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Design Optimisation Study of a Nonlinear Energy Absorber for Internal 

Combustion Engine Pistons 

N. Dolatabadi, S. Theodossiades, S.J. Rothberg 

Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University 

Leicestershire, LE11 3TU, UK 

 

Abstract 

Piston impacts against the cylinder liner are the most significant sources of mechanical noise in internal combustion 

engines. Traditionally, the severity of impacts is reduced through the modification of physical and geometrical 

characteristics of components in the piston assembly. These methods effectively reduce power losses at certain engine 

operating conditions. Frictional losses and piston impact noise are inversely proportional. Hence, reduction in power loss 

leads to louder piston impact noise. An alternative method that is robust to fluctuations in engine operating conditions is 

anticipated to improve the engine’s NVH performance, whilst exacerbation in power loss remains within the limits of 

conventional methods. The concept of Targeted Energy Transfer (TET) through the use of Nonlinear Energy Sinks (NES) 

is relatively new and its application in automotive powertrains has not been demonstrated yet. In this paper, a TET device 

is conceptually designed and optimised through a series of parametric studies. The dynamic response and power loss of a 

piston model equipped with this nonlinear energy sink is investigated. Numerical studies have shown a potential in 

reducing the severity of impact dynamics by controlling piston’s secondary motion. 

Keywords: Piston impact; Piston secondary motion; Targeted energy transfer; Nonlinear energy sink; Friction; Power loss. 

 

Introduction 

The dominance of internal combustion (IC) engines in transport raises concerns about their environmental effects, such as 

fuel supply, air pollution and noise emissions. Despite the high environmental impact of the emitted particulates, noise 

emissions cannot be neglected either, especially for urban driving conditions [1-3]. Noise and vibration in IC engines are 

mainly caused by the combustion process and mechanical excitation. The loudest sources of mechanical excitation are the 

piston impacts against the cylinder liner [4], which are initiated by piston’s secondary motion (translation and rotation) 

inside the piston-cylinder clearance.  
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Characterisation of the influential factors on piston’s secondary motion leads to better understanding and control of the 

occurring impacts. The influential factors are classified to those related to the engine operating conditions and those 

related to the geometrical and physical characteristics of the piston assembly components. The engine-operation related 

factors are the speed, load and combustion delay [5-7] with the engine speed being the most significant factor amongst 

them. The impact force increases as the engine speed increases, whilst piston impact noise is rather insensitive to load at 

higher engine speeds [5, 6]. Combustion delay results in greater contact forces, as the connecting rod is at an angle with 

respect to the cylinder axis when the peak pressure takes place [7]. Piston impacts are conventionally controlled through 

the geometrical and physical factors, since fluctuation in engine operating conditions is essential for vehicle’s performance. 

The physical factors are piston-pin offset, crankshaft offset, piston-cylinder clearance, piston-skirt stiffness, piston mass 

and location of piston’s centre of gravity [8-12]. There are two downsides to the optimisation of geometrical factors: (i) 

trade-off between friction loss and NVH is required [11, 12] and (ii) the modified parameters are only effective within 

specific range(s) of the engine speed [13]. The clearance size and crankshaft offset are the most influential factors in this 

category. Tighter clearance improves the NVH performance, whilst friction (power) loss increases. The power losses 

increase as the engine speed increases for the same clearance size [12, 13]. The crankshaft offset improves the NVH 

performance noticeably at lower engine speeds. This improvement deteriorates as the engine speed increases [11]. 

Therefore, a passive control method that is robust to engine operating conditions is highly favoured to reduce the piston 

impact severity, whilst the friction (power) losses remain below the limits of the conventional control methods.  

The concept of targeted energy transfer (TET) through the use of nonlinear energy sinks (NES) is suitable for the passive 

control of transient oscillations. The NES is an oscillator with essential stiffness nonlinearity possessing negligible or very 

small linear damping [14]. This class of nonlinear systems can effectively capture transient resonances, transfer broadband 

vibration energy between the NES and its primary system and localise the vibrations to nonlinear normal modes of the 

NES [14]. Past studies are allocated to the excitation of the primary systems through an initial impulsive force [15, 18]. 

Recently, studies have focused on the external periodic forcing of the primary system in conjunction with the NES [14, 20]. 

The application of NES to automotive powertrains (especially on the transient, nonlinear dynamics of the piston assembly) 

is a novel concept that has not been reported yet. Computational parametric studies are commonly exploited to identify 

NES design parameters such that the oscillations of the primary system are either suppressed or completely eliminated [21, 

22].  
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This paper is dealing with the performance analysis of the NES mechanism in an internal combustion engine piston model. 

