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Abstract	1 

Recent	studies	have	highlighted	the	influence	of	visual	cues	such	as	dot	size	and	cumulative	surface	2 

area	on	the	measurement	of	the	approximate	number	system	(ANS).	Previous	studies	assessing	ANS	3 

acuity	in	ageing	have	all	applied	stimuli	generated	by	the	Panamath	protocol,	which	does	not	control	4 

nor	measure	 the	 influence	of	convex	hull.	Crucially,	 convex	hull	has	 recently	been	 identified	as	an	5 

influential	 visual	 cue	 present	 in	 dot	 arrays,	 with	 its	 impact	 on	 older	 adults’	 ANS	 acuity	 yet	 to	 be	6 

investigated.	 The	 current	 study	 therefore	 investigated	 the	 manipulation	 of	 convex	 hull	 by	 the	7 

Panamath	 protocol,	 and	 its	 effect	 on	 the	 measurement	 of	 ANS	 acuity	 in	 younger	 and	 older	8 

participants.	 Firstly,	 analyses	of	 the	 stimuli	 generated	by	Panamath	 revealed	a	 confound	between	9 

numerosity	 ratio	 and	 convex	 hull	 ratio.	 Secondly,	 although	 older	 adults	 were	 somewhat	 less	10 

accurate	 than	 younger	 adults	 on	 convex	 hull	 incongruent	 trials,	 ANS	 acuity	 was	 broadly	 similar	11 

between	 the	 groups.	 These	 findings	 have	 implications	 for	 the	 valid	 measurement	 of	 ANS	 acuity	12 

across	 all	 ages,	 and	 suggest	 that	 the	 Panamath	 protocol	 produces	 stimuli	 that	 do	 not	 adequately	13 

control	for	the	influence	of	convex	hull	on	numerosity	discrimination.		14 

	 	15 
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Introduction	16 

The	 Approximate	 Number	 System	 (ANS)	 supports	 the	 imprecise	 representation	 of	 numerosity,	 as	17 

demonstrated	by	behavioural	and	neuronal	indicators	of	Weber’s	law:	i)	numerical	representations	18 

become	 less	 precise	 and	 more	 approximate	 with	 increasing	 magnitude	 (the	 size	 effect),	 and	 ii)	19 

discrimination	between	 two	numerosities	 becomes	more	difficult	 as	 their	 ratio	 approaches	 1	 (the	20 

ratio	effect)	(Dehaene,	1997;	Gallistel	&	Gelman,	2000;	Izard,	Sann,	Spelke,	&	Streri,	2009;	Piazza	&	21 

Izard,	 2009;	 Piazza,	 Izard,	 Pinel,	 Le	Bihan,	&	Dehaene,	 2004).	 The	 acuity	 of	 the	ANS	 is	most	 often	22 

measured	 with	 comparison	 tasks,	 whereby	 participants	 are	 shown	 two	 arrays	 of	 non-symbolic	23 

numerosities	 (e.g.	 dots),	 and	 asked	 to	 select	 which	 array	 is	 most	 numerous	 without	 counting.	24 

Comparing	performance	on	easier	and	harder	ratios	provides	evidence	for	the	ratio	effect.	However,	25 

the	 validity	 of	 such	 tasks	 in	 providing	 a	 pure	 measure	 of	 ANS	 acuity	 is	 contested,	 because	26 

participants	are	found	to	be	influenced	by	visual	characteristics	of	the	stimuli	 including	convex	hull	27 

(the	perimeter	around	a	dot	set,	sometimes	referred	to	as	“area	extended”),	average	dot	size,	and	28 

cumulative	 surface	area of	 the	dots	 (Clayton	&	Gilmore,	 2014;	Gebuis	&	Reynvoet,	 2012a,	 2012b,	29 

2012c;	 Gilmore,	 Cragg,	 Hogan,	 &	 Inglis,	 2016;	 Leibovich	 &	 Henik,	 2013;	 Szűcs,	 Nobes,	 Devine,	30 

Gabriel,	 &	 Gebuis,	 2013).	 It	 is	 generally	 accepted	 that	 when	 these	 visual	 characteristics	 are	31 

uncontrolled,	 i.e.	 the	more	 numerous	 set	 is	 also	 larger	 in	 terms	 of	 its	 non-numerical	 visual	 cues,	32 

participants	 may	 make	 their	 decisions	 using	 visual	 cues	 alone	 (e.g.	 by	 choosing	 the	 array	 that	33 

contains	larger	dots	on	average	compared	to	the	other	array),	without	engaging	the	ANS	(Gebuis	&	34 

Reynvoet,	2012a,	2012b).	Here	we	explore	how	these	visual	cue	characteristics	are	manipulated	in	a	35 

commonly-used	 programme	 to	 generate	 dot	 array	 stimuli,	 and	 how	 this	 impacts	 on	 numerosity	36 

judgements	across	the	lifespan.		37 

When	 creating	 dot	 array	 stimuli,	 researchers	 originally	 sought	 to	 address	 concerns	 about	 the	38 

influence	of	visual	cues	by	applying	controls	to	average	dot	size	and	cumulative	surface	area,	varying	39 

the	 relationship	of	 these	 visual	 cues	with	 the	number	of	dots	 in	 the	array	 (Abreu-Mendoza,	 Soto-40 

Alba,	 &	 Arias-Trejo,	 2013).	 For	 example,	 as	 described	 in	 the	 software	 guidelines	 for	 Panamath	41 

(Halberda,	Mazzocco,	&	Feigenson,	2008),	a	commonly	used	method	for	generating	stimuli	for	non-42 

symbolic	 numerosity	 comparison	 tasks,	 dot-size	 congruency	 is	 controlled	 by	 manipulating	 the	43 

cumulative	surface	area	of	the	arrays.	During	a	congruent	trial,	cumulative	surface	area	is	positively	44 

correlated	 with	 numerosity.	 The	more	 numerous	 array	 therefore	 has	 a	 larger	 cumulative	 surface	45 

area	 and	 a	 larger	 average	 dot	 size:	 cumulative	 surface	 area	 and	 dot	 size	 are	 both	 congruent	 to	46 

numerosity.	 During	 what	 we	 will	 term	 a	 matched	 trial	 (to	 reduce	 confusion	 between	 an	47 

