Using the Computer as a Tool for Constructivist Teaching:
A Case Study of Grade 7 Students Developing
Representations and Interpretations of Mathematical
Notation when Using the Software Grid Algebra

by
Philip Borg

A thesis submitted for the degree of

Doctor of Philosophy

Mathematics Education Centre

School of Science

Loughborough University

November, 2017

© Philip Borg



DECLARATION OF AUTHORSHIP

I, the undersigned author of this work, hereby declare that this thesis is authentic
and entirely my own effort. | also certify that this work is original and has not been
previously submitted for any other award. This thesis was supervised by Dr Dave
Hewitt and Dr lan Jones, faculty members of the Mathematics Education Centre,

School of Science, at Loughborough University.

Philip Borg B.Ed.(Hons.), M.Ed.

November, 2017



ABSTRACT

The aim of this research was to investigate how | engaged in constructivist teaching
(CT) when helping a group of low-performing Grade 7 students to develop new
meanings of notation as they started to learn formal algebra. Data was collected over
a period of one scholastic year, in which | explored the teacher-student dynamics
during my mathematics lessons, where students learnt new representations and
interpretations of notation with the help of the computer software Grid Algebra.
Analysing video recordings of my lessons, | observed myself continuously changing
my teaching purpose as | negotiated between the mathematics | intended to teach and
the mathematics being constructed by my students. These shifts of focus and purpose
were used to develop a conceptual framework called Mathematics-Negotiation-
Learner (M-N-L). Besides serving as a CT model, the M-N-L framework was found
useful to determine the extent to which | managed to engage in CT during the lessons
and also to identify moments where | lost my sensitivity to students’ constructions of
knowledge. The effectiveness of my CT was investigated by focusing on students’
learning, for which reason | developed the analytical framework called CAPS (Concept-
Action-Picture-Symbol). The CAPS framework helped me to analyse how students
developed notions about properties of operational notation, the structure and order of
operations in numerical and algebraic expressions, and the relational property of the
equals sign. Grid Algebra was found to be a useful tool in helping students to enrich
their repertoire of representations and to develop new interpretations of notation
through what | defined as informal- and formal-algebraic activities. All students
managed to transfer these representations and interpretations of notation to pen-and-
paper problems, where they successfully worked out traditionally set substitution-and-

evaluation tasks.
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Chapter 1 ‘ Introduction

1.0 Overview

In this chapter, | present the background which led to general research aims and briefly
overview the content of the other chapters. Table 1.0.1 includes the section titles of

this chapter.

Table 1.0.1 Chapter 1 section titles

Section Title Page
1.1  Background and Orientation 2
1.2 Overview of the Thesis Chapters 6
1.3 Writing Style 9
1.1 Background and Orientation

In my first few days as a mathematics teacher in a Maltese secondary school, | became
aware that students’ minds operated in unique ways and their interpretations of
whatever mathematics | presented in the classroom were as different as their facial
features. Soon enough, | learnt that the only body of knowledge that made sense to
the students was the kind that they could develop themselves, which fitted within the
context of their individual experiences, and which was viable enough to explain their
experiential realities. This was one of the reasons why | came to embrace radical
constructivism (RC) as a general orientation towards reality, knowledge, and learning.

1.1.1 The Challenge of Constructivist Teaching

One of the lessons | learnt in twenty years of teaching was that bringing RC notions
into school teaching practice was no mean feat. There were frequent moments when |
found myself at odds with my RC beliefs when | realised | was paying closer attention
to the mathematics that educational authorities handed me down as a body of a priori
knowledge and expected me to teach, rather than the educational needs of my
students and the knowledge they were constructing. My sensitivity to RC made me
compensate for such moments by shifting my attention from my mathematics to the
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students, by asking them questions about what they were thinking and how they were
interpreting my mathematical representations.

As my teaching approach started to settle into a regular style, this toing and froing
between my mathematics and the students became the norm. Being mindful of the
mathematics | intended to teach whilst maintaining a sensitivity to students’ conceptual
constructions was my understanding of what some researchers (e.g. Steffe, 1991)
referred to as constructivist teaching (CT). My interest to pursue research on CT,
thus, originated from my own experience as a mathematics teacher and my beliefs
in RC.

1.1.2 Computers as Tools that Assist Constructivist Teaching

This reflective, pedagogical journey happened during interesting times in Malta’s
education. Towards the end of the millennium, the Maltese Government took measures
to promote the use of computers for teaching and learning. Secondary school
mathematics curricula even required teachers to make use of computer software in
their lessons (SEC Mathematics Syllabus, 2002). | welcomed the prospect of doing
mathematics with computers and so did my students. Computer use encouraged
students to participate actively in outcomes-based activities, something which is widely
reported in the literature (e.g., Ramsay, 2001; Mathew, 2004; Fritz, 2005). Like
teachers in Richardson’s (1999) study, | frequently took on the role of a learner in the
classroom because most students were much more computer-oriented than | was and
were always willing to show me how to do things better and quicker. | learnt a great
deal from my students, both inside and outside the classroom. For instance, | mastered
some of the more advanced applications of MS Excel thanks to a Grade 10 student of

mine who sacrificed a number of breaks for the sake of my learning.

| saw the computer as a promising tool to pass the teaching baton to my students. On
a regular basis, | used to organise revision lessons conducted entirely by students with
the help of computers. These student expositions, or presentations as we used to call
them, had much in common with what Pask and Scott (1972) appropriately called the
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teach-back method. Consisting basically of a group of students teaching me back what
they had learnt about a topic, these student expositions had a number of benefits. They
encouraged the students in charge of the presentation to consolidate their knowledge
of that topic, served as a revision to the other students, and were an excellent source

of feedback from which | could draw models of students’ interpretations of my lessons.

Most mathematics teachers | knew, however, did not share my enthusiasm about the
use of computers for teaching and learning and this was what motivated me to research
teachers’ attitudes towards computer applications (Borg, 2011). In the meantime, |
continued to make regular use of computer software in my lessons because | saw it as
indispensable tool for teachers in the 215t century. Consistent with research reports
about teachers’ use of computers for teaching (e.g., Dugdale, 2001; Kirshner &
Wopereis, 2003; Hermans, Tondeur, van Braak, & Valcke, 2008), | saw the computer
as a medium which enabled teacher-to-student power shifts, fostered students’ active
participation and knowledge construction, encouraged student-centred lessons, and,
consequently, was in line with my RC philosophy and my understanding of CT. In
particular, it facilitated my toing and froing between mathematics and learners
mentioned earlier. It was therefore a natural choice for me to pursue the current

research about the use of computer software to assist CT.

1.1.3 Developing a Broad Research Question

At the time when | was thinking about starting this research, | was teaching five groups
of students (Grades 7-11, one class per grade) in a boys’ secondary school. Two of
these were low-performing groups at Grades 7 and 8. The school’s policy was to have
a very small student-teacher ratio in such classes (average of 8 students and a
maximum of 10). | considered that research about the use of computer software to
support CT would be advantageous if conducted with one of these classes because
the small number of students would mean that | could pursue a qualitative research
with the possibility of investigating the conceptual developments of each student.
Furthermore, Grade 7 offered the opportunity to investigate how my CT facilitated the

conceptual developments of students whom | had not taught before.
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Algebra was the branch in the Grade 7 curriculum that interested me the most, not only
because | had researched students’ understandings of algebra before (Borg, 1997) but
also because | considered algebra, in the broad sense of the word, to be key in
students’ awareness of mathematical structures (Gattegno, 1988). As | discuss further
on, students’ representations and interpretations of notation were crucial in their initial
encounters with formal algebra. This was a determining factor when narrowing the
focus on the teaching and learning topic. Looking into computer software with the
potential to help students to learn about notation, it seemed that Grid Algebra® (GA)
had many favourable characteristics. Consequently, | chose GA as the main medium
of the lessons | intended to investigate.

Along with the experiences discussed earlier, these research interests merged into the

following broad research question:

e How do | engage in CT by making use of GA to help Grade 7 students develop
concepts about notation?

This question required a review of literature related to:
(i)  constructivism and notions of CT, and

(i)  the teaching and learning of algebra.

| discuss this review in Chapters 2 and 3, where | present more specific research
questions based on these two facets of the study. As | discuss in Chapter 4, | decided
that the best way to address these questions was to pursue a case study of myself as
a teacher attempting to engage in CT, and the students | helped to begin learning
formal algebra by developing meanings of notation. Lessons about the methods
employed in this research were mostly learnt during a pilot study which | carried out in
the year prior to that in which data for the main study were gathered. This is discussed
in Chapter 5. Data analysis corresponds to the two aspects of the study mentioned

1 Developed by Dave Hewitt and distributed by the Association of Teachers of Mathematics.
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above, i.e. CT and the learning it facilitated. These were discussed respectively in
Chapters 6 and 7. A more detailed overview of the other chapters of this thesis is

included below.

1.2 Overview of the Thesis Chapters

In this section | give an overview of the other chapters of this thesis. The chapter titles

are included in Table 1.2.1.

Chapter Title Page

2 Literature Review Part 1: Constructivist Teaching 11

3 Literature Review Part 2: The Learning of Algebra 53

4 Methodology and Method 111
5  Pilot Study 163
6  Analysis and Discussion of Constructivist Teaching 181
7 Analysis and Discussion of Students’ Representations and Interpretations 236
8  Conclusion 316

Chapter 2 includes a review of mostly conceptual literature related to CT. | start by
discussing the contrasting characteristics of constructivism and objectivism. Then, |
focus on RC from which | draw my standpoint about the nature of mathematics
knowledge and the process of learning. Against this backdrop, | discuss mathematical
representations and interpretations, emphasising particularly the works of Kaput
(1991) and Bruner (1966). Then | focus on experiential learning, where | discuss mostly
the theories of Dewey (1938) and Kolb (1984). Having discussed mathematics and
learning, | discuss the teacher’s role where | review Jaworski’'s (1994) teaching triad
from which | elicit a key concept that permeates my research: sensitivity to students,
particularly their constructions of knowledge. This creates a context for a discussion
about CT through theories of Freire (2000), Dewey (1902), Glasersfeld (1991b), Steffe
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(1991), Simon (1995), and others. This review leads to the first set of research

questions, those regarding CT.

The second part of the literature review resumes in Chapter 3, where | turn my focus
on algebra and its learning. | start by discussing the nature and definition of “algebra”
where | bring in algebra theorists including Mason (1996), Kaput (2008), Radford
(2014), Kieran (1996), and Gattegno (1988). This creates a context for my definition of
algebra where 1 distinguish between what | call informal- and formal-algebraic
activities. | follow this by a review of mostly research-based literature about the learning
of algebra where | focus on students’ difficulties. Bringing evidence from the literature,
| show that notation is a make-or-break issue in students’ success in learning algebra
and thus emphasise the importance of students being helped to enrich and extend their
representations and interpretations of notation. | present the use of ICT as one possible
way forward, where | bring in literature reports about computer software that was found
effective in helping students learn about notation and algebra. These include
microworlds, Logo, spreadsheets, and grid-based environments including GA. This
leads to the second set of research questions, those regarding students’
representations and interpretations of notation with the help of GA.

After ending my literature review with the specific research questions, | set out, in
Chapter 4, to discuss the research methodology and method | adopted to investigate
those questions. | start by presenting a rationale for a qualitative methodology and
follow this by a discussion of the factors which made me choose case study as an
inquiry approach. Then | turn my focus on the student participants, where | describe
the school and educational context and provide a brief profile of each student. This is
followed by a detailed description of the GA software, where | give an overview of its
key features, especially those relevant to the research data. | also discuss the GA
lessons and other means of data generation. Then | describe my data-gathering
methods and rationalise my choice of tools and method of analysis. | consider the
issues about my dual role of a teacher researcher and also how | addressed concerns
about reliability and validity. | end this chapter by discussing ethical considerations

required for such a study conducted with young students.
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Chapter 5 is a short chapter in which | briefly review the pilot study | undertook in the
scholastic year preceding that of the main study. | discuss how this pilot was intended
to refine the research questions and get information about technical matters and data-
collecting methods. As | show, valuable lessons were also learnt about the participants
and their learning and about myself as a teacher researcher. The pilot was also useful
in helping me come to know what to expect of the main study and develop possible

hypotheses.

In Chapter 6, | turn my attention back to the main study where | report and discuss data
related to the first set of research questions, those about CT. | analyse the dynamics
of CT in the GA lessons, paying attention to the way my focus seemed to “oscillate”
between the students and the mathematical content | intended to teach. Identifying
patterns in the way | changed my teaching purpose leads to the development of the
Mathematics-Negotiation-Learner (M-N-L) framework which serves to define and
characterise my CT. This framework is built around constructivist theories such as
those of Dewey (1902) and Steffe (1991). | proceed to show that this framework could
also be used as an analytical tool to investigate the extent to which I managed to
engage in CT. Finally, | discuss how the M-N-L framework was instrumental in
identifying instances during the lessons where | seemed to lose my sensitivity to

students’ constructions of knowledge.

Data related to the second set of research questions are analysed and discussed in
Chapter 7. | start by drawing up a second analytical framework by amalgamating
Bruner's (1966) theory of mathematical representations and the signifier-signified
theory of Kaput (1991). | call this framework CAPS (Concept-Action-Picture-Symbol)
and | use it to analyse how students developed concepts about notation through action,
picture, and symbol representations. | proceed to use this framework to help me
analyse how students enriched their representations and extended their interpretations
of notation, namely, operational symbols, numerical and algebraic expressions,
unknowns and variables, and the equals sign. | show how the CAPS framework was
used to focus on an important aspect of CT — the communication of ideas from students
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to teacher. | present evidence to show that students transferred concepts learnt within
GA to pen-and-paper problems.

In the conclusion of Chapter 8, | recapitulate the aims and outcomes of this research.
| revisit and answer each research question bringing evidence from data analysed and
discussed in Chapters 6 and 7. After describing the limitations of the research, | set
out to discuss the significance of this study for the mathematics education community.

This is followed by recommendations for future research and actions.

In the following section, | include some notes about the writing style | adopted

throughout this research report.

1.3 Writing Style

Being both the researcher and the teacher involved in the case study, | had to be
careful which hat | was wearing when writing this thesis. In general, | took the stance
of a researcher, but there was not a single moment in the duration of this research
where | managed to take off the teacher hat completely. The first reason for this was
that | carried out this research while working as a full-time teacher, so | tended to think
of myself as a teacher throughout the study. This influenced the way | interpreted the
literature and also my decisions regarding methodology. The second reason was that
during the analysis, | was investigating data in which | was acting as a teacher and was
reminded of what was going on in my mind during the data generation process, when
my role was mainly that of a teacher. So, while | wrote this thesis as a researcher, | did
not exclude the possibility that the teacher component may be felt when one reads my

discussions.

Patton (2002, p. 65) argues that ‘writing in the first person, active voice communicates
the inquirer’'s self-aware role in the inquiry’. This is a prerequisite of researchers
conducting qualitative research since they need to assume a subjectivist stance. Thus,

| used the first person to refer to myself in this write-up. This contributes to my
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acknowledgement of researcher bias and of my possible influence on the data, being

also the teacher involved in the case study.

With regards to tense | followed this rule: For theoretical arguments and claims, | used
the present tense to imply the assumption that the quoted authors would still make
those statements today. For any results reported in the literature and in my research,

| used the past tense.

In my writing, | strived to employ gender-fair language (NCTE, 2002) by using gender-
neutral pronouns. The only times when this was not possible was when reporting data
about my students (all boys) and in the rare occasions where an important direct quote

included the male pronoun.

Since the participants were grouped in mathematics lessons according to their
performance in the Grade 6 examinations, | occasionally used the term “low-
performing” or its derivatives. | intentionally avoided using terms like “low ability”, or
even “low-attaining” because | believe that ability and attainment may not always be
reflected in the way students perform in examinations and tests. However, | have used
this term very sparingly because, as | report later on, the students taking part in this
study have shown that they do not even deserve the “low-performing” adjective. Their
performance throughout the year and in the examination was far more than expected

in their curriculum and comparable to what was expected of high-performing students.

10
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2.0 Overview

As Gergen (1995) asserts, beliefs about knowledge inform, justify, and sustain our
educational practices. This first part of the literature review includes discussions of
theories which form a backdrop for my own epistemological views of teaching and
learning and, consequently, my understanding of constructivist teaching (CT). Table

2.0.1 gives an overall view of the sections in this chapter.

Table 2.0.1 Chapter 2 section titles

Title Page
2.1 Radical Constructivism: A Paradigm for Knowing and Learning 14
2.2 Mathematical Representations and Interpretations 22
2.3 Experiential Learning: Dewey’s Theories and Kolb’s Four-Stage Model 27
2.4 Learners, Knowledge, and Teachers: The Didactic Triangle 34
2.5 Teaching with Constructivist Sensitivities 37
2.6 Research Questions about Constructivist Teaching 51

A literature map is presented in Figure 2.0.1 (overleaf). | start this review by contrasting
objectivist and constructivist epistemologies. Favouring the latter, | discuss the radical
constructivist (RC) perspective of knowing and learning from which | draw my views
about the nature of mathematics. | discuss mathematical representations and
interpretations as espoused by Kaput (1991) and Bruner (1966) and show how these
complement each other in the context of RC. | follow this by focusing on experiential
learning, eliciting lessons from the works of Dewey (1938) and Kolb (1984), both of
whom emphasise learning through action and reflection. In the context Brousseau’s
(1986) didactic triangle, | bring in the teacher’s role and review Jaworski's (1994)
teaching triad with an emphasis on teachers’ sensitivity to students, in particular to
students’ construction of knowledge. This sets the scene for a discussion of CT, with
reference to key theories such as Dewey (1902), Steffe (1991), and Simon (1995). This
part of the literature review leads to the first set of research questions, those related to CT.

12
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Figure 2.0.1  Literature topic map — Part 1

l Epistemology

l Constructivism l Objectivism

Radical
Constructivism

l Meaning of Mathematics

l Representations l Interpretations

l l Experiential
Bruner and Kaput Learning

Didactic
Triangle

Jaworski's Mathematics Mathematics
Teaching Triad Content Learner
I I I
Constructivist Nature of Learning of
Teacher Algebra Algebra
| I I
Constructivist Resumes in Chapter 3
Teaching

Dewey, Steffe, and Simon
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2.1 Radical Constructivism: A Paradigm for Knowing and

Learning

In this section, | discuss RC as a paradigm of knowing and learning. | set the context
by discussing constructivism in general, starting by contrasting objectivist and
constructivist epistemologies.

2.1.1 Differences between Objectivist and Constructivist

Epistemologies

Synthesising the works of Thorndike (1913) on objectivist learning psychology and
Glasersfeld’'s (1989) studies of constructivism, Reeves (1997) captured five aspects of

these epistemologies which set them apart. These contrasts are summarised in Table 2.1.1.

Table 2.1.1 Contrasts between the constructivist and objectivist epistemologies
Objectivist Epistemology Constructivist Epistemology
Nature of Knowledge exists separate from Knowledge does not exist outside the
knowledge and independently of knowing. bodies and minds of human beings.

Existence of
reality

Reality exists regardless of the
existence of sentient beings.

Although reality exists independently, what
we know of it is individually constructed.

Acquisition of

Humans acquire knowledge in an
objective manner through the

Humans construct knowledge subjectively
based on prior experience and

knowledge . : .
senses. metacognitive processing or reflection.
. : . . Learning consists of acquiring viable
Definition of Learning consists of acquiring . .
: assertions or strategies that meet
learning truth.

one's objectives.

Assessment of
learning

Learning can be measured
precisely with tests.

At best, learning can be estimated through
observations and dialogue.

(Adapted from Reeves, 1997)

14
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The table shows that while objectivism emphasises the existence of knowledge and
reality in their own right, constructivism never accepts any notion of knowledge or
reality without reference to the person who is coming to know or who is constructing a

picture of reality.

