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Abstract 

This thesis deals with techniques for the displacement measurement of 

fast transient phenomena using ESP I. Four main contributions are presented. 

First, a computer model for speckle noise and ESPI fringe generation is 

proposed. An assessment methodology for speckle noise reduction algorithms 

is then derived using the computer model. Then the noise in the ESPI fringe 

patterns is analyzed using computer generated speckle and several solutions 

for its reduction are proposed and assessed. Finally, a fast electro-optical 

system is presented as a solution to the unambigous phase extraction problem 

from a single interferogram. With this novel system, whole field transient 

displacements ocurring in time intervals as short as 20ns can be succesfully 

registered and retrieved. 

The work done was directed first towards the noise reduction and enhace

ment of speckled fringe patterns correlated mainly by addition. As only a 

single interferogram is available when double pulse lasers are used to record 

the transient events, the methods proposed here are mainly suitable for these 

kind of fringe patterns. A computer model for speckle generation was de

veloped for noise reduction assessment purposes. Secondly, ESP! technology 

has been extended in its capabilities to deal with a broader range of phenom

ena in the time domain. At the present time there is no satisfactory method 

of obtaining continuous space and time coverage simultaneously. The solu

tion presented here provides a novel alternative to tackle this problem, in 

particular, whole field transient displacement detection and the problem of 

unambigous phase extraction from a single addition interferogram. 
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0.1 Introduction 

Since 1978, considerable interest has been shown in the measurement of high 

speed displacements using Electronic Speckle Pattern Interferometry (ESPI) 

or TV Holography [1, 2, 3]. This thesis will deal mainly with the techniques 

for high speed analysis and processing of the ESPI fringe patterns. 

Analysis of high speed displacements can be carried out at rough scale by 

observing the movement of mechanical components using very fast cameras 1 . 

However, this approach fails to show the strain of the material components, 

mainly because it ocurrs at very small scales, of the order of the wavelength 

of visible light. To ana.lyze snccesfully very small displacements (or strain), 

various interferometric techniques have been developed in past years [5] such 

as holographic and speckle pa.tt.Prn interferometry that provide spatial cov

erage of a surface. Although this techniques obtains spatial information of 

displacement, at the present there is no satisfactory method of obtaining 

continuous space and time coverage simultaneously. 

Electronic speckle pattern int.,rfcromet.ry is a. nondestructive, whole field 

technique to measure static and dynamic deformations of a diffuse object [6]. 

It was first developed by Butters and Leendertz [7] at Lougborough Uni

versity of Technology and contemporaneously by Ma.covski [8]. Before this 

1To observe displacement in very shm-t time intervals, high speed cameras have been 

developed to record transient events. Nowdays, the film based cameras (rotating mirror 

cameras) can reach speeds of the ordf'l' of 25 million frames per second and video cameras 

of the order of 10 million of frames per second for the latest models [4] . However, as they 

are designed to capture just images. they fail to show figures of displacements smaller than 

their spatial resolution. 
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technique, holographic interferometry (HI) had proved to be more efficient in 

terms of spatial resolution for deformation measurement [9]. But nowadays, 

the cost of electronic technology is decreasing while avaliability and quality 

are continously increasing. Moreover, the absence of chemical or thermal 

process, and unlimited supply of images make ESP! an excellent alternative 

among the non-destructive displac<>ment measuring techniques. 

When compared with Ill, ESPI techniques typically have less precision for 

measurement purposes. This is due to different phenomena occurring in 

each step of the imaging, acquisition and correlation processes. At this last 

step, the noisy nature of the fringe patterns can be easily perceived, and the 

requirement of a noise reduction plan becomes evident. 

When continuous wave ( cw) lasers are used, HI and ESPI exhibit another 

important disadvantage: both t ccltniques require isolation tables to avoid 

detecting mechanical perturbations generated from others sources than the 

system under test. To avoid isolation, high speed acquisition can be used 

to analyze the range of displaccnwnts of interest. For this purpose, speckle 

interferometry has been used with fast cameras [10]. Nevertheless, just a 

limited number of frames can be obtained and the analysis procedure has to 

wait for the developement of the photographic media. An equivalent tech

nique can be implemented using fast video cameras and ESP I. Unfortunately 

as more speed is needed, fast canwras becomes more expensive and their spa

tial resolution tends to decrease. 

During the last decade, applications outside the stable laboratory environ

ment induced the use of pulsf'd lasers in ESP! [1] to reduce the stability 

requirements of cw lasers. Nowadays, the most flexible of such lasers is the 
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twin pulsed, diode seeded Nd:YAG laser [11, 2]. This is composed of two 

identical cavities which are capable of emitting double pulses that can be 

synchronized with the TV frame rate. Both oscillators are seeded by the 

same diode laser so as to produce two mutually coherent pulses with the 

same intensity and variable separation. 

Pulsed ESPI has most commonly heen used with this laser operating in the 

single pulse mode. In this case, the time separation between two correlated 

exposures is relatively large (?: 10 ms), so that interferograms are recorded 

on separate TV frames and th('n digitally subtracted in a frame grabber. 

The subtraction process not only correlates both interferograms to produce 

a fringe pattern, but also ensm<'s a. significant reduction of the speckle noise. 

Thus, subtraction fringes are usually of good quality and sufficiently smooth 

to allow the use of phase stepping methods for automating the displacement 

evaluation [12]. 

It was soon discovered that thE' r<'latively large time separations between 

single pulses made this last t.<>chnique quite sensitive to experimental insta

bilities. Also, it did not allow the study of several important phenomena such 

as power flow and high speed transient 2 events. In fact, one of the recent 

concerns in engineering is to analyze the transmission of energy [13, 14] in 

mechanical systems. A car collision experiment is a potential example of a 

transient transmision of energy, where the main concern is to optimize the 

2 For practical purposes in this work, a transient. event will be defined as a displacement, 

assumed non-repeatable, whkh has a dmat.ion of less than 1/30 of a second ie. one TV 

frame time for the NTSC system. 
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absorption of energy along propagation paths through its shock absorbing 

structures. 

These problems can be overcome by operating the laser in the twin pulse 

mode in which two pulses are fired during one exposure. As a consequence of 

the small time separations, typically from IOns to 500 11s, both interferograms 

are added in the TV camera to produce a single video image. 

Even though the addition operation still produces correlation fringes, it does 

not remove the fixed pattern noise>, so the result is that addition fringes have a 

very low visibility. Standard noisP reduction methods, have not proved to be 

sufficient for subsequent automatic computer analysis and phase values are 

usually corrupted by noise. Another important drawback introduced by the 

addition operation is that only a single interferogram is recorded, so phase 

stepping techniques can not he applied and the standard phase extraction 

methods produce ambigous phase [J.')j. 

In this thesis, two main contributions arc presented. First, noise in the ESPI 

fringe patterns is analyzed using computer generated speckle and several so

lutions for its reduction are proposed using a novel assessment technique. 

Secondly, a fast electro-optical system is presented as a solution to the un

ambigous phase extraction probkm from a single interferogram. With this 

novel system, whole field transic>nt displacements ocurring in time intervals 

as short as 20ns can be succf'sfully registered. The aim of this work is to 

take ESPI technology a step forward in its use not only as a whole field· 

technique but to extend its capabilities to deal with a broader range of phe

nomena in the time domain. By de,·eloping techniques for the analysis of 

pulsed fringe patterns and the design of the electro-optical system to extract 
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displacement data from those patterns, this aim has been successfully ful

filled. The high speed achieved in the capture of ESPI pulsed fringe patterns 

using conventional CCD cameras, extends the range of transient analysis to 

intervals of time never achieved before. It is expected that the engineering 

community will benefit from the application of this technique in its study of 

fast displacement phenomena, and also as a replacement for some traditional 

techniques. 

Chapter one starts with a review of the most common non-destructive optical 

systems for single point and whole field displacement measurement. 

In chapter two, first the standard ESPI devices are reviewed toghether with 

their industrial applications and a discussion of the main problems of this 

technology. Secondly, three fundamental techniques applied to the ESPI 

fringe patterns are reviewed: no is<' t'Nluction, enhancement of addition fringe 

patterns and phase extraction nwthods. In the noise reduction techniques, 

the noise consequences in displar<'m<'nt measurement are first disscussed fol

lowed by a review of the standard t<'chniques for noise reduction. The prob

lem of enhancement of addition fringe patterns is also reviewed and several 

solutions are discussed. As a colllplement, the last subsection includes a re

view of the most common phase extraction methods. Finally, the last section 

of chapter two includes a revirw of the recent techniques to measure whole 

field transient displacemPnt, 

In chapter three, the spPckle plwnomena basics and their role in the repre

sentation of displacement is d<'scribcd. 

Starting with a computer model to simulate ESPI main phenomena, chapter 
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four gives an idea of the expected behaviour of an ESPI under ideal condi

tions. This computer techniques are complemented with a novel method for 

assessement of the processed fringe patterns. 

In chapter five, the techniques explored in this work to reduce noise in the 

fringe patterns are presented and evaluated using the computer model and 

the assessment techniques previously introduced. 

Chapter six deals with the probkm of experimental enhancement of addition 

fringe patterns and several solutions are discussed. 

In chapter seven the performance of the carrier fringe technique for phase 

extraction is evaluated for ESP! fringe patterns and the phase unwrapping 

algorithm used in this work is revicwed. 

Chapter eight presents the author's solution to the whole field transient dis

placement detection and to the prohkm of unambigous phase extraction from 

a single interferogram. Finally, chaptcr nine present conclusions and future 

work. 



Chapter 1 

Non Destructive Optical 

Techniques 

Optical techniques are not the only way of measuring displacement. Dis

placement transducers are currently found in the designers tool box; these 

devices can use different physical properties as shown in table 1.1. 

The first four techniques repn,sPnt most of the time a cheap solution for 

certain cases of point measurPm~nt.. Nonetheless, the Non Destructive Opti

cal Techniques (NDOT) are usually preferred (despite their relative expense) 

because they are non-contact ancl have the great advantage of leaving the 

object under test intact. 

Two current trends exist nowadays for the use NDOT for displacement mea

surement; single point and whol" field measurements. Their main difference 

is that single point techniqups pro,·ide a \'ery high resolution in time but not 

8 
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in space. In contrast, the whole fidel measurements provide spatial informa

tion but are not able to provide a high resolution in time. The first section of 

this chapter deals with these two techniques for single point and whole field 

measurements. 

Physical Property Transducer Consequence of Test I Area 

Capacitance Strain Gages Possible Destruction Point 

Resistance Strain Gap;~s Possible Destruction Point 

Magnetic Flux Point Profllometers Possible Destruction Point 

Piezoelectric Effect Accell•romPters Possible Destruction Point 

Optical Path Non Destructive None Point and 

Difference Optical Tech niqucs Whole Field 

Table 1.1: Physical properties of transducers, possible consequences and area 

of application. 

Two non-destructive optical m<'1 hods are first discussed in this chapter, re

stricted to the techniques that can provide displacement measures of the 

order of the wavelength of the light. used in the test. The first is a single 

point technique that provides t lw analysis of surface displacements at high 

speed but gives only a partial idea of the phenomena occurring in a whole 

area. The second, describes sew•ral whole field techniques and compares them 

in their attempt to provide information of clisplacements at high speeds. 
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1.1 Single Point Optical Displacement Mea

surement 

The most successful technique for single point measurement is the Laser 

Doppler Vibrometer (LDV) [16]. Figure 1.1 shows an schematic diagram 

of an LDV. A time phase shift. is continuously introduced by a reference 

beam represented as R in the diagram. The interference of this beam with 

the light that is reflected by the object is then registered in the detector. 

Assuming that the object is static, the intensity pattern is then oscillating 

with a frequency proportional to the velocity of the phase shift. As the object 

moves, this frequency suffers ash i ft proportional to the velocity of the object. 

The electronics after the detector produces an analogue signal proportional 

to the difference of frequencies g<'nera.ted by the reference beam and the 

object beam. As a standard addition in the commercial LDV it is possible 

to measure displacement direct.ly. The actual limitation of this device is that 

as a single point is measured, it is necessary to scan the object under test to 

obtain a complete ana.!ysis of the whole object. However, time resolution is 

in general very high of the order of 20JtS [17]. 

1.2 Whole Field Optical Displacement Mea

surement 

As seen in the last sect.ion, point t<•chnigues provide very fast analysis of 

displacements, but lack spatial rc·solution. To obtain whole field measure-
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Figure 1.1: Diagram of a Laser Doppler Vibrometer 



A. Davila, Ph.D Thesis 12 

ments usually it is necessary to use two-dimensional detectors such as films 

or electronic cameras. 

There are multiple optical approaches to determine displacements of the or

der of the wavelength of light using two-dimensional detectors: Holographic 

Interferometry, Speckle Pattern Photography, Speckle Pattern Correlation 

Interferometry, Moire Interferonwt ry. 

Holographic Interferometry WRS tilt' first tPchnique capable of measuring very 

small displacements and was clt>n·lopPd from the very well know technique 

of holography. 

A typical arrangement is sho\\'n in figure 1.2. Two wavefronts are recorded 

in the same hologram by a douhk exposure of the holographic plate. When 

the double exposure is made, a slight distortion of the object is introduced 

between exposures. Then the reconstruction of the hologram by the reference 

beam when the plate is in exactly the original geometry (and without object 

beam) gives fringes crossing the reconstructed image. These fringes represent 

the displacement introduced be!ll'('en exposures. 

HI has been shown to be very succ<•ssful if a thermoplastic recording medium 

is used. Nonetheless, real timP obs,•n·ation is not possible due to the process

ing time of 50 seconds. Another probl('m is that the thermoplastic medium 

is reusable for a limited numlwr of Pxposure-erasure cycles, in some cases 

only 300 consecutive cycles arc guaranteed for each thermoplastic plate (18). 

Moire interferometry [19, 20) is an altPrnati\'e technique to measure displace

ments at small sca.\cs. Capahle of achieving very high resolutions with grat-
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Figure 1.2: Diagram illustrating tlw principle of holographic interferometry 
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Figure 1.3: Diagram illustrating the principle of Moire interferometry 

ings of 4000 1/mm, this technique requires a fiat surface to apply a very 

fine grating whose deformations are used to obtain interference between the 

diffracted orders. 

This technique has several dis;Hivantages, as the grating (Fig. 1.2) must be 

attached to the surface unckr l<'st.. the technique ceases to be non-invasive 

to a certain extent. As suggested by [21] most of the problems with contact 

transducers originate in the conplant, usually they can not be used over a 

sufficiently wide temperatur" range for ail applications. And there is also 

concern about possible chemical attack. 

As phase stepping methods are usrd to extract the phase in this technique, 

only the camera speed and the tim.-, spent in the phase stepping procedure 
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limit this technique from being capable of near real time processing; of course 

if the time spend to attach the grating is neglected. 

Speckle photography can be used to measure displacements by using only 

an object beam as shown in figure 1.4(a) for in-plane measurement. In this 

technique, two exposures are taken, before and after displacement. 

A post-processing step is required to analyze the correlation generated as 

shown in figure 1.4(b ). As no reference beam is used to produce correlation, 

speckle displacement can only he correlated in a local area determined by 

the speckle size. Even so, high speeds systems using speckle photography 

have been developed [10], the main disadvantage of this technique is the 

need of a pre-processing step as well as the problems associated with the film 

processing. 

Speckle Pattern Correlation Interferometry differs from speckle photography 

in that it involves the interferPnr<' of a uniform reference field or another 

speckle field (e.g. see section :J). This interference produces correlation 

fringes, first observed [22, 23] in the study of vibrating objects. Later film 

was used to record the correlation fringes [24, 25, 26]. 

Soon it was realized that film could be avoided if cameras and electronic 

devices were used to produce the correlation effect [7, 8]. This technology 

was known as ESPI or TV holography. As the nature of the detector was 

different new phenomena were> introduced and required an analysis of the 

fringe contrast which was studied by Slettemoen [27, 28, 29]. 

The use of pulsed lasers gave somP additional advantages for the application 
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of ESPI in industrial environments [1]. The first pulsed lasers used in ESPI 

were of ruby type, which Q-swi tched twice within one flash tube cycle pro

duced two laser pulses in a time interval between lOps to lms with a pulse 

width of about 20-50ns. Unfortunately, if new interferograms were required, 

the laser could give only one every ten seconds. This limited strongly the 

supply of continuous images for TV rates. A preliminary solution to this 

problem was the Q-switched Nd:YAG laser [30], which was able to sustain 

double pulse repetition at TV ra.tc·s. However, when operating in Q-switched 

mode, fluctuations of intensity (spatially and temporally) introduce a very 

low quality in visibility of the f1·inge pattern. To overcome this problem, 

the use of two identical cavities and a seeding diode laser, has been shown 

to reduce the temporal instahilit.y in intensity. This happens when both os

cillators are seeded by the same diode laser so as to produce two mutually 

coherent pulses with variable s<'paration [31]. This laser was capable of re

ducing even more the double puis<> separation and to provide an unlimited 

supply of twin pulses with constant intensity. It also gave unprecedented 

advantages for the analysis of transient. events. 

As lasers evolved to produce smaller times between pulses, this time ca

pability was not followed by the canwra technology. So standard cameras 

were modified to cope with the small times required to analyse transient 

events [30]. Aquisition times of 200ms for single cavity Nd:YAG double 

pulse laser have been achieved with an interline-transfer CCD. However, as 

a single pattern was possible phase stepping techniques were impossible to 

apply. To overcome this problem, 1 he use of larger speckle sizes with tilted 

reference beams has allowed encoding of several phase steps before correla

tion [3, 32]. However, until the writing of this thesis, this approach has been 
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only tested using single pulse ruby lasers. Nonetheless, transient events have 

been analysed using this method with time resolutions greater than 30ps 

with the consequent disadvantage of the low repetition rate. 



Chapter 2 

Electronic Speckle Pattern 

Interferometry Devices 

In this chapter, first the standnrd ESP! devices are reviewed 1 together 

with their industrial applications and a discussion of the main problems of 

this technology. Secondly, thrc><' fundamental techniques applied to the ESPI 

' fringe patterns are reviewed: noise reduction, enhancement of addition fringe 

patterns and phase extraction mP!hods. In the noise reduction techniques, 

the noise consequences in displacenwnt measurement are first disscussed fol

lowed by a review of the standard techniques for noise reduction. The prob

lem of enhancement of addition friuge patterns is also reviewed and several 

solutions are discussed. As a complemPnt, the last subsection includes a re

view of the most common phas0 extrnction methods. Finally, the last section 

1The reader can find a more <ktaii<·d <'Xplanation in reference (6]. 

19 
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of this chapter includes a review of two recent techniques to measure whole 

field transient displacement, 

2.1 Basic devices 

There are three basic configurations of ESPI systems. In each configuration 

displacement is represented in a diff<>rent way. The most common configu

ration is the out-of-plane ESPI, in t!tis optical arrangement, displacement is 

expressed as a change in the piHlS<' along the axis of observation. 

As shown in figure 2.1(a) the basic out-of-plane ESPI system makes use of 

the intensity registered in a canwra (Image plane) by the interference of a 

speckle field (Reflected light) and a reference beam. Their generation involve 

several phenomena simultaneously, hut just some are presented here to pro

vide an understanding of the optical setup. The speckle field is generated 

by the light reflected from a tc·st objPct and collected by a lens with a small 

aperture. This last, and the size• of its aperture determine the speckle size. 

The average dimensions of a SJWcklc• ran he calculated [5] from the width of 

the autocorrelation peak obtainc·clusing the second order statistics of speckle 

patterns and from the autocorrf'lat ion function of the intensity in the speckle 

pattern given by the relation 
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where A(x1 , y1 ) and A(x, y) are the complex amplitudes at the scattering 

plane and the observation plane respectively, related by the Fresnel-Kirchhoff 

integral. Using Eq. 2.1 is relatively simple to show that in the image plane, 

the average speckle size is given by 

f a-o = 1.2!.\-
2r 

(2.2) 

where.\ is the wavelength of light, f is the focal distance and r is the radius 

of the optical system exit pupil. 

The reference beam can be conc0iYcd in different geometrical arrangements 

for interference with the object SJwcklc fidel. Besides, the reference beam can 

be designed with different intensitif's or wavefront shapes. This interference is 

possible only if the light arriving from the object has followed the same optical 

path as that of the light from t hP refer<" nee beam. Finally, the polarization 

effects and the changes in optical path due to turbulence are also important. 

Once the intensity is registered in the image plane by the camera, it is stored 

and subtracted with the suhs<'qtwnt frames to finally provide the correlation 

fringe pattern. 

By changing some components or alt.ering the geometry of the optical setup 

or by changing illumination it is possible to obtain in-plane or shearing in

terferometers. Figure 2.1 (b) shows the in-plane optical setup. Two beams of 

light at equal angles illuminMe t!H' target and produce insensitivity to out 

of plane components and to components at a. perpendicular direction of the 

plane that contains the illuminating beam. 
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Figure 2.2: DiHgram of a shearing ESPI. 
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The most versatile of the ESPI systems is the shearing interferometer [33]. 

This arrangement allows the measurements of the derivative of the out-of

plane component along a specific direction. Recently, in-plane capabilities 

have been also shown for this kind of interferometer [34]. Figure 2.2 shows 

a typical setup to produce shearing intcrferograms. The reflected light from 

the object is collected by a l\1ichrlson type interferometer giving as an output 

two wavefronts shifted with respect to each other along a preferred direction. 

As the shift is controlled hy the tilt of one of the mirrors, displacement 

sensitivity can be varied over a long range. 

2.2 Industrial Applications 

At the present time, pulsed ESP! is mainly used as an aid to improved me

chanical designs. A promising future for ESPI starts to emerge as optical 

and electronic components arl' lwcoming cheaper and more ESPI applica

tions starts to emerge. How<ever, an important limitation to its development 

arises from the level of expertise required to operate the devices; a special

ized knowledge is necessary to obtain good results in the application of the 

technique. 

