
._ Loughborough 

., University . 

Pilkington Library . 

AuthorlFiling Title ...... \t.~f¥.'.~~.~~.................... 1 

...................................................... .............. ,. 
Vol. No ........... ,. Class Mark ......................... .. 

Please note that fines are charged on ALL 
overdue items. 

0402087348 

1111111111111111111111 111111111111 BADMINTON PRESS 
UNIT 1 BROOK ST 

SYSTON . 
LEICESTER, LE7 lGD 

ENGLAND, 
TEL: 0116 260 2917 
FAX: 0116 269 6639 





A New Approach to the 

Development and Maintenance of 

Industrial Sequence Logic 

by 

Peter Hopkinson 

A Doctoral Thesis 

submitted in partial fulfilment of the requirements 

for the award of 

Doctor of Philosophy 

of Loughborough University 

Department of Manufacturing Engineering 

November 1998 

© by Peter Hopkinson 1998 



I," ~ ,·,"",:7':::::· ..... h 1 
.1e~'z\,~ J!·~:"~t9~~·~-·-·*·-'·,""'-··5'1 " 
v§!fllllp,' ".' , , 

I ~~::;~.~~~73~ 
Moo\)o:l'L~ le 



AcknowIedgetl1ents 

The author wishes to thank: 

Dr. Robert Harrfson for his friendship, enthusiasm and guidance. 

My parents for their love and support. 

Chris, Ben and Katie for making everything worthwhile. 

3 



Absbact 

This thesis is concemed with sequence logic as found in industrial control systems, with 

the focus being on process and manufacturing control systems. At ijs core is the assertion 

that there is a need for a better approach to the development of industrial sequence logic 

to satisfy the I~e-cycle requirements, and that many of the ingredients required to deliver 

such an approach are now available. 

The needs are discussed by considering the business case for automation and 

deficiencies with tradijional approaches. A set of requirements is then derived for an 

integrated development environment to address the business needs throughout the 

control system I~e-cycle. 

The strengths and weaknesses of relevant control system technology and standards are 

reviewed and their bias towards implementation described. Mathematical models, 

graphical methods and software tools are then assessed with respect to the requirements 

for an integrated development environment. 

A solution to the requirements, called Synect is then introduced. Synect combines a 

methodology using familiar graphical notations with Petri net modelling supported by a set 

of software tools. Its key features are just~ied with reference to the requirements. A set of 

case studies forms the basis of an evaluation against business needs by comparing the 

Synect methodology wijh current approaches. The industrial relevance and exploijation 

are then briefly described. 

The thesis ends wijh a review of the key conclusions along wijh contributions to 

knowledge and suggestions for further research. 

4 



Contents 

CHAPTER 1 INTRODUCTION ............................................................................................................................ 10 

1.1 BACKGROUND .....................................................•......................................................................................... 10 
1.2 ABOUT THIs THEsIS ...........•....•...........................•.....................................................................................•... 12 

1.2.1 Contribution of Each Lobe ....................................................................................... ............................ 15 
1.2.1.1 Graphical Method .........................................•.................................................................................................... 15 
1.2.1.2 Mathematical ModeL ........................................................................................................................................ 15 
1.2.1.3 Software Tool.. ................................................................................................................................................... 15 
1.2.1.4 Method + Tool ................................................................................................................................................... 15 
1.2.1.5 Model + Tool ..................................................................................................................................................... 15 
1.2.1.6 Method + Model ................................................................................................................................................ 16 
1.2.1.7 Method + Model +Tool .................................................................................................................................... 16 

CHAPTER 2 THE NEED ......................................................................................................................................... 21 

2.1 CLASSIFlCA TION OF MANUF ACIURlNG PROCESSES .................................................................................... 22 
2.2 THE BUSINESS CASE FOR AUTOMATION ..................................................................................................... 25 

2.2.1 Demands On The Business ................................................................................................................... 25 
2.2.2 The Benefits of Automation. .................................................................................................................. 26 

2.3 AUTOMATION PROJECT BUSINESS DRNERS ................................................................................................ 27 
2.3.1 Cost ........................................................................................................................................................ 27 
2.3.2 Timescales ............................................................................................................................................. 28 
2.3.3 Manufacturing Availability ................................................................................................................... 28 
2.3.4 Responsive to Change ........................................................................................................................... 29 
2.3.5 Integration ofSho~Floor to Corporate Systems ................................................................................ 29 

2.4 WEAKNESSES WlTII AUTOMATION PROJECTS ............................................................................................. 30 
2.4.1 Software Engineering andSystem Specification ................................................................................. 30 
2.4.2 A Typical Project Scenario ................................................................................................................... 32 

2.4.2.1 Requirements Definition ................................................................................................................................... 32 
2.4.2.2 Functional Specification .............................................................. " ..... " ............................... , ..... " ... , .................. 33 
2.4.2.3 Design .................................... " ........................................................................................................................... 33 
2.4.2.4 Implementation ................................................................................................................................................. .34 
2.4.2.5 Integration .......................................................................................................................................................... 35 
2.4.2.6 Commissioning and Acceptance Testing ........................................................................................................ .35 
2.4.2.7 Beneficial Operation ......................................................................................................................................... .36 
2.4.2.8 Decommission or Upgrade ................................................................................................................................ 37 

2.5 MODULAR AUTOMATION ............................................................................................................................. 38 
2.6 SUMMARY OF AUTOMATION PROJECT BUSINESS DRIVERS ........................................................................ 39 
2.7 SUMMARY OF WEAKNESSES WrrHCURRENT APPROACHES ...................................................................... 39 
2.8 OPPORTUNITY FOR CHANGE ....................................................................................................................... .41 

CHAPTER 3 REQUIREMENTS FOR METHOD, MODEL AND TOOL .................................................... 43 

3.1 OUTLINE SOLUTION ..................................................................................................................................... .44 
3.1.1 Requirements of the Method ................................................................................................................. 47 

3.1.1. I Clear, Concise and Complete Specification ..................................................................................................... 47 
3.1.1.2 Manage Complexity .......................................................................................................................................... 47 
3.1.1.3 Notations ............................................................................................................................................................ 48 
3.1.1.4 Coherent Information ......................................................................................................................................... 48 
3.1.1.5 Avoidance of Design Errors .............................................................................................................................. 48 

3.1.2 Requirements of the Mathematical Model.. ......................................................................................... 49 
3.1.2.1 Visibility ........................................................................................................................................................... ..49 
3.1.2.2 Graphical Representation .................................................................................................................................. 49 
3.1.2.3 Ability to Execute and Analyse ................................................................................................ " ....................... 49 
3.1.2.4 Ease of Code Generation ................................................................................................................................... 50 

3.1.3 Requirements of the CASE Tool.. ......................................................................................................... 50 
3.1.3.1 Method Support ................................................................................................................................................. 50 



3.1.3.2 Usability ............................................................................................................................................................. 50 
3.1.3.3 Integrated Development Environment.. ............................................................................................................ 50 
3.1.3.4 Rapid Prototyping and Visualisation ................................................................................................................ 51 
3.1.3.5 Documentation ................................................................................................................................................... 51 
3.1.3.6 Automatic Code Generation .............................................................................................................................. 51 

3.2 OPPORTUNITY ............................................................................................................................................... 52 

CHAPTER 4 CONTROL SYSTEM TECHNOLOGy ...........................................................•........................... 54 

4.1 PLC ............................................................................................................................................................... 55 
4.1.1 Background ........................................................................................................................................... 55 
4.1.2 Weaknesses ............................................................................................................................................ 57 
4.1.3 Trends .................................................................................................................................................... 63 

4.2 DISTRlBlITED CONTROL SYSTEMS ............................................................................................................... 64 
4.2.1 Implementation o/Sequence Logic ...................................................................................................... 64 
4.2.2 Comparison with PLC Solutions .......................................................................................................... 65 

4.3 INDUSTRIAL COMPlITER ............................................................................................................................... 66 
4.4 FlELDBUS ....................................................................................................................................................... 67 

4.4.1 Echelon LonWorks ................................................................................................................................ 70 
4.5 SUMMARY ..................................................................................................................................................... 71 

CHAPTER 5 ST ANDARDS .................................................................................................................................... 73 

5.1 PROORAMMlNG ............................................................................................................................................. 74 
5.1.1 IEC61131-3 .......................................................................................................................................... 74 

5.1.1.1 Languages ........................................................................................................................................................... 74 
5.1.1.2 Industrial Relevance ........................................................................................................................................... 77 
5.1.1.3 Limitations ......................................................................................................................................................... 78 

5.2 DESIGN MErnODS ........................................................................................................................................ 79 
5.2.1 EDDI,STEPSandKRAUSE ................................................................................................................ 79 
5.2.2 S88.01 .................................................................................................................................................... 80 

5.3 COMMUNICATIONS ....................................................................................................................................... 83 
5.3.1 DDE ....................................................................................................................................................... 83 
5.3.2 OLEJActiveX .......................................................................................................................................... 83 
5.3.3 OPC ....................................................................................................................................................... 84 
5.3.4 CORBA .................................................................................................................................................. 84 
5.3.5 The Internet ........................................................................................................................................... 85 

5.4 CONCLUSIONS ............................................................................................................................................... 85 

CHAPTER 6 MATHEMATICAL MODELS ...................................................................................................... 87 

6.1 INTRODUCTION .............................................................................................................................................. 89 
6.1.1 Communicating Sequential Processes (CSP) ...................................................................................... 91 
6.1.2 Calculus o/Communicating Systems (CCS) ........................................................................................ 91 
6.1.3 Z and the Vienna Development Method (VDM) .................................................................................. 91 
6.1.4 Real Time Logic (RTL) ............................................................................................... .......................... 91 
6.1.5 Symbolic Model Checking ................................................................................... ................................. 92 
6.1.6 Theorem Provers ................................................................................................................................... 92 
6.1.7 Synthesis 0/ Procedural Controllers .................................................................................................... 92 
6.1.8 Petri Nets ............................................................................................................................................... 93 

6.2 Monv AnON FOR TIlE ADoPTION OF PETRl NETS ....................................................................................... 94 
6.3 PETRI NETS .................................................................................................................................................... 95 

6.3.1 Ordinary Petri Net ................................................................................................................................ 95 
6.3.1.1 Modelling ........................................................................................................................................................... 95 
6.3.1.2 Analysis .............................................................................................................................................................. 97 

6.3.2 Coloured Petri Nets ........................................................................................................................... 100 
6.3.3 Extended Petri Nets ............................................................................................................................ 101 
6.3.4 Restricted Petri Nets ............................................................................................... ........................... 101 
6.3.5 Timed and Stochastic Petri Nets ............................................................................................ ............ 101 

6.4 WEAKNESSES ............................................................................................................................................. 102 
6.4.1 Express;',. Power ............................................................................................................................... 102 
6.4.2 Analytical Power ................................................................................................................................ 103 

6.5 SUMMARY .................................................................................................................................................. 103 

CHAPTER 7 METHODS AND TOOLS ............................................................................................................ 105 



7.1 MErnODS ................................................................................................................................................... 105 
7. I. I Evaluation Criteria ............................................................................................................................ 105 
7. I.2 Structured Methods ............................................................................................................................ 106 

7.1.2.1 Data Flow Diagram ............................. , .................................................................................................... 1 07 
7.1.2.2 Entity Relationship Diagram ............... , .................................................................................................... 108 
7.1.2.3 State Trnnsition Diagram ......................................................................................................................... 109 

7.1.3 Object Oriented Methods .......... ......................................................................................................... 109 
7.1.3.1 Relevant Features of the Shlaer Mellor Method ............................................................................................. 112 
7.1.3.2 Relevant Features of the Fusion Method ........................................................................................................ 113 

7. 1.4 Assessment ............................................................................ .............................................................. 114 
7.2 TOOLS ......................................................................................................................................................... 116 

7.2. I Evaluation Criteria ............................................................................................................................ 116 
7.2.2 Requirements Capture ....................................................................................................................... I I 7 
7.2.3 Design ................................................................................................................................................. 118 
7.2.4 Design Verification ............................................................................................................................ 118 
7.2.5 Rapid Application Development ........................................................................................................ 119 
7.2.6 Visualisation ............................................... ........................................................................................ 120 
7.2.7 Simulation ......................... .................................................................................................................. 120 
7.2.8 Prototyping ....................... .................................................................................................................. 121 
7.2.9 Implementation ........................................... ........................................................................................ 122 
7.2.10 Testing ....................................... .......................................................................................................... 122 
7.2.1 I Auto-Code Generators ....................................................................................................................... 123 
7.2.12 Assessmen/.. ...................... .................................................................................................................. 124 

7.3 SUMMARY ......................................................... : ........................................................................................ 125 

CHAPTER 8 DESCRIPTION OF SyNECT ..................................................................................................... 127 

8.1 OUTLINE DESCRIPTION .............................................................................................................................. 128 
8. I. I Method ................................................................................................................................................ 128 
8.1.2 Mathematical Model.. ........................................................................................................................ 129 
8.1.3 Tools ................................ : .................................................................................................................. 130 

8.2 SYNECT METIlOD ....................................................................................................................................... 131 
8.2. I The Object Hierarchy ........................................................................................................................ 131 

8.2.1.1 Object Interaction ............................................................................................................................................. 131 
8.2.1.2 Messaging ........................................................................................................................................................ 132 
8.2.1.3 Interface with the Controlled System .............................................................................................................. 133 
8.2.1.4 Internal Events ................................................................................................................................................. 134 

8.2.2 State Transition Diagram .................................................................................................................. 135 
8.2.2. 1 State ............................................................. , .................................................................................................... I 35 
8.2.2.2 Trnnsition .......................................................................................................................................................... 136 

8.2.3 Justification ........................................................................................................................................ 137 
8.2.3.1 Clear, Concise and Complete Specification ......................... , .................................................. "." .................. 137 
8.2.3.2 Manage Complexity ........................................................................................................................................ 137 
8.2.3.3 Notations .......................................................................................................................................................... 137 
8.2.3.4 Coherent Infonnation ....................................................................................................................................... 138 
8.2.3.5 Avoidance OfDesign Errors ........................................................................................................................... 138 

8.3 PETRI NET MODEL ..................................................................................................................................... 140 
8.3.1 Visibility ..................... ......................................................................................................................... 140 
8.3.2 Ability to Execute and Analyse .......................................................................................................... 140 
8.3.3 Support/or Code Generation ............................................................................................................ 141 

8.4 SYNECTTooLS .................................................. , ........................................................................................ 143 
8.4.1 Application Editor .............................................................................................................................. 144 
8.4.2 Compiler ......................................................................................... .................................................... 145 
8.4.3 Analyzer ...................................................... ........................................................................................ 146 
8.4.4 STD Monitor ....................................................................................................................................... 147 
8.4.5 Simulator ............................................................................................................................................ 148 
8.4.6 ANSI C Code Generator .................................................................................................................... 150 
8.4.7 Neuron C Code Generator ................................................................................................................ 152 
8.4.8 Allen-Bradley PLC Ladder Logic Generator ................................................................. .................. 153 
8.4.9 Justification ........................................................................................................................................ 154 

8.4.9.1 Method Support ............................................................................................................................................... 154 
8.4.9.2 Usability ........................................................................................................................................................... 154 
8.4.9.3 Integrated Development Environment.. .......................................................................................................... I 54 



8.4.9.4 
8.4.9.5 
8.4.9.6 

Rapid Prototyping and Visualisation .............................................................................................................. 155 
Documentation ................................................................... " ................................................ " .......................... 155 
Automatic Code Generation ................... " ....................................................................................................... 155 

CHAPTER 9 EVALUATION AND INDUSTRIAL EXPWITATION ....................................................... 157 

9.1 EVALUATION .............................................................................................................................................. 158 
9.2 CASESTIJDIES ............................................................................................................................................ 159 

9.2.1 Integrated Machine Design and Control (IMDC) ............................................................................ 159 
9.2.1.1 Background ...................................................................................................................................................... 159 
9.2.1.2 Synect Modules Used ...................................................................................................................................... 160 
9.2.1.3 Results .............................................................................................................................................................. 160 

9.2.2 Metal Forming Application ............................................................................................................... 163 
9.2.2.1 Background ...................................................................................................................................................... 163 
9.2.2.2 Synect Modules Used ...................................................................................................................................... 163 
9.2.2.3 Results .............................................................................................................................................................. 163 

9.2.3 FordRig ............................................................................................................................................. 164 
9.2.3.1 Background ...................................................................................................................................................... 164 
9.2.3.2 Synect Modules Used ...................................................................................................................................... 164 
9.2.3.3 Results .............................................................................................................................................................. 164 

9.2.4 Embedded Control Equipment .......................................................................................................... 165 
9.2.4.1 Background ...................................................................................................................................................... 165 
9.2.4.2 Synect Modules Used ...................................................................................................................................... 165 
9.2.4.3 Results .............................................................................................................................................................. 165 

9.3 EVALUATION AGAINST REQUIREMENTS ................................................................................................... 166 
9.3.1 Analysis and Design ................................................................................................ ........................... 167 

9.3.1.1 Support Seamless Team Working ................................................................................................................... 167 
9.3.1.2 Support and Encourage Re·use ....................................................................................................................... 168 
9.3.1.3 Explicit Support for S88.01 ............................................................................................................................. 169 
9.3.1.4 Facilitate Clear, Concise and Complete Specifications .................................................................................. 169 
9.3.1.5 Ability to Verity Correctness .......................................................................................................................... 170 
9.3.1.6 Problem Oriented Approaches and Tools ....................................................................................................... 171 

9.3.2 implementation. .................................................................................................................................. 172 
9.3.2.1 Consistent Implementation Architecture ........................................................................................................ 172 
9.3.2.2 Automatic Code Generation ............................................................................................................................ 173 
9.3.2.3 Comprehensive Automatic Generation of Diagnostics .......... , ................................. ...................................... 174 

9.3.3 Post-Delivery ........................................... ........................................................................................... /74 
9.3.3.1 Easily Supportable and Maintainable Control System ................................................................................... 174 
9.3.3.2 Good Documentation ....................................................................................................................................... 175 
9.3.3.3 Good Enterprise Integration ............................................................................................................................ 176 
9.3.3.4 Modular Automation ....................................................................................................................................... 177 

9.4 EXAMPLE W ALKTHROUGH ........................................................................................................................ 177 
9.5 INDUSTRIAL EXPLOITATION ...................................................................................................................... 179 

9.5.1 Relevance ............................................................................................................................................ 179 
9.5.2 Exploitation Results ........................................................................................................................... 179 

CHAPTER 10CONCLUSIONS AND CONTRIBUTIONS TO KNOWLEDGE ........................................ 181 

10.1 THEBUSINESSNEED .................................................................................................................................. 182 
10.2 THE REQUIREMENTS FOR A METHOD AND TOOL ................................................................................... 183 
10.3 INDUSTRIAL AUTOMATION TECHNOLOGY ................................................................................................ 185 
10.4 MODEL-BASED AND FORMAL METHODS APPROACHES .......................................................................... 185 
10.5 MErnODSANDTooLS .............................................................................................................................. 186 
10.6 CONTRlBUTIONSTOKNOWLEDGE ............................................................................................................. 187 

CHAPTER 11 SUGGESTIONS FOR FURTHER RESEARCH ..................................................................... 189 

11.1 GRAPHICAL MErnOD ................................................................................................................................ 191 
11.1.1 Human Factors .................................................................................................................................. 191 
11.1.2 DomainSpecijicity ......................................... .................................................................................... 191 
11.1.3 Object-Oriented and Component-Based Support ............................................... ............................. 192 
11.1.4 Sequence Notations .............................................. .............................................................................. 192 

11.2 MATHEMATICAL MODEL.. ......................................................................................................................... 192 
11.2.1 Process Algebras ................................................................................................................................ 193 
11.2.2 Explicit Support/or Time .................................................. ................................................................. 193 
11.2.3 Petri Net Variants ............................................................................................................ .................. 193 



11.3 SOFTWARE TOOL ....................................................................................................................................... 193 
11.3.1 Code Generators .................................................................................................. .............................. 193 
11.3.2 Support/or Enhanced Method .......................................................................................................... 193 
11.3.3 Wizards ...................................................................................................... ......................................... 193 

REFERENCES ......................................................................................................................................................... 194 

APPENDIX A W ALKTHROUGH OF SYNECf APPLICA nON DEVELOPMENT ........................... 205 

A.1 INTRODUcnON ........................................................................................................................................... 205 
A.2 DESCRIPTION OFlHE pLANf EQUIPMENT ................................................................................................. 205 
AJ DESCRIPTION OFlHE PROCESS .................................................................................................................. 208 
AA A SOLUTION USING SYNECf ..................................................................................................................... 212 

A.4.1 The Object Hierarchy ........................................................................................................................ 212 
A.4.2 Assembly Cell STD ................................................... .......................................................................... 213 
A. 4.3 Feed Conveyor STD ...... ..................................................................................................................... 215 
A.4.4 Machine STD .................................................................................... .................................................. 216 
A.4.5 RobotSTD .......................................................................................................................................... 217 
A.4.6 Gripper STD ........................................................................................ ............................................... 219 
A.4.7 Arm Elevation STD ............................................. ; .............................................................................. 220 
A.4.8 Arm Translation STD ......................................................................................................................... 221 
A.4.9 Using The Synect Tools to Develop The Application ....................................................................... 222 

A.4.9.1 Specity ......................................................................................................................................................... 222 
A.4.9.2 Compile ....................................................................................................................................................... 223 
A.4.9.3 Analyse ........................................................................................................................................................ 224 
A.4.9.4 Simulate and Animate ................................................................................................................................. 227 
A.4.9.5 Code Generation ......................................................................................................................................... 230 

APPENDIX B COPIES OF PUBLISHED PAPERS ....................................................................................... 264 

APPENDIX C SYNECT USER GUIDES .......................................................................................................... 309 



Chapter 1 Introduction 

1.1 Background 

Manufacturing and process industries have consistently brought us a better standard of 

living through the delivery of products ranging from healthcare to consumer goods. Since 

the industrial revolution, the demand has been for a wider range of products, 

manufactured more efficiently w~h respect to labour, material and environmental costs and 

with progressively shorter product I~e-cycles. 

These industries are consequently under increasing pressure to perform more effectively. 

This pressure translates into requirements for reduced manpower, shorter elapsed project 

time, faster and more accurate diagnosis of equipment or plant maHunction, greater 

flexibil~ required of the process, shorter production runs and more product variants. 

Greater levels of integration are required between the shop-floor control systems and the 

higher level corporate business systems in order to improve the overall business control 

loop. 

Although increasing levels of automation have delivered many benems to help in achieving 

these goals, the delivery and maintenance of the control systems are struggling to meet 

these ever-increasing demands. Control system solutions are based predominantly on 

Programmable Logic Controller (PLC) or Distributed Control system (DCS) technology 

which typically offer development environments focussed on implementation rather than 

analysis or design: 

• The PLC was originally introduced to replace relay panels in use in the automotive 

industry. It was programmed in relay ladder logic for maximum conceptual 

compatibil~ w~h the relay panels. Ladder logic has since been augmented w~h other 

control system programming languages such as sequential function chart (for 

sequence logic) and function block diagram (for continuous control). However, the 

legacy of decades of familiarity coupled with the available programming environments 

may explain why many industrial projects are still implemented entirely in ladder logic. 

As larger and more complex applications are tackled, the resuKing solution is prone to 

being badly structured leading to costly and time-consuming implementation, test and 

maintenance. 

10 



• DCSs have evolved from a continuous process background, inttially superseding 

remote single-loop controllers. Sequencing capabiltties have been added to cope wtth 

hybrid applications, such as batch control. 

To satisfy market demand, flexible manufacturing plants are designed. These require 

more complex sequence logic but other business needs demand faster development, 

lower costs and a control system solution which must not compromise operational 

flexibiltty. Current approaches struggle to support these needs during both inttial 

development and operational usage: 

• Tradttionally, there has been little support for the designer attempting to verify whether 

a proposed design will work as intended. If the design ttse~ contains errors, these 

may not be found until integration testing or worse still, during commissioning or in the 

system's operationallffe. Errors found late in the Iffe-cycle are many times more costly 

to rectify than errors detected earlier on. 

• Control systems tend to be purchased wtth an anticipated Iffe-span of many years. It 

is not uncommon to encounter control systems which are fifteen or more years old. 

During the control system's operational phase of the Ine-cycle, there may be requests 

for changes to be made, particularly where the market which the business serves is 

subject to signfficant change. Whereas the original developers of the system would 

have an intimate understanding of the behaviour of the system being controlled and 

the control system ttse~, such knowledge tends not to be readily available several 

years into the operational usage of the system. This leads to risk and uncertainty 

when design changes are assessed, particularly if a suttable test environment is not 

available. 

11 



1.2 About This ThesIs 

The core theme of this thesis, shown graphically in figure 1, is that the combination of a 

graphical method with an appropriate mathematical model, supported by a computer 

aided software engineering (CASE) tool, can contribute to satisfying the I~e-cycle business 

needs associated with the development of industrial sequence logic. 

Graphical 
Methods 

Mathematical 
Models 

Computer Aided 
Software Engineering 

Tools 

Rgure 1 Core Theme Of This Thesis 

In particular, the author asserts that increased emphasis should be placed on the early 

project activ~ies of analysis and specification. Current control system technology is 

considered to be oriented at implementation and formal methods based approaches have 

not been offered in an industrially useable form. By integrating a mathematical model with 

a well-understood and widely-used notation and making these available on a hardware 

and software platform in regular use by the industrial commun~, a novel software 

environment has been developed which addresses current needs and provides the basis 

for further research. 

12 



Chapter 2 clarnies the scope of the problem domain by referring to classnications of 

manufacturing processes. It then ident~ies the business context in which automation 

projects exist and summarises the business drivers for improved performance of 

automation projects. Deficiencies with current approaches are discussed by walking 

through a hypothetical control system I~e-cycle. 

Worse 

Automation 
ProJect 

Current 

Business Performance 

13 

Better 



Figure 2 A Summary of the 'Forces' on Automation Projects 

Figure 2 summarises chapter two, The Need. Better business performance is demanded 

of automation projects and this is represented by business drivers attempting to "push" the 

automation project bubble towards the right of the scale. Deficiencies with current 

approaches constrain the ability of automation projects to meet these demands. 

Eliminating these deficiencies will remove an obstacle to improved business performance. 

The overall requirements for a solution incorporating a graphical method, mathematical 

model and software tool are described in chapter three, Requirements for Method, Model 

and Tool. Figure 3 and section 1.2.1 set this information in context by identifying each 

lobe's contribution and populates the diagram in figure 1 w~h examples. 

Examples of 
Methods 
Yourdon 

Ward-Pirbhai 
OMT 

ShIaer-MeIlor 
Fusion 
UML 

StateCharts 

Examples of 
Method + Tool 

TeamWork 
Rose 

Excelerator 
ParadigmPlus 

Statemate 

Graphical 
Methods 

Examples of 
Method + Model 

See text 

Computer Aided 
Software Engineering 

Tools 

Examples of 
Tools 

Microsoft Word 
Visual Basic 

Delphi 
DirectLiok 

Witness 
InTouch 

Figure 3 Examples in Each Lobe 

14 

Examples of 
Models 

Petri Nets 
Z 

VDM 
CCS 
CSP 

Examples of 
Model + Tool 
SystemSpecs 

SPADE 
MALPAS 



1.2.1 Contribution of Each Lobe 

1.2.1.1 Graphical Method 

1.2.1.2 

1.2.1.3 

1.2.1.4 

1.2.1.5 

The graphical method facil~ates effective communication of the requirements and 

proposed solution by providing a set of expressive notations which are easily understood. 

It also offers guidance regarding how the application is tackled. 

Mathematical Model 

The model provides the theoretical framework for verifying that the proposed solution is 

precisely spec~ied and, for the purposes of this thesis, must also be capable of verifying 

syntactic and semantic properties such as completeness, consistency and intended 

behaviour. 

Software Tool 

For the purposes of this analysis, industrial software tools range in their applicabil~ from 

assisting in requirements capture (of which the most common may be the word 

processor), to the vehicle for implementing a solution via programming language or 

configuration of pra-supplied functional~. 

Method + Tool 

A method-aware tool often provides an intelligent drawing tool and automated conSistency 

checking, sign~icantly improving productiv~ compared w~h a pencil and paper approach. 

There appears to be signfficant industrial activ~ in this category relating to information 

systems development but less so specffically relating to sequence-based industrial control 

systems. 

Model + Tool 

For other than trMaI applications, a tool may be essential to the effective use of the 

mathematical model. For example, manual derivation of a Petri net reachabil~ tree would 

be impractical for an industrial-scale application. 

Although there is signfficant academic activ~ in this category, industrial usage is lim~ed 

and typically relates to high integr~ applications such as safety crHical systems. 

15 



1.2.1.6 

1.2.1.7 

Method + Model 

Examples in this category would include a graphically expressive set of notations with 

modelling guidance and complemented by a mathematical model to support reasoning on 

properties of the spec~ication: 

• Although advocates of graphical methods may claim to be in this category due to 

support for completeness and consistency checks, they have lim~ed support for 

reasoning on the behavioural properties of the solution. 

• Mathematical modellers have extended graphical notations to produce more 

expressive representations. However, these notations are unfamiliar to the target 

audience of this research and typically provide weak support for desirable 

characteristics such as component orientation to promote software re-use. 

Method + Model + Tool 

This thesis derives the requirements for an integrated method, model and tool set and 

deSCribes a solution which the author has named Synect. 

16 



, 
iI 

, 

Method Chanct,l1stlcl 
Gr hies! 
Man ee le 

ressive nota~ons 
WeH-understood notations 
Encourage object·onented view regarding 
behaviour of arm 
Encourage strucbJred method VIew of 
ordering of events and coordination of 
e 9nts 
So art decom si~on 

Su ort se uence and event behaviour 
Coherent Information 
Ees to leem 
Discrete manufachxin e alions 
H d batch a cations 
Onenled towards analysis and design 
edvities 
Formal dehnition 

Figure 4 Translating Deficiencies into Requirements and Characteristics 

V 
Tool CharacteristiCS 

~~icalmetl1od 
mathematical model 

Vlsualisallon 
Code enere~on - ~Sl C 
Cod~neration - re ladder I 10 
Code aneration - Echelon Neuron C 
Code neration - built in di lics 
I nSlve 
FllIIlile-c le su rt 
Su art re id 
Connecti\oi 



1: 

Figure 4 re-phrases the negative statements of deficiency into posttive statements of 

general requirements. Although not intended to be exhaustive, tt shows the authors 

interpretation of the relationship between the general requirements and a set of method, 

model and tool requirements. Chapter 3, Requirements for Method, Model and Tool, 

discusses these in more detail and ident~ies the characteristics demanded of the method, 

model and tool, also summarised in figure 4. These characteristics are used in later in the 

thesis as evaluation crtteria against which a~ematives are assessed. 

F','J,,"M 10: Industrial 
2: Business needs """ .. - - -- " " - "' - -" ...... Exploitation 10: Conclusion 

"" / 
~ 

~ 

2: Deficiencies with Kd,r,1(\ 

current approaches .... ... . .. -. . .. - - 9: Evaluation 
Introduction 

"-... / ~ 

~ 3: Requirements i".<:,< ~" 

for method, model ... .... __ . 8: Justification 11: Suggestio ns 

• • 

4: Control System 
Technology 

and tool 

• ~ 

s: Standards 

"-... / 
8: Description 

of 
Synect 

• iL 

6: Mathematical 
Models 

Figure 5 Thesis Map 

for 
Further Researc 

~ 

~ 

• • • iL 

7: Methods 7: Tools 

Figure 5 is a diagram of the structure of the thesis. The chapter number is shown with 

each subject area. 

Chapters four to seven discuss the current state of the art of relevant subject areas, 

identifying those aspects which can be incorporated into a solution and discussing 

limttations. These chapters also substantiate the requirements described in chapter three, 

Requirements for Method, Model and Tool. 

h 



The thesis is grouped into four parts: 

Part 1 

A critical review of industrial practice and the opportunity to satisfy the need. 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

ChapterS 

Chapter 6 

Chapter 7 

Part 2 

A proposed solution. 

ChapterS 

Part 3 

is an introduction to the subject area. 

identnies the business needs and deficiencies wtth current 

approaches. 

derives a set of requirements for a method, model and software tool. 

considers the strengths and weaknesses of control system 

technology. 

reviews relevant standards. 

concentrates on Petri net modelling bL.~ references a~ematives for 

discrete event modelling. 

considers the contribution which software development methods can 

offer and software tools which can assist in various phases of the 

control system life-cycle. 

describes the author's method and software tool set called Synect 

and jus@es its characteristics with reference to the requirements. 

An evaluation of Synect and conclusions along wtth suggestions for continuing the 

research. 

19 



Chapter 9 

Chapter 10 

Chapter 11 

Part 4 

Appendices. 

Appendix A 

AppendixB 

AppendixC 

evaluates the method using case studies as the vehicle to 

demonstrate how Synect overcomes deficiencies w~h tradttional 

approaches. 

identffies key conclusions and contributions to knowledge. The 

industrial relevance and explottation potential are also considered. 

makes suggestions for further research in this subject area. 

an example walkthrough of application development using Synect, 

showing the diagrammatic specffication and generated ANSI C code. 

copies of published papers. 

Synect user guides. 

20 



Chapter 2 The Need 

I: 

~"'-"" ~". ~F :" 9: Industrial 
2: Business needs ...,. .. - .,- .. - ,- .. , ., ,- n ........ .. , .....• Exploitation 10: Conclusion 

"~' .... 
s ',-.-

~ 

/ ~ 

2: Dcl'iciencies with / : :.;, ~~ r,' 11' 

cum:ntapproaches- . .. .. - .. -" - .. - .. 9: Evaluation 
Introduction 

"'-... / ~ 3: Requirements ":'\'I~ t;-

for method, model ....... 8: Justification 11: Suggestio ns 

• 

4: Control System 
Technology 

and tool 

A. 

s: Standards 

"'-... / 
8: Description 

of 
Syne<t 

, iI' 

6: Mathematical 
Models 

, iI' 

7: Methods 

Figure 6 R~atiooship Between This Chapter And The Thesis Map 

for 
Further Researc 

~ 

, iI' 

7: Tools 

Figure 6 shows that this chapter establishes the business needs and weaknesses w~h 

current approaches to automation projects, contributing to the identnication of a set of 

requirements against which, in later chapters, a solution is jus@ed, evaluated and ~s 

industrial potential assessed. 

2.1 Classification OfManufucturing Processes 

" 2.2 The Business Case For Automation 
2,2.1 Demands On The Business 
2.2.2 The Benefits Of Automation 

" 2.3 Automation Project Business Drivers 

" 2.4 Wealmesses With Automation Projects 
2.4.1 Software Engineering and System Specification 
2.4.2 A Typical Project Scenario 2.5 Modular Automation 

" " 2.6 Summary Of Automation Project Business Drivers 
2.7 Summary of Deficiencies With Current Approaches 

" 2.8 Opportunity For Change 

Figure 7 Structure Of This Chapter 

As shown in figure 7, the chapter begins w~h a classHication of manufacturing processes 

to describe the relevance of sequence logic. The contribution which automation can offer 

is followed by a description of automation project business drivers. Weaknesses w~ 

current approaches are then described to show the need for a better approach. Industry is 

21 

h 



starting to use modular automation to address these needs and this is considered in the 

summary of automation project business drivers. Finally, the business demand and 

technological opportunity for addressing the need is outlined. 

2.1 Classification of Manufacturing Processes 

Industrial manufacturing processes may be inttially classHied as continuous, discrete parts 

manufacturing or batch [1). The class of manufacturing process can be determined from 

whether the output of the process appears in a continuous flow (continuous), in fintte 

quanttties of parts (discrete parts manufacturing) or in fintte quanttties of material 

(batches). A comparison of the three types of process, from a process control 

perspective, is shown in table 1 [2): 

Characteristic Continuous Discrete Batch 

Product frequency Weeks Seconds Hours 

Lot sizes Large Small Medium 

Labour content Small High Medium 

Process efficiency High Low Medium 

%discrete / %analog i/o 5:95 95:5 60:40 

Typical control system DCS PLC Various 

Table 1 A Companson of Continuous, Discrete and Batch Processes 

Batch production now accounts for approximately 50% of chemical production [3). 

Analogue control usually requires the control system to drive a plant output such that a 

measured value tracks a specified setpoint. For example, the controller may be required 

to maintain a temperature in a vessel to a plant operator specified setpoint value by 

varying the flow rate of steam to the vessel's jacket. This type of control is often 

implemented using a PlO (Proportional, Integral and Derivative) algorithm to determine the 

appropriate plant output value from the difference between setpoint and measured value 

overtime. 

Discrete control may be decomposed into combinational and sequential logic. 

Combinational logic is evident when the state of a control system output can be deduced 

from the instantaneous state of control system inputs, without reference to their history. 

Sequential logic takes into account the history of events and is characterised by the control 

system exhibiting memory. For example, assume that the manufacturing cell in figure 8 is 

22 



required to drill a pilot hole in the work-piece using the small drill btt, change head to a 

larger drill btt and then drill out the hole again. 

Figure 8 An Example Manulacturing CeU 

Assume further that the work-piece is presented to the manufacturing cell on a conveyor 

and must be clamped whilst being worked upon. The required control of the rotary motion 

of the drill can be expressed as combinational logic: 

Whenever the work-piece is clamped, the drill bit motor is to run. 

Sequential logic describes the required control of the remainder of the drill untt: 

When the part is clamped, lower the drill unit until it reaches the lower limit of travel 

And then 

Lift the drill unit until it reaches the upper limit of travel 

And then 

Change to the larger drill bit 

And then 

Lower the drill unit until it reaches the lower limit of travel 

And then 

Lift the drill unit until it reaches the upper limit of travel 

And then 

Change back to the smaller drill bit. 

Finished. 

23 



The control of the drill bit motor and the clamp could be integrated with the above 

sequence definition such that control of the entire manufacturing cell is specified by one 

sequence and removing the need for any combinational logic. This helps to introduce 

further classHications within discrete manufacturing: 

Classification Description 

Single vs. mutti-threaded 

Autonomous vs. coupled 

Repetitive vs. flexible 

The number of concurrent specifications needed 

to describe the control scheme. Mutti-threaded 

control may require mechanisms for coordinating 

the activities and arbitration over the use of 

shared resources. 

An autonomous control system operates 

independently of other control systems whereas 

coupling introduces the need to share information 

between control systems. 

The repetitive manufacturing example above 

simply cycles around the statements in the same 

order every time. The need for a~emative paths 

is a characteristic of flexible manufacturing, 

atthough this is to be differentiated from exception 

handling for dealing with ma~unctions. 

Table 2 Classifications within Discrete Manufacturing 

An attemative approach, promoted during the structured analysis and structured design 

era, is to classify an automated system based on its main role as shown in table 3 (see 

also chapter seven, Methods and Tools): 

• Data transformation. This applies to systems which undertake a continuous 

algorithmic function, such as the transformation of a continuous time-varying signal 

into an updating frequency spectrum. 

• Entity relationship. In this type of system, the primary role of the functional aspects is 

to ensure that the relationships between information entities is maintained. For 

example, an order management system must maintain the relationships between 

customers and orders and possibly stock holding and deliveries. 

• Reactive. A reactive system is considered to be one which is principally concemed 

with the ability to respond to discrete input stimuli, often referred to as events [4J. 

They are typically predominantly event-driven in that they may be quiescent until an 

24 



event is detected, which then leads to one or more discrete output signals (5). 

Transformational systems, by contrast, are more associated with continuous inputs 

and outputs. In a reactive system, the response to an event may differ depending on 

the preceding sequence of events. Whereas this can be implemented in a 

combinational logic form wtth flags being used on an ad-hoc basis, a clearer 

specification can often be expressed using a state-based approach, particularly when 

a visual representation is used. From a modelling perspective, the state-based 

approach has been found to be a natural medium for describing dynamic behaviour 

(5), (6). 

Characteristic Data Transformation Entity Relationship Reactive 

Real-time Yes No Yes 

Transaction-based No Yes No 

Type of input & output Continuous Event Event 

Memory of past events No Yes Yes 

Industrial sector Continuous process Corporate level in all Discrete and batch 

sectors 

Primary diagrammatic Data flow diagram Entity relationship State transttion diagram 

notation diagram 

Table 3 Characteristics of an Alternative Classification 

2.2 1l1e Business Case For Automation 

2.2.1 Demands On The Business 

The environment in which manufacturing business now operates is being subjected to 

increasing compemion and greater mai1<et demands, requiring agile manufacturing wtth 

"reconfigurable everything" (7]. The marl<et-place is also becoming increaSingly 

intemational in both supply and demand: 

• A study by UK Foresight [8J anticipated that CAD/CAM, advanced control and low 

wage economies will directly influence the competitiveness of chemical plants. 

Labour costs in the Czech Republic, for example, are only 7% of those in the UK [9J. 

In response, mutti-disciplinary teams are seen as helpful in addressing the change in 

intemal business drivers to focus on the need for rapid development of new products 

and processes. 

25 



• Within the next 25 years, the 'emerging' countries will be fully fledged industrial 

economies. Although published before the recent turmoil in far eastem stock markets, 

the World Bank forecast that they will overtake the advanoed industrial countries in 

their share of wond output by the year 2000 and eclipse them completely 20 years 

later. China will be the world's largest economy; India and Indonesia will be ahead of 

all European countries; and Thailand, Taiwan and South Korea will be in the top ten 

[10). 

• ICI predicts that ten years from now, the Asian chem ical market will be larger than 

either America or Europe and that in twenty years, ~ will be bigger than America and 

Europe combined [11]. 

The compettlive environment leads to a number of demands on the manufacturing 

process including: 

• Lower operating costs. 

• Greater <fifferentiation from the competttion. 

• Faster response to changing market cond~ions. This leads to shorter product 

Iffecycles as exemplffied by Siemens, who generate 70% of their revenue from 

products and systems introduoed within the last five years [9). 

2.2.2 The Benefits of Automation 

Selective automation may help to satisfy the business demands listed above [12), [13): 

• Lower operating costs 

• Reduce the number of operations staff required to run the plant. 

• Increase capac~. 

• Increase yield/reduce scrap. 

• Reduce re-work. 

• Reduce inventories. 

• Greater differentiation from the compet~ion 

26 



• Greater consistency of finished product (tighter specijications) by eliminating 

variability which is attributable to manual operation. 

• Greater individuality of product, the uttimate goal being that each finished product 

is unique. 

• Faster response to changing market cond~ions 

• Ability to introduce new product variants or increase capacity rapidly. This 

requirement is particularly apparent in the food and beverage industries. Recipe 

configuration software and the ability to replicate existing software modules help 

to satisfy these requirements. 

Having identijied the benef~ of automation, a feasibility study may be established to 

detennine whether a project can be in~iated which will deliver the benefijs at acceptable 

cost, in an acceptable elapsed time w~hout undue risk. This is often referred to as a 

costtbenef~ analysis which may then be used to judge the worthiness of the project by 

considering the payback· period - the elapsed time after commissioning when the 

accumulated savings exceed the project costs. If the project is required to help the 

manufacturing prccess meet market demand, elapsed time may be cmical to ensure that 

market share is not lost to compet~ors. 

Historically ~ may have been infeasible to automate smaller plants, but the large number 

of small batch plants, increasing business demand for competniveness and the reduction 

in scale of entry level automation systems has created the demand for a large number of 

small automated applications. 

2.3 Automation Project Business Drivers 

An automation project and the resutting control system are also subject to business drivers 

which affect actMies leading up to beneficial operation and beyond, including: 

2.3.1 Cost 

There is always a demand to reduce project costs. However, this must be balanced by 

the need to have the plant operational at the earliest opportunity and the risk of delays. 

27 



Typical losses incurred by batch plant downtime are £100,000 to £400,000 per day [14] 

although this may be in the £1 m to £2m range for some pharmaceutical plants. The 

project cost also affects the viability of the project and hence the scale of application to 

which automation can feasibly be applied. One of the signfficant changes in the batch 

control industry at the moment is the reducing scale of econom ically viable automation 

[15]. 

2.3.2 Tlmescales 

The period between project sanction and ability to enter beneficial operation must be 

shortened. This lowers project costs, exploits the financial advantage of beneficial 

operation and may satisfy other marketing objectives, such as maximiSing market share, 

by being first to market. In the semiconductor industry, for example, a six month delay in 

reaching markets can resu~ in a 33% loss of aggregate revenue [16]. 

In some cases, the control system development is on the cr~ical path. If timescales can 

be shorted by adopting a simpler or more elegant solution, costs may also be lowered and 

the solution may be more supportable/maintainable. An example would be where a 

software platform's directly supported functionality could be used rather than having to 

undertake custom software or substantial configuration to meet a detailed user 

requirement. 

The timescale can be considered to consist of: 

• Development time from project sanction to start of commissioning. 

• Commissioning through to startup. 

• Rect~ication of faults and anomalous behaviour during early beneficial operation. 

Whilst the focus at the start of a project tends to be on the elapsed time until delivery to 

SITe, commissioning overruns are notorious [17] and there is often a period after startup 

where mod~ications are made to the control system to correct faults and 

misunderstandings between the developers and users. 

2.3.3 Manufacturfng Availability 

Unplanned downtime must be minimised and this requires effective support and 

maintenance of the control system: 

28 



Supportability The ease wtth which errors can be idenmied. The errors might relate 

to the control system but typically support calls often tum out to have 

been caused by operator error or plant equipment malfunction. 

Referring again to the cost of plant downtime, there is clearly a need 

to be able to rapidly diagnose fautts. 

Maintainability Maintenance is a term which tradttionally refers to the need to take 

preventative action to avoid failure but, in the software industry, is 

more typically interpreted as the ease wtth which the system can be 

modffied, usually implying fautt rectffication or minor enhancement. 

2.3A Responsive to Change 

The control system must be able to exploit the flexibility in the equipment. The 

specffication should be such that the process designer can confidently and correctly re

configure the system rather than needing software engineers to do tt. There is evidence of 

manufacturing faciltties being bum where the product to be manufactured is unknown until 

shortly before commissioning [18]. 

Where the scope of change is such that software modffications are required, for example if 

additional equipment is added, the change must be capable of being implemented at 

minimum cost, wtth minimum loss of availability of the plant and wtth maximum confidence 

in tts correctness and lack of impact on other aspects of the control system. 

2.3.5 Integration of Shop-Floor to Corporate Systems 

Ideally the manufacturing facility would be part of the overall business control system. 

This requires greater ability to integrate the manufacturing control systems wtth the 

corporate systems to enable the necessary information to be derived and transferred 

between them. Information down loaded from the corporate system could include recipe 

parameters, such as quantities of ingredients. Uploaded information could include 

machine running hours for maintenance planning and machine utilisation rates and yield 

for measuring manufacturing performance. However, there are significant differences 

between the real·time environment of the manufacturing control system and the 

transaction environment of the corporate system (19). A standardised manufacturing 

execution support (MES) archttecture helps to bridge the gap, solving immediate concems 

but providing extension capabiltties (20). 

29 



2A Weaknesses With Automation Projects 

2.4.1 Software engineering and System Specification 

A typical automation project will include a signijicant proportion of software development 

and is therefore vulnerable to the problems associated with such projects [21]: 

• Poor predictability in attempting to estimate time and effort required to produce a 

system satisfying the user requirements. 

• Low quality programs which either crash or fail to adequately meet the user 

requirements. 

• High maintenance costs. This includes both rectijication and enhancement. 

• Duplication of effort. The little re-use which does occur tends to be at the cut-and

paste of oode level rather than re-use of design. 

Although there is a growing awareness of the need for good software engineering 

practice, many oi the problems remain which caused DeMarco to report in 1982 that [22]: 

• Fifteen per cent of all software projects never deliver anything; that is, they fail utterly 

to achieve their established goals. 

• Overruns of one hundred to two hundred per cent are common in software projects. 

Good software engineering practice is of particular importance in safety-related 

applications. Reservations regarding the quality of PLC software for PLC-based 

protection systems lead the DTI and the then Science and Engineering Research Council 

(SERC - now EPSRC) to sponsor the Software Engineering Methods and Safe 

Programmable Logic Controllers (SEMSPLC) project. This resu~ed in the publication of a 

set of guidelines for the development of PLC application software for safety related 

applications [23]. 

30 



Lifecycle models have been adopted to help structure the project activities required from 

feasibility analysis, into beneficial operation and finally to eventual decommissioning or 

upgrade. One of the simplest and more widely used is the V Life Cycle Model, attematively 

referred to as the Waterfall model (described in section 2.3.2). 

Requirements Definition Beneficial Operation 
(Support and Enhance) 

"ll ? 
Functional Specification .. verifies conformance with Install, Commission and 

Acceptance Test 

"ll /' 
Design .. verifies Integration Test 

"ll /' 
Implementation 

(Code and Module Test) 

--_ .. _ ... _-_ ... _ ..... __ ...... _ ... _._----._ ..... __ .. _._----_ .... :._.-.~ 
bme 

Rgure 9 The V Ufe-Cycle Model 

31 



Analyses by life cycle phase suggest that more attention should be paid to the early 

project activities addressing analysis and design specijjcation: 

• In the HSE's Out Of Control publication [24), computerised systems were found to 

have contributed to serious accidents. The majority of incidents were caused by 

defects which should have been anticipated rather than by subtle failure modes, 45% 

of failures investigated being due to specification error. 

Operallon 
Maintenance 

Llfecycle Phase When Faults Were Introduced 
SOurce: Out Of Control, HSE 

Commissioning 

Figure 10 Ufa Cycle Phase When Faults Were Introduced 

• Other studies are reported to show 75% of all in-service software errors are due to 

specification [25). 

• Compared w~h the cost of immediately correcting an error made at the requirements 

stage, the error will be one hundred times more expensive to correct if left until the 

system is in beneficial operation [26). 

2.4.2 A Typical Project Scenario 

2.4.2.1 

The need for a good specijjcation can be compounded by contractual boundaries between 

organisations. A typicai project scenario is now described by life-cycle phase, along w~h 

associated weaknesses. 

Requirements Definnion 

This is usually prepared by the manufacturing company or its representatives. It is almost 

always text-based and attempts to describe the required behaviour of the control system 

32 



2.4.2.2 

2.4.2.3 

in general terms. This document is typically issued to a number of potential suppliers for 

them to respond to. It is not uncommon for requirements to be vague or contradictory. 

Functional Specification 

The supplier defines a functional specification, specifying the functionality to be supplied to 

meet the user's requirements and highlighting areas of non-compliance. The derivation of 

the functional specmcation from the user requirements specffication therefore crosses 

organisational boundaries and increasingly geographic boundaries, due to the 

globalisation of the market-place. The document tends to be text-based with 

accompanying diagrams for illustration. It forms the contractual defin~ion of the scope of 

supply and is the basis from which acceptance test documentation is derived. As such, ~ 

should be complete and precise but typically fails on both counts, leading to contractual 

negotiations about assumed or implied functionality and the implementation of incorrect 

detailed functionality. 

Tool support for functional specffication and deSign have not evolved at the same pace as 

for implementation [27]. For a batch control system, for example, a proposed solution is 

typically expressed using the terminology and models defined in S88.01 [1]. However, 

S88.01 is open to interpretation and although S88.01 aware platforms are becoming 

available, there is little tool support available at the specffication stage of the Iffe-cycle. 

Design 

Having specffied the functionality to be delivered, the supplier then deSigns the 

mechanisms to implement the functionality. The end-user is typically excluded from this 

activity on the grounds that they are just interested in the functionality. Design documents 

tend to be a mixture of text with block diagrams to show modularisation. The modules 

might then be designed and implemented separately. 

Mhough implementation tools are in widespread usage such as Rockwell's RSLogix5 

programming software [28J, there are very few design methods or tools in use. Typically 

there is minimal reuse of either design or implementation code because a supplier is 

tasked with supplying an integrated system rather than components which can be re-used. 

Whilst component-oriented languages encourage re-use, IEC 61131-3 offers only weak 

support for this paradigm (see chapter five, Standards). 

The use of formal methods is rare, unless the system is destined for a high integrity 

application such as the nuclear industry. This is partly attributable to a lack of awareness 

33 



2.4.2.4 

of the types of error which formal methods can help reveal. The perception that an 

advanced level of mathematical ability is required also alienates formal methods from 

typical implementation staff. Weak and expensive tool support are further disincentives 

[29]. It is interesting to compare this discontinuity of skill set and approach wijh the 

introduction of the PLC where the implementation paradigm was unchanged (see chapter 

four, Control System Technology). This suggests that advances are more likely to be 

achieved incrementally. 

Although system behaviour should be documented and agreed at the functional 

specification stage, detailed behaviour is often relegated to the design phase. If poor or 

unique design structures are used, the solution may be difficult to support, particularly if 

the design concepts are not apparent from the implementation. 

If the system is to be reconfigurable, the functionality of the software modules must be 

reviewed with a multi-disciplinary team including process, operations and control system 

experts [30]. Text-based specifications are difficult to review and even printed diagrams 

can be weak - because they are not animated, there is no easy facility to review how the 

control system reached the state currently being considered. 

Implementation 

The use of automatic code generation is rare. The implementation phase is often 

characterised by an enlarged team who hand-code the implementation using the vendor's 

programming software. Testing will be performed on each module, typically using either 

simulation software or a hardware box of swijches and lights to simulate the plant. The 

implementation tools tend to be proprietary, imposing a learning curve on the developers 

whilst they familiarise themselves with the capabilities and idiosyncrasies of the equipment 

and programming software. 

Umijed consideration would typically be given to coding standards to increase testability 

and even less so to the incorporation of diagnostiCS to aid fault-diagnosis of malfunctions 

outside the control system, such as sensor failure. Approaches such as STEPS are 

specifically deSigned to address this deficiency (see chapter five, Standards, section 

5.2.1). 

34 



2.4.2.5 

2.4.2.6 

Integration 

Whereas the testing during implementation focussed on verifying the correct behaviour of 

individual software modules, the tested modules are now integrated and tested for their 

ability to work together. This is typically where unforeseen interactions between the 

modules are identified, aHhough the absence of aud~ trails can cause substantial 

difficuHies in identifying the cause of anomalous behaviour. Design errors which are only 

identified during integration can have a significant impact on project costs and timescaies. 

Because the design must be corrected, a number of modules will require change and 

subsequent testing. Integration is typically the last activity before shipping the control 

system to s~e so delays in this phase can directly delay delivery to s~e. In summary, 

design errors which propagate through to integration testing are difficuH to diagnose, 

substantially more costly to rectjfy than if they had been detected during design, and 

directily impact on delivery to s~e. 

The integrated system must deal w~ a significant degree of asynchronous behaviour. 

Whilst the control system is likely to be thoroughly tested for the anticipated sequence of 

events which would occur when the system behaved correctly, the abnormal behaviour is 

less completely tested. There may be a considerable number of aHemative sequences of 

events but ~ is likely that only a subset of these are encountered during integration testing. 

Even w~h extended periods of testing, the extent of test coverage will be unknown, leaving 

the possibility of errors being propagated through to commissioning or live operation of the 

plant. 

Commissioning and Acceptance Testing 

The supplier commissions the control system, verifying that the equipment is controlled 

correctly. Errors encountered at this stage may be attributable to the: 

• Control system. If the control system does not behave as specified, the root cause 

may be poor specification or poor design. Such errors should have been trapped 

during development testing and factory acceptance testing, particularly where plant 

simulators are employed to mimic the behaviour of plant equipment. However, the 

number of combinations of sequences of events from asynchronous activ~ies means 

that there may be an untested sequence of events which causes an error. Typically, 

errors are more likely to be a resuH of poor requirements specification, e~her because 

the specification was incomplete or vague [31]. 

• Plant equipment. If the plant equipment behaves differently to expectations, the 

equipment and control system may be incompatible. Typically this requires that the 

35 



2.4.2.7 

control system is modffied. In these cases, the control system ~seij is used as a 

diagnostic tool for investigating the plant equipmenrs behaviour. This is a 

fundamentally different role to that required to control the plant. 

• Process. In the chemical industry in particular, the manufacturing process specified 

by the process chemist may be incorrect or incomplete. Only when the control system 

is on-s~e and connected to the plant equipment does the process chemist leam 

whether the process specification was correct (and ~ often isn't!). 

Beneficial Operation 

After sign-off, the plant will be handed over to production to begin manufacturing. At this 

time, a support contract is often established with the supplier. Faulty or anomalous 

behaviour is often poorly reported and again, the control system is being used to diagnose 

plant equipment maijunction but the lack of an aud~ trail can make verification and 

identification of the cause very difficu~. 

Flexibility may be required to cope w~h changing business circumstances. This may take 

the form of: 

• Changing the process condttions required to manufacture existing products. 

• Making variants of existing products or completely new products. 

• A~emative or add~ional plant equipment in order to tighten specifications or increase 

throughput, for example. 

It would be advantageous for the manufacturer if the process designer were able to make 

control system changes to reflect required process changes w~hout recourse to ~s 

developers. This increases the responsiveness of the automation system to the business 

needs and lowers overall costs. It also helps to prevent supplier lock-in where a systems 

integrator knows that income lost during the control system's development can be 

recovered from requested changes because the manufacturer cannot use compet~ive 

tendering to drive prices down. The uniqueness of mapping from functionality to design to 

oode contributes to supplier lock-in so standardisation in this area could offer commercial 

benef~ to end-user organisations. 

The ability to support, maintain and enhance traditional control systems is poor. There are 

many examples of PLC-based systems written in relay ladder logic for which e~her no 

36 



2.4.2.8 

design documentation exists or tt is of poor quality. Maintenance of such software, 

including both changing or enhancing functionality and also fau~-finding, is very difficu~ 

[32], [33], [34]. Implementations of relay ladder logic solutions typically take the form of a 

combinational rather than state-based solution. If a suspected logic error is reported, the 

complexity of the code is such that support engineers cannot easily determine which of 

many possible sequences of events could have caused the reported behaviour. Tools 

such as the Symbolic Simulation Based Debugger have been produced which produce a 

description of all condttions leading to a spec~ied behaviour to help in the detection of logic 

errors [35]. It is clearly preferable to structure the code and include diagnostics at 

development time to assist in faun finding. 

Considering that enhancement activities may constftute up to 75% of a system's cost over 

tts I~etime, designing for a system's entire I~e-cycle is imperative [36]. 

Decommission or Upgrade 

Unimately, all control systems are either decommissioned or upgraded. The justification 

may be business related, such as lack of market demand for the manufactured product or 

uncompetitive production costs due to the use of a superceded process. Sometimes the 

reliability and maintainability of the control system ftse~ leads to the requirement to replace 

ft. 

In the automotive industry, the Ide-span of a manufacturing machine may be substantially 

longer than the Ide-span of the product being manufactured [37], [38]. Its replacement 

may perform very similar activfties but may not reuse any of the existing equipment or 

control system software. 

Where the business demand is relatively stable, control systems often run for ten, fifteen 

or more years before a significant upgrade is required. By this time, the original project 

team is unlikely to be available so the new project team must rely on the available 

documentation to establish the functionality of the existing system. Before the new control 

system functionality is specdied, a reverse engineering activity may be undertaken to 

obtain a spec~ication which is complete and unambiguous. 

37 



2.5 Modular Automation 

Although industrial-strength software is inherently complex [39], which is to say that the 

complexity is in the problem rather than a by-product of the solution, modularity is a 

mechanism for managing the complexity by adopting the philosophy of "divide and 

conquer". 

Modular automation is being driven by the need to control more flexible manufacturing 

plants and to support reconfiguration of the plant equipment: 

• This is currently of major interest to the batch process community and is a key goal of 

the ANSI S88.Q1 standard [1]. The benefft to the manufacturer is a control system 

which supports the inherent flexibility in a plant design [18]. 

• In the discrete manufacturing environment, modular automation is visible in the use of 

flexible manufacturing cells and also in the use of "soft" automation where, for 

example, a machine uses configurable single axis controllers which can be 

disconnected and used on a different machine. 

Modular automation seeks to use well-defined modules to develop an automation system. 

The goal is to be able to re-use existing modules to lower the design and development 

costs and to gain from the increased confidence of knowing that the module is already 

proven (although care must be taken that the new application is not using untested 

functionality in the module as apparent in the Ariane rocket accident where the trajectory 

required the use of an algorithm in a previously untested manner leading to catastrophic 

failure [40D. 

Whilst this approach offers the attractiveness of faster development and lower project 

costs on subsequent projects, the early projects must carry the cost of developing generic 

modules and their configuration into the required solution rather than the development of a 

bespoke solution. ConSidering the highly competttive nature of the automation supply 

industry and the tradttional evaluation crtteria placing considerable emphasis on the lowest 

cost bid to get to beneficial operation, there are clear obstacles to the long tenn success of 

this approach. 

38 



2.6 Summary of Automation Project Business Drivers 

This chapter has established the industrial relevance of a focus on small to medium scale 

flexible manufacturing systems in the discrete and batch processing industries. In 

particular, the problem concems applications which contain concurrent threads of 

sequence logic. 

The business demands on such automation projects can be summarised as follows: 

• Reduce the cost from in~ial conception through to beneficial operation. 

• Reduce the overalll~e cycle costs. 

• Reduce the elapsed time from in~ial conception through to beneficial operation. 

• Give the process back to the process designers. Provide a control system which is 

sufficiently intu~ive that the process designers can confidently and successfully 

implement changes w~hout recourse to the system's suppliers. 

• Improve the maintainabil~ of the control system such that plant equipment changes 

can be accommodated quickly and at low cost. 

• Improve availabil~ by incorporating diagnostic capabil~ies into the control system 

such that plant equipment malfunctions can be iden@ed and dea~ with rapidly in 

order to minimise plant downtime. 

• Integrate the plant control system into the business in order to ach ieve seam less 

integration w~ corporate (business control) computer systems. 

2.7 Summary of Weaknesses With CUrrent Approaches 

What is preventing manufacturing industries from satisfying the business needs which are 

so clearly in evidence? The use of a I~e-cycle approach and the focus on component 

oriented technologies are two examples of how the industry is attempting to address the 

business drivers. However, many examples of deficiencies with current approaches were 

identffied in section 2.4, Weaknesses W~ Current Approaches, and are grouped below 

by I~e-cycle phase on which they have the most impact. 

Analysis and Design 

• Organisational and geographic boundaries cause discontinu~ies in the project. 

39 



• Minimal re-use 01 proven lunctionality. 

• ExplicH support lor 888.01 terminology and models is required in a batch control 

system. 

• Requirements specHications and functional specHications suffer Irom being 

vague, incomplete and contradictory. In summary, they may offer a poor medium 

for communication due to being open to misinterpretation. 

• Inability to verify correctness 01 the design, behavioural properties and deepen all 

parties knowledge 01 the evolving system until a signHicant proportion of the 

software has been designed, coded, module tested and integration tested. In 

particular, unloreseen interactions may only be revealed late into integration 

testing. 

• Implementation oriented approaches and weak tool support lor specifying control 

system solutions. 

Implementation 

• Different implementation archHecture every time. This leads to inconsistencies 

which reduces the supportability 01 the system and is a signHicant factor in 

supplier lock-in. 

• Manual code generation. At best, the code will laHhlully implement the design. 

• Poor diagnostiCS in the implementation. The diagnostics may be necessary to 

assist in the diagnosis 01 faulty control system logic but is usually required to 

assist with troubleshooting plant equipment ma~unction. An even greater level 01 

diagnostics are required during commissioning. 

Post-Delivery 

• Inability to conlidently and cost-effectively support the desired degree 01 flexibility 

in the plant or process. Flexibility may be required in the lorm 01 setpoint 

changes, changes to the way existing sequence logic is to be coordinated, or 

changes to plant equipment conliguration. In particular, the control system should 

be capable 01 reconliguration wHhout recourse to the original system 

development staff. 

40 



• Lim~ed confidence that documentation reflects the currently live control system. 

This is of particular concem when the time comes for the system to be replaced. 

• Poor integration w~ corporate systems, partially due to the different 

organisational environments in which the corporate and manufacturing systems 

reside. 

• Bespoke control system software may prevent the cost-effective re-use of plant 

equipment when the product ~ was manufacturing is no longer required. 

2.8 Opportunity For Change 

The opportun~ to meet these needs will be expanded upon in subsequent chapters but 

may be summarised as: 

• Business demand. There is a growing awareness of the need to support business 

goals through the implementation of automation and a recogn~ion of the deficiencies 

w~ current approaches. For example, the trad~ional contractual model has been 

based on fixed price compet~ive tendering, concentrating on minimising the cost up to 

beneficial operation. (Indeed, some organisations consider cost and timescale 

variations to the original contract to be a measure of the "goodness· of their 

specijication). However, the growing awareness of the need to address lije cycle 

costing [41], [42] is leading to a focus on supply chain management and partnerships. 

The business benems of software re-use is also being recognised, particularly in the 

IT sector [43]. 

• Control System Technology (chapter four). As the base functional~ of the target PLC 

and DCS platforms has increased and their application areas have converged, 

vendors have responded to market demand and attempted to differentiate their 

offerings by making them more "open". This is reflected by the abil~ to exchange 

data between the programming environment and third party software and also by the 

connectiv~ to the live control system. 

• Familiarisation with the principles of object-oriented modelling, modular automation 

and the focus on re-use (chapter seven). Whilst control systems were often seen as 

bespoke developments, w~ specijications concentrating on the procedural 

functionality required, the principle of modelling is gaining acceptance, assisted by the 

grOWing awareness of object-oriented methods and languages. Model building 

41 



appeals to all engineering disciplines [441. appealing to the principles of 

decomposition. abstraction and hierarchy. 

• The availability of proven and established mathematical models which are sufficiently 

powerful yet comprehensible by control systems developers (chapter six). 

• Internationally agreed and de-facto standards (chapter five). These provide the 

convergence of opinion and evolution of best practice. They also offer the potential 

commitment from end-users which gives software tool developers confidence 

regarding the level of demand for a tool supporting the standard. 

• The availability of low-cost powerful PC technology for performing computationally 

intensive algorHhms and to support highly expressive methods which can be quickly 

leamt (chapter seven). 

These factors will be discussed in more detail in the subsequent chapters. highlighting 

weaknesses and opportunities to contribute to an improved approach by: 

• Focussing attention on ensuring that the proposed solution will behave as intended. 

• Reducing the craft element of implementation to yield faster and more consistent 

delivery of the control system. 

42 



Chapter 3 Requirements for Method, Model and Tool 

I: 

Chapter two, The Need, established the need for an improved approach to the 

development of industrial sequence logic, described deficiencies wtth current approaches 

and indirectly identmed the opportunity for a method and tool to contribute to a solution by 

explotting graphical methods, mathematical modelling and CASE tool technology. As 

shown in figure 11, this chapter specmes the requirements for a method, model and tool 

against which the proposed solution will be jusmied in chapter eight, Description of Synect. 

f<dc r·;!.(. 9: Industrial 
2: Business needs .,. __ .,., .. .. - Exploitation 10: Conclusio os 

~ / f.:,{".~ ,.; 2: Deficiencies with 
current approaches ... 9: Evaluation 

Introduction .. 

J r-

4: Control System 
Technology 

~ / . 3: Requirements •.. 1< ,.'1 ~'r" l\' 

....... - -.. 8: Justification . for method, model 
and tool / "-... 

J r-

5: Standards 

8: Description 
of 

Syn"'t 

, 

6: Mathematical 
Models 

• 

7: Method, 

Figure 11 Relationship Between This Chapter And The Thesis Map 

43 

• 

11: Suggestion , 
for 

Further Res earch .. 

, • 

7: Tools 



3.1 Outline Solution 

/ ~ ~ 
3.1.1 Requirements 3.1.2 Requirements 3.1.3 Requirements 

of the Method of the Model of the CASE Tool 

~ + .------
3.2 Opporltmity 

Rgure 12 Slructure of this Chapter 

This chapter is structured as shown in figure 12: 

• An outline solution which combines a graphical method, mathematical model and 

software tool support is justified, establishing the context for the detailed requirements 

to follow. 

• Method requirements, model requirements and tool requirements are then introduced 

and related to the general requirements as summarised in figure 4 in chapter one, 

Introduction. The discussion of each set of requirements also identffies desirable 

characteristics of a solution, which are also shown in figure 4. 

• The business motivation, knowledge and technology discussed in earlier chapters is 

summarised to identify the opportunity to satisfy the requirements. 

3.1 Outline Solution 

In keeping wijh the goal of producing research output which has high industrial relevance, 

the method and tool should be of benefij for small to medium size systems. Whereas 

academic and major industrial innovations have tended to address highly complex 

systems [51, many industrial applications are smaller in scope. Such applications can still 

benefij signHicantly from a model·based approach wijh good tool support. The author 

contends that there is an analogy with best software engineering practice. Once the 

principles are understood and the benefijs recognised, it is unlikely that a project would be 

undertaken in which the software was implemented wijh minimal modularity, high coupling 

etc., although the standards might not be so rigorously enforced. Similarly, whereas 

formal methods appear to be currently viable only for applications where the cost of error 

is high, the author believes that once engineers become familiar with the method and tools 

proposed, they will be reluctant to give them up. Whilst potential users are concemed at 

taking on a new method or tool for large projects, the risk is considered lower wijh a 

smaller project and this helps to reduce one of the obstacles to exploijation. Once the 

44 



experience with the method and tool has been established, users may feel more confident 

about applying such techniques to larger projects. 

The target user community includes systems integrators and end-users involved in the 

specnication, development and operational support of small to medium-scale applications. 

Many of these systems integrators have evolved from electrical rather than software 

engineering backgrounds [25]. For an innovative product to appeal to early adopters [45), 

there must be a recognisable potential for beneftt wtth limtted investment of time and cost. 

Consequently the method and tool must be intuttive so that tt can be leamt quickly and 

easily, preferably wtthout the need for training courses or consultancy. Comparing 

available specHication techniques, Mallaband notes that proprietary methods may have 

advantages in terms of rules for their application and for tool support and, in some cases, 

automatic code generation [46]. However, he considers that they generally use unfamiliar 

notations, are expensive and usually need signHicant training and consu~ancy to be 

applied effectively. The tool must therefore guide the analyst towards a good solution. Its 

emphasis should be on preventing errors being introduced by the analyst rather than 

providing a mechanism for revealing such errors later. In the comprehensive review of 

techniques and tools for specifying real-time systems [47], a set of requirements for an 

ideal tool are listed: 

'M, east and intuilable method and tool. Where 'easy' means. 'very close' 10 the analyst mindset· For 

this reason lI1e tool must be endowed with a graphic user interface, and n must allow OOIh IOp·downand 

OOttom-up approaches for software specification, as well as a combination of Ihese.' 

'A model 10 make easier Ihe reusing of reactive system specifications. This means Ihat Ihe model 

adopted must provide support for software composition by reUSing already defined • software 

components.' 

'A melhod for verifying and validating the specified software against critical conditions from the early 

phases of system specification.' 

'An executable model 10 allow the validation of system behaviour by means of simulation', 

Communication between humans and between human and control system should be 

supported: 

• Effective human to human communication is essential to ensure that the requirements 

and proposed solution are clearly understood. Geographic and organisational 

45 



boundaries can make such communication more difficu~. With reference to batch 

control systems, practical experience [14) has suggested the desirability of: 

• A formal problem decompos~ion philosophy. 

• A standard logic representation, such as the state trans~ion diagram. 

• Formal reviews using a mu~i disciplinary team. 

• The solution must be expressed in a form su~le for the target control system, 

typically using bespoke software and configuration of pre-packaged functionality. 

Chapter one, Introduction, described the contribution which a graphical method, 

mathematical model and software tcol can offer. Consequently, an outline solution would 

provide a development environment consisting of: 

• A method to define how the problem should be addressed and to define a set of 

notations for expressing corresponding concepts. 

• A mathematical model to provide the capability to analyse the behaviour of a 

proposed solution. 

• A CASE tool (or su~e of tools) platform which supports the method and operates on 

the model. A platform is considered to be a development environment which helps the 

developer move closer to the solution by providing a foundation on which to build. In 

particular in this case, ~ supports a method for tackling the problem and offers a set of 

tools to support the method. It also provides a framework to define the relationships 

between the tools (Le. so they are an integrated set of tools) and defines the boundary 

of the platform so they can be integrated with other tools. 

The principle of combining these three complementary components should enable 

changes to be made to an individual component without invalidating the approach. For 

example, n new research offers an a~emative mathematical model with more powerful 

analytical capabilities, ij would be highly desirable to replace or augment the existing 

model w~h the new model. 

The requirements for each constttuent part are now considered in more detail. 

46 



3.1.1 Requirements of the Method 

3.1.1.1 Clear, Concise and Complete Specification 

3.1.1.2 

The method must be easy to learn and apply to help the analyst produce a specification 

which is clear, concise and complete. It should be problem oriented, being applicable to 

manufacturing and batch applications and oriented towards the early project activtties of 

requirements analysis and design. Structured methods and object oriented methods have 

had some success in these regards but are seen as disjoint. However, in comparing 

structured methods wtth object orientation, Booch draws attention to the question of which 

is the correct approach: algorithmic decomposttion (structured method) or object-oriented 

decomposttion (44). He asserts that both views are important. The algorithmic view 

highlights the ordering of events and the object-oriented view emphasises the agents 

involved. The author would also assert that the structured method focuses on the required 

coordination of the agents. Object orientation is particularly associated w~h the promotion 

of re-use. 

The requirements and functional design specifications typically need to be clear, concise 

and complete to a range of disciplines and organisations, including: 

• Prooess and operations personnel considering ~ control and operability aspects. 

• Strategic development concemed with longer term supportability, maintainability and 

flexibility, such as through the adoption of modular automation. 

• Systems integrators and control system vendors who are typically contractually bound 

to the functional design specification. 

• Information systems analysts concemed wijh integrating manufacturing systems wijh 

the corporate systems to gain commercial competitive advantage. 

Manage Complexity 

Even wijh a relatively small application, the asynchronous behaviour of the equipment 

being controlled results in substantial inherent complexity. According to Dijkstra, "the 

technique of mastering complexity has been known since ancient times: divide et impera 

(divide and rule)" (48). This suggests the design of a software system should be 

decomposed into smaller parts, each to be independently refined. 

47 



3.1.1.3 

3.1.1.4 

3.1.1.5 

The management of complexity is essential in the early project phases to enable mu~i

disciplinary teams to review coherent but manageable portions of specnication. However, 

tt may be vttal to understanding a reported ma~unction during operational support by staff 

other than the original developers. 

Notations 

Whereas a typical control system specnication currently uses text as the main expression 

of requirement or implementation, wtth diagrams as aids to understanding, the use of a 

formal visual description relegates the text to the role of supplemental information and, 

wtth each graphical construct given a precise meaning, is netther vague nor ambiguous 

[5). However, the notations must not be an obstacle to adoption of the method. They 

should therefore be expressive, well understood, in common usage and must be oriented 

towards event and sequence definttion in order to be close to the analysts mind-set [47] 

and to facilitate effective communication between analyst and end-users and between 

developers [49). Furthermore the notations should make coupling between modules 

explictt in order to facilttate effective re-use. 

Coherent Information 

Related information should be expressed together rather than fragmented. A cmicism of 

some diagrammatic approaches is that related information is spread over many different 

pages. This may be unavoidable when using a generalised method which must be 

capable of tackling very large scale applications but is less jusmiable when the scope is for 

small to medium scale applications. 

Atthough software tools may support hyperlinks between related information, coherent 

printed documentation is necessary for review purposes and contractual reference. 

Operational support may be provided by personnel wtthout access to the software tools, 

relying entirely on printed documentation. 

Avoidance of Design Errors 

In producing a clear, concise and complete specnication, the analyst should be guided to 

adopt a structure such that design errors are avoided rather than trapped later by 

analytical or executable verification. Such a structure may parlicularly beneftt the types of 

error which would typically be found late in integration testing. It would be unreasonable to 

48 



expect that the method could prevent any errors being introduced and consequently 

should support the identification of such errors by the CASE tool. 

There must also be a simple mapping to the mathematical model, as the model provides 

the basis for verifying correctness of design. The method should therefore have a formal 

basis, rather than the semi-formal nature of many structured and object-oriented methods. 

3.1.2 Requirements of the Mathematical Model 

3.1.2.1 

3.1.2.2 

3.1.2.3 

Visibility 

In order to explott the ben ems of a mathematical model wtthout the obstacle of the 

perceived learning curve, the casual user should able to verify the design wtthout needing 

to understand or directly interact wtth the model. 

There must be a simple mapping from the notations used in the specification to the 

mathematical model. Support for concurrent threads of control is therefore necessary. 

Although one view of the purpose of the model is to support the method's notations, an 

altemative view is that the notations provide a user-friendly front-end to the model, as 

expressed in [50): 

To be able to apply Petri nets to practical work, software engineers need a means to specify their 

concepts at a more abstract level with a set of easy-to-use descriptive constructs. 

Graphical Representation 

To provide the necessary level of confidence in design vermcation and code generation to 

the more inquisttive user, the model must be established, comprehensible to a typical user 

and provide clear traceabilify from the analysfs specification. It should therefore have a 

non-mathematical representation, preferably using a graphical notation. 

Ability to Execute and Analyse 

For verifying the correctness of the design. the model should be primarily executable but 

should also be able to support behavioural property querying, such as deadlock and state 

searches. Users tend to lack confidence in their ability to specify a complete set of desired 

49 



3.1.2.4 

and unwanted behaviours whereas an executable model is analagous to an operational 

control system. Execution of the model and the resu~s of property queries should be 

presented in familiar terms to the analyst, necessitating references to the original 

specijication. Whilst thorough verffication of individual components is important, the ability 

to test the complete system may reveal errors which would otherwise be found late in 

integration testing. 

Ease of Code Generation 

In addttion to a simple relationship from specijication to model, tt should also be 

straightforward to translate the model into a variety of languages for different target 

platforms wtth bui~·in diagnostics. Mhough a form of code output which was unintelligible 

to humans would guarantee that the implementation was derived from the specijication by 

preventing modijications of the generated code, the target platforms typically require 

human-readable code and this also offers traceability from the user specijication. 

3.1.3 Requirements of the CASE Tool 

3.1.3.1 

3.1.3.2 

3.1.3.3 

Method Support 

Good method support is very important to guide the analyst in applying the method and 

hence delivering the benefits which the method offers. The tool must hide '1echnicaf' 

concems whilst allowing full expressivity to capture and represent important information 

[511. Whilst many software tools claim to be CASE tools, many offer only programming 

functionality or are drawing packages wtth simple consistency checking. Others claim to 

be mu~i-method but are limtted in their support for a particular method. 

Usability 

To help the analyst apply the method, with minimal training requirements, the tool must 

offer a user interface which is both familiar and comfortable. 

Integrated Development Environment 

To overcome the discontinutties associated wtth functionality gaps and overlaps between 

disparate tools used for specijication, simulation, programming and support, the tool 

should provide an integrated environment supporting the mathematical model and also 

support connectivity with complementary tools. For widespread adoption by the target 

user community, tt needs to be inexpensive. 

50 



3.1.3.4 

3.1.3.5 

3.1.3.6 

Rapid Prototyping and Visualisation 

Rapid prototyping should be supported such that a potential solution can be verified [39]: 

• Perform some analyses automatically for certain classes of design error. 

• Deduce performance capabilities. 

• Support interaction with the developer for further analysis. 

• Provide simulation/animation of the proposed solution, preferably graphically and wijh 

the abilijy to support what-ff analyses [52]. This also benefijs muiji-disciplinary team 

review and enables the effects of suggested changes to be quickly and effectively 

evaluated. 

The tool should be capable of representing the execution of the model, and the resuijs of 

property queries, with reference to the analyst's specffication. In particular, the tool should 

be capable of animating the diagrams which the analyst specffied. In order to support 

aijemative complementary visualisations, connectivijy to other tools is required, such as 

3D modellers and process-oriented mimic graphics. This can help prevent saturation with 

one particular view by offering a different perspective on the system. 

Documentation 

For contractual and reference purposes, the tool must be able to generate comprehensive 

documentation including the analyst's specification and a definijion of the model and 

traceabilijy between the two. 

Automatic Code Generation 

The author considers automatic code generation to be essential. Commercially, the target 

user·base is familiar with programming tools but less so with design tools, the output of 

which must then be manually translated into source code. In addttion, there will be users 

who focus on the implementation effort and for whom the benem of the tool may be 

perceived as a documentation aid. The absence of code generation would therefore be a 

signfficant obstacle to successful explottation. More posijively, automatic generation of 

code substantially reduces implementation and corresponding test elapsed time, effort and 

cost. Confidence in the implementation may also be increased. Maintainability is 

improved because a consistent style is used, rather than a different design arcMecture for 

51 



different applications. The code should include diagnostics which help accurate reporting 

of fau~ symptoms and in troubleshooting plant equipment malfunction. This can help to 

shorten commissioning periods and minimise plant downtime when in beneficial operation. 

The code should also facilitate links with extemal systems, such as corporate systems, so 

that business statistics may be computed. 

Three popular categories of implementation environment which should be supported are: 

• PLC running software written in relay ladder logic. 

• Real-time executive running scan-based or interrupt-driven software, typically 

compiled from ANSI C. 

• Distributed intelligent nodes, such as Echelon's LonWorks fieldbus archnecture wnh 

the software for each node written in Neuron C - a modmed form of ANSI C. 

3.2 Opportunity 

The established knowledge. techniques and technology which offer the potential to meet 

these requirements include: 

• The modelling prinCiples of object orientation have become firmly established in the IT 

sector and are being introduced to the control systems communny. Many control 

system development environments support function block programming, which may 

be considered as a first step towards object orientation. 

• The widespread adoption of the Microsoft Windows graphical user interface increases 

the acceptabilny and the shortens the leaming curve of a new tool by offering a 

familiar look and feel. 

• Almost universal conformance with Microsoft Windows-based communication 

mechanisms by PC-hosted tools. This facilnates integration of otherwise disparate 

tools into an integrated environment. 

• The PC is a de facto standard desktop computing environment which is low cost but 

very powerful in terms of processing speed and memory capacny, offering the 

computing power to support interactive analyses of a mathematical model. 

• Widespread evidence of the application of Petri nets to manufacturing and process 

industries demonstrating their relevance and value to this problem domain. 

52 



To summarise, the essence of this research is to build on what has been achieved to date 

in order to explott tts value rather than to further academ ic research knowledge regarding 

a particular mathematical modelling method or graphical method. As shown graphically in 

figure 13, which is a copy of figure 1 in chapter one, Introduction, the goal is to apply the 

combined power of a graphical method, mathematical model and CASE tool in a manner 

to which an industrial user can relate: 

Graphical 
Methods 

Mathematical 
Models 

Computer Aided 
Software Engineering 

Tools 

Agure 13 The Goal of This Research 

53 



Chapter 4 Control System Technology 

I: 

This chapter examines the development and run-time technology typically used to 

implement control system solutions. Trends are iden@ed and deficiencies in meeting the 

business needs described in chapter two, The Need, are jus@ed. 

iZ"!~'r; li' 9: Industrial 
2: Business needs ....... Exploitation 10: Conclusio os "'fi· . . / ~ 

2: De clencles With iLI·,'~l" 

currenta~ches .... -. _. ,-"". -'-'--.. .... _.-.. -.. -.. . ", .. _. 9: Evaluation 
Introduction 

"-... / ~ 3: Requirements f,«('~d" 1" 

for method, model .. "., .. 8: Justification 11: Suggestio 

and tool for 
n, 

"-... / Further Res earch 

~ j ~ 

~;.'4;c;;.trois;';tem!'l 5: Standards 
'··':.Techoology , 

8: Description 
of 

Synect 

, 
~ 

6: Mathematical 
Models 

j ~ 

7: Methods 

Figure 14 Relationship Between This Chapter And The Thesis Map 

~ 

~ 

7: Tool, 

As shown in figure 14, the available control system technology influences all aspects of 

the derivation of requirements for a new approach and the delivery of a solution. 

Weaknesses with current development environments help determine the requirements for 

a new approach and the run-time technology will still be required as the target 

implementation platform for a new approach: 

• The development environment refers to the tools and methods which are used to 

specify and implement the system. These are often closely related to the target 

platform - the software development for, and configuration of, most platforms relies on 

software tools which are e~her part of the platform or sold by the same vendor. 

• The run-time technology can be considered to consist of: 

• Computing hardware. 

• Software environment (such as an operating system). 

• Interfaces to plant instrumentation, sensors and actuators. 

54 



Considering the dependencies between computing hardware, run-time software 

environment and development environment to the type of control system platfonn, these 

will be described by examining the types of control system platfonn and then the plant 

interiaces, namely in the order: 

• PLC. 

• DCS. 

• Industrial computer (including embedded programmable devices such as 

microcontrollers and single board microprocessors). 

• Plant interiaces. 

4.1 PLC 

4.1.1 Background 

Power 
Supply Processor 

Input/Output Modules 
Communications 

Module 

Figure 15 Modular Hardware Structure of a PLC (source: Rockwell Automation) 

The programmable controller, or programmable logic controller according to the Allen

Bradley trademark, was originally designed to replace relay panels used in the automotive 

industry for sequencing of production machinery. Whereas relay panels were, at best, 

slow and costly to reconfigure, the programmable controller was developed to offer a 

robust, industrially rugged choice of hardware modules which could be re-programmed 

using a notation w~h which electrical and maintenance staff were already familiar. Figure 

15 shows a modem example of modular PLC hardware, with the rack containing a power 

supply, processor and an application-dependent selection of input, output and 

communications modules. 

55 



0000 

The dominant programming language in use on PLCs is relay ladder logic. Other 

programming languages are reviewed in chapter five, Standards. This section examines a 

number of deficiencies in the tradmonal use of relay ladder logic for industrial sequence 

control. Examples have been produced with Rockwell Automation's ladder logic 

programming software (Rockwell Automation, Allen-Bradley's parent company, has over 

50% share of the North American PLC market [53]). 

Stutf'lll'itclawitk 
wJ:D:h opentor 
,tub JUclDz. 

RUNMACHINE = (STARTSWlTCH OR MACHINERUNNING) AND NOT STOPMACHINE 

Figure 16 An example of relay ladder logic and its boolean equivalent 

Figure 16 is an example of relay ladder logic wijh equivalent boolean logic in text fomn. 

The vertical lines at each side of the diagram represent power rails. Following the model 

of an electrical circuit, the contacts towards the left 01 a rung are equivalent to switches 

and, ~ all made, supply power to the coil towards the right of the rung. Serially linked 

contacts represent AND operators and parallel branches represent OR operators. 

The programming notation of relay ladder logic allowed simple expressions of 

combinational logic to be specified in a graphical fomn, using symbols and temninology 

such as contacts and coils. Not only was the device programmed in this way, ij also 

modelled the relay panel in temns of providing diagnostic inlomnation about the state of the 

contacts and coils and facilijated the '~orcing' of contacts and coils, again mimicking the 

relay panel. It is interesting that a development which has had such a profound effect on 

automation started as an incremental evolution from the status quo, Le. for the end-users 

of the technology, the change was a small step rather than a gigantic leap. The types of 

application for which this technology was appropriate were: 

56 



• Discrete i.e. no analogue 

• Intu~ively considered as combinational logic for which an interlock paradigm, such as 

relay ladder logic, was highly su~le. 

Over time, the capabil~ of the PLC hardware increased to offer more memory, faster 

execution and support for analogue inputs and outputs, high speed counters, 

communication modules and more. The relay ladder logic instruction set was expanded to 

handle the new types of hardware module and also to be able to manipulate analogue 

data. As ladder programs grew larger because bigger applications were tackled, the 

abil~ to support software engineering principles of modularisation of the software into 

subroutines was added. More complex applications were tackled, including muniple 

concurrent threads of control w~ anemative branches through the sequence logic. 

Today's PLCs provide a rich instruction set and programming tools which typically run on 

desktop PCs to provide a user-friendly development environment. The trend is also 

towards smaller PLCs which can be networked together. 

4.1.2 Weaknesses 

As more complex applications have been tackled, the lim~ations of current approaches 

using ladder logic have become evident. These include the lack of an explic~ 

representation of data structures or ent~ relationships and weak support for algor~m ic 

functional~ [54]. Of particular relevance to this thesis, RLL is a poor representation for 

expressing sequence logic. Indeed, ~ can be impossible to tell what the intended 

sequence behaviour is w~out a knowledge of the equipment to which the PLC is 

connected. The combinational logic approach leads to a very compact specHication and 

memory-efficient solution but is extremely difficun to maintain and does not provide the 

level of diagnostics which are typically desired - the control system is often required to 

assist in the diagnosis of faun cond~ions in the equipment. 

An example of ladder logic will now be considered to demonstrate some typical 

weaknesses. 

57 



Rgu,e 17 Example Application 

In the example application in figure 17, the robot arm moves vertically between the two 

limtt swttches LIMIT _SWITCH_ARM_HI (on PLC digttal input 1:1/0) and 

LIMIT _SWITCH...ARM_LO (on PLC digttal input 1:1/1). There are two outputs to the arm 

motor 0:210 and 0:211 as follows: 

0:210 0:211 Arm Movement 

0 0 Remains stationary 

0 1 Arm raises 

1 0 Arm lowers 

1 1 Remains stationary 

Similar logic exists for the gripper. 

Consider a requirement to sequence these devices as follows: 

Lower the robot arm and then close the gripper. When the gripper is closed, 

raise the robot arm. 

58 



0000 

0001 

0002 

Figure 18 shows a combinational logic solution expressed in ladder logic to behave as 

required: 

LowIn.tImUl 
fIlritck Oll utIl 

.. Y&tio!L 

1:1 

LowloftllmUl 
twitc'h OB arm. 
•• nticm 

1:1 
[ 

Lowln.t_ 
MitchOllUJll 

1:1 

lWM U. JObot Ulll 

O~ 

lJmiI..ntcb 
iDdicat., &riPper is 
olo..d 

3 

lJmiI..ntcb 
b!&&hI pippu it: 
,Jo,od 

u 
JE 

3 

• 
Limit twitch 
mdiWu pippu is 
olo..d 

o 

Figure 18 Partial Combinatiooal Logic Solution 

o 

Where is the sequence defin~ion? It is partly in the ladder logic and partly in the 

equipment being controlled. Because the control scheme relies on the plant equipment 

behaving as required, it cannot trap illegal behaviour or sensor manunction. Consider the 

behaviour ff the gripper closed sensor fails as the amn is being lifted. The effect is that the 

GRIPPER_CLOSED contact in rung 2 will prevent power flowing to the RAISURM coil 

so the amn will not continue upwards. Because the gripper is not closed, power will flow 

through rung 0 to the LOWER_ARM coil. So the resu~ is that the arm will lower, although 

this is likely to be undesirable behaviour and is non-obvious in the ladder logic 

implementation. 

The sequence logic requirements for flexible manufacturing systems are more complex. In 

the above example, the gripper can be assumed to be empty whilst the arm is lowering. In 

a flexible manufacturing system, however, the robot may be required to retrieve the part 

for manufacture and then return ~ later - lowering the arm with the gripper empty on one 

occasion but holding the manufactured part on the other. This would typically be 

implemented using a flag to store which mode the robot was in. However, as the 

requirements grow more complex, more flags are added, some of which are mutually 

exclusive a~ough, again, this is not apparent from the ladder logic program. It is only with 

59 



a good knowledge of the application that this is apparent. At a later stage, if a mod~ication 

is requested to the program, tt is very easy to incorrectly manipulate one of the flags which 

can cause faulty behaviour under particular circumstances. A~ematively, in the case of a 

system wtth decision logic and ~emative branches, tt is possible that an error could exist 

in the logic for a long period before a particular sequence of events occurs which causes 

the system to exhibtt faulty behaviour. When that happens, tt can be virtually impossible to 

deduce the root cause of the faulty behaviour. 

An addttional problem wtth a combinational logic implementation relates to the use of 

timers in dependency relationships. For example, a timer might be used to defeat an 

interlock to allow an actuator time to move away from tts end-stop. This example of 

accidental complexity [39] makes the control intent more difficu~ to decode and can lead to 

system ma~unction ~ the type of actuator is replaced, for example during a 

debottlenecking exercise. 

The conclusion of the above discussion is that a combinational logic solution, as 

encouraged by the ladder logic paradigm, is acceptable for applications which are 

naturally expressed in terms of permissives or interlocks, but becomes less appropriate as 

the requirement increases in complexity from a simple repetttive sequencing application to 

one wtth more flexibility. 

