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Abstract 28 

Despite full voluntary effort, neuromuscular activation of the quadriceps group of muscles 29 

appears inhibited during eccentric contractions. A nerve stimulation protocol during dynamic 30 

contractions of the quadriceps was developed that employed triplets of supramaximal pulses 31 

to assess suppressed eccentric activation.  Subsequently the effects of a short training 32 

intervention, performed on a dynamometer, on eccentric strength output and neural inhibition 33 

were examined.  Torque-angular velocity (T-ω) and experimental voluntary neural drive-34 

angular velocity (%VA-ω; %VA, obtained via the interpolated twitch technique) datasets, 35 

were obtained from pre- and post-training testing sessions.  Non-linear regression fits of a 36 

seven parameter torque function and of a 3
rd

 degree polynomial were performed on the pre- 37 
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and post-training T-ω and %VA-ω datasets respectively.  T-test showed a significant (p < 

0.05) increase in the overall torque output post-training for the group, with three out of the six 

subjects demonstrating a significant (p < 0.05) increase in the torque output across the range 

of angular velocities as shown by the extra-sum-of-squares F-test.  A significant increase (p < 

0.05) in the %VA post-training was also observed as well as a reduction in the plateauing of 

the torque output during fast eccentric contractions. 

Keywords: Neural inhibition, muscular contraction, stimulation, training. 
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Introduction   

The maximal force generating capacity of a muscle is a function of its velocity and length. 

During in vitro studies researchers have repeatedly shown isolated muscle fibres stretched 

under maximal tetanic conditions produce a force that is 1.5 to 1.9 times higher than maximal 

isometric force (Katz, 1939; Délèze, 1961; Edman et al., 1978; Edman, 1988).  However, in 

vivo measurements of the torque-velocity profile during maximum voluntary contractions 

(MVC) show either little difference between isometric and eccentric torque across increasing 

angular velocities (Westing, 1988), or a tendency to decline with increasing velocity 

(Westing et al., 1990; Dudley et al., 1990; Pain & Forrester, 2009; Forrester & Pain, 2010).  

EMG studies have shown a 10-30% decrease in the neural drive of the quadriceps under fast 

eccentric MVC contractions (Westing et al., 1991; Enoka, 1997; Paillard et al., 2005).  It has 

been proposed that this apparent reduction in neural drive could be due to the existence of a 

neural tension-limiting mechanism that only becomes active during maximal load 

contractions of skeletal muscle (Westing et al., 1990; Westing et al., 1991).  Pain and 

Forrester (2009) used normalized wavelet transformed EMG to calculate EMG-corrected 

maximal voluntary torques (MVT) from a wide range of eccentric and concentric 

contractions of the knee extensors.  They arrived at a peak eccentric to isometric torque ratio 

(Tecc/T0 ) of 1.6. 

Dudley et al. (1990) used sub-maximal transcutaneous electrical muscle stimulation (40-60% 

of MVT) to produce a torque-velocity profile for the knee extensors that was closer to the in 

vitro tetanic profile; Tecc/T0 of 1.4 and did not drop off at higher lengthening velocities.  

Westing et al. (1990) also used transcutaneous electrical muscle stimulation, in isolation and 

superposed on MVC, and although these authors attempted to obtain maximal activation 

levels using both methods the level of stimulation was subjectively limited between subjects 

based on their pain thresholds.  They found that superposed stimulation increased eccentric 72 
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MVT by 24% from MVC alone at 360°/s.  They obtained a Tecc/T0 of 1.33 for stimulated 

only, but 1.23 for superposed stimulation.  For the latter the absolute torque values were 

higher and this was seen as a good indicator of the tension limiting mechanism.  Amiridis et 

al. (1996) also used this superposition method and found similar results to Westing et al. 

(1990) for untrained subjects (torque with stimulation was 25% higher than MVT alone, and 

Tecc/T0 was 1.23 for MVC plus stimulation), but little eccentric increase for trained athletes 

when superposed electrical stimulation was used.  For the athletes in the study of Amiridis et 

al. (1996) Tecc/T0 was 1.22 for superposed stimulation.  More recently Pain et al. (2013) used 

sub-maximal transcutaneous muscle stimulation, but with a wider range of velocities than 

previously used, to obtain a Tecc/T0 of 1.7 for both the quadriceps and hamstrings.  In these 

studies lower absolute eccentric torque is associated with higher Tecc/T0 ratios and is 

supportive of the tension limiting hypothesis. 