The principal application of ESP! in engineering is mainly for measuring 

static displacement, stress and strain measurements and vibration analy

sis [6]. The main industries int.en·sted in the application of ESPI techniques 

are the automobile and aircraft. industries. However, more industries can 

make use of these techniques for <'Xilmple, the electronics industry, civil engi

neering (bridges, dams, etc.). Othc·r aprlications have been recently demon-
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strated in geophysiCal rock deformation [3.5], the Ultrasonic design of cutting 

devices [36] for the food industry, underwater sound transmission [37], in

spection of Power plants [38], artwork diagnostics [39] and medical study of 

bone deformation [40]. 

2.3 Problems with Current ESPI Devices 

There are several technical prohlc•ms associated with ESPI systems that make 

them unpopular. A common prohkm is the user interface that virtually is 

non-existent, so an expert is always rc.·quired to deal with the problems of 

misalignment of the optical components embedded in the system. Friendly 

interfaces (push button opPration) are required and an adequate presentation 

of displacement data. is frequently necPssary. It is a. common experience to 

find that engineers do not want to s<·e fringe patterns, in contrast a. represen

tation of displacement in a graphical format is widely accepted. Nowadays, 

some versatile user interfaces have h<'en built to dea.l with these problems [41 ], 

however cost of production is still too high to make this technology more pop

ular. Besides, as no calibration or traceability has been introduced for this 

systems using international standards, there is still uncertainty about the 

sensitivity achieved in measuring displacemnt. 

Another technical problem of ESPI techniques is their limited speed in pro

cessing and display of displaccm<'nt. data .. As a. huge amount of data must be 

processed prior to displacement display, computing time restrains the tech

niques to lower than rea.l-tim<' spe<'ds. Single point techniques avoid the huge 

amount of processing involvf'd in a fringe pattern, but the electronic and op-
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tics involved will be far from reality if they can be integrated in a single pixel 

of an image (except for a slow two-dimensional scanning). The main idea of 

this work is to extend the limits of displacement analysis into a. whole field 

and time resolved integrated solution. 

Stability requirement is another important inconvenience in the application 

of ESPI tests. This limits the kchniques in their a.pplica.tion to the test

ing of components over mechanically isolated tables. In a. real industrial 

environment, there is only one all.erna.tive to isolate the undesired mechani

cal disturbances: by observing displaccmcnts in specific scales of time. The 

recent improvement of pulsed lasrrs has given to ESPI techniques the ca

pability to analyze several scal<•s of tim<' and synchronize them to specific 

modes of oscillation or to transient e1·cnts. However, as camera technology 

has evolved more slowly, tlw time limit is dictated by the acquisition rate 

of the camera. To extend the capability of analysis to small scales of time, 

several existing approaches and a no\'C·l one will be discussed later in section 

2.7 and section highs resprclil'('l)'. 

Two problems of ESPI remain still unsolved: the first is that only a. 2-D view 

of a three-dimensional object is an<llyzcd, so a. more complete description of 

the displacement will require to include all the surfaces of the object in a 

three-dimensional view. The second is its inability to explore inside materials 

under test. As light is refkct<·d by the surface of the target, any internal 

structure can not be detected if no surface effect is caused. 
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2.4 Noise Reduction Techniques 

Speckle noise is one of the principal degradations of the quality of the fringe 

patterns in ESPI. Correct phase values could be easily obtained if noiseless 

fringe patterns were produced (or at least similar in quality to HI patterns). 

However, as a consequence oft he statistical nature of the speckle correlation 

process, noise is always pres<'nt and its reduction is always necessary. 

It has become a standard practice to use noise reduction algorithms from 

commercial packages of image processing; for instance, smoothing with spe

cific neighbourhood filters, low-pass fourier filters, normalization, etc. How

ever, these methods have not y<'t proved to be sufficient for the subsequent 

phase extraction and unwrapping stages. As a series of computer techniques 

are used to obtain the final displacC'ment., noise is transmitted through all the 

stages and degrades the displac<'m<'nt values. A more complete description 

of the relation between noise and lhC' s<'l'ies of techniques used in ESPI will 

be presented in the first suhs<'ct ion of this section. 

Nowadays the research in nois<' reduction s<'ems to be distributed into many 

different disciplines. In the particular case of speckle noise, noise reduction 

can be achieved easily by thC' 11wrage of different random speckle fields (see 

subsection 2.4.2). However, when twin pulse ESPI interferograms are ob

tained in the analysis of transient. phenomena the fast correlation process 

makes it extremely difficult to obtain more than one speckle field 2 • 

2This is the case for transient phPJlOmena. analysis, in the case of periodic phenomena 

a noise reduction method based on the average of multiple different int.erferograms has 

been proposed recently [12] 
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The main studies in speckle noise reduction have been done by researchers in 

the following areas: Synthetic Aperture Radar [43, 44] ultrasound [45, 46], 

interferometry [47] and in imaging [48]. A great amount of the literature 

shows an abundance of articles in the SAR research area. Even though some 

of this research has been done for reducing speckle in images, some of the 

principles can be applied to tlw reduction of noisy fringes. It is the purpose 

of this work to test the performann• of these ideas on ESPI fringes and to 

show the value of translating thes<' 1<'rhniques to ESPI applications [49, 50]. 

However, a detailed analysis of all the existent methods is beyond the scope 

of this thesis. In fact, only ihe most relevant methods of those found in the 

literature were tested [50]. 

Different methods have been applied to smooth ESPI fringes but have been 

only partially successful. Neighbourhood averaging using kernels of different 

sizes and weights has generat<'d substantial interest but suffers the major 

difficulty of introducing blmring of important structural information in the 

image [51]. Gabor filters with a constant value for frequency and orienta

tion have been used with some success to smooth only very simple patterns 

containing parallel equispared fring<'s [.52]. Noise suppression obtained by 

means of an adaptive filter dc.•\·cloped to restore an ideal cosine distribution 

through the evaluation of the fring<' direction has not proved to be sufficient 

to smooth ESPI fringes [53]. Md hods based on the Fourier transform, such 

as low-pass filtering [51, .54] or sp<·ctral subtraction image- restoration,[15, 55] 

have proved to be very effici<ont in n•ducing speckle noise. However, Fourier 

methods do not preserve details of the object [50] and this is a severe lim

itation, as in practice test objects usually contain holes, cracks or shadows, 

or do not cover the whole image. S<'\'<'!'al approaches have been developed to 
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reduce speckle noise in Synthetic Aperture Radar (SAR) images [56, 57, 58]. 

Even though the basic assumption that speckle noise is multiplicative holds 

both in SAR and ESP I, it should be pointed out that the correlation process 

changes the statistical properties of speckle noise [59]. Also, SAR images 

have a high spatial content while most test objects and ESPI fringes have 

a low spatial content. RPsults of t !lC' application of SAR noise reduction 

methods to ESPI fringes W<'rc> presented in a recent paper [50] where it was 

demonstrated that they reduce sjwcklc noise while preserving image details. 

The following sections start with a discussion of the effects caused by the 

speckle noise in the ESPI fringe processing methods used to obtain the dis

placement figures followed hy a review of the standard methods for speckle 

noise reduction, 

2.4.1 Noise Consequences in Displacement Measure

ment 

Fringe pattern processing in ESP! l<'chniqucs can be described as a series of 

methods linked together to produc<' phase difference values which represent 

the desired measurement. Spc·cldc• noise frequently persist in each method 

and can produce undesirable results in the final displacement values. Here, 

these methods are discussed nsing a schematic diagram as well as their re

lation with the noise and/or visibility. Figure 2.3 shows the diagram as a 

set of linked stages that can lw usPd to ckscribe the overall fringe processing 

strategy: 
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Figure 2.3: Fringe• processing methodology. 
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The first stage of the ESP I process starts with a fringe pattern that is gener

ated by the correlation of two speckle fields. When twin pulse lasers with a 

short interval of time between pulses are used, addition correlation produces 

the fringe pattern shown in the first stage. In this case the fringes are dif

ficult to see and an enhancement (2nd stage in diagram) is necessary; this 

enhancement will be explained in more ddail in the following section. On 

the other hand, if CW lasers MC used, the two speckle fields can be stored 

separately and correlated by suht 1·action. Then the correlated fringes are 

of good quality but local shR<loll'ings and poor illumination conditions can 

cause a decrease in the fringe quality. H the speckle fields are stored before 

correlation, they can also be enhanc<'<l prior to correlation. Thus, in any case 

the second stage is always requirC'fl. 

The need of a third stage arises due to the incomplete correlation process 

(see section 3.5): instead of evaluating the correlation coefficient definition, a 

simple operation (absolute value difference, addition, etc. ) is applied to the 

two random intensities obtain<'d from the same position in the two speckle 

fields. This problem produces t 11<· noise that persists in the subsequent stages. 

As noise is caused by the incomplde correlation, the retrieval of a complete 

correlation is one of the aims in I he sc•m-ch for noise reduction methods. 

As some noise reduction methods produce a. decrease in the visibility of the 

processed fringe patterns, a subsequent enhancement is necessary (stage 4). 

In most cases, a simple normalization of the gray levels scale or an equaliza

tion procedure [60] are suffici<•nt. for tlw subsequent stages. 

One of the most important s!C'ps in the fringe processing methodology is the 

phase extraction method repr<'S<'nl ed as the stage 5 in the diagram. This 
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method must be robust to cope with the residual noise left after the noise 

reduction stage. Some attempts have been made to reduce noise in phase 

extraction using iterative and phase stepping methods [61] . However, phase 

stepping is not possible if only a single interferogram is available. 

In addition to these stages, the pha.~e jumps that occur in the discontinu

ities of the phase map produced by tlw phase extraction methods should be 

unwrapped. In this context, otagc G r<'prcscnts any phase unwrapping tech

nique. As noise permeates through the prf'vious stages, special attention has 

been given to robust unwrapping icchniqu<'S that can handle this remaining 

noise [62]. Nowadays, very robust methods are capable of dealing with this 

noise [63]. 

Finally stage 7 represents thP tramformation between phase and displace

ment. This transformation is usually done using the unwrapped phase and 

a scale transformation that depcnds on the wavelength of the light. 

As ESPI noise originates from the n~ry nature of the speckle phenomena 

stage 3 seems indispensable whil<' stages 5 and 6 can incorporate more noise 

reduction techniques to reduce t 11<' t-r•maining noise at the lowest possible 

levels. 

In section 2.6 the phase extract ion methods will be reviewed. As will be 

pointed out in this section, phase· extract.ion methods involve always a fil

ter that is used to reduce IJOis<'. As a complement to the phase extraction 

techniques, a review of one of th<' most successful techniques for phase un

wrapping [63] will be includr·d in section 7.2. 
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As a requirement for standardization of ESPI techniques, a measure of the 

noise remaining after all the stages will be proposed in chapter 4. 

2.4.2 Standard Techniques 

ESPI relies on the fact that if a single wavelength of light is used, the point 

by point correlation of two consecut iw~ speckle fields can show correlated and 

uncorrelated regions. The noise produced by the correlated and uncorrelated 

areas can be reduced by using a similar approach to that occurring in the 

natural formation of coherent images. In this process, the light reflected from 

a rough object produces an imag<' that the eye perceives as constituted by 

speckle noise due to the small apert.urc of the iris. At least two methods exist 

to reduce this speckle noise: 

1. using a very large apertme> in which case the speckle size becomes very 

small in comparison with 1l1e cktector and is hence not resolved. 

ii. reducing the coherence of the source. 

In the first method, the detector area integrates a large number of speckles. 

In the second, noise is reduced by tlw superposition of a broad range of 

speckle fields with different wm·<·lr•ngths (reduced temporal coherence) or 

by a superposition of speckle fic·lrls due to a reduction in spatial coherence. 

Then, it is easy to observe that a reduction in speckle noise can be achieved by 

superposition of different speckles. In ESP!, the usual correlation procedure 

is subtraction, so in this case the integration or superposition processes can 

be done using the subtracted correlated patterns. 
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As an example of superposition of subtraction correlated patterns, Fig. 2.4(a) 

and 2.4(b) show consecutively a single ESPI fringe pattern, and the result of 

adding 25 different speckle patterns correlated previously by subtraction in 

intensity basis. Previous work by ~1ontgomery [9] has shown the importance 

of speckle averaging in ESPI applications. It can be shown [59] that speckle 

contrast (Eq.3.6) is reduced in accordanc<' with the law 

(2.3) 

where No is the number of uncorrelated speckle patterns. It can be seen 

that speckle noise has been strongly reduced. The real disadvantage of this 

method comes from the inahility to get as many speckle patterns as is nec

essary for the required reduction. 

When there is only one speck!" pa\.t('rn, the most often used technique for 

noise reduction is the low-pass Fottrier filter. As will be seen in the next three 

sections, it has the disadvantage of being a convolution filter in the spatial 

domain which introduces uncksired intensities in the processed patterns. 

As the noise present in the SJ)('ckl" patterns is of a non-linear nature, e.g. 

random behaviour, linear filters such as convolution filters integrate several 

speckles (equivalent to method i) with the additional disadvantage of reduc

ing by consequence the resolution of the image. So the aim of the technique 

is to preserve resolution whil<' noisc> is reduced in an efficient way. Next, 

several techniques for SA R ar<' <'xplmwl for their ability to reduce noise and 

in the following section a new algorithm to reduce speckle noise is presented 

that preserves resolution while• noise• is rc>duced. 
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Figure 2.4: (a) Simulatpd ESP/ fringe pattern, (b) Addition of 25 simulated 

ESPI fringe patterns with diff0n•nt random background using subtraction 

correlation. 

2.5 Enhancement of Addition. Fringe Pat-

terns 

Enhancement is usually confiiS<'d with other techniques, the key to distin

guish this technique from ot.hc·rs is that enhancement does not reduce the 

content of noise but can improi'C' I hr fringe quality by other means (e.g. 

change in contrast or visibility). \\'hen used in imaging applications the im

age appears with the same previons dc·t ails but a better signal can be seen 

in regions of low contrast. 

In the schematic diagram dc•srrihc•d in srction 2.4.1, the role of enhancement 

was outlined in the ESPI fring<' proc<'ssing methodology. It was first shown 
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to be specially needed after aquisition of addition fringes or when shadows 

or any lack of uniform illumination was present in the ESP! process. Also 

it is an indispensable step to improve the contrast after the noise reduction 

methods, specially when a low contrast fringe pattern is produced. The 

final quality of the phase is then influenced by the subsequent application of 

enhancement and noise reduction techniques. 

Enhancement can be achieved by different techniques [60] and usually it is 

achieved by normalization or is i111plicit. in the filtering procedures for noise 

reduction. 

A method to enhance addition frinp;Ps that is based on zero order removal and 

a contrast transformation is present<-<! in the following section. This method 

will be used in experimental ESP! images in chapter 6. Also, in section 6.2 

of the same chapter a. method pr<•\'iously de1•eloped [12] for the enhancement 

of addition fringes will be reviewed. 

2.5.1 Enhancement of Addition fringes by zero order 

removal 

It is very well know that addition fringes present a very low contrast and 

are difficult to analyze. Pre1·im1s ll'orkers [64, 30, 1] have suggested high

pass filtering and rectification in ordPI' to enhance addition fringes. Here, 

the combination of two t<echniqu<'s: Z<'ro order removal, and a grey level 

re-transformation are us<ed to enhance computer generated addition fringes. 
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The resulting fringe patterns have a similar appearance to the subtraction 

ones showing the feasibility of the method. 

The zero order removal tPchnique is in escence a high-pass Fourier filter in 

which only the zero order frequency (DC) of the transformation is multiplied 

by zero and the remaining frequencies are not modified. The standard high

pass filter has the disadvantage of including frequencies positioned near to 

the zero order that can repr<'srnt. important fringe information. 

In section 4.1.3 the approxirmte probability density function (histogram) was 

calculated using the compu!C'r modd. From this distribution and from the 

image itself (Fig. 4.4) it is obvious that a constant term (DC) has appeared 

due to the addition correlation procPss. So a zero order removal can be the 

key for a proper enhancement. Figure 2 .. 5 show the image and the histogram 

for a zero order removal of the addition fringes of image 4.4. 

As it can be appreciated, thf' <'nlrancrd image is similar to its subtraction 

equivalent. However, a comparison of their histograms (figures 2.5(b) and 

4.3) show a narrowing of the curT<.'. decreasing the dynamic range of the grey 

level distribution. In section ().J this nwthod will be applied to experimental 

images and a similar decreasing oft he dynamic range will be observed. Also 

it can be seen that when the sprckle size is smaller than the pixel size and 

several speckles are averaged (s<'<' figme 4.2(a)), the addition fringe pattern 

is not easily seen and the enh<lnced results can be very poor or null. So 

a desirable condition for tlw <•nlrallcement of addition fringes by zero order 

removal is that the speckle size 11111st he greater than the pixel size. Another 

desirable condition is to maintai11 constnnt. the intensity ratio between refer-
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Figur? 2.5: Zero order remoYal of aclclit.ion fringes from an out of plane 

simulated ESPI: (a) Enhanr<'d aclclit ion fringe pattern, (b) Histogram. 
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ence an object beam as fa.r a.s possible, thus a. very clean reference beam is 

needed. 

2.6 Phase Extraction Methods 

In this section, a brief revision of phase ext.raction techniques is presented. 

The techniques reviewed here arC' limi!C'd to those are applied to the study 

of transient phenomena. using pulsed lasprs in ESPI. The first section con

tains a review of the tPchniqnes for temporal phase stepping in which it is 

assumed that it is possible to pNform temporal phase steps in the aquisition 

of the transient event. As just il single fringe pattern is available in pulsed 

fringe patterns, the second section includes a review of the Fourier transform 

method to extract phase from a single intNferogram. The main disadvan

tage of this method is ov<'rconwd hy using the phase extraction technique 

described in the third subsection of this section. 

2.6.1 Phase Stepping 

Our particular application of puls<•d las('rs limit the phase shifting techniques 

to the so called quasi-heterodyn<· t<•chnigucs that were developed from het

erodyne techniques [65]. Now<Hiays there are a large number of ways to 

calculate the phase values depending of the amount of phase shift required 

for the phase steps, the number of st<•ps and the presicion required. \Vith cer

tain exceptions [66], almost all the pl1ase shifting techniques assume noiseless 

fringe patterns as the starting data for processing. 
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Phase Equal to Arctangent of 8 F Phase Shifts 
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Table 2.1: Most common phase' stepping techniques, Sand Fare the number 

of steps and frames repectively. 

Table 2.1 shows in detail the equations for the calculation of phase from the 

most common techniques for phase• st<•pping [67, 6.5, 68]. 

In this table the difference of intC'nsity \'a lues are used to calculate the phase. 

For ESPI an alternative approach is tlw difference-of-phase method [69] in 

which two phase maps are first. calcnlated from three speckle fields for each 

map and then correlated by subtraction. However, the additional processing 

does not give any real advantag<'. 

All these temporal phase stepping techniques require a number of frames and 

steps which can consume valious t imc. When gathering the frame a period 

of equilibrium is needed for the object and possibly some time is spend by 

the aquisition device (e.g. Camera.). More time can be also spend in the 

phase steps, which are usually performed by moving a mirror controlled by 

a piezo-electric. 
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For transient events there is not time in which the object stays at equilibrium, 

so it is necessary to look at spatial separation of phase information. 

In double pulse ESPI a single addition fringe pattern is possible to obtain 

if the time of acquisition is shorter than the TV camera field rate. The 

following section present an alternative to the phase extraction using a single 

fringe pattern. As will be shown t.l1<e main drawback of this technique can be 

avoided if a technique df'scrih<'d in 1 he subsequent section is used. 

2.6.2 Fourier Transform 

When the intensity fringe pa!t<'l'll is transformed to the frequency domain, 

more phase extraction technique'.< ar<' possible. 

The phase distribution of a single• ESPI interferogram can be calculated using 

the Fourier transform method propos<'d by Kreis [15] for the analysis of 

holographic interferograms. If a rosinusoidal fringe pattern 

J(x,y) = a(:r,y) + b(J:,y) cosa(x,y) {2.4) 

is re-expressed as 

l(x,y) = a(J·,y) + c(J·,y) + c*(x,y) {2.5) 

where c(x,y) = t b(x,y) exp[j i\(:r,y)], then it can be shown that the Fourier 

transform of Eq. 2.5 will haw thn·'~ components in the spatial frequency 
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domain, the zero frequency peak and two components which ca.rry the phase 

information of the fringes: 

I(u, v) = A(u, v) + C(u, v) + C*(u,v) {2.6) 

Then by bandpass filtering the amplitude spectrum in the +u and +v half 

planes, the zero frequency peak A( u, v) and the negative spatial frequency 

component C*(u, v) are filt.er<'d out. As the remaining spectrum C(u, v) 

is no longer symmetrical, its inn•rse Fomier transform yields a real part 

Re{c(x,y)} and an imaginary part Jm{c(:r,y)}. Then, the wrapped phase 

<f>(x,y) between -1r and +1r can I"' calculated pointwise by 

</>(.r,y) = 
lm{c(x,y)} 

ardan { )} Re c(x,y 
(2.7) 

After the Fourier inverse transformation two phase distributions are obtained, 

one for each bandpass filter. As each mask allows positive and negative 

frequencies to pass in one din·dion but only positive in the perpendicular 

one, depending on the fringe patt<-ru there can appear zones where the sign 

of the phase is inverted. 

The loci of sign inversion can 1"' determined interactively by the user by 

comparing both phase distributions. Unfortunately, some fringe patterns 

do not show a rectilinear sign im•<'rsion as shown in figure 2.6(a)·(c) where 

the user must choose int.eractin•ly an irregular curve for the sign inversion. 

