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ABSTRACT 

Estimating Individual Muscle Forces in Human Movement 
J.H.Chaliis 

11 

If individual muscle forces could be routinely calculated in vivo, non invasively, considerable insight could 

be obtained into the etiology of injuries and the training of muscle for rehabilitation and sport. As there are 

generally more muscles crossing a joint than there are degrees of freedom at the joint, determining the 

individual forces in the muscles crossing a joint is a non-trivial problem. This study focused on the 

development of the procedures necessary to estimate the individual muscle forces during a dumbell curl, 

and the measurement procedures required for the determination of the necessary input parameters. The 

procedures developed could easily be applied to other body movements. 

A subject was filmed at 200 Hz performing a number of dumbell curls. The coordinates of significant body 

landmarks were reconstructed in a three-dimensional inertial reference frame using the direct linear 

transformation. Local reference frames were defined for the subject's forearm and upper arm. 

Measurements were made on a dry bone specimen with similarly defined reference frames, of the 

locations of the locations of the origins and insertions of the three modelled elbow flexors: the biceps, 

brachialis, and brachioradialis. Osteometric scaling was used to define the origins and insertions of the 

three elbow flexors on the experimental subject. Using a straight line model the length, rate of change of 

length, and the moment arms of the elbow flexors were determined throughout the filmed movements. 

Data smoothing and differentiation were performed using generalised cross-validated splines. 

A model of each muscle consisted of a contractile component representing the muscle fibres, in series 

with an elastic component representing the tendon. The force produced by the contractile component was 

dependent on the length and velocity of the muscle fibres, and the active state of the motor units. These 

were modelled using non-linear relationships with the active state dynamics model based on calcium 

activity. Tendon elasticity was modelled using Hooke's Law. 

Parameters for the force-length model for each of the muscles were determined using a non-linear 

optimization algorithm. The model parameters were systematically varied until a best fit was obtained to a 

number of experimentally determined joint torques measured during maximal isometric contractions at 

different degrees of elbow flexion. Parameters for the force-velocity relationship were obtained from the 

literature. 

A number of different procedures were used to estimate the individual muscle forces during the activities 

studied. Individual muscle forces were most successfully estimated during maximal activity. During sub­

maximal activity a new objective function, which minimised energetic cost, estimated muscle forces which 

were physiologically realistic. 
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CHAPTER I 

INTRODUCTION 

INTRODUCTION 

The works of Aristotle (384-322 B.C.), Leonardo da Vinci (1452-1519), and Giovanni Borelli (1608-1679) 

all contain reference to the need to relate the structure of muscle to the mechanical events which it 

initiates. In one of his many note books Leonardo da Vinci advised that when studying muscle one must 

"Make the rule and give the measurement of each muscle, and give the reasons of all their functions, and 

in which way they work and what makes them work." 

Such an understanding of the function of muscle must include details of how the different muscles acting 

at a joint contribute to the net muscle moment they produce at the joint. Since the 15th century there have 

been many scientific and technological developments which have facilitated the measurement of human 

movement, but it is still very difficult to understand and explain human movement, particularly at a neuro­

muscular level. 

Kinematic and kinetic analyses facilitate mechanical descriptions of activities, but although it is well 

established that muscles are stimulated by electrical impulses from the nervous system, the way in which 

muscles are recruited to perform a given task is still unknown. If individual muscle forces could be 

routinely calculated in vivo, non invasively, considerable insight could be obtained into the etiology of 

injuries and the training of muscle for rehabilitation and sport. Such analyses may also provide insight 

into the muscular constraints which may limit athletic performance, and the optimization of performance in 

both sporting activities and the work place. This study focussed on the development of the procedures 

necessary to estimate the individual muscle forces during a dumbell curl, and the measurement 

procedures required for the determination of the necessary input parameters and variables. The 

procedures developed could easily be applied to other body movements. 

it is hoped that this study will contribute to knowledge and understanding in the area of estimating 

individual muscle forces, and help to stimulate further research and developments that may eventually 

lead to individual muscle forces being calculated in vivo, on a routine basis. 

1:1 THE PROBLEM AREA 

The musculo-skeletal system consists of muscle and the linked skeletal system. Muscles comprise active 

muscle fibres and passive tendon; they move the skeleton in response to input from the nervous system. 

The action of a muscle is determined by the locations of the origin and insertion of the muscle and the line 

of action of the muscle relative to the joint or joints it crosses. To produce coordinated movement the 

nervous system must control the timing, sequencing, and degree of activation of a muscle crossing a joint. 

Not only must this recruitment take account of the contractile properties of the muscle fibres but allowance 

must also be made for the elasticity of the tendon in series with these fibres, and for any other muscles 

crossing that joint which may be capable of producing or contributing to the desired joint moment. 

This study examined the methodology necessary to estimate the individual forces in the muscles causing 



elbow joint flexion. There were various reasons for examining this particular joint. The joint is easy to 

isolate, and the musculo-skeletal geometry is relatively simple, making analysis easier, and hopefully 

providing greater insight. As well as these experimental consideration the elbow joint is interesting as it 

has a key function in many everyday movements and sports activities. 

1 :2 MODELLING 

Eykhoff (1974) defined a model as 

• .•. a representation of the essential aspects of an existing system (or a system to be constructed) which 

presents knowledge of that system in a usable form. • (page 1) 

2 

All except the simplest models are collections of smaller units which could themselves be called models. 

The major model developed in the study is that for the estimation of the forces in the muscles causing 

elbow flexion. This model is a necessary conglomeration of smaller models, and the procedures required 

to provide input to this model also incorporated models. Many accepted experimental protocols are based 

on certain assumptions and simplifications which comprise a model, for example computing resultant joint 

moments and forces using inverse dynamics. 

In the 18th century many philosophers and scientists (e.g. Lagrange and Laplace) believed in 

determinism, that is that the universe could be completely defined in terms of the mechanical concepts of 

force, matter, and motion. Kline (1953) has argued that it was this philosophy that lead to the belief in 

scientific perfectability. Pierre Simon Laplace (1749·1827) claimed that 

"An intellect knowing at any given instant of time, all forces acting in nature, as well as the momentary 

positions of all things of which the universe consist, would be able to comprehend the motions of the 

largest bodies of the world and those of the smallest atoms in one single formula, provided it were 

sufficiently powerful to subject all the data to analysis .. • 

Such a modelling attempt is very unlikely, at least in the near future! The full potential power of modelling 

is still untapped and the limit of the modelling process to allow man to understand the world and all its 

aspect further has yet to be reached. 

lt is important that the model developed is detailed enough to consider all the pertinent aspects of the 

system being studied. Conversely the fewer parameters the easier they are to determine, and often the 

easier the model is to understand and apply. In developing models in this study, model complexity and the 

number of parameters were both considered, and a compromise sought between the two before a model 

was developed or adopted. 

In the development of the models in this study, various simplifying assumptions have been made. Some 

of these simplifications are justified in terms of model validity, others are justified because the models are 

limited by the current state of knowledge in biomechanics, or other relevant disciplines. Paul and Berme 

(1985) highlighted this problem with reference to biomechanics 

• ... modelling of human mechanical function must be considered as an idealization as not yet supported by 

real data. lt continues in the hope that solutions will be formulated to allow the elucidation of the very 

complex phenomena associated with body movement. .. " (page 49) 
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The criticism that certain simplifying assumptions lead to some factors being neglected can be made of 

most modelling studies, but this does not devalue this as an area of study. To counter these criticisms the 

model must be developed in such a way that all the pertinent knowledge is incorporated. In the area of the 

estimation of muscle forces, one of the chief shortcomings is the difficulty in acquiring subject specific 

data, e.g. the moment arms, the physiological cross-sectional areas. and the optimal lengths of the 

muscles involved in the activity. As a consequence it is the duty of the biomechanician to develop models 

in such a way that future knowledge can be easily incorporated. Hopefully these models can be updated 

and improved as new information is gathered and more advanced measuring techniques become 

available. 

1:3 DETERMINATION OF THE INPUT DATA 

Various parameters and variables were required as inputs for the different models used in this study. For 

example to compute the resultant joint moment at the elbow, the following were required: the location of 

the centre of mass, the moments of inertia, and the kinematics of the distal segment. To determine these 

and other required values, a number of techniques were employed. The techniques and models adopted 

are all discussed in the relevant chapters. To try and facilitate increased accuracy, comparison of 

techniques has been undertaken, and the most accurate technique used for subsequent analyses. Where 

possible the accuracy of the technique has been reported. 

The methods used to determine the input data include: three-dimensional cine-photogrammetry, three­

dimensional kinematics and kinetics, anthropometric modelling of body segments, and osteometric 

scaling. 

