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ABSTRACT 

 

 

The aim of this research was to investigate how I engaged in constructivist teaching 

(CT) when helping a group of low-performing Grade 7 students to develop new 

meanings of notation as they started to learn formal algebra. Data was collected over 

a period of one scholastic year, in which I explored the teacher-student dynamics 

during my mathematics lessons, where students learnt new representations and 

interpretations of notation with the help of the computer software Grid Algebra. 

Analysing video recordings of my lessons, I observed myself continuously changing 

my teaching purpose as I negotiated between the mathematics I intended to teach and 

the mathematics being constructed by my students. These shifts of focus and purpose 

were used to develop a conceptual framework called Mathematics-Negotiation-

Learner (M-N-L). Besides serving as a CT model, the M-N-L framework was found 

useful to determine the extent to which I managed to engage in CT during the lessons 

and also to identify moments where I lost my sensitivity to students’ constructions of 

knowledge. The effectiveness of my CT was investigated by focusing on students’ 

learning, for which reason I developed the analytical framework called CAPS (Concept-

Action-Picture-Symbol). The CAPS framework helped me to analyse how students 

developed notions about properties of operational notation, the structure and order of 

operations in numerical and algebraic expressions, and the relational property of the 

equals sign. Grid Algebra was found to be a useful tool in helping students to enrich 

their repertoire of representations and to develop new interpretations of notation 

through what I defined as informal- and formal-algebraic activities. All students 

managed to transfer these representations and interpretations of notation to pen-and-

paper problems, where they successfully worked out traditionally set substitution-and-

evaluation tasks. 
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 Introduction 



Chapter 1 Introduction 
 

2 

1.0 Overview 

In this chapter, I present the background which led to general research aims and briefly 

overview the content of the other chapters. Table 1.0.1 includes the section titles of 

this chapter. 

 
Table 1.0.1 Chapter 1 section titles 

 Section Title Page 

1.1 Background and Orientation 2 

1.2 Overview of the Thesis Chapters 6 

1.3 Writing Style 9 

 
 
 

1.1 Background and Orientation 

In my first few days as a mathematics teacher in a Maltese secondary school, I became 
aware that students’ minds operated in unique ways and their interpretations of 
whatever mathematics I presented in the classroom were as different as their facial 
features. Soon enough, I learnt that the only body of knowledge that made sense to 
the students was the kind that they could develop themselves, which fitted within the 
context of their individual experiences, and which was viable enough to explain their 
experiential realities. This was one of the reasons why I came to embrace radical 
constructivism (RC) as a general orientation towards reality, knowledge, and learning.  
 

1.1.1 The Challenge of Constructivist Teaching 

One of the lessons I learnt in twenty years of teaching was that bringing RC notions 
into school teaching practice was no mean feat. There were frequent moments when I 
found myself at odds with my RC beliefs when I realised I was paying closer attention 
to the mathematics that educational authorities handed me down as a body of a priori 
knowledge and expected me to teach, rather than the educational needs of my 
students and the knowledge they were constructing. My sensitivity to RC made me 
compensate for such moments by shifting my attention from my mathematics to the 
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students, by asking them questions about what they were thinking and how they were 
interpreting my mathematical representations.  
 
As my teaching approach started to settle into a regular style, this toing and froing 

between my mathematics and the students became the norm. Being mindful of the 

mathematics I intended to teach whilst maintaining a sensitivity to students’ conceptual 

constructions was my understanding of what some researchers (e.g. Steffe, 1991) 

referred to as constructivist teaching (CT). My interest to pursue research on CT, 

thus, originated from my own experience as a mathematics teacher and my beliefs 

in RC.  

 

1.1.2 Computers as Tools that Assist Constructivist Teaching 

This reflective, pedagogical journey happened during interesting times in Malta’s 

education. Towards the end of the millennium, the Maltese Government took measures 

to promote the use of computers for teaching and learning. Secondary school 

mathematics curricula even required teachers to make use of computer software in 

their lessons (SEC Mathematics Syllabus, 2002).  I welcomed the prospect of doing 

mathematics with computers and so did my students. Computer use encouraged 

students to participate actively in outcomes-based activities, something which is widely 

reported in the literature (e.g., Ramsay, 2001; Mathew, 2004; Fritz, 2005). Like 

teachers in Richardson’s (1999) study, I frequently took on the role of a learner in the 

classroom because most students were much more computer-oriented than I was and 

were always willing to show me how to do things better and quicker. I learnt a great 

deal from my students, both inside and outside the classroom. For instance, I mastered 

some of the more advanced applications of MS Excel thanks to a Grade 10 student of 

mine who sacrificed a number of breaks for the sake of my learning.  

 

I saw the computer as a promising tool to pass the teaching baton to my students. On 

a regular basis, I used to organise revision lessons conducted entirely by students with 

the help of computers. These student expositions, or presentations as we used to call 

them, had much in common with what Pask and Scott (1972) appropriately called the 
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teach-back method. Consisting basically of a group of students teaching me back what 

they had learnt about a topic, these student expositions had a number of benefits. They 

encouraged the students in charge of the presentation to consolidate their knowledge 

of that topic, served as a revision to the other students, and were an excellent source 

of feedback from which I could draw models of students’ interpretations of my lessons.  

 

Most mathematics teachers I knew, however, did not share my enthusiasm about the 

use of computers for teaching and learning and this was what motivated me to research 

teachers’ attitudes towards computer applications (Borg, 2011). In the meantime, I 

continued to make regular use of computer software in my lessons because I saw it as 

indispensable tool for teachers in the 21st century. Consistent with research reports 

about teachers’ use of computers for teaching (e.g., Dugdale, 2001; Kirshner & 

Wopereis, 2003; Hermans, Tondeur, van Braak, & Valcke, 2008), I saw the computer 

as a medium which enabled teacher-to-student power shifts, fostered students’ active 

participation and knowledge construction, encouraged student-centred lessons, and, 

consequently, was in line with my RC philosophy and my understanding of CT. In 

particular, it facilitated my toing and froing between mathematics and learners 

mentioned earlier. It was therefore a natural choice for me to pursue the current 

research about the use of computer software to assist CT.  

 

1.1.3 Developing a Broad Research Question 

At the time when I was thinking about starting this research, I was teaching five groups 

of students (Grades 7-11, one class per grade) in a boys’ secondary school. Two of 

these were low-performing groups at Grades 7 and 8. The school’s policy was to have 

a very small student-teacher ratio in such classes (average of 8 students and a 

maximum of 10). I considered that research about the use of computer software to 

support CT would be advantageous if conducted with one of these classes because 

the small number of students would mean that I could pursue a qualitative research 

with the possibility of investigating the conceptual developments of each student. 

Furthermore, Grade 7 offered the opportunity to investigate how my CT facilitated the 

conceptual developments of students whom I had not taught before. 
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Algebra was the branch in the Grade 7 curriculum that interested me the most, not only 

because I had researched students’ understandings of algebra before (Borg, 1997) but 

also because I considered algebra, in the broad sense of the word, to be key in 

students’ awareness of mathematical structures (Gattegno, 1988). As I discuss further 

on, students’ representations and interpretations of notation were crucial in their initial 

encounters with formal algebra. This was a determining factor when narrowing the 

focus on the teaching and learning topic. Looking into computer software with the 

potential to help students to learn about notation, it seemed that Grid Algebra1 (GA) 

had many favourable characteristics. Consequently, I chose GA as the main medium 

of the lessons I intended to investigate. 

 

Along with the experiences discussed earlier, these research interests merged into the 

following broad research question: 

 

• How do I engage in CT by making use of GA to help Grade 7 students develop 

concepts about notation?  

 

This question required a review of literature related to: 

(i) constructivism and notions of CT, and  

(ii) the teaching and learning of algebra. 

 

I discuss this review in Chapters 2 and 3, where I present more specific research 

questions based on these two facets of the study. As I discuss in Chapter 4, I decided 

that the best way to address these questions was to pursue a case study of myself as 

a teacher attempting to engage in CT, and the students I helped to begin learning 

formal algebra by developing meanings of notation. Lessons about the methods 

employed in this research were mostly learnt during a pilot study which I carried out in 

the year prior to that in which data for the main study were gathered. This is discussed 

in Chapter 5. Data analysis corresponds to the two aspects of the study mentioned 

                                            
1 Developed by Dave Hewitt and distributed by the Association of Teachers of Mathematics. 



Chapter 1 Introduction 
 

6 

above, i.e. CT and the learning it facilitated. These were discussed respectively in 

Chapters 6 and 7. A more detailed overview of the other chapters of this thesis is 

included below. 

 

1.2  Overview of the Thesis Chapters 

In this section I give an overview of the other chapters of this thesis. The chapter titles 

are included in Table 1.2.1. 

 

 Chapter Title Page 

2 Literature Review Part 1: Constructivist Teaching 11 

3 Literature Review Part 2: The Learning of Algebra 53 

4 Methodology and Method 111 

5 Pilot Study 163 

6 Analysis and Discussion of Constructivist Teaching 181 

7 Analysis and Discussion of Students’ Representations and Interpretations 236 

8 Conclusion 316 

 

Chapter 2 includes a review of mostly conceptual literature related to CT. I start by 

discussing the contrasting characteristics of constructivism and objectivism. Then, I 

focus on RC from which I draw my standpoint about the nature of mathematics 

knowledge and the process of learning. Against this backdrop, I discuss mathematical 

representations and interpretations, emphasising particularly the works of Kaput 

(1991) and Bruner (1966). Then I focus on experiential learning, where I discuss mostly 

the theories of Dewey (1938) and Kolb (1984). Having discussed mathematics and 

learning, I discuss the teacher’s role where I review Jaworski’s (1994) teaching triad 

from which I elicit a key concept that permeates my research: sensitivity to students, 

particularly their constructions of knowledge. This creates a context for a discussion 

about CT through theories of Freire (2000), Dewey (1902),  Glasersfeld (1991b), Steffe 
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(1991), Simon (1995), and others. This review leads to the first set of research 

questions, those regarding CT. 

 

The second part of the literature review resumes in Chapter 3, where I turn my focus 

on algebra and its learning. I start by discussing the nature and definition of “algebra” 

where I bring in algebra theorists including Mason (1996), Kaput (2008), Radford 

(2014), Kieran (1996), and Gattegno (1988). This creates a context for my definition of 

algebra where I distinguish between what I call informal- and formal-algebraic 

activities. I follow this by a review of mostly research-based literature about the learning 

of algebra where I focus on students’ difficulties. Bringing evidence from the literature, 

I show that notation is a make-or-break issue in students’ success in learning algebra 

and thus emphasise the importance of students being helped to enrich and extend their 

representations and interpretations of notation. I present the use of ICT as one possible 

way forward, where I bring in literature reports about computer software that was found 

effective in helping students learn about notation and algebra. These include 

microworlds, Logo, spreadsheets, and grid-based environments including GA.  This 

leads to the second set of research questions, those regarding students’ 

representations and interpretations of notation with the help of GA. 

 

After ending my literature review with the specific research questions, I set out, in 

Chapter 4, to discuss the research methodology and method I adopted to investigate 

those questions. I start by presenting a rationale for a qualitative methodology and 

follow this by a discussion of the factors which made me choose case study as an 

inquiry approach. Then I turn my focus on the student participants, where I describe 

the school and educational context and provide a brief profile of each student. This is 

followed by a detailed description of the GA software, where I give an overview of its 

key features, especially those relevant to the research data. I also discuss the GA 

lessons and other means of data generation. Then I describe my data-gathering 

methods and rationalise my choice of tools and method of analysis. I consider the 

issues about my dual role of a teacher researcher and also how I addressed concerns 

about reliability and validity. I end this chapter by discussing ethical considerations 

required for such a study conducted with young students. 
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Chapter 5 is a short chapter in which I briefly review the pilot study I undertook in the 

scholastic year preceding that of the main study. I discuss how this pilot was intended 

to refine the research questions and get information about technical matters and data-

collecting methods. As I show, valuable lessons were also learnt about the participants 

and their learning and about myself as a teacher researcher. The pilot was also useful 

in helping me come to know what to expect of the main study and develop possible 

hypotheses.  

 

In Chapter 6, I turn my attention back to the main study where I report and discuss data 

related to the first set of research questions, those about CT. I analyse the dynamics 

of CT in the GA lessons, paying attention to the way my focus seemed to “oscillate” 

between the students and the mathematical content I intended to teach. Identifying 

patterns in the way I changed my teaching purpose leads to the development of the 

Mathematics-Negotiation-Learner (M-N-L) framework which serves to define and 

characterise my CT. This framework is built around constructivist theories such as 

those of Dewey (1902) and Steffe (1991). I proceed to show that this framework could 

also be used as an analytical tool to investigate the extent to which I managed to 

engage in CT. Finally, I discuss how the M-N-L framework was instrumental in 

identifying instances during the lessons where I seemed to lose my sensitivity to 

students’ constructions of knowledge. 

 

Data related to the second set of research questions are analysed and discussed in 

Chapter 7. I start by drawing up a second analytical framework by amalgamating 

Bruner’s (1966) theory of mathematical representations and the signifier-signified 

theory of Kaput (1991). I call this framework CAPS (Concept-Action-Picture-Symbol) 

and I use it to analyse how students developed concepts about notation through action, 

picture, and symbol representations. I proceed to use this framework to help me 

analyse how students enriched their representations and extended their interpretations 

of notation, namely, operational symbols, numerical and algebraic expressions, 

unknowns and variables, and the equals sign. I show how the CAPS framework was 

used to focus on an important aspect of CT – the communication of ideas from students 
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to teacher. I present evidence to show that students transferred concepts learnt within 

GA to pen-and-paper problems. 

 

In the conclusion of Chapter 8, I recapitulate the aims and outcomes of this research. 

I revisit and answer each research question bringing evidence from data analysed and 

discussed in Chapters 6 and 7. After describing the limitations of the research, I set 

out to discuss the significance of this study for the mathematics education community. 

This is followed by recommendations for future research and actions. 

 

In the following section, I include some notes about the writing style I adopted 

throughout this research report. 

 

1.3 Writing Style 

Being both the researcher and the teacher involved in the case study, I had to be 

careful which hat I was wearing when writing this thesis. In general, I took the stance 

of a researcher, but there was not a single moment in the duration of this research 

where I managed to take off the teacher hat completely. The first reason for this was 

that I carried out this research while working as a full-time teacher, so I tended to think 

of myself as a teacher throughout the study. This influenced the way I interpreted the 

literature and also my decisions regarding methodology. The second reason was that 

during the analysis, I was investigating data in which I was acting as a teacher and was 

reminded of what was going on in my mind during the data generation process, when 

my role was mainly that of a teacher. So, while I wrote this thesis as a researcher, I did 

not exclude the possibility that the teacher component may be felt when one reads my 

discussions. 

 

Patton (2002, p. 65) argues that ‘writing in the first person, active voice communicates 

the inquirer’s self-aware role in the inquiry’. This is a prerequisite of researchers 

conducting qualitative research since they need to assume a subjectivist stance. Thus, 

I used the first person to refer to myself in this write-up. This contributes to my 
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acknowledgement of researcher bias and of my possible influence on the data, being 

also the teacher involved in the case study.  

 

With regards to tense I followed this rule: For theoretical arguments and claims, I used 

the present tense to imply the assumption that the quoted authors would still make 

those statements today. For any results reported in the literature and in my research, 

I used the past tense. 

 

In my writing, I strived to employ gender-fair language (NCTE, 2002) by using gender-

neutral pronouns. The only times when this was not possible was when reporting data 

about my students (all boys) and in the rare occasions where an important direct quote 

included the male pronoun.  

 

Since the participants were grouped in mathematics lessons according to their 

performance in the Grade 6 examinations, I occasionally used the term “low-

performing” or its derivatives. I intentionally avoided using terms like “low ability”, or 

even “low-attaining” because I believe that ability and attainment may not always be 

reflected in the way students perform in examinations and tests. However, I have used 

this term very sparingly because, as I report later on, the students taking part in this 

study have shown that they do not even deserve the “low-performing” adjective. Their 

performance throughout the year and in the examination was far more than expected 

in their curriculum and comparable to what was expected of high-performing students. 

 

 



 

 

Chapter 2 

Literature Review Part 1: 
Constructivism and 

Constructivist Teaching 
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2.0 Overview 

As Gergen (1995) asserts, beliefs about knowledge inform, justify, and sustain our 

educational practices. This first part of the literature review includes discussions of 

theories which form a backdrop for my own epistemological views of teaching and 

learning and, consequently, my understanding of constructivist teaching (CT). Table 

2.0.1 gives an overall view of the sections in this chapter. 

 
Table 2.0.1 Chapter 2 section titles 

 Title Page 

2.1 Radical Constructivism: A Paradigm for Knowing and Learning 14 

2.2 Mathematical Representations and Interpretations 22 

2.3 Experiential Learning: Dewey’s Theories and Kolb’s Four-Stage Model  27 

2.4 Learners, Knowledge, and Teachers: The Didactic Triangle 34 

2.5 Teaching with Constructivist Sensitivities 37 

2.6 Research Questions about Constructivist Teaching 51 

 
A literature map is presented in Figure 2.0.1 (overleaf). I start this review by contrasting 

objectivist and constructivist epistemologies. Favouring the latter, I discuss the radical 

constructivist (RC) perspective of knowing and learning from which I draw my views 

about the nature of mathematics.  I discuss mathematical representations and 

interpretations as espoused by Kaput (1991) and Bruner (1966) and show how these 

complement each other in the context of RC. I follow this by focusing on experiential 

learning, eliciting lessons from the works of Dewey (1938) and Kolb (1984), both of 

whom emphasise learning through action and reflection. In the context Brousseau’s 

(1986) didactic triangle, I bring in the teacher’s role and review Jaworski’s (1994) 

teaching triad with an emphasis on teachers’ sensitivity to students, in particular to 

students’ construction of knowledge. This sets the scene for a discussion of CT, with 

reference to key theories such as Dewey (1902), Steffe (1991), and Simon (1995). This 

part of the literature review leads to the first set of research questions, those related to CT.  
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Figure 2.0.1 Literature topic map – Part 1 
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2.1 Radical Constructivism: A Paradigm for Knowing and 
Learning 

In this section, I discuss RC as a paradigm of knowing and learning. I set the context 

by discussing constructivism in general, starting by contrasting objectivist and 

constructivist epistemologies. 

 

2.1.1 Differences between Objectivist and Constructivist 
Epistemologies 

Synthesising the works of Thorndike (1913) on objectivist learning psychology and 

Glasersfeld’s (1989) studies of constructivism, Reeves (1997) captured five aspects of 

these epistemologies which set them apart. These contrasts are summarised in Table 2.1.1. 

 
Table 2.1.1  Contrasts between the constructivist and objectivist epistemologies 

 Objectivist Epistemology Constructivist Epistemology 

Nature of 
knowledge 

Knowledge exists separate from 
and independently of knowing. 

Knowledge does not exist outside the 
bodies and minds of human beings. 

Existence of 
reality 

Reality exists regardless of the 
existence of sentient beings. 

Although reality exists independently, what 
we know of it is individually constructed. 

Acquisition of 
knowledge 

Humans acquire knowledge in an 
objective manner through the 
senses. 

Humans construct knowledge subjectively 
based on prior experience and 
metacognitive processing or reflection. 

Definition of 
learning 

Learning consists of acquiring 
truth. 

Learning consists of acquiring viable 
assertions or strategies that meet 
one's objectives. 

Assessment of 
learning 

Learning can be measured 
precisely with tests. 

At best, learning can be estimated through 
observations and dialogue. 

(Adapted from Reeves, 1997) 

 



Chapter 2 Literature Review Part 1: Constructivism and CT 
 

15 

The table shows that while objectivism emphasises the existence of knowledge and 

reality in their own right, constructivism never accepts any notion of knowledge or 

reality without reference to the person who is coming to know or who is constructing a 

picture of reality. 

 

For objectivists, both the world and its meaning exist objectively, independent of the 

human mind, and external to the knower (Jonassen, 1992; Lakoff, 1987). Jonassen 

(1991) affirms that constructivists do not refute the existence of an external reality. 

What they oppose is the objectivists’ notion that people may have access to an external 

reality that exists independently of the senses. In fact, many constructivists, like 

Glasersfeld (1984) and Bruner (1986), have identified the roots of constructivism in the 

philosophy of Kant (1781) who postulates that an external, physical world (noumena) 

exists but we do not have a direct access to it. Rather, what we know and learn about 

it are the objects and occurrences we construe by way of our senses (phenomena). It 

follows that we can never really understand the world around us without referring to 

what our senses have processed in order to form our memories and experiences. This 

is a central standpoint of RC (Glasersfeld, 1984) as I discuss later. 

 

Objectivists’ and constructivists’ perceptions of reality and knowledge entail major 

contrasts in their beliefs about learning. For objectivists, learners acquire knowledge 

about what already exists (Brown, Collins, & Duguid, 1989; Duffy, 1992) and learning 

may be gained objectively (Rand, 1966). In contrast, constructivists suggest that 

humans construct (rather than acquire) knowledge subjectively by reflecting on their 

perceptions and experiences. Glasersfeld (1984, p. 24) explains that coming to know 

is ‘an ordering and organisation of a world constituted by our experience’. This 

emphasis on experience and reflection echoes the educational philosophy of Dewey, 

some of whose theories will be discussed in Section 2.3. 
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Furthermore, objectivists believe that the act of learning consists of acquiring truth, by 

grasping the meanings of words, i.e. the entities that words denote in an objective 

reality (Rand, 1966). On the other hand, constructivists hold that learning takes place 

when humans decide that an idea is viable and that their strategies serve them well in 

meeting their objectives. Glasersfeld (1995a, p.114) argues that learning ‘comprises 

action schemes, concepts, and thoughts, and it distinguishes the ones that are 

considered advantageous from those that are not.’ 

 

With regards to assessment, objectivists believe that learning can be measured 

accurately and objectively, principally by means of tests (Reeves, 1997). Their view of 

assessment is goal-driven, where the evaluator specifies a set of clear objectives 

which indicate the expected observable behaviour of the learner (Vrasidas, 2000). On 

the other hand, constructivists believe that learning can only be presumed through 

observations and dialogue (Glasersfeld, 1989) in a context that is relevant to the 

learners (Brooks & Brooks, 1993). Constructivists are concerned with assessing the 

knowledge construction process (Vrasidas, 2000), using a range of methods and 

techniques (Burry-Stock, 1995; Zahorik, 1995) which include inquiry (Brooks & Brooks, 

1993; Yager, 1991). They do not exclude the traditional test but this is not the only 

assessment measure (Cunningham, 1992). 

 

Thus, my standpoint as a constructivist teacher has a bearing on the way I look at the 

nature knowledge and learning. Furthermore, the distinctive ways in which objectivists 

and constructivists look at assessing knowledge and learning entail parallel differences 

in the ways they look at gathering and analysing research data. These will be 

discussed in Chapter 4, where I give a rationale for my research methodology. I will 

now turn my attention to the constructivist paradigm with particular emphasis on RC. 
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2.1.2 Radical Constructivism 

Altghough there are several strands of constructivism (Neimeyer & Raskin, 2001), Fox 

(2001) puts forward five claims on which constructivists seem to agree: 
 

(i) Learning is an active process.  

(ii) Knowledge is constructed, rather than innate or passively absorbed. 

(iii) Knowledge is invented not discovered. 

(iv) Learning is essentially a process of making sense of the world. 

(v) Effective learning requires meaningful, open-ended, challenging problems for 

the learner to solve.  

 

Claim (iii) requires further clarification. Glasersfeld (1984, p. 25) asserts that learning 

is not the discovery of ‘an independent, pre-existing world outside the mind of the 

knower’. However, this does not totally exclude the notion of “discovery”. Glasersfeld’s 

(1984) own references to the process of learning by phrases like ‘get to know’ and 

‘come to know’ (pp. 28, 36 respectively) may be associated with Bruner’s (1966, p. 90) 

‘internal discovery’, by which he means learners’ discovery of connections between 

concepts they had developed for themselves. Livio (2011) explains that the learning of 

mathematics involves the abstraction of concepts from the world around us and the 

discovery of connections among those concepts. Rather than the discovery of an 

objective reality, this is more akin to making sense of mentally constructed notions by 

linking them to others. 

 

Although RC shares Fox’s (2001) claims with other branches of constructivism, it 

distinguishes itself in two ways. The first distinction is that between trivial 

constructivism and RC. Glasersfeld (1991c, p. 16) says that ‘those who merely speak 

of the construction of knowledge, but do not explicitly give up the notion that our 

conceptual constructions can or should in some way represent an independent, 

“objective” reality, are still caught up in the traditional theory of knowledge’. Riegler 

(2001) refers to this perspective as trivial constructivism and contrasts it with RC which 

holds that reality is subjective since the only reality we can gain access to is that which 

we see through our experiential worlds. 
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The second distinction is that between social constructivism and RC. While the former 
holds that knowledge is socially constructed, RC holds that all knowledge is personal 
and idiosyncratic. However, RC and social constructivism embrace similar notions 
when it comes to the construction of knowledge through peer collaboration. One of 
these is Vygotsky’s (1978) zone of proximal development (ZPD) which he describes 
as ‘the distance between the actual development level as determined by independent 
problem solving and the level of potential development as determined through problem 
solving under adult guidance or in collaboration with more capable peers’ (p. 86). ZPD 
infers that learners benefit from the guidance of a teacher when constructing knowledge. 
 
From a RC standpoint, Vygotsky’s (1978, p. 86) ‘more capable peers’ can be regarded 
as other “teachers” who may help a learner to develop concepts for her/himself. For 
example, students engaged in group work alternate in roles between being learners and 
being teachers, i.e. between listening to, reflecting upon, and making sense of what their 
group mates are saying (learners) and making their own contributions by guiding or 
demonstrating (teachers). Hence, there does not seem to be any contradiction in 
adopting the notion of ZPD within the context of RC, where social interaction assists the 
individual construction of knowledge. ZPD is in line with the RC contention that:  

[T]he “others” with whom social interaction takes place, are part of the environment, 
no more but also no less than any of the relatively “permanent” objects the child 
constructs within the range of its lived experience.  

(Glasersfeld, 1995a, p. 12) 
 

RC is built on two principles about knowledge and cognition which Glasersfeld (1990a) 

claims to have surmised from Piaget, the first of which is shared by all branches of 

constructivism. 

1a.  Knowledge is not passively received either through the senses or by way of 
communication; 

  b.  Knowledge is actively built up by the cognizing subject. 

2a.  The function of cognition is adaptive, in the biological sense of the term, tending 
towards fit or viability; 

  b.  Cognition serves the subject’s organization of the experiential world, not the 
discovery of an objective ontological reality.  

(Glasersfeld, 1990a, p. 22) 
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Glasersfeld’s inclusion of the word “objective” when he mentions discovery seems to 

support my earlier argument that RC does not exclude the possibility of discovery as 

long as it is assumed to be a personal, invented conclusion – an invented reality 

(Glasersfeld, 1984). Another key point is Glasersfeld’s likening of the development of 

thinking with biological evolution. Glasersfeld (1984) argues that just as the 

environment constrains living organisms and compels them to find ways in which they 

can find a viable existence, so does the experiential world serve as a testing ground 

for our concepts. 

 

The relationship between biological and cognitive evolution (2a) is derived from the 

theories of Piaget who applied the biological concept of adaptation to epistemology 

(Glasersfeld, 1996). At the core of Piaget’s teachings lies his theory of equilibration 

(Piaget, 1952, 1957, 1967, 1971, 1975, 1978, 1985; Inhelder & Piaget, 1958). Piaget 

proposed that knowledge in the mind is stored as groups of schemas – mental 

structures which represent some aspect of the experiential world. When children 

experience a new object (or situation or event) they try to deal with it by using an 

existing mental schema (assimilation). When the object does not fit in that schema a 

contradiction in children’s thought occurs and this creates what Piaget calls 

disequilibrium, a kind of discomfort of thought which prompts them to transform or 

reconstruct their schema to be able to accommodate that object (accommodation). 

This enables assimilation and a stable equilibrium of the schema is regained. This is 

the process of equilibration, which, according to Piaget, is what drives intellectual 

growth.  

 

Building on Piaget’s idea of equilibration, Glasersfeld (1984) emphasises the viability 

aspect of mental schemas. He argues that only if our knowledge stands up to our 

experiences and proves itself reliable enough to help us predict, bring about, or avoid 

certain occurrences will it be considered as useful, relevant and viable. In this way, RC 

is a pragmatic paradigm to understand the creation, retention, modification, and 

disposal of knowledge. Our mental structures are constantly exposed to and tested 

within our personal experiential worlds from which we derive them and they either hold 

out or they do not.  
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In the context of evolutionary biology, Maturana and Varela (1980, 1992) invented the 

term autopoiesis – the notion that living organisms are, by definition, self-creating and 

self-sustaining systems (Maturana & Varela, 1980, 1992). Autopoiesis played an 

important part in the development of RC by giving an evolutionist slant to the notion of 

knowledge viability. Maturana (1970) claims that living systems tend to maintain that 

knowledge that has worked in the past can be expected to work again. Glasersfeld 

(1984) argues that the affinity between the RC epistemology and the theory of evolution 

is evident in the way humans respond to their environment. Just as living organisms 

mutate in such a way as to eliminate variants which are unfeasible within environmental 

constraints, humans continuously develop and modify ideas according to their 

experiences. In this way, our notions and theories about the world are proven or 

disproven on grounds of their viability and reliability.  

 

Another similarity between biology and RC is the theory that living systems share 

common perceptions of the world they live in. Maturana and Varela (1980) and 

Glasersfeld (1991a) use the term consensual domain to describe areas of relative 

conformity in the way beings deal with their environment. Maturana and Varela (1980) 

describe the phenomenon where members of a species create shared ecological 

niches, a consensual domain of interaction and communication with their surroundings. 

Similarly, Glasersfeld (1991a) argues that although individual humans have different 

experiential worlds, they are able to agree and communicate through the possibility of 

building a consensus in certain areas of their subjective realities rather than through 

an observation of an objective reality. However, the development of a consensual 

domain does not mean that an absolute reality has been established. Glasersfeld 

(1991a) puts it plainly:  

If two people or even a whole society of people look through distorting lenses and 
agree on what they see, this does not make what they see any more real.  

(Glasersfeld, 1991a, p. xvi, original emphasis)  
 

Hence, the consensual domain of humans is their accomplishment in reaching an area 

of relative agreement of understanding their experiential rather than absolute reality. 
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In Figure 2.1.2.1, I present a simplified illustration of how different persons may share 

a common consensual domain by which they seek to understand a viable explanation 

of particular aspects in their experiential world. 
 

Figure 2.1.2.1 Consensual domains 

 
 

Although people (P1, P2, …) cannot have direct or objective access to an external 

reality, they can form common viable explanations for different aspects of it through 

their experiences, i.e. their experiential realities (Glasersfeld, 1991a). These 

frameworks of explanations are the consensual domains which are shared by two or 

more persons – a community. The diagram oversimplifies the complexity of such 

frameworks, however, because consensual domains may be subsets of or have 

common elements with other consensual domains.  

 

In a classroom community, the teacher and the learners form a consensual domain 

about the topic of the lesson. For this to occur, the teacher needs to interpret and reflect 

about the learners’ representations and the learners need to interpret and reflect about 

the teacher’s and each others’ representations. In Section 2.2, I review literature about 
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representations and interpretations of mathematics which, as Glasersfeld (1991a) 

says, is one of the oldest consensual domains – the domain of numbers. 

 

2.2 Mathematical Representations and Interpretations 

In this section, I discuss Kaput’s (1991) conceptual framework of treating the 

interpretation and representation of mathematical notation as core elements of the 

mathematical consensual domain. I will then discuss Bruner’s (1964, 1966) theory of 

mathematical representations and show its relevance for the teaching and learning of 

notation.  

 

2.2.1 Kaput’s Signifier-Signified Theory of Notation Usage 

Kaput (1991) argues that while a person has no straightforward knowledge of reality, 

an observer of that person can still perceive and hypothesise on that person’s 

interactions with experiential reality. He builds on his previous work (Kaput, 1985) and 

asserts that mathematical notation contributes to users’ organisation of their thinking 

processes about an experiential, rather than external, world. This is in line with the RC 

claim that humans do not have access to the kind of reality which is detached from 

their experiences. Kaput (1991) distinguishes between: 

 mental structures, which are the means by which an individual organises and 

manages the flow of experience, and 

 notation systems, which are the cultural and linguistic artefacts that are 

materially realised by a cultural or language community. 

 

Kaput (1991) explains that individuals use notation systems to manage the creation 

and development of their own mental structures. Albeit limited in amount, notation 

systems are used throughout mathematics to express relationships whose variety is 

infinite and whose potential for generality is enormous. This activity is very similar to 

the way we use a finite number of words to create sentences and combination of 

sentences of infinite variety. 
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Material notation, things we interpret through reading and hearing and which we 

produce through writing and speaking, include alpha-numeric, pictorial, diagrammatic, 

and aural symbols. Such notation can either be consensual (such as language or 

conventional mathematical notation) or else idiosyncratic (personal symbols or marks). 

In both cases, a person interprets notation to create or elaborate mental structures and 

represents concepts by producing further notation. The person moves back and forth 

between the interpreted notation and the represented concept several times while 

reading and writing notation.  

 

The first reference to the two-way link between external representations and internal 

interpretations was made by Saussure (1966)2 who came up with a dichotomous 

model of the sign. He defined a sign as being composed of: 
 

• the “signifier” - the external form which the sign takes, and 

• the “signified” - the internal meaning or concept the sign represents. 

 

Since he was working in the context of linguistics, Saussure’s (1966) “sign” was the 

representation and interpretation of a verbal utterance, a sound-image, which was the 

signifier of the concept behind the word or phrase (Figure 2.2.1.1).  

 

Figure 2.2.1.1 Saussure’s signifier-signified model  

 

(Adapted from Saussure, 1966, p. 65) 

                                            
2 Originally published in 1916. 
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Vergnaud (1987) takes up the signifier-signified notion and uses it for the first time in 

a mathematical context. He argues that a person observes and thinks about a referent 

in her/his experiential world, takes it to the signified (mental) level where ‘invariants are 

recognised, inferences drawn, actions generated, and predictions made’ (Vegnaud, 

1987, p. 229), and externalises her/his thoughts with a signifier from a repertoire of 

symbolic syntax. Kaput (1991) builds on Vergnaud’s (1987) use of “signifier” and 

“signified” to refer to mathematical notation and mental conception respectively. Figure 

2.2.1.2 summarises the cyclical process, suggested by Kaput (1991), between physical 

operations observed through notation (signifier) and the mental operations associated 

with or evoked by those physical operations (signified). 

 
Figure 2.2.1.2 Signifier physical operations and signified mental operations 

 
(Adapted from Kaput, 1991, p. 57) 

 

It is through agreements about observable physical operations − the projected notation 

− that people can form a consensual domain, the repository of knowledge that a 

community, such as students and their teacher in a mathematics classroom, takes to 

be true on a particular occasion. Although physical operations of a member of that 

community are observable by other members in that community, the latter can only 

hypothesise about the mental operations of that member. Kaput (1991) argues that we 

constantly make inferences about other persons’ thought processes by observing the 
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way they interact with external artefacts. He explains that we may observe the 

interactions of a person with notation and use those observations to hypothesise about 

that person’s thinking (hypothesised mental states) and about how that person’s 

thinking may be affecting and affected by that same notation (hypothesised 

interactions). This is demonstrated in Figure 2.2.1.3. 

 

Figure 2.2.1.3  Our view of notation-users 

 

(Adapted from Kaput, 1991, p. 54) 

In this way, Kaput (1991) explains: 

 the interplay between mathematical notation and the mathematical concepts it 

evokes or is derived from, and 

 the possibility of other persons observing and making suppositions about the 

observable interactions between a person and mathematical notation. 

 

Besides notation (i.e. written symbols), there are other mathematical representations 

which may be used to signify mental operations and which may thus be crucial in 

establishing a mathematical consensual domain in a teaching-and-learning setting. 

Such representations were studied by Bruner (1964, 1966), whose theory is discussed 

next. 
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2.2.2  Bruner’s Theory of Knowledge Representation 

At the core of Bruner’s theory of instruction (Bruner, 1966) lies his theory of knowledge 

construction which he develops from his earlier work (Bruner, 1964). Bruner (1966) 

shows that knowledge can be represented in three ways which supplement spoken 

language: 

 ENACTIVE REPRESENTATION. A set of students’ actions aimed at 

achieving a certain result (e.g. a child can learn the basic principles of a balance 

beam either by climbing on a see-saw or by experimenting with a balance and 

weights); 

 ICONIC REPRESENTATION. A set of summary images or graphics which 

describe a concept without fully defining it (e.g. the balance beam could be 

illustrated on paper and its principles may be conveyed by studying the diagram 

and contemplating the concepts it evokes);  

 SYMBOLIC REPRESENTATION. A set of symbolic or logical propositions 

which are derived from a symbolic system governed by rules for the formation 

and transformation of such propositions (e.g. the balance concept may be used 

in physics to write down equations on moments or in mathematics to solve 

equations by using the inverse-and-balancing method). 

 

Judge (1984) says that these modes of representation co-exist and that, for Bruner, the 

deepening of understanding comes by a spiral motion of transitions between one mode 

and the other rather than by a neat rectilinear fashion. In an interview with Shore (1997), 

Bruner rejects the idea that these representations are hierarchical stages and claims 

they can be incorporated in one another. He explains that humans’ first interactions with 

ideas are intuitive and approximate. Then, when they find that their intuitions are 

incorrect, they feel the need to construct alternative ways of thinking about those ideas.  

 

Thus, humans make transitions from one mode of representation to the other so that 

they can correct their understanding of that idea. This resonates with Piaget’s (1975) 

equilibration theory, where learners constantly find they have to accommodate their 
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schemas when they find that these are incompatible with new experiences. Bruner 

states that when learners reflect about a concept these three modes are somehow ‘all 

there and they gradually differentiate and get arrested’ (Shore 1997, p. 11). 

 

Bruner’s (1966) Enactive-Iconic-Symbolic theory of mathematical representations 

complements Kaput’s (1991) Signifier-Signified theory about the link between external 

representations (signifier) and conceptual interpretations (signified). While Kaput 

(1991) seems to focus entirely on symbolic representations (notation), Bruner’s (1966) 

construct gives equal status to iconic and enactive representations each of which can 

serve as signifiers which evoke or are projected by mental operations. In Chapter 7, I 

show how I amalgamated these theories to form an analytical framework which was 

useful in investigating how students’ mathematical representations helped me to 

develop models of their conceptual interpretations during the lessons. 

 

Bruner’s (1966) three modes of representation, especially the enactive, emphasise the 

importance of learning by doing, a standpoint which may be linked to a pragmatist 

philosophy. In fact, in his interview with Shore (1997), Bruner declares that he derived 

his representations model from Peirce, who defines ‘what is tangible and conceivably 

practical as the root of every real distinction of thought, no matter how subtle it may be’ 

(Peirce, 1878, p. 293). The importance of tangible, practical, and active experience in 

the process of learning was avidly promoted by Dewey (1938). This and the theory of 

experiential learning proposed by Kolb (1984) will be discussed in the next section. 

 
 

2.3  Experiential Learning: Dewey’s Theories and Kolb’s 
Four-Stage Model  

In this section, I discuss teaching and learning which centre on the learner’s 

experience. I will consider two major models of experiential learning, those of Dewey 

(1938) and Kolb (1984), where the former is more theoretical and extensive while the 

latter takes on a more practical and specific form. 
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2.3.1  Dewey’s Model of Experiential Learning 

Core and influential constructivist theories of learning may be traced back to the 

teachings of Dewey who began his campaign for a more active and self-directed 

style of learning in schools over a century ago (Papert, 1993b). Elements of Dewey’s 

philosophy of education may be found, among other works, in Piaget and Inhelder’s 

(1962) theories of active learning, Bruner’s (1966, 1967) theories of teaching and 

learning, Vygotsky’s (1978)3 definition of teaching as assisting the child’s 

accomplishments, and Freire’s (2000)4 appeal not to treat the child as an empty 

depository of knowledge. In his extensive work about the potential of ICT to 

revolutionise teaching and learning, Papert espouses most, if not all, of these 

theories (e.g., Papert, 1993a, 1993b, 1996, 1998; Papert & Harel, 1991). He sums 

up Dewey’s voluminous works by saying that it was ‘Dewey’s idea that children 

would learn better if learning were truly a part of living experience’ (Papert, 1993b, 

p. 15). 

 

For Dewey, learning is a consequence of experience, where learners experiment, 

invent, and test whether their actions are successful or not. In this context, Dewey sees 

mistakes as a natural component of action and experience. Dewey (1916) argues that 

teachers should not forbid learners to make mistakes. Rather, they should see 

mistakes as a requirement for learning the lessons of life: 

Opportunity for making mistakes is an incidental requirement. Not because mistakes 
are ever desirable, but because overzeal to select material and appliances which 
forbid a chance for mistakes to occur, restricts initiative, reduces judgement to a 
minimum, and compels the use of methods … remote from the complex situations 
of life.  

(Dewey, 1916, p.197) 

 
Dewey’s (1916) view of mistakes as a necessary incident in learning from experiences 

is today exhibited through a growing body of research which suggests that 

                                            
3 Originally published in 1934. 
4 Originally published in 1968 and first published in English in 1970. 
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spontaneous classroom mistakes can be used by teachers to support learning (e.g. 

Lee, 2007; Radford, Blatchford, & Webster, 2011; Ingram, Pitt, & Baldry, 2015). 

Working in the field of mathematics education, Ingram et al. (2015) bring evidence to 

show that teachers may use mistakes as generators of classroom discussions and as 

tools in helping students develop and review mathematical concepts. This is one way 

in which teachers can convert classroom incidents (like spontaneous mistakes) into 

educative experiences. 

 

However, Dewey (1938) warns that not all experiences are genuinely educative. He 

labels ‘miseducative’ (p. 25) those kinds of experiences which obstruct or discourage 

the growth of further experience. Consequently, Dewey acknowledges teachers’ 

delicate task of providing learners with experiences which they find agreeable but 

which also stimulates their motivation to engage in more experiences.  

 

Dewey (1938) defines experiential learning as a formation of purpose which involves: 

 Observation of the situation; 

 Knowledge of consequences of similar situations in the past which allow 

learners to attempt to foresee or anticipate the consequences of the current 

action to be taken;  

 Judgement, which synthesises observations and knowledge of past and of 

probable current consequences and what they both signify. 

 

Step (iii) involves the decision about the success or failure of the current action. This 

entails the identification of and learning from mistakes which, according to Dewey 

(1916), are an experiential learning requirement. In any case, learning occurs if the 

knowledge reflected about in (ii) proves to be viable or unviable to explain the 

experience of (i) and which informs the decisions that follow from (iii). This tendency of 

humans to construct ideas according to their viability in explaining experiential 

phenomena (Kant, 1781) is in line with RC (e.g. Glasersfeld, 1984, 1990a). However, 

Dewey (1938) adds in a further element to his experiential learning theory. This is the 

role of impulse, the original desire to act upon observing a particular situation. Dewey 
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suggests that learners should channel the force created by these impulses to drive the 

process of experiential learning. He also suggests that teachers should guide learners 

to go through steps (i) – (iii) even though they may have a desire to take immediate 

action. In Figure 2.3.1.1, I illustrate Dewey’s (1938) model of experiential learning. Step 

(i), observation, can be considered to be the input of a four-item process involved in 

(ii) and (iii): 

• Reference to past experiences; 
• Foresight / anticipation of consequences; 
• Judgement; 
• Action plan. 

 
The output of this process is the final action to be taken where a new experience is 

gained. The energy of the original impulse and desire to bypass this process may be 

used to create a drive or momentum which maintains this process.  

 
Figure 2.3.1.1 Dewey’s model of experiential learning 

 
(Adapted from Dewey, 1938) 

 

The process of experiential learning has one key element: reflective thinking. Dewey 

(1910) says that reflection involves consequential thinking, where thinking is not  simply 

a sequence or trail of thoughts but a logical ordering of ideas in such a way that each 
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segment of thought ‘determines the next as its proper outcome, while each in turn 

leans back on its predecessors’ (p. 3). Reflection is one of the core features of Kolb’s 

(1984) cycle of experiential learning, to which I will now turn. 

 

2.3.2  Kolb’s Model of Experiential Learning 

In developing his model of experiential learning, Kolb (1984) acknowledges that he 

draws extensively from three theories: 

(i) Dewey’s (1938) theory of learning through experience and reflection, 

(ii) Lewin’s (1948) theory of group dynamics, and  

(iii) Piaget’s (1970) theory of cognitive development. 

 

However, Kolb (1984) presents his model in the context of a discussion about learning. 

He gives a short and powerful definition of experiential learning as follows:  

Learning is the process whereby knowledge is created through the transformation 
of experience. Knowledge results from the combination of grasping and 
transforming experience (Kolb, 1984, p. 41).  

 

This definition is based a number of constructivist claims about the nature of knowledge 

and learning: 

 Learning is best conceived as a process, not in terms of outcomes; 
 Learning is a continuous process based on experience; 
 Learning is a process that requires the resolution of conflicts between 

dialectically opposed modes of adaptation to the world; 
 Learning is a holistic process of adapting to the world; 
 Learning involves transactions between the learner and the environment; 
 Learning is a process of creating knowledge. 

 

Like Dewey (1938), Kolb (1984) attempts to describe how humans learn by thinking 

about and acting upon concrete experiences. He describes this learner-experience 

interaction in terms of a four-step cycle, a simplified version of which is shown in Figure 

2.3.2.2. 
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Figure 2.3.2.2 Kolb’s experiential learning cycle 

 
 

(Adapted from Kolb, 1984) 
 

Stage 1. Kolb's (1984) cycle starts with a concrete experience. Learners are given 
the opportunity to be actively involved in an immediate experience. The use 
of “concrete” is there to distinguish between this type of experience, i.e. the 
first-hand, ‘immediate, personal experience’ (Kolb, 2015, p. 32) from the 
reflective/abstract experience which occurs when one thinks about first-hand 
experiences. 

Stage 2. The second stage of the cycle is reflective observation. It means pausing 
to step back from the task at hand and reviewing what has been done and 
what has happened. Learners may need to exchange ideas with teacher and 
peers, but they can also opt to think and reflect individually. 

Stage 3. Learners then make sense of the experience by finding relations between 
what has happened, what they reflected upon, and what they already know. 
They may draw upon past experiences, reflections, and understandings. It is 
the stage where new concepts are made or old concepts are modified. This 
is thus the stage of abstract conceptualisation. This involves generalisation 
of rules and/or formation of theories about the subject at hand. 

Stage 4. The final stage of Kolb’s learning cycle is active experimentation where 
learners consider how they can put what they have learnt into practice. If they 
are going to continue working on the same task, learners will refine or revise 
the way they will handle the task. In this way learning may be defined as the 
transformation of experience (Strauss, 2013).  
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The process between observation and action included in Dewey’s (1938) theory of 

experiential learning may be associated with Kolb’s (1984) Stages 3 to 4 where 

learners respectively ask the questions What?, So what?, and Now what? (Strauss, 

2013). Perhaps more than Dewey (1938), Kolb (1984) emphasises the cyclical nature 

of experiential learning, where active experimentation leads to a new concrete 

experience and hence a new sequence of the four stages is generated.  

 

Van Soest and Kruzich (1994), and Raschick, Maypole, and Day (1998) argue that 

some learners may have deductive orientations and may prefer to start the cycle from 

the abstract conceptualisation stage. This mode has similar properties to Kolb’s (1984) 

“Stage 1”. In fact, Kolb and Kolb (2005) assert that concrete experience and abstract 

conceptualisation are two dialectically related modes of grasping experience. On the 

other hand, they say that the two intermediary stages of reflective observation and 

active experimentation are two dialectically related modes of transforming experience. 

It seems, therefore, that the Kolb (1984) cycle may start from one of the two modes of 

grasping experience. 

 

Similar to Dewey’s (1938) theory, reflection plays a key role in the Kolb (1984) learning 

model. Whatever stage students choose to start their experiential learning, it is crucial 

that they reflect on that experience in a way that they can develop and transform their 

interpretation of current and related past experiences, where teachers take on the role 

of facilitators of this reflection. In this respect, Kolb (1984, p. 28) states that ‘one’s job 

as an educator is not only to implant new ideas but also to dispose of or modify old 

ones.’ 

 

How do educators go about facilitating the experiential learning process? In what 

situations, conditions, and context do teachers operate? What are the relationships 

between learners, knowledge, and teachers? The following section is dedicated to 

answering these questions in the context of mathematics education. 
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2.4  Learners, Knowledge, and Teachers: The Didactic 
Triangle 

The didactic triangle (Figure 2.4.1.1), was used by Brousseau to study the dynamics 

between learners, teachers, and mathematical content (Brousseau, 1984, 1986, 1997; 

Brousseau & Otte, 1991). It has been used to structure and analyse research on 

teaching and learning inside the mathematical sphere (e.g., Steinbring, 1998, 2005; 

Hersant & Perrin-Glorian, 2005; Scherer & Steinbring, 2006; Pauli & Reusser, 2010) 

and also outside it (e.g., Tiberghien, Jossem, & Barojas,1998; Berglund & Lister, 2010).  

 
Figure 2.4.1  The didactic triangle 

 

 

 

2.4.1  Didactical Situations 

The central notion behind the didactic triangle is that of a didactical situation which 

Warfield (2006) defines as follows:  

A Situation describes the relevant conditions in which a student uses and learns a 
piece of mathematical knowledge. At the basic level, these conditions deal with 
three components: a topic to be taught, a problem in the classical sense and a 
variety of characteristics of the material and didactical environment of the action. 

(Warfield, 2006, p. 105) 
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This seemingly mundane picture of what constitutes a mathematical teaching-and-

learning situation is very appropriate for researchers in the field of mathematics 

education to ask questions about the three nodes of the didactic triangle such as, ‘How 

does the teacher mediate between the learner and mathematics, shaping the learner’s 

developing understanding of mathematics?’ (Schoenfeld, 2012, p. 587). This question 

is very pertinent to the study of CT as I will show in section 2.5. 

 

The didactic triangle makes it possible to isolate one of the nodes of the triangle and 

concentrate on it in order to elicit and expand its meaning and clarify its links with other 

nodes. Such is the work of Jaworski (1994, 2012) which I discuss below. 

 

2.4.2  Focus on the Teacher Node of the Didactic Triangle: 
Jaworski’s Teaching Triad 

Jaworski (2012) focuses on the teacher node of the didactic triangle and identifies three 

interlinked activities that mathematics teachers carry out in their lessons. She calls 

these the teaching triad:  

 Management of Learning. This is the organisation of the classroom and the 

students, the set tasks, and the overall dynamics and interactions which 

teachers encourage in their lessons. It involves teachers’ standpoints vis-à-vis 

curriculum, institutional standards, and assessment. 

 Sensitivity to Students. This is inherent in teacher-student relationships and 

is the effort teachers make to become aware of learners’ knowledge and 

thinking patterns and tendencies while striving to make their learners feel 

respected, included and cared for. 

 Mathematics Challenge. This arises from teachers’ epistemological 

standpoint and is the manner in which they present the mathematical problem 

to their learners in a way that interests them, motivates them to learn, and 

promotes participation and cognitive engagement.  
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This triad is almost totally dependent on the beliefs and the person of the teacher. What 

is special to me about the teaching triad is the way Jaworski (2012) portrays teachers 

not as clones of some ideological model derived from a set of philosophical beliefs but 

as individual, unique, human beings with their own personal characteristics and 

viewpoints (experiential realities), who are part of specific cultural settings, and who 

are subject to a range of influences of the communities in which they operate.  

 
The teaching triad was developed from the realities of one teacher, Clare, who featured 
in an earlier study (Jaworski, 1994). The teaching triad was created as an analytical 
tool to characterise the teaching traits of Clare, where the three domains listed above 
were a synthesis of several other categories and which captured what Jaworski (1994) 
considered as important elements of Clare’s teaching. Jaworski (1994) regards the 
triad as a strongly linked set of domains which are interdependent in such a way that 
some actions of a teacher may easily fall into the intersection two or three domains 
(Figure 2.4.2). She states that the three domains ‘are closely interrelated, yet individual 
in identity, and have potential to describe the complex classroom environment’. 
(Jaworski, 1994, p. 108).  
 
Figure 2.4.2.1  Jaworski’s teaching triad 

 
(Adapted from Jaworski, 1994, p. 107) 

 

Jaworski (2012) says that one aspect of management of learning is teachers’ 

interpretation of mathematical content. This suggests that mathematics is not the “out 

there” knowledge to be conveyed or received but an interpretation or construction of 

ideas. The mathematics that teachers present to their students is thus their own 

interpretation of concepts rather than an a priori body of knowledge.  
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Furthermore, as Chevallard (1988) argues, knowledge is inherently a tool to use rather 

than concepts to teach and learn. He claims that it is thus an artificial enterprise to 

teach a body of knowledge and that societies therefore delve into the arduous task of 

transforming knowledge from a tool to be put to use to something to be taught and 

learnt. He termed this as ‘didactic transposition of knowledge’ (p. 6). This makes 

teachers’ presentation of the mathematical challenge (Jaworski, 1994) crucial if 

mathematics is to be seen as a useful subject, relevant to each student’s experiential 

world. Kang and Kilpatrick (1992, p. 5) state that it is the teachers’ duty ‘to 

recontextualize and repersonalize the knowledge taught to fit the student's situation.’ 

  

Key in Jaworski’s (1994) sensitivity to students are teachers’ efforts to learn about the 

mathematics of their students. Only by sensitising themselves to students’ exhibited 

representations and possible interpretations can constructivist teachers attempt to make 

mathematics relevant and meaningful to the students. According to Steffe (1991), 

learning about students’ mathematics is one of the main tasks of RC teachers. This will 

be discussed in more detail in the following section, where I focus on this aspect of 

sensitivity to students: teachers’ sensitivity to students’ constructions of ideas. 

 

2.5  Teaching with Constructivist Sensitivities 

A principle which has significant bearing on my interpretation of CT is that without 

learning there is no teaching. I derive this from Freire (1998) who argues that if we 

agree that teaching is not simply the act of transferring knowledge but the creation of 

possibilities for the construction of knowledge, then we need to adhere to the 

philosophy that teaching and learning are so intertwined and interdependent that there 

is no teaching without learning. Freire puts it plainly: 

 

[T]here is no valid teaching from which there does not emerge something learnt and 
through which the learner does not become capable of recreating and remaking 
what has been taught. In essence, teaching that does not emerge from the 
experience of learning cannot be learnt by anyone.  

  (Freire, 1998, p. 31) 
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The discussion that follows is presented in the context of this contention, that for 

teaching to exist it must bring about learning. 

 

2.5.1 Constructivist Teachers and Their Teaching 

In the context of mathematics education, Simon (1994) puts forward what he calls 

“myths” in constructivism: 

 

Myth 1.  There is a specific kind of teaching called “constructivist teaching.” Simon 

(1994) argues that constructivism is a theory of learning and it does not 

stipulate any particular teaching style or method. Constructivists believe that 

any learning that results from teaching is a construction of the learner, 

regardless of the teaching style or method. Simon (1994) suggests that the 

question for the constructivist teacher is not, “Is my teaching constructivist?” 

but, “Is my teaching effective in bringing about learning?” He says that 

teachers who believe in constructivism may develop certain sensitivities 

about what their learners may be thinking or feeling that may make them 

more considerate of the learners’ knowledge construction when they plan 

and carry out their lessons.  
 

Myth 2. Teachers with a constructivist perspective have no agenda for what their 

students will learn. This myth may stem from models of learning which 

emphasise the activity of the learner while the role of the teacher is 

disregarded. Simon (1994) argues against this myth by saying that teachers 

with constructivist sensitivities usually spend much time planning how to 

create an environment that stimulates learning and that is ‘designed to 

increase the probability that students will generate powerful ideas’ (Simon, 

1994, p. 74).  
 

While finding no objection with Simon’s (1994) second myth, I find some arguments he 

makes about the first almost contradictory. Even though he argues that CT is not a 

specific teaching approach, he still implies that there is much to be said about 

constructivist teachers’ planning and implementing their lessons. Simon (1995, p. 117) 
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objects to the idea that CT translates into ‘one set notion of how to teach’. Along similar 

lines, Engström (2014) objects to the use of the term CT on the grounds that 

constructivism is a theory of learning and not of teaching, and what is usually intended 

in the literature by CT is actually a progressive mode of teaching. I agree with both 

Simon (1995) and Engström (2014) that being a constructivist teacher does not 

translate into a set of particular stages that form a teaching method called CT, and that 

progressive methods have a tendency to be equated or at least associated with CT in 

the literature (e.g. Gash, 2014). I argue that even in what may seem to be a traditional 

classroom setting (a plenary approach), teachers may exhibit constructivist 

sensitivities when they stop to elaborate on a student’s comment or question, ask 

students what they think about possible approaches in the solution of a problem, or 

encourage students to participate in classroom discourse and exhibit their 

interpretation of the topic. Hence, I agree that if CT were to be tied down to a particular 

teaching method I would rather, like Simon (1994), have it called a “myth”. Ultimately, 

it would be a contradiction in terms if someone claims to promote RC philosophy and 

does not celebrate the uniqueness of teachers’ mental constructions about what 

effective teaching is about and the diversity of their preferred teaching methods. 

 

However, I argue that CT is plausible if it is attributed to teachers’ 

 adopting a constructivist stance on the nature of knowledge and knowing, and  

 being sensitive to students’ active and subjective construction of knowledge, 

and taking actions because of that sensitivity. 

These two characteristics permeate the literature about RC teachers’ beliefs and 

classroom actions. This literature is discussed below. 

 

2.5.2 Implications of Radical Constructivism for Teachers and 
Teaching 

I support Freire’s (1998) contention that teaching is dependent on learning to the extent 

that it only exists if it brings about learning. This means I cannot be both a constructivist 

and a teacher without allowing my constructivist beliefs and sensitivities about learning 

to have a bearing on my teaching. My experience as a teacher has taught me that my 
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perspective of the nature of knowledge, the process of learning, and learners’ actions 

are omnipresent in my planning of the lessons, my interactions with the learners, and 

my own reflections during and after the lesson.  

 

Glasersfeld (1991b, pp. 177-178) says that RC has many implications for teaching and 

he lists eight examples which I discuss below by referring to respective literature. 
 

 Constructivist teachers should not consider their learners as blank slates. 

Glasersfeld’s (1991b) warning is found in Freire’s (2000) disapproval of the 

banking concept of education where he rebukes the kind of teaching which 

treats learners as ‘"containers," …"receptacles" to be "filled" by the teacher’ 

(p. 72). If teachers are sensitive to constructivist notions, they cannot bear to 

act as if their job is to fill empty minds with knowledge. If they believe learners 

build up their own knowledge from personal experiences and reflections 

(Reeves, 1997), then it is a requirement for constructivist teachers to keep in 

mind that by the time they have come to their class, learners have already found 

many viable ways of dealing with their experiential worlds. Consequently, 

constructivist teachers should make it their business to get some idea of what 

concepts their learners have developed and how they relate to them. 

 Constructivist teachers should refrain from telling learners that their response 

is wrong. Glasersfeld (1991b) argues that whatever learners say in answer to 

a question or to a posed problem it is what makes sense to them at that 

moment. Constructivist teachers should take their responses seriously as such, 

regardless of how odd or “wrong” they might seem to them. Rather than 

discouraging their learners by saying that what they said is wrong, they should 

enquire what made the learners respond in that way. This goes beyond 

acknowledging that a response is mistaken and using the mistake to support 

teaching (e.g. Radford et al., 2011; Ingram et al., 2015). Glasersfeld (1991b) 

points out that given the way learners may have interpreted the question, their 

answer may turn out to be correct. Bruner (1986, p. 92) warns about this when 

he discusses the notion of psychological reality which is invented and modified 
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according to the ‘psychological processes that people use in negotiating their 

transactions with the world.’ 

 Before modifying individual learners’ concepts and conceptual structures, 

constructivist teachers should try to build up a model of those learners’ 

reasoning. Glasersfeld (1991b) says that models of how learners think can be 

generalised, but before assuming that a learner fits the general pattern, 

teachers should have some solid evidence that this is a viable assumption in 

that particular case. This seems to imply that although there exist various 

models of thinking styles (e.g., Briggs Myers, 1980; Kolb, 1984; Harrison & 

Bramson, 1984; Rancourt, 1988; Sternberg, 1988, 1997; Gardner, 1991) 

teachers should not simply pigeonhole learners because they fit in one 

particular thinking style in one particular occasion. It may be that learners may 

shift between preferred thinking styles according to the situation or simply 

change them over time (Dunn & Griggs, 1995).   

 Constructivist teachers should seek to discover thinking patterns of their 

learners by asking them to explain how and why they got to their answer. In 

this way, teachers may develop second-order experiential models (Steffe et al. 

1983; Steffe & Ulrich, 2013) of learners’ concepts which they may use to 

coordinate their interactions with them. These models are “second-order” 

because they are hypothetical models of what other people may be thinking 

and “experiential” because they are models of possible experiences of those 

people, in this case, the learners. Glasersfeld (1991b) suggests that when 

learners see that their teacher values their reasoning they will be more 

receptive to the idea that a particular answer or reasoning they have may not 

retain its viability in different situations.  

 Constructivist teachers should foster learners’ motivation to ask and learn by 

creating problems which learners find pleasure in solving. Questions that 

teachers pose in relation to the topic of the lesson may not be of any particular 

interest to the learners. Glasersfeld (1991b) warns that telling learners that they 

are answering the questions correctly does very little for learners’ conceptual 

development if they were not interested in the questions in the first place. On 
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the other hand, if the questions arise naturally from a problem-solving situation 

which the learners find enjoyable, this is sure to stimulate interest to delve into 

further questions and further learning. For Dewey (1938) this is what constitutes 

an educative experience. 

 For constructivist teachers, successful thinking is far more important than 

“correct” answers. Teachers should praise learners’ successful thinking even if 

they hold that it was based on unconventional premises. This results from 

constructivist teachers’ investment in seeking to discover factors about the 

thinking patterns of their learners. This is consistent with Bruner’s (1966) theory 

of instruction: 

We teach a subject not to produce little living libraries on that subject, but 
rather to get a student to think mathematically for himself [sic.], to consider 
matter as an historian does, to take part in the process of knowledge-getting. 
Knowing is a process, not a product.  

(Bruner, 1966, p. 72) 

 Constructivist teachers must have a very flexible mind in order to understand 

and appreciate learners’ thinking. Glasersfeld (1991b) advises teachers to be 

aware that learners may start from premises that seem inconceivable to them 

and so it is very easy for teachers to deduce that learners are wrong to think in 

that manner or conclude that statement. An infinitely flexible mind about the 

topic at hand is therefore needed for teachers to grasp the logical trail of ideas 

(Dewey, 1910) of individual learners. 

 Constructivist teachers can never justify what they teach by claiming that it is 

“true”. Glasersfeld (1991b) says that mathematics teachers can only justify 

what they teach by taking it as a derivative of conventional definitions and 

operations. This concurs with the theory that mathematical truth is a convention 

(Quine, 1936; Quinton, 1963) which holds that mathematical statements are 

true by virtue of the meanings of the terms they contain (Ernest, 1991). This 

stance may help teachers to be more amenable to alternative reasoning of their 

learners and more willing to delve into discussions with learners who challenge 

the mathematical “truth” which they are bound to do if the meanings they 

construct do not agree with those posed by their teachers. 
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With the exception, perhaps, of characteristic (viii), all of the above seem to focus on 

constructivist teachers’ duties vis-à-vis the learner. Teachers however, have other 

obligations to attend to. For instance, the integrity of teachers would be put in question 

if they disregard the subject content which they are entrusted to teach. Once again, I 

find Dewey’s teachings to be very relevant: this time in thinking about constructivist 

teachers’ obligations towards both the learner and the curriculum. 

 

2.5.3 Constructivist Teachers’ Obligations towards the Learner 
and the Curriculum 

Being a pragmatist, Dewey insisted that education should be both practical and useful. 

In The Child and the Curriculum, Dewey (1902) neatly captured the two basic factors 

that necessitate education – the learner and the lessons to be learnt:  

[A]n immature, undeveloped being; and certain social aims, meanings, values 
incarnate in the mature experiences of the adult. The educative process is the due 
interaction of these forces.  

(Dewey, 1902, p. 2) 

Dewey (1902) discusses two extreme ways of going about education. The first is a 
pedagogy centres on the curriculum. For Dewey, this system is unacceptable because 
the learner is inactive: ‘the child is simply the immature being who is to be matured; he 
[sic.] is the superficial being who is to be deepened’ (p. 13). Dewey advocates a 
pragmatic pedagogy with constructivist sensitivities which presents the curriculum in a 
way that students can see its relevance and usefulness by setting it against the 
backdrop of their own individual experiences. At the same time, however, Dewey 
argues that if teachers are too much focused on the learners, they may easily lose 
sight of what knowledge they have been entrusted to teach. As educators, we must 
simultaneously ‘take our stand with the child and our departure from him [sic.]’ (p. 13).  
Hence, Dewey argues that teachers must strike a balance between providing 
appropriate learning opportunities for the learners and being sensitive to learners’ 
interests and experiences. 

The child and the curriculum are simply two limits which define a single process. 
Just as two points define a straight line, so the present standpoint of the child and 
the facts and truths of studies define instruction.  

(Dewey, 1902, p. 16) 



Chapter 2 Literature Review Part 1: Constructivism and CT 
 

44 

Figure 2.5.3.1 Dewey’s construct about curriculum, learner, and teaching process 

 
(Adapted from Dewey, 1902) 

 

Figure 2.5.3.1 illustrates Dewey’s construct about the function of teaching: to bring the 

curriculum to the learners and vice versa. Teaching must be defined by curriculum and 

learners just as roads are defined by possible journeys between two places. Driver 

(1995) argues that, from a constructivist standpoint, teachers must reconsider the 

traditional view of the curriculum as the body of knowledge which society deems 

important to pass on to its youngsters. In line with Dewey’s (1902) teaching construct, 

Driver (1995) says that while acknowledging factors like social aims and values and 

subject content structure, the constructivist teacher needs to take into account the 

experiences, ideas, and purposes which learners bring to classroom while providing 

learners with new experiences. I associate this view with what I have called “toing and 

froing” between teacher and learners (Chapter 1), or rather between the teacher’s 

knowledge and that of the learners. 

 

Dewey’s (1902) construct may be observed in most teaching models based on 

constructivist beliefs, including: 

• Karplus’s (1977) Learning Cycle,  

• Driver and Oldham’s (1986) Constructivist Instruction Model,  

• Van Hiele’s (1986) Phases of Instruction,  

• Black and McClintock’s (1995) Interpretation Construction Model, and  

• Gagnon and Collay’s (2006) Constructivist Learning Design.  

