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SYNOPSIS

The thesis focuses on the manufacture of car body panels at Austin Rover
and in particular the phenomenon of springback. After pressing of a shallow
drawn panel its shape is often flatter than required. This loss of shape
control corresponds to areas of small strains. The aim of the thesis is to
describe the generation of a database of small strain information at
discrete points on a drawn panel, which could be used in the numerical

modelling of the drawing process.

Chapter 2 discusses the background for small strain analysis and gives an
outline system specification for a suite of programs to determine the
principal strains and directions at discrete points on'a drawn panel.

Chapter 3 presents the basic theory of geodesics, based on the differential
geometry of curves and surfaces. Curvature and torsion properties are

established for the rational cubic segment.

Chapter 4 presents the radial plane subdivision method, for evaluating the
shortest planar distance between two points on a surface patch. The results
of this algorithm applied to two production panels are presented in Chapter
5. The final chapter discusses these results and identifies areas for

further work.
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CHAPTER 1

INTRODUCTION

In this thesis we focus on the manufacture of car body panels at Austin
Rover and in particular the phenomenon of springback. After pressing of a
shallow drawn panel its shape is often flatter than required e.g., a car
bonnet or roof penel. This loss of shape control corresponds to areas of
smail strains. The aim of the thesis is to describe the generation of a
database of small strain information at discrete points on a drawn panel,

which could be used in the numerical modelling of the drawing process.

The numerical modelling of sheet metal forming [Duncan et al; 1985] is
important in the context of fully integrated CADCAM and the potential
benefits for the sheet metal forming industry are documented [Lee; 1983,

Kokkonen; 1985].

In section{l.l) the drawing process is described and factors which
influence the quality of the drawn panel are also identified. In
section{1.2} an overview of the activities for the design and manufacture
of press tools at Austin Rover is presented. The contents of the thesis

are outlined in section(1.3).



1.1 The drawing process.

The drawing process can be illustrated by the operation of a double
action press with the following sequence of actions which correspond to

Figures{1.1) to (1.3) :

a) a sheet of metal or blank is placed in its initial position.
b) the outer ram moves downwards and secures the blank for pressing.
c) the punch descends with the inner ram, and stretches and draws the blank

into its shape.

The blank holder secures the sheet of metal for pressing. The presence of
draw beads, and complementary grooves which are cut into the mating blank
holder, affect the flow of metal into the forming part. Similarly, other

process parameters such as friction between contact surfaces, lubrication,

stroke force and blank holder pressure affect the shape of the drawn pahel.

There are a number of factors which influence the quality of a pressed

panel and can be broadly categorized by :

a} the shape and thickness of the design part.
b} the material properties of the blank.

¢) the process parameters.

A detailed review of these factors is reported in the work by Caddell and

Hosford [1983], and Richard [1981a, 1981b].
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Figure (1.1} : Blank in its initial position .
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Figure (1.2) : Blank is secured by outer ram .
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Figure (1.3) : The panel is formed from the blank being stetched over

the punch, which descends on the inner ram.



1.2 Tool design and manufacture at Austin Rover.

The departmental structure for the design and manufacture of press tools
for the production of car body panels at Austin Rover [Coltman; 1988] is
illustrated in Figures{l.4) to (1.6). The activities within each department

are summarized in Tables 1.1 to 1.3,

The problem of springback is usually dealt with at Tryout. The punch is
overshaped or overcrowned, so that the panel springs back to the required
shape. This is done on a trial and error basis with the experience of press
shop personnel, and highlights a missing link in the CABCAM chain : given

the shape, material properties and thickness of a drawn panel the overcrown

required on the punch cannot be predicted, before the panel is pressed.

Ball and Cripps [1987] describe a geometric approach for the development of
an overcrown prediction program. We consider one aspect of the overcrown
project, which is the generation of small strain information at discrete

points on a drawn panel. In the next section we outline the content and

structure of the thesis.



Design

|

Body Engineering
|

Tool Engipeering
|

Tool Manufacture

Figure(1.4) : The departments involved in the design and manufacture of

press tools.

Tool Engineering

l

Press Tool Press Tool Tool Design
Feasibility Process Planning & NC Programming

Figure(l1.5) : The departmental structure of Tool Engineering at

Austin Rover.

Tool Manufacture

l 1

Pattern shop Machine shop Tool Assembly/ Tryout
Fitting

Figure{1.6) : The departmental structure of Tool Manufacture at

Austin Rover.



Table 1.1 :

8

The production of car body panels

Department Activity

Design A geometric database of the new car is
generated, from a full scale clay model, which
serves as a Master model for reference in the
design and manufacture of press tools.

Body The car body panels are defined by dividing up

Engineering | the outside shell of the car with curves.

Tool See Table 1.2

Engineering

Tool See Table 1.3

Manufacture

Table 1.2 : Tool Engineering

Department

Activity

Press Tool
Feasibility

The panels required for the car are approved,
in liaison with Body Engineering.

Press Tool

A manufacturing scheme is devised which details

Process the number and type of tool(s) for each
Planning panel required.
Tool Design | The press tools are designed from the component
& NC drawing of the part and with the aid of a
Programming | CADCAM system and NC programmed.

Table 1.3 : Tool Manufacture
Department Activity

Pattern shop

Manufacture reference media and casting patterns for
press tool geometry, assembly fixtures and inspection
media.

Machine shop

Machine castings and polish piece surfaces.

Tool Assembly

/Fitting

Assemble tools,

Tryout

Produce a panel acceptable at inspection.
Preoblems encountered : wrinkling, splitting and
springback.




1.3 Qutline of thesis contents.

In Chapter 2 we discuss the background for small strain analysis. We
describe the calculation of principal strains and directions at discrete
points on a drawn panel. We outline a system specification for a suite of
programs to determine the principal strains and directions at discrete
points on a drawn panel,

To estimate small strains‘we consider the deformation of straight lines on
a blank to curves on the drawn panel. We can obtain a lower bound for small

strains by considering curves of shortest distance i.e., geodesic curves.

In Chapter 3 we present the basic theory of geodesics, which is based on
the differential geometry of curves and surfaces. In particular the
parametric cubic (PC) segment, widely used in CAD [Faux and Pratt; 1983],
is considered, and curvature and torsion properties are established as a
by-product of this work with generalizaﬁions for the rational cubic segment

presented in Appendices A and B.

In Chapter 4 we present a nafve algorithm, the radial plane subdivision
method, for evaluating the shortest planar distance between twc points on a
surface patch: this gives a greater value than the geodesic curve length,
which by definition would be the minimum distance. The background
mathematics of the shortest path problem is presented and underlying
assupptions are highlighted. The =algorithm is based on the lattice
technique for a surface/plane intersection. The choice of mesh parameters

is investigated using roof and bonnet information.
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In Chapter 5 we present the results of applying the radial range
subdivision methods to two production panels : the R8-bonnet and R8-roof.
The problem of presenting lerge amounts of strain data is identified and

graphical solutions are discussed.

In Chapter 6 we discuss the physical interpretation of these results. Some
limitations of the radial range subdivision method are examined and
possible improvements are suggested. We discuss the motivation for further
work and conclude with the development of shortest path algorithms by

finding the geodesic curves between two points on a surface.

In Appendix D we apply the torsion property of the rational cubic segment,
presented in Appendix B, to composite rational cubic curves and to the
rational bicubic surface; the results are placed in the context of a new

area of research, visual continuity [Boehm;1988].
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CHAPTER 2

STRAIN ANALYSIS OF DRAWN PANELS

2.1 Introduction.

In this chapter we consider the estimation of small strains in drawn
panels. A brief overview of the literature for numerical modelling of
stretch forming and deep~drawing with sheet metal is presented in this
section. The background for small strain ansalysis is discussed in
section(2.2). The determination of principal strains and directions at
discrete points on a drawn panel is described in section(2.3). A system
specification for a suite of programs to determine the principal strains
and directions at discrete points on & drawn panel is outlined in

section(2.4).

The pioneering efforts by Chung and Swift [1951], in the forming and deep-
drawing of cups with a hemispherical punch were initiated when computing
power was fairly limited. Wood [1981] reports the successful application of
a versatile numerical technique, the finite element (FE) method and more
details are discussed in a number of texts [Zienkiewicz; 1985, Mitchell and
Wait; 1985] : he indicates the future numerical modelling of arbitrary
shapes, material properties and process parameters, in the stretch forming

and deep-drawing of sheet metals using FE methods.

Success in predicting forming and failure in parts, of arbitrary shapes, at
the design stage is described by Chu et al. [1982] and Lee [1982]. The
potential of a tested FE code for general toocling is identified by Baynham

and Zienkiewicz [1982].
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There are two FE approaches for modelling the deformation of material : the
rigid - plastic and elastic - wviscoplastic. The former essentially models
the behaviour of the metal as a non-~newtonian viscous fluid, and ignores
the elasticity of the material : the latter models the metal as a
deformable solid. The formulation and implementation of the two approaches

is compared by Honner et al. [1985].

Several authors [Baynham and Zienkiewicz; 1982, Chu et al.; 1982, Honner et
al.; 1985 , Lee; 1982] have modelled process parameters, such as friction
between the punch and panel, the effect of changing process parameters on
the drawing process is also considered in detail by Chandré [1986] and

Kobayashi et al. [1986].

The comparison of numerical results with the forming of simple shapes using
hemispherical, elliptical and flat punches has been documented [Chu et al.;
1982, Kobayashi et al.; 1986, Lee ;1982 , Wang; 1982]. However, the
evaluation of general FE codes is restricted by the limited experimental

data available [Baynham and Zienkiewicz; 1982].

Alternative numerical approaches for the modelling of stretch forming and
deep-drawing of sheet metal are suggested by Duncan et al. [1985] and Ball

and Cripps [1987].
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2.2 Background for small strain mnalysis.

Ball and Cripps [1987] are involved in the development of an overcrown
prediction program in collaboration with Austin Rover. Their aim is to
characterize the geometric nature of springback. This is done by generating
a knowledge base of punch and panel shapes, for a range of materials and
thicknesses. The difference between the punch and panel shapes defines the
geometric nature of springback. A punch or panel is defined by an assembly
of surface patches., Each surface patch is d@defined by polynomial
approximation of points taken off, using the LK 3D digitizer at Austin
Rover, the punch. or panel and the numerical definition is represented

parametrically by :

r = r{u,v) = (x(u,v),y{u,v}),z{u,v)); 0 su,v <1

where x(u,v}, y{u,v) and z(u,v) are polynomials in u and v.
In addition a database of small strain information is generated. The panels
of interest are regions of low strain, where springback is most noticeable
eg. roofs or bonnets. From the strain information generated we can
determine the principal strains and directions at discrete points, and this

is described in section{2.3).

2.3 Principal strains and directions.

In this section we discuss the determination of principal strains and
directions at discrete points on a drawn panel. In section{2.3.1)} we define
a strain state with reference to a co-ordinate system. In section(2.3.2) we
apply this definition to discrete points on a drawn panel, for which we
require two estimated strains and their directions. The source and

processing of strain data is described in sections{2.3.3) and (2.3.4).
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2.3.1) Definition of strain state .

We consider two perpendicular lines on a flat plate. Let the point x, lie

1
on one of these lines and let the point ¥y lie on the other line. Let the
point o be the intersection of the two lines. Our co-ordinate system is
defined by unit vectors ox and oy; which are parallel to the vectors ox

1
and oyl. respectively. The flat plate is deformed in the plane, and the

1
This configuration is illustrated by Figure(2.1). We perform a rigid body

points o, Xy and ¥y take up new positions : o*, x. * and yl*, respectively.

translation and rotation; such that o = o* and the ahgle between ox and

oxl* and the angle between oy and oyl* are equal.

The state of strain at o* is defined by the three scalars: Exx’ Exy and

eyy [Hgll; 1968] where :
€ox = |o*x1* - ox1|/|ox1|
-1
€y = i(n/2 - L. }s a, = cos (o*xl*.o*yl*/lo*xl*|]o*yl*[)
Cyy © lo*y,* - ov;|/ley, |

To calculate the principal strains and directions we consider an
anti-clockwise rotation, T ebout the oz axis, where oz = ox X oy, of the
coordinate system ox, oy to OX ., OY . this coordinate system is illustrated

in Figure(2.2). The strain state is now defined by three scalars; €

L]

XXr
exyr ’Eyyr where :
2 , .2

€ = cos (o )e._ + sin{20 )e + sin"(o_ )€
XXr r’ xXx r’ Xy r'yy
Exyr = %51n(20r)(€yy - Exx) + C05(20r)€xy (2.1)

= sin2(0 JE. - sin(20 )e + cosz(a JE
yyr r’xx r’ Ry ' Tyy
and
ox, = ox cos(or) + oy sin(cr)
oy, = -ox szn(or) + oy cos(cr).
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Y1

|

Figure{2.1) : Definition of a strain state .

Yr

Y1

Figure(2.2) : Rotation of coordinate axés ox and oy.

axy

Angle of shear

X1
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Now the principal strains, ex. and Ey,. occur where exyp = 0.
Let € ' = € and € ' = € , then :
X XXp Yy yyp
2 2
€, =cos (o )e._ + sin(20_)}e__ + sin {0 )€
X P xXx P xy P Yy (2.2)
2 2 .
€ = si € - s8in(2¢_)€ + cos (0 )€
yr = sin (Gp) xx ( p) xy ( p) vy
where,
2€x
tan{20_) = —E
PP e -«
XX Yy
and the principal directions, ox' and oy', are defined by :
ox' = ox cos{o. ) + oy sin(op)
P (2.3)
oy' = -ox sin(op) + oy cos(op).

2.3.2) Principal strains and directions at discrete points

To calculate the principal strains and directions at a discrete point, p*,
we first define a coordinate system ox,oy in the tangent plane at p*. We

assume that the unit tangent directions tl and t2 associated with strains

S, and 52 are inclined by an angle exy [Hall; 1968] to the coordinate axes

1
ox and oy, respectively; as illustrated in Figure(2.3}. Thus the coordinate

~axes with unit vectors ox ,oy are defined by :

ox = ( tlcos(exy) - tzsin(exy))/cos(2exy)

oy (-tlsin(Exy) + t2cos(€xy))/cos(26xy)

For small angles | €y | << 1 then :

1 t exy
oy = -t1 € + t

1]
(2

[#).4



17

Figure(2.3) : The coordinate system in the tangent plane at p'
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We can now define a strain state, as discussed in section{2.3.1}, in

the tangent plane at p*, by three scalars Exx'exy and €  where :

=85
xX 1 -1
Exy = 3(x/2 - axy) ' axy = cos (tl'tz)
€ =8
vy 2

From equations (2.1) and (2.2) the principal strains ex',ey' at p* are

defined by :

2 2
e os (o )& + sin{20 )€ + sin {0 )€
cos™ (o )€, (20)¢€, (o)€

€' = sin2(c e - sin{20_)e__ + cosz(c JE
Y P XX p Xy P Yy
where,
2€x
tan{2c_ ) = — =
P € - €
XX Yy

and the principal directions, ox' and oy', in the tangent plane at p*, are

defined by :

s
x‘
n

ox coslo + oy sin{o
(p) v (p)

Q
%.
]

-ox sin(o + oy cos{c_).
(p) v (p)
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2.3.3) Description of strain data.

The strain data required is derived from 3x3 arrays of points, strain sets,
which are etched onto a sheet of metal or blank, to an accuracy of =0.01lmm.
We consider a strain set, pi. i=1,2,...,9, and its numbering is illustrated
in Figure(2.4). We refer, for the purpose of discussion in this section, to
the parallel 1lines defined by points pl,p3; Py sPgs p7,p9 as horizontal
lines and, similarly, to the parallel lines defined by points pl,p7; P,:Pgi

p3.p9 as vertical lines.

After pressing, the new positions on the drawn panel for each set of strain
points, pi*. i=1,2,...,9, are recorded by the LK digitizer at Austin Rover,
to an accuracy of = 0.025mm. The drawn panel is represented by an assembly
of polynomial surface patches and each strain set is located, in general,

within a surface patch.

To determine the principal strains and directions at a discrete or

digitized point, pi*. within a strain set we require two estimated strains

S

10 82 and their associated wunit tangent directions, t, and ¢t as

1 2
introduced in section{2.3.2). To define a strain state in the tangent plane

at pi*. we assume that the strains are generated from the in-plane

deformation of perpendicular lines.

