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SYNOPSTS

By using transform coding, image transmission rates as low as
0.5 bit/pel can be achieved. Generally, the bit rate reduc-
tion is achieved by allocatjng fewer bits to low energy high
order coefficients. However,to ensure reasonably good picture
quality, a large number of bits has to be allocated to high
energy dc coéfficients for both fine quantization and good
channel error immunity. A technique has been developed that,
in some cases, allows the dc coefficients to be estimated at
the receiver, thus eliminating a major source of difficulty
with respect to channel errors. The computational requirement
depends on the number of dc coefficients, M , which is equal
to the number of blocks within the picfure. In practice, M
is large and so the computational load 1is substantial, and
therefore, to make the method practical, three modified sche-
mes called ELEMENT ESTIMATION, ROW ESTIMATION, and PLANE ES-
TIMATION are proposed, all requiring reduced computation time
and memory. Results of simulations of these methods using
different block sizes and different degrees of ac coefficient

truncation are shown,

A new unified matrix treatment of Walsh transforms using the
concept of dyadic symmetry 1Is then developed. This treatment
allows the straightforward derivation of a simple equation
for the generation of Walsh matrices of different orderings,

various re-ordering schemes and fast computatlional algorithms.
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As the theory relates to a binar} field with 'logical and'
and modulo two addition as operations,it allows both the gen-
eration of Walsh matrices of different‘orderings, and re-
ordering schemes, to be carried out uging simple logic cir-

cuits.,

The theory of dyadic symmetry is then used to generate two
new transforms which can be used for image processing. The
new transforms have virtually the same complexity and compu-
tational requirements as the Walsh transform, employing addi-
tions, subtractions and binary shifts only but wiih an impro-
ved efficiency, defined in terms of its ability to decorre-
late signal elements, which Iies between that of the Walsh

transform and that of the discrete cosine transform.
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LIST OF PRINCIPAL SYMBOLS

AND ABBREVIATIONS

a : A positive constant less than unity (Table 4.1)
A : Vector containing dc coefficients (eq.5.13)
a ¢ The i th element in A

i

a(i,3) : The de coefficient in the (i,j)th block (eq.5.5)

[B} : The binary Walsh matrix
b : The (i,j)th element of the binary Walsh matrix (eq.3.9)
ij '
" : Vector in transform domain (c.f. X)

c t The i th transform coefficient in vector C

i
cQ ¢t The quantized wvaluve of C

[CC] ¢ Covariance matrix of C (eq.4.4)

[cx] : Covariance matrix of X (eq.4.2)
D : Distortion (eq.1.1)

ed

[p] : Dyadic-orderfidyadic symmetry matrix (eq.3.15)
D : The j th vertical edge vector (eq.5.14a)

1,3

D : The j th horizontal edge vector {eq.5.14b)
2,
d : The q th element of the vector D
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DCT
DFT
bPCM
D3T

Bl ]

HCT

H{w)

(1]

ij

KLT

LCT

[v]

The discrete cosine transform (Fig.2.4)
The discrete Fourier transform
Differential pulse code modglation

The discrete sine transform (Fig.2.5)
Expected value of the variable in [ ]
Field (Def.2.2)

The high correlation transform (Fig.4.3)

Relative sensitivity of the human visual system

to spatial light intensity distribution w (Fig.1.11)
The Walsh matrix (eq.3.7)

The (i,j)th element of the Walsh transform

Row index or index running vertically

The m th bits of i (1113 the msb)

Column index or index running horizontally

The m th bit of j (31 is the msb)

The Karhunen-Loeve transform

The low correlation transform (Fig.4.4)

Block size

Natural-ordered dyadic symmetry matrix (eq.3.12)



NMSE
pdaf

PER

Rad.(t)
R(D)

[s]

UHCT

ULCT

XQ
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.

Normalized mean square error (eq.4.9)
Probability density function

Percentage of energy packed into the first r+1

transform coefficients (eq.4.6)

The i th Rademacher function (Fig.3.1)
Rate distortion function

Dyadic symmetry matrix

The i th row vector in [S]

Transform kernel

The i th row vector or basis vector of [T}
The i th column vector of [TJ

The unnormalized HCT

The unnormalized LCT

BEdge vector of dc basis picture (eq.5.4)

Vector space of dimension r consisting of

n-vecters over F
Vector in signal domain (ec.f. C)
The quantized value of X

Sequency-ordered dyadic symmetry matrix (eq.3.17)

(vi)
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Gamma, parameter of a camera tube (Fig.1.10)
Visual threshold (Fig.1.9)

Standard deviation

Variance

Transform efficiency {eq.4.5)

Adjacent element correlation

Transpose of [ ]

Inverse of [ ]

'Logical and'

'Exclusive or' (i.e. binary two addition)

(vii)
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CHAPTER ONE

INTRODUCTION

1.1 INTRODUCTION

The material contained in +this thesis all relates to an image data
compression technique called transform coding. The research into
this area described here was initiated by the new development of the
British viewdata system, Prestel. The next section describes briefly
what a viewdata system is and how the work reported here relates to
it, in particular to the Prestel system. A review of transform coding
is then given in section 1.3. It begins with the general theory of
picture coding and finally concentrates on the various aspects of
transform coding which are discussed separately under four sections.
Finally, in the last section, the organization of the thesis is out-

lined.

1.2 MOTIVATICN FOR THE WORK

Using a viewdata system, television viewers need not walt for the

9 o'clock news to get the weather forecast, the latest development in
an international crisis or the financial news. The system transmits
the information requested by its users from its information retrieval
centres via the telephone network to a special decoder in the users’

home for display on the TV set.
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Simply, a viewdata system is a network of computer centres of two
types, information retrieval centres (IRCs) and update centres (UDCs),
interconnected together by high-speed data links as shown in Fig.1.1.
A viewdata system has two types of user, information retrievers (IRs)
and information providers (IPs). An information retriever is a
telephone subscriber, who, with the help of a hardware interface (the
special decoder), can make contact with one of the information retrie-
val centres and retrieve wanted information from a data base within
the computer network and have it displayed on a TV screen. Anofher
type of user is the information provider, who is either a person or
an organization authorized to have the right to wupdate information
contained in particular pages or files within a viewdata database by

means of a special editing terminal connected to an update centre.

Many countries, 1like the United Kingdom, Canada, France and Japan
have already started developing their own viewdata systems. The
United Kingdom started the venture before all other competitors and
developed the world's first operational viewdata system, Prestel,
which at present can deal with two types of information: alphanumeric
and graphical. British Telecom is planning to upgrade the present
viewdata system so that computer programs as well as images can also
be handled. With the the present data transmission rate (1.2 kbps)
over British public telephone network, transmission of a digital picw
ture, occupying a quarter of a TV screen with a resolution of 256 x
256 pels, requires a transmission time of about seven and a half
minutes. .Therefore, data compression techniques have to be employed

to shorten the transmission time. Also, to ensure good picture qua-
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IPPORTS

OTHERIRCS OTHERIRCS

[P PORTS

USER PORTS

Fig.1.1 Network topography of a viewdata system.

lity, error detection and correction techniques have to be used to
safeé}rd the data from corruption by channel noise. The research work
described in this thesis examines various aspects of a data compression
technique called transform coding, which (at present) can reduce the
transmission time from seven and a half minutes (8 bit/pel) down to

about twenty seven seconds (0.5 bit/pel).

1.3  TRANSFORM CODING -—==w=-- A REVIEW

A video system typically starts with a two-dimensional distribution
of light intensity. The two-dimensional light intensity is usually
raster scanned by a TV camera to provide a one-dimensional signal.
The signal waveforms from most TV cameras are often companded, i.e.

made a compressed nonlinear function of scene luminance. Since in
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most cases eight-bit uniform quantizatio; of this companded signal
gives imperceptible quantization neise, the companded waveform is
usually represented as a two-dimensional array of eight-bit picture
elements. Further, there are 287.5 visible lines in one field, so
the array size is for convenience often taken as 256 x 256 and thus

represents a huge amount of information.

However, members of this large number of picture elements are generally
highly correlated and the image contains significant structure. For
example, pictures may consist of many areas exhibiting a repetitive
ﬁattern analogous to the texture of ¢loth or the pattern of a tile
floor. Studies and different classifications of texture [1-4] have
been carried out over the past few years. In addition, pictures often
contain a number of areas of nearly constant brightness. Statistics on
the number of these areas, their brightness, sizes, etc, have been
collected [5-6]. A definite structure also exists in the boundaries
between these areas, which are usually sharp edges, and studies of

these edges have also reported in the literature [7-9].

Jdeally, one would like to take adventage of this redundancy and
structure in pictorial data, so that pictures can be encoded or
represented using fewer bits, hence needing less storage space and
less transmission time. Encoding of such signals is performed by a
myriad of different techniques which can be divide@ inte two classes
~==-- waveform coding and parameter coding. The objective of wave-
form coding is simply replication of waveforms, whereas parameter

coding attempts to represent'the image using the basic features
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necessary in some specific applications. Parameters of these basic
features are extracted at the transmitter, transmitted through the

chammel, and then used to synthesize the image.

So far, no universal model is. able to represent all images sucess-
fully because of the immense variations between different image sour-
cea. However, models have been proposed to represent a restricted
gset of images with good results. For example, images can be modelled
as random concatenations of textures [10-12]. Hence, a picture can be
represented by parameters for the texture, and the position and orien-
tation of edges. In another example, a system for the transmission
of a 'head-and-shoulder' image builds and maintains a 3-D model of
the object to be coded, Parameters of the facial expressions of the
object are extracted at the transmitter, and sent through the channel
to update the model at the receiver. The reproduced image at the

receiver is a 2-D projection of this model [13].

The other class of coding technique, waveform coding, can again be
divided into two main categories ---- predictive coding end transform
coding. Fig.1.2 shows the block diagram of a predictive coding system
which is often called differentizl pulse code modulation (DPCM}. The
sample to be encoded is predicted from the encoded values of the pre-
viously transmitted =samples and only the prediction error is quantized
for transmission. @Research work in predictive coding is mainly concen~-
trated on the improvement of the predictor and the quantizer by making
them optimal for a particular type of source, or adaptive to local

statistics by employing sophisticated algorithms. For example, various
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forms of switched predictors to deal with the sharp changes at the boun-
daries of textures, and motion compensated predictors to deal with mov-
ing cbjects, have been evolved to minimize the prediction error. On
the other hand, various adaptive quantigzers [15-18] have been designed
to minimize the quantizafion noise of the prediction error. In general,
all predictive coders achieve data compression by expleoiting redundancy

in the data.

CODES TO
CHANNEL
_ CODE /
INPUT o ASSIGNOR
QUANTIZER
P TRANSMITTER
PREDICTOR

CODES DECODE
FROM ¢ R

BINARY 0 + » OUTPUT
CHANNEL

RECEIVER

P

PREDICTOR

Fig.1.2 Block diagram of a DPCM system

In transform coding a completely different approach is used. Fig.1.3
shows the block diagram of of a transform coding system. The original
image is divided into subpicturés of a particular bdlock size and trans-
formed into sets of weakly correlated coefficients. The coefficients
are then quantized and coded for transmission. At the receiver, the

received bits are decoded into transform coefficients, and an inverse
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transform is applied to the coefficients to return to the picture

domain.
ORIGINAL | R - - o
IMAGE_—’ TRANSFORM ™ QUANTIZER M ASSIGNOR e CHANNEL
TRANSFORM ENCODER
FROM INVERSE
CHANNEL DECODER ?| TRANSFORM »1 DISPLAY

TRANSFORM DECODER
Fig.1.3 Block diagram of a transform coding system

Jain has shown that transform coding, although requiring more pro-
cessing sophistication, achieves a higher degree of data compression
than predictive coding for a one-dimensional Markov process [14]. On
real 1images, the two schemes were found to perform quite closely at
very low distortion, but transform ceding is distinctly better at high
values of distortion. 1In practice, only adaptive predictive coding
algorithms can achieve the efficiency of even nonadaptive transform

coding methods [14].

Data compression in transform coding is achieved by the transformation
of the subpicture into another array such that maximum information is

packed into a minimum number of coefficients. Therefore, the overall

quantization error can be minimized by allocating more bits for trans-—
mission of coefficients having larger variances, and fewer bits for
coefficients having smaller variances. The appropriate bit allocation

can be derived from rate distortion theory which states that [19]:
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the output of a source can be transmitted with average distortion D

if the transmission rate is larger than R(D).

If D is the mean square error and the source has Gaussian probability

distribution, then R{D) is found to be [20]

R(D} = log o //D c>J/D
o] 0 VD ——mmmmmeememo (1.1)

where ¢ 1s the standard deviation. ~ Therefore, equation 1.1 can
be used to determine the number of bits required for each transform

coefficient [21-22].

Transform coding is a natural outgrowth of the principle of rate dis-
tortion. It was first epplied to one-dimensional signals and later
applied to picture coding [23-27,99]. Over the years, much effort

has been devoted to the transform coding of pictorial data. Here,
discussion of work on transform coding is grouped under the following
four headings: 1) transformations, 2) adaptive schemes, 3) schemes
exploiting interblock redundancy, and finally 4) schemes based on

human psychovisual characteristicas.

1.%.1 Transformations

This is the most important part of trensform coding theory, and the
detajled theory of transformation will be presented in chapter two.
Basically, the primary purpose of the transformation is to convert

statistically dependent picture elements into an array of uncorre-
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lated coefficients such that maximum energy is packed intc a minimum
number of coefficients (the total energy in the transform domain

remaining the same as that in the picture domain).

For a particular image, the optimal transformation which satisfies
the criteria mentioned above is the Karhunen-Loeve transform (KLT)
[28-29] (otherwise known as the Hotelling transform [30]) whose basis
vectors are in fact the eigenvectors of the covariance matrix of the

image. However, its practical application is beset by many problems,

Firstly, the KET necessitates the computation of the eigenvectors
which requires extra computational time, complicates implementation
and, furthermore, sometimes the eigenvectors cannot be uniquely
defined. In addition, there is no true fast computational algorithm
for the KLT and extra bits are required for the transmission of either
the basis vectors or the covariance matrix. All the above problems

prevent the KLT from being used in practice.

Jain et al [31-32] have developed a fast KLT for a class of stochas-
tie processes, which however, do not represent a typical image. On
the other hand, the KLT for the first-order Markov process having the
covariance matrix given by equation 2.32 (widely accepted as a good
model for images), has no known fast computational algorithm [85].
A1l these problems can be eased by the application of a suboptimal
transform. The first suboptimal transform to be investigated for
image coding was the two~dimensional Fourier transform (Andrews and

Pratt [99]). This was followed shortly by the discovery that the
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Walsh transform could be utilized in place of the Fourier transform

with a considerable decrease in computational requirement [101].

In 1971, investigation began into the application of the KLT [28-30]
and Haar transform [34]. Ag mentioned above, Application of the
"KLT 1in practice is prevented due +to its complexity. On the other
hand, the Haar transform has an extremely efficient computational
algorithm, but results in a larger coding error. At about the game
time, Enomoto and Shibata designed a new 8 x 8 transform to match
typical image vectors [35]. Pratt generalized this transform [36]
which is known as the slant transform, and later applied it to image
coding with a fast computational algorithm [37] resulting in a lower
mean square error for moderate block sizes in comparison to other
unitary transforms. Many other transforms such as the DLB (Discrete
Linear Basis) [38], Slant Haar Transform [39], SVD (Singular Value
Decomposition) [40] and Modified Slant tranaform and Modified Slant
Haar transform [41] have also been proposed for image coding. How-
ever, the discovery of the discrete cosine transform (DCT) in 1974
[42], its efficient fast computational algorithm in 1977 [43], and
later its application in image coding via the fast computational algo-
rithm [22] has generated much interest. Comparisons between the DCT
and other suboptimal transforms using a stochastic image model have
shown that the DCT results in the least mean square error [22] and in
fact the DCT is asymptotically close to the KLT for the first-order
Markov process of covariance matrix given by equation 2.32 [44-46].

Jain has suggested a sine transform with similar properties [31].
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The DCT requires real number multiplications whilst the Walsh
transform needs only additions and subtractions. In some cases, for
example coding of moving pictures, a simple and efficient transform
is still necessary. This is why a real time digital image cecding
system reported recently still adopts the Walsh transform [47]. In
view of performance and simplicity, the choice of tranaformations
lies very much between the Walsh transform and the DCT depending on

whether or not processing speed is paramount.

In chapter four, two new transforms which can be used as substitutes
for the Walsh transform are described. Both transforms have virtually
the same complexity and computational requirements as those of the
Walsh transform but their energy packing ability and decorrelation

efficiency lie between those of the Walsh transform and of the DCT.

1.3.2 Adaptive schemes

Pictorial data is not homogeneous --- some regions of a picture con-
gist of highly correlated pels and some regions contain a high degree
of activity. Optimal ncnadaptive coding schemes are matched to the
averagé statistics of the whole picture. Adaptive coding schemes
compute local statistics and then apply an algorithm that is effici-
ent for those statistics. At the expense of increased complexity and
computation time, adaptive coding schemes alwajs outperform nonadapt-
ive ones. Numerous adaptive schemes have heen proposed. The main
differences between them lie in the answer to one crucial question.
How does the transﬁitter inform the receiver of the coding strategy

it has employed for each particular section of the encoded picture?



Chapter 1 12

There are two extreme ways of tackling this problem. In the first all
the overhead information about adaptation is sent to the receiver;
the other bases its adaptation completely upon previously transmitted

data and no overhead information is sent.

The former way is perhaps best represented by theshold coding. Using
this method one aelects a threshold level and transmits only the
transform coefficients that are larger than this threshold. This
methed is highly adaptive because the number and location of the coe-
fficients that are larger than a threshold vary from one subpicture
to another. Dillard [48] used this scheme for a 4 x 4 Walsh trans-
form in which the dc coefficient and the largest ac coefficients are
gent along with their addressing information. However, the addressing
information without any compression could mccount for about 60% of
the total bit rate [49], a)l though run~length coding algorithm [50] and
entropy coding [49] can be used to compress the addressing information.

Good results have been reported at about 1.25 bit/pel [49].

Moving away from threshold coding, which uses up many bits on over-
head information to achieve high adaptivity, is another type of
adaptive scheme which will be called block classification coding in
this thesis. Such schemes sort transform blocks into classes by the
level of image activity present. Claire [51] and Gimlett [52] pro=-
posed a definition of 'activity index' using é weighted sum of the
absclute values of the transform ceoefficients. Therefore, by allo-
cating more bits to those blocks having a higher sctivity index, and

fewer to those having a 1qwer activity index, adaptation is achieved
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with addressing information considerably reduced. For example, Chen
and Smith [22] divided transform blocks intc four classes, each with
equal numbers of transform blocks. Fig.1.4 and 1.5 illustirate respec-
tively a typical classification map and bit allocation matrices for
the four classes for the monochrome image 'girl' (Fig.4.8a) coded with
an average of 1.0 bit/pel using Chen and Smith's system. In ancther
example, Tasto and Wintz [33] classified image blocks into three cate-

gories according to the luminance activity.

PN RN SN N S S I R Ny KNSR
SRRV = -
I T N N L I I SN R
NPR 2NN WWWRWE NN
(VRS VN S NI ST EUE R RUT ISR RN X XS
(SR RN VR TR R R RN R R Sy SRR
WAN NN MNDOOVIWIVIWWOINOW AN - P
P P PO PO P P P A A P — DO b
B S N I S N I N N N N N P
R T R N )
WL LI B B B N e =
R RN Ul A N S G PR W ISR
BN~ e = = O R ) R~ = N
PO = — =t b b ek s a =
PO = =5 = b b b b o b ke
POR) — = b o b ek ok ek

Fig.1.4 A typical classification map for
the '@irl’ picture in the Chen
and Smith systenm.
In these systems, the addressing information required to be sent us-
ually includes one classification map, and a set of variance matrices
which are used to derive the corresponding bit allocation maps. Some
systems, however, transmit the bit allocation matrices from which the
variance matrices are estimated, with further bit rate reduction but

at the cost of less accurate results [22]. Another group of schemes,

which are sometimes known as recursive quantization techniques [50]
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{a)

(c)

8666555444434333
6544443333322221
95443333222222210
4433332222111000
4443322211110000
4433222211100000
4333222111000000
4332322110000000
3222221100000000
3222211000000000
3221110000000000
3321100000000000
32210000000000040
2220000000000000
3200000000000000
2100000000000000

The bit allocation

map for class 4

{the higest activity).

———

B8544433333222222
5433322222211110
4322211111110000
3332211111101000
3322111111000000
3222111100000000
3221111110000000
3221110000000000
2211100000000000
2111100000000000
2111100000006000
1111000000000000
11110000000C0000
1100000000000000
1100000000000000
00000000000G0000

The bit allocation

map fer class 2.

(b)

{d)

B655554444343333
5443333322322221
4433322222111100
4333322222211000
4433222211110000
4332222211100000
4332221111000000
4322221110000000
3322211100000000
3222211000000000
2222110000000000
2221100000000000
2221100000000000
2210000000000000
2100000000000000
2100000000000000

The bit allocation

map for class 3.

8321001101100010
21110010061111100
2101111101100100
1101000111111000
1010102110110000
1001101111100000
1000010110006000
Cl111101100000000
0001011000000000
0001000000000000
10100006000000000
0011100000000000
1104000000000000
11100000000600000
10000000600006000
1000000000000600

The bit allocation
map for class 1

{the lowest activity).

Fig,

1.5 Typical bit allocation maps for the 'girl' picture
with 1.0 bit/pel in the Chen and Smith system.
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go further in eliminating the transmission of the variance matrices
and classification map. Tescher et al [53-54], instead of sending the
variance map of the DFT coefficient magnitudes, estimated them at the
receiver using a predictor that predicts the variance of a given coe-
fficient from the variances of a number of adjacent quantized elements.
This system only needs the +transmission of a few variances to start
the estimation process at the receiver. Bits are then allocated to
each coefficient proportional to the logarithm of the estimated coeffi~
cient variance, with the phase component having twice the number of
quantization levels of the magnitude component. The same algorithm has

also been investigated using the Hadamard transform.

In a different approach,Tescher and Cox [55], using a diagonal scann=-
ing pattern, converted +the t{wo-dimensional variance map into one-
-dimensionsl format as shown in Fig.1.6. Then, the i th coefficient
variance is estimated as

2 2 2

G = a 8 + (t-a ) %  eemmmmee- (1.2)

i

1 i-1 1 i-1

where X is the i-1th quantized coefficient and a is a weighting
i-1 1
factor which is chosen to be 0.75. The number of bits allocated for

the quantization of x is proportional toc the logarithm of the esti-
i

mated variance 32 .
i

In another approach, Wong and Steele estimated the (r,s)th variance as

G(r,s) 2. expl ¢ 1n[Q(r,8)] + ¢} eeee( 1.3 )
1 2
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T

Fig.1.6 Scan path used in variance estimation

where Q(r,s) is a distance factor and ¢ and ¢ répresent, respectively,
1 2

the slope and intercept of the log-log relationship of Q(r,s) and

6{r,s). Bits are allocated to each coefficient proportional to the

logarithm of the estimated variance [56-57].

However, Recursive quantization suffers from one big drawback. A
transmission error in one single coefficient will spread to the follow-
ing coefficients. In view of probable channel error performance and
coding efficiency, block classification coding seems to be the best

choice.

1.3.3 Schemes exploiting interblock redundancy

In all of the foregoing transform coding techniques, it is assumed
that successive blocks of data are independent. Indeed, if the block

size is large, for example 32 or larger, the interblock correlation
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is negligible. However, transform coding using a large block size,
although it can achieve a greater reduction in bit rate, auffers from
two distinct disadvantages.

1) It requires more computation time, more complex implementation

and storage of large amounts of data both at the transmitter and the

receiver, and consequently produces a delay in transmission.

2) Image statistics may vary widely within a block if the block size
is large. Adaptive coding to match statistics within a block is then

difficult to accomplish.

These drawbacks can be solved by choosing a small block size and then
applying coding schemes which expleit interbleoeck redundancy. One

natural way is to apply predictive coding to exploit the redundancy
between the transform coefficients of different blocks. This type of
scheme, comprised of transform coding and predictive coding, is called

hybrid coding. Fig.1.7 shows a block diagram of a hybrid coder.

N DPCM CODE
"| ENCODER ASSIGNMENT b J—To
MULTIPLEX
VIDEO DPCM R CODE . CHANNEL
IN % TRANSFORM ENCODER ASSIGNMENT
== 1 DROPPED
L J COEFFICIENTS
FROM
CHANNEL oPem
»{ DECODER
DEMULTIPLEX
#{ DPCM
INVERSE
DECODER TRANSForm [ DISPLAY

DROPPED »
COEFFICIENTS

Fig.1.7 Block diagram of a hybrid coder.
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Specifically, three types of schemes h;ve been examined, 1) a one-
dimensional block aleong a horizontal line with DPCM in the vertical
direction; 2) a small two-dimensional block, and DPCM using coeffi-
cients of the previous horizontal block for prediction; 3) a two-
-dimensional block, and DPCHM in the temporal direction. Variations

of these three systems have been examined by many researchers [58—62].
Habibi showed both theoretically and experimentally that the perfor-
mance of hybrid coding systems (1) and {2) surpasses that of both DPCM
and a non-adaptive two-dimensicnal Hadamard transform coding system.
Also, performance of the hybrid coding systems was found to be reason-
ably independent of the block size, the performance improving only very

slightly for block sizes larger than eight.