The aforementioned studies have all used muscle stimulation which can cause rapid fatigue 

and discomfort and also reduces concentric torque values compared to MVT values.  

Transcutaneous stimulation of the femoral nerve is an alternative method for stimulating the 

quadriceps muscles, and has been used repeatedly in studies utilising the interpolated 

twitch technique (ITT) during isometric and slow dynamic contractions and in maximal rate 

of force development studies using octets (Deutekom et al., 2000; de Ruiter et al., 2004; 

Folland et al., 2014; Beltman et al., 2004).  However, there does not appear to be any 

literature on repeated nerve stimulation during fast eccentric contractions and its 

effect on neuromuscular activation. 

The results of Amiridis et al. (1996) suggest that the MVC and stimulated torque-velocity 

profiles may depend upon the fitness level of subjects.  Therefore, it can be hypothesised that 

specific strength training could induce a reduction in the inhibitive action and a number of 

studies tested that hypothesis using various training programmes.  These, however, were 97 
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either performed using free weights (Aagaard et al., 2000), focused on the concentric phase 

of muscular contraction only (Caiozzo et al., 1981), or the aim was to establish 

training-induced physiological changes of the contracting muscles (Coyle et al., 1981; 

Aagaard et al., 2001).  Spurway et al. (2000) performed a 6 week knee extension training 

protocol with one leg concentric and one leg eccentric and surmised from their results that 

eccentric strength was increased primarily from decreased inhibition.  However, no measures 

of neural activity were taken and morphological changes would also likely have started.  

Furthermore, attempts to improve the force output during maximal voluntary eccentric 

contractions by following a strictly isovelocity strength training protocol have given 

contradictory results (Higbie et al., 1996; Seger & Thorstensson, 2005).  

The aims of this study were: a) to develop a nerve stimulation protocol during dynamic 

contractions without causing excessive discomfort or injury in order to examine suppressed 

eccentric activation and b) to investigate whether performing a high velocity strength training 

protocol using eccentric-concentric cycles on an isovelocity dynamometer would lead to a 

decrease in the inhibitive action of the neural factors and an increase in torque output during 

fast eccentric maximal voluntary contractions.  The training protocol was specifically geared 

to high velocity eccentric/concentric training on an isovelocity dynamometer over a period of 

3 weeks to limit adaptations to predominately neural changes (Corriander & Tesch, 1990).  It 

was hypothesized that at the end of the training cycle subjects would exhibit significantly 

higher torque outputs and a reduction in neural inhibition. 117 
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 Method  

Two similar groups of male volunteers, (n = 9 and n = 6), who had not previously engaged in 

any systematic form of strength training or high level sports practice, were recruited for the 

study (mean ± standard deviation: age 26.3 ± 2.7 years, body mass 72.9 ± 11.7 kg, height, 

172.2 ± 8.4 cm;).  They all gave written, informed consent and the study was conducted in 

accordance with the approval given by the Loughborough University Ethical Advisory 

Committee.  The study was divided into two phases to address aims (a) and (b) above.  

Phase 1. 

The minimum required sample size was determined by performing a power analysis on the 

MVC and superimposed eccentric torque values reported by Westing et al., (1990).  The 

analysis showed that a minimum sample size of four was required to achieve a power value 

of 0.8 and p < 0.05.  To account for drop out a total of nine subjects took part in this phase of 

the study and data collection finished when six had completed the protocol.  As this protocol 

was painful for some subjects, and pain was associated with an increased risk of injury, the 

subject numbers were kept minimal for ethical considerations, and two more than the 

minimum completed testing in case of later issues with data.  Testing took place on an 

isovelocity dynamometer with built-in gravitational torque correction (Con-Trex, CMV AG, 

Switzerland) over three sessions.  In each session subjects were seated on the dynamometer 

with their dominant leg strapped tightly to the unpadded crank arm directly above the ankle 

joint using a protective moulded plastic shin guard.  The anterior hip angle was set at 100° 