The combinational logic solution could be considered to be a special case of a state-based 

solution, where transttions are defined from every state to every other state. Usually, the 

state machine will only define a subset of these transttions so that an illegal transttion from 

one state to another cannot occur. Atthough the state-based implementation is likely to 

use more code than a combinational solution for the equivalent functionality, the state

based solution runs faster because the first contact on each rung relates to the current 

state and there can only be one state active at a time [55]. If a rule-driven process is used 

to transform the state-based specITication into ladder logic, the development effort is 

moved from implementation to analysis and design. 

Ladder logic can be coded to more closely represent the required sequence logic. For 

example, the implementation of the gripper logic could take the form shown in figure 19, 

where each state is assigned a unique number and a register stores the current state: 

60 



0000 

0001 

"""" B 

Limit· twitch 
nm:Utfpippuit 

H7:1 
0< 
2 
2< 

WInfol. ...... t1.i. 
WhiclL nail tht 
Al*'V cuIaDlly 
m(l-optB" 2_"" 3-doMd. ; 

Mow 

"""" 2 
2< 

N1:O 
0< 

174~ 

WlD:k Jut. tht 
pippuit~ 
in(lOlOptIl, 

3""-'. 

~~clo'" ~hJ ~~U - E----------r-~_j MonO 
Source: A N1:0 SOO:C:I 

S""" B D •• 

loW loW Mow 

"""" A 
97:0 """" . H7:1 S-. 

0< D. 