Spectral characteristics of piston’s secondary motion are exploited to determine the NES design. The dynamics of piston’s 

secondary motion are described in the presence of the NES attachment. The performance objective functions are 

determined using the dynamic response of the system. These objective functions are optimised through a series of 

parametric studies. The power loss of the piston equipped with the NES is evaluated for the optimal designs. The NES 

performance is compared against the conventional control methods for piston’s secondary motion. The optimum NES 

design is selected using both dynamic response and power loss criteria.  

 

Piston dynamics model and NES design  

The equations for piston’s secondary motion are usually described using piston eccentricities (Equation 1) [23, 27]. The 

model of figure 1 has two degrees of freedom, namely the top and bottom piston skirt eccentricities (  and ).  and 

 are the piston and pin masses.  is the piston inertia about the pin centre of rotation.  and  are eccentricity 

accelerations. The piston side force ( ) is mainly determined by the combustion and piston inertia forces (Equation 2). 

The effect of friction force and moment (  and ) on the impact load is negligible [28]. Since  and  equal zero for 

the piston in the engine under examination, the combined moment of combustion force and piston inertia about the pin 

axis ( ) is trivial. A single-cylinder, four-stroke motorbike engine is utilised in this study due to its high speed and load 

capacity, which is compatible to most commercially available engines (OEM and motorsports).  

1 1

1

∑ ∓ tan
∑   (1) 

tan  (2) 

The contact forces at the piston-cylinder conjunction ( ) are predicted using an elasto-hydrodynamic lubrication model 

(EHL) [23, 25]. On the other hand, a ‘dry’ contact model is desirable in parametric studies for its computational efficiency 

[29]. In this model, the contact loads are supported by the damping and stiffness of the mating structures at the four 

corners of the piston’s skirt. The stiffness properties are estimated using Hertz contact theory for circular contacts [30-32]. 

The piston and cylinder liner are made of aluminium. The damping ratio of aluminium reportedly varies between 0.0001 

and 0.01 with respect to its shape, dimensions of the structure and operating conditions [33, 34]. The structural damping 
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ratios (for six- and four-cylinder engine geometries) vary between 0.01 and 0.0378 [35, 36]. Thus, an invariant damping 

ratio of 0.003 is assumed to represent conditions for impact dynamics. Equation 3 describes the total force ( ) for 

the ‘dry’ contact model. Subscripts A and C indicate the top and bottom of the piston skirt at the thrust side (TS) and 

subscripts B and D signify the top and bottom piston skirt corners at the anti-thrust side (ATS). 

≡ , ,								 √ ,						 , , , ,  (3) 

 

Figure 1: Piston assembly parameters and free body diagram 

NES design 

The potential NES design should be as robust as possible to system uncertainties, initial conditions and external excitations. 

The applicability of passive NES to piston’s secondary motion and its satisfactory operation rely on the good 

understanding of system dynamics through spectral analysis (Figure 2). The rotational frequency of the crankshaft is 50Hz 

for a single-cylinder four-stroke engine operating at 3000rpm. This frequency is known as the first engine order. 

Combustion excitations are related to half engine order in the four-stroke cycle. Mechanical excitations (piston impacts, 

big-end bearing impacts etc.) appear at multiples of the engine order [37]. Mechanical excitations possess higher spectral 

amplitudes than combustion during piston’s secondary motion (Figure 2). Piston rotation ( ) undergoes amplitudes with 

one order of magnitude higher than the piston translation ( ) at the first and second engine orders (50 and 100Hz). Thus, 
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the NES design should primarily target piston rotation in an attempt to effectively control the number and severity of 

impacts.  

 

Figure 2: FFT spectra of piston’s secondary motions at 3000rpm: translation ( ) and rotation about the piston pin ( ) 

 

The primary NES design can be a pendulum that is affecting the rotational motion of the piston (Figure 3). The pendulum 

mechanism rotates about the piston pin and reacts to piston rotation through a torsional spring with essentially cubic 

nonlinearity ( ). The stiffness nonlinearity aims to establish communication between the NES and the primary 

system for a broad band of excitation frequencies. The excess of energy transferred to the NES is dissipated through a 

weak linear damper (also torsional, ). The assumptions employed in this concept are as follows: (i) the pendulum 

has lump mass ( ) located at its free end, (ii) the masses of the link, spring and damper are negligible and the centre of 

gravity of the pendulum coincides with the location of the lumped mass, (iii) the equilibrium position is aligned with the 

axis of the cylinder liner for both pendulum and piston and (iv) the friction and clearance are trivial at the pendulum’s 

pivot point. Equation 4 shows the relation between piston translation ( ) and pendulum rotation . Therefore, the 

pendulum mechanism is responsive to both piston rotation and translation. Moreover, the pendulum reacts to the primary 

acceleration of the piston ( ), being receptive to combustion and inertial excitations. In this paper, a single pendulum NES 

mechanism is exploited to study the influence on piston’s secondary motion.  
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cos sin
sin cos