(seat was set at 80° incline).  To minimise differences between the crank and joint 

kinematics, the rotational axis of the crank arm was aligned with the centre of the knee joint 

during near-maximal efforts.   140 
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Dynamometer and stimulator data were recorded simultaneously at 512 Hz with Spike2 

software (Spike 2, CED, Cambridge, UK).  The dynamometer data were filtered at 8 Hz 

using a low-pass fourth order Butterworth filter.  Knee joint angles were measured with a 

mechanical goniometer during four isometric trials and the instantaneous crank arm angle 

was converted to joint angle using a linear regression equation (Pain & Forrester, 2009).  For 

each dynamic trial the maximum eccentric and concentric isovelocity phases were identified 

and the isovelocity plateau was defined as the region where the angular velocity was within 

5% of the peak value. 

Each session was initiated with a standardized warm up protocol. Session 1 was a 

familiarisation session where subjects performed one maximal MVC at crank angles of 15° 

through to 75° in 15° steps (with 0° corresponding to full extension) and a number of MVC 

and electrically stimulated dynamic (eccentric-concentric) contractions at 50, 200 and 350°/s. 

The optimum angle of peak torque was determined by fitting a quadratic to the torque-angle 

dataset obtained from the isometric MVCs.  During the second session maximum, eccentric-

concentric contractions were performed at: 50, 200 and 350°/s, according to the protocol of 

Yeadon et al. (2006) with two-minute rest intervals between trials.  Once MVCs were 

completed subjects performed one stimulated trial at each isovelocity to further familiarise 

themselves with the sensation.  Subsequently, optimum peak torque angles per isovelocity 

were determined for each subject as well as the time lapse between onset and effect of 

stimulation in order for the latter to coincide with the optimum angle.  The onset 

of stimulation varied with angular velocity and acceleration (Figure 1).  However, the 

changing width of stimulation twitch response with angular velocity (Gandevia et al., 

1998) was not accounted for.  In the third session subjects performed one MVC and one 

supramaximal stimulation trial at each isovelocity and each contraction mode and the 

respective peak torque values were recorded and used in the subsequent analysis.  165 
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Electrical stimulation. Transcutaneous electrical stimulation of the quadriceps was achieved 

using a stimulator (DS7AH, Digitimer Ltd., UK) controlled by Spike 2 software.  Two 

electrodes, a ball probe cathode of 10 mm in diameter, and a rectangular anode (90x50 mm) 

both coated with a thin layer of conductive gel were placed at the femoral nerve and the 

gluteal fold respectively (Tillin et al., 2011).  The individual stimulation intensity was 

determined by sending single rectangular pulses (0.2 ms) of increasing strength starting from 

a current intensity of 30 mA, in 30 mA steps, until the twitch response plateaued.  

A supramaximal stimulation level was set at 20% above this intensity.  In the first 

session a singlet supramaximal pulse was sent through the femoral nerve in order to 

gradually familiarise the subjects to electrical stimulation, however, this became a triplet in 

subsequent sessions.  The pulses were timed to coincide with optimum knee angle.  

A 2x4 repeated measures ANOVA was performed in order to determine the effects of 

stimulus (MVC vs STIM) and velocity on the torque values.  Effect sizes were calculated and 

subsequently used in a second power analysis to determine the minimum sample size for the 

training part of the study.   

Phase 2 

Having established that triplets would not drive eccentric values high enough to reach 

theoretical Tecc/T0 values the use of doublet stimulation was chosen for the ITT, since it has 

been shown that the method is not sensitive to the number of pulses used, allowing the 

measurement of reduced voluntary activation but with less discomfort (Behm et al., 1996; 

Folland & Williams, 2007).  This would help mitigate the risk of losing subjects in the latter 

stages of the testing protocol when replacements would not be possible.  Power analysis 

based on Phase 1 showed that a minimum sample size of n = 5 was required to achieve a 

power value of 0.8 and p < 0.05.  Six new subjects were recruited in this phase of the study. 189 



Phase 2 consisted of eleven sessions, a familiarisation session that followed the 190 

familiarisation protocol of Phase 1, eight training sessions and two testing sessions that took 191 

place pre- and post-training respectively.  Training took place over a 3-week period.  Sessions 192 

lasted no more than 30 minutes, where subjects performed up to 10 sets of dynamic eccentric-193 

concentric knee extension cycles at velocities ranging between 50 and 350°/s.  The number of 194 

cycles and velocities increased as subjects adapted.  Since the intensity of the training could 195 

not be quantified by counting the number of repetitions and loads, sets were time-matched. 196 

Specifically, one eccentric-concentric cycle was performed at 50º/s and 100º/s, two at 150º/s, 197 
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three at 250º/s and four at 350º/s.  All training sessions were supervised by the investigators.  

