LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY LIBRARY

AUTHOR/FILING TITLE

ACCESSION/COPY NO.

010024101

This book was bound by

SIMULATION AND IMPLEMENTATION OF A

IINEAR PREDICTIVE CODER

By

D. S. F. CHAN

A Master's Thesis
Submitted in partial fulfilment of the requirements
for the award of
Master of Philosophy
of the Loughborough University of Technology

(C) by D.S.F. CHAN, 1985

Dec 85

$$
01002+101
$$

The main objective of this research was to design and build a Linear Predictive Coder (LPC) based on the TMS3 20 processor, and to incorporate this in the design of a low bit rate voice coding server for a Cambridge Ring. In order to decide on a suitable algorithm for the LPC, extensive simulations were carried out on a BBC computer. The computer used was interfaced to a frame store which, although its original purpose was to store video information, acted as a suitable store for speech. Up to six seconds of speech could be fed in from a microphone in real time for analysis. The BBC was fitted with a second processor, but in spite of this the processing times were very slow. However after complete processing, i.e. analysis and synthesis, the reconstituted speech could be read out from the frame store in real time to a loudspeaker or headphones in order to judge the quality. After deciding on a suitable algorithm for the LPC the program was translated into TMS320 assembly code so that one TMS320 was responsible for analysis and one for synthesis. Two sets of TMS320 development boards were used in this real time implementation experiment so that substantial hardware development could be minimized. Parallel data lines and interrupt technique were used for parameters transfer from the analyser to the synthesiser and speech input and output were through two analogueldigital boards. The performance of the coder was assessed by informal subjective listening tests.

Limitations of the TMS320 processor in implementing LPC are discussed and the design of the voice coding server for the Cambridge Ring based on this research is outlined.
$A C K N O W L E D G E E N T$

I would like to thank my supervisor, Professor J.W.R. Griffiths for his help and assistance throughout the course of the research program and also for his effort to obtain the studentship for me.

Special thanks also to Dr.P.J.Patrick for his valuable assistance and helpful discussions.

Finally, I wish to express my deepest gratitude to my parents for their moral and financial support through the course of my education.

ACF	-	Autocorrelation Function
ADC	-	Analog to Digital Converter
AIB	-	Analog Interface Board
A_{k}	-	Cross-sectional area of the $k^{\text {th }}$ tube of a lossless tubes model
$A(x, t)$	-	"Area Function" of an acoustic tube at position x and time t.

$A(z) \quad$ Inverse filter transfer function
CORR - Correction coefficient of an interpolator
c - Velocity of sound in an acoustic tube
DAC - Digital to Analog Converter
$E_{n} \quad$ - Short time average prediction error
EVM - Evaluation Module
e(n) - Prediction error
$f_{s} \quad-\quad$ Sampling frequency
G \quad - \quad parameter for gain
G(z) - Glottal pulse model transfer function
$g(n) \quad-\quad$ Synthetic glottal pulse wave
$H(z) \quad$ - Vocal system transfer function
K(i) - LPC parameter for the $i^{\text {th }}$ reflection coefficient
$k_{i} \quad-\quad T h e i^{t h}$ PARCOR coefficient
LPC - Linear Predictive Coding/Coder
\& - Overall length of a human vocal tract
NOISE - Random noise generator output

OS	-	Mean value of a speech segment
P_{0}	-	Pitch period of a speech segment
${ }^{P}$ I	-	Pitch detector output
PITCH	-	LPC parameter for pitch period
P (2)	-	z-transform of $p(x, t)$
p	-	Order of a linear predictor
$p(x, t)$	-	Sound pressure in an acoustic tube at position x and time t
R(i)	-	Autocorrelation function coefficient at ith sample lag.
R(z)	-	Radiation model transfer function
r_{k}	-	Reflection coefficient of the $k^{\text {th }}$ tube of a lossless tubes model
SIFT	-	Simplified Inverse Filter Tracking algorithm
$s(n)$	-	Speech signal
$\mathrm{s}^{(n)}$	-	Predicted speech signal
T	-	Sampling period
THRE	-	Threshold value for centre-clipping
T []	-	Centre-clipping transformation
T'[]	-	3 -level centre-clipping transformation
U (Z)	-	z-transform of $u(x, t)$
$u(x, t)$	-	Volume velocity flow in an acoustic tube at position x and time t.
$u_{k}^{+}(t)$	-	Positive going travelling wave in the $k^{\text {th }}$ tube of a lossless tubes model
$u_{k}^{-}(t)$	-	Negative going travelling wave in the $k^{\text {th }}$ tube of a lossless tubes model
V (Z)	-	Vocal tract model transfer function
V/UV	-	Voiced/Unvoiced
w_{n}	-	A 220 points Hanning window


```
CONTENT
```

Page
CHAPTER ONE - INTRODUCTION 1
1.1 Introduction 1
1.2 Motivation of the Work 1
1.3 Organization of the Thesis 4
CHAPTER TWO - A LINEAR PREDICTIVE CODING SYSTEM 5 FOR SPEECH SIGNALS
2.1 Introduction 5
2.2 Mechanism of Speech Production 5
2.3 Digital Models for Speech Signals 6
2.3.1 The Vocal Tract Model 7
2.3.2 The Radiation Model 10
2.3.3 The Glottal Excitation Model 12
2.3.4 The Digital Model for Speech Production 13
2.4 Linear Predictive Analysis 13
2.5 Relationship between the Linear Prediction 18 Model and the Vocal Tract Model
2.6 The Linear Predictive Coding System 20
CHAPTER THREE - THE LINEAR PREDICTIVE CODER 22
SIMULATION
3.1 Introduction 22
3.2 Simulation Equipment 22

Page

3.3 The LPC Analyser 23
3.3.1 Prediction Order 23
3.3.2 Analysis Interval 24
3.3.3 The Reflection Coefficient Estimator 25
3.3.3.1 Windowing 25
3.3.3.2 Pre-emphasis 26
3.3.3.3 The Normalized Autocorrelation 26 Function
3.3.3.4 The Le Roux and Gueguen Method 27
3.3.4 The Pitch Detector 27
3.3.4.1 The $\frac{1}{2}$ Decimator 29
3.3.4.2 The d.c. Offset Extractor 29
3.3.4.3 Centre-Clipping 30
3.3.4.4 The Autocorrelation Function 32
3.3.4.5 Peak Picking 32
3.3.4.6 The $2 / 1$ Interpolator 33
3.3.5 The Voiced/Unvoiced (V/UV) Decision 35
3.3.6 The Gain Estimator 36
3.3.7 The Complete LPC Analyser 37
3.4 The LPC Synthesizer 37
3.4.1 The Vocal Tract and Radiation Models 38
3.4.2 The Glottal Pulse Generator 39
3.4.3 The Random Noise Generator 39
3.4.4 The Complete LPC Synthesizer 40
3.5 The LPC Simulation 40
CHAPTER FOUR - THE LINEAR PREDICTIVE CODER 42 IMPLEMENTATION
4.1 Introduction 42
4.2 The TMS 32010 Software Development System 42
4.3 The LPC Analyser 44
4.3.1 The Reflection Coefficient Estimator 44
4.3.1.1 The Windowing/Pre-emphasis/ 44 Autocorrelating Network
4.3.1.2 The Normalization of the Auto- 45 correlation Function
4.3.1.3 The Le Roux and Gueguen Method 46
4.3.2 The Pitch Detector 46
4.3.3 The Gain Estimator 47
4.3.4 Single Buffering Analysis 47
4.4 The LPC Synthesizer 49
4.4.1 The Lattice Filter Subroutine 49
4.4.2 The Voiced Excitation Synthesis 49 Subroutine
4.4.3 The Unvoiced Excitation Synthesis 50 Subroutine
4.4.4 Double Buffering/Pitch Synchronous 50 Synthesis
4.5 The LPC Implementation Experiment 51
CHAPTER FIVE - CONCLUSION AND SUGGESTIONS FOR 53 FURTHER WORK
5.1 Introduction 53
5.2 Limitations of TMS 32010 in Implementing LPC 53
Algorithms
5.3 The Original Design of an LPC Voice Coding Server 55 for a Cambridge Ring
5.4 Concluding Remarks 57

APPENDIX

Al Quadratic Interpolation
A2 The TMS 32010 Software Development System Program Listing

A3 The LPC Simulation Program Listing
A4 The LPC TMS32010 Program Listing

REFERENCE

1.1 INTRODUCTION

The material contained in this thesis relates to the development of a real-time Linear Predictive Speech Coder based on the Texas TMS 32010 signal processor. This work is part of the voice communication experiment of the UNIVERSE (UNIVersities Extended Ring and Satellite Experiment) Project. In the next section, the nature of Project UNIVERSE and how the work presented here relates to it will be briefly discussed. Finally, in section 1.3, the organization of this thesis is outlined.

1. 2 MOTIVATION OF THE WORK

The object of Project UNIVERSE was to investigate the facilities which can be developed for allowing business communication over a concatenation of terrestrial and small dish satellite networks (1). UNIVERSE had seven participating organizations, three from British industry and four academic groups. They were GEC-Marconi Research Laboratories, Logica Ltd., British Telecom., Cambridge University, Loughborough University, Rutherford Appleton Laboratory (RAL) and University College London (UCL).

In order to carry out the investigation experimentally a number of small earth stations were sited in most of the participants' premises. These stations can communicate at 1 Mbps via the OTS (Orbital Test Satellite) Research Satellite as shown in Fig.l.1. At each site there are one or more Cambridge Rings, capable of a local user data bandwidth of 4 Mbps . The Rings are connected to various service hosts, local servers, computers driving the
earth stations and computers containing gateways to other networks. To complement the network, a number of application experiments have been developed. These experiments include:

1) The development of the Distributed Operation System, the Universe Support Environment (USE) and the Distributed File (DF) System. These packages permit remote file handling and transfer and the remote use of software support facilities.
2) The development of a set of distributed network support facilities including General Purpose Server and Data Encryption.
3) The business communication experiments. These include communication facilities over the network using distributed Teletex, Videotex, Packet Voice and Image Transfer.

Voice transmission has been included in the UNIVERSE network for three reasons, i.e.

1) To provide a "talk-back" facility to assist in the development of other experiments. It is extremely convenient, for example, to be able to pick up a telephone and talk over the same network to the location of an equipment failure.
2) The experience of real-time service operation is required to satisfy the need to test the network with such services. The lessons learned will be of great assistance in designing network operation with any real-time services, e.g. process control.
3) Speech service is a very visible demonstrator of the capabilities (and some of the limits) of the network.

Existing voice stations are in the form of standard telephones connected to a special codec board designed by the Marconi Research Centre. It makes use of the AMI S3506 codec chip and is configurated to provide two full duplex circuits for the UNIVERSE network. The codec provides a standard $64 \mathrm{Kbit} / \mathrm{s}$ PCM speech data stream. The codec board accesses the Cambridge Ring using a UNIVERSE 880 "small server" which inserts the data stream into "Basic Block" packets for transmission over the network, and subsequently these packets are stored in the voice server or passed to the remote telephone for replay. The l Mbit/s satellite is capable of transmitting a total of only about 15 duplex 64 Kbit/s speech circuits simultaneously even if there is no other communication in progress. This is quite small and there is therefore considerable, interest in the use of data compression speech encoding systems. It was suggested that Linear Predictive Coding should be the first data compression scheme to be experimented with. This is because LPC is a known practical data compression algorithm and theoretically it can reduce the information rate of speech down to as low as $2.4 \mathrm{Kbit} / \mathrm{s}$. Once LPC can be implemented on the Cambridge Ring, other less complicated data compression schemes such as Transform Coding or Sub-band Coding could then be experimented with using the same system.

The remaining chapters of this thesis describe the development of the LPC analysis and synthesis algorithms. This includes simulation and implementation of the algorithms using a BBC computer and TMS32010 processors respectively. The performance of the LPC coder was judged both in simulation and realtime implementation under "minimum error situation" (i.e. no transmission errors and using unquantized parameters for synthesis).

1.3 ORGANIZATION OF THE THESIS

Following this introductory Chapter, Chapter Two describes digital models for speech signals. Integrating these models together forms the basic configuration of an LPC synthesizer. Chapter Two also gives a brief introduction to Linear Prediction theory of speech signals and shows how Linear Prediction can be used to estimate the parameters needed for the LPC synthesizer. Chapter Three describes the development of the LPC simulation programs, namely the LPC Analysis program and the LPC Synthesis program. These programs define the analysis and synthesis algorithms which were implemented in real-time by TMS 32010 processors. Chapter Four describes the transformation of the LPC simulation programs into TMS 32010 assembly codes. Details of the TMS 32010 software operations and the hardware involved in the implementation experiment are given. Finally results of informal subjective listening tests on the coder are discussed.

In Chapter Five, the limitations of the TMS 32010 processor in implementing LPC algorithms are discussed and the original design of an LPC voice coding server for a Cambridge Ring based on this research is outlined.

CHAPTER TWO - LINEAR PREDICTIVE CODING SYSTEM FOR SPEECH SIGNALS

2.1 INTRODUCTION

This Chapter first examines the mechanism of human speech production. Digital models for speech signals are then described. These include a vocal tract model, a radiation model and a glottal excitation model. Integrating all these models together forms the basic configuration of an LPC synthesizer. The rest of this Chapter gives a brief introduction to linear predictive analysis of speech signals and shows how linear prediction can be used to estimate the reflection coefficients needed for the LPC synthesizer by comparing the all-pole model produced by linear predictive analysis and the transfer function of the vocal tract model. This also reveals the basic configuration of a linear predictive coding system for speech communication.

2.2 MECHANISM OF SPEECH PRODUCTION (2)

The schematic diagram of human speech production mechanism is shown in Fig.2.1. The vocal tract begins at the glottis and ends at the lips. In an adult male the vocal tract is about 17 cm . long. The cross-sectional area of the vocal tract determined by the positions of tongue, lips, jaw and velum varies from zero to $20 \mathrm{~cm}^{2}$. When the velum is lowered the nasal tract is acoustically coupled to the vocal tract to produce the nasal sounds of speech.

Fig.2.2 shows the functional diagram of the vocal apparatus. The diagram also includes the sub-glottal system composed of the lungs, bronchi and trachea. This sub-glottal system serves
as a source of energy for the production of speech. Speech sounds can be classified into three distinct classes according to their mode of operation. They are the voiced sounds, fricative or unvoiced sounds and plosive sounds. Voiced sounds are produced by forcing air through the glottis with the tension of the vocal cords adjusted so that they vibrate in a relaxation oscillation, thereby producing quasi-periodic pulses of air which excite the vocal tract. Fricative or unvoiced sounds are generated by forming a constriction at some point in the vocal tract and forcing air through the constriction at a high enough velocity to produce turbulence. This creates a broad spectrum noise source to excite the vocal tract. Plosive sounds result from making a complete closure (usually towards the mouth end), building up pressure behind the closure and suddenly releasing it.

The vocal tract and nasal tract are shown in Fig.2.2 as tubes of non-uniform cross-sectional area. As sound propagates down these tubes, the frequency spectrum is shaped by the frequency selectivity of the tubes. The resonance frequencies of the vocal tract tube are termed formant frequencies or simply formants. The formant frequencies depend upon the shape and dimensions of the vocal tract. Different sounds are formed by varying the shape of the vocal tract. Thus, the spectral properties of the speech signal vary with time as the vocal tract shape varies.

2.3 DIGITAL MODELS FOR SPEECH SIGNALS (3)

In order to obtain a practical model for speech production, the human vocal system is divided into three main parts. They are the vocal tract, the radiation at the lips and the glottal excitation. It is assumed that these three parts can be uncoupled from each other so that they can be modelled individually.

2.3.1 The Vocal Tract Model

It can be seen from Fig.2.2 that the vocal tract and the nasal tract can be modelled as tubes of non-uniform crosssectional area. However, in order to obtain a useful vocal tract model, it is assumed that the effects of the nasal tract can be ignored. The vocal tract can then be modelled as a tube of non-uniform time varying cross-section as shown in Fig.2.3. With the further simplifying assumption that there are no losses inside the tube, Portnoff (4) has shown that the sound waves in the tube satisfy the following pair of equations

$$
\begin{align*}
& -\frac{\partial p}{\partial x}=\rho \frac{\partial(u / A)}{\partial t} \tag{2.1a}\\
& -\frac{\partial u}{\partial x}=\frac{1}{\rho c^{2}} \frac{\partial(p A)}{\partial t}+\frac{\partial A}{\partial t} \tag{2.1b}
\end{align*}
$$

where

$p=p(x, t)$	is the variation in sound pressure in the tube at position x and time t
$\mathrm{u}=\mathrm{u}(\mathrm{x}, \mathrm{t})$	is the variation in volume velocity flow at position x and time t.
ρ	is the density of air in the tube
c	is the velocity of sound
$A=A(x, t)$	is the "area function" of the tube;
	i.e. the value of cross-sectional area
	normal to the axis of the tube as a function of distance along the tube and as a function
	of time.

Closed form solutions to Eqs.(2.1) are not possible except for the simplest configuration. One approach to solve Eqs. (2.1) is to model the vocal tract as interconnected lossless acoustic tubes as shown in Fig.2.4. The crosssectional areas A_{k} of the tubes are chosen so as to approximate the area function $A(x)$ of the vocal tract. If a large number of tubes of short length is used, it is reasonable to expect the resonant frequencies of the concatenated tubes to be close to those of a tube with continuously varying area function.

Solving Eqs.(2.1) for the $\mathrm{k}^{\text {th }}$ tube and applying continuity conditions at the junction between the $k^{t h}$ and ($k+1$)st tubes, it can be shown (3) that:

$$
\begin{align*}
& u_{k+1}^{+}(t)=\left(1+r_{k}\right) u_{k}^{+}\left(t-\tau_{k}\right)+r_{k} u_{k+1}^{-}(t) \tag{2.2a}\\
& u_{k}^{-}\left(t+\tau_{k}\right)=-r_{k} u_{k}^{+}\left(t-\tau_{k}\right)+\left(1-r_{k}\right) u_{k+1}^{-}(t) \tag{2.2b}
\end{align*}
$$

where $\tau_{k}=\ell k / C$ is the time for a wave to travel the length of the $k^{\text {th }}$ tube and u_{k}^{+}and u_{k}^{-}are positive and negative going travelling waves in the $k^{\text {th }}$ tube. The quantity

$$
\begin{equation*}
r_{k}=\left[\frac{A_{k+1}-A_{k}}{A_{k+1}+A_{k}}\right] \tag{2.3}
\end{equation*}
$$

is called the reflection coefficient for the $k^{\text {th }}$ junction. Since the areas are all positive, it can be shown that

$$
\begin{equation*}
-1 \leq r_{k} \leq 1 \tag{2.4}
\end{equation*}
$$

The signal flow graph representation of Eqs.(2.2) is shown in Fig.2.5. Hence an N-tube model as in Fig.2.4 would have N
sets of forward and backward delays and $\mathrm{N}-1$ junctions each characterized by a reflection coefficient.

Applying boundary conditions at the lips to the $\mathrm{N}^{\text {th }}$ tube of the system gives the output termination as shown in Fig.2.6, whereas applying boundary conditions at the glottis to the lst tube of the system and assuming the glottal impedance is infinite gives the input termination as shown in Fig.2.7.

At the present stage, wave propagation in the human vocal tract can be represented by an N-tube model with flow graph as shown in Fig.2.8.

By further assuming that all tubes are of equal length, each delay in Fig. 2.8 can then be set equal to

$$
\begin{equation*}
\tau=\ell / \mathrm{NC} \tag{2.5}
\end{equation*}
$$

where ℓ is the overall length of the vocal tract.