 (4) 

 

Figure 3: Pendulum NES coupled with the piston assembly 

Dynamics model for piston equipped with NES 

The free body diagram of the NES pendulum is presented in figure 4. The reaction forces and moments are indicated at the 

pin location ( , , ,  and ). The other parameters and forces are the same as in the 2-DOF model. The equations for the 

3-DOF model are derived in a similar way as in the 2-DOF model through a combined analysis of figures 1 and 4. The 

inertia matrix ( ) and force array ( ) are described in equations 5 and 6, successively. Subscript  indicates the piston 

skirt corners ( , , , ). The dynamics of motion for piston with pendulum NES are given in equation 7. The piston 

rotation ( ) is defined in terms of piston eccentricities [25]. The system of Equations 7 is solved, and the components’ 

motions are evaluated through predictor-corrector integration [24]. 

 

 

Figure 4: Free body diagram of the pendulum NES (external excitations and inertial forces) 
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1 1 cos sin tan

1 0

1 cos cos

 (5) 

cos tan sin ∑ ,

, , , , 	

sin

 (6) 

 (7) 

 

The study of the NES performance 

The NES design parameters are determined prior to any performance studies. The performance objective functions and 

power loss calculations are described in relation with the design parameters. 

NES design parameters 

The mass, length, stiffness and damping parameters of the pendulum NES are unknown. These parameters determine the 

NES performance (and the corresponding frequency content of NES oscillations). The same performance can be achieved 

for different combinations of those parameters. Provided one of the parameters is assumed as invariable, such overlaps can 

be avoided. The NES stiffness has paramount effect on energy transfer. The added mass of the NES affects the engine 

performance. The damping determines the dissipative behaviour of the NES and its participation in the parametric study is 

essential. The pendulum motion is physically restricted by the cylinder bore and piston skirt dimensions. Thus, the length 

of the pendulum is assumed as constant (0.05 m). The selected length allows for large angular oscillations of the pendulum 

inside the cylinder bore whilst its contact with piston skirt is avoided. The pendulum oscillations are aggressive for  

smaller than 10 /  and NES impacts with the cylinder liner are inevitable. For  greater than 110 / , the 

angular oscillations are trivial, and the dissipation mechanism prevails. Therefore, the stiffness coefficient is varied 

between 10 - 110 /  with 5 /  steps. The damping coefficient is varied between 0 - 0.04 /  with 

0.005 /  steps. The NES mass ratio ( ) is described as a percentage of the NES mass over the mass of the primary 
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system ( 100	 / ). The upper limit of the mass ratio is restricted to 20% [38] and the mass ratio is 

varied between 5 - 20% with 2.5% steps. 

Performance objective functions 

The aim of the NES is to control piston’s secondary motion. The performance objective functions are determined using 

piston dynamics. Piston impact events are monitored through three criteria: (i) impact severity, (ii) number of impacts and 

(iii) energy transfer. The impact severity is identified by the maxima of the eccentricity accelerations (  and ) over one 

engine cycle. In order to mathematically determine this objective function, the maximum or minimum value of eccentricity 

accelerations should be replaced with variable “V” in equation 9 for both the 3-DOF and 2-DOF systems. The number of 

impacts is extracted at the top and bottom of the piston skirt using eccentricity displacements (  and ). The energy 

transfer criterion shows the amount of induced energy in the cylinder structure by piston impacts (Equation 8) at the TS 

and ATS of the cylinder liner over one engine cycle. The transferred energy at each side is the total impact energy at the 

top and bottom of the piston skirt (subscripts  and ). Variable  is the deformation in the contact area and  is the 

contact force. These criteria denote the percentage of variations in the objective functions with respect to the 2-DOF 

system (Equation 9). The variable ( ) is essentially the parameter for each criterion (objective function). Positive 

variations indicate improvement in the performance of the NES. Contour plots are useful tools to understand the 

correlation between each objective function and the design parameters. 