‘incongruent’	 trial	 as	 defined	 by	 Halberda	 et	 al.	 (2008)	 and	 incongruent	 visual	 cues	 in	 the	 more	48 
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general	sense),	cumulative	surface	area	is	matched	between	arrays	in	order	that	the	less	numerous	49 

array	 has	 a	 larger	 average	 dot	 size:	 dot	 size	 is	 incongruent	 to	 numerosity.	 Finally,	 during	50 

anticorrelated	 trials,	 cumulative	 surface	 area	 (and	 therefore	 average	 dot	 size	 too)	 are	 negatively	51 

correlated	with,	and	so	incongruent	to,	numerosity	(Halberda	et	al.,	2008).	In	short,	only	dot	size	is	52 

incongruent	 to	 numerosity	 during	 matched	 trials,	 whereas	 during	 anticorrelated	 trials	 both	53 

cumulative	surface	area	and	average	dot	size	are	incongruent	to	numerosity.	The	application	of	such	54 

controls	has	varied	between	studies	using	a	range	of	protocols	to	generate	dot	arrays:	whilst	some	55 

have	 included	 congruent	 and	matched	 trials	 (Cappelletti,	 Didino,	 Stoianov,	 &	 Zorzi,	 2014),	 others	56 

have	compared	congruent	and	anticorrelated	trials	(Clayton,	Gilmore,	&	Inglis,	2015;	Gilmore	et	al.,	57 

2013;	 Hurewitz,	 Gelman,	 &	 Schnitzer,	 2006;	 Inglis	 &	 Gilmore,	 2014;	 Odic,	 Libertus,	 Feigenson,	 &	58 

Halberda,	 2013;	 Szűcs	 et	 al.,	 2013),	 with	 others	 using	 all	 three	 control	 conditions	 (DeWind	 &	59 

Brannon,	2012;	Fuhs	&	McNeil,	2013;	Keller	&	Libertus,	2015;	Rousselle	&	Noël,	2008)	or	matched	60 

trials	 alone	 (Gray	 &	 Reeve,	 2014).	 Varied	 methods	 of	 visual	 cue	 control,	 along	 with	 other	61 

inconsistencies	 such	as	display	 time,	number	of	 trials,	 and	numerosity	 ratio	 cause	problems	when	62 

comparing	ANS	acuity	across	studies	 (Clayton	&	Gilmore,	2014;	Clayton	et	al.,	2015;	Dakin,	Tibber,	63 

Greenwood,	Kingdom,	&	Morgan,	2011;	Dietrich,	Huber,	&	Nuerk,	2015;	Gebuis	&	Reynvoet,	2012c;	64 

Gilmore	et	al.,	2016;	Inglis	&	Gilmore,	2013,	2014;	Szűcs	et	al.,	2013).	65 

Several	authors	have	argued	that	during	 trials	with	 incongruent	visual	cues,	participants	must	 first	66 

inhibit	the	influence	of	those	visual	cues	in	order	to	perform	a	numerosity	judgement	(Cappelletti	et	67 

al.,	2014;	Cappelletti,	Pikkat,	Upstill,	Speekenbrink,	&	Walsh,	2015;	Clayton	&	Gilmore,	2014;	Fuhs	&	68 

McNeil,	 2013;	 Gilmore	 et	 al.,	 2013,	 2016).	 However,	 others	 find	 similar	 performance	 between	69 

congruent	trials	and	those	with	incongruent	visual	cues,	arguing	that	performance	on	ANS	tasks	does	70 

not	 require	 inhibitory	 control	 (Keller	 &	 Libertus,	 2015;	 Odic,	 Hock,	 &	 Halberda,	 2014;	 Odic	 et	 al.,	71 

2013).	This	is	important	when	considering	ANS	acuity	in	ageing.	Inhibitory	control	declines	with	age	72 

(Hasher	&	Zacks,	1988;	Kramer,	Humphrey,	Larish,	&	Logan,	1994):	if	incongruent	visual	cues	in	ANS	73 

tasks	 do	 indeed	 require	 inhibition,	 then	 older	 participants	 may	 be	 expected	 to	 show	 a	 greater	74 

decline	 in	performance	on	such	trials.	A	 limited	number	of	studies	have	 investigated	ANS	acuity	 in	75 

ageing,	with	some	examining	the	impact	of	congruency	effects.	Halberda,	Ly,	Wilmer,	Naiman,	and	76 

Germine	 (2012)	 investigated	 ANS	 acuity	 across	 the	 lifespan,	 concluding	 that	 acuity	 declines	 with	77 

increasing	age	beyond	30	years.	However,	it	is	difficult	to	draw	conclusions	from	this	study	regarding	78 

the	 impact	of	older	age	 for	 three	reasons.	Firstly,	participants	aged	45-85	were	categorised	within	79 

one	age	group,	due	 to	 the	 small	number	of	older	adults	 included	 in	 the	overall	 sample.	 Secondly,	80 

Figure	 3	 (p.11119:	 Halberda	 et	 al.,	 2012)	 demonstrates	 highly	 variable	 ANS	 acuity	 and	 several	81 

outliers	within	the	older	group.	Thirdly,	although	congruent	and	matched	trials	were	used,	whether	82 
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age-related	 decline	 may	 be	 attributable	 to	 poorer	 performance	 during	 matched	 trials,	 where	83 

inhibitory	control	may	be	required,	is	not	reported.	Indeed,	in	the	first	study	to	directly	investigate	84 

the	 impact	 of	 dot-size	 congruency	 on	 ANS	 acuity	 in	 ageing,	 Cappelletti	 et	 al.	 (2014)	 compared	85 

younger	 and	 older	 adults’	 performances	 on	 an	 ANS	 task	 based	 on	 the	 Halberda	 et	 al.	 (2008)	86 

Panamath	protocol.	Their	findings	initially	indicated	declined	ANS	acuity	in	older	age	(as	in	Halberda	87 

et	 al.,	 2012).	 However,	 separate	 analyses	 for	 performances	 on	 congruent	 and	 matched	 trials	88 

revealed	 that	 the	 older	 group’s	 acuity	 was	 only	 declined	 compared	 to	 the	 younger	 group	 when	89 

average	 dot	 size	 was	 incongruent	 to	 numerosity	 (matched	 trials).	 The	 authors	 concluded	 that	90 

seemingly	poorer	ANS	acuity	in	ageing	may	be	accounted	for	by	declined	inhibitory	control	(Hasher	91 