Once the sign of the phase dist rihution is corrected, the continuous phase 

can be finally evaluated by using an unwrapping algorithm. However, as no 

a priori knowledge is available for the zone that must be inverted the results 
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(a) 

(b) 

(c) 

Figure 2.6: (a) Fringe pattern. (h) and (c) Sign inversion after the Fourier 

transform method appli<'d along I h<' l1oriwntal and vertical directions respec

tively. 
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of the unwrapped phase could contain an erroneous sign. Also any automatic 

analysis in not possible due to the interaction with the user. 

2.6.3 Carrier Fringes 

A sign corrected phase map can he obtained if a a priori knowledge is in

troduced in the fringe pattern. This knowledge can be expressed as a con

stant phase change over the whol" fringe pattern. The carrier phase method 

has been extensively mecl since t he• Fi fLies in electronic communications sys

tems [70]. Several names has bc•c•n associated with this technique as quadra

ture demodulation (in electronics), spatial synchronous detection (SSD) [71] 

and space heterodyne demodulation of fringe patterns or direct-measuring 

interferometry [72]. 

In order to introduce a constant phase> change along a single direction, the 

optical wavefront must first ll<' intc·rfc•red with a plane reference wavefront 

expressed by 

(2.8) 

were k = 2n'f>.. Assuming that lh<" original wavefront has a phase 1/>(x,y) 

the interference pattern will prodtlC"P an intensity fringe pattern of the form 

(2.10) 
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This equation gives a set a equispaccd fringes along the x direction when 

~(x, y) = 0. When this interference pattern is analyzed in frequency space 

it can be seen that two symmetrical phase terms are formed with respect 

to the zero order with a separation of 2r/;0 among them. A direct analogy 

can be seen from the hologram image formation. In which the process of 

reconstruction by illuminating with the same reference beam can reproduce 

the phase of the object and t 11<' other associated terms. In a similar way, a 

multiplication of 2.10 by equation 2.8 will give 

{2.11) 

in which the last term contains t he.• isolated phase term. Then if a low-pass 

Fourier filter is applied to this equation the two first terms can be elimi

nated, the remaining tPrm will t hns contain only the optical path difference 

~. Then, the phase difference' can be extracted by using the real and imagi

nary components of the filtered n·st!lt as 

,,, [lm(l.(x,y))] 
'P = a rc t a 11 -:--'-:-··-'-..c.:.,:.;. 

Hc(/u(x,y)) 
{2.12) 

where l. is the low-pass filtered Ycn;ion of I. 

Figure 2.7(a) shows a simulat<•d out or plane ESPI fringe pattern correlated 

by subtraction using Eqs. 4.11 and ·1.1 in which k~(x,y) =~a was rep

resented as a spherical optical path displacement and kcp = ~r/;0 was such 

that 21 carrier fringes were displayed along the horizontal direction. Fig

ure 2.7(b) shows the power spectrum or 2.7(a) where the terms of Eq. 2.11 
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can be identified: The annular structure is the representation of the spheri

cal displacement centered around the carrier frequency. Finally, figure 2.7(c) 

shows the resulting phase map after using Eq. 2.11, applying a low-pass 

Fourier filter and calculating Eq. 2.12. 

The main advantage of this phase extraction technique is that it can deter

mine the phase map without ~ign ambiguity from a single fringe pattern. It 

must be noticed however, that a diff"ercnt sign in the carrier frequency would 

produce an inversion of the ph as<' Ya I U<'S. 

2. 7 Whole Field Transient Event Detection 

This section presents a review of two optical techniques suitable for out-of

plane ESPI transient evc>nt ana lysis. This techniques will be compared in 

chapter 8 with the author's sol ut ion for whole field transient event detection. 

The first subsection reviews an out.of.planc ESPI technique that uses three 

cameras to grab three phase si c·ppc·d speckle fields. Even that this technique 

has been only used for CW applications, it is included here due to its potential 

as a technique suitable for transient ES I' I applications. 

The second subsection reviews an out..of·plane ESPI technique in which the 

capabilities of an interlaced canH'I'H allows the capture of transient events of 

the order of lOO!tS. As ruby lasers were used for this technique, real-time 

repeatability of double pulses is not posible. 
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(a) 

(b) 

• 

(c) 

Figure 2. 7: (a) Simulated ESP! fringe pat!Prn correlated by subtraction with 

21 carrier fringes and a sphrriral displacement. (b) Power spectrum of the 

fringe pattern. (c) PhasP map oblaiJJed from 2.7(a.). 
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2.7.1 Multicamera Phase Stepping 

The approach reviewed here is suitable for studying dynamic processes in 

real-time by TV holography. Its multi-camera optical configuration enables 

simultaneous recording of three phase-stepped fringe patterns [73]. This sys

tem offers the advantage of b<•ing practically insensitive for time-dependent 

external perturbations. IIowe\·er, the optical setup is more complicated and 

a special calibration procedure> n111st he used to tune the modulation inten

sity of one of the cameras to t lw other two. As a result, the system accuracy 

is reduced relative to that of a singlc•-canwra system. 

The optical configuration is prf'sent<•d in flgure 2.8. The three phase steps are 

introduced by the principle of polarization phase-shifting (PPS) [74]. This 

principle relies in the combination of two circular polarizations by means of 

a polarizer. Both circular polarizat.ions are generated by transforming two 

plane perpendicular polarizations hy means of a quarter-wave plate. Then, 

the angle of the combining polarizc·r ( analyzer) determines the phase between 

the two perpendicular polariznt ions. Using this principle, the multicamera 

configuration presents the combination of the mentioned elements in front of 

three cameras shown in the diagram. The two plane perpendicular polariza

tions are constituted by the rdf'rcnce IH'am and the object beam. A plane 

polarization is selected first. from thf' light reflected by the object using a 

specially designed combination cklllent. This polarized light is transmitted 

and combined with a perpendicular lil(ht coming from the reference beam. 

Then these two perpendicular polarizat ions are made to interfere using the 

PPS principle. 
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Figure 2.8: Diagram of the mult i-c~mera optical configuration to produce 

three phase steeped speckle fields. 

CCDl 



A. Davila, Ph.D Thesis 50 

Although this system is capable to operation at the camera speed, it present 

serious disadvantages in the alignment of the components, especially of the 

cameras. The accuracy in the plane of the CCD must be of approximately 

1/10 of the speckle size. In the following two sections it will be shown that 

it is possible to obtain similar phase maps results with a single camera by 

using spatial phase shifting l<'chniqu<'s. 

2. 7.2 Spatial Phase-Shifting Method 

The out-of-plane system revic•wed in this section makes use of a tilted ref

erence beam that remains fixed l"'t lr<'C'n two consecutive exposures of the 

double pulsed laser [32, 7.5]. The' phas<.' difference of the reference beam 

with respect to the object beam snf[C'rs a delay in time proportional to the 

inclination of the reference hc•am. As this delay is proportional to the pro

jected distance in the imag<> plane-, a phase change is recorded spatially in 

the speckled field. 

Figure 2.9 show a schematic diagram of the system in which the angle(} shows 

the inclination of the referenc<' lwam. As this figure shows, the arrangement 

is the same than the origimll ont-of-planC' ESPI (Fig. 2.1(a)) except for the 

introduced tilt in the rcfer<:'ncc• hC'am. 

As this method relies in the local pl1as<' change introduced in the direction 

of the tilt, decorrelation effc·ct s can he obtained between adjacent pixels if a 

small speckle size is usrcl. To a\'Oid this decorrelation, a speckle size larger 

than a pixel is used in ord<'r to include several adjacent pixels. As this 

enlargement is needed in a single• clir<'rl.ion, a rectangular aperture can be 
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Figure 2.9: Diagram of an out.-of-plan<> ESPI configuration to produce three 

phase steeped speckle fields hy t!IC' spillial phase-shifting method. 
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used to preserve a smaller sp<'ckle size in the perpendicular direction of the 

introduced tilt. A representation of these enlarged speckles sizes is shown in 

figure 2.10 for circular and rectangular speckles sizes. 

In practice it is often necessary to use speckle sizes even larger than the 

calculated size. This arises due to the fact that an even region with nearly 

constant correlation is needed by this method. As it is very well known, the 

autocorrelation function of the• inknsity fluctuation of two points on a speckle 

pattern reduces to the Airy disc formula [76]. Then it is easily seen that a 

larger speckle size is more com·c•nient to preserve correlation. In Section 3.2 

it was shown that if a coher<'nt background is interfered with the speckle field 

a larger speckle size is formed. This is the case of the out-of-plane ESPI so 

the needed enlargement of the• 'l"'ckle size can be compensated to certain 

extent. 

Then if correlation is preserw~d in t hrc<' adjacent pixels, a shift of a speckle 

field with respect to the other before correlation gives a means to change the 

previously associated phase (by the reference beam) of each pixel. Conse

quently, three phase steps can he obtHined as 

g(i,j)o =I i(i,j,~o = 0)- l(i,j,f:l.a) I 

g(i,il-~12 =I l(i,J- 1. ~o = o)- l(i,j,!:l.a) 1 

g(i,i)+~/2 =I l(i.J + 1.~o = o) -l(i,j,f:l.a) 1 

where I is the sampled intensity obtained from 

(2.13) 

(2.14) 
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(a) (b) 

Figure 2.10: Camera repres~ntation with (a) approximate circular speckle 

size, and (b) approximate rectangular speckle size. The shaded speckle areas 

represent the preservation of a nearly constant correlation. 
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that is again equation 4.1 except that cp has been replaced by &j were & = 1r /2 

for 90° phase steeping. 

A computer simulation of this process was implemented by the author. to 

corroborate the experimental results obtained by this spatial phase-shifting 

method (3]. Figure 2.1l(a)-(c) shows the calculated fringe patterns using 

Eqs. 2.13. It can be seen that figtJn•s 2.11(b) and 2.11(c) have lower contrast 

due to the decreased corrdation of t h(• adjacent pixels with respect to the 

obtained in the central pixd. 

The main limitation of this tPchniqu(' is due to the necessity of two speckles 

fields. As each speckle field must be stored for posterior processing, the 

time spend on transferring the spC'ckles fields introduces a time delay. If an 

interline transfer camera is USP(l. litis time delay can be as short as ~5J1s, but 

the electronics associated with this cameras can increase the delay to 30J1S (3]. 

Despite these limited capahilil ies, I he minimum time delay reported in the 

experimental results is of 50f1S. 

Another important limitation is I he dPcrease of light intensity due to the 

small apertures needed in thr ge1wration of larger speckle sizes. This sce

nario is even worse when interlaced cameras are used. In this case only the 

charges of the elements of tl)(' odd or cvPn lines can be transferred each time. 

Therefore only half of the wrl ical rPsolution is possible (75] and a larger 

speckle size is necessary decreasing PW'n more the intensity arriving to the 

CCD camera. 

This technique has bePn only ksi<od using ruby lasers. Thus the associated 

drawback of non-continous supply of images due to slow recovery time ( ~ !Os) 
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(a) 
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(c) 

Figure 2.11: Three phase ste<'JH'd fringe patterns obtained by a simulation of 

the spatial phase-shifting technique with phase steps of: (a)O, (b) -'lr/2 and 

(c) 7r/2. 



A. Davila, Ph.D Thesis 56 

of the laser mentioned in section 1.2 limits this particular application to 

lower than real-time speeds. The real-time performance capability obtained 

by using a Nd:YAG twin pulse laser in this technique still remains to be 

explored. 



Chapter 3 

Phase Encoded Displacement 

Measurement by Speckle 

Correlation 

Light can be used as the vcct.or to carry information about displacement. The 

fringe pattern observed when two smooth wavefronts interfere, transforms 

the optical path change (displaccnwnt) into a change of the intensity in the 

resulting fringe patterns. When more than one interfering beam is used the 

situation is more complex, spccially when the speckle phenomena appears. 

In this case, the changes in opt iral path transform the speckle field in a 

complex way; just by local correlation procedures it is possible to obtain a 

global view of a similar hnt noisy fringe pattern. Those noisy fringes show 

also the effects of the displaccnwnt gencratcd between them. 

The purpose of this section is to providc the basic theory of speckle generation 
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and to show some particular changes in the probability distribution functions 

when interference, sampling and correlation processes take place. Knowing 

the statistical distribution of the noise is helpful for applying suitable noise 

reduction algorithms [77]. As the first step in this section, the basics of 

speckle theory are included while the effects of interference, correlation and 

sampling on the probability density functions (PDFs) are analyzed. 

3.1 Speckle Phenomena and Interference 

The complicated structure and randomly varying intensity of the speckle 

pattern has been described first by !'icwton [iS] in 1730 and later (1877) by 

Exner [79]. From these first observations the phenomenon has been exten

sively studied and the advent. of the laser drew even more attention to its 

research [80, 76]. 

Speckle patterns are formed by tlw multiple interference of coherent ( or 

partially coherent ) light that. has he<'n scattered by some material media. 

In most of the surfaces found in c·ngine<'ring structures the irregularities of 

the surface produce optical path fluctuations larger than the wavelength of 

the light. When the number of scaltc•t-crs is very large and no depolarization 

effects are introduced, the S]wcklf' patt<'rns are called normal [81]. The "nor

mal" modifier for speckle will he dropped in the remaining sections of this 

thesis, so should be assumed implicitly. 

A detailed theoretical investigation of tlw speckle phenomenon can be found 
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in refs.[82, 83]. So only a brief account of the main points related to the work 

are given here. 

Assuming that the speckle pattern is normal, the proposed model must obey 

the first order statistics of normal speckle patterns: 

1. The amplitudes, U(.1•, 11) and phas<'s. IJ!(x, 11) of the resulting wavefront 

must be statistically indqwndent of each other. 

ii. The phases, IJT(x,11) ar<' uniformly distributed in the interval ( -1r,1r ). 

From these assumptions a. NxN smnplcd two dimensional complex object ca.n 

be represented as 

(3.1) 

where m, n a.re integers and (hP amplit udc U(!'h, 71) is assumed to be unity. 

In order to avoid the speckle patterns carrying information on the properties 

of the diffusing surface, the surface' strnct.me should not be resolved with the 

imaging system (see for exampl<' Alien and Jones [84]). To get this effect on 

a simulation, it is necessary to introduce a Fourier low pass filter to the 0 
distribution. 

Furthermore, the same low pass filter defines the diameter of the subjective 

speckle size calculated according to tlw following formula: 

N 
r<-

2 
(3.2) 
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Figure 3.1: An equivalent 4f Pourier optical setup to generate the speckle 

distribution. 

Where N is the number of rows of pixcls in a NxN complex image and 

r = (u2 + v2 ) 112 is the radius of tlw circular low. pass filter in the (u,v) 

Fourier plane. 

An equivalent optical setup can IH' devised to accomplish the same mathe

matical task i.e. the 4f Fourier optical filtering setup, shown in Fig. 3.1 where 

the coordinate notation can ll<' observed. 

In this case the complex int<·nsity is generated at the input plane (m, n) 

by means of a random phase scn·<·n. Next, the lens 11 produces the Fourier 

transform at plane (tt, v) when• a low pass filter of radius r is applied. Finally 

lens 12 produces the direct Folll'icr transformation and gives at plane (i,j) 

the resultant speckle pattern. 

In this approach the intensity of the simulated speckle pattern can be ob

tained by the following expression: 
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I(i,j) = ll.:r1 (ll(u,v):F [Cr{1h,i'l)]) 11 2 (3.3) 

where H(u, v) is the low pass filter and :F is the Fourier Transform as usual 

[85]. 

The flow chart presented in Fig. :l.2 d<>scrihes in more detail the necessary 

steps of a computer algorithm to gc•twrate a simulated speckle pattern. In 

the first stage a NxN compkx matrix is generated. Next, Eq. 3.1 is used 

to calculate the real and imaginary parts, in this stage a random number 

generator with uniform distrihut ion must he used to generate the random 

phases. The resulting values arc• tints insNted in the real and imaginary 

parts of the complex matrix. Tit<• second stage is used to perform the fast 

Fourier transform of the matrix. Tlwn, a low pass Fourier filter is applied to 

the resulting data followed by an inverse Fourier transformation. Finally the 

intensity distribution is cakulatc·cl by the square modulus of the resulting 

complex amplitudes. 

Fig. 3.3 Shows the sampled probability density function of the speckle gener

ated image using a Fourier low pass filter of radius 64 pixels for an image of 

512x512 pixels, that produces according to Eq.3.2 a speckle size of 8 pixels. 

Fig. 3.3 also shows the expcctc·d n<'gati\'C' exponential curve in dotted lines 

given by [82] 

p( l) < I >= e-1/<1> {3.4) 
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Figure 3.2: Flow chart to descrih" a computer algorithm to generate speckle 

patterns. 
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Figure 3.3: Probability density fllllction of the speckle generated image with 

512x512 pixels a.nd an average spPcklc size .3-0 of SxS pixels; the dotted curve 

is the expected negative exponc11t ial distribution. 
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defined for I> 0 and p(J) = 0 otherwise, where < I > is the mean intensity. 

The moments of this distribution 11rc given by the relation 

< I">= n! <I >n, 

from which it is easy to show that 

17[ 

<1> 

(3.5) 

(3.6) 

where 17£ is the standard dPviation of i ntpnsity. The quantity 17/ < I > is 

called the speckle contrast. Tllis quantity changes due to the correlation and 

sampling processes that produc<' th<' ESPI patterns. This quantity has been 

used by Crimmins [57] as a nwasun· of tlw Rmotmt of speckle noise present in 

speckled images. However, its us<' in fringe patterns will indicate if the noise 

is reduced, but it does not. detc•rmillf• if the processed pattern approaches an 

ideal fringe pattern. That is \\'h,·, in section 4.2 better assessments terms will 

be proposed. 

A similar approach for the computer generation of speckle patterns has been 

published before [86, 87], for donhlc exposure speckle photography and for 

testing of digita.l filtering tPchniquc·s. 
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3.2 Coherent combination of Speckle and 

Uniform Fields 

In addition to the speckle plwnomenon, out of plane ESPI systems combine 

the speckle field with a uniform reference field. As a consequence, the usual 

Probability Density Function (J>Df) for speckle Eq. 3.4 is modified. The 

approximate density function using the first-order statistics of the sum of a 

speckle pattern and a coherent background is given by [88]: 

( ) ( I + I, ) ( ..;TT. ) PI I < IN>= exp -
1 

fo 2 I , 
<x> <N> 

I?.O (3.7) 

where I0 ( ... ) is a modified TIPss<'l function of the first kind, zero order,< IN> 

is the intensity average of tlw speckle field and I, is the intensity of the 

coherent background. In this cas<' the speckle is assumed to be normal and 

the coherent background is intcrf<•ring at an angle of zero degrees so that just 

the real part is considered. 

When compared with the sp<"ckl<• obsC'nwl without an added reference field, 

the observed speckle size with <Hid<'d rcf,rence field increases: the size of 

the granular structure S<'f'ms to he larger. Although Ennos [89] attributes 

this difference as a doubling of the speckle size, an analysis of the power 

spectrum intensity distribution shows that the real speckle size is composed 

of two speckles sizes. Fignre :3.·1 shows this effect where the Fourier transform 

of an intensity speckle fi<'ld with a11 ad<kd reference field is presented. 
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Figure 3.4: Fourier transform of Ill<' intensity resulting from the addition of 

a speckle field plus a referenn• })('am of twice its mean amplitude. 

3.3 Coherent combination of Speckle Fields 

The addition of speckle patlrrus on an amplitude basis does not change the 

statistics of intensity (Eq. :J..I ), aside from a scaling constant [90]. 

In shearing ESP! and in-plane• syst c·ms a combination between two speckle 

fields in amplitude is used. JTenn·. t hP exponential statistics remain the same 

aside from a scaling constant. 

3.4 Addition of Fields in Intensity Basis 

Addition is the usual operation made• by the superposition of twin pulses on 

a CCD camera. If the phase chanp;"s between the speckle fields produce corn-
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pletely different speckle fields, then the r<·stlltant PDF of the addition of fields 

(in intensity basis) is the convolution of their respective PDFs. However, this 

operation is only valid if the speckle fields are completely uncorrelated. On 

the other hand if correlation is maximum (e.g. both patterns are identical) 

the resultant PDF should h<> the same aside from a scaling constant. In this 

section the author will assunw uncoJTclated patterns, for a detailed analysis 

see [91]. 

There are several ESPI setups hoving different PDFs. The simplest case, 

which is the addition of two <'XJlOIH'!llially distributed speckle fields, comes 

from the use of a shearing intcrf<•ronwtcr. In this case the resultant PDF for 

the addition in intensity basis <"Hll h<' found using Eq. 3.4 as: 

Performing the indicated cmwolul ion, il is easy to show [8.5] that 

I p( I) 
p,J( I) < I > = I 

< > 

(3.8) 

(3.9) 

When twin pulsed lasers ar<' ns<'d with out-of-plane ESPI, the addition cor

relation patterns are the result of an addition in intensity basis of a speckle 

field and a reference beam comhin<•d in amplitude basis. Neglecting the sam

pling effect on the PDF t.lw folloll'ing C'Xprcssion for the resulting PDF can 

be calculated using Eq. 3. 7 ils 

(3.10) 
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Although no solution has been found in the literature survey for this special 

case of coherent combination of speckle and uniform fields, the approximated 

PDF can be calculated using the computational model of section 4.1. 

Other authors [89] refer to the combination of speckle fields in intensity basis 

as "incoherent" combination, however to maintain simplicity this terminology 

will be discarded in the following work. 

3.5 Correlation 

ESPI patterns are usually ohtainPd in C\V applications by the subtraction of 

two intensity speckle fields. This op<'rat ion takes advantage of the variations 

of local correlation between the int.Pnsity fields. The points with highest 

correlation will appear black dtt<' tot he subtraction, whereas those with low 

correlation will exhibit a randonl 1·ariation. 

