int ubl,ub2;
m4+ml—-i4; smb<sigarray En&]; ubl«i4+1i3; ubZ«ubl+l;
fer2«forl* (m4# (m4+2)*2 | -sm4 | smb);
dl BE_S_ (fun(ubl,p,h)-—fun(ubl,p,o.o))#fch;

. d2 pfus (fun(ub2,p,h)-fun(ub2,p,0.0))*fcr2
¢ dI and d2 refer to the two terms with douéle aums in equations
(3.3.21) and (3.3.22). ¢ |
end

end;

ad+sum?; den+pr2; den times den;j

cl+(1.0+2.0%ad*x[n] [j])*d1-2.0%ad*d2; c2«d2~-x[n] [§]*d1;
cl div den; c2 div den;

cl

end;

for n from 2 to nl do
< Thisr do-loop generates n==2,.,...,nl pdint formulae successively. ¢
integ[n]+0.0; ¢ fhe integral ¢
hl<(b-a)/round (10/(n-1)); c initially estimated step-size c
mtentier ((b-a)/hl+0,5); h«(b-a)/ (m+1); c ste?—size c
hj[nj<2oc[1:n] reat;

hbj [n]«toc[l:n]reas;
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his []«doc 1 :1] reat;
hbjs [n]«goc[l:n]reat:
x[i]«2oc [1:4] reat;
for ik to n do
begin
x[n] [ik]«h*(ik-1)/ (n~-1)
c If equally spaced abscissae are used c
end;
ml<n-1;
for jtondo
begin
hj[n] [7]«he(j,n,true,x,bar); hbj[n] [§]+bar;
hjs 1] (3] *he (i, n,fakse,x,bar); hbjs[n] []+bar
end;
for i2 from 0 to m do
begin
partl«part2«0.0; ah«a+i2*h; csl<cos(p*ah); cs2«sin(p*ah);
for j ton do
begin
axtah+x[n] (i]; faxef(ax); fdax*-fd(a}x);
Vpartl plus hj[n] [§]*£ax+hbj[n] [§]*£dax;
part2 plus hjs[n] [i]*fax+hbjs [n] [1]*fdax
end _ _
csl«cos (p*ah); cs2¢sin(p*ah);
integ[n:]gg_g_g.__i_f_ type then
¢ the weight function is cos px ¢

partl*csl-part2*cs2
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else

¢ the weight function is sin px ¢

partl¥*cs2+part2¥*esl

end
end; ¢ end of n do loop ¢
" integ

end
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CHAPTER

Tue Use of CHEBYSHEV SERIES FOR THE EVALUATION OF

QSLJJ.LAE.B.UME&BAL&

Clenshaw and Curtis (1960) have given a scheme for the numerical
integration of a well-behaved function f(x), with the interval of
integration normalized to_[—l, 1], which is based on the approximation
of £(x) in a series of Chebyshev polynomials, Tn(x). In this context,
the function is said to te well-behaved if the coefficients in the
Chebyshev expansion fall off rapidly. This method is extended to thg
consideration of integrals of the form

b -
S £(x) g:s px dx
a

A new algorithm 1s presented which evaluates the resulting basic

integrals by a direct automatic computation (similar to the methods

of Chapter 3) which simulates the analytic evaluation. The stability

of the method is discussed and critical comparisons, including numerical
tests on several practical examples, are carried out with the related

earlier work of Bakhvalov and Vasil'eva (1968) and Piessens and

Poleunis (1971).
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4.1 Introduction

Normalization of the range of integfation leads to consideration
of integrals of the form

s_lf(x) aip @¥ 94X o o : (1)
" The usual methods of evaluating (1) rely on approximating f(x) by a

series _

f(x)"“z a, A(x) | (2)
s0 that the integrals

1 cos ' | - '

N A (x) min “X dx | | (3)
are obtainable analytically. The choice

Ai(x) = xi ' ' ' _ . (4)‘

yields.the existing quadratﬁre formulae of Clendenin (1966}, Filon .
(1928) and Flinn (1960)‘corresponding to n=1, 2 and S.respectively.
The_automatic computer generation of the guadrature formula for generai
~order n has been described in Chapter 3. |
The theory of app“oximation (Davis (1963)) suggests that a bettcr
form for A (x) would be the Chebyshev polynomlal T (x). This process
has been widely used for non-oscillatory integrands and gives the well-
known formulae‘of Clenshew and Curtis (1960). However, the_evaluation
| of the integrals (3) in the oscillatory case seems to presenf'a problem
‘when Chebyshev polynomials are employed
Bakhvaloy and Vasil'eva (1968) have briefly considered this problenm
(although their main theme was the use of Legendre polynomials Pi(x)).
They suggest that, if the zeros of the Chebyshev polynomials are psed
as the interpolatory points in a Lagrange interpolaticn formula, then
orthogonality reletioﬁs can be used to evaluate the required coefficients

They state that the resulting quadrature formulae are somewhat more
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coﬁplicatea than the results they guote for the Legendre polyﬁdmial
procedure and imply that the effect of round-off in the calculations
may therefore be more serious,

" Piesséns and Poleunis (19?1)2;156 couéide: the use 6f Chebyshev
polynomials for Ai(x)rbut deviate from the Bakhvalov angd Vasil'evé
approach in that they effectively evaluate the basic integral (3) by
a somewhgt indifect method involving a t:uncated infinite series of
Bessel functions, instead of utilizing the orthogonality prbperties-
of summation over the zeros of the Chebyshev polynomials.

It is therefore considered useful to carry out a critical survey
of these earlier methods, startiﬁg with the basic Bakhvalov and Vasil'eva
prescription invelving Legendre polynomials, in order that the under-
lying étructure of the approaches should be investigated and gompared._'

Thus, following Bakhvalov and Vasil'eva, the integral
1 .

I= s £(x) &2 ax . (5)
-1 : ' :

1s treated by introducing the Lagrangian interpoiation polynomial

of degree n
n

£(x) ~ :E: a, P, (x) | ()
e I
which collocates with f(x)} at the (n+l) points X (§=0, 1, 2, ... n).

If these points are chosen to be the zeros of the Legendre polynomial

_Pn+1(x), that is

Phaxy) = 0 3=0, 1, 2, ... n, | (7)

then the coefficients ai may be found to be

a; = gz; ay % (24+1) pi(xj) f(xj) | (8)

which foiiows'on utilizing the orthogonality relation
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n ' .
;a.P.(xj) P(xy) = 2 6ik/(21+1),. | - (9)

_(See for example, Abramowitz and stegun (1965), p. ?90)

In these formulae aJ (420, 1, ... n) denotes the weights of the
{n+1)~point Gauss—Legendre quadrature formula for the weight function
w(x) =1 on the interval [-1, 1], (Davis and Rabinowitz (1965)),

(see also Chapter 6). |

& It is interesting to note the equivalent way of considering
equation (6), which utilizes the integral orthogonélity result

1l ‘ .
‘Sullpk(X) Pi(x) dx = 2 51k / (2i+1) | (10).

and produces

1 | |
=1 2141) b £ex) Po(x) ax (11)
3 )1 R | | |

for the coefficients in a 1eéét-squares fi;. Recalling that f£(x) is
to be represented by a polynomial of degree n it is apparent that the
iﬂtegfal in equation (11) is obtained exactly on utiliziﬁg an (n+l)
point Gauss—Légendre quadrature formula which is exact for polynomials
of maximum degreel(2n+l). Equation (8) follows immediately.

Bakhvalov and Vasil'eva then use expansion (6) in the integral

“to produce

n _ _ | :
I D, a, M | | (12)
{0 1% AP
vhere
M(w) = S_l P, (x) o1 g% | ‘ (13)

On adopting formula (8) for ay and re-arranging, the quadrature formula

n ‘ _ - |
Z .f(x) | (18)
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is obtained, where

A |
1
Dy = e igo 3 (2141) Py (xy) MyCw) - as)

" Dhus, computationally, ‘the coefficients hi as given by (8) are not

evaluated directly, since the summations‘are performed in the order
indicated by equations (14) and (15).
| The basic integrals Mk of equation (13) may be obtained analytically
since | -

M(w) =245 j(w)  (=veD | e
where jk(tU) denotes the spherical Bessel'function of order k'definea

by Abramowitz and Stegun (1965). The values of jk(cu) are obtained

from the recurrence relation

(@) = @ wh g () -y () (17)
However, since this relation is unstable in the forwards direction,
particularly for smallw, it is necessary, when required, to use the
relation in the backwards direction in the manner suggested by Miller
(See Abramowitz and Stegun (1955); D. 452).Add;tional details are
given by Bakhvalov and Vasil'eva,

‘If £f(x) is now represented by the Chebyshev fit
n_, o
£(x) = i;() a, T, (x) | | (18)

which is analogous to (6) and the collocation points x:j (j=0, 1, +e. n)

are now taken to be the zeros of Tn+l(x),‘yielding

Xy = cos [eg:i . g] j=0, 1, ... n (19)

the ay are agaiﬁ obtainable on using orthogonality relations.

(The prime denotes that the first term in the summation is to be

pultiplied by 1/2)
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The required relations are

n .
T (x.) T (x,) 0 izk
;g% i*™j k'7]

= (n+l) i=k=0
and result in the well-known expression
| n '
= —2 _
8y = a2, 105 Ty(xy)
' 3=0 .
n .
2 (24+1) . w
= (A1) ;g% f(xj) cos [i TE%IT- 7?] (21)

Once again, if the integral orthogonality relationship is used as ar

alternative approach, the formula
TTT T

2,7 _ '
N Ti(x),Tk(x) (1-x%) dx = 0 i f k
' T
=T i:k_:o
produces the result
' 1
a, = 2 T (x) f(x) (1 2)—% d (23) -
Rl _li" -X X

If f(x) is to be represented by the polynomial of degree n given by
(18) then this integral is obtained exactly from the Gauss-Chebyshev
--equal weightnquadrature formula. of order (n+l) for the weight_fuhction.

@(x) = (1-x7)  on the interval [-1, 1] . The required formula is

1 n
-3 _
. 2 T . :
S_IF(’” (1-x7)  dx = oy j:Z:o Flxg) + enn (21)
vhere x:j is given by equation (19) and the error €l by
€ 4 = 2T pl20+2) (53 4 [22n+2(2n+2)!] (-1<¥<1) (25

(Abramowitz and Stegun (1965), p. 889), Formula (21) then follows

immediately.
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. .The expansion (18) with a; glven by (21) is now utilized in the

integral I and produces
I a, N (26)
where
1
N.(w) = S T, (x) X ax (27)
i -1 i .

This may then be written in the Bakhvalov and Vasil'eva form as

n : '
I~ 2 b ) | | ' L (28)

j=0 )

where
n 1
Fa .
2 . )

DJ = (n+l) = Ni(w) Ti(xj) ) ’., (29)

3

TTTTTERE order 6f summation haviﬁg.been changed once again, These resultis
are entirely analogous to the Legendre based prescriptions (14) and (15);
The basic 1ntegréls Nk(uj) may be evaluated in a manner analogous
to the Bakhvalov and Vasil'eva approach by means of recurrence relation-

ships. For instance, on writing
_ 1
_ 4=k _ s~k : fwx _
- Ik(cu) =1 Nk(a)) =i _E Tk(x) e dx (30)
-1

and integrating the appropriate recurrence relations for the Chebyshev

polynomials, it is possible to'establish the result
-2 W Ik(cu) --&JIk_a(a)) . | (31)

This relation is again unstable in the forwards direction particularly
for small w , just as in the case of equation (17), and the use of
Miller's algorithm is again necessitated,

Alternatively, on considering
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‘ 1
J(w) = S-l T, (x) :girtux dx _(32)

with the cosine being taken in the even case and the sine in the odd

-~case, it is ea&y to derlve the formulae

- L sinw k 2k
I = = o k-2) k=2 k-2 W k-1 (k even) (33)
' _ b cosw, Kk 2k
e = 5 o2) T Eed Yk-2 T @ Tkl (k 0dd) (34)

Once again, these relations are unstable in the forwards direction
and, although they have the advantage over equatioh (31) of being
3~=term as opposed to S5-term formulae, they have the additional
disadvantage of being "inhomogeneous".
The quesfion of the recurrence relatioﬁ approach.  to the Bakhvalov-

- —and- Vasilteva-= —Chebyshev - procedure-is—being currently investigated by
Patterson and his co-workers. Patterson has proposed (Patterson, T.N.L.
(1974), Private Communication) that the integral Ni(uJ) in (27) should
~be evaluated by expanding T, (x) in a series of Legendre polynomials

- .according to

i -
RACKE }g;;) 1 (2k+1) R, P () (35)
where
1 | |
R, = S, P, (x) T,(x) dx (36)
-l .

The integral (27) may now be obtained in terms of the analytical

result (16) for Mi(uJ) and it follows that
4 o

N () = kzzjoé (26+1) Ry M, (w) - Gn

Patterson establishes that Rki satisfies the stable recurrence

relationship

Ry = [:(ak-l) / (2k) ] [ 1, 141 Rk_l,i_l] -[(k-l) / k]Rk-a,i
(38)

4



4.1

. and hence élaims that this method may well be no less stable than the
Bakhvalov and Vasil'eva - Legendre procedure;

In the present work,‘however, an alternative approach is proposed
" for the direct evaluation of (27) by a method which is analogous to the
techniques described in the previous Chapter.

However, before going on to describe the alternative procedure,
the related work of Piessens and Poleunis (1971) is discussed, since
some additional information on the problem is provided. These authots
do not use the orthogonality procedure'described in equations (18) -
(24) in a direct manner, but attempt to avoid the evaluation of Ni(ua)

which would then result by using the infihite expansion

o

/
.(%-$2{% f(X)mf,_gig e Ty (%) ' (39)
The resulting integrals
' 2."% cos -
S-l",rk(X) (l-ft ) gqp wx dx - {40)

may be evaluated_analytically and yield the expressions

l ‘ ‘ kel

j f(x) cos wx dx = j{: cak-('l)k T Jo (W) (41)
-1 ) k=0 :
1 L .

I L f(x) sin wx dx = :E: Copal (--1)k w J2k+l(tu) (42)
- k=0 .

involving infinite series of Beseel functions.
The integral orthogonality result (22) is then used in (39)

and gives

1
e, = ;S . £(x) T, (x) dx | (43)

This integral is evaluated by using the finite expansion (18) for f£(x)

and leads to the result .
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| . / 1 . o : - ' _
C) o % ; aiS 1' Tk(x) Ti(x) dx (44)

The integrals in (44) are easily evaluated analytically and the results
for even and odd k as required by equations (41) and (42) are_quoted
by Piessens and Poleunis,

It is worth pointing out that these final results ars also obtain-
able from the direct Bakhvalov and Vasil'eva approach embodied in
"equations {(26) and (27). The connecting link is the evaluation of

1 T
N (w) = S T (%) ¥ dx = j cos k8 622%°5% 5in g a0 (45)
-1 Jo

in which the substitution x = cos § has been used, by means of the
formulae

cos {wecos'd)

J(w) +2 Z -1k Ja‘:(w)- cos {2k 6 ) (46)
k=1

sin (wcosg) = 2 ;) -1k Iopay (@) cos [(2k+1)6] °  (47)

(Abramowitz and Stegun (1965), p. 361). The Piessens and Poleunis
final results then follow immediately.

It is the evaluation of the resulting infinite series of Bessel
functions which suggests a defect in the Piessens and Poleunis version
of the Bakhvalov and Vesil'eva - Chebyshev approach, Plessens and
Poleunis demonstrate that the terms in the series in (41) and (42)
decrease rapidly for k >w/ 2 and suggest that truncation may be
effected after M tefms where M is "“only a iittle larger than uJ./ 2n .,
Clearly, for large.cu the method is unsatisfactory especially since the
evaluation of the Bessel funcfions Jk(aa) is required in the terms of
the series.

