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Abstract 
Background: Unhealthy lifestyle behaviours such as physical inactivity are global risk factors 

for chronic disease. Despite this, a substantial proportion of the UK population fail to achieve 

the recommended levels of physical activity. This may partly be because the health messages 

presently disseminated are not sufficiently potent to evoke behaviour change. There has been 

an exponential growth in the availability of digital health technologies within the consumer 

marketplace. This influx of technology has allowed people to self-monitor a plethora of health 

indices, such as their physical activity, in real-time. However, changing movement behaviours 

is difficult and often predicated on the assumption that individuals are willing to change their 

lifestyles today to reduce the risk of developing disease years or even decades later. One 

approach that may help overcome this challenge is to present physiological feedback in parallel 

with physical activity feedback. In combination, this approach may help people to observe the 

acute health benefits of being more physically active and subsequently translate that insight 

into a more physically active lifestyle. 

Aims: Study One aimed to review existing studies employing fMRI to examine neurological 

responses to health messages pertaining to physical activity, sedentary behaviour, smoking, 

diet and alcohol consumption to assess the capacity for fMRI to assist in evaluating health 

behaviours. Study Two aimed to use fMRI to evaluate physical activity, sedentary behaviour 

and glucose feedback obtained through wearable digital health technologies and to explore 

associations between activated brain regions and subsequent changes in behaviour. Study 

Three aimed to explore engagement of people at risk of type 2 diabetes using digital health 

technologies to monitor physical activity and glucose levels. 

Methods: Study One was a systematic review of published studies investigating health 

messages relating to physical activity, sedentary behaviour, diet, smoking or alcohol 

consumption using fMRI. Study Two asked adults aged 30-60 years to undergo fMRI whilst 

presented personalised feedback on their physical activity, sedentary behaviour and glucose 

levels, following a 14-day wear protocol of an accelerometer, inclinometer and flash glucose 

monitor. Study Three was a six-week, three-armed randomised feasibility trial for individuals 

at moderate-to-high risk of developing type 2 diabetes. The study used commercially available 

wearable physical activity (Fitbit Charge 2) and flash glucose (Freestyle Libre) technologies. 

Group 1 were offered glucose feedback for 4 weeks followed by glucose plus physical activity 

feedback for 2 weeks (G4GPA2). Group 2 were offered physical activity feedback for 4 weeks 
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followed by glucose plus physical activity feedback for 2 weeks (PA4GPA2). Group 3 were 

offered glucose plus physical activity feedback for six weeks (GPA6). The primary outcome 

for the study was engagement, measured objectively by time spent on the Fitbit app, LibreLink 

app (companion app for the Freestyle Libre) as well as the frequency of scanning the Freestyle 

Libre and syncing the Fitbit. 

Results: For Study One, 18 studies were included in the systematic review and of those, 15 

examined neurological responses to smoking related health messages. The remaining three 

studies examined health messages about diet (k=2) and physical activity (k=1). Areas of the 

prefrontal cortex and amygdala were most commonly activated with increased activation of the 

ventromedial prefrontal cortex predicting subsequent behaviour (e.g. smoking cessation). 

Study Two identified that presenting people with personalised feedback relating to interstitial 

glucose levels resulted in significantly more brain activation when compared with feedback on 

personalised movement behaviours (P<.001). Activations within regions of the prefrontal 

cortex were significantly greater for glucose feedback compared with feedback on personalised 

movement behaviours. Activation in the subgyral area was correlated with moderate-to-

vigorous physical activity at follow-up (r=.392, P=.043). In Study Three, time spent on the 

LibreLink app significantly reduced for G4GPA2 and GPA6 (week 1: 20.2±20 versus week 6: 

9.4±14.6min/day, p=.007) and significantly fewer glucose scans were recorded (week 1: 

9.2±5.1 versus week 6: 5.9±3.4 scans/day, p=.016). Similarly, Fitbit app usage significantly 

reduced (week 1: 7.1±3.8 versus week 6: 3.8±2.9min/day p=.003). The number of Fitbit syncs 

did not change significantly (week 1: 6.9±7.8 versus week 6: 6.5±10.2 syncs/day, p=.752). 

Conclusions:  

Study One highlighted the fact that thus far the field has focused on examining neurological 

responses to health messages using fMRI for smoking with important knowledge gaps in the 

neurological evaluation of health messages for other lifestyle behaviours. The prefrontal cortex 

and amygdala were most commonly activated in response to health messages. Using fMRI, 

Study Two was able to contribute to the knowledge gaps identified in Study One, with 

personalised glucose feedback resulting in a greater neurological response than personalised 

feedback on physical activity and sedentary behaviour. From this, Study Three found that 

individuals at risk of developing type 2 diabetes were able to engage with digital health 

technologies offering real-time feedback on behaviour and physiology, with engagement 

diminishing over time. Overall, this thesis demonstrates the potential for digital health 

technologies to play a key role in feedback paradigms relating to chronic disease prevention. 
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1.1. Introduction 

There is a global prevalence of physical inactivity and sedentary behaviour (Kohl et al., 2012; 

Lee et al., 2012). Daily exposure to hypokinetic and obesogenic environments are in part 

contributing to their prevalence and resultantly are putting the UK (and global) population at 

risk of developing chronic diseases such as type 2 diabetes, hypertension and cardiovascular 

disease (Cardinal, 2016; Hamilton et al., 2008; Perrin et al., 2016). So much so, physical 

inactivity has been labelled the biggest public health concern of the 21st century and has been 

incorporated into the World Health Organisation targets for 2020 (Blair, 2009; World Health 

Organization, 2013b). In addition, physical inactivity causes substantial economic burden 

globally (Ding et al., 2016) with an estimated cost of $53.8 billion imposed on healthcare 

systems (Ding et al., 2016) and burdening the UK £1 billion annually (Allender et al., 2007). 

Adults spend an estimated 55% of the waking day sedentary (Matthews et al., 2008) or, put 

another way, adults spend 78 days each year sitting (British Heart Foundation, 2017); in part 

attributable to the number of potential chair opportunities met within 24 hours (Hamilton et al., 

2008). In parallel, only 5% (Chaudhury & Esliger, 2008) or 13.5% of UK adults (Sport 

England, 2017) achieve the recommended physical activity guidelines. Therefore, more needs 

to be done to combat the prevalence of physical inactivity and sedentary behaviour (movement 

behaviours). A 2012 Lancet paper (Lee et al., 2012) acknowledged that adjusting population 

level rates of physical inactivity can deliver comparable global life expectancy benefits as to 

obesity (Olshansky et al., 2005) and smoking (National Research Council Committee on 

Population, 2011). This finding has added additional support (and urgency) to change 

movement behavioural patterns. Therefore, efforts to increase physical activity and minimise 

sedentary time to help counteract the continuing incidence of disease incidence are crucial 

moving forward.  

Physical inactivity and sedentary behaviour are independent movement behaviours, yet they 

can (and often do) co-exist within each 24-hour period. This means that individuals can be 

highly sedentary, for instance by having an office-based job, yet be physically active, by 

achieving the weekly physical activity recommendations. Studies to date have investigated the 

health benefits of interrupting prolonged sedentary time with brief bouts of physical activity 

and observed promising results (e.g. Buman et al., 2014; Healy et al., 2015). However, the ill-

effects of negative lifestyle behaviours (such as physical inactivity or prolonged sitting) are 

only perceived to impact us decades down the line. Therefore, it is a substantial and often 

overwhelming challenge to encourage people to act today to prevent the onset of chronic 
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disease years or even decades later. One way that might overcome this aligns well with 

continuing advancements in technologies that deliver personalised feedback. Behavioural 

monitoring technologies often present step count, laps swam, distance ran and, more recently, 

sitting time whilst physiological monitoring technologies can deliver feedback relating to heart 

rate, blood pressure and glucose levels. Delivering physiological and behavioural feedback 

may be one approach to help guide individuals to observe the acute benefits of positive 

behavioural decisions. 

Efforts to date have included population-level and individual-level (personalised) health 

messages to inform and encourage individuals to be more physically active. Health messages 

are often targeted to specific audiences (Latimer et al., 2010); for instance, health messages can 

be positioned at specific locations to deliver point-of-decision prompts to help nudge 

individuals toward making positive choices. This could involve positioning health messages to 

encourage individuals to use the stairs rather than the escalator and have demonstrated short-

term promise (Webb & Eves, 2005). The method of dissemination or communication is crucial 

to determine the level of effectiveness and this can be done using subjective and objective tools 

to observe impact on behaviour change. Additional efforts to explore the delivery of individual-

level health messages via personalised feedback are also warranted. 

A growing marketplace is for digital health technologies which has seen an influx of consumer 

interest. These technologies aim to provide personalised, real-time feedback via wearable 

devices worn at variable body positions and/or smartphone apps. With technological 

advancements increasing capability to more accurately detect movement (and physiology) and 

immediate data presentation, it is becoming more feasible to reveal feedback ‘at-a-glance’. One 

example would be within diabetes management, whereby individuals can receive real-time 

insight into their glucose levels via a continuous glucose monitor (Wagner et al., 2012). This 

technology hopes to minimise the occurrence of hypo- and hyper-glycaemic events and so 

improve individual adherence to maintaining good glucose regulation. To date, available 

technologies deliver step count, distance travelled, floors climbed, laps swam, estimated caloric 

expenditure and heart rate (Sanders et al., 2016). In combination with other physiological 

technologies, such as continuous glucose monitors, the prospect of delivering behavioural and 

physiological feedback in parallel is emerging. With individuals able to access feedback about 

their behaviour and health at their fingertips, the opportunity to observe this relationship in 

action may help guide individuals to make better immediate decisions. This would be on the 

basis that individuals are able to view the acute physiological benefit of a positive behavioural 
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decision using the personalised feedback displayed. However, it will be crucial to recognise 

how individuals receive (or absorb) the data and observe what challenges may be faced during 

use. 

There are many challenges to delivering optimal feedback to individuals. Referring back to 

diabetes management, it is well acknowledged that the value assigned to a technology is highly 

dependent on the user having sufficient levels of literacy, education and motivation 

(International Diabetes Federation, 2009). For instance, individuals living with diabetes may 

be provided with a continuous glucose monitor but if they do not have sufficient levels of 

education to understand what the information means, they are very unlikely to benefit from 

accessing the information it provides. This aligns well with the need to graphically display 

information in a way that is informative and motivational to the user (Western et al., 2015). 

When exactly feedback should be delivered is another challenge given that it is not always 

appropriate for behaviour change. Sending insightful feedback at times when positive 

behaviours can occur would be ideal (and is increasingly available given advances in context-

based technologies i.e. Loveday et al., 2016). Digital technologies can help disrupt undesirable 

habits (Hermsen et al., 2016) but current evidence remains inconclusive as to whether these 

habitual changes are sustained. Maintaining use beyond the honeymoon period, which is 

generally within six months for the majority of users (Ledger et al., 2014), is crucial to prevent 

devices from being placed in the sock drawer, never to be worn again. With a view to sustain 

technology use, efforts to revamp or identify how users engage (or interact) with these 

technologies may help sustain use. Approaches to deliver more persuasive (or potent) feedback 

are needed and it may be sensical to increase feedback resonance by making the behavioural 

feedback tie into its physiological consequence.  

The aim of this thesis was to assess how people responded to information presented via digital 

health technologies and to observe whether people would change movement behaviours 

(physical activity) when presented behavioural and physiological feedback in parallel. More 

specifically, Study One provides a review of published research using functional magnetic 

resonance imaging (fMRI) to assess how people’s brains respond to health messages about key 

lifestyle behaviours. Study Two targeted a research gap within fMRI to assess people’s neural 

responses to personalised health messages relating to physical activity, sedentary behaviour 

and glucose levels. Study Three intervened on individuals identified at risk of developing type 

2 diabetes. The six-week intervention involved two novel digital health technologies that 

presented real-time physiological and behavioural feedback.
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1.2. Literature Review 

1.2.1. Communicable and non-communicable diseases 

Transition from communicable disease to non-communicable diseases 

In the past century, the major cause of mortality has shifted from communicable diseases 

toward non-communicable diseases (NCDs). The term NCDs has been used since the first 

Global Burden of Disease study in 1990, alongside infectious (communicable) diseases and 

injuries (Murray et al., 1994). However, recommendations confirm the need to reframe NCDs 

to void the inclusion of “non” (which can promote confusion) and promote a sense of urgency 

(Allen & Feigl, 2017). Therefore, NCDs will hereon be referred to as chronic diseases. Chronic 

diseases or long-term diseases are a leading cause of adult mortality worldwide (World Health 

Organization, 2002), with 68% of 56 million cases accounted for by chronic diseases (World 

Health Organization, 2014). Many of these deaths, increasing by 14.1% from 2005 to 2015, 

are attributed to cardiovascular disease (in particular coronary heart disease and stroke), cancer, 

respiratory disease and diabetes (Global Burden of Disease, 2016) (Figure 1.1). The total 

number of mortality cases exceeds the number of deaths (14.4 million) attributed to infectious 

disease recorded in 1990 (Murray & Lopez, 1997b). Communicable diseases (such as cholera 

and chickenpox) were transmitted from one individual to another via bodily fluids, direct 

physical contact or were airborne; affecting many individuals. Similarly, chronic diseases 

affect people across all income groups and put men, women and children at risk in developed 

and developing countries (World Health Organization, 2005). The Chief Knowledge Officer to 

the National Health Service (NHS), Sir Muir Gray, outlined that chronic diseases occur because 

of unhealthy environments or unhealthy lifestyles with extended exposure likely resulting in 

disease later in life (Gray, 2015). With the rapid pace of globalisation (Beaglehole & Yach, 

2003; Reubi, 2016), it is increasingly important to consider the widespread presence of chronic 

diseases. Projections estimate that mortality attributable to chronic disease will increase to 49.7 

million cases in 2020 from 28.1 million in 1990 (Murray & Lopez, 1997a) or from 59% in 

2002 to 69% in 2030 (Mathers & Loncar, 2006). Consequently, it is important to consider how 

targeted efforts can be made to challenge the increasing prevalence of chronic disease and, in 

the process, contribute to improvements in life expectancy and quality of life. 
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Figure 1.1. Proportion of deaths attributable to chronic diseases adapted from World Health 

Organization, 2014 

Clinical forms of chronic disease 

Cardiovascular diseases are ranked as the leading cause of mortality globally (Bauer et al., 

2014) with approximately 17 million deaths recorded annually (World Health Organization, 

2011a). Of these mortality cases, 42% were attributed to coronary heart disease. Coronary heart 

disease, resulting in a blockage to the heart’s blood supply or an excessive accumulation of 

plaque, is a leading UK public health concern that costs the NHS £1.73 billion annually (Liu 

et al., 2002). The chronic condition generally affects men more frequently than women (11% 

versus 25%) as men demonstrate fewer favourable behaviours (e.g. energy intake, physical 

activity and non-smoking) and health factors (e.g. optimal blood lipids, blood pressure and 

glucose levels) (Mozaffarian et al., 2015). Given similarities between the UK and America, the 

prevalence of coronary heart disease will likely be comparable. Annually, more than 600,000 

Americans experience a new coronary attack and more than 300,000 people experience a 

recurrent attack; demonstrating the importance of reducing its prevalence. With only 18% of 

Americans presenting at least five favourable cardiovascular health factors and benefits, it may 

come as no surprise that one in seven deaths were attributed to coronary heart disease in 2011 
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(Mozaffarian et al., 2015). Hypertension, or elevated blood pressure, has been attributed to 

45% of coronary heart disease mortality cases. From 1990 to 2015, rates of elevated systolic 

blood pressure (and their estimated associated deaths) have substantially increased based on 

844 studies across 154 countries (Forouzanfar et al., 2017). Hypertension is considered one of 

the most commonly treated conditions in the UK; affecting 26% and 31% of women and men, 

respectively (Health Survey for England, 2016). Hypertension has been identified as a leading 

risk factor that is attributable to 7% (6.2-7.7%) of global disease burden (Lim et al., 2013). 

Diabetes (or diabetes mellitus) is one of four priority chronic diseases targeted for action 

(World Health Organisation, 2016). People living with diabetes are generally unable to 

adequately absorb glucose. This physiological restriction prevents circulating levels of glucose 

from freely entering appropriate sites (e.g. muscle tissue). Despite attributed to fewer deaths 

(i.e. 8.4% of all deaths for adults aged 20-79 years [International Diabetes Federation, 2013]), 

diabetes is one of the most prevalent chronic diseases. The global prevalence of diabetes has 

quadrupled between 1980 and 2014 with 382 million (8.3% of the world’s population) 

diagnosed (International Diabetes Federation, 2013). Moreover, this number is expected to rise 

further to 592 million by 2035 (Guariguata et al., 2014). In the UK, there are approximately 

3.2 million people living with diabetes (Health and Social Care Information Centre, 2013) at 

an estimated cost of £9.8 billion annually (Hex et al., 2012). There is also a large proportion of 

individuals (projected to be 174.8 million) who are living with undiagnosed diabetes (Beagley 

et al., 2014) who collectively account for 46% of current prevalence statistics (International 

Diabetes Federation, 2013). Approximately one quarter of American adults are living with 

undiagnosed diabetes (Menke et al., 2015). Type 2 diabetes frequently goes undiagnosed 

because of its gradual development and often the lack of immediate symptom manifestation, 

which leaves individuals unaware until classic symptoms present. The number of expected 

deaths aligned to the complications of diabetes is expected to double from 2005 to 2030 and 

an increased presence of diabetes complications occurring in adults aged 45-64 years (Gregg 

et al., 2016); requiring effective global action to halt the rise in diabetes prevalence (World 

Health Organisation, 2013). As a result, it is highly important to target efforts toward the 

prevention of diabetes.  

Diabetes presents in one of three forms: type 1, type 2 or gestational with each presenting their 

own complications and negative health outcomes. However, due to sophisticated laboratory 

testing equipment, separate global prevalence statistics are unavailable (World Health 

Organisation, 2016). Briefly, type 1 diabetes has an unknown exact cause but is characterised 
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by insufficient insulin production and occurs most often in children and adolescents. Type 2 

diabetes is often attributed to an interplay between metabolic and genetic factors and is 

characterised by inefficient use of insulin produced by the body. In comparison, gestational 

diabetes is temporary (occurs during pregnancy) and is associated with several factors, 

including but not limited to age, weight status and family history (World Health Organisation, 

2016). Type 2 diabetes is most common accounting for approximately 90-95% of all diabetes 

cases (International Diabetes Federation, 2013). Consequently, as alluded to by Barry and 

colleagues (Barry et al., 2017), the management and prevention of type 2 diabetes has 

international priority moving forward. 

Preclinical forms of chronic disease 

Preventing the onset of chronic diseases is crucial and may in part be supported by recognising 

how lifestyle behaviours contribute. With projections estimating an increasing prevalence of 

chronic disease, efforts to identify individuals at risk of chronic disease is paramount. 

Individuals at high risk of developing diabetes (i.e. presenting the early stages of impaired 

insulin sensitivity and insulin resistance) represent an important target cohort for disease 

prevention (Soliman et al., 2014). Impaired glucose tolerance and impaired fasting glucose are 

the two forms of prediabetes with individuals exhibiting impaired glucose tolerance more likely 

to develop diabetes earlier compared with those living with impaired fasting glucose. From 

2003 to 2011, prevalence of prediabetes increased from 11.6% to 35.3% in UK adults aged ≥16 

years old (Mainous et al., 2014) and thus there is an impending influx who are likely to develop 

type 2 diabetes in the coming years unless early efforts to intervene are employed. Left 

undetected, an estimated 5-10% of people living with undiagnosed pre-diabetes progress 

annually onto type 2 diabetes (Bansal, 2015). Therefore, early detection of levels indicative of 

prediabetes is pivotal as it poses a negating effect on several human, social, medical and 

economical factors (Soliman et al., 2014). Prevention of chronic disease is also crucial in 

individuals living with multiple chronic diseases (i.e. comorbidities) with hypertension and 

diabetes in combination resulting in a magnitude of negative health issues. More specifically, 

having hypertension, a high body mass index, high glucose levels and/or high cholesterol 

resulted in 10.8 million deaths in a single year (Danaei et al., 2014). Clustering of risk factors 

can result in a diagnosis of metabolic syndrome. Metabolic syndrome is an important cluster 

of heart disease risk factors and has a 33% prevalence in US adults (Aguilar et al., 2015).  
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Screening and treatment for type 2 diabetes prevention 

Barry and colleagues outlined two strategies to help identify people living with prediabetes; 

namely, screen and treat and population-wide approaches (Barry et al., 2017). Population-wide 

approaches involve the wide dissemination of materials to inform individuals about public 

health opportunities to positively change behaviour, by encouraging access to green spaces 

(e.g. walking at the local park) and transport (e.g. active commute). This far-reaching approach 

contrasts with screen and treat. Screen and treat initiatives generally assess fasting plasma 

glucose, glycated haemoglobin (HbA1c) or involve an oral glucose tolerance test. Each test is 

conducted by a healthcare professional with results compared to a threshold. For instance, 

prediabetes using HbA1c as the blood marker is classified as 5.7-6.4% by the American 

Diabetes Association (American Diabetes Association, 2015) or as 6-6.4% by the National 

Institute for Health and Clinical Excellence (National Institute for Health and Clinical 

Excellence, 2012). Accurately identifying individuals living with prediabetes is an imperative 

step for the identification of who best to intervene on. Alternative approaches can incorporate 

risk assessment surveys to capture a predicted level of risk. For instance, Gray and colleagues 

produced a Leicester Risk Assessment tool to identify those at high risk of impaired glucose 

regulation and type 2 diabetes (Gray et al., 2010). It involves individuals responding to 

questions about their age, ethnicity, gender, family history of diabetes, diagnosis of 

hypertension, waist circumference and body mass index. Asking individuals to accurately 

reveal their current waist circumference and/or body mass index may be unrealistic. However, 

these tools are enticing to use given their minimal cost (and burden) and they can help support 

the early detection of cases before complications arise (Harris et al., 2003). Therefore, these 

tools are more practical for population level screening efforts (Gray et al., 2010). In light of 

evidence relating to pre-diabetes, the four major risk factors identified for the development of 

chronic disease are tobacco use, alcohol consumption, poor dietary intake and physical 

inactivity (World Health Organization, 2015). An additional, emerging risk factor is the 

prevalence of time spent sedentary (Hamilton et al., 2016). 

1.2.2. Lifestyle Risk Factors for Chronic Diseases 

Physical Inactivity 

Physical activity is a complex, multi-dimensional behaviour that varies according to the 

duration, regularity and intensity (i.e. light, moderate, vigorous, or a combination thereof) 

(Marschollek, 2013). Caspersen and colleagues defined activity as ‘any bodily movement 
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produced by skeletal muscle that results in energy expenditure’ (Caspersen et al., 1985). A 

consensus was published in 2017 to help clarify differences (and encourage consistent 

terminology) between the various movement behaviours (Tremblay et al., 2017). Physical 

activity varies by intensity with vigorous intensity physical activity positioned at the higher 

end of energy expenditure in the movement continuum (Tremblay et al., 2010). Energy 

expenditure can be quantified by using metabolic equivalents of task (METS) and this indicator 

of intensity has been used to classify METS values to activities of daily living for adults aged 

18-65 years (Ainsworth et al., 2011). This compendium was produced to help increase 

transparency and comparability of physical activities completed across studies using self-report 

methods.  

Physical inactivity, in comparison, denotes individuals who do not achieve the recommended 

levels of physical activity. Current UK guidelines endorsed by the Chief Medical Officer were 

published in 2011 and segmented according to age; releasing guidance for early years (<5 

years), children and young people (5-18 years old), adults (19-64 years old) and older adults 

(≥65 year olds) (UK Department of Health, 2011). These age-specific guidelines recommend 

that adults aged 19-64 years accumulate ≥150 minutes of moderate-to-vigorous intensity 

physical activity in continuous bouts of ≥10 minutes (or 75 minutes of vigorous physical 

activity weekly, or a combination thereof) per week (UK Department of Health, 2011). A 

national survey conducted in England demonstrated that only 6% and 4% of UK men and 

women (Chaudhury et al., 2008) or 13.5% of UK adults (Sport England, 2017) achieved the 

recommended levels of physical activity using objective tools. Similarly, Troiano and 

colleagues outlined that fewer than 5% of US adults obtain sufficient levels of physical activity 

using data from the 2003-2004 National Health and Nutritional Examination Survey 

(NHANES) (Troiano et al., 2008). These objectively measured cohort findings differ largely 

to physical activity levels quantified via questionnaires. For instance, the Health Survey for 

England (HSE) survey also captured self-reported levels of physical activity and observed that 

39% and 29% of men and women, respectively, achieved the recommendations (Chaudhury et 

al., 2008). This discrepancy is likely attributable to the limitations related to self-reported 

approaches of data collection (e.g. social desirability bias) (Sallis & Saelens, 2000). In parallel 

with high levels of inactivity across the adult population, demographic variations are also 

observed with females and older people achieving greater levels of physical inactivity (Hallal 

et al., 2012). Findings from the UK Biobank study in over 100,000 participants support this by 

outlining an age-related decline of around 7.5% per decade in physical activity from those aged 
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45-54 to 75-79 years (Doherty et al., 2017). In addition, seminal research conducted in the 

1950’s (Morris et al., 1953) and the 1970’s (Paffenbarger et al., 1970) highlighted significant 

occupational differences in physical activity levels and associated ill-effects on health 

outcomes. The authors identified that individuals who were least active during working hours 

exhibited an elevated risk for myocardial infarction and the development of atherosclerosis 

(Paffenbarger et al., 1970). Given its position as the fourth leading cause of death worldwide 

(Kohl et al., 2012) and being attributed to 9% of premature mortality cases worldwide (Lee et 

al., 2012). Overall, efforts to eliminate the prevalence of physical inactivity would have a 

significant impact by helping increase the world population’s life expectancy by 0.68 years 

(Lee et al., 2012). 

Estimating levels of physical activity using self-report methods is frequently employed with 

the distribution of questionnaires common. Self-report tools can provide valuable information 

pertaining to the context of activity completed. For instance, questionnaires can identify the 

type of activity carried out (e.g. cycling, swimming or walking). In addition, they are also able 

to collect environmental and psychosocial information, perceived time and intensity as well as 

the purpose of the activity completed (Troiano et al., 2014). However, as previously outlined, 

these methods can often reveal inaccurate data at an individual level (e.g. Chaudhury & Esliger, 

2008). Within the HSE data, it must be acknowledged that the self-reported and objective data 

were not collected at an identical timepoint; however, the results are unlikely to be too 

dissimilar from usual behaviour and thus highlights a clear discrepancy between the two data 

sources. These differences may in part be attributed to participants offering socially-desirable 

responses (Sallis et al., 2000) by feeling inclined to overestimate time spent doing physical 

activity (Klesges et al., 1990). These inaccuracies may be minimised by shortening the recall 

period. For instance, having shortened the recall period to 24 hours, responses were within 3-

10% of the doubly labelled water measures and within 1-3% of objectively measured activity 

and sedentary time (Matthews et al., 2017). Another limitation to self-reported tools eludes to 

participant capability to stating their accumulation of activity in bouts of ≥10 minutes, which 

can be difficult to recall. Despite these limitations, many large epidemiological studies employ 

a combination of self-reported tools and accelerometers (such as Doherty et al., 2017) to 

capture a comprehensive overview of participants’ physical activity levels. 

Using objective measurement tools to capture a more accurate assessment of physical activity 

are evermore important for population level physical activity surveillance programmes 

(Bauman et al., 2016). Objective tools are largely small, non-invasive and minimally intrusive 
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and worn during free-living settings (Chen & Bassett, 2005). With advancing sophistication of 

technology, objective tools (such as accelerometers) are becoming increasingly deployed in 

large physical activity epidemiological studies such as UK Biobank (Doherty et al., 2017). To 

date, these devices have been commonly used to monitor and quantify behaviour patterns (Allet 

et al., 2010) having been deployed to the waist and interpreted using cut-points (thresholds) to 

interpret movement intensity (e.g. Freedson et al., 1998). Accelerometers are now widely used 

to characterise physical activity (e.g. Troiano et al., 2014) and, when compared with self-report 

tools, accelerometers provide a direct assessment of physical activity (Prince et al., 2008). They 

provide a more comprehensive profile of physical activity, beyond the traditional step count 

delivered by pedometers (Bauman et al., 2016). However, accelerometers do have their 

limitations. 

For instance, there is often a lack in consistency when reporting accelerometer data; in 

particular the methods used to clean and process data which limits transparency between 

studies (Esliger et al., 2005). In addition, differing device models and cut points limits the 

opportunity to compare estimates of national levels of physical activity over time (Bauman et 

al., 2016). Another limitation relates to device wear or compliance. Data from 2003-2004 

NHANES, recorded that 60-86% of adults aged ≥20 years provided ≥4 valid days of 

accelerometer wear (Troiano et al., 2008). In an effort to improve compliance to device wear, 

and capture the full 24-hour period, many large epidemiological studies have started to deploy 

accelerometers at the wrist. For instance, UK Biobank demonstrated that 81% of participants 

wore the device for ≥150 hours of a possible 168 hours (and observed minimal differences 

between males and females (Doherty et al., 2017). Consequently, wrist-worn deployment may 

become the favoured approach with ongoing development and support for established 

thresholds. Emerging analytical techniques are beginning to provide more sensitive 

information about physical activity (Clark et al., 2017). Efforts to improve the quantification 

and characterisation of movement behaviours is crucial given that behaviours such as physical 

activity are multi-faceted. 

Sedentary Behaviour 

Sedentary behaviour is an independent construct to physical inactivity and has been gaining 

increasing recognition given its ubiquitous nature in modern society. Individuals can be both 

highly sedentary and physically active and these individuals have been called ‘active coach 

potatoes’ (Healy et al., 2008). Therefore, emphasising the difference between these two 

movement behaviours is crucial moving forward. Sedentary behaviour has been defined as ‘any 
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waking behaviour done while lying, reclining, sitting, or standing, with no ambulation, 

irrespective of energy expenditure’ (Tremblay et al., 2017) and is positioned toward the lower 

end of energy expenditure (Tremblay et al., 2010). Common sedentary postures include sitting, 

lying and reclining (aligning with its translation; ‘sedere’ meaning to sit) (see Figure 1.2). 

Similarly to physical activity, UK guidelines have been produced for sedentary behaviour, 

which recommend adults to minimise time spent sedentary (Department of Health, 2011). 

Despite the fundamental role of human evolution and the need to move, data from the 2003-

2004 NHANES survey identified that adults alarmingly spend 55% of their waking day 

sedentary (Matthews et al., 2008). Spending as much time as a whole working day seated offers 

deleterious effects at a population level and also compromises metabolic health (Healy et al., 

2008). Knowing how a person accumulates sedentary behaviour and their physical activity 

status is important for their interaction with all-cause mortality. 

An important question is whether sedentary behaviour has an association with health, 

independent of physical activity. Ekelund and colleagues published a harmonised meta-

analysis of 16 studies observing associations between all-cause mortality and sitting time 

(Ekelund et al., 2016). In total, participants were followed up at 2-18.1 years and over 84,000 

deaths were noted. Findings demonstrated that daily sitting was not associated with all-cause 

mortality in individuals identified as being in the most active physical activity quartile. 

Furthermore, individuals in the two lowest physical activity quartiles observed greater 

mortality rates (12-59%) than those who accumulated <4 hours/day and >35.5 MET-hr/week. 

However, when physical activity was at its highest (>35.5 MET-hr/week), individuals sitting 

<4 hour/day and >8 hour/day observed no increased risk of mortality (HR=1.04, CI95% 0.99-

1.10) during follow up. This suggests that having a physically active lifestyle overrides the 

potential ill-health effects of being sedentary daily. This meta-analysis concludes that moderate 

intensity activities eliminate the risk of death but only attenuates risk of death for high levels 

of time spent watching television. In contrast, Katzmarzyk and colleagues demonstrated a dose-

response association between siting time and all-cause and cardiovascular disease mortality, 

independent of leisure time physical activity (Katzmarzyk et al., 2009). This study requested 

participants to evaluate daily sitting time as ‘almost none of the time’ extending to ‘almost 

most of the time’, which limited their ability to offer a magnitude of time spent sedentary, but 

they concluded the need to minimise sedentary time. Overall, the notions of ‘even a little is 

good, more is better’ or ‘something is better than nothing’ could be applied to physical activity 



Literature Review 

14 

 

guidance and ‘sit less, move more’ applies to sedentary behaviour (Blair et al., 1992; Lee, 

2007). 

Self-reported tools are also frequently used in sedentary behaviour research. In consideration 

of the hypokinetic society that we live in, and with a continual presence of labour-saving 

technology, sedentary pursuits such as television viewing, computer use and car-based 

commuting are increasingly familiar (Owen et al., 2010). Time spent watching the television 

has been widely used as an indicator of time spent sedentary during leisure time given that 

people are most often seated whilst watching a programme and it is a hugely popular sedentary 

pursuit (Dunstan et al., 2007; Hu et al., 2003). However, with an ever-increasing prevalence of 

emerging technologies at home, in the workplace and within the community, television viewing 

is no longer a good proxy of sedentary behaviour. As a result, it is crucial to begin designing 

questionnaires that can distinguish between different sedentary pursuits. For instance, screen 

versus non-screen sedentary time is one approach (Tremblay et al., 2017) and this could be 

further divided into time whilst using different screen-based devices such as tablets, laptops 

and smartphones (Stamatakis et al., 2013). A review conducted in 2017 identified interventions 

using digital tools to reduce sedentary time and observed that computer based mobile and 

wearable technologies appear promising (Stephenson et al., 2017). This emphasises the need 

to accurately capture sedentary time whilst using these technologies. Difficulties with this 

approach relate to the potential for over-reported time spent sedentary given that these 

sedentary pursuits can co-exist simultaneously (e.g. watching television whilst using a 

smartphone). Therefore, efforts are needed to help minimise this outcome. Identifying the 

specific domain of sedentary behaviour may help by requesting time within specific domains 

such as at work, during leisure time and whilst travelling (Marshall et al., 2010). However, 

similarly to physical activity measurement, it may be worthwhile investigating what objective 

tools are available. 

Objective measurement tools to quantify sedentary behaviour vary given that posture rather 

than intensity is the primary component. Comparable to accelerometers, inclinometers are often 

small and lightweight in design. To date, many studies have used accelerometers to measure 

sedentary behaviour but they have been unable to distinguish between postures such as standing 

and sitting (Atkin et al., 2012). The consensus now confirms that sedentary behaviour measured 

using accelerometry should refer to stationary time given these devices are unable to determine 

posture, only intensity of movement (Tremblay et al., 2017). Inclinometers distinguish between 

different postures because of placement and tilt which helps identify interruptions or breaks in 
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time spent sedentary (Tremblay et al., 2017). In an effort to better quantify sedentary behaviour, 

inclinometers are becoming more abundant (e.g. ActivPAL) with acceleration and the angle of 

the thigh measured (Bassett et al., 2014). Similarly to accelerometers, recommendations 

suggest the deployment of inclinometers for ≥7 days and elude to 24-hour wear (Edwardson et 

al., 2016). Fewer models of inclinometer-based devices were available compared with 

accelerometers which has limited the quantity of free-living validation papers (Atkin et al., 

2012). However, inclinometers and accelerometers are now being incorporated into single 

devices to help quantify both movement behaviours. These advancements in objective 

measurement tools highlight that they are increasingly able to accurately quantify movement 

behaviours (see Figure 1.2) in parallel to supplementary information gleaned from self-report 

tools. 

 

Figure 1.2. A framework of movement behaviours, adapted from Tremblay et al., 2017 
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Behavioural associations with chronic diseases 

Physical activity associations with chronic disease 

Strong evidence published in the 1990’s suggested that physical activity was a significant factor 

in health promotion and disease prevention (Bouchard et al., 1993). This paper was further 

supported when physical activity was demonstrated to offer protection against incidents of 

coronary heart disease, hypertension, type 2 diabetes and result in improvements to insulin 

sensitivity (Shephard 1995). Physical activity toward the higher intensity end of the movement 

continuum has been shown to reduce resting blood pressure in normotensives, borderline 

hypertensives and hypertensives (Fagard & Tipton, 1994). Research conducted more recently 

continues to offer support that people achieving the minimum levels of physical activity are 

protected against hypertension (White et al., 2015), type 2 diabetes, cancer and cardiovascular 

disease (Warburton et al., 2006). The 2005-2006 NHANES data observed that physical activity 

was negatively associated with the metabolic syndrome and the major risk factors for chronic 

disease (Camhi et al., 2010). More specifically, with each additional 30 minutes of daily 

activity completed, 15% reductions to risk of developing metabolic syndrome were recorded 

(Camhi et al., 2010). The most compelling series of papers highlighting the associations of 

physical activity and chronic disease has to be the Lancet series published in 2012. Forming 

part of this collection of papers, Lee and colleagues revealed that physical inactivity was 

attributed to 6-10% of major chronic diseases including colon and breast cancer, coronary heart 

disease and type 2 diabetes worldwide (Lee et al., 2012). The paper also confirms that physical 

inactivity elucidates a similar effect to the ill-effects of tobacco consumption (National 

Research Council, 2011) and obesity (Olshansky et al., 2005). These findings were compelling 

and has provided momentum by increasing recognition toward physical inactivity as a major 

risk factor. Efforts must be made to better understand the reasons why physical activity can 

protect against the development of several chronic diseases. 

Sedentary behaviour associations with chronic disease 

An increasing body of epidemiological evidence suggests that sedentary behaviour is strongly 

associated with a number of adverse health outcomes (Katzmarzyk, 2010; Owen et al., 2010). 

To date, sedentary behaviour has been associated with metabolic syndrome (Healy et al., 2008), 

obesity (Jakes et al., 2003; Salmon et al., 2000), cardiovascular risk factors (Jakes et al., 2003; 

Thorp et al., 2010) and cardiovascular disease (Dunstan et al., 2010; Owen et al., 2010). 

Wijndaele and colleagues illustrated similar findings, having associated television viewing 
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with cardiovascular mortality with a hazard ratio of 1.08 over nine years (Wijndaele et al., 

2011). The Nurse’s Health Study identified that the relative risk for obesity and type 2 diabetes 

were 1.94 and 1.70, respectively, in those watching ≤40 hours/week compared with those only 

watching ≤1 hour/week of television (Hu et al., 2003). In contrast, findings from the Whitehall 

II cohort study described limited evidence linking incident diabetes with sitting time over 13 

years (Stamatakis et al., 2017). These studies are in part limited by their employment of self-

report tools to report sitting time. As previously outlined, using television as a proxy indicator 

for sedentary behaviour has been frequently used. Some literature, on the other hand, have 

focused on other domain-specific tools. When investigating time spent driving and during 

computer use, those in the upper quartile of time spent sedentary having a relative risk of 1.48 

for developing incident hypertension (Beunza et al., 2007). Furthermore, as part of the Canada 

Fitness Survey consisting of 17,000 men and women, a clear dose-response relationship 

between sitting time and cardiovascular disease mortality was recorded, even after accounting 

for activity status and gender (Katzmarzyk et al., 2009). Despite offering context of movement 

behaviour, objective tools also reveal similar outcomes by associations with cardiovascular risk 

factors (Katzmarzyk, 2010) and cluster scores for metabolic risk factors (Healy et al., 2008) 

observed. An increasing number of smaller, empirical studies have been published that reveal 

the ill-effects of accumulating more sedentary time, with increases in cardiometabolic risk 

observed. However, no evidence supported mediation by change in waist circumference or 

BMI whereas larger reductions in waist circumference were associated with moderate-to-

vigorous physical activity (Wijndaele et al., 2014). Therefore, to optimise prevention of chronic 

disease at a population level, it would be beneficial to target both the attainment of sufficient 

levels of physical activity and minimisation of prolonged sedentary behaviour in parallel. 