The expression for the correlation coefficient for two random variables It and 

/ 2 is defined as 

(3.11) 

where 0'[1 = (< I'f > - < /1 >') 112
, Rnd a 12 =(<I?>-< [2 >2

)
112

• 

It and h are values of the random inf<'nsit.y inside the speckle size, and a 

change in phase has occurred h<'fW<'cn fliP speckle fields. 

The noisy nature of the subtraction of two intensity speckle fields arises on 
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one hand due to the substitution of the correlation coefficient by a simple 

operation ( absolute value difference, addition etc. ), and on the other due 

to an incomplete correlation: it is not. possible to calculate the mean values 

of the random variables with just. a few (two) samples. That is why the 

most successful noise reduction algorithms use several intensity speckle fields, 

otherwise the lack of informal ion proclnrPs noisy results in the fringe patterns. 

According to the experinwntal rc·stdts of Pcdrini [3] correlation can be pre

served locally by an area defined hy tlw speckle size, so a better correlation 

coefficient can be obtained using more t ban one random intensity in the 

speckle area. 

It is worth pointing out that corrc·lat ion is not the only cause of the speckled 

patterns obtained with ESP!. Then• is always associated with it a modulation 

of the correlation due t.o t lw ohj .. ct. shape and shadows produced by the 

illuminating beam. However, in 1 h<' following sections of this chapter we will 

assume a uniform illumination and a whole field object (ie. frame is filled 

with no background). 



Chapter 4 

Fringe Quality Assessment 

As a starting point at the llC'giuning of this chapter, a computer simulation 

of three ESPI systems is included to provide reliable fringe patterns for the 

quality testing of the proccssf'd fring<' patterns. In this simulation the errors 

introduced by the physical ESI'l no longer exist. Hence, a detailed analysis 

of the fringe patterns is possihk. ,\ lso, some particular changes in the prob

ability distributions functions when interference, sampling and correlation 

processes take place are analyz0d. Knowing the statistical distribution of the 

noise can be helpful for applying suitable noise reduction algorithms [77]. 

In order to analyze the reliability of tl10 simulated fringe patterns, section 4.2 

presents a new method for fringf' palt<'rn quality assessment and a review of 

the existing techniques for such <lssc·ssnwnt. 

iO 
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4.1 Simulation of ESPI fringe patterns 

ESPI comprises the three main phenomena: interference, sampling and cor

relation. The interference phenomena can be divided into the random inter

ference generated by the scattering in the object surface and the interference 

generated by the optica.l setup. Sampling is performed by the camera de

tector array, while the correlation process can be obtained by electronic or 

digital devices. Next, each phcnonw11a is discussed in order to provide the 

basics of the ESPI computer mod<'!. 

4.1.1 Interference 

ESPI can be made with a lnrp;c- nullllwr of optica.l setups. However, in this 

subsection a simulation of tlH' out·of·plane, in-plane and shearing correlation 

interferometers [6] is present<'d. For tlw out-of-plane the displacement and 

the reference beam terms can '"' easily introduced in Eq. 3.3 to get the 

intensity of the ESPI as 

where ~a is the phase introdun•d hy the deformation and R and <p are 

respectively the amplitude and phasr' of the reference beam. 

For the in-plane interferomct<•r t hf• illumination and the in-plane displace

ment for then~ direction can lw introduced to get 
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where (e1C+e-1C) represent the symmetrical illumination and ~a is the phase 

change introduced by the in-plane displacement. 

Finally for the shea.ring interfc·ronwtc·r the expression is 

l(i,J) = ns-u.Jl + s+(i,J)II 2 (4.3) 

where the amplitude fields arc• 

and 

Here the amount of shear int rod need lwt.wccn the two speckle fields is ex

pressed by mo. 

The usual approach for cxprc·ssing t lw intprference pattern of the ESPI [6] is 

oversimplified and does not. tnk<' into account. the speckle size as well as the 

sampling effect. These new approaches include both and allow the study of 

the statistics involved. 
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4.1.2 Sampling Consequences 

The sampling effect can he divided into three cases: (a) When the sampling 

area (located on the pixel) integrates more than one speckle, (b) when it is 

approximately equal to the spccldc size, and finally (c) when the speckle size 

is greater than this area .. The described th<'ory has been developed for this 

last case (assuming that thf) sampling owr the speckle size is very large). But 

in each case the PDF shows c·ornplirated changes a.ccording to the relation 

between the speckle size and the sampling area .. Here, using the computer 

model, an ana.lysis of t.he rrsult ing I'DFs for t.he three cases is presented. 

To obtain the simulation, a sampling of the intensity of the fully developed 

speckle pattern is necessary. This is rralized in the same way that a CCD 

camera performs in practice. Tile' dfc•ct of speckle sampling has been studied 

and characterized, producing a change in the probability density distribution 

toward the shape of a Gaussian distrihut ion [92]. 

To obtain a fully resolved sprckl<' will require an infinite number of sampling 

points inside the speckle size. In this simulation, an approximation was 

obtained by generating first a !iJ2x,i12 pixels complex image U(i,j) under 

the assumptions discussed in s<"ct ion :3.1. Next, this was transformed using 

a. 2 dimensional FFT and th<"n filt<'n•d with a. low-pass filter of radius r = 64 

pixels and then inverse Fourier 1 ransl'ormccl. At this stage the reference beam 

was added with two times ( R = :!) 1 he mciln amplitude of the object beam. 

The speckle size &0 of the ohjc·ct int<'nsity I was of 8 pixels. Previous to 

the calculation of J a reduction in 1nagnification by a factor of 4 was made, 

obtaining a.n equivalent speck!" size• of 2 pixels and an image of size 128xl28. 
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Fig. 4.1 shows two curves, each representing the probability density distribu

tion of the sampled speckle images for: (a) sampled speckle without reference 

beam ( notice the departure of the exponential behaviour shown in Fig. 3.3 

due just to sampling ), (b) Sampled speckle with reference beam of two 

times the amplitude of the mean object. amplitude, notice that the reference 

beam produces a strong ckparlltre from the exponential shape approaching 

a Gaussian shaped curve. 

Fig. 4.2 shows the three casc•s of sampling a speckle distribution plus a co

herent background: (a) S]Wcklc- size· l<'ss than the pixel area, (b) speckle size 

approximately equal to tlw pixel an•a. and (c) speckle size greater than the 

pixel area. 

The shape of the PDF will clderll!ill<' the a priori knowledge for the design 

of any noise reduction scheme. As the next section will show, this knowledge 

can also be modified by the kind of correlation between the two speckle fields. 

4.1.3 Correlation 

The subtraction operation is usually su hstituted by the absolute value dif

ference and thus better quality in fringps arc obtained. This transformation 

also gives better visual contrast. 

Difference is a convenient way to sliow the correlation. However, in fast 

dynamic events the use of twin puis<' lasrrs produces usually an addition of 

two intensity speckle fields. llowew·r, addition correlation gives even more 
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Figure 4.1: Probability density functions of: (a) sampled speckle without 

reference beam. (b) sampled speck I<• with reference beam added of two times 

the mean object amplitude. 
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noisy fringe patterns than subtmction and further processes are needed to 

enhance the fringes. 

Figure 4.3 shows the fringe pattt•rn and histogram of a subtraction of two 

speckle intensity fields, their PDF is a consequence of the statistics of the 

speckle intensity fields subject to the subtraction correlation operation. Fig

ure 4.4 shows and addition pa!t<'l'll and its histogram. 

4.2 Assessment of Speckle Noise Reduction 

Speckle noise removal can lw <lc!Ji<'\'Nl by using various image restoration 

techniques, in which their common output. are smoothed images. In contrast, 

a clean, undistorted fringe pal !cm is needed for the subsequent calculation of 

ESPI phase or displacement mrasurement. Therefore, a measure of closeness 

to the clean fringe pattern is <'XI n·mely important. This measure can be 

suggested by several formula<'. lkrr, two parameters are proposed for a 

quantitative evaluation of filter prrrormance: fidelity and speckle index. By 

using these parameters and I lw cmnputcr generated ESPI fringe patterns, in 

this thesis a methodology is propos<'d and used for the evaluation of filter 

performance in ESPI displac<'JII<'III. llwasmement. 

Fidelity parameter -an ass<'ssnwnl tc•rm previously used in the optical design 

area- has been proposed by Ill<' ani hor as a measure for the closeness of a 

filtered fringe pa.ttNn to its corn•sponding ideal. Speckle index is a local 

measure based on the speckle co11trnst I hat gives an indication of how effec

tively the noise has been rcmm·cd. The· observation of the figures obtained 
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Figure 4.3: Fringe Pattern and ils histogram of a subtraction of two intensity 

speckle fields. 
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speckle fields. 
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from both parameters allows the cffccti\·e assessment of speckle noise removal 

techniques. 

Assessment methods can gi\·e a series of terms to measure the quality of 

the images. In speckle corrupted images, several measures of the quality 

of the restoration have been suggested for the case in which the original 

image is unknown [57, 93]. llo\\·cn·r. in the case of ESPI computer generated 

fringes, the fringes without noise·"'"' "" f'asily calculated using the phase ~a 

introduced in the displacement by 

/'(' . . 2(~0) 
. I, J) = Sill 

2 
(4.6) 

Linfoot [94] has suggested se\·cral quality parameters for the assessment of 

optjcal designs which make us<' of the• uncorrupted image J and a corrupted 

image g: 

Image fidelity: 

(4.7) 

Relative structural content: 

(4.8) 

And 

Correlation quality: 

Q = j ;_: .f.qt!.rdy / / ;_: f 2 dxdy (4.9) 

from where the relation T + <I> = 2q can be.• Pasily demonstrated. 
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The author has used the term called image fidelity <I> re-expressed in the 

discrete case as: 

"<:"'N-I '>'N-1 (f( · ") ( · "))2 cf> _ 
1 

_ L..i=O L..,i=O !.,J - g t,J 
- '>'N-1 "<:"'N If(· ")2 

L...1=0 L....J=O t,} 
( 4.10) 

where j and g are resped.il'ely thr• uncorrupted and speckle-corrupted fringe 

patterns. 

This parameter can he usPd sucr<'ssfully when very similar fringe patterns 

are compared and any nonmdizat ion does not introduce significant changes. 

When noisy fringe patterns ;m• romp~n'd against the ideal images a slight 

adjustment should he made: an r·qualization of the mean and standard de

viation of both images. 

For comparison purposes, th<' ESP! fringes (g) are expressed by 

g(i,j) =il(i.j, .::O.n = 0)- l(i,j, 6.a) I (4.11) 

where the bar represPnts the ,;;nnpling of the simulated ESPI fringe patterns 

previously filtered by any noi,;" n·duclion algorithm. 

The comparison becomes complet" when the fidelity in the frequency, spatial 

and phase domains is analy?-r•<l. llowPver in this last, the influence of any 

application of phase unwrapping nwthods should be taken into account. 

To quantify the local smootlnwss of filtered fringe patterns, a second pa

rameter was used. Speckle nois<' is u:;ually multiplicative in nature, however 
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Tur [95] and others have shown tbis dcp<'nds on the spatial frequency content 

of the scene and whether higher frequencies are fully resolved by the optical 

system. As this speckle noise can be reduced by the addition of multiple 

correlations (See section 2.4.2), the global average of the local speckle con

trast of an image can be a measure of the noise removal. For this reason, a 

parameters called Speckle Jn(kx was us(•d[57]. This parameter is evaluated 

as the sum of the ratios of t hr local standard deviation a;j to its mean l;j 

for 3x3 windows using 

where N denotes the image dinwnsion and 

I 

"' - 2 17;_; = L.. {l;-k .. i-1- Iii) 
k.I;-J 

- I 1 
I·--"' I k" I 1./ - () L.- 1- ·,)-

. 1.-.1=-1 

(4.12) 

( 4.13) 

(4.14) 

The Speckle Index can be n•gardrd as an average reciprocal signal to noise 

ratio where the signal is the nwan \·alnr and the noise is the standard devia

tion. Therefore, a low Spcckk lnd(':\ will he regarded as an indication of local 

smoothness of the fringe patt(•rn. Jt should also be remarked that evaluation 

of the Speckle Index depcnds on t lw window size. So, for the assessment of 

the filter performance and comparison with other techniques, a 3x3 window 

wa.s used throughout. 



Chapter 5 

Noise Reduction Techniques 

The first section of this chRpt<'r pr<'sc·nts a discussion of the techniques devel

oped for Synthetic Ap<'rtme Hadar (SA H). In the second section, a spectral 

subtraction filter is presentc·d. S<'ction third introduces a novel filter for 

noise reduction that shows t lu• ability to smooth speckle while preserving 

dark zones in the fringe pat t<'ms. Each implemented technique is assessed 

by using the computer model pr<'\'iously d<"\'cloped in section 4.1. Finally, the 

last section presents a bri<'f summary and comparison of the noise reduction 

methods discussed in this chaplf'r. 

5.1 Synthetic Aperture Radar Techniques 

The classification of ESPI fri np;c· smoot lt i ng methods can be made using their 

basic global assumptions: nmltiplicotiv<' noise, a priori information or using 



A. Davila, Ph.D Thesis 84 

some kind of local operations: m•craging, Fourier filtering, local variance, ge

ometric, adaptive (see [55, 06, 57]) etc. l\fost of the SAR techniques are im

plemented using local based operations- see for example [56, 97, 98, 99, 100]

to the author's knowledge only two review articles exist in this area [101, 102]. 

Speckle noise reduction methods in SAR have been developed assuming a di

rect analogy between their fundamrntal procE'sses and the laser-illuminated 

speckle generation. Speckle nois<' in ESP! correlation fringe patterns is dif

ferent to that generated from radar speckle fields due to the intermediate 

correlation process which .changes tit<' statistical properties [103]. Conse

quently, SAR speckle noise n•duct ion techniques which depend on the image 

statistics will produce diffcrrnt results if they are applied to ESP! fringe 

patterns. 

The particular statistical proJ><•rt iC"s of ESP! fringe patterns are generated 

by the correlation of two sprrkk fields. each one modulated by the imaged, 

coherent light rcflected/scatt.<•rrd off the object surface. Two processes oc

cur simultaneously: those of i nlilgi ng and correlation. Whilst imaging may 

be said to carry information about. the object shape, correlation produces 

the fringes (due to surface distort ion) which appear superimposed over the 

object. The resulting fring" pat trrn is then modulated in visibility by the 

object's scattering and rf'fkctinp; propNties. 

SAR noise reduction methods hm·<· he<'n designed to enhance the imaging 

of remote scenery sensing and arc• \\·ell documented [44, 43]. There are two 

basic assumptions usE'cl in th<•s<• techniqu<•s: (i) that the speckle noise is 

multiplicative and (ii) that objc·cts ha\'C' a high spatial frequency content. In 
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ESPI the first assumption also holds 1 in most cases while the second can 

only hold for some special cases. i.e. most engineering objects under test 

have a low spatial frequency cont<•nl. Even so, spatial frequencies associated 

with the fringe pattern can be high. depending on the local gradient of the 

measurand. The processe~ that relate both techniques are therefore quite 

similar and a direct analogy may IH~ drawn between the treatment of noise 

in SAR and ESPI images. 

Among the variety of speckle no is<' r<'duclion methods which have been devel

oped for SAR, the initial aim has 1><'<'11 I o explore those easiest to implement; 

i.e. the adaptive methods and ll1os<~ which use local statistics. For this 

reason, the preliminary sc!Pcl ion for I his work included the geometric filter 

developed by Crimmins [57]. I lw adaptiw~ filter developed by Frost [56] and 

the sigma filter developed by L<'<' [100]. A brief review of the basic theory 

behind these techniques is gi1·<·n 1wxt. 

The Frost method was d<•w·lot"'c] using a mmmmm mean square error 

(MMSE) filter, assuming mnlt iplicalil"<' noise. In its design, the filter is 

adapted using the local lll<'illl a11cl standard deviation. The final impulse 

response is expressed by 

h(/) = 1Jcxp(-!11t1) (5.1) 
1The validity of this assumption clqwnds on the spatial details of the object under 

test. It has been shown (95) thnl. I h0 a!-l . ..;urnpt ion of multiplicative noise is not valid if the 

objects contain spatial details whirh cnntwt. ht> !'('solved by the coherent system. 
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where A is a normalizing constant and ~}is adapted with respect to the image 

characteristics and expressed as 

(5.2) 

where a1, is the local standard dc1·iation defined as 

(5.3) 

and It is the expected value oft he image intensity in a neighbourhood. 

To obtain the filter result at. local ion (:r0 , y0 ) the parameters I11 a10 and $ 
are calculated in a local nrighhonrhood centred at (x0 , y0 ). Next, they are 

used to obtain the weigbtcd <ll'<'l'llp;c of Eq. 5.1 at this location. 

The method developed by Lcc• is based on the sigma probability of a Gaus

sian distribution. The inknsily at the point (x0 , y0 ) is considered as the 

a priori mean of the random disl ribntion. Knowing that there is a 95.5% 

chance that the random samplc•s fall bctwren the two-sigma intensity range 

(Ix0 y0 - 2lx0 y0 aJ, lx0 y0 + 2l.,.0110 CTf0 ) of the mean, the following expression for 

the intensity is calculated in a (2n + 1 )x(2m + 1) window: 

""·o+" "'"+m 0 J j . _ ~I.·=J·0 -n ~l=yo-m k,l k,l 
Xo!lo - "\"'J'u+n '""!!o+m {J 

L./.·=.,·0 -n L-.l=yo-m k,l 
(5.4) 

where o is one in the two-sip;ma range and zero otherwise. The spot noise 

is reduced by a threshold l\ in till' number of pixels within the two sigma 
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range: if the number of pixcls in the two sigma range is less than or equal 

to [(, the four-neighbour average will replace the two-sigma average as the 

smoothed value of the image intensity. 

A different approach to reduce speckle noise has been proposed by Crimmins. 

The final intensity is calculated by a non-linear combination of the pixels in 

a neighborhood based on gemne•tric assumptions. A complementary hulling 

algorithm is used on a binar,· reprc·se•ntat.ion of the image gray levels (the 

term complementary comf's from I!JP fact that the convex hulling algorithm 

is applied alternately to thc_> grny ,·aluc profile and to its complement). The 

whole process can be dcscrill<'d in I he following algorithm. 

1. A 2-D binary reprPsPnl at ion of the gray levels located in a column 

(vertical direction) of the imngr> is made. Here, the gray levels represent 

a binary graph of zeros m·e·•· a background of ones. 

ii. An umbra is created in t he• following way: below the graph all remaining 

pixels are made zero, otherwise• the pixels are one. 

m. Now one iterative step of ill<• complementary hulling algorithm is ap

plied to the umbra. 

iv. When all the columns arc• proccssPd, the same procedure is applied to 

the diagonal and horizontal directions. 

This process decreases the naiTO\\' pm k values while tending to preserve 

broader details. A more complel e dcscription can be found in the original 

paper [57]. 
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ESPI fringes can be made with a large number of optical setups. Here, the 

simulation is limited to the out-of-plane displacement sensitive correlation 

interferometer. A simulated ESP! fringe image (Fig. 5.1(a)) was generated 

as a set of parallel, straight fringes with varying spacing and visibility along 

the horizontal and vertical directions, respectively. This image was used as 

a test vehicle for subsequent conlpilrison of filter performance. The fringe 

pattern was calculated using Eq. 1.11. 

The performance of the SA ll noisr reduction algorithms described previ

ously, when applied to the compute-r simnlatcd ESPI fringe pattern shown in 

Fig. 5.l(a), is summarizrd in Tahlc• :\.]. The performance of a conventional 

Fourier low-pass filter is also prm·i,kd for comparison. 

The sigma filter developed hy L<·c· was sc·qucntia1ly applied for a 3x3 window 

and a value K=l was used to rc•mm·r isolated spot noise. As the processed 

images still showed som<' rc•sidn;d spot noise, a median filter with a 3x3 

window was applied to the last it C'rat<•d image. The adaptive filter developed 

by Frost was applied only Oll<'f' for windows of different sizes. The local 

statistics were gathered usin.~ a window of the same size as that used to 

perform the weighted average of data. 

Several interesting obscrvatious <'lllf'rge from the results in Table 5.1. Firstly, 

it is seen that the sigma filter ,10\·r·loped hy Lee gives higher Fidelity (f) val

ues as the number of iterations inrreascs. The Speckle Index (s), which is 

proportional to the residual sp<·ckl<' noise content of each filtered image, is 

also reduced when the numll!'r of iterations is increased. Fig. 5.1(b) shows 

the result of applying the L<'<' algorithm :l times to the computer simulated 

ESPI fringes. The image shows t h<1t sp<'ckle noise has been suppressed sig-



A. Davila, Ph.D Thesis 89 

Method I t.c'l"il t ions \Vindow size <I> s 

Lee I :Jx3 0.77 0.28 

Lee ~ 3x3 0.81 0.22 

Lee :l :3x3 0.82 0.19 

Frost I 3x3 0.75 0.24 

Frost I 7x7 0.74 0.20 

Frost I 15x15 0.64 0.14 

Crimmins I . 0.63 0.14 

Cri mm ins ~ - 0.65 0.07 

Cri mm ins :1 - 0.65 0.05 

Fourier filter - - 0.76 0.19 

Original image - - 1.00 0.52 

Table 5.1: Results of analysis in tlw computer simulated fringe pattern. 
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nificantly while preserving the fringe information. However, some blurring 

can be observed towards the right-hand side of the image where the fringe 

frequency increases. 

The behaviour of the adaptive fllter developed by Frost can also be deter

mined from Table 5.1. It is scC'n that the residual speckle noise content de

creases when the window to pe·rform 1 hr weighted average of data increases 

in size, but the Fidelity shows an opposil<> behaviour. The filtered image ob

tained with a 1.5xl.'j window is shown in Fig. 5.l(c). Comparing this image 

with that of Fig. 5.I(h), it is se'<'JJ t!Jat. the Frost method provides superior 

results in terms of nois<" red net ion. ITmvPver, this method is more sensitive 

to blurring, especially in arf'as of low fringe visibility (top) and high spatial 

frequency (right-hand sick). 