&	Zacks,	1988)	rather	than	deteriorated	approximate	numerical	skills.	In	short,	older	adults’	ability	to	92 

inhibit	the	influence	of	an	incongruent	visual	cue	(dot	size)	was	found	to	be	declined.	A	later	study	93 

by	 Cappelletti	 et	 al.	 (2015)	 administered	ANS	 training	 paired	with	 parietal	 stimulation	 to	 younger	94 

and	older	adults	to	investigate	whether	ANS	acuity	could	be	enhanced.	Acuity	was	similar	between	95 

groups	 at	 pre-training,	 with	 improvement	 in	 both	 groups	 after	 training.	 Crucially,	 older	 adults’	96 

stronger	ANS	acuity	post-training	was	driven	by	improved	performance	for	matched	trials	(i.e.	with	97 

incongruent	 dot	 size),	 which	 was	 related	 to	 smaller	 interference	 effects	 on	 traditional	 inhibition	98 

tasks.	Moreover,	older	adults’	 success	 in	 learning	to	 inhibit	non-numerical	magnitudes	on	the	ANS	99 

task	led	to	poorer	performance	on	tasks	assessing	the	discrimination	of	such	magnitudes	(e.g.	length	100 

discrimination).	 These	 findings	 further	 support	 the	 existence	 of	 an	 inhibitory	 component	 to	 ANS	101 

tasks,	 a	 finding	 which	 may	 be	 particularly	 evident	 in	 older	 adults	 due	 to	 age-related	 decline	 in	102 

inhibitory	control	(Cappelletti	et	al.,	2014;	Hasher	&	Zacks,	1988).	However,	another	study	using	the	103 

same	protocol	and	comparable	methods	found	similar	ANS	acuity	for	younger	and	older	adults,	even	104 

for	 matched	 trials	 (Norris,	 McGeown,	 Guerrini,	 &	 Castronovo,	 2015).	 It	 is	 likely	 that	 other	105 

methodological	differences	such	as	 the	use	of	 intermixed	vs	separated	dot	displays	contributed	to	106 

these	contradictory	findings	(see	Norris	&	Castronovo,	2016	for	evidence	of	the	impact	of	different	107 

stimuli	presentation	methods	in	younger	adults).		108 

Although	some	of	 the	 studies	 investigating	ANS	acuity	 in	ageing	have	examined	 the	 impact	of	dot	109 

size	congruency,	recently	the	influence	of	convex	hull	congruency	on	numerosity	discrimination	has	110 

been	emphasised	(Clayton	&	Gilmore,	2014;	Clayton	et	al.,	2015;	Gebuis	&	Reynvoet,	2012c;	Gilmore	111 

et	 al.,	 2016).	 Convex	 hull	 refers	 to	 the	 smallest	 possible	 perimeter	 that	 can	 be	 drawn	 around	 an	112 

array	(Graham,	1972),	and	may	affect	the	processing	of	numerosity	to	a	greater	extent	than	dot	size,	113 

even	when	convex	hull	and	numerosity	are	not	correlated	(Gebuis	&	Reynvoet,	2012c).	As	with	dot	114 

size,	 convex	 hull	 can	 be	 congruent	 (the	 more	 numerous	 array	 has	 the	 larger	 convex	 hull),	 or	115 

incongruent	 to	 numerosity	 (the	more	 numerous	 array	 has	 the	 smaller	 convex	 hull).	 Crucially,	 the	116 
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studies	 reviewed	 above	 which	 investigated	 ANS	 acuity	 in	 ageing	 did	 not	 investigate	 convex	 hull	117 

congruency	 effects,	 as	 they	 used	 stimuli	 generated	 by	 the	 Panamath	 protocol,	 which	 does	 not	118 

control	 for	 convex	 hull	 congruency.	 Clayton	 and	 Gilmore	 (2014)	 investigated	 how	 manipulating	119 

numerosity	 mediated	 the	 influence	 of	 visual	 cues	 on	 7-9	 year-olds’	 ANS	 acuity.	 As	 numerosity	120 

increased,	 performance	 declined	 due	 to	 the	 increasing	 interference	 of	 convex	 hull.	 However	 for	121 

smaller	numerosities,	performance	was	most	strongly	influenced	by	dot	size.	Therefore,	the	type	of	122 

visual	cues	used	by	participants	appears	to	be	mediated	by	numerosity	(Clayton	&	Gilmore,	2014).	123 

Crucially,	 below-chance	 performance	 during	 larger-numerosity	 trials	 demonstrated	 the	 greater	124 

influence	of	 convex	hull	over	other	visual	 cues.	 In	a	 further	 study,	 Clayton	et	al.	 (2015)	 compared	125 

ANS	 acuity	 when	 measured	 with	 two	 commonly-used	 protocols:	 Panamath,	 which	 controls	 total	126 

cumulative	 surface	 area	 in	 order	 to	 manipulate	 dot	 size	 (Halberda	 et	 al.,	 2008),	 and	 a	 script	 by	127 

Gebuis	and	Reynvoet	(2011)	which	controls	both	the	cumulative	surface	area	and	convex	hull	of	dot	128 

arrays.	The	authors	not	only	found	poorly	correlated	performance	between	the	protocols,	but	also	129 

diverging	 interactions	 between	 cumulative	 surface	 area	 and	 convex	 hull	 congruencies:	 for	 the	130 

Gebuis	and	Reynvoet	(2011)	paradigm,	accuracy	was	higher	for	convex	hull	incongruent	trials	when	131 

cumulative	surface	area	was	congruent	compared	to	when	it	was	incongruent.	However,	cumulative	132 

surface	 area	 did	 not	 significantly	 affect	 performance	when	 convex	 hull	was	 congruent.	 Therefore,	133 

convex	 hull	 congruency	 appears	 to	 influence	 numerosity	 comparison	 performance	 to	 a	 greater	134 

extent	 than	 cumulative	 surface	 area	 congruency	with	 the	 Gebuis	 and	 Reynvoet	 (2011)	 paradigm.	135 

Performance	was	also	enhanced	during	convex	hull	congruent	trials	on	the	Panamath	task.	However	136 

on	the	Panamath	task,	accuracy	was	higher	for	cumulative	surface	area	incongruent	trials	compared	137 

to	cumulative	surface	area	congruent	 trials	 regardless	of	convex	hull.	Finally,	Gilmore	et	al.	 (2016)	138 

demonstrated	that	although	dot	size	 influences	children’s	performance	on	an	ANS	task,	 this	effect	139 

decreases	 into	adulthood,	whereas	the	influence	of	convex	hull	remains	consistent	from	childhood	140 

to	adulthood.	These	findings	emphasise	the	 influence	of	convex	hull	during	ANS	tasks,	highlighting	141 

the	necessity	 to	 investigate	 the	effect	of	convex	hull	on	protocols	which	do	not	control	 it,	 such	as	142 

Panamath	 (see	 also	 DeWind	&	 Brannon,	 2016).	 Indeed,	 as	 performance	 on	 the	 Panamath	 task	 is	143 

significantly	influenced	by	convex	hull	(Clayton	et	al.,	2015;	DeWind	&	Brannon,	2016),	it	is	unclear	144 

to	 what	 extent	 previous	 findings	 of	 age-related	 decline	 in	 ANS	 acuity	 may	 be	 due	 to	 poorer	145 

performance	on	convex	hull-incongruent	trials.		146 

The	 influence	of	 convex	hull	 on	ANS	 acuity	 as	measured	by	 the	Panamath	protocol	 is	 therefore	 a	147 

timely	and	important	consideration	in	examining	the	inhibitory	components	of	ANS	tasks.	Moreover,	148 

as	 the	 studies	 to	 date	 investigating	 the	 impact	 of	 ageing	 on	 ANS	 acuity	 have	 all	 used	 stimuli	149 

generated	 by	 Panamath	 (Cappelletti	 et	 al.,	 2014;	 Halberda	 et	 al.,	 2012;	 Norris	 et	 al.,	 2015),	 a	150 
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protocol	 which	 does	 not	 manipulate	 nor	 measure	 the	 impact	 of	 convex	 hull,	 it	 is	 important	 to	151 

consider	 the	 influence	of	convex	hull	on	 the	conclusions	drawn	 in	 these	studies:	 that	older	adults’	152 

poorer	 inhibitory	 control	 leads	 to	 declined	 performance	 during	 dot-size	 incongruent	 trials	153 