Let Lij be a horizontal line joining two neighbouring points p; and pj,
within a strain set, and let lij be there distance apart upon the blank,

After pressing, the line Lij is deformed to a curve Lij* on the drawn

panel with end tangents tij and tji; which lie in the tangent planes &t pi*

and pj* , respectively. This curve has an arc length of li * . The average

N

strain Sij at a point pi* or pj* can be expressed immediately as :

S;, = (lij* - Iij)/ lij
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VERTICAL LINES

Py Pg Pg
HORIZONTAL LINES
Py Ps Pg
Py P2 P3
X

Figure(2.4) : A strain sel of points etched upon a blank; the configuration is shown in

relation to the horizontal and vertical lines.



If Lij is a horizontal line on the blank then we refer to

strain Sij as a horizontal strain. Similarly, if Lik is a vertical

then we refer to the average strain Sik as a vertical strain. In general it
is not possible to find zij* exactly and therefore this arc length must be

approximated to estimate the strain,

We can now define a strain state at a point pi* , with a heorizontal strain
Sij and wvertical strain Sik' The required strains S1 and 82 and their

associated tangents t1 and t2 can now be defined by :

1 S, =8 t, = ¢t

ij 2 ik * "2 ik

If we consider g strain set the overall number of strains and agsociated
tangent dirgctions to determine the principal strains and directions at
_points pi*. i=1,2,...,9, are : 6 horizontal and 6 vertical strains with 24
associated directions. This means at the centre point ps*. and mid-side
points pz*.pu*.p6* and p8* we have more information than required. In the
next section we consider the effect of errors present in the strain data on

the calculation of strain states. In the next secticn we determine the best

approach to process extra strain data.

2.3.4) Discussion of errors.

Let the strain state, relative to axes ox and oy, be defined by the numbers
€ , € and € ., We suppose that the estimated strains, €% and €%
XX Xy Yy XX Yy

have discrepancies e and e  where :
XX yy

€* =€ + e
(2.4)

c* = € + e
Yy ¥y Yy
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We consider the effect of errors exx and eyy on the calculation of strain

states. We replace € c* and € by €* in equation(2.1) fo
te p o bY €. vy Y €y q (2.1) r

c* and c* where :

: *
estimated strains € xxp’ — yyr

2 2
» - * »
€ , = CO8 (ar)e + sin(?cr)exy + sin (or)e vy
» - : * - *
€ xyr = %51n(20r)(€ vy € xx) + cos(2or)exy
e* = sinz(o )E* - sin(20_ )e_  + cosz(o Je*
yyr r’'T oxx r’ Txy r’' yy

Substituting relations(2.4) and comparing with (2.1) gives :

c* = € + 0052(0 e+ sinz(o -
XKL xxr r' TRy ryy
»* - -
€ xyr exyr + %sin(2or)(eyy exx)
c* = € + sinz(o e+ cosz(c Ye
yyr yyr r’'“xx r'yy
So the discrepancies e , e and e are :
xxr' TXyr yyr
e = cosz(o e, + sin2(o Je
XXr T’ XX r'yy
exyr = irsin(Zcrr)(eyy - exx)
_ . 2 2
eyyr = sin (or)exx + cos (crr)eyy

It follows that :

2 2
Iexxrl < cos (cr)IeXXI + sin (cr)|eyyl
leyypl s Elsin(2o)l(le | + le ) (2.5)
|

| < sin’(o e | + cosz(cr)ley |

e
yyr ¥y

L - ' : , : . .
et e = max(le | ]eyy]) and substitute for [e | |eyy| in equatléns(z 5)

then :
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Hence the errors present in the estimated strain state defined by the

numbers €* , E% and €% determined by the estimated strains €*
XXr xyr yyr XX

and e'yy are bounded by the maximum error e. There is no apparent
disadvantage in averaging the extra strain data before the principal
strains are determined. We now consider the effect of errors € x and e

Yy
on the estimated principal directions ox*' and oy*' defined by :

ox* ]

ox cos{o* ) + oy sin{o*
_ ( p) v { p)

* ¢

oy -ox sin(o*p) + oy cos(o*p).

where the estimated principal angle, o*p. is defined by :

2¢
tan(20* ) = — 3L — . (2.6)
P E* - e*
XX Yy

Substituting relations(2.4) and rearranging gives :

2€
* )y = — XY - _ -1
tan(2¢ p) . .. (1 + (exx eyy)/(exx ny)]
XX Yy
From equation(2.6) then :
-1
tan(20*p) = tan(20p) [1 + (exx - eyy)/(exx - eyy)] (2.7}

For exx ~ eyy we can deduce that equation(2.7) is not well defined and the
estimated principal directions ox*' and oy*' do not correspond to the
principal directions ox' and oy'. We conclude that when the estimated
strains are almost uniform the principal directions are not stable, when

this is not the case the principal directions are well defined.



24

2.Y4) Outline of system specification,

This section ocutlines two system specifications : system 2.1 and system

2.2.

System 2.1 : Main system

The system specification is illustrated in Figure{(2.5). Its purpose is

detailed below :

To evaluate and record the principal strains and their directions for
digitized or strain points, taken from a drawn panel. Before forming the
points are etched on a blank in sets of 3x3 arrays, and after forming each
set 1is located, approximately, on a surface patch., The following

information is available :

a) the numerical definition of the drawn panel(The model database).
b) the position of the etched points before forming.

¢) the position of.the etched points after forming.

System 2.2 : Principal strains

The system specification is illustrated in Figure(2.6). Its purpose is

detailed below :

To calculate and record the principal strains and their directions at each
strain point within a set of strain points. The following information is
available :

a) the set of strain points.

b) the corresponding surface patch.

c) the position of strain points on the blank.



25

( Start )
( Read in model database -. C
C Read in sets of strain points . (
C Pick up dimensions of strain sets on blank. C

over each set of strain points

Reqularize the ordering of points within the set .

ldentify surface patch corresponding to the set .

Calculate and record the principal strains and directions

at each strain point, see system 2.2,

Com

for
Figure{2.5) : System 2.1 flowchart - calculation of the principal strains and

directions at digitized points .
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C o

lLocate the parametric values of each strain point.

over pairs of strain points within a set .

Estimate and record the min. arc length of a curve which
lies on the patch, between the pair of strain points ; and
record the end tangents for this curve, see system 4.1.

Estimate and record the strain between the pair of strain points

Estimate and record the principal strains and their directions for each

strain point.

C Return. )

Figure(2.6) : System 2.2 flowchart to calculate and record the principal

strains and directions within a set of strain points.
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(HAPTRR 3

DIFFERENTIAL GEOMETRY (OF CURVES AND SURFACES.

3.1 Introduction.

This chapter presents the background theory of gecdesics, which is based on

the differential geometry of curves and surfaces.

In section(3.2) we define for curves twe invariant quantities : curvature
and torsion, which determine its shape. We derive expressions for the
curvature and torsion of a parametric cubic (PC) segment, widely used in

CAD [Faux et al; 1983], defined in Ferguson form by :

u+ a u2 3, 0Osus<l,

r(u) = a, + ay 5 + a3u :

0

and we deduce that a twisted PC segment cannot have zero curvature or
torsion at any point along the segment. Generalizations of these results

for the rational cubic segment are presented in Appendices A and B.

" In section(3.3) we define for surfaces two invariant quantities : the first
and second fundamental forms, which determine its shape. The normal

curvature, and principal curvatures and directions are also defined.

In section(3.4) we review the work on geodesics by Willmore [1972]. The
relationships between the first and second fundamental forms of a surface,
and the curvature and torsion of a geodesic on this surface, are also
established. We emphasize the calculation of geodesic distance to estimate

lower bounds for the average straing discussed in Chapter 2.
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3.2 Space curves.

In this section we define the curvature and torsion of a space curve and
state the governing differential equations, satisfied by space curves.
Properties of curvature and torsion for a parametric cubic segment are
featured as a by-product of this work with generalizations for the rational

cubic segment presented in Appendices A and B.

A space curve is a curve in 3D, It can be defined parametrically as a
function of arc length, s, such that :

r = r(x(s),y(s),z(s}) =r(s) ;: 0 <s g s -

It can be also be parameterized for some general parameter, u, such that

[Faux et al; 1983] :

r = r(x(u),y{u),z{u)) =»(u) ; 0cusxsil.

dr(u) .
If we assume the curve is regular, the tangent vector — = r(u) + ¢,
du

then we can evaluate arc length, s, of this curve r(u) by :

t .
s(t) = J [r (u)| qu, 0st=s1.,
0
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3.2.1 Curvature and torsion

The shape of a space curve is determined by two scalar quantities, called
curvature and torsion, which can be defined as functicons of arc length
[Lipschultz; 1969]. However, we cannot determine the position of a curve in

space from its curvature and torsion.

Definition of curvature

We suppose that r = r(s) is a regular space curve of class at least c®.

Then the tangent vector t = t(s) = r'(s) = dr/ds is of class ¢!, and the

curvature k is defined by

r''(s) = k(s)n{s)

where n(s) is the unit principal normal.

Definition of torsion

We suppose that r = r(s) is a regular space curve of class at least ¢’
along which n(s), the principal unit normal, is of class Cl. Then

the rate of change of the binormal b, where b = t X n, with respect to arc
length is :

b' (s} = -7(s)n(s)

where t(s) is called the second curvature or torsion of a space curve.

The three pairs of vectors t,n ; n,b ; and b,t define the : osculating,

normal and rectifying planes respectively, as shown in Figure(3.1}.
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Space curve

\

Normal plane

Rectifying plane

Osculating plane

Figure (3.1) : The planes defined by the vectorst, nand b



31

3.2.2 The Serret-Frenet equations

The principal equations in differential geometry of space curves are called

the Serret-Frenet equations and are :-

r'(s) = t(s)

t'(s) = k(s)n{s)

n'(s) = 7(s)b(s) - k{s)t(s)
~b'(s) = -7(s)n(s)

(3.1)
(3.2)
(3.3)
(3.4)

When dealing with a curve r = r(u} parameterized by an arbitrary parameter,

u, not necessarily arc length, it is convenient to work in terms of the

following equations :=

r (u)

t{u) — :le (w4t o
e (u)]

r (u) X r (u) .
k(u)b(u) s Jr (u)| %0

Ir ()3

r (u).r (u) X = (u)

i}

1{u) : [; (u)| # 0 and k(u) $ 0

. 8
|2 (u)] K% (u)

; (u).;'(u) X .;.(u)

- s le (W) x> (] 40

Ir (u) X ¢ (u)]?

(3.5)

(3.6)
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3.2.3 The plane curve

A plane curve is characterized by the following theorem [Willmore; 1972].
Thecrem 1

Let r = r{s), be parameterized with respect to arc length, s, which is a
curve of class C3. Then a necessary and sufficient condition that r(s) is a
plane curve is for the value of its torsion to be zero at all points along

the curve.

Proof

This is a necessary condition since the osculating plane of a planar curve
is just the plane which contains the curve and is therefore fixed: the
bincormal is orthogonal to the osculating plane and so must be a constant
vector, Conversely, if the torsion is zero at all points then b must be a

constant vector. If we differentiate the expression :
(r.b)' = r'.b + r.b'

Substituting equations(3.1) and (3.4) we obtain

(r.b)' = t.b-r.Tn =0

and so r.b is a constent and b(s) = b(0), say, then the curve r(s)
satisfies the equation for a plane curve i.e.,

(r(s) - r{0)}.b(0) =0
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3.2.4 Curvature property of the parametric cubic segment.

In Theorem 2 we deduce that the curvature of a twisted parametric cubic

segment (PC) segment is non-zero at all points along the segment.
Theorem 2

If the curvature of a PC segment is zero at any point, then the segment is

a plane curve.
Proof

We recall that the Ferguscon PC segment is defined by the folleowing equation
3

r = r{u) =a;+au-+ a2u2 + agu : (3.7)

where, 0 s u s 1,

Differentiating equation{3.7} three times we have :

r (u) = a + 2au + 333u2 : (3.8)
r (u) = 2a, + fagu (3.9)
e (u) = 6a, (3.10)

The first two derivatives are used in this section and all three are used
in the next section.
We note if r{u) is not a regular curve i.e. r(uo) = 0, at some point

u = ug, then r{u) is a plane curve.
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The curvature k(u} of a space curve is defined in section{3.2.1) and by

taking the modulus of equation(3.5) we have :

[2 (w) X = (u) |
k(u) = ; (3.11)

e (u)]3

We suppose we have a point of zero curvature at u = uo. say, then

r (uy) X ;'(uo) =0 (3.12)

Substituting equations (3.8) and (3.9) into the numerator of (3.11) then :

; (u) X ;.(u) [al + 2a2u + 3a3u2] X [Za2 + 633u]

2
= 2f1 + 6f2u + 6f3u . (3.13)
where f1 = al X a, , f2 = a; X a3 and f3 = a2 X a3.
- | 2
Therefore for zero curvature at u = Uy we have, 2f1 + 6f2u0 + 6f3u0 = 0.

It follows that fl.f2 and f3 must be coplanar i.e., f1'f2 X f3 =0
fl'f2 X f3 = (a1 X az).(a1 X a3) X (a2 X a3)

- - 2 _

= (a1 X 32).(31.32 X 33)a3 = (al.a2 X a3) =0

Consequently the vectors a,.,a, and a3 are coplanar, and it follows r{u)
must be a plane curve., Conversely, if the PC segment is a twisted curve
then it cannot have zero curvature at any point along the segment. In:
Appendix A we prove that this property is also exhibited by the rational

cubic segment.
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3.2.5 Torsion property of the parametric cubic segment.

In theorem 3 we deduce that the torsion of a twisted parametric cubic

segment (PC) segment is non-zero at all peoints along the segment.

Theorem 3

If the curvature for the PC segment is non-zero throughout the segment and

if its torsion is zero at any point, then the segment is a plane curve.
Proof

The torsion of a space curve is defined in section(3.2.1) by equation(3.6)
and is :

»

r (u).r (u) X r (u)

t(u) = e (W) X e (w] $o0 (3.14)

I (u) X r (u)]?
We suppose we have a point of zero torsion at u = uo. say, then
r (uy).r {ug) X r (uy) =0

Now,

r.[r(wX r(l=[rXr@ . ¢
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Substituting equations(3.,13) and {(3.10) then :

22, + 6f2u + 6f3u2]. 6a3

12a, .8, X ag (3.15)

and so by substituting equation(3.15) into (3.14) we have :

12a .a X a
T{u) = S (3.16)

e (u) X £ (0]

Consequently, if the torsion has zero Qalue at some point r(uo). say, then
the numerator of equation(3.16) must be zero. Hence the vectors a,a and
al3 are coplanar, giving the result :

T{(u) = 0 % u € [0,1] (3.17)
Thus proving the property that if the torsion of a Ferguson PC segment is
zero, at any point along the curve and has non-zero curvature, then it is a
plane curve, since equation(3.17)} is a necessary and sufficient condition
for r = r{u) to be a plane curve, see section{3.2.3). Conversely, if the PC
segment is a twisted curve then it cannot have zero torsion at any point
along the segment and its value is constant in sign. In Appendix B we prove
that this property is also exhibited by the rational cubic segment.

In the next section we show that higher order polynomial space curves can

be constructed which do not satisfy this torsion property.
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3.2.6 Higher order polynomial space curves

In this section we construct a twisted quartic polynocmial space curve which
has zero torsion at one point only. Consider the quartic space curve

r = r{u) defined by :

r{u) = ay + au+ azu2 + a3u4 (3.18)
Differentiating gquation(3.18) three times we obtain :

r (u} = a, + 2a,u + 4a3u3 {3.19)
.o 5

r (u) = 2a2 + 12a3u (3.20)
r (u) = 2433u (3.21)
We recall the torsion of a space curve is defined by (3.6) :

r(w.r (u) X r (v . .

T(u) = i lr (u) Xr (] $0 (3.22)

Ir (u) X r (0)]?

Substituting equations(3.19}-(3.21) into the numerator of {3.22) then :

; (u?.;'(u) X ;.zu) [a1 + 2a,u + Ha3u3 1.0(2a, + 12a3u2) X 24a3u]
= 48a1.a2xa3u (3.23)

We also regquire that,

r(uXe @ 40 (3.24)

Therefore we consider that,

r(uXre (w =0 (3.25)
then from (3.25) there exists non-zero scalars a, B such that ,

a ; (u) + B ;.(u) =0

i.e. aa) + 2(qu + 5)32 + Quz(au + 3ﬁ)a3 =0
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So a,.a, and ag must be coplanar. Hence for equation{3.24) to hold

we want : aj.a, X ag + 0. With this assumption :

Ir(u) X (]2 =c3u) ; c(u) $0

(3.26)
Hence using equation({3.23) and (3.26) :
48a .a, X au
T(u) = — : (3.27)
C*(u)

Therefore from equation{3.27) we can deduce that the value of torsiocn is

zero at u = 0 and is non-zero at every other point.
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3.3 Surfaces.