Another important ohscJT<ltion is 1 hat 1 hr Fidelity and Speckle Index val

ues obtained by the applical ion of hol h SAR noise reduction algorithms are 

not significantly dilf<'rf'nt from 1 hosr de·l<'rmined using low-pass Fourier fil

tering (Fig. 5.I(e)). !IoWC'\"e•r, hy comparing Fig. 5.I(e) with Figs. 5.l(b) 

and 5.1(c) it can be ohscn·rd 11Jal !he low-pass Fourier filter produces an 

image which better preserves arc·as of low fringe visibility and high spatial 

frequency. 

Examination of the figurPs in ·n,hk ;j,] associated with the Crimmins filter 

show an apparent contmclidion: a ci<•crras.' in Speckle Index and in Fidelity. 

However, this behaviour can lw intcrprC'!rcl as an overwhelming smoothing 

as is shown in a comparison of the• image in Fig. 5.l(d) obtained after the 

third iteration of the flltcr with I hP image in Fig. 5.l(a). High frequency 

fringes are seen to vanish in !he• low contrast range (top right corner). 
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(a) (b) 

(c) (d) 

I • 

! j, '11 . 

I 11. ' I . 

(e) 

Figure 5.1: (a) Original Image. (b) Lc•p method for 3 iterations, (c) Frost 

method for a 15xl.5 window, (d) Crirnmins method for 3 iterations, (e) Low

pass Fourier filtering. 
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Even though the conventional low-pass Fourier filter is still seen as a good 

noise reduction technique, a completely different situation appears when test 

objects which contain hoks, cracks or shadows, or do not cover the whole 

image are processed. This result can lw illustrated by processing the fringe 

pattern experimentally generated by a cracked specimen submitted to a ten

sile load, shown in Fig. 5.2( a). Til<' processed image obtained by means of 

the low-pass Fourier filter is shown in Fig. 0.2(b). Even though it is seen that 

the Fourier technique produrcs an ackquatc reduction of the speckle noise, it 

is clearly observed that it does not pr<'scrve the image characteristics. The 

crack has disappeared and t h<• slot b<'romes smaller in width. Moreover, 

nonzero data appears over t h<' slot r<>gion which will introduce errors when 

the filtered fringe pattern is IIS<'d to <'l'aiuate the phase distribution. In terms 

of an engineering application the resulting loss of the crack produces a mis

leading spatial localization of t l1<> ohj<•ct. under test: it is important to be 

able to deduce the spatial relationship lwtween the measurement encoded 

in the fringe pattern (e.g. strain) to some feature of the specimen (i.e. the 

propagating crack tip). 

By contrast, Fig. 5.2(c) shows th<• sonw image processed with 3 iterations 

of the Lee filter using a 7x7 windoll'. Ilf're, the structure of the image is 

well preserved and the localizcd discontinuitics around the crack region may 

be seen clearly, as may the dark background of the specimen slot. After 

deducing the phase of the filtcn·d fringcs, strain concentrations in the neigh

bourhood of the crack tip cnahk quantitative evaluation of the specimen's 

material characteristics, which would not have been possible using the data 

of Fig. 5.2(b ). 
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(a) 

(b) 

• 

(c) 

Figure5,2: (a) Original fringC' pilllwn, (h) Low-pass Fourierfiltering, (c) Lee 

method for 3 iterations with a ixi window. 
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Figure 5.3 shows a detailed description of the Lee method. First, a window 

of size (2n + 1 )x(2m + 1) is us<'d to collect the pixel intensities in the neigh

borough of a central pixd a:0 , y0 and for calculation of the local standard 

deviation ar0 • In the second stage the intensity range is calculated by defin

ing the lower limit as lxoYo- 2lr0 y0 <7r0 and the upper limit as lx0 y0 +2lx0 y0 f7Io· 

After this stage a count of pi;;c{~ and a snm of the intensities that fall within 

this range is performed. Sta.!\e I rc·clnccs spot noise by replacing the 2ar0 

range by a four-neighbour aw•ragc· if I he connt of pixels in the 2ar0 range 

is less or equal to a number [\. SI a_!\c ;j is nsed to calcula.te a 2ar0 average 

(Eq. 5.4) using the summ<'d inlensil ic•s from stage 3. The whole process must 

be then calculated for f'ach pi;;d of tl1<' image as represented at stage 6. As 

this procedure is iterated, in c•ach ilc•ral ion a stronger smoothing effect is ob

served. However spot noise might hr present after processing, thus a median 

filter is applied to remove the rc•siclll<li noise. 

In practice the Lee method has ll1rec main parameters to be adjusted for a 

particular speckled image: window sixe, thrf'shold [( and number of itera

tions. The selection of this paranwtc·rs depend on the speckled input image. 

For fringe patterns the window size• is assumed to be inversely proportional 

to the fringe density: as more fringes arC' observed, the window size is re

duced and if few fringes are ohsc•nwl. l.he window size can be increased to 

obtain a highly smoothed fimd image. In order to remove the spot noise 

the parameter [( is choosen proportion a I to the window size. Finally, the 

number of iterations are increasc•d to ohtain a better smoothing effect in the 

final image. 

It should be therefore noted ll1a1. filtcr<'d results shown in figures 5.1 and 
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- Standard deviation is calculated from pixels 
in a (2m+ 1 )x(2n+ 1) window 1 

Using the centrl!l pixel intensity the two sigma range 
limits are calculated 

2 

Count the pixels that are included between the 
limits and sum the intensities that fall 3 

in this range 

~ 
\ 

If the count is less than or equal to a number K 
the four neighbour average will replace the final 4 

intensity 

If the count is greater than K the sum of intensities 
calculated in box 3 is divided by the number of 5 

pixels that fall inside the range limits 

Move the window to the next pixel until all the 
pixels in the image are calculated 

6 

Figure 5.3: Flow chart clrscript.ion of I hr Lee method of speckle noise reduc

tion 
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I Method 11 Iterations I Window size I s 

Lee :3 7x7 0.07 

Fourier filter . . 0.07 

Crimmins filter !j . 0.06 

Original image . . 0.70 

Table 5.2: Results of analysis in tIre experimental fringe pattern. 

5.2 have been obtained using filter panlmcters which are strictly image spe

cific. It is not valid in this rase to compare such images with identical filter 

parameters. 

Table 5.2lists the Speckle Inrkx rakulatrd from the image shown in Fig. 5.2. 

It may be seen that the Lcr mrt hod yields a comparable Speckle Index to 

that of the low-pass Fouricr filter. ,\]though the Crimmins filter gives lower 

values of Speckle Index, this nwas11rr· is not enough to assess the performance 

of the filter a.s shown in the pre1·io11s figmPs of Table 5.1. The Frost filter 

was not included in the expcri Ill<' Ill a I test due to its inadequate performance 

in terms of <I> and s. 

Other, more powerful SAR trchnirpl<'S promise good performance in the noise 

reduction of speckle. In particular if four independent speckle correlated 

patterns are possible, then the weighted filter described by 1\fartin [104] would 

be a very good alternati1·c. This filtr-r is based in a modification of the Lee 

filter in which each pixelwithin t lw wi11dow is incorporated into a weighted 

average replacement for the rrnt raJ pixr•l, each weight choosen according to 

a local estimation of a. Gaussian I'DF. In this case, the four independent 
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patterns can be obtained hy thP use of the adjacent pixels in the area of 

the speckle size, while preserving t lw condition of one speckle per pixel. As 

this means a decrease in resolution, the aquisition device must have 4 times 

the number of pixels to compensate' the loss in resolution. Another possible 

alternative is by the use of four cameras to observe the same object, the 

problem is then that thos<' syst<'tlls ar<' V<'ry sensitive to misalignments. 

5.2 Spectral Subtraction Image Restoration 

In this section noise is r<'dnrc•d hy Hpplying a spectral subtraction image 

restoration (SSIR) method. Exp<•riuwnt.al results which illustrate the perfor

mance of this approach are presf'nt<'<i. 

The purpose of this method is to n•ducc the speckle noise present in the 

addition fringes using an image restoration filter. The problem of restoring 

an image degraded by nois<' h;" J,,.,,n <'Xl<'nsively studied in the literature. 

One method which has h<'cn surn·ssl'nl in reducing random additive noise in 

synthetic aperture radar signals is the sp<'rt.ral subtraction technique devel

oped by Lim [10.5]. This t.cchniqn<' has proved to be effective for enhancing 

images degraded by computer sin11tlat<'d speckle noise without introducing 

appreciable blurring [54]. 

A variation of this technique has lw<·n adopted by the author for ESPI. The 

speckle noise component is gi\'<'11 by a sJ)('ckle field 12 previous to correlation. 

Using this new notation th<' l'rinp;<> pattern can be represented also after cor

relation as ! 12• The estimatio11 of I h<• irradiance I(x, y) of the restored image 
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is relatively simple and begins hy e1·aluating its discrete Fourier transform 

I(u, v). This transform is computed by wbtra.cting the power spectrum of 

the noise component from that of t lw enhanced addition fringes. For this 

purpose, the following expression is computed 

(5.5) 

for I :F(/12 ) 1
22: ~' I :F(J2 ) 1

2 and 0 ot.h<'rwise where :F(/12 ) and :F(/2 ) are 

the discrete Fourier transforms of the enhanced addition fringes and the 

reference speckle interferogrmn. rr·sp<'ctivcly, and 0 is the phase of :F(/12). 

Constant k must be chosen '" 11 compromise between noise reduction and 

image distortion. Irradiance I ( .r, !I) of the rrst.ored fringe pattern is obtained 

afterward by inverse Fouri<'r transforming Eq. 5.5. 

In Speckle-corrupted imagrs, a nwnsu re of t hP quality of any applied restora

tion has been suggested for the case• in which the noise-uncorrupted image 

is unknown [57]. Howev<'r, for romput.<'t' grnera.ted images, the image of the 

fringes without noise can be g<'nr•r;tt<•rl hy using the phase introduced in the 

deformation process. In t.his casr•, t.hc quality obtained in the restoration 

process was measured using tlw image fidelity parameter (Eq. 4.7) and the 

speckle pattern correlation fringc•s wit !tout noise have been calculated using 

Eq. 4.6. 

The comparison becomes complc•tr• when tlw fidelity in the frequency and the 

spatial domains is compan·d. lloii'<'I'C'I', only in the case of straight fringes 
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is the spatial fidelity a good nwasure of the performance of the spectral 

restoration method. 

Fig. 5.4 shows several plots of the image fidelity in the spatial domain, against 

the constant k of eq. 5.5 for a pattern with 2m correlated fringes where m 

is an integer. As can be seen from these graphs, the, optimal value of k to 

obtain the best result occurs ilt the fin;t point of inflection of the curve. The 

second inflection point can occur anywlwre, and is due to the convolution of 

the signal with the noise in t he• fr<'quellCJ' domain. 

To test the performance oft !IC' SSIH mdhod on curved fringes, the phase of 

the deformation .C.n in thr> :r direction was generated according to 

(5.6) 

where C1 and C2 ar<' constants. f' is the radius in the spatial domain and 

A the wavelength of the light. Using g as the inverse Fourier transform of 

Eq. 5.5 and j from Eq. 4,6. \1'<' n1n compute the fidelity (Eq. 4.7) in the 

spatial domain. Using the po\\W spectra of j and g, the fidelity can be 

re-expressed in the frequcnc)· domain. Fig. 5.5 shows fidelity against k in 

both domains using a low pass filtcT of radius r = 16 pixels with an image 

size of 128x128. Notice that t lw figmcs of spatial fidelity are good for large 

values of k but tha.t there is a strong decay in the frequency fidelity. Large 

values of k produce straightcnc•cl approximations to the curved fringes, which 

is obviously an nndcsirahk dl'c·ct. Fimdly. a similar test was made using as 

the input an image with logarit luuirally scaled intensity distribution. The 



F 
i 
d 
e 
1 
i 
t 
y 

A. Davila, Pl1.D Thesis 100 

1 r-------,-,-------,r-------r-------~.------,,-------. 

0. 9 f-

0.8 - .......... 
' . 

0.7 

0. 6 f-

0.5 

0.4 

0.3 

0.2 

0.1 

:! ... . . 

___ , ___ ,____________ ------
...... , .--------------------- -----, -

----~=··' ',,, 
,, :. . 

i • 
i .. 

\ ~. -'· ! 
!, (m=5) (m=1) ·:.(m=9) 
:. .. 
!!: •• -

:. 0 

1 
': : 
'; .................................................. ···········································6····························~·-----

-

-

-

0 L-----~·-------L-·----~·-------L-·----~~----~ 
0 200 400 600 800 1000 1200 

k 
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results show increased fidelity values, with a similar behavior for the fidelity 

curves of Fig. 5.5 being observed. 

The described method was implemented by the author on an image process

ing system running on a PC-:386 computer. This system uses an Imaging 

Technology Inc. VIPA accelerator board which can perform 32-bit floating

point arithmetic functions on ima~e data much faster than the host com

puter. For an image of 512 x !il:! pixds with a resolution of 256 grey levels, 

the system can evaluate a Fomi<'r transform in about 3 s. 

The experimental addition fring<' pilt terns used to evaluate the method were 

produced by adding in the image• processing system two primary speckle 

interferograms generated from a standard ESPI interferometer in an in

plane configuration. For each frinp;<' pntt<'rn, another two specklegrams were 

recorded but with no displne<'lll<'nt IH'tW<'<'n exposures. The addition of these 

provided the reference interfc·rogram needed for the contrast enhancement 

and the noise reduction tcch n iqnc•s c!Pscri heel previously. 

Figure 5.6(a) shows a typical nddit ion fringe pattern obtained for an in

plane rotation. It may he s<'e'll that t h<' fringe quality is very poor and a high 

level of speckle noise is pre•sc•nt. Fi.~. 5.6(b) was produced by subtracting a 

reference interferogra.m from t he• previous one. It is seen that most of the 

time-invariant noise is remo\•e•d hy t llt' subtraction process, thus giving a very 

noticeable improvement in fring<' \·isihility. 

Figure 5.7(a) shows the high quality smoothed fringe pattern obtained by the 

application of the SSIR mdhorl tot he• enhanced fringe pattern of Fig. 5.6(b ). 

This last image was obtained using i.· = :1, but. it was checked that values fork 
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Figure 5.5: Image fidelity against i.· for cnrvcd fringes of C1 = 0.7, C2 = 3.0 

and r = 16 pixels in: (a) the spatial domain, (b) the frequency domain. 
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Figure 5.6: (a) ESPI addition fringes generated by adding two interferograms 

with a in-plane rotation introdncNl hct\\·ccn both exposures; (b) enhanced 

pattern obtained by subtracting a rcfcrC'nce interferogram. 
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ranging in the interval from 1 to 10 did not give any appreciable difference in 

the filter performance. For comparison, Fig. 5. 7(b) shows the image obtained 

by low pass Fourier filtering the enhanced fringe pattern of Fig. 5.6(b ). Even 

though the Fourier filter reduces the noise contribution, it also generates a 

noticeable blur in the fringe pattern which will introduce anomalies in the 

phase evaluation. 

The computer generated fringc•s prm·ide a method to assess the performance 

of the noise reduction approach. Comput.cr tests show that fringe restoration 

using the spectral subtraction nwt hod produces for curved fringes decreasing 

figures of quality whereas for straight f1·ingcs the quality figures can be very 

high. 

5.3 Noise Reduction Using a Scale-Space Fil

ter 

In this section, the utility of <1pplying a scale-space filter to reduce speckle 

noise in ESPI fringes is i nvPst iga I. eel [I OGJ. In general terms, this is a nonlinear 

clustering filter based on information theory and statistical mechanics which 

reduces noise while preserving rd.~rs. Each filtered pixel is estimated by its 

neighbouring pixels. The filter hes only one parameter which governs the 

size of the spatial neighbourhood of data on which its output depends. As 

a result, filtering is carried on I in an adaptive and completely unsupervised 

manner. Using computer gcnnal c·d and experimental ESPI fringe patterns, 
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Figure 5. 7: Fringe pattern ol' Fig. !i.G(h) after being processed by: (a) the 

spectral subtraction image r<'sl oral ion method; (b) Fourier low pass filtering. 
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it can be shown that the scale-space filter provides better noise suppression 

than the low-pass Fourier filter while preserving important image details. 

A detailed derivation and description of the characteristics of the scale-space 

filter can be found in the literature [lOG, 107, 108, 109] therefore only a 

brief description is given here. To describe the filter first a definition of two 

parameters is necessary. First. tiJ(' seal(' in the input domain is represented 

by a that is defined to b.-, inw•rscl.1· proportional to the size M of the local 

window used to estimate th<' iniC'nsily !;,;,it is taken as 

n = 1/2"' (5.7) 

Secondly, the intensity changr•s in a local neighbourhood represented by the 

local variance a: defined by 

- 2 
2 _ L.u ( h1 - I) q,., a,- (5.8) 

were 1 is the average int0nsity of I h(• pixC'Is which belong to this neighbour

hood defined as. 

7 = Lk.l h1 qk,t 

L.~.~ rw 

Then the local variance can lw ns('d to ddine 

(5.9) 

(5.10) 
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were a small a} implies that pixcls within the local window have a low noise 

level producing a large f3 value. 

The noise smoothed intensity l;j of each pixel of the image is calculated 

using a neighbourhood of Mxl\f pixC'Is. and to simplify the writing, a limit 

W =(M- 1)/2 is introduced using 

( 
w ) I;j = I:: ~;-!·.j-1 '!kll'u 

k.l=-11' 

ll' 

I L qklPkl 
k,I=-W 

(5.11) 

where 

(5.12) 

(5.13) 

The operation of t.he filter ran he explained as follows. From Eq. 5.11, the 

smoothed va.lue l;j of the centr11l pixcl can be interpreted as a cluster centre 

given the grey levels ht of pixf'ls within the local window and qkl as the 

weight given to each ht. It is 11lso seen from Eq. 5.12 that the parameter 

a is a measure of scale in tit" input space, as data near the central pixel 

should give more information than f'11r pixels. For example, if a = oo, then 

qkl = 1 when k = i and I = j, and 0 otherwise. This result implies that 

every pixel is preserved perfC'ct.ly. Conversely, a small value of a implies that 

more neighbours can contribute to the evaluation of l;j. The parameter f3 



A. Davila, Pb.D Thesis 108 

in Eq. 5.13 is related with the intensity variations of pixels belonging to the 

spatial window defined by the scale a in the input domain. 

The scale-space filter smooths noise by applying several iterations to the 

input image setting the initial value l;j of the central pixel to 1. The number 

of iterations can be controlled by the Speckle Index (Section 4.2). If the 

difference of the Speckle Imkx between two successive iterations falls below 

a fixed threshold, the iterations ar" stopped. In practice, 3 iterations of the 

filter were found to give acceptable results for ESPI fringes. 

Finally, it is important. to point out that. the scale-space filter was derived 

for smoothing additive noise. For this reason, data are logarithmically trans

formed before the filter application. 

The computer generated ESPI fringe patterns were created for a resolution 

of 512x512 pixels by means of the simulation method presented by the au

thors in Ref. [50]. The assessm<'nt was performed using again Eq. 4.6 as the 

ESPI fringes without noise and tlw fidelity and the speckle index parameters 

described in section 4.2. 

Figure 5.8(a) shows a computer simulated fringe pattern with variable fre

quency and visibility used to cvalna.tn the performance of the scale-space 

filter. The smoothed fringe pattern after the application of the scale-space 

filter with a 9x9 window an cl 1 iter at ions is shown in Fig. 5.8(b ). It is seen 

that noise is effectively supprcssc•d by the filter and that a noticeable incre

ment of visibility is observed near the top of the fringe pattern. However, a 

slight decrease of visibility can he seen as the fringe density increases towards 

the right hand side of the image. 
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1 ' 

f ., 

• , 

Figure 5.8: Compu!Pr simulatPd fringes with variable frequency and visibil

ity: (a) original image; (b) smootll<'d image using the scale-space filter for a 

9x9 window and 3 iterat.ions. 
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A quantitative measurement. of the noise reduction is given by the Speckle 

Index. The unfiltered fringe pattern shown in Fig. 5.8(a) gives a value of 

s = 0.71 while the image smoothed with the scale-space filter shown in 

Fig. 5.8(b ), a values = 0.029 is obtained. For comparison, a low-pass Fourier 

filter applied to the fringe pattern of Fig. 5.8( a) with a radius of 14 pixels 

gives a slightly higher value of .< = 0.083. These figures show how speckle 

noise has been greatly recluccxl by the application of the scale-space filter. 

The influence of different filters in the wrapped phase distribution is an im

portant issue in terms of Engi1wering applications clue to its direct relation to 

the evaluation of the displan'm<'n!. fi<'lcl, and hence to strain or surface form. 

For this reason, the wrapped j>hasc distribution rjJ was calculated using three 

phase-shifted patterns after smoothing each one with a scale-space filter. 

The phase distribution rP was evaluated by a phase stepping technique of 

two steps and three frames clcsct·ilwrl in table 2.l(see subsection 2.6.1). This 

calculation allows us to detrrmine the Fidelity value given by the wrapped 

phase distribution by evaluating th'c wrapped phase map generated by three 

phase-shifted noise-free fringe pat1<'rns. Smoothing each fringe pattern with 

the scale-space filter for a 9x!J window and 3 iterations, a Fidelity value of 

<I> = 0.91 was obtained. This vnlne compares quite well with <I> = 0.94 ob

tained after a similar calculation by using a low-pass Fourier filter with a 

radius of 14 pixels. 