It can be shown (3) that if the input to the system (i.e. the excitation) is band limited to frequencies below $\pi / 2 \tau$, then we can sample the input with period $T=2 \tau$. Hence a discrete-time model for the vocal tract can be obtained by replacing each τ sec delay in Fig. 2.8 by a $\frac{1}{2}$ sample delay (since $\tau=\frac{T}{2}$) as shown in Fig.2.9. The half sample delays imply an interpolation half-way between sample values and this is very difficult to implement. A more practical configuration can be obtained by moving the delays in the upper branches to the corresponding branches directly below. Fig. 2.10 shows the modified discrete-time system. The advantage of this form is that difference equations can be written for this system and these difference equations can be used iteratively to compute samples of the output from samples of the input.

By mathematical induction, it can be shown (3) that the transfer function of the discrete-time vocal tract model is of the form

$$
\begin{align*}
V(z) & =\frac{U_{L}(Z)}{U_{G}(z)} \\
& =\frac{z^{-N / 2} \prod_{k=1}^{N}\left(1+r_{k}\right)}{D(z)} \tag{2.6}
\end{align*}
$$

where $D(Z)$ can be determined by the recursive formula

$$
\begin{align*}
& D_{0}(z)=1 \tag{2.7a}\\
& D_{k}(z)=D_{k-1}(z)+r_{k^{\prime}} z^{-k} D_{k-1}\left(z^{-1}\right) \\
& k=1,2, \ldots, N
\end{aligned} \quad \begin{aligned}
& D(z)=D_{N}(z) \tag{2,7b}
\end{align*}
$$

2.3.2 The Radiation Model

The human vocal tract tube is actually terminated with the opening between the lips. A reasonable model for the effect of radiation at the lips is shown in Fig. 2.11 a which shows the lip opening as an orifice in a sphere. In this model, at low frequencies, the opening can be considered as a radiating surface, with the radiated sound waves being diffracted by the spherical baffle that represents the head. The resulting diffraction effects are complicated and difficult to represent. However, if the radiating surface (lip opening) is small compared to the size of the sphere, a reasonable approximation assumes that the radiating surface is set in a plane baffle of infinite extent as shown in Fig.2.1lb. In such a case, it
can be shown (5) that the sinusoidal steady state relation between the complex amplitudes of pressure and volume velocity at the lips is

$$
\begin{equation*}
P(\ell, s)=Z_{L}(s) \cup(\ell, s) \tag{2.8}
\end{equation*}
$$

where $P(\ell, s)$ and $U(\ell, s)$ are the Laplace Transforms of $p(\ell, t)$ and $u(\ell, t)$ respectively and the "radiation impedance" at the lips is approximately of the form (5)

$$
\begin{equation*}
z_{L}(s)=\frac{s R_{r} L_{r}}{R_{r}+s L_{r}} \tag{2.9}
\end{equation*}
$$

R_{r} and L_{r} are termed as "radiation resistance" and "radiation inductance" respectively. Values of R_{r} and L_{r} that provide a good approximation to the infinite baffle are (5)

$$
\begin{align*}
& R_{r}=\frac{128}{9 \pi^{2}} \tag{2.10a}\\
& L_{r}=\frac{8 a}{3 \pi c} \tag{2.10b}
\end{align*}
$$

where a is the radius of the opening and c is the velocity of sound.

In a discrete-time model, the corresponding relationship desired is of the form

$$
\begin{equation*}
P_{L}(Z)=R(Z) U_{L}(Z) \tag{2.11}
\end{equation*}
$$

where $P_{L}(z)$ and $U_{L}(Z)$ are z-transforms of $p(\ell, t)$ and $u(\ell, t)$, the sampled versions of the band limited pressure and volume velocity. One approach to obtain $R(Z)$ is to use the Bilinear Transform method. It can be shown that a reasonable approximation to the radiation effect at the lips is of the form

$$
\begin{equation*}
R(Z)=\left(1-z^{-1}\right) \tag{2.12}
\end{equation*}
$$

i.e. a first backward difference. Fig.2.12 shows how this radiation model can be cascaded to the vocal tract model.

2.3.3 The Glottal Excitation Model

In section 2.2, we have identified 3 major mechanisms of excitation, namely voiced, unvoiced and plosive. In the present glottal excitation modelling, however, we assume the excitation in the vocal tract is either:

1. Voiced excitation - Air flow from the lungs is modulated by the vocal cord vibration, resulting in a quasi-periodic pulse-like excitation.
or
2. Unvoiced excitation - Air flow from the lungs becomes turbulent as the air passes through a constriction in the vocal tract resulting in noiselike excitation.

Thus glottal excitation modelling requires a source that can provide either a quasi-periodic pulse waveform or a random noise waveform.

In the case of voiced speech, the excitation waveform must appear somewhat like the one as shown in Fig.2.13. A convenient way to represent the generation of the glottal wave is shown in Fig.2.14. The impulse train generator produces a sequence of unit impulses which are spaced by the desired pitch period. This signal in turn excites a linear system whose impulse response $g(n)$ has the desired glottal wave shape. A gain control, A_{v}, controls the intensity of the voiced excitation. Rosenberg (6) in a study of the effect of glottal pulse shape on speech quality, found that the natural glottal pulse waveform could be replaced by a synthetic pulse waveform of the form:

$$
\begin{align*}
g(n) & =\frac{1}{2}[1-\cos (\pi n / N 1)] & & 0 \leq n \leq N 1 \\
& =\cos [\pi(n-N 1) / 2 N 2] & & N 1 \leq n \leq N 1+N 2 \\
& =0 & & \text { otherwise } \tag{2.13}
\end{align*}
$$

This waveshape is very similar in appearance to the pulses as shown in Fig.2.13. Since $g(n)$ in Eq. (2.13) has infinite length, $G(Z)$ has only zeros. However an all pole model is often more desirable.

For unvoiced sounds, the excitation is much simpler. All that is required is a source of random noise and a gain parameter, A_{N}, to control the intensity of the unvoiced excitation. For discrete-time models, a random number generator can provide a source of flat-spectrum noise. The probability distribution of. the noise samples does not appear to be critical.

2.3.4 The Digital Model for Speech Production

Integrating the vocal tract model, the radiation model and the glottal excitation model together, we obtain a digital model for speech production as shown in Fig.2.15. By switching between the voiced and unvoiced excitation generators, we can model the changing mode of excitation. In the following sections a description of how linear predictive analysis can be used to determine the reflection coefficients is given. In Chapter Three, algorithms used to evaluate the pitch period and the gain G will be discussed.

2.4 LINEAR PREDICTIVE ANALYSIS (7) (8)

Fig.2.16 shows a simplified discrete-time model for speech production. In this model, the composite spectrum effects of radiation, vocal tract and glottal excitation are represented by a time varying digital filter $\hat{H}(Z)$. This system is excited
by an impulse train for voiced speech or a random noise sequence for unvoiced speech. G is the parameter which controls the intensity of the excitation.

In linear predictive analysis, the signal $s(n)$ is considered to be the output of the system $\hat{H}(Z)$ with input $u(n)$ such that the following relation holds

$$
\begin{equation*}
s(n)=-\sum_{k=1}^{p} \alpha_{k} s(n-k)+G \sum_{i=0}^{q} b_{i} u(n-i) \quad b_{0}=1 \tag{2.14}
\end{equation*}
$$

Eq. (2.14) implies that the output $s(n)$ is a linear function of past outputs and present and past inputs. That is $s(n)$ is predictable from linear combinations of past outputs and inputs. A special case of this model which is very useful for the analysis of speech is called the all-pole model, where bi $=0,1 \leq i \leq q$, so that Eq. (2.14) becomes

$$
\begin{equation*}
s(n)=-\sum_{k=1}^{p} \alpha_{k} s(n-k)+G u(n) \tag{2.15}
\end{equation*}
$$

Hence $H(Z)$ has the form

$$
\begin{equation*}
H(z)=\frac{S(z)}{U(Z)}=\frac{G}{1+\sum_{k=1}^{p} \alpha_{k} z^{-k}} \tag{2.16}
\end{equation*}
$$

Since it is assumed that characteristic of the input $u(n)$ is unknown, the signal $s(n)$ can be predicted only approximately from a linear-combination of its past samples. Let this approximation of $s(n)$ be $\tilde{s}(n)$ where

$$
\begin{equation*}
\tilde{s}(n)=-\sum_{k=1}^{p} \alpha_{k} s(n-k) \tag{2.17}
\end{equation*}
$$

where p is called the order of prediction. Then the error between the actual value $s(n)$ and the predicted value $\tilde{s}(n)$ is given by

$$
\begin{equation*}
e(n)=s(n)-\tilde{s}(n)=s(n)+\sum_{k=1}^{p} \alpha_{k} s(n-k) \tag{2.18}
\end{equation*}
$$

From Eq. (2.18) it can be seen that the prediction error sequence is the output of a system whose transfer function is

$$
\begin{equation*}
A(z)=1+\sum_{k=1}^{p} \alpha_{k} z^{-k} \tag{2.19}
\end{equation*}
$$

which is the inverse filter for the system $H(Z)$ of Eq. (2.16) i.e.

$$
\begin{equation*}
H(Z)=\frac{G}{A(Z)} \tag{2.20}
\end{equation*}
$$

The basic problem of linear prediction analysis is to determine a set of predictor coefficients $\left\{\alpha_{k}\right\}$ directly from the speech signal in such a manner as to obtain a good estimate of the spectral properties of the speech signal through the use of Eq. (2.20). Because of the time varying nature of the speech signal, the predictor coefficients must be estimated from short segments of the speech signal. The basic approach is to find a set of predictor coefficients that will minimize the mean squared prediction error over a short segment of the speech waveform. The resulting parameters are then assumed to be the parameters of the system function $H(Z)$ in the model for speech production.

The short time average prediction error is defined as

$$
\begin{align*}
E_{n} & =\sum_{m} e_{n}^{2}(m) \tag{2.21}\\
& =\sum_{m}\left(s_{n}(m)-\tilde{s}_{n}(m)\right)^{2} \tag{2.22}
\end{align*}
$$

where $s_{n}(m)$ is a segment of speech that has been selected in the vicinity of sample n, i.e.

$$
\begin{equation*}
s_{n}(m)=s(m+n) \tag{2.23}
\end{equation*}
$$

The approach that will be used to determine the limit of the summations in Eqs.(2.21) and (2.22) is called the Autocorrelation

Method. Assume the short segment of the speech waveform consists of N samples; the autocorrelation method assumes that the waveform segment $s_{n}(m)$ is identically zero outside the interval $0 \leq m \leq N-1$. This can be expressed as

$$
\begin{equation*}
s_{n}(m)=s(m+n) w(m) \tag{2.24}
\end{equation*}
$$

where $w(m)$ is a finite length window (e.g. a Hanning window) that is identically zero outside the interval $0 \leq m \leq N-1$. Hence the corresponding prediction error, $e_{n}(m)$, for a pth order predictor, will be nonzero over the interval $0 \leq m \leq N-1+p$. Thus, for this case, E_{n} can be properly expressed as:

$$
\begin{align*}
E_{n} & =\sum_{m=0}^{N+p-1} e_{n}^{2}(m) \tag{2.25}\\
& =\sum_{m=0}^{N+p-1}\left(s_{n}(m)-\tilde{s}_{n}(m)^{2}\right) \tag{2.26}\\
& =\sum_{m=0}^{N+p-1}\left[s_{n}(m)+\sum_{k=1}^{p} \alpha_{k} s_{n}(m-k)\right]^{2} \tag{2.27}
\end{align*}
$$

We can find the values of α_{k} that minimize E_{n} in Eq. (2.27) by setting

$$
\begin{equation*}
\frac{\partial^{E}{ }_{n}}{\partial \alpha}=0 \quad i=1,2, \ldots p \tag{2.28}
\end{equation*}
$$

thereby obtaining the equations

$$
\begin{aligned}
\underset{m=0}{N+p-1} s_{n}(m-i) & s_{n}(m)=-\sum_{k} \sum_{1}^{p} \alpha_{k} \underset{m \sum_{0}}{N+p-1} s_{n}(m-i) s_{n}(m-k) \\
& 1 \leq i \leq p \\
& 0 \leq k \leq p
\end{aligned}
$$

Since $s_{n}(m)$ is zero outside the interval $0 \leq m \leq N-1$, it can be shown that Eq. (2.29) can be expressed as:

$$
\begin{align*}
& 1 \leq i \leq p \\
& 0 \leq k \leq p \tag{2.30}
\end{align*}
$$

It can be seen that both sides of Eq. (2.30) are the shorttime autocorrelation functions of $s_{n}(m)$. Autocorrelation functions are even functions, hence Eq.(2.30) becomes

$$
\begin{equation*}
\sum_{k=1}^{p} \alpha_{k} R_{n}(|i-k|)=-R_{n}(i) \quad L \leq i \leq p \tag{2.31}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{n}(k)={\underset{m}{n} \underline{\underline{\Sigma}}_{0}}_{N-1-k} s_{n}(m) s_{n}(m+k) \tag{2.32}
\end{equation*}
$$

The set of equations given by Eq.(2.31) can be expressed in matrix form as

The pxpmatrix of autocorrelation values is a Toeplitz matrix, i.e. it is symmetric and all the elements along a given diagonal are equal. To solve for the optimum predictor coefficients, we
must first compute the quantities $R_{n}(k)$ for $0 \leq k \leq p$. Once this is done, we only have to solve Eq. (2.33) to obtain the α_{k}. Durbin's recursive method to solve for α_{k} will be discussed in the next section so as to find out the relationship between linear predictive analysis and the acoustic model for speech production.

2.5 RELATIONSHIP BETWEEN THE LINEAR PREDICTION MODEL AND THE ACOUSTIC TUBE MODEL

To find out how the linear prediction model relates to the acoustic tube model, we first examine the solution for Eq. (2.33). By exploiting the Toeplitz nature of the matrix of coefficients several efficient recursive procedures have been devised for solving this system of equations. The most efficient method known for solving this particular system of equations is Durbin's recursive procedure (7) which can be stated as follows:

$$
\begin{align*}
& E_{n}^{(0)}=R_{n}(0) \tag{2.34}\\
& k_{i}=-\left[R_{n}(i)+\sum_{j=1}^{i} \bar{L}_{j}^{l} \alpha^{(i-1)} R_{n}(i-j)\right] / E_{n}^{(i-1)} 1 \leq i \leq p \tag{2.35}
\end{align*}
$$

$$
\alpha_{i}^{(i)}=k_{i}
$$

$$
\begin{equation*}
\alpha_{j}^{(i)}=\alpha_{j}^{(i-1)}+k_{i} \alpha_{i-j}^{(i-1)} \quad 1 \leq j \leq i-1 \tag{2.37}
\end{equation*}
$$

$$
\begin{equation*}
E_{n}^{(i)}=\left(1-k_{i}^{2}\right) \quad E_{n}^{(i-1)} \tag{2.38}
\end{equation*}
$$

Eqs. (2.35) to (2.38) are solved recursively for $i=1,2 . . . p$ and the final solution is given by

$$
\begin{equation*}
\alpha_{j}=\alpha_{j}(p) \quad 1 \leq j \leq p \tag{2.39}
\end{equation*}
$$

It can be seen that in the process of solving for the predictor coefficients for a predictor of order p, the solutions for the predictor coefficients of all orders less than p have also been obtained, i.e. $\alpha_{j}{ }^{(i)}$ is the $j^{\text {th }}$ prediction coefficient for a predictor of order i. Therefore at the ith stage of this procedure, the set of coefficients $\left\{\alpha_{j}(i)\right.$ $j=1,2, \ldots . i\}$ are the coefficients of the $i^{\text {th }}$ order optimum linear predictor. Using these coefficients we can define

$$
\begin{equation*}
A^{(i)}(z)=1+\sum_{k=1}^{i} \alpha_{k}^{(i)} z^{-k} \tag{2.40}
\end{equation*}
$$

to be the transfer function of the $i^{\text {th }}$ order inverse filter (or prediction error filter). By substituting Eqs. (2.36) and (2.37) into Eq. (2.40), we obtain a recurrence formula for $A^{(i)}$ (Z in terms of $A^{(i-1)}(Z)$, i.e.

$$
\begin{equation*}
A^{(i)}(z)=A^{(i-1)}(z)+k_{i} z^{-i} A^{(i-1)}\left(z^{-1}\right) \tag{2.41}
\end{equation*}
$$

Hence the polynomial

$$
\begin{equation*}
A(z)=1+\sum_{k=1}^{p} \alpha_{k} z^{-k} \tag{2.42}
\end{equation*}
$$

obtained by linear prediction analysis could be obtained by the recursion

$$
\begin{align*}
& A^{(0)}(Z)=1 \tag{2.43a}\\
& A^{(i)}(Z)=A^{(i-1)}(Z)+k_{i} Z^{-i} A^{(i-1)}\left(Z^{-1}\right) \tag{2.43b}\\
& A(Z)=A^{(D)}(Z) \tag{2.43c}
\end{align*}
$$

where the parameters $\left\{\mathrm{k}_{\mathbf{i}}\right\}$ are called the PARCOR coefficients, which can be determined by Durbin's procedure. By comparing Eqs. (2.7) and Eqs.(2.43) it can be seen that the system function

$$
\begin{equation*}
H(Z)=\frac{G}{A(Z)} \tag{2.44}
\end{equation*}
$$

obtained by linear prediction analysis has the same form as the system function of the lossless tube model consisting of p sections. If

$$
\begin{equation*}
r_{i}=k_{i} \tag{2.45}
\end{equation*}
$$

then

$$
\begin{equation*}
D(Z)=A(Z) \tag{2.46}
\end{equation*}
$$

Using Eqs. (2.3) and (2.45) it can be shown that the areas of the equivalent tube model are related to the PARCOR coefficients by

$$
\begin{equation*}
A_{i+1}=\left[\frac{1+k_{i}}{l-k_{i}}\right] A_{i} \tag{2.47}
\end{equation*}
$$

i.e. the PARCOR coefficient gives a ratio between areas of adjacent sections. Thus the areas of the equivalent tube model are not absolutely determined and any convenient normalization will prođuce a tube model with the same transfer function.

Comparing Fig.2.16 and Fig.2.15 it can be seen that the transfer function $H(Z)$ includes the effects due to glottal excitation and radiation at the lips. Hence the "area function" obtained using Eq. (2.47) cannot be said to be the area function of the human vocal tract. However, Wakita (9) has shown that if pre-emphasis is used prior to linear predictive analysis to remove the effects due to the glottal pulse and radiation then the resulting area functions are often very similar to vocal tract configuration that would be used in human speech.

2.6 THE LINEAR PREDICTIVE CODING SYSTEM

Fig. 2.17 shows the basic configuration of the LPC experiment. The LPC analyser consists of a reflection coefficient estimator, a pitch detector, a gain estimator and a voiced/unvoiced decision

The LPC synthesizer is the one shown in Fig.2.15. The analyser extracts LPC parameters from the input speech signal and transmits them to the synthesizer which then uses the parameters to reconstruct the speech. In order to verify the actual performance of the LPC algorithms, coding and decoding of the parameters were discarded in the LPC experiment so that unquantized LPC parameters were used for speech synthesis. The transmission channel between the analyser and the synthesizer was also assumed to be perfect, i.e. no transmission errors.

CHAPTER THREE - LINEAR PREDICTIVE CODER SIMULATION

3.1 INTRODUCTION

This Chapter describes the LPC simulation in detail. A brief description of the equipment used is first given. Then algorithms of the LPC analyser and the LPC synthesizer are explained. Finally simulation results of two segments of speech are discussed.