 

In various shades and emphases, these teaching models have a number of core 

elements in common. Sunal (1995) maintains that such frameworks aim to help 

learners to: 
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 become aware of their previous knowledge, 

 experience a cooperative and safe learning environment, 

 compare new alternatives and perspectives to their prior knowledge, 

 connect the new perspectives to what they already know, 

 construct their own “new” knowledge, and 

 apply their knowledge in diverse situations. 

 

The most strikingly distinguishing feature of such teaching frameworks is, perhaps, an 

additional characteristic suggested by Driver (1995): 

[E]xperience by itself is not enough. It is the sense that students make of it that 
matters. If students’ understandings are to be changed ... then intervention and 
negotiation with an authority, usually the teacher, is essential. From this perspective, 
teaching is also a learning process.  

(Driver, 1995, p.399, original emphasis) 
 

While supporting Dewey’s (1938) experiential learning theory, Driver’s (1995) 

statement echoes what has been stressed before (Steffe, 1991; Freire, 1998), that 

constructivist teachers need to consider themselves students of their students and 

negotiators between their knowledge and that of their students, thus drawing Dewey’s 

(1902) connecting “line” between curriculum and learners.  A teaching model based on 

such constructivist perspectives in mathematics education is that proposed by Simon 

(1995). This is discussed next. 

 

2.5.4 Simon’s Model of Teaching Mathematics with a 
Constructivist Perspective 

There are extensive reports in the literature about how a constructivist mathematics 

learning environment can be fostered (e.g., Davis, 1984; Schoenfeld, 1985; Lampert, 

1988; Steffe, Cobb, & Glasersfeld, 1988; Steffe, 1991; Wood, Cobb, & Yackel, 1991; 

Fennema, Franke, Carpenter, & Carey, 1993; Ball, 1993; Jaworski, 1994; Carpenter, 

Fennema, & Franke, 1996; Prawat & Jennings, 1997). These studies attest to several 

common features of the lessons such as: 
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• encouraging students to come to an answer in different ways, 
• valuing students’ interventions in the lesson and inviting them to articulate their 

interpretations of the mathematics at hand, 
• allowing students to describe their methods and engaging them in debates 

which help them refine and adjust their strategies and understandings, and  
• learning about students’ mathematical meanings through reflection on 

classroom experiences. 
 

One such study was presented by Simon (1995) who analysed his lectures with 

university students in a teacher training course. As a result of this analysis, he 

proposes the teaching model illustrated in Figure 2.5.4.1. 
 

Figure 2.5.4.1  Simon’s constructivist model of teaching mathematics  

 
(Adapted from Simon, 1995, p. 136) 

Teacher’s learning goal 

Teacher’s hypothesis 
of learning process 

Teacher’s plan for 
learning activities 

Interactive constitution of 
classroom activities 

Assessment of students’ 
knowledge 

 

Teacher’s knowledge of 
mathematics and of the 

students’ learning process 

Hypothetical Learning Trajectory  
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Constructivist teachers have what Simon (1995) calls a hypothetical learning trajectory 

(HLT). It is the way they predict the path through which learning might proceed. It is 

made up of the teacher’s 

 learning goal which defines the direction of the lesson, 
 plan of activities aimed to achieve the learning goal, and 
 hypothesis of the learning process, i.e. the predictions of how students’ thinking 

and understanding may evolve during the lesson. 

 

Simon (1995) explains that HLT is hypothetical because the actual learning trajectory 

is not knowable in advance. I see the inclusion of the adjective “hypothetical” as an 

acknowledgement of the fact that any learning objectives teachers may have in mind 

before the lesson may be changed by what they learn from their students. This is 

perhaps what classifies this kind of model as constructivist. Teachers’ actions from 

here onwards are geared towards learning about their students’ knowledge and 

interests and about the subject itself as much as towards helping students understand 

more about the subject matter.  

 

Simon (1995) classified the ensuing process into three steps: 
 

Stage 1. Teachers interact with students through classroom activities aimed at 

helping them gain more insight about the topic at hand. Teachers do not 

simply lecture but exchange ideas with the students (Driver & Oldham, 

1986) and help students to generate new ideas or modify old ones. 

Steinbring (1998, p. 158) speaks of ‘learning offers’, i.e. teachers’ 

classroom representations intended to bring about learning. One way 

how mathematics teachers can present learning offers is by taking non-

contextualised mathematical ideas and embed them in a context 

conducive to learners’ investigations (Brousseau, 1986). Besides helping 

students link what they already know with what the teacher intends them 

to learn (Gagnon & Collay, 2006) the teacher-student exchange of ideas 

helps teachers to evaluate their students’ knowledge and ways of 

knowing.  



Chapter 2 Literature Review Part 1: Constructivism and CT 
 

48 

Stage 2. Simultaneous with this teacher-student interaction comes teachers’ 

assessment of the way their students think and come to know. This brings 

about a modification in teachers’ ideas and knowledge of what is 

happening in the classroom. 

Stage 3. Teachers use this assessment to reconstruct their knowledge of the 

students’ learning process and of the subject content which will give rise 

to a revised hypothetical learning trajectory. 

The model shows a two-way-traffic type of teaching, where both teacher and student 

are learners and both teacher and student are teachers (Freire, 1998). Although 

planning is ultimately done by the teacher, the teaching-learning process is student-

centred: the assessment of students’ knowledge may lead teachers to reject their 

premises and start anew. On their part, students construct their own knowledge by 

drawing upon their own cognition and interacting with each other and with the teacher.  

 

It seems, therefore, that although Simon (1994) says that it is a myth to think of CT as 

a specific kind of teaching, Simon’s (1995) own teaching model may well be identified 

with CT, as pointed out by Steffe and D’Ambrosio (1995). Furthermore, although 

Simon’s (1995) model includes a teacher learning aspect, it seems to emphasise more 

the process where students are learning something from the teachers. In this model, 

teachers’ assessment of students’ knowledge seems to serve only to inform teachers 

about the appropriateness of the teaching approach. It does not really add anything to 

teachers’ own mathematics. The possibility of teachers’ content knowledge becoming 

enriched in the process of CT is an important aspect in Steffe’s (1991) CT principles, 

which I discuss below. 

 

2.5.5 Steffe’s Constructivist Teaching Principles  

There have been extensive contributions to the literature about RC and CT in 

mathematics education by Steffe (e.g. Steffe, Glasersfeld, Richards, & Cobb, 1983; 

Steffe & Blake, 1983; Steffe, Cobb, & Glasersfeld, 1988; Steffe & Wiegel, 1992; Steffe 

& D’Ambrosio, 1995; Steffe & Thompson, 2000a, 2000b, 2000c; Steffe & Ulrich, 2013; 
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Steffe, 1991, 2007, 2016). A common theme in Steffe’s writings is that constructivist 

teachers must see themselves as learners when they engage in CT. His theories are 

in line with Freire (1998, p. 31) who states that ‘whoever teaches learns in the act of 

teaching, and whoever learns teaches in the act of learning’, but Steffe’s notion of 

teachers’ learning during CT goes beyond the construction of pedagogical knowledge. 

Steffe (1991) argues that constructivist teachers’ main goal is to learn from interactions 

with students and with other colleagues and from observing students’ mathematical 

interactions. In this way, the focus of mathematics education is shifted from the 

teacher, not to the students per se, but to the intellectual interactions between teachers 

and students, among students, and among teachers (von Foerster, 1984; Bauersfeld, 

1988; Glasersfeld, 1990b). Steffe (1991) lists ten principal goals for CT. Teachers need 

to learn: 

 

 how to communicate mathematically with students; 

 how to engage students in goal-directed mathematical activity; 

 the mathematics of the students they teach; 

 how to organise possible mathematical environments; 

 the mathematical experience of students; 

 the mathematics for the students they teach; 

 how to foster reflection and abstraction in the context of goal-directed 

mathematical activity; 

 how to encourage students to communicate mathematically among 

themselves; 

 how to foster student motivation and sustain learning over a period of time; 

 how to communicate pedagogically as well as mathematically with other 

mathematics educators. 

(Adapted from Steffe, 1991, p. 191, original emphases)
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For Steffe (1991), constructivist mathematics teachers need to redirect their 

pedagogical goals towards communicating and reflecting on the nature of 

mathematical concepts and techniques with their students and colleagues. In 

classroom interactions, teachers may form second-order experiential models (Steffe et 

al., 1983; Steffe & Ulrich, 2013) of students’ mathematics (goal iii). CT thus means that 

teachers invest themselves in developing hypothetical models of students’ mental 

operations (Kaput’s 1991). In a personal correspondence, Steffe asserts that 

constructivist teachers’ own mathematical understandings can benefit from their 

search to understand students’ mathematics: 

[T]he constructivist teacher sets out to learn students' mathematics and includes 
and synthesizes that mathematics with his or her own in ongoing teaching and 
learning.  Does that mean that the constructivist teacher abandons his or her own 
mathematics?  Not at all.  In fact, a search for understanding students’ mathematics 
can lead to conceptual analysis and enrichment of one's own mathematics.  

(Steffe, personal communication, October 7, 2015) 

 

Like Simon (1995) and Steinbring (1998), Steffe (1991) holds that teachers’ learning 

about students’ mathematical understandings informs the mathematics they intend to 

teach but Steffe (1991, 2015) goes a step further: teachers’ own mathematics can be 

enriched by their observations of and reflections on students’ mathematical 

representations. This view may seem revolutionary for teachers operating in a culture 

upholding a didactical contract (Brousseau, 1984; Brousseau & Otte, 1991), i.e. the 

unwritten teacher-learner classroom pact that the teacher is there to teach and the 

learner is there to learn. In such classroom cultures, teachers seem to be the only ones 

with information and students seem to be the only ones who can learn (Kansanen & 

Meri, 1999). Like he does in most of his contributions on CT, Steffe (1991) 

compensates for this teacher-learner asymmetry and his CT principles are almost 

exclusively focused on teachers’ learning from their observations and reflections of 

students’ interactions.   

 

I find Steffe’s ideas about CT (1991) complementary to Simon’s (1995) model of 

teaching from a constructivist perspective. While Simon emphasises teacher-to-

student interactions and teachers’ presentation of learning offers, Steffe (1991) 
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emphasises teachers’ learning of students’ mathematics and the synthesis of this 

knowledge with their (the teachers’) mathematics, and with their expertise in teaching 

particular areas of mathematics, or what Shulman (1986, p. 9) refers to as ‘pedagogical 

content knowledge’.  

 

2.6 Research Questions about Constructivist Teaching 

The combination of Steffe’s (1991) and Simon’s (1995) theories consolidates my notion 

of CT as a toing-and-froing exercise between the curriculum and the learners (Dewey, 

1902). Such an exercise requires teachers to deal with what Windschitl (2002) refers 

to as the pedagogical dilemma. This dilemma stems from constructivist teachers’ 

wanting to honour learners’ attempts to think for themselves while needing to remain 

faithful to the accepted disciplinary notions of the subject. A satisfactory compromise 

between these two aspects is a considerable challenge for any teacher. Part of this 

challenge is due to the RC rejection of the notion of curriculum as a body of a priori 

knowledge. This view is espoused by Dewey (1902) as he urges teachers to   

abandon the notion of subject-matter as something fixed and ready-made in itself, 
outside the child's experience; cease thinking of the child's experience as also 
something hard and fast; see it as some-thing fluent, embryonic, vital. 

(Dewey, 1902, p. 11) 
 

This statement implies that RC teachers need to appreciate that  

 the curriculum consists of their own interpretations of subject matter, 

 they need to relate this subject matter with learners’ experiences, and 

 these learners’ experiences are ever-changing.  

 

Thus, Dewey’s (1902) curriculum-learner construct goes well with RC epistemology. It 

provides an overarching notion of practising forms of teaching compatible with 

constructivist beliefs (Cobb, Wood, & Yackel, 1990), like those proposed by Steffe 

(1991) and Simon (1995). It also reaffirms the possibility of defining CT as the 

endeavour of teachers to establish links between their interpretations of subject 

content (curriculum) and the learners. 
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As I mentioned in Chapter 1, one of the main objectives of this research was to 

investigate how I engage in CT and possibly develop a framework which helps me 

understand the dynamics of such a teaching approach. The literature reviewed in this 

chapter helped me to prepare for such an investigation, by which I seek to answer the 

first set of research questions: 
 

 How do I engage in CT and what are the distinguishing characteristics of such 

a teaching approach? 

 What, if any, are the moments when I fail to engage in CT? 

 

Since teaching is dependent on learning (Freire, 1998), and since I intended to 

investigate lessons in which I introduced 7th graders to formal algebra, a substantial 

part of my literature review consisted of studying the nature and learning of algebra. 

This review is presented in the chapter that follows. 



 

 
 

Chapter 3 

 Literature Review Part 2: 
The Nature and Learning 

of Algebra 
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3.0 Overview 

The second part of the literature review is subdivided into the sections shown in Table 

3.0.1 as follows. 

 
Table 3.0.1 Chapter 3 section titles 

 Title Page 

3.1 The Nature of Algebraic Thinking and Activities 56 

3.2 Algebra Difficulties 71 

3.3 Notation as a Key Factor in Algebraic Activities 80 

3.4 A Way Forward: Use of Computers for Algebraic Thinking 95 

3.5 Research Questions about Students’ Representations and Interpretations of Notation 109 

 

The second part of the literature topic map, illustrated in Figure 3.0.1 (overleaf), 
resumes from the first part (Chapter 2, p. 13). The literature review starts by a 
discussion about the nature and definition of algebra, where I synthesise work of 
theorists including Mason (1996), Kaput (2008), Radford (2014), Kieran (1996), and 
Gattegno (1988). This helps me to establish a standpoint regarding the nature of 
algebraic thinking and differentiate between informal- and formal-algebraic activities.  
 
This is followed by a review of research-based literature about the learning of algebra, 
where I focus on students’ difficulties in algebra. Research evidence shows that such 
difficulties are usually caused by problems stemming from generality, arithmetic, and 
notation. Focusing on the latter as a make-or-break issue in algebraic activities, I 
discuss students’ representations and interpretations of notation. I present the use of 
computers as a possible way forward for teachers to help students to enrich their 
meanings of notation. I discuss software which has been found effective in this respect 
including microworlds, Logo, spreadsheets, and other grid-based environments. One 
of the latter is Grid Algebra, with which I end my literature review. This second part of 
the literature review leads me to the second set of research questions, those regarding 
students’ representations and interpretations of notation with the help of Grid Algebra. 



Chapter 3 Literature Review Part 2: The Nature and Learning of Algebra 
 

55 

Figure 3.0.1 Literature topic map – Part 2 

 
Resumes from Chapter 2 

Nature of 
Algebra

Algebraic 
Thinking 

Definitions 
of Algebra

Narrow 
Definition

Informal 
and 

Formal 
Algebra

Broad 
Definition

Algebraic 
Activities

Learning 
of Algebra

Causes of 
Algebra 

Difficulties

Problems 
Stemming 

from 
Notation

Meaning of 
Familiar 
'shape-

Symbols'

Way Forward: Use of 
Computers for 

Algebraic Thinking

Benefits of Use of 
Computer in Mathematics 

Teaching and Learning

Microworlds 
and Logo

Spreadsheets and 
other Grid-based 

Environments

Use of Grid Algebra 
for the Teaching and 
Learning of Notation

Properties of 
Operational 

Symbols

Proceptual 
View of 

Expressions

Problems 
Stemming 

from 
Arithmetic

Problems 
Stemming 

from 
Generality

Types of 
Algebra 

Difficulties



Chapter 3 Literature Review Part 2: The Nature and Learning of Algebra 
 

56 

3.1 The Nature of Algebraic Thinking and Activities 

Wheeler (1996, p. 319) says that algebra is difficult to define because ‘it always seems 

to comprise rather more than any simple story suggests’. In this section, I discuss 

algebraic thinking and activities and establish my standpoint about each of these. 

 

3.1.1 Algebraic Thinking 

It seems that all theorists in the algebraic field agree that generality and the process of 

generalisation are key to what is usually attributed to algebraic thinking (e.g., Sfard, 

1995; Usiskin, 1995; Mason, 1988, 1991,1996; Mason, Graham, Pimm, & Gowar, 

1985). By generality, I share Usiskin’s (1995) understanding that it is the search for 

general rules by observing and reflecting on differences, similarities, patterns, and 

classifications of numbers. Usiskin (1995, p. 31) says that students engage in algebraic 

thought when they formulate a rule such as the following: ‘To multiply two fractions, 

multiply their numerators to get the numerator of the product, and then multiply their 

denominators to get the denominator of the product ’. Usiskin points out that this 

statement may be represented as: 
𝑎𝑎
𝑏𝑏

×
𝑐𝑐
𝑑𝑑

=
𝑎𝑎𝑐𝑐
𝑏𝑏𝑑𝑑

 

 

The above string of symbols is another way of writing the previous sentence using 

mathematical symbols and, as Skemp (1971, p. 95) says, ‘basically these are a verbal 

shorthand’. Notation will be discussed further on, but for now it suffices to observe, 

even in this one example, how crucial notation can be in understanding and 

communicating algebraic concepts. 

 

The ability to generalise makes students proficient in many areas. Bednarz, Kieran, 

and Lee (1996) identify four such areas. Each area is emphasised by other researchers 

when discussing the nature of algebra: 

 Generalisation of numerical and geometric patterns and laws governing 

numerical relations (Arzarello, 1991a; Mason, Grahan, Pimm, & Gowan, 1985; 

Charbonneau, 1996); 
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 Solution of specific problems or classes of problems (Puig & Cerdán, 1990; 

Rubio, 1990, 1994); 

 Focus on the concepts of variable and function (Confrey, 1992; Garaçon, 

Kieran, & Boileau, 1990; Heid & Zbiek, 1993; Kieran, 1994); 

 Modelling of physical phenomena (Chevallard, 1989; Filloy & Rojano, 1989). 

 

Some studies include all of these areas (e.g., Usiskin, 1988; Kaput 1995b, 1998, 1999, 

2008; Blanton & Kaput, 2005; NCTM, 1998), but all of them depend on the processes of 

generalising and pattern-seeking, such as those identified by Mason (1996, p. 83) when 

he says: ‘Detecting sameness and difference, making distinctions, repeating and 

ordering, classifying and labelling…are the basis of what I call algebraic thinking.’ Mason 

(1996) goes on to say that algebra without generality is little more than a dead subject. 

 

In his extensive studies on the teaching and learning of algebra, Kaput repeatedly 

stresses that algebraic reasoning is not confined to rule-based operations on symbolic 

syntax. For instance, Blanton & Kaput (2005) define algebraic reasoning as follows: 

a process in which students generalize mathematical ideas from a set of particular 
instances, establish those generalizations through the discourse of argumentation, 
and express them in increasingly formal and age-appropriate ways.  

(Blanton & Kaput, 2005, p. 413) 

 

Along similar lines, Kaput (2008) proposes two core aspects of algebraic reasoning: 

 The generalisation and expression of generality in increasingly systematic and 

conventional symbol systems;  

 The syntactically guided reasoning and actions on generalisations expressed 

in conventional symbol systems. 

 

Kaput (2008) argues that the mathematical debate which divides mathematicians and 

mathematical educators over the definition of algebra is actually their emphasis on 

these core aspects. Before I delve into that debate, I will now turn to another aspect of 

the teaching and learning of algebra: the nature of algebraic activities. 
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3.1.2 Algebraic Activities 

Kieran (1996) describes algebraic activities by subdividing them into three categories: 

 Generational activities. These involve the generation of algebraic objects, i.e. 

expressions and equations. Kieran (1996) argues that much of the meaning-

building for algebraic objects occurs within such algebraic activities. 

 Transformational activities. These are those rule-based activities concerned 

with transforming expressions such as substitution, simplification, expansion 

and factorisation. 

 Global, meta-level, mathematical activities. These are activities for which 

algebra is used as a tool but which are not exclusive to algebra. They include 

problem solving and modelling, analysing and generalising relationships, and 

proving mathematical statements. Kieran (1996) suggests that learners can 

engage in these activities without using formal algebraic notation but they can 

elaborate on them at any state by including conventional notation. 

 

Sharing most of Kieran’s (1996) views about the nature of algebraic activities, Bell 

(1996, p. 174) defines algebra as ‘any manipulable language by which relations or 

compositions are handled in conceptual fields of space, number, or elsewhere in 

mathematics’. Bell points out three algebraic processes: 

 Expressing mathematical relationships using algebraic notation; 

 Manipulating symbolic expressions into different forms to reveal new aspects 

of these relationships; 

 Applying the knowledge of using and manipulating algebraic expressions for 

specific activities such as forming and solving equations, working with formulae, 

etc.
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Algebraic activities are characterised by specific conditions. Radford (2014) identifies 

three such conditions: 

 Indeterminacy. This is the recognition of the use of indeterminate values 
(usually expressed as letters) in the form of variables, unknowns and 
parameters.  

 Denotation. This involves the symbolisation of the indeterminate values of the 
problem at hand, that can include the use of natural language, gestures, signs, 
and written symbols. 

 Analyticity. This is the skill of manipulating the indeterminate quantities as if 
they were known values. 

 

Kieran (1996), Bell (1996), and Radford (2014) have captured the essence of what 
theorists usually regard as algebraic activities. Yet, some researchers seem to confuse 
algebraic activities with algebraic thinking, where they use interchangeably the ideas 
associated with these two terms. This is sometimes the cause of discord in 
researchers’ definitions of algebra, as I will discuss next. 
 

3.1.3 Two Definitions of Algebra 

There seems to be two predominant schools of thought which differ in their definitions 
of algebra. I discuss these in the following two subsections. 
 

A Narrow (Traditional) Definition of Algebra 

On one side of the debate about what classifies as “algebra”, there are those who make 
a clear distinction between algebra and arithmetic. Some of these do not even regard as 
algebraic some activities which are widely associated with algebra, such as the solution 
of equations. One of these is Saul (2001), who argues that the fact that students 
understand and apply the concepts of variable or function in solving a mathematical 
problem does not mean that they are engaged in algebra. He brought evidence from a 
case study of a student who knew that 2𝑥𝑥 + 1 = 7 was true for 𝑥𝑥 = 3 and false for any 
other value of 𝑥𝑥 by substitution strategies but who could not engage in a transformational 
algebraic activity (Kieran, 1996) to bring 𝑥𝑥 to be the subject of the equation. Saul (2001) 
argued that this student could operate arithmetically but not algebraically. 
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For others within this school of thought, algebra may not be present even in 

transformations of certain equations. For instance, Filloy and Rojano (1989) regard as 

“arithmetical” equations such as: 𝐴𝐴𝑥𝑥 ± 𝐵𝐵 = 𝐶𝐶, 𝐴𝐴(𝐵𝐵𝑥𝑥 ± 𝐶𝐶) = 𝐷𝐷, 𝑥𝑥
𝐴𝐴

= 𝐵𝐵, and  𝑥𝑥
𝐴𝐴

= 𝐵𝐵
𝐶𝐶
 . The 

reason they give is that the unknown appears just once on one side, while the other 

side can be viewed as the result of the operations done on that unknown. Filloy and 

Rojano argue that in each of these equations, the value of 𝑥𝑥 can be found by inverting 

or undoing the arithmetical operations one by one and hence only arithmetical 

processes are involved.  

 

Filloy and Rojano (1989) contrasted these types of equations with others which they 

call “non-arithmetical” (p. 19), such as: 𝐴𝐴𝑥𝑥 ± 𝐵𝐵 = 𝐶𝐶𝑥𝑥 and 𝐴𝐴𝑥𝑥 ± 𝐵𝐵 = 𝐶𝐶𝑥𝑥 ± 𝐷𝐷. In such 

equations, the arithmetical processes of inverting successive operations are not 

sufficient. To solve these equations, it would be necessary to operate on the unknown. 

Drawing evidence from an earlier study (Filloy & Rojano, 1984) the authors affirm that 

between arithmetical activities (solving arithmetical equations) and algebraic activities 

(solving non-arithmetical equations) there is what they call a didactic cut which can 

only be addressed through instructional interventions. 

 

On similar lines, Herscovics and Linchevski (1994) argue that between arithmetic and 

algebra there is a clear demarcation by what they call a cognitive gap. In their study 

with high-performing 7th graders, they presented students with equations such as:  

63 −  5𝑛𝑛 =  28, 11𝑛𝑛 + 14𝑛𝑛 = 175,    and  5𝑛𝑛 +  12 =  3𝑛𝑛 +  24. Herscovics and 

Linchevski reported that the participants engaged in arithmetical activities to solve the 

equations. The students competently used number grouping techniques, systematic 

substitution, and inverse operations to solve the equations. Like Filloy and Rojano’s 

(1984) participants, these students were unable to operate with or on the unknown to 

transform the equations and, thus, Herscovics and Linchevski (1994) declared that 

these students could not yet engage in algebraic tasks. Hence, they asserted the 

presence of a cognitive gap between arithmetic and algebra. They claimed that this 

gap could only be addressed through teaching and learning of algebraic concepts and 

techniques.  
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Other studies which support the idea of a demarcation between arithmetic and 

algebraic activities call for the need of a transition between arithmetic and algebra (e.g., 

Collis, 1975; Bednarz & Janvier,1996; Boulton-Lewis et al., 1998; Kilpartick, Swafford, 

& Findell, 2001; Kieran, 2004; Sadovsky & Sessa, 2005). These studies seem to make 

two interlinked assumptions: 

 Arithmetic and algebra are distinct disciplines. There is demarcation between 

the skills required to solve arithmetic problems and those required to solve 

algebraic problems and the transition from arithmetic to algebra can occur 

through instruction. 

 A number of years of instruction in arithmetic are required before starting an 

algebra course. 

 The generalisation and expression of generality, a core algebraic aspect 

according to Kaput (2008), may exist within arithmetic and without algebra.  

 

The definition of algebra discussed in this section may be considered traditional, since 

this is what curriculum planners often refer to when they mention “algebra” in 

educational programmes (e.g. DfE, 2013; DLAP syllabus, 2014a, 2014b). Such a view 

of algebra is narrow when compared to that of the second school of thought which is 

discussed next. 

 

A Broad Definition of Algebra 

On the other side of the algebra definition debate there are theorists who claim that 

algebra exists even in problems that are normally associated with arithmetic or other 

mathematical domains. Foremost among these is Gattegno (1974, p. 82) who asserts 

that ‘rather than teach mathematics we should strive to make people into 

mathematicians’. Gattegno (1988) shows that mathematics teachers and learners 

need to become aware of what they are assuming, doing, and achieving when they 

engage in mathematical processes. It is one thing to be aware that you are doing 6 + 9 

and achieving 15 as a result. This is just “awareness-in-action” (Mason, 1998, p. 255). 

It is quite another thing to be aware that 6 + 9 and 9 + 6 constitute the same quantity, 
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that 6 + 9 may be expressed as 3 × (2 + 3) and so 3 × 5, and that the result, 15, is an 

element in the same set (integers) as the numbers involved in performing those 

operations (closure property). Gattegno (1988) refers to this second type of awareness 

as “awareness of awareness” (p. 172), the awareness of an algebraic structure, ‘a set 

together with an internal operation which associates to any pair of elements of the set 

another element of the same set’ (Gattegno, 1987, p. 61).  

 

Using Cuisenaire rods, Gattegno used what became known as Gattegno-Cuisenaire 

method (see Chambers, 1964) to instruct teachers how to teach number concepts to 

primary school children. Gattegno (1974) referred to this as “the algebra of arithmetic” 

(p. 61), where he demonstrated how Cuisenaire rods may be used to make children 

aware of properties of the addition operation like commutativity and associativity. 

Gattegno advocated that teachers should give their students the opportunity to 

encounter algebra before arithmetic by becoming aware that the “games” embody 

implicit mathematical structures and relations.  

  

Gattegno’s (1988) awareness of awareness identifies with algebra any attempt to 

regulate, systematise, and generalise numerical properties, operations, calculations, 

and relationships irrespective of whether a letter is used or manipulated on. Associating 

algebraic thinking with making sense of mathematical structures and relationships and 

the consequent pursuit of generality is widely reported in the literature (e.g., Usiskin, 

1988; NCTM Algebra Task Force, 1993; NCTM Algebra Working Group, 1997; Kaput, 

1995a, 1995b; Mason, 1996; Blanton & Kaput, 2005).  This stance is central to 

discussions and research about the inclusion of algebra in the primary curriculum (e.g., 

Carraher, Schliemann, & Brizuela, 2000; Carraher, Schliemann, & Schwartz, 2008; 

Mason, 2008) because it promotes the explicit teaching of algebraic thinking from an 

early age, as soon as students start to wonder whether a pattern or rule might exist for 

particular calculations.  

 

Rather than creating a stark demarcation between arithmetic and algebra, this 

definition of algebra tends to seek an area of overlap between the two, making them 

seem less and less as distinct disciplines. Algebra is thus seen to be embedded in the 
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very structure of arithmetic. Hewitt (1998) argues that algebraic thinking is actually 

necessary for arithmetic procedures to be carried out. Devoid of algebra, arithmetic 

would be little more than a recall of answers learnt by rote. ‘Arithmetic is concerned 

with getting answers. Algebra shifts attention from answers to what is required to be 

done to get an answer’ (Hewitt, 1998, p. 21). Algebraic notation is, then, the 

encapsulation (Dubinsky, Elterman, & Gong, 1988) of the structure behind arithmetical 

processes and products.  

 

Using this line of thought, Carraher, Schliemann, Brizuela, and Earnest (2006, p. 89) 

argue that ‘algebraic concepts and notation need to be regarded as integral to 

elementary mathematics’. They object to the idea of a developmental readiness which, 

they say, implies the basic assumption of studies that propose a gap between 

arithmetic and algebra (such as Filloy & Rojano, 1984, 1989; Herscovics & Linchevski, 

1994). Carraher et al. (2006) back their claims by results of an earlier study (Carraher, 

Schliemann, & Brizuela, 2000) in which they reported that Grade 3 children were able 

to understand and use algebraic notation (e.g. 𝑛𝑛 →  𝑛𝑛 + 3),  and generalise how two 

series of numbers (e.g. 𝑛𝑛 and 2𝑛𝑛 + 1) were interrelated. Support for early algebra was 

again presented by Carraher, Schliemann, and Schwartz (2008) with evidence from a 

similar longitudinal study with students in Grades 2–4. The authors claimed that 

students engaged in algebraic activities by using algebraic representations and 

notation (e.g. 100 + 𝑊𝑊 = 3𝑊𝑊) to make sense of practical situations such as the number 

of candies in a box and the amount of money in a wallet.  

 

However, in their studies, Carraher et al. (2000, 2008) did not specify the number of 

students who managed to make use of such algebraic notation, and hence the extent 

of their claims is unclear. Furthermore, when introducing the use of letters as 

unknowns, they always used initials of the name of the unknown (e.g. 𝑛𝑛 for number or 

𝑊𝑊 for wallet money) rather than making an arbitrary choice of letters. As I discuss in 

Section 3.2, this can be a crucial factor for determining the meaning children give to 

literal symbols. Nevertheless, whether Carraher et al.’s (2000, 2008) early graders 

could make sense of literal symbols is not a determining factor as to whether they could 

engage in algebraic activities. I will develop this argument in the next subsection. 
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The definition of algebra discussed in this section is much broader than the first 

because, while encompassing the activities deemed algebraic by the first school of 

thought, it extends beyond the application and manipulation of letters in expressions 

and equations. The proponents of such a broad definition hold that any attempt to 

generalise rules and techniques to find any answer (even those deemed arithmetical) 

classifies as algebraic thinking. The role that algebraic activities and algebraic thinking 

play in the discord between these two schools of thought is discussed next. 

 

3.1.4 Reconciling the Two Schools of Thought 

In this section, I argue that differences in the two schools of thought in their definition 

of algebra seem to stem from two factors: 

• their emphasis on one of Kaput’s (2008) core aspects of algebraic reasoning, and 

• the confusion of algebraic thinking with algebraic activity. 

I will also attempt to reconcile the two perspectives by addressing these two factors. 

 

With regards to the first factor, it seems that those who give a narrow definition of 

algebra emphasise Kaput’s (2008) core aspect (ii): the syntactically guided reasoning 

and actions on generalisations expressed in conventional symbol systems. Filloy and 

Rojano (1984, 1989), Herscovics and Linchevski (1994), and the others are seen to 

associate algebra with Kieran’s (1996) generational and transformational activities 

each of which involve the use and manipulation of algebraic syntax.  

 

While acknowledging that these activities form part of algebra, those who advocate a 

broad definition of algebra insist that algebra also exists where there is a search for 

patterns, rules, and generality which may eventually lead to the use of conventional 

notation. This is an emphasis on Kaput’s (2008) core aspect (i): The generalisation and 

expression of generality in increasingly systematic and conventional symbol systems. 
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Gattegno (1987), Hewitt (1998), Kaput (2008) himself, and others adopting this 

perspective emphasise the applicability of algebra as a tool for what Kieran (1996) 

described as the global, meta-level, mathematical activities.  

 

To address the second factor, the confusion of algebraic thinking and algebraic activity, 

I present Hewitt’s (1998) problem of counting an array of matchstick-squares (Figure 

3.1.4.1). 

 

Figure 3.1.4.1 The matchstick-squares array 

 
(Adapted from Hewitt, 1998, p. 19) 

 

Hewitt (1998) argues that to count the matchsticks economically a student would 

need ‘to work algebraically’ (p. 20). This means engaging in a systematic, organised 

way of counting, which may lead to the determination of the number of matchsticks in 

hypothetical arrays (without even seeing them). I agree with Hewitt (1998) that such 

an activity requires algebraic thinking because it involves the generalisation of a rule 

that goes beyond the first few cases (Dienes, 1961).  



Chapter 3 Literature Review Part 2: The Nature and Learning of Algebra 
 

66 

Now, consider two students, S1 and S2, where S1 has not yet learnt about algebraic 

notation (expressions with literal symbols) and S2 has. S1 may reason algebraically 

that the rule to count the matches is equal to the addition of 5 times one more than the 

number of square rows (horizontal matches) and 6 times the number of square rows 

(vertical matches). S2 may make the same deduction but then moves on to write the 

formula 𝑛𝑛 = 5(𝑟𝑟 + 1) + 6𝑟𝑟, where 𝑛𝑛 is the number of matchsticks in 𝑟𝑟 square rows. S2 

has an advantage over S1, not only due to the use of notation as verbal shorthand 

(Skemp, 1971) but also due to the possibility of transforming the formula into a more 

simplified form, such as 𝑛𝑛 = 11𝑟𝑟 + 5.  

 

Undoubtedly, both schools of thought about the definition of algebra would consider 

S2 as being engaged in an algebraic activity. However, albeit thinking algebraically, 

S1 may not be regarded by proponents of the narrow definition of algebra as being 

engaged in an algebraic activity because s/he is not engaged in any syntactically 

guided reasoning and her/his generalisations are not expressed in conventional 

symbol systems (Kaput’s 2008, core aspect (i)). If S1 learns that one can arbitrarily 

represent (Hewitt, 1999) a variable by a letter and becomes comfortable with this use 

of letters, there would only be one thing left to learn in order to reach the level of S2: 

the convention of transformational activities (Kieran, 1996) which may be used to 

change the formula into a more convenient one.  

 

Nevertheless, both students are engaged in generational activities (Kieran, 1996). To 

me this is a necessary and sufficient condition for algebra and, in this respect, I tend 

to side with those taking a broad definition of algebra. At the same time, I would agree 

with a proponent of a narrow definition who argues that S2’s thinking and activities are 

not at the same level as those of S1. However, while differentiating between the two 

students’ thinking and activities, I maintain that both are engaged in algebra. This is 

possible by introducing some “new” nomenclature. In Table 3.1.4.1, I propose such 

nomenclature which I define by using Hewitt’s (1998) matchsticks array example. This 

nomenclature and its definition will attest to my own perspectives about algebraic 

thinking and activity, and will be used in this write-up. 
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Table 3.1.4.1 Solely-arithmetic, informal-algebraic, and formal-algebraic thinking and 
activities 

 
Task⇾ 

Count the number 
of matchsticks in a 
𝟑𝟑 × 𝟓𝟓 squares array 

Count the number of 
matchsticks in a       
𝟒𝟒 × 𝟓𝟓 squares array 

Count the number of 
matchsticks in a 
𝟏𝟏𝟏𝟏𝟏𝟏 × 𝟓𝟓 squares array 

Learner 
#1 

Solely-
arithmetic 
thinking⇾ 

“I will count the 
matchsticks one by 
one. So…” 

“I will continue to count 
the matchsticks one by 
one after 38. So…” 

“I will continue to count 
the matchsticks one by 
one after 49. So…” 

Solely-
arithmetic 
activity⇾ 

1, 2, 3, … , 38 
Answer: 38 

39, 40, 41, … , 49 
Answer: 49 

50, 51, 52, … , 1105 
Answer: 1105 

Learner 
#2 

Informal- 
algebraic 
thinking⇾ 

“I will use 
multiplication to count 
the horizontal and 
then the vertical 
matchsticks. So…”  

“I will again use 
multiplication to do the 
same thing, just adding 
another line of 
horizontals and 
another row of 
verticals. So…” 

“I notice that I am 
multiplying 5 by one 
more than the number of 
square rows, and 6 by 
the number of square 
rows, and then adding 
the results. So…” 

Informal- 
algebraic 
activity⇾ 

5 × 4 + 6 × 3 
20 + 18 

Answer: 38 

5 × 5 + 6 × 4 
25 + 24 

Answer: 49 

5 × 101 + 6 × 100 
505 + 600 

Answer: 1105 

Learner 
#3 

Formal- 
algebraic 
thinking⇾ 

“Let number of rows 
be 𝑟𝑟 and number of 
matchsticks be 𝑛𝑛. 
Then 𝑛𝑛 is 5 times   
𝑟𝑟 + 1 added to 6 
times 𝑟𝑟. 𝑟𝑟 is 3, so…” 

“The number of 
columns is unchanged 
so I will use again the 
same formula. This 
time 𝑟𝑟 is 4, so…” 

“I will use again the 
same formula. However, 
I can simplify the formula 
and then substitute 𝑟𝑟 =
100 afterwards, so…” 

Formal- 
algebraic 
activity⇾ 

𝑛𝑛 = 5(𝑟𝑟 + 1) + 6𝑟𝑟 
𝑛𝑛 = 5(4) + 6(3) 

𝑛𝑛 = 20 + 18 
Answer: 𝑛𝑛 = 38 

𝑛𝑛 = 5(𝑟𝑟 + 1) + 6𝑟𝑟 
𝑛𝑛 = 5(5) + 6(4) 

𝑛𝑛 = 25 + 24 
Answer: 𝑛𝑛 = 49 

𝑛𝑛 = 5𝑟𝑟 + 5 + 6𝑟𝑟 
𝑛𝑛 = 11𝑟𝑟 + 5 

𝑛𝑛 = 11(100) + 5 

Answer: 𝑛𝑛 = 1105 

 

Table 3.1.4.1 gives hypothetical thinking processes of three learners, #1, #2, and #3, 

and the corresponding activities involved in solving the problem of counting the number 

of matches in an 𝑟𝑟 × 5 matchstick-squares array (where 𝑟𝑟 is the number of rows).  The 

learners are required to find the number of matches in 3 × 5, 4 × 5, and 100 × 5 

matchstick-squares arrays. The learners are assumed to think and act as follows:  
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 Solves the problem without any attempt to be economical, i.e. without trying to 

organise the counting in a way that can be feasible for large arrays. I am 

naming this kind of thinking and activity as solely-arithmetic; 

 Solves the problem by attempting to organise the counting by the use of 

multiplication and addition operations. I am naming this kind of thinking and 

activity as informal-algebraic; 

 Solves the problem by using standard algebraic syntax through the use of 

letters to stand for variables. This learner uses a formula to substitute 

respective values for the number of rows (𝑟𝑟) and obtaining a value for the 

number of matchsticks (𝑛𝑛), and also simplifies the formula by manipulating the 

terms in 𝑟𝑟. I call this kind of reasoning and working formal-algebraic. 

 

One can find similar terms in the literature. Van Amerom (2003) uses the terms formal 

and informal strategies of students when solving equations. However, she reserves 

the term “informal” for strategies which she claims to be arithmetical. So, although she 

uses terms like ‘formal algebraic approach’ (p. 67) to denote the standard 

manipulations of equations, she never uses the term “informal algebraic”. Linchevski 

(1995, p. 114) uses the term ‘formal algebra’ to denote what I mean by formal-algebraic 

thinking and activity, including Kieran’s (1996) generational and transformational 

activities. 

 

In the solely-arithmetic, informal-algebraic, and formal-algebraic thinking cells I am 

including hypothetical, typical thoughts about problem-solving strategies, including 

typical representations of those planned strategies. The reasoning and working of each 

case are hierarchical in nature, and I assume that students may progress from #1 stage 

to #3 stage. This assumption is backed by literature which attests to the possibility of 

such a successful transition (classically referred to as the arithmetic-to-algebra 

transition) if teachers address particular learner needs (e.g., Kieran, 2004). 

 

There are a number of observations to be drawn from Table 3.1.4.1: 
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 The use of “solely” in the term “solely-arithmetic” carries an implicit suggestion 
that in subsequent reasoning and activities arithmetic may still be present. 
Going by Hewitt’s (1998) contention that arithmetic is about getting answers, I 
do not exclude that the utilitarian arithmetical aim of obtaining an answer at the 
end of a series of problem-solving steps will still prevail in most, if not all, 
mathematical thoughts and actions.  

 In line with RC, I believe I have ‘no direct access to the knowing or thinking of 
others’ (Ulrich et al.,  2014, p. 329) so the phrases within quotes shown in the 
“thinking” sections of the table are only second-order models (Steffe et al., 
1983) of possible conceptual processes of each learner. 

 Type #2 learners cannot simplify their numerical formula since they are not 
operating on the unknown and this makes their thinking and activity less 
economical than #3. This is one of the factors which places informal-algebraic 
at a lower hierarchical level than formal-algebraic. 

 Mason (2008) defines an algebraic solution as the one which reveals similarities 
in structure. This is in line with my definition of informal- and formal-algebraic 
reasoning because both methods lend themselves well to revealing patterns in 
the data. Mason brought evidence to show that some learners are initially more 
inclined to apply arithmetical techniques to solve problems. The methods used 
by such learners are unstructured as shown in the solely-arithmetic thinking and 
activities of Table 3.1.4.1. These are bound to become more laborious as 
numbers get larger. Informal- and formal-algebraic thinking are more 
economical. Gattegno (1986, p. 43) says that, ‘in algebra…one thought process 
is placed upon another precisely for the purpose of performing more for less’.  

 Schools of thought which demarcate arithmetic from algebra, usually promote 
the need for “pre-algebra” courses such as those given in the US in middle 
school (around Grade 7). According to Linchevski (1995, p. 119), pre-algebra 
is ‘a stage of transition from the environment of arithmetic to that of formal 
algebra’. Linchevski and her team identified a number of areas to be addressed 
in pre-algebra courses. These fall under the category I call informal-algebraic 
activities but, as Linchevski suggested, they also include formal-algebraic 
aspects, such as the introduction of literal symbols (e.g 𝑥𝑥 or 3𝑥𝑥) to stand for 
unknowns and variables in simple equations. 
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Without entering into the debate about the best time to introduce formal-algebraic 

activities in schools, I use this model to propose that these can only occur if learners 

have mastered thinking and working at the informal-algebraic level, and that the latter 

requires a basis of arithmetic. Specifically, for a successful transition through these 

levels learners need to be helped to develop concepts about:  

 ordinal and cardinal numbers, 

 properties of addition and multiplication and their inverses, 

 numerical expressions as processes of operations, 

 numerical expressions as singular mathematical entities, 

 literal symbols to denote unknowns and variables, and 

 substitution of letters for numbers and vice versa. 

 

(i) is needed for solely-arithmetic, (i)–(iv) are needed for informal-algebraic, and (i)–(vi) 

for formal-algebraic. All concepts involve the interpretation and representation of 

notation. As I presently discuss with reference to the literature, notation is particularly 

crucial in determining the success or otherwise of learners’ engaging in meaningful 

informal- and formal-algebraic reasoning and activity.  

 

Like many other school curricula, the Maltese mathematics curriculum leaves formal-

algebraic activities to be introduced at the start of the secondary school. One of the 

concerns I sought to address in my research was how children in their first year of 

secondary school (Grade 7), particularly those who did not perform well in past 

mathematical assessments, can be introduced to formal-algebraic reasoning and 

activities. Given my assumption that success at one level depends on success at the 

preceding level, I also needed to address these children’s informal-algebraic 

reasoning. Research shows that this reasoning may be the origin of most difficulties 

that secondary students have in their learning of formal algebra, to which the next 

section is dedicated. 
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3.2 Algebra Difficulties 

A review of the literature seems to point out five major areas of difficulties that children 

find in school algebra: 

 Solving equations (e.g., Filloy & Rojano, 1984, 1989; Herscovics & 

Linchevski, 1991, 1994; Kieran, 1988; Gallardo & Rojano, 1988; Wagner, 

1977); 

 Manipulating algebraic expressions (e.g., Booth, 1984; Sleeman, 1986; 

Borg 1997); 

 Solving problems (e.g., Bishop, Filloy, & Puig, 2008; Clement, 1980,1982; 

Clement, Lochhead, & Monk, 1981; Kieran, Booker, Filloy, Vergnaud, & 

Wheeler, 1990); 

 Conceptualising literal symbols (e.g., Küchemann, 1981; Booth, 1984, 

1988); 

 Interpreting answers (e.g., Collis, 1974; Davis, 1975; Sfard & Linchevski, 

1994; Booth 1988). 

I discuss each of these difficulties in the subsections that follow. 

 

3.2.1 Difficulties in Solving Equations  

The solution of equations has been one of the common focus areas where researchers 

investigated algebra difficulties. For instance, Linchevski and Herscovics (1996) found 

that Grade 7 students had difficulties in solving one variable equations with more than one 

term containing the unknown, such as 89 − 5𝑛𝑛 = 7𝑛𝑛 + 5.   Such equations required 

students to operate on the unknown. The researchers reported that there were some 

recurring mistakes, even after a series of lessons. These were: 

 detaching a term from the indicated operation, such as simplifying 

10𝑛𝑛 − 5𝑛𝑛 + 3𝑛𝑛 by working out 10𝑛𝑛 − (5𝑛𝑛 + 3𝑛𝑛), 

 jumping off from a term with the posterior operation, such as grouping the 𝑛𝑛 

terms in the equation 19𝑛𝑛 + 67 − 11𝑛𝑛 − 48 = 131 as 30𝑛𝑛, and  
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 being unable to select the appropriate operation for the partial sum in an 

equation, such as grouping the numerical terms in the equation 

19𝑛𝑛 + 67 − 11𝑛𝑛 − 48 = 131 correctly, i.e. 19, and writing −19 instead of +19.  

 

Although Linchevski and Herscovics (1996) concluded that these mistakes were due 

to an insufficient preparation in arithmetic, it seems that their participants did not lack 

the skills required to add or subtract but they were misinterpreting the algebraic syntax 

and hence this was more a problem of notation interpretation. 

 

Similar errors were found by Kieran (1988) when investigating Grade 8-11 students’ 

solutions of linear equations. Students made computational errors due to a misuse of 

positive and negative numbers. Other errors were caused by students’ reluctance to 

divide a number by a larger number. Kieran (1988) identified problems in arithmetic, 

particularly in students’ understanding of integers and fractions. Similar arithmetical 

problems were found in 12- to 13-year-old students’ solution of equations (Gallardo & 

Rojano, 1988) where students had trouble working with and interpreting negative 

numbers. Likewise, in Chaiklin and Lesgold’s (1984) study, students were found to be 

unable to judge the equivalence of expressions like 685– 492 + 947 and 947– 492 + 685 

without recourse to computation. Students’ failure to see the possibility of swapping 

the first and last numbers indicates a limited interpretation of the numerical expression 

and hence, also a problem of notation. 

 

In studies involving the use of letters, problems due to interpretation of notation were 

reported more explicitly. In a study with 12- to 17-year olds, Wagner (1977) found that 

some learners had not yet developed concepts about what the letter in an equation 

stood for. When she asked participants whether the equations 𝑤𝑤 + 22 = 109 and 

𝑛𝑛 + 22 = 109 would yield different solutions, some of them said that the solution of the 

first one is greater than the second because 𝑤𝑤 comes later than 𝑛𝑛 in the alphabet. 

Others said that they could only know when they solved the equation. Similar findings were 

reported by Steinberg, Sleeman, and Ktorza (1991) who presented Grade 8-9 students 

with a list of pairs of equations such as: 
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• 𝑥𝑥 + 2 = 5 and 𝑥𝑥 + 2 − 2 = 5 − 2; 

• 3𝑥𝑥 = 5 + 4 and 3 + 𝑥𝑥 = 5; 

 

Steinberg et al. (1991) found out that almost half of the Grade 8 students and even 

some of the Grade 9 students generally gave an incorrect reason to judge the 

equivalence of equations. The researchers claimed that these reasons show 

misunderstandings of basic concepts, like not distinguishing between 3𝑥𝑥 and 3 + 𝑥𝑥. 

Such misconceptions may be attributed to students’ misinterpretation of formal-

algebraic notation rather than concepts of multiplication or addition. In spoken 

language “and” and “plus” usually represent the same meaning and hence learners 

may consider the expression 𝑎𝑎𝑏𝑏 (linking 𝑎𝑎 and 𝑏𝑏) to mean the same as 𝑎𝑎 + 𝑏𝑏 (Tall & 

Thomas, 1991; Stacey & MacGregor, 1994). Radford (2000) argues that studies about 

symbolic expressions should not only investigate learners’ interpretations but also what 

notation enables learners to do. For some students in Steinberg et al.’s (1991) study, 

notation was a barrier, rather than an enabler, when these students worked with 

expressions or equations.  

 

3.2.2 Difficulties in Manipulating Algebraic Expressions 

Difficulties in algebra were also reported in learners’ manipulations of algebraic 

expressions. Most errors seemed to stem from learners’ overgeneralisations of certain 

rules, constructing what Sleeman (1986) called mal-rules, like applying the distributive 

property also in exponentiation over addition, e.g. (𝑥𝑥 + 𝑦𝑦)2 = 𝑥𝑥2 + 𝑦𝑦2.   

 

Similarly, Matz (1980, p. 95) found that students used ‘extrapolation techniques…to bridge 

the gap between known rules and unfamiliar problems,’ such as applying the cancellation 

property in 𝑎𝑎𝑥𝑥
𝑏𝑏𝑥𝑥

= 𝑎𝑎
𝑏𝑏
 to the expression 𝑎𝑎+𝑥𝑥

𝑏𝑏+𝑥𝑥
, simplifying the latter to  𝑎𝑎

𝑏𝑏
. The mal-rules 

(Sleeman, 1986) behind such misinterpretations were therefore overgeneralisations 

of conventional rules that students had previously learnt. Such errors usually occur due 

to failure of correctly constructing structure sense (Linchevski & Livneh, 1999, 2002), 

i.e. the conceptualisation of expression structure, rendering them errors of notation 
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interpretation. The rules behind the conceptualisations of such structures may be 

difficult for learners to grasp, especially when they are not visually salient (Kirshner & 

Awtry, 2004). For example, reading from left to right: 

𝑤𝑤
𝑥𝑥

× 𝑦𝑦
𝑧𝑧

= 𝑤𝑤𝑦𝑦
𝑥𝑥𝑧𝑧

     and     
𝑤𝑤
𝑥𝑥

+ 𝑦𝑦
𝑧𝑧

= 𝑤𝑤𝑧𝑧+𝑥𝑥𝑦𝑦
𝑥𝑥𝑧𝑧

 

one may easily remember the first identity because all that needs to be done is to 

conjoin the numerators and the denominators, which makes the rule visually salient. 

The lack of visual salience in the second identity means that learners require more 

effort to conceptualise structure sense of the expression on the right and its 

equivalence to that on the left. 

 

In a study with a group of 15-year-olds at Grade 11 (Borg, 1997), I found that students 

had similar difficulties when changing the subject of formulae. Students’ mal-rules 

(Sleeman, 1986) were not just caused by mistaken extrapolation techniques (Matz 

1980). My participants were observed to overgeneralise equation transformation 

techniques which revealed themselves to be little more than blind memorisation of rules 

without reason (Skemp, 1971). One such technique was the change-side-change-sign 

rule, a one-step shortcut of cancelling a term by applying the inverse operation and 

balancing out the equation. A typical mistake I identified was that done by one student 

(S16) who transformed 𝐿𝐿 + 𝐸𝐸 = (𝑉𝑉𝑉𝑉)2 into  𝐿𝐿+𝐸𝐸
√𝑃𝑃

= 𝑉𝑉. He reasoned that ‘we skipped it 

[meaning 𝑉𝑉2] over the equals so that 𝑉𝑉 becomes by itself and from 𝑉𝑉-squared it became 

square root of 𝑉𝑉’. (Borg, 1997, p. 123). Like many others, even from another school, this 

student reasoned that just like a positive term becomes negative, and multiplied term 

becomes a divisor, then something which is squared becomes square-rooted on the other 

side of the equation. A similar mistake was transforming 𝑏𝑏 = 1
2

𝑎𝑎 + 1
2

𝑐𝑐 into 𝑏𝑏
−1

2�
= 𝑎𝑎 + 1

2
𝑐𝑐, 

a mistaken application of the change-side-change-sign rule. 

 

Other misinterpretations in the Borg (1997) study were due to actions that students 

were accustomed to take when they encountered particular notation. For instance, it 

was evident that most students saw the brackets symbol as code for “expand”. Most 

students expanded the brackets of the formula 𝑛𝑛 = (𝑚𝑚𝑐𝑐 − 𝑟𝑟)2 as a first step towards 
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bringing 𝑟𝑟 the subject of the formula, which made the formula unwieldy to handle when 

expanded correctly. These students were interpreting the brackets as a process to be 

performed and did not seem to view (𝑚𝑚𝑐𝑐 − 𝑟𝑟) as a unified object. Again, this is a 

notation interpretation problem, this time stemming from the product-process dilemma 

(Sfard & Linchevski, 1994) which will be discussed later.  

 
3.2.3 Difficulties in Solving Problems 

Apart from the difficulties mentioned above, word problems present learners with 

another hurdle: the translation from words to an algebraic statement. Bishop, Filloy, 

and Puig (2008) stated that this is the primary source of difficulty for students in solving 

algebraic word problems. It involves understanding the problem, examining the 

relationships between variables, assigning variables, and expressing the relationship 

in algebraic syntax which includes the variables, the constants, operational notation, 

and relational notation (usually the equals sign). Bishop et al. claimed that students’ 

difficulties in translating from natural language to algebra and vice versa was one of 

the main difficulties that generally arose in such situations. 

 
During a series of video-recorded interviews, Clement (1980) became aware that even 

college science students experienced this difficulty. In a large-scale study with 

freshmen engineering majors, Clement, Lochhead, and Monk (1981) found that 

approximately 40% of the students made mistakes when creating formulae from 

statements involving ratios between two variables. The most quoted example of such 

statements was: There are six times as many students as professors. Taking 𝑆𝑆 and 𝑉𝑉 

to denote the number of students and professors respectively, many students 

converted this into 6𝑆𝑆 = 𝑉𝑉. Clement et al. (1981) identified two sources for this error. 

The first was what Paige and Simon (1966) referred to as syntactic translation, a literal, 

direct mapping of the words from English language to algebraic syntax. The second 

was what Clement et al. (1981, p. 288) referred to as the ‘the “static-comparison” 

method’, where students would correctly interpret the statement and draw something 

like that shown in Figure 3.1.2.1. The mistake would occur when the space between 

the 𝑆𝑆-circles and the 𝑉𝑉-circle is translated into an equals sign.  
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Figure 3.1.2.1 Static-Comparison  

 
 

Difficulties in transforming words to algebraic syntax (statements including letters) 
usually make students resort to an informal-algebraic approach. Consider the problem: 
When 4 is added to 3 times a certain number, the sum is 40. Kieran, Booker, Filloy, 
Vergnaud, and Wheeler (1990) reported that when students are left to their own 
devices, they would find it  simpler to find the unknown number by subtracting 4 from 
40 and dividing by 3. If they were asked to form an equation in 𝑥𝑥 (the unknown), 
students would first need to represent the relationships in the statement, rather than 
directly perform operations to find the answer. Mason (2008) argues that a formal-
algebraic approach may not seem viable for most students if all they require is to get a 
computational result for a one-off problem.  
 

3.2.4 Difficulties in Conceptualising Literal Symbols 

Kieran (2004) stated that a letter in an algebraic statement, or a literal symbol, may 
represent one of these concepts: 

 a variable, such as 𝑥𝑥 in 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐; 

 an unknown, such as 𝑥𝑥 in 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 = 0, 

 a parameter (or coefficient), such as 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 in the above examples. 

Building on Usiskin (1988) and Küchemann (1978), Philipp (1999) added four more 
categories:  

(iv) a label, such as 3𝑓𝑓 = 1𝑦𝑦 to denote “3 feet make 1 yard”, 

(v) a special constant, such as 𝜋𝜋 and 𝑒𝑒, 

(vi) a generalised number, such as 𝑎𝑎 and 𝑏𝑏 in 𝑎𝑎 + 𝑏𝑏 = 𝑏𝑏 + 𝑎𝑎, and  

(vii) an abstract algebra element, such as 𝑒𝑒 and 𝑥𝑥 in 𝑒𝑒 ∗ 𝑥𝑥 = 𝑥𝑥 
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Secondary students are expected to encounter and make use of (i) – (vi) and their 
interpretation of literal symbols may make or break their success in formal-algebraic 
activities. In a large-scale project with students in Grades 8 to 10, Küchemann (1981) 
identified six categories of students’ conceptualisations of literal symbols which he 
presented in a hierarchical conceptual order. 
 
Table 3.2.4.1 Küchemann’s hierarchy of students’ conceptualisations of letters 

 Interpretation Example  

1 Letter 
Evaluated 

Solve the equation 𝑎𝑎 + 5 = 8.  

• 𝑎𝑎 assigned random values – answer obtained by trial-and-error. 

2 Letter Not 
Used 

If 𝑎𝑎 + 𝑏𝑏 = 43, 𝑎𝑎 + 𝑏𝑏 + 2 =? 

• 𝑎𝑎 + 𝑏𝑏 ignored – answer obtained by matching. 

3 Letter as 
Object 

Blue pencils cost 5 pence each and red pencils cost 6 pence each. I buy some 
blue and some red pencils and altogether it costs me 90 pence. If 𝑏𝑏 is the 
number of blue pencils bought, and 𝑟𝑟 is the number of red pencils bought, what 
can you write about 𝑏𝑏 or 𝑟𝑟?  

• 𝑏𝑏 and 𝑟𝑟 seen as labels – typical incorrect response:  𝑏𝑏 + 𝑟𝑟 = 90. 

4 Letter as 
Specific 
Unknown 

What is the perimeter of a shape where there are 𝑛𝑛 sides altogether of length 
2?  

• 𝑛𝑛 is given a specific value – answer obtained by comparison. 

5 Letter as 
Generalised 
Number 

What can you say about 𝑐𝑐 if 𝑐𝑐 +  𝑑𝑑 =  10 and 𝑐𝑐 is less than 𝑑𝑑?  

Typical answer: “𝑐𝑐 can be 4, 3, 2, and 1.” 

6 Letter as 
Variable 

Which is greater 2𝑛𝑛 or 𝑛𝑛 + 2?  

• Typical answer: “Depends. If 𝑛𝑛 < 2 then 2𝑛𝑛 < 𝑛𝑛 + 2. If 𝑛𝑛 > 2 then 
2𝑛𝑛 > 𝑛𝑛 + 2.” 

 

The results of the Küchemann’s (1981) research led to a follow-up project by Booth 

(1984) who also investigated Grade 8-10 students’ interpretations of formal-algebraic 

expressions. Misconceptions of literal symbols were common to those revealed by 

Küchemann (1981). For example, a common conceptual error was that students 
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interpreted letters as labels. A 15-year old student said that 3 + 5𝑦𝑦 could mean ‘eight 

yachts’ (Booth, 1984, p. 28). Besides the interpretation of 𝑦𝑦 as an initial letter of a word, 

this statement shows problems in this student’s interpretation of the expression 

structure. Booth (1984) also reported that some students thought that different letters 

had to have different values. She also found out that 32% of the students did not make 

the connection between the expression 𝑚𝑚 + 𝑚𝑚 + 𝑚𝑚 and 3𝑚𝑚 and 49% did not recognise 

that the expression 4𝑚𝑚 meant 4 × 𝑚𝑚. In addition, 31% said that since 2 lots of 𝑥𝑥 is 

written as 2𝑥𝑥, then two lots of 7 may be written as 27. All errors identified by Booth 

(1984) could be linked to a notational misinterpretation. 

 

Items from Küchemann’s (1981) and Booth’s (1984) projects were reused in many 

other research studies (e.g., Coady & Pegg, 1993; Trigueros & Ursini, 1999, 2003; 

MacGregor & Stacey, 1997; Fujii, 2003; Hodgen et al., 2008). I will highlight two main 

findings of these studies. The first is the disquieting conclusion by Trigueros and Ursini 

(1999) that students did not seem to achieve better or fuller interpretation of literal 

symbols as they progress through algebra courses. The researchers take this to imply 

that ‘instead of promoting a deep understanding of variable and the development of 

intuitive algebraic ideas, current teaching practices seem to obstruct them’ (p. 280). 

The second is that one particular phenomenon stands out in all these studies: the 

importance that context plays in determining the role of literal symbols (Wagner, 1981, 

1983). This comes as no surprise, because context is crucial for the interpretation of 

experiences. Mercer (2000) says that words gain meaning from the ‘company they 

keep’ (p. 67). It seems that this statement can be extended to and must be stressed 

for the use of literal symbols in algebraic syntax.  

 

Given the difficulties learners encounter when interpreting and representing literal 

symbols, it would seem almost inevitable that some difficulties may be found in 

interpreting answers consisting of formal-algebraic expressions. This is discussed 

next. 
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3.2.5 Difficulties in Interpreting Answers 

Replicating Küchemann’s (1981) study in a large-scale survey with students in Grades 

7-9, Hodgen, Küchemann, Brown, and Coe (2008) asked the following question: 

If  𝑒𝑒 + 𝑓𝑓 = 8, then  𝑒𝑒 + 𝑓𝑓 + 𝑔𝑔 =? A student who had answered 8𝑔𝑔, gave the following 

reasoning for his answer: ‘8𝑔𝑔 just seems like an answer…but 8 + 𝑔𝑔, you still think, "Oh, 

what will it equal?" ’ (Hodgen et al., 2008, p.39). This student’s response seems to 

show difficulty of accepting lack of closure (Collis, 1974), i.e. accepting that formal-

algebraic answers may contain an operational symbol. Collis (1974) found that 

beginning algebra students viewed expressions such as 8 + 𝑔𝑔 or 𝑥𝑥 − 𝑦𝑦 as incomplete 

due to their refusal to hold unevaluated operations in suspension. Collis (1974, 1975) 

argued that success in algebra requires the perception of such expressions as 

mathematical objects in their own right.   

 

In their first encounters with formal-algebraic expressions, students often experience 

what Tall and Thomas (1991) call the expected answer obstacle. Kieran (1981a) 

argues that prior to their experience of literal symbols in algebra, learners become 

accustomed to obtaining a single numerical answer and this leads them to expect the 

same thing when working in formal-algebraic contexts. Booth (1984, p. 35) reported 

what a student, Wendy, told her interviewer when she discovered that 11 × 𝑦𝑦 was the 

expected response: ‘I thought you wanted the answer.’ Wendy experienced the name-

process dilemma (Davis, 1975) or, as it is sometimes referred to, the product-process 

dilemma (Sfard & Linchevski, 1994). She interpreted the symbol ×  in the expression 

11 × 𝑦𝑦  only in terms of a process to be performed, and by “answer” (or product) she 

probably intended a single term like 11.  

 

Students usually settle the process-product dilemma by conjoining the two terms being 

separated by the operator such as 8 + 𝑔𝑔 = 8𝑔𝑔 (Hodgen et al., 2008) or 2𝑎𝑎 + 5𝑏𝑏 = 7𝑎𝑎𝑏𝑏. 

Pimm (1987) reported that some teachers attempt to show that this is a mistake by 

referring to 2𝑎𝑎 + 5𝑏𝑏 as 2 apples and 5 bananas. It turns out teachers themselves are 

are making two mistakes here. Firstly, they are encouraging the notion of letters as 

labels (Küchemann, 1981; Booth, 1984, 1988) which leads to structural 
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misconceptions (Booth,1988). Secondly, as Pimm (1987) argued, students may be 

actually encouraged to simplify 2𝑎𝑎 + 5𝑏𝑏 as 7𝑎𝑎𝑏𝑏, by thinking of a fruit bowl having 2 

𝑎𝑎pples and 5 𝑏𝑏ananas as a fruit bowl having 7 fruits: 7 apples-and-bananas. Moreover, 

conjoining letters to denote addition is conventional in non-mathematical contexts (e.g. 

in chemical equations). It is, thus, no exaggeration when Sfard and Linchevski (1994, 

p. 212) claim that ‘the transition from purely operational to a dual process-object 

outlook is…likely to be a quantum leap’. 

 

In the next section, I discuss the issue of notation, including the importance for students 

to develop process-object notions of expressions and to extend their meanings of 

familiar operational and relational symbols. 

 

3.3  Notation as a Key Factor in Algebraic Activities 

The literature seems to reveal three factors which are detrimental to formal-algebraic 

thought and activities: 

 A weak basis of arithmetic (e.g., Gallardo & Rojano, 1987; Linchevski & 

Herscovics, 1996; Warren, 2003; Baroudi, 2006); 

 A reluctance or difficulty to express generality (e.g. Lee & Wheeler, 1987; Neria 

& Amit, 2004; Mason, 1996;  Cooper & Warren, 2008); 

 A non-conventional interpretation and representation of notation (e.g. Booth, 

1984; Kieran, 1981b; Kirshner, 1989; Borg, 1997; Van Amerom, 2003) 

 

Students’ manifestations of difficulties in algebra discussed in Sections 3.2.1–3.2.5  may 

be due to one of these issues. Furthermore, I argue that the interpretation and 

representation of notation is key in addressing these difficulties. What researchers report 

as problems in arithmetic or generality may be traced back to notation. For example, 

consider the arithmetic problem 3 + 7 = +  3 and the generality 𝑥𝑥 + 𝑦𝑦 = 𝑦𝑦 + 𝑥𝑥. To 

answer 3 + 7 = +  3, students need to know that the addition notation implies 
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commutativity and that the equality notation signifies sameness. To develop such 

informal-algebraic statements into the formal-algebraic generality 𝑥𝑥 + 𝑦𝑦 = 𝑦𝑦 + 𝑥𝑥, 

students need, then, to learn that generalised numbers (Philipp, 1999) may be 

represented by letters. 