One of the main advantages of the scale-space filter is its ability to preserve 

zero intensity regions usually prodncPd in ESPI by the finite dimensions of 

the test object and by illumination cha.nges due to concavities or shadow

ing. To illustrate this advantage, a Z<'ro intensity hole was included in three 
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phase-shifted computer generated fringe patterns. Figure 5.9( a) shows the 

unfiltered fringe pattern generated for a phase step of 0°. The wrapped phase 

distribution determined after flltering each pattern with the scale-space filter 

for a 9x9 window and 3 iterations is seen in Fig. 5.9(b ). 

From Fig. 5.9(b ),it is seen that the gray level distribution obtained using 

the scale-space filter is maintained nearly constant in the hole region, with 

minimal distortion of the valid phase da.ta around the edges. In contrast, 

Fig. 5.9(c) shows the wrapped phase distribution evaluated after a similar 

calculation but using a low-pass Fomicr filter with a radius of 14 pixels. In 

this last figure, it is observed I hat the hole is smaller than the one in the 

unfiltered image shown in Fig. !i.D( a) and also that undesirable phase errors 

are introduced around the edges, ll'il h invalid 'data' appearing in the region 

itself. 

The RMS error a gives a. qm1nl ilal ive measurement of the gray level errors 

introduced in the hole region. For the wrapped phase distribution evaluated 

by smoothing with the scale-spare nlt<•r (Fig. 5.9(b)), a value of a = 18.6 

is obtained while a = 55.1 is calculated by using low-pass Fourier filtering. 

Figure 5.10 shows plots of tlw wrapp<'cl phase distribution surrounding the 

hole region after applying both 1 he scale-space and the Fourier filters. For 

comparison, this figure a.lso shows the plot of the phase obtained from three 

phase-shifted noise-free fringc pallcms along the same direction. It is seen 

that the phase obtained by using tl"' scalP-space filter is quite similar to that 

evaluated for the noise-free fri ngc' pa I terns. In contrast, the plot of the phase 

determined by means of the loll'- pass Fomier filter strongly departs from the 

noise-free phase. 
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In terms of an Engineering application, the resulting loss of the zero intensity 

regions due to the finite dinwnsions of the test specimen or to illumination 

changes, produces a misleading spatial localization of the object and causes 

local phase distortions at or near the edges. To illustrate this effect, an 

experimental fringe pattern was recorded. Figure 5.11(a) shows an unfiltered 

fringe pattern generated hy a crack~d specimen subjected to a tensile load. 

In this application, it is important to know the phase distribution in the 

immediate vicinity of the crack tip as it propagates across the specimen 

under increasing load. liC'nc~ t lw <'X act spatial localization of the crack and 

tip must be segmented from the phase data during the fringe analysis process. 

The filtered image obtained by nwans ·of the sca.le-space filter for a llxll 

window and 3 iterations is shown in Pig. 5.11(b). For this image, a Speckle 

Index value of s = 0.012 is obtained. The smoothed fringe pattern deter

mined by using a low-pass flourier filter with a radius of 10 pixels is shown 

in Fig. 5.11(c), which gives a Spc•rkle Tnd<'x value of s = 0.076. It is observed 

that the propagating crack tip has been preserved in the image smoothed 

with the scale-space filter. On t ~~~ otlwr hand, not only has the crack tip 

been blurred and the slot rc•dur~d in width in the image smoothed by the 

low-pass Fourier filter, hut also J!onzero data has appeared over the slot re

gion. This effect causes inacrmaric•s in the spatial relationship between the 

measurement encoded in the fring~ pattern (e.g. strain) and the feature of 

the specimen (i.e. the propagating crack tip). 

The number of iterations of th<' scak space filter (using both 9x9 and llxll 

windows) was increased to test for d<'JX'ndency on fringe frequency. It was 
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found that increasing above t hrec itcrat ions had no significant effect on re

ducing the speckle index. 

It should be emphasized that the comparatively long computer processing 

time involved is one of the main limitation of this method. It can be argued 

that processing time is an important parameter in assessing overall efficiency 

of the technique. As an Pxamplc, using a.·lSG PC running at 66 MHz with the 

GNU C compiler, the following tim<·s were obtained: 200 sec for a 256x256 

image, M=7 and 3 iterations, 2050 sec [or a 512x512 image M=ll and 3 iter

ations. For comparison, a low pass fourier filter takes 7 seconds for a 256x256 

image and 60 seconds for a. !'i 12x!i 12 i rnagc. As always, processing speed can 

be improved with more efficient. coding or hardware accelerator chips such as 

the popular TI CSO. 

5.4 Summary and Remarks 

Throughout this chapter the t<•chniques haYe been subjected to an analysis 

of their performance for solving the noise problem in pulsed ESPI fringe 

patterns. 

Among the SAR noise reduction ll'chnicpws it was found that the most effi

cient methods fall in the catPgory o[ non linear algorithms. This is a natural 

consequence due to the stat istica.l na t nre of the speckle field discussed in 

chapter 3. However as those tc•chniqnr•s were developed to enhance speckled 

images with fine details, their performance in the processing of ESPI fringe 
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patterns still leave some undc•,irable high frequency noise in comparison with 

the low-pass Fourier filter. 

The SSIR method present.ed in section four, has been shown to be highly 

efficient if straight fringes are proressed. Unfortunately, the performance of 

this filter decreases for curved fringes. 

The scale-space filter has bcc•n the: most. efficient method for noise reduc

tion tested in this thesis. T1. has shown to be comparable to the low-pass 

Fourier filter in terms of the quality paramct.ers. Also, the scale-space filter 

outperforms the low-pass Fomic•r fllt.er hPcause it preserves the zero inten

sity regions. This last feature· of the filter is similar to the obtained in the 

SAR methods but with the smoothing rharacteristics of the low-pass Fourier 

filter. However, in terms of the processing time is not as good as the other 

techniques. 

The tradeoff between processing tin1e and quality of the noise reduction tech

nique seems to be directly rc•latc•d: the processing time increases if a better 

performance in noise reduction is dc•sired. The search for faster methods 

with smaller processing timc•s is still a current trend in the research of noise 

reduction algorithms. 
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(a) 

(b) 

(c) 

Figure 5.9: Wrapped phase distrilmtion evaluated from 3 shifted computer 

generated fringe patterns which include a simulated hole: (a) original image 

for a phase step of 0°; (b) phase determined from 3 smoothed patterns using 

the scale-space filt.er for a 9x9 window and 3 iterations; (c) phase determined 

from 3 patterns smoothed with a low-pass Fourier filter. 
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Figure 5.11: Fringe pattern recorded experimentally: (a) original image; 

(b) smoothed image using the scale-space filter for a llxll window and 3 

iterations; (c) smoothed imap;c- ohtilin<'d hy low-pass Fourier filtering. 



Chapter 6 

Enhancement of Addition 

Fringe Patterns 

In chapter 2 section 2.5.1 the 7.<'1'0 orclc•J' removal technique was shown to 

be effective for enhancement. of addition fringe patterns. However, a further 

enhancement of addition fringe· patterns can be achieved using gray level 

transformations. From the distrihut ion of intensity obtained after the zero 

order removal of section 2.5.1, is easy to see that the image comprises a large 

quantity of pixels near to the dark<•r end of the grey level scale. In order to 

compensate for this effect. a logaritlm1 transformation (ln(l +I)) followed by 

a normalization gives brighter friuge pa.t.terns. This transformation also has 

been successfully applied in S,\H [:il]. f'ig. 6.1 shows a comparison between 

the image of fig.2.5(a) and thr• logarithm scaled image. It can be observed 

that the intensity has bern boostrd, hut the similarity with the subtraction 

fringes is lost. 

118 
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A useful gray level transformation proposed here is the shifted exponential: 

(6.1) 

where (0 is a constant and I m a" is the maximum intensity of the ESPI pattern. 

After normalization, this transformation produces a fringe contrast similar 

to the subtraction ones. For a comparison, figure 6.1(c) shows the result of 

the shifted exponential transformation. 

6.1 Experimental Enhancement of Addition 

Fringes by Zero Order Removal 

In the experimental results, an out-of-plane ESPI interferometer was used to 

generate the two primary SJWcklc int.erft•rograms of a torsion plate. These 

interferograms were recordt•d with a displacement between exposures. The 

addition of these is shown in figurc G.2(a). Next, the techniques presented in 

section 2.5.1: zero order rcmm·al technique and shifted exponential gray level 

transformation were applied. Tl1<• r<•sulting fringe pattern is easily perceived 

in figure 6.2(b ). 

It can be seen that an outstanding incrcas<' in visibility of the fringes has been 

reached. However, tlwir general appearance seems to be of lower contrast 

than those obtained with snhtrortion correlation. This point was previously 

discussed in relation to tl1e compntcT generated images of section 2.5.1. 
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(a) 

(b) 

(c) 

Figure 6.1: Grey scale re-transformation of the intensity distribution of an 

enhanced addition pattern: (a) Enhanced addition pattern, (b) Logarithm re

transformation of intensity values, (c) Sl1ifted exponential re-transformation 

of intensity values. 
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Figure 6.2: (a) ESPI addition fringes genC'rated by adding two interferograms 

with torsion introduced bet\1wn both exposures; (b) enhanced pattern ob

tained by zero order removal and a. shifted exponential grey level transfor

mation. 
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6.2 Enhancement of Addition Fringes by 

Subtraction of a Reference Interferogram 

A detailed theoretical and experimental investigation of the contrast enhance

ment produced by the subtraction of two addition fringe patterns can be 

found in Ref. [12). Therefor<:>, only a brief account is given here. 

The irradiance, I~, of the corrclat ion fri ngcs generated by the addition of two 

speckle interferograms recordc·d within the same TV frame may be written 

as [6) 

/ 1 =A+ [J [co.s'T' + cos(\]i +~a)], (6.2) 

with 

A = 2(/o + {,.) and B = 2VJ;i. (6.3) 

where / 0 and I. are the irradiancC's of I hP object and reference beams, re

spectively, \]i is the random speckle phase, and ~a is the phase difference 

introduced by the deformation. 

Assuming that is possible to oht a in a reference interferogram with the object 

in static or dynamic equilibrium, n nf'w double pulse is fired by the laser such 

that no deformation is introduced lwtwf'cn the pulses. Irradiance h caused 

by the addition of these last. two SJWcklc interferograms is thus given by 
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h =A+ 2 B cos\]). (6.4) 

Using Eqs. 6.2 and 6.4, it is easy to show that 

(6.5) 

Here irradiance I 12 describes high quality sin 2 fringes with a visibility equal 

to subtraction fringE's. In this way, by subtracting a reference interferogram, 

one can obtain addition fring<'s of improv<'d visibility, allowing ESPI to be 

used for transient phenomena ana lysis. It should be noted that the above 

analysis assumes that speckle phase 1]) is the same for recording of irradiance 

distributions It and h. This is a familiar condition for the formation of ESPI 

correlation fringes [67]. 

In the experimental results presented in section 5.2 the addition fringes were 

enhanced by subtraction of a rc>f<.·r<'llC<' interferogra.m so the quality is the 

same as the subtraction fringes. 

The main disadvantage oft his lll<'t hod arises in the case of transient events 

as a requirement of special expNinwntal conditions; i.e. the synchronization 

of the transient event with tlH' two consecutive double pulses. In the case of 

oscillatory events, it is assunwd that. the reference interferogram It is regis

tered in static position such tl1at. c•xact.ly the same interferogram is obtained 

when the oscillating object is in its equilibrium position. However this is 

only true for purely periodic e1·cnt.s, any slight depart from this condition 

can produce comhin<>d int.crl"<'rogrmns [12]. 



Chapter 7 

Phase Extraction Methods 

In this chapter, the carrif'r fringe lechniqne used in this thesis is analyzed to 

describe the main limitations that are introduced when ESPI fringes are pro

cessed with this method. As a compknwnt, the phase unwrapping algorithm 

used during the work undertaken for this thesis is described briefly. 

7.1 Carrier fringe limitations 

In evaluating its overall performance, it is useful to estimate how the carrier 

fringe method compares to coJwenl ion a l techniques. Vlad & Malacara [72] 

provide an excellent analysis of carrier fringe methods and their limitations, 

and Green et al [110] specifically inn•sl ig<1t.c• limitations of the Fourier domain 

phase extraction technique. The rc•ader is referred to these publications for a 

full theoretical analysis; here 11 brief rk·srription of the practical consequences 

121 
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is presented. Essentially there are four mam limitations in measurement 

accuracy and range, these being due to bandwidth, signal to noise ratio, 

filtering and sampling, and speckle size. 

1. Bandwidth. 

It is generally agr<'ed that the first two terms and ~(x,y) in Equa

tion 2.10 must be slowly varying compared to the carrier frequency f/>0 • 

It is thus the carrier ftwpi<'IH'Y magnitude which limits the displacement 

measuring range. The canier frequency is modulated by the slope of 

the phase function, fJ{/>(.r,y)jfJ.,. and so we have the condition [72] to 

avoid over-modulation of 

6 I fJdJ(:r,y) 
o « iJ.r lmax (7.1) 

If f/>0 is not large enough for a given target displacement, then the lobes 

in the Fourier spectrum (Figure 2. 7(h)) will not be well separated (i.e. 

there is insufficient bandwidth) and the method will fail. This can be 

seen experimentally wh<'n initially vertical carrier fringes become so 

curved that they cross a linC' pa.ralld to the x-axis more than once. For 

a predominantly x-dirC'cU·d displacement, this effect manifests itself in 

an infinite fringe separation. Vlad and Ma.lacara [72] suggest that for 

the Holographic case, this SC'parahility condition is met if f/>0 ~ 3B 

where B is the signal bandwidth. assuming that the carrier lobe is 

broadened by ±B. 

ii. Signal to noise ratio and speckle size, 

These essentially limit thr• upper modulation frequency of the carrier 
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fringes. When the fringes are formed by speckle correlation and so the 

maximum carrier frequency is itself limited by the speckle size. This 

will in general be well below the Nyquist limit for the TV system em

ployed (around 4 spcxklcs per cycle of carrier are required practically). 

Green et a! [110] found that a.n acceptable noise limit was reached at a 

signal to noise ratio of arouncl 2.0 using 4 pixels per fringe resolution. 

The aim must be to k<'ep thf' speckle size as small as possible, within 

the optical resolution li1nit of the camera. This actually has an asso

ciated bonus in that a larg"' camera aperture is implied, making the 

technique more light <'rfiri<'nt. The fringe visibility (modulation depth) 

must also be high to achi"''" surflcicnt signal to noise ratio everywhere 

in the image. 

m. Filtering and sampling. 

The image edges constitute a. spatia.! sampling window. The discrete 

Fourier transform assunws a. periodic repeat of the data outside this 

window and thus abmpt changes in carrier magnitude cause spuri

ous frequencies in the Fonrier domain which limit the lobe separabil

ity [110]. Application of a simple ITanning window to the modulated 

carrier fringes can signiGcantly incr<'asc the separability and hence the 

performance of the Ill<'! hod. A rC'ctlmgular filter was chosen for simplic

ity but its sharp cutoff ciJarariNistic induces 'ringing" in the extracted 

phase. A Gaussian or Hut tc·n1'ort h filter profile would perform better 

in this respect. 
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7.2 Phase Unwrapping Algorithm 

Unwrapping of phase maps is currently the subject of extensive research in 

which a large number of techniques have been developed for automated fringe 

analysis [62, 111]. Other algorithms have evolved in isolated research groups 

from diverse areas such as magnl't ic resonance imaging [112] and SAR [113]. 

In general terms the algorithms can b0 classified as path-following (either 

in space or in time) and of estimation of phase values by using local phase 

differences [112]. 

In this thesis, the Cosine Transform phase unwrapping developed by 

Ghiglia & Romero was chos<'n for JH'OC<'ssing phase maps due to its robustness 

against noise. As it is based on a least squares phase estimation method, the 

remaining noise after the nois<' reduction algorithms does not corrupt strongly 

the resulting unwrapped phase• valuc•s . A review of the basic theory for the 

algorithm 1 descibcd in [63] is prcscntPd next and some inconveniences of the 

implemented algorithm are discussed bridly. 

In the original paper [63] th<' tlwory for two different methods is described 

in detail, here only the basic equations required for the calculation of the 

non-iterative, non-weighted algoritlnn are presented. The reader is strongly 

recommended to consult this pnblirotion for full details of the mathematical 

development. 

The algorithm is based on tlw c•st in1<1tion of the phase differences by means of 

a least squares procedure that con he shown to be mathematically identical 
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to the solution of the Poisson equation on a. rectangular grid with Neumann 

boundary conditions (i.e. fN/fh-; fN/D.IJ = 0). 

The Neumann boundary conditions in om case can be imposed to the 

wrapped phase map for rows, columns and corners of a MxN wrapped phase 

array if;;,; as 

'1/•;,N-I = t.\.x-z i = 0, ... !11- 1 (7.2) 

'ifJM-I,j = ~'JI-Z.j j = 0, ... N- 1 (7.3) 

·t/•o.o t/'1,1 

·t/•o.:\' -t = ·ti'J.N-2 

1/'.H-J,O = ·1!•.u-2,1 

'if• M -I.N -I 'l'' /· .\f-2,N-2· (7.4) 

After imposing these conditions the next step is to calculate the right hand 

term1 of the discrete reprcs<'ntat ion of Poisson equation: 

Pi,j = (.0{;- ~::__I.j)- (~Y.j- .6.Y,;-tl· (7.5) 

1The left hand term equat.ion thnt. arises from t.he least squares phase unwrapping 

solution that relates the wrapJwd plnlf'(~ diffcrt.'nr.cs to the unwrapped phase values has 

been avoided in the explanation In pi'Ovidc n ckarer view of the steps involved in the 

algorithm. 
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where the phase difference term 6;,j is defined in the horizontal an vertical 

directions as 

N = lV(,b· ·+1 - ,;,. ·) l,j I l,J 'r'',J 

(7.6) 

(7.7) 

Pi,j is the Laplacian phase V<'ctor [I 11] Rnd W is a wrapping operator that 

wraps all values of its argun1C'nt in I o tlw range ( -1r, 1r ). 

The next step involves the forward two-dimensional discrete cosine trans

form (DCT) calculation that ran he performed using the numerical recipes 

software [114]. Then, the solution requires the calculation of: 

... j)))i.,fi 

"'""·" = 2 (NJ.s(1r1hj:\f) + ros(trn/N)- 2)) 
(7.8) 

from the p values of the DCT. In this equation (1h, n) are the coordinates in 

the resulting values of thr DCT. 

Finally, after applying the ill\'c-rsc• DCT to the filtered result of Eq. 7.8 the 

least-squares unwra.pp<'d phRse \·aluPs Oi . .i are obtained. 

This algorithm has hePn lf'slc·d in I hc- originRl paper for inconsistencies in the 

phase values. It has heen shown I hat it distorts slightly the phase values in 

the local neighorhood of the inconsistency. However is not very noticeable in 

the phase maps provided. For this rc•ason, fignres 7.1(a)-(c) show this effect 

in greater detail. Figure i.l(a) presents a phase map that was generated 

by using the two step, three franlC's philse stepping method with parallel 

fringes. As a additional feature a zero intensity region (inconsistency) was 

masked in the fringe patterns. figun• 7.1 (c) presents the resulting re-wrapped 
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phase after the phase estimation shown in Fig. 7.1(b}. It can be seen that 

the number of phase steps in the surrounding area of the inconsistency has 

decreased. This can be interpreted as a decrease of the horizontal slope in the 

phase function. When the required phase values are normalized at the end, 

this effect is not important. However when related to displacement values, 

this decrease in slope can represent. a. misleading reduced displacement. 

Another interesting effect of tl1c oppliration of the algorithm previously de

scribed arises when the object is smaller than the area of processing. Fig

ure 7.2(a) shows a phase map that is included in an area smaller than the 

processing area. The re-wrappnrl result of the algorithm is presented in fig

ure 7.2( c) from the unwrapprd phase map of Fig. 7.2(b ). It can be observed 

a similar effect than the clisrnssNl previously for the inconsistency "sub

merged" in the phase map. The number of phase jumps inside the area of 

the original phase map has decn•ased, so attempt of measuring inside the 

area will produce erroneous figures. A I so new phase jumps are now present 

in the regions previously witl1 zero phase. This effect is not important from 

the practical point of view lH'CiiiiS<' a mask can be generated to avoid this 

area. 

This mentioned problems disapprilr when the Picard iteration algorithm ("al

gorithm 2" of the Ghiglia paper) is used. This algorithm preserve the zero 

phase areas without changing the ph asP slope, given sufficient iterations and 

correct choice of weights [111]. llowever, for the experimental purposes of 

this work the "algorithm 1" pn·sc·n·es sonic details (perhaps inconsistencies) 

that can be useful for spatial locolizat ion of the object details. 

The research in the area. of phase• unwrapping algorithms is still very intense, 
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(a) 

(b) 

(c) 

Figure 7.1: (a) Phase map with a squarP zero phase region. (b) Unwrapped 

phase map from values d<'pictc-d in (a). (c) Rewrapped phase values for 

comparison with figure (a). 
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(a) 

(b) 

(c) 

Figure 7.2: (a) Phase ma.p smnlkr than the processing region used for un

wrapping. (b) Unwrapped philsr' map from values depicted in (a). (c) 

Rewrapped phase values for comparison with figure (a). 
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for the purposes of transient. event dctect.ion the faster algorithms seems to 

be the more appropiated. Provided, of comse, that the unwrapped phase 

preserve the spatial detail' of the object. 



Chapter 8 

Whole Field Transient Event 

Detection 

This chapter describes the atll hor's solution to the problem of transient event 

detection using an clectro-optical system to produce carrier fringes in very 

short intervals of time. This proccdme allows the unambiguous extraction 

of phase (as was shown in sect ion :2.5 and chapter 6) even from addition 

fringe patterns. Although this last l<'rhnique was tested using only real-time 

subtraction correlation in a e:qwrinwnt with a single pulse Nd:YAG laser, it 

is easy to see from the CW "xp<'rimcnts presented there that the addition 

correlation case will not cliff<..· significantly. 