Changing physical activity and sedentary behaviour to benefit health 

Aforementioned evidence confirms that having greater levels of physical activity and reducing 

time spent sedentary (whether objectively or subjectively measured) can positively influence 

physiological markers. Given that lower activity levels have been associated with more 

abnormal blood glucose levels (Mainous et al., 2017), emphasising how people can achieve 

physiological benefits may be crucial. A Danish study observed that when healthy, active men 

reduced their ambulatory daily step count from 10,501 to 1,344 over a period of two weeks, 

impairments in metabolic markers (such as peripheral insulin sensitivity) were revealed 

(Krogh-Madsen et al., 2010). Similarly, asking participants to reduce their levels of physical 

activity to <5,000 steps over three days revealed reductions in cardiometabolic fitness (Mikus 
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et al., 2012). Another, albeit older, study demonstrated that differences between endurance 

runners and sedentary individuals for insulin sensitivity can be eliminated following 38-48 

hours of exercise cessation (Burstein et al., 1985). In combination, these findings highlight that 

acute behavioural changes (over the course of several days) can have a marked effect on 

physiological mechanisms. 

Similarly, marked effects on physiological outcomes have been observed when sedentary time 

has been investigated. Most often conducted in laboratory settings, empirical studies have 

deployed continuous glucose monitors (outlined in the next section) (DiPietro et al., 2013; 

Harris, 2001) and conducted frequent venous blood sampling (Dunstan et al., 2012; Peddie et 

al., 2013). Interestingly, these studies investigated the metabolic consequence of sitting (such 

as postprandial glucose and/or insulin) and imparted several conditions on participants. For 

instance, Dunstan and colleagues asked participants to undergo: (i) uninterrupted sitting, (ii) 

sitting with light-intensity walking and (iii) sitting with moderate-intensity (Dunstan et al., 

2012). As outlined in Figure 1.3, the interrupted conditions had participants doing two minute 

bouts of continuous walking at 20-minute intervals over the course of the observation period. 

Their findings revealed lowered postprandial glucose and insulin levels within the interrupted 

sitting conditions. Other studies have found similar findings with regular, brief activity breaks 

reducing postprandial levels in normal weight (Peddie et al., 2013) as well as overweight and 

obese adults (Dunstan et al., 2012). However, there is a need to extend the exposure time 

beyond distinct days in a laboratory. Other studies have deployed monitoring devices over 

periods extending up to 48 hours (DiPietro et al., 2013; Harris, 2001). Another implication to 

this can be that individuals compensate their behaviours such that regularly interrupting 

sedentary behaviour during the working day may result in reductions to activity and/or 

increases in sitting time after work (Mansoubi et al., 2016). On the other hand, one hour of 

physical activity does not overcome the negative effect of physical inactivity if the rest of the 

day is spent sedentary (Duvivier et al., 2013). Given that prolonged sedentary time can offer 

different physiological consequences to those implicated with physical inactivity (Tremblay et 

al., 2010), it is clear that messages as to the importance of achieving both physical activity and 

sedentary behaviour recommendations are crucial to obtain health benefits. 
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Figure 1.3. An example protocol to assess uninterrupted sitting with activity breaks, adapted 

from Dunstan et al., 2012 

1.2.3. Commercial grade, wearable technologies 

There are a multitude of health markers that can be monitored using commercially available 

technologies and given technological advancements, the volume and their capability will 

continue to expand. These devices are increasing able to quantify movement behaviours 

(physical activity and sedentary behaviour) and physiological markers. Devices aiming to 

quantify physical activity and/or sedentary behaviour have flooded the marketplace in recent 

years (Evenson et al., 2015; Sanders et al., 2016). Given the current ranking of chronic diseases 

and the need to prevent their onset, it is logical to first consider monitoring ambulatory blood 

pressure, given hypertension ranked as the most prevalent. However, wearable systems 

currently available are not yet optimal given the difficulty aligned with obtaining accurate 

readings (without being too cumbersome as a device to continually wear). In comparison, 

diabetes, which is ranked as the second most prevalent chronic disease, has an abundance of 

technologies available to quantify glucose levels which are continuing to advance. The three 

main technologies available to monitor glucose levels are: self-monitoring glucose, continuous 

glucose monitoring and flash glucose monitoring. 

Monitoring physical activity and sedentary behaviour  

The emerging market of commercial wearable technologies for quantifying human movement 

behaviours has been recognised as a leading trend (Ferguson et al., 2015) and have 
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subsequently encouraged their incorporation within research studies. The unflustered release 

of new devices, and the relatively slower rate of publication, can often restrict literature from 

maintaining pace with the marketplace. As a result, despite having the capacity to reach 

millions of people, their use within population level surveillance studies is restricted (Bauman 

et al., 2016). Consumer grade physical activity monitors, such as Fitbit and Garmin, appear 

increasingly capable of monitoring activities such as swimming (e.g. number of laps), cycling 

(e.g. distance covered) and resistance training (e.g. number of repetitions completed) which are 

often unclassified or misclassified by devices worn close to centre of mass. From a review 

conducted in 2016, a total of 146 technologies were identified as capable of monitoring 

sedentary time and/or physical activity (Sanders et al., 2016). Primarily marketed as tools to 

log or monitor movement behaviours and performance, these devices are engineered to be 

wearable to minimise device removal. Given their global position, these devices encourage 

real-world research by offering scalable prices and access ‘off-the-shelf’. However, efforts 

must focus on testing health applications because the sheer volume suggests they are not 

reviewed prior to release (Powell et al., 2014). In addition, ensuring affordable technologies 

are used and comparable over time will be essential to capture national physical activity levels 

(Bauman et al., 2016). 

The validity of these technologies have largely been assessed within laboratory settings; 

demonstrating a high correlation for indirect calorimetry with the Fitbit and Jawbone 

(independently, r≥0.80) for step count but over- and under-estimations were observed at slower 

and faster speeds, respectively (Evenson et al., 2016). Overall, high validity was observed for 

steps but low validity for quantifying sleep and energy expenditure (Evenson et al., 2016). 

Since this publication, however, the Jawbone has been retracted from the market which 

confirms that the industry is evolving rapidly and devices are often superseded with newer 

models (Bauman et al., 2016). Seven studies within the review reported on inter-device 

reliability and concluded a high inter-device reliability for steps, distance and energy 

expenditure (Evenson et al., 2016). Intra-device reliability, assessed by Dontje and colleagues, 

demonstrated good levels of agreement (at the minute, hour and day level) between ten 

identical Fitbit Ultra devices worn by one individual over eight consecutive days (Dontje et al., 

2015). When compared with research grade devices (e.g. ActiGraph GT3X worn on the waist), 

the Fitbit Flex (wrist) tended to underestimate proportion of time spent sedentary and light 

intensity by 20% and 34%, respectively (Dominick et al., 2016). Observed variations between 

models and within models emphasises the importance of selecting an appropriate device. 
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Digital health technologies are also increasing likely to incorporate photoplethysmography into 

devices. Photoplethysmography relies on optical-based sensing using a pulse oximeter to 

identify light absorption and so record heart rate. Commonly deployed at the wrist, tightly 

linked to increasing wear-ability, these devices offer information pertaining to heart rate and 

movement behaviours to offer a more comprehensive profile. As with accelerometers and 

inclinometers, digital health technologies obtain a wealth of data which can result in differing 

analysis methods (Thompson & Batterham, 2013). Regardless of the objective measurement 

tool utilised, an understanding of self-report and objective measurement and respective positive 

and negative aspects should be considered (Allet et al., 2010). 

Wearable devices provide convenient data collection, analysis and storage over extended 

periods of wear and, with increasing sophistication, reveal immediate feedback to the user 

(Mercer et al., 2016). They have been noted as appropriate tools to stimulate physical activity 

in people living with chronic disease in primary care (van der Weegen et al., 2013) and for 

public health and rehabilitation settings (Lyons et al., 2014). A review conducted by Conroy 

and colleagues identified that over 80% of the identified apps involved physical activity 

(Conroy et al., 2014). Another review demonstrated that interventions targeting overall daily 

reductions in sedentary time have largely used emails, websites and text messages (Stephenson 

et al., 2017); highlighting that more interventions using wearable technologies are warranted. 

Changing movement behaviours could be facilitated by wearable devices (Patel et al., 2015) 

with increases in physical activity observed when provided with devices that encouraged goal-

setting (French et al., 2014) and self-regulation (Floegel et al., 2015). Given only a quarter of 

studies to date have incorporated these behaviour change techniques (Conroy et al., 2014), 

many wearable technologies (and their respective applications) need to begin incorporating 

principles from theories of health behaviour. Health-related behaviours, encouraged by 

wearable technologies, can improve population health but only if positive behaviours are 

sustained. Studies to date have largely varied in intervention duration, ranging from 5 days to 

24 months (Stephenson et al., 2017). In another study, following three days of access to several 

commercial devices, participants (aged 52-84 years, living with ≥1 chronic disease) identified 

that these tools may be useful in promoting physical activity as a possible way to improve 

health (Mercer et al., 2016). However, future interventions targeting both physical activity and 

sedentary behaviour are warranted having recorded only 3 studies (Stephenson et al., 2017). 

Overall, wearable devices can help facilitate behaviour change but sustaining this is difficult 
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(Patel et al., 2015); therefore, it is intuitive that participant engagement with these technologies 

can help understand how people respond to the information presented. 

Monitoring glucose levels 

For people living with diabetes, it is crucial for these individuals to monitor changes in 

(blood/interstitial) glucose levels. There are three main tools used to capture this information 

and these include self-monitoring of blood glucose, continuous glucose monitoring and flash 

glucose monitoring (Figure 1.4). Self-monitoring of blood glucose has been a recognised and 

recommended, invasive technique to facilitate diabetes management  for many years 

(International Diabetes Federation, 2009). The approach involves participants pricking their 

finger and using a handheld reader to measure glucose in the blood sample. Continuous and 

flash glucose monitoring tools, on the other hand, use disposable, minimally-invasive sensors 

that have a needle penetrating the skin. Both of these monitoring technologies calculate glucose 

levels using the relative concentration of glucose in the interstitial fluid, rather than blood 

glucose levels within capillary circulation and provide greater resolution compared with self-

monitoring of blood glucose (Klonoff, 2005). Flash glucose monitors currently available are 

inserted into the left or right posterior brachium whilst the continuous monitors are often 

inserted into the abdomen. Continuous glucose monitors (e.g. Medtronic and iPro) have been 

suggested to help highlight pre-prandial, post-prandial and glucose levels during the night 

(Dungan, 2000) which still holds true nearly two decades later. Regardless of technological 

advancements and emerging techniques, all of these approaches can help, if used, to inform 

individuals of their fluctuating glucose levels which can, in turn, inform their treatment regime 

(e.g. when to take prescribed medication or how to manage dietary intake).  

       

Figure 1.4. Examples of self-monitoring blood glucose (left), continuous glucose monitoring 

(middle) and flash glucose monitoring (right) 

This provision of low, infrequent data can go some way in increasing user understanding and 

prompt the identification of patterns (e.g. magnitude of post-meal increases) (Inchiostro et al., 
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2013). However, it is acknowledged that more frequent measures offer greater insight into daily 

glucose fluctuations (American Diabetes Association, 1994) and this guidance has not changed 

since the 1990’s. However, even with multiple measures daily, self-monitoring blood glucose 

can only highlight the central tendency of glucose levels (Fonda et al., 2013) and subsequently 

fail to provide a complete glucose profile. As a result, many people living with diabetes raise 

concerns about how necessary these measures are given these limitations (Martin et al., 2006), 

and perceive these measures to not contribute to diabetes management (Polonsky et al., 2014) 

and so often fail to conduct enough measures to support them (Klonoff et al., 2008). With only 

39% of individuals using insulin and fewer than 6% of individuals conducted self-monitoring 

blood glucose at least once daily (Harris, 2001), it is important to help promote regular readings 

for self-management. 

In comparison, continuous and flash glucose monitoring technologies, given their similarities 

in information offered, may be perceived as less intrusive, with individuals able to limit their 

reliance on single, irregular measures (Pickup et al., 2015). With devices automatically 

recording regular readings daily (e.g. every 5-15 minutes), individuals are able to recognise 

patterns in glucose profiles and how movement and personal behaviours contribute (Bergenstal 

et al., 2013). However, there are limitations to consider when discussing these two 

technologies. Firstly, continuous glucose monitors have often required users to calibrate the 

reader which involves ≥1finger-prick sample each day (i.e. self-monitoring blood glucose) 

(Sacks et al., 2011). In an effort to overcome this, an expert panel of the US Food and Drug 

Administration have confirmed that the Dexcom G5, a CGM, can be sufficiently accurate and 

reliable for use without the need for calibrations (US Food and Drug Administration, 2016). In 

comparison, flash glucose monitoring devices are factory calibrated, meaning that they do not 

require people to conduct any finger-prick measures to function. Instead, the manufacturer 

advises users to finger-prick during times of rapidly changing glucose levels. Another 

limitation is that many individuals face psychological or financial barriers to using these forms 

of technology (Lodwig et al., 2014) and report sensor-related issues (e.g. 32% failed sensors) 

(Pickup et al., 2015). Due to the nature of monitoring interstitial glucose, results presented to 

the wear can often lag behind capillary blood glucose levels by 4.5±4.8mins (Bailey et al., 

2015); likely attributed to the time required for glucose to diffuse into the tissues from the 

capillaries (Cengiz & Tamborlane, 2009). Despite these limitations, these advancing 

technologies offer consistent results (88.4% at day 2 and 85.2% at day 14) across wear (Bailey 

et al., 2015; Hoss et al., 2013), regardless of body mass index, age, type of diabetes, clinical 
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site, HbA1c or insulin therapy regime (Bailey et al., 2015). Consequently, with appropriate 

guidance and education, these tools may be beneficial for users to engage further with their 

health. 

With greater exposure to information, individuals may feel more empowered (or competent) to 

make informed decisions for better self-regulation; aligning with the notion that individuals 

may feel better equipped to appreciate their current situation. Vigersky and colleagues 

demonstrated a significant 1% reduction in HbA1c% following three months in those 

individuals having access to continuous glucose monitors, compared with a 0.5% reduction in 

observed in the self-monitoring blood glucose group (Vigersky et al., 2012). This may be in 

part because individuals that engage more frequently with the feedback are better equipped to 

improve glucose control compared with people accessing the data less often (Fonda et al., 

2013). Furthermore, these differences may be achieved because of greater exposure to the 

dynamic and temporal characteristics of continuous glucose monitoring (Kovatchev et al., 

2015). Access to these technologies provides an opportunity for people to better manage 

glucose regulation by minimising levels of glucose variation (Rodbard, 2011). However, 

regardless of the frequency of accessing information, an adequate understanding is often a 

barrier in patients living with diabetes (Lodwig et al., 2014) and this still holds true today, 

especially with advancing sophistication of technologies. More specifically, the person wearing 

the device will be presented with information which may help them see the acute effects of 

behaviour on fluctuating glucose levels (Wagner et al., 2012). This process, termed temporal 

sequencing (Wagner et al., 2012), represents the identification and quantification of glucose 

levels in response to a given stimulus (e.g. consumption of food or bout of activity). Another 

approach prompted by Allen and colleagues highlighted that presenting individuals with 

another person’s data resulted in increases in physical activity, decreases in sedentary time and 

improved HbA1c (Allen et al., 2009). This contrasts with the more common notion of 

personalised data being most potent (or persuasive), but another person’s data is likely more 

potent than artificial data. 

Figure 1.5 illustrates how continuous/flash glucose monitors capture fluctuating glucose levels 

over the course of 12 hours (in this example). In comparison, self-monitoring of blood glucose 

only captures three distinct measures with each of these within the target range. Only having 

access to the three distinct measures would miss the two ‘high’ and three ‘low’ events. That 

said, it is important to acknowledge that target ranges vary by context (e.g. upon waking, pre-

meals and post-meals) as well as between people living with and without diabetes. It is 
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interesting to note that people living with diabetes aim to attain a flat line for their glucose 

whereas, in comparison, people living without diabetes observe largely fluctuating glucose 

levels across the 24-hour period. The target range is very important given its role in helping to 

identify high and low events. In Figure 1.5, the target range eludes to 2-hour postprandial 

glucose levels which may not be always relevant, so a dynamic target range may be more 

appropriate as technologies advance. As a result, it is advisable that these continuous glucose 

monitoring technologies become integrated tools to individuals living with diabetes (Fonda et 

al., 2013), which may help encourage routine behaviour with minimal (if any) restrictions 

imposed (Allet et al., 2010). Further investigation into how these technologies fare in samples 

of people at risk of (rather than diagnosed with) diabetes are warranted. 

 

Figure 1.5. An illustration of the information that self-monitoring blood glucose can provide in 

comparison with continuous and flash glucose monitoring 

1.2.4. Health Communication 

Population level versus personalised health messages 

Messaging is presenting information to large groups of people via media pathways such as 

television advertisements, print media, and the internet to a target audience (Latimer et al., 

2010). Wide-reaching campaigns aim to encourage positive (and avert negative) behaviours 

within populations for health (Wakefield et al., 2010). Technology has provided the field of 

health communication with a platform to access large audiences (Cascio et al., 2013). 
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Population level health messages 

The widely recognised public health campaign thus far for physical activity has been 

‘Change4Life’, an NHS supported campaign targeting families to move more, eat well and live 

longer (UK Department of Health, 2009). Improving awareness to achieve physical activity 

recommendations and minimising time spent sedentary remains a substantial challenge with 

82% of UK adults incorrectly recalling the national guidelines (Knox et al., 2013). 

Alternatively (or in addition) it may be attributable to individuals not receiving reasons why 

they should achieve these recommendations nor gain an understanding of how to achieve them 

(Latimer et al., 2010). This could be contributing to insufficient awareness about poor 

movement behavioural decisions and associated health implications. Others have highlighted 

that infographics, which attempt to draw a connection between healthcare professionals and 

the general public (Scott et al., 2016), may help display key information by largely using a 

visual format with key text included (Krum, 2013). Disseminating engaging messages is more 

likely when the behaviour targeted is episodic (or discrete) rather than habitual (Wakefield et 

al., 2010). As a result, encouraging people to change physical activity or time spent sedentary 

can be difficult. Another implication is whether messages should reveal the harms or the 

benefits (of physical activity and low time spent sedentary) is currently not fully decided (Wen 

& Wu, 2012). It has previously been suggested that loss-framed messages are best suited for 

screening whilst gain-framed messages for the prevention of behaviours (Rothman & Salovey, 

1997). Despite this, a mixture of loss- and gain-framed messages have been utilised across the 

key lifestyle behaviours; highlighting uncertainty about which method is best for the prevention 

of chronic disease. For example, given the ongoing century long war on tobacco addiction 

(Fiore & Baker, 2009), the UK government enforced legislation necessitating cigarette 

companies to display health warnings on packaging (e.g. images representing blackened lungs 

and yellow teeth); aligning with a loss-framed message framework. However, uncertainty 

remains about whether population level messages should deliver highly threatening messages 

(e.g. risk of chronic disease) to encourage positive behaviour change, with evidence that these 

types of messages can result in increases in physical activity (Cho & Salmon, 2006). To assess 

awareness achieved for a given message, it is pivotal to conduct an evaluation to assess key 

outcomes including level of intention and whether change occurred (Bauman et al., 2006). 

Efforts have included the use of simple-to-understand language, using audio-visual formats 

and to tailor or personalise content to minimise issues surrounding health literacy (Barry et al., 

2013; Mackert et al., 2014). Overall, it is important to consider how competent individuals in 
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terms of how able they feel to act on the health information being presented or provided to 

them. In an effort to support individuals with varying levels of competency, a broad range of 

health messages via number of modes (e.g. screen and non-screen based) are likely crucial to 

capture population-level attention. Consequently, it may be beneficial to deliver tailored 

messages (Appelboom et al., 2014) increasing resonance with the message. 

Personalised health messages relating to movement behaviours 

Pedometers have been the activity monitor of abundance in the past. However, with increasing 

sophistication, devices are increasingly able to quantify multiple aspects of activity with 

physical activity gaining recognition as a complicated behaviour (Thompson et al., 2015). 

Thompson and colleagues outlined that no single metric could truly classify level of physical 

activity and that tailoring of messages according to individual preferences as an optimal 

scenario (Thompson et al., 2015). Tailoring would encourage the presentation of specific 

metrics in relevant contexts and at specific times to help enhance the opportunity for behaviour 

change. Aligning with this approach, smartphone apps are a logical tool for behavioural 

interventions because they can monitor and classify behaviour almost immediately (Dennison 

et al., 2013). To date, step count has been rated as the most important metric by 74% of a 

national survey (n=1,349) with activity monitors considered helpful in promoting activity 

(Alley et al., 2016). Of the respondents, 63% stated that digital health technologies help 

individuals become more active (Alley et al., 2016). It must be acknowledged though that this 

sample of individuals may have been biased given that they have access to these devices and 

so may be more likely to be positive of their use. Another aspect is how messages are delivered 

to encourage a recommended quantity of behaviour. For instance, 41 people living with type 2 

diabetes were randomised into one of two groups; scheduled to either receive advice about 

walking 30 min/day (at any time) or to walk 10 minutes three times per day (after each meal) 

(Reynolds et al., 2016). The findings were interesting; highlighting that advice to walk after 

meals was more effective in lowering post-prandial glycaemia; suggesting that aligning bouts 

of achievable activity around routine events helped participants achieve their advice. 

Delivering personalised feedback offers many challenges but it has the potential to deliver 

useful outcomes. 

Personalised health messages relating to glucose  

Other personalised health messages may focus on the physiological feedback. A position 

statement published in 2015 outlined that personalised (but comprehensive) approaches are 
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necessary and that displaying glucose patterns is a useful form of feedback (Powers et al., 

2015). Encouraging regular monitoring is the crucial challenge with many life events or factors 

restricting the opportunity (e.g. diabetes severity, work commitments, physical activity and 

eating habits)  (American Diabetes Association, 2015b). Another major concern is that a 

sufficient level of literacy is needed to accurately interpret the values presented to the 

individual (International Diabetes Federation, 2009). An inadequate level of health literacy has 

been associated with worsened glucose control in those living with type 2 diabetes (Schillinger 

et al., 2003), which reflects a potential lost opportunity to deliver useful information. Rowsell 

and colleagues identified that those with a higher level of health literacy perceived the 

information as easier to understand and found certain features motivating (Rowsell et al., 

2015). This study investigated the use of a website which had participant accounts setup to 

access personalised information, restricting its reach for those who may have wanted greater, 

more immediate and easy access. The importance inflicted on having a sufficient literacy level 

to understand information means that education and training need to be provided (Battersby et 

al., 2010). It is important for healthcare professionals to understand the importance of 

individual understanding to optimise the opportunity to self-monitor. Healthcare professionals, 

such as specialist diabetes nurses, must consider individual literacy (International Diabetes 

Federation, 2009) because the transference of adequate knowledge is important (Klonoff, 2007) 

and, with individuals equipped with knowledge, patient empowerment can evolve 

(International Diabetes Federation, 2009). However, given the influx of technologies offering 

information on physiological markers, further consideration should be directed toward user 

knowledge and user comfort using mobile health (mHealth) platforms (Norman & Skinner, 

2006). For instance, healthcare professionals should be able to conduct initial assessments 

(Driscoll & Young-Hyman, 2014) to ensure that all patients are sufficiently equipped and, 

where needed, they receive the guidance they need (Jarvis et al., 2010). This allows for the 

accurate deployment of advice to maintain an appropriate level of digital health use for diabetes 

management. However, further investigation into how individuals living at risk of (and not 

diagnosed with) chronic disease deal with physiological feedback would be warranted. 

Temporal discounting 

Temporal discounting refers to how people tend to discount rewards that are temporally distant 

because the delay weakens the value of the reward (Critchfield & Kollins, 2001). It has often 

been linked to monetary reward investigations and involves a hyperbolic discount function; 

meaning that the subjective value of a reward is reduced when there is time before the reward 
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is received. For instance, participants are often asked to decide between receiving an immediate 

payment and a larger payment, but they would receive the larger payment in the future. 

Similarly, in a sample of current, never- and former-smokers, Bickel and colleagues 

investigated how participants differed in receiving a specific quantity of cigarettes immediately 

or a greater quantity of cigarettes at a delayed time (Bickel et al., 1999). The authors identified 

that cigarette smoking was characterised by a loss of subjective value for delayed outcomes; 

meaning that current smokers were more inclined to take a more immediate (albeit smaller) 

reward. When alcohol was compared with money in a sample of active alcoholics, currently 

abstinent alcoholics and controls, alcohol was discounted more rapidly; meaning that rapid 

discounting of delayed rewards was observed (Petry, 2001). Therefore, an individual can be 

either impulsive (immediate gain) or self-controlled (delayed reward) (Bickel et al., 1999) and 

still holds true today. Regardless of the task under consideration, individuals must actively 

sustain a feeling of value for the rewards. Temporal discounting is a crucial theory to consider 

when encouraging behaviour change because the reward (e.g. optimal cardiometabolic health) 

can often be experienced in the distant future but is affected by decisions in the present. More 

specifically, a major challenge to improving population health is encouraging people to change 

their lifestyle behaviours today to improve health decades later. Figure 1.6 illustrates the 

concept by suggesting that individuals prioritise (or more greatly value) behaviours that offer 

immediate gratification, and poorly disregard those events that may occur later. With 

individuals often seeking the immediate gratification or reward to fulfil their need for value, 

encouraging positive lifestyle behaviours can be difficult to challenge. Given the nature of 

available technologies for type 2 diabetes, novel sensors are increasingly capable of delivering 

information about behaviour and physiological markers in parallel. Consequently, with perhaps 

enhanced levels of user interaction as a result of this additional angle to personalised feedback, 

it may help improve understanding about the effects of acute decisions on long-term health to 

lower the risk of chronic disease onset. 
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Figure 1.6. A schematic displaying how subjective value is highest in the present and lowest 

for events that may occur in the future 

Assessing health messages 

Interviews, focus groups and surveys offer valuable qualitative insight into individual 

preferences and perceptions toward feedback (about both content and delivery). Personalising 

health messages is crucial moving forward given the advances in digital health technologies. 

Previous research (Kreuter et al., 1999), which appears to still hold true today in other domains 

(e.g. Noble et al., 2015), demonstrated that tailored weight loss materials were significantly 

better than untailored messages. The materials that were investigated were tailored to an 

individual according to their response of a questionnaire; thereby limiting its potential given 

that question may have been misinterpreted or incorrectly answered. A systematic review 

published in 2010, containing ten studies, demonstrated that tailored information resulted in 

greater increases in physical activity compared with untailored material (Latimer et al., 2010); 

perhaps attributable to the materials resulting in greater resonance. If we can retrieve rich 

information regarding preferences for feedback, then we may be better positioned to reveal 

information pertaining to health and behaviour in a resonant way. Other studies employing 

qualitative methods have focused on disseminating road safety messages (Lewis et al., 2007), 

smoking whilst pregnant (Lewis et al., 2010) and obesity (Naughton et al., 2013). Although 

self-report tools provide valuable information concerning behaviour, there remains a large 

portion of variance unexplained; in part attributable to respondents providing socially desirable 

answers (Booth-Kewley et al., 2007), unconscious influences (de Camp Wilson & Nisbett, 

1978), and a possible disconnect between responses provided in the laboratory and mental 
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processes that take place in the real world (Glassman et al., 2016; Klesges et al., 1990). Given 

these limitations, it is important to consider whether there is an opportunity to objectively 

assess how health messages are received. 

1.2.5. Neuroimaging 

One potential tool to objectively measure how health messages are received is neuroimaging 

under the umbrella of neuroscience. Neuroscience can be subdivided into several areas of 

interest. Communication neuroscience offers insight into understanding health communication 

(Falk, 2013) and helps bolster knowledge in nonverbal communication (Todorov et al., 2008); 

offering additional but supplementary information to traditional methods (e.g. focus groups). 

Communication neuroscience can be explored using an increasing number of available 

neuroimaging tools. These neuroimaging techniques can help identify what regions of the brain 

become activated whilst completing specific functions (or tasks) or processes; including 

emotion and affection, attention, social cognition, reasoning and language (Bookheimer, 2007; 

Cacioppo, 2002). The most commonly used neuroimaging techniques are 

electroencephalography (EEG), functional magnetic resonance imaging (fMRI), eye tracking 

and functional near infrared spectroscopy (fNIRS). 

Neuroimaging tools 

Electroencephalography, functional NIRS and event-related potentials 

Despite the abundance of neuroimaging tools available, each neuroimaging tool offers 

respective positive and negative attributes. Electroencephalography records brain signals from 

the scalp and identifies changes in these signals along the spectral bands of delta, theta, alpha, 

beta and gamma. Because people are often unable or unwilling to justify or explain preferences 

when prompted, in part attributable to human behaviours driven by unconscious awareness 

(Calvert & Brammer, 2012), neuroimaging techniques can be crucial. Eye tracking, in contrast, 

measure eye movements which are considered the most frequent human behaviour 

(Bridgeman, 1992). Because the visual system provides an enormous amount of information, 

eye tracking is a key tool to try and understand what motivates people to act in certain ways. 

In previous years, eye tracking relied on direct observation of eye movements; limiting the 

measurement accuracy to the memory and accuracy of the observer (Dodge, 1906). The need 

to implement a better, objective record of eye movements using non-invasive methods was 

acknowledged (Dodge & Cline, 1901) and subsequent efforts evolved (Taylor, 1971). EEG and 

eye tracking are considered the least invasive neuroimaging tools yet still provide high 
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temporal resolution. fNIRS, despite measuring brain activation in a different way, does offer 

greater portability and relatively lower costs which may encourage investigations in more 

naturalistic environments.  

Magnetic resonance imaging 

Magnetic resonance imaging (MRI) has made a substantial contribution to neuroscience by 

permitting imaging of the brain. Its history lies in nuclear magnetic resonance (NMR) 

spectroscopy which largely relies on the angular momentum possessed by subatomic particles 

(i.e. protons, neutrons and electrons). Over time, NMR produced images using detection coils 

to align with the resonance frequency of hydrogen which was used to calculate water density. 

Given the prevalence of water in the human body, hydrogen is the most commonly studied 

element with MRI. Sir Peter Mansfield subsequently developed this approach further, 

producing methods to analyse these images and the approach later became known as MRI. 

Magnetic field strengths are typically 0.1-10T (tesla) and apply a strong magnetic field to align 

the spinning proton. The MRI scanner, such as the one shown in Figure 1.7 (MR750w 3T 

scanner [General Electric Healthcare, Chicago, IL, USA]), then produces a series of radio 

frequency currents to create a varying magnetic field. The protons absorb this energy and flip 

their direction of spin, which is maintained until the radiofrequency field is switched off. Upon 

switching off, the protons return to their normal spinning motion, and in the process, produces 

a radio signal. This returning to normal phase can be measured and subsequently made into an 

image through radio frequency coils. In relation to imaging anatomy, the MRI scanner 

distinguishes between differing tissue types by the speed at which the protons return to their 

normal spins. The loud noise anecdotally aligned to MRI scans is due to the constant flipping 

motion of magnetic fields. Unfortunately, because MRI uses magnets, individuals who possess 

any metal implants cannot go inside as they are not magnetic resonance safe and pose a hazard. 

MR images can be acquired with a range of image contrasts, such as T1, T2, or diffusion 

weightings, which indicate underlying structure. They may also be acquired with contrast 

dependent on physiological processes, such as blood flow, which can be manipulated to reveal 

angiographic information or functional MRI via the BOLD effect, as described below.  
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Figure 1.7. An MR750w 3T scanner (left) with a participant being prepared to go inside (right) 

Functional magnetic resonance imaging 

fMRI is a non-invasive neuroimaging technique that studies the brain whilst an individual 

completes a cognitive task inside an MRI scanner (Figure 1.7). More specifically, fMRI 

provides images that show the location of magnetic resonance signal changes associated with 

neural activity. fMRI works on the basis that a vascular change occurs when neural tissue is 

activated (Ogawa et al., 1990). Using a method called blood oxygen level-dependent (BOLD) 

contrast imaging, fMRI provides an indirect measure of neuro-electric activity (Logothetis et 

al., 2001). An early observation advocated that changes in neural activity resulted in signal 

changes that can take seconds to develop and decay (Bandettini, 1993). The theory behind 

BOLD contrasts is supported because deoxyhaemoglobin is paramagnetic in nature meaning it 

causes reductions in signal strength in the vasculature and surrounding tissue. Cerebral blood 

volume and blood flow increase when an area of the brain is activated; resulting in a lower 

oxygen extraction fraction of the blood. Blood supply demand is subsequently exceeded which 

causes a reduction in deoxyhaemoglobin. As deoxyhaemoglobin decreases, the paramagnetic 

properties are removed which results in a greater signal intensity. Therefore, an activated region 

of the brain demonstrates a more intense signal which can reveal a temporal measure of neural 

activity. This occurs after a haemodynamic filter has smoothed the pattern of activation which, 

in the process, can slightly delay signal production (Aguirre et al., 1998). While arterial blood 

is similar in its magnetic properties to tissue, deoxygenated blood is paramagnetic and so 

induces in-homogeneities within the magnetic field in tissue. As a result, the magnetic 

resonance imaging signal decays faster but signals from activated regions of cortex increase as 

the tissue becomes more magnetically uniform. Dynamic increases in volume and flow of 
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blood to an activated region of the brain, accompanied by changes in oxygen consumption, 

occur shortly after cognitive stimulation (Leniger-Follert & Lübbers, 1976). To localise these 

neural activations, low resolution images are acquired in rapid succession to produce mapped 

brain volumes every few seconds. In combination, these volumes produce a time-series of 

activation intensities for each voxel. fMRI produces relatively good spatial resolution with 

whole brain coverage, but the technique suffers from poor temporal resolution and issues 

surrounding reverse inference. Reverse inference suggests that activations of specific brain 

regions infer the engagement of a specific cognitive process which is not fully valid (Poldrack, 

2006). There has been a recent expansion of interest in using fMRI as a neuroimaging tool 

bringing forward both scepticism and enthusiasm (Aue et al., 2009). However, having the 

capacity to measure specific cerebral structures in social cognition and behaviour has been 

noted as an outstanding achievement in contemporary neuroscience (Eisenberg, 1995).  

Functional MRI, health messages and behaviour change 

A systematic review conducted by Kaye and colleagues (Kaye et al., 2016) identified a variety 

of neuroimaging studies focusing on key human behaviours including smoking (Chua et al., 

2011), nutrition (Kessels et al., 2011), sun safety (Falk et al., 2010), narcotic substances (Weber 

et al., 2015), safe sex (e.g. Seelig et al., 2014) and blood donation (Falk et al., 2010). The 

review identified twenty studies that employed event-related potential, functional near infrared 

spectroscopy or fMRI and demonstrated a growing body of research assessing visual stimuli. 

However, expanding the scope of the review to identify studies on other lifestyle behaviours 

may have revealed further studies. Lifestyle behaviour health messages are often disseminated 

on packaging to deter individuals or billboards to highlight health implications. Studies to date 

have compared persuasive and unpersuasive messages (Falk et al., 2010), tailored and 

untailored messages (Noar et al., 2007) as well as images of lifestyle behaviour (Jackson et al., 

2014). Functional MRI studies often examine neural activation patterns in response to stimuli; 

offering insight into how people cortically respond. Understanding how messages can be made 

more potent (or persuasive) to encourage behaviour change is likely crucial. fMRI studies can 

also investigate human behaviour following exposure to a stimulus, such as health messages. 

For instance, after viewing anti-smoking advertisements, participants were subsequently 

measured at follow up for smoking consumption using exhaled carbon monoxide (a proxy 

indicator). Findings revealed that neural activity in response to anti-smoking advertisements 

accounted for 20% of the variance in how much exhaled carbon monoxide was recorded (i.e. 

how many were still smoking) (Falk et al., 2011). Moreover, the medial prefrontal cortex, a 
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region of the brain, acted as a surrogate marker for subsequent smoking cessation. In another 

study, using EEG, Versace and colleagues examined rates of smoking cessation and identified 

that neural patterns to emotional and smoking-related pictures had a role in predicting 

subsequent smoking cessation (Versace et al., 2011). More specifically, smokers with lower 

levels of neural activation in response to pleasant stimuli were less successful at ceasing 

smoking habits. These encouraging findings support the suggestion that social neuroscientists 

should examine new forms of media, such as social network sites and smartphones, to assess 

the role of technology in health communications (Cascio et al., 2013). The authors emphasise 

that people are affected differently by health message communications and subsequently act 

differently after exposure. However, in combination, neuroimaging tools (quantifying neural 

activity) and self-report surveys explain some variation related to behaviour change (Cascio et 

al., 2013). As a result, conducting more studies that employ objective measurements (using 

techniques such as fMRI) may be warranted. 

1.2.6. Behaviour Change 

Behaviour change framework 

Behaviours are multi-dimensional and highly complex. Therefore, understanding how 

behaviours are influenced by both external and internal sources is important to develop 

interventions targeting change (Michie et al., 2013). The capability, opportunity, motivation 

and behaviour (‘COM-B’) model developed by Michie and colleagues suggests that a change 

in behaviour requires a change in one of the following: capability, opportunity or motivation 

(Michie et al., 2011). The former refers to the physical and psychological attributes to perform 

a behaviour (e.g. skill level), for instance personal ability to perform the behaviour. 

Opportunity eludes to external sources and can be social or physical; influencing how an 

individual engages with behaviour. For instance, it must be accessible and socially acceptable. 

The latter component is crucial and is comprised of reflective and automatic processes such as 

emotion, beliefs and goals. Motivation confirms that people must be highly driven to complete 

the behaviour. These three components of the COM-B model are interlinked such that 

increasing opportunity or capability can increase motivation. The Behaviour Change Wheel 

comprises the COM-B model along with nine intervention functions, including: education (e.g. 

knowledge and understanding), training (e.g. imparting skills) and enablement (e.g. reducing 

barriers/increasing means) (Michie et al., 2011). It offers a systematic and theoretically-based 

approach to help identify successful intervention types for a given behaviour and population. 
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Together, these functions are crucial to appreciate how these factors can be addressed in 

interventions targeting positive behaviour change in different contexts and populations (Glanz 

& Bishop, 2010; Michie et al., 2011). Interventions are now widely recommended to 

incorporate frameworks to inform behaviour change within the design and development 

phrases of a trial (Campbell et al., 2000) despite inconsistent findings relating to the 

effectiveness of incorporating theory into intervention development (Ammerman et al., 2002; 

Bhattarai et al., 2013). Overall, it is recommended to incorporate structure by using frameworks 

such as COM-B when deliberating how to design and deliver interventions targeting behaviour 

change. 