 

Adopting this argument, I observe problems of notation to permeate most of the 

research reporting arithmetical problems. For example, Falkner, Levi, and Carpenter 

(1999) presented 6th graders with this problem:  8 + 4 = +  5. All students wrote 12 

or 17 in the box. Falkner et al. (1999) concluded that the students had a restricted 

meaning of the equals sign, that of a unidirectional symbol indicating an operation to 

be performed on the left with an answer to appear on the right as in 4 + 3 = . This 

problem is extensively documented in the literature (e.g., Behr, Erlwanger, & Nichols, 

1976; Kieran, 1981; Herscoviscs & Linchevski, 1994; Linchevski, 1995; McNeil et al., 

2006). This is actually a problem of notation since it stems from students’ limited 

interpretations of a mathematical symbol, i.e. the equals sign. Another example of such 

a problem was reported by Warren (2003). In a large-scale study, Warren asked 7th 

and 8th graders which of the signs +, −, ×, and ÷  could replace the symbol ♣ in 

statements such as 2♣3 = 3♣2. She found that some students considered subtraction 

and division symbols to denote a commutative relationship.  

 

Therefore, in order to progress from solely-arithmetic to informal-algebraic and formal-

algebraic thinking (Table 3.1.4.1), students need to develop concepts about notation, 

namely: 

 extend of the meaning of familiar “shape-symbols” (shapes, like ( ), which are 

not numbers, letters, or standalone operators like + or ×); 

 understand the properties of operational symbols, and 

 learn that an expression may represent both a process and an object. 

These are elaborated in the subsections that follow. 
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3.3.1 Extending the Meaning of Familiar “Shape-Symbols” 

Serfati (2005) distinguished between three features of mathematical symbols: the 

materiality, the syntax, and the meaning. In this subsection, I discuss three symbols 

whose materiality is a shape (hence “shape-symbols”) which need to take on a fuller, 

more extensive meaning for progress in informal- and formal-algebraic thinking: 

• the meaning of equality symbol or equals sign (ES), 

• the use of division line of a fraction, and 

• the use of brackets. 

 

Extended Meaning of the Equals Sign 

Studies about students’ notions of ES are well documented. In school mathematics, 
ES is used to denote eight types of relationships. These are shown in Table 3.3.1.1, 
where the first five were identified by Usiskin (1988) and the other three were added 
by Jones and Pratt (2012). 
 

Table 3.3.1.1 The several uses of the equals sign  

 Use of the Equals Sign Example 

1 Equation with one unknown 2𝑥𝑥 + 5 = 3𝑥𝑥 − 6 

2 Relationship between two variables 𝑦𝑦 = 2𝑥𝑥 + 3 

3 Identity 2(𝑥𝑥 + 4) = 2𝑥𝑥 + 8 

4 Formula 𝐴𝐴 = 𝐿𝐿𝑊𝑊 

5 Property 3 + 4 = 4 + 3 

6 Indicator of a computational result 2 + 3 = 5 

7 Function 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥 − 2 

8 Substitution 𝑘𝑘 = 2 
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Each of these applications of ES entails a spectrum of difficulty levels. For example, 

use (8), substitution, may involve: 

 substituting a given value for a letter in an equation or formula, 

 choosing values and substituting them systematically in an equation to solve 

one equation (trial-and-error), or   

 using a trial-and-error method as in (ii) to solve a system of equations such as 

that reported by Filloy, Rojano and Solares (2003) when studying secondary 

students’ solutions of simultaneous equations. 

 

Furthermore, each of the uses in Table 3.3.1.1 can take one or both of two meanings 

of ES: 

 “results in” or “makes” (an operational view) and 

 “has the same value as” or “is the same as” (a relational view). 

In order for students to progress through informal- and formal-algebraic reasoning they 

need to be able to extend the meaning of ES towards a relational view (ii) which is 

required for the formation of structure sense (Linchevski & Livneh, 2002) and for 

generational and transformational activities (Kieran, 1996) involving equality 

statements.  

 

The research literature suggests that the most common conception that primary students 

have of ES is that of an indicator of a computational result. Behr, Erlwanger, and Nichols 

(1976) found that students in Grades 1-6 viewed ES as a ‘do something signal’ (p. 10). 

Students got confused with equalities such as 3 = 3. When asked whether 3 = 3 made 

sense, one student replied, ‘Nope … you could fix that by going like this [changes 3 = 3 

to 0 + 3 = 3] 0 plus 3 equals 3.’ (Behr et al., 1976, p. 4). Like many others, to this student 

ES should have followed an operation and should have been followed by the result of 

that operation. When Falkner, Levi, and Carpenter (1999) asked a similar question 

about 8 = 8, a 1st grader said, ‘Well, yes, 8 equals 8, but you just shouldn’t write it that 

way.’ (p. 235). It seemed that while this student accept a verbal representation of the 
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relational meaning of ES, she rejected a notational representation of the same 

relational meaning.  

 

Similar findings were reported by Behr et al. (1976). While students accepted verbal 

representations like four plus five equals three plus six, they refused the validity of the 

notational representation: 4 + 5 = 3 + 6, arguing that in writing, the left of  ES must 

contain a problem and the right of ES must contain the answer. One student argued 

that, ‘if you went into writing you’d go like this [writes 4 + 5 = 9; 3 + 6 = 9]  (Behr et al., 

1976, p. 9). Such students would view the 3 + 6 on the right of ES as another problem: 

it presented a lack of closure (Collis, 1974) rather than the single number they were 

accustomed to write after writing ES.  

 

Similarly, Ginsburg (1977) found that, in statements like 3 + 5 = 8, primary students 

tended to interpret both + and = as operational symbols, the former as a signifier to 

add  the two numbers 3 and 5 and the latter as a signifier of what this addition makes. 

This led students to finding it difficult to interpret equalities such as 3 = 3. 

Furthermore, Ginsburg (1977) found that when he presented students with problems 

like: = 3 +  4, they said that it was written backwards. For students in Ginsburg’s 

study, ES should: 

• indicate that an answer is going to be written (operational view), and 

• be read from left to right (unidirectional view). 

 

Students' conception of ES as an indicator of an operation to be performed on its left 

and a single number to appear on its right has been widely reported (e.g., Kieran, 1979, 

1981b; Herscovics & Kieran, 1980; Erlwanger & Berlanger, 1983; Herscoviscs & 

Linchevski, 1994; Linchevski, 1995; Anenz-Ludlow & Walgamuth, 1998; Pillay et al., 

1998; McNeil et al., 2006). This should come to no surprise since the predominant use 

of ES in primary schools is exactly that of an indicator of a computational result.  

 

Given this restricted interpretation of ES, one may understand why some students may 

write “false” equality statements (Kieran, 1981b) like 3 + 4 = 7 + 2 = 9. Such students 
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see no errors in writing operations in the order in which they were being thought and 

in keeping a running-total, a common pattern observed in primary school children’s 

mathematics (Kieran, 1979). This pattern of reasoning and working was probably what 

caused students in Falkner, Levi, and Carpenter’s (1999) research to put a 12 in the 

box when presented with the equality statement: 8 + 4 = +  5. Given that arithmetic 

is only concerned with getting a correct answer (Hewitt, 1998) one might almost 

understand why some teachers fail to regard such statements as incorrect. In this way, 

‘misconceptions about equality can become more firmly entrenched’ (Falkner, Levi, & 

Carpenter, 1999, p. 233). Moreover, McNeil (2008) found that primary school teachers’ 

use of ES only for typical arithmetical problems may limit students’ meanings of ES to 

an operational view. Falkner et al. (1999) argue that given the limited use of ES in 

primary school, children are correct to think of the equals sign as a signal to compute.  

On the other hand, informal- and formal-algebraic activities are concerned with 

relationships (Scandura, 1971), and this points to the importance for students to 

develop relational views of ES. 

 

Nevertheless, it is still the convention to indicate the answer of a computation with ES 

and therefore, unsurprisingly, students usually retain the operational meaning even 

when they develop relational meanings of ES (McNeil, 2008; Rittle-Johnson et al., 

2011). Although late primary and early secondary students were found to exhibit 

operational views of ES which sometimes hinder their understanding of higher-order 

mathematics topics (Kieran, 1981b; Knuth et al., 2006; McNeil & Alibali, 2005b; McNeil 

et al., 2006), they were sometimes found to simultaneously exhibit relational ideas 

about equations in certain contexts (McNeil & Alibali, 2005a; McNeil et al., 2006) and 

perform well when solving problems involving equivalence (McNeil, 2007). Rittle-

Johnson et al. 2011, p. 97) argue that, ‘describing children as having an operational or 

relational view of equivalence is overly simplistic’. Rittle-Johnson et al. identified a 

continuum of knowledge progression from a rigid operational view of ES to a 

comparative relational view of ES. During this progression, students start developing 

relational meanings of ES while retaining an operational view, as reported by McNeil 

(2008). 
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Research has shown that teaching aimed at helping students to extend students’ 

conceptions of ES had the desired impact for average-performing students (McNeil & 

Alibali, 2005b; Rittle-Johnson & Alibali, 1999) and also for low-performing students 

(Powell & Fuchs, 2010). These studies were not aimed at teaching students that an 

operational view of ES is incorrect. What these studies suggest is, rather, that teaching 

can and should help students to extend or elaborate their concept of ES (Herscovics 

& Linchevski, 1994; Kieran, 2004) so that it incorporates the relational aspect.  

 
Extended Meaning of Brackets and Division Line of a Fraction  

The two other shape-symbols whose meanings need to be elaborated by students as 

they progress through informal- and formal-algebraic activities are the division line of 

a fraction and the brackets. Rubenstein (2008) stated that one of the major challenges 

that mathematical symbols present is that the same mathematical concept may be 

represented by more than one symbol. She said that algebraic activities require 

students to start denoting divisions like 12 ÷ 3 by 12
3

 and multiplications like 3 × 4 by 

3(4). Rubenstein (2008) said that besides having to learn new notation for familiar 

operations (such as division and multiplication), students are faced with the challenge 

of giving different meanings to the same shape-symbols. For example, 12
3

 may denote 

12 thirds and 12 divided by 3. Similarly, brackets may denote a multiplication, e.g. 3(4), 

and a means to specify the order of operations, e.g. 12 − (5 + 3). In addition, a notation 

like (3, 4) may signify a point, an open interval between 3 and 4, and the vector 

3𝐢𝐢 + 4𝐣𝐣. 

 

Anghileri (1995) pointed out that most students are accustomed to seeing a 

computation such as 12 ÷ 3 denoted by 3)12����� which they sometimes read as 3 “divided 

into” 12. Unsurprisingly, as Hewitt (2009) pointed out, students are confused in their 

first encounters with the new notation of division. Students who were familiar with the 

notion of 12
3

 as being a mathematical object, a fraction, need to accommodate an 

extension of its meaning to include 12 ÷ 3 or 3)12����� which to them is a process. As I 



Chapter 3 Literature Review Part 2: The Nature and Learning of Algebra 
 

87 

presently discuss, it is crucial for students to learn that an expression like 12
3

 is indeed 

both a process and an object (e.g. Gray & Tall, 1994).  

 

Similar confusions arise when students first encounter concatenations such as 5𝑛𝑛. 

Herscovics and Linchevski (1994) showed that when asked to use the substitution 

𝑛𝑛 = 2 in 5𝑛𝑛 students write 52 rather than 5(2) or 5 × 2. Moreover, due to their rejection 

of lack of closure (Collis, 1974) students may want to “simplify” something like 5 + 𝑛𝑛 

as 5𝑛𝑛 (Hewitt, 2012). In primary school, students learn that a mixed number like 53
4 

means 5 + 3
4. It probably causes a disequilibrium (Piaget, 1975) in their notational 

schema when they learn that 5�3
4� means 5 × 3

4 and not 53
4. 

 

This extension of meaning for the brackets notation may be a further complication for 

some students who already have issues with the use of brackets. Kieran (1979) found 

that children typically do not use the brackets because they think that the written 

sequence of operations is what determines the order in which the computations should 

performed. This was corroborated by Booth (1984) who found that 88% of the students 

in her study failed to appreciate the need for brackets and so carried out the operations 

in the order they were written.  

 

Primary school teachers usually address the issue of order of operations by 

teaching mnemonics like BIDMAS5 (e.g., Headlam & Graham, 2009). Thus, before 

starting to learn that brackets may signify multiplication, students may have become 

accustomed to see the brackets as a prompt to work out what lies within them. This 

may be one of the causes of their difficulty in accepting the lack of closure (Collis, 

1974) of expressions such as  6(𝑛𝑛 + 2). Further on, when solving equations like 

5(𝑥𝑥 + 2) + 4(2 − 𝑥𝑥) = 7 students are taught to expand the brackets before proceeding 

with the transposition of the equation. This technique may lead to complications in 

problems where expanding the brackets is counterproductive, such as bringing 𝑟𝑟 the 

                                            
5 Brackets first, then Index, Division and Multiplication, Addition and Subtraction 
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subject of the formula in 𝑛𝑛 = (𝑚𝑚𝑐𝑐 − 𝑟𝑟)2 (Borg, 1997). While striving to help students to 

develop meaningful notions of notation, teachers need to be careful not to lead 

students to think that a technique that is viable in one context will necessarily work in 

another. 

 

Extending concepts of familiar shape-symbols like ES, brackets, and division line is 

necessary but not sufficient for informal- and formal-algebraic activities. Students also 

need to develop concepts about the properties of operational symbols which are 

usually used in conjunction with such shape-symbols in expressions. This is discussed 

next. 

 

3.3.2 Understanding the Properties of Operational Notation 

Difficulties in informal- and formal-algebraic thinking and activities have been found to 

stem from limitations in students’ knowledge about properties of operational notation. 

Some of these limitations manifest themselves in mistakes or inefficient solutions when 

solving problems. 

 

Mistakes Involving Operational Notation Properties 

I have already mentioned Warren’s (2003) study which revealed that some Grade 7 

and 8 students thought of subtraction and division as commutative. This finding is not 

uncommon especially for younger students (e.g. Carpenter and Levi, 2000). However, 

what may seem as students’ overgeneralisation of the commutativity property may be 

caused by other factors. Booth (1988) reported that some students used 3 ÷ 12 and 

12 ÷ 3 interchangeably. Although this may have been due to students’ thinking that 

division is commutative, Booth pointed out that this mistake could have originated from 

students’ experiences of division where the larger number was always divided by the 

smaller. Another reason could be that some students read divisions like 3)12����� as “3 

divided by 12” and give the (correct) answer of 4. Left untackled, such verbal 

representations may be translated into expressions like 3 ÷ 12, which may, in turn, be 

interpreted as 12 ÷ 3.  
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Other problems which have been associated with students’ applying the 

commutative property to subtraction were identified by Chaiklin and Lesgold (1984) 

in their study with Grade 6 students. Students were asked to decide whether 

expressions with three numbers were equivalent and made mistakes such as 

thinking that  597 − 648 + 873 = 648 + 873 − 597. Besides thinking that subtraction 

was commutative, these students may have been confused when transposing 

operators along with numbers. Similarly Herscovics and Linchevski (1994) found that 

half of the 7th graders in their study failed to solve the equation 4 + 𝑛𝑛 − 2 + 5 = 11 +

3 − 5, where one common mistake was to group the numbers on the left as 4 + 𝑛𝑛 − 7. 

Herscovics and Linchevski hypothesised that this may have been due to students’ 

failure to use commutativity of 4 + 𝑛𝑛 to obtain (𝑛𝑛 + 4) − 2 + 5 and then associativity to 

obtain 𝑛𝑛 + (4 − 2) + 5. However, this may also have been caused by students’ 

inexperience of negative numbers and the first operator in −2 + 5 did not make sense 

to them and so their unary parsing was compromised. Another possible cause could 

have been that these students had a tendency to group numbers in a calculation 

without resorting to brackets (as reported by Kieran, 1979; Booth, 1984) and thus 

interpreted −2 + 5 as if they were −(2 + 5). Such mistakes in transformational 

activities may sometimes be caused by failing to apply inverse properties correctly. 

Gallardo and Rojano (1987) found that when solving equations like 𝑥𝑥 + 1568 = 392 

and 13𝑥𝑥 = 39 secondary students subtracted 392  from  1568  and divided 13 by 39 

respectively.  

 
Limitations of Application of Operational Notation Properties 

Students’ inexperience in the use of operational notation properties does not always 

translate itself into mistakes. Sometimes it leads to limitations when engaging in 

informal- and formal-algebraic activities. Stacey and MacGregor (1997) found that 

while students were confident in using commutativity, associativity, and inverse 

properties in small whole numbers, they were unsure whether such properties applied 

to unfamiliar numbers. I argue that if students confirm that 3 × 5 = 5 × 3 but are unsure 

about 3.7 × 4.6 = 4.6 × 3.7, they may be engaged in solely-arithmetic thinking, i.e. 

recalling the answer of each side of the first equation to verify equivalence. In the 
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second equation, it would be difficult for them to compute each side, hence the 

uncertainty. Unless students moved beyond such thinking and progressed to informal-

algebraic thinking, their concept of commutativity may not have been developed. 

Likewise, Chaiklin and Lesgold (1984) reported that some students could not decide 

about the validity of statements like 685 − 492 + 947 = 947 − 492 + 685 without 

computing each side.  

 

Similar limitations were found with regards to other properties of operational notation, 

such as associativity, distributivity, and inverse. In the Stacey and MacGregor (1997) 

study, one student stated that she knew that division can be “undone” by multiplication 

and knew that 18 ÷ 3 × 3 = 18, but she was unsure whether the same applied for 16. 

She argued that 16 ÷ 3 = 5𝑟𝑟1 and she did not think that 5𝑟𝑟1 × 3 = 16. Again this 

seems to imply that this student was resorting to computing operations in order, rather 

than using the multiplicative inverse property.  

 

Another type of limitation was that reported by Norton and Cooper (1999), where the 

vast majority of Grade 9-10 students could not work out expressions like 36+24
6

 and 

5 × (6 + 7) when they were not allowed to compute the addition first. The researchers 

concluded that students did not seem to be aware that multiplication and division were 

distributive over addition. However, it may have been that students felt that it was 

unacceptable not to follow the BIDMAS rule, especially in the second expression. 

Norton and Cooper’s claim about students’ limitations due to associativity is more 

convincing. Only a quarter of the students knew how to evaluate ∎+(▲+7) given that 

∎+▲= 11.  

 

The role that unfamiliar examples play in such investigations is crucial. In fact, what 

might be reported as a limitation may be more of a hesitation due to unusual questions 

or numbers. Carpenter and Levi (2000) found that while 1st graders were confident in 

switching numbers in an addition to start counting from the largest, they failed to do so 

when given very large numbers. Although this may have been due to a limited 

development of the commutativity concept, it may also have been a matter of students 

not being inclined to try out their technique with strange numbers. 
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Teaching Aimed at Tackling Operational Notation Issues 

There are two conclusions I draw from studies about operational notation. The first is 

that teaching aimed at tackling operational notation issues such as the ones reviewed 

above are bound to make a difference in students’ interpretations of notation. Pillay, 

Wilss, and Boulton-Lewis (1998) found that while Grade 7-8 students had limited 

understanding of commutativity and distributivity, Grade 9 students showed 

competence in these concepts when solving linear equations. Pillay et al. (1998) 

suggest that it may have been the very introduction to algebra (formal-algebraic 

activities) which helped students to develop these concepts. Such activities shift 

students’ attention from products to processes (Hewitt, 1998), something Dreyfus 

(2002) insists is required for advanced mathematical thinking. After all, as Bruner 

(1966) argues, knowing is a process not a product. 

 

The second conclusion is that teachers need to be careful observers of their students’ 

representations if they want to form experiential models (Steffe et al. 1983; Glasersfeld, 

1991b) of their students’ conceptual constructions. They should ask students to read 

mathematical statements and listen attentively to their verbal representations. As 

Usiskin (1996, p. 236) says, ‘if a student does not know how to read mathematics out 

loud, it is difficult to register the mathematics’. Teachers need to discuss with students 

why 3)12����� should not be read as “3 divided by 12”.  

 

When reading students’ work, teachers should not just be after “correct” answers but 

should strive to be the agents for the product-to-process shift (Hewitt, 1998). They 

should give weight to seemingly minor mistakes like: 

• keeping a running total (e.g. Kilpatrick et al., 2001; Vergnaud et al., 1979; 

Kieran, 1979) like 7 + 3 = 10 + 2 = 12 and 

• interpreting verbal representations incorrectly (e.g. Subramaniam & Banjeree, 

2004) like writing 7 − 𝑥𝑥 for “seven less than 𝑥𝑥” . 

As Glasersfeld (1991b, p. 178) maintains, ‘for constructivist teachers, successful 

thinking is far more important than "correct" answers’.  
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So far, I have discussed two important ways in which students can develop higher-

order concepts of notation: 

 extending meanings of familiar “shape-symbols”, and 

 understanding the properties of operational notation. 

 

The third issue is the one which, in my experience as a teacher, is quite difficult to 

address. This is discussed below. 

 

3.3.3 Proceptual View of Expressions 

I have previously discussed how students’ errors in their interpretation of algebraic 

answers (or expressions) may stem from their refusal to accept lack of closure (Collis, 

1974). I have shown how students get confused when faced with the name-process 

(Davis, 1975) or product-process (Sfard & Linchevski, 1994) dilemma and they usually 

interpret expressions like  𝑥𝑥 + 2  as a process (Kieran, 1979). Studies have repeatedly 

shown that in order to engage in algebraic activities students need to be able to 

interpret mathematical expressions both as a process and as an object. 

 

The Process-Object Dilemma 

Piaget (1975/1985, p. 49) says that one important aspect of knowledge construction 

occurs when ‘actions or operations become thematized objects of thought or 

assimilation’. When explaining how mathematical schemas are formed, Piaget and 

García (1989, p. 105) explain that ‘after a process…the particular notion used becomes 

an object of reflection, which then constitutes itself as a fundamental concept’. Building 

on Piaget’s theories, Dienes (1971) uses grammatical terms to explain how 

mathematical processes become objects of other processes, saying that the object of 

a predicate becomes the subject of another predicate. Davis (1975) builds on Diene’s 

(1971) work and identifies what he called the name-process dilemma faced by students 

when interpreting expressions. Davis (1984, p. 29) explains that ‘the procedure itself 

becomes an entity - it becomes a thing. It, itself, is an input or object of scrutiny.’ 



Chapter 3 Literature Review Part 2: The Nature and Learning of Algebra 
 

93 

The conceptual reconstruction of an expression resulting from a process into a 

mathematical entity is well documented in the literature, where different authors use 

different metaphors to describe the process-object unification. The encapsulation 

(Dubinsky, Elterman, & Gong, 1988; Ayers, Davis, Dubinsky, & Lewin, 1988; Dubinsky, 

1991), reification (Sfard, 1989, 1991, 1992, 1995; Sfard & Linchevski, 1994), 

integration operation (Steffe & Cobb, 1988), or entitication (Harel & Kaput, 1991) of a 

process into a conceptual entity (Greeno, 1983) enables students to conceptualise a 

string of mathematical symbols as both a process and a mathematical concept, or what 

Gray and Tall (1991, 1994) called a procept.  

 

Gray and Tall’s “Procept” 

Most relevant for my study, is the work of Gray and Tall (Gray & Tall, 1991, 1993, 1994, 

2001; Gray, 1991; Gray, Pitta, & Tall, 2000; Tall, Thomas, et al. 2000; Tall, Gray, et al., 

2001; Tall, 1991, 1994, 1995; Tall & Thomas, 1991) because they are the only ones 

who regard notation to be key in avoiding having to decide between process and 

object: 

It is through using the notation to represent either process or product, whichever is 
convenient at the time, that the mathematician manages to encompass both – neatly 
sidestepping the problem.  

(Gray & Tall, 1991, p. 73) 

 

Gray and Tall (1991, p.73) give several examples where students can take a 

proceptual view of notation, i.e. interpreting an expression as a process and an object 

(or concept), such as: 

• The process of counting all or counting on and the concept of addition (𝟓𝟓 + 𝟒𝟒 

evokes both the counting on process and its sum, 9); 

• The process of division of whole numbers and the concept of fraction (e.g. 𝟑𝟑/𝟒𝟒); 

• The process of adding 2 to 3𝑥𝑥 and the concept of the resulting sum evoked by 

the expression 𝟑𝟑𝟑𝟑 + 𝟐𝟐. 
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Using data from Gray’s (1991) study with students of aged 7 to 12, Gray and Tall (1994) 
showed that one characteristic which made some students able to progress through 
higher-order problems was their development of a proceptual view of expressions. This 
confirms the categories of thinking and activities I posited in Section 3.1.4, using the 
matchsticks-array problem (Hewitt, 1998). Solely-arithmetic thinkers use only counting 
to find the number of matchsticks and the task becomes more complicated as the array 
gets larger. Informal-algebraic thinkers manage to encapsulate (Ayers et al., 1988) 
repeated counting as multiplication. For them, 5 × 101 and 6 × 100 are respectively 
the reification (Sfard & Linchevski, 1994) of the process of adding 5 for 101 times and 

adding 6 for 100 times. However, informal-algebraic reasoning does not cater for the 
entitication (Harel & Kaput, 1991) of the sum of these two products a process into a 
single conceptual entity (Greeno, 1983). Formal-algebraic thinkers collapse the 
algorithm for finding the number of matchsticks into one entity, i.e. the 
expression  5(𝑟𝑟 + 1) + 6 or 11𝑟𝑟 + 5, an expression which they interpret proceptually:  

 the process of multiplying 11 by the number of rows and adding 5, and  
 the concept of the number of matchsticks in an array of 𝑟𝑟 rows. 

 

It seems that progress from solely-arithmetic to informal- and formal-algebraic thinking 

is possible by developing a proceptual view of notation and becoming flexible in 

proceptual reasoning. Gray and Tall (1994) argue that: 

The existence of flexible proceptual knowledge means not only that the number 5 
can be seen as 3 + 2 or 2 + 3 but that if 3 and something makes 5, then the 
something must be 2. In proceptual thinking, addition and subtraction are so closely 
linked that subtraction is simply a flexible reorganization of addition facts. 

(Gray & Tall, 1994, p. 125) 
 

This implies that a well-developed proceptual view may require students to 
acknowledge properties of operational notation, the absence of which may cause 
difficulties in algebraic thinking, such as commutativity of addition (e.g., Chaiklin & 
Lesgold, 1984; MacGregor, 1996; Warren, 2003) and additive inverse (e.g., Gallardo 
& Rojano, 1987; Herscovics & Linchevski, 1994). Furthermore, a proceptual 
interpretation of expressions is required for successful generational and 
transformational (Kieran, 1996) algebraic activities.
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Extending the meaning of familiar shape-symbols, learning about the properties of 

operational notation, and obtaining a proceptual view of expressions are as challenging 

for students as they are crucial for the learning of algebra. Davis (1975, p. 29) says 

that ‘many major cognitive adjustment are required…(to) start seeing the equal sign in 

new ways, and even seeing 3
𝑥𝑥
 as an “answer” instead of a problem’. In the next section, 

I discuss a possible way forward in helping students to make such cognitive 

adjustments so that they can develop algebraic thinking skills and be successful in 

algebraic activities. 

 

3.4 A Way Forward: Use of Computers for Algebraic 
Thinking 

One of Kaput’s long-term commitments to make mathematics accessible to all children 

was to promote the dissemination of algebra throughout the K-12 curriculum. In his last 

published work, Kaput (2008, p. 6) speaks about ‘the highly dysfunctional result of the 

computational approach to school arithmetic and an accompanying isolated and 

superficial approach to algebra’. Several researchers support this contention, not least 

of which is Carraher who, together with his colleagues, argues for the inclusion of 

formal-algebraic activities in primary curricula (Carraher, Schliemann, & Brizuela, 

2000, 2001, 2006; Carraher, Schliemann, Brizuela, & Earnest, 2006; Carraher, 

Brizuela, & Earnest, 2001; Carraher, Schliemann, & Schwartz, 2008). In Malta, like in 

many other curricula, formal-algebraic activities only start at Grade 7 (DLAP Syllabus, 

2014a). Nevertheless, Maltese primary mathematics teachers can still pay heed to 

Kaput’s (2008) criticism by engaging students in informal-algebraic activities where 

they emphasise processes rather than products (Dreyfus, 2002)  This was suggested 

by National Council of Teachers of Mathematics (NCTM, 1998, 2000) and found to be 

both possible and effective (e.g. Falkner et al., 1999; Carpenter & Levi, 2000; Hunter, 

2015). Grade 7 teachers need to ensure that their students have had the opportunity 

to engage in such activities before they introduce formal algebra. Further discussion of 

such informal-algebraic activities is included below.  
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3.4.1 Preparation for Formal-Algebraic Activities 

Bell (1996) argues that a good preparation for formal-algebraic activities requires 

students to have been given the opportunity to become fluent in handling notation. Along 

the same lines, Boulton-Lewis et al. (1998) stress that students need to be given the 

opportunity to develop concepts about several aspects required for formal-algebraic 

activities including properties of operations and notion of the equals sign (ES). 

 

Several researchers suggest that such preparation could be achieved through the kind 

of arithmetic which does not just focus on answers but on strategies and concepts 

involved in the process of getting those answers, in other words, informal-algebaic 

reasoning and activities. Livneh and Linchevski (2007) refer to ‘arithmetic for algebraic 

purposes’ (p. 217) and activities that are ‘algebra compatible’ (p. 219), such as those 

where students focus on the order of operations, use of brackets, and interpretation of 

ES. The authors reported that students were able to transfer informal-algebraic 

structural knowledge to formal-algebraic contexts. 

 

Such informal-algebraic activities were suggested by Fujii and Stephens (2001) who 

devised a set of mathematical statements with numerical expressions which remain 

true whatever numbers were used. For instance, a series of equations like 

78 − 49 + 49 = 78 were meant to help students to develop concepts about additive 

inverse. Such informal-algebraic statements would later lead to a the formal-algebraic 

generality 𝑎𝑎 − 𝑏𝑏 + 𝑏𝑏 = 𝑎𝑎. A study by Swafford and Langrall (2000) with Grade 6 

students revealed the possibility of helping students to start making number 

generalisations by writing informal equations to represent problem situations. Swafford 

and Langrall demonstrated that students were able obtain a proceptual view of 

expressions (Gray & Tall, 1994). Similar recommendations were made by Pillay et al. 

(1998) who claimed that misconceptions they found in arithmetical knowledge (cited in 

Section 3.3.2) pointed to the need to help students to develop concepts about 

commutativity, distributivity, and the relational aspect of the equals sign.  
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Such concepts are bound to be limited if students are not taught how to appreciate 

processes and relationships rather than products and answers. My experience with 

beginning Grade 7 students taught me that most students come with preconceived 

notions that mathematics is all about finding answers, with little or no regard to the 

methods applied to obtain those answers. This comes as no surprise, given that the 

Maltese primary mathematics curriculum (DCM, 2014) assumes a computational slant. 

As Balacheff (1986) warned, a curriculum which emphasises computation rather than 

argumentation is bound to instil this kind of attitude in students because their main goal 

is to achieve an answer rather than to construct mathematical knowledge for 

themselves. Consequently, in mathematics curricula like ours, Grade 7 teachers need 

to make sure that students appreciate notions like the ones discussed earlier before 

introducing formal-algebraic tasks. In the following section, I will present information 

and communications technology (ICT) as one possible way forward to help students to 

appreciate mathematical relationships in order to make the journey to informal- and 

formal-algebraic reasoning. 

 

3.4.2 Use of Computers in Mathematics Teaching and Learning 

Educational organisations, policy makers, and curriculum developers have been 

reiterating the benefits of using ICT for mathematics teaching and learning (e.g. NCTM, 

2000; DfES, 2004). In Malta, the integration of ICT in the teaching and learning of 

mathematics has been taken very seriously. In the late 1990s, specific use of ICT was 

put in requisition in the secondary level mathematics curriculum leading to the 

Secondary Education Certificate (SEC) public examinations. Mathematics teachers 

were required to use spreadsheets, dynamic geometry software, computer algebra 

systems, and Logo. These requirements, which are still valid today (SEC Mathematics 

Syllabus, 2017), were introduced almost concurrently with governmental policies 

aimed to disseminate the use of ICT in schools. Policies in favour of embedding ICT in 

teaching and learning were being adopted internationally towards the turn of the 

century (e.g., Kankaanranta & Kangassalo, 2003; Fung & Pun, 2001; Bucky, 2000; 

Sakamoto, 2003; Oldknow, 2006). In most European countries, core subject teachers 

were and still are continuously encouraged, through central level recommendations, to 
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apply a variety of ICT hardware and software in their lessons (EACEA/Eurydice, 2011). 

Such recommendations and suggestions were, at least in part, spurred by studies 

which suggested that ICT can bring about a positive change in the way school subjects 

are taught and learnt. 

 

Benefits of ICT Applications in Mathematics Education 

Benefits of computer software applications for mathematics teaching and learning are 

widely documented. One of the most reported claims is that ICT applications in 

mathematics lessons help students to understand and perform better. In particular, 

academic benefits were reported in all four types of computer software that have been 

included in the Maltese mathematics secondary education curriculum: 

(i) Spreadsheets were found to help students to deeply explore mathematical 

concepts, construct multiple representations of a concept, and strive for 

generality (e.g., Healy & Sutherland, 1990; Rojano, 1996; Sutherland & 

Balacheff, 1999; Filloy, Rojano, & Rubio, 2000; Dugdale, 2001; Friedlander & 

Tabach, 2001; Hershkowitz, et al., 2002; Ainley, Bills, & Wilson, 2004). 

(ii) Logo (discussed in Section 3.4.3) was found to help students to develop more 

analytic thinking skills, learn about geometric properties, generalise, learn about 

variables, predict and test mathematical theories (e.g., Hillel & Samurcay, 1985; 

Lehrer & Smith, 1986a, 1986b; Watson, 1993; Clements & Battista, 1997; 

Clements and Sarama, 1997; Vincent, 2001). 

(iii) Dynamic geometry software was found to benefit students in learning 

geometric concepts, link dynamic visual representations of standard shapes, 

construct rigorous Euclidean proofs, and appreciate the dynamic nature of 

changing variables short of doing a field test (e.g., Vonder Embse & Yoder, 

1999; Gerretson, 2004; Forsythe, 2007; Patsiomitou, 2008; Myers, 2009). 

(iv) Computer algebra systems were found to give students the opportunity for 

systematic exploration, prompting rich algebraic discussions (e.g., Shoaf-

Grubbs,1995; Penglase & Arnold, 1996; Drijvers, 2001, 2003; Pierce, Ball, & 

Stacey; 2008; Cedillo & Kieran, 2003; Meagher; 2012). 
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Apart from such academic gains, students have been reported to describe learning 

mathematics with ICT as an enjoyable experience (Judah, 1999; Ramsay, 2001; 

Scher, 2002; Lugalia, 2015). Mumtaz (2001) urged teachers to observe how children 

enjoy playing computer games at home and to find ways how to use computers to 

make learning resemble playing in a way as to ‘enable children to work on activities 

they find valuable, motivational and worthwhile’ (p. 347, my emphasis). Heath (2002) 

and Scher (2002) claimed that teaching mathematics with ICT has benefits for the 

learners which they cannot gain with traditional teaching approaches.  

 

These educational benefits are neither automatic nor unconditional. Kaput (1992) 

elucidates four major principles that teachers and educational leaders need to follow if 

the use of ICT in mathematics education is to be beneficial. These are elaborated 

further by Hoyles and Noss (2007): 

 

(i) Attend to representational infrastructure. Educators must seek to find ways how 

ICT can represent mathematical ideas and help students who do not seem to 

deal adequately with conventional representational systems. 

(ii) Work for infrastructural change. The infrastructure of mathematical curricula 

needs to be changed, otherwise teachers would simply treat ICT as an ill-fitted 

add-on to the content they are required to teach (Borg, 2009). Computer 

software itself needs to be adapted to the needs and goals of mathematics 

educators and learners (Hoyles & Noss, 2003). 

(iii) Outsource processing to the computer but attend to the implications. 

Mathematics educators should outsource processing to ICT but reveal layers 

(Hoyles & Noss, 2007) of calculation algorithms to help students to understand 

the mathematical theories behind those procedures. 

(iv) Exploit connectivity to encourage sharing and discussion. ICT contributes to the 

emergence of a cultural infrastructure (Hoyles & Noss, 2007), one where 

students, teachers, and researchers share mathematical information and learn 

from each other. 
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Kaput’s (1992) principles imply that ICT needs to be seen as a tool to bring reform and 

innovation in both teaching approaches and learning experiences (Kirschner & 

Wopereis, 2003), rather than to dress old teaching methods in new clothing. If ICT 

does not bring a positive change in the way students learn, it is bound to be regarded 

as expendable (Sutherland, 2005) and its use is likely to wane, especially when 

curricular and time constraints make it difficult for teachers to use ICT in their lessons 

(Borg, 2011). One of the main proponents of educational reform through ICT was 

Papert, whose ideas and work is discussed below. 

 

3.4.3  Papert, Logo, and Other Microworlds for the Learning of 
Algebra 

Together with colleagues and students at the MIT Artificial Intelligence Laboratory, 

Papert developed Logo in 1967. Logo is a programming language best known for its 

turtle graphics feature which was added by Papert in the later stages of its 

development. This allows users to create their own drawings on the computer screen 

by writing a series of commands. Papert (1993a)6 explains how Logo can be used by 

students to learn mathematics, ‘for example the mathematics of space and movement 

and repetitive patterns of action’ (p. 54). He envisaged Logo as a model how children 

can learn through what he refers to as constructionist pedagogy. Papert and Harel 

(1991) explain how constructionism adds to constructivism the idea that students learn 

best when they create ‘a public entity, whether it’s a sand castle on the beach or a 

theory of the universe’ (p.1). According to Ackermann (2001), while Piaget’s 

developmental theory tends to overlook the role of context and individual learning 

needs, Papert’s constructionism lays particular emphasis on learning conditions and 

circumstances. Papert’s pedagogy also gives more importance to learning by doing. It 

is therefore ‘both more situated and more pragmatic than Piaget’s constructivism’ 

(Ackermann, 2001, p. 89, original emphasis).  

 

                                            
6 Originally published in 1980. 
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Almost idealistically, Papert (1993a, p. 182) depicts lessons with Logo as ‘alternatives to 

traditional classrooms and traditional instruction’. For him, Logo is not a mere substitute 

for conventional teaching but a model of an alternative teaching style, one which allows 

students to learn by doing, by creating projects which make sense to them and which 

they enjoy. For Papert, rigid linear school curricula do not really reflect children’s learning 

preferences and patterns. Rather, he argues, learning takes place when learners 

perform trials, errors, and improvements, a process he calls “debugging”, which is the 

rule of the day when working with computer environments like Logo.  

 

Like Dewey (1907), Papert (1993b) felt that the radical change he was expecting in 

education did not seem to be happening. Papert (1993b, p. 2) lamented: ‘Why, through 

a period when so much human activity has been revolutionized, have we not seen 

comparable change in the way we help our children learn?’ There is a striking affinity 

between this statement and Dewey’s (1907, p. 22) disillusionment about the lack of a 

radical change in educational practices following the industrial revolution, when he 

exclaimed: ‘That this revolution should not affect education in other than formal and 

superficial fashion is inconceivable.’ The onset of Papert’s (1993a) ICT revolution 

never occurred in schools. This was probably due to a stagnation in the educational 

infrastructure (Kaput, 1992; Hoyles & Noss, 2007), as Papert (1998) himself 

suggested. Nevertheless, there are research reports attesting to the educational 

benefits of Logo which started to regain popularity in the mid-nineties. 

 

Teaching and Learning with Logo 

Logo was first introduced in schools in the early eighties. Major projects like the Logo 

Maths Project in the UK (Sutherland, 1989) explored Logo’s potential to help children 

in their constructions of mathematical concepts, namely the concepts of space and 

variable. The benefits of Logo for teaching and learning geometrical concepts are 

widely reported (e.g., Hoyles & Noss, 1988; Hoyles, Healy, & Sutherland, 1991; 

Battista & Clements, 1988, 1991; Yusuf, 1994; Lehrer, Randle, & Sancilio, 1989; 

Clements & Battista, 1989,1990, 1997; Lehrer & Smith, 1986a, 1986b; Watson, 1993).  
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Nevertheless, Logo was also found to be beneficial for the development of algebraic 

reasoning. Some studies attest to the power of Logo to enhance informal-algebraic 

thinking. For example, Hoyles and Noss (1989) reported that students developed 

additive strategies when using Logo commands. Logo was also found useful to 

introduce students to formal-algebraic activities. Clements and Sarama (1997) argued 

that the use of Logo immerses students in the use of two notions that according to 

Noss (1986) are crucial in the algebraic domain: variables and functions. Students write 

commands involving arbitrary (Hewitt, 1999) symbolic representations and watch the 

screen turtle move according to those commands.  

 

Research studies such as those of Hillel and Samurcay (1985), and Sutherland (1989) 

showed that Logo tasks together with a series of lessons which emphasise links 

between Logo and algebra can lead students to develop, formalise, and generalise the 

concept of variable. In fact, Clements and Sarama (1997) suggested that Logo can be 

used to provide students with an “entry” to the use of the powerful tool of algebraic 

thinking. This contradicted findings of some studies (e.g., Johnson, 1986) claiming to 

have observed no significant differences between Logo and control groups.  

 

Moreover, most of the students in Sutherland’s (1989) study were also able to transfer 

knowledge about the concept of variable to pen-and-paper (algebraic) contexts. Again 

this contradicted findings by other researchers (e.g., Gurtner, 1992; Kurland, Pea, 

Clement, & Mawby, 1986), claiming that students did not transfer knowledge from a 

Logo environment to pen-and-paper problems. As Vincent (2001) argues, such failure 

may be due to a lack of teacher guidance for students to make explicit connections 

between Logo variables and those used in pen-and-paper algebra. Clements and 

Meredith (1993) stress that exposure to Logo without teacher guidance often yields 

little learning. This is partly due to the fact that the connections between Logo 

programming and traditional pen-and-paper problems are not as explicit as they are in 

other microworlds such as the ones discussed below. 



Chapter 3 Literature Review Part 2: The Nature and Learning of Algebra 
 

103 

Microworlds 

“Microworlds” are those ‘small, interactive, and programmable models of real world 

environments’ (Ennis-Cole, 2004, p. 55). Besides the Logo turtle graphics, there are 

several microworlds available for classroom use and I am going to review some of the 

more significant research studies which attest to the application of microworlds for the 

teaching and learning of algebra. 

 

One such microworld is MathWorlds, which offers students the possibility to work with 

multiple representations of moving objects. Doerr (2001) studied the way 15-17 year 

olds used MathWorlds to study functions. The students generated conjectures, 

provided explanatory arguments, and made symbolic representations of observable 

phenomena. Grade 7-9 students working with the Java version, Simcalc MathWorlds 

(Hegedus & Kaput 2003) were reported to have made statistically significant pre- and 

post-test gains on standard test items. Interestingly, the Grade 9 students who were 

low-performing, “at-risk” students made the highest gain with the help of the software. 

The researchers believed that MathWorlds had contributed to helping students better 

understand fundamental algebraic ideas by forming realistic identity-relationships with 

the mathematical objects they constructed in the microworld. 

 

A significant amount of research evidence about the use of microworlds for the 

teaching and learning of algebra was provided by Noss and his colleagues. One such 

microworld was Mathsticks, a computer environment in which students assemble 

different objects made of matchstick patterns. The designers of the software, Noss, 

Healy, and Hoyles (1997), showed how Mathsticks helped secondary students engage 

in informal-algebraic activities where they described generalisations of how the number 

of matchsticks could be calculated. Hoyles, Noss, and Adamson (2002) similarly 

showed how Mathsticks could be used to help students to appreciate number patterns 

as functional relationships and formulate algebraic structures. 

 

A longitudinal research programme in the UK, called the MiGen project, set out to 

design and evaluate a pedagogical and technical system to help students to develop 

a propensity to strive for algebraic generalisation. Mavrikis, Noss, Hoyles, and 
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Geraniou (2012) reported the results of the first three years of this project which 

consisted of several large-scale studies with 11-14 year old students and their teachers 

using the microworld eXpresser. With eXpresser students learnt how to create general 

rules to generate tile patterns. The number of tiles in patterns were expressed as a 

numerical expression in one window, and eXpresser matched this with an algebraic 

expression in another window, called the “general model”. Mavrikis et al. (2012, p. 231) 

claim that eXpresser can be used by teachers to ‘sow the seeds’ in students to 

understand and appreciate the purpose of searching for algebraic generalisations. In 

a more recent analysis of part of the MiGen project, Geraniou and Mavrikis (2015, 

2016) reported that students applied knowledge they constructed when working with 

eXpresser to pen-and-paper formal-algebraic problems. However, they argued that 

such a transfer was only possible through activities which were specifically designed 

to bridge microworld representations to those written on paper. 

 

This finding challenges claims expressed by the EACEA Eurydice Report, (2011) that 

students rarely use ideas, concepts or strategies they develop through their interaction 

with such technologies in other contexts. The concern is that while students might know 

how to use ICT procedurally, they may fail to understand the mathematical concepts 

behind those procedures. Such concerns are less evident in the literature about 

students’ use of grid-based environments like spreadsheets, maybe due to the closer 

resemblance of mathematical representations in such environments to conventional 

numerical and algebraic expressions. 

 

3.4.4 Spreadsheets and Other Grid-based Environments 

Several studies (e.g., Filloy, Rojano, & Rubio, 2000; Kieran, 1992; Rojano, 1996; 

Sutherland & Balacheff, 1999) showed that spreadsheets can help students to engage 

in algebraic thinking by generalising arithmetic. Research has shown that the use of 

spreadsheets can help students to develop powerful algebraic thinking skills such as 

generalisation, symbolisation and functional relationships (e.g., Lannin, 2003; Battista 

& Van Auken Borrow, 1999; Healy & Sutherland, 1990).  The use of spreadsheets to 

generate recursive rules for number patterns was found to be one of the main benefits 
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of utilising spreadsheets for the learning of algebra (e.g., Ploger, Klingler, & Rooney, 

1999; Friedlander, 1999). Another reported benefit was that with spreadsheets 

students engage in systematic approaches to problem-solving activities (e.g. 

Hersberger & Frederick, 1999; Filloy, Rojano, & Rubio, 2000). Such attempts to 

systematise calculations is one important attribute of algebraic thinking, as Gattegno 

(1988) explains when he discusses awareness of awareness. 

 

Ainley, Bills, and Wilson (2004) showed how Grade 7 students made use of carefully 

planned activities on spreadsheets to construct meaning for the concept of a variable. 

One particular spreadsheet activity was called “The Hundred Square task”, consisting 

of finding patterns in 3×3 cross-shapes from within a 100 square created on a 

spreadsheet (Figure 3.4.4.1). 

 
Figure 3.4.4.1 The Hundred Square Task 

                    

  A B C D E F G H I J         

 1 1 2 3 4 5 6 7 8 9 10         

 2 11 12 13 14 15 16 17 18 19 20    
=D4‒10 

   

 3 21 22 23 24 25 26 27 28 29 30       

 4 31 32 33 34 35 36 37 38 39 40  
=D4‒1 34 =D4+1 

 

 5 41 42 43 44 45 46 47 48 49 50   

 6 51 52 53 54 55 56 57 58 59 60    
=D4+10 

   

 7 61 62 63 64 65 66 67 68 69 70       

 8 71 72 73 74 75 76 77 78 79 80         

 9 81 82 83 84 85 86 87 88 89 90         

 10 91 92 93 94 95 96 97 98 99 100         
                    

 
Students were observed to discuss operations on the central number in the cross and 

they accepted the use of the cell as a placeholder for a general number (Ursini & 

Trigueros, 2001). Ainley et al. (2004) claimed that this was an indication of students’ 
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constructions of meaning for the concept of variable as a placeholder for the middle 

number of the cross. They argued that such activities helped students appreciate the 

usefulness of algebra since 

(i) it provided an intermediate language, a bridge between students’ normal 
language and formal-algebraic notation, and 

(ii) it gave immediate and meaningful feedback to the students in their activities. 

The grid-based structure of a spreadsheet with cells containing numbers or 

expressions is a feature of at least two other grid-based environments designed for 

mathematics learning. One of these is Structured Variation Grids (SVGrids) which was 

developed by Mason7 (see Mason, 2005a). SVGrids are two dimensional grids of cells 

based on the multiplication table. A typical interface is shown in Figure 3.4.4.2.  

 
Figure 3.4.4.2 A typical SVGrids interface 

 
  

  
   
  7 14 21 28 35 42 49   
  1 x 7 2 x 7 3 x 7 4 x 7 5 x 7 6 x 7 7 x 7   
  6 12 18 24 30 36 42   
  1 x 6 2 x 6 3 x 6 4 x 6 5 x 6 6 x 6 7 x 6   
  5 10 15 20 25 30 35   
  1 x 5 2 x 5 3 x 5 4 x 5 5 x 5 6 x5 7 x 5   
  4 8 12 16 20 24 28   
  1 x 4 2 x 4 3 x 4 4 x 4 5 x 4 6 x 4 7 x 4   
  3 6 9 12 15 18 21   
  1 x 3 2 x 3 3 x 3 4 x 3 5 x 3 6 x 3 7 x 3   
  2 4 6 8 10 12 14   
  1 x 2 2 x 2 3 x 2 4 x 2 5 x 2 6 x 2 7 x 2   
  1 2 3 4 5 6 7   
  1  1  1 x 1 2 x 1 3 x 1 4 x 1 5 x 1 6 x 1 7 x 1   
             

                                            
7 In collaboration with Tom Button. 

S 

S  

 

Number Grid 
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As shown Figure 3.4.4.2, SVGrids cells have two parts, one (light background) 

containing the expression or calculation and another (dark background) containing the 

result of that calculation. The former could take form of an expression in 𝑥𝑥, such as 

(𝑥𝑥 + 1)(𝑥𝑥 + 3). Each cell is a particular case of a general rule for patterns of numerical 

or algebraic expressions. Mason (2005b) explained how SVGrids could be used to 

help students to use formal-algebraic expressions, detect and predict patterns, and 

discuss conjectures about the generalities of those patterns. 

 

The other grid-based computer environment is Grid Algebra, for which I review the 

research literature below. 

 

3.4.5 Grid Algebra8 

Grid Algebra (GA) is a grid-based computer environment which is based on the 

multiplication grid like the ones mentioned above, but which allows movements between 

the cells. A typical GA interface is shown in Figure 3.4.5.1.  

 
Figure 3.4.5.1 A typical GA interface 

 
                                            
8 Section 4.3 includes a fuller description of the Grid Algebra software. Here I will only discuss research 
literature in which Grid Algebra was used as a primary teaching medium.  
 



Chapter 3 Literature Review Part 2: The Nature and Learning of Algebra 
 

108 

GA enables users to create and build numerical and algebraic expressions either by 

moving a cell and its contents from one place to another or by typing it directly with 

respect to its place in the multiplication grid and in relation to other expressions existing 

in the grid. As shown in Figure 3.4.5.1, GA displays conventional notation which is 

useful to help students to become familiar with the way they are expected to represent 

mathematical expressions. Furthermore, it gives students the possibility to trace the 

movements of expressions around the grid, such as the 1-2-3 journey shown in Figure 

3.4.5.1. Hewitt (2001), the designer of GA, maintains that GA encourages students to 

focus on the operations involved in algebraic expressions rather than the calculation 

required to evaluate that expression. Hewitt (2009) reported that Grade 5 students 

using GA were able to meaningfully learn formal-algebraic notation by referring to the 

journeys made by expressions. He showed how sometimes students focus on the 

expression as an object to be operated on and at other times they would pay more 

attention to the process by which a new expression is formed. This hints that one 

possible benefit of GA is that it offers students the opportunity of obtaining a proceptual 

view of expressions (Gray & Tall, 1994). Hewitt (2012) focused on another aspect of 

his earlier study (Hewitt, 2009). He showed how GA helped students learn the order of 

operations, not by memorising and following a mnemonic such as BIDMAS, but by 

observing how expressions were being built up one operation at a time with successive 

movements of the expressions in the cells around the grid.  

 

GA offers three interlinked representations: the action of dragging the cells, the picture 

of journeys and cells, and the symbolic notation appearing in the cells. These are 

reminiscent of Bruner’s (1966) enactive, iconic, and symbolic representation modes. 

Hewitt (2014) argues that students develop concepts by making connections between 

these representations. This echoes Dreyfus (2002) who asserts that multiple-linked 

representations give students the flexibility required for mathematical problem-solving. 

 

Like other software, GA was found to boost students’ motivation to learn mathematics. 
Lugalia (2015) investigated the learning attitudes and algebraic attainment of 
secondary students of varying ages in Kenya when taught with the help of GA. She 
reported that GA boosted ‘students’ engagement, enjoyment, new confidence, and 
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eagerness in mathematics’ (p. 190). She also found that the majority of students 
improved their algebraic attainment and connectivity of ideas (Skemp, 1976; Dreyfus, 
2002). The positive effect of GA on students’ motivation and, subsequently, attainment 
was also reported in a UK secondary school (Lugalia, Johnston-Wilder, & Johnston-
Wilder, 2011). Foy (2008) described similar experiences of using GA as a mathematics 
teacher of Grade 7 students.  She said that GA provided ‘an excellent kinaesthetic and 
visual approach to algebra, enriching students’ overall understanding’ (p. 41). 
However, she highlighted the importance for teachers to take the time to introduce the 
software well to their students. 
 
Besides the reasons I gave in Chapter 1 for my choice of GA as the main teaching 
medium for my research, I believed there were aspects of GA which merited further 
investigation, namely: 

• the use of GA as a tool which facilitates constructivist teaching, and 

• students’ use of GA to interpret and represent notation. 

 
This leads me to the second set of research questions, the ones dealing with students’ 
representations and interpretations of notation. 
 

3.5 Research Questions about Students’ Representations 
and Interpretations of Notation 

In this second part of the literature review, I was concerned with the subject matter of 

my research lessons and how learners related to it. I explored the several views of 

“algebra” and used the terms solely-arithmetic, informal-algebraic and formal-algebraic 

to help me present my own viewpoint about algebraic thinking and activities. I 

discussed students’ relationships with algebra and focused on the difficulties they 

encountered when engaging in algebraic activities. I identified the limited interpretation 

and representation of notation to be one major cause of such difficulties. Exploring 

ways in which this could be addressed, I presented the use of computer software, 

specifically GA, as a tool which could be used to help students to develop meanings 

about notation. Freire’s (1998) contention that teaching is dependent on and linked to 



Chapter 3 Literature Review Part 2: The Nature and Learning of Algebra 
 

110 

learning meant that I could not investigate my constructivist teaching without reference 

to whether and how it facilitated learning. 

 

Thus, I present my second set of research questions, the ones regarding students’ 

representations and interpretations of notation. For the sake of completeness, I am 

also including the first set of research questions which were presented at the end of 

the previous chapter: 

1.  How do I engage in CT and what are the distinguishing characteristics of 

such a teaching approach? 

(ii) What, if any, are the moments when I fail to engage in CT? 

  

2.  How do students represent and interpret mathematical notation as they 

start Grade 7? 

(ii) How does GA help students to enrich their representations and extend their 

interpretations of mathematical notation? 

(iii) How do students transfer representations and interpretations of notation 

they develop when working with GA to pen-and-paper problems? 

 

Questions 1(i)–(ii) are overarching, theory-seeking questions, where I seek to build a 

conceptual framework about CT in a mathematical context. Questions 2(i)–(iii) are 

more evaluative, where I investigate the effectiveness of my CT in terms of helping 

students to develop concepts about notation with the help of GA.  

 

In the next chapter, I set out to discuss the methodology and method I employed to 

investigate the data collected for the purpose of addressing these questions. 



 

 

Chapter 4 

 Methodology and Method 
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4.0 Overview 

In this chapter, I describe and contextualise the research methodology and method I 

adopted to gather and analyse the research data. Table 4.0.1 gives an overview of the 

section titles. 

 

Table 4.0.1 Chapter 4 section titles 

 Title Page 

4.1 Research Design 112 

4.2 Matters Regarding the Participants 120 

4.3 The Grid Algebra Software 122 

4.4 The Grid Algebra Lessons 130 

4.5 Data-Gathering Methods 135 

4.6 Data Analysis 144 

4.7 Issues about Being a Teaching Researcher 148 

4.8 Reliability, Validity, and Generalisability 152 

4.9 Ethical Considerations 158 

4.10 Time Frames 161 

4.11 Summary 162 

 
 

 

4.1 Research Design  

In this section, I explain the rationale for my research methodology, which was a 

qualitative approach, and my research method, which was a case study. I will do this 

with reference to the two sets of research questions listed at the end of Chapter 3. 
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4.1.1 Rationale for the Research Methodology: A Qualitative 
Approach 

The rationale for adopting a qualitative approach for my research was influenced by 

two factors, namely, the methodological stance and a number of pragmatic 

considerations. Regarding the former, Burrell and Morgan (1979) identify four 

assumptions which differentiate between subjectivist and objectivist perspectives. 

These are the ontological, the epistemological, the human nature, and the 

methodological assumptions. In the following subsections, I discuss each one of these 

assumptions as they stood in my research approach. 

 

My Ontological Assumption 

In line with Glasersfeld (1991a), my belief about reality is that it is the result of individual 

cognition, experiential rather than absolute. My view of reality is relativist rather than 

realist: I reject the possibility of making observations about the world which are 

unconnected to the observer’s subjective interpretations of what his or her senses are 

receiving.   I support Merriam’s (2002) claim that 

[t]he world, or reality, is not the fixed, single, agreed upon, or measurable 
phenomenon that it is assumed to be in…quantitative research. 

(Merriam, 2002, p. 3) 
 

My research results were thus presented as a subjective, interpretative description of 

my participants’ unique experiences and mine rather than evidence of some universal 

truth or generality. This does not mean, however, that readers may not make their own 

inferences and/or apply lessons learnt from this study to their own situations. This issue 

will be discussed further on. 

 

My Epistemological Assumption 

In line with radical constructivism (RC), I assume that knowledge is not independent of 

the knower and, as such, it is internally created rather than passively received from 

external sources. The act of learning is an attempt of the learner to regain equilibrium 
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in the intellectual journey of understanding the world (Piaget, 1975/1985) and therefore 

knowledge makes sense to the knower only if it is viable (Glasersfeld, 1984) in 

comprehending experience. During the data collection process, my standpoint about 

my search for answers to the research questions, about the learning of my students 

and my endeavours to help them learn, I have regarded the nature of knowledge as 

such: a subjective construction of ideas which serve to better understand the 

experiential world. Once again, this does not mean that my students’ experiences and 

mine are necessarily segregated from the experiences of readers: hopefully, some 

readers may share our consensual domain (Glasersfeld, 1991a) and find, within this 

study, viable explanations for their own unique experiences. 

 

My Human Condition Assumption 

My belief that learners construct their own knowledge stems from my assumption that 

humans take an active role to create and modify their environment. Human beings’ 

actions are not simply a product of external circumstances but rather they are how they 

respond to their environment, in the sense of Maturana and Varela (1992): The 

motivation that drives humans to construct knowledge is the urge to make sense of 

their experiences by finding viable explanations of what they observe and sense. My 

view of the participants’ actions and my own was, therefore, voluntaristic rather than 

deterministic. During the data-collection process, my students and I were using our 

environment to test whether our ideas were viable or not (Glasersfeld, 1984).  

 

My Methodological Assumption 

A methodology which stems from such beliefs must acknowledge the importance of 

details in the particular and individual in the quest for answers to the research 

questions. Such a methodology is ideographic (Cohen, Manion & Morrison, 2011), a 

process of investigating a small group of individuals in depth and detail to achieve a 

unique understanding of them. My choice for a qualitative study was therefore partially 

due to this set of assumptions about the nature of social reality.  
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Nevertheless, my choice for a qualitative paradigm was also due to pragmatic 

considerations of my research aims which I shall now discuss. 

 

Pragmatic Considerations  

As Muijs (2011) says, many researchers adopt a pragmatic approach on the basis of 

their research aims. Besides the small number of participants, which did not allow for 

non-parametric quantitative tests, I had to consider other, more fundamental, 

pragmatic factors which had to do with the nature of my research objectives.  

 

In this research, I wanted to capture the subjective experiences of individual learners 

as I strived to engage in constructivist teaching (CT). Hence, I intended to analyse a 

small number of participant students in depth so that I could find explanations which 

were viable and made sense within the situatedness of the classroom, i.e. the 

interconnections between the social practices of the lessons and the teaching-and-

learning process (Lave & Wenger, 1991). Context was thus very important for this 

study. As Sutton (1993, p. 413) claims, researchers need to be ‘careful not to 

undermine the validity of observations by isolating them from the environment that 

gives them meaning’.  

 

My research questions concerned my own students’ learning through mathematical 

journeys and my own teaching when helping them make those journeys. When I set 

out to collect and then analyse the data I was fully aware of my bias in favour of the 

teaching method I was adopting and the teaching tools I was using. This 

acknowledgement of self-bias necessitated that any findings of this study needed to 

be sought and reported in an interpretive and pluralistic manner. I have therefore 

reported my findings in the spirit that: 

 these were my own interpretations of my students’ representations (verbal or 

otherwise) and may be different from what other people might have observed 

or concluded, and 

 there might be contrasting research findings of similar situations which are 

equally valid as mine. 
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The subjective nature of this approach led me to choose a qualitative methodology 
because I was investigating teaching and learning ‘in their natural settings, attempting 
to make sense of or interpret phenomena in terms of the meanings people bring to 
them’ (Denzin & Lincoln, 2011, p. 3) while assuming that meanings derived from the 
findings were plural and open (Bruner, 1993). 
 

4.1.2 Rationale for the Research Method: A Case Study  

After carefully considering the different types of qualitative research methods, I 

concluded that a case study was probably the best route for my research aims. 

Nevertheless, what I planned to do with the data contained elements from other 

qualitative disciplines as well. My active participation in the generation of the data may 

be attributed to an ethnography (LeCompte & Preissle, 1993; Hammersley & Atkinson, 

2007) and the fact I intended to answer the research questions by investigating my 

students’ lived experiences and mine may be associated with phenomenology (van 

Manen, 1990; Greene, 1997). Furthermore, the account I wanted to give of the 

participants’ learning journey throughout a whole scholastic year, and of my efforts to 

accompany them in that journey, had the story-like characteristics of a narrative inquiry 

(Clandinin & Connelly, 2000). My intention to give meaning to these experiences and 

observations and to generate theoretical explanations within specifically designed 

conceptual frameworks may be regarded as an exercise in grounded theory (Corbin & 

Strauss, 2000, Creswell, 2013). However, none of these qualitative methods by 

themselves captured the entirety of my research aims as well as a case study, as I 

discuss next. 

 

Appropriateness of a Case Study 

MacDonald and Walker (1975) define a case study as ‘the examination of an instance 

in action’ (p. 2). The instance is that of a bounded system (Smith, 1974; Adelman, 

Kemmis, & Jenkins, 1980) such as a group of people surrounded by similar 

circumstances (Cohen, Manion, & Morrison, 2011). In such a group, the whole is more 

than a sum of parts (Nisbet & Watt, 1999) and such an inbuilt wholeness necessitates 

in-depth investigation (Sturman, 1999).  
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Hitchcock and Hughes (1995) mention a number hallmarks of a case study. In 

particular, a case study  

 blends a description of events with the analysis of them,  

 focuses on individual actors and seeks to understand their perceptions of 

events,  

 highlights specific events that are relevant to the case, and 

 involves the researcher as an integral part of the case. 

 

Furthermore, Hitchcock and Hughes (1995) suggest that a case study is set in 

temporal, geographical, organisational, institutional, and other contexts that enable 

boundaries to be drawn around the case and the participants’ roles, functions, and 

characteristics within those contexts may form a reference point for the definition of the 

case. Moreover, a case study may be exploratory, descriptive, or explanatory (Yin, 

2012) but always set in real life situations where researchers are able to provide a rich 

detail of those situations (Ary, Jacobs, Razavich, & Sorensen, 2006).  

 

Bassey (1999) identifies three types of case studies in educational research: 

 Theory-seeking and theory-testing;  

 Story-telling; 

 Evaluative. 

Bassey warns that such a categorisation ‘is a dangerous game’ (p. 64) because some 

case studies may have overlapping characteristics. These features may be derived 

from the weight that researchers give to the reasons why they take on the case study. 

 

Cohen, Manion, and Morrison (2011, p. 129) give four reasons why researchers may 

choose to adopt a case study: 

 To portray, analyse and interpret the uniqueness of real individuals and 

situations through accessible accounts; 

 To catch the complexity and situatedness of behaviour; 
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 To contribute towards action and intervention; 

 To present and represent reality – to give a sense of “being there”. 

 

The appropriateness of a case study as my research method was revealed after 

considering how it fitted my research aims. The case I intended to study was that of a 

bounded system (Smith, 1974) of six learners and their teacher (myself) rendered 

closed and unique (Hitchcock & Hughes, 1995) by the learners’ age, grade, course, 

achievement level, country and school context, their teacher, and their particular 

scholastic year. I also intended this to be a descriptive case study, which, according to 

Yin (2012), ‘presents a complete description of a phenomenon within its context’ (p. 5). 

I regarded my case study to be principally theory-seeking (Bassey, 1999) since I 

wanted to develop a theory that described CT in a mathematics classroom (research 

questions 1(i)–(ii)). However, this would not have been possible without telling the story 

of students’ intellectual journeys and evaluating the extent to which they were able to 

develop mathematical concepts with my assistance and with the use of GA (research 

questions 2(i)–(iii)). Hence, my research also contained elements of “story-telling” and 

of evaluative case studies (Bassey, 1999). 

 

I reported the research outcomes as unique but significant lessons in education 

through the experiences and interpretations (Cohen, Manion, & Morrison, 2011) of my 

students and mine while acknowledging my own methodological assumptions, 

philosophical bias, and a dual function of being both the researcher and the teacher in 

the case study. Being a longitudinal study, the research allowed for actions and 

interventions (Cohen et al., 2011) on my part as a teaching researcher while providing 

possibilities of catching the complex and situated nature (Cohen et al., 2011) of 

classroom dynamics.  

 

It is worth noting here that my case study had some elements in common with action 

research, especially when I was collecting and analysing data to investigate my own 

teaching. McNiff and Whitehead (2005, p. 3) define action research as that which ‘is 

done by people who are studying themselves and their work, and asking questions 
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about what they are doing, why they are doing it, and how they can improve it’. 

However, the main aim of this study was not to improve my teaching but to portray my 

teaching in the light of students’ construction of ideas and to attempt to give theoretical 

explanations of this portrayal.  

 

Concerns about a Case Study 

Hall (2008) identifies four concerns which may render case studies inferior than other 

research methods:  

 Concern over having lack of rigour; 

 Concern over not having clearly defined research questions and employing 

loosely defined concepts; 

 Concern over taking too long and generating too much unstructured data; 

 Concern over attempting to generalise from a single case. 

 

To address these concerns Yin (2013) suggested that case study researchers should 

try to be as methodical as possible throughout the whole study, follow systematic 

procedures, and not to allow ambiguous data to affect the direction of findings and 

conclusions. Interestingly, Yin’s (2013) suggestion emulates the natural science 

method where rigour is usually equated with internal validity, construct validity, external 

validity (or generalisability), and reliability (e.g. Gibbert, Ruigrok, & Wicki, 2008) which 

may seem at odds within a subjectivist and interpretivist paradigm.  