The testing protocol consisted of maximal voluntary and supramaximally 

electrically stimulated isometric and dynamic contractions.  The range of isometric 

contractions was the same as in previous sessions but this time the dynamic contractions 

were measured at 5 angular velocities: 50, 100, 150, 250 and 350°/s.  During isometric 

contractions subjects performed one MVC and one stimulation contraction per joint angle.  

The same order was maintained during dynamic contractions.  Electrical stimulation was 

achieved following the procedure described in Phase 1 with doublet pulses.  

The percentage of voluntary activation (%VA) of the quadriceps muscle was expressed by 

the following formula:  

[Equation 1] 

where the superimposed twitch is the torque increment noted during a maximal contraction at 

the time of stimulation and the control twitch is that evoked in the relaxed muscle (Shield & 210 

Zhou, 2004; Folland & Williams, 2007).  The torque increment was defined as follows.  If 211 

torque was increasing in value prior to stimulation then the value of the torque in the absence 212 

of stimulation was calculated by extrapolating the last 25 data points prior to stimulation 213 



onset, taking the corresponding extrapolated value and subtracting it from the peak twitch 214 

torque, similar to Gandevia et al. (1998).  If torque value was decreasing prior to stimulation, 215 

and in order to avoid overestimating the torque increment, the last value prior to onset of 216 

stimulation was subtracted from the peak twitch torque value, similar to Beltman et al. (2004) 217 

(Figure 1). 218 

In order to assess possible group changes in performance the torque vs. angular velocity (T-219 

ω) curves were plotted for every subject pre and post-training.  These were numerically 220 

integrated and the eccentric and concentric areas compared at group level using a one-tailed 221 

paired t-test.  A 2x2x6 repeated measures ANOVA (time x velocity x contraction mode) was 222 

also used to determine the effects of velocity and training on the neural inhibition during 223 

eccentric contractions. Due to difficulties in eliciting stimulated contractions at the 224 

predetermined angles during efforts at high isovelocities it was not possible to repeat the t-225 

test comparison for the ITT dataset due to the small number of data points obtained. 226 

T-ω and %VA-ω data sets per subject were obtained in both testing sessions.  The individual227 

pre- and post-training T-ω data sets for each subject were statistically compared by 228 

performing a nonlinear regression fit of the 7-parameter MVT function defined in Forrester et 229 

al. (2011), first separately and subsequently to the combined pre and post-training data sets 230 

(Figure 2).  The fits for each profile were statistically compared using the extra-sum-of-231 

squares F-test (Motulsky & Christopoulos, 2004; Voukelatos & Pain, 2015).  The same 232 

statistical process was repeated for the %VA-ω data set by fitting a 3
rd

 degree polynomial to233 

establish the training effect on voluntary activation (Figure 3). 234 

Normal distribution was checked using a Shapiro-Wilk test of normality.  Analysis of the 235 

Con-Trex data was performed using Matlab (version 8.1, The MathWorks Inc., Natick, MA, 236 

USA) and statistical analysis was performed using SPSS (version 21, SPSS Inc., Chicago, 237 



Illinois, USA).  The power analyses were performed using GPower (Erdfelder et al., 2009). 238 

A statistical level of significance, p < 0.05, was used throughout. Cohen’s, d, was used as an 239 

effect size for the t-tests considering 0.2, 0.5, 0.8 as small, medium and large effects.  Effect 240 

size for the factorial ANOVAs used the partial eta squared statistic,  
 
 , (Cohen, 1992).  Data 241 

are reported as mean ± SD unless otherwise stated. 242 



Results  243 
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Phase1 

The 2x4 factorial ANOVA showed that there was a significant main effect for stimulus (F = 

67,  
 
  = 0.94). Contrasts between the baseline torque value recorded at 350°/s showed 

significant increase in torque outputs during stimulation contractions with respect to torque 

outputs from 200°/s and 50°/s (Table 1).  