1:4 MODEL VALIDATION 

Hay (1987) claimed with direct reference to model validation that 

• ... .failure to validate a model makes the results obtained when it is used suspect - and possibly even 

worthless." (page 1200) 

Obviously some of the research literature is suggesting a possible avenue of study, and therefore the 

model is merely a suggestion of what could be attempted or of use. But if a modelling approach is to be of 

practical use, rather than a theoretical consideration, it is necessary to validate the model. 

MJdel parameters are often determined using a least-squares technique, by minimising the difference 

between the model predicted values and some "real" values from the system being modelled. The validity 

of the model is often assessed by calculating the residual error between the model estimates and the 

"real" values. Although this is a test of the model, such a procedure does not give an independent 

measure of the model. An independent measure would give a clearer indication of the accuracy of the 

model. it is not always possible to get an independent measure, in which case a sensitivity analysis can 

be used. Here the elements making up the model are varied and the effect on the model predictions 

assessed. 

By performing numerical checks on the various inputs to the models used and comparing results with the 



published literature, it is hoped that these values are as accurate as possible. Where comparisons were 

not possible, models were examined using sensitivity analyses. 

1:5 COMPUTERISATION 

Many of the solutions to problems used in this study would not have been possible without the use of a 

computer, and the volume of data processed would have been reduced considerably without the use of a 

computer. Except where otherwise stated the computer programs were written in FORTRAN 77. They 

were initially implemented on a PRIME 750 mainframe using the Salford University FORTRAN compiler. 

They were then transferred to an Archimedes 440, and compiled and run error free, using the Acornsoft 

FORTRAN 77 compiler. All programs were portable, i.e running using the ANSI specification of 

FORTRAN 77, not using any extensions to that set. 

1:6 STATEMENT OF PURPOSE OF STUDY 

The purpose of this study was to develop and examine the methodology necessary to estimate the 

individual muscle forces contributing to elbow flexion. This methodology included the procedures used to 

determine input variables and parameters for the models used to estimate the muscle forces. 

1 :7 OVERVIEW OF THE STUDY 

4 

The study was performed in two basic phases. The first phase concentrated on the methodology required 

to derive the kinematic and kinetic data required as input to the model to estimate muscle forces. The 

second phase was devoted to this model and the application of it to investigate a basic movement, and to 

examine the muscle forces involved. 

The methodology for the validation of these muscle force estimation procedures were examined and 

discussed. Before the muscle force estimation procedures could be implemented a number of input 

parameters were required for each of th.e models. The methods to determine these input parameters were 

also assessed. A number of estimation procedures were examined, and results compared. 

Within each of the following chapters reference will be made to two experiments. The "static data capture" 

was used to initialise data in the muscle model, and to examine muscle forces in static (isometric) activity. 

The "dynamic data capture" was used to collect the data necessary for the analysis of a series of dum bell 

curls, so that dynamic activity could be investigated. 

1:8 ORGANISATION OF THE CHAPTERS 

Chapters 11 to VII were organised as follows:-

CHAPTER 11 - this chapter reviews some of the photogrammetric techniques used in biomechanics to 

obtain the position of points in space, and details the technique used in the present study. The accuracy 

of the technique adopted is assessed. The sources of error in the recording process are discussed. All 

the analyses undertaken in the present study were three-dimensional. 
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CHAPTER Ill - this chapter details the techniques used to determine the limb kinematics. As the 

reconstructed body landmarks contain noise, the reduction of noise in a signal is discussed and examined. 

For the determination of limb kinetics, derivative information is required; the calculation of derivatives is 

also examined in this chapter. Estimates are made of the errors associated with these state variables. 

The accuracy of the spline technique used to smooth and differentiate the data is compared with other 

commonly adopted techniques. 

CHAPTER IV· this chapter is concerned with calculating the muscle moments acting about a joint. To 

determine the resultant joint moments and forces, the inertial properties of the distal rigid body must be 

known. Therefore this chapter contains details of the computation of the inertial properties of the subject's 

forearm and hand, and of the dumbell which the subject grasped. A sensitivity analysis is performed to 

estimate the accuracy of the resultant joint moments. The assumptions made in order to estimate the net 

moments caused by the muscles crossing a given joint are also discussed. 

CHAPTER V - the purpose of this chapter is to present the model used to represent the muscles causing 

elbow flexion. The chapter is divided into six sections each dealing with some aspect of muscle modelling. 

The property to be modelled is first reviewed then modelling approaches are discussed before a model is 

adopted. The procedures for the determination and validation of the model parameters are also detailed. 

CHAPTER VI • in this chapter the procedures used to estimate the individual muscle forces causing elbow 

flexion are detailed. There have been a number of techniques used to estimate muscle forces and these 

are reviewed. Procedures for determining muscle forces using static optimization procedures are 

discussed and compared. The final five sections present a new procedure for the estimation of individual 

muscle forces. 

CHAPTER VII - here the results and findings from the previous chapters are summarised, and discussed. 

Recommendations for further study are made. 
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CHAPTER 11 

CINE·PHOTOGRAMMETRIC PROCEDURES 

INTRODUCTION 

Photogrammetry is the science and art of obtaining accurate measurements from photographic images. lt 

is the purpose of this chapter to review some of the photogrammetric techniques used in biomechanics to 

obtain the position of points in space, and to detail the technique used in the present study. All the 

analyses undertaken in the present study were three-dimensional. 

The analysis procedures in cine-photogrammetry can be divided into three stages:-

DATA PRODUCTION 

DATA REDUCTION 

DATA MANAGEMENT 

filming 

digitizing 

reconstruction of points in space 

Each stage will be de a~ with in this chapter. The final stage includes the reduction of errors in the 

sampled signals, these errors will include random noise. The reduction of the amount of noise in the 

measurements will be covered in detail in the next chapter. The sources of error in the recording process 

are discussed. 

2:1 LITERATURE REVIEW: CINE-PHOTOGRAMMETRIC TECHNIQUES 

There are various techniques which purport to analyse human movement in three-dimensions. For this 

review these techniques were categorised into four main groups:-

- techniques in which the cameras optical axes have to intersect 

- techniques in which the cameras' are in known positions 

- techniques which incorporate the Direct Linear Transformation 

- alternative techniques to the Direct Linear Transformation offering similar flexibility in 

camera positioning 

Techniques falling into each of these groups will be discussed in detail with particular reference being 

made to their accuracy. In considering the accuracy of any of these techniques it is important to consider 

the dimensions of the space in which the measurements have been taken. These dimensions were not 

explicitly mentioned in some of the papers reviewed, in which cases it was not possible to fully assess the 

accuracy of these techniques. 

2:1.1 HISTORICAL PERSPECTIVE 

Attempts to analyse human movement in three-dimensions have only been reported in volume since the 

late sixties, but attempts were made to perform such analysis nearly one century earlier. Braune and 

Rscher (1987) in their work performed at the turn of the last century reported the trajectories of joint 
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centres in three-dimensions to within a few millimetres, using a four camera technique. Bernstein (1967) 

reporting work carried out in 1930, used appropriately placed mirrors so that one camera could record two 

views of the same activity, as if the cameras were orthogonally placed. He reported an accuracy of 1 mm 

in locating points in an analysis of punching. 

The efforts that these early pioneers must have made to achieve an analysis of movement in three­

dimensions without sophisticated projection and digitization systems and high speed digital computers, 

demonstrates the value that they must have placed In knowledge of the three-dimensional movement of 

the human body. 

2:1.2 INTERSECTING OPTICAL AXES 

Noble and Kelley (1969) used a technique which incorporated three cameras placed along three 

orthogonal axes, with their optical axes intersecting. Each camera was used to give the position of a point 

in an object space plane parallel to the camera image plane. Therefore a point was only accurately 

located if it was in all three of the primary object space planes simultaneously. This is only possible for 

one point: the origin of the object space coordinate system. They reported a mean error in the location of 

a sphere going down a helical slide; the mean deviation was 0.51 inches, with a range of 0.09 • 1.16 

inches. Any movement away from each of the primary planes reduced the accuracy of the estimation of 

that point, as perspective error was introduced. There was no discussion of how to ensure that the optical 

axes of cameras intersected. 

Miller and Petak (1973) suggested a multiple camera technique in which two or more cameras could be 

used. The optical axes had to intersect and cameras had to be set at specified angles to one another. 

Points were located in real space by using a basic image-object distance relationship. No report was 

made as to the accuracy of this technique. 

Martin and Pongratz (1974a, 1974b) presented a technique involving two cameras placed orthogonally 

with their optical axes intersecting. Martin and Pongratz (1974a) outlined a series of equations based 

around simple geometric relationships which would correct for perspective error. Their equations were 

equivalent to those of Miller and Petak (1973) but employed less redundant data. Martin and Pongratz 

(1974b) compared the results of measuring points in three-dimensional space with and without correction 

for perspective error. The mean error along all three axes without correction was 1.1917 inches, and with 

correction for perspective error was 0.7644 inches: the means were calculated from Table I of Martin and 

Pongratz (1974b). The dimensions of the calibrated space were approximately 42 • 25 • 47 inches. 