∮ , ∮ ,  (8) 

%Δ 100 (9) 

For example, equation 9 determines the maximum impact severity value over one engine cycle, i.e. 

%Δ , 	
max , max ,

max , °

100 

Optimisation procedure 

An optimisation procedure is essential to take into account the cumulative effect of the objective functions. The optimal 

NES specifications are determined for each NES mass ratio, separately. Conditions that lead to exacerbations in the 
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objective functions are discarded from the analysis (negative values in equation 9). The optimal specifications for each 

mass ratio are selected by applying the following procedure. 

 The priority of the objective functions is determined. Impact severity signifies the harshest (loudest) piston impact in 

one engine cycle through the eccentricity accelerations. Thus, this objective function has the highest priority. The 

reduction in the number of impacts is the second priority, since more impacts with mild severity are preferable to 

fewer impacts with significant harshness (from NVH perspective). The energy transfer function (last criterion) 

indicates the total energy in the impacted structure during one engine cycle. This criterion does not track the 

instantaneous energy variations but it ensures that the total energy content does not increase in the NES presence.  

 Design specifications with the largest improvement in impact severity function are initially identified. The 

improvement for these combinations is distinguishably larger than the neighbouring designs (more than 50%) and 

they are usually located at lower damping coefficients.  

 Amongst the selected combinations, the specifications with the largest improvement in the number of impacts are 

then selected as optimal. Provided multiple options are available, the energy transfer function will be examined in the 

next stage.  

 If multiple scenarios have the same improvement in energy levels, the specifications with the lowest damping 

coefficient are selected for the NES mechanism. 

Power loss evaluation 

The optimal specifications are determined for each NES mass ratio using the performance objective functions. The power 

loss is calculated for the above to ensure that the addition of absorbers does not deteriorate the frictional behaviour of the 

system (in comparison with the losses noted using conventional methods). The cycle-averaged power loss ( , ) is 

estimated using equation 10. The instantaneous power loss ( ) varies with friction force ( ) and sliding velocity ( ) at 

the piston-cylinder conjunction [39, 40].  

, ,								  (10) 

Although the effect of viscous friction on the impact force is trivial, its contribution to power loss cannot be neglected. The 

contact forces in the ‘dry’ piston dynamics model are exploited to estimate the regime of lubrication and friction force. 
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The contact loads at each side of the cylinder liner (TS and ATS) are known from equation 3. The normal load at each side 

is calculated using equation (11). 

, , ,										 , ,  (11) 

The minimum film thickness during elasto-hydrodynamic lubrication is estimated using equation (12) [41].  is the piezo-

viscous constant and  is the contact length. ,  and  are the viscosity at atmospheric pressure, the equivalent radius 

of curvature of the contacting bodies and the modified modulus of elasticity ( ), respectively. The transition from 

hydrodynamic to elasto-hydrodynamic lubrication is determined by the film thickness and the average height of surface 

asperities  (Equation 13).  

1.654
. . . .

.  (12) 

Λ /  (13) 

For Λ 3, the regime of lubrication is hydrodynamic and viscous friction is the only source of loss (Equation 14). The 

variation of viscosity with contact pressure ( ) is given by exp .  is the area of piston skirt. If Λ 3, mixed 

regime of lubrications prevails and both lubricant and asperities contribute to friction loss. The boundary friction (asperity 

effect) is indicated by  (Equation 15).  is the Eyring stress ( 2 ) and 0.17 [42,43]. 

 (14) 

 (15) 

 and  are the asperities’ real contact area and contact pressure respectively, as defined through equations 16 and 17: 

Λ  (16) 

√ / 	 Λ  (17) 

The group ( ) is suggested to be reasonably constant [44]. This group and ( / ) equal 0.055 and 0.001 for a cam-

tappet contact with Gaussian distribution of the asperity heights and constant radius of curvature of the asperity tips [43, 

45].  is the Hertzian contact area for the normal loads.  and /  are statistical functions and they are estimated by 

their polynomial fits (Eqs.18-19) [46].  

Λ 0.0018Λ 0.0281Λ 0.1728Λ 0.525Λ 0.8043Λ 0.5003 (18) 

/ Λ 0.0046Λ 0.0574Λ 0.295Λ 0.7844Λ 1.0776Λ 0.6167 (19) 
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Provided the film thickness is very thin at the asperities tip and viscous shear stress exceeds Eyring stress ( ), the 

lubricant behaves like non-Newtonian fluid. The viscous friction force for non-Newtonian fluid is calculated in equation 

20. The parameter  is approximated by /2.  

 (20) 

The summation of viscous and boundary friction constitutes the total friction force ( ). 

