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Abstract
The purpose of the present study was to compare acute changes in oxidative stress and inflammation in response to steady
state and low volume, high intensity interval exercise (LV-HIIE). Untrained healthy males (n = 10, mean ± s: age
22 ± 3 years; VO2MAX 42.7 ± 5.0 ml · kg−1 · min−1) undertook three exercise bouts: a bout of LV-HIIE (10 × 1 min
90% VO2MAX intervals) and two energy-matched steady-state cycling bouts at a moderate (60% VO2MAX; 27 min, MOD)
and high (80% VO2MAX; 20 min, HIGH) intensity on separate days. Markers of oxidative stress, inflammation and
physiological stress were assessed before, at the end of exercise and 30 min post-exercise (post+30). At the end of all
exercise bouts, significant changes in lipid hydroperoxides (LOOH) and protein carbonyls (PCs) (LOOH (nM): MOD
+0.36; HIGH +3.09; LV-HIIE +5.51 and PC (nmol · mg−1 protein): MOD −0.24; HIGH −0.11; LV-HIIE −0.37) were
observed. Total antioxidant capacity (TAC) increased post+30, relative to the end of all exercise bouts (TAC (µM): MOD
+189; HIGH +135; LV-HIIE +102). Interleukin (IL)-6 and IL-10 increased post+30 in HIGH and LV-HIIE only
(P < 0.05). HIGH caused the greatest lymphocytosis, adrenaline and cardiovascular response (P < 0.05). At a reduced
energy cost and physiological stress, LV-HIIE elicited similar cytokine and oxidative stress responses to HIGH.

Keywords: reactive oxygen species, cytokine, lipid oxidation, protein oxidation, antioxidant

Introduction

Reactive oxygen species (ROS) are by-products of
cellular respiration that regulate signalling and
homeostasis. Oxidative stress is a state whereby
ROS exceed endogenous and exogenous antioxidant
systems, resulting in the progressive oxidation of
macromolecules. It is now widely accepted that the
increase in ROS, which follows an acute bout of
exercise can facilitate a host of beneficial whole
body adaptation (Gomez-Cabrera, Domenech, &
Viña, 2008; Ristow et al., 2009). Markers of ROS
mediated protein oxidation (protein carbonyls,
PCs), lipid oxidation (lipid hydroperoxides,
LOOH) and exogenous antioxidant utilisation
(total antioxidant capacity, TAC) are commonly
measured in blood plasma following steady-state
exercise (Berzosa et al., 2011; Bloomer, Davis,
Consitt, & Wideman, 2007; Bloomer, Goldfarb,
Wideman, McKenzie, & Consitt, 2005; Wadley
et al., 2014) with some evidence that the magnitude

of change in these markers reflects perturbations
within exercising skeletal muscle (Goldfarb,
Bloomer, & McKenzie, 2005; Samjoo, Safdar,
Hamadeh, Raha, & Tarnopolsky, 2013; Veskoukisa,
Nikolaidisb, Kyparosa, & Kouretas, 2009).

Steady-state exercise is also accompanied by an
increase in pro- and anti-inflammatory cytokine pro-
duction (Fischer, 2006); proteins known to be asso-
ciated with oxidative stress (Wadley, Van Zanten, &
Aldred, 2013). Particular attention has been paid to
interleukin (IL)-6, a cytokine with a role in regulat-
ing the anti-inflammatory response to exercises
(Fischer, 2006; Gleeson et al., 2011). The acute
antioxidant and anti-inflammatory response com-
monly observed in response to exercise indicates,
in part, the rapid nature of the adaptive response.
Whilst there is some evidence to suggest that the
magnitude of an increase in ROS and cytokines in
response to exercise is intensity (Bailey et al., 2004;
Ostrowski, Schjerling, & Pedersen, 2000) and
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duration (Bloomer et al., 2007; Fischer, 2006)
dependent, the influence of exercise modality
remains incompletely understood.

