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S Y N 0 P S I S 

By using transform coding, image transmission rates as low as 

0.5 bit/pel can be achieved, Generally, the bit rate reduc-

tion is achieved by allocating fewer bits to low energy high 

order coefficients, However,to ensure reasonably good picture 

quality, a large number of bits has to be allocated to high 

energy de coefficients for both fine quantization and good 

channel error immunity, A technique has been developed that, 

in some cases, allows the de coefficients to be estimated at 

the receiver, thus eliminating a major source of difficulty 

with respect to channel errors. The computational requirement 

depends on the number of de coefficients, M , which is equal 

to the number of blocks within the picture. In practice, M 

is large and so the computational load is substantial, and 

therefore, to make the method practical, three modified sche-

mes called ELEMENT ESTIMATION, ROW ESTIMATION, and PLANE ES­

TIMATION are proposed, all requiring reduced computation time 

and memory. Results of simulations of these methods using 

different block sizes and different degrees of ac coefficient 

truncation are shown. 

A new unified matrix treatment of Walsh transforms using the 

concept of dyadic symmetry is then developed. This treatment 

allows the straightforward derivation of a simple equation 

for the generation of Walsh matrices of different orderings, 

various re-ordering schemes and fast computational algorithms. 

' 



synopsis ii 

As the theory relates to a binary field with 'logical and' 

and modulo two addition as operations,it allows both the gen­

eration of Walsh matrices of different orderings, and re-

ordering schemes, 

cuits. 

to be carried out using simple logic cir-

The theory of dyadic symmetry is then used to generate two 

new transforms which can be used for image processing, The 

new transforms have virtually the same complexity and compu­

tational requirements as the Walsh transform, employing addi­

tions, subtractions and binary shifts only but with an impro­

ved efficiency, defined in terms of its ability to decorre-

late signal elements, which lies between that of the Walsh 

transform and that of the discrete cosine transform. 
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L I S T 0 F P R I N C I P A L SYMBOLS 

A N D A B B R E V I A T I 0 N S 

a A positive constant less than unity (Table 4.1) 

A Vector containing de coefficients (eq.5.13) 

a The i th element in A 
i 

a(i,j) The de coefficient in the (i,j)th block (eq.5.5) 

(B] The binary Walsh matrix 

b The (i,j)th element of the binary Walsh matrix (eq.3.9) 
ij 

c Vector in transform domain (c.f. X) 

c The i th transform coefficient in vector C 
i 

CQ The quantized value of C 

[cc] Covariance matrix of C (eq.4.4) 

[ex] Covariance matrix of X (eq.4.2) 

D Distortion (eq.1.1) 

ed 
[D] ! Dyadic-orderftdyadic symmetry matrix (eq.3.15) 

D The j th vertical edge vector (eq.5.14a) 
1 ' j 

D The j th horizontal edge vector (eq.5.14b) 
2,j 

d The q th element of the vector D 
p,j,q p, j 
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The discrete cosine transform (Fig. 2. 4) 

The discrete Fourier transform 

Differential pulse code modulation 

The discrete sine transform (Fig.2. 5) 

Expected value of the variable in [ ] 

Field (Def.2.2) 

The high correlation transform (Fig.4.3) 

Relative sensitivity of the human visual system 

to spatial light intensity distribution w (Fig.1.11) 

The Walsh matrix (eq.3.7) 

The (i,j)th element of the Walsh transform 

Row index or index running vertically 

The m th bits of i (i is the rnsb) 
1 

Column index or index running horizontally 

The m th bit of j (j is the rnsb) 
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The Karhunen-Loeve transform 

The low correlation transform (Fig.4.4) 
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Natural-ordered dyadic symmetry matrix (eq.3.12) 
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(vi) 

Normalized mean square error (eq.4.9) 

Probability density function 

Percentage of energy packed into the first r+1 

transform coefficients (eq.4.6) 

The i th Rademacher function (Fig.3.1) 

Rate distortion function 

Dyadic symmetry matrix 

The i th row vector in [s] 

Transform kernel 

The i th row vector or basis vector of [T] 

The i th column vector of [T] 

The unnormalized HCT 

The unnormalized LCT 

Edge vector of de basis picture (eq.5.4) 
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n-vectors over F 

Vector in signal domain (c.f. C) 

The quantized value of X 

Sequency-ordered dyadic symmetry matrix (eq.3.17) 
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Gamma, parameter of a camera tube (Fig.1.10) 
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C H A P T E R 0 N E 

I N T R 0 D U C T I 0 N 

1.1 INTRODUCTION 

The material contained in this thesis all relates to an image data 

compression technique called transform coding. The research into 

this area described here was initiated by the new development of the 

British viewdata system, Prestel. The next section describes briefly 

what a viewdata system is and how the work reported here relates to 

it, in particular to the Prestel system. A review of transform coding 

is then given in section 1.3. It begins with the general theo·ry of 

picture coding and finally concentrates on the various aspects of 

transform coding which are discussed separately under four sections. 

Finally, in the last section, the organization of the thesis is out­

lined. 

1.2 MOTIVATION FOR THE WORK 

Using a viewdata system, television viewers need not wait for the 

9 o'clock news to get the weather forecast, the latest development in 

an international crisis or the financial news. The.system transmits 

the information requested by its users from its information retrieval 

centres via the telephone network to a special decoder in the users' 

home for display on the TV set. 
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Simply; a viewdata system is a network of computer centres of two 

types, information retrieval centres (IRCs) and update centres (UDCs), 

interconnected together by high-speed data links as shown in Fig.1 .1. 

A viewdata system has two types of user, information retrievers (IRs) 

and information providers (IPs). An information retriever is a 

telephone subscriber, who, with the help of a hardware interface (the 

special decoder), can make contact with one of the information retrie­

val centres and retrieve wanted information from a data base within 

the computer network and have it displayed on a TV screen. Another 

type of user is the information provider, who is either a person or 

an organization authorized to have the right to update information 

contained in particular pages or files within a viewdata database by 

means of a special editing terminal connected to an update centre. 

Many countries, like the United Kingdom, Canada, France and Japan 

have already started developing their own viewdata systems, The 

United Kingdom started the venture before all other competitors and 

developed the world's first operational viewdata system, Prestel, 

which at present can deal with two types of information: ruphanumeric 

and graphical. British Telecom is planning to upgrade the present 

viewdata system so that computer programs as well as images can also 

be handled. With the the present data transmission rate (1 .2 kbps) 

over British public telephone network, transmission of a digital pic­

ture, occupying a quarter of a TV screen with a resolution of 256 x 

256 pels, requires a transmission time of about seven and a half 

minutes. Therefore, data compression techniques have to be employed 

to shorten the transmission time. Also, to ensure good picture qua-
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Fig.1.1 Network topography of a viewdata system. 

Chapter 1 3 

lity, error detection and correction techniques have to be used to 

u. 
safeg~rd the data from corruption by channel noise. The research work 

described in this thesis examines various aspects of a data compression 

technique called transform coding, which (at present) can reduce the 

transmission time from seven and a half minutes (8 bit/pel) down to 

about twenty seven seconds (0.5 bit/pel). 

1.3 TRANSFORM CODING ------- A REVIEW 

A video system typically starts with a two-dimensional distribution 

of light intensity. The two-dimensional light intensity is usually 

raster scanned by a TV camera to provide a one-dimensional signal. 

The signal waveforms from most TV cameras are often companded, i.e. 

made a compressed nonlinear function of scene luminance. Since in 
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most cases eight-bit uniform quantization of this companded signal 

gives imperceptible quantization noise, the companded waveform is 

usually represented as a two-dimensional array of eight-bit picture 

elements. Further, there are 287.5 visible lines in one field, so 

the array size is for convenience often taken as 256 x 256 and thus 

represents a huge amount of information. 

However, members of this large number of picture elements are generally 

highly correlated and the image contains significant structure. For 

example, pictures may consist of many areas exhibiting a repetitive 

pattern analogous to the texture of cloth or the pattern of a tile 

floor. Studies and different classifications of texture [1-4] have 

been carried out over the past few years. In addition, pictures often 

contain a number of areas of nearly constant brightness. Statistics on 

the number of these areas, their brightness, sizes, etc, have been 

collected [5-6]. A definite structure also exists in the boundaries 

between these areas, which are usually sharp edges, and studies of 

these edges have also reported in the literature [7-9]. 

Ideally, one would like to take advantage of this redundancy and 

structure in pictorial data, so that pictures can be encoded or 

represented using fewer bits, hence needing less storage space and 

less transmission time. Encoding of such signals is performed by a 

myriad of different techniques which can be divided into two classes 

waveform coding and parameter coding. The objective of wave-

form coding is simply replication of waveforms, whereas parameter 

coding attempts to represent the image using the basic features 
' 
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necessary in some specific applications. Parameters of these basic 

features are extracted at the transmitter, transmitted through the 

channel, and then used to synthesize the image. 

So far, no universal model is able to represent all images sucess­

fully because of the immense variations between different image sour­

ces. However, models have been proposed to represent a restricted 

set of images with good results. For example, images can be modelled 

as random concatenations of textures [10-12]. Hence, a picture can be 

represented by parameters for the texture, and the position and orien-

tation of edges. In another example, a system for the transmission 

of a 'head-and-shoulder' image builds and maintains a 3-D model of 

the object to be coded. Parameters of the facial expressions of the 

object are extracted at the transmitter, and sent through the channel 

to update the model at the receiver. The reproduced image at the 

receiver is a 2-D projection of this model [13]. 

The other class of coding technique, waveform coding, can again be 

divided into two main categories predictive coding and transform 

coding. Fig.1.2 shows the block diagram of a predictive coding system 

which is often called differential pulse code modulation (DPCM). The 

sample to be encoded is predicted from the encoded values of the pre­

viously transmitted samples and only the prediction error is quantized 

for transmission. Research work in predictive coding is mainly concen­

trated on the improvement of the predictor and the quantizer by making 

them optimal for a particular type of source, or adaptive to local 

statistics by employing sophisticated algorithms. For example, various 
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forms of switched predictors to deal with the sharp changes at the boun-

daries of textures, and motion compensated predictors to deal with mov-

ing objects, have been evolved to minimize the prediction error. On 

the other hand, various adaptive quantizers [15-18] have been designed 

to minimize the quantization noise of the prediction error. In general, 

all predictive coders achieve data compression by exploiting redundancy 

in the data. 

INPUT 

CODES DECODER 
FROM 
BINARY 
CHANNEL 

PREDICTOR 

CODE 
ASSIGNOR 

TRANSMITTER 

)-------~r---. OUTPUT 

RECEIVER 

PREDICTOR 

Fig.1.2 Block diagram of a DPCM system 

CODES TO 
CHANNEL 

In transform coding a completely different approach is used. Fig.1.3 

shows the block diagram of of a transform coding system. The original 

image is divided into subpictures of a particular block size and trans-

formed into sets of weakly correlated coefficients. The coefficients 

are then quantized and coded for transmission. At the receiver, the 

received bits are decoded into transform coefficients, and an inverse 
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transform is applied to the coefficients to return to the picture 

domain. 

INAL ORIG 
IM AGE 

OM FR 

CHA NNEL 

TRANSFORM 

DECODER 

BIT 
QUANTIZER ASSIGN OR 

TRANSFORM ENCODER 

INVERSE 
TRANSFORM DISPLAY 

TRANSFORM DECODER 

Fig.1.3 Block diagram of a transform coding system 

TO 
CHANNEL 

Jain has shown that transform coding, although requiring more pro-

ceasing sophistication, achieves a higher degree of data compression 

than predictive coding for a one-dimensional Markov process [14]. On 

real images, the two schemes were found to perform quite closely at 

very low distortion, but transform coding is distinctly better at high 

values of distortion. In practice, only adaptive predictive coding 

algorithms can achieve the efficiency of even nonadaptive transform 

coding methods [14]. 

Data compression in transform coding is achieved by the transformation 

of the subpicture into another array such that maximum information is 

packed into a minimum number of coefficients. Therefore, the overall 

quantization error can be minimized by allocating more bits for trans- ·· 

mission of coefficients having larger variances, and fewer bits for 

coefficients having smaller variances. The appropriate bit allocation 

can be derived from rate distortion theory which states that [19): 
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the output of a source can be transmitted with average distortion D 

if the transmission rate is larger than R(D). 

If D is the mean square error and the source has Gaussian probability 

distribution, then R(D) is found to be [20) 

R(D} = log a /ID 

0 

a >ID 

a ~ID --------------( 1.1 ) 

where a is the standard deviation. · Therefore, equation 1 .1 can 

be used to determine the number of bits required for each transform 

coefficient [21-22). 

Transform coding is a natural outgrowth of the principle of rate dis-

tortion. It was first applied to one-dimensional signals and later 

applied to picture coding [23-27,99). Over the years, much effort 

has been devoted to the transform coding of pictorial data. Here, 

discussion of work on transform coding is grouped under the following 

four headings: 1) transformations, 2) adaptive schemes, 3) schemes 

exploiting interblock redundancy, and finally 4) schemes based on 

human psychovisual characteristics. 

Transformations 

This is the most important part of transform coding theory, and the 

detailed theory of transformation will be presented in chapter two. 

Basically, the primary purpose of the transformation is to convert 

statistically dependent picture elements into an array of uncorre-
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lated coefficients such that maximum energy is packed into a minimum 

number of coefficients (the total energy in the transform domain 

remaining the same as that in the picture domain). 

For a particular image, the optimal transformation which satisfies 

the criteria mentioned above is the Karhunen-Loeve transform (KLT) 

[28-29) (otherwise known as the Hotelling transform [30)) whose basis 

vectors are in fact the eigenvectors of the covariance matrix of the 

image. However, its practical application is beset by many problems. 

Firstly, the KLT necessitates the computation of the eigenvectors 

which requires extra computational time, complicates implementation 

and, furthermore, sometimes the eigenvectors cannot be uniquely 

defined. In addition, there is no true fast computational algorithm 

for the KLT and extra bits are required for the transmission of either 

the basis vectors or the covariance matrix. All the above problems 

prevent the KLT from being used in practice. 

Jain et al [31-32) have developed a fast KLT for a class of stochas­

tic processes, which however, do not represent a typical image. On 

the other hand, the KLT for the first-order Markov process having the 

covariance matrix given by equation 2.32 (widely accepted as a good 

model for images), has no known fast computational algorithm [85). 

All these problems can be eased by the application of a suboptimal 

transform. The first suboptimal transform to be investigated for 

image coding was the two-dimensional Fourier transform (Andrews and 

Pratt [99)). This was followed shortly by the discovery that the 



Chapter 1 10 

Walsh transform could be utilized in place of the Fourier transform 

with a considerable decrease in computational requirement [101]. 

In 1971, investigation began into the application of the KLT (28-30) 

and Haar transform (34]. As mentioned above, application of the 

KLT in practice is prevented due to its complexity. On the other 

hand, the Haar transform has an extremely efficient computational 

algorithm, but results in a larger coding error. At about the same 

time, Enomoto and Shibata designed a new 8 x 8 transform to match 

typical image vectors [35]. Pratt generalized this transform [36] 

which is known as the slant transform, and later applied it to image 

coding with a fast computational algorithm (37) resulting in a lower 

mean square error for moderate block sizes in comparison to other 

unitary transforms. Many other transforms such as the DLB (Discrete 

Linear Basis) [38], Slant Haar Transform [39], SVD (Singular Value 

Decomposition) [40) and Modified Slant transform and Modified Slant 

Haar transform [41) have also been proposed for image coding. How­

ever, the discovery of the. discrete cosine transform (DCT) in 1974 

[42), its efficient fast computational algorithm in 1977 [43], and 

later its application in image coding via the fast computational algo­

rithm [22] has generated much interest. Comparisons between the DCT 

and other suboptimal transforms using a stochastic image model have 

shown that the DCT results in the least mean square error [22] and in 

fact the DCT is asymptotically close to the KLT for the first-order 

Markov process of covariance matrix given by equation 2.32 [44-46). 

Jain has suggested a sine transform with similar properties [31]. 
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The DCT requires real number multiplications whilst the Walsh 

transform needs only additions and subtractions. In some cases, for 

example coding of moving pictures, a simple and efficient transform 

is still necessary. This is why a real time digital image coding 

system reported recently still adopts the Walsh transform [47]. In 

view of performance and simplicity, the choice of transformations 

lies very much between the Walsh transform and the DCT depending on 

whether or not processing speed is paramount. 

In chapter four, two new transforms which can be used as substitutes 

for the Walsh transform are described. Both transforms have virtually 

the same complexity and computational requirements as those of the 

Walsh transform but their energy packing ability and decorrelation 

efficiency lie between those of the Walsh transform and of the DCT. 

Adaptive schemes 

Pictorial data is not homogeneous --- some regions of a picture con­

sist of highly correlated pels and some regions contain a high degree 

of activity. Optimal nonadaptive coding schemes are matched to the 

average statistics of the whole picture. Adaptive coding schemes 

compute local statistics and then apply an algorithm that is effici­

ent for those statistics. At the expense of increased complexity and 

computation time, adaptive coding schemes always outperform nonadapt­

ive ones. Numerous adaptive schemes have been proposed. The main 

differences between them lie in the answer to one crucial question. 

How does the transmitter inform the receiver of the coding strategy 

it has employed for each particular section of the encoded picture? 
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There are two extreme ways of tackling this problem. In the first all 

the overhead information about adaptation is sent to the receiver; 

the other bases its adaptation completely upon previously transmitted 

data and no overhead information is sent. 

The former way is perhaps best represented by theshold coding. Using 

this method one selects a threshold level and transmits only the 

transform coefficients that are larger than this threshold. This 

method is highly adaptive because the number and location of the coe­

fficients that are larger than a threshold vary from one subpicture 

to another. Dillard [48] used this scheme for a 4 x 4 Walsh trans­

form in which the de coefficient and the largest ac coefficients are 

sent along with their addressing information. However, the addressing 

information without any compression could account for about 60% of 

the total bit rate [49], although run-length coding algorithm [50] and 

entropy coding [49] can be used to compress the addressing information. 

Good results have been reported at about 1.25 bit/pel [49]. 

Moving away from threshold coding, which uses up many bits on over­

head information to achieve high adaptivity, is another type of 

adaptive scheme which will be called block classification coding in 

this thesis. Such schemes sort transform blocks into classes by the 

level of image activity present. Claire [51] and Gimlett [52] pro­

posed a definition of 'activity index' using a weighted sum of the 

absolute values of the transform coefficients. Therefore, by allo­

cating more bits to those blocks having a higher activity index, and 

fewer to those having a lo.wer activity index, adaptation is achieved 
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with addressing information considerably reduced. For example, Chen 

and Smith [22] divided transform blocks into four classes, each with 

equal numbers of transform blocks. Fig.1.4 and 1.5 illustrate respec-

tively a typical classification map and bit allocation matrices for 

the four classes for the monochrome image 'girl' (Fig.4.8a) coded with 

an average of 1.0 bit/pel using Chen and Smith's system. In another 

example, Tasto and Wintz [33) classified image blocks into three cate-

gories according to the luminance activity. 

3 4 3 2 2 3 4 4 4 2 1 3 2 1 1 1 
3432431214331111 
2244222121441111 
1143344443232111 
1124333344432111 
2 2 3 3 4 3 2 3 4 4 3 3 2 1 1 1 
2233333343443111 
2 2 4 3 3 3 3 4 4 4 4 4 2 1 1 1 
2 3 4 2 3 3 3 4 4 2 4 4 1 1 1 1 
2 2 1 4 3 3 3 4 3 3 4 4 1 1 1 1 
2 2 1 2 4 3 3 2 4 4 3 4 1 1 1 1 
22212223443211 t 1 
2222232233322111 
2 2 1 1 2 4 2 4 4 4 4 3 3 1 1 1 
2 1 4 4 4 3 3 4 4 4 3 3 3 2 2 2 
4 4 3 2 2 2 3 4 4 2 3 3 4 2 2 2 

Fig.1.4 A typical classification map for 
the 'Girl' picture in the Chen 
and Smith system. 

In these systems, the addressing information required to be sent us-

ually includes one classification map, and a set of variance matrices 

which are used to derive the corresponding bit allocation maps. Some 

systems, however, transmit the bit allocation matrices from which the 

variance matrices are estimated, with further bit rate reduction but 

at the cost of less accurate results [22]. Another group of schemes, 

which are sometimes known as recursive quantization techniques [50] 



8666555444434333 
6544443333322221 
544333322222221D 
4433332222111DDD 
444332221111DDDD 
4433222211100DOO 
4333222111DODDDD 
4332322110DDDDOO 
32222211000DDODO 
322221100DDDDDDO 
322111DOOODDDDOD 
33211DDDOODDODDD 
3221DODDOOOODOOD 
222DOOOODOODDDDD 
320DODDODDDODDOD 
21DDODDODOOODDDD 

(a) The bit allocation 

map for class 4 

(the higest activity). 

8544433333222222 
5433322222211110 
4322211111110DDD 
333221111110100D 
3322111111DDOODD 
32221111DDOOOOOO 
3221111110DOOODD 
3221110DDDODDDDD 
22111DDDDOODDODO 
21111000DDOODDOD 
21111DOODDOOOOOO 
11110DooooooDooo 
1111DOOOODOODODD 
11DDOOODODOODDOO 
11DOODDODOOODOOD 
DOODDODODOOODDOD 

(c) The bit allocation 

map for class 2. 

Chaptr:~r 1 1 -1 

8655554444343333 
5443333322322221 
44333222221111DD 
4333322222211DDO 
4433222 21111 DODO 
433222221110DOOO 
4332221111DODODO 
432222111DODDODO 
33222111DDD00000 
3222211DDDODDDOO 
2222110DDODDDOOD 
22211DODOOOODODO 
22211DDDDDDDDOOO 
221DDDDODDDODODO 
210DDOODDDOODOOO 
2100DOODDDDODOOO 

(b) The bit allocation 

map for class 3. 

83210D1101100D10 
2111DD1D01111100 
21011111011 OD1DO 
1101000111111000 
101D1011101100DO 
10D1101111100000 
100D01D1100D0000 
01111D11DOOOODOD 
ODD1D11DOOODDDOO 
DD01DDOOODOODDOO 
1D1DDDODDOOODDOO 
DD111000000DOODD 
11000DOOOOODOOOO 
111DDDDDOODODODO 
1DODOOOOOOODOOOO 
1DODODOOOOODDODO 

(d) The bit allocation 

map for class l 

(the lowest activity). 

Pig. 1.5 Typical bit allocation maps for the 'girl' picture 

with 1.0 hit/pel in the Chen and Smith system. 
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go further in eliminating the transmission of the variance matrices 

and classification map. Teacher et al [53-54], instead of sending the 

variance map of the DFT coefficient magnitudes, estimated them at the 

receiver using a predictor that predicts the variance of a given coe-

fficient from the variances of a number of adjacent quantized elements. 

This system only needs the transmission of a few variances to start 

the estimation process at the receiver. Bits are then allocated to 

each coefficient proportional to the logarithm of the estimated coeffi-

cient variance, with the phase component having twice the number of 

quantization levels of the magnitude component. The same algorithm has 

also been investigated using the Hadamard transform. 

In a different approach,Tescher and Cox [55], using a diagonal scann-

ing pattern, converted the two-dimensional variance map into one-

-dimensional format as shown in Fig.1.6. Then, the i th coefficient 

variance is estimated as 

2 
h 

a 
i 

= a 
1 

2 
0 + 

i-1 
( 1 - a ) 

1 

2 
h 
X 

i-1 

where x is the i -lth quanti zed coefficient and 
i-1 

--------- ( 1. 2 ) 

a is a weighting 
1 

factor which is chosen to be 0.75, The number of bits allocated for 

the quantization of 

mated variance ,..2 
a 

i 

x is proportional to the logarithm of the esti­
i 

In another approach, Wong and Steele estimated the (r,s)th variance as 

exp! c ln[Q(r,s)] + c ----( 1 ·3 ) 
1 2 
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-~ v p v b v b lr 7 v-~ ~ ~ lr ~ 
( / I/ / 1/ 1/ / 7 7 / V ~ / V v I~ 
V / I/ / 1/ 1/ / I/ / / ~ i/ / 1/ / ~ 
( V V / V 1/ 1/ 1/ I/ 1/ '/ 1/ 1/ 1/ 1/ I~ 
v V V V ]/ V V I/ I/ I/ 1/ V V I/ I/ I) 
( V I/ I/ 1/ I/ I/ IJ IJ I/ 1/ I/ I/ 1/ I/ I~ 
V V I/ I/ 1/ I/ I/ I/ I/ 1/ / I/ I/ I/ I/ I) 
{ V V V V I/ I/ 7 v I/ I/ I/ / I/ 17 I~ 
V 1/ I/ / 1/ I/ / I/ ./ 1/ / I/ / I/ 1/ I) 
( V I/ / I/ 1/ / I/ / 1/ 1/ !/ / I/ !/ I~ 
V V V / I/ I/ / v 7 I/ I/ / / V V I) 
( V / / I/ '/ / J 7 1/ / / / 1/ / I~ 
V 1/ '/ 1/ I/ / I/ / I/ 1/ '/ / / V / I) 
( V V V I/ I/ V I/ I/ I/ 1/ V ]/ V V ~ 
V 1/ I/ 1/ 1/ I/ 1/ 17 17 V I/ I/ 1/ I/ I/ u 
L ~ L ~ L ~ £ ~ L ~ L ~ £ ~ L ~ 

Fig.1.6 Scan path used in variance estimation 

where Q(r,s) is a distance factor and c and c represent, respectively, 
1 2 

the slope and intercept of the log-log relationship of Q(r,s) and 

o(r,s). Bits are allocated to each coefficient proportional to the 

logarithm of the estimated variance [56-57]. 

However, Recursive quantization suffers from one big drawback. A 

transmission error in one single coefficient will spread to the follow-

ing coefficients. In view of probable channel error performance and 

coding efficiency, block classification coding seems to be the best 

choice. 

1.3.3 Schemes exploiting interblock redundancy 

In all of the foregoing transform coding techniques, it is assumed 

that successive blocks of data are independent. Indeed, if the block 

size is large, for example 32 or larger, the interblock correlation 
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is negligible. However, transform coding using a large block size, 

although it can achieve a greater reduction in bit rate, suffers from 

two distinct disadvantages. 

1) It requires more computation time, more complex implementation 

and storage of large amounts of data both at the transmitter and the 

receiver, and consequently produces s delay in transmission. 

2) Image statistics may vary widely within a block if the block size 

is large. Adaptive coding to match statistics within a block is then 

difficult to accomplish. 

These drawbacks can be solved by choosing a small block size and then 

applying coding schemes which exploit interblock redundancy. One 

natural way is to apply predictive coding to exploit the redundancy 

between the transform coefficients of different blocks. This type of 

scheme, comprised of transform coding and predictive coding, is called 

hybrid coding. Fig.1.7 shows a block diagram of a hybrid coder. 

FROM 
CHANNEL 

Fig.1.7 

} 
DROPPED 

J--- COEFFICIENTS 

DROPPED { 
COEFFICIENTS ---+4 

INVERSE 
TRANSFORM 

DISPLAY 

Block diagram of a hybrid coder. 
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Specifically, three types of schemes have been examined, 1) a one­

dimensional block along a hori~ontal line with DPCM in the vertical 

direction; 2) a small two-dimensional block, and DPCH using coeffi­

cients of the previous hori~ontal block for prediction; 3) a two­

-dimensional block, and DPC!1 in the temporal direction. Variations 

of these three systems have been examined by many researchers [58-62]. 

Habibi showed both theoretically and experimentally that the perfor­

mance of hybrid coding systems (1) and (2) surpasses that of both DPCM 

and a non-adaptive two-dimensional Hadamard transform coding system. 

Also, performance of the hybrid coding systems was found to be reason­

ably independent of the block size, the performance improving only very 

slightly for block si~es larger than eight. 

Netravali et al [59], using a small two-dimensional block, showed that 

if the optimum transform (KLT) is not used, correlation exists between 

the coefficients of a given block.This implies that a better predictor 

can be designed by using not just the corresponding coefficient of the 

previous block, but also all other coefficients of the previous block, 

as well as those of the present one. Such a predictor was shown to be 

25% more efficient in terms of data rate, for the same picture quality, 

than a predictor which based its prediction only on the corresponding 

coefficient of the previous block. Comparison between a hybrid coding 

system (3) and transform coding using three-dimensional blocks was 

carried out by Roese et al [63]. Both experimental and theoretical re­

sults indicated that the simpler hybrid coding system performs as well 

as the three-dimensional transform coder. 
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Another technique to exploit interblock redundancy is recursive block 

coding (RBC) [14] which encodes (n+p) samples at a time when a n x n 

transform is used. The theoretical background of RBC is given in sec-

tion 2.4.2.2. For example for p=1, the coding algorithm for the block 

of data [ x ,x 
0 1 

, ••• ,x ] proceeds as follows (Fig.1.8): 
n+1 

(i) Boundary point x is encoded, transmitted and stored at the 
n+1 

receiver for the present as well as the next block. 

(ii) At both the transmitter and the receiver, quantized boundary 

points 
-1 

()( [Q] 

xq and 
0 

xq are passed through a noncausal 
n+1 

and a quantizer to produce a quantized n-vector 

the boundary response. 
,.p 

FIR filter 
b 

XQ , called 

A residual process X is obtained by subtracting the quan­
b 

tized boundary response XQ from the original data X. This is 

then encoded and transmitted using the sine transform, which was 
0 

found to be the KL transform of vector X if vector X is a 

sample of first-order Markov process [31]. 

Using a non-adaptive zonal coding technique, comparison between the 

sine transform with RBC and the DCT in both one and two-dimensions 

[59] has shown that RBC results in a smaller mean square distortion •. 

In addition, recursive block coding, while producing sharper images, 

suppresses the objectionable block-boundaries which exist in the DCT 

coded picture. Meiri and Yudilevich have also developed a very simi-

lar algorithm called the pinned sine transform [65]. 

