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ABSTRACT
Coordinating multiple agents to complete a set of tasks under time

constraints is a complex problem. Distributed consensus-based task

allocation algorithms address this problem without the need for

human supervision. With such algorithms, agents add tasks to their

own schedule according to specified allocation strategies. Various

factors, such as the available resources and number of tasks, may

affect the efficiency of a particular allocation strategy. The novel

idea we suggest is that each individual agent can predict locally the

best task inclusion strategy, based on the limited task assignment

information communicated among networked agents. Using super-

vised classification learning, a function is trained to predict the most

appropriate strategy between two well known insertion heuristics.

Using the proposed method, agents are shown to correctly predict

and select the optimal insertion heuristic to achieve the overall high-

est number of task allocations. The adaptive agents consistently

match the performances of the best non-adaptive agents across a

variety of scenarios. This study aims to demonstrate the possibility

and potential performance benefits of giving agents greater deci-

sion making capabilities to independently adapt the task allocation

process in line with the problem of interest.
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1 INTRODUCTION
Distributed systems, made up of multiple connected agents operat-

ing together to achieve some objectives, are receiving increasing

attention for a variety of applications [13]. Such systems are best

suited to applications in which objectives can be broken down into

multiple jobs or tasks, which can be autonomously performed by

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

the different agents in the network. Examples include cloud com-

puting systems, distributed sensor networks, and multi-robot teams.

The benefits of a distributed architecture over a centralised one

include increased reliability and scalability, as well as the absence

of bottlenecks that exist with centralised controllers.

A task allocation problem aims to find a global feasible assign-

ment of tasks to agents while optimising one ormore objectives. Dis-

tributed consensus-based task allocation algorithms can solve task

allocation problems without a centralised controller as agents en-

gage in a cooperative planning process consisting of two phases [3].

In the first phase, an agent constructs a schedule of selected tasks

through an internal decision-making process. This process has

previously been referred to as a utility function [17], a score func-

tion [16], or an objective function [15]. In the second phase, agents

communicate bids on their selected task assignments and resolve

conflicts by assigning tasks to the agents with the highest bids.

The task allocation problem in this paper falls under the single-

task (ST), single robot (SR), time-extended assignment (TA) problem

under the Gerkey and Matarić taxonomy [9]. Agents perform one

task at a time, and each agent can be assigned multiple tasks that

they execute based on a schedule. Travel times, task durations, task

deadlines, and fuel constraints are a factor. Finding the optimal

solution to this task allocation problem in real-time environments

becomes computationally unfeasible as the numbers of tasks and

agents grow. In complexity theory, the problem is said to be NP-

hard [17]. Heuristics, or rules of thumb, have been devised to seek

good enough solutions in a realistic time frame but without a guar-

antee of optimality. The effectiveness of a given heuristic is depen-

dent on various factors including the constraints and parameters of

the problem being solved and the objective being optimised [11].

Current state-of-the-art consensus-based task allocation algo-

rithms incorporate heuristics into agent score functions in order

to optimise a given objective. While extensive research has been

done in the area of multi-agent learning of optimal policies [2, 21],

as far as the authors are aware, consensus-based task allocation

algorithms have not been designed to adapt online to changing en-

vironmental factors [15, 24]. This paper introduces the novel idea

of learning a prediction function and adopting a strategy switching

behaviour that allows agents to independently adapt task alloca-

tion strategies in line with changing environmental factors, and

boost performance. The learned function is effectively a prediction
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mechanism that uses past experience to select which task allocation

strategy yields the optimal global task allocation.

The proposed method is tested through a simulated search and

rescue scenario. Two heuristics that have been previously shown to

perform well in such a scenario are earliest deadline first (EDF) and

nearest task first (NTF) [19]. The prediction functions were trained

to predict which heuristic, between the two, will yield the most

task allocations. The following assumptions are made: an agent

does not have knowledge of the time availability of other agents

in the system, and does not have knowledge of the decisions made

by other agents concerning the optimal heuristic. The input for

the prediction function is limited to information about task assign-

ments received locally from networked agents. The reasoning for

these choices is to show that the proposed adaptive method can be

applied to consensus algorithms by exploiting the communications

necessary for consensus, and without requiring any additional in-

formation to be communicated among agents. Results showed that

for the majority of scenarios tested, the agents were able to predict

and switch to the optimal heuristic based on observations of lo-

cally communicated task assignments, without a significant impact

on the time to convergence. Additionally, results showed that an

additional gain in performance could be achieved by enabling the

agents to independently adapt their consensus strategy.