3.2 SIMULATION EQUIPMENT

The equipment used for simulation was developed by M.J. Fairfield and P.J.Patrick at the Electrical and Electronic Department, University of Technology, Loughborough, U.K. It consists of a basic BBC computer system, a 6502 second processor, an analog board, a Beebex card, an ADC/DAC board and a framestore. The interconnections between these items are shown in Fig.3.1.

The menu of the data flow control program in the BBC computer is shown in Fig.3.2. In order to store speech segments on a BBC disk for simulation, the "INPUT SPEECH" operation is first chosen to allow 8 seconds of speech to be input through a microphone, filtered and sampled at 8 kHz . Each sample is converted into a l2-bit code which is then stored temporarily in the framestore using two bytes per sample as shown in Fig.3.3. The "STORE SPEECH" operation is then used to transfer data sequentially from the framestore to a BBC computer floppy disk. The speech file can then be examined, analysed or processed. To judge the quality of the processed speech; the "RETRIEVE SPEECH" operation is first chosen to transfer the processed speech data from a floppy disk to the framestore. The "OUTPUT SPEECH" operation is then used to transfer the data in the
framestore to the DAC at a frequency of 8 kHz so that the processed speech can be listened to through a loudspeaker. Finally, the "RESET FSTORE" operation is used to reset every byte of the 128 K memory inside the framestore to $>\mathrm{FF}$ and choosing the "EXIT" operation allows the BBC computer to operate in the edit mode.

Two six-second speech segments were processed. They are the "AUDIO" and the "LAMB", i.e.
a) AUDIO (male voice)
"This audio tape is part of the training module on time management, from a series produced by the British Gas."
b) LAMB (female voice)
"Mary had a little lamb, its fleece was white as snow, and everywhere that Mary went...."

3.3 THE LPC ANALYSER

This section describes the components of the LPC analyser. As shown in Fig. 2.17 the analyser includes a reflection coefficient estimator, a pitch detector, a gain estimator and a V/UV decision. The reflection coefficient estimator is based on the Le Roux and Gueguen recursion method, whereas the pitch detector is a modified version of the centre-clipped autocorrelation method. The principle of conservation of energy is used to derive the gain estimator, and the criterion for the V/UV decision is determined according to statistical information. We first define the prediction order and the analysis interval of the LPC analyser.

3.3.1 Prediction Order

The prediction order of the LPC analyser depends on the number of sections of the lattice filter which is used for the LPC
synthesis and the choice of number of sections of the lattice filter depends upon the sampling rate chosen to represent the speech signal. In section 2.3.1 it was mentioned that

$$
\begin{equation*}
T=2 \tau \tag{3.1}
\end{equation*}
$$

where T is the sampling period and τ is the one way propagation time in a single section of the lattice filter.

If there are p sections,for a human vocal tract length, ℓ, and the speed of sound c,

$$
\begin{equation*}
\tau=\ell / c p \tag{3.2}
\end{equation*}
$$

substituting Eq.(3.2) into Eq.(3.1) and rearranging, we have

$$
\begin{equation*}
\mathrm{p}=\frac{2 \ell}{C T} \tag{3,3}
\end{equation*}
$$

The sampling frequency, f_{s}, was chosen as 8 KHz in the LPC experiment and therefore, using $\ell=17.5 \mathrm{~cm}$ and $\mathrm{c}=35000 \mathrm{~cm} / \mathrm{sec}$, we have $p=8$. However, in order to account for non-ideal circumstances and possible zeros in the speech spectrum, the prediction order of the LPC analyser was chosen to be 10 , i.e. $\mathrm{p}=10$.

3.3.2 Analysis Interval

LPC analysis is actually a kind of short-term spectral analysis and hence it assumes the signal being analysed to be stationary within the analysis interval. It is therefore necessary to perform LPC analysis within an interval where vocal tract movement is negligible. This implies that the shorter the analysis interval is, the more accurate the spectral estimation. However, the data within the analysis interval will also be used for pitch detection using the autocorrelation function method which requires the presence of at least
two pitch periods within the detection frame. It is possible to have a pitch frequency as low as 70 Hz for some speech signals and that means that a data frame of 28.5 ms is needed. In order to compromise between the desires to detect low fundamental frequency and to minimize the averaging of the time-varying speech signal, an analysis interval of 25 ms was chosen in the LPC experiment. This is equivalent to 200 data samples per analysis frame for $f_{s}=8 \mathrm{KHz}$.

3.3.3 The Reflection Coefficient Estimator

The configuration of the reflection coefficient estimator is shown in Fig.3.4. Basically, input speech waveform is divided into overlapping blocks and a smooth window function is applied to each block as shown in Fig.3.5. Each block is then preemphasised before being used to compute the normalized autocorrelation function for 10 lags $\{N R(i), i=0 . . .10\}$. NR(i) is then used to determine the first 10 reflection coefficients, using the LeRoux and Gueguen procedure.

3.3.3.1 Windowing

It can be seen from Fig.3.5 that during reflection coefficients estimation, even if no window is explicitly introduced, there is a rectangular window implicit in the treatment of the data sequence, because only a given sequence of 220 samples $\{X(n), n=0$... 219\} is utilized in the estimation. It has been shown in Chapter Two that in linear predictive analysis a model spectrum $G^{2} /|A(\exp (j \theta))|^{2}$ is being used to represent a data spectrum $1 X(\exp (j \theta)) 1^{2}$. If no explicit windowing is carried out, discontinuities between values of $\mathrm{X}(0)$, $\mathrm{X}(219)$ and the numerical values of zero (outside of the implicit rectangular window) can cause spectral distortion. For this reason, a Hanning window was used in the LPC experiment. The shape of the Hanning window is shown in Fig.3.6. The windowed data WX(n) could then be expressed as

$$
\begin{equation*}
W X(n)=X(n) * 0.5 *(1-\cos 2 \pi n / 219) \quad n=0, \ldots, 219 \tag{3.4}
\end{equation*}
$$

3.3.3.2 Pre-emphasis

In order to model the human vocal tract accurately, the reflection coefficients of the lattice filter must be determined from speech waveform which is pre-processed so that the effects of the glottal excitation and radiation at the lips are removed. Wakita's (9) experiments have shown that this can be done by a pre-emphasis of the form $\left[1-\mu Z^{-1}\right]$ where μ is near unity. For $\mu=1$, the result is an approximate $+6 \mathrm{~dB} /$ octave slope. This will result in a slight upward shift for the estimated formant frequency location with respect to no pre-emphasis ($\mu=0$). In the LPC experiment, a factor of $\mu=0.95$ was chosen so that the preemphasised data could be expressed as

$$
\begin{equation*}
\operatorname{PX}(n)=W X(n)-0.95 * W X(n-1) \quad n=0, \ldots, 219 \tag{3.5}
\end{equation*}
$$

3.3.3.3 The Normalized Autocorrelation Function

The calculation of the normalized autocorrelation function which is needed for the determination of the reflection coefficients is straightforward. Utilizing Eq.(2.32) with $\mathrm{N}=220$, we have

$$
\begin{equation*}
A R(i)=\sum_{m=0}^{220-1-i} P X(m) * P X(m+i) \tag{3.6}
\end{equation*}
$$

Since the order of prediction is 10 , the autocorrelation function needed is $\{\operatorname{AR}(0), \operatorname{AR}(1) . . . \operatorname{AR}(10)\}$. Therefore Eq. (3.6) should be calculated for $\mathrm{i}=0, \ldots, 10$. The autocorrelation function is then normalized with respect to AR(0). The normalized autocorrelation function can then be expressed. as

$$
\begin{equation*}
N R(i)=A R(i) / A R(0) \quad i=0 \ldots 10 \tag{3.7}
\end{equation*}
$$

3.3.3.4 The Le Roux and Guequen Method

Several recursive methods have been proposed to determine reflection coefficients from the autocorrelation function. One of them is Durbin's recursive procedure which was discussed in section (2.5). However very little is known about the range of magnitude of the intermediate variables that appear during the recursion and this causes troublesome scaling problems when the procedure is carried out using fixed-point arithmetic digital signal processors (e.g. TMS 32010) .

This problem was solved by a method introduced by J.Le Roux and C.Gueguen (10). This method was derived from Durbin's recursive procedure with new intermediate variables introduced using inner product formulation. The flow diagram of the Le Roux and Gueguen procedure for a l0th order LPC is shown in Fig.3.7. It was shown that all the intermediate variables lie between -1 and +1 and hence implementation can be conducted using fixed point arithmetic. According to experimental results, Le Roux and Gueguen claimed that the differences between the results obtained by their method using 16 bit fixed-point arithmetic and usual algorithms implemented using floating point processors is less than 0.005 on $\mathrm{K}(10)$.

3.3.4 The Pitch Detector

There are many practical algorithms being proposed for pitch extraction (11). However, in a paper by Oh and Un (12) it was reported that for pitch extraction of noisy speech, algorithms that use an autocorrelation function (ACF) yield better results than others. Methods using an autocorrelation function are based on the fact that if the pitch period of a sampled speech segment is P_{o} samples, the autocorrelation function of the segment will attain a maximum at samples $0, \pm p_{0}, \pm 2 P_{o}, \ldots$

The pitch period can then be estimated by locating the second maximum of the ACF. However, in cases when the autocorrelation peaks due to the vocal tract response are larger than those due to the periodicity of the vocal excitation, the simple procedure of picking the largest peak in the ACF will fail. To overcome this problem, it is useful to pre-process the speech segment before calculating the ACF so as to make the periodicity more prominent while suppressing other distracting features. Techniques which perform this type of operation on a signal are called "Spectrum Flattener" since their objective is to remove the effects of the vocal tract transfer function, thereby bringing each harmonic to the same amplitude level as in the case of a periodic impulse train. Numerous spectrum flattening techniques have been proposed. However, a technique called "centreclipping" suggested by Sondhi (13) appears to be the easiest to implement.

Sondhi's autocorrelation method with centre-clipping is shown in Fig.3.8. Basically input speech is divided into blocks (no overlapping). Each block of data with d.c. offset removed is centre-clipped and then the autocorrelation function is calculated. The pitch period P_{0} can then be estimated by locating the maximum peak of the ACF. In the LPC experiment a speech wave was divided into 25 ms blocks, i.e. 200 samples per frame. This means that if Sondhi's method were used for pitch detection, a 200 points autocorrelation function would have to be evaluated for each frame. However, it was realized that the TMS 32010 can only calculate up to a 128 points autocorrelation function in a "pipe-line" fashion. Beyond that a cumbersome data handling procedure would be needed. To overcome this problem, decimation and interpolation techniques are used to modify Sondhi's method and the modified method is shown in Fig.3.9.

The $\frac{1}{2}$ decimator is used to down sample the input from 200 data/frame to 100 data/frame. Then Sondhi's method gives a crude estimation for the pitch period. A quadratic interpolator is then used to estimate a more accurate value for the pitch period. In fact, this method is very similar to the SIFT algorithm (ll) proposed by J.D.Markel although the SIFT algorithm utilizes inverse filtering for spectral flattening whereas this method uses centre-clipping.

3.3.4.1 The $\frac{1}{2}$ Decimator

In the LPC experiment, input speech was sampled at 8 KHz . A $\frac{1}{2}$ decimation is equivalent to reducing the sampling frequency to 4 KHz . In order to avoid aliasing distortion, the 8 KHz sampled speech must first be low-pass filtered before decimation. In fact the $\frac{1}{2}$ decimation involves just passing the 8 KHz sampled speech through a low pass filter and takes alternate outputs of the filter as the decimator output. The filter chosen was a 1 KHz cutoff, third order Butterworth low pass filter as shown in Fig.3.10. The coefficients of the filter were determined using the Bilinear Transformation technique (14). The output of the decimator can be expressed as

$$
\begin{equation*}
D X(m)=F X(2 * m+1) \quad m=0,1, \ldots .99 \tag{3.8}
\end{equation*}
$$

where FX is the output of the low pass filter.

3.3.4.2 The d.c. Offset Extractor

The mean of the data should be extracted before calculating the autocorrelation function. Although speech is a zero mean process over long intervals, considerable bias can exist during a single frame. This bias within the frame can lead to shape distortion of the desired autocorrelation function and this will result in wrong pitch period estimation. The mean extraction operation includes calculating the mean of $D X(m)$ $m=0, \ldots, 99$ and subtracting it from each of the samples, i.e.

$$
\begin{align*}
O S & =\sum_{m=0}^{99} \mathrm{DX}(\mathrm{~m}) / 100 \tag{3.9}\\
\mathrm{RX}(\mathrm{~m}) & =\mathrm{DX}(\mathrm{~m})-\mathrm{OS} \quad \mathrm{~m}=0, \ldots, 99 \tag{3.10}
\end{align*}
$$

3.3.4.3 Centre-Clipping

Centre-clipping of speech was first used by Licklider and Pollack (15) in an experiment in which they showed that whereas speech that has been infinitely peak clipped is highly intelligible, even a few percent of centre clipping drastically reduces intelligibility. This is because infinite peakclipping retains the formants of the speech signal. (although it introduces a few secondary formants), whereas centre-clipping destroys formant structure while retaining the periodicity. It is the removal of formant structure that is so important for pitch detection.

In the original scheme proposed by Sondhi, the centre-clipped speech signal is obtained by a non-linear transformation

$$
\begin{equation*}
C X(m)=T[R X(m)] \tag{3.11}
\end{equation*}
$$

where $T[]$ is as shown in Fig.3.11.

It has been found that a clearer indication of periodicity in the autocorrelation function is obtained for a higher clipping level. However, it is possible that the amplitude of the signal may vary appreciably across the duration of the speech segment, so that if the clipping level is set too high, there is a possibility that much of the waveform will fall below the clipping level and be lost. For this reason Sondhi's original proposal was to set the clipping level at 30% of the maximum amplitude across the whole speech segment. A procedure which permits a greater percentage to be used is to find the peak amplitude in both the first third and last third
of the segment and set the clipping level at a fixed percentage of the smaller of these two maximum levels. The percentage used in the LPC experiment was 60\%, and hence the threshold THRE, could be calculated as

$$
\begin{align*}
\operatorname{THRE}=0.6 * \operatorname{MIN}[\operatorname{MAX}[|R X(m)|], & \operatorname{MAX}[|R X(n)|]] \\
m & =0, \ldots, 32 \\
n & =67, \ldots, 99 \tag{3.12}
\end{align*}
$$

The output of the centre-clipping process $C X(m)$ could then be calculated as

$$
\begin{array}{rlrl}
C X(m) & =\operatorname{sgn}[R X(m)] *[|R X(m)|-T H R E] \quad|R X(m)| \geq T H R E \\
& =0 & & |R X(m)|<\operatorname{THRE}
\end{array}
$$

$$
\begin{equation*}
m=0, \ldots, 99 \tag{3.13}
\end{equation*}
$$

However, overflow problems may occur if we use the $C x(m)$ in Eq. (3.13) to calculate the autocorrelation function using only 16 bit fixed-point arithmetic. One simple method of solving this problem is to replace $T[]$ in Fig.3.11 by a 3-level centre clipping function $T^{\prime}[]$ as shown in Fig.3.12 (16), i.e. the amplitude of $C X(m)$ is hardlimited to unity. Hence for the worst case when $T H R E=0$, the maximum amplitude of the autocorrelation function is 100 which is within the 16 bit range. It has been shown that the shape of the auto-correlation function calculated using 3-level centre-clipped data is very similar to the one using ordinary centre-clipped data. In the LPC experiment, 3-level centre clipping was used and hence $C X(m)$ was calculated as

$$
\begin{array}{rlrl}
C X(m) & =\operatorname{sgn}[R X(m)] & & |R X(m)| \geq \text { THRE } \\
& =0 & & |R X(m)|<T H R E \\
& m=0, \ldots, 99 \tag{3.14}
\end{array}
$$

Fig. 3.13 shows a speech segment and its corresponding Fourier spectrum. Fig.3.14 and Fig.3.15 show the effects of centre-clipping and 3-level centre clipping on the frequency spectrum of the speech segment. It can be seen that both centre-clipping processes give similar spectraflattening effects on the original speech spectrum.

3.3.4.4 The Autocorrelation Function

The calculation of autocorrelation function for the pitch detector is very similar to the one described in section 3.3.3.3, except that $N=100$, and the $A C F$ is calculated up to 99 lags, i.e.

$$
\begin{align*}
\mathrm{DR}(\mathrm{~m})=\sum_{i=0}^{100-1-m} \mathrm{CX}(i) & * \operatorname{CX}(i+m) \\
& m=0, \ldots, 99 \tag{3.15}
\end{align*}
$$

Fig. 3.16 and Fig. 3.17 show the autocorrelation functions calculated using the centre-clipped data shown in Fig.3.14a and Fig. 3.15 a respectively. It can be seen that both ACF are very similar in shape, as we have mentioned in the previous section.

3.3.4.5 Peak Picking

As we have mentioned in section 3.3.4, if the pitch period of a speech segment is P_{o} samples, the autocorrelation function of the segment attains a maximum at samples $0, \pm P_{0}, \pm 2 P_{0}, \ldots$ However, because of the finite length of the windowed speech segment involved in the computation of $D R(m)$, there is less and less data involved in the computation as m increases. In a simple case where the speech segment is a sinusoidal wave, a relationship between the maximums is $\operatorname{DR}(0)>\operatorname{DR}\left(\mathrm{P}_{\mathrm{O}}\right)>\operatorname{DR}\left(2 \mathrm{P}_{\mathrm{O}}\right), \ldots$ Therefore instead of using complicated pattern recognition techniques, a simple way to find P_{O} is to locate the maximum peak
across the autocorrelation function but excluding $D R(0)$. In the LPC experiment the searching procedure was started from DR(15) since samples in the vicinity of DR(0) might have amplitudes greater than $D R\left(\mathrm{P}_{\mathrm{O}}\right)$. The flowchart of the searching operation is shown in Fig.3.18. The result of the searching procedure, P_{D}, however, is not the required pitch period, since the time scale of $D R(m)$ is compressed by a factor of two due to the decimation process. The next section will describe how to "time re-scale" DR(m) and estimate a more accurate value for the pitch period using an interpolation technique.