Psychovisual coding 

Apart from the effort to ··match local statistics of inhomogeneous 
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k th block 

•o 

Fig.1.8 

. . . 
k+l th block 

'IDCH.INliEL 

Block diagram of a recursive block 
coding system. 

pictorial data with various adaptive schemes, human psychovisual 

considerations have also been used to reduce the bit rate. Much 

effort has been made to model the human visual response as a linear 

system [68-74]. This is probably because of the completeness and 

simplicity of linear systems theory. However, the work of Stockham 

[73] (1972) has shown that the human visual system is nonlinear and 

also rotationally variant. Mannos and Sakrison suggested that [75], 

after an initial nonlinear transformation, the remainder of the human 

visual response may be considered linear over a moderate range of 

light intensities. They therefore proposed a model for human psycho-

visual system consisting of s cascaded nonlinear and linear system, 

which will be described later in this section. 

For pel-domain waveform coding, such as predictive coding, knowledge 

about the tolerable error at each pel and how the errors at adjacent 



Chapter 1 21 

points combine is very useful. The error fiL, known as the visual 

threshold, is defined as the point at which a perturbation or distort-

ion just becomes visible or ceases to be visible. It was found that 

/H depends on the following factors [66]: 

1) L , the overall luminance of the surroundings, 
s 

2) L , the background luminance adjacent to the perturbation, 
B 

3) the presence of sharp luminance changes adjacent to the 

The 

perturbation. 

..J 
E 
:5 
..J 

"' 0 
..J 
0 :z: ., 
"' 0: 
:z: .... 

Fig.1.9 
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4• BACKGROUNO LUMINANCE • mL 

The relation between 
background luminance 
luminance (L ). 

s 

visual threshold (AL), 
(L ) and surrounding 

B 

relation between fiL, L and 
s 

L is 
B 

shown in Fig.1.9. The 

long-dashed line represents the condition AL/L =constant (Weber's 
B 

Law) when L = L 
S B 

However, when L 
s 

is much larger than L , Weber's 
B 
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Law is no longer valid. The actual relation between 61 and L is 
B 

that given by the short~dashed line. If there are large changes in 

luminance adjacent to the perturbation, ~L increases on both the 

dark side and the bright side of the luminance change. Details of 

visual threshold properties can be found in [ 66,67]. 

Fig.1.10 

1, (nA)800 

t 600 / 

/ 
-~ 

200 
/- -- ---

~ --
V 
0 20 60 

The relation between signal current (I ) 
s 

and illumination(E ) for a camera tube with 
s 

a Y of 0.65 and 0.45 respectively. 

Whilst a human observer is more sensitive to a perturbation in a 

dark area than in a bright area, a video camera also has similar 

characteristics. Fig.1.10 shows the relation between the illumin-

ation (E ) and the corresponding signal current (I ) in the camera, 
s s 

which is 
I 
s 

"( 
E 
s 

The constant gamma (Y) is a parameter of the camera tube and is about 

0.65 for most vidicons. However, a picture tube has also a curved 

characteristic with a Y of 2.2. To reach the ideal situation of 

y X y = ------------------( 1.4) 
vid. picture tube 
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gamma correction is usually provided in the camera using a circuit 

to reduce y from 0.65 to 0.45 to satisfy equation 1.4. There-
vid. 

fore, the signal waveforms from most video cameras are already 

companded with Y equal to 0.45. Uniform quantization of these 

companded signals means that more bits are allocated to signals re-

presenting dark areas than those representing bright areas. The fact 

that the human visual response is more sensitive in dark areas than 

in bright areas is also reflected in the nonlinear part of the human 

visual system model proposed by Mannos and Sakrison, which is a non-
0.33 

linear transformation f(u)=u 

For transform coding, a knowledge of H(w), the sensitivity or spatial 

frequency response of the human visual response is more useful. The 

linear part of the model proposed by Mannos and Sakrison [75] is a 

filter transform function which indicates the relative sensitivity 

of the human visual system H(w) to spatial light intensity distribut-

ion (w) as follows: 
1 • 1 

H(w) 2.6 [ 0.0192 + 0.114 w] exp! -(0.114 w) 

-----------------------------( 1 .5 ) 

As depicted in Fig.1.11, H(w) has a maximum at w=8.0 cycle/degree 

with a rapid decrease on either side. 

Hall [76] has claimed that the incorporation of a human visual system 

model in a Fourier transform coding scheme can improve the cam-

pression of still pictures by a factor of almost 10. He subsequently 

extended his techniques to code calor signals with good results at 1.0 

bit/pel and with acceptab~e quality down to 0.25 bit/pel. Ngan, in his 
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0 15 30 45 60 75 

w (cycle/degree) 

The Mannos and Sakrison human visual system 
model (after ref. [68]). 

comparison of five adaptive schemes, also found that the scheme which 

has a bit assignment based on the human visual model given by equation 

1.5 gave the best performance in terms of subjective quality [96]. 

1.4 ORGANISATION OF THE THESIS 

Following this introductory chapter, chapter two provides the basic 

theory that will be used throughout the thesis, and begins with the 

abstract concepts of fields, vector spaces and bases, followed by 

transform coding theory, and finally the optimization of parameters 

in a practical transform coding system. In chapter three, attention 

is concentrated on the Walsh transform. A unified matrix treatment for 

the Walsh matrix using the concept of dyadic symmetry is presented. 

This unified treatment allows a straightforward derivation of a simple 

equation for the generation of Walsh transforms of different orderings, 

various re-ordering schemes and various fast computational algorithms. 
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It is believed that this will provide a better understanding of the 

Walsh transform, and hence, allow further fast computational algorithms 

and new properties to be found. The whole theory relates to a binary 

field with 'logical and' and modulus two addition as operations and 

thus allows both the generation of Walsh matrices of different order­

ings, and re-ordering schemes, to be implemented using simple logic 

circuits. 

The simplicity and ease of implementation of the Walsh transform 

have resulted in a wide range of applications. However, the per­

formance of the Walsh transform is inferior to that of the more 

complicated examples such as the discrete Fourier and cosine 

transforms, Chapter four demonstrates the use of the theory of 

dyadic symmetry to generate two new transforms which can be used 

as substitutes for the Walsh transform. The new transforms have 

virtually the same complexity and computational requirements as 

the Walsh transform, employing additions, subtractions and binary 

shifts only but with an improved efficiency, defined in terms of 

ability to decorrelate signal elements, which lies between that 

of the Walsh transform and that of the discrete cosine transform. 

A conventional transform coder employing an efficient transform 

exploits largely, if not entirely, the redundancy between pels 

within the same block. However, the correlation between pels in 

different blocks is completely neglected. Chapter five describes a 

technique that utilizes this interblock redundancy to allow the de 

coefficients to be estimated at the receiver, thus allowing reduct-
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ions in blt rate as well as eliminating a major source of difficulty 

with respect to channel errors. Three schemes called ELEMENT ESTI!1AT­

ION, ROW ESTIMATION, and PLANE ESTIMATION are proposed. Results of 

simulations of these methods using different block sizes and different 

pictures are shown. 

The thesis concludes with chapter six which collates the discoveries 

and work that has been performed in the course of the research pro­

gramme, and makes suggestions for future work. 



C H A P T E R T W 0 

T R A N S F 0 R M C 0 D I N G T H E 0 R Y 

2.1 INTRODUCTION 

This thesis essentially contains three new contributions to transform 

processing: a unified treatment of the Walsh matrix using dyadic sym­

metry (chapter three), new simple and efficient transforms (chapter 

four) and de coefficient restoration schemes (chapter five). These 

discoveries, all relating to transform coding theory, were developed 

using the theory of vectors and matrices, ranging from the abstract 

concept of fields to matrix algebra. 

This chapter links all the theory together, establishing a common 

background of notation and terminology that will be used throughout 

the thesis. To do this, in the next section a brief review of groups 

and fields is first given, which is then followed by definitions of 

vectors and linear independence of vectors, and finally of vector 

spaces and bases. The unified matrix treatment of the Walsh matrix 

was essentially developed using the theory discussed in this section. 

In section 2.3, attention is concentrated on vectors in vector spaces 

over a number field, within which the basic concept of image transform 

coding theory is established. Section 2.4 then describes the well 

known orthogonal transform.ations. The last section discusses the opti-
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mization of parameters in a transform coding system, including the 

choice of transformation, transform block size and quantization stra­

tegy. The matrix algebra required for the de coefficient restoration 

schemes will be presented in chapter five and in the appendices and so 

is not included in this chapter. 

2.2 VECTORS IN A VECTOR SPACE 

2.2.1 Groups and fields 

We are very familiar with the arithmetic of addition and multipli­

cation of a set of real numbers. A modern mathematical point of view 

sees this as a special case of a large class of more general relat­

ionships. These general relationships are considered in an abstract 

way to save the trouble of proving analogous theorems in each case, 

as well as to obtain a better understanding of those relationships. 

Groups and fields, for example, are two of these abstract relation­

ships [78-80]. 

Definition 2.1: 

A group is a set ! a,b,c, ••• 

following properties: 

and an operation + which has the 

1) Closure : a+b is also a legitimate element of the set. 

2) Commutative law a+b = b+a 

3) Associative law (a+b)+c = a+(b+c) 

4) Identity : there is some element, denoted 0, such that for any 

element a, O+a=a. 

5) Inverse corresponding to every element, a, there is another 

element, -a, such that a+(-a)=O. 
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The variety of sets and relationships which are groups is very large. 

A special class of groups is called a field. 

Definition 2.2: 

A field is a set ! a,b,c, ••• } and two different operations + and 

* , satisfying the following rules: 

1) Closure : a+b as well as a*b are valid elements of the set. 

2) Commutative law a+b = b+a 
a*b = b*a 

3) Associative law (a+b)+c = a+(b+c) 
(a*b)*c = a*(b*c) 

4) Identity 

5) Inverse 

There is some element, denoted 0, such that O+a=a. 

There is some element, denoted 1, such that 1*a=a. 

For any element, a, there is an element -a such that 

a+(-a)=O. For any element, 
-1 

element, a , such that a*a 

a, except 0, there is an 
-1 

=1 • 

6) Distributive law: a*(b+c) = (a*b)+(a*c) 

Property 5 allows us to define inverse operations for + and *, which 

are denoted as and / respectively, using the following equations. 

a-b = a+(-b) ---------------------------------( 2.1 ) 
-1 

a/b = a*(b ) ---------------------------------( 2.2 ) 

For example, the set ! 1,0 } with operations "exclusive or" ! (+) } 

and "logical and" * } is a field because it satisfies all the six 

rules mentioned above. In chapters three and four, vectors over this 

field are used to represent a quantity called dyadic symmetry. Proper-
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ties of dyadic symmetry are then derived from the well known properties 

of vectors over a field. 

However, the fields that we are most familiar with may be number 

fields. A set of complex numbers, consisting of more than the element 

0, is called a number field if the operations of addition ! + I and 

multiplication ! x I on any two of the numbers yield a number of the 

set. Examples of number fields are a) the set of all rational numbers, 

b) the set of all real numbers, c) the set of all complex numbers. 

Vectors over the field of real numbers will be used to represent a 

block of pictorial data (in the spatial or transform domains). Proper-

ties of such blocks of data can be derived from the well known proper-

ties of vectors over a field. 

2.2.2 Vectors over a field [81-83] 

A point X in a plane can be denoted by an ordered .pair of real 

numbers. This point X or ( x ,x ) 
1 2 

can be represented as a 

two-dimensional vector or 2-vector and written as [ x ,x ]. In 
1 2 

general, an n-vector over F can be defined by definition 2.3. (In 

this section, F is used to denote a general field with operations 

* and +) 

Definition 2.3: 

An n-dimensional vector or n-vector X over F is an ordered set of 

n elements x of F , thus 
i 
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r 
X 

, 
I I 
I 1 I 
I X I 
I 2 I 
I I 

X I I ----------------------( 2.3 ) I I 
I I 
I I 
I 

X 
I 

I 
n J L 

The elements x , x , ••• , x are called respectively the first, 
1 2 n 

second, ••• nth components of X. 

Definitions of addition, subtraction, scalar multiplication and dot 

product of vectors, as well as definitions of matrix and matrix 

algebra can be found in every text book on vectors and matrices, 

and will not be repeated here. Attention will be concentrated on 

the concept of linear dependence of vectors which is essential for 

the derivation of the concept of dyadic symmetry as well as of the 

two new transforms. For convenience, vectors are column vectors as 

in equation 2.3, unless specified otherwise. 

Definition 2.4: 

The m n-vectors over F 

t 
X = [ X X ' ... ' X ] 

1 11 12 1n t 
X = [ X X ' ... ' X ] 

2 21 22 2n ..................... 
t 

X [ X 
m1 

X , •••• X ] ------------------( 2.4) 
m m2 mn 

are said to be linearly dependent over F if there exist m elements 

k , k , •••• , k of }', not all zero, such that 
1 2 m 

k *X + 

1 1 
k *X + 

2 2 
• • • • • + k *X 

m m 
0 ---------------( 2.5 ) 
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Otherwise, the m vectors are said to be linearly independent. If in 

equation 2.5, k ~ 0, we may solve for 
i 

X = 
i 

- l k *X + •••• + k *X + 
i-1 i-1 

k *X + ••• + k *X l I k 
1 1 i+1 i+1 m m i 

-----------------------( 2.6 ) 

Therefore, the following properties exist 

(a) If r vectors are dependent, any of them may always be expressed 

as a linear combination of the others. 

(b) If r vectors are independent then none'of them may be expressed 

as a linear combination of the others. 

(c) If r vectors are independent while the set obtained by adding 

another vector X is dependent, then X can be expressed as a 
r+1 r+1 

linear combination of X , X , ••••• , X 
1 2 r 

Furthermore, the following well known properties will be stated without 

proof. 

(d) If among the m vectors X , X , ••• , X (equation 2.4), there 
1 2 m 

is a subset of r < m vectors which are linearly dependent, the vectors 

of the entire set are linearly dependent. 

(e) If the set of vectors (equation 2.4) is linearly independent so 

also is every subset of them. 

(f) A necessary and sufficient condition that the vectors (equation 

2.4) be linearly dependent is that the matrix 

r 
X X 

, 
I ...... I 
I 11 1n I 
I I 
I ...... I 

[ X J I I m ~ -----------( 2.7 I ...... I n 
I 

X X 
I 

I ...... I 
I m1 mn J L 

) 
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of the vectors (equation 2.4) be of rank r < m. If the rank is m, 

the vectors are linearly independent. 

If m is greater than n, the m vectors (equation 2.4) must be lin~ 

early dependent as the rank r of the matrix (equation 2.7) must be 

less than m. In other words, we have property (g). 

(g) There are at most n linearly independent n-vectors. 

Ann x n matrix has an inverse if its rank r equals n. Property (f) 

with m=n can therefore be rewritten as 

(h) The matrix (equation 2.7) has an inverse if and only if the 

vectors (equation 2.4) are linearly independent. 

2.2.3 Vector spaces and vector bases 

Definition 2. 5: 

Any set of n-vectors over F which is closed under both addition and 

scalar multiplication is called a vector space. ----
Therefore, if X , X , ••• , X are n-vectors over F, the set of all 

1 2 m 
linear combinations 

k *X + 

1 1 
k *X + 

2 2 
••••• + k *X 

m m 

is a vector space over F. 

Definition 2.6: 

k £ F 
i 

-------( 2.8 ) 

By the dimension of a vector space V is meant the maximum number of 

linearly independent vectors in V o,, (what amounts to the same thing), 

the minimum number of linearly independent vectors required to span V. 



Chapter 2 34 

A vector space of dimension r consisting of n-vectors over F will be 
r 

denoted by V (F). 
n 

for simplicity. 

n 
When r=n, V (F) will be used in place of V (F) 

n n 

Definition 2.7: 
r 

A set of r linearly independent vectors of V (F) is called a basis 
n 

of the space. 

Any r linearly independent vectors of a space will serve as a basis 

and each vector of the space is a unique linear combination of the 
r 

basis vectors of V (F). 
n 

The n n-vectors 

E = [ 1 • 0, ... , o, 0 ]t 
1 

]t E [ 0, 1 • ... , o, 0 
2 ................... 

E 
t 

[ 0, 0, •••• 0, 1 ] ---------------------( 2.9) 
n 

are called elementary or unit vectors over F. The unit vectors E , 
1 

E , •••• , E constitute an important basis, known as the unit basis, 
2 n 

for V (F). 
n 

expressed as 

Every vector 

X X E + 
1 1 

X=(x,x, • • • ' X V (F) can be 
1 2 n n 

xE+ •••• +xE ---------( 2.10 ) 
2 2 n n 

The components x , x , ••• , x of X are now called the coordinates 
1 2 n 

of X relative to the unit basis. Unless stated otherwise, a vector is 

always given relative to the unit basis. 
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Let T, T, ••• , T be the basis vectors of another basis of V (F) 
1 2 n n 

and 

X • c T + c T + ••••• + c T ---------( 2.11 ) 
1 1 2 2 n n 

Then the scalars c, c , •••• , c are called the coordinates of X 
1 2 n 

relative to the T-basis and are represented by vector C : 

c [ c , c ' ••• , c ------------------( 2.12 ) 
1 2 n 

Equation 2.11 now can be written as 

X • c 

or in a more concise form 

t 
X = [ T ) C -----------------------------( 2.13 ) 

where ( T ) = •• 
-----------------------------( 2.14 ) 

Let W , W , ••• , W be yet another basis of V (F), and the coor-
1 2 n n 

dinates of X relative to the W-basis be represented by the vector 

X 
w 

Therefore, we have 

[ t 
w, w, .•• , w ] -------------------( 2.15) 

1 2 n 

X [ W )t X ----------------------------( 2.16 ) 
w 
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Equations 2.13 and 2.16 imply 

= 

or c = X ------------------------( 2.17 ) w 

LINEAR ORTHOGONAL TRANSFORMS 

One-dimensional linear orthogonal transforms 

Consider a block of n pels or a subpicture. If we represent it as 

a vector X in a vector space V (F) , then the vector space V (F) 
n 

contains all the possible subpictures. 
n 

From now on, unless specified 

otherwise, F refers to the field of real numbers. 

In transform coding, vector X will be transformed into vector C 

of n coefficients by a transform [ T ] at the transmitter 

c = ( T ] X -------------------------( 2.18 ) 

then each of the coefficients will be separately coded and sent 

through the channel. At the receiver, X is obtained by taking the 

inverse transform of c. 

-1 
X = ( T ] C ----------------------( 2.19 ) 

The transformations between X and C in equations 2.18 and 2.19 

are in fact simply changes of coordinates between the unit basis and 

basis [ T ] as given by equation 2.14. The elements of the vector X 

are the coordinates of the subpicture with respect to the unit basis, 
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whilst the coefficients in vector C are the coordinates with respect 

to the basis [ T ]. 

If the basis is orthogonal, then we have 

t 
[ T ) [ T ] = [ I ] 

t -1 
or [ T ] = [ T ] --------------------( 2.20 ) 

where [ I ] is an identity matrix. In this case, the basis vectors of 

[ T ] are orthonormal to each other. That means 

t 
T T - 0 i r j 

i j 
= i = j ------------------( 2.21 

Also, the energy of the transform coefficients and of the pels is the 

same. 

Fig.2.1 gives an example showing how a vector can be represented with 

respect to the unit basis and to another basis. Equation 2.18 indi-

cates that the ith coefficient c is the scalar product of the ith 
i 

basis vector T and the signal vector X. 
i 

t 

) 

c T X ----------------------------( 2.22 ) 
i i 

EquationS2.19 and 2.20 imply that the signal vector X equals the 

summation of the basis vectors weighted by the coefficients. 

n 
X = ~ c T ---------------------( 2.23 ) 

i=1 i i 
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0

, c
1

, ••• , c 7 l. 



Chapter 2 39 

In transform coding, T is often interpreted as a spectral function, 
i 

and the coefficient c is the corresponding spectral component 
i 

indicating the amount of energy of the spectral function T in the 
i 

subpicture. In this case, i runs from 0 to n-1 , and relates to 

sequency (generalised frequency). Hannuth [ 100] defined "sequency" for 

any type of function as one-half the average number of zero-crossings 

per unit time. The definition of sequency coincides with that of fre­

quency when applied to sinusoidal functions. Later, Yuen [112] pro-

posed the term "zequency" to denote the number of zero-crossings of 

Walsh functions. 

2.3.2 Two-dimensional linear orthogonal transforms 

In this section, only separable two-dimensional orthogonal trans-

forms are described. A more general approach to two-dimensional 

transfonns is given by Pratt [84], chapter ten. Consider a block 

of n x n pels 

( X ] 

where the column vector xi represents the ith column of the matrix 

[ X ]. A seperable two-dimensional transform can be performed on 

[ X ] in two steps: 

(1) ( K] ( T] (X] 

[ X ] is first transformed into [ K ] by a pre-mul tiplication of 

[ X ] by [ T ]. This in fact converts every x1 (a column vector 

of [ X ] ) into K i' a column vector of [ K ] • 

K. 
1 

( T ] X 
i ----------------------------( 2.24 ) 
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] is then transfonned into [ C ] by a post-multiplication of 

J by ( T Jt 
t 

.This is to convert every K (a row vector of 
t 

]) into C , a 
j 

row vector of [ C ] • 
j 

t t 
c = K ( T ] ------------------------------------( 2.25 ) 

j j 

Equations 2.24 and 2.25 give 

t 

( C ) = ( T ] ( X ] ( T ) ----------------------------( 2.26 ) 

Hence (using equation 2.20), the inverse two-dimensional transform is 

t 
(X)= [TJ[CJ[T] ---------------------------( 2.27 ) 

Let T and T be the i th and j th row vectors of [T]. Equation 2.26 
i j 

indicates that the (i,j)th coefficient is 

t 

c = T ( X ) T --------------------------------( 2.28 ) 
ij i j 

and c can thus be viewed as the scalar product of [ X ] and the 
ij 

basis picture [ T T t ]. Equation 2.27 implies that the data matrix 

[ X J 
i j 

equals the summation of the basis pictures T Tt weighted by 

the coefficients c 
ij 

n 
(X)= :!: 

i=1 

n 
I: 

j=1 
c T 
ij i 

i j 

t 

T --------------------------( 2.29 ) 
j 

Figs.2.2 and 2.3 show the basis pictures of the 4x4 Walsh trans-

fonn and the unit basis. Comparisons between equations 2.28 and 2.29, 
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2.22 and 2.23 show that the one- and two-dimensional transforms are 

in fact very similar. 

2.4 TRANSFORMATIONS 

The optimum transform 

Consider a picture which is divided into N n-vectors, X with 
i 

mean vector X. With a transformation [ T ], each X - X 
i 

is transformed into C • Define the covariance matrix of X as 
i i 

[ ex ] = 
N 
:I: 

i=1 

t 
(X - x) (X - x) -----------( 2.30 ) 

N i i 

The covariance matrix [ CC ] of C can be expressed in terms of 
i 

[ ex ] and [ T ]. 

N t 
[ cc ] = l: c c 

N i=1 i i 

N t 
l: [T] (X -X) ( [ T] (X - X) ) 

N i=1 i i 

N t t 
= :I: [T] (X -X) (X - X) [T] 

N i=1 i i 

Therefore, we have 

t 
[ cc ] = [ T ] [ ex ] [ T ] --------------------( 2.31 ) 

The (i,j)th element of [ CC ], s is the covariance between c 
ij i 

and c • 
j 

A transformation is optimum if it can transform n pels into completely 
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uncorrelated coefficients. In other words, we have the following 

definition for the optimum transformation: 

Definition 2.8: 

The optimum transformation of a picture of covariance matrix [ CX ] 

is the one whose covariance matrix of the transform coefficients 

[ CC ] is a diagonal matrix. 

The above definition implies that the basis vectors (row vectors) 

of the optimum transform are the eigenvectors of [ CX ]. Further-

more, the optimum transform under definition 2.8 results in the least 

normalized mean square error (equation 4.6) and has the best energy 

packing ability (equation 4.5) [109]. Since different images have 

different covariance matrices [ CX ], there is no single unique 

optimum transform. Much of the effort in studying the optimum trans-

form has been directed at that of the first-order zero-mean, unit-

variance Markov process whose covariance matrix is given by the Toe-

plitz matrix 

r 

[ ex ] = 

p • • • • • • • • • • • • • • • • • • • • • p 

p 
2 

p p 

p 

• • • • • • • • • • p 

e ............. . 
1 {> •••••••••• 

................................ 

n-1 
p • • • • • • • • • • • • • • • • • • • • • p 

n-1 
, 
I 

----( 2.32 ) 
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where p is the adjacent element correlation coefficient. Although 

the eigenvectors of [ CX ] are known analytically [85], there is no 

known fast algorithm to transform a vector of data. For high order 

Markov processes,closed-form solutions are still not known in general, 

and the po·ssibility of fast algorithms seems even more remote. 

2.4.2 Suboptimum transformations 

2.4.2.1 Sinusoidal transforms [86,87) 

Consider the parametric family of matrices 

J(k ,k ,k ,k ) 
1 2 3 4 

If we define 

= 

r 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L 

a = 

1-k 
1 

-a 

k a 
4 

a -a 

-a 

2 
p/( Hp ) 

2 2 

-a 

-a 

.. 
.. 

-a 

-a 

, 
I k a 1 

3 I 
I 

I 
I 
I 
I 
I 
I 

I 
I 
I -a 1 
I 

I 1-k a 1 

2 J 

--( 2.33 ) 

s = (1-p )/(1+p) --------------------( 2.34 ) 

then we have 

2 -1 
S (J(p,p,O,O)) = [ ex ] 

which is the covariance matrix in equation 2.32 of the stationary, 

first-order Markov process. Since the eigenvectors of a matrix 
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and eigenvectors of its inverse are identical, the sparse matrix 

[ J(p,p,O,O) ] in equation 2.33 can be used to compute the optimum 

transform or, what is the same thing, the set of eigenvectors. Simi-

larly, the sinusoidal transform family is defined on the sparse 

matrix [ J(k ,k ,k ,k ) ]. 
1 2 3 4 

Definition 2.9: 

The sinusoidal family of unitary transforms is the class of ortho-

normal sets of eigenvectors T generated by the sparse matrces 
m 

[ J(k ,k ,k ,k ) ] for those values of k , k , k =k and a such 
1 2 3 4 1 2 3 4 

that the matrix is positive definite. 

In the other words, a sinusoidal transform [ T ] is one that satis-

fies equation 2.35 where [ D ] is a diagonal matrix. 

t 
[ D ) = [ T ) [ J(k ,k ,k ,k ) ) [ T ) ----( 2.35 ) 

1 2 3 4 

Table 2.1 summarizes some of the sinusoidal transforms. In this 

table, T , the m th row vector of [ T ], represents the mth eigen-
m 

vector. 

In image processing, two of the most important sinusoidal transforms 

are the EDST-1 (transform 3) and EDCT-1 (transform 4) which are corn-

monly known as the DST and DCT respectively. Figs 2.4 and 2.5 show 

the basis functions of the 16x16 DCT and DST. The DCT is asymptoti-

cally close to the optimum transform of the first-order l1arkov pro-

cess whose covariance matrix is the Toeplitz matrix (equation 2.32), 

and at present is regarded as the best suboptimum transform in conven-
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Fig. 2.4 

The IJCT basis functions 
for n=l6. 

Fig. 2.5 

The DS'r basis functions 
for n=l6. 
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ti6nal transform coding systems. On the other hand, if an n-dimen-

sional vector X is a sample of the first-order 14arkov process, it has 

been shown that it hss a decomposition [31) 

X = 

b 
where X = 

0 b 
X + X --------------------------( 2.36 ) 

-1 
o( [ Q ] 

r , 
I X I 
l 0 I 
I I 

X l 
1

1 

l n+1J 

-----------------( 2-37 ) 

x and 
0 

x are sampled data immediately before and after vector X. 
n+1 

The matrix [ Q ) is a symmetric, tridiagonal, Toeplitz matrix with 

unity along 

where c1. = 

coefficient. 

the main diagonal and -0( along the other two diagonals, 
2 

p/(1+p ), and p is the adjacent element correlation 

X b is called the boundary process whilst 
0 

X is called 

the residual process. The DST is the optimum transform of the residual 
0 

process, X • The class of coding schemes that makes use of this fact 

is called recursive block coding. Its coding procedures are given in 

section 1.3.3 and it has been shown to have better performance than 

conventional transform coding schemes. 

Other orthogonal transforms 

The most important non-sinusoidal orthogonal transform is perhaps the 

Walsh transform which only has element values of +1 and -1. Therefore, 

conversion of a signal vector into the Walsh transform domain requires 

only additions and subtractions. In addition, there are fast computa-

tional algorithms for the Walsh transform. The simplicity and ease of 

implementation of the Walsh transform has resulted in a wide range of 
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applications [102-105] and investigations into its properties[88-90]. 

The generation and the properties of the Walsh transform are covered 

in chapter three. 

Walsh transform. 

Fig.2.6 shows the basis functions of the 16x16 

Fig.2.6 

The Walsh transform 
basis functions for 
n =16. 

Another orthogonal transform i.s the Haar transform which has an even 

smaller computational requirement than the Walsh transform. It is 

derived from the Haar matrix [91], which consists of plus and minus 

ones and zero elements. An example of an 8x8 Haar transform kernel 

is given below. 

r 1 1 1 
, 

1 1 -1 -1 -1 -1 
12.!2-12-12 0 0 0 0 

[ Haar ) 0 0 0 0 .!2 ./2-/2-/2 -----------( 2.38 ) 
18 2 -2 0 0 0 0 0 0 

0 0 2 -2 0 0 0 0 
0 0 0 0 2 -2 0 0 

I 0 0 0 0 0 0 2 -2 L .J 

Extensions to higher-order Haar matrices can be formed following the 
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structure indicated by equation 2.38. The basis functions of a 16x16 

Haar transform are shown in Fig.2.7. The Haar transform can be re-

garded as a sampling process in which basis vectors of the transform 

matrix sample the signal data with finer and finer resolution (in-

creasing in powers of two). 

,......... 

~ 

h ..... ,...., 
~,...., 

..... ,...., 

·'"'n 
'"'., 

'"'n 
... ., 

'"'n 
... ., 

'"'n. 

Fig.2.7 

The Haar transform 
basis functions for 
n=16. 