High intensity interval exercise (HIIE) is a
recently developed exercise regimen, working at a
higher exercise intensity, but with a reduced time
commitment and energy cost relative to traditional
steady-state exercise (Gibala, Little, MacDonald, &
Hawley, 2012; Wisløff et al., 2007). Low volume
HIIE (LV-HIIE) is a form of high intensity interval
training (HIIT) exercise that has been applied in a
range of populations (Gibala et al., 2012; Hood,
Little, Tarnopolsky, Myslik, & Gibala, 2011; Little
et al., 2011). LV-HIIE has been shown to increase
markers of muscle metabolism (Hood et al., 2011),
induce increases in the VO2 peak (Rognmo,
Hetland, Helgerud, Hoff, & Slørdahl, 2004) and
improve endothelial function (Wisløff et al., 2007)
to the same, or greater degree as steady-state exer-
cise. Recent evidence has indicated that LV-HIIE
can induce an increase in plasma oxidative stress
(Fisher et al., 2011) and inflammation (Zwetsloot,
John, Lawrence, Battista, & Shanely, 2014) follow-
ing exercise. To our knowledge, to date there have
been no studies that directly compare oxidative
stress and inflammation in response to LV-HIIE vs.
steady-state exercise. One previous study showed
that the increase in interleukin (IL)-6 following
HIIT was greater than the response to moderate
intensity steady-state exercise, however the protocols
used were matched for total workload (Leggate,
Nowell, Jones, & Nimmo, 2010), therefore not
incorporating the energy saving nature of the “clas-
sical” HIIT exercise. The aim of the present study
was to compare changes in oxidative stress and
inflammation in response to a bout of LV-HIIE
and two energy matched steady-state exercise bouts
of high and moderate intensity.

Methods

Participants

Ten healthy, untrained (defined as maximum oxy-
gen consumption (VO2MAX) < 50 ml · kg−1 · min−1)
males (mean ± s: age 22 ± 3 years; body mass index
24.0 ± 3.1 kg · m−2; VO2MAX 42.7 ± 5.0 ml · kg−1 ·
min−1) took part in three separate exercise bouts. All
participants gave their informed written consent and
the investigation was approved by the Science and
Technology ethical review committee at the
University of Birmingham. Participants were non-
smokers and excluded if they had ingested vitamin
supplements or anti-inflammatory drugs in the
2 weeks prior to the first laboratory visit. In addition,
participants were required to refrain from any

strenuous physical activity or consumption of alcoholic
beverages in 48 h prior to testing sessions.

Preliminary assessments

Participants undertook all bouts of exercise in the
School of Sport, Exercise and Rehabilitation
Sciences at the University of Birmingham. All experi-
mental procedures conformed to the Declaration of
Helsinki. Exercise bouts took place on an electromag-
netically braked cycle ergometer (Lode Excalibur
Sport, Groningen, Netherlands). Height and weight
were recorded (Seca Alpha, Hamburg, Germany) and
questionnaires administered for demographic and
health screening purposes (Fisher & White, 1999).
Cardiorespiratory fitness was assessed by determining
the VO2MAX of the participant and expressed relative
to body weight (ml · kg−1 · min−1). A breath-by-
breath system (Oxygon Prx, Jaeger, Wuerzberg,
Germany) was used for continuous measurement of
oxygen uptake and the heart rate was monitored using
a Polar Vantage heart rate monitor (Polar Vantage,
Kempele, Finland). After a 3 min warm up at
30 watts, participants undertook an incremental exer-
cise test to exhaustion, whereby workload increased
30 watts every minute until volitional exhaustion.
Participants were asked to maintain a constant pedal
rate and encouragement was given by an experimen-
ter. A respiratory exchange ratio (carbon dioxide con-
sumption (VCO2)/oxygen consumption (VO2))
>1.10–1.15, plateau in participant oxygen consump-
tion or a maximal heart rate >220 beats min−1 – age
were all factors used to indicate VO2MAX and thus the
termination of the test (Howley, Bassett, & Welch,
1995).