 

I will, however, discuss how I viewed and tackled issues of reliability, validity, and 

generalisability in subsequent sections. These will be discussed in the light of a further 

concern, that of adopting the dual role of a teacher and a researcher. These 

discussions require a description of the research context and data-collecting methods, 

where I will start with matters regarding the students involved in this study. 
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4.2 Matters Regarding the Participants 

In this section, I am concerned with matters regarding the student participants. I will 

introduce pseudonyms to refer to the school, the students, and other factors which may 

compromise the identity of the participants. This measure was one of the ethical 

considerations I discuss later on. 

 

4.2.1 The School Context 

In Malta there are three types of secondary schools. The vast majority are state schools 

which are run by the government, followed by Church schools which fall under the 

jurisdiction of the Diocesan Curia, and Independent schools which are the only profit-

making schools in Malta. The school in which I was employed as a full-time teacher 

will be given the pseudonym “St. George’s College”. It is a Maltese Church secondary 

school for boys, with a yearly cohort of 52 students at Grade 7 level. At St. George’s 

College, students are divided into three sets according to their performance levels in 

examinations and assignments. This is only done for three core subjects: Maltese, 

English, and Mathematics. I will call the sets Set A, Set B, and Set C, with the latter 

being the set for the lowest performing students.  

 

The performance level of new students in St. George’s College is determined from a 

national benchmark examination which almost all students in Malta sit for at the end of 

Grade 6. The number of students in Set C is usually low (6-10) to facilitate more 

individual attention. The performance level of a new student is decided according to 

the standard deviation of his Grade 6 benchmark examination grade in each of the 

three core subjects with reference to the cohort. As a rule, a Grade 7 student in Set C 

would have a score of less than 1 standard deviation below the mean of the scores of 

the new cohort of the school. In the 2014 mathematics examination, the mean was 

79.6%, the median was 81%, and the standard deviation was 14.016. The participants 

of this research were the 2014-15 Grade 7 Set C (Mathematics) group (“Grade 7C 

Maths”) with the highest benchmark score being 65% (standard deviation = −1.04) 

and the lowest score being 35% (standard deviation = −3.18). 



 

 

4.2.2 The Participants 

Five out of six of the student participants had specific learning needs. Between them they 
had two learning support assistants (LSAs) who used to sit with them during the lessons 
and help them to understand and to manage their classwork. Having observed that each 
of these five students managed quite well in mathematics lessons without the support of 
an LSA, I decided that the LSAs would not be present for the lessons involved in this study. 
I also gave the LSAs and students’ guardians specific instructions not to help them with 
their homework. This decision was made to minimise compromising data with regards to 
my CT and the way it helped the students learn. Table 4.2.2.1 gives the characteristics of 
individual students as given to me at the beginning of the scholastic year. I am including 
personal comments, some of which I perceived after the first few weeks of lessons. 
 

Table 4.2.2.1  Initial descriptors of the participants 

 Age Bench. 
Score 

Standard 
Deviation 

Special 
Ed. Need   Comments 

Dan 12 35% ‒3.2 
ADHD; 
Very poor 
literacy skills 

• A year older than his peers; 
• Difficult home situation’ lives in a boys’ 

institution by court order. 

Dwayne 11 57% ‒1.6 Coeliac 

• Coeliac condition is severe; 
• Suffers from headaches; 
• Very difficult periods in his life, both 

physically and psychologically. 

Jordan 11 53% ‒1.9 
Speech/ 
Language 
difficulty 

• Takes a long time to express himself; 
• Difficulty to express thoughts in words. 

Joseph 11 65% ‒1.0 ADHD; 
Slight Dyslexia 

• Outgoing personality but clashes with 
peers when things do not go his way. 

Omar 11 49% ‒2.2 Dyslexia; Poor 
literacy skills • Reads and writes very slowly. 

Tony 11 60% ‒1.4 Nil 
• Easily distracted; 
• Tends to give the impression that he 

knows more than he actually does. 

 

These characteristics were important during the planning of the research lessons and 
my interactions with the learners. The other aspect of the lessons was the main tool 
which I planned to use, the GA software. Below is a brief discussion of its main features. 



 

 

4.3  The Grid Algebra Software 

GA is a dynamic software based on the multiplication grid in which students engage in 
mathematical activities involving numerical and algebraic expressions. 
 

4.3.1   Value of Grid Algebra Cells 

In the interactive (Run) mode (Figure 4.3.1.1), GA opens an interface showing a blank 
multiplication grid (Figure 4.3.1.1a). Numbers can be picked up from a number menu 
and dragged into any cell, as long as they are multiples of the first number that appears 
at the beginning of the row. For example, 15 can be inputted anywhere in the 3rd row 
because it is a multiple of 3 (Figure 4.3.1.1b). Once that is done, the number that goes 
in the cell on its right is 18 since it must be 15 + 3 (the next number in the 3-times 
table), the number on its left is 12 since it must be 15 − 3, and so on.  
 

Figure 4.3.1.1 GA cells 

 

(a) (b) 

(c) (d) 
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The numbers that can enter in the other rows are such that the grid is a snapshot taken 

from the multiplication table (Figure 4.3.1.1c). Numbers may be erased or entered into 

the grid as long as they correspond to the particular multiple of the row number. If 

students try to enter a number that does not have the value of that particular cell, GA 

would show a “no-entry” sign and a bin appears (Figure 4.3.1.1d). With a further click 

the inappropriate number is transported to the bin. 

 

4.3.2  Movement of Grid Algebra Cells 

In the Run mode, cells may be moved horizontally or vertically onto other cells. 

Horizontal movements represent addition or subtraction of multiples of a particular 

number and vertical movements represent multiplication and division. Figure 4.3.2.1 

shows a series of screenshots as the cell representing 15 is moved three cells to the 

right in R3 (row 3).  

 

Figure 4.3.2.1 Movement of GA cells 

 
 

As the cell is dragged along R3, GA changes the number into an expression containing 
the original number and the operation corresponding to that movement. As shown in 
Figure 4.3.2.1, the movement from R3C2 (cell in row 3 column 2) to R3C5 corresponds 
to +9. If the cell is let go on R3C5, GA does not show 24 but it shows the expression 
that corresponds to the whole action of picking 15 from R3C2 and moving it to R3C5, 

(a) (b) 

(c) (d) 
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i.e. it shows 15 + 9. This is a key feature of GA since it focuses the attention of students 
on the operations involved and on the resulting expressions rather than computing the 
value of the cell (Hewitt, 2001).  
 

4.3.3  Notation and the Meaning of Expressions 

GA shows formal notation of addition, subtraction, multiplication, and division. Figure 
4.3.3.1 shows how numbers and expressions are transformed when their cells are 
moved in the directions shown by the arrows9.  
 

Figure 4.3.3.1 Numerical expressions resulting from movements in GA 

 
 

As shown in the diagram, when 15 in R3C2 is dragged onto R6C2, this movement 
corresponds to multiplication by 2 since the 6-times table is twice the 3-times table. 
Hence, the number that appears in R6C2 is 2(15) and if 15 + 9 is dragged from R3C5 
to R6C5 the number that appears in the latter is 2(15 + 9). If the latter is then dragged 
from R6 to R2, which corresponds to a division by 3, the expression that results is 
2(15+9)

3
. In this way, GA introduces conventional notation which is challenging for many 

learners (Van Amerom, 2003). Furthermore, GA encourages the manipulation of non-

                                            
9 GA does not show arrows. These are added for the purpose of the description. 
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evaluated expressions. This may help students to become accustomed to the lack of 
closure (Collis, 1974) of such expressions, which will be crucial when dealing with 
algebraic expressions like 2𝑥𝑥 + 6 which cannot be evaluated as a single number. Most 
importantly, this requirement helps students regard expressions both as processes and 
as manipulable objects, a proceptual interpretation (Gray and Tall, 1994) of notation.  
 

As shown in Figure 4.3.3.2 (see R1C2), GA offers the feature that a letter may be placed 

in a cell where it represents the number which may reside in that cell. If no other 

numbers have been inputted beforehand, the letter represents a variable multiple of 

the row number. If at least one number has been inputted beforehand, the letter 

represents a constant, i.e. an unknown.  

 
Figure 4.3.3.2 Successive cell movements producing more complex expressions in GA 

  
 

The transformations on numbers and numerical expressions resulting from cell 

movements may be done on letters of algebraic expressions, i.e. expressions 

containing a letter. Figure 4.3.3.2 shows how a letter, representing a variable multiple 

of 1 (since it is in R1), undergoes transformations into increasingly complex algebraic 

expressions in a 7-movement journey which results in a 7-operation expression. 



 

 

It is possible to track the journey made by the expression in a cell by choosing the 

journey button and clicking on successive cells as shown. Figure 4.3.3.3 shows a GA 

trail that is shown when this is done to the successive stages of the previous diagram. 

 
Figure 4.3.3.3 Pictures of GA journeys 

 
 

GA only forms such a journey picture if the cells involved in the stages of the journey 

are clicked in the right order, where it assigns ① to the 1st stage, ② to the 2nd stage 

(after the first step has been made), ③ to the 3rd stage, and so on. This feature gives 

students the opportunity to focus on the order of operations involved in an expression. 

 

4.3.4 Equivalent Values in the Same Cell 

A cell may contain two or more expressions as long as these are equivalent. When this 

occurs, a helpful tool is the “magnifier”, an icon in the left menu which students can 

use to see what expressions are currently in that cell. If the magnifier icon is chosen 

and a cell is clicked on, a small window appears with an equation involving the 

expressions in that cell.  Figure 4.3.4.1 displays three such equations.  
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Figure 4.3.4.1 GA magnifier 

 
 

R3C5 contains the expressions 9 + 12 and 12 + 9 and choosing the magnifier and 

clicking on R3C5 displays a window with the equation 9 + 12 = 12 + 9. A similar 

equation is formed in R5C2 which contains the expressions 5(𝑥𝑥 + 2) − 10 and 20. The 

magnifier of R6C5 shows that there are three expressions in that cell. Clicking on the 

bottom right corner of the cell with multiple expressions alters the expression that is 

shown on top. This changes the order of the expressions shown in the equation of the 

magnifier. One possible use of the magnifier is to give students the opportunity to 

consider the sides of an equation separately and present the equals sign as a symbol 

that denotes a balance of quantities between the two sides of an equation (Kieran, 

1981; Linchevski, 1995), i.e. a relational symbol, and not just an indicator that a 

computation has to be performed, i.e. an operational symbol. 

 

There is another way of obtaining more than one expression in the same cell besides 

actually moving the cells. After entering a number, letter, or expression in a cell, 

students can imagine a journey of a number/letter which results in that cell and 

transform the movements of those journeys into operations. In Figure 4.3.4.2a, the 

number 28 is first entered in R4C2. An “expression calculator” icon is chosen from the 
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left menu and clicked on the cell. An expression resulting in 28 through movements in 

the grid may be entered in the calculator, for example 4(6 + 1). The latter is achieved 

by clicking on 6, +, 1, ×, 4. Every click of a number or operation adds to the expression 

being formed on the calculator, where clicking × shows the brackets enclosing 6 + 1, 

and clicking 4 afterwards shows a 4 before the open bracket. Clicking “Enter” will place 

the expression in the cell if it is correct. Figure 4.3.4.2b shows that a magnifier chosen 

for that cell shows the equation 4(6 + 1) = 28. 

 
Figure 4.3.4.2 GA expression calculator 

 
 

This is another feature which may be used to help students to get acquainted with new 

notation. It is also a useful in activities where the focus is the order of operations, where 

it encourages reading the expression in the order of operations and not just left-to-

right. Like all the other features of the GA Run mode, the expression calculator is 

included in computer-generated tasks which are outlined below. 

 

4.3.5 Computer-Generated Tasks 

From the main menu screen, students can choose one of the 26 structured, interactive 

computer-generated tasks, including: 

• placing numbers in designated cells, 

• calculating the value of numerical expressions, 

(a) (b) 
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• finding the journey that a number/letter has to make to become a 

numerical/algebraic expression, 

• constructing a numerical/algebraic expression by moving a number/letter 

around the grid, 

• using the expression calculator to make equivalent expressions which can be 

in the same cell, and  

• substituting numbers for letters in algebraic expressions in order to evaluate 

them. 

All the tasks are presented in the context of the GA grid and a window containing 

instructions appears as the task is started. As an example, Figure 4.3.5.1 shows 

screenshots of Task 13, Find the Journey (letters), in which students are required to 

trace the path that a letter has to make in the GA grid in order to be transformed into a 

given algebraic expression. 

 
Figure 4.3.5.1 Task 13 – Find the Journey (letters) 

 
 

All GA tasks have many levels of difficulty and students may choose the level that 

challenges them while being attainable. This feature makes them low threshold, high 

ceiling tasks (McClure, 2011): they are quite easy to begin but allow considerable 

development and sophistication. An overview of the GA tasks used in this research is 

included in Appendix 1.  

 

(a) (b) 
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4.4 The Grid Algebra Lessons 

The GA lessons took place over the scholastic year spanning from October 2014 until 
June 2015. There were twenty double lessons (80 min each) which typically consisted 
of three main parts:  

 a plenary discussion  (c. 40 min.) of GA demonstrations on the IWB; 

 students’ pair work (c. 30 min.) on GA activities, and 

 teacher’s explanation of written homework (worksheets).  

 

4.4.1 The Thinking behind Plenary Discussions 

In the plenary discussions, I sought to help students to develop concepts through 
demonstrations of GA activities. NCTM (2000) underlines the importance of creating a 
classroom atmosphere conducive to communication about the mathematics that 
learners are studying and to facilitate discussions where students reflect and gain 
insights into their thinking. This was the first of two main purposes of the plenary 
discussions. The other main purpose was for me to learn about the mathematics of my 
students (Steffe, 1991) by seeking to develop experiential models of their conceptual 
processes (Steffe & Ulrich, 2013).  
 
Figure 4.4.1.1  A typical plenary discussion of a GA activity 

 



Chapter 4 Methodology and Method 
 

131 

During these discussions, students played an active role and were encouraged to build 
and reflect on their own and each other’s statements. Students were given the 
opportunity to work on GA activities on the IWB themselves, as shown in Figure 
4.4.1.1. The small size of the class made it seem as though we were discussing in one 
sizeable group where all students had the chance to share their views. The discussions 
had features of investigative teaching which, according to Collins (1988, p. 1), 
encourages ‘students to actively engage in articulating theories and principles that are 
critical to deep understanding of a domain’. Jaworski (1994, p. 207) identifies inquiry-
based learning with ‘students actively doing mathematics together, talking about 
mathematics, sharing mathematical ideas, and learning from each other’. These were 
all elements found in the plenary discussions. 
 
However, it was I who asked most of the questions in class discussions. This was 
mainly due to my efforts to demonstrate GA features and prompt students to speak up. 
While teacher questioning may be regarded as the backbone of classroom 
communication (e.g., Dymoke & Harrison, 2008), mainly due to its potential to stimulate 
learners’ thinking (Ellis, 1993; Wood & Anderson, 2001), I was aware that I also needed 
to stimulate students’ questions. Incidentally this is Collins’s (1986, p. 5) second aim of 
an inquiry-based approach: ‘to teach students questioning skills so that they can learn 
new domains or solve novel problems on their own’. This awareness was part of the 
thinking behind students’ pair-work which I will now discuss. 
 

4.4.2 The Thinking behind Students’ Pair-Work 

Students’ pair-work was principally aimed at achieving three benefits identified by 
Good, Reys, Grouws, and Mulryan (1990): 

 Enhanced motivation and enthusiasm; 
 Positive peer interaction; 
 Advanced mathematical thinking. 

 

With reference to benefit (ii) Good et al. (1990) presented evidence that when working 
in groups, students were more ready to exchange mathematical ideas. This was also 
true for my participants. When they worked in pairs they were compelled to 
communicate and to ask questions.  
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The pairs were divided according to compatibility of characters and working rate, as 

identified before the onset of the GA lessons. Omar and Jordan seemed to take a 

longer time than the others to complete classroom tasks so I decided to pair them up. 

Joseph and Tony had a similar working rate but they often quarrelled when I asked 

them to do something together. I decided that Dwayne was a much better partner for 

Tony. That left Dan as the remaining possible partner for Joseph. Although they were 

both quite loud and talkative, they had very similar and fast working rates and I found 

it was a good decision to pair them up. I asked each pair to come up with names of 

animals and these are the names they chose for themselves:  
 

• “Pandas” – Tony and Dwayne; 

• “Chimps” – Omar and Jordan; 

• “Sharks” – Dan and Joseph. 
 

During GA lessons, students used to pair up right after the class discussion where they 

started working on a particular GA activity or task. My role from then onwards was 

changed into that of monitoring the students’ progress and being there for them should 

they ask me questions. Figure 4.4.2 shows a typical pair-work setting.  

 
Figure 4.4.2 Pairs working out GA activities and tasks on the computer 

 

 

Pandas Chimps Sharks 
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4.4.3 Rationale of the Series of Lessons 

The series of GA lessons were planned and ordered according to five principal 

objectives: 
 

 Coming to know about the GA grid and how it works. These lessons served 

as a platform for GA activities and also to revise previously learnt concepts. 

 Coming to know about new notation and the order of operations. These 

lessons were aimed to help students to learn new notation, such as 3(5) to 

mean 3 × 5 and also extend the meaning of familiar notation. Another aim was 

to help students to learn the order of operations in expressions. 

 Coming to know about the use of a letter. Students were given the 

opportunity to learn that a letter may stand for a generalised number (variable) 

or a particular number (unknown). 

 Coming to know how letters may be used in expressions. These lessons 

were aimed to help students to get a proceptual view (Gray & Tall, 1994) of 

algebraic expressions. 

 Coming to know about properties of the operational notation and how 
letters may be substituted with numbers. This set of lessons were aimed to 

help students to reflect on the commutative and inverse properties of addition 

and multiplication and the non-commutativity of subtraction and division. This 

was useful for the second objective, that of learning how letters can be 

substituted with numbers, where one can evaluate, say, 2 + 3𝑟𝑟 by inverting the 

terms but this cannot be done with expressions like  2 − 3𝑟𝑟. 

 

Table 4.4.3.1 shows how these aims were addressed through the use of GA 

applications and tasks. Appendix 2 includes an example of a typical GA lesson plan. 



Chapter 4 Methodology and Method 
 

134 

Table 4.4.3.1 GA applications and tasks used according to lesson aims 

Aim Lesson  GA Application or Task 

1 

1.1  RUN  (2 rows, 3 rows, 4 rows, 6 rows). Fill-in the cell: R1C1 being 1 

1.2  RUN  (2 rows, 3 rows, 4 rows, 6 rows). Fill-in the cell: R1C1 not 1 

1.3  RUN  (2 rows, 3 rows, 4 rows, 6 rows). Move the cell and reflect 

1.4  RUN  (6 rows). Move the cell and reflect (Extension) 

1.5 TASK 20: Place the numbers (two players) 

2 

2.1  TASK 16: Make the expression (Numbers – small grids) 

2.2  TASK 15: Make the expression (Numbers – large grids) 

2.3  TASK 10: Find the journey (Numbers – small grids) 

2.4  TASK 8: Find the journey (Numbers – large grids) 

2.5  TASK 5: Equivalent expressions (Numbers) 

2.6 RUN (6 rows). Emphasis on the equals sign 

3 
3.1  RUN  (2 rows, 3 rows, 4 rows, 6 rows).  

Letter as unknown: What is the value of the letter? 

3.2  RUN  (2 rows, 3 rows, 4 rows, 6 rows).  
Letter as variable: What may be the value of the letter? 

4 

4.1  TASK 14: Make the expression (Letters – small grids) 

4.2 TASK 13: Make the expression (Letters – large grids) 

4.3  TASK 9: Find the journey (Letters – small grids)  
TASK 7: Find the journey (Letters – large grids) 

4.4 TASK 4: Equivalent expressions (Letters) 

5 

5.1 RUN (use of the Magnifier function).  
Properties of the basic operations 

5.1 TASK 24: Substitution (small grids) 

5.2 TASK 22: Substitution (large grids) 
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As Farrugia (2006) asserts, in Maltese mathematics classrooms, English is the 

language of written texts, while for spoken language, technical words are usually 

retained in English. This is mainly due to limitations in the Maltese language for words 

like ‘equals’ or ‘brackets’.  However, the spoken language used in mathematics lessons 

varies according to teacher and learner preferences. In order to make sure that 

language was not a barrier for students’ participation, I used mainly Maltese to 

communicate, but sometimes I code-switched to English to explain particular problems 

or instructions written in English.  

 

GA lessons were a rich source of data generation but data was also collected outside 

the lesson context. In the following section, I describe and rationalise the methods I 

used to collect data. 

 

4.5 Data-Gathering Methods 

In this section, I describe the methods, tools, and frequency of data collection. I start 

by giving a brief rationale for the choice of data-gathering methods. 

 

4.5.1  Rationale of the Choice of Data-Gathering Methods 

The choice of data-gathering methods was determined by the qualitative nature of the 
research questions. In the following subsections, I describe and rationalise the 
methods with which I collected this type of data, namely: 

 video recording of the GA lessons, 
 screen and audio recording of students’ computer activities, 
 video-recorded interviews, 
 students’ written work, and 
 teacher journal10. 

                                            
10 Following the pilot study, this was discontinued for reasons discussed further on. 
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Video Recording of the Lessons 

Cohen, Manion, and Morrison (2011) suggest that video recording might provide rich 

data and catch non-verbal communication. In fact, the use of video recording as a 

major means of classroom data collection is widely documented (e.g., Wood, Cobb, & 

Yackel, 1991; Pirie & Kieren, 1994). Since I was interested in capturing the complexity 

of interpersonal dynamics and communication gestures during the lessons, I decided 

that video recording was an appropriate means of collecting data in this respect. At the 

back of the classroom, I set up a digital video camera which captured the whole group 

of six students including myself during the lessons. The main aim of these videos was 

to record student-teacher discussions which provided data about my approach to CT 

and about students’ meaning making. Key excerpts from the audio (transcripts) and 

from the video (screenshots) of the lessons were later used in conjunction for the 

analysis and discussion of CT. 

 

 

Computer Screen Activity Capture 

Imler and Eichelberger (2011) showed that video screen capture technology is a good 

way to track human‐computer interaction. One of my aims was to gather data about 

students’ working and reasoning as they worked on GA tasks and activities in pairs. In 

order to generate this kind of data, I used a computer screen activity capture (CSAC) 

software package called BB Flashback Express on each computer workstation. When 

the students went to their workstations to work out GA tasks, I activated this software 

which recorded what was happening on the screen (movements and clicks of the 

mouse pointer) and the audio of students’ comments. Figure 4.5.1.1 shows a series of 

screenshots taken from the CSAC video of the Pandas’ pair-work during one of the 

lessons. A dark circle around the mouse pointer appeared with every left click of the 

mouse. 
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Figure 4.5.1.1 Successive screenshots of Pandas’ movements on GA activities 
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Video-Recorded Interviews  

Patton (2002, p. 341) claims that ‘the purpose of interviewing…is to allow us to enter 

into the other person's perspective’. Coming from an RC background, I do not believe 

that we can ever have access to another person’s thoughts (Ulrich et al.,  2014). At the 

same time, I believe interviews allow participants to offer verbal and other 

representations which can give the interviewer the opportunity to create models (Steffe 

et al., 1983) of their perspectives. With regards to interviews for educational research, 

Cohen, Manion, and Morrison (2011, p. 411) mention the need ‘to evaluate or assess 

a person in some respect’. In my case, I needed to assess students’ individual 

knowledge constructions about the topics discussed in Section 4.4. 

 

Over the scholastic year, each student was interviewed five times, relating to the five 

objectives listed in Table 4.4.3.1. The interviews (see Appendices 3.1–3.5) were semi-

structured to allow for individualised probing and elaboration. The interviews were 

about mathematical problems which the students were asked to work out and explain 

their reasoning. The questions I asked were: 

 Can you tell me what you see? 
 Do you know how to find the answer? 
 (If answer to (ii) is yes) Work it out. 
 Can you explain how you did that? 

 

Sometimes the question regarded a particular symbol or expression, where I asked: 

 Have you ever seen that symbol? 
 What does it mean to you? 

 

There were other questions which were given on the scripts themselves. I read these 

out and translated them to Maltese where necessary. In all the questions, I retained 

the flexibility to rephrase the questions or ask further questions in order to probe on an 

answer given by the interviewee. The interview problems were presented on the IWB 

on which the participants wrote and the filled electronic script was saved. Ample space 

was provided for any written work. At times, students were encouraged to write down 

examples to help expressing themselves. I opted for video-recorded interviews, 
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because, as Mishler (1986) claims, this is better than audio recording because the latter 

neglects the visual and non-verbal aspects of an interview. The video recording was 

later analysed together with the accompanying filled script which was saved as a PDF 

document from the IWB itself. Key excerpts from the audio (transcripts) and from the 

video (screenshots) of interviews with each student were later used in conjunction to 

discuss the outcomes of the interviews.   
 

Figure 4.5.1.2 Interview 1 - Joseph 

 

(a) 

(b) 
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Figure 4.5.1.2a shows Joseph during Interview 1. The screenshot was taken at a 
crucial moment when he was showing me that he was reading the equality from right 
to left. Such a gesture would have been lost in an audio interview. Figure 4.5.1.2b 
shows a section of the accompanying script which provided a record of Joseph’s 
written representations.  
 

Table 4.5.1.1 shows the topics involved in each of the video-recorded interviews (VRI). 
The table also shows the positioning of the VRIs, according to lesson objectives which 
were discussed in Section 4.4. 
 

Table 4.5.1.1 Topics of Video-Recorded Interviews 

V 
R 
I 

Positioning 
Topics 

Basic 
Arithmetic 

Order of 
Operations New Notation Numerical 

Expressions 
Algebraic 

Expressions 
Substitution 

Tasks 

1 Before 
Objective 1       

2 
After 

Objective 1       

3 
After 

Objective 3       

4 
After 

Objective 4       

5 
After 

Objective 5       
 

Codes:   

Topics of questions 
asked not yet covered 
in class.  

Topics of questions 
asked partially covered 
in class.  

Topics of questions 
asked covered in class. 

 

The development the five interviews was such that: 

 the problems were progressively harder from one interview to the next, and 

 there was a continuum along the interviews, with some overlapping questions 
(with altered numbers). 

 

This development enabled the investigation of the learning journey of each participant 
and also revealed some emerging trends in the learning progress of the whole group. 
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Students’ Written Work 

D’Ambrosio (2013) argues that RC teacher-researchers need to use learners’ writing 

as one of the sources which inform them about their learners’ conceptual 

understandings. She says that ‘the teacher-researcher reads hermeneutically the 

writing of students’ (p. 249) in order to understand how students are constructing 

knowledge. Accordingly, I used students’ written work to help me build models (Steffe 

et al., 1983) of students’ intellectual journeys. 

 

After every lesson, students were assigned written work on worksheets which was 

related to what they were doing in the lesson. Most worksheets mimicked the GA 

interface. Towards the end, worksheet questions were more of the traditional type. 

Samples of such worksheets can be found in Appendices 4.1–4.5. Every worksheet 

was collected and analysed before the next GA lesson. An important part of this 

analysis was devoted towards assessing whether concepts developed with GA on the 

computer were applied to pen-and-paper problems. Figure 4.5.1.3 shows the work of 

one student, Dwayne, on the written task following Lesson 20.  

 

Figure 4.5.1.3 An excerpt from Dwayne’s written work 
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Journal Note-Taking 

As part of the data collection process in the pilot study (discussed in Chapter 5) I started 

keeping a journal of significant moments in the lessons which were relevant to the 

research questions. However, I soon found that the journal was not working well for 

me due to two main reasons: 

 

 The stops I was making throughout the lesson to jot down notes was 

interrupting my teacher frame of mind and influenced my decisions during the 

lesson. This could have compromised the data from the lessons. 

 

 By the time I got the chance to sit down and develop further the points I wrote 

during the lesson (usually after a whole day’s lessons), my thoughts were more 

of a reflection than a recollection of observations. I found that I could reflect 

better if I analysed the lesson video recordings. 

 

In the end, I decided that it would be better for me not to use journal note-taking as one 

of the data-gathering methods for the main study. 

 

 

4.5.2 Associating Data Collection Methods with Specific 
Research Questions 

Table 4.5.2.1 summarises how and why lesson video recording (LVR), computer 

screen activity capture (CSAC), video-recorded interviews (VRI), and students’ written 

work (SWW) were used to provide data associated with specific research questions. 
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Table 4.5.2.1 Associating Data Collection Methods and Research Questions 

 Research Question  Data Collection Method 

1(i)  How do I engage in CT and 
what are the distinguishing 
characteristics of such a 
teaching approach? 

LVR:    To investigate instances in GA lessons where I 
was teaching in a way that was sensitive to 
constructivist notions, particularly during the the 
toing and froing between my mathematics and that 
of my students. 

 
Frequency: 20 (all lessons)  

1(ii) What, if any, are the moments 
when I fail to engage in CT? 

LVR:    To investigate instances in GA lessons where I 
was teaching in a way that was not sensitive to 
constructivist notions.  

Frequency: 20 (all lessons) 

2(i) How do students represent and 
interpret mathematical notation 
as they start Grade 7? 

VRI:     To investigate individual students’ representations 
and interpretations of notation involved in 
expressions they encountered before starting the 
GA lessons. 

Frequency: 1 (Interview 1). 
 

2(ii) How does GA help students to 
enrich their representations and 
extend their interpretations of 
mathematical notation? 

LVR:    To investigate the teaching and learning process 
while students are extending their meanings of 
notation with the help of GA. 

Frequency: 20 (all lessons) 
 

VRI:     To investigate students’ developments of new or 
extended representations and interpretations of 
notation with the help of GA. 

Frequency: 4 times (VRI 2–5) 
 
CSAC: To investigate students’ interactions and progress 

through GA tasks as they work in pairs on their 
computers. 

Frequency: 20 (all lessons) 

2(iii) How do students transfer 
representations and 
interpretations of notation they 
develop when working with GA 
to pen-and-paper problems? 

SWW: To investigate the way students transfer 
representations and interpretations of notation 
learnt during the GA lessons to pen-and-paper 
problems. 

 
Frequency: 20 (after each lesson) 
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4.6 Data Analysis 

In this section, I describe how I set out to analyse the data by following Yin’s (2013) advice 
that case study researchers need to be careful to engage in systematic procedures and 
not allow equivocal evidence to influence the direction of the findings and conclusions. 
 

4.6.1 Discipline of Noticing 

When revisiting classroom episodes, students’ written work, and interview encounters 

I followed Mason’s (2002) guidelines intended particularly for teachers who are 

researching their own practice. Mason (2002) advises us to engage in what he calls 

‘the discipline of noticing’ (p. 61), a number of practices intended to help us not to miss 

opportunities to observe important elements of the data while avoiding to confuse 

speculations with observations: 

 Keeping accounts. Mason (2002) distinguishes between giving account-of 
and accounting-for. The former means providing descriptions of what occurred. 
The latter is giving one’s own interpretation and hypotheses of why certain 
things occurred. Mason stresses the importance that during noticing one should 
not ‘dissipate energy in making judgements’ (p. 14), and that interpretations of 
the collected data should occur only after a number of observations have been 
made and commonalities between the observed episodes could be detected. 
When reviewing the video recordings I kept an account of the events taking 
place during the lesson or interview. In subsequent reviews, I wrote notes and 
developed codes in order to keep an account for these events using techniques 
as shown in Section 4.6.2. 

 Developing sensitivities. Here Mason (2002) refers to sensitising oneself to 
observe factors which are pertinent to the research questions. I helped myself 
to do this by subdividing the research questions into specific subsidiary 
questions as shown in Table 4.5.2.1.  

 Recognising choices. Mason (2002) draws to our attention that teachers are 
all the time making choices according to situations occurring in the classroom. 
In my case, the discipline of noticing was particularly useful for the review of 
data in lesson video recordings, where I was on the alert for those significant 
moments in the lessons where, as a teacher, I had a choice of how to act or 
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proceed. Later I associated those choices with categories in the data which 
then developed into themes (see Section 4.6.2). 

 Preparing and noticing. Before even starting to review any data, Mason 
(2002) advises us to have a list of what to look for and to prepare ourselves to 
notice the items on that list at the instant they occur. This advice was very 
helpful during the review of the video clips because it focused my attention on 
capturing the relevant data from what would otherwise be perceived a rich but 
overwhelming collection of actions and representations. 

 Labelling. Mason (2002) here is referring to the practice of data coding which 
I will describe in detail in Section 4.6.2. 

 Validating with others. Besides triangulating data by making use of diverse 
data-collection tools, I validated my observations through discussions with my 
supervisors and with the students themselves. In addition, I published 
preliminary findings in a peer-reviewed journal (Borg, Hewitt, & Jones, 2016a, 
2016b) and also gave a presentation at Loughborough University11 where I 
discussed the overarching conceptual framework (see Section 6.2.2) with faculty 
members and PhD students at the Mathematics Education Centre. 

 

Engaging in these factors of disciplined noticing helped me to seek threads and 

similarities between the accounts (Mason, 2002) through a series of data analysis 

techniques which I discuss next. 
 

4.6.2 Data Analysis Techniques 

To analyse the data I followed a sequence of coding, categorising, classifying, and 
labelling patterns which is what Patton (2002) calls content analysis. According to 
Patton (p. 453), ‘content analysis is used to refer to any qualitative data reduction and 
sense-making effort that takes a volume of qualitative material and attempts to identify 
core consistencies and meanings’. In my case, this consisted of systematically sifting 
through all the collected data so that I could choose the parts of it that best captured 
the experiential reality (Glasersfeld, 1991a) of the persons involved in the case and 

                                            
11 This presentation was given at a meeting of the Curriculum, Pedagogy and Identity Group (CPIG) 
held by the Mathematics Education Centre. 
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which could answer the research questions in a detailed manner. Parlett and Hamilton 
(1976) use the term progressive focusing for such a process where the large amounts 
of raw data, which typically amasses from qualitative methods, is funnelled from the 
wide to the narrow.  
 

This process was possible through a system of coding I developed and refined over the 
time I spent analysing the data. Saldana (2009, p. 3), defines a code as ‘a word or short 
phrase that symbolically assigns a summative, salient, essence-capturing’ descriptor for 
a portion of data. When coding the data, I created links between observable occurrences 
and the theories that gradually developed in relation to the literature and the research 
questions. The first stage of the coding process involved creating primary codes and 
classifying these into subcategories and then into categories. I did this by putting data 
‘into groups, subsets or categories on the basis of some clear criterion (e.g. acts, 
behaviour, meanings, nature of participation, relationships, settings, activities)’ (Cohen 
et al., 2011, p. 558). This primary coding was followed by revisiting the literature and the 
primary data, and then by reviewing the codes and categories, allowing the latter to 
merge into theories that answered or were used to answer the research questions. This 
recoding process was what Miles and Huberman (1984) call secondary coding. It was 
essentially a classificatory process (LeCompte & Preissle, 1993) that involved further 
reduction and selection of data that converged into a typological analysis.  
 
A significant part of the work involved in answering the research question 1(i) was the 
creation of a conceptual framework which I will discuss in Chapter 6. For now, I will 
refer to this as the “CT framework”. This framework was overarching, in that all 
research questions and their answers made sense within it. Research question 1(ii) 
could be answered by using the CT framework analytically. Research questions 2(i)–
(iii), which were not directly related to my teaching approach, were asked to investigate 
what the students made of my CT, whether and how CT made them develop or extend 
mathematical concepts, and whether their learning was reflected in their written work. 
Hence, answering questions 2(i)–(iii) was a focus on one aspect of the CT theory. 
 
When developing the CT framework, I made the journey from the concrete (data) to 
the abstract (theory), from the particular to the general. Figure 4.6.2.1 shows this 
journey as a streamlined codes-to-theory model derived from Saldana (2009). 
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The finalised codes regarding CT took the form of a three-point hierarchical acronym 

identifying theory, category, and subcategory, with the latter being part of the primary 

evidence I used to develop that theory. These codes, which are discussed further in 

Chapter 6, were logged into coding sheets which included detailed lesson event notes. 

An example of such a coding sheet is provided in Appendix 5.  
 

Figure 4.6.2.1 Streamlined codes-to-theory model of analysing the data 

 
(Adapted from Saldana, 2009, p. 12) 

 

Besides defining the dynamics in my teaching approach, the CT framework proved 

itself to be a viable analytical tool which helped me to investigate my teaching 

approach. Hence, answering questions 1(i)–(ii) was accomplished through the 

development and the analytical use of the CT framework. This analysis is discussed in 

Chapter 6. 
 

When investigating data related to research questions 2(i)–(iii), I amalgamated two 

existing constructs to form a second framework (Section 7.1). This framework helped me 

to investigate students’ construction of concepts about notation with the use of GA and 

facilitated by CT. This time, the codes I used to classify the data emerged from the 

framework itself, rather than formed it, as was the case of the CT framework. This coding 

enabled the data analysis which I develop in Chapter 7. This includes a discussion of how 

students’ representations and interpretations fitted within the overarching CT framework. 
 

Code X-A-2 

Code X-B-3 

Code X-A-1 

Code X-B-4 

Code Y-C-6 

Code Y-D-7 

Code Y-D-8 

Code Y-C-5 

Subcategory X-A 
 

Subcategory X-B 
 

Subcategory Y-C 
 

Subcategory Y-D 
 

Theory 

Category X 
 

Category Y 
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In the following section, I discuss issues about being a teaching researcher which may 

have acted as enablers or barriers to the overall research design and development. 

 
4.7 Issues about Being a Teaching Researcher 

The term practitioner research is used in the literature to denote any ‘research 

conducted by a practitioner/professional in any field ... into their own practice’ 

(Wellington, 2000, p. 20). Stenhouse (1975) used the term teacher as researcher to 

specify practitioner research undertaken by teachers. Teacher researchers may 

embark on research projects  

 outside their school, 

 in the same school but unrelated to their teaching, or 

 in the same school and concerning their teaching. 

 

To distinguish my situation (iii) from the others, I use the term “teaching researcher” to 

convey the notion of data being collected during and concerning the teaching process. 

As I will argue later, this created issues which may not be present in situations (i) or (ii). 

 

4.7.1  The Outsider and the Insider Doctrines 

Mertin (1972) presents two extreme views with regard to research: The Outsider and 

the Insider doctrines. The Outsider doctrine holds that the only true research is that in 

which researchers are not in any way involved in the case being studied because living 

or working in a particular realm distorts researchers’ perception of that realm. On the 

other hand, the Insider doctrine holds that only those who live or work in a particular 

field can truly understand what goes on inside that field. Being a teaching researcher 

myself, I cannot but side with this last standpoint. Nevertheless, I needed to be aware 

of certain pitfalls of insider research which may correspond to some epistemological 

claims of the Outsider doctrine (Mertin, 1972). Hence, I needed to acknowledge both 

advantages and problems of being a teaching researcher. 
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4.7.2 Advantages and Problems of a Teaching Researcher 

Wellington (2000, p. 20) draws up a number of potential advantages and problems of 

practitioner research. These are presented in Table 4.7.2.1. 
 

Table 4.7.2.1 Potential advantages and possible problems of practitioner research 

 Potential advantages Possible problems 

(i)  Prior knowledge and experience of the 
setting/context (insider knowledge) 

Preconceptions, prejudices 

(ii)  Improved insight into the situation and 
people involved 

Not as ‘open-minded’ as an ‘outsider’ 
researcher 

(iii)  Easier access Lack of time (if working inside the 
organisation) and distractions/constraints due 
to being ‘known’ 

(iv)  Better personal relationships, e.g. with 
teachers, students 

‘Prophet in own country’ difficulty when 
reporting or feeding back 

(v)  Practitioner insight may help with the design, 
ethics and reporting of the research 

Researcher’s status in the organization, e.g. a 
school 

(vi)  Familiarity Familiarity 

 

 

With the exception of problems (iv) and (v), I experienced all advantages and problems 

included in Wellington’s (2000) table.  

 Insider knowledge vs. Prejudice. I cannot dispute Fraser’s (1997) claim that 

teaching researchers may be biased towards establishing the effectiveness of 

a teaching programme for which they are responsible: as a teacher I strived to 

make my lessons effective. After the lessons, when I analysed the lesson 

videos as a researcher, I could observe moments of frustrations when the 

lesson was not going as I desired. However, those same frustrations became 

specific events that were relevant to the case (Hitchcock & Hughes, 1995) and 

what was frustrating for me as a teacher became interesting and pertinent data 

for me as a researcher. Nevertheless, I needed to acknowledge my bias in 
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favour of my choice of approach and tools (especially GA) as a teacher 

because these were approaches and tools I believed in. Nevertheless, as 

Chapter 6 will reveal, I did not hold back on self-criticism especially in those 

instances where I was found myself not implementing my pedagogical beliefs. 

 Insight vs. Close-mindedness. Elliott (1991) warns practitioner researchers 

about the problem of not having an outsider’s vantage point into the research 

context and suggested ‘dismantling the value structure of privacy, territory and 

hierarchy, and substituting the values of openness, shared critical responsibility 

and rational autonomy’ (p. 67). I strived to be open with my student participants 

without influencing their behaviour and responses. However, I needed to be 

aware that school children are bound to regard their teacher as an authority 

figure and may not view themselves as research partners in school-based 

research. 

 Access vs. Time-constraints. Having easy access to the students and the 

classroom had many advantages. It enabled negotiating the time of the 

interviews, speaking individually to a participant, and preparing the room for the 

lessons with considerable ease to mention but a few. Being a teaching 

researcher brought about other than benefits, however. Sometimes, tensions 

were created due to time constraints, such as when I had to prepare the 

classroom for the data collection right after another lesson. Distractions from 

colleagues were minimal.  

 Personal relationships vs. Teaching duties. I found that establishing a 

formal but friendly rapport with the students helped them to be at ease during 

the lessons, and to behave in the way they usually do in my lessons. In fact, 

they completely ignored the video camera during the GA lessons. The same 

could be said for the interviews. However, I needed to keep in mind that besides 

a method of data generation, the GA lessons still formed a considerable portion 

of these students’ yearly lessons and I could never dismiss the syllabus content 

I was entrusted to teach. While creating some constraints, this was an integral 

aspect of the CT theory I developed, as I discuss in Chapter 6. 
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 Practitioner vs. Researcher status. My status in the school was 

predominantly that of a teacher. At school, I only assumed a researcher status 

during the interviews. During the lessons, I strived not to assume a researcher 

status because I needed my lessons to be as “normal” as my other lessons. 

Only in this way I could ensure that my research analysis was not portraying a 

false picture of what would have happened if the lessons were not part of the 

data. Nevertheless, the analysis was necessarily an insider’s report. 

 Familiarity. This was indeed a double-edged sword. On one side it helped 

students to be themselves in the lesson. It also helped to create a stress-free 

atmosphere during the interviews. However, although I was very satisfied with 

students’ behaviour in the lessons, I suspect that at times it was this same 

familiarity which gave them an occasional misbehaving attitude. 

 

4.7.3 Switching between the Researcher and Teacher Hats 

Wellington’s (2000) list excludes a dilemma I experienced. During the GA lessons and 

also during the interviews it was quite demanding for me to maintain a teacher-

researcher simultaneity. In the lesson, the researcher in me was interested in 

developing a classroom discussion even if it was out of the lesson topic while the 

teacher in me was constantly aware that not much of the planned material was being 

covered for so much precious teaching time (GA lessons formed approximately 40% 

of the lesson time for a whole scholastic year). So sometimes I may have intervened 

when I felt that the lesson was taking on a different path than what was originally 

intended. Nolen and Putten (2007, p. 404) argue that ‘the teacher cannot abandon the 

role of practitioner but must always exercise professional judgement and skill in the 

best interest of the student.’ 

 

My professional obligation as a teacher made me aware of the difficulties arising from 

what Nolen and Putten (2007, p. 404) call ‘the practitioner-researcher duality,’ even 

during the interviews. Sometimes, I felt awkward wearing my researcher hat during 

interviews when a student asked me to help him with a concept and I had to resist the 

teaching urge to assist him and keep on asking the questions as neutrally as possible. 
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On the other hand, during the lessons, I found it occasionally hard to concentrate on 

my teaching when I became aware that precious data collection time was being lost 

due to some students’ misbehaviour even though, as a teacher, I usually expect such 

moments. Aware of Elliott’s (1991, p. 66) warning that ‘insider research tends to be 

viewed as a teaching versus research dilemma which gets resolved in favour of the 

former’, I settled this role conflict issue by taking on a predominant teacher role during 

the lessons and a researcher role during the interviews, planning of the lessons, and 

analysis of data. As explained in Section 4.5.1, this was the main reason why I stopped 

writing a journal as a method of collecting data. Jotting down notes during the lesson 

itself was hampering my ability to focus on my teacher role. 

 

In this section, I have given an account of the advantages and disadvantages of being 

a teaching researcher which necessarily entails elements of researcher bias which 

needed to be acknowledged for the sake of the robustness of the study. In the next 

section, I continue to discuss the issue of research rigour by showing how I strived for 

reliability and several types of validity (including generalisability). 

 

4.8 Reliability, Validity, and Generalisability 

Throughout the research design, the methodology, the timing, the choice of tools and 

methods, and the data collection and analysis I was careful to minimise compromising 

the reliability or validity of my research. In this section, I discuss the measures I took 

to reduce threats to reliability and validity. I also discuss the matter of generalisability 

as a means of external validity.  

 

4.8.1  Measures to Maximise Reliability 

There are several who contest the suitability of the term “reliability” for qualitative 

research (e.g. Lincoln & Guba, 1985; Winter, 2000; Stenbacka, 2001; Golafshani, 

2003). In particular, Lincoln and Guba (1985) prefer terms such as “credibility”, 

“consistency”, and “trustworthiness” to replace “reliability” when it comes to qualitative 

research. One reason for this is that quantitative norms of reliability such as 
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consistency (stability), accuracy, predictability, equivalence of outcomes, replicability, 

and concurrence are absent when the interpretation of data is subjective, as it usually 

is in qualitative research. 
 

While arguing that the basic tenets of reliability for quantitative research may be 

inapplicable for qualitative research, LeCompte and Preissle (1993) propose that 

qualitative research could still strive for replication through the generation, refinement, 

comparison, and validation of constructs by maintaining: 

 the status position of the researcher, 
 the choice of participants, 
 the social situation/condition, 
 the analytic constructs used, and 
 the methods of data collection and analysis. 

 

Throughout the whole scholastic year I spent generating and collecting data, I strived 

to maintain these five factors. My status of a mathematics teaching researcher with 

sympathies for RC epistemology and ontology were retained throughout the whole 

research process. The participants were always the same six students I started with. I 

strived to make the data collection process as stress-free as possible for the students 

to avoid any drop-outs, which I did not have.  

 

The social situation and condition of the student participants and me was always that 

of a typical Grade 7C (Maths) class and their teacher at St George’s College. As an 

extra measure of constancy I made sure to have all the GA lessons in the same 

classroom and retain the same pairs of students for computer work throughout the 

whole year. I was aware, however, of my limitations to maximise regularity of my 

students’ mental conditions or even my own, especially when variables at home 

changed drastically. Just to mention two examples, there was a period when Dan was 

not himself due to serious trouble with his mother’s health and there was a similar 

period for me when two very close family relatives passed away. So ensuring regularity 

in such a longitudinal research was virtually impossible since several background 

factors varied over time.  
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While the CT framework was developed as part of the analysis (Chapter 6), the 

analytical framework I used to help me investigate students’ representations and 

interpretations of notation was always the same throughout the data analysis process 

(Chapter 7). Moreover, with the exception of journal note-taking which I abandoned 

after my pilot study, I kept the same data-gathering methods and tools and an 

organised coding system as can be seen in Appendix 5. 

 

4.8.2  Measures to Maximise Validity 

According to the Association for Qualitative Research (2015), validity is the capacity of 

research to actually measure what it sets out to, or to actually reflect the reality it claims 

to represent. Holding the RC ontological belief about the nature of reality that although 

reality may exist independently, what we know of it is individually constructed, I concur 

with Anderson and Jones’s (2000, p. 44) claim that ‘practitioners' accounts of their 

reality are themselves constructions of reality and not reality itself’. Nevertheless, I 

strived to maintain characteristics of a valid qualitative research such as those singled 

out by Cohen, Manion, and Morrison (2011): honesty, richness, authenticity, depth, 

subjectivity, catching uniqueness, and containing strength of feeling and idiographic 

statements. With the exception of the latter, all these characteristics depend on a 

choice of quality rather than method and I kept these in mind throughout the planning, 

implementation, and analysis stages of the research. Furthermore, the statements I 

will make in my analysis and interpretation will only be time-bound and context-bound 

claims. This does not exclude, however, that readers may not extrapolate lessons from 

this research to their own time- and context-defined realities. This will be discussed in 

the next section.  

 

Like reliability, the concept of validity is drawn from the scientific tradition and needs 

specific interpretation in the context of qualitative research (AQR, 2015). I share 

Maxwell’s (1992) notion that the term “understanding” would be more suited than 

“validity” for qualitative research. As a qualitative researcher I was aware that I was 

part of the same reality I was trying to understand and that my interpretations of the 

data were necessarily subjective. I was also aware that my participants’ perspectives 
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of this reality were as valid as mine, and I needed to understand and report those 

perceptions, at least what I understood from their representations. Maxwell (1992) 

makes an argument for five factors of validating qualitative research through this notion 

of understanding. I am listing them here together with the measures I took to address 

them in my research: 

 Descriptive validity. This is the factual accuracy of the account, which is not 
fabricated, selective, or distorted. Claiming subjectivity and refuting the 
knowledge (not the existence) of an external objective reality does not mean 
that RC researchers have a free pass to present speculation as factual 
occurrences or to present a fictitious narrative as a personal experience or 
observation. So even though I have approached the data analysis from a RC 
perspective, I still strived to give an accurate and complete account of my 
experiential reality (Glasersfeld, 1991a). One way of doing this was the 
employment of several methods of data generation and collection which served 
as a means of triangulation (see Table 4.5.2.1). The other way was to ensure 
that any relevant data which might enrich the answers to the research questions 
were not deliberately omitted during the analysis process. I also provided raw 
data for my supervisors to scrutinise and continuously discussed with them the 
issue of relevance of data. 

 Interpretive validity. This is the ability of research to capture meanings, 
interpretations, terms, and intentions that situations and events have for the 
participants themselves in their terms. In my research, particularly during the 
interviews, I made sure to give voice to the participants, allowing them all the 
time they required to express themselves and, where necessary, I probed to 
help them provide a more complete representation of what was going on inside 
their mind. This was one of the reasons I chose video over audio recordings, 
as discussed earlier. Here too, however, I need to claim subjectivity in my 
interpretations of what the students said and thought, even when I quote 
directly from transcripts. As Kvale (1996) suggests, the prefix “trans” indicates 
a change of state and thus transcription is, in itself, a selective transformation 
of data. It is therefore unrealistic to pretend that the data on transcripts are 
anything but already interpreted data (Cohen, Manion, & Morrison, 2011). This 
awareness was all the more relevant in my case because what I present here 
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as excerpts in English are my translations of Maltese exchanges. Once again, 
visual cues made possible through video recording helped me to make more 
accurate translations than if I was using only audio. 

 Theoretical validity. This is the extent to which theoretical constructions are 
able to explain phenomena. The theoretical framework I developed to describe 
and analyse my CT was inspired from seminal works discussed in Chapter 2 
but was principally derived from my own work in the classroom. I can say that 
I found this framework viable in explaining the phenomena occurring in the 
classroom with regards to CT. Not only did this explanation make sense to me 
but I also seem to have persuaded others (my supervisors, my colleagues, and 
reviewers of the paper Borg et al., 2016a) that this framework is able to explain 
CT from a RC perspective. 

 Evaluative validity. This is the application of evaluative analysis, judgmental 
of that which is being researched, and not just a descriptive, explanatory or 
interpretive analysis of phenomena. As I show in Chapters 6 and 7, in my data 
analysis I assumed an evaluative and critical stance, especially in the extent to 
which I managed to engage in CT. My literature review, which in itself included 
elements of evaluation and argumentation, placed me in a position where I 
could analytically compare and contrast my research findings to those of other 
researchers in the field of mathematics education. This may be verified in my 
answers to the research questions (Chapter 8). 

 Generalisability. This exists if the theory generated may be useful in 
understanding other similar situations. I discuss generalisability in more detail 
in the section that follows. 

 

4.8.3 A Cautious Claim of Generalisability  

One important criticism of case studies is that their focus on the singular renders them 

inappropriate to make claims for generalisability. Two long-standing critics of case 

study research, Atkinson and Delamont (1993, p. 38) base one of their criticisms on 

the fact that ‘the proponents of case-study research often distinguish their enterprise 

from other research styles and approaches by stressing the unique, the particular, 
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(and) the "instance" ’, a profoundly mistaken approach according to them. They argue 

that this might lead to an incapability of developing case studies into more general 

frameworks and reduce them into ‘one-off affairs, with no sense of cumulative 

knowledge or developing theoretical insight’ (p. 39).  

 

I believe the most powerful answer to such a criticism was given almost two decades 

earlier: 

Case study is the examination of an instance in action. The choice of the word 
"instance" is significant in this definition, because it implies a goal of 
generalisation… Case study is the way of the artist, who achieves greatness when, 
through the portrayal of a single instance locked in time and circumstance, he [sic.] 
communicates enduring truths about the human condition. 

(MacDonald & Walker, 1975, pp. 2-3) 
 

MacDonald and Walker claim that an in-depth study and portrayal of a singular case 

may yield insights of universal significance. As Hoepfl (1997) argues, this type of 

generalisability is not the causal determination, prediction, or generalisation of findings 

that are usually associated with quantitative research but rather the understanding, 

illumination, and extrapolation to similar circumstances. 

 

There are two possible types of generalisation possible for case studies. I will describe 

them here with reference to how I sought to achieve them in my research.  

 The first type is what Yin (2013) terms analytic generalisation. This ‘consists of 

a carefully posed theoretical statement, theory, or theoretical proposition. The 

generalisation can take the form of a lesson learnt, working hypothesis, or other 

principle that is believed to be applicable to other situations (not just other “like 

cases”). (p. 68). Yin (2013) argues that this type of generalisation is suitable for 

generating theory from a case study. As I discuss elsewhere (Borg, Hewitt, & 

Jones, 2016a), the theoretical framework regarding CT that I developed from 

the analysis of the research data may be found viable by other constructivist 

teachers and for other subjects. Thus, a claim for analytic generalisation (Yin, 

2013) may be warranted. 
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 The second type is naturalistic generalisation, a term coined by Stake and 

Trumbull (1982) meaning the ‘conclusions arrived at through personal 

engagement in life’s affairs’ (Stake, 1995, p. 86). It is the way humans create 

mental constructs from their own or other people’s experiences and apply them 

to other situations as they expand their knowledge. Naturalistic generalisations 

in research can occur if readers identify with a vicarious experience (the 

research account), make it their own, and learn from it. When reporting the 

outcome of my case study, I have attempted to create such an account with 

which readers may empathise and create viable mental constructs to make 

sense of their own realities. My claim for naturalistic generalisability will be 

confirmed if readers of this work learn lessons which they can extrapolate to 

help them understand their own experiential worlds. 

 
In the above sections I have discussed the way I collected, organised, and analysed 

data. Due to the nature of the research and the vulnerability of participants (age and 

power difference from researcher) I needed to take careful ethical considerations 

during the whole process of data handling. This is discussed next. 

 

4.9 Ethical Considerations 

This section includes ethical considerations I took in order to safeguard the welfare of 

the participants while making sure that the data collection proceeded as smoothly as 

possible. I was mainly guided by BERA’s (2011) Ethical Guidelines for Educational 

Research and these considerations were vetted and approved by the Loughborough 

University Ethics Approvals (Human Participants) Sub-Committee. 

 

4.9.1 Recruitment of Participants 

The recruitment of participants was largely dictated by my situation as a full-time 

teacher and my interest in how CT may facilitate learning through the use of computer 

software. Given the amount of contact hours required for the collection of data for such 

a research project, the most viable option for me was to conduct the research in the 
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school in which I was teaching at the time of the research, i.e. St. George’s College. In 

addition, I intended to examine the learning of informal- and formal-algebraic activities 

of Grade 7 students. Since the only Grade 7 I taught was composed of six prospective 

research participants, there was no question about the choice of participants. The small 

number of this group made it possible for me to include them all in the study of the 

case and hence any further discrimination in the choice of participants was eliminated. 

 

The only question remaining with regards to recruitment was whether these 

prospective participants would accept my invitation to take part in this research and 

whether the persons responsible for their welfare would be willing to let them 

participate on the basis of voluntary informed consent. 

 

4.9.2 Voluntary Informed Consent 

According to BERA (2011, p. 5), voluntary informed consent is ‘the condition in which 

participants understand and agree to their participation without any duress, prior to the 

research getting underway’. Before seeking such consent, I needed to keep in mind 

these factors: 

 The participants were minors and were my students. 

 The participant-researcher relationship may have been in conflict with the 
student-teacher relationship. 

 Most of the data was going to be collected during lessons in which I was the 
teacher (hence the authority figure). 

 The whole research was conducted in a school setting in which the participants 
were new and in which I was not. 

 The overall wellbeing of all the students in the school was the responsibility of 
the head of school as well as that of their teachers. 

Thus, I contacted three stakeholders from which I sought voluntary informed consent: 

 the head of school, 

 the prospective participants, and 

 the participants’ guardians. 
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The first gatekeeper of these three parties was the head of school and I gave a consent 

letter to him first (Appendix 6.1). Once I obtained the head’s consent, I gave a letter to 

each prospective research participant (Appendix 6.2), which I read out and explained 

to them face to face. The students were encouraged to ask questions to clear out any 

queries they might have had about the research. Thirdly, I sent a consent letter to the 

students’ guardians (Appendix 6.3), including a form in which I required joint signatures 

from both guardians and students. All consent letters included: 

 a short description of the aims of the research, 

 a description of the length of time when data will be collected, 

 the methods and tools of data collection, 

 the frequency of each type of data collection, 

 possible benefits and risks, 

 a rationale for my choice of participants, 

 measures to ensure confidentiality and privacy, 

 assurance of voluntary participation throughout the whole research, and 

 the possibility of withdrawal without any consequence. 

 

Following the letters, some guardians spoke to me on the telephone to inquire about 

some aspects of the research. Within a week, I had obtained voluntary informed 

consent from all parties involved. 

 

4.9.3 Confidentiality of Data 

Since the research was a case study where particular data needed to be associated 

with particular participants, anonymity was not applicable. However, I safeguarded the 

confidentiality of data by taking the following measures: 

 Pseudonyms were used to refer to individual participants and the school; 

 When showing video screenshots, students’ faces and the school uniform 

badge were blurred; 
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 Any information, such as the name of the school or its locality, which may reveal 
the identity of the participants was not included in any transcript.  

 

In addition, throughout the whole research project, I kept all recorded data in a secure 

location and only the research supervisors at Loughborough University and I could 

have access to the data. 

 

4.10 Time Frames 

Table 4.10.1 shows the time frames for significant pieces of work in the research. Since 

I was a part-time researcher, this PhD project took 5 years to accomplish. 
 

Table 4.10.1 Time frames for pieces of work in relation to the research 

 JUN SEP JUN SEP JUN SEP JUN SEP JUN SEP JUN NOV 
 2012 2012 2013 2013 2014 2014 2015 2015 2016 2016 2017 2017 

             

Preparation of Proposal              
             

Refining Research Questions             
             

Journal of Pre-Literature             
             

Literature Review             
             

Pre-pilot (GA trials)             
             

Ethical Review             
             

Pilot             
             

Main Study Data Collection             
             

Data Analysis             
             

Thesis write-up             
 

            

Submission of thesis             
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4.11 Summary 

In this chapter, I gave a rationale for my research design and a description of the 

context and participants of the research. Included here is also an explanation of my 

use of the data-gathering tools, how the lessons were given, and the techniques I used 

for the data analysis. I included issues about being a teaching researcher and how I 

addressed them. I also discussed how I strived for reliability and validity in such a 

qualitative research context. Finally, I included the ethical considerations necessary for 

such a study that involved young students. In the next chapter, I briefly outline the pilot 

study, highlighting the lessons I learnt which helped me to make or change decisions 

in the data gathering and analysis of the main study. 

 

 



 

 
 

Chapter 5 

 Pilot Study 
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5.0 Overview 

In this chapter, I will give a brief review of the pilot study I undertook during the scholastic 
year 2013-2014, immediately preceding the scholastic year of the main study. The group 
of participants were the Grade 7C (lowest-performing set) mathematics students at St. 
George’s College, whom I taught during that year. This was itself preceded by a pre-pilot 
study with my 2012-2013 Grade 7C students which served mainly to test how GA could 
be used to help students to engage in informal- and formal-algebraic activities.  
 
The rationale of the pilot was to refine and, possibly, redefine the research questions 
and to get information about technical matters (Cohen et al., 2011). This chapter is 
mainly a discussion of the lessons I learnt from the pilot and how these affected the 
methodology and method of the main research study. Table 5.0.1 includes the section 
titles of this chapter. 
 

Table 5.0.1 Chapter 5 section titles 

 Title Page 

5.1 Description of the Pilot 164 

5.2 Lessons about the Research Questions 167 

5.3 Lessons about the Participants and their Learning 170 

5.4 Lessons about Myself as a Teaching Researcher 176 

5.5 Lessons about the Research Method and Tools 178 

5.6 Possible Hypotheses 179 

 
5.1 Description of the Pilot 

The 2013-2014 Grade 7C (Maths) group consisted of 11 students all of whom turned 

11 years of age by the end of 2013. The whole group took part in the pilot study but I 

only followed closely two of the students. I refer to these as the “case study students” 

with pseudonyms Alan and Manuel. Overall, the data was collected via: 
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 lesson video recording (LVR), 

 video-recorded interviews (VRI), 

 computer screen activity capture (CSAC), 

 students’ written work (SWW), and 

 journal note-taking (JNT) during the GA lessons. 

 

VRI and CSAC were only used with the two case study students. Table 5.1.1 gives an 

overview of the pilot study, showing when and how data was collected. 
 

Table 5.1.1 Overview of the data collection process in the pilot 

Week Data Generation 
Data Collection Methods 

LVR VRI CSAC SWW JNT 

1 Test 1: Arithmetic Skills (Pre-GA) - - -  - 

2 Interview 1: Meanings for Notation (Pre-GA) -  - - - 

3 GA Lesson 1: Getting used to the GA Grid  - - - - 

4 GA Lesson 2: Moving the cells – Operations   - - -  

5 Interview 2: GA Cell Representation – No Letters -  - -  

6 GA Lesson 3: Numerical Expressions in GA  - - -  

7 GA Lesson 4: Variable Expressions in GA  - - -  

8 GA Lesson 5: More Practice on Expressions (1) 
Test 2: Arithmetic Skills (Post-GA)  -    

9 GA Lesson 6: More Practice on Expressions (2) 
Interview 3: Meanings for Notation (Post-GA)    -  

10 GA Lesson 7: Order of Operations on Letters (1)  -  -  

11 GA Lesson 8: Order of Operations on Letters (2) 
Interview 4: GA Cell Representation 2 – Letters  -  -  

12 GA Lesson 9: Constructing an Algebraic Expression  -  - - 

13 GA Lesson 10: GA to Paper – Substitution  -  - - 

14 GA Lesson 11: GA to Paper – Function (Processes) 
GA Lesson 12: GA to Paper – From Words to Symbols  -  - - 
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The pilot was started after I got the ethical clearance in March 2014 and lasted until 

the end of that scholastic year. The wait for the ethical clearance gave me time to get 

to know the students and be in a better position to choose the two case study students. 

Alan and Manuel were strategically chosen to have different performance levels. Alan 

consistently showed a higher performance in his work than did Manuel and but both of 

them were quite able to express themselves verbally. It benefitted the pilot study that 

they agreed to take part in it because I got to know how students of different 

performance levels reacted to the GA software, the lessons, and the interviews. In 

addition, their verbal ability ensured that they could give me valuable feedback on their 

thought processes during the interviews. 

 

All of the other students in the class agreed to act as “background participants”. Their 

role was important because their participation provided me with information about the 

classroom dynamics during class discussions and also with insights about the way 

students represent and interpret mathematical expressions while working with GA. 

Their performance in written work made me aware of some common errors when 

dealing with expressions and their interpretations of the questions led me to think of 

better ways in which these could be worded. 

 

The analysis of the pilot study enabled me to elicit lessons about 

 the research questions, 

 the participants, 

 myself as a teaching researcher, and 

 the research method and tools. 

 

In addition, I formed potential hypotheses which I set out to explore in the main study. 

In this chapter, I outline these lessons and hypotheses with reference to the research 

aims.  
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5.2 Lessons about the Research Questions 

During the analysis of the lesson videos, I saw myself acting as a sort of catalyst to the 

students’ thinking and reasoning as they interpreted and represented expressions 

generated by GA. During the analysis, I developed sensitivities (Mason, 2002) with 

regards to CT. I asked myself: Is my teaching reflecting my RC beliefs? Am I being 

sensitive to students’ constructions of knowledge? During the analysis of the lesson 

videos I could identify instances when this seemed to be the case. As an example, I 

will present the three excerpts from Lesson 9 where learners were working on 

expressions that included a letter. 

 
Excerpt 5.2.1 Lesson 9 

PB12: What does this 𝑧𝑧 mean?... 

Mario: Any number. 

PB: Any number. But is it any, any number? Can it be, say, one? 

Mario: No. In the 5-times table. 

PB: Any number in the 5-times table. Good. 

 

This is an exercise in what Driver and Oldham (1986) call elicitation, an important step 

in their constructivist instruction model (CIM) where teachers help learners access 

and express their prior knowledge and current ideas on the topic. Here I was interested 

in learning the mathematics of my students, a crucial exercise in CT according to Steffe 

(1991). When I asked Mario to elaborate on his “any number” I was also aiming to 

restructure his and other students’ ideas through clarification and exchange (Driver & 

Oldham, 1986).  

 

While, in Excerpt 5.2.1, I seem to be interested in learning about a student’s conceptual 

interpretation, in other moments it seemed I was trying to orient students’ thinking 

(Glasersfeld, 1991b) towards some sort of conceptual agreement with my own notions 

of the subject matter. This was the case in the following episode. 

                                            
12 Philip Borg 
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Excerpt 5.2.2 Lesson 9 

PB: [Referring to the expression 𝑐𝑐−6
6

] …(W)hich is going to be performed first 
from it [some students raise their hands]…Let’s see. There’s someone 
else, Karl [points towards Karl]. 

Karl: 𝑐𝑐 minus 6. 

PB: Well done. Why are you realising that 𝑐𝑐 minus 6 needs to be performed 
first [Karl starts answering] and not the division? 

Karl: Because if you go up in another row you can’t do minus 6 because there 
won’t be enough boxes. 