3.3.4.6 The $2 / 1$ Interpolator

"Time rescaling" of $D R(m)$ is simply expanding the time scale of $D R(m)$ by a factor of two. Hence

$$
\begin{equation*}
\operatorname{PR}(2 * m)=\operatorname{DR}(m) \quad m=0,1, \ldots, P_{D}, \ldots 99 \tag{3.16}
\end{equation*}
$$

where $\operatorname{PR}(\mathrm{n}), \mathrm{n}=0,1 \ldots 198,199$ is the "time rescaled" DR(m). $\quad D R\left(P_{D}\right)$ is then rescaled to $P R\left(2 P_{D}\right)$. Fig.3.19 shows the vicinity of $P R\left(2 P_{D}\right)$ in the time domain. It can be seen that in order to give a more accurate estimation for the pitch period, it is necessary to find the interpolation equation $F(t)$. In the LPC experiment, a quadratic interpolator was employed for this purpose. From Appendix I, it can be shown that $F(t)$ can be expressed as

$$
F(t)=P R\left(2 P_{D}-2\right) \theta_{0}(t)+P R\left(2 P_{D}\right) \theta_{1}(t)+P R\left(2 P_{D}+2\right) \theta_{2}(t)
$$

where

$$
\begin{align*}
& \theta_{0}(t)=\frac{1}{8}\left[\left(t-2 P_{D}\right)\left(t-2 P_{D}-2\right)\right] \tag{3.18a}\\
& \theta_{1}(t)=\frac{-1}{4}\left[\left(t-2 P_{D}+2\right)\left(t-2 P_{D}-2\right)\right] \tag{3.18b}\\
& \theta_{2}(t)=\frac{1}{8}\left[\left(t-2 P_{D}+2\right)\left(t-2 P_{D}\right)\right] \tag{3.18c}
\end{align*}
$$

In order to find the value of t when $F(t)$ reaches maximum, we differentiate $F(t)$ with respect to t and set the resulting expression to zero. i.e.

$$
\begin{equation*}
P R\left(2 P_{D}-2\right) \frac{d \theta_{0}(t)}{d t}+P R\left(2 P_{D}\right) \frac{d \theta_{1}(t)}{d t}+P R\left(2 P_{D}+2\right) \frac{d \theta_{2}(t)}{d t}=0 \tag{3.19}
\end{equation*}
$$

Evaluating the derivatives of Eqs.(3.18) with respect to t, substituting into Eq. (3.19) and rearranging terms, we have

$$
\begin{align*}
\left.t\right|_{\text {peak }} & =2 P_{D}+\frac{\left[P R\left(2 P_{D}-2\right)-P R\left(2 P_{D}+2\right)\right]}{\left[\operatorname{PR}\left(2 P_{D}-2\right)-2 * P R\left(2 P_{D}\right)+P R\left(2 P_{D}+2\right)\right]} \\
& =2 P_{D}+\operatorname{CORR} . \tag{3.20}
\end{align*}
$$

where CORR is termed the "correction coefficient" of the interpolator. Hence Eq. (3.20) gives a better estimation for the pitch period. However, because of the nature of the LPC synthesizer, an integer value for the pitch period is required. Therefore in the LPC experiment, the output of the pitch detector, P_{I}, was defined as

$$
\begin{align*}
P_{I} & =2 P_{D}+1 & & \text { CORR } \geq 0.5 \tag{3.21a}\\
& =2 P_{D}-1 & & \text { CORR } \leq-0.5 \tag{3.21b}\\
& =2 P_{D} & & \text { otherwise } \tag{3.21c}
\end{align*}
$$

Fig. 3.20 shows the flow chart of the interpolation procedure. It can be seen that rearrangements are made so as to avoid divisions.

3.3.5 Voiced/Unvoiced (V/UV) Decision

A reliable pattern recognition approach to V/UV decision of speech was proposed by Atal and Rabiner (17). It involves calculating: 1) the energy of the speech segment; 2) zero crossing rate; 3) normalized autocorrelation coefficient at unit sample delay; 4) first prediction coefficient and 5) energy of the prediction error. Then according to statistical information concerning the five measured parameters, a distance measure technique is used to make the V/UV decision. However, due to the present TMS32010 technology, and the limited time available for the V/UV decision operation, the above pattern recognition approach appears to be impracticable for the present LPC experiment. Therefore, in the LPC experiment, the normalized autocorrelation coefficient at unit sample delay was chosen to be the only parameter used for the V/UV decision. This is because this parameter is a byproduct in the calculation of the reflection coefficients and hence no further calculation is needed. It was also found that this parameter is a reliable measure in V/UV decision for most speech segments of the two testing speeches "AUDIO" and "LAMB" (Section 3.2).

In fact the V/UV decision parameter is NR(1) calculated by Eq. (3.7). NR(l) is the correlation between adjacent speech samples and, by definition, varies between -1 and +1 . Due to the concentration of low-frequency energy in voiced sounds, adjacent samples of voiced speech waveform are highly correlated and NR(1) is close to unity. On the other hand $N R(1)$ is close to -l for unvoiced speech.

The threshold value of $N R(1)$ for the $V / U V$ decision depends on the input filtering processes and the pre-emphasis factor μ being used. Hence it can only be determined by trial and error procedure, and in the LPC experiment, it was set at 0.2.

This means that any speech segment having a value of NR(1) greater than or equal to 0.2 is classified as voiced. Otherwise that segment is classified as unvoiced.

This V/UV decision is actually incorporated with the pitch detector in such a way that if the speech segment being analysed is classified as unvoiced, the final estimate value of the pitch period, PITCH, is set to zero. Otherwise PITCH is set equal to the output of the pitch detector, i.e.

$$
\begin{align*}
\mathrm{PITCH} & =0 & & \mathrm{NR}(1)<0.2 \tag{3.22a}\\
& =\mathrm{P}_{\mathrm{I}} & & \mathrm{NR}(1) \geq 0.2 \tag{3.22b}
\end{align*}
$$

where $P I T C H$ is the final estimate of the pitch period. It can be seen from Eqs. (3.22) that the V/UV parameter is already embedded in the value of PITCH, i.e.

$$
\begin{align*}
\mathrm{V} / \mathrm{UV} & =\text { voiced } & & \text { PITCH } \neq 0 \\
& =\text { unvoiced } & & \text { PITCH }=0 \tag{3.23b}
\end{align*}
$$

3.3.6 The Gain Estimator

An accurate method of estimating the gain G for the lattice filter $V(Z)$ (Fig.2.15) is first passing the speech segment being analysed through a filter with transfer function $l / V(Z)$ and then evaluating G using the r.m.s. value of the filter output. However this inverse filtering process was found to be impracticable for the present LPC experiment.

A less accurate but faster approach (that was actually used in the LPC experiment) is to use AR(0), which has already been calculated in the reflection coefficient estimation procedure (Section 3.3.3.3), to calculate G. Although AR(0) is the
r.m.s. value of the pre-emphasised windowed speech segment, it is reasonable to assume the energy of the glottal excitation is roughly proportional to AR(0). Therefore in the LPC experiment, the gain G was calculated as

$$
\begin{equation*}
G=\beta \sqrt{ } A R(0) \tag{3.24}
\end{equation*}
$$

where β is a scaling constant and was determined by trial and error procedure so that the output amplitude of the LPC synthesizer would not cause arithmetic overflow.

3.3.7 The Complete LPC Analyser

Fig.3.21 shows the complete LPC analyser configuration. Speech $X(n)$ is input to two main devices, namely, the reflection coefficient estimator and the pitch detector. The normalized autocorrelation coefficient $N R(1)$ is used to modify the output of the pitch detector so as to decide the final value of the pitch period, PITCH. A.by-product of the reflection coefficient estimation procedure, AR(0), is used to estimate the gain parameter G. Therefore 12 parameters are extracted from each frame of speech. They are 10 reflection coefficients $K(i), i=1, \ldots 10$; the gain G and the pitch period PITCH. These parameters are then transmitted to the LPC synthesizer which reconstructs the speech through a lattice filter.

3.4 THE LPC SYNTHESIZER

This section describes the components of the LPC synthesizer, which is based on the digital models described in Chapter Two. The digital models, however, are modified so as to speed up the synthesis process. As we have shown in Fig.2.15, the synthesizer includes a vocal tract model, a radiation model, a glottal waveform generator, a random noise generator and a voiced/unvoiced switch.

3.4.1 The Vocal Tract and Radiation Models

The vocal tract model used in the LPC experiment is based on the lattice filter shown in Fig. 2.10 whereas the radiation model is based on Eq. (2.12). The two models are cascaded together as shown in Fig.2.12. It has been shown in Section 3.3.1 that the number of sections of the lattice filter was chosen to be 10. Fig.3.22 shows a loth order lattice filter with infinite glottal impedance. It can be seen that each junction requires 4 multiplications and 2 additions. Since one multiplication in the TMS 32010 requires one more instruction than one addition, it is of interest to consider another junction structure which may require fewer multiplications. This can easily be derived by considering a typical junction as depicted in Fig.3.23a. The difference equations represented by this diagram are:

$$
\begin{align*}
& u^{+}(n)=(1+r) w^{+}(n)+r u^{-}(n) \tag{3.25a}\\
& w^{-}(n)=-r w^{+}(n)+(1-r) u^{-}(n) \tag{3.25b}
\end{align*}
$$

Rearranging terms, we have

$$
\begin{align*}
& u^{+}(n)=w^{+}(n) \quad+*\left[w^{+}(n)+u^{-}(n)\right] \tag{3.26a}\\
& w^{-}(n)=u^{-}(n) \quad-r *\left[w^{+}(n)+u^{-}(n)\right] \tag{3.26b}
\end{align*}
$$

Since the term $r *\left[w^{+}(n)+u^{-}(n)\right]$ occurs in both equations this configuration requires only one multiplication and three additions as shown in Fig.3.23b. Fig.3.24 shows the lattice filter which uses the one multiplier structure, and this was the lattice filter used in the LPC experiment. $u_{G}(n)$ is the glottal excitation input to the lattice filter and $u_{L}(n)$ is the filter output.

It has been shown in section 2.3.2 that the radiation effect at the lips can be modelled approximately using a network of the form $\left[1-z^{-1}\right]$. This network is shown in Fig.3.25. The synthesizer output $\tilde{s}(n)$ can then be expressed as

$$
\begin{equation*}
\tilde{s}(n)=u_{L}(n) *\left[1-z^{-1}\right] \tag{3.27}
\end{equation*}
$$

3.4.2 The Glottal Pulse Generator

The glottal pulse generator used in the LPC experiment is based on the configuration as shown in Fig.2.14. It has been found that the width of the glottal pulse varies for different pitch periods (5). This means that the glottal pulse model $G(Z)$ would have to be a time-variant filter. In order to avoid complex algorithms for evaluating the transfer function $G(Z)$ for different pitch periods, a fixed glottal pulse waveform was used in the LPC experiment. The glottal pulse waveform was determined using Eqs.(2.13) with $N 1=14$ and $\mathrm{N} 2=6$. Fig. 3.26 shows the pulse waveform and its corresponding fourier spectrum. It can be seen that the effect of the glottal pulse in the frequency domain is to introduce a low pass filtering effect. Fig.3.27 shows the glottal pulse generator used in the LPC experiment. The glottal pulse was stored in an array $G P(n) \quad n=0, \ldots, 20$ and was output according to the subroutine with flow chart shown in Fig.3.28.

3.4.3 The Random Noise Generator (18)

The noise generator used in the LPC experiment was actually a shift register. The length of the shift register was chosen to be ll-BIT so that the fundamental period of the pseudorandom sequence produced is long compared to an analysis/ synthesis interval. The operation of the shift register is shown in Fig.3.29. The digit B_{o} must be preset to 1 for
initialization and a number can then be calculated for every right shift by the expression

$$
\begin{equation*}
\text { NOISE }={\underset{i}{\Sigma_{0}}}_{10} B_{i} * 2^{i}-1024 \tag{3.28}
\end{equation*}
$$

where NOISE is the output of the random noise generator. The signal NOISE is a zero mean, 1023 to -1023 uniformly distributed pseudo-random sequence. The fundamental period of the sequence is 2047 samples which is more than ten times the length of an analysis/synthesis interval (200 samples). Fig.3.30 shows a segment of the number sequence and its corresponding frequency spectrum.' It can be seen that the sequence possesses a noise-like frequency spectrum and this shows that the signal NOISE is a good approximation to the unvoiced excitation for the vocal tract filter.

3.4.4 The Complete LPC Synthesizer

Fig.3.31 shows the complete LPC synthesizer configuration. The parameters which operate the synthesizer are the pitch period PITCH, the gain G and 10 reflection coefficients. The V/UV switch is operated in such a way that if PITCH $=0$, then it is switched to UV, otherwise it is switched to V. The synthesizer receives a new set of parameters for every 25 ms . However, parameters are updated only at the beginning of a pitch period. This technique of speech synthesis is called "Pitch Synchronous Synthesis", and has been found to be a much more effective synthesis strategy than the process of updating the parameters at the beginning of each frame ("Asynchronous Synthesis").

3.5 THE LPC SIMULATION

Two simulation programs were written, namely the LPC analyser [LPC.ANY] and the LPC synthesizer [LPC.SYN]. [LPC.ANY] and
[LPC.SYN] were written according to the algorithms described in Sections 3.3 and 3.4 respectively. Fig. 3.32 shows the file handling configuration of the LPC simulation. As we mentioned in Section 3.2, two speech files were processed, viz. [AUDIO] and [LAMB]. The [LPC.ANY] program generated a set of parameter files for each speech file. The parameter files consisted of a pitch file [XXX.PIT] ; a reflection coefficient file [XXX.RC] and a gain file [XXX.G], where XXX is the first three letters of a speech file filename. The [LPC.SYN] program then used the parameter files to reconstruct the original speech and the synthesized speech samples were stored in an output file [XXX.OUT] .

According to informal subjective listening tests, the two synthesized speeches were very intelligible but with some distortion at speech segments with long pitch periods. This was because the pitch periods of those particular segments were so long that there were less than two pitch periods within the analysis interval. This resulted in wrong pitch period estimation and hence the distortion.

CHAPTER FOUR - LINEAR PREDICTIVE CODER IMPLEMENTATION

4.1 INTRODUCTION

This chapter first gives a brief description of a TMS 32010 software development system which was developed during the course of the present work. Two TMS 32010 were involved in the implementation experiment. One was operated as the analyser and the other as the synthesizer. The TMS32010 software is based on the algorithms described in Chapter Three and is explained in Sections 4.3 and 4.4. Section 4.5 describes the communication between the analyser and the synthesizer. Finally results of informal subjective listening tests on the coder are discussed.

4.2 TMS 32010 SOFTWARE DEVELOPMENT SYSTEM

The TMS 32010 software development system was built around the TMS 32010 Digital Signal Processor Evaluation Module (EVM) (19). The TMS 32010 EVM is a single board development system for the TMS32010. The EVM can stand alone as a development system using the on-board text editor for the creation of TMS 32010 assembly language text files (20). It also provides the facility for using audio tape as a mass storage media. "The EVM can accept text files from a host computer through one of the two EIA ports or from the audio tape interface. In either situation, the resident assembler will convert the incoming text into executable code in just one pass by automatically resolving labels after the first assembly pass is complete. The object code is stored in a 4 K -word memory space allowing the utilization of the entire TMS32010 address space for program development.

The EVM operating system can be divided into four segments, namely the debug monitor, the assembler/reverse assembler, the text editor and the TMS2764 PROM utility. The EVM firmwave supports three ports for the operation of inputting and outputting data (text and object code) for storage and/or display. Two of the ports conform to EIA RS232C specifications and are called Port 1 and Port 2. The third port, Port 3, is an audio tape connnection.

It was found that the audio tape storage system is very slow because port 3 can only operate at 300 baud. Therefore a BBC microcomputer system was connected to Port 2 of the EVM as shown in Fig.4.1 so that the disk storage of the BBC system could be used as a mass storage media for the EVM. A terminal was connected to port 1 of the EVM so that it could control the EVM under normal operation mode and could communicate with the BBC system via the transparency mode. Incorporated with the BBC software, the development system provides useful facilities for TMS32010 program development. These include:

1) TMS 32010 text programs can be created using the EVM text editor. The text programs can then be transferred to the BBC system and stored in a floppy disk.
2) A TMS 32010 text program which'is stored in a BBC disk can be transferred from the BBC system to the EVM. The EVM can either accept the text program into its text editor for editing or use its assembler to convert the text program into TMS32010 machine code for program debugging or real-time testing.
3) The contents of the TSM32010 program memory and data memory can be transferred from the EVM to the BBC system for analysis.
4) Hardcopies of text programs listings, reverse . assembled programs listings and assembler label tables can be obtained from the Epson printer.

4.3 THE LPC ANALYSER

This section describes the TMS 32010 subroutines for the LPC analyser. The algorithms of the subroutines are based on the procedures described in section 3.3. Some of the algorithms were re-organised so that they could be implemented by the TMS 32010 in a more effective way. The technique of single buffering analysis is also described.

4.3.1 The Reflection Coefficient Estimator

Fig. 4.2 shows the main TMS32010 software subroutines for the reflection coefficient estimator. They include a Windowing/ Pre-emphasis/Autocorrelating network subroutine, an autocorrelation function normalization subroutine and a LeRoux and Gueguen recursion subroutine. Variables in these subroutines with magnitude less than unity were all represented in 16 bits $Q 15$ format.

4.3.1.1 Windowing, Pre-emphasis, Autocorrelating Network

The windowing, pre-emphasis and autocorrelating operations described in Section 3.3.3 were all involved in the processing of 220 data samples per analysis interval. They were integrated together as a digital network so as to facilitate the implementation of the operations using the TMS32010. The digital network is shown in Fig. 4.3 with inputs X_{n} and W_{n}. X_{n} were 220 speech samples stored in program memory $>F 1 C$ to $>F F 7$ and W_{n} were data of a 220 points Hanning Window stored in program memory >E20 to >EFC. Intermediate variables of the network must be initialized at the beginning of each analysis interval, i.e.

$$
\begin{align*}
A R_{i} & =0 \tag{4.1a}\\
D_{i} & =0 \quad i=0, \ldots, 10 \tag{4.1b}
\end{align*}
$$

X_{n} and W_{n} were input to the network synchronously starting from X_{0} and W_{0} respectively. After X_{219} and W_{219} were input to the network, outputs $A R_{i} \quad i=0, \ldots, 10$ were the required autocorrelation function. This method of calculating the autocorrelation function is called the "Contribution Method". The values of $A R_{i}$ were all represented in double precision, i.e. 32 bits, so as to increase the input dynamic range. The coefficients had to be normalized with respect to $A R_{0}$ before being used to determine the reflection coefficients.

4.3.1.2 Normalization of the Autocorrelation Function

Normalization of the autocorrelation function involves the process of dividing the entire autocorrelation function by the autocorrelation coefficient at zero lag. The autocorrelation function coefficients $A R_{i}$ determined by the network shown in Fig. 4.3 were all represented in 32-bits, and 32-bit division in the TMS 32010 is not simple. However, TMS 32010 supports 16 -bit division in a very convenient way by using a special instruction called "Condition Subtract (SUBC)". Hence it was necessary to transform the 32-bit autocorrelation coefficients into l6-bit representation. The transformation was divided into two parts as shown in Fig.4.4.

First the number of leading zeros of the 32 -bit $A R_{o}$ was counted. If the number of leading zeros was greater than 16 , then the shift counter SCNT would be set equal to zero. Otherwise SCNT would be set equal to the number of leading zeros. If SCNT was zero, then $\mathrm{MR}_{\mathrm{i}} \mathrm{i}=0, \ldots .10$, the modified autocorrelation coefficients, would be set equal to the lower 16bits of $A R_{i}$. Otherwise $A R_{i}$ would be shifted to the left by

SCNT-1 bits and $M R_{i}$ would be set equal to the higher 16 bits of $A R_{i}$. The flowcharts of the leading zeros counting subroutine and the shifting subroutine are shown in Fig.4.5 and Fig. 4.6 respectively.

The transformed autocorrelation coefficients $M R_{i}$ were then used for the normalization process which was mainly dividing $M R_{i}$ by $M R_{o}$ for $i=0, \ldots, 10$. Fig. 4.7 shows the flowcharts of the normalization subroutines.

4.3.1.3 The Le Roux and Gueguen Method

The TMS 32010 subroutine for the Le Roux and Gueguen recursion procedure was directly transformed from the flow chart depicted in Fig.3.7. Inputs to the subroutine were the normalized autocorrelation function $\mathrm{NR}_{1} \quad \mathrm{i}=0, \ldots, 10$. Auxiliary registers $A R \varnothing$ and AR1 of the TMS 32010 were used as loop counters for the recursion process. The division subroutine DIV as shown in Fig.4.7a was also used for the determination of the reflection coefficients. The resulting reflection coefficients were all represented in 16 bits Q15 format and were stored temporarily in program memory >CA2 to >CAB before being transmitted to the synthesizer. Fig. 4.8 shows the flowchart of the reflection coefficient estimator main program.