The paper is organised as follows: Section 2 defines the task

allocation problem of interest, summarises related research, and

describes the state-of-the-art consensus-based bundle algorithm

(CBBA) algorithm. Section 3 introduces the proposed adaptive ap-

proach as an extension of CBBA, and the method used to test its

performance. Section 4 illustrates the results that compare the pro-

posed approach against baseline CBBA. Section 5 summarises the

findings and proposes future directions.

2 PROBLEM AND EXISTING METHODS
Given a team of n agents andm tasks, the problem of interest is to

allocate tasks to agents with the following assumptions: agents au-

tonomously decide which tasks to take on using a scoring function

that computes a score for that agent to perform a certain task. These

score functions often incorporate heuristics designed to optimise a

specified objective. Agents then communicate with each other to

reach consensus on which agents take which tasks. To do so, agents

place bids on their selected tasks, share the bids by communicating

with each other, and the agent with the highest bid wins the task.

Agents co-operate to maximise the number of allocated tasks and

to reach an agreed allocation (consensus). Tasks and agents are

subject to time constraints.

Formally, V = [v1, . . . ,vn ] and T = [t1, . . . , tm ] represent the
set of n agents and m tasks, respectively. Each agent vi ∈ V is

initalised with:

• A path pi of tasks assigned to vi in the order in which vi
will execute those tasks.

• A winning agent list zi = [zi1, . . . , zim ] where an element

zik stores the index of the agent who has won the task tk
according to the latest communication received by vi . If vi
has not received or made a bid on tk , then zik = 0.

• A winning bid list yi = [yi1, . . . ,yim ] where an element yik
stores the winning bid for tk corresponding to the winner

zik . If there is no bid for task tk , then yik = 0. Bids on tasks

are greater than 0 and less than or equal toMaxBid .

2.1 Problem Constraints
Each agent has a maximum operating time fi , which is the latest

time at which vi can arrive at a task tk before running out of fuel.

Each task tk has a latest start time ξk after which the task expires.

The predicted time of execution of tk ∈ pi by vi is ςik . This time

includes the duration of earlier tasks in pi and travel time to and

from those earlier tasks. Thus,

ςi,k ≤ min(ξk , fi ) . (1)

Due to these time constraints, it may not be possible to assign all

tasks. If a task is not already in pi and satisfies the time constraints,

it is a candidate task and can be considered for inclusion.

Agents communicate with each other via links determined by a

network topology. This topology may be restricted, e.g. by commu-

nication range.

2.2 Objective Function
The primary global objective J⋆ for the problem of interest is to

maximise the number of allocated tasks, formally defined as

J⋆ =max

{ n∑
i=1

|pi |
}

(2)

s.t. pi ∩ pj = ∅,where i , j , (3)

and |pi | is the number of tasks in pi . The constraint states that a
task may be assigned to one agent’s task list at most.

2.3 CBBA and Extensions
The consensus-based bundle algorithm (CBBA) is a distributed

multi-agent multi-assignment algorithm [3]. CBBA iterates over

the following two phases:

(1) The task inclusion phase: each agent greedily builds up a

path (or schedule) through a repeating process of computing

scores for each candidate task and selecting the task with

the highest score to add to their path.

(2) The consensus phase: agents communicate zi and yi to neigh-
bouring agents i.e. those with communication links based on

a network topology. When there are conflicting assignments,

the highest bid wins and losing agents remove the task from

their path [3].

These two phases alternate until consensus has been reached by

the team on all task assignments. The number of times the two

phases repeat until all agents reach consensus determines the time

to convergence.

Notable extensions of CBBA include the following: Choi et al.

[4] address heterogeneous networks, and tasks that need to be

serviced by multiple robots; Ponda et al. [22] address scenarios

with time constraints by incorporating time windows of validity on

tasks as part of the scoring scheme; Johnson et al. [14] extend the

CBBA with an asynchronous communication protocol to enable

agents to run the consensus phase on their own schedule; and BW-

CBBA [16] that addresses the limitations of utilising submodular

score functions to rank tasks within an agent’s internal decision
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making process. To address uncertainties such as unknown task

durations, a robust extension of CBBA is presented in [23] that

embeds expected-value and worst-case stochastic metrics into the

framework.