Finally, in the last section a comparison of the three optical techniques diss

cussed in this thesis for whole fi<·ld transient event detection and their trade

offs is presented. 

1:11 
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8.1 High Speed Optical System for Carrier 

Generation 

To overcome many of the mentioned limitations of the preceding two systems 

disscussed in subsections 2.7.1 and 2.7.2, an electro-optical system based on 

the use of a Pockels cell has lwen developed by the author [115] that enables 

the introduction of addition cmricr fringes between the firing of two consec

utive laser pulses. The method HS<'s a standard frame transfer CCD camera 

without undue restriction of !lie laser pulse separation, and allows calcula

tion of the wrapped phase distribution from a single image using Spatial 

Synchronous Detection (SSD) [il] i.<'. carrier fringes. 

In this chapter the pertinent. optical system and phase evaluation method 

are described, together with PX]><'rinwntal measurements performed using a 

continuous-wave laser. Also. prdiminary results obtained with a Nd:YAG 

single pulsed laser are prescnl<'d in the analysis of a transient event. To 

finalize, some of the limitations oft lie developed method are also discussed. 

Spatial modulation in corrclatr•cl ont -of-plane ESPI patterns can be easily ob

tained by a simple tilt of the object after the acquisition of the first speckle 

field. As the correlation rclir•s on the phase difference introduced with re

spect to the reference beam, t lw same effect can be obtained by tilting the 

reference beam. However, ESP! s<'nsitivity to small movements of the optical 

components makes this task rlimndt if" a mechanical device is used, since the 

spatial synchronous technique rcquir<'s a constant phase modulation. Also, 

the speed of any applied tilt. \\'ould causC' inevitable vibrations in the optical 
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rig due to the high accelerations nccdcd. The author presents here an electro

optical system which produces carrier fringes for the application of the SSD 

technique in an out-of-plane ESP I. To obtain carrier fringes, the interferome

ter has been modified to generate two consecutive reference beams tilted with 

respect to each other. One or other of these beams is introduced into the 

interferometer by means of the ekctro-optical system shown in Figure 8.1. 

The key element in the high spc'<'<l modulation procedure is a Pockels 

cell (PC) located after the light hc•nm thnt is reflected from mirror MO. Its 

voltage is controlled to obtain eithc.•r l1orizontnl or vertical output polariza

tion. After the Pockels cell, llw h<'nm is <'Xpandcd by a collimator (C) and 

passes through a polarizing bC'anr split.l<•r (PJ3) that is used to redirect the 

beam to one of the two mirrors 1\Jl or 1\!2. If the reference beam is horizon

tally polarized, the output from Ill<' polarizing beam splitter is sent to Ml, 

passing first through a. 1/4 wa\·c· plate (\V) that transforms the linear polar

ization into a. circular one. Al'ic'r I he 1\!1, the light beam is returned with 

its circular polarization in tllC' opposite clir<'clion. After the wave plate, the 

resulting polarization is rotnkd hy ~J0° and passes through the beam splitter. 

The component at 45° is then s<'l<'ci Pcl hy means of a dichroic polarizer Pl. 

The resulting beam is us<>d as t IIC' Grst rd<'rencc beam of an out-of-plane 

ESPI interferometer. When t l1r l'ockc•ls cri I produces vertical polarization, a 

similar process occurs but this t imco th<' trnjcctory is via. 1\12. After Pl, the 

component at 45° gives a SPrond rder<'nrc beam. After the non-polarizing 

beam splitter (NPB), each rrkrc•ncc· h<'mn then interferes with the polarized 

object beam that arrives throup;l1 t I'" polarizer P2, the camera. lens and the 

non-polarizing beam split.tcr. 
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LASER 

Ml 

PC c 
MO 

CAMERA 

OBJECT 

Figure 8.1: Diagram of tlw ekct ro·optic~l system used to generate carrier 

fringes. 
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Mirrors M1 and M2 form a simple Michclson arrangement. When these are 

perpendicular, each state of polarization produced by the Pockels cell gives 

two identical reference beams aft<"r PI. However, if a tilt is introduced in 

one of the mirrors, the path difference gives ca.rrier fringes when the addition 

correlation procedure is appli<'d. To set up the apparatus, a predetermined 

number of carrier fringes can he p;c•nen1t<'d by reducing the voltage in the 

Pockels cell to allow componf'nl.s of hot h beams to reach the camera. Then, 

a careful manual adjustnwnt. oft lw tilt lwt wcen mirrors 1\11 and M2 in the 

Michelson arrangement ('an produce any d<'sired number and orientation of 

carrier fringes over the canwra fan· plat <'. These a.re adjusted by observing 

the monitor screen. 

In application of the method, 111<' object under test is subjected to a tran

sient displacement while the two n·I'<'I'<'IH'<' beams are used separately. Each 

reference beam is synchroniz<"d in I ime, so t.hat each interferes consecutively 

with one of the two light pulsr•s gcncrat<·d in the twin pulsed laser. As the 

polarization state introduc<'d by t IH• Pockcls cell can be changed at a very 

high speed, the system is able to int rodun~ carrier fringes between the firing 

of the laser pulses. Thus the proc<•dure can he used to extract displacement 

phase unambiguously from th<' ESI'l addition fringes recorded. 

Before the phase extract.ion process can I)(' ('arried out, it is necessary to re

move the speckle noise from tl1<' irnap;r•. This was accomplished in the Fourier 

domain using a thresholckd (poll'<'!' magnitude selective) filter, followed by a 

low-pass (frequency select.iw·) idr•nl Gltf'1·. Thus both high and low frequency 

components of speckle noise wen• r<'mo\'C'd, whilst retaining the modulated 

frequencies of interest. A clctail"d d<•sniption of phase evaluation using the 
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SSD method can be found in references [71, 72], therefore, only a brief ac

count is given here. 

The digitized intensity !(.1:, y) of the filtered correlation fringes modulated 

by a vertical carrier fringe pat.tem of frequency fo may be written as 

l(x,y) = a(:r,y) + l{r,y) cos[r/>p(x,y) + 2r.fox] (8.1) 

Here a( x, y) represents th" background i n!<'nsity, b( x, y) is the local contrast 

of the fringes and r/>p(:r,y) is thr phaS<' term to be evaluated. It is supposed 

that the spatial variations of a ( ·'', y). h( ~·. y) and r/>p( x, y) are slow compared 

to the carrier frequency .fo [i::!, ll 0]. 1\s ,·ertica.l carrier fringes have been 

used, the analysis proceeds hy t r<'a t i ng c·ach of the N horizontal lines of the 

image in isolation. 

The products ls(x)no = J(;r), 0 sin(2r../~'''') and Ic(x)n, = l(x)no cos(2r.fox) 

are evaluated, the subscript 11 0 IH'inp; 1111 integer in the range (0 :S n0 < N) 

denoting the line to be analysc•cl. lt can then be demonstrated that in the 

frequency domain each product consists of three separated terms. The first 

two terms are at the carri<'r l'rc•q uc•ncy fo and at 2j0 , while the third is 

centred about the frequency OJ'i)!;ill. Tllis lost. term represents a low-frequency 

moire pattern which is fornwd wbc•n the• intensity I(x)no of the modulated 

carrier fringes is multipli<'d hy sin(~r..{0 .1·) or hy cos(2r. f 0 x). This term can be 

separated from the remaining lc'r1ns hy using a low-pass filter h(x). Filtering 

may be performed in eit.h<'r t ],,. spac<' domain (convolution mask filter) or 

in the frequency domain ( n·ct a ngnla r Fomier filter If( u) ). The resulting 
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filtered image lines Gs(x)n, and Gc(a:),, may then be processed to extract 

the wrapped phase <f>(x) using the relation 

( ) {
Gs(x),,} 

<f>no x = arctan Gc(x)no (8.2) 

The SSD method is thus quite simple to apply when only a single frame 

of intensity data is available. Ilowcv<'r, it. must be pointed out that the 

low spatial frequency moire must he efficiently isolated to keep the phase 

measurement error small. 

To test the electro-optical syst<•m under static loading conditions, a contin

uous wave laser was used in lieu of the intended pulsed source to generate 

addition carrier fringes using the optic;\\ layout in Figure 8.1. An Imag

ing Technology FGlOO frame grahlwr and PC host computer were used to 

perform the real time addition of cons<'cut.ive TV frames at a resolution of 

512x512 pixels at 64 grey levels (6 bits per pixel). Fringe quality was first 

improved by zero order remo,·a 1 from the Fonrier power spectrum followed by 

contrast enhancement. Resulting imag<'s were stored on hard disc for later 

processing at 8 bit grey level rcsolu (ion. 

To confirm the generation of carrir·r fringes due to the tilt between mirrors 

Ml and M2, two speckle fields W<'rc~ rrcordcd with the target (a square metal 

plate firmly supported at its <'dgr·s) undcformed. A voltage was applied 

to the Pockels cell to switch ref<·r<·nce h<'ams before the acquisition of the 

second field, and carrier fring<'s were thus formed by addition. Figure 8.2(a) 

shows the carrier fringes obtained. Carrier frequency may be controlled by 

adjusting the angle of tilt lwt we<'n tlw mirrors. Figure 8.2(b) shows the 
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resulting modulated addition carrier fringes when a central load is applied 

to the target. The speckle noise reduction filters are then applied to the 

modulated fringe pattern of Figure 8.2(b) in the two dimensional Fourier 

domain. Results of this process are shown in Figure 8.3( a). 

When the modulated carrier fringe pattern is processed line by line using a 

one dimensional Fourier transform. two frequency lobes or 'side bands' appear 

in the power spectrum as shown in Figure 8.3(b ). Both lobes are shifted from 

the zero order towards the edges oft he spectrum by an amount determined by 

the carrier frequency. When the object displacement is applied, these lobes 

will broaden. The underlying int0nsity distribution is generated mostly by 

the speckle noise in conjunction with tlw sampling effects of the CCD camera. 

For the application of the SSD nw!l1od, a low-pass rectangular Fourier filter 

H(u) is applied whose width is dctf·rmi!lf•d by the displacement. Initially, 

this width may be set equal to half the value of the carrier frequency, but 

larger bandwidths will require this to b0 increased (see section 2.6.3 ). 

It is seen in Figure 8.3(c) that tlw wrapped phase obtained using Eq. 8.2 is 

almost free of defects. To provid<• a bdt<•r picture of the phase, the cosine 

transform unwrapping algorithm [G:.l] was applied to the wrapped phase maps, 

the results obtained being shown in the wire frame plot in Figure 8.4. 

The accuracy and range of this nwthod are slightly less than that of the more 

'conventional' phase stepping tcclllliqucs. but it has the significant advantage 

of unambiguous phase determination from a single fringe pattern. This fac

tor is vital in determining transient evrnt analysis capability, as twin pulsed 

addition displacement using vcr~· sl1ort pulse separations only becomes fea

sible with this technique. Assuming sufficiently low switching times for the 



A. Davila, Ph.D Thesis 142 

Figure 8.2: (a) Typical pattern of \'<'rt ical addition carrier fringes produced 

by a small tilt between the reference path mirrors, after enhancement by zero 

order removal. (b) Vertical c11rrir·r fringes modulated by a central displace

ment of the target plate, after en!JilllCC'IlWnt by zero order removal. 
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Figure 8.3: (a)Image obtained by the application of low-pass and ampli

tude thresholded Fonrier filters t.o the fringe pattern shown in Figure 8.2(b). 

(b) Fourier transform power spcctnmr of one line of the fringe pattern shown 

in Fig. 8.3(a). (c) Wrapped phase rnap obtained after processing line by line 

the filtered fringe pattern of Figure s.:l( a). 
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Speaker 

Plate ESPI system 

Pulse generator 

Figure 8.5: Experimental set-up to excite a plane plate by using a sonic pulse. 

Pockel cell (around 25ns for our <h·icr·), data acquisition speed is therefore 

limited only by camera frame rat<· and last•r twin-pulse repetition rate. 

The previous experimental rrsults prcs<'nted here using the CVv laser can be 

extended if the electro-opt.ical systrm is nscd with a Nd:YAG pulsed laser. As 

a preliminary test, single puis<' subtraction carrier fringes were first obtained. 

Each pulse was synchronized at the canwra frame rate so when one frame 

was grabbed and su bt.racted from the sn hsequent frames and a change in 

polarization of the Porkds rdl was introdncNl, the carrier fringes were seen 

in real time. 

To test this system in a transi<'nt cxperinwnt, a plastic plane plate was excited 

by means of sonic pulses using a cone in front of a loudspeaker as shown in 

Fig. 8.5. When no excitation \\'ilS usc•cl. each frame gives a carrier fringe 

pattern. When the mechanical w;m~ st rikc•s the plate the carrier fringes are 

seen to become modulated. The <'Yc·nt. was first recorded in a video recorder 

and then replayed to grab a sequence or !'our frames shown after applying a 
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low-pass filter in figure 8.6. Each carri<'r fringe pattern shown in this figure 

was separated by a time delay of ·tOms. 

Figures 8.7 and 8.8 show consecutively the wrapped and unwrapped phase 

maps obtained after processing the carrier fringe patterns shown in Figure 8.6 

and after applying the cosine transform phase unwrapper. 

As was seen in section 2.6.3 tlw milin drawbacks of bandwith reduced range, 

resolution and noise problems <lssociat NI with the carrier fringes are all 

present in this experiment. 

Tests by the author (see Tahlr S.l) using a c<'ntre loaclecl target plate indicate 

that if this separability condition alone determines the maximum measurable 

displacement, there is no significant r<'duction in measuring range for the 

carrier fringe technique. An <'SI.imation of the practical upper displacement 

limit for 'conventional' out.-of-plarw ESP! subtraction was 25 fringes, giving 

an equivalent central displac<'nwnt magnitwle of 6.43/tm. As can be seen, 

this equates to the maximum displact'nwnt. measurable by the carrier fringe 

technique for this target, assuming !oh<' spparability limitations only. How

ever, the higher frequencies of I he hroadc•rlf'd side bands must still be resolved 

by the system. This resolution d<'pends on the camera and processing elec

tronics as well as on the speckle size•. Tn Table 8.1, both the lobe separability 

and frequency resolution limitations (as implied by Equation 7.1) were found 

to hold up to around a cent.ra I dispi<K<'ment. of 3.6ftm with 28 carrier fringes. 

Thus the method would SE'cm to lral'<' lit tk over half the measurement range 

of conventional ESPI for this l<1rgd. 

The fringe visibility becomes a problenr l'ot· areas of poor illumination or low 
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Figure 8.6: Sequence of fom frame's of a transient event in time intervals 

of 40ms obtained by the application of a low-pass filter in the ESPI carrier 

fringes. 
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Figure 8.7: Wrapped phase maps ohtainc•d after processing the carrier fringe 

patterns shown in Figure 8.6. 
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Figure 8.8: Unwrapped phase maps obtain<'d after applying the cosine trans

form phase unwrapper to thl' ph as<• maps of figure 8.6. 
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No. of Carrier Carri<'r No. of equiv- Plate Cen-

Fringes frequency alcn t ESPI tral Displace-

(/pixel) fringes ment (pm) 

4 0.008 :2 0.51 

8 0.016 :l 0.77 

12 0.023 5 1.29 

16 0.031 - ' 1.·) 1.93 

20 0.038 !U 2.39 

24 0.047 11 2.83 

28 0.055 11 3.60 

47 0.002 25 6.43 

Table 8.1: Modulation limit. for n fixed llllmbcr of carrier fringes at a given 

displacement of the targd, snrfa CP. 
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surface reflectance; the effect is n'ildily 11pparcnt in the lower left corner of 

Figures 8.3(a) and 8.3(c). In this rilsc, a poor quality, badly optimized spatial 

filter in the interferometer has caused unc\·cn illumination in the reference 

wavefront, resulting in reduced sr)('ck!P modulation in this area. 

The electro-optical system presented her<' a.! lows also the introduction of car

rier fringes between the firing of I wo I<JS<'r pulses in pulsed addition ESP I. 

Although a standard frame transfc·r CCD is <'mployed, the laser pulse separa

tion is not unduly restricted. Figun· 8.'l shows a schematic diagram with the 

change of polarization of tlw Pockc·ls n.•ll used to introduce addition carrier 

fringes indicated in dotted lin<'s. Wh<'ll I he rise time of the Pockels cell is 

made to coincide in time with the inlcn·al of time between the twin pulses 

carrier addition fringes can hc> generated in times as short as 25ns for the 

Pockels cell used in the expcri11wnt. The pulse width in this case was of 

300ns and the recovery time of t h<.• n•ll to produce horizontal polarization 

was of 3ps. 

To conclude, the system a.llows unand>iguous calculation of the wrapped 

phase distribution using thC' Spatial Synchronous Detection method from 

a single fringe pattern. Quantit;li i\·e phase measurements using a CW laser 

have been performed on a lllC'tal pial c su bjcct.cd to out-of-plane displacement 

to illustrate the performance of the approach. As a complementary exper

iment a transient event was anal.\'%ed using a Nd:YAG laser in single pulse 

mode and the electro-opticill sysi<'m. Fin11lly, a synchronization procedure 

was described to obtain carrier Mlclition fringc.·s. 
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Figure 8.9: Schematic diagram of t 1\(' PockPis cell change of polarization 

synchronized with a twin pulse• in t inw. Lrft axis and continue line show the 

intensity of the twin pulse. Rigl1t axis and dotted line shows the polarization 

changes. 
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The accuracy and range of the mC't.hod arc kss than those of 'conventional' 

phase stepped ESP!, the overall measuring range being about half that of 

out-of-plane subtraction fringes fo1· the target tested. However, the signifi

cant advantage of the method lies in its ability to capture very fast transient 

displacements. It must therefore be nnpha.sizcd tha.t large deformations over 

such short (tenths of microsC'conds or less) time periods represent unusually 

large stress factors which would not normally be encountered. In any case, 

the laser pulse separation can hP n·dnc<'d, to compensate for larger displace

ment amplitudes, down to !iOns or loll'<'l' for this technique, dependent on the 

Pockels cell used. 

8.2 Discussion of Trade-offs 

To summarize, it can he s<'cn in 1 he• last sf'ct.ions that whole field transient 

event analysis can he perform<'cl by using dirfcrent approaches based on dif

ferent ways of expressing t.h<' plws(' in the ESPI interferogram and by using 

different hardware. 

Of particular interest for dc•tect ion of fast. transient events is the capabil

ity of the reviewed systems for l1andling small time delays between pulses. 

The length in time of thes<' dc·lays all(ll\'s f he analysis of transient events at 

different scales of displacement.. TlniS, gii'C~n our limited range of distance 

measurement and controlling f his dcol11y, it. is possible to capture a event 

evolving at unknown spe<'d by adjusting the delay to fit the magnitude of 

the event. To reconstruct succc•sfnlly the• tinw evolution of a transient event, 

it is necessary to record <'11011).\h cqui-spaced samples of the event in order 
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to be within the Nyquist sampling limit. If a succesive set of twin pulses 

is used, then the time separation between sets of twin pulses will determine 

this limit. For equi-spaced samples it. is also convenient to choose the mini

mum number of samples allowed by the Nyquist limit: a lower the number of 

frames will greately benefit the frame transference rate. This semi-continous 

sampling requires a puls<'d las<'r producing pulses at the Nyquist frequency 

and a high speed transference• oft he fringe patterns to a recording device. 

In this case it is important to ami cl rk·lays in the transference of the aquired 

fringe patterns. 

The multi-camera approach [l:l] ill loll's the simultaneous recording of three 

separate phase steps, offering t h<' ilclv;mt.ag<' of operation and transference 

of the fringe patterns at th<' caJJH'ra. sp<'c<L However, the tranference of 

three fringe patterns is time COIJSlllning and requires a. threefold increase in 

the number of transmission lin<'s and proc<'ssors that handle the generated 

data. Also, it is a compliratc·d optical set-up with a. large number of op

tical elements in which special calibration procedures are required and the 

possibility of optical misa.lignnwnts incrc,ascs in proportion to the number of 

optical elements. 

On the other hand, this mdhocl gi\'<•s strong intensities in the CCD plane 

by using a small speckle sir.e. llnfortnnatky, at least in one third of the 

collected intensity is lost duc to the· rccluction of light caused by the beam 

splitters and external reflections in the optical surfaces of the elements that 

form the system. 

Several contrasting points can h<' not ,.cJ when a comparison of the multi cam

era technique versus the spatia 1 pi111S<'·sh i l't ing technique (SPS) [75] is made. 
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First it can be seen that in the SPS technique there is a time delay introduced 

when the two speckle fields are recorded in the interlaced fields. As both fields 

are transferred sequentia.lly, a camera switching time is introduced between 

fields. This switching time makes this tc>chnique of non-simultaneous char

acter in comparison with the multi-camera approach. Even though this time 

can be as small as 5ps it ckfin<'s a low<'r limit in the time in which the events 

can be recorded. Nontheless, this l<·dmique can cope very succesfully with 

the analysis of vibrations found in some engines and turbines (i.e. ::; 5kHz) 

as well as with the analysis of transient events using twin pulses with a time 

delay of the mentioned camera switching time. Unfortunately, the amount 

of light recieved in each camera frame is reduced strongly due to the large 

speckle size in the interline gconwi ric dist.ribntion. 