"""" B 
3 """" B 1 Do. 
3< 1< 

2 

3 
3< 

H7:O 
0< 

• 
.< 

91:0 
0< 

1746-0·8 
~li.ttat'tht 
pippu»~ly 

Limit twitc:h in (lllOptlI, 

~~~;;~~~~m&~"~W_I:-'_~ ____________ -,~~3""-'. 4'"O~ 

Ecp.W. Mon 
S~. A 97:0 SOUlI:I 

0< 1146-1*8 
SO\lttI B • De:lt .< 

Rgure 19 Sequence Logic Implementation of the Example Requirement 

61 

1< 
91:0 

0< 

Wntho , 
3 



This implementation is likely to be more maintainable and less prone to anomalous 

behaviour because a follows the fonn of the specHication. However, unless an automatic 

code generator is used, a manual transfonnation of the specHication into code is still 

required, leading to the possibilfty of misinterpretation or translation errors. A more 

appropriate run-time environment would execute the specHication directly. Such a 

specHication could be expressed diagrammatically using state diagrams or sequential 

function charts (see discussion of IEC 61131-3 in chapter five, Standards). 

Whilst state diagrams and sequential function charts offer a more intuaive modelling 

paradigm for sequence definaion, there are many applications coded entirely in ladder 

logic. It should also be noted that many smaller PLCs, such as Rockwell's SLC range, 

only support ladder logic programming. Although relatively small compared with other 

PLCs, these smaller PLCs are nonetheless capable of tackling complex applications. For 

legacy programs, an automated design recovery algorithm may be required to convert the 

ladder logic into sequential function charts [56). 

To generalise, the problem domain is one of software rather than hardware. The software 

engineering principles of modulartty, low coupling and high cohesion are highly relevant to 

ladder logic implementations [57]. Unfortunately, the language does not guide the 

developer towards such a structure and, in some variants, can be an obstacle. 

Although the demise of relay ladder logic has been routinely predicted over the years, a is 

still the language of choice for many industrial solutions due to the simplictty of as 
instruction set and constructs and for as track record with maintenance personnel [58). 

Both of these points have a counter argument, however: 

• Whilst primaive instructions and constructs (the graphical representation of "and" and 

"or" and the use of rungs for representing parallelism) ensure a rapid assim ilation of 

the localised functionality over a few rungs of ladder, the absence of more abstract 

and functionally expressive constructs means that any overall structure is less visible. 

Combined wHh the absence of explicH coupling infonnation, showing where or how 

else a particular variable is used, can lead to a localised code modHication impacting 

on other unforeseen areas of the software. 

• History has many examples of techniques being adequate for a particular purpose 

and, consequently, lowering the motivation for better solutions [59). Whilst ladder 

logic enables maintenance personnel to see the state of plant inputs, plant outputs 

and intemal memory variables, a more comprehensive approach would offer higher 

62 



4.1.3 Trends 

level diagnostics, such as deducing that a particular sensor had failed. In fact, many 

of the claimed maintenance beneftts of ladder logic may be more associated with the 

capabilnies of the programming environment than the notation itse~. The abilny of the 

PLC programming environment to monnor and force plant inputs and outputs is 

considered essential although the inabilny to take a coherent snapshot or log a 

historical sequence of events is a more significant limnation when debugging 

sequence logic compared wnh combinational logic. 

Although a mature concept, the PLC still has a role in future industrial automation 

solutions: 

• The range of application which can be addressed using PLC technology is widening. 

Smaller and cheaper PLCs are becoming available, such as Siemens Logo [60]. 

• Partly in response from the automotive automation market, vendors are offering open 

modular arcMecture controllers (OMACs) [61]. These are typically PC-compatible 

processors which can be programmed in C, such as Rockwell's OpenController [28], 

Siemens M7 [62] and Foxboro's Micro VA [63]. 

• Whereas PLC vendors started in the discrete sector, they are now competing directly 

with DCSs for hybrid applications, such as batch control, which contain both analogue 

and discrete control requirements [64]. 

A market research survey in 1997 predicted that the European PLC market would grow by 

20% between 1997 and 2002 [65]. However, this market is under pressure from softlogic 

- PLC functionalny on a PC. Indeed, Honeywell predict that discrete manufacturing 

systems will be increasingly controlled by PCs rather than PLCs, with PCs taking 50% of 

the market by the year 2000 [66]. 

63 



4.2 Distributed Control Systems 

4.2.1 Implementation of Sequence Logic 

Cistributed Control Systems (CCSs) are widely used in the process industries. Whereas 

the PLC grew out of the discrete equipment control market place, CCSs were developed 

to satisfy continuous control requirements. In particular, the early CCSs had a separate 

processor for each PlC loop (hence the tenn distributed control). Sequencing capabilities 

have since been added to facilitate their application to batch processes, using a variety of 

notations including: 

Type of Des Sequence Language 

Honeywell TOC 3000 T eX! language (Honeywell CL) 

Yokogawa Centum Sequence tables 

MooreAPACS Sequential function chart and relay ladder logic 

Fisher De~a V Sequential function chart and relay ladder logic 

Table 4 Sequence Language Available in Popular DCSs 

Historically, a CCS application involved more configuration of vendor-supplied functionality 

whereas a PLC application would require more programming. CCSs are usually supplied 

with a library of '~unction blocks" which are "software wired" together to define continuous 

control transfonns and interlock functions. 

64 



4.2.2 Comparison with PLC Solutions 

High 

8----- -----> 
~ 

I Repetitive Hybrid I 
e.g. assembly e.g. batch I 

u 

~ 
.:!J 
Cl 

PID control 
I 

e.g. continuous I 

chemical I 

Low 8 
Low High 

Continuous Content 

Figure 20 Trends In PLC and DCS Capability 

Figure 20 shows that although the PLC and DCS have different origins, their capabilijies 

have increased such that both types of solution are now capable of automating batch 

processes with batch applications accounting for 31.5% of the 1997 European DCS 

market [67]. DCS and PLC platform technology is therefore converging wijh commercial 

considerations being a greater differentiator. The DCS vendor tends to sell the whole 

development environment and target platform including human machine interface (HMI) 

whereas the PLC vendors sell a ruggedised panel or SCADA as the HMI. Another 

important difference, commercially, is that the DCS vendor tends to sell the whole 

package including configuration whereas the PLC vendor sells via system integrators. 

Whereas the vendors of PLC technology and SCADA vendors have promoted the use of 

Microsoft Windows as a basis for viable control systems for a number of years, this was 

resisted by DCS vendors until recently. In the last few years, however, the major DCS 

vendors have also launched Windows offerings [68], [69]. 

Although batch offerings are converging on the S88.01 standard, significant sequence 

logic is required in the phase definijions, leading to similar problems confinning that ij will 

behave as intended. 

65 



In summary: 

• DCSs are relevant to this thesis because they are widely used to implement batch 

process automation which contains signijjcant sequence logiC. 

• Although there is more configuration rather than programming compared wijh a PLC 

solution, many of the characteristics associated with the development of industrial 

sequence logic are sim ilar to PLC solutions, with correspondingly similar weaknesses. 

• The DCS is a relevant target platform for a solution generated by a new method and 

software tool, which is the subject of this thesis. The support for Microsoft Windows 

connectivijy and edijing techniques, such as cut and paste, facilnate the integration of 

DCS configuration tools wijh a third party software tool. 

4.3 Industrial Computer 

Although PLCs and DCSs dominate as target implementation platforms, there have been 

many different types of industrial computer platforms with development environments 

more oriented at the tradijional software engineer. Some of these have been proprietary 

whilst others have facilnated integration of many different vendors hardware: 

• Digital Equipment Corporation's POP range of computers were particularly popular in 

process industries. Digital offered the RSX operating system but UNIX and third parly 

operating systems were also used. 

• In contrast to the proprietary offering, VME-based systems have enabled control 

systems developers to build a system from many different vendors hardware. There 

are many examples of VME-based control systems running the OSI9 mu~i-tasking 

operating system with applications developed in C. 

The recent promotion of "softlogic' is increasingly relevant. Softlogic is the term being 

used to describe the implementation of PLC functionalijy in a PC. It is estimated that there 

are more than 800,000 PCs in use in UK manufacturing industry which is an average of 

one PC for every six people [701. American research organisation ARC believes this 

acceptance of PG-based technology has advanced the adoption of PC based logic control 

software as an attemative to conventional PLC hardware. They forecast a doubling of 

sales in 1997 compared with 1996 and an exponential growth in sales over the following 

66 



four years [71]. Softlogic is being promoted by both tradnional control system vendors and 

packaged software suppliers: 

• ASAP is supplying Wonderware and GE Fanuc wnh ns Windows NT SoftLogic 

product. GE Fanuc will be incorporating n into their Cimplicny SCADA software [72]. 

• Rockwell Automation's SoftLogix product is based innially on an enhanced PLC5 

instruction set [73]. 

• Intellution believe that SoftLogic such as their Paradym-31 on a Windows NT machine 

will soon start to take over from PLCs on the factory floor [74]. 

Even wnhout the real-time element, PC technology is increasingly in use in a supervisory 

capacny, enher through custom SCADA configuration or, in the batch control industry, as 

the batch execution engine. S88.Q1-aware products such as OpenBatch [75] and InBatch 

[76] run on the Windows NT operating system. 

In summary: 

• The development environment is typically that of general purpose programming 

language software rather than offering particular support for the development of 

concurrent sequence logic. 

• Although less popular than PLCs and DCSs, automation solutions hosted on 

industrial computers represent an implementation platform which should be supported 

by a new method and tool. In particular, Microsoft Windows hosted applications are 

increasingly relevant as the human machine interface and as the logic engine. 

4.4 Fieldbus 

Fieldbus is the generic name given to the use of digttal communication technology for 

plant monttoring and control [77]. It carries an implication of greater intelligence in the 

instrumentation, relieving the burden on the main processor. This has a sign~icant impact 

on the control system software archttecture and hence on tts analysis and design. Wnh 

reference to a PLC solution, the trend has been as follows: 

1) Tradnional applications would wire each plant device individually to the I/O module in 

the PLC rack. In order to detect a fleeting Signal from the device, a maximum 

processor scan-time must not be exceeded. As the complexny or size of the 

67 



application increases, a faster PLC is required or segmentation of the program such 

that some modules are not executed each scan. 

2) To reduce wiring, the devices could be connected to the PLC via a network with each 

node allocated a unique address. The device might be limned in computation 

capability to transforming the raw signal into engineering unns. 

3) The device could be capable of executing continuous control, such as 3-term control 

loops. 

4) Devices can exchange data independently of the PLC. 

5) Devices have intelligence such that the PLC is no longer necessary. A fleeting signal 

is captured by the local processor and information transmitted to other relevant nodes. 

These are sometimes referred to as control networks and a thorough description of 

the differences, application areas and popular systems is provided in [78]. Two 

important implications of the use of the distributed intelligence approach are: 

• The computation power required on each node may be small. So a small amount 

of local intelligence removes the bottleneck of a central processor. 

• Network traffic is substantially reduced because information is only transmitted 

when a signHicant change has occurred. 

68 



The author's perception of the relative impact of the above is shown in figure 21. 

Centralised control, 
analogue conventional 

communications 
technology 

2 
Centralised control, 

digital communications 
technology 

3 
Distributed 
independent 

control 

4 
Distributed 
independent 
control with 
independent 

data exchange 

Rgure 21 The Evolution of Digital Communications Technology and its Impact 

5 
Distributed 
intelligence 

Two independent surveys predicted realistic savings of 25% using fieldbus technology 

instead of conventional 4-20mA loops [79). Other studies from the Fieldbus Foundation 

suggest a 78% reduction in field wiring, a 46% reduction in equipment costs and a 25% 

reduction in the person hours for system ver~ication and configuration [77). The process 

industries are considered to be lagging behind manufacturing industry in utilising fieldbus, 

possibly due to major plant re-instrumentation occurring typically every 10 years in 

process industry compared w~h every 5 years in manufacturing industry [79). 

69 



A transmissions plant in Melboume, Australia was automated on one line using a PLC 

with conventional wirtng and on the other using Honeywell's Smart Distrtbuted System 

(SDS) approach [SO]. The costs are shown in figure 22 below. 

General Motors Melbourne Australia 

Category of 
ExpendHure 

PLC SOS 

Rgure 22 Comparison of PLC and SDS Implementations 

4.4.1 Echelon LonWorks 

• Machine Links 

CLabour 

C Sensors and Actuators 
• Cabling 

11 Hardware and Software 

In terms of the categortes shown in figure 21, Echelon's LonWorks is an example of 

distrtbuted intelligence, being a low-cost bus system using peer to peer communication 

between asynchronous computing nodes. Each node on the network contains a Neuron 

chip which incorporates three processors. Two processors are for network 

communications and the third is user-programmable in a modHied form of C for 

applications functionality [S1]. The essential difference between LonWorks and other 

fieldbusses is the integration of distributed intelligence on location in the controller through 

the application CPU [S2]. 

LonWorks is data drtven rather than command drtven. For example, a temperature sensor 

could make its temperature available on the network but without knowing which other 

devices will use tt or what they will do with the information [83]. Whereas a typical PLC will 

spend most of tts processor time scanning 1/0 which has not changed since the previous 

scan, a LonWorks node watts to be notnied that an event has occurred or a data value has 

changed and then reacts accordingly. 

The LonWorks arcMecture is intuttively straightforward for continuous data applications 

but sequence logic applications require addttional care. LonWorks is oriented at wide, flat 

archttectures with any node being able to communicate with any other node. However, 

the absence of an explictt hierarchy and fragmentation of the sequence logic across 

70 



several processing nodes require an extra degree of discipline. Well·defined coordination 

and cooperation mechanisms must be specnied and adhered to. 

4.5 Summary 

• Although control system technology is improving and converging, vendors are still 

offering proprietary tools which are highly implementation-oriented rather than 

problem-oriented and consequently offer minimal support in satisfying the business 

needs identnied: 

• They offer minimal ability to support requirements capture, rapid application 

development or vernication of correctness, e~her through analytical methods or 

simulation. 

• They tend to be intimately ooupled with the target platform. 

• Implementation languages are moving towards IEC 61131-3 but there is lim~ed 

standardisation of analysis and design models (888.01 may be one of the better 

examples in this regard). Consequently, the ability to maintain or re-use existing 

functionality, even when implemented using standard languages, is hindered. 

• Whilst relay ladder logic is unlikely to be the language of choioe for software 

developers, end-user demand ensures that ~ cannot be ignored. Atthough relay 

ladder logic is oriented at combinational logic, more robust state-based 

implementations are possible. 

• Including a PLC, industrial computer and Echelon LonWorks as target platforms for a 

new method and tool would cover the major types of implementation environment. 

71 



Table 5 summarises the relevant characteristics of the target environments discussed: 

Characteristic PLC DCS Industrial LonWorks 
, 

Computer 

Strongest application Smple repetitive Continoous Compulationally l.ow<:ost 

type discrete intensive distributed 

Proprietary software Yes Yes No Yes 

development 

environment 

Primary programming Relay ladder logic Configuration and 3GL language NeuronC 

paradigm software wiring of development 

fooction blocks 

Typical sequence Relay ladder Relay ladder logic, C NeuronC 

programming logic, sequential sequential function 

language function chart chart, text 

language, state 

table 

Table 5 Summary of Target Environments 

72 



Chapter 5 Standards 

I: 

This chapter describes relevant standards (including de-facto standards) influencing 

sequence control in industrial automation. Although many device-level and plant-level 

communications standards exist, they are not considered in this section because their 

relevance has already been discussed in section 4.4, Fieldbus. The focus is therefore on 

the development environment and includes: 

• Programming. 

• Design methods. 

• Communications. 

;{,,~~.,-, 9: Industrial 
2: Business needs ., .. ..... ,. , " .... "' " , """' "", .. Exploitation "'" . . .~ "-";'" / 2: Deficlencles Wl :" 

C?urrent approaches .. . "." .... --.. - .-.... --"-- ... - .• -.•... _" .•. -_ .... 9: Evaluation 
Introduction 

'" / ~ --.. 3: Requirements f'~',,,r'; h" 

for method, model .... ---- 8: Justification 

and tool / '" 8: Description 
of 

Synect 

~ • ~ • 
'" '" 

4: Control System 
Technology 

s: S.md8rds ," 6: M.~ernatical 7: Methods 7: Tools 
Models 

Rgure 23 Relationship Between This Chapter And The Thesis Map 

1 0: Conclusion 
~ 

11: Suggesti ons 
for 

Further Resear ch ... 
p 

As depicted in figure 23, standards influence many aspects of this thesis. Relevant 

standards are reviewed, identifying their Iim~ations but also their contribution in exploiting 

available technology and maximising user acceptabi1~. 

73 



5.1 p. og. a .• ,ling 

5.1.1 lEe 61131-3 

5.1.1.1 

IEC 61131-3 is the intemational standard for PLC programming, providing a reference 

software model, shown in figure 24, and covering the printed and displayed representation 

of programming languages for programmable controllers (the term PLC, for programmable 

logiC controller, is a registered trademark belonging to Allen-Bradley). It also specijies the 

syntax and semantics of the languages [84]. [32]. 

RESOURCE RESOURCE 

9 9 B 
I 

PROGRAM PROGRAM PROGRAM PROGRAM 
ORGANIZATION ORGANIZATION ORGANIZATION ORGANIZATION 
UNIT UNIT UNIT UNIT 

CJ 

18-GJ B-GJ I SFcl B-GJ
1 

GLOBAL 
VARIABLES c:::::J 

! 
ACCESS PATH 

L- COMMUNICA nONS 

Figure 24 IEC 61131·3 Software Model of a Configuration (Source: Moore Products) 

Languages 

The IEC 61131-3 standard states that ~ specijies the syntax and semantics of two textual 

languages (instruction list and structured text) and two graphical languages (ladder 

diagram and function block diagram). Interestingly. sequential function charts are 

considered to be for the purpose of structuring the intemal organisation of programmable 

controller programs and function blocks rather than a language in their own right [84]. 

Also, whilst ~ has been suggested that the use of function block language brings the 

74 



benef~s of object oriented design to PLC applications [85], there are major omissions such 

as lack of support for a class hierarchy (such as "an air-fail closed valve is a type of valve") 

or method invocation. This is not object orientation by Stroustrup's criteria [86]. 

Relay ladder logic has already been introduced in chapter three, Requirements for 

Method, Model and Tool, so the following examples cover the other three languages and 

sequential function charts. 

START: LD 
JMPC 
RET 

grip30mmand (* GRIPPER COMMAND *) 
OPEN (* COMMAND=OPEN *) 

(* NOTlllNG TO DO THIS TIME *) 

Figure 25 Example of Instruclion Ust 

Figure 25 shows an example of instruction list (IL), which is a low level language, similar to 

assembler and can be used to write tight, optimised code for performance critical 

operations [32]. 

IF grip30mmand THEN 
grippecstate:= OPENING; 

ELSE 
grippecstate := CLOSING; 

END_IF; 

Figure 26 Example of Struclured Text 

Structured text, shown in figure 26, is a high level language w~h strong data type checking 

and a formal syntax, similar to PASCAL 

75 



GRIPPER 

REQDJ'OSN BOOL 

BOOL INTERLOCK 

Rgure 27 Example of a Function Block Declaration 

Function blocks are declared as demonstrated in figure 27 and "wired" together in a 

function block diagram. Function blocks have been a popular approach used in process 

control and manufacturing, typically stored in libraries of proprietary controls [87]. National 

and intemational work on a standard function block notation, and work by the Fieldbus 

Foundation on the use of function blocks in process control based on fieldbus, has 

resutted in recommendations for incorporation into IEC 61131-3. 

76 



5.1.1.2 

I 
I OpenGripper N I GripMotorOn I I RaiseArm N I ElevationMotorOn I 

I 

Figure 28 Example of Sequential Function Chart 

As the name implies. sequential function charts (SFCs) were designed for implementing 

sequence logic. The example in figure 28 shows the diagrammatic representation of 

concurrent threads - the OpenGripper step and RaiseArm step would execute 

concurrently. The box to the right of the step name contains the actions associated w~h 

the step and the action qualifier - N in this example denoting that the action is to be 

performed while the step is active. 

Industrial Relevance 

The major PLC vendors have either adopted IEC 61131-3 in their programming software 

or claim to be moving towards compliance [88]. [89]. [90]. [91]. However. for consistency 

with previous offerings and to differentiate themselves from compet~ors. vendors often 

offer functions and facil~ies over and above the demands of IEC 61131-3 [89]. This is 

clearly an obstacle to the goal of being able to port software directly from one vendor's 

PLC to another's [92]. Another obstacle is that the standard does not define configuration 

storage formats. So even if two vendors complied strictly w~h the standard. ~ is 

exceedingly unlikely that software could be ported from one programming environment to 

another. 

There are examples of vendor neutral programming tools. such as IsaGraph [93] and 

CADEPA [94]. IsaGraph is an IEC 61131-3 based tool which includes code generation for 

PC-based industrial computers running real-time executives such as OS-9 and can also 

generate code to run on an Echelon LonWorks node's coprocessor. 

PLCOpen is a vendor and product neutral organisation aim ing to bring greater value to 

users of industrial control systems through the use of IEC 61131-3 [95]. PLCOpen 

77 



5.1.1.3 

promotes the concept of a program support environment (PSE) to enable users to "move 

between different makes [of PLC] w~hout training, exchanging applications w~h minimal 

effort" [96]. 

Umitations 

Although IEC 61131-3 has many benefItS, ~ has a limtted model of communication which 

is a weakness when applying tt to distributed systems [97]. This is being addressed by 

standard IEC 1499, currently in draft, which describes distributed function blocks [87], [98], 

separating event communication from continuous data communication. 

Although the IEC 61131-3 SFC offers a clear diagrammatic representation of concurrent 

logic, the support for an object-based approach is weak: 

• Hierarchical decompos~ion is supported whereby an action's logic can be expressed 

in another SFC. However, there may then be several IOW-level SFCs which 

manipulate a particular device, although the object-based paradigm would require that 

this functionaltty is encapsulated rather than fragmented. 

• The SFC may be embedded in a function block which is connected to another 

function block encapsulating the control of the device. This approach requires event 

communication between function blocks which is not differentiated from continuous 

signal flows in the function block diagram notation. Compatible mutti-valued variables 

must be defined and a handshaking mechanism adopted. This requires significant 

skill and therefore would not satisfy Booch's criteria for claiming support for an object

based approach [86]. 

None of the IEC 61131-3 languages could be considered to be state of the art, with the 

world-wide recognttion or user base of C or C++ [99]. 

78 



5.2 DesIgn Methods 

5.2.1 EDDI, STEPS and KRAUSE 

EDDI (Error Dynamic Diagnostic Indicator) [100), STEPS (Structured Transfer-Machine 

EDDI Programming System) [101) and Krause [102) were introduced to impose structured 

programming on PLC applications implementing sequence logic requirements: 

• Diagnostics are integrated w~h the control logic for faster and more reliable trouble

shooting (see below). 

• A template-based approach is used to increase productivity (see below). 

• The use of a skeleton application and rules for applying the method help to promote 

oonsistency between systems integrators, machine builders, etc .. 

These design methods have been successfully used in the automotive industry and other 

sectors, such as cement manufacture. 

Bit 0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 
Wordl 
Word2 
Word3 ./ .;; 1:, 
Word4 .....r-
Etc. //1 

~ • Increasing prio nty 

Waiting For For example Waiting For 

[Mechanism) [Action) Slide Returned 

[Output) [Input) YV02084 SQI2034 

Figure 29 Example Matrix in STEPS 

In STEPS, for example, machine control and diagnostics centre around a matrix, as 

shown in figure 29 above. Each cell in the matrix corresponds to a message. When an 

action occurs, the corresponding M in the matrix is set, switching on the message and 

79 



inhib~ing the machine from entering another step. When the action completes. the b~ is 

tumed off and the machine may step on. Several actions may occur in parallel but all Ms 

in the matrix must be off for the machine to step on. 

Figure 30 shows a populated example of the template used for specifying coordinated 

sequence behaviour. This machine consists of a transfer bar and two machine heads. 

Transfer bar steps 1 to 5 are performed w~ no head function being undertaken. At 

transfer bar step 6. heads 1 and 2 both begin executing step 1 of their respective 

sequence logic. 

Transfer Head 1 Head 2 
Steo No. Function Step No. Function Steo No. Function 

, Unclamp 

2 Transfer return 

3 Check loader 

4 Raise transfer 

5 Clamp 
~Y'" uw n~u 

6 await , advance , engaged 
U" 

2 clamp 2 Depth 

3 Head engaged 

Figure 30 Example of a STEPS Sequence Overview Diagram 

5.2.2 588.01 

In 1989. the Instrument Society of America (ISA) established Standards and Practices 

committee number 88 (SP88) to produce a set of terms and models for batch control 

which would be applicable from the most complex to the simplest batch process. whether 

fully automated or entirely manually operated. In October 1995. the document Batch 

Control. Part 1: Models and Terminology was approved as document number AN51115A-

588.01-1995. 

80 



S88.01 is therefore a relatively new standard offering a common terminology and model 

for batch control. One beneftt of the standard is to focus analysis on the production of a 

highly flexible automation system. This ensures that capabilities of the plant can be fully 

utilised to meet market demands for variations of existing products and for the 

manufacture of additional products. The S88.01 analysis separates the modelling of the 

plant equipment from the definition of recipes. 

In figure 31 below, control modules have been grouped into equipment modules as shown 

by the dotted lines. This resu~s in phases ChargelngredientA, ChargelngredientB, Agitate 

and Drain being available to the process chemist when configuring recipes. 

VI '. Charge Ingredient A 

PI 

Charge Ingredient B 

V3 '. Drain 

Figure 31 An Example of Equipment Modules 

The S88.01 standard is becoming the predominant vehicle for descriptions and 

implementations of batch control and has been very widely accepted - practically all batch 

control vendors have aligned their offerings with the standard. Some of the key features of 

the standard are: 

• A standard terminology in the field of batch control. 

• Modular structure of process and equipment. 

• Product independent plant design. 

• Equipment independent recipes. 

• A structured way of operating batch plants. 

81 



An 888.01-aware platform such as OpenBatch [75) or In Batch [76) can beneftt productivity 

and maintainability by reducing the volume of software to be developed [103). These 

products move implementation effort towards configuration rather than custom software 

development. 

For a successful project, tt is crucial that the relevant parties communicate effectively. 

888.01 provides the terminology and models to facilnate effective review of proposed 

solutions [30). If the 888.01 analysis has been carefully planned, subsequent similar 

projects should be able to re-use proven blocks of logic, from basic control (e.g. PID loops, 

valve drivers) to phase logic responsible for carrying out a useful process activity. In a 

regulated environment such as the pharmaceutical industry, this can substantially reduce 

validation time and cost as new products are brought to market [104), [105). 

Much of the effort in implementing an 888.01-aware batch control system, however, is 

associated wtth the phase sequence logic, as shown in figure 32: 

Batch Software 
10"10 

Human 
Machine 

tnterface (HMI) 
30"1, 

Phase Logic 
60% 

Figure 32 Relative Effort for a New S88.01·Aware Batch Control System (Source: Sequencia Corporation) 

A~hough the 888.01-aware platforms are predominantly configured rather than 

programmed, the phase sequence logic tends to require signmcant analysis, design and 

implementation effort. However, currently available tools tend to offer only general 

purpose programming functionality, such as lEe 61131-3 language support 

supplemented, in the case of DC8s, wtth pre-bui~ control module driver types. Also, whilst 

888.01 assists the review process via a common approach to modularisation, it offers no 

guidance for ensuring that the phase logic behaviour is well understood, a~ough changes 

here have a far greater cost impact than configuration changes to recipes. 

In conclusion, 888.01 offers significant beneftts to the batch control community by 

encouraging effort to be focused on the analysis and design activtties. However, the 

standard offers minimal guidance regarding the development and verification of phase 

82 



sequence logic which is responsible for most of the cost and key to the correct functioning 

and future flexibility of the manufacturing process. 

5.3 Communications 

In order to maximise the benefits which a CASE tool can offer, it is important that tt should 

be capable of interacting wtth other software products. For example, the CASE tool can 

then explott the visualisation capabiltties of 3D modellers, process industry m im ic 

diagrams and custom applications which can be developed by third parties. 

Communications standards are an important first step in the ability of products to interact. 

An altemative, if possible at all, would be to define and develop software for each different 

type of interface to be supported. 

Given the predominance and acceptance of Microsoft Windows as the host environment 

for control system software development, this section concentrates on Microsoft 

communications standards but also references open standards. 

5.3.1 DDE 

DynamiC Data Exchange (DOE) is a mechanism for Microsoft Windows applications to 

exchange data. NetDDE enalbles DOE to be used over a Microsoft network. Variations 

such as FastDDE and BlockDDE have been implemented to overcome perfonnance 

limttations wtth DOE. DOE can be considered to be the lowest common denominator in 

Microsoft Windows communications standards - if an industrial software product supports 

communication Wtth other Windows-based software, tt is likely to support DOE. 

5.3.2 OLElActiveX 

Whereas DOE enalbles a Windows program to obtain data from another program, tt still 

leaves the recipient Wtth the task of interpreting and manipulating the data. For example, a 

drawing tool could make its graphic data available but if the recipient needs to display and 

print the drawing, functionality must be duplicated. 

Object Unking and Embedding (OlE) was introduced in 1990 and followed shortly by 

OlE2 to provide the ability to embed one document type inside another. OlE2 also 

provided: 

83 



• Drag and drop - allowing graphical enttties to be dragged from one program to 

another. 

• OLE automation - functionality to enable scripts to control OlE-aware applications. 

Components in Visual Basic or C++ which drove applications via OlE automation were 

referred to as OlE controls or OCXs. 

OlE2 used a single machine communications model called Common Object Model 

(CO M). Microsoft is now shipping Distributed COM (DCOM) wtth Windows NT 4 and tt is 

also available for Windows 95. The tenn ActiveX is now being used and covers 

COM/DCOMlOLElOCX generally [106). 

5.3.3 OPC 

OlE for Process Control (OPC) is a standard established in 14 months by Fisher

Rosemount, Intellution, Intuttive Technology, Microsoft, Opto 22 and Rockwell Software 

[107], [108]. OPC is a communication standard based on OlE that fosters greater 

interoperability between automation/control applications, field systems/servers, and 

business/office applications. OPC defines standard objects, methods, and properties buitt 

on OLE component technologies for servers of real-time infonnation like DCSs, PlCs, 

smart field devices, and analysers to communicate the infonnation they contain to 

standard OlE-enabled clients [109]. 

5.3A CORBA 

The Object Management Group (OMG) is an organisation established in 1989 

representing a collection of companies concemed wtth the development of an archttecture 

for distributed component-based object computing. The archttecture is referred to as the 

Common Object Request Broker Archttecture (COR BA) and is vendor-neutral. There are 

now more than 100 CORBA-related products on a wider range of platfonns than 

DCOMlActiveX [106]. Whereas ActiveX controls have evolved from a single node 

environment, CORBA was deSigned from the start for large-scale distributed applications. 

As a consequence, tt is more capable wtth regard to issues such as security [110]. 

84 



However, according to Forrester Research in the USA, CORBA has gained acceptance in 

only 14% of the Fortune 1QOO companies and this is even declining [111). The reasons 

are said to be: 

• Programmers are frustrated by the lack of progress with the arcMecture. 

• Too complex and cumbersome for the average developer. 

• Availability of Microsoft's COMIDCOM model (on which OlE depends) and 

JavaBeans [112). 

5.3.5 The Internet 

The Internet is the global, open, public computer network currently linking 64 million users 

[113). An intranet is identical in technology, including the use of the same TCP/lP 

protocol, but is on a closed network thereby limtting access to, for example, a group of 

employees or companies. 

Monttoring, and possibly even control, via the Internet is antiCipated to be a major growth 

area by vendors of industrial control software [114). This approach can be used via the 

World Wide Web for global access, or via an intranet for more restricted user access. 

Wonderware, for example, has launched a product called Scout VT which is a view-only 

client using configurable OlE browsers, graphs, charts and trend components to provide 

the process view [76). 

SA Conclusions 

Other than 588.01, there is minimal standards support for analysis and design which 

would tackle the business needs such as more re-usability and greater confidence in the 

correctness of the logic: 

• IEC 61131-3 defines a reference PLC software model and standard programming 

languages but, in practice, the major control system vendors are more interested in 

compatibility wtth previous versions of their products and differentiation from their 

competttion than they are in adhering strictly to the standard. Although claims have 

been made that the standard is object-oriented, excellent for structuring large 

applications which may involve sequence logic and, possibly by virtue of the claimed 

support for object-orientation, u~imately able to lower life-cycle engineering costs 

through the re-use of proven function blocks, tangible evidence is difficu~ to find and 

85 



anecdotal evidence de-emphasises its relevance. For the purposes of this thesis, it is 

therefore oonsidered to be of value in encouraging graphical specHication of sequence 

logic and the promotion of good software engineering practice in general to the oontrol 

systems community. It is primarily implementation oriented rather than problem 

oriented, being focussed on the software development phase of the IHe-cycle with 

minimal contribution to the analysis and software architectural design phases. 

• lEG 1499 will address the weaknesses of lEG 61131-3 with regards to logic 

distributed across intelligent nodes. This is achieved through the specHication of 

distributed function blocks which, once again, is implementation oriented. 

• Approaches such as EDDI, STEPS and KRAUSE are target-environment dependent 

which reduces their opportunity for widespread adoption. They do not support the 

component-based approach to system development. 

• S88.01 contributes signHicantly to the analysis and design phases of batch control 

system applications and enjoys widespread intemational support from user and 

vendor communities. A domain-specHic CASE tool which directly supported the Ine

cycle specHication, development and support of phase logic would complement the 

standard and could help reduce the cost of change management, particularly in the 

pharmaceutical industries [104]. A signnicant first step would be to support the 

vernication of phase sequence logic behaviour and facilitate effective review between 

analyst, process and operations personnel. 

There has been an evolution of communications mechanisms for linking applications on 

the same computer and between computers. However, whilst Microsoft Windows 

industrial software packages typically support DOE, support for other communications 

mechanisms is not as widespread. An industrial CASE tool should therefore currently 

support ODE communication with other software packages. 

86 



Chapter 6 Mathematical Models 

I: 

There is a considerable volume of research material available which is concerned with 

mathematical modelling and analysis techniques. Sign~icant levels of research activity are 

still ongoing in many complementary and diverse approaches. applying a particular 

modelling approach to new application areas and tackling existing problem domains w~h 

new techniques. 

j' ('l(~'" I" 9: Industrial 
2: Business needs .... ". "'e" o ••• .. .. - - ..... - , .. -, .. .. - - .•. ,-, - .•. ,-, Exploitation 10: Conclusion s 

~ / 2: Deficiencies with Rc '>r~ '" 

current approaches .. .. " ... , ."."" .. , 9: Evaluation 
Introduction 

'" / ~ 3: Requirements "·!·,'t-·;w 

for method, model ... .. . - ... 8: Justification 
and toot / '" 8: Description 

of 
Synect 

~ ~ Il- ~ Il- ~ 

4: Control System 
Technology 

5: Standards 6: Mathematical. 7: Methods 
Models 

Figure 33 Relationship Between This Chapter And The Thesis Map 

87 

11: Suggestio ns 
for 

Further Researc h 

• 
p-

~ Il-

7: Tools 



As depicted in figure 33, mathematical models pervade many aspects of this thesis. Figure 

34, a copy of figure 1 from chapter one, Introduction, shows that mathematical models are 

considered by the author to be an integral part of an improved approach to automation 

projects. 

Figure 34 The Relevance of Mathematical Models 

This chapter evaluates aHemative mathematical models against the criteria established in 

chapter three, Requirements for Method, Model and Tool, and summarised in figure 4 in 

chapter one, Introduction: 

• Executable 

• Support behaviour queries 

• Simple mapping from method 

• Simple mapping to implementation 

• Graphical representation 

• Support concurrency 

• Established 

88 



5.1 Introduction 
5.1.1 CSP 
5.1.2 CCS 
5.1.3 Z and VDM 
5.1.4 Real Time Logic 
5.1.5 Symbolic Model Checking 
5.1.6 Theorem Provers 
5.1.7 Synthesis of Procedural Controllers .. 

5.2 Motivation for the Adoption of Petri Nets 

.. 
5.3 Petri Nets 

5.3.1 0nfinaIy Petri N<t 
5.3.1.1 Modelling 
5.3.1.2 Analysis 
5.3.1.2.1 The Reachability Tree 
5.3.1.2.2 Matrix Equations 

5.3.2 Coloured Petri N<ts 
5.3.3 Exteoded Petri Nets 
5.3.4 Restricted Petri N<ts 
5.3.5 Timed and Stochastic Petri Nets 

.. 
5.4 Weaknesses 

5.4.1 Expressive Power 
5.4.2 Analytical Power 

Rgure 35 structure of Ihis Chapler 

5.5 Summary 

Figure 35 shows how the inlonnation in this chapter is organised. After introducing a 

selection 01 popular mathematical modelling techniques, Petri nets are juslnied as the 

chosen technique to complement the visual and CASE tool aspects 01 a solution and 

consequently are described in greater depth than other techniques. Known weaknesses 

in the application 01 Petri nets alone are then discussed belore the key points Irom the 

chapter are summarised. 

6.1 Introduction 

Fonnal methods are an approach to software engineering based on a method w~h a 

sound basis in mathematics [115]. Their detractors claim they are expensive to introduce, 

partly due to their mathematical nature w~ consequent skill requirements 01 their 

pract~ioners. As a resu~, they tend to be applied to applications where the impact 01 a 

delect is very high. A I~erature survey and industry survey in 1992 investigated why 

lonnal methods are not widely accepted in industry, including considerations such as the 

benel~s, lim~tions and barriers associated w~h them [29]. One 01 the lindings was that 

people were not clear that cost benel~s could be gained through the use of fonnal 

89 



methods but approximately 50% of respondents considered that lack of tool support was a 

serious problem. AHhough substantial research output would suggest that formal methods 

could contribute to the success of industrtal applications, ~ has been suggested that they 

are a failure in the market-place [116]. 

Many techniques have been proposed for the formal specification of real-time systems 

and a large number of tools, from research prototypes to commercially available products, 

have been developed. There are numerous ways of classifying these techniques and 

tools, one of which in a review specifically ortented at real-time systems [47] considers: 

• Mathematical support for reasoning on communicating concurrent processes, such as 

CSP (Communicating Sequential Processes) [117] and CCS (Calculus of 

Communicating Systems) [118]. 

• Operational approaches which describe the system by means of an executable 

model. These can be further dMded into: 

• languages and methods based on trans~ion-ortented models, such as state 

machines and Petrt nets. 

• Methods based on abstract notations, usually used for system analysis and 

design. Being semi-formal, these models cannot be directly used for system 

simulation and specification execution. Examples and corresponding tools are 

considered in chapter seven, Methods and Tools. 

• Descrtptive approaches focussing on the behaviour (what must be done by the 

system) rather than the structure (how it must be done). These approaches usually 

provide a means of verifying completeness and consistency. Examples include Z 

[119], VDM [120] and RTL [47]. 

• Dual approaches which aim to offer the formal verifiabil~ of descrtptive approaches 

w~ the executabilily of operational approaches. 

Along w~h the refinement of the individual techniques and their application to new 

industrial requirements, new and hybrtd approaches have been developed and attempts 

made at standardisation. For example, the Esprn SEDOS (Software Environment for the 

Design of Open Systems) project assisted in establishing two formal descrtption 

techniques, Estelle [121] and LOTOS [122] (based on CCS), as intemational standards 

90 



and also developed prototype tool support (123). Recently proposed approaches include 

symbolic model checking, theorem provers and the synthesis of procedural controllers. 

6.1.1 Communicating Sequential Processes (CSP) 

As its name suggests, esp considers a system in terms of separate sequential processes 

which communicate via channels (117). Although the communication mechanism is 

synchronous such that both sender and receiver must be ready for the communication to 

proceed, intermediate buffers can be introduced to facilitate asynchronous behaviour. 

esp supports the concepts and provides notations for specifying sequential (»), parallel 

(11) and interleaved (Ill) sequencing. 

6.1.2 Calculus of Communicating Systems (CCS) 

ees (118) and esp are often described together. Along with esp, ees is concemed 

with the ver~ication of concurrent systems although the ees model includes descriptions 

of the model's actions, making tt executable. The ees communication mechanism is 

asynchronous. 

6.1.3 Z and the V"JeI1na Development Method (VDM) 

Z (119) is a modular language based on set theory. VDM (120) is a state-based language 

using pre and post condttions to spec~ operations. Z and VDM provide the means for 

defining an explictt, ~ abstract, model of the system's state space and the operations which 

transform the current state, but there is no explictt representation of concurrency. 

Extensions have been proposed which support the definttion of timing constraints and 

move the models towards the object-oriented philosophy. Examples include VDM++ 

(124), Object-Z (125) and Z++ (126). 

6.1A Real Time Logic (RTL) 

Whereas many discrete event methods have difficulty coping with the concept of time, 

which may be important in a real-time reactive system, RTL has tts focus on the formal 

description of temporal relationships relating to events and actions. In particular, all 

91 



language constructs are defined in terms of the current value of time on the occurrence of 

an event. 

6.1.5 Symbolic Model Checking 

Symbolic model checking is a verification technique which was developed to verify circuns 

and communications protocols but has been applied to safety and operability of chemical 

process systems [127]. Given a finne state model of a system and a set of temporal logic 

spec~ications, the sym bolic model checking algomhms can verify whether or not the 

spec~ications hold on the model. 

6.1.6 1beorem Provers 

Prover is a tool which uses the patented Stalmarck theorem proving algornhm to test for 

properties of a system modelled in proposnional logic [128]. The algomhm claims to be 

able to tackle full-scale industrial applications being dependent on a new measure of 

hardness which relates to the complexity of the proof rather than the size of input [129], 

[130]. Application areas such as railway signalling, aircraft landing equipment and nuclear 

power generation seem natural targets to which Prover has been applied but research 

output is also available regarding the application of the algornhm to PLC programs in 

general [131]. Programming cost savings of 30% and testing cost savings of 60% have 

been claimed [132]. 

6.1.7 Synthesis of Procedural Controllers 

In contrast to techniques which facilnate expression of a proposed solution and then 

provide analysis methods for testing properties of the solution, an altemative approach is 

to derive the control requirements as a subset of all possible behaviours of the controlled 

system. 

Ramage and Wonham modelled the plant as an automaton and used language theory to 

design a controller which forces the plant to exhibit behaviour consistent wnh given 

objectives [133]. 

In the context of batch processes, this approach forms the basis of a formal framework for 

the analysis and generation of provably correct control code, including both normal and 

92 



abnormal process operation [134]. This is referred to as synthesis of procedural 

controllers. Further work is required, however, before this approach could be exploHed 

industrially, such as support for modularisation through hierarchical modelling and control 

structures as defined in the 588.01 standard for batch control. 

6.1.8 PetrI Nets 

Petri nets began wHh Dr Carl Adam Petri's PhD dissertation in 1962. entHled 

"Kommunikation mH Automaten" (Communication wHh Automata), designed specifically to 

address systems wHh interacting concurrent components [135]. Petri nets are attractive 

for research into industrial sequence logic because they offer both a graphical notation for 

expreSSing attributes of interest, such as concurrency and dependency, along wHh a 

mathematical formalism. 50 they appear to satisfy the requirements to be able to both 

model and analyse the system under consideration. As the adopted mathematical model, 

Petri nets will be described in more detail in section 6.3, Petri Nets. 

93 



6.2 Motivation for the Adoption of Pebi Nets 

The following table assesses the above mathematical models against the evaluation 

criteria referenced in chapter three, Requirements for Method, Model and Tool, and 

summarised in figure 4 in chapter one, Introduction. 

Executable le ../ le le le le le ../ ../ 

support ../ ../ le le ../ ../ ../ ../ ../ 
behaviour 

queries 

Simple le le le le le le le 

mapping from 

method 

Simple ../ ../ le le le le 

mapping to 

Implementation 

GrapI1lcal le le le le le 

representation 

Explic~ SLWOrt ../ ../ le le 

for concurrency 

Established ../ ../ ../ ../ le le le 

The author consequently adopted Petri nets as the mathematical formalism to underpin 

the solution to the business needs identified in earlier chapters, although there are 

examples in the I~erature of benems attributable to each individual method outlined above 

and examples of hybrid methods to overcome weaknesses. Further confidence was 

gained from: 

• The matur~ of the approach [115). There is a substantial volume of published 

research material on Petri nets and their application to various domains, including 

manufacturing and process industry: 

94 



• A paper on a Petri-net tool called UNISON [136] referenoes fourteen papers 

which relate to the application of Petri nets to the simulation and control of 

hardware systems. 

• Petri nets have been applied to discrete manufacturing [137], [138], [139], [140], 

[141], [142], [143], [144], [145], [146] and to the discrete control and monnoring of 

prooess systems [147], [148]. 

• A paper examining the use of a Petri net approach to sequential industrial control 

systems compared wtth a tradnional approach using relay ladder logic reports that 

several companies in Japan have achieved significant savings in system 

development time [149]. 

• Evidenoe that there is still considerable Petri net research activtty ongoing, including 

their application to manufacturing industry, demonstrating their relevanoe to problems 

in this domain. 

• Published research showing how different classes of Petri net such as safe or free

choioe, can be derived from CSP, CCS, FSM and other models [150]. 

Based on the above crneria, Petri nets are the most appropriate choice but it is important 

to appreciate that the approach advocated embeds the mathematical model into the 

CASE tool rather than involving the analyst directly in ns use (reviewed in section 6.4, 

Weaknesses and 6.5, Summary). The approach could therefore utilise attemative formal 

methods, or use several complementary methods, to offer the desired functionaltty. 

However this is beyond the scope of this thesis (see chapter eleven, Suggestions for 

Further Research). 

6.3 Pebi Nets 

6.3.1 Ordinary Petri Net 

6.3.1.1 Modelling 

The graphical representation of the Petri net consists of places and transitions. A plaoe is 

represented by a circle and a transition by a bar. Directed arcs (lines wtth an arrow head 

at one end) show the relationship between plaoes and transitions. A directed arc from a 

plaoe to a transition defines the plaoe as an input plaoe to the transition. A directed arc 

from a transnion to a plaoe denotes that the plaoe is an output plaoe of the transnion. 

95 



In the example in figure 36, place pt is the only input place to transaion tl. Places p2 and 

p3 are the output places of transition tl. Place p2 is the only input place to transaion 12 but 

is connected via 2 arcs. Place p4 is the only output place of transaion 12. 

pi 
tl 

p2 12 

·'J-:H 
p4 

p3 

Figure 36 An Example of a Petri net 

Whereas the preceding descnptlon relates to the structure of the Petri net, a is the marking 

of the net wah tokens which is of real value. A token Is represented by a black dot - figure 

36 shows two tokens in place pI and one token in place p2. When a transaion fires, a 
removes tokens from as input places and adds tokens to as output places. More 

specHically, the transaion is said to be enabled H each input place has at least one token 

for each arc to the transaion. When it fires, tokens are removed from the input places 

corresponding to each arc to the transition. Using the marking shown in figure 36 as an 

example, transaion tl is enabled. When transttion tl fires, one of the tokens in place pI is 

removed and a token is added to places p2 and p3. Place p2 now has two tokens and 

place p3 has one token. Transaion 12 is now enabled and, when a fires, two tokens are 

removed from place p2 and one token is added to place p4. 

From the above simple descnption, Petn nets can be seen to offer an intuaive 

representation for different approaches to modelling. To model the flow of matenal 

through a production system, the token could represent material and the structure of the 

net represent the paths through the manufactunng process. Mematively, considering a 

place to represent a mode of operation of a machine, the token would denote the current 

mode of operation. Peterson [135) describes the use of Petn nets in modelling a diverse 

range of systems, including computer hardware and chemical reactions. 

96 



6.3.1.2 

The Petri net is particularly attractive for modelling concepts such as concurrency, conflict 

and synchronisation. Considering a flexible assembly cell as an example, concurrency 

would be demonstrated by a lathe and drill each performing a sequence of operations on 

a different workpiece in parallel. The lathe and drill operate asynchronously - each can 

proceed through ~s sequence w~out regard to the other equipment. If a robot is servicing 

the cell, an example of conflict would be apparent if the lathe and drill both completed their 

operations and wanted the robot to remove the workpiece. Synchronisation would be 

required when the robot picks the part from the lathe to ensure that the lathe does not 

release the workpiece until the robot has hold of ~. 

Analysis 

The Petri net also offers the abil~ to analyse the behaviour of the system. Characteristics 

of interest include: 

• Given an in~ial marking, can a particular marking be reached? In the example of the 

flexible assembly cell, this could be used to ensure that the lathe could not start until 

the robot has passed ~ a workpiece. 

• Can the system deadlock? This would occur if a design error enabled the system to 

reach a point from which it could not proceed. For example, if the robot picked a new 

workpiece to introduce to the assembly cell when the lathe and drill were already 

operating on workpieces, the system would reach a point from which ~ could not 

proceed: 

• The lathe and drill need the robot to remove their workpieces which ~ cannot do 

because ~ already holds a workpiece. 

• The robot cannot pass ~s workpiece to the lathe or drill because they are already 

occupied. 

Many other types of query can be envisaged, such as safeness (maximum number of 

tokens in any place never exceeds one), boundedness (maximum number of tokens in 

any place never exceeds a fixed integer number), liveness (trans~ion liveness relates to 

whether a marking can be reached in which a particular trans~ion can fire - the net is live if 

all transnions are live), and the reader is referred to [1351, [1511 for a description. 

97 



6.3.1.2.1 The Reachability Tree 

A straightforward analysis approach involves the generation of the reachability tree [135). 

The inttial marking of the Petri net in figure 36 has two tokens in place p1 and a token in 

place p2 but no token in place p3 or p4. This is represented as (2, 1, 0, 0). From this 

marking, transttion t1 is the only transition which can fire and this leads to the marking (1, 

2, 1, 0). From this new marking, transttion t1 could fire again to give marking (0, 3, 2, 0) or 

transttion t2 could fire to give marking (1, 0, 1, 1). The complete reachability tree is 

represented diagrammatically as follows: 

(2, 1,0,0) 

~ !l 
(1,2, 1,0) 

!lA 
(0,3,2,0) (1,0, I, 1) av 

(0, 1,2, 1) 

Figure 37 The Reachability Tree Corresponding to Figure 36 

To see n a particular marking can be reached, the marking at each node in the tree is 

examined. For example, tt is clear from the reachability tree in figure 37 that there is no 

marking where each place contains exactly one token. 

To identity whether the system can deadlock, the reachability tree is exam ined to identity 

nodes which have no successor nodes. Figure 37 shows a deadlock at the node wtth 

marking (0, 1, 2, 1). Wtth this marking, none of the Petri nefs transttions are live. 

In both of the above types of search of the reachability tree, if a node is found which 

satisfies the query, tt is a simple task to identify a sequence of transttions which, when 

fired, transform the marking from the inttial marking to the node's marking. Considering a 

98 



practical example, this could be used to reveal to a designer of a manufacturing cell, not 

only that a deadlock exists, but a sequence of events which could cause H to happen. 

One of the major disadvantages of the reachability tree is that Hs size and the computation 

time to generate H increase non-linearly wHh increasing size of Petri net [135]. In practical 

terms, the reachability tree cannot be generated for industrial scale applications. 

6.3.1.2.2 Matrix Equations 

An aHemative analysis approach involves the treatment of the Petri net as a pair of 

matrices to define the relationships between transHions and their input and output arcs. 

The D' matrix defines, for each transHion, the tokens which are "consumed" when the 

transHion fires. The matrix has a row per transHion and a column per place. Referring to 

figure 36, when transHion t1 fires, H consumes one token from place p1 but no tokens from 

any of the other places. TransHion t2 consumes two tokens from place p2 but no tokens 

from any other place. The 0+ matrix similarly defines, for each transHion, the tokens which 

are "generated" when the transHion fires. The 0- and 0+ matrices corresponding to figure 

36 along wHh their combined form, the 0 matrix (0 = 0+ - 0-) are: 

_ [1 00 ol 
. D = 020 oJ 

+ [0 1 1 ol 
D = 000 1J 

[
-1 1 1 0 ] 

D = 0 -2 0 1 

Consider the sequence of transHion firings cr = t" t2, t,. Counting the number of times 

each transHion fires, this transHion sequence can be represented as firing vector 

f(cr)=(2,1). The relationship between the initial marking !I, a subsequent marking 11', the 

composHe change matrix 0 and the firing vector f(cr) is as follows: 

99 



Il' = Il + f(O"}.D 

From the example in figure 36, the inHial mar1<ing Il is (2, 1, 0, 0) and the final mar1<ing Il' is 

(0, 1, 2, 1). This can be expressed in matrix form as follows: 

L
I 1 0J (0, 1,2, I) = (2, 1,0,0) + (2,1). 
o -2 0 1 

More usefully, a test to determine whether a mar1<ing is reachable from a given start 

mar1<ing can be performed by searching for a solution, in nonnegative integers, for the 

firing vector. 

Although the matrix approach circumvents the difficulty with the non-linear growth of the 

reachabillty tree, H has weaknesses (135). Spec~ic IimHations applicable to this research 

are: 

• The firing vector contains only the number of times each transHion fires rather than the 

sequence in which they fire. Consequently, there would be no ability to show an 

analyst the path from the inHial system state to the sought state. 

• There is no ability to search for deadlocks, although subsequent research has claimed 

a simpl~ied ability to detect deadlocks through the use of mod~ied equations (152). 

6.3.2 Coloured Petri Nets 

Jenson (153), (154) describes the use of coloured Petri nets. Coloured Petri nets are 

effectively a means of overlaying one Petri net on top of another, using coloured tokens 

and coloured arcs to achieve a more compact representation than would otherwise be 

possible. DesignlCPN is a tool package developed by Meta Software Corporation to 

support hierarchical coloured Petri nets (155). 

Updated Petri nets are an enhanoed version of Coloured Petri nets, developed and used 

for Information systems, such as MRP 11 (156). 

100 



6.3.3 Extended Petri Nets 

In order to increase the modelling power. various exlensions have been proposed to the 

primitive Petri net mechanisms. including inhib~or arcs. prioritising of trans~ions and 

constraints to name but a few [135]. Unfortunately. these compromise the ability to 

analyse the net [135]. [157]. [158]. 

6.3.4 Restricted Petri Nets 

In contrast w~ exlended nets. restricled nets reduce the modelling power in order to 

increase the analytical capabil~ies. Two approaches of interest are the marked graph and 

the free-choice Petri net [159]. 

In a marked graph. each place is an input for one and only one trans~ion and an output of 

one and only one trans~ion. Marked graphs can model concurrency and synchronisation 

but not conflicl (where there is a choice of which enabled transition to fire). A marked 

graph may therefore be adequate for simple repet~ive concurrent sequencing but would 

be incapable of explic~ly modelling the decision making necessary for a flexible 

manufacturing cell. 

A free-choice Petri net can model concurrency and synchronisation but imposes 

restriclions on the modelling of conflicl. If a place is an input to more than one trans~ion. ~ 

is the only input place to each of those trans~ions. 

6.3.5 Timed and Stochastlc Petri Nets 

Associating a time delay w~h each transition enables performance characleristics to be 

derived. A praclical application of such a timed Petri net [160] models a pallet handling 

system [161]. The time delay is expressed in terms of two times. Tm1n and Tmax. Tm1n 

defines the minimum time for which the trans~ion must be enabled before ~ can fire and 

T max defines the maximum time for which the transition can be enabled before ~ must fire. 

In a Stochastic Petri net [162]. each trans~ion has a random firing delay. Stochastic Petri 

nets w~ geometrical or exponential delay distribution are appropriate for modelling non

deterministic processes for performance statistics. To overcome size and complexity 

101 



constraints of stochastic Petri nets representing non-trivial systems. the Generalized 

Stochastic Petri Net divides transftions into immediate and timed [163]. 

6A Weaknesses 

6.4.1 Expressive Power 

The primitive notations of the Petri net are inftially very attractive because they offer 

considerable flexibility and minimise the learning curve. However. the lack of more 

expressive notations becomes a signWicant obstacle to clarity when wishing to model more 

abstract concepts. such as queues. or for non-trivial systems. Whilst the issue of 

translating a Petri net into relay ladder logic has been tackled. the primitive Petri net 

notations lack the expressive power to be useful in an industrial scale application [164]. 

An exarnple of the use of Petri net models for a cellular manufacturing system show how 

unreadable a model can become without the use of more expressive constructs [165]. 

Many alternatives have been proposed to address these limitations. providing notations to 

model more abstract representations. including Petri nets with Objects [166]. Control-nets 

[167]. control Petri nets [168]. Process Translatable (PROT) nets which encourage top

down structuring [169] and Hierarchical Petri nets which have been used in the automatic 

generation of ladder logic [33] and as a means of tackling the non-linear explosion in the 

size of the reachability tree [170]. [171]. Other forms of Petri net include Continuous and 

Hybrid (continuous and discrete) nets [172] and the Extended ModWied Petri net (wfth 

graphical and textual language representations) [173]. Unfortunately. from an industrial 

perspective. the prolWeration of so many alternatives may have hindered the uptake of any 

particular approach. 

Whereas the above approaches have adopted more expressive Petri net constructs. an 

a1temative approach is taken wfth Hierarchical Graph modelling and its language 

extension. Parallel Flow Graphs [174]. The modelling notation makes no reference to 

Petri nets but the control structure and flow is translated to a timed Petri net. which exactly 

represents the controlle~s logical structure and provides the basis for analysis. 

The approach taken in [175] to use hierarchical time extended Petri nets (H-EPN) with 

notations for different types of place. such as action place and subnet place. resu~s in a 

diagram which both incorporates non-standard notations and is still visually complex. 

102 



Many approaches have been advocated which attempt to tackle the complexity problem 

associated wnh the analysis of Petri nets. Methods have been advocated based on the 

dynamics of the net and the structure of the net [176], the combination of sub-nets [1451, 

hierarchically organised state spaces [170] and algorithms which produce a reduced 

reachability tree via concurrent execution semantics [177], [178]. Techniques which 

attempt to partnion the total net are dependent on how intuitively the system can be 

mapped to the partial nets. Although techniques which produce a reduced reachability 

tree may be capable of analysing larger nets than would otherwise be the case, they are 

still likely to fail as the net increases in size to that required for an industrial-scale 

application. They also fail to explon the modularity inherent in the analyst's design of the 

system. 

For performance evaluation, enhanced formalisms have included the Extended 

Place/Transnion Net (EPTN) with addnions to Ordinary Petri net token definition, transnion 

definnion and transnion firing rules [179]. 

6.5 SummaIy 

The Ordinary Petri net is a sunable choice as the mathematical model to be combined with 

a graphical method and supported with a software tool because n has the following 

characteristics: 

• Good support for: 

• Sequence 

• Concurrency 

• Event driven applications as exhibned by reactive systems 

• Simple to understand via ns graphical representation 

• Simple to understand ns analysis capabilnies obtained by deriving ns reachability tree 

Used in isolation, however, wnhout a graphical method and software tool, Petri nets have 

limnations for use in the development of industrial sequence logic. In particular. 

103 



• The prim~ive graphical notations tend to produce large and unstructured 

spec~ications [180] and provide inadequate expressive power to model more abstract 

or aggregate ent~ies such as a machine consisting of a collection of axes and tools. 

Although more powerful notations have been developed to address this problem, 

approaches have diverged and they still represent unfamiliar notations to a typical 

engineer in industry. IEC 15909 is a draft standard for high level Petri nets but offers 

neither modularity nor notations which would be familiar to an engineer [181]. 

• The non-linear growth in size of the reachability tree with increasing size of Petri net 

limits the scale of application which can be tackled using an Ordinary Petri net Whilst 

techniques have been published for tackling this problem, they have not been in an 

industrially usable form supporting an intu~ive modularisation of the application and 

facilitating analysis of well-bounded components. 

104 



Chapter 7 Methods and Tools 

Methods and tools can be considered independently, as shown in figure 38, but overlap 

where a method is explicttly supported by a software tool: 

• There are many different software development methods in use, particularly in the 

information technology sector, with some examples of their application to industrial 

control applications [182]. The key aspects relevant to the development of industrial 

sequence logic are discussed in this chapter. 

• In addttion to software development tools which directly support one or more 

methods, tool support is also available for individual phases of a control system lITe

cycle. The beneftts which such software tools offer are described to identITy 

characteristics which a tool supporting a proposed new method should offer. 

1: Introduction .. 

9: Industrial 
2: Business needs ...... ......... , .......... - ............. -,.. .. ... . . Exploitation 

~ficiencies with "d,,, ,., /" 
current approaches .... - .. - .- - _... _ ... - ...... -. 9: Evaluation 

10: Conclusions 

~eqUirements ',1\0:, '" / 
for method, model ...... .... 8: Justification 

andtool,"", / 

11: Suggestions 
for 

Further Research 

4: Control System 
Technology 

5: Standards 

8: Description 
of 

Synect 

6: Mathematical 
Models 

7: Methods 

Rgure 38 Relationship Between This Chapter And The Thesis Map 

7.1 r.1etI1Ods 

7.1.1 evaluation Criteria 

7: Tools 

The desired characteristics identffied in chapter three, Requirements for Method, Model 

and Tool, and summarised in figure 4 in chapter one, Introduction, are as follows: 

105 

• 



• Graphical 

• Manage complexity 

• Expressive notations 

• Well-understood notations 

• Encourage object-oriented view regarding behaviour of agents 

• Encourage structured method view of ordering of events and coordination of agents 

• Support decomposttion 

• Support sequence and event behaviour 

• Coherent information 

• Easy to leam 

• Discrete (manufacturing) applications 

• Hybrid (batch) applications 

• Oriented towards analysis and design activtties 

• Formal definttion 

Structured and object-oriented methods will now be discussed. followed by an 

assessment of their conformance wtth the above criteria. 

7.1.2 structured Methods 

Ed Yourdon pioneered the use of the structured method [183] and this was enhanced for 

the real-time community by Ward and Melior [184] and Hatley and Pirbhai [185]. These 

methods have been widely applied. including examples at the PLC level [25]. 

Structured methods use three sets of diagrams to express the required behaviour of the 

system: 

• Data flow diagram (DFD) for showing data flows between activities. 

106 



7.1.2.1 

• Entity relationship diagram (ERD) for showing relationships between stored 

information. 

• State trans~ion diagram (STD) for defining sequence behaviour. 

Data Flow Diagram 

flow rate 

Volume 

Initial contents 
Quantity remaining 

Drum Capacity 

Figure 39 A Partial Example of a Data Row Diagram 

Figure 39 is a partial example of a data flow diagram (DFD). The circles represent data 

transforms, the arrows represent data flows and the parallel lines represent data stores. 

Real-time extensions add dotted circles and arrows to represent control transforms and 

control signals. 

The specijication is hierarchically ordered_ The content of each data transform is defined 

on another page as either another DFD or a text-based specijication describing how the 

data transform is aocomplished. Control transforms are defined using state trans~ion 

diagrams (STDs). Whilst this provides a very effective means of modularising the 

specijication, a reviewer will often find the need to reference many pages simultaneously 

in order to understand the derivation or usage of a data flow or control signal. 

The DFD Is functionally oriented. Each data transform should be named using a "verb 

noun" phrase, being as explic~ as possible. In a batch control system, for example, 

"Process Material" would be less explic~ than "Heat Add~ive·. The contents of this 

transform would coordinate all necessary activ~ies to heat the additive. Assume that one 

of the outputs of the transform is a command to control a steam inlet valve. In such a 

functionally oriented specijication, it would be qu~e reasonable for another transform, such 

as "Pre-Heat Reactor" to also control the steam inlet valve. This will be considered further 

in the subsequent discussion regarding object-oriented approaches. 

107 



7.1.2.2 Entity Relationship Diagram 

Batch Vessel 

N 

1 
Customer 

Figure 40 An Example of an Entity Relationship Diagram (ERD) 

The entity relationship diagram in figure 40 contains two types of symbol. The rectangle 

represents an entity type and the diamond represents a relationship. The diagram 

graphically represents the following relationships: 

• A batch Is stored in many vessels. 

• Many batches are allocated to a customer. 

In an application in which infomnation relationships are of primary importance, such as 

order and stock management, the ERD may be the key to understanding the 

requirements, with the DFD and STD considered to be responsible for maintaining the 

integrity of the relationships in the ERD. 

108 



7.1.2.3 State Transition Diagram 

I 

I 

I 

Valve Closed I 
Temperature < 20 deg C 

Open valve 

Valve Opening I 
Valve open limit switch made 

Valve Open I 
Figure41 An Example of a State Trans~ion Diagram (STD) 

Figure 41 shows a fragment of a state transHion diagram (STD). The rectangles represent 

recognisable states of the system and the arrows show, from any given state, which other 

states are reachable. The horizontal line beside the arrow separates the condHions which 

must be satisfied for the transHion to fire, shown above the line, from the actions which will 

be taken if the transHion fires, shown below the line. This is the Mealy STD 

representation. An altemative form, the Moore STD, associates actions wHh the state 

rather than wHh the transHion. 

The STD is specifically oriented at graphically representing sequence logic. It is simple to 

understand and hence review in muni-disciplinary teams yet formally defines the intended 

behaviour. 

7.1.3 Object Oriented Methods 

Object oriented methods have their origins in modelling and simulation. Booch points out 

that '~he fundamental ideas of classes and objects first appeared in the language Simula 

67" [44]. The emphasis inHia11y is on modelling Hems in the physical world. These are 

referred to as objects and they communicate by sending each other messages, resuning 

in the invocation of methods [21]. 

For the purposes of clarHy, H is useful to be able to distinguish between object-oriented 

and non object-oriented programming. Stroustrup asserts that a language cannot claim to 

support a technique "if H takes exceptional effort or skill to write such programs" [86J. Of 

109 



particular relevance to this research is the difference between object-based and object

oriented languages. Cardelli and Wegner refer to a language as object-based rather than 

object-oriented n it does not support "kind of' relationships, such as an apple is a kind of 

fruit and fruit is a kind of food. 

There are now many different object oriented methods, of which the more established are: 

• Shlaer Melior 

• Booch 

• Object Modelling Technique (OMT) 

• Objectory 

• Class Responsibility Collaborator (CRG) 

In the absence of an agreed means of comparing or evaluating aitemative methods, any 

comparison must be judged in the context of the requirements to be satisfied. Several 

comparisons have, however, been performed [186], [187], [188], [189], [190]. One of the 

authors of the Shlaer-Mellor OOAIRO method has compared their method with OMT and 

Booch [191], [192]. 

There are now scxalled second generation methods, such as Fusion [21] which attempt 

to integrate and extend the first-generation methods. Fusion builds on existing methods 

and incorporates an element of formal methods: 

• OMT object model and process 

• CRC object interaction 

• Booch visibility 

• Formal methods pre and post conditions 

With a similar objective, UML (Unmed Modelling Language) "fuses the concepts of Booch, 

OMT and OOSE" (Object-Oriented Software Engineering) [193] and was developed by 

major industry organisations including Microsoft, Oracle, Hewlett-Packard, IBM and 

others. It is considered to be applicable to real-time systems, client/server and other kinds 

of 'standard" software development [194]. 

110 



On its own, object orientation does not overoome the deficiencies with automation projects 

identffied in chapter two, The Need. Indeed, successful deployment of object orientation 

has been found to intensify the need for an organised and disciplined approach to 

software development [195]. 

Neither is the object oriented paradigm necessarily intuijive. The philosophy of modelling 

objects which exist in the real world as encapsulated enmies which oommunicate by 

messages invoking an objecfs methods, is vulnerable to cmicism. "If you drink a cup of 

tea, you do not invoke the drink operation on the cup any more than the cup invokes the 

drink operation on your lips, or, indeed, anything invokes an operation on anything else" 

[196]. This crijicism reflects the focus of object orientation on the agents rather than the 

coordination, in contrast wijh structured methods which focus on coordination. 

Although variants of the state model are popular in object oriented methods for specifying 

sequence logic, Fusion takes a different approach. The relevant aspects of the Shlaer 

. Melior method and Fusion method will therefore now be compared. 

111 



7.1.3.1 Relevant Features of the Shlaer Melior Method 

7.1.3.1.1 Object Communication Model 

Cook I 
1 ~ 

....c Oven 2 

, 
Light CPowerTube 

Physical Physical 
Light Power Tube 

Figure 42 Shlaer Melior Object Communication Model (Source: Object UfecycJes • Modelling The Wond In States) 

The Shfaer Melior method shows communication between objects on an Object 

Communication Model. as shown in figure 42 (6). Pattems of behaviour where more 

intelligent objects delegate work to their subordinates and coordinate their progress are 

regarded as typical in larger models and a convention is adopted whereby more 

knowledgeable and powerful objects are towards the top of the diagram. However. such a 

convention is not enforced. nor is the strict hierarchy of communication which prevents an 

object at the top of the diagram from communicating directly with an object towards the 

bottom of the page. 

112 



7.1.3.1.2 State Transition Diagram 

VaIve Closed Temperature < 20 deg C 

VaIve Opening 

Open valve 

Rgure 43 Moore Fonn of State Transfiion Diagram 

The Shlaer Melior method uses the Moore form of state transijion diagram for specifying 

sequence logic as shown in figure 43, associating actions wijh states rather than 

transijions. This can lead to the printed form of the specHication being more difficu~ to 

review n the logic is fragmented due to actions being printed on a separate page from the 

diagram. A~ematively, H the actions are printed on the same page as the diagram, more 

space may be required to denote the same logic compared wijh the Mealy form of state 

transijion diagram, particularly H different actions are required depending on the route 

taken to a given state. 

7.1.3.2 Relevant Features of the Fusion Method 

7.1.3.2.1 Pre-Conditions and Post-Conditions 

The principle underlying Fusion is that analysis should be concemed with specifying what 

behaviour is required rather than how ij is achieved [21). Fusion considers the state model 

to be a definijion of how the behaviour is achieved and is therefore avoided in the analysis. 

Instead, the system response to an event is defined by specifying the state of relevant 

objects before the event and their state after the event. Atthough this successfully avoids 

specifying how the functionalijy is achieved, weaknesses related to ijs use for industrial 

sequence logic applications include the following: 

• The pre-condijions and post-conditions refer to named states which imply a 

knowledge of valid object states which are not explicitly defined. 

• The transijion directly from one state to another may be illegal but this is not apparent, 

nor is the intermediate path taken to effect the transijion. For example, assume a 

vessel is under vacuum when a fault condijion is detected and that the reaction on 

113 



fautt detection is to vent the vessel. It may be necessary to first bring the vessel to 

atmospheric pressure in a controlled manner before venting to atmosphere. 

• Non-intuttive review procedure. To ensure effective and accurate requirements 

specijication, a mutti-disciplinary team is typically required. Adopting a "bottom-up· 

approach to review has been found to be effective, whereby the required functionaltty 

of lower level objects is reviewed and agreed before higher level objects are reviewed. 

This helps to gain the confidence of the team because ij starts wnh plant equipment 

wnh which they are familiar. Using the Fusion approach, this definijion would not be 

available when considering the system's reaction to events. 

7.1.3.2.2 Scenarios of Use 

Operator Control System Plant 

Start button pressed 

Open valve 

Start pump 

Time System running 
4----------------------

Stop button pressed 
Close valve 

Stop pump 

Figure 44 An Example of a Scenario of Use 

Figure 44 shows an example of a ·scenario of use" which is considered useful for 

establishing the interface boundary (21). It is also a useful technique for reviewing outline 

behaviour and as a definijion of requirement against which the specified object behaviour 

can be verified. 

7.1A Assessment 

Criterion Structured Object-Oriented 

Method Method 

Graphical 01' 01' 

Manage complexity 01' 01' 

EJcpressive .-tions 01' 01' 

114 



w_ notations 
le le 

Encourage object-oriented view regarding behaviour of agen1s le v' 

Encourage stru::tured method view of ordering of even1s and v' le 

coordination of agen1s 

Sl4lPOrt decanposition v' v' 

Support sequence and event behaviour v' v' 

Cohemnt Infonna1ion le le 

Easy to learn le le 

Discrete (manufacturing) applications v' v' 

Hybrid (batch) applications v' v' 

Oriented towards analysis and design activities v' v' 

Fonnal definition le le 

To summarise: 

• Structured methods and object-oriented methods satisfy many of the criteria required 

but lack the necessary formal definHion. 

• They are not spec~ically focussed towards reactive systems and consequently 

present the user with the requirement to address information relationship and 

continuous data models. Anhough there are examples of their application to industrial 

control systems [182], there is addttionalleaming required above that which could be 

considered to be essential. This applies to both the notations and the approach to be 

taken. 

• Their scope includes very large and complex systems and the diagramming 

conventions reflect this. Consequently, related information is not always presented 

coherently. For example, several layers of data flow diagram may need to be studied 

to understand a message flow. 

• A subset of simple notations and models with formalised interpretation would satisfy 

the criteria i.e. the Synect method will utilise a subset of structured and object-oriented 

method notations and models. 

115 



7.2 Tools 

7.2.1 evaluation CriterIa 

The desired characteristics identified in chapter three, Requirements for Method, Model 

and Tool, and summarised in figure 4 in chapter one, Introduction, are as follows: 

• Support graphical method 

• Support mathematical model 

• Visualisation 

• Code generation· ANSI C 

• Code generation· relay ladder logic 

• Code generation· Echelon Neuron C 

• Code generation· buitt in diagnostics 

• Inexpensive 

• Full life-cycle support 

• Support rapid prototyping 

• Connectivity 

There are many different software tools which have a contribution to offer in the 

development of industrial automation systems. Mhough the boundaries are not rigid, for 

the purposes of discussion, the different types of industrial software tool support are 

considered with reference to the need they address: 

• Requirements capture 

• Design 

• Proving the design satisfies specified constraints (via property verification or 

executable model) 

• Rapid application development, particularly for visual interface design 

116 



• Visualisation 

• Simulation (for performance analyses - useful for identifying process bottlenecks) 

• Prototyping 

• Implementation 

• Testing 

• Auto-code generators 

7.2.2 Requirements Capture 

These visual modelling [197] tools concentrate on helping the analyst and knowledge 

holder to capture the requirements and to help verify that they are complete, consistent, 

clear and unambiguous. Structured analysis methods and object oriented analysis 

methods fall into this category and tend to be supported by method-specnic or mu~i

method tools. Examples in this category are: 

Yourdon, Ward-Melior, Hatley-Pirbhai 

UML 

OOA (Shlaer-Mellor) 

Fusion 

Promod-PLUS [198], TeamWorik [199] 

Rational Rose [200] 

OOA-CASE [201] 

Paradigm Plus (202) 

In order to guide the analyst and prevent unnecessary errors from being introduced, the 

tool should offer good support for the method. For example, the tool should be able to 

verify data flows between diagrams. Ideally, the tool should offer the analyst the 

information to prevent such incompatibiltties being specnied rather than reporting the error 

later. A good tool frees the analyst from the details of applying the method in order to 

concentrate on the essence of the problem to be solved. 

In contrast with method-specnic tools, some of the most commonly used, but prim~ive, 

requirements capture tools are word processors, spread sheets and drawing tools such as 

VISIO (203). 

117 



7.2.3 Design 

Structured methods and object oriented methods include a design activity which defines 

how the required behaviour will be achieved. Shlaer Melior's method refers to design by 

elaboraijon meaning that H is a mechanistic derivation from the analysis. 

Tools in this category include CASE tools supporting a structured or object-oriented 

method and component-oriented tools, such as Rockwell's RSFrameworks which offers 

library management of pre-buiH function blocks. 

7.2.4 Design Verification 

These tools help in checking that a deSign is correct wHh reference to defined crHeria 

These take various forms, some relating to tesijng properties of a system where the 

system specffication and the property are specified mathematically, as described in 

chapter six, Mathematical Models, and others provide an executable model which can 

eHher be driven interactively or via a script. There are many examples of tools which are 

available as research prototypes but also a number which are commercially available: 

Property checking SPADE (204), MALPAS [205], Prover (128) 

Executable StateMate (206), Stateflow (207), BetterState Pro (208) 

STATEMATE, for example, is a set of tools for the specification, analysis, design and 

documentation of large and complex reactive systems, such as real-time control systems 

(206). It uses three graphical languages to capture the specification of the structure, 

functionality and behaviour of the system. The behavioural view is specified using 

statecharls, which are an extended form of state transHion diagram (209). An example 

application of STATEMATE in the avionics industry is given in (210). 

Using an executable model, the analyst can gain a deeper understanding of how the 

system will operate, for example simulating extemal events and observing the system's 

reaction. However, the ability to execute the model does not, in HseH, fully satisfy the 

need: 

• It does not completely verify system behaviour. For example, assume that a particular 

sequence of events would cause the system to deadlock. This will only be revealed if 

that particular sequence of events is tested. 

118 



• The degree of test coverage cannot be ascertained. 

In contrast, a property checking tool could confirm behavioural properties wtthout having to 

verify individual scenaJios. However, this approach requires that all behavioural properties 

of interest are specijied and does not offer the confidence gained through observing the 

system execute. Whilst tt may be infeasible to analyse an industrial-scale control system in 

tts entirety, analyses of subsets may be practical and useful. 

These approaches need not be m utually exclusive. An ideal tool would offer both of these 

complementary approaches. 

7.2.5 Rapid Application Development 

The component oriented model of software development is being widely adopted and 

seems to have tts populist roots in the Microsoft Visual Basic language. The paradigm is 

based on specifying components wtth defined behaviour (e.g. a button has two states and 

changes from up to down when the mouse is Clicked over tt) and properties (such as the 

text on the button, tts colour, etc.). There is a clear correspondence wtth object orientation 

in this paradigm. More importantly, many pre-defined components are supplied wtth the 

programming environment which can then be "soft-wired' together. So a novice need 

undertake only minimal programming, developing applications using only available 

components, whereas the expert can define new components and make them available in 

a form which is indistinguishable from the pre-supplied components. So the language 

environment caters for both the novice and the expert. Typical examples of component

oriented packages are: 

Visual Basic [211) General purpose language development, particularly 

good for HMI applications. 

HPVee [212) HP VEE is a component-based approach from Hewlett 

Packard and is now also available via VO company 

Amplicon, for use in conjunction wtth their test and 

measurement and data acquisttion products. It is 

considered to be especially sutted to the fast 

development and maintenance of user and instrument 

interfaces and displays [213). 

119 



labVIEW [214) 

Matlab [215) 

7,2.6 VIsualisation 

National Instruments labVIEW graphical programming 

environment also uses the approach of defining 

components and "wiring' them together. An interface is 

available for linking labVIEW with Data Translation's 

acquis~ion hardware. 

Matlab is a graphical tool for programming, analysis, 

modelling and simulation with the emphasis on support 

for matrix manipulation. 

Visualisation tools which can be used as a user-friendly perspective on the behaviour of a 

sequence logic specffication include: 

• 3D modelling tools, such as Workspace [216), are common-place in the robotics 

industry. These tools enable the user to see how the equipment will move and can 

also perform crash-detection. 

• Supervisory Control and Data Acquis~ion (SCADA) tools, such as Wonderware's 

InTouch [76) and Rockwell's RSView32 [28), are common in process and 

manufacturing industries with current plant equipment state represented visually by 

graphics symbols. 

7.2.7 Simulation 

Simulation is a term commonly associated with performance analyses. For example, a 

manufacturing line could be specHied in terms of the manufacturing stages which must be 

performed and then a statistical distribution assigned for the time taken at each stage. 

The model could then be run to find out the overall throughput, machine utilisation rates 

and to determine the effect of manunction on buffer capac~ies etc.. These packages 

usually contain a mimic-style visualisation module, often including animation, to present 

the resu~s in a more user-friendly manner. 

Examples of tools in this category include Witness [217) and AutoMod [218). 

120 



7.2.8 PlOtotyplng 

Prototyping has been advocated in a variety of fonns and for a variety of reasons, of which 

better user involvement is the most often c~ed [219), [220), [221). However, a major 

challenge is keeping the scope of the project under control: 

The Pitfalls of Prototyplng [219] 

Can~ use 
production 

No standard 
task list 

Not rlnr,umIAnl'Arl·-

Inadequate 
application./inadeClua'te 

controls development 
controls 

established 
guides 

Figure 45 The PiHalls of Prototyping 

Scope 
containment 

Managing 
alterations 

Requirements specffication and design are the Iffe-cycle phases which typically benetn 

from prototyping. During requirements defin~ion, the system operability may be reviewed 

through prototyping of the user interface. Design phase prototyping may include 

vernication of the perfonnance characteristics of a proposed software arcMecture. In 

general, the value of prototyping is in the early phases of a project, hence the prototyping 

motto "n you are going to fail, fail early". 

The use of target software platfonns, such as S88.01-aware batch control systems, can 

have a dual effect on prototyping: 

• The availability of pre-bum functionality can facil~ate cost-effective prototyping 

because less effort is required to construct the prototype. 

• Software platfonns usually impose constraints which are most clearly expressed 

through prototyping. The a~emative may be to spend more effort specifying and 

implementing ~emative mechanisms to implement similar functionality. 

121 



7.2.9 Implementation 

There are many language development tools for general purpose software development, 

of which Microsoft CH- is an example. Implementation tools oriented at manufacturing 

and process industries tend to be closely allied to the vendor's control system, aijhough 

the goal of IEC 61131-3 is to enable a program developed on one vendor's software to be 

used on another vendor'S control system. Software tools in this category include 

Rockwell's RSLogix5 (28) and CJ Intemational's IsaGraph (93). 

The Advanced Productivity Tool (APT) was developed by Texas Instruments (now part of 

Siemens) and marketed as a CASE tool for their top of the range PLCs. APT supports 

languages similar to those defined in IEC 61131-3. One estimate was that it could reduce 

the time required to program and make changes to a PLC program by 75% compared 

with relay ladder logic (222). 

7.2.10 Testing 

Another area of tool support includes automated testing tools. One claim was that users 

could reduce development costs by up to 80% through the use of computer aided 

software testing (CAST) tools (223). Considering that testing is estimated to consume 

30% to 50% of software development effort and budget, this would appear to be a very 

promising area. 

However, whilst computer aided test tools are available for the general IT market, there is 

limijed usage by industrial automation developers. The nearest tends to be the use of 

software to simulate the behaviour of plant equipment, such as DirectUnk (224). 

DirectUnk can communicate w~h a PLC and for example a valve simulation component 

would look for the PLC output to move the valve, wa~ a pre-configured time and then give 

the PLC the input to signal that ~ was open. Tools such as these also allow fault 

cond~ions to be simulated, such as a valve failing to open, so that the behaviour of the 

control system can be verified. Mhough these tools are an improvement over switch 

boxes and lamps, they inadequately futlill the role of a test tool because they are unable to 

capture evidence of the control system behaviour or automatically manage a series of 

tests. 

An aHemative approach, offered by Rockwell, is to provide the ability to run the target PLC 

ladder logic on a PC-hosted emulator. The control program includes debug files to 

122 



simulate the plant equipment which run on the emulator but are not down loaded to the 

PLC. 

7.2.11 Auto-Code Generators 

These tend to be associated with particular tools because they need to translate a design 

into software code. For example, StateMate [206] and SystemSpecs [225] can generate 

C and VHDL Other than vendor-independent programming tools, such as CADEPA [94], 

ladder logic generation is not supported. 

123 



7.2.12 Assessment 

Criterion 

Support graphical 

melhod 

Support 

mathematical 

model 

Vlsualisa1lon 

Code generation 

-ANSIC 

Code generation 

- relay ladder 

logic 

Code genera1lon 

- Echelon Neuron 

C 

Code genera1lon 

- buiR In 

dia!J1OSlics 

Inexpensive 

Full IWe-cycle 

support 

Support rapid 

protolyping 

Connectivity 

The following table compares examples from the above categories against the criteria 

referenced in chapter three, Requirements for Method, Model and Tool, and summarised 

in figure 4 in chapter one, Introduction. 

Rational lIogix NPL Rockwell Microsoft Rockwell CJ Inter- Rockwell 

Rose State Mate Prover RSFrame Visual RSLogixS national RSView32 

Works Basic IsaGraph 

0/ 0/ l< l< l< (1) l< (1) le (1) l< 

le 0/(2) 0/(3) l< le l< l< l< 

0/ 0/ l< 0/ 0/ 0/ 0/ 0/ 

0/ 0/ l< l< l< l< 0/ l< 

le le(4) l< 0/ l< 0/ 0/ l< 

le le le l< l< l< 0/ l< 

le le l< l< 0/ le l< le 

0/ le le 0/ 0/ 0/ 0/ 0/ 

le(S) l«S) l«5) le(6) l«6) le(6) l«6) l«6) 

0/ 0/ le l< 0/ l< le 0/ 

l< l< le l< 0/ le le 0/ 

Notes: 

1. These programming tools support graphical notations but not a graphical method 

oriented at analysis and design. 

124 



2. The Statemate model is executable but does not support behavioural queries. 

3. Prover supports behavioural queries but does not have an executable model. 

4. A research example of the generation of monolithic instruction list code from a subset 

of statechart notations using StaleMate is described in [226). 

5. Good design documentation is necessary for effective support and maintenance but 

these tools do not directly link the implementation with the tool environment by 

animating the analysfs graphical specHication from the live control system or 

supporting the replay of the live control system's event log. 

6. Weak support for the early project phases such as requirements capture. 

7.3 Summary 

The key points from this chapter to be considered in satisfying the requirements for a new 

approach are: 

• Structured methods emphasise coordination whereas object oriented methods 

emphasise participating agents. Both perspectives are valuable and are 

complementary. 

• To ensure a consistent structure regarding component interaction, an organised 

approach to intemal comm unication is required. 

• Sequence definition should use a graphical notation. The state transition diagram is a 

widely-used notation. 

• For effective use of a method, a tool which strongly supports the method is highly 

beneficial. This helps to prevent syntax and semantic errors from being entered as 

the application is specHied rather than being trapped later. 

• The new tool should be capable of being used with other tools, such as 3D or process 

mimic visualisation software. 

• Analysis of system behaviour before the system is constructed is very valuable but 

there are limitations to simply executing the specHication because a sequence of 

events which would expose an error may not be tested. Complementing an 

executable model with the ability to test for behavioural properties would overcome 

this weakness. 

125 



• Analysis of subsets of a system would be advantageous, particularly H the system's 

components are to be re-usable. 

126 



Chapter 8 Description of Synect 

This chapter describes a solution to the requirements, introducing the method, the 

mathematical model and software development platform which the author has 

trademarked as Synect. Figure 46 shows how this chapter relates to the other information 

in this thesis. 

kd~'-fl!<' 9: Industrial 
2: Business needs ... ... " .. ". ... , .. -.. ".. .. ... Exploitation 

~ficiencies with "r .. " ... , / 

10: Conclusions 
• · 

1: Introduction 
current approaches ..... ".... 9: Evaluation 

~cquirements !U,,.· ,.. . . ..... /" 
for method, model ... ',. .' 8: Justificanoo ... ' 

I / ....... ;,. 

and too '::>...,'''''';. ',~_ 1/' .', 

11: Suggestions 
ror 

Further Research 

4: Control System 
Technology 

5: Standards 

'-1 J~: Dtscrlption',,,:\~ 
:~ -J." ,of":;", .~ 
. :.,,"< ~yn~:;:' j 

6: Mathematical 
Models 

•• 

7: Methods 

Rgure 46 Relationship Between This Chapter And The Thesis Map 

7: Toots 

Synect is a commercially available product and consequently the algor~hms used by the 

tools and their internal data structures are not discussed in this thesis. The detailed usage 

of the tools is described in the user guides [227] included in Appendix C, Synect User 

Guides. 

127 

• 



~_"". ~;.·':"f;.'r".'~}r\:" ,~:.;.,,, ," !Jr';' '.-"'." 
:: Note:~.Sb8ded items denote\.l 
'" '~~iDpreyious:: 
:,--;.~_·,~:':">,:diapt~· .. ~. '._' , 
~':-"'h'.)0-".;; .. /-_~ _":., .. -

8.4 Description ___ -. 

.,,' .,.''''~._--... :8.4.9 Justification 
Requrr~ents .-

Figure 47 Structure of this Chapter 

Figure 47 shows the structure of this chapter. The development environment is first 

introduced in general terms to provide a foundation for the subsequent detailed description 

of the method and CASE tool, Petri net modelling having been described in chapter six, 

Mathematical Models. Each section concludes by justifying the solution against the 

requirements spec~ied in chapter three, Requirements for Method, Model and Tool. 

8.1 Outline Description 

Synect consists of a method, a mathematical model and a set of tools to support the 

method and model. 

8.1.1 Method 

The method uses an object-based decomposHion to hierarchically organise the 

components of the solution. This is referred to as an Object Hierarchy. Objects 

communicate explicHIy by sending messages or implicHIy by referring to the intemal state 

of another object. The interface between the control logic and the plant equipment is also 

represented on the Object Hierarchy. The messages which the object sends and 

receives, together wHh the plant inputs and outputs, are referred to collectively as the 

object's extemal interface. 

An object's sequence logic is spec~ied by one or more state transHion diagrams (STDs). 

The condHions and actions associated wHh an STD transHion are directly related to the 

object's extemal interface, the state of another object's STD or to one of the object's 

128 



variables. Together, the Object Hierarchy and STDs provide a fonna! specification of the 

application. 

8.1.2 Mathematical Model 

The mathematical model is an Ordinary Petri net: 

• STD states are mapped to Petri net places. 

• STD trans~ions are mapped to Petri net trans~ions. 

• Plant input and plant output functions are associated w~ Petri net transttions. 

129 



8.1.3 Tools 

The platfonn consists of a sutte of tools which run on PC hardware under the Windows 

operating system. Each tool is a separate program. 

Tool Function 
I 

AppIicatloo Editor This behaves as an Intelligent drawing tool. to enable the analyst to specify the object 

hierarchy and state transilion diagrams. It produces graphical data for use by the srn 
Mon~or appIicatIoo and a definilion of the logic for use by the Compiler. 

Compiler Takes the formal control logic definilion In terms of objeclS and SIDs from the 

AppIicatloo Editor and generates a Petri net, ~ich the remaining tools use as the 

deflnilion of control logic. 

AAaIyrer Provides the abilily to generate the Petri nefs reachabilily tree, report the existence of 

deadlock and enables the user to perform simple searches for specffied comblnatloos 

of srn state. H a deadlock or specffied state Is fol'1d, k will generate a list of the 

sequeroe of events ~ich would take the system from kg Inml state to the target state. 

This Is written into an event log ~ich can then be replayed via the Sinulator. 

Simulator This Is a Petri net engine, capable of executing the Petri net and logging the transitions 

fired into an event log. The analyst can replay the event log to review how the system 

reached kg current state. The Simulator Is ccntrolled using a control panel analogous 

to a cassette tape player. The analyst can Interact with the Simulator to simulate real-

woI1d events and can see the actloos ~ich the control system ""uld take. The 

Simulator Is often used with the srn Monkor. However, ~ can also be linked to 

extemaJ packages (via WI1dov.s DOE) for detectioo of condilions and for visuallsatloo. 

srn Monitor Animates the diagrams ~ich were used to specify the logic, taking input from either 

the Sinulator or the live control system. 

Code Generators Generate software for the target envirorment. using the Petri net as the definilion for 

the logic and configuration files to define how the code is to be produced and I/O 

translations. There are currently three supported code generators: 

ANSIC Generates scan-based or interrupt.oriven C code. The scan-based code can be either 

data driven (the Petri net Is eflectively loaded into arrays) or code-onented ~ere each 

transition Is translated to inline code. The latter variant """ Included for a user 

targeting the code at mic«HXlntroller applicatloos ~ere RAM is at a premium. Buik·ln 

event·logglng in the generated code provides diagnostics ~ich can be used in 

ccnjt.nelion with simulationMsuallsation for !auk finding. 

NeurooC Generates Neuroo C ooda to map the logic to ncdes on an Echelon LonWor1<s 

network. 

Ladder Logic Generates relay ladder logic for an Alief1.Bradley PLCS PLC. 

130 



8.2 Synect MeUiOCI 

8.2.1 TIle Object HIeran:hy 

8.2.1.1 

An application is considered to consist of a strict hierarchy of objects. The topmost object 

Is referred to as the root object and is the most abstract view of the application. This root 

object will typically consist of other objects, referred to as child objects (the root object is 

the parent of these children). 

An object typically models an ttem in the system being controiied. For example, a 

manufacturing application might have separate objects for a machine, a robot and a 

conveyor system. An object which has no children is caiied a primttive object. An object 

wtth children is caiied a compostte object. 

An object bounds the functionaltty of the ttem of interest by defining: 

• The messages which tt can be sent and which tt will return. 

• The interface wtth the controiied system (real world inputs and real world outputs). 

• The sequential logic wtthin the object (using state transttion diagrams). 

Object Interaction 

Objects interact in one of two ways. The first is by sending and receiving messages from 

other objects. This is described in more detail in the next section. The other type of 

interaction allows an object's STD to use the state of another STD as a condttion of a 

transttion. For example, if a light bulb is controiied by a swttch, the first method would 

require that the swttch object sends the light bulb object a message when the swttch 

changes state from "off" to "on'. The second method would require that the light bulb 

object monttors the state of the swttch object and illuminates when ~ detects that the light 

swttch is in state "on". 

If centralised control code is to be generated, e~her method can be used. If, however, the 

logic is to be distributed across multiple processing nodes, such as when using the Synect 

Distributed Neuron C Code Generator for use wtth Echelon's LonWorks technology, the 

state-reference method must be used. Synect requires that two objects which are to be 

assigned to different nodes must not use message-based communication between them. 

This enforces the LonWorks philosophy that a node shares tts information w~h other 

nodes on the network, to which the receiving node can react as appropriate, rather than 

131 



8.2.1.2 

one node explicnly commanding another node. Objects which are to be assigned to the 

same node can use enher or both of the message-based and state-reference methods. 

Messaging 

As stated in the previous section, parent and child objects can communicate wnh each 

other by sending messages. A message from a parent to a child is referred to as a 

command. A message from a child to Hs parent is referred to as a response. An object 

manages ns children on behaij of the rest of the application - in figure 48, for example, 

object A can only communicate wnh objects D and E via object B. Similarly, objects F and 

G can only communicate wnh object B via object D. 

Figure 48 Object Messaging Visibility 

A message can be enher synchronous or asynchronous. A synchronous message is one 

which causes the sending transnion and the receiving transnion to fire as one. It therefore 

synchronises the two transnions. If the receiving STD is not in a position to receive the 

message, the transnion in the sending STD cannot fire. A synchronous message is 

ident~ied by the square brackets around the message name, for example: 

[starLmotor] 

An asynchronous message is one which can be sent irrespective of whether the receiver 

is yet in a posnion to act on H. The message is placed in a buffer and is then said to be 

pending. If the message is already pending (Le. the buffer is fulQ, the transition in the 

sending STD cannot fire. Use of asynchronous messages can cause a substantial 

increase in the number of combinations of state that the application can reach, possibly to 

132 



8.2.1.3 

the extent of preventing the use of the Analyzer. It can also make the behaviour of the 

application more difficu~ to follow. 

Interface with the Controlled System 

Real world inputs enable an object to read the value of sensors in the system being 

controlled (such as whether a swttch is closed). Real world outputs enable an object to 

instruct the system being controlled to take some action (such as starting a motor). 

A real world input is an input into the application from the controlled system. A real world 

input can be thought of as a boolean function which the application calls. For example, 

the following real world inputs may be available for a motor: 

• motor_running 

• motocrunning_fulLspeed 

Synect is independent of the target control system hardware. As such, the means by 

which a real world input function determines the boolean state to be retumed is only 

defined at the code generation stage. 

A real world output is an output from the application to the controlled system. A real world 

output can be thought of as a function which the application calls. For example, the 

following real world outputs may be available for a motor: 

• start_motor 

Again, because Synect is independent of the target control system hardware, the means 

by which a real world output function causes the controlled system to take the required 

action is also defined at the code generation stage. 

133 



8.2.1.4 

8.2.1.4.1 

Intemal Events 

An object may also have intemal events. An intemal event is e~her an intemal command, 

a variable test or a variable operation. 

Internal command 

An object may contain several STDs to define the required sequential logic. These STDs 

may communicate w~ each other just as objects do - by sending messages. These 

internal messages are called internal commands. Internal commands may be 

synchronous or asynchronous. 

8.2.1.4.2 Variable 

An object may contain variables. A variable has the following configuration attributes: 

• name 

• minimum value 

• maximum value 

• inHial value 

The values are subject to the following constraints: 

• minimum value <= maximum value 

• minimum value <= in~ial value <= maximum value 

The variable has an integer value which can be changed by a variable operation and 

tested against by a variable test. 

8.2.1.4.2.1 Variable test 

A set of tests may be defined which are applicable to each variable, where each test is 

one of <, <=, =, >= or >. A variable test can then be used as a cond~ion on a transHion. A 

trans~ion cannot contain more than one cond~ion referring to any particular variable. 

134 



B.2. 1.4.2.2 Variable operation 

A set of operations may be defined which are applicable to each variable, where each 

operation is one of: 

INCR increment the value by 1 provided that the variable value is less than 

its maximum. 

DECR 

RESET 

decrement the value by 1 provided that the variable value is greater 

than ijs minimum. 

reset the variable to its inijial value. 

A variable operation can then be used as an action on a transijion. A transijion cannot 

contain more than one action referring to any particular variable. 

8.2.2 State Transition Diagram 

The logic wijhin each object is defined by one or more state transijion diagrams (STDs). 

Each STD typically consists of several states and several transijions. 

8.2.2.1 State 

Each state is represented by a unique name which is displayed in the STD window in a 

rectangle. Each state represents an identmable mode of operation of the ijem being 

modelled. For example, a gripper could have states denoting "open", 'clOSing", "closed" 

and 'opening'. One of the states is designated as the initial state and is drawn wijh a 

thicker border in the STD window. The STD's current state will change to another state IT 

a transijion fires which starts at the current state and ends at a different state. An STD is 

said to be in a particular state - for example, the gripper STD is in state "closing". 

A state may be eijher a primijive state or a macro state. A macro state is drawn with a 

very thick border and is further decomposed into a sub-sequence STD. 

135 



8.2.2.2 Transition 

Transitions define, for each state, which other states are directly reachable. A transttion is 

represented by an arrowed line where the arrow shows the direction from start state to 

end state. In the following example of a kettle control system, the STD starts in state 

'Empty". The only other state reachable from state "Empty" is "Off Not Boiled" 

(presumably when the kettle has been filled wtth water). From state "Heating", the STD 

may retum to state "Off Not Boiled" (probably because the user has decided to abort the 

sequence) or state "Boiled' (boiling water detected). 

+ 
Empty 

, + 
Off 

NOLBoiled , 
Heating Emptying 

I , 
Boiled 

I 
Figure 49 States and Transitions 

Associated with each transttion is a (possibly empty) set of conditions. "these condttions 

evaluate to true (an empty set always evaluates to true), a transttion which has the current 

state as tts start state is said to be enabled and can fire. 

Also associated wtth a transttion is a (possibly empty) set of actions. When a transition 

fires, the current state changes to the transttion's end state and the actions are invoked. 

The transttion is considered to fire instantaneously such that the STD is always in one of 

the defined states. 

136 



8.2.3.1 

8.2.3.2 

8.2.3.3 

This section justffies the method with respect to the requirements specnied in chapter 

three, Requirements for Method, Model and Tool, which are summarised as subsection 

headings. 

Clear, Concise and Complete Specification 

Graphical notations express the decomposttion of the system in tenms of a hierarchy of 

objects along with state transttion diagrams for sequence definttion. The use of 

appropriate notations helps to ensure clarity without verbostty. The scope of the system is 

recognisable from the object hierarchy, helping to identtty omissions. Although the method 

cannot automatically identtty incompleteness in the detail, tt facilitates an effective means 

of review. Considering the current method as a common denominator for sequence 

oriented systems in general, domain specmc methods capable of revealing 

incompleteness In the detail could be developed as addttional layers. For example, an 

S88.Q1-aware variant might expect to find logic for running, holding and stopping phase 

states. 

The use of a hierarchy of objects encourages the analyst to express both the coordination 

and independent behaviour required of the system. 

Manage Complexity 

The analyst decomposes the overall solution into manageable parts by modelling the 

solution in tenms of a hierarchy of communicating objects. The specmcation can proceed 

bottom-up, top-down or m iddle-out. As proven re-usable objects become available at the 

lower levels, the analyst has even less complextty to deal with. 

Notations 

Most structured and object oriented methods show data or event relationships between 

either modelled enltties or functional entities. The object hierarchy diagram shows how 

the analyst considers the objects to be related, the message communication paths 

implicitly (parent to child and child to parent but not grandparent to grandchild, for 

example), and the specnic messages sent and received. It also shows the inputs from the 

plant and outputs to the plant. This extemal interface uses the four sides of the object 

rectangle to ensure that the representation is explicit and unambiguous. 

137 



8.2.3.4 

8.2.3.5 

The object hierarchy shows message coupling between objects explic~1y although a 

weakness is that coupling through state-references are not shown. Explic~ representation 

of coupling helps to promote re-usabil~. However the CASE tool identffies illegal state

reference coupling, preventing design errors being propagated into the Petri net model. 

The state trans~ion diagram (STD) was selected for expressing sequence behaviour in 

preference to sequential function chart (SFC) because ~ is widely understood and offers a 

more compact representation than afforded by SFCs. The STD is also perceived as more 

design oriented whereas the SFC is perceived as more implementation oriented. The 

author is unaware of any structured method or object oriented method which uses SFCs 

although several use variants of the STD. 

Coherent Information 

Where possible, related information should be shown on the same diagram. This helps to 

reinforce the context of the ~em under consideration and makes the paper representation 

more manageable. In accordance with the method and tool being oriented at small to 

medium scale applications, the object hierarchy shows the entire hierarchy on one 

diagram. The use of the Mealy model of state trans~ion diagram provides the most 

compact representation of sequence defin~ion, preventing the need to fragment the 

definition over several diagrams or pages. 

Avoidance Of Design Errors 

Whereas the Synect method will allow the analyst to specify a "wide fiar hierarchy and 

use state-reference communication between any and all objects, the method encourages 

a more structured approach with coordination and arb~ration of child objects being 

managed by their parent object. 

The restriction that messages can only be used for communication between adjacent 

levels in the object hierarchy facilitates analyses of subsets of the whole system. An 

object can be made the root object of a subsystem by discarding ~s parent, grandparent 

ete.. Similarly, an object's children can be discarded to restrict the scope of the 

subsystem. The absence of grandparent to grandchild communication ensures that this 

operation does not remove circular dependencies which would otherwise cause deadlock. 