 

Results and discussion 

Parametric study 

The objective functions are parametrically studied using contour plots (Figures 5-10). Results for the central case with 12.5% 

NES mass ratio are shown and contour plots for additional NES mass ratios are presented when clarification is required.  

The impact severity objective function is illustrated for 7.5% NES mass ratio (Figure 5). The labels ‘max’ and ‘min’ 

represent the maximum and minimum eccentricity accelerations. Areas of improved behaviour are shown at the top and 

bottom of the piston skirt. This NES design is effective for damping ratios between 0.005 and 0.01 / . The optimal 

stiffness coefficient is located between 20 and 50 /  for , . The area of improved performance appears at 

very low stiffness coefficients for , . A similar study is carried out for 12.5% NES mass ratio (Figure 6). The 

effective damping coefficients are spread over wider areas (0.01 to 0.02 / ). Larger NES mass ratios produce 

greater improvements in impact severity (up to 40% for , ). This area of improvement is between 0.01 and 0.04 

/  for 20% NES mass ratio (Figure 7). In all scenarios, the area of deteriorating behaviour partially overlaps the 

area of improvement. The optimal locations will be extracted later during the optimisation analysis. 
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Figure 5: Impact severity objective function variation with damping coefficient  and stiffness coefficient  ( 7.5%) 

 

 

Figure 6: Impact severity objective function variation with damping coefficient  and stiffness coefficient  ( 12.5%) 
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Figure 7: Impact severity objective function variation with damping coefficient  and stiffness coefficient  ( 20%) 

 

The number of impacts (NoI) criterion is similarly studied using contour plots. The NoI for 7.5% NES mass ratio is shown 

in figure 8. The areas of improved performance are restricted between damping coefficient values of 0.005 and 0.015 

/  (similarly to the severity objective function). This area is stretched over a wider range of stiffness coefficients 

for the bottom eccentricity. The area of improvement is located between 0.01 and 0.025 /  for 12.5% NES mass 

ratio (Figure 9). The overlap between areas of improved and deteriorating behaviour is larger for stiffness coefficient 

values less than 40 /  at the bottom eccentricity. The scenario for 20% NES mass ratio is not illustrated for brevity 

of the discussion. Regardless of the overlapping regions, the number of impacts can improve about 30 - 50% as the NES 

mass ratio varies between 7.5% and 20%. The effect of overlapping is detailed during the optimisation analysis. 

The energy transfer function ensures that the NES does not increase the energy content of the impacted structure during 

one engine cycle (refer to equations 8 and 9). Figure 10 shows the energy transfer criterion for 12.5% NES mass ratio. 

Zero damping exhibits severely deteriorating behaviour. Generally, there is improvement up to 10% at the thrust side and 

negligible improvement at the anti-thrust side of the cylinder bore. The areas of improved behaviour generally shift 

towards higher damping coefficients as the NES mass ratio increases (similarly to the other objective functions). 
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Figure 8: NoI objective function variation with damping coefficient  and stiffness coefficient  ( 7.5%) 

 

Selection of optimal designs 

The parametric study through contour plots shows the generic trends in the objective functions. Overlapping between areas 

of improved and deteriorating behaviour is estimated. However, the various objective functions are not interconnected 

using this approach. The optimisation procedure correlates the objective functions and finds the optimal design. The 

contour plots include the outputs of 189 simulations for each NES mass ratio. The combinations that lead to deteriorating 

behaviour in equation 10 (negative values) are initially removed. 84 and 12 combinations satisfy the criterion for all the 

objective functions using 7.5% and 12.5% NES mass ratios, respectively.  
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Figure 9: NoI objective function variation with damping coefficient  and stiffness coefficient  ( 12.5%) 

 

 

Figure 10: Transferred energy objective function variation with damping coefficient  and stiffness coefficient  (