These figures were not very accurate compared with techniques reviewed in later sections, but 

demonstrate the need to correct for perspective error. The incorporation of more redundant data should 

improve the accuracy of the reconstructions with this technique. 

Bergemann (1974) advanced a technique in which the optical axes of the cameras had to intersect, and a 

common origin had to be in view of all cameras. Utilising certain geometrical relationships between real 

points in space and the image created in two cameras it was possible to locate points in space. Using this 



technique Bergemann found a mean absolute error in locating points of a quarter of an inch. The 

dimensions of the test area were not explicitly stated in the paper. 
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The preceding techniques required the optical axes of the cameras to intersect, but the cameras also had 

to be positioned in certain configurations relative to one another. To overcome this problem van Gheluwe 

(1974), presented a technique in which the optical axes of the cameras had to intersect but the cameras 

could be positioned to suit the problems of the activity under investigation. He claimed an accuracy in 

locating points of better than 1 cm, but did not explicitly state the dimensions of the calibrated space. 

Cappozzo (1983) advanced a technique in which the optical axes of two cameras had to intersect at the 

origin of the reference system, and lie in the X-Y plane of that reference system, but the angle between the 

cameras was not restricted. Using simple geometry and with as few as three control points, it was 

possible to reconstruct points in real three-dimensional space. Cappozzo estimated that the maximal 

systematic error with this technique was 0.44 mm in the X and Z directions and 1.3 mm in theY. The 

calibrated space was not mentioned, although planar grids of 3.2 m by 1.5 m were used to calibrate the 

cameras. 

The problem with these techniques is the positioning of the cameras so that the optical axes intersect. To 

allow for the difficulty and often resulting failure in correctly aligning the optical axes of the cameras, van 

Gheluwe (1975) proposed a series of equations that corrected for small errors in axes alignment. This 

would appear to be a very worthwhile contribution to this area but unfortunately the author does not 

present any figures for the resulting increase in accuracy. No other authors have acknowledged the 

adoption of this technique. 

One final problem with such techniques is ·that in aligning the cameras it is assumed that the optical axis of 

the camera is perpendicular to the image plane of the camera. This is not strictly the case and as such 

must be seen as a source of systematic error that should be quantified. 

2:1.4 CAMERAS IN KNOWN POSITIONS 

Although for some of the techniques in the previous section it was necessary for the cameras to be in 

known positions, this section will deal with techniques that require the accurate positioning of the cameras, 

and measurement of their positions, but do not require the optical axes of the cameras to intersect. 

Many of the techniques in this area rely on techniques originally developed in stereo-photogrammetry. 

Stereo-photogrammetry predominantly uses specially designed metric cameras that have precisely known 

internal geometry. Ayoub, Ayoub, and Ramsey (1970) used two metric cameras aligned so that their 

optical axes were parallel, the two photographs produced (a stereo-pair) when viewed through a stereo­

comparator gave a three-dimensional image. In a static assessment of their technique they found the 

maximum percentage difference between the true and measured lengths was less than 2 percent of the 

length being measured, with a mean of 1 percent. The maximum length measured was 20 inches. To be 

able to produce the coordinates in three-dimensions, they required accurate details of the geometry of the 



test field. 

Upper! (1973) used standard stereo-photogrammetric techniques to study human movement in three­

dimensions. A stereo-pair with a base distance of 0.40 m were used (Zeiss SMK • 40). Control points 

were reconstructed with a standard error of 0.07 J.Lm, 0.07 J.Lm, and 0.50 mm in the X, Y, and Z directions 

respectively, but he claimed to be able to measure translations of the human tibia to within 5 mm. 
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Pen rose, Wood, and Blanksby (1976) assessed three techniques tor three-dimensional cine-analysis, one 

with the cameras' optical axes intersecting at a common origin point, the second with the optical axes 

intersecting at a common target, and finally with the axes not aligned. For all three techniques the 

positions of the cameras had to be determined. The three techniques used the same principles as 

Bergemann (1974) to perform the three-dimensional reconstruction. Of the three techniques compared, 

that with optical axes intersecting at a common origin was marginally most accurate in locating known 

points in space. The mean errors for this technique were 0.0052 m± 0.0047, 0.0064 m± 0.0033, and 

0.0041 m± 0.0038 in the X, Y, and z directions respectively. The dimensions of the space calibrated 

were not mentioned. 

All of these techniques have removed the need for optical axes to intersect, and replaced it with the need 

to know precisely where the cameras are. Both these restrictions provide experimental problems. 

2:1.5 THE DIRECT LINEAR TRANSFORMATION 

Photogrammetric techniques predominantly use metric cameras. To obtain the three-dimensional 

information about points of interest with metric cameras two transformations are usually performed. The 

first transforms from some form of comparator coordinates to image coordinates, and the second 

transforms from image coordinates to object space coordinates. Non-metric cameras do not have a 

known image coordinate system so the first transformation is not possible. Abdei·Aziz and Karara (1971) 

showed that it is possible to combine these two transformations into one linear transformation, they called 

this the direct linear transformation (DLT). As only one transformation is used it is possible to use this 

technique with non-metric cameras. The DLT equations are:· 

Where:· 

Ud+Wd• AX+BY+CZ+P 

IX+JY +KZ+ 1.0 

Vd+t.Vd• EX+FY+GZ±H 

IX + JY + KZ + 1 .0 

Ud, Vd • are the digitizer coordinates of a point 

t.Ud, t.Vd ·are the errors associated with the coordinates 

X, V, Z ·are the object space coordinates of a point 

and A·K are the calibration coefficients. 

[2.1] 

[2.2] 
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To determine the calibration coefficients it is necessary to have at least six control points in the field of 

view of the camera. To locate a point in three-dimensional space using this technique, there must be two 

images of this point, usually produced by two cameras. A computer program was produced by Marzan 

and Karara (1975) to perform the DLT. In this paper the DLT was extended to incorporate a model of lens 

distortion. The full lens distortion model required a further five calibration coefficients to be added to the 

11 used in the basic model. In testing the technique they reported a standard deviation in locating static 

points in space of 0.07 mm, the dimensions of the calibrated space were not mentioned. 

The DLT is a technique which has been adopted by many researchers in biomechanics. The primary 

advantages of this technique are:-

non-metric cameras may be used 

the optical axes of the cameras do not need to intersect 

the positions of the cameras are arbitrary, and do not need to be measured 

only two images of the object are required 

more cameras are easily accommodated 

Although the DLT technique was originally specified for still cameras, it is now used for cine-cameras. 

Various implementations of the DLT will now be reviewed with reference to the accuracy of this technique. 

Van Gheluwe (1978) used his own derivation of the DLT equations to examine the accuracy of measuring 

seventeen lengths on a transparent cylinder. The mean deviation in calculating these distances 

' .. fluctuated around 0.1 cm". The dimensions of the calibrated space were not given. 

Shapiro (1978) using twenty control points showed an average deviation in locating points in space of 

0.43 cm in the X direction, 0.51 cm in the V direction and 0.44 cm in the Z direction, but did not give the 

dimensions of the space within which this accuracy was achieved. 

Miller, Shapiro, and Mclaughlin (1980) examined the DL T using ten control points for calibration. They 

reported root mean square (RMS) errors for the reconstruction of the control points of 0.176 cm for the X 

axis, 0.428 cm for the V axis, and 0.468 cm for the Z axis. They did not explicitly mention the dimensions 

of the calibrated space but it can be estimated to be 0.25 m • 0.3 m • 0.3 m. They showed that if the 

positions, relative to a member reference frame, were available about three or more non-collinear markers 

affixed to a rigid body, it was possible to obtain the position and orientation of the rigid body, without first 

computing the position of the markers in the object space reference frame. When eight markers were 

affixed to the rigid body in a two camera condition the RMS errors for locating the origin of the member 

reference frame were 0.073 cm for the X axis, 0.096 cm for the V axis, and 0.149 cm for the Z axis. They 

also reported results for the estimation of three-dimensional coordinates using one camera only with their 

modified DLT procedure. Analysis of their equations suggests that the results obtained from the one 

camera condition may not be unique. The authors did not find this a problem, as they provided results for 

the one camera condition. The one camera condition did not provide results as accurate as the two 
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camera conditions. In attempting to further increase the accuracy of the reconstruction they employed five 

extra calibration coefficients to allow for lens distortions; they reported that this resulted in no increase in 

accuracy. Using the initial estimates obtained from the DLT, Miller et al. (1980) used a similar procedure 

to Hatze (1988) (discussed later in this section) to improve the accuracy of the calibration coefficients by 

adjusting them in relation to the cameras internal and external parameters. They reported no increase in 

accuracy. 