For objectivists, both the world and its meaning exist objectively, independent of the
human mind, and external to the knower (Jonassen, 1992; Lakoff, 1987). Jonassen
(1991) affirms that constructivists do not refute the existence of an external reality.
What they oppose is the objectivists’ notion that people may have access to an external
reality that exists independently of the senses. In fact, many constructivists, like
Glasersfeld (1984) and Bruner (1986), have identified the roots of constructivism in the
philosophy of Kant (1781) who postulates that an external, physical world (noumena)
exists but we do not have a direct access to it. Rather, what we know and learn about
it are the objects and occurrences we construe by way of our senses (phenomena). It
follows that we can never really understand the world around us without referring to
what our senses have processed in order to form our memories and experiences. This

is a central standpoint of RC (Glasersfeld, 1984) as | discuss later.

Objectivists’ and constructivists’ perceptions of reality and knowledge entail major
contrasts in their beliefs about learning. For objectivists, learners acquire knowledge
about what already exists (Brown, Collins, & Duguid, 1989; Duffy, 1992) and learning
may be gained objectively (Rand, 1966). In contrast, constructivists suggest that
humans construct (rather than acquire) knowledge subjectively by reflecting on their
perceptions and experiences. Glasersfeld (1984, p. 24) explains that coming to know
is ‘an ordering and organisation of a world constituted by our experience’. This
emphasis on experience and reflection echoes the educational philosophy of Dewey,

some of whose theories will be discussed in Section 2.3.

15
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Furthermore, objectivists believe that the act of learning consists of acquiring truth, by
grasping the meanings of words, i.e. the entities that words denote in an objective
reality (Rand, 1966). On the other hand, constructivists hold that learning takes place
when humans decide that an idea is viable and that their strategies serve them well in
meeting their objectives. Glasersfeld (1995a, p.114) argues that learning ‘comprises
action schemes, concepts, and thoughts, and it distinguishes the ones that are

considered advantageous from those that are not.’

With regards to assessment, objectivists believe that learning can be measured
accurately and objectively, principally by means of tests (Reeves, 1997). Their view of
assessment is goal-driven, where the evaluator specifies a set of clear objectives
which indicate the expected observable behaviour of the learner (Vrasidas, 2000). On
the other hand, constructivists believe that learning can only be presumed through
observations and dialogue (Glasersfeld, 1989) in a context that is relevant to the
learners (Brooks & Brooks, 1993). Constructivists are concerned with assessing the
knowledge construction process (Vrasidas, 2000), using a range of methods and
techniques (Burry-Stock, 1995; Zahorik, 1995) which include inquiry (Brooks & Brooks,
1993; Yager, 1991). They do not exclude the traditional test but this is not the only

assessment measure (Cunningham, 1992).

Thus, my standpoint as a constructivist teacher has a bearing on the way | look at the
nature knowledge and learning. Furthermore, the distinctive ways in which objectivists
and constructivists look at assessing knowledge and learning entail parallel differences
in the ways they look at gathering and analysing research data. These will be
discussed in Chapter 4, where | give a rationale for my research methodology. | will

now turn my attention to the constructivist paradigm with particular emphasis on RC.

16
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2.1.2 Radical Constructivism

Altghough there are several strands of constructivism (Neimeyer & Raskin, 2001), Fox

(2001) puts forward five claims on which constructivists seem to agree:

() Learning is an active process.
(i)  Knowledge is constructed, rather than innate or passively absorbed.
(i)  Knowledge is invented not discovered.
(iv)  Learning is essentially a process of making sense of the world.
(v) Effective learning requires meaningful, open-ended, challenging problems for

the learner to solve.

Claim (iii) requires further clarification. Glasersfeld (1984, p. 25) asserts that learning
is not the discovery of ‘an independent, pre-existing world outside the mind of the
knower’. However, this does not totally exclude the notion of “discovery”. Glasersfeld’s
(1984) own references to the process of learning by phrases like ‘get to know’ and
‘come to know’ (pp. 28, 36 respectively) may be associated with Bruner’s (1966, p. 90)
‘internal discovery’, by which he means learners’ discovery of connections between
concepts they had developed for themselves. Livio (2011) explains that the learning of
mathematics involves the abstraction of concepts from the world around us and the
discovery of connections among those concepts. Rather than the discovery of an
objective reality, this is more akin to making sense of mentally constructed notions by

linking them to others.

Although RC shares Fox’s (2001) claims with other branches of constructivism, it
distinguishes itself in two ways. The first distinction is that between trivial
constructivism and RC. Glasersfeld (1991c, p. 16) says that ‘those who merely speak
of the construction of knowledge, but do not explicitly give up the notion that our
conceptual constructions can or should in some way represent an independent,
“objective” reality, are still caught up in the traditional theory of knowledge’. Riegler
(2001) refers to this perspective as trivial constructivism and contrasts it with RC which
holds that reality is subjective since the only reality we can gain access to is that which

we see through our experiential worlds.

17
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The second distinction is that between social constructivism and RC. While the former
holds that knowledge is socially constructed, RC holds that all knowledge is personal
and idiosyncratic. However, RC and social constructivism embrace similar notions
when it comes to the construction of knowledge through peer collaboration. One of
these is Vygotsky's (1978) zone of proximal development (ZPD) which he describes
as ‘the distance between the actual development level as determined by independent
problem solving and the level of potential development as determined through problem
solving under adult guidance or in collaboration with more capable peers’ (p.86). ZPD
infers that learners benefit from the guidance of a teacher when constructing knowledge.

From a RC standpoint, Vygotsky’s (1978, p. 86) ‘more capable peers’ can be regarded
as other “teachers” who may help a learner to develop concepts for her/himself. For
example, students engaged in group work alternate in roles between being learners and
being teachers, i.e. between listening to, reflecting upon, and making sense of what their
group mates are saying (learners) and making their own contributions by guiding or
demonstrating (teachers). Hence, there does not seem to be any contradiction in
adopting the notion of ZPD within the context of RC, where social interaction assists the
individual construction of knowledge. ZPD is in line with the RC contention that:

[T]he “others” with whom social interaction takes place, are part of the environment,
no more but also no less than any of the relatively “permanent” objects the child
constructs within the range of its lived experience.

(Glasersfeld, 1995a, p. 12)

RC is built on two principles about knowledge and cognition which Glasersfeld (1990a)
claims to have surmised from Piaget, the first of which is shared by all branches of

constructivism.

la. Knowledge is not passively received either through the senses or by way of
communication;

b. Knowledge is actively built up by the cognizing subject.

2a. The function of cognition is adaptive, in the biological sense of the term, tending
towards fit or viability;

b. Cognition serves the subject’'s organization of the experiential world, not the
discovery of an objective ontological reality.
(Glasersfeld, 1990a, p. 22)
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Glasersfeld’s inclusion of the word “objective” when he mentions discovery seems to
support my earlier argument that RC does not exclude the possibility of discovery as
long as it is assumed to be a personal, invented conclusion — an invented reality
(Glasersfeld, 1984). Another key point is Glasersfeld’s likening of the development of
thinking with biological evolution. Glasersfeld (1984) argues that just as the
environment constrains living organisms and compels them to find ways in which they
can find a viable existence, so does the experiential world serve as a testing ground

for our concepts.

The relationship between biological and cognitive evolution (2a) is derived from the
theories of Piaget who applied the biological concept of adaptation to epistemology
(Glasersfeld, 1996). At the core of Piaget’'s teachings lies his theory of equilibration
(Piaget, 1952, 1957, 1967, 1971, 1975, 1978, 1985; Inhelder & Piaget, 1958). Piaget
proposed that knowledge in the mind is stored as groups of schemas — mental
structures which represent some aspect of the experiential world. When children
experience a new object (or situation or event) they try to deal with it by using an
existing mental schema (assimilation). When the object does not fit in that schema a
contradiction in children’s thought occurs and this creates what Piaget calls
disequilibrium, a kind of discomfort of thought which prompts them to transform or
reconstruct their schema to be able to accommodate that object (accommodation).
This enables assimilation and a stable equilibrium of the schema is regained. This is
the process of equilibration, which, according to Piaget, is what drives intellectual
growth.

Building on Piaget’s idea of equilibration, Glasersfeld (1984) emphasises the viability
aspect of mental schemas. He argues that only if our knowledge stands up to our
experiences and proves itself reliable enough to help us predict, bring about, or avoid
certain occurrences will it be considered as useful, relevant and viable. In this way, RC
is a pragmatic paradigm to understand the creation, retention, modification, and
disposal of knowledge. Our mental structures are constantly exposed to and tested
within our personal experiential worlds from which we derive them and they either hold

out or they do not.
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In the context of evolutionary biology, Maturana and Varela (1980, 1992) invented the
term autopoiesis — the notion that living organisms are, by definition, self-creating and
self-sustaining systems (Maturana & Varela, 1980, 1992). Autopoiesis played an
important part in the development of RC by giving an evolutionist slant to the notion of
knowledge viability. Maturana (1970) claims that living systems tend to maintain that
knowledge that has worked in the past can be expected to work again. Glasersfeld
(1984) argues that the affinity between the RC epistemology and the theory of evolution
is evident in the way humans respond to their environment. Just as living organisms
mutate in such a way as to eliminate variants which are unfeasible within environmental
constraints, humans continuously develop and modify ideas according to their
experiences. In this way, our notions and theories about the world are proven or

disproven on grounds of their viability and reliability.

Another similarity between biology and RC is the theory that living systems share
common perceptions of the world they live in. Maturana and Varela (1980) and
Glasersfeld (1991a) use the term consensual domain to describe areas of relative
conformity in the way beings deal with their environment. Maturana and Varela (1980)
describe the phenomenon where members of a species create shared ecological
niches, a consensual domain of interaction and communication with their surroundings.
Similarly, Glasersfeld (1991a) argues that although individual humans have different
experiential worlds, they are able to agree and communicate through the possibility of
building a consensus in certain areas of their subjective realities rather than through
an observation of an objective reality. However, the development of a consensual
domain does not mean that an absolute reality has been established. Glasersfeld
(1991a) puts it plainly:

If two people or even a whole society of people look through distorting lenses and
agree on what they see, this does not make what they see any more real.

(Glasersfeld, 1991a, p. xvi, original emphasis)

Hence, the consensual domain of humans is their accomplishment in reaching an area

of relative agreement of understanding their experiential rather than absolute reality.
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In Figure 2.1.2.1, | present a simplified illustration of how different persons may share
a common consensual domain by which they seek to understand a viable explanation

of particular aspects in their experiential world.

Figure 2.1.2.1 Consensual domains
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Although people (P1, P2, ...) cannot have direct or objective access to an external
reality, they can form common viable explanations for different aspects of it through
their experiences, i.e. their experiential realities (Glasersfeld, 1991a). These
frameworks of explanations are the consensual domains which are shared by two or
more persons — a community. The diagram oversimplifies the complexity of such
frameworks, however, because consensual domains may be subsets of or have

common elements with other consensual domains.

In a classroom community, the teacher and the learners form a consensual domain
about the topic of the lesson. For this to occur, the teacher needs to interpret and reflect
about the learners’ representations and the learners need to interpret and reflect about

the teacher’s and each others’ representations. In Section 2.2, | review literature about
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representations and interpretations of mathematics which, as Glasersfeld (1991a)

says, is one of the oldest consensual domains — the domain of numbers.

2.2 Mathematical Representations and Interpretations

In this section, | discuss Kaput's (1991) conceptual framework of treating the
interpretation and representation of mathematical notation as core elements of the
mathematical consensual domain. | will then discuss Bruner’s (1964, 1966) theory of
mathematical representations and show its relevance for the teaching and learning of

notation.

22.1 Kaput’s Signifier-Signified Theory of Notation Usage

Kaput (1991) argues that while a person has no straightforward knowledge of reality,
an observer of that person can still perceive and hypothesise on that person’s
interactions with experiential reality. He builds on his previous work (Kaput, 1985) and
asserts that mathematical notation contributes to users’ organisation of their thinking
processes about an experiential, rather than external, world. This is in line with the RC
claim that humans do not have access to the kind of reality which is detached from
their experiences. Kaput (1991) distinguishes between:

(i)  mental structures, which are the means by which an individual organises and

manages the flow of experience, and

(i)  notation systems, which are the cultural and linguistic artefacts that are

materially realised by a cultural or language community.

Kaput (1991) explains that individuals use notation systems to manage the creation
and development of their own mental structures. Albeit limited in amount, notation
systems are used throughout mathematics to express relationships whose variety is
infinite and whose potential for generality is enormous. This activity is very similar to
the way we use a finite number of words to create sentences and combination of

sentences of infinite variety.
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Material notation, things we interpret through reading and hearing and which we
produce through writing and speaking, include alpha-numeric, pictorial, diagrammatic,
and aural symbols. Such notation can either be consensual (such as language or
conventional mathematical notation) or else idiosyncratic (personal symbols or marks).
In both cases, a person interprets notation to create or elaborate mental structures and
represents concepts by producing further notation. The person moves back and forth
between the interpreted notation and the represented concept several times while

reading and writing notation.

The first reference to the two-way link between external representations and internal
interpretations was made by Saussure (1966)2 who came up with a dichotomous

model of the sign. He defined a sign as being composed of:

e the “signifier” - the external form which the sign takes, and

¢ the “signified” - the internal meaning or concept the sign represents.

Since he was working in the context of linguistics, Saussure’s (1966) “sign” was the
representation and interpretation of a verbal utterance, a sound-image, which was the

signifier of the concept behind the word or phrase (Figure 2.2.1.1).

Figure 2.2.1.1 Saussure’s signifier-signified model

Concept

Sound-Image

(Adapted from Saussure, 1966, p. 65)

2 Originally published in 1916.
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Vergnaud (1987) takes up the signifier-signified notion and uses it for the first time in
a mathematical context. He argues that a person observes and thinks about a referent
in her/his experiential world, takes it to the signified (mental) level where ‘invariants are
recognised, inferences drawn, actions generated, and predictions made’ (Vegnaud,
1987, p. 229), and externalises her/his thoughts with a signifier from a repertoire of
symbolic syntax. Kaput (1991) builds on Vergnaud’s (1987) use of “signifier” and
“signified” to refer to mathematical notation and mental conception respectively. Figure
2.2.1.2 summarises the cyclical process, suggested by Kaput (1991), between physical
operations observed through notation (signifier) and the mental operations associated
with or evoked by those physical operations (signified).

Figure 2.2.1.2 Signifier physical operations and signified mental operations

MENTAL OPERATIONS
(HYPOTHETICAL)
Deliberately /\ Project
read ;
(write, speak,
OR computer
Passively have input etc.)
evoked v
PHYSICAL OPERATIONS
(OBSERVABLE)

(Adapted from Kaput, 1991, p. 57)

It is through agreements about observable physical operations - the projected notation
- that people can form a consensual domain, the repository of knowledge that a
community, such as students and their teacher in a mathematics classroom, takes to
be true on a particular occasion. Although physical operations of a member of that
community are observable by other members in that community, the latter can only
hypothesise about the mental operations of that member. Kaput (1991) argues that we

constantly make inferences about other persons’ thought processes by observing the
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way they interact with external artefacts. He explains that we may observe the
interactions of a person with notation and use those observations to hypothesise about
that person’s thinking (hypothesised mental states) and about how that person’s
thinking may be affecting and affected by that same notation (hypothesised

interactions). This is demonstrated in Figure 2.2.1.3.

Figure 2.2.1.3 Our view of notation-users

observed World of material
interactions mathematical notations

(Adapted from Kaput, 1991, p. 54)
In this way, Kaput (1991) explains:

(i) the interplay between mathematical notation and the mathematical concepts it

evokes or is derived from, and

(i)  the possibility of other persons observing and making suppositions about the

observable interactions between a person and mathematical notation.

Besides notation (i.e. written symbols), there are other mathematical representations
which may be used to signify mental operations and which may thus be crucial in
establishing a mathematical consensual domain in a teaching-and-learning setting.
Such representations were studied by Bruner (1964, 1966), whose theory is discussed

next.
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2.2.2 Bruner’s Theory of Knowledge Representation

At the core of Bruner’s theory of instruction (Bruner, 1966) lies his theory of knowledge
construction which he develops from his earlier work (Bruner, 1964). Bruner (1966)
shows that knowledge can be represented in three ways which supplement spoken

language:

(i) ENACTIVE REPRESENTATION. A set of students’ actions aimed at
achieving a certain result (e.g. a child can learn the basic principles of a balance
beam either by climbing on a see-saw or by experimenting with a balance and
weights);

(i) ICONIC REPRESENTATION. A set of summary images or graphics which
describe a concept without fully defining it (e.g. the balance beam could be
illustrated on paper and its principles may be conveyed by studying the diagram
and contemplating the concepts it evokes);

(iii) SYMBOLIC REPRESENTATION. A set of symbolic or logical propositions
which are derived from a symbolic system governed by rules for the formation
and transformation of such propositions (e.g. the balance concept may be used
in physics to write down equations on moments or in mathematics to solve

equations by using the inverse-and-balancing method).

Judge (1984) says that these modes of representation co-exist and that, for Bruner, the
deepening of understanding comes by a spiral motion of transitions between one mode
and the other rather than by a neat rectilinear fashion. In an interview with Shore (1997),
Bruner rejects the idea that these representations are hierarchical stages and claims
they can be incorporated in one another. He explains that humans’ first interactions with
ideas are intuitive and approximate. Then, when they find that their intuitions are
incorrect, they feel the need to construct alternative ways of thinking about those ideas.

Thus, humans make transitions from one mode of representation to the other so that

they can correct their understanding of that idea. This resonates with Piaget’'s (1975)
equilibration theory, where learners constantly find they have to accommodate their
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schemas when they find that these are incompatible with new experiences. Bruner
states that when learners reflect about a concept these three modes are somehow ‘all
there and they gradually differentiate and get arrested’ (Shore 1997, p. 11).

Bruner's (1966) Enactive-lconic-Symbolic theory of mathematical representations
complements Kaput's (1991) Signifier-Signified theory about the link between external
representations (signifier) and conceptual interpretations (signified). While Kaput
(1991) seems to focus entirely on symbolic representations (notation), Bruner’'s (1966)
construct gives equal status to iconic and enactive representations each of which can
serve as signifiers which evoke or are projected by mental operations. In Chapter 7, |
show how | amalgamated these theories to form an analytical framework which was
useful in investigating how students’ mathematical representations helped me to

develop models of their conceptual interpretations during the lessons.

Bruner’s (1966) three modes of representation, especially the enactive, emphasise the
importance of learning by doing, a standpoint which may be linked to a pragmatist
philosophy. In fact, in his interview with Shore (1997), Bruner declares that he derived
his representations model from Peirce, who defines ‘what is tangible and conceivably
practical as the root of every real distinction of thought, no matter how subtle it may be’
(Peirce, 1878, p. 293). The importance of tangible, practical, and active experience in
the process of learning was avidly promoted by Dewey (1938). This and the theory of

experiential learning proposed by Kolb (1984) will be discussed in the next section.

2.3 Experiential Learning: Dewey’s Theories and Kolb’s
Four-Stage Model

In this section, | discuss teaching and learning which centre on the learner’s
experience. | will consider two major models of experiential learning, those of Dewey
(1938) and Kolb (1984), where the former is more theoretical and extensive while the

latter takes on a more practical and specific form.
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2.3.1 Dewey’s Model of Experiential Learning

Core and influential constructivist theories of learning may be traced back to the
teachings of Dewey who began his campaign for a more active and self-directed
style of learning in schools over a century ago (Papert, 1993b). Elements of Dewey’s
philosophy of education may be found, among other works, in Piaget and Inhelder’s
(1962) theories of active learning, Bruner’s (1966, 1967) theories of teaching and
learning, Vygotsky's (1978)° definition of teaching as assisting the child’s
accomplishments, and Freire’s (2000)* appeal not to treat the child as an empty
depository of knowledge. In his extensive work about the potential of ICT to
revolutionise teaching and learning, Papert espouses most, if not all, of these
theories (e.g., Papert, 1993a, 1993b, 1996, 1998; Papert & Harel, 1991). He sums
up Dewey’s voluminous works by saying that it was ‘Dewey’s idea that children
would learn better if learning were truly a part of living experience’ (Papert, 1993b,
p.15).

For Dewey, learning is a consequence of experience, where learners experiment,
invent, and test whether their actions are successful or not. In this context, Dewey sees
mistakes as a natural component of action and experience. Dewey (1916) argues that
teachers should not forbid learners to make mistakes. Rather, they should see
mistakes as a requirement for learning the lessons of life:
Opportunity for making mistakes is an incidental requirement. Not because mistakes
are ever desirable, but because overzeal to select material and appliances which
forbid a chance for mistakes to occur, restricts initiative, reduces judgement to a

minimum, and compels the use of methods ... remote from the complex situations
of life.