(Cappelletti	 et	 al.,	 2014,	 2015).	 It	 is	 therefore	 necessary	 to	 examine	whether	 similar	mechanisms	154 

may	 shape	 the	 impact	 of	 convex	 hull	 congruency	 on	 older	 adults’	 performances,	 especially	155 

considering	recent	findings	indicating	that	convex	hull	constitutes	a	more	important	predictor	of	ANS	156 

task	 performance	 compared	 to	 other	 visual	 cues	 (Clayton	 &	 Gilmore,	 2014;	 Clayton	 et	 al.,	 2015;	157 

Gebuis	&	Reynvoet,	2012c).	Therefore,	the	primary	aim	of	the	current	study	was	to	further	examine	158 

the	nature	of	 the	visual	 cues	 in	 the	stimuli	generated	by	 the	Panamath	protocol,	with	a	particular	159 

focus	on	the	way	in	which	convex	hull	varies.	Secondly,	the	study	investigated	the	extent	to	which	160 

convex	hull	congruency	affects	ANS	task	performance	for	older	and	younger	adults.		161 

	162 
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Method	163 

Participants	164 

Forty	participants	were	recruited,	20	older	adults	aged	62-70	(14	females;	Mage	=	65,	SD	=	2.9)	and	20	165 

younger	 adults	 aged	18-24	 (16	 females;	Mage	 =	 20,	 SD	=	 1.8).	 Younger	participants	were	 recruited	166 

through	 the	Department	of	 Psychology	 at	 the	University	of	Hull	 and	 received	 course	 credit.	Older	167 

participants	 were	 recruited	 by	 the	 first	 author	 from	 the	 local	 community	 and	 participated	168 

voluntarily.	 The	 study	 was	 approved	 by	 the	 Department	 of	 Psychology	 Ethics	 Committee	 at	 the	169 

University	 of	 Hull.	 All	 participants	 were	 fully	 informed	 of	 the	 study	 aims	 and	 provided	 written	170 

consent.		171 

Screening		172 

Participants	 were	 screened	 at	 recruitment	 for	 a	 history	 of	 psychiatric	 disorder,	 depression,	 or	173 

abnormal	 vision.	 Older	 adults	 were	 administered	 the	 Mini	 Mental	 State	 Exam	 (MMSE:	 Folstein,	174 

Folstein,	 &	 McHugh,	 1975)	 with	 a	 score	 <27/30	 providing	 a	 cut-off	 for	 exclusion.	 The	 Geriatric	175 

Depression	Scale	(GDS:	Yesavage	et	al.,	1982)	was	administered	to	all	participants,	with	a	score	>5	176 

providing	 a	 cut-off	 point	 (as	 in	 Norris	 et	 al.,	 2015).	 No	 participants	 were	 excluded	 due	 to	 scores	177 

beyond	cut-off	on	the	MMSE	or	GDS.	178 

Procedure	179 

Approximate	 Number	 System	 acuity	 was	 measured	 using	 the	 downloadable	 Panamath	 software	180 

(Halberda	et	al.,	2008).	Two	spatially	separate	arrays	of	between	5	and	21	yellow	and	blue	dots	were	181 

presented	simultaneously	side-by-side	on	a	grey	background	for	200ms	(yellow	on	the	left,	blue	on	182 

the	 right),	 followed	 by	 a	 200ms	 backward	 mask	 of	 randomly	 distributed	 yellow	 and	 blue	 pixels.	183 

Participants	initiated	each	trial	using	the	space	bar,	and	were	asked	to	decide	which	array	was	more	184 

numerous	(yellow	or	blue).	Participants	responded	as	quickly	as	possible	without	sacrificing	accuracy	185 

using	 the	 ‘A’	 (yellow)	and	 ‘L’	 (blue)	keys,	which	were	covered	with	correspondingly-coloured	dots.	186 

The	 dot	 stimuli	 were	 generated	 with	 two	 within-subject	 factors:	 visual	 cue	 control	 with	 3	 levels	187 

(congruent	 [both	 cumulative	 surface	 area	 and	 average	 dot	 size	 are	 congruent	 to	 numerosity],	188 

matched	 [cumulative	 surface	 area	 is	 matched	 and	 average	 dot	 size	 is	 incongruent],	 and	189 

anticorrelated	[both	cumulative	surface	area	and	average	dot	size	are	incongruent]),	and	numerosity	190 

ratio	 bin	 with	 4	 levels	 (1.1-1.19,	 1.19-1.28,	 1.32-1.43,	 and	 2.28-2.47;	 ratio	 bins	 1,	 2,	 3,	 and	 4	191 

respectively).	 There	 were	 420	 trials	 in	 total.	 Convex	 hull	 size	 and	 convex	 hull	 congruency	 were	192 

calculated	post	hoc	for	each	trial	by	using	the	Graham	(1972)	scan	algorithm	on	screenshots	of	each	193 
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trial	as	generated	by	Panamath.	This	calculation	also	summed	the	total	number	of	yellow	and	blue	194 

pixels,	providing	a	measure	of	the	cumulative	surface	area	of	each	array.	195 
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Results	196 

We	 first	 report	 the	 visual	 characteristics	 of	 the	 stimuli	 generated	 by	 the	 Panamath	 protocol,	197 

followed	 by	 an	 examination	 of	 the	 impact	 of	 these	 characteristics	 on	 young	 and	 older	 adults’	198 

performance	on	the	ANS	task.	199 

Visual	characteristics	of	the	stimuli	200 

In	 order	 to	 control	 for	 the	 effect	 of	 visual	 cues,	 Panamath	 is	 designed	 to	 generate	 three	 types	 of	201 

stimuli:	 congruent	 (cumulative	 surface	 area	 and	 average	 dot	 size	 positively	 correlate	 with	202 

numerosity),	 matched	 (cumulative	 surface	 area	 is	 matched	 to	 numerosity,	 and	 average	 dot	 size	203 

negatively	 correlates	 with	 numerosity)	 and	 anticorrelated	 (cumulative	 surface	 area	 and	 dot	 size	204 

negatively	correlate	with	numerosity).	However,	when	we	calculated	the	cumulative	surface	area	of	205 

the	arrays	by	summing	the	number	of	blue	and	yellow	pixels,	we	discovered	that	the	matched	trials	206 

were	not	precisely	matched	 in	terms	of	cumulative	surface	area:	the	more	numerous	array	always	207 

had	 a	 greater	 cumulative	 surface	 area	 (mean	 pixel	 number	 difference	 =	 150,	 range	 =	 2-592).	208 