Netravali et al [59], using a small fwo-dimensional block, showed that
if the optimum transform (KLT) is not used, correlation exists between
the coefficients of a given block.This impiies that a better predictor
can be designed by using not Jjust the corresponding coefficient of the
previous block, but also all other coefficients of the previous block,
as well as those of the present one. Such a predictor was shown to be
25% more efficient in terms of data rate, for the same picture quality,
than a predictor which based its prediction only on the corresponding
coefficient of the previous block. Comparison between a hybrid coding
system (3) and tfansform coding uasing three-dimensional blocks was
carried out by Roese et al [63]. Both experimental and theoretical re-
sults indicated that the simpler hybrid coding system performs as well

ag the three-dimensional transform coder.
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Another technique to exploit interblock redundancy is recursive block
coding (RBC) [14] which encodes (n+p) samples at a time when a n x n
transform is used. The theoretical background of RBC is given in sec-
tion 2.4.2.2. For example for p=1, the coding algorithm for the block

of data [ x ,x ,...,x ] proceeds as follows (Fig.1.8):

o) 1 n+1
(i) Boundary point x is encoded, transmitted and stored at the
n+1

receiver for the present as well as the next block.

(ii) At both the transmitter and the receiver, quantized boundary

points xq and xg ' are passed through a noncausal FIR filter
-1 0 n+1 b

ol [Q] and a quantizer to produce a quantized n-vector XQ , called

the boundary response.

(i1i1) A residual process %p is obtained by subtracting the quan-

tized boundary response XQb from the original data X. This is

then encoded and transmitted using the sine transform, which was

found to be the KL transform of vector Xo if vector X 1is a

sample of first-order Markov process [31].

Using a ﬁon-adaptive zonal coding technique, comparison between the
sine transform with BRBC and the DCT in both one and two-dimensions
[59] has shown that RBC results in a smaller mean square distortion.
In addition, recursive block coding, while producing sharper images,
suppresses the objectionable block-boundaries which exist in the DCT
coded picture. Meiri and Yudilevich have also developed a very simi-

lar algorithm called the pinned gine transform [65].

1.3.4 Psychovisual coding

Apart from the effort to 'match local statistics of inhomogeneous
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k th block

k+1l th block

x°
¥ o,
4 paT QUANTIZERS [ |
My " xq®

X =10 Xys Xpy eeey xn]

-
Xnel 41| a [ Q ]
——{ QANTIZER

DELAY <
3

TC CHANNEL

Fig.1.8 Block diagram of a recursive block
coding system.

pictorial data with various adaptive schemes, - human psychovisual
‘considerations have also been used to reduce the bit rate. Much
effort has been made to model the human visual response as a linear
system [68-74]. This is probably because of the completeness and
simplicity of linear systems theory. However, the work of Stockham
[73] (1972) has shown that the human visual system is nonlinear and
also rotationally variant. Mannos and Sakrison suggested that [75],
after an initial npnlinear transformation, the remainder of the human
visual response may be considered linear over a moderate range of
light intensities. They therefore proposed a model for human psycho-
visual system consisting of a cascaded nonlinear and linear systen,

which will be described later in this section.

For pel-domain waveform coding, such as predictive coding, knowledge

about the tolerable error at each pel and how the errors at adjacent
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points combine is very useful. The error AL, known as the visual
threshold, is defined as the point at which a perturbation or distort-
ion Jjust becomes visible or ceases ito be visible. It was found that

AL depends on the following factors [66]:

1) L , the overall luminance of the surroundings,

3
2) L , the background luminance adjacent to the perturbation,
B
3) the presence of sharp luminance changes adjacent to the
perturbation.
sl ]
2k
g Lg*50mL
z
3 osl
o
-
o
z L.t
W ooz2l— st
x
-
0.8 //‘-—ALIL, * CONST
005
fele-] ! 1 1 1 1 \
2 5 10 20 50 40 20 50

Lg., BACKGROUND LUMINANCE - mL

Fig.1.9 The relation between visual threshold (AL),
background luminance (L ) and surrounding
luminance (L ). B
S

The relation between AL, L and 1L is shown in Fig.1.9. The
S B
long-dashed line represents the condition AL/L =constant (Weber's
B
Law) when L = L . However, when L is much larger than L , Weber's
S B . S B
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Law is no longer valid. The actual relation between AL and L is
B

that given by the short-dashed line. If there are large changes in

luminance adjacent to the perturbation, AL increases on both the

dark side and the bright side of the luminance change. Details of

viswal threshold properties can be found in [66,67].

Is (ﬂA )8“‘
600 ,/
o )/ 4 ge045

2000 21"

0 20 40 60 60
— £ (fux)

Fig.1.10 The relation between signal current (I )
. S
and illumination(E ) for a camera tube with
' S
a Y of 0.65 and 0.45 respectively.

Whilst & human observer is more sensitive to a perturbation in a
dark area than in a bright area, a video camera also has similar
characteristics. PFig.1.10 shows the relation between the illumin-
ation (E ) and the corresponding signal current (I ) in the camera,
which iss Y °

I = E

S S
The constant gamma (Y) is a parameter of the camera tube and is about
0.65 for most vidicons. However, & picture tube has alsoc a curved
characteristic with a ¥ of 2.2. To reach the ideal situation of

Y Xy = 1 memeemmemmeeeae e (1.4)
vid. picturevtube
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gamma correction is usually provided in the camera using a circuit

to reduce Y . from 0.65 to 0.45 to satisfy equation 1.4. There-
fore, the :;Z;al waveforms from most video cameras are already
companded with Y equal to 0.45. Uniform quantization of these
companded signals means that more bits are allocated to signals re-
presenting dark areas than those representing bright areas. The fact
that the human visual response is more sensitive in dark areas than
in bright areas is also reflected in the nonlinear part ¢f the human
visual system model proposed by Mannos and Sakrison, which is a non-

0.33
linear transformation f{u)=u .

For transform coding, a knowledge of H(w), the sensitivity or spatial
frequency response of the human visual response is more useful. The
linear part of the model proposed by Mannos and Sakrison [75] is a
filter transform function which indicates the relative sensitivity
of the human visual system H(w) to spatial light intensity distribut-
jon {w) as follows:

1.1
H(w) = 2.6 [ 0.0192 + 0.114 w ] exp} -(0.114 w ) }

As depicted in Fig.1.11, H(w) has a maximum at w=8.0 cycle/degree

with a rapid decrease on either side.

Hall [76] has claimed that the incorporation of a human visual system
model in a Fourier transform coding scheme can improve the com-
pression of still pictures by a factor of almost 10. He subsequently
extended his techniqgues to code color signals with good results at 1.0

bit/pel and with acceptable quality down to 0.25 bit/pel. Ngan, in his
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e] 15 30 45 60 75

w (cycle/degree)

Fig.1.11 The Mannos and Sakrison human visual system
model (after ref. [68]).

comparison of five adaptive schemes, also found that the scheme which
has a bit assignment based on the human visual model given by equation

1.5 gave the best performance in terms of subjective quality [96].

1.4  ORGANISATION OF THE THESIS

Following this introductory chapter, chapter two provides the basic
theory that will be used throughout the thesis, and begins with the
abstract concepts of fields, vector spaces and bases, followed by
transform coding theory, and finally the optimization of parameters
in a practical transform coding system. In chapter three, attention
is concentrated on the Walsh transform. A unified matrix treatment for
the Walsh matrix using the concept of dyadic symmetry is presented.
This unified treatment allows a straightforward derivation of a simple
equation for the generation of Walsh transforms of different orderings,

various re-ordering schemes and various fast computational algorithms,
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It is believed that this will provide a better understanding of the
Walsh transform, and hence, allow further fast computational algorithms
and new properties to be found. The whole theory relates to a binary
field with 'logical and® and modulus two addition as operations and
thus aliows both the generation of Walsh matrices of different order-
ings, and re-ordering achemes, +to be implemented using simple logic

circuits.

The simplicity and ease of implementation of the Walsh transform
have resulted in a wide range of applications. However, the per-
formance of the Walsh transform is inferior to that of the more
complicated examples such as the discrete Fourier and cosine
transforms. Chapter four demonstrates the use of the theory of
dyadic symmetry to generate two new transforms which can be used
as substitutes for the Walsh tranaform. The new transforms have
virtually the same complexity and computational requirements as
the Walsh transform, employing additions, subtractions and binary
shifts only but with an improved efficiency, defined in terms of
ability to decorrelate signal elements, which lies between that

of the Walsh transform and that of the discrete cosine transform.

A conventional transform coder employing an efficlient transform
exploits largely, if not entirely, the redundancy between pels
within the same block. However, the correlation between pels in
different blocks is completely neglected. Chapter five describes a
technigue that utilizes this interblock redundancy to allow the dc

coefficients to be estimated at the receiver, thus allowing reduct-
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ions in blt rate as well as eliminating a major source of difficulty
with respect to channel errors. Three schemes called ELEMENT ESTIMAT-
ION, ROW ESTIMATION, and PLANE ESTIMATION are proposed. Results of

simulations of these methods using different block sizes and different

pictures are shown.

The thesis concludes with chapter six which collates the discoveries
and work that has been performed in the course of the research pro-

gramme, and makes suggestions for future work.



CHAPTER TWO

TRANSFORMU CODING THEORY

2.1 INTRODUCTION

This thesis essentislly contains three new contributions to transform
processing: a unified treatment of the Walsh matrix using dyadic sym-
metry (chapter three), neﬁ simple and efficient transforms (chapter
four) and dc coefficiént restoration schemes (chapter five). These
discoveries, all relating to transform coding theory, were developed
using the theory of vectors and matrices, ranging from the abstract

concept of fields to matrix algebra.

This chapter links all the theory together, establishing a common
background of notation and terminology that will be used throughout
the thesis. To do this, in the next section a brief review of groups
and fields is first given, which is then followed by definitions of
vectors and 1linear independence of vectors, and finally of vector
spaces and bases. The unified matrix treatment of the Walsh matrix

was essentially developed using the theory discussed in this section.

In section 2.3, attention is concentrated on vectors in vector spaces
over a number field, within which the basic concept of image transform
coding theory is established. Section 2.4 then describes the well

known orthogonal transformations. The last section discusses the opti-
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mizatién of parameters in a transform coding system, indluding the
choice of transformation, transform block size and quantization stra-
tegy. The matrix algebra required for the de coefficient restoration
schemes will be presented in chapter five and in the appendices and so

is not included in this chapter.

2.2 VECTCRS IN A VECTOR SPACE

2.2.1 QGroups and fields

We are very familiar with the arithmetic of addition and multipli-
cation of a set of real numbers. A modern mathematical point of view
sees this as a special case of a large class of more general relat-
ionships. These general relationships are considered in an abstract
way to save the trouble of proving znalogous theorems in each case,
as well as to obtain a better understanding of those relationships.
Groups and fields, for example, are two of these abstract relation-

ships [78-80].

Definition 2.1:

A group is a set | a,b,c,... } and an operation + which has the

following properties:

1) Closure : a+bd 1is also a legitimate element of the set.

2) Commutative law : a+b = b+a

3) Associative law : (a+b)+c = at+t(b+e)

4) Identity : there is some element, denoted O, such that for any
element a, O+a=a.

5) Inverse : corresponding to every element, a, there is another

element, -a, such that a+(-a)=0.
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The variety of sets and relationships which are groups is very large.

A special class of groups is called a field.

Definition 2.2:
A field is & set { a,b,Cyens } and two different operations + and
*® , satisfying the following rules:

1) Closure : atb =as well as a¥b are valid elements of the set.

2) Commutative law : a+b = b+a
a*h = b¥*a

3} Associative law : (a+b)+c = at+(bte)
{a*b)*c = a*(b¥*e)

4) Identity : There is some element, denoted O, such that O+a=a.
There is some element, denoted 1, such that 1%*a=a.
5) Inverse : For any element, a, there is an element -a such that
a+(-a)=0. Por any element, ?, except O, there is an
-1 -

element, a , such that a¥*a =1.

6) Distributive law: a*(b+c).= (a*b)+{a*c)

Property 5 allows us to define inverse operations for + and ¥, which

are denoted as - and / vrespectively, using the following equations.
a=b = a+(=b) e ( 2.1 )

-1
a/b = a¥(b ) ;e e (2.2)

For example, the set { 1,0 | with operations “exclusive or" { (+) }
and "logical and" { * } is a field because it satisfies all the six
rules menticoned above. In chapters three and four, vectors over this

field are used to represent a quantity called dyadic symmetry. Proper-
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ties of dyadic symmetry are then derived from the well known properties

of vectors over a field.

However, the fields that we are most familiar with may be number
fields. A zet of complex numbers, consisting of more than the element
0, is called a number field if the operations of addition { + } gnd
multiplicatien { x } on any two of‘the numbers yield & number of the
set. Examples of number fields are a) the set of all rational numbers,

b} the set of all real numbers, ¢) the set of all complex numbers.

Vectors over the field of real numbers will be used to represent a
block of pictorial data (in the spatial or transform domains). Proper-
ties of such blocks of data can be derived from the well known proper-

ties of vectors over a field.

2.2.2 Vectors over a field [81-83]

A point X 1in a plane can be denoted by an ordered pair of real
numbers. This point X or ( x ,x ) can be represented as a
two-dimensional vector or 2-veclorzand written as [ X ,X ]. In
general, an n-vector over F can be defined by definilioi 2.3, (In
this section, F is used to denote a general field with operations

* and +)

Definition 2.3:
An n-dimensional vector or n-vector X over F is an ordered set of

n elements x of F , thus
i
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The elements x , x , ..., ¥ are called respectively the first,
1 2 n
second, ... nth components of X.

Definitions of addition, subtraction, scalar multiplication and dot
product of vectors, as well as definitions of matrix and matrix
algebra can be found in every text book on vectors and matrices,
and will not ©be repeated here. Attention will be concentrated on
the concept of linear dependence of vectors which is essential for
the derivation of the concept of dyadic symmetry as well as of the
two new transforms. For convenience, vectors are column vectors as

in equation 2.3, unless specified otherwise.

Definition 2.4:

The m n-vectors over F

t

X = [ X 4, X 4, srey X ]

1 " 12 in t
X = [ X 4 X 4 «eny X

2 21 22 2n

: t
X = [x r X 4 +se, X ] ------------------ ( 2-4)
m ni m2 mn

are said to be linearly dependent over F if there exist m elements

k ,k, ¢eee, k of F, not all zero, such that
1 2 m

k*x + k*x + sesea T k*xl = O ——————————————— ( 2.5 )
11 2 2 m m
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Otherwise, the m vectors are said to be linearly independent. If in

equation 2.5, k # 0, we may solve for
i

X = -§{ k*X{ + ....+ k *X + k *X + ...+ k*X} /K
i 1 1 i=1 it i+ i+ mom i

Therefore, the following properties exist

(a) If r vectors are dependent, any of them may always be expressed
as a linear combination of the others.
(1) If 1r vectors are independent then none of them may be expressed
as a linear combination of the others.
(e) If r vectors are independent while the set obtained by adding
another vector X is dependent, then X can be expressed as a
T+i r+1

linear combination of X , X, «cvee, X

1 2 T
Furthermore, the following well known properties will be stated without
proof.
(d) If among the m vectors X, X, ..., X {equation 2.4), there
ig a subset of r < m vectors which1arezlinearlymdependent, the vectors
of the entire set are linearly dependent.
(e} If the set of vectors (equation 2.4) is linearly independent so
also is every subset of them.

(f) A necessary and sufficient condition that the vectors {equation

2.4) be linearly dependent is that the matrix

]- X svesses X -|=
i 11 in
] |
|I .n "o s - LN ) }
[X] = t| *  sesevew ses | mgl’l ---------- (27)
| X ssnese X :
I mt mn j
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of the vectors (equation 2.4) be of rank r < m. If the rank is m,

the vectors are linearly independent.

If m is greater than n, the m vectors (equation 2.4) must be lin-
€8r1y dependent as the rank r of the matrix (equation 2.7) must be

less than m. In other words, we have property (g).
(g) ‘There are at most n linearly independent n-vectors.

An n x n matrix has an inverse if its rank r equals n. Property (1)

with m=n can therefore be rewritten as

{h) The matrix (equation 2.7) has an inverse if and only if the

vectors (equation 2.4) are linearly independent.

2.2.3 Vector spaces and vector bases

Definition 2.5:
Any set of n-vectors over F which is closed under both addition and

. —
gcalar multiplication is called a vector space.

Therefore, if X , X, ..., X are n-vectors over F, the set of all
1 2 n
linear combinations

k* + k*X + ...+ k*X Kk €EF  cmmm-me ( 2.8)
1 1 2 2 _ mom i

is a vector space over F.

Definition 2.6:
By the dimension of a vector space V is meant the maximum number of
linearly independent vectors in V or, (what amounts to the same thing),

the minimum number of linearly independent vectors required to span V.
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A vector space of dimension r consisting of n-vectors over F will be

r n
denoted by V (F). When r=n, V (F) will be used in place of V (F)

n n n
for simplicity.

Definition 2.7:
T

A set of r linearly independent vectors of V (F) is called a basis
n

of the space.

Any r linearly independent vectors of a space will serve as a basis

and each vector of the space is a unique linear combination of the

r
basis vectors of V (F).
' n
The n n-vectors
t
E = [1,0 «...,0, 0]
1 b
E = [0,1 «.,0,0]
2
t
E = [0,0, eou, 0, 1 ] mmommmmme e ( 2.9 )
n

are called elementary or unit vectors over F. The unit vectors E ,
1
E, «e+s, E constitute an important basis, known as the unit basis,
2 n
for V (F). Every vector X = [ X y X 3 esey X ]t of V (F) can be
n 1 2 n n
expressed as

The components x , x , +¢+y X of X are now called the cocrdinates
1 2 n
of X relative to the unit basis. Unless stated otherwise, a vector is

always given relative to the unit basis.
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Iet T, T, «es, T Dbe the basis vectors of another basis of V (F)
1 2 n n
and

Then the scalars ¢ , ¢ , eceeey € are called the coordinates of X
1 2 n
relative to the T-basis and are represented by vector C :

¢ = [ e,e, «e, ¢ jt ------------------ { 2.12 )

1 2 n
Equation 2.11 now can be written as

X = [TI’T2'""Tn] ¢

or in a more concise form

X = [PT] € commmm el ( 2.13 )
e
T
+
To
where [ T ] = .
T e { 2.14 )
T
| o

Let W, W, «., ¥ be yet another basis of V (F}, and the coor-
1 2 n n
dinates of X relative to the W-basis be represented by the vector

t
X = [ w,w, coey w ] el ( 2.15)
W 1 2 n
Therefore, we have
t
X = [ W]°X s ( 2.16 )



Chapter 2 36

Equations 2.13 and 2.16 imply

[r1%c¢ = [wi'x
1W
.
or c = ([ 1w TP X o e (2.17)
W
2.3 LINEAR ORTHOGONAIL TRANSFORMS

2.3 One~dimensional linear orthogonal transforms

Consider a block of n pels or a subpicture. If we repregsent it as
a vector X in a vector space V (F) , then the vector space V (F)
n n

containg all the possible subpictures. From now on, unless specified

otherwise, F refers to the field of real numbers.

In transform ccding, vector X will be transformed into vector C

of n coefficients by a transform [ T ] at the transmitter

then each of the coefficients will be sgeparately coded and sent
through the channel. At the receiver, X 1is obtained by taking the

inverse transform of C.

The transformations between X and C in equations 2.18 and 2.19
are in fact simply changes of coordinates between the unit basis and
bagis [ T ] as given by equation 2.14. The elements of the vector X

are the coordinates of the subpicture with respect to the unit basis,
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whilst the coefficients in vector C are the coordinates with respect

to the basis [ T ].

If the basis is orthogonal, then we have

t
(r] [1]

t
or [ T ]

[I]1
[T i -------------------- ( 2.20)

where [ I ] is an identity matrix. In this case, the basis vectors of

[ T ] are orthonormal to each other. That means

Also, the energy of the transform coefficients and of the pels is the

same.

Fig.2.1 gives an example showing how a vector can be represented with
respect to the unit basis and to another basis. Equation 2.18 indi-

cates that the ith coefficient ¢ is the scalar product of the ith

i
bagis vector T and the signal vector X.
i
t
e = T X emcemmmmemcemecceeeea ( 2.22 )
i i

Equation$2.19 and 2,20 imply that the signal vector X equals the

summation of the basis vectors weighted by the coefficients.
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Fig.2.1

Representation of a fl-vector with respect to the unit basis with

coordinates ( xo, xl, cens %o )} and another bhasis with coor-

dinates { Cqr Cpe sotr c, Y.
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In transform coding, T 1is often interpreted as a sbectral function,
i
and the coefficient ¢ is the corresponding spectral component
i
indicating the amount of energy of the spectral function T  1in the
i

subpicture. In this case, i runs from O to n-t, and relates to

LL

sequency (generalised frequency). Harmuth {100] defined "sequency" for
any type of function as one-half thé average number of zero-crossings
per unit time. The definition of sequency coincides with that of fre-
quency when applied to sinusoidal functions. Later, Yuen [112] pro-

posed the term "zequency"” to denote the number of zero-crossings of

Walsh functions.

2.3.2 Two-dimensional linear orthogonal transforms

In this section, only separable two-dimensiornal orthogonal trans-
forms are described. A more general approach to two-dimensional
transforms is given by Pratt [84], chapter ten. Consider a block

of nxn pels

[x] [ xps xp0 o0 X,

where the column vector X; represents the ith column of the matrix
[ x . & seperable two~dimensional transform can be performed on

[ X ] in two steps:

(1 (x] =T[Tr10x]
[ X ] is first transformed into [ K ] by a pre-multiplicaticon of

[ X ] by [ T ]. This in fact converts every X (a column vector

of [ X ]) into K;» & column vector of [ x 1.
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%
2) [e¢]) =[x])[T]

[k ] is then transformed into [ ¢ ] by a post-multiplication of

t
[ K ] by [ T ]17 .This is to convert every K (a row vector of
t J
[ X ]) into €, a row vector of [ C ].
J
t t
C = K [ 7] el ( 2.25)
J J
Fquations 2.24 and 2.25 give
t
(el = [T10X1[T] —mmmcmcmmecmmocmcmamemeees ( 2.26 )

Hence (using equation 2.20), the inverse two-dimensional transform is
: .
[x] = [ollc]lr] cmmemmmmmmmmc e ( 2.27 )

Let T and T be the 1 th and j th row vecteors of [T]. Equation 2.26
. i J
indicates that the (i,j)th coefficient is

ij i J

and ¢ can thus be viewed as the scalar product of [ X ] and the
1]

basis picture [ T Tt ]. Equation 2.27 implies that the data matrix
i ‘
[ X ] equals the summation of the basis pictures T Tt weighted by
i3]
the coefficients ¢ .
ij
n n t
[x]= = = @ T T —cmmmmccmmmmmmmmccaeean ( 2.29
i=1  j=t ij 1 J

Figs.2.2 and 2.3 show the basis pictures of the 4x4 Walsh trans-

form and the unit basis. Comparisons between equations 2.28 and 2.29,
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Fig. 2.2

The Walsh transform basis-
pictures for n=4,
Rlack=+l ; white=-1,

L1} mja
U e e

=

Fig. 2.3

B_
|
|

_

The unit basis basis-

pictures for n=4.

. . Black=+1 ; white=-].
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2.22 and 2.23 show that the one- and two-dimensional transforms are

in fact very similar.

2.4 TRANSFORMATIONS

2.4.1 The optimum transform

Consider a picture which is divided inte N n-vectors, X with

i
mean vector X. With a transformation [ T ], each X - X
i
is transformed into C . Define the covariance matrix of X as
i i
1 N _ _t
fex] = —  (X-X)(X=-X) cmmmmmemeam ( 2.30 )
N i={ i i

The covariance matrix [ CC } of C can bhe expressed in terms of

i
[cx] ana [T 1.
1 N t
[cc] = — b C ¢
N i=1 i i
1 N _ _ %
= — = [M&-0([]Ex-%)
N i=1 i i
1 N o _t t
= — = [p]GE-%X) (x-%)[r]
N i=1 i i
Therefore, we have
t
Lecd = [23lex]lo] —mmmmmmmmmeroeees ( 2.31 )
The (i,j)th element of [ CC ], 8 , 1is the covariance between ¢
ij i
and ¢ .
J

A transformation is optimum if it can transform n pels into completely
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uncorrelated c¢oefficients. In other words, we have the following

definition for the optimum transformation:

Definition 2.8:
The optimum transformation of a picture of covariance matrix [ CcX ]
is the one whose covariance matrix of the transform coefficients

[ cc ] is a diagonal matrix.

The above definition implies that the basis vectors (row vectors)
of'the optimum transform are the eigenvectors of [ cX ]. Further-
more, the optimum transform under definition 2.8 results in the least
normalized mean square error ({equation 4.6) and has the best energy
packing ability (equation 4.5) [109]. Since different images have
different covariance matrices [ CX ], there is no single unique
optimum transform. Much of the effort in studying the optimum trans-
form has been directed at that of the first-order zerc-mean, unit-
variance Markov process whose covariance matrix is given by the Toe-

plitz matrix

n-1

1 9 L I N I N B I I A p

p 1 p LI R B I O I L O B )

{ex] = —mme( 2,32 )

LIC LI NN B BT B B N R N B BB R I R I B B R I B )

e
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where p is the adjacent element correlation coefficient. Although
the eigenvectors of [ cxX ] are known analytically [85]; there is no
known fast algorithm to transform a vector of data. For high order
Markov processes,closed-form solutions are still not known in general,

and the possibility of fast algorithms seems even more remote.

2.4.2 Suboptimum transformations

2.4.2.1 Sinusoidal transforms {86,87]

Consider the parametric family of matrices

J(k ,k ,k k) = - 2.33 )
1 2 3 4 e e e

-a 1 -8

k a ~-a 1-k a |

2
o/(14p )

If we define a

2
(1-p )/ (14p ) —omommmmemn e ( 2.34 )

™w
"

then we have

[ ex ]

2 -1
8 [J3(p,0,0,0)]

which is the covariance matrix in equation 2.32 of the stationary,

first-order Markov process. Since the eigenvectorz of a matrix
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and eigenvectors of 1its inverse are identical, the sparse matrix
[ J(p,p,0,0) ] in equation 2.33 can be used to compute the cptimum
transform or, what is the same thing, the set of eigenvectors. Simi-
larly, the sinusoidal transform family is defined on the sparse
matrix [ J(k ,k ,k ,k ) ].