12.5%) 
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The optimization procedure is applied to the remaining combinations. The outputs of the impact severity objective 

function are rearranged in an ascending order using the damping and stiffness coefficients of the NES (Figure 11). The 

horizontal axis specifies the position of each combination in the ascending sequence (an integer). Each integer corresponds 

to a specific damping-stiffness combination. The graph forms step-like jumps along the horizontal axis. The discrete jumps 

along the horizontal axis indicate the jump into the next damping coefficient value and the flat sections per damping 

coefficient value represent the variation of stiffness coefficient. This trend shows that the NES system is mainly driven by 

stiffness properties at very low damping coefficients. In the following graphs, the maximum ( ) and minimum ( ) 

states of the eccentricity accelerations are shown for the piston top ( ) and bottom ( ) lands. The eccentricity 

accelerations are largely improved at lower NES damping coefficients (0.01 /  for 7.5% and 0.015-0.02 /

 for 12.5% NES mass ratios). The largest improvement takes place at ,  for both cases. The percentage of 

improvement drops to very small values and it gradually rises as the damping coefficient (integer number) increases. Thus, 

weaker damping allows for better communication of the NES with the piston. The NES capability in reducing impact 

severity improves from 20 to 35% as the NES mass ratio increases. The first four and two combinations are placed in the 

optimal design population for 7.5% and 12.5% NES mass ratios, successively. 

 



17 
S. Theodossiades, CND-17-1339 

 

Figure 11: Eccentricity acceleration variation with damping coefficient for (a) 7.5% and (b) 12.5% NES mass ratios 

(maximum ( ) and minimum ) values at the piston top ( ) and bottom ( ) lands) 

 

The number of impacts (NoI) and energy transfer objective functions should be analysed, since different designs 

specifications are included in the population (Figure 12). The horizontal axis shows the integer number with similar 

ascending sequence. The NoI is largely improved for lower damping coefficient values. This improvement is more evident 

at the bottom eccentricity ( ) in both cases. The NoI improves by 15% as the NES mass ratio increases from 7.5 to 

12.5%. Figure 13 shows the energy transfer functions for the thrust and anti-thrust sides of the cylinder liner (  and 

). The energy transfer function improves up to 9 and 14% for 7.5 and 12.5% NES mass ratios, successively.  
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Figure 12: NoI variation with damping coefficient for (a) 7.5% and (b) 12.5% NES mass ratios at the top  and bottom 

 of the piston skirt 
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Figure 13: Transferred energy variation with damping coefficient at (a) 7.5% and (b) 12.5% NES mass ratio (at TS and 

ATS of the cylinder liner) 

 

The NES operates effectively at lower damping coefficient values. Thus, the population of parametric simulations within 

this region is investigated for the optimal NES design. Only two combinations are available for 12.5% NES mass ratio, 

shown with integer values 1 and 2 throughout figures 11-13. The second combination ( 12.5%, 0.02	 /  

and 80	 / ) presents the largest improvement in all objective functions. The first four combinations (integers 

1 to 4) for the 7.5% NES mass ratio also belong to the selected population for optimum specifications. The impact severity 

and energy transfer functions deviate up to 5% across these combinations. The second combination ( 7.5%, 

0.01	 /  and 80	 / ) experiences the largest improvement in the NoI at the piston bottom land (~15%). 

Similar analyses are carried out for other NES mass ratios. The optimal design specifications for each NES mass ratio are 
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shown in Table 1. The optimal designs have higher damping coefficients as the NES mass ratio increases. None of the 

stiffness-damping combinations can lead to simultaneous improvement of the objective functions for 15% mass ratio. The 

performance of these designs is compared in terms of their dynamics response (Figure 14). The horizontal axis shows the 

objective functions and the vertical axis signifies the percentage of improvement for each function. The optimal designs 

with 12.5% and 20% mass ratios show better performance in terms of impact severity (eccentricity accelerations). The 

NES design with 17.5% mass ratio is largely improved in terms of NoI at the piston top land ( ). The NoI function 

improves at the piston’s top and bottom lands for 12.5% and 20% NES mass ratios, whereas considerable improvement is 

evident only at the top land for 17.5% mass ratio. The energy transfer function generally has better performance for 20% 

NES mass ratio. Each objective function comprises multiple values with a few being optimal. Thus, the average value for 

each function indicates its overall performance (Table 2). The best dynamic response is achieved using 20% NES mass 

ratio. The next optimal NES design specifications are for 12.5% and 17.5% mass ratios, successively. The NES with 10% 

and 7.5% mass ratios show moderate dynamic performance, whereas the 5% NES mass ratio exhibits the minimum 

improvement. The NES performance in terms of power loss will be discussed hereafter. 