We consider a surface patch, S, represented by a parametric equation :
r = r(x,¥.z) = r(x(u,v),y(u,v),z{(u,v}) = r{u,v), 0 £ u,v < 1. We assume

that the parameter curves, where u or v equals a constant, satisfy,

ér{u,v) ér(u,v)

— *0,— $0,0suvsi1

Su Sv
ér(u,v) 6r{u,v)

H =— X— , and H = |H| £ 0, 0 £ u,v 5 1.
Su ov

Consequently, we define the unit surface normal -

. H 6r(u,v) 6r{u,v) .
N(u,v}) = — ,0=u,v £1 . The vectors —, — and N form a
H Su Sv

right handed system, which is illustrated in Figure(3.2).

3.3.1 The first and second fundamental forms.

In section{3.2) we stated that the shape of a space curve can be determined
by two functiong of arc length, curvature and torsion. Similarly, the shape
of a surface is determined by twoc local properties which are the first and
second fundamental forms, [Lipschultz: 1969].

Definition of the first fundamental form

The first fundamental form I{u,v}, which is interpreted physically by the

squared element of arc length, dsz, and is defined by :

I{u,v) = d32 = dr(u,v).dr{u,v)
&r{u,v) ér{u,v) ér(u,v) ér{u,v)
= [ — du + — dv ] [ — du + — dv]
Su v Su Sv
= E(u.v)du2 + 2F(u,v)dudv + G(u,v)dv2
where,
ér(u,v) &r{u,v) Sr{u,v) ér{u,v) Sr(u,v) 8r(u,v)
E{u,v) = = . — Flu,v) = — . , Glu,v} = — —_

Su Su Su 6v Sv Sv
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Tangent plane at r{u,v)

Surtace §

Figure (3.2) : The tangent plane detined at the point r{u,v)
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The numbers E,F and G are referred to as the first fundamental

coefficients.

The first fundamental form has the following properties :

a) it is independent of parameterization,

b) it is positive definite.

Definition of the second fundamental form.

The second fundaméntal form II{u,v), which is interpreted physically as
the projection of the chord vector, the line joining two neighbouring
paremetric points on S, onto the unit surface normal, doubled,[Lipschultz;

1969], and is defined by :

IX{u,v) = - dr(u,v).dﬁ(u.v)
ér{u,v) &r(u,v) dﬁ(u.v) 6ﬁ(u.v)
=-[—- du + — dv].[— du + — dv]
Su ov Su ov
= L(u,v)du2 + 2M(u.v)dudv + N(u.v)dv2
where,
ér{u,v) Gﬁ(u,v)
L{u,v) = - — . —,
Su Su
ér(u,v) 6ﬁ(u,v) ér{u,v) 6ﬁ(u.v)
M(U,V) = -%[_“'" . + — . T ]r
Su Sv Sv Su
ér(u,v) Gﬁ(u,v)
N({u,v) = - — . —

Sv &v

The numbers L,M, and N are referred to as the second fundamental
coefficients,

The second fundamental form has the following properties :

a) it is independent of parameterization.

b) it can also be written dzr(u.v).N(u,v).
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3.3.2 Curves on surfaces,

Let r = r{u,v}), 0 S u,v < 1, be a surface patch of class ¢™. Let u = u(t),
v =v{t) , 0t €1 be the curvilinear coordinates of a curve class Cn2.

Then r = r{u(t),v{t)}), 0 s t £ 1, is a curve on the surface of class Cn3,
where n3 = min(nl,n2)). The tangent vector at a parametric point P{u,v), on

the surface patch is defined by :

dr Sr du Sr dv

—— B e m— o m—— —

dt Su dt &v dt

which lies in the tangent plane at P.

3.3.3 Normal curvature.

Definition of normal curvature

Let r{u(s),v(s)), 0 £ s s Sy be a regular curve parameterized with respect
to arc length s, of class 02. on the surface patch S, and passing through
point P, The normal curvature at P is :
d2r(s) -

K (u(s),v(s)) = —, . N(s)

n d52 :
In terms of the second fundamental coefficients this can be expressed as :

2 2

du du dv dv
gt =] == ]| =]
ds ds ds ds

The normal curvature is independent of parameterization.
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3.3.4 Principal curvatures and directions.

In general the normal curvature varies with the tangent direction at P. The
principal curvatures and directions at P on the surface patch correspond to
the minimum and maximum values of normal curvature with their associated

tangent directions.

The normal curvature at P is :

du 2 du dv dv 2
gt =]l == ][]

ds ds ds ds
du dv
The tangent direction at P depends on the values of — , —
ds ds
which are subject to the constraint equation r'(s).r'(s) =1, i.e,
du 12 du dv av 12
2] 22] 2T
ds ds ds ds

The principal curvatures Ka'Kb are defined by the roots of the quadratic
[Willmore; 1972] :

K2(EG - F2) - K(EN - 2FM + GL) + LN - M® = 0

The principal directions corresponding to the principal curvatures are
obtained from the equation :
dv

+ {EN - GL)| — — ] + (FN - GM) [ —_ ] =0 (3.28)

du ]2 du dv
ds ds ds

(EM - FL) [ _—
ds

If the coefficients of equation(3.28) are all zero the normal curvature is
the same in all directions and the principal directions are not well
defined. Otherwise the discriminant of equation({3.28) is positive definite
and the roots of this equation are real and distinct, and the principal

directions wmust be orthogonal.
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3.3.5 Lines of curvature.

Definition of lines of curvature

If the tangent vector of a curve on a surface patch is parallel to a
principal direction at each point along the curve, then the curve is a line

of curvature.
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3.4 Geodesics.

This section reviews the work on geodesics by Willmore [1972]. He regards
the problem of finding the shortest distance between two points a,b on a
surface S, as identifying curves of stationary distance rather than

of shortest length. We present the definition of a gstationary curve and
from this a necessary and sufficient condition, derived by Willmore, for a

curve on & surface to be a geodesic.

We also present expressions for the curvature and torsion of a geodesic
curve in terms of the coefficients of the first and second fundamental
forms and note their similarity with the equations associated with

principal curvatures and directions at a parametric point (u.vf.

3.4.1 Definition of a stationary curve.

Let a,b be two points on a surface S of class 02. We consider the curves,
r(t), which join a and b with curvilinear coordinates of the form u = U(t),

v = V(t)}, and are continuous functions of class Cz.
Every curve r(t), 0 £ t £ 1, has arc length 1 :

1 . .
1= J f(u,v,u,v) dt where,
]

.. . du 12 du dv dv 12 4%
f(u,v,u,v) = 'r] = [ E[ — ] + 2F[ _— ] + G[ — ] ]
dt dt dt.
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We deform r(t)}, keeping the end points fixed, such that the new curve R(t)

has curvilinear coordinates U'(t), V'{(t) defined by :

Ut {t) = U{t) + € a(t)

V' {(t)

v(t) + € B(¢t)

where a{t),p{t) are arbitrary functions of class C2 and also satisfy :

a(0) = 0 = B(0) ; a{l) = 0 = B(1)
The variation in arc length &81(€), is derived by Willmore [1972] as :

1 . . . .
6t(e) = J[f(U(t.e).V(t.e).U(t.e).V(t.e) - £{U(t),v{t),u{t),v(t)] dt
0

By a Taylor expansion of first order in € and integrating by parts the

coefficients of a{t),p(t) gives :

1 . . . .
&1(€) = EJEG(t)A(U(t),V(t).U(t).V(t))-B(t)B(U(t).V(t).U(t).V(t))]dt + o(e?)

0
where,
Sf d r of 8f d  6f
R P TEE bl
Su dtl &u Sv  dtt &v

For a variation of second order in € we must have :

1 . . . .
Iga(t)A(U(t)'V(t)’U(t)'V(t)) = p(t)Blult),v(t),u(t),v(t))1dt = O (3.29)

for all admissible functions a{t), B(t).
We recall the Euler-Lagrange Lemma [Willmore; 1972] : if g{t) is a

continuous function over the open interval (0,1) and satisfies

1 .
j v(t)g(t) dt = 0
0

for all admissible function v{t) with v{0) = 0 and v(1) = O.
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Then g(t) = 0% t € (0,1). (3.30)

By choosing, af(t) $ 0 % t € (0,1) and B(t) = 0, %t € [0,1],

we deduce from (3.29) and (3.30), with v(t) = a{t), g(t) = A{t), that :

A{t) = 0¥t € (0,1) and similarly B(t) = 0% t € (0,1) (3.31)
Hence the curvilinear coordinates u{t),v(t), 0 = t s 1, of a geodesic must
satisfy the differential equations in equations{3.31) at all points on the

curve.

3.4.2 The normal property of geodesics.

Willmore [1972] derives a necessary and sufficient condition for a curve

on a surface to be a geodesic or stationary curve, by first substituting

into equations(3.31), f{u,v,u,v) = (2T(u,v,u.v))i, where T = | r{t) |2
to give :

d r T - &T 1 dT 6T
(fg) s —| — | =« — = — — —

Y(¢) = —| — | - — =2 — — —
datt &¢ - v 2T dt &%
ar
Then eliminating — gives :
dt
6T ST
X(t) — =-Y¥{t) —=0,%te (0,1
&Y &6

From this equation Willmore deduces the unit principal normal at every

point along a geodesic curve must be normal to the surface.
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In the next two sections we highlight the relationship of curvature and
torsion of a geodesic 1in terms of the first and second fundamental

coefficients of a surface.

3.4.3 Curvature of a geodesic.

In this section we remark on the expression for the curvature kG of a

geodesic. We assume the geodesic curve r{u(s),v(s)) is of class at least

CZ. Then we have from equation(3.2) in section(3.2.2} :

dzr(s)

d52

= kG(s) n(s)

If a geodesic is parameterized with respect to arc length and the principal
normal n(s) is parallel to the unit surface normal N(s), then

d2r(s) -

k. .(s) = . N(s)
G ds2

Comparing this expression with definition of normal curvature, see

section{(3.3.3), it follows that :

du 2 du dv dv 12
oty 2T {22 ] a2
ds ds ds ds

The curvature of a geodesic has extreme values which must correspond to the

principal curvatures and directions at a parametric point (u,v).
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3.4.Y4 Torsion of a geodesic.

In this section we state an expression for the torsion s of a geodesic
curve derived by Weatherburn [1927]. We assume the geodesic curve
r{u{s),v(s)) is of class at least 02 and is parameterized with respect to
arc length. We recall from section{3.2.1) the unit bihormal. b({s), is
defined by :

dr(s)

b(s) = — X n(s) | | (3.32)
ds

Substituting equation(3.32) into (3.4) it follows that :

- . dn(s) dr(s)
N(s).n(s)TG(s) = N(s) . — X—
ds ds
R - dN(s) dr(s)
But n(s) = N(s), so TG(S) =N{s}) . — X — (3.33)
ds ds

Now we can write,

dﬁ 6& du 6ﬁ dv dr &r du Sr dv
—_— = —— ¢ = — gnd — = — ¢ = —
ds Su ds Sv ds ds Suds &v ds

Substituting these expressions into equation(3.33) we can deduce the

torsion in terms of the first and second fundamental coefficients :

du 2 2

o r [ 2] w22 o [£]]

TG(S) =
ds ds ds ds

oo R B ]

Comparing this expression with equation(3.28), we can deduce immediately
that if the tangent to a geodesic is parallel to a principal direction we
must have zero torsion, Further, if a line of curvature is also a geodesic
curve then its torsion must be identically zero; since by definition its
tangent is parallel to a principal direction at all points along the curve.
Therefore this geodesic must be a plane curve, since this is a necessary

and sufficient condition for a curve to be planar, (see section(3.2.3)).
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CHAPTER 4

THE SHORTEST PLANAR PATH ALGORTTHM.

In this chapter we present a naive algorithm, the radial plane subdivision
method, for the evaluation of the shortest planar path between two points
pa and pb on a surface patch P. The surface patch P is represented by a

parametric equation :

p=p{uv) ,0=<uvsl (4.1)

We assume that the parametric curves, where u or v equals a constant,

1 .
are at least class C regular curves i.e.,

Sp{u,v) &p{u,v)
— +0and — £0; 0su,vsi,
Su Sv

In addition we have,

Sp(u,v) &p(u,v)
H= — X —  H=|H|$0,0suvsl
Su &v

- H
Now we can define the surface normal N{u,v) = — ,
' H
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In section{4.1) we construct a surface Q, a portion of P, defined by a
family of planar intersects between the points pa and pb, and we want to

find the curve with minimum arc length. We pfesent the background
mathematics for the construction of Q@ and highlight the underlying

geometric assumptions necessary for its definition,

In section(#.2) we outline a system specification for the radial plane
subdivision method. The evaluation of arc length in the algorithm is based
on the faceting or lattice technique [Geisow and Pratt; 1986] and
processing of facet/plane intersections is described. In section(4.3) we

examine the choice of mesh parameters with bonnet and roof information.

4.1 Shortest planar path.

In section(4.1.1) we are concerned with the construction of Q. The
parametrization of Q is described and in section(4.1.2) the geometric
significance of the chosen parametrization is discussed, In section(4.1.3)
we derive a stationary condition which the shortest planar path must

satisfy.

4.1.1) Construction of surface Q

We construct a surface Q, which is a portion of P, and is defined

parametrically by :

q = qfu*,v*} , 0 s u*v* <1 . (4.2}

The parametric curves, defined by constant v*, are planar and lie between
the points pa and pb. on P, such that :

a(0,v*) = p* and q(1,v*) = p°, v* € [0.1].
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The parametric curve*, defined by constant u*, liesin a plane with normal

parallel to the chord vector Nba = pb - pa. and contains a point

ab b

c(u*), u* € [0,1], on the line L®° between the points p® and p°, and

c(u*) = (1 - ut)p® + u® P, u* € [0,1].

- *+
Let Nr(v*) be the normal to the plane X' , which contains the
planar intersect gq(u*,v*}, 0 s u* 1, v* € [0,1] and is defined by,
Nr(v*) = (sin(8* -~ o%*) Nr(O) + sin(¢*)Nr(1))/sin(9*)
where,
v* = ¢*/8%, ¢* € [0,8%], 6% = cos (N_(0).N_(1)), 6* € (0,x) and the
bounding planes XO and Xl. have continuous planar intersects q(u¥*,0) and

*
q(u*,1), 0 < u* < 1, respectively. We refer to the family of planes x¥ . v

v* € [0,1] as radial planes. This configuration is illustrated in

Figure(4.1).
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We assume

A A

q)*

N (0)

N/(1)

Ne{(V’)

B*

H=*
_N{0)

A A A

Figure (4.1) : The normal N{v*) relative to N((0) and N {1).

N3P (N (0) XN (1))>0

Ne(1)
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We have parameterized the plane curve q(u*.v*l). 0 su* =<1, v*1 € [0,1]
with respect to the chord between the points pa and pb. Then, the

equations,

(pa,v) - c(u*;)).N°% = 0
(4.3)

(p(u,v) = d).N_(v%) =0,

»* *
where d = ¢(u 2). u*, € [0.1],
define the parametric coordinates (u*l.v*l) of a point on the planar

intersection q(u*,v*l), 0<u*s<1, v*1 € [0,1] on the surface patch P.

We illustrate this surface/plane intersection in Figure(4.2) and the
parametrization of each planar intersect q{u*,v*), 0 < u* <1, v* € [0,1]
ig illustrated in Figure(4.3). In the next section we evaluate the

geometric significance of the parametrization of Q.

4.1.2) Geometric evaluation of the parametrization of Q.

If the chosen parametrization with respect to chord length is not single
valued then the planar curve g{u*,v*), 0 < u* < 1, v* € [0,1], has more
than one point defined for some parametric wvalues. The curve doubles back
on itself and therefore its tangent vector must bé orthogonal to the chord

vector Nba at some point u*1 € [0,1] on this curve i.e.,

ba

6q(u*1.v*)
- . N°% =0, u* € [0,1] (4.4)

Su®

An example of this condition is illustrated in Figure(4.4).