In fact, analysis of the subsystem may reveal a deadlock which was not apparent in the 

whole system, because the ordering of events in the whole system prevented the 

subsystem from following a path which lead to deadlock. Subsystem analyses are 

therefore valuable in order to produce well-behaVed re-usable objects. 

138 



One of the limitations of Petri net reachability analysis is the non linear growth in 

computation time and tree size with increasing size of Petri net. This limitation tends to 

render reachability analysis unusable for industrial scale applications. Chapter six, 

Mathematical Models, describes approaches which have been taken to address this 

problem. The isolation and independent analysis of small subsystems [2281 offers another 

approach - because the subsystem is less complex than the whole system, n follows that 

the reachability tree of the corresponding Petri net is smaller and hence may be of 

manageable size. 

The use of a message event rather than raising or lowering of a flag warrants explanation, 

having been chosen so that the CASE tool, through the use of the mathematical model, 

can identify design errors which would otherwise be missed. Two forms of message are 

supported - synchronous and asynchronous: 

• For a transnion in an STD to fire which sends a synchronous message, the transnion 

in another STD which receives the message must also fire (these are mapped to one 

Petri net transnion by the Synect compiler). If the receMng STD is not in the required 

state, the transnion in the sending STD cannot fire. 

• When an STD sends an asynchronous message, n is placed into tts "pending" buffer, 

of capacity one, from which the receiving STD consumes n. If the pending buffer is full 

(i.e. message not yet consumed), the transnion in the sending STD cannot fire. 

In both of these cases, a design error which prevented the receiver from consuming 

messages would cause the sender to hang. Considering a subset of the total system, this 

typically leads to deadlock which can be identffied from the Petri net's reachability tree. 

Mematively, the anomalous behaviour is apparent when the model is executed by the 

Synect Simulator. 

A disadvantage of this type of messaging is that it can innially appear to be more difficult to 

construct error-free applications. Although this reflects the need to invest more effort early 

in the project which is recovered by less fautt rectijication later, the perception that the 

method is difficutt to use could deter a potential user of the method. 

In addttion to being useful in motion control applications, where the profiles of two or more 

independently controlled axes must be coordinated, synchronous messages also remove 

the need for handshake messages to indicate that the receiver has acted on the 

instruction. 

139 



Having justnied the benems of a highly structured communication mechanism, the support 

for state-reference communication between objects anywhere in the hierarchy appears 

anomalous. It was introduced primarily to funill the expectations of developers of Echelon 

lonWorks applications [229]: 

• Sibling communication is the norm instead of a hierarchy. 

• Objects make their intemal state available for other objects on the network to react to 

rather than expliCITly sending the other object a command. 

8.3 Petri Net Model 

This section justnies the selection of an Ordinary Petri net model wITh respect to the 

requirements specnied in the previous chapter, which are summarised as subsection 

headings. In general, the Ordinary Petri net model was chosen because IT is well 

established and there Is a substantial body of research output on which to build. These 

factors offer the optimum likelihood of industrial acceptabiltty and capabiltty to support the 

required analyses. 

8.3.1 Visibility 

The analyst can use the method wIThout needing to understand the structure or behaviour 

of the Petri net model because IT can be derived from the object and STD definITion without 

addITional specnication. However, the simple constructs which are required to define an 

Ordinary Petri net, coupled wITh the intUITive graphical representation of places and 

tranSITions, enable mathematically averse analysts the opportuntty to understand the 

underlying formalisms and how the model is generated. 

8.3.2 Ability to Execute and Analyse 

The Petri net model is inherently executable by following the rules for firing of tranSITions. 

The close relationship between the Petri net model and the analysfs specnication enables 

the state evolution to be represented to the analyst in terms of the original diagrammatiC 

specnication. 

Generation of the Petri nefs reachabiltty tree facilttates analysis of many different 

behavioural properties of which two have been pursued in Synect: 

140 



• Deadlock detection. There is anecdotal evidence of deadlocks having been found in 

industrial applications late into integration testing. Considering the relative costs of 

errors found at this stage compared wtth errors found early in a project, deadlock 

detection could be highly beneficial. 

• State search. The abiltty to verify that the application cannot reach a panicular 

combination of states, or aHematively to show how the application can reach that state 

combination, provides a behavioural view of the system which complements the 

structural view on which the object-based specification focuses. 

8.3.3 Support for Code Generation 

Expressive 

Not 
Expressive 

Specification 

Petri Net 

Implementation 
Independent 

Implementation 
Dependent 

Rgure 50 Petri net as an Intermediate Stage between Specification and Implementation 

Figure 50 shows that a Petri net model provides a suttable intermediate representation 

between a highly expressive, target-independent specification and target-specific 

implementations. 

The ease wtth which a Petri net execution engine can be defined translates into ease of 

code generation strategies. Having verified that the model accurately reflects the analysfs 

intent, the translation into code must be as simple as possible to maximise confidence in 

the generated code and to increase the viabiltty of supporting many different target control 

archttectures. 

141 



PlantIlO 
Target 

Control Sy.;tem 

Figure 51 Dependencies between Synect Tools 

142 

Plant I/O 



BA Synect Tools 

This section describes the Synect tools in more detail. Full details of the use of the tools is 

given in the Synect User Guides [227]. This section concentrates on an overview of each 

tool's capabiltties and salient features. 

,lE SynectVl - - - jgi!l rt.:J I 

q; 
Application 

Editor .. 
Readme_1xt 

• • • • • • • Compiler GCode Neuron G Alien Bradley STD Monitor Simulator Analyzer 
Generator Code Ladder 

Generator Generator 

rg q; C;J C;J Cif C;J C;J 
Compiler GCode Neuron G Alien Bradley STD Monitor Simulator Analyzer 

Generator Code Ladder 
Generator Generator 

ii 
3D Model 

Figure 52 Screenshol of Program Manager Group showing Synecl Tools and Dn·Une Help. 

Figure 52 shows the Windows program group after installation of Synect. Each tool has its 

own icon and associated on-line help. There is also a simple wire-frame 3D modeller and 

a readme file which do not constttute part of the Synect software. 

Figure 51 shows the Synect tools and the information dependencies between the tools. 

Each tool will now be described, using figure 51 to provide the context in which the tool is 

used. 

143 



8.4.1 Application Editor 

Figure 53 Screenshot of Application Editor 

..., newJlart_availabl. 

-. geUaw-part 
-, stop_feed 

..., holdinuart 

-. ,,,"_,,,, 3! 

The Application Edttor is the intelligent drawing tool which supports the Synect method 

through tts knowledge of the syntax of object hierarchy diagrams and state transttion 

diagrams. This helps to guide the analyst to follow the method and prevents, as far as 

possible, the introduction of errors which must be found and removed at a later stage. For 

example, a transttion has a start state and an end state, a set of oondttions and a set of 

actions. If a state is moved on the diagram, the transttion will be moved accordingly. 

Wherever possible, pick-lists are used to prevent the need for information to be typed 

more than once in order to prevent typographical errors. Lists of real-world inputs and 

real-world outputs can be defined in a text file and loaded into the Application Edttor to 

minimise further the need to re-type information which has already been typed. This also 

supports the goal of developing a tool to increase productivtty - using tradttional drawing 

tools, engineers still spend signfficant amounts of time simply driving the software rather 

than expressing their design. The Application Edttor supports the standard Windows 

faciltties of cut and paste, printing, on-line help etc .. 

144 



The Application Edttor produces three files: 

• All of the infonnation necessruy to reload the application (wtth file extension ".syn,,). 

This is stored in a proprietary fonnat. 

• A definHion of the application's structure (i.e. wHhout the graphical layout infonnation) 

for the Compiler (file extension ".sys'). For maximum openness, this is produced in a 

text file fonnat so that aIIemative fonnal methods deriivations could be added by third 

parties. 

• The graphical infonnation for the STD Monttor tool. 

8.4.2 Compiler 

Place to STD/State Cross-Reference 

FeedlConveyor.maln offlnoJaw-part 
Feedl Conveyor.maln onlnoJaw-part 
Feedl Colnv,~vo'r.mlain 
Feedl Colnv,~yo'r.mlaln 

Figure 54 Screenshot ot Compiler 

The Compiler takes the definHion from the file generated by the Application Edttor (file 

extension ".sys") and, provided it is error-free, derives an Ordinary Petri net (file extension 

".nef'). A flat Petri net is used because H offers more analysis potential than is currently 

available for hierarchically organised nets [230]. 

145 



A list file containing errors and warnings is produced (file extension ".lis") along with a 

cross-reference listing of Petri net to user spec~ication (file extension ".xrf') for traceability. 

The cross reference listing and the derived Petri net are written to text files to make the 

tool open such that alternative forms of Petri net analyses may be added by third parties. 

The Compiler also enables the user to generate Petri nets corresponding to sub-sets of 

the whole application. This is provided so that SUb-system analyses can be performed on 

a correspondingly smaller reachability tree to provide more confidence in the behaviour of 

individual components and component clusters. This circumvents the state explosion 

problem inherent in attempting to generate the reachability tree for an industrial scale 

application. 

The Simulator information is written to an additional file (file extension ".sim"). 

8.4.3 Analyzer 

146 



Figure 55 Screenshot of Analyzer 

The Analyzer takes the Petri net (file extension ".nef') and derives the reachability tree (file 

extension ".Irej. It also gives feedback regarding whether any deadlocks have been 

found and enables the user to specify state combinations for which the reachability Iree 

will be searched. If any are found, the Analyzer will generate a Simulator event log 

containing the trans~ions to take the Petri net from ~s in~ial state to the reachability tree 

node found (file extension ".evl"). The Analyzer can also identify dead trans~ions 

(transitions which can never fire). 

8.4.4 STD Monitor 

Figure 56 Screenshot of STD Monitor 

The STD Mon~or animates the object hierarchy and STD diagrams w~ which the 

developer specified the control system logic. It obtains ~s data about the control system 

behaviour from e~er the Simulator or the live control system via Windows DOE. If 

mon~oring a LonWorks system, for example, the STD Mon~or tool loads a mapping file 

generated by the code generator which defines where the necessary infonnation resides 

in the control system. 

147 



The displays are colour-coded. The object hierarchy window shows the status of real

world Inputs (blue for not·being called, red for being called and retuming false, green for 

being called and retuming true) H data is being souroed from the Simulator. The real-world 

inputs on STD transnions are similarly coloured. The STD also shows the current state in 

grey and transHions which are enabled in the Petri net in green. The STD MonHor can 

also be configured to pan the window over the STD so that the current state is always 

visible. 

8.4.5 Simulator 

rwCarm_down 
rwi_Mm_up 
rwU.Ueed 
rwi_IlLmachine 
rwU'Lexil 
rwCfinished-phase_l 
rwi_finished-ph .. se_2 

Rgure 57 Screenshot of Simulator 

rwo_lower_arm 
rwo_close_grip 
rwo_starLfeed_conveyor '<~ 
rwo_rais8_llrm 
rwo_goto_machine 
rwo_lower_arm 
rwo_start-phase_l 
rwo_open_grip 
rwo_raise_llrm 

The Simulator executes the Petri net model produoed by the Compiler (file extension 

".sim"). The Real-World Inputs listbox shows all real-world inputs. The user simulates their 

status by selecting or de-selecting entries in the listbox. As a real-world output is invoked, 

148 



a timestamped entry is appended to the Real-World Outputs listbox. The user controls the 

Simulator via a control panel using buttons modelled on a tape recorder: 

• Record - instructs the Simulator to execute the model, recording transnions fired in an 

event log. 

• Stop - stops the Simulator 

• Play - replays an event log 

• Fire Trans - the Simulator may be configured to pause between firing transttions. In 

this case, the user instructs the Simulator to continue by means of the Fire Trans 

button. 

The event log generated by the Simulator can be saved to disk to be reloaded and 

replayed at a later date. An event log may also have been created by the control program 

written by one of the Synect code generators for diagnostic purposes. In this case, the 

Simulator enables the user to visualise the behaviour of the control system up to the time 

when the event log was copied. Event logs generated by the Analyzer can also be 

replayed. 

The Simulator offers DDE connectivity to source the status of real-world inputs and also to 

invoke real-world outputs. This can be used for: 

• Aijemative visualisations during the design process, such as process plant mimic 

drawn on a SCADA product or 3D model. 

• Training by means of the SCADA interlace. 

• Performance analyses, such as cycle times, machine utilisation calculations. This 

requires the other end of the DDE link to contain timing data. 

• Testing the control system hardware. The Simulator can be used to drive the live 

hardware, offering a superior debugging environment to that normally available. 

149 



8.4.6 ANSI C Code Generator 

Figure 58 Screenshot of ANSI C Code Generator 

The ANSI C code generator wr~es files containing ANSI C code to implement the control 

logic defined by the Petri net (loaded from file w~ extension ".nen, The user specifies 

the form the code is to take: 

• Scan-based - the Petri net engine tests each trans~ion, firing those which can be 

fired, and calls a user-supplied function at the end of the scan to pause for a user

controlled period. 

• Code oriented - in line code is generated to implement the Petri net, w~h an "if" 

statement per trans~ion. This variant was developed for a microcontroller target 

platform where RAM is at a premium - the code element being ROMable. This 

variant provides the user w~ the facil~ to use a configuration file to define C 

code for each real-world input and output to avoid the need for calls to functions 

which would be an unacceptable ovemead for the microcontroller environment. 

• Data oriented - the generated code contains anrays defining the relationship 

between trans~ions, places, real-world inputs and real-world outputs. The 

150 



generated code contains a Petri net engine to execute the net as defined by the 

data in the arrays. 

• Target - the generated code contains no diagnostic statements and is 

suitable for the target control system platform, such as an 08-9 hosted 

system. 

• IntegraUon - the generated code contains "printf' statements to produce an 

audHrail of the execution of the control system. It is referred to as 

"integration" because ~ was envisaged that this option would be used as the 

various hardware elements of the control system were being integrated. 

• Interrupt-driven - by defautt, the Petri net engine is paused. A real-world input is 

required to generate an interrupt and call an interrupt-level real-world input function. 

This in turn, tests the transnions in which the real-world input is referenced and, n 
enabled, fires the transnion. 

• Diagnostics - the generated code can include event logging and host messaging. 

Event logging causes the control program to record, in a circular file, when a real

world input is tested and a transnion fired. This file can then be copied to the 

development PC for replay via the Simulator. Host messaging causes the control 

program to cail a user-supplied function to notny the host (such as a development PC) 

when a transnion is fired. 

151 



8.4.7 Neuron C Code Generator 

Figure 59 Screenshot of Neuron C Code Generator 

The Neuron C Code Generator loads the ".net" file produced by the Compiler and wr~es 

code which is suitable for an Echelon LonWorks target environment, reading 

implementation-specffic configuration data from a manually prepared text file. Each node 

on a LonWorks network is programmed in Neuron C which, as ~s name suggests, is a 

modffied fomn of C. One of the most signfficant differences is the use of the "when" 

statement which is similar to the C "if' statement but adds the cond~ion to the Neuron 

chip's scheduler. The code can therefore be considered to be interrupt driven. 

The code generator requires the user to define the mapping of Synect objects to 

LonWorks nodes. Objects which communicate by sending messages must be on the 

same node. This avoids the complication of a node being reset but leaving a message 

pending in a buffer which is not apparent to the developer. It also avoids the add~ional 

network traffic which would be required for the receiver to notffy the sender that the 

message had been "consumed" and confomns w~ the LonWorks philosophy of objects 

making their state publicly available for others to act upon rather than instructing other 

objects to perfomn particular actions. 

In addition to files containing the control program, the code generator also generates a file 

which can be read by the Synect STD Monijor application for monijoring the state of the 

live control system. 

152 



8.4.8 AJIen-BraclIey PLC Ladder Logic Generator 

Rgure 60 Sereenshot of the Ladder Logic Generator 

The Ladder Logic Generator loads the ".nef' file produced by the Compiler and wr~es text 

files for import into Allen-Bradley programming software. A manually prepared 

configuration file defines the integer register to hold the current state of each STD. The 

tool can automatically generate state values for each state or can be instructed, via the 

configuration file, to parse the state name to decode the required state value. This eases 

the compatibility of the generated ladder logic w~ 588.01 batch control system platfonns, 

which can show the current step index (or state value) of each phase. 

The configuration file defines all necessary infonnation for the code to be generated, such 

as the state register, prefix for decoding state values from state names, etc.. It is 

anticipated that such a file would be automatically generated from a central project 

database which would also contain the entire configuration data for all software 

components, such as the batch control system software, SCADA database, PLC 

database, etc .. 

The Ladder Logic Generator can include add~ional rungs which implement breakpoint and 

single step functional~ for debugging purposes. 

153 



In addttion to files containing the control program, the code generator also generates a 

mapping file which can be read by the Synect STD Monttor application for monttoring the 

state of the live control system . 

8.4.9 JustHIcatIon 

8.4.9.1 

8.4.9.2 

8.4.9.3 

This section highlights how the tools meet the requirements spec~ied in the chapter three, 

Requirements for Method, Model and Tool, which are summarised as subsection 

headings. 

Method Support 

The tools in general, and the Application Edttor particularly, explicttly support the method. 

Wherever possible, the edttor prevents syntactically illegal constructs from being spec~ied, 

such as a transttion wtthout a start or end state. Where usabiltty would be compromised 

by rigidly enforcing this approach, such as following the use of cut-and-paste functionaltty, 

the edttor makes inconsistencies apparent on the specmcation. However, tt is still possible 

for the analyst to spec~ an error which the edttor ignores but is reported by the oompiler. 

Usability 

The tools run on low-cost PC hardware under the Microsoft Windows operating system 

using the Windows look and feel. In oonjunction wtth the design principle of always 

providing the user wtth maximum information, the method and tool can be seK-taught with 

the aid of comprehensive user manuals. 

Integrated Development Environment 

The tools are designed to work together, using the analysfs specification for graphical 

representation and the Petri net model as the formal definttion of the application. Support 

for all phases of the I~e-cycle is therefore available without the discontinutties which 

disparate tools would impose. 

The overall Synect functionaltty is spltt between several focussed tools to provide a simple 

and effective means of access oontrol to be implemented. For example, a user 

organisation could provide an engineer account which offered access to all tools and an 

operator account which could only use the STD Monttor. Synect can be used to satisfy a 

range of needs including: 

154 



8.4.9.4 

8.4.9.5 

8.4.9.6 

• Drawing tool for developing and documenting sequence logic. 

• Development of prototype sequence logic with visualisation provided by a 3D model. 

This does not require the use of the STD Monijor or a code generator. 

• Code generation of very simple sequence logic for a particular target platform. 

Visualisation may not be required and only one of the code generators is required. 

Rapid Prototyping and Visualisation 

The tools support rapid development and ijeration of design. Verffication of correct 

behaviour is facilijated through the analytical detection of design errors such as deadlock 

and unreachable states, complemented by the abilijy to execute the model wijh animation 

of the analyst's spec~ication. A~emative visualisations, which are available due to the 

connectivijy offered by the Synect Simulator, increase the effectiveness of review by 

supporting a~emative perspectives of the application's behaviour. Operator training can 

also benefij from this functionalijy. 

Performance characteristics can be derived by linking an external model of plant 

equipment behaviour, for example mimicking the length of time a valve takes to open, to 

the Synect Simulator. 

Documentation 

The Application Editor is able to print the analyst's spec~ication and supports cut-and

paste so that the diagrams may be incorporated into documentation of the analyst's 

choosing. 

The tools also produce text files containing traceabilijy information which can be printed for 

documentation. Examples include the Petri net model, the reachabilijy tree and cross

reference listings. 

Automatic Code Generation 

The specffication and Petri net model are completely independent of target control system 

platform. The translation from target independence to generation of spec~ic control 

system software is implemented by the various code generators, wijh the mapping defined 

as configuration data eijher supplied interactively or via a text file. 

155 



The ease with which the Petri net model can be translated into target control system code 

ensures that the most significant difficulty is in establishing a generally acceptable 

structure for the generated software. This is of particular relevance to the PLC community 

where different end-users would require different structures for the same application 

running on the same PLC. Algorithms for executing the Petri net on a PLC, such as matrix 

or list-based, are described in (231). Synect is also capable of generating interrupt-driven 

code, for use wnh operating systems such as OS-9 or Microsoft Windows, resu~ing in 

more efficient use of the processor. 

The code generators support a range of options to assist wnh diagnosis and 

troubleshooting of the live control system, including: 

• Automatic event-logging, where the target control code wrnes an audtt-trail of 

transnions fired. The audn-trail can be replayed via the Synect Simulator with the 

analyst's diagrammatic specification being animated via the Synect STD Monitor. 

• Generation of cross-reference data so that the Synect STD Monnor can display the 

current state of the control system by animating the analyst's specification. This also 

facilijates derivation of maintenance and performance statistics for use by corporate 

computer systems. 

• Debug options to prevent transnions from firing automatically so that sequences can 

be single stepped. 

156 



Chapter 9 Evaluation and Industrial Exploitation 

This chapter is a critical appraisal of Synect wHh reference to the business needs. 

Whereas the previous chapter described the Synect method, model and tools and 

correlated attributes of each of these aspects wHh the requirements stated in chapter 

three, Requirements for Method, Model and Tool, the focus now retums to the business 

drivers and examines how effectively Synect addresses the deficiencies which were 

ident~ied wHh current approaches. For a more detailed example of application 

development wHh Synect, the reader is referred to the walk-through in appendix A. 

I,,-;;T> w '9: ,intfustri8l::":'-:f-:: 
2: Business needs ..... __ -_._._ ., . ___ , ___ ._ ".-._ -. ________ - ",',' Exploi~n' I 10: Conclusions 

""" . .. .. I==~ 
1: Introduction .. .. 

2: Deficiencies with !,,-,;,,' 1" ,~ • /.. \ 

current a~3a:chR:urr' em"en"-" .. "".'''" .. , "' .,' '"' ,." .... - ,", " .... ,.. /.>'} ~: ~~uati~ - ; .. : 

..., Rd'~'I":l, 

for method, model .... ----. 8: Justification 

4: Control Sl'tem 
Technology 

and tool", / 

5: Standards 

8: Description 
of 

Synect 

6: Mathematical 
Models 

The information herein is structured as follows: 

, 

7: Methods 7: Tools 

11: Suggestions 
for 

Further Research .. 

• In order to demonstrate the applicabilHy of Synect to a variety of real needs, the 

salient characteristics of a selection of applications are described. 

• The deficiencies wHh current approaches, iden@ed in chapter two, The Need, are 

listed and the corresponding strengths and weaknesses of Synect are described. 

157 



• To show how the Synect tools might typically be used, an example application is 

developed. 

• The dissemination and exploitation of this research is described. 

9.1 Evaluation 

Against evaluation criteria established for assessing methods: 

Criterion Synect 

Graphical ...-

Manage complexity ...-

Expressive notatioos ...-

Well-understood notatioos ...-

Encourage obJ":!-<Jrlented view regarding behaviour of agents ...-

Encourage structured method view of ordering of evenls and ...-
coordination of agents 

SL!JPOIt decompositloo ...-

Support sequeroe and event behaviour ...-

Coherent Infonnation '" 
Easytoleam ...-

Discrete (manufactunng) appIicatioos ...-

Hybrid (belch) applicatioos ...-

Oriented towards analysis and design activities ...-

Formal delinitloo ...-

Against evaluation criteria established for assessing mathematical models: 

Criterion Synect 

Executable ...-

Support behaviour quenes ...-

Simple mapping from method ...-

Simple mapping to inplementation ...-

Graphical representation ...-

Support concurrency ...-

Established ...-

158 



Against evaluation criteria established for assessing tools: 

Criterion Synect 

Support graphical method ./ 

Support malhematlcal model ./ 

Visualisation ./ 

Code genetation - ANSI C ./ 

Code genetation - relay ladder logic ./ 

Code generation - Echelon Neuron C ./ 

Code generation - buitt In diagnostics ./ 

lne>pensive ./ 

Fulllffe-cycle support ./ 

Support rapid prototyping ./ 

Connec1Mty ./ 

9.2 Case studies 

9.2.1 Integrated Machine Design and Control (IMDC) 

9.2.1.1 Background 

The Manufacturing System Integration (MSI) Research Inst~ute has established leading 

edge engineering concepts to enable the design and control of manufacturing machines. 

The integrated environment for machine design and control (IMDC (EPSRC ref. 

GRlJ/S7827)) project has proved the feasibil~ of utilising modelling technology to support 

conSistency and correctness in the design. synthesis. visualisation. simulation and 

analysis. construction and configuration. distributed runtime execution and management of 

change in machine systems. Synect has been utilised as the application logic design and 

analysis tool on this project and ~s capabil~ies have been proven over across a range of 

applications. On the IMDC project ~ was used to control a complex PCS handling system 

w~ a large number of concurrent application tasks. illustrating the capability of Synect to 

cope w~ large and complex applications 

IMDC was a three year EPSRC funded collaborative project in the UK. involving the 

Manufacturing Systems Integration (MSI) Research InstHute and a consortium of software 

vendors. industrial control system suppliers and machine builders. The collaborating 

companies involved in this work were GSM Syntel Ltd. Hopkinson Computing Ltd. 00 

Technology Ltd. SHS Ltd and Quin Systems Ltd. 

159 



9.2.1.2 

9.2.1.3 

A number of follow on projects have resutted from the IMDC work. All the following 

Industrial projects have used Synect for implementation of application spec~ic machine 

control logic: 

• Forming machine (and process) visualisation and control for CMB, as part of a BRITE 

project "New Manufacturing Processes for Thin Walled Components", BREU2-CT94-

1024. 

• The capture and use of dynamic models of machines and their application in the 

design and control of wheel balancing machinery for Cirrus Technology, as part of a 

DHSM LINK integrator project with Aston University "Integrated Approach to the 

Design of Control Systems for High Speed Machines", GR/K 38694. 

• A distributed control system for agricuttural vehicles w~hin DHSM LINK project 

number GRlH/53187, ent~led "Integration of Control Systems on Agricuttural Tractors 

and Implements". 

Synect Modules Used 

All Synect modules were used other than the Echelon LonWorks and PLC code 

generators. The target environment was a multi-tasking operating system running 

interrupt-driven control software which was compiled from ANSI C source code. 

Resu~s 

To show the non-trivial scale of application being developed, an object hierarchy for an 

example IMDC application is shown in figure 61. 

Synect was considered to be easier to integrate into the workbench than the other tools 

evaluated. This applied to both ability to link wtth visualisation tools, such as 3D 

modellers, and also to code generation capability. 

Synect was also considered to be more effective at preventing errors being spec~ied. For 

example, the Application Ed~or ensures that, wherever possible, an idenmier is only typed 

once. Thereafter, the analyst selects the ident~ier from a pick-list. This minimises the risk 

of typographical errors. 

160 



In general, the ability to make a change to the design via the Application Ed~or and see 

the corresponding control software running on the target Universal Machine Control 

(UMC) rig w~in a small number of minutes was considered to be a strength. 

The visualisation capabilities were considered to be a particular strength. The ability to 

interactively execute the model whilst animating the analyst's STDs gave increased 

confidence in the design. Driving the 3D modeller from the simulator before any code was 

generated added to that confidence and was a useful demonstration aid. 

Although the analytical capabil~ies were considered useful, these were perceived as less 

important than the visualisation and code generation capabilities. This was due to the 

perceived simplicity of application and the limited consequences of an error being 

propagated through to implementation. 

In the context of the IMDC, Synect is described in [34]. The use of Synect in the 

interactive visualisation of sequence logic for machine design is described in [232]. 

161 



IWI !rig convl P_t 
IWllrig '-V,P_t 
IWI lrig "-«Id /010lIl .... 
ow. I~II tr_1 ... d ol10111 .... 
1W'_lrlg_con"sJ'_t 

ul oaI." 
.nlt ,mnwvo, 

_~ P ..... I" pOln 
_~J>-II""Olatp.ollll ,_"'-9 ..... 

""~.:I' .nI6 ... _ 
"'~.:I', .n In po ... 

-".:I' In Dui pD." 
mny InIU .. J_ 
" ..... mll 

p .. I.t..,.-v to. pldlu" 
p.I"\,...tufll"" 

.... 1I.,lt.lllPOIIII 

...... .,.OUI..DOMI 
mlt.ot P.I. 
oon_' ~aIItnL.uut 
Inlt _~"II' 
Inlt mnY 
,lIIum..J> .. ltot 

IWIlrla.b_bu., ....... 
1W·_IrICI_.u.tbuUJ'-...:I 

IWO, MCd.WS .Martbu. P-...:I IWO __ .WS_~bull_P""'" 

-~-,-.-.-_-.-.-... -~-.-,-_-~~ ...=k.I----~-.-.-.-_--.-.-,,-,-.-.-."~. 
IWI _VOWS ........ ",In_ IWO _wWS .. .,,, •. "'In.-l 
IWI homeWS 1 .... 1"," rwoJnOwNlS 11"0". OP" 
1W11l0meWS.I __ • rwo.llomoWS.lI~"_ 

rwl.homoWS."""'_ lWo.homoWS.I .... "'" 
1W1.1l0meWS ,g~P"" IWO ItomoWS " .. "'_ 
rwl mowWS ,g"p_Joo. rwo, ,1I0meWS 1 .... ..,,0 .. 
rwl mowWS 1 .... _ ovedi9 IWO __ S a~pp.loo_ 
rwl.moWW8...a ......... ,ao. fWO .... _S"I ... _ ov.jlg 
1W1,. __ S." ... ., .... d_ /Wo ..... _S.v .. ., .. ..-
1W1.\rIg"bitMn"", BlLOl>n rwo •• wllcllJ>-"BkClo. 
IWI "Ig b_",. EIILChd /Wo awl~ ~ ToP"." 
1W1 .. IrIIl_OI>k>II""J'_t 1W0JWlklII. ~,.FromP"11II 
rwU~II_ol>lob_ .. P_t 1W0._lIc11 b-. 81<0_ 
1W1""",_a .. "","w_bldll IWO _IWS_b ..... "".BkO"n 
1W1."",_a, ",,"w.I>"'. /Wo_oIIIdIWS.OPlob_"P_t 
IWI "",_a v.,,, ..... d_ rwo _IW8 01>k>11I>I P_t 
IWI, !IID_8 "","w Jlllundw 1W0,_IW8 bk .... "'. BkClad 
MI.""'veW8 "an.,........ /Wo ""'_S ",,"w brdO 
rwl, ... _8,1 .... _,llIIloo_ /Wo Il10_ .... ., ........... 
MI "",woWa """w down /WO _wWS Ir.,.,. ,.,.. ..... 
rwl _woWa ..... _ .... 1_ /WO Il10_8 er .. ., .. IIAundw 
rwl"l~g bkfWd.j\lFwd 1WO._WW8 ..... ., •.• _ 
IWU .. g_bkbwd • .JU.Bod! !WO __ 8 t ....... Jlalooa 

/WO .mo..awS, ..... .,."do_ 
rwo ,Il10_8 , ....... ,,'.,1_ 
MO oetdIW8 bkI'Wd. AIFwd rwo __ IWa_bkbwda..fol:lIAdI 

rwo .. lIeft con_,. ConvO" IWI _wlN8 -" ....... vm 
!WO awltch .... ,..,.., CoUld rwl, .... _S C8II'Irra • ..oo11tct 

_ mo...w&, cant •• ~lIod 
rwo_ .... ....wS ..... .:1. Num 

1W0,homoWl .. _II ... 
rwoJ"owNIS.~e p .. Wele _ , __ 8.-':an·Iag •. , ...... 

IWO _Itch v., ... m' DtlI_ rwl hornlltNl , ......... 
!WO IWltch " ....... 2 CoUld rwl mo_S _I",. p .. vlde 
lWo _Itch « .. _11'12 .o.U_ rwLrnoI/8WS_ ..... lag~ .. 

owo .. 'Id! oon""'l'O". ConvOn 
/Wo_HtdIWS .. _mbnd AtOll Iv 

1W0"MlldIW8 oon"s P.....,I 
rwo _IWS '-v P_I 

IWO _IWS.oonvl.-P ...... 1 
_ .. "'''IW!'i "_ ... 1_ 6UW,v 

1W0._11cII pili •. CIonPlnl-Down 
/Wo .. It .... ~. StopaUp 

Mo ... ltdI,.J>ln •. CIonPlnlUp 
IWOJWIIdIJIop ... SIop.oown 

IWI Il10_. InMll.-III . .too....,ldru 
IWI "",...wl In __ .. ldIu .. 
IWI mo...wl In ........ .toowin_ 
IWI "",...wl .. n_ ..... ..In .... IWlllo....w •. In __ 

rwl honMW.Jn_ 
IWI homeW.,ln_ •• UOll 
owIJlomIltNS.Jn-...o. 

Figure 61 An Example IMDC Applica1ion's Object Hierarchy 

owo "",...w. In""'- pldwl> 
ow0....movtlN • .In __ libo_ldw 

IWO mo_8 In __ In .... 
__ IIIO..viS 'n_.Jlbo ..... n_ 

lWo.ltom.w •• n_ owo lIomeWIJn __ 

IWO .homIltNS, InMlllcro. 
fWO_homeWSJnawtrOI.Uon 



9.2.2 Metal Fonnlng Application 

9.2.2.1 

9.2.2.2 

9.2.2.3 

Background 

This was a Brite-EuRam 11 funded project (number BREU2-CT94-1 024) undertaken by the 

MSI Research Inst~ute at Loughborough Univers~ in oonjunction w~ a metal form ing 

manufacturer. The project was to investigate a new manufacturing process for forming 

metal oontainers. Due to confidential~ constraints, minimal details can be provided of the 

application. 

Synect Modules Used 

Synect was used for prototyping sequence logic. A 3D modelling package, developed at 

Loughborough, was used for visualisation of synchronised motion control. The sequence 

logic for the application was specHied via the Synect Application Ed~or w~ the derived 

Petri net model executed by the Simulator and the 3D modelling package being driven by 

the Simulator. 

Results 

A number of projects have confirmed the short leaming curve associated wijh adopting 

Synect, of which this was one. A research assistant was assigned to the project and 

provided w~ the Synect software and associated manuals. W~in a few days and w~ 

minimal assistance from colleagues, this analyst produced a solution and used Synect to 

verHy ijs behaviour. 

The abil~ to quickly and easily develop and refine sequence logic and the Simulator's 

abil~ to take input from and send output to the 3D modeller were considered to be 

strengths of Synect in this project. 

This project also demonstrated the potential for an application developed by one 

organisation to be supported by another. During the project, the author paid a vis~ to the 

MSI Research Institute and, by examining the specification defined using the application 

ed~or, was able to describe the intended behaviour of the application to a vis~or w~out 

having had any prior exposure to the application. 



9.2.3 Ford RIg 

9.2.3.1 

9.2.3.2 

9.2.3.3 

Background 

Ford Motor Company established a project to investigate Echelon LonWorks technology, 

drawing on the expertise of the MSI Research Institute. The requirement in general was 

to develop a control system to control a mechanical rig on the Ford Motor Company's 

stand at the 1998 AutoTech exhibHion at the NEC, Birmingham. 

Synect Modules Used 

This was a short timescale project requiring the prototype development of distributed 

sequence logic whilst the rig was being bui~. The Synect Neuron C code generator was 

then used to produce code to run on the nodes on the LonWorks network. 

This project used all Synect modules other than ANSI C and PLC code generators. In 

particular: 

• The Application EdHor was used to specify the sequence logic. 

• The Analyzer was used to verify absence of deadlock and to test for reachability of 

spec~ied combinations of system state. 

• The Simulator and STD MonHor provided the ability to interactively drive the 

application to gain confidence in the behaviour of the application. 

• The Neuron C Code Generator was used to generate control code corresponding to 

the analyst's spec~ication. 

• The STD MonHor was used to observe the evolving state of the control system 

through animation of the analyst's diagrammatic spec~ication. 

Results 

In addition to the pressures of a short timescale project with minimal elapsed time for 

trialling a solution on the target control system driving the rig prior to the exhibition, the 

analyst was required to undertake intemational travel during the project whilst his assistant 

remained in the UK. This provided a good test of Synect's ability to support cooperative 

working across geographically remote sHes. The application was developed Heratively 

with first the analyst developing the specmcation and testing it via the Analyzer and 

Simulator, followed by handover to his assistant for refinement by sending the 

164 



specHication byemall. After a small number of Herations, the control code was generated 

and the rig demonstrated as planned at the exhibHion. 

The application of Synect to the distributed control of manufacturing machines using 

LonWorks technology is described in [233]. 

9.2A Embedded Control Equipment 

9.2.4.1 

9.2.4.2 

9.2.4.3 

Background 

An American company which develops embedded controllers for equipment 

manufacturers, including agricultural equipment, were already specifying their control logic 

using a hierarchy of state diagrams. They identHied Synect after searching the World 

Wide Web for CASE tools which might improve their productivHy. Of particular appeal was 

the abilHy to analytically verify the absence of deadlock and test the logic before 

generating control code. 

The target control system was a microcontroller, programmed in ANSI C, with IimHed RAM 

but relatively more ROM. At the time, the Synect ANSI C code generator produced a data 

driven program, wHh the structure of the Petri net in arrays. This was unsuHable because 

H required considerable RAM but IimHed ROM. A new variant was therefore developed to 

produce in line code for each transHion instead of being data driven. 

Synect Modules Used 

All of the Synect modules were used other than the Neuron C and PLC code generators. 

Results 

Once again, the abilHy to verify that the application would behave as required, through 

analytical tests and interactive execution of the model, was considered to be of significant 

value. 

This type of application is an example of the recognised need for an appropriate method 

and tool in small to medium size applications. It also offers some reassurance that the use 

of a hierarchy to structure the application, and STDs for specifying the sequence logic, are 

an intuHive means for expressing the design. 

165 



9.3 Evaluation Against Requiret1ieiilts 

Previous chapters have described current typical approaches to the development of 

industrial sequence logic and have identffied better approaches: 

• A more consistent implementation including designed-in diagnostics, such as the 

STEPS method. 

• A graphical method supported by a CASE tool, such as Rose for general purpose 

object oriented modelling using UML or StateMate for complex reactive systems. 

• A mathematical model supported by a CASE tool, such as SystemSpecs. 

• The combination of a graphical method with a mathematical model supported by a 

CASE tool, such as Synect. 

i i 

Table 6 Comparison of Approaches against Requirements 

Table 6 is the author's interpretation of the strengths of these approaches in satisfying the 

requirements identffied in chapter two, The Need. An empty box indicates no support or 

weak support for the requirement, one tick denotes some support and two ticks denotes 

good support. A textual interpretation now follows. 

166 



9.3.1 Analysis and Design 

9.3.1.1 Support Seamless Team Working 

9.3.1.1.1 Tradttional Approach and STEPS 

These approaches rely on potentially large and text·based documentation in order to 

oommunicate across organisational and contractual boundaries. STEPS uses manually 

oompleted tables and templates to achieve consistency from spec~ication to spec~ication. 

9.3.1.1.2 Rose 

Rose supports the UML object oriented method, offering expressive notations and being 

particularly oriented to requirements capture. AHhough tt is a general purpose method wHh 

minimal guidance regarding its application to sequence-based reactive system design, the 

standardisation of notations should facilttate common understanding. 

9.3.1.1.3 StateMate and SystemSpecs 

These methods both provide rich notations, capable of modelling complex reactive 

systems. However, this richness would be daunting to the unfamiliar, particularly wtth 

System Specs, which uses the unfamiliar notations of high level Petri nets. 

9.3.1.1.4 Synect 

As described in the case studies above, Synect supports seamless team working through 

the use of simple notations. It can be effectively applied across geographic boundaries 

because the formal definttion is clear and unambiguous and can be easily transmitted 

around the world using standard intemet mechanisms. 

A weakness of the Synect method is the inability to relate explanatory text to portions of 

the diagram. Whilst this faciltty could be abused, for example by making the text 

spec~ication the master definttion in the event of a contradiction wHh the diagrams, it could 

help to explain the behavioural intent whereas the diagrams define system structure. 

Clarity of expression may be helped by supporting more abstract concepts such as 

different types of STD, such as cyclic, linear, arbitration, etc.. Also an STD ''wizard'', as 

now found in many PC software packages, including control system packages, could 

enable greater standardisation of style, offering more rapid assimilation of the design 

intent. 

167 



9.3.1.2 Support and Encourage Re-use 

9.3.1.2.1 Tradttional Approach and STEPS 

A tradttional approach would typically re-use little design or code, re-use being limtted to 

cut-and-paste of lower-level software routines. 

STEPS facilnates re-use of common functionality, such as diagnostic display drivers, but is 

otherwise very application specHic. However, in projects where an almost identical 

machine is required, the entire application may be copied and then relatively minor 

modHications made. 

9.3.1.2.2 Rose 

Object-oriented methods strongly promote the concept of re-usable objects. CASE tools 

such as Rose assist in tts management by supporting version control and configuration 

control tools. 

9.3.1.2.3 State Mate 

Although StateMate provides a library management tool, the method does not guide the 

analyst towards structuring the solution as re-usable components. 

9.3.1.2.4 SystemSpecs 

System Specs is oriented more at the modelling and analysis of application-specific 

solutions than the development of re-usable components. 

9.3.1.2.5 Synect 

The object-based approach whereby a piece of plant equipment is modelled should 

facilnate re-use on subsequent projects, particularly at the lower levels where prim ttive 

components such as an on/off molor controller are concerned. It is less likely that more 

abstract components, such as an assembly cell, could be re-used until the common 

requirements were established. However, when the value of re-use of lower-level objects 

is realised, there may be increased commttment towards standardisation at a more 

abstract level. 

168 



A weakness of the Synect method in tenns of re-use relates to object communication via 

messaging. For example, if a child object sends a message to its parent, the parent must 

consume that message otherwise the child will hang if tt attempts to send tt again. This 

places a requirement on the behaviour of the parent by the child which may not be 

appropriate for a different application. 

Tool support for re-use could be strengthened through the support for component libraries 

wtth version control and change control. Change control relates to the ability to manage 

the evolution of a component, often by controlling aocess to the library. Version control 

manages the record of which version of a component was used in a particular application. 

9.3.1.3 Explicit Support for S88.01 

9.3.1.3.1 Tradttional Approach, STEPS and SystemSpecs 

These methods pre-date the batch control standard S88.Q1 and consequently do not 

support tts models or tenninology. 

9.3.1.3.2 Rose, StateMate and Synect 

In an S88.Q1 environment, these methods would be appropriate for the development of 

equipment control but less so for more supervisory activnies, such as recipe management 

and batch scheduling. Mhough some of the S88.01 tenns and models can be used, the 

methods and tools provide m inimal guidance in this respect. These methods would still be 

preferable to typical industrial development and programming environments due to their 

support for re-usable components containing sequence logic. 

Domain-specific variants of Synect could be offered which would overcome such 

weaknesses and help overcome an obstacle to suocessful explottation. Considering that 

up to 60% of a typical batch control system development could be associated wtth phase 

sequence logic, Synect could be of substantial beneftt to batch control applications. 

9.3.1.4 Facilitate Clear, Concise and Complete Specifications 

9.3.1.4.1 Tradttional Approach, STEPS and System Specs 

Tradttional approaches and STEPS typically rely on textual requirements documents 

which may be unclear and are very difficuij to check for completeness or consistency. 

169 



SystemSpecs uses the unfamiliar notations of high level Petri nets which would impair 

communication in a typical mu~i-disciplinary team responsible for an industrial control 

system. 

9.3.1.4.2 Rose, StateMate and Synect 

These tools facilitate good communication in the early phases of a project through the 

support for expressive notations and support for consistency checking between diagrams. 

The intuitive graphical notations in Synect are suitably expressive whilst being simple and 

consequently easy to review with a mu~i-disciplinary team. The ability to execute the 

model whilst animating the STOs and supporting a process view via 3D modellers or 

process mimics further enhances the effectiveness of communication. Pre-bui~ event logs 

can be replayed via the simulator to demonstrate scenarios of use. 

Once again the method and tools could be extended to offer improved support for 

concepta which should be addressed to ensure completeness. For example, older control 

systems used to manage normal operation only with abnormal behaviour, such as due to 

plant equipment malfunction, being addressed by plant operational staff as and when n 

arose. Modem control systems should be expected to adopt a philosophy for 

management of abnormal behaviour and the explicn support for the expression of these 

philosophies in Synect could improve consistency between applications in addnion to 

ensuring completeness of the spec~ic application. 

Similarly, concepts in the analyst's mind-set such as permissive and fautt interlocks, trips 

and alarms could be explicnly supported. 

9.3.1.5 Ability to Verify Correctness 

9.3.1.5.1 Tradnional Approach and STEPS 

Tradnional approaches and STEPS provide no support for verifying the correctness of the 

proposed solution. 

170 



9.3.1.5.2 Rose, StateMate and SystemSpecs 

These tools facilitate manual ver~ication of correctness by enabling the review of clear but 

formal diagrammatic specifications and by supporting executable models which can be 

subjected to tests representing different scenarios. 

9.3.1.5.3 Synect 

Support for verification is a particular strength of Synect through the combination of a 

method, mathematical model and CASE tool set. As described in the case studies above, 

the ability to execute the model whilst animating the diagrammatic spec~ication and 

addHional visualisations via third party products, is perceived as highly valuable in 

establishing confidence in the design. The ability to perform analytical tests, such as 

automatic deadlock detection and state searches, is considered to be useful but of less 

value than the executable capability. This may be due to the lack of confidence in the 

ability to specify the behavioural property queries or could reflect a natural fam iliarity wHh 

system execution. 

Synect could be improved by automatically managing the derivation of sub-system 

analyses although H is unclear whether this would sign~icantly affect user perceptions. 

A highly desirable approach would be to identify rules or guidelines for constructing 

applications which could be intuHively recognised to avoid particular types of design error. 

These should be explicHly supported by the Application Editor. 

9.3.1.6 Problem Oriented Approaches and Tools 

9.3.1.6.1 TradHional Approach and STEPS 

As described in chapter four, Control System Technology, tradHional approaches are 

highly implementation oriented. The required behaviour is specified in the language of the 

target control system rather than the language of the problem domain. 

STEPS is an implementation oriented approach, aiming to ensure consistency of coding 

structures and styles across different projects. 

171 



9.3.1.6.2 Rose, StateMate and System Specs 

These tools support the development of discrete and batch prooess applications although 

they are not specffically targeted at these types of application. Rose supports general 

purpose object oriented analysis and design, StateMate is predominantly used in high 

integrity applications such as nuclear and aviation industries, and SystemSpecs has been 

used in the finance sector. 

9.3.1.6.3 Synect 

Synect offers support for the Iffecycle from requirements capture through to operational 

support via an appropriate method embodied in an integrated suHe of tools. This avoids 

the discontinuHies wHh existing approaches, delegating implementation to the role of a 

translator of a target-independent representation to a target-specffic representation. This 

causes effort to be focused on analysis to help ensure that the correct problem is solved 

and to support agile manufacturing through support for rapid application development and 

rapid exploHation of flexibilHy. The method is oriented at small to medium size discrete 

and batch process applications, using simple notations and offering guidance in how the 

solution should be structured. 

9.3.2 Implementation 

9.3.2.1 Consistent Implementation Architecture 

9.3.2.1.1 TradHional Approach 

There is little conSistency of implementation archHecture in tradHional solutions, wHh 

variations due to the personal styfes of dUfferent programmers and variability from the 

same programmer on dUfferent occasions. 

9.3.2.1.2 STEPS 

STEPS is specffically aimed at ensuring consistency of implementation archITecture so 

that maintenance personnel can rapidly understand the structure of a PLC program. 

9.3.2.1.3 Rose 

Rose is oriented at IT systems development rather than control applications and 

consequently does not support automatic code generation for the required languages, 

172 



such as ladder logic. Consistency of implementation arcMecture would therefore require 

strict coding rules. 

9.3.2.1.4 StateMate and SystemSpecs 

Consistency of implementation archttecture will only be achieved through the use of the 

automatic code generators for supported languages, such as C or VHDL, or by enforcing 

strict adherence to manual coding rules. 

9.3.2.1.5 Synect 

The use of automatic code generation ensures a unique mapping from specffication to 

code. This avoids style variations between developers and ensures that a support 

engineer can rapidly understand how to make necessary changes to the implementation. 

(Changes should not be made directly to code which reflects the structure of the Petri net 

model - the Application Edttor should be used and the code re-generated.) 

The consistency of implenientation structure also reduces the risk of supplier lock-in 

because the corresponding learning curve is signfficantly reduced. 

9.3.2.2 Automatic Code Generation 

9.3.2.2.1 Tradttional Approach, STEPS and Rose 

No support for automatic code generation. 

9.3.2.2.2 StateMate and System Specs 

Code generation to specffic languages such as C and VHDL supported. No support for 

generation of relay ladder logic, distributed archttectures or required variants of 3GL as 

required for different types of target environment, such as micro-controllers or interrupt

driven real time executive. 

9.3.2.2.3 Synect 

Synect supports automatic code generation to a variety of languages and could be easily 

enhanced to support many more. Due to the elegance of the Petri net model for the use 

to which Synect puts tt, new code generators can be developed with high confidence that 

173 



the generated code will faithfully reflect the Petri net model. Once tested, new control 

system code can be implemented at a fraction of the elapsed time or cost of manual 

coding and with signnicantly higher confidence in ijs correctness. 

9.3.2.3 Comprehensive Automatic Generation of Diagnostics 

9.3.2.3.1 Tradijional Approach, Rose, StateMate and SystemSpecs 

No automatic generation of diagnostics. 

9.3.2.3.2 STEPS 

Although code generation is a manual activity, a key goal of the STEPS approach is to 

support fautt-diagnosis by incorporating diagnostics wijh the control logic. This also 

ensures that the control logic and associated diagnostics do not diverge. 

9.3.2.3.3 Synect 

Synect's ability to automatically generate diagnostic options buitt-into the code could be of 

significant value in diagnosing plant equipment malfunction or operator misuse. Typical 

Synect diagnostic capabilijies include the ability to animate the analysfs graphical 

specnication and the automatic recording of an audij trail which can be replayed via the 

development tools to determine the sequence of events leading up to a maHunction. 

9.3.3 Post-Dellvery 

9.3.3.1 Easily Supportable and Maintainable Control System 

9.3.3.1.1 Tradijional Approach 

Tradmonal approaches tend to be difficutt to support and difficutt to maintain and enhance. 

The lack of buitt-in diagnostics and the use of combinational logic can lead to a sensor 

maHunction triggertng anomalous behaviour from which the cause is difficutt to identify. A 

poor software structure leads to difficuity in predicting the side-effects of enhancements or 

modnications. 

174 



9.3.3.1.2 STEPS 

Although providing excellent support for diagnosing maHunctions such as sensor fau~s, 

STEPS still suffers from a discontinuity between the specijication and implementation 

phases. It can be difficu~ to determine the design intent from the implemented ladder 

logic. 

9.3.3.1.3 Rose, StateMate and SystemSpecs 

These tools are good for requirements capture, design and verijjcation and provided that 

the mapping from specijication to implemented code is clear and consistent, the resu~t 

control system should be enhanceable. However, the lack of diagnostics automatically 

built into the control system resu~s in lim~ed supportability. 

9.3.3.1.4 Synect 

The control system is capable of being modijied with confidence by s~e-based personnel. 

The Synect tools support the lijecycle from specijjcation to implementation ensuring that 

the implementation corresponds with the specijication. Consequently, to understand how 

to effect the required change, the engineer refers to the specijication which is readily 

understood because of the use of appropriate notations. The impact of changes can be 

evaluated using the Analyzer and Simulator before the new control code is generated. 

This is a signijicant change to current practice where often changes must be made to the 

live control system. 

9.3.3.2 Good Documentation 

9.3.3.2.1 Trad~ional Approach 

Trad~ional approaches tend to yield poor documentation which suffers from the same 

weaknesses as other text documentation, being potentially incomplete, inconsistent and 

open to interpretation. 

9.3.3.2.2 STEPS 

The emphasis on producing a control system which conforms to standard structures 

resu~s in associated documentation which clarijjes the organisation of the software. 

However, due to the discontinu~ies between requirements, design and implementation 

175 



activtties, the production of good implementation documentation does not necessarily 

imply that the requirements and design documentation will be good. 

9.3.3.2.3 Rose, State Mate and SystemSpecs 

In general, all method-aware tools produce good documentation because they print the 

diagrams and cross-reference information. However, the usefulness of the documentation 

depends on tts value to the target audience. The notations used by these tools may 

therefore be less useful to developers of discrete and batch process applications than for 

general purpose software development. 

9.3.3.2.4 Synect 

The abiltty to automatically generate highly effective documentation ensures that it is 

produced as the project progresses which also increases the motivation to express clearly 

the design intent, such as through the use of meaningful state names. 

9.3.3.3 Good Enterprise Integration 

9.3.3.3.1 Traditional Approach and STEPS 

Good enterprise integration depends in part on the effectiveness of communication 

between the control systems personnel and the corporate systems personnel. Traditional 

approaches and STEPS use structures and languages which are likely to be unfamiliar to 

IT development staff. 

9.3.3.3.2 Rose, StateMate and System Specs 

As a general purpose software development tool, Rose is likely to support notations and 

views which are familiar to IT staff. The notations and organisation of StateMate and 

System Specs solutions are typically unfamiliar to IT staff but provide a rigorous definition 

of the intended behaviour of the control system. 

9.3.3.3.3 Synect 

Many information system methods use a variant of the state diagram. Information 

systems analysts should therefore be comfortable with the structure and behaviour of a 

control system spec~ied using Synect and should correspondingly be able to express their 

176 



requirements for derivation of maintenance or performance statistics, for example. 

Whereas vendors are still purporting to be solving the ·shop-floor to top-floor" integration 

problem through providing transport-level compatibility, Synect could help to ensure that 

the systems communicate at the information level layer. 

9.3.3.4 Modular Automation 

9.3.3.4.1 Trad~ional Approach, STEPS and SystemSpecs 

Traditional approaches, STEPS and SystemSpecs do not encourage the identnication of 

re-usable modules, being more concemed w~h meeting functional requirements. 

9.3.3.4.2 Rose and StateMate 

Rose and StateMate specffications could be organised as components which directly 

mapped to plant equipment, although there is minimal guidance in this regard. The 

absence of automatic relay ladder logic code generation means that code re-use would 

depend on the rules for transforming the specffication to code being clear and consistently 

applied. 

9.3.3.4.3 Synect 

As described in section 9.3.1.2, Support and Encourage Re-use, Synect supports the 

modelling of a hierarchy of plant equipment. A modular machine comprised of 

mechatronic components would have corresponding Synect objects. When re-using 

mechatronic components, the corresponding Synect objects would be easily identnied, 

saving development effort and increasing confidence in the control logic. Due to the 

support for automatic generation of relay ladder logic, the benef~ of support for modular 

automation would still be gained even ff the code generator produced different code 

corresponding to a particular Synect object each time executed, provided that its 

behaviour remained unchanged. 

9A Example Walkthrough 

In order to demonstrate how the Synect method and tools would beneftt an automation 

project, this section describes typical tool usage throughout a control system's Iffe-cycle. 

Clearly, the dependencies shown in figure 51 impose some constraints on the order in 

which the tools can be used. An nerative development process and personal preference 

introduce variations. Appendix A offers a more detailed walkthrough. 

177 



Edit I 
+ 

I Compile I 

... 
Simulate (interactive) 

and animate 

... 
I Generate Code I 

~ 

+ 
Simulate (plant 110) 

r and animate 

'" Analyse I 
+ 

Run live control system 
and animate 

Rgure 62 Example Order of Tool Usage 

The example order of usage shown in figure 62 is as follows: 

• The application is specffied using the Application Edttor. Printouts of the diagrams 

may form the basis of a review between the analyst. the process team and the 

operational users. Revisions may be required before agreement is reached. 

• The application is compiled by the Compiler. identifying an incompatible messaging 

error (the use of pick-lists minimises the risk of this type of error but cannot prevent it 

altogether). The error is corrected by editing the application again and re-compiling ft. 

• The analyst interactively drives the application using the Simulator. observing its 

behaviour via the diagrams being animated by the STD Monttor. As the Simulator 

executes the model. an event log is recorded. If an unintended system state is 

observed. the analyst can step the Simulator backwards and forwards through the 

event log to help identffy the cause of the problem. Event logs may be saved to disk 

and reloaded for replay to illustrate scenarios of use to the process and operations 

team. Undesirable behaviour may prompt a revision of the logic using the Application 

Edftor and recompilation. 

• After interactive testing. the Analyzer is used to verify the absence of deadlocks and to 

confirm that particular combinations of system state cannot be reached. For a large 

application. this may be comprised of a set of analyses on subsets of the overall 

system. Faults will require the application to be re-edfted using the Application Edttor. 

178 



• The plant equipment may be exercised by using the Simulator in conjunction with a 

DDE interiace application provided by the target control system, such as the Echelon 

LonWorks DDE Server. Once again, the evoMng system state can be observed 

using the STD Monnor. Incorrect assumptions regarding the operation of plant 

equipment may require the control logic to be modijied via the Application Ednor. 

• Control code is generated for the target platform, with target-specijic details specijied 

via a text-based configuration file. 

• The live control system is monnored using the STD Monnor to show the current state 

by animating the analysfs diagrammatic specijjcation. 

Overall, the above example shows how the method, model and tool help the analyst to 

nerate rapidly towards a solution. Effective communication with the process and 

operations personnel was supported and automatic code generation prevented the 

introduction of coding errors. 

9.5 Industrial ExpIoitatkHt 

9.5.1 Relevance 

Synect is relevant to discrete and batch applications (and the start-up and shut-down 

phases of continuous processes), whether implemented on PLC, DCS, computer-based 

or control network targets. The opportuntty for explonation will grow more rapidly as the 

size of application which can be feasibly automated reduces, as encouraged by control 

system vendors with smaller cost and capabiltty hardware products coupled with software 

licence break-points to lower entry costs. 

Allhough most control system vendors now claim to offer IEC 61131-3 compliance, many 

control system applications are still developed entirely in ladder logic. For example, 

Rockwell Automation's SLC range can only be programmed in ladder logic. A CASE tool, 

such as Synect, which automatically generates the ladder logic, is therefore highly relevant 

to developers of sequence logic. 

9.5.2 exploitation Results 

Exploitation of the research to date has included: 

• Published papers. 

179 



• Real-world applications (a selection of which were described as case studies above). 

• Incorporation of the tool into research addressing a wider context, such as: 

• Synect will fonn the 'core" of the software tools to be used on a new IMI project 

(COMPonent based Paradigm for AGile Automation (COMPAG)) targeted at 

distributed control in the automotive industry. This project is jointly funded by 

industry and the EPSRC. It involves, Ford, Jaguar, Mazda, Giddings & Lewis, 

Krause, Rexroth Group and Parker Hydraulics and will resutt in the creation of full 

scale transfer line machines for assembly and machining applications. 

• Product promotion: 

• Demonstrations and presentations associated with the MSI Research Instijute's 

projects. 

• Exhibition stand at an Echelon LonUser's conference. 

• Article in Computing [234]. 

• WorIdWideWebsije. 

• Cold calling (by telephone) with follow-up visijs. 

The evidence of successful product sales from limijed test marketing demonstrates that 

there is a commercial market for such a product. The next stages of product exploijation 

are to: 

• Revise the product in line with user feedback. 

• Identify innovators and early adopters [45] to generate case studies in the target 

markets. 

180 



Chapter 10 Conclusions and Contributions to Knowledge 

Addressing the need to lower the IrrEH:YCle costs associated with the sequence logic 

aspects of industrial control systems has required the author to examine many 

complementary subject areas, as shown in figure 63. Indeed the author would assert that 

this thesis is driven by the opportunity to support the target user community by: 

• Utilising the power of mathematical modelling without burdening the user w~h ~s 

notations. 

• Providing an intu~ive design approach and expressive but simple set of notations. 

• Offering a CASE tool environment. 

The novelty and major contribution to knowledge is the amalgamation of the above in a 

consistent and integrated manner. In particular the author has: 

• Examined the business need for improvements and identnied the types of application 

likely to derive the greatest beneftt. 

• Reviewed current technology and the associated trends in the industrial automation 

market-place. 

• Described the opportunity for model-based approaches and formal methods to assist 

the development of industrial sequence logic. 

• Reviewed general purpose methods and tools which are in greater use in the 

software engineering community than in the control systems community. 

• Analyzed the industrial need, available academic knowledge, current technology and 

the explo~ation-related factors to derive a set of requirements for a method and tool. 

• Developed a method and tool satisfying these requirements. 

181 



• Assessed and published findings relating to the development of industrial sequence 

logic. 

1: Introduction 
• 

9: Industrial 
2'. 8uslO' <ss needs 

..... " •••• ,-, •• - .............. - b' •• - ." ".- •••• - ... ".- "'- , .. ". ,. Exploitation 

~ficiencies with '<."".' ". / 
current approaches ..... ' ..... , -- .... _._" .......... _.. .,,"- ... " ......... ,.. 9: Evaluation 

~Uirements R,b.,'" / 
for method, model ..... """" .", 8: Justification 

andtool"" / 

11: Suggestions 
for 

Further Research .. 

• 

4: Control System 
Technology 

s: Standards 

8: Description 
of 

Synect 

6: Mathematical 
Models 

7: Methods 

Rgur.63 Relatiooship Between This Chapter And Th. Thesis Map 

7: Tools 

The key conclusions from these studies, which have been considered in detail within the 

main body of the thesis, are presented in the following sections along wtth the 

corresponding contributions to knowledge. 

10.1 1be Business Need 

The shortening of product Iffe-cycles is adding pressure to the need to be able to engineer 

industrial control systems faster, at lower cost and providing maximum flexibility to 

accommodate process changes to respond to market condttions. In application areas 

such as discrete manufacturing and batch automation, a significant proportion of the 

application effort is spent addressing the requirements for sequence logic. 

Tradttional approaches have been implementation-oriented rather than problem-oriented. 

Organisational relationships have tended to inhibtt the necessary advances by focussing 

attention on a project by project basis rather than the wider business context. Whilst there 

is a growing awareness of the relationship of development to life-cycle costs, most 

projects are still evaluated on the basis of the elapsed time and cost to achieve beneficial 

operation of the plant. 

182 

po 



10.2 Tbe Requirements For A Metbod And Tool 

Whilst there is a genuine business need to improve the approach to sequence logic in 

industrial applications in many phases 01 the I~e-cycle, the barriers to adoption must be 

addressed. Cost is often a lactor, particularly when including training and development 

costs. However, more signHicant barriers are the capabilnies required of the user, the 

conlonmance to widely accepted standards and the seamlessness of the analysis, design 

and implementation environments. A close relationship between the commissioning, 

support and maintenance environments and the design environment appears to be a less 

important criterion, although examination of costs per I~e-cycle phase would suggest this 

should be assigned a high priority. 

In order to gain industrial acceptance, the perceived learning curve must be short. This 

implies the need to use familiar notations: 

• For sequence logic, the most widespread notations are the state transnion diagram 

(STD) and the sequential function chart (SFC). A~hough the SFC appears to have 

the advantage of explicttly modelling concurrency, this is of limned value when an 

object oriented paradigm is adopted because the concurrency is implicn in the 

federated behaviour of the objects. The SFC also has the disadvantage of 

fragmenting a coherent spec~ication because the actions in a step are not spec~ied 

on the SFC diagram. The author is unaware of an object-oriented method or 

structured method which uses SFCs in preference to STDs. For these reasons, the 

STD is the preferred notation. 

• Object based (a~ematively called component-based) approaches are gaining 

widespread acceptance, help to encourage the development of re-usable modules of 

software and are an intunive modelling approach. The inter-object communication, 

however, can become overly complex unless a structure is imposed. One of the 

simplest and most intunive structures is the strict hierarchy and this also guides the 

practttioner to consider the coordination required over otherwise disparate Objects. 

Whilst the hierarchy of communication is preferred, the analyst should have the 

freedom to implement different structures n desired. 

One of the main benelns which mathematical modelling can offer the developers of 

industrial sequence logic is by providing an executable model. Whilst property querying 

approaches are valuable through their abiltty to verify the presence of absence of 

particular behaviour, analysts lack confidence that all necessary queries could be 

183 



identffied. Although paper-based specffications could be used to verify system behaviour, 

executable models enable the analyst to gain a deeper understanding and are a more 

powerful review medium across organisational boundaries. Audtt trail functionality is easily 

supported, offering the ability to replay the history of extemal stimuli and state evolution. 

The tool should support attemative visualisations of system behaviour. At a minimum the 

tool should be capable of animating the analysfs specffication. However, different 

visualisations offer attemative perspectives on the system's behaviour and may be more 

appropriate for different audiences and help to prevent saturation with one viewpoint. For 

example, a 3D solid modeller might be the most appropriate view for a flexible 

manufacturing cell application whereas a 2D plant mimic diagram would be more 

appropriate for a process-oriented application. It is therefore important that the tool should 

be able to drive extemal software packages to explott the considerable functionality offered 

by widely available, low cost software packages such as Wonderware's InTouch SCADA 

product [76]. 

The relationship between the notations with which the analyst expresses the design and 

the mathematical model is subject to several requirements: 

• The analyst should be able to use the environment with minimal awareness of the 

mathematical model. 

• For traoeability, the mapping from user specffication to mathematical model must be 

clearly visible. 

• The mathematical model should be in a form which the analysts and implementers 

can understand. This appears to contradict the first bullet point above but reflects the 

heatthy scepticism to which industrial innovations are subjected. The analyst needs a 

woriking knowledge of the model's mechanisms in order to be able to interpret the 

traceability information. Developers of implementation archttectures beneftt from an 

awareness of the model to understand the degrees of freedom regarding automatic 

code generation. 

The tool should be an enabler for the evaluation of attemative formal methods and/or tools 

by being able to export the analysfs specffication and the mathematical model to a neutral 

format. 

Uttimately, developers of industrial control systems need to deliver a functioning system. 

Whilst the author would assert that insufficient attention is paid to the early analysis 

184 



activities, industrial perception is that generation of control code is of paramount 

Importance. Consequently, there must either be a very simple and effective strategy for 

translating the design into code or seamless auto code generation is required. 

10.3 Industrial Automation Technology 

Industrial automation solutions are still dominated by proprietary technology but are 

converging. Development tools have primarily been a means of implementing the solution 

on the vendor's platform rather than supporting the full project life-cycle or, ideally, 

supporting entity life-cycles which span many projects. The tools have also tended to 

become feature rich but methodologically poor, typically supporting the lowest common 

denominators of techniques such as language edttors and configuration templates. 

Paradoxically, the dominance of one vendor, Microsoft, has significantly enhanced the 

ability to integrate other vendors' software packages by providing data exchange 

mechanisms such as DOE, OlE, etc .. 

As hardware capabilities have converged, the control system vendors have attempted to 

differentiate their offerings through the associated software and are now moving towards a 

focus on delivery of solutions as the software capabiltties also converge. 

The field bus inttiatives offer the opportunity to reduce the burden on centralised controller 

hardware even further, distributing the required intelligence to the field devices. 

10A MocfeI.Based and FonnaI Methods Approaches 

Although there is substantial evidence in the published Itterature of the potential beneftts 

which mathematically oriented techniques may offer, through individual applications of 

model·based and formal methods approaches, their adoption by industrial users has been 

poor. Prevailing weaknesses which model·based and formal methods approaches could 

tackle include: 

• A proposed solution cannot be evaluated until tt has been implemented. 

185 



• Extensive testing is required to verify both the intended solution and the 

implementation of that solution. 

• Significant commissioning effort will still be required before the plant can begin 

beneficial operation. 

The author asserts that this disparity of potential beneftt to the accepted norm is a function 

of: 

• The lack of focus on project life-cycle phases unconnected with implementation. 

• The user-unfriendliness of tradttional mathematical methods to the target user 

community combined with perceived lack of tool support . 

• The absence of a de-facto or intemational standard regarding the application of a 

mathematical method to a class of application. This would be less significant if there 

were widespread knowledge of case histories demonstrating the benefas. 

10.5 MethodsAndTooIs 

It is difficutt to completely decouple the potential beneftts of methods and tools. Whilst it is 

theoretically possible to adopt a method without tool support and, likewise, mutti-method 

CASE tools are available, anecdotal evidence suggests such approaches are rarely 

adopted. Whereas a method can be valuable in ensuring a consistent approach to 

projects and help to ensure an appropriate solution is delivered which is maintainable, 

tools which support the method may at least offer substantial productivity gains and may 

be a key to the successful application of the method. 

Whilst there is evidence of the application of structured methods and object oriented 

methods to systems engineering projects in general, there appears to have been greater 

emphasis on either information processing systems or the large, complex and crttical real

time applications, such as air-traffic control or applications in the nuclear industry. There is 

minimal evidence of their application to small to medium sized discrete or batch projects 

which probably form the majority of industrial automation projects. 

There is also a discontinuity between the analysis and design activtties supported by tools 

and the implementation environment. This increases the perceived risk associated with 

adopting an analysis or design method. 

186 



10.6 Conbibutions to Knowledge 

The current state of the art consists of graphical methods supported by CASE tools and 

mathematical models supported by CASE tools. The major contribution to knowledge of 

this thesis is the jus@cation for the combination of an appropriate graphical method, 

mathematical model and CASE tool to help satisfy business needs relating to sequence 

logic in small to medium sized applications in the discrete and batch process industries. 

These business drivers include the ability to support agile manufacturing, lower life-cycle 

costs and collapse project timescales. The evaluation of the Synect method and tool set 

has demonstrated how signfficant benefits can be realised. 

The contributions to knowledge resutting from this research are: 

• Clarification of the need with respect to industrial sequence logic and deficiencies wnh 

current approaches. 

• Justification of the benetns of combining an expressive notation with mathematical 

modelling and supporting these wnh a CASE tool. 

• An industrially usable solution to the requirements incorporating: 

• Methodology using graphical notations and mapping to Ordinary Petri net. 

• CASE tools supporting the methodology and mathematical analyses. 

• The development of proof of concept case study applications using the 

methodology and tool. 

• Evaluation against the criteria established in chapter three, Requirements for 

Method, Model and Tool, and comparison throughout this thesis wnh alternatives 

such as relay ladder logic solutions. 

• Evidence of ns industrial relevance and acceptability from its use by independent 

developers. 

• An approach to managing the state explosion problem inherent in Petri net 

reachability analysis through mechanisms to partnion the system using the analysfs 

object hierarchy. 

• Evidence of the benefits of integrating an evolving design with visualisation techniques 

in order to support prototyping and muHi-disciplinary rapid application development. 

187 



• Code generation requirements, resuning in the design and implementation of code 

generators, for a variety of target control system platforms from a Petri net model: 

• With buin-in diagnostics 

• Interrupt-driven and scan-based 

• Centralised and distributed 

• In various languages 

• Evidence of the benefits of a seamless method and tool support offering a common 

environment from analysis and deSign, through implementation and commissioning 

and into operational usage with subsequent support and maintenance demands. 

188 



Chapter 11 Suggestions for Further Research 

I: 

!~:-f .. .l~ "l 9: Industrial 
2: Business needs ... • " •• 'k ". ,. Exploitation 10: Conclusion 

"'-. .. 
/ .. 

2: Deficiencies with ? .. :krs\\· 

cUITent approaches ""' ...... , ...... .... " •... •• ' •••• n ••• • ........ " .. " ........ 9: Evaluation 
Introduction 

'" .. 3: Requirements RJ,-l>'P / ~'-.v" -,~, "".\0" ,,",,~' 

for method, model ..' -,.-. 8: Justification : 11: Suggestio os, 
,', 'fur 

and tool 

'" / earch If-~~. 

, .. 
4: Control System 

Technology 

~ i" 

s: Standards 

8: Description 
of 

Synect 

• i" 

6: Mathematical 
Models 

.. 

7: Methods 

Figure 64 Relalionship Between This Chapter And The Thesis Map 

• IL 

1: Tools 

This chapter considers how the business needs could be more effectively met by 

extending the capabil~ies of the Synect solution and complementing ~ w~ aHemative 

approaches. As shown in figure 64, this is expressed in tenns of suggestions for further 

research. 

189 

.. 



Figure 65 Core Theme of this Thesis 

Figure 65 is a copy of figure 1 from chapter one, Introduction, showing the thesis assertion 

that business benefits can be gained from the combination of graphical methods, 

mathematical models and software tools. 

Considering each of these three components, figure 66 represents the increased 

effectiveness sought in a future solution. The highest priority is considered to be 

enhancing the method, followed by CASE tool support and finally, complementary 

mathematical modelling capability. 

Mathematical Model 

Software Tool 

Graphical Method 

-...Current 

===+-Future 

Figure 66 Effectiveness of Method, Model and Tool Support 

190 



11.1 Graphical Method 

11.1.1 Human Factors 

The business beneftts are achieved through the support which Synect offers one or more 

human beings. AHhough many suggestions may be proposed for enhancing the method, 

further research should be based on improving the effectiveness of the overall 

methodology rather than adding "features" to the method. For example, the existing 

method, explicttly supported by the edttor tOOl, minimises the risk of introducing syntax 

errors through diagramming conventions and the use of pick-lists. An idealised method 

would offer guidance on constructing well-behaved applications by conforming to pre

defined pattems of interaction. 

AHemative visualisations help to overcome "analysis paralysis" by offering a fresh 

perspective on the control system behaviour. AHhough the Simulator tool supports 

interaction wtth extemal software which could show behaviour in a~emative forms, 

(examples discussed in this thesis include 3D graphics, process-industry mimics and 

scenario of use diagrams), the relative effectiveness of these or other techniques in a 

variety of project scenarios has not been assessed. After identifying particularly valuable 

representations, these could be bui~ into the method and explicttly supported by the tcols. 

The use of a method and tool such as Synect should be part of an overall project 

methodology. The methodology then prompts the analyst to undertake appropriate design 

reviews, both end-user and peer, to verify the correctness of the proposed solution. These 

reviews have been found to be crttical to project success [30). A research activity to 

determine the most effective methodology using technology such as Synect could be very 

valuable. 

11.1.2 Domain Specificlty 

Whilst state diagrams and object-based representations are generally applicable to a wide 

range of domains, from corporate information systems to shop-floor control applications, a 

more domain-specific method might increase tts acceptabiltty and offer higher productivity. 

For example, an Saa.01-specific variant for the batch process industry would explicttly 

support concepts such as phase logic wtth separate sequences for normal running, 

reaction to abnormal process condttion, etc .. 

191 



11.1.3 Object-Ortented and Component-Based Support 

The support for class libraries, incorporating a hierarchy of type, could be beneficial but 

must be used with caution. End-user reviews can be highly effective when the control 

requirements are modularised. However, H the end-user needs to simultaneously 

reference many documents to understand the proposed behaviour of a component, the 

effectiveness is compromised. 

As UML (Universal Modelling Language) would appear to have signHicant vendor support, 

suggesting tt may become a de-facto standard, the use of UML notations may increase 

Synect's acceptabiltty. 

One of the major business beneftts is to be realised through the re-use of proven 

components. The method should therefore support concepts such as object libraries, 

configuration and version control, etc .. The current message communication syntax ought 

to be relaxed to ensure that objects are more widely applicable, such as removing the 

need for an object's response to be "consumed" by another object. 

11.1A Sequence NotatIons 

The state transttion diagram was adopted as a compromise between expressivtty and 

simplictty. Addttional support could be added for notations such as statecharts, which offer 

a richer set of notations useful for more complex applications, and IEC 61131 -3 sequential 

function charts, which are more familiar to control system developers. 

Explictt support for exception logic would increase expressivtty and reduce diagram clutter, 

for example supporting a transttion from an "any state" state instead of separate transttions 

from each state. It would also facilttate more meaningful analyses. For example, system 

reset logic ought to be ignored when searching for deadlocks. 

11.2 Mathematical Model 

Chapter six, Mathematical Models, made reference to replacing or complementing the 

Petri net model with a~emative or complementary models. 

192 



11.2.1 Process AIgebras 

Although the Petri net is a highly effective executable model, process algebras such as 

ees and CSP may offer better support for the querying of behavioural properties. The 

algorithm incorporated in the Prover tool [128] is particularly worthy of investigation. 

11.2.2 Explicit Support for Time 

Support for behavioural queries invoMng time, as offered by RTL [47) for example, would 

be valuable where the control system is required to confonn to hard real-time constraints, 

such as synchronisation of drives. 

11.2.3 Petri Net Variants 

A~emative variants of Petri net could also be investigated, for example to detennine 

whether state machine decomposable nets offer a more intuttive mapping from the object 

and state diagram specHication. 

11.3 Software Tool 

11.3.1 Code Generators 

Additional code generators are required to support a~emative target platforms, such as 

DCSs and the emerging IEC 61131-3 PLC programming tools. 

11.3.2 Support for Enhanced Method 

Many of the suggestions relating to the method and wider project methodology in section 

11.1, Graphical Methods above, would require enhancements to software tool support. 

For example, library management and configuration management would require addttional 

software modules to be developed. 

11.3.3 WIZards 

A wizard refers to software functionaltty which asks questions and then uses the answers 

to partially replace interactive tool usage, thus increasing productivtty and minimising style 

variations. For example, a Synect Wizard could offer pre-defined templates for cyclic 

STDs and produce a dialog asking the user for the number of states and the name of each 

state. From this infonnation, the STD could be created, removing the need for the 

developer to add each state individually and then layout the diagram as desired. 

193 



References 

1 "ANSIIISA-S88.o1-1995 Batch Control Part 1: Models And Terminology",lnstrument 
Society Of America, 1995, North Carolina 27709 

2 Fisher, T.G., "Batch Control Systems: Design, Application, and Integration", ISA, 1990, P 
2 

3 Reeve, A., "Tablet Technology", Control And Instrumentation, February 1997, pp 45-47 

4 Benveniste, A., "Synchronous Languages Provide Safety In Reactive Systems Design", 
Control Engineering, September 1994, pp 67-69 

5 Harel, D. et al., "Statecharts: A Visual Formalism For Complex Systems", Science of 
Computer Programming, Vol. 8, 1987, pp 231-274 

6 Shlaer, S. and Melior, S.J., "Object Lifecycles. Modeling The World In States", Yourdon 
Press, 1992,ISBN 0-13-629940-7 

7 McGrath, M.F., "Making Supply Chains Agile For Niche Products", APICS - The 
Educational Society For Resource Management, 1996 Conference Proceedings, pp 167-
171 

8 Reeve, A., "The Future For Process Control", Control And Instrumentation, May 1997, pp 
105-106 

9 Anon, "Success Will Follow From Working Smarter", Eureka, December 1997, p 3 

10 "Strength where it matters", 1 April 1998, available from WWW site: 
uniq.unilever.comlinside.viewlintroducing/strength.html 

11 Miller Smith, C., "Satellite Presentation by ICI Chief Executive", March 5, 1996 

12 Fisher, T.G., "Batch Control Systems: DeSign, Application, and Integration", ISA, 1990, 
pp 335-341 

13 Mitchell R. and Roscoe, S., "PLC Validation During Project Implementation", 
Measurement And Control, Volume 31, February 1998, pp 10-13 

14 Sonley, M., "Production Of A Batch Plant Control System", Analysis and Design of Event
Driven Operations in Process Systems, Imperial College, Centre for Process Systems 
Engineering, London, 10-11 April 1995 

15 "Automation Strategies", Automation Research Corporation, April 1996 

16 Plansky, P., "Time To Market- Two Weeks To Prototype, One Year To Production", VLSI 
Technology News, June 1990 (Citing McKinsey & Co. Report) 

17 Hammer, M. and Champy, J., "Reengineering The Corporation: A Manifesto For 
Business Revolution", Brealey Publishing,1993 

18 Kappelhoff, R., "S88 Impact On Health And Beauty Care Operations", World Batch 
Forum, 1996 

19 Strothman, J., "Where ERP Meets Process Control, S88 Can Help", InTech, July 1997, 
pp 49-50 

20 Schumann, A., "SAP-R/3 In Process Industries: Expectations, Experiences And 
Outlooks",ISA Transactions, Vol. 36, No. 3,1997, pp 161-166 

21 Coleman, D. et aI., "Object Oriented Development: The Fusion Method", Prentice-Hall, 
1994, ISBN 0-13-338823-9 

194 



22 DeMarco, T., "Controlling Software Projects, Management, Measurement and 
Estimation", Yourdon Press, ISBN 0-13-171711-1 

23 "Guidelines For The Development Of Programmable Logic Controller Application 
Software For Safety Related Applications", lEE, May 1996 

24 Anon, "Out of Control", Health and Safety Executive, England 

25 Brayford, N., "The Problem Scenario Applying Structured Methods To Projects", Control 
And Instrumentation, May 1997, pp 43-44 

26 "Case And The Meta-Tools", ButlerSloor Ltd, p 167 

27 Ericsson, G., "Functional Specification Of Industrial Control Systems", Proceedings Of 
The 1994 IEEE Conference On Control Applications Part 2 Of 3, 1994, pp 1347-1352 

28 Rockwell Software, Kiln Farm, Milton Keynes, Bucks 

29 Parkin, G.I. and Austin, S., "Formal Methods: A Survey", Division of Information 
Technology and Computing, National Physical Laboratory, Teddington, Middlesex, 31 
March 1993 

30 Hopkinson, P. et aI., "Implementing S88 Batch Control Systems In The Pharmaceutical 
Industry", Measurement And Control, Vol. 31, February 1998, pp 20-24 

31 Cooling, J.E., "Software Design For Real-Time Systems", International Thomson 
Computer Press, 1995 

32 Lewis, R., "Programming Industrial Control Systems Using IEC 1131-3", ISBN 0-85296-
827-2 

33 Burns, G.L., "The Use Of Hierarchical Petri Nets For The Automatic Generation Of 
Ladder Logic Programs", International Programmable Controllers Conference 
Proceedings, 1994, pp 169-180 

34 Harrison, R_ et aI., "Improving Manufacturing Automation By The Integration Of Machine 
Design And Control", 26th International Symposium on Industrial Robots, Singapore, Oc!. 
1995, pp 51-56, ISBN 1-86058-000-9 . 

35 Reich, J.E., "Symbolic Simulation-Based Techniques For Debugging Discrete Control 
Programs", Department of Electrical and Computer Engineering, Camegie Mellon 
University, May 1996 

36 Anon, "Scaling Up: A Research Agenda For Software Engineering", Communications of 
the ACM, March 1990, Vol. 33, No. 3, pp 281-293 

37 Womack, J.P., Jones, D.T. and Roos, D., "The Machine That Changed The World: Based 
On The Massachusetts Institute of Technology 5-Million Dollar 5-year Study On The 
Future Of The Automobile", Maxwell Macmillan, 1990 

38 Davenport, T.H., "Process Innovation: Reengineering Work Through Information 
Technology", Harvard Business School Press, c1993 

39 Brooks, F., "No Silver Bullet: Essence And Accidents Of Software Engineering", IEEE 
Computer, Vol. 20, No. 4, April 1987 

40 Hatton, L., "Software Failures. Follies and Fallacies", lEE Review, March 1997, pp 49-52 

41 Ven Der Biezen, H., "What's The Real Cost Of Ownership?", 

42 Anon, "Power Market Thirsts For Automation Technology", Control Systems, May 1997, p . 
6 

43 Anon, "Component Based Developmenr, 1998 Report Series, Vol. 1, Butler Consulting 
Group Ltd, Hessle, East Yorkshire, England 

195 



44 Booch, G., "Object Oriented Design With Applications", BenjaminlCummings, 1991, ISBN 
0-8053-0091-0 

45 McDonald, M.H.B., "Marketing Plans", Butterworth Heinemann, 1989, ISBN 0-7506-0107-
8 

46 Mallaband, S., "Specification Of Real Time Control Systems By Means Of Sequential 
Function Charts",IEE Conference Publication, 1991, No. 344, pp 57-62 

47 Buccl, G. et aI., "Tools For Specifying Real-Time Systems", Real-Time Systems, Vol. 8, 
1995, pp 117-172 

48 Dijkstra, E., "Programming Considered As A Human Activity", Classics In Software 
Engineering, New York NY, Yourdon Press 

49 Borianl, D.V., "Object-Qriented Development Of Control Software", ISA Transactions, Vol. 
36, No. 2,1997, pp 131-138 

50 Chang, C.K. et aI., "Integral: Petri Net Approach To Distributed Software Developmenf, 
Information And Software Technology, Vol. 31, No. 10, December 1989, pp 535-545 

51 McGinnes, S., "CASE Support For Collaborative Modelling: Re-Engineering Conceptual 
Modelling Techniques To Exploit The Potential Of CASE Tools", Software Engineering 
Journal, July 1994, pp 183-189 

52 Gaskell, C. and Phillips, R., "Executable Specifications And CASE", Software 
Engineering Journal, July 1994, pp 174-182 

53 Anon, "Rockwell Automation Surges Past 50 Percent PLC Market Share In North 
America", Automation Research Corporation, 17 February 1998 

54 Davidson, C. and McWhinnie, J., "Stepping Off The Ladder", lEE Review, September 
1997, pp 210-212 

55 Morihara, R.H., "State-Based Ladder Logic Programming", 

56 Falcione, A_ and Krogh, B.H., "DeSign Recovery For Relay Ladder Logic", 1st IEEE 
Conference on Control Applications, Dayton, Ohio, Vol. 1/2, Chapter 198, 1992, pp 648-
653 

57 Borchers, G., "Software Engineering Techniques For Ladder Logic", EDS Plant 
Automation Division Controls Engineering Group 

58 Schelberg, C., 'What?1 Ladder Logic Dead!", Flavors Technology, Inc. 

59 Stewart, I., "The Problems Of Mathematics", Oxford University Press, 1987, ISBN 0-19-
219201-9 

60 Anon, "More Than A Relay, Less Than A PLC And No Programming" Control And 
Instrumentation, November 1996, p 60 

61 Pollard, J.R., "Open Architecture For Control?", Industrial Computing, June 1996, pp 16-
18 

62 Siemens, Bracknell, Berkshire, England 

63 The Foxboro Company, 33 Commercial Street, Foxboro, MA 02035, USA 

64 Peach, M., "Team Players Can Seem To Be United", Control And Instrumentation, May 
1998,p5&9 

65 Anon, "Solllogic Threatens The DCS, PLCs Fare Better", Control Systems, August 1997 

66 Anon, "PC Set To Oust PLCs For Control By Year 2000", Control And Instrumentation 
Europe, April 1996, p 11 

196 



67 Gledhill, B., "Germany Biggest DCS Consumer", Control And Instrumentation, August 
1998, p 15 

68 Tinham, B., "Control Systems", Control And Instrumentation, May 1997, pp 59-60 

69 Tinham, B., "Control Systems", Control And Instrumentation, December 1997, p 8 

70 Anon, "Industry Ploughs £3 Billion Into IT", Eureka Transfers Technology, January 1997, 
p8 

71 Anon, "'Softlogic' Providers Foresee A Bonanza", Control Systems, February 1997, p 11 

72 "Software Logic Into Cimplicity", Control And Instrumentation, April 1997 

73 Anon, "Advanced And Soft PLC To Bring New Choices", Control And Instrumentation, 
June 1997, p 7 

74 Ballard, A., "Has The PLC Had Its Day?", Control Systems, June 1997, p 25 

75 Sequencia Corporation, 2429 West Desert Cove Avenue, Phoenix, AZ 85029, USA 

76 Wonderware, PO Box 30, Twickenham, Middlesex, England 

77 Bond, A., "An Enabling Technology For Fundamental Change", Fieldbus Supplement, 
November 1996, pp S1-S3 

78 Schickhuber, G. and McCarthy, 0., "Distributed Fieldbus And Control Network Systems", 
Computing And Control Engineering Joumal, February 1997, pp 21-32 

79 Reeve, A., "Field bus '97 Progress Or Prognostication?", Control And Instrumentation, 
May 1997, pp 101-102 

80 Anon, "PC Will Beat PLC 'Within a Decade'", Manufacturing Computer Solutions, March 
1996, p 4 

81 Saward, P., "Taking Fieldbus Into Hazardous Areas", Control And Instrumentation, 
February 1997, page 48-49 

82 Lewis M., "Go With The Right Bus", Fieldbus Supplement, November 1996, pp S5-S6 

83 Jones, J., "Why Wait For Fieldbus?", Control And Instrumentation, April 1992 

84 "Programmable Controllers - Part 3: Programming Languages", IEC 61131-3 (1993-03), 
IEC, 3 rue de Varembe, PO Box 131, CH-1211 Geneva 20, Switzerland 

85 Lewis, R. and Tinham, B., "Control Software Standard Emerging", Control And 
Instrumentation, September 1992, pp 51-53 

86 Stroustrup, B., "What Is Object-Oriented Programming?", IEEE Software, Vol. 5, No. 3, 
May 1998, p 10 

87 Neumann, P., "Function Block Technology Standard", Control And Instrumentation 
Europe, April 1996, pp 60-62 

88 Anon, "Keeping Costs Under Control", Control Systems, May 1997, pp 33-34 

89 Anon, "Software Complies With Latest Euro Standards", Eureka, May 1997, p 15 

90 Anon, "PLC Stretches To Meet Tough Applications", Eureka, February 1997, p 51 

91 ConCept, AEG Schneider Automation, North Andover, MA 01845, USA 

92 Anon, "Better Standards Of Control Needed", Manufacturing Computer Solutions, 
October 1997, P 13 

93 IsaGraf, CJ Intemational, 86 rue de la Liberte, F-38180 Seyssins, France 

94 CADEPA, Famic Ltd, Foxholes BUSiness Park, Hertford, Hertfordshire, England 

197 



95 PLCOpen Organisation, Postbus 2015, 5300 CA Zaltbommel, The Netherlands 

96 Anon, "Flexibility From Your PLC", Control And Instrumentation, April 1997, p 7 

97 Juer, J. and Hughes, I.P., "IEC 65A Control Languages - A Practical View", Eurotherm 
Intemational PLC, England 

98 Lewis, R., "Design Of Distributed Control Systems In The Next Millennium", Computing 
And Control Engineering Journal, August 1997, pp 148-152 

99 Carrick, K., "All At 'C'", Control Systems, April 1998, pp 27-28 

100 Peshek, C.J. and Mellish, "Recent Developments And Future Trends in PLC 
Programming Languages And Programming Tools For Real-Time Control", IEEE Cement 
Industry Technical Conference, May 1993, Toronto Canada, pp 219-230 

101 Anon, ~STEPS' Specification", Version 3.1, Ford Motor Company Limited 

102 Krause, Genmany 

103 Hopkinson, P. and Hancock, J., "A Case History Of The Implementation Of An S88-
Aware Batch Control System", World Batch Forum, 1998 

104 Haxthausen, N. and Hopkinson, P., "The Application Of The S88 Batch Control Standard 
In The Phanmaceuticallndustry", Computer Systems For The New Millennium 
Conference, International Society Of Pharmaceutical Engineers, 4th - 5th March 1998, 
Amsterdam 

105 Crowl, T.E. and Minnich, L.C., "Configuration Techniques For A Validated Plant", ISA 
Transactions, Vol. 36, No. 3, 1997, pp 209-218 

106 Vaitsis, A., "CORBA - Or ActiveX", Control And Instrumentation, May 1997, pp 33-36 

107 Taylor, D., "Object-Linking And Embedding - What Is OPC About?", Control And 
Instrumentation Europe, April 1996, pp 34-35 

108 Tinham, B., "Why OPC For Systems?", Control And Instrumentation, April 1997, pp 24-26 

109 OLE for process control, final release, version 1.0, OPC Task Force, 1996, available from 
WWW site: www.industry.neVOPC 

110 Vaitsis, A., "COR BA, OLE And More", Control And Instrumentation, June 1997, pp 26-27 

111 Anon, "CORBA 'Righteous, And Late'", Manufacturing Computer Solutions, May 1997, p 
6 

112 Anon, "JavaBeans", http://www.webadvisor.com/javabeans.html. 

113 Lynch, G., 'World Wide Web, What?", Control And Instrumentation, April 1997, p 29 

114 Carson, M. and Tomasello, M., "Let's Get Surfing - Seriously!", Control Systems, March 
1997, pp 29-30 

115 Barroca, L.M. and McDermid, J.A., "Formal Methods: Use And Relevance For The 
Development Of Safety Critical Systems", University Of York, England 

116 Brackett, J. W., "Formal Specification Languages: A Marketplace Failure", IEEE 
International Conference on Computer Languages, October 1988, Miami Beach, Florida, 
USA 

117 Hoare, C.A.R., "Communication Sequential Processes", Prentice Hall,1985, ISBN 0-13-
153271-5 

118 Milner, R., "Communication And Concurrency", Prentice Hall, ISBN 0-13-115007-3 

119 Spivey, M., "The Z Notation: A Reference Manual", Prentice Hall International, 
Englewood Cliffs, NJ, 1990 

198 



120 Jones, C.B., "Systematic Software Development Using VDM", 2nd Edition, Prentice Hall 
Intemational, Englewood Cliffs, NJ, 1990 

121 Anon, "Estelle: A formal Description Technique Based on an Extended State Transition 
Model", ISO 9074, International Standards Organisation, 1988. 

122 Diaz, M. and Vissers, C., "SEDOS: Designing Open Distributed Systems", IEEE 
Software, November 1989, pp 24-33 

123 Diaz, M. and Vissers, C., "SEDOS: Designing Open Distributed Systems", IEEE 
Software, November 1989. pp 24-33 

124 Durr, E., "VDM++ Language Reference Manual", AFRODITE Document 
afro/cgledllrm/v9.1, May 1994 

125 Duke, R. et aI., "The Object-Z specification Language", Version 1, Technical Report, 
Software Verification Research Centre, University of Queensland, Queensland, Australia, 
May 1991 

126 Lano, K. and Haughton, H., "The Z++ Manual Technical Report", Lloyds Register Of 
Shipping, 29 Wellesley Road Croydon, England, 1992 

127 Probst, S.T., "Chemical Process Safety And Operability Analysis Using Symbolic Model 
Checking", PhD Thesis, Department of Chemical Engineering, Camegie Mellon 
University, Pittsburgh, PA 15213, May 1996 

128 Prover, National Physical Laboratory, Teddington, Middlesex 

129 Saflund, M., "Modelling And Formally Verifying Systems And Software In Industrial 
Applications", National Physical Laboratory, Teddington, Middlesex 

130 Stalmarck, G. and Saflund, M., "Modeling And Verifying Systems And Software In 
Propos~ional Logic",IFAC, SafeComp90, London, 1990, pp 31-36 

131 Boralv, A. and Agren, H., "Formal Verffication Of Programmable LogiC Controllers", 
Master's Theses in Computing Science 82,ISSN 1100-1836 

132 Tinham, B., "Check Systems Automatically", Control And Instrumentation, July 1995, pp 
41-42 

133 Ramage, P.J.G. and Wonham, W.M., "The Control Of Discrete Event Systems", 
Proceedings of the IEEE, 77(1), 1989, pp 81-98 

134 Rotstein, G.E. et al., "SyntheSiS Of Procedural Controllers And The Automatic Generation 
Of Sequential Control Code", Analysis and DeSign of Event-Driven Operations in Process 
Systems, Imperial College, Centre for Process Systems Engineering, London, 10-11 April 
1995 

135 Peterson, J.L., "Petri Net Theory And The Modeling Of Systems", Prentice-Hall, 1981, 
ISBN 0-13-661983-5 

136 Bonney, M.C. et aI., "UNISON - A Tool For Enterprise Integration", Department of 
Manufacturing Engineering & Operations Management, University of Nottingham, 
England 

137 Silva, M. and Valette, R., "Petri Nets And Flexible Manufacturing", Lecture Notes in 
Computer Science 424, Springer Verlag, 1990, pp 374-417 

138 Jafari, M.A. and Boucher, T.O., "The Design Of A Petri Net Controller From An IDEFO 
Specification", Factory Automation and Information Management, pp 804-815 

139 Valette, R. et al.,"A Petri Net Based Programmable Logic Controller", pp 103-116 

140 D'Souza, K.A. and Khator, SK, "A Survey Of Petri Net Applications In Modeling Controls 
For Automated Manufacturing Systems", Computers In Industry, Vol. 24, 1994, pp 5-16 

199 



141 Murata, T. et aI., "A Petri Net-Based Controller For Flexible And Maintainable Sequence 
Control And Its Applications In Factory Automation", IEEE Transactions on Industrial 
Electronics, February 1986, Vo1.IE-33, No.l , pp 1-8 

142 Komoda, N., "An Autonomous, Decentralized Control System For Factory Automation", 
Computer, December 1984, pp 73-83 

143 Menga, G. and Morisio, M., "Prototyping Discrete Part Manufacturing Systems", 
Information And Software Technology, Vol. 31, No. 8, October 1989, pp 429-437 

144 D'Souza, K.A. and Khator, S.K., "A Petri Net Approach For Modelling Controls Of A 
Computer Integrated Assembly Cell", International Journal of Computer Integrated 
Manufacturing, 1993, Vol. 6, No. 5, pp 302-310 

145 Narahari, Y. and Viswanadham, N., "A Petri Net Approach To The Modelling And 
Analysis Of Flexible Manufacturing Systems", Annals Of Operations Research 3, 1985, 
pp 449-472 

146 Kamath, M. and Viswanadham, N., "Application Of Petri Net Based Models In The 
Modelling And Analysis Of Flexible Manufacturing Systems", 1986, pp 262-267 

147 Valette, R., "Petri Nets For Contol And Monitoring Specification, Verification, 
Implementation", Analysis and DeSign of Event-Driven Operations in Process Systems, 
Imperial College, Centre for Process Systems Engineering, London, 10-11 April 1995 

148 Andreu, D. et aI., "Interaction Of Discrete And Continuous Parts Of A Batch Process 
Control System", LAAS-CNRS 

149 Zhou, M.C. and Twiss, E., "A Comparison Of Relay Ladder Logic Programming And Petri 
Net Approach For Sequential Industrial Control Systems", 4th IEEE Conference on 
Control Applications, 1995, Albany, pp 748-753 

150 Cortadella, J. et aI., "Synthesising Petri Nets From State-Based Models", Computer Aided 
Design International Conference, 13 November 1995, San Jose, pp 164-171 

151 Murata, T., "Modeling And Analysis of Concurrent Systems", Handbook Of Software 
Engineering, 1983, pp 39-63 

152 Saha, B. and Bandyopadhyay, S., "Representation And Analysis Of Petri Nets Via The 
Matrix State Equation Approach", International Journal of Electronics, Vol. 65, No.l, July 
1988, pp 1-7 

153 Jenson, K., "Coloured Petri Nets. A Way to Describe and Analyse Real World Systems 
W~hout Drowning in Unnecessary Details", Proceedings of the 5th International 
Conference on Systems Engineering, Dayton, 1987, New York: IEEE, pp 395-401 

154 Jensen, K., "Coloured Petri Nets: A High Level Language For System Design And 
Analysis", Advances In Petri Nets, 1990, pp 342-416 

155 Design/CPN, Meta Software Corporation, MA, USA 

156 Harhalakis, G. et aI., "Formal Representation, Verification and Implementation Of Rule
Based Information Systems For Integrated Manufacturing (INSIM)", Technical Report TR 
91-19, Systems Research Center, University of Maryland, College Park, 1991 

157 Barozzi, S. et aI., "Petri Net Based Real Time Simulation Of Industrial Plants", IEEE 
Conference on Systems, Man And CybernetiCS, October 1994, San Antonio, Vol. 2, pp 
1983-1988 

158 Caloini, A. et aI., "A Technique For Designing Robotic Control Systems Based On Petri 
Nets", IEEE Transactions on Control Systems Technology, Vol. 6, No. 1, January 1998, 
pp 72-87 

200 



159 Hack, M., "Analysis Of Production Schemata By Petri Nets·, Master's Thesis, Department 
01 Electrical Engineering, MIT, 1972 

160 Ramamoorthy, C.V. and Ho, G.S., "Performance Evaluation Of Asynchronous Concurrent 
Systems Using Petri Nets·, IEEE Transactions on Software Engineering, Vol. SE-6, No. 
5, September 1980, pp 440-449 

161 Lin, J.T. and Lee, C.C., "A Modular Approach For The Modelling Of A Class Of Zone
Control Conveyor System Using Timed Petri Nets·, In!. J. Computer Integrated 
Manufacturing, 1992, Vol. 5, Nos. 4 & 5, pp 2n-289 

162 Molloy M.K., "Performance Analysis Using Stochastic Petri Nets·, IEEE Transactions on 
Computers, Vol. 31, No. 9, 1982, pp 913-917 

163 Marsan, M.A. et aI., "A Class Of Generalised Stochastic Petri Nets For The Performance 
Evaluation Of MultiProcessor Systems·, ACM Transactions On Computer Systems, Vol. 
2, No. 2, May 1984, pp 93-122 

164 Greene, J., 'Petri Net DeSign Methodology For Sequential ContrOl·, Measurement and 
Control, Vol. 22, December/January 1989/90, pp 288-291 

165 Teng, S.H. and Black, J.T., "Manufacturing System Control With Petri Nets In Cellular 
Manufacturing Systems·, Computers ind. Engineering, Vol. 19, Nos. 1-4, 1990, pp 150-
154 

166 Gamousset, H.E. et aI., "Efficient Tools For Analysis And Implementation Of 
Manufacturing Systems Modelled By Petri Net With Objects: A Production Rules 
Compilation-Based Approach·, IECON Proceedings (Industrial Electronics Conference), 
1989, Vo1.3, pp.543-549 

167 Murata, T. et aI., "A Petri Net Based Factory Automation Controller For Flexible And 
Maintainable Control Specifications", pp 362-366 

168 Di Stefano, A. and Miabella, 0., "A Fast Sequence Control Device Based On Enhanced 
Petri Nets·, Microprocessors and Microsystems, Vol. 15, No. 4, May 1991, pp 179-186 

169 Bruno, G. and Marchetto, G., "Process Translatable Petri Nets For The Rapid Prototyping 
Of Process Control Systems·, IEEE Transactions on Software Engineering, Vol. SE-12, 
No. 2, February 1986, pp 346-357 

170 Notomi, M. and Murata, T., "Hierarchically Organised Petri Net State Space For 
Reachability And Deadlock Analysis·, 6th International Conference on Parallel 
Processing, March 1992, Beverly Hills, pp 616-623 

171 Yau, S.S. and Caglayan, M.U., "Distributed Software System Design Representation 
Using Modified Petri Nets·, IEEE Transactions On Software Engineering, Vol. 9, No. 6, 
November 1983, pp 733-745 

172 Alia, H., "Modelling And Simulation Of Event Driven Systems By Petri Net", Analysis and 
Design of Event-Driven Operations in Process Systems, Imperial College, Centre for 
Process Systems Engineering, London, 10-11 April 1995 

173 Chang, C.K. et aI., "INTEGRAL - An Integrated Framework For Distributed Software 
Validation And Verification·, Proceedings of the Workshop on Future Trends Of 
Distributed Computing Systems In the 1990s, 1988, pp 301-310 

174 Stotts, P.D. and Cai, Z.N., Hierarchical Graph Models Of Concurrent CIM Systems·, IEEE 
Workshop on Lang for Autom Symbiotic and Intell Rob., 1988, No.1988, pp.1 00-1 05 

175 Ramaswamy, S. et aI., "A High Level Specification Mechanism For The Analysis And 
Design Of Manufacturing Systems', IEEE Conference on Systems, Man and Cybernetics, 
1995, Vancouver, Vol. 1, pp 524-529 

201 



176 Lee-Kwang, H. et al., "Generalized Petri Net Reduction Method", IEEE Transactions on 
Systems Man and Cybemetics, Vol. SMC-17, No. 2, March/April 1987, pp 297-303 

177 Janicki, R. and Koutny, M., "On Equivalent Execution Semantics Of Concurrent 
Systems", Advances In Petri Nets, pp 89-103 

178 Janicki, R. and Koutny, M., "Optimal Simulations, Nets And Reachability Graphs", 
Advances In Petri Nets, 1991, pp 205-226 

179 Ozsu, M.T., "Modeling And Analysis Of Distributed Database Concurrency Control 
Algorithms Using An Extended Petri Net Formalism", IEEE Transactions On Software 
Engineering, Vol. SE-ll, No. 10, October 1985, pp 1225-1239 

180 He, X. and Lee, JAN., "A Methodology For Constructing Predicate Transition Net 
Spec~ications", Software - Practice And Experience, Vol. 21, No. 8, August 1991, pp 
845-875 

181 Anon, "High Level Petri Nets - Concepts, Definitions and Graphical Notation", Committee 
Draft ISO/IEC 15909, 2 October 1997, Version 3.4 

182 "Sequence Logic Right First Time", Case Study, Eutech Engineering Solutions, Belasis 
Hall Technology Park, Billingham, Cleveland 

183 Yourdon, E., "Modem Structured Analysis", 1989, Prentice Hall, Englewood Cliffs, NJ, 
USA 

184 Ward, P.T. and Melior, S.J., "Structured Development For Real-Time Systems", 
Prentice-Hall, Englewood Cliffs, NJ, USA, 1985 

185 Hatley, D.J. and Pirbhai, lA, "Strategies For Real Time System Specification", Dorset 
House Publishing, New York, 1987 

186 Amold et al., "Evaluation Of Five Object-Oriented Development Methods", Journal Of 
Object Oriented Programming: Focus on Analysis and DeSign, SIGS Publication Inc., 
New York, 1991, pp 101-121 

187 Cribbs et aI., "An Evaluation Of Object Oriented Analysis And Design Methodologies", 
SIGS Publications Inc., New York, 1992 

188 de Champeaux, D. and Faure, P., "A Comparative Study Of Object Oriented Analysis 
Methods", Journal Of Object Oriented Programming 5(1):21-33 March/April 1992 

189 Sutcliffe, A.G., "Object Oriented Systems Development: Survey Of Structured Methods", 
Information And Software Technology, Vol. 33, No. 6, July/August 1991, pp 433-442 

190 Fowler, M., "A Comparison Of Object-Oriented Analysis And Design Methods", Object 
World, July 1992 

191 Melior, S.J., "A Comparison Of The Booch Method And Shlaer-Mellor OONRD", Project 
Technology, 2 May 1993 

192 Shlaer, S., "A Comparison Of OOA and OMT', Project Technology, 7 August 1992 

193 Rumbaugh, J. et aI., "Unified Modeling Language Reference Manual", ISBN 0-201-
30998-X, Addison Wesley, 1997. Available from WWWsite: 
www.awl.com/cp/umVuml.html. 

194 Anon, "Unified Modeling Language For Real-Time Systems DeSign", Ver. 2.0, 15 
September 1998, available from WWWsite: http://www.rational.com 

195 Coleman, D. and Hayes, F., "Getting The Best From Objects: The Experience Of HP", 18 
December 1990 

196 Cook, S. and Daniels J., "Object-Oriented Methods And The Great Myth", Objects in 
Europe, Autumn 1994. pp13-18 

202 



197 Yourdon, E., "Application Development Strategies", available from WWW site: 
http://www.rational.com/supportltechpapersladslrational.pdf 

198 Anon, "Promod-PLUS Analysis", http://www.bergson.nVtools/prman.html 

199 Anon, ·00 Tool Developers to Integrate Products", 
http://www.tdtech.com/press/cayenne.html 

200 Anon, "Rational Rose 98", http://www.rational.com/productslrose/ 

201 Kennedy Carter, Thomton Road, London, SW19 4NB 

202 ProtoSoft, 17629 Ei Camino Real 202, Houston, TX n058 

203 Visio Corporation, 520 Pike Street, Suite 1800, Seattle, WA 98101, USA 

204 SPADE, Praxis Critical Systems, 20 Manvers Street, Bath, England 

205 MALPAS, TA Consultancy Services Ltd, 'The Barbican' East Street, Farnham, Surrey, 
England 

206 Harel, D. et al., "STATEMATE: A Working Environment For The Development Of 
Complex Reactive Systems", IEEE Transactions on Software Engineering, Vol. 16, No. 
4, April 1990, pp 403-414 

207 Stateflow, Cambridge Control, Cambridge, England 

208 BetterState Pro, Integrated Systems Inc., 201 Moftett Park Drive, Sunnyvale, CA 94089 

209 Harel, D. et al., "On The Formal Semantics Of Statecharts", Proceedings: 2nd IEEE 
Symposium on Logic in Computer Science, Ithaca, NY, 1987, pp 54-64 

210 MacLeod, A., "Identifying Problems At Concept Stage", New Electronics, September 
1993 

211 Gurewich, N. and Gurewich, 0., "Teach Yourself Visual Basic 5 in 21 Days·, Paperback 
4th edition (April 1997), Sams, ISBN: 0672309785 

212 "Visual Engineer", Control And Instrumentation, April 1997 

213 Anon, "HP VEE'", Amplicon Liveline, 1997, pp 58-63 

214 Anon, "LabVIEW Links To DTs API And Acquisition Boards·, Control And 
Instrumentation, April 1997, p 30 

215 MatLab, Cambridge Control, Cambridge, England 

216 Workspace, Robot Simulations Ltd, 21 High Bridge, Newcastle upon Tyne, England 

217 Wttness, AT&T Istel, Redditch, England 

218 AutoMod, AutoSimulations, 655 Medical Drive, Bountiful, Utah 84010, USA 

219 Carey, J.M. and Currey, J.D., "The Prototyping Conundrum", Datamation, 1 June 1989, 
pp 29-33 

220 COOling, J.E. and Hughes, T.S., "The Emergence Of Rapid Prototyping As A Real-Time 
Software Development Tool", 2nd Intemational Conference on Software Engineering, 
1989, pp 60-64 

221 Ince, D.C. and Hekmatpour, S., "Software Prototyping - Progress And Prospects", 
Information And Software Technology, Vol. 29, No. 1, January/February 1987, pp 8-13 

222 Waterbury, R.C., "APT Cuts Programming Time And Costs", INTECH, May 1991, pp 30-
32 

223 Graham, D.R., "Computer Aided Software Testing: The CAST Report", Unicom Seminars 
Ltd, Brunei Science Park, Cleveland Road, Uxbridge, Middlesex, England, 1991 

203 



224 DirectLink, PANTEK, Stockport, Cheshire 

225 SystemSpecs, AutoLogic Systems Ltd, Famham, Surrey, England 

226 Bates, I.D. et aI., "A Case Study In The Automatic Programming Of A PLC Based Control 
System Using Statemate Statecharts", Newcastle EPSRC Engineering Design Centre, 
England 

227 "Synect User Guides", Hopkinson Computing Limited, 29 Deepdale, Guisborough, 
Cleveland 

22B Pezze, M. et aI., "Graph Models For Reachability Analysis Of Concurrent Programs", 
ACM Transactions on Software Engineering And Methodology, Vol. 4, No. 2, April 1995, 
pp 171-213 

229 Echelon, 4015 Miranda Avenue, Palo Alto, CA 94304, USA 

230 Kordon, F. and El Kaim, W., "H-COSTAM: A Hierarchical Communicating State-Machine 
Model For Generic Prototyping", IEEE, 1995, pp 131-13B 

231 Silva, M. and Velilla, S., "Programmable Logic Controllers And Petri Nets: A Comparative 
Study", IFAC Software For Computer Control, Madrid, Spain, 19B2, pp B3-BB 

232 Harrison, R. et al., "Interactive Visualisation Of Sequence Logic And Physical Machine 
Components Within An Integrated Design And Control Environment", 4th IFAC Workshop 
on Intemational Manufacturing Systems, July 1997, Seoul, Korea 

233 Harrison, R. and Charles, G.P., "Applying Lonworks To The Distributed Control Of 
Manufacturing Machines", Lonusers International Conference 24-25 October 1995, 
Frankfurt, Germany. 

234 Langley, N., "Production Line-Up", Computing, 1 February 1996, p 21 

235 Harrison, R. and Hopkinson P., "Synect: A Method and CASE Tool for Generating 
Distributed Sequence Logic", LUI International Conference, Santa Clara, California, 19-
21 May 1996. 

204 



Appendix A Walkthrough of Synect Application Development 

A.1 Introduction 

This appendix shows how a simple application could be developed using Synect and 

describes business benefits to be gained compared with trad~ional approaches. 