[Table 1] 

Phase 2 

The comparison of the numerically integrated T-ω plots using a paired t-test showed 

significant increase (t = 3.2, d = 1.3) between pre and post-training data. There were 

significant increases in area under the T-ω curve post-training for both the eccentric section, t 

= 2.0, d = 0.82 and the concentric section, t = 2.3, d = 0.93. 

The 2x2x6 factorial ANOVA revealed a significant main effect for time (F = 6.6,  
 
  = 0.57) 

with overall post-training torque output being significantly higher than pre-training 

values (239 ± 12 vs 261 ± 15 Nm for pre and post-training respectively).  There was no 

significant time x velocity interaction.  Contrasts were also performed comparing peak 

torque output from 0-250º/s to the baseline value of 350º/s. Those revealed a significant 

increase in eccentric peak torque from 0-250º/s to the baseline value of 350º/s, relative to 

peak torque values at 150º/s (Table 2). 

258 
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[Table 2] 263 

264 

The individual MVT fit to each subject’s T-ω datasets (Figure 2) showed that 3 out of the 6 265 

subjects had significantly higher torque output post-training (Table 3).  When the MVT 266 



function was fitted to the pooled pre and post T-ω datasets of all subjects a significant 267 

increase in torque output post-training was found at group level (F = 2.06, d = 0.63). 268 

Applying the extra-sum-of-squares F-Test (Figure 3) to the %VA-ω datasets of each subject 269 

individually revealed one subject with a significant difference in %VA post-training (Table 270 

3).  However, the combined curve fit to the pooled pre and post-training %VA-ω datasets 271 

showed a significant increase in the %VA (F = 3.3, d = 0.39). 272 

273 

[Table 3] 274 

275 

[Figure 1] 276 

277 

[Figure 2] 278 

279 

[Figure 3] 280 

281 

[Figure 4] 282 

283 

Discussion 284 

The aim of the first phase was to develop a nerve stimulation protocol during dynamic 285 

contractions in order to examine suppressed eccentric activation and was for the most part 286 

successful.  Subjects achieved significantly higher torque outputs during electrically 287 

stimulated eccentric contractions of the quadriceps compared to the respective MVC values 288 

(Table 1).  Moreover the repeated measures ANOVA contrasts showed that triplet stimulation 289 

successfully reduced the torque suppression in the eccentric region of the T-ω curve.  At 290 
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350°/s the peak torque with stimulation superposed was 31% higher than that of MVC alone 

and this is greater than that seen in Westing et al. (1990) and Amiridis et al. (1996).  In this 

study Tecc/T0 was 1.24 during superposed nerve stimulation, which is the same as the 1.23 

times found in both Westing et al. (1990) and Amiridis et al. (1996).  The differences in the 

ratios of increased eccentric torque and Tecc/T0 between this study and the previous ones 

are likely due to the low eccentric MVT values of the subjects in this study.  A limitation of 

our method can be found in the accuracy of timing of the triplet stimulation, particularly at 

high velocity.  Consequently, the peak STIM torque angle may not always coincide with the 

peak MVC torque angle.  However, it is likely that VA is less susceptible to timing 

errors as during maximal effort trials (STIM or MVC) subjects are meant to be maximally 

active and therefore the twitch increment will still be relative to maximum effort.  

Another potential limitation of using triplet stimulation is the level of discomfort felt by 

subjects.  This may also explain the lower values for MVT via a fear avoidance reduction of 

volitional effort over and above the potential neural inhibition (Button & Behm, 2008).  

This was predominantly observed during isometric contractions where three of the six 

subjects recorded STIM values that were significantly lower than their respective MVC 

values.  Given subject comments and that a typical twitch response can be seen that does 

not drive the torque value towards the MVC, this was likely due to increased whole body 

tension and degree of co-contraction of the antagonist (Figure 4).  