1 2 3 4
Definition 2.9:
The sinusoidal family of unitary transforms is the class of ortho-
normal sets of eigenvectors T generated by the sparse matrces
[ 7(x ,kx ,kx ,k ) ] for those vaTues of k¥, k, k=k and a such

1 2 3 4 T2 3 4
that the matrix is positive definite.

In the other words, a sinusoidal transform [ T ] is one that satis-

fiea equation 2.35 where [ D ] is a diagonal matrix.

[ D] Ced [a(k ,x kx,kx)] [T ]t ~—=( 2.35 )
1 2 4

3
Table 2.1 summarizes some of the sinuscidal transforms. In this
table, T , the m th row vector of [ T ], represents the mth eigen-

m
vector.

In image processing, two of the most important sinuscidal transforms
are the EDST-1 (transform 3) Qnd EDCT-1 (transform 4) which are com-
monly known a3 the DST and DCT respectively. Figs 2.4 and 2.5 show
the basis functions of the 16x16 DCT and DST. The DCT is asymptoti-
cally close to the optimum transform of the first-order Markov pro-
cess whose covariance matrix is the Toeplitz matrix (equation 2.32),

and at present is regarded as the best suboptimum transform in conven-
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No J HATRIX TRANSFORM EIGENVECTORS EICENVALUES 8 8, CORMTING
PARAMETERS T, Leaksh A DISTAKCE
Lok ®T for 1*F ordec . Sotution of a o )
ek . =0 statfonary Markov o sinfu ked ) Trunscendental
374 Procass Equation
IR - H 4, 2
2 kp~k, =0 DFT ./&" exp + [“—"{-'-'—N-U-Q‘—-')} 1-1a co.z“N‘" ! 2«1(1+, by Bo'(140°)
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3
A mkrt m 22 24
=k, =0 EVEN SINE -1 F‘— ain 8 124 coesls 2% bp o
3 172 + N+ a p
kyok =0 (EDST-1) WL NEL w1
K kel EVEN COSTHE -1 el LcksN 1-20 coelZ 0T | 215707 w132
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4 kyvk, <0 jiz:'“' (zk-uugn U,
me2, ... N
al - 2%=1)mn nyy 22 2 4
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kyrk 20 {0DST-1) e 2N+ LTS3
k=0, kg-1 | oObD SDVE -2 2ok 2a 22, 212 2424
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g Ll i 2 (2k=Lymy 1-2¢ cos (L4p) "o +ar p 2(l4p) " +2p o
kymky =0 (o0sT-3) 7 Mn SRt 21
10 | ky=t+l, ke-l | EVEN OOSTNE -2 ... (2k=1)(Pm-Dp _ {2m-13 7 2 4 %
kg-k‘-ui (EDCT-2) o8 L_%L_L N 1-2a coni 2o (l+pz) o {1+p")
ke-l, k,=+1 | EVEN SINE -3 'F_' (2%-1) (2m-T) - 22-1 2., 2 LY
11 :-k -';z pratt 2 ata 2 1-2q col-(T(}—r[ 28 C145) 4a'(l4pD)
1%

Table 2,1 ¢

(after reference [87] )

Some members of the sinuscidal transform family.
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Fig. 2.4

The DCT basis functions
for n=16.

Fig. 2.5

The DST basis functions
for n=1l6.
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tional transform coding saystems. On the other hand, if an n-dimen-
sional vector X is a sample of the first-order Markov process, it has

been shown that it has a decomposition [31]

o b
I = X + X e { 2.3 )
Px ]
b -1105
where L T T R ( 2.37)
| X I
L o)
x and x are sampled data immediately before and after vector X.

0 n+1
The matrix [ Q ] is a symmetric, tridiagonal, Toeplitz matrix with

unity along the main diagonal and -of along the other two diagonals,
where o = 9/(1+p2), and p 1is the adjacent element correlation
coefficient. Xb is called the boundary process whilst Xo is called
the residual process, The DST is the optimum transform of the residual
process, Xo. The class of coding schenes that makes ugse of this fact
is called recursive block coding. Its coding procedures are given in

section 1.3.3 and it has been shown to have better performance than

conventional transform coding schemes.

2.4.2.2 Other orthogonal transforms

The most important non-sinusoidal orthogonal transform is perhaps the

Walsh transform which only has element values of +1 and -1. Therefore,
conversion of a signal vecter into the Walsh transform domain requires
only additions and subtractions. In addition, there are fast computa-
tional algorithms for the Walsh transform. The simplicity and ease of

implementation of the Walsh transform has resulted in a wide range of
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applications [102—105] and investigations into its properties[88-90].
The generation and the properties of the Walsh transform are covered
in chapter three. Fig.2.6 shows the basis functions of the 16x16

Walsh transform.

e b e

l'-Il"lf—l_l'_|
| A g S gy S |

S0
O
o OO o Y v T |
[ gy WD ) & gu 4w puy &

slinlemiiasUallle
| S 5 6 S R 9 e

n|eannmMe
o U

hn nen-no Fig.2.6
oLty uwIag
H-RRAER
ey The Walsh transform

U Uuoy i
ARARR basis funciions for

HHRAH n =16.

Another orthogonal transform is the Haar transform which has an even
smaller computational requirement than the Walsh transform. It is

derived from the Haar matrix [91}, which consists of plus and minus
ones and zero elements. An example of an 8x8 Haar transform kernel

is given below.

"t 1t 11111 1]

t 1 1 1 -1 -1 -1 -1 |

1 J2 /2-/2-/2 0 0 0 O |

[ Haar ] = — | 0 0 0 0/2 /2-/2-/3 | cmmmoimcan- ( 2.38 )

/8 2-2 00 0 0 0 0 |

0 0 2-2 0000 |
.ooooz-zooi

L O OOOU OO 2-2 |

Fxtensions to higher-crder Haar matrices can be formed following the
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structure indicated by equation 2.38. The basis functions of a 16x16
Haar transform are shown in Fig.2.7. The Haar transform can be re-
garded as a sampling process in which basis vectors of the transform
matrix sample the signal data with finer and finer resolution (in-

creasing in powers of two).

[—
|
—
| S—
—
]
=)
J
—
) v—
—
| S
o |
) —
5
)
n
b
n
-
n
J
0 Fig.2.7
l-ll...l
n The Haar transform
ml basis functions for
- n=16.

Both Walsh and Haar matrices were first developed by mathematicans
and then borrowed for imege processing.The first orthogonal transform
designed specifically for pictorial data is the slant transform (the
development of the slant transform can be found in section 1.3.1). A
me 2m slant transform jis designed to satisfy the following criteria:
(1) one constant dec basis vector, {2) one slant bagis vector monoto-
nically decreasing in constant step size from a positive level to a

negative level, (3) the sequency property (section 2.3%.1), (4) a fast

computational algorithm, Slant matrices of order 2 and 4 are
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3//5 1//5 -1//5 -3//% j
-1 -1 {
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In general, the slant matrix of order n can be derived from the slant

matrix of order n/2 via equation 2.41.

-t o jfo]l 1ot oo jlo] 7
1
a b ! 1 -a b
n nj I n n
------- [ T e L p——
o] (1) 1 [o]} (1] { [s] | [o] ]
1 V' nf2-2! n/2-2 | | n/2| !
[8 1= ae} mmana- b Fommmm o e Frmmm——— | =" tmmam i
n /2 o1 {[o] | o-1 { o] [o] | [s]
i i | l ! |
] 1 L [ n/2]
-b a I E b a
nn : : n n,
_______ B rn e an o et e e T —
o] {1 | [o]l I-[1]
L | n/f2-2| |  n/2-2 ]
--------------------------------- ( 2.41 )
where
r 2 Y1/2
3n
B ] e | e e e mm e e e 8 v e e e e ( 2042 )
2n 2
[ 4n -1
2 h/2
n -1
b =l —— ] e ( 2.43 )
2n 2
. 4n -1 y

Fig.2.8 shows a 16x16 slant transform.
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JlJ}f_ﬁ1—ﬂJ Pig.2.8

T, Py
1= Sl & Jaglh = |
Py The slant t?ansform
= M [ basis functions for
SRR n=16. '

2.5 OPTIMISATION OF PARAMETERS

fn transform coding, data compression is essentially achieved by two
processes. The first one is the transformation that packs most of the
signal energy into a few coefficients. The second one is the quanti-
zation process in which the quantization error should be kept to a
minimum. Therefore, to obtain efficient transform coding schemes
which, whilst remaining relatively simple in implementation, achieve
significant reduction in bit rate, both processes have {0 be optimum.
Thus we have to choose the right transform and the right block size

to optimize the firat process; and choose the right quantizer and allo-
cate a proper number of bits to each coefficient to optimize the second.

The following four secticns are devoted to these four considerations.

2.5.1 Selection of transform

The transformation that offers the best performance is the ¥LT which
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has the best energy packing ability, the highest ability to decorre-
late signal data and results in thelleast mean square error. However,
the XLT is data dependent and necessitates the computation of eigen-
vectors which creates many problems and prevents it from being used in

practice.

In practice, the choice of transformations lies very much between the
Walsh transform and the DCT depending on whether or not processing
speed is paramount. In chapter four, two new transforms are proposed,
which can be wused as substitutes for the Walsh transform. The new
transforms have virtually the same complexity and computational re-
quirements as the Walsh transform but with performance which lies
between that of the DCT and the Walsh transform. On the other hand,
the discrete sine transform (DST) was found to0 have excellent perfor-

mance when used with recursive block coding (section 1.3.3).

2.5.2 oelection of block size

Mean-square error performance should improve with increasing block
gize (n), since the number of correlations considered increases also.
However, most pictures contain significant correlation between ele-
ments for only about 20 adjacent pels, although this number depends
strongly on the amount of activity in the picture. Therefore, it

seems very lititle can be gained by using block sizes larger than 32.

This can be verified by Fig.2.9 which contains a plot of the mean-
square error for an image with a Markov process covariance as a

function of block size for various transformations [22]. 1In this
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rlot the 25 percent of coefficients with the largest variances were
selected, and the remainder set to zero. From the figure, it is seen
that the rate of decrease in mean square error for large block sizes

becomes quite small for sizes larger than 16x16.

When subjective quality is the performance criterion, it is found
that the result appears to be essentially the same for block size 4
or larger [26]. Furthermore, as given in section 1.3%.3, large block
sizes introduce +two distinct disadvantages --- the requirement of
large buffer memory and difficulty in achieving adaptation within a
block. However, it should be noted that the choice of block size
also depends on the kind of coding schemes used. For examplie, hybrid

coding maintains its performance for small bdlock sizes by taking into
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account interblock redundancy. In general, an optimum block size will

be between 4 and 32.

2.5.3 Bit allocation

It is stated in rate distortion theory that the cutput of a source
can be transmitted with average distortion D if the transmission
rate is larger than the function R(D). TFor a source with Gaussian
probability density function and mean square distortion measure D,

the relation between D and R(D) 1is given by equation 1.1.

R{(P) = log o//D o> /D
= 0 0 /D e (1.1)
Equation 1.1 means that R{D)-bit quantization of a coefficient having
variance (52 would result average distortion D. Therefore, given a
distortion D,equation 1.1 can be used to determine the number of bits
needed for the transmission of that coefficient. Usually, bits are
gllocated to the coefficients such that all the coefficients receive
the same amount of distortion. However, in some schemes which aim at
a better subjective quality instead of mean square error performance,
the distortion allowed for each coefficient is modified according to a
function H(w), the relative sensitivity of the human visual system to
spatial light intensity distribution (section 1.3%.3). Also, in most
cagses, T or 8 bits are allocated to dc coefficients regardless of

equation 1.1. This is because 7 or 8-bit quantization of the d¢ coe-

fficients is enough to make the quantization distortion imperceptible.

Exact equalization of quantization distortion for each ac coefficient



Chapter 2 56

¢ requires R (D), the number of bits(allocated to ¢ , to be a real
nimber,but the iumber of bits allocated to a coefficie;t has to be an
integer. Therefore, exact equalization of distortion is impossible in
practice. However, the following steps can be used to achieve the
¢losesat possible equalization of distortion [96]:

(a) The Quantization distortions of the ac coefficients for different
numbers of hits are determined using equation 1.1. A bit counter is
then set to zero.

(b) Assign one bit to the ac coefficient with the largest distortion,
thereby reducing the quantization distortion of that coefficient by
6db. Increment the bit counter by 1.

{c) If the bit counter equals the total number of bits available,

stop, otherwise go to step (b).

2.5.4 Selection of quantigzer

Given the probability density function (pdf) of & signal, the
decigion and reconstruction levels of the gquantizer that minimizes
the mean square quantization error can be found [92-94]. Usually,
the pdf of transform coefficients is approximated by a function and
then the quantizer that is optimum for that function is used.
Ghanbari and Pearson [§5] found that the distribution of the Walsh
tranaform coefficients is approximated by a Gamma pdf. On the other
hand, Chen and Smith modelled the pdf of the dc and ac DCT coeffi-
cients as Rayleigh and Gaussian densities respectively. However,
sucessful results have been obtained by using a logarithmic model for
the variances of ac transform coefficients [56,57]. For example, from

a study of the histograms of the DCT coefficients of the 'Girl'
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picture (Fig.4.8a) as shown in Fig.2.10, it can be seen that the
distribution of the ac coefficients is closer to a Laplacian than a
Gaussian distribution. Therefore, it is believed that a Laplacian
quantizer is more appropriate than a Gaussian quantizer for the ac

coefficients [96].

On the bther hand, the dc coefficients are simply the scaled suns
of the pel levels within a block, so the distribution of the dc coe-
fficients is closely related to that of the picture. Since pictures
can have any distribution so may the dc coefficients, and therefore,

a uniform quantizer is more suitable for their quantization.
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CHAPTER THRETE

DYADTIC SYMMETRY AND

THE WALSH MATRICES

3.1 INTRODUCTION

In this chapter, a unified matrix treatment of Walsh transforms using

the concept of dyadic symmetry is proposed. This unified treatment

allows the straightforward derivation of a simple equation for the gen-
eration of Walsh matrices of different orderings, various re-ordering
schemes and various fast computational algorithms, with the intention
of providing a better understanding of the Walsh transform. Further,
since the theory relates to a2 binary field with ‘logical and' and
modulo two addition as operations, it allows both the generation
Walsh mat?ices of different orderings, and re-ordering schemes, to be

carried out using simple logic circuits.

A historical note on the Walsh-Hadamard matrix will be given in the
next section to describe the development of the Walsh-Hadamard trans-
form as well as to clarify the nomenclature. In section 3.3, symmetry
and dyadic symmetry within a vector are first defined, and then the
properties of dyadic symmetry derived. The results obtained are then
used in section 3.4 to obtain a non-recursive equation to generate
binary Walsh matrices of different orderings. In section 3.5, the

equation is wused to derive some previously known results, including
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re-ordering schemes between different orderings, and the generation
of Walsh matrices using Rademacher functions. In section 3.6, dyadic
symmetry decomposition is defined and then used to generate various

fast computational algorithms for Walsh transforms.

3.2 THE WALSH-HADAMARD MATRIX --- A HISTORICAL NOTE

It is well known that any waveform , x(t) ,having a finite energy in
*

an interval, say [0,1) "y can be expressed as a weighted sum of a

complete set of orthogonal functions. For example, if the complete

set of orthogonal functions is l exp( jemtk) }, then we have the famous

Fourier serles representation:

© -jomtk
x(t) = = c .e

k=- %k

1 jemtk
¢ = x(t).e dt te[0,1)
k 0

In 1922, H.Redemacher [77] devised an incomplete set of orthogonal
functions which were then called Rademacher functions { Radi(t) }.
Rademacher functions are defined within the half open interval [0,1),
and take the values +1 and -1. Fig.3.1 shows the first four Radema-
cher functions. The first Rademacher function Rad {t) is a unit

0]
pulse.

Rad () =  +t telo0,1)
0

R (t), i 2 1 ,can then be generated using the recursive equations
i

*1  t€[0,1) means Ostcl
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Rad (t/2) = Rad (t)
i i-1
Rad (t/2+1/2) = -Rad (%) te [0,1)
i i-1
Rad (t)
0 1
0 t
0 1
Rad (t)
1 t
0 t
0 1
Rad (t)
2 1] —
0 t
0 1
Rad (t)
3 11—
0 t
0 1

Fig.3.1 The first four Rademacher functicns

The following year, J.L.Walsh added more new functions to the Radema-
cher functions and formed a complete orthonormal set of rectangular
functions, now known as Walsh functions [119]. However, attention has
been mainly concentrated on Fourier analysis, leading to the develop-
ment of +the fast Fourier transform (FFT) and a complete theory for
discrete systems (excellent reviews of the progress made in these

areas can be found in the papers by Jury [97], and Cooley et &al [98]).
In the late 1960's, the fast Fourier transform (FFT) was first applied

to digital image coding [99}. At about the same time, Harmuth [100],
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using the Walsh functions as an example, generalized the concept of
frequency (for sinusoidal functions only), to 'sequency' for any type
of function. W.K.Pratt and others then used the Walsh transform,
derived from the Walsh functions, in place of the FFT for image

coding [101].

As for the Walsh functions, the Walsh matrix contains only the values
+1 and -1, Therefore, conversion of a signal vector into the Walsh
transform domain involves only simple additions and subtractions.
Moreover, there exists a fast Walsh transform algorithm similar to
that of the fast Fourier transform, and therefore the computational

requirement of the Walsh transform is much less than that of the FFT.

In the early 1970's, the simplicity and ease of implementation of
the Walsh transform resulted in a wide range of applications [102-5},
including analysis, filtering and data compression of speech, elec~
trocardio-, and electroencephalograms, and other signals, as well as
for the muitiplexing of communication channels and the processing of
images for pattern recognition, data compression and image enhance-
ment. All these processes are performed in the sequency domain in
much the same way as they would be in the frequency domain. For
pattern recognition or waveform analysis, one can search for recog-
nizable configurations of Walsh coefficients. For data compression,
instead of sending the signal, one can transmit Walsh coefficients
with more bits allocated to those having larger variances. Section 1.3
has given a detailed review of this technique. To filter and enhance

an image, each coefficient is multiplied by an appropriate function
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of its sequency (and, possibly, added to some linear combination of
other coefficients) before inverse transformation back to the signal
domain. To multiplex several signals that have constant amplitude
over a peried T, carrier Walsh functions whose amplitude represents
each waveform are added together and sent through the channel. The
orthogonal property of Walsh functions is then used to extract the

signals at the distant end of the channel.

The effectiveness of most of these applications however, especially
filtering and data compression, depends on one single important
property. In the case of the Walsh transform, it is the ability to
pack the signal energy into a few transform coefficients. For the
Walsh functions, it is the ability to represent a signal waveform

accurately using as few terms as possible.

Unfortunately, the Walsh functions and Walsh transform are inferior
‘to TFourier series representation and discrete Fourier transform in
that respect [106]. It is found that, to represent a smooth signal,
far more terms are required in the Walsh series representation. Even
for discontinuous signals, the Walsh series may also require a lot
more terms. On the other hand, many other transforms have been found
to have higher energy packing ability than the Walsh transform. Thus,
in the late 1970's, the interest in applications of the Walsh funct-

ions and Walsh transform was diminishing.

Up to this time, however many fruitful results had been found. These

results can be generally grouped into four areas:
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1. New and Dbetter methods of generating Walsh matrices and Walsh
functions.

2. New and more efficient fast computational algorithms for the Walsh
transform.

2. DBetter understanding of the properties of Walsh functions (usually
obtained by comparison with Fourier analysis).

4, Special applications and implementation methods.

During the development, different researchers adopted different no-
menclatures and so created a lot of confusion. In this thesis, "Walsh
functions” will refer to the set of orthogonal functions proposed by
J.L.Walsh. Many other methods have also been found to generate the set
of Walsh functions [107—8], some of which have individual functicns
ordered in different ways. Generally, the set of Walsh functions, and
its discrete counterpart the Walsh transform, are classified into

three groups according to their ordering.

1. Sequency-ordered Walsh functions and ftransform [109]:

These functions are also known as zequency-ordered Walsh functions
[112] walsh-ordered Walsh functions [110] or simply Walsh functions.
Their discrete counterpart, the sequency-crdered Walsh transform, is

also called the Walsh transform [114].

2. Dyadic-ordered Walsh funciions and transform [109]:

These functicns are also known as Paley-ordered Walsh functions, and
their discrete counterpart is alsoc called the Paley-ordered Walsh

transform (110].
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3. Natural-ordered Walsh functions and transform [109]:

These functions are also known as Hadamard-ordered Walsh functions
[110] or the binary Fourier representation (BIFORE) [111,113]. Their
discrete counterpart, the natural-ordered Walsh transform, is some-
times called the BIFORE transform [111] or simply the Hadamard trans-

form [111,113].

On the other hand, the Hadamard matrix jis defined as a square matrix
of only plus and minus one whose rows (and columns) are orthogonal to
cne another. Hadamard functions, their counterpart in the continuous
case, are also called Walsh-like functions [115]. Therefore, under
this nomenclature,Walsh functions and transforms are particular cases
of Hadamard functions and transforms.The lowest order Hadamard matrix

is two by two and unique as shown below.

Methods of generating Hadamard matrices of other sizes can be found in
the literature [115-6,118]. For any block size, it is always possible
to derive from each Hadamard matrix a limited number of other Hadamard
matrices. The Hadamard matrices which can be converted to each other
by permutation of rows and by inversion of row signs are said to be
identical. For example, the following two Hadamard matrices are

identical.

1 1 1
-1 1 4
1 -1 -1
-1 -1 1

="
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In fact, +they are the natural-ordered and sequency~ordered Walsh
matrices. For a block size of four by four, there are only two non-

identical Hadamard matrices [117]. They are

——————
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I

——

¥
== —————
Y

I

. ek
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— e
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The number of non-identical Hadamard matrices rises guickly with the
block size. TFor a block size of eight by eight, the number of non-
-identical Hadamard matrices is already 432 [118]. From now on,
attention is concentrated on the Walsh functions arnd transform. As
the conversion between the Walsh functions and transferm are straight-
forward, so results discovered for one are always applicable to the

other.

Certain methods of generating Walsh functions were discovered by early

picneers [108,119,120]. Since then, many other methods have been found.
Some methods aimed at providing a straightforward derivation, some were
developed for variocus special purposes. One of the early attempts was
to define the dyadic-ordered Walsh functions in terms of products of
Rademacher functions [121-2]. This definition is convenient because Ra-
demacher functibns are simple and easy to remember, and their products
are easy to form. In 1964, K.W.Henderson [107] found two simple methecds
of generating the binary sequency-ordered Walsh matrix. One method uses
the gray code and Rademacher functions and the other uses the gray code
and the binary code. In the same paper, a method of generating the

natural-ordered Walsh matrix using only the binary code was given. 1In
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1968, in contrast to the Fourier transform, which can be defined by
linear differential equaticns of second order, H.F.Harmuth [100] found
a difference equation by which the sequency-ordered Walsh functions

could be defined.

In 1969, three more methods were proposed. P.A.Swick found a
simpler method of generating sequency-ordered Walsh functions of
any order by symmetry considerations [123]. W.K.Pratt and

others found a way to generate the Walsh transforms which can be
easily generalized to higher dimensions [101], and  J.L.Shanks
defined the dyadic-ordered Walsh functions using iterative equations
for his development of a fast computational algorithm for the Walsh

transform [124].

On the other hand, in searching for faster and more efficient methods
for the Walsh transform, researchers have found a number of different
fast . computational algorithms, wusually by suitably modifying the
Cooley~Tukey fast Fourier transform algorithm. In 1968, based on the
well known recursive structure of the natursl-ordered Walsh matrix,
Whechel and Guinn [125] derived a fast computational algorithm for the
Walsh transform. Later, Shanks [124] derived an iterative equation for
the dyadic-ordered Walsh matrix, and based on this equation, developed
another fast computational algorithm. Whechel and Guinn's algorithm
yields the transform coefficients in natural order while Shanks's algo-
rithm results transform coefficients in dyadic order, which is the

natural-ordered form after bit reversal.
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Most applications, however, require transform coefficients arranged
in sequency order. Therefore, the above two fast compuational algo-
rithms require an extra process to re-order the transform coeffi-
cients to give a set of sequency-ordered transform coefficients.
Conversion from dyadic-ordering to sequency-ordering is a simple
permutation based on the gray code. Conversion from natural-ordering
is uswally done first by conversion to dyadic-ordering using bit
reversal and then finally to sequency-ordering using gray code

permutation [110].

In 1972, Mané [126],by suitably modifying Shanks's algorithm, derived
a fast computational algorithm which resultsin the sequency-ordered
transform coefficients when the input data is in bit-reversed order.
At about the same time, Fino [127) and Fontaine [128] both produced
fast computational algorithms which accept data in normal order and
result in transform coefficients in sequency order. However, the
algorithms require an extra N auxiliary storage locations (N is the
number of input data points) which may eliminate any computational
advantages. Larsen [129] later discovered a fast computational algori-
thm which was regarded as complementary to Manz's algorithm. Larsen's
algorithm shares the advantages of Manz's algorithm but differs from
it in that it accepts data in normal order and returns the transform

coefficients in bit-reversed sequency order.

Throughout the development of Walsh transform theory, different no-
menclatures and different methods for the generation of Walsh trans-

forms have been adopted, leading te both rediscoveries [130—1], and
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to a certain degree of confusion [132-3]. Attempts have been made,
therefore, to unify the nomenclature and Fino and Algazi produced a
unified matrix treatment to provide a common framework for all areas
of interest [134]. They defined Walsh itransforms having different
orderings using the Kronecker mgtrix product and various permutation
matrices, such as perfect shuffling and block diagenal matrices. From
these definitions, wvarious fast computational algorithms for Walsh
transforms,and the variocus re-ordering schemes,were derived by matrix
manipulation. However, these definitions of Walsh transforms are more
complex than most of the conventional ones. A good understanding of
the properties of the various types of permutation matrices and the
Kronecker product are also required to derive the various fast compu-

tational algorithms and various re-ordering schemes.