Therefore	 in	matched	trials,	cumulative	surface	area	was	actually	congruent,	even	though	 in	some	209 

cases	there	was	only	a	small	pixel-number	difference.	Consequently,	for	our	analyses	we	collapsed	210 

the	 three	 Panamath	 conditions	 (congruent,	 matched,	 and	 anticorrelated)	 into	 two	 (cumulative	211 

surface	 area	 congruent	 [congruent	 and	 matched]	 vs.	 cumulative	 surface	 area	 incongruent	212 

[anticorrelated]).1	213 

With	the	convex	hull	of	the	arrays	calculated	for	each	trial,	we	sought	to	investigate	to	what	extent	214 

the	 Panamath	 protocol	 produced	 equally-weighted	 convex	 hull	 congruent	 and	 incongruent	 trials,	215 

and	 how	 this	was	 affected	 by	 other	 factors	within	 the	 protocol	 (numerosity	 ratio	 and	 cumulative	216 

surface	area).		217 

Figure	 1	 depicts	 the	 relationships	 between	 within-subjects	 factors	 on	 the	 Panamath	 protocol.	218 

Numerosity	ratio	here	refers	to	(left	set/right	set),	rather	than	(larger	set/smaller	set)	as	defined	by	219 

Panamath,	 so	 that	 cumulative	 surface	 area	 ratio,	 convex	 hull	 ratio	 and	 numerosity	 ratio	 were	220 

calculated	in	the	same	manner.	The	correlation	between	convex	hull	ratio	and	numerosity	ratio	(r	=	221 

.720,	95%	CI	[.671,	.763],	p	<	.001)	demonstrates	a	confound	between	within-subject	factors	on	the	222 

Panamath	protocol:	convex	hull	ratio	increases	with	increasing	numerosity	ratio.	223 

	224 

                                                        
1	Analysing	the	data	with	the	original	three	levels	of	congruency	as	defined	by	the	Panamath	protocol	did	not	affect	the	
direction	or	the	significance	of	the	results.	
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(Figure	1	about	here)	225 

Moreover,	 an	 examination	 of	 the	 Panamath-defined	 numerosity	 ratio	 bins	 not	 only	 replicates	 the	226 

finding	that	convex	hull	ratio	(and	therefore	convex	hull	congruency)	increases	alongside	numerosity	227 

ratio,	but	also	indicates	that	all	trials	in	ratio	bin	4	had	a	congruent	convex	hull	(see	Table	1).	Indeed,	228 

convex	hull	was	congruent	for	the	majority	of	all	trials	(335/420).	229 

Table	1:	Number	of	 trials	 per	Panamath-defined	numerosity	 ratio	bin	 in	 the	 convex	hull	 congruent	230 

and	incongruent	conditions	231 

	232 

ANS	acuity	233 

The	 following	 analyses	 focus	 on	 accuracy	 as	 the	 dependent	 variable	 for	 ANS	 acuity,	 because	234 

accuracy	is	thought	to	provide	the	most	reliable	and	valid	measure	(Clayton	et	al.,	2015;	Guillaume,	235 

Gevers,	&	Content,	2015;	 Inglis	&	Gilmore,	2014).	As	would	be	expected	due	to	the	ratio	effect	on	236 

numerosity	 discrimination,	 there	 was	 a	 positive	 by-items	 correlation	 between	 accuracy	 and	237 

numerosity	 ratio	 (r	=	 .563,	 95%	CI	 [.494,	 .625],	p	 <	 .001).	 Next,	we	 investigated	 the	 effect	 of	 age	238 

group,	 cumulative	 surface	 area	 congruency,	 and	 convex	 hull	 congruency	 on	 accuracy.	 A	 mixed	239 

ANOVA	 was	 conducted	 with	 cumulative	 surface	 area	 congruency	 (congruent,	 incongruent)	 and	240 

convex	hull	 congruency	 (congruent,	 incongruent)	 as	within-subjects	 factors,	 and	 age	 group	 (older,	241 

younger)	 as	 a	 between-subjects	 factor.	 There	 were	 no	 main	 effects	 of	 cumulative	 surface	 area	242 

congruency	(F(1,	38)	=	3.185,	p	=	.082,	 2
ph 	=	.077,	BFinclusion	=	1.072)	or	age	group	(F(1,	38)	=	.628,	p	=	243 

                                                        
2	 The	 inclusion	 Bayes	 Factor	 compares	 the	 evidence	 in	 support	 of	 each	 effect	 by	 comparing	 across	 all	 possible	models	
including	the	effect	with	all	possible	models	without	the	effect.	This	was	calculated	in	JASP.	

	 Convex	hull	

Numerosity	Ratio	(Bin)	 Congruent	 Incongruent	

1.1-1.19	(1)	 71	 34	

1.19-1.28	(2)	 80	 25	

1.32-1.43	(3)	 79	 26	

2.28-2.47	(4)	 105	 0	
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.433,	 2
ph 	=	.016,	BFinclusion	=	0.48),	and	no	interaction	between	age	group	and	cumulative	surface	area	244 

congruency	 (F(1,	 38)	 =	 1.891,	 p	 =	 .177,	 2
ph 	 =	 .047,	 BFinclusion	 =	 0.50).	 However,	 accuracy	 was	245 

significantly	higher	 for	 convex	hull	 congruent	 trials	 (M	=	83.25%,	 SD	=	37.34)	 than	 for	 convex	hull	246 

incongruent	 trials	 (M	 =	 72.09%,	 SD	 =	 44.86:	 F(1,	 38)	 =	 258.190,	 p	 <	 	 .001,	 2
ph 	 =	 .872,	 BFinclusion	 >	247 

10^305).	 Moreover,	 convex	 hull	 congruency	 interacted	 with	 cumulative	 surface	 area	 congruency	248 

(F(1,	 38)	 =	 5.005,	 p	 =	 	 .031,	 2
ph 	 =	 .116,	 BFinclusion	 =	 2.28,	 as	 in	 Clayton	 et	 al.,	 2015):	 Figure	 2	249 

demonstrates	that	when	convex	hull	was	congruent,	performance	between	cumulative	surface	area	250 

congruent	(M	=	83.40%,	SD	=	37.21)	and	incongruent	trials	(M	=	83.10%,	SD	=	37.48)	was	similar	(p	=	251 

.604,	Cohen's	d	 =	 .012:	 LSD	pairwise	 comparisons).	However	during	 convex	hull	 incongruent	 trials,	252 

participants	 tended	 to	 respond	 more	 accurately	 when	 cumulative	 surface	 area	 was	 incongruent	253 

compared	to	when	it	was	congruent	(p	=	.038,	Cohen's	d	=	-.064).		254 

(Figure	2	about	here)	255 

The	interaction	between	convex	hull	congruency	and	age	group	was	significant	(F(1,	38)	=	4.328,	p	=	256 