Behaviour change techniques 

Michie and colleagues identified that published interventions were reporting insufficient details 

relating to the key components within interventions (Michie et al., 2011). As a result, 

subsequent interventions have not been able to appreciate what ingredients could or should be 

included or avoided when in the design phase. As a result, the Behaviour Change Taxonomy 

was developed to help identify and classify the active content of the intervention directly 

focusing on the promotion of physical activity (Michie et al., 2013). The taxonomy has since 

helped to guide the standardisation of terminology and content across interventions in the field 

of behaviour change, having identified 93 active ingredients (organised into sixteen groups). 

Following the development of the taxonomy, Michie and colleagues assessed the effectiveness 

of behaviour change interventions equipped with the newly developed taxonomy (Michie et 

al., 2009). Moderator analysis identified that intervention effectiveness was directly related to 

the number of self-regulation techniques (e.g. self-monitoring) incorporated within these 

interventions. Of the 93 active ingredients identified by the taxonomy, the behaviour change 

techniques of feedback, self-monitoring and goal setting are most pertinent to this thesis. 

Feedback and goal-setting 

Feedback, defined as the opportunity to ‘monitor and provide’ information on performance of 

the behaviour or outcome (Michie et al., 2013), can relate to several topics within various 

settings. For instance, feedback can be offered in a visual, auditory, or tactile manner (Stone et 

al., 2005). Within an occupational setting, for example, aircraft pilots expect to receive 

sufficient, informative feedback to maintain accurate navigation and control of an aircraft. The 

cockpit is also designed to accommodate the pilot to minimise pilot error and any accidents 

(Lintern et al., 1999). Perhaps more applicable to the wider population, smart devices are now 
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more frequently found within UK households. These devices monitor energy consumption with 

the suggested aim of reducing monthly bill outlays simply by revealing real-time consumption 

(e.g. £0.21/hour). It has been suggested that this information can enhance user engagement 

(Daae & Boks, 2014). However, feedback must be appropriately presented to avoid negating 

the potential benefits of behaviour change (Hargreaves et al., 2010); perhaps in part attributable 

to levels of literacy toward numerical outputs and graphs (Hargreaves et al., 2010; Van Dam 

et al., 2010). Technologies targeted health and behaviour also have a role to play in encouraging 

change (Allet et al., 2010). A review conducted by Lewis and colleagues identified that 

interventions deploying wearable technologies found significant post-intervention increases in 

physical activity (24 days to 6 months) and reductions in sedentary behaviour (at 4 weeks to 3 

months) (Lewis et al., 2015). However, how information is presented is crucial with level of 

motivation mediating the effect of the feedback received (Wood & Neal, 2007). 

Use of traffic light colours and health target ranges have been identified as key approaches to 

help interpret data (Western et al., 2015). More complicated forms of feedback impose greater 

cognitive load which may negate its impact and likely reduce engagement (Hargreaves et al., 

2010). The effect that feedback has on an individual and subsequent actions can be determined 

by personal intentions and goals set (Locke et al., 1968). If an individual lacks motivation to 

act upon the information or feedback received, then potency (or persuasiveness) can be 

reduced. However, receiving feedback can be a key technique because it provides information; 

previously demonstrated to surprise people or to reveal or misalign with what people think they 

achieve (Western et al., 2015). Feedback offered at an individual level is important, but it must 

be acknowledged there is no one-size-fits-all recommendation on how to present feedback on 

physical activity (Thompson et al., 2015). Integrating a dynamic but appropriate design is 

crucial for a successful behaviour change intervention. For instance, ensuring the graphic user 

interface (GUI) is interactive and resonates with the user. Related but independent to feedback 

is goal-setting, defined as to ‘set or agree on a goal’ to achieve a specific behaviour or outcome 

(Michie et al., 2013). As a key component of the widely recognised Control Theory (Carver & 

Scheier, 1982), goal-setting is a key ingredient to the action of self-management and control of 

behaviour. As a result, tailoring information has a crucial role in encouraging people to strive 

for, attain or exceed a target. However, ensuring that the target is dynamic is important as the 

user improves (or fails to reach) over time; minimising opportunity for de-motivation. Ideally, 

with increasing access to information from digital health technologies, there is a trend to move 

away from a physician-centred healthcare system (Battersby et al., 2010). 
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Self-monitoring 

Michie and colleagues defined self-monitoring as a ‘method for the person to monitor and 

record’ behaviour and outcome(s) and as a key ingredient for behaviour change (Michie et al., 

2013). With advancing technologies, people are increasingly able to see how they behave (e.g. 

time spent sedentary) but more needs to be done to demonstrate how immediate behavioural 

decisions acutely influence health. Also, with increasing sophistication, people can be 

prompted (or nudged) at specific times (e.g. every 30 minutes to prevent prolonged sedentary). 

However, consideration should be made toward the source of the information and the perceived 

level of expertise because these can be important indicators for information persuasiveness 

(Petty & Cacioppo, 1986). Gardner and colleagues reviewed and identified the active behaviour 

change techniques within numerous sedentary behaviour interventions (Gardner et al., 2016). 

Findings were considered particularly promising, with self-monitoring offering the highest 

promise ratio (measured the contribution of a behaviour change technique to the intervention 

output) of all techniques investigated (Gardner et al., 2016). This finding has been supported 

more recently in a systematic review that highlighted seven out of 17 interventions using self-

monitoring of behaviour (Stephenson et al., 2017). 

Given that digital health technologies such as a Fitbit offer a wealth of information, presenting 

the information in various forms such as numbers and graphs may help alleviate difficulties in 

understanding the content (Van Dam et al., 2012). Sanders and colleagues identified that over 

90% of the 82 devices capable of self-monitoring sedentary time and/or physical activity 

revealed feedback in a numeric or graphic format (Sanders et al., 2016). Offering individuals 

with a visual representation of their behaviour and/or health can reinforce the information to 

the user (Kanfer & Goldstein, 1975). Previous pedometer-based study findings collated via a 

systematic review confirmed that simply providing users with a step count via a waist-worn 

device can increase physical activity levels (by 26.9%) from baseline levels (Bravata et al., 

2007). In other contexts, self-monitoring of home energy consumption has identified 7-10% 

reductions when consumers were provided with smart meters to monitor energy usage (Wood 

& Newborough, 2003). Providing users with a source of immediate information can increase 

personal awareness toward what has been done and what is perhaps left to achieve. In general, 

interventions that employ self-monitoring in a synergistic manner, by combining self-

monitoring with ≥1 other technique would result in greater effectiveness than when not 

incorporated in combination (Michie et al., 2009). Future studies should encourage accurate 
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reporting of behaviour change theories and how these were integrated in the intervention 

(Kitsiou et al., 2017). 

Mobile Health (mHealth) 

Consumer health wearables are considered the next ‘Dr Google’ (Piwek et al., 2016) whereby 

individuals often use devices to self-monitor and then visit healthcare professional equipped 

with personal information. These devices therefore offer the wearer direct access to personal 

analytics that can aid with prevention of chronic disease. There has been a recent rise in 

popularity for the use of both consumer activity or fitness monitors (Canalys, 2014) and 

smartphone apps (Pandey et al., 2013) contributing to the dynamic landscape of technology 

(Kelly, 2016; Patrick et al, 2016). These emerging tools allow continuous monitoring of 

movement behaviours (Case et al., 2015) but more could be done with regard to combining 

behavioural and physiological technologies. The rapid growth of digital technologies sector, in 

parallel with the evolving development of bite-sized technology and wearable devices, aims to 

deliver and supplement healthcare (Fiordelli et al., 2013) and subsequently promote behaviour 

change (Allet et al., 2010). The devices commonly make use of accelerometers (Preece et al., 

2009) and conform to the notion of mobile health (mHealth). Given the widespread presence 

of unhealthy behaviours, many mHealth technologies aim to help individuals attain healthier 

habits (Klasnja & Pratt, 2014) which have potential to prevent or delay chronic disease. 

Devices are often located on the person (e.g. wrist-worn activity tracker) or situated at home 

(e.g. blood pressure monitoring). A recent review of systematic reviews identified 15 papers 

(52 unique studies) that focused on the effectiveness of mHealth interventions for the self-

management of diabetes (Kitsiou et al., 2017); highlighting that diabetes has technologies 

available. Findings outlined a 0.8% improvement in Hba1c in the high quality reviews 

delivering mHealth interventions compared with standard care or non-mHealth approaches 

(Kitsiou et al., 2017). Further investigation is warranted to observe how these technologies may 

fare from a prevention perspective, for those living without (but at risk of) diabetes. Overall, 

these mHealth technologies align with the ‘Quantified Self’ movement (Swan, 2009) by 

enabling individuals to self-monitor behaviour and/or health. 

Purchasing appealing commercial devices has flourished in part because of the reduction in 

costs with advancing expertise and expanding consumer interest. Providing the user with 

immediate feedback about behaviour on a convenient platform could be a fundamental 

motivator (Rollo et al., 2016). There is also an ever-increasing number of features monitored; 

for instance, sitting time, heart rate, and time spent active are common (Sanders et al., 2016). 



Literature Review 

40 

 

These devices are able to gather and present continuous data in a small physical package 

(Culhane et al., 2005) which have since managed to downsize further. However, medical-

related smartphone apps currently offer limited evidence (McCartney, 2013) and only 

borderline positive effects of technological interventions have been observed in over 8,000 

participants (Alkhaldi et al., 2016). Rollo and colleagues identified that web-based 

programmes, smartphone apps and wearable devices all contribute to the self-management of 

chronic disease (Rollo et al., 2016); but more needs to be done in those living without chronic 

disease to observe whether these technologies can help prevent chronic disease onset. 

Considering the position of the device (e.g. wrist, chest or waist) and the frequency of charging 

is crucial (Rollo et al., 2016) as this will likely impact user compliance (Murphy, 2009). 

Similarly, smartphone apps provide push notifications, offer capacity to sync (link to transfer 

data) with multiple devices and are highly portable; however, restrictions on the use of a 

specific platform (e.g. compatible with Apple iOS) and developer costs (Rollo et al., 2016) are 

largely ignored. Luijkx and colleagues suggested that, provided with appropriate support and 

guidance, the older generation are also highly amenable to adopting new technologies (Luijkx 

et al., 2015). In combination, these findings support the use of mHealth within the whole 

population but incorporating mHealth into mainstream efforts must be implemented more 

quickly to maximise their benefits (Riley et al., 2015). 

Engagement with mHealth 

Engagement introduced 

Engagement observes the quality of users’ experiences with technology (O’Brien & Toms, 

2008). Encouraging users to interact with mHealth or digital health technologies can often be 

a challenge. Considering there were an estimated 150,000 smartphone apps focused on health 

(Aitken, 2015), digital health technologies are increasingly promoted as a way to facilitate 

engagement with health (Steinhubl et al., 2013). Encouraging people to effectively engage with 

a tool can be viewed as more crucial than the act of engaging itself (Yardley et al., 2016); more 

specifically, engagement that leads to positive behaviour change is more important than the act 

of engagement itself. However, with only half of UK adults having immediate access to the 

internet via a personal mobile phone (McCartney, 2013) and greater engagement in those with 

higher education and income levels (Kohl et al., 2013), it is important to consider inequality 

divides. More recent evidence suggested that the proportions of households gaining internet 

access has been increasing annually, reaching an estimated 80% of coverage in 2013 (Dutton 

& Blank, 2015). Conflicting reports suggest that there are widening health inequalities 
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(indicator of socio-economic status) (McAuley, 2014) surpassing older research that recorded 

lower levels of health inequality (due to devices becoming more affordable and more 

accessible) (Muñoz, 2010). As a result, it is important to consider the digital divide and how 

varying levels of access to digital health (e.g. education, age, health status) impact how people 

access and engage with technology. However, it is also useful to acknowledge that all 

technologies tend to follow Gartner’s hyper cycle of innovation (Linden & Fenn, 2003). The 

life cycle of any technology has been conceptualised with fast-track technologies taking 

approximately two to four years to cycle through the five stages. It begins with a pattern of 

excitement that evokes a great level of expectation (Figure 1.8), but with time and continuing 

mass media hype, it is common to observe negative experiences (e.g. supplier failures and 

negative press). Counteracting this potentially inevitable cycle emphasises the importance of 

producing technologies that supersede current items. 

 

Figure 1.8. An illustration of the Hype Cycle of Innovation, adapted from Linden & Fenn, 2003 

Concerns about engagement 

Initial drive adoption and use of digital health technologies is complicated with questions raised 

about novelty (Ledger et al., 2014). A nine-item criteria has been produced to assess whether 

a device will be adopted and includes design, setup experience, form factor (how they fit), user 

experience and overall utility (Ledger et al., 2014). After overcoming the challenge of 
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accessing mHealth technologies, the subsequent hurdle involves encouraging long-term, 

sustained engagement. That said, it must be acknowledged that short-term use of these 

technologies may actually be appropriate for many (by being able to extract useful information 

quickly and not require longer-term wear) and so it would be inappropriate to expect long-term 

wear and engagement. Engagement can be evaluated using several tools, including: qualitative 

analyses, questionnaires, ecological momentary assessment, logs of system usage, sensors 

(within the technology) or by using psychophysiological measures such as fMRI (Yardley et 

al., 2016). There are a growing number of companies (e.g. Flurry Analytics) which, with 

permission, obtain data from the devices of interest (i.e. smartphone or wearable device) which 

can ease data capture and interpretation. Empirical evidence suggests that adoption and changes 

to motivation and behaviour are short-term (Klasnja et al., 2011). For instance, within a sample 

of 26 students aged 20-24 years, 65% of participants stopped using their Fitbit after only two 

weeks of use (Shih et al., 2015). Qualitative investigation identified that cessation of use was 

often attributed to: forgetting to put the device on, negative perceptions of device design as 

well as concerns for data management and accuracy (Shih et al., 2015). Poor long-term use has 

also been highlighted elsewhere with approximately one third of US consumers failing to 

continue using a device six months following purchase (Ledger et al., 2014). Conflicting 

findings were highlighted in a review conducted by Lewis and colleagues which identified that 

seven of eleven studies reported a retention rate of ≥80% (Lewis et al., 2015). This could be 

attributed to the context of having the devices deployed within a research setting (eluding to 

recruitment bias or heightened motivation to maintain adherence) rather than a real-world 

setting where perhaps there is minimal (or no) expectation for sustained use. Therefore, efforts 

to extend longevity of these devices in a real-world setting are warranted. Another concern 

relates to non-usage attrition where the use of mHealth is discontinued (i.e. users may still have 

access to the device but fail to use it). Eysenbach’s Law of Attrition supports that attrition can 

be common within the context of mHealth because users have flexibility and choice to choose 

their intervention dose. More specifically, users are able to decide when or when not to wear 

the device as well their frequency of looking at it; supporting that non-usage attrition should 

be monitored and better understood (Eysenbach, 2005). For instance, in an intervention 

enrolling 4,378 individuals, only 20% were classified as active users. Reasons for the lack of 

sustained use or attention could include the following factors: insufficient encouragement from 

healthcare professionals, insufficient evidence relating to effectiveness, concerns about 

security and privacy (Birnbaum et al., 2015) or that the information fails to resonate (Aitken, 
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2015). Simply put, many users are not likely making full use of these technologies (Birnbaum 

et al., 2015) and efforts to combat this are warranted moving forward. 

Measuring engagement 

O’Brien and colleagues proposed a model of engagement (Figure 1.9) which outlines the 

process starting from the initial point of engagement to disengagement (O’Brien et al., 2008). 

Items contributing at the point of engagement include aesthetics, novelty, interest and 

motivation. During engagement, factors include aesthetic and sensory appeal, attention and 

awareness (and can appear and disappear over wear) whilst the point of disengagement can be 

attributed to usability, challenge and positive/negative affect. These attributes are highly 

changeable over time which demonstrates that engagement is a dynamic process varying both 

between and within subjects. Measuring engagement will largely vary between studies because 

of the varying types of technology employed and so often proxy metrics are used. Proxy metrics 

could involve the number of visits (or uses), number of features used, time spent on the 

intervention item, number (and type) of pages visited, and/or response to alerts or reminders 

(Brindal et al., 2012). In parallel, qualitative insights may include perceptions toward how 

useful the information was perceived (Schneider et al., 2016). Engaging with digital health 

technologies could be enhanced by presenting information just in time by capitalising on 

embedded sensors (e.g. global positioning systems or GPS) (Spruijt-Metz et al., 2015), tailoring 

the information source or demonstrating clear boundaries (Rollo et al., 2016). Alternate 

approaches include increasing individuals’ involvement in the design of the technologies 

(Baker et al., 2014; Birnbaum et al., 2015) and encourage effective engagement, which has 

been defined as engagement sufficient to achieve intended outcomes (Yardley et al., 2016). 

Overall, it is crucial to gain insight into technology usage and user preferences in all activities 

to help identify how users interact with device interfaces which may encourage the release of 

more potent graphic user interfaces (Gero & Kannengiesser, 2009). 
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Figure 1.9. Proposed model of engagement, adapted from O’Brien & Toms, 2008 

1.2.7. Bio-behavioural Feedback 

Bio-behavioural feedback is a term coined to represent the simultaneous presentation of 

physiological and behavioural information. Examples of physiological streams include 

interstitial glucose, blood pressure and heart rate whilst examples of movement behavioural 

signals relate to physical activity and sedentary behaviour. It is becoming more feasible to 

measure physical activity in research focused on monitoring human physiology (Wright et al., 

2017). Bio-behavioural feedback aligns well with the approach of ‘teaching events’ outlined 

and researched by Allen and colleagues (Allen et al., 2009). Teaching events represent 

occurrences where a distinct stimulus has an identifiable effect. Having the opportunity to 

present real-time feedback about physiology and behaviour in parallel may help the user 

understand the consequences of movement behaviours on their health. Identifying these 

teaching events can, more specifically, allow individuals to recognise the benefits of the 

stimulus (e.g. the positive impact a short walk can have on post-prandial glucose response) 

which may enhance the likelihood of the positive behaviour being repeated in the future. 

Individuals who accurately identify and interpret these events can positively modify both their 

behavioural and psychosocial status (Jarvis et al., 2010). Therefore, given the advancement in 

digital health technologies, providing individuals with more comprehensive feedback about 

their health and behaviour concurrently is becoming more feasible. Of course, efforts to 

appreciate how this information is delivered and understood are certainly warranted. Strategies 

such as these are likely paramount to begin to understand and integrate this approach of self-
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monitoring into chronic disease management (Chiauzzi et al., 2015) and prevention of chronic 

disease. Given that current efforts to increase population level physical activity levels have 

been largely unsuccessful with insufficient levels recorded (Sport England, 2017), novel 

approaches to contribute to improvements should be encouraged. To date, an important 

limitation of the efforts to encourage people to be more physically active has been the 

assumption that we are willing to change our lifestyles today to reduce risk of developing 

disease 20 years from now (aligning with behavioural discounting). This means that it can be 

difficult for individuals to appreciate the health benefits from being physically active which 

are subsequently observed years, or even decades later. However, with the notion of providing 

complementary feedback streams in parallel, there may be potential to illuminate the 

relationship between behaviour and health consequences which may empower individuals to 

identify these events and adjust future decisions. Overall, investigating whether bio-

behavioural feedback could increase the persuasiveness (or potency) of the feedback by linking 

behaviours to acute health is a promising area for the prevention of chronic disease. 

1.2.8. Summary 

There is a global pandemic with physical inactivity and prolonged time spent sedentary evoking 

ill-effects on cardiometabolic health. Disseminating persuasive health messages is key to 

bolstering healthy lifestyle behaviours with a view to preventing and treating chronic diseases. 

With the ongoing influx of commercially available digital health technologies flooding the 

marketplace, it is crucial that the content that is being presented on smartphone apps (and the 

devices themselves) are critically assessed. Assessing these ‘at-a-glance’ health messages may 

help provide insight into how these forms of information (or feedback) are being received and 

whether they encourage positive lifestyle behaviour change. Neuroimaging techniques (such 

as fMRI) may offer a non-invasive, objective approach to measure how peoples’ brains respond 

to personalised feedback delivered by digital health technologies. In addition, given that digital 

health technologies often experience attrition, it is crucial for researchers and the industry to 

try and understand how to increase sustained device use. One way may be to increase the 

potency (resonance) of the feedback being presented to users, which may be achieved by 

delivering physiological and behavioural feedback in combination. Delivering this enhanced 

form of feedback may help highlight events where behaviour has a noticeable, acute effect on 

health which may translate into behaviour change. However, efforts to identify how users 

engage with this form of feedback are warranted. 
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1.3. Thesis Aims 

Study One 

To review research using functional magnetic resonance imaging to assess how people’s brains 

respond to health messages relating to physical activity, sedentary behaviour, diet, smoking 

and alcohol. 

Study Two 

To identify regions of the brain activated in response to personalised health messages relating 

to physical activity, sedentary behaviour and glucose control and subsequent behaviour change 

and how this relates to patterns of neural activation. 

Study Three 

To assess participant engagement, as a proxy for measuring potency, using novel physical 

activity and glucose technologies. 
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Chapter Two 

 

Study One: 

Can functional magnetic resonance imaging studies help 

with the optimisation of health messaging for lifestyle 

behaviour change? A systematic review 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Whelan, ME; Morgan, PS; Sherar, LB; Orme, MW; Esliger, DW. Can functional magnetic 

resonance imaging studies help with the optimisation of health messaging for lifestyle 

behaviour change? A systematic review. Preventive Medicine. 2017; 99, pp 185-196. 

Appendix A. Original publication has been adapted to fit within this thesis. 

DOI: 10.1016/j.ypmed.2017.02.004. 
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2.1. Introduction 

Chronic diseases such as cardiovascular disease, cancers and type 2 diabetes account for 60% 

of all deaths worldwide (Warburton et al., 2006). The onset of more than two thirds of all new 

cases of chronic disease is widely attributed to four modifiable risk factors; smoking, excessive 

alcohol consumption, poor nutritional intake and physical inactivity (Beaglehole et al., 2011). 

The prevalence for each of these risk factors is staggering with one in five UK adults current 

cigarette smokers (Office for National Statistics, 2016), over 85,000 alcohol-related deaths 

annually (Centers for Disease Control and Prevention, 2013), a rising global body mass index 

(NCD Risk Factor Collaboration, 2016) and only 5% of UK (Chaudhury et al., 2008) and US 

(Troiano et al., 2008) adults achieving national guidelines. This highlights that effective 

interventions to promote healthy lifestyles are needed. One approach that has been widely used 

is public health messaging which has the important advantage of reaching the population. 

Promoting lower sugar intake, regular physical activity (e.g. ‘Change4Life’), smoking 

cessation (e.g. ‘Smoke Free’) and minimising excessive alcohol consumption (e.g. ‘Know your 

limits’) are common aims of public health campaigns. In addition to these campaigns, point-

of-decision prompts (e.g. take the stairs) and on-product packaging (e.g. ‘Smoking Kills’) also 

present persuasive micro-level messages which can also reach a wide audience. In particular, 

pictures of tar-filled lungs and yellow teeth are now commonplace on cigarette packages 

(World Health Organisation, 2009). These prompts are attributed in part to the reductions in 

smoking prevalence (Emery et al., 2012; Wakefield et al., 2010). However, ensuring campaigns 

and the information or images provided are impactful and evidence-based is crucial when 

implementing these behaviour change approaches (Latimer-Cheung et al., 2013). Therefore, to 

help ensure public health campaigns and point-of-decision prompts are given the greatest 

chance to change behaviour, it is important to assess how people respond to them. 

Lifestyle behaviours are influenced not only by conscious choices (e.g. choosing to actively 

commute to work) but also by subconscious responses to the environment and stimuli (e.g. 

emotional responses to a television advertisement or billboard). For a decision to be made by 

the brain, self-related processing must occur which involves the evaluation of environmental 

stimuli with regards to its personal relevance. Given this, neuroimaging can provide valuable 

insight into subconscious responses to stimuli by examining regions of the brain and levels of 

brain activation when individuals view health-related messages. These insights may then be 

used to bolster the persuasiveness of health messages (Nisbett & Wilson, 1977) and as a result, 

increase the likelihood of changing behaviour (Kaye et al., 2016). Previous research has 
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highlighted that regions within the medial prefrontal cortex of the brain are associated with 

self-related processing (Lieberman, 2010) with people subsequently reducing time spent sitting 

when activations within the ventromedial prefrontal cortex were observed (Falk et al., 2015). 

Predicting behaviour change based on neural activity through functional magnetic resonance 

imaging (fMRI) offers an interesting brain-behaviour link (Falk et al., 2011); highlighting the 

importance of optimising the content of health messages as they have a direct effect on how 

people’s brains engage with the health message and whether they ultimately change their 

behaviour. By producing and disseminating health messages that activate brain regions linked 

with successful behaviour change, health campaigns may have greater population-level success 

and be more cost-effective (Falk et al., 2010, 2011). The present review aimed to review studies 

that used fMRI to examine brain activity in response to health messages pertaining to physical 

activity, sedentary behaviour, dietary intake, smoking and alcohol consumption. 

2.2. Aims and objectives 

The aims of the review were to (i) examine stimuli content and modality; (ii) identify activated 

brain regions in response to stimuli presented and (iii) assess the capacity of fMRI results to 

predict behaviour change.  

2.3. Methods 

Search Strategy 

The protocol of this systematic review was developed in accordance with the PRISMA-P 

guidelines (Moher et al., 2015). An electronic search was conducted using Medline/PubMed; 

Psych INFO; SPORT Discus; Web of Science (Core Collection); Cochrane Library; and Open 

Grey. The reference lists of included records were manually screened for identifying additional 

relevant records. The electronic database search was conducted on the 10th January 2017. The 

search strategy was identical across databases, but the affiliation field was adjusted for each 

database (Table 2.1). The search strategy used for all databases was: (“functional magnetic 

resonance imaging” OR “functional MRI” OR fMRI OR “blood oxygen level dependent” OR 

BOLD OR neuroimaging) AND (smoke* OR smoking OR cigarette OR tobacco OR alcohol 

OR drink OR “sedentary lifestyle” OR sedentary behavio* OR sedentar* OR sitting OR 

“physical activity” OR “physical inactivity” OR “activities of daily living” OR fitness OR 

exercise OR food OR snack OR diet OR eat OR eating OR calorie OR caloric OR campaign 

OR message OR messaging OR communication OR “mass media” OR PSA OR “public service 

announcement” OR graphic OR warning OR label OR image OR video). 
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Table 2.1. An outline of the electronic database search affiliations 

Electronic database Search criteria applied 

MEDLINE/PubMed Title and abstract 

Psych INFO Abstract only 

SPORT Discuss Abstract only 

Web of Science Title only 

Cochrane Library Title/abstract/keywords 

Open Grey No restriction applied 

Selection criteria and study selection 

To be included, identified records had to meet the following criteria: (i) published in English 

prior to January 2017; (ii) involved human participants aged ≥10 years; (iii) investigated 

physical activity, sedentary behaviour, dietary intake, smoking and/or alcohol consumption; 

(iv) assessed health messages; and (v) studied subjects using fMRI. We excluded all systematic 

reviews and meta-analyses. Record screening and data extraction were conducted using 

DistillerSR version 2.0 (Evidence Partners, Ottawa, Canada). After inspection for any 

duplicates, the titles and abstracts of all records were reviewed by one reviewer (MW). Where 

a decision to include or exclude was not attained based on the title/abstract, the full text was 

sourced. Full text records were examined by two reviewers (MW and MO). Conflicts were 

discussed and if consensus was not achieved, a third reviewer (DE) was consulted. 

Recorded variables, data extraction and analysis 

Data were extracted on standardised forms developed a priori by the lead author for the 

following variables: authors and year of publication; publication title, number of subjects 

included within analyses; number of subjects excluded from analyses; age; gender distribution; 

subject handedness; lifestyle behaviour investigated; fMRI task design; fMRI principle 

findings; presence of a follow up component and follow up principle findings. Further fMRI 

methodological variables were extracted (Appendix B and C). 
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2.4. Results 

Full details of the search results, including reasons for exclusion are summarised in Figure 2.1. 

Total search results obtained from each database are presented in Table 2.2. Of 13,836 records 

identified by the electronic database searches, 13,420 records (97%) were excluded based on 

title and abstract sifting. Of the remaining 416 records, 400 (96.2%) were excluded during full-

text sifting: 350 (87.5%) because they did not assess health messages, 20 (5%) due to 

inappropriate article type, 15 (3.8%) did not investigate fMRI and a lifestyle behaviour of 

interest in this review, 9 (2.3%) had no visual stimuli, 2 (0.5%) did not provide sufficient detail, 

2 (0.5%) studied subjects aged <10 years and 2 (0.5%) were duplicates. Reference lists of the 

16 included records yielded 2 additional records for inclusion; resulting in 18 identified studies 

for this review. 
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Figure 2.1. A flow diagram of how the studies were identified 

 

 



Study One: Systematic Review 
 

53 

 

Table 2.2. An outline of the search results from the electronic databases 

Electronic database Number of search results 

PubMed 5,859 

SPORT Discus/Psych INFO 5,342 

Web of Science (Core Collaboration) 3,178 

Cochrane Library 2,883 

Open Grey 82 

Total 17,344 

Characteristics of included studies 

Of the resulting 18 studies, studies investigated smoking (k=15), diet (k=2), physical activity 

and sedentary behaviour (k=1) and no studies were included for alcohol consumption (see 

Table 2.3). All studies were published between January 2009 and November 2015 (inclusive). 

The sample sizes of the included studies ranged from having 24 to 91 participants. Included 

studies recruited participants between the ages of 13 and 69 years. Fourteen (77.8%) studies 

recruited both males and females, 1 (5.6%) study recruited males only and 3 (16.7%) studies 

did not provide sufficient detail. 

Of the 18 studies, ten (55.6%) were cross-sectional and eight (44.4%) were longitudinal in 

design. The eight longitudinal studies followed up participants one to four months following 

fMRI and were conducted via telephone, appointment or email to assess level of smoking 

abstinence (k=6), objectively measure sedentary behaviour/physical activity (k=1) or intention 

to quit smoking (k=1). 

Fourteen (77.8%) of studies were conducted in the USA, specifically Michigan (k=6), 

Pennsylvania (k= 6), California (k=1) and South Carolina (k=1). The remaining studies were 

conducted in Germany (k=2) and Canada (k=2). Further characteristics are provided in Table 

2.3.
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Table 2.3. Characteristics of each of the studies included 

Title 

N included 

within 

analyses 

N excluded 

from 

analyses 

Mean age 

(SD) 
Gender 

Handed-

ness 

Author, 

year 

Physical Activity or Sedentary Behaviour 

Self-affirmation alters the brain’s response to health 

messages and subsequent behaviour change 
46 21 

Affirmed 

33.7 (13.5); 

control 

30.1 (13.1) 

27 F 19 M 45 R 
Falk et al., 

2015  

Diet 

Nutrition labels influence value computation of food 

products in the ventromedial prefrontal cortex 
25 10 

23.3 (4.4) 

 
14 F 11 M 

Detail 

not 

provided 

Enax et al., 

2015  

Relation of obesity to neural activation in response to food 

commercials 
30 

Detail not 

provided 
15.2 (1.1) 17 F 13 M 

Detail 

not 

provided 

Gearhardt et 

al., 2014  

Smoking 

Neural responses to elements of a web-based smoking 

cessation program 
41 

Detail not 

provided 
38.3 (11.5) 10 F 31 M 41 R 

Chua et al., 

2009  

Neural correlates of message tailoring and self-relatedness 

in smoking cessation programming 
24 

Detail not 

provided 
40 (11.2) 12 F 12 M 24 R 

Chua et al., 

2009  

Self-related neural response to tailored smoking-cessation 

messages predicts quitting  
91 

Detail not 

provided 
37.5 (11.5) 44 F 47 M 91 R 

Chua et al., 

2011  
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Title 
N included 

within 

analyses 

N excluded 

from 

analyses 

Mean age 

(SD) 
Gender 

Handed-

ness 

Author, 

year 

Brain activity in self- and value-related regions in response 

to online antismoking messages predicts behaviour change 
46 4 32.1 (12.6) 19 F 27 M 46 R 

Cooper et 

al., 2015  

Where there’s smoke, there’s fire: the brain reactivity of 

chronic smokers when exposed to the negative value of 

smoking 

30 
Detail not 

provided 
31.9 (9.4) 15 F 15 M 29 R 1 L 

Dinh-

Williams et 

al., 2014  

Executive-affective connectivity in smokers viewing anti-

smoking images: an fMRI study 
30 

Detail not 

provided 
31.8 (9.2) 15 F 15 M 

28 R 1 L 

1 A 

Dinh-

Williams et 

al., 2014  

FDA cigarette warning labels lower craving and elicit 

frontoinsular activation in adolescent smokers 
79  1 

Detail not 

provided 

Detail not 

provided 
79 R 

Do & 

Galvan, 

2015  

Neural activity during health messaging predicts reductions 

in smoking above and beyond self-report 
28 3 45 (10.1) 15 F 13 M 28 R 

Falk et al., 

2011  

Functional brain imaging predicts public health campaign 

success 
44 6 

Detail not 

provided 

Detail not 

provided 

Detail 

not 

provided 

Falk et al., 

2016  

Amygdala response to smoking-cessation messages 

mediates the effects of serotonin transporter gene variation 

on quitting. 

82 
Detail not 

provided 

Quitters 

36.4 (11.4); 

non-quitters 

38.4 (12.3) 

38 F 44 M 

Detail 

not 

provided 

Jasinska et 

al., 2012  
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Abbreviations: A, ambidextrous; AS, argument strength; F, female; L, left; M, male; N, number; R, right; SD, standard deviation

Title 

N included 

within 

analyses 

N excluded 

from 

analyses 

Mean age 

(SD) 
Gender 

Handed-

ness 

Author, 

year 

Reduced prefrontal and temporal processing and recall of 

high ‘sensation value’ ads 
15 3 

Detail not 

provided 
3 F 12 M 

Detail 

not 

provided 

Langleben 

et al., 2009  

Neural biomarkers for assessing different types of imagery 

in pictorial health warning labels for cigarette packaging: a 

cross-sectional study 

50 
Detail not 

provided 
27.6 24 F 26 M 

Detail 

not 

provided 

Newman-

Norlund et 

al., 2014  

Severity of dependence modulates smokers’ neuronal cue 

reactivity and cigarette craving elicited by tobacco 

advertisement 

43 5 

Non-

abstinent 

31.0 (7); 

never-

smokers 

29.0 (5) 

43 M 43 R 

Vollstadt-

Klein et al., 

2011  

Content matters: neuroimaging investigation of brain and 

behavioural impact of televised anti-tobacco public service 

announcements 

63 8 

High AS 

29.0 (1.6); 

low AS 

30.0 (1.9) 

High AS 

18F 15M; 

Low AS 

14 F 16 M 

Detail 

not 

provided 

Wang et al., 

2013  

Emotional reaction facilitates the brain and behavioural 

impact of graphic cigarette warning labels in smokers 
19 5 

Detail not 

provided 

Detail not 

provided 
19 R 

Wang et al., 

2015  
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Main findings 

Stimuli content and modality  

Identifying the content and modality of stimuli helps provide valuable insight as to what forms 

of health messages are being assessed using fMRI. Full details of the stimuli presented in the 

eighteen studies are presented in Table 2.4. Of the eighteen identified studies, nine studies used 

static images (k=8 smoking, k=1 diet), four studies used videos (k=3 smoking, k=1 diet) and 

five studies used text-based messages (k=4 smoking, k=1 physical activity/sedentary 

behaviour). Static messages included the presentation of images such as banner adverts 

(Cooper et al., 2015) and warning labels found on cigarette packaging (Do et al., 2015). Videos 

included food commercials (Gearhardt et al., 2014) and public service announcements 

highlighting the importance of smoking cessation (Langleben et al., 2009). Finally, text-based 

messages included the presentation of motivational messages that encouraged smoking 

cessation (Chua et al., 2009) or presented tailored/untailored/neutral statements (Chua et al., 

2011). 
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Table 2.4. An outline of the fMRI protocol and main findings of the included studies 

Author, 

year 

Modality 

of fMRI 

stimuli 

Content of fMRI task 
Principle findings of fMRI 

task 
Presence of a follow up 

Principle findings of the follow 

up 

Physical activity or sedentary behaviour 

Falk et al., 

2015  
Visual 

Promote activity and emphasise 

risks due to being sedentary 

(n=10); 

reasons not to be sedentary 

(n=10) or more active (n=10); 

tips for how to become more 

active (n=10) or less sedentary 

(n=10). 

Affirmed participants showed 

greater activity within vmPFC 

during exposure to targeted 

health messages. 

Accelerometry 1 month. 

2 SMS messages per 

day: 1 value affirmation 

(either affirmation or 

control allocation) and 1 

health message. 

Activity within the vmPFC 

predicted sedentary behaviour 

in the subsequent month. 

Diet 

Enax et al., 

2015  
Visual 

Healthy TL (n=25); 

unhealthy TL (n=25); 

healthy GDA (n=25); 

unhealthy GDA (n=25) 

Unhealthy TL showed 

significantly increased 

activation in the left inf. front. 

gyrus/dlPFC. 

No follow up N/A 

Gearhardt et 

al., 2014  

Visual 

(presence 

of audio 

unknown) 

Food commercials (n=20); 

non-food commercials (n=20) 

Food commercials exhibited 

greater activation in bilateral 

post. cerebellar lobe (declive), 

bil. middle occipital gyrus, 

right precentral gyrus, right 

inf. temporal gyrus, bil. inf. 

parietal lobe, left postcentral 

gyrus, right precuneus and 

right sup. parietal lobe. 

No follow up N/A 
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Author, 

year 

Modality 

of fMRI 

stimuli 

Content of fMRI task 
Principle findings of fMRI 

task 
Presence of a follow up 

Principle findings of the follow 

up 

Smoking 

Chua et al., 

2009 

Visual 

(presence 

of audio 

unknown) 

Personalisation/feedback; 

motivational; 

instructional; 

control messages (targeted and 

neutral) 

Personalisation/feedback 

messages activated the mPFC 

and precuneus/post. cingulate. 

Web-based tailored 

smoking-cessation 

program and a 10-week 

course of nicotine 

patches. 

 

Follow up at 4 months  

Detail not provided 

Chua et al., 

2009 

Audio-

visual 

High tailored messages; low 

tailored messages; generic 

statements 

High-tailored messages 

produced greater activity in 

rmPFC and precuneus/post. 

cingulate regions. 

No follow up N/A 

Chua et al., 

2011  

Audio-

visual 

 

Tailored messages (n=50); 

untailored messages (n=50); 

neutral messages (n=50).  

The dmPFC, precuneus, and 

angular gyrus were 

preferentially engaged by 

tailored messages. 

Web-based tailored 

smoking-cessation 

program. 

 

Follow up at 4 months. 

Greater activation in the 

dmPFC during tailored 

messages significantly 

predicted the odds of quitting 

smoking. Greater activation in 

the precuneus was marginally 

correlated. 

Cooper et 

al., 2015  
Visual Banner ads (n=23) Detail not provided Follow up at 40 days. 