2.4 Multi-Agent Learning: Related Work
Learning and adaptation in multi-agent systems is an established

research field [25, 26, 30]. A commonly used approach to learn-

ing in multi-agent systems is reinforcement learning (MARL), in

which agents learn actions and policies through trial and error

from a feedback of rewards and punishment. Extensive research

has been done in this area. In early research, Littman [18] proposed

aMarkov games framework forMARL that allows for multiple adap-

tive agents with conflicting goals. Tan [27] investigated whether

agents that learn cooperatively outperform agents that do not. The

study showed that sharing learned policies could speed up learning

with a cost in communication. In more recent work, Garland and

Alterman [8] developed distributed learning techniques to improve

coordination among agents. By learning from past experiences of

successful cooperation with other agents, and by learning proba-

bilities of individual actions succeeding, agents were able to more

efficiently solve coordination problems. Empirical results demon-

strated that distributed learning of individual agents improved

performance of the whole system, including costs of communi-

cation and planning. Hu et al. [12] proposed knowledge transfer

mechanisms to demonstrate how knowledge of individually learned

policies can be utilised to learn better joint policies. The study ex-

ploited sparse interactions in multi-agent systems to improve the

performance of multi-agent reinforcement learning. Panait and

Luke [21] provide a comprehensive survey of MARL, as well as

evolutionary learning, for cooperative teams.

Reinforcement learning has recently been applied to applications

with centralised task allocation architectures, such as cloud com-

puting [20], where a scheduler that handles scheduling for multiple

resources uses reinforcement learning to learn the best policies to

reduce execution time. Gombolay et al. [10] proposed a method

to automatically learn scheduling heuristics from expert demon-

strations using inverse reinforcement learning for a centralised

scheduler.

Building on the evidence of the utility of learning in multi-agent

systems, but as opposed to previous studies, we focus in particular

on fully distributed consensus-based task allocation algorithmswith

the aim to integrate learning and decision making into established

algorithms such as CBBA. The challenge is to augment consensus-

based fully distributed algorithms with increased flexibility to adapt

to a large parameter space of scenarios. In fact, the relationship

between different task-inclusion heuristics and their effectiveness

under different allocation scenarios is not easy to infer a priori. In

the following section, we describe how we augment the system to

implement distributed strategy adaptation.

3 LEARNING STRATEGY ADAPTATION
This section introduces the proposed adaptive approach for consensus-

based task allocation that enables agents to individually predict and

select the best task inclusion strategy with the aim to automatically

maximise task allocation.

3.1 Heuristic Strategies
In task allocation problems that require agents to execute multiple

tasks, the heuristic with which agents include tasks into their sched-

ules is key to optimising allocations. The appropriateness of any

heuristic varies as conditions change, such as the number of tasks to

agents, the time constraints, and the travel times between tasks. The

two heuristics used in this study are earliest-deadline-first (EDF),

and nearest-task-first (NTF) [19]. With EDF, agents prioritise tasks

with the earliest deadline to include into their schedules, while

with NTF, agents prioritise tasks that are nearest to the previous

location in their schedule. In a standard environmental setting (see

Section 3.6 for an example), EDF allocates more tasks than NTF

under conditions with relatively few tasks per agent. As the number

of tasks per agent increases, the travel time between tasks becomes

a greater factor and eventually NTF allocates the most tasks. As a

result, traditional consensus-based task allocation algorithms per-

form often sub-optimally because there is not a single strategy that

works well in all scenarios.

In this study, the key idea is that optimal strategies can be in-

ferred online, i.e., during execution, and locally, i.e., in a distributed

fashion for each agent. Thus, the information exchanged by the

agents to reach consensus can be exploited to implement a dis-

tributed adaptive system. We devised a decision-making mecha-

nism in which agents use the local information available to predict

the best heuristics online. The process is shown to result result in

the optimisation of the number of allocated tasks under a variety

of different conditions.

To infer a rule connecting the local observations made by an

agent and the appropriate heuristic, we use supervised classification

learning. With supervised learning, the learning algorithm uses

labeled training data to infer a general rule or function that maps

inputs to outputs. In this study, the input is an agent’s observation

following a consensus phase, and the prediction is the heuristic

that will yield the highest number of allocated tasks overall.

The proposed method exploits locally available task assignment

information that is necessary for consensus. Agents are able to

resolve conflicting assignments through sharing information about

which agents are assigned to which tasks [3]. Thus, the proposed

method can be integrated into consensus-based algorithms without

additional communication overhead. We describe the implementa-

tion of the proposed method as an extension to CBBA.