4.3.2 Pitch Detector

The TMS32010 software for the pitch detector was written according to the algorithms described in Sections 3.3.4 and 3.3.5. Fig.4.9 shows the flowchart of the pitch detector main program. It can be seen that the V/UV decision subroutine was integrated into the pitch detector program so that the pitch period value at the end of the program would be final. Inputs to the pitch detector program were 200 data samples stored in program memory >F30 to >FF7. The filter
coefficients for the decimation process were stored in program memory >D90 to >D96 and were transferred to the data memory when needed.

The final value of the pitch period, PITCH, was represented in 16 bits 2 's complement format and was stored temporarily in program memory >CAO before being transmitted to the synthesizer.

4.3.3 The Gain Estimator

In the LPC simulation program, the gain G was calculated according to Eq.(3.24). However, in the LPC implementation experiment, the scaling procedure was done at the synthesizer so that at the TMS 32010 analyser, the gain G was calculated as

$$
\begin{equation*}
G=\sqrt{ } A R_{0} \tag{6.2}
\end{equation*}
$$

where $A R_{0}$ was a 32-bit number and was calculated during the reflection coefficient estimation process (Section 4.3.1.l). The square root of $A R_{o}$ was calculated by an iterative process called "Mid-point Method". The flowchart of the gain estimator subroutine is given in Fig.4.10. It can be seen that the accuracy of the square root process was set to 1 so that the resulting G would be an integer. The final value of the gain G was represented in 16 bits 2 's complement format and was stored temporarily in program memory >CAl before being transmitted to the synthesizer.

4.3.4 Single Buffering Analysis

Fig.4.11 shows the TMS 32010 software structure for the LPC analyser. It can be seen that the TMS 32010 analyser program was divided into a foreground routine and a background routine.

The background routine was mainly responsible for the data overlapping process, the LPC analysis and the transmission of the LPC parameters to the synthesizer whereas the foreground routine was responsible for handling input speech samples.

The foreground routine was actually an interrupt handling subroutine and was activated by an interrupt from the A / D converter every 125 $\mu \mathrm{S}$ (i.e. the sampling frequency was at 8 KHz). It can be seen from Fig. 4.11 that a single buffering scheme was used for data handing because the LPC analysis was operated on a 25 ms block basis. At the start of the analyser program, Buffer Al would be cleared and the foreground routine would start inputting speech samples into the buffer. At the same time, the background routine would start functioning. The data overlapping process was accomplished by inserting the last 20 samples of the previous frame (stored in program memory $>F O 0$ to $>F 13$) as the first 20 samples of the present frame (program memory >FlC to >F2F). Then the data in program memory >FlC to >FF7 (i.e. overlapping data and content of Buffer A2) would be analysed and the extracted LPC parameters would then be transmitted to the LPC synthesizer using simple interrupt-handshaking technique. Then the background routine would enter an idle state so as to wait until Buffer Al was full. As the background routine resumed its operation from the idle state, the last 20 samples of Buffer A2 would be stored into program memory $>$ FOO to >Fl3 for the data overlapping process and Buffer A2 would be loaded with the content of Buffer Al. The foreground routine would then be initialized and the whole process would repeat.

The analyser program was written in structural form so that each subroutine could be tested individually and any amendments to the LPC algorithm would not be difficult.

4.4 THE LPC SYNTHESIZER

This section describes the TMS32010 subroutines for the LPC synthesizer. The algorithms of the subroutines are based on the procedures described in Section 3.4. The synthesis procedure was re-organised so as to avoid arithmetic overflow and to speed up the synthesis process. Finally the technique of double buffering / pitch synchronous synthesis is described.

4.4.1 The Lattice Filter Subroutine

The TMS 32010 lattice filter subroutine was based on the one multiplier loth order lattice filter as shown in Fig.3.24. It can be seen that the operation of the filter merely involves multiplications and additions. The parameter G received from the LPC analyser, was scaled by a factor of 0.032 (i.e. $\beta=0.032$ in Eq.(3.24))before it was used to control the intensity of the filter output instead of the intensity of the excitation. The reason for this re-arrangement was to avoid arithmetic overflow during the calculation of the filter intermediate variables. Fig. 4.12 shows the flowchart of the lattice filter subroutine. It can be seen that the subroutine includes the radiation network and is a one sample process.

4.4.2 The Voiced Excitation Synthesis Subroutine

The voiced excittation source of the TMS32010 LPC synthesizer was based on the glottal pulse generator as described in Section 3.4.2. The glottal pulse as shown in Fig.3.26a was scaled by a factor of 100 before being input to the vocal tract lattice filter so that the filter could produce sufficient output level. Fig. 4.13 shows the flowchart of the routine which operates the voiced excitation LPC synthesis for one pitch period.

4.4.3 The Unvoiced Excitation Synthesis Subroutine

The unvoiced excitation source of the TMS 32010 LPC synthesizer was based on the random number generator as shown in Fig.3.29. A 16-bit register RNDREG in the TMS 32010 data memory was used as the shift register and it was preset to 1 in the initialization procedure. Fig. 4.14 shows the flowchart of the random noise generator subroutine which produces a noise sample and Fig. 4.15 shows the flowchart of the routine which operates the unvoiced excitation LPC synthesis for one sample. It can be seen that the output of the noise generator, NOISE, was scaled by a factor of 0.015 before it was input to the lattice filter so as to avoid arithmetic overflow during the calculation of the filter intermediate variables.

4.4.4 Doubling Buffering/Pitch Synchronous Synthesis

Fig.4.16 shows the TMS 32010 software structure for the IPC synthesizer. It can be seen that the synthesizer program was divided into a foreground routine and a background routine. The background routine was mainly responsible for the LPC synthesis whereas the foreground routine was responsible for handling incoming LPC parameters received from the analyser. The pitch synchronous synthesis technique was used for the voiced excitation synthesis and therefore a double buffering scheme was employed for the updating procedure of the LPC parameters. Three buffer zones, S1, S2 and S3, each consisting of 12 locations in the TMS 32010 data memory, were used for the double buffering scheme. Initially the background routine would operate LPC synthesis using the LPC parameters stored in Buffer S3, and the Flag UF was set to 1 . When the synthesizer was connected to the analyser, the synthesizer would receive 12 LPC parameters from the analyser every 25 ms . The foreground of the synthesizer would store the incoming parameters in Buffer Sl. After a whole set of parameters (i.e. the
pitch, the gain and the reflection coefficients) was received and stored in Buffer Sl, the foreground routine would then load Buffer $S 2$ with the content of Buffer sl and set UF to 0. The background routine would check the status of UF after having completed one voiced excitation synthesis routine or one unvoiced excitation synthesis routine. If the status of UF was detected as 0 , the LPC parameters in Buffer $S 3$ would be updated with the parameters stored in Buffer S2 and UF would be reset to l. The synthesis procedure would then start again. Fig.4.17 and Fig.4.18 show the flowcharts of the background and foreground routines respectively. It can be seen that the synthesizer would keep on synthesising speech using the same set of LPC parameters until another set of parameters was received. Hence this LPC synthesizer could also operate properly when a silence compression scheme is applied to the transmission strategy of the LPC parameters.

4.5 THE LPC IMPLEMENTATION EXPERIMENT

The equipment used in the LPC real-time implementation experiment consisted of two TMS 32010 Evaluation Modules (EVM) two TMS32010 Analog Interface Boards (AIB) (21), one audio tape recorder, one loudspeaker and one terminal. The interconnections between these items are shown in Fig.4.19. The two EVMs were connected in a Master/slave configuration so that the terminal could control the Master EVM (LPC analyser) via the terminal emulator mode and the Slave EVM (LPC synthesizer) via the transparency mode. Each EVM was connected to an AIB via an emulation cable. The AIB consists of one analog to digital conversion channel, one digital to analog conversion channel, two 16-bit input buffers and one l6-bit output buffer. Recorded speech stored in the audio tape recorder was input to the LPC analyser (Master EVM) via the analyser's AIB. The extracted LPC parameters were then
passed to the LPC synthesizer (Slave EVM) through the AIBs' l6-bit output and input buffers. The LPC synthesizer would then use the parameters to reconstruct the original speech and the synthesized speech was output to the loudspeaker via the synthesizer's AIB.

According to informal subjective listening tests, it was found that the synthesized speech was highly intelligible, but with machine-like quality. Distortion was significant at speech segments with long pitch period as we have discussed in Section 3.5. It was also found that voiced fricative speech was not well synthesised. This was mainly due to the simple dichotomy of the voiced/unvoiced excitation employed in the LPC synthesizer. However, despite the above limitations, the performance of the single channel LPC coder was judged to be satisfactory as far as low-noise clear spoken speech was concerned. Therefore it is believed that if input speech to the LPC analyser were preprocessed so as to remove background noise, the quality of the synthesised speech would be greatly improved.

CHAPTER FIVE - CONCLUSION AND SUGGESTIONS FOR FURTHER WORK

5.1 INTRODUCTION

At present, TMS 32010 software has been developed for realtime implementation of linear predictive coding of speech signals. However, due to the "one (TMS32010) chip for analysis and one chip for synthesis" structure of the LPC coder and the limitations of the TMS 32010 processor, crude approximations were made in the estimation of the gain of the lattice filter and smoothing procedures could not be applied in the pitch detection process. These shortcomings lead to the degradation of the quality of the synthesised speech. The solution for this problem is a multi (TMS32010) chip structure for the LPC coder. However, this would involve complicated timing problems and the resulting coder would be comparatively expensive. Therefore as far as cost is concerned a "one chip for analysis and one chip for synthesis" structure seems to be practical for an LPC coder. In the remaining sections of this chapter, the limitations of TMS32010 in implementing LPC of speech signals are discussed and the original design of an LPC voice coder for a Cambridge Ring based on this research is outlined.

5.2 LIMITATIONS OF TMS 32010 IN IMPLEMENTING LPC OF SPEECH SIGNALS

In the TMS 32010 analysis program, input speech signals are analysed on block basis and the duration of each block is 25 ms . The complete analysis procedure (i.e. the pitch detection, the reflection coefficient estimation, the gain estimation and the V/UV decision), the data input subroutine and the parameters transmission subroutine consume a total
time of 21 ms which is 84% of an analysis interval. This means that there is only 4 ms left for parameters coding and packing subroutines if 2.4 k bit/sec transmission rate is desired. It is obvious that there is no room to implement more sophisticated LPC analysis procedure as long as the LPC coder has a "one chip for analysis and one chip for synthesis" structure. Even though a multi-chip structure may be proposed for an LPC coder so that more sophisticated algorithms may be implemented, the limitations of TMS 32010 in implementing LPC algorithms on speech signals must be considered when designing such a system.

One of the reasons why the TMS 32010 LPC analysis procedure consumes so much time (84% of an analysis interval) is that the TMS 32010 data memory is not large enough. Although data can be stored in TMS 32010 program memory, TMS 32010 programs can only perform arithmetic operations with operands stored in TMS 32010 data memory. The size of TMS32010 data memory is just 144 words $x 16$ bits which is smaller than the size of an analysis interval (200 samples). Therefore, during the LPC analysis (especially the pitch detection process), blocks of data were transferred between the TMS 32010 program memory and data memory. Unfortunately this kind of data transfer is very time consuming. It takes 3 instruction cycles to complete one transfer either from program memory to data memory or vice versa.

Another factor which prolongs the analysis time is that the TMS 32010 only provides two auxiliary registers, AR \varnothing and ARI. These two registers can be used as loop counters and/or data pointers for recursive procedures. However, the number of auxiliary registers is not enough for some complex recursion processes such as the Le Roux and Gueguen procedure. Therefore during these processes, some locations of the TMS 32010 data memory were used as loop counters and data pointers. In this way, however, these loop counters and data pointers do
not have the advantage of autoincrement and autodecrement facilities as ARø and ARI do. The counters and pointers, however, must be incremented or decremented after one recursive loop and this consumes 2 instruction cycles for every increment/decrement process. The time spent on these updating procedures could be very considerable if the order of the loop is large and especially when nested loops are involved.

The TMS 32010 can be considered as a general-purpose microprocessor with special instructions for digital signal processing. However, it only provides one single-vectored hardware interrupt (INIT) and one software interrupt (BIO). This can only support simple input/output functions so that in the LPC implementation experiment, both the analyser and synthesizer used up all interrupt lines available for data input/output and parameters transfer. Therefore for a practical LPC coder where LPC parameters are transmitted in a serial manner (i.e. bit by bit), it is suggested that the TMS 32010 processors should be incorporated with a host processor (e.g. 8086) in such a way that the host processor handles all input/output operations and LPC parameters transfer whereas the TMS 32010 processors only perform the LPC analysis and synthesis.

5.3 ORIGINAL DESIGN OF AN LPC VOICE CODING SERVER FOR A CAMBRIDGE RING

Fig.5.1 shows one possible hardware configuration to implement the LPC vocoder using the Texas Instrument Technology on a Cambridge Ring. The interface between the vocoder unit and the Cambridge Ring is the VMI-l which already exists. The LPC vocoder unit consists of 4 major parts, namely the I/O board, the 8086 host computer, and two TMS32010 processors each with $4 \mathrm{~K} \times 16$ program memory. The 8086 controls data flow between the I/O board, the TMS 32010 processors and the

VMI-l via the Intel Multi-Bus. The software of the 8086 and the design of the actual hardware circuit depend on the function of each item of the vocoder.

The TMS 32010 LPC programs should first be stored in a ROM which can be accessed by the 8086. After the vocoder unit is reset, the 8086 should be able to transfer the LPC program in the ROM to the program memory of the TMS32010 processors so that one TMS 32010 operates the LPC analysis and the other operates the LPC synthesis. The I/O board, after being initialized, should be able to sample incoming speech at 8 KHz and generates a 16 -bit linear PCM code for each sample. The 8086 stores the samples in its main memory temporarily until 200 samples have been received. Then the whole block of data is transferred onto the program memory of the LPC analyser. The analyser TMS32010 does the LPC analysis and places the fixed point parameters into the program memory buffer. The 8086 then accesses the parameters, encodes and packs them into Basic Blocks (BBs). The LPC BBs are then transmitted to the distance vocoder unit through the VMI-l interface. The distance vocoder unit should have the same configuration as in Fig.5.1 so that its 8086, after having received the LPC BBs, should be able to unpack and decode the parameters. The parameters are then transferred onto the program memory of the LPC synthesizer. The synthesizer TMS32010 accesses the parameters which are then used to produce synthesized speech samples from the LPC lattice filter. The synthesised speech data is stored in the program memory buffer. The 8086 accesses the processed speech and transfers the data to the $I / 0$ board for analog reconstruction. Since the two vocoder units have the same configuration, full-duplex speech communication is accomplished.

5.4 CONCLUDING REMARKS

The LPC voice server as depicted in Fig. 5.1 was actually designed before the beginning of the present work. However, during the course of the present work, it was found that the VMI-l interface would not operate in the duplex mode. Therefore the construction of the LPC voice coding server for the Cambridge Ring will have to be abandoned unless another interface is built.

Although the LPC voice coding server is unlikely to be built, TMS 32010 software has been developed to implement the LPC vocoder algorithm in real-time. The algorithm is especially suitable to implement 2.4 K bit/s LPC. Due to the compact size of TMS 32010, the dimensions of the vocoder unit as depicted in Fig. 5.1 would be much smaller than a conventional vocoder unit. Therefore the TMS 32010 vocoder system is very suitable for mobile communication. Actually the TMS 32010 vocoder unit can be interfaced to other types of communication channel such as H.F. links,telephone lines or cellular radio network. The operation of the vocoder unit would be the same as described in section 5.3.

APPENDIX I

Al QUADRATIC INTERPOLATION(22)

Consider three points $\left(x_{0}, y_{0}\right)$, $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}) on the $x-y$ co-ordinate. The quadratic interpolation equation $p(x)$ which passes through the three points can be determined by the expression:

$$
\begin{equation*}
p(x)=y_{0} \theta_{0}(x)+y_{1} \theta_{1}(x)+y_{2} \theta_{2}(x) \tag{A1.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \theta_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x 0-x_{1}\right)\left(x 0-x_{2}\right)} \tag{Al.2}\\
& \theta_{1}(x)=\frac{(x-x 0)\left(x-x_{2}\right)}{\left(x_{1}-x 0\right)\left(x-x_{2}\right)} \tag{A1.3}\\
& \theta_{2}(x)=\frac{(x-x 0)\left(x-x_{1}\right)}{\left(x_{2}-x 0\right)\left(x_{2}-x_{1}\right)} \tag{Al..4}
\end{align*}
$$

AFFENDIX 2

A2＿THE TMSY2O1O＿GOETWAEEDEVELDEMENT SYSTEM＿EEDGEAM＿LSTING

```
    10 FTEM*********************************
    2O REM TMSS2OIO-BEC COMMLNTCATION
    SO FEM
    4O FEM D.S.F.CHAN
    SO FEEM
    SO REMM*******************************
    55
    70 MODE S
8O FEEFEAT
70 FROCINIT
100 INFUT "COMMAND (S/L/F/F/C): ",A韦
110 IF A$="S"THEN FROCSAVE
120 IF A家="L"THEN FROCLOAD
13O IF A$="F"THEN *CAT
140 IF A寺="F"THEN PROCFRINT
150 IF Aq="口"THEN GOTO 170
1BO UNTIL FALSE
170 END
180
190 DEF FROCINIT
200 *FX2.1
210 *FXS:1
220 *FX7.4
230 *FX9,4
240 *FX229:1
2GO DSEYTE=8FFF.4
2GO ENDPROC
270
2BO DEF FFOCGAVE
290 DHM STAFT 1000
3OO FOF I%=0 TO 2 STEFZ#F%=STAFT
Z10 [DPTI%
320 , LOOF1
SO CLD
34 LDX £254
\XiEO !DA f12B
SO JSFR &FFF.4
70 CFX 50
30% BEQ LODP!
S90 LDX E1
400 LDA £145
410 JSR &FFF4
42O CFY £S2
4O BEO LDOFS
4.40 JMF LOOP1
450. LDOFS
```

```
4.6O TYA
470 LDY %70
480 JGR &FFD4
490 TAY
500 CPY £6O
510 BEO LDOPG
520 . LOOF4
50 CLD
540 LDX £254
ESO LDA E128
5@O JSF &FFF4
570 CFX £O
5BO BEO LDDF4
590 LDX £1
600 LDA £145
S10 JSF &FFF4
G20 JMF LOOPS
6S0 - LODFG
640 LDY 8600
G5O FTS:]NEXT I%
660 INPUT "FILENAME: ",FILE*
G70 IF FIGHTक(FILE*,4)="HELP" THEN GOTO 7SO
680 Y%=OFENOUT (FILE$)
490 7%70=Y%
700 CALL START
710 CLDSE £Y%
720 FRINT
7O ENDFROC
740
75O DEF FROCLOAD
760 INFUT "FILENAME: "FFILE$
770 IF FIGHT& (FILE$.4)="HELP" THEN EOTO 890
780 Y=OFENIN (FILEक)
790 IF ADVAL (-2) >0 THEN B%=GET
g00 IF E%<\1S THEN GOTO 790
810 A%=138: X%=2"]=0
820 FEFPEAT
BZO IF ADYAL (-3) OO THEN E%=BGETEY:Y%=B%:CALL OSEYTE:J=J+1
日40 IF J>400 THEN FOF Z=1 TO EOOO:NEXT Z:J=0
850 UNTIL B%=60
860 Y%=13:CALL OSBYTE
870 Y%=10:CALL OSBYTE
88O ClOSEfY
89O ENDFFOC
900
710 DEF FFOCFFINT
92O INFUT "SELECT UDU/FRINT/FILE/CONTROL(V/F/F/C): " GW
90 IF Cक="C" THEN GOTD 1090
94O IF Cक="F" THEN *CAT
950 IF Cक="F" THEN GOTO 920
96O INFUT "FTLENAME: ",FILE$
970 IF FIGHTक(FILE家,4)="HELP" THEN OOTO LOQO
9日O IF E吕="F"'THEN VDU 2
990 Y=0FENIN(FILE害)
10OO FFTNT:FFINT"FILE: ",FILE&#FRINT
1010 REFEAT
1020 E%=EGETEY
10SO VDU B%
1040 UNTXL E%=60
1050 VDU 10:VDU 18
1060 CLOSE £Y
1070 VDU3
1080 60TO 920
1090 ENDFFOOC
```

```
AFFENDIX 3
```


