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Abstract: The paper highlights the potential of harvesting vibration energy from 

mechanical systems in the form of electrical power to activate remote electronic 

devices. The principal idea is based upon the resonant response of a lightweight 

oscillator subjected to applied external excitation, coupled with an electrodynamic 

transducer (e.g. piezoelectric material, inductive coils). As far as the mechanical system 

is concerned, the aim is to maximize the harvested energy when an attachment vibrates 

with relatively high amplitudes. This means that the system natural frequency should 

be close to the expected dominant frequency of the applied (host) vibrations. However, 

in practice the dominant vibration frequency varies either within a limited range due to 

system uncertainties or across a large band due to the fundamental operation of the host 

structure, such as in rotational power transmission systems with speed variations. 

Recently, the introduction of nonlinearities has been proposed in order to compensate 

for small-scale frequency shifts. Nevertheless, in most cases one cannot fully bypass 

the necessary tuning effects, attributed to linear stiffness components in system 

dynamics. In this paper, a rotational vibration energy harvester is outlined, based upon 

a beam attachment, coupled with an electromagnetic transducer. The stiffening effect 

due to centrifugal action is utilized in order to passively tune the attachment to the 

dominant frequency of the rotational host structure. A reduced order model of the 

harvester is presented and its power extraction potential is assessed. 

1. Introduction 

Vibration energy harvesting is an emerging field, converting the environmental vibration energy of a 

host structure or machine for usable electric output [1]. This energy can then potentially be used to 

power low consumption electronic devices, such as wireless sensors. Common energy harvesters 

initially comprised linear oscillators, coupled with an electrodynamic element, such as piezoelectric 

patches or permanent oscillatory magnets in the proximity of a coil of thin wire. The main drawback of 

this technique is the limited frequency response of such oscillators [2]. Briefly, these harvesters need 

to be tuned to a certain frequency in order to resonate with the host’s vibrations. However, mechanical 

systems often operate across a wide range of frequencies leading to mistuning of the harvesting devices. 

Consequently, their efficiency in terms of power output dramatically reduces when frequency variations 

occur. 
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In recent years, the introduction of non-linearity has broadened the frequency band response of 

mechanical oscillators [3-4]. Many researchers have employed the transverse vibrations of a beam, 

attached to a host structure to exploit its nonlinear response. A recent review is provided by Wei and 

Jing [5]. Erturk and Inman studied a distributed beam model for piezoelectric energy harvesting [6]. 

They also studied experimentally a bimorph cantilever beam for enhanced harvesting capabilities [7]. 

Recently, significant progress has been made with bi-stable energy harvesters, a vast majority of which 

concern transverse vibrations of buckled beams [8]. 

An overwhelming majority of reported studies have considered the translational vibration 

problems in this regard, largely neglecting the opportunities with torsional systems that abound in 

powertrains and rotor dynamic applications. One can conceive the design of a piezo-generator, based 

on torsional stressing of its active elements [9-10]. Furthermore, the piezoelectric cantilever design has 

been used for either torsional vibratory modes with piezoelectric attachments, or in bending modes, 

extending radially from a shaft subjected to torsional oscillations [11]. 

In this paper, a vibration energy harvester based on transverse beam vibrations is proposed for 

rotational systems. Torsional vibrations in rotor systems often experience large scale frequency shifts 

attributed to changing operating speed. The proposed concept aims to passively tune the beam element 

of the harvester to the speed-dependent torsional vibrations. This is accomplished through induced 

centrifugal action acting upon an attached beam as an agent for passive tuning. The design strategy is 

presented and the harvested power is predicted numerically. 

2. System modelling 

A disc (D) is assumed to rotate with angular speed 𝜔 = 2𝜋𝑛/60, as shown in Fig. 1. A thin beam of 

length 𝐿, width 𝑎 and thickness 𝑏 is attached to the disc with one end connected to its rotational axis 

via the support S1. The other end is connected at an eccentric location on the disc via the support S2, 

such that the beam extends radially from the disc centre. These supports can be one of clamped, pinned 

or roll independent from each other. The beam has modulus of elasticity 𝐸, density 𝜌 and it is positioned 

with its width 𝑏 perpendicular to the plane of the disc, such that it can experience transverse vibrations 

along the disc’s plane. The distance of a point P on the beam from the axis of rotation is denoted by 𝑥, 

whereas the beam deflection in the transverse direction is denoted by 𝑤(𝑥). A magnet is fixed at an 

arbitrary point P on the beam via a massless, rigid link. A coil of thin wire is also fixed onto the disc, 

at a position such that the magnet lies within the coil. Torsional vibrations of the disc D cause transverse 

beam vibrations with respect to its rotating plane. The vibratory response of the beam entails relative 

motion between the magnet and the coil, thus inducing a coil voltage due to electromagnetic coupling, 

𝑘𝑐 . Then, an electric load with an electric resistance equal to the coil’s, 𝑅𝑙 = 𝑅𝑐, is connected at the 
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coil ends, completing the circuit. The harvested energy is usually taken as the energy that the load 

consumes. This also holds for the harvested power as well. The described system corresponds to an 

elemental vibration energy harvester for the purpose of demonstrating the utility of the proposed 

concept. 