.044,	 2
ph 	=	.102,	BFinclusion	=	1.02).	Although	accuracy	on	convex	hull	congruent	trials	was	similar	for	257 

the	younger	(M	=	83.22%,	SD	=	37.37)	and	older	groups	(M	=	83.29%,	SD	=	37.32;	p	=	.968,	Cohen's	d	258 

=	.002:	LSD	pairwise	comparisons),	younger	adults	outperformed	older	adults	when	convex	hull	was	259 

incongruent	 (younger:	 M	 =	 73.35%,	 SD	 =	 44.22;	 older:	 M	 =	 70.82%,	 SD	 =	 45.47),	 although	 this	260 

difference	 did	 not	 reach	 significance	 (p	 =	 .200,	 Cohen's	d	 =	 .056:	 LSD	 pairwise	 comparisons,	 see	261 

Figure	3).3	262 

(Figure	3	about	here)	263 

Finally,	 the	 interaction	between	cumulative	 surface	area	congruency,	 convex	hull	 congruency,	and	264 

age	group	did	not	reach	significance	(F(1,	38)	=	1.610,	p	=	.212,	 2
ph 	=	.041,	BFinclusion	=	0.67).	265 

                                                        
3	 In	 light	of	 the	evidence	 for	 the	 influence	of	convex	hull	during	numerosity	discrimination	 in	ageing,	we	reanalysed	the	
findings	 from	 our	 previous	 study,	 where	 ANS	 acuity	 was	 similar	 for	 younger	 and	 older	 adults	 regardless	 of	 dot-size	
congruency	(Norris,	McGeown,	Guerrini,	&	Castronovo,	2015).	Convex	hulls	were	calculated	using	the	Graham	(1972)	scan	
algorithm.	 Responses	 to	 convex	 hull	 incongruent	 trials	 (M	 =	 78.00%,	 SD	 =	 41.44)	 were	 found	 to	 be	 significantly	 less	

accurate	than	to	convex	hull	congruent	trials	(M	=	91.16%,	SD	=	28.40:	F(1,48)	=	231.077,	p	<	.001,	 2
ph 	=	.828).	Moreover,	

there	was	a	marginal	 interaction	between	convex	hull	congruency	and	age	group	(F(1,48)	=	4.017,	p	=	.051,	 2
ph 	=	.077),	

due	 to	 a	 tendency	 for	 poorer	 performance	 during	 convex	 hull	 incongruent	 trials	 for	 the	 older	 group	 compared	 to	 the	
younger	group.	Crucially,	the	impact	of	convex	hull	congruency	on	performance	for	all	participants	was	significant,	whereas	
the	effect	of	dot	size	congruency	was	not.	
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Discussion	266 

The	current	study	 investigated	the	 impact	of	visual	cue	congruency	on	ANS	acuity	as	measured	by	267 

the	Panamath	protocol	 in	a	group	of	younger	and	older	adults.	 For	 the	 first	 time,	we	 investigated	268 

patterns	of	both	cumulative	surface	area	congruency	and	convex	hull	congruency	on	trials	generated	269 

by	 the	 Panamath	 protocol	 and	 their	 impact	 on	 older	 adults’	 ANS	 acuity.	 Although	 convex	 hull	270 

congruency	has	been	found	to	affect	numerosity	processing	to	a	greater	extent	than	the	visual	cues	271 

that	have	been	more	 frequently	 controlled	 in	previous	 research	 (e.g.	 cumulative	 surface	 area	and	272 

dot	size)	(Clayton	&	Gilmore,	2014;	Clayton	et	al.,	2015;	Gebuis	&	Reynvoet,	2012c;	Gilmore	et	al.,	273 

2016),	to	date,	only	the	impact	of	dot-size	congruency	on	ANS	acuity	in	ageing	has	been	examined.	274 

In	some	studies,	poorer	 inhibitory	control	has	been	proposed	to	account	for	declined	performance	275 

during	dot	size-incongruent	trials	in	older	age	(Cappelletti	et	al.,	2014,	2015).	These	studies	had	used	276 

stimuli	 generated	by	 the	Panamath	protocol,	which	does	not	 control	 convex	hull	 congruency.	 The	277 

current	 study	 therefore	 explored	 the	 visual	 characteristics	 of	 stimuli	 generated	 by	 the	 Panamath	278 

protocol	and	their	 impact	on	the	measurement	of	ANS	acuity,	whilst	directly	 investigating	whether	279 

older	 adults	 performed	 more	 poorly	 when	 convex	 hull	 was	 incongruent.	 The	 current	 findings	280 

demonstrate	that	the	Panamath	protocol	produces	dot	arrays	that	are	confounded	between	convex	281 

hull	 ratio	 and	numerosity	 ratio.	 There	was	 some	evidence	 that	 older	 adults	 appeared	 to	 be	more	282 

susceptible	 to	 the	 influence	of	 convex	hull	 information	when	making	numerosity	 judgements,	 but	283 

the	key	test	of	this	effect	was	only	borderline	significant	(p	=	.044).	Potential	explanations	for	these	284 

findings	are	discussed	below.		285 

Visual	characteristics	of	dot	array	stimuli	286 

Our	analyses	indicate	that	the	Panamath	protocol	generates	stimuli	which	favour	a	congruent	over	287 

an	 incongruent	 convex	 hull,	 an	 effect	 which	 becomes	 more	 pronounced	 as	 numerosity	 ratio	288 

increases.	These	findings	have	clear	 implications	for	studies	using	the	Panamath	protocol.	Because	289 

convex	hull	is	congruent	on	most	trials,	this	may	improve	overall	performance	on	the	task.	Crucially,	290 

the	current	findings	demonstrate	that	numerosity	ratio	and	convex	hull	ratio	can	be	confounded	on	291 

stimuli	generated	by	the	Panamath	protocol.	This	affects	the	valid	and	reliable	measurement	of	ANS	292 

acuity	because	participants	could	perform	at	above-chance	levels	on	dot	comparison	tasks	purely	by	293 

responding	on	the	basis	of	convex	hull	 information	and	without	the	need	to	engage	 in	numerosity	294 

processing.	Our	findings	also	support	the	suggestion	that	participants	integrate	multiple	visual	cues	295 

during	 numerosity	 discrimination	 (Clayton	 et	 al.,	 2015;	 Gebuis	 &	 Reynvoet,	 2012b),	 resulting	 in	296 

interactions	 when	 visual	 cues	 vary	 in	 their	 congruency	 with	 numerosity:	 when	 convex	 hull	 was	297 

incongruent	to	numerosity,	participants	were	more	accurate	when	cumulative	surface	area	was	also	298 
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incongruent	(as	in	Clayton	et	al.,	2015;	Gebuis	&	van	der	Smagt,	2011;	Keller	&	Libertus,	2015).	The	299 

findings	 therefore	emphasise	 the	necessity	of	considering	 the	 impact	of	non-numerical	visual	 cues	300 

and	the	interactions	between	such	cues	during	numerosity	comparison.		301 

ANS	acuity		302 

Reflecting	previous	findings,	overall	ANS	acuity	was	similar	between	age	groups,	with	no	age-related	303 

decline	 in	 performance	 on	 cumulative	 surface	 area	 incongruent	 trials	 (as	 in	 Norris	 et	 al.,	 2015).	304 