Behaviour change was 

significantly related to activity 

in self- and value-related sub-

regions of the mPFC 

(replicated previous findings). 
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Author, 

year 

Modality 

of fMRI 

stimuli 

Content of fMRI task 
Principle findings of fMRI 

task 
Presence of a follow up 

Principle findings of the follow 

up 

Dinh-

Williams et 

al., 2014  

Visual 

Aversive smoking-related 

(n=25); 

aversive non-smoking related 

(n=25); 

appetitive smoking-related 

(n=25); 

neutral (n=25). 

 

Aversive smoking-related 

elicited activations in the 

visual association cortex and 

ext. visual system, the 

temporal and parietal lobes, 

limbic system, lat. 

orbitofrontal cortex, inf. front. 

gyrus and mPFC. 

No follow up N/A 

Dinh-

Williams et 

al., 2014  

Visual 

Aversive smoking-related 

(n=25); 

aversive IAPS control (n=25); 

neutral IAPS control (n=25) 

Aversive smoking-related 

elicited significantly greater 

activations in regions of the 

occipital, temporal and 

parietal lobes, amygdala, lat. 

orbitofrontal cortex, inf. front. 

gyrus and mPFC. 

No follow up N/A 

Do et al., 

2015  
Visual 

FDA warning labels (n=9); 

non-graphic labels (control) 

(n=9) 

Smokers’ demonstrated 

blunted recruitment of insula 

and dlPFC relative to non-

smokers.  

No follow up N/A 
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Author, 

year 

Modality 

of fMRI 

stimuli 

Content of fMRI task 
Principle findings of fMRI 

task 
Presence of a follow up 

Principle findings of the follow 

up 

Falk et al., 

2011  

Visual 

(presence 

of audio 

unknown) 

TV commercials relevant to 

smokers who were trying to 

quit (n=16). 

Detail not provided Follow up at 1 month. 

Neural activity in the mPFC 

significantly predicted 

behaviour change. The med. 

precuneus/post. cingulate and a 

region involved in motor 

planning supplementary motor 

area were also highly 

associated. 

Falk et al., 

2016  
Visual 

Anti-smoking images with a 

tag-line 

Negative images (n=10) 

Neutral images (n=10) 

Personal/control images (n=10) 

Detail not provided 

Population-level email 

campaign (n=400,000). 

 

Presented either anti-

smoking or neutral 

image with a tagline to 

stop smoking. 

 

Measured intention to 

quit via option to obtain 

free nicotine patches 

Activity within mPFC sub-

region predicted population-

level campaign responses 

Self-related neural processing 

predicted outcomes in response 

to graphic warning labels, but 

not in response to 

compositionally similar neutral 

images. 

Jasinska et 

al., 2012  

Audio-

visual 

Tailored messages (n=50); 

untailored messages (n=50); 

neutral messages (n=50). 

Detail not provided 

Web-based tailored 

smoking-cessation 

program and a 10-week 

course of nicotine 

patches. 

Follow up at 4 months. 

The mean amygdala response 

was a significant predictor of 

subsequent post-intervention 

quitting outcome. 
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Author, 

year 

Modality 

of fMRI 

stimuli 

Content of fMRI task 
Principle findings of fMRI 

task 
Presence of a follow up 

Principle findings of the follow 

up 

Langleben 

et al., 2009  

Audio-

visual 

Anti-smoking PSAs (n=8); 

neutral videos (n=8) 

PSAs were associated with 

higher activity in the inf. and 

mPFC, the occipital cortex 

(fusiform and lingual gyri) 

and the temporal cortex 

(hippocampus and 

parahippocampus). 

No follow up N/A 

Newman-

Norlund et 

al., 2014  

Visual 

 

Graphic health warning label 

(n=19); 

suffering health warning label 

(n=19); 

symbolic health warning label 

(n=19) 

Stimuli elicited a significant 

neural response in the 

amygdala, insula and visual 

association cortex, front. 

gyrus, temporal gyrus, parietal 

lobe (inf.), suppl. motor area, 

parahippocampal gyrus and 

thalamus. 

No follow up N/A 

Vollstadt-

Klein et al., 

2011 

Visual 
Smoking-related (n=45); 

control (n=45) 

Moderately dependent 

smokers’ brain activity 

elicited by tobacco 

advertisement was higher in 

the amygdala, hippocampus, 

putamen and thalamus. 

No follow up N/A 
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Abbreviations: AS, argument strength; bil., bilateral; dmPFC dorsomedial prefrontal cortex; FDA, Food and Drug Administration; ext., extended; front., 

frontal; GDA, guideline daily amount; IAPS, International Affective Picture System inf., inferior; lat., lateral; med., medial; mPFC, medial prefrontal cortex; 

mid., middle; MSV, message sensation value; post., posterior; PSAs, public service announcements; rmPFC, rostral medial prefrontal cortex; sup., superior; 

suppl., supplementary; TL, traffic light; vmPFC ventromedial prefrontal cortex

Author, 

year 

Modality 

of fMRI 

stimuli 

Content of fMRI task 
Principle findings of fMRI 

task 
Presence of a follow up 

Principle findings of the follow 

up 

Wang et al., 

2013  

Audio-

visual 

Anti-smoking PSAs  

High AS/high MSV (n=8); 

high AS/low MSV (n=8); 

low AS/high MSV (n=8); 

low AS/low MSV (n=8) 

The interaction of AS and 

MSV was observed in the bil. 

inf. parietal lobule, left inf. 

front. gyrus, left fusiform 

gyrus, the right dmPFC, and 

the precuneus. 

Follow up at 1 month. 

Activation in the dmPFC 

predicted the urine cotinine 

levels. 

Wang et al., 

2015  
Visual 

High FDA graphic warning 

label (n=12); 

low FDA graphic warning label 

(n=12); 

control (n=12) 

Graphic warning labels 

evoked greater activation in 

the bil. occipitoparietal cortex, 

including visual and fusiform 

areas, cuneus and precuneus, 

bil. temporal and inf. front. 

cortices, amygdala, 

hippocampus and 

parahippocampus.  

No follow up N/A 
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Brain activations 

The most common brain regions activated in the studies are presented in Table 2.5. 

Static health messages 

Significantly more activation in the temporal and parietal lobes, lateral orbitofrontal cortex, 

inferior frontal gyrus and medial prefrontal cortex were consistently observed across two 

studies assessing aversive smoking versus control images (Dinh-Williams et al., 2014; Dinh-

Williams et al., 2014). Another study observed activations in other regions (e.g. amygdala and 

hippocampus) in response to tobacco advertisement images (Vollstadt-Klein et al., 2011). Of 

the three studies investigating graphic warning labels, two studies identified significant neural 

responses in the amygdala (Newman-Norlund et al., 2014; Wang et al., 2015). The two 

remaining smoking-related studies (Cooper et al., 2015; Falk et al., 2016) focused on the 

predictive capacity of neural activation therefore the results are not highlighted in this section. 

Only one study (Enax et al., 2015) examined neural activation toward static health messages 

restricting the opportunity for comparison. No studies were identified for physical activity or 

sedentary behaviour. 

Video health messages 

Of the three studies investigating smoking-related health messages presented by video, one 

study (Falk et al., 2016) focused only on the predictive capacity of brain activation on 

subsequent behaviour. The other two studies examined neural activation in response to anti-

smoking public service announcements but compared these stimuli with neutral videos 

(Langleben et al., 2009) or varying videos with varying levels of ‘message sensation value’ 

and ‘argument strength’ (Wang et al., 2013). This was reflected in the findings which 

highlighted no common brain regions between them. In addition, only one study (Gearhardt et 

al., 2014) investigated diet health messages delivered by video. No studies were identified for 

physical activity or sedentary behaviour. 

Text-based health messages 

Three of the four studies identified regions within the prefrontal cortex and precuneus as 

preferentially engaged in response to tailored/personalised text-based messages. These regions 

included the rostral medial prefrontal cortex (Chua et al., 2009), medial prefrontal cortex (Chua 

et al., 2009) and the dorso-medial prefrontal cortex (Chua et al., 2011). The fourth study  

instead focused on the predictive capacity of brain activation on subsequent behaviour 

(Jasinska et al., 2012). In contrast, only one study (Falk et al., 2015) investigated this form of 
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health message for physical activity/sedentary behaviour. No studies were identified for text-

based health messages relating to diet. 
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Table 2.5. An outline of how often activated brain regions were reported within the identified studies (criteria: ≥2 studies reported the brain region) 
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Precuneus              
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Dorsolateral prefrontal cortex              

Dorsomedial prefrontal cortex              

Hippocampus              

Inferior occipital              
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Abbreviations: PA, physical activity; SB, sedentary behaviour.
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Predictive capacity of fMRI for behaviour change 

In total, eight studies assessed the predictive capacity of fMRI (k=7 smoking, k=1 physical 

activity/sedentary behaviour). Of the seven studies focused on smoking, six studies identified 

that the following activated brain regions were predictive of smoking abstinence: the 

dorsomedial prefrontal cortex (k=2), medial prefrontal cortex (k=2), amygdala (k=1) and the 

supplementary motor area (k=1). The physical activity/sedentary behaviour study (Falk et al., 

2015) identified the ventromedial prefrontal cortex as predictive of subsequent time spent 

sedentary. 

2.5. Discussion 

Summary 

The present review identified 18 studies; 15 relating to health messages about smoking, two 

relating to health messages about diet and one on health messages about physical 

activity/sedentary behaviour. Areas of the prefrontal cortex and amygdala were most 

commonly activated with increased activation of the ventromedial prefrontal cortex predicting 

subsequent behaviour change (e.g. smoking cessation). Most of the evidence on the utility of 

fMRI to facilitate behaviour change currently relates to smoking and there was a lack of RCTs; 

limiting findings to correlations rather than causal interpretation. More fMRI studies on health 

messages relating to physical activity, sedentary behaviour, dietary intake and alcohol 

consumption are needed that incorporate an RCT design. 

Stimuli content and modality 

The present review highlighted that a range of anti-smoking materials were investigating both 

pictorial and video stimuli such as US Food and Drug Administration (FDA) warning labels 

(Do & Galvan, 2015; Wang et al., 2015) and public services announcements (PSAs) 

(Langleben et al., 2009), respectively. Studies that compared neural responses to tailored and 

untailored messages observed activations in the dorsomedial prefrontal cortex and 

precuneus/posterior cingulate (e.g. Chua et al., 2009, 2011). Other studies demonstrated that 

aversive smoking stimuli, compared with neutral images, elicited greater activations in the 

amygdala (Dinh-Williams et al., 2014); often associated with emotion regulation (LeDoux, 

2003). With a range of anti-smoking materials currently advertised, it must be acknowledged 

that people respond and engage differently with them. For instance, Dos and Galvan identified 

that current smokers had a blunted response in the dorsolateral prefrontal cortex and insula 
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relative to non-smokers to cigarette warning labels (Do et al., 2015). This suggests that the 

health messages were not causing the same neural response in the smokers as in the non-

smokers and so perhaps multiple versions of health messages should be produced to target all 

people. For example, specific messaging materials could be developed to highlight the benefits 

of not starting a behaviour (proactive approach) and other materials to highlight the benefits of 

stopping a behaviour (reactive approach). Presenting pictures of people living with obesity, 

having limited mobility or other health issues such as diabetic foot on chairs and inside 

escalators (including sites that are likely to attract active individuals e.g. gyms and parks) could 

be a comparable approach to promote physical activity, within the community, across the entire 

population (i.e. active and inactive). 

As demonstrated in the present review, point-of-decision prompts such as pictures on cigarette 

packaging or traffic light coding systems found on food items are widely used in anti-tobacco 

and food industry communications, respectively, to deter purchasing. Other methods, such as 

billboard advertisements and videos (e.g. PSAs) enable similar but wider messages to reach 

the wider public and are often accompanied by graphic health messages; suggested to elicit 

stronger emotional responses than text-based messages alone (Kees et al., 2006). As previously 

mentioned, for physical activity and sedentary behaviour, point-of-decision prompts are placed 

at specific locations where people are forced to make a behavioural decision as to whether be 

active or sedentary, respectively. For instance, prompts that encourage people to take the stairs 

rather than the escalator have shown short-term promise (Webb & Eves, 2005). However, it is 

currently unknown whether these highlighted health messages activate brain regions associated 

with ‘the self’; previously suggested to motivate people to adjust behaviour (Wheeler et al., 

2007). Efforts to change behaviour generally result in short-term successes and a subsequent 

relapse or complete failure (Polivy & Herman, 2002). These failures are often aligned to the 

difficulty experienced when changing a habit and so rely on the use of cues and triggers to 

support the habit formation process (Neal et al., 2012). Therefore, more research using fMRI 

needs to be conducted to focus on alternative point-of-decision prompts that relate to promoting 

physical activity, minimising sedentary behaviour and improving dietary intake. Overall, this 

will likely inform the distribution of effective health messages across the different lifestyle 

behaviours in various locations to encourage positive behaviours.  

Activated brain regions 

The present review identified that the ventromedial prefrontal cortex, medial prefrontal cortex, 

and dorsomedial prefrontal cortex were activated in response to anti-smoking health messages 
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that were aversive or tailored. No studies explicitly stated whether the tailored messages were 

aversive or not. The medial prefrontal cortex is a well-established area of the brain associated 

with self-related processing (Lieberman, 2010); suggesting that individuals are self-reflecting 

whilst shown stimuli and are therefore potentially more likely to be engaging with the stimulus 

compared with an individual who does not have activation in that region. However, as with all 

fMRI research, caution is advised when interpreting findings; mainly attributed to the notion 

of reverse inference which suggests that brain activation infers the engagement of a specific 

cognitive process (Poldrack, 2006). Tailored health messages activated regions of the 

prefrontal cortex, precuneus and posterior cingulate regions which are associated with 

retrieving episodic autobiographical memories (Levine et al., 2004) as well as reflecting on 

one’s own traits (Johnson et al., 2002) and personal intentions (Den Ouden et al., 2005). The 

present review identified nine additional studies to those highlighted in a recent neuroimaging 

review (Kaye et al., 2016) which focused on wider health communication; including studies 

focusing on narcotic substance use, safe sex and sun safety. These studies investigated the 

perceived value of health messages and how greater neural activity was observed in certain 

populations (e.g. high risk cannabis users) (Kaye et al., 2016). 

Presenting caloric information activated the inferior frontal gyrus/dorsolateral prefrontal cortex 

region (Enax et al., 2015); a region implicated in self-control (Hare et al., 2011). The 

importance of this brain region is implicated in various domains of self-control, including 

compliance toward social norms (Maldjian et al., 2003) and controlling impulses in inter-

temporal choice (Figner et al., 2010). The ventromedial prefrontal cortex is implicated in 

simple-choice value computation (Enax et al., 2015). These findings suggest that health 

messages resonate with the individual and encourage them to self-reflect but it does not confirm 

that those individuals subsequently change their behaviour following exposure to the health 

message. Other studies, not eligible to be included in the present review, have begun to examine 

neural responses to pictures of individuals being physically active or sedentary (Jackson et al., 

2014; Kullmann et al., 2014). For instance, if an individual viewed a picture of someone else 

jogging, what brain regions are activated and does exposure result in desired changes to 

physical activity? Recent advances, such as the release of a new parcellation (mapping) tool 

identifying 97 further sub-regions within the cerebral cortex (Glasser et al., 2015), will help to 

further elucidate knowledge around the specific functions aligned with regions of interest 

which will help confirm findings obtained via studies using fMRI. 
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Predictive capacity of fMRI for behaviour change 

The present review identified that the brain regions that were identified as predictive (by 

association) of smoking cessation were the dorsomedial prefrontal cortex, amygdala, the 

supplementary motor area and the medial prefrontal cortex; associated with self-related 

processing (Lieberman, 2010). The other lifestyle behaviour study that conducted a follow up 

focused on changes in physical activity and sedentary behaviour. Interestingly, Falk and 

colleagues identified a different brain region as predictive of subsequent reductions in time 

spent sitting with activations observed in the ventromedial prefrontal cortex (Falk et al., 2015). 

Unfortunately, findings from the present review confirm that all studies that investigated the 

predictive capacity of fMRI for behaviour change conducted prospective, longitudinal studies 

and so report correlational data which cannot be causal. In addition, there appeared to be 

inconsistent findings such that there was not a single brain region that was activated across all 

of the health message stimuli due to the variety of health messages presented. 

Falk and colleagues also assessed the role of self-affirmation; in particular, how exposing 

individuals to their core values (e.g. friends and family, money and religion) prior to the task 

demonstrated that the stimuli was more self-relevant and valuable (Falk et al., 2011). The link 

between neural activity and behaviour change via self-processing is supported (Falk et al., 

2010) with findings suggesting that individuals more engrossed in anti-smoking advertisements 

report an increased benefit (i.e. are less likely to smoke or more likely to stop smoking) (Dunlop 

et al., 2008) and that self-relevant messages are likely more effective than generic messages 

(Dietz et al., 2008; Strecher et al., 2008). Findings from Kaye and colleagues confirmed that 

activation in the medial prefrontal cortex accounted for additional variance beyond that of self-

report measures (Kaye et al., 2016). Unfortunately, as highlighted by the present review, there 

is currently limited or a lack of evidence for changes in physical activity, sedentary behaviour, 

diet and alcohol following health message exposure. Future studies should consider 

implementing an RCT within their longitudinal studies to promote research assessing 

behaviour change across the different lifestyle behaviours. 

Future considerations 

With an increase in the application of digital technologies within healthcare systems for use in 

patients with chronic conditions, it is an important time to ensure that the health messages 

provided by these devices are effective (Driver, 2016). Presenting health messages via digital 

platforms such as wearable devices to promote standing and walking or via smartphone apps 
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to help monitor food, cigarette and alcohol consumption, given their omnipresence, could be 

very effective and not too dissimilar to the handheld health message platform of cigarettes or 

food packaging. That said, it must also be acknowledged that equivalent images (e.g. of yellow 

teeth for smoking) to reflect the physiological consequence of physical inactivity and sedentary 

behaviour are not as direct. These images could include foot amputations and atherosclerosis, 

as a couple of examples, but sadly these images could also be aligned to poor dietary intake; 

restricting our ability to capture peoples responses to their movement behaviours. Overall, 

future fMRI studies should aim to evaluate brain responses to different forms of health 

messages across the different lifestyle behaviours and incorporate longitudinal but controlled 

study designs to optimise the interpretation and consistency of study findings. 

Literature Methodology 

Of the 13 (72.2%) studies that stated their recruitment strategy, the majority presented 

advertisements in the community or via the internet; thus, recruiting self-selected and non-

randomised individuals. In addition, only two studies recruited adolescents despite the onset of 

an unhealthy lifestyle often beginning in the early-to-mid adolescent years. Most studies were 

conducted in either Michigan or Pennsylvania in the USA (k= 16); potentially attributable to 

the general limitations of fMRI such as restricted access and cost. In addition, nine studies 

either failed to report participant handedness or recruited a mixture of left, right and 

ambidextrous handed participants. The importance of reporting handedness is due to its clear 

link to cerebral dominance for activities such as language processing (Goodglass & Quadfasel, 

1954). Future research would benefit from standardising, and precisely measuring, the time 

between tobacco, food and alcohol consumption and exercise before the onset of the fMRI task. 

Limitations 

The present review acknowledges the following limitations. Firstly, there were only 18 studies 

identified by the electronic database search and reference lists and there was a lack of 

causational studies; therefore, it is difficult to draw any conclusions. Secondly, only eight 

studies examined behaviour change with seven (87.5%) of these conducted in relation to 

smoking cessation. In addition, there was a lack of studies identified for physical activity, 

sedentary behaviour, diet and alcohol. Studies published outside of the databases searched were 

not considered for inclusion. Future research is required to examine the utility of fMRI to 

examine health messaging relating to these lifestyle behaviours. 
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2.6. Conclusions 

This review highlights a skewed focus on the impact of health messages on brain activation 

relating to smoking behaviours and reveals gaps that need addressing in the physical activity 

messaging literature. Collating findings from multiple lifestyle behaviours could prove useful 

to begin producing more persuasive messages for population behaviour change; however, there 

is currently a deficiency of studies across the lifestyle behaviours to investigate this at this 

stage. Regardless of this, the review highlights that the prefrontal cortex and amygdala were 

most commonly activated in response to health messages and that the ventromedial prefrontal 

cortex was predictive (by association) of subsequent behaviour change. Future studies should 

focus on the assessment of point-of-decision prompts, PSAs and tailored messages (e.g. 

feedback notifications) across all lifestyle behaviours. Considering these findings, we are going 

to explore the use of fMRI to monitor brain activation in response to stimuli relating to 

personalised feedback often presented on digital health technologies. 



Study Two: Brain Activation Pilot 
 

74 

 

Chapter Three 

 

Study Two: 

Brain activation in response to personalised behavioural 

and physiological feedback from self-monitoring 

technology: Pilot Study 
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3.1. Introduction 

Physical inactivity, insufficient levels of physical activity, is attributable to 9% of premature 

mortality and 7% of type 2 diabetes cases (Lee et al., 2012). In addition, sedentary behaviour, 

defined as ‘any waking behaviour characterised by an energy expenditure ≤1.5 metabolic 

equivalents of task (METs) while in a sitting or reclining posture’ (Tremblay et al., 2017), has 

been strongly associated with poor cardiometabolic health (Henson et al., 2013). With adults 

spending an estimated 7 hours sedentary each day (Matthews et al., 2008) and the prevalence 

of type 2 diabetes expected to rise to 592 million by 2035 (Guariguata et al., 2014), it is critical 

to address the prevalence of physical inactivity and time spent sedentary for the prevention of 

type 2 diabetes and other important chronic, noncommunicable diseases. 

Over the last decade, wearable activity monitors have grown in popularity in consumer markets 

to help users track their movement behaviours (e.g. active minutes, step counts, distance 

travelled, time spent sitting) (Loveday et al., 2015; Sanders et al., 2016). Over the same period, 

wearable physiological sensing devices (e.g. heart rate monitors, continuous glucose monitors) 

have been evolving and are now venturing beyond the clinical domain into consumer-focused 

markets (Bonander & Gates, 2010). The allure of these wearable technologies is that they 

provide users with real-time, personalised health feedback that may encourage positive lifestyle 

behaviours (e.g. moving more, sitting less, eating more healthily) (Piwek et al., 2016). 

However, with 32% of individuals failing to continue using these devices beyond 6 months 

following purchase (Ledger et al., 2014), there is a need to optimise the feedback provided to 

the users to maintain adoption and sustain engagement with the information presented. Patel 

and colleagues suggest that providing explanatory feedback in an understandable manner is 

important to encourage sustained use (Patel et al., 2015). Given that sustained behaviour 

change is often poorly reported and not often achieved (Fjeldsoe et al., 2011), assessing how 

people respond to this feedback at a cortical level (by monitoring changes in brain activation) 

could reveal additional insight above traditional qualitative tools such as focus groups or 

interviews. 

Neuroimaging techniques are useful to recognise and identify the intricate relationships 

between cognitions, brain functions and behaviour (Lee & Harris, 2015). There has been 

growing interest in the community toward communication neuroscience, research that provides 

a deep understanding of attitude and behaviour change (Falk et al., 2010). Moreover, 

communication neuroscience research suggests that people’s intentions and behaviour are 

largely affected by the content and format of an advertisement (Fishbein & Cappella, 2006). 
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One key neuroimaging tool is functional magnetic resonance imaging (fMRI), which monitors 

neural responses as information is presented (Lieberman, 2010) (e.g. health messages and 

advertisements (Chua et al., 2011; Falk et al., 2010, 2011). Receiving personalised (or self-

related) feedback is often associated with activation within the rostral medial prefrontal cortex 

(mPFC), associated with decision making and mimicry behaviour (Euston et al., 2012; Wang 

& Hamilton, 2014), and the precuneus/posterior cingulate region, often associated with 

personal reflection (Johnson et al., 2002; Kelley et al., 2002; Phan et al., 2004). In particular, 

self-relevant messages elucidate more activation within the mPFC than untailored messages 

(Chua et al., 2009) and can predict behaviour change (Fishbein et al., 2000). Meta-analyses of 

fMRI studies also suggest that the mPFC and precuneus/posterior cingulate regions mediate 

self-related processing (Northoff et al., 2006). 

Functional MRI can improve our understanding of how cognitive processes vary between those 

who do change their behaviour following exposure to a stimulus and those who do not  (Cascio 

et al., 2013). The mPFC is positioned whereby activation in this region can predict individual 

behaviour change (Cooper et al., 2015; Falk et al., 2010, 2011). To date, research has largely 

focused on identifying neural responses to antismoking material (Cooper et al., 2015; Dinh-

Williams et al., 2014; Falk et al., 2011) rather than diet, alcohol consumption, physical 

inactivity, or sedentary behaviour (Whelan et al., 2017; Chapter Two). Investigating how 

people respond to personalised feedback relating to these lifestyle behaviours could offer 

crucial insight into how best to disseminate feedback to maximise effect; potentially helping to 

design materials that optimise population health (Vecchiato et al., 2011). For instance, 

observed reductions in smoking rates have been attributed to a number of influences, in part, 

by the dissemination of health message labels on cigarette packaging (Wakefield et al., 2008). 

Given that literature to date has largely assessed how people respond to antismoking materials, 

fMRI may help identify how people’s brains respond to information commonly presented on 

the screens of wearable devices and associated smartphone apps. We hypothesize that the 

mPFC and precuneus/posterior cingulate regions will be activated given the presentation of 

personalised (self-relevant) feedback (Johnson et al., 2002; Kelley et al., 2002; Northoff et al., 

2006; Northoff & Bermpohl, 2004; Phan et al., 2004). 

3.2. Aims and objectives 

The aims of this study were to (i) identify regions of the brain activated in response to 

personalised behavioural and physiological feedback messages and (ii) examine behaviour 

change and associations with levels of brain activation. 
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3.3. Methods 

Participants 

A total of 33 participants were recruited from a university in the UK via advertisement posters 

and email. Participants were aged 30 to 60 years, had no mobility-related musculoskeletal 

problems, had no confirmed diagnosis of diabetes, were willing and able to comply with the 

study protocol, met standard fMRI safety criteria (no metal in body, not claustrophobic, not 

pregnant), and were right-handed (self-reported). All participants completed a physical activity 

readiness questionnaire (Warburton et al., 2011) prior to participation with positive responses 

assessed by a clinician. 

Experimental procedures were approved by the Loughborough University Ethics Advisory 

Committee (R15-P142). 

Procedure 

Data were collected between June and September 2016. The study design is presented in Figure 

3.1. During the first appointment, participants provided informed consent; answered questions 

relating to age, sex, ethnicity, and education; and completed a selection of health measures 

(body composition, blood pressure, and blood sample). Following the identification of a gap 

within the fMRI literature (Chapter Two), physical activity and sedentary behaviour health 

messages were partly employed alongside glucose feedback, as the stimulus for Study Two. 

As a result, participants were fitted with three devices to monitor their physical activity, 

sedentary behaviour, and glucose levels for 14 days. In addition, participants were provided an 

education booklet to take away with them prior to baseline to read approximately one week 

before their fMRI appointment (Appendix E). This booklet included definitions and UK 

national recommendations (e.g. 150 minutes of moderate-to-vigorous physical activity per 

week and target glucose range) to help minimise any variations in knowledge. The fMRI took 

place at the second appointment (on average 32.4±10.5 days following the first appointment); 

following this, participants continued to wear two devices to monitor physical activity and 

sedentary behaviour for 8 days. Participants were not informed about the true reason why they 

were wearing the devices again (i.e. to monitor behaviour change), only to monitor their 

behaviour once final time. At the end of the follow-up period, participants returned the devices 

and received a comprehensive personalised health report. 
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Figure 3.1. An illustration of the study design 

Measures 

Physical health 

Weight and body fat percentage were measured using the MC 780 MA scale (Tanita) following 

the removal of shoes and socks. Body mass index was calculated as weight (kg) divided by 

height (m) squared (weight/height2). Glucose and haemoglobin A1c (HbA1c) were analysed 

using a Cholestech LDX system and Afinion AS100 Analyzer (both Alere Inc), respectively. 

Participants arrived fasted for ≥8 hours prior to the collection of a capillary blood sample. 

Accelerometry 

A wGT3X-BT accelerometer (ActiGraph, Pensacola, FL) (Figure 3.2) was worn on a 

waistband (on the right anterior axillary line) to objectively measure physical activity. 

Participants were asked to wear the validated device (Aadland & Ylvisåker, 2015) during 

waking hours and to remove for any water-based activities (e.g. showers or bathing). The 
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accelerometry data were collected at 100 Hz resolution and integrated into 60 second epochs 

using ActiLife version 6.13.2 (ActiGraph LLC) and processed using Kinesoft version 3.3.80 

(Kinesoft). Data were classified as stationary time (≤100 counts per min [cpm]), light activity 

(101 to 2019 cpm), or MVPA (>2019 cpm) (Troiano et al., 2008). Nonwear was identified by 

an interval of at least 60 consecutive minutes of zero activity intensity counts, with allowance 

for up to 2 minutes (Troiano et al., 2008). Participants who had <4 valid days were excluded 

from analyses. A valid day was defined as having ≥10 hours of monitor wear. Accelerometers 

were initialised to begin monitoring at the end of appointments, which meant participants had 

a variable amount of possible wear on the first day. As a result, to standardise the opportunity 

for participants to adhere to device wear, days 2 through 8 were analysed for both baseline and 

follow-up. A global wear time variable was calculated as the mean of wear time at baseline and 

follow-up. 

 

 

 

 

   

Figure 3.2. Images of the ActiGraph (left), Lumo (middle) and Freestyle Libre (right) 

Inclinometry 

A Lumo (Lumo Bodytech Inc, Palo Alto, CA; Figure 3.2) posture sensor was worn on a 

waistband (in the lumbosacral region) in contact with the skin to measure sedentary behaviour 

(time spent sitting, driving, lying, standing, stepping, and number of sit-to-stand transitions) 

during baseline and follow-up. Devices were calibrated to the wearer using the Lumo app 

which offers a default calibration process and was used as a way to check it was detecting 

various postures. Participants were asked to walk for 30 seconds before doing at least two sit-

to-stand transitions. Whilst doing this, the researcher checked the app’s avatar was replicating 

the participant’s movements. Participants were asked to wear the device only during waking 

hours, remove it for any water-based activities (e.g. showers or bathing), and place the device 

on charge overnight each day. The Lumo has been found to produce valid measurements of 

sedentary behaviour, with a mean absolute percent error of 9.5% for time spent sedentary 

compared with the ActivPAL (PAL Technologies Ltd) (Rosenberger et al., 2016). Data from 
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the Lumo devices were analysed in 5-minute epochs (highest resolution) using Excel 

(Microsoft Corp). Nonwear was defined by 1 of 2 criteria: (1) device removal for sleep which 

was automatically detected if the device was placed on charge or (2) prolonged periods of the 

same posture deemed to be biologically unlikely (i.e. ≥60 minutes in the position ‘sit bad 

forward’). Prior to follow up device deployment, participants were asked to wear the devices 

(i.e. no emphasise was made about them having been exposed to their feedback). Again, the 

Lumos were set up to begin monitoring at the end of appointments and days 2 through 8 were 

analysed for both baseline and follow-up. 

Flash glucose monitoring 

The Freestyle Libre flash glucose monitor (Abbott Diabetes Care, Alameda, CA, Figure 3.2) 

measures interstitial glucose levels via a minimally invasive 5 mm flexible filament inserted 

into the posterior upper arm. The sensor works based on the glucose-oxidase process by 

measuring an electrical current proportional to the concentration of glucose. Tegaderm 

transparent film dressing (3M Health Care) was applied on top of the sensor to maintain its 

position. Participants were informed not to remove the sensor and to scan at least once every 7 

hours (a conservative decision as the manufacturer states 8 hours to avoid data loss). As a result, 

participants were able to see their real-time glucose levels during baseline wear. An indication 

of how many times participants viewed this information (level of exposure) was identified by 

the frequency with which they scanned. Missing data were obtained because of a fault (sensor 

last <14 days) or the participant failed to scan at least once every 8 hours. The Freestyle Libre 

has been previously validated against venous sampling with an overall mean absolute 

difference of 11.4% with consistent accuracy throughout the 14 days (Bailey et al., 2015). 

Glucose data were downloaded in 15-minute epochs (highest resolution possible) using 

Freestyle Libre version 1.0. The raw data were used to calculate the number of high glucose 

events (defined as ≥8.8 mmol/L) and to identify valid days. Days were defined as valid if they 

met the prespecified threshold of ≥90% of data points (96 expected based on 4 readings each 

hour across each 24-hour period). All 14 days were analysed from baseline wear. Area under 

the curve was calculated from the mean area of the positive peaks across the valid days using 

Graph Pad Prism version 7.0.0 (GraphPad Software) and participants’ fasting glucose level 

were used as the baseline. 
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Functional MRI stimuli 

Twenty personalised feedback messages were created for the purposes of this study and 

covered 4 topics: MVPA, light physical activity, sedentary behaviour, and glucose levels (all 

presented in Figure 3.3 with example data). They intended to reflect feedback metrics presented 

on wearable technologies, but it was challenging to identify what specific metrics were 

included that would be meaningful to participants. Data obtained via accelerometry, 

inclinometry, and flash glucose monitoring were analysed and then incorporated into the 

feedback messages. Therefore, the values presented on the messages were personalised so that 

the numbers varied between participants, but the image and text remained consistent. The 

images were matched in visual complexity, colour, and text font using Axure RP Pro version 

7.0.0.3190 (Axure Software Solutions Inc) to standardise stimuli across participants. Picture 

icons were identified and downloaded from an icon resource website (www.flaticon.com). 

 

Figure 3.3. An example of the personalised feedback stimuli images displayed to participants 

inside the MRI scanner 

Stimuli were presented on a monitor located 2.8 m behind the centre of the scanner bore and 

viewed by a mirror mounted on the head coil. Adjustments to the positioning of the mirror were 

made for participants to ensure that the full monitor screen could be seen. We examined neural 
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activity while participants were presented with feedback and were requested to maintain 

attention throughout. Prior to the start of the fMRI task, there was an initial period of 40 seconds 

of dummy scans which were immediately discarded. The fMRI task is outlined in Figure 3.4. 

In total, 24 blocks (12 active, 12 rest) were presented during the protocol. Each active block 

consisted of stimulus presentation of 5 back-to-back trials (referred to as images from this point 

forward) of 8 secs each, totalling 40 secs, followed by a rest period of 40 secs, during which 

participants viewed a fixation cross and were instructed to clear their minds. The order of the 

blocks and back-to-back images (within the blocks) were not presented in a counterbalanced 

or randomised order. 

 

Figure 3.4. An outline of the trial setup including 8 of the 24 blocks presented 

Functional MRI data acquisition 

Brain imaging data were acquired on a 3T Discovery MR750w scanner (General 

Electric) using a 32-channel head coil at the National Centre for Sport and Exercise Medicine, 

Loughborough University, United Kingdom. Structural images (T1-weighted) were acquired 

using a fast-spoiled gradient echo (FSPGR) Bravo sequence (3D volume, FSPGR; TR=8.2 ms; 

TE=3.1 ms; matrix size 240×240; 160 sagittal slices; FOV=240 mm; 1 mm thick). One 

functional scan lasting 16 minutes (480 volumes) was acquired during the task (2D gradient 

echo EPI; TR=2000 ms; TE=30 ms; flip angle=75 degrees; matrix size 64×64; 35 axial slices; 

FOV=205 mm; 3 mm thick). Stimulus presentation and synchronisation to scanner acquisition 

were performed using the software program Presentation version 18.1 (Neurobehavioral 

Systems Inc). 

Behaviour change techniques 

During the fMRI appointment, participants will be presented personalised feedback about their 

physical activity levels, sedentary behaviour and interstitial glucose levels. In line with Michie 

et al’s taxonomy, this study encompassed the following behaviour change techniques: self-

monitoring of behaviour, self-monitoring of outcome(s) of behaviour and biofeedback. 
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Data analysis 

Functional MRI 

Functional MRI data analysis 

Functional data were pre-processed and analysed using statistical parametric mapping (SPM12, 

Wellcome Department of Cognitive Neurology). All data reported are from scans that exhibited 

≤3 mm in translational movement. Data were processed using a standard statistical parametric 

mapping approach, which consisted of scan realignment, co-registration, segmentation, 

normalisation, and smoothing. Data were spatially aligned to the first functional image using 

4th degree B-spline interpolation. Scans were then co-registered (mean functional image 

aligned with T1 then parameters applied to all functional images). Functional images were 

normalised into the Montreal Neurological Institute (MNI) standard stereotactic space with 

parameters applied to all functional images. A final smoothing step with a Gaussian Kernel 

with full width half maximum of 8 mm was applied to improve signal-to-noise ratio. The onsets 

and durations of each of the conditions of interest were modelled according to the block design 

described in the protocol. For each participant, brain activation was estimated using a general 

linear model (GLM) and included movement parameters (3 translations, 3 rotations) and a 

session constant as regressors. All regressors were convolved with SPM12’s canonical 

difference of the hemodynamic response function. Data were high-pass filtered with a cut off 

of 128 seconds to remove low-frequency noise and slow drifts in the signal. Family-wise error 

(FWE) correction was used to correct for multiple comparisons at PFWE<.001 and PFWE<.05 for 

the initial contrasts of interest and the additional contrasts, respectively. At the first level for 

each participant, contrasts were computed using a series of univariate analyses of covariance 

(ANCOVAs), averaging activity across the topics compared with baseline (i.e. (1) 

MVPA>baseline, (2) light physical activity>baseline, (3) sedentary>baseline, (4) 

glucose>baseline, and (5) behaviour>baseline). Additional contrasts were computed using a 

series of univariate ANCOVAs, averaging activity between the different blocks of stimuli (i.e. 

MVPA>light physical activity and glucose>sedentary) and reverse contrasts also computed 

(i.e. light physical activity>MVPA and sedentary>glucose). 

Second level random effects models for each task were constructed that averaged across 

participants and were subjected to further region of interest (ROI) and between-group analysis. 

Exploratory whole brain searches were conducted for each contrast with a threshold set at 

P<.001 and P<.05 for the baseline contrasts and intergroup contrasts, respectively (cluster 

threshold of k=0 voxels). Between-group analyses were conducted to compare gender 
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differences and differences between those least (<150 minutes of bouted MVPA/week) and 

most (≥150 minutes of bouted MVPA/week) active. Using independent samples t test analysis, 

brain regions were labelled according to the MNI anatomic labelling tool in the Wake Forest 

University Pickatlas (WFU Pickatlas) (Tzourio-Mazoyer et al., 2002). The average beta 

parameter estimates of activity during the presentation of information compared with other 

information blocks were extracted using MarsBaR, an ROI toolbox. All models controlled for 

centred demographic variables (centred age and sex). An additional centred variable (number 

of daily glucose scans) was included within the additional contrasts conducted. 

Statistical analysis 

To examine demographic and self-report data, we conducted descriptive analyses using SPSS 

version 22.0 (IBM Corp). Repeated measures ANCOVAs were conducted to assess changes in 

behaviour (levels of MVPA, light physical activity, and sedentary behaviour) from baseline to 

follow-up, controlling for global wear time (average wear time). Tests of statistical significance 

conducted with alpha set to 0.05. 