3.2 Agent Observations
As described in Section 2.3, reaching consensus requires that agents

exchange the list z of agent-task allocations. The list zi corresponds
to agent vi ’s local knowledge of the current global task alloca-

tion. From these communications vi can make the following local

observations:

• The set of assigned tasks: a = {k ∈ zi | zik > 0} and the set

of unassigned tasks: ā = {k ∈ zi | zik = 0}. The cardinalities
|a| and |ā| denote the total numbers of assigned tasks and

unassigned tasks respectively.

• The set of tasks assigned to other agents not including tasks

assigned to vi is defined as: o = {k ∈ zi | zik > 0∧ zik , i},
where |o| denotes the cardinality of o.
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When accounting for heterogeneous agents with different capabili-

ties to perform different tasks, the observations refer to the tasks

that vi is capable of performing i.e. |a| denotes the number of com-

patible assigned tasks. We refer to the total number of compatible

tasks asmc . In summary, each agent can derive the following in-

formation from received communications: the number of assigned

and unassigned tasks, the number of tasks assigned to other agents,

and the total number of compatible tasks. This information is used

to predict which allocation strategy is more likely to perform bet-

ter as explained in the following sections. It is worth noting that

additional information can be derived and used for predictions. We

focus on the set described above as the most informative for the

problem of interest, and allow for the possibility of extending the

set of inputs in future work.

3.3 Learning Systems
The main focus of this study is the integration of learning and deci-

sion making into CBBA to prove that, within the established frame-

work of such an algorithm, appropriate predictions and decisions

can be made. Thus, off-the-shelf supervised learning algorithms

were used with default parameters to implement the prediction

function. It is important to note that learning the prediction func-

tion is performed centrally and offline, while the adaptation of the

strategy, using the learned function, is performed online and in

a distributed fashion. We used two popular supervised learning

methods: support vector machine (SVM) and neural network (NN).

The proposed adaptive method using SVM and NN are referred to

as CBBA
+

SVM and CBBA
+

NN, respectively. The SVM model used a

radial basis function kernel with the MATLAB function for binary

classification fitcsvm. Using MATLAB’s Neural Pattern Recognition

toolbox, the network was trained using scaled conjugate gradient

backpropagation and had a single hidden layer with 10 nodes. The

inputs used for training corresponded to the observation: [|o|, |ā|]/
mc . Two outputs corresponded to the classification predictions of

which strategy (between EDF and NTF) led to the most tasks being

allocated in previous task allocation experiments with non-adaptive

strategies. The SVM model returns 0 or 1 corresponding to the clas-

sification prediction of an observation. The neural network returns

a real number between 0 and 1, indicating the confidence in the

classification prediction, where an output of 1 indicates the highest

confidence in the classification, and an output of 0 indicates the

lowest confidence in the classification.

3.4 Distributed Strategy Adaptation
The task allocation algorithm with the added prediction function

is shown with pseudocode in algorithm 1. Before the task allo-

cation procedure begins, each agent is initialised with an index

h that determines with which heuristic the agent includes tasks

into its schedule (line 3). This initialisation can be done through a

uniform random assignment. Once the task allocation procedure

is in progress, predictions can be made using locally received in-

formation about task assignments. The Predict function (line 5)

uses zi to make a prediction on the optimal heuristic and returns a

heuristic index h. This index is passed to the Task Inclusion Phase

(line 6) where vi includes tasks into its schedule according to the

(a) Fully connected (b) Row connected (c) Star connected

Figure 1: Network topologies: agents are represented as cir-
cles and communication connections are represented as
dashed lines between agents. Different topologies affect the
timing at which each agent acquires information on alloca-
tions. Thus, the decision making capabilities of the agents
may be affected by different topologies.

heuristic corresponding to h. During the consensus phase (line 7),
zi is updated.

The prediction function is shownwith pseudocode in algorithm 2.