Marchand, Thiry, Sirois, Drouin, and Allard (1983) compared two techniques for three-dimensional 

cinematography. One technique was the DLT using 12 calibration coefficients, and the other was • ... a 

classical reconstruction algorithm based on geometrical optics.·. No further details of the second 

technique were given, and the use of the extra term in the DLT parameters was to allow for lens distortion 

although which aspect of lens distortion was not stated. The techniques were assessed by comparing 

their accuracy in predicting a series of lengths ranging from 176 mm to 252 mm. In addition to using two 

cameras, a mirror was used in a series of trials, so that one camera recorded two images. The 

dimensions of the calibrated space were not mentioned although the mirror used was 0.6 m • 0.9 m. 

Using the 'classical technique• the mean error in predicting the lengths was 1 o mm with two cameras, and 

40 mm with a mirror and one camera. The DLT method produced an error of 7 mm in both cases. 

In an attempt to examine in more detail how different aspects of the DLT technique affected accuracy, 

Wood and Marshal! (1986) examined a total of sixteen conditions. They set up their cameras in two ways: 

one gave a camera base to object distance ratio of 2:1, the other gave a ratio of 1:1. Using a calibration 

structure containing 43 known points, four different combinations of control points were examined. These 

were: 30 control points evenly distributed over the calibration structure; 11 control points evenly distributed 

over the calibration structure; seven control points evenly distributed over the calibration structure; and 11 

control points clustered around the central vertical axis of the calibration structure. Sets of both 11 and 12 

calibration coefficients were calculated, with the extra coefficient being used to correct for symmetrical lens 

distortion. Accuracy for the sixteen conditions was assessed by calculating the RMS error between known 

points on the calibration structure and their calculated locations. Three way analysis of variance was used 

to compare the conditions. The authors made three conclusions based on their results: results were poor 

if extrapolation occurred outside the range of the control points; a 1 :2 camera base to object distance was 

superior to a 1:1 ratio, and 11 calibration coefficients were better than 12. The lowest average RMS error 

for all three axes was 5.7 mm, for the 30 control point condition with a ratio of 2:1. They employed a 

calibration structure of 3.5 m • 2.5 m • 1.5 m with the control points being located to within ±1 mm. 

Hatze (1988) presented a modified version of the DLT in which the DLT calibration coefficients were 

constrained so that the orientation matrix of the object coordinate system to image coordinate system was 

guaranteed to be orthogonal. This matrix should be orthogonal although Hatze suggested that in the 

conventional solution the resulting matrix is not. Analysis by Walton (1981) showed that the orthogonality 

condition was preserved in this matrix for his analysis; even so Hatze's Modified DLT (MDLD produced 

more accurate results than the conventional solution. A calibration structure of 0.425 m • 2.04 m • 2 m 

was used on which 30 control points were measured to an accuracy of 'better than ±1 mm•. A number of 
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different calibration structure configurations and lens distortion models were examined. The lowest RMS 

errors were reported for the MDLT with correction for radial and asymmetrical lens distortion, these were 

0.7 mm, 0.7 mm, and 0.8 mm in the X, V, and Z directions respectively. For the same condition the basic 

DLT produced errors of 5.3 mm, 4.2 mm, and 4.8 mm. This represents a significant improvement. 

Hatze (1988) ·used the computer programme of Marzan and Karara (1975) to perform the DLT; this 

programme solves a system of normal equations to arrive at a solution. This linear least squares 

technique can result in significant rounding errors which directly affect results (see section 2:2.3). In his 

MDLT another least squares technique was used which Hatze claimed was •numerically stable". This 

different linear least squares technique could account for some of the differences in the two techniques, 

rather than Hatze's new formulation of the DLT. 

The accuracy reported by Hatze (1988) for the location of the points is better than the accuracy reported in 

measuring the control points. In contemporary photogrammetric practice (e.g. Brown, 1978) the positions 

of the control points are only considered as approximations and are adjusted along with parameter 

estimation. The DL T was not designed as a technique to do this, and it has yet to be proved that it can. 

Hatze (1988) and others (e.g. Wood and Marshal!, 1986), used the estimated positions of the control 

points to assess accuracy in their papers. This is not an independent measure, and cannot be considered 

a real test of the accuracy of these techniques as the control points were used to calibrate the system 

initially. Reconstruction of control points reflects the accuracy of the mathematical techniques employed 

and any unaccounted for aspects of the photogrammetric process (including noise); it does not necessarily 

reflect the accuracy of the technique in locating unknown points in space. 

Ball and Pierrynowski (1988) addressed the need for a calibration object which fills all of the space in 

which the activity is to take place. They used a calibration object smaller than the total volume to be 

calibrated and calibrated the total space by moving the calibration structure. The calibration structure was 

placed in a master position and calibration coefficients calculated. The calibration structure was then 

moved and its position calculated with reference to the master position, this resulted in twice the number of 

control points being available. Given the larger number of control points the calibration coefficients were 

recalculated. This procedure was repeated for all calibration structure positions. As movement of the 

calibration frame was not constrained so that each new position overlapped with the old position a non­

linear least squares technique was used to reduce extrapolation errors. In a volume of 2 m • 2 m • 2 m a 

smaller calibration structure was moved around to 125 different positions, the lowest mean error in locating 

a point was 10.2 mm. The authors did not mention explicitly the size of the calibration structure used, but 

it is presumed that there was some overlapping of the images of the calibration structure (which the 

authors claim is not required). Information on the errors arising when no overlap occurs would have been 

of value in assessing this technique. In a slightly larger calibrated space Wood and Mars hall (1986) 

\ reported errors in locating points of around half the magnitude of those reported by Ball and Pierrynowski 

\ (1988). The technique of Ball and Pierrynowski is of interest, but the paper does not give a complete 

\ analysis. If an image has three non-collinear control points overlapping with the original position, it should 

then be possible to locate all the remaining points on the control structure in the object space. This would 
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seem to be a simpler solution to the problem than that recommended. The analysis was performed using 

WATSMART (Northern Digital, Canada) which is a light emitting diode (LED) opto-electronic movement 

measurement system. 

2:1.6 ALTERNATIVE TECHNIQUES 

F10rettl, Germani, and Leo (1985) presented a technique for "very close-range• photogrammetry. Rather 

than recourse to the principles of photogrammetry they used a black box technique where the digitizer 

coordinates were related to the object space coordinates by a third order Taylor series. There were 35 

parameters associated with each object space coordinate, and 105 to identify a point in three-dimensions. 

The calibration object had to contain at least 35 control points. A calibration structure of 0.5 m • 0.5 m • 

0.5 m containing 126 control points was used. Model coefficients were determined using 63 control points. 

A second set of control points, which were not used for calibration, were located with a mean RMS error 

for all axes of 0.2388 mm. 

The DLT method requires a three-dimensional calibration structure. This presents some problems. 

Accuracy is reduced if points are considered outside of the calibration structure (Wood and Marshal!, 

1986). This being the case the structure must occupy at least the same space as the activity, therefore for 

one running stride a volume of around 9 ma (2 m • 1.5 m • 3 m), would be required. A structure of this size 

causes many restrictions particularly as it would be very large for field work. Ideally the structure should 

be mechanically very stable to ensure accuracy and yet be portable. To circumvent these problem some 

researchers have calibrated cameras another way, by using the technique of "analytical self-calibration• 

(Kenefick, Gyer and Harp, 1972). Brown (1956) was the first to utilize such a technique, in which all the 

necessary variables (eg. control points) are carried in the computations as constrained parameters. By 

doing this, any errors in the control points and any parameters can be accounted for. This work has been 

significantly developed by Duane C. Brown (eg. Brown, 1956, 1968, 1978). Using this technique it was 

discovered that it is not necessary to view a three-dimensional distribution of control points, but that 

multiple views of a two-dimensional distribution of control points is sufficient. The problems of 

manufacture and transportation of a calibration structure are greatly reduced when a two-dimensional 

structure is required rather than a three-dimensional one. 

Woltring (1978, 1980) developed a technique which did not have the full flexibility of •analytical self­

calibration•, but only needed muttiple views of a two-dimensional calibration structure to perform a three­

dimensional calibration. The calibration structure needed to contain only four control points. Woltring 

(1980) assessed this technique, using a suitably placed mirror so one camera could obtain two views of 

the same image, to estimate intermarker distances on a 1.27 m rod placed in the field of view. A sample 

standard deviation of the estimation of the lengths was found of 1.4 mm in the centre of the calibrated 

volume, and 2.3 mm at the upper and lower edges. When the data was subjected to a 5 Hz Butterworth 

filter (in both forward and reverse directions to eliminate phase lag) the errors were reduced to 0.8 mm and 

1 .0 mm respectively. The dimensions of the calibrated space were 1.2 m • 1.2 m • 1.2 m. The author 

commented that some of this error could be accounted for by the mirror not being perfectly flat. 
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Woltring, McCiay, and Cavanagh (1989) extended this technique so that calibration could be performed 

from a group of markers on the body. In the reported study, which examined human walking, four markers 

in known relative positions were placed on each segment. Model parameter initialisation was performed 

using a constrained DLT with the DLT parameters being estimated from the groups of markers. Once 

parameter initialisation had been performed the procedure ofWoltring (1978,1980) was implemented. 