In this chapter, an alternative unified matrix treatment which is de-
fined for the binary Valsh matrix instead of for the Walsh transform
is proposed. Each element of the binary Walsh matrix is O or 1 and
the conversicn between the two type of matrices can be obtained from
the transformation: { 1,-1 } in the Walsh matrix <--> { 0, 1 } in the
binary Walsh matrix. This unified treatment allows the derivation of
a simple equation for the generation of Walsh transforms of different
orderings, various re-ordering schemes and various fast computational
algorithms, within the same framework, by using the concept of dyadic

symmetry.

In the next section, symmetry and dyadic symmetry within a vector are

first defined, and then the properties of dyadic symmetry derived.
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The results obtained are then used in section 3.4 to obtain a non-
recursive equation for the generation of hinary Walsh matrices of di-
fferent orderings. In section 3.5, the equation is used to derive

some previously known results, including the re-ordering schemes bet-
ween different orderings, and the generation of Walsh matrices using
Rademacher functions. In section 3.6, dyadic symmetry decomposition
is defined and then used to genefate various fast computational algo-

rithms for Walsh transforms.

3.3 THE BASIC THEORY OF DYADIC SYMMETRY

In this section, basic definitions of even and odd symmetry are

given. Attention is then concentrated on the n-{ dyadic symmetries
among the numercus possible symmetries within a vector of n elements.
The properties of dyadic symmetry are derived and an 8x8 Walsh trans-

form is then generated as an example of the application of dyadic

symmetry.

3.3.1 The basic definition of symmetry

Definition 3.1:

(1) A particular type of EVEN symmetry is said to exist in a vector
of n elements if and only if the n elements can be divided into n/2
pairs of elements of the same value.

(2) A particular type of ODD symmetry is said to exist in a vector
of n elements if and only if the n elements can be divided into n/2

pairs of elements of the same magnitude and opposite =sign.
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The above definitions suggest that n must be an even number, and the

relation between n and the possible nmumber of even symmetries existing

in a vector of n elements is

P=(n-1) (n=3) (0=5) eve | cmmmmcc e ( 3.1)

For, let V be the vector [ a ,a , a, +.., 8 ]. There are n-t

1 2 3 n
ways to form a pair after picking one element arbitrarily, n-3 number
of ways to form ancther pair, and then n-5, n-7 and so on. Table 3.1

lists some values of P and n.

n P

2 1
______; _______________ ; ———
""" s 105
T 2027025
s tg w0l

Table 3.1 : P is the number of even symmetries
which exist in a vector of n elements.

3.3.2 The basic definition of dyadic symmetry

Definition 3.2:
m
A vector of 2 elements [ 8 , 8, «eey & ] is said to have

0 1 oM
the i th dyadic symmetry if and only if

J J(+)1
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where

(1) (+) is 'exclusive or'

(ii) j 1ies in the range [ O, 2m-1 ] and i in the range
[ 1, 2m-1 ] '

(i1i) s = 1 when the symmetry is even

s = -1 when the symmetry is odd.

Table 3.2 shows the dyadic symmetry whem m is three and thus n
3
is 2 or 8. The vectors, H , having even i th dyadic symmetry
i
are given in Table 3.3.

i 1 2 3 4 5 6 1

J o001 010 Ottt 100 101 110 111
0 000 1 2 3 4 5 6 7
1 001 0 3 2 5 4 7 6
2 010 3 0 1 6 7 4 5
3 ot 2 1 0 7 6 5 4
4 100 5 6 T 0 1 2 3
5 101 4 7 6 1 0 3 2
6 110 T 4 5 2 3 0 1
7 11 6 5 4 3 .2 1 0

Table 3.2 : The value of i(+)j for i in the range [1,7]
and j in the range [0,7].

[b;
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—— s s oy | o — ey D . — - S S - ——

Table 3.% ¢+ The seven vectors, H , having i th even
i
dyadic symmetry.

It should be noted that each combination of +two elements appears once

and once only in each dyadic symmetry. For example, the combination

of a and a appears only in the first, and in no other, dyadic sym-
0 1

metry.The total number of combinations of two elements in a vector of

n elements is

n ¢ 2 = n(n-1)/2 oo (3.2)

Eaéh possible dyadic symmetry requires n/2 combinations. Therefore,

the number of possible symmetries is
P = nC2/(n/2) = n-1  commmmmmcemmmmemnee oo ( 3.3 )

There are thus seven dyadic symmetries in a vector of eight elements.
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ot

3.%.3 Some properties of dyadic symmetry

Theorem 3.1:

m
If a 2 -vector has dyadic symmetries S ,5 ,...,3 , this vector
1 2 T
has also dyadic symmetry 3  where
k
S = 8(+)8(+) vcess 8 and (+) 1is 'exclusive or'.
k 1 2 r

Proof:

Let vector A be [ a ,a ,a yess 98 ] having dyadic symmetry
o 1 2 2 -1

S ,5 ,e..,8 As given by the definition of dyadic symmetry, we

1 P4 r

have

a = 8 a
J 1 j(+)s
1
a = 8 a
3 2 j(+)s
2
a = S a
3 3 j(+)s
3
a = 8 a
3 r j(+)s
T

m
for all j within the range [0,2 —1] where s =1 or -1 for
i
i within [1,r].

Combining the first two equations together
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‘ m
Since both j and j(+)S are within [0,2 -1], 3 can be replaced

by J(+)S1
a = 3 s a
j(+)s (+)8 1 2 i(+)s (+)8
1 1 1 2
a = 8 S a
3 t 2 i(+)s (+)8
1 2

Continuing with the same procedure for S , S ,e¢eeey, and 5 , we

3 4 r
have
a T L (3.4)
J k  j(+)s
k

where
(1) 8 = 8 8 8 . 8

k 1 2 3 r
(ii) S = 8 (+)8 {+) ... (+) s

k 1 2 r

m
The relationships within the 2 -1 dyasdic symmetries will now be

examined in more detail. It will be shown that some m of them are
m
independent and all the 2 -1 dyadic symmetries can be expressed as

linear combinations of m independent symmetries.

Let F be a binary field which has ¢ and 1 as its elements, and

'logical and® { * } and ‘exclusive or' { (+) | as its operations.
m m
For a vector over a number field of 2 elements, there are 2 -1
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n
dyadic symmetries. These 2 -1 dyadic symmetries are the m-vectors

over the field F.

Definition 3.3:

The r dysdic symmetries, represented by the r binary m-vectors

t
3 = [ 8 , 8 4, sssesee 4, 8 ]
1 11 12 im ¢t
5 = [ 8 , 8 4, seascss 4 8
2 21 22 2m
t
3 = [ 8 ;9 4 esveesee , 8 ]
r r r2 ™m

are said to be dependent if there exist r elements k , k, ...,k ,
1 2 r
not all zero, such that

kK* (+) k*S (+) oo (#) X %25 = 0 —mmmmmmmeeo (3.5)
1 1 2 2 T T

QOtherwise, the r symmeiries are said to be linearly independent.

For example, the first, third and seventh dyadic symmetries which are
represented by the three binary 3-vectors [0,0,1], [0,1,1] and [1,1,1]
are independent. On the other hand, the first, second and third dyadic
symmetries, represented by the three binary 3-vectors [0,0,1], [0,1,0]

and [0,1,1], are dependent.

If in equation 3.5, k 1is not equal to zero, we may solve for
i



Chapter 3 78

Therefore, the following properties exist:

(a) If r dyadic symmetries are dependent, any of them may always

be expressed as a linear combination of the others.

(p) If r dysdic symmetries are independent then none of them may

be expressed as a linear combination of the others.

(¢) If r dyadic symmetries are independent while the set obtained

by adding another dyadic symmetry S ig dependent, then S 1can
r+1 r+

be expressed as a linear combination of S, 8, ..v., S
1 2 T

In an m-dimensional vector space over a field, the following two

properties are well known.

(i) An m by m matrix [ 3 ] has an inverse if and only if
the m row or column vectors of [ S ] are independent.
(ii) There are at most m independent vectors in a mn-dimensional

vector space over a field.

Thus, we have the following further properties of dyadic symmetry:

(d) The m dyadic symmetries represented by binary m-vectors

S ,3 ,.., 8 are independent if and only if the binary matrix

[ s ] has an inverse, where [ S ] has the dyadic symmetries as
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its row or column vectors.
m m
(e} There are 2 -t dyadic symmetries for a 2 ~vector and no

more than m of the dyadic symmetries are independent.

(c¢) and (e) above lead directly %o :
m _
() All the 2 -1 dysdic symmetries can be expressed as & linear

combinations of m independent dyadic symmetries. That is

S = k*8 (+#) k*S (+) «o.. (+#) k* 53
i 1 1 2 2 n m

n
where i is within [1,2 -1] and 8§ ,38 ,...,3 are the m
i 2 m

independent dyadic symmetries.

For example, the set of dyadic symmetries defined by the set M are
independent.
k
M = { 2 <1, x e [1,n] }

This set of dyadic symmetries will be called Mirror symmetry (or M-
k
symmetry), and the 2 -1 th dyadic symmetry will be called the k th
m
M-symmetry. Table 3.4 shows the 2 -vectors which have the even i th

M-symmetry. Table 3.5 gives the corresponding dyadic symmetries for

the M-symmetries of block size 8x8, 16x16 and 32x32.



Chapter 3 80

i H
i
1 a a b b ® 5 008 &80 c c d d
m-‘1 a a essen A a b b s e s 2w b b
1 2 2 1 1 2 2 1
m a sees A a a a seesens Q
1 n/2-1 n/2 n/2 n/f2-1 1
m .
Table 3.4 : The 2 -vectors H having the even i th M-symmetry.
i
M-symmetry| 3 2 1 block
| size 8
dyadic | 7 3
symmetry ; 111 o1 001
M-symmetry) 4 | 3 2 | 1| bleck
size 16
dyadic 15 7 3 1
symmetry (RN o111 0011 0001
M-symmetry 5 1 4 | 31 2 | 1 | block
! ! ! | size 32
dyadic 31 15 7 3 1
symmetry 11111 o111 00111 00011 00001 |

Table 3.5 : The relation between M-symmetry and dyadic symmetry

3.3.4 Independent dyadic symmetry and the Walsh matrix

----- an example

It is well lnown that all the elements of a Walsh matrix have the

same magnitude. Further, it is interesting to note that the distri-
m m
bution of signs within a 2 x 2 Walsh matrix is such that each row
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m
and column have all the 2 -1 dyadic symmetries. Now, using an 8x8

Walsh matrix as an exaﬁple, it will be shown how m independent mirror
m m
symmetries can be used to generate any basis vector of a 2 x 2 Walsh

matrix.

If we use '0O' to represent even dyadic symmetry, '1' to represent odd
dyadic symmetry, the dyadic symmetries [0...01], [0..011], [0..111],
ey [1..111] of a Walsh basis vector can be used to form a code which

indicates the number of gzerc crossings within that vector.

For example, let us consider H , the Walsh basis vector having five
(i.e. 101) zero crossings. As 2he first element is always «1 and the
first dyadic symmetry is 1 (i.e.odd), the first two elements are
[ 1,-1 ]. Also, because the third dyadic symmetry is even, the first
four elements are [ 1,-1,-1, 1 ]. Finally, the seventh symmetry is

0dd, therefore, the vector is :

H = [1,‘1,'1: T,-1, 1, 1,-1 ]
5

Finally, the Walsh matrix is orthogconal as a consequence of:

Theorem 3.2:
Two N~dimensional vectors U and V  are orthogonal if U and

V have the same type of symmetry and U is even and V is odd.

Proof:
As U has a particular type of even symmetry, so elements of U can

be grouped into n/2 ordered pairs, (0 ,u. )y (U , U Jyeeoeenen,
a4 bl a, b2
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{u , U ) where a , b are integers within [ 1,n ], i is
a b .
l‘l/2 I"l/2 1
an integer within the range [ 1,n/2 ], and n is the dimension of the
vectors U and V. As V has the same type of symmetry (except that

it is odd), so elements of V can be grouped into n/2 ordered pairs,

11 . “8n n
2 2
with v = -v and u = u
s bi a; b:L
Therefore,
t n
U x v= = (u_.v )
oo k "k
n/2 ( ) n/2
= = T v + = ( u, * Vv )
=1 \ai al j=1 = bj bj
n/2
= = ( u v + U v )
=1 a; " ay bi bl
= 0

The dot product between U and V 1is zero, and therefore U and V

are orthogonal.

Since all the Walsh basis vectors have at least one different dyadic
symmetry, this theorem leads directly to the result that all the basis

vectors of Walsh matrices are orthogonal.
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3,4 GENERATION OF A WALSH MATRIX

3.4.1 The definition of a Walsh matrix

First of all, the Walsh matrix is defined as:

Definition %.4:

m m m
The 2 2 ~dimensiocnal vectors derived from the 2 possible com-
binations of m independent dyadic symmetries are all different and

and orthogonal, and they are the basis vectors of a Walsh matrix.

From property (b) in section 3.3.4, none of the m independent dyadic

aymmetries can be derived from combinations of the others., This im-
m

plies that the m dyadic symmetries can form 2 different combi-

nations, and so by theorem 2.2 are orthogonal.

This definition reveals that any m independent dyadic symmetries
from the total of the 2m-1 dyadic symmetries can be used to generate
the 2m 2m-dimensional basis vectors of a 2m by 2m Walsh matrix.
However, the actual ordering of the basis vectors atill depends on the
choices of 1) the m independent dyadic symmetries and 2) the m-bit

code used.

Section 3.3.4 illustrates the generation of an eight by eight sequency-
ordered Walsh matrix using the binary code and independent dyadic sym-
metry [1,3,7]. Table 3.6 summarizes the independent dyadic symmetries
for the generation of the 8 x B sequency-crdered, dyadic-ordered and

natural-ordered Walsh matrices using binary code and gray code.
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code binary gray
ordering code code
sequency [ 1,3,7] { 1,2,2]
‘ayaaie | [h,241 L [1,36]1
‘natural | (4241 | [463]

Table 3.6 : The codes and dyadic symmetries for the gen-
eration of 8x8 Walsh transforms of sequency,
dyadic, and natural orderings

3.4.2 Derivation of the non-recursive equation for the binary

Walsh matrix

Por clarity, block size 8 x 8 1is use as an example. The result
m m
can easily be generalized to block gize 2 x 2 . Let [ H ]

be the Walsh matrix of s particular ordering

[ h h R -
00 01 07
h h esesesasess h

10 11 ' L B (3.7)

299 s I BB EEERENE s

[ 1]

h h etssesessss N
L 70 M 77 4

where h is the (i,j) th element of [ H ], i=[ i ,i ,i ]

, ij 1 2 3
and j={ j ,3 ,5 1.
1 2 3
Also, let h =41 if b =0  mecmccmcmmmcmcm————mna (3.8)
i i}
=1 if b =1
ij

and the binary matrix [ B ] whose (i,j)th element is b be called
ij
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o

the binary Walsh transform. Then, the determination of [ B ] leads

directly to that of [ H ] and vice versa.

Further, let S, S8 and 5 be the binarj representation of the
1 2 3 '
three independent dyadic symmetries.

t
5 = [ s , 8 s 8 ]
1 11 12 13 ¢
S = [ s , 8 s S
2 21 22 23t
S = [ 8 , 8 s S
3 N 32 33

The binary matrix [ ] ] will be called the dyadic symmetry matrix

where

P s s s
sll 112 13
[s] = st i = 18 s =
2 | b 21 22 23
St ! ' s s g
L 3 L 3t 32 33

In this section, it will be shown that

o
n

-1
[3,3,1*[s] *{41,i,1 ]
ij 1 2 3

t -1
J *[8] *i e ( 3.9 )

It has already been pointed out in section 3.3.4 property (d) that
[ 3 ] always has an inverse if dyadic symmetries S, S and S

1 2 3
are independent. In order to clarify the development, the eight by

eight sequency-ordered binary Walsh matrix will be used as an
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example. First of all, the folldwing may be noted:

(1) If the binary representation of i is[ i ,i ,i ], then i ,i
and i determine the type (even or o0dd) of the1th§ee31ndependeit °
dyadicjsymmetries S,S @&and 8§ within H .

(2) The dyadic sym;etri matriz of a sequ:ncy-ordered Walsh matrix is

I t 1
51 roo17
[s] = gb = j011
2 111 ]

— 3—

(3) The ( 0,0,0 )th element of every Walsh basis vector is usually
taken to be +1. This convention will be adopted here also, and there-

fore the { 0,0,0 )th element of every binary Walsh basis vector is O.

There are eight elements in H and h is elways +1. Now, we wish

i i0
to determine the sign of h ,which is the ( j ,j ,j )th element of
ij 1. 2 3
the (i ,i ,i )th basis vector. Consider the following three cases.
1 2 3
(1) when [ §,5,5] is [ 0,0,1] ’
1 2 3
5 g 5 5
X .

It is obvious that the sign of the ( 0,0,1 )th element depends only

on symmetry S and so on i in the vector [ i,i,i ]. An i of
1 1 1. 2 3 1

value O or 1 implies even or odd symmetry and so the {(0,0,1)th and

{ 0,0,0 }th elements have the same or opposite sign.
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(ii) When [ j ,j,3 1 is [ 0,1,1 ]

1 2 3
SZ ) SZ
R
. . . b'e - . . .

The sign of the ( 0,1,1 }th element depends only on S and so on i
2 2

in the vector [ i,i,i ].
1 2 3

(1i4) When [ 3,3 .51 is [ 0,1,0 ]
1 2 3

The sign of the ( 0,1,0 )th element depends on symmetries S and
1

S and so on i (+)i
2 1 2

The -result is summarized in Table 3.7.

3 j 3 3 | b or sign of h
1 2 3 1 ij i3
_____ +__.......-...--—---.-.-.+——--—.....—-—-_—-.-—-——----.
0 0o 0 0 | 0
1 0O 0 1 i
2 0 1 0 i (+) i,
3 0o 1t 1 i,
4 1 o0 © 12(+) i3
1 0 1 i, (+) i2(+) iy
6 | 1 0 1 | 11(+) iy
1 |
7 I| 1 1 1 I| 13

Table 3.7 : Sign of h as a function of i for different j.
i3
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Table 3.7 suggests that the sign of the J th element in a Walsh

basis vector depends sometimes on one, sometimes on two and sometimes

on all the independent dyadic symmetries. The actual relationship can

be found by expressing [ J ,j2,j ] with respect to the new basis 81,
1 3

S and S . Let the new coordinates of j be
2 3

r = [r,r,r |}
12 3

If r is 1, then the sign of h depends on S , and vice versa.
k ij k
Hence, we have

t
o= [ 3,5,3]1 = %3 (+)r*5 (#} r*S cmememmmm ( 3.10 )
1 2 3 11 2 2 3 3

Equation 3.10 can be converted into

Wer N ok =
| IS ——

2 |
Ll ot N oF b et

Therefore r can be found easily from equation 3.11. The same three

cases will be used as examples.
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(1) when [ J,5,5 ] is [ 0,0,1 ]
1 2 3

i, 1 % [s]
1 3

1§

[r,e,r ]

1 2 3 2
-1
T oot ]
= [o00,1] * | 011 |
111
-1 Fo117]
As [s] = 110!
L1 00
We have
% ro 1 17
r = [0,0,1] * }1 1 0}
P11 0 0
= [ 1,0,0]

Thus the { 0,0,1 )th element only depends on S and so on the
1
first dyadic symmetry.

(i1) wnen [ j,j,j]1 is [ 0,1,1]
1 2 3

[o0,1,0] *

H
It
— o (O

o [ Sp— Y
OO —-
| I

————

[ 0,1,0]

Thus the [ 0,1,1 ]th element depends only on S and so on the
2
third dyadic symmetry.

(iii) When [ j ,j ,3 ] is [ 0,1,0 ]
1 2 3

t
r = [o0,1,0] *

—l—ho

.-y
O = =
OO
——d



Chapter 3 90

[1,1,0]

Thus the { 0,1,0 )th element depends on the S and S and so on
1 2

the first and third dyadic symmetries.

Finally, we have equation 3.9

ij

[}
o
ot
*
~—
o2
[ )
*
[

3.4.3 Examples

In this section, the equation derived in the previous section will
be used to genermte the 8x8 binary Walsh matrices having different

orderings. The three most common orderings are given first.

(1) Natural-ordered binary Walsh matrix

m n
The dyadic symmetry matrix of a 2 x 2 natural-ordered Walsh

matrix is en m by m binary diagonal matrix with diagonal entries

equal to 1. Therefore, for the 8 x 8 binary Walsh matrix, the

dyadic symmetry matrix is

[ n]

n
—
=
—

[n]

Hence, we have
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1007 %
b o= [3,3.31* 010} *[1,i,i]
ij 1t 23 LOO1 j 12 3
= JRL (+) F* (+) j¥L  ememmmmmmemmeee- ( 3.14 )
1 1 2 2 33
no. of 3 1000 00f 010 O11 100 101 11O 111
zero 0 {emememeeee Fem e ———————
crossings r i 000 001 010 011 100 101 110 111
1 |

0 000 1 1 1 1 1 1 1 1

7 001 1 - - 1 - 1 -1

3 010 1 1 -1 -~ 1 { IS R

4 o11 1 -1 - 1 1 -1~ 1

1 100 1 1 1 1 -1 1 -1

6 101 -1 1 -1 - 1 -1 1

2 110 | 1 1 =1 A a1 1 1

5 R I R TR R 1 -1 1 1 -1

Table 3.8 : Natural-ordered binary Walsh matrix generated by
dyadic symmetry [4,2,1].

(2) Dyadic-ordered binary Walsh matrix

m m
Generally, the dyadic symmetry matrix of a 2 x 2 dyadic-ordered

Walsh matrix is an m by m binary matrix containing only opposite
diagonal terms equal to 1. Therefore, for the 8 x 8 binary Walsh

matrix, the dyadic symmetry matrix is

Ffoo1]
[D] = J010 ]  comemmmcmmre oo (3.15)
t100]
..1.
[p] = [p]
roo1 ] t
b = [j,3.,9)*jot10f* [1,i,i]
ij 1 2 3 L1001 1 2 3
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t
= [3,5.,5 1 * [1i.,i,1 ]
3 2 1 1 2 3
= i%j (#) 1 %) (+) 1 %)  cmmmmmmmmmmmmae ( 3.16 )
1 3 2 2 3 1
no. of j 1 000 001 010 011 100 101 110 111
Zero 0 ee—aaaa o e e e e e e e e e e e o e e e e
crossings T E co0 100 010 110 00t 101 O11 111
i ]
0 000 | 1 1 1 1 1 1 1 1
1 001 ) 1 1 1 1 -1 =1 -1 -1
3 010 | 1 1T -1 1 1 -1
2 o1l | 1 1 -1 1 -1 1 1
7 100 V1 4 1 -1 1 1 -1
6 11 1 1 -1 - -1 1
4 10} 1 -1 - 1 1 -1 - 1
5 K & TS T IR 1 - 1 1 -1

Table 3.9 : Dyadic-ordered binary Walsh matrix generated by

dyadic symmetry

[1,2,4].

(3) Sequency-ordered binary Walsh matrix

In general, the dyadic symmetry matrix of a 2 x 2

m

m

sequency-

ordered Walsh matrix is an m by m binary matrix with its i th

row having i consecutive '1's on the right hand side. Therefore,

the dyadic symmetry matrix

[z]-=

| et |

and its inverse is

is

— s = s

P

| Y S |
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r 117
11
-1 11 |
[z ] = .. i
11 i
11 ]
L1 3
Hence, we have
o117 t
b o= [3,33]1*} 1107 *[4i,1,i]
ij 1 2 3 L1000 1t 2 3
= 1% (#) 1 *j (+#) 1%*5 (+) 1% (+) 1%
1 2 1 3 2 1 2 2 31
----------------------------- ( 3.18 )
no. of j 1 000 001 010 oft1 100 101 110 111
zZerp = jem———e- tmmrm e — e e —————
crossings ry 000 100 110 100 Ottt 111 101 OO1
i
0 000 1 1 1 1 1 1 1 1
1 001 1 1 1 1 -1 -1 -1 -1
2 010 1 1 -1 -1 -1 -1 1 1
3 o1 i 1 -1 -1 1 1 -1 -1
4 100 1 -1 -1 1 1 -1 -1 1
5 101 1 -1 -1 1 -1 1 1 =1
6 110 1 -1 1 -1 -1 1 -1 i
7 111 1 -1 1 -1 1 -1 1 -1
Table 3.10 : Sequency-ordered binary Walsh matrix generated by
dyadic symmetry [1,3,7]).
Walsh matrices of the above three orderings are symmetric, and this

results in several interesting properties.

of a Walsh matrix is equal to itself.

For example, the inverse

It should be noted, however,

that the above orderings are not the only onea that result in symme-

trical Walsh matrices.

For example, the dyadic symmetry matrix
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To0017
[s] - o1 |
1110
has a symmetric inverse
-1 F1117
[s] = D110 ] memmemcmmmmcccm oo ( 3.19)
L1000

and so the correaponding Walsh matrix is also symmetrical.

t
* [1,i,i ]

1
0
0 1.2 3

O = =
| I |

[
b= [3,5,51%)1
ij 1 2 3 L1

t
[ MMiMi, i, 31*01,i,i ]
1 2 3 1 2 1 T 2 3

no. of j 1 ooo oot o010 o11 100 101 110 111
Zerg 00 jmem———-- R e T e —
crossings r i Q00 100 110 10 111 0O11 001 10
1 l

0 000 1 1 1 1 1 1 1 1
1 001 1 1 1 1 -1 =1 -1
2 010 1 IS IR S R 11
3 on 1 1 =1 - 1 1 -1 -
5 100 1 -1 - S 1 1 -1
4 101 1 =1 -t 1 -1 - 1
7 1Mo 1 1+ -1 1 -1 1 -1 1 -1
6 111 ) 1 = 1 -1 1 -1 1

Table 3.11 : Binary Walsh matrix generated by binary code and
dyadic symmetry [1,3,6].