Exercise bouts

One week after the first visit, participants returned to
the laboratory following an overnight fast to under-
take one of three randomised exercise bouts, each
separated by at least one week (Figure 1). All exer-
cise bouts took place at the same time in the
morning (8:00–10:00 am) and under similar envir-
onmental conditions (21°C and 35% relative humid-
ity). Following a 30 min period of rest, a catheter
(Becton, Dickson & Company, Oxford, UK) was
inserted into the antecubital vein of the forearm
and a baseline blood sample taken (baseline). The
catheter was kept patent through regular flushes with
saline (0.9% NaCl). Participants then undertook a
5 min warm up at a workload that elicited 40% of
their maximum aerobic capacity, followed by the
exercise bout at 60% VO2MAX for 27 min (moderate
intensity steady-state bout, MOD), 80% VO2MAX

for 20 min (high intensity steady-state bout,
HIGH) and ten 1 min stages at 90% VO2MAX,

2 A. J. Wadley et al.
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interspersed with nine 1 min intervals at 40%
VO2MAX (LV-HIIE) (Figure 1). The total workloads
for MOD and HIGH were energy-matched (kcal)
and based on pilot testing in our laboratory that
determined 20 min cycling at 80% VO2MAX to be
sufficiently exhaustive exercise (as assessed by the
maximal rate of perceived exertion). A second
blood sample (exercise) was taken at the end
of exercise and then 30 min following exercise
(post+30). At each time point, 7 ml of blood was
drawn into two vacutainer tubes containing potas-
sium ethylene diaminetetraacetic acid (Becton,
Dickson & Company, Oxford, UK). One vacutainer
(2 ml) was used for coulter analysis of haemoglobin,
haematocrit and leukocyte differential and another
(5 ml) centrifuged at 2800 rpm for 15 min at 4°C.
Plasma was then extracted and stored at −80°C until
further analysis.

Blood assessments

Blood samples were assessed for blood cell composi-
tion, specifically total peripheral blood lymphocytes.
In addition, haemoglobin (g · dl−1) and haematocrit

(%) were assessed to calculate plasma volume
changes as a result of the exercise (Bacon, Ring,
Lip, & Carroll, 2004). All of these variables were
assessed using a coulter analyser (Coulter Analyser,
Beckman-Coulter, High Wycombe, UK).

Lipid hydroperoxides. LOOH concentrations were
assessed using a spectrophotometric assay (Görög,
Kotak, & Kovacs, 1991). Samples and a blank stan-
dard (10 μl) were added in triplicate to a 96-well
microtitre plate. The reagent mix [100 µl, 0.2 M
potassium phosphate (pH = 6.2), 0.12 M potassium
iodide, 0.15 mM sodium azide, polyethylene glycol
mono p-(1,1ʹ,3,3ʹ-tetramethylbutyl)-phenyl ether
(Triton X, 2 g · l−1), alkylbenzyldimethylammonium
chloride (0.1 g · l−1), 10 µM ammonium molybdate
in high performance liquid chromatography
(HPLC)-grade water] was added for 30 min at
room temperature. The plate was read at 365 nm
(Multiscan MS, Labsystems), concentration of lipid
peroxides (µM) determined using the Beer–Lambert
law (extinction coefficient ε340 = 24,600 M−1 · cm−1)
and adjusted for changes in plasma volume. The
inter-assay coefficient of variation (CV) was 8.9%.

Total antioxidant capacity. TAC was assessed using
the ferric reducing ability of plasma (FRAP) assay
(Benzie & Strain, 1996). Plasma samples (10 µl per
well) and standards (10 µl per well, ascorbic acid,
0–1000 µM) were added in triplicate to a flat bot-
tomed 96-well plate. FRAP reagent (300 mM
sodium acetate (pH = 3.6), 160 mM 2,4,6-tripyri-
dyltriazine and 20 mM ferric chloride; 300 µl) was
added to each well and left to incubate for 8 min at
room temperature, then absorbance was read at
650 nm. TAC values were obtained using absor-
bance values of known ascorbic acid concentrations,
expressed as µM of antioxidant power relative to
ascorbic acid (McAnulty et al., 2005) and adjusted
for changes in plasma volume. The inter- and intra-
assay CVs were <3% and <1%, respectively.