Thus, the Piessens and Poleunis approach amounts essentially to

the evaluation of the basic infegrals Ni(uJ) of equation (27) by means
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of an infihite series of Bessel functions and in the present work an
| alternative method 1s proposed to avoid this, The integrals Ni(uJ) are
obtained directly here by employing an automatic computational technique
" which simulates the analytic evaluation by a method which is similar to

that described in Chapter 3,

4.2 The Quadrature Formula

The basis of the method is the evaluation of Ni(tu) by picking out

the coefficients, Dy ,.» of x* in Ti(x) and then making use of the
Bt

results .
1 . _ -
- .r r xr-'ﬂ 1y
. X' cos wx dx = 4 VA / Zzgi— sin (wx + 3 ) (1)
- L/F -4
: . 1
1 T i dx = ‘ JA J Xr-ﬂ ' (wx + lf'rr) (2)
N x° sin wx dx = }- L L\ y) T cos 5
-F 41

-(cf. equations (3.3.23) and (3.3.24)).
The Chebyshev polynomials are of the form (Abramowitz and

Stegun {1965))

To(x) =1

Tl(x) = X

T,(x) = 2x° - 1 : (3)
‘ TB(x) = 4x3 - 3

.

and the coefficiénts, D; . » of x* 4in Ti(x) can be easily calculated
?
by means of the recurrence relation

D = 2D. - - D

. .
t,r = 2Pi,p-1 7 Pyl iz2, r=<i (%)

yielding a "Pascal" triangle, which facilitates computation. The basic
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integrals Ni(uJ) of (4.1.27) are then easily obtained. In fractice
these are.usually separated intohtheirrreal'and imaginary parts for the
separate calculation ;f the integrals involving cos wor sin w using,
either (1) or (2) for even or odd?ffrespectively. |

| The formula (4.1.26) is then used directly here and embodies the
Chebyshev fit (4.1.18) at the Gaussian‘based abscissae of (4.1.19). In
their original work on non-oscillatory integrals Clenshaw and Curtis
utilized the alternative approximation

. " '
f(x) = ;Z; ay Ti(x) _ _ o (5)

with cocllocation at the points xj (j=0, 1, 2, «.. n)} where xj is now

given by

- exg=cos i

W, (=0, 1, 2, wuu ) - (6)

the double primes denoting that the first and the last terms in the

summations are to be multiplied by 1/2 . The alternative orthogonality

Telation

7 .

0 i=zk
- g i=ks#O0o0rn (7)
=n i=k=0o0rn

(¢f. equation (4.1.20)) produces the result

5
cay = f(xj) Ti(xj)

J=0
y .
=2 £f(x,) cos ird (8)
n £= J n

* which is then used in the guadrature formula (4.1.26) as an alternative:

-to the Gauss-based prescription (4.1.21). It will -be noticed that equa-
tion (5) is a closed ‘formula in that it involves the end points x = =1

‘and X = 1,,whereas'(h.l.18) is open. Elliott (1965) has pointed out
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that, in the evaluation of fhe non—oséillafory integral, the truncatiocn
error involved in the use of the classical or open formula (4.1.18) is
of the order of 1/n , However, when the practical or closed series (5)
ié utilized the truncation error is of order 1/n> .
In the present work, the use of the Clenshaw and Curtis formula

(5) is proposed, although (4.1,18) could be adopted if an open formula
is specifically required, such as in the case where the integrand has
singularities at its end points. Elllott's analysis gives intuitive
backing to our method, that colleocation at the praétical abseissae ig
better than collocation at the classical Chebyshev zeros, if we are
more interested in the infegral of f(x) than in approximating f(x)
itself. : |

~Piessens and Poleunis demonstrate, that as for Clenshaﬁ - Curtis
quadrature in the non-oscillatory case, the integral of the finite
Chebyshev expanslon converges more quickly than the expansion
“{tself, It is hoped therefore to retain the advantages of the Clenshaw
and Curtis formulation in the oscillatory case. In particular, by
Qhooéing the order of the formulae as n = ai, i=1, 2, ... the adaptive
-hatdre of the procedure could be retained. |

The errors involved in the Clenshaw and Curtis foruulae have been

discussed by many authors sﬁch as O'Hara and Smith (1968), Gentleman
{1972) and Elliott (196%5). The errors are, in fact, ;ess than might be
expected, O'Hara and Smith show that ﬁhe error terms are such that the
accuracy may even approach tbat of the corresponding n-point Gauss
formula in certain instances, In general however, more functions evalua-
tions afe normally required for the Clenshaw - Curtils case than for the
corresponding Gaussian quadrature. Nonetheless, it is considered that-

the present prescription is worth investigating as a practical alterna-

tive in the oscillatory case.
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It is important to note that, as pointed out by Bakhvalov and
Vasil'eva,-it may be better not to sub-divide the range of integration

but to. increase the order of the formula used when Chebyshev (or

"  Legendre) fittlng is used for f(x). This is in contrast with the

methods qf the previous Chapter where equally spaced abscissae were
used and gave rise to formulae of the Newfon - Cotes type. Due to in-
stabilities in the higher‘order coefficients, it was not possible to
proceed to large n there and the recbmmendation-in.practice was to °

limit the order to n=5 or 6 and.sub-dividé the interval of integration

" uniformly. This method was also adopted by Bakhvalov and Vasil'eva for

comparison purposes in one of their numéripal applicafions, where they
used a formula of order n=4, with a large number of sub-divisions, to
considef'an integral involving f(x) = cos wuxa, wifh large w. The use
of this technique is not entirely sétisfactbry in general, and great
care must be exeréised in the highly'décillatory cases when w is larée.
Indeed, préliminary calculations based on the p;esent method have indi;
cated that uniform sub-division may produce similar instabilities to

those exhibited in Chapter 3 and that the order of the formulae would

have to be similarly curtailed. Hence, uniform sub-division is not

adopted here., However, it is worth noting that it may be possible to

avoid the cancellation effects produced by uniform sub-division by
using special techniques appropriate to the marticular function con-
sidered, As an exaﬁple, good results are obtained for f(x) = cos uux2
by integrating between the "peaks" (which occur at the zeros of

sin nuxa) or between the zeros of cos nuxa, using either Newton ~ Cotes
or the present methodg.‘This example is discussed in detail in the
following section,

- Consequently, to return to the derivation of the gquadrature

formula, when the integral
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b .
I = J. f(x) cos px dx
a

is considered, a.lineér transformation enables the result to be

written in the form

' ‘ . 1

{(b-a) cos K S F(t) cos wt 4t
: . -1

H
1l
PO

: 1l
- % (b-a) sin K S F(t) sin wt dt’

-1
where
K = % p (b+a)
W= % p (b-a)
and
F(t) = £ [% (bta) + 3 (b-a) t] :

Approximating F(t) by the polynomial of degree n

F(t) = ;i: a, T,(t)
— 21Ty |

collocating at the (n+l) points tj ,

tj = €O %F J=0 (1) n

yic,lds ]
(b-a) cos K S : z i r t¥ cos wt dt
i 7 '
-3 (b-a) sin X Ei : ay pA Di,r S—l +T sin wt dt

where .
’” .
F(t,) cos M
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Similarly,

L.2

(9)

- (10)

(11)
(12)

(13)

(14)

(13)

(16)
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b
I = 'S f(x) sin px dx _ (18)
s . _ :
a . _
ylelds
. . :i:ﬂ_.. i, 1
T 1 ‘ D P r L
I ~ % (b-a) sin K PR - D, S  t7 cos wt dt
s 2 | =4 i.rr= i,r -1

o, n 1 -
1 .
tx (b-a) cos K g ay g Di,r S-l t¥ sin wt dt {(19)

The basic integrals required in (16) and (19)-are supplied by (1)
and (2). | |
It will be noticed that the finife series pccuring in equations
(1) and (2) converge rapidly when wis iafge. This will be emphasized
when the function f(x) is sufficiently smooth for accurate fitting to-
m_bempossibie~with a-formula whose order, n, is reasonably small. On the
other hand, if f(x) requires a formﬁla of high order with a iarge value

of n to achieve an accurate fit, the-cbefficients

nt . X .
T e » @

which appear in (1) and (2) may become very large. (Note that the

-iargest value of r, namely r=n, has been taken here to accentuate the
effect). This will be particuvlarly noticeéble.when w Is small and
-serious insfabilities may arise‘in this case of small w and large ﬁ.‘
-This -is .¢clearly due to the géneration of very large numbers, with the
resulting cancellation when the terms in the alternating series are
summed,

An alternative procedure which avoids this instability is to use

series expansions for the trigonometric functions in (1) and (2). The

expressions ,
1 o -
T _ {(-1)" w
S-l X cos wx dx = 2 2;; Gl D) (2T | (21)_
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when r is éven;aﬁd
2£+1 . . _
T _ _ ; {=1)"uw _ -
S-i x" sin-wx dx = e =4 (2f+r+2)(2f+1)Y - : _'.(22)

when r is odd, are readily obtained -and arc obviously most useful in

precisely fhose circumstances (small w, large r) under which the finite
series_(l) and (2) are-least stable. In practice; it is easily
demonstrated that the méximum value of ﬂ requiréd,to yield double
precision accuracy (about 22 figures) for the basic integrals is
given roughly'ﬁy | |

| f, = 2w+ 10 , __ o ' o (23)
round-off to iutegral.values being implied. This estimate for the
truncation point of the infinite series is reliable for w<1l0 . For

“at W= 100, 1% = 210 whereas the actual amaximum value of ﬂ required is

' oﬂly about 158. However, for such large values df w, it is likely

“that the“finite'series (1) and (2) would be used instead and, hence,
it is suggested thét (23) ﬁrovides a reasonable estimate of the number
of terms required in all practical cases,
| “Indeed, it is ciear'that formulae (21) and (22) exhibit insta-
~pilities for large w which are "complementary' to those shown by.the
finite series (1) and (2). It ie possible to discuss this effect
:mqualitativély byiconsidering the-behaviour.of the related simplér

.series for cos w whose general term is of the fornm

-f w22 £=0,1, 2, ... | . (24)

Thus,.the factors such as (2£+r+i)_l in (1) and (2) which assist
convergénce;in'any_case have been omitted. In the case of the ufl
series in (1) and (2) the coefficients of = sin w and I cos w are

‘given by equation (20) and range from 1/w when £=0 to n!/&P+l when f=n.
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- A measure of the instability of the series is provided by the ratio

of these quantities, namely,

/e | o ‘ (25)
ﬁhiéﬁ are fhe récipfocélé of the.tefms 15'(24) or.the corresponding
terms in the series for sin w, thus demonstrating the "reciprocal"®
nature of the instabilities.

An examination of the magnitude of the terms in (24) with 05@@51%
demonstrates that, for a given w, the maximum value is attained when
2£ =[}u] and the required maximum is therefore ‘

1 = w[w]/[w] 1 : '. (26)

Consequently, when the alternating éeries for cos w is summed, this

initial build up in size of the terms before the final convergence,
results in severe cancellation if L is large and produces a loss of
roughly s significant figures, where & is the exponent of L. For example

if w=10, L is equal to 0.27557 ... *154 and cos 10 is obtained to be

~0.8390715112 using 11 figure arithmetic. This is correct to only -

{11-4)=7 significant figures when compared with the accurate value
-0.8390715291 . The value w=10 is, of course, rather large to use in

power series approach and more realistic values produce smaller cancel-

~-lation effects, Thus, for w=5 only 2 significant figures are lost and

for values less than & thgre‘is scarcely any diminution in accuracy.

~{The “tables given on pages 818-819 of Abramowitz and Stegun are a

useful aia here)

The éomplementary effect 1s observed for the original ufl series.
(1) and (2) when the inverse rati§ (25) is considered, Ultimately this
ratio wiil become very large for a given w if n is allowed to increase
indefinitely and total instability would then arise. Howeve;, in practice,

the value of n will be restricted by the user and examination of the
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ratio (25) shows that, for a givén w>1, no serious build up in
magnitude occurs until n reaches values well beyond [20:]. (It will be

recalled from the discussion leading to equation (26) that, as n

" increases, the ratlo (25) actually decroases to a minimum at ﬁz[w] .

before starting to increacse.) The situation is clearly best for largew
when it 1s possible to tolerate large values of n before instability
arises.

It appears, therefore, that the main ufl finite series in (1) and
(2) will be stable if n is restricted to values less than a critical

value, n.s which is given by
n, = [Ew] ‘ _ (2?7)

In practice, this is found to be much too étringent and it is possible
fa‘}eblécé it by a relation of the form

n, = [2w]+ T ‘ - : (28)
where values of T as large as T=10 are tolerable, particularly for
large w, |

For values of w which are less than 1, the ratio (25) increases
monotonically with n and the resulting series are completely unstable,
However, the.alternative series (21) and (22) are then available and
are extremely stable for all n,

In practice, it is recommended that for large w, sayw>1l, the basic

ufl series (1) and (2) should be utilized, bearing in mind the restric~

‘tions implied by (28). When w is smaller, a switch should then be made

to thé alternative w series (21) and (22); This point is elaborated in

thé discussion df the numericallexamples presented in the next section.
It will be bbséreéd that in the limit as w—0 the value 2/{(r+l)

is obtained from series (4.2.21) and that the corresponding summation

in equation (4.,2.16) becomes
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PRV R | | (29)

0 -

where the summation extends over even values of r and i is also even
~in this, the symmétrical cosine, cése. Thé exéct ﬁalue of this summa-
tion is given by integratiﬁg Ti(x) (1 ever) and the result is

S : 2D, _/(r+1) = - 2/(1%-1) (4 even) (30)

s T _ o

r=0 .
When this expression is used in quadrature formula (4.1.26), the result
is, of course, the Clenshaw - Curtis prescription for the integral

1 _ - _
S f{x) dx _ (31) -
=1 _ ‘
This is cbgpare@ with the Bakhvalov and Vasil'eva approach which in the
T1limit asw—0Q reproduces the Gauss-Legendre formula for this integral,
However, if the numerical evaluation of summation (29) or, indeed,
the more general series
1 ‘ 1 .
r Ccos '
lBi(QJ) = z ; Di,r S X ip @ dx (32)
e J=1

is attempted directly by the integration routine described here, serious
cancellation effects are observed when i is large. The cancellation is
due to -the alternating signs and varying magnitudes of the Chebyshev

i-1

coefficients (e.g. D 0=:1 3 Dy 4=2 .) Since the magnitudes of the
?

i,
dintegrals fall off with increasing w, the instability effect is therefore
“most pronounced for smallw. A rough measure of this instability is

given as w—0 by

32, Bt | (33)

and the number of figures lost by cancellation in the r series (32) is
of the order of the exponent of this quantity. Thus, at i=12, about 5

figures are lost in evaluating Bi(O), whilst at 1=20 about 8 figures
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are lost; A roﬁgh guide tb éhé n#mber of figures loét is pfovided by
the expression ' | 7 | ,

0.31 + 2 | o | | - (B
For 1afgé values oféo, this accufﬁé& loss will be'redﬁced roughlj by
the exponent of w.

At first sight, it appears that this 1s a very serious defect in
the method, but it should be recalled ihat the actual values of the
Bi(u)) are to be used in a quadrature formula of the form

1 cos "

S f(x) cip WX 4X = :i: a; By (w) o (35)

-1 i=0 _

in conjunction with the coefficients, ai,‘of the Chebyshev series for

f(x). Conegequently, if f(x) is reasonébly smooth, so0 that accurate

T Titting T8 possible for fairly emall values of n and the ay coefficients
(i=0, 1, 2, ... n) fall off rapidly with increasing i, then'very accur-
ate values of the integral (35) are obtained. Convergence is aided by

""the fall off of Bi(aJ) with increasing 1. This is particularly tfue in

.. the case of small a)where‘canceilation ir series (32) is at its worst,
since, in this instance, Bi falls off most rapidly (approximately as
1742 ).

In practice, because of this effect, it has been found possible to
proceed to values of n in formula (35) which are much larger than might
be_suspected from'the restriction (34). This will be illustrated'by the
examples described in the next section. Even in the cése of a hédly-
behaved fﬁnction, where it was necessary to use n values around 50 to.
achieve a modest fit, the contributions from the smaller §a1ues of 1
were substantial. These_could be calculated accurately and resulted in
reasonable vélues for-the integral, in this extreme case.

Howevef, if the function f(x) is such that a large "tail" exists
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in’its'Chebyshev expansion, s0 that the contribution from the aﬁ end
of the series is still large compared with the_ao end, then errors
could occﬁr. An even worse situation would arise for the class of
functions which are expressible only in the form

N+n

£(x) = § a; T, (x) - | | (36)

where N 1s large. In fact, the integral‘
1 .
S TN(x) cos wx dx o ' (37)
-1 - .
-itself, corresponding tolaan and ai=0‘(i¢N) provides an extreme
example. The acéuracy loss, according to (34), would be roughly
(0.3N+2) figures, less a large a;contributioh of about flog (1L+w)
~——-figuresi—It-would-benecessary, in-such-examples, to-use double
precision (or even, in extreme cases, N ~ 50 in (37), multiple precision)
arithmetic to carry out the r summation in ‘(32).
- "In practice, as mentioned above, the functions f(x), such as those
.. ~arising in the-applications of Chapter 1, .-are sufficiently. smooth-for
.‘ihe ay terns for small i to dominate the series and the errors resulting
fron the large i instability are, therefore, insignificant, in these
cases. It is necessary, of course, to take certain practical precautions
in using the algorithm and fhese_were adopted in the treatment of the
-~eXamples in the -next.section. Thus, in conducting convergence tests on
~&a given integral with increasing n,'if is suggested that the stability
at large n should be checked by proceeding beyond the point at which
convergence of the successive values of the integral has been estab-
1ished. Again, for the reasonably well behaved functions treated, good
results were cbtained for values of n less than 20 using single precision

arithmetic. However, the computations were then repeated in double
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precisioﬁ.in order to check the results. This procedure is recommended
in practice in selected instances. Double precision arithmetic was

utilized in series (32) when values of n in excess of 20 were employed.