Applying a limit to the number of times that an agent can switch

functions is fundamental to maintain the guarantee of convergence

of the algorithm (see [3] for details on convergence). Therefore,

a condition SwitchCondition on line 3 determines whether a pre-

diction can be made and therefore whether the heuristic can be

changed or not. In this study, we set that limit to 1 to test the basic

concept that one single switch of strategy is sufficient to increase the

overall number of allocated tasks. For a real-time system operating

in a dynamic environment, in which agents converge locally rather

than as a group [14], a refractory period could be implemented to

allow for multiple switches over time with a delay in between. To

ensure that the agent has sufficient information to make a predic-

tion, the SwitchCondition applied in this study requires that the

agent has received task assignment information from other agents,

such that: |o| > 0. If the condition returns false then the agent’s

current heuristic index is returned. Before computing a prediction,

the input for the prediction function is normalised by dividing it by

the number of tasks: input = [|o|, |ā|]/mc (line 4). The output com-

puted by the prediction function fpredict is evaluated to determine

which heuristic is likely to generate the optimal task allocation. If

the predicted heuristic is different from the agent’s current heuristic,

then the agent unassigns all tasks previously assigned to itself so

that it can rebuild its schedule with the predicted optimal heuristic

(lines 7-11). CBBA’s task inclusion phase (see [3]) is the algorithm’s

point of highest time complexity, consisting of three nested loops.

As the proposed adaptive strategy function runs outside of the task

inclusion phase and does not require loops, the algorithm’s time

complexity is unaffected.

Agents communicate task allocations according to a network

topology, which impacts the task assignment information that an

agent holds at any given time. Different topologies result in different

delays to the agents receiving sufficient information for making

an accurate prediction. Early predictions may not be meaningful

and may benefit from being delayed until more task assignment

information is gathered from the rest of the network. Figure 1

illustrates examples of common topologies. With a fully connected

topology (Figure 1(a)), each agent receives information about all

other agents’ task assignments at every communication round.With

a row topology (Figure 1(b)), it may take many rounds of CBBA for

an agent’s allocations to be propagated through the network.
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Considering the possible delays in receiving sufficient informa-

tion, and the requirement to limit the number of times an agent

switches heuristic, we apply basic rules to ensure that the adaptive

system is able to work under such constraints. After the training

phase, the NN gives an output of 0.5 when no strategy has a clear ad-

vantage over the other. A question is, howmuchmore advantageous

a strategy needs to be to trigger a switch? Given the incompleteness

of the information available to agents through local communica-

tion, it is reasonable to assume that a strategy prediction requires a

confidence margin to signal that switching is advantageous. A ROC

(receiver operating characteristic) curve shows graphically the true

positive rate as a function of the false positive rate for different

cut-off points. A ROC analysis therefore can provide experimental

evidence to estimate a confidence parameter so that switching oc-

curs with a desired probability. In the proof-of-concept presented

in this study, we limit the investigation by simply increasing the

threshold to switch for fevaluate in CBBA
+

NN to an arbitrary value

of 0.6. This simple adjustment prevents strategy switching when

no clear advantage for one strategy can be inferred. By doing this,

we prevent unnecessary strategy switching and maintain a low

number of iterations as shown in the analysis later. Further studies

could address the tuning of such a parameter to achieve the best

compromise between reactive switches and number of iterations to

convergence. In other words, introducing this condition effectively

results in the agent delaying a decision until there is a sufficient

confidence in either heuristic. Similarly, we adapted the decision

system to operate with predictions from the SVM: in this case,

CBBA
+

SVM agents can perform a switch only when T > 5, so that

each agent has received task allocation information from multiple

other agents before switching heuristic in the worst case topology

tested. These mechanisms highlight the important fact that deci-

sion making in consensus-based algorithms cannot be simply left

to a prediction function, but needs to take into consideration the

collective multi-agent dynamics. Future studies may investigate

further the tuning and implications of different decision making

rules.

A factor that affects allocations in consensus-based algorithms

is the conflict resolution mechanism. The most common approach

to resolving conflicts in consensus task allocation algorithms is to

assign tasks to the highest bidder. This process can either happen

via an auctioneer [7], or can be fully distributed as with CBBA [3].

Variations of this process exist to account for different problem

Algorithm 1 Task allocation outer-loop iterative procedure with

predictive function running on vi

1: initialise timer T ← 1

2: converдed ← f alse
3: initialise h
4: while converдed is f alse do
5: h = Predict(h,zi )
6: TaskInclusionPhase(h)
7: Consensus Phase

8: converдed ← Check Convergence.