Both Walsh and Haar matr.ices were first developed by mathematicans 

and then borrowed for image processing.The first orthogonal transform 

designed specifically for pictorial data is the slant transform (the 

development of the slant transform can be found in section 1.3.1). A 
m m 

2 x 2 slant transform is designed to satisfy the following criteria: 

(1) one constant de basis vector, (2) one slant basis vector monoto-

nically decreasing in constant step size from a positive level to a 

negative level, (3) the sequency property (section 2.3.1), (4) a fast 

computational algorithm. Slant matrices of order 2 and 4 are 

[ S2 ] 
r 
I 
I 
I 
~ 

,. 1 
1 -1 

, 
I 
I 
I 

J 
-------------------------( 2-39 ) 



( S4 ) 

Chapter 2 51 

r 1 1 1 1 , 
I 3/!5 1/15 -1/15 -3//5 I 
I 1 -1 -1 1 I ------------( 2.40 ) 

14 L 1/15 -3/15 3/15 -1/15 J 

In general, the slant matrix of order n can be derived from the slant 

matrix of order n/2 via equation 2.41. 

1 
[ s ] = 

n ./2 

r 0 [o] 

a b 
n n 

0 

-a b 
n n 

[o] 

-------+--------+--------+--------
[0) I [I] I [ 0 ] I [I] 

l n/2-21 I n/2-2 

, 
I 
I 

I 
I 
I 
I 

I 
I 
I 
I 
I -------+--------+--------+-------- I o I [o) I o -1 I [o] I I I I I 

1
1 I I I 

1
1 

-b a I I b a I 
1
1 I I I 

1
1 

n n 1 1 n n 1 I I I I I 
I -------+--------+--------+-------- I 
1 [o] I [I) I [o] 1-[I] 1 
L I n/2-21 n/2-2 J 

r [s] : [o) l 
I n/21 I 
I I 
I -----+----- I 
I [ 0 ] I [s] I 
L. 1 n/2.J 

---------------------------------( 2.41 ) 

where 

a 

2
n = [ 

3
: 2]1 /2 

4n -1 

---------------------------------( 2.42 ) 

b 
[ 

2 
n -1 

= 4n 
2

-1 
---------------------------------( 2.43 ) 

/2 

2n 

Fig.2.8 shows a 16x16 slant transform. 
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Fig.2.8 

The slant transform 
basis functions for 
n=16. 

In transform coding, data compression is essentially achieved by two 

processes. The first one is the transformation that packs most of the 

signal energy into a few coefficients. The second one is the quanti-

zation process in which the quantization error should be kept to a 

minimum. Therefore, to obtain efficient transform coding schemes 

which, whilst remaining relatively simple in implementation, achieve 

significant reduction in bit rate, both processes have to be optimum. 

Thus we have to choose the right transform and the right block size 

to optimize the first process; and choose the right quantizer and allo-

cate a proper number of bits to each coefficient to optimize the second. 

The following four sections are devoted to these four considerations. 

2. 5.1 Selection of transform 

The transformation that offers the best performance is the Y.LT which 
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has the best energy packing ability, the highest ability to decorre­

late signal data and results in the least mean square error. However, 

the KLT is data dependent and necessitates the computation of eigen­

vectors which creates many problems and prevents it from being used in 

practice. 

In practice, the choice of transformations lies very much between the 

Walsh transform and the DCT depending on whether or not processing 

speed is paramount. In chapter four, two new transforms are proposed, 

which can be used as substitutes for the Walsh transform. The new 

transforms have virtually the same complexity and computational re­

quirements as the Walsh transform but with performance which lies 

between that of the DCT and the Walsh transform. On the other hand, 

the discrete sine transform (DST) was found to have excellent perfor­

mance when used with recursive block coding (section 1 .3.3). 

Selection of block size 

Mean-square error performance should improve with increasing block 

size (n), since the number of correlations considered increases also. 

However, most pictures contain significant correlation between ele­

ments for only about 20 adjacent pels, although this number depends 

strongly on the amount of activity in the picture. Therefore, it 

seems very little can be gained by using block sizes larger than 32. 

This can be verified by Fig.2.9 which contains a plot of the mean­

square error for an image with a Markov process covariance as a 

function of block size for various transformations [22]. In this 
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Fig.2.9 

Mean square error performance 
of orthogonal transforms as 
a function of block size on 
an image with a Markov process 
covariance. 

plot the 25 percent of coefficients with the largest variances were 

selected, and the remainder set to zero. From the figure, it is seen 

that the rate of decrease in mean square error for large block sizes 

becomes quite small for sizes larger than 16x16. 

When subjective quality is the performance criterion, it is found 

that the result appears to be essentially the same for block size 4 

or larger [26]. Furthermore, as given in section 1.3.3, large block 

sizes introduce two distinct disadvantages --- the requirement of 

large buffer memory and difficulty in achieving adaptation within a 

block. However, it should be noted that the choice of block size 

also depends on the kind of coding schemes used. For example, hybrid 

coding maintains its perfo~mance for small block sizes by taking into 



Chapter 2 55 

account interblock redundancy. In general, an optimum block size will 

be between 4 and 32. 

2.5.3 Bit allocation 

It is stated in rate distortion theory that the output of a source 

can be transmitted with average distortion D if the transmission 

rate is larger than the function R(D). For a source with Gaussian 

probability density function and mean square distortion measure D, 

the relation between D and R(D) is given by equation 1.1. 

R(D) = 

= 

log a/,/D 

0 

a >ID 

a ~ ID -------------- ( 1 • 1 ) 

Equation 1.1 means that R(D)-bit quantization of a coefficient having 
2 

variance a would result average distortion D. Therefore, given a 

distortion D,equation 1.1 can be used to determine the number of bits 

needed for the transmission of that coefficient. Usually, bits are 

allocated to the coefficients such that all the coefficients receive 

the same amount of distortion. However, in some schemes which aim at 

a better subjective quality instead of mean square error performance, 

the distortion allowed for each coefficient is modified according to a 

function H(w), the relative sensitivity of the human visual system to 

spatial light intensity distribution (section 1.3.3). Also, in most 

cases, 7 or 8 bits are allocated to de coefficients regardless of 

equation 1.1. This is because 7 or 8-bit quantization of the de coe-

fficients is enough to make the quantization distortion imperceptible. 

Exact equalization of quantization distortion for each ac coefficient 
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c requires R (D), the number of bits allocated to c , to be a real 
i i i 

number,but the number of bits allocated to a coefficient has to be an 

integer. Therefore, exact equalization of distortion is impossible in 

practice. However, the following steps can be used to achieve the 

closest possible equalization of distortion [96]: 

(a) The quantization distortions of the ac coefficients for different 

numbers of bits are determined using equation 1.1. A bit counter is 

then set to zero, 

(b) Assign one bit to the ac coefficient with the largest distortion, 

thereby reducing the quantization distortion of that coefficient by 

6db. Increment the bit counter by 1. 

(c) If the bit counter equals the total number of bits available, 

stop, otherwise go to step (b), 

2.5.4 Selection of quantizer 

Given the probability density function (pdf) of a signal, the 

decision and reconstruction levels of the quantizer that minimizes 

the mean square quantization error can be found [92-94]. Usually, 

the pdf of transform coefficients is approximated by a function and 

then the quantizer that is optimum for that function is used. 

Ghanbari and Pearson [95] found that the distribution of the Walsh 

transform coefficients is approximated by a Gamma pdf. On the other 

hand, Chen and Smith modelled the pdf of the de and ac DCT coeffi-

cients as Rayleigh and Gaussian densities respectively. However, 

sucessful results have been obtained by using a logarithmic model for 

the variances of ac transform coefficients [56,57]. For example, from 

a study of the histograms of the DCT coefficients of the 'Girl' 
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picture (Fig.4.8a) as shown in Fig.2.10, it can be seen that the 

distribution of the ac coefficients is closer to a Laplacian than a 

Gaussian distribution. Therefore, it is believed that a Laplacian 

quantizer is more appropriate than a Gaussian quantizer for the ac 

coefficients [96]. 

On the other hand, the de coefficients are simply the scaled sums 

of the pel levels within a block, so the distribution of the de coe­

fficients is closely related to that of the picture. Since pictures 

can have any distribution so may the de coefficients, and therefore, 

a uniform quantizer is more suitable for their quantization. 
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CHAPTER T H R E E 

DYADTC SYJI!f!ETRY A N D 

T H E W A L S H r1ATRICES 

3.1 INTRODUCTION 

In this chapter, a unified matrix treatment of Walsh transforms using 

the concept of dyadic symmetry is proposed. This unified treatment 

allows the straightforward derivation of a simple equation for the gen­

eration of Walsh matrices of different orderings, various re-ordering 

schemes and various fast computational algorithms, with the intention 

of providing a better understanding of the Walsh transform. Further, 

since the theory relates to a binary field with 'logical and' and 

modulo two addition as operations, it allows both the generation 

Walsh matrices of different orderings, and re-ordering schemes,' to be 

carried out using simple logic circuits. 

A historical note on the Walsh-Hadamard matrix will be given in the 

next section to describe the development of the Walsh-Hadamard trans­

form as well as to clarify the nomenclature. In section 3.3, symmetry 

and dyadic symmetry within a vector are first defined, and then the 

properties of dyadic symmetry derived. The results obtained are then 

used in section 3.4 to obtain a non-recursive equation to generate 

binary Walsh matrices of different orderings. In section 3.5, the 

equation is used to derive some previously known results, including 
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re~ordering schemes between different orderings, and the generation 

of Walsh matrices using Rademacher functions. In section 3.6, dyadic 

symmetry decomposition is defined and then used to generate various 

fast computational algorithms for Walsh transforms. 

3.2 THE WALSH-HADAMARD MATRIX --- A HISTORICAL NOTE 

It is well known that any waveform , x(t) ,having a finite energy in 
*1 

an interval, say [0,1) can be expressed as a weighted sum of a 

complete set of orthogonal functions. For example, if the complete 

set of orthogonal functions is ! exp(j2ntk) }, then we have the famous 

Fourier series representation: 

0> -j21Ttk 
x( t) = l: c . · e 

k= -eo k 

I: j21Ttk 
tE [0,1) 0 = x( t) • e dt 

k 

In 1922, H.Rademacher [77] devised an incomplete set of orthogonal 

functions which were then called Rademacher functions ! Rad. ( t) }. 
~ 

Rademacher functions are defined within the half open interval [0,1), 

and take the values +1 and -1. Fig.3.1 shows the first four Radema-

cher functions. 

pulse. 

Rad ( t) 
0 

- +1 

The first Rademacher function Rad (t) is a unit 
0 

tdo,1) 

R (t) , i ~ 1 ,can then be generated using the recursive equations 
i 

*l t E [0,1) means O't< 1 



Rad ( t/2) 
i 

= Rad ( t) 
i-1 

Rad (t/2+1/2) = -Rad (t) 
i i-1 

Rad ( t) 
0 1 
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Rad ( t) 
1 1 

0 

0 

Rad ( t) 
2 1 

0 

0 

Rad ( t) 
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t 

t 

t 
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Fig.3.1 The first four Rademacher functions 
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The following year, J.L.Walsh added more new functions to the Radema-

cher functions and formed a complete orthonormal set of rectangular 

functions, now known as Walsh functions [119]. However, attention has 

been mainly concentrated on Fourier analysis, leading to the develop-

ment of the fast Fourier transform (FFT) and a complete theory for 

discrete systems (excellent reviews of the progress made in these 

areas can be found in the papers by Jury [97], and Cooley et al [98]). 

In the late 1960's, the fast Fourier transform (FFT) was first applied 

to digital image coding [gg]. At about the same time, Harmuth [100], 
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using the Walsh functions as an example, generalized the concept of 

frequency (for sinusoidal functions only), to 'sequency' for any type 

of function. W.K.Pratt and others then used the Walsh transform, 

derived from the Walsh functions, in place of the FFT for image 

coding [101]. 

As for the Walsh functions, the Walsh matrix contains only the values 

+1 and -1. Therefore, conversion of a signal vector into the Walsh 

transform domain involves only simple additions and subtractions. 

Moreover, there exists a fast Walsh transform algorithm similar to 

that of the fast Fourier transform, and therefore the computational 

requirement of the Walsh transform is much less than that of the FFT. 

In the early 1970's, the simplicity and ease of implementation of 

the Walsh transform resulted in a wide range of applications [102-5], 

including analysis, filtering and data compression of speech, elec­

trocardio-, and electroencephalograms, and other signals, as well as 

for the multiplexing of communication channels and the processing of 

images for pattern recognition, data compression and image enhance­

ment. All these processes are performed in the sequency domain in 

much the same way as they would be in the frequency domain. For 

pattern recognition or waveform analysis, one can search for recog­

nizable configurations of Walsh coefficients. For data compression, 

instead of sending the signal, one can transmit Walsh coefficients 

with more bits allocated to those having larger variances. Section 1.3 

has given a detailed review of this technique. To filter and enhance 

an image, each coefficient is multiplied by an appropriate function 
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of its sequency (and, possibly, added to some linear combination of 

other coefficients) before inverse transformation back to the signal 

domain. To multiplex several signals that have constant amplitude 

over a period T, carrier Walsh functions whose amplitude represents 

each waveform are added together and sent through the channel. The 

orthogonal property of Walsh functions is then used to extract the 

signals at the distant end of the channel. 

The effectiveness of most of these applications however, especially 

filtering and data compression, depends on one single important 

property. In the case of the Walsh transform, it is the ability to 

pack the signal energy into a few transform coefficients. For the 

Walsh functions, it is the ability to represent a signal waveform 

accurately using as few terms as possible. 

Unfortunately, the Walsh functions and Walsh transform are inferior 

to Fourier series representation and discrete Fourier transform in 

that respect [106]. It is found that, to represent a smooth signal, 

far more terms are required in the Walsh series representation. Even 

for discontinuous signals, the Walsh series may also require a lot 

more terms. On the other hand, many other transforms have been found 

to have higher energy packing ability than the Walsh transform. Thus, 

in the late 1970's, the interest in applications of the Walsh funct­

ions and Walsh transform was diminishing. 

Up to this time, however many fruitful results had been found. These 

results can be generally grouped into four areas: 
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1. New and better methods of generating Walsh matrices and Walsh 

functions. 

2. New and more efficient fast computational algorithms for the Walsh 

transform. 

3. Better understanding of the properties of Walsh functions (usually 

obtained by comparison with Fourier analysis). 

4. Special applications and implementation methods. 

During the development, different researchers adopted different no­

menclatures and so created a lot of confusion. In this thesis, "Walsh 

functions" will refer to the set of orthogonal functions proposed by 

J.L.Ivalsh. Many other methods have also been found to generate the set 

of Walsh functions [107-8], some of which have individual functions 

ordered in different ways. Generally, the set of Walsh functions, and 

its discrete counterpart the Walsh transform, are classified into 

three groups according to their ordering. 

1. Sequency-ordered Walsh functions and transform [109]: 

These functions are also known as zequency-ordered Walsh functions 

[ 112] Walsh-ordered Walsh functions [ 110] or simply lvalsh functions. 

Their discrete counterpart, the sequency-ordered Walsh transform, is 

also called the lvalsh transform [ 114]. 

2. Dyad ic-ordered Walsh functions and transform [1 09]: 

These functions are also known as Paley-ordered Walsh functions, and 

their discrete counterpart is also called the Paley-ordered Walsh 

transform [110]. 
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3. Natural-ordered Walsh functions and transform [109]: 

These functions are also known as Hadamard-ordered Walsh functions 

[110] or the binary Fourier representation (BIFORE) [111 ,113]. Their 

discrete counterpart, the natural-ordered Walsh transform, is some-

times called the BIFORE transform [111] or simply the Hadamard trans-

form [ 111 , 113]. 

On the other hand, the Hadamard matrix is defined as a square matrix 

of only plus and minus one whose rows (and columns) are orthogonal to 

one another. Hadamard functions, their counterpart in the continuous 

case, are also called Walsh-like functions [115]. Therefore, under 

this nomenclature,Walsh functions and transforms are particular cases 

of Hadamard functions and transforms.The lowest order Hadamard matrix 

is two by two and unique as shown below. 

H 
2 

r 
I 
I 
l. 

1 
-1 

, 
I 
I 

J 

nethods of generating Hadamard matrices of other sizes can be found in 

the literature [115-6,118]. For any block size, it is always possible 

to derive from each Hadamard matrix a limited number of other Hadamard 

matrices. The Hadamard matrices which can be converted to each other 

by permutation of rows and by inversion of row signs are said to be 

identical. For example, the following two Hadamard matrices are 

identical. 

r 1 1 1 
, r 1 1 

, 
I I I I 
I -1 1 -1 I I 1 -1 -1 I 
I I I I 
I 1 -1 -1 I - I -1 -1 1 I 
I I I I 
I -1 -1 1 I I -1 1 -1 I 
L j L j 
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In fact, they are the natural-ordered and sequency-ordered Walsh 

matrices. For a block size of four by four, there are only two non-

identical Hadamard matrices [117]. They are 

r 1 1 1 1 
, r 1 1 -1 

, 
I I I I 
I 1 1 -1 -1 I I 1 1 -1 1 I 
I I I I 
I 1 -1 -1 1 I and I 1 -1 1 1 I 
I I I I 
I 1 -1 1 -1 I I -1 1 1 1 I 
L J L J 

The number of non-identical Hadamard matrices rises quickly with the 

block size. For a block size of eight by eight, the number of non-

-identical Hadamard matrices is already 432 [118]. From now on, 

attention is concentrated on the Walsh functions and transform. As 

the conversion between the Walsh functions and transform are straight-

forward, so results discovered for one are always applicable to the 

other. 

Certain methods of generating Walsh functions were discovered by early 

pioneers [108,119,120]. Since then, many other methods have been found. 

Some methods aimed at providing a straightforward derivation, some were 

developed for various special purposes. One of the early attempts was 

to define the dyadic-ordered Walsh functions in terms of products of 

Rademacher functions [121-2]. This definition is convenient because Ra-

demacher functions are simple and easy to remember, and their products 

are easy to form. In 1964, K.W.Henderson [107] found two simple methods 

of generating the binary sequency-ordered Walsh matrix. One method uses 

the gray code and Rademacher functions and the other uses the gray code 

and the binary code. In the same paper, a method of generating the 

nRtural-ordered Walsh matrix using only the binary code was given. In 
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1968, in contrast to the Fourier transform, which can be defined by 

linear differential equations of second order, H.F.Harmuth [100] found 

a difference equation by which the sequency-ordered Walsh functions 

could be defined. 

In 1969, three more methods were proposed. P.A.Swick found a 

simpler method of generating sequency-ordered Walsh functions of 

any order by symmetry considerations [123]. W.K.Pratt and 

others found a way to generate the Walsh transforms which can be 

easily generalized to higher dimensions [101], and J.L.Shanks 

defined the dyadic-ordered Walsh functions using iterative equations 

for his development of a fast computational algorithm for the Walsh 

transform [124]. 

On the other hand, in searching for faster and more efficient methods 

for the Walsh transform, researchers have found a number of different 

fast ,computational algorithms, usually by suitably modifying the 

Cooley-Tukey fast Fourier transform algorithm. In 1968, based on the 

well known recursive structure of the natural-ordered Walsh matrix, 

Whechel and Guinn [125] derived a fast computational algorithm for the 

Walsh transform. Later, Shanks [124] derived an iterative equation for 

the dyadic-ordered Walsh matrix, and based on this equation, developed 

another fast computational algorithm. Whechel and Guinn's algorithm 

yields the transform coefficients in natural order while Shanks's algo­

rithm results transform coefficients in dyadic order, which is the 

natural-ordered form after bit reversal. 
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~'ost applications, however, require transform coefficients arranged 

in sequency order. Therefore, the above two fast compuational algo­

rithms require an extra process to re-order the transform coeffi­

cients to give a set of sequency-ordered transform coefficients. 

Conversion from dyadic-ordering to sequency-ordering is a simple 

permutation based on the gray code. Conversion from natural-ordering 

is usually done first by conversion to dyadic-ordering using bit 

reversal and then finally to sequency-ordering using gray code 

permutation [110]. 

In 1972, Hanz [126],by suitably modifying Shanks's algorithm, derived 

a fast computational algorithm which results iA the sequency-ordered 

transform coefficients when the input data is in bit-reversed order. 

At about the same time, Fino [127] and Fontaine [128] both produced 

fast computational algorithms which accept data in normal order and 

result in transform coefficients in sequency order. However, the 

algorithms require an extra N auxiliary storage locations (N is the 

number of input data points) which may eliminate any computational 

advantages. Larsen [129] later discovered a fast computational algori­

thm which was regarded as complementary to 11anz' s algorithm. Larsen' s 

algorithm shares the advantages of Manz's algorithm but differs from 

it in that it accepts data in normal order and returns the transform 

coefficients in bit-reversed sequency order. 

~hroughout the development of Walsh transform theory, different no­

menclatures and d.ifferent methods for the generation of Walsh trans­

forms have been adopted, leading to both rediscoveries [130-1], and 
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to a certain degree of confusion [132-3]. Attempts have been made, 

therefore, to unify the nomenclature and Fine and Algazi produced a 

unified matrix treatment to provide a common framework for all areas 

of interest [134]. They defined Walsh transforms having different 

orderings using the Kronecker matrix product and various permutation 

matrices, such as perfect shuffling and block diagonal matrices. From 

these definitions, various fast computational algorithms for Walsh 

transforms,and the various re-ordering schemes,were derived by matrix 

manipulation. However, these definitions of Walsh transforms are more 

complex than most of the conventional ones. A good understanding of 

the properties of the various types of permutation matrices and the 

Kronecker product are also required to derive the various fast compu­

tational algorithms and various re-ordering schemes. 

In this chapter, an alternative unified matrix treatment which is de­

fined for the binary ~lalsh matrix instead of for the Walsh transform 

is proposed. Bach element of the binary Walsh matrix is 0 or 1 and 

the conversion between the two type of matrices can be obtained from 

the transformation: { 1 ,-1 l in the Walsh matrix <--> { 0, 1 l in the 

binary Walsh matrix. This unified treatment allows the derivation of 

a simple equation for the generation of Walsh transforms of different 

orderings, various re-ordering schemes and various fast computational 

algorithms, within the same framework, by using the concept of dyadic 

symmetry. 

In the next section, symmetry and dyadic symmetry within a vector are 

first defined, flnd then the properties of dyadic symmetry derived. 
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The results obtained are then used in section 3.4 to obtain a non­

recursive equation for the generation of binary Walsh matrices of di­

fferent orderings. In section 3.5, the equation is used to derive 

some previously known results, including the re-ordering schemes bet­

ween different orderings, and the generation of Walsh matrices using 

Rademacher functions. In section 3.6, dyadic symmetry decomposition 

is defined and then used to generate various fast computational algo­

rithms for Walsh transforms. 

3.3 THE BASIC THEORY OF DYADIC SYMMETRY 

In this section, basic definitions of even and odd symmetry are 

given. Attention is then concentrated on the n-1 dyadic symmetries 

among the numerous possible symmetries within a vector of n elements. 

The properties of dyadic symmetry are derived and an BxB Walsh trans­

form is then generated as an example of the application of dyadic 

symmetry. 

3.3.1 The basic definition of symmetry 

Definition 3.1: 

(1) A particular type of EVEN symmetry is said to exist in a vector 

of n elements if and only if the n elements can be divided into n/2 

pairs of elements of the same value. 

(2) A particular type of ODD symmetry is said to exist in a vector 

of n elements if and only if the n elements can be divided into n/2 

pairs of elements of the same magnitude and opposite sign. 
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The above definitions suggest that n must be an even number, and the 

relation between n and the possible number of even symmetries existing 

in a vector of n elements is 

P ~ (n-1) (n-3) (n-5) ••• 1 ----------------------------------( 3.1 ) 

For, let V be the vector [ a , a , a , ••• , a ] • There are n-1 
1 2 3 n 

ways to form a pair after picking one element arbitrarily, n-3 number 

of ways to form another pair, and then n-5, n-7 and so on. Table 3.1 

lists some values of P and n. 

n p 

2 

4 3 

8 105 

16 2027025 

32 1.9x1011 

Table 3.1 : · P is the number of even symmetries 
which exist in a vector of n elements. 

The basic definition of dyadic symmetry 

Definition 3.2: 
m 

A vector of 2 elements [ a , a , ••• , a ] is said to have 
0 1 ztl-1 

the i th dyadic symmetry if and only if 

a = s x a 
j j(+)i 
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•' 

where 

(i) (+) is 'exclusive or' 
m 

(ii) j lies in the range [ 0, 2 -1 ] and i in the range 
m 

(iii) 

Table 
3 

is 2 

[ 1' 2 -1 ] 

s = when the symmetry is even 

s = -1 when the symmetry is odd. 

3.2 shows the dyadic symmetry when m is three and thus n 

or 8. The vectors, H , having even i th dyadic symmetry 
i 

are given in Table 3.3. 

i 1 2 3 4 5 6 7 
j 001 010 011 100 101 110 111 

0 000 1 2 3 4 5 6 7 
1 001 0 3 2 5 4 7 6 
2 010 3 0 1 6 7 4 5 
3 011 2 1 0 7 6 5 4 
4 100 5 6 7 0 1 2 3 
5 101 4 7 6 1 0 3 2 
6 110 7 4 5 2 3 0 1 
7 111 6 5 4 3 2 1 0 

Table 3.2 The value of i(+)j fori in the range [1,7] 
and j in the range [0,7]. 
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i vector H 
i 

1 [ h h h h h h h h ] 
1 1 2 2 3 3 4 4 

--------- ----------------------------------------
2 [ h h h h h h h h ] 

1 2 1 2 3 4 3 4 

--------- ----------------------------------------
3 [ h h h h h h h h ] 

1 2 2 1 3 4 4 3 
--------- ----------------------------------------

4 [ h h h h h h h h ] 
1 2 3 4 1 2 3 4 

--------- ----------------------------------------
5 [ h h h h h h h h ] 

1 2 3 4 2 1 4 3 
--------- ----------------------------------------

6 [ h h h h h h h h ] 
1 2 3 4 3 4 1 2 

--------- ----------------------------------------
7 [ h h h h h h h h ] 

1 2 3 4 4 3 2 1 

Table 3.3 The seven vectors, H , having i th even 
i 

dyadic symmetry. 

It should be noted that each combination of two elements appears once 

and once only in each dyadic symmetry. For example, the combination 

of a and a appears only in the first, and in no other, dyadic sym-
0 1 

metry.The total number of combinations of two elements in a vector of 

n elements is 

nC2 n(n-1)/2 --------------------------------------( 3.2 ) 

Each possible dyadic symmetry requires n/2 combinations. Therefore, 

the number of possible symmetries is 

p n C 2 I (n/2) n - 1 ------------------------( 3·3 ) 

There are thus seven dyadic symmetries in a vector of eight elements. 



3.3.3 Some properties of dyadic symmetry 

Theorem 3.1: 
m 

If a 2 -vector has dyadic symmetries S ,S , ••• ,S 

has also dyadic symmetry S where 
k 

1 2 r 

S = S (+) S (+) ,,,,, S and (+) is 'exclusive or'. 
k 1 2 r 

Proof: 
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this vector 

Let vector A be [ a ,a ,a 
0 1 2 

, ••• ,a m ] having dyadic symmetry 
2 -1 

S ,S , ••• ,S As given by the definition of dyadic symmetry, we 
1 2 r 

have 

a = s a 
j 1 j(+)S 

1 

a = s a 
j 2 j(+)S 

2 

a s a 
j 3 j(+)S 

3 

.................... 

. . . . . . . . . . . . . . . . . . . . 
a = s a 

j r j(+)S 
r 

m 
for all j within the range [0,2 -1] where s = 1 or -1 for 

i 
i within ( 1 , r]. 

Combining the first two equations together 



a = s s 
j(+)S 1 2 

1 

a 
j(+)S 

2 
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m 
Since both j and j(+)S are within [0,2 -1], j can be replaced 

1 
by j(+)S 

1 

a 
j(+)S (+)S 

1 

a 
j 

1 

= s 
1 

= s 
1 

s a 
2 j(+)S (+)S 

1 2 

s a 
2 j(+)S (+)S 

1 2 

Continuing with the same procedure for S , S , ••••• , and S , we 
3 4 r 

have 

a = s a ------------------------------------( 3.4 ) 
j k j(+)S 

k 

where 

( i) s = s s s • • • s 
k 1 2 3 r 

(ii) s = s (+) s ( +) ... (+) s 
k 1 2 r 

m 
The relationships within the 2 -1 dyadic symmetries will now be 

examined in more detail. It will be shown that some m of them are 
m 

independent and all the 2 -1 dyadic symmetries can be expressed as 

linear combinations of m independent symmetries. 

Let F be a binary field which has 0 and 

'logical and' I * } and 'exclusive or' I ( +) 

as its elements, and 

as its operations. 
m m 

For a vector over a number field of 2 elements, there are 2 -1 



Chenter 3 77 

m 
dyadic symmetries. These 2 -1 dyadic symmetries are the m-vectors 

over the field F. 

Definition 3. 3: 

The r dyadic symmetries, represented by the r binary m-vectors 

s : [ s s ....... s ] 
1 11 12 1m 

s [ s s ....... s ] 
2 21 22 2m .................................. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
s 

r 
[ s 

r1 
s , ••••••• , s ] 
r2 m 

t 

t 

t 

are said to be dependent if there exist r elements k , k , ••• ,k , 

not all zero, such that 

k *S 
1 1 

( +) k *S ( +) 
2 2 

• • • • ( +) k *S 
r r 

1 2 r 

: 0 -----------( 3.5 ) 

Otherwise, the r symmetries are said to be linearly independent. 

For example, the first, third and seventh dyadic symmetries which are 

represented by the three binary 3-vectors [0,0,1], [0,1,1] and [1,1,1] 

are independent. On the other hand, the first, second and third dyadic 

symmetries, represented by the three binary 3-vectors [0,0,1], [0,1,0] 

and [0,1,1], are dependent. 

If in equation 3.5, k is not equal to zero, we may solve for 
i 



s = 
i 

k *S (+) 
1 1 

• • • ( +) k *S 
i-1 i-1 
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( +) k *S (+) 
i +1 i +1 

•••••••••• (+) k *S 
r r 

-----------( 3.6 ) 

Therefore, the following properties exist: 

{a) If r dyadic symmetries are dependent, any of them may always 

be expressed as a linear combination of the others. 

{b) If r dyadic symmetries are independent then none of them may 

be expressed as a linear combination of the others. 