Measurement noise was estimated to be less than 0.5 mm. This paper used SELSPOT-11 (Selcom, 

Sweden), a LED based opto-electronic movement measurement system. 

Dapena, Harman, and Miller (1982) also advanced a technique which irradicated the need for a three­

dimensional calibration structure. The internal camera parameters were calculated by taking 

mea~urements from the image of two planar calibrated crosses. Using an object of known length in the 

fiE! Id of view of the camera they calculated the external camera parameters. If the internal and external 

camera parameters are known for two cameras it is possible to locate in three-dimensions any points 

viewed in both cameras. In a space of 37.5 m3 (5 m * 5 m* 1.5 m) the root mean square errors in locating 

fifteen known control points were 15 mm, 13 mm, and 6 mm, these represented relative errors in length of 

0.5 percent, 0.7 percent, and 0.5 percent in the X, V, and Z directions respectively. The major advantage 

of this technique was that to calibrate a large volume, all that was needed were two suitably measured 

crosses and an object of known length in the space where the activity was to take place. 

2:1.7 CONCLUSION 

There have been a variety of techniques used to measure the locations of points in three-dimensions. lt is 

hard to make a direct comparison of accuracy of the different techniques because of variations in the 

dimensions of the spaces studied. The method of assessing accuracy also varies between researchers 

wit~ some comparing estimated with known lengths (e.g. van Gheluwe, 1978; Woltring, 1980), whilst 

others use known points (e.g. Wood and Marshal!, 1986; Hatze, 1988). A problem of the validity of 

accuracy levels arises if control point reconstruction is used as the measure of accuracy. 

2:2 THE DIRECT LINEAR TRANSFORMATION 

The preceding literature review illustrates that the DLT gives accuracy levels comparable to, if not better 

than, many of the other techniques available. The modification proposed by Hatze (1988) offers even 

greater accuracy. Its chief limitation is that control points must be distributed throughout the space in 

which the activity is anticipated to take place. An analysis of the dimensions of the human arm and the 

movements to be studied revealed that a space of 1.0 m by 0.6 m by 1.0 m would be sufficient to record all 

the information required. lt was therefore feasible to adopt the DLT technique for the acquisition of the 

three-dimensional data in this study, as it was not a problem to manufacture a calibration frame of suitable 

size to provide the control points. 

A derivation of the DLT equations is given in Appendix A, including details of the lens distortion model. In 

the following sections further details of the DLT are presented. 
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2:2.1 THE CALCULATION OF THE CALIBRATION COEFFICIENTS 

As well as filming the activity in question, a suitable distribution of control points must also be filmed; these 

are normally located on a calibration structure. Digitization of the control points (known three-dimensional 

locations on the calibration structure in the field of view) enables them to be used as inputs to the 

equations detailed in the Appendix A. The resulting system of equations can be represented as:-

A.x-8 [2.3) 

where:-

A - is an m • n matrix composed of the object space coordinates of the control points, and the digitizer 

coordinates of the control points 

m - is twice the number of control points 

n - is the number of calibration coeffiCients (11) 

x - is an unknown column vector containing the camera specific calibration coefficient 

and B is a column vector containing the digitizer coordinates of the calibration points. 

To make this system of equations determinant it is necessary to film and digitize at least 6 control points. 

Given this information the system of equations can be solved giving the calibration coefficients. This 

procedure has to be performed for each camera. The solution of this system of equations is performed 

using singular value decomposition, details of which are given in section 2:2.3. 

2:2.2 SPACE INTERSECTION 

Once the calibration coefficients have been calculated they can be combined with the digitizer coordinates 

of the points of interest to obtain the object space coordinates of those points. This gives:-

A.x- B [2.4) 
where:-

A - is an m • n matrix containing the digitizer coordinates of the unknown point, and the calibration 

coefficients 

m - is 2 • the number of images recorded 

n - is three, the number of unknown object space coordinates 

x- is an unknown column vector containing the object space coordinates of the digitized point 

and B is column vector containing the digitizer coordinates of the unknown point and the calibration 

coefficients. 

To make this system of equations determinant for a three-dimensional analysis it is necessary to combine 

data from at least two images, obtained from different views. For cine-photogrammetric analysis these 

images must be synchronised, see section 2:3.5. This system of equations is solved using the singular 

value decomposition for every digitized poin_t. 

2:2.3 LINEAR LEAST SQUARES 

For both the calculation of the calibration coefficients, and space intersection, the general problem is to 
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find a vector x which satisfies:-

A.x- B [2.5] 

In a least squares sense the problem is to minimise the residual (r):-

r-IA.x- Bl2 [2.6) 

To solve the least squares problems specifiC to the DLT, Marzan and Karara (1975) and Walton (1981), 

have used normal equations, where the problem is reformulated as:-

(AT. A).x. AT.B [2.7] 

Where T refers to the transpose of a matrix. 
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Given this reformulation the system can be solved using one of the forms of Gaussian elimination. The 

matrix resulting from the product of A and its transpose often has a very high condition number, which can 

result in very high round-off errors in the solution (Golub and van Loan, 1983). Indeed if the matrix is near 

singular the routine is guaranteed to fail. 

Golub and Reinsch (1971) presented a method for factorizing a real matrix A into three matrices U, E, and 

V:-

Where:-

A - is an m • n real matrix 

U - is an m • m orthogonal matrix 

V - is an n • n orthogonal matrix 

A· U.E.VT [2.8) 

and E is an m • n diagonal matrix where fori '1' j e;i - 0.0, and the diagonal contains the singular values of 

A. 
This factorization is called the singular value decomposition (SVD). 

The singular values contained along the diagonal of matrix E permit the calculation of the rank and 

condition of matrix A; these give an indication of the strength of the solution to equation 2.5. 

The condition number is:-

cond(A) •l!..lllllll 

e.min 

Where e.max and e.min are the maximum and minimum values of e;i respectively. 

(2.9) 

This value will give an indication of the anticipated error magnification in solving equation 2.5 (Forsythe, 

Malcolm, and Moler, 19n). To improve the accuracy of the solution any e;i which falls below a certain 

tolerance (estimated from the precision of the data) is set to zero. The rank is the number of non-zero 
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terms along the diagonal of E. If there are not many, matrix A is said to be rank deficient, in which case a 

high condition number is expected. The solution of normal equations for estimating linear least squares 

will fail if the matrix is rank deficient. If the matrix A is rank deficient this is a reflection on the input data. 

This is unlikely to occur during space intersection. If it occurs during the calculation of the calibration 

coefficients there are three solutions: attempt to identify and remove erroneous control points; attempt to 

improve the accuracy of the data by digitizing more or new control points and see if the rank increases; if 

the digitized values of the control points contain stochastic errors, averaging of multiple digitizations of 

these points may improve the solution. If this fails the activity will have to be re-filmed. 

An orlhogonal matrix has the following properties:· 

[2.1 0] 

UT • U·t [2.11] 

Therefore assuming adjustments have been made to E, a solution to equation 2.5 would be:· 

U.E.VT.x. B [2.12] 

by substitution:· 

V.(diag 1/eij).UT.B- x [2.13] 

which would minimise equation 2.6. 

This solution has a number of advantages over the normal equations used by Marzan and Karara (1975) 

and Walton (1981 ). The SVD will work even when matrix A is near singular: although the solution to 

equation 2.5 will not be very accurate, normal equations would fail under these conditions. Also compared 

with other least squares techniques the SVD is less susceptible to rounding errors (Golub and van Loan, 

1983). 

2:2.4 ACCURACY ASSESSMENT 

There have been two techniques used to assess the accuracy of photogrammetric techniques. One is to 

reconstruct known points and evaluate the difference between their true value and estimated value (e.g. 

Roretti et al., 1985; Wood and Marshall, 1986). The other is to look at the difference between known 

lengths in the calibrated space and their estimated lengths (e.g. van Gheluwe, 1978; Woltring, 1980). With 

the first technique it is possible to separate the inaccuracies associated with each axis, with the second 

technique these inaccuracies are grouped together. Using the DLT researchers have reconstructed 

control points to assess accuracy, but these results can be flattering as these points were used to perform 

the calibration (Wood and Marshall, 1986; Hatze, 1988). An improved procedure is to have a second set 

of points with which to test the technique. This is difficult to achieve when the researcher is trying to 

incorporate as many redundant points in the model as possible. These methods of estimating accuracy 

are now compared. 



{ 

' 

18 

The protocol used in this investigation was the same as for the static data capture unless otherwise stated. 