 

Figure 1.   Sketch of the proposed torsional vibration energy harvester. 

It is assumed that the beam is sufficiently thin to follow the Euler-Bernoulli beam theory. 

Therefore, considering an axial load 𝑃(𝑥), the transverse vibrations of the beam are described by the 

following spatio-temporal differential equation: 

𝑚1(𝑥)�̈� + 𝑐1�̇� +
𝜕

𝜕𝑥
[𝑃(𝑥)𝑤′] + 𝐸𝐼𝑤′′′′ −

𝐸𝐴

2𝐿
𝑤′′ ∫ (𝑤′)2𝑑𝑥 = −𝑚1(𝑥)�̈�

𝐿

0
, (1) 

where 𝑚1(𝑥) = [𝜌𝛢 + 𝛭𝛿(𝑥 − 𝐿1)], 𝐴 = 𝑎𝑏 is the beam cross-sectional area, 𝑐1 is the viscous 

damping coefficient, 𝐼 is the second area moment of inertia of the beam cross-section and 𝑧 denotes the 

disc’s vibration response. Using a single mode approximation such that 𝑤(𝑥, 𝑡) = 𝑞(𝑡)𝜑(𝑥), where 

𝜑(𝑥) is the first mode shape, one arrives at:  

𝑚�̈� + 𝑐�̇� + 𝑘𝑞 + 𝑘3𝑞3 = −𝑓𝑚�̈�, (2) 

where 

𝑚 = ∫ 𝜌𝛢𝜑2 𝑑𝑥
𝐿

0
+ 𝛭𝜑2(𝐿1), (3) 

𝑐 = ∫ 𝑐1𝜑2 𝑑𝑥
𝐿

0
, (4) 
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𝑘 = 𝐸𝐼 ∫ (𝜑′′)2 𝑑𝑥
𝐿

0
+ ∫ 𝑃(𝑥) (𝜑′)2 𝑑𝑥

𝐿

0
, (5)  

𝑘3 = −
𝐸𝐴

2𝐿
∫ 𝜑′′𝜑 𝑑𝑥

𝐿

0
∫ (𝜑′)2 𝑑𝑥

𝐿

0
, (6) 

𝑓𝑚 = ∫ 𝜌𝛢𝜑 𝑑𝑥
𝐿

0
+ 𝛭𝜑(𝐿1), (7) 

 

Figure 2.   Two cases of boundary conditions: (a) clamped-clamped; (b) clamped-roll. 

3. Passive tuning of the beam 

The axial load in the proposed concept is as a result of the centrifugal action on the beam and the lumped 

mass, 𝑀. This is heavily dependent on the boundary conditions. In this paper, two cases of beam support 

are considered: (i)- clamped-clamped (C-C) and (ii)- clamped-roll (C-R), as shown in Fig. (2). The axial 

load depends on the position of the lumped mass, 𝐿1, representing the magnet and its fixture, and on 

the disc’s rotational speed. Fig. (3) shows the axial load across the span of the beam with respect to the 

position of the mass, 𝐿1 and the rotation speed, 𝑛. Note that for C-C boundaries the load is tensile when 

𝑥 < 𝐿1 and compressive elsewhere, whereas for the C-R supports the load is always tensile. This is 

caused by the axial reaction of the outer clamp, contrary to the inability of the roll support to contribute 

in the axial direction. 
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Figure 3.   Axial load acting on the beam along its length. The left column corresponds to C-C support 

and the right column to C-R. The top figures depict the influence of the position 𝐿1 at 2000 

rpm and the bottom figures show the influence of the rotation speed 𝑛 for 𝐿1 = 0.5𝐿. 
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The axial load variation induces the beam modal frequencies to vary accordingly. Following the 

reduced model in Eq. (2)-(7), the natural frequency can be calculated as:  

𝑓𝑛 =
1

2𝜋
√

𝑘

𝑚
, (8) 

As an example we consider a beam with the following characteristics: 𝐸 =  200 𝐺𝑃𝑎, 𝐿 =

 50𝑚𝑚, 𝑏 =  5𝑚𝑚, 𝑡 =  0.5𝑚𝑚, 𝜌 =  7810 𝑘𝑔/𝑚3, 𝑀 =  0.100 𝑘𝑔. Fig. (4) shows the variation of 

the beam’s first modal frequency with respect to the rotational speed of the disc, 𝑛. As the torsional 

vibrations in most rotational systems directly correspond to the system rotational speed, one can 

potentially passively tune the beam to the frequency of the speed-dependent vibrations, subjected to 

proper design provisions and a priori knowledge of the expected system response. Therefore, resonant 

conditions may be maintained in a wide-band of frequencies, promoting efficient vibration energy 

harvesting. 