(c) If r dyadic symmetries are independent while the set obtained 

by adding another dyadic symmetry S is dependent, then S can 
r+1 r+1 

be expressed as a linear combination of S, S , •••• , S 
1 2 r 

In an m-dimensional vector space over a field, the following two 

properties are well known. 

(i) An m by m matrix [ S ] has an inverse if and only if 

the m row or column vectors of [ S ] are independent. 

(ii) There are at most m independent vectors in a m-dimensional 

vector space over a field. 

Thus, we have the following further properties of dyadic symmetry: 

(d) The m dyadic symmetries represented by binary m-vectors 

s ,s 
1 2 

[ s J 

, •• , S are independent if and only if the binary matrix 
m 

has an inverse, where [ S ] has the dyadic symmetries as 
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,, 

its row or column vectors. 
m m 

(e) There are 2 -1 dyadic symmetries for a 2 -vector and no 

more than m of the dyadic symmetries are independent. 

(c) and (e) above lead directly to 

m 
(f) All the 2 -1 dyadic symmetries can be expressed as a linear 

combinations of m independent dyadic symmetries. That is 

s 
i 

k * s (+) 
1 1 

k * s (+) •••• (+) 
2 2 

k * s 
m m 

m 
where i is within [1 ,2 -1] and S , S , ••• , S are the m 

1 2 m 
independent dyadic symmetries. 

For example, the set of dyadic symmetries defined by the set M are 

independent. 

k 
M = 2 -1 , k e: [ 1 ,m] 

This set of dyadic symmetries will be called Mirror symmetry (or M­
k 

symmetry), and the 2 -1 th dyadic symmetry will be called the k th 
m 

M-symmetry. Table 3.4 shows the 2 -vectors which have the even i th 

M-symmetry. Table 3.5 gives the corresponding dyadic symmetries for 

the M-symmetries of block size 8x8, 16x16 and 32x32. 
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,. 

i H 
i 

1 a a b b .......... c c d d 

• • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
• • . .......................................... 

m-1 a a . . . . . a a b b ....... b b 
1 2 2 1 1 2 2 1 

m a . . . . a a a a ....... a 
1 n/2-1 n/2 n/2 n/2-1 1 

m 
Table 3.4 The 2 -vectors H having the even i th M-symmetry. 

i 

M-symmetry/ 3 I 2 I 1 I block I I I 
I I I size 8 I I I I 

dyadic I 7 3 I 1 I 
I I I I 

symmetry I 111 I 011 I 001 I 
I I I I 

M-symmetry! 4 I 3 I 2 I 1 I block I I I I 
I size 16 I I I I I 

dyadic I 15 I 7 I 3 I 1 I 
I I I I I 

symmetry I 1111 I 0111 I 0011 I 0001 I 
I I I I I 

!1-symmetry/ 5 I 4 I 3 I 2 I 1 I block I I I I I 
I I I I I I size 32 I I I I I I 

dyadic I 31 I 15 I 7 I 3 I 1 I 
I I I I I I 

symmetry I 11111 I 01111 I 00111 I 00011 I 00001 I 
I I I I I I 

Table 3.5 The relation between M-symmetry and dyadic symmetry 

Independent dyadic symmetry and the Walsh matrix 

----- an example 

It is well known that all the elements of a Walsh matrix have the 

same magnitude. Further, it is interesting to note that the distri­
m m 

bution of signs within a 2 x 2 Walsh matrix is such that each row 
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m 
and column have all the 2 -1 dyadic symmetries. Now, using an 8x8 

Walsh matrix as an example, it will be shown how m independent mirror 
m m 

symmetries can be used to generate any basis vector of a 2 x 2 Walsh 

matrix. 

If we use '0' to represent even dyadic symmetry, '1' to represent odd 

dyadic symmetry, the dyadic symmetries [0 ••• 01], [0 •• 011], [0 •• 111], 

••• , [1 •• 111] of a Walsh basis vector can be used to form a code which 

indicates the number of zero crossings within that vector. 

For example, let us consider H , the Walsh basis vector having five 
5 

(i.e. 101) zero crossings. As the first element is always •1 and the 

first dyadic symmetry is 1 (i.e.odd), the first two elements are 

[ 1,-1 ]. Also, because the third dyadic symmetry is even, the first 

four elements are [ 1 ,-1,-1, ]. Finally, the seventh symmetry is 

odd, therefore, the vector is 

H = [ 1,-1,-1, 1,-1, 1, 1,-1 ] 
5 

Finally, the Walsh matrix is orthogonal as a consequence of: 

Theorem 3.2: 

Two M-dimensional vectors u and V are orthogonal if U and 

V have the same type of symmetry and U is even and V is odd. 

Proof: 

As U has a particular type of even symmetry, so elements of U can 

be grouped into n/2 ordered pairs, ( u , ub 
8 1 1 

ub), .. • • • • • •.' 
2 
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(ua ' ub ) where a • b are integers within [ 1 , n ] , i is 
n/2 n/2 i i 

an integer within the range [ 1 ,n/2 ] , and n is the dimension of the 

vectors u and v. As V has the same type of symmetry (except that 

it is odd), so elements of V can be grouped into n/2 ordered pairs, 

va . ' vb 
' ' ' n · n 

) 

2 2 

with V = -vb. ai J. 

Therefore, 

t n 
u X V :1::: ( uk. vk ) 

k=1 

n/2 n/2 
= :1::: ( u V ) + :1::: ( u . vb. 

) 
i=1 a. a. j=1 b. 

' 1 1 J J 

n/2 
:1::: ( u •V + ub." vb. ) 

i=1 a. · a. 
1 1 1 1 

= 

= 0 

The dot product between U and V is zero, and therefore U and V 

are orthogonal. 

Since all the Walsh basis vectors have at least one different dyadic 

symmetry,this theorem leads directly to the result that all the basis 

vectors of Walsh matrices are orthogonal. 
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GENERATION OF A WALSH MATRIX 

The definition of a Walsh matrix 

First of all, the Walsh matrix is defined as: 

Definition 3.4: 
m 

2 
m m 

The 2 -dimensional vectors derived from the 2 possible corn-

binations of m independent dyadic symmetries are all different and 

and orthogonal, and they are the basis vectors of a Walsh matrix. 

From property (b) in section. 3.3.4, none of the m independent dyadic 

symmetries can be derived from combinations of the others. This im­
m 

plies that the m dyadic symmetries can form 2 different combi-

nations, and so by theorem 2.2 are orthogonal. 

This definition reveals that any m independent dyadic symmetries 
m-1 

from ~e total of the 2 dyadic symmetries can be used to generate 
m m m m 

the 2 2 -dimensional basis vectors of a 2 by 2 Walsh matrix. 

However, the actual ordering of the basis vectors still depends on the 

choices of 1) the m independent dyadic symmetries and 2) the m-bit 

code used. 

Section 3.3.4 illustrates the generation of an eight by eight sequency-

ordered Walsh matrix using the binary code and independent dyadic sym­

metry [1,3,7]. Table 3.6 summarizes the independent dyadic symmetries 

for the generation of the 8 x 8 sequency-ordered, dyadic-ordered and 

natural-ordered Walsh matrices using binary code and gray code. 
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code binary gray 
ordering code code 

[ 1 , 3, 7 ] I [ 1 , 2,4 ] sequency 

------------------ ----------------- -----------------
dyadi<; [ 1 , 2, 4 ] [ 1 , 3, 6 ] 

------------------ ----------------- -----------------
natural [ 4, 2,1 ] [ 4,6,3 ] 

Table 3.6 The codes and dyadic symmetries for the gen­
eration of 8x8 Walsh transforms of sequency, 
dyadic, and natural orderings 

3.4.2 Derivation of the non-recursive equation for the binary 

Walsh matrix 

For clarity, block size 8 x 8 is use as an example. The result 
m m 

can easily be generalized to block size 2 x 2 Let [ H ] 

be the Walsh matrix of a particular ordering 

[ H ] 

where 

and j=[ 

r h h h ~ 
I ........... 
I 00 01 07 I 
I h h h I ........... 

= I 10 11 17 I 
I 

I ... . . . . . . . . . . . . .. 
I 
I h h h I ........... 
I 70 71 77 I 
1.. J 

h is the (i,j) th element of [ H ], 
ij 
j,j,j]. 
1 2 3 

----------------( 

i=[ i ,i ,i ] 
1 2 3 

3·7 ) 

Also, let h = +1 
ij 

if b = 0 
ij 

-------------------------( 3.8 ) 

= -1 if b = 
ij 

and the binary matrix [ B ] whose (i,j)th element is b be called 
ij 
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the binary Walsh transform. Then, the determination of [ B ] leads 

directly to that of [ H ] and vice versa. 

Further, let s , 
1 

S and 
2 

S be the binary representation of the 
3 

three independent dyadic symmetries. 

t 
s = [ s s s ] 

1 11 12 13 t 
s [ s s s ] 

2 21 22 23 t 
s = [ s s s ] 

3 31 32 33 

The binary matrix [ s ] will be called the dyadic symmetry matrix 

where 

r st , r s s s 
, 

I I I 
1 I I 11 12 13 I 

I I I I 
[ s ] = I st I = I s s s I 

I I I I 
I 2 I I 21 22 23 i I I I 
I st I I s I I I s s I 
I 3 I I 31 L J L 32 33 .J 

In this section, it will be shown that 

b 
ij 

-1 
[ j ,j ,j ] * [ s ] 

1 2 3 

t -1 

* [ i ,i ,i 
1 2 3 

t 
] 

= j * [s] * i ---------------------------------( 3.9 ) 

It has already been pointed out in section 3.3.4 property (d) that 

[ s ] always has an inverse if dyadic symmetries s , s and s 
1 2 3 

are independent. In order to clarify the development, the eight by 

eight sequency-ordered binary Walsh matrix will be used as an 
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example. First of all, the following may be noted: 

(1) If the binary representation of i is [ i ,i ,i ], then i ,i 
1 2 3 1 2 

and i determine the type (even or odd) of the three independent 
3 

dyadic symmetries S , S and S within H • 
1 2 3 i 

(2) The dyadic symmetry matrix of a sequency-ordered Walsh matrix is 

r st , I I r o o 1 1 I ., 
I I I 

[ s ] = I st I = I 0 1 1 I 

I 2 I l1 1 1 I 
I 

st 
I J 

I I 
I I 
I 3 I 
1.. J 

(3) The ( 0,0,0 )th element of every Walsh basis vector is usually 

taken to be +1. This convention will be adopted here also, and there-

fore the ( 0,0,0 )th element of every binary Walsh basis vector is 0. 

There are eight elements in H and h is always +1. Now, we wish 
i iO 

to determine the sign of h , which is the ( j ,j ,j )th element of 
1 2 3 

the 

(i) 

It is 

(i,i,i)th 
1 2 3 

ij 
basis vector. Consider the following three ·cases. 

When [j,j,j] is [ 0,0,1] 
1 2 3 

s, ~ s1 s, 

n n n n 
X 

obvious that the sign of the ( 0,0, 1 )th element depends only 

on symmetry S and so on i in the vector [ i ,i ,i ]. An i of 
1 1 1 2 3 1 

value 0 or 1 implies even or odd symmetry and so the (0,0,1)th and 

( 0,0,0 )th elements have the same or opposite sign. 
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(ii) When [ j 'j 'j ] is [ 0,1,1 ] 
1 2 3 

s2 s2 

~ I I ~ s2 ~ 
X 

The sign of the ( 0,1,1 )th element depends only on s and so on i 
2 2 

in the vector [ i,i,i]. 
1 2 3 

(iii) When [ j 'j 'j ] is [0,1,0] 
1 2 3 

sl· s2 

n n 
X 

The sign of the ( 0' 1 ,o )th element depends on symmetries s and 
1 

S and so on i ( + )i 
2 1 2 

The ·result is summarized in Table 3.7. 

j j j j b or sign of h 
1 2 3 ij ij 

-----+--------------+----------------------
0 I 

I 
I 
I 

2 I 
I 

3 I 
I 

4 I 
I 

5 I 
I 
I 

6 I 
I 

7 l 
I 
I 

Table 3.7 

0 

0 

0 

0 

0 0 0 

0 1 

0 

1 

0 0 i2(+) i3 

0 ~ (+) i2(+) i3 

0 

Sign of h as a function of i for different j. 
ij 
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•' 

Table 3.7 suggests that the sign of the j th element in a Walsh 

basis vector depends sometimes on one, sometimes on two and sometimes 

on all the independent dyadic symmetries. The actual relationship can 

be found by expressing [ j ,j ,j ] with respect to the new basis S , 
1 2 3 1 

S and S Let the new coordinates of j be 
2 3 

t 
r = [ r ,r ,r ] 

1 2 3 

If r is 
k 

1, then the sign of h depends on S , and vice versa. 

Hence, W'l have 

j = 
t 

[j,j,j] 
1 2 3 

r * S 
1 1 

(+) 

ij k 

r * S 
2 2 

(+) r * S 
3 3 

Equation 3.10 can be converted into 

r st 
, 

I I 
t t I 1 I 

I I 
j = r * I st I 

I I 
I 2 I 
I I 
I st I 
I I 
I 3 I 
~ J 

-1 
r st , I I 

t t I l I 
I I 

---------( 3.10 ) 

r = j * I st I 
I I 

2 -------------------------------------( 3.11 ) 
I I 
I 

st 
I 

I I 
I I 
I 3 I 
~ .l 

Therefore r can be found easily from equation 3.11. The same three 

cases will be used as examples. 



( i) 

[ 

As 

We 

t 
r 

When [ j • j 

r t r , r ] 
1 2 3 

-1 
[s] = 

have 

= [ 0,0 ,1 ] 

= [ 1 ,o,o ] 

1 

= 

= 

* 

2 
• j ] is [ 

3 

[ j • j • j 
1 2 3 

[ 0,0,1 

r o 1 1 1 
i 1 1 0 i 
L 1 o o 1 

r o 1 
i 1 1 
L 1 0 

] 

1 l 
0 i 
0 J 
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0 ,o, 1 ] 

-1 
] * [ s ] 

-1 
; 0 0 1 

, 
I I 

* I 0 1 1 I 
I I 
I 1 1 1 I 
L J 

Thus the ( 0,0,1 )th element only depends on S and so on the 
1 

first dyadic symmetry. 

(ii) When [ j ,j ,j ] is [ o, 1 • 1 ] 
1 2 3 

t f 0 1 1 l 
r = [ o, 1 • 1 ] * i 1 1 0 i 

L 1 0 0 J 
[ 0,1,0] 

Thus the ( 0,1,1 ]th element depends only on S and so on the 
2 

third dyadic symmetry. 

( iii) When [ j ,j ,j ] is [ 0,1,0 ] 
1 2 3 

t f 0 1 1 l 
r = [ 0, 1 • 0 ] * I 1 1 0 i I 

L 1 0 0 1 
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= [1,1,0] 

Thus the ( 0,1,0 )th element depends on the S and S and so on 
1 2 

the first and third dyadic symmetries. 

Finally, we have equation 3,9 

t 
b = r * i 
ij 

t -1 
= j * [ s J * i 

Examples 

In this section, the equation derived in the previous section will 

be used to generate the 8x8 binary Walsh matrices having different 

orderings. The three most common orderings are given first. 

(1) Natural-ordered binary Walsh matrix 

m m 
The dyadic symmetry matrix of a 2 x 2 natural-ordered Walsh 

matrix is an m by m binary diagonal matrix with diagonal entries 

equal to 1 • Therefore, for the 8 x 8 binary Walsh matrix, the 

dyadic symmetry matrix is 

r 1 0 ol 
[ N ) = l 0 1 0 l 

L o 0 1 J 
---------------------------------( 3.12 ) 

-1 
( N ] = [ N ) ---------------------------------( 3.13 ) 

Hence, we have 



no. 
zero 

b 
ij 

of 

= 

= 

crossings 

0 
7 
3 
4 
1 
6 
2 
5 

Table 3.8 

[ j ,j ,j ] * 
1 2 3 

r 1 o o 1 
I o 1 o I 
L o o 1 J 

•' 

t 
* [ i ,i ,i ] 

1 2 3 
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j *i 
1 1 

( +) j *i ( +) 
2 2 

j *i 
3 3 

-----------------( 3-14 ) 

j I 000 001 010 011 100 101 110 111 I 

-------+----------------------------------------
r I 000 001 010 011 100 101 110 111 I 

i I 
I 

000 1 1 1 1 1 1 1 1 
001 1 -1 1 -1 1 -1 1 -1 
010 1 1 -1 -1 1 1 -1 -1 
011 1 -1 -1 1 1 -1 -1 1 
100 1 1 1 1 -1 -1 -1 -1 
101 1 -1 1 -1 -1 1 -1 1 
110 1 1 -1 -1 -1 -1 1 1 
111 1 -1 -1 1 -1 1 1 -1 

Natural-ordered binary Walsh matrix generated by 
dyadic symmetry (4,2,1]. 

(2) Pyadic-ordered binary Walsh matrix 

m m 
Generally, the dyadic symmetry matrix of a 2 x 2 dyadic-ordered 

Walsh matrix is an m by m binary matrix containing only opposite 

diagonal terms equal to 1. Therefore, for the 8 x 8 binary Walsh 

matrix, the dyadic symmetry matrix is 

( D J = 

-1 

r o o 1 1 
I o 1 o I 
L 1 o o J 

(D)= (D) 

b 
ij 

(j,j,j]* 
1 2 3 

---------------------------------( 3-15 ) 

r o o 1 1 
I o 1 o I * 
L 1 o o J 

t 
[i ,i ,i ] 

1 2 3 



no. of 
zero 
crossings 

0 
1 
3 
2 
7 
6 
4 
5 

Table 3.9 

= [ j ,j ,j 
3 2 

i *j (+) 
1 3 

j I 000 I 

] * 

i *j 
2 2 

001 

[ ].
. . . 

,1. ,1. 

1 2 3 

(+) i *j 
3 1 

010 011 
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t 
] 

------------------( 3.16 ) 

100 101 110 111 
-------+----------------------------------------

r I 000 100 010 110 001 101 011 111 I 

i I 
I 

000 1 1 1 1 1 1 1 1 
001 1 1 1 1 -1 -1 -1 -1 
010 1 1 -1 -1 1 1 -1 -1 
011 1 1 -1 -1 -1 -1 1 1 
100 1 -1 1 -1 1 -1 1 -1 
101 1 -1 1 -1 -1 1 -1 1 
110 1 -1 -1 1 1 -1 -1 1 
111 I 1 -1 -1 1 -1 1 1 -1 I 

Pyadic-ordered binary Walsh matrix generated by 
dyadic symmetry [1,2,4]. 

(3) Sequency-ordered binary Walsh matrix 
m m 

In general, the dyadic symmetry matrix of a 2 x 2 sequency-

ordered Walsh matrix is an m by m binary matrix with its i th 

row having i consecutive '1 'son the right hand side. Therefore, 

the dyadic symmetry matrix is 

[ z ] 

r 
I 
I 

I 
I 
I 
I 

L 1 • 

and its inverse is 

, 
I 
I 

I 
I 
I 
I 

1 J 
-----------------------( 3.17 ) 



r 
I 
I 

1 1 , 

1 
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-1 i 
[ z J = I 

1 
1 1 
1 

I 
I 
I 
L 

Hence, we have 

b 
ij 

= 

no. of 
zero 
crossings 

0 
1 
2 
3 
4 
5 
6 
7 

'!'able 3.10 

[ j ,j ,j ] * 
1 2 3 

i *j (+) i *j 

r o 1 
i 1 1 
L 1 o 

1 1 
0 i 
0 J 

t 
* [ i ,i ,i ] 

1 2 3 

1 2 1 3 
(+) i *j 

2 1 
(+) i *j 

2 2 
(+) i *j 

3 1 

-----------------------------( 3.18 ) 

j I 000 001 010 011 100 101 110 111 I 

-------+----------------------------------------
r I 000 100 110 100 011 111 101 001 I i I 

000 1 1 1 1 1 1 1 1 
001 1 1 1 1 -1 -1 -1 -1 
010 1 1 -1 -1 -1 -1 1 1 
011 1 1 -1 -1 1 1 -1 -1 
100 1 -1 -1 1 1 -1 -1 1 
101 1 -1 -1 1 -1 1 1 -1 
110 1 -1 1 -1 -1 1 -1 1 
111 1 -1 1 -1 1 -1 1 -1 

Sequency-ordered binar~ Walsh matrix generated by 
dyadic symmetry [1 ,3,7J. 

Walsh matrices of the above three orderings are symmetric, and this 

results in several interesting properties. For example, the inverse 

of a Walsh matrix is equal to itself. It should be noted, however, 

that the above orderings are not the only ones that result in symme-

trical Walsh matrices. For example, the dyadic symmetry matrix 



[ s ] = 
r o o 1 1 
I o 1 1 I 
L 1 1 o J 

,, 
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has a symmetric inverse 

-1 
[ s ] 

r 1 1 1 1 
I 1 1 o I -------------------------------< 3.19 ) I I 
l 1 0 0 J 

and so the corresponding Walsh matrix is also symmetrical. 

b 
ij 

= 

no. of 
zero 
crossings 

0 
1 
2 
3 
5 
4 
7 
6 

Table 3.11 

r 1 1 1 t I 
[ j ,j ,j ] * I 1 0 I * [ i 'i , i ] I 

0 0 J 1 2 3 I 1 .2 3 L 

t 
[ j (+)j (+)j , j (+)j , j ] * [ i ,i ,i ] 

1 2 3 1 2 1 1 2 3 

j I 000 001 010 011 100 101 110 111 I 

-------+----------------------------------------
r I 000 100 110 010 111 011 001 101 I 

i I 
I 

000 1 1 1 1 1 1 1 1 
001 1 1 1 1 -1 -1 -1 -1 
010 1 1 -1 -1 -1 -1 1 1 
011 1 1 -1 -1 1 1 -1 -1 
100 1 -1 -1 1 -1 1 1 -1 
101 1 -1 -1 1 1 -1 -1 1 
110 1 -1 1 -1 1 -1 1 -1 
111 1 -1 1 -1 -1 1 -1 1 

Binary Walsh matrix generated by binary code and 
dyadic symmetry (1,3,6]. 

There are, of course, also Walsh matrices which are not symmetrical. 

For example, when the dyadicl symmetry matrix is 
I 



[ s ] 

-1 
[ s ] 

b 
ij 

no. of 
zero 
crossings 

0 
1 
3 
2 
4 
5 
7 
6 

= 
i 0 0 1 l 
i 0 1 1 i 
L 1 o o J 

r o o 1 1 

Chapter 3 g~ 

,. 

= i 1 1 0 i ______________________ ...; ______ ( 3. 20 ) 

L 1 o o J 
t -1 

= j*[s] *i 

= [ j (+)j ' j 
2 3 2 

j I 000 001 I 

j ] * i --------------------( 3-21 ) 
1 

010 011 100 101 110 111 

-------+----------------------------------------
r I 000 100 110 010 001 101 111 011 I i I 

000 1 1 1 1 1 1 1 1 
001 1 1 1 1 -1 -1 -1 -1 
010 1 1 -1 -1 1 1 -1 -1 
011 1 1 -1 -1 -1 -1 1 1 
100 1 -1 -1 1 1 -1 -1 1 
101 1 -1 -1 1 -1 1 1 -1 
110 1 -1 1 -1 1 -1 1 -1 
111 1 -1 1 -1 -1 1 -1 1 

Table 3.12 Binary Walsh matrix generated by dyadic symmetry 
[1,3,4]. 

3-5 FURTHER WALSH MATRIX 

Theorem 3.3: 

i 
z 

i 
D 

i 
N 

= 

= 

-1 
[z][n] *i 

D 

-1 
[n][z] *i 

z 

-1 
[N][z] *i 

z 

= 

INTERRELATIONSHIPS 

-1 
[z][N] *i 

N 

-1 
[n][N] *i 

N 

-1 

[N](D] *i ---------------------( 3.21 ) 
D ' 
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where [ Z ]; [ D ] and [ N ] are the dyadic symmetry matrices for 
m m 

2 by 2 sequency-ordered, dyadic-ordered and natural-ordered Walsh 

matrices respectively, and i , i and i are the corresponding 
Z D N 

row indices. 

Proof : 

Equation 3.9 

t -1 
b = j * [ s ] * i ------------------------( 3.9 ) 
ij 

can be used to find the relationship between different orderings. 

t -1 
j *[z] *i = 

z 

t -1 
j *[D] 

m 
for all j in [0,2 -1] 

Equation 3.22 implies 

-1 -1 

*i = 
D 

t -1 
j *[N] *i 

N 

--------------------------------( 3.22 ) 

-1 
[z] *i = 

z 
[D] *i = 

D 
[N] *i ------------------------( 3.23 ) 

N 

and the conversion equations 3.21 follow. For example, when the block 

size is 8 x 8 the dyadic symmetry matrices are given in Table 3.13. 
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,. 

dyadic symmetry 
matrix matrix inverse 

i 0 0 1 l i 0 0 1 l 
[ D ] i 0 1 0 i i 0 1 0 i 

L 1 0 0 J L 1 o o J 

i 0 0 1 
, i 0 1 1 l I 

[ z ] i 0 1 1 I I 1 1 0 i I I 

L 1 1 1 I I 1 0 0 J J L 

i 1 0 0 l i 1 0 0 l 
[ N ] i 0 1 0 i i 0 1 0 i 

L o o 1 J L o o 1 J 

Table 3.13 Dyadic symmetry · matrices of the three common 
orderings. 

Hence, the conversion matrices will be 

conversion matrix matrix inverse 

-1 f 1 0 0 
, i 1 0 0 l I 

[n] [z] i 1 1 0 I i 1 1 0 i I 

Lo 1 1 I L 1 1 1 J J 
binary to gray gray to binary 
code code 

-1 r o o 1 1 io 0 1 l 
[D] [N] i 0 1 0 I i 0 1 0 i 

L 1 o o J L 1 o o J 
bit reversal bit reversal 

-1 r o o 1 
, r o 1 1 l I 

[z] [N] i 0 1 1 I i 1 1 0 i I 

L 1 1 1 I L 1 0 oj J 

Table 3.14 Matrices for conversion between the three 
orderings 
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Let i = [ z ,z , ••• ' z ] 
z 1 2 m 

i = [ d ,d , ••• , d ] 
D 1 2 m 

i = [ n ,n , • • • 'n ] -------------------------( 
N 1 2 m 

From Table 3.14, it is obvious that the conversion between i 
N 

and i is carried out by bit reversal, and the conversion from 
D 

i to 
D 

i is gray code-to-binary code conversion. 
z 

Furthermore, the conversion from i to 
N 

using the following recursive equations. 

z = n 
m m 

z = z + n 
m-1 m m-1 

.. 

i can be done easily 
z 

3.24 ) 

z 
1 

z + n -------------------------------( 3.25 ) 
2 1 

It is not necessary to go through the processes of first converting 

i to i by bit reversal, and then converting i 
N D D 

to i by gray 
z 

code-to binary code conversion. Table 3.15 lists some of the conver-

sions. 



Chapter 3 99 

-1 -1 -1 
i i = [n][z] *i i = [z][n] *i i = [z][N] *i 

D z z 

0 000 0 000 0 000 0 000 
1 001 1 001 1 001 7 111 
2 010 3 011 3 011 3 011 
3 011 2 010 2 010 4 100 
4 100 6 110 7 111 1 001 
5 101 7 111 6 110 6 110 
6 110 5 101 4 100 2 010 
7 111 4 100 5 101 5 101 

Table 3.15 Conversion of i to i ' i to i and i to i 
z D D z N z 

Theorem 3.4: 

b = b ( +) b for all j -----------( 3.26 ) 
u(+)v,j u,j v,j 

b = b (+) b for all j -----------( 3.27 ) 
i,u(+)v i,u i,v 

Proof : 

b (+) b 
u,j v,j 

t -1 t -1 
= j [s] u (+) j [s] V 

t t t t -1 
= r u (+) r V where r = j [s] 

r u "T r v 
, 

I I I 1 I I 1 I I I I 
= [r r ] I I (+) [r • • • r ] I I 

I I I I 
1 m I I 1 I I 

I I m I I 
u I I I 

I I I V I 
I m I I m I 
l J L J 

= r *u (+) r *u (+) ... (+) r *u (+) r *v (+) . .. (+) r *v 
1 1 2 2 m m 1 1 m m 
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= r *!u (+)v} (+) r *!u (+)v} (+) 
1 1 1 2 2 2 

= [ r •••• r ] 
1 m 

t 

r u ( + )v l 
I 1 1 I 
I • • • • • • • I 

I u ( + )v I 
L m m J 

= r ! u (+) v } 

t -1 
j [s] ! u ( +) v l 

= b 
u(+)v,j 

b (+) 
i,u 

t -1 
u [s] 

t 

i 

= u r (+) 

b 

[ u ••• u ] 
m 

i,v 

(+) V 

t 
V r 

r r , 
I 

I 1 I 
I I 
I I 
I .. I 
I u I 
I I 
I m J L 

t -1 
[s] 

where 

(+) 

i 

[ 

r = 

V 

1 

•' 

r *!u (+)v } 
m m m 

-1 
[s] i 

r r , 
I 

I 1 I 
I I 

V ] 
I I 
I . . I 

m I 
V 

I 
I I 
I mj L 

= u *r ( +) u *r ( +) . • • ( +) u *r ( +) v *r ( +) 
11 22 mm 11 

= !u (+)v }*r (+) !u (+)v }*r (+) !u (+)v }*r 
1- 1 2 2 2 m m m 

t 
= u (+) v} * r 

t -1 
= u ( +) v l [s] i 

( +) v *r 
m m 

b 
i,u(+)v 

------------------------------------------( 3.28 ) 
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The above theorem suggests that each row vector (column vector), of 

[ B ], can be expressed as the linear combination of m row vectors 

(column vectors) 

pendent binary m-vectors. 

, ••• , B • 
l 
m 

where i 
1 

,i 
2 

, ... ,i are inde­
m 

One significant case occurs when the m independent binary m-vectors 

are the dyadic symmetries S, S , •••• ,s. The m column vectors 
1 2 m 

, •.•• ,B are then binary Rademacher functions. 
sm 

Theorem 3.5 : 

The S th 
k 

column vectors, BS , of a binary Walsh matrix are the k th 
k 

binary Rademacher functions where S is the k th row of the dyadic 
k 

symmetry matrix [s] of the binary Walsh matrix. 