The mean values of ten digitizations of the control points on the calibration structure were used as inputs 

to the DLT. Three procedures were used to assess the accuracy and to look at the problems associated 

with different assessment procedures. These were:-

1. Relocation of control points 

2. Location of a group of known points (digitized only once) 

3. Estimation of a number of lengths 

To obtain a set of known points with which to assess the DLT the calibration structure was rotated through 

180 degrees about a central vertical axis, the calibration structure is shown in figure 2. t. The frame 

occupied the same space but as the positions of the control points on the calibration structure were not 

symmetrical, they did not occupy the same positions as they had prior to rotation. The locations of the 

control points on the rotated calibration structure were then calculated, giving a second set of control 

points. This rotated frame was also used for estimating lengths. This was done by computing the 

distances between all the control points, giving a total of 1275 lengths. Two frame configurations were 

used: the full structure containing 51 control points; and a "Christmas tree• like structure which gave 11 

control points. The accuracy of the known measured locations of the control points, on both the calibration 

structure and rotated calibration structure are discussed in section 2:4.1. 

The results are presented in table 2.1. Both calibration structures produced high accuracies when 

evaluated by the reconstruction of their own control points. When subjected to the more rigorous 

assessment of the second set of control points the accuracy of both was reduced. The lowest RMS error 

was found in the reconstruction of the 11 control points of the "Christmas tree• like structure. With so few 

points the DLT could map directly onto these points. This could not be done with the 51 control points on 

the calibration structure. When accuracy was assessed using the second set of control points the full 

structure was twice as accurate as using the "Christmas tree· configuration. The estimation of the lengths 

also shows the error arising when using reconstruction of control points to evaluate accuracy. These 

results illustrate the error that can arise in evaluating accuracy by reconstructing the control points, 

particularly when there are only a few control points. To get a true estimation of the accuracy, an 

alternative assessment criteria to that of reconstruction of the control points used in the calibration is 

necessary. 

For the dynamic data capture only the reconstruction of control points was available for accuracy 

assessment. The results in table 2.1 indicate that the more control points used, the closer the 

reconstruction of control points comes to giving a true estimation of reconstruction accuracy. Accuracy 

f19ures for the dynamic data capture must be considered in this light. The RMS errors for the 

reconstruction of the control points were 0.0012 m, 0.0033 m, and 0.0013 m for the X, V, and Z axes 

respectively. 
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FIGURE 2.1 ·.A diagram of the calibration frame. 



TABLE 2.1 ·The root mean square errors in locating points in three-dimensions tor the static data 

capture. 

NUMBER 
OF 

CONTROL 
POINTS AXIS 

11 

51 

X 
y 

z 

X 

y 

z 

CONTROL 
POINTS 

0.0012 m 
0.0008 m 
0.0021 m 

0.0016 m 

0.0016 m 
0.0019 m 

SECOND SET 
OF CONTROL 

POINTS 

0.0043 m 
0.0055 m 

0.0043 m 

0.0025 m 

0.0021 m 

0.0023 m 

INTER CONTROL 
POINT 

DISTANCES 

0.0082 m* 

0.0038 m* 

(N.B. • • RMS error for the intercontrol point distances compares the estimated lengths with the actual 

lengths, these measures are not specifically associated with one axis.) 
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2:2.5 THE DISTRIBUTION OF CONTROL POINTS 

Control points must be contained in the field of view of each camera. This can be done by measuring the 

positions of various points naturally occurring in the field of view, but it is more common to place a 

calibration object which contains a number of control points in the space to contain the activity of interest, 

take some film of it, remove it and perform the activity in that space. Van Gheluwe (1978) constructed a 

calibration object containing 21 control points. lt consisted of three perpendicular rods that intersected at a 

common origin giving a three-dimensional cross like structure. This configuration has become known as a 

"Christmas tree• (Wood and Marshal!, 1986; Hatze, 1988). Walton (1981) hung spheres from the ceiling to 

provide control points. Wood and Marshal! (1986) used a wedged shaped structure with diagonal struts, 

on which there was 43 control points. Hatze (1988) used a three-dimensional rectangle with two vertical 

struts in the front and back of the rectangle, providing 30 control points. 

In the manufacture of a calibration structure there are a number of points which must be considered. The 

structure should fill all of the space in which the activity is to happen. The control points should be 

viewable from all camera positions, and they must be measured accurately. The accuracy of the location 

of points in the object space must be considered limited by the accuracy with which the control points have 

been measured. Other issues regarding the mechanical stability of the calibration structure are dealt with 

in section 2:4.1. To further examine the influence of the distribution of control points on the resulting data, 

two experiments were performed. The protocol used in these studies was the same as in the static data 

capture unless otherwise stated. 

Experiment 1 . 

Both Wood and Marshal! (1986) and Hatze (1988) grouped a set of control points so that they had a 

"Christmas tree" type structure. They found that this design of structure produced a less accurate 

calibration than when points were selected from all over their control objects. In neither study was it 

possible for them to precisely mimic the "Christmas tree• structure with the calibration structure used. The 

calibration structure used in this study was shown in figure 2.1. This structure was effectively the 

rectangle of Hatze (1988), albeit with smaller dimensions, with a "Christmas tree• inside, which allowed 

both types of structure to be examined. The calibration structure of Hatze (1988) did not contain any 

control points inside the structure; the influence of this is also examined. 

Fwe different calibration structure configurations were examined. These were:-

Frame Configuration A - this was the "Christmas tree• like structure comprising the central cross structure 

of the calibration structure. lt contained 11 control points. 

Frame Configuration B- this structure used the four vertical corner posts of the calibration structure. This 

mimicked using four marked poles to provide the control points. lt contained 20 control points. 

Frame Configuration C- this used the corner balls of the calibration structure only. This represents the 

minimum case if a rectangular or cuboid frame was used, or if balls were suspended from the ceiling. lt 

contained only 8 control points. 

Frame Configuration D -was a "kite• like structure comprising the "Christmas tree• structure of A with a 

horizontal cross on the top and bottom orientated the same as the central cross of the "Christmas tree•. I! 



contained 23 control points. 

Frame Configuration E • was composed of all the points on the outer three·dimensional rectangle of the 

calibration structure. This is similar to the frame used by Hatze (1988). it contained 36 control points. 

These different control point configurations are shown in figure 2.2. 
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In light of the investigation reported in the previous section the accuracy associated with these frames was 

assessed by locating the points on the rotated frame, and by estimating of the distances between the 

points on the rotated frame. 

The results are presented in table 2.2. The results for the reconstruction of the control points confirms that 

the fewer control points that are used, the more flattering is the reconstruction of control points as a 

measure of photogrammetric accuracy (see previous section). Frames A and D gave the least accurate 

results, with the remaining frames giving very similar results. Frame C with only eight control points gave 

very good results compared with Frame E which contained over four times the number of points, 

distributed throughout the calibrated space. 

To assess where the deficiencies in these frame configurations occur, a further analysis was undertaken. 

Calibration was performed using the points from one of the frame configurations, then the digitizer 

coordinates of the rotated frame for another frame configuration were input and these points had to be 

estimated. As the true locations were known, the root mean square error could be calculated and this was 

averaged for all three axes. 

The results for this analysis are presented in table 2.3. For frame configurations B, C and E there were no 

points included on the inside of the calibrated space. Frame configuration A included some of the inside 

points, so calibration was performed using frames B,C, and E which then had to locate the points making 

up frame configuration A. Results show that the more control points used in these configurations the 

better the accuracy, although these increases were very small. 

Frame configurations A and D did not have any control points around the sides, so they could be 

evaluated for these points using the other frame configurations. Results for both of these frame 

configurations show that configuration D is more accurate for these side points than configuration A. The 

inaccuracies for estimating the control points on the side of the calibration frame using frame 

configurations not containing these points, are greater than the inaccuracies for the location of the inside 

control points with calibration frames only containing the outer control points. Frame configuration E was 

marginally more accurate than the full calibration structure in all cases. 

On this analysis the "Christmas tree" style frame was much less accurate than frame configurations which 

surrounded the space to be calibrated. The "Christmas tree• style frame was less accurate at estimation 

around the sides than those frames which had ."sides" were at estimating internal points. These results 

indicate that it is more important to surround the space in which the activity is to take place than to have 

control points inside the space, although there may exist other control point configurations which 
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FIGURE 2.2 • Different control point configurations, using the calibration frame. 
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TABLE 2.2- The root mean square errors in locating points in three-dimensions using different calibration 

frame configurations for static data capture. 