When the technique proposed by I he author is compared with the other 

mentioned techniques, it can he sc·c•n I hat it is a non-simultaneous aquisition 

in comparison with the multic<nncra tecl111ique. However, it only requires 

processing of a single interferogram, while in the others techniques the pro

cessing time is increased in proporl ion to the number of interferograms (two 

for the SPS and three for the mult.icanwra techniques). The multicamera ap

proach acquires the speckle inlc•rfemgra.ms simultaneously, but the number 

of processors must be increased to deal with three interferograms. Also, it 

should be noted that the switching ol" a solid state pulsed laser is usually per

formed by Pockels cells, so tl1c slJortcst lime that can be obtained between 

consecutive pulses is dictated also by a Pockels cell response time. Under 

this circumstance, the addition<1l ach"<mlag;c of using simultaneous aquisition 

could not be so relevant if it is lilllited !Jy the twin pulse separation. On 

the other hand, the proposed LC'chniqnc does not suffer from a decrease of 
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intensity -as in the SPS and multicarnera techniques- while achieving switch

ing capabilities of the order of the twin pulse separation (i.e. ~ 20ns). As 

seen in the previuos chapters, the proposed technique has a limited range 

of resolution in displacement of approximately half the range of resolution 

of conventional techniques. Ilowe\'<'r, this is not a problem for analysis of 

transient events given the possihilily of decreasing the separation between 

pulses and so obtaining a rcduct ion in the observed range of displacement. 

All the techniques discussed d<'p<•nd strongly on the camera technology and 

on the transference of the aquirc·d int.erferograms for recording or for pro

cessing. If a continous coverage• in t i nw of the transient events is desired 

the main limiting factor in conJilli'JTial cameras is the field transfer rate of 

50Hz (CCIR/PAL field rate). EI'C'JJ with the method proposed by the au

thor in which a single addition inlc·rferogram is transferred, only one frame 

can be transferred every 40 ms. To imprm·e the transference rate, faster 

cameras are needed. Unfortunatc·ly. lh<' c<mJcra technology increases in price 

with the speed. Another limit at ion is also introduced if the aquired data is 

transmitted to a computer (canwra-to-cornputer transference), in this case 

the computer is used as a recording clc·l·icc and processing if possible. The 

computer bus is then capable of haudling just. a number of bytes per second. 

For the most modern buses such as the PCJ, the transference rate is limited 

to 65 Mb/s or 991 images per sc·concl of 206x256 bytes allowing to transfer 

images to computer memory (or lo fast hard drive) at a rate of 1 ms per 

frame. Assuming this transf<'r<'nC<' ratn, the analysis of vibrations at 1Khz 

(lms of time period) will h<'conlC' soou a r<'ality. However, to analyze vi

brations of 5kHz a frame transl'c•rr•IJC'<' of 0.2ms (1/5kHz) will be necessary. 

Thus, to acheive this camC'ra-lo-colnpnl<'r transfer rate an improving factor 
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in transference of ~5 times is required. On the other hand, if the fringe 

pattern data is gathered by a high spew! camera and transferred to a high 

speed video-recorder, the play-back at lower speeds can give enough time to 

transfer and analyze data at lower speeds. However, an inevitable loss of 

spatial resolution is usually ohta.inPd by 11sing high speed video. In any case, 

the advantage of processing a sing!" intf'rfcrogram is evident. 

The transfer rates limitations ilr<> defined hy the hardware involved and the 

actual technology. For the camera- i o-compu ter transference rate, it implies 

that a variable speed acquisition l<'chnology is more suitable to supply im

ages at different resolutions and/or speeds. It is more convenient due to 

the increased transference rates obtained by reducing resolution and also 

because of the variable times introdnr<'d by computer processing. For the 

camera-to-video and then vidco-to-•·otnputer transference the solution is usu

ally expensive due to the spcciali7ccd dc•\·ices needed. 

To conclude, the carrier fringe i<'chniqlw is a more simple way of extracting 

the phase information, it does not dc·cr<'i1Sc the object intensity, it can be used 

for the analysis of very short transi<'nt c\·cnts, a. single fringe pattern can be 

transferred in shortest times to a storing device and computer processing is 

faster. 



Chapter 9 

Discussions and Conclusions 

9.1 Future of Opto-Electronic Developments 

The future of the technology for <lisplaccnwnt measurement by non destruc

tive techniques can be seen as two and t hrcc dimensional quasi-continuous 

displacement measurement. The use• ol' single point optical techniques has 

only been successful due to t h<· loll' resolution in time of the whole field and 

3D measurement techniques. A comparison of the transference bandwidth 

figures mentioned in section 8.2 l'or 1111' camera-to-computer transference of 

images of 256x2.56 bytes and in s<•ction 1.1 for the LDV shows that to acheive 

similar magnitudes it is neccss;1ry to inq>rm·c the actual values of camera

to-computer transference tinw hi' i1 filet or or !50. If smaller processing times 

for whole field measurement techniques could be obtained, an improved res

olution would give more acll·ant <'g'" for the quasi-continuous analysis of dis

pla.cements. The analysis or t l1is data in the frequency domain could also 
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provide in the near future the necessary data. for whole field modal analy

sis. All this depends on the availability of faster optical techniques combined 

with fast cameras and digitising electronics to gather the displacement data, 

and with the availability of fast. processors to cope with the large amounts 

of data generated. 

Nowadays, it is easy to observ" the growing tendency to transform electronic 

devices to provide high respons<' t inws and improved qua.lity. This tendency 

can be seen in computer technology, in which the average time for doubling 

the processing speed is just two .l'f'ars. The new improved capabilities of 

handling large amounts of data will cC'rtainly improve the ESPI processing 

systems to obtain smaller procc•ssings t inws in the coming years. 

Semiconductor laser technolo!(.l' is also <'l'olving rapidly and is merging with 

the old laser technology. Nowadays, diode• lasers are replacing the flashlamps 

previously used in Nd:YAG lasns gil•ing more flexibility in the synchroniza

tion of the pulse repetition rat<'s. ,\!so. t l1e associated problems of laser diode 

technology such a.s lack of coll<'r<'li<'C' <md dliptica.l beam profiles are being 

tackled. New integrated systems with ribcr optics have nearly gaussian beam 

profiles and can oscillate at 0-2:\lhz. l1aving coherence lengths from 10 meters 

in the case of continous emission to a fC'w milimeters for high frequency os

cillations. These capabilities allow I I I<' gc•nera t.ion of more pulses per second 

than so far obtained in solid st at<' las<'rs. 

Although these systems are mon• compact in size and cheaper than the solid 

state lasers, they have a numhc·r of intrinsic problems to acheive the Nd:YAG 

capabilities. First semi-conductor lasc1·s arc• usually switched with a fixed 

time interval between puls<'s that in tl1" shortest time acheivahle is still 
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greater than the minimum lapsed time between pulses of a Nd:YAG twin 

pulse (e.g.~500ns vs. ~20ns). Thus it is necessary to improve the pulse 

repetition rate to acheive similar lapsed times between pulses. Secondly, 

and ignoring the possible thermal effects, a custom made electronic driver 

is required to generate a single pair of pulses with a low frequency (50Hz) 

repetition rate. 

The technical problems associated wit l1 semiconductor lasers seems to have 

a short term solution. Thus it. is c.•asy to S<'<~ that in a few years the pulsed ca

pabilities of this technology willmak<• diode lasers the preferred replacement 

of the Nd:YAG pulsed lasers. 

9.2 Assessment of Speckle Noise 

Computer simulated speckle has h<'<'ll shown to be useful for the generation 

of error-free ESPI patterns in tlw out-of-plane, in-plane and shearing equiv

alent optical configurations. For t i1<• out-of-plane configuration the effect of 

sampling and the influence of t 11<' n•fC'rencc beam has been described using 

the probability density functions 1\''IH'rat<•d hy the computer model. The ef

fect of addition and subtraction cOlT<'! at ion has also been described in the 

same way. It can he concludC'd that a slight change in the aperture or rela

tion between interfering beams would produce changes in the PDF so some 

a priori knowledge fnnct.ion must h<' adopl<'d for every particular situation 

in ESPI. 

The computer generated ESP! fring<' patterns provide a robust technique to 
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assess the performance of the enlwncenwnt and noise reduction techniques 

without the inconveniences of expcrinwntal errors. 

A methodology to assess the results of any noise reduction approach in the 

spatial, frequency and phase domains has been suggested and used to as

sess the performance of diverse noise rcduct.ion techniques. It was seen that 

to assess the noise reduction t.echniquc·s it is necessary to use two different 

parameters, the fidelity and th<' spc·ddc· inckx parameters. 

In terms of assessing the quality of t lw displacement measurement, an eval

uation of the whole ESPI process is c·xtremely important for definition of 

international standards. Also, calibration procedures and traceability would 

be beneficial in order to reduce 11 nccrt a i nty and provide confidence for indus

trial users. 

9.3 Noise Reduction Techniques 

In the section on nmse redttc! ion, th" Jl"rformance of various techniques 

when applied to ESPI fringe pati<'rns h<ts been assessed . It can be noticed 

that the best performance is achi<'l'cd by the techniques that preserve the 

object details while smoothing tl1c speckle. Also, it is observed that the 

most successful algorithms arr of a nonline<tr nature, a natural consequence 

produced by the random charact <'risi ics of the sprckle correlation. 

The role of noise reduction has hern discnss<'cl in relation with the subsequent 

stages for the overall processing of ESP! frinp;e patterns. As noise is the main 

problem, it was shown to be pr<'sent from the correlation stage of the speckle 
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fields and hence affects all the subsequent processing stages. As all the ESP! 

processing stages try to reduce the noise, there is not an ideal place in which 

it can be reduced more efficiently. Ilowci"CI", it has been emphasized that the 

reduction of noise should not affect the shape of the object under analysis, 

in the same way if the noise is reduced in the subsequent stages this should 

be taken into account. 

It is the belief of the author that. a robust ESP! noise reduction algorithm 

has an optimum position in t.h<• ESI'l data processing algorithm: it must be 

applied immediately after the cOI'relat ion process. In this way the subsequent 

stages of phase extraction and unwrapping can be optimized to process only 

clean fringe patterns without introducing adverse effects to the displacement 

values by simultaneously att<'mpt ing to reduce noise. If not, the final results 

can be erroneous due to error ]ll'OJ>agat.ion through all the ESP! processing 

stages. 

Double pulse addition fringes hal'<' IH'cn <'nhancecl by two methods: by sub

traction of a reference beam and lw Z<'l'O order removal followed by a contrast 

transformation. The second nwt horl can lw implemented in real-time using 

a fast digital signal processor. Th<' conditions for observing the addition 

enhanced fringes has been also d i se u ssed. 

9.4 Phase Extraction 

The standard algorithms for phase <·~traction using phase stepping and car

rier fringes have been reviewed. 
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As software processing time is important in the case of ESP! transient sys

tems, it can be noticed that in this sitnat ion, a single interferogram is more 

appropiate than several interfcrograms. This is seen when an increase in 

processing time occurs when noise n•dnct.ion t.echniques are applied to more 

than one interferogram. Hence from t !J<'se observations, the carrier fringe 

extraction method can he sPen to lw f11sl<'r than the techniques that require 

more than one interferogram. An adclit.ional advantage of the carrier fringe 

method is that can be easily irnplc•nr<'rilc·d in a digita.! signal processor, such 

as the CSO from Texas Instrnnwnls. 

The phase unwrapping algorithm ns<'d in I his work was explained and tested 

in performance for some partie~liar cases in which some minor deficiencies 

were shown. As was observed in IIJ<• relPvant section, the most appropiated 

unwrappers for transient event d<'i<'cl ion arc those performed in the least 

possible time while preserving thC' object cktails 11nd correct phase distribu

tion. 

9.5 Systems for Transient Event Detection 

The most promising whole fi<'ld opl inrl systems suitable for transient event 

detection using ESP! have be<'n rc·l·ic•\1'<'<1. It 1\'RS seen that the less complex 

and more efficient system is t I If• one· proposcd by the author. This system 

allows unambiguous phase ext rRction from a single addition or subtraction 

correlated interferogram. 

A system designed to analyzc lransi<'nl. phenomena must utilise an optical 
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system able to produce the neccs~ary intrrfrrograms to obtain the phase data 

in a straightforward way; ready for suhsrquent software and/or electronic 

processing. If phase is calculated using software, it must be highly efficient 

in time while producing in its out put a high quality phase measurement. In 

a later stage, the software calculations can be incorporated into a special 

purpose electronic device with lown responses times. 

It is the believe of the author I hat further work must be oriented to the 

research and characterization of ESPI software techniques (section 2.4.1), 

optimized in time for the ca~c of '·I rnnsient sy~tems". Also, these techniques 

must not give misleading or distorl<'d phasn ,·alm•s, by improper or unopti

mized algorithms. This can lw cil<'ckc·d hy using the assessment techniques 

disscussed in section 4.2. If an dficic•nt integration of optics, electronics and 

software is incorporated in a transirnl s.rst<'m, the next logical step would be 

to optimize the sofware technique's hy I ransfPrring them into DSP hardware 

like the CSO from Texas Tnstrunwnls. 

9.6 Future Applications in ESPI 

Assuming that a high speed ESI'l syslc•m with time resolutions similar to 

those obtained in the LDVs is hnilt, it will C'vcntually replace the LDV scan

ning systems providing the salll<' kind of whole field studies. Of particular 

importance is the ability to obtain a n1odal and frequency analysis in the 

study of vibrating objects. Tl1is slndic•s will be provided with such technol

ogy with the possibility of analysing th<' instantaneous whole field of view 
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as an added bonus. This last featme will provide a better understanding of 

phenomena such as crack propagation and shock wave transmission. 

Whole field transient event analysis ran also provide energy measurements, 

that are becoming more important as the optimization of energy transmis

sion is starting to be a critical concern in st.mctural engineering. This new 

measurement capability will imprm·c t lw cksign of energy-efficient mechani

cal systems and by consequence sa1·c· important amounts of energy. A crucial 

factor in energy measurements is t lw analysis of power flow in which a good 

time-resolution is necessary to c•xtract. the eYolution in time of the first and 

second order derivatives of displacc·nwnt or strain. 

Using a similar approach to tomography, the whole field analysis of transient 

events can be used for the study of intC'rllill dc>fects in materials. In this case, 

a decrease in the energy of th" t ral'<·llinp; mechanical wave is produced by 

hidden structures inside the material. As internal masses affect in a 3D way 

the distribution of energy, and only an external view of the displacement 

is made by the present optical S)'s1c·lns. the 30 techniques would provide 

a deeper understanding of this plwnonwna. This will be possible only by 

using transient analysis systctns, hut for oscillating objects the continuous 

pumping of energy into the systc·1n 111i.!!;ht make the analysis more difficult. 

The variety and complexity of possihk solntions requires still a great amount 

of research towards faster techniques. Tl1r solution presented in this thesis 

for the unambiguous phase extTilct ion problPm from a single interferogram 

using the fast electro-optical systc·m can be seen as a promising start in the 

search for such techniques. 
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To conclude, it is hoped that in the near future this work will contribute 

towards making the pulsed ESP! technique a useful alternative to other opti

cal techniques for dynamic analysis, and will offer the possibility of tackling 

more complex engineering problems. 
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Focal length. 

Horizontal and vertical spatial coordinates. 

Wavefront complex amplitude. 

Sample-d complex amplitude wavefront. 

Random phase. 

Int<'gcr spatial coordinates. 

Square• matrix integer dimensions. 

N umh<'r of rows in a matrix. 

RMlins or a circular low pass Fourier filter. 

Suhjc•ct il'<• speckle size from a computer simula

tion of a spc·cklc field. 

Integ<'r coordinates in the frequency domain. 

Ilorizont;d and vertical integer coordinates m 

the spatial domain. 

Fouri<'r transformation. 

Im·crsc• Fon ric•r transformation. 
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Horir.ont ill i111<1 vertical spatial coordinates in a 

scattering plane. 

Radius of an optical system exit pupil. 

Intensity. 

Low pass Fomicr filt.er. 

1\kan inl<'nsily. 

N'orrwliized probability density function. 

Standard dc,·iation of intensity. 

Int.cnsil.\' a\·c•ragc• of a speckle field plus a coher

ent. hackgronnd. 

1\Iodinc•d B<'ssc•l function of the first kind, zero 

ord<'r. 

N'onmliizc•d probability density function for the 

sum of a stwcklr pattern and a coherent back

ground. 

NonnalizNI probability density function for the 

inl<'nsity add it ion of two uncorrelated speckle 

fiPicls. 

Non-nor111alized probability density function for 
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the intensity addition of two uncorrelated speckle 

field plus coherent background. 

Randon1 intensity values inside the speckle size 

for two S]wcldc fields. 

St.<HHlard ckviat ions of random intensity values 

insid<' I he' spc·cklc size for two speckle fields. 

Intensity ol' a simulated speckle field for an out

of-plan" ESl'l. 

PhM;e• change' introduced by a deformation in the 

ESP! simulation of an object under test. 

Amplit uek of a reference beam in a simulated 

out-of-plnnc ESPI. 

Phas<' of il rderPnce beam in a simulated out-of-

plan<" ESPJ. 

Phase· of a symnl<'trical illumination in a simu

latPd in-pliln<' ESPI. 

Synnn<"l rical amplitude speckle fields for a sim

ulatcd sheilring ESPI. 

SlJ<'ar disl;mcc int.roclnced between two sheared 

speckle• ric·lds in a simulated shearing ESPI. 
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Uncorrupt<'d image for quality assessment. 

Corrupted image for quality assessment. 

Image fidelity parameter for quality assessment. 

Discrete representation of image fidelity param

et<er for quality assessment. 

Rei at i,.,, slruchtral content parameter for quality 

aSSf'SSlll<'Jl t.. 

Correlation quality parameter for quality assess

mt'nt. 

Spcckl<' ind0x parameter for quality assessment. 

Loo1l standard deviation at pixel (i,j). 

Localm·<·t·agc• intensity at pixel (i,j). 

Sp0cki<' coni rast. 

N111niH'r of nncorrelatecl speckle patterns. 

Impuls<• r<'sponse function. 

Nor111alizing constant. 

Ratio hctwe<'nlocal standard deviation and local 

int.cnsi ly. 

Local standard deviation. 
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One dim<'nsional spatial coordinate. 

Spatial location of pixel in the centre of a local 

neighbourhood. 

Averaged intensity in the two sigma range. 

Int(•nsity value in the centre of a local neighbour

hood. 

Local \'ariance in a square window. 

Locallimits for square window of size (2n+ l)x(2m+l ). 

Threshold for reducing spot noise in the Lee fil

t<'r. 

Spccl;k fi(·ld intensity values prior to correlation. 

Intensity villncs after correlation of two speckle 

fields. 

constant for the spectral subraction image restora

tion filter. 

Phasr ol' F(I12 ). 

Ritdins in tlw spatial domain. 

Constants us0d to produce a simulated object 

d<'fonnat ion that gives curved fringes in a com

puler simulated out-of-plane ESPI. 
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Wavd<'ngth of the light. 

Inverse Fouricr transformation of I(u, v). 

lntegcr usC'd to represent an even number of 

fringes. 

Spati<1l integer coordinates in a local neighbour

hood of a i,j pixcl. 

lnknsit.y at pixcl (i,.i). 

Squarc· matrix dimensions of a local neighbour

hood. 

Limit d<'on<'d as IV= (M- 1)/2. 

Spatia I coord i na tcs of a. local neighbourhood. 

Weights t l1at depend on the spatial coordinates 

k,l of'' local neighbourhood. 

Wcight.s tl1at depend on the intensity values in 

a local n<'ighbomhood. 

Constant parameter defined as inversely propor

tional to the siz<' l\I of a local window. 

LorHI pilranwtcr defined as inversely propor

tional to the local variance. 

!oral I'<Hianrc. 
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Average intensity of the pixels in a local neigh

bourhood. 

Transformed intensity values after a shifted ex

ponent ia I transformation. 

Conslan! of I he shifted exponential transforma

tion. 

l\Jaxirnnm intensity of the ESPI fringe pattern. 

Corn·la! ion fringes generated by addition of two 

speck!<• interferograms. 

lni.<'nsit.y of I he object beam in an out-of-plane 

ESP I. 

lnf<>nsily of 11 reference beam in an out-of-plane 

ESP I. 

Conslmils expressed in terms of Io and I •. 

NumlH·r of sl<'ps for phase stepping. 

NmnlH•r of frames for phase stepping. 

RadiilliS of a phase shift. 

Phase f11nrtion of an arbitrary fringe pattern. 

Constant f11nctions to re-express a fringe pat

tern. 
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Fourier transform of a and c . 

Wrapped phase values. 

Complex amplitude of a plane reference wave

front. 

Wove Jlllllllwr. 

Optical path of a reference wavefront. 

\\'a1·dront optical path. 

Low-pass filtPr<'cl version of I. 

\Vrappc·d phase 1·alues. 

Sign ill bandwiclt h. 

Il<'ct angnlar clinwnsions of columns and rows of 

a wrapped pl1asf' array. 

DicrC'!c· rcprc•sc•ntat.ion of Poisson equation. 

Phase• cli n·<'r<'ncc t crms along horizontal and ver

tical dirc•dions. 

\\'rapping operator. 

Unwrapp<'d phils<' values. 

coordinates in I h" resulting values of the discrete 

eosin<' t rnnsfonn. 
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Reference bcam inclination in an out-of-plane 

ESP! conflgmation. 

Subecti w· speckle size of an optical system. 

Radius oft l1e optical system exit pupil. 

Simtlial<•d fringe patterns correlated by subtrac

tion wit\1 phasf' steps of 0,-'lr/2 and +1r/2 re

spect i l'eiy. 

Snmpkd intf'nsity of a simulated speckle pat

tern. 

Snmpbl intensity of a simulated speckle pattern 

with a I i\t <·d rd<'t'cnce beam. 

Phas<' introdnccd by the reference beam. 

Phase t crm. 

Carri<'l' ftwl'wncy. 

Index for horizontal lines. 

Sine and cosine products of the intensity along 

an l10rizontal line. 

Low pass fllt<"rcd Is, I c. 
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