(Dewey, 1916, p.197)

Dewey’s (1916) view of mistakes as a necessary incident in learning from experiences
is today exhibited through a growing body of research which suggests that

3 Originally published in 1934.
4 Originally published in 1968 and first published in English in 1970.
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spontaneous classroom mistakes can be used by teachers to support learning (e.g.
Lee, 2007; Radford, Blatchford, & Webster, 2011; Ingram, Pitt, & Baldry, 2015).
Working in the field of mathematics education, Ingram et al. (2015) bring evidence to
show that teachers may use mistakes as generators of classroom discussions and as
tools in helping students develop and review mathematical concepts. This is one way
in which teachers can convert classroom incidents (like spontaneous mistakes) into

educative experiences.

However, Dewey (1938) warns that not all experiences are genuinely educative. He
labels ‘miseducative’ (p. 25) those kinds of experiences which obstruct or discourage
the growth of further experience. Consequently, Dewey acknowledges teachers’
delicate task of providing learners with experiences which they find agreeable but

which also stimulates their motivation to engage in more experiences.

Dewey (1938) defines experiential learning as a formation of purpose which involves:
(i) Observation of the situation;

(i)  Knowledge of consequences of similar situations in the past which allow
learners to attempt to foresee or anticipate the consequences of the current
action to be taken;

(iii)  Judgement, which synthesises observations and knowledge of past and of

probable current consequences and what they both signify.

Step (iii) involves the decision about the success or failure of the current action. This
entails the identification of and learning from mistakes which, according to Dewey
(1916), are an experiential learning requirement. In any case, learning occurs if the
knowledge reflected about in (i) proves to be viable or unviable to explain the
experience of (i) and which informs the decisions that follow from (iii). This tendency of
humans to construct ideas according to their viability in explaining experiential
phenomena (Kant, 1781) is in line with RC (e.g. Glasersfeld, 1984, 1990a). However,
Dewey (1938) adds in a further element to his experiential learning theory. This is the
role of impulse, the original desire to act upon observing a particular situation. Dewey
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suggests that learners should channel the force created by these impulses to drive the
process of experiential learning. He also suggests that teachers should guide learners
to go through steps (i) — (iii) even though they may have a desire to take immediate
action. In Figure 2.3.1.1, l illustrate Dewey'’s (1938) model of experiential learning. Step
(), observation, can be considered to be the input of a four-item process involved in
(i) and (ii):

e Reference to past experiences;

e [Foresight / anticipation of consequences;

e Judgement;

e Action plan.

The output of this process is the final action to be taken where a new experience is
gained. The energy of the original impulse and desire to bypass this process may be

used to create a drive or momentum which maintains this process.

Figure 2.3.1.1 Dewey’s model of experiential learning

Observation Impulse | Deslre

! MWomegnyuW
Reference to
Past Action Plan

Experiences
Foresight /
Anticipationof __  Judgement _/
Consequences

(Adapted from Dewey, 1938)

The process of experiential learning has one key element: reflective thinking. Dewey
(1910) says that reflection involves consequential thinking, where thinking is not simply

a sequence or trail of thoughts but a logical ordering of ideas in such a way that each
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segment of thought ‘determines the next as its proper outcome, while each in turn
leans back on its predecessors’ (p. 3). Reflection is one of the core features of Kolb’s

(1984) cycle of experiential learning, to which I will now turn.

2.3.2 Kolb’s Model of Experiential Learning

In developing his model of experiential learning, Kolb (1984) acknowledges that he

draws extensively from three theories:
(i) Dewey’s (1938) theory of learning through experience and reflection,
(i)  Lewin’s (1948) theory of group dynamics, and

(i)  Piaget’'s (1970) theory of cognitive development.

However, Kolb (1984) presents his model in the context of a discussion about learning.
He gives a short and powerful definition of experiential learning as follows:
Learning is the process whereby knowledge is created through the transformation

of experience. Knowledge results from the combination of grasping and
transforming experience (Kolb, 1984, p.41).

This definition is based a number of constructivist claims about the nature of knowledge

and learning:

(i) Learning is best conceived as a process, not in terms of outcomes;
(i)  Learning is a continuous process based on experience;
(iii) Learning is a process that requires the resolution of conflicts between
dialectically opposed modes of adaptation to the world;
(iv)  Learning is a holistic process of adapting to the world;
(v) Learning involves transactions between the learner and the environment;
(vi) Learning is a process of creating knowledge.

Like Dewey (1938), Kolb (1984) attempts to describe how humans learn by thinking
about and acting upon concrete experiences. He describes this learner-experience
interaction in terms of a four-step cycle, a simplified version of which is shown in Figure
2.3.2.2.
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Figure 2.3.2.2 Kolb’s experiential learning cycle
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(Adapted from Kolb, 1984)

Kolb's (1984) cycle starts with a concrete experience. Learners are given
the opportunity to be actively involved in an immediate experience. The use
of “concrete” is there to distinguish between this type of experience, i.e. the
first-hand, ‘immediate, personal experience’ (Kolb, 2015, p.32) from the
reflective/abstract experience which occurs when one thinks about first-hand
experiences.

The second stage of the cycle is reflective observation. It means pausing
to step back from the task at hand and reviewing what has been done and
what has happened. Learners may need to exchange ideas with teacher and
peers, but they can also opt to think and reflect individually.

Learners then make sense of the experience by finding relations between
what has happened, what they reflected upon, and what they already know.
They may draw upon past experiences, reflections, and understandings. It is
the stage where new concepts are made or old concepts are modified. This
is thus the stage of abstract conceptualisation. This involves generalisation
of rules and/or formation of theories about the subject at hand.

The final stage of Kolb’s learning cycle is active experimentation where
learners consider how they can put what they have learnt into practice. If they
are going to continue working on the same task, learners will refine or revise
the way they will handle the task. In this way learning may be defined as the
transformation of experience (Strauss, 2013).
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The process between observation and action included in Dewey’s (1938) theory of
experiential learning may be associated with Kolb’s (1984) Stages 3 to 4 where
learners respectively ask the questions What?, So what?, and Now what? (Strauss,
2013). Perhaps more than Dewey (1938), Kolb (1984) emphasises the cyclical nature
of experiential learning, where active experimentation leads to a new concrete

experience and hence a new sequence of the four stages is generated.

Van Soest and Kruzich (1994), and Raschick, Maypole, and Day (1998) argue that
some learners may have deductive orientations and may prefer to start the cycle from
the abstract conceptualisation stage. This mode has similar properties to Kolb’s (1984)
“Stage 1”. In fact, Kolb and Kolb (2005) assert that concrete experience and abstract
conceptualisation are two dialectically related modes of grasping experience. On the
other hand, they say that the two intermediary stages of reflective observation and
active experimentation are two dialectically related modes of transforming experience.
It seems, therefore, that the Kolb (1984) cycle may start from one of the two modes of

grasping experience.

Similar to Dewey’s (1938) theory, reflection plays a key role in the Kolb (1984) learning
model. Whatever stage students choose to start their experiential learning, it is crucial
that they reflect on that experience in a way that they can develop and transform their
interpretation of current and related past experiences, where teachers take on the role
of facilitators of this reflection. In this respect, Kolb (1984, p. 28) states that ‘one’s job
as an educator is not only to implant new ideas but also to dispose of or modify old

ones.’

How do educators go about facilitating the experiential learning process? In what
situations, conditions, and context do teachers operate? What are the relationships
between learners, knowledge, and teachers? The following section is dedicated to

answering these questions in the context of mathematics education.
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2.4 Learners, Knowledge, and Teachers: The Didactic
Triangle

The didactic triangle (Figure 2.4.1.1), was used by Brousseau to study the dynamics
between learners, teachers, and mathematical content (Brousseau, 1984, 1986, 1997,
Brousseau & Otte, 1991). It has been used to structure and analyse research on
teaching and learning inside the mathematical sphere (e.g., Steinbring, 1998, 2005;
Hersant & Perrin-Glorian, 2005; Scherer & Steinbring, 2006; Pauli & Reusser, 2010)
and also outside it (e.g., Tiberghien, Jossem, & Barojas,1998; Berglund & Lister, 2010).

Figure 2.4.1 The didactic triangle
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MATHEMATICS LEARNER
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The central notion behind the didactic triangle is that of a didactical situation which
Warfield (2006) defines as follows:

A Situation describes the relevant conditions in which a student uses and learns a
piece of mathematical knowledge. At the basic level, these conditions deal with
three components: a topic to be taught, a problem in the classical sense and a
variety of characteristics of the material and didactical environment of the action.

(Warfield, 2006, p. 105)
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This seemingly mundane picture of what constitutes a mathematical teaching-and-
learning situation is very appropriate for researchers in the field of mathematics
education to ask questions about the three nodes of the didactic triangle such as, ‘How
does the teacher mediate between the learner and mathematics, shaping the learner’s
developing understanding of mathematics?’ (Schoenfeld, 2012, p. 587). This question
is very pertinent to the study of CT as | will show in section 2.5.

The didactic triangle makes it possible to isolate one of the nodes of the triangle and
concentrate on it in order to elicit and expand its meaning and clarify its links with other
nodes. Such is the work of Jaworski (1994, 2012) which | discuss below.

2.4.2 Focus on the Teacher Node of the Didactic Triangle:
Jaworski’'s Teaching Triad

Jaworski (2012) focuses on the teacher node of the didactic triangle and identifies three
interlinked activities that mathematics teachers carry out in their lessons. She calls

these the teaching triad:

(i) Management of Learning. This is the organisation of the classroom and the
students, the set tasks, and the overall dynamics and interactions which
teachers encourage in their lessons. It involves teachers’ standpoints vis-a-vis

curriculum, institutional standards, and assessment.

(i)  Sensitivity to Students. This is inherent in teacher-student relationships and
is the effort teachers make to become aware of learners’ knowledge and
thinking patterns and tendencies while striving to make their learners feel

respected, included and cared for.

(i)  Mathematics Challenge. This arises from teachers’ epistemological
standpoint and is the manner in which they present the mathematical problem
to their learners in a way that interests them, motivates them to learn, and

promotes participation and cognitive engagement.
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This triad is almost totally dependent on the beliefs and the person of the teacher. What
is special to me about the teaching triad is the way Jaworski (2012) portrays teachers
not as clones of some ideological model derived from a set of philosophical beliefs but
as individual, unique, human beings with their own personal characteristics and
viewpoints (experiential realities), who are part of specific cultural settings, and who
are subject to a range of influences of the communities in which they operate.

The teaching triad was developed from the realities of one teacher, Clare, who featured
in an earlier study (Jaworski, 1994). The teaching triad was created as an analytical
tool to characterise the teaching traits of Clare, where the three domains listed above
were a synthesis of several other categories and which captured what Jaworski (1994)
considered as important elements of Clare’s teaching. Jaworski (1994) regards the
triad as a strongly linked set of domains which are interdependent in such a way that
some actions of a teacher may easily fall into the intersection two or three domains
(Figure 2.4.2). She states that the three domains ‘are closely interrelated, yet individual
in identity, and have potential to describe the complex classroom environment'.
(Jaworski, 1994, p. 108).

Figure 2.4.2.1  Jaworski’s teaching triad

\’.'

(Adapted from Jaworski, 1994, p. 107)

Jaworski (2012) says that one aspect of management of learning is teachers’
interpretation of mathematical content. This suggests that mathematics is not the “out
there” knowledge to be conveyed or received but an interpretation or construction of
ideas. The mathematics that teachers present to their students is thus their own

interpretation of concepts rather than an a priori body of knowledge.
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Furthermore, as Chevallard (1988) argues, knowledge is inherently a tool to use rather
than concepts to teach and learn. He claims that it is thus an artificial enterprise to
teach a body of knowledge and that societies therefore delve into the arduous task of
transforming knowledge from a tool to be put to use to something to be taught and
learnt. He termed this as ‘didactic transposition of knowledge’ (p. 6). This makes
teachers’ presentation of the mathematical challenge (Jaworski, 1994) crucial if
mathematics is to be seen as a useful subject, relevant to each student’s experiential
world. Kang and Kilpatrick (1992, p. 5) state that it is the teachers’ duty ‘to
recontextualize and repersonalize the knowledge taught to fit the student's situation.’

Key in Jaworski’'s (1994) sensitivity to students are teachers’ efforts to learn about the
mathematics of their students. Only by sensitising themselves to students’ exhibited
representations and possible interpretations can constructivist teachers attempt to make
mathematics relevant and meaningful to the students. According to Steffe (1991),
learning about students’ mathematics is one of the main tasks of RC teachers. This will
be discussed in more detail in the following section, where | focus on this aspect of

sensitivity to students: teachers’ sensitivity to students’ constructions of ideas.

2.5 Teaching with Constructivist Sensitivities

A principle which has significant bearing on my interpretation of CT is that without
learning there is no teaching. | derive this from Freire (1998) who argues that if we
agree that teaching is not simply the act of transferring knowledge but the creation of
possibilities for the construction of knowledge, then we need to adhere to the
philosophy that teaching and learning are so intertwined and interdependent that there

is no teaching without learning. Freire puts it plainly:

[T]here is no valid teaching from which there does not emerge something learnt and
through which the learner does not become capable of recreating and remaking
what has been taught. In essence, teaching that does not emerge from the
experience of learning cannot be learnt by anyone.

(Freire, 1998, p. 31)
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The discussion that follows is presented in the context of this contention, that for
teaching to exist it must bring about learning.

25.1 Constructivist Teachers and Their Teaching

In the context of mathematics education, Simon (1994) puts forward what he calls

“myths” in constructivism:

Myth 1. There is a specific kind of teaching called “constructivist teaching.” Simon
(1994) argues that constructivism is a theory of learning and it does not
stipulate any particular teaching style or method. Constructivists believe that
any learning that results from teaching is a construction of the learner,
regardless of the teaching style or method. Simon (1994) suggests that the
question for the constructivist teacher is not, “Is my teaching constructivist?”
but, “Is my teaching effective in bringing about learning?” He says that
teachers who believe in constructivism may develop certain sensitivities
about what their learners may be thinking or feeling that may make them
more considerate of the learners’ knowledge construction when they plan
and carry out their lessons.

Myth 2. Teachers with a constructivist perspective have no agenda for what their
students will learn. This myth may stem from models of learning which
emphasise the activity of the learner while the role of the teacher is
disregarded. Simon (1994) argues against this myth by saying that teachers
with constructivist sensitivities usually spend much time planning how to
create an environment that stimulates learning and that is ‘designed to
increase the probability that students will generate powerful ideas’ (Simon,
1994, p. 74).

While finding no objection with Simon’s (1994) second myth, | find some arguments he
makes about the first almost contradictory. Even though he argues that CT is not a
specific teaching approach, he still implies that there is much to be said about

constructivist teachers’ planning and implementing their lessons. Simon (1995, p. 117)
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objects to the idea that CT translates into ‘one set notion of how to teach’. Along similar
lines, Engstrom (2014) objects to the use of the term CT on the grounds that
constructivism is a theory of learning and not of teaching, and what is usually intended
in the literature by CT is actually a progressive mode of teaching. | agree with both
Simon (1995) and Engstrom (2014) that being a constructivist teacher does not
translate into a set of particular stages that form a teaching method called CT, and that
progressive methods have a tendency to be equated or at least associated with CT in
the literature (e.g. Gash, 2014). | argue that even in what may seem to be a traditional
classroom setting (a plenary approach), teachers may exhibit constructivist
sensitivities when they stop to elaborate on a student’s comment or question, ask
students what they think about possible approaches in the solution of a problem, or
encourage students to participate in classroom discourse and exhibit their
interpretation of the topic. Hence, | agree that if CT were to be tied down to a particular
teaching method | would rather, like Simon (1994), have it called a “myth”. Ultimately,
it would be a contradiction in terms if someone claims to promote RC philosophy and
does not celebrate the uniqueness of teachers’ mental constructions about what

effective teaching is about and the diversity of their preferred teaching methods.

However, | argue that CT is plausible if it is attributed to teachers’
(i) adopting a constructivist stance on the nature of knowledge and knowing, and

(i)  being sensitive to students’ active and subjective construction of knowledge,

and taking actions because of that sensitivity.

These two characteristics permeate the literature about RC teachers’ beliefs and

classroom actions. This literature is discussed below.

2.5.2 Implications of Radical Constructivism for Teachers and
Teaching

| support Freire’s (1998) contention that teaching is dependent on learning to the extent
that it only exists if it brings about learning. This means | cannot be both a constructivist
and a teacher without allowing my constructivist beliefs and sensitivities about learning

to have a bearing on my teaching. My experience as a teacher has taught me that my
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perspective of the nature of knowledge, the process of learning, and learners’ actions

are omnipresent in my planning of the lessons, my interactions with the learners, and

my own reflections during and after the lesson.

Glasersfeld (1991b, pp. 177-178) says that RC has many implications for teaching and

he lists eight examples which | discuss below by referring to respective literature.

(i)

Constructivist teachers should not consider their learners as blank slates.
Glasersfeld’s (1991b) warning is found in Freire’s (2000) disapproval of the
banking concept of education where he rebukes the kind of teaching which
treats learners as ‘“‘containers,” ..."receptacles” to be "filled" by the teacher’
(p. 72). If teachers are sensitive to constructivist notions, they cannot bear to
act as if their job is to fill empty minds with knowledge. If they believe learners
build up their own knowledge from personal experiences and reflections
(Reeves, 1997), then it is a requirement for constructivist teachers to keep in
mind that by the time they have come to their class, learners have already found
many viable ways of dealing with their experiential worlds. Consequently,
constructivist teachers should make it their business to get some idea of what

concepts their learners have developed and how they relate to them.

Constructivist teachers should refrain from telling learners that their response
is wrong. Glasersfeld (1991b) argues that whatever learners say in answer to
a question or to a posed problem it is what makes sense to them at that
moment. Constructivist teachers should take their responses seriously as such,
regardless of how odd or “wrong” they might seem to them. Rather than
discouraging their learners by saying that what they said is wrong, they should
enquire what made the learners respond in that way. This goes beyond
acknowledging that a response is mistaken and using the mistake to support
teaching (e.g. Radford et al., 2011; Ingram et al., 2015). Glasersfeld (1991b)
points out that given the way learners may have interpreted the question, their
answer may turn out to be correct. Bruner (1986, p. 92) warns about this when
he discusses the notion of psychological reality which is invented and modified
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(iii)

(v)

according to the ‘psychological processes that people use in negotiating their
transactions with the world.’

Before modifying individual learners’ concepts and conceptual structures,
constructivist teachers should try to build up a model of those learners’
reasoning. Glasersfeld (1991b) says that models of how learners think can be
generalised, but before assuming that a learner fits the general pattern,
teachers should have some solid evidence that this is a viable assumption in
that particular case. This seems to imply that although there exist various
models of thinking styles (e.g., Briggs Myers, 1980; Kolb, 1984; Harrison &
Bramson, 1984; Rancourt, 1988; Sternberg, 1988, 1997; Gardner, 1991)
teachers should not simply pigeonhole learners because they fit in one
particular thinking style in one particular occasion. It may be that learners may
shift between preferred thinking styles according to the situation or simply
change them over time (Dunn & Griggs, 1995).

Constructivist teachers should seek to discover thinking patterns of their
learners by asking them to explain how and why they got to their answer. In
this way, teachers may develop second-order experiential models (Steffe et al.
1983; Steffe & Ulrich, 2013) of learners’ concepts which they may use to
coordinate their interactions with them. These models are “second-order”
because they are hypothetical models of what other people may be thinking
and “experiential” because they are models of possible experiences of those
people, in this case, the learners. Glasersfeld (1991b) suggests that when
learners see that their teacher values their reasoning they will be more
receptive to the idea that a particular answer or reasoning they have may not

retain its viability in different situations.