 

Figure 4.   Dependence of the model’s modal frequency for varying speed and different positions of the 

mass 𝑀; (a) C-C boundaries; (b) C-R boundaries. 

Fig. (4) shows the frequency variations for the two considered boundary condition options. 

Depending on the desired variation of the system’s natural frequency, one can choose the proper 

boundary conditions to passively tune the beam to higher or lower frequencies. Note that with the C-C 

supports, if the mass is positioned at the middle of the beam no tuning would be achieved. This is 

𝑓𝑛(𝐻𝑧) 

𝐿1 = 0.6𝐿 

𝐿1 = 0.4𝐿 

𝐿1 = 0.5𝐿 

𝐿1 = 0.6𝐿 

𝐿1 = 0.5𝐿 

𝐿1 = 0.4𝐿 

𝑛 (𝑟𝑝𝑚) 𝑛 (𝑟𝑝𝑚) 

(a) (b) 



7 

 

consistent with Fig. (3c), which shows that the tensile load is opposing symmetrically the compressive 

load. 

As a second example, consider the case of torsional vibrations in automotive powertrains. In such 

systems, vibrations unfold with a frequency directly linked to the system’s rotational speed; specifically 

to the engine’s firing frequency. In order to achieve efficient vibration energy harvesting, resonant 

conditions must be satisfied across a wide operating frequency range, which is nearly impossible with 

typical linear harvesters. The design proposed herein requires the modal frequency to closely match the 

expected vibration frequency. Consider then the following beam: 𝐸 =  200 𝐺𝑃𝑎, 𝐿 =  80 𝑚𝑚, 𝑏 =

 15 𝑚𝑚, 𝑡 =  0.2 𝑚𝑚, 𝜌 =  7810 𝑘𝑔/𝑚3, 𝑀 =  0.100 𝑘𝑔, which is clamped at one side and 

supported by a roller at the other. Fig. (5) shows the variation of the beam’s first modal frequency with 

the system’s rotational speed. The magnet is fixed at 𝐿1 = 0.575𝐿 in order to ensure good coincidence 

with the excitation frequency. It is observed that the modal frequency is tuned such that it remains close 

to the excitation frequency. In this manner, the harvester’s response is expected to reside close to the 

resonant region. 

 

Figure 5.   Variation of the C-R beam’s first modal frequency across a wide range of frequencies (solid 

line), plotted with the expected dominant frequency of the host’s torsional vibrations 

(circles). 
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4. Harvested power 

Including the electric circuit in the equations of motion introduces an additional damping term which 

dissipates energy from the beam and so, 𝑐1 = 𝑐𝑚 + 𝑐𝑒 , where 𝑐𝑒 = 𝑘𝑐
2/2𝑅𝑙. Furthermore, the harvested 

power is given by: 

𝑃𝑙 =
𝑘𝑐

2

2𝑅𝑙
�̇�2(𝐿1), (8) 

 

Figure 6.   Comparison of the power output; (a) harvester tuned by centrifugal effect; (b) harvesters 

tuned at different shaft speeds. 

(a) 

(b) 
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Adopting these formulae for the assumed beam in Fig. (5), selected for the purpose of 

demonstration 𝑘𝑐 =  11 𝛵𝑚, 𝑅𝑙 =  50 𝛺, then the harvested power with the proposed passively tuned 

concept – Fig. (6a) – is compared with several non-tunable harvesters with set frequencies in the range 

of interest in Fig. (6b). One can readily observe that the passively tuned harvester demonstrates a far 

wider frequency response as opposed to its narrow-band counterparts tuned at specific frequencies. 

5. Conclusions 

In this paper, a concept for harvesting vibration energy from rotating systems is presented. The concept 

utilizes the dependence of a thin beam’s natural frequency on externally applied axial loads. A means 

of passively tuning the harvester to the host’s torsional vibrations through the utilization of the 

centrifugal action is proposed. It is shown that the proposed device can target a wide frequency range 

offering resonant vibration energy harvesting over a large range of operating conditions of the host 

structure. 
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