Correlation analysis 

Parameter estimates corresponding to each significantly activated region, identified via fMRI 

analysis, were extracted for each participant. Linear regressions provided partial correlation 

coefficients between the parameter estimates from the significant regions of interest and 

subsequent behaviour at follow-up (i.e. time spent in MVPA, light physical activity, and 

sedentary), controlling for wear time. The relationships between behaviour change and activity 

from the ROIs were examined in separate models for each ROI and the analyses were repeated 

to assess behaviour via both accelerometry and inclinometry data.  

3.4. Results 

Participant characteristics 

A flow chart of individuals through the study and the characteristics of the sample are presented 

in Figure 3.5 and Table 3.1, respectively. Four participants were excluded from fMRI analyses 

due to incorrect scanner parameter setup, poor participant vision (without glasses), and 

presence of an unsafe magnetic resonance implant. One participant fell asleep, and an 

additional participant was excluded due to incorrect accelerometry initialisation. This resulted 

in a final sample of 28 participants. 
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The 28 participants (43% male) had a mean age of 45.1±9.4 years (range 30 to 59 years). 

Twenty (71%) received a bachelor’s degree or higher, 3 (11%) participants completed 

secondary school and 5 (18%) completed some additional training. Twenty-five (89%) were 

White, 2 (7%) were Chinese, and 1 (4%) was Asian or Asian British. Males were significantly 

taller (178.7 versus 167.5 cm), had a lower body fat percentage (18.8% versus 32.6%), and 

scanned the Freestyle Libre more frequently (11.7 versus 9.1 scans/day). 

 

 

Figure 3.5. A flow chart of how participants progressed through the study 
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Table 3.1. Participant baseline characteristics, reported as mean±SD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: HbA1c, glycated haemoglobin; HDL, high-density lipoprotein; mmol/L, millimoles per 

litre. † n=23 as n=5 measures were outside of measuring range. a No participants reported 100% of 

target range for glucose levels so the threshold was brought down to 90%. 

Activated brain regions 

First, we contrasted each of the four topics with a fixation cross. The brain regions significantly 

activated in response to the initial contrasts of interest are presented in Table 3.2. Regions 

 Whole Sample (n = 28) 

Body composition 

Height (cm)  172.3±10 

Weight (kg) 75.2±15.3 

Body mass index (kg/m2) 25.2±4.3 

Body fat (%) 26.7±9.3 

Waist circumference (cm) 85.7±11.3 

Cardio-metabolic 

Systolic blood pressure (mmHg) 119.1±11.4 

Diastolic blood pressure (mmHg) 72.8±7.2 

Resting heart rate (bpm) 60.3±11.2 

HbA1c (%) 5.4±0.4 

Glucose (mmol/L) 5±0.6 

Total cholesterol (mmol/L) 4.8±0.9 

Triglycerides (mmol/L)† 0.9±0.2 

HDL cholesterol (mmol/L) 1.5±0.4 

Glucose monitoring 

Average glucose (mmol/L) 5±0.5 

Area under the curve (units) 37.2±27.9 

Time in range (%) 88.3±8.1 

Scan count (per day) 10.3±4.3 

Feedback – attainment of targets  

Number of participants achieving ≥100% 

of the MVPA guidelines N(%) 
11 (39.3) 

Number of participants achieving ≥100% 

of the steps guidelines N(%) 
9 (32.1) 

Number of participants achieving ≤100% 

of the sedentary guidelines N(%) 
4 (14.3) 

Number of participants achieving ≥90%a 

of glucose target range N(%) 
13 (46.4) 
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include the middle and inferior occipital gyrus, middle frontal gyrus, lingual gyrus, subgyral, 

and thalamus (P<.001). No significant voxels were identified between those most and least 

active or between males and females. 

Table 3.2. Average contrasting differencesa compared with baseline 

Region Hem x y z Voxels Z t PFWE 

MVPA > Baseline         

Middle Occipital Gyrus L -38 -74 -14 178 6.29 9.99 <0.001 

Lingual Gyrus L -14 -94 -10  6.25 9.89 < 0.001 

Inferior Occipital Gyrus L -22 -90 -14  6.21 9.76 < 0.001 

Sub-Gyral R 36 -62 -16 11 6.06 9.29 < 0.001 

Fusiform Gyrus L -36 -54 -16 9 5.97 9.03 < 0.001 

Sub-Gyral R 34 -84 -6 93 5.95 8.97 < 0.001 

Lingual Gyrus R 24 -92 -10  5.86 8.74 < 0.001 

Lingual Gyrus R 16 -90 -8  5.63 8.11 0.001 

Inferior Occipital Gyrus R 44 -76 -12 2 5.62 8.09 0.001 

Middle Occipital Gyrus R 30 -88 4 1 5.57 7.97 0.001 

Light PA > Baseline         

Cuneus L -16 -96 -2 101 6.47 10.61 <0.001 

Middle Occipital Gyrus L -32 -84 -14 119 6.23 9.80 <0.001 

Middle Occipital Gyrus L -38 -72 -14  6.05 9.28 <0.001 

Sub-Gyral R 34 -84 -6 83 6.05 9.26 <0.001 

Middle Occipital Gyrus R 30 -84 -14  5.68 8.24 0.001 

Middle Occipital Gyrus R 46 -76 -10 23 6.01 9.14 <0.001 

Sub-Gyral R 36 -62 -16 23 5.90 8.83 <0.001 

Middle Occipital Gyrus R 28 -98 6 19 5.77 8.48 <0.001 

Fusiform Gyrus L -36 -54 -16 3 5.77 8.47 <0.001 

Fusiform Gyrus L -34 -50 -18 2 5.70 8.30 <0.001 

Inferior Frontal Gyrus L -54 18 20 4 5.69 8.27 <0.001 

Lingual Gyrus R 16 -90 -10 10 5.65 8.18 0.001 
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Region Hem x y z Voxels Z t PFWE 

Sedentary > Baseline         

Middle Occipital Gyrus L -36 -72 -16 19 5.99 9.11 <0.001 

Inferior Occipital Gyrus L -38 -82 -10 46 5.95 8.98 <0.001 

Sub-Gyral L -20 -94 -6 36 5.87 8.77 <0.001 

Middle Occipital Gyrus R 36 -84 -4 4 5.78 8.50 <0.001 

Inferior Frontal Gyrus L -48 14 22 3 5.65 8.16 0.001 

Middle Occipital Gyrus R 48 -76 -10 3 5.59 8.02 0.001 

Sub-Gyral R 28 -88 -6 1 5.57 7.97 0.001 

Glucose > Baseline         

Cuneus L -16 -96 -6 218 6.69 11.38 <0.001 

Middle Occipital Gyrus L -36 -74 -16  6.13 9.50 <0.001 

Middle Occipital Gyrus L -20 -90 -14  5.90 8.83 <0.001 

Sub-Gyral R 36 -62 -16 13 5.99 9.10 <0.001 

Lingual Gyral R 14 -90 -8 28 5.97 9.05 <0.001 

Sub-Gyral R 28 -84 -6 56 5.88 8.78 <0.001 

Middle Frontal Gyrus L -40 10 30 6 5.69 8.27 <0.001 

Middle Occipital Gyrus R 44 -76 -14 1 5.60 8.05 0.001 

Middle Occipital Gyrus R 30 -84 -14 2 5.58 8.00 0.001 

Behaviour > Baseline         

Middle Occipital Gyrus L -38 -72 -16 272 6.44 10.49 <0.001 

Cuneus L -16 -96 -6  6.33 10.12 <0.001 

Middle Occipital Gyrus L -32 -84 -14  6.07 9.33 <0.001 

Sub-Gyral R 36 -62 -16 27 6.16 9.61 <0.001 

Sub-Gyral R 34 -84 -6 135 6.14 9.53 <0.001 

Lingual Gyral R 22 -92 -10  5.85 8.69 <0.001 

Middle Occipital Gyrus R 30 -84 -14  5.75 8.42 <0.001 

Superior Parietal Lobule L -32 -62 58 5 6.06 9.28 <0.001 

Middle Occipital Gyrus R 46 -76 -12 24 5.96 9.00 <0.001 

Middle Occipital Gyrus R 48 -66 -14  5.88 8.79 <0.001 

Fusiform Gyrus L -36 -54 -16 8 5.95 8.98 <0.001 
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Abbreviations: L, left; hem, hemisphere; MVPA, moderate-to-vigorous physical activity; PA, physical 

activity; R, right. a threshold set to p<0.001, cluster threshold of k = 0 voxels. Hem relates to which 

hemisphere the brain region was identified (i.e. left or right). X, Y and Z relate to the Montreal 

Neurological Institute (MNI) coordinates that relate to the brain region listed. Voxels refers to the total 

number of voxels identified as significant in that brain region. Z reflects the z-score and t reflects the t-

statistic whilst PFWE is the p-value after accounting for family wise error (i.e. multiple comparisons). 

Behaviour refers to the inclusion of light physical activity, MVPA and sedentary behaviour. 

We then proceeded to the main analysis that contrasted the topics between themselves. The 

brain regions identified as significantly activated are presented in Table 3.3. Of the additional 

contrasts of interest, the glucose>behaviour contrast highlighted significant activation in the 

middle frontal gyrus (–32, 36, –12, z=5.60) and left subgyral (–26, 48, 4, z=5.33). The 

glucose>sedentary contrast revealed significant activation in the cuneus (–2, –80, 4, z=5.05), 

middle frontal gyrus (–32, 36, –12, z=4.95; –20, 34, 42, z=4.94), superior frontal gyrus (–26, 

50, 4, z=4.79), and right subgyral (28, –52, 24, z=4.66) (Figure 3.6, Table 3.3). 

Table 3.3. Average contrasting differences between blocks of stimuli (controlling for age, 

gender and daily scans)a 

Abbreviations: L, left; hem., hemisphere; MNI, Montreal Neurological Institute, MVPA, moderate-to-

vigorous physical activity; R, right. a threshold set to p<0.05, cluster threshold of k = 0 voxels. Hem 

relates to which hemisphere the brain region was identified (i.e. left or right). X, Y and Z relate to the 

Montreal Neurological Institute (MNI) coordinates that relate to the brain region listed. Voxels refers 

Region Hem x y z Voxels Z t PFWE 

Middle Frontal Gyrus L -52 26 26 9 5.73 8.38 <0.001 

Thalamus R 22 -28 -2 2 5.69 8.27 0.001 

Region Hem x y z Voxels Z t PFWE 

Glucose > Behaviour 

Middle Frontal Gyrus L -32 36 -12 25 5.60 8.17 < 0.001 

Sub-Gyral L -26 48 4 16 5.33 7.48 < 0.001 

Glucose > Sedentary 

Cuneus L -2 -80 4 34 5.05 6.85 < 0.001 

Middle Frontal Gyrus L -32 36 -12 8 4.95 6.63 < 0.001 

Middle Frontal Gyrus L -20 34 42 11 4.94 6.61 < 0.001 

Superior Frontal Gyrus L -26 50 4 3 4.79 6.29 < 0.001 

Sub-Gyral R 28 -52 24 1 4.66 6.04 < 0.001 
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to the total number of voxels identified as significant in that brain region. Z reflects the z-score and t 

reflects the t-statistic whilst PFWE is the p-value after accounting for family wise error (i.e. multiple 

comparisons). Behaviour refers to the inclusion of light physical activity, MVPA and sedentary 

behaviour. 

 

Figure 3.6. An illustration of group activation for glucose>behaviour at (a) -32, 36, -12 and (b) 

-26, 48, 4 

Behaviour change 

The behavioural characteristics obtained via accelerometry and inclinometry are presented in 

Table 3.4. Among the 28 participants, 100% provided ≥4 days for accelerometry during 

baseline and follow-up. In contrast, only 15 (54%) and 20 (71%) participants provided ≥4 valid 

days at baseline and follow-up with the inclinometer, respectively, revealing a reduced sample 

(13 vs 28). As a result, the criteria for the Lumo was adjusted to ≥1 valid days (hereby 

identifying the limitation for using the LUMO as a data logger). From baseline to follow-up, 

wear time and sedentary time reduced while minutes of MVPA and counts per minute 

increased. After controlling for global wear time, only time spent sedentary remained 

significant for both the accelerometry and inclinometry (589±13.9 min vs 560±11.7 min, 

P=.014 and 602.2±19.4 min vs 554.5±18.1 min, P=.001, respectively). Despite a lack of change 

at the whole sample level for time spent in light physical activity, MVPA, and step count, 9 

(32%), 17 (61%), and 16 (57%) participants, respectively, positively increased the amount of 

steps, light physical activity, and MVPA at follow-up (unadjusted for global wear time). Males 

accumulated significantly more vigorous physical activity compared with females at baseline 
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and follow-up (P=.029 and P=.026, respectively) and also significantly more minutes of 

MVPA (P=.033) at follow-up. No significant associations were observed between number of 

scans and changes in behaviour via accelerometry or inclinometry (controlling for global wear 

time). 

Table 3.4. Behavioural characteristics, reported as mean±SD 

Abbreviations: CPM, counts per minute; LVPA, light-to-vigorous physical activity; MVPA, moderate-

to-vigorous physical activity. *, p<0.05 

Functional MRI correlations 

To investigate the relationship between brain activation and subsequent behaviour, parameter 

estimates were calculated for the patterns of neural activation. Of these, only glucose feedback 

was positively associated with subsequent minutes of MVPA (r=0.392, P=.043). No significant 

associations were observed for the inclinometry data. 

 

 

 

 Accelerometry (n=28) Inclinometry (n=23) 

 Baseline Follow Up Baseline Follow Up 

Number of Valid Days 7±0 7±1 4.2±2.1 5.5±1.7 

Wear Time 903.5±67.7 868.2±70.4* 924.3±61.9 884±61.6* 

Step Count 9065±3456 9634±3699 8661±2996 9580±4326 

CPM 388.1±174.7 410±182.8* - - 

Sedentary (min) 589.0±84.7 560±75.6* 602.2±91.1 554.5±89.4* 

Light PA (min) 265±69 254.2±71.1 - - 

Moderate (min) 45.8±31 50.7±33.2 - - 

Vigorous (min) 3.6±6.6 3.2±6.2 - - 

MVPA (min) 49.4±34.2 53.9±35.5* - - 

LVPA (min) 314.4±66.4 308.1±72.1 - - 

Stepping (min) - - 93.5±26.7 103.2±44.1 

Standing (min) - - 228.5±98.5 226.5±67.8 
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3.5. Discussion 

Summary 

As recent neuroimaging work has highlighted value in analysing individual responses to 

feedback relating to lifestyle behaviours (Falk et al., 2010), we used fMRI to examine neural 

responses to personalised feedback relating to physical activity, sedentary behaviour, and 

interstitial glucose levels. We also investigated associations between neural activity and 

subsequent behaviour. This study lies at the intersection of 3 rapidly evolving areas of interest: 

wearables, lifestyle behaviours, and neuroimaging. Our study identified that presenting people 

with personalised feedback relating to interstitial glucose levels resulted in significantly more 

brain activation when compared with personalised behavioural feedback. 

Activated regions of the brain 

Our findings identified activations within regions of the prefrontal cortex, in particular the 

middle frontal gyrus, subgyral, cuneus, and superior frontal gyrus upon comparison of 

personalised glucose feedback with behavioural feedback. Previous studies have also identified 

regions within the prefrontal cortex following exposure to antismoking images (Cooper et al., 

2015), messages encouraging sunscreen use (Falk et al., 2010), and informative nutritional 

labels (Enax et al., 2015). The authors hypothesized that the mPFC and precuneus/posterior 

cingulate regions would be activated in our study given the presentation of personalised 

feedback (Johnson et al., 2002; Northoff et al., 2006; Northoff & Bermpohl, 2004; Phan et al., 

2004; Wang & Hamilton, 2014). Other fMRI studies have identified alternate activated regions 

including the ventromedial prefrontal cortex, inferior frontal gyrus, and amygdala when 

presented information about other lifestyle behaviours (e.g. smoking) (Dinh-Williams et al., 

2014; Falk et al., 2015; Newman-Norlund et al., 2014). The findings suggest that the 

personalised feedback did not offer identical regions of interest when compared with the 

literature; however, some activation did overlap with the mPFC. Neuroimaging studies impose 

additional complexity because identical neural patterns can result after exposure to different 

stimuli (Tognoli & Kelso, 2015). However, the identified regions of brain activation may also 

differ because the stimuli differ between fMRI studies. Our study used a combination of text 

and images to inform participants about their physical activity, sedentary behaviour, and 

interstitial glucose levels. In comparison, Falk and colleagues presented images with text and 

numbers in a sentence (multiple lines of text) (Falk et al., 2015). Overall, our findings suggest 

that it is possible to identify what brain regions are activated in response to personalised 
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feedback and that glucose-related feedback evoked more brain activation. As a result, wearable 

technologies presenting personalised glucose feedback may be useful to employ in future 

interventions. 

Investigating how individuals responded to personalised health-related feedback was an 

important component of this study as it has been well documented that receiving tailored 

feedback can result in greater resonance and consequently result in desirable health behaviours 

(Brug et al., 1996; Skinner et al., 1994; Strecher et al., 1994). Our study demonstrated that 

presenting feedback pertaining to an individual’s glucose levels elicited significantly more 

brain activation within the middle frontal gyrus and subgyral compared with the behavioural 

feedback. These regions, anatomically positioned within Brodmann areas 9/10 and 47, 

respectively, have previously been associated with the actions of making personal moral 

judgments (Greene & Haidt, 2002) and working memory (d’Esposito et al., 1998), respectively. 

Previous studies have investigated messages promoting child vaccinations against measles-

mumps-rubella and identified that highlighting the dangers of not vaccinating may actually be 

counterproductive (Nyhan et al., 2014); therefore, findings are often highly dependent on the 

topic investigated. Future studies could investigate the role of self-affirmation, a construct 

suggested to increase individual sensitivity to health-risk information and incorporated in prior 

neuroimaging studies (Cooper et al., 2015; Falk et al., 2015). Self-affirmation essentially 

investigates how neural activity patterns vary to information after being exposed to personally 

important values (e.g. friends, family, and religion). Given that the desirable outcome is for 

people to positively respond to health-related information, exposing a person to their personal 

values may provoke attention and enhance the importance of the information being given. 

Therefore, future investigation into whether self-affirmation could contribute to increasing the 

level of resonance toward personalised feedback and encourage positive behaviours may be 

crucial. 

Behaviour change and associations with brain activation 

Our study identified a significant reduction of 29 minutes (or 47 minutes using inclinometry) 

in time spent sedentary from baseline to follow-up. Previous findings support this finding, 

having observed a 39.6 min/day reduction in time spent sedentary (Chu et al., 2016). However, 

no significant differences were observed for time spent in MVPA, light physical activity, or 

step count. Wearable technologies research to date has offered the suggestion that people can 

increase their activity levels having received feedback about behaviour (Bravata et al., 2007; 

Stephenson et al., 2017). However, it must be acknowledged that physical activity, for example, 
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has been categorised as a very complex behaviour and no single metric can encapsulate a 

person’s level of physical activity (Thompson et al., 2015). According to the literature, changes 

in behaviour most likely occur when personalised health messages are presented in moments 

when action can be taken (e.g. at midday to promote a walk following the consumption of 

lunch) (Patel et al., 2015). Despite participants being presented personalised feedback, there 

are a multitude of reasons as to why they may or may not have changed their behaviour during 

the follow-up period. Therefore, determining whether their behaviour (change or no change) 

was because of the exposure to health-related information is truly unknown. However, 

emphasising that the feedback was only briefly presented and within an unusual situation (i.e. 

inside an MRI scanner) is warranted when comparing how people normally receive 

personalised feedback through wearable technologies. Further investigation could quantify or 

contextualise the follow-up period to try and account for extraneous variables (e.g. weather, 

holiday, illness) or consider the inclusion of a control group to provide more definitive findings. 

In regard to the relationship of activation and subsequent behaviour during the follow-up 

period, findings identified a positive partial correlation with minutes of MVPA. Previous 

studies have investigated behaviour change subsequent to fMRI and have demonstrated 

positive associations between neural response (e.g. to aversive smoking-related images) and 

smoking cessation (Falk et al., 2011; Jasinska et al., 2012). For example, Falk and colleagues 

identified that greater reductions in sedentary behaviour aligned with greater activity in the 

ventromedial prefrontal cortex, suggesting that if people exhibited greater levels of activation 

in response to the visual stimuli, those individuals were subsequently more likely to be less 

sedentary (Falk et al., 2015). On a larger scale, identifying what stimuli (i.e. health messages) 

evoke positive behaviours (e.g. being less sedentary or more active) can inform the provision 

of effective public health messages. It could be suggested that, despite the observed association, 

being presented personalised feedback about health and behaviour while inside an MRI scanner 

is not a normal environment. Consequently, alternate neuroimaging tools could be useful for 

future investigation within a free-living setting. For instance, individuals could obtain 

personalised feedback via a wearable device or a smartphone app while their neural activity is 

recorded by a portable electroencephalogram system via functional near infrared spectroscopy 

or by eye tracking (to monitor gaze patterns and fixations). Interestingly, eye tracking has 

previously been conducted on various health communication materials including both cigarette 

advertising (Krugman et al., 1994) and nutrition labels (Oliveira et al., 2016). 
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Strengths and limitations 

Positioned at the intersection of several evolving interest areas, this interdisciplinary study 

offers a number of strengths. One strength was presenting personalised feedback pertaining to 

both movement behaviours and physiology to participants. These components were objectively 

measured during baseline and follow-up using novel digital health technologies, obtaining data 

to directly inform the feedback. In addition, some of the information that was presented in the 

fMRI tasks were designed based on feedback commonly presented via wearable devices or 

smartphone apps, reflecting what could be received in real-time in a real-world setting. Future 

efforts should consider how best to ensure the feedback metrics are meaningful (i.e. standalone) 

and truly encapsulate physical activity, sedentary behaviour and glucose regulation. It may be 

worthwhile considering the incorporation of public engagement to co-produce and design these 

materials. Objective quantification of behaviour at follow-up permitted the assessment of 

behaviour following exposure and associations between neural activation and behaviour. 

Limitations of our study include the situation that participants viewed their glucose levels 

during baseline wear, an unavoidable situation given intentions to minimise data loss. This 

protocol confirms that participants had prior exposure to the glucose-related feedback 

subsequently presented during fMRI. However, to help try and account for this, analysis 

included the number of scans as a covariate because we thought the number of scans suggested 

the frequency with which participants viewed their glucose levels (e.g. more scans equalled 

more exposure and so a greater awareness of their glucose levels). Another limitation was that 

participants were provided a copy of the education booklet prior to baseline. Despite being 

instructed to access this resource one week prior to their fMRI appointment, it is possible that 

participants read this material prior to baseline. In addition, there was a delay between 

participants completing baseline and attending the fMRI appointment which may have 

impacted the potential perceived relevancy of the feedback. Following the composition of our 

sample, it would have been beneficial to exclude individuals who self-reported themselves as 

active to enhance the opportunity for individuals to feel able to increase their levels of physical 

activity. Furthermore, our unpowered sample size was another limitation, as we are unable to 

offer definitive interpretation of the findings. Finally, the pattern of neural activity observed 

and related psychological processes should be interpreted with caution due to the nature of 

reverse inference (Poldrack, 2006). Future studies could investigate neural activity in polar 

groups of people classified by activity or time spent sedentary and to repeat fMRI, so patterns 

of brain activation are quantified before and after exposure to the feedback. 
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3.6. Conclusions 

This multidisciplinary study highlighted that fMRI can be used to assess the neural response to 

personalised health feedback. In particular, greater activation in the prefrontal cortex during 

exposure to glucose compared with behavioural feedback was observed. A reduction in time 

spent sedentary and a positive association between the parameter estimates and subsequent 

minutes of MVPA were observed. Future research deploying behavioural feedback in parallel 

with physiological feedback to encourage positive behaviour change is warranted. 
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N.B. Study protocol has been published (Appendix F). 
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4.1. Introduction 

In England, the prevalence of type 2 diabetes has increased from 2.3 million in 2013 to 3 

million in 2016 (NHS Digital, 2016). More alarming still, the prevalence of prediabetes, a 

preclinical stage comprising impaired glucose tolerance and impaired fasting glucose, has 

increased more than three-fold from 2003 to 2011, burdening more than one-third of UK adults 

(Mainous et al., 2014). These trends are global in reach and as a result, 592 million individuals 

worldwide are projected to be diagnosed with type 2 diabetes by 2035 (Guariguata et al., 2014). 

Given this, developing successful interventions to prevent type 2 diabetes is a crucial public 

health priority (Barry et al., 2017) given that 5-10% of people living with prediabetes progress 

to develop type 2 diabetes annually (Bansal, 2015). To date, structured lifestyle interventions 

have shown promise in both the prevention and delayed onset of diabetes (e.g. Diabetes 

Prevention Group, 2002; Norris et al., 2005); however, implementing these interventions into 

routine clinical settings has proven difficult (Cardona-Morrell et al., 2010).  

Over the last decade digital health technologies, most notably wearable activity monitors, have 

flooded the consumer market and are recognised as a leading trend by industry experts 

(Ferguson et al., 2015). Smartphone applications (apps) commonly connect with digital health 

technologies to provide feedback to the user. In 2017 alone, 78,000 new apps were added (16% 

higher than 2016) bringing the total to 325,000 available health apps (Research2Guidance, 

2017). Health apps are becoming increasingly sophisticated most often with a primary function 

of presenting goal-oriented feedback to offer guidance to the user (e.g. daily step count in 

relation to 10,000 steps/day). With increasing technological advancement, wearable digital 

health technologies have evolved to provide feedback not only on movement behaviours but 

also the physiological consequences of behaviours (e.g. sensors measuring continuous glucose, 

heart rate and blood pressure). Continual improvements in the sensing elements in digital health 

technologies provide an opportunity to examine whether coupling these two feedback elements 

(i.e. movement behaviours and their physiological consequences) could lead to more potent 

behaviour change messaging and thus warrants further investigation. 

A previous study provided thirteen pre-diabetics and type 2 diabetics with information on their 

glucose concentrations in relation to prescribed bouts of exercise (Bailey et al., 2016). 

Participants were enrolled into standard care (i.e. self-monitoring exercise using a logbook) or 

the intervention (standard care plus self-monitoring of glucose using a continuous glucose 

monitor). Findings highlighted that self-monitoring both exercise and glucose led to greater 

adherence to the exercise programme over eight weeks compared with individuals self-
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monitoring exercise only. Another study provided fifty-two inactive type 2 diabetics ‘role 

model’ graphs of glucose levels that identified activity-related reductions in glucose to 

illustrate the benefits of physical activity (Allen et al., 2008). All participants received 90 

minutes of individualised education including topics about diabetes physiology, glucose testing 

and diet, but the intervention group also wore a continuous glucose monitor for three days at 

baseline. The intervention group demonstrated a five-minute increase in moderate physical 

activity at the expense of sedentary time at eight weeks. Collectively, these findings support 

the potential for providing users with coupled physiological and behavioural feedback. 

However, to the authors’ knowledge, no study has provided individuals with digital health 

technologies that provide coupled (i.e. simultaneous) feedback on both physical activity and 

glucose in free-living conditions.  

Before large-scale studies providing physiological and behavioural feedback to individuals at 

risk of developing type 2 diabetes are conducted, the extent to which individuals engage with 

the intervention needs to be understood. This is important not only for researchers but clinicians 

and industry alike. With the provision of combined physiological and behavioural feedback in 

its infancy (i.e. immature), it is important to examine how these individuals engage with digital 

health technologies and health apps providing this feedback. For example, in a study of over 

12 million adult users of a weight loss app ‘Lose It!’, authors found that those who customised 

the app to their personal preferences engaged for a longer period of time compared to those 

who kept the default configuration (Serrano et al., 2017). Such insights into how people 

naturally engage with digital health technologies may help optimise the delivery of future 

interventions and promote their incorporation into existing national prevention programmes. 

Objectively measuring how long people spend on health apps and how they use digital health 

technologies may permit the identification of sub-groups requiring different levels of support 

to lead a more physically active lifestyle. Therefore, the present study examined how 

individuals at moderate-high risk of developing type 2 diabetes naturally engaged with 

wearable digital health technologies and associated health apps providing continuous, objective 

physical activity and glucose feedback over six weeks. 
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4.2. Aims and objectives 

Primary aim 

To examine participant engagement with physical activity and glucose self-monitoring 

technologies over 6 weeks; assessed by app usage, scan frequency (glucose), sync frequency 

(physical activity) and changes to physical activity goals. 

Secondary aims 

To (i) assess the acceptability and practicality of the intervention trial, (ii) establish levels of 

physical activity and glucose at baseline, 1, 2, 3, 4, 5, and 6 weeks; (iii) inform the development 

of a full-scale RCT. 

4.3. Methods 

Study design 

A detailed description of the study protocol has been published (Whelan et al., 2017; Appendix 

F). Briefly, the seven-week protocol consisted of a baseline period (one week) and an 

intervention period (six weeks). Following baseline, participants were randomised into one of 

three groups (described further below) and all participants wore an activity monitor and a 

glucose sensor during the intervention period (regardless of group allocation). The 

Loughborough University Ethics Advisory Committee provided ethical approval for the study 

in April 2017 (Research Proposal R17-P049). 

Inclusion criteria 

Adults aged ≥40 years, who recorded a moderate-to-high risk of developing Type 2 diabetes 

on Leicester Risk Assessment screening tool (i.e. ≥16 points out of 47) (Gray et al., 2010) and 

owned a compatible Android smartphone were eligible to take part. Compatible smartphones 

were defined as having the following characteristics: An Android operating system of ≥4.0, 

Near Field Communication (NFC) capability, a screen resolution of 480x800 to 1080x1920 

and a screen size of 8.9-14.5cm. These requirements were in place to ensure participants could 

install the LibreLink app on their smartphone; thereby preventing iOS smartphone owners from 

taking part. However, it is likely that with continuing app development the need to implement 

strict smartphone criteria will disappear in the near future. As per LibreLink app guidance, 

known smartphones (at the time of recruitment) that duly meet the above compatibility criteria 
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but for some reason do not work were the Samsung Galaxy 7, Samsung S8, Nexus 5X and 

Nexus 6P. 

Exclusion criteria 

Individuals were excluded if they had been diagnosed with any form of diabetes, presented 

with a HbA1c of ≥6.5% at baseline, had suspected/confirmed pregnancy, who were unable or 

unwilling to provide informed consent, who could not or were unwilling to adhere to the study 

protocol or could not read and write English.  

Recruitment 

Interested individuals were recruited between May and September 2017. Participants were 

initially recruited via community organisations through the distribution of posters, letters and 

emails sent to existing participant databases within Leicestershire, UK. To further boost 

recruitment, recruitment efforts (using posters and emails) were also directed toward local 

businesses and local social media channels (i.e. Facebook and Twitter). Interested individuals 

were directed to complete a brief online survey to determine level of risk for type 2 diabetes 

(Gray et al., 2010) via Qualtrics (Qualtrics, Provo, UT). The questions related to sex, age, ethnic 

background, familial history of diabetes, waist circumference, body mass index and blood 

pressure (Gray et al., 2010). The waist circumference question was modified to instead ask 

participants about their clothing size and fit rather than a direct measurement of their waist 

circumference (in cm). Their responses to these two clothing fit questions were used to 

calculate an estimated waist circumference value (Battram et al., 2011) which was 

subsequently used to determine level of risk. Upon completion, moderate (16-24 points out of 

47) and high-risk (≥25 points out of 47) individuals self-reporting ownership of a compatible 

smartphone were contacted and sent a participant information sheet via email. Ineligible 

individuals were informed of their risk and directed to Diabetes UK risk prevention 

documentation. Individuals who continued to express an interest in taking part (having read the 

study material and confirmed eligibility) were contacted about scheduling the baseline 

appointment.  

Intervention groups 

Participants were block randomised (3, 6 and 9 block sizes) using a 1:1:1 study allocation ratio 

into one of three groups (Figure 4.1). Group allocations were concealed from the researcher 

until participants completed baseline wear in an effort to minimise the introduction of any bias. 

Participants were informed of their group allocation after completing baseline wear. Group 1 
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were offered glucose feedback for 4 weeks (G4) followed by glucose plus physical activity 

feedback for 2 weeks (GPA2) (hereon referred to as G4GPA2). Group 2 were offered physical 

activity feedback for 4 weeks (PA4) followed by glucose plus physical activity feedback for 2 

weeks (GPA2) (hereon referred to as PA4GPA2). Group 3 were offered glucose plus physical 

activity feedback for six weeks (hereon referred to as GPA6).  

It should be acknowledged at this stage that the derivation of these groups followed substantial 

discussion around which study design would best meet the research question and study budget. 

We arrived at the conclusion of the study protocol outlined in Figure 4.1 in part by the following 

factors: the lifespan of the glucose sensors were 2 weeks; intentions to maximise data on 

participant engagement with the technologies (i.e. decided against a true control group); 

intended to ensure participant engagement was captured using both devices simultaneously 

across all participants; two weeks was likely insufficient for initial exposure and total duration 

appeared long enough to identify behaviour change but not too long for financial outlay. 

 

Figure 4.1. An outline of the study protocol. G4GPA2 represents glucose feedback (4 weeks) 

followed by glucose and physical activity feedback (2 weeks); PA4GPA2 represents physical 
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activity feedback (4 weeks) followed by glucose and physical activity feedback (2 weeks) and 

GPA6 represents glucose and physical activity feedback (6 weeks). Abbreviations: G, glucose 

feedback; PA, physical activity feedback; GPA, glucose plus physical activity feedback. 

Wearable technologies 

Fitbit 

Physical activity feedback was provided by a Fitbit Charge 2 (Fitbit Inc., San Francisco, CA) 

(Appendix G). Participants were asked to wear the Fitbit on their non-dominant wrist during 

waking hours; removing it for sleep and any water-based activities. Participants were asked to 

charge the Fitbit overnight every night and to sync the device at least once every five days to 

minimise data loss. In an effort to monitor participant adherence to charging and syncing, the 

research team sent participants reminder emails to either charge (if battery level reached <25%) 

or to sync (if it had been ≥5 days since the previous recorded sync). Battery level was remotely 

monitored with Fitbit sending emails automatically to the research team when the Fitbit battery 

reached a critical level (<25%). Fitbit syncs were remotely monitored via the Fitabase 

dashboard (Small Steps Labs LLC., San Diego, CA) which ordered participant Fitbit accounts 

by time since last sync; allowing easy identification of participants who had not synced their 

Fitbit for >5 days. No syncs were extracted for G4GPA2 during intervention weeks 1 to 4 to 

minimise participant interaction with the technology. Devices were initialised using the Fitbit 

app and the data were downloaded via Fitabase. The raw 60-second epoch data were re-

structured to present 1,440 epochs/day. Data were analysed by Kinesoft version 3.3.80 

(Kinesoft, Lougborough, UK).  

Physical activity feedback was displayed on both the Fitbit screen (wrist) and the participant’s 

smartphone (via the app). The following metrics were viewable: daily step count; floors (flights 

of stairs) climbed; number of active minutes; number of calories burned (kcal); heart rate and 

number of hours achieving ≥250 steps. The Fitbit app also provided historical information and 

more comprehensive information for all of the metrics (e.g. hourly graphs).  

Freestyle Libre 

Feedback on glucose levels during the intervention period was provided by a Freestyle Libre 

flash glucose monitor (Abbott Diabetes Care, Alameda, CA) (Appendix G). In total, 

participants wore three Freestyle Libre sensors (one every two weeks) during the intervention 

period. These minimally-invasive, disposable sensors were worn on the non-dominant 

posterior brachium. Participants were asked to scan the sensor using the LibreLink app once 
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every seven to eight hours (three times per day) as a minimum to avoid data loss. Participants 

were not prompted at all about their scanning frequency and were able to set reminders to scan 

via the LibreLink app. No charging or calibration of the sensors was required. Glucose levels 

were captured by the LibreLink app and extracted in 15-second epochs using Diasend (Diasend 

Inc., Chicago, IL). No data were recorded for PA4GPA2 during the intervention weeks 1 to 4 

as participants were not set up with the Freestyle Libre app or asked to scan the device but this 

will likely become void in future iterations. A valid day was defined as having ≥90% of glucose 

data and only valid days were carried forward for analyses.  

Interstitial glucose levels were categorised as: normal (4.0-5.9 mmol/L), above range (≥6.0 

mmol/L) or below range (<4.0 mmol/L) (International Diabetes Federation, 2007). Each 

participant scan was characterised by the following metrics: glucose level (mmol/L), rate of 

change (i.e. rising quickly, rising, changing slowly, falling, falling quickly or no trend arrow; 

thresholds for these metrics not provided by the manufacturer), target zone (normal, above 

range or below range) and a 24-hour graph of glucose. Glucose feedback was displayed on the 

LibreLink app only and the following metrics were viewable: glucose levels (value at the time 

of scanning and a graph of the previous 24 hours); an arrow to suggest rate and direction of 

change; time spent in target range; number of low glucose events and historical data (e.g. 

glucose levels on previous days). 

Primary outcomes 

User engagement 

An assessment of participant engagement was conducted to help determine if this unique 

intervention of coupled feedback warrants further investigation. Participant engagement with 

the self-monitoring technologies was assessed by time spent on the smartphone apps, the 

frequency the Freestyle Libre was scanned and the frequency the Fitbit was synced and any 

changes to the set physical activity goals. The duration of time spent on the study-related apps 

(Figure 4.2) was recorded in minutes, as either a summary of total time per day or time per visit 

to the app, dependent on participants’ smartphones. As a result, time per day on each app was 

calculated for all participants. App usage was monitored and extracted using Ethica Data 

(Kitchener, Ontario, Canada). The frequency the glucose sensor was scanned by the 

participant was collected by LibreLink app (compulsory number of scans: once every eight 

hours). The frequency that participants synced the Fitbit was collected by Fitabase (compulsory 

number of syncs: once every five days). Prior to deployment, all participants received verbal 
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and written information about how to scan the Freestyle Libre and how to sync the Fitbit. 

Default physical activity goals were 10,000 steps, 30 active minutes, 2,500kcal, 10 flights of 

stairs and 8km per day. Participants were informed how to change these values, if they wished, 

using verbal instructions and a brief demonstration. To record if, when and how the activity 

goal settings were changed, the research team accessed the Fitbit account associated with each 

participant at the end of each day. 

 

Figure 4.2. Screenshots of the Fitbit app (left) and LibreLink app (right) 

Secondary outcomes 

Feasibility 

Feasibility was also assessed to help identify whether the intervention was suitable using 

indicators of recruitment, uptake, retention and device wear. The assessment of feasibility 

focused on the practicality and acceptability of the self-monitoring technologies as outlined by 

Bowen and colleagues (Bowen et al., 2009). 
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Practicality 

Researcher-produced project records documented the number of additional glucose sensors 

provided to participants (minimum of three per participant) and reasons why additional sensors 

were needed (e.g. faulty or displaced sensors). Missing glucose data (reported as percentage 

data capture, number of missing data events and minutes of missing data) were quantified using 

raw interstitial glucose data downloaded from Diasend. Missing glucose data occurred if 

participants failed to adhere to scanning at least once every eight hours. The amount of missing 

physical activity data was recorded and quantified using Fitabase (Small Steps Labs LLC., San 

Diego, CA). Missing data for the Fitbit would result in obtaining a truncated daily summary of 

activity data rather than minute-level data.  