Constructivist teachers should foster learners’ motivation to ask and learn by
creating problems which learners find pleasure in solving. Questions that
teachers pose in relation to the topic of the lesson may not be of any particular
interest to the learners. Glasersfeld (1991b) warns that telling learners that they
are answering the questions correctly does very little for learners’ conceptual
development if they were not interested in the questions in the first place. On
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(vii)

(viii)

the other hand, if the questions arise naturally from a problem-solving situation
which the learners find enjoyable, this is sure to stimulate interest to delve into
further questions and further learning. For Dewey (1938) this is what constitutes

an educative experience.

For constructivist teachers, successful thinking is far more important than
“correct” answers. Teachers should praise learners’ successful thinking even if
they hold that it was based on unconventional premises. This results from
constructivist teachers’ investment in seeking to discover factors about the
thinking patterns of their learners. This is consistent with Bruner’s (1966) theory
of instruction:

We teach a subject not to produce little living libraries on that subject, but

rather to get a student to think mathematically for himself [sic.], to consider

matter as an historian does, to take part in the process of knowledge-getting.

Knowing is a process, not a product.
(Bruner, 1966, p. 72)

Constructivist teachers must have a very flexible mind in order to understand
and appreciate learners’ thinking. Glasersfeld (1991b) advises teachers to be
aware that learners may start from premises that seem inconceivable to them
and so it is very easy for teachers to deduce that learners are wrong to think in
that manner or conclude that statement. An infinitely flexible mind about the
topic at hand is therefore needed for teachers to grasp the logical trail of ideas

(Dewey, 1910) of individual learners.

Constructivist teachers can never justify what they teach by claiming that it is
“true”. Glasersfeld (1991b) says that mathematics teachers can only justify
what they teach by taking it as a derivative of conventional definitions and
operations. This concurs with the theory that mathematical truth is a convention
(Quine, 1936; Quinton, 1963) which holds that mathematical statements are
true by virtue of the meanings of the terms they contain (Ernest, 1991). This
stance may help teachers to be more amenable to alternative reasoning of their
learners and more willing to delve into discussions with learners who challenge
the mathematical “truth” which they are bound to do if the meanings they

construct do not agree with those posed by their teachers.
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With the exception, perhaps, of characteristic (viii), all of the above seem to focus on
constructivist teachers’ duties vis-a-vis the learner. Teachers however, have other
obligations to attend to. For instance, the integrity of teachers would be put in question
if they disregard the subject content which they are entrusted to teach. Once again, |
find Dewey’s teachings to be very relevant: this time in thinking about constructivist
teachers’ obligations towards both the learner and the curriculum.

2.5.3 Constructivist Teachers’ Obligations towards the Learner
and the Curriculum

Being a pragmatist, Dewey insisted that education should be both practical and useful.
In The Child and the Curriculum, Dewey (1902) neatly captured the two basic factors

that necessitate education — the learner and the lessons to be learnt:

[Aln immature, undeveloped being; and certain social aims, meanings, values
incarnate in the mature experiences of the adult. The educative process is the due
interaction of these forces.

(Dewey, 1902, p. 2)

Dewey (1902) discusses two extreme ways of going about education. The first is a
pedagogy centres on the curriculum. For Dewey, this system is unacceptable because
the learner is inactive: ‘the child is simply the immature being who is to be matured; he
[sic.] is the superficial being who is to be deepened’ (p. 13). Dewey advocates a
pragmatic pedagogy with constructivist sensitivities which presents the curriculum in a
way that students can see its relevance and usefulness by setting it against the
backdrop of their own individual experiences. At the same time, however, Dewey
argues that if teachers are too much focused on the learners, they may easily lose
sight of what knowledge they have been entrusted to teach. As educators, we must
simultaneously ‘take our stand with the child and our departure from him [sic.]’ (p. 13).
Hence, Dewey argues that teachers must strike a balance between providing
appropriate learning opportunities for the learners and being sensitive to learners’
interests and experiences.

The child and the curriculum are simply two limits which define a single process.
Just as two points define a straight line, so the present standpoint of the child and
the facts and truths of studies define instruction.

(Dewey, 1902, p. 16)
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Figure 2.5.3.1 Dewey’s construct about curriculum, learner, and teaching process

CURRICULUM< TEACHING > LEARNER

(Adapted from Dewey, 1902)

Figure 2.5.3.1 illustrates Dewey’s construct about the function of teaching: to bring the
curriculum to the learners and vice versa. Teaching must be defined by curriculum and
learners just as roads are defined by possible journeys between two places. Driver
(1995) argues that, from a constructivist standpoint, teachers must reconsider the
traditional view of the curriculum as the body of knowledge which society deems
important to pass on to its youngsters. In line with Dewey’s (1902) teaching construct,
Driver (1995) says that while acknowledging factors like social aims and values and
subject content structure, the constructivist teacher needs to take into account the
experiences, ideas, and purposes which learners bring to classroom while providing
learners with new experiences. | associate this view with what | have called “toing and
froing” between teacher and learners (Chapter 1), or rather between the teacher’s

knowledge and that of the learners.

Dewey’s (1902) construct may be observed in most teaching models based on

constructivist beliefs, including:
e Karplus’'s (1977) Learning Cycle,
e Driver and Oldham’s (1986) Constructivist Instruction Model,
¢ Van Hiele’s (1986) Phases of Instruction,
e Black and McClintock’s (1995) Interpretation Construction Model, and

e Gagnon and Collay’s (2006) Constructivist Learning Design.

In various shades and emphases, these teaching models have a number of core
elements in common. Sunal (1995) maintains that such frameworks aim to help

learners to:

44



Chapter 2 ‘ Literature Review Part 1: Constructivism and CT

(i) become aware of their previous knowledge,
(i)  experience a cooperative and safe learning environment,
(iii) compare new alternatives and perspectives to their prior knowledge,
(iv)  connect the new perspectives to what they already know,
(v)  construct their own “new” knowledge, and

(vi)  apply their knowledge in diverse situations.

The most strikingly distinguishing feature of such teaching frameworks is, perhaps, an

additional characteristic suggested by Driver (1995):

[E]xperience by itself is not enough. It is the sense that students make of it that
matters. If students’ understandings are to be changed ... then intervention and
negotiation with an authority, usually the teacher, is essential. From this perspective,
teaching is also a learning process.

(Driver, 1995, p.399, original emphasis)

While supporting Dewey’'s (1938) experiential learning theory, Driver's (1995)
statement echoes what has been stressed before (Steffe, 1991; Freire, 1998), that
constructivist teachers need to consider themselves students of their students and
negotiators between their knowledge and that of their students, thus drawing Dewey’s
(1902) connecting “line” between curriculum and learners. A teaching model based on
such constructivist perspectives in mathematics education is that proposed by Simon
(1995). This is discussed next.

254 Simon’s Model of Teaching Mathematics with a
Constructivist Perspective

There are extensive reports in the literature about how a constructivist mathematics
learning environment can be fostered (e.g., Davis, 1984; Schoenfeld, 1985; Lampert,
1988; Steffe, Cobb, & Glasersfeld, 1988; Steffe, 1991; Wood, Cobb, & Yackel, 1991,
Fennema, Franke, Carpenter, & Carey, 1993; Ball, 1993; Jaworski, 1994; Carpenter,
Fennema, & Franke, 1996; Prawat & Jennings, 1997). These studies attest to several

common features of the lessons such as:
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e encouraging students to come to an answer in different ways,

e valuing students’ interventions in the lesson and inviting them to articulate their
interpretations of the mathematics at hand,

e allowing students to describe their methods and engaging them in debates
which help them refine and adjust their strategies and understandings, and

e learning about students’ mathematical meanings through reflection on
classroom experiences.

One such study was presented by Simon (1995) who analysed his lectures with
university students in a teacher training course. As a result of this analysis, he
proposes the teaching model illustrated in Figure 2.5.4.1.

Figure 2.5.4.1 Simon’s constructivist model of teaching mathematics

Hypothetical Learning Trajectory

Teacher’s learning goal

&

Teacher’s plan for
learning activities

4

Teacher’s hypothesis
of learning process

i

Interactive constitution of
classroom activities

i

Assessment of students’
knowledge

i

Teacher’s knowledge of
mathematics and of the
students’ learning process

(Adapted from Simon, 1995, p. 136)
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Constructivist teachers have what Simon (1995) calls a hypothetical learning trajectory
(HLT). It is the way they predict the path through which learning might proceed. It is

made up of the teacher’s

(i) learning goal which defines the direction of the lesson,
(i)  plan of activities aimed to achieve the learning goal, and
(i) hypothesis of the learning process, i.e. the predictions of how students’ thinking
and understanding may evolve during the lesson.

Simon (1995) explains that HLT is hypothetical because the actual learning trajectory
is not knowable in advance. | see the inclusion of the adjective “hypothetical” as an
acknowledgement of the fact that any learning objectives teachers may have in mind
before the lesson may be changed by what they learn from their students. This is
perhaps what classifies this kind of model as constructivist. Teachers’ actions from
here onwards are geared towards learning about their students’ knowledge and
interests and about the subject itself as much as towards helping students understand

more about the subject matter.

Simon (1995) classified the ensuing process into three steps:

Stage 1. Teachers interact with students through classroom activities aimed at
helping them gain more insight about the topic at hand. Teachers do not
simply lecture but exchange ideas with the students (Driver & Oldham,
1986) and help students to generate new ideas or modify old ones.
Steinbring (1998, p. 158) speaks of ‘learning offers’, i.e. teachers’
classroom representations intended to bring about learning. One way
how mathematics teachers can present learning offers is by taking non-
contextualised mathematical ideas and embed them in a context
conducive to learners’ investigations (Brousseau, 1986). Besides helping
students link what they already know with what the teacher intends them
to learn (Gagnon & Collay, 2006) the teacher-student exchange of ideas
helps teachers to evaluate their students’ knowledge and ways of

knowing.
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Stage 2. Simultaneous with this teacher-student interaction comes teachers’
assessment of the way their students think and come to know. This brings
about a modification in teachers’ ideas and knowledge of what is

happening in the classroom.

Stage 3. Teachers use this assessment to reconstruct their knowledge of the
students’ learning process and of the subject content which will give rise

to a revised hypothetical learning trajectory.

The model shows a two-way-traffic type of teaching, where both teacher and student
are learners and both teacher and student are teachers (Freire, 1998). Although
planning is ultimately done by the teacher, the teaching-learning process is student-
centred: the assessment of students’ knowledge may lead teachers to reject their
premises and start anew. On their part, students construct their own knowledge by

drawing upon their own cognition and interacting with each other and with the teacher.

It seems, therefore, that although Simon (1994) says that it is a myth to think of CT as
a specific kind of teaching, Simon’s (1995) own teaching model may well be identified
with CT, as pointed out by Steffe and D’Ambrosio (1995). Furthermore, although
Simon’s (1995) model includes a teacher learning aspect, it seems to emphasise more
the process where students are learning something from the teachers. In this model,
teachers’ assessment of students’ knowledge seems to serve only to inform teachers
about the appropriateness of the teaching approach. It does not really add anything to
teachers’ own mathematics. The possibility of teachers’ content knowledge becoming
enriched in the process of CT is an important aspect in Steffe’s (1991) CT principles,

which | discuss below.

255 Steffe’s Constructivist Teaching Principles

There have been extensive contributions to the literature about RC and CT in
mathematics education by Steffe (e.g. Steffe, Glasersfeld, Richards, & Cobb, 1983;
Steffe & Blake, 1983; Steffe, Cobb, & Glasersfeld, 1988; Steffe & Wiegel, 1992; Steffe
& D’Ambrosio, 1995; Steffe & Thompson, 2000a, 2000b, 2000c; Steffe & Ulrich, 2013;
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Steffe, 1991, 2007, 2016). A common theme in Steffe’s writings is that constructivist
teachers must see themselves as learners when they engage in CT. His theories are
in line with Freire (1998, p.31) who states that ‘whoever teaches learns in the act of
teaching, and whoever learns teaches in the act of learning’, but Steffe’s notion of
teachers’ learning during CT goes beyond the construction of pedagogical knowledge.
Steffe (1991) argues that constructivist teachers’ main goal is to learn from interactions
with students and with other colleagues and from observing students’ mathematical
interactions. In this way, the focus of mathematics education is shifted from the
teacher, not to the students per se, but to the intellectual interactions between teachers
and students, among students, and among teachers (von Foerster, 1984; Bauersfeld,
1988; Glasersfeld, 1990b). Steffe (1991) lists ten principal goals for CT. Teachers need

to learn:

(i)  how to communicate mathematically with students;
(i)  how to engage students in goal-directed mathematical activity;
(iii)  the mathematics of the students they teach;
(iv)  how to organise possible mathematical environments;
(v)  the mathematical experience of students;
(vi) the mathematics for the students they teach;

(vi)  how to foster reflection and abstraction in the context of goal-directed

mathematical activity;

(vii)  how to encourage students to communicate mathematically among

themselves;
(ix)  how to foster student motivation and sustain learning over a period of time;

(x) how to communicate pedagogically as well as mathematically with other

mathematics educators.

(Adapted from Steffe, 1991, p. 191, original emphases)
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For Steffe (1991), constructivist mathematics teachers need to redirect their
pedagogical goals towards communicating and reflecting on the nature of
mathematical concepts and techniques with their students and colleagues. In
classroom interactions, teachers may form second-order experiential models (Steffe et
al., 1983; Steffe & Ulrich, 2013) of students’ mathematics (goal iii). CT thus means that
teachers invest themselves in developing hypothetical models of students’ mental
operations (Kaput's 1991). In a personal correspondence, Steffe asserts that
constructivist teachers’ own mathematical understandings can benefit from their

search to understand students’ mathematics:

[T]he constructivist teacher sets out to learn students' mathematics and includes
and synthesizes that mathematics with his or her own in ongoing teaching and
learning. Does that mean that the constructivist teacher abandons his or her own
mathematics? Not at all. In fact, a search for understanding students’ mathematics
can lead to conceptual analysis and enrichment of one's own mathematics.

(Steffe, personal communication, October 7, 2015)

Like Simon (1995) and Steinbring (1998), Steffe (1991) holds that teachers’ learning
about students’ mathematical understandings informs the mathematics they intend to
teach but Steffe (1991, 2015) goes a step further: teachers’ own mathematics can be
enriched by their observations of and reflections on students’ mathematical
representations. This view may seem revolutionary for teachers operating in a culture
upholding a didactical contract (Brousseau, 1984; Brousseau & Otte, 1991), i.e. the
unwritten teacher-learner classroom pact that the teacher is there to teach and the
learner is there to learn. In such classroom cultures, teachers seem to be the only ones
with information and students seem to be the only ones who can learn (Kansanen &
Meri, 1999). Like he does in most of his contributions on CT, Steffe (1991)
compensates for this teacher-learner asymmetry and his CT principles are almost
exclusively focused on teachers’ learning from their observations and reflections of

students’ interactions.
| find Steffe’s ideas about CT (1991) complementary to Simon’s (1995) model of

teaching from a constructivist perspective. While Simon emphasises teacher-to-

student interactions and teachers’ presentation of learning offers, Steffe (1991)
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emphasises teachers’ learning of students’ mathematics and the synthesis of this
knowledge with their (the teachers’) mathematics, and with their expertise in teaching
particular areas of mathematics, or what Shulman (1986, p. 9) refers to as ‘pedagogical

content knowledge’.

2.6 Research Questions about Constructivist Teaching

The combination of Steffe’s (1991) and Simon’s (1995) theories consolidates my notion
of CT as a toing-and-froing exercise between the curriculum and the learners (Dewey,
1902). Such an exercise requires teachers to deal with what Windschitl (2002) refers
to as the pedagogical dilemma. This dilemma stems from constructivist teachers’
wanting to honour learners’ attempts to think for themselves while needing to remain
faithful to the accepted disciplinary notions of the subject. A satisfactory compromise
between these two aspects is a considerable challenge for any teacher. Part of this
challenge is due to the RC rejection of the notion of curriculum as a body of a priori

knowledge. This view is espoused by Dewey (1902) as he urges teachers to

abandon the notion of subject-matter as something fixed and ready-made in itself,
outside the child's experience; cease thinking of the child's experience as also
something hard and fast; see it as some-thing fluent, embryonic, vital.

(Dewey, 1902, p. 11)
This statement implies that RC teachers need to appreciate that
(i)  the curriculum consists of their own interpretations of subject matter,
(i)  they need to relate this subject matter with learners’ experiences, and

(i)  these learners’ experiences are ever-changing.

Thus, Dewey’s (1902) curriculum-learner construct goes well with RC epistemology. It
provides an overarching notion of practising forms of teaching compatible with
constructivist beliefs (Cobb, Wood, & Yackel, 1990), like those proposed by Steffe
(1991) and Simon (1995). It also reaffirms the possibility of defining CT as the
endeavour of teachers to establish links between their interpretations of subject

content (curriculum) and the learners.
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As | mentioned in Chapter 1, one of the main objectives of this research was to
investigate how | engage in CT and possibly develop a framework which helps me
understand the dynamics of such a teaching approach. The literature reviewed in this
chapter helped me to prepare for such an investigation, by which | seek to answer the

first set of research questions:

(i) How do I engage in CT and what are the distinguishing characteristics of such

a teaching approach?

(i)  What, if any, are the moments when | fail to engage in CT?

Since teaching is dependent on learning (Freire, 1998), and since | intended to
investigate lessons in which | introduced 7" graders to formal algebra, a substantial
part of my literature review consisted of studying the nature and learning of algebra.

This review is presented in the chapter that follows.
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3.0 Overview

The second part of the literature review is subdivided into the sections shown in Table
3.0.1 as follows.

Table 3.0.1 Chapter 3 section titles

Title Page
3.1 The Nature of Algebraic Thinking and Activities 56
3.2 Algebra Difficulties 71
3.3 Notation as a Key Factor in Algebraic Activities 80
3.4 A Way Forward: Use of Computers for Algebraic Thinking 95

3.5 Research Questions about Students’ Representations and Interpretations of Notation 109

The second part of the literature topic map, illustrated in Figure 3.0.1 (overleaf),
resumes from the first part (Chapter 2, p.13). The literature review starts by a
discussion about the nature and definition of algebra, where | synthesise work of
theorists including Mason (1996), Kaput (2008), Radford (2014), Kieran (1996), and
Gattegno (1988). This helps me to establish a standpoint regarding the nature of
algebraic thinking and differentiate between informal- and formal-algebraic activities.

This is followed by a review of research-based literature about the learning of algebra,
where | focus on students’ difficulties in algebra. Research evidence shows that such
difficulties are usually caused by problems stemming from generality, arithmetic, and
notation. Focusing on the latter as a make-or-break issue in algebraic activities, |
discuss students’ representations and interpretations of notation. | present the use of
computers as a possible way forward for teachers to help students to enrich their
meanings of notation. | discuss software which has been found effective in this respect
including microworlds, Logo, spreadsheets, and other grid-based environments. One
of the latter is Grid Algebra, with which | end my literature review. This second part of
the literature review leads me to the second set of research questions, those regarding
students’ representations and interpretations of notation with the help of Grid Algebra.
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Figure 3.0.1  Literature topic map — Part 2
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3.1 The Nature of Algebraic Thinking and Activities

Wheeler (1996, p. 319) says that algebra is difficult to define because ‘it always seems
to comprise rather more than any simple story suggests’. In this section, | discuss

algebraic thinking and activities and establish my standpoint about each of these.

3.1.1 Algebraic Thinking

It seems that all theorists in the algebraic field agree that generality and the process of
generalisation are key to what is usually attributed to algebraic thinking (e.g., Sfard,
1995; Usiskin, 1995; Mason, 1988, 1991,1996; Mason, Graham, Pimm, & Gowar,
1985). By generality, | share Usiskin’s (1995) understanding that it is the search for
general rules by observing and reflecting on differences, similarities, patterns, and
classifications of numbers. Usiskin (1995, p. 31) says that students engage in algebraic
thought when they formulate a rule such as the following: “‘To multiply two fractions,
multiply their numerators to get the numerator of the product, and then multiply their
denominators to get the denominator of the product’. Usiskin points out that this

statement may be represented as:

a Cc ac

b d " bd
The above string of symbols is another way of writing the previous sentence using
mathematical symbols and, as Skemp (1971, p. 95) says, ‘basically these are a verbal
shorthand’. Notation will be discussed further on, but for now it suffices to observe,
even in this one example, how crucial notation can be in understanding and

communicating algebraic concepts.