9: T ← T + 1

10: end while

constraints [1, 4–6]. A second mechanism consists of utilising rela-

tive ranking among agents [28]. To assess how well the proposed

approach generalises with different conflict resolution strategies,

we tested both the bid-based and the rank-based conflict resolution

procedures. The implementation of rank-based conflict resolution

is easily performed thanks to the tie-breaking heuristic based on

agents’ unique identification numbers [3] built into CBBA. If all

agents place bids of the same value, all conflicts are resolved based

on the agents’ IDs, which can be thought of as the agents’ rank.

Agents place all bids equal to the constantMaxBid for Rank-based

conflict resolution.

3.5 Benchmark Algorithms
The proposed adaptive approach with CBBA

+

NN and CBBA
+

SVM

is compared to variations of the non-adaptive baseline CBBA:

• CBBAEDF - all agents use EDF.

• CBBANTF - all agents use NTF.

• CBBA50/50 - half of the agents use EDF and half use NTF.

CBBA resolves conflicting task assignments by assigning tasks to

the highest bidder. For each of these algorithms, agents place bids

to the value determined by the score function using NTF. Thus,

conflicting task assignments are resolved based on which agent can

reach the task fastest from the previous location in their schedule.

3.6 Preparation of Dataset
A simulated search and rescue scenario is used to test the perfor-

mance of the algorithms, with a rescue team equally split into two

agent types with different functions. The scenarios in this paper

are based on the established environment types described in [29].

One agent type provides medicine, the other provides food. The

survivors are likewise equally split into those requiring food and

those requiring medicine. The task allocations for these two job

types are solved independently, but require agents of both types to

contribute in message passing and to resolve conflicts. The scenario

specifications are summarised in Table 1. The task locations are

uniformly distributed within a 3D space, while the agents’ starting

positions are uniformly distributed on the 2D ground space. The

deadlines for starting each rescue and the battery limits for each

Algorithm 2 Prediction function for optimal task inclusion strat-

egy running on vi

1: function Predict(hcurr ,zi )
2: Compute |o|,|ā| from zi
3: if SwitchCondition is true then
4: input = [|o|, |ā|]/mc
5: output = fpredict (input)
6: hnew = fevaluate (output)
7: if (hcurr , hnew ) then
8: Empty pi
9: Set all zik = i to zik = 0

10: hcurr = hnew
11: end if
12: end if
13: return hcurr
14: end function
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agent are uniformly distributed. Given the random initialisation of

task and agent locations and deadlines, it is sometimes impossible

for some tasks to be started by any agent before its deadline.

The training set is generated by running task allocation experi-

ments under various configurations. The task and agent numbers

were selected to cover a range from under-constrained to over-

constrained. Over-constrained signifies that there are a greater

number of tasks than can be assigned given the time constraints,

while under-constrained signifies that there is enough capacity

to assign all tasks. Each observation was labeled corresponding

to whether CBBAEDF or CBBANTF yielded the highest number of

allocated tasks overall at the time of convergence. Under a star com-

munication network topology, the number of agents was fixed at:

14, and the numbers of tasks were: 84, 112, 140, 168, 196, 266. Under

a fully connected communication network topology, the numbers

of agents were: 4, 6, 8, 10, 12, 14, 16 and the number of tasks was

fixed at: 130. To add variation, this latter setup was repeated with

both agent types able to service both task types. The increase in

number of tasks and agents were arbitrarily selected within a range

to cover a variety of tasks to agent ratios, from under-constrained

to over-constrained. Each setup was run 50 times with the same

configuration but different initial conditions.

From simulations running these configurations with CBBAEDF

and CBBANTF, the observations: [|o|, |ā|]/ mc , were taken from

each agent at each iteration starting from T = 2 to the time of

convergence. Given the high number of agents deployed in one

scenario and the repetition of scenarios, input vectors [|o|, |ā|]/mc
with identical values and labels may be observed in the dataset. Such

data points are effectively duplicates and can be safely removed

from the dataset. After removal of duplicates, the labeled data set

consisted of approximately 6000 unique observations. Cases for

which the two heuristics were equivalent were left in.