 

Table 1. The optimal NES design specifications for each NES mass ratio 

	 %  5 7.5 10 12.5 15 17.5 20 

	 /  20 80 105 80 NA 40 60 

	 . . /  0.005 0.01 0.01 0.02 NA 0.025 0.035 
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Figure 14. Comparison of performance improvement for different objective functions and NES design specifications 

 

Table 2. The average values of the objective functions for optimal NES designs 

	 %  5 7.5 10 12.5 17.5 20 

Impact severity (%) 8.11 8.98 9.14 13.60 11.89 14.77 

NoI (%) 7.69 17.42 21.55 34.03 33.80 37.94 

Energy transfer (%) 3.94 6.15 5.57 11.20 8.29 13.50 

 

Time history and power loss analyses 

The NES performance analysis continues using two sets of results: (i) piston impact dynamics through the kinematics time 

history and (ii) power losses at the piston-cylinder conjunction. The simulations are run for 60 engine cycles to prove the 

NES stable performance. Only the last three cycles are presented herein.  

The piston eccentricity displacements are illustrated in figure 15 for the design with 20% mass ratio. This information is 

exploited to predict the number of impacts. The horizontal axis shows the crank angle. The piston eccentricities without 

NES (2-DOF model) are compared with the eccentricities for a piston equipped with NES (3-DOF model). Two piston 

impacts are eliminated at the top eccentricity during the intake stroke (C labels). Transient impacts are initiated by short 

separation of the piston from the cylinder liner due to transient oscillations at the piston-cylinder conjunction. These 

impacts are present towards the top dead centre of the exhaust stroke (B labels) in the 2-DOF model. The NES attachment 

considerably mitigates these transient oscillations at the top eccentricity. Similar oscillations are present after the main 

impact at the beginning of the compression stroke (A labels). These oscillations are remarkably reduced at the bottom 

eccentricity ( ) for the 3-DOF model. The transient impacts at the bottom eccentricity are also improved during the first 

half of the intake stroke (E labels). One transient impact appears in the middle of the compression stroke (D labels). 

Generally, the eccentricity displacements are improved in the presence of NES (3-DOF model).  
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Figure 15: Eccentricity displacements for three engine cycles (2-DOF model (black) vs. 3-DOF model (red)) 

 

The eccentricity accelerations are shown in figure 16 for the 2-DOF and 3-DOF models, where the behaviour is generally 

improved for the piston equipped with NES. The acceleration during combustion stroke (0 to 180°) is significant, 

producing the largest piston impact. The NES action reduces those oscillations at both eccentricities, whereas 

improvements at the bottom eccentricity are noticeably larger. Further improvements are observed in the proximity of the 

top and bottom dead centres (0º, 180º, 540º etc.). The NES alters the rotational motion in these locations, such that the 

eccentricity acceleration is reduced. 
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Figure 16: Eccentricity accelerations for three engine cycles (2-DOF model (black) vs. 3-DOF model (red)) 

 

Figures 17 and 18 illustrate the instantaneous power losses for the piston equipped with 12.5% and 20% mass ratios NES, 

respectively. Power loss improves at the beginning of the compression stroke as the NES mass ratio increases from 12.5% 

to 20% (-180º, 540º and 1260° crank angle). The maximum power loss occurs during the combustion stroke. The NES 

attachment cannot alleviate the losses at this part of the engine cycle (e.g. 0 to 180°). The piston undergoes rotational 

motion during the intake stroke (e.g. 360 to 540°). The piston tilt increases the contact duration with the cylinder liner, 

leading to increase in the power losses at this part of the engine cycle. The magnitude of this rise is proportional to the 

NES mass ratio. Power loss improves at some parts of the engine cycle, whilst it exacerbates at other parts. Thus, the 

cycle-averaged power loss is a good estimation for the overall performance of the NES (Equation 10). The primary system 

(2-DOF model) loses an average power of 107 W during one engine cycle. This parameter becomes 113 W and 119 W, as 

the NES mass ratio increases from 12.5% to 20%, indicating 6% and 12% increase in power losses. Similar calculations 

are carried out for other NES optimal design specifications (Figure 19). Despite the increase in power loss, the NES 

performance should be evaluated against conventional control methods of piston’s secondary motion. One case study 

shows that 67% reduction in clearance size can lead to 158% increase in mean friction power loss at 4000 rpm engine 

speed [13]. At 1800 rpm engine speed, 60% reduction in clearance size exacerbates the mean friction power loss by 5.88% 
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[12]. Offner [13] studied the effect of piston pin height on friction power losses. It was estimated that 60% increase in the 

pin height can exacerbate the power loss by 16.2%. Nakayama [11] has shown that the effectiveness of crankshaft offset 

reduces at high engine speeds. However, the NES performance is proven to be robust with engine speed variations [47]. At 

3500rpm, the power losses for 12.5% mass ratio NES are comparable to the losses at 1800 rpm using clearance reduction 

methods. It must be noted though that NES with larger mass ratios are not efficient due to power losses and the smaller 

mass ratios are not effective, dynamically. Thus, this NES design can be appointed as an alternative method for the control 

of piston secondary motion, since the power loss performance is better than similar conventional control methods at higher 

engine speeds.  