There are, of course, also Walsh matrices which are not symmetrical.

For example, when the dyadicréyﬁmé%rg matrix is
|
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Foo1]
[s] = o1 1|
L1100
-1 Too1]
[s] = P 110 | mmmmmme e ( 3.20 )
t100]
t -1
b = g *[s] * 1
ij
= LM, 5 ,3]1%1L e ( 3.21)
2 3 2 1
no. of 51000 001 010 Of1 100 101 110 111
Zzerg 200 |m—meeea- e e e e e 0 e e o o Y
crossings r i 000 100 $10 010 001 101 111 O
i 1
0 000 1 1 1 1 1 1 1 1
1 001 1 1 1 1T -1 -1 -1 -1
3 010 1 1 -1 -1 1 1 -1 -
2 011 1 1 =1 w1l -1 1 1
4 100 R Tt -1 -1 -1 1
5 101 S, I B B 1 1 -1
7 110 1 -1 1 -1 1 -1
6 111 1~ 1 -1 1 1 1

Table 3.12 : ?inary]Walsh matrix generated by dyadic symmetry
1,3,41.

3.5  FURTHER WALSH MATRIX INTERRELATIONSHIPS

Theorem 3.3:

(V8
]

(z]0]" SR T

=
]
/M
[
—
—
(]
L
*
H.
il
~
L
—
—
=
—
*
H

———

[
]
Lo |
=
—J
[ |
[
)
&
=
|
e |
=
e
[
o
[E—ly |
—
*
e

S



Chapter 3 -96

where [ Z ]; [ D ] and [ N ] are the dyadic symmetry matrices for
m m
2 by 2 sequency-ordered, dyadic-ordered and natural-ordered Walsh

matrices respectively, and i , 1 and i are the corresponding

Z D N
row indices.
Proof :
Equation 3.9
t -1
b = 3 *[8] * i e (3.9)
i)

can be used to find the relationship between different orderings.

t -1 t -1 t
i *z] * = 3 *D] * = j *[§] %=
YA D N
m
for all j in [0,2 =1]  eommmmmm e ( 3.22)

Equation 3.22 implies

-l -1 -1
[z] *i = [p] *i = [N] *i oo ( 3.23 )
A D )

and the conversion equations 3.21 follow. For example, when the block

size is 8 x 8 the dyadic symmetry matrices are given in Table 3.13.
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dyadic symmetry

matrix matrix inverse
Foo1] Foo1]

[p] 010 lo10 |

L1 00 ] L100]

001 ] fo11]

fz] 011 110 E
L_111_J :_100_I

"1 00 1007

[ v ] 010 010!
oo ] Ltoo1 ]

Table 3.13

Hence, the converazion matrices will be

: Dyadic symmetry matrices of the three common
orderings.

conversion matrix matrix inverse
-1 1007 "1 00]
[n] [z] {110 | {110
Lto11 ] L1 11
binary to gray gray to binary
code code
-1 Ffoo1] Foo1]
[p] [x] to1o i 1010 |
L1000 L1 00 ]
bit reversal bit reversal
-1 Ffoo1] Ffo11]
(z] [n} 1011 1110 |
b1t ] L1 00

Table 3.14 : Matrices for conversion between the three

orderings

97
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Let i = [ 2 ,2 ,eee,2 ]
2 1 2 m
i = [d ,d ,eee,d ]
D 2
i = [0 ,0 ,eeeyn ] e ( 3.24)
N 1 2 n

From Table 3.14, it is obviocus that the conversion between i

and i 1is carried out by bit reversal, and the conversion from
D

i to i is gray code-to-binary code conversion.

D Z

Furthermore, the conversion from i to 1 can be done easily
N Z
using the following recursive equations.

Z = n
n m

Z = z + n

m-1 m m-1

Z = g + N cemmmmee— e ( 3.25 )

It is not necessary to go through the processes of first converting
i to i by bit reversal, and then converting i to i1 by gray
N D D Z

code~to binary code conversion. Table 3.15 lists some of the conver-

sions.
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-1 -1 -1
i i=[p](z] #»t | 1 =[z2]p] *+ | 1i=[z][N] *i
D Z Z
0 000 0 000 O 000 0 0C0
1 00 1 001 1 001 T 111
2 010 3 oM 3 0ot 3 0O
3 Oon 2 010 2 010 4 100
4 100 6 110 7 11 1 00
5 101 T 111 6 110 6 110
6 110 5 101 4 100 2 010
T 11 4 100 5 101 5 101
Table 3.15 : Conversion of i to i i to i and 1 to i
Z D D Z N Z
Theorem 3.4:
b = b {(+) b for all j =e—mmee——a= ( 3.26 )
u(+)v,J u,j v,
b = b (+) b for all j =—m—ememmaa- ( 3.27)
iu(+)v i i,v
Proof :
b (+) b
u,j v,J
t -1 t -1
= 3 {81 u (+) 3 [5] v
t t t t -1
= r u (+) r v where r=j [s]
T ] rv ]
i 1' ]
! | | |
= [I‘ sae I'] i . | ("‘) [I‘ ---I‘] | 1
1 m i . : 1 n | =
:u II : :
L My LMy
r*u (+) r*u (+) ..o () 2%u (+) T ¥y (+) ... (+) p *v
1 1 2 2 m m 1 1 m n
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r*u (v ] (5) r*u (v ] (3 eene o *u (4)v )
1 1 1 2 2 2 m m m

£ -
i [8] twu(s) v}

b

u(+)v,J
b (+) b
i,u i, v
t -1 -1
uw [8] 1 (#) v [8] i
t t -1
ur (+) v r where r= [8] i
{r o pro
I i : I |
b e
[u U.]|--| (+) [V ---V]|.o|
1 m o, u | 1 m v |
Lom ] L mg

u*r (+) u*r (+) ... (+) u*r (+) v*r (+) ... (f) v *r
11 2 2 m m 1 1 m m

fu (+)v I (+) {u (#)v
1. 1 2

er (+#) .ove fu (#)v }¥r
1 2 m n

2 m

%
{u(s)v] *r

t -1
{u(+)y v} [8] 1t

100
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The above theorem suggests that each row vector (column vector), of
[ B ], can be expressed as the linear combination of m row vectors

(column vectors) B, ,B, »e-+,B, where i ,i ,...,i are inde-
11 12 m T2 m

pendent binary m-vectors.

One significant case occurs when the m independent binary m-vectors

are the dyadic symmetries S5, S ,....,5 . The m column vectors
1 2 m .

g ,....,BS are then binary Rademacher functions.

2 i}

Theorem 3.5 :

The S th c¢olumn vectors, BS , 0f a binary Walsh matrix are the k th
k k
binary Rademacher functions where S is the k th row of the dyadic
k
symmetry matrix [S] of the binary Walsh matrix.

Proof :
Letting J 1in equation 3.9 be S , we have
k
t =1
b = 8 [8] i e emmmae ( 3.29 )
i,S k
k
-1
as  [s] [S] = [I], we have
t
S [s] = [0.00010 .00 0] smmemmmm o ( 3.30 )
k i<== k —=>|
Equations 3.29 and 3.30 imply
b = i = the k th bit of i
i,s k
k

and so the theorem is proved.
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It is interesting to note that this property may not be valid for the
row indices. The Walsh matrix listed in Table 342 is an example. How-
ever, for symmetrical matrices, this- property holds for both row and

column indices.

3.6 FAST COMPUTATIONAL ALGORITHMS

3.6.1 Basic theory

Consider the conversion of X into C in equation 3.31 where [H]

m
is a Walsh matrix all of whose basis vectors have the 2 -1 dyadic
m
symmetry ( X and C are 2 - vectors ).
C = [H] X cmmmmmmmm ( 3.31)

Implementation of the conversion process by direct matrix multi-
m m m m
plication requires 2 x 2 multiplications and (2 -1)x 2 additions

(since the [H] matrix consists of only +1 and -1's , we only require
m m
(2 -1)x2 addition or substraction operations to implement). However,
it will be shown that by means of 2 additions and 2 subtractions,
n m m-1 m-1

the 2 x 2  transform can be decomposed into a 2 x 2 'even'
m-1 =1

transform and a 2 x 2 'odd' transform by a simple process which

m
makes use of one of the 2 -1 dyadic symmetries. An eight by eight

Walsh matrix will be used to describe the process.
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3.6.2 Examples of dyadic symmetry decompositions of an 8x8

sequency-ordered Walsh transform

3.6.2.1 The first dyadic symmetry decomposition

As shown in Table 3.10, H for i in [0,3] has even first dyadic

symmetry and Hi for 1 ;n [4,7] has odd first dyadic symmetry. In

general, for a 2m x 2m Walsh matrix, the most significant bit, il,

in th; binary representation of i = [ i1,12,...,i ],indicates whether
m

H has even or cdd first dyadic symmetry.
i

nEnEnEnl

T e JEE T G IR TR TR R T " x ]
0 : o;
c 1 1 1 1 =1 =1 1 x |
1 1}
c '|11-1-1-1-111 x |
2 2 |
c 1 1 -1 =1 1 1 -1 =9 x |
3 3
¢ = 1t -1 -1 1 1 -1 -1 1 X b -{ 3,32 )
4 4
e 1 =1 -1 1-1 1 1 - x
5
c R T R e D S x
6 6
c 1-—11—11—11—1| 1 X
L T4 L J L 7]
Therefore, by defining U and V in the following way
[ x +x | fu
{0 1| { O |
P X +x R
I 2 3 b1
U =|:x+x = Eu; --------------------------- ( 3.33a )
A L
1 X +x L I
L 7 6] L 3

*l  These lines are for identification of the lst dyadic symmetry.
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'I'x;xﬂ Fv'1
o 1 0
X =X v
3 2 1
V ='x_x = V| s o o v o o o o e 4 (3‘33]))
4 5 2
X =X v
L 7 6 3
We have
" e 1 1 1 17 ru
0! 0 |
c | 1 1 =1 =1 u |
1 | 1
c | = 1 -1 -1 19 x u
2 } 2 |
c | 1 -1 1 -1 u!
L 3] L J L 3J
i-even }
= | xU -------------------- (3'34)
| transform |
AP Fro1 1 1] T v
4 ' | 0 |
¢ t 1 =1 -1 | v
5 E 1
c = 1 -1 -1 1! x v
6 | P2
c t -1 1 =1 | v
L T L .} L 3
" odd ]
= 1 X V ———mmmcmmemcmeeeeee (3‘35)
L transform j

The transform in equation 3.34 (3.35) is said to be "even' ('odd')
because the basis vectors of this tranform are in fact halves of the
basis vectors in equation 3.32, that have even (0dd) 1st dyadic
symmetry. Both the even and odd transforms are 4x4 sequency-ordered

Walsh transforms. Computation of € by equation 3.31 requires
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X u X u
0 Eg 0 0 ,gg 0
X > v X = v
1 0 1 0
X u X - v
2 EE% 1 2 EE 1
X > v . X u
3 1 3 1
X u X u
4 Eg 2 4 EE 2
X v X v
5 T2 5 T2
X u X > v
6 EE 3 6 Eg 3
X >~ v X u
7 3 7 3

Fig.3.2 Two of the ways of implementing the first
dyadic symmetry decomposition

m m

2 x2 or sixty four operations, while by equations 3.33 to 3.35
m- m=-1

requires 2x(2 x2 ) or in this case thirty two operations. Two of

—

the many ways of implementing the first dyadic symmetry decomposition

are given in Fig.3.2.

3.6.2.2 The second dyadic symmetry decomposition

As shown in Table 3.10, H , i = 0,1,6,7, has even second dyadic

i
symmetry and H , i = 2,3,4,5, has odd second dyadic symmetry. In
m i
general, a 2 -dimensional H has even (odd) second dyadic symmetry
i

if i (+)i dis O (1) where i = [ i ,i ,eee,i J.
1 2 1 2 m
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1
“

11

1 -1 -1
1 -1 =1 1
1 1

1
-1

1 -1 -1 -~
{
1

1
1
1 -1 -1 -1 4

1 -1 -1
t =1 -1
1 1 -1

1
1
1
1

-1

1 -1 -1 1

-1

in the following way

Therefore, by defining U and V

Pann ~
7
R =~
- 1 ]
) M
S S’
1 t
i i
i i
] ]
' i
I 1
i 1
i f
i i
i I
i l
1 i
1 I
1 i
0 1
1 ]
) i
) )
i i
i i
i i
1 ]
I i
i ]
i 1
] ]
1 1
i i
re—————— |
<O ~— O ~— [4Y] [\ Y
8 8 s 00A BB B B
L 1
] In
prsm e —mmm—————— - -
N M N M = In
MoOM M M MoooM oMM
+ nv+ + + ] o 1 _f0 nﬂl
O VIV g MoK M M
i e o - = it e e -t
1 1l
foe] =3

We have

e 3,738 )

r ™

o - 4V} LY
= = = =

S |

]

e |

~— -~— — —
f

— —

1 -1

Y

1 -1 A

~—

| st |

o (o] b~
o 0o o o
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Fe C1t o1 1 1] Fv 7
2 0 |
c 1 1 -1 -1 v i
% 1

¢ = 1 -1 -1 1 X |V | mememm——mmeae—— ( 3.39 )
4 2 |
¢ 1 -1 1 -1 v o
L 5. L J L 34

Both the even transform and odd transform are 4x4 seguency Walsh
transforms. Two of the many ways of implementing the second dyadic

symmetry decomposition are given below:

X u X u
0] 0 0 0
X u X u
i 1 1 1
X - v X = v
2 0 2 0
X = v - X - v
3 1 3 1
X ~ v X u
4 2 4 2
X > v X u
5 3 5 3
X u X dl §
6 2 6 2
X u X = v
7 3 7 3

Fig.3.3 Two of the ways of implementing the second
dyadic symmetry decomposition.

3.6.2.3 The third dyadic symmetry decomposition

As shown in Table 3,10, H., i=20,1,4,5, has even third dyadic
symmetry and H., i= 2,3?6,7, has ¢dd third dyadic symmetry. In
general, a 2m-di;ensiona1 H has even or odd third dyadic symme-
try if i is O or 1 where ; =[ 1 ,i ,e0e,i ].

2 1 2 m
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-1

1 -1 -1

1

T -1 -1 -1 -1 1

1

1T-1 -1 1 11 -~

1

1
1
1

1 =11 1 1 -1~
1 -1 -1 1 -1 1
- 1T -t -1 1

1

in the following way

Therefore, by defining U and V

~~ ~~
< -
<+ <+
(1 M
S g
1 1
I t
I t
] (
I i
] i
1 i
i I
' i
i 1
1 1
i i
i |
] I
i i
i I
| 1
) 1
( [
1 ]
| ]
{ I
1 I
i i
1 1
] |
I 1
i 1
= e I q
o o o
5 57 g%V 4 S s sV
L —— L - |
I "
r T | o s |
(1) 0 < ) TSR
I Y R T T
ottt ' o ! 'o !
I I I I A ¥
L - | L ——
1 b
fonr} -

We have

e 3,42 )

N —
]
| et -
— -— — -
1 1
-— — -— -—
4 t
-— - -— -—
] 1
— ~— -— -
| I SO ——
[0
T em——r—
le] -~ ~+ o
[ 4] Q Q L&)
e -
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C e ) 101 1 1] C v ]
2 0
C 1 1 =1 -1 v !
3 1
le | = 1 -1 -1 R ( 3.43)
' 6 ) 2
c 1 -1 1 -1 v
L T4 L J L 3

Both the even and odd transforms are 4x4 sequency-ordered Walsh
transforms. One of the many ways of implementing the third dyadic

symmetry decomposition is given below:

X u
0 0
X u
1 1
X = v
2 i
X = v
3 o]
X u
4 3
X u
5 2
X = v
6 2
X - v
T 3

Fig.3.4 One of the ways of implementing the third
dyadic symmetry decomposition.

3.6.2.4 The fourth dyadic symmetry decomposition

As shown in Table 5,10, H , i = 0,3,4,7, has even fourth dyadic
i
symmetry and H,i=1,2,9,6, has odd fourth dyadic symmetry. In
n i
general, a 2 -dimensional H has even (odd) fourth dyadic symme-

1
try if i (#)i dis O (1) where i = [ i ,i ,...,i J.
2 3 1 2 m



110

Chapter 3 .

-1
1
-1

1
1 =1 -1
-1

1

in the following way

T -1 -

1

e 3044 )
SEEEE————————— VLR

-1

1 -1 -1 -1

1
1

-1

1 -1 ~1

1
-1
-1

1

1«1 -1 =1 1

1 -1 -1

-1
-1
-1

1 -

1
1
1
1

Therefore, by defining U and V

We have

B e O I L3

| ittt
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Fe 7 T 11 1 Ty
1 0

c t 1 -1 -1 v

2 1

c = 1 -1 -1 AR A T — ( 3.47 )
5 2

¢ | 1 =1 1 -1 v

L 64 L J L D

Both the even transform and odd transforms and 4x4 sequency-ordered
Walsh transforms. One of the ways to implement the fourth dyadic

symmetry decompogition is given below:

X u
0 0
X u
1 1
X u
2 2
X u
3 3
X - v
4 o)
X — v
5 1
X - v
6 2
X - v
7 3

Fig.3.5 One of the ways to implement the fourth
dyadic symmetry decomposition.

3.6.2.5 The fifth dyadic symmetry decomposition

As shown in Table 3.10, H , i =0,3,5,6, has even fifth dyadic
i
symmetry and H , 1 = 1,2,4,7, has odd fifth dyadic symmetry. In
n i
general, a 2 -dimensional H has even (odd) fifth dyadic symmetry
i
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if 1 (+)i(+)i is O (1) where i = [ i ,i ,eee,i ]+
1 2 3 1 2 m

| Tr——=—=
Ce 7 "1 1 1 11 11t Cx ]
0 0
c Tt 1 1 1 =1 -1 -1 -1 x
1 1
c 1 1 <1 -1 -1 -1 1 1 bs
2 2
c 1T 1 -1-1 1 1 -1 - X
3 3
c = 1 -1 -1 1 {1 -1 -1 1 x X
4 4
¢ t -1 -1 1 -1 1 1 -1 X
5 5
c | 1 =1 1 -1 -1 1~ 1 x
6 [
c 1 -1 1 -1 11 1 - X
L T L i L T4

Therefore, by defining U and V in the following way

'x+x'1 r'u"l
0 5 0
X +X u
1 4 1
U = x+x e e ( 3.48 )
2 7 2
X +X u
L 3 6, L D
Tx —x 1 " v 1
0 5 j o |
X =X v
1 4 | 1
V =] XX | = }V | e ( 3.49 )
2 7 2
| X =X I v
L 3 6 L 3

We have
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[ c R T T B T )
0 | ' 0
¢ 1 1 -1 -1 u
3 1
¢ = 1 -1 =1 1 x 1% S ( 3.50 )
5 2
o] 1 -1 1 -1 u
L 6] L S L 34
C e 1 1 1t 17 Cyv
1 ! | o
c AL T QS R v
2 ' 1
¢ = 111 -1 1 X | V | =ee—e—————————ee ( 3.51 )
4 i 2
| ¢ b1 -1 1 v
L 73 L J L J 4

Both the even transform and odd transforms are 4x4 sequency-ordered
Walsh transforms. One of the ways to implement the fifth dyadie

symmetry decomposition is given below:

X u
0 0
X u
1 1
X u
2 2
X u
3 3
X - v
4 1
X - v
5 0
X v
6 3
X - v
T 2

Fig.5.6 One of the ways to implement the fifth
dyadic symmetiry decomposition

3.6.2.6 The sixth dyadic symmetry decomposition

As shown in Table 3.10, Hi' i=20,2,5,7, has even sixth dyadic
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symmetry and H , i = 1,3%,4,6, has odd sixth dyadic symmetry. In
m i
general, a 2 -dimensional H has even (0odd) sixth dyadic symmetry

1
if i (#)i is O (1) wherei =[4i ,i,i J].
1 3 1 2 3

" e ] T 101 1 1 111 1] Fx ]
0 Q
c 1 1 1 1 =1 -1 -1 4 X
i | 1
c 1T 1 =1 =1 -1 -1 1 1 X
2 | 2
c 1 1 -1 -1 1 1 -1 -1 x
3 3
c = 1T =1 <1 1 1 -1 -1 1 x x
4 4
c 1 -1 -1 11 1 1 -1 x
5 5
c 1 -1 1 -1 =1 11 1 X
6 6
¢ 1 -1 1«1 1 -1 1 x
L T 4 L J L T

Therefore, by defining U and V in the following way

rxﬂ:ﬁ ru-'
| 0 6 | 0
=K+X| Iu
Vo7 b

U = | x+x = U | e ( 3.52 )
i 2 4 |2
ix+x I u
L 5 51 L 3.
rx-xj r"«'1
0 6 0
X =X v
1 7 1

V = x~x T | V| mmemmem e cmmee e cemmmeee e ( 3.93 )
2 4 2
X =X v
L 3 54 L D 3
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We have

¢ ] C1 o111 T u )
0 0
c 1 1 -1 -1 u
2 1
¢ = 1 -1 =1 1 X | U | emmmmmemaa—ae——— ( 3.54 )
5 2
c 1 1 -1 1 =1 u g

L 74 L J L 34

[ e 11 11 P v
1 ! o |
c 1 1 -1 - v |
3 1
c = 1 -1 =1 1 x | v i ---------------- ( 3.55)
4 2
¢ 1 =1 1 -1 v |

L 6. L - L 3

Both the even and odd fransforms are 4x4 sequency-ordered Walsh
transforms. One of the ways to implement this decomposition is

given below:

Fig.3.7 One of the ways to implement the sixth
dyadic symmetry decomposition.
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3.6.2.7 The seventh dyadic symmetry decomposition

As shown in Table 3.10, H , i = 0,2,4,6, has even seventh dyadic
i
gymmetry and H , i=1,3,5,7, has odd seventh dyadic symmetry. In
m i
general, a 2 -dimensional H has even (0dd) seventh dyadic symmetry

if 1 is O {1) where i = [ i ,i ,eee,i J.

] 1 2 m
N —a
e ] Pt 1 1t 1 1 1 17 Cx
) 0
e 1 1 1 1 -1 -1 -1 4 x
. 1
c 1 4 =1 =1 -1t 1 1 x
2 ! ! 2
c A T R R R DR B I x
3 3
¢ = 1 =1 =1 % 1 -1 =1 1 x | x
4 4
c 1 =1 -t 1 -1 1 1 - x
5 5
c 1 =1 1=t -1 1 -1 1 x
6 6
e 1 =1 1 =1 1 -1 1 = x
L 7 L _ L 7

Therefore, by defining U and V in the following way

‘JC"'X-‘ HU.-E
0 7 0 |
X +x u
1 6 1
U =] x +x = W | =—mmem— e ( 3.56 )
I 2 5| | 2
X +x "Ll
L 5 4 L 3
Fx-x 7 T v
RN
X =X v
{76 | ' |
Vo= lx-x | = ]V | s ( 3.57 )
SO Y
1 X =X v o
L3 4] L 3]
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We have

!'c'i T 1 1‘1 " u ]

o 0
c | 1 1 =1 -1 u
2 | 1
c ! = 1 =1 =1 x 1) T S — ( 3.58 )
4 2
c | N TS B u

L 6. L J L 3

" P11t 1 17 v ]
1 ! 0
¢ 1 1 -1 -1 v
3 1
c = -1 -1 1 X | V| emememm——eeee e ( 3.59 )
5 2
e 1 -1 1 - v

L 7 L J L 3

Both of the even and odd transforms are 4x4 sequency-ordered Walsh
transforms. One of the ways to implement the seventh dyadic symmetry

decomposition is given below:

X n
O 0
X u
1 1
X u
2 2
X u
3 3
X =
4 3
X v
5 2
X v
6 1
X -V
T 0

Fig.3.8 One of the ways to implement the seventh
dyadic symmetry decomposition.



Chapter 3 18

2.6.3 Fast computational algorithms from dyadic symmeiry

decomposition

Dyadic symmetry decomposition can convert a 2m-order Walsh transform
into two 2m‘1-order Walsh transforms using 2m addition and subtract-
ion operations. With another two decompositions (each requires 2m-1
addition and subtraction operations), the two 2m—1-order Walsh trans-
forms can be converted into four 2m_2-order Walsh tranaforms. There-
fore, m applications of the decomposition can complete the 2m-order

Walsh transform by reducing the order by half each time te 1 with

m
m x 2 addition and subtraction operations.

It has been shown that there are 2m-1 kinds of dyadic symmetry decom-
positions which can convert a 2m-order Walsh transform to two 2m-1-
order Walsh transforms. PFurthermore, there is more than one way to im-
plement a dyadic symmetry decomposition.' This implies there are indeed

numerous ways to implement the m dJdecompositions. However, some of the

ways are more straightforward than others.

- Fig.3.9 shows how an eight by eight Walsh transform of the vecfor X
is accomplished by the repeated use of the 2m—1 th dyadic symmetry
decomposition. From the signal flow diagram, it can be seen that the
fast computational algorithm using the 2m-1th dyadiec symmetry
decomposition is very close to that of the Cooley-Tukey algorithm for
the FFT. 1Indeed, the final result also requires to be re-ordered in

the same way as that of the Cooley-Tukey algorithm to convert it to

sequency ordering.
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Fig.3.9 Fast slgorithm usingthe 2 th dyadic symmetry
decomposition

Fig.3.10 Fast algorithm using the first dyadic symmetry
decomposition.