To ensure that the chosen parametrization with respect to the chord is
single valued then a necessary condition is,
Sqfu*,v*)

'6—* . Nba + 0, ¥ u*,v* € [0,1] (4.5)
u .
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Plane X¥4

\

Surface patch P

Figure (4.2) : The plane XV intersect with the surlace patch P, and a planar intersect

q(u'v'), 0 < u*<1,v'y¢[0,1], between the points p@ and pb-
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The plane XV'1

C(uy) N ba

pa

C L L L L T R R X

The planar intersect q(u*,v*{) ,0 <u” <1 ,v*1 £[0,1]

Figure (4.3) : The parametrization of the planar intersect q{u*.v*¢) ,

0<u* <1, v*'q£]0,1], with respect to the chord length.
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The plane XV'1

Figure (4.4) : A continuous plane / surface intersect curve, which is not single

valued with respect o the chord length.
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Sq(u*,v*)
The tangent vector — , at a point (u*,v*) must be orthogonal
Su*

to the surface normal ﬁ(u.v) and plane normal ﬁr(v*). Therefore,

— = a(u*,v*) N(u,v) X N_(v*)

where a({u*,v*) + 0, ¥ u*, v* € [0,1].

To accommodatéh%ondition in equation{l4.5), which ensures that the chosen

parametrization for each planar curve g{u*,v*), 0 < u* < 1,vv* € [0,1]

is single valued, we require that,

(N(u,v) X N_(v*)) . N°2 L 0, # u*,v* € [0,1] (4.6)

We note that Nr(v*) . Nba = 0, then the surface normal N{u,v) and plane

normal Nr(v*) must not be parallel to satisfy equation(4.6) ¥ u*,v* € [0,1]
*

i.e., XY and the tangent plane at any point on P cannot be coincident.

We also require that the surface normal N{u,v) and the chord vector

Nba are not parallel ¥ u*,v* € [0,1].

However, this condition does not rule out the possibility of a multiple
intersect, as illustrated in Figure(ﬂ.é), and we need to show that
parametrization of the parametric curves q(u*,v*), u* € [0,1], 0 < v* <1,

is single valued.
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xV

Figure (4.5) : A multiple intersect with the surface patch P and plane X'

pb
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First we consider the surface Q as a reparametrization of a portion of the
surface patch P such that

q{u*,v*) = plu(u*,v*),v(u*,v*)), u*,v* € [0,1].

Willmore [1972] states that if the Jacobian &(u,v)/&(u*,v*) defined by,

Su Su
&{u,v) Su* Sv*
S{u*,v*) Sv Sv
Su¥* Sv*
is non-zero, with u = u(u®*,v*), v = v(u*,v*), u*,v* ¢ (0,1) is locally

single valued. In Appendix C from equation(C.11} we show that,

8(u,v)/6(u*,v*) = NP®. NP2 AsB, (4.7)
where,
dﬁ {v*)
A= (p(uv)-d).—"

dv*

os]
n

H (N(u,v) X (N_(v*)). NP2

We consider when A = 0.

We note that, ﬁr(v*) . ﬁr(v*) =1

) ) aN_(v*) .
d(N_(v*}. N_(v*))/dv* =0, i.e. — . N A(v*) =0

r r - r

dv

Also ﬁr(v*) . Nba = 0

) aN_(v*)
d(Nr(v*).Nba)/dv* =0, i.e. —T . N2 -

dav*
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aN_(v*) .
Hence, the vector — lies in the plane XV and is orthogonal to the
dv*

chord vector and we illustrate this in Figure(}4.6).

Therefore A = 0 occurs when the vector (p{u,v) - d} is parallel to the
chord vector i.e. when p(u,v), u,v € [0,1], lies on the line Lab.
In general, it would be possible for the chord to intersect the surface,

The worst case of this occurs if the line Lab lies in the surface. However,
the surfaces of interest are low strain areas on car body panels, where
the planar intersections are either convex or concave with respect to the
chord length. Therefore, the only points which lie on the line Lab

end points pa and pb.

are the
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The plane xV*

pa

The planar intersect q(u*,v*) ,0 <u* <1, v* g[0,1]

d{u) Nba
T pb
P(uV)
A
dN{v*)
dv*
A
dN{v")
Figure (4.6) : The orientationof = in the plane X¥'

dv*
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4.1.3) Stationary condition.

We now derive a stationary condition for the curve with minimum planar arc
length. The arc lengths of each planar curve q(u*,v*), 0 s u* <1,
Vv v* € [0,1] are defined by,
1 3
t(v*) = | [ B(u*,v*) ]° au* , v* € [0,1] (4.9)
0 _
where,
Sq(u*,v*) oq{u*,v*)

Bl{u*,v*) = — . —
Su* Su*

We assume that the family of radial plane intersections contains the

minimum planar arc length then this curve must satisfy the condition :

dazr(v*)
—_— =0, vt e [0,1]
dv®

Since u* and v* are independent variables we can write :

6B
ar{v*) 1 Sv¥ .
—_— = -3 J 7 du* = 0, v* € [0,1] (4.10)
dav* 0 [B]
and
6B 62q(u*.V*) Sq(u*,v*)
— =2 . — (4.11)
Ev* Su*sv* Su*

The vector nature of equation(4.10) is complex but can be solved using
existing techniques for numerical integration or iteration [Sedgewick;
19847]. We adopt a geometric approach and suggest a naive algorithm : the
radial plane subdivision method and this algorithm is described in the

next section.
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4.2 Radial plane subdivision.

In section(4.2.1) we outline a system specification for the radial plane
subdivision method. The evaluation of arc length for each planar intersect
is approximated by accumulated chord length, based on the faceting
technique. For each facet/plane intersect there are usually!two intersect
points on the facet boundary and from these points we calculate the chord
length. In section{4.2.2) we describe the processing of facets and identify

the possible facet/plane configurations.

4.2.1 Qutline of system specification

This section outlines a system specification : system 4.1
System 4.1 : Shortest planar path

The system specification 4is illustrated in Figure(H.?); its purpose is

detailed below :

To estimate and record the minimum planar arc length of a curve, from a

set of radial plane/surface patch intersections on a surface patch. The
curves lie between a pair of strain points defined by parametric wvalues,
The end tangents of this curve are calculated and recorded. The following

information is available :

a) The numerical definition of the surface patch, represented

by mesh of points.

b) The parametric values of the pair of strain points.
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oD

Determine the Initial plane boundary normals :

A A

N3 = N{(0) and Ng = N(1)

Divide the angle 6 = cos -1 (N3.N4) into nine equal angles 8.

Identity a rectangular array of mesh points which cover the region
bounded by two radial planes normals N4 and Ng

Find the arc length for each plane /surface patch intersect with normal
N2(¢ ;) and the end tangents, using a faceting method.

N2(dj) = (sin( 6 - ¢j) N3 + sin(¢;)N4 )/sin(@); ¢ = (i -1)8;i=1,10

Find the minimum planar arc length,

Compare minimum arc length with immediate neighbours.

Redefine plane boundary
normals N3 and Ny

Is min. arc length
within tolerance

?

Yes

Record min. arc length and the end tangents.

( Return. )

Figure(4.7) : System 4.1 flowchart to calculate the minimum arc length between
the pair of strain points detined by parametric values; from a set of radial plane/
surface patch intersections, qsing a faceting technique.




66

§.,2.2) Facet/ plane intersections.

In this section we determine the possible configurations of a facet/plane

intersection.

The surface patch P is represented by a rectangular mesh of points pij'
i=1l,...,m; j = 1,...,n defined by :

pij = p(uilvj) L4

where u, = (i - 1)/{m - 1), i=1,..., m and

vy ® (j ~-1)/{n-1), 3 =1,..,n.

The k™ facet, k = (j = 4)(m - 1) + 4, § =1,...,n -1, 1 =1,....m - 1 has

corner points pij' pi+1j' pij+1 and pi+1j+1' and is 4illustrated in

Figure(4.8).

We assume that the mesh ig dense so that each facet/plane intersect is
connected, and the arc length between the facet boundary intersect points

can be approximated by chord length.

We are only concerned with facets which lie in a region, R, bounded by two
parallel planes with normals parallel to the chord vector Nba and
containing the points pa and pb. respectively. We define,

a, ,ba
ij (pij p).NTT,

b, .ba
blj (piJ - P )-N

H

a

where i = 1,,..,m; j=1,...,n.
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Pin \\ Pin Pisin / Pmn
\\__; //The k t facet
\\-__ s /

N /
Pj+1 '
\ / Pmj+1
P1j
T~ / Py
N /
P11 ~ / Pm1

Figure (4.8) : Thek tNfacetinanm by n mesh of points on the surface patch P,
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th ; .
If the k facet with the corner points: pij' pi+1j' pij+1 and pi+1j+1‘

satisfies,

aij bij > 0 ai+1j bi+1j > 0 ;'aij+1 bij+1 > 0 and ai+1j+1 bi+1j+1 >0

then the facet will not lie in R. We further consider the signs of cij

defined by,

- - - * . . -
cij = (pij d).Nr(v 1). vk, € [(0,1], i=1,...,m; jJ =1,...,n

and we can determine if a facet/plane intersection occurs by considering
the changes of sign of cij' Ci+1j' Cij+1 and ci+1j+1 at each of the

corner points pij' and p,

Piv1j® Pij+1 1+1§+1°

The possible sign configurations of cij' Cij+1'ci+1j an ci+1j+1
th

k facet/plane intersect are summarized in Tables 4.1 to 4.3, We assume

d for the

that for a given facet/plane there are no intersect points or at most two

intersect points, on different boundaries.
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Table 4.1 : Summary of the possible signs of Cia1je1" if ¢
c >0 c =0 c, o
i+1j i+1j i+1j
cij+1 >0 o/- +/o/- +/fo/-
Cije1 = O | */0/- B -
cij+1 <o +/of- - -
Table 4.2 : Summary of the possible signs of ci+lj+1’ if c;
ci+1j >0 Ci+1j =0 ci+1j o0
€141 > o + + +/of~
ije1 7] * # -
Cije1 <o +/o/= - -
Table 4.3: Summary of the possible signs of Cia1jel’ if S5y
ci+1j > o ci+1j =0 ci+1j {o
cij+l >0 + + +/o/-
Cij+1 = Q0 + + +/o/-
cij+1 <o +/o/- +/o/- +/o
Key
# The plane normal Nr(v*l). v*1 € [0,1] cannot be

plane.

3

J

<

>

(o}

o

o

orthogonal to the tangent



4.3 Choice of mesh parameters.

In this section we identify the mesh size required to evaluate arc length
for a surface patch/plane intersection using the faceting method. We use
surface definitions for production panels at Austin Rover and the surface
patches of interest, which are generally flat, are illustrated in Figure

(4.9) and (4.10)}.

We first demonstrate convergence of the faceting method in section{4.3.1),
and in section{4.3.2) we derive an error bound based on the evaluation of
arc length for the estimation of strains. In section{4.3.3) we identify the

best choice of mesh parameters for each surface patch.

4.3.1) Convergence of the faceting method.

To demonstrate convergence of the faceting method we consider an arbitrary,

but fixed arrangetient of planar intersects for each patch and evaluate arc

lengths for a set of facet arrays.

We define a symmetric parametric square which has corner parametric values
(0.25,0.25); (0.75,0.25); (0.25,0.75) and (0.75,0.75). For each surface
patch we consider six planar intersects ai.i = 1,...,6. The corresponding
planes ni , i =1,...,6 contain points which are defined by two pairs of
parametric points; and are summarized in Table (4.4). From each pair of
parametric values we determine the radial plane boundary normals for a mesh
gize m = n = 9, The normal for each plane is chosen such that the radial

range © is bisected by the plane LR
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FRONT

[
Surface patch Surface patch
31 33
Surface patch Surfacg patch
41 43
REAR

Figure(4.9) : The left hand side of the R8-bonnet with named surface

patches,
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FRONT

—
-

Surface patch 2

Surface patch 3

Surface patch 4 '

REAR

Figure(4.10) : The left hand side of the R8-roof with named surface

patches.
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Table (4.4) : Summary of parametric points associated with the planes Ty

Planes | Pairs of parametric points
ny (0.25,0.25); (0.75,0.25}
sy (0.25,0.75); (0.75,0.75)
n3 (0.25,0.25}; (0.25,0.75)
ny (0.75,0.25); (0.75,0.75)
s (0.25,0.25); (0.75,0.75)
ne (0.75,0.25}; (0.25,0.75)

The planar intersects a, , i = 1,...,6 are continucus and we evaluate

i
seven arc lengths ZJ, J=1,..., 7 at the following facet arrays : 2(fj'1)
X 2(fj-1), fj = 1,...,7, where we term fj the facet index. The
corresponding mesh sizes are square and m,n are defined by m = n = Z(fjﬂl)
+1, f, = 1,...,7. The arc lengths calculated for each planar intersect ai

,i=1,...,6 are presented in Tables (4.5) - (4.11).
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Table (4.5) : Arc lengths evaluated for R8-bonnet.
R8-bonnet : Surface patch name 31
ﬂl 7!2 H3 Tl’q TIS 7{6
| 96.5333 | 93.7256 | 116.6005 | 108.6997 | 169.0162 | 122.0031
*, | 96.5527 | 93.7375 | 116.6164 | 108.7074 | 169.0445 | 122.0247
1*3 96.5607 | 93.7495 | 116.6024 | 108.7008 | 169.0460 | 122.0255
*, | 96.5676 | 93.7556 | 116.6029 | 108.7011 | 169.0541 | 122.0316
1*5 96.5694 93.7572 | 116.6031 | 108.7012 | 169.0563 | 122.0333 -
*c | 96.5698 | 93.7576 | 116.6032 | 108.7012 | 169.0569 | 122.0338
. 96.5699 | 93.7577 | 116.6032 | 108.7012 | 169.0571 | 122.0339
Table {(4.6) : Arc lengths evaluated for R8-bonnet.
R8-bonnet : Surface patch name 33
Ttl H2 71'3 ?T,4 71'5 TI6
* | 96.7715 | 96.5047 | 185.199% | 194.7583 | 226.0093 | 199.3301
™, | 96.7806 | 96.5123 | 185.2089 | 194.7589 | 226.0509 | 199.3685
*3 96.8146 | 96.5419 | 185.2044 | 194.76U44 | 226.0543 | 199.3693
1y 96.8257 96.5514 | 185.2059 | 194.7660 | 226.0670 | 199.3791
i*s 96.8285 96.5538 | 185.2063 19&.7665 226.0706 | 199.3816
*¢ | 96.8292 96.5544 | 185.2065 | 194.7666 | 226.0716 | 199.3823
™, 96.8294 | 96.5546 | 185.2066 | 194.7666 | 226.0719 | 199.3825
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Table (4.7) : Arc lengths evaluated for R8-bonnet.
R8~bonnet : Surface patch name 41
Ttl J'!Z n3 J‘tq 1’1‘5 TI6
1*1 388.5730 | 374.7883 | 121.7240 87.8867 | 417.9205 | 371.6759
1*2 388.6086 | 374.8183 | 121.8960 88.0203 | 417.9959 | 371.7080
1*3 388.6185 | 374.8328 | 121.7266 87.8893 | 418.0002 | 371.7076
z*q 388.6304 | 374.8445 | 121.7275 87.8900 | 418.0223 | 371.7168
1*5 388.6334 | 374.8476 | 121.7277 87.8903 | 418.0283 | 371.7194
1*6 388.6342 | 374.8484 | 121.7278 87.8903 | 418.0297 | 371.7201
z*7 388.6344 | 374.8486 | 121.7278 87.8903 | 418.0301 | 371.7203
Table (4.8) : Arc lengths evaluated for R8-bonnet.
R8-bonnet : Surface patch name 43
Jrl 71'2 Tt’3 "4 715 7r6
1*1 397.7097 | 397.1746 | 217.4651 | 255.5524 | 486.1950 | 436.6404
1*2 397.7383 | 397.1920 { 217.5457 | 255.5918 | 486.2761 | U436.7145
vy | 397.7641 | 397.2310 | 217.4730 | 255.5635 | 486.2780 | 436.7181
1*q 397.7782 | 397.2456 | 217.4752 | 255.5666 | 486.3007 { 436.7400
1*5 397.7818 | 397.24g4 | 217.4757 | 255.5674 | 486.3068 | U436.7462
1*6 397.7827 | 397.2503 | 217.4759 | 255.5676 | 486.3084 | 436.7481
1*7 397.7829 | 397.2506 | 217.4759 | 255.5676 | 486.3089 | 436.7485
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Table (4.9) : Arc lengths evaluated for R8-roof.