 

 

Figure 17: Power loss variations for the primary system (2-DOF model) and piston equipped with 12.5% mass ratio NES 

(3-DOF model)  
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Figure 18: Power loss variations for the primary system (2-DOF model) and piston equipped with 20% mass ratio NES (3-

DOF model) 

 

The optimal NES design was selected through extensive numerical simulations, which confirm the improvement in the 

system’s kinematics. However, these analyses do not provide information regarding the energy transfer mechanism 

between the piston and NES. Frequency-energy plots (FEP) have been produced to graphically represent the variation of 

nonlinear normal modes (NNMs) with respect to the energy content of the system [48]. NNMs are free periodic and 

synchronous oscillations of the undamped, unforced system [49] and they are numerically evaluated using a MATLAB 

code developed by Peeters et al [50]. The initiation of NNMs are predicted using linear normal modes (LNM) for low 

energy oscillations whereas the frequency content of oscillations is numerically computed for high energy oscillations 

using a predictor-corrector routine. The NNM backbones for grounded pendulum with 12.5% mass ratio are plotted in 

figure 20. Each backbone corresponds to NES with different restoring force coefficient. The energy-wavelet cloud of 

piston’s secondary motion is overlaid on the FEP (Figure 20), in a similar way as in [48]. The relevant energy calculations 

are described in Appendix A. The wavelet energy cloud was examined for various engine speeds. For the brevity of 

discussion, only the scenario at 3500 rpm engine speed is presented. The NES works effectively in the frequency regions 

where the NNM backbones coincide with the energy-wavelet cloud of the system. A pendulum absorber without nonlinear 

restoring element shows ineffective energy transfer (Figure 20). Pendula with low nonlinear stiffness coefficient have 

high energy contents at low frequencies. The NNM backbone of the optimal pendulum design ( 12.5% and 80 

Nm/rad3) crosses the high-density region of the energy-wavelet cloud. This finding complies with the output of the 

optimisation analysis and shows effective energy transfer [48] between the piston and the pendulum absorber. 
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Figure 19: Power loss increase with respect to the primary system (without NES) 

 

 

Figure 20: Frequency-energy plot of grounded pendulum and energy-wavelet cloud of the piston equipped with NES 

(3500 rpm and 12.5%) 
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Conclusions 

The concept of targeted energy transfer is studied for reducing piston’s secondary motion for the first time. This analysis 

comprises the nonlinear dynamics of the piston and the energy absorber. The dynamics model of piston’s secondary 

motion is exploited to determine the optimum NES design specifications. A pendulum NES is effective in controlling 

piston rotation, since this motion’s amplitude is one order of magnitude larger than piston translation. The NES design 

variables are optimised through a parametric study. Three objective functions are utilised to select the optimal designs for 

seven NES mass ratios. The effectiveness of pendulum NES in the control of piston impacts is confirmed. Power loss 

analysis is carried out taking into account losses through hydrodynamic, elasto-hydrodynamic and mixed regimes of 

lubrication. At the wide range of engine speed, the NES with 12.5% mass ratio can generate less power loss than the 

conventional methods. Thus, NES has a potential as an alternative method for controlling piston’s secondary motion. 

The current theoretical study shows that there is potential in controlling piston’s secondary motion using NES. It should 

be emphasized that the NES pendulum design, as proposed, fits the purpose of a proof of concept study. From a practical 

perspective, the NES design should be tuned to the engine’s packaging specifications. In present study, the NES is 

designed such that the pendulum does not impinge to the piston skirt and cylinder liner. Thus, its only energy transfer path 

is through the stiffness and damping. The NES interference with other engine components, e.g. crankshaft at the bottom 

dead centre, depends on the component dimensions. In experimental investigations, the proposed pendulum length should 

be readjusted to avoid such interferences, using standard IC engine design guidelines. 
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Appendix A: Energy calculations for piston’s secondary motion 

The energy content of the primary system comprises the kinetic energy due to the lateral translation and rotation of the 

piston: 
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. .  (A.1) 

The restored energy in the cylinder liner is due to structural deformations. The pendulum restores energy through its 

nonlinear spring element. The potential energy due to these deformations is given as: 

. . /  (A.2) 
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