4 PERFORMANCE ANALYSIS
The simulation results compare the performances of the different

algorithms with respect to average task allocations and iterations

until convergence at the end of the task allocation process. In real-

time systems, the time to reach a solution may be critical to success-

fully completing the mission. Thus, our analysis also investigates

whether strategy adaptation allows the system to converge to a

solution within similar time to non-adaptive algorithms. The total

iterations for one simulation is determined by the last time an al-

location change was made by any agent, either through inclusion

or removal. A marginal increase in average execution time per it-

eration is expected with the adaptive strategies compared to the

Table 1: Scenario Specification

Medicine Food

Agent Speed 30m/s 50m/s

Agent Battery Between 2500 and 5000 seconds

Agent Start Position 10 000m x 10 000m x 0m ground space

Task Duration 300 seconds 350 seconds

Task Deadline Between 0 and 5000 seconds

Task Location 10 000m x 10 000m x 1000m 3D space

non-adaptive algorithms. In real-time settings, variable factors that

depend on the specific implementation, such as the time required

for communication, the processing speed, the number of tasks, the

number of times the agent attempts to make a prediction, are all

factors that may impact the proportional increase in average exe-

cution time. These points are worth investigating in future work to

evaluate the trade-off. Results are shown as averages over 50 runs.

4.1 Unseen Row Topology, Task Numbers, and
Rank Conflict Resolution

This section shows the results of tests comparing the algorithms

operating with 14 agents under conditions not seen in training:

under a row topology, with different task numbers, and a different

conflict resolution strategy. In Figure 2(a), the proposed CBBA
+

NN

and CBBA
+

SVM both match the best average numbers of alloca-

tions achieved by the non-adaptive approaches showing that the

agents are correctly predicting and selecting the optimal heuristic

under different conditions. The number of iterations until con-

vergence are similar for the proposed adaptive approach and the

non-adaptive approach that the agents are selecting, indicating that

strategy adaptation maintains a similarly low number of iterations

as the non-adaptive cases. CBBA
+

NN takes marginally longer to

converge on average than CBBAEDF and CBBA
+

SVM at 130 tasks,

but matches the fastest convergence time of CBBANTF at 220 and

250 tasks. CBBA
+

SVM is relatively faster to converge for the lower

task numbers and relatively slower for the higher task numbers

compared with CBBA
+

NN.

Figure 2(b) shows the results with all algorithms using the Rank-

based conflict resolution strategy, where agents resolve conflicts

on task assignments based on agents’ ranks. CBBA
+

NN-Rank still

matches the best allocation numbers comparedwith the non-adaptive

approaches, mostly unaffected that Rank consensus was not seen

during training. CBBA
+

SVM-Rank matches the best average num-

bers of allocations for the lower task numbers, but for the higher

numbers shows a drop in performance compared with CBBA
+

NN-

Rank. However, CBBA
+

SVM-Rank still allocates significantly more

tasks on average than CBBAEDF-Rank. The time to convergence

for each algorithm is faster overall with Rank consensus, and aver-

age time taken is comparable for each algorithm. CBBA
+

NN-Rank

takes at most 2 extra iterations on average than the slowest non-

adaptive algorithm, and at best 1 iteration less. CBBA
+

SVM-Rank is

the slowest to converge.

Figure 2(c) shows that when agents use the NTF heuristic in

the scenarios with the higher numbers of tasks, the agents allo-

cate more tasks overall on average if combined with Rank conflict

resolution. We repeated the experiments for CBBA
+

NN with the

added condition that if an agent predicts that NTF is the optimal

heuristic, it also switches to using Rank conflict resolution. The

results are plotted as NN-Switch. Figure 2(c) shows that for the

higher number of tasks, NN-Switch benefits from the higher allo-

cations enabled by Rank conflict resolution, as well as the faster

convergence time compared with CBBA
+

NN and CBBANTF. For the

higher number of tasks, the convergence time for NN-Switch is

closest to CBBA
+

NN-Rank, which has the fastest convergence. In

the lower task numbers, NN-Switch benefits from the higher alloca-

tions afforded by using bids for conflict resolution, and matches the
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Figure 2: Average task allocations (top) and average iterations until consensus (bottom) for scenarios with different task num-
bers (100,130,160,190,220,250) and afixednumber of networked agents (14), connectedwith a row topology. In a) five algorithms
are compared: all agents self-assign tasks with the earliest-deadline-first (EDF) heuristic; all agents self-assign tasks with the
nearest-task-first (NTF) heuristic, agents are split half and half into using EDF and NTF respectively (50/50); agents are ini-
tialised with 50/50 and then optionally switch to EDF or NTF based on a trained neural network (NN) prediction; agents are
initialised with 50/50 and then optionally switch to EDF or NTF based on a support vector machine (SVM) prediction. In b) the
same algorithms resolve conflicts according to the relative ranking of agents (Rank). In c) with NN-Switch, the task inclusion
is as with NN, and conflict resolution switches to Rank if the optimal task inclusion heuristic is predicted to be NTF.

slower convergence times of CBBA
+

NN and CBBA
+

EDF. In these

scenarios, the task inclusion strategy and the consensus strategy

both affect the performance of the task allocation algorithm.