R8-roof : Surface patch name 2
11'1 7!2 1‘!3 Hu 7!'5 7r6
1%, | 310.2613 | 298.3146 | 259.2655 | 254.2067 | 411.1020 | 384.6133
*, | 310.2629 | 298.3147 | 259.2819 | 254.2067 | 411.1567 | 384.6721
1*3 310.2892 | 298.3366 | 259.2868 | 254.2258 | 411.1643 | 384.6750
I¥%), | 310.29717| 298.3428 | 259.2935 | 254.2311 | 411.1837 | 384.6920
1*5 | 310.2992 | 298.3445 | 259.2957 | 254.2326 | 411.1897 | 384.6966
*c | 310.2997 | 298.3449 | 259.2966 | 254.2330 | 411.1915 | 384.6980
1*. | 310.2999 298.3450 | 259.2969 | 254.2331 | 411.1919 | 384.6984
Table {4.10) : Arc lengths evaluated for R8-roof. -
R8-roof : Surface patch name 3
1r1 Tt2 Tt3 Hu 71'5 7!6
t* | 199.7797 | 194.9902 | 250.4905 | 248.4852 | 318.3851 | 317.8482
*, | 199.7906 | 195.0205 | 250.5021 | 248.4931 | 318.4066 | 317.8711
1*5 | 199.7813 | 194.9917 | 250.5094 | 248.5040 | 318.4076 | 317.8716
1%, | 199.7817 | 194.9921 | 250.5145 | 248.5091 | 318.4141 | 317.8779
5 | 199.7818 194,9923 | 250.5158 { 248.5105 | 318.4159 | 317.8796
¢ | 199.7819 | 194.9923 | 250.5161 | 248.5108 | 318.4164 | 317.8800
. | 199.7819 194.9923 | 250.5162 | 248.5109 | 318.4165 | 317.8801




Table (4.11)

17

: Arc lengths evaluated for R8-roof.

R8-roof : Surface patch name 4
J‘tl H2 71’3 nu 7T5 IT6
| 119.7629 | 119.7718 | 247.1580 | 246.3480 | 273.7455 | 274.8192
1*, | 119.7653 | 119.8014 | 247.1673 | 246.3501 | 273.7912 | 274.8654
1*y | 119.7812 | 119.7904 | 247.1776 | 246.3699 | 273.7960 | 274.8675
1%y, | 119.7866 | 119.7963 | 247.1830 | 246.3760 | 273.8121 | 274.8809
1*5 119.7881 | 119.7979 | 247.1843 | 246.3775 | 273.8167 | 274.8847
e | 119.7885 119.7983 | 247.1847 | 246.3780 | 273.8180 | 274.8858
1*7 119.7886 | 119.7984 | 247.1848 | 246.3781 | 273.8184 | 274.8861

We demonstrate the convergence to the arc length of each planar intersect

a,, i
li

= 1,...,6 using the faceting method by plotting, for each surface

patch, the percentage increase in arc length with respect to chord length

againgt facet index fj. i=1,..
(4.11) - (4.17).

practical convergence at 64 X 64 facets i.e. with f

We conclude that the arc lengths evaluated have a

7 = T

.,7 and this is illustrated by Figures
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Convergence of arc length by increasing facets
R8—bonnet : surface paich name 31

0.040 4

% Increase in are Jength with respect to chord length

—.—a - -

L. P,

Facet Index fu)

Figure{l.11) : Arc length convergence for the R8-bonnet.



79

Convergence of arc length by increasing facets
R8—bonnet : surface patch name 33

0.06~

0.054

0.04

0.03
e ey = = A

0,024

0.014

% Incraase In are length with respect o chord length

- ~ a__._,—.—:-a:--—=0='=-=9;=ﬁ

0.00

3 4 5 s 7
Facet index fm

&

Figure(4.12) : Arc length convergence for the R8-bonnet.
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Convergencé of arc length by increasing facets
R8—bonnet : surface pakch name 41

.16 1

0.10

0.08+

'\
-\ pasl
A

% increase in arc length with respect to chord length
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Figure(4.13) : Arc length convergence for the R8-bonnet.
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Convergence of arc length by increasing facets
R8—bonnet : surface patch name 43

0.040

o 00354 "

? I\

- I\

E 0.050 P

S 1o

- I

§- 0.025- | \ e x.---:.-.-:

£ ! \ P

£ i \ a

'; 0.020+

o -

B

5
0.0154

£

'§ Legend

2 o.010- N

.§ Oe .

3 & a
0.005 Oa .

L oa, ..

0.000 X Caooeeee

Facet index fcn

Figure(li.14) : Arc length convergence for the R8-bonnet.
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Convergence of arc length by increasing facets
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Convergence of arc length by increasing facets
R8—roof : surface patch name 3
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Figure(4.16) : Arc length convergence for the R8-roof.
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Convergence of arc length by increasing facets
R8—roof : surface patch name 4
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: Arc length convergence for the R8-roof.
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4,3,2) Strain error based on arc length estimation,

In this section we derive an error bound based on the evaluation of arc
length for the estiﬁation of strains. We consider the deformation of the
straight line L on a blank to the curve L* on a surface patch. Let 1 be the
length of the line L and let 1* be the length of the curve L*. If we

evaluate the arc length l*e defined by,

1*
[~

* -, e>0 | _ _ (4.12)

and e is the associated error.

We show that the strain, S, defined by,

S = (1* - 1)/1 : (4.13)

is bounded by the relative error Er defined by,
E, = e/1* (4.14)

We define the estimated strain, Se' by :

- 7%
Se = {1 e 1)/1. (4.15)
Now differencing equations (4.13) and (4.15),

- = (1% _ 1% =
S Se (1 1 o Yy /1 e/ 1 (4.16)
From:equation(4.12),

1= 1%/(S + 1) (4.17)

Substituting equation{4.17) into (4.16) and then using equation{4.14)} we

obtain,

- = * =
S Se e(S + 1) /1 Er (S + 1)
S =

(S, + E)/(1 - E)

Expanding binomially since Er ¢ <1, and ignoring small terms,
2 2
S = (Se + Er)(l + Er + o(Er 1y = Se + Er - Se Er + o(Er )

= Se + Er
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Then the error asscociated with the estimated strain, Se' is approximated by
the relative error, Er’ In the next section we determine the sacceptable

percentage error for small strain calculations.

4.3.3) Acceptable error.

The small strains are assumed to occur before the elastic limit is reached
i.e. before the yield stress is reached : for mild steel the yield stress
L and Youngs Modulus E are given by [Tennet; 19847,

6 2

a, = 300 X 10° Nm = , E = 210 X 107 N2

This gives a yield strain, Sy where,

5, = 300 X 10%/210 x 107 = 1.4285 x 1073

We assume that an acceptable error in the strain evaluations is less than
one percent. So we require that the order of relative error satisfies

E s1X1072.
T

To identify the facet index required for each planar intersect a, i =
1,...,6 we plot, for each surface patch, the relative error against facet
index fj' J=3,...,7. We also plot the line of acceptable error, so that
the values below this line correspond to the best choice of mesﬁ

parameters; this is illustrated by Figures (4.18)- (4.24).

We conclude that a facet index f5 = 5, will give an acceptable tolerance

for the evaluation of arc length on each surface patch considered.
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Relative error against facet index
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Figure{4.18) : Relative error against facet index for the R8-bonnet.
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Relative error against facet index
R8—bonnet : surface paich name 33
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Figure(4.19) : Relative error against facet index for the R8-bonnet.
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Relative error against facet index
R8—bonnet : surface palch name 41
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Figure(4.20) : Relative error against facet index for the R8-bonnet.
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Relative error against facet index
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Figure(4.21) : Relative error against facet index for the R8-bonnet.
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Relative error against facet index
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Figure{(4.22) : Relative error against facet index for the R8-roof.
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Relative error against facet index
R8—roof : surface patch name 3
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Figure{4.23) : Relative error against facet index for the R8-roof.
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Relative error against facet index
R8—roof : surface patch name 4
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Figure(4.24) : Relative error against facet index for the R8-roof.
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CHAPTER 5

ESTIMATION (F SMALL STRAINS ON TWO PRODUCTION PANELS.

In Chapter 4 we identified the best choice of mesh parameters to ensure

an acceptable tolerance for the evaluation of arc length using a faceting
technique, for a given surface patch/plane intersect. In this Chapter

we present the results of applying the radial range subdivision method to
a number of strain sets on two production panels; the R8-bonnet and

R8-roof.

The number, size and orientation of the strain sets on the production
blanks for the R8-bonnet and R8-roof are described in section(5.1). After
pressing, strain sets are located within surface patches, which are also

identified in section (5.1).

The results of the radial range subdivision method are presented in
section(5.2). We identify the problem of interpreting large amounts of
strain data and discuss principal strains and associated principal
directions, presented graphically, in sections {5.3) énd (5.4},

respectively.



95

(5.1) Location of strain sets on production blanks.

We illustrate the location of strain sets on the production blanks for the
R8-bonnet and R8-roof in Figures (5.1) and (5.2). Each strain set is etched
on a blank such that after pressing it is within a single surface patch, as

illustrated in Figures(5.3) and (5.4).

To ensure the strain sgsets are located within a single surface patch,
allowance for the the sheet metal in contact with the blank holder and the
deformation of the sheet metal to a doubly curved surface is made. In
practice the surface patches of interest are generally flat, so a first
order approximation of the arc length of the patch boundaries is sufficient

to project onto the blank.



96

1400mm

0
+ Y
H
X
« 1570 mm >
" {LH) FRONT (RH)
1 1
100{ | 1 {100] b
i i
-« » -« L J
100 200
) 1
2 5
200 200
l = > { « 3
100 200
1 T
3 6
200 200
! 4—r l « »
80 200
BACK
Figure (5.1) : The location, size and orientation of strain sets on the
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Figure (5.4) : The R8-roof with strain sets identified.
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5.2) Tabulated results.

The results of applying the shortest planar path algorithm to estimate the
strains on two production panels : R8-bonnet and R8-roof, are presented
respectively in Tables {(5.1) - (5.12) and Tables (5.13) - (5.20). Each
table identifies the surface type : R8-bonnet or R8-roof, the left hand
side or the right hand side of the model, the surface name of the patch and

the strain set number.

We note that large amounts of strain data are to be generated, eg. for the
R8-bonnet and R8-roof, it is proposed to consider 12 different material
types. Clearly this indicates a problem in interpreting a large amount of
strain data. In the next two sections we address this problem by
considering graphical presentation of the principal strains and their

principal directions in sections{5.3) and (5.4), respectively.
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STRAIN | %PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y Z
1 3.6308 0.8976 0.2711 0.3473
2.1476 -0.2731 0.9609 -0.0444
2 3.1840 0.8856 0.3616 0.2909
2.7182 -0.3603 0.9307 ~-0.0601
3 3.1757 0.8976 0.3571 0.2578
2.6680 -0.3571 0.9326 -0.0485
[ 3.8417 0.8950 0.2722 0.3530
2.2526 -0.2771 0.9600 -0.0376
5 3.2055 0.8889 0.3492 0.2961
2.5649 -0.3506 0.9350 -0.0501
6 2.8415 -0.4013 0.9141 -0.0550
2.7778 -0.8783 -0.4012 -0.2595
7 4.3525 0.9051 0.2215 0.3628
2.1062 -0.2344 0.9720 -0.0085
8 3.4764 0.8981 0.3170 0.3042
2.3401 -0.3231 0.9457 -0.0316
9 3.2096 -0.4441 0.8937 -0.0603
2.5105 -0.8567 -0.4434 -0,2625

Table (5.1) : Principal strains and directions for R8-bonnet.

A T e e S . e - —

STRAIN | %PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y z
1 3.2245 -0.6497 0.7541 -0.0944
1.4449 0.7309 0.6540 0.1945
2 2.6878 -0.5918 0.8035 ~0.0644
1.7433 0.7843 0.5924 0.1839
3 2.2780 -0.4728 0.8807 -0.0271
2.1652 0.8647 0.4697 0.1776
4 3.2860 0.7629 -0.6353 0.1190
1.4221 0.6120 0.7692 0.1830
5 2.8737 0.7779 -0.6196 0.1038
1.5644 0.6005 0.7819 0.1670
6 2.2126 0.8792 -0.4618 0.1168
1.9979 0.4460 0.8842 0.1388
7 3.2906 0.8253 -0.5492 0.1303
1.5738 0.5250 0.8317 0.1799
8 2.6810 0.8694 -0.4782 0.1233
1.6873 0.4585 0.8744 0.1578
9 2.3532 0.0625 0.9936 0.0941
1.3531 0.9842 -0.0770 0.1593

D - e e D e S RS SR A A e -

Table (5.2) : Principal strains and directiongs for R8-bonnet.
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STRAIN | %PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y Z
1 2.3824 -0.1855 0.9815 0.0465
1.6264 0.9706 0.1756 0.1644
2 1.9570 0.9010 0.4023 0.1623
1.,9079 -0.4100 0.9119 0.0154
3 2.4302 0.8504 0.5018 0.1577
1.5746 -0.5091 0.8606 0.0070
4 2.6503 -0.0673 0.9948 0.0767
1.2518 0.9862 0.0546 0.1562
5 2.4054 -0.2560 0.9652 0.0530
1.4670 0.9566 0.2450 0.1577
6 1.9684 0.8905 0.4262 0.1587
1.6483 -0.4361 0.8992 0.0322
7 2.8519 -0.0671 0.9932 0.0956
1.0779 0.9866 0.0517 0.1549
8 2.9223 -0.1332 0.9869 0.0914
0.9775 0.9817 0.1187 0.1491
9 1.6382 -0.9006 -0.4031 -0.1620
1.4959 -0.4160 0.9076 0.0543

e T e - -

Table (5.3) : Principal strains and directions for R8-bonnet.

STRAIN | %PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y Z
1 4.7023 -0.9301 -0.1111 -0.3501
1.3166 ~0.1082 0.9937 -0.0278
2 4 4539 -0.9489 -0.1046 -0.2975
1.0220 -0.1031 0.9944 -0.0210
3 4.1715 -0.9561 -0.1195 -0.2676
1.1862 -0.1179 0.9928 -0.0224
4 4.7367 -0.9332 -0.0573 -0.3547
1.1555 -0.0632 0.9980 0.0050
5 4.5377 «0.9493 -0.0928 -0.3004
1.1263 -0.0960 0.9954 -0.0044
6 4,2759 -0.9523 -0.1429 -0.2696
1.2448 -0.1439 0.9894 -0.0162
7 h.6712 0.9295 0.0838 0.3591
1.1243 -0.0946 0.9954 0.0126
8 4,3457 0.9444 0.1228 0.3048
1.3084 -0.1301 0.9915 0.0040
9 4,.0576 -0.9522 -0.1364 -0.2733
1.1997 -0.1426 0.9897 0.0029
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Table (5.4) : Principal strains and directions for R8-bonnet.
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PTS. STRAINS

Table (5.5} : Principal strains and

PRINCIPAL DIRECTIONS
X Y Z
0.9703 0.1074
-0.1067 0.9942 -0.
0.9753 0.1050
-0.1046 0.9944 -0.
-0,9839 -0,0288 -0.
-0.0297 0.9996
-0.9740 -0.0587 -0.
-0.0618 0.9981 0.
-0.9764 -0.0913 -0.
-0.0933 0.9956 0.
0.9757 0.1283 0.
-0.1295 0.9916 -0,

- 0.9662 0.1308 0.

-0.1358 0.9907 O.
0.9727 0.1196 0,
-0.1280 0.9922 0.
-0.9792 -0.0935 -0,
-0.0978 0.9951 0.

directions

for R8-bonnet.

S T S R TR R WA D e e e R A

PTS. STRAINS

X

-0.