Acceptability 

Uptake and retention 

The number of participants who (a) completed the survey, (b) were eligible, (c) decided to take 

part (uptake) and (d) completed the study (attended follow-up assessment) were recorded. Non-

usage attrition (failure to comply with compulsory engagement but no study withdrawal) and 

dropout attrition (withdrawn or not attending the final appointment) were assessed (Alkhaldi 

et al., 2016).  

Wear adherence 

Fitbit wear time and undirected overnight wear were quantified using minute-level data 

extracted from Fitabase. Wear time for each epoch was defined by the combined presence of a 

heart rate signal (>0 beats/min) and not classified as sleep according to Fitbit’s default 

proprietary algorithm. 

Smartphone usage 

The number of participants consenting to having their phone use monitored via Ethica Health 

app (Kitchener, Ontario, Canada) were recorded. Of these participants, the number who 

consent for full coverage (all 14 data sources; location sensors, motion sensors, contact network 

sensors, digital footprint and exit survey) and restricted coverage (3 data sources; digital 

footprint and exit survey) were recorded. The full coverage option was the default decision 

presented to participants and if any participants expressed concerns then they were offered the 

option of the restricted coverage.  
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Baseline physical activity assessment 

ActiGraph 

To assess and compare baseline physical activity levels of our participants against nationally 

representative studies (Chaudhury & Esliger, 2008; Troiano et al., 2008), participants were 

asked to wear an ActiGraph wGT3x-BT accelerometer (ActiGraph, Pensacola, FL, USA) for 

seven consecutive days. Participants were instructed to wear these accelerometers around the 

waist (over the right anterior iliac spine) with an elastic belt during all waking hours and only 

removed for water-based activities. Initialisation, downloading and conversion of 

accelerometer files into 60-second epoch were conducted using ActiLife version 6.13.1 

(ActiGraph, Pensacola, FL, USA). Kinesoft version 3.3.80 (Kinesoft, Loughborough, UK) was 

used to batch analyse the 60-second epoch files. Non-wear was defined as 60 minutes of 

consecutive zeros with up to two minutes of non-zero interruptions allowed (Troiano et al., 

2008). Valid files had ≥4 valid days defined as having ≥10 hr/day (Troiano et al., 2008). 

Stationary time was classified as <100 counts per minute (cpm), light physical activity as 100-

2019 cpm and MVPA as ≥2020 cpm (Troiano et al., 2008). 

Fitbit 

All email accounts and password combinations were manually generated and managed by the 

research team. During baseline assessment, Fitbits were masked for all participants using black 

tape and participants were asked not to tamper with it. Settings on the Fitbit app were adjusted 

to remove the feedback metrics and notifications restricted (Appendix H). Participants had 

access to the app to allow automatic syncs to occur thereby ensuring minute-level data were 

obtained. 

Levels of technology readiness, health status and attitude 

Questionnaires were completed by participants electronically using Bristol Online Surveys 

(Bristol, UK) at baseline and at the final appointment. Quality of life was assessed via the 26 

item EQ-5D-5L (Herdman et al., 2011), technology readiness via the 16 item Technology 

Readiness Index (TRI 2.0) (Parasuraman & Colby, 2015), diabetes knowledge via the revised 

diabetes knowledge test (DKT) (Collins et al., 2011) and attitude toward developing diabetes 

using the general attitudes section of the Risk Perception Survey for Developing Diabetes 

(RPS-DD) (Walker et al., 2003). The maximum score for the DKT was 18. The TRI2.0 

questionnaire classified individuals as either a Skeptic, Explorer, Pioneer, Hesitator or Avoider. 

Skeptics offered low levels of optimism, discomfort and insecurity but moderate levels of 
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innovativeness; Explorers offered high levels of optimism and innovativeness but low levels 

of discomfort and insecurity; Avoiders revealed low levels of optimism and innovativeness but 

high levels of discomfort and insecurity; Pioneers revealed high levels of optimism, 

innovativeness, discomfort and insecurity; whilst Hesitators demonstrated high levels of 

optimism, low levels of innovativeness and moderate levels of discomfort and insecurity.  

Other measures 

Participant demographics 

Self-reported age, sex, ethnic background, employment status, household income, home 

postcode (used to derive index of multiple deprivation (IMD)) and highest level of education 

were recorded. 

Cardiometabolic health 

Participants removed shoes and socks prior to having height measured using a Seca stadiometer 

(Seca, Hamburg, Germany) and weight and body fat percentage measured using Tanita scales 

(Tokyo, Japan). Two measures of waist circumference were taken at the midpoint between the 

lowest rib and top of the iliac crest with an additional measure taken if the difference exceeded 

1cm. Glycated haemoglobin (HbA1c) was assessed using an Afinion AS100 Analyser (Alere 

Inc., Waltham, MA). Three measures of resting blood pressure were recorded using an Omron 

digital monitor (Omron Corporation, Kyoto, Japan) after participants were seated for ≥10 

minutes, with at least 2 minutes rest between measurements. Participants were classified as 

having hypertension if their resting blood pressure was ≥140/90mmHg (National Institute for 

Health and Care Excellence, 2011) and as pre-diabetic if their HbA1c reading was 6.0-6.4% 

(National Institute for Health and Clinical Excellence, 2012). 

Physical functioning and aerobic fitness 

Upper body strength was assessed by hand grip strength using a handheld Takei dynamometer 

(Takei Scientific Instruments, Tokyo, Japan). The Canadian Physical Activity, Fitness and 

Lifestyle Approach grip strength protocol was used (Canadian Society for Exercise Physiology, 

2004). Lower body strength was assessed on the dominant leg by the quadriceps maximal 

voluntary contraction (QMVC) using the DAVID G200 knee extension machine (David Health 

Solutions Ltd., Helsinki, Finland). Aerobic fitness was assessed using the modified Canadian 

Aerobic Fitness Test (mCAFT) (Canadian Society for Exercise Physiology, 2004). Participants 

were excluded from the mCAFT if they were aged ≥70 years, if their blood pressure was more 
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than 140/95mmHG, if they reported sufficient mobility-related problems or any other 

contraindications to exercise testing according to the Physical Activity Readiness 

Questionnaire (Warburton et al., 2011). Stage achieved on the mCAFT was converted to an 

estimate of O2 cost, entered alongside age and weight, into an algorithm to calculate predicted 

VO2max (Weller et al., 1993). 

Behaviour change techniques 

Prior to starting the intervention, the researcher will implement the default settings for levels 

of physical activity (BCT 1.1: Goal setting [behaviour]) (i.e. 10,000 steps and 10 floors 

climbed) and glucose (BCT 1.3: Goal setting [outcome]) (i.e. 4.0-5.9 mmol/L). Participants 

will also receive haptic feedback (BCT 7.1: Prompts/cues; i.e. a gentle vibration) as a reminder 

to move by the Fitbit 10 minutes prior to the end of each hour (default 09:00-18:00) if 250 steps 

have not been taken. In relation to the other behaviour change techniques, participants will be 

able to monitor physical activity levels using the Fitbit Charge 2 (BCT: 2.3 Self-monitoring of 

behaviour) and glucose levels using the Freestyle Libre (BCT: 2.4: Self-monitoring of 

outcome(s) of behaviour) which is a minimally-invasive device that presents feedback about 

glucose (BCT: Biofeedback).  

Statistical analyses 

Descriptive statistics were reported as mean (SD) for continuous variables and frequency (%) 

for categorical variables. Identification of any statistical differences did not necessarily result 

in their inclusion as covariates within the main analysis (due to small sample size). Analysis of 

variance (ANOVA) were conducted to compare between intervention groups for continuous 

variables and chi-square tests for between group comparisons for categorical, unpaired 

variables. If a significant chi-square statistic was revealed, unadjusted standardised residuals 

were computed to identify significant pairwise differences. If the unadjusted standardised 

residuals were >1.96 or <-1.96 then the z-score was classified as significant. McNemar tests 

were used to assess changes in categorical, paired variables over time. Two-way repeated 

measures ANOVAs were used to compare between groups over the intervention period. 

Mauchly’s test of sphericity was examined to assess sphericity of the data, with Greenhouse-

Geisser statistics used when the assumption of sphericity was violated. Participant engagement 

metrics were entered as the dependent variable whilst time (within-subject), group (between-

subject) and time*group interactions were examined. Two-way repeated measures analysis of 

covariance (ANCOVA) was used to assess changes in step count over the intervention period 
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between groups, controlling for global wear time (average wear min/day over seven weeks). 

Pairwise differences were identified using a post-hoc Bonferroni correction. All data were 

analysed using Statistical Package for Social Sciences Version 24.0 (SPSS Inc. Chicago, IL) 

with alpha set to 0.05. 

4.4. Results 

Participant recruitment 

Between 16th May and 30th August 2017, there were a total of 525 visitors to the SIGNAL 

Study risk assessment website tool. Of these, 340 (64.8%) completed the survey and 58 (17.1% 

of those who completed the survey) identified as eligible (Figure 4.3). Forty-five individuals 

(77.6% of those eligible and 13.2% of those completing the survey) consented to take part and 

no participant withdrawals were recorded. The forty-five participants were recruited via 

participant databases (n=12), local businesses (n=11), social media (n=10), university 

employees/alumni (n=8) and word of mouth (n=4). 
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Figure 4.3. A flow diagram of recruitment, enrolment and allocation for the study. G4GPA2 

represents glucose feedback (4 weeks) followed by glucose and physical activity feedback (2 

weeks); PA4GPA2 represents physical activity feedback (4 weeks) followed by glucose and 
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physical activity feedback (2 weeks) and GPA6 represents glucose and physical activity 

feedback (6 weeks). 

Participant characteristics 

Forty-five participants (60% female) had a mean age of 56±8.7 (range: 40-77 years) and most 

reported themselves as White British (88.9%) (Table 4.1 and Table 4.2). Seven participants 

(15.6%) were identified as being at high-risk of developing Type 2 diabetes and 3 participants 

(6.7%) were classified as living with prediabetes. Seventeen (37.8%) were overweight, 13 

(28.9%) had obesity and 10 (22.2%) had severe obesity. Seventeen participants (37.8%) were 

classified as hypertensive. Thirty-nine participants (86.7%) did not comply with the UK 

physical activity guidelines at baseline. 
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Table 4.1. Participant baseline demographics stratified by group, reported as mean±SD or N 

(%) 

 Whole 

Sample 

(n=45) 

G4GPA2 

(n=15) 

PA4GPA2 

(n=15) 

GPA6 

(n=15) 

Demographics     

Age (yrs) 56±8.7 58.8±9.8 55.3±8.8 53.9±7 

Female gender N (%) 27 (60) 9 (40) 9 (60) 12 (80) 

Employment status N (%)     

     Employed 30 (66.7) 9 (60) 10 (66.7) 11 (73.3) 

     Retired 10 (22.2) 4 (26.7) 4 (26.7) 2 (13.3) 

     Other 5 (11.1) 2 (13.3) 1 (6.7) 2 (13.3) 

Education level N (%)     

    Undergraduate or higher 24 (46.7) 12 (80)* 3 (20) 9 (60) 

    Lower than Undergraduate 21 (46.7) 3 (20)* 12 (80) 6 (40) 

Household income N (%)     

      ≥£52,000 19 (42.2) 6 (40) 5 (33.3) 8 (53.3) 

     £18,000-£51,999 18 (40) 7 (46.7) 7 (46.7) 4 (26.7) 

     <£18,000 6 (13.3) 2 (13.3) 2 (13.3) 2 (13.3) 

      Unknown 2 (4.4) 0 1 (6.7) 1 (6.7) 

Postcode deprivation N (%)     

     ≤8.49 (least deprived) 20 (44.4) 6 (40) 7 (46.7) 7 (46.7) 

     ≥34.18 (most deprived) 3 (6.7) 0 1 (6.7) 2 (13.3) 

Diabetes knowledge     

    DKT test score 10.7±3 11.1±2.5 9.7±3.5 11.3±2.8 

 

Table notes: G4GPA2 represents glucose feedback (4 weeks) followed by glucose and physical 

activity feedback (2 weeks); PA4GPA2 represents physical activity feedback (4 weeks) followed 

by glucose and physical activity feedback (2 weeks) and GPA6 represents glucose and physical 

activity feedback (6 weeks). Abbreviations: DKT, Diabetes Knowledge Test. *, significant 

difference between G4GPA2 and PA4GPA2 (p=.004). Postcode deprivation offers ten categories 

but only the two most extreme categories have been included in this table for presentation 

reasons. 
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Table 4.2. Participant baseline characteristics stratified by group, reported as mean±SD or N 

(%) 

 Whole Sample 

(n=45) 

G4GPA2 

(n=15) 

PA4GPA2 

(n=15) 

GPA6 

(n=15) 

Body composition 

Height (cm) 168.4±9.5 171.2±9.4 167±9.6 167±9.6 

Weight (kg) 89.6±19.7 86.7±16.1 96.6±23.3 85.5±18.3 

BMI (kg/m2) 31.6±6.9 29.6±4.9 34.8±9.4 30.4±4.3 

Waist circumference 

(cm) 
101.5±14.8 98.8±14.3 108.4±15.2 97.4±13.3 

Cardio-metabolic health 

Prediabetic (%) 3 (6.7) 1 (6.7) 0 2 (13.3) 

HbA1c (%) 5.6±0.3 5.6±0.3 5.5±0.3 5.6±0.3 

SBP (mmHg) 132±15.8 135.9±15.1 131.7±16.3 128.5±16.2 

DBP (mmHg) 81.7±10.4 82.7±10.6 79.9±9.4 82.3±11.5 

Physical function 

Grip strength 

(combined, kg) 
69.1±22.2 75.8±23.1 64.6±21.1 67±22.4 

Quadriceps strength 

(dominant leg, Nm) 
124.3±64.1 137.1±73.8 109.4±39.4 125.5±73 

Calculated VO2max 

(ml/kg/min)a 
36.7±6.7 37.4±8.2 35.5±5.0 37±6.8 

ActiGraph physical activityb 

Number of valid days 6.6±0.7 6.8±0.8 6.5±0.7 6.5±0.6 

Valid day, N (%, c%)     

     7 days     31 (68.9, 68.9) 14 (93.3, 93.3) 9 (60, 60) 8 (53.3, 53.3) 

     6 days 10 (22.2, 91.1) 0 (0, 93.3) 4 (26.7, 86.7) 6 (40, 93.3) 

    5 days 3 (6.7, 97.8) 0 (0, 93.3) 2 (13.3, 100) 1 (6.7, 100) 

    4 days 1 (2.2, 100) 1 (6.7, 100) 0 (0, 100) 0 (0, 100) 

Wear time (min/day) 861.5±86.9 911.4±88.5* 833.2±74 839.8±80 

Step count 6905±3776 7331±3433 5637±1963 7748±5148 

CPM 328.7±144.6 342.2±107.6 281.3±123.1 362.5±187.5 

Sedentary (min/day) 540.1±95.3 569.9±90.1 536.6±89.9 513.9±103.2 

Light PA (min/day) 288.2±83.4 304.4±97.1 271.4±77.3 288.7±76.7 

MVPA (min/day) 33.1±28.4 37.0±21.2 25.2±18.6 37.2±40.5 

MVPA in bouts ≥10 

minutes (min/day) 
10.1±21.9 9.6±14.4 5±6.2 15.8±34.5 

Met physical activity 

guidelinesc N (%) 
5 (11.1) 2 (13.3) 1 (6.7) 2 (13.3) 

Fitbit physical activityb 

Number of valid days 6.7±0.7 6.8±0.8 6.5±0.8 6.8±0.4 

Valid day, N (%, c%)     

     7 days     36 (80, 80) 14 (93.3, 93.3) 10 (66.7, 66.7) 12 (80, 80) 

     6 days 7 (15.6, 95.6) 0 (0, 93.3) 4 (26.7, 93.4) 3 (20, 100) 

    5 days 0 (0, 95.6) 0 (0, 93.3) 0 (0, 93.4) 0 (0, 100) 

    4 days 2 (4.4, 100) 1 (6.7, 100) 1 (6.7, 100) 0 (0, 100) 

Wear time (min/day) 865.1±69.6 912.4±63.3 832±61.1 851±60.7 

Step count 8575±4530 9329±4251 7650±4007 8747±5367 
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Table notes: G4GPA2 represents glucose feedback (4 weeks) followed by glucose and physical 

activity feedback (2 weeks); PA4GPA2 represents physical activity feedback (4 weeks) followed 

by glucose and physical activity feedback (2 weeks) and GPA6 represents glucose and physical 

activity feedback (6 weeks). Abbreviations: c, cumulative; CPM, counts per minute; DBP, 

diastolic blood pressure; MVPA, moderate-to-vigorous physical activity; PA, physical activity; 

SBP, systolic blood pressure. aN=32, N=13 excluded (n=6, self-reported mobility issues; n=4, 

resting diastolic blood pressure ≥95 mmHg; n=3, aged ≥70 years); fitness score based on age 

and sex of each participant. bunadjusted values are presented. c150 min/week of moderate-to-

vigorous physical activity in bouts of ≥10 minutes (using MVPA in bouts of ≥10 min/day * 7) 

or 75 min/week of vigorous-intensity physical activity. *, significant difference between 

G4GPA2 and PA4GPA2 (p=.035). 

Primary outcomes 

User engagement 

Freestyle Libre – scan frequency and characteristics 

A key engagement metric for the LibreLink app was how often participants scanned the glucose 

sensor. The average number of scans each day did not differ significantly between G4GPA2 

and GPA6 groups (7.5±4.9 versus 7.7±4.3 scans/day, p=.883; Figure 4.4). However, it was 

noted that the number of scans/day significantly decreased over the six weeks on average for 

these groups (9.2±5.1 scans/day in week 1 to 5.9±3.4 scans/day in week 6, p=.016). 
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Figure 4.4. Average daily number of Freestyle Libre scans across the intervention period. 

Figure notes: Point of unmasking glucose feedback at (a) for G4GPA2 and GPA6 and (b) for 

PA4GPA2. Note that the compulsory engagement threshold was 3 scans/day. G4GPA2 

represents glucose feedback (4 weeks) followed by glucose and physical activity feedback (2 

weeks); PA4GPA2 represents physical activity feedback (4 weeks) followed by glucose and 

physical activity feedback (2 weeks) and GPA6 represents glucose and physical activity 

feedback (6 weeks). 

Figure 4.5 illustrates when participants scanned the glucose monitor across an average 24-hour 

period. Participants scanned their glucose sensor significantly more often in the morning, 

afternoon and evening periods compared with overnight (27.9±4.8% vs. 31±4.8% vs. 

33.6±6.2% vs. 7.6±7.4%, respectively, p<.001) and most frequently between 21:00-22:00. No 

other significant differences between times of day were observed. 

 

Figure 4.5. Scan frequency across the 24-hour period. G4GPA2 represents glucose feedback (4 

weeks) followed by glucose and physical activity feedback (2 weeks); PA4GPA2 represents 

physical activity feedback (4 weeks) followed by glucose and physical activity feedback (2 

weeks) and GPA6 represents glucose and physical activity feedback (6 weeks). 

In an effort to describe what information participants were presented with on the LibreLink 

app when they scanned the glucose sensor, the characteristics of the glucose feedback are 

presented in Table 4.3. Of all the scans conducted by participants during the study period 

(n=10,582), the majority of scans presented a changing slowly (i.e. ‘→’) trend arrow (80%) 

and were most often in the normal range (59%). Participants saw that their glucose level was 

rising on 10% of scans and that their glucose was above the normal range on 36% of scans. 
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Participants in GPA6 saw a significantly greater proportion of scans classified as falling quickly 

compared with PA4GPA2 (1% versus 0.2% of scans, p=.015). No other significant differences 

were observed between groups. 

Table 4.3. Scan information displayed to users as a proportion (%) of total scans accumulated, 

reported as mean±SD 

Table notes: G4GPA2 represents glucose feedback (4 weeks) followed by glucose and physical 

activity feedback (2 weeks); PA4GPA2 represents physical activity feedback (4 weeks) followed 

by glucose and physical activity feedback (2 weeks) and GPA6 represents glucose and physical 

activity feedback (6 weeks). *, significant difference between PA4GPA6 and GPA6 (p=.015). 

Freestyle Libre – app usage 

To see whether participant engagement reduced over time, it was reported that time spent on 

the LibreLink app decreased over the six weeks among participants who had access to glucose 

feedback throughout the whole intervention. G4GPA2 and GPA6, on average, reduced their time 

spent on the LibreLink app from 20.2±20 min/day in week 1 to 9.4±14.6min/day in week 6 

(p=.007). When comparing these two groups, it was noted that G4GPA2 spent significantly 

more time on the LibreLink app than GPA6 over the six weeks (16.1±11.9 versus 

8.4±8.7min/day, p=.026). 

Fitbit – app usage 

The amount of time spent on the Fitbit app decreased significantly over the six weeks among 

participants that had access to feedback for the whole intervention (7.1±3.8min/day in week 1 

to 3.8±2.9min/day in week 6, p=.003). However, the average amount of time spent on the Fitbit 

app did not significantly differ between PA4GPA2 and GPA6 (14.8±11.3 versus 

5.2±3.1min/day, respectively, p=.468). 

 Whole sample 

(n=45) 

G4GPA2 

(n=15) 

PA4GPA2 

(n=15) 

GPA6 

(n=15) 

Glucose Rising Quickly ↑ 1.9±1.8 1.7±1.4 2.3±2.6 1.7±1 

Glucose Rising ↗ 8.2±3.8 8.3±3.2 7.8±5.5 8.5±2.1 

Glucose Changing Slowly → 80.3±8.4 79.9±5.5 81.7±12.5 79.3±5.4 

Glucose Falling ↘ 5.6±2.3 6.3±1.7 4.8±2.9 5.8±1.9 

Glucose Falling Quickly ↓ 0.7±0.8 0.8±0.9 0.2±0.6 1±0.7* 

No trend arrow 3.2±3.3 2.7±1.9 3.2±5 3.7±2.3 

Above range (≥6.0 mmol/L) 36.2±14.3 38±13 36.8±16.9 33.8±13.2 

Normal range (4.0-5.9 

mmol/L) 

59.2±12.8 56.7±9.5 59.8±16.5 61.3±11.8 

Below range (<4.0 mmol/L) 4.6±6.2 5.3±7.5 3.5±6 4.9±5 
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Fitbit – syncs 

Despite participants spending less time on the Fitbit app, the number of syncs per day did not 

change significantly during the intervention period (i.e. week 1: 6.9±7.8 syncs/day versus week 

6: 6.5±10.2 syncs/day, p=.752) and did not differ significantly between PA4GPA2 and GPA6 

(11.6±12.5 versus 10.7±15.8 syncs/day, p=.098). 

Fitbit – changes to default goal settings 

Given that goal-setting is often incorporated in behavioural interventions, it was important to 

record whether participants changed the default settings. In total, 13 participants (28.9%) 

changed at least one of the five physical activity goals on the Fitbit app (daily step count, kcal 

burnt, distance, active minutes or floors). Within the specific groups, G4GPA2 altered steps 

(n=3, 20%), calories (n=3, 20%), distance (n=2, 13.3%), active minutes (n=2, 13.3%) and 

number of floors (n=3, 20%). Steps were increased from 10,000 to 11,500 and 15,000 and 

reduced to 6,000, active minutes were increased from 30 to 40 min and reduced to 20 min and 

floors increased from 10 to 15 and 25 and reduced to 5 and 1 per day. In PA4GPA2, only steps 

(n=3, 20%) and active minutes (n=1, 6.7%) were changed; with steps reduced to 7,000, 6,000 

and 3,000 whilst active minutes increased to 200 min. In GPA6, three participants (20%) 

changed their steps and one participant (6.7%) changed the number of floors. Step count goal 

was increased to 14,000 and reduced to 8,000 steps/day whilst floors reduced from 10 to 8 per 

day. 

Secondary outcomes 

Feasibility (practicality) 

Freestyle Libre – deploying sensors 

To assess the practicality of deploying the glucose sensors, the number of excess deployed 

monitors were examined. 157 sensors were deployed in total; 22 more than the intended 

number of sensors and averaging 3.5±1.4 sensors/participant. Only 17 participants (37.8%) 

completed the study using the minimum (expected) three sensors. In total, 16 participants 

(35.6%), 7 (15.6%), and 1 (2.2%) required one, two or three additional sensors, respectively. 

Additional sensors were required due to being faulty (29.3%) or displaced whilst worn (70.7%). 

Freestyle Libre – compliance to minimum scanning requirement 

Compliance to scanning data revealed that 27 participants (60%) set the LibreLink app to offer 

reminders to scan the glucose sensor if seven to eight hours had lapsed since the preceding scan 
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(via a smartphone notification). Of these individuals, only two participants (4.4%) (from 

G4GPA2) adjusted the reminder; changing it to remind them five or six hours after the preceding 

scan. Participant compliance to scanning was important because it impacted data capture, with 

missing data a key indicator of how much time lapsed before the participant scanned (Table 

4.4). No significant differences in the number of missing minutes, number of missing events 

or data capture of glucose levels were revealed between the groups and the amount of missing 

data did not change significantly over the intervention.  
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Table 4.4. An outline of data capture from the Freestyle Libre, reported as mean±SD 

Table notes: G4GPA2 represents glucose feedback (4 weeks) followed by glucose and physical activity feedback (2 weeks); PA4GPA2 represents 

physical activity feedback (4 weeks) followed by glucose and physical activity feedback (2 weeks) and GPA6 represents glucose and physical 

activity feedback (6 weeks). 

At time of writing no guidance was available for the missing data threshold but to date, flash glucose monitoring is mainly purchased privately 

and is only in use by selected NHS patients (NICE, 2017). In comparison, continuous glucose monitoring is also not routinely provided to people 

at risk, nor diagnosed with Type 1 or Type 2 diabetes (NICE, 2015a, 2015b) but can be in Type 1 diabetics if individuals are willing to commit to 

using it ≥70% of the time. 70% of the time refers to minimising missing data to <432 min/day. 

 Total data capture  

(%) 

Number of missing data events  

(per day) 

Amount of missing data  

(min/day) 

 
G4GPA2 PA4GPA2 GPA6 G4GPA2 PA4GPA2 GPA6 G4GPA2 PA4GPA2 GPA6 

Week 1 87.6±2.7  86.7±4.8 0.5±0.5  0.7±0.5 27.4±6.5  28.0±9.8 

Week 2 87.4±15.7  93.7±4.5 0.6±0.6  0.8±0.7 27.1±31.7  13.0±9.2 

Week 3 87.2±16.5  91.9±6.5 0.6±0.4  0.8±0.7 26.8±33.6  17.1±13.0 

Week 4 82.0±21.5  91.1±9.1 0.7±0.5  0.7±0.6 37.7±44.0  18.8±18.6 

Week 5 85.8±14.7 80.2±11.7 89.0±11.6 0.8±0.7 0.8±0.6 0.9±0.6 29.8±30.0 41.6±23.3 22.7±23.8 

Week 6 83.1±17.5 73.2±28.6 89.6±10.8 0.9±0.7 0.7±0.6 0.9±0.5 35.1±35.7 55.3±58.5 21.6±22.1 
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Fitbit – compliance to minimum syncing and charging requirement 

To monitor participant compliance with syncing and charging the Fitbit, it was recorded that 

24 participants (53.3%) did not receive any reminder email prompts to sync the Fitbit. Of the 

participants who received an email prompt, 12 (50%) received a single prompt whilst 5 

(20.8%), 3 (12.5%), 2 (8.3%) and 2 (8.3%) received 2, 3, 4 or 5 prompts, respectively. It was 

noted that all participants responded because new syncs were identified after the email prompt 

had been sent. For Fitbit charging compliance, 35 participants (77.8%) had at least one 

occurrence of a battery status of 25-75% whilst nine participants (20%) recorded a battery 

status of <25%. Despite the need to deliver email prompts, no losses in data were recorded.  

Feasibility (acceptability) 

Smart phone usage tracking 

All participants consented to the full coverage option for Ethica Data (all 14 data sources 

recorded, including app usage, GPS and screen state). However, despite consenting to having 

their app usage monitored, it was noted that seven participants (15.6%) had no LibreLink app 

usage data and nine participants (20%) had no Fitbit app usage data available. 

Fitbit – wear compliance 

To determine the acceptability of wearing a Fitbit, it was noted that 36 participants (80%) 

provided seven valid days of Fitbit data, seven participants (15.6%) provided six valid days 

and two participants (4.4%) provided four valid days (6.7±0.7 valid days/person). Number of 

valid days did not differ significantly between groups. However, on average, G4GPA2 wore the 

Fitbit significantly longer each day than PA4GPA2 and GPA6 (912.4±63.3 vs. 832±61.1 vs. 

851±60.7 min/day, respectively, p=.002). During the intervention period, 22 participants 

(48.9%) provided the full 42 days of valid Fitbit wear; averaging 40.1±3.2 valid days/person. 

No significant differences in the number of valid days (p=.175) nor wear time (p=.508) were 

observed between groups. Furthermore, wear time did not differ significantly through the 

intervention period (p=.245). 

Behaviour Change 

Despite participants gaining access to their physical activity feedback, no group differences 

(p=.593) nor differences over time (p=.373) were revealed for step count (Figure 4.6); 

therefore, step count was maintained throughout the intervention. Albeit not significant, 

meaningfully increases in step count were observed from the fourth to the fifth week of the 
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intervention for G4GPA2 (+1071 steps) and PA4GPA2 (+1214 steps) but not for GPA6 (-12 

steps). These noticeable increases reflected the point of unmasking physical activity and 

glucose feedback, respectively. Glucose levels also did not differ significantly between groups 

(5.6±0.5 versus 5.5±0.4 mmol/L, p=.719) and did not change significantly over the six weeks 

(from 5.6±0.7 mmol/L in week 1 to 5.5±0.6 mmol/L in week 6, p=.724). 

 

Figure 4.6. Step count from baseline to week 6 of the intervention, reported as EMM±SE. 

Figure notes: G4GPA2 represents glucose feedback (4 weeks) followed by glucose and physical 

activity feedback (2 weeks); PA4GPA2 represents physical activity feedback (4 weeks) 

followed by glucose and physical activity feedback (2 weeks) and GPA6 represents glucose 

and physical activity feedback (6 weeks). Error bars represent standard error. Point of 

unmasking physical activity feedback occurred at (a) for PA4GPA2 and GPA6 and (b) for 

G4GPA2. 

Changes in technology readiness, health status and attitudes toward health 

Baseline and follow-up questionnaires were completed to observe whether participants 

changed their technology readiness, health status and risk perception of diabetes. No significant 

differences between baseline and follow-up nor between groups were observed. Table 4.5 

outlines key frequency data for technology readiness and perceived risk of developing diabetes 

questionnaires. Although not statistically significant, four fewer participants (-8.9%) were 

classified as Skeptic (high optimism, moderate innovativeness and low levels of discomfort and 
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insecurity) about technology in general and five more participants (+11.1%) were classified as 

Pioneer (high levels of optimism, innovativeness, discomfort and insecurity). 

At baseline, to profile the health status of the sample, it was recorded that 14 participants 

(36.8%) reported mobility problems, two participants (5.3%) reported problems relating to self-

care, nine (23.7%) reported problems performing usual activities, 25 (65.8%) reported 

discomfort/pain and nine (23.7%) reported problems relating to anxiety/depression. From 

baseline to follow-up, participants reported a similar perceived overall health score (81±13.5 

versus 79.2±17.1 (out of 100), respectively, p=.340). 

Table 4.5. Descriptives for questionnaire responses relating to general technology readiness 

and perceived risk for developing diabetes, reported as N (%). 

 Whole sample (n=45) 

Baseline Follow up 

TRI 2.0a   

     Skeptic 17 (37.8) 13 (28.9) 

     Explorer 14 (31.1) 13 (28.9) 

     Avoider 2 (4.4) 3 (6.7) 

     Pioneer 2 (4.4) 7 (15.6) 

    Hesitator 10 (22.2) 9 (20) 

RPS-DD, number of respondents who agreed   

I feel that I have little control over risks to my health 4 (8.9) 3 (6.7) 

If I am going to get diabetes, there is not much I can do about it  1 (2.2) 1 (2.2) 

I think that my personal efforts will help control my risks of getting 

diabetes 
43 (95.6) 43 (95.6) 

People who make a good effort to control the risks of getting diabetes 

are much less likely to get diabetes 
44 (97.8) 41 (91.1) 

I worry about getting diabetes  30 (66.7) 27 (60) 

Compared to other people of my same age and sex (gender), I am less 

likely than they are to get diabetes 
12 (26.7) 12 (26.7) 

Compared to other people of my same age and sex (gender), I am less 

likely than they are to get a serious disease  
13 (31.1) 11 (24.4) 

Worrying about getting diabetes is very upsetting 15 (33.3) 16 (35.6) 

aSkeptic: low levels of optimism, discomfort and insecurity but moderate levels of 

innovativeness; Explorer: high levels of optimism and innovativeness but low levels of 

discomfort and insecurity; Avoider: low levels of optimism and innovativeness but high levels 

of discomfort and insecurity; Pioneer: high levels of optimism, innovativeness, discomfort and 

insecurity; and Hesitator: high levels of optimism, low levels of innovativeness and moderate 

levels of discomfort and insecurity. Abbreviations: TRI, Technology Readiness Index; RPS-

DD, Risk Perception Survey for Developing Diabetes 
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4.5. Discussion 

Summary 

The aim of the present study was to examine participant engagement with two digital health 

technologies presenting physical activity and glucose feedback over six weeks and observe 

how feasible the intervention was to implement. The primary findings revealed that participant 

engagement (app usage as well as glucose scan frequency) was initially high upon receiving 

the devices and decreased over time but was sustained above minimum levels at six weeks (i.e. 

above the level of ‘compulsory engagement’ as required), and more than a quarter of 

paticipants changed at least one of their physical acivity goals. That said, there were hurdles to 

study recruitment given the imature nature of the glucose sensing technology and companion 

feedback apps (i.e. need for compatible smartphone); however, this will likely be overcome in 

the very near future as iOS support becomes available. Despite this, the study was feasible to 

implement with high participant adherence to device wear, low amounts of missing data and 

no participants withdrew from the intervention.  

User engagement 

App usage with the Fitbit and LibreLink apps  

In the present study, app usage was used as a proxy indicator for participant engagement. 

Findings demonstrated an initial flurry of interest in accessing the LibreLink and Fitbit apps 

(20 min/day and 7 min/day, respectively). By the final week of the intervention, participants 

were still spending an encouraging amount of time on the apps (9 min/day on the LibreLink 

app and 4 min/day on the Fitbit app). This decline in engagement over time was expected given 

that initial novelty of technologies can fade over time (Lazar et al., 2015). Also, reductions in 

app usage does not necessarily imply a reduction in engagement; instead, becoming 

increasingly familiar with navigating the app interface to digest feedback may have led to users 

becoming more efficient. Despite this, it has been shown elsewhere that apps can experience 

fewer than three visits per week (Flurry Analytics, 2009), that only 16% of users access a health 

app more than twice after downloading it (Pramis, 2013) and that 43% of users stop accessing 

weight-loss apps after four weeks (Laing et al., 2014). That said, our observation that 

participants were continuing to access both apps into the sixth week was an encouraging 

finding. Other particularly interesting findings were that app usage for the LibreLink app was 

slightly greater than Fitbit app usage (11 min/day versus 8 min/day, respectively). In the present 

study, Fitbit app usage may have been lower because up-to-date physical activity feedback was 
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also displayed on the wrist-worn device; perhaps limiting participant interest in accessing the 

more comprehensive (and historical) physical activity feedback on the smartphone app. 

Together, these findings demonstrate that objective monitoring of participant engagement 

provided valuable insight into how participants used the digital health technologies deployed. 

Scanning and syncing frequency 

In addition to a reduction in time spent on the health apps, glucose scanning frequency reduced 

from approximately 9 scans/day in the first week to 6 scans/day in the last week. Similarly to 

app usage, participant engagement may have been at its greatest at the start of the intervention 

period because the opportunity to receive glucose feedback was likely interesting and novel 

(Lazar et al., 2015). That said, it was promising to find that participants were maintaining an 

average daily number of scans that was double the compulsory level of engagement of three 

scans/day. This finding suggests that participants may have found the glucose feedback (or 

simply the act of scanning) to be sufficiently interesting six weeks later. However, it was 

surprising to observe that PA4GPA2 participants did not scan the glucose sensor as often as 

G4GPA2 and GPA6 did upon the day of unmasking (3.9 versus 8.8 scans/day, respectively). 

This may be because PA4GPA2 participants became accustomed to wearing the glucose sensor 

over the four weeks and having to wait to access its feedback may have brought down its initial 

‘wow’ factor, whereas G4GPA2 and GPA6 had immediate access upon applying the sensor, 

bringing with it greater levels of engagement. In addition, the suggestion that participants 

scanned most often whilst in the ‘target range’ brings with it complexity as participants were 

very likely to go above/below this range. Moving forward, with increasing technological 

sophistication, perhaps a dynamic target range would be more suitable for all users of this 

technology; regardless of presence of a diabetes diagnosis. Participants tended to scan most 

often between 21:00-22:00, which may infer a potential key opportunity to deliver summative 

end-of-day feedback to users (in addition to real-time feedback). 

In contrast, the frequency with which participants synced the Fitbit did not change over the six 

weeks (7 syncs/day). This high observed frequency of syncing was unlikely reflective of 

participants accessing the Fitbit app seven times per day. Instead, the author acknowledges that 

the automatic ‘all day sync’ feature may have been disenabled, either by technical error 

(settings reverting to default configuration) or participants adjusting the settings (via the app). 

Therefore, labelling number of syncs as a reliable metric of engagement is hindered by not 

knowing with certainty whether the sync was performed by the participant opening the app, 

because they were interested in their feedback, or whether it was an automatic sync. Therefore, 



Study Three: SIGNAL Results 
 

126 

 

the present study recommends that syncing frequency may instead be better applied as a metric 

to monitor data transfer. 

Changing physical activity goals 

In the present study, participants were instructed how to change their goals via the Fitbit app 

and informed they could change them if they wished to (but did not have to). Interestingly, 

almost a third of participants in the present study decided to change at least one of five physical 

activity goals. Most (69%) of the participants who changed a physical activity goal changed 

their step count goal which may in part be because it was the primary goal displayed via device 

and Fitbit app. Moreover, step count is an easily understood metric, a characteristic that may 

partly explain why pedometers (or step counters) have an important role to play in physical 

activity interventions (Bravata et al., 2007). It was noted that six of the nine changes to step 

count were reductions. Personalising goals to be more achievable for individuals (by increasing 

or decreasing the target) have previously been shown to encourage greater feedback 

engagement (Laing et al., 2014). The author acknowledges that participants may not have 

personalised the goals because they had uncertainty navigating the app, were unsure of what 

these values should be for them, or they may have been content with the default values. 