AS THE IEC SIMULEATION PEOGRAM LIETING

```
10 FEEM***************************
2O FEM LFC ANALYSIS SIMHULATION
SO FEM
4 0 ~ F I E M ~ D . S . F . C H A N ~
SO REM
60 REM
7 0
80 MODE S
90 CLS
100 FROCINIT
110 FTREIN=400*STARTEK
120
130 FOR ELOCK=STARTEK TO ENDEK
14O PROCINPUT
150
160 FIEM**************************
170 FEM FEF-CDEFF AND GAIN
180 REM
190
200 FROCSTORELAF
210 FFOCFREEMF
220 FROCWINDOW
2SO PROCACORF
240 FROCENEFGY
2SO FROCLANDG
2GO FROCOVERLAF
270
2gofREM****************************
290 FEM FITCH DETECTION
SOO REMM***************************
310
320 FFOCCLEAR
O0
340 FOR I=0 TO 19B STEF ?
SO FIN=F(I)
SSO FFOCFILTEF
30 FIN=F'(I+1)
OBO FFOCFILTEF
390 FA(I/2)=FDUIT
400 NEXT I
410
420 FFOCDCCUT
4.30 FROCTHRHLD
440 FROCCLIF
450 FROCCDFR
4SO FROCFEAK
```

```
470 PROCINTERF
490
4 9 0 \text { REMM****************************}
SOO REM DUTPUT LPC10 PARAMETEFS
510 REM***************************
520
5SO PROCOUTPUT
5 4 0
5SO NEXT ELOCK゙
5GO FFOCCLOSE
5 7 0 \text { END}
5 8 0
5 9 0
600 DEF PROCINIT
610 DIM W(220), A(220), AF'(10),K(10), X(30),OL(20)
620 DIM F(200):FA(100),FR(100)
6%
G40 A1=1.45902906:A2=-0.910369999:A3=0.197825187
650 BO=0.0S16895439:E1=0.0950680517:E2=0.0950680317:ES=0.031689
3439
660
670
SBO EMFREF=0
69O FOR I=0 TD 19
700 A(I)=0
710 NEXT I
720
7%O FRINT: INPUT"SOUPCE FILENAME:",F名
740 FRINT:INFUT"STARTING ELDCK:":STAFTEKK
750 FRINT: INFUT"ENDING ELOCK゙:" "ENDEK
760
770 IN=OFENIN(Fक)
780 *DR.1
790 FC=OFENDUT (LEFT年(F$,:`)+". RC")
gOO G=OPENUUT(LEEFT中(Fक,Z)+",G")
810 PIT=OFENOUT (LEFT叓(F末,\Xi)+".FIT")
820 *DR.O
8.0
840 FOR I=0 T0 219
850 W(I)=0.5*(1-C口S(2*PI*I/219))
860 NEXT I
870
8BO ENDPFDC
890
900
910 DEF FROCINFUT
92O FOR I=0 TO 19%
930 A=BGETEIN
940 E=BGETEIN
950 SAMFLE=A*S4+B-2050
960 F'(I)=SAMFLLE
770 A(I+20)=SA+NFLE
9BO NEXT I
990 ENDFFOC
1000
1010
1O2O DEF FROCSTOFELAP
10SO FOFT I=O TO 19
1040 gl(I)=A(I+200)
1OSO NEXT I.
106O ENDFFOC
1070
1080
1090 DEF FROCFFEENF
1100 FOR I=0 TO 219
1110 FRE=A(I)-0.95*EMFREF
```

1120 EMFREF=A(I)
$1130 \mathrm{~A}(\mathrm{I})=\mathrm{FRE}$
1140 NEXT I
1150 ENDFROC
1160
1170
1190 DEF FROCWINDOW
1190 FOF $\mathrm{I}=0 \mathrm{TO} 219$
$1200 \mathrm{~A}(I)=A(I) * W$ (I)
1210 NEXT I
1220 ENDFROC
1230
1240
1250 DEF FROCACORR
1250 FOF $I=0$ TD 10
$1270 \mathrm{AR}(I)=0$
$1230 \mathrm{FDR} \mathrm{J}=0 \mathrm{TO} 219-\mathrm{I}$
1290 AR $(I)=A R(I)+A(J) * A(I+I)$
1300 NEXT J
1510 NEXT I
1320 ENDPFOC
1380
1.30

1350 DEF FROCENEFGY
1560 GAIN=SOR (AF (O))
1370 ENDPRRC
1.80

1390
1400 DEF FROCLANDG
1410 FOR $I=10$ TO 0 STEF -1
1420 AR (I) $=\mathrm{AR}(I) / A R(O)$
1430 NEXT I
$1440 \times(0)=A R(0)$
$1450 \times(21)=0$
$1460 \mathrm{FOR} \mathrm{J}=1 \mathrm{TO} 10$
$1470 \times(2 * J-1)=A F(J)$
$1480 \times(2 * J)=A R(J)$
1490 NEXT J
$1500 \mathrm{FOF} \mathrm{J}=1$ TO 10
$1510 \kappa(J)=-x(1) / X(0)$
1520 IF $J=10$ THEN ENDFROC
$15 \geq 0$ FDF: $I=0$ TO $2 *(10 \cdots$ I) STEP 2
$1540 \times(I)=X(I)+$ と́ (J) * $X(I+1)$
$1550 \times(I+1)=氏(J) * X(I+2)+X(I+\Xi)$
$15 S O$ NEXT I
1570 NEXT J
1590 ENDFROC
1590
1600
1610 DEF FROCOVEFI AP
1620 FDR $I=0 \quad T 019$
$1 S S O A(I)=O L(I)$
1640 NEXT I
1650 ENDFFOC
1650
1670 DEF FROCCLEAF
$1680 \mathrm{D} 1=0: \mathrm{D} 2=0: \mathrm{DE}=0: \mathrm{D} 4=0$
1690 ENDFROC
1700
1710 DEF FFOCFILTEF
$1720 \mathrm{FE}=\mathrm{D} 2 * A 1+D 3 * A 2+D 4 * A B$
17 OO D $1=F E+F I N$
1740 FOUT $=\mathrm{EO}$ *D $1+\mathrm{E} 1 * \mathrm{D} 2+\mathrm{E} 2 * \mathrm{D} 3+\mathrm{BS} * \mathrm{D} 4$
$1750 \mathrm{D} 4=\mathrm{D} 3: \mathrm{DS}=\mathrm{D} 2 \mathrm{D} 2=\mathrm{D} 1$
1750 ENDPFDC
1770

```
1780 DEF PROCDCCUT
1790 OS=0
1800 FOR I=0 TO }9
1810 0S=0S+PA(I)
1820 NEXT I
1830 0S=05/100
1840 FOR I=0 TO 99
1850 PA(I)=FA(I)-05
1860 NEXT I
1870 ENDFFOC
1880
1890 DEF PROCTHRHLD
1900 TH1=0:TH2=0:THE=0
1910 FOF I=0 TO SS
1920 IF ABS(FA(I))>TH: THEN TH1=ABS(PA(I))
19%O NEXT I
1940 FOR I=34 TO 66
1950 IF ABS(FA(I)) TH2 THEN TH2=AES(PA(I))
1960 NEXT I
1970 FOR I=67 TD 99
19B0 IF ABS(FA(I))>THS THEN THS=ABS(FA(I))
1990 NEXT I
2000 THFE=TH1
2O10 IF TH2<THRE THEN THRE=TH2
2020 IF THESTHFE THEN THFE=THS
2OSO ENDFROC
2040
20SO DEF FROCCLIF
2060 THRE=THRE*O.6
2070 FOR I=0 TO 99
2O80 IF ABS (PA(I))<=THRE THEN FA(I)=0 ELSE PA(I)=S*SGN(FA(I))
2090 NEXT I
2100 ENDFFOC
2110
2120 DEF PROCCORF
2130 FOR J=0 TO 99
2140 FR(J)=0
2150 FOR I=0 TO 99-J
2160 FR(J)=PR(J)+FA(I)*FA(I+J)
2170 NEXT I
2180 NEXT J
2190 ENDFFDC
2200
2210 DEF FFOCPEAK
2220 FI=0:FXX=0
22SO FOR J=15 TO 97
2940 IF FF(J)PFXX THEN FI=T:FXX=FF(J)
2050 NEXT J
2260 ENDPRDC
2270
2QQ DEF FROCINTEFF
22g0 YO=FF(F1-1):Y1=FFF(F1):Y2=FR(F1+1)
2SOO COMF1=2* (YO-YZ)
ZZ1O COMF2=(YO-2*Y1+Y2)
2020 XX=0
23SO IF COMF1=O THEN }XX=0:GOTO 2S7
2\triangle4O IF COMF2=0 THEN XX=O:GOTO 2S70
250 IF COMF1-COMF2,=0 THEN XX=1: EOTO 2P70
```



```
270 FITCH=2*F1+XX
2S8O ENDFFOC
2%90
2400 DEF FFOCOUTFUT
2410 *DF:1
2420 FRINT
2430 FRINT"ELOCK=":ELOCK
```

2440 PRINT"GAIN=":GAIN
2450 FRINT£G, BLOCK:PRINTEG,GAIN
2460 FRINT"FITCH=":PITCH
2470 PRINTEFIT, ELOCK:FRINTEFIT,FITCH
2480 PRINTfRC, BLOCK:
2490 FOR $\mathrm{I}=1$ TO 10
2500 PRINT"K(":I;")=":K(I)
2510 FFINTERC,K(I)
2520 NEXT I
25.30 *DF. 0

2540 ENDFROC
2550
2560 DEF FROCCLOSE
2570 Closefin
2580 *DR. 1
2590 CLOSEfG
2600 CLDSEfRC
2610 CLOSEfPIT
2620 *DR. 0
2650 ENDFROC

```
    10 REM************************************
    20 FEM
    BO FEM LFC SYNTHESIS SIMULATION
    40 FEM
    5O REM
                                D.S.F. CHAN
    GO REM
    70 FEEM*********************************
    80
    9 0 ~ M D D E S ~
100 FFOCINIT
110 UF=1:FFOCINFUT
120&゙=1
130 IF UF=1 THEN FFOCUPDATE:UF=O
140 IF PFITCH=O THEN FROCUNVOICE:GDTD 1SO
150 FOR Z=0 TO 20
160 IN=GF(Z)*100: PROCLATTICE:FROCOUTFUT:K゙=ド+1
170 NEXT Z
180 IF K゙`2OO THEN FROCINFUT:UF=1:K=1
190 F=PFITCH-20
2OO IN=O:FROCLATTICE:FROCOUTFUT:K゙=ド+1:F:F-1
210 IF K\2OO THEN FROCINPUT:UF=1:KK=1
220 IF F<O THEN GOTO 130 ELSE GOTO 2OO
2SO END
240
250 DEF FROCINIT
260 DIM F(10),G(10),D(10),NF(10),FKC(10),GF(20)
270 FOR I=1 TO 10
280 F(I)=0:G(I):=0:D(I)=0:NK(I)=0:FK(I)=0
290 NEXT I
SOO AMAX=O:TEMP=O: FNDFEG=1
Z10 FOF I=O TO 14
320 GF(I)=0.5* (1-COS (FI*I/14))
EO NEXT I
340 FOR I=15 TO 20
SO GF(I)=[OS(FI*(I-14)/12)
36O NEXT I
80
SBO INFUT"INFUT SYNTHESIS FILENAME" F$
390 SFOUT=DFENOUT (LEFTक(F*;З)+"/DUT")
400 *DR..1
```



```
420 FC=OPENIN(LEFT讳(F串, O)+" "FC")
4.O FIT=חPENIN(LEFT悉(F多,Z)+""FIT")
440 *DR.0
4EO ENDFFOC
450
470 DEF FROCINFUT
480 *DR.1
47O INFUTEG,E:INFUTEG,NGAIN
EOO INFUTEFIT,E:INFUTEFIT,NFITGH
E10 INFUTEFC:B
S2O FOR I=1 TO 10
5SO INFUTERC,NK(I)
540 NEXT I
55O *DF.O
S6O IF NK& (1) OO.15 THEN NFITEH=O:NGAIN=NGAIN/AGOO ELSE MGAIN=NGA
    IN*SQR (NFITCH)/5O0
570 PRINT "B=";E;" P=":NPITCH:" G=":NGAIN;" &=";NK(1);" M=";INT
```


（AMAX）

580 ENDPROC
590
GOO DEF FROCLATTICE
$610 \mathrm{~F}(1)=I N+D(1)$
620 FOR $I=2 T 010$
$6 \Xi \mathrm{~F}(\mathrm{I})=\mathrm{F}(\mathrm{I}-\mathrm{I})+\mathrm{FK}(I-I) *(F(I-1)+D(I))$
640 NEXT I
650 OUT $=(F(10)+F(10) * F K(10)) * F G A I N$
GSO FOR I＝1 TO 9
$670 G(I)=-(F(I)+D(I+1)) * F((I)+D(I+1)$
680 NEXT I
690 G（10）＝－F（10）＊Fど（10）
$700 \mathrm{FOF} \mathrm{I}=1 \mathrm{TO} 10$
$710 \mathrm{D}(\mathrm{I})=\mathrm{G}(\mathrm{I})$
720 NEXT I
750 ENDFFロC
740
750 DEF FROCOUTFUT
760 SUUT $=$ OUT T－TEMF
770 TEMF＝OUT
$780 \mathrm{DD}=$ SOUT
790 IF ABS（DD）$\triangle A M A X$ THEN AMAX $=A E G$（DD）
800 IF AMAX 22040 THEN FRINT＂
DVEFFLDOW！！
！！！！！！！
$810 \mathrm{DD}=\mathrm{DD}+2050$
$820 \mathrm{~A}=\mathrm{DD} \mathrm{MOD} 64$
日30 E＝DD DIV 64
840 BFUTESFOUT：B
850 EFUTESFOUT：A
960 ENDFROC
870
980 DEF FROCUPDATE
990 FFITCH＝NFITCH
900 FGAIN＝NGAIN
$910 \mathrm{FOR} I=1 \mathrm{TO} 10$
$920 \mathrm{FK}(I)=N K(I)$
9 OO NEXT I
940 ENDFFDC
950
96O DEF FROCUNVDICE
970 REFEAT
980 PROCNOISE
990 IN＝NOISE
1000 FFDCLATTICE
1010 FFOCOIJTFUT
1020 ビジャ＋1
1030 UNTIL K2200
1040 FROCINFUT
1050 UF＝1：K゙＝1
1050 ENDFFRC
1070
$10 Q O$ DEF FFOCNDISE
1090 FNDIN＝FNDFEG AND $90006 O O 1$
1100 FNDOUT $=$ FNDFEE AND 200000200
1110 FNDOUT FNDDOUT（ 2×9 ）
$112 O$ FNDOUT FNDDDUT EOR FWDIN
1130 FNIOOUT＝FNDDUT＊（2＊11）
1140 FNDFEG＝FNDFEG＋FINDOUT
1150 FNDREG＝FNDFEG AND OOOOOFFFE
1160 FNDREG＝RNDFEG／2
1170 NDTSE $=(1024-F N D F E G) * 100 / 1024$
1180 ENDFFOC
1190
1200

AFPENDIX 4

A4 THE LEC TMSS2O1O PROGEAM LISTING

FILE: SAMININ

00010 *
00020
00025 *
00026 * TMSS2010 LFC ANALYSER
00027 *
$00028 *$
D.S.F. CHAN

00030 *
00040
00050 *
00060
AORG PFIC
00090
DATA
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
DATA
DATA $439,448,338,27,244,202,217,216,130,59$
DATA $32,-15,-22,-26,-64,-80,-112,-136,-135,-121$
DATA $-95,-57,-13,-2,23,44,50,54,22,-32$
DATA $-77,-90,-79,-53,-43,-41,-64,-90,-99,-126$
DATA $-149,-164,-184,-199,-209,-232,-285,-349,-577,-28$
DATA $-17,71,135,156,147,239,347,359,413,432$
DATA $320,256,234,197,231,228,164,114,107,80$
DATA $50,18,-56,-166,-139,-140,-109,-83,-61,-49$
DATA $-64,-69,-58,-61,-43 y-26,-55_{y}-62,-62,-45$
DATA $-11,9,10,-5,-29,-63,-100,-143,-172,-186$
DATA $-189_{y}-197,-232,-261,-289,-35,-257,-77,-13,13$
00220
DATA $75,77,167,295,348,271,410,576,298,252$
00230
DATA $246,255,281,240,147,90,40,-12,-25,-28$
00240
00250
DATA $-33,-11,-26,-37,-54,-82,-77,-68,-61,-32$
$-80,-110,-121,-119,-95,-53,19,47,22,-40$
00250
00270
DATA $-70,-105_{9}-95,-85_{9}-87,-116,-129,-185-148_{9}-158$
DATA $-186_{4}-219_{9}-256,-293,-225,-89,-17,47,111,147$
DATA $231,299,301,23,558,547,220,275,250,205$
DATA $182,144,125,129,115,72,17,-16,-34,-37$
00290
00500 *
$00 \mathrm{~S} 10 *$
$00.20 * W I N D D W$ FUNETION
$00 \mathrm{BO} *$
$00 \pm 40 *$
00550
ADFG
$2 E 20$
00.60

DATA $0,1,2,8,13,21,30,41,54,68$
00370
DATA
84, 101, 120,141,163,197,212,259,267,297
00380
DATA
00390
DATA
00400
DATA $1207,1261,1315,1371,1426,148 \mathrm{E}, 1539,1596,1654,171$

00410
00420
00430
00440
00450 00460 00470 00480 00490
00500
00510
00520
005.50

00540 00550
0050
00570
00580
00590
00600 ＊FILTEF COEFFIEJENTS
00610 ＊ $\mathrm{A} 1=\mathrm{AS} \mathrm{BO} . . .4 \times \mathrm{BS}$
00620
00430
00640
00650
00660 ＊
00670
\＆
FILE：FITMAIN

DATA DATA
DATA
$1770,1828,1887,1945,2004,2065,2121,2190,2239,229$ $2555,2413,2471,2528,2585,2642,2698,2753,2808,286$ $2916,2969,3021,3072,3122,3172,3221,3268,5315,356$ 5405， $3449,3471,3552,3572,3411,5648,3684,5719,375$ $3784,3814,3843,3971,3897,3921,3944,3966,3986,406$
$4020,4035,4049,4030,4071,4079,4086,4091,4094,405$ $3784,3814,3843,3971,3897,3921,3944,3966,3986,406$
$4020,4035,4049,4060,4071,4079,4086,4091,4094,409$ 4096，4094，4091，4086，4079，4071，4060，4049，4035，40． $4004,3986,3966,3944,3921,3897,3871,3843,3814,376$ 3752，3719， $3684,3648,3611,5572,5532,3471,5449,546$区 $61,515,3268,221,5172,3122,3072,3021,2969,291$ $2462,2808,2754,2699,2642,2585,2528,2471,2415,235$ $2662,2808,2752,2699,2642,2585,2528,2471,241,235$
$2297,2239,2180,2121,2065,2004,1945,1887,1829,177$ $1712,1654,1596,1559,1483,1426,1371,1315,1261,126$ $1154,1101,1050,999,949,900,851,804,758,713$ $669,626,584,544,505,467,420,595,361,328$
$297,267,239,212,187,163,141,120,101,84$ $69,54,41,20,21,18,8,3,1,0$