Fig.5.10 shows how the B8-order Walsh transform of vector X is accom-
plished by the repetitive use of the first dyadic symmetry decomposit~
ion. An attractive feature of this fast algorithm is that j in C 1is

J
simply the bit reversal of i in X .

1
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Fig.%.11 shows how an 8-order Walsh transform of vectoer X is acconmn-
m
plished by the repetitive use of the 2 -1 th dyadic symmetry decom-

position of X. TFig.3.12 shows an alternative way of implementing this
fast algorithm. The relation between i in ¥ and j in ¢ is simply that

of bit reversal.

Fig.3.11 Fast algorithm using the 2 =1 th dyadic symmetry
decomposition

Fig.3.12 Fast algorithm using the 2 -1 th dyadic symmetry
decomposition
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3.7 CONCLUSIQNS

A unified matrix treatment for the Walsh transform using the concept
of dyadic symmetry has been presented. This unified treatment allows
a straightforward derivation of a simple equation for the generation
of Walsh matrices of different orderings, various re-ordering schemes
and various fast computational algorithms. It is believed that this
will provide & better understanding of the Walsh transform and hence,
allow further fast computational algorithms and new properties to be
found. The whole theory relates to a binary field with 'logical and’
and modulo two addition as operations and thus allows both the gen-

eration of Walsh matrices of different orderings, and re-ordering

schemes, to be implemented using simple logic circuits.

3.8 NOTE CN PUBLICATION

A paper entitled ‘*Dyadic symmetry and its application to Walsh
transform theory' was submitted +to IEEE transactions on Electro-
magnetic Compatibility in 1983. This paper was jointly authored with

R.J.Clarke.



CHAPTER FOUR

NEW TRANSFORMS

4.1 INTRQDUCTION

Transform coding of image data is a topic which has been extensively
investigated over the past 10-15 years, and it has been shown to be
an efficient technique for low bit rate image representation. The
effectiveness of transform coding is mainly due to the transformation
which packs ‘energy into the low sequency coefficients. The first
transform chosen to accomplish this task was the discrete Fourier

transform (DFT) which was reported to produce good results [99].

In contrast to the other main contender for image compression, pre=-
dictive coding, transform coding suffers from the requirement of a
high degree of processing sophistication. Therefore, there was a
search for a simple transform which would ease this problem. This
led to the application of the Walsh transform [101] which requires
only additions and subtractions. later, more transformations were
proposed with either lower computational requirement or better per-
formance. Scme, like the Haar transform, aim at simplicity whilst
others, 1like the slant transform and the discrete cosine transform

(DCP), aim at better energy packing ability.

Although there should be a trade-off between performance and simpli-

city, continuing developments in semiconductor technologyuwhgée coh—
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vinced most researchers that favour should be given to performance.
This is why the discrete cosine transform, which has been shown to
be asymtotically close to the optimal KLT, has attracted much atten-
tion even though it is more complicated +than the Walsh transform.
In practice, however, for transform coding of moving pictures in
real time, simplicity of the transformation is still desirable. This
is why a real time digital image coding system reported recently
still adopts the Walsh <{ransform [47]. In view of performance and
ease of implementation, the choice of the transformations lies very
much between the DCT and the Walsh transform depending on whether

signal processing speed is paramount.

In this chapter, two new transforms are proposed, which can be used
as substitutes for the Walsh transform. The new transforms have
virtually the same complexity and computational requirement as the
Walsh transform. They employ additions, subtractions and binary
shifts only but have improved efficiencies {equation 4.5), defined
in terms of the ability of the transform to decorrelate signal ele-
ments by converting them to transform coefficients, The efficiencies
of the two new transforms both lie between that of the Walsh trans-

form and that of the DCT for moderate block sizes.

The two approaches used to generate the new transforms will hbe des-
cribed in the next two sections, 4.2 and 4.3. The first approach is
to seek basis vectors which, whilst still satisfying the criteron of
orthogonality, correlate well with commonly occuring image vectors,

and yet allow easy implementaticn. The second is to empley computer
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search techniques based solely upon the “transform efficiency criteria

mentioned earlier. The first approach results a transform called the

high correlation transform or HCT. The second approach results in two

transforms, cone of which is again the HCT, and another termed the low

correlation transformation or LCT. Section 4.4 shows how these two

transforms, originally generated using a matrix size 8x8, may be de-
mom

termined in the general case of dimension 2 x 2 , where m 1is an

integer.

In section 4.5, the new transforms will be compared with other well
known transforms, including the DCT, slant, Haar and Walsh transform,
for different block sizes. Two types of tests were carried out, one
on the one-dimensional first-order Markov process using efficiency
and energy packing ability as c¢riteria, the other using two-dimens-
ional transforms on real images using normalized meaﬁ square error

(¥MSE) defined in equation 4.6 as the criterion.

Finally, the implementation of the LCT and HCT will be described in
gection 4.6. Description will first be given of the implementation
of the real orthonormal transforms LCT and HCT using the unnormalized
LCT (ULCT) and unnormalized HCT (UHCT), then fast computational algo-

rithms to implement the two unnormalized transforms are described.

4.2 CREATION OF THE HIGH CORRELATION TRANSFORM (HCT)

4.2.1 Basic principle

Transform coefficient ¢ is the scalar product of the basis vector
i
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T and the signal vector. Hence, a close resemblance of the basis

v;ctor T and the signal vector regsults in a iarge magnitude of c .

A good tiansform, guch as the DCT, packs most energy into the iow
sequency coefficients. This implies that low sequency basis vectors
of a good image transform always resemble slowly varying image signal
vectors. For example, as shown in PFig.4.1, the low sequency basis
vectors of the 8 by 8 DCT change smoothly, whilst the Walsh basis
vectors have sudden jumps between the positive and negative elements.

This is why the DCT can pack more energy into the low sequency coe-

fficients.

——
1 =
=
—~ 1
L
- — — —
REEN| b~ 7 I1
| L] L OO Y
EERENREN 1 [~
U =04
1.3 .0 Ao
|EEREERE - G
WHT DCT

Fig.4.1 The basis vectors of the 8x8 Walsh transform (WHT)
and the discrete cosine transform (DCT).
The new transforms are obtained by a technique which can replace pairs
of Walsh basis vectors by others to form a new set of linearly inde~

pendent basis vectors. For clarity, the technique is explained by the
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following example which replaces the (000)th and (100)th eight-dimens-

ional Walsh basis vectors.

By means of theorem 3.2, it can be seen that the (000)th and (100)th
Walsh basis vectors are orthogonal to =all other Walsh basis vectors
becéuse of dyadic symmetries (O11) and {111). Therefore, a new set
of linearly independent basis vectors can be obtained, if the (000)}th
and  (100)th Walsh basis vectors are replaced by a pair of linearly
independent vectors which have the (011)rd and {111)th dyadic sym-
metries but without the (001)st dyadic symmetry. For example the fol-
lowing two pairs of linearly independent vectors satisfy this require-

ment.

[1 a at 1 a a 1] and [a -1 -1 a a-1-1 al]

[ a 1 1t a a 1 1 a ] and [ {-a~-a {1 1 -a-2a 1 ]

Table 4.1 lists all the vectors which are without one of the three
independent dyadic symmetries. Alsb, Walsh vectors 001 and 101, 010
and 110, 011 and 111 all have the same (011)rd and (111)th but oppo~-
site (001)st dyadic symmetries. Hence, all these pairs can be repla-
ced by vector pairs which have the (011)rd and (111)th, but lack the
(001)st dyadic symmetries. Similarly, other pairs of Walsh basis
vectors can be replaced by vector pairs without one of the other two

dyadic symmetries, {(011) and (111), in the ways shown in Table 4.2.
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The vectors which lack one of the 3 independent dyadic
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Table 4.1

is the number of zero crossings and

li!

synmetries.

'a' is a positive constant less than unity.
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i Dyadic symmetry SL
(001) (011) (111)
000 ] . —
001 —_
010 —_—
o011 ] —
100 i) —_
101  — —
110 —_— —
111 — —

Table 4.2 : The pairs of eight dimensional Walsh basis vectors
which have all dyadic symmetries the same except
for dyadic symmetry SL (symmetry lacking).

4.2.2 Generation of the 8 by 8 High Correlation Transform

In this section, each of the 8 Walsh basis vectors H is examined
i
in turn and modified to form wvector T according to the principles
i
described 1in the previous section tc generate a new transform similar

to the DCT.

(i) H = 1t 1 11 1 11 1]

This vector is exactly the same as that of the DCT, hence,T is taken
0

as H .
0
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(11) H o= 1 1 1 11 =4.=1 <1 ]

There is a sudden change between the fourth and the fifth element in

H . It can be smoothed out by replacing H by T which is the vec-
1 1 1
tor without the (011)rd dyadic symmetry and is given as follows.

T = [ 11 a a-a-a-1-1 ]

'a’ 1is a positive constant less than unity. T has even (001)st
1
and odd (111)th dyadic symmetry but lacks the (011)rd dyadic symmetry.

In order to maintain linear independence, H has to be replaced by

3
T (Table 4.2).
3 13

T = [a a«t-t 1 1-a-a ]
3

Both T and T have even (001)st and odd (111)th symmetry but

1 3
lack the (011)rd dyadic symmetry, and are orthogonal to each other.

(iii) H L1 110010 11 ]

2
The changes between the second and the third, and between the sixth
and the seventh elements could be reduced by replacing H by T
which has odd {011)rd, even (111)th dyadic symmetry, butzlacks thg

(001)st dyadic symmetry.

T = [ 1 a-a-1-1-a a 1 ]
2
To maintain linear independence, H has to be replaced by
6
T = [ a-1 1 -a-a 1-1 a ]
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(iv) H = [ 1110 1 1111 ]
4
Since H 1is exactly the same as in the DCT, no modification is
4
required, and T is set equal to H .
4 4
(v) H = [ 111 11 1 1-1 ]
5
H = [ 11 11 11 1-1 ]
7

In order to make these two vectors resemble those of the DCT, they are

replaced by T and T which are vectors of the odd (001)st and
5 7
(111)th dyadic symmetries but without the (011)rd dyadic symmetry.

T = [ 1-1-a a-a a 1-1 ]

T = [ a-a 14 11 a-a ]

The results are summarized in Table 4.3.

dyadic symmetry

T o1 o1 111
i

0 0 0 Q
1 ¢ X = 1
2 X 1 0
3 0 x — 1
4 1 0 0]
5 1 X = 1
6 x 1 0
7 1 x — 1

Table 4.3 : Dyadic symmetry within the basis vectors
of the new transform HCT . x stands for
absence of such symmetry.
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Finally, each T , being divided by a censtant k ,is normalized to
i i
form the basis vectors of the HCT where

i 30 ij

and t idis the j th element of T .
ij i

4.2.3 Optimum value for the constant 'a'

The previous discussion suggests that the constant ‘a' should be
poaitive and less than unity, and its exact value should maximize
the ability of the HCT to transform a typical image signal vector X
into a vector Y of uncorrelated elements. This ability may be mea-
gured by the transform efficiency n defined on a one-dimensional
first order Markov process of adjacent element correlation p . The
larger the efficiency, the greater is the ability of the transform
to convert X into a set of uncorrelated elements. A formal defini-
tion of transform efficiency is given in section 4.3.1. Furthermore,
for easy implementation, 'a' should equal the inverse of an integer.
Fig.4.2 shows the dependence of the transform efficiency on the con-

stant 'a' for different values of adjacent element correlation. Most

of the curves have maxima when 'a' is equal to 1/2, which can con-

veniently be implemented by a simple right binary shift.

4.3 COMPUTER SEARCH FOR HIGH EFFICIENCY TRANSFORMS

In this section, a more objective approach will be used to determine

the best transformation. Transform efficiency is used as a criteron
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TRANSFORM EFFICIENGY (%)

70

Fig.4.2 The dependence of transform efficiency on the constant 'a' for

different values of adjacent element correlationp.
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and a computer search 1is carried out to find the transforms of the
highest efficiency. 4 formal definition of transform efficiency is
given in section 4.3.1. The magnitude of the transform efficiency in-
dicates the capability of the transform %o convert a gignal vector

into an uncorrelated transform coefficient vector.

4.3.1 Transform efficiency

Let the n-dimensional vector X be a sample from a one-dimensional,
zero mean, unit-variance first-order Markov process with adjacent

element correlation p , and covariance matrix, [CX], where

i 1 0 pZ prl--l'1
b1 p |
02 P 1 p
¢ | e 1 ¢ }
[ex] = B [xx] - \\\ 52 | (42)
P 1
pn-l p2 o 1

and E [ ] denotes expected value.

The efficiency of a transform [T] is defined on the transform domain

covariance matrix [CC] of vector C where

(9]
[}

[T] x e (4.3)
E [cc]

t
[r] [cx] []

[ce]

]
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Efficiency n = x 1008 -———--e-eu ( 4.5)

The larger is n, the greater is the ability of [T] to transform X into

a vector Y of uncorrelated elements.

4.3.2 Experimental procedures

New transforms can be formed by replacing some pairs of the Walsh basis
vectors by other pairs lacking one of the independent dyadic symmetries.
A computer program was generated to form all the possible pair combina-

tions and then to compute the corresponding transform efficiency for

(i) different values of the constant ‘a’, and

(ii) different values of 0.

The value of 'a' to be tested are 0.0,0.1,0.2,043,044,0455046,047,0.8
and 0.9. The adjacent element correlations to be considered are 0.1,

0.3, 0.5, 0.7 and 0.9.

4.3.3 Results and discussion

It is found that two ways of pairing are of particular interest. As

shown in Table 4.4, one of them, denoted HC, has the same combina-
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tions as the HCT, which is the transform designed tc resemble the DCT
in section 4.2. The other, denoted LC, is generated by destroying the
first dyadic symmetry of all the Walsh basis veétors except the pair
containing the de¢ vector. The results are summarlzed in Table 4.5. It

can be seen that

T 1 1 1 1 1 1 1 [ T+ 1 1 1 1 1 1

1 1 a a-a-a-1-1 a 1 1 a-a-1{-1-a

1 a«-a-1-1-a a 1 1 a~a=-1-1-a a 1

a a-1-1 1 1 -a -2 1 a-a-t 1 a-a -1

1 =1 =1 1 1 -1 =1 1 1T =1 -1 1 1 -1 -1 1

{1 -1-a a-a a 1 -1 t-~-a~a 1 -1 a a-1

a~1 1 -~a-a 1 -1 g a=-1 1-a-a t -1 a

a-a 1 ~1 1 -1 a-a a-1 1 -a a-~-t 1 -2
- - - -

a) The combination HC. b) The combination LC.

Table 4.4 : The two combinations which have optimum performance
among 8all the combinations generated during the
computer search.

{1) For adjacent element correlations 0.1, 0.3, 0.7, the transform
efficiency is highest when the constant, a, is 0.5. For adjacent ele-
ment correlations ©.5 and 0.9, the efficiency is highest when ‘'a'
equals 0.6 and 0.4 respectively.

(2) TFor adjacent element correlations 0.1, 0.3 and 0.5, the com-
bination LC with the constant equal to 0.5 has very high efficiency.
(3) TFor adjacent element correlations 0.5, 0.7 and 0.9, the com-

bination HC with the constant equal to 0.5 has very high efficiency.

The implementation of a Tbhinary multiplication by one-half is simply
a right shift. Therefore, for both simplicity and performance, we

may conclude that among a1l the possible transforms that could be
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0 FIRST SECOND EFFICIENCY OF

| TRANSFORM TRANSEORY THE DCT & WHT
0.1 L a=0.5 9,54
9,723 90,95
0.3 L a=0.5 87.11
84,72 — 77.73
0.5 (C a=0.6 EE a 3-2 83,14

77.53 a = 7
7.0 69.75
0.7 K a=0.5 ' 82.86
76.32 - 67.23
0.9 K a=0.4 £ a=0.5 89.83
83,20 84,09 77.13
rable 4.5

The transforms that have the highest efficiency for different values of

idjacent element correlation e

I 36
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created using the technique described iﬁ section 4.2.1, the LC com-
bination with the constant equal to 0.5 1is the best transform for
low correlation data, whilst the HC combination with the constant
equal to 0.5 is the best transform for high correlation data. Com-
binations LC and HC with constant equal to 0.5 ar; termed, res-
pectively, the Low Correlation Transform (LCT) and the High Corre-
lation Transform (HCT).

m m
4.4 The HCT AND LCT FOR BLOCK SIZE 2 x 2

m m
4.4.1 The HCT for block size 2 x 2

m
The 2 Walsh bagsis vectors H can be modified according to the
m i
following rules to form a 2 -order HCT whose basis vectors resem-—

ble those of the DCT.

1t
(i) Solve the equation Mod [i-2,2 ] = 0 for all the i (Table 4.6

lists the solution for i€ [0,15] ).

m=~t
(ii) Replace H by the vector without the 2 -1 th dyadic symmetry
i t t-1 .
and whose first element is 1 if mod[i,2x2 ] =2 , and %?

t t-1
if mod[i,2x2 ] = Bx2 .

(iii) The remaining two basis vectors H and H n-1 remain unchanged
0 2
where t{ 18 in [1,m-1].
Finally, +the basis vectors are obtained after being normalized as
given by equation 4.1. As an example, the value of ¢, the dyadic
symmetry to be destroyed and the first element of vector T of a
i

16x16 HCT are given in Table 4.6. The basis vectors for the 4x4,

B8x8 and 16x16 HCT are given in Fig.4.3.
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first dyadic symmetry

i element to be destroyed
0 1 -

1 1 7 ——

2 1 3

3 1/2 7

4 1 1

5 1 7

6 1/2 3 }

7 1/2 7

8 1 -

9 1 7

10 1 3 EE}-—-

11 1/2 7

12 1/2 1

13 1 7

14 1/2 3 }—
15 1/2 7

Table 4.6

The values of the first element, t, and dyadic symmetry

to be destroyed corresponding to each value of i for a

16-order HCT.

138
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FPig.4.3 Basis vectors of the 4-order, 8-order and 16-order HCT.

m m
4.4.2 The LCT of block size 2 by 2

Let the i th basis vector of the LCT be T_ where i is in [O,2m-1]
and T and T m-1 are the Walsh basis ve;tors having zero and 2m_1
zZero cgossings? For the other values of i, T 1is the vector which
satisfies the following conditions. ;

(i) T  has all but the first dyadic symmetry.
i
m-2 m=2
(ii) 'The first element of T is 1 if i e [ 2 , 3x2 -1 ],
i
otherwise it is 1/2.

Finally, the basis vectors of the LCT are obtained after being norma-
lized by the process given by equation 4.1. The basis vectors for the

4-order ,8-order and 16-order LCT are shown in Fig.4.4.
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Fig.4.4 Basis vectors of the 4-order, 8-order and 16-order LCT.

4.5 PERFORMANCE OF THE HCT AND ICT

4.5.1 Tests on the one-dimensional first order Markov procesé

Using the Markov process of section 4.3.1,

r 2
= 8
i=0 ii
let PER = X 1008  —~e—m— - ( 4.6 )
r n-1 2
‘= ]
j=0 Ji

PER  is the percentage of energy that is packed into the first r+i
T

transform coefficients. Figs. 4.5 to 4.7 show the energy packing

ability of the DCT, the Walsh transform,the HCT and LCT with adjacent

element correlation equal to 0.9, for block sizes 4x4, 8x8 and 16x16.

The results show that, a) for the same number of coefficients, the DCT
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Energy packed (%>
100.

DCT, HCT, LCT
e —~=—  WHT

3 4
Sequency

N -

Fig. 4.5 Energy packing ability of the 4-order DCT, HCT, LCT and WHT

vs number of retained coefficients.
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Energy packed (&)
100

94—1

88

i 1
6 8
Sequency

o
N
N

Fig. 4.6 Energy packing ability of the 8-order DCT, HCT, ICT and WHT

vs number of retained coefficients.
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Energy packed (&)
100

12

Sequency

Fig. 4.7 Energy packing ability of the l6-order DCT, HCT, LCT and WHT

vs number of retained coefficients.
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can always pack more energy than the other transforms and the HCT can
always pack more energy than the Walsh transform, b) the LCT can pack

more energy than Walsh transform when the block size is 8 x 8; and for
r larger than 9 when block size is 16 x 16, c¢) the HCT is better
than the LCT for smaller r and vice versa, d) when the block size is
4 x 4, only the Walsh transform has inferior energy packing ability,

all the other three transforms perform equally well.

Further, +the HCT and LCT were compared with the DCT, Walsh transform,
slant transform and Haar transform using transform efficency (equation
4.5) as the criterion. Markov processes with adjacent element corre-
lations 0.9, 0.5 and 0.2, representing low, medium and high activity
pictures regpectively, were examined. The results for block sizes 4x4,

8x8, 16x16 , %2x32 and 64x64 are listed in Table 4.7.

When the adjacent element correlation is 0.9, the DCT has the highest
transform efficiency, followed by the slant transform and the HCT
except when the block size is 4x4 where the HCT has higher transform
efficiency than the slant transform. The results are very much the
same when the adjacent element correlations are 0.5 znd 0.2. However,
at Dblock size 8x8B, the transform efficiencies of the HCT and LCT,
although less than that of the DCT, are higher than that of the slant
transform. At block size 4x4, both the HCT and LCT héve the highest

efficiency.

In general, both the HCT and LCT have a closer performance to that of

the DCT for smaller block size. This is probably because only four
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Transform | 4 | 8 | 16 | 32 | 64
Haar 85.63 66.23 75.96 70.61 67.75
WHT 91.24 83.61 78.06 T1.63 66.84
0.2 HCT 94.55 87.62 81.12 75.31 70.16
LCT 94.55 89.21 81.94 75.77 70.57
Slant 92.31 85.38 T79.72 T4.99 70.88
DCP 93.40 90.33 88.87 88.16 87.81
Haar 77.13  59.26 49.52 44.74 42.33
WHT 84.21  69.75 59.39 S51.71  45.79
0.5 HOT 91.42 77.07 65.30 56.61  49.80
LCT 91.42  77.07 62.82 52.77 45.82
Slant 87.91  75.71 66.48 59,72 54.44
DCT 89.61 83.14 79.76 78.12 T7.31
Haar 89.05 70.33 51.06 36.91 29.00
WHT 92.12  77.13 60.84 48.20 39,62
0.9 HCT 95.24 84.09 68.39 54.36 44.07
LCT 95.24 79.18 56.50 40.36 30.85
Slant 94.95 85.84 T4.09 62.76 54.04
DCT 95.75 89.83 82.75 76.41 72.34

Table 4.7 3 The transform efficiency of the Haar transform, Walsh
transform(WHT), HCT, LCT, slant transform and DCT for
block sizes 4x4, 8x8, 16x16, 32x32 and 64x64 and
adjacent element coefficients (p ) 0.2, 0.5 and 0.9.

levels are allowed in the n-order HCT and LCT for all n whilst other
transforms like the n-order DCT has n levels. For large n, four levels
are insufficient to constitute smocoth changing low sequency basis vec-
tors, hence resulting in smaller variances for the low sequency coeffi-
cients, and smaller transform efficiency compared with the DCT. Also,

as expected, the HCT has higher transform efficiency than the LCT when

adjacent element correlation is high, and vice versa.

4.5.2 Test using real pictures

4.5.2.1 Experimental procedure

Figs. 4.8a to 4.8c show the three 256 x 256 eight-bit/pel pictures used

to test the transformations.



Fig. 4.8a

The 'girl®
Fig. 4.8b
The 'house'

Fig. 4.8¢

The 'BBC testcard’

Fig. 4.8 The 3 original pictures.
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(i) The head and shoulder picture of a girl (Fig. 4.8s):

This is a typical low activity picture and has been used by many

researchers for several years now. It was supplied by British Telecom.

(1i) The picture of a house (Fig. 4.8b):

The'top énd bottom parts of the picture have very low activity, whilst
the central region contains quite a lot of detail. It represent a pic-
ture of medium activity. This picture was taken from a print through

the Video Acquisition and Display system developed by W.C.Wong [135].

(ii1) A part of the BBC testcard (Fig. 4.8c):

The picture contains artificial patterns and has a high degree of

activity. It was supplied by British Telecom.

The pictures were divided into square blocks [X] of size equal to that
of the transform [T], and then transformed intc blocks of transform coe-

fficients [C].

[c] = [7] [x] [T]t ----------------------------- ( 4.7)

In each block, 75% of the coefficients whose variances are the smallest
are truncated, and then the remaining coefficients [D] are inverse

transformed to form [Y].

[Y] = [T]t[D] [T]  mmemmmremmm ( 4.8)

The ability of the transform to pack energy into a few transform coeffi-

cients is indicated by the normalized mean square error (NMSE).
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n-1 n-1 n-1 n-1 2
r z =z = (y -x )
p=0 q=0 1=0 j=0 pqij  pgij
NMSE = x 1002 --~( 4.9 )
n-1 n-1 n-1 n-1 2
= = > g X
p=0 q=0 i=0 j=0 Pqij
where x and ¥y are the (p,q)th element of the (i,j)th blocks
paij paij
of [X] and EY] respectively. Small NMSE indicates high ability of the

transform to pack energy into a few transform coefficients. The above
procedure was carried out using the six transformations at block sizes
4x4, 8x8, 16x16, 32x32 for the three pictures.

4.5.2.2 Results and discussion

The results are summarized in Table 4.8. For the girl and house pic-

tures for block sizes 8x8 and above, the DCT has the lowest NMSE fol-
lowed by the slant transform; when the block size is 4x4, the HCT and
LCT have the lowest NMSE. For the BBC testcard, the DCT always has the

LCT at block sizes

lowest NMSE, then comes the
slant transform at block sizes 16x16 and

lowing points can be summarized from the

(1)

transform and 1lies about midway between

The NMSE of the HCT is always

transforms. The LCT does not always

transform.