Intervention feasibility and behaviour change 

Feasibility of the recruitment strategy 

Given the intention of recruiting individuals at risk of developing type 2 diabetes, who have 

been prioritised to prevent disease onset (Bansal, 2015), it is important to assess the feasibility 

of the recruitment strategy implemented. The inclusion criteria revealed that only 17% of 

individuals who expressed an interest were eligible to take part. Almost two-thirds of interested 

individuals were ineligible because their level of diabetes risk was ‘low’. In addition, 

approximately one-fifth of adults were ineligible because they did not own a compatible 

Android smartphone. Despite more smartphone sales in 2017 (Statistica, 2018) and having 46% 

of the UK market share (Statistica, 2017), this was a significant contributor to ineligibility. The 

authors expect the technologies to soon be accessible on iOS and were only a concern in the 

present study due to the companion app being immature. The final sample revealed that only 

7% were confirmed as living with prediabetes. The risk assessment tools, as employed in the 

present study, can identify individuals with multiple risk factors of developing type 2 diabetes. 

These multiple risk factors can increase an individual’s likelihood of being pre-diabetic, but 

may not necessarily be at that moment in time, pre-diabetic (Cowie et al., 2009). Previous 
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larger studies, with in excess of 3,000 participants, have identified 17.5-26.5% of screened 

individuals presenting impaired glucose regulation (Gray et al., 2012; Webb et al., 2011). As a 

result, future screening efforts are encouraged to target individuals at greatest risk of 

developing type 2 diabetes by also using a confirmatory HbA1c reading.  

Feasibility of deploying these technologies 

Given the novel approach of deploying digital health technologies to present behavioural and 

physiological feedback simultaneously, it was important to assess its feasibility. With all 

participants attending appointments and no non-usage attrition or participant withdrawals 

recorded, the study is deemed feasible. Data capture from the Fitbit and Freestyle Libre also 

demonstrated great feasibility (40 valid days of physical activity data and 80-94% glucose data 

capture). Previous studies have, however, demonstrated high wear compliance (more than ten 

hours on 95% of days) for the Fitbit (Cadmus-Bertram et al., 2015) which highlights wear-

ability. An important limitation was the frequency of accidental displacement of the glucose 

sensors which saw only 38% of participants using three (expected) glucose sensors. Previous 

studies have reported mild incidences of skin irritation, bruising and bleeding in <9% of cases 

and were considered typical cases for medical-grade adhesives (Bailey et al., 2015; Bolinder 

et al., 2016). Given the resulting cost implications of providing replacements (£57.95/sensor), 

efforts are needed to minimise sensor displacement. Displacements in the present study may 

be in part because of positioning or it may be that participants forgot they were wearing the 

sensors because participants were very unfamiliar with wearing a glucose sensor. Given other 

digital health technologies are largely worn elsewhere on the body (e.g. activity monitors on 

the wrist similarly to watches) (Sanders et al., 2016), it is an important point to consider 

whether the sensor may be better positioned in a more protected location (e.g. abdomen). 

Overall, the present study supports the feasibility and potential of these two digital health 

technologies for continuous health monitoring. 

Changes in physical activity and glucose 

It was envisaged that the conduit through which people may reduce their risk would be via 

monitoring their lifestyle behaviours and the physiological consequences of those behaviours. 

In the present study, no significant increases in step count were observed (averaging 8589 and 

9267 steps at baseline and week 6, respectively). However, despite no significant increase in 

step count, it is important to highlight that participants in G4GPA2 did increase their step count 

by approximately 1,000 steps upon unmasking physical activity feedback after four weeks. 
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Similarly, and an even more intriguing finding, was that participants in PA4GPA2 also 

increased their step count by approximately 1,000 steps upon unmasking of glucose feedback. 

By comparison, GPA6 participants (i.e. those having access to both physical activity and 

glucose feedback throughout) had reduced their step count by 12 steps at the same week 

timepoint. The introduction of ‘new’ feedback may have driven the results of these formed 

mentioned participant groups; however, it may also be partially due to these participants having 

contact with the research team which may have reignited motivation or perhaps desire to please 

the researchers. 

Another finding of interest was the fact that despite no guidance being offered by the research 

team as to when or why to scan the glucose sensor, 36% of scans were when glucose levels 

were above the target range. This interesting finding may suggest that participants may have 

had some understanding about when and why glucose levels may fluctuate (e.g. to observe the 

effects of dietary intake and/or physical activity or prolonged sedentary time). To help 

encourage this from the outset, previous studies have incorporated education to illustrate 

activity-related reductions in glucose to inform participants of the health benefits of physical 

activity (Allen et al., 2008; Bailey et al., 2016). Moving forward, it is important to consider not 

only how to present information but also how to facilitate understanding (Pagliari, 2007) so 

incorporating personalised education may be a key addition to encourage behaviour change. 

Moreover, such educational strategies may benefit from employing a form of gamification as 

a way to gradually expose users to feedback by having users complete challenges (Piwek et al., 

2016). 

Strengths and limitations 

The strengths of this study include the use of novel, minimally-invasive digital health 

technologies to present feedback about physical activity and glucose levels. Deploying these 

two technologies in combination offered valuable insight into how individuals at moderate-to-

high risk of developing type 2 diabetes engaged with the devices and apps. For the 

quantification of participant engagement, multiple platforms were used to objectively and 

remotely monitor non-usage and dropout attrition. Furthermore, using Ethica Health allowed 

the research team to capture participant preference toward data sources (i.e. if any of them 

raised concern) and permitted a dynamic consent strategy by allowing participants to remotely 

withdraw from the study at any time. 
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The limitations of the present study include not obtaining glucose levels at baseline (for any 

participants) and from PA4GPA2 participants who were masked to this feedback for the first 

four weeks of the intervention period. Technological restrictions meant that, despite 

quantifying time spent on the apps, we were unable to identify what specific features and pages 

were viewed on the apps. Given that participants used their personal smartphones, phone and 

app updates occurring during their participation restricted our confidence in gleaning insight 

about the frequency that participants chose to sync the Fitbit (as an indicator of engagement). 

4.6. Conclusions 

The present study demonstrated that adults at moderate-to-high risk of developing type 2 

diabetes engaged with physical activity and glucose feedback presented by digital health 

technologies. Several important improvements to the study have been highlighted: (a) the need 

to explore the technology in individuals presenting prediabetes; (b) expand the inclusion 

criteria to include individuals with non-Android smartphones; (c) provide detailed instructions 

and/or training on how to navigate the apps; and (d) provide education sessions to help 

participants understand, interpret and act on the behavioural and physiological feedback 

presented by the digital health technologies. Overall, the findings suggest it is feasible to 

provide individuals with feedback on movement behaviours and the physiological 

consequences of those behaviours through digital health technologies in the context of type 2 

diabetes prevention. 
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5.1. Summary 

The present thesis is comprised of three studies which contribute to research on physical 

activity and health feedback and the use of digital health technologies in the prevention of 

chronic diseases, particularly type 2 diabetes. The overall purpose of the thesis was to 

investigate the associations between brain activation and personalised feedback and to 

determine whether coupled feedback presented by digital health technologies could influence 

behaviour change in an at-risk population. 

Firstly, a systematic review was conducted in Study One to identify studies that used functional 

magnetic resonance imaging (fMRI) to assess how people’s brains responded to health 

messages pertaining to key lifestyle behaviour risk factors for chronic diseases; namely, 

physical inactivity, sedentary behaviour, smoking, diet and alcohol consumption. Hereon Study 

One is referred to as the systematic review. Having identified that only one study had 

investigated brain responses to physical activity or sedentary behaviour information, Study 

Two assessed the neural responses of adults when they were presented with personalised 

feedback relating to movement behaviours (physical activity, sedentary behaviour) whilst 

inside an MRI scanner. In addition, individuals were presented feedback relating to the 

physiological consequence of these behaviours (glucose) to align with our interest of moving 

toward providing coupled feedback. Study Two found that the glucose health messages resulted 

in a greater neural response in the prefrontal cortex compared with the behavioural health 

messages, providing support for an intervention incorporating physiological feedback in 

addition to behavioural feedback. Hereon Study Two is referred to as the brain activation pilot 

study. Therefore, Study Three was a randomised feasibility trial investigating participant 

engagement with digital health technologies that presented personalised behavioural and 

physiological feedback to individuals living with moderate-to-high risk of developing type 2 

diabetes. Results showed that it was feasible to conduct an intervention offering both 

behavioural and physiological feedback through digital health technologies and participants 

engaged with the feedback over the six weeks. Hereon Study Three is referred to as the 

feasibility intervention. Overall, this thesis has shown that lifestyle interventions deploying 

digital health technologies presenting physiological and behavioural feedback have potential 

to enhance participant engagement, which is an essential step in successful and prolonged 

behaviour change. 
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5.2. Key discussion points 

5.2.1 Health messaging: Can we learn from smoking cessation? 

Having identified in the systematic review that a large amount of the health messaging fMRI 

literature focuses on smoking cessation, there is a need to consider whether the lessons learnt 

can be applied to other behaviours, including physical activity. Having said that, it must be 

clearly acknowledged that these behaviours require individuals to make very different 

decisions. As a brief example, individuals should ‘stop’ smoking but ‘do’ activity. If a person 

intends to stop smoking, they can be referred to stop smoking services and are encouraged to 

undergo nicotine replacement therapy during the initial 8-12 weeks (NHS Choices, 2016). To 

reduce the chance of relapse, individuals are offered weekly face-to-face (or telephone) 

contacts for the initial four weeks then less frequent contacts in the subsequent eight weeks 

with regular carbon monoxide readings conducted to monitor adherence (NHS Choices, 2016). 

It remains unclear what an effective equivalent may be for individuals at risk of developing 

type 2 diabetes. As a similar lifestyle related disease, the same support should be given to 

individuals who wish to become more physically active. Even though physical activity 

promotion has largely been unsuccessful with the majority of the population obtaining 

insufficient levels of physical activity (Chaudhury et al., 2008), perhaps the information 

provided has not been potent enough to initiate behaviour change. The findings presented in 

this thesis suggest that the provision of feedback demonstrating the physiological consequence 

of movement behaviours (e.g. glucose levels) are encouraging but it is still early days for the 

application of changing behaviour. 

The brain activation pilot study identified that fMRI can be used to quantify people’s response 

to personalised health messages. Having also highlighted that fMRI may not be the most 

practical or feasible tool to capture naturalistic exposure to feedback presented by digital health 

technologies, further lessons may be learnt from the smoking cessation literature. For instance, 

much of the smoking cessation literature has explored the presentation of threatening messages 

to motivate people to refrain from smoking. This has in part been substantiated by studies using 

eye-tracking technology which quantifies visual attention and is likely a more practical 

neuroimaging tool to use. Findings have revealed that the addition of graphic warning labels to 

cigarette packages, which demonstrate the negative health consequences of smoking, are often 

met with ‘defensive avoidance’ but they can promote better recall of the health risks (Kessels 

et al., 2010; Strasser et al., 2012). Similar research has also investigated visual attention to food 
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and beverage advertising (Velazquez & Pasch, 2014) as well as beer and cigarette advertising 

(Krugman et al., 1994). Therefore, it may be worthwhile exploring whether eye tracking can 

be applied within the context of physical activity health messages. For instance, eye-tracking 

technology may allow us to objectively monitor overt visual attention to feedback delivered 

via wearable technologies and their companion smartphone apps. This may help us better 

understand users and their varying, complex patterns of use that cannot be gleaned from self-

report measures or fMRI alone. 

5.2.2 Education on the stimulus-response relationship between physical activity 

and glucose: A key ingredient? 

Despite growing evidence for the stimulus-response between physical activity and glucose 

levels in individuals living with and without diabetes (Buckley et al., 2014; Dunstan et al., 

2012; Fritschi et al., 2016; Healy et al., 2008; Henson et al., 2013; Thorp et al., 2010), only a 

couple of studies (to the authors knowledge) have capitalised on this relationship as an 

educational tool to demonstrate the health benefits of physical activity (Allen et al., 2008; 

Bailey et al., 2016). Allen and colleagues presented ‘personal’ and ‘role model’ glucose graphs 

to individuals living with diabetes which depicted activity-related reductions in glucose (Allen 

et al., 2008). Findings revealed a 5 min/day increase in moderate-intensity physical activity at 

the expense of sedentary time. In addition, Bailey and colleagues taught individuals living with 

prediabetes how to set goals, monitor their exercise and glucose levels, and how to observe 

their interaction using continuous glucose monitoring; improving adherence to a home-based 

exercise programme (Bailey et al., 2016). Knowing how best to incorporate education into a 

free-living setting will be a future direction from this thesis. 

The feasibility intervention investigated the use of both physiological and behavioural data and 

the effect they had on behaviour change in individuals at risk of type 2 diabetes. Despite 

sufficient engagement with the technologies, participants did not significantly increase their 

physical activity or reduce their sedentary behaviour which could be attributed to participants 

observing a stronger stimulus-response coupling between glucose and diet rather than physical 

activity. This study did not incorporate an education session about interpreting the feedback 

provided by the technologies or the stimulus-response relationship. There were also no 

instructions provided regarding when or why to scan the glucose sensors. Nevertheless, 36% 

of glucose scans occurred when glucose levels were above the target range. Whilst individuals 

were informed about the purpose of the study, not all would have been equipped with the 
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knowledge of the acute responses of glucose levels from being physically active. Incorporating 

an education session could therefore improve the potency of an intervention and should be 

tested in future study iterations. 

The National Diabetes Prevention Programme (NDPP), in its current form, also focusses 

heavily on in-person education sessions, during which diet and physical activity are key topics. 

However, in-person education sessions, and particularly laboratory-based education sessions, 

can be costly and require people to travel and commit time. It may be that as digital health 

technologies integrate multiple health measures within a single form (e.g. physical activity and 

glucose measured by the same device), education on the stimulus-response relationships may 

also become integrated within the technology. Showing people via feedback devices could be 

more effective than telling people why they should be more active and/or less sedentary 

(Latimer-Cheung et al., 2013). For example, an app which continually receives glucose levels 

and steps taken may be able to alert the user when they should go for a walk (e.g. if glucose 

reaches hyperglycaemic levels). If the user then completes the walk, the app may positively 

reinforce the decision by showing their glucose level returning to baseline quicker than if they 

had remained seated (e.g. “Well done, by going for that walk your glucose returned to normal 

22 minutes quicker than if you had remained sat down. Walking on most days will reduce your 

risk of developing diabetes by 8%”). That said, this message may need to be framed in an 

alternate way to capture the attention of other individuals; therefore, it is important to try and 

have flexibility in how messages are presented so that individuals can resonate and feel 

competent to act on the information shown. However, until technology enables this concept to 

be tested, in-person education sessions on stimulus-response relationships followed by free-

living exposure to behavioural and physiological feedback seems to be the next step on the 

journey of digital health technologies to elicit sustained increases in physical activity. 

5.2.3 Targeting the right people for interventions 

Given the high prevalence of multiple negative lifestyle behaviours in today’s society, such as 

‘hyper-sitting syndrome’ (Gray, 2016), and with 5-10% of adults developing diabetes (Bansal, 

2015), it is vital to target the right people. Objectively measuring how people engage with 

digital health technologies, as done in the feasibility intervention, may help to identify 

individuals most suitable for these types of interventions and who may require greater levels 

of support (Serrano et al., 2017). It is not only what education support is needed but also the 

type and level (i.e. some may need more support than others). The feasibility intervention 

revealed variations in the level of engagement between participants, which may suggest that 
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some were more engaged with technology than others. It may also be that some people were 

able to access and interpret information quicker than others. By stratifying individuals who 

might benefit from diabetes prevention interventions by the level of support or education they 

require, future interventions may better optimise resources to give participants an equal chance 

of making positive lifestyle changes such as increasing their physical activity. 

It is important for type 2 diabetes prevention interventions to target those who would benefit 

most from lifestyle changes; given that 592 million individuals are likely to be diagnosed by 

2035 (Chapman & Elstein, 1995) and prediabetes burdening more than one-third of adults in 

England (Green et al., 1996). That said, targeting individuals who need support will be crucial 

to ensure effective allocation of available resources. The feasibility intervention recruited 45 

individuals living at moderate-to-high risk of developing type 2 diabetes from the community 

within a four-month period. Screening individuals from the community is important given that 

many people (e.g. low income, unemployed and less well educated) do not attend NHS health 

checks and thus do not have up-to-date medical records (Dryden et al., 2012). However, 

community-based recruitment comes with its own challenges that must be overcome before 

such strategies are implemented. Firstly, despite screening as moderate-to-high risk, only 7% 

of participants in the feasibility intervention had prediabetes. Similar to the limitations of other 

screening initiatives, the one used in this thesis identified individuals who presented multiple 

risk factors but this can only be suggestive of prediabetes (Patel et al., 2015). Targeting 

individuals living with prediabetes has been declared a priority for diabetes prevention efforts 

(Barry et al., 2017). Previous studies in the UK have been able to identify prediabetes in 17.5-

26.5% of screened individuals using GP practice databases (Gray et al., 2012; Webb et al., 

2011). Consequently, efforts to improve the way in which individuals with undiagnosed 

prediabetes are identified, particularly in community settings, are needed. Difficulties 

recruiting from community settings are also highlighted by our finding that almost two-thirds 

of individuals interested in taking part in the feasibility intervention were ineligible because 

their level of diabetes risk was too low. Also, as previously highlighted, current technological 

limitations may provide significant barriers to reaching people in need of interventions, as one-

in-five individuals were ineligible for the feasibility intervention because they did not own or 

use a compatible smartphone. With 7.8 million individuals in the UK identified as non-users 

of the internet (Good Things Foundation & Yates, 2017) and 24% of adults not using a 

smartphone (Ofcom, 2017), ensuring that interventions are not too technologically restrictive 

is important. 
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5.2.4 Digital health technologies: Ready for real-time but are they ready for 

prime-time? 

The prevalence of digital health technologies (and their companion smartphone apps) has 

continued to grow over the last decade (Research2Guidance, 2017). With an estimated 2.3 

billion smartphone users (Statistica, 2018) and smartwatch ownership increasing in the UK 

from 5% in 2016 to 9% in 2017 (Ofcom, 2017), digital health technologies appear to be here 

to stay. More specifically, the growing marketplace for health-related apps 

(Research2Guidance, 2017) has brought with it increases in smartphone ownership and 

improvements in app quality (Research2Guidance, 2016). These statistics are quite compelling, 

but they do not necessarily mean that digital health technologies will be the answer to chronic 

disease burden. Devices often become unused items ‘left in a sock drawer’ never to be used 

again. Previous work has found that 65% of users abandon Fitbit devices within two weeks 

(Shih et al., 2015), 43% of people no longer access MyFitnessPal apps after one month (Laing 

et al., 2014) and 33% of American users no longer use their activity monitor within six months 

of purchase (Ledger et al., 2014). Indeed, some individuals do not use the technology for its 

intended purpose (Kelders et al., 2012). In comparison, the feasibility intervention observed a 

reduction in time spent on the LibreLink and Fitbit apps (20 min/day and 7 min/day reducing 

to 9 min/day and 4 min/day, respectively over six weeks) and participants complied well with 

wearing and scanning the minimally-invasive glucose sensor for six weeks (80-94% data 

capture). However, a problem with this glucose sensor was that 62% of participants required 

additional sensors, resulting in a higher than expected cost per participant, predominantly 

because these sensors were accidentally displaced. Therefore, it is unlikely that such 

technologies, in their current form, will be incorporated into routine clinical services if they 

need to be frequently replaced or if patients do not engage with them sufficiently to evoke the 

required health improvements. That said, future iterations of these technologies will likely 

evolve with greater, more enhanced functionality. Therefore, efforts to sustain user interest in 

digital health technologies are needed.  

This thesis provides evidence for the potential of providing behavioural feedback with 

physiological feedback to help sustain use and engagement with the digital health technologies. 

It is perhaps the increased functionality of the technologies that delays this ‘sock drawer effect’. 

In the feasibility intervention, participants wore both the Fitbit and Freestyle Libre for the full 

six weeks and maintained engagement above the ‘minimum ask’; scanning the Freestyle Libre 

at least twice as often as they were asked to. However, the digital health technologies used in 
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this thesis have important limitations that should be overcome before they can be deemed ready 

for prime-time. Two wearable technologies were needed (one for behavioural feedback and 

one for physiological feedback), each worn in a different location, with a different attachment 

mechanism, different charging requirements, different memory storage capabilities and 

different apps. To provide truly combined behavioural and physiological feedback, this 

information must be harmonised within a single digital health technology/app. There are also 

more short-term problems, with recruitment to the feasibility intervention restricted to users of 

certain Android smart phones; leading to approximately one-fifth of screened adults being 

ineligible for the study. Whilst the Abbott Freestyle Libre is likely soon accessible via iOS 

smartphones given other devices (e.g. Dexcom G5) are already available on both smartphone 

operating systems, these issues will greatly hinder the potential for such technologies to gain 

mass adoption. However, this should not deter investigations into the utility of these 

technologies to facilitate the adoption of healthier lifestyles, including increasing physical 

activity. Digital health technologies will continue to improve by solving the problems of 

previous generations and explore the integration of multiple health measures within a single 

wearable module. For example, Medtronic, a major competitor to Abbott, issued a press release 

in 2017 that eluded to a collaboration with Fitbit to integrate glucose and physical activity data 

via their smartphone app (Medtronic, 2017). Multi-functional apps are likely to continue 

advancing in the coming years. Therefore, whilst prime-time in the sense of implementation 

into clinical pathways may still be on the horizon, the digital technologies are making 

promising strides. For now, it is important to ensure that the health messages provided by these 

digital health technologies are effective (Driver, 2016). 

5.2.5 Finding a suitable home for digital health technologies for type 2 diabetes 

prevention 

An existing prevention programme in England refers individuals identified via GP databases 

or NHS health checks to a nine-month educational programme. Forming part of the Five Year 

Forward Plan (NHS England, 2014), the NDPP delivers a structured lifestyle intervention. 

Between June 2016 and March 2017, the programme had over 43,000 referrals (4,000 in the 

East Midlands) (Barron et al., 2017) which exceeded expectations set by the expert reference 

group (NHS England, 2016). However, preliminary findings suggest that only 49% of those 

referred attended the initial assessment (ranging from 16-86% across England) (Barron et al., 

2017). The NDPP has begun to pilot the use of digital health technologies in the form of 

weighing scales, activity monitors and online counselling (NHS Digital, 2017). This is a 
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promising development and aligns well with the present thesis which supports the use of digital 

health technologies presenting personalised feedback in the context of diabetes prevention. 

As interventions such as the NDPP increasingly incorporate digital health technologies and 

with the ongoing expansion of NHS Digital, efforts to widen digital participation are ongoing. 

For example, the NHS Digital ‘Widen Digital Participation programme’ aims to offer 

individuals skills to better manage their condition (NHS Digital, 2016b). Digital technologies 

offer great potential in improving the delivery and reach of healthcare (Michie et al., 2017) and 

with the ongoing growth of NHS Digital, the NHS seeks to maximise the integration of digital 

solutions within patient healthcare. Consequently, the present thesis helps inform how 

personalised behavioural and physiological feedback can be deployed for the prevention of 

chronic disease. 

5.3. Challenges and potential in this area of research 

5.3.1 Challenges 

In addition to the challenges already mentioned, the following section acknowledges further 

challenges faced in this area of research. A major challenge facing researchers is that digital 

health technologies are regularly superseded in the consumer marketplace. Within the present 

thesis, both the Lumoback and Fitbit Charge 2 have been superseded since their deployment in 

the brain activation pilot and feasibility intervention, respectively, by the Lumo Lift and Fitbit 

Alta and Ionic, respectively. This is due to the increasing consumer demand for more 

sophisticated functionality and design (Sanders et al., 2016). In addition, the flash glucose 

monitor used in the brain activation pilot and feasibility intervention was deployed soon after 

market release in 2016. Consequently, the device did not permit masked measurement of 

glucose levels, so participants had to have access to feedback to capture data. Previous studies, 

which have been financially supported by Abbott, have had access to the Pro model which has 

a masked (logging) mode (e.g. Bolinder et al., 2016). Increasing competition in the 

physiological sensors market will likely bolster efforts to become more amenable to research 

applications, until then slight adjustments to devices will be actioned to fit within protocols. 

A major challenge to utilising interstitial glucose sensors is the invasiveness of the devices. 

Despite being marketed as minimally-invasive, individuals not accustomed to these devices 

may not be comfortable applying and wearing these devices during routine wear. As a result, 

advancing technologies are exploring the potential for wireless, wearable 

photoplethysmography sensors to monitor physiological markers such as blood pressure 
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(Zhang et al., 2016) to replicate how heart rate is currently recorded via Fitbit. Other options 

are to follow the progression of microneedle patches placed directly on the skin (e.g. 

SugarBEAT, expected early 2018 and offers 24-hour wear per patch applied). Another factor 

that links with this notion is that interstitial glucose levels may not clearly show the 

physiological effect of movement behaviour when compared with traces captured using venous 

blood glucose samples. This is a challenge given the emphasis on using off-the-shelf 

technologies (i.e. continuous/flash glucose monitors, which monitor interstitial glucose levels) 

to try and demonstrate the effect that movement behaviours have on glucose during routine 

wear. Efforts are needed to increase the wear-ability of these physiological monitoring devices 

as well as fine-tune the signals to help reduce the medical stigma attached and improve their 

resonance in this space, respectively. 

Other key limitations to this thesis include the convenience sampling method for the brain 

activation pilot and the relatively small sample size for the intervention, albeit having a 

feasibility focus. In the brain activation pilot, convenience sampling resulted in participants 

being highly educated, reporting mostly as White British, generally physically active and 

normoglycemic. Ideally, we would have recruited people at greater risk of developing type 2 

diabetes (i.e. living with prediabetes) for the feasibility intervention. This would improve the 

generalisability of the study findings to the specific population of interest (Blair & Zinkhan, 

2016). 

5.3.2 Potential 

In addition to the potential already discussed, this thesis highlights the need for future research 

studies to utilise sophisticated, objective measurement and intervention tools. The next 

iteration of this work will need to wrestle with the timing, content and composition of the 

coupled feedback. Being able to provide temporally sensitive cues (e.g. nudge users after sitting 

for too long) via feedback would keep cognitive load low (Hargreaves et al., 2010) and help 

overcome the notion that individuals are often disassociated with the long-term implications of 

immediate decisions (Critchfield et al., 2001). Presenting coupled feedback may act as a potent 

nudge for individuals because they will see the acute physiological consequence of their 

movement behaviour. This thesis has shown that the devices in isolation show promise and are 

acceptable from a research study perspective. However, it is acknowledged that participants 

may feel obligated to comply with research study protocols (i.e. have greater wear adherence) 

whereas user interest in the ‘real world’ (i.e. opting or choosing to wear devices) will likely 

vary. To ensure long-term success, investigations into the ability of the technologies to be worn 
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continuously as a wearable lifestyle device and used as a tool to encourage self-management 

of health, need to be explored. Technologies monitoring both behaviour and physiological 

consequence of movement behaviours may, in turn, become more mainstream. As a result, 

their potential use is great and, with increased integration into pre-clinical programmes (e.g. 

the NDPP), these efforts may contribute to alleviating burden on the NHS. 

5.4. Future directions 

This section outlines several recommendations for future work informed by the limitations 

experienced and potentials noted in this thesis, as follows:  

• Strategies to sustain user interest in digital health technologies for chronic disease 

prevention. 

• Advocate and work with device manufacturers to integrate and harmonise behavioural 

feedback and the physiological consequence of behaviours into a single 

platform/module. 

• Identify the specific components of health messages and feedback provided by digital 

health technologies that are most effective for sustained behaviour change. 

• Elucidate the key ingredients in education sessions to increase physical activity. 

• Optimise stratification approaches to target those individuals in most need of 

interventions to prevent or delay the development of chronic diseases. 

• Examine the impact of providing individuals with coupled behavioural and 

physiological feedback through digital health technologies within existing large-scale 

interventions such as the NHS National Diabetes Prevention Programme. 

5.5. Overall conclusions 

Interventions to prevent type 2 diabetes are urgently needed. Despite the abundance of evidence 

supporting the health benefits of physical activity, population levels are still critically low. To 

date, interventions have focussed on lifestyle behaviours, such as increasing physical activity, 

but advancements in technology now allow individuals to see the physiological consequences 

of these behaviours; information that may yield sustained behaviour change. The present thesis 

highlighted the utility of examining brain activations in response to personalised physiological 

and behavioural feedback and observed that individuals at moderate-to-high risk of developing 

type 2 diabetes engaged highly with coupled feedback. This work supports future research 

providing objective feedback on movement behaviours and the physiological consequences of 

these behaviours in the context of chronic disease prevention.
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Appendix B 

Study One: Functional MRI Acquisition Overview. 
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Study Task design 
Magnet 

(T) 
TE (ms) TR (ms) 

Flip angle 

(degrees) 

Field of 

View 

(mm) 

Slice 

Thickness 

(mm) 

(Chua et al., 2009) Detail not provided 
Detail not 

provided 

Detail not 

provided 

Detail 

not 

provided 

Detail not 

provided 

Detail 

not 

provided 

Detail not 

provided 

(Chua et al., 2009) 

Mixed. 

Blocked: blocks 65 secs; fixation 20 secs. 

Event-related: trials 3.5 secs; fixation 4, 6 

or 8 secs (jittered). 

Total task 32 mins. 

3T GE Signa 

scanner 
30 2000 80 220 3.4 

(Chua et al., 2011) 

Blocked. 

Initial fixation 10 secs; blocks 24 secs (5 

trials); fixation 7 secs (4-10 secs). 

3T GE Signa 

Excite 2 

scanner 

30 
2000 

 
90 220 3 

(Cooper et al., 

2015) 

Blocked. 

Trials 17.7 secs (13.9-30 secs); rate ads 4 

secs; 

fixation ITI 4.1 secs (3.1-7.5 secs). 

3T GE Signa 

scanner 
30 2000 90 220 3 

(Dinh-Williams et 

al., 2014) 

Blocked. 

Aversive blocks and appetitive blocks; 

fixation 15 secs; trials 4 secs; blank 

screen ISI 0.5 to 1.5 secs. 

3T Siemens 

TRIO scanner 

 

30 3000 90 

Detail 

not 

provided 

3.5 



 

vi 
 

(Dinh-Williams et 

al., 2014) 

Blocked. 

Blocks 25 secs (5 trials); trials 4 secs; 

blank screen ISI 1 second (0.5 to 1.5 

secs). 

3T Siemens 

TRIO scanner 

 

30 3000 90 

Detail 

not 

provided 

3.5 

(Do & Galvan, 

2015) 

Event-related. 

Trials 6 secs; button response 2 secs; 

ISI 10 secs (jittered). 

3T Siemens 

TRIO scanner 

 

30 2000 90 

Detail 

not 

provided 

4 

(Enax et al., 2015) 

Event-related. 

Trials 5 secs; fixation 4-6 secs; button 

response ITI 4-6 secs. 

Total task 30-40 mins. 

1.5T Siemens 

Avanto 

scanner 

 

45 2500 90 192 3 

(Falk et al., 2011) 

Blocked. 

14 ads 30 secs; 2 ads 15 secs; button 

response 4 secs; fixation; additional 

fixations every 4 blocks. 

3T Siemens 

Trio scanner 

 

30 2000 90 192 4 

(Falk et al., 2016) 
Trial 4 secs; response 3 secs; fixation ITI 

4.1 secs (3-7.5 secs) 

3T GE Signa 

scanner 
30 2000 90 220 3 

(Falk et al., 2015) 

Blocked. 

Blocks: initial suggestion (5 secs); 

reasons why/how (7 secs); brief reflection 

(6 secs); 

fixation 2.5 secs; 

3T GE Signa 

scanner 

 

30 2000 90 220 3 
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every 7th block contained a longer block 

(12 secs). 

(Gearhardt et al., 

2014) 

Blocked. 

‘Myth busters’ video; commercial breaks 

(10 trials) 2 mins 30 secs; commercials 

15 secs. 

Total task 34 mins 

3T Siemens 

Allegra 

scanner 

 

30 2000 80 

Detail 

not 

provided 

4 

(Jasinska et al., 

2012) 

Blocked. 

Blocks 24 secs (5 trials); fixation 7 secs 

(4-10 secs). 

3T GE Signa 

Excite 2 

scanner 

 

30 2000 90 220 3 

(Langleben et al., 

2009) 

Blocked. 

Fixation ISI 6 secs. 

Total task 10 mins 42 secs. 

3T Siemens 

Trio scanner 
30 3000 

Detail not 

provided 
220 3 

(Newman-Norlund 

et al., 2014) 

Blocked. 

Blocks 15 secs; 5 trials per block (2 

secs); Fixation 1 sec; Rest blocks 15 secs. 

Total task 41 mins 36 secs. 

3T Siemens 

Trio scanner 

 

30 1950 75 ? 3 

(Vollstadt-Klein et 

al., 2011) 

Blocked. 

1 block 33 secs (5 trials); trials 6.6 secs; 

button response 9.9 secs; fixation >3.3 

secs. 

Total task 15 mins. 

1.5T Siemens 

Magnetom 

Vision scanner 

 

60 0.6 90 220 4 
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Abbreviations: T, tesla; TE, echo time; TR, repetition time 

 

 

 

(Wang et al., 2013) 

Blocked. 

Initial fixation 16 secs; videos 30 secs; 

fixation ITI 16 secs. 

Total task 12 mins 36 secs. 

3T Siemens 

Tim Trio 

scanner 

 

30 2000 
Detail not 

provided 
220 3.4 

(Wang et al., 2015) 

Blocked. 

Trials 2 secs; blocks (6 trials); button 

response; fixation 10-13 secs. 

Total task 9.3 mins. 

3T Siemens 

Tim Trio 

scanner 

 

32 3000 
Detail not 

provided 

Detail 

not 

provided 

Detail not 

provided 
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Appendix C 

Study One: Functional MRI Acquisition Overview (continued)
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Author, year Template for normalisation Smoothing filter Analysis software 

(Chua, Polk et al., 2009) ? ? ? 

(Chua et al., 2009) MNI152 template 5 mm FWHM MCFLIRT program then SPM2 

(Chua et al., 2011) MNI152 template 5 mm FWHM MCFLIRT program then SPM2 

(Cooper et al., 2015) MNI template 8 mm FWHM SPM8 

(Dinh-Williams, Mendrek, 

Bourque et al., 2014) 
MNI standardised brain template 8 mm FWHM 

SPM5 

 

(Dinh-Williams, Mendrek, 

Dumais et al., 2014) 

standardised ICBM152 brain 

template 
8 mm FWHM 

SPM5 

 

(Do & Galvan, 2015) standard MNI space 5 mm FWHM FSL 

(Enax et al., 2015) MNI template 8 mm FWHM SPM8 

(E. B. Falk et al., 2011) MNI standard stereotactic space 8 mm FWHM FSL and SPM8 

(E. B. Falk et al., 2016) MNI template 8 mm FWHM SPM8 

(E. B. Falk et al., 2015) MNI template 8 mm FWHM AFNI and SPM8 

(Gearhardt et al., 2014) MNI T1 template brain ICBM152 6 mm FWHM SPM8 

(Jasinska et al., 2012) MNI 152 template 7 mm FWHM MCFLIRT then SPM 
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Abbreviations: AFNI, Analysis of Functional Neuroimages; EPI, echo planar imaging; FSL, FMRIB Software Library; FWHM, full width half 

maximum; ICBM, International Consortium for Brain Mapping; MNI, Montreal Neurological Institute; SPM, Statistical Parametric Mapping; 

T1, T1-weighted image

(Langleben et al., 2009) MNI T1 template 6 mm FWHM FEAT (FSL) 

(Newman-Norlund et al., 2014) DNP 8 mm FWHM SPM8 

(Vollstadt-Klein et al., 2011) MNI EPI template 12 mm FWHM SPM5 

(Wang et al., 2013) MNI T1 template 6 mm FWHM 
Expert Analysis Tool (FSL) and 

MCFLIRT 

(Wang et al., 2015) MNI T1 template 5 mm FWHM FEAT (FSL) 
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Appendix D 

Study Two: Copy of Publication. 
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Appendix E 

Study Two: Education Booklet. 
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Appendix F 

Study Three: Copy of Publication. 
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SIGNAL Protocol 

Whelan ME, Kingsnorth AP, Orme MW, Sherar LB, Esliger DE. Sensing interstitial glucose 

to nudge active lifestyles (SIGNAL): feasibility of combining novel self-monitoring 

technologies for persuasive behaviour change. BMJ Open. 2017;7:e018282. 

Original publication has been adapted to fit within this thesis. 

 

Introduction  

There is widespread concern regarding the increasing prevalence of chronic diseases such as 

type 2 diabetes (World Health Organization, 2014). Type 2 diabetes currently imposes an 

annual cost of £23.7bn through its associated complications (Hex et al., 2012); however, this 

cost is likely to rise as it is projected to directly impact 592 million individuals worldwide by 

2035 (Guariguata et al., 2014). Another imposing challenge is the proportion of the population 

living with undiagnosed diabetes (current prevalence estimated at 45.8%) (Beagley et al., 

2014); which is, in part, attributable to its asymptomatic state prior to the presentation of 

complications. Regardless of diagnosis status, preventing the development of type 2 diabetes 

is an international priority moving forward (Barry et al., 2017). Prediabetes, categorised as 

either impaired fasting glucose or impaired glucose tolerance represents abnormal glucose 

homeostasis and is placed between diabetes and normal regulation. Impaired fasting glucose 

has been defined as elevated fasting plasma glucose (100-126 mg/dl) whilst impaired glucose 

tolerance is characterised by an elevated two hour plasma glucose concentration (140-199 

mg/dl) following intake of a 75g glucose load (Genuth et al., 2003). One in seven adults have 

impaired glucose regulation (Diabetes UK, 2006) and, compared to individuals living with 

normal circulating glucose levels, pre-diabetics are five to ten times more likely to develop 

type 2 diabetes (Santaguida et al., 2005) with 5-10% of people becoming diabetic annually 

(Forouhi et al., 2007). Diabetes is projected to be one of ten leading causes of death worldwide 

(Tabák et al., 2012); thus, identification and prevention are crucial for early intervention. A 

lack of physical activity is considered one of the major risk factors for chronic disease and is 

comparable to the ill-effects of obesity (Olshansky et al., 2005) and smoking (National 

Research Council Committee on Population, 2011) individually. Given that physical inactivity, 

where insufficient levels of physical activity are achieved, is attributed to an estimated 7% of 

type 2 diabetes cases (Lee et al., 2012), it is an important modifiable lifestyle behaviour to 

target. With the prevalence of impaired fasting glucose doubling in individuals at 40-59 years 

and remaining consistent beyond 60 years (Cowie et al., 2009), targeting efforts toward specific 
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age cohorts is crucial. Individuals with abnormal glucose homeostasis are referred onto 

community-based lifestyle behaviour programmes such as The Healthier You: National 

Diabetes Prevention Programme (NDPP). Initiated in 2016, the programme aims to roll out 

nationally by 2020 as part of the NHS Five Year Forward plan (NHS England, 2016). The 

present study intends to implement a community screening approach, monitor participant 

retention and to investigate whether digital health technologies providing feedback about 

physical activity and glucose levels may play a role in the prevention pathway (which may be 

amenable to the NDPP framework). 