Y
9862 -0.0399
0407 0.9992
.9893 -0.0057
.0067 1.0000
.9913 0.0035
.0024 1.0000
.9853 0.0624
.0588 0.9979
.9885 0.0428
.0399 0.9989
.9908 0.0359
.0334 0.9992
.9842 0.0797
.0739 0.9963
.9876 0.0625
.0577 0.9976
.9886 -0.0777
.0733 0.9966

Z

- — R e e e e G

Table {(5.6) : Principal strains and directions

for R8-bonnet.
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et (RH) : Surface name 31 : Strain Set 1 |
%#PRINCIPAL | PRINCIPAL DIRECTIONS.
STRAINS X Y Z
3.6084 -0.9061 0.2288 -0.3556
1.7299 0.2330 0.9719 0.0314
3.2383 -0.9120 0.2800 -0,2994
1.8547 0.2822 0.9585 0.0367
2.9720 -0.9114 0.3170 -0.2619
2.0994 0.3182 0.9471 0.0390
3.7666 0.8991 -0.2463 0.3616
2.0245 0.2522 0.9671 0.0314
3.1883 0.8909 -0.3395 0.3013
2.6337 0.3408 0.9386 0.0500
2.8958 -0.9018 0.3407 -0.2653
2.3141 0.3428 0.9384% 0.0399
3.5262 0.8704 -0.3266 0.3677
2.7384 0.3311 0.9419 0.0528
3.3240 o0.4004 0.9141 0.0617
3.1241 0.8644 -0.3992 0.3052
3.1752 -0.9233 0.2704 -0.2725
1.9461 0.2775 0.9606 0,0127

Table {(5.7)

: Principal strains and

- - ———

STRAINS

X

0.6158
-0.7591
- 0.6226
~0.7597
-0.7422
-0.6481
-0.7228
-0.6580
-0.7738
-0.6053
-0.9147
-0.3671
-0.8122
-0.5439
-0.8543
-0.4854
-0.9179
-0.3600

FRINCIPAL DIRECTIONS

Y Z

0.7829 0.
0.6194 -0,
0.7790 0,
0.6243 -0,
-0.6643 -0.
0.7451 -0,
-0.6820 -0.
0.7282 -0.
~-0.6247 -0.
0.7780 ~0.
-0.3825 -0.
0.9213 -0.
-0.5685 -0.
0.8187 -0.
-0.5053 -0.
0.8592 -0.
-0.3767 -0.
0.9227 -0.

- ——— A Mk e -

Table (5.8)

: Principal strains and

directions

for R8-bonnet.
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STRAIN | %PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y Z
1 2.4825 -0.1208 0.9882 -0.0940
1.2441 -0.9806 -0.1335 -0.1435
2 2.6193 0.0651 0.9953 -0.0711
1.0101 -0.9876 0.0541 -0.1473
3 1.8579 0.1708 0.9833 -0.0626
0.9191 -0.9763 0.1603 -0.1454
4 2.3811 -0.0661 0.9932 -0.0962
0.8858 0.9861 0.0797 0.1458
5 2.5908 0.0809 0.9935 -0.0796
0.7842 0.9868 -0.0686 0.1467
6 2.1521 0.1731 0.9821 -0.0742
0.7934 -0.9763 0.1611 -0.1444
7 2.0729 -0.1745 0,9762 -0.1290
0.8036 0.9731 0.1910 0.1288
8 2.5716 0.0831 0.9917 -0.0979
0.5852 0.9870 -0.0683 0.1453
9 2.4644 0.1657 0.9816 -0.0946
0.6528 -0.9781 0.1513 -0.1431

s  ————— A A A i ——— - -

Table (5.9) : Principal strains and directions for R8-bonnet.

STRAIN | %PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y Z
1 4.8757 0.9302 -0.1047 0.3517
1.3560 0.1018 0.9944 0.0268
2 L UYTS 0.9505 -0.0855 0.2987
1.3141 0.0846 0.9963 0.0162
3 4.0125 0.9623 -0.0395 0.2691
1.2156 0.0405 0.9992 0.0017
4 4.5875 0.9231 -0.1436 0.3567
1.3972 0.1433 0.9892 0.0275
5 4,3864 0.9514 -0.0596 0.3021
1.1147 0.0639 0.9979 -0.0044
6 4,0012 -0.9618 0.0388 -0.2709
1.1685 0.0434% 0.9990 -0.0110
7 4,2068 0.9264 -0.0958 0.3641
1.1754 0.1052 0.9944 -0.0060
8 4.4720 0.9499 -0.0593 0.3070
0.9560 0.0693 0.9974 -0.0215
9 4,5852 0.9550 -0.1122 0.2746
1.2505 0.1189 0.9929 -0.0079

T - ——— g - G A

Table (5.10) : Principal strains and directions for R8-bonnet.
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STRAIN | %PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y yA
1 3.8928 0.9722 -0.0873 0.2173
1.2987 0.0870 0.9961 0.0110
2 3.7206 0.9805 -0.0243 0.1948
1.0431 0.0254 0.9997 -0.0029
3 3.4789 0.9834 -0.0410 0.1766
1.0266 0.0417 0.9991 -0.0003
4 3.6463 0.9734 -0.0666 0.2192
1.1861 0.0694 0.9976 -0.0049
5 3.5869 0.9802 -0.0301 0.1959
1.1026 0.0332 0.9994 -0.0125
6 3.5008 -0.9838 0.0249 -0.1773
0.9547 0.0277 0.9995 -0.0131
7 3.3683 -0.9644 0.1419 -0.2231
1.2216 0.1464 0.9892 -0,0039
8 3.1697 -0.9730 0.1159 -0.1996
1.2395 0.1204 0.9927 -0.0102
9 2.9538 0.9811 0.0822 0.1752
0.9233 -0.0753 0.9961 -0.0458

Table (5.11) : Principal strains and directions for R8-bonnet.

A S S i - —— 0. - -
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STRAIN | %PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y- Z
1 3.9468 0.9860 0.0459 0.1601
0.8917 -0.0441 0.9389 -0.0149
2 3.9599 0.9879 0.0546 0.1453
0.8296 -0.0529 0.9985 -0.0156
3 3.9968 0.9910 0.0251 0.1315
0.5620 -0.0238 0.9997 -0.0111
] 3.6875 0.9859 0.0499 0.1598
0.8844 -0.0465 0.9986 -0.0250
5 3.7690 0.9846 0.1000 0.1437
0.8762 -0.0965 0.9948 -0.0313
6 3.9198 0.9875 0.0896 0.1298
0.5179 -0.0866 0.9958 -0.0285
7 3.0355 0.9843 0.0761 0.1591
0.8916 ~0.0703 0.9966 -0.0419
3 3.1879 0.9747 0.1745 0.1394
1.0107 -0.1685 0.9842 -0.0538
9 3.3524 -0.9714 -0.2022 -0.1236
0.7379 -0.1968 0.9788 -0.0544

i -

Table (5.12)} : Principal strains and directions for R8-bonnet.
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STRAIN | %PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y y/
1 0.4217 0.6938 0.7166 0.0718
0.1716 -0.7145 0.6974% -0.0556
2 0.3480 -0.9053 -0.4196 -0.0662
0.3121 -0.4194 (.9076 -0.0167
3 0.3013 -0.8336 0.5512 -0.0366
0.2076 0.5499 0.8343 0.0393
4y 0.4724 -0.9888 -0.1153 -0.0947
0.3351 -0,1181 0.9927 0.0250
5 0.4279 0.7013 0.7091 0.0728
_ 0.2803 -0.7096 0.7042 -0,0233
6 0.2883 0.1550 0.9870 0.0426
0.2357 -0.9865 0.1569 -0.0466
7 0.4368 -0.9320 0.3570 -0.0631
0.4162 0.3501 0.9314 0.0996
8 0.4085 -0.9662 -0.2436 -0.0846
0.3334 -0.2483 0.9674% 0.0499
9 0.3485 0.4162 0.9053 0.0847
0.3306 -0.9077 0.4192 -0.0205

Table (5.13) : Principal strains and directions for R8-roof.
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STRAIN | %PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y Z
1 0.2010 -0.9489 -0.3135 -0.0353
0.1946 -0.3137 0.9495 0.0017
2 0.2463 -0.9652 -0.2598 -0.0285
0.1689 -0.2601 0.9656 0.0055
3 0.2643 -0.3883 0.9215 0.0039
0.2553 -0.9213 -0.3881 -0.0235
4 0.2905 -0.7718 -0.6341 -0.0474
0.2138 -0.6350 0.7725 0.0053
0.3036 -0.6002 0.7998 0.0115
0.2365 -0.7994 -0.5994 -0.0414
6 0.3797 -0.6012 0.7989 0.0151
0.1974 -0.7988 -0.6004 -0.0365
7 0.3676 -0.8290 0.5592 0.0097
0.2122 0.5582 0.8263 0.0751
8 0.3366 -0.9058 0.4236 0.0047
0.3058 0.4228 0.9033 0.0725
9 0.3123 -0.9223 -0.3838 -0.0446
0.3102 -0.3859 0.9209 0.0550

- S S A e S S S A A S S G A G e e e T . e

Table (5.14) : Principal strains and directions for R8-roof.



Table (5.15)

Table (5.16)

A ] - A i S e A e ——————

STRAIN | %PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y Z
1 0.2963 -0.8085 -0.5883 -0.0131
0.0808 -0.5884 0.8085 0.0064
2 0.3295 0.2990 0.9542 0.0128
0.2648 -0.9542 0.2990 0.0021
3 0.3918 -0.6130 0.7900 0.0124
0.1313 -0.7901 -0.6130 -0.0050
il 0.3822 -0.9791 -0.2030 ~0.0138
0.2802 -0.2034 0.9786 0.0322
5 0.3330 -0.9213 0.3887 0.0115
0.3327 0.3889 0.9207 0.0324
6 0.2739 0.5900 0.8070 0.0256
0.2021 -0.8074 0.5896 0.0230
7 0.3156 -0.8354 0.5487 0.0325
0.2142 0.5497 0.8331 0.0615
8 0.2981 -0.8759 -0.4812 -0.0354
0.2061 -0.4825 0.8738 0.0601
g 0.3818 -0.7620 -0.6461 -0.0427
-0.0007 -0.6475 0.7600 0.0558

v D D G5 A A A e A WS S S AR A e
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STRAIN | #%PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y Z
1 0.1720 -0.0462 0.9988 0.0146
-0.0154 -0.9983 -0.0466 0.0336
2 0.2772 0.0379 0.9992 0.0104
0.0258 -0.9972 0.0371 0.0645
3 0.2589 -0.8185 0.5627 0.1155
0.0026 0.5593 0.8266 -0.0634
4 0.4899 -0.7328 0.6787 0.0487
0.0930 0.6796 0.7336 0.0026
5 0.4146 -0.8016 0.5936 0.0714
0.1703 0.5945 0.8040 -0.0096
6 0.3878 0.0609 0.9978 0.0269
0.2246 -0.9894 0.0568 0.1337
7 0.5827 -0.4986 0.8630 0.0811
0.4404 -0.8661 -0.4998 -0.0063
8 0.6506 -0.6710 0.7348 0.0991
0.1784 -0.7387 -0.6740 -0.0034
9 0.6531 -0.8332 0.5306 0.1555
0.2206 0.5362 0.8440 -0.0068

: Principal strains and directions for R8-roof.

: Principal strains and directions for R8-roof.



Table (5.17)

Table (5.18)
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STRAIN | %PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y z
1 0.3780 0.8186 -0.5686 0.0814
0.1831 0.5674 0.8225 0.0399
2 0.3723 0.8006 -0.5960 0.0617
0.2222 0.5954 0.8029 0.0292
3 0.2951 0.4390 0.8984 0.0109
0.2816 0.8970 -0.4389 0.0526
1 0.5071 0.9430 0.3246 0.0736
0.4340 -0.3203 0.9451 -0.0642
5 0.4080 -0.3983 0.9153 -0.0602
0.3753 0.9148 0.4012 0.0472
6 0.3997 0.9916 0.1205 0.0477
0.2678 -0.1186 0.9921 -0.0417
7 0.5773 -0.4028 0.9093 -0.1043
0.5050 0.9105 0.4097 0.0555
8 0.4582 0.9679 0.2465 0.0495
0.2960 -0.2418 0.9666 -0.0855
9 0.3728 -0.5959 0.7982 -0.0880
0.1887 0.8013 0.5983 0.0012

S e — - —— i AR e A A -

STRAIN | %PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y Z
1 0.3932 -0.6426 0.7655 -0.0312
0.2931 0.7655 0.6433 0.0168
2 0.3230 0.2143 0.9767 -0.0072
0.2114 0.9764 -0.2140 0.0282
3 0.3231 -0.1362 0.9906 -0.0157
0.0481 0.9905 0.1365 0.0182
4 0.2679 0.9671 0.2535 0.0232
0.2284 -0.2524 0.9667 -0.0420
5 0.2546 -0.0130 0.9993 ~0.0349
0.1902 0.9996 0.0139 0.0256
6 0.2387 -0.1471 0.9884 -0.0370
0.1086 0.9889 0.1477 0.0147
7 0.2849 0.5248 0.8503 -0.0409
0.0716 0.8506 -0.5218 0.0647
8 0.2136 0.8073 0.5898 -0.0194
0.0655 -0.5896 0.8046 -0.0708
9 0.0794 0.3533 0.9337 -0.0573
0.0413 0.9353 -0.3513 0.0426

- T G R SN SR M e R R G A

: Principal strains and directions for R8-roof.

: Principal strains and directions for R8-roof,



STRAIN | %PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y z
1 0.2163 0.9513 0.3081 0.0025
0.1609 -0.3081 0.9512 -0.0145
2 0.1821 0.2736 0.9618 ~0.0120
0.1469 0.9618 -0.2736 0.0052
3 0.2716 -0.0469 0.9988 -0.0127
0.0019 0.9980 0.0468 -0.0043
4 0.3093 0.9803 -0.1972 0.0135
0.2096 0.1975 0.9798 -0.0325
5 0.2352 0.5523 0.8332 -0.0277
0.1784 0.8336 -0.5519 0.0206
6 0.1929 -0.3711 0.9281 -0.0305
0.1859 0.9286 0.3708 -0.0161
7 0.2550 0.8901 -0.4543 0.0375
0.2118 0.4558 0.8881 -0.0590
8 0.1639 0.3198 0.9452 -0.0657
0.1426 0.9475 -0.3189 0.02k41
9 0.1951 -0.2730 0.9597 -0.0666
0.0994 0.9620 0.2721 -0.0228

T . = e -

Table (5.19) : Principal strains and directions for R8-roof.
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STRAIN | %PRINCIPAL | PRINCIPAL DIRECTIONS
PTS. STRAINS X Y z
1 0.1250 -0.3066 0.9518 -0.0017
0.0521 0.9512 0.3063 -0.0368
2 0.1342 0.9195 0.3879 -0.0644
0.1150 -0.3879 0.9216 0.0134
3 0.3524 0.8271 0.5496 -0.1172
-0.1445 -0.5462 0.8353 0.0623
4 0.4656 0.4713 0.8807 -0.0469
0.2454 0.8813 -0.4724 -0.0139
5 0.5535 0.6438 0.7621 -0.0679
0.0464 0.7624 -0.6465 -0.0269
6 0.5446 0.7694 0.6261 -0.1263
-0.0656 -0.6244 0.7789 0.0578
7 0.6841 0.9534 -0.3015 -0.0122
0.3992 0.2996 0.9507 -0.0802
8 0.8538 0.9470 -0.3189 -0,0390
0.5324 0.3144 0,9448 -0.0919
9 1.0805 0.4302 0.8932 -0.1306
0.7023 0.8917 -0.4430 -0.0923

‘Table {5.20) : Principal strains and directions for R8-roof.
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5.3) Principal strains.

In this section we present graphs of principal strains against strain

points. This enables appreciation of the principal strain variations :

a) within a strain set.
b) between strain sets.

c} between left hand side and right hand side of a model.

For the purpose of discussion we refer to the rows within a strain set
which correspond to the gtrain points pl*,pz*.p3*; pq*.ps*.pG* and
p7*.p8*. pg* as rows Rl'RZ and R3. respectively. Hence as we thravel from
the front to the back of a drawn panel we can refer to the strain variation

in a given row.

In section (5.3.1) and (5.3.2) we comment, briefly on the principal strains
for the R8-bonnet and R8-roof, respectively. We observe that principal
strain variations presented are exaggerated, but if expressed in terms of

the principal stresses this would alleviate the problenm.

However, we note that the onset of elastic/plastic deformation occurs
at the yield point, 0.15% [Tenné¥;1984] and total plastic deformation

cccurs, in general, at a strain value, 0.65% [Dixon;1988].
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5.3.1) R8-bonnet

Major strains

The graphs for the major strains against strain points for strain sets on
the left hand side and the right hand side of the R8-bonnet are presented

in Figures (5.5) and (5.6), respectively.

The main features identified are:

(1) The major strain variation on the left hand side and the right hand

side of the R8-bonnet is between 1.5% to 5%.

(2} The rows Rl'R2 and R3 for the strain sets 1,2,4 and 5 show a decrease,

of upto 2%, for the left hand side and right hand side of the

R8-bonnet. While the rows R, ,R

1B and R3 of strain set 6 shows an

increasing magnitude.