4x4 and 8x8, and the
above. In conclusion, the fol-
Table 4.8.

lower than that of the Walsh

that of the DCT and Walsh

perform better than the Walsh

It has a higher NMSE than that of the Walsh transform at

block size 32x32 for the two natural images.

(2)

ers on the two natural pictures.

At block size 4x4, both the LCT and HCT beat all other contend-

However, they cannot maintain their



Chapter 4 149

performance as the block size increases.

(%) The HCT 1is a better transformation for natural pictures whilst
the LCT has excellent performance using the artificial picture when

the block size is smaller than 16x16.

4 8 16 32
Haar 2.20 2.10 2.06 2.02
WHT 2.18 2.09 2.04 1.98
HCT 1.82 1.83 1.89 1.89
LCT 1.82 1.83 1.97 2.06
Slant 1.9 1.78 1.777 1.74
DCT 1.85 1.59 1.49 1.40

a) The 'Girl' picture

4 8 16 32
Haar g.32 T.67 T.46 T.19
WHT 9.04 T7.65 T7.36 T.26
HCT 8.43 T.31 T.02 6.99
LcT 8.43 T.35 T.42 T.51
Slant 8.50 T.13 6.92 6.70
DCT 8.44 6.96 6.39 6.07

b) The 'House' picture

4 8 16 32
Haar 6.74 5.21 4.97 4.11
WHT 5.76 4.83 4.35 3.81
HCT 4.64 3.72 3.5% 3.35
LCT 4.64 2.48 %.50 %.38
Slant 4.74 3.80 3.25 2.76
DCT 4.64 2.88 2.1 1.76

¢) The 'BBC testcard'

Table 4.8 : NMSE of the processed pictures as a function
of block size and type of transform used.
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4.5.% Conclusions

The tests on the one-dimensional Markov process and on real pictures

both show that the HCT is better than the Walsh transform for all
block sizes. For large block sizea, the LCT is not as good as the
Walsh transform, in terms of both NMSE and efficiency. The LCT seems
more suitable for an artificial picture such as the BBC testcard.

Finally, both the HCT and LCT have better performance at small block
sizes than at large bleock sizes. For small block aizes suéh as 4x4,
8x8 and 16x16, which are most suitable for image transform coding, the

two tranforms have good performance.

4.6 IMPLEMENTATION OF THE HCT AND LCT BY FAST COMPUTATIONAL

ALGORITHMS
4.6.1 Introduction

In this section the implementation of the two new transforms, the HCT
and LCT is presented. Let X and C Ybe the vectors containing the

input data and the transform coefficients respectively.

c = [ T ] x X
where
r 1
k x ﬂ;
[ 1
! k x'ﬁ
(1] - 2 2 | e ( 4.11)
Ic .
Kk x T
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t
[ ,7 ,...,T ] represent the unnormalized HCT and LCT. Tables
1 2 n
4.9 and 4.10 1list these transforms of order four, eight and six-

teen. Fig. 4.9 shows a transform coding system in which the trans-
2
formation of X into C requires N  real number multiplications.

However, with a proper arrangement, the transformation can be achieved
with N log N subtractions or additions together with a number of

2
right shifts. The configuration of this system is shown in Fig.4.10.

Thus,
- 8
t
kl X T1
t
ka x T
c = 2 2 x X
t
kn X Tn
r 1T -
t
O
k i i -t
i, } 2 x| To Txx (4.13)
| T
| “ioLT
L 2 L n g
Let
r t 8
T
t
T
W o= 2 > 30 S ( 4.14 )
Tt
L. n -
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The l6-order UHCT

c)

Table Le9

This table lists the unnormalized HCT kernels

8 and 16.
'a' is used to represent 1/2

of order 4,

note:
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Table 4.10

This table:lists the unnormalized LCT kernels

8 and 16.
'a' is used to represent 1/2.

of order 4,

note
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Therefore, the real number transformation of X into C is divided
into two stages. The first step is to transform X into W (equat;
ion 4.14) which involves only additions, subtractions and right shift
operations. The second step is the real number multiplication process
to convert W into C (equation 4.15) which can be incorporated into
the quantization operation. At the receiver, the vector of quantized
coefficients (CQ) can be re-transformed into the signal domain to form

vector XQ by equation 4.16.

t
= [T] x0Q e ( 4.16 )

LI 2 2 n n
r q
| 1 |
I k i
= [T T1r°T .7 Jx| 2  x CQ
1 2 3 n j S
L nJ
Let
r =
|
W o= | K, | XCQ e (4.17 )
l * . 1
L Kn 1

Hence,
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Therefore, the real number inverse transformation of CQ inte XQ is
alsc divided into two stages. The first step is the conversion of the
bit stream L (representing CQ) into WQ and then the unnormalized

inverse transfomation of WQ into XQ.

Fast computational algorithms for the forward and inverse UHCT and

ULCT algorithms requiring only N log N operations will be given in

2
the next section.
X Forward C €Q Channel
—— Transform > Quantization > Coding
L
Channel
XQ Inverse cQ
“ Transform < Decoder <

Fig.4.9 A transform coding system in which the
transforms in both directionas require real
number multiplications.
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X Unnormalized W Quantization cqQ Channel
—— Forward » & Scaling > Coding
Transform
L
Channel
xQ Unnormalized| WQ Inverse cQ
——— Inverse < Scaling < Decoder
Transform

Fig.4.10 A transform coding system in which the
transforms in both directions require only
additions, subtractions and right shifts.

4.6.2 TFast computational algorithms for the HCT and LCT generated

from the dyadic symmetry decompositions

The derivation of the fast computational algorithms for the Walsh
transform by repeated application of dyadic symmetry decomposition
has been given in section 3.6. In this section the same technique
is used to obtain a fast computational algorithm for the forward and
inverse UHCT and ULCT. A Walsh transform has all the dyadic symme-
tries, but the ULCT and UHCT have only some of them. However, in
some cases, it is still possiblé to apply the k th dyadic decompo-
sition to a matrix, some of whose basis vectors do not have the k fh
dyadic symmetry. Generally, the k th dyadic symmetry decomposition

is possible for a transform [T] if
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t
i
— i e— = ¢
t Jo
i §(+)k
t
rs
S wC e o ( 4.19)
t st
r s(+)k
-where
(1) ¢ and -c¢ are positive constants
Jo s1
{(2) i is such that T has even k th dyadic symmetry and
i
r is such that T has odd k th dyadic symmetry.
r
(3} j and s are dummy variables. j, s ,j(+)k and s(+)k are
m

in the range [0,2 -1].

4.6.2.1 A fast computational algorithm for the forward

unnormalized LCT ( ULCT )

m m
From section 4.4, it can be seen that a 2 by 2 LCT lacks the
m-1
firgt dyadic symmetry. In fact, the LCT has the 2 dyadic symme-

tries. For example, wvhen m is three, the LCT has three dyadic sym-

metries which are

S [ 5 8§ 8 ]
T 2 3

3 o 1 1

4 1 0 ©

7 1 1 1

In general, the LCT has dyadic symmetry S equal to [ 8 S ... 8 ]
1 2 m
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where s is equal t0o s . Therefore, except for second order
all 2m-or2;L LCT have thg 2.1 th dyadic symmetry. Hence, a fast
computational algorithm can be obtained by repeated applications of the
2m-1 th dyadic symmetry decomposition. Details of the process are now

explained by using the 16x16 ULCT as an example.

By means of the fifteenth dyadic symmetry decomposition, a 16x16 LCT
can he broken down into an 8x8 even-transform snd an 8x8 odd-transform.

The even-transform is equal an 8x8 ULCT and the odd-transform is

a1 1 a a1 1 a |
a 1 1 a-a-1=1-a |
1 a-a-1-1-a a 1
[y3] = 1 a-a-1 1 a-a-1 | =—;ocemme—a-o ( 4.20 )
| { -a-8 1 | -3 -2 1
1 ~a-a 1 ~1 a -1
a-1{ {-a-a 1 -1 a
L a-1 1 -a a- 1 -a
where a = 0.5

Again, using the seventh dyadic symmetry decomposition, the 8x8 ULCT
is broken down into an even-transform which equals an 4x4 ULCT, and an

odd-transform which equals [YZ].

|" a 1 1 a |
| 1 a -a -1 !

[Y2] = i 1 -a -a I i ---------------------- (4.21)
L a=1 1-~a

where a = 0.5

For 8x8 [Y3], both the 4x4 even-t{ransform and odd-transform are [Y2].
The 4x4 ULCT and [YE] transform are then decomposed into an even-

transform and an odd-transform by the third dyadic symmetry decompo-
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sition. For the 4x4 ULCT transform, the 2x2 even-transform is the

2x2 Walsh transform, and the 2x2 cdd-transform is

For the 4x4 [YZ] transform, the two by two even-transform is [X1] and

the 2x2 odd-transform is [Y1].

The whole process is summarized in Fig. 4.11. In the binary iree, each
node, representing a transform, has two offsprings. The one on the left

is its even transform and the one on the right is its odd transform.

16x16 ULCT

8x8 ULCT [¥3]

4x4 uLeT [r2] [yg] [Y?]

2x2 (a] [l [x1] [wv1] [x1] [} [x1] [v1]

Fig.4.11 The binary tree depicting the dyadic symmetry
decompositions of a 16-crder ULCT.

One of the ways to implement this fast computational algorithm for a
16x16 ULCT is given in the signal flow diagram shown in Fig. 4.12.
The signal flow diagram of the fast computational algorithm for the

ULCT is the same as that for the Walsh transform until the last iter-



[\ /

l ! | { I

Fig. 4.12 A signa

1 flow diagram for the fast forwa

rd 16x16 ULCT.
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ation where the sublock size is two. In the last iteration, 14 right

shifts are required before certain additions and subtractions.

4.6.2.2 A fast computational algorithm for the forward

unnormalized HCT ( UHCT )

il m ]
As given in section 4.4.1, a 2 by 2 HCT has only the 2 -1 th

dyadic symmetry. However, a fast computational algorithm can still
be cbtained by the repetitive use of the dyadic symmetry decomposit-
ions. Details of the process are now given by using a 16x16 UHCT as

example.

A 16x16 HCT has the fifteenth dyadic symmetry, thus, it can be decom-
posed into an even-transform and odd-transform. The even-transform is

the 8x8 UHCT and the odd-transform is

1 11 a a a =& 1
a a a-1-1-1 -
1-1-1-a-a a a
a-a-a 1 1 -1 -1 -——=( 4.24 )
-{ 1 a-a-a a
-a-a a-t 1 1 -

[x3] =

B = D —-p
I

Similarly, the 8x8 UHCT transform can be decomposed into a 4x4 UHCT
(even-transform) and [X2] transform(odd-trensform) by the seventh

dyadic symmetry decompeosition.

r A
| !
[x2] = | & a-1 -1 |  —cceeeemmeeen (4.25)
| i
L 4
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Let U and V be

X + a-x%
0 1
x + a.x
1 6
1) = x + a-x
2 5
x + a&a-x
L 3 4 4
T a.x - x 1
0 7
a:X - X |  mmemmemmmmeemeeeeee ( 4.26 )
1 6
v = a-x - x
2 5
] a-x - Xx
L 3 4

we have both the even-transform and odd-transform of the [X3] trans-
form equal to the 4x4 Walsh transform. The third dyadic symmetry de-
composition can be used to ©break down both the Walsh and the [XB]
transform. The only difference 1is that the [XS] transform requires
modified vectors U and V and so requires eight extra right shifts.
Similarly, the 4x4 UHCT and Walsh transform can be decomposed using
the third dyadic symmetry decomposition. The whole process is summa-
rized in Fig. 4.13. The signal flow diagram of one of the ways to

implement the fast computational algorithm is given in Fig. 4.14.

16x16 UHCT

8x8 UHCT [x3]

Ax4 UHOT [x2] [g] [g]

- i — - ———— ——————

2x2 (u] [x1] [H] (1] [H] (1] [x] [x]

Fig.4.13 The binary tree depicting the dyadic symmetry
decompositions of a 16-order UHCT.
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Fig. 4.14 A signal flow diagram for the fast forward 16x16 UHCT.
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4.6.2.3 A fast computational algorithm for the transpose of the

unnormalized LCT

In secticn 4.4.1 it has been shown that the inverse LCT can be im-

rlemented using the transpose of the ULCT. This section will show

that a fast computational algorithm for the transpose of a 16x16
m-1

ULCT can be obtained by the repetitive application of the 2 th

dyadic symmetry decomposition.

The eighth dyadic symmetry decomposition decomposes the transpose of

the 16x16 ULCT into

r x + x 1
0 8 !
g.-x + X
[ 9
a-x + X
2 10
a-x + X
3 11
U = x + a-x
3 4 12
X + a.x
5 13
x + a-x
6 14
X + a-x
L 7 15 J
i X - x 1
0 8 !
X = 4a-X
1 9
X - arX
2 10
X - &a+<Xx
3 11
v = ax - X ] mmmmmmmecceeemee—a— ( 4.27 )
3 4 12
a-Xx - X
5 13
a-x - X i
6 14 |
a-x - b'e }
L 7 15
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and both the even- and odd-transforms are equal to an 8x8 Walsh trans-
form. The fast zomputational algorithm obtained by the repetitive use
use of the 2m-1th dyadic symmetry decomposition described in section
3.6.3 thus can be used to compute the signal data. The whole process

is summarized in Fig. 4.15. The signal flow diagram for the fast com-

putational algorithm is given in Fig. 4.16.

16x16 ULCT tr?nspose

8x8 . (1] (]

4x4 (k] (1] [u] (1]

2x2 (v] [m)]  [H] (1] [u] (2] [H] (1]

Fig.4.15 The binary tree depicting the dyadic symmetry
decompesitions of the transpose of a 16-order ULCT.

4.6.2.4 A fast computational algorithm for the transpose of

the unnormalized HCT

Section 4.4.1 has shown how an inverse HCT can be implemented by

the transpose of UHCT. In this section, a fast computational algorithm
m-1

using the 2 th dyadic symmetry decomposition is given to compute

the transpose of the UHCT. By defining
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. 4.16 A signal flow diagram for the fast reverse 16x16 ULCT.
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+ x
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+ X
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7 15
X - X
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2 10
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X - X
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we have both the even- and odd-transforms equal to the transpose of

an 8x8 UHCT which can then be decomposed by defining

==
It
i |

+ X
0 4
+ X
1 5
+ a x
2 6
+ xX
3 7

S ——— |
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r X -x 1
0o 4 i
X - X | mmmemmmeeeoee ( 4.29 )
v - t 5 |
2 8:X - X I
2 6 !
X - X !
] 307

The 4x4 even- and odd-transforms are the transpose of a 4x4 UHCT

which can then be decomposed inte two Walsh transforms by defining

[ x + x
U = 0 2|
1 x + a.x
. 1 3 4
I X =X | emmmmmmmmem e —mmmmmmaee ( 4.30 )
v = 0 2
1 , 8.X - X
L 1 34

The whole process is summarized in Fig. 4.17. The signal flow diagram

of one of the ways to implement this process is shown in Fig. 4.18.

16x16 UHCT transpose
f
8x8 UHCT tra?spose UHCT tra?spose
I I
4x4 UHCT UHCT UHCT UHCT
tran?pose tran?pose tran?pose tran?pose

- — e i - ——

ex2  [H] fu] [n] (1] [H] (2] [u] (1]

Fig.4.17 The binary tree depicting the dyadic symmetry
decompositions of the transpcose of a 16-order UHCT.
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Fig. 4.18 A signal flow diagram for the fast reverse 16x16 UHCT.
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4.7 CONCLUSIONS

This chapter has demonstrated the use of the theory of dyadic symmetry
to generate two new transforms which can be used as substitutes for
the Walsh transform. The new transforms have virtually the same com-
plexity and computational requirements as the Walsh transform. They
enploy additions, subtractions and binary shifts only but have an effi;
ciency, defined in terms of their ability to decorrelate signal data,

which lies between that of the Walsh transform and that of the DCT.

4.8 NOTE ON PUBLICATIONS

The result described in section 4.2 has appeared in a paper entitled
'A  technique for generating new image transforms', presented at the
1983 IEE colloquium on 'Transform Techniques in Image Processing' at
Savoy Place, London, England. Ancother paper based on the results
described in section 4.2 to 4.5 and entitled 'Simple high efficiency
transforms for image coding' was presented at the 1983 Picture Coding
Symposium, Davis, California, USA. A papgr based on all the results
reported in this chapter and entitled 'Generation of orthogonal trans-
forms uging the theory of dyadic symmetry' was submitted to the IEEE
transactions on Electromagnetic compatibility in 1983. All these

papers were jointly authored with R.J.Clarke.

Also, an Buropean patent (patent no.82303825.2) entitled 'Method of
transmitting an image and apparatus for carrying out the method', in
co-authorship with Dr R.C.Nicol, Mr.B.A.Fenn, Mr.R.J.Clarke and

Dr.K.N.Ngan, has been made +to claim originality of invention on the

HCT and LCT.



CHAPTER FIVE

DcC COEFFICIENT

RESTORATION SCHEMES

5.1 INTRCDUCTION

Picture elements are often highly correlated. In conventional trans-
form coding, the high correlation between pels has been largely, if
not entirely, exploited for those pels within the same block. Hoﬁever,
the high correlation between pels in different blocks is completely

neglected.

Therefore, schemes such as recursive block coding, hybrid coding and
the pinned sine transform (section 1.3.3) were devised to utilize this
correlation to achieve further reduction in bit rate. On the other
hand, Mitchell and Tabatabaiﬁjs] used this redundancy to provide chan-
nel error correction for Chen and Smith's adaptive transform coding
system, thus eliminating the need for channel error protection bits.
Their basic approach ;s to éheck the four boundaries around each recon-
structed image block as shown in Fig.5.1. If sharp grey level changes
exist along these bhoundaries that agree with a dominant error in a
single transform coefficient, the coefficient location and magnitude
are estimated and a basis picture corresponding to the estimated error

is subtracted from the block.

This chapter describes a technique that utilises the same interblock
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Fig.5.1

The four edges
considered in the
error correction
proposed by
Mitchell and
Tabatabai.

redundancy to allow, in some cases, the de¢ coefficients to be esti-
mated at the receiver, thus allowing reductions in bit rate as well
as eliminating a major source of difficulty with respect to channel
errors. Three schemes, called ELEMENT ESTIMATION, ROW ESTIMATICN,
and PLANE ESTIMATION, are proposed, and the results of simulations
of these methods using different block sizes and different pictures

are given.

Section 5.2 evaluates the degree of data compression that can be
achieved by not sending the dc coefficients. Also, it is shown that,
using the sequency-crdered Walsh transformation, dc ccefficient trun-~
cation is equivalent to low sequency coefficient truncation. In sect-
ions 5.3 to 5.5, the three schemes are described, and results of simu-

lations of these methcds are given in section 5.6.
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5.2 SIGNIFICANCE OF DC COEFFICIENT RESTORATION SCHEMES

Eight-bit quantization of the de¢ coefficients is enough to make quan-
tization noise imperceptible. Thus, if the dc coefficients are not
- sent but estimated at the receiver using a dc coefficient restoration
scheme, these 8 bits can be saved. In a two-dimensional transform cod-
ing system, this is equivalent to 0.008, 0.031, 0.125 and 0.5 addit-
ional bit/pel for block sizes 32x32, 16x16, 8x8 and 4x4 respectively.
Consequently, =a dc coefficient reatoration scheme can save more bits
at a smaller, rather than a larger, block size. More insight into
this is provided by the following theorem:
Theorem 5.1:

m r
Let a set of 2 data elements [ x , ..., x ] bve divided into 2

m-r O -1 r
sets. Bach set thus contains 2 data points. The 2 dc coefficients
r
of the 2 sets of Walsh transform coefficients can be derived from
r m
the first 2 +transform coefficients of the 2 -order sequency-ordered
Walsh transform, and vice versa.
Proof:
m

The {i,j)th element of the 2 -order sequency-ordered binary Walsh

matrix is as given by equation 3.9

P —
—
—

b= [ d 4 seeesd ] .
ij 1 2 n

|

— —
—

r
If 1 is within the range [0,2 -1], then we have
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S RN
] f11 1 1 ++ |
! Ly 1 tlo |
b= [ 3,303 11 1] 1 T
ij 1 2 n i o1l P m¢qi
i e e P b e
R B TR T
L J bt o Jd
& mer Dée— r —»
i' ! 11 T 7o 7
I : 11 :uo
| p1 o
= L3, .03 11 1 Y
12 mo | e TR Imere!
1} 1= i'-
i | i i [
L 4L gy J
“ m-r >jé—r —>
r 11 “.'i'i
o1 i mr-1}
P11 b
= | ]|I1 i .o i
1 m= ----------- |I ou||
| I
L J L m |
e I ———p
[ A S R
11 i=m~l‘+1;
11 }iooi
= T 11 {1 (5.1 )
1 I . H{o-a
P [t
L 1 JLm g
& r >

Therefore, if we want to calculate transform coefficient ¢ vwhere 1

r i
is within the range [ 0,2 -1 ], we can use equation 5.1 instead of
r
equation 3.9. In the other words, the first 2 transform coefficients
m m

of the 2 -order Walsh transform can be obtained by first dividing 2
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r
data elements into 2 groups, adding the data elements of the groups

together with proper scaling to form dc coefficients,and finally apply-
r r
ing the 2 x 2 Walsh transform.

For example, consider a set of 16 elements [ X g X 4 «cewg X ]
o 1 15
which are divided into 4 TDblocks, [ Xy eesy X ], [ X 3 +esy X ],
0] 3 4 7
[ Xy eevy X ] and [ X 3 s, X ]. Let the de coefficients of
8 11 12 15
the 4 blocks be d ,d ,d and d . Also, let the Walsh transform

o 1 2 3
coefficients of [ X 4 X 4 eowy X ] be [ C 4, C 4 sasy € ]. Then
o 1 15 c 1 15
we have
o rq 0
0 0
c d
1 1
|C| = [H]X|dl
|2 2
c d
L 3 L 3
where [H] is the 4-order Walsh transform.
r il

This theorem implies that the first 2 of the 2 sequency-ordered

Walsh transform coefficients can be estimated using dc coefficient
m-r

restoration schemes of block size 2 , and therefore, that a dc

coefficient restoration scheme can be viewed as a low order coeffi-

cient restoration scheme.

5.3 ELEMENT ESTIMATION

5:3.1 Description

The dc coefficient of block (1,1), a(1,1), is set to an arbitrary
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level and the grey levels in block (1,1) are adjusted accordingly.
The dc coefficient of block (1,2) is then chosen as that which mi-
nimizes the square magnitude of the edge difference vector between
these two blocks. Similarly,dc coefficient a(1,j) is estimated from
a{1,j-1), and a(i,1) estimated from a(i-1,1) until all the dc coe-
fficients in +the first row and first column have been estimated.
The next step is the estimation of a(i,j) from a(i-1,j) and a(i,j-1).
This is done by minimizing the square magnitudes of the two edge
difference vectors between these three blocks. When all the coeffi~
cients have been estimated, the overall grey level of the picture is

brought within the desired range for display.

5.3.2 Theoretical development

The method of estimation of a(i,j) from the edge difference vectors

and the previously estimated dc coefficients a{i-1,j) and a(i,j-~1) is
now developed. Consider a picture of N by N blocks, each block hav-
ing n by n pels. Let [x(p,q)] and [ec(r,s}] be blocks of original

pels and transform coefficients respectively.

[o(re) 1=L2] [x(pa) ] [T]  comcmmmmemmmmmne (5.2)

t t
[T,r,?,0000,T ]
1 2 3 n

1]

1

where [ T ] is an orthogonal transformation with

O O S PO e A £ —— ( 5.3 )



Both the DCT and Walsh transform satisfy equation 5.3.

Chapter 5

pels having zero dc level is given by the inverse transformation

[ u(p.q) ]

where f(r,s) 0

]

The basis picture of

H
]
+3

]

Therefore, the vectors at the four edges of

all egqual to

Let u(p,q)
i,
edge difference vectors,

t
[ 7]

c(r,s)

{(1/n) x

[ #(r,8) ] [ 7]

r=g=1

otherwise

[ Sttt |

— b kb

- w e -

[ 1/, ceveeee, 1/n ]

be the (p,q)th pel in the (i,j)th block.

as shown in Fig.bh.2,

the de¢ coefficient is given by

!
r
]

— ek —h —h
| E— |

the basis picture are

t

The two

considered in the

estimation of a{i,j) are a) the vertical edge difference vector:

1,1,

a(i,j-1) x Vv

+

T u(1,n)
u(2,n)

] LR )

¢ e san

u(n,n)

|-

-u(1,1)
irj'1 i!j )
-u(2,1) |
i,j-1 1,5 |
LI ] - LR IR B B I B N R N Y ] l
]

- LI RN N B N R R ) 1
- u(n,1) I

i,3-1 i,3 4

The block of
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where 1 and j lie in the range [2,N], and b) the horizontal edge

difference vector:

[ u(n,1) -u(1,1) )
i-1,] iyd |
u(n,2) - u(l,2) I
i-1,3 i3 |
D = a(i-1’j)xv + LU B B I B CRCRCRL I I S BN Y = (5.6 )
2,i’j a9 9 4T L .....IIIIIII :
u{n,n) - u(l,n) |
L i-1,3 1,3 J
where i and j lie in the range [2,N].
N
7 )
\\Vg X 2"'_]
| D1 . THE (ij) th
BLOCK
Fig0502
The two edge
difference vectors
considered in
ELEMENT ESTIMATION.