4.3 Computaticnal Procedure and the Results

The quadrature rules of (4.2.16) and (4.2.19) are automatically
generated on the computer for any order. It is noted that some of the
basic integrals of the form (4.2.1) énd (4.2.2) are nbt required, as
the i-th order Chebyshevlpolynomial “in&olveé only [(i+2)/2 ] non-zero
coefficients, Efficiency is achieved by using the following representa-
tions for the sums, where the non-zero Chebyshev coefficients are decla-

red by the array [l:(i+2)+2] real d.

R=1 .
81 = d tF coswt at (1 even) (1)
— i,r+l
= ~1 .
R 1 - |
82 =§ : d; S 271 gin wt at (1 odd) (D)
Ir= : -l .

- ~where R= [(i+2)/2] , the non-zero coefficients of the {D} being denoted

by d. Also, the values of the basic integrals are stored for all the

f
i &8 considered and then used in the procedure which evaluates Ic or Is’

‘thus resulting in computational economy.

‘Furthermore, the number of cosines required in formula (4.2.17)

has been minimized by taking symmetry into account.

Again, it will be noticed that equations (4.1.1) and (4.1.2)}
involve oﬁly two indepehdent trigonometric functions, namely cos w and
sin w.

An Algolé8 v;rsion of the algorithm is presented in the Appendix. -

The algorithm is applied first of all to the integral considered in

Chapter 3, namely,
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1 : . '
S ~ e® cos px dx = [e(cos p + p sin p) - 1] (p° + 1)~1 (3)
0

(¢f. equation (3.4.5))

The absolute errors (defined{by exact value - computed value | )
in the numerical evaluation of the ébove integral are presented in
Table 1 for p=loi, i=0 (1) 4. The notation x{-m) is used to denote
xx10™", Theicalculations were carried out in single precision arithmetic
(about 11 figures) to start with and it is seen that machine accuracy
is rapidly approached as the order, n, of the formula is increased,
particularly for the larger values of p. The functién f(x) = exp (x)
is so smooth on [b,'l] that accurate fitting is possible for relatively
small values of n {say 8 cr 9) and excellent resuits are obtained as a
cqqéequence of the good behaviour of eguations (4,2.1) and (4.2.2).

The stability of the ufl series was tested by extending the order well
beyond the limits where the successive values.of.the integral had
“converged, Stability was observéd for p =10 for values of n up to at
least 25, thus providing a test of the robustness of the algorithm.

Iu the case p=l, corresponding to w= % ; the basic mfl series
© (4.2.1) and (4.2.2) exhibited instability for values of n beyond n=l2.
Thus, although convergence to the exact result was observed at about
n=§; the calculated values of the integral began to diverge from the
exact ét about n=12, Clearly, this was é case for a switch to be made
to the alternative w series (4.2.21) and (4.2.22) and it was confirmed
-thét stable results were then obtained for values up to at least 27,

The results rresented show considerable improvement over.the
Filon - type quadrature prescriptions as depicted in Table 2 of Chapter
3. It is noticed that in the lowest order cases n=i and n=2, the two
algorithms become, in fact, identical. The reason is that the Clenshaw

and Curtis abscissae
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Table i. Absolute errors in the numerical evaluation of

1

.S e* - cos px dx
o ‘

Order

P
n 1 10 100 1000 10000
1 l.2(- 1) 5.8(~ 4) 1.6(- 4) 1.3(- 6) 2.3(~ 9)
2 6.1(~ 1) 1.7(- 3) 1.9(~ 6) 3.5(- 8) 2.7(- 9)
3 1.4(- 4) 1.0(4 ) 2.4(~ 6) 2.0(- 8) 2 (-11)
4 6.9(~ 7) 1.9(~ 5) 1.2(~ 8) 2.8(-19) 2 (-11)
5 [-2.6(=-8) 1-2.2(=-7)18:8(="9) 7 (-11) 1 (-11)
6 1.5(-10) 2.1(- 8) 4 (-11) |1 (-11) 1 (-11)
| 7 5 (-11) 1.1(-10) 1 (-11) 1 (-11) exact
8 exact 1 (-11) 1 (-11) 1 (-11) exact
9 exact 2 (-11) 1 (=11) 1 (-11) exact
10 exact 1 (-11) 1 (-11) 1 (-11) exact
11 exact 1 (-11) 1 (-11) 1 (-11) exact
12 exact .1 (-11) 1 (-11) exact exact
exact |1.37802461354F.17889960288.,01362867977| . 00224821805} . 00008311049




Table 2., Comparison of the absolute errors in the numerical evaluation of

21

S X ¢os X sin px dx .
0 : .

Piessens and Poleunis Present method
Exact Absolute | No. of function | Absolute | No., of function
P error evaluatiops error evaluations
1 -1.570796326?948966 5(-15) 30 4(~16) 19
2 | -4.1887902047863910 | 9(~15) 30 6(-16) - 19
& -1.6755160813145564 3(-15) 30 1(~-15) 20
16 -0._39423907809?51427 1(~14) 30 5(-15). 20
64 —IO.098198?M+?275930 3(=15) 30 2(-16) | 20
256 | -0.0245440671189132 | 1(-15) 30 2(-16) 19




I3

ty=cos T joyn W

which were used in equation (4,2.14) degenerate into the Newton-Cotes

equally spaced absclssae

=21 | (5)
in the cases n=1 and n=2. This degeneracy does not, of course, occur
for n>3 and considerable improvement iﬁ accuracy is obtained in these
cases over the earlier calculations.

The preseﬁt calculatlions were repeated using double preqisidn_
arithmetic‘for checking purpoées, one of the main objects being the
removal of the inaccuracies éssociated with the evaluation of cos p and
sin p when p is very large. For instance, subtraction of large multiples
Of.ﬂ from the afgument may result in fhe loss of about 4 figures in
accuracy when p:loh, when the standard subroutines are employed. The
double precision calculations &ielded greater accuracy and confirmed
the validity of the single precision results. These single precision
values are presented here, so that comparison with the earlier caléula-
tions may be carried out.

' It is also of interest to use quadrature formula (4.2.19) for the

test integrals of Piessens and Poleunis. For the purpose of illustration
"the integral

0

2n .
S x cos ¥ sin px dx ={-2np (pa--l)"'1 o o(p=2y 3, b4 el )
' (6)

~n/2 (p=1)_
is considéred. Numerical results are depicted in Table 2 for p=l, 2, 4,
16, 64 and 256. To facilitate direct coﬁparison, double precision
calculaﬁiops were carried out. The order of the formula used was
increased until the errors were less than those obtained by Piessens

and Poleunis for %0 function evaluations., This accuracy was achieved
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for all-valuee of b from about 19 or 20 function evaluations; thus
representing an improvement over the earlier ealculations. This is due,

presumably, to a decrease in round-off errors generated by the present

' algorithm compared with the earlier Bessel - function series prescrlp-

tion for the evaluation of the basic integrals. It will also be noticed
that the values of w are w=pn here, and that, these are large encugh for
the stabllity criterion (4.2.28) to be applicable for the values of n
used to fit f(x) = x eqs x on [ O, 2w]. The stability of the algorithm

was agaln tested by proceeding to larger values of n and it was possible

“to go to n=25 even for p=1 and still use the WL series.

Numerical tests were also carried out for this integral using the

alternative "open" or Gaussian based Chebyshev zeros of expreesiOn

”‘"‘(h:i?lQ)“as‘utilized by Piessens and Poleunis. The results -re compared

with those of the present algorithm which use the Clenshaw - Curtis or

"closed" abscissae (4.2.6) and are shown in Table 3 for increasing n.

"It will be observed that the closed formula is converging more rapidly

- -particularly-for large w, although for large values of n the accuracy

obtained by both methods is subetantially the same, In this case, it

"will be noticed that the adaptive nature of the closed formulae could

be taken into account here with advantage, to reduce the number of

function evaluations required. This is not true for the case of the

~gpen formula.

Finally, a much more stringent test of the present algorithm is

carried out by considering the test integral of Bakhvalov and Vasil'eva

which involves the badly-behaved function f(x) = cos wuxa. The integral

is denoted by 1

I{u,q) = cos mux2 cos mgx. dx (?)
. J=1 . : ’

and has the exaet value
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Table 3.

(4.1.18) (open) and (A;ZQB).(cloéed).

Comparison of the absolute error
2n

" evaluation of S X cos X sin px dx
0

s in

the numerical

using formulae

n (order)
P formula
2 10 15 . 17 22
closed | > 1 6.1(- 7)| 2.4(-12) | 2.0(~-15) | 2.2(~18)
1
open >1 6.1(~-7) | 3.3(-13) | 1.7(-13) | 2.2(-18)
closed | 1.0. 3,0(~ 5) | ho4(~13) | 2.4(-15) | 2.0(-19)
5 .
open | 1.3 be3( =5) | 7.1(-13) | 3.4(-15) | 2.0(~19)
closed | 1.5(- 3) | 2.8(~ 7) | 1.9(~11) | 2.9(-13) | 1.4(-17)
16 :
Open . - 306(- 2) 305(- ?) 1-2("10) 6-5("13) 20?(-17)
‘closed | 2.4(~ 5) | 1.2( =7)| 2.3(~12) | 2.5(-14) | 8.0(~-19)
64
open 8.6(- 3) | 1.6(~ 6)| 5.3(-12) | 1.7¢(-14) | 1.4(~18)
closed | 3.7(~ 7)1} 1.9(~ 9)| 3.8(-14) | 4.0(~16) | 1.9(-20)
256 _
open | 2.1(~ 3) | 4.6(- 7)| 2.7(-12) | 1.1(-21) 3.5(~19)
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'.I(u,q) =\;;I icos A‘[C(Bl) +.C(B2)] + sin A[S(Bl) + S(Ba)]i - {8)
where |
IR "Al :-..'ﬂ i}z/(l'r‘-l)
B, = (2/m)? (u+q/2) _
and ' (9)

B, (Z/u)% (u-q/2)

and C(z) and 5(z) are the Fresnel integrals. (Abramowitz_and Stegun, .
p. 308) |

, Bakhvalov and Vasil'eva have considered a set of 11 valdes of g
ranging from 5/4 to 451/4, coupled witi'a set of lh.values of u ranging
from 1/4 fo ég/h'and have tabulated.the relative and absolute errors,
quoting tﬁe maximum errors obtained over the set {a} . They have also
repeated thg exercise using a Newton - Cotes type,formula'with n=L

with up to 90 sub-divisions for comparison purposes. Here, attention is
confined to the extreme values of u and g fogether with one intermediate

value in each case to give a smaller, though representative, set of

calculations. Thus, the u and q values are taken to be

1 23wy | |
BELT 0L | (10)
and i
_5 b1 451 |
q-q’T’ l} (11)

the corfesponding w values beilng given by qﬁ.

The results obtained for various values of n are shown in Table 4
iﬁ'which the absolufe errors are presented, It will be seen that when
u=1/4 the.function f(x) = cos Trux2 is very well-behaved and hence the
order of the formula required is small, reasonable results being obtained
even for n=9, Consequéntly, since the lowest w value is 5”/# which is
nearly 4, the ufl'series may be used confidently here,

'However; in the cases u=23%/4 and u=47/4 the functibn f(x) possesses
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Table 4, Absolute errors in the.numerical evaluation of

o
S cos nux2 cos mgX dx
-1 Y :
u q : n
exact 9 15 22
g -0.25816237030406 | 2.3(~ 8) | 1.5(-13) | exact”
1 41 0. 05
i i - 02966470953267 %:%(7_2) 5;3€:}§) exact
&_51 0.00283575769375 | 1.1(~ 9) | 8.9(-14) | exact
. A T ST ey
- : q n
. " exact 34 L0 L7
“E“ """"" 0}582155?6878521“‘“11?(-‘8) Le5(-12) 9.1(~-13)
23 %} 0.09736925629823 | 1.6(~ 5) | 2.0(- 8) | 6.0(-12)
N N TS B4 7) 2 (=1
&%l £ 0.00256072719178 | 8.4(~ 8) | 1.6(-10) | 2.9(-12)
A s.2 -t A4 (-an
u a n
exact 3L 40 L7
2 | 0.25111868127101 | 4.3(- 5) | 8.0(- 6) | 1.0(~ ?)
%? %} 0.26746038313496 | 2.5(- 2) | 6.2(~ 4) | 1.4(- 8)
ﬂ%l_ 0.00233286902630 | 2.8(=~ 4) | 1.4(~ 4) | 1.6(~ 5)

indicates. accuracy in excess of 16 digits.




| ia and 2# ;eros respectively on fhe.range [-1, 1] .Hence‘it will be
necessary to use a high order formula particularly in the latter case.
‘ The w oL series should be stable here for the values q= 41/4 and q=451/4
B for which the corresponding values of [2uaas required by the stabillty:
criterion (4.2.27) are 64 and 708 respectively. This is confirmed by the
entries in Table 4 where accurate results are obtainable in most
instances although values of n as large as n=47 are required'to fit
f(x). In the worst case, u=47/4 and QéASI/Q, convergence is very slow,
due mainly to the badly-behaved nature of the function. Some improvement
was observéd on extending the calculation to order n=55 wheré the
absolute error was found to be 5;5(-?).-H6wever,‘such values of n are
extreme both from the point of view of the stability criterion (4.2.34)
f—and“aiso*econnmically;"since it is-desirable to produce an ~ccurate
answer with a winimal number of fun;tion evaluations._This particulqr
case was therefore also treated by Speﬁial technigues as deécribed below,
‘To return to Table 4, for q=5/4 the value pf‘[Z@ﬂis only about 8 |
- and, clearly, the afl-seriés-w;ll-be completely ﬁnstablenlong'befcre a
lérge enough n value is attained to fit the function accurately. It
follows, therefore, that the alternative w series (4.2.21) and (4,2,22)
must be used here, This is again borne out by the reéults obtainéd._The
accuracy atfained over the u and q ranges is comparable with the resuits‘
-quoted by Bakhvalov and Vasilteva, Greater accuracy is_appafently
~ obtained by the present algorithm in some instances, but it shpuld‘be
pointed out fhat the present calculation has employed larger orders than
the maximum (n=3%6) used in the earlier work and that double precision
arithmefic was necessary in the evaluation of the series (1)
and (2) for n>20, In fact it is noted that values of n around 36 are

necessary even to begin to fit the function cos ﬂuxa, when u is larcge.
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4.3

Note also, that good resulté-arerbbfainéble for.varidus ‘ﬁ:Valués for
both the large q and the small q Values._ _

As a further 111ustration of the behaviour of the present algorithm
for small valueb o;ﬂu the 11mit1ng case unao is’ treated by taking q=0 |
in the worst behaved instance of the function f(x), namely u=47/L. This
is the case where the cancellation effects in series (g;2.32)
are at their worst and should be a stringent practical test of the
stability of the.algdrithm; since very high orders are required to fit
f(x). The results are given in Table-5 and show that, even though:
instabilities of this type are present, the contribution from the
smaller values of i are relatively large and produce reasonable values
of the integral.,

..-The_badly~behaved nature of~thé~function £(x) = cos wuxa when u is
large (say u=47/4) prompted alsc an investigation into the special

techniques suggested in section 4.1. Thus, thé-range was sub-divided

‘between the complete c¢cycles of cOS'wuxa, starting at x=0 and integrating
~ over each cycle separately. It was hoped to reduce the cancellation

effects arlsing on sub-division by this device. Thus, integration is

carried out between the points x=(2m/u)% where m=0, 1, 2, ... m_ and,
finally, between (amo/u)% and x=l1., The maximum value of m, is given by
[p/aj rThe results are shown in Tablé‘G‘and-demonstrate high accuracy
for an economical number of function evaluations in this, the most badly-
behaved case of f(x). The number of sub-divisions used here ié 5+1=6

and the order of formula employed in each cycle varied from n=13 to

n=24. Accurate single precision results are therefore obtainable by this
method for an economical number (around 100} function evaluations using

maximum ordef of around 20.
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Table 5. Absolute erroré in fhe numerical evaluation of

1
S cosrtux2 dx .
-1

. n
u N
exact ‘ 34 40 L7
%? 0.186880300 6.6(- 5) 1.2(- 5) o= 7)

Table 6. Absolute- errors in the numerical evaluation of
1
S cOB ﬁuxz cos nqx dx by integrating over
-1

separate cycles of cos ﬂUxa .

no. of function evaluations
u q .
79 97 121 145
g 2.1(- 9) 3.4(~11) 5.6(~14) 1.8(-16)
%g | %} 7.9(= 9) 1.1(~10) 5.9(-14) 8.2(-16)
ﬁgl 9.6(~ 8) 1.3(- 9) 4.9(-12) 2.9(-14)
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Appendix .