Minor strains

The graphs for the minor strains egainst strain points for strain sets on
the left hand side and the right hand side of the R8-bonnet are presented

in Figures(5.7) and (5.8), respectively. The main features identified

in these figures are :

(1) The variation of the minor strain on the left hand side and right hand
side of the R8-bonnet is between 0.5% to 3.5%, and we recall the
strain, 0.15%, at the yield point, used in Chapter 4 in section(%4.3.3)

to identify the best mesh parameters.

(2) The data set is not symmetric with respect to the left hand side and

the right hand side of the R8-bonnet.
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Distribution of ZMaijor strains for the R8=bonnet(LH)
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Figure(5.5) : The major strains for the R8-bonnet (LH).
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Distribution of %Major strains for the RB—bonnet(RH)
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Figure(5.6) : The major strains for the R8-bonnet (RH).
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Distribution of ZMinor strains for the R8—bonnet(LH)
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Figure(5.7) : The minor strains for the R8-bonnet (LH).
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Distribution of Z%Minor strains for the R8—bonnet(RH)

3.5

%Minor stralns

Legend

Stroln set =1
Stroln set =2
Strefn set =5
Stroln set =4
Stroln set=5

Straln set =6

XboeOn

Strain points

Figure(5.8) : The minor strains for the R8-bonnet (RH).



117

5.3.2) R8-roof

Major strains

The graphs for the major strains against strain points for the strain sets
on the left hand side and right hand side of the R8~roof are presented

in Figures (5.9) and (5.10), respectively. The main features identified

in these figures are :

(1) The major strain varies between 0.15% to 0.7% on the left hand side
of the R8-roof. The major strain varies between 0.1% to 1.1% on the

right hand side of the R8-roof.

(2) The major strain variations within the rows Rl'RZ and R3 for strain
sets.2 to U4 on the left hand side and right hand side of the R8-roof

are not symmetric, while that of strain set 1 iz symmetric.

Minor strains

The graphs for the minor strains against strain points for strain sets on
the left hand side and the right hand side of the R8-roof are presented in

Figures(5.11) and {5.12), respectively. The main features identified in

these figures are :

(1) The variation of the minor strain on the left hand side of the R8-roof
is between -0.05% to 0.45%. The variation of the minor strain on the

right hand side of the R8-roof is -0.2% to 0.8%.

(2) The variation of the minor strain for strain sets 2 to 4 is not

symmetric, while the variation of strain set 1 is symmetric.
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Distribution of %Major strains for the R8—roof {LH)
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Figure(5.9) : The major strains for the R8-roof (LH).



Distribution of %Major strains for the R8—roof (RH)

145

’ /
/

ZMajor strains

Legend

Stroln get = 1
Straln set = 2
Straln sei = 3
Straln set = 4

CeQOn

Straln points

Figure(5.10) : The major strains for the R8-roof (RH).
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Distribution of %Minor strains for the R8—roof (LH)
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Figure(5.11) : The minor strains for the R8-roof (LH).
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Distribution of %Minor strains for the R8—roof (RH)
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: The minor strains for the R8-roof (RH).
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5.4) Principal directions

In this section we present a method of interpreting the principal
directions graphically. There is a problem of interpreting the principal
directions presented in Tables (5.1) - (5.20), since each strain point

defines its own tangent plane.

To identify if the principal directions of each strain set can bé
characterized or follow a particular trend, we consider the angle of
projection of each tangent direction onto the XY plane, of the blank,

and the angle made by this projection to the X axis, the polar coordinate,

¢ € [0°,180°].

For each principal direction we plot the polar coordinate against each

strain point and can determine the variation of a principal direction :

a) within a strain set.
b) between strain sets.

c¢) between the left hand side and the right hand side of a model.

In section (5.4.1) and (5.4.2) we comment, briefly, on the distribution of
the major and minor polar coordinate for the principal directions for the

R8-bonnet and R8-roof, respectively.
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5.4.1) R8-bonnet.

The graphs for the variation of the major polar coordinate over
the left hand side and right hand side of the R8-bonnet are presented
in Figures(5.13) and (5.14), respectively. The main features identified

in these figures are :

(1} The dominant directions for strain sets 1,4,5 and 6 are biased to
the X axis for both the left hand side and the right hand side

of the R8-bonnet.

(2) The dominant direction for strain set 2 on « both sidesof the

R8-bonnet is biased to 450 to the X axis.

(3) The dominant direction in strain set 3 on the left hand side of the
R8-bonnet is not clear, while the dominant direction on the right

hand side of the R8-bonnet is biased to the Y axis.

The graphs for the variation of the minor polar coordinate over the left
hand side and right hand sides of the R8-bonnet are presented in
Figures(5.15) and (5.16). The main features of the minor polar coordinate
variation are identified in the preceding discussion regarding the
distribution of the major polar coordinate. By inspection of the major and

minor coordinate we conclude they are close to orthogonal.
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Distribution of polar coordinate ¢ for Max. principd directions
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Figure(5.13) : The major directions for the R8-bonnet (LH).
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Distribution of polar coordinate ¢ for Max. principd directions
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Figure(5.14) : The major directions for the R8-bonnet (RH).
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Distribution of polar coordinate ¢ for Min. principal directions
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Figure(5.15) : The minor directions for the R8-bonnet (LH).
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Distribution of polar coordinate ¢ for Min, principdl directions
R8~bonnet{RH)
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Figure(5.16) : The minor directions for the R8-bonnet (RH) .
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5.%4.2) R8-roof.

The graphs for the principal major polar coordinate distribution over the
strain sets on the left hand side and the right hand side of the R8-roof

are presented in Figures(5.17) and (5.18). The main features identified in

these figures are :

(1) The dominant directions are not easily determined. There are no clear

trends within the rows of each set.

{2) The dominant directions vary between a bias to the X axis and through

to a bias in the Y axis.

The graphs for the distribution of the minor polar coordinate over strain
sets on the left hand side and the right hand side of the R8-roof are
presented in Figures(5.19) end (5.20). The main features of the minor
polar coordinate variation are identified in the preceding discussion
regarding the distribution of the major polar coordinate. By inspection of

the major and minor coordinate we conclude they are close to orthogonal.

In the next Chapter we discuss a physical interpretation for the strain

data presented for the R8-bonnet and R8-roof.



129

Distribution of pelar coordinate ¢ for Max. principd directions
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Figure{5.17) : The major directions for the R8-roof (LH).
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Distribution of polar coordinate ¢ for Max. principd directions
R8-roof (RH)
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Figure{5.18) : The major directions for the R8-roof (RH).
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Distribution of polar coordinate ¢ for Min. princlpd directions
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Figure(5.19) : The minor directions for the R8-roof (LH).
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Distribution of polar coordinate ¢ for Min. principal directions
R8-roof (RH)
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Figure{5.20) : The minor directicns for the R8-roof (RH).
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CHAPTER 6

DISCUSSION AND CONCLUSIONS.

The aim of the thesis has been to estimate small strains on a drawn panel
and to generate a database of information which could be used in the
numerical modelling of the sheet metal. In this chapter we discuss the

results of Chapter 5 and identify areas for further work.

In section{6.1) we present a summary of the shortest planar path method,
with a physical interpretation. of the results presented in Chapter 5,
identifying limitations of the method and suggesting possible improvements.
The importance of estimating the shortest path between two points on a
surface is identified and@ motivation for further work ig highlighted. The

development of the method is explored in section(6.2}.

6.1) Summary of strain analysis.

In this thesis it has been demonstrated that a database of small strain
information can be generated from a purely geometric approach, using a

simple 2D model for strain analysis which is presented in Chapter 2.

In section(6.1.1) we discuss the physical significance of the strain data
presented in Chapter 5. In section (6.1.2) the limitations of the radial
plane subdivision method are identified and possible improvements are

suggested and in section (6.1.3) we give the motivation for further work.
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6.1.1) Interpretation of results.

In this section we discuss the physical significance of the results
presented in Chapter 5 for the evaluation of principal strains and
directions at discrete points on two production panels : the R8-bonnet and

the R8-roof.

R8-bonnet

The variation of the major/minor strains correspond to the form on the
panel. At the front of the bonnet there is considerably more form compared
to the rear of the panel. As we travel from the front to the rear of the
centre portion of the panel there is a decrease in the major strain, with
direction roughly in the X axis., Also as we travel to the outer portion of

the panel the major strain direction is biased in the Y axis,
R8-roof

The patterns associated to the major directions are not as clear as those
identified on the R8-bonnet. We recall the discussion of errors in Chapter
2, section(2.3.4) and appreciate that the principal directions are not well
defined when estimated horizontal and vertical strains are similar in

value.

We note that the major/minor strains on the R8-roof are close to each
other; indicating there is almost uniform strain on the roof. The little
form on the roof is not significant, but the wvariation of form can be
identified from the major strain direction biased to the X axis in the

centre of the panel to a bias in the Y axis at the outer edge of the panel.

We suggest a more detailed investigation to establish the relationship

between the form on a panel and its strain variations can be undertaken.
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6.1.2) Limitations of the radial plane subdivision method.

The radial plane subdivision method which is described in Chapter 4,
gection(4.2), has the main advantage that convergence to a lower bound

for the calculation of the minimum planar arc length is guaranteed where
the bounding planes are defined. However there are a number of

limitations:

a) accuracy is dependent on the mesh size, closeness of strain points
and the evaluation of continuous planar intersects for bounding

planes : Xo and Xl.

b) the cpu time used in the algorithm is dependenf on the total
number of | planar intersectsevaluated. The function
evaluations for the calculation of arc length are dependent on the
number of facets. So increasing the mesh size will increase the

cpu time required for convergence.

¢) the mesh size is chosen for a surface patch and not the respective
pairs of strain points within a given strain set. This restricts the
possibility for local mesh refinement without expensive increases in

cpu time and increased storage demands.

It is assumed that the region covered by the family of radial planes on
'flat' surface patches will contain the geodesic curve. We also assume that
the geodesic curve is single valued with respect to the chord direction.

These assumptions are used in section(6.2), for the development of a -

shortest path method.

We suggest that faceting a portion of the surface patch P, which contains
the surface patch Q, defined in section (4.,1.1), will reduce storage and

will allow the potential for increased accuracy.
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6.1.3) Motivation for future work.

The results presented in Chapter 5, for the estimation of smell strains
on two production panels show that without any material assumptions about a

drawn panel, significant modelling results can be established.

The radial range subdivision method, even though it does not give the
lowest value of arc length between two points on a surface, does give
sipnificant results. The strains evaluated for both the RB8-bonnet and the
R8=roof are sufficiently close to the elastic, elastic/plastic region, to

warrant a deeper investigation. In particular :

a) to evaluate the errors involved in the measurement of the strain points;

inecluding the etching, digitizing and location of ppints on the model.

b) to improve the estimation of the geodesic distance, between two

points on a surface patch,.

c) to provide more detailed information of the elastic, elastic/plastic
region for each material considered in the overcrown prediction program

[Ball and Cripps; 1987].

Finally, the results of the radial planar subdivision method need to be
compared with other numerical methods used for the modelling of the drawing

PToCcess.
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6.2) Development of shortest path algorithms.

The recent interest in the shortest path or geodesic curve between two
points on a surface is noted by Barnhill et al. [1988] and Farouki [1987].

There are three main areas of research :

1) the appreciation of free form surfaces by plotting geodesic curves
from an initial point and tangent information [Barnhill et

i

al.:;1988], [Farouki;1987] and [Munchmeyer and Haw;1982].

2) Nutbourne [1986] has used the relationship between the curvature and
torsion of a gecdesic for a given tangent direction, and expresses these
quantities in a 'circle diagram' and gives an appreciation of Gauss

curvature at points on a surface.

3) Farouki [1987] also identifies the potential uses of geodesic curves in
the optimization of numerical control cutter paths, the motion of a

robot arm and the windings of a solenoid.

In the next three sections we discuss methods of selving the boundary value

problem : given two points a and b, on a surface calculate the shortest

path between them. Let r r{u,v), 0 s u,v £ 1, be a surface of class at
least C3. Let u = u{t), v =v(t), 0 £t 1, be the curvilinear coordinates
of a curve at least class C3. Then the curve, r{t) = r(u{t).v{t}),

0 2t =<1, is a curve on the surface of at least class C3, and satisfies,
r(0) = a, r(1) = b. We wish to minimize the arc length, 1, of this curve
defined by,

1 .
1 =J | = () | 4t (6.1)
0
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In the following sections we require the first and second derivatives r(t),

with respect to t.

dr{t) ér(u,v}) du(t) ©6r{u,v} dv(t)

= - —_ o+ = (6.2)
dt Su dt ov dt
dzr(t) ézr[ du ]2 62r du dv 62r dv 2 ér d2u or d2v
_— = — | -] +2 —_—— — |:——:|+-—-—--—-+——— {6.3)
at? su’l at susv dt dt 6v2 Ldatd  suat® v at?

6.2.1) Variational approach.

Clarke [1986] states that, in some circumstances, the solution of

equation(6.1), is equivalent to - minimizing the energy integral defined
by,
1. ) |
E = r{t) . r(t)dt ' (6.4)
0

He considers numerical solution of equation(6.4) and suggests that the

geodesic can be characterized by a finite number of points,

r(uo.vo) = a , r(uN+1.vN+1) = b,
r(ui.vi). u, = ui(ti)' v, = vi(ti). i=1,...,N

where the ti are chosen for Gaussian integration.

Then equation(6.4) can be approximated by finite differences, and the

u,,v,, i =1,.,.,N, are varied to minimize E using a least squares method.
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6.2.2) Differential equations approach.

This approach involves solving the differential equations which are derived
using the fact that the principal normal of the geodesic curve is normal to
the surface r{u,v}, 0 € u,v £ 1, as discussed in section{3.4.2). We assume
that the curve r{(t), 0 <t < 1 can be pafameterized with respect to its
arc length. The we write that r = r(s), 0 < s < S4 is a curve of at least
class 02. We have defined in section (3.2.1),

dzr(s)

— = k(s) n(s)
d52

For a geodesic curve we require that,

&r(s) 6r{u,v) &r(s) ér{u,v)
—5 . =0 and —5 . — =
ds Su ds év

0
where u = u(s), v=v(s), 0 £ s £ s

1°

We can expand these equations using equation(6.3)} and for convenience we

write,
dr or ér du dv
rt = — PO o, =, u' = -— and v* = —
ds Su v ds ds
Then
11 12 L L] l2 1t t
r'.r sr _rful] " +2r .r u'vt+r r[v']T+r.r u''+r.rv
u uu'u uv’ “u vv'Tu uu v'iiu
=0
(6.5)
! |2 Te,t '2 tt Tt
r''.r_=r_ .r[u']"+2r .r_ u'v'+r .r[vi]T+r.r u'+r.rv
v uu’ v uv' v vy uv vty
=0

Usually these equations are considered as two non-linear differential

equations in u and v.
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The problem has been approached by Farouki [1987] using a shooting method
which is described in detail by Dahliquist and Bjorck [1974]. Essentially
an initial guess is made for the starting tangent direction, at one

point a. The path of the geodesic 1s generated and the nearest point to b
is calculated. An improved estimate of the starting direction for the
geodesic at a is made, until the point b is hit. Farouki comments that this

method is usually quick, but convergence cannot be guaranteed.

Clarke [1986] suggests representing the surface r{u,v), 0 € u,v < 1, by a
mesh of points and defining dot products of equations (6.5) over the mesh.
The second order nonflinear differential equations can then be considered
as a system of second-order ordinary differential equations in the
dependent variables u and v. Alternatively, they could be considered as a

system of first-order ordinary differential equations in u, v, du/ds and

dv/ds.
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6.2.3) Geometric approach.

In this section we describe a simple geometric method for determining a
point on a twisted geodesic curve between two points pa and pb on the
surface patch p(u,v), 0 £ u,v £ 1. We note that the application of the

method is for 'flat' surface patches.

We assume that the geodesic curve pG(u*) , 0 <u* £1, is parameterized with

respect to the chord direction, NbEl and a point, c(u%*}, u* € [0,1]. on the

ba _ b b

chord, where, N p - pa and c{u*) =(1 - u*) pa + u* p~.

*

v
, 0 = v* < 1, as

We also assume that the family of radial planes, X
discussed in section (4.1.1), defines a portion of the surface patch

p{u,v), 0 S u,v £ 1, which contains the geodesic curve pG(u*), 0 <u* s 1,

We consider the case when pG(u*). 0 s u* < 1, is a twisted curve and

suggest a geometric method for determining a point on the curve.