CONTROL 
POINT SECOND SET INTER CONTROL 

CON FIG CONTROL OF CONTROL POINT 
-URATION AXIS POINTS POINTS DISTANCES 

X 0.0012 m 0.0043 m 

A y 0.0008 m 0.0055 m 0.0082 m' 

z 0.0021 m 0.0043 m 

X 0.0009 m 0.0023 m 

B y 0.0011 m 0.0019 m 0.0034 m' 

z 0.0008 m 0.0022 m 

X 0.0006 m 0.0023 m 

c y 0.0008 m 0.0020 m 0.0035 m• 

z 0.0008 m 0.0022 m 

X 0.0012 m 0.0033 m 

D y 0.0014 m 0.0031 m 0.0055 m' 

z 0.0023 m 0.0026 m 

X 0.0016 m 0.0024 m 

E y 0.0013 m 0.0020 m 0.0035 m• 

z 0.0012 m 0.0022 m 

(N. B. - • RMS error for the inter-control point distances compare the estimated lengths with the actual 

lengths, these measures are not specifically associated with one axis.) 
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TABLE 2.3- The root mean square errors, averaged for all three axes, in locating points in three-

dimensions using different calibration frame configurations (static data). 

CONFIGURATION OF POINTS ON SECOND FRAME 
CALIBRATION 
FRAME A B c D E 

A 0.0027m 0.0056 m 0.0068 m 0.0028 m 0.0051 m 

8 0.0022 m 0.0019 m 0.0023 m 0.0020 m 0.0020 m 

c 0.0024 m 0.0018 m 0.0019 m 0.0022 m 0.0020 m 

D 0.0021 m 0.0036 m 0.0045 m 0.0022 m 0.0032 m 

E 0.0021 m 0.0021 m 0.0027 m 0.0020 m 0.0021 m 

COMPLETE 0.0023 m 0.0024 m 0.0030 0.0021 m 0.0023 m 
FRAME 
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may give superior accuracy. 

Experiment 2. 

If the activity occurs outside of the space that has been calibrated, errors will be introduced due to 

extrapolation. Wood and Marshal! (1986) reported a 50 to 1 00 percent increase in the error associated 

with locating a point when it was outside the calibrated space. The distance of the points from the outside 

of the calibrated space was not reported. The errors associated with extrapolation outside of the 

calibrated space are investigated here. 

The data used were from the static data capture. The frame was considered in two halves. The bottom 

half of the frame was used for calibration and then the top half of the frame was used to estimate the 

errors of extrapolating out of the calibrated space. Using the data from the rotated calibration structure, 

the RMS errors in locating points in the calibrated half of the frame were 0.0024 m, 0.0019 m, 0.0024 m 

along the X, Y and Z axes respectively, whilst for the uncalibrated space they were 0.0032 m, 0.0034 m, 

and 0.0015 m. Surprisingly the accuracy in locating points for the Z axis was better, but for the other two 

axes the error was approximately 50 percent greater. 

In any three·dimensional analysis of movement to maintain measurement accuracy every effort should be 

made to ensure that the whole of the space in which the activity is to take place is calibrated. 

2:2.6 CAMERA POSITIONING 

Wood and Marshal! (1986) examined DLT accuracy when the cameras had different angles of 

convergence. Rather than express the angle of convergence they used a distance:base ratio (distance 

from the mid-point between the cameras to the object: intercamera distance). They used two ratios: 1:1 

which (assuming that the optical axes of the cameras intersected at the object) gave an angle of 

convergence of 90 degrees, and 1 :2 which gave an angle of 53 degrees. Analysis of variance between 

these two conditions showed that the vertical axis showed no significant difference between conditions, 

but there was a significant difference for the other two axes with an angle of convergence of 90 degrees 

giving greater accuracy than 53 degrees. 

In a theoretical analysis Abdei-Aziz (1974) examined the accuracy of object space reconstruction in a two 

camera condition. He showed that assuming the positioning of the cameras was symmetrical, the 

accuracy of reconstruction depended on the outer orientation parameters of the cameras. These 

parameters were the intercamera distance, the angle of convergence, and the distance from the mid-point 

between the cameras to the point of convergence. When varying the angle of convergence whilst keeping 

the distance of the cameras to the point of convergence constant, his analysis confirmed the results of 

Wood and Marshal! (1986), that 90 degrees of convergence would give greater accuracy than 53 degrees. 

The greatest accuracy under these conditions was reported for an angle of convergence of 80 degrees, or 

using the ratio of Wood and Marshal! (1986) this would be 1 :1.7. This analysis by Abdei-Aziz (1974) 

indicates that the greatest inaccuracies are expected for the depth axis, which is an axis perpendicular to 

the line between the two cameras. 
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Although the preceding discussion has shown that appropriate camera positioning can result in improved 

accuracy, camera positioning must also reflect the need for a clear view of all the control points and the 

need to identify the marked body landmarks to be digitized. For the static data capture an angle of 

convergence of 85 degrees was used with both cameras being placed the same distance from the point of 

convergence. According to the formulae developed by Abdei-Aziz (1974), this angle gives good accuracy 

although not the maximum possible. For the analysis undertaken, 85 degrees permitted viewing of the 

markers from both cameras for more of the activity than any of the other camera configurations tested. 

For the dynamic analysis one camera was used which recorded two views of the same subject due to the 

appropriate placement of a mirror. A pilot study using a still camera was undertaken to determine the 

camera position. The camera position selected allowed all control points on the calibration structure to be 

clearly visible in both views. lt also permitted better viewing of the markers on the subject from both views 

for more anticipated arm positions than any other camera position. The DLT treated the digitizer 

coordinates resulting from the mirror image as if from another camera. Using the DLT it was therefore 

possible to estimate that the angle of convergence between the two •cameras" was 130 degrees. Using 

the analysis of Abdei·Aziz (1974) with this experimental configuration the accuracy for the X and Z axes 

should be two orders of magnitude greater than that for the V axis. This analysis was confirmed by the 

reported RMS errors for the reconstruction of the control points for the dynamic data capture, as the RMS 

error for the V axis was over two and half times greater than it was for the other two axes. For the 

dynamic data capture the V axis was approximately parallel with the depth axis. 

2:2.7 COMPUTER PROGRAMMING 

The algorithm was coded in FORTRAN 77 using double precision variables. The programme was initially 

checked using artificial data from the theoretical observations of a cube with a number of known locations 

on it. To solve the system of linear equations the SVD was used. The SVD algorithm was based on that 

of Golub and Reinsch (1971 ). A number of numerical checks were included in the code, including 

relocation of the control points and estimation of the perspective centre of the cameras. 

2:2.8 NUMERICAL CHECKS 

To confirm that the process was working properly, a number of numerical checks were performed. The 

first and most obvious was to reconstruct the location of the control points. If the programme was working 

correctly this should be very accurate as the model was fitted directly to these points. The second check 

was to locate any points on the calibration structure which had not been used for the calibration. The third 

was to estimate the positions of the cameras: given the information contained in the DL T calibration 

coefficients it is possible to estimate the object space coordinates of the cameras' perspective centres. 

These positions could be compared with measurements made in the field. 

2:3 PHOTOGRAMMETRIC ERRORS 

There are many potential errors which may impinge on the true value of the coordinates derived from a 

photogrammetric technique. lt is the purpose of this section to identify these errors and to examine how 

they may be removed or reduced. The removal of these errors can be performed directly, by removing the 



source of the error, for example by relocating incorrectly placed markers. In some cases the direct 

approach is not applicable, in which case if possible the error source should be modelled, and then the 

error reduced using this model. In other cases the size of the error will be small enough that it can be 

ignored. 

lt is important that the errors are removed or reduced in the order in which they occur, according to 

Ghosh (1979) 
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"Analogically applied corrections and the computational refinement of data should give appreciably correct 

photo coordinates. lt is imperative that the corrections are applied sequentially in the order reverse to their 

occurrence during the data acquisition procedure, unless all could be contained in a single mathematical 

model." (page 85) 

If such a sequence is not followed these errors may be magnified and or correlated with the underlying 

signal in which case they will be very hard to remove or reduce, requiring complex models. 

In the following sections the sources of error are discussed and methods for their removal or reduction 

examined. lt is assumed that the projected image is of good quality. 

2:3.1 FILM MOVEMENT 

lt is assumed that during the filming of the calibration structure and the activity to be studied that the film 

frames have all been orientated identically. This may not occur if the camera vibrates significantly during 

filming. By placing markers (reference points) in the background of the activity which are viewable during 

calibration and during the activity, it is possible to correct tor these small movements. Given at least two 

markers the film frame can be re-orientated back to the orientation during filming of the calibration 

structure. In this study this was done using a linear least squares algorithm which was the two­

dimensional equivalent of the routine described in section 3:1.3. This type of re-orientation can also 

compensate for the incorrect registration of the film in the projector (this is discussed in section 2:3.3). 

These corrections only apply if the film remains flat in both the camera and the projector. 

For the static data the film was mounted in slides; special attention was paid to trying to ensure the film 

was aligned identically in all the slide mounts. However it was not possible to precisely align the film in the 

slide mounts, therefore correction was made for the different orientations of the film in the slide mounts. 