With increasing recognition toward the integration of technology into usual care pathways (i.e. 

emergence of NHS Digital), it is a crucial time to consider how technologies could contribute 

to the management of chronic diseases. Given recent consumer interest (Ferguson et al., 2015), 

wearable technologies allow people to self-monitor behaviour and health. Gardner and 

colleagues reviewed behavioural interventions and identified self-monitoring of behaviour as 

a particularly promising behaviour change technique (Gardner et al., 2016). Similarly, 

continuous glucose monitoring technology has shown promise for longer-term physiological 

outcomes (including glycated haemoglobin [HbA1c]) (Vigersky et al., 2012); supporting the 

suggestion that more frequent engagement leads to better health outcomes (Fonda et al., 2013). 

Self-monitoring of both behaviour and outcomes are listed within the taxonomy alongside 91 

other ingredients (including feedback and goal-setting) in behavioural interventions (Michie et 

al., 2013). As well as delivering key behaviour change techniques, digital health technologies 

also support Control Theory (Carver et al., 1982). More specifically, people are presented with 

information about a present state via feedback (e.g. 9,000 steps) and are often provided a set 

goal to achieve (i.e. 10,000 steps). Equipped with this information, people may make efforts to 

achieve the goal or desired outcome (i.e. ≥10,000 steps) because they have been informed how 

they are performing relative to it. The majority of research to date has focused on the 

deployment of technologies to self-monitor movement behaviours (e.g. Cadmus-Bertram et al., 

2015) or specific health markers (e.g. Polonsky & Fisher, 2013) in isolation. Although these 

approaches have shown to be beneficial to behaviour change in the short term, most user 

engagement is not sustained beyond six months (Ledger et al., 2014). Despite research 

conducted on short-term improvements, it is not yet clear whether results are sustained with 

prolonged use (Barwais et al., 2013; Tudor-Locke & Lutes, 2009). However, the rationale is 

that when provided with information about their current levels of activity, people may feel 

motivated to improve their behaviour.  
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With a view to sustaining the ‘honeymoon period’ of technology-bolstered behaviour change, 

a logical next step would be to deploy wearable technologies in combination. For example, 

studies investigating the acute effects of brief physical activity bouts or interruptions to 

prolonged sedentary behaviour on glucose levels in controlled settings have found reductions 

in postprandial glucose as a result of increased movement (e.g. DiPietro et al., 2013; Dunstan 

et al., 2012; Peddie et al., 2013; Reynolds et al., 2016). As a result, the present study proposes 

that delivering behavioural and physiological feedback in parallel may be more persuasive 

rather than feedback delivered in isolation. This approach may offer a platform for people to 

self-educate themselves about the relationship between movement and acute health status (i.e. 

walking after a meal leads to marked reductions in glucose levels); which may help sustain 

engagement with digital health technologies. With ongoing developments, technologies such 

as flash glucose monitoring offer a wealth of information to users without the need for invasive 

fingerprick samples; offering a useful tool for non-diabetic individuals (who are not 

accustomed to regular fingerprick blood samples) (Bailey et al., 2015). To date, an important 

limitation of the efforts to encourage people to be more physically active has been the 

assumption that we are willing to change our lifestyles today to reduce our risk of developing 

disease years or even decades later. Implementing specific behaviour change techniques such 

as self-monitoring, goal-setting and feedback (Michie et al., 2013), wearable devices could 

empower individuals to manage their health through a change in behaviour by recognising 

movement patterns and observing influences on health. Building on previous findings which 

observed greater levels of brain activation in response to personalised glucose related 

information (over behavioural information) (Whelan et al., 2017; Chapter Three), the present 

study aims to examine the role of providing novel digital health technologies presenting bio-

behavioural feedback in those living at moderate-to-high risk of type 2 diabetes. 

Aims and Objectives 

Primary aim 

The primary aim of this study is to investigate participant engagement using self-monitoring 

technologies for physical activity and glucose. 
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Secondary aims 

The secondary aims of this study are to explore (i) the feasibility of the intervention trial at 

baseline, 1, 2, 3, 4, 5, and 6 weeks; (ii) levels of physical activity and interstitial glucose levels 

at baseline, 1, 2, 3, 4, 5, and 6 weeks and (iii) levels of technology readiness, health literacy, 

health status and attitudes towards one’s own health at baseline and post self-monitoring. 

Methods 

Study setting 

Participants will be recruited from the community in Leicestershire, UK from May to August 

2017. All appointments (three or four in total, depending on group allocation) will take place 

at the National Centre for Sport and Exercise Medicine at Loughborough University, UK.  

Study design 

The feasibility study protocol has been prepared in accordance with the Standard Protocol 

Items: Recommendations for Interventional Trials (SPIRIT) (Chan et al., 2013) with reference 

to the Template for Intervention Description and Replication (TIDieR) (Hoffmann et al., 2014). 

The study will aim to recruit 45 individuals with 15 participants randomly allocated to each of 

the three groups. No specific sample size has been calculated due it’s the feasibility nature of 

the study, but results will inform the development of a full-scale intervention. 

Participant involvement in the Sensing Interstitial Glucose to Nudge Active Lifestyle study 

will last seven weeks. Following baseline (one week), participants will be randomised into one 

of three intervention groups. Participants will be notified of their group allocation at the second 

appointment before starting the intervention period (six weeks). Appointments will be arranged 

at the preceding appointment where possible. The study was registered on the International 

Standard Randomised Controlled Trial number (ISRCTN) Register (ISRCTN17545949) in 

May 2017. 

Randomisation 

Participants will be block randomised using a 1:1:1 study allocation ratio, coordinated by a 

remote internet-based service (http://www.sealedenvelope.com/). Randomisation will be done 

by a member of the research group, independent to the present study. Baseline measures will 

be conducted pre-randomisation. Participants will be notified of their group allocation at 
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appointment two. In the event of participants originating from the same household, identical 

group allocation will be employed to avoid any cross-contamination. 

Inclusion criteria 

Participants will be at least 40 years old, be at moderate-to-high risk of developing type 2 

diabetes (Gray et al., 2010) and use a compatible Android smartphone. 

Compatible smartphones at the time of the study will be defined as having the following 

characteristics: An Android operating system of 4.0 or higher, Near Field Communication 

(NFC), a screen resolution of 480x800 to 1080x1920 and a screen size of 8.9-14.5cm. 

Exceptions were the Samsung Galaxy 7, Samsung S8, Nexus 5X and Nexus 6P which cannot 

install the LibreLink application (app). 

Exclusion criteria 

Individuals with a clinical diagnosis of diabetes, a HbA1c of ≥6.5%, or have 

suspected/confirmed pregnancy will be excluded. Participants who are unable/unwilling to 

provide informed consent, cannot/unwilling to adhere to the study protocol or cannot read/write 

English will also be excluded. 

Recruitment 

Participants will be recruited at community sites through the distribution of posters and leaflets 

in community organisations and local businesses based in Leicestershire, UK. Individuals will 

also be recruited through existing participant databases. All individuals will be directed to 

complete a brief survey to determine level of risk for type 2 diabetes. The questions will be 

presented via an online survey platform (Qualtrics, Provo, UT) and will relate to sex, age, 

ethnic background, familial history of diabetes, waist circumference, body mass index and 

blood pressure. The validated survey has been used in studies applying risk score algorithms 

on primary care electronic data (Gray et al., 2012). Waist circumference will be replaced with 

clothing size and fit following guidance offered by Battram and colleagues (Battram et al., 

2011). Moderate-to-high risk individuals will be contacted by the research team to take part in 

the study. Participant information sheets will be provided. Ineligible individuals (i.e. low risk, 

increased risk or a moderate/high risk, but are not aged at least 40 years old nor use an Android 

smartphone) will be directed to Diabetes UK ‘Type 2 diabetes: What to do if you’re at risk’ 

information booklets. 
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Study procedure 

First appointment and baseline 

An outline of the study procedure is presented in the next Figure. Appointment one will involve 

informed consent, health measures (height, weight, percentage body fat, waist circumference, 

blood pressure, HbA1c, grip strength, quadriceps strength and aerobic fitness; full 

methodological details are provided in the measures section below) and a brief demographics 

questionnaire. Participants will complete a physical activity readiness questionnaire for 

screening purposes before completing the aerobic fitness assessment (Warburton et al., 2011). 

Participants will be fitted with a waist-worn accelerometer and a wrist-worn activity tracker. 

Additional details are presented in Appendix G. Neither device will provide feedback to the 

participant during the seven consecutive days of wear (Appendix H). Participants will be asked 

to install two mobile apps onto a personal Android smartphone to comply with the number of 

technologies deployed (further details provided in Appendix I). Both smartphone apps will sit 

idle on the smartphone for the duration of baseline. Participants will be asked to sync the 

activity tracker via the smartphone app; switching on Wi-Fi and Bluetooth simultaneously at 

least once every five days for ≥1 hour to ensure the sync occurs. 
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Figure. An outline of the study flow. G4GPA2 represents glucose feedback (4 weeks) followed 

by glucose and physical activity feedback (2 weeks); PA4GPA2 represents physical activity 

feedback (4 weeks) followed by glucose and physical activity feedback (2 weeks) and GPA6 

represents glucose and physical activity feedback (6 weeks). Abbreviations: G, glucose 

feedback; PA, physical activity feedback; GPA, glucose plus physical activity feedback. 

Second appointment and intervention 

One week later (following baseline), participants will attend appointment two where they will 

be informed of their group allocation. Participants will be asked to complete a brief 

questionnaire, to continue wearing the activity tracker during the intervention (settings may or 
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may not be adjusted) and to return the accelerometer. A glucose sensor will be deployed to 

each participant to measure glucose levels. An instruction manual will be provided according 

to the participants’ group allocations. Participants will be provided with additional supplies of 

glucose sensors to last for four (Groups 1 and 2) or six weeks (Group 3) of the intervention. 

Accounts for both the activity tracker and glucose sensor will be connected to Diasend 

(Diasend Inc., Chicago, IL). An overview of the three groups is provided below. 

Group 1 (glucose feedback then glucose plus physical activity feedback, G4GPA2) 

Glucose feedback will be presented to participants for four weeks via the LibreLink app 

(Abbott Diabetes Care Inc., Alameda, CA). Participants will install the LibreLink app (Abbott 

Diabetes Care Inc., Alameda, CA) onto a personal Android smartphone to interact with the 

Freestyle Libre via Near Field Communication for measurement of glucose. The glucose 

monitor has a lifespan that restricts wear to 14 consecutive days. The app will remind 

participants to scan every seven hours and to remove/replace after 14 days. The LibreLink app 

will continuously display the number of days left.  

Group 2 (physical activity feedback then glucose plus physical activity feedback, PA4GPA2) 

Physical activity feedback will be presented for four weeks via the Fitbit app. In contrast to 

G4GPA2, participants will not have the LibreLink app installed and so will not have access to 

glucose feedback. Participants will be informed that the glucose sensor is functional (recording 

data) and participants will be asked to remove and replace the expired sensor with another 

sensor after 14 days.  

Device unmasking for G4GPA2 and PA4GPA2 after four weeks 

At the end of the first four weeks of the intervention, participants in G4GPA2 and PA4GPA2 

will attend a brief appointment (up to one hour in duration). For Group 1, the researcher will 

adjust settings to reveal physical activity feedback via the Fitbit app and device. For PA4GPA2, 

the researcher will install the LibreLink app to reveal glucose feedback. All participants will 

be able to access glucose plus physical activity feedback for the remaining two weeks of the 

intervention. 

Group 3 (glucose plus physical activity feedback, GPA6) 

Participants in GPA6 will receive glucose plus physical activity feedback for the full six weeks 

via the two independent LibreLink and Fitbit apps. Participants will install the LibreLink 

mobile app onto a personal Android smartphone to interact with the Freestyle Libre to measure 
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glucose. The app will remind participants to scan every seven hours and to remove/replace the 

sensor after 14 days. 

Final appointment 

All participants (G4GPA2, PA4GPA2 and GPA6) will be asked to attend the final appointment 

at the end of the intervention where they will complete a questionnaire (identical to 

appointment 2, apart from the revised Diabetes Knowledge Test). All participants will also 

receive a personalised health report containing results from the health measures conducted at 

appointment one. 

Device masking 

All email accounts and password combinations will be manually generated and managed by 

the research team to prevent use of identifiable information. During baseline wear, the activity 

tracker will be physically masked using black tape applied to the screen; leaving only time and 

date viewable. Participants will be asked not to tamper with the screen; however, if they do 

manipulate the masking, it should be noticeable to the research team. Settings on the Fitbit app 

will also be adjusted to remove physical activity metrics from the device screen and 

notifications fully restricted on their phone and activity tracker (Appendix H). However, 

participants will not be locked out of the app due to the requirement to sync the device. Time 

spent on the Fitbit app will be inspected using Ethica Data (Kitchener, Ontario, Canada) to 

identify potential unauthorised use. The activity tracker will also be set to all day sync to 

minimise data loss with data automatically transferred (Wi-Fi and Bluetooth must both be 

simultaneously switched on). When required to prevent access to glucose feedback, 

participants will wear the glucose sensors for 14-day periods as normal but will not be asked 

to install the LibreLink app nor scan the sensor (i.e. no data will be collected). This will 

standardise wear across all three groups. 

Data management and storage procedures 

All data collected will be anonymised by assigning a participant ID. Accounts with the three 

apps (Fitbit, LibreLink and Ethica Health) will be setup using study-specific (‘dummy’) email 

addresses and passwords, accessible only to the research team, to minimise use of personalised 

information. All data will be stored securely on the Loughborough University server, as 

password protected, encrypted documents and original paperwork kept in locked storage. No 

directly personally identifiable information will be collected through these platforms. GPS 
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(global positioning system) will be collected via Ethica Data which could theoretically be 

‘reverse-engineered’ to re-identify individuals; however, all participants will be explicitly 

informed about all information monitored as part of the study. For individuals who do not wish 

to have their location services monitored, we will set up a ‘reduced access’ version of Ethica 

Data (app usage, screen state and survey responses only). 

Primary outcomes 

User engagement 

Time spent on the official free Fitbit and LibreLink apps will be quantified using Ethica Data 

as well as time-stamped data relating to when the smartphone screen was turned on and off. In 

combination, these two data sources will reveal the proportion of time that the devices’ apps 

were used in relation to total smartphone use. These data will be recorded at either a day level 

(e.g. aggregate time) or event level (e.g. record of each time an app was opened) depending on 

the Android smartphone model. How often and how much time spent on the two apps compared 

with other apps on participants’ smartphones will also be quantified. Number of times the 

activity tracker syncs (occurs when the app is opened, assumed to see feedback about physical 

activity) and scans of the glucose sensor (occurs when the participant scans and to see feedback 

about glucose levels) will also be recorded. Compulsory engagement will be participants 

having to sync the activity tracker at least once every five days and scan the glucose sensors at 

least once every seven hours. The number of syncs and scans recorded above compulsory 

engagement will reflect optional engagement. Identifying when and how often syncs and scans 

happen and how these patterns change over the course of the intervention (from week one to 

six) will indicate engagement with the technology. We will also identify if participants change 

the goal settings relating to steps, floors climbed and active minutes on the Fitbit app. These 

settings will be checked daily between the hours of 18:00-19:00 by the research team and 

changes will be flagged with details of the original and new setting logged. In addition, 

assessing whether participants responded to prompts offered by the activity tracker will also be 

conducted (i.e. did participants achieve 250 steps/hour? See Behaviour Change Techniques 

section for further detail). 

Remote monitoring of participant glucose and physical activity will be completed using 

Diasend (Diasend Inc., Chicago, IL) and Fitabase (Small Steps Labs LLC., San Diego, CA), 

respectively. Diasend will connect with the Freestyle Libre via the LibreLink app and data will 

be recorded and accessed through this software. Additional data sources to be monitored by 
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Ethica Data include battery status (i.e. smartphone plugged in? Charging?), Bluetooth and Wi-

Fi (turned on or off). Quantifying these data sources will provide valuable insight into 

participant behaviour (e.g. do participants only use Wi-Fi and Bluetooth for the purpose of our 

intervention? Are participants charging it more often in the intervention compared with 

baseline?). Ethica Data will also monitor location (GPS), motion (pedometer, accelerometer, 

gravity, gyroscope, linear acceleration, magnetic field, orientation) and survey responses. 

These digital streams will monitor smartphone usage and will provide detailed data on human 

behaviour during a free-living, naturalistic setting. In total, fourteen data sources will be 

monitored. In the event a participant raises concerns relating to the number and/or type of data 

sources being monitored, a restricted coverage option of only three data sources (app usage, 

screen state and survey responses) will be offered.  

Secondary Outcomes 

Feasibility 

The feasibility of deploying novel self-monitoring technologies in parallel was structured 

around the guidelines by Bowen and colleagues (Bowen et al., 2009; see Table). Practicality 

and acceptability will be the two components focused on in the present study. Practicality and 

acceptability each have several indicators that will be used to assess the feasibility of deploying 

self-monitoring technologies. 
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Table. An outline of the feasibility components 

Feasibility component Data source (indicator of feasibility) 

Practicality of 

technology/intervention 

• Fitabase (sync compliance, missing data and response to 

haptic prompt) 

• LibreLinkUp (scan compliance) 

• Diasend (missing data, identification of Freestyle Libre 

sensor-related issues) 

• Project records (identification of need to dispatch 

additional Freestyle Libre sensors, number of individuals 

screened, rate of eligibility, study uptake and retention) 

 

Acceptability of 

technology/intervention 

• Fitabase (Fitbit wear time) 

• Diasend (Freestyle Libre wear time, digital footprint of 

time taken to move onto the next Freestyle Libre sensor 

i.e. sensor delay) 

• Project records (changes to goal settings, manual 

withdrawals, appointment attendance, retention to 

follow-up) 

• Ethica Data (digital footprint of app usage, Bluetooth 

and Wi-Fi status, battery status, electronic withdrawal) 

aFull coverage: app usage, screen state, Bluetooth, Wi-Fi, GPS, pedometer, accelerometer, 

gravity, gyroscope, linear acceleration, magnetic field, orientation, battery and survey 

responses. bRestricted coverage: app usage, screen state and (exit) survey only. 

Withdrawal 

If a participant decides to withdraw from the study at any time prior to the final appointment, 

they will be able to leave the study via (i) the Ethica Health app on their personal smartphone 

(aligning with a dynamic consenting process [Teare et al., 2015]) or by (ii) contacting the 

research team via telephone or email. Participants that decide to withdraw via Ethica Health 

will be directed to complete a brief exit survey on the app. The research team will contact all 

participants for an optional exit interview (5-10 minutes) via telephone. This will be recorded 

using Tapeacall (http://www.tapeacall.com/) and will explore reasons for not completing the 

study. 
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Physical activity levels 

ActiGraph 

In an effort to determine the physical activity levels of the participants relative to general 

population, participants will be asked to wear an ActiGraph wGT3X-BT  accelerometer 

(ActiGraph, Pensacola, FL; see Figure) for seven days during waking hours and to remove for 

any water-based activities (e.g. showering and swimming). The waist-worn (i.e. over the right 

hip, mid-clavicular line) ActiGraph will quantify time spent sedentary, in light and moderate-

to-vigorous physical activity as well as daily step counts and will function as a data logger (i.e. 

no feedback). ActiGraph accelerometers have been validated (Melanson Jr & Freedson, 1995; 

Plasqui & Westerterp, 2007) and extensively deployed (Chaudhury & Esliger, 2008; 

Hagströmer, Oja, & Sjöström, 2007; Troiano et al., 2008) to measure physical activity under 

free-living conditions. Data from the ActiGraph will be collected at 100 Hz and integrated into 

60 second epochs using ActiLife (ActiGraph, Pensacola, FL) and processed using Kinesoft 

(Kinesoft, Loughborough, UK). Non-wear will be defined as 60 minutes of consecutive zeros 

(allowing for up to two minutes of interruptions) with a minimum wear of 10 hours used to 

define a valid day (Troiano et al., 2008). A minimum of 4 valid days will be used to define a 

valid file with sedentary time classified as <100 cpm, light activity as 100-2019 cpm and 

MVPA as ≥2020 cpm (Troiano et al., 2008).  

Figure. Images of the ActiGraph (left), Fitbit Charge 2 (middle) and Freestyle Libre (right) 

Fitbit 

The Fitbit Charge 2 (Fitbit Inc., San Francisco, CA) will be worn on the non-dominant wrist 

and, whilst being sweat, rain and splash proof, participants will be asked to remove the device 

for water-based activities. The Fitbit  records intensity (i.e. minutes spent lightly active, fairly 

active and very active) in addition to heart rate and step count (see Figure). Heart rate will be 

assessed using Fitbit’s proprietary PurePulse optical heart rate technology. To examine changes 

in physical activity over the study duration, participants will be requested to wear the device 

for the full seven weeks and data will be analysed in 60 second epochs following export from 
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Fitabase. Previous models of the Fitbit have been validated for step count (Lee et al., 2014). A 

waking protocol will be implemented with non-wear defined as a loss of a heart rate signal. 

Participants will be requested to sync the Fitbit at least once every five days (rather than the 

company recommendations of seven days) to minimise data loss. Syncs beyond seven days 

will result in day level data rather than minute level data. These syncs will either occur 

automatically (i.e. without the app open) or will be user-driven (i.e. with the app open) 

depending on how the all-day sync is set, and heart rate will be set to automatic (only record 

heart rate when device is worn). 

Glucose levels 

Freestyle Libre 

The minimally-invasive Freestyle Libre flash glucose monitor (Abbott Diabetes Care, 

Alameda, CA) will be covered with Tegaderm (3M Health Care, St. Paul, MN) to help maintain 

position and adhesion during the 14-day sensor lifespan. Three strips of Tegaderm will be 

provided to participants per sensor to allow for replacement when the Tegaderm becomes dirty. 

Participants will be asked to wear the device continuously without removal for water-based 

activities (see Figure). The Freestyle Libre demonstrates consistent accuracy throughout the 14 

days with a mean absolute relative difference of 11.4% compared with capillary blood glucose, 

a lag time of 4.5-4.8 minutes and is not impacted by physical characteristics including age, 

BMI and HbA1c ( Bailey et al., 2015). Participants will be requested to scan the glucose 

monitor at least once every seven to eight hours to minimise data loss. If participants experience 

skin irritation on the non-dominant arm in the region of app, participants will be advised to 

switch to their dominant arm. Interstitial glucose data will be downloaded in 15-minute epochs 

using Diasend, an online platform connected to the LibreLink app. Participant accounts will be 

linked to Diasend from the point of LibreLink app installation. The next Figure illustrates how 

the numerous components connect to achieve the primary and secondary aims. 
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Figure. A schematic of how the technologies and platforms connected together 
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Levels of technology readiness, health status and attitude 

All questionnaires will be completed electronically using an online platform for immediate data 

entry (http://www.onlinesurveys.ac.uk/; Bristol, UK). At appointment two, quality of life will 

be assessed via the 26 item EQ-5D-5L (Herdman et al., 2011), technology readiness via the 16 

item Technology Readiness Index (TRI 2.0) (Parasuraman & Colby, 2015), health literacy via 

the 8 item eHealth Literacy Scale (e-HEALs) (Norman et al., 2006), diabetes knowledge via 

the 20 item revised diabetes knowledge test (Collins et al., 2011) and general attitude toward 

developing diabetes via the 8 item general attitudes section of the Risk Perception Survey for 

Developing Diabetes (RPS-DD) (Walker et al., 2003). 

Other measures 

Participant Characteristics 

Self-reported age, sex, ethnic background, employment, household income, postcode (to 

provide an Index of Multiple Deprivation [IMD] score) and education will be recorded. 

Participants will be asked to provide these details at appointment 1. 

Health, physical functioning and fitness 

HbA1c will be assessed at the first appointment using an Afinion AS100 point-of-care system 

(Alere Inc., Waltham, MA). Results will be processed following collection and samples 

disposed of immediately. Participants receiving a result ≥6.5% will be ineligible, readings of 

6-6.4% classified as pre-diabetic (National Institute for Health and Clinical Excellence, 2012) 

and readings of <6% classified as euglycemic. A measure of height will be conducted using a 

Seca stadiometer (Seca, Hamburg, Germany) and weight and body fat percentage measured 

using Tanita scales (Tokyo, Japan). Participants will be asked to remove their shoes and socks 

prior to these measurements. Two measures of waist circumference will be taken at the 

midpoint between the lowest rib and top of the iliac crest; if the difference ≥1cm, the two 

measurements will be repeated (World Health Organization, 2011b). Three measures of resting 

blood pressure will be recorded using an Omron digital monitor (Omron Corporation, Kyoto, 

Japan) with the first measure taken after the participant has remained seated for ≥10 minutes. 

A rest period will be enforced between each of the three measurements. 

Grip strength will be assessed using a handheld Takei dynamometer (Takei Scientific 

Instruments, Tokyo, Japan) whilst standing with hands positioned down each side. Participants 

will be asked to completed three trials on each hand with brief pauses in between to minimise 
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muscle fatigue (Canadian Society for Exercise Physiology, 2004). Quadriceps strength will be 

assessed using the DAVID G200 knee extension machine (David Health Solutions Ltd., 

Helsinki, Finland). Aerobic fitness will be assessed using the modified Canadian Aerobic 

Fitness Test (mCAFT) (Canadian Society for Exercise Physiology, 2004). The mCAFT is a 

sub-maximal step-test protocol with participants instructed to complete ≥1 three-minute stages 

of stepping at a speed dictated by an audio track. Heart rate will be monitored throughout with 

the stepping stages continued until heart rate ≥85% of age-predicted maximal heart rate. 

Participants’ scores for aerobic fitness will be defined according to the following formula: 

10*[17.2 + (1.29 x oxygen cost at the final stage) - (0.09 x weight in kg) - (0.18 x age in years)] 

(Canadian Society for Exercise Physiology, 2004). 

Behaviour change techniques 

Prior to starting the intervention, the researcher will implement the default settings for levels 

of physical activity (BCT 1.1: Goal setting [behaviour]) (i.e. 10,000 steps and 10 floors 

climbed) and glucose (BCT 1.3: Goal setting [outcome]) (i.e. 4.0-5.9 mmol/L). Participants 

will be fully informed that they can freely change the goals set for physical activity as preferred 

(i.e. should the default value be too easy/difficult) via the Fitbit app. However, participants will 

be advised to not make any changes via the LibreLink app for the target glucose range. 

Attainment of a goal will be assessed as either complete or incomplete. Participants will be 

asked to sync the Fitbit (at least once every five days) and scan the Freestyle Libre (at least 

once every seven to eight hours) if they are in the respective group to receive feedback from 

these devices. This action has a dual purpose; to minimise data loss and to encourage continued 

engagement with the technologies. Participants will also receive haptic feedback (BCT 7.1: 

Prompts/cues; i.e. a gentle vibration) as a reminder to move by the Fitbit 10 minutes prior to 

the end of each hour (default 09:00-18:00) if 250 steps have not been taken. The reminder to 

move prompt aims to encourage interruptions in prolonged sedentary bouts as is recommended 

by the UK physical activity guidelines (UK Department of Health, 2011b). In relation to the 

other behaviour change techniques, participants will be able to monitor physical activity levels 

using the Fitbit Charge 2 (BCT: 2.3 Self-monitoring of behaviour) and glucose levels using the 

Freestyle Libre (BCT: 2.4: Self-monitoring of outcome(s) of behaviour) which is a minimally-

invasive device that presents feedback about glucose (BCT: Biofeedback).  
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Data analysis 

Analysis of primary outcomes 

Ethica Data is a fee-for-service platform that will be used to provide time-stamped data relating 

to app usage. This is an app installed on participants’ phones and sits idle during the study 

period. The number of scans and syncs will be unobtrusively assessed using the free 

LibreLinkUp app (Abbott Diabetes Care Inc., Alameda, CA) and Fitabase (Small Steps Labs 

LLC., San Diego, CA), respectively. Fitabase is a fee-for-service platform that permits access 

to download 60 sec epoch Fitbit data (i.e. levels of physical activity) and remote monitoring of 

Fitbit devices (e.g. battery level and time since last sync event) via Bluetooth and Wi-Fi. 

Identification of moments where participants have decided to change the goal settings will be 

completed by accessing the online Fitbit account. The researchers will remotely access 

participants’ accounts daily between 18:00-19:00 to note goal settings; recording the date and 

previous/current settings for all metrics (e.g. step count) to help identify any changes. 

Analysis of secondary outcomes 

To assess eligibility, uptake and retention, we will monitor how many individuals complete the 

screening survey, how many meet our inclusion criteria and of these how many decide to enrol. 

In addition, the screening survey will also identify recruitment sources. Identifying non-usage 

attrition and dropout attribution is crucial to assess the feasibility of an intervention as they are 

both important but distinct constructs (Alkhaldi et al., 2016). Non-usage attrition, where 

participants have disengaged from the intervention but have not dropped out, will be defined 

as participants who attend appointment two but do not sync the Fitbit or scan the Freestyle 

Libre. Dropout attrition will be defined as participants who explicitly withdraw from the study 

via Ethica Health or direct contact with the research team. The number of participants who 

enrol into the full coverage (all 14 data sources monitored) or restricted coverage (only three 

data sources monitored) for Ethica Data will also be recorded. Diasend is a fee-for-service 

platform that permits access to download 15-min epoch data from the Freestyle Libre and 

remote monitoring of multiple LibreLink accounts. Descriptive statistics of the sample will be 

conducted. In addition, two-way repeated measures ANCOVAs will be conducted to assess 

changes in engagement (dependent) according to group (independent) having adjusted for 

participant characteristics. Similarly, two-way repeated measures ANCOVAs will be 

conducted to assess changes in physical activity (dependent) according to group (independent) 
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having adjusted for Fitbit wear time. All data will be analysed using Statistical Package for 

Social Sciences (SPSS Inc. Chicago, IL). 

Dissemination 

The present study aims to consider whether these technologies may have potential use in 

existing pre-clinical care pathways; how engaging with self-monitoring technologies 

(providing glucose plus physical activity feedback in combination) may positively influence 

rates of uptake, adherence, retention and behaviour change. This line of research will inform 

the development a full-scale randomised-controlled trial. We will publicise study findings 

online, present them at international conferences relating to diabetes, physical activity and 

digital health and publish via peer-reviewed journals.
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Appendix G 

Study Three: An outline of device deployment decisions. 
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An outline of the data collection procedures for the three wearable technologies deployed. 

 ActiGraph (wGT3x-BT) Fitbit (Charge 2) Abbott (Freestyle Libre) 

Devices 24 devices used 45 devices used 
157 devices used 

0 handheld readers used 

Sample rate 100 Hz (.gt3x file format) 60 seconds 900 seconds 

Epoch 60 seconds 60 seconds 900 seconds 

Initialisation 

Deployed in delay mode on day 0. 

Commenced logging on day 1 at 

00:00:00; stop time applied 7 days after 

Commenced logging data at point of 

initialisation on day 0 

Commence logging data 1 hour after 

point of initialisation on day 8 (Groups 1 

and 3) or day 29 (Group 2) and after any 

additional sensor applicationapps 

Deployment 
Fitted by participant (on day 0) with 

guidance from researcher 

Fitted by participant (on day 0) with 

guidance from researcher 

Fitted on day 8 by participant (using step-

by-step instructions and guidance from 

research team) to inform subsequent self-

deployment of sensors 

Location Anterior hip, mid-line of the right thigh Non-dominant wrist 
Upper portion, non-dominant posterior 

brachium 

Wear duration 
Baseline: 7 days (10,080 epochs) 

Intervention: Not worn 

Baseline: 7 days (10,080 epochs) 

Intervention: 42 days (60,480 epochs) 

Baseline: Not worn 

Intervention: 42 days (60,480 epochs) 

Wear 

instructions 

Continual wear except for sleep and 

water-based activities 

Continual wear except for sleep and 

water-based activities 

Continual wear (24hr) with adhesive tape 

over sensor 

Charging Not required 
Requested to charge overnight every 

day 
Not required 

Non-wear 

≥60 min of consecutive zeros with 

allowance for 2 minutes of interruptions 

coded as non-wear. 

An absence of heart rate signal. 
Duration of sensor (up to 14 days) and 

classify missing data between sensors. 

Valid day 

criteria 
≥10 hours of valid waking wear time ≥10 hours of valid waking wear time ≥90% of data points per day 

Valid file 
Baseline: ≥4 valid days (baseline) 

Intervention: Not applicable 

Baseline: ≥4 valid days 

Intervention: ≥24 valid days 

Baseline: Not applicable 

Intervention: ≥4 days 
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Appendix H 

Study Three: Standard operating procedure for the Fitbit. 
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Masking the Fitbit Charge 2 

General 

Tape over the whole screen on the device itself but reveal 

date and time.  

Inform of syncing protocol (Bluetooth and Wi-Fi ON 

simultaneously for at least 30 minutes) 

Once completed the following process, check that the device 

is updated (i.e. only shows floors) 

 

 

Official Fitbit app 

 

Dashboard: 

On the dashboard, scroll down and press ‘Edit’. Now de-select all metrics by pressing the 

grey buttons so they become pink. Now press ‘Done’. 
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Account settings: 

• Adjust the settings from default to the following numbers: 

 

 

 

 

 

 

 

 

 

 

 

• Ensure that Quick View is turned OFF and All Day Sync is turned ON 
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• Ensure that notifications are switched OFF 

 

 

 

 

 

 

 

 

 

www.fitbit.com/login 

 

 

Settings 

 

Notifications: 

• Untick all boxes except ‘Low Battery’ under the Mobile column. 

• Scroll down, select ‘No emails’ and click ‘Save’ 
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Charge 2: Ensure the device settings are set to the following: 
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Ensure it is the non-dominant – Left or Right 
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Appendix I 

Sttudy Three: Additional information of the technologies used. 
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Bit.ly 

Interested individuals were directed to the SIGNAL Study website via 

http://www.bit.ly/signalstudy. Employing this website URL also allowed the research team to 

quantify the number ‘clicks’ or website visits that resulted. 

 

An illustration of the bit.ly metrics 

SIGNAL Study website 

The SIGNAL Study website was constructed to advertise the study and offer the chance for 

interested individuals to access information about the study (including the participant 

information sheet). It also clarified that the research was being conducted at Loughborough 

University and offered direct access to the survey (via ‘Click here to access the survey’). 

 

 

The SIGNAL Study website 

http://www.bit.ly/signalstudy
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Qualtrics survey 

Upon clicking the link to access the survey, individuals were directed to complete a few 

questions to determine eligibility to take part. The survey, produced and published within 

Qualtrics (Qualtrics, Provo, UT) contained questions relating to demographics, body 

compositions and family history; mirroring questions used within the Diabetes UK Risk 

Assessment tool. To note, the question requesting waist circumference was amended to instead 

ask individuals to confirm their trouser waist size and fit. In combination, responses were used 

to calculate an approximate waist circumference measure. Using Qualtrics permitted access to 

individuals’ survey responses to identify and contact potentially eligible individuals. There 

were two version of the survey: (1) ‘SIGNAL Study’ – identified high risk and (2) ‘SIGNAL 

Study – Copy’ – identified moderate-to-high risk. The first version was published live initially 

but after changing the inclusion criteria to include moderate-to-high risk, the second version 

was published live. 

 

The Qualtrics dashboard 
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Participant smartphones 

Participants were asked to install the following official applications. 

The applications installed onto the smartphones 

          

Screenshots of the Fitbit application 

                    

       Screenshots of the LibreLink application 
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Fitabase 

Fitabase is a fee-for-service online platform that allows access to minute-level data recorded 

by the Fitbit. Ordinarily, if data were to be exported from Fitbit directly, data would be recorded 

at a day level and would require only one sync every thirty days. Fitabase collects minute-level 

data by communicating with the official Fitbit application. The Fitabase dashboard (accessible 

via the research team) allows the opportunity to remotely monitor multiple Fitbit devices at 

one time. Fitabase records time-stamped logs of all syncs and battery status using data from 

the Fitbit application; allowing the researcher to identify compliance to syncing and charging.  

 

The Fitabase dashboard 

 

The Fitabase dashboard demonstrating battery status 
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Ethica Data 

Ethica Data is a fee-for-service platform that records data directly from a participant’s 

smartphone. Of note, Ethica Data allows the research team to remotely monitor enrolment into 

the study and data provision and monitor rate and regularity of incoming data. In the study, we 

employed fourteen data sources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The (i) restricted (n=3) and (ii) full (n=14 data sources) coverage options 

 

An overview of three participants’ status to monitor data capture 

 

 

(i) 

(ii) 
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An overview of the data sources monitored 

Data Source Description 

Location sensors  

     GPS Measures the precise location of the device using GPS sources. 

     Wi-Fi Monitors Wi-Fi signals in the surrounding environment. 

Motion sensors  

     Accelerometer Measures the acceleration forced applied to a device (Including 

force applied from gravitational pull). 

     Magnetic field Measures the ambient geomagnetic field. 

     Gyroscope Measures a device’s rotation. 

     Linear acceleration Measures the acceleration forced applied to a device (Excluding 

force applied from gravitational pull). 

     Gravity Measures the force of gravity that is applied to a device. 

     Orientation Measures the orientation of a device. 

     Pedometer Count steps taken by the participant. 

Contact network sensors  

     Bluetooth Monitors Bluetooth signals in the surrounding environment. 

Digital footprint  

    Screen state+ Records the time that the screen turns on or off. 

    Application usage+ Records how often an application is used. 

Other  

     Survey responses+ Records user responses to survey questions. 

     Battery status Monitors the battery status of a device. 
+Data sources included within the Restricted coverage of Ethica Data 
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LibreLinkUp 

LibreLinkUp is a free smartphone application used as a software platform for the present study. 

Downloaded from the Google Play Store, LibreLinkUp collects time-stamped data reflecting 

each time a participant scans the Freestyle Libre sensor. This offers a real-time record for all 

participants and logs the data. Because the Freestyle Libre relies on users scanning at least once 

every eight hours to avoid data loss, determining whether participants have exceeded this can 

be identified using data collected from LibreLinkUp. This software also permits the research 

team to view multiple participants simultaneously by offering real-time data of participants 

scanning behaviour. In accessing this data, the research team are also able to monitor non-

usage attrition. A maximum of 20 individuals can be monitored at one time so multiple email 

accounts of LibreLinkUp were employed for the study. 

 

 

 

 

 

 

 

 

 

 

 

The LibreLinkUp application 
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Diasend Clinic 

Diasend offers two different methods of setting up an account. Firstly, participants will have a 

personal account with Diasend (accessed only by the research team). This account permits the 

connection of a Fitbit and Freestyle Libre to subsequently retrieve data. To allow the research 

team to access each participant’s data, these individual accounts are linked to a single Diasend 

Clinic account. Diasend Clinic is a fee-for-service platform that allows a researcher (normally 

a healthcare professional) to connect multiple individual accounts to retrieve data. The 

connection setup with the Freestyle Libre (via the LibreLink application) offers 15-minute 

epoch data over the study duration. This data will offer insight into wear time (transfer from 

one sensor to the next) and data loss (adherence to scanning). 

 

The Diasend Clinic dashboard 