A.2 Description of the Plant Equiplllent 

The diagram shows a flexible manufacturing cell consisting of a feed conveyor, robot arm, 

machine and ex~ conveyor (ex~ conveyor not shown in the diagram). The robot arm is 

shown pos~ioned over the feed conveyor. The robot arm has a gripper which can open 

and close, elevation control and can move between the feed conveyor, the machine and 

the e~ conveyor. The machine executes two phases sequentially to manufacture the 

part. 

The VO associated w~h this equipment (all discrete) is: 

Feed conveyor 

Inputs 

• Proxim~ sensor detecting presence of a new raw part to be machined (1 = part 

present) 

Outputs 

• Conveyor motor control (1 = run motor) 

205 



Robot gripper 

Inputs 

• Umtt swttch on closed posttion (1 = gripper is closed) 

• Umtt sw~ch on open posttion (1 = gripper is open) 

Outputs 

• Solenoid valve control (0 = open gripper. 1 = close gripper) 

Robot ann elevatIon 

Inputs 

• Um~ sw~ch on raised pos~ion (1 = in raised posttion) 

• Umtt sw~ch on lowered pos~ion (1 = in lowered pos~ion) 

Outputs 

• Solenoid valve control (0 = raise arm. 1 = lower arm) 

Robot ann traversal 

Inputs 

• Um~ sw~ch when robot arm is above the feed conveyor (1 = in pos~ion) 

• Um~ sw~ch when robot arm is above the machine (1 = in pos~ion) 

• Um~ sw~ch when robot arm is above the ex~ conveyor (1 = in pos~ion) 

Outputs (valid combinations are (0.0). (0.1). (1,0) Le. (1,1) is invalid) 

• Move towards feed conveyor (1 = move) 

• Move towards ex~ conveyor (1 = move) 

206 



Machine 

Inputs 

• Finished first phase (1 = finished) 

• Finished second phase (1 = finished) 

Outputs (valid combinations are (0,0), (0,1), (1,0) i.e. (1,1) is invalid) 

• Run phase 1 (1 = run) 

• Run phase 2 (1 = run) 

207 



A.3 Description of the Process 

The objective is to machine raw parts to transfoon them into manufactured (finished) parts. 

A raw part arrives on the feed conveyor and leaves via the ex~ conveyor. 

When a new raw part arrives, the robot arm is to pick ~ up and take ~ to the machine 

before returning to ~ "'ome" posttion at the feed conveyor. To avoid collisions w~ fixed 

plant equipment, the robot arm must be in the raised pos~ion when traversing between the 

feed conveyor, machine and extt conveyor. When the machine has finished tts second 

phase, the robot ann should pick up the finished part and take tt to the extt conveyor 

before returning home again. 

The new raw part arrives on the feed 

-fJ conveyor. 

~cr~ Fr ___ _ 
k.::±_. 

[1:rl The robot picks up the raw part ... 

208 



209 

With the arm in the raised posnion in 

order to avoid collisions. 

The part is passed to the machine and 

the machine started ... 

Whilst the robot arm returns to ~s home 

pos~ion. wa~ing for the machine to 

complete ~s operation. 



The robot then picks up the finished part 

from the machine ... 

And takes tt to the exit conveyor via the 

raised posttion again. 

The finished part is passed to the extt 

conveyor. 

210 



And the obo r I relurns horn 

corn l

e. The cycle' 
pele. IS 

211 



AA A Solution Using Synect 

The following pages describe a solution implemented using Synect, using screen-captures 

to show the Synect tools. For completeness, the entire solution is innially described. 

A.4.1 The Object Hierarchy 

'"'-0' 
Assembly 

co, 
geLrn.::tWned.,pwt 
ge~taWJl.t 

/at,Jiorn • .,positlort 
flnlshooJlarUwaila,b1e 

/ 

h .. ' .. -pw' 
new""parL!:waltable 

ready _lo_releaS8-psrt 

ptJt..remOYld 
Illw...p~lIImO¥ld 
raleas8_pe.1t_8nd..JIo_home 

8tNUeed~ 
atarLmacNne 
alOtUeecl 
take_mact1lned_PIlrt_tO("lxlt 
takcU8W_PEU'Uo_rn8Clilne 

lpartJoaded] '" 

part_remC1J8d 
SI8fLmachlnll 
[parUOaded' 

taw."part.Nmovad 
slarUeed 
alop_'ee 

Il8WJlRrt_lVaUable 

I'WO_ItopJeecLconvf¥ojor 

geLma;:hin8dJlNt 
geuaWJlart 

releasl_P81t_8rd_oo_homa 
take_machlnod_pe.rClo_exll 
takeJ8W_PBrUo_machina 

rwLllrvshed,.phas._1 
rwLllllIshed,.phase_2 

atJlomlJlosltlon 
holdlrig...,part 
rellly _lo_releaseJlIIft 

,---Lu-, 

Gripper 
rwl_o/ip_open IWo_opeo_grlp 
rwl_grlp_closed rwo_closl_grlp 

8Jm_up 
aUilxlt 

aUeed 
&Lmaclllne 
grip_closed 

grip_open 

Am 

goto .• machlne 
lower_anTI 
open..grlp 
rals&_ann 

Elevation 

rwLaLmachlna 
rwLaLexlt 

Ilnishoo.jlarLav'ilable 

Am 

rwo_startJlhasl_l 
r.v~'-st.Lphas,-2 

8Laxil 
aC/eed 
aLmachlna 

Translation 1WO .• goto_16Eld 
IWO....oOl(Lmachln& 

1W0....ooto_8)(H 

The object hierarchy shows the objects modelled in the solution, the communication 

between them and the interface wITh the planfs sensors and actuators (referred to as real

world inputs and outputs). At the highest level of abstraction, the application consists of an 

assembly cell. This is comprised of a feed conveyor, a machine and a robot (the exit 

conveyor is ignored because n is assumed to run continuously). The robot consists of a 

gripper, ann elevation control and ann translation control. 

212 



The vertical arrows indicate messages between objects (only adjacent layers i.e. the 

assembly cell cannot communicate directly with the gripper, for example). For example, 

the arrow from the bottom of the assembly cell object includes a reference to message 

"geCmachined...))al1" indicating that ij sends this message to one of ijs children. 

Correspondingly, the robot object also refers to this message beside the arrow into the top 

of ijs box. 

A.4.2 Assembly Cell STD 

Initialised 

-.. rwUP 

.. starl...teed 

• • 
Idle 

., new...,parLavailable 
.., finishecLparLavailable 

• geUaw_part .. geLmachlned-P'lrt 
• stop_feed 

getting getting 

raw machined 
part part 

.., holdl ng..part .., holdlng..part 

-"l raw_parLremoved -. part...removed 

• start...feed , take_machined_parLto_exlt 
.. take raw paILto_machine 

taking taking 

rawJltB.rI machined...,part 
to_machine to_exit 

.., ready _to_release_part 

• [part...loaded] 
..., ready_to_release_part 

• release-P'lrt...an(Lgo_hcme ., releas8_parLancLgo_home 
.. starLmachine 

machining retuming 

part home 

..., aChomeJXlsition ...., aCheme_position 

The diagram shows the state transijion diagram (STD) corresponding to the "Assembly 

Cell" object. The inijial state is "Initialised". When condition "rwLgo· is true, the transijion 

from state "Inijialised" fires, invoking the action to send message "starUeed" to the feed 

213 



conveyor object and changing the current state to "Idle". From state "Idle", the STD awaits 

receipt of either the "newJllllLavailable" message or the "finishedJlarCavailable" 

message. 

The condttions and actions can be seen to correspond to the text shown around the 

"Assembly Cell" object. 

214 



A.4.3 Feed Conveyor STD 

• • 
off 

no_raw-part 

.J startJeed 

--. rwo_starCfee<Cconveyor 

on 
no_raw...,part 

- rwLnewJ8w-part 

J new...,part_avallable 

on 
new_raw-part 

.J stop_feed 

- rwo_stop_fee<Cconveyor 

off 
new_rawJlart 

.J raw_parLremoved 

215 



.A.4.4 Machine STD 

off 
no...,part 

t I 
..J pruUemoved ..J [parUoaded] 

off 
off 

finlshed-part 
raw-part_loaded 

available 

..J start_machine 

- lWo_startJlhase 

- rwUlnlshed-phase~ 

j finishectparLavailabre 

on on 
phase_2 phase_l 

- rwUlnished-ph 

- rwo_start...,phase 

216 



A.4.5 Robot STD 

! ~ 
at 

home 

1 .... "e,_ raw_p~, 1 ~ geCmachinec!...part 

getting getting 
raw machined 
part part 

1 • holdine oart 1 ~ holdinlLPart 

holding holding 
raw machined 
part part 

~ take_raw.JJart_to_machlne ..J take_machined.JJart_to_exit 

taking taking 
raw...,part machined.JJart 

to_machine to_extt 

J ready_to_reiease_part --t ready_to_release_part 

aCmachine aCextt 
ready ready 

to_release to_release 

....J release-par1_and_go_home .J releas8...,part_and_90_home 

goinQ....home going_home 
from_machine from_exit 

...3 aLhome_position --t aChome_position 

The robot STD shows examples of macro states (represented by very thick borders). 

Each macro state contains a sub-sequence STD, as shown in the STDs on the following 

page. 

217 



Getting Raw Part Taking Raw Part To Machine Going Home From Machine 

START START START 

.Iowecarrn 
.. raise_arm 

-. open.....Qrip 
--. raise arm 

lowering 

raising 
arm openin9-grip 

and 
ann 

.., arm_up raisin9-arm 

., arm_down ... gato_machlne ., arm_up 
., grip open 

-. close_grip moving_ann 
across_to -. gato_feed 

machine 

closing .., aLmachine 
moving_arm 

across 
grip -.Iowecarm to feed 

., grip_closed lowering 
.., aUeed 

arm 

END ., arm_down END 

END 

Getting Machined Part Taking Machined Part To Exit Going Home From Exit 

START START START 

---. gato_machine 
... goto_ex~ 
-, raise arm 

---. open--9rip 
• raise arm 

moving movin9_arm_acoss openin9-grip 
across to_exit and 

to_machine andJaising_arm raising_arm 

.., aCmachine .., arm_up .., arm_up 

-, lower_arm .., aLex~ .., grip_open 

-, lower_arm ... goto_feed 
lowering 

arm moving 
lowering arm_across 

.., arm_down arm to_feed 

-. close_grip .., aUeed 

closing .., arm_down 

grip 

END 
., grip_closed END 

END 

218 



A.4.6 Gripper STD 

+ 
open 

..J close_grip 

- rwO_CIOS8-9r1p 

closing 

- rwLgrlp_closed - rwLgrlp_open 

.J grip_closed .J grip_open 

closed 

..J open-l)rlp 

- rwo_open..,grip 

opening 

219 



A.4.7 Ann ElevatIon STD 

~ 

up 

.J lowecarm 

- rwo_lowecarm 

going 
down 

- rwLarm_down 

.J arm_down 

down 

.J raise_arm 

- rwo_raise_ann 

going 
up 

220 

- rwLarm_up 

J arm_up 



A.4.8 Ann Translation STD 

1 r 
..J goto_leed going ..J goto_le ad 

--
- !Wo_goto_feed to _Ieed - !Wo_goto 

leed 

at - IWI aUeed at 
machine J aUeed exit 

at 
- rwl aLmachine leed 

J aLmachine I L: 
..J goto_exij 

..J goto_machlne - !Wo_goto_exit - rwLaLe xij 

- rwo_goto_machine going J aLexij 
to 

going exit 
to 

machine 

..J goto exij 

- rw0-90to_exlt 

221 



A.4.9 Using T1Ie Synect Tools to Develop T1Ie Application 

A.4.9.1 Specify 

., new_part_avallable 

, geUawJlart 
-; stop_feed 

., holdin!l...Part 

The analyst uses the Application Editor to specify the object hierarchy and the STDs. The 

Ed~or provides better support than a standard drawing package by being method·aware. 

For example, typing each name once and then using pick·lists assists in the early 

development of a syntactically correct specijication. 

Even at this stage, the diagrams could be printed out and used as the basis of a review 

w~ the end-user. The use of clear and simple notations in the object hierarchy and state 

trans~ion diagrams enables the review team to focus on one aspect of the application at a 

time. Mu~i-disciplinary review teams can therefore be highly effective. 

On subsequent projects, objects could be re-used to minimise development time and cost. 

222 



A.4.9.2 Compile 

Place to STD/State Cross-Reference 

FeedlConveyor.maln offlnoJaw-part 
FeedlConveyor.maln onlnoJaw-part 

Conveyor.maln on, •. _ .. _.aw_I"'" 

Conveyor.maln 

The Compiler verifies that the specnication is syntactically correct and derives a 

corresponding Petri net, producing diagnostic information such as a cross-reference from 

Petri net place to STD state. 

To gain addttional confidence in the correctness of the logic, a part of the application may 

be extracted and written to a separate file for subsequent analysis and simulation. For 

example, the behaviour of the robot and tts children could be investigated. Where large 

applications make the analysis of the whole system infeasible, this mechanism provides a 

mechanism for partttioning the system into intuttively meaningful SUb-systems wtth limtted 

scope. 

223 



A.4.9.3 Analyse 

The analyst checks the behavioural properties of the application. The Analyzer generates 

the reachability tree and summarises the number of deadlocks, unreachable states and 

dead transttions found. More detailed information is written to a list file. 

224 



The analyst invokes the Analyzer's deadlock query dialog to obtain more information 

about the deadlock and can generate a text file showing the state evolution from start to 

the deadlocked state and can also save this information as an event log for replay via the 

Simulator. 

225 



The analyst can use the state search query dialog to test for reachable states. In the 

example above, the query has revealed that the application can reach a system state 

where the arm elevation is down whilst at the machine with the machine running the first 

phase of its operation. As with the deadlock dialog, the path from the system's start state 

to the state found can be saved to a text file or as an event log for replay via the Simulator. 

A library of queries can be saved to disk for subsequent application verification following a 

modnication. 

The Analyzer offers the analyst considerably greater confidence in the control logic. 

Simulation tools alone would not guarantee that the particular sequence of events 

resulting in the deadlock, for example, would be tested. In the example, the path to 

deadlock is inttiated by a new raw part arriving at the feed conveyor whilst the machine is 

busy. The robot fetches the new raw part but cannot pass tt to the machine, nor can tt 

fetch the finished part from the machine. If the simulation testing always allowed the 

machine to finish before the next new raw part arrived, the fau~ would go undetected. 

After the system has entered beneficial operation, extemal factors such as a de

bottlenecking exercise on the upstream plant equipment, could the cause the logic error to 

mannest itseW, resu~ing in plant downtime and consequently lost production. 

226 



A.4.9.4 Simulate and Animate 

The STD Monttor application shows the current state of each STD in grey. The application 

is loaded into the Simulator and one of the event logs written by the Analyzer is loaded (in 

the graphic above, the event log corresponding to the deadlock was loaded). The STD 

Monttor then shows the system state at the end of the event log (i.e. the system state at 

deadlock in the above example). 

2Z1 



Using the Simulator's control panel. the analyst Single-steps the application through the 

event log to detennine why the deadlock occurred. After each step. the STD Monttor 

shows the current state of the STDs on display . 

rwLmm_up 
rwLaCfeed 
rwLaLmachine 
rwLaLexit 

) rwi_finished-phasB_l 
rwi_finished-phasB_2 

• Real World Outputs ~(ij r.J I -- . 21 :55:55.94 

:56:02.48 
:56:06.43 
:56:12.97 
:56:13_08 
:56:17_86 
:56:19_94 
:56:23_18 
:56:23.40 
:56:23_51 

228 

rwo_starLfeed_conveyor 
rwo_stop_feed_conveyor 
rwo_loweCtmn 
rwo_close_grip 
rwo_starLfeed_conveyor 
rwo_rajss_arm 
rwo_gotD_ma.chine 
rwo_lower_arm 
rwo_st"rLph"ss_1 
rwo_open_9rip 
rwo_raiss_e.rrn 



The analyst can "drive" the application interactively via the Simulator. When instructed to 

execute the model (by clicking on the Record button on the Simulator control panel), the 

"Real Wood Input Status" dialog shows which real-world inputs are being examined via the 

">" symbol. The analyst selects the entry to simulate the condHion being satisfied. The 

status of these real-world inputs is reflected in the STD MonHor display on the Object 

Hierarchy and STD displays. 

As the Simulator fires transHions, time-stamped references to the corresponding real-world 

outputs are appended to the Real-Wood Outputs dialog. 

The analyst can stop the execution of the Petri net, scroll backwards and forwards through 

the event log and begin executing from a different system state. The event log can be 

saved to disk and reloaded for replay as a demonstration to the end-user of a scenario of 

the system's reaction to a sequence of events. 

Attemative visualisations of system behaviour, such as 3D modellers and process-industry 

mimics, can be obtained through the use of extemal software packages communicating 

wHh the Simulator to read and wrHe real-world input statuses and be notified of real-world 

output invocation. 

These extemal package can also be used as an attemative user interface for drtving the 

simulator, useful for operator training, or to determine performance attributes. For 

example, a 3D software package could emUlate the arm elevation equipment by waHing 

for the "rwo_raise_arm" real-world output, delaying by a pre-configured period and then 

setting the "rwLarm_up" real-world input. An addHional application could then 

communicate wHh the Simulator to determine performance characteristics, such as cycle 

time, machine utilisation statistics, etc .• 

As a consequence, the analyst is able to gain a m uch deeper understanding of the 

behaviour of the proposed control logic and has an effective means for reviewing this 

behaviour wHh a mutti-disciplinary team. 

Typical development is Herative, reflecting "round-trip gestatt design" [441, wHh the analyst 

correcting errors and verifying the behaviour via a review process wHh process, operations 

and control system personnel. For the purposes of this example, the specification is now 

assumed to be as required - an unambiguous and well-understood specification of the 

required control system behaviour. 

229 



A.4.9.5 Code Generation 

The Petri net is an excellent model for the oontrol logic for which code generators can 

easily be developed. Synect currently includes relay ladder logic, Echelon LonWorks 

Neuron C and ANSI C code generators. The use of the ANSI C code generator will be 

described. 

The example above generates scan-based ANSI C code, wtth a call to a function 

corresponding to each STD and wrtting details of transttions fired to a circular event log. If 

the target control system exhibtts anomalous behaviour, the event log can be copied to a 

remote computer and investigated via the Simulator and STD Monitor. 

The "Send messages to hosf' checkbox provides a mechanism for the control system to 

report the firing of transttions to a remote application in real-time. Other code generators, 

such as the Neuron C Code Generator, require the remote application to poll the control 

system for tts current state. In each case, the goal is to display the current state of the live 

oontrol system using the STD Monttor to animate the analyst's original specffication. 

230 



These faciltties ensure that the code produced is a fatthful representation of the specffied 

control logic, ensure consistency of implementation archttecture and facilttate rapid 

maintenance through the use of bui~-in diagnostics. 

The files produced by the code generator from the above configuration are as follows. 

A.4.9.S.1 Demo.c 

/-
e control program corresponding to C: \SYNEel'\Dmo.sYN 

Generated ~ Synect C Code Generator Vl.S 
Synect is a registered trademark belonging to: 

Hopkinson Computing Limited 
29 Deepdale, Pine Hills, Guisborough, Cleveland, TS14 BJY, England 
Te1/Fax: +44 (0) 1287 638606 
erne!l: synect@hopkinsn.demon.co.uk 

Generated at: Men Aug 24 23:35:25 1998 

Program type : scan based 
Code for integration purposes omitted from program 
Call to function per STD inserted in program 
Program writes to event log of size 50 records 
Program does not send messages to host 

Related files (compile as C source and link in, or replace with your own): 
.RWI Skeletal real world input functions 
.RWO Skeletal real world output functions 
.ENV Functions under the control of the target environment 
.STD Skeletal function per STD 

-/ 

/* Application-independent constant definitions */ 
#define TRUE 1 
#define FALSE 0 
#define RWI~_TESTED 0 
#define RWI-OlSABLED 1 
#define RWI_ENABLED 2 

/* Application-independent typedefs * / 
typedef int (*REAld'lORLD_INPUTJ1)NC'l'ION) () ; 
typedef void (*REAL_WORLD_OUTPUTJUNcrION) () 
typedef void (*STD_F'UNcrION) () ; 

/* Include the application-dependent defines and declarations */ 
'include "demo.h" 

/* Application-independent user function declarations */ 
extern void initialise_environment (void) 
extern void dead1oc~detected (void) ; 
extern void sc~complete (int) ; 
extern struct el_date_timeJ;truct get_current_date_time (void) 
exte:rn void event_log_error (int) ; 

231 



/* Function prototypes */ 
int main (void) ; 
void initialise (void) 
int is_transJlet_enabled (int) ; 
int is_trans_io_enabled (int) j 

1nt select_trans_to_fire (void) ; 
int fire~ILtrans (int) ; 
void invoke_trans~o~eal_worl~outputs (int) ; 
extern void Fe~ConveyorJllClin (int) ; 
extern void Fe~ConveyorJlew-part_available (int) 
extern void GripperJllClin (int) ; 
extern void Gripper-.QriP_closed (int) ; 
extern void Gripper-.Qrip_open (int) ; 
extern void Arm.....Elevatiorunain (int) ; 
extern void ArIrLElevatiOtLB.InLdown (int) 
extern void Arm.....Elevatio~B.InLup (int) ; 
extern void Arm-Translatiorunain (int) ; 
extern void Arm-Translatio~at_exit (int) 
extern void Arm-Translatio~aLfeed (int) 
extern void Arm-Translatio~atJUachine (int) 
extern void RobotJUain (int) ; 
extern void RobotJUal~tting~aw-part (int) ; 
extern void RobotJUain_taking~aw-part_toJllCichine (int) 
extern void Robot-mai~oing~ome_fro~chine (int) ; 
extern void Robot~i~ettingJUachine~art (int) i 

extern void RobotJUai~takingJUachin~art_to_exit (int) 
extern void Robo~~oing~ome_fromLexit (int) ; 
extern void Robot_at-porne-position (int) ; 
extern void Robot-polding-part (1nt) i 

extern void Robot_ready_to_release-part (int) 
extern void Robot_clos~ip (int) i 

extern void Robot-soto_ex1t (int) ; 
extern void Robot-9'oto_feed (int) ; 
extern void Robot-9'otoJUachine (1nt) 
extern void Robot_lower_ann (int) 
extern void Robot_oPeD-grip (int) 
extern void Robot_raisELann (int) 
extern void MachineJUain (int) i 

extern void Machine_finish~art_available (int) 
extern void Asseffibly_CellJllCiin (int) i 

extern void Asseffibly_Cell-9'etJllCichin~art (int) 
extern void Asseffibly_Cell-9'et_raw-part (int) ; 
extern void Asseffibly_Cell-partJemoved (int) ; 
extern void Asseffibly_Cell_raw-part_removed (int) 
extern void Asseffibly_Cell~elease-part_an~o_home (int) 
extern void AsseffiblY_Ce11_start_feed (int) ; 
extern void Assembly_Cell~tartJllCichine (int) i 

extern void Assembly_Cell~top_feed (int) i 

extern void Assembly_Cell_takeJM.chine~art_to_exit (int) 
extern void Assembly_Cell_takeJaw-part_to~hine (int) ; 
void save~i_change (int. int) i 

void save-p~trans_fired (int) i 

void write_to_event_log (int. into int) i 

/* Application-dependent user function prototypes */ 
extern int rwiJlew_raw-part (void) i 

extern 1nt rwi-.Qrip_closed (void) 
extern 1nt rwi-.Qrip_open (void) ; 
extern int rwi_BInLdown (void) ; 
extern int rwi_aIllLup (void) ; 
extern 1nt rw1_at_machine (void) 
extern int rwi_at_exit (void) ; 
extern int rwi_at_feed (void) ; 
extern int rwi_finish~hase_l (void) 

232 



extern int rwi_finish~hase_2 (void) ; 
extern int rwi_go (void) ; 
extern void rwo_start_fe~conveyor (void) 
extern void rwoJitop_fee(Lconveyor (void) 
extern void rwo_close~rip (void) ; 
extern void rwo_open.....grip (void) 
extern void l"WO_lower_arm (void) ; 
extern void rwoJaise_atm (void) ; 
extern void rwo~oto~chine (void) 
extern void rwo~oto_exit (void) ; 
extern void rwo~oto_feed (void) ; 
extern void rwo_start-Phase_l (void) 
extern void rwo_start....Phase~ (void) 

/* Structure declarations * / 
R.E,Ak.WORLD_INPtITJ"UNCTION real_worlcLinputJoutine [J 

rwiJl,ew_raw...,part. 
rwi-9rip_closed. 
rwi-9rip_open. 
rwi_aIIrLdown. 
rwi_artrLup. 
rwi_at-Pl8-chine. 
rwi_at_exi t. 
rwi_at_feed. 
rwi_finisheCLphase_l, 
rwi_finishedlphase_2. 
rwi-so} ; 

R.EAk.WORLD_OurPUTJ"UNCTION real_worlcLoutputJoutine [1 
l"WO_start_feeCLconveyor, 
rwo_stop_fe~conveyor, 

rwo_close~rip. 

l"WO_opeILgrip. 
l"WO_lower_arm. 
rwoJaise_arrn. 
rwo-soto~chine. 

rwo-soto_exi t. 
rwo-soto_feed. 
rwo_start....Phase_l. 
rwo~tart....Phase-2} 

struct trans_io_struct 
int n~eal_worlcLinput_routines 
int rwi_index [~WORLD_INPl1I'J.IST_SIZE] 
int n~eal_worlcLoutput_routines ; 
int rwo_index [REAL_WORLD_Ol1I'PUT~IST~IZEl ; 

STDJ'(JNCTION place_to_std (] 
Fe~Conveyor~in. 

Fe~Conveyor-main. 

Fe~Conveyor~in. 

Feed_Conveyor~in. 

Fe~Conveyor-Pew....Part_available. 

F~Conveyor-Pew....Part_available. 

Gripper,Jnain. 
Gripper,Jnain. 
Gripper~in. 

GripperJMin, 
Gripper-srip_closed, 
Gripper-srip_closed, 
Gripper-srip_open. 
Gripper-srip_open. 
~levatio~in. 

233 



ArmLSlevatio~n, 

~levatio~n, 

~levatio~n, 

~levatio~~down, 

ArnLElevatiOILart1Ldown, 
~levatio~art1Lup, 

~levatio~art1Lup, 

Arm-Translati~in, 

~Translati~in, 

~Translatio~in, 

~Tran81atio~in, 

Arm-Translatio~in, 
~Translatio~in, 

Arm-Translation-at_exit, 
Arm-Translati~at_exit, 

~Translation-at_feed. 

~Translation-at_feed, 

~Translation-at-machine, 

Arm-Translation_at-machine, 
RobotJMin, 
RobotJMin, 
RobotJllAin, 
RobotJM.in, 
RobotJll8.in, 
RobotJMin, 
Rooot...;nain, 
RobotJ[lain, 
RoootJIIBin, 
RobotJM.in, 
RobotJllAin, 
RobotJll8.i~etting~aw-part, 

RobotJMi~etting~aw-part, 

RoootJMin-getting~aw-part, 

RobotJMi~taking~aw-part_toJll8chine, 

RobotJMi~taking~aw-part_toJ[lachine, 

RobotJMi~taking_raw-part_toJ[lachine, 

RoOOtJll8.in-taking~aw-part_toJ[lachine. 

RobotJll8.i~going_home_fr~chine. 

RoootJll8.i~oing-Porne_fr~chine. 

RobotJMi~oing-pome_fro~chine, 

RobotJMi~ettingJMChin~art, 

RobotJMi~ettingJMchin~art, 

RobotJM.in-gettingJMchin~art, 

RobotJll8.i~ettingJMchine~art, 
RobotJll8.in-takingJ[lachine~art_to_exit, 

RobotJMin-takingJ[lachine~art_to_exit, 

RobotJ[lain-takingJMchine~art_to_exit, 

RobotJMi~oing-pome_fromLexit, 

RobotJll8.i~oin~ome_fromLexit, 

RobotJMi~going~ome_frornLexit, 

Robot_at~ome-position, 

Robot_at~ome-position, 

Robot~olding-part, 

Robot~olding-part, 

Robot_ready_to~elease-part, 

Robot_ready_to_release-part, 
Robot_close-srip, 
Robot_close-srip, 
Robot-soto_exit, 
Robot-soto_exit, 
Robot-soto_feed, 
Robot-soto_feed, 
Robot-sotoJll8.chine, 
Robot_gotoJll8.chine, 

234 



Robot_lower_arm, 
Robot_lower_arm, 
Robot_o~rip, 

Robot_op~rip, 

Robot~aise_arm, 

Robot~aise_arm, 

MaehineJ[lain, 
Maehine....main, 
MaehineJM,in, 
MaehineJrlB,in, 
MaehineJ[lain, 
Maehine_finish~art_available, 

Maehine_finish~art_available, 

AssemblY_Cell.,;nain, 
Assembly_Cel1~in, 

Assembly_Cel1~in, 

Assembly_Cell~in, 

Assembly_Cell.,;nain, 
Assembly_Cell~in, 

Assembly_Cel1~in, 

Assembly_Cell~in, 

Assembly_Cell-set-maehin~art, 

Assembly_Cell-setJ[laehin~art, 

Assembly_Cell-set~aw-part, 

Assembly_Ce11-set_raw-part, 
Assembly_Cell-part_removed, 
Assembly_Cell-part_removed, 
Assembly_Cell~aw-part~emoved, 

Assembly_Cell~aw-part_removed, 

Assembly_Cell_release-part_an~go-pome, 

Assembly_Cell~elease-part_and-so-pome, 

AssemblY_Cell_start_feed, 
A5sembly_Cell_start_feed, 
AssemblY_Cell_start-maehine, 
Assembly_Cell_start~ehine, 

Assembly_Cell_stop_feed, 
Assembly_Cell_stop_feed, 
Assembly_Cell_take-maehin~art_to_exit, 

Assembly_Cell_take-maehin~t_to_exit, 

Assembly_Cell_take~aw-part_toJ[laehine, 

Assembly_Cell_take~aw-part_toJ[laehine} ; 

/* Global definitions */ 
int I [Nill\...TRlINSI [Nill\...PLACESI 
int 0 [Nill\...TRANSI [Nill\...PLACESI 
int curr~king [~PLACESl ; 
street trans_io_struet trans_io [NrnLTRANS] 
int tranS....Jlet_enabled (NtJt.LTRANS] ; 

int trans_io_enabled [~TRANS] 
int rwi_status (~] ; 
FILE *event_log_fp = NULL ; 
long int start_inde~os = 0 
long int ree_l-pos = 0 ; 
int elJ;tartJYIBIking [~PLACESl 
street el_date_timeJ;truet el_start_date_time 
int el_start-index = 0 ; 
int el_curr_index = 0 
int el_is_full = 0 

int main (void) { 
int i, n~et_enabled, n~io_enabled, pn_trans_to_fire 

initialise () ; 

235 



1* Forever *1 
while (TRUE) ( 

1* Find which transitions are enabled wrt Petri Net and ilo *1 
numLPet_enabled = n~io_enabled = 0 ; 
for (i=O i i < ~TRANS ; i++) ( 

if (transJlet_enabled (i) = is_transJlet_enabled (i» ( 
numLPet_enabled++ ; 
if (trans_io_enabled (i) = is_trans_io_enabled (i» 

n~io_enabled++ ; 

else 
transJo_enabled (i 1 FALSE 

1* If there are no net transitions enabled, the system is deadlocked *1 
if (nUll\...JleLenabled == 0) 

deadlock....detected () ; 
else ( 

1* If one or more transitions are ilo enabled *1 
if (nUIYLio_enabled >= 1) ( 

1* Select which transition to fire *1 
p~trans_to_fire = select_trans_to_fire () 

1* Change the net marking *1 
if (fire-p~trans (p~trans_to_fire» 

1* And invoke the real_worl~output routines to control actuators etc. *1 
invoke_trans_io~eal_worl~outputs (pn-trans_to_fire) ; 

1* Call each STD's function, letting it know the current state *1 
for (i=O ; i < ~PLACES i i++) 

if (curr...marking (i] > 0) 

(*place_toJ;td [i) (i) i 

1* Find out how many transitions are ilo enabled ready for calling 
the sc~camplete function (it may decide to perfonm another iteration 
immediately if one or more transitions could fire) *1 

numLPet_enabled = n~io_enabled = 0 ; 
for (i=O ; i < ~TRANS ; i++) { 

if (transJlet_enabled (i] = is_transJlet_enabled (i» { 
nUll\...Jlet_enabled++ ; 
if (trans_io_enabled [i] = is_trans_io_enabled (i» 

nllroLio_enabled++ ; 

else 
trans_io_enabled [i) FALSE 

1* Call the environment function to denote scan complete. Called function might 
want to invoke a delay or schedule a wake-up to control the iteration period to 
prevent this task from monopolising the processor *1 

sc~camplete (n~io_enabled) 

1* end forever *1 
return(O) ; 

I * end function main * I 

236 



void initialise 11 { 

int i, j ; 

/* Initialise the environment (such as the controlled system) */ 
initialise_environment 0; 

/* Initialise Petri Net to no arcs anywhere */ 
for (1=0 ; i<NUM-TRANS ; i++) 

for (j=O : j~LACES ; j++) 
I [iJ (jJ = 0 (iJ [jJ = 0 

/* Initialise Petri Net arcs */ 
I [ OJ [ OJ 1 
o [ OJ [ 1J 1 
0 ( OJ [ 110] 1 
I ( OJ [ 111J 1 
I [ 1J [ 1J 1 
0 [ 1J [ 2J 1 
I [ 1J [ 4J 1 
0 [ 1J [ 5J 1 
I [ 2J [ 2J 1 
0 [ 2J [ 3J 1 
0 [ 2J [ 114J 1 
I [ 2J [ 115] 1 
0 [ 3J [ OJ ·1 
I [ 3J [ 3J 1 
0 [ 3J [ 106] 1 
I [ 3J [ 107J 1 
0 [ 4J [ OJ 1 
I [ 4] [ 1] 1 
0 [ 4] [ 114] 1 
I [ 4J [ 115J 1 
0 [ 5] [ 4] 1 
I [ 5] [ 5] 1 
I [ 5J [ 92] 1 
0 [ 5J [ 93J 1 
I [ 5J [ 102J 1 
0 [ 5] [ 103J 1 
I [ 5J [ 114J 1 
0 [ 5J [ 115J 1 
I [ 6J [ 6J 1 
0 [ 6J [ 7J 1 
0 [ 6J [ 71J 1 
I [ 6J [ 72J 1 
I [ 7J [ 7J 1 
0 [ 7J [ 8J 1 
I [ 7J [ 10J 1 
0 [ 7J [ 11J 1 
I [ 8J [ 8J 1 
0 [ 8J [ 9J 1 
0 [ 8] [ 81] 1 
I [ 8J [ 82J 1 
0 [ 9J [ 6J 1 
I [ 9] [ 9] 1 
I [ 9J [ 12] 1 
0 [ 9] [ 13] 1 
0 [ 10J [ 10] 1 
I [ 10] [ 11] 1 
I [ 10J [ 40J 1 
0 [ 10] [ 41J 1 
0 [ 10J [ 55] 1 

237 



I ( 10] 5B] 1 ; 
I ( 10] 67] 1 
o ( 10] 6B] 1 
o ( 11] 10] 1 
I ( 11] 11] 1 
I ( 11] 35] 1 
o ( 11] 36] 1 
o ( 11] 45] 1 
I ( 11] 47] 1 
I ( 11] 67] 1 
0 ( 11] 6B] 1 
0 ( 12] 12] = 1 
I ( 12] 13] 1 
o ( 12] 20] 1 
I ( 12] 21] 1 ; 
I ( 12] 44] 1 
0 ( 12] 44] 1 
I ( 12] 63] 1 
0 ( 12] 64] 1 
I ( 12] 75] 1 
0 ( 12] 76] 1 ; 
o ( 13] 12] 1 ; 
I ( 13] 13] 1 
o ( 13] 20] 1 
I ( 13] 21] 1 
I ( 13] 39] 1 
o ( 13] 39] 1 
I ( 13] 53] 1 
0 ( 13] 54] 1 ; 
I ( 13] 75] 1 ; 
o ( 13] 76] 1 
I ( 14] 14] 1 
0 ( 14] 15] 1 
0 ( 14] 79] 1 
I ( 14] 80] 1 
I ( 15] 15] 1 
0 ( 15] 16] 1 
I ( 15] 18] 1 
0 ( 15] 19] 1 
I ( 16] 16] 1 
o ( 16] 17] 1 
o ( 16] 83] 1 
I ( 16] 84] 1 
o ( 17] 14] 1 
I ( 17] 17] 1 
I ( 17] 20] 1 
0 ( 17] 21] 1 
o ( 18] 18] 1 
I ( 18] 19] 1 
I ( 18] 42] 1 
0 ( 18] 43] 1 
o ( 18] 59] 1 
I ( 18] 61] 1 
I ( 18] 69] = 1 
o ( 18] 70] 1 
o ( 19] 18] 1 
I ( 19] 19] 1 
I ( 19] 35] 1 
0 ( 19] 35] 1 
I ( 19] 46] 1 
o ( 19] 47] 1 
I ( 19] 71] 1 
o ( 19] 72] 1 
o ( 20] 18] 1 

238 



I ( 20J 19J 1 
I ( 20J 37J 1 
o ( 20) 38) 1 , 
o ( 20) (8) 1 
I ( 20) 51) 1 
I ( 20) 69) = 1 
0 ( 20J 70) 1 
0 ( 21) 18) 1 
I ( 21) 19) 1 
I ( 21) 40J 1 , 
0 ( 21) (0) 1 
I ( 21) 57) 1 
o ( 21) 58) 1 
I ( 21J 71) 1 
o ( 21) 72) 1 , 
o ( 22) 20) 1 
I ( 22J 21) 1 
I ( 22J 37) 1 
0 ( 22J 37) 1 
I ( 22) (9) 1 
0 ( 22J SO) 1 
I ( 22J 77) 1 
0 ( 22) 78) 1 
0 ( 23) 20) 1 
I ( 23) 21) 1 
0 ( 23) 28) 1 
I ( 23) 29) 1 
I ( 23) (2) 1 
0 ( 23) (2) 1 , 
I ( 23) 60) 1 , 
0 ( 23) 61) 1 , 
I ( 23) 79) 1 , 
o ( 23) 80) 1 
I ( 24) 22) 1 
0 ( 24) 23) 1 , 
o ( 24) 77) 1 , 
I ( 24) 78) 1 , 
I ( 25) 22) 1 , 
o ( 25) 26) 1 
o ( 25) 73) 1 
I ( 25) 74) 1 
I ( 26) 23) 1 
0 ( 26) 24) 1 , 
I ( 26) 32) 1 , 
o ( 26) 33) 1 
I ( 27) 24) 1 
0 ( 27) 25) 1 
o ( 27) 75) 1 
I ( 27) 76) 1 
I ( 28) 26) 1 
o ( 28) 27) 1 
I ( 28) 28) 1 
0 ( 28) 29) 1 
0 ( 29) 25) 1 
I ( 29) 27) 1 
0 ( 29) 75) 1 
I ( 29) 76) 1 
I ( 30) 24) 1 
0 ( 30) 26) 1 
o ( 30) 73) 1 
I ( 30) 74) 1 
0 ( 31) 22) 1 
I ( 31) 25) 1 
I ( 31) 30) 1 

239 



o [ 31] [ 31] = 1 
o [ 32] [ 30] 1 
I [ 32] [ 31] 1 , 
0 [ 32] [ 34] 1 
I [ 32] [ 44] 1 
o [ 32] [ 62] 1 
I [ 32] [ 64] 1 
I [ 32] [ 65] 1 
0 [ 32] [ 66] 1 
0 [ 33] [ 30] = 1 
I [ 33] [ 31] 1 
0 [ 33] [ 34] 1 
I [ 33] [ 39] 1 
0 [ 33] [ 52] 1 
I [ 33] [ 54] 1 
I [ 33] [ 65] 1 
0 [ 33] [ 66] 1 
o [ 34] [ 32] 1 
I [ 34] [ 33] 1 
I [ 34] [ 40] 1 
0 [ 34] [ 40] 1 
I [ 34] [ 56] 1 
o [ 34] [ 57] 1 
I [ 34] [ 79] 1 
o [ 34] [ 80] = 1 
o [ 35] [ 32] 1 
I [ 35] [ 33] 1 
I [ 35] [ 37] 1 , 
0 [ 35] [ 37] 1 , 
I [ 35] [ 50] 1 , 
0 [ 35] [ 51] 1 
I [ 35] [ 79] 1 
o [ 35] [ 80] 1 , 
I [ 36] [ 34] 1 
0 [ 36] [ 35] = 1 
I [ 36] [ 45] 1 
o [ 36] [ 46] 1 
I [ 36] [ 79] 1 , 
o [ 36] [ 80] 1 
o [ 36] [ 102] 1 
I [ 36] [ 103] 1 
I [ 37] [ 36] 1 
o [ 37] [ 37] 1 , 
I [ 37] [ 48] 1 , 
o [ 37] [ 49] 1 
I [ 37] [ 83] 1 
0 [ 37] [ 84] 1 , 
o [ 37] [ 118] 1 , 
I [ 37] [ 119] 1 , 
I [ 38] [ 38] 1 
0 [ 38] [ 39] 1 
I [ 38] [ 52] 1 
0 [ 38] [ 53] 1 
I [ 38] [ 81J = 1 
o [ 3B] [ B2] 1 , 
I [ 3B] [ B3] 1 
0 [ 3B] [ 84] = 1 
0 [ 3B] [ lOB] 1 , 
I [ 3B] [ 109] 1 , 
I [ 39] [ 34] 1 
o [ 39] [ 40] 1 
I [ 39] [ 55] 1 , 
0 [ 39] [ 56] 1 
I [ 39] [ 77J 1 

240 



0 ( 39) 78) 1 
0 ( 39) 100) 1 
I ( 39) 101) 1 
I ( (0) (1) 1 
o ( (0) (2) 1 
I ( (0) 59) 1 
o ( (0) 60) 1 
I ( (0) 73) 1 
o ( (0) 74) 1 
I ( (0) 83) = 1 
0 ( (0) 84) 1 
0 [ (0) 116) 1 
I ( (0) 117) 1 
I ( (1) (3) 1 
o ( (1) (4) 1 ; 
I ( (1) 62) 1 ; 
o ( (1) 63) 1 ; 
I ( (1) 81) 1 
0 ( (1) 82) 1 
I ( (1) 83) 1 ; 
0 ( (1) 84) 1 
o ( (1) 108) 1 
I ( (1) 109) 1 
0 ( (2) 65) 1 
I ( (2) 66) 1 
o ( (2) 92) 1 
I ( (2) 98) 1 
o ( (3) 65) 1 
I ( (3) 66) 1 
o ( (3) 92) 1 
I ( (3) 95) 1 
0 ( (4) 67) 1 
I ( (4) 68) 1 
I ( (4) 96) 1 
0 ( (4) 97) 1 
I ( (4) 104) 1 
o ( (4) 105) 1 
I ( (4) 116) 1 ; 
0 ( (4) 117) 1 
o ( (5) 67) 1 
I ( (5) 68) 1 
I ( (5) 93) 1 
o ( (5) 94) 1 
I ( (5) 106) 1 
o ( (5) 107) 1 
I ( (5) 110) 1 
0 ( (5) 111) 1 
I ( (5) 118) 1 
o ( (5) 119) 1 
o ( (6) 69) 1 ; 
I ( (6) 70) 1 
I ( (6) 97) 1 
0 ( (6) 98) 1 
I ( 46) 108) = 1 
0 ( (6) 109) 1 
o ( (7) 69) 1 
I ( (7) 70) 1 
I ( (7) 85) 1 
o ( (7) 86) 1 
I ( (7) 94) 1 
0 ( (7) 95) 1 
I ( (7) 108) 1 
0 ( (7) 109) 1 
I ( (7) 112) 1 

241 





curr.;narking 
curr.;narking 
currJ'[l8rking 
curr.;narking 
curr....xnarking 
curr.;narking 
curr....xnarking 
curr..J!'lAI'king 

/* Initialise 
trans_io [ 
trans_io ( 
trans_io [ 
trans_io [ 
trans_io [ 
trans_io [ 
trans_io ( 
trans_io ( 
trans_io [ 
trans_io [ 
trans_io [ 
trans_io [ 
trans_io [ 
trans_io ( 
trans_io ( 
trans_io [ 
trans_io [ 
trans_io ( 
trans_io [ 
trans_io [ 
trans_io [ 
traIlS_io [ 
trans_io [ 
trans_io [ 
transJo [ 
trans_io [ 
transJo [ 
trans_io [ 
trans_io [ 
trans_io [ 
trans_io [ 
trans_io { 
trans_io ( 
trans_io ( 
trans_io { 
trans_io [ 
trans_io { 
trans_io ( 
trans_io [ 
trans_io [ 
trans_io ( 
trans_io [ 
trans_io [ 
trans_io [ 
transJo ( 
trans_io ( 
trans_io ( 
trans_io ( 
trans_io [ 
trans_io [ 
transJo [ 
trans_io ( 
trans_io ( 
trans_io [ 

1041 
1061 
1081 
1101 
1121 
1141 
1161 
1181 

1 
1 
1 
1 
1 
1 
1 
1 

lists of io routines */ 

D].n~eal_worl~input_routines 

O].n~real_worl~output_routines = 
DJ.rwo_index [ 0] = 0; 
l].n~eal_worl~input_routines = 
11.rwi_index [ 0] = 0; 
l].n~real_worl~output~outines = 
21.n~real_worl~input_routines = 
2].n~eal_worl~output_routines = 
2] .rwo_index [ 01 = 1; 
31.n~real_worl~input~outines = 
3].n~real_worl~output_routines = 
4].n~eal_worl~input_routines = 
41.n~real_worl~output_routines = 
5].n~eal_worl~input_routines = 
51.n~eal_worl~output_routines = 
6].n~real_world_input_routines = 
6].n~real_worl~output_routines = 
61.rwo_index [ 01 = 2; 
7].n~real_worl~input~outines = 
71.rwi_index [ 01 = 1; 
71.n~eal_worl~output~outines = 
8].n~eal_worl~input_routines = 
8].n~real_worl~output~outines = 
81.rwo_index [ 01 = 3; 
9].n~eal_worl~input~outines = 
91.rwi_index ( 01 = 2; 
9).n~real_worl~output_routines = 
10).n~eal_worl~input~outines = 
10).n~real_worl~output~outines = 
11).n~real_worl~input_routines = 
11].n~real_worl~output_routines = 
12J.n~real_worl~input~outines = 
12).n~real_world_output_routines = 
13].n~real_worl~input_routines = 
13].n~real_worl~output~outines = 
14].n~eal_worl~input~outines = 
14].n~real_worl~output_routines = 
141.rwo_index [ 0] = 4 i 

15].n~real_world_input_routines = 
151.rwi_index ( DJ = 3 i 

15].n~real_world_output_routines = 
161.n~real_worl~input~outines = 
161.nllm-real_worl~output_routines = 
161.rwo_index [ 01 = 5; 
171.num_real_worl~input~outines = 
17) .rwi_index ( 0] = 4; 
17).n~eal_worl~output_routines = 
18).num_real_worl~input_routines = 
18).n~real_worl~output_routines = 
19].n~real_worl~input_routines = 
19].n~eal_worl~output_routines = 
20].nllmLreal_worl~input_routines = 
201.n~eal_worl~output_routines = 
21].num_real_worl~input_routines = 

243 

o ; 
1 ; 

1 ; 

o ; 
o ; 

1 ; 

o ; 
o ; 

o ; 
o ; 

o ; 
o ; 

o ; 
1 ; 

1 ; 

o ; 
o ; 

1 ; 

1 ; 

o ; 
o ; 
o ; 

o ; 
o ; 

o ; 
o ; 

o ; 
o ; 

o ; 
1 ; 

1 ; 

o ; 
o ; 

1 ; 

1 ; 

o ; 
o ; 
o ; 

o ; 
o ; 

o ; 
o ; 

o ; 



trans_io 211.n~real_worl~output_routines = 0 , 
trans_io 22].n~eal_worl~input~outines = 0 , 
transJo 22].n~real_worl~output_routines = 0 , 
trans_io 231.n~real_worl~input_routines = 0 , 
trans_io 23].n~real_worl~output~outines = 0 , 
trans_io 24].n~eal_worl~input~outines = 0 , 
trans_io 24].n~eal_worl~output_routines = 1 , 
trans_io 24J.rwo_index [ OJ = 6 , 
transJo 2S1.n~real_worl~input_routines = 0 , 
trans_io 2S1.n~eal_worl~output_routines = 1 , 
transJo 2SJ.rwo_index [ OJ = 7 , 
trans_io 261.n~real_worl~input~routines = 1 , 
trans_io 261.rwi_index [ OJ = 5 , 
trans_lo 26].n~real_worl~output~outines = 0 , 
trans_io 27J.n~real_worl~input_routines = 0 , 
trans_io 27}.n~real_worl~output~outines = 1 , 
trans_lo 27] .rwo_index [ OJ = 8 , 
trans_io 281.n~real_worl~input~outines = 1 , 
transJo 28J .rwiJndex [ OJ = 6 , 
trans_io 28].n~real_worl~output_routines = 0 , 
transJo 291.n~real_worl~input_routines = 0 , 
trans_io 29].n~eal_worl~output~outines = 1 , 
trans_io 291.rwo_index [ OJ = 8 , 
trans_io 30].n~real_worl~input~outines = 0 , 
transJo 30].n~real_world-output_routines = 1 , 
trans_io 30).rwo_index [ OJ = 7 , 
trans_io 31].n~real_world_input_routines = 1 , 
trans_io 31).IWi_index [ OJ = 7 , 
trans_lo 31].n~eal_world-output_routines = 0 , 
trans_lo 32].n~real_worl~input~outines = 0 , 
traIlS_io 32].n~real_worl~output~outines = 0 , 
trans_io 33].n~eal_worl~input~outines = 0 , 
trans_io 33].n~real_worl~output_routines = 0 , 
transJo 341.n~eal_world-input~outines = 0 , 
trans_io 34].n~eal_world-output_routines = 0 , 
trans_io 3S1.n~real_worl~input_routines = 0 , 
trans_io 35].n~real_world_output_routines = 0 , 
trans_io 36].n~real_worl~input_routines = 0 , 
trans_io 361.n~real_world-output_routines = 0 , 
transJo 37J.n~real_worl~input_routines = 0 , 
trans_io 371.n~real_worl~output_routines = 0 , 
trans_io 381.n~eal_worl~input~outines = 0 , 
trans_io 38].n~eal_worl~output_routines = 0 , 
trans_io 39].n~real_worl~input_routines = 0 , 
trans_io 39].n~real_worl~output_routines = 0 , 
trans_io 40].n~eal_world_input_routines = 0 , 
trans_io 40].n~eal_worl~output_routines = 0 , 
trans_io 41].n~real_worl~input_routines = 0 , 
trans_io 41].numLreal_worl~output_routines = 0 , 
trans_io 42].n~real_worl~input_routines = 0 , 
trans_io 42].n~real_worl~output~outines = 0 , 
trans_io 43].n~real_world_input_routines = 0 , 
trans_io 43].n~real_worl~output_routines = 0 , 
trans_io 441.num_real_world_lnput_routines = 0 , 
trans_io 44].numLreal_worl~output~outines = 0 , 
trans_io 4S].num_real_worl~input_routines = 0 , 
transJo 4S].n~real_worl~output~outines = 0 , 
transJo 461.n~eal_worl~input~outines = 0 , 
trans_io 461.numLreal_worl~output~outines = 0 , 
trans_io 47].n~eal_worl~input_routines = 0 , 
trans_io 47).n~real_worl~output~outines = 0 , 
trans_io 48).num~eal_worl~input_routines = 0 , 
transJo 481.n~real_worl~output_routines 1 , 
trans_io 48} .rwo_index [ OJ = 9 , 

244 



trans_io 491.n~eal_worl~input~outines = 
trans_io 49] . rwi_index [ OJ = 8 ; 

trans_io 49].nllm-real_worl~output_routines = 
trans_io 49J.nIO_index [ OJ = 10 ; 
trans_io 501.n~eal_worl~input~outines = 
trans_io 50J .M_index [ OJ = 9 ; 

trans_io 50].nllm-real_worl~output~outines = 
trans_io 511.nllm-real_worl~input_routines = 
trans_io 51].n~eal_worl~output~outines 

trans_io 521.nllm-real_worl~input_routines = 
trans_io 52].n~eal_worl~output~outines 

trans_io 53].n~eal_worl~input_routines = 
trans_io 53J .M_index [ OJ = 10 ; 

trans_io 53].n~eal_worl~output~outines 

for (i=O i < ~WI ; i++) 
rwi_status [i) = RWI_NOT_TESTED 

event_log_fp = fopen ("synect.cel", ftwt+") 

= 

= 

1 ; 

1 ; 

1 ; 

0 ; 
0 ; 

0 ; 
0 ; 

0 ; 
1 ; 

0 ; 

fprintf (event_log_fp, "%4.4x\n%4.4x\nt4.4x\n%4.4x\n", 
NUM....PLACES. NUM....TRANS, NUM....RWI, EVENr..LOG_CAPAC1TYI 

/* Start index, curr index, is full * / 
fprintf (event_log_~, "t4.4x\nt4.4x\nt4.4x\n·, 0, 0, 0) 

for (i=O ; i < NUML?LACES ; i++) { 
el_start~king [1] = curr_marking [i] ; 
fprintf (event_log_fp, -%l.ld -, el_start~rking [ill 

el_start_date_time = get_current_date_time () ; 
fprintf (event_1og_fp, "%4.4d\n%2.2d\n%2.2d\n%2.2d\n%2.2d\n%2.2d\n%2.2d\n", 

el~tart_date_tirne.year, 

el_start_date_time.day, 
el_start_date_time.rnonth, 
el_start_date_time.min, 
el_start_date_time.hour, 
el_start_date_time.hund, 
el~tart_date_time.secs) 

rec_l-pos = ftell (event_log_fp) 
} /* end function initialise */ 

int is_trans~et_enabled (int p~trans~o) { 
int enabled = TRUE 
int place~o ; 

for (place~o=O ; «place-PO<NUM.-PLACES) 
if «I [pn_trans_noJ [place.,.noJ 

[pn_trans-nol (place~o]» 

enabled = FALSE 

retUIIl (enabled) ; 
/* end function is_trans-pet_enabled */ 

int is_trans_io_enabled (int p~transJlo) { 
int enabled = TRUE ; 

&& (enabled» ; place-po++) 
!= 0) && (curr_marking 

245 

[placeJ\o) < I 



int i ; 

for (i=O ; «i<trans_io [PILtransJlo] .nUll\J'eal_worl<LinputJoutines) && (enabled» 
i++) ( 

int index = trans_io [PILtrans-po].rwi_index [i] ; 

int now_enabled = (*real_worl~input_routine [index]) () ; 
int thisJ'Wi-.status = (now_enabled) ? RWIJNABLED : RWIJ)ISABLED 

if (!now_enabled) 
enabled = FALSE 

if (OO_status (index] I~ thisJWl_status) 
rwi_status {index] = this_rwi_status 
save_rwi_change (index, now_enabled) ; 

return (enabled) i 

/ * end function is_trans_io_enabled * / 

int select_trans_to_fire () ( 
static int prev_trans_fired -1 
int i, start_trans 

/* In future, this may select transition based on least recently fired, 
least frequently fired or randomly. This release simply chooses the 
first one it finds after the previous transition fired */ 

start_trans = prev_trans_fired + 1 
for (i=start_trans i i~TRANS ; i++) 

if (trans_io_enabled (il) 
return (prev_trans_fired = i) ; 

for (i=O ; i<start-trans ; i++) 
if (trans_io_enabled [il) 

return (prev_trans_fired = i) ; 

/* If control reaches this point, there is a major error in this software. 
In a future release, some exception mechanism might be invoked, but for now, 
just return an index which will cause (hopefully) a memory access violation. */ 

return (-1) ; 
/* end function select_trans_to_fire */ 

int fire-pn_trans (int PILtrans-po) { 
int place-po 
int i ; 

for (place-no=O ; placeJlo<~PLACES ; place_no++) 
curr-marking [place-no] = curr~rking [place_no) - I [pn_trans-noJ [place-no] + 0 

[pn_trans~ol [place~ol ; 

/* Reset rwi statuses to unknown */ 
for (i=O ; i < ~ ; i++) 

rwl.-status [1] = RWI.....NOT_TESTEO ; 

return (TRUE); /* The transition has been fired * / 
1* end function fire-PILtrans */ 

246 



void invoke_trans_io~eal_worl~outputs (int pn-trans-po) { 
int i ; 

for (i=O ; i<trans_io rp~trans-po] .n~eal_worl~output~outines 
int index = trans_io [p~trans-po].rwo_index [i] ; 
(*real_worl~output~outine [index]) () ; 

void save~_change (int index, int status) 
write_to_event~og (0, index, status) ; 

void save-Pl'Ltrans_fired (int Pl'LtransJlo) { 
write_to_event_log (1, p~transJlo, 0) ; 

i++) { 

void write_to_event_log (int whether_trans_fir~rec, int value!, int value2) 
{ 

int i ; 
struct el_date_time~truct curr_date_time 
long int curr"'pos = 0 ; 
int n~items~ead = 0 ; 
if (el_curr_index < E.VENTJOO_CAPACITY) 

el_curr_index ++ ; 

else 

el_curr_index = 1 ; 
el_is_full = TRUE ; 
/* Move the file pointer to the start of the first record */ 
fseek (event_log_fp, rec_1"'pos, ~SET) 

/* If this is the first record ever written */ 
if (el_start_index == 0) 

el_start_index = 1 ; 
/* Remember where we're to start writing */ 
curr-pos = ftell (event_log_fp) ; 
/* If the event log is full such that we're overwriting existing records, adjust index 

of start record */ 
if (el_iB_full) 
{ 

/* Get the date and time and marking from the record which we're going to 
overwrite */ 

n~items_read = fscanf (event~og_fp, ·%d\n%d\n%d\n%d\n%d\n%d\n%d\n·, 
&el_start_date_time.year, 
&el_start_date_time.day, 
&el_start_date_time.month, 
&el_start_date_tirne.min, 
&el_start_date_time.hour, 
&el_start_date_time.hund, 
&el_start_date_tirne. secs I 

if (nllm-items_read != 7) 
event_log_error (1) ; 

247 



fscanf (event_1og_fp, ~%*d\n%*x\n%*d\n") 

for (i=O ; i < ~PLACES ; i++) 
1* Type of info in record *1 

( 

nUIYLiternsJead = fscanf (event_log_fp, -%d·, &el_startJ(\aIking [i) 

if (n~items_read != 1) 
event_log_error (2) ; 

1ft Now update the index info in the event log *1 
fseek (event_Iog_fp, start_ind~os, S~SET) ; 
1ft Start index, curr index, is full */ 
fprintf (event_log_ft>, "%4.4x\nU.4x\n%4.4x\n", 

el_is_full) ; 
for (i=O ; i < ~PLACES i++) 

fprintf (event_Iog_fp, -%I.ld el_start~rking [i) ; 
fprintf (event_Iog_fp, "\n-) ; 
fprintf (event_log_ft>, "%4.4d\n%2.2d\n%2.2d\n%2.2d\n%2.2d\n%2.2d\n%2.2d\n", 

el_start_date_time.year, 
el_start_date_time.day, 
el~tart_date_time.roonth, 

el~tart_date_time.ndn, 

el_start_date_time.bour, 
el~tart_date_time.hund, 

el_start_date_time.secs) 
/ft Set the file pointer back to Where we're to start writing */ 
fseek (event_log_fp, curr-pos, SEEll..SET) ; 
/ft Get the current date and time */ 
curr_date_time = get_current_date_time () ; 
fprintf (event_log_ft>, "%4.4d\n%2.2d\n%2.2d\n%2.2d\n%2.2d\n%2.2d\n%2.2d\n", 

curr_date_time.year, 
curr_date_time.day. 
curr_date_time.month, 
curr_date_time.min. 
curr_date_time.hour, 
curr_date_time.hund, 

fprintf 
curr_date_time.secs) 

(event_log_fp, -%I.ld\n%4.4x\n%1.ld\n-, 
value2) ; 

for (i=O ; i < ~LACES ; i++) 
fprintf (event_log_fp, ~%I.ld 

fprintf (event_1og_fp, -\n-) ; 
curr~rking [ill 

/ft very crudely, force a flush */ 
curr-pos = fte1l (event_1og_fp) ; 
fclose (event_1og_fp) i 

event_1og_fp = fopen (-synect.cel", "rt+n) 
fseek (event_Iog_fp, curr-pos, SEEK....SET) ; 

/* End of control program generated by Synect Code Generator VI.S */ 

248 

valuel, 



A.4.9.5.2 Demo.env ,-
Environment-dependent C source file corresponding to C:\SYNECT\DEMO.SYN 
Generated by Synect C Code Generator VI.8 
Synect ls a registered trademark belonging to: 

Hopkinson Computing Limited 
29 Deepdale, Pine Hills, Guisborough, Cleveland, TS14 8JY, England 
Tel/Fax: +44 (0) 1287 638606 
email: synect@hopkinsn.demon.co.uk 

Generated at, Mon Aug 24 23,35,25 199B 

-, 

#include <dos.h> 

/* Include the application-dependent defines and declarations */ 
#include -demo.h-
1* Skeletal function called on completion of scan */ 
void sc~complete (int n~io_enabled) { 
} /* end function sc~complete */ 

/* Skeletal function to handle identification of deadlock*/ 
void deadlock...,detected () ( 
) 1* end deadlock real_worl~input function */ 

/* Skeletal function to get date and time (this works for DOS!) */ 
struct el_date_time~truct get_current_date_time () { 

struet el_date_time~truet dt i 

struet date ed i 

struet time et i 
getdate (&cd) 
gettime (&ct) i 

dt.year = cd.da...,year 
dt.day = cd.d~day ; 
dt.month = cd.~on 
dt.min = et.ti~n i 

dt.hour ct.ti_hour 
dt.hund ct.ti~und 

dt.secs et.tl_sec 

return (dt) i 

/* Skeletal function called on detection of an error when reading from event log */ 
void event_log_error (int error_type) { 

if (error_type == 1) 
/* Error reading date and time */ 

else if (error_type == 2) 
; /* Error reading marking */ 

/* End of environment-dependent (C source) file generated by Synect Code Generator V1.8 -, 

249 



A.4.9.5.3 Demo.h 
I' 
e include file corresponding to C:\SYNECT\DEMO.SYN 

Generated by Synect C Code Generator Vl.S 
Synect is a registered trademark belonging to: 

Hopkinson Computing Limited 
29 Deepdale, Pine Hills, Guisborough. Cleveland, TS14 8JY, England 
TellFax, +44 (0) 1287 638606 
email: synect@hopkinsn.demon.co.uk 

Generated at, Mon Aug 24 23,35,25 1998 

*f 

/* Application-dependent constant definitions */ 
#define ~TRANS 54 
#define ~PLACES 120 
#define REA4-WORLD_INPUT~IST_SIZE 1 
#define ~WORLD_OUTPUT~IST_SIZE 1 
#define NtlILRWI 11 
#define EVENT~_CAPACITY 50 

/* Application-dependent real_worl~input function declarations */ 
extern int rwi....new_raw-part (void) i 

extern int rwi-Srip_closed (void) 
extern int rwLgrip_open (void) ; 
extern int rwi_armLdown (void) ; 
extern int rwi_antLup (void) ; 
extern int rwi_atJlachlne (void) 
extern int rwi_at_exi t (void) ; 
extern int rwi_at_feed (void) ; 
extern int ~finish~hase_l (void) 
extern int rwi_finishe~hase_2 (void) 
extern int 00-9'0 (void) 

/* Application-dependent real_worl4-output function declarations */ 
extern void rwo~tart_fe~conveyor (void) i 

extern void rwo~top_fe~conveyor (void) 
extern void rwo_close-9rip (void) i 

extern void rwo_ope~rip (void) 
extern void rwoJower_arm (void) ; 
extern void rwo_raise_arm (void) ; 
extern void rwo-9oto~chine (void) 
extern void rwo-9oto_exit (void) i 

extern void rwo-9oto_feed (void) i 

extern void rwo_start-phase_l (void) 
extern void rwo_start-phase_2 (void) 

/* Application-independent structure declarations */ 
struct e1_date_tirne_struct ( 

int year i 

int day ; 
int month i 

int rnin ; 
int hour 
int hund 
int secs 

/* End of include file generated by Synect Code Generator Vl.8 */ 

250 



A.4.9.5.4 Demo.rwi 
/' 
Real World Inputs (C source) file corresponding to C:\SYNECT\DEMO.SYN 
Generated by Synect C Code Generator Vl. 8 
Synect is a registered trademark belonging to: 

Hopkinson computing Limited 
29 Deepdale, Pine Hills, Guisborough, Cleveland, TS14 8JY, England 
Tel/Fax, +44 (0) 1287 638606 
ema!l: synect@hopkinsn.demon.co.uk 

Generated at: Mon Aug 24 23:35:25 1998 

'/ 

/* Application-independent constant definitions */ 
#define TRUE 1 
#define FALSE 0 

1* Skeletal real_worl~input functions */ 
int rwiJlew_rawJlart () { 

return (TRUE) ; 

} 1* end real_world-input function */ 

int rwi-9rip_closed () { 
return (TRUE) ; 

} /* end real_worl~input function */ 

int rwi-srip_open (I ( 
return (TRUE) ; 

) I * end real_world....input function ,.. / 

int rwi_antLdown () ( 
return (TRUE) , 

) /* end real_worl~nput function */ 

int rwi_antLtlP () { 
return (TRUE) ; 

} /* end real_world....input function */ 

int rw1_at~chine () { 
return (TRUE) ; 

} /* end real_worl~input function */ 

int rwi_at_exit () ( 
return (TRUE) ; 

) /* end real_worl~input function */ 

int rwi_at_feed () ( 
return (TRUE) ; 

) /* end real_worl~input function */ 

int rwi_finished-phase_l () ( 
return (TRUE) ; 

) /* end real_worl~input function */ 

int rwi_finished-phase_2 () { 
return (TRUE) ; 

} /* end real_worl~input function */ 

int rwi_go () { 
return (TRUE) 

} /* end real_wor1dLjnput function */ 

/* End of real world inputs (C source) file generated by Synect Code Generator Vl.S */ 

251 



A.4.9.S.S Demo.rwo 
/" 
Real World OUtputs (e source) file corresponding to C:\SYNECT\DEMO.SYN 
Generated by Synect C Code Generator Vl. 8 
Synect is a registered trademark belonging to: 

Hopkinson Computing Limited 
29 Deepdale, Pine Hills. Guisborough. Cleveland, TS14 8JY, England 
Te1/Fax: +44 to) 1287 638606 
erneil: synect@hopkinsn.demon.co.uk 

Generated at: Mon Aug 24 23:35:25 1998 

*' 
/* Skeletal function to initialise the environment e.g. to reset the 

controlled system to a known state */ 
void initialise_environment () { 
} /* end function initialise_environment */ 

/* Skeletal real_worl~output functions */ 
void rwoJtart_feed....conveyor () { 
} /* end real_worl~output function */ 

void IWO_stop_feed....conveyor () ( 
) / * end real_worlct..output function * / 

void rwo_close_Qrip () { 
} /* end real_worlct..output function */ 

void rwo_opeILgrip () { 
} 1* end real_worl~output function */ 

void rwo_lower_arID (l { 
} /* end rea1_worl~output function */ 

void rwoJaise_arID (l { 

} /* end rea1_worl~output function */ 

void rwo--9otoJflachine (l { 
} /* end rea1_wor1~output function */ 

void rwo...,goto_exit () { 
} /* end rea1_wor1~output function */ 

void rwo...,goto_feed () { 
} /* end rea1_wor1~output function */ 

void rwo_start-phase_l (l { 
} /* end rea1_worl~output function */ 

void lWOj;tart....,phase_2 () { 
} / * end rea1_worl~output function * / 

/* End of real world outputs (C source) file generated by Synect Code Generator VI.S */ 

252 



A.4.9.S.6 Demo.std 
1* 
Function per STD (C source) file corresponding to C:\SYNECT\DEMO.SYN 

Generated by Synect C Code Generator VI.S 
Synect is a registered trademark belonging to: 

Hopkinson computing Limited 
29 Deepdale, Pine Hills, Guisborough, Cleveland, TS14 8JY, England 
Tel/Fax: +44 (0) l287 638606 
email: synect@hopkinsn.demon.co.uk 

Generated at: Mon Aug 24 23:35:25 1998 

*1 

void Fe~Conveyor~in (int place-po) 
switch (place~o) { 

case 0: /* offlno_raw-part */ 
break ; 

case 1: /* onlno~aw-part */ 
break ; 

case 2: / * on I newJaw-part * / 
break ; 

case 3: /* offlnew_raw-PaIt */ 
break. 

default: 
break. 

void Fe~Conveyor-pew-part_available (int place~o) { 
switch (place-po) { 

case 4: /* #not-pending *1 
break ; 

case 5: /* #pending */ 
break 

default: 
break 

void Gripper~in (int place~o) 
switch (place~o) { 

case 6: /* open */ 
break ; 

case 7: /* closing */ 
break ; 

case 8: '* closed */ 
break ; 

case 9: '* opening *' 
break i 

253 



default: 
break 

void Gripper-srip_closed (int place-po) 
switch (place-po) { 

case 10: /* #not-pending */ 
break ; 

case 11: /* 'pending */ 
break 

default: 
break 

void Gripper~rip_open (int place~o) 
switch (place-po) { 

case 12: /* #not-pending */ 
break ; 

case 13: /* #pending */ 
break 

default: 
break 

void ArnLElevatiorunain (int placeJlo) 
switch (place-po) { 

case 14: /* up */ 
break i 

case 15: /* goingldown */ 
break i 

case 16: /* down */ 
break; 

case 17: /* goinglup */ 
break 

default: 
break 

void ArnLBlevatio~~down (int place-po) 
switch (place-po) { 

case 18: /* #not-pending */ 
break; 

case 19: /* 'pending */ 
break 

default: 
break 

void ~levatio~~up (int place-po) { 

254 



switch (p1ace-po) { 
case 20: /* 'not-pending */ 

break ; 

case 21: /* 'pending */ 
break 

default: 
break 

void ArnLTranslatioJ'l,Jnain (int place_no) 
switch (place-po) { 

case 22: /* atlfeed */ 
break ; 

case 23: /* going I to I machine */ 
break ; 

case 24: /* atlmachine */ 
break ; 

case 25: /* gOingltolfeed */ 
break ; 

case 26: /* goingltolexit */ 
break ; 

case 27: /* atlexit */ 
break 

default: 
break 

void ArnLTranslatiol'Lat_exit (int place-po) 
switch (p1ace-po) ( 

case 28: /* 'not-P6Qding */ 
break ; 

case 29: /* 'pending */ 
break 

default: 
break 

void ArnLTranslatio~at_feed (int place-po) 
switch (place-no) { 

case 30: /* #not-pending */ 
break ; 

case 31: /* 'pending */ 
break 

default: 
break 

void ArmLTranslatio~at~chine (int place-po) { 

255 



switch (place-po) { 

) 

case 32: /* #not-Pending */ 
break i 

case 33: /* #pending */ 
break 

default: 
break 

void RobotJ(lain (int place-po) 
switch (place-po) { 

case 34: /* atlhome */ 
break i 

case 35: /* gettinglrawlpart */ 
break i 

case 36: /* holdinglrawlpart */ 
break ; 

case 37: /* takinglraw-partlto~Chine */ 
break i 

case 38: /* at~chinelreadYlto-xelease */ 
break i 

case 39: /* going-homelfromLmachine */ 
break ; 

case 40: /* gettinglmachinedlpart */ 
break ; 

case 41: /* holding I machined I part */ 
break ; 

case 42: /* taking!machined..Partlto_exit */ 
break; 

case 43: /* at_exitlreadylto-xelease */ 
break ; 

case 44: /* gOing-homelfrornLexit */ 
break 

default: 
break 

void Robot~i~etting-xaw-part (int place_no) { 
switch (place-po) { 

case 45: /* START */ 
break ; 

case 46: /* loweringlarm */ 
break ; 

case 47: /* closinglgrip */ 
break 

default: 

256 



break 

void Robot~i~taking~aw-part_to~chine (int place-po) { 
switch (place-po) { 

case 48: /* START */ 
break ; 

case 49: /* raisinglarm */ 
break ; 

case 50: /* mOving_armlacross_tolmachine */ 
break ; 

case 51: /* loweringlarm */ 
. break 

default: 
break 

void Robot~i~oing~ame_fromLffi8chine (int place-po) { 
switch (place-no) { 

case 52: /* START */ 
break; 

case 53: /* opening-9rip I and I raising_arm */ 
break; 

case 54: /* moving_arm I across I to_feed */ 
break 

default: 
break 

void Robot~i~etting~chined-part (int place-po) ( 
switch (place-no) ( 

case 55: /* START */ 
break ; 

case 56: /* movinglacrosslto~chine */ 
break; 

case 57: /* loweringlarm */ 
break ; 

case 58: /* closinglgrip */ 
break 

default: 
break 

void Robot~in_taking~chine~art_to_exit (int place-no) { 
switch (place-no) { 

case 59: /* START */ 
break; 

257 



break; 

case 61: /* loweringlarm */ 
break 

default: 
break 

void Robot~i~oing-home_fro~exit (int place-no) { 
switch (place-no) ( 

case 62: /* START * / 
break ; 

case 63: /* opening-9riplandlraising_arm */ 
break ; 

case 64: /* movingl~acrosslto_feed */ 
break 

default: 
break 

void Robot_at-homeJ>Qsition (int p!aceJlo) 
switch (place-no) { 

case 65: /* 'not-pending */ 
break ; 

case 66: /* tpending */ 
break 

default: 
break 

void Robot~olding-Part (int place~o) 
switch (place-po) { 

case 67: /* tnot-pending */ 
break ; 

case 68: /* *pending */ 
break 

default: 
break 

void Robot_ready_to_release-part (int place-no) 
switch (place-po) ( 

case 69: /* #not-pending */ 
break ; 

case 70: /* tpending */ 
break 

default: 
break 

258 



void Robot_close_grip (int place-no) 
switch (place-po) { 

case 71: /* #not-pending */ 
break ; 

case 72: /* ~ending */ 
break 

default: 
break 

void Robot-soto_exit (int placeJlo) 
switch (placeJlo) { 

case 73: /* #not-pending */ 
break ; 

case 74: /* #pending */ 
break 

default: 
break 

void Robot-soto_feed (int placeJlo) 
switch (placeJlo) { 

case 75: /* #not-pending */ 
break i 

case 76: /* #pending */ 
break 

default: 
break 

void Robot-soto~chine (int place_no) 
swi tch (placeJlo) { 

case 77: /* #not-pending */ 
break ; 

case 78: /* #pending */ 
break 

default: 
break 

void Robot_lower_arrn (int place-po) 
switch (place-po) { 

case 79: /* #not-pending */ 
break ; 

case 80: /* #pending */ 
break 

default: 
break 

259 



void Robot_op~rip tint place-po) 
switch (place-po) { 

case 81: /* #not..Pending */ 
break ; 

case 82: /* #pending */ 
break 

default: 
break 

void RobotJaise_arnt (int place-po) 
switch (place-po) { 

case 83: /* #not..Pending */ 
break ; 

case 84: /* tpending */ 
break 

default: 
break 

void Machine~in (int place-po) { 
switch (place-po) { 

case 85: /* off!no-part */ 
break ; 

case 86: /* offlraw-part~oaded */ 
break ; 

case 87: /* onlphase_l */ 
break ; 

case 88: /* on!phase_2 */ 
break ; 

case 89: /* offlfinishedLpartlavailable */ 
break 

default: 
break 

void Machine_finish~art_available (int place-po) { 
switch (place-po) { 

case 90: /* #not-pending */ 
break ; 

case 91: /* #pending */ 
break 

default: 
break 

void Assembly_Cell~in (int place-po) { 

260 



switch (place-po) { 
case 92: /* Idle */ 

break ; 

case 93: /* getting[raw[part */ 
break i 

case 94: /* takinglraw-part[to~chine */ 
break ; 

case 95: /* machining I part */ 
break ; 

case 96: /* getting I machined I part */ 
break ; 

case 97: /* takinglmachined....,part[to_exit */ 
break ; 

case 98: /* returninglhome */ 
break ; 

case 99: /* Initialised */ 
break 

default: 
break 

void Assembly_Cell~e~chine~t (int place-po) { 
switch (place-po) { 

case 100: /* #not-pending */ 
break ; 

case 101: /* #pending */ 
break 

default: 
break 

void Assembly_Cell_get~aw-part (int place-po) { 
switch (place-po) { 

case 102: /* #not-pending */ 
break ; 

case 103: /* ~ending */ 
break 

default: 
break 

void Assembly_Cell-part_rernoved (int place_no) { 
switch (place-po) { 

case 104: /* #not-pending */ 
break ; 

case 105: /* #pending */ 

break ; 

261 



default: 
break 

void Assembly_CellJaw...,partJemoved (int placeJlo) { 
switch (placeJlo) { 

case 106: /* #not...,pending */ 
break ; 

case 107: /* tpending */ 
break 

default: 
break 

void Assembly_Cell~lease....Part_an~go~ome (int place-po) { 
switch (placeJlo) { 

case 108: /* #not...,pending */ 
break ; 

case 109: /* #pending */ 
break 

default: 
break 

void Assembly_Cell_start_feed (int placeJlo) 
sw! tch (placeJlo) { 

case 110: /* #not...,pending */ 
break ; 

case 111: /* #pending */ 
break 

default: 
break 

void Assembly_Cell_start~chine (int place-po) 
switch (placeJlo) { 

case 112: /* #not...,pending */ 
break ; 

case 113: /* #pending */ 
break 

default: 
break 

void Assembly_Cell_stop_feed (int place-po) 
switch (place-po) { 

case 114: /* #not...,pending */ 
break ; 

case 115: /* #pending */ 
break ; 

262 



default: 
break 

void Assemhly_Cell_take~chined-part_to_exit (int place-po) { 
switch (place-po) { 

case 116: /* #not-pending */ 
break ; 

case 117: /* tpending */ 
break 

default: 
break 

void Assembly_Cell_take_raw-part_to~chine (int place-po) { 
switch (place-no) { 

case 118: /* #not-pending */ 
break ; 

case 119: /* #pending */ 
break 

default: 
break 

/* End of function per STD (C source) file generated by Synect Code Generator Vl.8 */ 

263 



Appendix B Copies of Published Papers . 

This appendix contains copies of the following papers: 

Harrison, R. et al., "Improving Manufacturing Automation By The Integration Of Machine 

Design And Control", 26th International Symposium on Industrial Robots, Singapore, Oct. 

1995, pp 51-56, ISBN 1-66056-000-9 

Harrison, R. et aI., "Interactive Visualisation Of Sequence Logic And Physical Machine 

Components Within An Integrated Design And Control Environmenf, 4th IFAC Workshop 

on Intemational Manufacturing Systems, July 1997, Seoul, Korea 

Hopkinson, P. et aI., "Implementing S88 Batch Control Systems In The Pharmaceutical 

Industry", Measurement And Control, Vol. 31, February 1998, pp 20-24 

Hopkinson, P. and Hancock, J., "A Case History Of The Implementation Of An S88-Aware 

Batch Control System", World Batch Forum, 1996 

Haxthausen, N. and Hopkinson, P., "The Application Of The S68 Batch Control Standard 

In The Pharmaceutical Industry", Computer Systems For The New Millennium 

Conference, Intemational Society Of Pharmaceutical Engineers, 4th - 5th March 1996, 

Amsterdam 

264 



IMPROVING MANUFACTURING AUTOMATION BY 
THE INTEGRATION OF MACHINE DESIGN AND CONTROL 

R. Harrlson*, C. D. Wright* and P Hopkinson** 

*MSI Research Institute, Loughborough University of Technology, 
Loughborough, LE11 3TU, UK 

**Hopkinson Computing Ltd, 29 Deepdale, Pine Hills, Guisborough, 
Cleveland, TS14 8JY, UK 

R.Harrison@lut.ac.uk, C.O'wright@lut.ac.uk& P.Hopkinson@lut.ac.uk 

Abstract 
he use of computer controlled machines for manufac
u'ing automation is now commonplace. Current ap
roaches to the implementation of these machines are 
ften characterised by poor verification of customer re
uirements, limited confidence in proposed designs, 
linimal software re-use and both time consuming and 
ostly system maintenance/enhancement. !n many 
ases, machines are so difficult and costly to modify that 
omplete machine rebuild is necessary to accommodate 
elatively minor product changes. This paper outlines a 
Lew approach to machine lifecycle support, an "!ntt}
:rated Machine Design and Control (IMDC)" environ
nen!, aimed at overcoming these problems. The IMDC 
:nvironment has the potential to radically improve the 
:ffectiveness of machine and associated control system 
lesigolbuild and to enable efficient modification as rt}
lurrements change. It also allows the integration of 
iesign and control system elements from a wide range 
)fvendors. IMDC is a three year EPSRC (Engineering 
rod Physical Sciences Research Council) funded col
laborative project in the UK, between the Manufacturing 
Systems Integration (MSI) Research Institute and a con
sortium of industrial control system suppliers and ma
chine builders. 

The paper provides an overview of the concepts behind 
IMDC and its implementation. From a user's perspec
tive, the two main elements of the IMDC environment 
are: I) a software Ioolset and 2) a run-time control ar
chitecture. The software toolset covers the life cycle of 
manufacturing maroines and supports the creation of 
application software for the target control architecture. 
Underlying these elements is the IMDC system software 
which integrates and manages the user toolset and links 
it to the run-time environment. Physically the IMDC 
environment utilises a network of one or more worksta
tions or personal computers coupled to an embedded 
real-time control architecture which resides on each 
target machine. 

The extendible toolset is composed of machine/control 
system design, configuration and management tools 

which can be utilised at various phases of the machine 
lif(}-Cycle. These include application logic description 
and analysis, machine modelling, automatic code gen
eration and run-time control. IMDC thus seeks to pro
vide a highly integrated environment for system build
ers, providing much needed support for rapid 
prototyping, ''what-if' analyses and enables machines to 
be incrementally enhanced. The paper considers the use 
of example design tools within the toolse! and contrasts 
this new approach with the use of traditional methods. 

The IMDC run-time architecture is based on the UMC 
(Uuiversal Machine Control) methodology and software 
implementation which has been developed at the MSI 
Research Institute over the last eight years. UMC pro
vides the basis for an open, structured, device independ
ent method for building machine control systems which 
is now seeing industrial exploitation. The IMDC project 
is extending the UMC concept and software to support a 
physically distributed runtime environment. This en
ables control systems to be composed of intelligent dt}
vices, physically located at the locations in the machine 
where the control functionality is needed. Profibus has 
been selected as the main real-time control network al
though future implementations could be based on alter
native fieldbuses or control networks. Other MSI proj
ects are currently utilising CAN, FIP and Lonworks. 

Introduction 

Limitations of machine control systems 
In manufacturing industry, shortening product life cy
cles combined with the need to offer increased product 
variety have made it necessary for machines to provide 
greater functionality, flexibility and reconfignrability. 
These factors have caused a steady growth in the use of 
computer controlled machinery over the last twenty 
years. They have also led to increasing awareness of the 
deficiencies in current approaches to the implementation 
of machine control systems. Much more is now dt}
manded from control systems and as computer control 
systems have grown in complexity they have become 



.ch more difficult to design, build, operate, maintain 
I modify. 

lustrial automation spans a huge spectrum of com
:xity in terms of both the physical structures of ma
nes and the tasks that they perform. This has led to 
equally wide range of control system hardware and 

ware building blocks. The general lack of stan
rdisation between different control system components 
!kes industrial control systems difficult to maintain, 
ldify and integrate. This has encouraged users to go to 
single vendor for all their machine control needs in 
der to minimise such problems. The dominance of 
ISed, vendor specific solutions have generally resulted 
stagnation rather than innovation and improvement 
control systems. 

le machines themselves consist of suitable combina
Ins of mechatronic (mechauical and control system) 
ements, with application specific code determining 
IW a particular machine behaves. The inability of cur
:Ilt methods to efficiently cater for the visualisation of 
lese mechatrouic elements and the design of associated 
il[llication specific software, particularly as systems 
lcrease in comple:xity, is seen in spiralling applications 
Jsts as outlined by [I). As summarised in figure I, 
Dnventional practise typically involves the use of a 
umber of incompatible, vendor specific tools, each ca
'ling for a limited aspect of machine or control system 
esign. As a result the designer is unable to adequately 
isualise the application as a whole and often design 
laws go undetected until a machine is commissioned. 
11e adoption of better integrated design approaches is 
urrently severely handkapped by a lack of sufficiently 
'pen machine control envirouments. 

DESIGN TOOLS EACH BASED UPON 

FRAGMENTED 
RU~TlME 

ENVIRONMENT 

Fig. I. Conventional Practise 

The Benefits of Open Systems 
Recently there has been increasing interest by both end
users and system builders in open modular control sys
tems that, if adopted, promise greatly reduced costs over 
a machine's liftxycle [5)[6). Open, modular control 
systems, once established in the market could lead to the 
following benefits: 

• Reduction in development costs and in particular 
development time for highly automated manufac-

lUring applications through a m'lior change to the 
adoption of configurable, compatible building block 
style automation components. These components 
being selected on a price/performance basis rather 
than vendor dependency. 

• System design tools and configuration tools which 
are widely applicable and not tied to vendor specific 
target hardware. These being selected on a 
price/performance basis rather than vendor depend
ency. 

• Reduction in the cost of eliminating faults (fast 
identification and replacement of defective building 
blocks) and ease of service and maintenance of the 
building block system components. Service and 
maintenance personnel being trained to support 
standard system components. 

• F1e:xibility and adaptability of the system to changes 
in business direction during the life of the machine. 

• Adaptations and alterations can be performed by the 
end user personnel themselves on the basis of an 
open modular system structure, without having to re
sort to an expensive system supplier. 

• Ease of integration with current facto!)' information 
and scheduling systems. 

UMcnMDC 

Introduction 
The MSI Research Institute at Loughborough Uuiversity 
of Technology has carried out research into new ap
proaches to machine control for over eight years. This 
work has been mainly funded by the EPSRC. It has re
sulted in UMC (Universal Machine Control) which is 
an approach to creating open control systems for a di
verse range of applications [5)[11). As shown in figure 
2, UMC consists of a runtime control system based on a 
non application specific reference architecture together 
with an associated set of tools and libraries. 

Fig. 2. E:xisting UMC System 

UMC provides an open control approach to meet the 
needs of the special purpose modular machine builder 
who might typically produce particular machines with a 



ge number of model variants and makes frequent 
anges to the control system configuration. 

major objective of UMC was to provide facilities to 
sily configure, modify and upgrade the control func
,ns of an application. This is achieved by storing 
MC machine configurations confonning to the UMC 
ference architecture in a database. UMC machine 
nfigurations can be defined and revised via a series of 
[-line design tools. A set of UMC utilities are then 
led to configure and test the UMC machine at run
ne. New components can be progressively defined or 
d ones selected for reuse as new UMC machine de
gns evolve. 

ne UMC project highlighted the need for an integrated 
lproach to the creation of computer controlled ma
rines and their lifecycle support. The current IMDC 
ntegrated Machine Design and Control) proj ect at MSI 
: addressing this go al and will closely integrate the 
:ai-time control system with machine design (and other 
ff-line lifecycle activities). 

~un·T1me Architecture 
be UMC reference architecture was not designed to 
Irescriptively impose a particular application architec
ure. The emphasis has been placed on specification of 
:apabilities and services to build an interconnecting 
:tructure between interoperating UMC components. The 
JMC reference architecture simply segments the control 
'unctions into three hierarchical layers: handler, task 
md machine, as shown in figure 3. 

!vel 

"ask 
evel 

,ndler 
evel 

Interacting Application Tasks 
(Co""" logic) 

Machine Utiities 

Utility TaskS 

External Real-Ttmt OeW:e Controllers 

are 
o..;c. 

Fig. 3. UMC Run-Time Architecture 

r aut 
08_ 

Handlers provides a consistent interface between exter
nal devices and UMC tasks: A given handler encapsu
lates the behaviour of a specific external device. Pre
written handlers are held within the UMC database and 
provide the virtual device library for UMC. The various 
types of handler include single axis, multiple axis and 

I/O. Each provides an interface to a specific device from 
a particular mannfacturer as shown in figure 4. Alterna
tively a handler supporting a software emulation of the 
device may be used: typically driving an appropriate 
component of a solid model as illustrated in figure 8. 

The current UMC architecture provides the basis for an 
open, structured, device independent method for build
ing machine control systems which is now experiencing 
industrial exploitation. The IMDC project is extending 
the UMC concept to support a physically distributed 
runtime environment [12][13]. Detailed discussion of 
the facilities provided by the run-time environment are 
beyond the scope of this paper. They can be summa
rised as the provision of: 

• external device interfaces (for both fieldbus and non
fieldbus devices), 

• support for inter-process communication, (between 
both local and distributed processes) and 

• support services for the creation, monitoring and 
reconfiguration of the run-time control system ele
ments (in centralised or distributed form). 

Distributed runtime architectures can offer advantages 
particularly in physically large systems or where a high 
degree of user reconfigurability is required. Important 
benefits include: 

• control systems can be composed of intelligent de
vices, physically located at the locations in the ma
chine where the control functionality is needed; 

• control system installation is simplified by replacing 
a complex wiring harness with a control network to 
reduce weight, assembly cost and processing de
mands on the central controller; 

• inherent scalability: the freedom to vary the number 
and type of control nodes on a particular machine in 
order to modifY its functionality; 

• the ability to individually configure and test seg
ments of the machine before they are combined. 

Overview of the IMDC Environment 
The overriding aim oflMDC is to provide a highly pro
ductive environment for machine life cycle support. 
Conceptually IMDC provides the "machine bnilder" 
with design and run-time tools available in the order 
he/she needs them on a single "workbench". Physically 
IMDC utilises a network of one or more user worksta
tions coupled to an embedded real-time control archi
tecture which resides on the target machine. As shown 
in figure 4, the two main user components of the IMDC 
environment are an off-line environment and a run-time 
environment. 



iDC Off-line Environment 
e off-line environment is composed of the software 
,Is set seen by the system designer. This is under
med by the integration platform and associated IMDC 
tabase where all machine configuration information is 
,red. The off-line environment deals primarily with 
~ issues involved in designing and creating a machine 
ntrol system. Typical tools would be for requirements 
ecification, application logic description, auto-code 
neration, simulation and run-time system configura
m. The run-time control system is invoked, monitored 
Id reconfigured with many of these tools. Hence the 
f-line and run-time environments must be closely cou
ed. 

Fig. 4. Concept of an IMDC environment 

MDC Run-Time Environment 
!'he run-time environment provides the run-time control 
functionality to support IMDC control system configu
~tions previously defined by the off-line environment 
[software toolset). It is made up of application specific 
processes, device interfaces and standard utilities. Once 
invoked, the run-time environment may timction with
out further intervention of the off-line system. However 
many off-line tools interact with the components of the 
run-time system for application debuggiog, monitoring, 
reconfiguration. 

Integration PlaHorm 
The integration platform provides a set of generic inte
gration services which provide the mechanisms for 
flexible configuration and management of distributed 
objects. Obj ects in the IMDC context are the compo
nents of the off-line or runtime environments (software 
tools, application logic and handler processes) A dis
tributed object management system (DOMS) is being 
used to provide the necessary integration services. The 
DOMS provides a way of "pulling" the potentially di
verse components together and managing their commu
nications [7]. 

Software Toolset 
The IMDC integration platform provides the means for 
integrating a suite of diverse machine design and control 

tools into a single environment. The toolset can be pro
gressively changed, eohanced and extended via a set of 
generic interfaces. These tools are co-ordinated by a 
"Machine Workbench" and operate on globally shared 
data. They provide integrated support over the whole 
machine design and control lifecycle by addressing ap
plication logic description and analysis, machine mod
elling and visualisation, hardware and software topol
ogy, information storage, code generation and run-time 
support. Integration of the tools facilitates rapid 
prototyping such that potential solutions (and modifica
tions to existing solutions) can be quickly verified. 
IMDC promotes iterative analysis and revision of these 
potential solutions - rapid support for "what-if' analyses 
enabling timdamental design errors to be quickly identi
fied. 

Toolset Example: Application Logic 

Introduction 
The application logic must be created using an appro
priate design tool. Application logic is best described 
using a tool which utilises an internal model which is 
appropriate to the problem. For example, many ma
chine control applications in manufactoring involve 
predominantly sequential logic: assembly machines, 
transfer lines. Synect, an application design tool devel
oped by Hopkinson Computing and also IEC 1131-3 
conformant tools (which offer sequential timction chart 
and relay ladder logic capabilities) are well suited to the 
description of sequential logic problems [2] [3] [4] [8]. 
For applications that require considerable data model
ling other tools are more appropriate, for example 
Estelle [9]. All these tools can be integrated into the 
IMDC platform. The Synect approach to application 
description is considered below. 

Synect Methodology 
Functional approaches to application design have the 
benefit of supporting the concept of sequences, typically 
in the form of state diagrams. The timctional approach 
helps the designer to consider how different components 
need to be co-ordinated to carry out a particular opera
tion, such as picking a part from a feeding device. Ob
ject-oriented approaches encapsulate the sequence logic 
into objects which model the real-world components' 
allowable behaviour. Synect therefore provides a meth
odology for combining the co-ordination of the timc
tional approach with the encapsulation of object orien
tation. 

Applications are described in terms of a hierarchy of 
communicating objects, as shown in figure 5. The lines 
of communication are shown by the lines connecting the 
objects i.e. the Gripper can ouly communicate with the 
Robot - it cannot directly communicate with the Assem
bly Cell or the Arm Elevation objects for example. It 
follows, therefore, that the Robot is responsible for co-



linating the Gripper, Ann Elevation and Ann Trans
ion ol!iects. 

Fig. 5. Object Hierarchy 

~jects may interact in either a synchronous or asyn
mnous manner. The Gripper object's external inter
ce is shown in figure 6. The vertical arrows depict 
essages between objects in the control system and the 
lrizontal arrows depict points of contact with the sys
m being controlled. (The "rwi" (real-world input) and 
wo" (real-world output) prefixes are used to ensure the 
riqueness of names and to aid clarity). The internal 
,gic for each object is expressed in the form of one or 
Lore state transitions diagrams (STDs). Figure 6 also 
lOWS the Gripper's internal logic. 

Fig. 6. External Interface and Internal STD 

:lynect Tools 
Synect provides a set of software tools (application edi
tor, compiler, logic engine, logic monitor and code gen
erator) which are being integrated into the IMDC plat
form [8]. Applications are described by means of a 
graphical editor. Synect is based on the generation of a 
Petri-Net model from the application description [10]. 
Once generated by means of the compiler the model can 
be checked for errors such as deadlocks and unwanted 
state combinations. The automatic code generation pro
vides C source code which is then compiled with appro
priate libraries for the UMC run-time architecture. 

IMDC Lifecycle Support 

Integrated Development 
Processes executing in the IMDC environment can 
communicate using the underlying integration services. 
This capability spans both the off-line and run-time en-

vironments. The use of design tools like Synect thus 
extends throughout the lifecycle of the machine: remote 
diagnostics, analysis of event logs, evaluating the effect 
of changes in the control logic and/or machine confign
ration. It should also be noted that "design" tools no 
longer need to be used in isolation but can be used in 
combination. 

For example, as illustrated in figure 9, the executing 
control system logic may be linked to the Synect appli
cation logic STD monitor. This enables the applica
tion's current state, enabled transitions and the status of 
real-world inputs to be presented by animating the de
signers specification. Sinrilarly the solid modeller can 
be driven from the target controllers for machine visu
alisation. If; as shown in figure 8, emulation device 
handlers are used then the application logic can be ini
tially tested on the target control system without the 
need for physical I/O devices. 

During normal operation a circular event log can be 
maintained on the target machine controllers. If prob
lems occur the logged information can then be replayed 
on the modeller and/or the Synect STD monitor for fault 
finding purposes. 

Rapid Prototype Machine Build 
This section lists a typical set of activities which a ma
chine builder would undertake using the IMDC envi
ronment. It is not intended to be a exhaustive list, but 
serves to illustrate the iterative and highly interactive 
manner in which combinations oftools can be used. 

1 Select machine components - Use of IMDC machine 
modeller for initial machine visualisation and construc
tion. Rapid prototyping of the machine mechanical 
configuration: overall design concept, configuration, 
sizing and selection of actuators, sensors, fixtures, tool
ing etc. 

2 Appllcation logic design - The application logic is 
graphically specified using an appropriate design tool. 
(E.g. Synect Editor.) 

3 Application logic analysis - The logic is compiled 
into a Petri-Net model and then analysed for deadlocks 
and unreachable states. A logic simulation engine is 
then created. (This phase involves the use of the Synect 
Compiler, Analyser and Simulator.) 

4 Simulation - As shown in figure 7, the logic simula
tion engine can now be used to interactively drive the 
modelled machine elements and the logic mouitor may 
also be driven to animate the application logic specifi
cation. (Note that unlike conventional robot modelling 
packages the IMDC ModeUer is not being used to spec
ify the application control logic and does not contain the 
logic execution engine.) 

5 Auto-code generation - Compilable task C code is 
automatically generated for the UMC centralised (and in 
future distributed) runtime control system. This C code 
is complied with appropriate UMC libraries. The Synect 



code generator generates an ANSI standard C pro
Wl from the Petri-Net based logic model. The appli
ion logic is thus exactly equivalent to the behaviour 
the logic engine used to drive the modeller during the 
MOUS simulation phase. 

Fig. 7. Simulation Phase 

Fig. 8. Use of Emulation Handlers 

LOGIC"' U>QIC 

il 
LOGIO 

i 
AUTO 

MOHrfOR 'fNOINI! MO'" ANALYStS aN COD! 

@. [!] ~ 1111111 ~ 
.EN. 

IUUW 111111 ....... 
I L 

I~RA"ON PLATFORM 

MACttNa 
CONFIG 
EDn'OR"' 
.;,&,. 

MACHINE 
COfoIFlGI, . 
EIJTOR 

~ 

I 
I» MAOHINE ... ::': . > '"'. LOGIC ENGINE- .-C1.' 

~< 
. .. ' •. > 

RUNTIME. 
IHANDL.ER I I SOFrwARE:,,: _ LH.lNDLE~', HANDlER 

. 

I ~JI ~ 11 "v .. 
""""""'" 

~~ I I' ~ 
C 

Fig. 9. Machine Execution via Device Handlers 

6 Loading and running the prototype machine - Fig
ure 8 shows a prototype machine, configured and exe
cuting with requests/responses routed between the off
line tools and the run-time target environment. Initially 
the safest approach is to utilise emulation handlers and 
drive elements of the solid model. The modeller per
forms the same functions as in the simulation phase (4) 
but it is interacting with the actoal target control system 
rather than the off-line logic engine. The modelled ele
ments can then be successively replaced with real de
vices as shown in figure 9. 

Conclusions 
This paper has presented an overview of the integrated 
machine design and control environment (IMDC) which 

provides the machine builder with an integrated solution 
for co-{)rdinating tools throughout the complete machine 
life cycle. The commercial benefits of IMDC relate to 
both its impact through improved manufactoring effi
ciency for the end user and its potential to provide a 
stimulus to machine and control system vendors by: 

• reducing the development cost and time of highly 
automated applications, and encouraging reuse of 
softwarelhardware building blocks. 

• reducing the cost of eliminating design faults (fast 
identification) and ease of service and maintenance. 

• allowing more effective adaptation and alteration of 
control systems, without resorting to the expensive 
services of a specific system supplier. 

The proof of concept and effectiveness of the IMDC 
approach is being evaluated using representative indus
trial problems in packaging, assembly and transfer-line 
applications. The IMDC approach is currently being 
compared with existing design and control methods: 
typically either with PLC based control systems or cus
tom built real-time computer systems. 

IMDC has the potential to provide a highly effective 
environment for integrating design and control system 
elements from a diverse range of manufacturers. The 
approach gives SMEs the opportunity to participate far 
more effectively in a vast and growing automation mar
ket which is still dominated by large vendors of "closed" 
systems. 

References 
1. Muir K.., "Stating the CASE for Industrial Automa
tion, Drives and Controls", June 1990, pp 22-24. 
2. "ISaGRAF Industrial Software Architecture", CJ Int., 
86, Rue de la Liberte, 38180 Seyssins, France. 
3. "APT Application Productivity Tool", sales catalogue, 
Texas Instruments, 1992. 
4. Bekkum, J, "The Coming Of Open Programmable 
Controller Software", Control Engineering, Oct. 1993. 
5. Weston RH., Harrison R, Booth AH. and Moore 
P.R, "A New Approach To Machine Control", Journal 
of Computer-Aided Engineering, 1989, pp 27-32. 
6. ''MOSAIC, Modular Open System Architecture for 
Industrial Motion Control", ESPRIT II project 5292. 
7. Object Management Group., "The Common Object 
Request Broker: Architecture and Specification, OMG 
Document No 91.12.1, 1991. 
8. "Synect User Guide", Hopkinson Computing Ltd, 29 
Deepdale, Guisborough, UK, 1995. 
9. ISO 9074. ''Estelle: A formal Description Technique 
Based on an Extended State Transition Model", 1988. 
10. Peterson J.L, "Petri Net Theory and the Modelling of 
Systems", Prentice Hall, 1981. 
11. Harrison R, "A Generalised Approach to Machine 
Control", PhD Thesis, Loughborough Uuiv., Jan. 1991. 
12. Reeve A., "Plots and Pressure Focus on Fieldbus", 
Intech, 40 No. 7,1993, pp 21-23. 
13. "Fieldbus Update: ISP WorldFIP, SP50", Control 
Engineering, 1993, pp 40 No. 9, 23. 



INTERACTIVE VISUALISATION OF SEQUENCE LOGIC AND 
PHYSICAL MACHINE COMPONENTS WITHIN AN 

INTEGRATED DESIGN AND CONTROL ENVIRONMENT 

R. HarrisoD, A.A. West, P. HopkiDSOD and C.D. Wright 

Manufacturing Systems Integration (MS/) Research Institute. Loughborough University, 
Loughborough, United Kingdom, LEII Jro. 

Abstract: An Integrated Machine Design and Cootrol (IMDC) envircmnent fir the visual 
representatioo and integratioo eX the physical machine canpooents and cootrol logic is dis
cussed in this paper. The approach taken is unique in that (a) the cootrollogic and physical 
models of the elements can be investigated individually for correctness and canpleteness. (b) 
the cootrollogic can be easily integrated with the solid models to animate the model of the 
physical machine and (c) recaUiguratioo enables the same cootrollogic to be applied to real 
world physical machine elements. At any stage during the machine design and implementa
tioo process. the user of the envircmnent can pause and questioo the validity of certain op. 
erations and control system parameters. 

Keywords: Machine. Control, Logic, Design. Distributed. Objects. Modelling. Petri-nets. 

I. INIRODUcnON 

The design and implementatiOl1 of manufacturing 
m~ is under increasing time and financial pres
sures as Custaners demand increased product variety 
and quality at reduced product cost (Young, 1995). 
Increased canpetitiOl1 and governmental pressure to 
focus 00 envircmnental issues has forced modem 
machine builders and users to coosider the require
ments for the next generatiOl1 of machines that allow 
the recoofiguratiOl1 of both the cootrol software and 
physical hardware (Rahkooen. 1995). Machines will 
be required to be developed in the minimum amount 
c:J. time and canprise (a) vendor independent hard
ware canpooents. (b) sophisticated cootrol algo
rithms. (c) intelligent sensors and actuators and (d) 
user friendly interfaces. In' additiOl1. open systems 
issues cooceming the ease of integratiOl1. interoper
ability c:J. the software and hardware canpooents and 
available standards must be addressed (Crowaoft. 
1995) to ensure that reuse and recaUiguratioo can be 
achieved. The inherent canplexity inevitably neces
sitates the increased applicatiOl1 of machine model
ling software tooIkits (Le. for cootrollogic and physi
cal machine element design and analysis) and ad-

vanced canputer technology throughout the machine 
life cycle fran requirements definitiOl1. through the 
design and build stages to maintenance and recOIl

figuration. 

End users. machine designers and machine builders 
require technical and operatiOl1al knowledge fran 
disparate disciplines and specialised danain experts 
at various stages throughout the machine require
ments. design. build. installatiOl1, set-up, mainte
nance and recaUiguratiOl1 life cycle (Carrott. et al .. 
1997). CanmOl1 frames of reference are vital to im
prove the canmunicatiOl1S between the above stake
holders in the machine design and build process. In 
particular it is important that discussiOl1s are focused 
around both the cootrol system software and physical 
hardware to ensure that the required logical operatioo 
and physical functionality is achieved. 

Visual representatiOl1 of machine cootrol software is 
currently limited. The majority of machine cootrol 
system software is developed for implementatiOl1 011 

programmable logic cootrollers (PLCs) (Miche!. 
1990). The basic representatioo of the logical map
ping of sensor inputs to actuator outputs is inherently 
simple. but SOOI1 becanes canplex as more functiOl1-

-427-



K 
N 
o 
W 
L 
E :D 

I G "t" : E ,". 
I Pnxas .. 1riabJes .,'. ", 
1"-
I Pb""" _ .... Abstraction .... 
I 0penti0aaJ kDowledae ..... " ..... ' • '. '0 .. 
I Hum_ eapericect &Dd l' - ..... .. 
: "-!alp t Reality ,', , ..... 

' ••• ,0, ....... . 

Fig. I. Illustration of the Visual Interactive Simulation Process. 

ality is included. The development of canplex 
manufacturing logic fa' PLCs is a specialised activ
ity. and it is difficult fa' a nOlI expert to appreciate 
the operatiOll of the canplete system (Venkatesh. et 
al.l994).l.adder logic diagrams and sequential func
tiOll charts (David and Alla. 1992) provide graphical 
representatiOll of sequential operatiOll but the design 
of flexible. reusable and maintainable software is 
nevertheless diffICUlt to achieve. 

There has been widespread use of visual representa
tiOll of manufacturing products in terms of surface 
and solid models (HofIinann. 1997). Canputer aided 
design package usage e.g. AutoCAD and Unigraphics 
(Liang et al .. l996) enables design engineers to visu
alise physical canpooents and layouts pria' to can
missiooing. In certain cases. operatiOllal logic has 
been included into the solid model to enable a dy
namic 8I1imatiOll of the modelled system elements to 
be obserVed and optimised (Hoffmann. 1997). A ma
j<r limitatioo with this approach has been the fact 
that in a'der to transfer the results of the modelling 

. exercise to a real system. the logic must be reimple-
mented outside of the solid model and the opp<rtu
nity fa' erra's and sub optimal impiementatiOll be
haviour pro1iferate (Wright and Case. 1995). There is 
a requirement fa' ari envirooment in which (a) the 
cootrollogic and physical models of the elements can 
be investigated individua1ly fa' UlUectness and can
pleteness. (b) the COIItrol logic can be easily inte
grated with the solid models to animate the machine 
solid model and (c) recoofiguratiOll enables the same 
cootrol logic to be applied to real wa'ld physical 
control elements. 

A maj<r research theme at the Mimufacturing Sys
tems IntegratiOll (MS!) Research Institute at Lough
ba'ough University. UK is the realisatiOll of the next 
generatiOll of machine systems (Carrott. 1996). An 
Integrated Machine Design and COIItrol (IMDC) en-

v .... aI 
Interactive 
Simulation 
(I.e. animation) 

Assessment Validation OeciIions 

Domain Experts 
IAdjyid...a Pen:IeptkIL waiquo IIIGIl&I lad caxeptU&I 
IDOdell. iDdividu.ll ... pbai&a 

virooment (an integrated software envirooment and 
toolset canprising third party and "in house" tools) 
has been developed that seeks to suppa't the Wa'k of 
cootrol system engineers and mechanical designers 
throughout the design and development life cycle of 
manufacturing machines. VISibility of the physical 
machine (using the IMDC Machine Modeller devel
oped around the ACIS solid modelling kernel (Murry 
and Yue. 1993) and cootrollogic software (using the 
Synect modelling tool produced by Hopkiosoo Can
puting Lld. (AnOll. 1995» is a ca-e requirement in 
the IMDC system and is discussed in this paper. 

The envirooment is based around a distributed object 
<Xiented representatiOll of manufacturing machines as 
aggregatiOlls of basic canpooents (Joannis and 
Krieger. 1992): single axes. multi-axes. digital and 
analogue input I output and dumb and intelligent 
sensa'S (e.g. visiOll systems and robots). Distributed 
object technology (DOT) (Orfali. et al .. 1996) pro
vides the ca-e framewa'k within which the tools and 
real system intercommunicate . 

2. VISUAL INTERACTIVE SIMULATION. 
The visual interactive simulatiOll paradigm (also 
termed visua1 interactive modelling and visual inter
active problem solving was aiginally applied to the 
discrete event simulatiOll of job shop scheduling 
problems in manufacturing (Hurrioo. 1980) and has 
mainly been utilised in OperatiOllal Research (Bell. 
1995). Visual interactive simulatiOll is particularly 
appropriate in the manufacturing machine danain 
(Sadashir. et al .. 1989) and can provide a canmOll 
frame of reference to facilitate human canmunica
tiOll of ideas. In the manufacturing machine danain 
it is vital that both the physical machine and cootrol 
logic are available fa' scrutiny. Fig. I illustrates the 
process. A visua1 model (i.e. a model based upoo nOlI 
textural and nOlI verbal elements to canmunicate the 

-428-



tate of a system) is developed that provides an ab
traction of reality. 

:'he applicatioo of visuaJ interactive simulatioo to 
ndustrial machine design and control projects using 
he IMDC enviraunent has resulted in a number of 
lbservations and benefits: 

It is imp<Xtant to ensure general interactioo and 
early involvement by developing an animated 
picnue as soon as possible. 
Interactioo allows the end users and machine 
builders to make canplex decisioos with in
aeased CCIlfidence due to their inaeased under
standing of the machine operatioo and interac
tion. 

• The visua1 image is widely accepted and unex
pected situatioos can be envisaged vi~ what ifI 
scenarios. 

• Of vital imp<Xtance is the integratioo of the con
trollogic with the visual simulatioo in the IMDC 
envirooment. This enables the verificatioo (by 
the developer) and validatioo (by the user) of the 
physical. functiooal and logical perfoonance of 
the machine. In additioo. realistic scenarios and 
results can be replayed to managers to ensure 
their participation and ownership of the project 

3. VISUALISATION OF SEQUENCE LOGIC 
Manufacturing and process industry control system 
applications invariably include sequence logic. The 
canplexity of the applicatioo logic typically involves 
the need to manage several =t activities. COo 
ocdinating their behaviour to achieve the desired ap
plication goal. 

In addition to the standard software engineering 
problems of defining how the pr~ system is to 
wock. and expressing the design in a foon which is 
readily ~derstood. control systems designers must 
ensure that the system's dynamics do not contain de
sign errocs. such as deadlock. livelock and undesir-

. able modes of operatioo. Traditional approaches 
have tended to be ad-hoc oc have inadequately ad
dressed the designer's needs. leaving such errocs to be 
identified late in the life~e. resulting in costly 
modifications. 

Synectnl provides a set of software tools (applicatioo 
edila', canpiler.logic engine. logic mClliIa' and code 
generatoc) which are integrated into the IMDC plat
fmn (Anon. 1995). Applications are described by 
means of a graphical editoc. Synect is based on the 
generatioo of a Petri-Net model from the applicatioo 
descriptioo (peterson. 1981). The evolving design 
can then be examined analytically foc structural and 
behavioural deficiencies e.g. checking foc errocs such 
as deadlocks and unwanted state combinations. An 
executable logic model is created which can then 
drive a visual solid model of the physical machine 

(see sectioo 4). The automatic code generatioo tool 
produces code which is then canpiled with IMDC 
rnntime libraries enabling the applicatioo logic to 
canmunicate with the distributed machine canpo
DeIlts. 

3.1 Logic Visualisation I Representation 
The designer of a sequential control applicatioo can 
visualise the problem and present the soiutioo in a 
number of ways. Three possible approaches are: 
• CCIlSider the applicatioo as consisting of a set of 

interlocks. If the target envircnment is hard-wired 
logic oc. as in the majcrity cl current industrial 
automatioo projects. a PLC programmed in ladder 
logic. the design solutioo maps easily on to the 
implementation (Michel. 1990). 

• take a functiooal view. One cl the moce popular 
structured methods used foc real-time applications 
has been the Ward-Mel10c variant of the Yourdoo 
method (Ward and Melloc. 1985). Control 
transfoons are triggered by events and then react 
by sending signals to other transforms. 

• take an object criented view. Object crientaticn 
has grown from a modeIDng paradigm and. it is 
claimed. leads to more intuitive solutions which 
are moce maintainable and moce amenable to re
use. 

The canbinatiooal logic approach is potentially the 
preferred option if the applicaticn logic is very simple 
(I' there is a strong need foc the solution to require 
the minimum of memocy oc execute as fast as possi
ble. Otherwise. the soluticn can be moce difficult to 
verify. is not conducive to diagnosing operational 
mis-behaviour and is more difficult to modify without 
causing unwanted side-effects. 

Functiooal approaches have the benefit of suppocdng 
the concept of sequences. typically by a foon of state 
diagram. The functiooal approach helps the designer 
to consider how the different compooents need to be 
co-ordinated to carry out a particular operation. 

Object-criented approaches encapsulate the sequence 
logic into the objects which model the allowable be
haviour of rea1-wocld canpooents. The overall sys
tem logic is however now fragmented across different 
objects and this can lead to unanticipated modes of 
operation. 

Synect provides a methodology which combines the 
COoocdination of the functional approach with the 
encapsuiaticin of object orientation. 

IMDC integrates the Synect simuiatoc with the 3D 
solid modeller (see fig. 2). As described in secticn 4. 
the modeller incocporates concepts such as timing 
infoonatioo and senSa' emulation into the solid mod
elling software so that the solid model shows a real-

-429-

<, 
< 

1 



Dl8TAl8UfIEO MAO ..... 

-._ ... --

..".,. UTI: Cl QJIWMCAL '1OQl.& 

1AgIG ............ ' eooo_ 

Fig. 2. illustration of IMDC Interaction between Synec~ the Solid Modeller and the Distributed Real Machine. 

time emulation of how the implem~ted system will· ioural models of the external systems being repre-
perform. ' sented. The tool can be used to specify canponent 

states, operational parameters, motion parameters 
and locations. Canponents. parameters and canplete 

4. VISUALISATION OF MACHINE ELEMENTS sub-assemblies can be stored in the IMDC database. 
A machine designer can utilise solid models in order 
to visualise the physical machine elements and their 
interaction (Hoffmann. 1997). The conventional ap
proach to the solid modelling of machines involves: 
1. initial static visualisation of the machine ele

ments and 
2. determination of the system dynamics and ma

chine element interactioo by embedding opera
tiooal logic within the modelling tool (Yoog et 
al .• 1985). 

; 

The limiiation of this approach is that the coding for 
the real system operation is normally undertaken 
after the simulation phase and the software frequently 
bears little relation to the mechanisms used to drive 
the simulation. In additiai this approach to the mod
elling of the physical machine elements cannot be 
used throughout the life cycle and cannot be used 
interactively with o~ design tools. 

The approach adopted within the IMDC envirllllllent 
is fundamentally different and offers a means to 
overca:ne these difIiculties. Graphical support is 
provided for design evaluatioo which enables design
ers to rapidly investigate what if scenarios. using the 
same control logic throughout the life cycle. 

Models of physical machines can be graphically con
structed within the machine modeller fran canpo
nent building blocks such as actuators, sensors. con
veyors. alarms and structural elements. The model 
components incorporate both gea:netric and behav-

The interface to canponents of each specific type is 
exported via a wrapper object using distributed object 
technology. External objects residing in remote proc
esses can connect to canponents using the wrapper 
and either drive them (e.g. actuators. conveyors) or 
be notified as events occur inside them (e.g. sensas). 
Interaction via a GUI displaying the 3D model work
space allows the user to move around the model and 
examine elements in detail as the machine models 
are being driven. 

5. ENVIRONMENT TO SUPPORT VISUAL IN-
TERACTIVE SIMULATION: IMDC 

The IMDC environment canprises four distinct areas 
of functionality: 
• user tools to enable. for example. logic simula

tioo. motion design. machine modelling and tools 
associated with the control and monitaing of the 
runtime system. The user tools can be progres
sively changed or extended via a set of generic 
interfaces. 

• systems tools to enable system adminiStration. 
access to information and security. Typical system 
configuration information includes the logical and 
physical system layout (machines and networks). 
user names. passwords. access rights. project and 
user environment information. 

• the IMDC object oriented database (poET a 
product fran the POET Software Corporatioo 
(Anon. 1994) which provides persistent storage 
for the outputs fran life cycle activities. system 

-430-

.:. 



coofiguration. traceability and version cmtrol and 
holds the generated elements of specific target 
control solutions 

• the distributed runtime machine composed of 
communicating software components. a subset of 
which provide interfaces 10 external devices and 
third party cmtrol software fer the mooitoring 
and control of the physical machine. 

These functiooal elements all inter..:antnunicate via 
the underlying Object Request Bn*er (ORB) archi
tecture as described in the following section. 

5.1 IMDC System Architecture 

The adoption of an object·criented approach. par
ticularly the use of distributed object technology. has 
been the key to providing flexibility in the choice of 
implementation technologies. Fig. 3 illustrates the 
principle of object distribution across heterogeneous 
host and network architectureS. Identical client soft
ware located on different host platforms I and 3 
communicate with the server object on host 2. Hosts 
1 and 3 may be physically linked 10 host 2 by differ
ent network types. 

A multi-schema architecture has been implemented 
to separate client (typically software tools) and server 
(such as data repository) applications via an under· 
lying integration infrastructure. The integration in
frastructure has been built using distributed object 
technology based upon the Common Object Request 
Broker Architecture (CORBA) specification frmn the 
OMG (Anon. 1991). The infrastructure acts as a sys
tem-wide broker for object services and provides ab
straction frmn low level device specific problems. 
Object services are dynamically registered and de· 
registered with the infrastructure by processes which 
implement the services (object servers). Client proc
esses query the infrastructure for available services 
and are given the necessary connection information 
to access services. 

6. INTERACTIVE USE OF PHYSICAL AND 
CONTROL LOGIC MODELLING TOOLS 

Application logic is not embedded in the modelling 
tool but is generated by use of the Synect logic tool
set. By functiroing as a server. the modeller can be 
cmtrolled by remote processes for example. (a) the 
Synect logic simulator tool. or (b) task control soft
ware running in the target cmtrol system. This high
lights an important feature of the run-time architec· 
ture. namely that the IMDC defined interfaces to the 
controlled elements of these solid models are identi
cal to the IMDC interfaces to the real control system. 
Hence. the control logic processes can drive either 
the modelled hardware elements (thus animating the 
model). the real world hardware elements. or a mix
ture of the two. This permits incremental proving of 
the control logic in a hardware independent manner 

-. 
1 ....... 1 ·"........2 I 
""--------", ""--------,j 

Fig. 3. The Principle of Object Distribution Across 
Heterogeneous Host and Neiwork Architectures. 

and also allows hardware 10 be included into the sys. 
tem as and when it becomes available. 

6.1 Application Example 

The proof of cmcept and effectiveness of the IMDC 
approach is being evaluated using representative in· 
dustrial problems in packaging. assembly. transfer· 
line and PCB handling applications. 

Within Synect. applications are described in terms of 
a hierarchy of communicating objects. Part of the 
object hierarchy for an example PCB handling ma
chine is illustrated in the right hand window of fig. 4. 
The internal logic for each object is expressed in the 
form of state transitions diagrams (SIDs). A frag
ment of a typical STD can be seen in the left hand 
window of fig. 4. 

The PCB handling machine consists of a framework 
which supports a board carriage system. a movable 
gantry and a robot arm which are used to populate 
PCBs with components. To enable visual interactive 
simulation the solid model of each of these compo
nent can be associated with real world input and out
put contact points from the control logic (see fig. 2). 

7. CONCLUSIONS 
The novelty of the IMDC approach is that the cootrol 
system software and physical machine components 
can be individually conceptualised and interactively 
tested. Furthermore IMDC enables modelled compo
nents to be progressively replaced with real system 
components until the final solution is attained. A 
particularly attractive feature is that the same se
quence logic is used to control both the modelled and 
real world components. 

The commercial benefits of IMDC relate to both its 
impact through improved manufacturing efficiency 
for the end user and its potential to provide a stimu
lus to machine and control system vendors by: 

• reducing the development cost and time of highly 
automated applications. and encooraging reuse of 
softw8relhardware building blocks. 

• reducing the cost of eliminating design faults (fast 
identification) and ease of service and mainte
nance. 

• allowing more effective adaptation and alteration 
of control systems. without resorting 10 the expen
sive services of a specific system supplier. 

- 431-



Go< --

IlU! 

-

,oIIhot • .II._"'_ 
, ..... ,."'.-.... ,., ... ..". . 

-.,._"., ... ", 
\ , 

\ 

\. 
"" ....... .,J •• 

"'''''''.-J_-....,.1Mt ..... _.t. 
'-"';::"''':::1>..1-

Fig. 4. Typical User Interface Screen for the Synect Editor showing an Object Hierarchy and STD. 

ACKNOWLEDGEMENTS 

The autha:s gratefully acknowledge the EPSRC fa' 
the provisioo nf research funding and Hopkiuson 
Computing Ltd. for their collaborative input 

REFERENCES 

Anon. (1991). The Common Object Request Broker: 
Architecture and Specification, Object Man· 
agement Group (OMG) Document. No. 91.12.1. 

Anoo, (1994). POET Reference Manual. Version2.l, 
POEI'Software Corporation. 

Anoo, Synect User Guide. (1995). Hopkinson Com· 
puting. Lld .. 29 Deepdale. Guisborough, UK. 

Bell. P.C. and O'Keefe, R (1995), Visual Interactive 
Simulation· Histcr:y. Recent Developments and 
Major Issues. Simulation. 49, No 3, pp. 109·116. 

Carrot!, Al., Mocr:e, P.R, WestCII, RH. and Harri· 
son, R, (1996). The UMC Software Enviroo· 
ment fa: Machine Cootrol System Integratioo. 
Catfiguratioo and Programming. IEEE Tram. 
on Industrial Electronics. 43, No I, pp. 88·97. 

Carrott, A.1 .. Wright. C.D .. West, A.A., Harrison, R. 
and Westoo, RH. (1997). A TooIset fa: Dis· 
tributed Real Time Machine Cootrol, SPIE 
Photonics East Procs., Ma. USA, 2913, pp.2·12. 

Crowcroft, J.(1995). Open Distributed Systems, Bos· 
ton: London, Artech House. 

David, R and AlIa, H. (1992). Petri Nets and Graf· 
cet, EngIewood Cliffs, NI, Prentice HalL 

Hoffmann C, Rcssignac J (1997). Special issue: Solid 
modelling. Comp.·Aided Des., 29, No.2, p.87. 

Hurrioo, RD .. (1980). An Interactive Visual Simu· 
latioo System fa: industrial Management. Euro· 
pean journal of Operational Res .. 5, pp. 86-93. 

Joannis. R and Krieger M.. (1992). Object Oriented 
Approach to the Specificatioo nf Manufacturing 
Systems. Computer Integrated Manufacturing 
Systems. 5. No.2. pp. 133·145. 

Uang M., Ahamed S. and vandenBerg B. (1996). A 
STEP Based Tool Path Generatioo System fer 
Rough Machining nf Planar Surfaces. Comput· 
ers in Industry, 1996,32, No.2, pp.219·23I. 

Michel. G. (1990). Programmable Logic Controllers: 
Architectures and Applications, Wiley. UK. 

Mmray J.L. and Yue Y. (1993). Autanatic Ma· 
chining of 2.SD Ccmpooents with the ACIS 
Modeller, Int. Journal of Computer Integrated 
Manufacturing, 6. No.l·2, pp.94-I04. 

Orfali, R, Harkey, D. and Edwards, 1.. (1996). The 
Essential Distributed Objects Survival Guide, 
Wlley and Sons, OUchester. 

Petersoo J.L .. (1981). Petri Net Theory and Model· 
ling of Systems, Prentice Hall. 

Rahkooen, T.(1995). Distributed Industrial Cootrol 
Systems • A Critical Review Regarding Open. 
ness, Ctrl. Eng. Prac!., 3, No. 8, pp.1155·1162. 

Sadashir. A., (1989) Software Modelling of Manu· 
facturing Systems: The Case f<r an Object Ori· 
ented Programming Apptoach, Annals of Op
erational Research, 17, pp. 363·378. 

Venkatesh. K., Zhru, M., and Caudill, RI. (1994). 
Ccmparing Ladder Logic Diagtams and Perti 
Nets fa: Sequence Cootroller Design Thtough a 
Disaete Manufacturing System, IEEE Trans. on 
Ind. Electronics, 1994, 41, No 6, pp. 611-619. 

Ward, T.W. and Mella:, Sl. (1995). Structured De· 
velopment for Real·Time Systems, Vol. I, Your· 
dCII Press, Prentice·HalL 

Wright. CD. and Case K. (1996) Emulatioo ri 
Modular Manufacturing Machines using CAD 
Modelling, Mechatronics. 4, No. 7. pp. 713·735. 

Young, S.L.(1995). Technology: The Enabler fa: 
Tcmcr:rows Agile Enterptise. ISA Trans., No 4, 
pp. 335·341. 

Yoog, Y.F. et al (1985). Off·Line Programming of 
Robots. Handbook of Industrial Robotics, John 
Wiley. New York. pp 366-386. 

- 432-



Implementing 588 batch control 
systems in the pharmaceutical 
industry 

,y Peter Hopkinson, Mike Sonley and Guy Wingate 
,wee" Engineering So/wions Limited 

ntroduction 

.1any pharmaceutical processes are 
latch-oriented. That is, the process leads 
D the production of finite quantities of 
naterial (batches) by subjecting quanti
ies of input materials to a defined order 
If processing actions·l• Other classifi
:ations are continuous and discrete 
)fOcessing. The goal of a continuous 
)rocess is to produce a steady stream 
,f product using mainly continuous 
:ontrol behaviour. such as 3-lerm 
:ontrol loops. A discrete process exhi
.its predominantly sequence beha
riour. Batch processes often contain 
:ontinuous and sequence behaviour. 

Automation of the process, by a 
.atch control system, can help to 
naximise the plant throughput and 
'ield and quality product. The con
rol system automatically sequences 
,Iant equipment to control the batch 
md consequently avoids unnecessary 
lelays. Because each batch is sub
eeted 10 the same control. consis
ene), is also improved. However it is 
,ften inappropriate to fully automate 
I plant e.g. dosing and sampling che
:kpoints may be candidates for man
Ial intervention. 

Timescales 

)ressure to collapse project time scales 
s becoming ever more intense. Rapidly 
:hanging business environments and mar
(et opportunities. in addition to finan
:ial incentives associated with the 
>roject itself. all serve to shonen the 
leriod between project sanction and 
leneficial operation. As the avai lable 
imescale shortens, the impact of an 
mdelected error during development 
)ecomes more severe. Clearly. the 
'equired focus of a project metho
jology is on risk management and the 
levelopment of an excellent tech
lical solution. 

Standards 

Many batch control systems have 
been implemented from systems 
entirely in a PLC to Distributed 
Control Systems (DCS). Some, parti
cularly the PLC solutions. have been 
entirely bespoke solutions whereas 
others have been based on prop
rietary software platforms. 

Consequently there are now many 
batch control solutions which have 
limited consistency in terms of teml
inology or struc[Ure. This applies to 
solutions using different vendors. 
platforms and implementations using 
the same platform. 

Good manufacturing practice 

The pharmaceutical industry. under 
Good Manufacturing Practice (GMP) 
regulations. is subject to stringent 
inspections regarding both the 
manufactured product and equipment 
used. including the control system 
which could have a significant influ
ence on product quality'. The control 
system itself must offer sufficient 
evidence of its capability to consis
tently beha\'e as required. and must 
typically generate evidence of the 
processing associated with each 
batch of product. Indeed, without the 
batch record. the manufactured pro
duct is effecti\'ely \\'orthless. 

In order to deliver an excellent 
solution which tackles these issues. a 
project methodology specifically 
designed for batch control systems in 
the pharmaceutical industry is 
required. Elegance and fit for 
purpose are the concepts under
pinning both the project metho
dology and the control system 
solution. The project methodology 
must exploit the spirit and detail of 
the S88 standard for batch control in 

?O Measurement ... Control. Volume 31. February 1998 

order to satisfy the business drivers. 
It should aid communication between 
all parties in\'olved in a batch control 
system project by providing cons
istent models and common terminol
Og\. The separate modelling of 
equipment control from product 
recipes will enable the control system 
to be more responsive to recipe and 
plant equipment changes. 

Validation methodology 

The UK GAMP Forum Supplier 
Guide'; is structured around a formal 
management system to help suppliers 
of automated systems to the phanna
ceutical industry ensure Good Manu
facturing Practice. A validation 
lifecycle for new and replacement au
tomation systems is shown in Fig I:' 

Validation planning 

Validation planning addresses how the 
G~IP requirements of the batch control 
system are to be satisfied. The valida
tion plan organises the validation acth'i
ties including supplier audits. roles and 
responsibilities. procedures and 
required documentation relating to 
the other Iifecycle phases, and 
ongoing support issues such as 
change control and operating proce
dures. The user requirements are also 
specified at this stage. 

System specification 

The supplier responds to the user re
quirements by specifying the 
capabilities of the proposed system in 
the system specification phase. This 
specification describes the funct
ionality of the system and areas of 
non-compliance. Acceptance testing. 
particularly the Operational Qualifi
cation. will be derived from the 
functional specification so it is im-



portant that it contains statements 
which are verifiable. It must also 
provide the definition necessary for 
the design activities to follow. 

S88 

588.0 I is the standard defining common 
models and terminology for batch control 
(see appendix I). The system speci
fication should describe the proposed 
solution using 588 terminology. 
separating the capabilities of the plant 
equipment from its use in product reci
pes. The grouping of control modules 
(such as valves and pumps) into equip
ment modules and the definition of the 
corresponding phase control logic is par
ticularly important. The system specifi
cation must also state whether an 
588-aware software platform is to be used 
as this will also significantly affect the 
solution's capabilities and limitations. 

The information available at the 
project start will be different dep
ending on whether the plant is a gree
nfield site or a brownfield site. 
Documentation is likely to include the 
process descriptions for the products 
and a set of Piping and Instrum~ 
entation Diagrams (P&IDs) or 
Engineering Line Diagrams (ELDs) 
corresponding to the plant. In a re
placement project. there may also be 
documentation about the imple
mentation of the original control 
system. The original requirements 
may not be available nor a specif
ication of the functionality the 
control system. The implementation 
documentation. such as sequence 
specifications and database config
urations. may also be incomplete. 
588 requires that the capabilities of the 
plant are decoupled from the product 
recipes in order to maximise tlexibility. 
An existing non-588 control system 
implementation is therefore likely to 
be a subset of the desired control capa
bility. An exercise to understand the 
initial control intent from the existing 
implementation is complicated by its 
'accidental' complexity I and constr
aints imposed by the original develo
pment environment. The existing 
implementation will renect the original 
control system's intended functionality 
whereas there are likely to be addi
tional requirements for the new system. 
Knowledge of the plant's process capa
bility must be "dded to produce the 
specification for the new system. 

The 588 analysis is critical to the 
control system design. There may be 

Validation - Hopkinson et al 

/i"/ 
,~ 
o~, 

I 

'1 
I 

I 

Fig / A lalidation/ife cycle 

several different groupings of control 
modules into equipment modules 
(see appendix I I. potentially offering 
different granularity of phase logic. 
Choosing fewer phases limits the 
tlexibility of the control system but 
there are disadvantages with panition
ing the plant into too many equipment 
modules. such as: 
• Unnecessary coupling between the 
phase logic. bringing support and 
maintenance implications. 
• Additional responsibility on the 
recipe designer to ensure dependent 