An Algol 68 version of tﬁe algorithm.is'presented. Although this
program does not fSé any advanced features of Algol 68 (and_so could
have been programmed in other languages such as Fortran or Algol 60),

the language chosen enables the algorithm to be presented in a neat

and efficient form.

TUAPROCT CLEROC! (1 REAL) ! PREALYF S S REALTAVB By INT N, T

=uooL TYpE)'REAL"

'?ﬂaqﬁzu' ST LT e
“1G7 THIS PROCEDURE EVALUATES THE INTFGRAL oF F(X) SIN OR COS p*X

L ONTTA(BIZUSING=N=TH ORDER QUADRATURE: FORNULA OF CLENSHAW-CURTIS.

TYPE: NUTATION Aa IN THE TFX,,’ THE BOQLEAN TYPE IS TRUE IF o
IS THE H:IGH

”“to eNTT REF'[] REAL'D. [o N] REAL'CAPF,TCMT TSNT. ”

'ij'REAL'xwrerRALrb1 S2,U1 WA CS1/CS2, A1, CAPKFPARTT -

_ PART2,0MEGA, X1,X2+SINE,COSE; S
SOVTNTEREFLIKTUPBINZ AT NI o T
KT1«{B+AY /2,07 X26(B=A)/2,0:; CAPK*P*X1,‘OMEGA+P*XE
‘SINE*SIN(OiEGA);‘COSE«CUS(OHEGA) 'BUCL*ODD; - o

'RROC INTEG ( INT Nr'R‘AL OHEGAr'REF"REAL'SI)'REAL'
'BEGIN'
gy THIS I8:A- PROCEDURc TO EVALUATE THE INTEGRAL - OF . -
XdH SIN OR cOS OMEGA*X ON [=1,1) USING EQUATIONS (4,2.1) AND
(4,2, 2) 4= THE IdThGRAL FOR COSIME WEIGHT FUNCTION IS
,DELIVERED wHIL¢ THE INTFrRAL FOR SINE HEIGHT FUNCTIOM IS .
'REAL'S1 32,p1.p2 W NZ.TT:TZ P3; p1+p2«1 0; s1+sz«o 0; p3«1 0;
'INT'IB,JN, TO:NTY REAL Y; _ ‘
'BOYL'SYe' TRUE® ,sv«'ono u._“
fﬂlasthAEpsv1 QaA=60; e
 ¥'IF N= O'TﬁEN'SIAO 0 2 O*SINEIOHEGA

OIOVEGA Ytozeps, B | B
FOREIT'TO'NIWHILE'PI>EPS'DOY R RN
(PR3 TIMES'(N=11+1)/QHEGA;YL111¢p3; NN«!1). o
Bqu+1 (NH / 4)*&; H1*SINE"U26COSE, T19P3' -w*‘ 5ﬁf”€
('ODDTAN-NH) | SWeI FALSE' Td+-T1ISW*'TRUE"T2+T1)-”, o
ELEORY LA FFROMINNTBY V=P T0' 0 DO Y T S,

"BEGIN'

S CT1ANNITTIeY DT
(SHIT24=T1:Se’ FALSE' o
CIT24TY 3 SWeVTRUE®) D -

3%1




e T L Ceemee
T _YCASE'IB'INT(PTeW2;P2¢UZ2;IBeA),
T T (Pl i PR2EW T IBEN)

e APte=WR2iPRe~U2;1BO2),

ST T (P ewt s pRemW1 S IBe3)
'ESAC' .

ST ELSEN
TCASE'IB'ING

(PlewtiPRe~W1:IRes),
(P1eW2IP26U2; 1Be1),
(Ple=W1;P2+W1i1Be2),
(Ple~W2;pRe~y;18es)

ESACL !
' FI | : ST

TSTPLUSITI*PY ISR PLUS  TE*P2
fEND"

0 stesviszsstioor
L IR G 0 8T 82 e T
Gepy o mtsvr 3T =S2) T eI e e
e r e

'PRUC'INTEGZ C INT H.'REAL Uﬂcﬁﬁc'RcF"REAL SI)'REAL‘
'ZEGIN' .
‘G OTHE VALUE 0% TH& INTECRAL (4.2,21) IS D“LXVERtD AND
THAT QF (4. 2 2?J 1S ASSIGHED TQ S1 . QY
'"REAL'S/ 7 8SK,»T1,T2, Nd«GHEGA*UMEGA.
CINT'H®18; 'BUOL BOOL«'ODPDN;
SI«<800|iT1«UhEGA/(N+a). S«T1;
L VEORVIMTOYM'WHILETC'ABS ' (T1/8)>1,0&=22)'DO"
‘BEGINY
TIVTIMEG ~W2* (2% 1+N) /(2% I+N+2) /(2%1)/ (2%1+1); S‘pLUS'T1
END';
S'TIMES'2,010,0);
SK«(BOQL!0,0!T24T1.0/(N+1):5¢T2;
'FOR'I'TO'MYWHILE' ('Aas (T2/58)>1.,08~22)'D0?
miBEGIN‘ _
ST T;mEbi—sz(2*1+N 1)1(2*1+ +1)/(2*I)/(2*I 1);81PLUSITZ
lE\JDlu
S'TIMES'2. Q).w
Sk
- TEND';

RROC! CHEBCO&F ( INT' R)‘REF [ ] 'REAL': |
PBEGINY
'C THIS IS A PROCEDURE TO CALCULATE THE NON- ZEROVCOEFFICIENTS
OF THE R=TH ORDER CHEBYSHEY POLYNOMIAL USING THE
RECURRENCE RELATIONSHIP (4,2.4) . "¢’

'INT'R1«(R+2)'/'2 '

it R11'REAL1DBIDD;

TDDLTIDBLY DAt s



) 'IF R,1 ENT T o
'._-'f;y-lpUR*I'rROM'z'TO'R1'DO' o
B VFORTy! F?OH'I BY'-1'T0 1'00'
g V'BEGIN' h T
T DD[JJ«(J I;Z*DB[J~1]!:J“1!~DD[1]
_ Datdl«(J 112*ao£1112*onrag DBEJJ) T

4 0'R1 DO_DD[IJ«DBEIJD

CINTEGRAL®DG05E 0 . T R T T B
YCT THE INTEGRAL DEFINFD av (4 2. 16; AND <4 z 19) jpyu”'JmAd )
" PART1¢PART2600; " e
. 'FQR'I FROM

0T’ N'DO'“ff””'"

S1¢82¢9,0 ,R1«g1+2)'/'2- Dnna'oon'x- A:«o o; T
STC'oS1AND 52 REPRESENT: THE WEIGHTED INTEGRALS OF THE -

_ CHERYSHgv POLYNOHIALS DEFINED BY (4.3.,1), (4 3.2

“POR -USE- IN-FORMULAE (54,2,16) ‘AND (4,2,19)., 'C"
_JFORU R _!TO R11pOY

L«<ODO'°~R 112*(R 1>>, u1«nf11tR3.

ST PLUSIHARTEWTILY; S2YPLUSIYTSTSHTOLY
O TEND';

CJIL01«0,5; . _ - T
_,'FOR'J TO'N2' DO CJI[JJ«(I=OI1 OICOS(PI*J*!/N))'

_ 'C' FOR E OF THE OPEN FORHULA THE PRECEDING Two
- CLINES:ARETREPLACED BY. _ _ “ -
~ YFQR' JTFROM'O'TO'N2'DOT

R P S PRSI I DIFOS(pI*I*(z Q% et 0)/(2 Q¥N+2.0)3); .7

E VFQRAVY FROM'O TOYNZIDO® AI'pLUSICAPFIVI*CIILTT.

(1= (I'IfZJ*7' TFOR'JYFROM'N241'T0'N'DO?
: AT 'PLUS'CAPF[JI»CUIIN=J]"

TRORYY! FROM'N2+1'T0'N po’
'“AI'PLUS CAPF[J]*( CJIDN=U 1))




!pLUSI" lIFl TYPE 'THEN' :
L T80 THE WEIGHT . FUNCTION 1S er PX T
_NPART1*C52+PARTZ*CS1 - S
S LELSEY: : PR L
fC' THE WETGHT FUNCTION 15 cos Px 'C':M,'__
pART1?CS1 ~PART2*CS2 = . _ .

wTEGRAL’

NN RS OYNR EREAL IS f T
KO ‘

LA UPB*fK+27'fr?“1?“”'j;ffffgf.’
CDIKRIATLOCT[1UPETTREALT;
s DiKJL1:UP8]*CdE?COEF(K). . ST
C SAKTPLUST1)<®=NL 'GOTO' L2); -
R G THES PRECEDUNGEPARTGENERATES SA TRIANGUELARARRAY =770 70 .
~TO RETAIN aALL THE NOMN-ZERQ CUEFFICIENTS 0F. CHEBYSHEV o
T POLYNOMIALSEZQFTORDER= 0,152y s o No W PQY 7 7700 s

NG XSLISEBRAYTIZUAS 1N (4.2,13), QNLY~HALF*0F.T”E¢75E
~ NUMBER OF XS ARE CALCULATED .'C', o )
LT XSL01eX2: VFUR'S'TA'N2'DOY XS[SI6X2#COS(PI*S/N); -

"' FOR USE UF. THE OPEN FORMULA (4, 1 21) THE. PRECEDING LINE
IS REPLACED BY ,
CCYFORTSYFROMNUSTOUYNZYDOY - A
"_XSESJ«XI*COS(PI*(a 0*s+1 0)/¢2, 0*N+£ o>)- cr

 (OMEGAS4, 01
© YFORTIVFROMTOITUNIDOT (TCUTIIT«INTEG (T, OMEGA, WB) ;. TSWTL1IeWB) - _
 I'FUR'I'FROM'Q'TO'N'DO!(TCWTLIJ®INTEG2(I,GMEGA;WB) ¢ TSWTIIleus) )3
L Rt TCWTZANDETSWTISTORE THE VALUES OF- INTEGRAL OF. THI-C0S OR-
SIN OMEGA=T ON r 1.11 . FOR 0MEGA>L PROCEDURE INTEG. -
OMEGA<4FINTEG2 J5.CALLED -, 'C1. - S s

-jQCST*COS(CAPﬁiinCSZ*SIN(CAPKJ;.J - "'““‘;QJ;fgifjgﬁ;;j]iT'f
(FORIJLERQN 01701 N2 DO CAPFLJI®F (X1+XSLJ)5 T
0 FROMENZ#TETO N DO CAPFIJI@F (X =XSEN=3T0E 0 o 0 o

_QQ;INTEGRAL$CAPI(CAPF)r
) INTEGRAL




CHAPTER 5

A numerical method for the evaluation of highly oscillatory
integrals with semi-infinite ranges is considered. A sequence of
integrals is formed by sub~division of the range and the.convergence
of this sequence is accelerated by using ﬁhe non-linear transformation
proposed by Shanks (1955). The method is applied to a number of
integrals including those convergent in the mean only.‘ The ability
of Shanks' transformation to accelerate and even to induce convergence
is demonstrated. Numerical comparisons are made By using the well-
known transformation due to Euler and examples are given to indicate

the efficiency of Shanks' technique.
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§ 5.1

5.1 Introduction

In the previous chaﬁters integrals over a finite range have been
studied. It is now proposed to present a practical methed of evaluating

integrals of the type

.

Jw £(x) ii: px dx ' 9]
o .

In certain circumstances, the constant.p may take large values and,
as with the finite range integrals discussed in the earlier chapters,
considerable difficulty is experienced in computing these integrals by
conventional methods, owing to the extremely strong cancellation of the
positive and negative contributions ffom the rapidly oscillatory integrand.
The methods due to Newton-Cotes, Euler-Maclaurin and Gauss treat the
entire integrand and hence reqﬁire a large number of points when p is
large. The quadrature rules discussed in Chapters 3 and 4, such as
the Filon and the Clenshaw and Curtis rules, have the advantage that
they apply an interpolation formula to fﬁx) only. However, as is well-
known, all these formulae apply to.the finite range, In principle, it
is possible to deal with (1), by applying-the conventional quadraturé
formulae over a finite interval (0, N) such that the remaining part of
the integral referring to the interval (N, =) caﬂ be calculated by an
asymptotic éxpansion. (Stiefel, 1961). In practice, however, there
are the usual difficulties associated with this method.

An alternative approach introduced by Hurwitz and Zweifel (1956)
and further developed by Hurwitz, Pfeifer and Zweifel (1959) is to
subdivide the range and to iﬁtegrate.between the successive zeros of

the trigonometric function thus converting the infinite integral to a
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§ 5.1

summation. With the respective changes of the variable
1, | |
x= (/DG +5) x = (n/p)y (2)

the integrals IS and IC are written as

IS= ( f(x) sin px dx=-g-p- r fr-g-[y-l-%—:l] cos 1y dy 3)
70 —C0 \
' (° T [
I, = f(x) cos px dx = %p f E-y] cos 1y dy (4)
J0 -y \
Using the transformation
| 1/2 w |
r F(y) dy = I ] F(y +n)dy (5)
-0 -1/2 n=-e
(3) and (4) take the forms
T 1/2
I, =25 J ; o(y, p) cos 7wy dy (6)
: -1/2 '
1 =T Jllz Y(y,p) cos wy dy | | o - (D)
¢ 2p -1/2 :
where
o(y,p) = } D" f[ E-[? +n + %]] ' (8)
-0 P .
¥ = I D f[% [y + n:l] _ 9
n=—ﬂ '

In these papers a variation of Gaussian quadrature is suggested to
evaluate the integrals (6) and (7). Later it was shown by Saenger

(1964) that this method is nothing more than the use of an infinite
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trapezoidal sum to approximate the integral. The main objection to

the method of Hurwitz and Zweifel is that the resulting series may

converge slowly. An attempt to remedy such a defect was made by Longman

(1960), who employed a variation of Euler's transformation to accelerate
convergence, Further, Balbine and Franklin (1966) showed that the
Euler transformation approximates the Fourier integral by infinite
series, and gave a detailed'explanation of this approach, Similar
methods have been proposed recently by Piesséns and Haegemanns (1973)
and by Squire (1973).

The preseﬁt method deals with the possibility pf using the more

general non-linear transformation of Shanks.

5,2 Shanks' Non-Linear Transformation

]

Shanks regards a given sequence {An} n=0,1,2,... as a function
of n, evaluated for integer values of n, and approximates this function
by a system of equations by likening it to a "mathematical transient

of order j"

A, = B+ iil a; (qp" (q; #0,1) w

and obtains information about the behaviour of the sequence as n.+ «,
This involves the use of the operators ej to transform {An} into

another sequence {Bj n} according to
3

(B, 3= e (4} ) @

Shanks obtains the general term of the transformed sequence, by

solving the system of equations mentioned above, in the form of the
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ratio of two determinants of order {(j + 1), namely

Amj A1 A1 Ay
DA DA 541 BA__4 M
DA _ih1  MALsss DA BA_..
AAn;l éAn AAn+j---2 AAn+j--~l
B. =
1,0
1 1 1 -1
BA s BA_i4y M aA_
Bl M bA_ BA_
AAn-1 AAn AAn+j-2 AAn+j—1
where
AAn = n+l An

(3)

(4)

Details of restrictions imposed and conditions to be satisfied in the

use of these operators are presented in Shanks' paper. In very general

terms, if the convergence of the parent sequence is approaching the

geometric state, the transformations are extremely effective.

theoretical basis of the Shanks' paper has been discussed recently in

some considerable detail by Levin (1973) who also proposed some possible

generalizations.
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The most frequently used transformation, e, produces the

particularly simple result

- a2 _ -1, .
Bl,n = By Ap T AP By Y AL, zAn) _ G)

which is, of course, the well-known Aitken's 62 extrapolation procedure
(Hildebrand (1956)). The transformation ej may also be used iteratively

to produce a triangular array of sequences

Ao

AL B

&  Ba %o | (6)
A3 BB,n C2.,'11 D1,n

with the following relations

{Bj,n} = e {A} nzj

= 2
{CJ,n} = ey {BJ,n} = e} {a} n > 2j ¢)!
0, )} = e e, J=el (A} 23

A practical algorithm for the repeated application of this
transformation was suggested by Wynn (1956), who defined the sequence

ej by the non-linear recurrence relation

1,2,...) (8)

-1
ej+1{An} = ej-l{An} + [%j{An+1} - ej{Ani] (3
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with

e (s} = {a) . o )

The ezi{An}are equivalent to the results of applying the j-th Shanks'
transformation to the sequence'{An} and yield a particular form of
_ the Padé method, which has been applied to numerical integration by

Chisholm, Genz and Rowlands (1972).