Proof : 

Letting j in equation 3.9 be S , we have 
k 

t -1 
b s [s] i 

k 
----------------------------------( 3.29 ) 

As 

i,S 
k 

-1 
[s] [s] 

t 
s [s] 

k 

[I]. we have 

[o ... o1o ... o] 
1<-- k -->1 

Equations 3.29 and 3.30 imply 

b 
i,S 

k 

i 
k 

the k th bit of i 

and so the theorem is proved. 

---------------------( 3.30 ) 
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•' 

It is interesting to note that this property may not be valid for the 

row indices. The Walsh matrix listed in Table 3.12 is an example. How-

ever, for symmetrical matrices, this· property holds for both row and 

column indices. 

3.6 FAST COMPUTATIONAL ALGORITHMS 

3.6.1 Basic theory 

Consider the conversion of X into C in equation 3.31 where [H] 
m 

is a Walsh matrix all of whose basis vectors have the 2 -1 dyadic 
m 

symmetry ( X and C are 2- vectors). 

c [H] X ----------------------------------------( 3.31 ) 

Implementation of the conversion process by direct matrix multi-
m m m m 

plication requires 2 x 2 multiplications and (2 -1)x 2 additions 

(since the [H] matrix consists of only +1 and -1 's , we only require 
m m 

(2 -1)x2 addition or substraction operations to implement). However, 
m-1 ---. m-1 -

it will be shown that by means of 2 additions and 2 subtractions, 
m m m-1 m-1 

the 2 x 2 transform can be decomposed into a 2 x 2 'even' 
m-1 m-1 

transform and a 2 x 2 'odd' transform by a simple process which 
m 

makes use of one of the 2 -1 dyadic symmetries. An eight by eight 

Walsh matrix will be used to describe the process. 
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Examples of dyadic symmetry decompositions of an 8x8 

sequency-ordered Walsh transform 

3.6.2.1 The first dyadic symmetry decomposition 

As shown in Table 3.10, H for i in [0,3] has even first dyadic 

symmetry and 

general, for a 

H. for 
l 

2m x 

i 
i in [4, 7] has odd first dyadic symmetry. In 

2m Walsh matrix, the most significant bit, i , 
1 

in the binary representation of i = [ i ,i , ••• ,i ],indicates whether 
1 2 m 

H has even or odd first dyadic symmetry. 
i 

n n n n 
r c 

, r 1 I I I 
I 0 I I 
I I I c I 1 1 -1 -1 -1 -1 I I 

1 
c -1 -1 -1 -1 

2 
c -1 -1 -1 -1 
3 

*1 

, 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

r x , 
I 

0 I 

I 
X I 

I 
I 

X 
I 
I 

2 I 

X 

3 
c -1 -1 -1 -1 I 

X X --( 3.32 ) I I 

4 I 4 I 
c -1 -1 -1 -1 I 

X I 

5 I 5 I 
c -1 -1 -1 -1 I 

X I I 
6 I I 6 I I 

c I -1 -1 -1 -1 I 
X I I I 

7 I I I 7 I 
L. .J L J 

Therefore, by defining U and V in the following way 

r 
X +x 

, r u 
, 

I I 
0 1 I 0 I 

I I 
X +x I u I 

I I 

2 3 I 1 I 
I I 

u X +x I = u I ---------------------------( 3.33a ) I I 

4 5 2 I 
I I 

X +x I u I I I 
I 7 6 J 3 J L 

*l These lines are for identification of the lst dyadic symmetry. 
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r x -x 
0 

x -x 
3 2 

, 
i V l 

0 : 
V 

1 

•' 

V = x -x V ---------------------------( 3.33b ) 
4 5 2 

x -x V 

7 6 .J 3 

We have 

r c , r 1 ., r u ., 
0 0 

c -1 -1 u 
1 1 

c = -1 -1 X u 
2 2 

c -1 -1 u 
3 I 

3 .J 1.. 

r even 
, 

= I I 
X u --------------------( 3.34 ) I I 

I transform I 
1.. J 

r c 
, r 1 , r v , 

I 

4 I 0 I 
c -1 -1 I 

V I 

5 I 1 I 
c = -1 -1 I 

X V I 

6 I 2 I 
c -1 -1 I 

V I 

7 I 3 .J J 

r odd 
, 

I I 
X V -------------------( 3.35 ) I I 

I transform I 
L J 

The transform in equation 3.34 (3.35) is said to be 'even' ('odd') 

because the basis vectors of this tranform are in fact halves of the 

basis vectors in equation 3.32, that have even (odd) 1st dyadic 

symmetry. Both the even and odd transforms are 4x4 sequency-ordered 

Walsh transforms. Computation of C by equation 3.31 requires 



:oz:o 
1 0 

X 
2 

X 
'3 

X 
4 

X 
5 

X 
6 

X 
7 3 

:az:o 
1 0 

X 
2 

X 
'3 

X 
4 

X 
5 

X 
6 

X 
7 

Fig.3.2 Two of the ways of implementing the first 
dyadic symmetry decomposition 

m m 
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2 x 2 or sixty four operations, while by equations 3·33 to 3.35 
m-1 m-1 

requires 2x(2 x2 ) or in this case thirty two operations. Two of 

the many ways of implementing the first dyadic symmetry decomposition 

are given in Fig.3.2. 

3.6.2.2 The second dyadic symmetry decomposition 

As shown in Table 3.10, H , i = 0,1,6,7, has even second dyadic 
i 

symmetry and H , i = 2,3,4,5, has odd second dyadic symmetry. In 
m i 

general, a 2 -dimensional H has even (odd) second dyadic symmetry 
i 

if i (+)i is 0 ( 1 ) where i = [ i , i , ••• , i ] • 
1 2 1 2 m 
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•' 

-1~ l -r~ l 
r c 

, r 1 , r 
X 

, 
I I 0 I I 0 

c I -1 -1 -1 -1 I 
X I I 

1 I I 1 I I c I -1 -1 -1 -1 I X 

2 I I 2 I I 

c -1 -1 -1 -1 I 
X I 

3 
I 3 I 

c -1 -1 -1 -1 X 
I 

X I 

4 I 4 I c -1 -1 -1 -1 I X 

5 I 5 
c -1 -1 -1 -1 I 

X I 

6 I 6 I 

c -1 -1 -1 -1 I 
X I 

I 7 I 7 I. J L 

Therefore, by defining u and V in the following way 

r 
X +x "T r u 

, 
I I I I 
I 0 2 I I 0 I 
I I I 
I 

X +x I u I 
I I I 
I 1 3 I 1 I 
I I I 

u = I x +x I u I ----------------------------( 3.36 ) I I I 
I 6 4 I 2 I 

I I I 
x +x u I 

I I I 
I 7 5 J 3 J I. 

r x -x 
, r v , 

I 

0 2 0 I 
I 

X -x V 
I 
I 

1 3 1 I 
I 

V = x -x V 
I ----------------------------( 3.37 ) I 

6 4 2 I 
I 

x -x V 
I 
I 

7 5 3 J 

We have 

r c 
, r 1 

, r u , 
I I I 

0 I I 0 I 
I I I 

c I I -1 -1 u I 
I I I 

1 I I 1 I 
I I I 

c I I -1 -1 X u I ----------------( 3.38 ) I I I 

6 I I 2 I 
I I I 

c I I -1 -1 u I 

7 J I I 
I 3 J I. .J 
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-r c 
, r 1 1 , r 

V 
, 

I I 
I 2 I 0 I I 
I c -1 -1 I 

V I I 

3 I 1 I I 
I c = -1 -1 X 

I 
V ---------------( 3.39 ) I I 

I 4 I 2 I I 
I c -1 -1 I V 
I 5 I 3 I. I. I. 

Both the even transform and odd transform are 4x4 sequency Walsh 

transforms. Two of the many ways of implementing the second dyadic 

symmetry decomposition are given below: 

X u X u 
0 0 0 0 

X u X u 
1 1 1 1 

X V X V 

2 0 2 0 
X V X V 

3 1 3 1 
X V X u 
4 2 4 2 

X V X u 
5 3 5 3 

X u X V 

6 2 6 2 
X u X V 

7 3 7 ? 

Fig.3.3 Two of the ways of implementing the second 
dyadic symmetry decomposition. 

3.6.2.3 The third dyadic symmetry decomposition 

As shown in Table 3.10, H, i = 0,1,4,5, has even third dyadic 
i 

symmetry and H , i = 2,3,6,7, has odd third dyadic symmetry. In 
m i 

general, a 2 -dimensional H has even or odd third dyadic symme-
i 

try if i is 0 or 1 where i = [ i ,i ' ... , i ] . 
2 1 2 m 
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" 

r .......... 1 r ......... 
I"" c , r 1 1 

, r x 
, 

0 I 0 I 

c -1 -1 -1 -1 I X I 

1 I 1 I 

c -1 -1 -1 -1 I 
X I 

2 I 2 I 

c -1 -1 -1 -1 I 
X 

3 3 
c = -1 -1 1 -1 -1 X X 

I 4 4 I 
I c -1 -1 -1 -1 X I 
I 5 5 I 
I c· -1 -1 -1 -1 X I 
I 6 6 I 
I c -1 -1 -1 1 -1 X I 
I 

7 J 7 l L J 

Therefore, by defining U and V in the following way 

r x +x 
, r u , 

0 3 0 
X +x u 

2 1 
u X +x = u ----------------------------( 3.40 ) 

6 5 2 
x +x u 
7 4 I 3 I. l 

1 x -x 
, rv 

, 
I I 0 3 I 0 I I 

x -x I 
V 

I 
I I 

1 2 I 1 I 
I I 

V = x -x I = V 
I ----------------------------( 3.41 ) I I 

6 5 I 2 I 
I I 

X -x I 
V 

I 

I I I 

L 7 4 J 3 J 

We have 

r c 
, r 1 1 , r u 

, 
I I I 
I 0 I I I 0 I I I 

c I I -1 -1 I u I I I 1 I I 1 
c I = I -1 -1 X 

I u ----------------( 3.42 ) I I I 

4 I I I 2 I I I 

c I I -1 -1 I u I I I 5 J l I. 3.J 
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r c , r 1 , r v , 
I 

2 I 0 I 
c I -1 -1 V I 

3 I 1 I 
c I = -1 -1 X V -----------------( 3·43 I 

6 I 2 I 
c I 1 -1 -1 V I 

7 J I 3 J L. J 

Both the even and odd transforms are 4x4 sequency-ordered Walsh 

transforms. One of the many ways of implementing the third dyadic 

symmetry decomposition is given below: 

X u 
0 0 

X u 
1 1 

X V 

2 
X V 

3 0 
X u 

4 3 
X u 

5 2 
X V 

6 2 
X V 

7 3 

Fig.3.4 One of the ways of implementing the third 
dyadic symmetry decomposition. 

3.6.2.4 The fourth dyadic symmetry decomposition 

As shown in Table 3.10, H , i = 0,3,4,7, has even fourth dyadic 
i 

symmetry and H, i = 1,2,5,6, has odd fourth dyadic symmetry. In 
m i 

general, a 2 -dimensional H has even (odd) fourth dyadic symme-
i 

try if i (+)i is 0 ( 1 ) where i = [ i , i , ••• , i ] • 
2 3 1 2 m 

) 
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.. 

r c , r , r x 
, 

I 

0 I I 0 I I 

c I 1 1 -1 -1 -1 -1 I 
X I I 

1 I I 1 I 

c I -1 -1 -1 -1 X I 2 I 2 
c I -1 -1 -1 -1 X I 

3 I 3 I 

c = I -1 -1 -1 -1 X X I 

4 I 4 I 

c I -1 -1 -1 -1 X I 

5 I 5 I 

c I -1 -1 -1 -1 X I 

6 I 6 I 

c I -1 1· -1 -1 -1 X I I 

7 J I 7 .J L .J L. 

Therefore, by defining u and V in the following way 

r x +x 
, ru , 

I 
I 0 4 0 
I x +x u I 
I 1 5 1 I 

u I x +x = u ----------------------------( 3.44 ) I 
I 2 6 2 I 
I x +x u I 
I 3 7 3 ~ L. 

r x -x 
, 

I" V 
, 

I I 

0 4 I 0 I 
I I 

x -x I 
V 

I 

I I 1 5 I 1 I 
V x -x I = V 

I 
I I ----------------------------( 3·45 ) 

2 6 I 2 I 
I I 

x -x I 
V 

I 
I I 

L. 3 7 J 3j 

We have 

r c 
, r 1 

, r u 
, 

I I I 
I 0 I I 0 I 

I I I I 
I c I -1 -1 I u I 

3 I 1 I 
I I I I 
I c I -1 -1 X 

I u I ---------------( 3.46 ) I I I I 
I 4 I I 2 I 
I I I I 
I c I -1 -1 I I 
I I I u I 
I 7 J I 

3 J t. L 
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,. 

r c 
, r 1 , I" V , 

I I o 1 I 

c I -1 -1 ! V I 
2 I I 1 I I 

c m 1 -1 -1 X 
I 

V ----------------( 3-47 I I 5 I 2 I I 
c I -1 -1 I 

V 

6 J I 
l. l. L 3J 

Both the even transform and odd transforms and 4x4 sequency-ordered 

Walsh transforms. One of the ways to implement the fourth dyadic 

symmetry decomposition is given below: 

X u 
0 0 

X u 
1 1 

X u 
2 2 

X u 
3 3 

X V 

4 0 
X V 

5 1 
X V 

6 2 
X V 

7 3 

Fig.3.5 One of the ways to implement the fourth 
dyadic symmetry decomposition. 

3.6.2.5 The fifth dyadic symmetry decomposition 

As shown in Table 3.10, H , i = 0,3,5,6, has even fifth dyadic 
i 

symmetry and H, i = 1,2,4,7, has odd fifth dyadic symmetry. In 
m i 

general, a 2 -dimensional H has even (odd) fifth dyadic symmetry 
i 

) 
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,. 
if i (+)i (+)i is 0 ( 1) where i =[i,i, ... ,i]. 

1 2 3 1 2 m 

r c 
, I" 1 

, r x , 
I 0 I 0 

c 1 -1 -1 -1 -1 X 

1 1 
c -1 -1 -1 -1 X 

2 2 
c -1 -1 -1 -1 X 

3 I 3 
c = -1 -1 -1 -1 X X 

4 4 
c -1 -1 -1 -1 X 

5 5 
c I -1 1 -1 -1 -1 1 X 

6 I 6 
I c I -1 -1 1 -1 1 -1 X 
I 7.J I 7J L 1.. J L 

Therefore, by defining U and V in the following way 

r x +x , 
I" u , 

I 
0 5 I 0 I 

x +x I u I 1 4 I 1 
u = x +x I = u ----------------------------( 3.48 ) 

2 7 I 2 
x +x I u 

1.. 3 6 J L 3.J 

r , r 
V 

, 
1 X -X I I 
I .0 5 I I 0 I I I I x -x V I I I 
I 1 4 I I 1 I I I 

V I x -x I = I 
V ----------------------------( 3.49 ) I I I I 2 7 I 2 I I I 

I x -x I I 
V I I I 

I 3 6 J I 3.J L L 

We have 
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-· 
r , r 1 

, r u 
-, 

I c 
I 0 I I 0 I I I c -1 -1 u I I 
I 3 I 1 I I 
I c I -1 -1 X u ----------------( 3.50 ) I I I 5 2 I I 
I c I -1 -1 u I I 
I 6 I 3.J L L .J 

r , r , r v , 
I c I 

1 I 0 I 

c I -1 -1 V I 
2 I 1 I 

c = I -1 -1 X V ----------------( 3. 51 ) I 

4 I 2 I c I I -1 -1 I V 

7 J I I 3 L l. .J 

Both the even transform and odd transforms are 4x4 sequency-ordered 

Walsh transforms. One of the ways to implement the fifth dyadic 

symmetry decomposition is given below: 

X u 
0 0 

X u 
1 1 

X u 
2 2 

X u 
3 3 

X V 

4 1 
X V 

5 0 
X V 

6 '3 
X V 

7 2 

Fig.3.6 One of the ways to implement the fifth 
dyadic symmetry decomposition 

3.6.2.6 The sixth dyadic symmetry decomposition 

As shown in Table 3.10, Hi, i 0,2,5,7, has even sixth dyadic 
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symmetry and H, i = 1,3,4,6, has odd sixth dyadic symmetry. In 
m i 

general, a 2 -dimensional H has even (odd) sixth dyadic symmetry 

if i ( + )i 
1 3 

r c , 
0 

c 
1 

c 
2 

c 
3 

c 
4 

c 

I 5 
I c 
I 6 I 
I c I 
I 7 L 

i 
is 0 (1) where i = [ i ,i ,i ]. 

1 2 3 

r 
I 
I 

-1 -1 -1 -1 

1 -1 -1 -1 -1 

-1 -1 -1 -1 

= -1 -1 -1 -1 

-1 -1 -1 -1 

-1 -1 -1 -1 

-1 -1 -1 -1 
l. 

, r x , 
0 

X 

1 
X 

2 
X 

3 
X X 

4 
X 

5 
X 

6 
X 

.J L. 7.J 

Therefore, by defining U and V in the following way 

r x +x , r u , 
I 0 6 0 I 
I 

X +x u I 
I 1 7 1 I 

u = I 
X +x = u ----------------------------( I 

I 2 4 2 
I 

X +x u I 5 J L. 3 L. 3 .J 

r x -x 
, r v , 

I 
I 0 6 0 I 
I I 
I x -x V 

I 
I I 
I 1 7 1 I 
I I 

V = I x -x = V 
I ----------------------------( I I 

I 2 4 2 I 

I I 

x -x V 
I 

I 3 J L 3 5.J L 

3.52 

3-53 

) 

) 
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,. 

We have 

r c 
, r 1 1 l ru , 

I 
I 0 I I 0 I I I I c -1 -1 u I I I 

2 I 1 I I I 

c = I -1 -1 I 
X u ----------------( 3.54 ) 

I I I 

5 I 2 I I I 

c I -1 1 -1 I u I I I 
I 7 .J 

I I 3.J ~ L. .J L. 

r c 
, r 1 1 , iv 

, 
I 

I 1 I I I 0 I I I I 
I c I I -1 -1 I 

V I I I I 
I 3 I I I 1 
I c I = I -1 -1 1 X 

I 
V ----------------( 3·55 ) I I I I I 4 I 2 I I I I 

I c I I -1 -1 I V 
I 6 J I I 

3J L. L J L 

Both the even and odd transforms are 4x4 sequency-ordered Walsh 

transforms. One of the ways to implement this decomposition is 

given below: 

X u 
0 0 

X u 
1 1 

X u 
2 2 

X u 
3 3 

X V 

4 2 
X V 

5 3 
X V 

6 0 
X V 

7 1 

Fig.3.7 One of the ways to implement the sixth 
dyadic symmetry decomposition. 
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3.6.2.7 The aeventh dyadic symmetry decomposition 

As shown in Table 3.10, H , i = 0,2,4,6, has even seventh dyadic 
i 

symmetry and H , i = 1 ,3,5,7, has odd seventh dyadic symmetry. In 
m i 

general, a 2 -dimensional H has even (odd) seventh dyadic symmetry 
i 

if i is 0(1)wherei=[i,i, ••• ,i ]. 
3 1 2 m 

,.--, 

r c 
, r , 

~'"x 
, 

I 0 0 I 
I c -1 -1 -1 -1 X I 
I 1 1 I 
I c -1 -1 -1 -1 X I 
I 2 2 
I c -1 -1 -1 -1 X I 
I 3 3 I 
I c = -1 -1 -1 -1 X X 
I 4 4 I 
I c -1 -1 -1 -1 X I 
I 5 5 
I c -1 -1 -1 -1 X I 6 6 I 
I c -1 -1 -1 -1 X 
I 7 L L .J L 7.J 

Therefore, by defining u and V in the following way 

r X +x 
, 

~'"u 
, 

I 
I 0 7 I 0 I I 
I x +x I u I I 
I 1 6 I 1 

u I x +x I u ----------------------------( 3.56 I I 
I 2 5 I 2 I I 
I x +x I u I I 
I 3 4j 3.J L L 

r , r v 
, 

1 X -X I 
I 0 7 I I 0 I I I 
I x -x I I 

V I I I 
I 1 6 I I 1 

V = I x -x I I 
V ----------------------------( 3.57 I I I 

I 2 5 I I 2 I I I 
I x -x I I 

V I I I 
I 3 4J I 3 .J L L 

) 

) 
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We have 

r c 
, r- 1 1 , r u , 

I 0 I 0 I 
I I I I c I -1 -1 u I I I 
I 2 I 1 I 
I I I 
I c I = 1 -1 -1 X u I ----------------( 3.58 I I I 
I 4 2 I 
I I I 
I c I -1 -1 u I 
I I I 
I 6 J 3 J L. L J 

r c , r 1 1 , r v , 
I I 

1 I 0 I 
I I 

c I -1 -1 V 
I 

I I 3 I 1 I I 
c I -1 -1 X V 

I 
----------------( 3·59 I I 5 I 2 I 

c -1 -1 V 
I 

7J 3 J L J l. 

Both of the even and odd transforms are 4x4 sequency-ordered Walsh 

transforms. One of the ways to implement the seventh dyadic symmetry 

decomposition is given below: 

X u 
0 0 

X u 
1 1 

X u 
2 2 

X u 
3 3 

X V 

4 3 
X V 

5 2 
X V 

6 1 
X V 

7 0 

Fig.3.8 One of the ways to implement the seventh 
dyadic symmetry decomposition. 

) 

) 
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Fast computational algorithms from dyadic symmetry 

decomposition 

m 
Dyadic symmetry decomposition can convert a 2 -order Walsh transform 

m-1 
into two 2 

m 
-order Walsh transforms using 2 addition and subtract-

m-1 
ion operations. With another two decompositions (each requires 2 

m-1 
addition and subtraction operations), the two 2 -order Walsh trans­

m-2 
forms can be converted into four 2 -order Walsh transforms. There-

m 
fore, m applications of the decomposition can complete the 2 -order 

Walsh transform by reducing the order by half each time to with 
m 

m x 2 addition and subtraction operations. 

m 
It has been shown that there are 2 -1 kinds of dyadic symmetry 

m 
positions which can convert a 2 -order Walsh transform to two 

decom­
m-1 

2 

order Walsh transforms. Furthermore, there is more than one way to im-

plement a dyadic symmetry decomposition. This implies there are indeed 

numerous ways to implement the m decompositions. However, some of the 

ways are more straightforward than others. 

Fig.3.9 shows how an eight by eight Walsh transform of the vector X 
m-1 

is accomplished by the repeated use of the 2 th dyadic symmetry 

decomposition. From the signal flow diagram, it can be seen that the 
m-1 

fast computational algorithm using the 2 th dyadic symmetry 

decomposition is very close to that of the Cooley-Tukey algorithm for 

the FFT. Indeed, the final result also requfres to be re-ordered in 

the same way as that of the Cooley-Tukey algorithm to convert it to 

sequency ordering. 
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X z c 
0 0 

X c 
1 7 

X z c 
2 3 

X c 
3 4 

X z c 
4 1 

X c 
5 6 

X z c 
6 2 

X c 
7 5 

m-1 
Fig.3.9 Fast algorithm usingthe 2 th dyadic symmetry 

decomposition 

X z c 
0 0 

X c 
1 4 

X z c 
2 2 

X c 
3 6 

X z c 
4 1 

X c 
5 5 

X z c 
6 3 

X c 
7 7 

Fig.3.10 Fast algorithm using the first dyadic symmetry 
decomposition. 

Fig.3.10 shows how the 8-order Walsh transform of vector X is accom-

plished by the repetitive use of the first dyadic symmetry decomposit-

ion. An attractive feature of this fast algorithm is that j in C is 

simply the bit reversal of i in X • 
i 

j 
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Fig.3.11 shows how an 8-order Walsh transform of vector X is accom­
m 

plished by the repetitive use of the 2 -1 th dyadic symmetry decem-

position of X. Fig.3.12 shows an alternative way of implementing this 

fast algorithm. The relation between i in X and j in C is simply that 
i j 

of bit reversal. 

X s c 
0 0 

X c 
1 4 

X z c 
2 6 

X c 
3 2 

X s c 
4 3 

X c 
5 7 

X z c 
6 5 

X c 
7 1 

m 
Fig.3.11 Fast algorithm using the 2 -1 th dyadic symmetry 

decomposition 

X s c 
0 0 

X c 
1 4 

X s c 
2 2 

X c 
3 6 

X s c 
4 1 

X c 
5 5 

X s c 
6 3 

X c 
7 7 

m 
Fig.3.12 Fast algorithm using the 2 -1 th dyadic symmetry 

decomposition 
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3.7 CONCLUSIONS 

A unified matrix treatment for the Walsh transform using the concept 

of dyadic symmetry has been presented. This unified treatment allows 

a straightforward derivation of a simple equation for the generation 

of Walsh matrices of different orderings, various re-ordering schemes 

and various fast computational algorithms. It is believed that this 

will provide a better understanding of the Walsh transform and hence, 

allow further fast computational algorithms and new properties to be 

found. The whole theory relates to a binary field with 'logical and' 

and module two addition as operations and thus allows both the gen­

eration of Walsh matrices of different orderings, and re-ordering 

schemes, to be implemented using simple logic circuits. 

3.8 NOTE ON PUBLICATION 

A paper entitled 'Dyadic symmetry and its application to Walsh 

transform theory' was submitted to IEEE transactions on Electro­

magnetic Compatibility in 1983. This paper was jointly authored with 

R.J.Clarke. 



CHAPTER F 0 U R 

N E W T R A N S F 0 R M S 

4.1 INTRODUCTION 

Transform coding of image data is a topic which has been extensively 

investigated over the past 10-15 years, and it has been shown to be 

an efficient technique for low bit rate image representation. The 

effectiveness of transform coding is mainly due to the transformation 

which packs energy into the low sequency coefficients. The first 

transform chosen to accomplish this task was the discrete Fourier 

transform (DFT) which was reported to produce good results [99]. 

In contrast to the other main contender for image compression, pre­

dictive coding, transform coding suffers from the requirement of a 

high degree of processing sophistication. Therefore, there was a 

search for a simple transform which would ease this problem. This 

led to the application of the Walsh transform [101] which requires 

only additions and subtractions. Later, more transformations were 

proposed with either lower computational requirement or better per­

formance. Some, like the Haar transform, aim at simplicity whilst 

others, like the slant transform and the discrete cosine transform 

(DCT), aim at better energy packing ability. 

Although there should be a trade-off between performance and simpli­

city, continuing developments in semiconductor technology have con-



Chapter 4 123 

vinced most researchers that favour sho~ld be given to performance. 

This is why the discrete cosine transform, which has been shown to 

be asymtotically close to the optimal KLT, has attracted much atten­

tion even though it is more complicated than the Walsh transform. 

In practice, however, for transform coding of moving pictures in 

real time, simplicity of the transformation is still desirable. This 

.is why a real time digital image coding system reported recently 

still adopts the Walsh transform [47]. In view of performance and 

ease of implementation, the choice of the transformations lies very 

much between the DCT and the Walsh transform depending on whether 

signal processing speed is paramount. 

In this chapter, two new transforms are proposed, which can be used 

as substitutes for the Walsh transform. The new transforms have 

virtually the same complexity and computational requirement as the 

Walsh transform. They employ additions, subtractions and binary 

shifts only but have improved efficiencies (equation 4. 5), defined 

in terms of the ability of the transform to decorrelate signal ele­

ments by converting them to transform coefficients. The efficiencies 

of the two new transforms both lie between that of the Walsh trans­

form and that of the DCT for moderate block sizes. 

The two approaches used to generate the new transforms will be des­

cribed in the next two sections, 4.2 and 4.3. The first approach is 

to seek basis vectors which, whilst still satisfying the cri teron of 

orthogonality, correlate well with commonly occuring image vectors, 

and yet allow easy implementation. The second is to employ computer 



Chapter 4 124 

search techniques based solely upon the •'transform efficiency criteria 

mentioned earlier. The first approach results a transform called the 

high correlation transform or HCT. The second approach results in two 

transforms, one of which is again the HCT, and another termed the low 

correlation transformation or LCT. Section 4.4 shows how these two 

transforms, originally generated using a matrix size 8x8, may be de-
m m 

termined in the general case of dimension 2 x 2 

integer. 

where m is an 

In section 4.5, the new transforms will be compared with other well 

known transforms, including the DCT, slant, Haar and Walsh transform, 

for different block sizes. Two types of tests were carried out, one 

on the one-dimensional first-order Markov process using efficiency 

and energy packing ability as criteria, the other using two-dimens-

ional transforms on real images using normalized mean square error 

(NMSE) defined in equation 4.6 as the criterion. 

Finally, the implementation of the LCT and HCT will be described in 

section 4.6. Description will first be given of the implementation 

of the real orthonormal transforms LCT and HCT using the unnormalized 

LCT (ULCT) and unnormalized HCT (UHCT), then fast computational algo-

rithms to implement the two unnormalized transforms are described. 

4.2 CREATION OF THE HIGH CORRELATION TRANSFORM (HCT) 

4.2.1 Basic principle 

Transform coefficient c is the scalar product of the basis vector 
i 
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T and the signal vector. Hence, a close resemblance of the basis 
i 

vector T and the signal vector results in a large magnitude of c • 
i 

A good transform, such as the DCT, 
i 

packs most energy into the low 

sequency coefficients. This implies that low sequency basis vectors 

of a good image transform always resemble slowly varying image signal 

vectors. For example, as shown in Fig.4.1, the low sequency basis 

vectors of the 8 by 8 DCT change smoothly, whilst the Walsh basis 

vectors have sudden jumps between the positive and negative elements. 

This is why the DCT can pack more energy into the low sequency coe-

fficients. 

Fig.4.1 

WHT DCT 

The basis vectors of the 8x8 Walsh transform (WHT) 
and the discrete cosine transform (DCT). 

The new transforms are obtained by a technique which can replace pairs 

of Walsh basis vectors by others to form a new set of linearly inde-

pendent basis vectors. For clarity, the technique is explained by the 
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following example which replaces the (OOO)th and (100)th eight-dimens­

ional lfalsh basis vectors. 