phases are appropriately configured 
• Potentially more complex failure 
mode analyses are required. parti
cularly where the co-ordination may 
span control devices and communi
cations networks. 
• Unnecessary batch software platform 
licence costs. 

A method is therefore required for 
the 588 analysis. The method must 
consider top-down approaches_ which 
examine the products. and bottom-up 
approaches. which focus on the 
equipment and its capabilities. This is 
an iterative exercise. requiring 
contribution from process. opera
tions and control system experts. 

The original implementation may 
only address the normal operation of 

the plant, with abnormal occurrences 
being recognised and dealt with by 
plant operational staff. But signifi
cant benefits to product quality and 
yield may be available if abnormal 
behaviour is considered at the control 
system design stage and the necessary 
mechanisms for bringing the plant to 
a controlled quiescent state are 
specified. along with the necessary 
processing to re-establish the process. 

Design reviews 

Design reviews are key to the success of 
the project. The intended control strat
egy is walked through \vith the operations 
and control systems personnel in a 
Control "nd Operability review. A 
checklisting approach similar to the 
use of guide words in Hazard and 
Operability (HAZOP) studies ensures 
that the control system behaviour is 
studied in depth. A diagrammatic 
method. using notations like state 
transition diagrams or sequential 
function charts. is preferred because 
it presents a precise definition in a 
simple form. Whereas this design 
review verifies the control system be
haviour. additional design reviews 
later in the lifecycle verify the mech
anisms and configuration used to 

Measurement + Control. Volume 31. February 1998 21 



lalidation - Hopkinson et al 

mplement the system. 

;utover philosophy 

'or a replacement project. one of the 
oajor design decisions to be made 
arly in the projecCs lifecycle is the 
hange over philosophy from the 
xisting control system to the new 
ontral system. The two main options 
re big bang and a phased cuto,"er. 
The big bang approach uses a major 

,Iant shutdown to entirely replace the old 
ontrol system. This helps to focus the 
ffort of the project team to the 
efined shutdown window. can help 
) avoid project timescale drift and 
lay be the only option if the control 
cheme is complex and highly inte
rated. In some cases there is phys
:ally not room for both old and new 
ontrol systems. Among the dis
dvantages are the need to utilise and 
lanage significant numbers of 
eople during the changeover and the 
ossibility of commissioning over
Llns if a major problem is encoun
'fed. A feature of the big bang 
pproach is that following the major 
hutdown. the operator is required to 
ontrol the whole plant using the new 
ystem. Substantial training is there
)re needed prior to start-up. 
One approach to managing the 

hased CUlOver is to divide the plant 
no relatively stand-alone areas and 
len progressively cut them over 
,om the old control system to the 
ew. In some cases. it may only be 
ossible to cutover a propol1ion of the 
'0 in a phased manner with the re
lainder to be cutover during a 
hutdown. Phased CUlOver provides 
le opportunity to prove the 
ngineering principles and processes 
n relatively small plant areas and 
ffers the pperalOrs a less intensive 
~arning cur\'e. The disadvantages are 
131 it prolongs the changeo\'er period 
'hich can lead to difficulties in re
lining the key personnel. requires 
oth old and new control systems si
lultaneously and may be difficult to 
nplement due to the structure of the 
Id system and the difference in 
hilosophy between systems. 

upplier project and quality 
lans 

upplier quality and project plans 
efine how the supplier is going to 
,"cute the project in terms of quality 
rocedures to be followed and 

deliverables. Ideally. the supplier will 
hold ISO 9000 accreditation. Two 
factors which must be considered at 
this stage are construction and safety. 

Construction 

The UK Health and Safety at Work Act 
1974 placed safety responsibility on 
designers of any al1icle for use at work. 
The Construction (Design and Manage
ment) Regulations 1994 (CDM) extend the 
duties to construction work. pal1icularly 
with regard to the erection of the designed 
items and the subsequent maintenance 
and demolition. Batch control system 
projects in the UK are typically 
notifiable under the provisions of the 
CDM regulations and require the sup
plier to provide to the project an 
organisation chart which will ensure 
that the requirements of the above 
legislation are met. Ideally estab
lished procedures and guidelines for 
compliance with the statutory requi
rements of CDM will be referenced 
by the supplier. 

Safety' 

A manufacturing plant is typically 
protected with a high integrity 
independent trip system. The control 
system anempts 10 control the plant 
to remain within its boundary of 
acceptable operation but a mal
function does not compromise safety 
due to the trip system. The control 
system can be considered to impose 
a demand on the safety system. So if 
the control system is replaced. the 
safety system must be reviewed. IEC 
1508 is a forthcoming standard 
aiming to ensure that the safety re
lated systems which protect and con
trol equipment and plant are specified. 
engineered and operated to standards 
appropriate to the risks involved. 

Design and development 

In a typical software development 
project, software architecture design 
is a major activity. the use of SCADA 
and batch control system platforms 
reduces this to a minimum. The 
design now specifies the structure of the 
platform configurations. 

The 588 analysis will have 
produced a precise definition of the 
required control logic. Because an 
implementation architecture is 
implicit in the use of the S88-aware 
platform. the design effort concen-

~ Measurement + Control. VOlume 31, February 1998 

trates on defining implementation 
rules for transforming the control 
logic into software code~ A consistent 
implementation can then be coded. 

Prototyping 

Poor performance can affect the ability of 
the control system to meet the user re
quirements and is also an emotive sub
ject when the operator interface is 
affected. The functional specification 
must therefore define performance using 
measurable criteria. But predicting per
formance analytically can be difficult. 
Consequently. early performance 
prototyping is used to confirm design 
decisions providing time to correct 
any problems. 

System build 

System build includes software 
implementation. configuration of 
software platforms and hardware 
manufacture. Site-based construction 
and electrical activity may also be 
included. 

There are typically at least two sce
narios regarding the configuration of 
the software platform: 
-Bulk. configuration as the control sys
tem is developed 
-Amendments to the configuration. of
ten in the operational phase of the 
control system's lifecycle. 

The platform configuration tools 
are often oriented at the latter usage. 
They are often graphical or tabular in 
nature. designed for the infrequent 
user to progress step by step through 
the configuration change. providing 
maximum feedback and confinnation 
warnings as necessary. These tools 
tend to be very inefficient for the 
bulk entry of configuration data 
because they do not enable existing 
data to be applied automatically or 
patterns in the required configuration 
to be exploited. When the starting 
point for the replacement control 
system project is several thousand 
pages of flowchal1 definition and I/O 
points in the order of hundreds or 
thousands. it is clear that a more 
intelligent approach is required. 

The use of rapid configuration tools 
and a project database can assist con
siderably. Fortunately. most plat
forms can export and import 
significant sections of the configura
tion to an external fonnat. such as the 
comma separated variable (CSY) 
format for manipulation by spread-



sheets. The project database stores. 
in a neutral format. the information 
for generating configuration data for 
the PLC/DCS database. SCADA 
database and the database in the batch 
control system platform. The rapid 
configuration tools can automaticallv 
popuiate some of the project databas~. 

Pre-delivery testing 

The batch control system will typically 
be staged at the suppliers premises al
though jn the case of a physically large 
system. it may be assembled on-site. The 
first part of pre-delivery testing is the 
Installation Qualification (IQ) to 
confirm physical properties of the 
system. such as the manufacturer. 
";;odel and software versions. The 
next part is the Operational Qualif
ication (OQ) to confirm that the 
system satisfies the capabilities in the 
functional specification. 

De-Bottfenecking 

In a fast track project. bottlenecks 
must be eliminated wherever poss
ible. One candidate is the acceptance 
testing phase although in some 
projects this contributes to operator 
training. A simplistic approach would 
require that the client witnesses in
depth testing of all aspects of the con
trol system. For a large batch control 
system this requires substantial effort 
and elapsed time. 

One solution is to ensure that all 
software is independently inspected 
and tested and that this process is 
monitored by an impartial quality 
engineer with particular knowledge of 
the requirements of the pharma
ceutical industry. The software 
module implemented by one member 
of the de\,elopment team is passed to 
another member of the team for inde
pendent testing:. The benefits of this 
approach can include: 
• Documented evidence of source code 
review. 
• Consistent application of de,·elop· 
ment standards. 
• Sharing of knowledge regarding 
implementation strategies which can 
help in the continuous improvement of 
implementation standards 
• Motivation for individuals to stress
test other developers· software. This 
increases further the software stand
ards as the developer strives to write 
defect·free code. 
• Ability to increase the team size be-

cause learning is built into the devel
opment process. 
• Test evidence which supports user OQ 

This process ensures that the 
software accurately implements the 
design. The accuracy of the design 
against the original control system 
and the required additional function
ality will have been verified by means 
of walkthroughs with the client. The 
OQ can therdore be confidently 
addressed by progressing a set of test 
cases through the batch control 
system. substantially reducing the 
necessary involvement of the client. 

Test environment 

An appropriate test environment. 
using validated tools. is of value for 
software testing. Simulation tools are 
available which can be programmed 
to mimic plant behaviour in correct 
and fault conditions. Ideally a test 
tool would be available to capture the 
raw data generated during the test and 
also be able to automatically repeat a 
set of tests. Simulation tools can also 
be of benefit in terms of gaining 
operator acceptance and operator 
training whilst the control system is 
heing developed. 

Confidence checkpoint 

The methodology can be considered to 
consist of several small feedback 
loops. feedback being an integral part 
of each activity. with several 
confirmation phases towards the end 
of the lifecycle. This could place 
significant risk of an unforeseen 
problem being propagated through to 
pre~delivery testing. when there is no 
time left to rectify it. Consequently. 
our project methodology requires that 
the target control system is assembled 
at the earliest opportunity and an 
evolutionary approach to integration 
adopted. using good configuration 
control mechanisms. to identify any 
problems as soon as possible. 
Furthermore. a confidence check
point is incorporated into the project 
process. whereby the client is invited 
to a fom,.1 test of the skeletal control 
system early in its development. 

On-Site testing 

After delivery. a more complete IQ 
and OQ may be undertaken. A layered 
approach to testing. from electrical 
checks. through phase testing and on 

Validation - Hopkinson et al 

to full recipe management, ensures 
that testing remains focused on a 
clearly defined area of functionalitv. 
Having verified that the appropriaie 
hardware and software is present (via 
the IQ), the batch control system 
behaves as specified (via the OQ). the 
capability of the combined plant 
equipment and control system to con
sistently produce manufactured 
product within specification must be 
confirmed via a Performance Quali
fication (PQ). 

Validation reporting 

Validation reporting sum~.arises the 
results of the validation effort during 
the project and relates directly to the 
validation planning phase. The \'ali
dation report signals the completion 
of the development project. 

Ongoing support and 
operational compliance 

During the operational phase of the 
lifecycle. ongoing support and main
tenance are required to ensure that 
malfunctions are identified and 
rectified. This is often managed under 
a service level agreement \vhich 
provides a contractual basis for the 
agreed level of support. Factors 
helping these activities include: 
• Minimising bespoke software. 
• Good design in terms of the sothvare 
engineering principles of high cohe
sion and low coupling. 
• Rapid configuration tools and project 
database. These reduce the configura
tion effort and elapsed time and also 
help to enforce a pattern or structure 
on the configuration which eases the 
learning curve for support staff. 
• Implementation rules. One of the 
goals of the implementation rules is to 
minimise style variations between 
software developers and even between 
the same developer on different occa
sions. The use of autocode generators 
can be of additional assistance. 

Our project methodology satisfies 
the needs of prospective validation. 
Careful planning of the validation 
strategy can also bring Significant 
savings when recipe changes and 
plant modifications are implemented 
during the system·s operational phase 
of its lifecycle. 

Decommission system 

All systems must eventually be de-

Measurement + Control. Volume 31. February 1998 23 



lalidation - Hopkinson et al 
ommissioned. The age of the control 
)'stem hardware and the difficulty of 
Ibraining spares and maintenance 
over can lead to poor availability 
.nd the risk of complete failure. This 
nay justify an upgrade to the control 
ystem or replacement with an 
'Iltirely new system. starting another 
teration of the validation lifecyc\e. 

(ey points 

~'e have described three major issues in
'olved in phamnaceutical batch con
rol system projects: 
Timescales. 
Standards. 
Good Manufacturing Practice (GMP). 
To satisfy these challenges. a fit for 

lurpose project methodology and excel-
ent project management are required 
o ensure that the right solution is 
I<li\'ered at the right time. Of part
cular concern are: 
Validation lifecycle: the project must 

le managed according to a lifecycle 
"hich satisfies GMP. ensuring that 
locumentary evidence of specification. 
est. change control. etc. is gathered. 
Design reviews: key to ensuring that 

he right solution is delivered. the 
lreposed design is subjected to walk
hrough with the operations and control 
),stem staff. This can be a time 
onsuming exercise and must be care
ully managed to maintain focus: the 
Iternative would be to risk devel
Ipment of a tlawed control system. 
Cutover philosophy: in a project to 

eplace an existing batch control 
ystem. the switch from the existing to 
he new system must be considered 
arly in the project. The choice bet
,'een big bang and a phased CUlover has 
major impact on project timings. and 

,e high level design of the replacement 
ystem. 
S88 analysis: whilst the S88 standard 
,efines consistent terminology and 
10dels which promote flexibility. a 
,ethod for its application is required. 
"he analysis must combine equipment 
nd product oriented viewpoints to 
'roduce a solution which satisfies 
urrent and future process needs. 
Appropriate technology: the use of an 
,88-aware batch control sys.tem 
·Iatfomn can significantly benefit both 
tmescales and technical elegance by 
hifting implementation effort from 
e\'elopment of framework funct
,"ality to configuration. Rapid config
ration tools and a project database 
peed up the configuration activities. 

,'''/-'--
V~ ': Charge Ingredient A 

\ .. P1 
-----:.""~ .. 

Charge Ingredient B " V2 
P2 

------- " Agitale , 

... -------
" V3'" " Drain , 

------

Fig 2 possible parfifionings <l ('ontrol modules 

Conclusions 

This paper has outlined some of the 
issues which must be addressed 
during a phamnaceutical batch control 
system project in a minimum time
scale. Key elements of a project 
methodology to manage these issues 
have been described by relating them 
to the phases of a validation lifecyc\e. 
The methodology has been applied to 
a number of projects. often with mini
mum timescales and short plant shut
down windows for control system 
changeover. 

Appendix One 

S88 - What Is It? 

In 1989 the IS.'" established comm
ittee number 88 (SP88) to produce a 
set of terms and models for batch 
control which \\'ould be applicable 
from the most complex to the simplest 
batch process. whether fully auto
mated or entirely manually operated. 

S88.01 is a relatively new standard 
offering a common terminology and 
models for batch control. One benefit 
of the standard is to focus analysis on 
the production of a highly tlexible au
tomation system. This ensures that ca
pabilities of the plant can be fully 
utilised to meet market demands for 
variations of existing products and 
for the manufacture of additional 
products. The S88 analysis separates 
the modelling of the plant equipment 
from the definition of recipes. 

However the standard does not 
define how this analysis should be 
applied.In particular. many alter
native partitionings of control mod
ules (valves. motors. etc.) into 
equipment modules may be viable but 

the standard does not specify how to 
select the most appropriate parti
tioning. For ex.ample. in fig 2. the 
control modules have been grouped 
into equipment modules as shown by 
the dotted lines. This results in phases 
ChargeIngredientA. ChargeIngre
dienlB. Agitate and Drain being 
available to the process chemist when 
configuring recipes. An alternative 
partitioning could have grouped PI. 
P2. V I and V2 into an equipment 
module. resulting in phase Charge
Ingredients. 

References 

I Brooks Jr. EP. 1987. 'No Silver 
Bullet. Essence and Accidents of 
Software Engineering'. Computer. 20 
(4). 10-19. 

: European Union Guide to 
Directive 91/356/EEC 1991. Euro
pean Commission Directive Laving 
Down the Principles of Good 
Manufacturin a Practice for Medicinal 
Products for Human Use. 

.' Instrument Societ~· of America 
1995. ANSIIISA-S88.0) -1995 Batch 
Control. Part I: Models and Termin
Q]Qg,):. North Carolina 27709. 

, LK GAMP Forum 1996. Supplier 
Guide for Validation of Automation 
Svstems in Pharmaceutical Manu
facture. Version 2. International 
Society of Phannaceutical Engineers. 
The Hague, Netherlands. 

, (;S Code of Federal Regulations 
Title 21: Part 211. Current Good 
Manufacturing Practice for Finished 
Pharmaceuticals. 

, Wingate. G.A.S. 1997. Validatin o 

Automated Manufacturin o and 
I "horator\, Applications. Puttim! 
Principles into Practice. Interpharm 
Press. Illinois 60089. pp 31-32. 

.: Measuremen1'" Control. VOlume 31. February 1998 



AlJthors 
Company 
Address 

Telephone 

Abstract 

A Case History of the Implementation of an 
S88-Aware Batch Control System 

presented at the 
World Batch Forum 

Peter Hopkinson and Joe Hancock 
Eutech 
Belasis Hall Technology Park 
Billingham 
Cleveland 
TS234YS 
England 
+44 (0) 1642372000 

KEYWORDS 
Batch control, S88, SP88, Analysis, Design, Implementation 

This paper is a case history of a recent project to install an ISA S88 aware control system on to a new 
batch plant at an ICI Films (now DuPont Polyester) site in Scotland. A key element of the project was 
the essential use of S88 standard models and terminology to deliver a highly flexible contgll system 
enabling variations to the plants product portfolio to be easily accommodated. 

The paper· describes the user requirements and corresponding control system solution. focusing on a 
subset of the plant equipment and process, and describing the project constraints. Alternative hardware 
and software control system solutions were considered and the justification for the selection of an S88-
aware batch control system platform is given. A particularly interesting aspect of the S88 analysis 
concerning a shared two-position four-port valve and the associated implementation is described. The 
subject of phase coupling is also considered, with particular reference to the maintainability of the 
control system. 

The use of design reviews with the process, control system and operations experts are considered to be 
essential in ensuring that the true needs are reflected in the control system solution. The impact of S88 
on this activity is considered. 

The anticipated benefits are reviewed in the light of several months experience of operating the plant. 

Page lof7 

Copyright World Batch Forum 1998 



Introduction 
As part of a major project to build a new film production plant at rcr Films' (now DuPont Polyester) 
Dumfries site, a requirement was identified for a batch plant to manufacture a feedstock additive slurry. 
The chemical process was reasonably well understood and Eutech was appointed as consultant, initially 
to propose the most appropriate control system solution and subsequently to deliver the solution. The 
control system project was initially highly timescale critical, starting in August 1996 with production 
trials scheduled for January 1997, although external factors delayed completion until April 1997. 

The Plant and Process 
Figure I shows a simplified section of the plant. 

Powder B 

Dispersion 
Vessel 

Vl V2 ~ 

Carrier 
Liquid 

V3 

V4 

Stock 
Tank 

V6 

Figure 1 - Simplified Section of Masterbatch Plant 

Figure 1 is a simplified section of the 110 I/O plant, showing the dispersion vessel unit, the stock tank 
unit and some of their associated equipment. Valves V2 and V3 are three port routing valves. Valve V2 
determines the source of the feed - either slurry from the Mixer and Pump equipment or Carrier Liquid 
from valve VI. Valve V3 directs the liquid/slurry to either the Dispersion Vessel or the Stock Tank. All 
other valves are block valves, such as drain valves V4 and V6. Valve VS is a four port, two position 
routing valve which can be in one of the following positions: 

• Connecting dispersion vessel to mixer/pump 
And connecting stock tank to a mill unit (off the right edge' of the diagram). 

• Connecting dispersion vessel to mill unit 
And connecting stock tank to mixer/pump. 

Page 2 of7 

Copyright World Batch Forum 1998 



A typical use of this equipment would be as follows: 

• A quantity of carrier liquid is charged into the dispersion vessel via valves V I, V2 and V3. 

• A recirculation loop is established through the mixer and pump via valves V4, V5, V2 and V3. 

• One of the two powders, Powder A or Powder B, is added at a controlled rate. 

• The recirculation via the mixer and pump continues until the powder has been suitably dispersed in 
the carrier liquid to form a slurry. 

• The contents of the dispersion vessel are milled via valves V4 and VS (and other equipment not 
shown) to the Stock Tank. 

Choice of Control System Platform 
To simplify the control system requirements, the process designer offered the following restrictions on 
essential functionality: 

• Only one batch would be in the plant at anyone time. 

• Small number of recipes, although some scope for the development of experimental recipes was 
required. 

A number of alternative control system platforms were considered. Factors such as the I/O count. plant 
personnel familiarity with the technology and the need for cost effectiveness guided the solution towards 
the use of a PLC for the plant control with a SCADA (supervisory control and data acquisition) package 
for the operator interface. The recent availability of S88-aware batch software platforms introduced an 
alternative to the development of custom software in the PLC and SCADA to support concepts such as 
ingredients and recipes. We decided that the additional cost of the batch software platform was justified 
by the following: 

• The short timescale of the project. Use of an additional software package to define the structure and 
framework would save development effort. 

• The elegance of the solution. The leading SCADA packages directly support concepts such as 
alarms and continuous data logging and typically offer scripting facilities for application-specific 
functionality. But batch control software packages explicitly support the concepts we were 
manipulating, such as recipes. so the solution would be easier to support and maintain. 

• -Support for S88 models and terminology. ANSIJISA-S88.01-1995 is a standard for batch control 
models and terminology. The batch software platform directly supports the spirit and detail of the 
S88.0 I standard. 

Page 30f7 

Copyright World Batch Forum 1998 



PC 
Pentium Pro 200 

Windows NT 

PLC 
Allen-Bradley 

SLC 5/04 

SCADA: RSView32 
Batch: RSBatch 
Comms: RSLinx 

PLC: RSLogix500 

Data Highwa y+ 

Phase Logic Interface (PU) 

Phase Sequence Logic 

Device Drivers 

Figure 2 - Hardware and Software Architecture 

Figure 2 shows the PLC and PC hardware platforms adopted and shows the Data Highway Plus network 
over which they communicate. 

RSView32 running on the PC provides the operator interface to the control system and RSBatch is the 
S88-aware batch control software. RSBatch offers its own operator interface displays but, in this 
application, we chose to use RSView32 displays for batch control in addition to the usual SCADA 
functionality in order to keep the operator interface as simple and consistent as possible. 

S88 Analysis 
One of the benefits of the S88 standard is the emphasis on separating what the plant equipment is 
capable of doing from how it is controlled to make a batch of a particular product. This helps to ensure 
that a flexible batch control system is developed. 

may contain 
L---r---=~ 

may contain 

Control Module may contain 

Figure 3 - S88 Physical Model 

Page 4 of7 

Copyright World Batch Forum 1998 



The physical model in figure 3 shows control modules as the lowest level in the hierarchy followed by 
equipment modules. S88 defines these as follows: 

control module the lowest level grouping of equipment in the physical model that can carry 
out basic control. 

equipment module a functional group of equipment that can carry out a finite number of specific 
minor processing activities. 

Referring to the plant schematic shown in figure I, each valve and each motor should be considered to 
be control modules. The powder A addition system, consisting of its conveyor system and valve, satisfy 
the definition for an equipment module. 

But how should the other control modules be partitioned into equipment modules? The S88 standard 
appears to offer minimal guidance in this respect so we used our experience with object-oriented 
software development, considering S88 equipment module partitioning to be analogous to the 
identification of object boundaries. A simplistic approach might consider that any control modules 
which are physically connected ought to form part of the same equipment module. Taking this 
approach, valves V 1 to V6 would form part of the same equipment module. This would compromise the 
goal of producing an intuititive model of the plant because it would obscure the ability of the dispersion 
vessel and the stock tank to feed the mixer and the mill concurrently via valve VS. An alternative 
approach would be to define several equipment modules but this has the disadvantage of introducing 
dependencies (or "coupling" to use a software engineering term) between the control of the equipment 
modules. Our solution was to consider that a control module belongs to an existing equipment module 
unless it can undertake a process-oriented task independently of the equipment module. This ensures 
maximum flexibility with minimum coupling. , 

Although t.he plant schematic in figure I appears at first sight to be very simple, in practice there exist 
several real and difficult issues, not least of which was the control module partitioning mentioned above. 
to be resolved during the S88 analysis. 

A poor partitioning could easily result in a solution which: 

• Is difficult to support and enhance. 

• Fails to exploit the inherent flexibility of the plant. 

• Requires the control system developers to assist the process specialists when developing new 
recipes. 

Each equipment module has an associated phase which defines the control of the equipment in terms of: 

• Sequence logic. 
S88 specifies that the phase can be in one of a number of predefined states. Separate sequence logic 
is therefore specified for states: running, holding, restarting, stopping and aborting. 

• Parameters which are downloaded from the recipe to the phase, such as a target quantity to charge. 

Page 5 of7 

Copyright World Batch Forum 1998 



• Reports uploaded from the phase, such as the actual quantity charged. 

Referring to the diagram of the hardware and software architecture in figure 2, the PLC is seen to have 
three levels of software, of which the phase sequence logic is the middle level. The phase logic interface 
CPU) is a layer of software supplied by Rockwell which provides the interface to the S88 batch software 
running on the PC. The device drivers encapsulate the control of the control modules. A typical flow of 
command would therefore be as follows: 

• The batch software in the PC instructs a phase to run by sending a command to the PLI. 

• The PU communicates with the phase sequence logic, such that the phase's running logic starts. 

• The phase sequence logic communicates with device drivers. 

Implementation 
It is most important that the design representation facilitates effective review and provides the basis for 
support and maintenance. The device drivers and associated permissive logic were expressed using the 
easily understood graphical representation of boo lean logic gates. In keeping with the S88.01. the 
sequence logic was expressed in the form of sequential function charts. The partitioning into phase 
"building blocks" enables meaningful discussion to take place regarding the scope of recipe flexibility. 
The well-defined software phase boundaries and graphical definitions of sequence logic help to ensure 
that all parties to the review have a common understanding. The use of sequential function charts 
ensures that the sequence logic specifications are simple to understand but rigorous in definition. 

A set of rules was defined for translating the design into ladder logic code. The rules help to minimise 
style variations between individuals and even between different modules coded by the same individual. 
The benefit is felt in terms of ease of review and maintainabiIity. 

Project Process 
The requirements of the sequence control were initially expressed in the form of a text document 
describing the overall processing required. This was supplied by the process engineer at the start of the 
project. The project process included defined review points so that the evolving design could be 
evaluated against the original specification. Early reviews with process, control system and operations 
personnel ensured a common understanding of the plant operating constraints and process requirements. 
Subsequent reviews confirmed that the design satisfied the requirements. The implementation team 
could then develop the code and configure the software packages, using reviews such as code 
walkthroughs to verify that the implementation corresponded to the design. System acceptance test 
procedures closed the loop by defining the tests to demonstrate that the delivered system provided the 
functionality agreed earlier in the project. 

Conclusions 
S88 encourages control system flexibility matching the plant equipment flexibility in order to prevent 
unnecessary operating constraints imposed by the control system alone. This flexibility was utilised 

Page6of7 

Copyright World Batch Forum 1998 



shortly after the plant began beneficial operation: 

• A requirement arose to exploit the concurrency of operation available in the plant, violating the 
initially offered process requirement restricting the plant to serial batches. To increase throughput, a 
dispersed slurry would be transferred to the stock tank such that the milling could be done from the 
stock tank whilst the next batch was being prepared in the dispersion vessel. As a result of adopting 
S88, new recipes were easily developed to satisfy this requirement, with no modifications necessary 
10 PLC software. 

• The initial requirement defined a small number of recipes. But having installed the system, a 
number of alternative cleaning recipes were designed, by the client, to satisfy different needs. Once 
again, the flexibility inherent in the S88 analysis, along with the standard configuration facilities 
offered by the batch control system platform, ensured that the new recipes were rapidly and correctly 
configured. 

• The process expert has edited existing recipes and designed new recipes without reference to control 
system development personnel. 

• As anticipated, the software platform functionality over and above the user's initial requirements 
provided opportunities for rapid and minimum cost system enhancement. An example of this is the 
batch logging capability, providing a batch history for post-batch analyses. 

Consequently, on balance, it has been shown that the desired benefits arising from the application of S88 
and the use of an S88-aware platform have largely been met. Although reservations were expressed 
regarding .the adoption of a new approach and platform software, the project ran to time and budget and 
significant learning has been achieved relating to an S88 methodology and its implementatwn on current 
platforms. This learning is being employed in subsequent batch process control projects. 

However whilst it is clearly much too early to have evidence on the long-term supportability of the 
control system, the current indications are very positive. 

Our ongoing experience with batch control applications suggests that, with appropriate interpretation, 
S88.0 I and S88.0 I-aware control system platforms can offer significant benefits for some types of 
application but may be marginal for others. 

Bibliography 
Peler Hopkinson is a process automation consultant with Eutech and can be contacted at Eutech, Belasis 
Hall Technology Park, Billingham, Cleveland, TS23 4YS England, telephone +44 (0) 1642372000, fax 
+44 (0) 1642372166, email Peter.Hopkinson@eutech.com. 

Joe Hancock is a business manager with Eutech and can be contacted at Eutech, Brunner House, 
Winnington, Cheshire, CW8 4FN England, telephone +44 (0) 1606708888, fax +44 (0) 1606704733, 
email Joe.Hancock@eutech.com. 

Page 7 of7 

Copyright World Batch Forum 1998 



The Application of the S88 Batch Control 

Standard in the Pharmaceutical Industry 

Niels Haxthausen, Novo Nordisk Engineering 

and 

Peter Hopkinson, Eutech Engineering 

Wednesday 4th March 1998 



Introduction 

Batch Automation 

Most pharmaceutical production processes are batch processes. This is due partly to the 
nature of the processes - and partly to the particular pharmaceutical requirements for 
traceability and containment. 

Batch processes involve a number of challenges: 

•. You have to manage the sequential nature of batch processes 
• You freq uently have to manage several simultaneous batches - with the necessary 

coordination of processes and separation of material. 
• Batch processes have the potential of producing a number of different products in the 

same facility - in which case you have to manage the different product specific 
behaviour 

These challenges have posed a bottleneck - or complication in automating batch 
production. To date we have seen many different approaches - and many different levels 
of automation - in batch plants. Automation has the potential of maXimising the plant 
throughput and yield and quality of the product. The control system can automatically 
sequence the plant equipment to exert the necessary control over the batch and 
consequently avoid unnecessary delays which might othelWise be introduced. Because 
each batch is subjected to the same control, batch to batch consistency is also improved. 
Batch production can be documented electronically by the control system. However it is 

often inappropriate to fully automate a plant. For example, dosing and sampling 
checkpoints in the process may be candidates for manual intervention. But even in these 
cases we see an increasing use of electronic execution support and documentation " 
(Manufacturing Execution Systems, Electronic Batch Record Systems). 

An international standard for batch control: 588.01 (IEC61512) 

Over the last couple of years the S88.01 standard has been adopted as the dominating 
international standard covering batch control has been developed. S88.01 has been 
developed as an American standard - with international influence. By beginning of this 
year the standard has been adopted as an official international standard by the 
International Electrotechnical Committee, as "IEC 61512". 

The S88 standard has been very widely accepted - practically all batch control vendors 
have aligned their offerings with the standard - and it is becoming the predominant 
platform for descriptions and implementations of batch control. Some of the key features 
of the standard are: 

• A standard terminology in the field of batch control 
• Modular structure of process and equipment 
• Product independent plant design 
• Equipment independent recipes 
• A structured way of operating batch plants 

2 



588.01 introduction 

Basic models: process and equipment 

The S88 standard recognizes 2 distinct dimensions when describing batch production: The 
process that the batch - understood as material - undergoes - and the physical plant in which it is 
produced. The 2 dimensions are represented by models. where the process and the plant is 
decomposed hierarchically into ever smaller parts. 

The process model 

Process 

. i'" 

consists 
ordered 

Process 
Stage 

. I-

consists 
ordered 

Process 
Operation 

. -
consists -
ordered 

Process 
Action 

Physical model 

A batch proces leads to the production of finite quantities of 
material (a batch) by subjecting quantities of input materials to a 
defined order of processing actions using one or more pieces of 
equipment. The subdivisions of a batch process can be organized 
in a hierarchical fashion as shown in Figure 1. 

of an Process stages 
set of 

of an 
set of 

of an 
set of 

The process consists of one or more process stages which are 
organized as an ordered set, which can be serial, parallel, or 
both. A process stage is a part of a process that usually 
operates independently from .other process stages . 

Process operations 

Each process stage consists of an ordered set of one or more 
process operations. Process operations represent maj5r 
processing activities. A process operation usually results in a 
chemical or physical change in the material being processed . 

Process actions 

Each process operation can be subdivided into an ordered set of 
one or more process actions that carry out the processing 
required by the process operation. Process actions describe 
minor processing activities that are combined to make up a 
process operation. 

The equipment we use to produce a batch is the central object of the S88.01 model. Equipment in 
this context means the vessels, pipes, valves etc. which physically contain or manipulate the 
batch - including the control that enables this to happen. 

The equipment is the tool used to manipulate the batch - physically and chemically. The actions of 
the equipment therefore is the essence of batch. The modeling of equipment in the control system 
is therefore the key to any decent design of a batch control system. 

3 



The model has seven levels, starting at the top with an enterprise, a site, and an area. These 
three levels are frequently defined by business considerations and are not modeled further in 
this document. 

The lower four levels of this model refer to specific equipment entities. An equipment entity is a 
collection of physical processing and control equipment grouped together for a specific 
purpose. The lower levels in the model are specific to technically defined and bounded 
groupings of equipment. The four lower equipment levels (process cells, units, equipment 
modules, and control modules) are defined by engineering activities. During these engineering 
activities, the equipment at lower levels is grouped together to form a new higher level 
equipment grouping. This is done to simplify operation of that equipment by treating it as a 
single larger piece of equipment. Once created, the equipment cannot be split up except by re
engineering the equipment in that level. 

:'\lay contain 
r----''''---, 

Process 
Cell 

~Iust contain 
r--~r"'nit"""';'--'-'t 

:\lay ton lain 
~~'--..., 

May conlain 
r---~~-; 

~hy 

contain 

May 
contain 

Process cell level 

A process cell is a logical grouping of equipment that includes the 
equipment required for production of one or more batches. The 
equipment actually used or expected to be used by a batch is 
called the path. 

Unit level 

The unit level is critical to the S88 concepts. A unit typically 
combines all necessary physical processing and control 
equipment required to perform a processing stage. A unit does 
not operate on more than one batch at the same time. Physically, 
it includes or can acquire the services of all logically related 
equipment necessary to complete the major processing task(s) 
required of it. Units operate relatively independently of each 
other. A unit frequently contains or operates on a complete batch 
of material at some pOint in the processing sequence of that 
batch. However, in other circumstances it may contain or operate 
on only a portion of a batch. 

Equipment module level 

An equipment module can carry out a finite number of specific 
minor processing activities such as dosing and weighing. It 
combines all necessary physical processing and control 
equipment required to perform those activities. An eqUipment 
module may be part of a unit or a stand-alone equipment grouping 
within a process cell. If engineered as a stand-alone equipment 
grouping, it can be an exclusive-use resource or a shared-use 
resource. 

Control module level 

A control module is typically a collection of sensors, actuators, 
other control modules, and associated processing eqUipment that, 

from the point of view of control, is operated as a single entity. A control module can also be 
made up of other control modules. For example, a header control module could be defined as a 
combination of several on/off automatic block valve control modules. 

4 



Both the process model and the physical model may be collapsed or expanded - i.e. levels may 
be excluded in particular applications or new levels may be introduced. 

5 



Procedural control 

The main purpose of the S88 standard is to describe the interaction of the 2 dimensions - i.e 
how equipment is controlled in order to make the processes happen in a well structured way 
that optimally caters with product demands - including the demands for product variations and 
equipment utilization. 

In order to make batch processes happen in physical equipment you have to execute 
procedural control. Procedural control is the kind of control that inVOlves a sequence of 
commands to the equipment making it perform specific tasks - e.g. batch processes. 

Procedural control is modeled hierarchically in a way very similar to the process model as 
procedural elements that are hierarchically decomposed. The figure below illustrates the linking 
of the process model and the physical model through exercising procedural control. 

Procedural 
Control 
Model 

Elements 

combined 
with a 

Physical 
Model (Lower 

Portion) 

:-: -: -:.: -:.: -:'. -:.:.:. .... 
. ....... , .. .. . 

.. 'Equipm,ent::/:;' 

Procedure (a )1-'-+------... 01 Process 
Cell (s) 

Unit 
-Procedure (a) 

Phase(s) 

.......... , .......... ' ... . 
.. :: (SI! .F·ig~~.~·.·~): ," 

, ..................... . 

combined 
with a 

combined 
with a 

combined 
with a 

combined 
with an 

Unites) 

Unit(s) 

Equipment 
Module (s) ... ~==.,.". .•. . ................. . 

:'<S.~~, ~~gure .2.C:::: 
... " .... . ... ............ ................. . 

6 

Process 
Model 

. ......... ", . 
.... '" ·~·~~~i:tj~:~· .. 

Process .... 
provides proce s:::: ~~~.~~C?~~~.~~;( 

functionality , .. -'.0 ..... ""''''''''''""'-'.; 
to carry out r 

... 

.. 

provides proce "s:;: 
functionality 
to carry out 

Proce •• 

':---,~~~ .......... .. .. 

...... .. :<::;: .. :: .. 

Process 
Stage 

.. 
provides proc:e s ........ .... . .. 

functionality .. . ............... . 
to carry out 

Process 
Operation 

...... 
.... . .. 

provides proce 8,:.:-:····· .................. . 
functionality .. 1'-";';';'';''';';';';"'"'''"'"'1 
to carry out 

.. 
... .. 

Process 
Action 

.. ...... .. .. 
.. ..... 

provides proce ~,-:::: >:.: '.' '.' . :.:::}>:.: ... 
functionality ... .. 
to carry out 

Process 
Action 

. ............. «.:- .. . 
.. (Se~ .. ~ig~~.e ).(::::: ......... ' .. -: ......... . 

.. ............ .. 



Recipes 

The procedural control may be "hard coded" with the equipment - typically if we are dealing with 
a single purpose plant. It may also be defined in recipes - if it varies from product to product. 
S88.01 defines recipes as "The necessary set of infonnation that uniquely defines the 
production requirements for a specific product". The recipe attached to a specific batch is called 
a control recipe. A control recipe is derived from a master recipe. that includes the specification 
of how to produce a specific product in a process cell. 

How much information is included in the recipe depends on the extent of product variations -
and the intelligence of the equipment. If the equipment is preconfigured to support specific 
products the recipe may be reduced to a simple selector. If the equipment on the other hand is 
very generic - e.g. a collection of multi purpose equipment with basically any transfers possible 
- the recipe will have to specify the procedure to a great detail. 

A recipe will include some level of procedural specification - and it will include associated 
parameters (a formula). When executed the recipe procedural element will activate equivalent 
equipment procedural elements in the chosen units - and hand over the relevant parameters. 

The 2 figures below show different ways the referencing can be done. In the first case the 
recipe basically just specifies the sequence of unit procedures - leaving the execution order of 
the phases up to the equipment. In the second case the recipe includes specification and 
parameters of the individual phases. 

Control Recipe 
Procedure 

Recipe 
Procedure 

Is an 
ordered 

set of 

Recipe Unit 
Procedure 

-
references 

Equipment Control 

Equipment 
Unit 

Procedure 

is an 
ordered 

set of 

Equipment 
Operation 

Is an 
ordered 
set of 

Equipment 
Phase 

Control Recipe Equipment Control 
Procedure 

Recipe , 
Procedure 

Is an 
ordered 
set of 

Recipe Unit 
Procedure 

Is an 
ordered 

setof 
ReCipe 

Operation 

Is an 
ordered 

set of 
Recipe 

references 
Equipment 

Phase Phase 

The concept of a product specific recipe that sequences equipment specific procedural logic 
opens up for a lot of flexibility: 
• Different recipes (lproducts) can use the same equipment and procedural logic in different 

combinations . 
• The highest level procedure - the sequence of unit procedures - allows for selection of 

different paths through a plant 

7 



• The same recipe may be executed on different equipment - as long as the equipment can 
match the recipe procedural requirements (e.g. the same function and parameters). 

S88 control activity model 

Recipe 
Production Production 

Planning and Infonnation Management Scheduling Management 

Process 
Management 

Unit 
Supervision 

Process 
Control 

Outside the scope 
Personnel and of this standard 
Environmental 

Protection 

The control activities shown relate to real needs in a batch manufacturing environment. The 
need to have control functions that can manage general, site, and master recipes implies a 
need for the Recipe Management control activity. Production of batches must occur within a 
time domain that is planned and subsequently carried out. Production Planning and Scheduling 
is the control activity where these control functions are discussed. Various types of production 
information must be available, and the collection and storage of batch history is a necessity. 
The Production Information Management control activity in the model covers these control 
functions. 

Control recipes must be generated, batches must be initiated and supervised, unit activities 
require coordination, and logs and reports must be generated. These control functions fall 
under the Process Management control activity in the model. There are many control functions 
needed at the Unit Supervision control activity level. For example, there is a need to allocate 
resources, to supervise the execution of procedural elements, and to coordinate activities 

8 



taking place at the Process Control level. In Process Control, control functions are discussed 
that deal directly with equipment actions such as the need to implement control functions using 
regulating devices and/or state-oriented devices. 

9 



588 and Good Engineering practice 

The potential for failure in a project to implement a batch control system in the pharmaceutical 
industry is high. The business drivers of project timing, regulatory compliance, cost and 
demand for more product variants and improved product quality require critical management of 
an appropriate project methodology including a good structuring that combines robustness and 
flexibility. The S88 provides such structuring - both due to the use of S88 concepts in the 
engineering and due to vendor provided tools that support that. 

Th_e S88 batch control standard provides an excellent platform for structuring this problem 
- not only from a control perspective, but from the perspective of the multi-disciplinary, 
complete specification and test of a plant. The following life-cycle models and terminology 
are therefore in no way control-specific, but cover the complete installation - including 
mechanical equipment and installations and manual functions. 

Specification and Qualification 

In the following the relationship between SP8S and good engineering practice - in particular 
requirements and design at the process and function levels - will be expanded. 

The engineering of pharmaceutical plants is illustrated in many different life-cycle models. 
One is the "V" model - which shows the increasing levels of detail and the timeflow: 

Requirements Design 
Qualification 

Process 

Function loa 

Installation 

Ac!lJal Installation 

Down the left leg we have the "waterfall" situation: process requirements are met by a 
process design - from which functional reqUirements to the individual units or parts of the 
plant are derived. These functional requirements are met by a functional design -
including PI-D's and control strategies - from which the detailed requirement to the 
individual components, the piping, the electrical and the SW modules are derived. 

By systematically reviewing the design against the requirements, and the installation 

10 



against the design (by quality control during ordering, at the vendors, at reception and at 
installation) one can establish an alternative track to verify that the requirements are met
a track that follows the engineering process concurrently and thus has better access to 
the relevant information than what can be obtained in the final installation. 

The end result is improved quality control and a faster track for the project. But it requires a 
very distinct set of requirement documents, and a good match between requirements and 
design - so that the review of the design against requirements may be done in a controlled 
fashion. Here the SP88-structures become critical - in particular at the functional level. 

Flrocess Requirements 

The process requirements may be expressed in the terms of the SP88 process model - a 
hierarchical breakdown of processes into stages, operations and actions. This model is in no 
way revolutionary - many other similar approaches have been used in process industries for 
years. By applying the SP88 model it is however ensured, that the process requirements may 
be expressed in a modular fashion that fits with the implementation of units and of procedural 
logic. This is the first requirement for a traceability - that design and requirements are mappable 
- so that one avoids having to check any design element (or even worse - modification) against 
the complete set of requirements. 

Process design 

S88 plant structure - product independence 

In the process design you select the key processing equipment and dimension the plant. 
Furthermore you determine the logistics of the plant. Do you want a single line - do you want a 
lot of cross coupling - or do you want free movement of material. Should the individual parts or 
lines be single purpose or multipurpose? Should it run 24 hours - automatically or manually? 

S88.01 is a control standard - but the models introduced provide a very good foundation or the 
overall process design. The concepts of equipment entities - in particular units - can be used to 
structure the plant. And the recipe concept enables the process designer to create a generic 
plant <!nd let the recipe control the specific equipment selection. 

The following criteria should be taken into consideration in the segmentation of the process cell 
into units: 

a good fit with the segmentation of the process description (units that match process 
stages) 
good adaptation to the flexibility and timing requirements 
avoiding bottlenecks or complex interlocks associated to transfers 
a good functional batch separation facilitating the association of information with the 
individual batches. 

Example 

The process cell shown is capable of executing the 2 processes described above. Utility and 
raw material supply equipment and the volumes and capacities should be added - resulting in a 
flow-diagram with at least all material flows. Further the overall control strategy and level of 
automation should be described, as well as cleaning processes, critical materia! specifications 
etc. 

11 



The process cell design shown in the first figure takes into account the fact that the fermentation 
process takes up more time than the reaction. The fermentation and reactor units may be used 
for both products - buffer vessels ensure batch separation and remove scheduling constraints. 

The second figure illustrates how the process cell could be made more generic - allowing for 
other (yet unknown) combinations of unit procedures - and for expansion. The point of good 
S88 design is - that if you make the units sufficiently independent and generic - and base your 
control on an S88 aware recipe concept - it is not more complicated to manage the more flexible 
situation. 

drum. 
fi~'.tion 9 

fermention 

" .. ~ , , , , 
~ .,- , , 

" ~ . , ,- j •• 

, , , 
, , , , , , , .. ," .. ," 

= .. .. "!. ~ .. I@ ., .. ~ -- --- ---[0 .... 
'''clion , 
.~• 

Functional Requirements 

= .. ~ , I , . , 
, • reacli n 

drum- 'T' A 
.. • .. .. • r •• ctlo 

filtration clarification 

, 
.. ·,'!,n.n,,,,,,,,,n'""'I"" 

'1"'''''''''''''''''''''1' ::: ::: 
~t.,_,,,,.,_,_,_,_,,,,' ___ _ __ 

'. .. ' .. 'puritica' ---
fillralion tlon 

The functional requirements specify what the equipment should be able to do. 

Functional requirement specifications would typically be organized per unit. In addition 
functional requirements on the process cell level may be specified (e.g. requirements 
to the process management functions), and general requirements that apply to all units 
(e.g. unit modes and states, requirements for manual operation of devices etc.) should 
be specified. 

The functional requirements should be expressed in S88 terms: unit procedures, 
operations and phases, which the unit should be able to execute. (This matches nicely 
to the concept of recipes - what recipes should the unit be able to execute). In this way 
you get a clear structure to the requirement· and what's more· a structure that maps 
well to the S88 based design of the control system. 

The functional requirement specification should include: 

• the names of the procedural elements, a brief description of their required 
functionality with specific measurable criteria (sequencing, time requirements 
etc.) and the formula parameters with allowable ranges of formula values 

• materials to be handled (volumes, flows, specifications) 
• constraints that should be imposed· in terms of batch separation and cleaning 

requirements, allowable recipes, allowable manual intervention, process 

12 



interlocks 
• critical alarms with associated alarm limits 
• measurement and data collection requirements 

The recipes themselves are not considered part of the plant - and are therefore not 
described as part of the design process. Changes in recipes - or creation of new 
recipes - should ideally involve only process qualification activities - not revalidation of 
SW and equipment. 

V01 (1104 
.... A 

v02 ~ Operations: 
-" Charge , ,no' 

£ React A 

V20" VOS 
React B 

1= 
pH. equipment e Phases: 

module ,/ Heet 

\ Add Water 

VOS 

~ 
AddSatt 

--t><l- Add Reactant 

~eating Equipm. 8 "- Adjust pH 
pH·profile 

Module ./ 

V07 ~ 

Product independent Functional Design 

The functional design is typically made up of a PI-D, some overall specifications of lay-out 
and materials and associated descriptions of the control and measurement functions 
implemented. 

In the functional design we have to describe the actual components that provide 
the unit with the capability of performing procedural functions. 

The functional design of the unit should follow the 588 structures - using 
equipment modules as tools for structuring the more complex units. 
The required procedural functions should be implemented as equipment phases, 
operations and unit procedures - preferably 1 :1. Note that some of the phases 
may be implemented through equipment modules - where as others may be 
associated with the unit as a whole. 

Using a strict 588 structure makes it simple to relate the individual elements of 
the functional requirements directly to the application SW building blocks - thus 
making the test easier - and paving the way for a manageable change control, 
where the ripple-effect on modifications can be contained. When technology 

13 



matures it will even become possible to make an electronic association between 
a phase "object", the requirement and design specification documents covering 
it, the test status and results, and its change history. This will significantly reduce 
the cost of change management. 

14 

, 



Design recommendations 

The system specification should describe the proposed solution using S88 terminology, 
separating the capabilities of the plant equipment from its use in product recipes. The 
grouping of control modules (such as valves and pumps) into equipment modules and the 
definition of the corresponding phase control logic is particularly important. The system 
specification must also state whether an S88-aware software platform is to be used as 
this will also significantly affect the solution's capabilities and limitations. In a project to 
replace an existing control system, the S88 analysis to be performed must take account 

- of deficiencies in the documentation likely to be available and the outputs required from 
the analysis. 

The S88 analysis is critical to the design of the control system. There may be several 
different groupings of control modules into equipment modules to be considered, 
potentially offering different granularity of phase logic. Choosing fewer phases limits the 
flexibility of the control system but there are disadvantages with partitioning the plant into 
too many equipment modules, such as: 

• Unnecessary coupling between the phase logic, bringing support and maintenance 
implications. 

• Additional responsibility will be placed on the recipe designer to ensure that dependent 
phases are appropriately configured in the recipe. Potentially more complex failure 
mode analyses required, particularly where the co-ordination may span control devices 
and communications networks. 

• Unnecessary batch software platform licence costs. 

Pre-S88 implementations may have typically addressed the normal operation of the plant, 
with abnormal occurrences being recognised and dealt with by plant operational staff. 
But significant benefits to product quality and yield may be available if abnormal 
behaviour is considered at the control system design stage and the necessary 
mechanisms for bringing the plant to a controlled quiescent state are specified, along with 
the necessary processing to re-establish the process. 

Design Reviews 

A fit for purpose project methodology is essential to ensure that risks are identified and 
addressed. Of particular importance is the need to ensure that the functional 
requirements and the proposed solution are fully understood. 

Design reviews are the key to this aspect of the project. The intended control strategy is 
walked through with the operations and control systems personnel in a Control and 
Operability review. The use of common S88 terminology and models helps to promote a 
common understanding. Adopting S88 helps to focus attention on functional modules of 
limited scope, making the review process more manageable. A diagrammatic method for 
specifying phase logic sequences, using notations like state transition diagrams or 
sequential function charts, is preferred because it presents a precise definition in a form 
which is simple to understand and review. 

15 



588 based control systems in pharmaceutical applications 

Automation of the process, by means of a batch control system, can help to maximise the 
plant throughput and yield and quality of the product. The control system automatically 
sequences the plant equipment to exert the necessary control over the batch and 
consequently avoids unnecessary delays which might otherwise be introduced. Because 
each batch is subjected to the same control, batch to batch consistency is also improved. 
However it is often inappropriate to fully automate a plant. For example, dosing and 

sampling checkpoints in the process may be candidates for manual intervention. But even 
in these cases 588 aware systems may be in place to guide, monitor and log the manual 
execution. 

588 aware batch execution systems 

Practically all control systems targeted for the batch market provide some 588 aware 
batch execution functions. Over the last couple of years the market for batch execution 
systems has consolidated to a relatively small number of standard systems - working as 
independent packages on top of SCADA + PLC's - or embedded in DCS systems. 

The 588 batch execution offerings typically provide a relatively loyal interpretation of the 
588 concepts - in a prepackaged and relatively easy to use fashion. 

However they frequently only offer one or a few of the options catered for in 588. For 
example the linking at different levels - and the collapsibility and expandability called for 
by the standard - is not provided by most standard solutions. This may result in relatively 
rigid solutions that might have a poor fit to the application requirements. 

MES/EBRS systems 

The manufacturing execution systems - or electronic batch recording systems - that are in 
use in an increasing number of pharmaceutical plants - are 588 aware only to a limited 
extent. This poses some problems - in part because the systems are missing some 
critical concepts - e.g. the relation between equipment procedural logic and recipes - and 
in part because of the resulting integration problems with lower level control functions. 
One is often faced with having to choose either an MES solution - which takes good care 
of the manual operations - or a batch execution system - that organises batch execution 
in processing equipment very well. However a merge of these worlds is underway - with 
MES's becoming more 588 aware and batch execution systems becoming better at 
material management and handling of manual operations. 

Data exchange 

588 describes a framework for data-exchange with the surroundings - easing the use of 
integration tools, electronic signature etc. This is paramount to reducing the huge 
overhead of paper-related costs associated with pharmaceutical production - in particular 
in the area of batch documentation. A part 2 of the standard(S88.02) is under way that 
provides standardised frameworks and mechanisms for integration of different systems 
involved in batch control and batch production in general. 

16 



Experiences from 588 analysis, design and implementation 

Challenges 

The potential for failure in a project to implement a batch control system in the 
pharmaceutical industry is high. The business drivers of project timing, regulatory 
compliance, cost and demand for more product variants and improved product quality 
require critical management of an appropriate project methodology. 

A Case History 

This section describes a case history of a project to supply a batch control system for a 
new fine chemicals batch plant. The project decided to adopt the S88 standard to 
promote a common understanding and to encourage the development of a flexible control 
system which modeled the flexibility inherent in the plant design. 

The Plant and Process 

Powder A 
I , 

V~ 
I~ )'1. I" I Powder B ' 

. 

Dispersion == ='= Stock 
Vessel Tank 

7 
" V4 V6 

V1 V2 ?-,\.. ..J,:;,'z,V5 ,,\ 

~( Carrie( 
Liquid 

Mixer and 
Pump 

Simplified Section of Plant 

Figure 1 shows a simplified section of a part of the plant containing two units - a 
dispersion vessel and a stock tank. There are three different types of valve: 
• Valves V2 and V3 have three ports and are used to route product. Valve V3 

determines whether product is routed to the dispersion vessel or the stock tank. Valve 
V2 sources either carrier liquid from valve V1 or slurry from the mixer and pump. 

• Valve V5 is a four port, two position routing valve which can be in one of the following 
positions: 

• Connecting dispersion vessel to mixer/pump and connecting stock tank to a mill 
unit (off the right edge of the diagram). 

• Connecting dispersion vessel to mill unit and connecting stock tank to 

17 



mixer/pump. 
° All other valves are block valves, such as drain valves V4 and V6. 

A typical use of this equipment would be as follows: 

° A quantity of carrier liquid is charged into the dispersion vessel via valves Vl, V2 and 
V3. 

° A recirculation loop is established through the mixer and pump via valves V4, VS, V2 
and V3. 

- ° One of the two powders, Powder A or Powder B, is added at a controlled rate. 
0_ The recirculation via the mixer and pump continues until the powder has been suitably 

dispersed in the carrier liquid to form a slurry. 
° The contents of the dispersion vessel are milled via valves V4 and VS (and other 

equipment not shown) to the Stock Tank. 

588 Analysis 

Referring to the plant schematic shown above, each valve and each motor should be 
considered to be control modules. The powder A addition system, consisting of its 
conveyor system and valve, satisfy the definition for an equipment module. 

The product routing equipment is more difficult to partition into equipment modules. A 
simplistic approach might consider that any control modules which are physically 
connected ought to form part of the same equipment modute. Taking this approach, 
valves V1 to V6 would form part of the same equipment module. This would compromise 
the goal of producing an intuitive model of the plant because it would obscure the ability 
of the dispersion vessel and the stock tank to feed the mixer and the mill concurrently via 
valve VS. An alternative approach would be to define several equipment modules but,this 
has the disadvantage of introducing dependencies (or "coupling" to use a software 
engineering term) between the control of the equipment modules. The approach adopted 
was tci consider that a control module belongs to an existing equipment module unless it 
can undertake a process-oriented task independently of the equipment module. This 
ensures maximum flexibility with minimum coupling. 

Conclusions 

The use of S88 models and terminology explicitly supported by an S88-aware software 
product helped to ensure that the control system did not impose unnecessary constraints 
on the flexibility of the plant. This flexibility was utilised shortly after the plant began 
beneficial operation: 

° A requirement arose to exploit the concurrency of operation available in the plant, 
violating the initially offered process requirement restricting the plant to serial batches. 
To increase throughput, a dispersed slurry would be transferred to the stock tank such 
that the milling could be done from the stock tank whilst the next batch was being 
prepared in the dispersion vessel. As a result of adopting an S88-aware solution, new 
recipes were easily developed to satisfy this requirement, with no modifications 
necessary to phase sequence logic. 

° The initial requirement defined a small number of recipes. But having installed the 
system, a number of alternative cleaning recipes were designed, by the client, to 
satisfy different needs. Once again, the flexibility inherent in the S88 analysis, along 
with the standard configuration facilities offered by the batch control system platform, 

18 



ensured that the new recipes were rapidly and correctly configured. 
• The process expert has edited existing recipes and designed new recipes without 

reference to control system development personnel. 
• As anticipated, the software platform functionality over and above the user's initial 

requirements provided opportunities for rapid and minimum cost system enhancement. 
An example of this is the batch logging capability, providing a batch history for post
batch analyses. 

_Additional Conclusions From Other Projects 

Experience from batch control system projects in the pharmaceutical and other sectors 
suggests that with appropriate interpretation, 888.01 can offer significant benefits. 
Depending on the type of application, 888.01-aware control system platforms support the 
development of an elegant solution in minimum timescales. 

19 



References 

ISA·S88.01, Batch Control, Part 1: Models and Terminology 
ISBN: 1-55617-562-0 
ISA 
67 Alexander Drive 
P. O. Box 12277 
Research Triangle Park, NC 

IEC 61512·1, Batch Control, Part 1: Models and Terminology 
International Electrotechnical Committee, 1997 

SP88 - The painkiller in validation 
Niels Haxthausen 
ISA transactions 34 (1995) 369-378 

Bottlenecks in the batch integration· can standards help removing them? 
Niels Haxthausen 
World Batch Forum, 1998 

A Case History of the Implementation of an S88-aware Batch Control System 
Peter Hopkinson and Joe Hancock 
World Batch Forum, 1998 

Implementing S88 Batch Control Systems in the Pharmaceutical Industry 
Peter Hopkinson, Mike Sonley, Guy Wingate 
The Transactions of the Institute of Measurement and Control Special Issue on Validation 
Technologies 
February 1998 

The Authors: 

Niels Haxthausen is a director of Process Automation with Novo Nordisk Engineering, 
Krogshoejvej 55, DK 2880 Bagsvaerd, Denmark 
Telephone: +45 44422725, fax +45 44443777 
Email: hax@novo.dk 

Peter Hopkinson is a process automation consultant with Eutech, 
Belasis Hall Technology Park, Billingham, Cleveland, TS23 4YS England. 
Telephone +44 (0) 1642 372000, fax +44 (0) 1642 372166. 
Email Peter.Hopkinson@eutech.com. 

20 



Appendix C Synect User Guides 

This appendix contains the following Synect User Guides: 

• Application Ednor 

• Compiler 

• AnaJyzer 

• STD Monnor 

• Simulator 

• ANSI C Code Generator 

• Distributed Neuron C Generator 

• Ladder Logic Generator 



Synect 

Application Editor 
User Guide 

Version 1.4 

Hopkinson Computing limited 
29 Deepdale, Pine Hills, Guisborough 

Cleveland, TS14 8JY 
England 

Tel/Fax: +44 (0) 1287 638606 
email: synect@hopkinsn.demon.co.uk 



© Copyright 1994, 1995, 1996, 1997 Hopkinson Computing Limited. All rights reserved. 

Synect is a registered trademark of Hopkinson Computing Limited 
Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation. 

Information in this User Guide is subject to change without notice and does not represent a commitment on the 
part ofHopkinson Computing Limited. 

The software described in this User Guide is furnished under a license agreement or nondisclosure agreement and 
may be used or copied only in accordance with the terms of the agreement. No part of this User Guide may be 
reproduced or transmitted in any Conn or by any means, electronic or otherwise, including photocopying and 
recording, for any purpose. without the express written permission ofHopkinson Computing Limited. 

Document History 

10June 1996 
Re-issue reflecting Application Editor V1.1 - new cover sheet, contents, chapters 1, 3 & 8 and Appendix B. 

28 October 1996 
Re-issue reflecting Application Editor V1.2 - changes to cover sheet, contents, chapters 4, 5, 6 & 8. 

30 April 1997 
Re-issue reflecting Application Editor V1.3 - cover sheet only 

13 May 1997 
Re-issue reflecting Application Editor Vl.4 - cover sheet only 



Synect Application Editor User Guide Contents 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

ChapterS 

Chapter 6 

Contents 

Introducing Synect ................................................. . 

User Interface ..................................................................... . 

1 

1 

The Method .......... ...................................................... ........ 1 

Synect Documentation .. .... ..... .................... ............. ............ 1 

The TooIs ............................................................................ 2 

Document Conventions .... ............ ................................ ...... 2 

Getting Started ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

System Requirements ......................................................... . 

Installation .......................................................................... . 

3 

3 

3 

Starting the Application Editor ................ ........ ............. ..... ... 4 

On-Line Help ..................................................................... 5 

Basic Concepts ...................................................... . 

The Object Hierarchy ........................................................ . 

Object interaction ............................................................ . 

Messaging ........................................................................ . 

Interface with the controlled system ................................. . 

Internal Events ................................................................. . 

State Transition Diagram .................................................... . 

State ................................................................................ . 

Transition ........................................................................ . 

7 

7 

7 

8 

8 

9 

10 

10 

11 

Create, Save and Open An Application •••••••••••••••••••••• 13 

Creating A New Application ............................................... 13 

Opening An Existing Application. ...... ...... .......... .......... ..... ... 13 

Recover Mode ....... ............ .... ..... .... ...... .......... ............. .... 13 

Saving An Application ....... ...... .... ...... .... ................ .............. 14 

Editing The Object Hierarchy................................... 15 

Adding A New Root ........................................................... 15 

Adding A New Child ........................................................... 15 

Using Cut And Paste ............................................................ 15 

Zooming............................................................................. 16 

Renaming An Object .......................................................... 16 

Moving An Object .. .......... ............................... ............ ....... 17 

Changing Font .... ... .......... ........... ................... ............. ........ 17 

Editing An Object's External Interface ••••••••••••••••••••••• 19 

Page i ofiv 



Contents Synect Application Editor User Guide 

Using Cut And Paste. ....... ...................... ......... ......... ... ......... 20 

Moving The External Interface Text Strings ........................ 21 

Changing Font .................................................................... 21 

Specifying An Object's External Interface ............................. 21 

Parent Messages ...... ....... ...... ............................................. 25 

Real World Inputs and Outputs ........................................ 25 

Child Messages................................................................. 26 

Editing The List Of Names ............................................... 26 

Rename vs. Delete + Add Functionality ..... ... ............ ..... 27 

Changing Synchronous To/From Asynchronous ............ 27 

Chapter 7 Editing An Object's Internal Events ••••••••••••••••••••••••.•• 29 

Editing An Object's Internal Commands ....... ... .................... 29 

Editing An Object's Variables ..................... ... ..... ............ ...... 29 

Adding a Variable .............................................................. 29 

Changing the Min, Max or Initial Value ............................ 30 

Deleting a Variable ............. ....... ............ ........... ................. 30 

Renaming a Variable ................................... ........... ........... 30 

Editing a Variable's Tests and Operations .............................. 30 

Adding a Variable Test ......................... ... ..... ............. ........ 30 

Deleting a Variable Test .................................................... 31 

Adding a Variable Operation ..... ................. ...... ................. 31 

Deleting a Variable Operation .................. ......... ................ 31 

ChapterS Editing An Object's S'IDs •••••••••••••••••••••••••••••••••••••••• 33 

Editing The Set Of Object STDs .................. ... .................... 33 

Adding an STD .. ... ... ..... ...... ....... .... .......... ... ........ ..... .... ..... 33 

Renaming an STD ... .... ....... ...... .... ..... ........ ...... ............ ..... 33 

Deleting an STD .... ........ ...... ........... .... ...... ... .......... ...... ..... 33 

Editing an STD ....... ............................. ..... ... .......... ........... 33 

Editing an STD's States ........................................................ 34 

Adding a New State ....... ..................... ... .......... ............ ..... 34 

Renaming a State.. ........ ....... ...... .... ............. ...... ......... ....... 34 

Toggling Between Macro and Primitive State .................... 34 

Deleting a State .. ... ... ........... ...... ................. ..... ... ....... ........ 35 

Moving a State ...... ... .......... ....... .............. ..... ........... .......... 35 

Changing the State Name Font ......................................... 35 

Specifying the STD's Start State ......................................... 35 

Page ii ofiv 



Synect Application Editor User Guide Contents 

Using Cut And Paste .............. ........................................... 35 

Editing an STD's Transitions ................................................ 36 

Adding a New Transition .................................................. 36 

Defining External Conditions and Actions (Messages) ..... ... 36 

Adding a New Condition ....................... ................... ..... 37 

Removing a Condition ........................... ....................... 37 

Adding a New Action .................................................... 37 

Removing an Action .................. ............. ....... ..... ...... ..... 37 

Defining External Conditions and Actions (STDs) ............. 37 

Defining Internal Conditions and Actions ... .................. ..... 38 

Adding a New Condition ................. .............................. 38 

Removing a Condition ..................... ............ ... ..... ......... 38 

Adding a New Action .... ... ... ...... ......... ..... ..... ... ..... ......... 39 

Removing an Action .. ...................... ......... ......... ... .... ..... 39 

Editing an Existing Transition's Conditions and Actions ..... 39 

Moving a Segment .......................... ............ ....... ......... ...... 40 

Splitting a Segment .................. ... ........ ........... ..... .......... .... 40 

Moving the Transition's Delimiter .... ....... ... ....... ..... ...... ..... 41 

Using Cut and Paste ........................ ............ ......... ....... ...... 42 

Ordering of Conditions and Actions ..... ............................. 42 

Cutting And Pasting An STD .................... ..... ...................... 43 

Editing A Sub-Sequence STD .. .... .... ........ ........... ..... ..... ....... 43 

Zooming............................................................................. 44 

Chapter 9 Configuration ..... .................... ......... ....... ......... ....... 45 

Changing The Fonts Used On The Diagrams ........ ......... ... ... 45 

Grid .................................................................................... 45 

Zoom Factor ........... .... ..... .... ........ ..... ......... .................. ....... 45 

Chapter 10 Printing ................................................................. 47 

Printing The Contents Of The Active Window................... 47 

Printing An Object's Details ................................................. 47 

Chapter 11 Loading Available RWI/RWO From File ........•.•.•..••.. 49 

Loading The Available R Wls ............................................... 49 

Loading The Available R WOs ............................................. 49 

Appendix A Rules .••. ..•.•• ••.•. ..••.•••.••.•.. ........................ ..••.•••.•.•..• 51 

External - Object Related..... ........ ... ........ ... ..... ....... ......... .... 51 

External - Interface Related. ..... ........... ......... ......... .............. 51 

Page iii of iv 



Contents Synect Application Editor User Guide 

Intemal- Commands ............................................... ............ 51 

Intemal- Variables .............................................................. 52 

Intemal- Object STD .......................................... ............... 52 

Intemal- Sub-Sequence STD .............................................. 52 

Intemal- STD State ........................ ............. ..... .................. 52 

Intemal- STD Transition ...................... .................. ...... ...... 53 

Appendix B Formal Definition Of An Application •..•••.. ........... •.•.• 55 

Appendix C Menus ................................................................... 57 

Appendix D Toolbar Buttons ••..••...••.•.•••.••••••••••••..•••... .•.•• .••.. •...• 59 

Operation Toolbar .............................................................. 59 

Mode Toolbar ..................................................................... 60 

Page ivofiv 



Synect Application Editor User Guide Introducing Synect 

1 Introducing Synect 

Synect is a set of software tools which helps the designer of a control system to 
produce a specification which is clear, precise and free of errors. Synect 
combines the ease of use of a graphical user interface, with a widely used 
diagrammatic notation and the power of mathematical modelling. 

User Interface 

The Method 

The Synect™ tools run on the Microsoft® Windows™ operating system. As 
such, you need to know how to use Windows before you use Synect. In 
particular, you will need to know how to use the mouse to click, double-click 
and drag. You will also need to know how to interact with menus, dialogs and 
how to move, resize and close windows. For information, refer to the 
Microsoft Windows User's Guide. 

Synect uses an object-based method to enable you to model the system you 
want to control. It is useful to have some knowledge of 
object-based/ object-oriented analysis and design techniques before attempting 
to use Synect in earnest. 

Synect Documentation 

Each of the Synect tools has an associated User Guide. This User Guide 
explains how to use each of the functions available in the Application Editor. It 
also explains why you might want to use the function. 

Each application has context-sensitive on-line help. The Application Editor 
on-line help contains a "How Do I?" section, including a "How Do I Get 
Started?" sub-section for first-time users. 

A Tutorial is also provided which offers a worked example and shows how each 
of the tools is used with the example application. 

Page 1 of60 



Synect Application Editor User Guide Getting Started 

2 Getting Started 

This chapter describes: 

• 

• 
• 
• 

the hardware and software requirements which you need to be able to 
use Synect. 

how to install the Application Editor. 

how to start the Application Editor. 

the Application Editor window. 

System Requirements 

Installation 

The Synect Application Editor requires that you use: 

• a 486 (or better) running Windows 3.1. 

• VGA monitor in 800 x 600 mode (or higher resolution). 

• a mouse or other pointing device (such as a trackball). 

Other Synect tools require that you also have the following: 

• 8 MByte RAM. 

• 
• 

very large permanent swap file (recommended size is 20 MByte). 

at least 10 MByte free disk space per application. 

If you haven't installed Synect yet, you'll need to do that first. Check that your 
computer satisfies the requirements listed above before starting the installation. 
The first floppy disk contains file install. txt which contains any updates to the 
installation process - you should read this file before installing the software. 

1 Put floppy disk 1 into your floppy disk drive. 

2 Start Windows (by typing win at the DOS prompt if necessary). 

3 Choose FilelRun from the Program Manager. 

4 Type a:'install then press ENI'ER. 

5 The installation program will now guide you through the installation 
process. Simply answer the questions to specif)r which Synect tools 
you want to install. 

6 When installation is complete, you can remove the floppy disk from 
the drive. You should now have a Program Manager group containing 
an icon for each of the installed Synect tools. 

7 Plug the dongle into the computer's parallel port. 

Page 3 of60 



Introducing Synect Synect Application Editor User Guide 

The Tools 

The tools which make up the Synect toolset are: 

Application Editor graphical means of defining the application. 

Compiler check the specification for consistency and 
possible warnings and generate a mathematical 
model of the application. 

Analyzer ability to check for design errors such as deadlock 
(where the system "hangs") and unwanted state 
combinations. 

Simulator provides the ability to interactively "drive" the 
application or replay past behaviour of the live 
control system. 

STD Monitor animates the specification (used in conjunction 
with the Simulator or the live control system). 

C Code Generator generate ANSI-standard C code to implement the 
application. 

Neuron C Generator generate Neuron C to run on one or more nodes 
on an Echelon Lon Works network to implement 
a distributed control solution. 

Ladder Logic Generator generate relay ladder logic to run on a 
programmable controller. 

Document Conventions 

Page 2 of60 

The User Guide adopts the following conventions: 

application name 

KEY NAME 

Menu[Cholce 

description 

text that you type or that you see on the screen. 
keyboard keys, such as ENTER, C1RL or DEL. 

a menu option, such as File[Exit denoting choose the 
Exit command from the File menu. 
description of a term with a specific meaning. 



Synect Application Editor User Guide Getting Started 

2 Getting Started 

This chapter describes: 

• 

• 
• 
• 

the hardware and software requirements which you need to be able to 
use Synect. 

how to install the Application Editor. 

how to start the Application Editor. 

the Application Editor window. 

System Requirements 

Installation 

The Synect Application Editor requires that you use: 

• a 486 (or better) running Windows 3.1. 

• 
• 

VGA monitor in 800 x 600 mode (or higher resolution). 

a mouse or other pointing device (such as a trackball). 

Other Synect tools require that you also have the following: 

• 8 MByte RAM. 

• 
• 

very large permanent swap file (recommended size is 20 MByte). 

at least 10 MByte free disk space per application. 

If you haven't installed Synect yet, you'll need to do that first. Check that your 
computer satisfies the requirements listed above before starting the installation. 
The first floppy disk contains file install. txt which contains any updates to the 
installation process - you should read this file before installing the software. 

1 Put floppy disk 1 into your floppy disk drive. 

2 Start Windows (by typing win at the DOS prompt if necessary). 

3 Choose FilelRun from the Program Manager. 

4 Type a: \install then press EN1ER. 

5 The installation program will now guide you through the installation 
process. Simply answer the questions to specify which Synect tools 
you want to install. 

6 When installation is complete, you can remove the floppy disk from 
the drive. You should now have a Program Manager group containing 
an icon for each of the installed Synect tools. 

7 Plug the dongle into the computer's parallel port. 

Page 3 of60 



Getting Started Synect Application Editor User Guide 

8 Read the installed file readme. txt for details of any changes to the 
product or documentation since the docwnentation was printed. 

Starting the Application Editor 

Menu 

Ensure that the Program Manager window is on display. If the Synect window 
isn't visible, use the Window menu to open it. Double-click on the Application 
Editor icon or use the keyboard arrow key to select the icon and then press 
ENTER. 

When using the Application Editor, the window will typically look like the 
following: 

Control-....... =
menu 
boxes 

Page 4 of60 

Message bar Horizontal scroll 
Vertical scroll bar 

Title bar 
The outer window is the Synect Application Editor window. The title bar 
therefore shows the product title Synect and the name of the application which 
is being edited (or [Untitled] ifit's a new application which hasn't yet been saved 
to disk). 

The inner windows show either the Object Hierarchy or a state transition 
diagram. The title bar of an inner window will therefore be either Obj ect 

Hierarchy or the name of the state transition diagram. 



Synect Application Editor User Guide Getting Started 

Control-menu boxes 
Allows you to restore, move, size, minimize, maximize, close (except for the 
Object Hierarchy window) the window. Also allows you to make another 
window the active window or open the control panel (Synect window only). 

Menu bar 
Lists the available menus. 

Minimize box 
Allows you to shrink the Synect window to an icon at the bottom of the screen. 

Maximize box 
Allows you to enlarge the Synect window to fill the entire screen. 

Operation toolbar 
Contains the momentary buttons which can be used as menu shortcuts. 

Mode toolbar 
Contains the radio buttons which you use to control which mode you want the 
software to operate in (for example, whether you are adding new states). 

Message bar 
When the cursor is moved over an Operation Toolbar button or Mode Toolbar 
button, or when a menu option is highlighted, the message bar will show a brief 
description of the function of the button/menu option. 

Horizontal and vertical scroll bars 
Allow you to pan around the diagram to change the portion which is displayed 
in the window. 

On-Line Help 

The on-line help is context-sensitive. So if you click on a help button in a 
dialog, you will automatically be shown the help infonnation associated with 
that dialog. If no dialog is being displayed, you can choose HelplContents to take 
you to the help contents page. The help infonnation is shown in a separate 
window. 

Page 5 of60 



Getting Started Synect Application Editor User Guide 

This page left intentionally blank 

Page 6 0[60 



Synect Application Editor User Guide Basic Concepts 

3 Basic Concepts 

Synect enables you to build a model of your application. The role of the 
Application Editor is to let you specify this model. Other Synect tools allow 
you to check it for consistency and to verify that the model behaves as required. 
This chapter describes how the model is organised. Later chapters explain how 
to use the Application Editor to create a model. 

The Object Hierarchy 

Object 
interaction 

An application is considered to consist of a strict hierarchy of objects. The 
topmost object is referred to as the root object and is the most abstract view of 
the application. This root object will typically consist of other objects, referred 
to as child objects (the root object is the parent of these children). 

An object typically models an item in the system being controlled. For 
example, a manufacturing application might have separate objects for a 
machine, a robot and a conveyor system. An object which has no children is 
called a primitive object. An object with children is called a composite object. 

An object bounds the functionality of the item of interest by defining: 

• the messages which it can be sent and which it will return 

• the interface with the controlled system (real world inputs and real 
world outputs) 

• the sequential logic within the object (using state transition diagrams) 

Objects interact in one of two ways. The first is by sending and receiving 
messages from other objects. This is descibed in more detail in the next section. 
The other type of interaction allows an object's STD to use the state of another 
STD as a condition of a transition. For example, if a light bulb is controlled by a 
switch, the first method would require that the switch object sends the light 
bulb object a message when the switch changes state from "off" to "on". The 
second method would require that the light bulb object monitors the state of 
the switch object and illuminates when it detects that the light switch is in state 
"on", 

If you will be generating centralised control code, you can use either method. 
If, however, you intend to distribute the logic across multiple processing nodes, 
such as when using the Synect Distributed Neuron C Code Generator for use 
with Echelon's LonWorks technology, you will need to use the state-reference 
method. Synect requires that two objects which are to be assigned to 
different nodes must not use message-based communication between 
them. Objects which are to be assigned to the same node can use either or 
both of the message-based and state-reference methods. 

Page 7 of60 



Basic Concepts Synect Application Editor User Guide 

Messaging As stated in the previous section, parent and child objects can communicate 
with each other by sending messages. A message from a parent to a child is 
referred to as a command. A message from a child to its parent is referred to as a 
response. An object manages its children on behalf of the rest of the application -
in the diagram, for example, object A can only communicate with objects D 
and E via object B. Similarly, objects F and G can only communicate with 
object B via object D. 

c 

F 

A message can be either synchronous or asynchronous. A synchronous message is 
one which causes the sending transition and the receiving transition to fire as 
one. It therefore synchronises the two transitions. If the receiving STD is not 
in a position to receive the message, the transition in the sending STD cannot 
fire. A synchronous message is identified by the square brackets around the 
message name, for example: 

[start_motor) 

An asynchronous message is one which can be sent irrespective of whether the 
receiver is yet in a position to act on it. The message is placed in a buffer and is 
then said to be pending. If the message is already pending (i.e. the buffer is full), 
the transition in the sending STD cannot fire. Use of asynchronous messages 
can cause a substantial increase in the number of combinations of state that the 
application can reach, possibly to the extent of preventing the use of the 
Analyzer. It can also make the behaviour of the application more difficult to 
follow. 

Interface with Real world inputs enable an object to read the value of sensors in the system being 
the controlled (such as whether a switch is closed). Real world outputs enable an 
controlled object to instruct the system being controlled to take some action (such as 
system starting a motor). 

Page 8 of60 

A real world input is an input into the application from the controlled system. 
A real world input can be thought of as a boolean function which the 
application calls. For example, the following real world inputs may be available 
for a motor: 

• motor_stopped 



Synect Application Editor User Guide Basic Concepts 

Internal 
Events 

• motor_running 

• motor_running ... JlllCspeed 

Synect is independent of the target control system hardware. As such, the 
means by which a real world input function determines the boo lean state to be 
returned is undefined. 

A real world output is an output from the application to the controlled system. 
A real world output can be thought of as a function which the application calls. 
For example, the following real world outputs may be available for a motor: 

• 
• 
• 

stop......motor 

start......motor 

run_rnotor_acfull_speed 

Synect is independent of the target control system hardware. As such, the 
means by which a real world output function causes the controlled system to 
take the required action is undefined. 

An object may also have internal events. An internal event is either an internal 
command, a variable test or a variable operation. 

Warning 
Synect variables appear to be less useful than originally envisaged. It is therefore 
recommended that you ignore the use of variables until familiar with the other 
capabilities ofSynect. In particular, the Application Editor will let you 
configure a variable with a large range (maximum ... minimum). However, 
when the Application Analyzer attempts to explore all of the possible states 
which the application can reach, it will probably run out of memory. If 
variables are to be used, their ranges should therefore be kept as small as possible. 

Internal command 
An object may contain several STDs to define the required sequential logic. 
These STDs may communicate with each other just as objects do ... by sending 
messages. These internal messages are called internal commands. Internal 
commands may be synchronous or asynchronous. 

Variable 
An object may contain variables. A variable has the following configuration 
attributes: 

• name 

• minimum value 

• maximum value 

• initial value 

The values are subject to the following constraints: 

Page 90f60 



Basic Concepts Synect Application Editor User Guide 

• minimum value <= maximum value 

• minimum value <= initial value <= maximum value 

The variable has an integer value which can be changed by a variable operation 
and tested against by a variable test. 

Variable test 
A set of tests may be defined which are applicable to each variable, where each 
test is one of <, <=, =, >= or >. A variable test can then be used as a condition 
on a transition. A transition cannot contain more than one condition referring 
to any particular variable. 

Variable operation 
A set of operations may be defined which are applicable to each variable, where 
each operation is one of: 

INCR 

DECR 

RESET 

increment the value by 1 provided that the 
variable value is less than its maximum. 

decrement the value by 1 provided that the 
variable value is greater than its minimum. 

reset the variable to its initial value 

A variable operation can then be used as an action on a transition. A transition 
cannot contain more than one action referring to any particular variable. 

State Transition Diagram 

The logic within each object is defined by one or more state transition diagrams 
(STDs). Each STD typically consists of several states and several transitions. 

State Each state is represented by a unique name which is displayed in the STD 
window in a rectangle. Each state represents some identifiable mode of 
operation of the item being modelled. For example, a gripper could have states 
denoting "open", "closing", "closed" and "opening". One of the states is 
designated as the initial state and is drawn with a thicker border in the STD 
window. The STD's current state will change to another state if a transition 
fires which starts at the current state and ends at a different state. An STD is said 
to be in a particular state - for example, the gripper STD is in state "closing". 

Page 10 of60 

A state may be either a primitive state or a macro state. A macro state is drawn 
with a very thick border and is further decomposed into a sub-sequence STD. 



Synect Application Editor User Guide Basic Concepts 

Transition Transitions define which other states are reachable from each state. A transition 
is represented by an arrowed line where the arrow shows the direction from 
start state to end state. In the following example of a kettle control system, the 
STD starts in state "Empty". The only other state reachable from state "Empty" 
is "Off Not Boiled" (presumably when the kettle has been filled with water). 
From state "Heating", the STD may return to state "Off Not Boiled" (probably 
because the user has decided to abort the sequence) or state "Boiled" (boiling 
water detected). 

1 
Empt, 

1 
Off 

Not_Bontd 

Heating 

Boiled 

I 

Associated with each transition is a (possibly empty) set of conditions. If these 
conditions evaluate to true (an empty set always evaluates to true), a transition 
which has the current state as its start state is said to be enabled and can fire. 

Also associated with a transition is a (possibly empty) set of actions. When a 
transition fires, the current state changes to the transition's end state and the 
actions are invoked. The transition is considered to fire instantaneously such 
that the STD is always in one of the defined states. 

See Appendix B for a formal definition of the composition of an application. 

Page 11 of60 



Basic Concepts Synect Application Editor User Guide 

This page left intentionally blank 

Page 12 0[60 



Synect Application Editor User Guide 

4 Create, Save and Open An Application 

When you first start the Synect Application Editor, very few of the menu items 
or buttons are enabled. This is because you must first indicate whether you 
want to create a new application or edit an existing one. Duting your editing 
session, you'll want to regularly save the application to disk. This will allow you 
to recover in the event of a power fail or if you want to discard a set of edits and 
revert to the application before the edits were made. Remember that your 
application is NOT automatically written to disk at regular intervals -
if you don't save your application to disk and a 
power/hardware/software failure occurs you will lose all of the 
changes since the start of the session or since the last save/load. 

Creating A New Application 

To create a new application, choose FilelNew. The Synect window will show the 
title of the application as [Untitled] and an empty Object Hierarchy window 
will be displayed. The Add Root Object button will be enabled in the Mode 
Toolbar. 

Opening An Existing Application 

~ ibJJ 

Recover 
Mode 

To open an existing application choose FilelOpen Application. The standard file open 
dialog will then be started, allowing you to specify the name of the file from 
which the application is to be loaded. 

There have been infrequent reports of the Object Hierarchy window not being 
visible following re-load of an application (.syn file). This may be accompanied 
by an "ObjectWindows Exception" message. 

The workaround is to instruct the editor to ignore the Microsoft 
Windows-related data in the .syn file. To do this, make sure that the Program 
Manager is visible with the Synect Application Editor icon selected. Choose 
the File I Properties menu option to start the Program Item Properties dialog. 
The Command Line editbox will contain a line of the form: 
"c:\synectvl \synect.exe". Append to this a space and then the string "-r" so that 
the command line is of the fonn: "c:\synectvl\synect.exe -r". When you next 
start the Application Editor, it will be in "recover" mode and will ignore any 
Microsoft Windows-related data in the .syn file. Remember to remove this 
modification when the application has been recovered. 

Page 13 of60 



Create, Save and Open Application 

Saving An Application 

Page 14 of60 

To save the application to a file on disk, choose FilelSaveApplication. If you are 
editing a named application, the corresponding file on disk will be updated. If 
the application is as yet untided, the standard file save diaIog will be started for 
you to specify the name and location of the file in which the application is to be 
saved. 

To save the application to a different file on disk, choose FilelSave Application As 

menu option. The standard file save diaIog will be started for you to specify the 
name and location of the file into which the application is to be saved. 

When an application is saved to disk, backup copies are automatically made. In 
the event of an error during the save operation, it is therefore possible to 
recover from the previous version. The latest version of your application is 
saved in the file with extension" .syn". The previous version is saved in the file 
with extension" .sb 1" and the version before that is saved in the file with 
extension" .sb2". For example, assuming you have called your application 
"test.syn", the file "test.sb1" will contain the previous version and file "test.sb2" 
will contain the version before that. 



Synect Application Editor User Guide Editing The Object Hierarchy 

5 Editing The Object Hierarchy 

As described in chapter 3, an application is modelled by defining a hierarchy of 
communicating objects and then defining the logic within each of the objects. 
This chapter describes how to use the Application Editor to specify the 
hierarchy of objects. Chapter 6 covers the specification of the messaging 
between objects. 

Adding A New Root 

Ensure that the Object Hierarchy window is the active window. Click on the 
Add Root Object button in the Mode Toolbar. Move the mouse so that the 
cursor is in the Object Hierarchy window. Press and hold down the left mouse 
button. A rectangle is drawn in the Object Hierarchy window denoting the 
new root object. Drag the mouse and observe that the rectangle denoting the 
location of the new root moves correspondingly. When the rectangle is in the 
desired location, release the left mouse button and the Add Object dialog will be 
automatically started. Type a unique name into the edit box or click on one of 
the existing names in the list box and then edit the contents of the edit box. 
Click on "OK". The new root object will be shown in the Object Hierarchy 
window with specified name and at the chosen location. 

Adding A New Child 

Ensure that the Object Hierarchy window is the active window. Click on the 
Add Child Object button in the Mode Toolbar. Move the mouse so that the 
cursor is in the Object Hierarchy window inside the object which is to be the 
parent of the new child. Press the left mouse button and hold it down. Drag 
the mouse and observe that the rectangle denoting the location of the new child 
moves correspondingly. When the rectangle is in the desired location, release 
the left mouse button and the Add Object dialog will be automatically started. 
Type a unique name into the edit box or click on one of the existing names in 
the list box and then edit the contents of the edit box. Click on "OK". The 
new child object will be shown in the Object Hierarchy window with specified 
name and at the chosen location. 

Using Cut And Paste 

I~ 
1!!iI!l! ....• w ...•. 
j.dti 

Ensure that the Object Hierarchy window is the active window. Ensure that 
the Application Editor is currently in edit mode by clicking on the Edit Mode 
button in the Mode Toolbar if necessary. Select the object you want to copy by 
clicking on it and then choose EditlCut. This will copy the selected object and all 
of the Object Hierarchy below it into the paste buffer before deleting it from 

Page 15 of60 



Editing The Object Hierarchy Synect Application Editor User Guide 

!!I 
;g 

Zooming 

o:t!! ...... ' ... . J".l\t 

la'" ~ 

the Object Hierarchy. Alternatively, to perfonn the copy to paste buffer 
operation without the subsequent deletion from the existing Object Hierarchy, 
choose EdnlCopy. 

When pasting the object, you can make it the new root object or a child of an 
existing object: 

• 

• 

To paste a new root object, choose EdnlPaste. Press and hold down the 
left mouse button in the Object Hierarchy window with the cursor 
outside existing objects. Drag the cursor so that the new root object is 
in the desired location and release the left mouse button. 

To paste a new child object, choose EdnlPaste. Press and hold down the 
left mouse button with the cursor inside the object which is to be the 
new object'S parent. Drag the cursor so that the new child object is in 
the desired location and release the left mouse button. 

Having chosen EdnlPaste, most of the menu options and buttons are disabled until 
the paste operation is complete. You can cancel the paste operation by chosing 
EdnlCancet. 

If the object name isn't unique, the name dash character "?" will be prefixed to the 
object name. 

When an object is copied, all of the object's details are also copied i.e. its 
external interface, internal events and STDs. 

To reduce the size of a diagram in a window, choose ZoomlOut. 

To increase the size of the diagram, choose Zoomlln. 

Before using the zoom facilities, you should ensure that scalable fonts are being 
used. See chapter 9, Configuration, for an explanation of how to change the 
fonts. 

When ptinting a diagram, the Application Editor takes into account the current 
magnification of the window. You may therefore want choose ZoomlReset before 
ptinting to ensure consistency. 

Renaming An Object 

Page 16 of60 

Ensure that the Object Hierarchy is displayed in the active window. Ensure 
that the Application Editor is currendy in edit mode by clicking on the Edit 
Mode button in the Mode Toolbar if necessary. Move the mouse so that the 
cursor is inside the object you want to rename. Double-click the left mouse 



Synect Application Editor User Guide Editing The Object Hierarchy 

button to start the Edit Object dialog. Click on the Rename button to start the 
Rename Object dialog. Renaming the object may affect files which are used by 
other Synect tools (such as the Simulator and Neuron C Code Generator). If 
any of these files are found, the Application Editor will start the Apply Rename 
To Files dialog for you to specify which files it is to automatically edit. 

Moving An Object 

Ensure that the Object Hierarchy window is the active window. Ensure that 
the Application Editor is currently in edit mode by clicking on the Edit Mode 
button in the Mode Toolbar if necessary. Move the mouse so that the cursor is 
over the object you want to move. Press and hold down the left mouse button 
and drag the object to the desired location. Release the left mouse button and 
the object will be redrawn in its new location. 

Changing Font 

You can change the font used for writing object names by choosing 
ConfigurationlObject Name Font. This starts the standard Choose Font dialog. 

Page 17 of60 



Editing The Object Hierarchy Synect Application Editor User Guide 

This page left intentionally blank 

Page 18 0(60 



Synect Application Editor User Guide Editing Object's External Interface 

6 Editing An Object's External Interface 

An object's external interface defines the messages with which an object 
communicates with its parent and children and the interface with the system 
being controlled. Each of these is named and shown in the Object Hierarchy 
window with an arrow as follows: 

parent_commands parent_responses 

Object 
~ Name 

real_worldJnputs reaLworld_outputs 

child_responses child_commands 

parent commands 

parent responses 

child commands 

child responses 

real world inputs 

real world outputs 

instructions which the object expects to receive 
from its parent. 

messages sent to the parent object. 

instructions to child objects. 

messages which the object expects to receive from 
its children. 

inputs into the application from the controlled 
system. A real world input can be thought of as a 
boolean function which the application calls (e.g. 
to read a sensor). 

outputs from the application to the controlled 
system (e.g. to take some action such as switching 
on a pump). 

The text strings corresponding to each external interface are listed in 
alphabetical order with synchronous messages displayed after asynchronous 
messages. Strings which are prefixed with the name dash character nln (as a result 
of a cut and paste operation) are listed Mt. 

Page 19 of60 



Editing Object's External Interface Synect Application Editor User Guide 

Using Cut And Paste 

ill 
!al 

Page 20 of60 

Ensure that the Object Hierarchy window is the active window. Ensure that 
the Application Editor is currently in edit mode by clicking on the Edit Mode 
button in the Mode Toolbar if necessary. Select the set of messages you want to 
copy by clicking on the text and then choose Ed~ICut. This will copy the selected 
set of messages into the paste buffer before deleting the messages from the 
object. Alternatively, to perform the copy to paste buffer operation without the 
subsequent deletion, choose Ed~ICopy. 

For example, if you want to copy the list of messages which an object receives 
from its parent, select the set of messages by clicking on the list of text strings 
associated with the arrow which enters the top of the object's box (as shown in 
the following diagram). Then choose Ed~ICopy. 

commandJ_from_parent 
command_2_from_parent 
command_3_from_parent 

Object 
Name 

To paste the messages, choose Ed~IPaste. Press and hold down the left mouse 
button in the Object Hierarchy window. As you move the cursor over sets of 
messages and over objects, you'll see the text being inverted. You can either 
paste the messages into an existing set by releasing the mouse button when that 
message set is shown inverted. Alternatively, you can release the mouse button 
with the object box shown inverted. This will start a dialog which you use to 
specify which message set the paste buffer messages are to be pasted into. 

If pasting a message would violate the uniqueness criteria (see Appendix A, 
Rules), the name of the message will be prefixed with the name-dash character 
n?". For example, if you attempted to paste a message named example_message 

into an object'S set of parent commands where the object already had a message 
named example_message defined as a parent response, the new parent command's 
name would be ?example_message. 

Having chosen Ed~lPaste, most of the menu options and buttons are disabled until 
the paste operation is complete. You can cancel the paste operation by chosing 
Ed~ICancel. 



Synect Application Editor User Guide Editing Object's External Interface 

Moving The Extemallnterface Text Strings 

To move the text strings associated with an object's messages, ensure that the 
Object Hierarchy window is the active window. Ensure that the Application 
Editor is currently in edit mode by clicking on the Edit Mode button in the 
Mode Toolbar if necessary. Move the mouse so that the cursor is -over the 
corresponding message set. Press and hold down the left mouse button and drag 
the outline rectangle to the desired location. 

Changing Font 

You can change the font used for writing the external interface message names, 
real world inputs and real world outputs by choosing ConfigurationlObjecl Interface Font. 

This starts the standard Choose Font dialog. 

Specifying An Object's Extemallnterface 

The primary means of specifying an object'S external interface is via the External 
Events dialog (the other means is via the cut and paste functionality). To start 
this dialog, ensure that the Object Hierarchy window is the active window. 
Ensure that the Application Editor is currently in edit mode by clicking on the 
Edit Mode button in the Mode Toolbar if necessary. Move the mouse so that 
the cursor is over the object whose external interface you want to edit. 
Double-click with the left mouse button to start the Edit Object dialog. Click 
on the "External Interface" button to start the External Events dialog. 

The example on the following page shows the dialog having been started to edit 
the external interface associated with object Flexible Assembly Cell. The dialog 
lists the messages which it knows other objects send to this object and expect 
from this object (there are none defined in the example). If a message has 
already been defined, you can simply select it rather than having to re-type the 
message name. 

Just above the centre of the dialog is a static box showing the object's name 
(Flexible Assembly Cell in the example). At the top of the dialog is the name of 
the parent object (if this is the root object, the text INo Parent Object 1 is 
displayed). Towards the bottom of the dialog, the name of one of the child 
objects is displayed (if this object has no children, the text [No Child Objectsl is 
displayed). If this object has several children, the "Prev" and "Next" buttons are 
enabled allowing you to change which child object is displayed. 

Arrows are drawn to represent the external interface just as they appear on the 
Object Hierarchy and associated with each interface is a set of two list boxes. 
The list box closest to the arrow shows the list which is currently declared for 
this object. The other list box shows the list of available names. 

Page 21 of60 



Editing Object's External Interface Synect Application Editor User Guide 

This page left intentionally blank 

Page 22 of60 



Synect Application Editor User Guide Editing Object's External Interlace 

Page 23 of60 



Editing Object's External Interface SynectApplication Editor User Guide 

This page left intentionally blank 

Page 24 of60 



Synect Application Editor User Guide Editing Object's External Interface 

Parent 
Messages 

Using a different example, consider the commands from Childl 's parent object 
to Childl: 

Assume that the parent object sends commands command_l and command_2. The 
diaIog shows that object Childl expects to receive the command command _2 from 
its parent object but doesn't expect to receive command command _1. Any 
commands which the parent sends and which are declared for this object (in this 
example, comrnand_2) are not listed in the left-hand listbox. 

If you decide that object Childl should expect to receive command command_l, 

click on command 1 in the left-hand listbox and then click on the "Add>" 
button. The string command _1 will be removed from the left-hand listbox 
and added to the right-hand listbox. 

If you decide that object Chi1d1 should not expect to receive command 
command _2, click on it in the right listbox and then click on the "<Rem" 
button. The stting command _2 will be removed from the right-hand listbox 
and added to the left-hand listbox. Any references to command 2 in 
transition conditions in STDs belonging to this object will also be deleted. 

If a parent command had been declared for this object which the parent object 
did not send, the name would be listed in the right-hand listbox as before. 
However, selecting it and then clicking on <Rem would not add it to the 
left-hand listbox. 

The same procedure is used for responses to the parent object. 

The same procedure is used for real world inputs and real world outputs but the 
set of available names is detennined differendy. The set of available real world 
inputs (displayed in the leftmost listbox) is populated from the list loaded via the 