[^0]號


```
00820
00830 *******************************
00840 * THFESHOLIDING & CENTFE-CLIF
00850 ******************************
00860 *
OO870 PTHRE EQU >64
OOS8O FTHF1 EDU $65
OO890 FTHR2 EQU >66
OODOO FTHFS EQU >67
00910 *
00920 CALL FTHFLD
00930 EALL FCCLIF'
00940 *
00950 *
00960 *******************************
O0970 * AUTOCORFELATIDN
00980 ******************************
00990 *
O1000 FDELAY EOU $64
01010 FDLAFO EQU >65
O1020 FATDAT EQU >66
010SO FCOFFM EDU }26
01040 *
O10SO CALL FCOFF
010SO CALL FCDRMV
01070*
01080 *
01090 ******************************
01100 * FEAK FICKING , INTEFFOLATION
O1110 * AND PITCH DUTFUT SUBROUITINE
01120 *******************************
011.30 *
01140 FFiXX EGU $64
01150 FP1 EQU \S5
O1160 PYO EQU SbS
01170 FY1 EQU >67
01180 FY2 EQU >SB
01190 FCDMF1 EDU >69
01200 FCOMFO EOU SGA
01210 PXX EQU >EE
O1220 FFITCH EOU > SC
01230 *
01240 GALL FFEAK
O125O CALL FINTFF
01260
01270
O1280 NOF
01281 NDF
01292 NOF
```

<
FILE: ANYMAIN


```
OOS2O * PRE-EMPHASIS , WINDOWING
OOSSO * SHIFTING . AUTOCOFRELATION
00540 ******************************
00550 *
OO560 AROH EQU >0
OOS70 AROL EQU >1
00580 AR10H EQU >14
OO590 AR10L EQU >15
00600 AF1C EQU >16
00S10 AE20 EQU >17
OO620 AWINDT EQU 
0 0 6 3 0 ~ A I N P U T ~ E Q U ~ \% 1 9
O640 AEMFEF EQU >1A
005O AINSHF EOU >AB
OOSSO ADO EOU >1C
00670 AD1 EQU >ID
00690 AD2 EQU >1E
00690 ADS EQU >1F
00700 AD4 EQU \20
00710 ADS EDU >21
00720 ADG EQ!J >22
00730 AD7 EOU >2E
00740 AD8 EOU >24
00750 AD9 EDU >25
00760 AD10 EQU 326
OO770 AARO EQU >7%
00780 AAF1 EGU 
00790 *
00800
00810 *
00820 LT UNITY
OOBSO MPYK F1C
OOB40 PAC
OOB5O SACL AF1C
00860 MPYK E2O
00870 PAC
00880
00g90 *
00900 LAFE O.219
00910 FFWSAL CALL AFREMF
00920 EALL AWIN
009SO CALL ASHFT
00940 CALL AACOFF
00950 LAFF O
OO96O BANZ FFWSAL
00970 *
00980 *
00990 ********************************
01000 * CALCULATE SEGMENT GAIN
01010 *******************************
01020 *
01030 AA EDU $16
01040 AB E10U 217
O105O AC EDU $19
01060 *
01070 CALL AENGFY
01080 *
01090 *
01100 ******************************
O1110 * FRE-NDFMALIZATION (FOO..*FIO)
01120******************************
01130 *
O1140 ARO EQU >16
O115O AFI EQU >17
O1160 AR1O EOU 22O
01170 ACNTER EQU 221
```

```
O1180 ASFCNT EQU >22
O.1190 AFEF EQU >2S
01200 *
01210 CALL AFNOFM
01220 *
01230 *
01240 ******************************
0125O * NOFMALIZATIDN RI=FI/RO
01250 *****************************
01270 *
01280 ANUMEF EQU >72
O1290 ADENOM EQU >
O1300 AOUOT EDU }>7
O1S10 ATMSGN EOU >75
O1320 AMULT1 EQU >76
O13SO AMHLTZ EQU }>7
OIE4O AMANS EOU >7日
01350 *
01S60 CALL ANDFM
01370 *
01380 *
01.390 ******************************
01400 * L AND G ITEFATION
01410 ******************************
01420 *
01430 AXO EQU 221
01440 AX1 EQU >22
OI450 AX18 EQU >S3
O1460 AX2O EQU \S5
01470 AX21 EQU \SG
O1480 AK1 EQU \\Xi7
01490 AK10 EQU 240
01500 AKCNT EQU }$4
01510*
OL520 CALL ALAG
01530 CALL AQUT
01540 *
01550 *
01560 *******************************
O1570 * FESTOFE DVEFLAFFINE DATA
01580 * AT THE FFONT OF FRAME
01590
01500 *
01610 CALL ARST
01620 NOF
01650 NOP
01640 NOF
<
FILE: ENDMAIN
```

00010 *

OOOSO * TBANSMIT FAFAMETEFS TO FECEIVEF
$00040 * * * * * * * * 3+* *$
00050 *

00060
00070
00080
00090
00100
00110
$00120 *$
OOSO * MDVE NEWFFAME TD FF O.,...... FF
$0140 *$
$00150 *$

```
OO160 NEWP1 EQU >0
00170 NEWP2 EQU >1
00180 NEWDAT EQU >2
00190 *
OO200 MORE LAC INTNDT
00210 BNZ MDRE
OO220 CALL NEWFRM
002SO NOF
00240 NOF
00250 NOF
00260 B
00270 NOF
00280 NOF
00290 NOF
00300 *
00310 *
<
FILE: FITSUBR
```

```
00005 *
00010 **************************************************
OOO2O * FCOEFF SUEROUTINE
OOOSO * SET UP FILTER COEFF. A1.,.AS , BO.......BS
00040 * D1=D2=DS=D4=0 : FUT *FEO INTD FRDADD
00050 ***************************************************
00060 *
00070 FCOEFF LT UNITY
00080 MFYK D90
00090 PAC
00100 LAFK 0,6
OO110 LARK 1,PA1
00120 FCOFL1 LAFF 1
001.30 TBLR *+.0
OO140 ADD UNITY
00150
00160 *
00170 ZAC
00180 SACL PDI
00170 SACL FD2
00200 SACL PDS
00210 SACL PD4
00220 *
00230 LT UNITY
OO240 MFYK FSO
00250 FAC
OO250 SACL FRDADD
00270 *
00280
00290 *
00.00 *
00S10 ****************************************
OOS20 * FDMOU SUEROUTINE
OOSSO * MOVE DATA TN FM (FRDADD) INTO DM (FFIN)
0040 ******************************************
00350 *
OOSSO FDMOV LAC FRDADD
00S70 TEL_F PFIN
OOS80 ADD UNITY
00S90 SACL PRDADD
00400 *
00410 FET
00420 *
00430 *
00440 *****************************************
OO450 * FSTORE SUEFDUTINE
```

```
OO46O * STORE PFOUT DF THE LFF INTO DM (AR1)
00470 ***************************************
00480 *
00490 FSTOFE LAC FFOUT
00500 LARP 1
00S10 SACL *+
00520 *
OOSO RET
00540 *
00550 *
00560 **************************************
00570 * FFILTR SUEFOUTINE
0S80 * FASS FFIN --> LFF (A1.,AZ,EO..BS)
00590 * WITH OUTPUT IN FFOUT
00600
00S10 *
00@20 FFILTF ZAC
OOSOO LT FD2
00540 MPY FA1
00650 LTA FDS
00660 MFY FAZ
00670 LTA FD4
0680 MFY FAS
00690 AFAC
90700 SACH FFE:4
00710 *
00720 LAC PFB
007SO ADD FFIN
00740
00750
00760
00770
00780
00790
00800
00日10
00820
08SO LTD FDI
00g40 MPY FBO
00850 APAC
00860 SACH PFOUT:4
00970
00880
00890
00900
00710
00920 * FDCOUT SUEFDUTINE
OO93O * MEAN OF THE SPEECH SEGMENT FEMOVED
```



```
0¢छ% *
00960 FDCKUT ZAC
OO970 LAFKG 0,99
00900 LAFE O
00790 FDCTLI ADD *
O10OO EANZ FDCTLI
O1010 SACL FOS
01020 *
010%0 LT FOS
01040 TFYK +41
O10SO FAC
01060 SACH PロS,4
01070 *
Q10gO LAFE 0,99
O1070 LAFF O
01100 FDCTL2 LAC *
O1110 SUE PDS
```


01780		SACL	PTHRE		
01790 *					
01800	PTHLTS		LT	PTHRE	
01810		MF'YK	+2457		
01820		PAC			
01830		SACH	PTHFE, 4		
01840 *					
01850		FET			
01860 *					
01970 *					
$01980 *$					
Q1890 * FCCLIP SUBFDUTONE					
O1900 * CENTFE CLIF AI $5=0 . . .99$ WITH FTHFE					
01910 **					
01920					
01930	FCCLIF	LAFE*	0.79		
01940		LAFPF	\bigcirc		
01950 *					
01960	PCLFLI	LAC:	PTHFE		
01970		EZ	FCLFLS		
01980		LAC	*		
01990		AES			
02000		SUE	PTHRE		
02010		ELEZ	PCLFLS		
02020		LAC	*		
02030		EGZ	FCLFL2		
02040		LT	UNITY		
02045		MFYK	-5		
02046		PAC			
02050		SACL	*		
02060		E	PCLFL4		
02070	PCLFL2	LACE:	$+5$		
02080		SACL	*		
02090		E	FCLFL4		
02100 PCLFLS		ZAC			
02110		SACL	*		
02120	FCLFL 4	EANZ	PCLFLI		
02130*			-		
02140		FET			
02150 *					
02160 *					
O2180 * FCOFF SUEROUTINE					
02190 * AFI=99\%ARO=99-X WHEFE $X=N 0$. OF DELAY					
02210 *					
02220	FCOFFE	LTT	LINITY		
02280		MFY「K゙	DEO		
02240		FAC			
02250		SACL	FCOFPM		
02260 *					
02270		ZAC			
02280		SACL	FDELAY		
02290*					
02300	FCOFI 1	LACE	99		
$02 \div 10$		SUB	FDELAY		
02820		QACL	FDLAFO		
0250		BLz	FCOROK		
02340 ${ }^{\circ}$					
02Ј50		LAF	O,FDLAEO		
02360		LAFE	1.979		
02370 *					
02880		$\square A C$			
02390		MPYK	0		
02400		LAFF	0		
02410	FCOFL2	LTA	* 1		


```
0.3080
03090
PINTRP
    LAR O.PP1
03100
03110
0.3120
0.3130
03140
0.3150
03160
03170
0$180
03190
0200
0\210
03220
03230
0.240
03250
02260
0270
0.280
03270
03500
08310
03.20
0.ETO
0.540
03.350
OZS60
03.70
03880
03390
0.300
03410
05420
03430
0.440
0.5450
0.460
03470
OS490 FINTR2
0Y490 ADD FCOMF2
0S500 EGZ FINTFI
OS10 2AC
OS15 SUE UNITY
0%=20
03520
OSSO FINTRI LT PP1
OS40 MFYF +2
OS5O FAC
OSSO ADD FXX
03570
08580 *
05590
0.500 *
0%610 *
05620
OSGZO * FOUT SUEROUTINE
OSG40 * OUTFUT FFITCH TO FM( XCAO,
```



```
0;660 *
0370 FOUT LT LINITY
OESBO MFYKG CAO
0.690 PAC
OS700 TELN PPITCH
03710 *
0.320
    FET
```

```
03730 *
03740 *
03750 ***************************************
03760 * INTIAL SUBROLITINE
OS770 * DEFINE SAMPLE RATE & SAMPLE MODE
OS7BO * DEFINE UNITY % INPUT DATA MASK
03790 ***************************************
03800 *
03S10 INTIAL LACK I
0.320 SACL UNITY
0.830 *
0.840 LT UNITY
OTB5O MFYK SAMRAT
0S860 PAC
0.970 SACL CLEK
0.3880
03990
03900
0 3 9 1 0
0.320 O OUT ELCK,1
OS950 OUT CNTFL:O
03940 *
03750
0.360
03970
0.580
OS990 LAC INTMSK.4
O40OO - SACL INTMSK
04010 *
04020
04030 *
04040 *
04050 *****************************************
04060 * AGAIN SUBROUTINE
O4070 * DEFINE INFUT STARTING ADDRESS (FM)
04080 * AND INFUT DATA CDUNTER
04090 *****************************************
04100 *
O4110 AGAIN LT UNITY
04120 MFYK CCO
041.0 PAC
04140 SACL INTPMA
04150 *
04150 LACK 196
04170 SACL INTNDT
04180 *
04190 RET
04200 *
04210 *
<
FILE: ANYSUER
00010
OOO2O * ASTOVL SUEROUTINE
000SO * MDUE FM(DFE4->FF7)---> FM(VFOO->F13)
00040
00050 *
O0O60 ASTOUL LT UNITY
00070 MFYK゙ FE4
00080 FAC
00090 *
00100 LARK 0,0
00110 LARK. 1.19
OO12O ASTOL L LAFF O
OO1.O TELF *+,1
```


02780		DINT	
02790		CALL	ADIV
02800		EINT	
02910		LAC	ADUOT
02820		SACL	*-
02830		LARP	1
- 02840	*	EANZ	ANOFIML
02850 *			
02860		RET	
02870 *			
02880 *			
92890 **			
02900 * ALAG SUEFOLITINE			
02910 * FIOUX AND GUEGUEN ITERATION			
02920	******	******	**************************
$02730 *$			
02940	Al_Ag	LAFK\%	0.221
02950		LAFEK:	1,80
02960		ZAC	
02970	ALAGL 1	LAFiF	0
02980		GACL	${ }^{*}+0_{9} 1$
02990		EAIVZ	ALAGL 1
03000 *			
OSO10		LAC	AFO
- 03020		SACL	AXO
08030 *			
03040		LARK	O.ARI
08050		LAFK\%	1. AX1
0.060	ALABL2	LAFF	0
08070		LAC	* $+0,1$
08080		SACL	* +
03090		SACL	*+
0.3100		SAR	O, AAFO
03110		LACK.	AR10
02120		SUB	AAFO
03150		EGEZ	ALAGL2
O2140*			
03150		LAFK゙	O. AKI
03160	ALABL.	LAC	AX1
03170		SACL	ANUMEF
0 ± 180		LAC	AXO
03190		SACL	ADENDM
03200		DINT	
0 ± 210		CALL	ADIV
0320		EINT	
03250		2 AC	
0.240		SUE	ADUOT
0320		LAFiF	\%
0 2 20		SACL	*
03270 *			
07280		SAFt	O, ALENT
0.290		LACK\%	A¢10
03300		SUE	AKCNT
03510		Ez	ALABLE
03220 *			
08230		LAFES	1.axo
$0 \leq 40$		$1 . . A F P$	1
区60	Alassla	MAF:	* +
03560		LT	$\cdots \cdots$
03670		MFY	* 11
02880		FAC	
03390		GACH	AMANS 1
0 0 400		LAC	AMANS
05410		ADD	*
03420		SACL	* +
03430		MAR	*+


```
04100 *
04110
RET
04120*
04130 *
<
FILE: ENDSUBR
```

```
00010 *
00020 ****************************************
OOOSO * COEFXF GUBFOUTINE
OOO4O * TFANSFER FM (\CAO. . DCAB) TO
00SO * DM {>O, >E)
00060 *****************************************
00070 *
OOOBO LOEFXF LT UNITY
OOO90 MFYKG CAE
00100 PAC
00110 *
00120
00130
00140 [OFYFL TELR
00150 SUE UNITY
OO1SO BANZ COFXFL
0170*
00180
00190 *
00200 *
00210 ****************************************
OO22O * XMIT SUEROUTINE
OO23O * TRANSMIT DM(`O...>B) TO DUTFUT FORT S
00240 ****************************************
00250
00260
00270
00280 *
00290 XMITLI LARF O
00295 OUT *,3
00296 OUT *,3
00300 OUT *+, S.1
OOSOS OUT 5.5
OOS1O XMITL2 EIDZ XMITLE
00S20 B XMITL2
OOSO XMITLS OUT E:G
O0S%S OUT b.G
003S6 OUT 6yG
OOSAO BANZ XNTTLI
00350 *
00S50 FEET
00%70 *
00%80 *
00340
00400 * NEWFFM SUEFDUTINE
OO410 * MOVE FHM ( NCCOn, %DE7) TO
00420 * FIV (NFO, , FFF)
00430 ********外****************和*****************
0440 *
OMSO NEWFFMM LT UNITY
O0460 MFYK ECO
00470 FAC
00480 SACL NEWF1
00490 MPYK FSO
OO5OO PAC
OO10 SACL NEWF2
00520 *
OOSEO LARK 0,199
```



```
00090 ELRL1 SACL * *
00110 *
00120 RET
00130 *
00140 *
FILE: END
```

00010 *
00020 END
00030 *
<

00640	LATTEM	EQU	253
00650	FPITCH	EQU	＞4
00660	PGAIN	EQU	＞55
00670	PK． 1	EQU	＞56
00680	PK2	EQU	＞57
00690	PK3	EQU	＞8
00700	FK゙ 4	EGUS	259
00710	FK゙S	EQL	＞SA
00720	FKCS	EQU	SB
00730	FK゙ 7	EQU	$>5 \mathrm{C}$
00740	FK8	EQU	$>5 \mathrm{D}$
00750	PK¢	ELU	SE
00760	FK10	EQU	35
00770	NPITCH	EQL	SO
00780	NGAIN	EQU	P61
00790	NK゙1	EQU	82
00800	NK2	EQU	26
00810	NK゙S	EDU	P64
00820	NK゙4	EQU	$\bigcirc 5$
00820	NK゙S	EDU	26b
00840	NKCS	EGU	$\bigcirc 67$
00850	NK7	EDU	268
00860	NKく8	EQU	269
00870	NK9	EQU	\bigcirc ¢ A
00880	NK10	EQU	＞ 6 B
00890	IFITCH	ECU	36 C
00900	IGAIN	EQU	$\bigcirc 6 D$
00910	Iド1	EQU	P6E
00920	IK2	EQU	$\therefore \mathrm{CF}$
00950	IKS	EQU	>70
00940	IKく 4	EQU	$\gg 1$
00950	IKS	EDU	>72
00960	IK゙它	EQU	873
00970	IKく7	EDU	>74
00980	IK8	EQU	775
00990	IK9	EDU	＞76
01000	IK10	EQU	>77
01010	INTSTU	EQU	$\times 78$
01020	INTACH	EQU	279
01030	INTACL	EQU	$>7 \mathrm{~A}$
01040	INTARO	EOU	＞ 7 B
01050	INTAF1	EQU	$\cdots 7 \mathrm{C}$
01060	INTADD	EOU	37 D
01070	OPMSK゙	EDU	$\cdots 7 E$
01090	LINITY	E®I	$\geqslant 7 \mathrm{~F}$
01090	＊		
01100	＊		
01110	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊		
01120	＊SYNTHESTSING MATN FRDGFAM		
01130	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊		
01140	＊．		
01150	＊		
01160	STAET	DINT	
01170		CALL	INTIAL
01180		CALL	CLEAFR
01190		ZAC	
01200		SACL	UF
01210		SACL	LD
01220		EINT	
01230	SYL 1	LAC	UF
01240		ENZ	SYL． 2
01250		DINT	
01260		CALL	UPDATE
01270		EINT	
01280		CALL	DECIS
01290		LACK	1