PB: All right. Because there aren’t enough boxes to do minus six. But if you 
are just seeing this [making a rotating motion on the expression] and 
you’re not seeing anything else, all right? Because now the grid will start 
to disappear, uh. We won’t always have the grid… 

Karl: Because you are in the 6-times table. 

PB: …Why do I need to perform minus 6 before I do the division here? 

Alan: [Raises his hand] Because there’s that, that line separated for itself 
[makes horizontal line gesture #1]. 

 

 

PB: Good. Because this line [pointing to the division line] we are seeing that it 
is long [makes horizontal line gesture #2]… 

 

 

#1 

#2 
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In the first part of this episode, I was interested to learn how students’ were interpreting 

the expression 𝑐𝑐−6
6

. When Karl answered correctly, I wanted to help all students to 

reflect on why it was −6 to be performed first. Karl’s second reponse was not what I 

anticipated as a “correct” answer and I was aware that some “mistaken” answers are 

actually correct for particular interpretations of the question (Glasersfeld, 1991b). 

However, I wanted to orient students’ reflections on the notation: “But if you are just 

seeing this…” When Alan gave the response I was after, I elaborated it by imitating 

and amplifying his horizontal line gesture. 

 

Excerpt 5.2.2 shows a typical teaching approach during plenary discussions. Like other 

lessons, I observed myself here shifting my attention several times: 

• interacting with the students,  

• inquiring to learn about students’ interpretations,  

• going back to them with a new approach according to the feedback, 

• acknowledging students’ representations, 

• reflecting on those students’ representations, and  

• reinventing my learning offer (Steinbring, 1998). 

 

This toing and froing from students’ mathematics (Steffe, 1991) to the mathematics I 

intended to teach and back to the students made me ask the question whether this was 

an indication of CT. These oscillations between learners and subject content reminded 

me of Dewey’s (1902) metaphor that teaching is the line defined by two points: the child 

and the curriculum. These reflections helped me to refine my research question 

concerning CT (1(i)). If such acts of negotiation between learners and my mathematics 

were caused by my sensitivity to students (Jaworski, 1994), there might have been 

occasions where I lost this sensitivity. This led to research question 1(ii). As shown in 

the above excerpts, these classroom dynamics surrounded the subject matter (notation 

used in informal- and formal-algebraic activities) and facilitated by GA. This and my belief 

that my classroom actions could only be classified as teaching if they brought about 

learning (Freire, 1998) generated research questions 2(i)–(iii).  
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5.3 Lessons about the Participants and their Learning 

As soon as I started the pilot study, I assigned a written classwork to test students’ 

performance in simple arithmetic operations and evaluations of numerical expressions. 

While being able to perform simple arithmetical operations (e.g. 3 × 6  and 10 − 4) 

through factual recall, most students evaluated numerical expressions by working out 

the operations in the order of appearance, a common mistake even among adults (e.g., 

Glidden, 2008).  

 

An interview with Alan and Manuel before starting the GA lessons revealed that they 

had an operational conception of the equals sign (ES). Excerpts 5.3.1a and 5.3.1b 

provide a comparative view of how these students responded to some interview 

questions. 

 

Excerpt 5.3.1a      Interview 1-Alan  Excerpt 5.3.1a      Interview 1-Manuel 

 

 

 
 

PB:       [Referring to empty box in 
(b)] Can you put a single 
number and you do no plus 
or minus?... 

Alan:     [Shakes his head (no)]… 
Because I think that plus 
needs two numbers or more, 
so does minus, so does 
division and times, fraction I 
don’t think so, percentage…I 
don’t think so as well… 

 

  
Manuel:   [Referring to (b)] I get 

confused because it isn’t 
like the other one (where) 
you have 3 plus something 
and then you are given the 
answer, or… for example 4 
plus “hmm”  [empty box] 
and then you are given the 
answer. 

 

Note:  
• M stands for “Ma nafhiex” (I don’t know it); 
• D stands for “Dubjuż” (I have doubts). 
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Both participants got (a) correct, but from their responses about (b) and their written 

answers to (c) it seems they were viewing ES as an operational symbol, which is widely 

reported in the literature (e.g. Rittle-Johnson et al., 2011). This may have been due to 

limited applications of ES in primary school (McNeil, 2008). It seemed, therefore, that 

Alan and Manuel had a limited interpretation of ES as they had for some other notation. 

For instance, Interview 1 revealed that they did not seem to be aware that 5(2 + 8) 

meant 5 × 10 or that 10
2

 could stand for 10 ÷ 2. 

 

Evidence from interviews excerpts after a series of lessons with GA suggests that 

these students seem to have extended their: 

 interpretations of notation, 

 properties of operational symbols, 

 meanings of ES (they obtained a relational view),  

 interpretation and use of letters (variables and unknowns), and 

 knowledge about the order of operations. 

 

Consistent with Hewitt (2012), by the end of the pilot study, GA had enabled Alan 

and Manuel to learn the order of operations in quite complex expressions, such as 

6�10
5 �+6

2
+ 3, without having to resort to acronyms like BIDMAS.  

 

Figure 5.3.1 shows screen shots from the work of Alan and Manuel who worked as a 

pair on GA Task 15. This task involved moving the original number, in this case 10, 

around the multiplication grid in the correct order of operations.
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Figure 5.3.1 Alan and Manuel working as a pair on the order of operations with GA 

 
 

Screenshots (c) and (d) show that they were trying to perform +6 first, which is 

consistent with Glidden’s (2008) finding that a common error is to perform operations 

from left to right first. By showing them the expressions that corresponded to these 

(c) 

(a) (b) 

(d) 

(e) (f) 

(g) (h) 



Chapter 5 Pilot Study 
 

173 

actions, GA enabled Alan and Manuel to discover and correct their mistake. From (e) 

onwards, Alan and Manuel proceeded correctly. As shown on the timer, all this took 

place in just 19 seconds.  

 

GA was found to provide all students with opportunities to enrich their representations 

of notation. Bruner’s (1966) Enactive-Iconic-Symbolic construct to describe non-verbal 

mathematical representations was very relevant here. Students used GA to make 

representations in three forms: 

 Actions. Students represented operations by moving cells with expressions; 

 Pictures. Students represented expressions by journey pictures provided by 

GA and also by particular cells (rectangles) of the grid; 

 Symbols. Students represented expressions involving the four operations 

using standard conventional notation provided by GA. 

 

My choice of “picture” over “icon” comes from my interpretation of the latter as being a 

picture that in itself has a characteristic linked to the notion it represents, e.g.      ∆     ��������� 

may be an icon for “balance”. In my case, students were representing a number with a 

rectangle (picture of a cell), not due to its shape but due to its position in the grid. 

 
Figure 5.3.2 Manuel’s interpretation of letters as variables and unknowns 

 
 

(a) (b) 
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Figure 5.3.2 shows Manuel’s written responses during Interview 2, where he used 

numbers and expressions to represent his conception of letters in particular cells in the 

GA grid. Figure 5.3.2a shows how the rectangular representation (cell) of the letter 𝑦𝑦 

in the grid helped Manuel to interpret it as a variable multiple of 2 (since it was in R2). 

Figure 5.3.2b shows that the introduction of the number 16 in the grid rendered 𝑦𝑦 a 

specific unknown, which, by checking its relation to 16, Manuel found to be 10. He also 

determined the value of the unknown 𝑥𝑥 to be 12.  

 

Such a repertoire of representations helped both case study students to construct new 

meanings of notation. They learnt about the use of brackets to denote multiplication and 

started to use conventional notation for division. They also learnt about the commutativity 

of addition and multiplication and came to view ES as a relational symbol. However, 

similar to what McNeil (2008) and Rittle-Johnson et al. (2011) reported, they still 

retained the operational view of ES. The case study students became competent in 

finding the order of operations in quite complex expressions. They also seemed to have 

started forming a proceptual view (Gray & Tall, 1994) of expressions. In addition, they 

constructed initial concepts of variables and unknowns. However, most of these 

conceptual developments were more exhibited by Alan than by Manuel.  

 

In varying degrees, I could observe all students in the group making similar extensions 

in their interpretations and representations of notation, even those who had entered 

Grade 7 with a very low score in the Grade 6 benchmark exam. One such student was 

Noel (pseudonym) who had been diagnosed with ADHD and Dyslexia. Before starting 

the GA lessons he had difficulty in adding or multiplying small positive numbers. With 

the help of GA, he managed to make significant developments in his knowledge about 

new notation and the order of operations. Figure 5.3.2 shows Noel working on the 

expression 2(𝑎𝑎 + 6) on the IWB. 
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Figure 5.3.2 Noel learning about new notation and order of operations 

 
 

The experience of Alan, Manuel, Noel and their peers taught me what I consider to be 

the most valuable lesson about these “low-performing” participants: Performance may 

be a function of the environment of the problem and the tools to solve it. With 

dedication, effective tools, and sufficient time, these students proved that they were 

not low-performing at all. The following were the other lessons I learnt about my 

participants and their learning: 

 Students started Grade 7 with a limited understanding of operational notation 

and ES. They were not familiar with the use of the brackets and the divisor line 

of a fraction to denote multiplication and division respectively. 

 GA gave students the opportunity to enrich their representations of notation 

through actions, pictures and symbols. 

 GA helped students to develop new and extended interpretations of notation. 

In particular, they learnt about 

• the commutativity of addition and multiplication,  
• the order of operations in complex expressions,  
• the use of letters as variables and unknowns,  
• the relational concept of ES, and 
• the dual interpretations of expressions as procepts (Gray & Tall, 1994). 
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5.4 Lessons about Myself as a Teaching Researcher 

In the following subsections, I include lessons about my dual role as a teaching 

researcher which I learnt by reflecting on the pilot study. 
 

 

5.4.1 Lessons about Myself as a Teacher 

Two Main Roles in the Grid Algebra Lessons 

There were two principal roles I played as a teacher. The first was coordinating plenary 

discussions in the first part of the lessons and the second was monitoring students’ 

work and intervening only when my help was required. It seemed to me that the first 

role was more appropriate to be analysed for CT, for two reasons: 

 

 During the plenary discussions, it was more challenging for me to maintain 

sensitivity to students’ constructions of knowledge because I was concerned 

with presenting learning offers; 

 The students-teacher dynamics were more rich and continuous in the plenary 

discussions and were more suitable to generate trends and patterns in my 

approach, rather than the intermittent interventions I made whilst monitoring 

students working on their computers. 

 

Questioning Technique 

In my journal log of the week starting 5th May 2014, I pointed out three kinds of 

questioning I frequently used in plenary discussions: 

 Open-ended question. E.g., “What do you notice?”, “Why do you think…?” 

 Closed-ended question. E.g., “What number can go here?”, “How many…?” 

 Unfinished closed-ended statement. E.g., “The movement for an addition 

is…?” 
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Usually, when no one answered a question I would go for a more closed question. 

Interesting discussions were created in questions type (i) and type (ii), but all questions 

were intended to be productive (Eltgeest, 1985), in that they were aimed at stimulating 

students’ conceptual processes. 

 

During my questions, I found out that students were picking on visual or verbal cues to 

determine whether they were responding correctly or not. These included raising my 

eyebrows, looking away, or asking a question with a particular tonality when I thought 

an answer was incorrect and increasing my nodding or smiling when I thought an 

answer was correct. Such cues could have compromised the data, especially during 

interviews, and I was careful to avoid them in the main study.  

 

5.4.2  Lessons about Myself as a Researcher 

The conflicting functions of being a teacher and a researcher during the data collection 

process were discussed in Chapter 4 but I only learnt about the difficulties in 

maintaining a dual role of a teaching researcher during the pilot study. Here are three 

lessons I learnt about being a researcher from this preliminary study: 
 

 I was made more aware that I am not what can be called a multitasking person 

(Rosen, 2008). During the lessons, I focused only on teaching and if I had to 

tend to issues about data gathering this proved distracting. This was the main 

reason why I had to stop the journal note-taking during the lessons.  

 Since technical assistance was hard to get, I had to rely on myself on issues 

that regarded computer hardware and software. One way of working around 

this was to prepare the room well before I started the first lesson of the day and 

check that everything was working fine and do the necessary replacements if 

not. 

 I became aware of the massive amount of data that was being generated. This 

emphasised the need to organise the data according to time, type, and 

participants and to develop viable data analysis techniques as discussed in 

Chapter 4. 
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5.5 Lessons about the Research Method and Tools 

There were quite a number of lessons I learnt about the research method, and about 

the data-gathering process and tools of the pilot study. The following were the more 

significant: 

 The case study proved to be an effective research method. It enabled an 

investigation of conceptual journeys made by the students where I could 

compare their conceptual developments. I felt that if I included more students 

in the case study it would be more beneficial to identify trends and similarities. 

This and the fact that the Grade 7C (Maths) group of the following year 

happened to be small were factors which encouraged me to include all six 

students in the main case study.  

 The research design and my knowledge were simultaneously and continuously 

evolving during the pilot. Besides elaborating and refining the research 

questions, the pilot helped me to realise that unpredictable themes would 

emerge that necessitated further review of literature. In fact, literature reference 

and review occurred throughout the whole duration of the research. 

 More GA lessons were needed to introduce the use of letters as variables and 

unknowns. The pilot helped me to realise that students benefit more if they 

have a good number of lessons using only numerical expressions (informal-

algebraic activities) before introducing letters and algebraic expressions 

(formal-algebraic activities). This and the need to have more data from which I 

could elicit trends and similarities in students’ developments made me opt for 

a longitudinal data collection process lasting a whole scholastic year with 20 

double GA lessons in the main study. 

 The pilot made me more aware that technological tools like the video camera 

and the computer screen activity capture (CSAC) software may malfunction. In 

the main study, I always carried an extra video camera which twice proved to 

be a lifesaver. I also made use of a more stable CSAC software which worked 

well for all the lessons. 
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 The pilot eased one of my concerns about the data collection process: that 

students would act out during the lessons because they were on camera. On 

the contrary, students seemed to ignore the camera and forget that their actions 

were being recorded. The classroom situation was as “normal” as one would 

expect. 

 The seating arrangement in the classroom during the pilot GA lessons was not 

found to be convenient. In order to be directed towards the IWB, the video 

camera only captured a fraction of the students and some of these were hidden 

behind others. In the main study, I gained access to another computer room 

with a more suitable seating arrangement, where the camera could capture the 

IWB completely, part of the whiteboard, and all students from behind. 

 Analysing video recordings made me realise the importance of audio. 

Sometimes it was hard to decipher  

• quiet communication during students’ computer pair work, and 

• simultaneous speech from two or more persons during the lessons.  

In the main study, I installed better microphones with the computers and 

positioned the video camera close enough to pick class discussions clearly. 

 

5.6 Possible Hypotheses 

The pilot study helped me to make the following three hypothesis about CT and GA: 
 

 CT is an activity where the teacher’s focus “oscillates” between: the subject 

matter (mathematics) she/he intends to teach and the learners’ conceptual 

constructions, while the teacher maintains a sensitivity to constructivist notions 

of learning. CT is defined by the connection of these two factors in the same 

way that a line is defined by two points (Dewey, 1902). 

 GA can help students to extend their conceptual interpretations of 

mathematical notation by providing them with rich and varied representations 

in the form of actions, pictures, and symbols. 
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 GA may be used as a tool for CT, where the teacher presents learning offers 

by creating mathematical representations on the GA grid and learns about 

students’ mathematics by observing their representations on the same grid. 

 

Together with a continuous literature search and review, these hypotheses helped 

me to develop sensitivities (Mason, 2002) about issues related to my research aims 

and questions.  

 

I now return to the main research study, where I dedicate each of the following two 

chapters to an analysis and discussion of the data. In the first analysis chapter, I 

focus on my teaching, and in the second I focus on my students’ learning. In Chapter 

6, I am concerned with data regarding CT which is mostly related to research 

questions 1(i)–(ii). 



 

 
 

Chapter 6 

 Analysis and Discussion of 
Constructivist Teaching 
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6.0 Overview 

This chapter includes data analysis related to constructivist teaching (CT). This 

analysis investigates the dynamics of CT as observed in the Grid Algebra (GA) lessons 

and leads to the development of a conceptual framework which is later used 

analytically to detect and describe classroom situations in which I succeed or fail to 

engage in CT. This addresses the first set of research questions, those which concern 

CT. Table 6.0.1 includes the section titles of this chapter. 

 
Table 6.0.1 Chapter 6 section titles 

 Section Title Page 

6.1 Analysing the Lessons in Terms of Teaching Purpose 182 

6.2 The Mathematics-Negotiation-Learner Framework 205 

6.3 Overall Descriptive Statistics of the Shifts of Teaching purpose 210 

6.4 Complete M-N-L Cycles in the Grid Algebra Lessons 214 

6.5 Roadblocks between Mathematics and Learners 222 

6.6 Summary and Conclusion 235 
 

  

6.1 Analysing the Lessons in Terms of Teaching Purpose 

In the GA lesson analysis, I focused mainly on the sections where I was involved in 

group discussions since my interactions with students when they were working on their 

own was very limited. When analysing my role in the various phases of class discussions 

as observed in the lesson videos, I investigated the nature of my teaching purposes 

against a backdrop of beliefs I adopted from constructivist literature, most prominently: 
 

 Dewey’s (1902) claim that the content in the curriculum and the mental state of 

the learner should define the teaching and learning process; 
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 Steffe’s (1991) claim that the distinguishing feature of CT is the way in which 

constructivist teachers strive to learn about the cognitive processes of their 

students; 

 Simon’s (1995) claim that constructivist teachers hypothesise about a possible 

learning trajectory and interact with students to facilitate that trajectory. 

 

These claims provided a frame of reference to analyse my teaching against CT 

principles, but they were too broad to characterise the finer details of my purpose in 

the lessons. Thus, I set out to describe and categorise my purposeful actions and 

reactions during the GA lessons. A viable way for me to do this was to identify shifts in 

my focus which suggested a change of purpose. I observed eleven different shifts 

during the GA lessons: 
 

 From anticipating didactic processes to interacting with students; 

 From associating students’ mathematics with mine to interacting with students; 

 From interacting with students to facilitating students’ experiences; 

 From interacting with students to facilitating students’ reflections; 

 From facilitating reflection to creating a model of students’ mathematics; 

 From facilitating reflection to reviewing my learning offer; 

 From creating a model of students’ mathematics to reviewing my learning offer; 

 From reviewing my learning offer to associating my mathematics with students’ 
representations; 

 From reviewing my learning offer to adapting my mathematics to incorporate 
that of the students; 

 From creating a model of students’ mathematics to associating my 
mathematics with students’ representations; 

 From creating a model of students’ mathematics to adapting my mathematics 
to incorporate that of the students. 

 

These shifts of teaching purpose were coded to facilitate analysis. The final version of 

the codes presented in this chapter resulted from a process of modification and 
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refinement of codes until I felt they captured the changes I was observing. The shifts 

were classified into four categories which are discussed in detail in Sections 6.1.1–4, 

where I provide lesson excerpts of typical examples of these changes of purpose.  

 

During the analysis of these excerpts, I am not claiming that I am recalling the exact 

occurrences of what was going on in the lessons. I am interpreting video observations 

with the benefit of hindsight and of acting as a second-order observer: a researcher 

rather than a teacher. These interpretations are informed by my awareness of my 

teaching approach and the thoughts that usually precede or follow actions I do as a 

teacher. This does not exclude that the very analysis may be reminding me of actual 

cognitive processes I was experiencing during the lessons. 

 

6.1.1 Teaching Purpose Shift 1: From Intention to Interaction 

Whenever I had an intention to provide students a learning offer (Steinbring, 1998), I 

needed to anticipate the didactic processes facilitated by my interactions with the 

students. In excerpts such as the following, my focus changed from thinking about and 

anticipating possible didactic processes to actually engaging with the students in an 

interaction intended to facilitate those processes. 

 
Excerpt 6.1.1.1 Lesson 2 

PB: [Looking at the IWB and setting up a new empty GA grid with four 
rows.] I am going to create a new one [grid] for you. So… Now… In 
the last lesson, [pointing to the cells of first column of the empty grid 
in order] here there was 1, here there was 2, here there was 3, here 
there was 4. But now I’m going to insert another number – not 1, 2, 3, 
or 4. I’m going to invent…[dragging the number 12 in R3C113 and not 
letting it in yet]. Can I? 

Joseph: You can. 

PB: [Letting the 12 stay in the cell and this was allowed by GA] Why can I 
put a 12 there?  

                                            
13 Recall that GA allows only multiples of 3 in R3, multiples of 4 in R4 etc. 
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In this episode, I used the phrase “I am going to” three times, suggesting anticipation. 

I also used phrases like “create a new one” and “invent”, indicating that I anticipated a 

new learning offer. This anticipation became interaction when I started to encourage 

students to participate in the setting up of the GA grid and asked them whether I could 

insert the number 12 in R3C1. I shifted my purpose through two simultaneous actions: 

• doing something – dragging the number 12 from the number menu into the grid 

but not letting it go, and 

• saying something – asking the students whether I could insert a 12 in that cell. 

 

When Joseph confirmed that I could do it, I repeated the two actions (doing and saying) 

while my focus was on interacting with the students. I took off the cursor and asked the 

students another question: “Why can I put a 12 there?” This question was meant to 

kick-off a class discussion about multiples of 3 which took place after this episode. I 

decided to label such a change of teaching purpose as Anticipate>Interact, where 

my focus changed from (1) a planning and anticipation phase into (2) an interaction 

and discussion phase.  

 

A similar but distinct change of focus occurred when I skipped the anticipation phase 

altogether and reacted with a direct interaction. This is what happened in episodes like 

the following, where I asked Dan to tell me what GA would show if I dragged the 

number 8 from R1C2 to R2C2. By now students knew that R2 represented doubles of 

corresponding numbers in R1. I was expecting the response “8 × 2” but this was not 

what Dan replied. 

 
Excerpt 6.1.1.2 Lesson 4 

Dan: [After PB asked him what R2 will show if he dragged 8 into it.]  
8 plus 8. 

PB: 

 

All right, 8 plus 8, but it is going to show me… [moving to the board 
and dragging the 8 in R1C2 to R2C2 and GA showing 8 × 2]… 
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Dan: [Talking at the same time as PB] 8 times 2. 

PB: …8 times 2, since 8 plus 8 is the same as 8 times 2. 

 

Both 8 + 8 and 8 × 2 mean “the double of 8” but I knew that GA would show the latter, 

so I associated Dan’s 8 + 8 with GA’s 8 × 2 and immediately interacted with Dan by 

dragging the cell in a way that he could observe what GA would show. Once Dan 

confirmed that it was 8 × 2, I resumed my interaction to help him make the same 

association I had made earlier by telling Dan that GA had showed this because “8 plus 

8 is the same as 8 times 2.”  

 

I coded such instances as Assoc>Interact where my purpose changed directly from 

(1) associating students’ representations with the mathematics I intended to teach to 

(2) interacting with students in order to help them appreciate that association.  

 

The similarity of the above changes of teaching purpose lay in the initial and final 

mental states of the teacher, the former being the teacher’s intention (a section of 

mathematics intended to be taught) and the latter being the teacher’s interaction with 

the students according to that intention.  
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6.1.2 Teaching Purpose Shift 2: From Interaction to Learner 
Experience and Reflection 

The second type of shift of teaching purpose occurred when I was interacting with the 

students and my focus shifted to what students were experiencing. By “experiencing” 

I mean perceiving, interpreting, and possibly contributing mathematical 

representations. As shown in the following episode, sometimes I shared students’ 

experience in order to encourage reflection. 

 
Excerpt 6.1.2.1 Lesson 13 

PB: 

 

[GA on Run mode] Come out Dwayne. [Dwayne comes out near the 
IWB.] Throw in another letter, not a 𝑐𝑐, anywhere you like. [Dwayne 
inserts the letter 𝑒𝑒 in R6C5.] Now… that 𝑒𝑒…What is the number that 
that 𝑒𝑒 is symbolising? 

Dwayne: [Working something out with his fingers] Fifty-four. 

PB: Come. Let me see. [Nodding towards the board.] Put it in and then 
tell us how you worked it out… [Dwayne puts 54 from the number 
menu onto the cell containing e and GA accepted it.] …Good boy! 
How did you realise it was a 54 over there? … So, first of all, get the 
magnifier. … [Dwayne clicked on the magnifier icon and GA showed 
a window containing the equation 54 = 𝑒𝑒 (see figure below).]  
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… Let us see. What is it showing me? [PB clicks on the cell 
repeatedly and the magnifier window alternated between 54 = 𝑒𝑒 and 
𝑒𝑒 = 54]. 

Dwayne: 54 equals 𝑒𝑒 and 𝑒𝑒 equals 4 [probably meaning 54]. 

PB: Now explain to us how it came to be 54. 

Dwayne: Here you have… You get a 54 there [pointing to the cell containing 
54] because here [pointing to C2] you have the 6-times table, and 
here [pointing to R6] you have the 6-times table as well. 

PB: OK. 

Dwayne: And then to make it shorter I did it from here [points to R3C2 (18) and 
moving his hand to the right]. 

PB: All right. Come, tell us how. 

Dwayne: So then you have the 6-times table [points to R1C2] then here is the 
7-times table [pointing to R1C3], then 8 [points to R1C4], and then 9 
[points to R1C5]. 

PB: All right 

Dwayne: And then I counted one, two, three, four, five [pointing respectively 
to R1C5 to R5C5], here [points to R5C5] it’s 5 times 9 and then after it 
[points to R6C5] comes 54. 

 

When I called out Dwayne, I was switching my focus from my previous interaction with 

the students to what this particular student might experience about a letter he 

introduced into the grid himself. It was as though I was playing the part of the curious 

classmate asking Dwayne to do something to see what will happen: “Come. Let’s 

see… Get the magnifier… What is it showing…?” I immersed myself in Dwayne’s 

experience and limited myself to suggesting things to do and asking questions:  
 

• “What is the number that that 𝑒𝑒 is symbolizing?”; 

• “How did you realise it was a 54 over there?”; 

• “…explain to us ...”; 

• “…tell us how”. 
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These questions were meant to encourage Dwayne and others to reflect on 

mathematical representations. The whole episode can be regarded as an experience-

reflection cycle. I labelled such changes in teacher focus as Interact>Experience 

where my attention shifted from (1) what I was saying, working, or demonstrating 

(interaction) to (2) what students were experiencing as a result of that interaction, which 

usually led to students’ reflection, as shown in the next excerpt. 

 

Sometimes, it seemed that my focus shifted immediately to students’ reflection. In the 

following excerpt, Dan was solving a problem from GA Task 16 which presented the 

challenge of moving a cell with a number through a journey which would result in a 

target expression. Dan needed to take the cell containing 4 on a two-step journey 

resulting in the target expression  4+2
2

. Instead, his journey resulted in  4
2

+ 2. Dan 

himself was first to notice that his expression was incorrect because he was checking 

the syntax of his expression against that of the target expression. 

 
Excerpt 6.1.2.2 Lesson 10 

PB: Hang on, Dan… Let us concentrate because we learn more from the 
mistake because if he got it correct we applaud him and we do another 
one. Let me see who will tell me what he did incorrect. What can you 
see that makes it incorrect? [pointing to the expression.] 

 
[Points at Dwayne]. Tell me. 

Dwayne: Sir, it looks wrong because there [pointing to Dan’s expression] where 
there is 4 all over 2, there should be 4 + 2 all over 2. 
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Excerpt 6.1.2.2 shows how GA activities gave students the opportunity to make 

mistakes and learn from them (Dewey, 1916). Evidently, I saw Dan’s making the 

mistake as a better learning opportunity than if he did not: “…we learn more from the 

mistake because if he got it correct we applaud him and we do another one.” At the 

same time I avoided direct correction to help students to think independently (Radford, 

Blatchford, & Webster, 2011). Asking students to reflect about “what…makes it 

incorrect” was an attempt to use Dan’s error as a starting point for reasoning and 

argumentation (Ingram, Pitt, & Baldry, 2015). I changed my purpose from interacting 

with Dan in his execution of the task to encouraging students’ reflection that was 

triggered off by Dan’s mistake. I intended not only to help students identify the mistake 

but also to appreciate why the action was considered as mistaken. It was desirable for 

Dan to identify the error himself, but it turned out to be Dwayne who did. Following this 

episode, Dwayne went on to show Dan what he should have done (correct order of 

operations) which led Dan to make subsequent correct moves in the GA grid. 

 

The excerpt gives an example of the many instances where my interaction led straight 

to a reflection rather than to an action, that is, it was meant to encourage students to 

think back and reflect, rather than think forward and anticipate. Such instances were 

therefore coded Interact>Reflect, because my focus changed from (1) what I was 

saying or doing (interacting with students) to (2) what the students were reflecting and 

reasoning. 

 

6.1.3 Teaching purpose Shift 3: From Learner Reflection to 
Evaluation 

The third shift of teaching purpose I observed occurred when I diverted my attention 

from facilitating students’ experience and reflections to forming a model of students’ 

mathematical thinking processes. This shift occurred frequently in class discussions 

but was predominant when students were working on their own. The following excerpt 

is from the second part of GA Lesson 17, where students were working on Task 4 in 

pairs. This task required them to make three expressions corresponding to the journey 

that a letter in one cell of the grid needed to make to arrive in another highlighted cell. 

As I was moving among the students, I noticed that Omar was getting frustrated. 
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Excerpt 6.1.3.1 Lesson 17 

PB: [PB notices that Omar got frustrated.] What’s the matter there, mate? 
[...] [PB comes to look at Omar’s work on his computer (seen in the 
following computer-screen snapshot – numbers 1-3 are 
superimposed for reference purposes). Omar had already done one 
correct expression that could take the letter 𝑑𝑑 from R1C4 to R2C5 – 
2(d+1).] 

 
Omar: I, actually, I did the 𝑑𝑑, I will go here... 

PB: Show me with the mouse [...] you said, 𝑑𝑑 will go there [①], good. 

Omar: I’ll move over here [①], go down here [②],... 

PB: Good. 

Omar: And then I go over here [③] 

PB: Good. But... tell me how much plus you do from here [②.] 

 

It seemed that Omar was making two mistakes in moving from ② to ③: counting in 

1’s instead of 2’s and not counting the last cell. Significant in the excerpt is the 

sequence of questions I asked Omar so that I could construct a model of his thinking 

processes: 

 “What’s the matter, mate?” – A general enquiry meant to kick-start 

communication where the word “mate” (in Maltese “xbin” - pronounced 

“shbeen”) helped to establish a friendly, non-formal exchange. 

 “Show me…” – A specific enquiry meant to confirm the model I was building of 

Omar’s thinking and hence the source of his mistake. 
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 “But…tell me how much…” – A follow-up enquiry meant to confirm this model 

and also to start interacting with Omar to help him realise what he did wrong. 

 

These enquiries were meant to help me generate possible interpretations (Glasersfeld, 

1987) of Omar’s conceptual patterns. I was trying to build a model of his reasoning that 

was both hypothetical and experiential (Steffe, Glasersfeld, Richards, & Cobb, 1983; 

Steffe & Ulrich, 2013). I could only hypothesise what Omar was thinking but observing 

the way he was experiencing the mathematical problem enabled me to make an 

educated guess of his thought processes. Further interaction between us led to Omar’s 

detection of both of his mistakes and to a successful completion of the task. I coded 

such a shift as Reflect>Model – my purpose as a teacher changed from being (1) a 

facilitator of Omar’s reflection on his actions to being (2) an evaluator of Omar’s 

mathematics by building a model of his thinking patterns. 

 

There were several instances where the model I formed about a particular student’s 

thought processes was used to review my learning offer and decide whether it matched 

the collective thought processes of the whole group. The following episode is a typical 

example where I felt that such a match had been established. The conversation was 

about the expression 4 + 5 × 2. 

 
Excerpt 6.1.3.2 Lesson 18 

PB: …So, to work this one out [pointing to the expression], to work this 
one out, what do you need to work out first? 

Dwayne: The 5 times 2.  

PB: Bravi! [Maltese for “Well done to you (plural)!”]. 

 
In this episode, I replied to Dwayne’s response by exclaiming “Bravi!”, (Maltese for 

“Well done to you (plural)!”) rather than “Bravu”, (“Well done to you (singular))”. When 

teaching, I usually use the plural form when I am thinking of the class as a group. 

Congratulating the whole group rather than just Dwayne tells me that my model of 

Dwayne’s thinking process at that time represented to me the collective thought 



Chapter 6 Analysis and Discussion of Constructivist Teaching 
 

193 

processes of the whole group, however diverse these might have been. This was not 

uncommon in the course of the lessons, and I became aware that I usually rested on 

one or two responses to suppose what a representative student in that group might be 

thinking. As I argued elsewhere (Borg, 2016, p. 108), teachers tend ‘to think of those 

few students who speak up as a "sample" ’. I am not stating here that this portrays a 

“true” picture of what goes on in the diversity of minds subjectively interpreting 

classroom representations, but teachers have to rest on whatever feedback individual 

students offer in order to form models of the thinking patterns of the whole group.  

 

My exclamation of “Bravi!” seems to imply that Dwayne’s response served me as an 

indication of what the whole group might have been making of my learning offer. Since 

Dwayne came up with the response I was after, I regarded my learning offer to be 

successful for him and possibly his classmates. Hence, the model I created of 

Dwayne’s mathematics led to a positive review of the mathematics I was representing 

for students to interpret. Usually, creating a model of students’ reasoning took more 

time than the episode shown in Excerpt 6.1.3.2, since I typically followed a student’s 

statement by asking questions to the whole class to establish whether other students 

were reasoning along similar lines. This usually led to a review of how the learning 

offer was being interpreted by the whole group.  

 

In any case, I labelled such shifts of focus as Model>Review because my purpose 

changed from (1) building a model of the mathematics that students were constructing 

to (2) reviewing the appropriateness of the current learning offer. 

 
Purpose shifts leading to a review of the learning offer were more commonly observed 

when these resulted from my participation in students’ reflection. The following excerpt 

shows the final moments of a discussion on GA Task 7, where students were given a 

letter in a cell and had to create a journey corresponding to the operations involved in 

a target expression. Joseph made the required journey and I asked him to reflect on 

its stages. 
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Excerpt 6.1.3.3 Lesson 16 

PB: [Pointing to stage ⑤ of Joseph’s journey].  

 
What does this five mean, the five? 

Joseph: The five? 6𝑐𝑐 plus 6 division by 2 plus 3. 

PB: And this piece of journey over here? [Pointing to the connector 
between ⑤ and ⑥ and looking at the other students.] Come on. Pay 
attention. 

Joseph: Division by 3. 

PB: [Pointing to stage ⑥]  

 
 

And the final result here, six ? 

Joseph: 6𝑐𝑐 plus 6 division by 2 plus 3 division by 3. 

#1 



Chapter 6 Analysis and Discussion of Constructivist Teaching 
 

195 

PB: What is that called [pointing to the target expression]? 

Joseph: Journey! 

PB: No. Ok, the journey is all this that we did [pointing to the journey],... 

Dwayne:  Expression! Expression! [The others clapped.] 

 

In this episode, I was asking questions to help Joseph and his classmates to reflect on 

the meaning behind the journey picture. For each question, Joseph came up with an 

anticipated response. During this time, I was continuously looking at his classmates for 

signs of confirmation, which I seem to have been getting. Dwayne’s reply that the string 

of symbols was called an “expression” and the apparent approval of his peers 

(clapping), seemed to confirm to me that the other students had, like Joseph, made 

sense of my learning offer. In fact, right after this episode, I asked the students to tackle 

Task 7 on their own because I was confident they had developed the mathematics 

required for the activity they had been reflecting on.   

 

I coded such a shift of teaching purpose as Reflect>Review because my focus 

changed from (1) encouraging and facilitating reflection about the mathematical 

problem at hand to (2) reviewing the appropriateness of the learning offer.  

 
6.1.4 Teaching purpose Shift 4: From Evaluation to Intention 

I detected an intermediary stage between (1) my purpose of building a model of 

students’ mental processes and reviewing the learning offer and (2) anticipating and 

engaging in the didactic process. This intermediary stage was a quick but significant 

“check-in” to the mathematics I intended to help my students learn. This often involved 

matching students’ representations with my own mathematics, an association which 

sometimes occurred after reviewing the learning offer.  

 

The following excerpt shows what happened after Dwayne solved a problem in GA 

Task 8 (similar to Task 7 but with no letters involved), where R3C4 contained 12 and 

the target expression was 12 × 2 − 6. 
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Excerpt 6.1.4.1 Lesson 9 

PB: [Referring to Dwayne’s GA journey.] 

 
So, explain to us what you did, mate. Explain to us what you have and 
what you did. 

Dwayne: Uh, I have the 12 [pointing to the target expression], I have the 12 
times the 2 and then minus the 6. So, 12 was over here [①], the 
number... 

PB: Yes. 

Dwayne: And then, over here [②], the 12, it [the computer] told me to do it times 
2, and the times is down here [②]. 

PB: OK. And how…? 

Dwayne: [Pointing to the row number of R3.] Since 3 times 2 becomes 6… 

PB: Well done! These are very important things to remember. Here 
[pointing to the row number of R3]. Have you heard what he said? It 
was a very important thing Dwayne said. He said [pointing from① 
to②] it becomes times 2 because here [pointing to the row number of 
R3], the 3, the 3-times table, times 2 becomes 6 [pointing to the row 
number of R6]. 

 

When I observed that Dwayne had completed the challenge, I formed a model of his 

conceptual process which matched what I was expecting students to learn. Dwayne 

linked the operations × 2 and −6  to movements (and hence relationships) of numbers 

in the grid. However, I needed to review whether students were developing the 

mathematical concepts I was trying to teach. So, I asked Dwayne some probing 

questions to elaborate on his thoughts while working out the journey: “Explain to us 

what you did…”; “And how…?”.  
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Dwayne’s reasoning seemed to be “in harmony” with my mathematics and my 
immediate reaction was to exclaim, “Well done!”, congratulating Dwayne for 
constructing mathematical concepts as I intended. Simultaneously, I was 
congratulating myself for a favourable self-review of my learning offer. I went on to 
repeat what he said to the others, “Have you heard what he said?…” I coded such 
instances as Review>Assoc because my focus changed from (1) reviewing the 
learning offer to (2) associating my mathematics with students’ representations.  
 
Often, however, such associations seemed to occur directly after building a model of 
students’ conceptualisations. In the following representative episode of such a shift, I 
was helping students appreciate the inverse property of addition. Prior to this lesson, 
some students evaluated expressions like 497 + 2014 − 2014 by computing addition 
and then subtraction, seemingly unaware of additive inverse. GA offers an interesting 
metaphor for such an inverse process. When the cell representing a number was 
added and subtracted by the same number, it underwent two inverse movements 
giving the impression of a number going somewhere and then coming back. In the 
following excerpt Omar had just completed a challenge of GA Task 10 on the IWB 
which involved the inverse operation −1 + 1.  
 
Excerpt 6.1.4.2 Lesson 8  

PB: [Pointing to the last two stages of the journey, from R1C2 to R1C1 and 
then back to R1C2]…Then we did minus 1 plus 1 and we came back 
to same place again. Why do you think we have come back to the 
same place again? 

 



Chapter 6 Analysis and Discussion of Constructivist Teaching 
 

198 

Omar: [Pointing to the target expression.] Because you have it there written 
in the grid. 

PB: OK, because you have the grid but why did the grid force me to go 
back to the same place again? [Dwayne wiggling his finger] ... 

Dwayne: Sir, can I tell you? 

PB: Come on, tell me. 

Dwayne: Because the sum, it tells you that you do minus 1 and you put it there 
[pointing to R1C2 and making a gesture of moving to the left] and then 
again… the 1, you add it again [making a rotating movement with his 
fingers], it comes to the same place. 

PB: So if I have a number, say, 100, and I do minus 1 plus 1 what will it 
become? 

Many 
students: 

 
Hundred. 

 

In contrast to Dwayne, Omar did not seem to have been focusing on what I intended 

students to see when I made those left and right movements. Dwayne made two 

gestures to explain the inverse operation:  

• a right to left movement to show the actual movement of the cell, and  

• a rotating movement with both of his index fingers to show a sort of cycle where 

something re-assumes its original position.  

Here, I formed a model that his thinking was similar to mine but instead of praising him, 

I continued to expand the discussion. I coded such instances as Model>Assoc 

because my purpose changed from (1) forming a model of students’ conceptual 

processes to (2) associating my mathematics with students’ representations.  

 

Following this, the discussion developed to include computations with awkward 

numbers which necessitated the use of additive inverse. Students worked out the value 

of expressions like 231789 − 9993 + 9993, as shown in Figure 6.1.4.1 where Jordan 

was explaining his reasoning to me and to his classmates.  
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Figure 6.1.4.1 Jordan explaining the inverse property of addition  

 
 

As I often do in my lessons, I used what Pask and Scott (1972) call teach-back where 

students are required to teach back what they learnt. In Figure 6.1.4.1, I was observing 

Jordan’s teach-back in order to build a model of his mathematics and comparing it to 

my own. Sometimes, I needed to adapt my mathematics to fit in the students’ 

representations. In the following episode, my adaptation occurred due to the latter. I 

was discussing the concepts of unknowns and variables represented by letters on the 

GA grid. 
 

Excerpt 6.1.4.3 Lesson 14 

PB: [Referring to the letters in the GA grid.] That 𝑐𝑐: What can it be? [Nods 
towards Jordan who had raised his hand.] Tell me. 
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Jordan: It means, you can, um, you do top division by 2. 

PB: I do top division by 2 where? Top [points to R1C3] division by 2 so that 
it comes here [points to R2C3]? Or...? 

Jordan: Where there is... From 𝑑𝑑 to 𝑐𝑐. 

PB: [Points from R4C3 to R2C3]. From 𝑑𝑑 to 𝑐𝑐 you do division by 2. 

Jordan: Uh-huh [agrees]. 

PB: … So what (Jordan) is telling me is that … if I make a 20 here [inserts 
the number 20 from the number menu to R4C3 containing 𝑑𝑑 then points 
to R2C3]… 

Tony: Ten. 

PB: There [pointing to R2C3] should be a…? 

Tony and 
Jordan: 

 

Ten. 

 

The response I anticipated for my initial question “That 𝑐𝑐: What can it be?” was “Any 

multiple of 2.” Jordan’s take on the question was not simply what 𝑐𝑐 could be but how it 

was related to the other letter in the grid, 𝑑𝑑. When he said that division by 2 was 

happening “from 𝑑𝑑 to 𝑐𝑐” two things happened:  

 I reviewed the current learning offer (discussing possible values for letters on 

the grid) and saw that Jordan’s conceptual processes were ahead of it (he 

seemed to be thinking about the relationship between those letters).  

 I adapted, or rather upgraded, my current mathematical thinking to include 

Jordan’s more advanced thinking. 

 

I coded such instances as Review>Adapt because my purpose shifted from (1) 

reviewing the learning offer to (2) adapting my mathematics to include students’ 

conceptualisations. Subsequently, this adaptation enabled me to associate Jordan’s 

mathematics with the mathematics I had intended to teach. 

  

Similar to the Model>Assoc shift, forming a model of my students’ mathematical 

reasoning was often followed by an adaptation of my own mathematics for it to 

incorporate students’ representations. This required flexibility on my part because 
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usually I had to temporarily abandon my current train of thought. Such was the case I 

present in the following episode, where I had been discussing that subtracting a larger 

number from a smaller number resulted in the negative of the number that results when 

subtracting the smaller number from the larger number.  

 
Excerpt 6.1.4.4 Lesson 19 

PB: … If I do 4 [moving 4 to the left] minus 2, minus 4, minus 6 [stopping 
on R2C1]…  
 

 
 

Tony: [Talking while PB is talking] Negative 2. 

PB: If I do 4 minus 6...? 

Tony: Negative 2. 

PB: [Pointing to Tony] How did you work it out so that it resulted in negative 
2? What did you do mentally? 

Tony: Minus 6.  

PB: How? 

Tony: I did 4 minus 6. 

PB: Yes, and how did you do it? What did you do mentally to get negative 
2? 

Tony: Uh, because when I did the minus I did not stop at 0. I continued to 
walk backwards. 

PB: [Looking at the others] Good? So 4 minus 4 resulted in 0 and then you 
still got [counting on his fingers] minus 5, minus 6. 

Tony: Two. 

PB: So, when I did the minus, when I got to 0 I still had two left to reduce 
[making a gesture of moving downwards in steps] and I got to minus 
1, minus 2. 
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The first half of this exchange shows that I considered my purpose to be developing a 

model of Tony’s method.  A representation he offered was “walking backwards”, 

something which is enabled and encouraged in GA, i.e. representing mathematical 

operations with movement. In doing so, he provided me with an alternative method of 

subtracting a larger number: to count down to zero and count the remaining amount to 

the negative number. I modified my mathematics (4 − 6 = −(6 − 4) = −2) to make 

room for Tony’s (4 − 6 = 4 − 4 − 2 = −2) and elaborated on it for the sake of Tony’s 

classmates. I coded such a shift of teaching purpose as Model>Adapt because my 

purpose changed immediately from (1) forming a model of students’ intellectual 

processes to (2) adapting my mathematics to incorporate students’ mathematics. 

 

 

6.1.5 Making Sense of Changes of Teacher Focus and Purpose 

Changes in focus were not intermittent but continual, suggesting to-and-fro oscillations 

between forces attracting my attention during lessons. These changes reminded me 

of Dewey (1902) who regarded the educative process as the interaction between two 

forces: the needs of the child (learner) and the social aims of adults (mathematics) as 

discussed in Section 2.5.3. Consequently, I saw my teaching as being the negotiation 

between these two forces (Figure 6.1.5.1).  

 
Figure 6.1.5.1 Teaching as negotiation between mathematics and learner 

 
 

The changes of teaching purpose discussed in the above sections were my attempts 

to attend to the learners without abandoning my mathematics, and to attend to my 

mathematics without abandoning the learners. The left-right arrow indicates the dual 



Chapter 6 Analysis and Discussion of Constructivist Teaching 
 

203 

dimension of my teaching: rightwards showing where I was concerned with thinking 

about and creating a learning environment for the students and leftwards showing 

where I was concerned with creating models of students’ mathematics and letting it 

inform my own mathematics, i.e. the mathematics I intended to teach. As I argued in 

Chapter 1, some CT frameworks emphasise the rightwards arrow, arguing that 

teachers are providers of learning offers (Steinbring, 1998) which students interpret 

subjectively through hypothetical learning trajectories (Simon, 1995). Other CT 

frameworks emphasise the leftwards arrow, arguing that main aim of constructivist 

teachers is to learn about the knowledge of their students and to attempt to combine it 

with their own (Steffe, 1991). 

 

When analysing my teaching, I concluded that both directions of the negotiation arrow 

were crucial for CT: 

 If I were to teach mathematics without intending to learn about my students 

(rightwards arrow only), I would have been representing knowledge irrespective 

of what and whether learning was occurring. Such a teaching approach would 

have been deprived of any sensitivity to constructivist notions. 

 If I were to learn about my students without intending to teach mathematics 

(leftwards arrow only), I would have been acting as a researcher not a teacher. 

Although learning might still have occurred, it would not have been facilitated 

by my actions and hence I would not have been teaching.  

 

Both scenarios would have meant that CT did not occur. Thus, I avoided scenarios (i) 

and (ii) by continually changing my purpose in the lessons in order to negotiate 

pathways between my mathematics and my learners. I regarded these changes of 

purpose as the basic elements on which I could build a working model of CT. 

 

Figure 6.1.5.2 shows how this CT framework was developed. Following Saldana’s 

(2009) codes-to-theory method of analysing the data (Chapter 4), I started by coding 

the data and subdividing codes into Purpose Shifts 1-4 discussed above. I labelled 

these subcategories of shifts respectively as Mathematics-to-Negotiation (M-N), 
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Negotiation-to-Learner (N-L), Learner-to-Negotiation (L-N), and Negotiation-to-

Mathematics (N-M) as shown in the diagram.  

 
Figure 6.1.5.2 Development of the CT framework from codes to theory 

 
 

M-N and N-L shifts were further categorised as Mathematics-to-Learner Negotiation 

while L-N and N-M shifts were categorised as Learner-to-Mathematics Negotiation. 

These two categories of negotiation formed the core of the Mathematics-Negotiation-

Learner conceptual framework which is discussed in the next section.
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6.2 The Mathematics-Negotiation-Learner Framework 

The Mathematics-Negotiation-Learner (M-N-L) framework was developed as a 

synthesis of the shifts of teaching purpose in my attempts to engage in CT. A detailed 

discussion of this framework may be found in Borg, Hewitt, and Jones (2016a, 2016b). 

The development of the M-N-L framework was an exercise in mapping these shifts in 

the broader Curriculum–Teaching–Learner construct envisaged by Dewey (1902). I 

changed “curriculum” to “mathematics” to focus on the subject matter relevant to my 

research, and changed “teaching” to “negotiation” to emphasise the dual role of 

teachers when taking into account both subject matter and learners’ 

conceptualisations.  

 

This mapping was inspired by constructivist literature which emphasised the 

negotiation of ideas directed towards the learner (e.g. Simon, 1995) and negotiation 

directed towards the teacher (e.g. Steffe, 1991). I refer to the former as forward-

negotiation and to the latter as backward-negotiation. In this section, I describe the  

M-N-L framework, starting by defining some key terms. 

 
6.2.1 Definitions of Key Terms used in the Negotiation Process 

Against the backdrop of RC discussed in Chapter 2, I define four key terms I use to 

describe the negotiation process in the M-N-L framework: 

 

 “Anticipation” is the act of expecting an outcome with reference to personal 

experiences. Teachers’ anticipation of didactic processes in the classroom are 

built on their experiences of the students in that classroom and also of past 

students having similar characteristics to those of the current students. 

 “Interaction” is the act of representing internal concepts through various 

external expressions (such as utterances, actions, pictures, and symbols) 

which are meant to be interpreted by other persons with reference to their own 
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personal experiential realities. When interacting with students, teachers offer 

representations which students may relate to because they are linked to their 

own experiences. In the interaction process, teachers maintain an openness to 

students’ own representations. 

 “Mathematics of Students” (MoS) is the mathematics inside students’ minds 

which is only accessible to students themselves. This is a narrower definition 

than that given by Steffe (2016) in his commentary to Borg et al. (2016a), which 

encompasses any student construction ‘that could be thought of as 

mathematical simply because they are human beings’ (p. 77). As explained in 

Borg et al. (2016b), my definition of MoS encompasses the mathematical 

concepts which are subjectively constructed in students’ minds but which are 

represented by and interpreted from conventional mathematical language and 

notation (e.g. “multiply three by two”, 3 × 2). Teachers may form second-order 

experiential models (Steffe et al., 1983; Steffe & Ulrich, 2013) of MoS by 

observing students’ representations and hypothesising about the mental 

processes they form during mathematical experiences. RC teachers hold that 

such experiences are unique and subjective to individual students, and so is 

MoS. However, teachers may hypothesise about possible thinking patterns of 

their students by making inferences from the models they create of individual 

students’ mathematics. 

 “Mathematics for Students” (MfS) is the mathematics teachers intend to teach 

to a particular group of students. In the case of school teachers, as was the 

case in my research, MfS is likely to form part of the school’s curriculum. RC 

teachers believe that no knowledge can exist outside the mind of the knower 

(Glasersfeld, 1984; Lerman, 1989) and hence they hold that the mathematical 

topics included in their syllabus is their own conceptualisations of those topics. 

Hence, MfS is a selection of this mathematics which teachers deem relevant to 

their students and which they seek to represent in order to create environments 

conducive to students’ constructions of MoS. Teachers make decisions about 

the suitability of MfS by referring to models they build of MoS. 
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6.2.2 Description of the M-N-L framework 

M-N-L portrays teachers as negotiators between their mathematics and their learners 

(hence the dashes in M-N-L). This negotiation involves creating: 

 an environment conducive to students’ constructions of mathematics, and 

 models of MoS with which they determine the suitability of MfS. 

 

In M-N-L, teachers’ reflections on MoS deepen and enrich their own mathematics, 

concurring with Freire (1998) that teachers are also learners and learners are also 

teachers. Figure 6.2.2.1 illustrates the dynamics of such a negotiation, where 

negotiations (i) and (ii) listed above, are respectively presented as a forward-

negotiation road (rightwards arrows) and a backward-negotiation road (leftwards 

arrows) connecting mathematics and learner. 

 
Figure 6.2.2.1 The Mathematics-Negotiation-Learner Framework 

 

 

As discussed in Section 6.1.5, M-N-L builds on Dewey’s (1902) Curriculum-Teaching-

Learner construct by using the metaphor of a two-road link representing teachers’ 

negotiations in the classroom. Each of these roads consist of two stages corresponding 

to shifts of teaching purpose. The following is a description of the stages starting from 

the upper left-hand arrow going from mathematics to learner: 
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1.  Forward-Negotiation Road 

The forward-negotiation road involves teachers’ actions aimed at presenting a 
mathematical learning offer for the students: 

 Starting with the left arrow, teachers build on models of MoS to anticipate 

possible didactic processes which may help the current students to partake in 

MfS, an element of teachers’ mathematics. Simon (1995) calls this a 

hypothetical learning trajectory since the teacher has no means of knowing in 

advance the actual didactic processes that may occur. 

 Then, teachers interact with students by making representations of MfS 

intended for the creation of MoS. Teachers write, draw, and demonstrate 

mathematical representations (pictures and symbols), make utterances and 

gestures to express and represent thought processes, set up goal-oriented 

activities and discussions, ask questions to stimulate communication and 

reflection, answer students’ questions, give feedback, and elaborate on 

students’ actions and statements in order to help them think more deeply about 

their constructions of MoS. Thus, “interaction” includes teacher exposition and 

teacher-coordinated activities which, as argued in Chapter 1, are not 

necessarily teacher-centred or non-constructivist. 

 

2.  Learner 

The “Learner” section of Figure 6.2.2.1 shows how this forward-negotiation road leads 
to students’ experience of mathematical representations on which teachers encourage 
students to reflect. Students become learners by making abstract conceptualisations 
through an interplay of experience and reflection. This is reminiscent of Kolb’s (1984) 
experiential learning construct but with an emphasis on teachers’ actions after 
observing students’ mathematical representations. 
 

3.  Backward-Negotiation Road  

 The Learner-to-Mathematics arrow on the right shows that teachers build 

hypothetical, experiential models of MoS. Steffe emphasises that the 
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constructivist teacher must be a keen observer in order ‘to construct the 

mathematical knowledge of his or her students’. (Steffe, personal 

communication, October 7, 2015). Since MoS is unique and subjective to 

individual students, teachers cannot assume a homogeneity of MoS among all 

the students in the class. However, models of individual MoS may serve 

teachers to make inferences about the possibility of similar MoS for the rest of 

the class. Teachers need to decide whether the model they create of individual 

MoS can serve as an indication of what a typical student in the class may be 

construing at a particular moment in the lesson. 

 The arrow that follows on the left shows that teachers use these models of MoS 

to review their intended MfS. This means that MoS serves as an assessment 

of whether the learning offer presented along the forward-negotiation road was 

appropriate for the students.  

Each activity involved in the backward-negotiation road is a learning experience for 

teachers. 

 

4.  Mathematics 

The mathematics end of the M-N-L diagram shows that teachers revisit their own 

mathematics, to decide whether MoS can be associated with it either directly or by 

going through some kind of adaptation. This enables teachers to go back to their 

students with a renewed MfS and a revised anticipation of the didactic processes with 

which they start constructing a new forward-negotiation road. 

 

6.2.3 Application of M-N-L to Characterise and Analyse 
Constructivist Teaching 

I consider teachers’ deliberate shifts of purpose between the four elements described 

above to be an indication of CT. Although some exponents of CT (e.g., Steffe et al., 

1983; Steffe, 1991) tend to focus almost exclusively on teachers’ learning from their 

students (backward-negotiation road), I argue that teachers are duty-bound to teach 

and cannot study the learning of students without intervening to facilitate it. Conversely, 
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I argue that constructivist teachers cannot just present learning offers and, like 

Steinbring (1998), claim that mathematics teaching is an autonomous system. CT is 

dependent on students’ feedback and on teachers’ actions based on that feedback. 

 

Teachers’ ability to balance forward- and backward-negotiations is key to sustaining 

regular transitions from one stage to another of the M-N-L cycle, thus maintaining the 

two roads which bring together mathematics and learners. CT may be analysed by 

studying teachers’ transitions between successive stages of the M-N-L cycle through 

changes of focus in their teaching. The extent to which teachers manage to complete 

M-N-L cycles may be an indication of their success to engage in CT. This means when 

teachers fail to complete M-N-L cycles it may indicate a failure to engage in CT. 

Constructivist teachers may momentarily create roadblocks in the negotiation process 

which hinders the changes of teaching purpose necessary to complete M-N-L cycles. 

In Section 6.5, using the M-N-L framework, I describe two such roadblocks. Being 

aware of these roadblocks may help teachers be more vigilant in striving to engage in 

CT. 

 

In the following sections, I use the M-N-L framework to analyse my teaching. I start by 

presenting descriptive statistics of my teaching during the plenary discussions of the 

GA lessons with respect to the M-N-L cycle.  

 

 

6.3  Overall Descriptive Statistics of the Shifts of Teaching 
Purpose 

From 20 double lessons, each 80 minutes long, there was 745 minutes of lesson time 

devoted to plenary discussions. This was usually taken up by roughly the first half of 

each of the double lessons. In the second half of the double lessons students worked 

on GA tasks in pairs on their computers. During this period, I supervised students’ work 

(saw that students were doing the tasks they were supposed to be doing) and only 

intervened when I saw that students needed my assistance.  
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Charting complete M-N-L cycles when students were working alone would have been 

impractical because: 

• although I was silently forming models of students’ conceptualisations, I found 

it impossible to record such instances while maintaining supervision, 

• the learning offers were not being initiated by me (forward-negotiation) but by 

GA, and 

• backward-negotiation possible during my interventions to help students was 

intermittent and rare since they usually relied on feedback from each other and 

from GA. 

 

Hence, I decided to use the 745 minutes of plenary discussions with the students to 

map the diverse changes of teaching purpose as described in Section 6.1. Overall 

there were 1105 changes of purpose, each coded as described previously. Figure 

6.3.1 shows the percentages of each of the four shifts occurring over the 20 lessons. 

 
Figure 6.3.1 Overall percentages of the four shifts of teaching purpose 

 

Mathematics->Negotiation
23.7%

(262 shifts)

Negotiation->Learner
34.7%

(383 shifts)

Learner->Negotiation
23.3%

(258 shifts)

Negotiation->Mathematics
18.3%

(202 shifts)
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The following are my interpretations of this pie chart:  

 If each M-N-L cycle consisted only of four categories of shifts of purpose (one 
shift per category), and lessons could be divided into a whole number of M-N-L 
cycles, then one would expect this pie chart to be divided into 25% sectors. This 
was not the case as shown by the large amount of N-L shifts. A possible 
explanation could be that there were many instances where after an 
Interaction>Experience (N-L) shift, I re-interacted with students to help them 
reflect, entailing an Interaction>Reflection (N-L) shift. In such cases, there would 
be two N-L shifts for one M-N-L cycle. Although other shifts were occasionally 
observed to be repeated, repetitions were mostly pronounced in N-L shifts. 

 There were 202 N-M shifts and data show that the number of complete M-N-L 
cycles was a bit less (c. 180), an average of one cycle per 4 minutes of plenary 
discussion. This adds to data patterns suggesting that: 

• N-M shifts were only done after the other cycles were completed, and 

• N-M shifts triggered a renewed M-N-L cycle (unless it was time to end 
the plenary discussion and students started working on their own). 

It seems, therefore, that revisiting my mathematics with reference to models of 
students’ conceptualisations (N-M shift) seems to have triggered and 
concluded M-N-L cycles. If the generation and completion of M-N-L cycles are 
taken to be indicative of CT, this would mean that N-M shifts are crucial for CT. 
This implies that CT hinges on the willingness and capacity of teachers to let 
students’ representations inform and sometimes challenge their own 
mathematical knowledge and the way they envisage interacting with students 
to help them develop mathematical concepts.  

 The percentages of M-N and L-N shifts were roughly equal, a pattern replicated 
in individual lessons. Thus, there seems to have been a good balance between 
instances where I initiated a negotiation from my mathematics and instances 
where I initiated a negotiation from the learners, the former to provide a learning 
offer, and the latter to learn from my observations of students’ representations.  
 

Figure 6.3.2 shows lesson-by-lesson descriptive statistics substantiating these 

interpretations. I am presenting here the percentages of each shift in each of the 20 

double lessons. 
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Figure 6.3.2 Lesson-by-lesson comparison of percentages of shifts of teaching purpose 

 

Figure 6.3.2 shows that the percentages presented in Figure 6.3.1 reflected the trend 

of the percentages of the shifts in individual lessons: 

 Except for lessons 1, 3, and 6 the percentage of N-L shifts was the highest, due 

to repeated N-L shifts in M-N-L cycles;   

 M-N and L-N percentages varied only slightly in 8 lessons and were equal in 

the remainder, exhibiting a balance between starting a forward-negotiation 

process and starting a backward-negotiation process. 

 Increases and decreases in the percentages of N-L shifts were matched 

respectively by decreases and increases in percentages of the N-M shifts, due 

to the equality of percentages in the other two shifts as shown in (ii); 

 Except for 3 lessons, the number of N-M shifts was the least since these were 

very rarely repeated in single M-N-L cycles. 

 

In the following section, I present a descriptive analysis of an episode where I was 

involved in two successive M-N-L cycles. This will contribute to my discussion of the 

M-N-L framework and how M-N-L cycles could be an indication of CT. 
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6.4  Complete M-N-L Cycles in the Grid Algebra Lessons 

This section is devoted to giving a deeper look at an episode involving two successive 

cycles. The episode occurred two minutes into Lesson 13 in which students were 

introduced to the use of letters in the GA grid. I started the lesson by presenting 

students with the use of letters as unknowns and moved on to the use of letters as 

variables.  

 

As often happened when introducing a new GA task, the plenary discussion consisted 

mainly of demonstrations of mathematical representations and students’ reflections on 

those demonstrations. This meant students’ experiences were limited to what GA was 

showing on the screen. As earlier excerpts show, this was not the case in all class 

discussions and students usually played a more active role. However, it is during 

exposition that maintaining sensitivity to constructivist notions is most challenging 

because teachers may be inclined to pay more attention to the subject matter than 

learners’ conceptual constructions. I chose this episode precisely to show that teachers 

can strive for CT even during exposition. 

 

In this episode, a number of mathematical concepts were discussed, namely: 

• multiples of 3, 

• letters standing for numbers and values of numerical expressions, and 

• a substitutive meaning of the equals sign (e.g. 𝑑𝑑 = 24). 

 

For easier reference during the analysis, paragraph symbols are inserted in strategic 

places of the excerpt.  
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Excerpt 6.4.1 Lesson 13 

(§1)  

PB: …I am going to place the number 18 here. [Drags 18 to R3C2 - #1.]  

 
… It will let me do it. 

Joseph: Because it is in the 3-times table. 

… 

PB: Well done! Well done! Now, if I picked a letter at random from here 
[picks the letter 𝑑𝑑 and drags it to R3C4] and I place it over here [Joseph 
raises his hand], that 𝑑𝑑, first of all, what is it symbolising? [Pointing at 
Joseph…] Come, let’s see. 

Joseph: Uh, what it is, what the answer should be. Like if you do 18 plus 3 plus 
3, that is plus 6, which becomes 24, it is 𝑑𝑑 equals 24. 

(§2)  

PB: [Nodding…] All right, so what we’re saying here is that 𝑑𝑑 is, like, the 
answer of when [points to respective cells] 18 makes plus 3 plus 3. In 
fact, if you do like this [drags the 18 to R3C3 to obtain 18 + 3] and like 
this [moves 18 + 3 to R3C4 obtaining 18 + 3 + 3 on the same cell as 𝑑𝑑] 
– all right? – we see [clicking on the cell to show alternately the 
expressions 18 + 3 + 3 and 𝑑𝑑] 𝑑𝑑 here and [choosing the magnifier 
icon] if we see … with the magnifier here, it is telling me exactly 
[pointing to Joseph - #2] like you told me that [pointing to 𝑑𝑑] 𝑑𝑑 [points 
to equals sign ] is [points to respective numbers] 18 plus 3 plus 3. 
[Clicks on the cell to alter the expression from 𝑑𝑑 = 18 + 3 + 3 to 

#1 
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 18 + 3 + 3 + 3 = 𝑑𝑑.] If I alter here it will tell me that [points] 18 plus 3 
plus 3 equals 𝑑𝑑. 

 
  

 

(§3) 
 

PB: But if I want, instead of doing 18 plus 3 plus 3, I can, if I want to, erase 
here [erases all expressions except 18 and 𝑑𝑑] – OK? – I can just bring 
up [pointing to the number menu] that unique number that can be here 
[the cell containing 𝑑𝑑], a single number… What is the number? 

Joseph: Twenty-four. 

PB: Do we agree that it is 24? 

Joseph: Yes [the others nodding]. 
  

(§4) 
 

PB: Because we’re in the 3-times table and we’re doing plus 3 plus 3, all 
right? … I bring up the 24 … I’ll pick the 24 from here [drags 24 from 
the number menu to R3C4 containing 𝑑𝑑] … And when I go with the 
magnifier there it is telling me 𝑑𝑑 equals 24. … So, 𝑑𝑑 equals 24 and 
[clicks on the cell to alter the expression from 𝑑𝑑 = 24 to 24 = 𝑑𝑑] 
24 equals 𝑑𝑑… 

Joseph: The same. 

#2 
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(§5)  

PB: … As such, we are not seeing an answer. When you say “answer” it’s 
like you have done some calculation, some plus, minus… 

Joseph: 18 plus 3 plus 3. 

PB: We don’t have any calculation, nothing, here. So now, I cannot quite 
say that “equals” is “answer”. [Jordan shaking his head.] So what can 
 I say that it means there [pointing to 𝑑𝑑 = 24 - #3]? 

  
The equals? 

Joseph: Equal to [says it in English]. 

Dwayne: They are the same in size. 

 

 

In this episode, the initial mathematics for students (MfS) was the appreciation of the 

difference between variables and unknowns. I anticipated that students were prepared 

to develop notions of letters as unknowns in the GA grid by referring to neighbouring 

cell values. This anticipation may be detected by phrases like “I am going to…”, and 

“…it will let me” (§1).  

 

With this anticipation in mind, I changed my focus (M-N shift) to start interacting with 

the students. This interaction started with 18 in R3C2, where I started asking students 

questions to help them reflect on that experience. Joseph immediately pointed out that 

this was accepted by GA because it was a multiple of 3. This was a cue for me that I 

could place a letter in the grid and I inserted 𝑑𝑑 in a neighbouring cell (R3C4) and asked 

the students what that letter symbolised.  