At the end of the short term high velocity dynamometer training protocol subjects achieved a 

significant increase in overall torque output during both concentric and eccentric 

contractions, in agreement with our hypothesis.  Regarding the effect of the training protocol 

on neural activation and the action of the tension limiting mechanism, a significant increase 

in the %VA post-training was achieved, as well as a significant increase in the peak torque 

outputs, during eccentric contractions at 350°/s with respect to torque outputs from 150°/s. 315 



These results are indicative of increased neuromuscular activation post-training and a 316 

possible reduction in the inhibitive action of the tension limiting mechanism.  These results 317 

are in, at least partial, agreement with previous isovelocity training studies that also reported 318 

significant increases in the torque output during eccentric/concentric contractions of the 319 

quadriceps after isovelocity strengthening protocols (Caiozzo et al., 1981; Coyle et al., 1981; 320 

Hortobàgyi et al., 1996; Higbie et al., 1996).  321 

The current study also sought to address the nature of the underlying reason behind increased 322 

torque output post-training, and more specifically whether this was due to an increase in 323 

neuromuscular activation.  The significant increase in the %VA value post-training suggests 324 

an increase in the neuromuscular activation of the quadriceps muscle.  This is in line with 325 

findings by Hortobàgyi et al. (1996), Higbie et al. (1996) and Aagaard et al. (2000) who 326 

reported increased iEMG activity of the quadriceps muscle post-training.  However, since 327 

post-training increases in quadriceps cross-sectional area and number of type II fibres were 328 

also reported (Higbie et al., 1996; Hortobàgyi et al., 1996), it is not clear whether the 329 

observed increases in iEMG values were solely due to increased neuromuscular activation or 330 

also due to increased muscle hypertrophy.  In the current study only 8 training sessions in 331 

three weeks took place, thus it is likely that the observed increase in the torque output post-332 

training can be attributed almost exclusively to neural factors, such as increased muscle 333 

neuromuscular activation, more efficient recruitment and decreased neural inhibition (Staron 334 

et al., 1994; Colliander & Tesch, 1990). 335 

Increased neuromuscular activation would manifest itself through a greater increase in torque 336 

output during eccentric compared to concentric contractions post-training and a reversal of 337 

the torque suppression during eccentrics at high velocities in vivo (Westing et al., 1990, 1991; 338 

Dudley et al., 1990; Webber & Kriellaars, 1997; Seger & Thorstensson, 2005).  The observed 339 

torque increase in this study was not higher post-training during eccentric compared to 340 



concentric contractions.  However, the results of the repeated measures ANOVA showed that 341 

whereas the subjects’ torque outputs tended to plateau at 150˚/s during eccentric contractions 342 

pre-training they do not appear to do so post-training.  This is possibly a significant finding as 343 

it offers an indication that the neural inhibition may, indeed be reversible.  At the same time it 344 

must be noted that, unlike Phase 1, there was no clear increasing trend in eccentric peak 345 

torque values with increasing angular velocities suggesting that some level of neural 346 

inhibition was possibly still present post-training.  If this is indeed the case then, a complete 347 

348 

349 

350 

351 

352 

353 

354 

355 

356 

357 

358 

359 

360 

361 

362 

363 

364 

reversal of neural inhibition may need longer periods of training to emerge if the inhibition is 

present to act against overloading the musculoskeletal system.  To safely increase eccentric 

strength concomitant increases in resistance to loading of the tendons, bones, and other 

structural tissues would be necessary and take longer to adapt. 

Limitations of this study include the difficulty of eliciting consistent electrical pulses at high 

isovelocities during stimulated contractions, the use of two different stimulation protocols 

due to subject discomfort, and possible learning effects from the repeated use of the 

dynamometer by the subjects.  The change to using doublet ITT to look at voluntary 

activation via twitch responses prevents some direct comparisons between Phase 1 and Phase 

2 results but still reflects the activation changes.  The familiarization session protocol was 

designed to minimize learning effects and their confounding influence (Madsen, 2006; Lund 

et al., 2005) and should not be a major factor.  