Protein carbonylation. PC was assessed by enzyme
linked immunosorbent assay (ELISA) (Buss, Chan,
Sluis, Domigan, & Winterbourn, 1997; Carty et al.,
2000). The protein concentration of all plasma sam-
ples was obtained using the bicinchoninic assay
method (Smith et al., 1985). Samples and standards
(50 µl) were then diluted accordingly in coating
buffer to a concentration of 0.05 mg · ml−1

(50 mM sodium carbonate, pH = 9.2) and added
in triplicate to a 96-well maxisorb microtitre plate for
1 h at room temperature. Bound protein was incu-
bated with 2,4-dinitrophenylhydrazine (DNPH)
(1 mM, in 2 M HCl) for 1 h and then all wells
blocked with tris-buffered saline (TBS) Tween
(0.1%, 200 µl) overnight at 4°C. Wells were

Overnight
fast

30 min

30 min

R

30 min

R W

WR

30 min

Moderate Intensity
(60% VO2max)

27 min

W R

High Intensity
(80% VO2max)

20 min

30 min

R

30 min

LV-HIIE
(90%

VO2max*)

19 min

R

Exercise test to
exhaustion

30 min

WR

Overnight
fast

Overnight
fast

Figure 1. Schematic representation of the study protocol.
Participants completed an exercise test to exhaustion and then
participated in three subsequent exercise bouts. LV-HIIE was
ten 1 min stages at 90% VO2MAX, interspersed with nine 1 min
intervals at 40% VO2MAX. ↓ Blood samples (baseline, exercise and
post+30); R, rest; W, warm up.
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incubated with monoclonal mouse anti-DNP anti-
body (50 µl, 1:1000) for 2 h at room temperature,
followed by peroxidase conjugated rat anti-mouse
IgE conjugated horseradish peroxidase (50 µl,
1:5000) for 1 h at room temperature. All steps were
followed by three washes using TBS Tween
(0.05%). Substrate (0.5 M citrate phosphate buffer
(10 ml, pH = 5), hydrogen peroxide (8 µl) and
ortho-phenylenediamine tablet (2 mg); 50 µl) were
added to each well and the reaction stopped after
45 min with 2 M sulphuric acid (50 µl). Well absor-
bance was measured at 490 nm (Multiscan MS,
Labsystems) and quantified using absorbance values
of known PC standards (1.28–5.20 nmol · mg−1 pro-
tein). The inter- and intra-assay CVs were 8.8% and
1.4 %, respectively.

Interleukins. Plasma concentrations of IL-6 and IL-
10 were determined using a commercially available
high-sensitivity (HS) ELISA kit according to manu-
facturer instructions (R&D Systems, assay sensitiv-
ity, IL-6: 0.11 pg · ml−1 and IL-10: 0.17 pg · ml−1).
All samples were analysed in triplicate and values
were obtained from a linear standard curve of
known IL-6 and IL-10 concentrations (IL-6:
0.156–10 pg · ml−1 and IL-10: 0.78–50 pg · ml−1)
and adjusted for changes in plasma volume. The
inter- and intra-assay CVs for the HS IL-6 and HS
IL-10 kits are reported to be 6.5% and 6.9%,
respectively.

Adrenaline. Plasma concentrations of adrenaline
were determined using a commercially available
high-sensitivity ELISA kit (assay sensitivity: 3 pg ·
ml−1), according to manufacturer instructions
(Rocky Mountain Diagnostics Inc. USA). Values
were obtained from a standard curve of known adre-
naline concentrations (0–1500 pg · ml−1) and
adjusted for changes in plasma volume. The intra-
assay CV is reported to be 9.3%.