#3 
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Here I shifted my focus to another purpose. From interacting with students to 

encouraging them to reflect on mathematical artefacts (N-L shift). This encouraged 

Joseph to suggest a meaning for 𝑑𝑑: “like if you do 18 plus 3 plus 3”. Placing 𝑑𝑑 in the 

neighbourhood of 18 (Figure 6.4.1) seemed to help Joseph interpret the symbol 𝑑𝑑, 

aided by the representation of its “container”: the cell in the context of the grid. The 

interplay between conceptual interpretations and pictorial, symbolic, and kinaesthetic 

representations will be discussed in Chapter 7. It suffices for the moment to point out 

that Joseph’s interpretation of the symbol 𝑑𝑑 in association with the neighbouring cells 

and values is an example of Mercer’s (2000) claim that symbols (like words) gain 

meaning from the company they keep. 

 
Figure 6.4.1 Letter gaining meaning of from the company it keeps 

 

 

It was my turn to interpret Joseph’s representations and I changed my focus from 

encouraging reflection to forming a model of his MoS (L-N shift). At first (§2), I 

confirmed aloud what Joseph seemed to be thinking: “…so what we’re saying here 

is that…”. I also made cell movements corresponding to Joseph’s calculation of 

18 + 3 + 3 ending on the cell containing 𝑑𝑑, and used GA’s magnifier to help the other 

students see that what Joseph seemed to be implying was that 𝑑𝑑 = 18 + 3 + 3 or that 

18 + 3 + 3 = 𝑑𝑑. 

 

This was followed by reviewing my MfS (§3), i.e. appreciating the circumstances 

making 𝑑𝑑 an unknown. Joseph made valid mathematical statements but to him 𝑑𝑑 

signified the answer of a calculation, rather than a single fixed number. My focus 

changed again from reviewing the learning offer to associating MoS with my 
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mathematics (N-M shift). In order to do this, I had to adapt my idea of unknown as a 

fixed single number to accommodate Joseph’s concept of unknown as “answer”.  

 

This shift prompted a new M-N-L cycle, with a renewed MfS: the appreciation of the 

connection between  

• a letter as a single (unknown) number due to its being the value of an expression 

(Joseph’s MoS) and  

• a letter as a single fixed (unknown) number due to its neighbourhood in the GA 

grid (the original MfS). 

I anticipated how students could make these connections as I started off the new 

M-N-L cycle. 

 

I shifted my focus from anticipating these connections to interacting with students to 

help them develop mathematical appreciations of these connections (M-N shift). I 

erased all the expressions, except 18 and 𝑑𝑑 (Figure 6.4.1) and hoped students would 

make the link between what was in the cell R3C4 a moment earlier (18 + 3 + 3) and the 

single number that GA could accept in the same cell. Students were competent in 

assigning single numbers in GA cells, so I figured the empty cell R3C4 could invoke the 

single number 24 in the minds of the students due to its position in relation to 18.  

 

I asked students what was the “unique number that can be” in R3C4. Here my purpose 

had changed from interacting by erasing the expression 18 + 3 + 3 to encouraging 

students to reflect on the single number which could be entered in that empty cell (N-

L shift). Unsurprisingly, Joseph himself mentioned the number 24. He had already 

thought about it and even mentioned it earlier (end of §1) because he was thinking of 

it as the answer to 18 + 3 + 3. Nevertheless, I wanted to orient students’ thinking 

(Glasersfeld, 1991b) towards thinking of 𝑑𝑑 as being 24 without the need to think of it 

as the answer to a calculation. So during the experience-reflection stage, I confirmed 

Joseph’s statement by dragging 24 into the cell containing 𝑑𝑑 (§4) and proceeded to 

help students to observe and consider the mathematical statement 𝑑𝑑 = 24 which was 

enabled by the magnifier. 
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I knew that some students still found difficulty in conceptualising the equals sign (ES) 

unless it followed a computation or preceded an answer. So, during the reflection 

exercise, I focused on the meaning of ES in 𝑑𝑑 = 24 (§5). When I asked what 𝑑𝑑 “equals” 

24 meant, Joseph explained himself by saying in English “equal to”. His change from 

“equals” to the more exact “equal to” and his inclusion and emphasis of the preposition 

“to” gave ES a more a relational meaning. Dwayne immediately picked up on this and 

gave the anticipated response: “They are the same in size.”  

 

Dwayne and Joseph’s feedback made me change my focus from helping students to 

reflect on the learning offer to forming a model of these students’ MoS (L-N shift). I 

confirmed Dwayne’s response, and repeated his statement in other words. I also said 

“Good”, indicating a favourable review of Dwayne’s statement and simultaneously of 

the effectiveness of my learning offer. In accepting that 𝑑𝑑 = 24 meant 𝑑𝑑 has the same 

size of 24, Dwayne and possibly Joseph, seemed to have constructed notions about a 

letter that could stand for a constant unknown irrespective of whether that constant 

was the answer of a calculation. 

 

Once again, my purpose changed from reviewing the outcome of the learning offer to 

reflecting on my mathematics, i.e. my interpretation of 𝑑𝑑 = 24 (N-M shift). I knew that 

the neighbouring 18 meant that 𝑑𝑑 could not be anything but 24. This was a concept 

included in the original MfS, including the idea that, without any other numbers in the 

grid, 𝑑𝑑 would be a variable multiple of 3 and hence the statement 𝑑𝑑 = 24 would be 

viable if it were interpreted as one possible equality from various possibilities such as: 

𝑑𝑑 = 21, 𝑑𝑑 = 24, 𝑑𝑑 = 27, etc. This prompted the onset a new M-N-L cycle in which I 

intended to help students to develop the notion of 𝑑𝑑 as a variable. 

 

The following table summarises how these two M-N-L cycles occurred by mapping 

each event to the respective teaching purpose. 
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Table 6.4.1 Teacher’s forward- and backward-negotiation roads 

Mathematics   Negotiation Learner 

The notion of 
unknown 
represented by  
a letter in a GA 
environment. 

Teacher anticipates 
students will 
appreciate the notion 
of unknown when 
this is contrasted with 
a variable. 

Teacher interacts by 
placing 18 in R3C2 
and 𝑑𝑑 in R3C4. He 
asks students what 
this letter may be 
symbolising. 

Joseph says that 
18 is possible 
because 𝑑𝑑 is a 
multiple of 3. 
Then he says that 
𝑑𝑑 is the answer of 
an operation done 
on 18.  

 
 

The “answer” of a 
calculation may be 
thought of as an 
unknown. This 
holds also when 
the calculation is 
not meant to be 
expressed as a 
single number,  
e.g. 𝑛𝑛 = 3 + √2 

 
 
 
 

Teacher reviews the 
original MfS and 
seeks a way to 
incorporate the 
notion of an unknown 
with/within the notion 
of “answer”. 

Teacher builds an 
unexpected model of 
MoS concerning the 
letter 𝑑𝑑: the “answer” 
to a computation. 

Teacher anticipates 
that students will link 
the notion of 
“answer” and 
unknown if they can 
see a particular 
example with the 
help of GA. 

Teacher interacts by 
using Joseph’s 
explanation and 
shows that 𝑑𝑑 may be 
seen as the “answer” 
of 18 + 3 + 3. He 
asks the students to 
tell him which 
number he could 
drag in that cell from 
the number menu. 

Joseph says this 
number is 24 and 
the teacher 
dragged it in the 
cell in which it was 
accepted. 
Teacher helps 
students reflect on 
the statement       
𝑑𝑑 = 24. Joseph 
and Dwayne 
elaborate on the 
meaning of ES. 

 
Teacher associates 
students’ 
interpretations  
of 𝑑𝑑 with his notion 
of 𝑑𝑑 as variable. 

Teacher reviews 
MfS. Dwayne and 
Joseph seem to 
interpret 𝑑𝑑 as being 
equal to a constant. 

Teacher builds a 
model of Joseph’s 
and Dwayne’s 
meaning for ES as 
“the same in size”. 

 

 

Table 6.4.1 shows the continual and fast toing and froing between my mathematics 

and my students as I strived to engage in CT. Keeping in mind the MfS I intended to 

teach and the MoS of individual and groups of students was a challenging process 

fraught with the risk of failing to make valid learning offers or to attend to students’ 

conceptual needs. In the following section, I discuss moments where I failed to 

maintain one of the negotiation roads between mathematics and learners. 
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6.5 Roadblocks between Mathematics and Learners 

Analysing lesson videos against the M-N-L conceptual framework identified two ways 

in which a teacher could fail to engage in CT by creating a barrier in one of the two 

negotiation roads between the subject matter (mathematics) and the learners. Such a 

barrier could be created: 

 on the learner side, blocking the backward-negotiation path, or  

 on the mathematics side, blocking the forward-negotiation path. 

 

Figure 6.5.0 Barriers in the negotiation roads linking mathematics and learners 

 
 

The first roadblock (Figure 6.5.0a) occurs when teachers fail to create models of the 

students’ learning. This originates from teachers’ exclusive focus on mathematics which 

alienates them from developing models of possible students’ conceptualisations. I have 

discovered five types of such roadblocks in my lessons and I discuss these presently. 

The second roadblock (Figure 6.5.0b) occurs when teachers do not intend to anticipate 

how students might interpret learning offers. I did not identify any such barriers in the 

lessons but the M-N-L structure led me to hypothesise that such a barrier might exist. 

 

In the following subsections, I present lesson excerpts to briefly discuss five types of 

backward-negotiation (Figure 6.5.0a) barriers which were identified during the analysis 

of the GA lessons. The first two barriers were quite common and, for these, I chose 

excerpts of what I believe to be typical situations where such roadblocks occurred.  The 

other three barriers occurred only once and hence only one excerpt was available to 

illustrate and discuss them. 
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6.5.1 Backward-Negotiation Block Type 1: Failure to Elaborate 
on Students’ Responses 

There were instances where I observed myself failing to elaborate on a student’s 

response, making it impossible to associate students’ representations with my 

mathematics. I created one such barrier in Lesson 10 while demonstrating and 

discussing GA Task 5. A cell with a number was given and another cell was highlighted. 

Students had to enter three expressions equivalent to the journey that the cell with the 

given number had to make to end up on the highlighted cell. I encouraged students to 

attempt multi-step journeys rather than a single-step, one-operation journey.  

 
Excerpt 6.5.1.1 Lesson 10 

Omar: [Pointing to 5 in #1…] Five minus 1 [moving his finger to the left] plus 

three [moving his finger to the right towards the highlighted cell]. 
 

 
 

[PB entered Omar’s expression in the calculator.] 

Dwayne: Sir, you can’t. [At the same moment GA showed a no-entry symbol.] 

PB: 5 minus 1 plus 3, I don’t know where you ended up. [Dwayne said 

something in Omar’s ear and made a symbol of 2 with his fingers]. 

Dwayne: Sir…[while PB was speaking]. 

PB: So, [presses button] enter. Look what’s going to happen to me. [GA 

showed a dialogue box like that of #2].  

#1 



Chapter 6 Analysis and Discussion of Constructivist Teaching 
 

224 

 
Incorrect. Zero. That’s it. 

 

For some reason, I was too impatient to stop and reflect on what seemed to me a 

mistake and hence failed to capitalise on Omar’s apparent misconception to help him 

and others to make suitable interpretations. I forgot Dewey’s (1916) claim that giving 

children the opportunity to learn from their mistakes is a requirement for active learning. 

I coded such barriers as xL-xN_NoElab>NoAssoc because it was a Learner-to-

Negotiation barrier (xL-xN) where failure to elaborate a student’s representations 

entailed failure to associate MoS with my mathematics. 

 

6.5.2 Backward-Negotiation Block Type 2: Failure to Ask 
Questions 

This backward-negotiation block originated from my failure to ask students what they 

thought about a situation. Once again, this entailed a failure to capitalise on students’ 

mathematical representations. Unlike Type 1, this was not a failure to elaborate on a 

student’s response, but a failure to ask questions.  

 

A typical episode where this barrier occurred happened well into Lesson 11. A 

discussion about inverse operations was being facilitated by the GA Run mode where 

students moved numbers from one cell to another and back in order to obtain 

expressions with inverse operations. In this episode, Jordan was going to drag 4 from 

R2C2 to R6C2 and he was guessing the operation required for that movement. 

 

 

#2 
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Excerpt 6.5.2.1 Lesson 11 

PB: [Addressing Jordan], what do you think will happen from 4 to 12? 

 
Jordan: Um, I think… 

PB: If you don’t know you can ask your friends to help you. 

Jordan: …times 4. 

PB: 4? Come on [nodding towards the board], try it out. Let’s see. [Jordan 
moves the cell and GA showed  4 × 3]. Times  3, mate, to make it 12. 
Right? [Jordan seemed focused on continuing the activity rather than 
seeing why 4 × 4 was wrong.] 

 

Jordan was not usually one to make such mistakes and it would have been beneficial 

for me to learn why he said 4 × 4 instead of 4 × 3. My failure to ask Jordan why he 

thought it was 4 × 4  led to a poor (hypothetical) model of his mathematical 

interpretation (MoS). The most significant failure here was that I just showed Jordan 

that his answer was unacceptable. Glasersfeld (1991b) warned constructivist teachers 

against telling students that their answer is wrong because it could actually be right if 

the problem is seen from their perspective. Telling Jordan to check whether the 

dragging of the cell resulted in his suggested expression and letting him realise that 

GA writes something else (which I knew it would) was almost identical to simply telling 

him that his expression was wrong without first trying to see how he interpreted my 

question. Such incidents were coded xL-xN_NoAsk>PoorModel where failure to ask 

students to explain their representations led to a poor model of MoS. 
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The following three barriers occurred only once in the course of the lessons but they 

are still significant for learning about situations where CT may be compromised. 

 

6.5.3 Backward-Negotiation Block Type 3: Stopping a Student 
from Starting a Discussion 

One of the three one-off backward-negotiation blocks occurred a few minutes into 

Lesson 1, when I was showing students what numbers could be allowed to exist in the 

first row of the GA grid by scrolling along the different numbers of the first row. I had 

forgot to set GA to exclude 0 and negative integers which were not part of the intended 

MfS. 

 
Excerpt 6.5.3.1 Lesson 1 

PB: …Over there we are going a bit further away as well. [Scrolls a bit 
backwards and GA showed 0 and some negative numbers. Scrolls 
quickly back to 1].  

 
I am interested from 1. 

Joseph: Or from minus 1. 

PB: From 1. But I’m interested from 1. Do not take notice that we did, that 
there was 0 as well. When the time comes we will do that as well. 
[Continues with what he was originally doing.] 
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Glasersfeld (1991b) says that constructivist teachers should ‘try and build up a model 

of the particular student’s own thinking’ (p. 178). In the above episode I failed to do 

exactly that. I missed the opportunity  

 to learn about Joseph’s MoS, and possibly to review MfS, 

 to extend or modify Joseph’s conceptual structures, and 

 to foster this student’s motivation (Steffe 1991) to talk and possibly learn about 

0 and negative numbers.  

This momentary roadblock between learner and negotiation originated from the nature 

of the comment of the learner (Joseph) which, at the moment, I felt as threatening the 

anticipated didactic process. I coded this roadblock as xL-xN_Stop>NoAdapt since 

stopping a student from changing the intended MfS led to a failure to adapt my 

mathematics to incorporate MoS. My awareness of this failure led me to adopt a 

different attitude further on in the same lesson. When the issue of negative numbers 

came up again, I dedicated some time to discuss the need for negative numbers. 

 

6.5.4 Backward-Negotiation Block Type 4: Failure to Let Go of 
the Software to Focus on Students’ Statements 

This roadblock and the next occurred in Lesson 4 and were both due to my failure to 

let go of my focus on what the GA software would show and concentrate more on 

students’ mathematical statements, the validity of which I only appreciated during the 

lesson video analysis. The first roadblock occurred when I was explaining a game 

intended to help students to become familiar with GA representations of multiple 

operations by means of cell movements. On the IWB there was 18 in R3C2. This was 

moved to R3C3 (shaded yellow) to obtain 18 + 3. I was asking Jordan to tell me what 

R3C4 (shaded blue) would show when the yellow cell with 18 + 3 was dragged onto it. 

 
Excerpt 6.5.4.1 Lesson 4  

PB: …You need to tell me also when the 18 + 3 [making a circle around 
the cell with 18 + 3], I take it there [pointing to the empty coloured cell]. 
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Jordan: So. Um, this [pointing two fingers at R3C3 representing 18 + 3], if you 

put it there [moving his hand to R3C4], a piece of it is going to be the 
same and then plus something…which I think it will be 6. 

PB: So, I am going to move this [making a circle and grabbing gesture on 
R3C3], all of this, I am going to move it here [pointing to R3C4]. Not the 
18 [pointing to 18], I am going to move this one [pointing to 18 + 3] 
here. So you said, it becomes…? 

 [Jordan seems to hesitate in answering my question. Joseph wanted 
to suggest the answer.] 

PB: [Nodding towards Joseph…] Come on, what do you think. 

Joseph: I think it is going to become 18 plus 3 plus 3. 

 

Following this, I explained that the expression 18 + 3 increased by 3 to become 

18 + 3 + 3. Jordan may not have learnt anything new from this because, as the excerpt 

shows, he had previously pointed two fingers to 18 + 3 and moved his hand to the right, 

meaning that he was aware that it was 18 + 3 that increased by 3. He thought that the 

final cell would show 18 + 6. It is a particular feature of GA that if you stop dragging a 

cell, let go of the mouse, and then click and drag again to another cell, the latter would 

not show the same expression as if you clicked-and-dragged directly from the first cell. 

The students had to familiarise themselves with the fact that multiple movements of cells 

resulted in expressions with multiple operations. Here, I was too focused on what GA 

would show to appreciate that a similar software could have actually been programmed 
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to show 18 + 6, a viable expression for the result of adding 3 twice to 18. In the analysis, 

I coded this roadblock as xL-xN_Software>NoAssoc because I let a feature of the 

software distract me from a possible association of MoS to my mathematics. 

 
 

6.5.5 Backward-Negotiation Block Type 5: Failure to be Flexible 
by Focusing only on Software Representations 

The other one-off L-N block occurred 14 minutes into Lesson 4, at the moment where 

students were guessing the correct numerical expression that resulted when a cell and 

its expression was moved horizontally or vertically. I was asking students what they 

would see if the cell with number 24 in R3 (multiples of 3) was dragged up to R1 (multiples 

of 1). The students had done similar work in Lesson 3, where we had an extensive 

discussion about a new notation for division, e.g.  24
3

 instead of 24 ÷ 3. I am presenting 

an extended excerpt of the video surrounding the moment when this roadblock occurred 

to show how such a roadblock disturbs the negotiation process in the M-N-L cycle. 

 
Excerpt 6.5.5.1 Lesson 4 

§1  

PB: Tell me, Dwayne, how does  8 result over there [pointing to the cell]. 

Dwayne: It results in 8, and you need to do [PB moving his finger up and down 
the column] the 24, you need to do it times,… wait… 

 
PB: Upwards movement. You need to look over here [pointing to row 

numbers on the left]. What is happening to these? 
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Dwayne: 8. Division by 8. 

PB: Division by 8, 24 division by 8 becomes 3. The 3 [pointing to row 
number 3 and the rest of the row numbers], what do you do to it so 
that it becomes 1? Division by…? 

[Dwayne doesn’t answer and Tony raises his hand.] 

PB: [Nodding towards Tony]. Tell me. Let’s see. 

Tony: 8. 

PB: The answer becomes 8 but I want to know what you do to 3 to get it 
1. 

Joseph: [Speaking while PB is speaking, without raising his hands, and 
keeping his head rested on his hand…] Division by 3. 

§2  

PB: [Dan raises his hand. PB turns his attention to Dan and points at him.] 
Dan. 

Dan: 24 minus 16. 

Dwayne: Division by 3. 

PB: [Keeping his attention on Dan] OK, an upward or downward 
movement? …  

Dan: I told you 24 minus 16… 

PB: [Sounding unconvinced…] 24 minus 16. So I… Don’t forget,… 

Dan: It becomes 8. 

PB: All right it becomes 8… 

Dan: That’s why. 

§3  

PB: But I asked you this question. Try to understand the question and 
answer the question. [Moving his hand up and down C2…] The 24… 

Dwayne: Now I know it [raising his hand and wiggling his finger]. 

PB: (The 24)…by how much does it need to be divided to get over there? 
[Moving his hand up to R1]. 

Dwayne: Divided by 3. 

PB: Division by 3. Because [pointing to the row numbers on the left] 3 
division by 3 to become 1… 
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Dwayne: Uh-huh [agrees]. 

PB: …and so 24 division by 3 [drags the cell] to end up over there [GA 
shows 24

3
] and we see the fraction. We see that symbol that we talked 

about [gesturing with his hands] 24 over 3. 

 

§1 shows my attempts to orient students’ attention towards the transformation of 24 

when its cell was moved from R3 to R1. It seemed they were not understanding because 

first Dwayne and then Tony were focusing on the value of the target cell in R1, i.e. 8 

rather than the operation of division by 3 required for 24 to become 8. Joseph, however, 

stated my anticipated response, “Division by 3,” but his timing was not right. He spoke 

without permission and while I was speaking. Maybe for this reason I seem not to have 

acknowledged his response. 

 

When Dan raised his hand to speak (§2) I gave him my full attention. He seemed to be 

answering the question, “How does 8 result over there?” (§1 line 1), but he did not 

seem to me to be focusing on vertical cell movement. So when he said “24 minus 16” 

I immediately thought that he did not understand my question. Even when Dwayne 

said the anticipated response, “Division by 3,” I kept my attention on Dan because I felt 

I needed to address Dan’s apparent misinterpretation before endorsing Dwayne’s 

answer. In earlier lessons, I had been discussing that subtraction and addition were 

horizontal movements on GA so I wanted Dan to realise his (apparent) mistake by 

asking him whether his “24 minus 16” was “an upward or downward movement” (§2).  

 

Dan held fast to his original statement and argued that “24 minus 16 … becomes 8”. I 

was so focused on the fact that GA showed a division symbol for an upward movement 

that I was not flexible enough to notice that Dan’s statement could actually have been 

correct even if he was thinking of an upward movement. Had I not been focused on 

the parameters of the software, I could have connected Dan’s 24 − 16 with GA’s 24
3

 by 

discussing the operation of subtracting 2/3 of a quantity: 24 − 2
3

(24) = 24
3

. I labelled this 

roadblock as xL-xN_Software>NoFlex because I let my focus on the software affect 

my flexibility to associate MoS with my original MfS. 
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Since the backward-negotiation road was blocked from the Learner side of M-N-L, I 

had to start another M-N-L cycle (§3) by anticipating students’ interpretations of a 

reworded question about the movement and related operation of 24: “…by how much 

does it need to be divided…?” It seems that I was one step away from telling students 

the anticipated answer myself! This was the perfect timing for Dwayne to say again 

what he had stated when I was talking to Dan, “Divided by 3.” I proceeded to endorse 

and accentuate his response by confirming it by moving the cell and finally obtaining 

the expected  24
3

. 

 

The following table summarises how the M-N-L cycle got interrupted by this backward-

negotiation block and how I was forced to start a new cycle. 

 
Table 6.5.5.1  Teacher’s failure to capitalize on students’ responses 

Mathematics  Negotiation Learner 

 
When moving a 
number 𝑥𝑥 in the  
𝑛𝑛-times table to  
the 1-times table 
one is performing 
the division 𝑥𝑥

𝑛𝑛
. 

 
Teacher anticipates 
that students will 
recall (from Lesson 3) 
that upwards 
movement 
constitutes division. 

 
Teacher interacts by 
referring to 24, 
already in R3, and 
asks students what 
GA will show when 
he drags it to R1 

Students are 
concerned with the 
value of the cell. 
Teacher asks more 
specifically “24 
divided by…?” 
Dan’s answers, “24 
minus 16.” Teacher 
is not flexible to 
link this to 24

3
. 

  
 
 

 
 
 
 
 
 
 

  

Teacher thinks 
students are not 
focusing on his 
question. He 
anticipates that they 
might answer 
correctly if question 
is reworded. 

Teacher interacts by 
asking the same 
question differently 
with the help of 
gestures. 

Dwayne’s answer 
was the teacher’s 
anticipated 
response: 24 
divided by 3. 

 

 

B 
L 
O 
C 
K New 

Cycle
: 
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Table 6.5.5.1 shows how a backward-negotiation block usually contributed to an 

additional M-N and N-L shifts required to restart a new M-N-L cycle. These additional 

shifts contributed to the disproportionate percentages shown in the pie chart of Figure 

6.3.1.  

The next subsection gives an overview of the roadblocks discussed in Sections 6.5.1–

6.5.4 and their frequency throughout the lessons. 

 

6.5.6 An Overall Picture of the Backward-Negotiation Blocks 

Overall, I identified a total of 23 backward-negotiation L-N blocks. Table 6.5.6.1 gives 

the frequencies of each type of block discussed above.  
 

Table 6.5.6.1 Frequencies of backward-negotiation roadblocks divided by categories 

Learner-Negotiation 
Roadblock 

No Elab. > 
No Assoc. 

No Ask > 
Poor Model 

Stop > 
No Adapt. 

Software > 
No Assoc. 

Software > 
No Flex. 

Frequency 7 13 1 1 1 

 

The vast majority of these roadblocks (20/23) fell under the first two categories, i.e. 

NoElab>NoAssoc and NoAsk>PoorModel, meaning these were the areas where it was 

most challenging for me to sustain M-N-L cycles to engage in CT. These barriers 

occurred either because I was too hasty to take the time to elaborate on students’ 

representations or because I did not assume a constructivist view of students’ 

mistakes. In the case of the latter, there were two mental statements I could have made 

when I was getting responses other than those I was after: 

 “They are not understanding me. I need to rephrase my question/explanation.”  

 “Their mathematics may be correct. They just need to make the right 

connections.”  

I consider it a failure in my CT endeavours to have chosen (i) over (ii) in some of the 

roadblocks I mentioned. However, the most deliberate of roadblocks, Stop>NoAdapt, 

was a one-off and it was quickly rectified in the same lesson (negative numbers). 
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Although the numbers given above constitute a rough average of one roadblock per 
lesson, a lesson-by-lesson look at the frequencies of the roadblocks shows that there 
might have been an encouraging downwards trend (Figure 6.5.6.1). 

 

Figure 6.5.6.1 Lesson-by-lesson frequencies of backward-negotiation roadblocks 

 

 

The downwards trend line14 shows that the frequency of (backward-negotiation) 
roadblocks decreased along the scholastic year. In fact, their occurrence was more 
prominent in the first 10 lessons than in the second 10. Reasons for this trend may be 
several but I identified three: 

 I became more aware of my CT failures and conscious of how my constructivist 
beliefs should be reflected in my teaching;  

 In the first few lessons, I had to adopt mostly a teacher exposition approach to 
demonstrate GA’s features, and hence I was more susceptible to focus 
exclusively on my mathematics at the expense of losing sight of the learners; 

                                            
14 Gradient and y-intercept of the line of best fit was calculated by the Least-Squares method. 
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 Later plenary discussions were built around students’ attempts of GA tasks and 
hence it was less difficult for me to maintain a focus on the learners. 

 

6.6 Summary and Conclusion 

I have discussed how changes of focus on my purpose during the lessons formed the 

basis for the development of the M-N-L framework. I have shown that this conceptual 

framework may serve to analyse how teachers may attempt to engage in CT. M-N-L 

may be found viable to analyse situations where teachers negotiate roads linking 

mathematics and learners, a process where teachers are also learners and learners 

are also teachers.  

 

M-N-L helped me to identify possible roadblocks in the negotiation process that brings 

together learners and mathematics. Besides validating the usefulness of M-N-L to 

analyse CT, these roadblocks show that even a self-proclaimed constructivist teacher 

like myself is in danger of occasionally creating barriers which obstruct the subject-

learner negotiation process. Such roadblocks originated from a strict focus on the 

subject matter at the expense of learners’ needs.  Being aware of these barriers makes 

us constructivist teachers more vigilant to avoid them as much as possible in our 

endeavours to engage in CT. 

 

Furthermore, I do not believe M-N-L is exclusive to mathematics teaching and learning. 

Although the framework originated from a mathematics education research, it may be 

found viable to investigate CT of other curricular subjects. “Mathematics” in M-N-L may 

be changed into any taught subject. 

 

One question remains: In what way did the students represent their mathematical 

interpretations to enable me to build experiential models of their conceptual structures 

as an integral part of the M-N-L cycles? This is a question which I attempt to address 

in Chapter 7, where I concentrate on whether and how CT helped the students to 

develop mathematical concepts with the help of GA. 

 



 

 

Chapter 7 

 Analysis and Discussion of 
Students’ Representations and 

Interpretations of Notation 
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7.0 Overview 

In this chapter, I analyse data related to research questions 2(i)–(iii), which concern 

students’ representations and interpretations of notation. Students’ representations 

served me to develop models of their conceptual interpretations, i.e. MoS. This was 

a crucial stage in the backward-negotiation road of the M-N-L cycle discussed in 

Chapter 6. Table 7.0.1 shows the section titles of this chapter. 
 

Table 7.0.1 Chapter 7 section titles 

 Section Title Page 

7.1 Representations, Interpretations, and the CAPS Framework 238 

7.2 Notation for Addition and Subtraction 241 

7.3 Notation for Multiplication and Division 255 

7.4 Notation for Unknowns and Variables 277 

7.5 Notation for Equality 291 

7.6 Students’ CAPS Enabling M-N-L Cycles 308 
 
 

In Section 7.1, I discuss the framework used for this analysis. In each of Sections 

7.2–7.5, I analyse students’ initial representations and interpretations of notation 

before the GA lessons, how GA helped students to enrich their representations of 

notation, and how this led to students’ extending and developing conceptual 

interpretations of notation. I analyse data obtained from the interviews, computer 

screen activity capture of students’ work, students’ pen-and-paper work, and also 

lesson videos. My choice of data to be included as evidence of this analysis depends 

upon its being: 

 typical – representative of the student/s being discussed, 

 convenient – clear and easy to follow by the reader, and 

 comprehensive – some data from each student is included. 

The following section includes a brief discussion of the analytic framework used. 
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7.1 Representations, Interpretations, and the CAPS 
Framework  

In the literature, the words “representation” and “interpretation” take on many meanings 

and are sometimes interchanged. To avoid confusion, by “representation” I refer to any 

external manifestation of a mental schema, which, for convenience, will be referred to 

as “concept”. “Conceptual interpretation”, or “interpretation” is taken to mean the mental 

association of personal experiences with particular concepts. These experiences include 

perceptions of representations expressed by others and also by the self.   

 

Two key theories discussed in Chapter 2 were: 

 Kaput’s (1991) Signifier/Signified theory about the connection of 

representations (signifiers) and interpretations (signified) and how these cause 

and are caused by each other; 

 Bruner’s (1966) Enactive/Iconic/Symbolic theory about the three representation 

modes which supplement and sometimes replace verbal representation. 

In Chapter 6, I analysed how I negotiated between mathematics and learners by 

making learning offers built upon models I formed of students’ conceptual 

interpretations. In this chapter I focus on students’ non-verbal representations, 

supplementing their speech, which I used to build those models. Hence, Bruner’s 

(1966) theory was very significant. Since I was linking students’ representations to their 

conceptual interpretations, Kaput’s (1991) theory was also appropriate.  

 

I found that the amalgamation of these constructs created something more than the 

sum of their parts. Signified concepts are interpretations of external representations 

manifested through signifier actions, pictures, and symbols. I combined these theories 

into a single framework I refer to as CAPS (Concept, Action, Picture, and Symbol), a 

detailed discussion of which is included in Borg and Hewitt (2015). Table 7.1.1 includes 

my definition of these four items as they are used in this framework, along with some 

examples of each item to illustrate these definitions.  



Chapter 7 Students’ Representations and Interpretations of Notation 
 

239 

Table 7.1.1 Definitions and examples of CAPS items 

 Definition Examples 

Concept 

Mental interpretation of experiences constituting a 
developing mental schema. Different people may 
establish a consensual domain about similar 
experiences where they agree about similarities in 
their personal mental schemata. Communication of 
a concept occurs through perception and 
manifestation of representations of this concept. 

1. Balancing concept of 
equality. 

2. Concept of additive inverse. 

Action 
Kinaesthetic representation of a concept including 
movements involved in activities, gestures, role-
play, and virtual environments. 

1. A gesture with both hands 
showing balance. 

2. Step forward and backward 
showing inverse process. 

Picture 

Diagrammatic representation of a concept, drawn 
physically or virtually, including hand and 
computer-assisted shapes and figures. These 
pictures may be iconic such as examples 1 and 2 
to represent concepts of balance and inverse 
repectively. They may also not be iconic, without 
any similar characteristics between the concept 
and the diagram, such as a rectangle that 
represents a number (3). 

   
 1. 

 

 
 

 
 
 

 

 2. 
 
 
 3. 

Symbol 
Formal (conventional) notational representation of 
a concept, including mathematical symbols and 
numbers and groups of these in expressions. 

1. 4 = 4 
2. 10 + 6 − 6 

 

Figure 7.1.1 shows how these four items are linked together. Action, picture, and 

symbol (APS) representations and conceptual interpretations originate from each other 

(continuous arrows in Figure 7.1.1). Simultaneous connections of multiple APS 

representations with conceptual interpretations form associations between 

representations themselves (broken arrows in Figure 7.1.1). In the context of 

constructivist teaching, teachers interpret students’ APS representations to form 

experiential models of their conceptual interpretations.  From a radical constructivist 

(RC) perspective, I consider any interpretation or representation to be subjective but 

individuals can agree on elements of these representations and interpretations to 

establish a consensual domain (Maturana & Varela, 1980; Glasersfeld, 1991b). 
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Figure 7.1.1 The CAPS framework 

 
 

The investigation I discuss in this chapter focuses on students’ conceptualisations of 

the notation of: 

 addition and subtraction, 
 multiplication and division, 
 unknowns and variables, and 
 equality. 

 

These are analysed respectively in Sections 7.2–5, where I discuss how students 

developed notions about notation with the help of GA. In these discussions, I will often 

make reference to APS representations by showing, in brackets, which of these three 

representations I was observing (e.g. finger counting (action), arrow (picture), written 

expression (symbol), etc.). I analyse how these representations helped me, as a 
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teaching researcher, to build models about students’ interpretations of mathematical 

artefacts in order to form an assessment of students’ conceptual development during 

the lessons and throughout the scholastic year. At the end of each section, using the 

CAPS framework, I give a summative analysis of students’ representations and 

interpretations of notation as observed in the lessons and in the interviews. 

 
7.2 Notation for Addition and Subtraction 

In this section, I focus on students’ representation and interpretation of the addition 

and subtraction notation. I discuss their understandings of the symbols + and − and 

how their concepts developed with the help of GA lessons. 

 

7.2.1 Students’ Initial Interpretations and Representations 

Interview 1 revealed that all students demonstrated basic knowledge of how to add 

and subtract two numbers. They correctly worked out the sums and differences of two 

numbers less than 10. They also showed competence in carrying out vertical 

algorithms for adding or subtracting large numbers. This interview showed that for the 

symbols + and − students had developed concepts of a process. 

 

Joseph, Dwayne, Tony, and Jordan worked out additions and subtractions like 4 + 3 and 

8 − 3 mentally. Probing their interpretations of such expressions revealed that they gave 

answers through factual recall. For example, Dwayne said there was no particular 

process going on in his mind. Since these students used only verbal representations to 

express their understanding of addition and subtraction it was hard for me to hypothesise 

about their conceptual interpretations of such expressions besides factual recall. 

 

It was a different matter for Omar and Dan, who made use of finger counting to work 

out additions and subtractions like 4 + 3 and 8 − 3. Omar’s counting was explicit, 

extending successive fingers as he counted on or back (Figure 7.2.1.1a). Dan’s use of 

his fingers was hardly noticeable because he counted by touching successive fingers 

to his chest (Figure 7.2.1.1b). 
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Figure 7.2.1.1 The action of finger counting 

 
 

For these students, the addition 4 + 3 signified adding 3 units to the previous number 
and they represented this concept by the action of counting on from 4 to 7 with their 
fingers to obtain the answer. Similarly, the subtraction 8 − 3 signified subtracting 3 
units from the previous number and they both represented this concept by the action 
of counting back from 8 to 5. It was an interplay of signifier-signified-signifier, from 
perceived symbol – to conceived concept – to represented action.  
 
When asked what the processes addition and subtraction meant to him, Joseph 
showed me by counting on with his fingers but he said, “I just did it straightforwardly, 
mentally.” It was evident he did not need to do finger counting any more because he 
already knew the answers through factual recall. It seems that the concrete action of 
counting backwards and forwards had become redundant to Joseph since he had 
already encountered and memorised the value of these expressions. However, to 
explain to me what he meant by addition, Joseph felt that he needed to represent his 
thoughts through finger counting. This is an example of how alternative 
representations, such as a kinaesthetic action, may become necessary to supplement 
verbal expression to explain one’s thoughts during communication. 

(b) (a) 
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This interview also revealed that none of the students made use of the additive inverse 

property and they evaluated expressions like 5 + 4 − 4 by adding up the first two 

numbers and then subtracting the third. This was consistent with findings of Galardo 

and Rojano (1987) and Herscovics and Linchevski (1994). Students’ failure to make 

use of additive inverse meant that for expressions like 497 + 2014 − 2014 they all 

engaged in long vertical algorithms which sometimes resulted in mistakes.  

 

In the course of the lessons, I intended to help students to develop their understanding 

of inverse relationships, but first I needed to help them develop further their 

interpretations of the addition and subtraction notation by learning more ways of how 

to represent the concepts evoked by the symbols + and −.  As seen in the following 

subsection, GA proved to be a viable tool in helping me to achieve this goal. 

 

7.2.2 Enriching Students’ Interpretations and Representations 

After some lessons of working with GA, students started getting used to the idea that 

when they dragged one cell, or rather its contents, to another place in the grid, GA 

would not simply change the number into another but it would show the expression 

with the necessary operation required for that mapping to occur. If a cell containing 15 

in R3C2 was moved to R3C4, GA would show 15 + 6. This helped the students to 

become accustomed to lack of closure (Collis, 1974) and to the idea that expressions 

like 15 + 6 could be perceived as both as a process and a manipulable concept, or 

what Gray and Tall (1994) called a procept.  

 

The first few lessons taught me that most students persisted in giving a single value 

for numerical expressions, even when I asked them specifically what GA would show 

if the value in a cell was transported to another cell. The following is an episode from 

Lesson 3, in which students had just seen what will happen to cells in GA when they 

are dragged. 
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Excerpt 7.2.2.1 Lesson 3 

PB: What shall I see if I grab this [pointing to 40 in R1C4] and I move it to 
here [pointing to R1C2]. 

 
Jordan: 38? 

PB: 38 would be its answer. But how did that answer come to be? 
Jordan: Uh. [Jordan pauses, thinking. Other students raise their hands.] 

PB: Give him a chance. Give him a chance… 

Jordan: You do minus 2. 

PB: So, what will I see completely [pointing again to R1C2]?  

 [Pause. Jordan thinking.] 

PB: [Nodding] Good. But what will I see completely when the 40 I do it 
minus 2 [gesturing as if grabbing the 40 and moving it to R1C2]? I will 
see…? 

Jordan: I see… [Long pause. Jordan thinking.] 

PB: We are saying it. You have 40 [pointing to it], and we’ll do minus 2 
[moving his hand to R1C2]. So, you shall see…? 

Jordan: 38. 
 

It seems that Jordan had been aware that leftwards movement in R1 meant subtracting 

and he seemed also aware that the value of the destination cell would be 2 less than 

40. However, he failed to say that the cell would show 40 − 2. It seems that though 

Jordan was familiar with regarding this expression as a process he was not prepared 

to represent it as a product. This was quite common for the whole group in the first few 

GA lessons. It was interesting to analyse Jordan’s progress from Lesson 3 to Lesson 

6, where students worked on GA Task 16 – Make the Expression (Numbers), where 
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they had to move a cell for a number of times until they obtained a given numerical 

expression. Figure 7.2.2.1 includes a series of screenshots showing Jordan’s cell 

movements as he worked with Omar (“Chimps”) to convert 8 into 8 + 1 − 2 − 1. 

 
Figure 7.2.2.1 Jordan’s movements to represent an expression 

 
 

When Jordan made his first move (Figure 7.2.2.1a), and obtained 8 + 1 (Figure 

7.2.2.1b), GA required him to move the whole 8 + 1 by two units to the left to obtain 

8 + 1 − 2 (Figure 7.2.2.1c). In this way, GA could have helped Jordan to interpret 8 + 1 

proceptually since: 

 R1C4 did not show 9 but 8 + 1, and 

 8 + 1 was treated as a single manipulable entity when it was moved leftwards.  

After obtaining 8 + 1 − 2, GA may have consolidated Jordan’s proceptual interpretation 

of this expression when he had to move it yet again to obtain the target expression   

8 + 1 − 2 − 1 (d). This target expression was likely to be interpreted by Jordan as both 

a process and a product. The process was the set of movements (action) representing 

(a) (b) 

(c) (d) 
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the operations (concept) involved in the expression and the product was the target 

notation itself (symbols) represented consistently by a rectangle (picture) both as a 

given target and in the final destination cell R1C1. Similar challenges in Task 16 were 

successfully completed by all the other students. 

 

GA offered more ways which may have helped students to develop a proceptual view 

of the addition and subtraction notation. In Lesson 8, we worked on GA Task 10 –  Find 

the Journey (Numbers). The task was similar to Task 16, where students clicked on 

successive cells to take a number in a given initial cell on a journey to obtain a given 

numerical expression in a destination cell. For each cell click, GA showed a circled 

number associated with a journey stage and it joined each number to the preceding 

one to give the impression of a route developing between the stages. The following 

excerpt and screenshots show Dwayne and Tony (“Pandas”) collaborating on this task. 

 
Excerpt 7.2.2.2 Lesson 8 – Pandas working on Task 10 (part 1) 

Dwayne: Come on. [Tony’s turn.] 

 

#1 
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When detecting Tony’s mistake, Dwayne seemed to be interpreting Tony’s action and 

picture representations as addition and subtraction operations. When Tony moved 

leftwards from ① to ②, Dwayne corrected him by saying “Plus” rather than “Right”. In 

his second attempt, Tony paused to consider the numerical expression and 

represented the plus and minus operations by rightwards and leftwards movements 

respectively. It seems that the cell representing 7 + 2 in R1C4, marked by Tony as ② 

was interpreted proceptually by both Pandas since this was destined to be transported 

Tony: So. Seven. One, two… [Does the following three successive clicks 

very quickly.] 

 
Dwayne: No, no, no! Plus! Try… Start again. [Tony already clicking on the 

“Start Again” button. GA cleared the journey.] 

Tony: [Immediately clicking on R1C2 containing 7. He stops his cursor on 

the expression and takes two seconds to consider it.] 

 
Ah! Plus 2 minus 1. [Quickly does the second and third steps.] 

 

#2 

#4 

#3 



Chapter 7 Students’ Representations and Interpretations of Notation 
 

248 

to another cell (R1C3). These stills show two pictures representing mathematical 

concepts: 

 the rectangular cell representing a number or a procept, and 

 the journey trail representing the successive operations. 

 

Following Lessons 6 and 8, students were respectively assigned Worksheets 6 and 8, 

containing pen-and-paper exercises mimicking GA Tasks 16 and 10 with minor 

changes. Worksheet 8 contained more challenging tasks than did Worksheet 6. Figure 

7.2.2.2 shows a problem in Worksheet 6 tackled by Jordan (a) and a problem in 

Worksheet 8 tackled by Dwayne (b). 

 

Figure 7.2.2.2 Pen-and-paper pictorial representations of addition and subtraction 

 

 

Evidently, students transferred their GA experience to pen-and-paper situations where 

the main difference was that they had to manually draw the journeys and the 

successive stops. The pictorial representations offered by GA for numerical 

expressions were maintained. Successive forward and backward movements, 

especially those resulting in landing on a previously used cell (as in steps ① to ③ of 

(a) 

(b) 
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Figure 7.2.2.2b) played an important part in enriching students’ interpretations of the 

inverse property of addition. This is discussed in the next subsection. 

 

7.2.3 Extending Students’ Concepts 

As mentioned previously, all students started out Grade 7 without utilising additive and 

multiplicative inverse when evaluating numerical expressions. Each interview included 

difficult questions, such as 5767 + 3993 − 3993  and 567 × 123 ÷ 123, which were 

intended to track students’ developments in coming to know how to utilise additive and 

multiplicative inverse properties to evaluate such expressions. When observing how 

students worked out these problems, their APS representations helped me to create 

models of their conceptualisations, not only during lessons but also during 

interviews. In Interview 2, done before Lesson 8, Dan and Tony evaluated 

5767 + 3993 − 3993 as shown in the following excerpts. 
 

Excerpt 7.2.3.1 Interview 2-Tony 

Tony: Because if you do these two plus [making a U-shape underneath the 
first two numbers and writes + inside it]…  

 
PB: OK. 

Tony: …uh, it becomes… [started to work out the addition]. 

PB: You do not need to write it. Explain it to me without the working. 

Tony: [Sighs.] Because if you do these two plus [pointing to the first two 
numbers] you will get a number and if you subtract again this one 
[pointing to the second 3993], if you subtract again this one the same 
number will result, and so [pointing to his answer 5767]. 
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Excerpt 7.2.3.2 Interview 2-Dan 

Dan: Because this [underlined the first 3993] I did it plus this [underlined 
5767] and then this [shaking his pen on the sum] will become a 
number and then this I cancelled it [pointing and cancelling the first 
3993]… 

 
…because we are doing minus that amount [pointing to the second 
3993] and we were left with this one [pointing to 5767]. 

  
These students’ symbolic/pictorial representations indicated that they had utilised 

concepts of additive inverse. Dan’s mention of cancellation can be interpreted as his 

understanding that additive inverse was linked to additive identity. In fact, in Interview 4, 

he explicitly stated that such operations were equivalent to adding 0. 

 

As a teacher, I felt I needed to work more with the rest of the students to make them 

aware of this important property of addition. In Lesson 8, I took the opportunity to 

discuss this property when Omar was working Task 10 on the IWB and got the 

following journey picture for the expression 4 − 3 − 1 + 1. 

 
Figure 7.2.3.1 Omar’s picture containing an inverse journey 
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The first significant observation was the pictorial representation in GA resulting from 

an additive inverse. This picture resulted from a horizontal movement and the reverse 

movement with stage ④ of the journey overlapping stage ② on the same cell.  

Students may have interpreted this picture in two ways: 

(i) an inverse operation follows the same path of the original operation but in 

reverse, or 

(ii) the result of an operation and its inverse is the same as if no operation has 

been done. 

 

The second observation is Dwayne’s gesture (action) with which he described this 

inverse operation while saying “you add it again and it comes to the same place”. He 

rotated the index fingers in a cyclical motion as seen in Figure 7.2.3.2. 

 

Figure 7.2.3.2  Dwayne’s gesture to represent inverse operation 

 
 

This action supplemented Dwayne’s verbal representation of his interpretation of the 

additive inverse and, thus, helped me to form a better model of his conceptual 

interpretation of −1 + 1.  



Chapter 7 Students’ Representations and Interpretations of Notation 
 

252 

In Interviews 3 and 4, all students managed to answer the difficult additive inverse 
questions correctly. In the GA lessons before these interviews, students had been 
working on inverse movements with GA cells corresponding to inverse operations, 
such as that shown in Figure 7.2.3.1. GA seems to have helped the students develop 
concepts of inverse by giving them the opportunity to represent inverse processes by 
alternative action and picture representations. This supports the argument that diverse 
APS representations may enrich students’ mathematical interpretations, in this case 
the concept of inverse evoked by the conventional notation (symbol) of adding and 
subtracting the same number. In addition, GA seems to have encouraged students to 
come up with their own APS representations and give them the possibility of using 
those representations with reference to their experiential worlds. In Interview 4, which 
was done after Lesson 18, when I asked Dwayne to explain how he got a 
straightforward value to the expression 5445 + 9997 − 9997, he evoked the action of 
travelling between two places in Malta. 
 
Excerpt 7.2.3.3 Interview 4-Dwayne 

Dwayne: [Starts drawing] 

 
  

 
 

Here is, for example, Valletta [draws a circle] and here is Birzebbugia 
[draws another circle]. You go there [draws a line from the first circle 
to the second] and you come back again [draws a line from the 
second circle to the first]. 

 
After a number of lessons featuring journeys between cells in GA’s grid, Dwayne may 
have associated these with actual journeys. He supplemented his verbal description 
by drawing a picture of two places and the return journey between them. His drawing 
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compared well to journeys between simulated GA grids he was required to draw as 
homework. Similar comparative representations were made by other students for the 
same question. Omar and Tony imagined the action of going somewhere and returning 
home and Joseph actually walked one pace forward and one pace backward. I argue 
that being flexible in switching between different representations for additive inverse 
helped these students to extend their meanings of it. Dreyfus (2002) maintains that 
rich mental schemata are formed of a multitude of representation systems and a 
flexibility to switch between them. 
 
This does not imply, however, that students who externalised minimal representations 
had inferior interpretations. Dan and Jordan answered this question successfully using 
only symbolic representations. Both of them reasoned that since 9997 − 9997 was 
equal to 0, then the expression was equivalent to 5445 + 0. Relying only on symbolic 
representation, these students managed to express a conceptual interpretation which 
other students did not exhibit: a notion of additive identity.  
 
Table 7.2.3.1 gives a summative analysis of students’ representations and 
interpretations of the addition and subtraction notation with reference to the CAPS 
framework. This data was collected from the five interviews and from the twenty lessons 
throughout the year. The first column (GA) indicates when GA was used and this always 
happened during the lessons. The second column (Symbolic) gives typical expressions 
which students interpreted and represented. The third column (Conceptual) shows the 
concepts that students were signifying by means of their representations. These were 
the models of students’ thinking processes that I (as a researcher) formed by observing 
students’ APS representations and by listening to what they were saying to compliment 
those representations. As discussed in Chapter 6, I was forming similar models as a 
teacher during the lessons. The fourth column (Active) shows the kinaesthetic actions 
students were making as a means of representing their concepts. The fifth column 
(Pictorial) shows typical picture representations drawn by students manually or by 
using GA. Some of these were also generated by GA during the tasks. The sixth 
column (Code) shows the CAPS code I used to identify which type of representation 
was being expressed for each concept. Finally, the seventh column (Students), shows 
the students who were making those interpretations and representations. 
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Table 7.2.3.1 Students’ CAPS for addition and subtraction 

GA 
Symbolic  

(notational) 
Representation 

Conceptual
(signified) 

Interpretation 

Active 
(kinaesthetic) 
Representation 

Pictorial 
(drawing/diagrammatic)  

Representation 
Code Students 

 
4 + 3 
8 − 3 

Process of 
counting on 

or back 
Finger 

counting  
 

 Dan 
 Joseph 
 Omar 

 
4 + 3 
8 − 3 

Process of 
adding or 

subtracting 
resulting in 
one value 

  
 

 Dwayne 
 Jordan 
 Joseph 
 Tony 

 6 + 2 − 1 Proceptual 
view 

Horizontal 
movement in 

GA grid   
■  All 

 6 + 2 − 1 Proceptual 
view 

Horizontal 
movement in 

GA grid   
■  All 

 3 − 1 + 3 Proceptual 
view 

Horizontal 
movement on 

paper grid 
 

 
■  All  

 8 + 2 − 2 
Additive 
Inverse 

(process) 

Horizontal  
inverse 

movement in 
GA grid   

■  All 

 
5445  + 9997 

−9997     

Additive 
Inverse 

(process) 

Return 
Journey  

 

 Joseph 
 Omar 
 Tony 

 
5445  + 9997 

−9997     

Additive 
Inverse 

(process) 

Return 
Journey 

  

 Dwayne 
 

 
5445  + 9997 

−9997     

Addition of 
0 

(identity) 
  

 

 Dan 
 Jordan 
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Table 7.2.3.115 shows that whenever GA was used, all students managed to use APS 

representations to express their conceptual interpretations of the addition and 

subtraction notation. Multiple representations were also possible in pen-and-paper 

work simulating a GA environment. With regards to preferred representations outside 

the context of a multiplication grid, I am aware that these were exhibited on particular 

moments. These were probably representations that seemed most viable to the 

students on those data gathering moments, and I do not exclude they might have been 

capable of exhibiting others. 

 

The introduction of GA activities involving multiplication and division required the 

students to remember addition and subtraction representations analysed above. They 

needed to make sense of addition and subtraction notation in expressions containing 

also multiplication and division notation. The latter is discussed in the next section. 

 

7.3 Notation for Multiplication and Division 

For secondary students, the addition and subtraction notation remains the same as 

learnt in primary school. However, in secondary school, multiplication and division may 

be denoted in a new way. Secondary students need to learn that familiar notation 

encountered in primary school, namely the brackets and the divisor line of a fraction, 

may be used to denote multiplication and division respectively: 
 

 Absence of any sign before a bracketed expression like 2(3), or 2(3 + 6), would 

signify multiplication; 

 Divisor lines of fractions like 4
2
  or 4+6

2
 would signify division. 

 

These newly defined symbols presented the students with new challenges of using 

notation for expressions with a combination of multiplication, division, addition, and 

subtraction. This entailed the additional study of how students made sense of the order 

of operations when evaluating multi-operational expressions.

                                            
15 Similar summative analysis tables are presented at the end of Sections 7.2–5. 
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7.3.1 Students’ Initial Interpretations and Representations 

Interview 1 revealed that all students were competent in mentally evaluating simple 

expressions like 5 × 4 and 6 ÷ 2. Other than Omar, students interpreted  

• 5 × 4 as repeated addition of 5, and 

• 6 ÷ 2 as inverse of multiplication or halving 6. 

Omar gave the answers through factual recall but he could not verbalise what he 

meant by multiplication or division, so I could not form a model of his interpretations 

of × and ÷. 

 

Dan, Jordan, Joseph, and Omar counted multiples on their fingers to represent 

multiplication and division. While Dan and Joseph used finger counting to supplement 

verbal expressions, for Omar and Jordan this seems to have been a necessary/helpful 

action to work out the answer. This does not mean an inferior level of thinking, 

however, as shown by the following excerpt taken from Jordan’s interview. 

 

Excerpt 7.3.1.1 Interview 1-Jordan 

Jordan: 5 times 4. [Looks down at his fingers.] It results in [writes = 20] 20. 

PB: OK. Tell me a bit how that 20 resulted.  

Jordan: The 20 resulted, um, I did, I did the 5 times table and when I did 4 it 
resulted in 20. 

PB: OK. So what does it mean when we say 5 times 4? Can you tell me 
“5 times 4” but you tell it to me in another way, the “5 times 4”? 

Jordan: It is, it is like a type of plus but it moves quickly. Instantly. 

 

This excerpt and what followed indicated that Jordan had a mental image of 

multiplication as skipping multiples rather than addition of units. In Jordan’s words, 

5 × 4 increases quickly: 5 + 5 + 5 + 5, whereas 5 + 4 increases at a slower rate: 5 +

1 + 1 + 1 + 1. For me this was a simple but elegant way of comparing multiplication 

with addition.  
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Dwayne did not use finger counting during computation but to aid his verbal 

expressions of his interpretation of × he supplemented his verbal expressions with a 

hand action. 

 

Excerpt 7.3.1.2 Interview 1-Dwayne 

Dwayne: We are, um, we’re doing the 5… [PB gestures for Dwayne to raise his 
voice.] We take the 5 and we reuse 5 [rotates his right hand in a 
clockwise sense and stops it under his left hand]… 
 

 
 

…and we, sort of, do them plus. 

PB: Yes. 

Dwayne: And then we take 5 and with the answer we add another 5 [repeats 
the previous gesture]… 

PB: Another 5. 

Dwayne: And you keep on going like that. 
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As soon as Dwayne used the word “reuse” to refer to repeated addition, he felt he 

needed to reinforce his expression by showing me layer upon layer of groups of 5’s 

represented by the fingers of his outstretched hand. By observing this action, I created 

a model of Dwayne’s conceptual representation of multiplication by 5: the repeated 

addition of 5 distinct but grouped objects. 

 

Similar to what I discovered about additive inverse, Interview 1 revealed that, in 

general, students did not make use of multiplicative inverse when evaluating 

expressions. For the expression 121 × 350 ÷ 350, only Dwayne knew how to give the 

answer with minimal calculation. He first divided 350 by 350, got 1, and multiplied 121 

by 1. However, I expected students familiar with multiplicative inverse to give the 

answer 121 straightaway. This showed me that multiplicative inverse was something 

else I had to address as a teacher since, along with additive inverse, this would play 

an important part later on, when students would be required to solve or transform 

equations (Gallardo & Rojano, 1987; Herscovics & Linchevski, 1994). 

 

Interview 1 also provided data about students’ conceptualisation of multi-operational 

expressions. Only Dan, Dwayne, and Jordan evaluated 2 × (3 + 1) as 8, all of them 

saying that the bracketed sum needed to be worked out first. Dwayne was the only one 

who mentioned “the BIDMAS rule”, and said that it was due to this rule that brackets 

came first. However neither he nor any of the others evaluated 2 + 3 × 10 as 32. All 

students got  50, implying that they were working out operations in the order of 

appearance.  

 

None of the students seem to have known that a number followed immediately by a 

bracketed expression meant multiplication. For the expression 10(5 + 2), Dan, 

Dwayne, and Jordan simply added 10 and 7, getting 17. Jordan said that “it came 

together with it”, and made a gesture with both hands as if bringing two things together. 

Omar worked out the brackets, got 7 and stopped there, saying he did not know how 

to work it out. Joseph and Tony made drawings/markings to supplement their 

explanation and this served me well to form a model of what they were thinking.  
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Figure 7.3.1.1 Joseph’s and Tony’s representations of unfamiliar notation use 

 

 

Joseph (Figure 7.3.1.1a) acted as if the first bracket did not exist and worked out 

105 + 2. This was consistent with his interpretation 2 × (3 + 1) as 2 × 3 + 1. He 

supplemented his verbal explanation by crossing out the first bracket. Tony (Figure 

7.3.1.1b) treated the brackets as if they were the place where the answer to a 

calculation was placed. He interpreted 10(5 + 2) as if it were 10−? = (5 + 2). He 

worked out the brackets first, got 7, and so his answer to this question was 3. This was 

consistent with his interpretation of 2 × (3 + 1) as 2 ×? = (3 + 1) and his answer was 

2, emphasised by the underline. Without their drawings, I may not have formed an 

experiential model of what Joseph and Tony might have been interpreting when they 

perceived these expressions. 

 

It seems none of the students was aware that a bracket following a number may 

represent multiplication, or that the divisor line of a fraction may be interpreted as 

division. Difficulties with algebra stemming from students’ misrepresentations of 

notation are well documented (e.g. Booth, 1984; Kieran, 1981b; Kirshner, 1989; Borg, 

1997; Van Amerom, 2003) and as a teacher I intended to help students to become 

acquainted with the new multiplication and division notation with the help of GA. This 

is discussed next. 

 

(a) (b) 
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7.3.2 Enriching Students’ Interpretations and Representations 

In Lessons 3 and 4, I introduced students to these two new symbols: a bracketed 

number signifying multiplication and a divisor line of a fraction signifying division. All 

students accepted these readily because that was what GA showed whenever they 

moved cells vertically. In Lesson 4, students’ computer task consisted of entering a 

number in a cell and shading a cell in the same column or row for their teammate to 

guess what that number would be converted to if it was moved to the shaded cell. 

Figure 7.3.2.1 gives two screenshots showing how Joseph and Dan (“Sharks”) 

represented multiplication through vertical movements in GA. 

 
Figure 7.3.2.1 Sharks’ GA representations of multiplication 

 
 

Figure 7.3.2.1a shows that when 50 was dragged from R1C2 to R5C2, GA showed 
5(50). Besides being introduced to new notation, students seem to have found GA 
helpful in enriching interpretations of multiplication as: 

 the process involved in the shifting (action) of a number to a higher 
multiplication table, and 

 the product represented by a shaded rectangle (picture) of R5C2. 

 

Once again, this activity may have contributed to students’ proceptual interpretations of 
expressions involving multiplication or division of two numbers. This interpretation was 

(a) (b) 
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probably consolidated when students were asked to shade yet another cell in the same 
column and repeat the process. In Figure 7.3.2.1b, Sharks chose the × notation option 
rather than the bracket notation option (as in (a)) from the menu on the left. In the first 
movement, 5 was converted to 5 × 2. The latter was moved again from R2 to R6, which 
meant multiplying by 3. This resulted in 3(5 × 2) which may have helped students to: 

 interpret 5 × 2 proceptually, and 

 become flexible to switch between symbolic representations of multiplication.  

 

Students gained similar experiences with the division notation. With the help of 

screenshots, Excerpt 7.3.2.1 shows Chimps’ representations and interpretations of 

division during this activity. 

 
Excerpt 7.3.2.1 Lesson 4 – Chimps’ representations and interpretations of division 

Omar: [Addressing Jordan] Come on. 

 

 
 

Jordan: 
 
So. 8…, uh, all over 2. It becomes 8 all over 2. 

#1 
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Omar: Let me do it. [Clicks on R4C2 (#2) drags the cell upwards to R2C2 (#3) 
and lets it go on R2C2 obtaining 8

2
 (#4).] 

 

 

 
Jordan: [Triumphant] Yes! 

#4 

#3 

#2 
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It is important to note how GA converted Omar’s upward movement (action) into a 

symbolic representation. The content of the cell containing 8 was being changed along 

the movement (#3) and not simply shown on the destination cell (#4). Coupled with the 

fact that the rectangular cell (picture) representation of 8
2
 seems to have helped 

students to get a proceptual view of this expression, this feature has contributed to 

students collaboratively making connections between APS representations. Students 

took turns to make representations and interpretations of the division concept: 

(i) Omar shaded the cell, a pictorial representation, and asked Jordan to tell him 

what he interpreted by that cell; 

(ii) Jordan connected Omar’s picture to the symbolic notation of “8 all over 2”; 

(iii) Omar moved the cell upwards, an action representation to check whether it 

matched Jordan’s interpretation; 

(iv) GA converted Omar’s action into a symbolic representation; 

(v) Jordan confirmed this was the symbolic representation he had predicted. 

 

Students’ interpretations of multiplication and division notation seem to have been 

enriched by such flexible switching between representations. Similar to addition and 

subtraction representations discussed earlier, students used GA Tasks 8 and 10 (see 

Appendix 1) which reinforced a proceptual view of expressions such as 5(50) and 8
2
. In 

Task 8, they also made use of GA journey trails to make pictorial representations of 

such expressions, just like they did with addition and subtraction, the only difference 

being that these involved also vertical journeys rather than just horizontal. As before, 

students reproduced such GA activities in pen-and-paper work. Table 7.3.2.1 shows 

typical students’ written work taken from worksheets assigned at the end of GA lessons. 

The worksheet number is the same as the lesson number (e.g. Worksheet 3 was 

assigned at the end of Lesson 3, etc.). As shown by the CAPS codes, students 

represented multiplication and division symbols by interpreting and representing the 

corresponding pictures (e.g. journey picture to represent an operation, or cell to 

represent the resulting expression). The table includes some analytic comments 

showing the models of students’ conceptualisations that I formed according to the 

representations I observed in their written expressions. 
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Table 7.3.2.1 Pen-and-paper multiplication/division interpretations and representations 

Student 
& Code Interpretation and Representation Comments 

Dwayne 
(w/sheet 3) 

  

 
• Journey picture interpreted as 

division process; 
• Acceptance of “lack of 

closure” of expression in  
cell ②; 

• New division notation 
not used. 

Jordan 
(w/sheet 4) 

 

 

 

• Journey picture interpreted as 
a repeated division process; 

• New division notation used; 
• Cell ② interpreted 

proceptually as a  
manipulable concept; 

• Cell ③ interpreted as  
the result of a process 
performed on cell ②; 

• Mistaken division amount 
from ① to ② and from  
② to ③. 

 

Omar 
(w/sheet 5) 

  

 
• Standard function machine 

diagram (non-GA); 
• Rectangle interpreted as 

proceptual output and input; 
• Expression 8x2 evaluated 

before second operation. 
Joseph 

(w/sheet 6) 

  

• 18
2

 interpreted as division; 
• Journey drawn to represent 

division process; 
• Cell ② possibly interpreted 

proceptually. 

Tony 
(w/sheet 10) 

 
 

• Acceptance of “lack of 
closure” in R1C4; 

• New division notation not used. 

Dan 
(w/sheet 10) 

  

• In (#1), new multiplication 
notation not used; 

• In (#2), subtraction preceding 
multiplication encouraged use 
of new multiplication notation; 

• In (#2),  (6-2) of R2C5 
interpreted proceptually. 

 

#1 

#2 
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In each case, conceptual interpretation was related to a pictorial and a symbolic 

representation. Dwayne and Tony’s retention of the old division notation implies that they: 

• may have been more at ease when using old notation, 
• still interpreted the picture of a cell proceptually, regardless of the notation they 

were using, 
• showed flexibility in their interpretation of cells and representation of division, and 
• were not relying on memorising what symbol GA would have shown. 

 

Table 7.3.2.1 shows that although students’ multiplication/division interpretations and 

representations had been enriched, they still needed more experience in: 

• accepting expressions like 8 × 2 as a product which could be manipulated 
without being evaluated, and in 

• using new notation. 

 

Jordan’s error in Worksheet 4, involving a mistaken division amount, was quite 
common among students in the first few lessons, where students were required to 
transform division/multiplication operations into vertical movements. The error 
consisted of dividing by the amount of rows counted from one cell to the next rather 
than referring to the row number. In the lessons that followed, I often engaged students 
in discussions to help them learn from such mistakes. 
 
Dan’s use of the old multiplication notation in 9 × 2 and his use of the new multiplication 
notation in 2(6 − 2) in the same worksheet hints that giving students the opportunity to 
combine multiple operations in single expressions may have encouraged them to use 
the new notation more frequently. This is discussed in the next section, where I analyse 
how students’ concepts seem to have been extended with the help of GA.  
 

7.3.3 Extending Students’ Concepts 

Table 7.3.3.1 gives an overview of interview data showing students’ progress in 

evaluating multi-operational expressions. From Interview 3 onwards, such expressions 

started to appear only in the new multiplication and division notation.
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Table 7.3.3.1 Students’ learning progress in evaluating expressions 

Interview Expression Correct Comments about  misinterpretations (if any) 

1 
(held before 
Lesson 1) 

2 + 3 × 10 □ None • All students worked operations in order of appearance. 

2 × (3 + 1) 
■ 
■ 
■ 

Dan 
Dwayne 
Jordan 

• Dwayne mentioned “the BIDMAS rule”. Except for “I”, he 
knew what letters stood for. He did not use BIDMAS for 
2 + 3 × 10. 

10(5 + 2) □ None • Some students ignored brackets while others worked out 
5 + 2 first but did not multiply result by 10. 

2 
(held after 
Lesson 11) 

3 + 2 × 5 □ None • Students worked operations in order of appearance. 

10 × (2
+ 6) 

■ 
■ 
■ 
■ 
■ 

Dwayne 
Jordan 
Joseph 
Omar 
Tony 

• Dan worked operations in order of appearance. 