01960	SACL	LATIN
01970	CALL	LATICE
01980	LACK	25
01990	SACL	LATIN
02000	CALL	latice
02010	LACK.	0
02020	SACL	LATIN
02030	CALL	LATICE
02040	LACK	20
02050	SACL	K
02060	LAC	FPITCH
02070	SUB	K
02080	SACL	P
02090 SYLS	ZAC	
02100	SACL	LATIN
02110	CALL	LATice
02120	LAC	F
02130	SUB	UNITY
02140	SACL	P
02150	ENZ	SYLS
02160	B	SYL1
02170	NOP	
02180	NOP	
02170	NOF	
02200		
02210 *		
<		
FILE:	JRR1	

```
00010 *
00020
00030
OOO40 * SYNTHESIS SUEROUTINES
00050 *****************************************
00060 *
00070
00080
OOOOO * INTIAL SUBFOUTINES
00100 * UNITY=1:RNDREG=1
OO110 * DEFINE SAMFLING FATE & SAMFLING MDDE
OO12O * DEFINE O/F MASK % I/F GTAFTING ADDFEGS
00130
00140 *
OO15O INTIAL LACK 1
OO1SO SACL UNITY
O0170 SACL FNDDFEE
00180 *
OO190 LT UNITY
OO2OO MPYK SAMFAT
0 0 2 1 0 ~ F A C
00220 SACL CLCF
00221 *
00222
00225
00224
002S0
00240
00250
00260
00270 OUT CLEKyI
00280 OUT CNTFL,O
00290 *
OOZOO LT UNITY
OOS10 MPYK MASK
00S20 PAC
```

00330
00340
00550
00360 00370 00880 00590 00400
00410 *
00420 *
00430
00440 * clear subroutine
00450 * CLEAR DM F1:..F10,G1...G10,D1...D10
00460
00470 *
00480 LLEAR ZAC
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00750
00770
00780
00790
00800
00810
00820 *
00830
00840 * UFDATE SUEROUTINE
OOgS0 * F (FARAMETERS) =N(FAFAMETERS)
00860
00970 *
OOgQO UPDATE LAC NPITCH
00990 SACL FFITCH
$00900 \quad \mathrm{AAC}$ NGAIN
00910 GACL FGAIN
00920 LAC NEI
00930 SACL FK1
00940 LAC NH2
00950 SACL FE2
00960 LAC NKS
00970 SACL FFS
00980 LAC NK4

00970		SACL	FŘ4	
01000		LAC	NkS	
01010		SACL	PK5S	
01020		LAC	NKKG	
01030		SACL	PK6	
01040		LAC	NK. 7	
01050		SACL	PK7	
01060		LAC	NKS	
01070		SACL	PKS	
01080		LAC	NK9	
01090		SACL	PK9	
01100		LAC	NK10	
01110		SACL	FK10	
01120	*			
01150		RET		
01140	*			
01150	*			
01160	******	******	**********	***********
01170	* DECI	SUBF:	UTINE	
01180	* IF F	ITCH	$=195$ THEN	O: FGAIN=0
01190	* IF F	$1>-0.2$	THEN FFI	
01200	* FGAI	FGAIN	* 32/1000	
01210	******	******	***********	***********
01220	*			
01230	DECIS	LACK	195	
01240		SUB	PFITCH	
01250		BGZ	DECLI	
01260		ZAC		
01270		SACL	PPITCH	
01280		SACL	PGAIN	
01290		E	DECL2	
01.300	DECL1	LACK゙	58	
01310		SACL	LATTEM	
01320		LT	LATTEM	
01330		MPYK	141	
01240		FAC		
01550		ADD	PK1	
01360		ELEZ	DECL2	
01370		ZAC		
01380		SACL	PFITCH	
01390	*			
01400	DECL2	LT	PGAIN	
01410		MFYE	1048	
01420		FAC		
01430		SACH	FGAIN, 1	
01440	*			
01450		FET		
01460	*			
01470	*			
01480	******	*****	**********	$* * * * * * * * *$
01490	* FFES	SUEFOU	TINE	
01500	* FSEU	FAND	IM BINARY	
01510	******	******	**********	$* * * * * * * * * * *$
01520	*			
01530	PRES	LAC	FNDFEG	
01540		AND	UNITY	
01550		$5 A C L$	RNIDCN	
01560		LAC	RNDEEE,7	
01570		SACH	FNDOUT	
01580		LAC	FNDOUT	
01585		AND	UNITY	
01590		XOR	FNDIN	
01500		SACL	FNDOUT	
01610		LAC	FNDOUT, 11	
01620		ADD	RNDREG	
01620		SACL.	RNDFEG	

01640	LAC	RNDREG; 15
01645	SACH	RNDREG
01650	LAC	RNDREG
01660	LT	UNITY
01670	MPYK	1024
01680	SFAC	
01690	SACL	NOISE
01700	LAC	NOISE: 12
01710	SACH	NOISE
01730	NOF	
$01755 *$		
$01740 *$		
01750		
$01760 *$		
$01770 *$		
FILE:		

00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00520
00630
00640
00650
00660
00670 *
00.680

00690
00700
00710
00720
00730
00740
00750
00750
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01630
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130

ADD LATTEM
SACL F4
LAC D4
SUB LATTEM
SACL G3
LAC F4
ADD DS
SACL LATTEM
LT LATTEM
MPY FK4
FAC
sach Lattem, 1
LAC F4
ADD LATTEM
SACL FS
LAC DS
sub Lattem
SACL G4
LAC FS
ADD D6
SACL LATTEM
LT LATTEM
MPY FKS
PAC
SACH LATTEM, 1
LAC FS
ADD LATTEM
SACL FG
LAC D6
sub lattem
SACL GS
LAC F6
ADD D7
SACL LATTEM
LT LATTEM
MPY PK6
FAC
SACH LATTEM, 1
LAC FG
ADD LATTEM
SACL F7
LAC D7
SUB LATTEM
SACL GG
LAC F7
ADD D8
SACL LATTEM
LT LATTEM
MFY FK7
FAC
SACH LATTEM, 1
LAC F7
ADD LATTEM
SACL FB
LAC DB
sue lattem
SACL G7
LAC FB
ADD D9
SACL LATTEM
LT LATTEM

01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
$01=10$
01320
0130
01340
01350
01360
01270
01380
01390
01400
01410
01420
01430
01.440

01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
$01721 *$
01722
01723
01724
01725
01726
01727

MPY FKE
PAC
SACH LATTEM, 1
LAC FB
ADD LATTEM
SACL FQ
LAC D9
SUB LATTEM
SACL G8
LAC Fq
ADD D10
SACL LATTEM
LT LATTEM
MPY FKG
FAC
SACH LATTEM, 1
LAC Fq
ADD LATTEM
SACL FIO
LAC DIO
SUE LATTEM
GACL G9
LT FiO
MFY FKK10
PAC
SACH LATTEM, 1
ZAC
SUB LATTEM
SACL G10
LAC F1O
ADD LATTEM
SACL LATTEM
LT LATTEM
MPY FGAIN
FAC
SACL LATOUT
LAC G1
SACL D1
$\operatorname{LAC} \quad \mathrm{G} 2$
SACL DZ
LAC ES
GACL DS
LAC $\quad 64$
GACL DA
LAC GS
SACL DE
LAC GS
SACL D6
LAC G7
GACL $\quad \mathrm{D7}$
LAC GB
SACl DE
LAC GP
GACL D?
LAC E10
9ACL D10
$\angle A C \quad . \angle D$
SACL STOFE
LT STOFE
MPYK 3694
FAC
SACH STORE 4


```
02S00 LAC IK`9
02310 SACL NK`?
02S20 LAC IK10
02S30 SACL NK1O
023S5 *
O2こ36 ZAC
02Sड7 SACL UF
02338 *
02उ40 *
O2SO INTLI ZALH INTACH
02S60 ADDS INTACL
O2\Xi70 LAR O,INTAFO
O2390 LAR 1,INTAFI
O2390 LST INTSTU
02400 EINT
02410
02420 RET
02430 *
02440 *
<
FILE: END
00010 *
00020 ****************************************
00OEO * ENDING STATEMENT
00040 *****************************************
00050 *
00060 END
00070 *
00080 *
<
```

REFERENCE

1. WIIBUR, Steve. "The Universe Project", Electronics \& Power. May 1983, pp.394-398.
2. FLANAGAN, J.L., COBER,C.H., RABINER,L.R., SCHAFER,R.W., and UMEDA, N. "Synthetic Voices for Computers", IEEE Spectrum, Vol.7, No.10, pp.22-45, Oct.1970.
3. RABINER, L.R., SCHAFER, R.W. Digital Processing of Speech Signals, Prentice-Hall,1978.
4. PORTNOFF, M.R. "A Quasi-One-Dimensional Digital Simulation for the Time Varying Vocal Tract", M.S.Thesis, Dept. of Elect.Engr., MTT, Cambridge Mass., USA, June 1973.
5. FLANAGAN, J.L. Speech Analysis, Synthesis and Perception, 2nd Ed., Springer-Verlag, New York, 1972.
6. ROSENBERG, A.E. "Effects of Glottal Pulse Shape on the Quality of Natural Vowels", J.Acoust. Soc. Am., Vol.49, No.2, pp.583-590, Feb.1971.
7. MAKHOUL, J. "Linear Prediction : A Tutorial Review", PROC. IEEE, Vol.63, pp.561-580, 1975.
8. MARKEL,J.D. and GRAY,A.H.Jr., Linear Prediction of Speech, Springer-Verlag, New York, 1976.
9. WAKITA, H. "Direct Estimation of the Vocal Tract Shape by Inverse Filtering of Acoustic Speech Waveforms", IEEE Trans. on Audio and Electro acoustics Vol.AU-21, No.5, pp.417-427, Oct.1973.
10. LE ROUX,J., and GUEGUEN, G. "A Fixed Point Computation of Partial Correlation Coefficients", IEEE Transactions on ASSP. June 1977, pp.257-259.
11. HESS, W. Pitch Determination of Speech Signals, Algorithms and Devices, Springer Verlag, New York, 1983.
12. OH, C.A., UN, C.K. "A Performance Comparison of Pitch Extractor Algorithms for Noisy Speech". Private Communication, Dept.of Electrical Eng., Korea Advanced Inst. of Science \& Technology, Seoul, Korea.
13. SONDHI, M.M. "New Methods of Pitch Extraction", IEEE Transactions on Audio and Acoustics, Vol.16, No.2, pp.262-266. June 1968.
14. BOZIC, S.M. Digital and Kalman Filtering, Edward Arnold, 1981.
15. LICKLIDER, J.C.R., and POLLACK,I. "Effects of Differentiation, Integration and Infinite Peak Picking upon the Intelligibility of Speech", J.Acoust.Soc. Am., Vol.20, pp.42-50, Jan.1948.
16. DUBNOWSKI, J.J., SCHAFER,R.W., and RABINER,I.R. "Real-Time Digital Hardware Pitch Detector", IEEE Transaction on ASSP. Vol.24, No.1, pp.2-8. Feb. 1976 .
17. ATAL,B.S., RABINER,L.R. "A Pattern Recognition Approach to Voiced-Unvoiced-Silence Classification with Application to Speech Recognition", IEEE Transactions on ASSP. Vol.24, No.3, pp.201-202. June 1976.
18. HUGHES,M.T.G. "The Simulation of Chance Phenomena", IUIEC Seminar, No.53.
19. Texa Instrument. TMS32010 Evaluation Module Users' Guide, 1984.
20. Texa Instrument. TMS 32010 Users' Guide, 1983.
21. Texa Instrument. TMS32010 Analog.Interface Board Users' Guide, 1983.
22. KREYSZIG, Erwin. Advanced Engineering Mathematics. John Wiley and Sons,Inc., 1972. Section 18.4.

FIG.l. 1 THE PROJECT UNIVERSE NETWORK

FIG.2.1 SCHEMATIC DIAGRAM OF THE HUMAN VOCAL TRACT

Nostril

FIG. 2.2 FUNCTION DIAGRAM OF THE VOCAL APPARATUS
(AFTER FLANAGAN)

FIG.2.3 a) the vocal tract model
b) the vocal tract model area function
c) THE x-t PLANE

FIG.2.4 THE CONCATENATION OF N LOSSLESS ACOUSTIC TUBES

FIG. 2.5 THE JUNCTION BETWEEN TWO LOSSLESS TUBES

FIG. 2.6 THE TERMINATION AT LIP END OF A CONCATENATION OF LOSSLESS TUBES

FIG. 2.7 THE TERMINATION AT GLOTTAL END OF A CONCATENATION OF LOSSLESS TUBES

FIG.2.8 THE N-SECTION UNIFORM LOSSLESS TUBE MODEL

fIG.2.9 THE DISCRETE-TIME SYSTEM OF THE LOSSLESS TUBE MODEL OF THE VOCAL TRACT

FIG.2.10 THE DISCRETE-TIME SYSTEM OF THE LOSSLESS TUBE MODEL OF THE VOCAL IRACT USING WHOLE DELAYS IN LADDER PARTS

FIG. 2.11
a) THE RADIATION FROM A SPHERICAL BAFFLE
b) the radiation from an infinite plane baffle

FIG.2.12 BLOCK DIAGRAM OF THE VOCAL TRACT MODEL INCLUDING the radiation effect

fig.2.13 an example of glottal volume velocity at mouth

FIG.2.14 THE GLOTTAL PULSE GENERATOR

$H(z)$

FIG.2.16 THE SIMPLIFIED DISCRETE-TIME MODEL FOR SPEECH PRODUCTION

FIG.2.17 BASIC CONFIGURATION OF THE LPC EXPERIMENT

FIG.3.1 THE SIMULATION EQUIPMENT CONFIGURATION
G kHz SAMPLIHG DF SPEECH (12-BIT LIHERR PCHA
LTST OF DPERATIONS :-
(1) IHPUT SPEECH
(2) DUTPUT SPEECH
(3) STORE SPEECH
(4) RETRIEUE SPEECH
(5) RESET FSTORE
(6) EMTT
WHICH OPERATIOH CODE ?

FIG.3.3 DATA FORMAT OF A SPEECH SAMPLE IN THE FRAMESTORE

fig.3.4 the reflection coefficient estimator

FIG.3.5 WINDOWED AND OVERLAPPING DATA BLOCKS

$W(n)=0.5 m(1-\cos (2 \pi n / 219))$

FIG.3.6 THE 220 POINTS HANNING WINDOW

FIG. 3.7 FLOWCHART OF THE LE ROUX AND GUEGUEN METHOD FOR A 10 th ORDER LPC

FIG.3.8 SONDHI'S METHOD FOR PITCH DETECTION

$F X(n)$

$a_{1}=1.45902906$
$b_{0}=0.0316893439$
$a_{2}=-0.910368999$
$b_{1}=0.0950680317$
$a_{3}=0.197825187$
$b_{2}=0.0950680317$
$b_{3}=0.0316893439$

FIG.3.10 THE 3rd ORDER BUTTERWORTH LOW PASS FILTER

FIG.3.11 THE CENTRE-CLIPPING FUNCTION

a)

b)

FIG.3.13 a) A SPEECH SEGMENT FROM UTTERANCE 'ONE'
b) THE CORRESPONDING FOURIER SPECTRUM
a)

b)

FIG.3.14 a) THE CENTRE-CLIPPING OF FIG.3.13a
b) THE FOURIER SPECTRUM OF THE CLIPPED DATA
a)

b)

FIG.3.15 a) THE 3-LEVEL CENTRE-CLIPPING OF FIG.3.13a b) the fourier spectrum of the clipped data

FIG. 3.16 THE AUTOCORRELATION FUNCTION OF FIG.3.14a

FIG.3.17 THE AUTOCORRELATION FUNCTION OF FIG.3.15a

FIG.3.18 FLOWCHART OF THE PEAK PICKING PROCEDURE

FIG.3.19 THE $2 / 1$ QUADRATIC INTERPOLATION

FIG.3.20 FLOWCHART OF IHE INTERPOLATION PROCEDURE

FIG. 3.22 THE 10 th ORDER VOCAL TRACT LATTICE FILTER (INFINITE GLOTTAL IMPEDANCE)
a)

b)

FIG. 3.23 a) THE FOUR MULTIPLIER REPRESENTATION OF A LOSSLESS TUBE JUNCTION
b) THE CORRESPONDING ONE MULTIPLIER CONFIGURATION

FIG.3.24 THE 10 th ORDER LATtICE FILTER USING ONE MULIIPLIER JUNCTION

a)

b)

FIG.3.26 a) ROSENBERG APPROXIMATION TO GLOTTAL PULSE FOR $\mathrm{Ni}=14$ AND N2=6
b) THE CORRESPONDING FOURIER SPECTRUM

FIG.3.27 THE GLOTtAL PULSE GENERATOR

FIG.3.28 FLOWCHART OF THE GLOTTAL PULSE GENERATOR SUBROUTINE
a)

b)

FIG.3.29 a) THE RANDOM NOISE GENERATOR b) K-MAP OF Z

b)

FIG.3.30 a) A SEGMENT OF THE RANDOM NOISE SIGNAL 'NOISE • b) THE CORRESPONDING FOURIER SPECTRUM

FIG.3.32 FILE hANDLING CONFIGURATION OF THE LPC SIMULATION

FIG.4.1 THE TMS32010 SOFTWARE DEVELOPMENT SYSTEM CONFIGURATION

FIG.4.2 TMS32010 SOFTWARE FOR THE REFLECTION COEFFICIENT ESTIMATOR

FIG.4.3 THE WINDOWING/PRE-EMPHASIS/AUTOCORRELATING NETWORK

FIG.4.4 AUTOCORRELATION FUNCTION 32-BIT TO 16-BIT TRANSFORMATION

FIG.4.5 FLOWCHART OF THE AR LEADING ZEROS COUNIING SUBROUTINE

FIG.4.6 FLOWCHART OF THE SHIFTING SUBROUTINE

FIG.4.7a FLOWCHART OF THE DIVISION SUBROUTINE (DIV)

FIG.4.7b FLOWCHART OF THE NORMALIZATION SUBROUTINE

Fig. 4.3

FIG.4. 8 FLOWCHART OF THE REFLECTION COEFFICIENT ESTIMATOR MAIN PROGRAM

FIG.4.10 FLOWCHART OF THE GAIN ESTIMATOR SUBROUTINE

FIG.4.12 FLOWCHART OF THE LATTICE FILTER SUBROUTINE I NCLUDING THE RADIATION NETWORK

FIG.4.13 FLOWCHART OF THE VOICED EXCITATION LPC SYNTHESIS SUBROUTINE

FIG.4.14 FLOWCHART OF THE RANDOM NOISE GENERATOR SUBROUTINE

FIG.4.15 FLOWCHART OF THE UNVOICED EXCITATION LPC SYNTHESIS SUBROUTINE

FIG.4.16 TMS 32010 SOFTWARE STRUCTURE OF THE LPC SYNTHESIZER

FIG.4.17 FLOWCHART OF THE SYNTHESIZER BACKGROUND ROUTINE

FIG.4. 18 FLOWCHART OF THE SYNTHESIZER FOREGROUND ROUTINE

FIG.4.19 THE REAL- TIME IMPLEMENTATION EXPERIMENT CONFIGURATION

FIG.5.1 HARDWARE CONFIGURATION OF THE LPC VOICE CODING SERVER FOR A CAMBRIDGE RING
-

[^0]: 號