Performance	 was	 poorer	 for	 all	 participants	 during	 convex	 hull	 incongruent	 trials.	 Although	 the	305 

convex	hull	 congruency	effect	appeared	 to	be	more	pronounced	 for	 the	older	group	compared	 to	306 

the	 younger	 group,	 this	 effect	 was	 small	 and	 was	 not	 well-supported	 by	 the	 Bayesian	 analysis	307 

compared	 to	 the	overall	 influence	of	 convex	hull	 for	 all	 participants.	 Previous	 findings	of	 stronger	308 

dot-size	congruency	effects	for	older	compared	to	younger	adults	may	suggest	that	similar	findings	309 

should	emerge	for	convex	hull	congruency.	One	possible	explanation	for	the	weak	evidence	 in	the	310 

current	 study	 of	 a	 stronger	 convex	 hull	 congruency	 effect	 in	 older	 age	 may	 be	 that,	 due	 to	 the	311 

confounded	nature	of	the	Panamath	protocol,	a	relatively	small	number	of	convex	hull	incongruent	312 

trials	 were	 generated.	 In	 previous	 studies,	 larger	 proportions	 of	 dot-size	 incongruent	 trials	 have	313 

been	used.	 Therefore,	 stronger	 evidence	 for	 the	 interaction	 between	 convex	 hull	 congruency	 and	314 

age	group,	and	 indeed	even	a	group	difference	 for	overall	ANS	acuity	may	have	emerged	had	 the	315 

number	of	convex	hull	congruent	and	incongruent	trials	been	equally-weighted.	It	is	well	established	316 

from	 studies	 of	 inhibition	 tasks	 that	 the	 overall	 proportion	 of	 congruent	 and	 incongruent	 trials	317 

impacts	on	the	size	of	congruency	effects	(Logan	&	Zbrodoff,	1979).	Crucially	here,	these	effects	are	318 

not	 consistent	 in	 younger	 and	 older	 adults.	 West	 and	 Baylis	 (1998)	 found	 that	 the	 difference	319 

between	younger	and	older	adults	on	a	Stroop	task	was	greater	when	the	task	consisted	mostly	of	320 

incongruent	 trials	 compared	 with	 mostly	 congruent	 trials.	 It	 is	 possible	 therefore	 that	 the	 small	321 

proportion	 of	 incongruent	 trials	 in	 the	 task	 used	 here	 may	 have	 masked	 differences	 between	322 

younger	and	older	adults	that	could	be	apparent	in	a	more	evenly-balanced	version	of	the	task.			323 

Overall	 however,	 our	 results	 support	 the	 suggestion	 that	 convex	 hull	 affects	 numerosity	324 

discrimination	 to	 a	 greater	 extent	 than	 dot-size	 or	 cumulative	 surface	 area	when	measuring	 ANS	325 

acuity	 (Clayton	 &	 Gilmore,	 2014;	 Clayton	 et	 al.,	 2015;	 Gebuis	 &	 Reynvoet,	 2012c;	 Gilmore	 et	 al.,	326 

2016).		327 

Methodological	and	Theoretical	Conclusions	328 

The	current	study	highlights	that	significant	confounds	may	exist	in	the	dot	array	stimuli	produced	by	329 

the	 Panamath	 protocol,	 indicating	 that	 trials	 are	 overall	more	 likely	 to	 be	 convex	 hull	 congruent,	330 
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possibly	facilitating	performance.	A	confound	between	convex	hull	ratio	and	numerosity	ratio	raises	331 

concerns	about	the	validity	and	reliability	of	non-symbolic	numerosity	comparison	tasks	conducted	332 

with	 stimuli	 generated	 by	 the	 Panamath	 protocol.	 Moreover,	 in	 light	 of	 recent	 claims	 that	 the	333 

Panamath	protocol	does	not	produce	congruency	effects	(Keller	&	Libertus,	2015;	Odic	et	al.,	2014,	334 

2013),	our	investigation	indicates	that	researchers	may	have	been	focusing	on	the	wrong	visual	cue:	335 

convex	hull	appears	to	affect	numerosity	processing	over	and	above	dot-size	and	cumulative	surface	336 

area.	Controlling	only	dot	size	is	therefore	insufficent	(as	in	the	Panamath	protocol	and	other	stimuli	337 

generation	methods	used	 in	 the	 literature:	e.g.	Dehaene,	 Izard,	&	Piazza,	2005),	 as	multiple	visual	338 

cues	may	be	simultaneously	extracted	from	dot	arrays	during	numerosity	discrimination	(Clayton	et	339 

al.,	2015;	Gebuis	&	Reynvoet,	2012a,	2012c).	Here	we	found	that	convex	hull	appears	to	exert	more	340 

of	an	influence	on	ANS	task	performance	compared	to	the	other	visual	cues	present	in	a	numerosity	341 

display.	Previous	 investigations,	using	different	methods	of	generating	dot	stimuli,	have	found	that	342 

several	visual	cues	(total	circumference,	convex	hull,	density,	and	cumulative	surface	area)	influence	343 

numerosity	judgements	over	and	above	the	influence	of	numerosity	information	(Leibovich	&	Henik,	344 

2014).		345 

The	 current	 findings	 also	 have	 implications	 for	 studies	 reporting	 a	 link	 between	 ANS	 acuity	 and	346 

mathematical	achievement.	As	researchers	have	used	a	range	of	visual	cue-controls	and	numerosity	347 

ratios	 in	 generating	 dot	 arrays,	 it	 is	 unclear	 to	 what	 extent	 relationships	 with	 mathematical	348 

achievement	 may	 in	 fact	 reflect	 a	 link	 with	 the	 inhibitory	 control	 required	 to	 ignore	 convex	 hull	349 

(Clayton	&	Gilmore,	 2014;	 Clayton	 et	 al.,	 2015;	 Fuhs	&	McNeil,	 2013;	 Gilmore	 et	 al.,	 2013,	 2016;	350 