This is the first time triplet nerve stimulation has been used to assess eccentric suppression 

during fast dynamic contractions and produced very similar results to muscle stimulation 

studies whilst also allowing the application of dynamic doublet ITT to eccentric and 

concentric knee extensions.  Performing a short, strength training protocol, consisting of 8 

training sessions, on an isovelocity dynamometer over a range of angular velocities produced 

notable increases in torque output for all velocities and types of contraction.  This is 365 



attributed to an increase in muscle activation and, a decrease in the inhibitive action of the 366 

tension-limiting mechanism observed during fast eccentric contractions of the quadriceps. 367 
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Table 1: Mean peak torque ± SD values per isovelocity obtained for MVC and stimulated 534 

eccentric contractions during Phase 1.  It is noted that contrary to the other isovelocities, the 535 

stimulated peak torque values were lower than the respective MVC values as some of the 536 

subjects were adversely affected by the intensity of the stimulus. 537 

ω (°/s) MVC (Nm)  STIM (Nm) 

0 284 ± 22  268 ± 38 

50 266 ± 15  291 ± 25 

200 257 ± 32  318 ± 39 

350 254 ± 24   333 ± 60 

 538 

 539 

Table 2: Mean peak ± SD torque values obtained at 0 to ±350°/s during pre and post-training 540 

sessions for both contraction modes.  541 

ω (°/s) Pre-Training          Torque (Nm) Post-Training        Torque (Nm) 

 ECC CONC ECC CONC 

0  227 ± 46 256 ± 42 

50 240 ± 32 188 ± 26 265 ± 46 207 ± 18 

100 251 ± 39 168 ± 27 254 ± 33 196 ±19 

150 245 ± 27 152 ± 19 257* ± 29 169 ± 19 

250 226 ± 34 128 ± 19 251 ± 41 140 ± 12 

350 247 ± 42 109 ± 20 280* ± 46 127 ± 13 

*Significant difference (p < 0.05) in torque output at150 and 350°/s post-training.  542 



Table 3: Results obtained from fitting the MVT torque function and a 3
rd

 degree polynomial 543 

to the raw T-ω and %VA-ω data sets respectively.  Individual comparisons showed that three 544 

out of six subjects recorded significantly higher torque outputs and one subject exhibited 545 

significantly higher neuromuscular activation post-training.  546 

 MVC fit   %VA fit  

 F-ratio
† 

Cohen’s d  F-ratio
† 

Cohen’s d 

Subject 1 0.92 0.18  1.35 0.75 

Subject 2 5.91* 2.1  1.93 0.24 

Subject 3 1.58 0.71  0.67 0.11 

Subject 4 4.95* 1.45  4.2* 0.35 

Subject 5 12.9* 3.8  3.8 0.86 

Subject 6 2.62 0.81  0.94 0.32 

* p < 0.05 547 

†
 F represents the ratio between the sum of the variances of the pre and post-training MVC / 548 

polynomial fits over the respective combined (global) fit variance.  If the two variances are 549 

close then the pre and post curves are almost identical suggesting a minimal training effect.  550 

On the other hand, if the variance of the individual curves is greater than the combined 551 

variance then the two curves are distinct indicating a possible training effect on the torque 552 

output or voluntary activation. 553 

 554 

 555 

  556 



List of figures 557 

Figure 1:  Rows 1-2: Passive Torque – angle plots with superimposed stimulation (vertical 558 

line) for eccentric (row 1) and concentric contractions (row 2) at 50º/s, 200º/s and 350º/s 559 

(columns 1-3 respectively).  Rows 3-4: MVC (broken red line) and STIM (blue line) Torque 560 

– angle plots with superimposed stimulation (vertical line) for eccentric (row 3) and 561 

concentric contractions (row 4) at 50º/s, 200º/s and 350º/s (columns 1-3 respectively).  Black 562 

broken line shows increasing/decreasing value of joint angle.  All plots correspond to the 563 

respective isovelocity regions. 564 

 565 

Figure 2: Example plots from Subject 4 of the pre- and post-training T-ω raw data and 566 

separately fitted MVT function for each dataset.  The fitted MVT function produced maximal 567 

concentric angular velocity values, ω, of 1,550º/s and 1,805º/s for pre and post-training fits 568 

respectively.  Those values compare very well with the values obtained by Forrester et al., 569 

2011 for three different subjects (1,410-2,000º/s). 570 

 571 

Figure 3: Example plots from Subject 1 of the pre- and post-training %VA-ω data and 572 

separately fitted 3
rd

 degree polynomials for each dataset.   573 

 574 

Figure 4: MVC (broken red line) and STIM (blue line) Torque – angle plots with 575 

superimposed stimulation (vertical line) during isometric contraction followed by passive 576 

twitch.  577 

Equation 1: 578 

%VA  1 
superi posed twitch

control twitch evo ed at rest
  100 
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