By means of theorem 3.2, it can be seen that the (OOO)th and (100)th 

Walsh basis vectors are orthogonal to all other Walsh basis vectors 

because of dyadic symmetries (011) and (111). Therefore, a new set 

of linearly independent basis vectors can be obtained, if the (OOO)th 

and · (100)th Walsh basis vectors are replaced by a pair of linearly 

independent vectors which have the (011)rd and (111)th dyadic sym­

metries but without the (001)st dyadic symmetry. For example the fol­

lowing two pairs of linearly independent vectors satisfy this require­

ment. 

[ a a 1 1 a 

[ a a a 

a J 
a J 

and 

and 

[ a. -1 -1 a 

[ 1 -a -a 

a -1 -1 a ] 

-a -a ] 

Table 4.1 lists all the vectors which are without one of the three 

independent dyadic symmetries. Also, Walsh vectors 001 and 101, 010 

and 110, 011 and 111 all have the same (011)rd and (111)th but oppo­

site (001)st dyadic symmetries. Hence, all these pairs can be repla­

ced by vector pairs which have the (011)rd and (111)th, but lack the 

(001)st dyadic symmetries. Similarly, other pairs of Walsh basis 

vectors can be replaced by vector pairs without one of the other two 

dyadic symmetries, ( 011) and ( 111), in the ways shown in Table 4. 2. 
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vectors without~ dyadic symmetry 
i 

(001) (011) ( 111 ) 

0 a 1 1 a a 1 1 a a a 1 1 1 1 a a a a a a 1 1 1 1 
or 1 a a 1 1 a a 1 or 1 1 a a a a 1 1 or 1 1 1 1 a a a a 

1 a 1 1 a-a-1-1-a a a 1 1-1-1 -a-a a a a a-1-1-1-1 
or 1 a a 1-1-a-a-1 or 1 1 a a-a-a-1-1 or 1 1 1 1-a-a-a-a 

2 a 1-1-a-a-1 1 a a a-1-1-1-1 a a a a-a-a-1-1 1 1 
or 1 a-a-1-1-a a 1 or 1 1-a-a-a-a 1 1 or 1 1-1-1 -a-a a a 

3 a 1-1-a a 1-1-a a a-1-1 1 1-a-a a a-a-a 1 1-1-1 
or 1 a-a-1 1 a-a-1 or 1 1-a-a a a-1-1 or 1 1-1-1 a a-a-a 

4 a-1-1 a a-1-1 a a-a-1 1 1-1-a a a-a-a a 1-1-1 1 
or 1-a-a 1 1-a-a 1 or 1 -1-a a a-a-1 1 or 1-1-1 1 a-a-a a 

5 a-1-1 a-a 1 1-a a-a-1 1-1 1 a-a a-a-a a-1 1 1-1 
or 1-a-a 1-1 a a-1 or 1-1-a a-a a 1-1 or 1 -1-1 1-a a a-a 

6 a-1 1-a-a 1-1 a a-a 1-1-1 1-a a a-a a-a-1 1-1 1 
or 1-a a-1-1 a-a 1 or 1 -1 a-a-a a-1 1 or 1-1 1-1-a a-a a 

7 a-1 1-a a-1 1-a a-a 1-1 1-1 a-a a-a a-a 1-1 1-1 
or 1-a a-1 1-a a-1 or 1 -1 a-a a-a 1 -1 or 1 -1 1-1 a-a a-a 

Table 4.1 : The vectors which lack one of the 3 independent dyadic 

symmetries. 'i' is the number of zero crossings and 

'a' is a positive constant less than unity. 
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i Dyadic symmetry SL 
(001) (011) ( 111 ) 

0 0 0 - - J 0 0 1 - :-- - -
0 1 0 - J 0 1 1 -
1 0 0 - - J 1 0 1 - - -
1 1 0 - J 1 1 1 -

Table 4.2 The pairs of eight dimensional Walsh basis vectors 
which have all dyadic symmetries the same except 
for dyadic symmetry SL (symmetry lacking). 

4.2.2 Generation of the 8 by 8 High Correlation Transform 

In this section, each of the 8 Walsh basis vectors H is examined 
i 

in turn and modified to form vector T according to the principles 
i 

described in the previous section to generate a new transform similar 

to the DCT. 

( i) H 
0 

= [ 1 J 

This vector is exactly the same as that of the DCT, hence,T is taken 
0 

as H • 
0 
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( ii) H = [ 1 -1 -1 .. -1 -1 J 
1 

There is a sudden change between the fourth and the fifth element in 

H • It can be smoothed out by replacing H by T which is the vec-
1 1 

tor without the (011)rd dyadic symmetry and is given as follows. 

T 
1 

= [ 1 a a -a -a -1 -1 ] 

'a' is a positive constant less than unity. T has even (001)st 
1 

and odd (111)th dyadic symmetry but lacks the (011)rd dyadic symmetry. 

In order to maintain linear independence, H has to be replaced by 
3 

T (Table 4.2). 
3 

T 
3 

[ a a -1 -1 1 -a -a ] 

Both T and T have even (001)st and odd (111)th symmetry but 
1 3 

lack the (011)rd dyadic symmetry, and are orthogonal to each other. 

(iii) H = [ 1 -1 -1 -1 -1 ] 
2 

The changes between the second and the third, and between the sixth 

and the seventh elements could be reduced by replacing H by T 
2 2 

which has odd (011)rd, even (111)th dyadic symmetry, but lacks the 

(001)st dyadic symmetry. 

T 
2 

[ a -a -1 -1 -a a 

To maintain linear independence, H has to be 
6 

T [ a -1 -a -a 1 -1 
6 

] 

replaced by 

a ] 
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(iv) H [ 1 -1 -1 1' -1 -1 J 
4 

Since H is exactly the same as in the DCT, no modification is 
4 

required, and T is set equal to H . 
4 4 

(v) H = [ 1 -1 -1 1 -1 1 -1 ] 
5 

H = [ 1 -1 1 -1 1 -1 1 -1 J 
7 

In order to make these two vectors resemble those of the DCT, they are 

repl~ced by T and 
5 

T which are vectors of the odd (001)st and 
7 

(111)th dyadic symmetries but without the (011)rd dyadic symmetry. 

T = [ 1 -1 -a a -a a 1 -1 J 
5 

T = [ a -a 1 -1 1 -1 a -a ] 
7 

The results are summarized in Table 4·3· 

dyadic symmetry 
T 001 011 111 

i 

0 0 0 0 
1 0 X 

J 
1 

2 X 

J 
1 0 

3 0 X 1 
4 1 0 0 
5 1 X 

J 
1 

6 X 1 0 
7 1 X 1 

Table 4.3 Dyadic symmetry within the basis vectors 
of the new transform HCT • x stands for 
absence of such symmetry. 
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Finally, each T , being divided by a censtant k ,is normalized to 
i i 

form the basis vectors of the HCT where 

2 
k = 

i 

n-1 2 
~ t 

j=O ij 
---------------------------( 4-1 ) 

and t 
ij 

is the j th element of T • 
i 

Optimum value for the constant 'a' 

The previous discussion suggests that the constant 'a' should be 

positive and less than unity, and its exact value should maximize 

the ability of the HCT to transform a typical image signal vector X 

into a vector Y of uncorrelated elements. This ability may be mea-

sured by the transform efficiency n defined on a one-dimensional 

first order Markov process of adjacent element correlation p • The 

larger the efficiency, the greater is the ability of the transform 

to convert X into a set of uncorrelated elements. A formal defini-

tion of transform efficiency is given in section 4.3.1. Furthermore, 

for easy implementation, 'a' should equal the inverse of an integer. 

Fig.4.2 shows the dependence of the transform efficiency on the con-

stant 'a' for different values of adjacent element correlation. Most 

of the curves have maxima when 'a' is equal to 1 /2, which can con-

veniently be implemented by a simple right binary shift. 

4.3 COMPUTER SEARCH FOR HIGH EFFICIENCY TRANSFORMS 

In this section, a more objective approach will be used to determine 

the best transformation. Transform efficiency is used as a cri teron 
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TPMSfOili'l EFFICIENCY (% ) 

9J 

80 

70 

0.1 0.3 0.5 0.7 0.9 

0.1 

·0.2 

0.4 

0.5 
0.8 
0.6 
0.7 

CONSTANT Q 

Fig.4.2 The·dependence of transform efficiency on the constant 'a' for 

different values of adjacent element correlation p. 
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and a computer search is carried out to find the transforms of the 

highest efficiency. A formal definition of transform efficiency is 

given in section 4.3.1. The magnitude of the transform efficiency in-

dicates the capability of the transform to convert a signal vector 

into an uncorrelated transform coefficient vector. 

4.3.1 Transform efficiency 

Let the n-dimensional vector X be a sample from a one-dimensional, 

zero mean, unit-variance first-order Markov process with adjacent 

element correlation p , and covariance matrix, [ex], where 

r 2 n-1, 
1 p p p 

p 1 p 

2 p p 1 p 

t p 1 p 

[ex] = E [X X ) ~~~ p2 ( 4.2 ) 

p 1 p 

n-1 2 1 p p p 
l ..J 

and E [ ) denotes expected value. 

The efficiency of a transform [T] is defined on the transform domain 

covariance matrix [cc] of vector C where 

c = 

[cc] = 

= 

[T) X 
t 

E [ C C ] 
t 

[T] [ex] [T] 

---------------------( 4.3 ) 
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r s s 
, 

I ..... ,,. ... I 

I 11 1n 
I 
I .................. 

= I 
I .................. --------( 4·4 ) 
I 

I s I ......... s 
L n1 nn 

n 
1:: I s 

i=1 ii 
Efficiency I) = X 100% ---------( 4.5 ) 

n n 
l: :r: Is 

p=1 q=1 pq 

The larger is 1), the greater is the ability of [T] to transform X into 

a vector Y of uncorrelated elements. 

Experimental procedures 

New transforms can be formed by replacing some pairs of the Walsh basis 

vectors by other pairs lacking one of the independent dyadic symmetries. 

A computer program was generated to form all the possible pair combina-

tions and then to compute the corresponding transform efficiency for 

(i) different values of the constant 'a', and 

( ii) different values of p • 

The value of 'a' to be tested are o.o,o.l,0.2,0.3,0.4,0.5,0.6,o.7,0.8 

and 0.9. The adjacent element correlations to be considered are 0.1, 

4.3.3 Results and discussion 

It is found that two ways of pairing are of particular interest. As 

shown in Table 4.4, one of them, denoted HC, has the same combina-
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tlons as the HCT, which is the transform designed to resemble the DCT 

in section 4.2. The other, denoted LC, is generated by destroying the 

first dyadic symmetry of all the Walsh basis vectors except the pair 

containing the de vector. The results are summarized in Table 4.5. It 

can be seen that 

1 1 1 1 1 1 
1 a a -a -a -1 -1 a 1 a -a -1 -1 -a 
1 a -a -1 -1 -a a 1 1 a -a -1 -1 -a a 1 
a a -1 -1 1 1 -a -a 1 a -a -1 1 a -a -1 
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 
1 -1 -a a -a a 1 -1 1 -a -a 1 -1 a a -1 
a -1 1 -a -a 1 -1 a .a -1 1 -a -a 1 -1 a 
a -a 1 -1 1 -1 a -a a -1 1 -a a -1 1 -a 

a) The combination HC. b) The combination LC. 

Table 4.4 The two combinations which have optimum performance 
among all the combinations generated during the 
computer search. 

(1) For adjacent element correlations 0.1, 0.3, 0.7, the transform 

efficiency is highest when the constant, a, is 0.5. For adjacent ele-

ment correlations 0.5 and 0.9, the efficiency is highest when 'a' 

equals 0.6 and 0.4 respectively. 

(2) For adjacent element correlations 0.1, 0.3 and 0.5, the corn-

bination LC with the constant equal to 0.5 has very high efficiency. 

(3) For adjacent element correlations 0.5, 0.7 and 0.9, the corn-

bination HC with the constant equal to 0.5 has very high efficiency. 

The implementation of a binary multiplication by one-half is simply 

a right shift. Therefore, for both simplicity and performance, we 

may conclude that among all the possible transforms that could be 
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f FIRST SECOOD EFFICIENCY Cf 
TAA"'SFO~ TRiiNSFO~ THE OCT & WHT 

.. 

0.1 LC a =(),5 94.54 
94.23 g),95 

0.3 LC a =(),5 87.11 
84.72 77.73 

0.5 LC a =(),6 HC a =(),5 83.14 
77.53 LC a =D. 5 69.75 

77.07 

0.7 HC a =(),5 82.86 
76.32 67.23 

0.9 HC a =(),4 HC a =().5 89.83 
88.20 84.09 77.13 

rable 4,5 

rhe transforms that have the highest efficiency for different values of 

1djacent element correlation f· 
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created using the technique described in section 4.2.1, the LC corn-

bination with the constant equal to 0.5 is the best transform for 

low correlation data, whilst the HC combination with the constant 

equal to 0.5 is the best transform for high correlation data. Corn-

binations LC and HC with constant equal to 0.5 are termed, res-

pectively, the Low Correlation Transform (LCT) and the High Corre-

lation Transform (HCT). 

m m 
4.4 The HCT AND LCT FOR BLOCK SIZE 2 x 2 

m m 
4.4.1 The HCT for block size 2 x 2 

m 
The 2 Walsh basis vectors H can be modified according to the 

m i 
following rules to form a 2 -order HCT whose basis vectors resem-

ble those of the DCT. 

t-1 t 
( i) Solve the equation Mod [i-2,2 ] = 0 for all the i (Table 4.6 

lists the solution for i£ [0,15] ). 
m-t 

(ii) Replace H by the vector without the 2 -1 th dyadic symmetry 
i t t-1 

and whose first element is 
t t-1 

if mod [ i, 2x2 ] = 2 , and -
.2 

if mod[i,2x2 ] = 3x2 

( iii) The remaining two basis vectors H and 
0 

where t is in [1,m-1]. 

H 1 remain unchanged 
2m-

Finally, the basis vectors are obtained after being normalized as 

given by equation 4.1. As an example, the value of t, the dyadic 

symmetry to be destroyed and the first element of vector T of a 
i 

16x16 HCT are given in Table 4. 6. The basis vectors for the 4x4, 

8x8 and 16x16 HCT are given in Fig.4.3. 
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first dyadic symmetry 
i element t to be destroyed 

0 1 - -
1 1 1 7 -
2 1 2 3 

3 1/2 1 7 -
4 1 3 1 

5 1 1 7 -
6 1/2 2 3 

7 1/2 1 7 -
8 1 - -
9 1 1 7 -

10 1 2 3 

11 1/2 1 7 -
12 1/2 3 1 

13 1 1 7 -
14 1/2 2 3 

15 1/2 1 7 -

Table 4.6 The values of the first element, t, and dyadic symmetry 

to be destroyed corresponding to each value of 1 for a 

16-order HCT. 
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Fig.4.3 Basis vectors of the 4-order, B-order and 16-order HCT. 

m m 
The LCT of block size 2 by 2 

m 
Let the i th basis vector of the LCT be T where i is in [0,2-1] 

i m-1 
and T and T rn-1 are the Wal sh basis vectors having zero and 2 

0 2 
zero crossings. For the other values of i, T is the vector which 

i 
satisfies the following conditions. 

( i) T has all but the first dyadic symmetry. 
i 

m-2 rn-2 
(ii) The first element of T is 1 if i e: [ 2 3x2 -1 ], 

i 
otherwise it is 1/2. 

Finally, the basis vectors of the LCT are obtained after being norma-

lized by the process given by equation 4.1. The basis vectors for the 

4-order ,8-order and 16-order LCT are shown in Fig.4.4. 
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Fig.4.4 Basis vectors of the 4-order, 8-order and 16-order LCT. 

4·5 PERFORMANCE OF THE HCT AND LCT 

Tests on the one-dimensional first order Markov process 

Using the Markov process of section 4.3.1, 

r 2 
l: s 

i=O ii 
let PER = X 100% ----------( 4.6 ) 

r n-1 2 
::E s 

j=O jj 

PER is the percentage of energy that is packed into the first r+1 
r 

transform coefficients. Figs. 4.5 to 4.7 show the energy packing 

ability of the DCT, the Walsh transform,the HCT and LCT with adjacent 

element correlation equal to 0.9, for block sizes 4x4, 8x8 and 16x16. 

The results show that, a) for the same number of coefficients, the DCT 
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Fig. 4.5 Energy packing ability of the 4~order DCT, HCT, LCT and WHT 

vs number of retained coefficients. 
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76+---------.---------r---------r-------~ 
0 2 4 6 

Sequency 

Fig. 4.6 Energy packing ability of the B-order DCT, HCT, LCT and WHT 

vs number of retained coefficients. 

8 
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Fig, 4.7 Energy packing ability of the 16-order DCT, HCT, LCT and WHT 

vs number of retained coefficients. 
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can always pack more energy than the other transforms and the HCT can 

always pack more energy than the Walsh transform, b) the LCT can pack 

more energy than Walsh transform when the block size is 8 x 8; and for 

r larger than 9 when block size is 16 x 16, c) the HCT is better 

than the LCT for smaller r and vice versa, d) when the block size is 

4 x 4, only the Walsh transform has inferior energy packing ability, 

all the other three transforms perform equally well. 

Further, the HCT and LCT were compared with the DCT, Walsh transform, 

slant transform and Haar transform using transform efficency (equation 

4.5) as the criterion. Markov processes with adjacent element corre­

lations 0.9, 0.5 and 0.2, representing low, medium and high activity 

pictures respectively, were examined. The results for block sizes 4x4, 

8x8, 16x16 , 32x32 and 64x64 are listed in Table 4.7 •. 

When the adjacent element correlation is 0.9, the DCT has the highest 

transform efficiency, followed by the slant transform and the HCT 

except when the block size is 4x4 where the HCT has higher transform 

efficiency than the slant transform. The results are very much the 

same when the adjacent element correlations are 0.5 and 0.2. However, 

at block size 8x8, the transform efficiencies of the HCT and LCT, 

although less than that of the DCT, are higher than that of the slant 

transform. At block size 4x4, both the HCT and LCT have the highest 

efficiency. 

In general, both the HCT and LCT have a closer performance to that of 

the DCT for smaller block size. This is probably because only four 
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Transform I 4 I 8 I 1 6 I 32 I 64 I I I I I 

Haar 85.63 66.23 75.96 70.61 67.75 
WHT 91.24 83.61 78.06 71 • 63 66.84 

0.2 HCT 94.55 87.62 81. 12 75.31 70.16 
LCT 94.55 89.21 81.94 75.77 70.57 
Slant 92.31 85.38 79.72 74.99 70.88 
DCT 93.40 90.33 88.87 88.16 87.81 

----------------------------------------------------------
Haar 77.13 59.26 49.52 44.74 42.33 
WHT 84.21 69.75 59.39 51.71 45.79 

0.5 HCT 91.42 77.07 65.30 56.61 49.80 
LCT 91.42 77.07 62.82 52.77 45.82 
Slant 87.91 75.71 66.48 59.72 54.44 
DCT 89.61 83.14 79.76 78.12 77.31 

----------------------------------------------------------
Haar 89.03 70.33 51.06 36.91 29.00 
WHT 92.12 77.13 60.84 48.20 39.62 

0.9 HCT 95.24 84.09 68.39 54.36 44.07 
LCT 95.24 79.18 56.50 40.36 30.85 
Slant 94.95 85.84 74.09 62.76 54.04 
DCT 95.75 89.83 82.75 76.41 72.34 

Table 4.7 The transform efficiency of the Haar transform, Walsh 
transform(WHT), HCT, LCT, slant transform and DCT for 
block sizes 4x4, 8x8, 16x16, 32x32 and 64x64 and 
adjacent element coefficients ( p ) 0.2, 0.5 and 0.9. 

levels are allowed in the n-order HCT and LCT for all n whilst other 

transforms like the n-order DCT has n levels. For large n, four levels 

are insufficient to constitute smooth changing low sequency basis vec-

tors, hence resulting in smaller variances for the low sequency coeffi-

cients, and smaller transform efficiency compared with the DCT. Also, 

as expected, the HCT has higher transform efficiency than the LCT when 

adjacent element correlation is high, and vice versa. 

4.5.2 Test using real pictures 

4.5.2.1 Experimental procedure 

Figs. 4.8a to 4.8c show the three 256 x 256 eight-bit/pel pictures used 

to test the transformations. 



Fig. 4.8 The 3 original pictures. 

Fig. 4,8a 

The 'girl' 

Fig, 4.8b 

The 'house' 

Fig. 4.8c 

The 'BBC testcard' 
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( i) The head and shoulder picture of a girl (Fig. 4.8a): 

This is a typical low activity picture and has been used by many 

researchers f6r several years now. It was supplied by British Telecom. 

(U) The picture of a house (Fig. 4.8b): 

The top and bottom parts of the picture have very low activity, whilst 

the central region contains quite a lot of detail. It represent a pie-

ture of medium activity. This picture was taken from a print through 

the Video Acquisition and Display system developed by W.C.Wong [135]. 

( iii) A part of the BBC testcard (Fig. 4.8c): 

The picture contains artificial patterns and has a high degree of 

activity. It was supplied by British Telecom. 

The pictures were divided into square blocks [X] of size equal to that 

of the transform [T], and then transformed into blocks of transform coe-

fficients [C). 

[c) = 
t 

[T) [X) [T) -----------------------------( 4.7 ) 

In each block, 75% of the coefficients whose variances are the smallest 

are truncated, and then the remaining coefficients [D) are inverse 

transformed to form [Y). 

t 
[Y) [T) [D) [T) -------------------------------( 4.8 ) 

The ability of the transform to psck energy into a few transform coeffi-

cients is indicated by the normalized mean square error (NMSE). 



Chapter 4 H8 

n-1 n-1 n-1 n-1 2 
:!: :!: :!: :!: ( y - X ) 

p=O q=O i=O j=O pqij pqij 
NMSE X 100% --( 4.9 ) 

n-1 n-1 n-1 n-1 2 
:!: :!: :!: :!: X 

p=O q=O i=O j=O pqij 

where x and y are the (p,q)th element of the (i,j)th blocks 
pqi~ pqij 

of [X) and LY) respectively. Small NMSE indicates high ability of the 

transform to pack energy into a few transform coefficients. The above 

procedure was carried out using the six transformations at block sizes 

4x4, 8x8, 16x16, 32x32 for the three pictures. 

Results and discussion 

The results are summarized in Table 4.8. For the girl and house pie-

tures for block sizes BxB and above, the DCT has the lowest NMSE fol-

!owed by the slant transform; when the block size is 4x4, the HCT and 

LCT have the lowest NMSE. For the BBC testcard, the DCT always has the 

lowest NMSE, then comes the LCT at block sizes 4x4 and Bx8, and the 

slant transform at block sizes 16x16 and above. In conclusion, the fol-

!owing points can be summarized from the Table 4.8. 

( 1 ) The NMSE of the HCT is always lower than that of the l~alsh 

transform and lies about midway between that of the DCT and Walsh 

transforms. The LCT does not always perform better than the Walsh 

transform. It has a higher NMSE than that of the Walsh transform at 

block size 32x32 for the two natural images. 

(2) At block size 4x4, both the LCT and HCT beat all other contend-

ers on the two natural pictures. However, they cannot maintain their 
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performance as the block size increases. 

(3) ~he HCT is a better transformation for natural pictures whilst 

the LCT has excellent performance using the artificial pictur~ when 

the block size is smaller than 16x16. 

4 8 16 32 

Haar 2.20 2.10 2.06 2.02 
WHT 2.18 2.09 2.04 1.98 
HCT 1 .82 1 .83 1.89 1.89 
LCT 1.82 1.83 1.97 2.06 
Slant 1.91 1. 78 1.77 1.74 
DCT 1.85 1.59 1. 49 1.40 

a) The 'Girl' picture 

4 8 16 32 

Haar 9.32 7.67 7.46 7.19 
WHT 9.04 7.65 7.36 7.26 
HCT 8.43 7.31 7.02 6.99 
LCT 8.43 7.35 7.42 7. 51 
Slant 8.50 7.13 6. 92 6.70 
DCT 8.44 6.96 6.39 6.07 

b) The 'House' picture 

4 8 16 32 

Haar 6. 74 5.21 4.97 4.41 
WHT 5.76 4.83 4.35 3.81 
HCT 4.64 3.72 3.55 3.35 
LCT 4.64 2.48 3.50 3.38 
Slant 4.74 3.80 3.25 2.76 
DCT 4.64 2.88 2.11 1. 76 

c) The 'BBC testcard' 

Table 4.8 NI'!SE of the processed pictures as a function 
of block size and type of transform used. 
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Conclusions 

"'he tests on the one-dimensional l1arkov process and on real pictures 

both show that the HCT is better than the Walsh transform for all 

block sizes. For large block sizes, the LCT is not as good as the 

Walsh transform, in terms of both NMSE and efficiency. The LCT seems 

more suitable for an artificial picture such as the BBC testcard. 

Finally, both the HCT and LCT have better performance at small block 

sizes than at large block sizes. For small block sizes such as 4x4, 

8x8 and 16x16, which are most suitable for image transform coding, the 

two tranforms have good performance. 

4.6 UIPLE}IENTATION OF TilE HCT AND LCT BY FAST CO!{PUTATIONAL 

ALGORITHI'S 

4.6.1 Introduction 

In this section the implementation of the two new transforms, the HCT 

and LCT is presented. Let X and C be the vectors containing the 

input data and the transform coefficients respectively. 

where 

[T] 

C ( T ] x X 

r 

I k 
: 1 
: k 
: 2 
I 
I 
I 
I 

: k 
L n 

x-!-
1 

X Tt 
2 

, 

.J 

-----------------------------( 4.11 ) 



k 1 /( 
i 

T I) 
i 

t 
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-------------------------------------( 4.12 ) 

[ T ,T , ••• ,T ] represent the unnormalized HCT and LCT. Tables 
1 2 n 

4.9 and 4.10 list these transforms of order four, eight and six-

teen. Fig. 4.9 shows a transform coding system in which the trans-
2 

formation of X into C requires N real number multiplications. 

However, with a proper arrangement, the transformation can be achieved 

with N log N subtractions or additions together with a number of 
2 

right shifts. The configuration of this system is shown in Fig.4.10. 

Thus, 

r 
Tt 

, 
I 

kl 
I 

I X I 
I l I 
I I 
I 

Tt 
I 

I 
k2 

I 
I X I 

c = I 2 I x X I I 
I I 
I I 
I I 
I 

Tt I I k I X I n n I 
L J 

r , r 
Tt 

, 
I kl I I 
I I I 1 

k2 
I I 

Tt I I I 
I I 

X X ( 4. 13 ) I I X I 2 
I I I 

I I I .. 
k I 

Tt I I I 
I n 1 I 
L J L n 

Let 

r Tt 
, 

1 

Tt 
w = 2 x X --------------( 4.14 ) 

Tt 
n 

.J 
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l l l l 
l a -a -1 
l -1 -1 l 
a -1 1 -a 

a) The 4-order UHCT 

1 1 1 1 l 1 1 1 
1 1 a a -a -a -1 -1 
1 a -a -1 -1 -a a 1 
a a -1 -1 l 1 -a -a 
1 -1 -1 1 l -1 -1 1 
1 -1 -a a -a a 1 -1 
a -1 1 -a -a 1 -1 a 
a -a 1 -1 l -1 a -a 

b) The 8-order UHCT 

1 1 l l l 1 1 1 1 1 1 1 l l 1 l 
1 1 1 l a a a a -a -a -a -a -1 -1 -1 -1 
1 1 a a -a -a -1 -1 -1 -1 -a -a a a l l 
a a a a -1 -1 -1 -1 1 l l 1 -a -a -a -a 
1 a -a -1 -1 -a a l 1 a -a -1 -1 -a a 1 
1 1 -1 -1 -a -a a a -a -a a a l l -1 -1 
a a -1 -1 1 1 -a -a -a -a 1 1 -1 -1 a a 
a a -a -a l l -1 -1 1 l -1 -1 a a -a -a 
1 -1 -1 l 1 -1 -1 1 1 -1 -1 1 1 -1 -1 l 
1 -1 -1 l a -a -a a -a a a -a -1 l l -1 
1 -1 -a a -a a 1 -1 -1 1 a -a a -a -1 1 
a -a -a a -1 l 1 -1 1 -1 -1 1 -a a a -a 
a -1 l -a -a l -1 a a -1 1 -a -a l -1 a 
1 -1 l -1 -a a -a a -a a -a a l -1 l -1 
a -a l -1 1 -1 a -a a -a -1 1 -1 l -a a 
a -a a -a 1 -1 l -1 l -1 1 -1 a -a a -a 

c) The 16-order UHCT 

Table 4.9 

This table lists the unnormalized HCT kernels 

of order 4, 8 and 16. 

note: 'a 1 is used to represent 1/2 

l5la 
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1 1 1 1 
1 a -a 

•' 
-1 

1 -1 -1 1 
a -1 1 -a 

a) The 4-order ULCT 

1 1 1 1 1 1 1 1 
a 1 1 a -a -1 -1 -a 
1 a -a -1 -1 -a a 1 
1 a -a ~1 1 a -a -1 
1 -1 -1 1 1 -1 -1 1 
1 -a -a 1 -1 a a -1 
a -1 1 -a -a 1 -1 a 
a -1 1 -a a -1 1 -a 

b) The 8-order ULCT 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
a 1 1 a a 1 1 a -a -1 -1 -a -a -1 -1 -a 
a 1 1 a -a -1 -1 -a -a -1 -1 -a a 1 1 a 
a 1 1 a -a -1 -1 -a a 1 1 a -a -1 -1 -a 
1 a -a -1 -1 -a a 1 1 a -a -1 -1 -a a 1 
1 a -a -1 -1 -a a 1 -1 -a a 1 1 a -a -1 
1 a -a -1 1 a -a -1 -1 -a a 1 -1 -a a 1 
1 a -a -1 1 a -a -1 1 a -a -1 1 a -a -1 
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 
1 -a -a 1 1 -a -a 1 -1 a a -1 -1 a a -1 
1 -a -a 1 -1 a a -1 -1 a a -1 1 -a -a 1 
1 -a -a 1 -1 a a -1 1 -a -a 1 -1 a a -1 
a -1 1 -a -a 1 -1 a a -1 1 -a -a 1 -1 a 
a -1 1 -a -a 1 -1 a -a 1 -1 a a -1 1 -a 
a -1 1 -a a -1 1 -a -a 1 -1 a -a 1 -1 a 
a -1 1 -a a -1 1 -a a -1 1 -a a -1 1 -a 

c) The 16-order ULCT 

Table 4.10 

This table·lists the unnormalized LCT kernels 

of order 4. 8 and 16. 

note: 1 a 1 is used to represent 1/2. 