5.3 Applications and Results

The interval of integration is divided in accordance with the
half-cycles of the integrand into the sub-interwvals [én, an+1],
n=0,1,2,...,, vhere in the case of the integrals (5.1.1) with weight

function sin px, a is given by
a, = nw/p | (1)

The rather more general oscillatory integrals

+

sin __2 '
I: £(x) cos PX dx ‘ (2)

which arise in many applications are also treated here. TFor such
integrals a is given by

a = (mr/p)ll2

in the case of the sin px2 weight function. Initially, a low order
Gauss-Legendre quadrature formula (Davis and Rabihowitz (1967)) was
employed to carry out the integrations over each half-cycle

[an, an+1] according to the prescription
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’ yax =L oma) § L (b+a) + = (b-a) x| + %)
\ g(x) dx = > a L v. 8| 3 a 5 a) x; €,

This result represents the basic r-point Gauss-Legendre quadrature
formula, €, being the associafed error, and tﬁe weights W and the
abscissae x; are extensively tabulated by Stroud and Secrest (1966).
To minimize the contributions from truncation and round-off errors

the intervals [an, an+1] were again sub-divided uniformly and formula
“(4) was applied successively in each of the sub~intervals to yield the

values

fn+1 o
Tn = Ja g{x) dx (5)

n
where g(x) represents the appropriate integrand from integrals (2) or
(5.1.1).

The Tables presented in this Chapter are therefore based on the
evaluation of the half-cycle contribﬁtions Tn using a loé order
Gauss~pegendre formula, Since the completion of this work a powerful
quadrature formula was devéloped as described in Chapter 4, and
considerable economy in the number of function evaluations is realized
over the earlier calculations, However, the primary object of this
Chapter is to assess Shanks' transformation as a method to accelerate
or induce convergence of the sequence Tn and so the earlier Tables
are retained. The most widely used combination in practice is toluse
six 2-point rules in the interval [an, an+1], although on some occasions
twelve 2-point rules are employed for greater.accuracy. The actual

integrals required are given by

A =7 T  (6)
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and the terms in the sequence {An} are specified by
n ' .
A =} T, (7

In cases in which the integral has weight function cos px, the

first term of the sequence'{Tn} needs to be evaluated separately while

the half-cycle contributions are due to the sub-intervals [?n’ an+i],

n=1,2,.., with

a = nw/2p : (8)

This would also be the case if it were desired to extend the method
to integrals over the interval (-«, «), which would be treated using
the present techniques on the intervals [b, ) and EO, -»), Again

the isolation of T:

5 would be necessary to avoid, for example, a cusp

at x = 0 of the form exp(-|x|). This point is also discussed by
Balbine and Franklin.

The first application concerns the evaluation of the integral

0

I1 (o, p) = J e ** sin px dx = p(a2 + p“:")"1 _ (9)
) K

In this case Tn is given by
Tn = ()" 1;»(012+p2)—1 exp (—yn) [i + exp(-yi] (10)
where | |
Y = an/p S | a1
The terms of the sequence of partial sﬁms,>{An}, are easily evaluaged

analytically, yielding

A = pla®4ph ™ {1 - (™t exp[—<n+1)an/p]} (12)
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The geometric convergence of this sequence, as indicated by the

relation,

DAL, | A = = exp(-Y) . (13)

implies immediate convergence of the sequence el{An} to the exact
"limiting value, that is

2. 2.-1 ‘ .
Bion °© plo™+p™) (14)

for all n 2 1.
On the other hand, the well-known Euler transformation sometimes
makes the series converge faster and sometimes it does not, The

Euler sum is

1,2 -t

1 1 n
En=§'TO—Z’AT +-8-AT"'..o+ 21’1+]. ATO (15)
n+l -1
=T { 1- [1 - EXP(-Y)IZ] } [l + exp(-Y)]
_ - 'ﬁfl |
= pla’spH 7 { 1- [[ 1- eXp(-Y)] /2] } (16)

and the remainder after n terms of the Euler series takes the form

: n+l
g = pad ™ [[1-emin]r] ~an

A comparison of (16) and the truncation error associated with the

approximate sum of the series‘{An}, namely

e, - p(a2+p2)'1 { (-1y2*1 o~y } | 18)

indicates that the Euler transformation produces a sequence which
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converges less quickly than even the original sequence'{An} for values
of o which are greater than the critical value (p &n 3)/w, The Euler
transformation does in fact produce accelerated convergence for.u
less than the critical value, but is, of course, always inferior to
the immediately converging Shanks' transformation, The implication of
this result is that the Shanks' transformation is extremely powerful
in dealing with integrals where T# exhibits predominantly equnential
decay.

As a practical example of this class of integrals consideration

is given to

tan ! 2 = 1.107149... (19)

I, = Jw x 1 exp(~-x/2) sin x dx
o

The transformation e, was applied iteratively to the sequences'{An} to
give the sequences ei{An},ei{An},... the first few members of which are
shown in Table 1, For comparison purposes, Euler's transformation was
applied to the terms Tn to produce the sequence of partial sums {En}.

The half-cycle contributions, Tn’ were evaluated over [}n,(n+1)n]

using twelve 2-point Gauss-Legendre formulae. It will be noticed that

tﬁe Euler sequence {En} converges less well than the original sequence
{An}. In contrast el{An} converges extremely rapidly and ei{An}

converges immediately to the limiting value. Moreover; the transformation

e, could also be applied to {An} and again yields the limiting value

2

immediately, namely

B2’2 = 1.107149... . (20)

This is important in a wide number of applications in molecular quantum

mechanics where integrands exhibit such behaviour.
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Table 1. Successive Sequences for evaluating 12 = Jm x_l exp(-x/2) sin x dx
o)

T, A E, e'l{An} ei{An}
1.148148 1.148148 0.574074
-0,045820 1.102328 0.849656 1.107254
0.005519 1.107847 0.982409 1.107141 1.107149
-0.000809 1,107038 1.046562 1.107150
0.000130 1.107168

1.077652

§
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A further example involving a different family of integrals is

I, = J x2 ginx dx = - ci(n) = - 0.073668. .. (21)
m

where ¢i is the cosine integral as defined by Gradshteyn and Ryzhik (1965).

The results are demonstrated in Table 2, The half-cycle contributions,
Tn’ were evaiuated over [(n+1)n, (n+2)ﬂ] using six 2-point Géuss-Legendre
formulae, It will be observed once more that the Shanks' transformations
give rise to seqﬁences which converge ﬁore rapidly than that produced
by the Euler method.

As another example, the integral

14 = Jm x2 sin (LOO xz)dx (22)

o S

which converges in the mean only (in the Abel sense) is considered. The

s

exact result is

1/2 4

I, = (1/2) / 4000 = 3.133285... x 10 (23)

which is readily obtained by standard integration, using the integrating
factor exp (-sz) as B tends to zero. The numerical results are shown
in Table 3. The half-cycle contributions, Tn, were evaluated with

)1/2

a = (nm/100 using twelve 2-point Gauss-Legendre formulae., It is
noticed in this case that the original sequence {An} is divergent. The
Euler fransformation produces the sequence {En} which is slowly
convergent., The sequence el{An} is also seen to be slowly convergent,

but when the operator e, is used iteratively, the successive sequences

1

ei{An}, ei{An}... are seen to be converging rapidly. The application

of the operator e, to the original sequence {An} produces the sequence

2
{ 3.1268, 3.1354, 3.1322, 3.1337, 3.1329,...  x 10 °} and e§ produces

3.1332 x 10°% as its first term.
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m

{v-]
- Table 2. Successive Sequencies for evaluating I3 = J x—2 sin x dx

n T_ A E_ e {4} ef{An} e3ia )
0 -9.6230 ~9.6230 ~4.8115

1 | 3.3180 ~6.3049 | -6.3877 -7.3496

2 ~1.6737 ~7.9786 -7.5529 ~7.3744 -7.3677

3 1.0078 ~6.9708 -7.4305 | -7.3633 -7.3667 -7.3669
4 -0.6730 -7.6439 -7.3901 ~7.3689 ~7.3670

5 0.4812 -7.1626 -7.3614 -7.3657

6 ~0.3612 ~7.5238 | -7.3651

-2
The entries have a multiplying factor of 10 ~.
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ol
Table 3. Successive Sequencies for evaluating IA = J x2 sin (100 xz)dx
o

T A E_ el{An} ei{An} _ei{An} e({{An}
1.2177 1.2177 | 6.0883
~2.1650 | ~0.9474 | 3.7199 | 2.7356

2.7998 1.8525 | 3.3292 | 3.3475 | 3.1236
~3.3143 | <-1.4619 | 3.2090 | 2.9944 | 3.1366 | 3.1330

3.7588 2,2070 | 3.1647 | 3.2324 | 3,1317 | 3.1332 | 3.1332
~4.1560 | ~1.85%0 | 3.1468 | 3.0577 | 3.13¢0 | 3.1332

4.5182 2.6593 | 3.1392 | 3.1931 | 3.1327
-4.8535 | -2.1943 | 3.1359 | 3.0842

5.1671 2.9728 | 3.1344

x 1073 x 1073 | x 107 4l x10™* | x107* -4

x 10
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The final application concerné a practical problem arising in the
study of particle interaction in a slow viscous flow (Evans, (1973)).
The force on one particle due to another requires the evaluation of
the integral - | |

I5 = r_x exp{-y sin a)cvl y_l |:2(c+x2)Jo(£x) - 2x J1(2x)/£:| dx (24)
o

where
y = &2+ R¥my/? (25)
¢ =Ry + r%/2 | ' _ (26)
with
J

cos o , sin o > 0 (2D

and a being an angle relating the particle position to the flow
direction and R the Reynold's number, At o = O this integral exists

in the mean only., For small R the integral is asymptotically
2R-1 l:!. - (1-%)/cos a] + O(R) ' (28)

and this agrees with numerical values obtained for the complete integral
using Shanks' technique with the operator e, near and at a = 0. The
sequences were generated by integrating between the zeros of the
respéctive Bessel f;nctions J0 and Jl. Agreement also occu#s between
Shanks' téchnique and the conventional integration method for o around
10° though the conventional techniques are more difficult to apply

for smaller a.

In conclusion, it appears that the Shanks' acceleration technique

is a powerful tool for the evaluation of oscillatory integrals with an
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infinite range. This is particularly true when the oscillations are
damped in a predominantly exponential manmer or fall off, for example;
as 1/xk where k is sufficiently large (say k > 1). 1In these cases
Shanks' technique proves more economical in terms of function
evaluations than the wellvknowﬂ Euler transformation. However, when
the higher order difference terms in the Euler formula are sm;11 (fog
example, when the convergence is very slow or when polynomial behaviour
is exhibited) the Euler method converges extremely rapidly. Also for
integrals which converge in the mean only Shanks' method proves

successful, and may again converge more rapidly than Euler's

transformation, depending on the behaviour of the original sequence.
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CHAPTER b6

A general investigation into the structure of Gaussian quadrature
formulae is carrigd out. .The notorious instability associated with the
algebraic approach to the generation of Qaussian quadrature coefficients
for certain weight functions is discussed. A non-linzar approach in ..
which the advent of instability isipostponed to formulae of higher
order is introduced,

In the case of weight functions whose associated monomials are
expressible as rational numbers (apart from multiplying‘constants), an
accurate algorithm is developed by extending the standard prelude of the
Algol 68 language. The algorithm is based on the use of multilength
.rational arithmetic to solve the resulting system of linear equatioms.

Applications and numerical results are included and Algol 68 programs

are appended.

105



6.1 Iintroduction and Preliminaries

In the preceding chapters various methods ﬁave been developed for’
.dealing with the evaluation of integrals containing oscillatory weight
functions. It is suggested that the Chebyshev based methods of Chapter
4 are to be preferred in practice to the Newton-Cotes based prescriptions
of Chapters 2 and 3, It will also be observéd that Gaussian based
quadrature methods have been used in the acceleration algorithms of
Chapter 5. However at that stage attention was confined to low order
quadrature procedures which were applied to the complete integrand,
whereas, as pointed out in Section 1.1l., it woﬁld probably be preferable
to consider the "factored form"; and to incorporate the trigonometric
factor as a weight function, |

It is therefore of interest to consider the development of Gaussian
formulae with trigonometric weight functions and in the present chapter
a general investigation is instigated into the structure of such formulae
for general weight functions.

The method of undetermined coefficients provides a bagis for
generating a sequence of Gaussian quadrature rules of the férm:-

b n _ )
wi(x) £(x) dx = o, f(x) n=1,2,3,.... (1)

where o and X, are regarded as parameters. The weight function w(x)
~is nonnegative and such that all its moments

b _ .
g. = I x) w(x) dx j =0,1,2,... (2)
. | .

exist. The 2n{free parameters are determined by the same number of

defining equations by making eq. (1) an exactleqdality for the sequence
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2 2n-1

of functions £(x) = 1,Xx,X ,...X , resulting in

13 .
g, = ] j=0,1,2,...(20-1) (3)

The problem of producing numerical tables for Gaussian quadrature
basically involves the solution of the above algebraic system of
equations, This problem had received considerable attention after the
emergence of high speed computers and several algorithms were given by
different authors. The majority of these methods consist of constructing
the system of ﬁrthogonal polynomials associated with the weight function
and obtaining zeros of these orthogonal polynomials, However, for
higher order formulae severe numerical inétabilityloccured and numerous
possible ways were tried to improve the solution. For example, Anderson
(1965) found it necessary to use double precision arithmetic but even

so obtained only 4 figure accuracy for the 10-point quadrature rule
with weight function logex aﬁd interval [b, i]. Alternatively,
“Rutishauser (1962) suggested the use of the quotient-difference
algorithm, whilst Golub and Welsch (1969) employed Francis' QR-
transformation to compute X, as the eigenvalues of a Jacobi.matrix

and o, as the corresponding eigenvectors. In the recent years, Gautschi
(1968), and Sack and Donovan (1972) have diverted attention from the use
of ordinary moments as a starting point., The latter argued that with
increasing j the powers of xj tend to reach a strong maximum near one

or both ends of the range and the mOments-(Z) do not give a good
description of w(x) over the whole iﬁterval. Their method cousisted of
the use of orthogonal polynomials Hj(x), satisfying the usual recurrence
relation, suéh that thé modified moments

b : ’ ‘
nﬁ = Ja Hj(x) w(x) dx | | - ‘(4)
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have the values of the same order of magnitude throughout the interval,
. Unfortunately the modified moments are not known in advance and must
be generated along with the polynomial Hj(x). Gautschi (1968) had

shown that the syétem
" n V
. = I. j =0,1,...2n-1 5
" k£1 % T3 () ) prer A _ )

is well conditioned if the Jacobian matrix
[ ' '
Ho(xl) . 0 Ho(xn) o) Ho(xl) SRR HO(xn)

Tt r
Hl(xl) . s Hl(xn) o, Hl(xl) RN Hl(xn)

. * 2 . . LI . LI ) - . = . . - = . LI I * .

. ’ ' ‘
| Tonn e o Ty ()0 Moy (e e o T ()

2

evaluated at the exact solution Xes O is orthogonal. However in his
iterative process he could only satisfy the exact orthogonality'of the

first approximation
36@ @) . -

while the remaining iterations result in nearly orthogonal matrices.
Nevertheless, the test results indicated that the ill-conditioned
character of the_problem could often be avoided by.esgentially the same
methods as Gautéchi {1968) and Sack and Donovén (1972).

- The present work is concerned with obtaining accurate results tﬁ
the ordinary moment problem. For the solution of eq. (3) the generally

reconmended procedure consists of constructing the orthogenal polynomial

Hn(x) (x—xl)(x~x2)...(x-xn)

X * oty 3 oc =1 (8)

§
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whose zeros are the required abscissae, (Hamming (1973), p.322).