FilelLoad RWI menu option. The set of available real world outputs (displayed in 
the rightmost listbox) is populated from the list loaded via the FilelLoad RWO menu 
option. 

Page 25 of60 



Editing Object's External Interface Synect Application Editor User Guide 

-Child 
Messages 

Editing The 
List Of 
Names 

A similar procedure is used for dealing with messages to/from child objects 
except that it is only possible to display the information about what one child is 
expecting to send/receive at a time. The "Prev" and "Next" buttons allow you 
to change which child's commands and responses are displayed in the outermost 
listboxes. When removing a command/response from the inner listbox. the 
dialog automatically switches to display the child to which the 
command/response belongs (if any). 

Each external interface has an associated "Edit" button which allows you to start 
the corresponding dialog to edit the commands/ responses/real world 
inputs/real world outputs declared for this object. These dialogs follow the 
same form. The only difference is that messages can be synchronous or 
asynchronous whereas real world inputs and real world outputs are always 
asynchronous. The following example shows the dialog being used to edit the 
set of commands which this object expects to receive from its parent. 

- Commands From Parent 

The functions available are: 

Add 

Delete 

Page 26 of60 

Either type a name into the blank edit box or 
click on one of the existing names in the list box 
in which case the name is copied into the edit box 
to be used as a basis for the new name. Click on 
the "Add" button. 

Click on the name you want to delete in the list 
box. Click on the "Delete" button. Any 
references in this object to this name by 
transitions conditions or actions will also be 
automatically deleted. 



Synect Application Editor User Guide Editing Object's External Interface 

Rename vs. 
Delete + Add 
Functionality 

Changing 
Synchronous 
To/From 
Asynchronous 

Rename Click on the name you want to rename in the list 
box. Click on the "Rename" button to start the 
appropriate rename dialog. Type the new name 
and click on "OK". Any references in this object 
to this name by any transition's conditions or 
actions will also be automatically updated. 
Renaming a real world input/output may affect 
files which are used by other Synect tooIs (such as 
the Simulator and Neuron C Code Generator). If 
any of these files are found. the Application Editor 
will start the Apply Rename To Files dialog for 
you to specifY which files it is to automatically 
edit. 

Whilst a rename operation might appear to be the same as a delete operation 
followed by an add operation, the delete will cause all references to that name to 
be removed from transitions in STDs belonging to the object being edited. The 
rename function. however, will also apply the rename operation to 
corresponding conditions or actions. 

To change a message from being synchronous to asynchronous, you must 
rename the message such that it no longer has the enclosing square brackets. 
For example, [test_message] to test_message. However.because 
the uniqueness checks ignore the square brackets, it is first necessary to rename 
the message such that it is completely unique (e.g. xxxx) and then rename it 
again to be as required. For example: 

Rename operation 1 

Rename operation 2 

change the name from [test_message] to 
xxxx. 
change the name from 
test_message. 

xxxx to 

As explained in section "Rename vs. Delete + Add Functionality" (above), do 
not delete the original name and then add the asynchronous name instead of 
performing the 2 rename operations. This would have the effect of deleting all 
references to the message from transitions within STDs belonging to the object 
being edited. 

Page 27 of60 



Editing Object's External Interface Synect Application Editor User Guide 

This page left intentionally blank 

Page 28 0[60 



Synect Application Editor User Guide Editing An Object's Internal Events 

7 Editing An Object's Internal Events 

In addition to an object's external events, the object may also have internal 
events defined. These may be internal commands or a test or operation on a 
variable. 

Editing An Object's Internal Commands 

An object may contain several STDs to define the required sequential logic. 
These STDs may communicate with each other just as objects do - by sending 
messages. These internal messages are called internal commands. Internal 
commands may be synchronous or asynchronous. 

To edit an object's internal commands, ensure that the Object Hierarchy 
window is the active window. Ensure that the Application Editor is currently in 
edit mode by clicking on the Edit Mode button in the Mode Toolbar if 
necessary. Move the mouse so that the cursor is over the object whose internal 
commands you want to edit. Double-click with the left mouse button to start 
the Edit Object dialog. Click on the "Internal Commands" button to start the 
Edit Internal Commands dialog. The use of this dialog is as described in chapter 
6, Editing An Object's External Interface, section Editing The List Of Names. 

Editing an Object's Variables 

Adding a 
Variable 

Each object may have zero or more variables. See chapter 3, Basic Concepts, 
section Internal Events for more information about variables. 

Variables can be used as counters (although the range of values must be kept 
very small if the Compiler or Analyzer are to be used) or £lags. 

To edit an object's variables, ensure that the Object Hierarchy window is the 
active window. Ensure that the Application Editor is currently in edit mode by 
clicking on the Edit Mode button in the Mode Toolbar if necessary. Move the 
mouse so that the cursor is over the object whose variables you want to edit. 
Double-click with the left mouse button to start the Edit Object dialog. Click 
on the "Variable Tests and Operations" button to start the Define Variable Tests 
and Operations dialog and, from this dialog, click on the "Edit" button to start 
the Define/Edit Variables dialog. 

You may either type a name into the blank edit box or click on one of the 
existing names in the list box in which case the name is copied into the edit box 
to be used as a basis for the new name. 

Page 29 of60 



Editing An Object's Internal Events Synect Application Editor User Guide 

Click in the "Min" edit box and type the variable's minimum value. Repeat 
similarly for the maximum and the variable's initial value. Keep the range as 
small as possible to avoid an explosion of the number of combinations of system 
state when using the Application Analyzer 

Click on the "Add" button. 

Changing the Click on the variable you want to edit in the list box. Click in the "Min", 
Min, Max or "Max" or "Initial" edit boxes and type the amended value. Click on the "Edit" 
Initial Value button. 

Deleting a 
Variable 

Renaming 
a Variable 

Click on the variable you want to delete in the list box. Click on the "Delete" 
button. Any variable tests or operations defined for this variable will be 
automatically deleted. Any references to these variable tests and operations by 
transitions conditions or actions will also be automatically deleted. 

Click on the variable you want to rename in the list box. Click on the 
"Rename" button to start the Rename Variable dialog. Type the new variable 
name and click on "OK". Any variable tests or operations defined for this 
variable will be automatically renamed. Any references to these variable tests 
and operations by transitions conditions or actions will also be automatically 
updated. 

Editing a Variable's Tests and Operations 

Adding a 
Variable 
Test 

Page 30 of60 

Before a transition's condition can refer to a test of a variables value, the variable 
test must be configured. Similarly for a transition's action referring to a variable 
operation. Configure the tests and operations to be available by using the 
Define Variable Tests and Operations dialog. 

To start this dialog, ensure that the Object Hierarchy window is the active 
window. Ensure that the Application Editor is currently in edit mode by 
clicking on the Edit Mode button in the Mode Toolbar if necessary. Move the 
mouse so that the cursor is over the object whose variables you want to edit. 
Double-click with the left mouse button to start the Edit Object dialog and 
then click on the "Variable Tests and Operations" button. 

Click on the desired variable in the "Variables" list box toward the top of the 
dialog (if no variables are listed, you'll need to define them first by clicking on 
the "Edit" button). 



Synect Application Editor User Guide Editing An Object's Internal Events 

Deleting a 
Variable Test 

Adding a 
Variable 
Operation 

Deleting a 
Variable 
Operation 

Click on one of the "Test Type" radio buttons «, <=, =, >=, » and then type 
a value into the "Value" edit box (where the value is within the range specified 
by the rnin and max defined for the variable). 

Click on the "Add" button. 

Click on the variable test in the "Tests" list box you want to delete and then 
click on the "Delete" button. Any transitions which referred to this variable test 
will be automatically updated to have the condition removed. 

Click on the desired variable in the "Variables" list box toward the top of the 
dialog (if no variables are listed, you'll need to define them first by clicking on 
the "Edit" button). 

Click on one of the "Operation Type" radio buttons (DECR, INCR, RESET). 

Click on the "Add" button. 

Click on the variable operation in the "Operations" list box you want to delete 
and then click on the "Delete" button. Any transitions which referred to this 
variable operation will be automatically updated to have the action removed. 

Page 31 of60 



Editing An Object's Internal Events Synect Application Editor User Guide 

This page left intentionally blank 

Page 32 0[60 



Synect Application Editor User Guide Editing An Object's STDs 

8 Editing An Object's STDs 

Each object can have 1 or more state transition diagrams (STDs) defining its 
sequential logic. Each STD must have a unique name. With an STD on display 
in a window, you can modify it by, for example, adding and deleting states, 
adding and deleting transitions, etc .. The first step, however, is to define the set 
ofSTDs which will specify the object's behaviour. 

Editing The Set Of Object STDs 

Adding an 
STD 

Renaming an 
STD 

Deleting an 
STD 

Editing an 
STD 

To edit an object's STDs, ensure that the Object Hierarchy window is the 
active window. Ensure that the Application Editor is currently in edit mode by 
clicking on the Edit Mode button in the Mode Toolbar ifnecessary. Move the 
mouse so that the cursor is over the object to which you want to new STD to 
belong. Double-click with the left mouse button to start the Edit Object 
dialog. Click on the "STDs" button to start the Edit Object's STDs dialog. 

You may either type a name into the blank edit box or click on one of the 
existing names in the list box in which case the name is copied into the edit box 
to be used as a basis for the new name. Click on the "Add" button. 

Select the name in the listbox which you want to modify by clicking on it. 
Click on the "Rename" button to start the Rename STD dialog. Renaming the 
STD may affect files which are used by other Synect tools (such as the Simulator 
and Neuron C Code Generator). If any of these files are found, the Application 
Editor will start the Apply Rename To Files dialog for you to specify which files 
it is to automatically edit. 

Nominate the STD you want to delete by clicking on the name in the listbox to 
select it. Click on the "Delete" button to delete it from the list. Clicking on 
"OK" to close the dialog will then cause the STD itself (i.e. the states and 
transitions) to be deleted. If the STD was being displayed in a window, the 
window will be closed. 

Either double click on the name of the STD in the listbox or select the name by 
single-clicking and then clicking on the "Edit" button. If the STD is not 
currently being displayed in a window, a new window will be created in which 
it will be displayed. Otherwise, the window displaying the STD will be made 
the active window. 

Page 33 of60 



Editing An Object's STDs Synect Application Editor User Guide 

Editing an STD's States 

Adding a 
New State 
mr4.l.-
iiMl:t:-i!i!i!! 

Renaming a 
State 

Toggling 
Between 
Macro and 
Primitive 
State 

BI 

Page 34 of60 

The following descriptions assume that the STD containing the state to be 
mauipulated or to which the new state is to be added is being displayed in the 
active window. 

Click on the Add State button in the Mode Toolbar. Move the mouse so that 
the cursor is in the STD window. Press and hold down the left mouse button. 
A rectangle is drawn in the STD window denoting the new state. Drag the 
mouse and observe that the rectangle denoting the location of the new state 
moves correspondingly. When the rectangle is in the desired location, release 
the left mouse button and the Add State dialog will be automatically started. 
Type a unique name into the edit box or click on one of the existing names in 
the list box and then edit the contents of the edit box. Click on "OK". The 
new state will be shown in the STD window with specified name and at the 
chosen location. The Application Editor remains in add state mode so you can 
add another new state by repeating the above instructions from the point where 
the left mouse button is pressed and held down to cause the outline rectangle to 
be drawn. 

To rename a state, ensure that the Application Editor is in edit mode by clicking 
on the Edit Mode button in the Mode Toolbar if necessary. Move the mouse 
so that the cursor is inside the state you want to rename. Double-click the left 
mouse button to start the Edit State dialog. Click on the "Rename" button to 
start the Rename State dialog. Renaming the state may affect files which are 
used by other Synect tools (such as the Simulator and Neuron C Code 
Generator). If any of these files are found, the Application Editor will start the 
Apply Rename To Files dialog for you to specify which files it is to 
automatically edit. 

A macro state is one which is further decomposed into a sub-sequence STD. 
This is used to further partition the sequential logic to make each diagram more 
comprehensible. To convert a primitive state to a composite state, ensure that 
the Application Editor is in edit mode by clicking on the Edit Mode button in 
the Mode Toolbar ifnecessary. Move the mouse so that the cursor is inside the 
state you want to convert. Double-click the left mouse button to start the Edit 
State dialog. Click on the "Add" button to convert the state to a macro state 
and to automatically add the sub-sequence STD and create a window in which 
it is displayed. If the state is already a macro state, the STD may be edited by 
clicking on the "Edit" button. To convert a state from a macro state to a 
primitive state, click on the "Delete" button. This will also delete the 
sub-sequence STD itself and, if the STD is being displayed in a window, the 
window will be closed. 

If the state is the STD's start state, the "Add" button will be disabled because a 
state cannot be both the start state and a macro state. 



Synect Application Editor User Guide Editing An Object's STDs 

Deleting a 
State 

Changing the 
State Name 
Font 

Specifying 
the STD's 
Start State 

Id 

Using Cut 
And Paste 

rEI 
I~ 
11 

To delete a state, ensure that the Application Editor is in edit mode by clicking 
on the Edit Mode button in the Mode Toolbar ifnecessary. Move the mouse 
so that the cursor is inside the state you want to delete. Select the state by 
clicking with the left mouse button and then hit the delete key. Any transitions 
which started or ended in the deleted state will also be deleted . 

. To move a state, ensure that the Application Editor is in edit mode by clicking 
on the Edit Mode button in the Mode Toolbar if necessary. Move the mouse 
so that the cursor is inside the state you want to move. Press and hold down the 
left mouse button and drag the state to the desired location. Release the left 
mouse button to cause the state to be redrawn in the neW location. 

See chapter 9, Configuration, for details of how to change the typeface and 
character size used for displaying state names. 

Each STD must have a start state. To nominate a state as the start state, ensure 
that the Application Editor is in edit mode by clicking on the Edit Mode button 
in the Mode Toolbar if necessary. Move the mouse SO that the cursor is inside 
the desired state and double-click the left mouse button to start the Edit State 
dialog. Click on the "Start State" checkbox to make this state the STD's start 
state. The same mechanism may be used to specify that a state is not to be the 
start state. If the state is a macro state, the "Start State" checkbox will be 
disabled because a state cannot be both a macro state and the STD's start state. 

Ensure that the Application Editor is currently in edit mode by clicking on the 
Edit Mode button in the Mode Toolbar if necessary. Select the state you want 
to copy by clicking on it. The selected state will now be shown in a different 
colour to the other states. Choose Editl Copy to copy the state to the paste buffer. 
To have the state automatically deleted following the copy to the paste buffer, 
choose Edit I Cut instead. 

To paste the state copy into an STD, ensure that the STD is displayed in the 
active window and that the Application Editor is in edit mode as before. 
Choose EditlPaste. Most of the menu options and Operation Toolbar buttons 
will now be disabled. The EditlCancel menu option is enabled. To cancel the 
operation, choose Editl Cancel. Otherwise, move the mouse so that the cursor is 
in the STD window. Press and hold down the left mouse button and drag the 
state rectangle to the desired location before releasing the left mouse button. If 
the state name isn't unique, the name clash character "?" will be prefixed to the 
state name. 

If the pasted state is a macro state, its sub-sequence STD will also have been 
copied. 

Page 35 of60 



Editing An Object's STDs Synect Application Editor User Guide 

Editing an STD's Transitions 

Adding a 
New 
Transition 

III 

Defining 
External 
Conditions 
and Actions 
(Messages) 

Page 36 of60 

The following descriptions assume that the STD containing the transition to be 
manipulated or to which the new transition is to be added is being displayed in 
the active window. 

Click on the Add Transition button in the Mode Toolbar. Move the mouse so 
that the cursor is in the STD window over the transition's start state. Press and 
hold down the left mouse button. Drag the mouse and observe the first 
segments of the transition are drawn (vertical then horizontal) ending at the 
current cursor position. 

If the transition's end state is different from its start state, you can drag the 
mouse so that the cursor is inside the end state and then release the left mouse 
button. The External Transition Conditions and Actions (STDs) dialog will be 
automatically started. 

If the transition statts and ends in the same state, or if you want to have more 
control over the positions and lengths of the transition's segments, release the 
left mouse button with the cursor not inside a state. The first two segments of 
the transition are drawn ending at this intermediate point. Press and hold the 
left mouse button down again and drag the mouse. The next two segments are 
drawn starting at the intermediate point and ending at the current cursor 
position. This set of operations may be repeated as often as required. To 
complete the transition, release the left mouse button when the cursor is inside a 
state. The External Transition Conditions and Actions (STDs) dialog will be 
automatically started. 

The External Transition Conditions and Actions (STDs) dialog is similar to the 
External Transition Conditions and Actions (Messages) dialog which will be 
described first for ease of explanation. 

The purpose of the External Transition Conditions and Actions (Messages) 
dialog is to enable you to specifY which conditions must be satisfied before this 
transition can fire and which actions are invoked when it does fire. This dialog 
allows you to deal with conditions and actions which relate to the external 
interface (messages to/from other objects and real world inputs/real world 
outputs). To deal with conditions and actions which relate to activities internal 
to the object, click the "Show Internal Events" button to start the Internal 
Transition Conditions and Actions dialog. To deal with conditions and actions 
which relate to the object's real world inputs, real world-outputs and state 
references, click the "Show STDs" button from the Internal Transition 
Conditions and Actions dialog to start the External Transition Conditions and 
Actions (STDs) dialog. 



Synect Application Editor User Guide Editing An Object's SIDs 

Adding a New 
Condition 

Removing a 
Condition 

Adding a New 
Action 

Removing an 
Action 

Defining 
External 
Conditions 
and Actions 
(STDs) 

additional items to be added to the external interface, the "Edit" button can be 
used to start the External Events dialog. 

The right hand side of the dialog refers to the transition being edited. Towards 
the top of the dialog, the transition's start and end states are shown. The 
topmost listbox shows the conditions currently tested by this transition which 
relate to the external interface. Next is a listbox showing the conditions 
associated with this transition which are derived from intemal events (this is 
shown for information only in this dialog). The next listbox shows the actions 
relating to the external interface which are invoked when this transition is fired. 
The bottom-most listbox shows the actions relating to activities which are 
internal to the object (this is shown for information only in this dialog). Below 
this is an editbox into which a comment can be typed which is associated with 
this transition. 

Click on the real world input, command from parent or response from child 
which you want to be a condition of this transition. Click on the "Add>" 
button to the left of the External Conditions listbox. The string is removed 
from the listbox relating to the external events and is added to the External 
Conditions listbox. 

Click on the condition you want to remove in the External Conditions listbox. 
Click on the "<Remove" button next to the External Conditions listbox. The 
string is removed from the External Conditions listbox and added to the 
appropriate external events listbox. 

Click on the real world output, response to parent or command to child which 
you want to be an action of this transition. Click on the "Add>" button to the 
left of the External Actions listbox. The string is removed from the listbox 
relating to the external events and is added to the External Actions listbox. 

Click on the action you want to remove in the External Actions listbox. Click 
on the "<Remove" button next to the External Actions listbox. The string is 
removed from the External Actions listbox and added to the appropriate 
external events listbox. 

The External Transition Conditions and Actions (STDs) dialog is very similar to 
the External Transition Conditions and Actions (Messages) dialog. It does not 
show the messages to/from parent or children but instead contains two listboxes 
to display STD information. 

The leftmost listbox shows a list of all of the STDs which are currently defined. 
Click on an entry in this listbox and the other listbox will be populated with the 
states which belong to that STD. Click on a state name in the listbox and the 

Page 37 of60 



Editing An Object's SIDs Synect Application Editor User Guide 

Defining 
Internal 
Conditions 
and Actions 

Adding a 
New 
Condition 

Removing a 
Condition 

Page 38 of60 

"Add>" button to the left of the External Conditions listbox will be enabled. 
Click on the "Add>" button to add the state reference as a condition. 

To remove a state reference from the list of conditions for the current 
transition, click on it in the External Conditions listbox and then click on the 
"<Remove" button next to the External Conditions listbox. 

The purpose of the Internal Conditions and Actions dialog is to enable you to 
specify which conditions must be satisfied before this transition can fire and 
which actions are invoked when it does fire. This dialog allows you to deal with 
conditions and actions which are internal to the object (internal commands and 
variable tests and operations). To deal with conditions and actions which relate 
to the object's real world inputs, real world-outputs and state references, click 
the "Show STDs" button to start the External Transition Conditions and 
Actions (STDs) dialog. To deal with conditions and actions which relate to 
messages to/from the object, click the "Show External Events" button from the 
External Transition Conditions and Actions (STDs) dialog to start the External 
Transition Conditions and Actions (Messages) dialog. 

The transition being edited is part of an STD which, in turn, belongs to an 
object. On the left of the dialog, a representation is shown of the object's 
internal events and actions. If you decide that there are additional items to be 
added to any of these lists, the appropriate "Edit" button can be used which will 
start either the Edit Internal Commands dialog or the Define Variable Tests and 
Operations dialog. 

The right hand side of the dialog refers to the transition being edited. Towards 
the top of the dialog, the transition's start and end states are shown. The 
topmost listbox shows the conditions currently tested by this transition which 
relate to the external interface (this is shown for information only in this dialog). 
Next is a listbox showing the conditions associated with this transition which 
are derived from internal events. The next listbox shows the actions relating to 
the external interface which are invoked when this transition is fired (this is 
shown for information only in this dialog). The bottom-most listbox shows the 
actions relating to activities which are internal to the object. Below this is an 
editbox into which a comment can be typed which is associated with this 
transition. 

Click on the "Tests of Variable Values" listbox item or "Internal Commands" 
listbox item which you want to be a condition of this transition. Click on the 
"Add>" button to the left of the "Internal Conditions" listbox. The string is 
removed from the listbox relating to the internal events and is added to the 
"Internal Conditions" listbox. 

Click on the condition you want to remove in the "Internal Conditions" 
listbox. Click on the "<Remove" button next to the "Internal Conditions" 



Synect Application Editor User Guide Editing An Object's STDs 

Removing a 
Condition 

Adding a 
New Action 

Removing an 
Action 

Editing an 
Existing 
Transition's 
Conditions 
and Actions 

1111 

Click on the condition you want to remove in the "Internal Conditions" 
listbox. Click on the "<Remove" button next to the "Internal Conditions" 
listbox. The string is removed from the "Internal Conditions" listbox and added 
to the appropriate internal events listbox. 

Click on the "Operations on Variables" listbox item or "Internal Commands" 
listbox item which you want to be an action of this transition. Click on the 
"Add>" button to the left of the "Internal Actions" listbox. The string is 
removed from the listbox relating to the internal activities and is added to the 
"Internal Actions" listbox. 

Click on the action you want to remove in the "Internal Actions" listbox. Click 
on the "<Remove" button next to the "Internal Actions" listbox. The string is 
removed from the "Internal Actions" listbox and added to the appropriate 
internal activities listbox. 

Ensure that the Application Editor is currently in edit mode by clicking on the 
Edit Mode button in the Mode Toolbar if necessary. Invoke the External 
Transition Conditions and Actions (STDs) dialog by double-clicking on the 
horizontal delimiter between the transition's conditions and actions. The 
External Transition Conditions and Actions (Messages) dialog is reachable from 
this dialog and in turn the Internal Transition Conditions and Actions dialog is 
then reachable. 

Page 39 of60 



Editing An Object's STDs Synect Application Editor User Guide 

Moving a 
Segment 

Ill! 

Splitting a 
Segment 
~'.m'*l~~m 

JB!~ 

Page 40 of60 

. Ensure that the Application Editor is currently in edit mode by clicking on the 
Edit Mode button in the Mode Toolbar if necessary. Move the mouse so that 
the cursor is over the segment you want to move. Press and hold down the left 
mouse button and drag the segment to the desired location. Release the left 
mouse button and the transition segment will be drawn in the new location. 
Following the move, any segments which are of zero length will be deleted. In 
the following example, there are initially 3 segments and finally 1 segment after 
the move: 

I I I I 

i- , 
I I I I 

Before (3 segments) After (1 segment) 

Ensure that the Application Editor is currently in edit mode by clicking on the 
Edit Mode button in the Mode Toolbar if necessary. This example assumes that 
a vertical segment is to be split into 5 segments. 

Press and hold down the left mouse button with the cursor to the left of the 
transition. Drag the mouse and observe that an elastic rectangle is drawn with 
one corner at the location where the drag operation was started and opposite 
corner at the current cursor position. When the elastic rectangle crosses the 
transition, release the left mouse button. A dotted rectangle will be drawn 
corresponding to the elastic rectangle. Move the cursor so that the mouse 
pointer is inside the dotted rectangle. Press and hold down the left mouse 
button and drag the dotted rectangle such that new transition segments are 
shown. Release the left mouse button and the dotted rectangle is removed, 



Synect Application Editor User Guide Editing An Object's SIDs 

Moving the 
Transition's 
Delimiter 

leaving the new transition segments as placed. 

Press mouse button 
down with cursor 
here 

state_l 

rJ-, 
I J 

... 
state_2 

state_l 

-r --, I I _J -

state_2 

Put cursor 
and drag r 
to the left 

In here 
ectangle 

~ 

Drag mouse and release 
button with cursor 
here 

state_l 

J 

'+ 
state_2 

Release left m ouse 
ve button to remo 

dotted rectang le 

A horizontal line delimits the transition's conditions (shown above the 
delimiter) from its actions (shown below the delimiter). The delimiter is 
initially positioned halfway along the first segment but can be dragged around 
the transition's segments. 

Ensure that the Application Editor is currently in edit mode by clicking on the 
Edit Mode button in the Mode Toolbar if necessary. Move the mouse so that 
the cursor is over the horizontal delimiter between the transition's conditions 
and actions. Press and hold down the left mouse button. By using the drag 
operation, the conditions and actions can be moved around the contour of the 
transition. Release the left mouse button and the conditions and actions will be 
redrawn in their new location. 

Page 41 of60 



Editing An Object's STDs Synect Application Editor User Guide 

Using Cut 
and Paste 

)11£1 
III 
~ 

g 
[11 

Ordering of 
Conditions 
and Actions 

Page 42 of60 

Ensure that the Application Editor is currently in edit mode by clicking on the 
Edit Mode button in the Mode Toolbar if necessary. Select the transition's 
conditions and actions by clicking on the horizontal delimiter between the 
conditions and actions. The conditions and actions will now be shown in a 
different colour to show that they are selected. Choose Editl Copy to copy them 
to the paste buffer. To have the conditions and actions automatically deleted 
following the copy to the paste buffer, choose EditlCut instead. 

To paste the conditions and actions into an STD, ensure that the STD is 
displayed in the active window and that the Application Editor is in edit mode 
as before. Choose EditIPa.to. Most of the menu options and Operation Toolbar 
buttons will now be disabled. The EditlCancol menu option is enabled. To cancel 
the operation, choose EditlCancol. Otherwise, move the mouse so that the cursor 
is in the STD window. Press and hold down the left mouse button and drag the 
rectangle denoting the conditions and actions such that it is over the horizontal 
delimiter of the transition into which you want to paste. Release the left mouse 
button. If any of the conditions or actions clash with existing names, they will 
be prefixed with the name clash character "?". 

After pasting conditions and actions, the Application Editor will add entries to 
the object's events as necessary to make the application consistent. For example, 
if real world input is_1 ight_on is pasted into a transition and this real world input 
is not defined for the object to which this STD belongs, the is_I ight_on real 
world input will be added to the list defined for the object and will therefore be 
apparent when the External Events dialog is used. 

If a condition or action refers to a variable which is undefined in the new object, 
the variable will be added with range 0 to -1 (i.e. an illegal range). 

The conditions are shown on an STD in the following order: 

1. conunands from the parent object 

2. responses from the child objects 

3. real world inputs 

4. tests against variables 

5. internal conunands 

The actions are shown in the following order: 

1. responses to the parent object 

2. conunands to child objects 

3. real world outputs 

4. operations on variables 

5. internal conunands 

Within the above categories, names are listed in alphanumeric order with names 
beginning with the name clash character "?" being listed before the others. Within 
a list of messages, synchronous messages are listed after asynchronous messages. 



Synect Application Editor User Guide Editing An Object's STDs 

Cutting And Pasting An STD 

t m····· 
;m 

rr. ........ '=. ~ 
N:)1! ... " .... DJ 

Stricdy speaking, there is no facility for cutting and pasting STDs. The facility 
does exist, however, for copying a set of states and transitions which can be used 
to copy the partial or entire contents of an STD. 

Ensure that the STD which you want to copy is displayed in the active window. 
Ensure that the Application Editor is currendy in edit mode by clicking on the 
Edit Mode button in the Mode Toolbar if necessary. 

Press and hold down the left mouse button with the cursor in the STD window 
and to the top left of the STD. Drag the mouse and observe that an elastic 
rectangle is drawn with one corner at the location where the drag operation was 
started and opposite corner at the current cursor position. When the elastic 
rectangle encloses the whole STD, release the left mouse button. Choose the 
EdfilCopy menu option. 

To paste the STD, ensure that the STD into which the states and transitions are 
to be pasted is displayed in the active window and that the Application Editor is 
in edit mode as before. Choose the EdfilPaste menu option. Most of the menu 
options and Operation Toolbar buttons will now be disabled. The EdfilCancel 

menu option is enabled. To cancel the operation, choose EdfilCance!. Otherwise, 
move the mouse so that the cursor is in the STD window. Press and hold down 
the left mouse button and drag the outline rectangle to the desired location 
before releasing the left mouse button. The Application Editor will then take 
the same steps as it would for pasting each state and each condition and action in 
terms of checking for uniqueness and prefixing with the name dash character "?" if 
necessary. 

If any of the pasted states is a macro state, its sub-sequence STD will also have 
been copied. 

Editing A Sub-Sequence STD 

A sub-sequence STD defines the logic within a macro state. The STD 
containing the macro state is referred to as the sub-sequence STD's parent STD. 
A sub-sequence STD is similar to an object STD but always starts in state 
START and ends in state END. When the macro state becomes the current 
state, the sub-sequence STD changes state from START to one of the other 
states (depending on the transitions defined for the sub-sequence STD). When 
the sub-sequence STD changes state to END, a transition in its parent STD 
which starts at the macro state will fire. 

Page 43 of60 



Editing An Object's STDs Synect Application Editor User Guide 

Zooming 

fill 
fill 

Page 44 of60 

Due to the relationship between the transitions in the parent STD which start 
or end in the macro state, and the transitions out of the START state and into 
the END state in the sub-sequence STD, there are additional constraints on the 
content of a sub-sequence STD (see Appendix A, Rules, for further details). 
For example: 

• 
• 

a sub-sequence STD must have at least 3 states . 

you cannot define a transition which starts at the ST ART state and 
ends in the END state. 

To reduce the size of a diagram in a window, choose ZoomlOut. 

To increase the size of the diagram, choose Zoomlln. 

Before using the zoom facilities, you should ensure that scalable fonts are being 
used. See chapter 9, Configuration, for an explanation of how to change the 
fonts. 

When printing a diagram, the Application Editor takes into account the current 
magnification of the window. You may therefore want to choose ZoomlReset 

before printing to ensure consistency. 



Synect Application Editor User Guide Configuration 

9 Configuration 

Tills chapter describes the changes you can make to the Application Editor 
environment. These changes are saved whenever you save the application to 
disk. 

Changing The Fonts Used On The Diagrams 

Grid 

The Application Editor enables you to specify the font you want to use for the 
display of text in the diagrams. The options are available from the Configuration 

menu: 

Object Name Font 

Object Interface Font 

state Name Font 

Transition Name Font 

object names (in the Object Hierarchy window) 
external interface names (in the Object Hierarchy 
window) 
state names (in an STD window) 
conditions and actions associated with transitions 
(m an STD window) 

TrueType fonts should be cbosen because they are scalable. These are displayed 
correctly when the zooming functionality is used and when the diagram is 
printed. 

When positioning items in a diagram, the item always snaps to the grid 
regardless of whether the grid is on display. Use the GrldlShow Grid menu option 
to toggle whether the grid is displayed. Use the ConflgurationlGrid Size menu option 
to change the grid spacing. 

Zoom Factor 

Use the ConfigurationlZoom Factor menu option to change the amount by which the 
diagram is shrunk/enlarged when using the Zooml0ut / Zoomlln menu options. 

Page 45 of60 



Configuration Synect Application Editor User Guide 

This page left intentionally blank 

Page 46 of60 



Synect Application Editor User Guide Printing 

10 Printing 

The Application Editor enables you to obtain printouts of the diagrams as 
displayed on your screen and also to print textual information about the 
contents of an object, such as its internal commands, variables etc., which are 
not displayed on any of the diagrams. 

Printing The Contents Of The Active Window 

Use the FllelPrtnt menu option to start the Select Information To Be Printed 
dialog. To print the diagram being displayed in the active window, ensure that 
the "Active Window" radio button is checked. The printout will use the same 
magnification as is currently being used by the active window. So if you want 
to print out an enlarged version of the diagram which is tiled across several 
sheets of paper, use the Zoomlln menu option prior to invoking the FilelPrtnt menu 
option. 

If a text string spans 2 or more pages, you'll need to set up your printer to print 
TrueType as graphics to prevent the text string being clipped at a character 
boundary. Use the FilelPrtnter Setup menu option to start the Print Setup dialog and 
then click on the "Options" button to start the Options dialog. Ensure that the 
"Print TrueType as Graphics" checkbox is checked. 

Printing An Object's Details 

Use the FilelPrtnt menu option to start the Select Information To Be Printed 
dialog. To print details of one of the objects, check the "Object Details" radio 
button and then click on the object name in the listbox. 

Page 47 of60 



Printing Synect Application Editor User Guide 

This page left intentionally blank 

Page 48 0[60 



Synect Application Editor User Guide Loading R WI/R WO From File 

11 Loading Available RWIIRWO From File 

The Application Editor gives you the ability to import the list of real world 
inputs (R WIs) and real world outputs (R WOs) which are available to the 
application. These are then displayed on the External Events dialog so that you 
can declare R WIs and R WOs for an object in the same way that messages can 
be declared - by selecting an entry in the outer listbox and clicking on the "Add" 
button. 

Loading The Available RWls 

Use a text editor which can produce a standard ASCII file (such as Notepad) 
and type the list of names, 1 name per line, into the file. Lines starting with "!" 
are treated as comments and ignored. Use the FilelLoad RWI menu option to load 
the contents of the file. The default file extension is "ril" 

For example, the following file contents would load 3 real world inputs: 

! This is an example file containing a list of real world inputs 
! 
! Real world inputs relating to the gripper 
rwi-Wip_closed 
rwi-Wip_open 
! 
! Real world inputs relating to the feed system 
rwLnew _part_detected 

Loading The Available RWOs 

Real world outputs are treated as per real world inputs except the FilelLoad RWO 

menu option is used and the default file extension is "rol". In the following 
example, the file contents would load 4 real world outputs: 

! This is an example file containing a list of real world outputs 
! 
! Real world outputs relating to the gripper 
rwo_close-Wip 
rwo_open...gnp 
! 
! Real world outputs relating to the feed system 
rwo _start_feed 
rwo_stop_feed 

Page 49 of60 



Loading R WI/R WO From File Synect Application Editor User Guide 

This page left intentionally blank 

Page 50 of60 



Synect Application Editor User Guide Rules 

Appendix A Rules 

The Application Compiler will enforce rules to ensure that the application 
definition is valid. Many of these rules will be automatically satisfied because 
the Application Editor will not allow you to violate them. In some cases, 
however, the Application Editor would have to impose constraints on its 
functionality which would be overly restrictive, such as when using the cut and 
paste facilities. 

External - Object Related 

1. Object name must be legal and valid. 

2. Objects must form a strict hierarchy and there must be a root object 
defined. 

3. The root object cannot have any parent commands or parent responses 
defined. 

External - Interface Related 

1. Each name must be legal and valid. 

2. Each parent command must be defined in the parent's child commands. 

3. Each parent response must be defined in the parent's child responses. 

4. Each child command must be defined in 1 and only 1 child's parent 
commands. 

5. Each child response must be defined in 1 and only 1 child's parent 
responses. 

6. Each message, real world input and real world output must be 
referenced by a transition condition/action in at least one of the STDs 
or sub-sequence STDs belonging to this object. 

Internal - Commands 

1. Each name must be legal and valid. 

2. Each internal command must be sent by at least 1 STD and received by 
at least 1 STD. 

3. Sending and receiving STDs must be different and must ulrimately 
belong to different object STDs (so an object STD cannot send an 
intemal command to one of its sub-sequence STDs for example). 

Page 51 of60 



Rules Synect Application Editor User Guide 

Internal - Variables 

1. Each name must be legal and valid. 

2. Max must be >= min (warning issued if they are identical). 

3. Initial value must satisfy: min <= initial <= max. 

4. Variable should be referenced by a transition condition/action 
(warning). 

5. Variable value should be changed in at least one transition action 
(warning). 

Internal - Object STD 

1. Each name must be legal and valid. 

2. There must be an initial state defined for the STD. 

3. STD must contain at least 1 state. 

4. STD should contain at least 1 transition (warning). 

Internal - Sub-Sequence STD 

1. Must have 1 and only 1 state named START. 

2. Must have 1 and only 1 state named END. 

3. There must not be a transition starting at START and ending at END. 

4. There must not be a transition starting at END. 

5. There must not be a transition ending at START. 

6. There must be 1 and only 1 transition starting at START. 

7. There must be 1 and only 1 transition ending at END. 

8. The transition starting at START must have no conditions. 

9. The transition ending at END must have no actions. 

10. There must be at least 1 other state in addition to START and END. 

Internal - STD State 

Page 52 of60 

1. Each name must be legal and valid. 

2. If the STD is an object STD or the state is not named START, there 
should be a transition ending in this state, otherwise this is an 
unreachable state (warning). 



Synect Application Editor User Guide Rules 

3. If the STD is an object STD or the state is not named END, there 
should be a transition starting in this state, otherwise this is a terminal 
state (warning). 

4. If the state is a macro state, there must be at least 1 transition ending in 
this state. There should also be 1 transition starting at this state (error if 
no transitions start at this state, warning if more than 1 transition because 
it cannot have any conditions i.e. undefined which transition will be 
fired). 

Internal - STD Transition 

1. A transition ending at a macro state must have no actions. 

2. A transition starting at a macro state must have no conditions. 

3. A transition's conditions cannot have 2 or more variable tests referring to 
the same variable (where synchronous internal commands are used, this 
rule applies to the combination of the sending and receiving transition). 

4. A transition's actions cannot have 2 or more variable operations referring 
to the same variable (where synchronous internal commands are used, 
this rule applies to the combination of the sending and receiving 
transition). 

5. The value in a variable test must satisfy: min <= value <= max. 

6. A variable referenced by a variable test or variable operation must be 
declared for the object to which the STD belongs. 

7. A message, real world input or real world output referenced by a 
condition or action must be declared for the object to which the STD 
belongs. 

8. For transitions other than those starting or ending at a macro state and 
transitions starting at a sub-sequence STD's START state or ending at a 
sub-sequence STD's END state, the transition should have at least 1 
condition and at least 1 action (warning). 

9. If the value in a variable test is equal to the variable's minimum value, 
the test type cannot be "<". 

10. If the value in a variable test is equal to the variable's minimum + 1 and 
the test type is "<", there must not be an action in this transition which 
decrements the variable's value (where synchronous internal commands 
are used, this rule applies to the combination of the sending and 
receiving transition). 

11. There should be no variable test of the form "var <= rnin" (warning). 

12. If the variable test is of the form "var <= min", there must be not be an 
action in this transition which decrements the variable's value (where 
synchronous internal commands are used, this rule applies to the 
combination of the sending and receiving transition) .. 

Page 53 of60 



Rules 

Page 54 of60 

Synect Application Editor User Guide 

13. If the value in a variable test is equal to the variable's maximum value, 
the test type cannot be ">". 

14. If the value in a variable test is equal to the variable's maximum - 1 and 
the test type is ">", there must not be an action in this transition which 
increments the variable's value (where synchronous internal commands 
are used, this rule applies to the combination of the sending and 
receiving transition). 

15. There should be no variable test of the form "var >= max" (warning). 

16. If the variable test is of the form "var >= max", there must be not be an 
action in this transition which increments the variable's value (where 
synchronous internal commands are used, this rule applies to the 
combination of the sending and receiving transition). 

17. There must not be 2 or more transitions which contain a reference to 
any given variable and a synchronous message. The scope of this rule is 
the whole of the object i.e. the object STDs and sub-sequence STDs. 



Synect Application Editor User Guide Fonnal Definition Of An Application 

Appendix B Formal Definition Of An Application 

This chapter provides a more precise definition of the components of an 
application. The notation is as follows: 

= 

+ 
I 
U 
{} 
labet 

consists of 
and 
or 
optional 
set of zero or more 
the literal character string abc 

application = hierarchy of objects 

hierarchy of objects = root object [+ sub-hierarchy of objects] 

sub-hierarchy of objects = object [+ sub-hierarchy of objects] 

root object = object name + child messages + {real world input} 
+ {real world output} 
+ internal events + {variable} 
+ list of object stds 

object = root object + parent messages 

object name = name 

name = letter + {letter I digit I underscore} 

child messages = {child command} + {child response} 
child command = message name 
child response = message name 

message name = synchronous message name I asynchronous message name 

synchronous message name = name 
asynchronous message name = T + name + ']' 

parent messages = {parent command} + {parent response} 
parent command = message name 
parent response = message name 

real world input = name 
real world output = name 

internal events = {internal command} + {variable test} + {variable operation} 
internal commands = message name 
variable test = variable name + test type + test value 
variable name = name 

Page 550[60 



Fonnal Definition Of An Application Synect Application Editor User Guide 

Page 56 of60 

test type = < I <= I = I >= I > 
test value = integer value subject to: 

variable minimwn <= test value <= variable maximwn 

variable operation = variable name + operation type 
operation type = INCR I DECR I RESET 

variable = variable name + variable minirnwn + variable maximwn 
+ variable initial value 

variable minirnwn = integer value 
variable maximum = integer value 
variable initial value = integer value 

subject to: -999 <=integer value <= 9999 
variable minirnwn <= variable maximum 
variable minirnwn <= variable initial value <= variable maximwn 

list of object stds = std + {std} 

std = name + initial state + state + {state} + {transition} 

state = name [+ sub-sequence STD] 

transition = start state + end state + {condition} + {action} 

start state = state 
end state = state 

sub-sequence STD = sub-sequence start state + sub-sequence end state 
+ state + {state} 
+ sub-sequence transition from start 
+ sub-sequence transition to end 
+ {transition} 

sub-sequence start state = "START" 
sub-sequence end state = "END" 
sub-sequence transition from start = "STAR. T" + end state + {condition} 

+ {action} 
sub-sequence transition to end = start state + "END" + {condition} + {action} 

condition = parent command I child response I real world input 
I state reference I internal command I variable test 

action = parent response I child command I real world output 
I internal command I variable operation 



Synect Application Editor User Guide 

Appendix C Menus 

File 

Ed~ 

Zoom 

Grid 

New Application 

Open Application 

Save Application 

Save Application As 

LoadRWI 

Load RWO 

Prlnt 

Printer Setup 

ExIt 

Cut 

Copy 

Paste 

Delete 

Cancel 

In 

Out 

Reset 

ShowGrld 

Configuration 

Grid Size 

Object Name Font 

Object Interface Font 

State Name Font 

Transition Name Font 

Zoom Factor 

Window 
Cascade 

Tile 

Help 

Arrange Icons 

Close All STD Windows 

Contents 

Using help 

About 

Create a new application 
Open an existing application 
Save this application 
Save this application with a new name 
Load the available set of real world inputs 
Load the available set of real world outputs 

Menus 

Ptint the contents of the active window or object 
details 
Set up the print characteristics for this application 
Finish running the Application Editor 

Deletes the selection after copying it into the 
paste buffer 
Copies the selection into the paste buffer 
Inserts the contents of the paste buffer 
Deletes the selection 
Cancels the paste operation 

Zoom In 
Zoom Out 
Reset magnification to original value 

Show or hide the grid 

Size of grid (in pixels) 
Font to use for object names 
Font to use for object's external interface on the 
Object Hierarchy 
Font to use for state names 
Font to use for transition conditions and actions 
Amount by which to zoom in! out 

Cascade open windows 
Tile open windows 
Arrange iconic windows along bottom 
Close all STD windows 

Help table of contents 
Help on using online Help 
Information about Synect Application Editor 

Page 57 of60 



Menus Synect Application Editor User Guide 

This page left intentionally blank 

Page 58 0[60 



Synect Application Editor User Guide Toolbar Buttons 

Appendix D Toolbar Buttons 

The Application Editor uses 2 toolbars - the Operation Toolbar is displayed 
horizontally across the top of the screen and the Mode Toolbar is displayed 
vertically down the left side of the screen. 

Operation Toolbar 

o. ........ m;. I.m 

The Operation Toolbar contains buttons which can be used as shortcuts instead 
of pulling down the corresponding menu and selecting the relevant item. The 
buttons will be greyed-out if the corresponding function is unavailable at that 
time. 

Menu Equivalent Usage 

FllelOpen Application Load an application from a file on disk 

FilelSave Application Save the application being edited to file on disk 

Ed~ICut Delete the selection after copying it into the paste buffer 

Ed~ICopy Copy the selection into the paste buffer 

Ed~IPaste Insert the contents of the paste buffer 

Zoomlln Make the diagram bigger 

Zooml°ut Make the diagram smaller 

EditlCancel Cancel the current paste operation 

HelplContents Display help information 

Page 59 of60 



Toolbar Buttons Synect Application Editor User Guide 

Mode Toolbar 

Page 60 0[60 

The Mode Toolbar allows you to change the mode in which the Application 
Editor is being used. The buttons can be divided into 3 groups: 

Buttons applicable to the Object Hierarchy window and STD windows 
Buttons applicable only to the Object Hierarchy window 
Buttons applicable only to STD windows 

The buttons will be greyed-out if the corresponding function is unavailable at 
that time. 

Awlicable To 

Object Hierarchy and STDs Edit mode. Allows items to be selected and 
moved on the diagram 

Object Hierarchy and STDs Move mode. Allows the whole diagram to be 
moved 

Object Hierarchy only Add a new root object 

Object Hierarchy only Add a new child object 

STD only Add a new state 

STD only Add a new transition 



Synect 

Compiler 
User Guide 

Version 1.2 

Hopkinson Computing Limited 
29 Deepdale, Pine Hills, Guisborough 

Cleveland, TS14 8JY 
England 

Tel/Fax: +44 (0) 1287638606 
email: synect@hopkinsn.demon.co.uk 



© Copyright 1994, 1995, 1996 Hopkinson Computing Limited. All rights reserved. 

Synect is a registered trademark ofHopkinson Computing Limited 
Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation. 

Infonnation in this User Guide is subject to change without notice and does not represent a commitment on the 
part ofHopkinson Computing Limited. 

The software described in this User Guide is furnished under a license agreement or nondisclosure agreement and 
may be used or copied only in accordance with the terms of the agreement. No part of this User Guide may be 
reproduced or transmitted in any fonn or by any means, electronic or otherwise, including photocopying and 
recording, for any purpose, without the express written permission ofHopkinson Computing Limited. 

Document History 

10June 1996 
Re-issue reflecting Compiler V1.1 - new cover sheet and chapter 1. 

28 October 1996 
Re-issue reflecting Compiler Vl.2 - changes to cover sheet and chapters 2 & 5. 



Synect Compiler User Guide Contents 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

ChapterS 

Contents 

Introducing Synect .................................................. . 1 

User Interface ..... ............. ........... .... ....... ...... ..... ..... ......... ..... 1 

The Method. ... ....... ..... ................................... ............ ......... 1 

Synect Documentation ...... .................................................. 1 

The Tools ............................................................................ 2 

Document Conventions ................................. ,. ............. ...... 2 

Getting Started .......................................................... .. 

System Requirements ......................................................... . 

3 

3 

Installation ............................. ................................. ..... ........ 3 

Starting the Compiler .......... ............ ..... ....... ... ........ ...... ....... 4 

On-Line Help ..................................................................... 5 

Basic Concepts ....................................................... .. 

Subsystem Analyses ............................................................. . 

Subsystem Only ............................................................... . 

Subsystem Except ............................................................ . 

7 

7 

7 

8 

Understanding The Compiler Output .................................. 8 

Dealing With Line Breaks .......................................... ....... 8 

Synchronous Messages ...... ...... ...... ....... ........... ....... .... ....... 8 

Asynchronous Messages ., ............................. , ........ ............ 9 

Variables ........... ........................ ........................................ 10 

Open And Save An Application •••••••••• •••• ••••••••••••••••••• 11 

Opening An Application ....... ...... ........ ........ ......... ................ 11 

Saving An Application ... ...... ... ...... ... ... ...... ........ ... ........... ..... 11 

Compiling The Application •••• •••••• •.•• ••••••.••• ••••• •.•• ..... 13 

Starting The Compilation .............................. ,. .................... 13 

List File ............................................................................... 14 

Analysis of User Specification ...... ...... ......... ... .......... ...... .... 14 

Analysis of Compiled Application .............. ....... ....... .......... 14 

Cross-Reference File ........................................................... 15 

State Reference Notation .................... ,. .... ....... .... ............. 15 

Transition Reference Notation ......................................... 15 

Model Dimensions ........... ........ ...... .......... ........ ................. 15 

Initial States ...................................................................... 15 

Place to State Cross-Reference .......................................... 16 

Page i ofii 



Contents Synect Compiler User Guide 

Transition to STD Transition Cross-Reference ................. 16 

Chapter 6 Using Subsystem Analyses ........................................ 17 

Subsystem Only... ............................. .................. ................. 17 

Subsystem Except ................................................................ 17 

Appendix A Menus ................................................................... 19 

Appendix B Toomar Buttons ..................................................... 21 

Page ii ofii 



Synect Compiler User Guide Introducing Synect 

1 Introducing Synect 

Synect is a set of software tools which helps the designer of a control system to 
produce a specification which is clear, precise and free of errors. Synect 
combines the ease of use of a graphical user interface, with a widely used 
diagrammatic notation and the power of mathematical modelling. 

User Interface 

The Method 

The Synect™ tools run on the Microsoft® Windows™ operating system. As 
such, you need to know how to use Windows before you use Synect. In 
particular, you will need to know how to use the mouse to click, double-click 
and drag. You will also need to know how to interact with menus, dialogs and 
how to move, resize and close windows. For information, refer to the 
Microsoft Windows User's Guide. 

Synect uses an object-based method to enable you to model the system you 
want to control. It is useful to have some knowledge of 
object-based/ object-oriented analysis and design techniques before attempting 
to use Synect in earnest. 

Synect Documentation 

Each of the Synect tools has an associated User Guide. This User Guide 
explains how to use each of the functions available in the Compiler. It also 
explains why you might want to use the function. 

Each application has context-sensitive on-line help. The Compiler on-line help 
contains a "How Do I?" section, including a "How Do I Get Started?" 
sub-section for first-time users. 

A Tutorial is also provided which offers a worked example and shows how each 
of the tools is used with the example application. 

Page 10f21 



Introducing Synect Synect Compiler User Guide 

The Tools 

The tools which make up the Synect toolset are: 

Application Editor graphical means of defining the application. 

Compiler check the specification for consistency and 
possible warnings and generate a mathematical 
model of the application. 

Analyzer ability to check for design errors such as deadlock 
(where the system "hangs") and unwanted state 
combinations. 

Simulator provides the ability to interactively "drive" the 
application or replay past behaviour of the live 
control system. 

STD Monitor animates the specification (used in conjunction 
with the Simulator or the live control system). 

C Code Generator generate ANSI -standard C code to implement the 
application. 

Neuron C Generator generate Neuron C to run on one or more nodes 
on an Echelon Lon Works network to implement 
a distributed control solution. 

Ladder Logic Generator generate relay ladder logic to run on a 
programmable controller. 

Document Conventions 

Page 2 of21 

The User Guide adopts the following conventions: 

application name 

KEY NAME 

MenulCholce 

description 

text that you type or that you see on the screen. 
keyboard keys, such as ENI'ER. CTRL or DEL. 
a menu option, such as FilelExit denoting choose the 
Exit command from the File menu. 
description of a term with a specific meaning. 



Synect Compiler User Guide Getting Started 

2 Getting Started 

This chapter describes: 

• the hardware and software requirements which you need to be able to 
use Synect. 

• how to install the Compiler. 

• how to start the Compiler. 

• the Compiler window. 

System Requirements 

Installation 

The Synect Compiler requires that you use: 

• a 486 (or better) running Windows 3.1. 

• VGA monitor in 800 x 600 mode (or higher resolution). 

• a mouse or other pointing device (such as a trackball). 

Other Synect tools require that you also have the following: 

• 8 MByte RAM. 

• 
• 

very large permanent swap file (recommended size is 20 MByte) . 

at least 10 MByte free disk space per application . 

If you haven't installed Synect yet, you'll need to do that first. Check that your 
computer satisfies the requirements listed above before starting the installation. 
The first £loppy disk contains file install.txt which contains any updates to the 
installation process - you should read this file before installing the software. 

1 Put £loppy disk 1 into your £loppy disk drive. 

2 Start Windows (by typing win at the DOS prompt if necessary). 

3 Choose FilelRun from the Program Manager. 

4 Type a:\install then press ENTER. 

S The installation program will now guide you through the installation 
process. Simply answer the questions to specify which Synect tools 
you want to install. 

6 When installation is complete, you can remove the £loppy disk from 
the drive. You should now have a Program Manager group containing 
an icon for each of the installed Synect tools. 

7 Plug the dangle into the computer's parallel port. 

Page 30f21 



Getting Started Synect Compiler User Guide 

8 Read the installed file readme. txt for details of any changes to the 
product or documentation since the documentation was printed. 

Starting the Compiler 

Menu 

Ensure that the Program Manager window is on display. If the Synect window 
isn't visible, use the Window menu to open it. Double-click on the Compiler 
icon or use the keyboard arrow key to select the icon and then press ENTER. 

When using the Compiler, the window will typically look like the following: 

Control·menu 
Maximize OUll0n.,,
Minimize Oul:lorl''_ 

Control· _0;;;:::-

menu 
boxes 

Page 4 of21 

Of User-Specified on 

Horizontal scroll 
Vertical scroll bar 

Title bar 
The outer window is the Synect Compiler window. The title bar therefore 
shows the product title Synect Application Compiler and the name of the 
application which has been loaded (if any). 

The inner windows show text files which are produced when the Compiler 
compiles your application. The title bar of an inner window will be a filename 
appended with: 

It,xrf' 
11 .lisn 
".lis (Errors Only)" 

cross-reference 
the list file (warnings and errors) 
the list file (errors only i.e. ignoring warnings) 



Synect Compiler User Guide Getting Started 

Control-menu boxes 
Allows you to restore, move, size, minimize, maximize or close the window. 
Also allows you to make another window the active window. 

Menu bar 
Lists the available menus. 

Minimize box 
Allows you to shrink the Synect window to an icon at the bottom of the screen. 

Maximize box 
Allows you to enlarge the Synect window to fill the entire screen. 

Operation toolbar 
Contains the momentary buttons which can be used as menu shortcuts. 

Message bar 
When the cursor is moved over an Operation Toolbar button or when a menu 
option is highlighted, the message bar will show a brief description of the 
function of the button/menu option. 

Horizontal and vertical scroll bars 
Allow you to pan around the text file to change the portion which is displayed 
in the window. 

On-Line Help 

The on-line help is context-sensitive. So if you click on a help button in a 
dialog, you will automatically be shown the help information associated with 
that dialog. If no dialog is being displayed, you can choose Help[Contents to take 
you to the help contents page. The help information is shown in a separate 
window. 

Page 5 of21 



Getting Started Synect Compiler User Guide 

This page left intentionally blank 

Page 60f21 



Synect Compiler User Guide Basic Concepts 

3 Basic Concepts 

The Synect Application Editor enables you to specifY a model of your 
application. See the Application Editor User Guide, chapter 3, Basic Concepts 
for more information relating to defining the model. The Compiler first checks 
your specification for consistency (see the Application Editor User Guide, 
Appendix A, Rules, for further details). If there are no errors, it then derives a 
mathematical model from your specification which it then examines for possible 
inefficiency in the design. The model may subsequendy be: 

• analysed by the Application Analyzer for behavioural properties. 

• interpreted by the Simulator which can drive the STD Monitor 
application to animate the application. 

• used by the C Code Generator to generate ANSI-standard C to 
implement the specification. 

Subsystem Analyses 

Subsystem 
Only 

The Compiler also enables you to deal with a subset of your application. When 
used in conjunction with the Analyzer, this might help you identifY: 

• if a part of your application deadlocks (although the whole application 
may not deadlock). 

• whether an object enforces the necessary constraints on its child 
objects. 

It may also be useful for generating the control system code for a subset of the 
whole application, therefore facilitating stepwise integration. 

The first of the alternatives is to consider only that portion of the hierarchy 
including and below the specified object (i.e. the object, its children, 
grand-children, etc.). This makes the specified object the root object of the 
new hierarchy. In the following example, using the Subsystem Only facility to 
nominate object D as the new root object will result in an Object Hierarchy 
consistin onl of ob'ects D, F and G. 

C 

F G 

Page 7 of21 



Basic Concepts Synect Compiler User Guide 

Subsystem 
Except 

The other alternative is to exclude a nominated object from the hierarchy. This 
will automatically exclude its children, grandchildren, etc.. In the example 
above, nominating object D as the object to exclude will result in an Object 
Hierarchy consisting of objects A, B, C and E. 

Understanding The Compiler Output 

Dealing 
With Line 
Breaks 

Synchronous 
Messages 

Page 8 of21 

As described in chapter 5, Compiling, the Compiler provides traceability to 
show how it derived the mathematical model from your specification. This 
infonnation is mosdy self-explanatory but the less intuitive aspects are described 
below. 

State names and object names can have embedded line breaks i.e. they can be 
formatted to be displayed over several lines. In order to be able to show any 
name on one line, line breaks are shown using the" I" character. For example, 
the following state from an STD would be represented as atlhomelposition: 

at 
home 

position 

A synchronous message causes the sending transition and the receiving transition 
to fire as one, thereby synchronising the 2 transitions. If the receiving STD is 
not in a position to receive the message, the transition in the sending STD 
cannot fire. 



Synect Compiler User Guide Basic Concepts 

Under specific circumstances, the Compiler may cause a state to be by-passed. 
Consider the following 2 STDs which communicate via synchronous messages: 

state 1 

[messagel] 
...---L_-, 
state 2 

[message2] 

state 3 

STD 1 

state 1 

[messagel] 

[message2] 

state 2 

STD 2 

When STD "STD 1" is in state "state 1" and it fires the transition to change state 
to "state 2", it sends synchronous message "[message1]" to STD "STD 2". 
When STD "STD 2" is in state "state 1" and it receives synchronous message 
"[message 1]", it changes state to "state 2" and sends synchronous message 
"[message2]" to STD "STD 1". When STD "STD 1" is in state "state 2" and it 
receives synchronous message "[message2]", it changes state to "state 3". 
Considering that the definition of a synchronous message is that the transitions 
fire as one, it follows that the result of the above sequence must be that STD 
"STD 1" changes state from "state 1" to "state 3". The ouly way this can be 
achieved is for the Compiler to replace the individual transitions by a single 
transition between states "state 1" and "state 3". This will result in the Analyzer 
reporting that state "state 2" is an unreachable state. When monitoring STD 
"STD 1" using the STD Monitor, you'll see that when the transition between 
states "state 1" and "state 2" is enabled, the transition between states "state 2" 
and "state 3" is also enabled. When the transition fires, STD "STD 1" will 
change from state "state 1" directly to state "state 3", by-passing state "state 2" 
altogether. 

Asynchronous An asynchronous message is buffered by the sender. When the message is in the 
Messages buffer, it is said to be pending. If the message is already pending, the transition in 

the sending STD cannot fire. 

The Compiler deals with an asynchronous message by creating an STD with 
states:"#pending" and "#nocpending" denoting whether the message is already 
in the buffer. If you use asynchronous messages in your application, you will see 
references to STDs in addition in the ones you specified when you examine the 
Compiler listing file or cross-reference file. The additional STD names will be 
the same as the asynchronous message names. 

Page 9 of21 



Basic Concepts Synect Compiler User Guide 

Variables 

Page 10 of21 

The Compiler deals with a variable by creating an STD with a state for each 
value between the variable's minimum and maximum. If you use variables in 
your application, you will see references to STDs in addition in the ones you 
specified when you examine the Compiler listing file or cross-reference file. 
The additional STD names will be the same as the variable names. 

The difference between each variable's minimum and maximum (its range) 
should be kept as small as possible. Otherwise, the Compiler may not be able to 
compile the application or the Analyzer may not be able to cope with the 
number of combinations of system state. 



Synect Compiler User Guide Open And Save An Application 

4 Open And Save An Application 

When you first start the Synect Compiler, very few of the menu items or 
buttons are enabled. This is because you must first open an application to 
compile. 

When you saved your application from the Application Editor, it created 2 files. 
One of these files is used solely by the Application Editor. The other file has the 
same filename you specified for your application but with the extension" .sys". 
It is this file which the Compiler uses. 

Opening An Application 

To open an application, choose the FilelOpen Application menU option. The standard 
file open dialog will then be started, allowing you to specify the name of the file 
from which the application is to be loaded. 

Saving An Application 

D The FilelSave As menu option allows you to save yom application to a different 
file. If you've changed the application by excluding one or more objects, the 
Compiler will not allow you to compile until you've saved the revised 
application to file (choose a different filename from the one you originally 
opened). This is to avoid the possibility of generating misleading results when 
interpreting the Compiler output information. 

Page 11 of21 



Open And Save An Application Synect Compiler User Guide 

This page left intentionally blank 

Page 12 of21 



Synect Compiler User Guide Compiling The Application 

5 Compiling The Application 

This chapter describes how to compile an application and the information 
which you'll see as the application is being compiled. It also describes the 
contents of the two files which are displayed in read-only windows when the 
compilation is completed. 

Starting The Compilation 

When you've opened your application, choose the CompilelCompile menu option to 
begin compilation. The Compile Status dialog will be displayed, showing the 
progress. When completed, this dialog will look like the following: 

Compile Status 

During compilation, the "OK" button will be a "Cancel" button. Clicking on 
the "Cancel" button will abort the compilation. When the compilation has 
completed (the "Cancel" button has been replaced with the "OK" button). click 
on the "OK" button to close the Compile Status dialog. 

Phase 1 of the compilation checks to ensure that application conforms to the 
rules defined in the Application Editor User Guide, Appendix A, Rules. If 
errors are found, the number of errors will be displayed on the Compile Status 
dialog and the compilation will be aborted. The list file will show details of the 
errors found. 

Page 13 of21 



Compiling The Application Synect Compiler User Guide 

List File 

Analysis of 
User 
Specification 

Analysis of 
Compiled 
Application 

Page 14 of21 

Following a compilation, a list file is created with the same name as your 
application but with extension" .lis". This is displayed in two windows in the 
Compiler. One of the windows shows the entire list file whereas the other just 
shows errors. If the application was found to violate any of the rules defined in 
the Application Editor User Guide, Appendix A, Rules, and this resulted in an 
error, the list file will show only limited information because the compilation 
will have been aborted. 

The first set of information in the list file relates to your specification i.e. the 
Object Hierarchy, messaging and STDs. Inconsistencies, such as a message 
declared as sent from an object but not declared as received by any other, are 
listed in this section. Warnings may also be listed to notify you of, for example, 
transitions which have no conditions or actions. Refer to the Application 
Editor User GUide, Appendix A, Rules, for details of the checks which are 
performed. 

A warning report starts with "**WARNING**", an error report starts with 
"***ERROR***". The name of the object follows and then the name of the 
STD. 

• 

• 

If the report refers to a state, the state name is listed, followed by the 
details of the warning or error. 

If the report refers to a transition, the transition number within the 
STD is shown followed by the details of the warning or error. The 
transition number can be ignored - the transition's start and end states 
are listed immediately below the report. 

The next part of the list file is an analysis of the mathematical model generated 
by the Compiler. Transitions in the mathematical model link STD transitions 
together. Synect assumes that the application is a reactive system i.e. that the 
application exists to respond to events received from the real world (real world 
inputs) by taking the specified course of action - typically by exerting some 
influence on the system being controlled (real world outputs). As such, 
warnings will be listed if, for example, a transition is found which references no 
real world inputs and no real world outputs. 

The report starts with "**W ARNING**" and is followed by the mathematical 
model transition number. The transition number is listed for traceability reasons 
and can usually be ignored because the STD start states and end states are listed 
immediately below. 



Synect Compiler User Guide Compiling The Application 

Cross·Reference File 

State 
Reference 
Notation 

Transition 
Reference 
Notation 

Provided that the compilation was successful, a cross-reference file is created 
with the same name as your application but with extension" .xrf". This is 
displayed in a window in the Compiler. The contents of this file show how the 
Compiler has derived the mathematical model from your specification. You 
don't need to use this information to be able to use the Synect tools - it is 
provided for traceability. 

In the cross-reference file, the general format of a reference to an STD state is: 

<object>. <std> <state> 

For example, object "Robot" with STD "main" and state "at I home" 
(remembering that the" I " character represents a line break) would be shown as: 

Robot.main at I home 

A sub-sequence STD's state would be referred to as: 
<object>. <std>. <sub-sequence std> <state> 

For example, object "Robot" with STD "main" and sub-sequence STD 
"getting I raw I part" in state "START" would be shown as: 

Robot.main.getting I raw I part START 

In the cross-reference file, the general format of a reference to an STD 
transition is: 

<object>.<std> <STD transition number> 

A reference to an STD transition in a sub-sequence STD would be referred to 
as: 

<object>.<std>.<sub-sequence std> <STD transition number> 

The transition's start states and end states are listed below the references to the 
STD transitions. 

Model The first set of information in the cross-reference file refers to the dimensions of 
Dimensions the derived mathematical model. It shows the number of places (equivalent to 

STD states) and transitions (equivalent to combined STD transitions). 

Initial States The initial states are then listed, using the format defined above. 

Page 15 of21 



Compiling The Application Synect Compiler User Guide 

Place to 
State 
Cross-

The STD state from which each place in the mathematical model has been 
derived is then listed. This is shown in the following format: 

<place nwnber> <reference to STD state> 

Transition to The final set of information in the file shows the STD transitions from which 
STD each transition in the mathematical model has been derived. 
Transition 
Cross-

Page 16 of21 



Synect Compiler User Guide Using Subsystem Analyses 

6 Using Subsystem Analyses 

The Compiler enables you to deal with a subset of the overall application. 
Chapter 3, Basic Concepts, describes why you might consider using this facility. 
This chapter describes how to use the facility and explains what the Compiler 
does. 

Subsystem Only 

The Subsystem Only facility enables you to consider only that portion of the 
Object Hierarchy including and below a nominated object. Choose the 
SubsystemlOnly menu option to cause the Compiler to start the New Root Object 
dialog. This lists each of the object names. Click on the entry which is to be 
the new root object and then click on "OK". Choose the FUelS.veAs menu 
option to start the standard file save dialog and specify a new filename into 
which the modified application is to be saved. 

Having used the Subsystem Only facility, you must save the application before 
being able to start the compilation. You should specify a filename other than 
the one originally loaded. This is to prevent possible confusion when using the 
compilation results. If this were not enforced, the compiler output would relate 
to a subset of the whole application but this might not be apparent because the 
filename would correspond with that of the whole application. 

The advantage of using this facility in the Compiler rather than the cut and paste 
facility in the Application Editor is that the Compiler attempts to ensure that the 
application is consistent. It knows that a root object cannot have any messages 
to or from a parent because, by definition, a root object has no parent. 
Consequently, it removes any parent messages from the new root object's 
external interface definition and from any transitions in its STDs. 

Subsystem Except 

11·······• 
- . 
0.~ • 

The Subsystem Except facility enables you to exclude a portion of the Object 
Hierarchy including and below a nominated object. Choose the SubsystemlExcept 

menu option to cause the Compiler to start the Object To Exclude dialog. This 
lists each of the object names. Click on the entry which is to be excluded and 
then click on "OK". Choose the FUelS.ve As menu option to start the standard file 
save dialog and specify a new filename into which the modified application is to 
be saved. 

Having used the Subsystem Except facility, you must save the application before 
being able to start the compilation. You should specify a filename other than 
the one originally loaded. This is to prevent possible confusion when using the 
compilation results. If this were not enforced, the compiler output would relate 

Page 17 of21 



Using Subsystem Analyses Synect Compiler User Guide 

Page 18 of21 

to a subset of the whole application but this might not be apparent because the 
filename would correspond with that of the whole application. 

The advantage of using this facility in the Compiler rather than the cut and paste 
facility in the Application Editor is that the Compiler attempts to ensure that the 
application is consistent. It takes each of the excluded object's parent messages 
and amends the object which was its parent to remove them from the external 
interface definition and STD transitions. 



Synect Compiler User Guide 

Appendix A Menus 

File 

Open Application 

Save As 

EJdt 

Subsystem 

Only 

Except 

Compile 

Compile 

Window 
Cascade 

Tile 

Help 

Arrange Icons 

Close Windows 

Contents 

Using help 

About 

Open an existing application 
Save the application with a new name 
Finish running the Application Compiler 

Menus 

Consider only a part of the object hierarchy 
Exclude part of the object hierarchy 

Compile the application 

Cascade open windows 
Tile open windows 
Arrange icouic windows along bottom 
Close all open windows 

Help table of contents 
Help on using online Help 
About Synect Application Compiler 

Page 19 of21 



Menus Synect Compiler User Guide 

This page left intentionally blank 

Page 20 of21 



Synect Compiler User Guide Toolbar Buttons 

Appendix B Toolbar Buttons 

The Application Compiler provides an Operation Toolbar displayed 
horizontally across the top of the screen. It contains buttons which can be used 
as shortcuts instead of pulling down the corresponding menu and selecting the 
relevant item. The buttons will be greyed-out if the corresponding function is 
unavailable at that time. 

Menu Equivalent 

FilelOpen Application Load an application from a file on disk 

FllelS.veAs Save the application to a new file on disk 

SubsystemlOnly Consider only a part of the object hierarchy 

SubsystemlExcept Exclude part of the object hierarchy 

CompilelComplle Compile the application 

HelplContents Display help Information 

Page 21 of21 



Synect 

Analyzer 
User Guide 

Version 1.2 

Hopkinson Computing Limited 
29 Deepdale, Pine Hills, Guisborough 

Cleveland, TS14 8JY 
England 

Tell Fax: +44 (0) 1287638606 
email: synect@hopkinsn.demon.co.uk 



© Copyright 1994, 1995, 1996 Hopkinson Computing Limited. All rights reserved. 

Synect is a registered trademark of Hopkinson Computing Limited 
Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation. 

Infonnation in this User Guide is subject to change without notice and does not represent a commitment on the 
part ofHopkinson Computing Limited. 

The software described in this User Guide is furnished under a license agreement or nondisclosure agreement and 
may be used or copied only in accordance with the terms of the agreement. No part of this User Guide may be 
reproduced or transmitted in any fonn. or by any means, electronic or otherwise, including photocopying and 
recording, for any purpose, without the express written pennission ofHopkinson Computing Limited. 

Document History 

10June 1996 
Re-issue reflecting Analyzer VI.I - new cover sheet and chapter 1. 

28 October 1996 
Re-issue reflecting Analyzer V1.2 - new cover sheet only. 



Synect Analyzer User Guide Contents 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

ChapterS 

Chapter 6 

Chapter 7 

Contents 

Introducing Synect .................................................. .. 1 

User Interface .......... ........... ............ ......... ........... ................. 1 

The Method ........................................................................ 1 

Synect Documentation. ...................................... ............ ..... 1 

The Tools ............................................................................ 2 

Document Conventions ..................................................... . 

Getting Started ...................................................... . 

2 

3 

System Requirements ...... ........... ...... ...... .... .............. ...... ..... 3 

Installation. .... ........... ..... ................ ......... ..... ..... .......... ......... 3 

Starting the AnaIyzer ............................................................ 4 

On-Line Help ..................................................................... 5 

Basic Concepts ........................................................ . 7 

How It Works............................................. ........................ 7 

Reachability Tree .......... ........... ............................ ....... ..... 7 

Limitations ........... ...... ........................ ............... ....... ........ 8 

Output Information From The AnaIzer .. .... ..... ........ ..... ........ 9 

Deadlocks ............. ....... ..................... ............. .......... ......... 9 

Unreachable States ............................. ...................... ......... 10 

Dead Transitions ............................................................... 10 

Open An Application •••••••••••••••••••••••••••••••••••••••••••••• 11 

Opening An Application .. ................ ..... ............... ................ 11 

Generating The Reachability Tree. ••••••• ••••••••••••••••••••• 13 

Starting The Generation Of The Reachability Tree ............. 13 

AnaIyzer List File ..... ... ........ ........ ... ..... ... .... ........ ..... ........ ..... 14 

Deadlocks .. .......... .... ................... ..... .................. ....... ........ 14 

Unreachable States ............................................................ 14 

Dead Transitions .. ......... ..... .... ..... .................... ..... ..... ... ..... 14 

Querying Deadlocks ••• •••• •••••••••••• •••••••••• •••• •••••• ••••• •••• 15 

The Deadlocks DiaIog .................................................... ..... 15 

Navigating ........................................................................ 15 

Saving Information To File .......................................... ..... 15 

State Search Querying ••••••••••••••••••••••••••••••••••••••••••••• 17 

The State Search Dialog .... .................... ....... ..... ....... ..... ....... 17 

Specifying The Query. ... ..... ..................... ..... ........ .... ... ..... 17 

Page i ofii 



Contents Synect Analyzer User Guide 

Executing The Query ........................................ ............... 17 

Viewing The Results ........................................................ 17 

Saving Infonnation To File ............................................... 18 

Returning To Define Query Mode ................................... 18 

Appendix A Menus ............................. ................................. ..... 19 

Appendix B Tooffiar Buttons ••••••••••••••••••••••••••••••••••••••••••••••.•••••• 21 

Page iiofii 



Synect Analyzer User Guide Introducing Synect 

1 Introducing Synect 

Synect is a set of software tools which helps the designer of a control system to 
produce a specification which is clear, precise and free of errors. Synect 
combines the ease of use of a graphical user interface, with a widely used 
diagrammatic notation and the power of mathematical modelling. 

User Interface 

The Method 

The Synect™ tools run on the Microsoft® Windows™ operating system. As 
such, you need to know how to use Windows before you use Synect. In 
particular, you will need to know how to use the mouse to click, double-click 
and drag. You will also need to know how to interact with menus, dialogs and 
how to move, resize and close windows. For information, refer to the 
Microsoft Windows User's Guide. 

Synect uses an object-based method to enable you to model the system you 
want to control. It is useful to have some knowledge of 
object-based/ object-oriented analysis and design techniques before attempting 
to use Synect in earnest. 

Synect Documentation 

Each of the Synect tools has an associated User Guide. This User Guide 
explains how to use each of the functions available in the Analyzer. It also 
explains why you might want to use the function. 

Each application has context-sensitive on-line help. The Analyzer on-line help 
contains a "How Do I?" section, including a "How Do I Get Started?" 
sub-section for first-time users. 

A Tutorial is also provided which offers a worked example and shows how each 
of the tools is used with the example application. 

Page 10f21 



Introducing Synect Synect Analyzer User Guide 

The Tools 

The tools which make up the Synect toolset are: 

Application Editor graphical means of defining the application. 

Compiler check the specification for consistency and 
possible warnings and generate a mathematical 
model of the application. 

Analyzer ability to check for design errors such as deadlock 
(where the system "hangs") and unwanted state 
combinations. 

Simulator provides the ability to interactively "drive" the 
application or replay past behaviour of the live 
control system. 

STD Monitor animates the specification (used in conjunction 
with the Simulator or the live control system). 

C Code Generator generate ANSI-standard C code to implement the 
application. 

Neuron C Generator generate Neuron C to run on one or more nodes 
on an Echelon Lon Works network to implement 
a distributed control solution. 

Ladder Logic Generator generate relay ladder logic to run on a 
programmable controller. 

Document Conventions 

Page 2 of21 

The User Guide adopts the following conventions: 

application name 

KEY NAME 
MenulChoice 

description 

text that you type or that you see on the screen. 
keyboard keys, such as ENTER, CTRL or DEL. 
a menu option, such as FilelExit denoting choose the 
Exit command from the File menu. 
description of a term with a specific meaning. 



Synect Analyzer User Guide Getting Started 

2 Getting Started 

This chapter describes: 

• the hardware and software requirements which you need to be able to 
use Synect. 

• how to install the Analyzer. 

• how to start the Analyzer. 

• the Analyzer window. 

System Requirements 

Installation 

The Synect Analyzer requires that you use: 

• a 486 (or better) running Windows 3.1. 

• 
• 

VGA monitor in 800 x 600 mode (or higher resolution). 

a mouse or other pointing device (such as a trackball). 

The Analyzer also requires that you have the following: 

• 8 MByte RAM. 

• very large permanent swap file (recommended size is 20 MByte). 

• at least 10 MByte free disk space per application. 

If you haven't installed Synect yet, you'll need to do that first. Check that your 
computer satisfies the requirements listed above before starting the installation. 
The first floppy disk contains file install. txt which contains any updates to the 
installation process - you should read this file before installing the software. 

1 Put floppy disk 1 into your floppy disk drive. 

2 Start Windows (by typing win at the DOS prompt if necessary). 

3 Choose FilelRun from the Program Manager. 

4 Type a,\install then press ENTER. 

S The installation program will now guide you through the installation 
process. Simply answer the questions to specify which Synect tools 
you want to install. 

6 When installation is complete, you can remove the floppy disk from 
the drive. You should now have a Program Manager group containing 
an icon for each of the installed Synect tools. 

7 Plug the dongle into the computer's parallel port. 

Page 3 of21 



Getting Started Synect Analyzer User Guide 

8 Read the installed file readme. txt for details of any changes to the 
product or documentation since the documentation was printed. 

Starting the Analyzer 

Operation 
toolbar 

Control

Ensure that the Program Manager window is on display. If the Synect window 
isn't visible, use the Window menu to open it. Double-click on the Analyzer 
icon or use the keyboard arrow key to select the icon and then press ENTER. 

When using the Analyzer, the window will typically look like the following: 

bar 
Maximize button 
Minimize button 

menu """':::-
boxes 

Page 4 of21 

Me!;Sa~le bar 
Vertical scroll bar 

Title bar 
The outer window is the Synect Analyzer window. The title bar therefore 
shows the product title Synect Application Analyzer and the name of the 
application which has been loaded (if any). 

The inner windows show text files which are produced by the Analyzer. The 
title bar of an inner window will be a filename with one of the following 
extensions: 

".als" Analyzer list file - produced when the Analyzer 
explores the system states. 



Synect Analyzer User Guide 

tt .qrs" 

".qrp" 

Control-menu boxes 

Getting Started 

query result summary - either the system state at 
each deadlock or the system states satisfying the 
query criteria. 
query result path - either the path from the start 
state to the currently selected system state. 

Allows you to restore, move, size, minimize, maximize or close the window. 
Also allows you to make another window the active window. 

Menu bar 
Lists the available menus. 

Minimize box 
Allows you to shrink the Synect window to an icon at the bottom of the screen. 

Maximize box 
Allows you to enlarge the Synect window to fill the entire screen. 

Operation toolbar 
Contains the momentary buttons which can be used as menu shortcuts. 

Message bar 
When the cursor is moved over an Operation Toolbar button or when a menu 
option is highlighted, the message bar will show a brief description of the 
function of the button/menu option. 

Horizontal and vertical scroll bars 
Allow you to pan around the text file to change the portion which is displayed 
in the window. 

On-Line Help 

The on-line help is context-sensitive. So if you click on a help button in a 
dialog, you will automatically be shown the help information associated with 
that dialog. If no dialog is being displayed, you can choose HelplContents to take 
you to the help contents page. The help information is shown in a separate 
window. 

Page 5 of21 



Getting Started Synect Analyzer User Guide 

This page left intentionally blank 

Page 6 of21 



Synect Analyzer User Guide Basic Concepts 

3 Basic Concepts 

The Synect Application Editor enables you to specify a model of your 
application. See the Application Editor User Guide, chapter 3, Basic Concepts 
for more information relating to defining the model. The Compiler derives a 
mathematical model from your specification. The Analyzer explores the 
different combinations of state that your application can reach and enables you 
to query this information. 

How It Works 

Reachability 
Tree 

The Analyzer enables you to interactively examine the behavioural properties of 
the application. These fall into 2 categories: 

deadlock 

state search 

where the application will "hang". For example 
because one part is waiting for a second part 
which is waiting for the first part. 

"can the application get into a specified 
combination of states". 

The analysis results can be saved to file and displayed ill windows ill the 
Analyzer. 

To be able to support these analyses, the Analyzer must first explore all of the 
different states which the application can reach. It does this by generating the 
Reachability Tree. If you have a large application, or many concurrent activities, 
this could take a long time or may even fail due to lack of memory. The 
following steps should be taken to keep the application manageable: 

• use synchronous messaging where possible. 

• if variables are used, make the range (max - min) as small as possible. 

• make sure that all objects in the object hierarchy are necessary for the 
application. 

If you used the Compiler to investigate a subset of your whole application, you 
can use the Analyzer to investigate the behaviour of the subsystem. This is the 
preferred method of analysing applications because: 

• the Analyzer is more likely to be able to generate the Reachability 
Tree for the subsystem than for a large application. 

• it offers greater confidence in the overall design because it has been 
subjected to more detailed investigation. 

• there may be greater confidence in the re-usability of a subsystem 
because its has been investigated in isolation. 

Page 7 of21 



Basic Concepts Synect Analyzer User Guide 

Umitations 

Page 8 of21 

When the Analyzer explores the different paths which the application can 
follow in order to arrive at all of the possible combinations of system state which 
it can reach, it ignores the real-world inputs. This could lead to erroneous 
analyses. In the following example, the transition has 2 real world inputs which 
control whether the transition can fire. However, the second condition is the 
logical opposite of the first. Consequently, they can never both be TRUE and, 
in the target control system, this transition would never fire. The Analyzer, 
however, ignores the real world inputs and therefore assumes that the transition 
can fire. 

I state 1 I 
condition 1 
NOT_condition 1 

I state 2 I 

In the next example, the real world inputs read a timer. The transition from 
state "state 1" to state "state 2" will be enabled after 5 seconds whereas the 
transition from state "state 1" to state "state 3" would be enabled after 10 
seconds. However, the real world input reading the 5 second timeout would 
always be enabled before the real world input reading the 10 second time out. 
State "state 3" would therefore be unreachable. The Analyzer, however, 
ignores the real world inputs and would therefore explore the path followed by 
firing the transition from state "state 1" to state "state 3". In practice, the fact 
that the Analyzer ignores timing information can help you to find errors which 
only manifest themselves due to subtle changes in the time ordering of real 
world events. 

Istate 1 I 
timeout 5 secs timeout 10 secs 

Istate 2 I Istate 3 I 



Synect Analyzer User Guide Basic Concepts 

Output Information From The Analyzer 

Deadlocks 

Having generated the Reachability Tree. the Analyzer creates a list file which it 
displays in a window. This contains surrunary infonnation about deadlocks 
which were discovered. unreachable states and dead transitions. 

A deadlock is a combination of system states from which the application cannot 
proceed. Once the application enters that state combination. it "hangs". In the 
following example. the application deadlocks when STD "STD 1" reaches state 
"state 3" and STD "STD 2 reaches state "state 2" - there are no transitions 
which can fire: 

state 1 state 1 

state 2 

state 2 

state 3 

STD 1 STD 2 

In the next example. the application deadlocks with STD "STD 1" in state 
"state 1" and STD "STD 2" in state "state 1" because each STD is waiting for a 
message which the other can't send: 

state 1 Istate 11 

[message11 [message2] , 
state 2 Istate21 

[message2] [message1] 

state 3 Istate31 

STD 1 STD 2 

Page 9 of21 



Basic Concepts Synect Analyzer User Guide 

Unreachable A state which an STD can never enter is referred to as an unreachable state. In the 
States following example, assuming that the STD starts in state "state 1", state "state 0" 

is an unreachable state: 

Dead 
Transition 

Page 10 of21 

See also the Compiler User Guide, chapter 3, Basic Concepts, subsection 
Understanding The Compiler Output for a description of how synchronous 
messages can result in a state being unreachable. 

A transition in an STD which the application never fires is referred to as a dead 
transition. In the following example, the message "message 1" can be received in 
state "state 1" or state "state 3". If the sender of this message always waits until 
the message "message2" has been received before sending "messagel", the 
transition starting in state "state 1" waiting for message "message 1" is a dead 
transition: 

message2 

state 3 

message1 

message1 



Synect Analyzer User Guide Open An Application 

4 Open An Application 

When you first start the Synect Analyzer, very few of the menu items or buttons 
are enabled. This is because you must first open an application to analyze or 
open a Reachability Tree previously generated by the Analyzer. 

When you compiled your application using the Compiler, it created a file with 
the name of your application but with the extension" .net". This file is used by 
the Analyzer. 

Opening An Application 

To open an application, choose the FilelOpen Compiled Application menu option. The 
standard file open dialog will then be started, allowing you to specifY the name 
of the file from which the application is to be loaded. By default, the dialog will 
list files with extension" .net". To load a Reachability Tree, click on the List 

Files of Type drop-down listbox and click on entry Reach Trees (*. trel to see 
the available Reachability Tree files. 

Page 11 of21 



Open An Application Synect Analyzer User Guide 

This page left intentionally blank 

Page 12 of21 



Synect Analyzer User Guide Generating The Reachability Tree 

5 Generating The Reachability Tree 

The Reachability Tree is a pre-requisite for the interactive analyses which the 
Analyzer supports. This chapter describes how to generate the Reachability 
Tree and the infonnation you'll see as it is being generated. 

Starting The Generation Of The Reachability Tree 

When you've opened your application, choose the Analyzar Generate Trea menu 
option to begin generation of the Reachability Tree. The Reachability Tree 
Generation Status dialog will be displayed, showing the progress. When 
completed, this dialog will look like the following: 

Reachability Tree Generation Status 

During generation of the Reachability Tree, the "OK" button will be a 
"Cancel" button. Clicking on the "Cancel" button will abort the generation. 
When the Reachability Tree has been generated, the Analyzer will save it to 
disk, look for unreachable states and dead transitions and write the number 
found in the dialog. The details are written in the list file which is displayed in a 
window. Clicking on the "OK" button closes the dialog. 

Page 13 of21 



Generating The Reachability Tree Synect Analyzer User Guide 

Analyzer List File 

Deadlocks 

Unreachable 
States 

Dead 
Transitions 

Page 14 of21 

Following generation of the Reachability Tree, a list file is created with the 
same name as your application but with extension" .als". This is displayed in a 
window in the Analyzer. The list file details the deadlocks, unreachable states 
and dead transitions which were summarised in the Reachability Tree 
Generation Status dialog. 

The first set of information in the list file shows the deadlocked system states. 
The number of deadlocks found is shown and then the state of each of the STDs 
at each of the deadlocks. The Reachability Tree node number information can 
be ignored. See the Compiler User Guide, chapter 5, Compiling The 
Application for information about the format of a reference to an STD's state. 

The next set of information shows any STD states which the application will 
never be in. 

Finally, the list file shows any transitions in the mathematical model which the 
application never fires. For each of these references, the transition number is 
shown (and can be ignored) and the transition's start states and end states are 
shown. 



Synect Analyzer User Guide Querying Deadlocks 

6 Querying Deadlocks 

Having generated or opened the Reachability Tree, you can query deadlocks 
which may have been identified. This chapter describes how to use the 
Deadlocks Dialog to query the deadlocks and save infonnation to disk. 

The Deadlocks Dialog 

e To start the Deadlocks Dialog, choose the Analyze!Oeadlocks menu option. This 
dialog contains a listbox in which the deadlocked application state is displayed, 
buttons for navigating around the available deadlocked states, and buttons for 
saving infonnation to file. 

Navigating 

Saving 
Information 
To File 

If your application contains no deadlocks, the message "No deadlocks found" 
will be displayed, the listbox will be empty and the only enabled buttons will be 
the "OK" and "Help" buttons. 

If your application contains 1 or more deadlocks, the message "Deadlock 1 of n" 
will be displayed where "n" is the number of different deadlocked application 
states found. The listbox will contain the application state at the first deadlock 
found. The buttons below the listbox are as follows: 

Show the first deadlocked state. 

Show the previous deadlocked state. 

Show the next deadlocked state. 

Show the final deadlocked state. 

You can use these buttons to navigate around the available set of deadlocks. 

The "Save All Found" button will save, to a file you specify, the application state 
at each of the deadlocks. It will then display this file in a window in the 
Analyzer. The default file extension is ".qrs" (query result summary). 

The "Save This" button will save, to a file you specify, the path from the initial 
state to the current deadlock state. The changes of state from one step to the 
next are denoted by the state being prefixed with "=>" and postfixed with 
"<=". The file will be displayed in a window in the Analyzer. The path it 
takes may not be the only path to this deadlock. The default file extension is 
".qrp" (query result path). 

The "Save This As Event Log" button will save, to a file you specify, the path 
from the initial state to the current deadlock state as an event log file. This file 

Page 15 of21 



Querying Deadlocks Synect Analyzer User Guide 

Page 16 of21 

may then be loaded into the Simulator and. in conjunction with the STD 
Monitor. can be used to animate your specification to show you how the 
application reaches the deadlock from its initial state. The path it takes may not 
be the only path to this deadlock. The default file extension is ".sel" (Synect 
event log). 



Synect Analyzer User Guide State Search Querying 

7 State Search Querying 

Having generated or opened the Reachability Tree, you can query whether the 
application can reach a specified set of states and, if so, find out how. This 
chapter describes how to use the State Search Dialog to search for specified 
combinations of state and how to save the information to disk. 

The State Search Dialog 

Specifying 
The Query 

Executing 
The Query 

Viewing The 
Results 

To start the State Search Dialog, choose the An.lyzetSt.t. S •• rch menu option. 
This dialog can be thought of in 2 parts. The upper part of the dialog is 
concerned with expressing the query. The lower part of the dialog is concerned 
with the results from the search specified by the query. 

At the top left of the dialog is a list box showing the STDs defined in your 
application. Double-click on one of these and the list box at the top right of the 
dialog shows the states in the chosen STD. You can then select a state and click 
on the "Add" button to add this STD/state combination to the query which is 
shown in the Query list box. Alternatively, you can double-click on the state to 
add it to the query. 'Refer to the Compiler User Guide, chapter 3, Basic 
Concepts for details of how asynchronous messages and variables are represented 
asSTDs. 

To remove an STD/state combination from the query, select the appropriate 
entry in the Query list box and then click on the "Delete" button. 

Having specified the query, you can save it to file by clicking on the "Save" 
button. Correspondingly, you can load in a previously defined query by 
clicking on the "Load" button. The default file extension is ".qri" (query input). 
The file format is such that a section of a query result file can be used as the basis 
of a query input file. 

When the query contains the desired STD/states to be sought, click on the 
"Search" button at the bottom of the dialog to execute the query. 

The query results are displayed in the lower part of the dialog .. This is very 
similar to the presentation of results in the Deadlocks Dialog. The results part of 
the dialog contains a listbox in which the sought application state is displayed, 
buttons for navigating around the matches found, and buttons for saving 
information to file. 

If no application states were found satisfying the query, the message No matches 

found will be displayed, the listbox will be empty and the only enabled buttons 

Page 17 of21 



State Search Querying Synect Analyzer User Guide 

Saving 
Information 
To File 

will be the "OK" and "Help" buttons and the "Edit" button in the query part of 
the dialog. 

If 1 or more matches were found, the message Match 1 of n will be displayed 
where "n" is the nwnber of matches found. The listbox will contain the 
application state at the first match found. The buttons below the listbox are as 
follows: 

1'1I<<lli1 

lliit('iiil 

Ifr~D1 

Show the first deadlocked state. 

Show the previous deadlocked state. 

Show the next deadlocked state. 

Show the final deadlocked state. 

You can use these buttons to navigate around the matches found. 

The "Save All Found" button will save, to a file you specify, the application state 
at each match. It will then display this file in a window in the Analyzer. The 
default file extension is ".qrs" (query result summary). 

The "Save This" button will save, to a file you specify, the path from the initial 
state to the state at the current match. The changes of state from one step to the 
next are denoted by the state being prefixed with "=>" and postfixed with 
"<=". The file will be displayed in a window in the Analyzer. The path it 
takes may not be the only path to this match. The default file extension is 
".qrp" (query result path). 

The "Save This As Event Log" button will save, to a file you specify, the path 
from the initial state to the state at the current match as an event log file. This 
file may then be loaded into the Simulator and, in conjunction with the STD 
Monitor, can be used to animate your specification to show you how the 
application reaches the state at the current match from its initial state. The path 
it takes may not be the only path to this match. The default file extension is 
".sel" (Synect event log). 

Returning To To return to the mode where the query can be edited, click on the Edit button 
Define Query in the query part of the dialog. 
Mode 

Page 18 of21 



Synect Analyzer User Guide 

Appendix A Menus 

File 

Open Compiled Application 

Exit 

Analyze 

Generate Tree 

Deadlocks 

State Search 

Window 

Cascade 

Tile 

Help 

Arrange Icons 

Close Windows 

Contents 

Using help 

About 

Open a compiled application 
Finish running the Application Analyzer 

Generate the Reachability Tree 
Show deadlocked application states 
Search for specified application state 

Cascade open windows 
Tile open windows 
Arrange iconic windows along bottom 
Close all open windows 

Help table of contents 
Help on using online Help 
About Synect Application Analyzer 

Menus 

Page 19 of21 



Menus Synect Analyzer User Guide 

This page left intentionally blank 

Page 20 of21 



Synect Analyzer User Guide Toolbar Buttons 

Appendix B Toolbar Buttons 

The Application Analyzer provides an Operation Toolbar displayed horizontally 
across the top of the screen. It contains buttons which can be used as shortcuts 
instead of pulling down the corresponding menu and selecting the relevant 
item. The buttons will be greyed-out if the corresponding function is 
unavailable at that time. 

Menu Equivalent Usage 

File I Open Compiled Application Load a compiled application from a file on disk 

AnalYZ8 I Generate Tree Generate the Reachability Tree 

Analyzel Deadlocks Show deadlocked application states 

Analyze I State Search Search for specified application state 

Help I Contents Display help information 

Page 21 of21 



Synect 

STD Monitor 
User Guide 

Version 1.3 

Hopkinson Computing Limited 
29 Deepdale, Pine Hills, Guisborough 

Cleveland, TS14 8JY 
England 

Tel/Fax: +44 (0) 1287638606 
email: synect@hopkinsn.demon.co.uk 

WWW: http://www.hopkinsn.demon.co.uk 



© Copyright 1994, 1995, 1996, 1997 Hopkinson Computing Limited. All right> reserved. 

Synect is a registered trademark ofHopkinson Compuring Limited 
Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation. 

Information in this User Guide is subject to change without notice and does not represent a commitment on the 
part ofHopkinson Compuring Limited. 

The software described in this User Guide is furnished under a license agreement or nondisclosure agreement and 
may be used or copied only in accordance with the tenns of the agreement. No part of this User Guide may be 
reproduced or transmitted in any form or by any means, electronic or othenvise. including photocopying and 
recording, for any purpose, without the express written permission ofHopkinson Computing Limited. 

Document Histoty 

10June 1996 
Re-issue reflecting STD Monitor vt.l - new cover sheet. contents and chapters 1, 3 and 4. 

28 October 1996 
Re-issue reflecting STD Monitor V1.2 - changes to cover sheet and chapter 3. 

6 October 1997 
Re-issue reflecting STD Monitor V1.3 - changes to cover sheet and chapter 3. 



Synect STD Monitor User Gnide Contents 

Contents 

Chapter 1 Introducing Synect ................................................. . 1 

User Interface ...................... ........... ........................ .... ......... 1 

The Method ......................... ................... .............. .............. 1 

Synect Documentation ....... ....... ....... ....... ... ........ .......... ....... 1 

The Tools ............................................................................ 2 

Docwnent Conventions .. .... ........... ............. ......... ......... ...... 2 

Chapter 2 Getting Started ......................................................... . 3 

System Requirements .. ................... ............................... ...... 3 

Installation ................ .......... .............. ..... ....................... ....... 3 

Starting the STD Monitor ..... ............... .............. .................. 4 

On-Line Help ..................................................................... 5 

Chapter 3 Basic Concepts ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7 

Colour Conventions ................... ........... .................. ........ .... 7 

Object Hierarchy Window........... ................. ................... 7 

STD Window ................................................................... 7 

Synect Server Data Source .......... ....... ....... ...... .......... .... ....... 8 

Connecting To The Synect Simulator ............................... 8 

Connecting To The Live Control System .......................... 8 

Chapter 4 Open An Application •••••••••• •••• •••• ••••• ••••• •••• ••••• •••• ..... 9 

Opening An Application .... ...... ........ ......... ... ... ..... ..... ... .... .... 9 

ChapterS Displaying A Diagram In A Window....... •••• ••• •••••• ..... 11 

Displaying An STD ............................................................ , 11 

Tracking An STD's Current State ........................................ 11 

Zooming ............................................................................. 11 

Resizing A Window ....................................... , ............. ....... 11 

Appendix A Menus ........... ..... ........... ........................................ 13 

Appendix B Toomar Buttons ..................................................... 15 

Page i ofii 



Contents Synect STD Monitor User Gnide 

This page left intentionally blank 

Page ii ofii 



Synect SID Monitor User Guide Introducing Synect 

1 Introducing Synect 

Synect is a set of software tools which helps the designer of a control system to 
produce a specification which is clear, precise and free of errors. Synect 
combines the ease of use of a graphical user interface, with a widely used 
diagrammatic notation and the power of mathematical modelling. 

User Interface 

The Method 

The Synect™ tools run on the Microsoft® Windows™ operating system. As 
such, you need to know how to use Windows before you use Synect. In 
particular, you will need to know how to use the mouse to click, double-click 
and drag. You will also need to know how to interact with menus, dialogs and 
how to move, resize and close windows. For information, refer to the 
Microsoft Windows User's Guide. 

Synect uses an object-based method to enable you to model the system you 
want to control. It is useful to have some knowledge of 
object-based/object-oriented analysis and design techniques before attempting 
to use Synect in earnest. 

Synect Documentation 

Each of the Synect tools has an associated User Guide. This User Guide 
explains how to use each of the functions available in the STD Monitor. It also 
explains why you might want to use the function. 

Each application has context-sensitive on-line help. The STD Monitor on-line 
help contains a "How Do I?" section, including a "How Do I Get Started?" 
sub-section for first-time users. 

A Tutorial is also provided which offers a worked example and shows how each 
of the tools is used with the example application. 

Page 10f1S 



Introducing Synect Synect STD Monitor User Gnide 

The Tools 

The tools which make up the Synect toolset are: 

Application Editor graphical means of defining the application. 

Compiler check the specification for consistency and 
possible warnings and generate a mathematical 
model of the application. 

Analyzer ability to check for design errors such as deadlock 
(where the system "hangs") and unwanted state 
combinations. 

Simulator provides the ability to interactively "drive" the 
application or replay past behaviour of the live 
control system. 

STD Monitor animates the specification (used in conjunction 
with the Simulator or the live control system). 

C Code Generator generate ANSI-standard C code to implement the 
application. 

Neuron C Generator generate Neuron C to run on One or more nodes 
on an Echelon Lon Works network to implement 
a distributed control solution. 

Ladder Logic Generator generate relay ladder logic to run on a 
programmable controller. 

Document Conventions 

Page 2of15 