Norris	&	Castronovo,	2016;	Szűcs	et	al.,	2013).	Indeed,	as	studies	assessing	the	ANS	in	children	often	351 

use	easier	(i.e.	larger)	numerosity	ratios,	convex	hull	may	facilitate	performance	to	an	even	greater	352 

extent	in	these	studies	(as	convex	hull	 is	more	likely	to	be	congruent).	The	current	study	therefore	353 

highlights	 the	 necessity	 for	 researchers	 to	 seriously	 consider	 the	 influence	 of	 convex	 hull	 on	354 

numerosity	discrimination when	exploring	 its	 relationship	with	maths	achievement	 (Clayton	et	al.,	355 

2015;	Gilmore	et	al.,	2016).	Moreover,	the	results	raise	questions	regarding	previous	conclusions	of	356 

declined	 ANS	 acuity	 in	 ageing	 (Halberda	 et	 al.,	 2012),	 and	whether	 dot-size	 congruency	 can	 fully	357 

account	 for	 these	 effects	 (Cappelletti	 et	 al.,	 2014;	 Norris	 et	 al.,	 2015).	 Future	 research	 must	358 

investigate	whether	ANS	acuity	 is	declined	 in	ageing	when	convex	hull	 is	systematically	controlled:	359 

should	 older	 adults’	 performances	 on	 more	 stringently-controlled	 paradigms	 (e.g.	 Gebuis	 &	360 

Reynvoet,	2011)	be	declined	compared	to	younger	participants,	 this	would	support	 the	suggestion	361 

that	ANS	tasks	involve	inhibitory	control	(Clayton	&	Gilmore,	2014;	Fuhs	&	McNeil,	2013;	Gilmore	et	362 

al.,	 2013;	 Szűcs	 et	 al.,	 2013),	 and	 that	 convex	 hull	 affects	 numerosity	 discrimination	 to	 a	 greater	363 
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extent	 than	 dot	 size	 and	 cumulative	 surface	 area	 (Clayton	&	 Gilmore,	 2014;	 Clayton	 et	 al.,	 2015;	364 

Gebuis	&	Reynvoet,	2012c;	Gilmore	et	al.,	2016).		365 

Finally,	 the	 current	 findings	 contribute	 to	 the	 theoretical	 debate	 surrounding	 the	 extent	 to	which	366 

numerosity	 is	 the	 cue	 primarily	 extracted	 from	dot	 arrays	 over	 and	 above	 the	 other	 approximate	367 

quantities	present	(the	non-numerical	visual	cues).	On	one	hand,	some	argue	that	numerosity	is	the	368 

primary	cue	extracted	from	non-symbolic	arrays,	and	that	numerosity	therefore	drives	performance	369 

on	dot	discrimination	 tasks,	 as	opposed	 to	 the	other	non-symbolic	quantities	present	 in	 the	array	370 

(e.g.	convex	hull,	dot	size,	cumulative	surface	area:	Barth	et	al.,	2006;	Halberda	et	al.,	2008).	On	the	371 

other	 hand,	 the	 competing	 processes	 account	 (Gilmore	 et	 al.,	 2013)	 proposes	 that	 non-numerical	372 

visual	cues	are	extracted	during	numerosity	discrimination,	and	that	participants	must	 inhibit	 their	373 

influence	in	order	to	then	respond	to	numerosity.	It	is	therefore	proposed	that	numerosity	and	the	374 

other	visual	cues	present	in	non-symbolic	arrays	must	compete	to	be	processed,	with	two	possible	375 

outcomes:	firstly,	participants	may	respond	based	on	the	salience	of	various	visual	cues	(bigger	dots,	376 

larger	 convex	 hull).	 Secondly,	 if	 participants	 are	 able	 to	 inhibit	 a	 response	 to	 these	 salient	 visual	377 

cues,	 then	 they	can	 respond	 to	numerosity.	 In	 the	current	 study,	 convex	hull	 congruency	affected	378 

numerosity	 discrimination	 performance:	 these	 findings	 therefore	 provide	 further	 evidence	 that	379 

participants	 must	 inhibit	 convex	 hull	 when	 it	 is	 incongruent	 before	 being	 able	 to	 respond	 to	380 

numerosity	 (Clayton	 &	 Gilmore,	 2015;	 Gilmore	 et	 al.,	 2013),	 supporting	 the	 competing	 processes	381 

hypothesis.	 In	addition,	some	researchers	have	suggested	that	numerosity	 isn’t	primarily	extracted	382 

during	 ANS	 tasks,	 but	 rather	 a	 weighted	 combination	 of	 non-numerical	 visual	 cues	 is	 used	 by	383 

participants	to	discriminate	between	dot	arrays	(Gebuis	&	Gevers,	2011;	Gebuis	&	Reynvoet,	2012b,	384 

2012c).	The	current	study	cannot	rule	out	this	suggestion.	Although	our	data	indicate	a	numerosity	385 

ratio	 effect,	 in	 considering	 the	 confounded	 nature	 of	 the	 stimuli,	 this	 doesn’t	 necessarily	 indicate	386 

that	numerosity	is	the	primary	cue	being	extracted.	Because	the	majority	of	trials	were	convex	hull	387 

congruent,	participants	may	not	need	to	extract	numerosity	to	make	a	correct	discrimination	on	the	388 

majority	 of	 trials.	 Indeed,	 participants	 could	 most	 often	 discriminate	 between	 the	 arrays	 using	389 

convex	hull	and	achieve	above-chance	overall	accuracy	for	the	current	study.	Our	findings	therefore	390 

further	 highlight	 the	 need	 to	 directly	 investigate	 the	 influence	 of	 convex	 hull	 on	 numerosity	391 

discrimination	performance,	particularly	for	protocols	which	do	not	manipulate	nor	measure	convex	392 

hull,	 and	 where	 such	 protocols	 have	 facilitated	 certain	 conclusions	 about	 the	 ANS	 (e.g.	 that	 it	 is	393 

declined	 in	 ageing:	 Halberda	 et	 al.,	 2012;	 or	 that	 its	 acuity	 can	 predict	 formal	 mathematical	394 

attainment:	Halberda	et	al.,	2008).	395 
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Figure	headings	538 

Figure	1:	Scatter	plots	showing	the	relationship	between	trials'	numerosity	ratios,	mean	accuracies	539 

(%),	cumulative	surface	area	ratios,	and	convex	hull	ratios.	Ratios	are	plotted	on	logarithmic	axes.	540 

Ratios	are	calculated	left	array	/	right	array	so	that	all	ratios	vary	below	and	above	1.	Incongruent	541 

trials	are	those	for	which	the	numerosity	ratio	is	below	1	and	the	visual	cue	ratio(s)	are	above	1	or	542 

vice-versa	543 

Figure	2:	Participants’	accuracy	on	dot	comparison	trials	showing	an	interaction	between	cumulative	544 

surface	area	and	convex	hull	congruency	(error	bars	show	standard	error)	545 

Figure	 3:	 The	 impact	 of	 convex	 hull	 congruency	 on	 younger	 and	 older	 adults’	 performances	 (error	546 

bars	show	standard	error)	547 
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