" Multiplying the j-th equation of (3) by cj and summing we obtain

n-1 n . .
j£0 gy ¢y g, = k£1 a T () = 0 <))

Repeating this process for all equations in the system (3) shifting
the multiplier cj down by one line each time, the following n equations

are obtained
c, + g = 0 k=0,1,.,.,0~1 : {10)

This nonhomogenous system can be solved for cs since the persymmetric

determinant (named by Sylvester in 1853},

8o B By v By

n
¢ = &, 8 & o By (11)
8h-1 &n Eatl * * ° Bop-2

is nonzero. This may be shown using the set of n homogeneous equations,

and multiplying the k-th equation by cx and summing. Thus

n-1 n-1 ' b n-1 , 01 ;
Z E gj+k cj e = Ia w(x) { Z ¢, % E cj X } dx

k=0 j=0 k=0 ~§=0
' (12)
b n-1 k 2 .
= I w(x) [ Z ¢ X ] dx = 0
a k=0
Since w(x) > 0, eq. (12) holds only if
n—-1 : : ’
Z ck xk £ 0 (13)
k=0

that is when all cj = 0, (Hamming (1973), p.324).
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The coefficients cj of the polynomial are the sums of the products
of n Gaussian abscissae taken j at a time. Once these coefficients are
calculated exactly, the problém will reduce to employing a root finding
proceduré. Since the weight function is nonzero on the interval of
integration the zeros of the polynomial are known to be real distinct
and to lie in the interior of the interval (Hamming (1973), p.325).

As the linear approach outlined above is so unstable in practice
an attempt to by-pass the difficulty by solving an equivalent set of

non-linear equations was made and is described in the following section.

6.2 The Use of Non-linear Equations

The method is based on the rearrangement of equation (6.1.10) in
the form

n-1

L -1y 8341 Onm (X) + g, =0 k=0,1,...,n-1 (1)
3:

where the cj term is replaced by -n"7d o,

- (X), where

X = {  SEE ITTRRE } . (2)

as is obvious from equation (6.1.8). This represents a set of non~linear

equations in the variables X 3XpseeaX o The solution to equation (1)

2

can be obtained by Newton's method for finding the roots of simultaneous

non-linear equations, as described in Conte (1965, p.43). Defining Fk

as
n-1

Fk (xlaxz,...,xn) = jzo (~1) gj+k Gn—j(x).+ 8k 0 k 10,1,.5.,q 1

-
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and assuming that Fk(§) is sufficiently differentiable and EFO) is an

approximation to the solution of system (3), Taylor's expansion about

(o)

x gives

(o) (0)) (o)

Fk(_:::_) = Fk(i ) + (x-x . grad Fk(_i_c_ ) + ... (4)
This yields the iteration
@™ - ™y L graa r ™) = - F ) ()

which converges to the required solution x. The linear equations
involved can be solved using the Gauss-Jordan method with pivoting,
(Fox (1964), p.65 and 179).

Having found the abscissae, the first n equations of (6.1.3)

will determine the weights a . In matrix notation
g = Vo . (6)

where V is the Vandermonde matrix of the abscissae, namely,

r b

1 1 L] L] 4 4 & & & a9 1

X X, eesssnssres X

xl xz e % & s a e [ 3 xn

;n xn -xp
{ 1 2 . - * - ¢ 8 J

On inversion, (Faddeev and Sominskii (1965), p.70), the weights oy
are obtained in the form
n~1

- 1 _l n-j;l .
k T () jgo(l) B fomj1 B @
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where

X5+1 = {xl’ngnlc’xj, Xj+2’.°"xn.} (9)
and

H;(xk) = (xk - xl) e (xk - xk_l)(xk - xk+1) e ‘xk - xn) (10)

It will be noticed that the computation of the partial derivatives

aFk/axi, required in equation (4), is greatly facilitated by the relation

3 _ . .
5'}_{'; Un—j (X) - Un-j-l(xi_.) ) (11)

where

{Xi} = '{ XyoXgseeoX 15 XegseeesX } (12)

Before starting the numerical applications, it is perhaps worthwhile
pointing out that the coefficients of the two-poin; Gaussian quadrature
formula can be written down in closed form, which is useful for checking
the numerical procedure outlined above. In addition, it is instructive
to note that the basic formulae (6.1.3) may also be derived by means
of Taylor expansions based on the result

| b '
L £ WG dx = oy £Gxy) + 0y £y | (13)

Thus, utilizing the expansion

1 2

£(x) = £(0) + xE7(0) + 3, xX° £17(0) + ... o (14)

on both sides of (13) and equating coefficients of f(J)(O)/j! for

j = 0,1,2 and 3, the four equations
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for the unknown gquantities XXy 0

1

(15)

and ¢y are obtained iﬁmediately,

exactly as in equation (6.1.3). This procedure is, of course, entirely

equivalent to the undetermined coefficient approach adopted in the

previous section.

Algebraic manipulation yields

»
1]

- X, + z

1 2

=
[
|
~
e
fd
I
o
Q
»
[a]
S
-
~
N

where

2 [%go + (zzgg - gy (z8) - gz))i:]/Zgo

2
z =g, 8y~ 8 8) / (g8 - 8)
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6.3 Numerical Tests

The following quadrature rules are generated,

Name of the Quadrature Rule Weight function Interval

i) Gauss-Legendre ‘ : 1 [ -1, 1 ]
t—xz '

ii) Gauss-Hermite _ e ) [ —wy © ]

iii) Gauss-Laguerre e x [ o, »]

iv) Gauss-logarithm - logex _ [ 0,1 ]

v) Gauss-sine sin x [ O,W/Z]

Gauss-Legendre and Gauss-Hermite coefficients are calculated for
n £ 10 and the results are presented in Tables 1 and 2. |

Comparisons with abscissae and weights quoted by Stroud and Secrest
(1966, p.100 and 218) show agreement to near machine accuracy, using
single precision arithmetic (37 binary digits, or roughly 10 decimal
digits). There aré small discrepancies in the quoted values due mainly
to round-off in the Newton procedure and these afe indicated by
underlining the appropriate digits.

In Table 3, Gauss-Laguerre coefficiénts are presented for n £ 7
and it is found that accuracy starts to fall fapidly at this order due
to instability of basic equations. Nevertheless, this is an improvement
on the algebiaic approach‘where instability begins to appear even at
n = 4,

Coefficients for case (iv) are-quoted to oﬁly six significant
figures up to order n = 7, as it is impossible to obtain more than a

few significant digits for the higher order formulae., This difficulty
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Coefficients for the Gauss—~Legendre quadrature rule.

Table 1.
n X, o n X, o
2 * 0,57735027 | 1.00000000 8 | + 0,96028986 0.10122854
* 0.7966664é 0.22238104
3 + 0,77459667 | 0.55555555 t 0.52553241 0.31370665
0,00000000 | 0,.88888889 t 0,18343464 0.36268378
4 + O.86i13631 0.34785485 9 | + 0.96816024 | (~1)0.81274389
t 0,33998104 | 0.65214515 + 0,83603111 0.18064816
t 0.61337143 0.26061070
5 £ 0,90617985 | 0.23692689 * 0,32425342 0.31234708
+ 0,53846931 0.47862867 0.00000000 0.33023935
0.00000000 | 0,56888889 ‘
10| % 0.97390653 [ (-1)0.66671344
6 * 0.93246951 | 0.17132449 *+ 0,86506337 O.14945135
t 0.66120939 | 0,36076157 * 0.67940957 0.21908637
* 0.23861919 | 0.46791393 + 0.43339539 0.26926671
* 0.14887432 0.29552423
7 * 0.94910791 | 0,12948497
* 0.74153119 | 0.27970539
* 0.40584515 | 0.38183005
0.00000000 d.417959L2
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Table 2. Coefficients for the Gauss-Hermite quadrature rule.
n xi Ol.i n Xi O',i
2 | £ 0,70710678 0.88622693 || 8 | * 2,93063742 | (~3)0.19960407
+ 1,98165676 | (-1)0.17077983
3§ 1,22474487 0.29540898 + 1,15719371 0.20780233
. 0. 00000000 1.18163590 + 0,38118699 0.66114701
4| ¢ 1.65068012 (-1)0.81312835 |{ 9 | = 3,19099320 (~4)0.39606977
0.52464762 0.80491409 Ex 2.26658058 (~2)0.49436243
+ 1,46855329 (-1)b.88474527
5| % 2,02018287 | (-1)0.19953242 + 0,72355102 0.43265156
* 0.95857246 0.39361932 0. 00000000 0.72023522
. 0.00000000 0.94530872
10| *+ 3.43615912 | (~5)0.76404330
6 | = 2.35060497 (-2)0.45300099 £ 2,53273167 | (=2)0.13436457
'+ 1.33584907 0.15706732 + 1.75668365 | (~1)0,33874394
+ 0.43607741 0.72462960 + 1.03661083 0.24013861
+ 0.34290133 0.61086263
7| + 2.65196136 | (-3)0.97178125
+ 1.67355163 | (~1)0.54515583
+ 0,81628788 0.42560725
0. 00000000 0.81026462
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Table 3, Coefficilents

for the Gauss—Laguerre quadrature rule,

117

xi Of.i xi Cf.i
0.58578644 0.85355339 0.22284660 0.45896467
3.41421356 0.14644661 1.18893210 0.41700083

2.99273632 0.11337338
0.41577456 0.71109301 5.77514355 | (~1)0,10399198
2.,29428036 0.27861773 9.83746738 | (-3)0.26101721
6.28994508 | (~1)0.10389256 (1)1.59828739 | (~6)0.89854824
0.32254769 0.60315410 0.19304366 0.40931893
1.74576110 0.35741869 1.02666482 0.42183128
4,53662030 | (-1)0.38887909 2,56787661 0.14712636
9.39507091 | (~3)0.53929470 4.90035291 | (-1)0,20633518
' 8.18215328 | (~2)0.10740104
0.26356032 0.52175561 (1)1.27341802 | (-4)0.15865465
1.41340306 0.39866681 (1)1.93957278 (—7)0.317031§1
359642577 | (=1)0.75942449
7.08581000 | (-2)0.36117587
(1)1.26408008 | (~4)0.23369973




Table 4, Coefficients for - J

1

0

logex f(x) dx.

Xi G‘,i Xi ai
0.112009 0.718539 (-1)0.216340 - 0.238764
0.602277 0.281461 0.129583 0.308287

0.314020 0.245317

(-1)0.638908 0.513405 © 0.538657 0.142009
0.368997 0.391980 0.756915 | (~1)0.554547
0.766880 | (~1)0.946154 0.922669 | (~1)0.101690

(-1)0.414485
0.245275
0.556165

0.848982

0.383464
0.386875
0.190435

(~1)0.392255

(-1)0.291345
0.173977
0.411702
0.,677314

0.894771

0.297893
0.349776
0.234488
(-1)0.989305

(-1)0.189116

(-1)0.167176
0.100176
0.246277
0.433444
0.632335
0.811109

0.940845

0.196154
0.270293
0.239686
0.165785

(-1)0.889508

(-1)0.331977

(-2)0.593344
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associated with the logarithﬁic formula is well known (Anderson (1965))
and, indeed, makes the algebraic approach virtually unusable in the
present form due to the near singular nature of the ﬁatrices involved.
The non-linear approach postpones the advent of instability but is
stil] far‘from satisfactory.

Similariremarks apply to the important case (v) for the trigonometric
weight functions., WNote that the present quadrature coefficients could
be applied directly to the integrals of Chapter 5 between the zeros of
the weight funétions cos px or sin px. Linear transformafions
normalize the integration interval to ED, ﬂ/Z] and the weight function
to sin x in both cases. Insﬁability begins to appear in both the
linear and the non-linear algorithms when n =5 and for fhis reason
the coefficients are quoted to only 7 figures hgre. Although these .
results are regarded as being oni; of a preliminary nature, comparisons
with the related coefficients of Piessens (1970) have been carrie& out
.and the results given in Table 5 are expecte& to be accurate to the
number of figures quoted, thé questionable figures beihg qnderlined.

It islworthﬁhile pointing out that the results obtained on applying
these quadrature rules for cases (iv) to (v) do not appear to be
particularly sensitive to errors in the coefficients, Accurate numerical
values of the monomial integrals are reproduced easily, even when
fluctuations exist in the values of the weights and abscissae and care
is needed to apply a sufficiently sensitive test. This point is raised
by Stroud and Secrest (1966, p.27).

It is concluded that, although the introduction of the non-linear

system into the computational scheme, in an attempt to increase accuracy,
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Table 5, Coefficients for J

/2

o

sin x £(x) dx

X3 % * %

0.5356437 | 0,3963745 0.1517149 | 0.0371544

(1)0.1304922 | 0.6036255 0.4685867 | 0.1688287

0.8674892 | 0,3102768

0.3235279 | 0,1591450 (1)0.1247020 | 0.3173873

0.9046139 | 0.4768423 (1)0.1504647 | 0.1663528
(1)0.1420703 | 0,3640127
0.214350L | 0,0726936
0.6389416 | 0,2868153
(1)0.1118384 | 0.4026582
(1)0.1475126 | 0.2378328
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delays the instability to higher order quadrature rules, it does not
eliminafé the instability altogethexr. The use of doubie precision
arithmetic produces a small improvement inm accuracy, but, in general,
multiple precision procedures would be requirea. Currently, work is
being carried out on improving the linear algorithm, so that accurate
quadrature coefficientslfor general weight functions, including the
particularly important sin x case, are expected to be available in the
near future. However, in the remainder of the present work attention
is confined to the commonly occuring case where the monomials are
expressible in rational form (apart from multiplying constants).and
the introduction of rational arithmetic produces essentially exact

results, This method does not apply to the sin x case where the

monomials may not be expressed in rational form.

6.4 Multilength Rational Arithmetic

The proposed method consists of-the exact solutioﬁ of the linear
system (6,1.10) using multilength ratiomal arithmeﬁic. As this work
involves the re-definition of the operators +, -, /, ¥, a convenient
language to use is Algol 68. Use can also be made of 'structures' to

define the relevant modes as follows:

mode  fint struct (bool si, [1:&]'int X) ;

mode  frat struct (fint num, den)

A fint is a N~tuple length integer with sign si (faflse for + ve) and

digits [i:ﬁ] int X. The implementation which was used limited integers

23

to 2.7 - 1, and therefore each element of the array X was allowed to
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-8 6.4

take 6 digits only, X[1] being the most significant part and X[N] the
least. A long rational 2rat consists simply of a numerator num and
denominator den.

For these modes a set of monadiec and dyadic operators are defined
using the built-in symbols such as <y Py =y =y 4, *, [/, +, and some
indicants, for instance sign. All the arithmetic operators were
designed to keep the resulting rationals in their simplest forms by
immediate cancellation of factors., In this way artificial overflow,
and the subsequent increase in the amount of arithmetié due to an
enlarged N, was avoided, To this end Euclid’s algorithm (Birkoff and
Maclame (1965), p.16) was used to find hef's in a procedure defined by

proc hef = (fint I, J) Lint .

For use with addition and subtraction routines, gem's were found using

roc fLem = (Rint I, J) Lint .,

Further special operaters and procedures were:

op eq0 = (fint A) booyg (delivers true if A is zero, else false)

op % = (fLrat A) Rrat : {brings A to its simplest form)

op £ = (Zint A) Lrat : {(converts fint A to the corresponding frat)

op sign = (frat A) bool : (delivers true if A 1s -ve else false)

op @ = (int A) reag : (converts Lint A to the corresponding real

number)

op @ = (Rrat A) reatl : (converts frat A to the corresponding real

: number)

proc print2i (2int A):  (prints out %int A)

proc prinir (Lrat A): (prints out two Lint's that form frat A)

The set of operators and procedures was compiled and put into an

album, from which it could be obtained for use in the problem,
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a) Basic Operations on fint's

Addition and subtraction was performed in 6 digit blocks (each X
[i]) with a carry ﬁechanism arranged to COnnecF successive blocks.

Multiplication and division operations are expressed by simple
algorithms in which addition and subtractions are used, respectively.

For multiplication, two registers regl and reg2 defined by
[1: 2% N] int regl, reg2, initially cleared, are used as storage
locations for interim results, The multiplier is loaded into the right
of reg?2 from 1§cations N + 1 to 2N, Digits are extracted from the
multiplicand starting with the least significant and these are used to
control successive additions to regl from reg2., Contents of reg2 are
shifted one place to the left after each digit of the multiplicand is
dealt with, so simulating leng multiplication, Some special internal
procedures were written to effect the required shifts, digit extraction
and sign organization,

Other implementations of these processes could have been used, this
particular one being chosen to give prograﬁming simplicity to the
algorithm, which can then bé expressed at high level in the appendix.