The ability to generalise makes students proficient in many areas. Bednarz, Kieran,
and Lee (1996) identify four such areas. Each area is emphasised by other researchers

when discussing the nature of algebra:

(i) Generalisation of numerical and geometric patterns and laws governing
numerical relations (Arzarello, 1991a; Mason, Grahan, Pimm, & Gowan, 1985;
Charbonneau, 1996);
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(ii)  Solution of specific problems or classes of problems (Puig & Cerdan, 1990;
Rubio, 1990, 1994);

(iii)  Focus on the concepts of variable and function (Confrey, 1992; Garagon,
Kieran, & Boileau, 1990; Heid & Zbiek, 1993; Kieran, 1994);

(iv)  Modelling of physical phenomena (Chevallard, 1989; Filloy & Rojano, 1989).

Some studies include all of these areas (e.g., Usiskin, 1988; Kaput 1995b, 1998, 1999,
2008; Blanton & Kaput, 2005; NCTM, 1998), but all of them depend on the processes of
generalising and pattern-seeking, such as those identified by Mason (1996, p. 83) when
he says: ‘Detecting sameness and difference, making distinctions, repeating and
ordering, classifying and labelling...are the basis of what | call algebraic thinking.” Mason

(1996) goes on to say that algebra without generality is little more than a dead subject.

In his extensive studies on the teaching and learning of algebra, Kaput repeatedly
stresses that algebraic reasoning is not confined to rule-based operations on symbolic

syntax. For instance, Blanton & Kaput (2005) define algebraic reasoning as follows:

a process in which students generalize mathematical ideas from a set of particular
instances, establish those generalizations through the discourse of argumentation,
and express them in increasingly formal and age-appropriate ways.

(Blanton & Kaput, 2005, p. 413)

Along similar lines, Kaput (2008) proposes two core aspects of algebraic reasoning:

(i)  The generalisation and expression of generality in increasingly systematic and

conventional symbol systems;

(i)  The syntactically guided reasoning and actions on generalisations expressed

in conventional symbol systems.

Kaput (2008) argues that the mathematical debate which divides mathematicians and
mathematical educators over the definition of algebra is actually their emphasis on
these core aspects. Before | delve into that debate, | will now turn to another aspect of
the teaching and learning of algebra: the nature of algebraic activities.
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3.1.2

Algebraic Activities

Kieran (1996) describes algebraic activities by subdividing them into three categories:

(i)

Generational activities. These involve the generation of algebraic objects, i.e.
expressions and equations. Kieran (1996) argues that much of the meaning-

building for algebraic objects occurs within such algebraic activities.

Transformational activities. These are those rule-based activities concerned
with transforming expressions such as substitution, simplification, expansion

and factorisation.

Global, meta-level, mathematical activities. These are activities for which
algebra is used as a tool but which are not exclusive to algebra. They include
problem solving and modelling, analysing and generalising relationships, and
proving mathematical statements. Kieran (1996) suggests that learners can
engage in these activities without using formal algebraic notation but they can
elaborate on them at any state by including conventional notation.

Sharing most of Kieran’s (1996) views about the nature of algebraic activities, Bell

(1996,

p. 174) defines algebra as ‘any manipulable language by which relations or

compositions are handled in conceptual fields of space, number, or elsewhere in

mathematics’. Bell points out three algebraic processes:

Expressing mathematical relationships using algebraic notation;

Manipulating symbolic expressions into different forms to reveal new aspects

of these relationships;

Applying the knowledge of using and manipulating algebraic expressions for
specific activities such as forming and solving equations, working with formulae,

etc.
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Algebraic activities are characterised by specific conditions. Radford (2014) identifies

three such conditions:

(i) Indeterminacy. This is the recognition of the use of indeterminate values
(usually expressed as letters) in the form of variables, unknowns and
parameters.

(i)  Denotation. This involves the symbolisation of the indeterminate values of the
problem at hand, that can include the use of natural language, gestures, signs,
and written symbols.

(i)  Analyticity. This is the skill of manipulating the indeterminate quantities as if
they were known values.

Kieran (1996), Bell (1996), and Radford (2014) have captured the essence of what
theorists usually regard as algebraic activities. Yet, some researchers seem to confuse
algebraic activities with algebraic thinking, where they use interchangeably the ideas
associated with these two terms. This is sometimes the cause of discord in
researchers’ definitions of algebra, as | will discuss next.

3.1.3  Two Definitions of Algebra

There seems to be two predominant schools of thought which differ in their definitions
of algebra. | discuss these in the following two subsections.

A Narrow (Traditional) Definition of Algebra

On one side of the debate about what classifies as “algebra”, there are those who make
a clear distinction between algebra and arithmetic. Some of these do not even regard as
algebraic some activities which are widely associated with algebra, such as the solution
of equations. One of these is Saul (2001), who argues that the fact that students
understand and apply the concepts of variable or function in solving a mathematical
problem does not mean that they are engaged in algebra. He brought evidence from a
case study of a student who knew that 2x + 1 = 7 was true for x = 3 and false for any
other value of x by substitution strategies but who could not engage in a transformational
algebraic activity (Kieran, 1996) to bring x to be the subject of the equation. Saul (2001)
argued that this student could operate arithmetically but not algebraically.
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For others within this school of thought, algebra may not be present even in
transformations of certain equations. For instance, Filloy and Rojano (1989) regard as

“arithmetical” equations such as: Ax + B = C, A(Bx + C) = D, %z B, and %z % . The

reason they give is that the unknown appears just once on one side, while the other
side can be viewed as the result of the operations done on that unknown. Filloy and
Rojano argue that in each of these equations, the value of x can be found by inverting
or undoing the arithmetical operations one by one and hence only arithmetical

processes are involved.

Filloy and Rojano (1989) contrasted these types of equations with others which they
call “non-arithmetical” (p. 19), such as: Ax + B = Cx and Ax + B = Cx + D. In such
equations, the arithmetical processes of inverting successive operations are not
sufficient. To solve these equations, it would be necessary to operate on the unknown.
Drawing evidence from an earlier study (Filloy & Rojano, 1984) the authors affirm that
between arithmetical activities (solving arithmetical equations) and algebraic activities
(solving non-arithmetical equations) there is what they call a didactic cut which can

only be addressed through instructional interventions.

On similar lines, Herscovics and Linchevski (1994) argue that between arithmetic and
algebra there is a clear demarcation by what they call a cognitive gap. In their study
with high-performing 7™ graders, they presented students with equations such as:
63— 5n = 28, 11n+14n =175, and 5n + 12 = 3n + 24. Herscovics and
Linchevski reported that the participants engaged in arithmetical activities to solve the
equations. The students competently used number grouping techniques, systematic
substitution, and inverse operations to solve the equations. Like Filloy and Rojano’s
(1984) participants, these students were unable to operate with or on the unknown to
transform the equations and, thus, Herscovics and Linchevski (1994) declared that
these students could not yet engage in algebraic tasks. Hence, they asserted the
presence of a cognitive gap between arithmetic and algebra. They claimed that this
gap could only be addressed through teaching and learning of algebraic concepts and

techniques.
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Other studies which support the idea of a demarcation between arithmetic and
algebraic activities call for the need of a transition between arithmetic and algebra (e.g.,
Collis, 1975; Bednarz & Janvier,1996; Boulton-Lewis et al., 1998; Kilpartick, Swafford,
& Findell, 2001; Kieran, 2004; Sadovsky & Sessa, 2005). These studies seem to make

two interlinked assumptions:

(i)  Arithmetic and algebra are distinct disciplines. There is demarcation between
the skills required to solve arithmetic problems and those required to solve
algebraic problems and the transition from arithmetic to algebra can occur

through instruction.

(i) A number of years of instruction in arithmetic are required before starting an

algebra course.

(iii)  The generalisation and expression of generality, a core algebraic aspect

according to Kaput (2008), may exist within arithmetic and without algebra.

The definition of algebra discussed in this section may be considered traditional, since
this is what curriculum planners often refer to when they mention “algebra” in
educational programmes (e.g. DfE, 2013; DLAP syllabus, 2014a, 2014b). Such a view
of algebra is narrow when compared to that of the second school of thought which is
discussed next.

A Broad Definition of Algebra

On the other side of the algebra definition debate there are theorists who claim that
algebra exists even in problems that are normally associated with arithmetic or other
mathematical domains. Foremost among these is Gattegno (1974, p. 82) who asserts
that ‘rather than teach mathematics we should strive to make people into
mathematicians’. Gattegno (1988) shows that mathematics teachers and learners
need to become aware of what they are assuming, doing, and achieving when they
engage in mathematical processes. It is one thing to be aware that you are doing 6 + 9
and achieving 15 as a result. This is just “awareness-in-action” (Mason, 1998, p. 255).

It is quite another thing to be aware that 6 + 9 and 9 + 6 constitute the same quantity,
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that 6 + 9 may be expressed as 3 x (2 + 3) and so 3 x 5, and that the result, 15, is an
element in the same set (integers) as the numbers involved in performing those
operations (closure property). Gattegno (1988) refers to this second type of awareness
as “awareness of awareness” (p. 172), the awareness of an algebraic structure, ‘a set
together with an internal operation which associates to any pair of elements of the set

another element of the same set’ (Gattegno, 1987, p. 61).

Using Cuisenaire rods, Gattegno used what became known as Gattegno-Cuisenaire
method (see Chambers, 1964) to instruct teachers how to teach number concepts to
primary school children. Gattegno (1974) referred to this as “the algebra of arithmetic”
(p. 61), where he demonstrated how Cuisenaire rods may be used to make children
aware of properties of the addition operation like commutativity and associativity.
Gattegno advocated that teachers should give their students the opportunity to
encounter algebra before arithmetic by becoming aware that the “games” embody

implicit mathematical structures and relations.

Gattegno’s (1988) awareness of awareness identifies with algebra any attempt to
regulate, systematise, and generalise numerical properties, operations, calculations,
and relationships irrespective of whether a letter is used or manipulated on. Associating
algebraic thinking with making sense of mathematical structures and relationships and
the consequent pursuit of generality is widely reported in the literature (e.g., Usiskin,
1988; NCTM Algebra Task Force, 1993; NCTM Algebra Working Group, 1997; Kaput,
1995a, 1995b; Mason, 1996; Blanton & Kaput, 2005). This stance is central to
discussions and research about the inclusion of algebra in the primary curriculum (e.g.,
Carraher, Schliemann, & Brizuela, 2000; Carraher, Schliemann, & Schwartz, 2008;
Mason, 2008) because it promotes the explicit teaching of algebraic thinking from an
early age, as soon as students start to wonder whether a pattern or rule might exist for

particular calculations.
Rather than creating a stark demarcation between arithmetic and algebra, this

definition of algebra tends to seek an area of overlap between the two, making them
seem less and less as distinct disciplines. Algebra is thus seen to be embedded in the
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very structure of arithmetic. Hewitt (1998) argues that algebraic thinking is actually
necessary for arithmetic procedures to be carried out. Devoid of algebra, arithmetic
would be little more than a recall of answers learnt by rote. ‘Arithmetic is concerned
with getting answers. Algebra shifts attention from answers to what is required to be
done to get an answer (Hewitt, 1998, p. 21). Algebraic notation is, then, the
encapsulation (Dubinsky, Elterman, & Gong, 1988) of the structure behind arithmetical

processes and products.

Using this line of thought, Carraher, Schliemann, Brizuela, and Earnest (2006, p. 89)
argue that ‘algebraic concepts and notation need to be regarded as integral to
elementary mathematics’. They object to the idea of a developmental readiness which,
they say, implies the basic assumption of studies that propose a gap between
arithmetic and algebra (such as Filloy & Rojano, 1984, 1989; Herscovics & Linchevski,
1994). Carraher et al. (2006) back their claims by results of an earlier study (Carraher,
Schliemann, & Brizuela, 2000) in which they reported that Grade 3 children were able
to understand and use algebraic notation (e.g. n = n + 3), and generalise how two
series of numbers (e.g. n and 2n + 1) were interrelated. Support for early algebra was
again presented by Carraher, Schliemann, and Schwartz (2008) with evidence from a
similar longitudinal study with students in Grades 2—-4. The authors claimed that
students engaged in algebraic activities by using algebraic representations and
notation (e.g. 100 + W = 3WW) to make sense of practical situations such as the number

of candies in a box and the amount of money in a wallet.

However, in their studies, Carraher et al. (2000, 2008) did not specify the number of
students who managed to make use of such algebraic notation, and hence the extent
of their claims is unclear. Furthermore, when introducing the use of letters as
unknowns, they always used initials of the name of the unknown (e.g. n for number or
W for wallet money) rather than making an arbitrary choice of letters. As | discuss in
Section 3.2, this can be a crucial factor for determining the meaning children give to
literal symbols. Nevertheless, whether Carraher et al.’s (2000, 2008) early graders
could make sense of literal symbols is not a determining factor as to whether they could

engage in algebraic activities. | will develop this argument in the next subsection.
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The definition of algebra discussed in this section is much broader than the first
because, while encompassing the activities deemed algebraic by the first school of
thought, it extends beyond the application and manipulation of letters in expressions
and equations. The proponents of such a broad definition hold that any attempt to
generalise rules and techniques to find any answer (even those deemed arithmetical)
classifies as algebraic thinking. The role that algebraic activities and algebraic thinking

play in the discord between these two schools of thought is discussed next.

3.14 Reconciling the Two Schools of Thought

In this section, | argue that differences in the two schools of thought in their definition

of algebra seem to stem from two factors:
¢ their emphasis on one of Kaput’'s (2008) core aspects of algebraic reasoning, and
e the confusion of algebraic thinking with algebraic activity.

| will also attempt to reconcile the two perspectives by addressing these two factors.

With regards to the first factor, it seems that those who give a narrow definition of
algebra emphasise Kaput’'s (2008) core aspect (ii): the syntactically guided reasoning
and actions on generalisations expressed in conventional symbol systems. Filloy and
Rojano (1984, 1989), Herscovics and Linchevski (1994), and the others are seen to
associate algebra with Kieran’s (1996) generational and transformational activities

each of which involve the use and manipulation of algebraic syntax.

While acknowledging that these activities form part of algebra, those who advocate a
broad definition of algebra insist that algebra also exists where there is a search for
patterns, rules, and generality which may eventually lead to the use of conventional
notation. This is an emphasis on Kaput’s (2008) core aspect (i): The generalisation and

expression of generality in increasingly systematic and conventional symbol systems.
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Gattegno (1987), Hewitt (1998), Kaput (2008) himself, and others adopting this
perspective emphasise the applicability of algebra as a tool for what Kieran (1996)

described as the global, meta-level, mathematical activities.

To address the second factor, the confusion of algebraic thinking and algebraic activity,
| present Hewitt’'s (1998) problem of counting an array of matchstick-squares (Figure

3.1.4.1).

Figure 3.1.4.1 The matchstick-squares array

L (] [ ¢ ¢ ¢
? [ ¢ ¢ [ [ ]
-9 . . L ,
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—o — —a ® ®

(Adapted from Hewitt, 1998, p. 19)

Hewitt (1998) argues that to count the matchsticks economically a student would
need ‘to work algebraically’ (p. 20). This means engaging in a systematic, organised
way of counting, which may lead to the determination of the number of matchsticks in
hypothetical arrays (without even seeing them). | agree with Hewitt (1998) that such
an activity requires algebraic thinking because it involves the generalisation of a rule

that goes beyond the first few cases (Dienes, 1961).
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Now, consider two students, S1 and S2, where S1 has not yet learnt about algebraic
notation (expressions with literal symbols) and S2 has. S1 may reason algebraically
that the rule to count the matches is equal to the addition of 5 times one more than the
number of square rows (horizontal matches) and 6 times the number of square rows
(vertical matches). S2 may make the same deduction but then moves on to write the
formula n = 5(r + 1) + 6r, where n is the number of matchsticks in r square rows. S2
has an advantage over S1, not only due to the use of notation as verbal shorthand
(Skemp, 1971) but also due to the possibility of transforming the formula into a more

simplified form, suchasn = 11r + 5.

Undoubtedly, both schools of thought about the definition of algebra would consider
S2 as being engaged in an algebraic activity. However, albeit thinking algebraically,
S1 may not be regarded by proponents of the narrow definition of algebra as being
engaged in an algebraic activity because s/he is not engaged in any syntactically
guided reasoning and her/his generalisations are not expressed in conventional
symbol systems (Kaput's 2008, core aspect (i)). If S1 learns that one can arbitrarily
represent (Hewitt, 1999) a variable by a letter and becomes comfortable with this use
of letters, there would only be one thing left to learn in order to reach the level of S2:
the convention of transformational activities (Kieran, 1996) which may be used to

change the formula into a more convenient one.

Nevertheless, both students are engaged in generational activities (Kieran, 1996). To
me this is a necessary and sufficient condition for algebra and, in this respect, | tend
to side with those taking a broad definition of algebra. At the same time, | would agree
with a proponent of a narrow definition who argues that S2’s thinking and activities are
not at the same level as those of S1. However, while differentiating between the two
students’ thinking and activities, | maintain that both are engaged in algebra. This is
possible by introducing some “new” nomenclature. In Table 3.1.4.1, | propose such
nomenclature which | define by using Hewitt's (1998) matchsticks array example. This
nomenclature and its definition will attest to my own perspectives about algebraic

thinking and activity, and will be used in this write-up.
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Table 3.1.4.1 Solely-arithmetic, informal-algebraic, and formal-algebraic thinking and
activities

Count the number

Count the number of

Count the number of

Task—  of matchsticksina  matchsticks in a matchsticks in a
3 X 5 squares array 4 x 5squaresarray 100 X 5 squares array
Solely- “I will count the “I will continue to count  “I will continue to count
arithmetic ~ matchsticks one by the matchsticks one by  the matchsticks one by
Learner thinking—  one. So...” one after 38. So...” one after 49. So...”
#1 Solely-
arithmetic 1,2,3,..,38 39,40,41, ...,49 50,51,52,...,1105
- Answer: 38 Answer: 49 Answer: 1105
activity—
“l will again use “| notice that | am
“ will use multiplication to do the  multiplying 5 by one
Informal- multiplication to count  same thing, just adding more than the number of
algebraic  the horizontal and another line of square rows, and 6 by
Learner thinkihg—  then the' vertical horizontals and the number of square
matchsticks. So...” another row of rows, and then adding
#2 verticals. So..." the results. So...”
Informal- 5x4+6x3 5X5+6X4 5x 101 + 6 x 100
a|gebraic 20+ 18 25+ 24 505 + 600
activity— Answer: 38 Answer: 49 Answer: 1105
bL6t nurgber OLrOW? “The number of “| will use again the
Formal- © 7 and numoer o columns is unchanged ~ same formula. However,
. matchsticks be n. . . .
algebraic Then 7 is 5 fimes so | will use again the | can simplify the formula
thinking— r+ 1 added 0 6 same formula. This and then substitute r =
Learner . . , timeris4,so...” 100 afterwards, so...”
times r.ris 3, so...
#3
n=5r+1)+6r n=5r+1)+6r n=5r+5+6r
Formal- n=5A4)+6(3) n=5()+6(4) n=11r+5
algebraic n=20+18 n =25+ 24 n=11(100) + 5
activity—

Answer: n = 38

Answer: n = 49

Answer:n = 1105

Table 3.1.4.1 gives hypothetical thinking processes of three learners, #1, #2, and #3,
and the corresponding activities involved in solving the problem of counting the number
of matches in an r X 5 matchstick-squares array (where r is the number of rows). The
learners are required to find the number of matches in 3 x5, 4 x5, and 100 X 5

matchstick-squares arrays. The learners are assumed to think and act as follows:
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#1. Solves the problem without any attempt to be economical, i.e. without trying to
organise the counting in a way that can be feasible for large arrays. | am
naming this kind of thinking and activity as solely-arithmetic;

#2. Solves the problem by attempting to organise the counting by the use of
multiplication and addition operations. | am naming this kind of thinking and

activity as informal-algebraic;

#3. Solves the problem by using standard algebraic syntax through the use of
letters to stand for variables. This learner uses a formula to substitute
respective values for the number of rows (r) and obtaining a value for the
number of matchsticks (n), and also simplifies the formula by manipulating the

terms in r. | call this kind of reasoning and working formal-algebraic.