To determine a point on the geodesic pG(u*) , 0 s u* £1, we assume that the
curve meets a radial plane intersect, q{u®*,v*}, 0 s u* < 1, v* € (0,1},
defined in section(4.1.1), at a point pG(u*l), u*1 e (0,1). The arc

lengths IG and 1(v*), v* € (0,1) of the geodesic curve and planar intersect

are defined respectively by,

du*

*
Jl | 2(_3_(“ )I
0 du®*

(6.6)

1 Ssq{u*,v*)
1(v*) = | — | du*, v* ¢ (0,1)
0 du*

and IG < 1(v*), ¥ v* € [0,1].
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Now we can split these integrals such that,

u* dp,., (u*) 1 dp,, (u*)
1=j =2 g . J | =S 7| aqu*

G 0 au* u“1 du*

u*1 Eq{u*,v") 1 Sq{u*,v*)
1(v*) = J ] — | du* + | — | du*, v* € (0,1)
0 Su* u*1 Su®

The curve pG(u*), 0 < u* < u*l, must be a geodesic of minimum arc length

between the points pG(O) and pG(u*l). S0 we can write,

—_ | du®
0 du* 0 Su*

u* dp,.(u*) u* Sq(u*,v*)
J"I—G law s [ 71
For u*1 = 6u® << 1 the above integrals can be approximated by,
|pglou*) - pg(0}] Su* < |q(su*,v*) - q(0,v*)|éu*
So,

[pg(6u*) - pgy(0)| < la(su*,v*) - q(0,v*)| (6.7)

where, du* € (0,1), Su* << 1, v* € (0,1)
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So by evaluating the right hand side of equation{(6.7), for a number of
points on the planar intersect q(&u®*,v*), &Su* € (0,1}, 0 € v* £ 1 we can
determine a point on the geodesic near to the point pa. Similarly, we can
repeat this process at pb. Hence we can build the geodesic from a finite
nunber of points and approximate its arc 1length by accumulated chord

length.

We note that if the geodesic curve is a planar intersect then it is
uniquely defined by the plane that contains a point off the chord,

and the surface normals at pa and pb. We require that principal normal of a
geodesic curve must be normal to the surface at all points along the curve.
This must be satisfied at the end points of the planar geodesic curve and

this condition defines the plene of the geodesic uniquely.

We conclude that a number of significant geometric results for the
modelling of the drawing process are presented in the thesis. This will
provide a basis for the understanding of a complex industrial problem by
the comparison of a materials modelling method to a purely geometric

appboach.



144

APPENDIX A

Curvature property of the rational cubic segment.

In Theorem 4 we deduce that the curvature of a twisted rational cubic

segment is non-zero at all points along the segment.
Theorem 4

If the curvature of a rational cubic segment is zero at any point, then the

segment is a plane curve.
Proof

We recall that the rational cubic segment is defined by the following

equations [Faux et al.; 1983] :

P(u) = r(u)W(u), 0 sus<x<1l (A.1)

where,

P{u) =a, + a.u+a u2 + a u3 {A.2)
0 1 2 3 ’

Wlu) = wy + wyu + w2u2 + w3u3 {A.3)

We differentiate equation(A.l) three times to obtain :

P(u = r (W) + r (u)W(u) (A.4)
P (u) = r (WWu) + 20 (WWU) + © (WW (u) (A.5)
B (u) = r (WW) ¢ 3r (WWu) + 3 (WK (W) + o(u) ¥ (u) (A.6)



145

..

Now we want expressions for r{u) and r {(u) in terms of the vector P(u)
and scalar W({u)}, and their derivatives. We also require the triple scalar

product of the vectors r{u), r (u) and r {(u) for the calculation of torsion

in Appendix B.

Then we first multiply equations(A.4)-{A.6) by W(u) and after substituting

equation(A.1) we can express these equations in matrix form :

[ Q W o o Wr
Q, = VoW W o || we (A.7)
Q 3 W 3 Wollwe
where, Ql =W ﬁ - P Q. Q2 =W éo- P *.and Q3 = W .é.- P .ﬁ.
and so,
W 1/W 0 o || q
) _
Wr = | 2w 1/W 0 Q, (A.8)
W (60230 W ) /W - 3W/W2 1/W q

We note if r{u) is not a regular curve i.e. r(uo) = 0, at some point

u =y, then r{u) is a plane curve.

The curvature k{u) of a space curve is defined in chapter 3, section{3.2.1)

and by taking the modulus of equation{3.5) we have :

e (u) X r (u) | .
k(u) = i e (u}] 0

Ir (u)]3
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We suppose we have a point of zero curvature at u then

r(u) Xr (u) =0

By inspection of equations (A.8) there exists a non-zero scalar a, such

that,

WP-PW+a[WP-PW] =0

This implies that non-zero scalars exist a; 51

P+ a; P + B, P =0 (A.9)

Differentiating equation(A.2) twice we have :

é (u) a; + 2a2u + 3a3u2 (A.10}

* e

P (u)

2a2 + 633u (A.11)

Without loss of generality we assume that a, is located at the origin of
our co-ordinate system. Substituting in equations (A.2), (A.10) and (A.11)

into equation{A.9),

a; + 2azu + 3a3u2 +a (2&2 + Gasu) + Bl (alu + azu2 + aaus) =0

Then,

a (1 + Bu) + a,(2a, + 2u + B u2) + a,{ba, u+ 3 u2 + B u3) = 0
1 1 2 1 1 3 1 i

By comparing coefficients of a,.a, and a3 we deduce that they cannot be
simulteneously zero, consequently the vectors a,,a, and a3 must be linearly
dependent and r(u) must be a plane curve. Conversely, if the rational cubic
segment is a twisted curve then it cannot have zero curvature at any point

along the segment.
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APPENDIX B

Torsion property of the rational cubic segment.

In Theorem 5 we deduce that the torsion of a twisted rational cubic

segment is non-zero at all peints along the segment.

Theorem 5

If the curvature for the rational cubic segment is non-zero throughout the
segment and if its torsion is zero at any point, then the segment is a

plane curve,
Proof

The torsion of a space curve is defined in chapter 3, in section(3.2.1) by
equation{3.6) and is :

r{u).r (W) X r(u . .
t{u) = : I;- (u) Xr (u] $0 (B.1)

e (u) X £ (u)]?

We suppose we have a point of zero torsion then

PR

r (). r (WX ru=0

Then by inspection of equations (A.8) we must have non-zero scalars a, P

where,

Ql +uQ2+ﬁQ3=0
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Hence,
WP-PW+a(WP-PW)+B(WP-PW) =0
WP +aWP+BWP-P{(W+aW+PpW) =0 {B.2)
We recall from equation(A.2),
P{uv) =a,. +a, u+a u2 + a u3 Dsusi

0 1 2 3 ? :
and differentiating three times,
é {u) = a, + 2a, u + 3a' u2 {B.3)

1 2 3 :

P {u) = 2a, + 6a3 u (B.4)
P (u) = 6a3 - (B.5)

Without loss of generality we can assume that a is located at the origin
of our coordinate system and substituting equations{A.2), and {(B.3) - (B.5)

into equation(B.2) we obtain,

W [a1 + 2a2 u + 3a3 u2 ] +aWw [29.2 + 6a3 u] + 6 BW a

1]
o

- (a1 u + a, u2 + a3 u3) (ﬁ +a ﬁ.+ ﬁ'ﬁ.)

LI -

a, [ W- (W+aW+pW)u] + a, [2Wu - (W +a W B W )ud]

]
o

+ a3 i 3Wu2 - (* +a ﬁ.+ 5.ﬁ')u3]

By comparing the coefficients of a a, and a3 we deduce that they cannot

1’
be simultanecusly zero, therefore a,, a, and a3 are linearly dependent and
the rational cubic segment r(u), 0 = u s 1, must be a plane curve.
Conversely, if the rational cubic segment is s twisted curve then it cannot

have zero torsion at any point along the segment and its value is constant

in sign. An important corollary to Theorem 5 is proved in Theorem 6.
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Theorem 6

The sign of torsion is uniquely determined by the end points and end
tangents for the rational cubic segment, P{u), 0 € u 5 1 defined in

Appendix A.
Proof

We first derive an expression for the sign of torsion and then we link this
expression to the end tangents and end points of the rational cubic

segment.
The numerator in equation(B.l) determines the sign of torsion,

sgn{t(u)) = sgn (r (u).r (u) X r (u))

By Thecrem 5 the sign of torsion for a rational cubic segment is constant.

So,

sgn(t) = sen (r (0).r (0) X r {0)) (B.7)

We proceed by evaluating equation(B.7) using equations {A.4) - (A.6) and
without loss of generality we assume that a i1s located at the origin of

our co-ordinate system. Therefore,

P (0) = r (0)4(0) (B.8)
P (0) = r (0)W(0) + 2r (0O)W(O) (B.9)
P (0) = r (0)W(0) + 3r (O)W(O) + 3r (O)W (O) (B.10)

The triple scalar product of P (0), P (0) and P (0) is,

P(0) XP (0) . P (0) =r (0) X r (0) . r (0) W(0)



150

Substituting u = 0 in equations (B.3) - (B.5} then,

12 a, X a =r (0) Xr (0) . r (0) WO)

5 a3
If we assume that the weights, Wy i=0,...,3 are all positive then the sign

of torsion is determined by,

sgn(7) = sgn(a,.a; X a5) (B.11)

Now from Appendix A, equations (A.2) and (A.10) we have,

P(0O) = ay. P(1) = aj *a; +a,+ 33, P{0) = a

1!

Thus,

P(1) - P(0) = &, + a, + a; and P(1) X P(0) = 2 a,Xa + 3a Xa

Therefore,

(P(1) - P(0)).(P(1) X P(0))

= 3 32.33 X a, + 2 a3 . a, X 8y
=3 a.a, X a3 -2 a,.a, X a3
= a,.a, X a3

Hence,

sgn(t) = sgn(a,.a, X a;) = sgn(P(1) - P(0)).(P(1) X P(0)})

We now express this equation in terms of the end points and end tangents

of the rational cubic segment r{u), 0 s u s 1.

P(0) r{0) W(0), P(1) = r(1) W(1),

P(0)

r(0) W(0) + r(0) W(0), P(1) = =(1) W(1) + r(1) W(1)

But P(0) = 0 = r(0),

(P(1) - P(0)).(P(1) X P(0)) = (P(1).(P(1) X P(0)) =
P(1)W(1).[F(1)W(1) + (1)W(1)] X £(0)W(0) = r(1). r(1) X r(0)W2(1) W(0)
Therefore,

sgn{t) = r(1) . r{1) X r(0) w2(1) W(0), and our theorem is proved.
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APPENDIX C

Derivation of the Jacobian &(u,v)/&(u*,v*)}.

Willmore [1972] states that for the relationship u = u(u*,v*), v = v{u*,v¥)

u*,v* € (0,1) to be single valued, the Jacobian &{u,v)/&{u*,v*), defined

by,

&(u,v)

&{u*,v*

L

du

Su*

év

su*

Su

Sv*

Sv

Sv*

Su ov Su &v

= - (C.1)
Su* &v*  Ssv* Su*

must be non-zero. To derive expressions for the partial derivatives in

equation(C.1) we proceed in a way similar to Buck [1965].

We assume that a general point (u,v) on P and u*,v* € [0,1] on Q is

defined in Chapter 4, section{#.1.1) by the equations :

alu,v,u*) = (p(u,v) - c(u*)).N%

b{u,v,v*) = (p(u,v) - d).ﬁr(V*)

b

It
<

(C.2}

n
o

Differentiating the left hand sides of equations(C.2) with respect to u* we

obtain :
da &u
Su Su*
&b Su
Sdu  Su*

Sa

Sv

ob

Sv

Sv

su*

v

Su*

Sa

Su*

(C.3)
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We write equations(C.3) in matrix form :

Au = =48
_u*

2,
where,
- Oa Sa 1
Su &v
A=
Sb &b
- Su Sv -

(C.b)

For solutions to equations{C.l4) we require that the determinant of 4 is

non-zero

det(4) % O

(C.5)

If equation(C.5) holds then :

U =~ 4
where,
1
A_l = —
det(4)

Sv

sb
L- Su

Similarly we have,

éa
Sv
Sa

Su

(C.6)

(C.7)



Then, from equations(C.6)

Su

Su*

Su

Ssv*

Now,

det(4)

det(4)

det{4)

Then from equations(C.2) :

sa

Su

&b

" éu

det(4)

Sp

Su

Sp

——

Su

n

H

ba

. &r(v“) , —

We recall,

&(u,v)

H
H

Therefore,

det{4) = H Exr(v*) X N(u,v) . N

’

;s H
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and (C.7) :
Sa Sv 1 &b Sa
Su* Su* det(4) Su Su*
&b Sv 1 Sa &b
Sv* Sv¥ det(4) Su &v*
&b
Su
Sa ép
—_ — Nba
Sv Sv
&b ép -
= — . N.(v¥%)
Sv Sv
ép . Sp é6p R
— Nr(v*) -—. Nba —_ Nr(v*)
&v ov Su
Sp sp . Sp
(V) — - — . N_(v*) — ] . NP8
Su Su &v
Sp Sp
el ]. Nba
Su Sv
Sp Sp
= — X —andH+$0
Su 6v

ba

(C.8)

(C.9)

{C.10)
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For the determinant of A to be non-zero then,
- » - bha
(N_(v*) X N(u,v)) . N + 0

The Jacobian is defined by,

S{u,v) 6u 6v su Ov

S{u*,v") Su* Sv*  Sv* Su*

Substituting equations(C.8) then,

&{u,v) 1 [ &b S8a Sa 6b éa

S(u*,v*)  det(d)? L sv su* su &v* ov

8b &b Sa ]

sv¥ Su  Sv*

1 [Gb Sa da &b ] Sda &b
det(A)2 v Su v Su Su¥* sv*
1 da &b
det(4) &u* Sv*
Now, from equations{C.2) we have,
sa &b dN_(v*)
— = - % NP® and — = (p(uwv) - d). —F
Su* Sv¥ dv*

Using equation(C.10) then,

dN_(v*)
Nba.Nb& {p({u,v) - d). —=
8(u,v) dv*

S{u*,v*) - -
H N(u,v) X N_(v*) . N

(C,11)
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APPENDIX D

Application of torsion property.

We consider the application of the torsion property of the rational cubic
segment, proved in Appendix B. In section(D.l1) we discuss the application
to composite rational cubic curves and the relevance to a new field of
research : visual continuity [Boehm;1988], defined loosely by 'tangent and
curvature contiruity of coﬁposite curves and surfaces'. In section (D.2) we
discuss the application to the parametric curves of the retional bicubic

patch.

D.1) Composite curves,

In this section we deduce that a composite twisted curve, with non-zero
curvature, built-up of rational cubic segments cannot accommodate a planar

segment and have curvature and torsion continuity.

A twisted curve adjoining a planar rational cubic segment would need to
have zero torsion at the common boundary point. However this would
determine the 'twisted segment' to be planar, since from Theorem 5 we must
have that the torsion is identically zero for the whole segment. Thus a
higher order space curve would be required to ensure torsion continuity at
the common boundary point : and Boehm [1987] has constructed torsion

continuous composite curves for rational quartic B-splines.
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D.2) Rational bicubic surface.

We deduce for a rational bicubic surface, P{u,v), 0 s u,v £ 1, that if the
signs of torsion for the boundary curves, Pl(u) = P{u,0) and

P2(u) = P{u,1), 0 s u s 1, are different, then there exists a planar
parametric segment for some v = ¢, ¢ € {(0,1), irrespective of how the

surface P{u,v), 0 £ u,v s 1, is constructed.

We consider the parametric curves defined by g(u,v) = P{u,v) - P(0O,v),

0su<1l, ve[0,1]. We define a continuous function,

s_(v) = (B(1,v) = B(0,v)) . B(1,v) X B(0,v) = (B(1,v) . B(1,v) X P(0,v)

which by Theorem 6 determines the sign of torsion for each.curve P{u,v),

0<u<1l1, ve[0,1].

By definition we must have 21(0)31(1) < 0, then using the intermediate
value theorem there must exist a ¢ € (0,1) for which ET(C) = 0.

By Theorem 5 the sign of torsion is constant, then torsion 6f the curve
g(u.c), 0su<l, ce€ (0,1) is identically zero and by Theorem 1, proved

in section(3.2.3), must be planar.

Hence the parametric curve P(u,c) = g(u,c) + P(O,c), 0Dsu=<l, ¢ce€ (0,1)

must also be planar.
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