The multiplication can be illustrated by a simple example

considering 1011 003282 (multiplicand) and 21 (multiplier),
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multiplier

shift Reg2 left

shift

shift

shift
shift
shift

shift
shift
shift

Reg?

Reg2

Reg2
Reg2
Reg?

Reg2
Reg?2
Reg2

left

left

left
left
left

left
left
left

Reg2

¢C0000

21

210
2100
21000

000000
21

210

2100

21000

210000
100000
000000

000000
000000
000000

Regl .

000000

21

21
210
231
21000
21231

000000
21
21
42 )

210 )
252
210
462
210
672 -
210

»

882 »

210
1092

210
1302

210
1512

210
1722
2100
3822

2100 |

5922
21000
26922
21000

47922
21000
68922 |

000000 }

068922 |

000000 }

068922 °

000000 }

068922

Product

add
multiplier
twice

add
210,
eight
times

add
2100,
twice

add
21000,
three
times

add
21 000000
once

add

210 000000
once

add

21000 0C0000
once

Figure 1. Example of multiplication in double length integer arithmetic.

124

£ 6.4



For division, two registers are defiﬁed by [1: N] int regl, reg2
which are initially cleared. The dividend and the divisor are loaded
into regl and reg2, respectively. Firstly, some of the possibilities
which can occur are examined. If a zero divisar is detected the
message "overflow in / " is printed out; a check is also made for a
divisor being larger than the dividend, resulting in a zero quotient,
and for equal dividend and divisor, to bypass the execution of the
division algorithm altogether. Moreover, the consecutive zeros in
the least significant digits of dividend and divisor are counted by
repeatedly incrementing index numbers IA and IB, whilst shifting the
registers to the right. The dividend and the divisor are then
restored to the reg%sters regl and reg?, and the division is carried
out by a sequence of subtraétions and shifts. The difference between
two index values, IA and IB, determines the number of single left
shifts to be applied to reg2, hence ensuring the correct position qf
the number in the register. The divisor is then repeatedly subtracted
from regl while regl remains greater than reg2. The‘nﬁmber of |
subtractions is counted and entered into the quotient. This process
is repeated until the right shifts, which follow the subt:acfions,
bring the divisor to its original location in reQZ, or until reg2
exceeds regl, |

As an gxample 1 426010 000000 = 457000 is conéidered. The
index numbers JA = 7, IB = 3 determine the position of the number

in Reg2,
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Regl

1 426010 000000
Reg2 4570 000000

1 421440 000000

4570 000000
subtract
1 416870 000000 Reg?2

L
4570 000000 repeatedly
{(number of subtractions = 312)
1 412300 C0OQ000

"o

170 000000 |
Shift Reg2 right 457 000000 Regl > Reg2 is violated.

Quotient = 3120000.

Figure.Z. Example of division of (fint)s,

6.5 Applications

To begin with, rational arithmetic is used to generate the

following polynomials:

Name of the Orthogonal Weight Interval Monomials
polynomial function
' : 2/(G+1) j even
i) Legendre 1 [-1, 1] g.”{
. I j odd
ii) Laguerre ' e X [0, °°‘] g. = ji

J

m(i-1)!"
ULCSEIREE

g j even

iii) Chebyshev (first kind)  (1-x2) % [F1, 1] . =
_ 1 o i odd
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The coefficients of these polynomials up to order ﬁ £ 10 are checked
with those of Stroud and Secrest (1966, p.84). The results are
tabulated in Tables 6, 7 and 8.

The monomials for the Chebyshev polynomiais are multiples of
T, which is treated as a parameter. The resulting system of algebraic
equations is solved by rational arithmetic, using a symmetric version
of the Gaussian elimination routine, Cholesky's method is found
unsuitable for the purpose since the diagonal elements of the resulting
triangular matrix involve the calculation of square roots.

Next, the polynomials for weight function w(x) = - logex are
considered, These polynoﬁials have been described by Stroud and Secrest
(1966, p.90) as being extremely difficult to compute. In the literature,
éxact results are q;oted only for orders n £ 4, (Abramowitz and Stegun
(1965, p.920) or Stroud and Secrest (1966, p.90)). Using multilength
rational arithmetic this table is extended up to order 7 (Table %), and
the results recorded here justify that the method can be used with
COnfjdence for any weight function, if the moments gj are known
algebraically and their j-dependent part can be expressed in rational
form.,

The ability‘to generate Gaussian quadrature formulae, is also of
considerable interest for integrating singular functions, ‘where the
singularity may be included in the weight function. The rate of
convergence depends, of course, on the type of singularity. Davis and
Rabinowitz (1965) and Rabinowitz (1967) have stated that the most of
the common quadrature formulae converge not 6n1y for continucus
functions, but also for momotonically increasing singular functions,

whose singularities lie at one or both end points, As an example, a
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Table

10

Legendre polynomials.

21
3

-3 4
5
6 2 3

"7* T3
10 3 . 5

—9—-}1 +21X

_15 4,5 2 3
11 11 * 7 231

J 2L 5,105 3 35
i3 143 429
28 6 14 4 28 2
'E'X +T§X -mx +

10 45 8 630 6 210 ‘4
X - === x

9% * 333X T 33
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* %199 ¥

2

_ 63
46189
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10

it

7. Laguerre polynomials

x-1

x2--4x+2

x3 - 9x2 + 18x - 6
4

"
|

16x> + 72%° - 96x + 24

xs - 25x4 +-200x3 - 600x2 + 600x - 120

x6 - 36x5 + 450x4 - 2400:{3 + 5400x2 - 4320x + 720

x7 - 49x6 + 882x5 - 7350x4 + 29400x3 - 52920x2 + 35280x - 5040
X8 = 6hx’ + 1568x° - 18816x° + 117600x" — 376320%° + 564480%>
- 322560 + 40320

X - 81x° + 2592x’ - 42336x° + 381024x° - 1905120x" + 5080320x
- 6531840x° + 3265920x - 362880

%0 - 100x° + 4050x° - 86400x’ + 1058400x0 - 7620480%°

+ 31752000x4 - 72576000x3 + 81648000x2 — 36288000x + 3628800

129
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Table

10

Chebyshev polynomials.

21
2
-3 4
A
5 3 5
3 A 21
7% 7716 32
7.5 3_7 -
zx + =X 64}{
6 5 4 1 2 1
T vEX LY iy
A S VAR R P A
4 16 32 256
.5,8,35 6_25 4,25
2 16 32 756
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Table 9. Polynomials for —1ogex on‘[O, l]

P, = 1
- -1
Pl = x A
- L2_3 17
Py = x -~y x5
b o 33105 2 5751 4679
3 3588 16175 358800
» o 4165196 3 67227 2 _ 79564 _ , 2296639
4 97641 75943 531601 %78440500
b o 5 _ 17692 971625 4 . 2 449515 716800 3 _ 112304 929775 2
5 8090 435556 1 474481 880081 218441 760012
, 203478 628075 _ _ __1 461977 847751
3567882 080106 1i55 993793 983504
b o 5 15700 658824 389411 5, 7604560 816456 422375 &
6 5850 859031 888599 5 831815 771434 081916
_ 873930 519668 513600 3 , 182360 435978 518375 2
707953 942858 520479 © ¥ 707953 942858 520479
_ 57568 874774 479529 . 1 654296 840628 723409
7831815 771435 081916 %4595 323030 B00T20 499834
b = o _ 374764 236038 061105 347545 6 . 19 703487 975349 105912 246983 5
7 117814 060676 696250 433948 4 977644 063590 416580 834303

_ 193 910114 421075 347658 883625 x4 . 462 961491 852963 682406 237375 x3
79 642305 017446 665293 348848 602 294931 694440 406280 950663

_ 280 872418 651357 455258 635313 XZ + 37 439927 629086 176699 166095
2409 179726 777761 625123 802652 5420 654385 249963 656528 555967

_ 29 938206 191019 047895 615767
346921 880655 997674 017827 581888
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weight function with square root singularities is considered.
The moments are:

w/2
2] 2j=1)!1 g
T o do =q {23712 sz%: (1)

2 sin

1 j
I__}s____,dx
o ¥x(l=x) o

[ x(1-x) ]_1/2 on [0, 1] are tabulated in

Polynomials for w(x)
Table 10,

The zéros.of the above polynomials denote the absciésae.for the

Gauss quadrature rule. They were calculated easily to machine accuracy
by Bairstow's method. Tables 11 and 12 illuétrate the coefficients
for Géuss—Laguerre and Géuss-Chebyshev rules for nls 10. Comparisons
with Table 11, Table 3 and Stroud and Secrest (1966, p.254) confirm
the accuracy of the method. The evaluation of the weights is based
on equation (6.2.8) and involves a considerable amount of algebra.
The agreement with Stroud and Secrest is within the limits of single
precision arithmetic. However, higher precision can be obtained by
more refined arithmetic, Similarly, Tables 13 and 14 illustrate the
coefficients for tbe polynomials listed in Tables 9 and 10,

Chebyshev polynomials and the polynomials for the weight function
w(x) = [ x(l—xz) ]_1/2 on [0, 1] are special cases for which the
abscissae X and the weights of the corresponding quadrature rules are

obtainable in an analytic form., Thus, for the Chebyshev case,

1 n .
J £ (x) dx = Z f(cos 2i-1 T) : (2)
i=1 :

-1 1-x2

gla

as quoted in the literature (Hildebrand (1956, p.331), Krylov (1962,

P.179), Kopal (1961, p.384) or Hamming (1973, p.327)). Similarly,
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Table

10

§

10. Polynomials for Ex(l—x)]~1/2 on [0, 1].

x - L
7
xz - X +‘%
-3kt oL
5 16 32
4 3 5 2 1 1
oD by x - Xty
o a2 333252 25 1
2 16 32 256 512
6 5 27 4_7.3,105 2 9 1
X=X g X - X b oee X 5ee ¥ Y 3578
J_1.6,77.5_ 105 & 147 3 _49 2 49 _ 1
2 16 ° " 32 128 256 ©~ 7 3096 * T 8192
8 7 13 6 11 165 BA_21.3 21 2 1 1
X“"X*“z""‘z—x % * "33 % *osg 756 * ¥ 32768
S _9 8,135 7 213 6, 1287 5 891 x4 L6933 _135 2
T 7TE* TIE* T 37 256 512 2048 4096
L8 1
65536 * 131072
L0 59,85 8 25 2275 6 _ 1001 5 2145 4 _'165 3
8 2 256 256 2048 * T 1024
825 2 _ 25 1
* §5536 65536 © © 524288
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Table 11. Coefficients for the Gauss-Laguerre Quadrature Rule.

xi Cf.i n Xi Cli
0.58578644 0.85355339 |} 8 0.17027963 0.36918859
3.41421356 0.14644661 0.90370178 0.41878678

2.25108663 0.17579499

0.41577456 0.71109301 4.26670017 | (-1)0.33343492

2.29428036 0.27851773 7.04590539 | (-2)0.27945362

6.28994508 | (-1)0.10389257 (1)1.07585160 | (-4)0.90765091

(1)1.57406786 | (~6)0.84857444

0.32254769 0.60315410 (1)2.28631317 | (-8)0.10480156
1.74576110 0.35741869

'4,53662030 | (-1)0.38887909 || 9 0.15232223 0.33612642

9.39507091 | (-3)0.53929471 0.80722002 0.41121398

: : 2.00513516 0.19928753
0.26356032 0.52175561 3.78347397 | (-1)0.47460563
1.41340306 0.39866811 6.20495678 | (=2)0.55996266
3.59642577 | (-1)0.75942450 9.37298524 | (-3)0.30524976

~ 7.08581001 | (-2)0.36117587 (1)1.34662369 | (~5)0.65921235
(1)1.26408008 | (-4)0.23369973 (1)1.88833598 | (-7)0.41107641
(1)2.63740719 | (-10)0.32909036
0.22284660 0.45896467
1.18893210 0.41700083 || 10 0.13779347 0.30844111
2.99273633 0.11337338 0.72945455 0.40111993
5.77514357 | (-1)0.10399197 1.80834290 0.21806829
9.83746742 | (-3)0.26101720 3.40143370 | (~1)0.62087456
(1)1.59828740 | (-6)0.89854794 5.55249614 | (-2)0.95015168
8.33015271 | (-3)0.75300842
0.19304368 0.40931895 (1)1.84378593 | (-4)0.28259223
1.02666490 0.42183128 (1)1.62792578 | (-6)0.42493149
2.56787675 0.14712635 (1)2.19965858 | (-8)0.18395616
4.90035308 | (-1)0.20633514 (1)2.99206970 |[(~12)0.99190046
8.18215345 | (-2)0.10740101
(1)1.27341803 | (~4)0.15865464
(1)1.93957279 | (-7)0.31703167
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Table 12. Coefficients for the Gauss—-Chebyshev Quadrature Rule,

xi i ¢} Xi U.i
£0.70710678 1.57079633 || 8 |  £0.19509032 0.39269908
£0.55557023 0.39269908
40, 86602540 1.04719755 £0.83146961 0.39269908
000000000 1,04719755 £0.98078528 0.39269908
+0.38268343 0.78539816 || 9 |  +0.34202014 0.34906585
£0.92387953 |  0.78539816 +£0.64278761 0.34906585
+0,86602541 0.34906585
£0,58778525 0.62831853 £0.98480775 0.34906585
+0.95105652 0.62831853 0.00000000 0.34906585
0.00000000 0.62831853
10]  +0.15643447 0.31415927
£0,25881905 © 0.52359878 +0.45399050 0.31415927
+0,70710678 0.52359878 +0,70710678 0.31415927
+0.,96592583 0.52359878 £0.89100652 0.31415927
+0.98768834 0.31415927
0.43388374 0.44879895
+0,78183148 0.44879895
£0,97492791 0.44879895
0.44879895

0.00000000
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Table 13, Coefficients for - I

1

0

1ogex f(x) dx

§ 6.5

*i %y %3 *i
0.11200880 0.71853932 (~1)0.21634006 0.23876366
0.60227691 0.28146068 0.12958339 0.30828657

10,31402045 0.24531742

(-1)0.63890793 0.51340455 0.53865722 '0.14200876
0.36899706 0.39198004 0.75691534 | (-1)0.55454622
0.76688030 0.92266885 (—1)0.10168§59

(-1)0.94615407

(-1)0.41448480
0.24527491
0.55616545

0.84898240

0.38346407
0.38687532
0.19043513

(-1)0.39225487

(-1)0.29134472
0.17397721
0.41170252
0.67731417

0.89477136

0.29789347
0.34977623
0.23448829
(-1)0.98930460

(-1)0.18911552

(-1)0.16719355
0.10018568
0.24629425
0.43346349
0.63235099
0.81111862

0.94084817

0.19616939
0.27030265
0.23968187
0.16577577
(-1)0.88943227
(-1)0.33194305

(-2)0.59327870

136




§ 6.5

-1/2 £(x) dx

1
Table 14. Coefficients for J [x(l-x)]

(o}

xi Cf.i Xi ai
0.14644661 1.57079633 (~1)0.17037087 0.52359877
0.85355339 1.57079633 0.14644661 0.52359877

0.37059048 0.52359878
(~1)0.66987298 1.04719755 10.62940952 0.52359878
0.50000000 ' 1.04719755 0.85355339 0.52359878
0.93301270 1.04719755 0.98296291 0.52359877
(~1)0.38060234 0.78539816 (~1)0.12536044 0.44879895
0.30865828 0.78539816 0.10908426 0.44879898
0.69134172 0.78539816 0.28305813 0.44879895
0.96193977 0.78539816 0.49999999 0.44879897
0.71694187 0.44879894
(-1)0.24471742 0.62831853 0.89091574 0. 44879897
0.20610737 0.62831853 0.98746396 0.44879894
0. 50000000 0.62831853 ,
0.79389263 0.62831853
0.62831853

0.97552826
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1 n . '
I L dx = = z f{cos2 2;“1 %J (3)
o VYx(1-x) mi=1 “n

which is useful for checking purposes.
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Appendix

The following procedures are defined for long rational arithmetic.

mode Lint=struct(bool si,[l:n] int x);

¢ defines an n-tuple length integer with sign +ve if boolean is false c

mode frat=struct{fint num,den);
¢ long rational, lrat, is defined consisting of numerator, rum, and

denominator, den, of mode lint. c

Lint zp,zq:

si of zp«false; si of zq«false;

for i to n~1 do((x of zp) [i]<-0; (x of zq) [i]*»O);

(x of zp)[n]«l; (x of zq)[n]<0;