If a dc coefficient, a(i,j), is added to block (i,j), then the two
edge difference vectors are changed to a) new vertical edge differ-

ence vector:

W = D - a(i,i) x V.  cemmecmmmeememee (5.7)
1’i’j I'i’j

and b) new horizontal edge difference vector:
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For simplicity of notation, the indices i and j will now be

dropped. The sum of the square magnitudes of these vectors is

2
e = T I D = 8V | cememmmemmmme e (5.9)
p=1 P

where e 1is function of the estimated dc coefficient a. It can be

shown (see Appendix B) that e is minimum when

d(p,i)  ~mmmmmemmmm——- ( 5.10)

MB

2
a = {1/2) x =
p=1 i

1

where d(p,i) is the i th element of the vector D . Equation 5.10
implies that setting the new dc coefficient a eqﬁal to one half of
the sum of the grey level difference d(p,i) at the two edges minimizes
the edge difference. It should be noted that the grey level differen-
ces, d(p,i), are computed from pels in block (i-1,3j) and block (i,j-1)

whose levels have been adjusted in accordance with de¢ coefficients es-
timated previously. 1In general, it can be shown that
P

a(i,j) = (1/P) x =
p=1 i=1

d(p,i)  ——emrmmmmeee- (5.11)

Mo

where P 1is the number of edges taken in consideration.
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5.4 ROW ESTIMATICH

541 Description

In this method, the dc coefficients in the first row are estimated
using element estimation and the pels in the first row are adjusted
accordingly. The next row of dc coefficients is then determined as
the set of dc coefficients which minimizes the sum of the square mag-
nitudes of the edge difference vectors between the first and second
rows, and also those between the individual blocks in the second row.
Similarly, the 'dc coefficients in the i+1 th row are estimated from
the i th row until all the dc¢ coefficients are found. Finally, the
overall picture grey level is brought within the desired range for

display.

5.4.2 Theoretical development

The method of estimation of the de coefficients in the i th row from
thoge in the i-1 th row is given. Terms defined by equations 5.1 to

5.4 are used. Also, it is assumed that the receiver has the following

information:

(1) [ u(k,1) ] : the (i,j)th block of pels having zero
i,

de level.

(i1) [ v(x,1) ] : the (i-1,j)th block of pels whose dc levels
i-1’j

have been adjusted according to the estimated dc coefficients.

ot
[ vik,1) ] = [ u(k,1) ] + b xVxV —=——(5.12)
i=1,] i-1,J i-1,]

vwhere b is the estimated dc coefficient for block (i-1,j).
i-1,]
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Now, we are to estimate the N-dimensional dec coefficient vector

A = [8 ’.c--' a ]
1 N
from [ u(x,1) ] and [ v(k,1) ] . We define vertical
i,j i-1lj
and horizontal edge difference vectors for block (i,j) as shown in
Fig.5.3.
> )
[)Zﬂ CJZJZ _____ EJZJQ
N

o e o

Fig.5.3 The vertical and horizontal edge difference
vectors considered in ROW ESTIMATION.

The vertical edge difference vector between the j th block an j+1 th

block in the i th row of blocks is

i- u(1rn) - u(1r1) -=
i, 1,341 |
u{2,n) - u(2,1) !
D = i,J i, g+t | jelt,N-1] —-—-(5.13)
[
u(n,n) - u(n,1) !
L i,j 1,3+1 J
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The horizontal edge difference vector bétween the (i—1,j)th block and

(i,j) th block is

2,

| |

If the pels in the

u(n,1)-

i,J

u(n,2)

i,3

u(n,n)

LI I O I BN I I BN L]

1,]

v{1,1) R
i-1,j

v(1,2)
i-1,j

v(1,n) i
i=-1,3 4

i th row are adjusted by the N dc coefficients

a4 ,8 , 8, «20, a, then the edge difference vectors D and D
1 2 3 N 1,3 2,
are changed to W and W respectively:
1,3 2,3

v = D + (a « a Y x V¥
; 1, 1,J J J+

W = D + a8 x ¥V cemmmmmeeemmmeeee ( 5.15 )

2y 2,3 J

Therefore, the sum of the squares of the magnitudes of these edge

difference vectors

N-1
e = !
J=t
N
+ T
j=t
or
2 N
e = = =
p=1 j=

becomes

PsJd

+Ir] xa
Py

and the n by N dimension matrices [ R ]

PsJ

are as follows:



Chapter 5 181

(A) When p=1 (the vertical edge difference is being considered)

j [r]
1,3
1 [V, —V, 0, T EN ey O ]
2 [o, V, -V, 0O,ee., O ]
N-1 [ 0. Th ey O, v, -V ]
N [0, ....l.ll.l.l.l’ 0 ]

(B) When p=2 (the horizontal edge difference is being considered)

3 [ & ]

2,3
1 [v, 0, +ee., 0]
2 o, v, 0, «.., 0]
N [0, cvevevee, 0, V]

it can be shown (see Appendix A) that e is minimum when

2 N
where [ RR ] = = = [R] - T S —— ( 5.19 )
p=1 j=t Py d Py d
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F—— (- To T

[ r ]

= W

o~ Y

and

Psd

Py J

J=t

p=1

As

—
-—
—
=~
—_
‘
- L ol
[ e |
(2]
—
= -
[l
WL

« » 0
2 -1

0 -1

d

1

0 -1

o

D .

O QO — o
t

0.1—...2 .

-0 -0
I ]
—_— 0

1

b

~~

=

/

Z

we have

Adding these two terms together,

F-——

c 0
3-1 0 O
3-1 0
0-t 31 0

2 -1
-1
0 -1

»

.

31 0

0 -1

3 -1

o -1

[ RR ] = (1/n) x

2

0 -1
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C are summarized in table 5.1 and 5.2

183

where the ith element of vector C is
Q = [o] + Qe o 0 o e e e e
i i,1 i,2
also,
K-1
d = T d
Psd q=0 P:Jsq
and 4 is the q th element of the vector D .
P:dsq P,Jd
J c c I ¢ | | ¢ ioc
1,1 2,11 3,1) IN-1,1E N,1
A |
1 d -4 | ! i !
1,1 1,1 | | i i
___________ S IR NE e I S S,
2 T | :
1,2 | 1,2 | | |
........... S NI St e S
2 T
( v 1h3 ) I
___________ Fommmmatemmmmmtme Y et ————,
_————— e —— L fmmm——— PR b S, L
= .
i i i v 1,N=-2
___________ tommmmentommnnmt e e = -
el T R A
] i i . b 1,8-1¢ 1,N-1
Table 5.1 : ¢ (equation 5.21) which is equal to the

i,1

summation of the terms, d

bel

1,3

ow it.
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e

J c l c i c I c c
1,21 2,2 | 3,2 i N-1,2! N,2
I ] .
L O S 1 :
2!1 ] % II
___________ foummmmetemm—m—nt e Y matmc et e —————
2 la | !
P2,2 |
___________ tommmmmtacmmmat e e — et —————
2 A
i I 233 i i
___________ T S
___________ Y SR S el U S U,
N-f | : I fd
| ! | l N_1|
| i i I 2, [
----------- it e e et o e o i o
N l | I | i-d
i % b 2,8
Table 5.2 : ¢ (equation 5.21) which is equal to the
i,2
summation of the terms, 4 , below it.
2,3

5.5 PLANE ESTIMATION

5:5.1 Description

In this method, the N x N blocks of pels having zero dc level are
grouped into (N/2) x (N/2) groups as shown in Fig.5.4. The difference
over all four edges within each group is then minimized by inserting
new dc¢ coefficients. Therefore, each group of four blocks can be re-
garded as one single larger block of (2xn) by (2xn) pels, and there
are (N/4) x (N/4) of them in the picture. The same process can then
be applied to minimize the difference at the four edges and to form

even larger blocks. This process will continue until the whole picture
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is merged into one ©block. Finally, the restored picture grey levels

are brought within the desired range for display.

> ]

N S S —F

T S T

Fig.5.4 The way that the NxN blocks of pels are grouped
into (N¥/2)x(N/2) groups in PLANE ESTIMATION.

5.5.2 Theoretical development

Without losing generality, we may consider the four block group at
the top left corner as shown in Fig.5.5. This group is the same as a
victure which contains only two by two blocks, each block of pels hav-

ing zero dc level. Define the four edge difference vectors as

- u(n,1) - u(4,1) 1

1,1 2,1 |

u(n,2) - u(1,2) |

D = 1,1 2,1 |
1 Cevsevtte s eseesenes
u(n1n) - u(1,n) i

L 1,1 2,1 4
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If the pels in blocks (2,1), (2,2) and (1,2) are adjusted in accor-

a, a and a , then
1 2 3

dance with the three estimated de coefficients

the four edge difference vectors will become

W = D - Vv x a(2,1)
1 1

W = D + v x(a(2,1)-a(2,2) )
2 2

W = D + T x ( 3(172)-8(212) )
3 3 ’

W = D - v x a(1,2)  ceremmmemmme o (5.23 )
4 4

We require the dc coefficient vector A
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Fig.5.5 The four edge difference vectors
considered in PLANE ESTIMATION.

£
A = [ a(2,1), a(2,2), a(1,2) ] & [ O ]

such that e , the gum of the squares of the four new edge

difference vector magnitudes, is a minimum.

Equations 5.23 to 5.25 imply that
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where

and

Also,

Let

e
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R ]
2
R ]
3
R ]
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shown (see appendix A) that the dc coefficients that mini-

are given by

RR ]

1}

-1
[ RR ] x C

™
e
1
(o JEL N N

===
- o
RN

N -

| S

| Ep——— |
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roc(1) 1
C = | c(2) | mmmmmmmmmmmeeoee ( 5.32 )
L e(3) J
n
s(p) = (/n) x = da(i) = ——----me- ( 5.33 )
i=1 P
Equations 5.26, 5.3%0, 5.31, 5.32 and 5.33 indicate that
c(1) = -s(1) + s(2)
e(2) = -s(2) - s(3)
e(3) = 8(3) - s(4)  —mmmmmemmemeeee- ( 5.34 )
and equations 5.27, 95.29 and 5.3%4 indicate that
a(t) = ( s(4) + s(3) - s(2) + 3xs(1) )/4
a(2) = ( s(4) + s(3) + s(2) + s(1) )/2
a(3) = ( 3xs(4) - s(3) + s(2) + s(1) }/4
------------------------------- (5.35)

5.6 EXPERIMENTAL RESULTS

Evaluation of the restoration schemes was carried out using computer

simulation. A picture was first divided into blocks of size n by n.
Bach Dblock was then transformed using the Walsh transform, and the
de coefficient set equal to zero. All blocks were then inverse trans-
formed to return to the picture domain. Fig.5.6a to Fig.5.14a are
the pictures after inverse transformation with dc coefficients set to

ZeTro.
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The three dc coefficient restoration schemes were then applied to ob-
tain the restored pictures as well as the sets of estimated dc coeffi-
cients. These procedures were repeated for block sizes 4x4, 8x8 and
16x16, and for the pictures 'Girl', 'House' and 'Testcard' described

in section 4.5.2.1. No coefficient quantization was undertaken.

For the 'Girl' picture, the restored pictures are shown in Fig.5.6
to 5.8. When the block size is 4x4, there are severe edging effects in
all the three restored pictures. Furthermore,the accumulation of error
.due to each estimation produces impairment effects along the direction
of estimation. In the picture restored by Element Estimation, if a
block is very bright or very dark, this brightness or darkness tends
to diffuse diagonally from top left to bottom right. In the picture
restored by Row Estimation, the diffusion runs vertically from top to
bottom and is less gevere than that given by Element Estimation. 1In
contrast, the picture restored by Plane Estimation shows no such
effect. However, accumulation of estimation errors makes the edging

effects more prominent as the block size increases.

When the block size is 8 x 8, the pictures restored by Element and
Row Estimation still have edging effects but not the apparent diffus-
jon effect. Noticeable edging effects still remain in the picture
reatored using Plane Estimation. When the block aize is 16x16, Row
Estimation restored the picture without perceptible error whilst Ele-
ment Estimation produced a reasonably good picturs. Again, there are

noticeable edging effects in the picture restored by Plane Estimation.



RS i B S
. Tt et .
TS ! .

N r e e et —
, £

\ P - ﬁgwaﬁ ltﬂ.
ol airs g

"’---

4 R
'\j M'”\ zfﬁ}

P

5.6¢c

Fig.5.6

— S s oy é?‘
." v .ql:f:
. 2 -./,‘-f '\"’"—;......
",f &%g\\\ﬁ’ .s’li‘-&.
] l
'i L ‘_
\‘iﬁj{
.
5.6d4

The 'girl' picture with dc coefficients a) set equal to zere,

b) restored with ELEMENT ESTIMATION,

c) restored with ROW

ESTIMATION and d) restored with PLANE ESTIMATION for block

size 4x4.




5.7¢ 5.7d

Fig.5.7

The 'girl* picture with dc coefficients a) set equal to zero,
b) restored with ELEMENT ESTIMATION, c¢) restored with ROW
ESTIMATION and d)} restored with PLANE ESTIMATION for block

size 8x8.
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5.8¢c 5.84

Fig.5.8

The 'girl' picture with dc coefficients &} set equal to zero,
b} restored with ELEMENT ESTIMATION, <¢) restored with ROW
ESTIMATION and d) restored with PLANE ESTIMATION for block
size 16xl6.
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For the pictures 'House' and 'Testcard’ ;hich contain many regions of
high activity, the restored pictures are shown in Fig.5.9 to Fig.5.14.
These pictures show that all the three dc coefficient restoration
schemes fail to produce sets of de coefficienta that result in satis-
factory pictures. All the pictures restored from the 'House' and 'Test-
card' have severe edging effects, compared with the pictures restored
from the 'Girl’' picture. Reasonable results can only be obtained when
the block sizes are as large as 16x16 -- i.e. where the dc coefficients

require only a small fraction of the total number of bits.

5.7 CONCLUSIONS

In a transform coding system using a small block size, a large propor-
tion of the coding bits is required by the dc coefficienta. Three
schemes are proposed, in which the de coefficients are not transmitted,
but eatimated at the receiver. This allows a reduction in bit rate,
and the possibility of eliminating the serious effect of channel error
on those coefficients. Computer simulation on real pictures showed that
when using a large block size or a low activity picture, satisfactory
results can be obtained. Also, of the three estimation schemes consi-
dered, Row Estimation gives the best result, followed by Element Esti-

mation and finally Plane Fstimation.

5.8 NOTE ON PUBLICATION

A paper based on the material described in this chapter and entitled
'DC Coefficient Restoration in Transform Image Coding' has been submit-

ted to 1EE Proceedings. The paper is jointly authored with R.J.Clarke.
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Also, a UK. patent application (No. 8229420) entitled 'Image Trans—
mission'; in co-~authorship with Mr R J Clarke and Dr R C Kicol, has
been made to claim originality of invention on techniques developed

in Chapter B.
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5.%a 5.9b

5.9¢ ' 5.9d

Fig.5.%

The 'house' picture with dc coefficients a) set egual to zero,
b} restored with ELEMENT ESTIMATIOCN, ¢} restored with ROW
"ESTIMATION and d)} restored with PLANE ESTIMATION for block

size 4x4.



5.1Ca 5.10b

5.10c 5.104

Fig.5.10

The 'house' picture with dc coefficients a)} set equal to zero,
b) restored with ELEMENT ESTIMATION, ¢) restored with ROW
ESTIMATION and d) restored with PLANE ESTIMATION for block
size Bx8,.




5.11a 5.11b

5.11¢ 5.11d

Fig.5.11

The ‘house' picture with dc coefficients a} set ecual to zero,
b) restored with ELEMENT ESTIMATION; c) restored with ROW
ESTIMATION and d) restored with PLANE ESTIMATION for block
size 1l6x16.
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5.12a

5.12c 5.124 ‘

Fig.5.12

The 'BBC testcard' with dc coefficients a) set equal to zero,
b) restored with ELEMENT ESTIMATION, ¢) restored with ROW
ESTIMATION and d) restored with PLANE ESTIMATION for block

size 4x4.




5.13c 5.134

Fig.5.13

The 'BBC testcard' with dc coefficients a} set equal to zero,
b) restored with ELEMENT ESTIMATION, c) restored with ROW
ESTIMATION and d) restored with PLANE ESTIMATION for block

Size 8x8 .
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5.14c 5.144d

Fig.5.14

The 'BBC testcard' with dec coefficients a) set equal to zero,
b) restored with ELEMENT ESTIMATION, ¢) restored with ROW
ESTIMATION and d) restored with PLANE ESTIMATION for block
size 16x16,



CHAPTER STIX

RECAPITULATION AND

SUGGESTIONS FOR FUTURE WORK

6.1 INTRODUCTION

At present, transmission of a 256 x 256 8-bit/pel picture over the
British telephone network (1.2kbps) takes about 7.5 minutes..The trans-
mission %time, however, can be reduced to about 27 seconds by using
transform coding. It achieves data compression first by transformation
of the immge into arrays of trahsform coefficienté such that most of
the energy is packed into a few coefficients. The use of appropriate
bit allocation, optimal quantisation and a robust adaptive scheme then‘
allows the image to be represented at 0.5 bit/pel with acceptable picf

ture quality.

At the beginning of the research program, interblock redundancy (sect-
ion 1.3.3) was examined. A technique which allows the dec coefficients
to be estimated at the receiver was found. Three de coefficient esti-
mation schemes based on this technique weré proposed and tested on
real iméges. Attention then was concentrated on another important as-
pect of transform coding -- the transformation. When looking into the
symmetry properties of the Walsh transform, a concept known as dyadic

symmetry was discovered. This led to the development of +the high

correlation transform (HCT) and the low correlation transform (LCT)

as well as a unified matrix treatment for Walsh matrices. For ease
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of discussion, these results have been presented in the order of a) a
unified matrix treatment of the Walsh matrix, b} the HCT and LCT and

finally ¢) the dc coefficient restoration schemes.

6.2 DYADIC SYMMETRY AND ITS APPLICATICNS TO THE WALSH TRANSFORM

THEORY

The concept of dyadic symmetry described 1in chapter three provides
a commen framework for most areas of interest concerning Walsh trans-
forms. These include a) Walsh matrix generation, b) fast computa-
tional algorithms and c¢) conversion of Walsh transform coefficients

from one ordering to another.

Many solutions of these problems have in fact been found by different
researchers using quite different approaches. The concept of dyadic
symmetry provides simple and straightforward derivations of all the

results. It 1is a viable alternative to the unified matrix treatment
of the Walsh transform put forward by Fino and Algazi [134]. As  the
whole theory relates to a binary field with 'logical and' and modulo
two addition as operations, both theory and practical implementation

are very simple.

First of all, the concept of dyadic symmetry led to the generation of

the Walsh matrix of any ordering by equation 3.9

where b is the (i,j)th element and [S] iz the dyadic symmetry matrix
i
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of a particular ordering. The mxm binary dyadic symmetry matrices of
m n
the 2 x 2 natural-ordered, dyadic-ordered and sequency-ordered Walsh

matrices are respectively

r g
P !
|

[v] = | .
] .
L 1
r 1]
! 1

[p] = i .
| ]
L1 Jd
r 1ﬂ
E 11

[z] = j 111
|-ol-o
Lttt 111

If 1 , i and i are the i (row index) in b of natural-crdered,
N D 2 i)
dyadic ordered and sequency-ordered Walsh matrices, conversions bet-

ween the indices are given by equation 3.23

-1 -1 -1
[z] * 1 = [D] * i = B IR T —— ( 3.23 )
7 D N

Fast computational algorithms were then obtained by repeated applicat-
n m m
ion of the 2 -1 dyadic symmetry decompositions of a 2 x 2 Walsh

transform. Fig.6.1 shows the seven dyadic symmetry decompositions of
m-1
an 8x8 Walsh transform. The repeated application of the 2 th dyadic

symmetry decompositions results in Shank's [124] fast computational
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algorithm (Fig.3.8) as well as those of Manz [126]. The repeated appli-
application of the 13t dyadic symmmetry decompositions gives Larsen's
[129] algorithm (Fig.%.9) and Fino's [127] algorithm. There are in
fact many other fast computational algorithms. Por example, Fig.3.10
and Fig.3.11 show two others which are obtained by the repeated ap-

m
plication of the 2 -1 th dyadic symmetry decompositions.

6.3 NEW TRANSFORMS

The two new transforms, HCT and LCT, can be used as substitutes for
the Walsh transform. They have virtually the same computational re-
quirements and implementation complexity as the Walsh transform, em-
ploying additions, substractions and@ binary shifts only but with an
improved performance which lies between that of the Walsh transform

and the discrete cosine transform {DCT).

Both +transforms were obtained using a technique which can replace
pair(s) of Walsh basis vectors by others to form a new set of linearly
independent basis vectors. The HCT was designed to simulate the DCT
whilat the ILCT was found via a computer search. Fast computational
algorithms have been developed for both forward and inverse HCT and

LCT.

Tests on the HCT and LCT using the first-order Markov process of adja-
cent element correlation coefficient e show that the HCT has a better
performance when ¢ 1is close to unity whilst the LCT performs better
when Y is close to zero. Alsc, the two transforms have a better per-

formance at a small block size than at a 1large block size. Tests on
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the two transforms using real images slsc give similar results. The
HCT has a better performance on a low activity or highly correlated
picture and the LCT performs better on a high activity or "artificial"

picture (the 'BBC testcard', Fig.4.8c).

6.4 DC COEFFICIENT RESTCORATION SCHEMES

The three dc¢ coefficient restoration schemes provide a new approach
for the exploitation of interblock redundancy. Unlike recursive block
coding, the pinned sine transform or hybrid coding, the restoration
schemes do not require additional computation at the transmitter, &nd

the computational algorithms need only be implemented at the receiver.

Advantages provided by the dec coefficient restoration schemes are two-
fold. First, they allow a further reduction in bit rate. In a two-
dimensional transform coding system, the coding bits saved are 0.031,
0.125 and 0.5 bit/pel for block sizes 16x16, 8x8 and 4x4 respectively.
Purther, as dc coefficients are not transmitted, the serious degradat-
ion in the subjective quality of a picture due to the effect of chan-
nel errors on the dc coefficients is eliminated. It is proved that a
de coefficient restoration scheme is equvalent to a low sequency coe-
fficient restoration scheme if the sequency-ordered Walsh transform
is used. Tests of the three schemes on real images show that all the
three schemes provide good results on the low activity 'girl' picture
but fail to do so on the pictures ‘house' and 'BBC testcard'. Also,

it is found that Row Estimation has the best performance, then comes

Element Estimation and Plane Estimation.
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6.5 SUGGESTIONS FOR FUTURE WORK

The ﬁalsh transform has & compafatively small computational regquire-
ment, sequency properties (p.39) which are similar to those of the fa-
miliar DFT, and it is statistically optimal for the class of processes
defined by dyadic covariance matrices. To make use of these advantages,
a special-purpcese digital signal processor to compute the Walsh trans-
form in +the natural, dyadic and sequency orderings for time-series

analysis has been proposed by Geadah and Corinthios [137].

As indicated in section three, the whole theory of dyadic symmetry re-
lates to a binary field with 'logical and' and 'exclusive or' as ope-~
rations. The derived algorithms based on this concept for the genera-
tion of Walsh matrices of different orderings, for the conversion of
Walsh transform coefficients from one ordering to the other, and for
the fast Walsh transform, all relate to this binary field and so can
be implemented easily. Therefore, it is suggested that a Walsh trans-
form processor designed using the theory of dyadic symmetry could have
a simpler and more systematic arrangement than that of Geadah and Co-
rinthios. This implies a-cheaper and faster machine with more flexi-

bility.

The +two new transforms have not yet been used with any particular
adaptive scheme. It is considered that an adaptive block classifica-
tion coding scheme (section 1.3.2) employing the HCT for those blocks
having a low activity index and the LCT for those blocks having a high
activity index may produce even better results +than a conventional

block classification coding scheme using the same transform for all the
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blocks irrespective of activity. A dc coefficient restoration scheme
could also be incorporated into the coding scheme to further reduce the

bit rate.
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P Q t t. t t
= = = | p p + 2(p [rR] A+ a ([R] [R] )al
p=1 q=1 Pa Pq P4 P4 ra pa
-------------------------- ( A.5)
First we represent equation A.5 in g gimple form as
t
= b + 2C A + A[RR]A commmmmmmeee ( A6 )
P Q t
with b = = = D 2 e ( 4.7 )
p=1 q=1 pg pq
[RR] = = £ [R] [R] —eememmmmmmemmmmccae ( a.8)
p=1 q=1 P4 Pq
P Q t
C = = £ D [R] —cemommmmmmemeeee ( 4.9)

Before we proceed with equation A.6, we first derive (from equations
A.10 to A.13} an equation which will be used to represent the last

two terms of equation A.6 in another form.

w
B

t -
({rr]l]a+c) [RR] ([RR]A+C) —mmmemmeev ( A.10 )

t t t -1
( Af{rr} +c¢) [RR] ([rR}A+C)

t t -1 £t -
A [Rr] [rr] [rRrR] & + & [RR] [RR] C

t -1 t =1
+ ¢ [Rr] [RR] &4 + c [RR] C ( A.11 )

t t t
A[RR]lA + a¢c + CA + C[RR]C —oemmm———- ( A.12)

The conversion between A.11 and A.12 is possible because [RR] as given
t
by equation A.9 is a symmetrical matrix, i.e.: [RR] = [RR]. There-

fore, we have
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t t
k = A[RR]JA + 2CA + C[RR}C =memmmccmccmmeceea ( A13)

Now, we can proceed with equation A.6 which, by means of equation

A.13, is converted into A.14:

t -1 t =t
b + { ([RR]JA +c ) [Rr} ( [RR]A +C) - ¢ [mrr]C

[0)
L

t =1
= b + k « C[RR]JC = e ( A14)

As defined by equation A.9, the matrix [RR] is a positive definite or

semi-positive gquadratic form and so the value of k is always positive
-1
(Similarly, C [RR] C and b are always positive). Thus, e is

minimum when k is equal to zero, i.e.:

[RR] A + Cc = 0
-1
or A = -[RR] ¢
(Q.E.D)
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