One can find similar terms in the literature. Van Amerom (2003) uses the terms formal
and informal strategies of students when solving equations. However, she reserves
the term “informal” for strategies which she claims to be arithmetical. So, although she
uses terms like ‘formal algebraic approach’ (p.67) to denote the standard
manipulations of equations, she never uses the term “informal algebraic”. Linchevski
(1995, p. 114) uses the term ‘formal algebra’ to denote what | mean by formal-algebraic
thinking and activity, including Kieran’'s (1996) generational and transformational

activities.

In the solely-arithmetic, informal-algebraic, and formal-algebraic thinking cells | am
including hypothetical, typical thoughts about problem-solving strategies, including
typical representations of those planned strategies. The reasoning and working of each
case are hierarchical in nature, and | assume that students may progress from #1 stage
to #3 stage. This assumption is backed by literature which attests to the possibility of
such a successful transition (classically referred to as the arithmetic-to-algebra

transition) if teachers address particular learner needs (e.g., Kieran, 2004).

There are a number of observations to be drawn from Table 3.1.4.1:
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(i)

(iii)

(v)

The use of “solely” in the term “solely-arithmetic” carries an implicit suggestion
that in subsequent reasoning and activities arithmetic may still be present.
Going by Hewitt’s (1998) contention that arithmetic is about getting answers, |
do not exclude that the utilitarian arithmetical aim of obtaining an answer at the
end of a series of problem-solving steps will still prevail in most, if not all,
mathematical thoughts and actions.

In line with RC, | believe | have ‘no direct access to the knowing or thinking of
others’ (Ulrich et al., 2014, p. 329) so the phrases within quotes shown in the
“thinking” sections of the table are only second-order models (Steffe et al.,
1983) of possible conceptual processes of each learner.

Type #2 learners cannot simplify their numerical formula since they are not
operating on the unknown and this makes their thinking and activity less
economical than #3. This is one of the factors which places informal-algebraic
at a lower hierarchical level than formal-algebraic.

Mason (2008) defines an algebraic solution as the one which reveals similarities
in structure. This is in line with my definition of informal- and formal-algebraic
reasoning because both methods lend themselves well to revealing patterns in
the data. Mason brought evidence to show that some learners are initially more
inclined to apply arithmetical techniques to solve problems. The methods used
by such learners are unstructured as shown in the solely-arithmetic thinking and
activities of Table 3.1.4.1. These are bound to become more laborious as
numbers get larger. Informal- and formal-algebraic thinking are more
economical. Gattegno (1986, p. 43) says that, ‘in algebra...one thought process
is placed upon another precisely for the purpose of performing more for less’.

Schools of thought which demarcate arithmetic from algebra, usually promote
the need for “pre-algebra” courses such as those given in the US in middle
school (around Grade 7). According to Linchevski (1995, p.119), pre-algebra
is ‘a stage of transition from the environment of arithmetic to that of formal
algebra’. Linchevski and her team identified a number of areas to be addressed
in pre-algebra courses. These fall under the category | call informal-algebraic
activities but, as Linchevski suggested, they also include formal-algebraic
aspects, such as the introduction of literal symbols (e.g x or 3x) to stand for
unknowns and variables in simple equations.
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Without entering into the debate about the best time to introduce formal-algebraic
activities in schools, | use this model to propose that these can only occur if learners
have mastered thinking and working at the informal-algebraic level, and that the latter
requires a basis of arithmetic. Specifically, for a successful transition through these
levels learners need to be helped to develop concepts about:

(

(i)  properties of addition and multiplication and their inverses,

) ordinal and cardinal numbers,

(iii)  numerical expressions as processes of operations,
(iv)  numerical expressions as singular mathematical entities,
(v) literal symbols to denote unknowns and variables, and

(vi)  substitution of letters for numbers and vice versa.

() is needed for solely-arithmetic, (i)—(iv) are needed for informal-algebraic, and (i)—(vi)
for formal-algebraic. All concepts involve the interpretation and representation of
notation. As | presently discuss with reference to the literature, notation is particularly
crucial in determining the success or otherwise of learners’ engaging in meaningful

informal- and formal-algebraic reasoning and activity.

Like many other school curricula, the Maltese mathematics curriculum leaves formal-
algebraic activities to be introduced at the start of the secondary school. One of the
concerns | sought to address in my research was how children in their first year of
secondary school (Grade 7), particularly those who did not perform well in past
mathematical assessments, can be introduced to formal-algebraic reasoning and
activities. Given my assumption that success at one level depends on success at the
preceding level, | also needed to address these children’s informal-algebraic
reasoning. Research shows that this reasoning may be the origin of most difficulties
that secondary students have in their learning of formal algebra, to which the next
section is dedicated.
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3.2 Algebra Difficulties

A review of the literature seems to point out five major areas of difficulties that children
find in school algebra:

(i) Solving equations (e.g., Filloy & Rojano, 1984, 1989; Herscovics &
Linchevski, 1991, 1994; Kieran, 1988; Gallardo & Rojano, 1988; Wagner,
1977);

(i)  Manipulating algebraic expressions (e.g., Booth, 1984; Sleeman, 1986;
Borg 1997);

(iii)  Solving problems (e.g., Bishop, Filloy, & Puig, 2008; Clement, 1980,1982;
Clement, Lochhead, & Monk, 1981; Kieran, Booker, Filloy, Verghaud, &
Wheeler, 1990);

(iv) Conceptualising literal symbols (e.g., Kichemann, 1981; Booth, 1984,
1988);

(v) Interpreting answers (e.g., Collis, 1974; Davis, 1975; Sfard & Linchevski,
1994; Booth 1988).

| discuss each of these difficulties in the subsections that follow.

3.2.1 Difficulties in Solving Equations

The solution of equations has been one of the common focus areas where researchers
investigated algebra difficulties. For instance, Linchevski and Herscovics (1996) found
that Grade 7 students had difficulties in solving one variable equations with more than one
term containing the unknown, such as 89 —5n =7n+5. Such equations required
students to operate on the unknown. The researchers reported that there were some

recurring mistakes, even after a series of lessons. These were:

(i) detaching a term from the indicated operation, such as simplifying

10n — 5n + 3n by working out 10n — (5n + 3n),

(ii)  jumping off from a term with the posterior operation, such as grouping the n

terms in the equation 19n + 67 — 11n — 48 = 131 as 30n, and
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(iii)  being unable to select the appropriate operation for the partial sum in an
equation, such as grouping the numerical terms in the equation

19n + 67 — 11n — 48 = 131 correctly, i.e. 19, and writing —19 instead of +19.

Although Linchevski and Herscovics (1996) concluded that these mistakes were due
to an insufficient preparation in arithmetic, it seems that their participants did not lack
the skills required to add or subtract but they were misinterpreting the algebraic syntax

and hence this was more a problem of notation interpretation.

Similar errors were found by Kieran (1988) when investigating Grade 8-11 students’
solutions of linear equations. Students made computational errors due to a misuse of
positive and negative numbers. Other errors were caused by students’ reluctance to
divide a number by a larger number. Kieran (1988) identified problems in arithmetic,
particularly in students’ understanding of integers and fractions. Similar arithmetical
problems were found in 12- to 13-year-old students’ solution of equations (Gallardo &
Rojano, 1988) where students had trouble working with and interpreting negative
numbers. Likewise, in Chaiklin and Lesgold’s (1984) study, students were found to be
unable to judge the equivalence of expressions like 685-492 + 947 and 947-492 + 685
without recourse to computation. Students’ failure to see the possibility of swapping
the first and last numbers indicates a limited interpretation of the numerical expression

and hence, also a problem of notation.

In studies involving the use of letters, problems due to interpretation of notation were
reported more explicitly. In a study with 12- to 17-year olds, Wagner (1977) found that
some learners had not yet developed concepts about what the letter in an equation
stood for. When she asked participants whether the equations w + 22 = 109 and
n+ 22 = 109 would yield different solutions, some of them said that the solution of the
first one is greater than the second because w comes later than n in the alphabet.
Others said that they could only know when they solved the equation. Similar findings were
reported by Steinberg, Sleeman, and Ktorza (1991) who presented Grade 8-9 students

with a list of pairs of equations such as:
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e x+2=5andx+2—-2=5-2;

e 3x=5+4and3+x=25;

Steinberg et al. (1991) found out that almost half of the Grade 8 students and even
some of the Grade 9 students generally gave an incorrect reason to judge the
equivalence of equations. The researchers claimed that these reasons show
misunderstandings of basic concepts, like not distinguishing between 3x and 3 + x.
Such misconceptions may be attributed to students’ misinterpretation of formal-
algebraic notation rather than concepts of multiplication or addition. In spoken
language “and” and “plus” usually represent the same meaning and hence learners
may consider the expression ab (linking a and b) to mean the same as a + b (Tall &
Thomas, 1991, Stacey & MacGregor, 1994). Radford (2000) argues that studies about
symbolic expressions should not only investigate learners’ interpretations but also what
notation enables learners to do. For some students in Steinberg et al.’s (1991) study,
notation was a barrier, rather than an enabler, when these students worked with

expressions or equations.

3.2.2 Difficulties in Manipulating Algebraic Expressions

Difficulties in algebra were also reported in learners’ manipulations of algebraic
expressions. Most errors seemed to stem from learners’ overgeneralisations of certain
rules, constructing what Sleeman (1986) called mal-rules, like applying the distributive

property also in exponentiation over addition, e.g. (x + y)? = x2 + y2.

Similarly, Matz (1980, p. 95) found that students used ‘extrapolation techniques...to bridge
the gap between known rules and unfamiliar problems,” such as applying the cancellation
property in % =% to the expression g, simplifying the latter to %. The mal-rules
(Sleeman, 1986) behind such misinterpretations were therefore overgeneralisations
of conventional rules that students had previously learnt. Such errors usually occur due
to failure of correctly constructing structure sense (Linchevski & Livheh, 1999, 2002),

i.e. the conceptualisation of expression structure, rendering them errors of notation
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interpretation. The rules behind the conceptualisations of such structures may be
difficult for learners to grasp, especially when they are not visually salient (Kirshner &

Awtry, 2004). For example, reading from left to right:

w w w WZ+Xx
Ixl=2 and —+X= Y
X Z XZ X Z

XZ

one may easily remember the first identity because all that needs to be done is to
conjoin the numerators and the denominators, which makes the rule visually salient.
The lack of visual salience in the second identity means that learners require more
effort to conceptualise structure sense of the expression on the right and its

equivalence to that on the left.

In a study with a group of 15-year-olds at Grade 11 (Borg, 1997), | found that students
had similar difficulties when changing the subject of formulae. Students’ mal-rules
(Sleeman, 1986) were not just caused by mistaken extrapolation techniques (Matz
1980). My participants were observed to overgeneralise equation transformation
techniques which revealed themselves to be little more than blind memorisation of rules
without reason (Skemp, 1971). One such technique was the change-side-change-sign
rule, a one-step shortcut of cancelling a term by applying the inverse operation and

balancing out the equation. A typical mistake | identified was that done by one student

(S16) who transformed L + E = (VP)? into % = V. He reasoned that ‘we skipped it

[meaning P?] over the equals so that V becomes by itself and from P-squared it became
square root of P’. (Borg, 1997, p. 123). Like many others, even from another school, this
student reasoned that just like a positive term becomes negative, and multiplied term

becomes a divisor, then something which is squared becomes square-rooted on the other

side of the equation. A similar mistake was transforming b = %a + %c into 1L/ =a+ %c,
/2

a mistaken application of the change-side-change-sign rule.

Other misinterpretations in the Borg (1997) study were due to actions that students
were accustomed to take when they encountered particular notation. For instance, it
was evident that most students saw the brackets symbol as code for “expand”. Most

students expanded the brackets of the formula n = (mc —r)? as a first step towards
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bringing r the subject of the formula, which made the formula unwieldy to handle when
expanded correctly. These students were interpreting the brackets as a process to be
performed and did not seem to view (mc —r) as a unified object. Again, this is a
notation interpretation problem, this time stemming from the product-process dilemma
(Sfard & Linchevski, 1994) which will be discussed later.

3.2.3 Difficulties in Solving Problems

Apart from the difficulties mentioned above, word problems present learners with
another hurdle: the translation from words to an algebraic statement. Bishop, Filloy,
and Puig (2008) stated that this is the primary source of difficulty for students in solving
algebraic word problems. It involves understanding the problem, examining the
relationships between variables, assigning variables, and expressing the relationship
in algebraic syntax which includes the variables, the constants, operational notation,
and relational notation (usually the equals sign). Bishop et al. claimed that students’
difficulties in translating from natural language to algebra and vice versa was one of

the main difficulties that generally arose in such situations.

During a series of video-recorded interviews, Clement (1980) became aware that even
college science students experienced this difficulty. In a large-scale study with
freshmen engineering majors, Clement, Lochhead, and Monk (1981) found that
approximately 40% of the students made mistakes when creating formulae from
statements involving ratios between two variables. The most quoted example of such
statements was: There are six times as many students as professors. Taking S and P
to denote the number of students and professors respectively, many students
converted this into 65 = P. Clement et al. (1981) identified two sources for this error.
The first was what Paige and Simon (1966) referred to as syntactic translation, a literal,
direct mapping of the words from English language to algebraic syntax. The second
was what Clement et al. (1981, p.288) referred to as the ‘the “static-comparison”
method’, where students would correctly interpret the statement and draw something
like that shown in Figure 3.1.2.1. The mistake would occur when the space between

the S-circles and the P-circle is translated into an equals sign.
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Figure 3.1.2.1 Static-Comparison

OJOIOIOIOIOMNG

Difficulties in transforming words to algebraic syntax (statements including letters)

usually make students resort to an informal-algebraic approach. Consider the problem:
When 4 is added to 3 times a certain number, the sum is 40. Kieran, Booker, Filloy,
Vergnaud, and Wheeler (1990) reported that when students are left to their own
devices, they would find it simpler to find the unknown number by subtracting 4 from
40 and dividing by 3. If they were asked to form an equation in x (the unknown),
students would first need to represent the relationships in the statement, rather than
directly perform operations to find the answer. Mason (2008) argues that a formal-
algebraic approach may not seem viable for most students if all they require is to get a
computational result for a one-off problem.

3.2.4 Difficulties in Conceptualising Literal Symbols

Kieran (2004) stated that a letter in an algebraic statement, or a literal symbol, may
represent one of these concepts:

(i) avariable, such as x in ax? + bx + c;
(i)  an unknown, such as x in ax? + bx + ¢ = 0,
(iii)  a parameter (or coefficient), such as a, b, and c in the above examples.

Building on Usiskin (1988) and Kiichemann (1978), Philipp (1999) added four more
categories:

(iv) alabel, such as 3f = 1y to denote “3 feet make 1 yard”,
(v) aspecial constant, such as = and e,
(vi) ageneralised number, suchasaandbina+b =b + a, and

(vii)  an abstract algebra element, suchaseand xine*x = x
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Secondary students are expected to encounter and make use of (i) — (vi) and their
interpretation of literal symbols may make or break their success in formal-algebraic
activities. In a large-scale project with students in Grades 8 to 10, Kiichemann (1981)
identified six categories of students’ conceptualisations of literal symbols which he
presented in a hierarchical conceptual order.

Table 3.2.4.1 Kichemann’s hierarchy of students’ conceptualisations of letters

Interpretation Example

Letter Solve the equationa + 5 = 8.
Evaluated e g assigned random values — answer obtained by trial-and-error.
Letter Not fa+b=43,a+b+2 ="
Used e a+ b ignored — answer obtained by matching.
Letter as Blue pencils cost 5 pence each and red pencils cost 6 pence each. | buy some
Object blue and some red pencils and altogether it costs me 90 pence. If b is the
number of blue pencils bought, and  is the number of red pencils bought, what
can you write about b or r?
e b and r seen as labels — typical incorrect response: b + r = 90.
Letter as What is the perimeter of a shape where there are n sides altogether of length
Specific 2?
Unknown o " . :
e n s given a specific value — answer obtained by comparison.
Letter as What can you say about cifc + d = 10 and c is less than d?
Generalised Typical answer: “c can be 4, 3, 2, and 1.”
Number
Letter as Which is greater 2n or n + 2?
Variable

e Typical answer: “Depends. If n < 2 then 2n < n + 2.1fn > 2 then
2n>n+ 2"

The results of the Kiichemann’s (1981) research led to a follow-up project by Booth
(1984) who also investigated Grade 8-10 students’ interpretations of formal-algebraic
expressions. Misconceptions of literal symbols were common to those revealed by

Kichemann (1981). For example, a common conceptual error was that students
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interpreted letters as labels. A 15-year old student said that 3 + 5y could mean ‘eight
yachts’ (Booth, 1984, p. 28). Besides the interpretation of y as an initial letter of a word,
this statement shows problems in this student’s interpretation of the expression
structure. Booth (1984) also reported that some students thought that different letters
had to have different values. She also found out that 32% of the students did not make
the connection between the expression m + m + m and 3m and 49% did not recognise
that the expression 4m meant 4 X m. In addition, 31% said that since 2 lots of x is
written as 2x, then two lots of 7 may be written as 27. All errors identified by Booth

(1984) could be linked to a notational misinterpretation.

Items from Kichemann’s (1981) and Booth’s (1984) projects were reused in many
other research studies (e.g., Coady & Pegg, 1993; Trigueros & Ursini, 1999, 2003;
MacGregor & Stacey, 1997; Fujii, 2003; Hodgen et al., 2008). | will highlight two main
findings of these studies. The first is the disquieting conclusion by Trigueros and Ursini
(1999) that students did not seem to achieve better or fuller interpretation of literal
symbols as they progress through algebra courses. The researchers take this to imply
that ‘instead of promoting a deep understanding of variable and the development of
intuitive algebraic ideas, current teaching practices seem to obstruct them’ (p. 280).
The second is that one particular phenomenon stands out in all these studies: the
importance that context plays in determining the role of literal symbols (Wagner, 1981,
1983). This comes as no surprise, because context is crucial for the interpretation of
experiences. Mercer (2000) says that words gain meaning from the ‘company they
keep’ (p. 67). It seems that this statement can be extended to and must be stressed

for the use of literal symbols in algebraic syntax.

Given the difficulties learners encounter when interpreting and representing literal
symbols, it would seem almost inevitable that some difficulties may be found in
interpreting answers consisting of formal-algebraic expressions. This is discussed

next.

78



Chapter 3 Literature Review Part 2: The Nature and Learning of Algebra

3.2.5 Difficulties in Interpreting Answers

Replicating Kiichemann’s (1981) study in a large-scale survey with students in Grades
7-9, Hodgen, Kichemann, Brown, and Coe (2008) asked the following question:
If e+ f =8, then e+ f + g =? A student who had answered 8¢, gave the following
reasoning for his answer: ‘8¢ just seems like an answer...but 8 + g, you still think, "Oh,
what will it equal?"’ (Hodgen et al., 2008, p.39). This student’s response seems to
show difficulty of accepting lack of closure (Collis, 1974), i.e. accepting that formal-
algebraic answers may contain an operational symbol. Collis (1974) found that
beginning algebra students viewed expressions such as 8 + g or x — y as incomplete
due to their refusal to hold unevaluated operations in suspension. Collis (1974, 1975)
argued that success in algebra requires the perception of such expressions as

mathematical objects in their own right.

In their first encounters with formal-algebraic expressions, students often experience
what Tall and Thomas (1991) call the expected answer obstacle. Kieran (1981a)
argues that prior to their experience of literal symbols in algebra, learners become
accustomed to obtaining a single numerical answer and this leads them to expect the
same thing when working in formal-algebraic contexts. Booth (1984, p. 35) reported
what a student, Wendy, told her interviewer when she discovered that 11 x y was the
expected response: ‘I thought you wanted the answer.” Wendy experienced the name-
process dilemma (Davis, 1975) or, as it is sometimes referred to, the product-process
dilemma (Sfard & Linchevski, 1994). She interpreted the symbol x in the expression
11 x y only in terms of a process to be performed, and by “answer” (or product) she

probably intended a single term like 11.