151 b 
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--------------( 4-15 ) 

Therefore, the real number transformation of X into C is divided 

into two stages. The first step is to transform X into W (equat-

ion 4.14) which involves only additions, subtractions and right shift 

operations. The second step is the real number multiplication process 

to convert W into C (equation 4.15) which can be incorporated into 

the quantization operation. At the receiver, the vector of quantized 

coefficients (CQ) can be re-transformed into the signal domain to form 

vector XQ by equation 4.16. 

t 
XQ = [T] x CQ 

[ k xT 
1 1 

= [T T T 
1 2 3 

Let 

r 
I kl I 
I 

WQ I k2 I 
I 
I 
L 

Hence, 

k xT 
2 2 

"k 
n 

----------------------------------( 4.16 ) 

k xT ] x CQ 
n n 

I kl 
, 
I 
I 

] X 
I k2 I 

T I I X CQ I I 
n I I 

I "k I 
L n; 

, 
I 
I 
I 
I X CQ I -----------------------( 4-17) 
I 
I 

J 
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XQ = [ T T T ) x WQ -----------------------( 4.18) 
1 2 n 

Therefore, the real number inverse transformation of CQ into XQ is 

also divided into two stages. The first step is the conversion of the 

bit stream L (representing CQ) into WQ and then the unnormalized 

inverse transfomation of WQ into XQ. 

Fast computational algorithms for the forward and inverse UHCT and 

ULCT algorithms requiring only N log N operations will be given in 
2 

the next section. 

X Forward c CQ Channel 
-+-- Transform Quantization Coding 

L 

Channel 

XQ Inverse CQ 
-?-- Transform Decoder 

Fig.4.9 A transform coding system in which the 
transforms in both directions require real 
number multiplications. 
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X Unnormalized w Quantization CQ Channel 
-+--- Forward ' & Scaling ' Coding 

Transform 

L 

Channel 

XQ Unno rmal i zed WQ Inverse CQ 
; Inverse Scaling ' Decoder 

Transform 

Fig.4.10 A transform coding system in which the 
transforms in both directions require only 
additions, subtractions and right shifts. 

Fast computational algorithms for the HCT and LCT generated 

from the dyadic symmetry decompositions 

The derivation of the fast computational algorithms for the Walsh 

transform by repeated application of dyadic symmetry decomposition 

has been given in section 3.6. In this section the same technique 

is used to obtain a fast computational algorithm for the forward and 

inverse UHCT and ULCT. A Walsh transform has all the dyadic symme-

tries, but the ULCT and UHCT have only some of them. However, in 

some cases, it is still possible to apply the k th dyadic decompo-

sition to a matrix, some of whose basis vectors do not have the k th 

dyadic symmetry. Generally, the k th dyadic symmetry decomposition 

is possible for a transform [T) if 



t 
i j 

t 
i j(+)k 

t 
r s 

= 
t 

r s(+)k 

where 

( 1 ) c and -c 
jO s1 

(2) i is such that 

r is such that 
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•' 

c 
jO 

-c ----------------------------------( 4.19 ) 
s1 

are positive constants 

T has even k th dyadic symmetry and 
i 

T has odd k th dyadic symmetry. 
r 

(3) j and s are dummy variables. j, s ,j(+)k and s(+)k are 
m 

in the range [0,2 -1]. 

A fast computational algorithm for the forward 

unnormalized LCT ( ULCT ) 

m m 
From section 4.4, it can be seen that a 2 by 2 LCT lacks the 

m-1 
first dyadic symmetry. In fact, the LCT has the 2 dyadic symme-

tries. For example, when m is three, the LCT has three dyadic sym-

metries which are 

s 

3 
4 
7 

[ s 
1 

s s ] 
2 3 

0 1 1 
1 0 0 
1 1 1 

In general, the LCT has dyadic symmetry S equal to [ s s s ] 
1 2 m 
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where s is equal to s Therefore, except for second order 
m-1 m 

all 2m-order LCT have the 2m-1 th dyadic symmetry. Hence, a fast 

computational algorithm can be obtained by repeated applications of the 
m 

2 -1 th dyadic symmetry decomposition. Details of the process are now 

explained by using the 16x16 ULCT as an example. 

By means of the fifteenth dyadic symmetry decomposition, a 16x16 LCT 

can be broken down into an 8x8 even-transform and an 8x8 odd-transform. 

The even-transform is equal an 8x8 ULCT and the odd-transform is 

r a 1 1 a a 1 1 a 
, 

I I 

I a 1 1 a -a -1 -1 -a 
I 1 a -a -1 -1 -a a 1 I 

[Y3] = I 1 a -a -1 1 a -a -1 -----------( 4.20 ) I 
I 1 -a -a 1 1 -a -a 1 I 
I 1 -a -a 1 -1 a a -1 

I a -1 1 -a -a 1 -1 a 
L. a -1 1 -a a -1 1 -a .J 

where a = 0.5 

Again, using the seventh dyadic symmetry decomposition, the 8x8 ULCT 

is broken down into an even-transform which equals an 4x4 ULCT, and an 

odd-transform which equals [Y2]. 

,.. 
a 

, 
I a I 

1 a -a -1 I 
I I 

[Y2] = I 1 -a 1 I ----------------------( 4. 21 ) I -a I 
L a -1 1 -a .J 

where a = 0.5 

For 8x8 [Y3], both the 4x4 even-transform and odd-transform are [Y2]. 

The 4x4 ULCT and [Y2] transform are then decomposed into an even-

transform and an odd-transform by the third dyadic symmetry decompo-
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sition. For the 4x4 ULCT transform, the 2x2 even-transform is the 

2x2 Walsh transform, and the 2x2 odd-transform is 

r , 

[Y1] = 
I a I 
L a -1 J -----------------------------------( 4.22 ) 

For the 4x4 [Y2] transform, the two by two even-transform is [X1] and 

the 2x2 odd-transform is [Y1]. 

[X1] 
r a , 
L 1 -a J ---------------------'-------------( 4.23 ) 

The whole process is summarized in Fig. 4.11. In the binary tree, each 

node, representing a transform, has two offsprings. The one on the left 

is its even transform and the one on the right is its odd transform. 

16x16 

8x8 

4x4 

2x2 [H] 

ULCT 
I 
I 

[Y1] 

ULCT 
I 
I 

[Y2] 
I 
I 

[X1 ] 

ULCT 
I 
I 

[Y1] 

[Y2] 

[X1] 

I 
I 

[Y3] 
I 
I 

[Y1] 

[Y2] 

[x1] 

I 
I 

Fig.4.11 The binary tree depicting the dyadic symmetry 
decompositions of a 16-order ULCT. 

[Y1] 

One of the ways to implement this fast computational algorithm for a 

16x16 ULCT is given in the signal flow diagram shown in Fig. 4.12. 

The signal flow diagram of the fast computational algorithm for the 

ULCT is the same as that for the Walsh transform until the last iter-
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•' 

xo >< YO 

Xl '(8 

X2 ~ 
Yl2 

X3 Y4 

X4 ~ 
Y6 

X5 Yl4 

X6 ~ YlO 

'17 Y2 

xs ~ Y3 

X9 Yll 

XlO 
~ 

YlS 

X1l Yl 

ill :><:: Y5 

Xl3 Y13 -
Xl4 ~ Y9 

XlS Yl 

Fig. 4.12 A signal flow diagram for the fast forward 16xl6 ULCT. 
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ation where the sublock size is two. In the last iteration, 14 right 

shifts are required before certain additions and subtractions. 

A fast computational algorithm for the forward 

unnormalized HCT ( UHCT ) 

m m m 
As given in section 4.4.1, a 2 by 2 HCT has only the 2 -1 th 

dyadic symmetry. However, a fast computational algorithm can still 

be obtained by the repetitive use of the dyadic symmetry decomposit-

ions. Details of the process are now given by using a 16x16 UHCT as 

example. 

A 16x16 HCT has the fifteenth dyadic symmetry, thus, it can be decem-

posed into an even-transform and odd-transform. The even-transform is 

the 8x8 UHCT and the odd-transform is 

r a a a a 
, 

I I 
I a a a a -1 -1 -1 -1 I 
I I 
I 1 -1 -1 -a -a a a I 
I I 

[X3) = I a a -a -a 1 1 -1 -1 I ----( 4.24 I I I 1 -1 -1 1 a -a -a a I I 
I a -a -a a -1 1 1 -1 I I 1 -1 1 -1 -a a -a I a I 
I a -a a -a 1 -1 1 -1 I 
L. .J 

Similarly, the 8x8 UHCT transform can be decomposed into a 4x4 UHCT 

(even-transform) and [X2] transform(odd-transform) by the seventh 

dyadic symmetry decomposition. 

r a 
, 

I a I 
[X2) = I a a -1 -1 I -----------------( 4.25 I I 

I 1 -1 -a a I 
I I 
I a -a 1 -1 I 
L. J 

) 

) 
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Let u and V be 

r 
X + a·x 

, 
I 

0 7 I 
I 

X + a.x I 
I 

1 6 I 
I 

u = X + a·x I 
I 

2 5 I 
I 

X + a·x I 
I 

3 4 I 
J 

r a.x - X 
, 

0 7 
a·x - X -------------------( 4.26 ) 

1 6 
V = a-x X 

2 5 
a·x - X 

3 4 J 

we have both the even-transform and odd-transform of the [X3] trans-

form equal to the 4x4 Walsh transform. The third dyadic symmetry de­

composition can be used to break down both the Walsh and the [X3] 

transform. The only difference is that the [X3] transform requires 

modified vectors U and V and so requires eight extra right shifts. 

Similarly, the 4x4 UHCT and Walsh transform can be decomposed using 

the third dyadic symmetry decomposition. The whole process is summa-

rized in Fig. 4.13. The signal flow diagram of one of the ways to 

implement the fast computational algorithm is given in Fig. 4.14. 

16x16 

BxB 

4x4 

2x2 (H] 

UHCT 
I 
I 

[x1] 

UHCT 
I 
I 

(H] 

(X2] 
I 
I 

UHCT 

[H] [H] 

(H] 
I 
I 

(X3] 

[H] 

I 
I 

[H] 

(H] 
I 
I 

Fig.4.13 The binary tree depicting the dyadic symmetry 
decompositions of a 16-order UHCT. 

[H] 
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xo >< YO 
Y8 Xl 

X2 ~ 
Yl2 

Y4 X3 

X4 :»Z Y6 
Yl4 X5 

X6 YlO >< YJ '(l 

X8 Y3 >< Yll X9 -
-XlO >< YlS 

Yl Xll 

'Xl2 Y5 >< Yl3 Xl3 
-

Xl4 >< Y9 

Yl XIS 

Fig. 4.14 h signal flow diagram for the fast forward l6xl6 UHCT. 
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A fast computational algorithm for the transpose of the 

unnormalized LCT 

In section 4.4.1 it has been shown that the inverse LCT can be im-

plemented using the transpose of the ULCT. This section will show 

that a fast computational algorithm for the transpose of a 16x16 
m-1 

ULCT can be obtained by the repetitive application of the 2 th 

dyadic symmetry decomposition. 

The eighth dyadic symmetry decomposition decomposes the transpose of 

the 16x16 ULCT into 

r 
X + X 

, 
I 

0 8 I 

I a-x + X I 1 9 I 
a-x + X 

I 
I 

2 10 I 
I 

a·x + X 
I 
I 

3 11 I 
I 

u = X + S•X I 
I 

3 4 12 I 
I 

X + 8•X I 
I 

5 13 I 
I I 
I 

X + S•X 
I 

I I 
I 6 14 I 

I I 
X + 8•X 

I 
I I 
I 7 15 I 
L J 

X - X 
, 
I 

0 8 I 
I 

X - a·x I 
I 

1 9 
X - a·x 

2 10 
X - a•x 

3 11 
V a·x X -------------------( 4.27 

3 4 12 
a·x - X 

5 13 I 
a·x X 

I 
I 

6 14 I 
I I 
I a·x X 

I 
I I 
I 7 15 I 
L .J 

) 
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and both the even- and odd-transforms are equal to an 8x8 Walsh trans-

form. The fast eomputational algorithm obtained by the repetitive use 
m-1 

use of the 2 th dyadic symmetry decomposition described in section 

3.6.3 thus can be used to compute the signal data. The whole process 

is summarized in Fig. 4.15. The signal flow diag,am for the fast corn-

putational algorithm is given in Fig. 4.16. 

16x16 

8x8 

4x4 

2x2 [H) 

[H) 
I 
I 

[H) 

[H) 
I 
I 

ULCT transpose 
I 

[H) 
I 
I 

I 

(H) (H) (H) 

[H) 
I 
I 

(H) 

[H) 
I 
I 

[H) 

[H) 
I 
I 

(H) 

Fig.4.15 The binary tree depicting the dyadic symmetry 
decompositions of the transpose of a 16-order ULCT. 

A fast computational algorithm for the transpose of 

the unnormalized HCT 

Section 4.4.1 has shown how an inverse HCT can be implemented by 

the transpose of UHCT. In this section, a fast computational algorithm 
m-1 

using the 2 th dyadic symmetry decomposition is given to compute 

the transpose of the UHCT. F,y defining 
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xo ><: YO 

Xl YlS 

X2 ><: Y7 

X3 Y8 -
X~ Y3 ><: xs Y12 

X6 ><: y~ Yl Yll 

X8 Yl ><: X9 Yl~ 

Y6 XlO - ><: Y9 
Y2 ><: Y13 

><: Y5 Xl~ -
Xl5 YlO -

Fig, 4,16 A signal flow diagram for the fast reverse l6xl6 ULCT. 
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r 
X + X 

, 
0 8 

X + X 

1 9 
X + X 

2 10 
X + X 

3 11 
u = X + a x 

3 4 12 
X + X 

5 13 
X + X 

6 14 
X + X 

L. 7 15 .J 

r 
X - X 

, 
0 8 

X - X 

1 9 
X - X 

2 10 
X - X 

3 11 
V = a x - X ------------( 4.28 ) 

3 4 12 
X - X 

5 13 
X - X 

6 14 
X - X 

7 15 .J 

we have both the even- and odd-transforms equal to the transpose of 

an 8x8 UHCT which can then be decomposed by defining 

r 
X + X 

, 
I 
I 0 4 I 
I 

X + X I 
u = I 1 5 I 2 I X + a x 

I 2 6 I 
I 

X + X I 
I 3 7 L. .J 
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r X 
, 

I - X 
0 4 

X - X -------------( 4.29 ) 
V 1 5 

2 a•X - X 
2 6 

X - X 
3 7 .J 

The 4x4 even- and odd-transforms are the transpose of a 4x4 UIICT 

which can then be decomposed into two Walsh transforms by defining 

; X + X 
, 

I I 
u = I 0 2 I 

I I 
1 I X + a.x I 

I 3 J L 1 

; X - X 
, 

-------------------------( 4.30 ) I I 
V I 0 2 I 

I I 

1 I a.x - X 
I 

I 
3 J L 1 

The whole process is summarized in Fig. 4.17. The signal flow diagram 

of one of the ways to implement this process is shown in Fig. 4.18. 

16x16 

8x8 

4x4 

2x2 

UHCT transpose 
I 
I 

UIICT transpose 
I 

UJICT 
transpose 

I 
I 

[H) [H) 

I 

UIICT 
transpose 

I 
I 

[H) [H) 

UIICT transpose 
I 

UHCT 
transpose 

I 
I 

[H) [H) 

I 

UHCT 
transpose 

I 
I 

[H) [H) 

Fig.4.17 The binary tree depicting the dyadic symmetry 
decompositions of the transpose of a 16-order UHCT. 
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xo ><: YO 

Xl Yl5 

X2 '(1 ><: X3 Y8 -
X~ Y3 ::::><: X5 Yl2 

X6 >< y~ '/J Yll 
~ Yl ><: X9 m 
XlO Y6 - ><: Y9 

Xl2 ><: Y2 
Xl3 Yl3 

Xl~ :::>« YS 

XIS Yl.O 

Fig. 4.18 A signal flow diagram for the fast reverse 16xl6 UHCT. 
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4.7 CONCLUSIONS 

This chapter has demonstrated the use of the theory of dyadic symmetry 

to generate two new transforms which can be used as substitutes for 

the Walsh transform. The new transforms have virtually the same com­

plexity and computational requirements as 'the Walsh transform. They 

employ additions, subtractions and binary shifts only but have an effi­

ciency, defined in terms of their ability to decorrelate signal data, 

which lies between that of the Walsh transform and that of the DCT. 

4.8 NOTE ON PUBLICATIONS 

The result described in section 4.2 has appeared in a paper entitled 

•A technique for generating new image transforms', presented at the 

1983 IEE colloquium on 'Transform Techniques in Image Processing' at 

Savoy Place, London, England. Another paper based on the results 

described in section 4.2 to 4.5 and entitled 'Simple high efficiency 

transforms for image coding' was presented at the 1983 Picture Coding 

Symposium, Davis, California, USA. A pap~r based on all the results 

reported in this chapter and entitled 'Generation of orthogonal trans­

forms using the theory of dyadic symmetry' was submitted to the IEEE 

transactions on Electromagnetic compatibility in 1983. All these 

papers were jointly authored with R.J.Clarke. 

Also, an European patent (patent no.82303825.2) entitled 'Method of 

transmitting an image and apparatus for carrying out the method', in 

eo-authorship with Dr R.C.Nicol, Mr.B.A.Fenn, Mr.R.J.Clarke and 

Dr.K.N.Ngan, has been made to claim originality of invention on the 

HCT and LCT. 
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D C C 0 E F F I C I E N T 

R E S T 0 R A T I 0 N SCHEMES 

5.1 INTRODUCTION 

Picture elements are often highly correlated. In conventional trans­

form coding, the high correlation between pels has been largely, if 

not entirely, exploited for those pels within the same block. However, 

the high correlation between pels in different blocks is completely 

neglected. 

Therefore, schemes such as recursive block coding, hybrid coding and 

the pinned sine transform (section 1.3.3) were devised to utilize this 

correlation to achieve further reduction in bit rate. On the other 

hand, Mi tchell and Tabatabai [no] used this redundancy to provide chan­

nel error correction for Chen and Smith's adaptive transform coding 

system, thus eliminating the need for channel error protection bits. 

Their basic approach is to check the four boundaries around each recon­

structed image block as shown in Fig.5.1. If sharp grey level changes 

exist along these boundaries that agree with a dominant error in a 

single transform coefficient, the coefficient location and magnitude 

are estimated and a basis picture corresponding to the estimated error 

is subtracted from the block. 

This chapter describes a technique that utilises the same interblock 
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Fig.5.1 

The four edges 
considered in the 
error correction 
proposed by 
Mitchell and 
Tabatabai. 

redundancy to allow, in some cases, the de coefficients to be esti-

mated at the receiver, thus allowing reductions in bit rate as well 

as eliminating a major source of difficulty with respect to channel 

errors. Three schemes, called ELEMENT ESTIMATION, ROW ESTIMATION, 

and PLANE ESTIMATION, are proposed, and the results of simulations 

of these methods using different block sizes and different pictures 

are given. 

Section 5.2 evaluates the degree of data compression that can be 

achieved by not sending the de coefficients. Also, it is shown that, 

using the sequency-ordered Walsh transformation, de coefficient trun-

cation is equivalent to low sequency coefficient truncation. In sect-

ions 5·3 to 5.5, the three schemes are described, and results of simu-

lations of these methods are given ln section 5.6. 
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5.2 SIGNIFICANCE OF DC COEFFICIENT RESTORATION SCHEMES 

Eight-bit quantization of the de coefficients is enough to make quan-

tization noise imperceptible. Thus, if the de coefficients are not 

sent but estimated at the receiver using a de coefficient restoration 

scheme, these 8 bits can be saved. In a two-dimensional transform cod-

ing system, this is equivalent to 0.008, 0.031, 0.125 and 0.5 addit-

ional bit/pel for block sizes 32x32, 16x16, 8x8 and 4x4 respectively. 

Consequently, a de coefficient restoration scheme can save more bits 

at a smaller, rather than a larger, block size. More insight into 

this is provided by the following theorem: 

Theorem 5.1 : 

Let a set of 
m 

2 • • • ' X ] 

r 
be divided into 2 data elements [ x , 

m-r 0 t"-1 
sets. Each set thus contains 2 data points. 

r 
The 2 de coefficients 

r 
of the 2 sets of Walsh transform coefficients can be derived from 

r m 
the first 2 transform coefficients of the 2 -order sequency-ordered 

Walsh transform, and vice versa. 

Proof: 
m 

The (i,j)th element of the 2 -order sequency-ordered binary Walsh 

matrix is as given by equation 3.9 

r , r i , 
I I 1 I 1 I 

1 I I 
I I 

b = [ j ,j ' ••• , j ] I I 
I I 

ij 1 2 m I I 
I I 

1 I i I 
I I 
I mJ .J 

r 
If i is within the range [0,2 -1], then we have 
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b = [ j ,j , ... ,j ] 
ij 1 2 m 

= [ j ,j , ... ,j ] 
1 2 m 

= [ j .... , j ] • 
1 m 

[ j ] = j • ... ' 
1 r 

,. 

r ., 
I 

1 I 
I 

1 I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L .J 

~ m-r ~~?-- r ~ 

r 1 1 
1 

, 
I 
I 
I 

I 
I I 

I -----+-----------, 
I I 
I I 
I I 
I I 

~ .J 

~ m-r ~~?-- r ~ 

r 1 
, r - ., 

I I ~-r-11 I 1 I 
I I I 
I 1 I I 
I I I 
I 1 I I 
I I I 
I I I 
~-----------1 I 
I I i I 

I I I 
I m I 

L .J .J 

?-- r~ 

ro ., 

0 
i 
m-r·1 

i 
m .J 

r 0 , 

0 
i 
m-r+1 

i 
m J 

r 1 
., 

r im-r.1l I I 
I 1 I 
I I I I 
I I I 
I I I 

----( I I I I 
I I I 

I I I 

1 I i I 
I I I 

L 1 m I 
.J L J 

r 

5. 1 

Therefore, if we want to calculate transform coefficient c where i 
r i 

is within the range [ 0,2 -1 ], we can use equation 5.1 instead of 
r 

equation 3.9. In the other words, the first 2 transform coefficients 
m m 

of the 2 -order Walsh transform can be obtained by first dividing 2 

) 
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r 
data elements into 2 groups, adding the data elements of the groups 

together with proper scaling to form de coefficients,and finally apply­
r r 

ing the 2 x 2 Walsh transform. 

For example, consider a set of 16 elements [ X ' X ' 
... , X ] 

0 1 15 
which are divided into 4 blocks, [ X ' 

... , X ], [ X 
' ... ' X ], 

0 3 4 7 
• • •' X ] ' 

... , X ] . Let the de coefficients of 
15 

[ X ' 
8 

the 4 
11 

blocks be 

and [ x 
12 

d ' d ' d 
0 1 2 

and d Also, let the Walsh transform 

coefficients of [ X , X , 

0 1 
we have 

r c , 
0 I 

c 
1 

c 
2 

c 
3 

... , 

= 

3 
X ] 

15 
be [ c ' c t 

0 1 

r d , 

0 
d 

1 
( H ) x d 

2 
I d 
L 3 

where [H) is the 4-order Walsh transform. 

r m 

... , c ]. 
15 

Then 

This theorem implies that the first 2 of the 2 sequency-ordered 

Walsh transform coefficients can be estimated using de coefficient 
m-r 

restoration schemes of block size 2 , and therefore, that a de 

coefficient restoration scheme can be viewed as a low order coeffi-

cient restoration scheme. 

5.3 ELEMENT ESTIMATION 

5.3.1 Description 

The de coefficient of block ( 1,1), a( 1,1), is set to an arbitrary 
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level and the grey levels in block (1,1) are adjusted accordingly. 

The de coefficient of block (1,2) is then chosen as that which mi-

nimizes the square magnitude of the edge difference vector between 

these two blocks. Similarly,dc coefficient a(1,j) is estimated from 

a(1,j-1), and a(i,1) estimated from a(i-1,1) until all the de coe-

fficients in the first row and first column have been estimated. 

The next step is the estimation of a(i,j) from a(i-1,j) and a(i,j-1). 

This is done by minimizing the square magnitudes of the two edge 

difference vectors between these three blocks. When all the coeffi-

cients have been estimated, the overall grey level of the picture is 

brought within the desired range for display. 

5.3.2 Theoretical development 

The method of estimation of a(i,j) from the edge difference vectors 

and the previously estimated de coefficients a(i-1,j) and a(i,j-1) is 

now developed. Consider a picture of N by N blocks, each block hav-

ing n by n pels. Let [x(p,q)] and [c(r,s)] be blocks of original 

pels and transform coefficients respectively. 

t 
[ c(r,s) ] = [ T ] [ x(p,q) ] [ T ] 

t 
[ T ] =[T,T,T, .... ,T] 

1 2 3 n 

t 

-----------------( 5.2 ) 

where [ T ] is an orthogonal transformation with 

t 
T 

1 
= [ 1,1, ... ,1 J; m ---------------------( 5.3 ) 
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Both the DCT and Walsh transform satisfy equation 5.3. The block of 

pels having zero de level is given by the inverse transformation 

t 
[ u(p,q) ] [ T ] [ f(r,s) ] [ T ] 

where f( r, s) 0 r=s=1 

= c(r,s) otherwise 

The basis picture of the de coefficient is given by 

r 1 • 
, 

Tt 
..... ' I 

T X = ( 1 /n) X 
I 

1 ' 
I 

I ..... ' I 
1 1 I 

1 ' 
I 

I ..... , I 

L 1, I ..... , J 

Therefore, the vectors at the four edges of the basis picture are 

all equal to 

V 
t 

= [ 1/n, ••••••• , 1/n] --------------( 5.4 ) 

Let u(p,q) be the (p,q)th pel in the (i,j)th block. The two 
i' j 

edge difference vectors, as shown in Fig.5.2, considered in the 

estimation of a(i,j) are a) the vertical edge difference vector: 

T' u( 1 , n) u(1,1) 
, 

- I 
i ,j-1 i,j I 

I 

u(2,n) u(2,1) I - I 
i, j-1 i,j I 

I 
D a(i,j-1) X V + I ( 5·5 ) . . . . . . . . . ........... I 

1 'i 'j I . . . . . . . . . ........... I 
u(n,n) u(n,1) I - I 

i,j-1 . . I 
L 1,J .J 
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where i and j lie in the range [2 ,N], and b) the horizontal edge 

difference vector: 

r u(n,l) 
i-1,j 

u(n,2) 
i-1,j 

D a(i-1,j) x V + . . . . . . . . . . . 
2,i,j . . . . . . . . . . . 

u(n,n) 
l. i-1,j 

where i and j lie in the range [2,N] . 

01 .. 
,l.j 

. 
J 

0 .. 
/ 2.1 .j 

THE ( i,j) th 

BLOCK 

- u( 1, 1) 
, 

i,j 
- u(l,2) 

i,j ........... ( 5.6 ) ........... 
- u(i,n) 

i. j .J 

The two edge 
difference vectors 
considered in 
ELEMENT ESTIMATION. 

If a de coefficient, a(i,j), is added to block (i,j), then the two 

edge difference vectors are changed to a) new vertical edge differ-

ence vector: 

w = D a(i,j) X V ----------------( 5.7 ) 
1,i,j 1 • i. j 

and b) new horizontal edge difference vector: 
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w D a(i,j) X V ---------------( 5.8 ) 
2,i,j 2,i,j 

For simplicity of notation, the indices i and j will now be 

dropped. The sum of the square magnitudes of these vectors is 

2 
e = l: 

p=1 

2 

D - a V I -------------------------( 5.9 ) 
p 

where e is function of the estimated de coefficient a. It can be 

shown (see Appendix B) that e is minimum when 

2 n 
a (1/2) X l: l: d(p,i) 

p=1 i=1 
----------------( 5.10 ) 

where d(p,i) is the i th element of the vector D • Equation 5.10 
p 

implies that setting the new de coefficient a equal to one half of 

the sum of the grey level difference d(p,i) at the two edges minimizes 

the edge difference. It should be noted that the grey level differen-

ces, d(p,i), are computed from pels in block (i-1,j) and block (i,j-1) 

whose levels have been adjusted in accordance with de coefficients es-

timated previously. In general, it can be shown that 

p n 

a(i,j) = (1/P) X l: l: d(p,i) 
p=1 i=1 

-------------( 5.11 ) 

where P is the number of edges taken in consideration. 
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ROW ESTIMATION 

5· 4. 1 Description 

In this method, the de coefficients in the first row are estimated 

using element estimation and the pels in the first row are adjusted 

accordingly. The next row of de coefficients is then determined as 

the set of de coefficients which minimizes the sum of the square mag-

nitudes of the edge difference vectors between the first and second 

rows, and also those between the individual blocks in the second row. 

Similarly, the ·de coefficients in the i+1 th row are estimated from 

the i th row until all the de coefficients are found. Finally, the 

overall picture grey level is brought within the desired range for 

display. 

5.4.2 Theoretical development 

The method of estimation of the de coefficients in the i th row from 

those in the i-1 th row is given. Terms defined by equations 5.1 to 

5.4 are used. Also, it is assumed that the receiver has the following 

information: 

( i) [ u(k,l) ) the (i,j)th block of pels having zero 
i,j 

de level. 

(ii) [ v(k,l) ] the (i-1,j)th block of pels whose de levels 
i-1,j 

have been adjusted according to the estimated de coefficients. 

t 
[ v(k,l) ] = [ u(k,l) ] + b X V x V ----( 5.12 ) 

i-1,j i-1,j i-1 'j 

where b is the estimated de coefficient for block (i-1,j). 
i-1 'j 
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Now, we are to estimate the N-dimensional de coeff'icient vector 

A [a , .•• , a ] 
1 N 

from [ u(k,l) ] and [ v(k,l) ] We define vertical 
i,j i-1 ,j 

and horizontal edge difference vectors for block (i,j) as shown in 

Fig.5.3. 