The User Guide adopts the following conventions: 

application name 

KEY NAME 

MenulChoice 

description 

text that you type or that you see on the screen. 
keyboard keys, such as ENI'ER. CTRL or DEL. 

a menu option, such as FilelExiI denoting choose the 
Exit command from the File menu. 
description of a term with a specific meaning. 



Synect STD Monitor User Guide Getting Started 

2 Getting Started 

This chapter describes: 

• the hardware and software requirements which you need to be able to 
use Synect. 

• how to install the STD Monitor. 

• how to start the STD Monitor. 

• the STD Monitor window. 

System Requirements 

Installation 

The Synect STD Monitor requires that you use: 

• a 486 (or better) running Windows 3.1. 

• VGA monitor in 800 x 600 mode (or higher resolution). 

• a mouse or other pointing device (such as a trackball). 

Other Synect tools also requires that you have the following: 

• 8 MByte RAM. 

• very large permanent swap file (recommended size is 20 MByte). 

• at least 10 MByte free disk space per application. 

If you haven't installed Synect yet, you'll need to do that first. Check that your 
computer satisfies the requirements listed above before starting the installation. 
The first floppy disk contains file install. txt which contains any updates to the 
installation process - you should read this file before installing the software. 

1 Put floppy disk 1 into your floppy disk drive. 

2 Start Windows (by typing win at the DOS prompt if necessary). 

3 Choose FilelRun from the Program Manager. 

4 Type a: \install then press ENTER. 

5 The installation program will now guide you through the installation 
process. Simply answer the questions to specify which Synect tools 
you want to install. 

6 When installation is complete, you can remove the floppy disk from 
the drive. You should now have a Program Manager group containing 
an icon for each of the installed Synect tools. 

7 Plug the dongle into the computer's parallel port. 

Page 3 of15 



Getting Started Synect STD Monitor User Guide 

8 Read the installed file readme. txt for details of any changes to the 
product or documentation since the documentation was printed. 

Starting the STD Monitor 

Ensure that the Program Manager window is on display. If the Synect window 
isn't visible, use the Window menu to open it. Double-click on the STD 
Monitor icon or use the keyboard arrow key to select the icon and then press 
ENTER. 

When using the STD Monitor, the window will typically look like the 
following: 

Maximize button 

Menu 

Operation 
toolbar ---...ltl 

Control- ~J~----::=-:--~ menu .1-
boxes 

Page 4 of1S 

' ... i.~. 

, , 
, , 

Vertical scroll bar 

Title bar 
The outer window is the Synect STD Monitor window. The title bar therefore 
shows the product title Synect Monitor and the name of the application which 
has been loaded (if any). 

The inner windows show either the Object Hierarchy or a state transition 
diagram. The title bar of an inner window will therefore be either Obj ect 

Hierarchy or the name of the state transition diagram. 



Synect STD Monitor User Guide Getting Started 

Control-menu boxes 
Allows you to restore, move, size, minimize, maximize or close (except for the 
Object Hierarchy window) the window. Also allows you to make another 
window the active window or open the control panel (Synect window only). 

Menu bar 
Lists the available menus. 

Minimize box 
Allows you to shrink the Synect window to an icon at the bottom of the screen. 

Maximize box 
Allows you to enlarge the Synect window to fill the entire screen. 

Operation toolbar 
Contains the momentary buttons which can be used as menu shortcuts. 

Message bar 
When the cursor is moved over an Operation Toolbar button or when a menu 
option is highlighted, the message bar will show a brief description of the 
function of the button/menu option. 

Horizontal and vertical scroll bars 
Allow you to pan around the diagram to change the portion which is displayed 
in the window. 

On-Line Help 

The on-line help is context-sensitive. So if you click on a help button in a 
dialog, you will automatically be shown the help information associated with 
that dialog. If no dialog is beiog displayed, you can choose HelplContents to take 
you to the help contents page. The help information is shown in a separate 
window. 

Page S of1S 



Getting Started Synect STD Monitor User Guide 

This page left intentionally blank 

Page 60f15 



Synect STD Monitor User Guide Basic Concepts 

3 Basic Concepts 

The Synect Application Editor enables you to specify a model of your 
application. See the Application Editor User Guide, chapter 3, Basic Concepts 
for more information relating to defining the model. The STD Monitor can 
animate your specification, obtaining its data from either the Simulator or the 
live control system. It can therefore be used for the following: 

• as an aid to testing the specified logic. 

• as a presentation aid during customer reviews. 

• as a diagnostic tool to obtain an inside view of the state of a live control 
system. 

Colour Conventions 

Object 
Hierarchy 
Window 

STD 
Window 

The STD Monitor displays the Object Hierarchy in a window and, when 
obtaining its data from the Simulator, colour codes the real world inputs to 
show whether they are being tested and, if so, whether or not they are enabled. 
The STD Monitor also displays STDs which you nominate in windows and 
colour codes the current state, the transitions and, when obtaining its data from 
the Simulator, the real world inputs. 

When the STD Monitor is obtaining its data from the Simulator, a real world 
input will be shown in red in the object hierarchy window if it has been tested 
and is not enabled. It will be shown in green if it has been tested and is enabled. 
Otherwise it is shown in the default colour (usually blue). When the Simulator 
advises that a transition has been fired, all real world inputs in the Object 
Hierarchy window will be redrawn in their default colour. The process then 
repeats - as a real world input is tested, its status is shown by the appropriate 
colour in the Object Hierarchy window. 

The current STD state is shown in grey. 

The last transition fired is drawn in yellow. Transitions which are enabled with 
respect to the structure of the application (in other words those which will be 
able to fire provided that all of their real world inputs are enabled) are drawn in 
green. Transitions which satisfy both of these criteria are drawn in magenta. 

It follows that if a transition is enabled with respect to the structure of the 
application, any conditions which refer to real world inputs must be being tested 
to see if the transition can be fired. When data is being obtained from the 
Simulator, these conditions will therefore be drawn in red if they are not 
enabled or green if they are enabled. 

Page 7 of1S 



Basic Concepts Synect STD Monitor User Guide 

Synect Server Data Source 

Connecting 
To The 
Synect 
Simulator 

Connecting 
To The Live 
Control 
System 

Page 80f15 

The STD Monitor obtains its dynamic infonnation from another Windows 
application, the Synect Server, via Windows Dynamic Data Exchange (DDE). 
During development, the server will probably be the Synect Simulator. But the 
server may be a Windows application communicaring with the target control 
system so that the STD Monitor displays the current state of the control system. 

If no mapping file has been specified in the command line, the STD Monitor 
will automatically attempt to connect to a Synect Server after opening an 
application. Menu options are also provided for manual connection and 
disconnection. The STD Monitor must be connected to a Synect Server for the 
diagrams to be animated. 

To instruct the STD Monitor to obtain its data from a Synect Server which is 
connected to the live control system, it must be told the DDE service name, 
topic name and, for each STD to be animated, the name of the STD followed 
by the DDE item name. You specify this infonnation in a mapping file and let 
the STD Monitor know the filename when it starts by passing it as a parameter. 

For example, assume that the Synect Neuron C Generator has been used to 
generate the code for STD Switch.main on node "sw" and STD Machine.main 
on node "mach" on an Echelon LonWorks network. Create a file (or use the 
file written by the Neuron C Generator), such as "test.llm" with the following 
contents (do not include spaces anywhere and be aware that the STD Monitor 
will perform a case-sensitive read of the file): 

DOE SERVER=LMSRVRl 
DDE-TOPIC=Netvar 
STD:Switch.main,sw.nvo Switch main 
STD=Machine.main,mach.nvo_Machine_main 

Click on the STD Monitor icon in Program Manager to select it and then 
choose the FilelCopy menu option to create a copy (putting the copy in the same 
program group as the original). The copy will now be selected. Choose the 
FilelProperties menu option to start the Program Item Properties dialog. Change its 
name to, for example, "STD Live Monitor" and at the end of the command line 
add a space and then the name of the file. In this example the command line 
should then look something like: c: \synectvl \syn_mon. exe test.Um 

Start this new program item in the usual way. Open the application by 
choosing the FilelOpen Application menu option. Choosing the MonnorlConnect menu 
option will cause the STD Monitor to read the contents of file "test.llm" and 
attempt to connect to the DDE server. The STDs can then be displayed to 
show the current state of each STD in the live control system. 

To display the state of an STD which is running in a PLC, using code generated 
by the Synect ladder logic generator, the STD Monitor needs to know the 
integer value associated with each state. This is achieved via entries in the 
mapping file of the following form: 

STATE=Open, 1 0 



Synect STD Monitor User Guide Open An Application 

4 Open An Application 

When you first start the Synect STD Monitor, very few of the menu items or 
buttons are enabled. This is because you must first open an application. 

When you saved your application from the Application Editor, it created a file 
with the name of your application but with the extension ".mon". This file is 
used by the STD Monitor. 

Opening An Application 

To open an application, choose the FilelOpen Application menu option. The standard 
file open dialog will then be started, allowing you to specify the name of the file 
from which the application is to be loaded. 

Having loaded the application, the Object Hierarchy will be displayed in a 
window and most of the menu options and buttons will be enabled. If the STD 
Monitor is not being used in conjunction with the live control system (i.e. there 
was no filename parameter when the application was started), it will also 
attempt to connect to a Synect Server. If this is unsuccessful, for example 
because the Simulator is not running, you will need to manually initiate this 
connection when the Synect Server becomes available by choosing MonHorlConnect. 

If the Synect Server application terminates, you'll need to perform this 
operation again. Once the STD Monitor has connected to the Synect Server, 
the MonHorlDisconnect menu option is enabled to allow you to prevent further 
animation of the diagrams. 

Page 9 oftS 



Open An Application Synect STD Monitor User Gnide 

This page left intentionally blank 

Page 10 of15 



Synect STD Monitor User Gnide Displaying A Diagram In A Window 

5 Displaying A Diagram In A Window 

This chapter describes the choices which are available for displaying the Object 
Hierarchy and STDs. It assumes that you've already opened an application. 

Displaying An STD 

.~ .. 
~ 

To create a new window (or windows) displaying an STD (STDs), choose the 
STDIDisplay menu option. The Select STD To Display dialog will be started, 
enabling you to nominate which STDs you want to display (multiple selections 
are allowed). Click on "OK" to close the dialog and the STD Monitor will 
create a new window for each STD selected. 

Tracking An STD's Current State 

Zooming 
1P.'.1 
~L 

p21 
l!~ 

I'I!I'~ -ml thw 

By default, the STD Monitor will automatically attempt to move an STD 
within a window to ensure that the current state is visible. To disable this 
facility, choose STDICurrent State Not Necessarily Visible. To re-enable, choose STDICurrent 

State Always Visible This pair of options applies to the currently active STD 
window. 

To enlarge the diagram in the currently active window, use the Zoomlln menu 
option. To reduce the size of the diagram, use the ZoomlOul menu option. 
Choose ZoomlReset to reset to the original magnification. 

Similarly, to enlarge all diagrams, use the Zoomlln All menu option. To reduce the 
size of all diagrams, use the Zooml0ul All menu option. Choose ZoomlReset All to reset 
all windows back to their original magnification. 

Choose ConfigurationlZoom Factor to change the amount by which the zooming 
functionality magnifies or reduces the diagram. 

Resizing A Window 

In addition to the usual functionality for resizing and moving windows, the 
STD Monitor also offers the option of resizing a window to fit the diagram 
which it displays. Choose STDIReslze Window To Size 01 Drawing to resize the window 
to be the smallest possible which still enables the entire diagram to be drawn in 
the window without the need for scroll bars. 

Page 11 of15 



Displaying A Diagram In A Window Synect STD Monitor User Gnide 

This page left intentionally blank 

Page 12 of15 



Synect STD Monitor User Guide 

Appendix A Menus 

File 

Open Application 

Eldt 

Monitor 
Connect 

Zoom 

Disconnect 

In 

Out 

Reset 

In All 

Out All 

Reset All 

Configuration 
Zoom Factor 

STD 

Display 

Current State Always Visible 

Menus 

Open an existing application 
Finish running Synect STD Monitor 

Establish communication link with a Synect Data 
Server 
Tenninate the communication link with the 
Synect Data Server 

Enlarge the diagram 
Reduce the size of the diagram 
Reset the size of the diagram to its original size 
Enlarge all diagrams 
Reduce the size of all diagrams 
Reset the size of all diagrams to their original size 

Amount by which to enlarge/reduce the diagram 
when using the Zoom menu options. 

Create a new window to display an STD 
Pan STD in window to make current 
state always visible 

Current Slale Not Necessartly Visible Don't pan STD in window in order to 
make current state always visible 
Resize window to enclose drawing Resize Window To Size Of Drawing 

Window 
Cascade 

Tile 

Help 

Arrange Icons 

Close All STD Windows 

Contents 

Using help 

About 

Cascade open windows 
Tile open windows 
Arrange iconic windows along bottom 
Close all STD windows 

Help table of contents 
Help on using online Help 
About Synect STD Monitor 

Page 13 of1S 



Menus Synect STD Monitor User Guide 

This page left intentionally blank 

Page 14 of1S 



Synect STD Monitor User Guide Toolbar Buttons 

Appendix B Toolbar Buttons 

Jr.1 

[liJ 

~j 
~ 

The STD Monitor provides an Operation Toolbar displayed horizontally across 
the top of the screen. It contains buttons which can be used as shortcuts instead 
of pulling down the corresponding menu and selecting the relevant item. The 
buttons will be greyed-out if the corresponding function is unavailable at that 
time. 

Menu Equivalent 

FilelOpen Application 

MonttorlConnect 

Monitorl Disconnect 

STDIDisplay 

STDICurrent State Always Visible 

Open an existing application 

Establish communication link with a Synect Data 
Server 

Terminate the communication link with the 
Synect Data Server 

Create a new window to display an STD 

Pan STD in window to make current state 
always visible 

STDICurrent State Not Necessarily Visible Don't pan STD in window in order to 
make current state always visible 

STDIResize Window To Size Of Drawing Resize window to enclose drawing 

Zoomlln 

ZoomlOUl 

ZoomllnAII 

ZoomlOUlAII 

HelplContents 

Enlarge the diagram in the active window 

Reduce the size of the diagram in the active 
window 

Enlarge all diagrams 

Reduce the size of all diagrams 

Display help information 

Page 15 of15 



Synect 

Simulator 
User Guide 

Version 1.6 

Hopkinson Computing Limited 
29 Deepdale, Pine Hills, Guisborough 

Cleveland, TS14 8JY 
England 

TeVFax: +44 (0) 1287638606 
email: synect@hopkinsn.demon.co.uk 



© Copyright 1994, 1995, 1996 Hopkinson Computing Limited. All rights reserved. 

Synect is a registered trademark ofHopkinson Computing Limited 
Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation. 

Infonnation in this User Guide is subject to change without notice and does not represent a commitment on the 
part ofHopkinson Computing Limited. 

The software described in this User Guide is furnished under a license agreement or nondisclosure agreement and 
may be used or copied only in accordance with the tenns of the agreement. No part of this User Guide may be 
reproduced or transmitted in any form or by any means, electronic or otherwise, including photocopying and 
recording, for any purpose, without the express written pennission ofHopkinson Computing Limited. 

Document History 

17 December 1995 
Re-issue reflecting Simulator V1.1 - new cover sheet and Appendix C, DDE Services. 

18 March 1996 
Re-issue re£lecting Simulator Vl.2 - new cover sheet, contents, and changes to most sections. 

10June 1996 
Re-issue reflecting Simulator Vt.S - new cover sheet and chapter 1. 

28 October 1996 
Re-issue reflecting Simulator Vl.6 - new cover sheet and chapters 5 & 7. 



Synect Simulator User Guide Contents 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

ChapterS 

Chapter 6 

Contents 

Introducing Synect ................................................. . 

User Interface ..................................................................... . 

1 

1 

The Method ..................... ............. .... ........................ .......... 1 

Synect Documentation ................................ .................... .... 1 

The Tools ............................................................................ 2 

Document Conventions ...................................................... 2 

Getting Started ••••••••••••••••••••••••••••••••••••••••••••••••••••••. 

System Requirements ......................................................... . 

3 

3 

Installation ........................................................................... 3 

Starting the Simulator ..... ................... .......... ... .... ..... ....... ..... 4 

On-Line Help ..................................................................... 6 

Basic Concepts ...................................................... . 7 

How It Works ..................................................................... 7 

Event Logging .................................................... ................. 7 

Synect DDE Server Data Source ......................................... . 

Synect DDE Client ............................................................. . 

Open An Application •••••••••••••••••••••••••••••••••••••••••••••• 

8 

8 

9 

Opening An Application ... ............. ............. ... .... ... ...... ......... 9 

Interactively Driving The Application •••••••••••••••••••••••• 

Using The Simulator Control Dialog .................................. . 

11 

11 

Changing The Simulator Mode .. .... ......................... ......... 12 

Changing The Selected Event Log Position ............ ........... 12 

Using The Real World Input Status Dialog ..... , ......... ....... .... 13 

Using The Real World Outputs Dialog .......... .... ..... .... ......... 14 

Behaviour when adding a new entry ............. .... ... ......... ..... 14 

Using The Simulator As A DDE Client ................................ 15 

Create the mapping file ..................................................... 15 

Load the mapping file ........................................................ 16 

Connect to the DDE server ............................................... 16 

Drive the DDE server ....................................................... 16 

Create, Save And Replay An Event Log •••••••••••••••••••••• 17 

Creating A New Empty Event Log .. ...... ....... ... .... ... ............. 17 

Saving An Event Log ... ....... ............ .... ........... .... ....... ........... 17 

Replaying An Event Log ... ....... ... ... .... ......... ..... ..... .... .......... 17 

Page i ofii 



Contents Synect Simulator User Guide 

Chapter 7 Configuration ........ ................................................. 19 

Configuring Timing Attributes ... ........... ........................ ...... 19 

Playback Mode ......................... .... ................ ....... ........ ..... 19 

Record Mode ................................................................... 19 

Configuring Event Log Attributes ........................................ 20 

Configuring The Handling OfR WI And R WO Dialogs ..... 20 

Appendix A Menus •..••••••••••••.••••..•••••••••..•.•••.••••••••••.•.••••••••.••.••• 23 

Appendix B Tooffiar Buttons •••.••••..••.•.••••••.•.•••.••••••••••••.•.••.••••..• 25 

Appendix C DDE Services ••.••..•••..••. •••.••... .•••••••••.•.••.•.••.••.•.•..•..• 27 

Page ii ofii 



Synect Simulator User Guide Introducing Synect 

1 Introducing Synect 

Synect is a set of software tools which helps the designer of a control system to 
produce a specification which is clear, precise and free of errors. Synect 
combines the ease of use of a graphical user interface, with a widely used 
diagrammatic notation and the power of mathematical modelling. 

User Interface 

The Method 

The Synect™ tools run on the Microsoft® Windows™ operating system. As 
such, you need to know how to use Windows before you use Synect. In 
particular, you will need to know how to use the mouse to click, double-click 
and drag. You will also need to know how to interact with menus, dialogs and 
how to move, resize and close windows. For information, refer to the 
Microsoft Windows User's Guide. 

Synect uses an object-based method to enable you to model the system you 
want to controL It is useful to have some knowledge of 
object-based/ object-oriented analysis and design techniques before attempting 
to use Synect in earnest. 

Synect Documentation 

Each of the Synect tools has an associated User Guide. This User Guide 
explains how to use each of the functions available in the STD Monitor. It also 
explains why you might want to use the function. 

Each application has context-sensitive on-line help. The Simulator on-line help 
contains a "How Do I?" section, including a "How Do I Get Started?" 
sub-section for first-time users. 

A Tutorial is also provided which offers a worked example and shows how each 
of the tools is used with the example application. 

Page 10f28 



Introducing Synect Synect Simulator User Guide 

The Tools 

The tools which make up the Synect toolset are: 

Application Editor graphical means of defining the application. 

Compiler check the specification for consistency and 
possible warnings and generate a mathematical 
model of the application. 

Analyzer ability to check for design errors such as deadlock 
(where the system "hangs") and unwanted state 
combinations. 

Simulator provides the ability to interactively "drive" the 
application or replay past behaviour of the live 
control system. 

STD Monitor animates the specification (used in conjunction 
with the Simulator or the live control system). 

C Code Generator generate ANSI -standard C code to implement the 
application. 

Neuron C Generator generate Neuron C to run on one or more nodes 
on an Echelon Lon Works network to implement 
a distributed control solution. 

Ladder Logic Generator generate relay ladder logic to run on a 
programmable controller. 

Document Conventions 

Page 2 of28 

The User Guide adopts the following conventions: 

application name 

KEY NAME 

MenulChoice 

description 

text that you type or that you see on the screen. 
keyboard keys, such as ENI'ER. CTRL or DEL. 
a menu option, such as FilelExit denoting choose the 
Exit command from the File menu. 
description of a term with a specific meaning. 



Synect Simulator User Guide Getting Started 

2 Getting Started 

This chapter describes: 

• the hardware and software requirements which you need to be able to 
use Synect. 

• how to install the Simulator. 

• how to start the Simulator. 

• the Simulator window. 

System Requirements 

Installation 

The Synect Simulator requires that you use: 

• a 486 (or better) running Windows 3.t. 

• VGA monitor in 800 x 600 mode (or higher resolution). 

• a mouse or other pointing device (such as a trackball). 

Other Synect tools also requires that you have the following: 

• 8 MByte RAM. 
• very large permanent swap file (recommended size is 20 MByte). 

• at least 10 MByte free disk space per application. 

If you haven't installed Synect yet, you'll need to do that first. Check that your 
computer satisfies the requirements listed above before starting the installation. 
The first floppy disk contains file install. txt which contains any updates to the 
installation process - you should read this file before installing the software. 

1 Put floppy disk 1 into your floppy disk drive. 

2 Start Windows (by typing win at the DOS prompt if necessary). 

3 Choose FilelRun from the Program Manager. 

4 Type a:\install then press EN1ER. 

5 The installation program will now guide you through the installation 
process. Simply answer the questions to specify which Synect tools 
you want to install. 

6 When installation is complete, you can remove the floppy disk from 
the drive. You should now have a Program Manager group containing 
an icon for each of the installed Synect tools. 

7 Plug the dongle into the computer's parallel port. 

Page 30f28 



Getting Started Synect Simulator User Guide 

8 Read the installed file readme. txt for details of any changes to the 
product or documentation since the documentation was printed. 

Starting the Simulator 

Message 
bar 

Control
menu 
boxes 

Page 4 of28 

Ensure that the Program Manager window is on display. If the Synect window 
isn't visible, use the Window menu to open it. Double-click on the Simulator 
icon or use the keyboard arrow key to select the icon and then press ENJ'ER. 

When using the Simulator, the window will typically look like the following: 

Title 
Maximize OUllOn, "

Minimize DU1IOnl, 

~:Jl- Real-World Input 
Status dialog 

Simulator 
Control 
dialog 



Synect Simulator User Guide Getting Started 

Title bar 
The window at the top of the diagram is the Synect Simulator window. The 
title bar therefore shows the product title Synect Simulator and the name of the 
application which has been loaded (if any). 

Control-menu boxes 
Allows you to restore, move, size, minimize, maximize or close (except for the 
Real World Input Status dialog or Simulator Control dialog) the window. Also 
allows you to make another window the active window or open the control 
panel. The control-menu box belonging to each of the dialogs also allows you 
to determine whether the dialog is to be a topmost window. 

Menu bar 
Lists the available menus. 

Minimize box 
Allows you to shrink the window to an icon at the bottom of the screen. 

Maximize box 
Allows you to enlarge the window to fill the entire screen. 

Operation toolbar 
Contains the momentary buttons which can be used as menu shortcuts. 

Message bar 
When the cursor is moved over an Operation Toolbar button or when a menu 
option is highlighted, the message bar will show a brief description of the 
function of the button/menu option. Also gives information regarding 
connection and disconnection ofDDE clients. 

Real- World Input Status dialog 
Allows you to simulate the status of real-world inputs by selecting and 
de-selecting corresponding entries in the listbox. 

Real- World Outputs dialog 
Shows you when real-world outputs are invoked. 

Simulator Control dialog 
The Simulator's control panel. In its normal form, this dialog only gives you 
access to the Record, Stop, Play and Fire Trans buttons. In its maximised form, 
you also have access to the event log controls, these being the slider and the 
navigation buttons. 

Page 5 of28 



Getting Started Synect Simulator User Guide 

On-Line Help 

-1 -

Page 60f28 

The on-line help is context-sensitive. So if you click on a help button in a 
dialog, you will automatically be shown the help information associated with 
that dialog. If no dialog is being displayed, you can choose HelplContents to take 
you to the help contents page. The help information is shown in a separate 
window. 



Synect Simulator User Guide Basic Concepts 

3 Basic Concepts 

The Synect Application Editor enables you to specify a model of your 
application. See the Application Editor User Guide, chapter 3, Basic Concepts 
for more information relating to defining the model. The Compiler derives a 
mathematical model from your specification. The Simulator executes the 
model, enabling you to interactively drive your application or replay past 
behaviour. The Simulator sends information to other Windows packages for 
display in the required format. It can also receive information from other 
Windows packages so that it can be driven remotely. These facilities enable the 
Simulator to drive plant sensors and actuators via a third party interface (such as 
the Echelon Lon Works DDE Server). 

How It Works 

The Simulator executes the mathematical model derived by the Compiler from 
your specification. It detennines which transitions might be able to fire and 
tests the status of their real-world inputs. From this set of transitions, it 
constructs a list of the transitions which have all their real world input 
conditions enabled and picks one of them to be fired. It then fires the transition 
thereby changing the states of the appropriate STDs. The cycle then repeats. 

The real-world input status is determined from the Real World Input Status 
dialog. Click on an entry to toggle whether the corresponding real-world input 
is to be interpreted as enabled. 

The Simulator Control dialog acts as the Simulator's control panel. It enables 
you to control the mode of operation of the Simulator and to navigate around 
the event log. 

Event Logging 

Every time a transition is fired or a real world input is tested and is found to 
have changed state, a time-stamped entry is written to an event log. The event 
log is held in memory but may be saved to file on disk or reloaded from disk for 
replay. The event log is linear by default which means that when it is full, the 
Simulator must stop. Alternatively, the event log may be configured to be 
circular so that when full, the oldest record is overwritten. 

The Simulator can also be used to replay an event log which has been generated 
by the Synect Analyzer or by a C program created by the Synect C Code 
Generator. 

Page 7 of28 



Basic Concepts Synect Simulator User Guide 

Synect DDE Server Data Source 

The Simulator acts as a Windows Dyoamic Data Exchange (DDE) server to 
provide data for compatible Windows products, such as the STD Monitor and 
Wonderware's InTouch SCADA product. The other products behave as DDE 
clients, establishing advise loops with the Simulator. Whenever an entry is 
written to the event log, or you change the currendy selected position within 
the event log, the Syoect clients are notified of the new information. 

The Simulator also allows DDE clients to change the simulated status of 
real-world inputs by allowing them to interact with the Real World Input 
Status dialog. This provides the ability for your application to be driven via a 
third party user interface, whilst still offering the benefits of the Simulator's 
event logging functionality. 

Appendix C, DDE Services, describes the information which the Simulator 
makes available. 

Synect DDE Client 

Page 8 of28 

The Simulator can also act as a DDE client, notifying the server when 
real-world outputs are invoked and enabling the server to control the simulated 
status of real-world inputs in the Real World Input Status dialog. For example, 
the Simulator could drive the Echelon LonWorks DDE Server so you could run 
the control logic whilst driving the plant sensors and actuators. 



Synect Simulator User Guide Open An Application 

4 Open An Application 

When you first start the Synect Simulator, very few of the menu items or 
buttons are enabled. This is because you must first open an application. 

When you compiled your application using the Compiler, it created a file with 
the name of your application but with the extension" .sim". This file is used by 
the Simulator. 

Opening An Application 

~ ... il3"ill To open an application, choose the FilelOpen Application menu option. The standard 
file open dialog will then be started, allowing you to specify the name of the file 
from which the application is to be loaded. 

Having loaded the application, the Simulator Control dialog, Real World Input 
Status dialog and Real World Outputs dialog will be displayed. An empty event 
log will be created, capable of holding 50 entries and linear (i.e. the Simulator 
will stop recording when it contains 50 entries rather than overwriting the 
oldest entry). 

The Simulator window will have been created as a small window at the top 
right of your screen before being maximised. If the application is loaded with 
the frame window maximised, the dialogs created will be positioned around the 
screen such that they do not overlap. The frame window can then be restored 
to its normal (un-maximised) form to effectively move it out of the way to the 
top right of the screen. 

Page 9 of28 



Open An Application Synect Simulator User Guide 

This page left intentionally blank 

Page 10 of28 



Synect Simulator User Guide Interactively Driving The Application 

5 Interactively Driving The Application 

Having loaded your application, you can now interactively drive the 
application, simulating the behaviour of the system your application is to control 
and monitoring how your application reacts. You should load the application 
into the STD Monitor (see the STD Monitor's User Guide for details) or 
another Synect-compatible product so that you can observe the changing states 
of the STDs. Using the Simulator as a DDE server or DDE client, the status of 
real-world inputs can be detennined from plant sensors and the real-world 
outputs can be used to control plant actuators. 

Using The Simulator Control Dialog 

In its maximised form, the Simulator Control dialog looks like the following: 

In its normal (un-maximised) form, the Simulator Control dialog looks like the 
following: 

By default, this dialog is a topmost window. This is so that it will be drawn on 
top of the STD Monitor windows. To make it a non-topmost window, use the 
dialog's "Always On Top" System Menu option to toggle this attribute. 

This dialog can be thought ofin 2 parts. The upper part contains buttons to 
control the mode of operation of the Simulator. The lower part is used to 
observe and change the current position in the event log. 

Page 11 of28 



Interactively Driving The Application Synect Simulator User Guide 

Changing 
The 
Simulator 
Mode 

Changing 
The 
Selected 
Event Log 

Page 12 of28 

The buttons and their uses are as follows: 

Record 

Stop 

Play 

Fire Trans 

Starts recording, writing records into the event 
log from the current position. If this would lead 
to unsaved event log contents being overwritten, 
a warning message will be displayed before 
recording begins. The Simulator mode changes 
to RECORDING which is reflected in the 
dialog's tide. The Stop button will be enabled, all 
others being disabled. Most of the menu options 
and toolbar buttons will be disabled. 

Stops recording or playback. The Simulator 
mode changes to STOPPED which is reflected in 
the dialog's tide. Enables the Record button if 
the event log is not full or is circular. Enables the 
Play button if not at the end of the event log and 
event log records exist after the current position. 

Starts playback of the event log from the current 
position. The Simulator mode changes to 
PLAYING which is reflected in the dialog's tide. 
The Stop button will be enabled, all others being 
disabled. Most of the menu options and toolbar 
buttons will be disabled. 

If the Simulator mode is RECORDING, and the 
Timing Attributes dialog has been used to set the 
Record Mode to Pause Before Firing Transition, 
this button will be enabled when the Simulator is 
ready to fire a transition. This provides the 
facility to single-step whilst recording. Clicking 
this button will cause the Simulator to fire the 
transition and it will pause when it is ready to fire 
the next transition. 

The relative position of the slider thumbnail denotes the current record in the 
event log. When the Simulator mode is RECORDING or PLAYING, the 
slider thumbnail is moved accordingly. When the Simulator mode is 
STOPPED, the slider button may be dragged to change the current event log 
position. Alternatively, the following buttons may be used: 

l'i~~+1 

U&l<~01 

Go to the beginning of the event log 

Select the record just before the most recent 
record relating to the firing of a transition. Use 
this to step over the records which contain 
individual tests of real world input state. 



Synect Simulator User Guide 

llli7r~1 

1~lii~1 

Interactively Driving The Application 

Select the previous event log record 

Select the next event log record 

Select the record just before the next record 
relating to the firing of a transition. Use this to 
step over the records which contain individual 
tests of real world input state. 

Go to the end of the event log 

Using The Real World Input Status Dialog 

The Real World Input Status dialog looks like the following: ..... ------_.-:= Real World Input Status aa! 
rwi 0 

By default, the dialog is a topmost window. This is so that it will be drawn on 
top of the STD Monitor windows. To make it a non-topmost window, use the 
dialog's "Always On Top" System Menu option to toggle this attribute. 

The dialog contains a Iistbox in which each real world input is listed. To 
simulate the real world input being enabled, click on the corresponding item in 
the list box so that it is highlighted. To simulate it being disabled again, click on 
the entry again so that it is not highlighted. By default, the Simulator will reset 
the status of the real-world input (i.e. unhighlight it) after firing a transition 
which references it. Also by default, the Simulator will not automatically reset 
the real-world input ifit is being controlled by another application via a DDE 
link. It assumes that you are manually controlling each real-world input until a 
DDE message is received with the real-world input's status. You can change 
this behaviour by means of the Real World Inputs And Real World Outputs 
dialog. 

The real world input name is prefixed with ">" when it is being tested. This 
enables you to quickly identify which real world inputs the Simulator is waiting 
for before being able to fire a transition. 

Page 13 of28 



Interactively Driving The Application Synect Simulator User Guide 

The Simulator only uses the infonnation from tills dialog when it is recording. 

Tills dialog may be driven by a DDE client (see Appendix C, DDE Services, for 
details) or by a DDE server. 

Using The Real World Outputs Dialog 

Behaviour 
when adding 
a new entry 

Page 14 of28 

The Real-World Outputs dialog looks like the following: 

By default, the dialog is a topmost window. Tills is so that it will be drawn on 
top of the STD Monitor windows. To make it a non-topmost window, use the 
dialog's "Always On Top" System Menu option to toggle tills attribute. 

Tills dialog contains a list box which is initially empty. As a real-world output is 
invoked, a time-stamped entry will be written into the listbox showing the 
real-world output's name. To erase the contents of the listbox, click on the 
Clear Listbox button. The Real World Inputs And Real World Outputs dialog 
can be used to change the maximum number of entries in the listbox. When 
tills number has been reached, the oldest entry will be removed to make room 
for the new entry. The default value is 100 and the allowable range of values is 
5 to 1000. 

There are two ways of using the infonnation in the real world outputs dialog's 
listbox. The first is to see new entries as they are being added to observe which 
real world outputs are being invoked. In tills case, the listbox should be 
automatically scrolled so that the new entry is visible. 

Alternatively, you ruight want to examine the Illstory by scrolling back through 
the listbox. Tills suggests that the listbox should not be automatically scrolled 
otherwise the portion of entries being examined would be replaced with the 
most recent portion. 

To compromise, if the most recent entry is visible in the listbox when a new 
entry is to be added, the listbox will be scrolled to make the new entry visible. 
If the new entry is not visible (i.e. you have scrolled it off the bottom of the 
listbox), the range of entties being displayed in the listbox will remain on display 
after the new entry is added. Tills has no effect on the removal of the oldest 
entry when a new entry is to be added and the listbox already contains the 



Synect Simulator User Guide Interactively Driving The Application 

maximum number of entries. In this case, the portion of the listbox entries you 
are examining will, in time, be removed from display as new entries are added. 

Using The Simulator As A DDE Client 

Create the 
mapping file 

The Simulator can talk to aDD E Server so that the server can enable and 
disable real world inputs in the Real World Input Status dialog and can also be 
notified when real-world outputs are invoked. 

Use a text editor (such as Notepad), to create a mapping file, such as "test.map" 
with the following contents: 

! Mapping file for Synect Simulator 
! Applicable for the demo application supplied with the product 

STOP=rwo open grip 
STOP=rwo=raise_arm 

DOE SERVER=syn serv 
DDE:TOPIC=syn_topic 

DOE ITEM=gripper item 
RWr=rwi grip closed,NOT=open 
RWI=rwi-grip-open,open 
RWO=rwo-open-grlp,open gripper 
Rwo=rwo:close_grip,close_gripper 

DOE ITEM=arm elevation item 
Rwr=rwi arm up, <1 -
RWI=rwl-arm-down,>l 
RWO=rwo-raise arm,O 
Rwo=rwo=lower:arm,2 

Blank lines and those beginning with "!" are treated as comments and ignored. 

Do not leave spaces around the "=" or" ," and ensure that the keywords 
(DDE_ITEM, RWI, RWO, etc) are in uppercase. 

The lines beginning "STOP=" specify the names of real-world outputs which 
will be invoked when the Simulator stops recording. For example, if you are 
controlling a motor via two real-world outputs, one to start it and the other to 
stop it, you would probably want to stop the motor when you stop the 
Simulator recording. You can have as many of these "STOP=" lines as you 
want. 

The lines beginning "DDE_SER VER =" and "DDE_TOPIC=" specify the 
service and topic for the DOE conversation. 

There then follows sets of entries relating to the items within the topic from 
which the Simulator will obtain its real-world inputs and to which it will notify 
when real-world outputs are invoked. Typically, a DOE_ITEM will be 
associated with either real-world inputs or real-world outputs but not both. 

In the first "DDE_ITEM=" block above, the Simulator will establish an advise 
loop (hot link) with the server such that it will be notified if the item 

Page 15 of28 



Interactively Driving The Application Synect Simulator User Guide 

Load the 
mapping file 

Connect to 
the DOE 
server 

la 
la 

"grippecitem" changes value. When the Simulator receives a new value, it 
examines its value. It first compares its value with the string "open" (case 
sensitive). Ifit doesn't match, it will set real-world input "rwi...grip_closed" to 
true (the entry in the Real-World Input Status dialog will be highlighted), 
otherwise it will set it to false. It then tests the value against "open" again. If it 
matches, the Simulator sets the real-world input "rwi...grip_open" to true, 
otherwise it sets it to false. 

When the real-world output "rwo_open...grip" is invoked, the Simulator will 
send the string "open...gripper" to DDE item "gripper_item". When real-world 
output "rwo_close...grip" is invoked, the Simulator sends the string 
"close ...gripper". 

Now consider the second "DDE_ITEM=" block. When the Simulator receives 
a new value for DDE item "arm_elevation_item", it attempts to read the string 
as a number. If the number is less than 1.0 (the number in the file can be a 
floating point or integer number), the real-world input rwi_arm_up will be set 
to true (otherwise it will be set to false). If the number is greater than 2.0, the 
real-world input rwi_arm_down will be set to true (otherwise false). 

The relational operators supported for numerics are <, <=, >= and >. 

When the real-world output "rwo_raise_arm" is invoked, the Simulator will 
send the string "0" to DDE item "arm_elevation_item". When real-world 
output "rwo_lower_arm" is invoked, the Simulator sends the string "2". 

Choose DDE MappinglLoad Mapping FOe to load the mapping file. This will result in a 
list file being produced with the same name as the mapping file but extension 
".mpo" (for mapping output). This shows what the Simulator will use. The file 
format is such that it can be used as the mapping file if required. 

Loading the mapping file will automatically cause the Simulator to attempt to 
connect to the DDE server. Alternatively, choose DDE MappinglConnect 10 DDE Server. 

To disconnect from the DDE server, choose MappinglDisconnecl from DDE Server. 

Drive the DOE As the DDE server notifies the Simulator of changing values ofDDE items, the 
server entries in the Real World Input Status dialog can be seen to change (i.e. 

whether or not they are highlighted). Click on the record button on the 
Simulator Control dialog.to run the control logic. As real-world outputs are 
invoked, the DDE server will be sent the appropriate messages as described 
above. 

Page 16 of28 



Synect Simulator User Guide Create, Save And Replay An Event Log 

6 Create, Save And Replay An Event Log 

Event logs can be generated by the Analyzer, by a Synect-generated control 
program or by the Simulator itseI£ This chapter describes the options regarding 
creating a new empty event log within the Simulator, how to save it to disk and 
how to load an event log from disk to replay its contents. 

Creating A New Empty Event Log 

When an application is loaded into the Simulator, an empty event log is 
automatically created with the capacity to store 50 entries and configured to be 
linear (i.e. the Simulator will stop recording when it's full rather than 
overwriting the oldest entry). 

If you want to reset the application to its initial state but you've been using a 
circular event log which has overwritten its oldest entry, choose Event LogINew-

Intti.1 States to create an empty event log, starting at the application's initial state. 

Having been driving the Simulator interactively, you ruight reach a point where 
the application could follow one of a number of paths (depending on the order 
in which real-world inputs are satisfied). In this circumstance, ensure that the 
Simulator mode is Stopped and save the event log to disk (see section Saving An 
Event Log, below). Choose Event LoglNew - Current St.tes to create an empty event 
log, starting at the application's current state. You may then follow the first path 
and save the resulting event log. To explore one of the other paths, load in the 
first event log (which ends at the application state from which you want to start) 
and choose Event LoglNew - Current St.tes again to create a new empty event log 
starting at the same application state. You can then repeat this set of actions as 
often as required to obtain event logs which record the behaviour having 
followed each of the alternative paths available. 

Saving An Event Log 

The Simulator mode (shown in the title of the Simulator Control dialog) must 
be STOPPED before the event log can be saved to disk. Choose Event LoglS.ve to 
start the standard File Save dialog from which you can specify the name of the 
file in which you want to save the event log. 

Replaying An Event Log 

To load an event log for replay, the Simulator mode must be STOPPED. 
Choose Event LoglOpen to start the standard File Open dialog. By default, the 
dialog will list files with extension" .sel". These are event logs which were 
generated by the Simulator or the Analyzer. To list event logs generated by a 

Page 17 of28 



Create, Save And Replay An Event Log Synect Simulator User Guide 

Page 18 of28 

Synect C control program, click on the List Files of Type drop-down listbox 
and click on entry C Event Logs ('. cell to see the available C event log files. 

Having loaded an event log, the selected position is set at the end of the event 
log. You will need to move the selected position further back in the event log 
before ~he "Play" button will be enabled. 

By default, the Simulator will read the next entry from the event log every 3 
seconds. To use the relative tinling stored in the event log, choose 
ConfigurationlTIming to start the Tinling Attributes dialog (see chapter 7, 

Configuration, for details). 



Synect Simulator User Guide Configuration 

7 Configuration 

This chapter describes the configurable attributes of the Simulator. These fall 
into three categories: 

• timing attributes. 

• 
• 

event log attributes . 

how the Real World Input Status dialog and the Real World Outputs 
dialog are handled. 

Configuring Timing Attributes 

Playback 
Mode 

Record 
Mode 

Choose ConfigurationlTiming to start the Timing Attributes dialog, shown below: 

Timing Attributes 

This dialog can be thought ofin two parts. One part relates to when the 
Simulator is recording an event log and the other relates to when the Simulator 
is replaying an event log. 

When the Simulator is replaying an event log, it steps through the entries in the 
event log. The interval between reading successive entries can be either fixed 
(you specify the number of seconds) or correspond to the interval when the 
entries were originally written to the event log. 

When the Simulator is recording, it runs your application logic at the interval 
you specify (in seconds). 

You can instruct the Simulator to pause before firing a transition. In this case, 
the "Fire Trans" button on the Simulator Control dialog will be enabled when 
the Simulator is ready to fire a transition. The transition will be fired when you 
click on the "Fire Trans" button. 

Page 19 of28 



Configuration Synect Simulator User Guide 

Configuring Event Log Attributes 

Choose ConfigurationlEvent Log to start the Event Log dialog, shown below: 

This dialog can be thought of in 2 parts. 

The first part relates to the behaviour of the Simulator when recording and it 
fills the event log. The options are for the Simulator to stop or to overwrite the 
oldest entry. 

The second part relates to the size of the event log in tenns of number of 
entries. If this number is reduced such that information will be lost, a warning 
message is displayed. 

Configuring The Handling of RWI and RWO Dialogs 

Page 20 of28 

Choose ConfigurationlRWI And RWO Di,logs to start the Real World Inputs And Real 
World Outputs dialog, shown below: 



Synect Simulator User Guide Configuration 

This dialog can be thought of in two parts. 

The first part relates to the treatment of real-world inputs following the firing of 
a transition. By default, the "Reset manually set R WIs on firing transition" 
radiobutton is checked. The interpretation of this radio button can best be 
described by an example. In the demo application, the real-world input 
"rwi~" must be enabled for the first transition to fire. When running the 
Simulator, the "rwi~" entry in the Real World Input Status dialogwould be 
highlighted by clicking on it. 

With the "Reset manually set R WIs on firing transition" radiobutton checked, 
the Simulator will reset the real-world input status having fired the transition 
which referenced it. With the radio button unchecked, you must click on the 
"rwi~" entry in the listbox again to remove the highlight. Beware that, whilst 
this makes it easier to drive the application around manually, it may not 
adequately represent how the target plant equipment will behave. In particular, 
a race condition could more easily be overlooked. 

With the "Reset manually set R WIs on firing transition" radiobutton or "Do 
not reset any R WIs on firing transition" radio button checked, the Simulator 
will not reset those real-world inputs which are determined via a DDE link. On 
initialisation, the Simulator assumes that each real-world input is being 
determined by the user until a DDE message is received which relates to the 
real-world input. 

With the "Reset all R WIs on firing transition" radiobutton checked, the 
Simulator will also reset those real-world inputs which are determined via a 
DDE link. 

The second part of the dialog relates to the Real World Outputs dialog. The 
number of entries in the listbox is constrained to the maximum which is 
specified by the "Max entries in R WO listbox" editbox. When this number of 
entries has been reached and another entry is to be added, the oldest entry will 
first be removed. The default is 100 entries but you can change this to any value 
between 5 and 1000. 

Page 21 of28 



Configuration Synect Simulator User Guide 

This page left intentionally blank 

Page 22 of28 



Synect Simulator User Guide 

Appendix A Menus 

File 

Open Application 

Exit 

Event log 

New - In~ial States 

New - Current States 

Open 

Save 

Configuration 

Timing 

Event log 

RWI And RWO Dialogs 

DDEMapping 

Open an existing application 
Finish running Synect Simulator 

Menus 

Create a new event log starting at initial states 
Create a new event log starting at current states 
Open an existing event log 
Save current event log to file 

Configure the speed at which the Simulator runs 
Configure event log capacity and behaviour when 
full 
Configure how R WIIR WO dialog boxes are 
handled 

load Mapping File Load mapping between R WIIR WO and 
external DDE server 

Help 

Connect To DDE Server Connect to DDE server 
Disconnect From DDE Server Disconnect from DDE server 

contents 
Using help 

About 

Help table of contents 
Help on using online Help 
About Synect Simulator 

Page 23 of28 



Menus Synect Simulator User Guide 

This page left intentionally blank 

Page 24 of28 



Synect Simulator User Guide Toolbar Buttons 

Appendix B Toolbar Buttons 

~. ittN 

The Simulator provides an Operation Toolbar displayed horizontally across the 
top of the screen. It contains buttons which can be used as shortcuts instead of 
pulling down the corresponding menu and selecting the relevant item. The 
buttons will be greyed-out if the corresponding function is unavailable at that 
time. 

Menu Equivalent 

FilelOpen Application Open an existing application 

Event LoglNew -Inftial States Create a new event log starting at initial states 

Event LoglNew - Current Stales Create a new event log starting at current states 

Event LoglOpen Open an existing event log 

Event LoglSave Save current event log to file 

DDE MappinglConnect To DDE Server Connect to DDE server 

DDE MappinglDisconnecl From DDE Server Disconnect from DDE server 

HeiplContenls Display help information 

Page 25 of28 



Toolbar Buttons Synect Simulator User Guide 

This page left intentionally blank 

Page 26 of28 



Synect Simulator User Guide DDE Services 

Appendix C DDE Services 

Windows Dynamic Data Exchange (DDE) provides a mechanism for 
applications to exchange data. The Simulator and the STD Monitor use DDE 
so that the Simulator can tell the STD Monitor the current state of the 
application, which transitions are enabled etc.. The Simulator also provides 
other DDE topics so that third party products, such as Wonderware's InTouch 
SCADA package, can be driven from the Simulator. 

The service name is Synect. The topic and item names are as follows: 

Topic: SynectMonitorData 
Item: Currentlnfo 
This topic and item is reserved for use with the STD Monitor application. 

Topic: SynectApplicationNames 
Item: "STD Names" 
This topic allows a client to find out the names of the STDs in the application. 
The client issues a one-off request for this data (i.e. advise loop is not 
supported). The names are returned separated by carriage return (ASCII 13 
decimal) and linefeed (ASCII 10 decimal), the whole string being terminated 
with a null (ASCII 0). For example, if an application consisted of3 STDS 
"STD1'" "STD2" and "STD3", the information returned would be: 

STD1 <cr><l£>STD2<cr>l£>STD3<nul> 

Topic: SynectApplicationNames 
Item: "RWINames" 
This topic allows a client to find out the names of the real-world inputs in the 
application. The client issues a one-off request for this data (i.e. advise loop is 
not supported). The names are returned separated by carriage return (ASCII 13 
decimal) and linefeed (ASCII 10 decimal), the whole string being terminated 
with a null (ASCII 0). 

Topic: SynectApplicationNames 
Item: "RWONames" 
This topic allows a client to find out the names of the real-world outputs in the 
application. The client issues a one-off request for this data (i.e. advise loop is 
not supported). The names are returned separated by carriage return (ASCII 13 
decimal) and linefeed (ASCII 10 decimal), the whole string being terminated 
with a null (ASCII 0). 

Topic: SynectSTDStates 
Item: Name of STD 
This topic allows a client to find out the names of the states in the specified 
STD. The client issues a one-off request for this data (i.e. advise loop is not 
supported). The names are returned separated by the tab character (ASCII 9 
decimal), the whole string being terminated with a null (ASCII 0). 

Page 27 of28 



DDE Services 

Page 28 of28 

Topic: SynectStateData 
Item: Name of STD 

Synect Simulator User Guide 

This topic allows a client to find out the current state of the specified STD. The 
client should establish an advise loop - the Simulator will then notify the client 
whenever the state changes. The fonnat of the STD name is exactly as listed in 
the Select STD To Display dialog in the STD Monitor application. The 
Simulator returns a data handle from which the client copies the state name. 

Topic: SynectRWICommandedStateData 
Item: Name of real world input 
This topic allows a client to interact with the R WI Status listbox used in the 
Simulator. The client should establish an advise loop - the Simulator will then 
notify the client if the user clicks on an R WI in the listbox. The client may also 
poke a new value, in which case, the R WI Status listbox will be updated 
accordingly. The commanded status of the R WI is specified as a 2 byte string 
with the first character being character '0' to denote unset or character '1' to 
denote set and the second character being zero (string terminator). 

Topic: SynectRWOlnvokedData 
Item: Name of real world output 
This topic allows a client to be notified whenever a real world output is 
invoked. The client should establish an advise loop - the Simulator will then 
notify the client when the R WO is invoked. The R WO status is returned as a 
boolean in the same format as specified for SynectR WICommandedStateData 
topic above. After the R WO has been invoked, the Simulator will return the 
status denoting the set state. The client must then poke the R WO to reset the 
status to the unset state. 

A weakness in this scheme becomes apparent when the user changes the current 
position in the event log (by means of the Simulator Control dialog). The state 
of each STD is available at each record in the event log but no infonnation 
exists about the invocation ofR WOs. Consequently, if the user changes the 
current position in the event log, clients will be notified of the current state but 
no notification regarding R WOs will be given. 



Synect 

C Code Generator 
User Guide 

Version 1.6 

Hopkinson Computing Limited 
29 Deepdale, Pine Hills, Guisborough 

Cleveland, TS 14 8JY 
England 

Tel/Fax: +44 (0) 1287638606 
email: synect@hopkinsn.demon.co.uk 



© Copyright 1994, 1995, 1996, 1997 Hopkinson Computing Limited. All rights reserved. 

Synect is a registered trademark ofHopkinson Computing Limited 
Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation. 

Information in this User Guide is subject to change without notice and does not represent a commitment on the 
part ofHopkinson Computing Limited. 

The software described in this User Guide is furnished under a license agreement or nondisclosure agreement and 
may be used or copied only in accordance with the tenns of the agreement. No part of this User Guide may be 
reproduced or transmitted in any fonn or by any means, electronic or otherwise, including photocopying and 
recording, for any purpose, without the express written permission ofHopkinson Computing Limited. 

Document History 

10June 1996 
Re-issue reflecting C Code Generator V1.3 - new cover sheet and chapter 1. 

28 October 1996 
Re-issue reflecting C Code Generator V1.4 - changes to cover sheet and chapter 5. 

30 April 1997 
Re-issue reflecting C Code Generator V1.5 & Vl.6 - changes to cover sheet, contents and chapters 2 to 5. 



Synect C Code Generator User Guide Contents 

Chapter 1 

Chapter 2 

ChapterJ 

Chapter 4 

Chapter 5 

Contents 

Introducing Synect •••••••••••••••••••••••••••••••••••••••••••••••••• 1 

User Interface ......... ........................................... .................. 1 

The Method .............................................................. ... ....... 1 

Synect Documentation. ...... .................... ........... ............. ..... 1 

The Tools ............................................................................ 2 

Docwnent Conventions .............. ......... ...... ...... .......... ......... 2 

Getting Started ........................................................ . 

System Requirements ......................................................... . 

Installation .......................................................................... . 

Starting the C Code Generator .......................................... .. 

On-Line Help .................................................................... . 

Basic Concepts ...................................................... . 

J 

3 

3 

4 

4 

5 

Scope Of The Code Produced ........................ ........... ... ....... 5 

Data-oriented .............. .... ............... ... ...... .... ................ .... 5 

Code-oriented .............. ... .................. ..... ..... ...... .......... .... 5 

Files Generated ....... ....... ... ........ .... ... ....... .......... ........ ..... ...... 5 

Data-oriented .. ... ............. ........................ ........................ 5 

Code-oriented . .................................. ................ .............. 6 

The Configuration File (code-oriented variant only) ........... 6 

Format Of The Mapping File ............ .......... ..................... 6 

Open An Application ............................................. . 7 

Opening An Application ...................................................... 7 

Code Options ......................................................... . 

Interrupt-Driven Or Scan-Based ........................................ .. 

Interrupt-Driven .............................................................. . 

Scan-Based ...................................................................... . 

D · t' 0 t' lagnos IC pions ............................................................ .. 

Event Logging ................................................................. . 

Host Messaging ............................................................... .. 

Generating The Code ......................................................... . 

9 

9 

9 

9 

10 

10 

10 

10 

Page i ofii 



Contents Synect C Code Generator User Guide 

This page left intentionally blank 

Page ii ofii 



Synect C Code Generator User Guide Introducing Synect 

1 Introducing Synect 

Synect is a set of software tools which helps the designer of a control system to 
produce a specification which is clear, precise and free of errors. Synect 
combines the ease of use of a graphical user interface, with a widely used 
diagrammatic notation and the power of mathematical modelling. 

User Interface 

The Method 

The Synect™ tools run on the Microsoft® Windows™ operating system. As 
such, you need to know how to use Windows before you use Synect. In 
particular, you will need to know how to use the mouse to click, double-click 
and drag. You will also need to know how to interact with menus, dialogs and 
how to move, resize and close windows. For information, refer to the 
Microsoft Windows User's Guide. 

Synect uses an object-based method to enable you to model the system you 
want to control. It is useful to have some knowledge of 
object-based/object-oriented analysis and design techniques before attempting 
to use Synect in earnest. 

Synect Documentation 

Each of the Synect tools has an associated User Guide. This User Guide 
explains how to use each of the functions available in the C Code Generator. It 
also explains why you might want to use the function. 

Each application has context-sensitive on-line help. The C Code Generator 
on-line help contains a "How Do I?" section, including a "How Do I Use The 
C Code Generator?" sub-section for first-time users. 

A Tutorial is also provided which offers a worked example and shows how each 
of the tools is used with the example application. 

Page 1 of10 



Introducing Synect Synect C Code Generator User Guide 

The Tools 

The tools which make up the Synect toolset are: 

Application Editor graphical means of defining the application. 

Compiler check the specification for consistency and 
possible warnings and generate a mathematical 
model of the application. 

Analyzer ability to check for design errors such as deadlock 
(where the system "hangs") and unwanted state 
combinations. 

Simulator provides the ability to interactively "drive" the 
application or replay past behaviour of the live 
control system. 

STD Monitor animates the specification (used in conjunction 
with the Simulator or the live control system). 

C Code Generator generate ANSI-standard C code to implement the 
application. 

Neuron C Generator generate Neuron C to run on one or more nodes 
on an Echelon Lon Works network to implement 
a distributed control solution. 

Ladder Logic Generator generate relay ladder logic to run on a 
programmable controller. 

Document Conventions 

Page 2 oflO 

The User Guide adopts the following conventions: 

application name 

KEY NAME 

MenulChoice 

description 

text that you type or that you see on the screen. 
keyboard keys, such as ENJ'ER. CTRL or DEL. 

a menu option, such as FilelExit denoting choose the 
Exit command from the File menu. 
description of a term with a specific meaning. 



Synect C Code Generator User Guide Getting Started 

2 Getting Started 

This chapter describes: 

• 

• 
• 
• 

the hardware and software requirements which you need to be able to 
use Synect. 

how to install the C Code Generator. 

how to start the C Code Generator. 

the C Code Generator window. 

System Requirements 

Installation 

The Synect C Code Generator requires that you use: 

• a 486 (or better) running Windows 3.1. 

• 
• 

VGA monitor in 800 x 600 mode (or higher resolution). 

a mouse or other pointing device (such as a trackball). 

Other Synect tools also requires that you have the following: 

• 8 MByte RAM. 
• very large permanent swap file (recommended size is 20 MByte). 

• at least 10 MByte free disk space per application. 

If you haven't installed Synect yet, you'll need to do that first. Check that your 
computer satisfies the requirements listed above before starting the installation. 
The first floppy disk contains file install. txt which contains any updates to the 
installation process - you should read this file before installing the software. 

1 Put floppy disk 1 into your floppy disk drive. 

2 Start Windows (by typing win at the DOS prompt if necessary). 

3 Choose FiI_IRun from the Program Manager. 

4 Type a:\install then press ENrER. 

5 The installation program will now guide you through the installation 
process. Simply answer the questions to specifY which Synect tools 
you want to install. 

6 When installation is complete, you can remove the floppy disk from 
the drive. You should now have a Program Manager group containing 
an icon for each of the installed Synect tools. 

7 Plug the dongle into the computer's parallel port. 

Page 30flO 



Getting Started Synect C Code Generator User Guide 

8 Read the installed file readme.txt for details of any changes to the 
product or documentation since the documentation was printed. 

Starting the C Code Generator 

Ensure that the Program Manager window is on display. If the Synect window 
isn't visible, use the Window menu to open it. Double-click on the C Code 
Generator icon or use the keyboard arrow key to select the icon and then press 
ENTER. 

When using the C Code Generator, the window displays the following dialog: 

Title bar 
The title bar shows the product title Synect C Code Generator and the name of 
the application which has been loaded (if any). 

Control-menu box 
Allows you to move or close the window. Also allows you to open the control 
panel or obtain information about the C Code Generator. 

On-Line Help 

Page 4 of10 

Click on the "Help" button to take you to the help contents page. The help 
information is shown in a separate window. 



Synect C Code Generator User Guide Basic Concepts 

3 Basic Concepts 

The Synect Application Editor enables you to specify a model of your 
application. See the Application Editor User Guide, chapter 3, Basic Concepts 
for more information relating to defining the model. The Compiler derives a 
mathematical model from your specification. The C Code Generator generates 
an ANSI standard C program from the mathematical model. 

Scope Of The Code Produced 

The C Code Generator can produce code in two different forms. The first 
form is data-oriented, where the relationships between states and transitions are 
held in arrays. The second form is code-oriented, resulting in an "if" statement 
for each transition. 

Data-oriented The C Code Generator partitions the code it produces into several files. It does 
not have sufficient information to be able to produce a complete 
implementation. This is partly due to the generated code being 
platform-independent. Some of the files therefore contain stubs which must be 
completed or replaced with the appropriate software. For example, the C Code 
Generator creates a function for each real-world input, where the function 
simply returns TRUE. It is for the developer to code the mechanism by which 
the status of the real-world input is determined (by polling a sensor, for 
example). 

The "engine" generated by the C Code Generator is data-driven. The C code 
for the engine is, however, also supplied. This code must not be manually 
altered - to do so may introduce inconsistencies into the software or violate the 
logic defined in your specification. 

Code-oriented The C Code Generator partitions the code into a C source file and a header file 
(with extension ".chl"). A configuration file with extension ".cin" provides the 
facility for specifying #define macros to replace real-world input or real-world 
output function calls. It also enables an include filename. 

Files Generated 

Data-oriented 

The name of each file generated is derived from the name of the application but 
with different extensions for each file: 

".c" (C source) 
".h" (C include) 

The engine. 
Include file. 

Page 5 oflO 



Basic Concepts Synect C Code Generator User Guide 

Code-oriented 

".env" (C source) 

".rwi" (C source) 

".rwo" (C source) 

".std" (C source) 

".c" (C source) 
".chl" (C include) 
If.cin" 

Envirorunent functions. This file contains stubs 
for a function which is called on completion of 
each scan (scan-based code only) and a function 
which is called if a deadlock is detected. 
Real-world inputs. This file contains a stub for 
each real-world input. If the interrupt-driven 
code was requested, this file also contains a stub 
for the interrupt-level invocation of each 
real-world input. 
Real-world outputs. This file contains a stub for a 
function called at initialisation which should 
initialise the envirorunent as required. It also 
contains a stub for each real-world output. 
Produced if the Include call to function per STD 

checkbox was checked. Contains the function for 
each STD so that you can add code which is to be 
executed when an STD is in a particular state. 

The engine. 
Include file. 
Configuration file. 

The Configuration File (code-oriented variant only) 

To edit the configuration file, select the code-oriented variant by checking the 
"Target (code-oriented)" checkbox and then pressing the "Edit Config" button. 
This starts a simple text editor with the configuration file loaded. If no 
configuration file exists, a new file is created and populated with commented 
out entries. 

Fonnat Of The Consider the following example: 
Mapping File 

Page 6 ofl0 

HEADER FILENAME=user hh.h 
RWI=rwI go,switch contact==MADE 
RWO=rwo=start_feed_conveyor,ffiotor_ffi2 command=RUN 

It is worth noting the following points: 

• The format of a line defining the code to be substituted for a real world 
input is: 

RWI=real_world_input_name,code_to_substitute 

• The format of a line defining the code to be substituted for a real world 
output is: 

semicolon) 

• The C Code Generator performs a case-sensitive read of the mapping 
file and will not ignore spaces unless to the right of a comma. 



Synect C Code Generator User Guide Open An Application 

4 Open An Application 

When you first start the Synect C Code Generator, none of the options are 
enabled and the "Generate" button is disabled. This is because you must first 
open an application. 

When you compiled your application using the Compiler, it created a file with 
the name of your application but with the extension" .net". This file is loaded 
into the C Code Generator. 

Opening An Application 

To open an application, click on the "Load" button. The standard file open 
dialog will then be started, allowing you to specify the name of the file from 
which the application is to be loaded. The dialog will list files with extension 
".nee'. 

Having loaded the application, the radio buttons and checkboxes will be 
enabled and the "Generate" button will be enabled. 

Page 70f10 



Open An Application Synect C Code Generator User Guide 

This page lell intentionally blank 

Page 8 0[10 



Synect C Code Generator User Guide Code Options 

5 Code Options 

This chapter describes the different options which will determine how your 
application logic is invoked and alternatives relating to testing and diagnostic 
capabilities. 

Interrupt-Driven Or Scan-Based 

Interrupt
Driven 

Scan-Based 

The first choice is between interrupt-driven and scan-based code. The 
interrupt-driven alternative may be more efficient in terms of processor loading 
and should lead to faster response times, but requires that the target 
environment supports an interrupt-driven approach. It also requires more 
involvement from the developer. 

If the interrupt-driven alternative is chosen, each real world input will result in 
2 functions being generated. The first of these is is used at non-interrupt level 
and simply allows the engine to determine the last known status of the 
real-world input at any time. The second is the function which is to be invoked 
at interrupt level when the real-world input becomes enabled (i.e. returns 
TRUE). Because the code generated is independent of the target platform, the 
control of access to critical sections of code needs to be implemented by the 
developer. 

If the scan-based version is chosen, you can check the Include call to function per 
STD checkbox to instruct the C Code Generator to add code such that you can 
petform routine funcrionality depending on the state of an STD. For the 
data-oriented C code, a separate funcrion is created for each STD and a 
parameter notifies the function of the STD's current state. This function is 
called every scan. For the code-oriented variant, each STD state is assumed to 
have its own function to be called. 

The code variants available are as follows: 

Target (data-oriented) The code which you will run in the target 
environment. 

Integration (data-oriented) This is an interactive variant, using printf 
statements to inform you of the current system 
state, which transitions are enabled etc. and 
allowing you to decide which transition to fire. 
This variant is intended for use where you want 
to integrate parts of your controlled system but 
simulating the remainder and "driving" it 
manually. 

Target (code-oriented) This option generates the alternative form of C 
code, producing "switch" and "if" statements. 

Page 9 of10 



Code Options Synect C Code Generator User Guide 

Diagnostic Options 

Event 
Logging 

Host 
Messaging 

Event logging and host messaging are available for data-oriented variants, but 
not for the code-oriented variant. Within the data-oriented variants, event 
logging and host messaging are supported by both scan-based and 
interrupt-driven implementations. 

If you check the "Write to event log" checkbox, the generated code will log the 
testing of real world inputs and the firing of transitions to an event log file. The 
event log will be circular such that when it is full it will overwrite the oldest 
entry. The event log'S capacity is 50 records by default but you can change this 
via the editbox. 

The event log maintained by the control program can then be loaded into the 
Simulator to replay the sequence of activities which occurred. 

If you check the "Send messages to host" checkbox, the generated code will call 
functions to send information to a host device when a real world input is tested 
and when a transition is fired. The body of these functions is not defined 
because it is dependent on the target environment. This functionality is 
provided to enable a Synect Server running on a PC to obtain information 
about the behaviour of the live control system such that it can be made available 
for presentation to operational staff. Presentation of the information could be 
via the Synect STD Monitor or a third party product, such as a SCADA 
product. 

Generating The Code 

Page 10 ofl0 

Click on the "Generate" button to create the files containing the C code 
conforming to the options you specified. 



Synect 

Distributed Neuron C 
Code Generator 

User Guide 

Version 2.2 

Hopkinson Computing Limited 
29 Deepdale, Pine Hills, Guisborough 

Cleveland, TS14 8JY 
England 

Tel/Fax: +44 (0) 1287 638606 
email: synect@hopkinsn.demon.co.uk 



© Copyright 1994, 1995, 1996 Hopkinson Computing Limited. All rights reserved 

Synect is a registered trademark of Hopkinson Computing Limited 
Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation. 

Information in this User Guide is subject to change without notice and does not represent a commitment on the 
part of Hopkinson Computing Limited. 

The software described in this User Guide is furnished under a license agreement or nondisclosure agreement and 
may be used or copied only in accordance with the terms of the agreement. No part of this User Guide may be 
reproduced or transmitted in any form or by any means, electronic or otherwise, including photocopying and 
recording. for any purpose, without the express written permission ofHopkinson Computing Limited. 

Neuron C Consultant: Dr. Rob Harrison 

Document History 

lOJune 1996 
Re-issue reflecting Neuron C Generator V2.0 - complete re-write. 

28 October 1996 
Re-issue reflectiing Neuron C Generator V2.1 and V2.2 - changes to cover, contents, chapters 2, 3, 4 & 5. 



Synect Neuron C Code Generator User Guide Contents 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

ChapterS 

Contents 

Introducing Synect ................................................. . 

User Interface ..................................................................... . 

1 

1 

The Method ........................................... .................. ........... 1 

Synect Documentation ........... ................. ......... ... ...... ... .... ... 1 

The Tools ............................................................................ 2 

Document Conventions ..................................................... . 

Getting Started ...................................................... . 

2 

3 

System Requirements .. .... .................................................... 3 

Installation ..... .... ..... ... ........... .......... ........... ....... ..... ....... ....... 3 

Starting the Neuron C Code Generator ............................... 4 

On-Line Help ..................................................................... 5 

Basic Concepts ...................................................... . 7 

How It Works ..................................................................... 7 

Mapping A Transition To A When Statement ................... 7 

Include Files ................................................ ........... .......... 8 

The Mapping File ................................................................ 9 

Format Of The Mapping File ........... ....... .... ....... ......... ... ... 9 

Open An Application. ••••••••••••••••••.•••••••••••••••••••• ••• ••• 11 

Opening An Application ...................................................... 11 

Code Options .................................. ••••••••••••••••••• ••.• 13 

Defining Nodes ........... ,....................................................... 13 

Adding A New Node ........................................................ 13 

Deleting A Node ................................... ................. .......... 13 

Changing A Node's Name ................................................ 13 

Renaming A Node Id ............. ;......................................... 13 

Defining Object To Node Mapping ..................................... 14 

Edit The Mapping File .. .... ...... ............ ...... .... .... ...... ... ...... .... 14 

Generate The Source Code And Include Files............ ...... ..... 14 

Page i ofii 



Contents Synect Neuron C Code Generator User Guide 

This page left intentionally blank 

Page ii ofii 



Synect Neuron C Code Generator User Guide Introducing Synect 

1 . Introducing Synect 

Synect is a set of software tools which helps the designer of a control system to 
produce a specification which is clear, precise and free of errors. Synect 
combines the ease of use of a graphical user interface, with a widely used 
diagrammatic notation and the power of mathematical modelling. 

User Interface 

The Method 

The Synect™ tools run on the Microsoft® Windows™ operating system. As 
such, you need to know how to use Windows before you use Synect. In 
particular, you will need to know how to use the mouse to click, double-click 
and drag. You will also need to know how to interact with menus, dialogs and 
how to move, resize and close windows. For infonnation, refer to the 
Microsoft Windows User's Guide. 

Synect uses an object-based method to enable you to model the system you 
want to control. It is useful to have some knowledge of 
object-based/ object-oriented analysis and design techniques before attempting 
to use Synect in earnest. 

Synect Documentation 

Each of the Synect tools has an associated User Guide. This User Guide 
explains how to use each of the functions available in the Neuron C Code 
Generator. It also explains why you might want to use the function. 

Each application has context-sensitive on-line help. The Neuron C Code 
Generator on-line help contains a "How Do I?" section, including a "How Do I 
Use The Neuron C Code Generator?" sub-section for first-time users. 

A Tutorial is also provided which offers a worked example and shows how each 
of the tools is used with the example application. 

Page 1 of14 



Introducing Synect Synect Neuron C Code Generator User Guide 

The Tools 

The tools which make up the Synect toolset are: 

Application Editor graphical means of defining the application. 

Compiler check the specification for consistency and 
possible warnings and generate a mathematical 
model of the application. 

Analyzer ability to check for design errors such as deadlock 
(where the system "hangs") and unwanted state 
combinations. 

Simulator provides the ability to interactively "drive" the 
application or replay past behaviour of the live 
control system. 

STD Monitor animates the specification (used in conjunction 
with the Simulator or the live control system). 

C Code Generator generate ANSI-standard C code to implement the 
application. 

Neuron C Generator generate Neuron C to run on one or more nodes 
on an Echelon Lon Works network to implement 
a distributed control solution. 

Ladder Logic Generator generate relay ladder logic to run on a 
programmable controller. 

Document Conventions 

Page 20f14 

The User Guide adopts the following conventions: 

application name 

KEY NAME 
MenulChoice 

description 

text that you type or that you see on the screen. 
keyboard keys, such as ENTER, CTRL or DEL. 

a menu option, such as FilelExit denoting choose the 
Exit command from the File menu. 
description of a term with a specific meaning. 



Synect Neuron C Code Generator User Guide Getting Started 

2 Getting Started 

Thls chapter describes: 

• the hardware and software requirements which you need to be able to 
use Synect. 

• how to install the Neuron C Code Generator. 

• how to start the Neuron C Code Generator. 

• the Neuron C Code Generator window. 

System Requirements 

Installation 

The Synect Neuron C Code Generator requires that you use: 

• a 486 (or better) running Windows 3.1. 

• 
• 

VGA monitor in 800 x 600 mode (or higher resolution). 

a mouse or other pointing device (such as a trackball). 

Other Synect tools also requires that you have the following: 

• 8 MByte RAM. 

• 
• 

very large permanent swap file (recommended size is 20 MByte). 

at least 10 MByte free disk space per application. 

If you haven't installed Synect yet, you'll need to do that first. Check that your 
computer satisfies the requirements listed above before starting the installation. 
The first floppy disk contains file install. txt which contains any updates to the 
installation process - you should read thls file before installing the software. 

1 Put floppy disk 1 into your floppy disk drive. 

2 Start Windows (by typing win at the DOS prompt if necessary). 

3 Choose FilelRun from the Program Manager. 

4 Type a:\install then press ENTER. 

S The installation program will now guide you through the installation 
process. Simply answer the questions to specify which Synect tools 
you want to install. 

6 When installation is complete, you can remove the floppy disk from 
the drive. You should now have a Program Manager group containing 
an icon for each of the installed Synect tools. 

7 Plug the dongle into the computer's parallel port. 

Page 3 of14 



Getting Started Synect Neuron C Code Generator User Guide 

8 Read the installed file readme. txt for details of any changes to the 
product or documentation since the documentation was printed. 

Starting the Neuron C Code Generator 

Page 4 of14 

Ensure that the Program Manager window is on display. If the Synect window 
isn't visible, use the Window menu to open it. Double-click on the Neuron C 
Code Generator icon or use the keyboard arrow key to select the icon and then 
press ENI'ER. 

When using the Neuron C Code Generator, the window displays the following 
diaiog: 

Title bar 
The title bar shows the product title Synect Distributed Neuron C Code Generator 

and the name of the application which has been loaded (if any). 

Control-menu box 
Allows you to move or close the window. Also allows you to open the control 
panel or obtain information about the Neuron C Code Generator. 

Objects listbox 
Reading from left to right, each row of the listbox contains an object name, a 
node id and a node name. This listbox shows, for each object defined in the 



Synect Neuron C Code Generator User Guide Getting Started 

object hierarchy, the node to which it is allocated and the name of the node. In 
the above example, the "Alarm" object is the only object assigned to the "uu" 
node - all of the other objects are assigned to node "machine". The name 
associated with node "uu" is "Node for user ilflogic". 

Real World Inputs listbox 
Reading from left to right, each row of the listbox contains a real world input 
name and its corresponding Neuron C code. This listbox shows, for each real 
world input, the Neuron C code which will be substituted when the 
"Generate" button is pressed. 

Real World Outputs listbox 
Reading from left to right, each row of the listbox contains a real world output 
name and its corresponding Neuron C code. This listbox shows, for each real 
world output, the Neuron C code which will be substituted when the 
"Generate" button is pressed. 

On-Line Help 

Click on the "Help" button to take you to the help contents page. The help 
information is shown in a separate window. 

Page 5 of14 



Getting Started Synect Neuron C Code Generator User Guide 

This page left intentionally blank 

Page 6 of14 



Synect Neuron C Code Generator User Guide Basic Concepts 

3 Basic Concepts 

The Synect Application Editor enables you to specify a model of your 
application. See the Application Editor User Guide, chapter 3, Basic Concepts 
for more information relating to defining the model. The Compiler derives a 
mathematical model from your specification. The Neuron C Code Generator 
generates a C program from the mathematical model which can then be 
compiled and run on an Echelon Lon Works Neuron target environment. 

How It Works 

Mapping A 
Transition 
To A When 
Statement 

Consider a node on the network which is to be responsible for the logic 
corresponding to STD "Switch.main". Assume that this STD contains a 
transition as follows: 

rwi switch on 

This transition specifies that when the STD is in state "Off" and the condition 
"rwi_switch_on" detects that the user has pressed the appropriate button, the 
real world output "rwo_illuminate_lamp" is invoked to apply power to the 
lamp and the STD changes state to state "On". 

Each STD has a corresponding integer variable in the generated Neuron C code 
to remember the current state of the STD. The variable for STD 
"Switch.main" will be "nvo_Switch_main". Assume that constants are defined 
for states "Off" and "On" to be 1 and 2 respectively. The transition can be 
mapped to the following when statement: 

when (nvo_Switch_main == Off 
&& rwi_switch_onO == TRUE) 

{ 

} 

nvo_Switch_main = On; 
rwo_illurninate_lampO; 

Assume further that the real world input "rwi_switch_on" is determined by 
reading an if 0 pin and that an if 0 pin controls whether the lamp is illuminated 
as per the following declarations: 

10_3 input bit 
10_2 output bit 

switch_io_line 
lamp_io_line 

Page 7 of14 



Basic Concepts Synect Neuron C Code Generator User Guide 

Defining that "rwi_switch_on" is to be translated to "io_in(switch_io_line)==1" 
and "rwo_illuminate_larnp" is to be translated to "io_out~amp_io_line, 1)", the 
when statement becomes: 

when (nvo_Switch_main == Off 
&& io_in(switch_io_line)==1) 

{ 

} 

nvo_Switch_main = On; 
io_out~amp_io_line,1); 

In order to optimise the use of when clause table space when the .nc source file 
is compiled using the Echelon compiler, the individual conditions within the 
when statement are moved to a function: 

boolean synecCtO 0 
{ 

} 

return (nvo_Switch_main == Off 
&& io_in(switch_io_line)==1); 

when (syneet_tOO) 
{ 

} 

nvo_Switch_main = On; 
io_out~amp_io_line,1); 

Include Files There are two different aspects to include files: 

Page 80f14 

• Files which are read by the Neuron C Code Generator and included 
into the Neuron C source code (into files with extension ".nc"). 

• Include files which the Neuron C Code Generator creates which are 
referenced by iinclude directives in the Neuron C source code. 

There are two files for each target node which fall into the first category: 

• 

• 

The first of these contains header information which is copied to the 
start of the Neuron C source code. This will typically contain 
compiler directives such as ipragma and Idefine. 

The second contains the initialisation code for the when reset 

statement. The contents of the file are copied into the Neuron C 
source code to be executed in the when reset task body. 

The Neuron C Code Generator creates four include files for each node. These 
have the same filename as the node name and their extensions are: 

• ".hO" - contains a Idefine to convert any variable names longer than 
16 characters to a unique name which is 16 characters in length. This 
overcomes the Echelon compiler constraint limiting variable names to 
16 or less characters in length. 



Synect Neuron C Code Generator User Guide Basic Concepts 

• 
• 

".h1" - contains a Idefine for each state name. 

tt,h2" - contains a network input lnt nVi_var_name statement for each 
STD which the node needs to reference which is hosted on a different 
node. 

• "h3" - contains the function definitions containing the individual 
conditions to be evaluated in when statements (see section "Mapping A 
Transition To A When Statement" above). 

The Mapping File 

Format Of 
The Mapping 
File 

The mapping file stores the configured data which defines for each target node: 

• The node's id and name. 

• The objects which are to be mapped to the node. 

• The name of the include file to be copied into the header of the 
generated Neuron C. 

• The name of the include file to be copied into the task body of the when 

reset statement. 

• The Neuron C which is to be substituted for each real world input. 

• The Neuron C which is to be substituted for each real world output. 

The mapping file has the same name as the application but with extension 
".nod". If you have not created the mapping file when the Neuron C 
Generator loads an application, it will issue the following warning message (but 
will still carry on): 

Couldn't open processing node definition file <file_name> 

When the "Edit Config" button is pressed, a new version of the mapping file 
will be created if the configuration has changed. In order to minimise the risk 
of ryping errors, the file will contain commented-out references to objects 
which are not mapped to a node and to real-world inputs and real-world 
outputs not referenced by any object. When the "Generate" button is pressed, a 
new version of the mapping file is always created. The original is copied to the 
file with same name but extension" .no 1". 

The following mapping file content was used for the example screen layout 
shown in Chapter 1: 

NODE=machine 
NAME=Node for machine logic 
HEADER FILENAME=machine.hh 
WHEN RESET FILENAME=machine.hwr 
OBJECT=LonUserIDerno 
OBJECT=ModelSelector 
OBJECT=AutolVelocitylSequence 
RWI=switch auto mode,nvi switch state==AUTO 
RWI=switch-man mode,nvi switch state==MANUAL 
RWI=new manual-demand speed,changes(nv manual demand speed) 
Rwo=set=motor_to_manual_speed,motor_demand_speed=nv_manual_demand_speed 

Page 90f14 



Basic Concepts Synect Neuron C Code Generator User Guide 

Page 10 of14 

RWO=reset timer,seq time=TIME 
RWO=set forward slow, motor demand speed=50 
RWI=timer expired, timer expires{seq time) 
RWO=set forward fast, motor demand speed=200 
RWo=set-reverse-slow,motor-demand-speed=-50 
RWOaset-reverse-fast,motor-demand-speed=-200 
RWo=stop_motor,motor_demand_speed~O 

NODE-uif 
NAME=Node for user i/f logic 
HEADER ~ILENAME=uif.hh 

WHEN RESET FILENAME=uif.hwr 
OBJECT=Alarm 
RWI-velocity high, (nvi motor speed>150) 1 I (nvi motor speed<-150) 
RWO=set buzzer on,io out (buzzer 10 line, ON) - -
RWI=velocity ok, (nvi-motor speed<=lSO)&&(nvi motor speed>=-150) 
Rwo=set_buzzer_off, io_out (buzzer_io_line,OFF) -

It is worth noting the following points: 

• 

• 

• 

By convention, the code to be copied into the header of the generated 
code is stored in a file with extension" .hh". 

By convention, the code to be copied into the when reset task body of 
the generated code is stored in a file with extension" .hwr". 

The format of a line defining the code to be substituted for a real world 
input is: 

RWI=real_world_input_name,code_to_substitute 

• The format of a line defining the code to be substituted for a real world 
output is: 

RWO=real_world_output_name,code_to_substitute(wlthout the 
semicolon) 

• The Neuron C Code Generator perfonns a case-sensitive read of the 
mapping file and will not ignore spaces unless to the right of a comma. 



Synect Neuron C Code Generator User Guide Open An Application 

4 Open An Application 

When you first start the Synect Neuron C Code Generator, the "Edit Nodes", 
"Edit Config" and "Generate" buttons are disabled. This is because you must 
first open an application. 

When you compiled your application using the Synect Compiler, it created a 
file with the name of your application but with the extension" .net". This is the 
file which is to be loaded into the Neuron C Code Generator. 

Opening An Application 

To open an application, click on the "Load" button. The standard file open 
dialog will then be started, allowing you to specify the name of the file from 
which the application is to be loaded. By default, the dialog will list files with 
extension ".net". 

If you have previously generated code for this application, a mapping file will 
have been created containing the node names and the mapping of objects to 
each of these nodes. When you load the application, this file is automatically 
read and the listboxes populated accordingly. The mapping file is a file whose 
name corresponds to the application name and with extension ".nod". 

If this is the first time you've loaded this application into the Neuron C Code 
Generator, you'll get a warning message to notify you that the mapping file 
couldn't be found. Simply click on the "Ok" button and continue as normal. 

Having loaded the application, the listboxes and buttons will be enabled. 

Page 11 of14 



Open An Application Synect Neuron C Code Generator User Guide 

This page left intentionally blank 

Page 12 of14 



Synect Neuron C Code Generator User Guide Code Options 

5 Code Options 

This chapter describes the options which affect how the Neuron C code is 
generated once the Neuron C Code Generator has been started. The Neuron 
C Code Generator provides the ability to configure the mapping information 
interactively. 

Interactively, you can use the Neuron C Code Generator to: 

• Define the number of nodes. 

• 
• 

• 
• 

Define the id and name of each node. 

Define, for each object in the Object Hierarchy, the node to which it 
is to be mapped i.e. which node will host the code corresponding to 
that object's STDs. 

Edit the mapping file (.nod). 

Generate the source code and include files. 

Defining Nodes 

Adding A 
New Node 

Deleting A 
Node 

Changing A 
Node's Name 

Renaming A 
Node Id 

Click on the "Edit Nodes" button to start the Define/Edit Nodes dialog to add 
or delete nodes. This dialog can also be used for changing a node's name or to 
start the Rename Node Id dialog to rename the node id. 

Click in the Node Id editbox and type a new name of up to eight characters. 
The Node Id must be a valid DOS filename. Click in the Node Name editbox 
and type a descriptive name of up to 49 characters (free format) and then click 
on the "Add" button. 

To use an existing node id and name as the basis for a new node (to minimise 
typing), click on the corresponding entry in the Iistbox before clicking in the 
Node Id editbox. 

Click on the corresponding entry in the Iistbox and then click on the "Delete" 
button. 

Click on the corresponding entry in the Iistbox and then click in the Node 
Name editbox. Use the keyboard to edit the name as required and then click 
on the "Edit" button. 

Click on the corresponding entry in the Iistbox and then click on the "Rename" 
button to start the Rename Node Id dialog. Type the new node id and then 
click on the "Ok" button. 

Page 13 of14 



Code Options Synect Neuron C Code Generator User Guide 

Defining Object To Node Mapping 

To specify the node to which an object is to be mapped, either double-click on 
the object in the Objects listbox or single-click on it and click on the "Edit" 
button to the right of the Objects listbox. This will start the Select Node dialog. 

The Select Node dialog lists the nodes which you have defined. Either 
double-click on the desired entry or single-click on it and then click on the 
"Ok" button. 

To erase all object to node mappings, click on the "Clear All" button to the 
right of the Objects listbox. 

Note that all object to node mapping must be defined before Neuron C code 
can be generated. 

Edit The Mapping File 

Click on the "Edit Config" button to start a simple text editor to edit the 
mapping file (".nod" file). Before starting the editor, a new file will be created if 
the configuration has changed (or no mapping file was loaded). In this case, the 
original will be copied to a file with the same name but extension" .no 1". 

The editor is very similar to the Windows Notepad text editor. Features such as 
cut and paste can be used to edit the commented-out information which the 
Code Generator writes to the mapping file, thus minimising the risk of 
introducing typing errors. 

On exiting the editor, the Code Generator re-populates the listboxes from the 
mapping file. 

Generate The Source Code And Include Files 

Page 14 of14 

Clicking on the "Generate" button will cause the Code Generator to validate 
the mapping. If errors are found, such as objects not mapped to a node, you will 
be notified via a message box. If the mapping is valid, the Code Generator will 
create the source code and include files described in section 3, Basic Concepts. 

The Code Generator also generates a file with extension" .lhn" (Lon Works Live 
Monitoring). This file can be used by the Synect STD Monitor in conjunction 
with Echelon's DDE Server to monitor the live control system. See the STD 
Monitor user guide, chapter 3, Basic Concepts, Connecting To The Live 
Control System for details. 



Synect 

AlIen BradIey PLC5 
Ladder Logic Code Generator 

User Guide 

Version 2.2 

Hopkinson Computing Limited 
29 Deepdale, Pine Hills, Guisborough 

Cleveland, TS14 8JY 
England 

Tel/Fax: +44 (0) 1287 638606 
email: synect@hopkinsn.demon.co.uk 

WWW: http://www.hopkinsn.demon.co.uk 



© Copyright 1994, 1995, 1996, 1997 Hopkinson Computing Limited. All rights reserved. 

Synect is a registered trademark ofHopkinson Computing Limited 
Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation. 

[nformation in this User Guide is subject to change without notice and does not represent a commitment on the 
part ofHopkinson Computing Limited. 

The software described in this User Guide is furnished under a license agreement or nondisclosure agreement and 
may be used or copied only in accordance with the terms of the agreement. No part of this User Guide may be 
reproduced or transmitted in any fonn or by any means, electronic or otherwise, including photocopying and 
recording. for any purpose, without the express written permission ofHopkinson Computing Limited. 

Document History 

1 0 November 1996 
Re-issue reflecting Code Generator V2.0 - complete re-write to use configuration file and user-specified register 
for the state variable rather than a bit per Petri net place. 

31 January 1997 
Re-issue reflecting Code Generator V2.1 - add breakpoint and pause functionality. 

1 October 1997 
Re-issue reflecting Code Generator V2.2 - comments written in fonnat appropriate for RSLogix5 programming 
software. 



Synect A-B PLC5 Code Generator User Guide Contents 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

ChapterS 

Contents 

Introducing Synect ................................................. . 1 

User Interface. ... ................ ....... ................ ................ ...... ..... 1 

The Method ...... ......... ................................................... ...... 1 

Synect Documentation ........................................................ 1 

The Tools ............................................................................ 2 

Document Conventions. ..... .... ....... ...... ........... ..... ..... ... ....... 2 

Getting Started ............................................................................................................ .. 

System Requirements ......................................................... . 

3 

3 

Installation........................................................................... 3 

Starting the A-B PLCS Code Generator ............................... 4 

On-Line Help ..................................................................... 5 

Basic Concepts •• .................. •••••••••• ••.•••• ••• ••••••• •••••••• 7 

How It Works............................................. ........................ 7 

Configuration File ...... ... ..... ... ...... ...... ...... .... .......... ....... .... 7 

Open An Application. ••••• •••••••••• •••••••••• ••••••••• •••••••• ••• 9 

Opening An Application ........................... ........................... 9 

Code Options ...................... ,.................................. 11 

Edit The Configuration File ...... ...... ...... .......... ........ ........ ..... 11 

Generate The Source Code Files. ...... .... ....... ...... .......... ......... 11 

Page i ofii 



Contents Synect A-B PLC5 Code Generator User Guide 

This page left intentionally blank 

Page iiofii 



Synect A-B PLCS Code Generator User Guide Introducing Synect 

1 Introducing Synect 

Synect is a set of software tools which helps the designer of a control system to 
produce a specification which is clear, precise and free of errors. Synect 
combines the ease of use of a graphical user interface, with a widely used 
diagrammatic notation and the power of mathematical modelling. 

User Interface 

The Method 

The Synect™ tools run on the Microsoft® Windows™ operating system. As 
such, you need to know how to use Windows before you use Synect. In 
particular, you will need to know how to use the mouse to click, double-click 
and drag. You will also need to know how to interact with menus, dialogs and 
how to move, resize and close windows. For information, refer to the 
Microsoft Windows User's Guide. 

Synect uses an object-based method to enable you to model the system you 
want to control. It is useful to have some knowledge of 
object-based/object-oriented analysis and design techniques before attempting 
to use Synect in earnest. 

Synect Documentation 

Each of the Synect tools has an associated User Guide. This User Guide 
explains how to use each of the functions available in the Allen-Bradley PLCS 
Ladder Logic Code Generator. It also explains why you ruight want to use the 
function. 

Each application has context-sensitive on-line help. The Allen-Bradley PLCS 
Ladder Logic Code Generator on-line help contains a "How Do I?" section, 
including a "How Do I Use The Ladder Logic Code Generator?" sub-section 
for first-time users. 

A Tutorial is also provided which offers a worked example and shows how each 
of the tools is used with the example application. 

Page 1 ofll 



Introducing Synect Synect A-B PLCS Code Generator User Guide 

The Tools 

The tools which make up the Synect toolset are: 

Application Editor graphical means of defining the application. 

Compiler check the specification for consistency and 
possible warnings and generate a mathematical 
model of the application. 

Analyzer ability to check for design errors such as deadlock 
(where the system "hangs") and unwanted state 
combinations. 

Simulator provides the ability to interactively "drive" the 
application or replay past behaviour of the live 
control system. 

STD Monitor animates the specification (used in conjunction 
with the Simulator or the live control system). 

C Code Generator generate ANSI-standard C code to implement the 
application. 

Neuron C Generator generate Neuron C to run on one or more nodes 
on an Echelon Lon Works network to implement 
a distributed control solution. 

Ladder Logic Generator generate relay ladder logic to run on a 
programmable controller. 

Document Conventions 

Page 2 of 11 

The User Guide adopts the following conventions: 

application name 

KEY NAME 
MenulChoice 

description 

text that you type or that you see on the screen. 
keyboard keys, such as ENTER, C1RL or DEL. 

a menu option, such as FilelExit denoting choose the 
Exit command from the File menu. 
description of a term with a specific meaning. 



Synect A-B PLCS Code Generator User Guide Getting Started 

2 Getting Started 

This chapter describes: 

• the hardware and software requirements which you need to be able to 
use Synect. 

• how to install the AIlen-Bradley Ladder Code Generator. 

• how to start the Allen-Bradley Ladder Code Generator. 

• the Allen-Bradley Ladder Code Generator window. 

System Requirements 

Installation 

The Synect Allen-Bradley Ladder Code Generator requires that you use: 

• a 486 (or better) running Windows 3.t. 

• VGA monitor in 800 x 600 mode (or higher resolution). 

• a mouse or other pointing device (such as a trackball). 

Other Synect tools also requires that you have the following: 

• 8 MByte RAM. 

• 
• 

very large permanent swap file (recommended size is 20 MByte) . 

at least 10 MByte free disk space per application . 

If you haven't installed Synect yet, you'll need to do that first. Check that your 
computer satisfies the requirements listed above before starting the installation. 
The first floppy disk contains file install. txt which contains any updates to the 
installation process - you should read this file before installing the software. 

1 Put floppy disk 1 into your floppy disk drive. 

2 Start Windows (by typing win at the DOS prompt if necessary). 

3 Choose FilelRun from the Program Manager. 

4 Type a,\install then press ENTER. 

S The installation program will now guide you through the installation 
process. Simply answer the questions to specify which Synect tools 
you want to install. 

6 When installation is complete, you can remove the floppy disk from 
the drive. Y Oll should now have a Program Manager group containing 
an icon for each of the installed Synect tools. 

7 Plug the dongle into the computer's parallel port. 

Page 3 of 11 



Getting Started Synect A-B PLC5 Code Generator User Guide 

8 Read the installed file readme. txt for details of any changes to the 
product or documentation since the documentation was printed. 

Starting the A·B PLCS Code Generator 

Page 4 of 11 

Ensure that the Program Manager window is on display. If the Synect window 
isn't visible, use the Window menu to open it. Double-click on the 
AlIen-Bradley PLC5 Code Generator icon or use the keyboard arrow key to 
select the icon and then press ENTER. 

When using the AlIen-Bradley PLC5 Code Generator, the window displays the 
following dialog: 

Title bar 
The title bar shows the product title Synect Allen Bradley Ladder Generator and 
the name of the application which has been loaded (if any). 

Control-menu box 
Allows you to move or close the window. Also allows you to open the control 
panel or obtain info=tion about the AlIen-Bradley PLC5 Code Generator. 



Synect A-B PLC5 Code Generator User Guide Getting Started 

STDs listbox 
Each row of the listbox contains an STD name. 

Real World Inputs listbox 
Reading from left to right, each row of the listbox contains a real world input 
name and its corresponding Allen-Bradley PLC5ladder code. This listbox 
shows, for each real world input, the Allen-Bradley PLC5ladder code which 
will be substituted when the "Generate" button is pressed. 

Real World Outputs listbox 
Reading from left to right, each row of the listbox contains a real world output 
name and its corresponding Allen-Bradley PLC5ladder code. This listbox 
shows, for each real world output, the Allen-Bradley PLC5ladder code which 
will be substituted when the "Generate" button is pressed. 

On-Line Help 

Click on the "Help" button to take you to the help contents page. The help 
information is shown in a separate window. 

Page 5 of 11 



Getting Started Synect A-B PLCS Code Generator User Guide 

This page left intentionally blank 

Page 6 of 11 



Synect A-B PLCS Code Generator User Guide Basic Concepts 

3 Basic Concepts 

The Synect Application Editor enables you to specify a model of your 
application. See the Application Editor User Guide, chapter 3, Basic Concepts 
for more information relating to defining the model. The Compiler derives a 
mathematical model from your specification. The Allen-Bradley PLCS Ladder 
Logic Generator generates a ladder logic program from the mathematical model 
which can then be loaded into Allen-Bradley programming software, such as 
RSLogixS. 

How It Works 

Although the Ladder Logic Code Generator appears in the fonn of a dialog, its 
behaviour is specified entirely by configuration file. The configuration file 
defines the filenames to which the ladder logic will be written, the PLC registers 
to be used as state variables, etc.. It is assumed that the configuration file will be 
derived automatically from an external source by a project-specific utility 
(outside the scope ofSynect). This will probably a master database from which 
the PLC database and Human Machine Interface (HMI) database are derived. 
The Code Generator therefore does not attempt to generate symbol names, 
address or instruction comments. But it does write rung comments associated 
with each rung in a fonn suitable for loading into the RSLogixS programming 
software. 

Configuration The file is stored in a file with the same name as the application and extension 
File ".abc" (Allen-Bradley Configuration). 

The first two entries in the file define the DDE server and topic from which the 
STD Monitor can obtain data about the live control system. This is used in the 
".plm" file which the Code Generator writes (see the STD Monitor User Guide 
for more details about monitoring the live control system). 

DOE SERVER=<dde server name> 
DDE=TOPIC=<dde_topic_name> 

The next entries are concerned with defaults for state values. When the ladder 
code is generated, each state will be assigned a value. For example, state 
"Closed" ruight be value 100 and state "Open" ruight be value 110. It would be 
tedious to have to specify the value for each state so the Code Generator 
provides two methods to make this easier. 

The first method is that it can interpret state names. For example, if you always 
fonnat your states as STATE_l0 I Open (where the" I" character denotes 
carriage return), you can tell the Code Generator that the state value is prefixed 
by"STATE_". In this example, state "Open" would be assigned the value 10. 

Page 7 of 11 



Basic Concepts Synect A-B PLC5 Code Generator User Guide 

Page 80f11 

The second method is to define a default start value and increment for state 
values. So if you specify the start value as 100 and the increment as 10, and the 
STD contains states "Open" and "Closed", state "Open" would be assigned 
value 100 and state "Closed" would be assigned value 110. 

This configuration of state values would be achieved with the following three 
lines in the configuration file: 

STATE VALUE PREFIX=STATE 
DEFAULT START STATE VALUE=100 
DEFAULT:STATE:VALUE:INCREMENT=10 

There then follows a section for each STD. An example is as follows: 
STD=FeedI Conveyor.main 
STATE REGISTER=NIOO:44 
LADDER_FILE=file2.a5c 

The first line defines that until another "STD=" entry is found, subsequent 
specifications refer to STD Feed I Conveyor.main. The second line defines the 
register which is to hold the current state value for this STD. The third line 
defines the file into which the ladder logic for this STD is to be written. 

Optionally, debug code can be automatically generated for the STD. The 
debug code allows you to specify any number of registers into which you can 
manually write the state values at which you wish the STD to pause. The 
breakpoint bit is the flag which the ladder logic sets to denote that a breakpoint 
has been encountered. The single step bit is equivalent to specifying a 
breakpoint at every state. This is specified as follows: 

SINGLo SToP BIT'B3/0 
BREAKPOINT 81T=83/1 
BREAKPOINT-REGISTER=N300:1 
BREAKPOINT-REGISTER=N300:2 
BREAKPOINT-REGISTER=N300:3 

Finally, the file contains the definition for each real world input and each real 
world output. For example: 

RWI=rwi new raw part,XIO N55:77 
RWI=rwi-grip closed,XIC N44:33 
RWO=rwo:start_feed_conveyor,OTL N43:32 
RWo=rwo_stop_feed_conveyor,OTE N66:99 

It is worth noting the following points: 

• 

• 

The format of a line defining the code to be substituted for a real world 
input is: 

RWI=real_world_input_name,code_to_substitute 

The format of a line defining the code to be substituted for a real world 
output is: 

RWO=real_world_output_name,code_to_substitute 

• The Allen-Bradley PLC5 Code Generator performs a case-sensitive 
read of the mapping file and will not ignore spaces unless to the right of 
a connna. 



Synect A-B PLCS Code Generator User Guide Open An Application 

4 Open An Application 

When you first start the Synect Allen-Bradley PLCS Ladder Logic Code 
Generator, the "Edit Config" and "Generate" buttons are disabled. This is 
because you must first open an application. 

When you compiled your application using the Synect Compiler, it created a 
file with the name of your application but with the extension· .net". This is the 
file which is to be loaded into the Allen-Bradley PLCS Ladder Logic Code 
Generator. 

Opening An Application 

To open an application, click on the "Load" button. The standard file open 
dialog will then be started, allowing you to specify the name of the file from 
which the application is to be loaded. By default, the dialog will list files with 
extension 11 .net". 

If you have previously generated code for this application, a configuration file 
will already have been created. When you load the application, this file is 
automatically read and the listboxes populated accordingly. The configuration 
file is a file whose name corresponds to the application name and with extension 
".abc" . 

If this is the first time you've loaded this application into the Allen-Bradley 
PLCS Ladder Logic Code Generator, you'll get a warning message to notify you 
that the configuration file couldn't be found. Simply click on the "Ok" button 
and continue as normal. 

Having loaded the application, the listboxes and buttons will be enabled. 

Page 9 ofll 



Open An Application Synect A-B PLCS Code Generator User Guide 

This page left intentionally blank 

Page 10 of 11 



Synect A-B PLC5 Code Generator User Guide Code Options 

5 Code Options 

This chapter describes the options which affect how the ladder logic code is 
generated once the Allen-Bradley PLC5 Ladder Logic Code Generator has been 
started. All of these options are specified in a text configuration file. This file 
can be edited with the Allen-Bradley PLC5 Ladder Logic Code Generator 
running via the simple built-in editor. 

Interactively, you can use the Allen-Bradley PLC5 Ladder Logic Code 
Generator to: 

• Edit the configuration file (.abc). 

• Generate the source code files. 

Edit The Configuration File 

Click on the "Edit Config" button to start a simple text editor to edit the 
configuration file (".abc" file). Before starting the editor, a new file will be 
created if no configuration file was loaded when the application was loaded. 

The editor is very similar to the Windows Notepad text editor. Features such as 
cut and paste can be used to edit the commented-out information which the 
Code Generator writes to the configuration file, thus minimising the risk of 
introducing typing errors. 

On exiting the editor, the Code Generator re-populates the listboxes from the 
mapping file. 

Generate The Source Code Files 

Clicking on the "Generate" button will cause the Code Generator to validate 
the configuration. If errors are found, such as no register defined for an STDs 
state variable, you will be notified via a message box. If the configuration is 
valid, the Code Generator will create the source code files described in section 
3, Basic Concepts. 

The Code Generator also generates a file with extension" .plm" (PLC Live 
Monitoring). This file can be used by the Synect STD Monitor in conjunction 
with a third party DDE Server to monitor the live control system. See the STD 
Monitor user guide, chapter 3, Basic Concepts, Connecting To The Live 
Control System for details. 

Page 11 of11 



1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

~ 
I 
1 

I 1 
I 1 
I 1 
I 11 
I 1 
I 1 
I 1 
I 1 
I 1 
I 1 
I 1 
I 1 
I 1 
I 1 
I 1 
I 1 
I 1 
I 1 
I 1 
I 1 
I 