4.2 Unseen Agent Numbers and Task Numbers
This section shows the results of tests comparing the algorithms

operating with different and varying numbers of agents, as well as

task numbers unseen in training. Figure 3(a) and Figure 3(b) plot

results with a fixed number of agents (10) and different numbers

of tasks unseen in training. In Figure 3(a) the topology is fully

connected and in Figure 3(b) it is star connected. Under both the

full and star topologies, CBBA
+

SVM is able to consistently match the

average allocations achieved by the best non-adaptive approaches

in a comparable convergence time. CBBA
+

NN performs marginally

less well in this scenario compared with CBBA
+

SVM. With the

fully connected topology, CBBA
+

NN falls short of achieving the

highest average allocations for 4 out of the 6 task numbers. With

the star topology, CBBA
+

NN only falls short once when the best

non-adaptive algorithm is CBBA50/50, which is not used for training.

The convergence times of the proposed adaptive approaches are

again comparable to the non-adaptive baseline approaches.

Figure 3(c) plots results for simulations with different unseen

agent numbers and a fixed number of tasks (130) under a fully

connected network. With the higher number of agents (11,13, and

15), CBBA
+

NN and CBBA
+

SVM perform well in allocating tasks by

accurately predicting and selecting the optimal heuristic. The pro-

posed adaptive algorithms perform less well for the lower number

of agents (5 and 7). CBBA
+

SVM matches CBBA50/50 for number

of allocations which achieves the second highest average alloca-

tions of the non-adaptive approaches, while CBBA
+

NN predicts

incorrectly that EDF is the optimal heuristic. With 5 and 7 agents,

CBBA
+

NN and CBBA
+

SVM also converge marginally slower than

the non-adaptive approaches.

It is worth noting that CBBA50/50 performs well in all the tested

scenarios and offers good convergence speed. Adjusting the ratio to

have more agents using EDF proportionally increases the average

number of allocations for the lower task numbers, and reduces the

average number of allocations for the higher task numbers. The
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Figure 3: Average task allocations (top) and average iterations until consensus (bottom). In a) and b) task numbers are
(70,100,130,160,190,220) with a fixed number of agents (10). In a) agents are connected with a fully connected topology, in
b) a star topology. In c) a fixed number of tasks (130), agent numbers are (5,7,9,11,13,15) with a fully connected topology. The
algorithms using EDF, NTF, 50/50, NN, and SVM are compared.

inverse holds true when the ratio favours agents using NTF. For

simple problems, this static approach is a viable alternative to the

proposed approach. The proposed adaptive approach instead offers

a proof of concept that can be extended for more complex scenarios.

In fact, more sophisticated heuristics can be added or learned to

give agents greater adaptability and ability to optimise the task

allocation. Such an increase in flexibility and ability to optimise

the task allocation would justify the use of the proposed adaptive

approach compared to a static approach.

5 CONCLUSIONS
This study investigated the possibility and potential performance

gain of enabling distributed agents to independently adapt their

task allocation strategies according to locally received information.

An adaptive distributed approach is proposed that combines a pre-

diction function with a decision making capability to select the

predicted optimal strategy. Results showed that in the majority of

scenarios tested, a performance gain was achieved by using the

proposed approach. Agents were able to predict and select the op-

timal task inclusion heuristic to optimise the number of allocated

tasks. In a minority of cases tested, when the number of agents was

lowest, the agents predicted the incorrect heuristic. However, this

resulted in a performance no worse than the non-adaptive strategy.

Preliminary results showed that agents could further optimise the

task allocation by adapting their conflict resolution strategy.

Factors such as the training data, the inputs, the machine learn-

ing tool, and the time of the prediction, are all factors that may

impact the accuracy of the predictions, and are therefore interest-

ing points to consider more deeply in future work. The proposed

method could be extended to support a greater number of heuris-

tics. For problems of greater complexity, additional inputs could be

tested for increased accuracy. Additional inputs may include the

number of tasks an agent removes during a round due to conflicts.

Furthermore, the proposed approach could be adapted to support

agents in learning the best strategy online, as well as adapting to

changing optimisation objectives.
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