Students usually settle the process-product dilemma by conjoining the two terms being
separated by the operator such as 8 + g = 8g (Hodgen et al., 2008) or 2a + 5b = 7ab.
Pimm (1987) reported that some teachers attempt to show that this is a mistake by
referring to 2a + 5b as 2 apples and 5 bananas. It turns out teachers themselves are
are making two mistakes here. Firstly, they are encouraging the notion of letters as
labels (Kichemann, 1981; Booth, 1984, 1988) which leads to structural
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misconceptions (Booth,1988). Secondly, as Pimm (1987) argued, students may be
actually encouraged to simplify 2a + 5b as 7ab, by thinking of a fruit bowl having 2
apples and 5 bananas as a fruit bowl having 7 fruits: 7 apples-and-bananas. Moreover,
conjoining letters to denote addition is conventional in non-mathematical contexts (e.qg.
in chemical equations). It is, thus, no exaggeration when Sfard and Linchevski (1994,
p.212) claim that ‘the transition from purely operational to a dual process-object

outlook is...likely to be a quantum leap’.

In the next section, | discuss the issue of notation, including the importance for students
to develop process-object notions of expressions and to extend their meanings of

familiar operational and relational symbols.

3.3 Notation as a Key Factor in Algebraic Activities

The literature seems to reveal three factors which are detrimental to formal-algebraic

thought and activities:

(i) A weak basis of arithmetic (e.g., Gallardo & Rojano, 1987; Linchevski &
Herscovics, 1996; Warren, 2003; Baroudi, 2006);

(i)  Areluctance or difficulty to express generality (e.g. Lee & Wheeler, 1987; Neria
& Amit, 2004; Mason, 1996; Cooper & Warren, 2008);

(i) A non-conventional interpretation and representation of notation (e.g. Booth,
1984; Kieran, 1981b; Kirshner, 1989; Borg, 1997; Van Amerom, 2003)

Students’ manifestations of difficulties in algebra discussed in Sections 3.2.1-3.2.5 may
be due to one of these issues. Furthermore, | argue that the interpretation and
representation of notation is key in addressing these difficulties. What researchers report

as problems in arithmetic or generality may be traced back to notation. For example,
consider the arithmetic problem 3 +7 = |:| + 3 and the generality x + y =y +x. To

answer 347 =[_ |+ 3, students need to know that the addition notation implies
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commutativity and that the equality notation signifies sameness. To develop such
informal-algebraic statements into the formal-algebraic generality x +y =1y +x,
students need, then, to learn that generalised numbers (Philipp, 1999) may be

represented by letters.

Adopting this argument, | observe problems of notation to permeate most of the
research reporting arithmetical problems. For example, Falkner, Levi, and Carpenter
(1999) presented 6™ graders with this problem: 8 + 4 = |:| + 5. All students wrote 12
or 17 in the box. Falkner et al. (1999) concluded that the students had a restricted

meaning of the equals sign, that of a unidirectional symbol indicating an operation to

be performed on the left with an answer to appear on the right asin 4 + 3 = |:| This
problem is extensively documented in the literature (e.g., Behr, Erlwanger, & Nichols,
1976; Kieran, 1981; Herscoviscs & Linchevski, 1994; Linchevski, 1995; McNeil et al.,
2006). This is actually a problem of notation since it stems from students’ limited
interpretations of a mathematical symbol, i.e. the equals sign. Another example of such
a problem was reported by Warren (2003). In a large-scale study, Warren asked 7t
and 8™ graders which of the signs +, —, X,and + could replace the symbol & in
statements such as 2#3 = 3#2. She found that some students considered subtraction

and division symbols to denote a commutative relationship.

Therefore, in order to progress from solely-arithmetic to informal-algebraic and formal-
algebraic thinking (Table 3.1.4.1), students need to develop concepts about notation,

namely:

(i) extend of the meaning of familiar “shape-symbols” (shapes, like (), which are

not numbers, letters, or standalone operators like + or X);
(i)  understand the properties of operational symbols, and
(i)  learn that an expression may represent both a process and an object.

These are elaborated in the subsections that follow.
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3.3.1 Extending the Meaning of Familiar “ Shape-Symbols”

Serfati (2005) distinguished between three features of mathematical symbols: the
materiality, the syntax, and the meaning. In this subsection, | discuss three symbols
whose materiality is a shape (hence “shape-symbols”) which need to take on a fuller,

more extensive meaning for progress in informal- and formal-algebraic thinking:
¢ the meaning of equality symbol or equals sign (ES),
e the use of division line of a fraction, and

e the use of brackets.

Extended Meaning of the Equals Sign

Studies about students’ notions of ES are well documented. In school mathematics,
ES is used to denote eight types of relationships. These are shown in Table 3.3.1.1,
where the first five were identified by Usiskin (1988) and the other three were added
by Jones and Pratt (2012).

Table 3.3.1.1 The several uses of the equals sign

Use of the Equals Sign Example
1  Equation with one unknown 2x+5=3x—-6
2  Relationship between two variables y=2x+3
3 Identity 2(x+4)=2x+8
4  Formula A=LW
5  Property 3+44=4+3
6 Indicator of a computational result 24+3=5
7 Function f(x)=3x-2
8  Substitution k=2
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Each of these applications of ES entails a spectrum of difficulty levels. For example,

use (8), substitution, may involve:
(i)  substituting a given value for a letter in an equation or formula,

(i)  choosing values and substituting them systematically in an equation to solve

one equation (trial-and-error), or

(i) using a trial-and-error method as in (ii) to solve a system of equations such as
that reported by Filloy, Rojano and Solares (2003) when studying secondary

students’ solutions of simultaneous equations.

Furthermore, each of the uses in Table 3.3.1.1 can take one or both of two meanings
of ES:

(i)  “results in” or “makes” (an operational view) and
(i)  “has the same value as” or “is the same as” (a relational view).

In order for students to progress through informal- and formal-algebraic reasoning they
need to be able to extend the meaning of ES towards a relational view (ii) which is
required for the formation of structure sense (Linchevski & Livneh, 2002) and for
generational and transformational activities (Kieran, 1996) involving equality

statements.

The research literature suggests that the most common conception that primary students
have of ES is that of an indicator of a computational result. Behr, Erlwanger, and Nichols
(1976) found that students in Grades 1-6 viewed ES as a ‘do something signal’ (p. 10).
Students got confused with equalities such as 3 = 3. When asked whether 3 = 3 made
sense, one student replied, ‘Nope ... you could fix that by going like this [changes 3 = 3
to 0 + 3 = 3] 0 plus 3 equals 3.” (Behr et al., 1976, p. 4). Like many others, to this student
ES should have followed an operation and should have been followed by the result of
that operation. When Falkner, Levi, and Carpenter (1999) asked a similar question
about 8 = 8, a 1t grader said, ‘Well, yes, 8 equals 8, but you just shouldn’t write it that

way.’ (p. 235). It seemed that while this student accept a verbal representation of the
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relational meaning of ES, she rejected a notational representation of the same

relational meaning.

Similar findings were reported by Behr et al. (1976). While students accepted verbal
representations like four plus five equals three plus six, they refused the validity of the
notational representation: 4 + 5 = 3 4+ 6, arguing that in writing, the left of ES must
contain a problem and the right of ES must contain the answer. One student argued
that, ‘if you went into writing you’d go like this [writes 4 +5 =9; 3+ 6 = 9] (Behretal.,
1976, p. 9). Such students would view the 3 + 6 on the right of ES as another problem:
it presented a lack of closure (Collis, 1974) rather than the single number they were

accustomed to write after writing ES.

Similarly, Ginsburg (1977) found that, in statements like 3 + 5 = 8, primary students
tended to interpret both + and = as operational symbols, the former as a signifier to
add the two numbers 3 and 5 and the latter as a signifier of what this addition makes.
This led students to finding it difficult to interpret equalities such as 3 = 3.

Furthermore, Ginsburg (1977) found that when he presented students with problems

like:[ ]=3+ 4, they said that it was written backwards. For students in Ginsburg's
study, ES should:

¢ indicate that an answer is going to be written (operational view), and

e be read from left to right (unidirectional view).

Students' conception of ES as an indicator of an operation to be performed on its left
and a single number to appear on its right has been widely reported (e.g., Kieran, 1979,
1981b; Herscovics & Kieran, 1980; Erlwanger & Berlanger, 1983; Herscoviscs &
Linchevski, 1994; Linchevski, 1995; Anenz-Ludlow & Walgamuth, 1998; Pillay et al.,
1998; McNeil et al., 2006). This should come to no surprise since the predominant use

of ES in primary schools is exactly that of an indicator of a computational result.

Given this restricted interpretation of ES, one may understand why some students may

write “false” equality statements (Kieran, 1981b) like 3 + 4 = 7 + 2 = 9. Such students
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see no errors in writing operations in the order in which they were being thought and
in keeping a running-total, a common pattern observed in primary school children’s
mathematics (Kieran, 1979). This pattern of reasoning and working was probably what

caused students in Falkner, Levi, and Carpenter’'s (1999) research to put a 12 in the

box when presented with the equality statement: 8 + 4 = |:| + 5. Given that arithmetic
is only concerned with getting a correct answer (Hewitt, 1998) one might almost
understand why some teachers fail to regard such statements as incorrect. In this way,
‘misconceptions about equality can become more firmly entrenched’ (Falkner, Levi, &
Carpenter, 1999, p. 233). Moreover, McNeil (2008) found that primary school teachers’
use of ES only for typical arithmetical problems may limit students’ meanings of ES to
an operational view. Falkner et al. (1999) argue that given the limited use of ES in
primary school, children are correct to think of the equals sign as a signal to compute.
On the other hand, informal- and formal-algebraic activities are concerned with
relationships (Scandura, 1971), and this points to the importance for students to

develop relational views of ES.

Nevertheless, it is still the convention to indicate the answer of a computation with ES
and therefore, unsurprisingly, students usually retain the operational meaning even
when they develop relational meanings of ES (McNeil, 2008; Rittle-Johnson et al.,
2011). Although late primary and early secondary students were found to exhibit
operational views of ES which sometimes hinder their understanding of higher-order
mathematics topics (Kieran, 1981b; Knuth et al., 2006; McNeil & Alibali, 2005b; McNeil
et al., 2006), they were sometimes found to simultaneously exhibit relational ideas
about equations in certain contexts (McNeil & Alibali, 2005a; McNeil et al., 2006) and
perform well when solving problems involving equivalence (McNeil, 2007). Rittle-
Johnson et al. 2011, p. 97) argue that, ‘describing children as having an operational or
relational view of equivalence is overly simplistic’. Rittle-Johnson et al. identified a
continuum of knowledge progression from a rigid operational view of ES to a
comparative relational view of ES. During this progression, students start developing
relational meanings of ES while retaining an operational view, as reported by McNeil
(2008).
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Research has shown that teaching aimed at helping students to extend students’
conceptions of ES had the desired impact for average-performing students (McNeil &
Alibali, 2005b; Rittle-Johnson & Alibali, 1999) and also for low-performing students
(Powell & Fuchs, 2010). These studies were not aimed at teaching students that an
operational view of ES is incorrect. What these studies suggest is, rather, that teaching
can and should help students to extend or elaborate their concept of ES (Herscovics

& Linchevski, 1994; Kieran, 2004) so that it incorporates the relational aspect.

Extended Meaning of Brackets and Division Line of a Fraction

The two other shape-symbols whose meanings need to be elaborated by students as
they progress through informal- and formal-algebraic activities are the division line of
a fraction and the brackets. Rubenstein (2008) stated that one of the major challenges
that mathematical symbols present is that the same mathematical concept may be
represented by more than one symbol. She said that algebraic activities require

students to start denoting divisions like 12 =+ 3 by 13—2 and multiplications like 3 x 4 by

3(4). Rubenstein (2008) said that besides having to learn new notation for familiar
operations (such as division and multiplication), students are faced with the challenge
of giving different meanings to the same shape-symbols. For example, 13—2 may denote
12 thirds and 12 divided by 3. Similarly, brackets may denote a multiplication, e.g. 3(4),
and a means to specify the order of operations, e.g. 12 — (5 + 3). In addition, a notation
like (3,4) may signify a point, an open interval between 3 and 4, and the vector
3i + 4j.

Anghileri (1995) pointed out that most students are accustomed to seeing a
computation such as 12 + 3 denoted by 3)12 which they sometimes read as 3 “divided
into” 12. Unsurprisingly, as Hewitt (2009) pointed out, students are confused in their

first encounters with the new notation of division. Students who were familiar with the

notion of 13—2 as being a mathematical object, a fraction, need to accommodate an

extension of its meaning to include 12 + 3 or 3)12 which to them is a process. As |

86



Chapter 3 Literature Review Part 2: The Nature and Learning of Algebra

presently discuss, it is crucial for students to learn that an expression like 13—2 Is indeed

both a process and an object (e.g. Gray & Tall, 1994).

Similar confusions arise when students first encounter concatenations such as 5n.
Herscovics and Linchevski (1994) showed that when asked to use the substitution
n = 2 in 5n students write 52 rather than 5(2) or 5 x 2. Moreover, due to their rejection
of lack of closure (Collis, 1974) students may want to “simplify” something like 5 + n

as 5n (Hewitt, 2012). In primary school, students learn that a mixed number like 53
means 5 +:. 1t probably causes a disequilibrium (Piaget, 1975) in their notational

schema when they learn that 5(2) means 5 x 2 and not 52.

This extension of meaning for the brackets notation may be a further complication for
some students who already have issues with the use of brackets. Kieran (1979) found
that children typically do not use the brackets because they think that the written
sequence of operations is what determines the order in which the computations should
performed. This was corroborated by Booth (1984) who found that 88% of the students
in her study failed to appreciate the need for brackets and so carried out the operations

in the order they were written.

Primary school teachers usually address the issue of order of operations by
teaching mnemonics like BIDMAS® (e.g., Headlam & Graham, 2009). Thus, before
starting to learn that brackets may signify multiplication, students may have become
accustomed to see the brackets as a prompt to work out what lies within them. This
may be one of the causes of their difficulty in accepting the lack of closure (Collis,
1974) of expressions such as 6(n + 2). Further on, when solving equations like
5(x +2) +4(2 — x) = 7 students are taught to expand the brackets before proceeding
with the transposition of the equation. This technique may lead to complications in

problems where expanding the brackets is counterproductive, such as bringing r the

5 Brackets first, then Index, Division and Multiplication, Addition and Subtraction
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subject of the formula in n = (mc — r)? (Borg, 1997). While striving to help students to
develop meaningful notions of notation, teachers need to be careful not to lead
students to think that a technique that is viable in one context will necessarily work in

another.

Extending concepts of familiar shape-symbols like ES, brackets, and division line is
necessary but not sufficient for informal- and formal-algebraic activities. Students also
need to develop concepts about the properties of operational symbols which are
usually used in conjunction with such shape-symbols in expressions. This is discussed

next.

3.3.2 Understanding the Properties of Operational Notation

Difficulties in informal- and formal-algebraic thinking and activities have been found to
stem from limitations in students’ knowledge about properties of operational notation.
Some of these limitations manifest themselves in mistakes or inefficient solutions when

solving problems.

Mistakes Involving Operational Notation Properties

| have already mentioned Warren’s (2003) study which revealed that some Grade 7
and 8 students thought of subtraction and division as commutative. This finding is not
uncommon especially for younger students (e.g. Carpenter and Levi, 2000). However,
what may seem as students’ overgeneralisation of the commutativity property may be
caused by other factors. Booth (1988) reported that some students used 3 + 12 and
12 + 3 interchangeably. Although this may have been due to students’ thinking that
division is commutative, Booth pointed out that this mistake could have originated from
students’ experiences of division where the larger number was always divided by the
smaller. Another reason could be that some students read divisions like 3)12 as “3
divided by 12” and give the (correct) answer of 4. Left untackled, such verbal
representations may be translated into expressions like 3 =+ 12, which may, in turn, be

interpreted as 12 + 3.
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Other problems which have been associated with students’ applying the
commutative property to subtraction were identified by Chaiklin and Lesgold (1984)
in their study with Grade 6 students. Students were asked to decide whether
expressions with three numbers were equivalent and made mistakes such as
thinking that 597 — 648 + 873 = 648 + 873 — 597. Besides thinking that subtraction
was commutative, these students may have been confused when transposing
operators along with numbers. Similarly Herscovics and Linchevski (1994) found that
half of the 7™ graders in their study failed to solve the equation 4 +n—2+5 =11+
3 — 5, where one common mistake was to group the numbers on the leftas 4 + n — 7.
Herscovics and Linchevski hypothesised that this may have been due to students’
failure to use commutativity of 4 4+ n to obtain (n + 4) — 2 + 5 and then associativity to
obtain n+ (4 —2)+ 5. However, this may also have been caused by students’
inexperience of negative numbers and the first operator in —2 + 5 did not make sense
to them and so their unary parsing was compromised. Another possible cause could
have been that these students had a tendency to group numbers in a calculation
without resorting to brackets (as reported by Kieran, 1979; Booth, 1984) and thus
interpreted —2 +5 as if they were —(2+5). Such mistakes in transformational
activities may sometimes be caused by failing to apply inverse properties correctly.
Gallardo and Rojano (1987) found that when solving equations like x + 1568 = 392
and 13x = 39 secondary students subtracted 392 from 1568 and divided 13 by 39

respectively.

Limitations of Application of Operational Notation Properties

Students’ inexperience in the use of operational notation properties does not always
translate itself into mistakes. Sometimes it leads to limitations when engaging in
informal- and formal-algebraic activities. Stacey and MacGregor (1997) found that
while students were confident in using commutativity, associativity, and inverse
properties in small whole numbers, they were unsure whether such properties applied
to unfamiliar numbers. | argue that if students confirm that 3 x 5 = 5 x 3 but are unsure
about 3.7 X 4.6 = 4.6 x 3.7, they may be engaged in solely-arithmetic thinking, i.e.

recalling the answer of each side of the first equation to verify equivalence. In the
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second equation, it would be difficult for them to compute each side, hence the
uncertainty. Unless students moved beyond such thinking and progressed to informal-
algebraic thinking, their concept of commutativity may not have been developed.
Likewise, Chaiklin and Lesgold (1984) reported that some students could not decide
about the validity of statements like 685 —492 4+ 947 = 947 — 492 + 685 without

computing each side.

Similar limitations were found with regards to other properties of operational notation,
such as associativity, distributivity, and inverse. In the Stacey and MacGregor (1997)
study, one student stated that she knew that division can be “undone” by multiplication
and knew that 18 + 3 x 3 = 18, but she was unsure whether the same applied for 16.
She argued that 16 =~ 3 = 5r1 and she did not think that 5r1 x 3 = 16. Again this
seems to imply that this student was resorting to computing operations in order, rather
than using the multiplicative inverse property.

Another type of limitation was that reported by Norton and Cooper (1999), where the

36+24

vast majority of Grade 9-10 students could not work out expressions like and

5 % (6 + 7) when they were not allowed to compute the addition first. The researchers
concluded that students did not seem to be aware that multiplication and division were
distributive over addition. However, it may have been that students felt that it was
unacceptable not to follow the BIDMAS rule, especially in the second expression.

Norton and Cooper’'s claim about students’ limitations due to associativity is more

convincing. Only a quarter of the students knew how to evaluate B+ ( A +7) given that

H+A=11.

The role that unfamiliar examples play in such investigations is crucial. In fact, what
might be reported as a limitation may be more of a hesitation due to unusual questions
or numbers. Carpenter and Levi (2000) found that while 15t graders were confident in
switching numbers in an addition to start counting from the largest, they failed to do so
when given very large numbers. Although this may have been due to a limited
development of the commutativity concept, it may also have been a matter of students

not being inclined to try out their technique with strange numbers.
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Teaching Aimed at Tackling Operational Notation Issues

There are two conclusions | draw from studies about operational notation. The first is
that teaching aimed at tackling operational notation issues such as the ones reviewed
above are bound to make a difference in students’ interpretations of notation. Pillay,
Wilss, and Boulton-Lewis (1998) found that while Grade 7-8 students had limited
understanding of commutativity and distributivity, Grade 9 students showed
competence in these concepts when solving linear equations. Pillay et al. (1998)
suggest that it may have been the very introduction to algebra (formal-algebraic
activities) which helped students to develop these concepts. Such activities shift
students’ attention from products to processes (Hewitt, 1998), something Dreyfus
(2002) insists is required for advanced mathematical thinking. After all, as Bruner

(1966) argues, knowing is a process not a product.