Sample size calculation and statistical analysis

Power analyses usingGpower3 (Faul, Erdfelder, Lang,
& Buchner, 2007), with significance at 0.05 and power
at 0.90, were conducted based on results obtained
from previous studies and preliminary pilot work.
Primary outcome measures of protein oxidation, IL-6
concentration changes (2-fold) were used. A sample
size of 10 participants was required to detect differ-
ences with an effect size of 0.24 (medium effect size).

Statistical analyses were performed using statisti-
cal package for the social sciences (predictive analy-
tics software Statistics, 21.0). Kolmogorov–Smirnov
tests were used to investigate normal distribution
and differences between variables at baseline were
assessed using one-way analyses of variance

(ANOVA). The physiological response to exercise
was assessed by an exercise bout (MOD, HIGH,
LV-HIIE) by time (baseline, exercise, post+30)
repeated-measures ANOVA, with Bonferroni cor-
rection. Post hoc analysis of the interaction effects
was performed by a test of simple effects by pairwise
comparisons (with Bonferroni correction). Primary
outcome measures (TAC, LogLOOH, PC, IL-6 and
IL-10) were further probed using one-way ANOVAs
to assess responses to each exercise bout.
Assessment of the heart rate and blood pressure
over time by area under the curve (AUC) was under-
taken using one-way repeated measures ANOVA.
Data which were not normally distributed were log
transformed prior to statistical analyses. The statis-
tical significance was accepted at the P < 0.05 level.

Results

Total workload and energy expenditure

The average workload (watts) for the three bouts of
exercise were 110 ± 18 (MOD), 169 ± 32 (HIGH)
and 211 ± 38 (LV-HIIE). The total energy expendi-
ture for the LV-HIIE (190 ± 30) bout was signifi-
cantly lower (P < 0.0001) than both MOD
(264 ± 39) and HIGH (266 ± 39).

Oxidative stress

Figure 2(a)–(c) shows the response of plasma
logLOOH, TAC and PC to the three different exer-
cise bouts. LogLOOH and TAC significantly
increased at the end of exercise (P = 0.033) and post
+30 (P = 0.004), relative to the baseline and the end
of exercise, respectively (pairwise comparisons).
Thirty minutes following exercise, logLOOH
returned to baseline concentrations (P = 0.023). PC
significantly decreased at the end of all exercise bouts
(P < 0.0001) and returned to baseline levels post+30
(P = 0.013). Further analysis of the individual exer-
cise bouts using one-way ANOVAs revealed that a
significant increase in TAC occurred following exer-
cise (post+30 relative to the end of exercise) in MOD
(P = 0.0001). Increases in LOOH were detected at
the end of HIGH (P = 0.047) and LV-HIIT
(P = 0.041) bouts only. PC decreased significantly
at the end of exercise, relative to the baseline in LV-
HIIT (P = 0.003).

Cytokines

The effect of exercise on IL-6 and IL-10 concentra-
tions can be seen in Figure 3(a) and 3(b). IL-6
concentrations increased at the end of exercise in
HIGH and LV-HIIE (P ≤ 0.05), with elevations
post±30, relative to the baseline in all bouts

4 A. J. Wadley et al.

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f B

irm
in

gh
am

] a
t 0

3:
31

 3
0 

A
pr

il 
20

15
 



(P ≤ 0.016). The concentration of IL-6 post±0 was
significantly higher in HIGH compared to MOD
(group × time interaction effect; P = 0.037). IL-10
concentrations were unchanged at the end of
exercise, however increases were observed post±30,
relative to the baseline (P = 0.05) and the end of
exercise (P = 0.05) in LV-HIIE and HIGH, respec-
tively (group × time interaction effect; P = 0.015).
IL-10 concentrations post±30 were higher in HIGH
than MOD (group × time interaction effect;
P = 0.05). No statistical differences in IL-6 and IL-
10 responses were observed between LV-HIIE and
HIGH. Further analysis of the individual exercise
bouts using one-way ANOVAs revealed that IL-10
concentration decreased post±30 relative to the
baseline in MOD (P = 0.01).