2(3 + 7) 
■ 
■ 
■ 

Dan 
Dwayne 
Tony 

• Similar mistakes as Interview 1. 

4 + 6
5

 

■ 
■ 
■ 
■ 

Dwayne 
Jordan 
Joseph 
Tony 

• Dan represented 10
5

 as an answer but did not interpret it 
as 10 ÷ 5. 

• Omar worked out 4 + 6 = 10 first but interpreted 5 as 
the answer to a division and he got confused. 

3 
(held after 
Lesson 13) 

4(5 + 1) ■ All  
 4 + 6

5
 ■ All  

4 
(held after 
Lesson 17) 

4(5) + 10 ■ All  

 

10 + 4(5) ■ All  
12
3

+ 6 ■ All  

6 +
12
3

 ■ All  

2(3) − 5 ■ All  

5 − 2(3) □ None • All students interpreted this as 6 − 5 rather than 5 − 6. 
10
2

− 4 ■ All  •  

4 −
10
2

 ■ Dan 
• Other students interpreted this as 5 − 4 rather than 4 − 5. 
• At first Dan, made the same mistake, but when he 

considered what 4 − 5 meant, he changed his answer. 
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Before starting the GA lessons, only Dwayne had mentioned the BIDMAS rule for the 

order of operations and as shown in Table 7.3.3.1 he failed to apply it in one of the 

two questions set in Interview 1. Consistent with Kieran (1979), when students failed 

to work out operations in the conventional order, they usually thought the operations 

followed the order in which operational symbols were written. In the lessons, I used 

GA to support students in learning about the conventional order of operations. I 

deliberately avoided using BIDMAS because I believed it could be misleading in 

expressions like 4+6
5

, where students following BIDMAS might divide by 5 before 

adding 6.  

 

As shown in Table 7.3.3.1, students’ interpretations of the order of operations and the 

new multiplication and division notation seem to have been developed 

concurrently. One possible hypothesis could be that new notation may have been more 

conducive to a proceptual view of certain expressions like 12
3

, making these appear 

more unified and, hence, more likely to be evaluated beforehand. Thus, it might have 

been more likely for students to interpret 6 + 4 when they saw 6 + 12
3

  than when they 

saw 6 + 12 ÷ 3. Unfortunately, in pursuing my teaching aim to wean students off using 

old notation, once students started to get used to the new notation I stopped using the 

old notation even in the interviews. If the interviews retained some expressions with 

old notation, it would have been interesting to see whether the above hypothesis would 

have held. 

 

Consistent with Hewitt (2012), GA was found to help students in evaluating multi-

operational expressions in informal-algebraic activities without having to resort to 

mnemonics such as BIDMAS. An activity students enjoyed was GA Task 10, described 

earlier on, in which students transformed symbolic interpretations into action and 

picture representations. Excerpt 7.3.3.1 shows how Pandas did this with an expression 

involving the new division notation. It also shows how I occasionally intervened when 

I saw that students were finding difficulties. 
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Excerpt 7.3.3.1 Lesson 8 – Pandas’ work on Task 10 (part 2) 

Tony: Six, [clicks on R2C4]... 

 
 

...up here, [clicks on R1C4] 

 
[Drags cursor to R1C2 and pauses a bit before clicking.] 

#2

 

#1 
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PB: [Disapproves] Uuh! Uh-uh-uh-uh-uh-uh! How come you went up there? 

[Tony presses the “Start Again” virtual button, GA removes his ①-② 
move, and he is going to start a new journey from R2C4.] 
Hang on. What would you do if you went up there? 

Dwayne: There [meaning if you go straight up] it’s division. There [meaning the 
given expression] it’s telling you 6… 

PB: [Addressing Tony and speaking simultaneously with Dwayne.] Isn’t it 
division...? 

Dwayne: …minus 4. 
PB: Isn’t it division by 2 there [meaning if you go straight up], my brother? 

Tony: [Starts again.] 

 

 
[Murmurs.] …minus, uh… [Drags cursor from R2C4 to R2C2 and goes 
back.]  

#3 

#4 
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Dwayne: No. Here. 

Tony: [Drags cursor to R2C2] Two [clicks]… 

 
…and then there. [Drags cursor to R1C2 and clicks.] 

 

 
[Tony was going to press the “I’ve finished” button.] 

PB: So. Pay attention for a moment. Wait a bit. Let us reflect a bit on it… 
So. Six... 

Dwayne: [Interrupting] Minus four… 

PB: …What do you have first? Minus 4 and everything over 2, …? 

Pandas: [Interrupting] Uh-huh [agree]. 

PB: …or, 6 over 2 by itself and minus 4. How is it? 

Dwayne: No. No… 

Pandas: 6 minus 4 all over 2. 

#6 

#5 
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This exchange shows how Tony engaged in the process described in Figure 7.3.3.1, 

showing continual toing and froing between APS representations and conceptual 

interpretations. It also shows how GA helped me to create a model of Tony’s thinking. 

 
Figure 7.3.3.1 The process of students’ CAPS switching and associating with GA 

 
 

Had Tony not hesitated at the last moment, GA would have popped up an “Incorrect” 

message and presented a new challenge. Thus, I stopped him so that he could reflect 

on his actions, where Dwayne joined in to help him identify his mistake. At this moment 

it seems that Tony’s APS representations triggered a Learner-to-Negotiation shift from 

my part: my teaching purpose changed from facilitating reflection to creating a model 

of Tony’s interpretations. This was followed by a renewed interaction with Tony where 

I intended to help them learn from his mistakes. The interplay between symbolic 

interpretation and action representation resumed when Dwayne mentioned “6 minus 

4” and followed this by showing Tony where to go: “No. Here.” Tony went on to 

complete the task successfully and once again, I encouraged students to reflect on 

their experience.  

 

Students made considerable progress in linking multi-operational expressions to 

movements of numbered cells in the multiplication grid. In Interview 3, when I asked 

them how they would move 45 in a mock GA grid to obtain 45−10
5

− 1, they all drew the 

journey they would have obtained in GA. Their drawings are included in Figure 7.3.3.2. 

❶

Tony perceives 
symbolic 

expression
6−4

2

❷

Tony interprets 
symbols and 
thinks about 

action 
representation

❸

Tony 
represents 
conceptual 

interpretation 
as action (cell 

movement)

❹
GA records 
action as a  

picture 
representation. 
Tony stops to 
interpret this 

picture. 

❺

Teacher 
interprets 

picture 
representation 
to guess what 

Tony was 
thinking.
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Figure 7.3.3.2 Students’ pictorial representations of symbolic interpretation 

 
 
Dan, Jordan, and Joseph included the numbers for each of the journey stages. The 

others concentrated only on the journey. It seems that GA helped students to enrich 

their repertoire of representations and interpretations of numerical expressions like  
45−10

5
− 1. This could have been key for learning about the conventional order of 

operations without resorting to BIDMAS, which may have been misleading here since 

45 − 10 was not enclosed in brackets. However, some students still felt uncomfortable 

to manipulate numerical expressions rather than single numbers. The next question in 

Interview 3 is shown in Figure 7.3.3.3. 

Dan Dwayne 

Joseph Jordan 

Omar Tony 



Chapter 7 Students’ Representations and Interpretations of Notation 
 

273 

Figure 7.3.3.3 Interview 3 – interpretation of a journey picture 

 
 

For stage ④, Dwayne’s expression was 5×6−6
6

 and Joseph’s was (5×6)−6
6

. Dan and 

Tony worked out according to the conventional order of operations but they both 

made a minor mistake when giving the final expression. Dan wrote the division 

line just beneath 5(6) and gave 5(6)
6

− 6 while Tony wrote 5 × 6 − 6 ÷ 6, ignoring the 

use of brackets altogether and confirming Kieran’s (1979) finding that students 

sometimes think that brackets are redundant.  

 

Jordan and Omar evaluated each of the four cells in this question, giving, say, 30 in 

stage ② instead of 5 × 6 or 5(6). Omar made a mistake from ② to ③ when he 

subtracted 1 instead of 6. All students interpreted movements between the cells as 

operations but only Dan, Joseph, and Tony gave numerical expressions rather than 

single numbers at each stage. Interestingly, Dwayne worked out the correct order of 

operations on the side (Figure 7.3.3.4) and although he told me that stage ④ would 

show 5×6−6
6

, he still wrote the value of the cells at stages ② and ③, even when I asked 

him specifically to tell me what the cells would show when the previous number was 

moved to that cell.  
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Figure 7.3.3.4 Dwayne’s interpretation of a journey picture 

 
 

Jordan, Omar, and, to some extent, Dwayne seem to have refused to give unevaluated 

numerical expressions in stages ② to ④. This is consistent with Collis’s (1974) finding 

that some students are bound to be uncomfortable with lack of closure and tend to give 

single values even when a numerical expression is expected. Nevertheless, this did 

not seem to hinder students’ learning about the order of operations in multi-operation 

expressions. 

 

Learning about the order of operations was the most, but not the only, significant 

conceptual development with regard to multiplication and division notation. Opposite 

vertical movements in the GA grid helped students realise that multiplication and 

division by the same amount retained the original value of an expression. The following 

points sum up the findings of Interviews 2-4 regarding multiplicative inverse: 

• In Interview 2, only Dan knew how to evaluate 567 × 123 ÷ 123 straightaway. 

This time, Dwayne intended to work out long multiplication first. 

• In Interview 3, all students but Dwayne knew how to give the value of 451 × 999 ÷

999 without any calculation. Once again, Dwayne intended to evaluate the 

multiplication operation first. 
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• In Interview 4, students reaffirmed their knowledge of multiplicative inverse in 

their evaluation of 233×676
676

 where Dwayne started doing the long multiplication 

233 × 676 and when I asked him what he would do with the answer he said he 

was going to divide it by 676. If I presented him with 233 �676
676

� he might have 

multiplied 233 by 1, as he did in Interview 1, but unfortunately I did not probe further.  

 

Students using multiplicative inverse gave the following reasons for their working: 

► Dan:  “Because this [making a circle around 676/676] stays as it was and 

  so what remains is that [makes a circle around 233] answer”; 

  
► Jordan: “Times and plus are almost the same…” 

 
► Joseph: “The same as that [referring to 5445 + 9997 − 9997], if you move 

 here [takes a stride forward] you do times or plus and if you do this  

 [takes a stride backward] you do division or minus.” 

 
► Omar: “Uh, it’s like…how shall I put it…it’s like you’re doing the same  

 things. This is like, the times and division, like plus and minus 

 [points to 5445 + 9997 − 9997].” 

 
► Tony: “Because he is telling you, give me something and I’ll give it back to

 you. It’s like when lend something. You give it back to him. It goes 

 and comes back again.” 

 

Overall, GA seems to have helped students to extend their concepts of notation by 

enriching their APS representations of numerical expressions during informal-algebraic 

activities. Table 7.3.3.2 gives a summative analysis of students’ representations and 

interpretations of the multiplication and division notation with reference to the CAPS 

framework. 
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Table 7.3.3.2 Students’ CAPS for multiplication and division 

GA 
Symbolic  

(notational) 
Representation 

Conceptual 
(signified) 

Interpretation 

Active 
(kinaesthetic) 
Representation 

Pictorial 
(drawing/diagrammatic)  

Representation 
Code Students 

 5 × 4 
 

Process of 
counting 
multiples  

Finger 
counting or 

hand gesture 
 

 

 Dan 
 Dwayne 
 Jordan 
 Joseph 

 6 ÷ 2 
Inverse of 

multiplying by 2 
or halving 

  
 

 Dan 
 Dwayne 
 Jordan 
 Joseph 
 Tony 

 5 × 4 
6 ÷ 2 

(Representations 
not enough to 

suppose concept)    
Finger 

counting  
 
 Omar 

 12
2

+ 4 
Proceptual view; 

Order of 
operations 

Vertical and 
horizontal 

movement in 
GA grid 

  
■  All 

 12
2

+ 4 
Proceptual view; 

Order of 
operations 

Vertical and 
horizontal 

movement in 
GA grid   

■  All 

 2(1 + 3) + 2
2

 
Proceptual view; 

Order of 
operations 

Vertical and 
horizontal 

movement on 
paper grid   

■  All  
(varying 
degrees) 

 2 �
12
2

� 
Multiplicative 

Inverse 
(process) 

Vertical  
inverse 

movement in 
GA grid   

■  All 

 233 × 676
676

 
Multiplicative 

Inverse 
(process) 

Return 
journey  

 

 Joseph 
 Omar 

 233 × 676
676

 
Multiplicative 

Inverse 
(process) 

Borrowing 
and lending 

simile 
 

 
 Tony 

 233 × 676
676

 Multiplication by 
1 (identity)   

 
 Dan 

 233 × 676
676

 
Multiplicative 
Inverse like 

Additive Inverse 
  

 

 Jordan 
 Joseph 
 Omar 
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Students’ developments of their interpretation and representation of multi-operational 

expressions paved the way for the introduction of the letter notation and algebraic 

expressions. This is the focus of the next section. 

 

7.4 Notation for Unknowns and Variables 

In this section, I focus on students’ coming to know about the use of letters in 

expressions. Research in the teaching and learning of school algebra has shown the 

importance of helping students to gain expression structure sense (Linchevski & 

Livneh, 1999, 2002) especially when rules behind such structures are not visually 

evident in algebraic expressions (Kirshner & Awtry, 2004). Students’ failing to interpret 

algebraic expressions in the conventional manner includes misinterpretations of 

concatenations (Herscovics & Linchevski, 1994), improper simplification (Hewitt, 

2012), misuse of brackets (Kieran, 1979; Booth, 1984), and misapplication of inverse 

operations (Borg, 1997). 

 

I decided to introduce the letter on its own in a GA environment to help students to 

develop a sense of structure in algebraic expressions with single letters that could 

stand for unknowns or variables. My intention was to help students to enrich their 

representations and interpretations of the letter notation and manipulate algebraic 

expressions without having to deal with equations. 

 

7.4.1 Students’ Initial Interpretations and Representations 

Before starting Grade 7, all students were familiar with the use of letters that stood for 

quantities. In particular, they used 𝐿𝐿 and 𝐵𝐵 to denote respectively the length and 

breadth of a rectangle which they used in formulas they learnt at Grades 5 and 6 for 

area and perimeter. In such circumstances, students had learnt to interpret 𝐿𝐿 as 

“Length”, i.e. the longer side of a rectangle, rather than the value of the length. This 

was evident during lessons where I taught the students about mensuration in the first 

months which were part of the Grade 7 syllabus but not part of the research data.  
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The first time I formally investigated students’ representations of a letter in algebraic 

expressions was in Interview 3, where students had not yet encountered the use of 

letters in a GA setting. The question was an extension of the question shown in 

Figure 7.3.3.3, which required students to give the expression resulting when the 

number 5 made a 4-stage (3-step) journey in a simulated GA grid. As pointed out 

earlier, only Dan, Joseph, and Tony gave a numerical expression, rather than a single 

number, for every stage of the journey. The question that followed was the following: 

 

Suppose instead of the number 5 you had “𝒚𝒚”. 
What would the cell marked ④ contain after the journey ①⟶②⟶③⟶④ ? 

 

Dan converted his previous 6(5)
6

− 6  (which was incorrect in that context) into  6(𝑦𝑦)
6

− 6 

and Tony converted his 6 × 5 − 6 ÷ 6 into 𝑦𝑦 × 5 − 6 ÷ 6. Joseph said that, since he did 

not know what number 𝑦𝑦 was, he could not say what would appear. He seems to have 

been thinking that expressions could only contain numbers. None of the students who, 

in the previous question, evaluated the value of the cells at each stage of the journey 

came up with a possible answer to this question. One possible explanation for this 

could be that students who found it hard to accept expressions like 6(5)−6
6

 as an answer 

would similarly find difficulty in giving answers such as 6(𝑦𝑦)−6
6

. It seemed, therefore, that 

students needed to continue learning to: 

(i) convert a series of operations on a number or letter into expressions with 

conventional notation, and 

(ii) become accustomed to giving answers which were not a single numerical 

value.  

 

The more immediate teaching objective at this point was, however, to introduce the 

use of letters as unknowns/variables, which I intended to do with the help of GA. This 

is discussed in the next section. 
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7.4.2 Enriching Students’ Interpretations and Representations 

The first time I introduced the use of a letter in the GA environment was in Lesson 12, 

where letters were placed in a cell after a number was assigned to another cell, as 

shown in Figure 7.4.2.1. Since students were aware that GA cells represented 

numbers they readily accepted that since GA also allowed letters in its cells, then 

letters must stand for numbers. Since a number was previously entered in the grid, 

any letter entered in the grid constituted a “hidden” constant, an unknown.    

 
Figure 7.4.2.1 Students entering numbers and letters in the same cell 

 
 

During the plenary session, students came out to work on the IWB and inserted 

possible numbers on the same cell as the ones having a letter. Figure 7.4.2.1a shows 

(a) 

(b) 
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one such context, where Sharks were collaborating in assigning numbers for the letters 

𝑗𝑗 and 𝑢𝑢. The magnifier on R2C2 showed 𝑗𝑗 = 4. I asked the students why I could not 

place another 𝑗𝑗 anywhere I wanted, say, in R1C1. Figure 7.4.2.1b shows Dan explaining 

to me why not: “Because 𝑗𝑗 equals 4. Here [pointing at R1C1] equals 1.” 

 

In Lesson 13, I engaged students in similar discussions but without entering previous 

numbers in the grid.  This made any letter entered in the grid a variable multiple of the 

row number. Excerpt 7.4.2.1 is taken from this discussion.  

 
Excerpt 7.4.2.1 Lesson 13 

PB: [Dragged the letter k from the letter menu into an empty grid.] 
 

 

 
 

The 𝑘𝑘. What number is it symbolising? [Dwayne raised his hand.] 
Careful! Careful and reply… 

Dwayne: [Wiggling his finger frantically.] Sir, I know. I know. 
PB: …think a bit about it before replying. [Joseph raised his hand.]  

Tony: [Without asking for permission] Any number [opening his palms 
forward].  

Dwayne: [Still waving frantically.] Sir! Sir! 
PB: [Nodding towards Dwayne.] Come. Let me see. 

Dwayne: Every number there is… [Joseph joins him.] 
Joseph 

and 
Dwayne: 

 
 
…in the 2-times table. [Look at each other.] Jinx! 
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Since we had already established that letters stood for numbers, I asked what number 

𝑘𝑘 symbolised. Tony said, “Any number,” but Joseph and Dwayne elaborated that it had 

to be in the 2-times table. The symbol 𝑘𝑘 gained meaning from its context (Mercer, 

2000), where the absence of any number in the grid meant it could be any number, but 

since it was in R2 it had to be a multiple of 2.  

 

In GA, letters could be manipulated just like any other number. Once students got the 

idea that letters could either stand for unknowns or variables, they could proceed to 

transform these letters into algebraic expressions in the same way they had done with 

numerical expressions. In Lessons 15-17, all students successfully tackled formal-

algebraic GA tasks which were similar to the ones discussed earlier but involving 

letters. Students had the opportunity to switch between APS representations of 

algebraic expressions. These activities are listed in Table 7.4.2.1 which includes 

screenshots of students’ work. 

 

Interestingly, students did not find it any harder to work with algebraic expressions than 

they did with numerical expressions. As Hewitt (2001) suggested, when students focus 

on the operations rather than on evaluations it makes only a very slight difference 

whether an expression originated from a number or from a letter. Rather than finding 

it more difficult to work with letters, students made fewer mistakes like those discussed 

in Section 7.3 since they had had more experience with GA. Table 7.4.2.1 shows 

examples of the rather complex expressions that students were working with. 

 

Once more, GA was instrumental in helping students get accustomed to lack of closure 

(Collis, 1974) of algebraic expressions and to interpret these proceptually (Gray & Tall, 

1994). This enabled them to manipulate complex expressions and to consolidate their 

knowledge about the conventional order of operations. Some activities, like GA Tasks 

13 and 14 allowed students to adopt a trial-and-error approach which may have helped 

them to learn from and correct their own errors. 
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Table 7.4.2.1 Students’ representations of the variable notation with GA 

Tasks Title Screenshots 

13 
and 
14 

Make the 
Expression 
– Letters  

 

 

7 
and 
9 

Find the 
Journey – 
Letters  

 

 

4 
Equivalent 
Expressions 
(Letters) 

 

 

Screenshot from 
Chimps  

(Lesson 15) 

Screenshot from 
Pandas  

(Lesson 16) 

Screenshot from 
Sharks  

(Lesson 17) 
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GA Task 4 – Equivalent Expressions – Letters required students to work on notation 

with minimal action and picture representations. Students were given a letter in a 

random cell and another empty cell was highlighted. They were also given an 

“expression calculator”, a virtual calculator in which students could enter the necessary 

letters, numbers, and operators to form the expression that would occur in the 

highlighted cell if the given letter was transported to it. Students needed to enter three 

distinct but equivalent expressions, associated with different imagined journeys, for the 

highlighted cell.  

 

The screenshot of GA Task 4, included in Table 7.4.2.1 above, shows the moment 

when Dan completed his expression. Figure 7.4.2.2 contains screenshots showing 

how he achieved it through successive clicks on the expression calculator. At each 

click, the calculator showed him the expression he was creating. 

 
Figure 7.4.2.2 Sharks Creating Algebraic Expressions 

 

(a) (b) (c) 

(d) (e) (f) 
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When Dan clicked on × to multiply the expression 𝑧𝑧 − 1, GA enclosed this expression 

in brackets (d), helping him to form a proceptual interpretation of 𝑧𝑧 − 1. Then he 

clicked on 5 and this appeared before the brackets (e), showing, therefore, a 

conventional notation of multiplication by 5. As soon as he pressed “Enter” the 

expression 5(𝑧𝑧 − 1) disappeared from the calculator and was shown in the destination 

cell (f). 

 

When Joseph took his turn to create the next equivalent expression he clicked:             

𝑧𝑧 × 9000 ÷ 9000 − 1 × 5 and the calculator showed him 5 �9000𝑧𝑧
9000

− 1�. In this way he 

was reusing Dan’s expression by making inverse operations that kept the letter 𝑧𝑧 in its 

original place. Then he attempted the third expression by using the same trick. He 

altered the imagined journey, got the required expression 5 �9000𝑧𝑧
9000

� − 5, and decided 

to elaborate it with repeated additions of +5 − 5. In this way, besides helping Sharks 

to enrich their representations and interpretations the letter notation, Task 4 seems to 

have helped them to consolidate concepts about the order of operations and about the 

additive and multiplicative inverse. 

 

As before, students were assigned pen-and-paper work which mimicked a GA 

environment. This helped students to apply concepts they developed in computer 

environments to pen-and-paper problems. Table 7.4.2.2 gives a number of students’ 

interpretations and representations of unknown/variable along with some analytic 

comments.  

 

All students managed to complete these worksheets with varying degrees of 

performance. Jordan, Joseph, and Dwayne got all problems correct, Tony made a few 

mistakes, while Omar and Dan struggled with expressions involving three or more 

operations. 
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Table 7.4.2.2 Pen-and-paper interpretations and representations of unknowns/variables 

Student 
& Code Interpretation and Representation Comments 

Jordan 
(w/sheet 13) 

 

 

• Letter as 
unknown; 

• Cell 
interpreted 
as value of 
letter. 

Omar 
(w/sheet 14) 

 

 

• Letter as 
variable; 

• Operations 
represented 
as journey 
picture 

• Algebraic 
expressions 
represented 
as journey 
stages 

• Omar 
makes 
mistake in 
last two 
operations 

Tony 
(w/sheet 14) 
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Table 7.4.2.2 (continued) 

Student 
& Code Interpretation and Representation Comments 

Dan 
(w/sheet 15) 

 

 

 

• Similar to 
Worksheet 15 
but with 6-row 
grid 

Dwayne 
(w/sheet 16) 

 

 

 

• Journey 
picture 
interpreted as 
process; 

• Intermediary 
journeys 
interpreted as 
operations; 

• Each journey 
stage 
interpreted as 
an algebraic 
expression in 
conventional 
notation 
(procept); 

• No distinction 
yet between 
uppercase 
and lowercase 
letters 

Joseph 
(w/sheet 16) 
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When making connections between grid journeys and algebraic expressions, students 
found it helpful to think of these as railway routes, where “train stations” ①, ②, ③ etc. 
represented manipulable algebraic expressions (proceptual view) and connections 
between stations represented operations performed on those expressions. The picture 
of the whole journey represented the series of operations (process) needed for the final 
station (product). Students were thus interpreting algebraic expressions as both 
processes and products. This was most evident in Worksheet 16 where, after seeing 
that students liked the railway route metaphor, I suggested they also write the 
intermediary operations to help them connect between one expression and the next, 
something which went beyond what GA would actually show. The railway route 
metaphor was only possible because each expression contained a single, unrepeated 
letter. It would have not been possible for an expression like, say,  2(𝑑𝑑 − 3) + 4𝑑𝑑  

without changing this expression into 6𝑑𝑑 − 6  or 6(𝑑𝑑 − 1) first, since the first “train 
station” was attributed to the value of the (single) letter. 
 
I found the GA formal-algebraic activities and pen-and-paper tasks discussed above 
very helpful in broadening and developing students’ repertoire of representations of 
the letter notation, where they became more conversant with conventional notation of 
algebraic expressions and flexible in switching between representations. This 
development occurred in parallel to a similar development of conceptual interpretations 
of the letter notation, which is discussed below.  
 

7.4.3 Extending Students’ Concepts 

By the end of the GA lessons all students had become familiar with the use of letters 
in algebraic expressions. They distinguished between unknown and variables, even 
though they did not usually use this terminology. In Interview 4, all students interpreted 
2𝑎𝑎 + 6 as an expression which yielded an answer. In a subsequent question, they also 
represented it as a journey which they drew on a mock GA grid. Except for Dan, all 
students drew the journey as it would have appeared in GA. Dan was a bit confused 
about the meaning of 2𝑎𝑎 + 6 because he evaluated it as 8𝑎𝑎. This was a one-off 
misinterpretation because he did very well in subsequent lessons and pen-and-paper 
assignments, as I will shortly demonstrate. 
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I got an interesting response when I asked Jordan what 2𝑎𝑎 + 6 meant to him. Without 

any knowledge of the subsequent question, he drew a spontaneous picture of a 

multiplication grid (Figure 7.4.3.1) to represent to me what 2𝑎𝑎 + 6 signified to him. 

 
Figure 7.4.3.1 Jordan’s representation of 2𝑎𝑎 + 6 

 
 

Jordan explained that 𝑎𝑎 could be any number, say 8, and 2𝑎𝑎 + 6 meant the result of its 

being multiplied by 2 and added to 6. The following excerpt shows his interpretation of 

the journey he drew. 

 
Excerpt 7.4.3.1 Interview 4-Jordan 

PB: Now. Tell me a bit about this, uhm, [pointing to the journey drawing] 
the things in red that you made. 

Jordan: So. This is station “𝑎𝑎” [pointing to R1C2] and then the road [pointing to 

the route] is called “times 2” and then station 2 [pointing to R2C2] is 

“station 2𝑎𝑎”… 

PB: Uh-huh. 
Jordan: …[pointing to the route] and then the road to station 3 is “plus 6”  

PB: Uh-huh. 
Jordan: …and then station 3 [pointing to R2C5] is called, um, “2𝑎𝑎 plus 6” 

 

The railway route metaphor helped Jordan to create a proceptual interpretation of 

2𝑎𝑎 + 6, without having to know the value of 𝑎𝑎 and without having to evaluate 2𝑎𝑎 + 6.  
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In Interview 5, all students except Dan interpreted 2(ℎ+7)
5

 as ℎ (any number) added by 

7, then multiplied by 2, then divided by 5. Dan inverted the last two operations. 
Subsequent questions in Interview 5 were about evaluating algebraic expressions after 
substituting numbers for letters. These are shown in Table 7.4.3.1 which specifies 
whether such expressions were possible in GA and the students who evaluated them 
successfully. The table also includes comments about any remaining misconceptions. 
 
Table 7.4.3.1 Students’ substitution and evaluation of algebraic expressions 

Expression Possible 
in GA? Students Comments on Misconceptions (if any) 

2(ℎ + 7)
5

 
 

(ℎ = 3) 

Yes 
 

(not with 
these 
numbers) 

 Dwayne 
 Jordan 
 Joseph 
 Omar 
 Tony 

⦁   Dan interpreted this as  2 �ℎ+7
5

�. 
 

5 + 3𝑒𝑒 
 

(𝑒𝑒 = 4) 
No ■  All  

 
10 − (𝑢𝑢 + 1) 

 
(𝑢𝑢 = 6) 

No 

 Dan 
 Dwayne 
 Jordan 
 Joseph 
 Tony 

⦁   Omar worked out 10-7, obtained 3, but then 
got confused because he thought the bracket 
meant he had to multiply by something. Then 
he multiplied 3 by 7. 

5 �𝑦𝑦
2
� + 5
4

 
 

(𝑦𝑦 = 6) 

Yes 
 

 (not with 
these 
numbers) 

 Dan 
 Dwayne 
 Jordan 
 Joseph 
 Tony 

⦁   Omar worked it out as if it were  
5�𝑦𝑦

2+5�

4
 . 

3 �10 − 𝑐𝑐
3

+ 2�
6

 
 

(𝑐𝑐 = 12) No 

 Dan 
 Jordan 
 Joseph 
 Omar 
 Tony 

⦁   Dwayne used BIDMAS (as he did prior to the 
lessons) and worked it out as if it were  
3�10−�𝑐𝑐

3+2��

6
, where he detached one of the 

terms (𝑐𝑐
3
) from its sign. Such an error was 

identified by Linchevski and Herscovics (1996). 
 

Albeit a few remaining misconceptions, it seems that GA formal-algebraic tasks helped 
students to extend their conceptual interpretations of the letter notation by enhancing their 
repertoire of APS representations of unknowns/variables in algebraic expressions. Table 
7.4.3.2 gives a summative analysis of students’ representations and interpretations of the 
letter and formal-algebraic expressions with reference to the CAPS framework. 
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Table 7.4.3.2 Students’ CAPS for letters and algebraic expressions 

GA 
Symbolic  

(notational) 
Representation 

Conceptual 
(signified) 

Interpretation 

Active 
(kinaesthetic) 
Representation 

Pictorial 
(drawing/diagrammatic)  

Representation 
Code Students 

 𝑎𝑎 Letter as 
unknown  

  
■  All 

 𝑎𝑎 Letter as 
unknown  

 
 

■  All  
(varying 
degrees) 

 𝑎𝑎 Letter as variable  
  

■  All 

 
2 �6𝑐𝑐−12

2
− 3� − 6
3

+ 4 

Variable; 
Proceptual View; 

Order of 
operations 

Vertical and 
horizontal 

movements  
in grid  

 
■  All  

 3 �2 �
𝑥𝑥
3

+ 1� + 6� 
Variable; 

Proceptual View; 
Order of 

operations 

Vertical and 
horizontal 

movements  
in grid 

 
 

■  All  
(varying 
degrees) 

 2 �𝑏𝑏
3

+ 1� + 2
2

 

Variable; 
Proceptual View; 

Order of 
operations 

Vertical and 
horizontal 

movements  
on paper grid  

 

■  All  
(varying 
degrees 

 5(𝑧𝑧 − 1) 
Variable; 

Proceptual View; 
Order of 

operations 
 

  
■  All  

 2 �
2𝑑𝑑 + 6

3
+ 4� − 4 

Variable; 
Proceptual View; 

Order of 
operations 

 

  

■  All  
(varying 
degrees 

 

Students’ substitution and evaluation of algebraic expressions, such as those included 
in Table 7.4.3.1, were important representations and interpretations of letters as 
unknowns. However, these were purposefully not included in Table 7.4.3.2 because 
this work contributed substantially in helping students to extend their meaning of the 
equality notation. This is discussed in the following section. 
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7.5 Notation for Equality 

The equals sign (ES) was an important notation in this study because I considered it 
to be a determining factor in students’ success in formal-algebraic activities (McNeil et 
al., 2006). Lessons about ES occurred during GA activities and also in discussions that 
were outside the GA environment but still triggered by activities within GA. 
 

7.5.1 Students’ Initial Interpretations and Representations 

Students’ original conceptions of ES were mainly operational, where they interpreted 
equations like  4 + 1 = 5 as “4 + 1 makes 5”. This confirmed the results of forty years 
of research about ES (e.g., Behr, Erlwanger, & Nichols, 1976; Kieran, 1981b; 
Herscovics & Linchevski, 1994; McNeil, 2008), that primary school arithmetic 
inculcates perceptions of ES as an indicator of a computational result. Table 7.5.1.1 
shows excerpts of students’ responses in Interview 1 when presented with a 
standalone ES and asked what it meant to them. 
 
Table 7.5.1.1 Interview 1 – initial interpretations of ES 

Student Meaning of ES Script (if any) 

Dan: …To say what the answer becomes. 
 

Dwayne: To show you that that becomes the answer.  

Jordan: … So that you are doing the answer, what it is going to be.  
 

Joseph: …So that the examiner would know that that is the answer. 
 

Omar: Equals means that the answer is almost ready.  

Tony: The last answer.  

 

These responses, especially phrases in bold, suggest that students interpreted ES as 
an operational symbol. I do not regard this as a misinterpretation or misuse of ES, as 
reported by some researchers (e.g. Powell & Fuchs, 2010; Vincent, Bardini, Pierce, & 
Pearn, 2015). Jones and Pratt (2012) make us aware of the several uses of ES, one 
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of them being that of serving as an indicator of a computational result. In the absence 
of alternative conventional notation to symbolise the evaluation of an expression, it is 
reasonable to argue that these students’ interpretation of ES was limited but not 
mistaken. All they needed was, therefore, to extend their current notion of ES.  
  
Contrary to what some researchers reported (e.g. Falkner, Levi, & Carpenter,1999) for 
most of these students ES was not unidirectional. In a subsequent question in Interview 
1 showing  = 3 + 5, students were asked to fill in the box. Except Dan and Dwayne, all 
students wrote 8 in the box. Dwayne did not know what to do, but Dan immediately wrote 
3. His explanation was that since there was nothing to show what he needed to do before 
ES, he wrote 3 since it would remain the same as the 3 on the right. This response 
seems to include elements of interpreting ES as a relational symbol but in Interview 2 
Dan did not show a relational understanding of ES. For him, ES did not seem to be a 
symbol that signified a relation between the left and right hand sides of the equation. 
Rather, it signified that the expression on one side was required to be evaluated and the 
value was to be placed on the other side. This was an operational view of ES. 
 
In Interview 1, only Omar and Tony wrote 3 in the box of: 7 + 3 =  + 7. Omar 
explained that since the numbers on the LHS made 10 he wanted those on the RHS  
to make 10 as well. Tony did not work out the sum on the LHS. His reasoning was that 
on the right it was written as in the left but in the opposite direction. These responses 
suggest that besides an operational view of ES, Omar and Tony held also a relational 
view. This implies that students may hold both an operational and a relational view of 
ES, which is consistent findings of McNeil (2008) and Rittle-Johnson et al. (2011). 
These studies show that the change from an operational understanding of ES to a 
relational one is not a switchover but a gradual transition through a continuum (Rittle-
Johnson et al., 2011) in which students are usually reluctant to let go of the operational 
view completely (McNeil, 2008). In fact, Omar and Tony seemed to hold multiple views 
of ES that manifested themselves in different contexts.  
 
The following subsection shows how GA served as a springboard for discussions to 
help students to enrich their representations and interpretations of ES. In the process, 
students learnt about the additive commutativity property which was important for them 
in making sense of some expressions which were not possible in GA. 
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7.5.2 Enriching Students’ Interpretations and Representations 

During a discussion on inverse operations in Lesson 11, I decided to focus on the  
equation 4 = 4 + 6 − 6 shown by the GA magnifier. Jordan said that it seemed to be 
inverted and Joseph said it was like showing you where the answer 4 (on the LHS) 
came from. Both students seem to have interpreted ES as “makes” (operational) 
notation.  I wrote this equation on the board and tried to see what students thought 
when I wrote the RHS as 4, transforming the equation to 4 = 4. 

 

Excerpt 7.5.2.1 Lesson 11 

PB: So, 4 = 4 [writes it and underlines it], is it something valid? 

 
Joseph: No. 

PB: Why not?  
Dwayne: Because there is no working. 
Joseph: Exactly. 

PB: But, [pointing] what does “equals” mean, then? 
Dwayne: The answer. 
Joseph: The answer. 

 

On reviewing my learning offer, I decided that my attempt to get students to 

acknowledge the conventional validity of 4 = 4 was unsuccessful. Thus, I modified my 

learning offer to include a balance representation (for ES) from students’ experiences. 

I thought of mentioning the balance scale but suspected that some of them might never 

have seen one. The see-saw seemed to be a more promising metaphor. First, I 

focused on the word “equals” (which is what we use in Malta for ES). I emphasised 

that it should actually be read, “is equal to,” and used the closest translation, “huwa 

daqs,” which literally translates to “is the same size as.” Then, I suggested that the two 
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sides of ES were like a see-saw that had equal weights keeping it horizontal. I drew a 

balance beam on the board with 4 bags of flour (1 kg each) on each side keeping it in 

balance. I anticipated that students might appreciate the balance more if they were 

presented with a situation of imbalance, which would allow me to bring in 4 = 4 + 6 −

6. The episode that follows was the discussion that ensued. 

 
Excerpt 7.5.2.2 Lesson 11 

PB: [Referring to drawing #1 on the board.]. 

 
If I…added 6 kilos of flour, what happens to this side of the balance, 
uh, the see-saw? 

Dwayne: It goes down, that of 4 plus 6 [PB making an imbalance gesture] and 
then the 4 goes up. 

PB: Now, when I realise that it went down, if someone else comes and 
does minus 6 [writes −6 next to the +6]. Isn’t minus 6 like 
decreasing…? 

Dwayne: The same. 
PB: ….decreasing those 6 bags that I added? 

Joseph: Uh-huh. It becomes equal. 
PB: What happens to it? 

Joseph: It becomes equal. 
PB: It becomes equal once again. It becomes balanced once again. 

Dwayne: It would do that, Sir. It would be like that [does gesture #2, then #3]. 

 
 

#1 

#2 #3 
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Students seemed to be relating to the see-saw metaphor and this could have been 

helpful in their interpretation of ES as a balance between equal quantities. In the above 

episode, I emphasised the “balance” and “equal” similarity by swapping these words 

in the same sentence “It becomes equal/balanced once again.” This may have 

prompted Dwayne to make a gesture of regaining balance. The discussion developed 

to include problems like 3 + 4 =  + 3 for which students found the see-saw metaphor 

helpful to guess what will happen if 7 was put in the box (a common mistake in Interview 

1). They responded by making imbalance gestures (Figure 7.5.2.1). 

 
Figure 7.5.2.1 Students’ imbalance action representation 

 
 

This action representation helped me to create a model of students’ conceptualisation 

of ES: they seemed to appreciate the conditions in an equation for balance to be 

maintained. This led to a Learner-to-Negotiation shift, where I seemed to change my 

focus from coordinating discussion and reflection to hypothesising on learners’ 

interpretations and reviewing the learning offer. This instigated further M-N-L cycles 

where further reflection on the balancing property of ES motivated Dan to come up 

with another ES metaphor. 

 
Excerpt 7.5.2.3 Lesson 11 

Dan: Like those [meaning weightlifters], Sir, don’t they lift that iron bar like 
that? [Stands up and takes a weightlifter pose with his hands up.] 



Chapter 7 Students’ Representations and Interpretations of Notation 
 

296 

PB: [Nodding.] The iron bar. Well done! 

Dan: If on this side [gestures towards his left hand] you have much more, 
then this side [left] will topple [makes a toppling movement]... 
 

 
 

...and he won’t be able to keep the balance. 
 

 

Dan’s action representation helped me to form a model about his understanding of the 

notion of equality/inequality in terms of balance/imbalance. On reviewing the current 

learning offer (thus making a Learner-to-Negotiation shift), I felt that the concept of 

balance, which students seemed familiar with through their experiences of riding a see-

saw or watching weightlifting, had been a viable interpretation for some students (at 

least Dwayne, Joseph, and Dan) to think of ES as having equal quantities on each 

side.  

 

When students seemed to have developed balancing/sameness interpretations of ES, 

we returned to our original GA equation. This enabled me to discuss further examples 

of additive and multiplicative inverses, each time stressing the equality of the LHS and 

RHS of equations. The lesson seems to have made a complete cycle (Figure 7.5.2.2) 

where a discussion on ES was initiated by, taken out of, and taken back in a GA 

environment. 
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Figure 7.5.2.2 GA used as springboard for discussion 

 
 

With reference to M-N-L shifts of focus, this cycle started when I changed my focus 
from interaction with the students to helping them reflect on the learning offer and 
ended when I shifted my focus from creating a model of MoS and to reviewing the 
learning offer. At the beginning, the only direct ES representations in GA were: 

• the pictorial representation of the cell occupied by two expressions of equal 

quantity (4 and 4 + 6 − 6) and 

• the symbolic representation 4 = 4 + 6 − 6 shown in the magnifier. 

 

When GA was used as a springboard to expand the discussion, more representations 
of ES became possible. The drawing of the see-saw with flour bags, students’ 
kinaesthetic simulations of an unbalanced see-saw, and Dan’s weightlifting pose were 
all useful in students’ enrichment of APS representations and conceptual 
interpretations of ES. On returning to the original GA equation, students used these 
representations to think about the notion of manipulating one side of ES to restore 
balance. Subtracting 6 was a corrective measure to restore the balance lost when 
adding 6. With this manipulation, the RHS of the equation became 4 + 6 − 6 which 

Students focus 
on equation

4 = 4 + 6 − 6 in 
GA and ES is 
discussed.

Students 
perturbed by 

symbolic 
representation  

4 = 4

Students accept 
notion ES as a 

balance of equal 
quantities on 

sides of see-saw 
(picture)

Students 
appreciate 

conditions of 
im/balance and 
evoke action of 
im/balance in 
other contexts

Teacher 
considers 
balance 

metaphor viable 
and returns to 
GA equations
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makes 4. This helped students construct a concept of sameness of quantities which 
was implied from the manipulation and computation of the RHS to have the same value 
as the LHS.  
 
In Lesson 18 we discussed commutativity of addition.  On the RUN function of GA, I 
moved the cell containing: 

• 3 in R1 by 2 units to the right achieving 3 + 2, and 

• 2 in R1 by 3 units to the right achieving 2 + 3.  

Clicking on the cell containing 3 + 2 and 2 + 3 with the magnifier displayed the equation 
3 + 2 = 2 + 3. Excerpt 7.5.2.3 shows part of the class discussion that followed. 
 
Excerpt 7.5.2.3 Lesson 18 

PB: [Pointing to each side of the equation.]  

 
Now, tell me what you’re noticing on both sides. What you’re seeing. 
There’s something special in both sides. [Dwayne raises his hand; PB 
nods towards him.] Tell me. 

Dwayne: That their answer becomes the same… 

PB: Their answer becomes the same. In what sense … In what sense is their 
answer the same? 

Dwayne: Five. 3 plus 2, five and 2 plus 3, five. 
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It seems Dwayne still held a “makes” (operational) concept of ES. He did not just say 

each side “had the same value” (in Maltese “indaqs”) but he was still thinking about 

“their answer”. However, he seems to have extended his ES concept of “make” to 

include also situations where none of the two sides of the equation was a single 

number (as in 4 = 4 + 6 − 6), but where each of the two sides of ES made the same 

value. Dwayne seemed to be using his “makes” (operational) interpretation of ES as a 

stepping stone to construct a same-value (relational) interpretation. The latter was what 

Rittle-Johnson et al. (2011) called basic-relational since Dwayne was still in a gradual 

transition from having an operational view of ES to having a relational view. 

 

Lesson 18 resumed with a discussion of the additive commutativity property where I 

formed two further GA equations showing commutativity (Figure 7.5.2.3). 

 
Figure 7.5.2.3 Equations showing additive commutativity property 

 
 

Students seemed to understand that an expression with two added numbers could be 

swapped (hence my gesture) and the new expression would be equal to the first. By 

then, students seemed to be accustomed to GA’s lack of closure in cells and we started 

talking about equality of expressions without the need to evaluate them. While possibly 

helping students in taking proceptual views of expressions, each highlighted cell in 
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Figure 7.5.2.3 represented pictorially the quantity on each side of ES. This may have 

encouraged students to think about each side of ES individually and their comparison 

helped them to extend their ES interpretation from “makes” to the more comprehensive 

“has the same value as.” Together with their knowledge about letters standing for 

generalised numbers, students made use of their modified interpretation of ES to 

make sense of equations like 𝑎𝑎 + 𝑏𝑏 = 𝑏𝑏 + 𝑎𝑎. This generality helped them to fill in the 

blank of equations with awkward numbers like: 

(i) 838,383,838 +  4, 499, 922 =   +  838,383,838; 

(ii) 838,383,838 +  4, 499, 922 =   +  4, 499, 922  

which they could not immediately solve by computing addition and subtraction. This 

interpretation of ES and an awareness of additive commutativity property were 

necessary in the second part of Lesson 18 where students learnt that expressions like 

4 + 5 × 2 could be interpreted as 5 × 2 + 4.  

 

In a People Maths activity (Bloomfield & Vertes, 2005), students acted out the role of 

numbers and operators as follows: 

• Dwayne ⟶ 4, 

• Tony ⟶ 2, 

• Joseph ⟶ 5, 

• Omar ⟶ Addition (hands outstretched like a + symbol), and  

• Dan ⟶ Multiplication (hands on chest like a × symbol). 

 

Standing in a straight line, students acted out the statement 5 × 2 + 4 (Figure 7.5.2.4a) 

where Dan (×) bonded Joseph (5) and Tony (2) together into a singular entity of value 

10, where 5 × 2 could thus be interpreted proceptually. Jordan’s role was to evaluate 

the expression embodied by his peers. He interpreted the first enactment as 10 + 4. 

Figure 7.5.2.4b shows when students changed places to demonstrate 4 + 5 × 2. 

Jordan (the student sitting down facing the others) can be seen separating 5 × 2  from 

4, enabling him to interpret this enactment as 4 + 10. 
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Figure 7.5.2.4 “People Maths” – Numerical expressions 

 
 

This action representation of equal values was later translated to symbolic form as: 
5 × 2 + 4 = 4 + 5 × 2, 

where each actor wrote his corresponding number/operator on the board. While 
helping students to interpret the conventional order of operations of expressions which 
were not possible on GA (such as the RHS), this exercise seems to have helped them 
to develop relational interpretations of ES by giving them opportunities to link action to 
symbolic representations of equivalent numerical expressions. 
 
Work on representations and interpretations of the letter notation, algebraic 
expressions, and ES paved the way for substitutive interpretations of ES (Jones & 
Pratt, 2012). In Lessons 19 and 20, students worked on GA Tasks 22 and 24 – 
Substitution, where, given the value of a letter in a cell, they needed to enter the value 
of an algebraic expression with that letter in a destination cell. The following is an 
episode from Chimps’ computer activity. 

(a) 

(b) 
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Excerpt 7.5.2.5 Lesson 19 - Chimps working on substitution 

Omar: [Jordan controlling the cursor (#1)] So…9, and then minus 2: 8, 7.  

  
[Jordan scrolls number menu.] What do you think? 

Jordan: [Chooses 7 (#2).] Good.   

 
 
[Drags 7 onto R1C3 (#3)].  
 

 

#1 

#2 

#2 
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I did not know what Omar was doing when he said “So…9, and then minus 2: 8, 7.” He 

may have been moving 18 on a grid journey or substituting 18 for 𝑐𝑐 without referring to 

the grid at all. Thus, I checked the lesson video and observed that in the pause before 

he obtained 9, Omar was touching his forehead and closing his eyes. Thus, he seemed 

to have evaluated 18
2

 mentally. Then, after saying “minus 2”, he clapped his hands twice 

while saying “8, 7” showing that he was counting backwards to do the subtraction. This 

was consistent with the observation I made earlier on with regards to Omar’s apparent 

need to use his hands to count forwards or backwards when adding or subtracting. 

Nevertheless, it seemed that Chimps were not using the grid to make the substitution. 

In more difficult tasks, I observed Omar making use of a rough paper to work out the 

expressions, indicating that GA seems to have encouraged students to engage in pen-

and-paper work. I found out that all the other students were working independently of 

the grid when they were evaluating algebraic expressions. 

 

Students managed to solve substitution problems presented in Tasks 22/24 with 

varying performance levels. By the end of Lesson 20, 

• Chimps progressed to algebraic expressions with 3 operations,  

• Pandas managed expressions up to 5 operations, and 

• Sharks evaluated expressions with 7 operations.  

 

All students would have continued to progress through the levels if they were given 

more time. Since they were working independently of the grid, they all managed well 

when GA made the grid disappear and only the notation was left on the screen. This 

required students to substitute numbers for letters and evaluate algebraic expressions 

without referring to the grid structure. It seemed, therefore, that GA enabled students 

to wean themselves off pictorial representations (cells and journeys) of the grid and 

start making conceptual interpretations using only symbolic representations. With 

regard to ES, students seemed to have made a smooth transition from sameness to 

substitutive interpretations with minimal intervention from my part. These and other 

extensions of the concept of ES are discussed below. 
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7.5.3 Extending Students’ Concepts 

Diverse APS representations seem to have benefitted students in their conceptual 

interpretations of ES. Students’ first significant development was when balancing 

representations of ES helped them to focus of each side of ES separately. Losing and 

restoring balance of an equation (adding and then subtracting 6 to the RHS of 4 = 4) 

seemed to them that one side was being manipulated and computed to make the other 

side, i.e., to have the same value as the other side. It seems that to them: 
 

  
It seems that students assimilated the sameness component of ES (Jones, 2008) into 

their existing “makes” (operational) interpretation because to them the latter implied the 

former. This is consistent with my argument that an operational conception of ES is not 

a misconception but a limited conception. This argument may also explain why students 

do not seem to dismiss the operational conception just because they form a sameness-

relational conception (Jones et al., 2013).  

 

Jones (2008) distinguishes between the sameness component and substitutive 

component of equality. Collis (1975, p. 17) argues: ‘If two expressions are equivalent 

then one may be used to replace the other at any time.’ Based on my observations in 

this study, I find that the sameness and substitutive components seem to be necessary 

and sufficient conditions of equality, where Collis’s argument makes sense the other way 

around too: 
 

 
Students in this study seem to have developed a sameness-relational interpretations of 

ES, together with interpretations of the letter notation, and algebraic expressions. This 

Manipulating one side of ES
MAKES

the other side

Value of one side of ES
IS THE SAME AS

the value of the other side

Value of one side of ES
IS THE SAME AS

the value of the other side

One side of ES
MAY BE SUBSTITUTED FOR

the other side
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helped them to incorporate a substituting meaning of ES (Jones & Pratt, 2012). They 

were capable of evaluating quite complex algebraic expressions, even in pen-and-paper 

work as shown in Table 7.5.3.1, which, except that of Worksheet 19 (Tony), were 

traditionally set substitution questions with expressions not possible in GA. 

 
Table 7.5.3.1 Pen-and-paper interpretations and representations of ES 

Student 
& Code Interpretation and Representation Comments 

Tony 
(w/sheet 19) 

  

• Tony worked the 
value menally. 

• May have been 
using the grid. 

• ES substitutive-
relational.  

Dwayne 
(w/sheet 20) 

 

 

 

• ES substitutive-
relational. 

• ES also “makes”-
operational:  
 Dwayne: Ans=...; 
 Joseph: During 

steps. 
 

• Unlike Dwayne, 
Joseph careful not 
to write Ans=5 . 

Joseph 
(w/sheet 20) 
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Table 7.5.3.1 (continued) 

Student 
& Code Interpretation and Representation Comments 

Dan 
(w/sheet 20) 

 

 

 

 
 

• ES substitutive-
relational. 

• ES also “makes”-
operational during 
steps. 

 
• Dan used commutativity 

of addition to work out 
1 + 12

4
 but retained the 

given order in 
subtraction since this is 
not commutative. 
  

• Jordan keeps a running-
total (Kieran, 1979) at 
the end. 

 
• In pen-and-paper 

problems, Omar found it 
useful to cancel the 
letter to be substituted 
and place the number 
instead of it. 

Jordan 
(w/sheet 20) 

 

 

 
Omar 
(exam) 

 
 

   

Students’ performance in such pen-and-paper problems varied according to 
complexity. In Worksheet 20, Tony, Dwayne, and Joseph correctly evaluated 
expressions up to 4 operations, while Jordan and Dan managed up to 5 operations 
(Jordan’s expression in Table 7.5.3.1). After assessing their work in Worksheet 20, I 
discovered that Omar and Dwayne were still sometimes confusing concatenated 
expressions like 2𝑎𝑎, where, if 𝑎𝑎 = 3, they might interpret 2𝑎𝑎 as 23. Nevertheless, like 
the rest of the students in this study, Omar and Dwayne did very well in substitution 
questions with 2-3 operations set in the annual examination (e.g. Omar’s expression 
in Table 7.5.3.1) where they both scored 9/10 (mean = 9.1/10).  
 
Students’ developments of ES interpretations are included in Table 7.5.3.2 which 
shows students’ responses when presented with a standalone ES and asked what it 
meant to them. 
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Table 7.5.3.2 Students’ interpretations of standalone ES  

 Interview 1 Interview 2 Interview 3 Interview 4 

Dan Makes Makes Makes 
Same Same 

Dwayne Makes Makes Makes Same 

Jordan Makes Makes Makes Makes 

Joseph Makes Makes 
Makes 
Same 
Subs 

Same 

Omar Makes Makes Makes Same 

Tony Makes Makes  
Same Same Makes. 

Same 
Key: 
 

Makes⟶ 
Same⟶ 
Subs⟶ 

ES indicates that a manipulation/computation “makes” an answer (operational) 
ES indicates that the two sides are the same or have the same size (relational) 
ES indicates that one side may be substituted for the other (relational) 

 

Consistent with the literature (e.g. Kieran, 1981; McNeil, 2008) students adopted a 
more relational understanding of ES as they started working on formal-algebraic tasks. 
However, some of them retained their previous operational interpretations even if they 
became competent in solving: 

(i) non-standard equations which were found to elicit a relational interpretation of 
ES (McNeil & Alibali, 2005), and  

(ii) substituting tasks which were found to help students to think about the 
substitutive and sameness components of ES (Jones et al., 2013). 

 
With the exception of Jordan, who was very competent in these tasks, all students 
expressed a sameness interpretation of ES in Interview 4. Only Joseph mentioned 
substitution and when he did he also expressed sameness and operational 
interpretations. Students might have subsumed substitutive interpretations within their 
sameness interpretations. Nevertheless, students seem to have gained a flexibility in 
their interpretation and representation of ES which may have served them well in 
formal- and informal-algebraic tasks involved in this study and beyond. Table 7.5.3.3 
gives a summative analysis of students’ representations and interpretations of the 
equality notation with reference to the CAPS framework. 
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Table 7.5.3.3 Students’ CAPS for ES 

GA 
Symbolic  

(notational) 
Representation 

Conceptual
(signified) 

Interpretation 

Active 
(kinaesthetic) 
Representation 

Pictorial 
(drawing/diagrammatic)  

Representation 
Code Students 

 = ES “makes”   
 

■  All 

 4 = 4 + 6 − 6 
 ES “makes”  

Inverse 
movements on 

grid   

■  All  
(class 
discussion) 

 4 = 4 + 6 − 6 
 

ES “makes” 
& balance, 
sameness 

See-saw 
gesture   

■  All  
(class 
discussion) 

 = ES balance Weightlifter 
pose  

 
 Dan 

 3 + 2 = 2 + 3 
ES “makes” 
& balance, 
sameness 

Horizontal 
movements on 

grid   
■  All 

 5 × 2 + 4 = 4 + 5 × 2 

ES “makes” 
& balance, 
sameness 

“People 
Maths” role-
play for each 

side of ES 
 

 
■  All  

 
𝑐𝑐
2

− 2, 
 

𝑐𝑐 = 18    

ES 
sameness, 
substitution 

 

 
 

■  All  
(varying 
degrees) 

 

 

10 − 4(8 − 3𝑟𝑟)
2

 
 

𝑟𝑟 = 2     

ES 
sameness, 
substitution 

  
 

■  All  
(varying 
degrees) 

 

Most pertinent to this study was the way APS representations helped me as a teacher 

to form better models of students’ conceptual interpretations of ES, as they did in the 

other notation discussed before. For example, students making a see-saw gesture and 

Dan’s weightlifter pose were actions that helped me to hypothesise that these students 

were linking ES with the concept of balance. Similarly, an action like dragging 18 to 

replace 𝑐𝑐 in a GA cell as a response to the statement 𝑐𝑐 = 18, helped me to hypothesise 

that students had developed a substitutive meaning of ES (Jones & Pratt, 2012), 

besides using the picture of a cell to interpret the letter 𝑐𝑐 as a constant. 
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7.6 Students’ CAPS Enabling M-N-L Cycles 

In this section, I discuss how the CAPS framework was pertinent to my study of CT 
and how it fitted within the M-N-L framework. I start by summing up how CAPS was an 
analytical tool to help me investigate students’ learning during the GA lessons. 
 

7.6.1 Associations between Conceptual Interpretations and APS 
Representations 

In Sections 7.2–7.5, I used the CAPS framework to analyse the way students 
developed interpretations and representations of notation by means of GA. Figure 
7.6.1 summarises the associations that CAPS helped me to identify between students’ 
representations and conceptual interpretations (continuous arrows) and among 
students’ representations themselves (broken arrows). 
 

Figure 7.6.1.1 CAPS associations of interpretations and representations with GA 
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Students worked on informal- and formal- algebraic activities on GA and represented 

 operations involved in expressions by the action of cell movements, 
 the process and object duality of expressions by journey and cell pictures, and 
 a proceptual interpretation of expressions by conventional notation. 

These associations are shown in Figure 7.6.1.1 by continuous arrows. Broken arrows 
show students’ associations between symbols used in conventional notation, journey 
pictures, and cell movement (action) representations. In addition, CAPS helped me to 
identify similar connections between students’ interpretations and representations of ES. 
 

7.6.2 Students’ Applying Concepts Learnt within GA in Pen-and-
Paper Problems 

By providing the opportunity to form multiple representations and switching between 
them, GA helped students to develop new conceptualisations of notation. Through 
informal- and formal-algebraic activities, all students seem to have extended their 
concepts of the structure of numerical and algebraic expressions, in particular by 
learning about new uses of notation and the conventional order of operations. GA 
encouraged students to develop proceptual interpretations (Gray & Tall, 1994) of 
expressions by requiring them to treat expressions as both processes and products. GA 
was also instrumental in serving as a springboard for discussions which helped students 
to modify their meanings of ES. Students seem to have started interpreting ES as a 
signifier of balance of same quantities and also of substitution, an idea which they 
applied to evaluate complex algebraic expressions ranging from 3 to 7 operations.  
 
This attainment was well above curricular expectations of “low-performing” students at 
Grade 7: the national Core Curriculum Programme designed for such Grade 7 students 
(DLAP Syllabus, 2014b) does not even include algebraic expressions. The substitution-
and-evaluation problems set in the annual examination, in which all students did very 
well (mean = 9.1/10), were comparable to those expected of high-performing students 
of their age group in the national Grade 7 syllabus. The only difference is that in the 
latter, students are expected to know how to ‘substitute two positive inputs in simple 
expressions and evaluate’ (DLAP Syllabus, 2014a, p. 5), rather than one input. Figure 
7.6.2.1 shows a copy of the relevant page from the annual examination script of Tony, 
whose performance throughout the year tended towards the median of the group.  
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Figure 7.6.2.1 Tony’s pen-and-paper work in the annual examination  

 
 

As shown in Figure 7.6.2.1, Tony interpreted ES as a substituting symbol (relational 
meaning) when reading the values of the letters. However, in his working, he 
represented ES as a symbol that shows the result of a computation (operational 
meaning). He carefully worked out the operations in order, starting a new statement for 
each order to avoid keeping a running total. The latter is a common misuse of ES (e.g. 
Kilpatrick et al., 2001). While interpreting the new notation of multiplication and division 
correctly, he preferred to represent these operations with the old notation in his working.  
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With the exception of Jordan, who worked these examination questions correctly but 
kept a running total in the evaluation of successive expressions, the other students in 
Grade 7C exhibited very similar work to that of Tony. This came to no surprise, 
because, as I have shown in Sections 7.4 and 7.5 students were tackling multiple-
operation expressions, both in GA and pen-and-paper environments, which were much 
more complicated than those I set in the examination.   
 
In contrast to studies claiming that students rarely transfer mathematical ideas they 
develop within an ICT environment to paper-based questions (e.g. Gurtner, 1992; 
EACEA Eurydice Report, 2011), all students in this research have made a smooth 
transition from solving GA tasks to traditionally set pen-and-paper problems. One 
possible reason for this successful transition was that, in GA, students worked with 
formal, conventional notation and solved problems they later encountered in pen-and-
paper problems. Another reason may have been that the GA worksheets were 
prepared in such a way that they started off simulating a GA grid but this simulation 
was gradually excluded as questions became more traditionally set. Such a bridging 
between ICT and pen-and-paper was found to be both necessary and effective in 
helping students to transfer mathematical concepts from a computer environment to 
paper-based questions (Geraniou & Mavrikis, 2015, 2016).  
 
In traditionally set questions and especially in summative assessments, students rely 
heavily on symbolic representations to express their mathematical interpretations. The 
above analysis of Tony’s examination work is a model I formed of his conceptualisations 
by observing the signifiers (Kaput, 1991) he chose to express through written symbolic 
representations. During the lessons, the students could express themselves better by 
complimenting symbolic expressions with actions and pictures which helped me to form 
more accurate models of their thinking processes. For example, in class, students 
expressed the order of operations they identified in algebraic expressions not only by 
writing successive computations (symbols), but also by drawing journeys (pictures) in 
the GA grid and by moving (action) cells with their expressions around the grid. 
 
Nevertheless, whether expressed in a GA environment or written on paper, students’ 
APS representations served me (as their teacher) to develop models of their 
conceptual interpretations during the lessons. This was a crucial aspect in the 
generation and continuation of M-N-L cycles, as I discuss next. 
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7.6.3 Zooming Out: Viewing CAPS as an Integral Part of M-N-L 

The Mathematics-Negotiation-Learner (M-N-L) framework was developed on the idea 

that teachers negotiate between the mathematics for students (MfS), the mathematics 

intended to be taught, and the mathematics of students (MoS), the existing and 

developing mathematics inside students’ minds. Teachers engage in Mathematics-to-

Learner negotiations aiming to present students with learning offers (Steinbring, 1998) 

of MfS to help students to experience, reflect on, and conceptualise (Kolb, 1984) 

mathematics. Teachers then engage in Learner-to-Mathematics negotiations where 

they seek to learn about MoS (Steffe, 1991), by developing models of students’ thinking 

processes and use them to review MfS to be able to make renewed Mathematics-to-

Learner negotiations. I argued that these initiated and completed M-N-L cycles were 

indicative of my CT.  

 

In this chapter, I used the CAPS framework to analyse students’ conceptual 

interpretations of action, picture, and symbol (APS) representations. This was an 

investigation into students’ learning without which there would not be any teaching 

(Freire, 1998). Thus, the CAPS framework makes sense and fits within the overarching 

M-N-L framework as shown in Figure 7.6.3.1. 

 
Figure 7.6.3.1 Making sense of CAPS framework within M-N-L framework 
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The relevance of the CAPS framework lies in the moment when teacher and learners 

exchange mathematical ideas to establish a mathematical consensual domain 

(Maturana & Varela, 1980; Glasersfeld, 1991b). In this consensual domain, teacher 

and students seek agreement about mathematical conventions (such as notation and 

structure of expressions).  

 

The top rightwards arrow of Figure 7.6.3.1 shows how, as a teacher, I initiated M-N-L 

cycles by anticipating possible didactic processes and interacting with the students to 

communicate my mathematics (T-Concept), i.e. MfS, through my (T-) action, picture, 

or symbol representations. These T-representations were mostly facilitated by GA, 

where I adopted GA’s inbuilt representations as my own learning offers to the students. 

GA also served as a springboard for discussions in which I came up with MfS 

representations outside the GA environment.  

 

Learners experienced these representations, reflected on them, and formed personal 

conceptual interpretations (L-Concept) of the topic at hand. Learners then participated 

in classroom activities in which they created their own (L-) action, picture, or symbol 

representations, usually by adopting the representations offered in GA. This is the start 

of the bottom leftwards arrow of Figure 7.6.3.1, where, as a teacher, I used these L-

representations to develop models of MoS (L-Concept) and used these models to 

review MfS. This led to an association of MoS with my own mathematics (sometimes 

requiring an adaptation) from which I then commenced another M-N-L cycle.  

 

Throughout Chapter 7, I was mostly concerned with L- CAPS, i.e. students’ conceptual 

interpretations and APS representations of notation as they engaged in informal- and 

formal algebraic activities. In Sections 7.2-7.5, I zoomed in on these to investigate how 

GA supported my CT in helping students to learn new representations of mathematical 

notation and how this enabled them to extend their conceptual interpretations. The 

latter was important in their learning about the order of operations, the meaning of 

symbols within the structure of numerical and algebraic expressions, and the multiple 

uses of ES. In this section, I zoomed out to demonstrate how the CAPS framework 

made sense within the M-N-L framework about CT, where students’ (L-) action, picture, 
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and symbol representations enabled me, as a teacher, to form models of their 

conceptual constructions (L-concept). In Sections 6.1.3, 7.3.3, and 7.5.2 I have 

presented evidence that supports the idea that whenever students used APS 

representations to supplement their verbal expressions, I used those representations 

to make a Learner-to-Negotiation shift, where my focus of purpose changed from (1) 

encouraging students to reflect on the mathematics learning offer to (2) forming a 

model of their conceptualisations and reviewing the learning offer. Students’ APS 

representations prompted me to shift my attention to start learning about students’ 

mathematical knowledge (Steffe, 1991), not only to form models of the interpretations 

they seemed to be developing but also to enrich my own mathematics by adopting and 

synthesising students’ mathematics with my own (Steffe, personal communication, 

October 7, 2015). 

 

The development and application M-N-L and CAPS frameworks, and the analysis of 

how the latter fitted within and served the former, helped me to investigate and answer 

the research questions I aimed to address. These will be discussed in the concluding 

chapter that follows. 
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8.0 Overview 

In this chapter, I revisit the aims and outcomes of this research. Table 8.0.1 outlines 

the sections included in this chapter. 

 
Table 8.0.1 Chapter 8 section titles 

 Section Title Page 

8.1 Recapitulation of Aims and Outcomes 317 

8.2 Limitations of the Research 324 

8.3 Significance of the Research 326 

8.4 Recommendations for Future Research and Actions 328 

8.5 Autobiographical Reflection 329 
 

 

8.1  Recapitulation of Aims and Outcomes  

The aim of this research was to investigate the dynamics of constructivist teaching 

(CT) during regular school lessons in which I used Grid Algebra (GA) to help Grade 7 

students in forming new representations and interpretations of notation through 

informal- and formal-algebraic activities. In these lessons, I aimed to coordinate and 

facilitate students’ developments of concepts about: 

• properties of operational notation, 

• unknowns, and variables, and 

• the equals sign (ES). 