The second conclusion is that teachers need to be careful observers of their students’
representations if they want to form experiential models (Steffe et al. 1983; Glasersfeld,
1991Db) of their students’ conceptual constructions. They should ask students to read
mathematical statements and listen attentively to their verbal representations. As
Usiskin (1996, p. 236) says, ‘if a student does not know how to read mathematics out
loud, it is difficult to register the mathematics’. Teachers need to discuss with students
why 3)12 should not be read as “3 divided by 12”.

When reading students’ work, teachers should not just be after “correct” answers but
should strive to be the agents for the product-to-process shift (Hewitt, 1998). They
should give weight to seemingly minor mistakes like:
e keeping a running total (e.g. Kilpatrick et al., 2001; Vergnaud et al., 1979;
Kieran, 1979) like 74+ 3 =10+2 =12 and
e interpreting verbal representations incorrectly (e.g. Subramaniam & Banjeree,

2004) like writing 7 — x for “seven less than x” .

As Glasersfeld (1991b, p.178) maintains, ‘for constructivist teachers, successful

thinking is far more important than "correct” answers’.
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So far, | have discussed two important ways in which students can develop higher-
order concepts of notation:

(i) extending meanings of familiar “shape-symbols”, and

(i)  understanding the properties of operational notation.

The third issue is the one which, in my experience as a teacher, is quite difficult to

address. This is discussed below.

3.3.3 Proceptual View of Expressions

| have previously discussed how students’ errors in their interpretation of algebraic
answers (or expressions) may stem from their refusal to accept lack of closure (Collis,
1974). | have shown how students get confused when faced with the name-process
(Davis, 1975) or product-process (Sfard & Linchevski, 1994) dilemma and they usually
interpret expressions like x + 2 as a process (Kieran, 1979). Studies have repeatedly
shown that in order to engage in algebraic activities students need to be able to

interpret mathematical expressions both as a process and as an object.

The Process-Object Dilemma

Piaget (1975/1985, p.49) says that one important aspect of knowledge construction
occurs when ‘actions or operations become thematized objects of thought or
assimilation’. When explaining how mathematical schemas are formed, Piaget and
Garcia (1989, p. 105) explain that ‘after a process...the particular notion used becomes
an object of reflection, which then constitutes itself as a fundamental concept’. Building
on Piaget's theories, Dienes (1971) uses grammatical terms to explain how
mathematical processes become objects of other processes, saying that the object of
a predicate becomes the subject of another predicate. Davis (1975) builds on Diene’s
(1971) work and identifies what he called the name-process dilemma faced by students
when interpreting expressions. Davis (1984, p. 29) explains that ‘the procedure itself

becomes an entity - it becomes a thing. It, itself, is an input or object of scrutiny.’
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The conceptual reconstruction of an expression resulting from a process into a
mathematical entity is well documented in the literature, where different authors use
different metaphors to describe the process-object unification. The encapsulation
(Dubinsky, Elterman, & Gong, 1988; Ayers, Davis, Dubinsky, & Lewin, 1988; Dubinsky,
1991), reification (Sfard, 1989, 1991, 1992, 1995; Sfard & Linchevski, 1994),
integration operation (Steffe & Cobb, 1988), or entitication (Harel & Kaput, 1991) of a
process into a conceptual entity (Greeno, 1983) enables students to conceptualise a
string of mathematical symbols as both a process and a mathematical concept, or what
Gray and Tall (1991, 1994) called a procept.

Gray and Tall’s “Procept”

Most relevant for my study, is the work of Gray and Tall (Gray & Tall, 1991, 1993, 1994,
2001; Gray, 1991; Gray, Pitta, & Tall, 2000; Tall, Thomas, et al. 2000; Tall, Gray, et al.,
2001; Tall, 1991, 1994, 1995; Tall & Thomas, 1991) because they are the only ones
who regard notation to be key in avoiding having to decide between process and
object:
It is through using the notation to represent either process or product, whichever is
convenient at the time, that the mathematician manages to encompass both — neatly

sidestepping the problem.
(Gray & Tall, 1991, p. 73)

Gray and Tall (1991, p.73) give several examples where students can take a
proceptual view of notation, i.e. interpreting an expression as a process and an object
(or concept), such as:
e The process of counting all or counting on and the concept of addition (5 + 4
evokes both the counting on process and its sum, 9);
e The process of division of whole numbers and the concept of fraction (e.g. 3/4);
e The process of adding 2 to 3x and the concept of the resulting sum evoked by

the expression 3x + 2.
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Using data from Gray’s (1991) study with students of aged 7 to 12, Gray and Tall (1994)
showed that one characteristic which made some students able to progress through
higher-order problems was their development of a proceptual view of expressions. This
confirms the categories of thinking and activities | posited in Section 3.1.4, using the
matchsticks-array problem (Hewitt, 1998). Solely-arithmetic thinkers use only counting
to find the number of matchsticks and the task becomes more complicated as the array
gets larger. Informal-algebraic thinkers manage to encapsulate (Ayers et al., 1988)
repeated counting as multiplication. For them, 5 x 101 and 6 x 100 are respectively
the reification (Sfard & Linchevski, 1994) of the process of adding 5 for 101 times and
adding 6 for 100 times. However, informal-algebraic reasoning does not cater for the
entitication (Harel & Kaput, 1991) of the sum of these two products a process into a
single conceptual entity (Greeno, 1983). Formal-algebraic thinkers collapse the
algorithm for finding the number of matchsticks into one entity, i.e. the

expression 5(r + 1) + 6 or 11r + 5, an expression which they interpret proceptually:

(i) the process of multiplying 11 by the number of rows and adding 5, and
(i)  the concept of the number of matchsticks in an array of r rows.

It seems that progress from solely-arithmetic to informal- and formal-algebraic thinking
is possible by developing a proceptual view of notation and becoming flexible in

proceptual reasoning. Gray and Tall (1994) argue that:

The existence of flexible proceptual knowledge means not only that the number 5
can be seen as 3+ 2 or 2+ 3 but that if 3 and something makes 5, then the
something must be 2. In proceptual thinking, addition and subtraction are so closely
linked that subtraction is simply a flexible reorganization of addition facts.

(Gray & Tall, 1994, p. 125)

This implies that a well-developed proceptual view may require students to
acknowledge properties of operational notation, the absence of which may cause
difficulties in algebraic thinking, such as commutativity of addition (e.g., Chaiklin &
Lesgold, 1984; MacGregor, 1996; Warren, 2003) and additive inverse (e.g., Gallardo
& Rojano, 1987; Herscovics & Linchevski, 1994). Furthermore, a proceptual
interpretation of expressions is required for successful generational and
transformational (Kieran, 1996) algebraic activities.
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Extending the meaning of familiar shape-symbols, learning about the properties of
operational notation, and obtaining a proceptual view of expressions are as challenging
for students as they are crucial for the learning of algebra. Davis (1975, p. 29) says
that ‘many major cognitive adjustment are required...(to) start seeing the equal sign in
new ways, and even seeing % as an “answer” instead of a problem’. In the next section,
| discuss a possible way forward in helping students to make such cognitive
adjustments so that they can develop algebraic thinking skills and be successful in
algebraic activities.

3.4 A Way Forward: Use of Computers for Algebraic
Thinking

One of Kaput's long-term commitments to make mathematics accessible to all children
was to promote the dissemination of algebra throughout the K-12 curriculum. In his last
published work, Kaput (2008, p. 6) speaks about ‘the highly dysfunctional result of the
computational approach to school arithmetic and an accompanying isolated and
superficial approach to algebra’. Several researchers support this contention, not least
of which is Carraher who, together with his colleagues, argues for the inclusion of
formal-algebraic activities in primary curricula (Carraher, Schliemann, & Brizuela,
2000, 2001, 2006; Carraher, Schliemann, Brizuela, & Earnest, 2006; Carraher,
Brizuela, & Earnest, 2001; Carraher, Schliemann, & Schwartz, 2008). In Malta, like in
many other curricula, formal-algebraic activities only start at Grade 7 (DLAP Syllabus,
2014a). Nevertheless, Maltese primary mathematics teachers can still pay heed to
Kaput’'s (2008) criticism by engaging students in informal-algebraic activities where
they emphasise processes rather than products (Dreyfus, 2002) This was suggested
by National Council of Teachers of Mathematics (NCTM, 1998, 2000) and found to be
both possible and effective (e.g. Falkner et al., 1999; Carpenter & Levi, 2000; Hunter,
2015). Grade 7 teachers need to ensure that their students have had the opportunity
to engage in such activities before they introduce formal algebra. Further discussion of

such informal-algebraic activities is included below.
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34.1 Preparation for Formal-Algebraic Activities

Bell (1996) argues that a good preparation for formal-algebraic activities requires
students to have been given the opportunity to become fluent in handling notation. Along
the same lines, Boulton-Lewis et al. (1998) stress that students need to be given the
opportunity to develop concepts about several aspects required for formal-algebraic

activities including properties of operations and notion of the equals sign (ES).

Several researchers suggest that such preparation could be achieved through the kind
of arithmetic which does not just focus on answers but on strategies and concepts
involved in the process of getting those answers, in other words, informal-algebaic
reasoning and activities. Livneh and Linchevski (2007) refer to ‘arithmetic for algebraic
purposes’ (p. 217) and activities that are ‘algebra compatible’ (p. 219), such as those
where students focus on the order of operations, use of brackets, and interpretation of
ES. The authors reported that students were able to transfer informal-algebraic

structural knowledge to formal-algebraic contexts.

Such informal-algebraic activities were suggested by Fujii and Stephens (2001) who
devised a set of mathematical statements with numerical expressions which remain
true whatever numbers were used. For instance, a series of equations like
78 — 49 + 49 = 78 were meant to help students to develop concepts about additive
inverse. Such informal-algebraic statements would later lead to a the formal-algebraic
generality a—b + b =a. A study by Swafford and Langrall (2000) with Grade 6
students revealed the possibility of helping students to start making number
generalisations by writing informal equations to represent problem situations. Swafford
and Langrall demonstrated that students were able obtain a proceptual view of
expressions (Gray & Tall, 1994). Similar recommendations were made by Pillay et al.
(1998) who claimed that misconceptions they found in arithmetical knowledge (cited in
Section 3.3.2) pointed to the need to help students to develop concepts about

commutativity, distributivity, and the relational aspect of the equals sign.

96



Chapter 3 Literature Review Part 2: The Nature and Learning of Algebra

Such concepts are bound to be limited if students are not taught how to appreciate
processes and relationships rather than products and answers. My experience with
beginning Grade 7 students taught me that most students come with preconceived
notions that mathematics is all about finding answers, with little or no regard to the
methods applied to obtain those answers. This comes as no surprise, given that the
Maltese primary mathematics curriculum (DCM, 2014) assumes a computational slant.
As Balacheff (1986) warned, a curriculum which emphasises computation rather than
argumentation is bound to instil this kind of attitude in students because their main goal
iIs to achieve an answer rather than to construct mathematical knowledge for
themselves. Consequently, in mathematics curricula like ours, Grade 7 teachers need
to make sure that students appreciate notions like the ones discussed earlier before
introducing formal-algebraic tasks. In the following section, | will present information
and communications technology (ICT) as one possible way forward to help students to
appreciate mathematical relationships in order to make the journey to informal- and

formal-algebraic reasoning.

3.4.2 Use of Computers in Mathematics Teaching and Learning

Educational organisations, policy makers, and curriculum developers have been
reiterating the benefits of using ICT for mathematics teaching and learning (e.g. NCTM,
2000; DfES, 2004). In Malta, the integration of ICT in the teaching and learning of
mathematics has been taken very seriously. In the late 1990s, specific use of ICT was
put in requisition in the secondary level mathematics curriculum leading to the
Secondary Education Certificate (SEC) public examinations. Mathematics teachers
were required to use spreadsheets, dynamic geometry software, computer algebra
systems, and Logo. These requirements, which are still valid today (SEC Mathematics
Syllabus, 2017), were introduced almost concurrently with governmental policies
aimed to disseminate the use of ICT in schools. Policies in favour of embedding ICT in
teaching and learning were being adopted internationally towards the turn of the
century (e.g., Kankaanranta & Kangassalo, 2003; Fung & Pun, 2001; Bucky, 2000;
Sakamoto, 2003; Oldknow, 2006). In most European countries, core subject teachers

were and still are continuously encouraged, through central level recommendations, to
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apply a variety of ICT hardware and software in their lessons (EACEA/Eurydice, 2011).

Such recommendations and suggestions were, at least in part, spurred by studies

which suggested that ICT can bring about a positive change in the way school subjects

are taught and learnt.

Benefits of ICT Applications in Mathematics Education

Benefits of computer software applications for mathematics teaching and learning are

widely documented. One of the most reported claims is that ICT applications in

mathematics lessons help students to understand and perform better. In particular,

academic benefits were reported in all four types of computer software that have been

included in the Maltese mathematics secondary education curriculum:

(i)

(ii)

(iif)

(iv)

Spreadsheets were found to help students to deeply explore mathematical
concepts, construct multiple representations of a concept, and strive for
generality (e.g., Healy & Sutherland, 1990; Rojano, 1996; Sutherland &
Balacheff, 1999; Filloy, Rojano, & Rubio, 2000; Dugdale, 2001; Friedlander &
Tabach, 2001; Hershkowitz, et al., 2002; Ainley, Bills, & Wilson, 2004).

Logo (discussed in Section 3.4.3) was found to help students to develop more
analytic thinking skills, learn about geometric properties, generalise, learn about
variables, predict and test mathematical theories (e.g., Hillel & Samurcay, 1985;
Lehrer & Smith, 1986a, 1986b; Watson, 1993; Clements & Battista, 1997;
Clements and Sarama, 1997; Vincent, 2001).

Dynamic geometry software was found to benefit students in learning
geometric concepts, link dynamic visual representations of standard shapes,
construct rigorous Euclidean proofs, and appreciate the dynamic nature of
changing variables short of doing a field test (e.g., Vonder Embse & Yoder,
1999; Gerretson, 2004; Forsythe, 2007; Patsiomitou, 2008; Myers, 2009).

Computer algebra systems were found to give students the opportunity for
systematic exploration, prompting rich algebraic discussions (e.g., Shoaf-
Grubbs,1995; Penglase & Arnold, 1996; Drijvers, 2001, 2003; Pierce, Ball, &
Stacey; 2008; Cedillo & Kieran, 2003; Meagher; 2012).
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Apart from such academic gains, students have been reported to describe learning
mathematics with ICT as an enjoyable experience (Judah, 1999; Ramsay, 2001;
Scher, 2002; Lugalia, 2015). Mumtaz (2001) urged teachers to observe how children
enjoy playing computer games at home and to find ways how to use computers to
make learning resemble playing in a way as to ‘enable children to work on activities
they find valuable, motivational and worthwhile’ (p. 347, my emphasis). Heath (2002)
and Scher (2002) claimed that teaching mathematics with ICT has benefits for the

learners which they cannot gain with traditional teaching approaches.

These educational benefits are neither automatic nor unconditional. Kaput (1992)
elucidates four major principles that teachers and educational leaders need to follow if
the use of ICT in mathematics education is to be beneficial. These are elaborated
further by Hoyles and Noss (2007):

(i) Attend to representational infrastructure. Educators must seek to find ways how
ICT can represent mathematical ideas and help students who do not seem to

deal adequately with conventional representational systems.

(i)  Work for infrastructural change. The infrastructure of mathematical curricula
needs to be changed, otherwise teachers would simply treat ICT as an ill-fitted
add-on to the content they are required to teach (Borg, 2009). Computer
software itself needs to be adapted to the needs and goals of mathematics

educators and learners (Hoyles & Noss, 2003).

(i)  Outsource processing to the computer but attend to the implications.
Mathematics educators should outsource processing to ICT but reveal layers
(Hoyles & Noss, 2007) of calculation algorithms to help students to understand

the mathematical theories behind those procedures.

(iv)  Exploit connectivity to encourage sharing and discussion. ICT contributes to the
emergence of a cultural infrastructure (Hoyles & Noss, 2007), one where
students, teachers, and researchers share mathematical information and learn

from each other.
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Kaput's (1992) principles imply that ICT needs to be seen as a tool to bring reform and
innovation in both teaching approaches and learning experiences (Kirschner &
Wopereis, 2003), rather than to dress old teaching methods in new clothing. If ICT
does not bring a positive change in the way students learn, it is bound to be regarded
as expendable (Sutherland, 2005) and its use is likely to wane, especially when
curricular and time constraints make it difficult for teachers to use ICT in their lessons
(Borg, 2011). One of the main proponents of educational reform through ICT was

Papert, whose ideas and work is discussed below.

3.4.3 Papert, Logo, and Other Microworlds for the Learning of
Algebra

Together with colleagues and students at the MIT Artificial Intelligence Laboratory,
Papert developed Logo in 1967. Logo is a programming language best known for its
turtle graphics feature which was added by Papert in the later stages of its
development. This allows users to create their own drawings on the computer screen
by writing a series of commands. Papert (1993a)°® explains how Logo can be used by
students to learn mathematics, ‘for example the mathematics of space and movement
and repetitive patterns of action’ (p. 54). He envisaged Logo as a model how children
can learn through what he refers to as constructionist pedagogy. Papert and Harel
(1991) explain how constructionism adds to constructivism the idea that students learn
best when they create ‘a public entity, whether it's a sand castle on the beach or a
theory of the universe’ (p.1). According to Ackermann (2001), while Piaget’s
developmental theory tends to overlook the role of context and individual learning
needs, Papert’s constructionism lays particular emphasis on learning conditions and
circumstances. Papert’'s pedagogy also gives more importance to learning by doing. It
is therefore ‘both more situated and more pragmatic than Piaget's constructivism’

(Ackermann, 2001, p. 89, original emphasis).

6 Originally published in 1980.
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Almost idealistically, Papert (1993a, p. 182) depicts lessons with Logo as ‘alternatives to
traditional classrooms and traditional instruction’. For him, Logo is not a mere substitute
for conventional teaching but a model of an alternative teaching style, one which allows
students to learn by doing, by creating projects which make sense to them and which
they enjoy. For Papert, rigid linear school curricula do not really reflect children’s learning
preferences and patterns. Rather, he argues, learning takes place when learners
perform trials, errors, and improvements, a process he calls “debugging”, which is the

rule of the day when working with computer environments like Logo.

Like Dewey (1907), Papert (1993b) felt that the radical change he was expecting in
education did not seem to be happening. Papert (1993b, p. 2) lamented: ‘Why, through
a period when so much human activity has been revolutionized, have we not seen
comparable change in the way we help our children learn?’ There is a striking affinity
between this statement and Dewey’s (1907, p. 22) disillusionment about the lack of a
radical change in educational practices following the industrial revolution, when he
exclaimed: ‘That this revolution should not affect education in other than formal and
superficial fashion is inconceivable.” The onset of Papert’'s (1993a) ICT revolution
never occurred in schools. This was probably due to a stagnation in the educational
infrastructure (Kaput, 1992; Hoyles & Noss, 2007), as Papert (1998) himself
suggested. Nevertheless, there are research reports attesting to the educational

benefits of Logo which started to regain popularity in the mid-nineties.

Teaching and Learning with Logo

Logo was first introduced in schools in the early eighties. Major projects like the Logo
Maths Project in the UK (Sutherland, 1989) explored Logo’s potential to help children
in their constructions of mathematical concepts, namely the concepts of space and
variable. The benefits of Logo for teaching and learning geometrical concepts are
widely reported (e.g., Hoyles & Noss, 1988; Hoyles, Healy, & Sutherland, 1991;
Battista & Clements, 1988, 1991; Yusuf, 1994, Lehrer, Randle, & Sancilio, 1989;
Clements & Battista, 1989,1990, 1997; Lehrer & Smith, 1986a, 1986b; Watson, 1993).
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Nevertheless, Logo was also found to be beneficial for the development of algebraic
reasoning. Some studies attest to the power of Logo to enhance informal-algebraic
thinking. For example, Hoyles and Noss (1989) reported that students developed
additive strategies when using Logo commands. L