Other physiological measures

Total peripheral blood lymphocytes and plasma adrena-
line. Table I shows the response of total peripheral

blood lymphocytes and plasma adrenaline to the differ-
ent exercise bouts. There was a significant lymphocy-
tosis at the end of all exercise bouts (P < 0.0001), which
returned to baseline values post+30 (P < 0.0001).
Adrenaline significantly increased at the end of all exer-
cise bouts (P = 0.04) and returned to baseline values
post+30 (P = 0.10). Significant group × time interac-
tion effects were found (P < 0.0001) and pairwise com-
parisons indicated that HIGH elicited a significantly
greater lymphocytosis and plasma adrenaline response
than both LV-HIIE (P < 0.049) andMOD (P < 0.037)
at the end of the exercise. There were no statistical
differences in the response of both variables between
LV-HIIE and MOD.

Heart rate and blood pressure. Figure 4 indicates the
changes in heart rate and systolic blood pressure (SBP)
over time as assessed by the area under the curve
(AUC). The total AUC for heart rate was significantly
lower in MOD and LV-HIIE when compared to
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HIGH (MOD −31.8% (P < 0.001) and LV-HIIE
−31.1% (P = 0.001)). A similar trend was observed
for SBP, however only LV-HIIE was significantly
lower than HIGH (MOD −33.5% (P = 0.098) and
LV-HIIE −29.1% (P = 0.034)) (Figure 4).

Discussion

To our knowledge, this is the first study to compare
plasma markers of oxidative stress and inflammation

in response to LV-HIIE and steady-state exercise
bouts. All bouts stimulated a transient change in
markers of oxidative stress, irrespective of exercise
intensity or mode. An anti-inflammatory cytokine
response (i.e. IL-10) was observed for 30 min fol-
lowing cessation of LV-HIIE and HIGH bouts only.

The significant increases in LOOH concentrations
observed in all bouts indicate the presence of ROS
following exercise. With compelling evidence that
exercise-induced increases in oxidative stress are
adaptive (Mari Carmen. Gomez-Cabrera et al.,
2008; Ristow et al., 2009), the peroxidation of lipids
may stimulate adaptation such as structural remodel-
ling of external cellular membranes and lipoproteins
(Aldred, 2007). Further probing of the data (one-
way ANOVAs) suggested that the magnitude of the
increase in LOOH was greatest at the end of exercise
in HIGH and LV-HIIE. This supports previous data
reporting intensity-dependent increases in markers
of oxidative stress in response to acute exercise
(Lamprecht, Greilberger, Schwaberger, Hofmann,
& Oettl, 2008). The observed antioxidant response
following MOD and HIGH supports previous stu-
dies assessing responses to steady-state exercise
(Berzosa et al., 2011; Turner, Bosch, Drayson, &
Aldred, 2011). Importantly, this study is the first to
provide evidence that a bout of LV-HIIE elicits a
plasma antioxidant response, confirming previous
data in lymphocytes (G. Fisher et al., 2011).
Further exploration of the data suggested that the
greatest antioxidant response was observed following
MOD, possibly a reflection of lower LOOH at the
end of exercise. The decrease observed in PC at the
end of all exercise bouts, and return to baseline
levels 30 min post-exercise is perhaps more unex-
pected, however previous studies have reported no
change, or indeed a decrease in protein carbonyla-
tion following exercise of varying intensities in blood
(Goldfarb et al., 2005), muscle (Saxton, Donnelly, &
Roper, 1994) and brain (Ogonovszky et al., 2005).
Moderately carbonylated proteins are degraded by
proteasomes, and it has been noted that proteasome
activity does increase during exercise (Ogonovszky

Table I. Mean (s) lymphocyte number and adrenaline concentrations before, at the end of exercise and 30 min following the three exercise
bouts.