During these lessons, students learnt about new uses of operational notation and the 

order of operations in numerical and algebraic expressions. 

 

In this section, I revisit the research questions which I answer by providing evidence 

presented and discussed in Chapters 6 and 7. I start with the first set of research 

questions, those regarding CT. 
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8.1.1 Answers to Research Questions Set 1 

To answer the first set of questions, I made use of constructivist theories including 

Dewey (1902), Piaget (1975), Jaworski (1994), Simon (1995), Steinbring (1998), 

Kolb (1984), and Steffe (1991). My approach in addressing these questions was also 

influenced by my inclination towards radical constructivism (RC), as envisaged by 

Glasersfeld (1995a), from which I draw a subjectivist view of reality, knowledge, and 

learning. 

 

Research Question 1(i) 

How did I engage in CT and what were the distinguishing characteristics of such 
a teaching approach? 
 

Addressing this question led to the design and development of the M-N-L framework 

(Borg et al., 2016a, 2016b). Inspired by theories mentioned above, particularly 

Dewey’s (1902) curriculum-learner construct, I derived the M-N-L framework from 

patterns emerging from data collected during my GA lessons with Grade 7 students. 

In Section 6.1, I presented typical evidence of these patterns which were the 

continuous shifts of teaching purpose I made during the lessons to negotiate between 

my mathematics and learners’ conceptual constructions. In Section 6.1.5, I discussed 

how primary data coded for such changes of teaching purpose were categorised into 

two types of negotiation: Mathematics-to-Learner and Learner-to-Mathematics (see 

Figure 6.1.5.2 for the codes-to-theory development). This dual negotiation was at the 

heart of the M-N-L framework which was discussed and developed in Section 6.2. I 

showed how M-N-L cycles were formed of these successive changes of teaching 

purpose during teachers’ dual negotiations between mathematics and learners. 

 

I thus presented M-N-L cycles as the distinguishing characteristic of CT. Consequently, 

I interpreted the extent to which I managed to generate and complete these M-N-L 

cycles to be indicative of my success to engage in CT. In Section 6.3, I showed that 

from 745 minutes devoted to plenary discussions in the lessons, I completed at least 
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180 M-N-L cycles, an approximate average of a cycle per 4 minutes of teaching (see 

Figures 6.3.1, 6.3.2). Given that every M-N-L cycle involves at least 4  shifts of teaching 

purpose, this rate confirms the rapid shifts of attention that teachers make during 

lessons attested by other researchers (e.g., Ingram, 2014). In Section 6.4, I brought 

evidence from the lessons to focus on how such M-N-L cycles were initiated and 

completed. I discussed each change of teaching purpose I made to create roads linking 

the mathematics for students (MfS) with the mathematics of students (MoS) (see 

summary in Table 6.4.1). 

 
 

Research Question 1(ii) 

What, if any, were the moments when I failed to engage in CT? 
 

The M-N-L framework was effective in identifying moments where I failed to engage in 

CT by creating roadblocks in my negotiations between learners and mathematics. As 

shown in Section 6.5, this happened when I could have been using students’ 

representations to form models of their interpretations in order to review the 

mathematics learning offer (Steinbring, 1998). Overall, I identified 23 such instances 

in which 20 happened in two ways. The first type (13/20) was when I failed to ask 

students to give their representational input and hence I missed the opportunity to 

develop models of their interpretations. The second type (7/20) was when I failed to 

elaborate on students’ representational input and hence I failed to associate and 

synthesise their mathematics with my own.  

 

All of the 23 instances of losing sensitivity to learners’ conceptual constructions created 

a roadblock in the Learner-to-Mathematics negotiation. These roadblocks all originated 

from failing to let the students’ mathematics affect my own. The structure of the M-N-L 

framework helped me to posit at least one other possible type of roadblock, one that 

affects the Mathematics-to-Learner negotiation. This might occur when a teacher has 

no intention of anticipating didactic processes or hypothesising about a learning 

trajectory. However, I did not identify any such barriers in my lessons. 
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8.1.2 Answers to Research Questions Set 2 

Analysing data to answer the second set of research questions was guided by the 

amalgamation of Kaput’s (1991) signifier-signified theory, and Bruner’s (1966) 

enactive, iconic, and symbolic representations theory into the CAPS analytical 

framework discussed in Chapter 7.  

 

Research Question 2(i) 

How did students represent and interpret mathematical notation as they started 
Grade 7? 
 

Interview 1 and the first lessons were crucial in answering this question, where all 

students were found to have limited interpretations of operational symbols and of ES. 

They all evaluated successfully small value additions, subtractions, multiplications and 

divisions. Consistent with the literature (e.g., Davis, 1975; Booth, 1984; Sfard & 

Linchevski, 1994), all students perceived numerical expressions as processes to be 

performed and did not view them as mathematical entities which could be manipulated 

without being evaluated beforehand. Moreover, none of them seemed to be aware that 

brackets could be used to denote multiplication or that a fraction may be regarded as 

a division. Their use of letters was limited to denoting mensuration quantities like the 

use of 𝐿𝐿 for length of a rectangle, and they did not seem to be aware that letters could 

stand for generalised numbers.  

 

None of the students seemed to have had a relational view of ES before the onset of 

the GA lessons. Their initial interpretation of ES was operational, a symbol that 

indicates that the numerical expression on its left makes the single number (answer) 

on its right. This was consistent with many research reports (e.g., Behr, Erlwanger, & 

Nichols, 1976; Kieran, 1981b; Herscovics & Linchevski, 1994; McNeil, 2008). However, 

unlike some research findings (e.g., Falkner, Levi, & Carpenter, 1999) Joseph, Jordan, 

Omar, and Tony could also read ES from right to left. 
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Research Question 2(ii) 

How did GA help students to enrich their representations and extend their 
interpretations of mathematical notation? 
 

GA was found to be very effective in helping students to extend their interpretations 

of notation by enriching their repertoire of representations. In Sections 7.2–4, I 

presented evidence from lesson videos and students’ computer activities to show how 

GA provided all students with multiple-linked representations (Dreyfus, 2002) of 

notation, namely, actions, pictures, and symbols (APS). The picture of a cell within the 

GA grid represented a numerical or algebraic expression while the action of moving a 

cell onto another cell represented the operation on that numerical or algebraic 

expression. The series of operations on a number or a variable was represented by 

pictures of journeys around the GA grid, where intermediary “stations” represented 

mathematical objects which could be manipulated further. In this way, all students 

learnt new ways of representing notation involved in numerical and algebraic 

expressions (see, for example, Excerpts 7.3.2.1 and 7.3.3.1). In Section 7.5, I showed 

how GA activities helped students to represent ES as a balance between equal values 

represented by the same cell (picture). GA also triggered discussions which resulted 

in further representations of ES, where students acted out balance and imbalance to 

represent equality and inequality respectively (see Excerpts 7.5.2.2–3 for students’ 

see-saw and weightlifting metaphors).  

 

As a result, all students showed significant developments of their conceptual 

interpretations of notation with the help of GA: they learnt about the use of new notation 

(brackets to represent multiplication; fraction notation to represent division), the use of 

letters as unknowns or variables, the structure of numerical and algebraic expressions, 

and the order of operations in expressions. Tables 7.2.3.1, 7.3.3.2 and 7.4.3.2 

summarise these extensions of students’ interpretations of notation and the associated 

multi-linked representations described earlier. These tables also include ways in which 

students developed a proceptual view (Gray & Tall, 1994) of numerical and algebraic 

expressions.  
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Moreover, all students made considerable developments in their conceptualisations of 

ES. They learnt that besides indicating the answer of a calculation, ES could also be 

interpreted as a balance of same quantities and a symbol of substitution (Jones & Pratt, 

2012). Excerpt 7.5.2.5 presents an example of the latter. Students’ extensions of 

meanings of ES was in line with studies which reported that teaching aimed at helping 

students to extend their conceptions of ES had the desired impact (Rittle-Johnson & 

Alibali, 1999; McNeil & Alibali, 2005b; Powell & Fuchs, 2010). Table 7.5.3.3 

summarises how APS representations provided or prompted by GA activities helped 

students to extend their interpretations of ES.  

 

Research Question 2(iii) 

How did students transfer representations and interpretations of notation they 
developed when working with GA to pen-and-paper problems? 
 

All students were found to transfer representations and interpretations of notation from 

a GA environment to pen-and-paper problems. In Table 7.5.3.1, I provided samples of 

each students’ work, showing that they managed to perform traditionally set 

substitution-and-evaluation tasks on paper. The range of performance varied between 

expressions with three operations (Omar) to five operations (Dan and Jordan). This 

contrasts with studies claiming that students do not usually transfer mathematical ideas 

they acquire within an ICT environment to paper-based questions (e.g. Gurtner, 1992; 

EACEA Eurydice Report, 2011).  

 

This computer-to-paper transition was partly due to the nature of GA itself which 

encourages the use of formal notation and includes inbuilt questions that are typically 

present in paper-based problems. The transfer was also made possible through a 

series of worksheets with which I sought to bridge ICT-based to paper-based problems. 

Such bridging is necessary for successful transfer of mathematical applications from 

computer to pen-and-paper (Geraniou & Mavrikis, 2015). In these worksheets, I 

included questions that simulated a GA environment, both in the diagrams (context of 

a GA grid) and in the questions (similar to those of GA tasks). In such worksheets, all 
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students managed to reproduce in writing the actions, pictures, and symbol 

representations as shown in Table 7.4.2.2. Students’ representations were based on 

their activities and discussions in the GA lessons. For example, Dwayne’s and 

Joseph’s representations in Worksheet 16, included in Table 7.4.2.2, were based on 

Lesson 16 where students compared GA-generated journey pictures to railway routes. 

In the lesson, they used the metaphor of train stations to think proceptually (Gray & 

Tall, 1994) about successive algebraic expressions being operated on and they 

compared the operations to the connections between stations. Such worksheets had 

the intermediary role of presenting students with a situation similar to the computer 

activity while familiarising the students with the writing of conventional notation when 

working on the order of operations. Gradually, these paper-based assignments 

contained more traditionally set questions, such as evaluating algebraic expressions 

by substituting values for letters (Appendices 4.1–4.5). 

 

In addition, all students performed very well (mean = 9.1/10), in substitution-and-

evaluation tasks I included in their annual examination (Figure 7.6.2.1). The difficulty 

level of these tasks was comparable to that expected of high-performing students at 

Grade 7 (DLAP Syllabus, 2014a). The national syllabus designed for students in the 

lowest performing set at Grade 7 (DLAP Syllabus, 2014b) did not even include 

algebraic expressions.  These “low-performing” students have proved that given the 

right time, tools, and dedication they could meet the curricular expectations of high-

performing students in paper-based problems. Although the issue of special 

educational needs did not feature in this research, this finding is all the more significant 

when one considers that, except for Tony, all the students had special educational 

needs (see Table 4.2.2.1) and their learning support assistants were never present in 

any GA lesson or assignment. 

 

I took great care to address these research questions in an honest, meticulous, and 

trustworthy manner. However, this research is not without its limitations. These are 

outlined chronologically in the following section. 
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8.2  Limitations of the Research  

 Literature. Although I did my best to make a thorough search of the most 

relevant literature, I am aware that the list of readings is not exhaustive. One of 

the reasons for this is that the literature I reviewed was limited to work which 

was published in English. However, besides literature originating from the UK, 

the US, Canada, and Australia, I also reviewed studies from other countries, 

especially from Europe and Asia. 

 Stance. In Section 4.7, I discussed the issues of being a teaching researcher 

including those of being biased towards establishing the effectiveness of my 

teaching, holding preconceptions about the participant students with reference 

to similar student groups I taught in the past, not being as “open-minded” as an 

“outsider” researcher, and time constraints and distractions due to gathering 

data while being on teaching duty. These limitations were due to a conflict of 

stance: I had to alternate between wearing the researcher hat and the teacher 

hat during the data collection stage which lasted a whole scholastic year. I 

settled this conflict by taking on a teaching role during the lessons and a 

researcher’s role during the data analysis. However, I am aware that such a 

settlement is rather simplistic and I do not exclude that some of the issues listed 

above may have affected the research findings. 

 Methodology. From a case study of six students and their teacher, I could not 

expect to offer any kind of generalisation of findings which may have been 

possible in a large-scale study. I do hope, however, that I was careful enough 

when positing the M-N-L and CAPS frameworks as working hypotheses (Yin, 

2013) to enable other teachers and researchers to adopt them as viable models 

for their own teaching or research. I also hope that the depth and richness of 

the data offers teachers and researchers the possibility of empathising with my 

narrative to create vicarious experiences (Stake, 1995) from which they can 

extrapolate lessons to their own situations.  
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 Data gathering. The data gathering methods suffered a number of limitations.  

• In the lesson video recording, some student gestures, facial expressions, 

and undertone utterances were lost due to students’ facing away from the 

video recorder. 

• In the interview video recording, sometimes the students went out of the 

field of vision of the video recorder while thinking about a problem or 

responding to a question. This may have caused some loss of data. 

• During computer work, there were quite a number of long intervals where 

Pandas and Chimps worked on the tasks silently, taking turns to control the 

cursor and only muttering an occasional word or two. Although I could still 

observe what they were doing from the recording, lack of verbal 

communication was not helpful for me to infer which student was doing the 

screen movements and what kind of interaction was going on.  

• Also during computer work, students (especially Sharks) sometimes spent 

time fooling around with the software and not working on the tasks I 

assigned them. While some of this activity (like moving the cells around the 

grid repeatedly) could have prepared them for the complexity of 

expressions, most of this activity (like colouring cells to make a chessboard 

pattern) was frivolous and wasted precious time. Since I was interacting with 

individual groups, I could not always detect such activities. 

 Data analysis. In Chapter 6, I described how I made use of students’ 

representations to hypothesise about their mathematical interpretations. 

Building a model of a person’s thought processes from observing that person’s 

representation was also relevant when I looked back at my own representations 

by studying lesson video recordings and built models about what I was probably 

thinking at particular moments during the lessons. In some cases, especially 

when an event had caused me substantial mental perturbation, I actually 

memorised what I had been thinking and feeling. In many other cases, I relied 

on my awareness of my teaching approach and on my teaching experience of 

what I usually do or say before or after thinking about something. However, I 



Chapter 8 Conclusion 
 

326 

do not exclude that I may have been inaccurate in inferring some shifts of focus 

and this may have affected the research findings to some extent. 

 

8.3  Significance of the Research 

This research contributes to the literature about CT, the introduction of algebra to 

students, and the use of ICT for the teaching and learning of mathematics. 

 

The most significant contribution is, perhaps, the development of the M-N-L framework: 

a viable, working model resulting from my attempt to bring RC beliefs to daily teaching 

practices (Borg et al., 2016b). I am aware that the framework may seem simplistic 

when one considers the complexity of CT, especially when one is teaching from a RC 

stance, but I feel I have demonstrated how this framework can be used to analyse 

teaching against a constructivist backdrop. Its strength lies in emphasising a dual 

negotiation between subject matter and the learner. The fact that this framework was 

developed from data gathered from “normal” lessons set within a school’s daily 

timetable adds to its credibility and viability. 

 

Another important contribution of this study was the identification of CT barriers which 

hindered the negotiation process. Such roadblocks between mathematics and learners 

may occur from the learner side, when teachers impede the process of building models 

of students’ conceptualisations in order to review their own mathematics and 

subsequent learning offers. They may also occur from the mathematics side when 

teachers do not seek to anticipate how students may interpret the learning offers. Each 

of these roadblocks are caused by excessive focus on the subject matter at the 

expense of learners’ needs and interests. Complementing literature in which 

researchers (e.g. Glasersfeld, 1991b; Steffe, 1991) make recommendations about 

actions teachers should do in order to engage in CT, this research makes teachers 

aware of barriers they should avoid if they want to maintain CT in their lessons. 
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The research also shows how mathematics teachers use students’ action, picture and 

symbol representations to build models of students’ conceptualisations. In this study, 

the CAPS framework had a secondary, though crucial, role by serving as a focus within 

the M-N-L framework, located at the delicate stage of the M-N-L cycle where my 

students and I were exchanging ideas. However, I have shown how it can help 

teachers and researchers analyse data related to students’ conceptual constructions 

as expressed through their representations. Thus, CAPS is a contribution by and of 

itself, which may be used as an analytical framework in studies that focus on the 

interplay between signifier representations and signified interpretations. 

 

This research also contributes to the growing body of literature about helping low-

performing students learn mathematics. The major research finding in this respect was 

that with the appropriate approach, resources, and time, “low-performing” students 

may not be not low-performing at all. Except for one, the participants of this study had 

special educational needs for which they were assigned full-time learning support 

assistants (LSAs) to help them during lessons and assignments. These LSAs were not 

present for any of the GA lessons and did not help the students with the written work 

that was part of the data. The students managed very well on their own, with the GA 

software being their only “LSA”. They engaged in meaningful classroom discussions 

and in informal- and formal-algebraic activities on GA. By the end of the lessons, these 

students were evaluating complex algebraic expressions which were at or above the 

level recommended in the syllabus set for high-performing students (DLAP Syllabus, 

2014a). Furthermore, this study corroborates research showing that teaching aimed at 

helping students to extend their conceptions of ES is effective for average-performing 

students (McNeil & Alibali, 2005a; Rittle-Johnson & Alibali, 1999) and low-performing 

students (Powell & Fuchs, 2010) alike. 

 

Finally, this study continues to add to the body of research about the use of computer 

software in mathematics teaching and learning. GA has been found to be very practical 

in helping students increase their repertoire of notational representations and to extend 

their concepts signified by notation. Contrary to studies claiming that students seldom 

transfer concepts they develop within an ICT environment to pen-and-paper problems 
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(e.g. Gurtner, 1992; EACEA Eurydice Report, 2011), this research has shown that 

students can make a smooth transition from developing and applying concepts when 

solving computer-generated (GA) tasks to applying those concepts to solve typical 

pen-and-paper problems. Moreover, students’ constant eagerness to attend what they 

used to call “algebra lessons”, i.e. the GA lessons, confirms Lugalia’s (2015) assertion 

that students’ motivation, enjoyment, and engagement in mathematics learning were 

boosted by the use of GA in the lessons. Overall, GA has proven to be another success 

story of utilising computers in mathematics education and deserves further research, 

as I suggest in the section that follows. 

 

8.4  Recommendations for Future Research and Actions 

The work done in this study may be extended in further research in a number of ways. 

 Educational researchers in the field of constructivism may use M-N-L to analyse 
CT at other levels and for other topics. Furthermore, even though the M-N-L 
framework has been devised from and for the analysis of mathematics lessons, 
it can be found viable for other school subject areas, where “M” in M-N-L may 
be replaced by the initial of any curricular subject. 

 The role of action, picture, and symbol representations in mathematics teaching 
and learning may be investigated in other topics such as geometry and data 
handling. Researchers may find the CAPS framework as a useful analytical tool 
to guide the analysis of data emerging from such studies. 

 The use of GA as a tool for mathematics teaching and learning merits further 
study. Besides its potential to assist the teaching and learning of informal 
algebra, researchers may explore other features of GA which did not form part 
of this study, such as the teaching of the distributive property of multiplication 
over addition by means of equivalent expressions and the use of inverse 
journeys to teach inverse functions and bringing a letter to be the subject of an 
equation. 

In addition, this study calls for educational policies in favour of the dissemination of ICT 

applications in mathematics lessons. The success of GA in the lessons was partly due 
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to the design of the software and partly due to the time I devoted in familiarising myself 

and preparing classroom activities with it. While contributing to literature which 

supports policies in favour of ICT dissemination in schools and curricula, this study 

also calls for actions that promote teacher training in the use of specific computer 

software to assist the teaching and learning of mathematics. 

 
8.5  Autobiographical Reflection 

Undertaking a PhD research in which I investigated my own teaching and what my 

students made of my lessons has left its mark in my perspective as a teacher and a 

researcher. 

 

As a teacher, I have become much more aware that if I have a classroom of twenty-

five students, then there are probably twenty-five different shades of meanings being 

constructed for every learning offer I make. This has made me more cautious when 

making assumptions about students’ knowledge constructions and while it has made 

teaching a more complex task than it seemed to me twenty years ago, I believe it has 

made me more sensitive to constructivist notions when interacting with my students. 

 

As a researcher, this experience was a journey among contrasts: reading literature to 

develop knowledge and acquiring the humility of lacking it, handling large masses of 

data while valuing the smallest of details, delving into messy analyses and deriving 

neat themes and theories, being frustrated one day and excited the next, working with 

confidence while accepting critique, and striving for perfection while knowing that, like 

infinity, it is a status that can be approached but never reached. The self-discipline 

involved in navigating among these elements has given me invaluable lessons about 

what it takes to be a researcher.  

 

Being first and foremost a teacher, I hope I will have the opportunity to share these 

lessons with others.
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Appendix 1 Description of GA Activities and Tasks Used  

  GA Computer-Generated Tasks 

Tasks involving numbers only Tasks involving letters 

5 Equivalent expressions (Numbers) 

 
Given a selected cell and a starting 
number. User needs to make the 
expression which would be inside the cell 
by adding operations to the starting number 
by means of an expression calculator. 

 

4 Equivalent expressions (Letters) 

 
Given a selected cell and a starting letter. 
User needs to make the expression which 
would be inside the cell by adding operations 
to the starting letter by means of an 
expression calculator. 

 

8 
 

Find the journey (Numbers) 

 
Given a numerical expression inside a cell 
and a starting number. User needs to click 
on the steps of the journey from the starting 
number to the given numerical expression 
by doing the correct operations in the 
correct order. A journey will form.  

7 
 

Find the journey (Letter) 

 
Given a formal algebraic expression inside a 
cell and a starting letter. User needs to click 
on the steps of the journey from the starting 
letter to the given expression by doing the 
correct operations in the correct order. A 
journey will form. 

10 Same as Task 8 but only in small grids. 
 

9 Same as Task 7 but only in small grids. 
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Tasks involving numbers only Tasks involving letters 

15 

 
 

 

Make the expression (Numbers) 

 
Given a number inside the grid and a 
numerical expression outside. Users must 
drag the number to the right cells in the 
right order to obtain the expression. The 
activity is timed. 

13 
 
 
 

Make the expression (Letters) 

 
Given a letter inside the grid and a formal 
algebraic expression outside. Users must 
drag the letter to the right cells in the right 
order to obtain the expression. The activity is 
timed. 

16 Same as Task 15 but only in small grids. 
 

14 Same as Task 13 but only in small grids. 
 

20 Place the numbers (two players) 

 

 
A number is shown on the grid. Two 
players take turns to choose a number 
from the number box and drag it to the 
correct cell. Each player has 5 turns. If a 
player chooses a number that appears 
twice that player gets double points, trice 
means triple points etc. 

 

22 Substitution 

 
Given a cell with an algebraic expression and 
another cell with the letter involved in the 
expression. Given also the value of that 
letter. Users must work out the value of the 
cell with the expression by substituting the 
value for the letter (cont./…) 
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 Tasks involving letters  

22 (…/cont.) Users can flip the cell with the letter to see the number (value) and drag it mentally to 
the final cell in order to obtain the correct value at the end. 

Later in the task the grid disappears and users need to do the substitution and evaluation without 
the help of the grid. 

 

 

24 Same as Task 22 but only in small grids. 
 

25 What is the expression? 

 
Users are given a journey and an expression calculator with a letter to stand in position 1. With 
the expression calculator users are expected to work out the expression in the final destination 
of the journey by making the correct operations in the correct order. 
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GA Activities with the RUN function 

Activities involving numbers only Activities involving numbers and letters 
 
RUN:  Guess the number in the shaded cell. 

Number in Row 1, Column 1 is 1. 

 
A number from the number menu is picked up 
and inserted in a cell. If it is the correct number, 
it will stay there. If it is not, a bin will appear and 
a further click will dispose of the number and the 
user may try again. Students take turns shading 
a cell of their choice and their partner selects a 
number for it. Then they swap roles (each 
student shades with his own particular colour). 
 

 
RUN:    Letter as unknown: What is the value of 

the letter? 
 

 
 
A number from the number menu is picked up and 
inserted in a cell. A student, chooses a letter from 
the letter menu and places it in a cell. Then he 
asks his partner to guess what number it 
represents (it is an unknown). After guessing the 
number, the other students drags that number 
from the number menu and checks if it stays there. 
If a bin appears he tries again until he gets it right. 
Then the roles are swapped and the last student 
places another letter in the same grid and so on. 
 
 

 
RUN:  Guess the number in the shaded 
            cell. Number in R1C1 is not 1. 
 
Same as above but the number in the 
top left corner is larger than 1. 
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Activities involving numbers only Activities involving numbers and letters 

 
RUN:  Move the cell and reflect. 

 
 
A  picks a number from the number menu and 
inserts it in a cell. Then he asks his partner what 
would happen if that cell (i.e. that number) was 
mapped to another cell of his choice. After the 
other student guesses, the first one clicks and 
drags that cell to the designated cell and the other 
student verifies or negates his answer. Then the 
roles are swapped. 
 

 
RUN:    Letter as variable: What may be the value 

of the letter? 
 
 
 
 
 
 
 
 
 
 
 
 
 
A student, chooses a letter from the letter menu 
and places it in a cell. Then he asks his partner to 
guess what number it may represent (it is a 
variable since the grid has no numbers yet). After 
guessing the number, the other student drags that 
number from the number menu and checks if it 
stays there. If a bin appears he tries again until he 
gets it right. The cell automatically takes the shape 
of a page with a corner rolled upwards, inviting the 
student to swap between cell values: e.g. 𝑥𝑥 and 
25. Then, a new grid is created and the roles are 
swapped. 
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Activity involving numerical expressions 

 
RUN: Use of Magnifier to show associativity of addition and multiplication 
 

 
 

Numbers are placed in strategic places as shown in the above grid. Each of these numbers is 
moved to a cell on the right as shown. The cell containing the addition holds two equivalent 
numerical expressions. These are viewed by the magnifier. students appreciate that a numerical 
expression showing the addition of two numbers can have the numbers swapped and still retains 
its value, and hence the commutativity of addition. Moreover, the equals sign is seen here to 
represent an identity or equality rather than the precursor of the answer of a process. 
 
This activity is repeated for other operations. 
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Activity involving algebraic expressions 

 
RUN: Order of operations: Process starting with a letter 

 
 

 
 
 
A letter is placed in a cell. It is moved vertically and then horizontally so that students appreciate 
that multiplication or division are performed before addition and subtraction in expressions such 
as 2𝑘𝑘 + 12 and 𝑚𝑚

4
− 2. Then together with the previous activity showing commutativity of 

addition students are led to appreciate that an expression such as 12 + 2𝑘𝑘 is still the same as 
2𝑘𝑘 + 12 and hence, in 12 + 2𝑘𝑘 it is still the multiplication that is performed before even though 
it is written after addition. 
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Appendix 2 Example of a GA Lesson Plan 
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Appendix 3.1  Interview 1 Problems (as presented to the students) 

 
 

 Name:______________________________   

 
 
 

1.1 4 + 3  

1.2 8 − 3   

1.3 5 × 4  

1.4 6 ÷ 2  

2.1 5 + 4 − 4  
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3.1 2 + 3 × 10  

   

3.2 2 × (3 + 1)  

   

4.1 10(5 + 2)  

   

5.1 =  

   

6.1 

 

= 3 + 5 

   

6.2 7 + 3 = 

 

+ 7 
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7.1 497 + 2014 − 2014   

   

7.2 121 × 350 ÷ 350  

 

 

 

 

 

************************* T H A N K    Y O U ************************* 
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Appendix 3.2  Interview 2 Problems (as presented to the students) 

 
 

 Name:______________________________   

 

3.1 3 + 2 × 5  

   

3.2 10 × (2 + 6)  

   

4.1 2(3 + 7)  

   

4.2 8
2  

   



 Appendices 3 

384 

4.3 4 + 6
5   

   

5.1 =  

   

6.1 

 

= 5 + 4 

   

6.2 10 + 7 = 

 

+ 10 

   

6.3 998877 + 1234 = 

 

+ 998877 

   

6.4 15 = 
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7.1 5767 + 3993 − 3993   

   

7.2 567 × 123 ÷ 123  

   

8.1 

 

The expression 
4 + 8 

is multiplied by two.  
 

What is the new expression? 
 

 

 

 

************************* T H A N K    Y O U ************************* 
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Appendix 3.3  Interview 3 Problems (as presented to the students) 

 
  
Name:______________________________   
 
 
 
 

4.1 4(5 + 1)  

   

4.2 15
3   

   

4.3 3 + 6
3   

   

5.1 =  
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6.1 

 

= 3 + 7 

   

6.2 8 + 2 = 

 

+ 8 

   

6.3 229977 + 4321 = 

 

+ 229977 

   

6.4 26 = 

 

 

   

7.1 6162 + 4994 − 4994   

7.2 451 × 999 ÷ 999  
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8.2 

 
  

8.3 

 
  

9.1 

Suppose instead of the number 5 you had “y”. 

What would the cell marked (4) contain after the journey 

(1)⟶ (2) ⟶ (3) ⟶ (4) ? 

 
 

************************* T H A N K    Y O U ************************* 
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Appendix 3.4  Interview 4 Problems (as presented to the students) 

 
  
Name:______________________________   
 
 
 

4.1 4(5) + 10  

   

4.2 10 + 4(5)  

   

4.3 12
3 + 6 

 

 

   

4.4 6 +
12
3   

   

4.5 2(3) − 5  
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4.6 5 − 2(3)  

4.7 10
2 − 4  

4.8 4 −
10
2   

6.1 6 + 3 = 

 

+ 6 

   

6.2 7 + 4 = 

 

+ 4 

   

6.3 399993 + 8228 = 

 

+ 399993 
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6.4 54 = 

 

 

   

7.1 5445 + 9997 − 9997  

   

8.1 
 

233 × 676
676  
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9.1 What does the following expression mean? 

 

2𝑎𝑎 + 6 

9.2 How would you help me understand the meaning of the above 

expression by using the GA grid below? 
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9.3 What does the following expression mean? 

 
3𝑥𝑥 − 6

2  

9.2 How would you help me understand the meaning of the above 

expression by using the GA grid below? 

 
 
 
 
 
 
 
 
 

************************* T H A N K    Y O U ************************* 



 Appendices 3 

394 

Appendix 3.5  Interview 5 Problems (as presented to the students) 

 
  
Name:______________________________   
 
 
 

9.1 What does the following expression mean? 

 
2(ℎ + 7)

5  

 
 

10.1 If ℎ = 3, give a single value for   

 
2(ℎ + 7)

5
 

 

 

10.2 If 𝑒𝑒 = 4, give a single value for   

 

5 + 3𝑒𝑒 
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10.3 If 𝑢𝑢 = 6, give a single value for   

 

10 − (𝑢𝑢 + 1) 

 

 

10.4 

 

 

 

 

  

If 𝑦𝑦 = 6, give a single value for   

 

5 �𝑦𝑦
2

� + 5
4  

 

 

 

10.5 If 𝑐𝑐 = 12, give a single value for   

 

3 �10 − 𝑐𝑐
3

+ 2�
6

 

 

 

 

 
 

************************* T H A N K    Y O U *************************
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Appendix 4.1  Worksheet 1 (given after GA lesson 1)16 

Fill in the shaded cells with the correct number. 

 
 

 
   

 

 

 
   

 

 

 
                                            
16 In Appendices 4.1-4.5 the sizes of the diagrams and spaces in the tables were reduced from the original handouts to fit within this page border. 
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Appendix 4.2  Worksheet 5 (given after GA lesson 5) 

You will be given a number in a box. This number is transformed by the operation shown on the arrow. The resulting 
expression is shown in the final box. Attention: ALL ARROWS POINT TO THE RIGHT even the ones that do not show +. 
Sometimes the expression is again transformed by another arrow. The first two problems are worked out for you. 
 
 
 
 

 

 
 
 
 

 
 
 
 

 

 

 
 
 

 
 
 
 
 

 

 
 
 
 
 

 
 
 
 
 

 

 
 
 
 
 

 
 
 
 

 

 
 
 
 

8 × 2  
 4 ÷ 2  

6 −4   
−2 

9 +3   
× 2 

6 +3 
6 + 3  

+9 
7 +1   

+2 

8 × 2   
+4 

9 −3   ÷ 2 

3 +2 
3 + 2 6 −4 

6 − 4 2(6 − 4) 
× 2 
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Appendix 4.3  Worksheet 8 (given after GA lesson 8) 

You will be given a number in a cell. In another cell you have a numerical expression formed by operations on that 
number. Your task is to show how the number in the cell is moved so that this expression is formed. Write ① on the first 
number, ② on the second position, ③ on the third position and so on. The first one is worked out for you. 

 
 

 
   

 

 
 

   

 

 

 
   

 

 

 

 

① ③ ② 
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Appendix 4.4  Worksheet 19 (part) (given after GA lesson 19) 

For each of the following grids make the substitution for the letter and evaluate the expression in the other cell. 

1. 

 

2. 

 
    
3.  

 

4 

 

     
5. 

 

 

6. 
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Appendix 4.5  Worksheet 20 (given after GA lesson 20) 

For each of the following expressions make the substitution shown in the brackets and evaluate the expression. 

 
5(𝑎𝑎 − 2)                   [𝑎𝑎 = 3] 

 
3 (5 + 𝑏𝑏)                    [𝑏𝑏 = 2] 

 
4 + 𝑐𝑐

3
                         [ 𝑐𝑐 = 6] 

 
17 − 3𝑑𝑑                    [𝑑𝑑 = 5] 

 

4 + 15
𝑒𝑒

                     [𝑒𝑒 = 3] 
 

2(1 + 5𝑓𝑓)                   [ 𝑓𝑓 = 2] 

 
12−2𝑔𝑔

2
                       [𝑔𝑔 = 5] 

 
2 �10 + ℎ

5
�                    [ℎ = 15] 

 
2(2𝑖𝑖−6)

4
                     [ 𝑖𝑖 = 7] 

 
3 + 5(𝑗𝑗−2)

4
                  [𝑗𝑗 = 10] 

 
4+𝑘𝑘

2 +6

3
                         [𝑘𝑘 = 2] 

 
10�3+𝑚𝑚

3 �

5
                      [ 𝑚𝑚 = 6] 

 
5 �15−4𝑛𝑛

3
�                  [𝑛𝑛 = 3] 

 

10 −
1+12

𝑝𝑝

2
                   [𝑝𝑝 = 4] 

 
10−4(8−3𝑟𝑟)

2
                   [𝑟𝑟 = 2] 
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Appendix 5 Example of a Coding Sheet Including Lesson Event Notes: GA Lesson 9  

Codes and Frequencies 
Maths-> 
Negotiation 

 Negotiation-> 
Learner 

 Learner-> 
Negotiation 

 Negotiation-> 
Mathematics 

 Forward  
Negotiation Block 

 Backward 
Negotiation Block 

 

M-N_Anticipate>Interact 3 N-L_Interact>Experience 10 L-N_Reflect>Model 12 N-M_Review>Assoc 4 xM-xL_ 
FixedObject>Ignore 0 xL-xM_NoElab>NoAssoc 1 

M-N_Assoc>Interact 6 N-L_Interact>Reflect 17 L-N_Reflect>Review 4 N-M_Review>Adapt 2   xL-xM _Stop>NoAdapt 0 

    L-N_Model>Review 0 N-M_Model>Assoc 3   xL-xM_NoAsk>PoorModel 2 

      N-M_Model>Adapt 1   xL-xM_Software>NoFlex 0 

          xL-xM_Software>NoAssoc 0 

 
GA Lesson 9  

RQ17 Code Time Exr Pct Scr Event Notes 

1(i) M-N_Anticipate>Interact 04:57    

I introduced GA Task 8: Find the Journey (Numbers). I started out with a journey 
with two operations. I reminded students what to do. I started out with the first 
expression. I asked the students to reflect on the order of operations as they see it 
in the expression before attempting the journey. I asked the students what they are 
going to do to the first expression: 32−4

2
. 

1(i) N-L_Interact>Experience 05:40    
Dwayne said he’ll do minus four, division and then times. I said division by two. 
Then asked where is the times? Dwayne said he made a mistake. So we continued. 
Joseph came out and started out the journey. He got it correct. 

1(i) L-N_Reflect>Review 06:38 Y   I was satisfied that Joseph remembered the task well, so I asked out Dan. In the 
meantime I remembered that someone made a comment when Joseph was 

                                            
17 Key: RQ: Research Question; Exr, Pct, Scr: Transcript exerpt, Video still frame picture, Computer screenshot (respectively) could be included in write-up. 
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RQ17 Code Time Exr Pct Scr Event Notes 
working18. It turned out to be Dwayne. He asked whether division was an upward 
movement or a downward movement. 

1(i) N-M_Review>Adapt 
N-L_Interact>Reflect 06:44 Y   

I adapted my present aim (to help the children go through the proper order of 
operations) to help Dwayne remember something that we had been doing for some 
time now. I asked the others. Joseph said, upwards19. I suggested to Dwayne to 
look at the row numbers (factors) what they do, the others do. I discussed this a bit 
with Dwayne who seemed a bit confused. I asked the others again, what 3 does to 
become 6. Some students said x 2. I confirmed and amplified. 

1(i) N-L_Interact>Experience 07:16    Dan started out his challenge. 42
6

+ 2. He got it correct. I said well done. 

1(i) N-L_Interact>Reflect 07:30    I asked what does Dan’s upward movement mean. Joseph said division by six. I 
said well done (but wait for permission to speak first).  

1(i) L-N_Reflect>Review 07:34    Satisfied with both Dan’s performance and Joseph’s statement I applauded Dan 
and asked another student out.  

1(i) N-L_Interact>Experience 
N-L_Interact>Reflect 08:02    

It was Jordan’s turn. Jordan spent some seconds looking at the IWB. Omar told him 
to start with 48. I asked Jordan to tell me where he was going to start from and 
directed his attention to the target expression20. He said from 2. I asked, from 2?! 
Then I guessed he was saying from division by two and I said so (remember Jordan 
finds it difficult to speak out). I showed him that the first number to start from was 
48 and he had to press that cell. I had to explain this further to him. Joseph said 6 
division by 2 (he was right because 48 was in R6C2 and what 6 does it does – so 
Jordan had to press on R3C2 since 6/3=2). Jordan said 3. I reminded him of the 
“mother-and-children” metaphor. Jordan got the journey correct. Interestingly, in the 
last step, he did not go immediately to the designated cell but he counted in 3’s until 
he got there. 

                                            
18 I’m trying to keep up with individual needs of students. My review does not always rest on what I perceive about one student. If I feel that I can get a 
more holistic picture of the class I act on it. In this case I ask about an individual comment of another student. 
19 What is the difference to Dwayne between Joseph saying “upwards” and I confirm, and me simply saying “upwards”. 
20 Orientation of students’ thinking processes (von Glasersfeld, 1995) 
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RQ17 Code Time Exr Pct Scr Event Notes 

1(i) 
L-N_Reflect>Model 
N-M_Model>Assoc 
M-N_Assoc>Interact 

09:48    
I nodded and seemed to build a model of Jordan’s reasoning that he was counting in 3’s to 
get +9. I associated this with the relationship between rightwards movements of journeys 
and the addition operation. I considered this worth discussing. 

1(i) N-L_Interact>Reflect 09:50    
I asked the other students what does it mean that Jordan did +3, +6, +9? Omar said 
that the +9 was divided into threes. Joseph added that it was because we were in 
R3, and that if we were in R4 we would do plus 4 or minus 4. 

1(i) 
L-N_Reflect>Model 
N-M_Model>Assoc 
M-N_Assoc>Interact 

10:35    
I got the idea that the students were thinking along my lines. I associated Joseph’s 
comment with the diverse movements one has to do when doing plus and minus 
and then times and division. So I decided to remind the students of this. 

1(i) N-L_Interact>Reflect 10:37 Y   I asked the students to give me the different operations for different operations. I 
made the gestures for them and they told me the correct operations. 

1(i) L-N_Reflect>Review 11:07    The students’ correct responses told me that we were on the same lines. I called 
out Omar. 

1(i) N-L_Interact>Experience 
N-L_Interact>Reflect  11:33 Y   

Omar’s expression was 36+6
3

 . He started off by clicking (1) on 36. I asked him why. 
He said it was because the first number was 36 and he wanted to convert it to the 
target expression. He said, 36 plus 6 division 3. I said, you said it correctly but why 
isn’t it 36 division by 3 and then plus 6? He said because you have plus six here 
(points) and the division is underneath them. I took the discussion to the whiteboard. 
I asked him to write down how it would appear if it were 36 division by 3 and then 
plus 6. He wrote 36/3

+6
. Joseph said it’s wrong. I asked tell us what’s wrong about it. 

In the meantime Omar said I did an extra line and he rubbed off the division line. 
But the +6 remained underneath the 36/3. So I asked him whether if it was 36 
divided by 3 first and then +6 the +6 needed to be underneath. I asked him why 
didn’t he put it on the right. He said because I said so. I repeated what I said. He 
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RQ17 Code Time Exr Pct Scr Event Notes 
said, I think it’s wrong.21 Then I said it was right but usually GA writes +6 on the 
right. I said there’s something else that’s a bit so and so. Omar pointed at the slash 
of 36/3. Then with some guidance he arranged it to 𝟑𝟑𝟑𝟑

𝟑𝟑
+ 𝟑𝟑. I continued to ask, what 

was it then that made you notice that it was 36+6 and then divided by 3. He 
answered satisfactorily but he did not explain himself well. Joseph wanted to explain 
it and I let him. He said that the large line is like you have a brackets. I wrote this 
on the board. Then I said that it one could find old textbooks writing it like this: 
(36+6)/3. Omar suggested, 3(36+6). I said what would that mean. Joseph and 
Jordan said times. (Omar may have been thinking about the division as it is written 
in the primary but I did not elaborate).  

1(i) N-L_Interact>Experience 
N-L_Interact>Reflect  17:18    

I asked Omar to continue with the challenge. He went from R6 to R2 (division by 3). 
Joseph said it is wrong. I said give him a chance. I asked him what he did. He said 
times. I asked what does an upward movement mean. Someone said division. I 
asked them not to say the answer. I continued to discuss this with Omar. There was 
an issue about what is done from R6 to R2. He said division by 4. He ended up 
doing it correctly but he needed some guidance. I discussed each step with him. 

1(i) L-N_Reflect>Model 21:46    
Omar seemed a bit shaky on the issue of what was to happen when we divide six 
by three. At this stage, where students were taking turns on the board I may have 
thought that he would gain further experience by watching others and then watching 
his own work on the computer. 

1(i) 
L-N_Reflect>Review  
N-M_Review>Adapt 

21:48    
Tony was next. Before he started he asked whether it was true that computers use 
slash and not the division symbol. I said only in some software because GA didn’t. 
Dan mentioned that sometimes computers use a star. I said that only in some 

                                            
21 Students, sometimes equate probing questions to them getting wrong answers: If the teacher is asking too many questions about my answer then 
something must be wrong with it. Actually Omar’s notation was both correct and standard. But since GA writes it horizontally I felt I had to point this out. 
Once again I find myself having to conform with what I knew the software would show. But why? Because students might get confused? Because I might 
have to engage in such discussions which, sort of, disrupt the “smooth flow” of the lesson. 
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RQ17 Code Time Exr Pct Scr Event Notes 
software. Unfortunately I had to reprimand some students (Omar and Joseph) for 
misbehaving. 

1(i) N-L_Interact>Reflect 22:34    
Tony did his challenge correctly. I asked him about what he did and why. He 
answered satisfactorily. He even referred to the row number (factor) to show me 
that they guided him as to what to do. 

1(i) 
L-N_Reflect>Model 
N-M_Review>Assoc 

23:55    I was satisfied with Tony’s responses because they matched my own way of 
thinking. I asked the last student to come out, Dwayne. He got it correct quickly. 

1(i) 
L-N_Reflect>Model 
N-M_Review>Assoc 

24:05 Y   I asked Dwayne to explain his moves. He made an important statement about why 
he got to R6 from R3. I decided to amplify. 

1(i) M-N_Assoc>Interact 24:31 Y   I restated what Dwayne said with more emphasis. 
1(i) N-L_Interact>Reflect 24:57 Y   I asked him how he got his last step. His reply was again very satisfactory. 

1(i) 
L-N_Reflect>Model 
N-M_Review>Assoc 
M-N_Assoc>Interact 

25:21    
I was so satisfied with Dwayne’s responses, which again matched the way I would 
explain, that I decided to raise the bar of the task. I went to level 5 and warned them 
that it would be difficult. I said I don’t want the answer but the reasons why you 
would do certain moves. 

1(i) N-L_Interact>Experience 
N-L_Interact>Reflect  25:57 Y   

Joseph wanted to attempt the challenge. It was 2 �2 �4
4

+ 3 � − 4� + 12 . I gave 
him permission to come out and do it.  He clicked (1) on the first number, 4. Omar 
exclaimed, “Mamma Mia” – “an Italian version of Oh My”. I was asking Joseph what 
was next. He said division by 4. I emphasized that we should take it bit by bit. I 
asked Omar why he said it. He said it was because there was a lot to do. I said if 
you were to eat a plate of spaghetti you would do eat it bit by bit. So that’s what you 
should do here. I asked Joseph to continue. Omar wanted to know what the double 
2’s were doing there. I said you have to wait. He said you skipped them. I said I’m 
still here and pointed at the 4

4
. I helped Joseph to continue by telling him what we 

have done and asking him what to do next. Some students were saying division 
when the operation was times. Evidently some students had forgot that 2(...) meant 
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RQ17 Code Time Exr Pct Scr Event Notes 
(...) times 2. I said there is no other sign for division. Joseph said it correctly however 
– times two. He completed the task correctly and I praised him.  

1(ii) xL-xM_NoAsk>PoorModel 27:16    

I did not ask Omar why he was saying that I skipped the first double 2s. If I did I 
may have got a better model of the way he was thinking. The previous tasks were 
sequential – operations in the order of appearance. This wasn’t. It had to start from 
the core of the expression. I may have addressed Omar’s, and possibly someone 
else’s problem, better. 

1(i) L-N_Reflect>Model 28:58    
Although with some difficulty, I was confident that the students could attempt such 
difficult questions. So when some other students told me to try one I said you will 
all try one and asked Dan to come out next (I spent some time doing his tie  
because he would have continued to play with it). 

1(i) 
N-L_Interact>Experience 
N-L_Interact>Reflect 

29:50    

Dan’s target task was 
6�25−5

5 +2�−6

3
. As before, GA gave him the place of the first 

number, 25 on which he clicked (1). I asked him which was first. He said division. 
He was referring to the large division which was actually the last operation to be 
done.22 I asked the others. What do you think, division first. Dwayne said no it’s 
times. Dan pointed to the fact that all the numerator needed to be divided. I said 
first you need to work that numerator and then go about making that division. I 
emphasized that we need to work from the inside. I was making circling motions 
around the first part of the expression that needed to be worked out (CAPS). I said 
you need to start with 25 and move out of it. Dan suggested division by 5. I asked 
who thought differently. Dwayne said it should be minus 5. I asked why. He said 
because we were in the 5-times table. He said because the division has a long line. 
Dan started the journey by moving to the left (-5). Dan continued but each time I 
had to show him what we did in the expression and ask him what was next (times 
6 then minus 6 then divided by 3)… He managed to get it correct.  

                                            
22 Interestingly, such an expression would be entered as Dan was saying if one were to compute it by a modern calculator, or write it in a Word document. 
Could calculators actually be a source of confusion? 
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1(i) L-N_Reflect>Model 32:04    I said we are making progress. It seemed I was satisfied that the students were 
getting there.  

1(i) 
L-N_Reflect>Model  
 

32:15    
Tony asked why we started the previous question in a cell which wasn’t in the last 
column. He had to be reminded that the last the columns do not always start with 
the one-times table. 

1(i) N-M_Model>Adapt 
M-N_Assoc>Interact 32:47 Y   

Jordan was next. His expression was 
2�30−6

3 −2�+8

2
. He was going to start off 

immediately to move the starting cell to the first part of the journey (from R6C3 to 
R6C2 meaning -6). I asked the students, If R6C3 was 30 then what were R6C2 and 
R6C1? The students agreed these were 24 and 18. I said Tony’s question was why 
isn’t R6C1 one times 6 i.e. 6. He asked the same thing. I said this is like a snapshot 
of the tables but the picture was taken in the middle of the tables. I wrote the table 
on the board and told them that the grid is like a snapshot from the column that was 
the 3-times table. 

1(i) N-L_Interact>Experience 
N-L_Interact>Reflect 34:27    

I asked Jordan to carry on. He started explaining his moves – first minus six (he 
made the move) then all over 3. I asked what does that “all over” mean. He said 
division. I said where. I asked him to look at the row number. I asked where would 
division by 3 end up? He said 2. So he moved it to the second row. He proceeded 
with the next three operations correctly. Dwayne said that there was a mistake. But 
when I asked him he realized that it was he (Dwayne) who was wrong and he said 
he thought the division was before the +8. Omar asked why Jordan went to the 
second row when he did division by 3. I asked him what would 6 result if it were 
divided by 3? He said 2. I said that’s why. I asked Jordan to carry on and he 
concluded it correctly. 

1(i) L-N_Reflect>Model  36:43    It seems I was satisfied that the students were gaining confidence in this task. I 
asked Omar to come out and tackle one himself. 

1(i) N-L_Interact>Experience 
N-L_Interact>Reflect 36:45    Omar’s expression was 5 �

16
2 +8

2
− 1 + 1�. He started out correctly. He moved 

from R4 to R2 (division by 2) then counted the cells to do +8. He moved three cells 
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not four (he was counting the initial cell too). I thought he was moving correctly . 
Joseph said there was a mistake. I said no there isn’t. But I asked him what mistake 
it was. He pointed out that he was supposed to do +8 not +6. I counted the cells 
and told him he was right!  I restarted the challenge for Omar and moved to the 
moment he had to do +8. I counted the cells for him +2+2+2+2. He made the correct 
move. I said well done to Joseph. Omar went to the target expression and made a 
circle with his hand on the expression he did. I asked what is next. He said, minus 
1? I said no. I asked the others to help him. I said look, we did these (I circled the 
16
2

+ 8 with my hand). I asked what is next, minus 1? He said no division by 2. I 
agreed and he went to do it. He proceeded correctly. I emphasised a bit the back-
and-forth movement of -1 followed by +1. He made the last move correctly. I asked 
about the last operation. They agreed that it was times five. I was going to say 
something about the expression but Omar had already cleared the board so I did 
not say what I was going to say.  

1(i) L-N_Reflect>Model  36:43    
Once again it seemed to me that the students were getting more competent with 
this task so I asked out Tony to come out and do his challenge: 2�2(18−3)+12

2
� −

6 

1(i) N-L_Interact>Reflect 39:50    

Dwayne said he had a difficulty knowing by how many cells to move down when he 
had a number like 18 in the middle of the grid like R3. I said this was a common 
difficulty. I asked the others to help him. I asked if a number is in R2 and we need 
to do it x2 where does it go. Joseph said it went to R4. I asked why. He said because 
2x2=4. I agreed and reminded Dwayne and the others that we can be guided by the 
row number – the mother-and-children metaphor. 

1(i) N-L_Interact>Experience 
N-L_Interact>Reflect 41:28    

Tony proceeded with the task. From the second step onwards, I asked the others 
to help him and join in the discussion. It was interesting that the students offered 
explanations as to why they were doing that operation. In the second to last 
operation, Dwayne said times 2. I said correct. He said, it’s because there’s the 
brackets. Tony was going to do the multiplication. He concluded the challenge 
successfully/  
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1(i) N-M_Review>Assoc 43:13    

I reviewed the situation and saw that as regards the GA task itself the students were 
doing well but I also saw that in the last two operations of Tony’s challenge we were 
doing an inverse operation (times 2, division by 2). I decided to take the opportunity 
to discuss, once again inverse operations and how these were translated to reverse 
movements on GA (CAPS). I associated this with what I was doing in the previous 
lesson (see Lesson 8, 26:02 -> 231786 + 9993 -9993)23. 

1(i) M-N_Anticipate>Interact 43:21 Y Y  

I drew a grid and inserted a considerably complicated/strange number 1272 in what 
I told students to be R6. I said I was going to move it to R3 and then I am going to 
move it again to R6. What is the answer going to be? I rephrased, asking what I 
was doing. Joseph said division by two. I said, if I were to multiply it again by two 
what would the answer be. Joseph and others (Dwayne and Tony) said 1272. I said, 
can someone tell me how would you realise that the answer is 1272 without first 
having to multiply by 2 and then divide by 2? Tony said that when you divide by 2 
it’s like you are halving it and then you are sort of doubling it. I asked whether there 
was another explanation. Omar said you will notice that you’re going to have the 
same number because you moved up and then you moved down again (CAPS) 

1(i) 
L-N_Reflect>Model  
N-M_Model>Assoc 
M-N_Assoc>Interact 

46:08 Y   

Omar’s answer was exactly what I intended the students to realise. I emphasised 
and elaborated on this answer. I said that’s the easiest explanation. If you go to a 
place and then went back you will get the same answer (CAPS). I asked, so what 
do we learn about division by 2 and times 2? Omar said they are the same. I 
corrected him – you stay where you were. I decide to associate vertical reverse 
movement to horizontal reverse movement (same row – plus and minus). I started 
out to interact with the children by drawing a separate row. 

1(ii) xL-xM_NoElab>NoAssoc 46:34 Y   
Dwayne, commenting on what we were saying two seconds earlier, said – it’s like 
the airport, you come and go. In retrospect it was an excellent metaphor but for 
some reason I did not elaborate on his response so I could not associate what he 
was saying with what I was proposing. The reason for not taking notice or 

                                            
23 My association of classroom occurrences with my mathematics occurs also with reference to things I had in mind in previous lessons. 
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elaborating on Dwayne’s response may have been because he talked without 
asking permission. 

1(i) M-N_Anticipate>Interact 
 46:33    I continued drawing R” and placed a large number inside -  6329. I drew two arrows 

moving right by three cells and then left again.  

1(i) N-L_Interact>Reflect 47:03    

I asked the students, what happened? I said this is row 1. Jordan said first you did 
plus 3 and then you did minus 3. I asked, what is the answer. Jordan said 6329. I 
said, do we have to work out the addition first, see the answer, then we do the 
subtraction. Or can we just write 6329 straightaway? Jordan said we can write 6329 
straightaway. I said, why? He said, it’s easy because the plus and the minus are 
the same. Most probably he meant that we were adding and subtracting the same 
amount but I interpreted this incorrectly…. 

1(ii) xL-xM_NoAsk>PoorModel 48:38 Y   I did not ask Jordan to explain what he meant and I formed a poor model of what 
he was thinking. 

1(i) N-L_Interact>Reflect 48:38 Y Y  

I thought he was referring to plus and minus being the same, so I said, a better word 
for that would be… and I was moving my hands to-and-fro, gesturing inverse 
process (CAPS). Omar said they were the same like division and times. I said they 
are the opposite of each other. Omar repeated what I said as a sign and seemed to 
agree (48:43). 

 

From then onwards the students started working on GA Task 8 on their own as pairs on their computers. 
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Appendix 6.1 Consent Letter to the Head of School 

Head Teacher’s Consent to Participate in a Research Project by Philip Borg 
 

Dear [Name of Head of School], 
 
As you know, I am currently reading for a PhD degree with Loughborough University.  
In my research, I will be conducting a case study of a group of students in which I will 
seek to find ways how computer software may help beginning secondary school 
students to bridge arithmetic with algebra.  
 
I am therefore asking your permission to allow the following Form 1 [set C] 
Mathematics students of the scholastic year 2014-15 to participate in my research: 

1. Name of prospective participant 1 
2. Name of prospective participant 2 
3. Name of prospective participant 3 
4. Name of prospective participant 4 
5. Name of prospective participant 5 
6. Name of prospective participant 6 

 
I will closely follow the six students listed above, where I will be monitoring their 
progress in making the necessary connections and transitions between arithmetic and 
algebra. In order to do this I will gather data by the methods described below. 
 
Methods and tools of gathering information 
I will gather data about the mathematical progress of the six case study students by 
using the following methods and tools. The following will be performed throughout 
Form 1 (Year 7): 
 

a) Video Recording of the Research Lessons (20 double lessons). There 
will be one video camera in the classroom to capture what is going on the 
interactive whiteboard and the activities of all the students and their 
interactions between themselves and with the teacher (myself); 

b) Computer Screen Recording Software (the second half of the same 
double lessons when video recording is used). There will be software 
installed on the computer of the case study students which records what 
they are doing on the computer and also what they are saying.  

c) Written Work (handouts to fill in). This will be work assigned at the end of 
each lesson and collected in the lesson that follows. 

d) Interviews (Five, approx. 30 – 45 min. each). These interviews will be 
conducted with the case study students during break time. I will ask the 
students questions about arithmetic and algebra. In these interviews I seek 
to gather data about the students’ knowledge and understanding which may 
not be possible to detect in their written work. Children’s performance in 
these interviews will not affect their assessment scores in any way. 
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All of the above will be spread over a period of twenty weeks (which is approximately 
one scholastic year excluding holidays and school activities). 
 
 
Benefits and Risks 
If children participate in this project they will have no direct benefits but they will help 
me understand their mathematical progress in a better and deeper way than the normal 
lesson situation. In addition they will be helping me as their mathematics teacher, my 
mathematics teacher colleagues, and also other researchers to understand how we 
can help students to learn mathematics through the use of computer software (apart 
from traditional methods).  
 
I believe there is very little risk to the children in participating in this project but I will be 
taking measures to prevent possible harm to them, no matter how small or insignificant, 
namely: 

• If a child becomes uncomfortable or stressed by answering any of the test 
questions, he can skip the question, take a break, stop the test, or withdraw 
from the project altogether.  

• I will make sure that the data gathering process will not impede the learning of 
any child.  

• I will take all the necessary precautions to prevent any loss of data which may 
compromise the confidentiality of the data. 

 
Confidentiality and Privacy 
Any written work from this research will never use the real name of a student, nor the 
name of the school. If any still images from video are used in published written work 
from this research, the faces of the students will be obscured. It is possible that video 
or audio clips may be used as part of a presentation at a professional conference or a 
teacher training session but no video or audio clips will be put up on a webpage or on 
any social media. 
 
During this research project, I will keep all recorded data in a secure location. Only my 
supervisors at Loughborough University and I will have access to the data. Upon 
completion of the research, data will be preserved and accessible for a period of ten 
years. 
 
Voluntary Participation 
Participation in this research project is voluntary and subject to the main guardians’ 
consent and the willingness of the child to participate. I am presenting you with a copy 
of the consent letter and form I will be giving to the main guardians, subject to your 
own consent. Children and their guardians can choose freely to participate or not to 
participate.  
 
In addition, guardians can withdraw their permission and/or the pupil can stop 
participating without any consequence the child’s education. The deadline for 
guardian’s permission withdrawal or for children to stop participating is two months. If 
a pupil stops participating I will only use the data gathered until that time and further 



 Appendices 6 

413 

data about him will not be gathered. Furthermore, he will be seated in a way so as not 
to be included in the camera angle during classroom video recordings.  
  
I recognise that I am the researcher in this project and, at the same time, these 
children’s teacher. Thus, I will ensure that children’s participation or non-participation 
in my research project does not impact their learning, their grades, or our pupil-teacher 
relationship. I will also ensure that your approval or refusal to allow me to conduct this 
research in our school will not affect our collegiality.  
 
Questions 
If you have any questions about this research project, please contact me, Philip Borg, 
personally, via phone: […] or email: […]. You can also contact my supervisors at 
Loughborough University: 

• Dr Dave Hewitt,  via email […] or 
• Dr Ian Jones, via email [...]. 

 
I thank you heartily in advance for your cooperation. 
 

Please keep the above portion of this consent form for your records. 
If you consent these children to participate in this project and to allow this project to take 

place in our school, please sign the following signature portion of this consent form. 

 
 

 
Head of School’s Signature for Consent 
 
I give permission for all Form 1 [Set C] Mathematics students of the scholastic year 
2014-15 to participate in the research project as detailed above. I am aware that this 
project will take place in our school and that data will be gathered from mathematics 
lessons and from interviews in break time as explained in the above letter. I understand 
that for a child to participate in this project both he and his main guardians must agree 
that he participates. I also understand that students, guardians, or I can change our 
minds about the participation of a pupil at any time, by notifying the researcher of our 
decision to end participation of that pupil in this project. 
 
Name and Surname of Head of School: 
 
____________________________________________ 
 
 
Signature of Head of School: 
 
____________________________________________ 
 
 
Date:  
____________________________ 

cut here 
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Appendix 6.2 Consent Letter to the Prospective Participants 

Letter for Students’ Permission to Participate in a Research Project 
 
Dear students, 
 
At present I am studying for a PhD in Education with Loughborough University. 
Throughout this year I will be gathering data for a research I am doing on the use of 
computer software for the learning of algebra. I am asking your permission to gather 
this data during some of our lessons. This will involve a video of twenty double lessons, 
recording of the computer activities, some homework given at the end of every double 
lesson, and a five interviews which we be spread over this scholastic year and which 
we will do during break time. 
 
I want to include all of you in my research but you do not have to agree to take part in 
the research. If you don’t agree I will make sure you don’t appear in the videos and 
that the results of the tests will not be used for my research. Rest assured that I will 
not be insulted or hold it against you if you do not wish to take part. Our relationship as 
a teacher and pupil will remain intact. Furthermore, your education would not be 
affected in any way whether you agree to participate or not.  
 
If you agree to take part in the research you will have no direct benefit or credit but you 
will help me to study new ways how mathematics can be taught. If you participate in 
the study no one except I and my research supervisors (not the Head or Assistant 
Head) will have access to the data you provide. In my research I will not write down 
your name or the school but I will use a fake name to identify your data. Also, during 
the first two months you can choose to stop participating in the research. 
 
I will be sending a more detailed letter to your guardians. I ask you to please discuss 
this with your guardians and then, if you agree to join in, please sign the letter I am 
sending to your guardians. 
 
I remain, 
 
Yours sincerely, 
 
Philip Borg 
(Mathematics Teacher) 
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Appendix 6.3 Consent Letter to the Participants’ Guardians 

 
Main Guardian's Consent for Child to Participate in a Research Project 

 
Dear [Name of Guardian], 
 
I am Philip Borg, your child's mathematics teacher at [Name of School]. I am currently 
reading for a PhD degree with Loughborough University.  In my research, I will be 
conducting a case study in which I will be looking into ways how computer software 
may help beginning secondary school students to bridge arithmetic with algebra.  
 
I am asking your permission for your child to participate as one of the students in the 
case study. I will also ask your child if he agrees to participate in this project. 
 
Together with the other students in the case study, I will closely follow your child 
throughout Form 1 where I will be monitoring his progress in making the necessary 
connections and transitions between arithmetic and algebra. In order to do this I will 
gather data by the methods described below. 
 
Methods and tools of gathering information 
 
I will gather data about the mathematical progress of the case study students by using 
the following methods and tools. The following will be performed throughout Form 1 
(Year 7): 
 

a) Video Recording of the Research Lessons (20 double lessons). There 
will be one video camera in the classroom to capture what is going on the 
interactive whiteboard and the activities of all the students and their 
interactions between themselves and with the teacher (myself); 

b) Computer Screen Recording Software (the second half of the same 
double lessons when video recording is used). There will be software 
installed on the computer of the case study students which records what 
they are doing on the computer and also what they are saying.  

c) Written Work (handouts to fill in). This will be work assigned at the end of 
each lesson and collected in the lesson that follows. 

d) Interviews (Five, approx. 30 – 45 min. each). These interviews will be 
conducted with the case study students during break time. I will ask the 
students questions about arithmetic and algebra. In these interviews I seek 
to gather data about the students’ knowledge and understanding which may 
not be possible to detect in their written work. Children’s performance in 
these interviews will not affect their assessment scores in any way. 

 
All of the above will be spread over a period of twenty weeks (which is approximately 
one scholastic year excluding holidays and school activities). 
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Benefits and Risks 
 
If children participate in this project they will have no direct benefits but they will help 
me understand their mathematical progress in a better and deeper way than the normal 
lesson situation. In addition they will be helping me as their mathematics teacher, my 
mathematics teacher colleagues, and also other researchers to understand how we 
can help students to learn mathematics through the use of computer software (apart 
from traditional methods).  
 
I believe there is very little risk to the children in participating in this project but I will be 
taking measures to prevent possible harm to them, no matter how small or insignificant, 
namely: 

• If a child becomes uncomfortable or stressed by answering any of the test 
questions, he can skip the question, take a break, stop the test, or withdraw 
from the project altogether.  

• I will make sure that the data gathering process will not impede the learning of 
any child.  

• I will take all the necessary precautions to prevent any loss of data which may 
compromise the confidentiality of the data. 

 
Confidentiality and Privacy 
 
Any written work from this research will never use the real name of a student, nor the 
name of the school. If any still images from video are used in published written work 
from this research, the faces of the students will be obscured. It is possible that video 
or audio clips may be used as part of a presentation at a professional conference or a 
teacher training session but no video or audio clips will be put up on a webpage or on 
any social media. 
 
During this research project, I will keep all recorded data in a secure location. Only my 
supervisors at Loughborough University and I will have access to the data. Upon 
completion of the research, data will be preserved and accessible for a period of ten 
years. 
 
Voluntary Participation 
 
Participation in this research project is voluntary. Your child (and you) can choose 
freely to participate or not to participate. In addition, during the first two months of the 
research you can withdraw your permission and/or your child can stop participating 
without any consequence to his education. If your child stops participating I will only 
use the data gathered until that time and further data about him will not be gathered. 
Furthermore, he will be seated in a way so as not to be included in the camera angle 
during classroom video recordings. 
 
I recognise that I am the researcher in this project and, at the same time, your child's 
teacher. Thus, I will ensure that your child's participation or non-participation in my 
research project does not impact his learning, his grades, or our pupil-teacher 
relationship.  
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Questions 
 
If you have any questions about this research project, please contact me, Philip Borg, 
personally, via phone: […] or email: […]. You can also contact my supervisors at 
Loughborough University: 

• Dr Dave Hewitt,  via email […] or 
• Dr Ian Jones, via email [...]. 

 
I thank you heartily in advance for your cooperation. 
 

Please keep the above portion of this consent form for your records. 
If you consent for your child to participate in this project, please sign the following signature portion of 

this consent form and send it to me with your child. 

 

Signature for Consent 
I give permission for my child to participate in the research project as detailed above. 
I understand that, in order to participate in this project, my child must also agree to 
participate. I understand that my child or I can change our minds about participation, 
at any time, by notifying the researcher of our decision to end participation in this 
project. 
 
 
Name and Surname of Child: ________________________________________ 

 

Signature of Child:  ________________________________________________ 

 

Name and Surname of Main Guardian: ________________________________ 

 

Main Guardian's Signature:  _________________________________________ 

 

Date: ____________________________ 

 

cut here 
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