¢ Two lints zp and zq are declared and assigned unity and zero. c

fint one=zp, zero=zq;

proc ad=(int n,ref[:]igg a,b,c):
¢ In the particular implemenfation the values of mode int are packed into
stx—digit machine words, hence _the addition operation applies to each
stx-digit integer part. The interaction betwaeﬁ each part is taken
eare of by the carry digit, ca, where necessary.’ Array ¢ retains the
summation of a and b. ¢
int ca+03
for i fromnby -1to 1 do
c[i]«a[i]+b [i] #ca;
(c[i]31000000 | c[i] minus 1000000; ca*l | ca+0 )
end

end; -
-139

§ 6A



§ 6A

proc mii=(int n,ref[ ]int a,b,c):

¢ This procedure defines the subtraction operation, the array ¢ retains. -
the subtraction result, ca and cb effect as cérry digits. ¢
int ca«0, cb+0; |
for i fronn by -1 to 1 do - ‘
(a[i]<b[i]+eb | a[i] paus 1000000; ca<l | ca<0);
c[i]«a[i]-b [i]-cb; cbeca
end

end;

proc dig=(int n,i,[ ]int x) int:
_g This 18 a procedure that extracts the 1'th digit from =, and isr used
in operator *. c

int iw,ic,ia,ib,id,idl«1;

iwen-(i-1)%6; icei-((i~1)+6)*6;

to ic-l do idl times 10; id«idl*10;

(ic#6 | ia«(x[iw] :id)*id; ibex[iw]-ia | ib+x[iw]);

(icfl | iavib:idl | iaeib) |

end;

proc putdig=(int n,i,ref[]int X, int in}:

c This is a procedure to deposit digits in x and is used in operator + . ¢
int iw,ic,idel; iwen-(i=1)36;
feei=((i-1)26)*6;
to ic-1 do id times 10; x[iv] plus (ic#l | in*id | in)

end;
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op>=(xef[ Jint a,b) boot:
int n<upb a; c upper bound of a ¢
boot bl; ¢ True is delivered if value of a is greater than b,
otherwise false is delivered. c

for i to n do

it afi]

b[{] then ékip

egse (a[i]>b[i] | bletrue | bl«false); goto 21

i
bl+fatse;

21: skip;
bl

end;

proc shift?=(int n,ref[ Jint x):

¢ This ¥s a procedure to shift the contents of the array x one digit
to the left. ¢ |

| int ca;

for i to n do

begin
(ifn | caex[i+1] ¢ 10000003 x[i+1] minus ca*1000000 | ca+0);
x[i]+x[i] *10+ca

end |

end;
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proc shiftr=(int n,ref[]int X):
¢ This is a procedure to shift the contents of the ‘array x one digit
to the right. c |
int ca;
for i fromn by -1 to 1do

(i#l | casx[i-1]-10%(x[i-1] :10) | ca+0);

x [i]«x[i] +10+ca*1000000

end

end;

op>=(%int a,b) bool:
begin
boof bl; c true is delivered if value of a is greater than b ¢

if si of a and not (si of b) then bl«fafise

elsf not (si of a) and si of b then bl<true

efsf not (si of a) and mot (si of b) then
for i ton do |
if (x of a)[i]=(x of b)[{]then skip
etse ( (x of a)[i]<(x of b)[i] | blefatse bl*Ezﬁs);_ goto 21
‘_-Ei_-; .
bl<false;
21: skip
elsf si of a and si of b then
for i to n do
if (x of a)[i] =(x of b)[i] then skip

efse if (x of a) [i]<(x of b) [1] then bl+true efse bl+false E_i;;

goto 2
fi;

bl<«false;
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22: skip
£i;
bl

end;

op<=(%int a,b) booi:
begin
book bl; ¢ true is delivered if value of b is greater than a c

if si of a and not (si of b) then bletrue

efsf not (si of a) and si of b then bl«false

elsf not (si of a) and not (si of b) then

for i to n do

if (x of a)[i] =(x of b)[i]then skip

egse ( (x of a)[i]<(x of b)[i] | bletrue | blfagse); goto &1
£i;

blefatse;
21: skip
elsf si of a and si of b then
for i ton do

if (x of a)[i] =(x of b)[i] then skip

etse if (x of a)[i]<(x of b)[i] then bl<false efse bl<true fi;

goto 22
fi;

bl«+false;
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op==(Lint a,b} book:
begin
boof bl; ¢ true is delivered if a=b, and false otherwvise ¢

if (si of a and not (si of b)) or (not(si of a) and si of b) then bl<«false

else for i to n do

if (x of a)[i]=(x of b)[i] then skip

etse blefafse; goto 21 fi;

bletrue;
21: skip
£i;
bl o ,

- end}

op eq0 =(Lint a) bool:

begin

book bl; ¢ true is delivered if a is zero and false otheruwise c

for i to n do

if (x of a)[{]=0 then skip efse bl«false; goto 21 fi;
bletrue;
£1:bl

end;

A

op abs =(2int a) Lint:

begin
¢ delivers +ve sign for lint a c.
fint cea; si of cefalse;

¢ : . 144
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op - =(%int a)lint:

¢ changes the sign of lint a ¢
Lint cea;
si of ctnot (si of a);
c

end;

op + =(fint aa,bb)lint:
¢ Addition of; two lints is carried out and the sum is delivered. ¢
fint c,a,b; ataa; b+bb;
E_@E(siﬂa)ﬂﬂ(sigib)
- then ad(n,x of a, x of b, x of ¢); si_g_iic*—_f_a_&ég
elsf si of a and si of b
_Elle_rlad(n,-x.gia, x of b, x of ¢); si of c*true

elsf not (si of a) and si of b and abs a>abs b

then mii(n, x of a, x of b, x of ¢); si of c«false

efsf not (si of a) and si of b and abs a<abs b

then mii(n, x of b, x of a, x of ¢); si of cetrue

elsf si of a and not (si of b) and abs b>abs a
then mii(n, x of b, x of a, x of ¢); si of c+false

‘efsf si of a and not (si of b) and abs b<abs a

then mii(n, x of a, x of b, x of ¢); si of cetrue

elsf eqD a then c+b eflsf eqQ b then c+a

eflse c¢zero
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proc mul =(3£f_[ ]Ln_g_ a,b,c):
¢ Thie is a procedure which delivers e, the product of a and b.
A detatiled description ic given in the text. ¢
int n+upb a,j;
[i:Z*@] int regl, reg2; c two registers ¢
clear regl; clear regl;
reg2 |:r1+1:2*n:]<—b;
for i to 6*n do
jedig (n,i,a);
(3=0 | EEiE.I for il to j do ad(2*n,regl,reg2,regl) );
shift? (2%n,reg2)

© end;

op - =(Rint a,b)lint:

begin
¢ dyadic operator delivering a-b c
fint c; cta+(-b)

end;

gt

op * =(Zint a,b)Lint:

begin
¢ dyadie operator delivering a*b, as described in the text, the

multiplier is added to the sum of partial products stored in regl, as

many times as required by each multiplicand "'ci'z:git, spectified by proc dig c
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Lint c,d; int j; [}:2*@] int regl,reg2;
2&355 regl; clear reg2;
reg2 E1+1:2*n]<- x of b;
for i to 6%n do
jedig(n,i,x of aj;
(j=o | skip | for il to j do ad(2*n,regl,reg,regl) );
shiftf (2%n,reg2)
end;
x of d«regl [1:ﬂ];
(not (eq0 d) J print ((newline, "overflow in *", newline)) );
¢ To ensure that the product of two n*6 digit long integers can Be
accommodated within a 2*n—tup2_e integer, a check for overflouf 8 -
carried out. ¢ | |
x of c¢regl E1+l:2*n:|;
if (si of a and si of b) or (mot (si of ) and mot (si of b))
then si of cefalse efse si of cvtrue
fi;

c

end;

op # ={(Lint a,b)lint:
¢ dyadie operator delivering aib as described in the text, the number
of subtractions is cowited and the correct quotient digit is deposited

by the procedure putdig c
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dint c;

int ia<0, ib+0, id;

[1in] int regl,reg2,nort;

for il ton _gi_q_nortl}.ﬂ*—O;

cfear regl; cgear reg2; cfear (x of c);

reglex of a; reg2+x of b;

if reg2>regl then c¢zero

elsf b=zero then print ((newline, "overflow in /", newline));
c check for a zero divisior ts made c

ctzZero

elsf a=b then c+one

efse whife regl>nort do (shiftr (n,regl); ia plus 1);
whife reg2>nort do (shiftr ({(n,reg2); ib plus 1);
regl<+x _g;ii a; reg2+x of b;
to ia~ib do shiftf(n,reg2);
for ic from ia-ib+l by -1 to 1 do

id+0;
21:skip;
if reg2>regl then skip

else mii(n,regl,reg2,regl); id plus 1; goto 21 fij;

putdig (n,ic,x of ¢, id);
shiftr (n,reg2)
end
£i;
'_J'_._i_f-!(si_g_f_a_z_i_rlclsi_ghf_b)g_g_(ig_gsi_o_g_a)_a_n_d__n_o_t_(siggb))

d

then si of c+fafse efse si of cttrue fi; -
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proc hef =(Lint i,j)%int:

¢ Highest eommon faector of two lint's is evézluated by Euclid's algorithm. c
fint i0,i1,a,i2,i3; _
(eq0 i or eqQ j I atone; goto 21);
(i=3 | a#i; goto 21 | & i<j | 10«§; il+i | i0+i;il<j);

whife not (eq0 il) do (i3«i0+il; i2+10-il*i3; i0+il; il«i2);

a<i0;
21:a

end;

proc fem = (Lint i,j)Lint:

c Lowest common multiple of two lint's is delivered.- c
Lint i0,il; i0+hef(i,j); il1«i+i0;
j*il

end;

op % =(frat a) frat:
c Possible cancellations of the numerator Wi th denominator arel
considered and the sinplest form of a is delivered. c

Lint il<hcf (abs (aum of a), abs (den of a));

frat c; num of ctnum of atil;

den of ctden of a¥il;
frattec

gnd;
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proc printli = (int a):

c outputs lint a ¢
format fl = § 6dx §;
(si of a | print ("-") | print ("+));
outf (stand out, fl, x of a)

end;

op + =(&rat a,b)lrat:
begin

c sums up two lrat's and delivers a lrat in the simplest form ¢

fint il; frat c;

den of c+ficm (égi(den'EE a), Ehi(den'gé_b));

il«den of c;

num of c+{11%(den of a))*num gi_a + (il%(den'gi ﬂ))*nuﬁ'éﬁ_b;
Lrat+7 ¢

end;

op - =(irat a,b)lrat:
begin
¢ performs the subtraction and delivers the result in the simplest form c

Lint il; frat c;

den of c+fcm (abs (den of a), abs (den gg_b));

il*-den of c; |

num of c+(il*(den of a))*num of a - (il+(den of b)})*num of b;
frat<7 c

end;
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op * =(frat a,b)lrat:

begin

¢ ALl cancellations on the numerators and denominators ave performed

and the product of a and b is delivered., c
fint i1,i2,i3,14,15,i6; 2rat c;
il¢*hcf(abs (num of a), abs(den of b));

i2¢hcf(abs (den of a), abs(num of b));

(not (il=one) | i3+num of a*il; i4¢«den of b+il

I i3«num of a; i4+den of b);

(not (i2=one) | iS+den of a®i2; ib*num of b+i2

I i5¢den of a; ib6*num of b);
num of c«i3*i6; den of c+¢i4*i5;

Lratsc

end;

op / =(%rat a,b)irat:

begin

c All cancellations on the numerators and demominators are performed

and the resulting lrat is delivered ¢
fint i1,12,i3,i4,i5,i6; Lrat c;
 il<hcf(abs (num of a), abs(num of b));

i2«hcf(abs (den of a), abs(den of b));

(not (i'1=one) [ i3*num of atil; i4¢num of b¥il

| i3¢num of a; i4<num of b);

(not (i2=one) | i5«den of ari2; ibeden of b%i2

l i5«¢den of a; i6«den of b);.
num of c+i3*i6; den of c*id*i5;
frat+c

end;
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op - =(izat a)frat:

¢ monadic operator effects a change éf sign ¢
fxat c; num of c+ —num of a;
den of c+den of aj;
Sratec

end;

op £ = (fint a)rat:

begin

c assigns lint o'ne as a denominator for lint a,
(2zat c; num of cta; den of ctone;
gracee

- end;.

op = =(frat a,b)boo%i

begin

¢ delivers true if the value of two lrats are equal, and false otherwise c

bool e}

and delivers a lrat c

ct((nun of a=num gg_b) and (den of a=den of b)) or

((num of a=-~num of bland (den of a=—den of b)); c

end;

op sign = (frat a)bool:

begin

¢ delivers true if sign of lrat a is negative, and false otherwise ¢

if (si of num of a) then (si of den of a | false | true)

else (si of den of a | true | fatse)

end;
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5 64

op < = (frat a,b)book:

begin
¢ delivers true if lrat b is greater than lrat a ond false otherwise ¢

if not (a=b) then if sign a and not (sign b) then true

efsef not (sign a) and sign b then false

elsf not (sign a) and not (sign b)

then sign (a-b)

else not Gign (a-b))

fi
_ellse false
£i

end;

op > = (rat a,b)bool:

begin

¢ delivers true i1f lrat a is greater than lrat b and false otherwise ¢

if not (a=b) then if sign a and not {(sign b) then fafse

eflsf not (sign a) and sign b then true

efsf not (sign a} and not (sign b)

then not sign‘(a—b)

efse (sign (a-b))
fi

else false

end;

proc printlr = (Lrat a):

begin
c outputs lrat a ¢

printfi (num of a):
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(n>8 | newline (stand out) I print (("/"));
printfi (den of a)

end;

op @ = (Lint a)real:
¢ converts lint a to the corresponding real number c
real s+0.0, c+1.0;
for il fromn by -1 to 1 do
(s plus (x of a)[ii] *c; ¢ times 1,0 & + 06);
(si of a | =s | s).

end;

22_@'= (frat a)real:
¢ converts lrat a to the correéponding real number ¢

(@(num of a)/ @(den of a));

op + = (Lxat a, Rint b)fLrat:

¢ Addition of mized modes, lrat a with lint b is performed and resulting
lrat is delivered. c

frat c¢; num of ctnum of atb*den of a;

den of c+den of aj;

Arat+7 c

end;

op + = '(fint a, frat b)lrat:

begin
¢ Addition of miwxed modes, lint a with lrat b is performed and resulting

Lrat '-is delivered. ¢
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frat c; num of ctnum of b + a*den of b;
den of c«den of b;
Lrat+Z c

end;

op = = (Lrat a, Lint b)Lrat:

c Subtraction of miwed modes, lrat a and lint b is perﬁbrmed and
resulting lrat is delivered. c

Zrat c¢; num of ctnum of a-b*den of aj

den of c¢den of aj

frat<Z c

end;

rrerip—

op = = (&int a, 2rat b)lLrat:

¢ Subtraction of miwe&.modés, lint a and lrat b is performed and
resulting lrat is delivered. ¢

.&535 c; num of c+a*den of b-num of b;

den éi cden of b;

frateZ c

end;

op * = (Zrat a, Lint b)fLrat:

begin
¢ Multiplication with mived modes is performed and the resulting
lrat is delivered. c |

frat c; fint il;

ilehcf(abs b, abs (den of a));
(not (il=one) | num of cenum of a*(b:il);
den of ceden of aril |

num of c+num of a*b; den of ceden of a);
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Irat«c

end;

op * = (2int a, frat b)Lrat:

begin
c Multiplication with mixed modes is performed and the resulting
Irat is delivered. c

frat c¢; fint 1il;

il¢hef (abs a, abs (den of b));
(not (il=cne) | num of c+num of b*(atil);
den of c+den of b+il |
num 2£;c+num of b*a; den of c+den of b);

Lratece

end;

op / = (Lint a, frat b) Lrat:

begin
¢ Division with mixed modes is performed and the resulting
lrat is delivered. c

frat c; fint il;

il¢hcf (abs a, abs (num of b))j
(EEE (il=one) l num of c+den of b%x(asil);

den of ctnum of b+il I

nun of c+den of b*a; den of c+num of b);
gratee |

end;

EE./ = (%rat a, %int b)frat:

begin ' B ' 3
¢ Diviston with mixed modes is performed and the resulting

lrat s delivered. ¢
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frat c¢; fint ilg

il¢hef (abs b, abs (num of a));
- (not (il=ome) I num of ctnum of a+il;
den of c«den of a*(b+il) |
num of c*num of a; den of ctden of a*b};

Lratec:

end;

Amrra——

op abs = (frat a)lrat:

¢ delivers the absolute value of lrat a ¢
frat c*a;
si of num of c+false;
si gi'den of céféggg;
fratec

end;
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