Moderate High LV-HIIE

Baseline Exercise Post+30 Baseline Exercise Post+30 Baseline Exercise Post+30

Adrenaline 7.39 97.57 20.61 15.11 360.29 52.81 15.82 145.73 66.67
(pg · ml−1) (±2.94) (±21.64)* (±9.14)** (±7.36) (±91.53)*# (±16.96)** (±7.82) (±25.27)* (±18.77)**
Lymphocyte number 1.89 2.67 1.67 1.86 4.63 1.78 1.79 3.57 1.62
(×109 cells · l−1) (±0.47) (±0.75)* (±0.35)** (±0.42) (±1.41)*# (±0.39)** (±0.47) (±1.40)* (±0.38)**

Note: * indicates significant differences at the end of exercise, relative to the baseline (P < 0.05). ** indicates significant differences relative
to the end of exercise in all bouts. # indicates significant differences in HIGH compared to MOD and LV-HIIE.
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et al., 2005). This may also explain the delayed
increases in PC reported in some previous studies
(Bloomer et al., 2005; Michailidis et al., 2007). Of
note, no significant differences were observed in the
magnitude of oxidative stress response (LOOH, PC
and TAC) between exercise bouts (Figure 2). There
are limited similar studies (within-subject design)
that compare whole body (i.e. plasma, serum) oxi-
dative stress responses to varying exercise intensities,
and thus it is difficult to assess whether this finding is
due to the duration of the bouts, or other factors
related to experimental design or analysis. This find-
ing warrants further investigation. Collectively, these
data are the first to indicate that LV-HIIE elicits a
comparable oxidative stress response to a short dura-
tion high intensity steady-state exercise.

IL-6 and IL-10 significantly increased in response
to a single bout of LV-HIIE as previously demon-
strated (Zwetsloot et al., 2014). When comparing
the IL-10 responses, LV-HIIE was comparable to
HIGH, indicating that these exercise bouts were
more effective than MOD in stimulating an anti-
inflammatory response to exercise (Figure 3). Aside
from the classical role of IL-6 in signalling and facil-
itating the inflammatory response, there is evidence
to suggest that its release during exercise can inhibit
pro-inflammatory cytokine production (Nimmo,
Leggate, Viana, & King, 2013) and up-regulate the
transcription of anti-inflammatory cytokines such as
IL-10 (Fischer, 2006). The present results are in
support of these studies, with IL-10 elevation seen
for 30 min following the increase in IL-6 in both LV-
HIIE and HIGH. Previous evidence has highlighted
that exercise intensity may be the key factor govern-
ing IL-6 release when considering shorter bouts of
steady-state exercise in an hour (Fischer, 2006;
Ostrowski et al., 2000). Despite the higher peak
intensity of LV-HIIE, the intermittent nature of the
stimulus may have aided the clearance of IL-6 by the
liver and kidneys (Febbraio et al., 2003) during the
active rest intervals. Nevertheless, these data indicate
that LV-HIIE and short duration high intensity,
steady-state exercise can elicit comparable IL-6 and
IL-10 responses in untrained participants.

In the current study, changes in heart rate and
SBP were assessed over the course of the exercise
bouts, as previously demonstrated (Fisher & White,
1999). Cardiovascular responses during LV-HIIE
were comparable to MOD (Figure 4) and signifi-
cantly lower than HIGH. When considering other
physiological markers, HIGH caused a significantly
greater lymphocytosis and adrenaline response than
both MOD and LV-HIIE bouts (Table I). The
physiological parameters studied suggest that LV-
HIIE provides a lower physiological stress com-
pared to a short duration high intensity steady-
state exercise.

Conclusions

In conclusion, this study presents evidence to show
that a bout of LV-HIIE does not stimulate a signifi-
cantly different response in plasma markers of oxi-
dative stress to the responses seen following short
duration high or moderate intensity steady-state
exercise. When considering other physiological mar-
kers (i.e. heart rate, adrenaline and lymphocytosis),
HIGH was the greatest stressor, with LV-HIIE being
more comparable to MOD. Importantly, a single
bout of LV-HIIE elicited a comparable antioxidant,
IL-6 and IL-10 response to HIGH, in terms of mag-
nitude and timecourse. Given the reduced energy
cost compared to steady-state exercise, LV-HIIE
may be an attractive exercise modality, for a variety
of populations.
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