J 

~~ Du , ~.N 
~--~----~--~~--~-------~--~----~ ' ,, ' 

o,,z 

r---------+---------+---------~--------~ 

Fig.5.3 The vertical and horizontal edge difference 
vectors considered in ROW ESTIMATION. 

The vertical edge difference vector between the j th block an j+1 th 

block in the i th rcw of blocks is 

D = 
1 , j 

r- u(1 ,n) 
i,j 

u(2,n) 
i,j . . . . . . . . . 

- u( 1 , 1 ) 
i,j+1 

- u(2,1) 
i,j+1 ........... 

u(n,n) - u(n,1) 

, 

L i,j i,j+1 .J 

j £(1,N-1) ----( 5.13 ) 
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The horizontal edge difference vector between the (i-1,j)th block and 

(i,j) th block is 

D = 

r u(n,1) 
i,j 

u(n,2) 

- v(1,1) 
i-1,j 

v( 1 , 2) 

, 

2,j i,j i-1. j j d1,N] ----- ( 5 • 14 ) .......... . ......... . 
u(n,n) - v(1,n) 

L i,j i-1 ,j .J 

If the pels in the i th row are adjusted by the N de coefficients 

a , a ' a ' ••• t a ' then the edge difference vectors D and D 
1 2 3 N 1 'j 2,j 

are changed to w and w respectively: 
1 'j 2,j 

w = D + (a a ) X V 
1 • j 1 'j j j+1 

w D + a x V ------------------( 5.15 ) 
2. j 2,j j 

Therefore, the sum of the squares of the magnitudes of these edge 

difference vectors becomes 

N-1 2 
e = :!:: D + (a -a ) x V I 

I 
j=1 1 'j j j+1 

N 2 
+ :!:: D + a X V I -----------------( 5.16 ) I 

j=1 2,j j 

or 

2 N 2 
e = :!:: :!:: D + [ R ] X A -----------( 5. 17 ) 

p=1 j=1 p,j p, j 

and the n by N dimension matrices [ R ] are as follows: 
p, j 
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(A) When p=1 (the vertical edge difference is being considered) 

j [ R ] 
1 • j 

1 [ V, -V, 0, ...... , 0 ] 

2 [ 0, V, -V, 0' . .. ' 0 ] 

. .......................... 

. . ......................... 
N-1 [ 0, ...... ' o, V, -V ] 

N [ 0, .............. , 0 ] 

(B) lfuen p=2 (the horizontal edge difference is being considered) 

j [ R ] 
2,j 

1 [ V, o, .... ' 0 ] 

2 [ 0, V, o, ... ' 0 ] 

. ...................... 

. . ..................... 
N [ 0, ........ , o, V ] 

it can be shown (see Appendix A) that e is minimum when 

-1 
A ( RR ] x C ----------------------------------( 5.18 ) 

2 N t 
where [ RR ] = :r: :r: (R] (R] --------------( 5.19 ) 

p=1 j=1 p,j p,j 



and 

As 

2 N 
c I: I: 

p=1 j=1 

N t 
:£: [R) [R) 

j=1 1,j 1,j 

0 0 
-1 0 

2 -1 
= ( 1 /n) x 

r 1 -1 
-1 2 

0 -1 
0 

N t 
~ [R) [R) 
j=1 2,j 2,j 

r 1 

( 1 /n) x 

[ R 

0 

] 

, 
I 
I 
I 
I 

I 
I 
I 

J 

.. 
t 

D 
p,j p, j 

0 

0 
0 -1 2 -1 

0 -1 1 

Adding these two terms together, we have 

r 2 -1 0 0 I 
I -1 3 -1 0 0 
I 0 -1 3 -1 0 I 

[ RR ) = (1/n) x I 0 -1 3 -1 0 I 
I 
I 
I 
I 
I 0 -1 3 -1 I 
I 0 -1 3 I 
I 0 -1 L 
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----------------( 5.20 ) 

, 

, 

0 
-1 

2 



Chapter 5 183 

The elements of vector C are summarized in table 5.1 and 5.2 

where the ith element of vector C is 

also, 

d 
p' j 

and d 

c = c + c ----------------------------( 5.21 ) 
i i, 1 i,2 

N-1 
= :E d 

q=O p' j ,q 

p,j ,q 
is the q th element of the vector D 

p,j 

j 

2 

3 

N-2 

N-1 

c i 
I 1 , 1 I 
I 
I 

c i 
2; 1 i 

I 
I 

c i 
3' 1 i 

I 
I 

c i 
N-1,1i 

I 
I 

d i-d i 
1,1 i 1,1 I I I i 

c 
N, 1 

------+------+------+---------+-------+-------
i d i-d i i i 
I 1 2 I 1 2 I I I 
I ' I ' I I I 

------+------+------+---------+-------+-------
1 I d I I I 
I I I I I 
I I 1 3 I I I 
I I , I I I 

------+------+------+---------+-------+-------

.... -----+------+------+---------+-------+-------
1 I I I I 
I I I 1-d I 
I I I I 1 N 21 
I I I I ' - I 

------+------+------+---------+-------+-------1 I I I I d 
I I I I d 1-

i i i i 1,N-1i 1,N-1 

Table 5.1 c (equation 5.21) which is equal to the 
i' 1 

summation of the terms, d below it. 
1 'j 



j 

2 

3 

N-1 

N 

c 
1,2 

d I 

c 
2,2 

c 
3,2 

•' 

c l 
N-1 ,2J 

I 
I 
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c 
N,2 

I 2, 1 I I I I I 

------+------+------+---~-----+-------+-------
1 d I I I I 

I I I I I 
I 2,2 I I I I 

------+------+------+-----~---+-------+-------
l d l 

I l 2, 3 l I l 
------+------+------+---N-----+-------+-------

------+------+------+---------+-------+-------
1 I I I d I 
I I I I I 
I I I 2 N 11 I I I I , - I 

------+------+------+---------+-------+-------
1 I I I I d 
I I I I I-
I I I I I 2 N 
I I I I I ' 

Table 5.2 c (equation 5.21) which is equal to the 
i,2 

summation of the terms, d , below it. 
2,j 

5.5 PLANE ESTIMATION 

5.5.1 Description 

In this method, the N x N blocks of pels having zero de level are 

grouped into (N/2) x (N/2) groups as shown in Fig.5.4. The difference 

over all four edges within each group is then minimized by inserting 

new de coefficients. Therefore, each group of four blocks can be re-

garded as one single larger block of (2xn) by (2xn) pels, and there 

are (N/4) x (N/4) of them in the picture. The same process can then 

be applied to minimize the difference at the four edges and to form 

even larger blocks. This process will continue until the whole picture 
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is merged into one block. Finally, the restored picture grey levels 

are brought within the desired range for display • 

-

Fig.5.4 

• 

J 
~ I~ 'I' 
... 
~- I'' I'' i'' 

1\ 

_, ... _, .. ' \' I'' I' 

The way that the NxN blocks of pels are grouped 
into (N/2)x(N/2) groups in PLANE ESTIMATION. 

5.5.2 Theoretical development 

Without losing generality, we may consider the four block group at 

the top left corner as shown in Fig.5.5. This group is the same as a 

picture which contains only two by two blocks, each block of pels hav-

ing zero de level. Define the four edge difference vectors as 

r u(n,1) - u(1,1) 
, 

I I 

1 ' 1 2,1 I 
I I 
I u(n,2) u( 1 , 2) I 
I I 

D = I 
1 ' 1 2, 1 I 

I I 
1 I I 

I ......... . ........ I 
I u(n,n) u( 1 , n) I 

I I 
L 1 ' 1 2, 1 .J 
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r u(1,n) u( 1 , 1) 
., 
I 

2' 1 2,2 I 
I 

u(2,n) u(2,1) I 
I 

D 2' 1 2,2 I 
I 

2 I . . . . . . . . . ......... I 
u(n,n) - u(n,1) I 

I 
2,1 2,2 I 

L J 

r u( n, 1 ) - u(1,1) 
, 

1 '2 2,2 
u(n,2) - u(1,2) 

D = 1, 2 2,2 
3 . . . . . . . . . ......... 

u(n,n) - u ( 1 , n) 
L 1, 2 2,2 J 

r u( 1 , n) - u( 1, 1) 
, 

I 

1 ' 1 1,2 I 
I 

u(2,n) - u(2,1) I 
I 

D 1 , 1 1,2 I 
I 

4 I -----------------( 5.22 ) ......... . ........ I 
u(n,n) - u(n,1) I 

I 
1 , 1 1,2 I 

J 

If the pels in blocks (2,1), (2,2) and (1,2) are adjusted in accor-

dance with the three estimated de coefficients a , a and a , then 
1 2 3 

the four edge difference vectors will become 

w = D - V X a(2,1) 
1 1 

w = D + V' X ( a(2,1)-a(2,2) ) 
2 2 

w = D + V x ( a(1,2)-a(2,2) ) 
3 3 

w = D V X a( 1, 2) --------------------( 5.23 ) 
4 4 

We require the de coefficient vector A 
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/ I' 

04 a-? 
T' 

/ 01 / 03 
" , 

' 

0=? q 1 • a=? 2 . 

Fig.5.5 The four edge difference vectors 
considered in PLANE ESTIMATION. 

t t 
A [ a(2,1), a(2,2), a(1,2)] ~ [a, a, a ] 

1 2 3 

--------------------( 5.24 ) 

such that e , the sum of the squares of the four new edge 

difference vector magnitudes, is a minimum. 

e 
4 
I: 

p=1 
D + [ R ] A 

p p 

Equations 5.23 to 5.25 imply that 

----------------( 5.25 ) 
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[ R ) [ -V, o, 0 J 
1 

[ R ) = [ V, -V, 0 J 
2 

[ R J = [ 0, -V, V ] 

[ R J 
3 

= [ 0, o, -V ] ---------------------( 5.26 ) 
4 

It can be shown (see appendix A) that the de coefficients that mini-

mize e are given by 

where [ 

and 

Also, 

Let 

-1 
A = [RR) xC ----------------------( 5-27 ) 

4 t 
RR J = I: [ R J X [ R ] 

p=1 p p 

r 2 -1 0 
, 

I I 
= (1 /n) X i -1 2 -1 I 

I 
I 

L. 0 -1 2 .J 
--------------( 5.28 ) 

-1 
[ RR ) = (n/4) x 

r 3 2 1 l 
I 2 4 2 I 
I 1

1 --------------( 5-29 ) 

c 

L.123.J 

4 t 
=I: [R]xD ---------------------( 5-30 ) 

D 
p 

p=1 p p 

= 

r d( 1 ) 
p 

d(2) 
p 

d(n) 

, 

L p .J 

----------------( 5-31 ) 



c 

s(p) 

= 
r c( 1) 
1 c(2) 
L c(3) 

n 

, 
I 
I 
I 

.J 
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----------------( 5.32 ) 

= (1/n) x I: d(i) ---------( 5.33 ) 
i=1 p 

Equations 5.26, 5.30, 5.31, 5.32 and 5.33 indicate that 

c(1) = -s(1) + s(2) 

c(2) = -s(2) s(3) 

c(3) s(3) s(4) -----------------( 5.34 ) 

and equations 5.27, 5.29 and 5.34 indicate that 

a( 1) = ( s(4) + s(3) s(2) + 3xs(1) )/4 

a(2) ( s(4) + s(3) + s(2) + s( 1) )/2 

a(3) = ( 3xs(4) s(3) + s(2) + s( 1) )/4 

-------------------------------( 5.35 ) 

5.6 EXPERIMENTAL RESULTS 

Evaluation of the restoration schemes was carried out using computer 

simulation. A picture was first divided into blocks of size n by n. 

Each block was then transformed using the Walsh transform, and the 

de coefficient set equal to zero. All blocks were then inverse trans-

formed to return to the picture domain. Fig.5.6a to Fig.5.14a are 

the pictures after inverse transformation tri th de coefficients set to 

zero. 
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The three de coefficient restoration schemes were then applied to ob­

tain the restored pictures as well as the sets of estimated de coeffi­

cients. These procedures were repeated for block sizes 4x4, 8x8 and 

16x16, and for the pictures 'Girl', 'House' and 'Testcard' described 

in section 4.5.2.1. No coefficient quantization was undertaken. 

For the 'Girl' picture, the restored pictures are shown in Fig.5.6 

to 5.8. When the block size is 4x4, there are severe edging effects in 

all the three restored pictures. Furthermore,the accumulation of error 

.due to each estimation produces impairment effects along the direction 

of estimation. In the picture restored by Element Estimation, if a 

block is very bright or very dark, this brightness or darkness tends 

to diffuse diagonally from top left to bottom right. In the picture 

restored by Row Estimation, the diffusion runs vertically from top to 

bottom and is less severe than that given by Element Estimation. In 

contrast, the picture restored by Plane Estimation shows no such 

effect. However, accumulation of estimation errors makes the edging 

effects more prominent as the block size increases. 

When the block size is 8 x 8, the pictures restored by Element and 

Row Estimation still have edging effects but not the apparent diffus­

ion effect. Noticeable edging effects still remain in the picture 

restored using Plane Estimation. When the block size is 16x16, Row 

Estimation restored the picture without perceptible error whilst Ele­

ment Estimation produced a reasonably good picture. Again, there are 

noticeable edging effects in the picture restored by Plane Estimation. 
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5.6c 

Fig.S.6 

5.6b 

5.6d 
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The 'girl' picture with de coefficients a) set equal to zero, 

b) restored with ELEMENT ESTIMATION, c) restored with ROW 

ESTIMATION and d) restored with PLANE ESTIMATION for block 

size 4x4. 



5. 7a 5.7b 

5.7c 5.7d 

Fig.S. 7 

The 'girl' picture with de coefficients a) set equal to zero, 

b) restored with ELEMENT ESTIMATION, c) restored with ROW 

ESTIMATION and d) restored with PLANE ESTIMATION for block 

size 8x8. 
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The 'girl' picture with de coefficients a) set equal to zero, 

b) restored with ELEMENT ESTIMATION, c) restored with ROW 

ESTIMATION and d) restored with PLANE ESTIMATION for block 

size 16xl6. 

I 
_________ _! 
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For the pictures 'House' and 'Testcard' which contain many regions of 

high activity, the restored pictures are shown in Fig.5.9 to Fig.5.14. 

These pictures show that all the three de coefficient restoration 

schemes fail to produce sets of de coefficients that result in satis-

factory pictures. All the pictures restored from the 'House' and 'Test-

card' have severe edging effects, compared with the pictures restored 

from the 'Girl' picture. Reasonable results can only be obtained when 

the block sizes are as large as 16x16 -- i.e. where the de coefficients 

require only a small fraction of the total number of bits. 

5.7 CONCLUSIONS 

In a transform coding system using a small block size, a large proper-

tion of the coding bits is required by the de coefficients. Three 

schemes are proposed, in which the de coefficients are not transmitted, 

but estimated at the receiver. This allows a reduction in bit rate, 

and the possibility of eliminating the serious effect of channel error 

on those coefficients. Computer simulation on real pictures showed that 

when using a large block size or a low activity picture, satisfactory 

results can be obtained. Also, of the three estimation schemes consi-

dered, Row Estimation gives the best result, followed by Element Esti-

mation and finally Plane Estimation. 

5 •. 8 NOTE ON PUBLICATION 

A paper based on the material described in this chapter and entitled 

'DC Coefficient Restoration in Transform Image Coding' has been submit-

ted to IEE Proceedings. The paper is jointly authored with R.J.Clarke. 
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Also, a U.K. patent application (No. 8229420) entitled 1 Image Trans­

mission', in eo-authorship with Mr R J Clarke and Dr R C Nicol, has 

been made to claim originality of invention on techniques developed 

in Chapter 5· 



5.9a 5.9b 

~ I 

5.9c 5.9d 

Fig.5.9 

The 'house' picture with de coefficients a) set equal to zero, 

b) restored with ELEHENT ESTIMATION, c) restored ~<ith ROW 

ESTIHATION and d) restored with PLANE ESTIMATION for block 

size 4><4. 
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S.lOa S.lOb 

S.lOc S.lOd 

Fig.S.lO 

The 'house' picture with de coefficients a) set equal to zero, 

b) restored with ELEMENT ESTIMATION, c) restored with ROW 

ESTIMATION and d) restored with PLANE ESTIMATION for block 

size 8x8. 



S.lla S.llb 

S.llc S.lld 

Fig.S.ll 

The 'house' picture with de coefficients a) set equal to zero, 

b) restored with ELEMENT ESTIMATION; c) restored with ROW 

ESTIMATION and d) restored with PLANE ESTIMATION for block 

size l6xl6. 

• 



5,1:2a 5.12b 
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5.12c 5.12d 

Fig.5.12 

The 'BBC testcard' with de coefficients a) set equal to zero, 

b) restored with ELEMENT ESTIHATION, c) restored with ROW 

ESTif.IATION and d) restored with PLANE ESTIMATION for block 

size 4x4. 
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S.l3c S.l3d 

Fig.S.l3 

The 'BBC testcard' with de coefficients a) set equal to zero, 

b) restored with ELEMENT ESTIMATION, c) restored with ROW 

ESTIMATION and d) restored with PLANE ESTIMATION for block 

size 8x8. 
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5.14a 5.14b 

5.14c S.l4d 

Fig.S.l4 

The 'BBC testcard' with de coefficients a) set equal to zero, 

b) restored with ELEMENT EsriMATION, c) restored with ROW 

ESTIMATION and d) restored with PLANE E5riiiATION for block 

size 16xl6. 
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C H A P T E R S I X 

RECAPITULATION AND 

S U G G E S T I 0 N S F 0 R F U T U R E W 0 R K 

6.1 INTRODUCTION 

At present, transmission of a 256 x 256 8-bit/pel picture over the 

British telephone network (1.2kbps) takes about 7.5 minutes. The trans­

mission time, however, can be reduced to about 27 seconds by using 

transform coding. It achieves data compression first by transforma.tion 

of the image into arrays of transform coefficients such that most of 

the energy is packed into a few coefficients. The use of appropriate 

bit allocation, optimal quantisation and a robust adaptive scheme then 

allows the image to be represented at 0.5 bit/pel with acceptable pie~ 

tu re quality. 

At the beginning of the research program, interblock redundancy (sect­

ion 1.3.3) was examined. A technique which allows the de coefficients 

to be estimated at the receiver was found. Three de coefficient esti­

mation schemes based on this technique were proposed and tested on 

real images. Attention then was concentrated on another important as­

pect of transform coding -- the transformation. When looking into the 

symmetry properties of the Walsh transform, a concept known as dyadic 

symmetry was discovered. This led to the development of the high 

correlation transform (HCT) and the low correlation transform (LCT) 

as well as a unified matrix treatment for Walsh matrices. For ease 
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of discussion, these results have been presented in the order of a) a 

unified matrix treatment of the Walsh matrix, b) the HCT and LCT and 

finally c) the de coefficient restoration schemes. 

6.2 DYADIC SYMMETRY AND ITS APPLICATIONS TO THE WALSH TRANSFORM 

THEORY 

The concept of dyadic symmetry described in chapter three provides 

a common framework for most areas of interest concerning Walsh trans­

forms. These include a) ~lalsh matrix generation, b) fast computa-

tional algorithms and c) conversion of Walsh transform coefficients 

from one ordering to another. 

Many solutions of these problems have in fact been found by different 

researchers using quite different approaches. The concept of dyadic 

symmetry provides simple and straightforward derivations of all the 

results. It is a viable alternative to the unified matrix treatment 

of the Walsh transform put forward by Fine and Algazi [134]. As the 

whole theory relates to a binary field with 'logical and' and module 

two addition as operations, both theory and practical implementation 

are very simple. 

First of all, the concept of dyadic symmetry led to the generation of 

the Walsh matrix of any ordering by equation 3.9 

t -1 
b = j [s] i ----------------------------( 3·9 ) 
ij 

where b is the (i,j)th element and [s] is the dyadic symmetry matrix 
ij 
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of a particular ordering. The mxm binary dyadic symmetry matrices of 
m m 

the 2 x 2 natural-ordered, dyadic-ordered and sequency-ordered Walsh 

matrices are respectively 

r , 
I I 
I I 

[N) I I 

I I 
I I 
I I 
1.. J 

r , 
I I 
I I 

[D) 
I I 
I I 
I I 
I I 
I I 
I I 
1.. .J 

r 1 
, 

I I 
1 1 I 

I I 
[z] = I 1 1 I 

I I 
I I 
I I 
I I 
L .J 

If i , i and i are the i (row index) in b of natural-ordered, 
N D Z ij 

dyadic ordered and sequency-ordered Walsh matrices, conversions bet-

ween the indices are given by equation 3.23 

-1 
[z] * i 

z 

-1 
[D) * i 

D 
= 

-1 
[N) * i ------------( 3.23 ) 

N 

Fast computational algorithms were then obtained by repeated applicat-
m m m 

ion of the 2 -1 dyadic symmetry decompositions of a 2 x 2 Walsh 

transform. Fig.6.1 shows the seven dyadic symmetry decompositions of 
m-1 

an 8x8 Walsh transform. The repeated application of the 2 th dyadic 

symmetry d'ecomposi tions results in Shank's [ 124] fast computational 



. 

dyadic 
(H}U [a}v ai~al flow diagrams symmetry u V 

•' 

•a •a 
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2 x3 x3 
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x7 x7 

Fig.6.1 The seven dyadic symmetry decompositions, 
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algorithm (Fig.3.8) as well as those of Manz [126]. The repeated appli-

application of the 1st dyadic symmmetry decompositions gives Larsen's 

[129] algorithm (Fig.3.9) and Fine's [127] algorithm. There are in 

fact many other fast computational algorithms. For example, Fig.3.10 

and Fig.3.11 show two others which are obtained by the repeated ap­
m 

plication of the 2 -1 th dyadic symmetry decompositions. 

6.3 NEW TRANSFORMS 

The two new transforms, HCT and LCT, can be used as substitutes for 

the Walsh transform. They have virtually the same computational re-

quirements and implementation complexity as the Walsh transform, em-

playing additions, substractions and binary shifts only but with an 

improved performance which lies between that of the Walsh transform 

and the discrete cosine transform (DCT). 

Both transforms were obtained using a technique which can replace 

pair(s) of Walsh basis vectors by others to form a new set of linearly 

independent basis vectors. The HCT was designed to simulate the DCT 

whilst the LCT was found via a computer search. Fast computational 

algorithms have been developed for both forward and inverse HCT and 

LCT. 

Tests on the HCT and LCT using the first-order Markov process of adja-

cent element correlation coefficient ~ show that the HCT has a better 

performance when ~ is close to unity whilst the LCT performs better 

when p is close to zero. Also, the two transforms have a better per-

formance at a small block size than at a large block size. Tests on 
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the two transforms using real images also give similar results. The 

HCT has a better performance on a low activity or highly correlated 

picture and the LCT performs better on a high activity or "artificial" 

picture (the 'BBC testcard', Fig.4.8c). 

6.4 DC COEFFICIENT RESTORATION SCHEMES 

The three de coefficient restoration schemes provide a new approach 

for the exploitation of interblock redundancy. Unlike recursive block 

coding, the pinned sine transform or hybrid coding, the restoration 

schemes do not require additional computation at the transmitter, and 

the computational algorithms need only be implemented at the receiver. 

Advantages provided by the de coefficient restoration schemes are two-

fold. First, they allow a further reduction in bit rate. In a two-

dimensional transform coding system, the coding bits saved are 0.031, 

0.125 and 0.5 bit/pel for block sizes 16x16, 8x8 and 4x4 respectively. 

Further, as de coefficients are not transmitted, the serious degradat­

ion in the subjective quality of a picture due to the effect of chan­

nel errors on the de coefficients is eliminated. It is proved that a 

de coefficient restoration scheme is equvalent to a low sequency coe­

fficient restoration scheme if the sequency-ordered Walsh transform 

is used. Tests of the three. schemes on real images show that all the 

three schemes provide good results on the low activity 'girl' picture 

but fail to do so on the pictures 'house' and 'BBC testcard'. Also, 

it is found that Row Estimation has the best performance, then comes 

Element Estimation and Plane Estimation. 
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6.5 SUGGESTIONS FOR FUTURE WORK 

The Walsh transform has a comparatively small computational require­

ment, sequency properties (p.39) which are similar to those of the fa­

miliar DFT, and it is statistically optimal for the class of processes 

defined by dyadic covariance matrices. To make use of these advantages, 

a special-purpose digital signal processor to compute the Walsh trans­

form in the natural, dyadic and sequency orderings for time-series 

analysis has been proposed by Geadah and Corinthios [137). 

As indicated in section three, the whole theory of dyadic symmetry re­

lates to a binary field with 'logical and' and 'exclusive or' as ope­

rations. The derived algorithms based on this concept for the genera­

tion of Walsh matrices of different orderings, for the conversion of 

Walsh transform coefficients from one ordering to the other, and for 

the fast Walsh transform, all relate to this binary field and so can 

be implemented easily. Therefore, it is suggested that a Walsh trans­

form processor designed using the theory of dyadic symmetry could have 

a simpler and more systematic arrangement than that of Geadah and Co­

rinthios. This implies a cheaper and faster machine with more flexi­

bility. 

The two new transforms have not yet been used with any particular 

adaptive scheme. It is considered that an adaptive block classifica­

tion c~ding scheme (section 1.3.2) employing the HCT for those blocks 

having a low activity index and the LCT for those blocks having a high 

activity index may produce even better results than a conventional 

block classification coding scheme using the same transform for all the 
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blocks irrespective of activity. A de coefficient restoration scheme 

could also be incorporated into the coding scheme to further reduce the 

bit rate. 
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Appendix A 

Prove: Given vectors D and matrices [R] show that the scalar 
P'l P'l 

p Q 2 
e = :c :c 

p=1 q_=1 
D + [R] X A I ------------------( A.1 ) 
P'l P'l 

is minimum when 

-1 
A = - [RR] X c -----------------------------------( A.2 ) 

where 

p Q t 
[RR] = l:: :c [R] X [R] ----------------------( A.3 ) 

p=1 q_=1 P'l P'l 

p Q t 
c = l:: l:: [R] X D ----------------------( A.4 ) 

p=1 'l =1 pq P'l 

Proof: 

p Q 2 
e ::c l:: D + [R] X A I 

I 

p=1 q_=1 P'l P'l 

p Q t 
= ::c :c D + [R] X A l D + [R] X A 

p=1 q_=1 pq P'l pq P'l 

p Q t t t 
::c :c D + A X [R] D + [R] X A ) 

p=1 q_=1 P'l P'l P'l P'l 

p Q t t t t 
= :;: :c D D + D [R] A + A [R] D 

p=1 'l =1 P'l P'l pq P'l P'l P'l 
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p Q t t •' t t 
I: I: D D + 2( D (R] A) + A ( (R] [R] ) A 

p=1 q=1 pq pq pq pq pq pq 

--------------------------( A.5 ) 

First we represent equation A. 5 in a simple form as 

t t 
= b + 2 C A + A (RR] A ---------------------( A.6 ) 

p Q t 
with b = :1:: :1:: D D ---------------------------( A.? ) 

p=1 q=1 pq pq 

p Q t 
(RR] = :1:: I: (R] [R] ---------------------------( A.8 ) 

p=1 q=1 pq pq 

p Q t 
c = I: I: D [R] ---------------------------( A.9 ) 

p=1 q=1 pq pq 

Before we proceed with equation A.6, we first derive (from equations 

A.10 to A.13) an equation which will be used to represent the last 

two terms of equation A.6 in another form. 

t -1 
k = ( (RR] A+ C ) (RR] ( (RR] A+ C ) -----------( A.10) 

t t t -1 
= ( A (RR] + C ) (RR] ( (RR] A + C ) 

t t -1 t t -1 
A (RR] (RR] (RR] A + A [RR] [RR] C 

t -1 t -1 
+ C [RR] (RR] A + C [RR] C ( A.11 ) 

t t t t -1 
= A [RR] A + A C + CA + C [RR] C ----------( A.12 ) 

The conversion between A.11 and A.12 is possible because [RR] as given 
t 

by equation A.9 is a symmetrical matrix, i.e.: [RR] = [RR]. There-

fore, we have 

/ 
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t t t -1 
k ~ A [RR] A + 2 CA + C [RR] C -----------------( A.13) 

Now, we can proceed with equation A.6 which, by means of equation 

A.13, is converted into A.14: 

t -1 
e ~ b + l ( [RR]A + C ) [RR] ( [RR]A + C ) 

t -1 
C [RR] C 

~ b + k 
t -1 

C [RR] C ------------------( A.14 ) 

As defined by equation A.g, the matrix [RR] is a positive definite or 

semi-positive quadratic form and so the value of k is always positive 
t -1 

(Similarly, C [RR] C and b are always positive). Thus, e is 

minimum when k is equal to zero, i.e.: 

[RR] A + C ~ 0 
-1 

or A ~ -[RR] C 
(Q.E.D) 



A p p e n d i x B 

Prove Given vectors D and V, show that the scalar 

e 

is minimum when 

2 
l: 

p=1 
D 

p 

p 
2 

a x V --------------------( 5.9 ) 

2 n 
a (1/2) X l: :!: d(p,j) 

p=1 q=1 
-----------------( 5.10) 

where d(p,j) is the 
t 

V= ( 1/n, 1/n, ••• , 

Proof: 

jth element of the vector 
t 

1 /n ) 

D and 
p 

Equation 5.9 is a special case of equation A.1 with 

D 
pq 

= D 
p 

[R] = V and A = a. 
pq 

By means of equation A.2 to A.4, we have e is minimum when 

-1 
a = -[RR] C --------------------------------------( B.1 ) 

where 

2 t 
[RR] l: V V = 2/n -----------------------------( B.2 ) 

p=1 

2 t 2 n 
c = :!: V D = ( 1 /n) l: :!: d(p,j) ------------( B.3 ) 

p=1 p p=1 j=1 

Equations B.1 to B.3 imply 

2 n 
a ( 1/2) l: E d(p,j) 

p=1 j=1 
(Q.E.D) 




