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Blood flow restriction (BFR) has been utilised in physiology for centuries; from William 

Harvey’s (1578-1657) initial use of a tourniquet to describe in detail the systemic circulation 

of blood, to the use in the last 40 years in the investigation of cardiovascular reflex 

responses, angiogenesis, skeletal muscle metabolism and fatigue. Recent investigation has 

largely focussed on the adaptive potential of BFR exercise training, with particular reference 

to skeletal muscle strength and hypertrophy and its use in the rehabilitation process. Others 

have continued to explore the potential for BFR in enhancing the skeletal muscle signalling 

response and subsequent improvement to whole body exercise performance.  Adding to 

this latter aspect the paper by Christiansen et al 1 in this issue of Acta Physiologica provides 

further convincing evidence on the potential for BFR exercise to augment skeletal muscle 

signalling responses; particularly related to the physiological mechanisms associated with 

fatigue resistance and mitochondrial capacity.  

In their study, recreational athletes (with a reasonable VO2max of ~57 ml.min-1.kg-1) 

completed interval sessions consisting of three sets of three 2-minute running bouts. In an 

interesting experimental design these were performed alone, with BFR and under   

normobaric hypoxic conditions (FIO2 of 14%). By ensuring the level of skeletal muscle 

hypoxia (deoxygenation measured by NIRS) was consistent between the BFR and hypoxic 

conditions the investigators were able to ascertain whether hypoxia per se was involved in 

the adaptive process (as might be have been expected with the use of BFR). The exciting and 

novel observations were that BFR augmented the increase in mRNA expression of the 

Na+,K+-ATPase (NKA) complex ancillary protein phsopholemman-1 (FXYD1), which 

contributes to the maintenance of transmembrane Na+ and K+ ion gradients; critical in 

preserving skeletal muscle membrane excitability and thus contractile function 2. They also 

demonstrated that BFR augmented the expression of specific isoforms of peroxisome 

proliferator-activated receptor-γ coactivator 1α (PGC-1α), which is widely considered to be 

the key factor mediating exercise training-induced adaptations in mitochondrial capacity 3. 

Interestingly, the augmented upregulation of these transcripts were unrelated to the 

severity of muscle hypoxia, lactate accumulation and activation of Ca2+/calmodulin-

dependent protein kinase (CaMKII). Instead, the key physiological signals were related to 

the level of oxidative stress and fibre type specific 5' AMP-activated protein kinase (AMPK) 

signalling. This study clearly improves our understanding of the physiological stressors 
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involved in the regulation of NKA and PGC-1α expression, and how these stressors can be 

influenced by BFR. The study also adds support to the debate on the potential for BFR 

exercise interventions to have wider implications for performance, however there are a few 

important aspects that perhaps need to be considered.  

The exercise was performed at a relatively moderate intensity of 105% of the individual 

lactate threshold, which was the highest tolerable intensity at which the exercise protocol 

could be completed alongside the selected magnitude of BFR and resulted in a rather 

modest 1.8-fold increase in total PGC-1α mRNA in the non-BFR control condition. As the 

authors acknowledge, this is much smaller than the changes observed after more intense or 

longer duration endurance-type exercise 4 as well as following sprint interval exercise 5. As a 

consequence there would be a greater available capacity for further gene transcription. 

Indeed, Christiansen et al demonstrated that BFR augmented PGC-1α mRNA transcription 

up to 4.3-fold 1. This is compared to the other studies that have investigated the effects of 

BFR on PGC-1α expression, in which there was either no effect 5 or an attenuated response 6. 

In an alternative approach the study by Taylor et al 5 specifically chose sprint interval 

training with post-exercise BFR to ensure that a high training intensity was maintained, 

which is in line with current training theory 7. This may have ultimately limited the available 

capacity for an augmented PGC-1α mRNA transcription in the BFR condition. Nevertheless, 

despite not observing enhanced PGC-1α mRNA expression, Taylor et al 5 did demonstrate 

augmented mRNA expression of other genes, specifically endothelial nitric oxide synthase 

(eNOS) and hypoxia-inducible factor-1α (HIF-1α), which play a key role in angiogenesis. 

Taken together, therefore, it seems that BFR exercise interventions have the capacity to 

augment the adaptive signalling responses across multiple physiological systems. 

What makes the study by Christiansen et al 1 particularly timely is the general thought that 

phenotypic adaptations to exercise training are more difficult to elicit in well-trained 

athletes who already possess the necessary physiology to be competitive in their chosen 

event. Early research has highlighted the reduced plasticity of skeletal muscle in the trained 

state 8. Moreover, this blunting of the adaptive scope in trained individuals, or in response 

to exercise training, is reflected at a molecular level 4, 9. The “trained” status of participants 

in studies by Christiansen et al 1 (VO2max of ~57 ml.min-1.kg-1) and Taylor et al 5 (VO2max of 

~60 ml.min-1.kg-1) suggest that, regardless of exercise intensity or modality, BFR may 
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overcome the blunted nature of the acute signalling response to exercise and act as a 

potent stimulus in enhancing a broad range of adaptive processes. Clearly, however, long 

term training studies are required to confirm whether these augmented signals translate 

into phenotypic changes. If this were to be the case improvements in physiological 

processes such as the muscle capacity for K+ handling, oxidative ATP production 1, and 

morphological adaptations such as angiogenesis 5, brought about by BFR exercise training, 

would undoubtedly result in an enhanced performance capacity, particularly at high 

exercise intensities which are characterised by a non-steady-state, in which pulmonary (and 

muscle) VO2, muscle metabolic milieu and acid-base balance all fail to stabilise and continue 

to increase/decrease until the limit of exercise tolerance, or task failure, occurs.  

Considering that a key objective in elite training methods is to maximise the magnitude of 

event specific performance adaptation, BFR exercise may provide well-conditioned athletes 

with more ‘bang for their buck’ in augmenting the adaptive response to training. 

Anecdotally, such techniques are being explored by some elite performers, but the 

integration of BFR into training practice has yet to be fully achieved. This is understandable 

given the lack of clear evidence for performance enhancement, however the study by 

Christiansen et al 1 certainly adds to this initial body of literature. Hopefully, a greater 

understanding of the mechanisms and potential benefits of BFR exercise training might 

provide the impetus for the integration into training practice; although it is conceded that 

more information on the practicality, optimisation and safety of BFR exercise interventions 

is also required. 
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