Four reference markers were visible in the projected image of each slide. The digitizer coordinates of 

these reference points as measured for the slides containing the calibration frame were used as the 

criterion. By comparing the digitizer coordinates of the reference points of the criterion with those of other 

slides a transformation matrix was calculated. The transformation matrix permitted the images from all the 

slides to have the same orientation. The effects of this re-orientation are shown in table 2.4 where 

accuracy measures for the location of points on the rotated calibration frame are compared, with and 

without image re-alignment. 

For analysis of the film from both the static and dynamic data capture these re-orientations were 

performed, when required. 



TABLE 2.4 ·The root mean square errors in locating points in three-dimensions with and without 

correction for incorrect alignment of film images (static data). 

AXIS RMS ERRORS FOR 
LOCATING NEW 

CONTROL POINTS 

NO X 0.0157 m 

CORRECTION y 0.0044 m 

z 0.0078 m 

WITH X 0.0025 m 

CORRECTION y 0.0021 m 

z 0.0023 m 
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2:3.2 FILM DEFORMATION 

The image is carried in the emulsion which is on the film; both of which may undergo deformations. These 

deformations are dependent upon the material. temperature, aging, and chemical treatment of the film, 

and can be affected by transportation at high framing rates. The changes can be categorised as follows:-

1. Uniform deformation· shrinkage or expansion, which produces a simple scaling error, along one axis. 

2. Differential deformation • when there is a systematic distortion along the length of the film, and across 

the width. This can be corrected for using an affine transformation. 

3. Irregular distortion • these are complex changes in the film or emulsion which are hard to model, and 

therefore hard to reduce. lt can be caused by emulsion creep, stretching of the film, and lack of flatness of 

the emulsion. 

Non-metric cameras generally do not have fiducial markers, so it is not possible to correct for irregular 

distortion. The other two distortions are comparatively easy to correct for and are implicit within the DLT 

formulation. 

2:3.3 DIGITIZER RELATED ERRORS 

Digitizer errors can arise from three sources: the digitizing tablet, the projection system, and from the 

actions of the person doing the digitizing. 

The DLT incorporates the transformation of digitizer coordinates to image coordinates. There are two 

assumptions implicit in this transformation. These are:· 

1. Projector distortions are negligible. 

There are three potential problems with the use of the projection system. lt is another lens based system 

which may distort the image; the film may not always register the same in the gate of the projector every 

time; and the heat produced by the projector may affect the film or its emulsion. This first problem can be 

circumvented by the DL T which can account for this distortion at the same time as accounting for the lens 

distortion of the camera. By digitizing constant points of the projected image of the film (e.g. images of the 

sprocket edges) it is possible to check that the film is registering the same in the gate of the projector each 

time, by checking that these points are in the same position each time. If they are not then the registration 

of the film in the gate of the projector can be corrected. Small errors of this type can be corrected using 

the procedure described in 2:3.1, as long as the film remains flat. Rnally, when in operation the projector 

gives off heat which may have an effect on the film and its emulsion. The projector used was fitted with a 

fan and it is assumed that once the projector had "heated-up" it maintained a constant temperature, 

therefore digitization was not performed until after a 1 0 minute "warm-up" period. 

2. Image and its projection are parallel. 

lt was checked that the image and its projection were parallel by ensuring that the aspect ratios of the 

image and its projection were the same. 
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11 is possible that the accuracy of the digitizing tablet may limit the accuracy of point location in the three- . 

dimensional object space. The digitizing tablet used in this study had a resolution of 0.025 mm. This 

resolution is greater than the accuracy to which the operator could identify points, and less than the 

diameter of the cross hairs of the cursor. The digitizer coordinates of the points on the calibration frame 

were randomly perturbated by 0.025 mm over a number of runs. Using these perturbated values to 

perform camera calibration made no difference to the reconstruction accuracy. 

The final consideration in this section is the accuracy of the person performing the digitization. The 

accuracy depends on their ability to locate points, and the consistency with which this is performed. 

Locating points is relatively simple if those points are clearly marked. For example the centre of a sphere 

is easy to locate, providing its image is not too big, as the image is the same from any camera view. 

Markers placed on key body landmarks are not so easy to locate. For any particular camera these 

markers may not be clearly visible, or they may not be visible at all at certain times. The position of 

markers used in the present study was constrained by the fact that these markers were placed with 

reference to bony landmarks underlying the skin. Small black ink marks were placed on the skin. For 

each body segment under study at least three non-collinear markers had to be visible. To help locate 

these markers, two perpendicular lines were drawn through the marks, so if the marker could not be seen 

a line associated with that mark gave an indication of its position. For the static data capture the images 

from both cameras were projected at the same time; this was not necessary for the dynamic data capture 

as both images were recorded on one film. 

Assuming the operator can clearly see the point to be digitized there will still be some variation in the 

digitization of points. To reduce this variation the digitization of the control points on the calibration 

structure was performed 10 times, and the average value calculated. Section 3:5.2 discusses the effect of 

signal averaging. The differences in reconstruction accuracy for the static data, using different numbers of 

digitizations, are presented in table 2.5. For the dynamic data capture the averaging of the multiple 

digitizations of the calibration frame had no effect on the accuracy of the calibration. For calculation of the 

calibration coefficients for the static data capture the means of 1 0 digitizations were used. 

For the film images of movement there were at least 150 frames to digitize. it was not practical to perform 

multiple digitizations of all frames. To examine the accuracy of digitizing this data, four frames were 

chosen at random and both views digitized 1 0 times. This gave an estimation of the noise for each 

marker, and the variation in locating the different points. This analysis is discussed in detail in section 

3:5.2. Following the recommendation of Ghosh (1979) it was necessary to reduce this noise from the 

digitized projected image coordinates before any further operation was performed on the data. This was 

done using the Generalised Cross-validated Spline. Details of this technique, and the justification for 

using it, are presented in the next chapter. 

2:3.4 LENS DISTORTION 

Lens distortion deforms the image and therefore invalidates the assumption that the image is a central 

projection of the object space. There are two major types of lens distortion. The first is radial distortion, 



TABLE 2.5- The root mean square errors in locating points in three-dimensions after averaging repeat 

digitizations of image co-ordinates of control points, for the static data capture. 

NUMBER 
OF SECOND SET INTER CONTROL 

DIGITIZ CONTROL OF CONTROL POINT 
-ATIQt::!S AXIS EQINTS EQINTS DISIANQES 

X 0.0021 m 0.0028 m 

y 0.0017 m 0.0022 m 0.0044 m• 

z 0.0022m 0.0025 m 

X 0.0018 m 0.0026 m 

3 y 0.0017 m 0.0021 m 0.0040 m' 

z 0.0019 m 0.0024 m 

X 0.0018 m 0.0025 m 

5 y 0.0017 m 0.0021 m 0.0038 m• 

z 0.0019 m 0.0023 m 

X 0.0017 m 0.0025 m 

8 y 0.0016 m 0.0021 m 0.0038 m' 

z 0.0019 m 0.0023 m 

X 0.0016 m 0.0025 m 

10 y 0.0016 m 0.0021 m 0.0038 m• 

z 0.0019 m 0.0023 m 

(N. B.- • RMS error for the inter-control point distances compares the estimated lengths with the actual 

lengths, these measures are not specifically associated with one axis.) 
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which causes the displacement of an image relative to the optical axis of the camera. An outward 

displacement results in "pin-cushion' distortion and an inward distortion causes "barrel' distortion. The 

second type of distortion is asymmetrical orde-centering distortion, which is caused by imperfect centering 

of lenses. This can result in either radial or tangential distortion. Both of these types of distortion can be 

modelled, allowing their influence to be reduced before digitized points are used to locate points in the 

object space. 

Marzan and Karara (1975) incorporated a lens distortion model into their DLT formulation, increasing the 

number of parameters to 16. This model permitted correction for radial and asymmetrical lens distortions. 

They used standard models of lens distortion, although they only used three terms in their model of radial 

distortion, whereas Ghosh (1979) recommended at least five or six terms. 

Miller et al. (1980) used the lens distortion model of Marzan and Karara (1975) and reported no 

improvement in accuracy when results were compared with the standard eleven parameter solution. They 

did not report the differences. Walton (1981) also used this model but found that it reduced the accuracy 

of the reconstruction of the control points. Wood and Mars hall (1986) used one correction term for radial 

lens distortion; for the conditions they examined this lens distortion model reduced the accuracy of point 

reconstruction. Hatze (1988) examined his modified DLT in the three conditions incorporating the lens 

distortion model of Marzan and Karara (1975), and found that the lens distortion model only gave 

increased accuracy in one condition. The condition which gave the improved results used the most control 

points, and this lead Hatze to suggest that the lens distortion model should only be used where 30 or more 

control points are available. 

To implement the lens distortion model of Marzan and Karara (1975) the basic eleven DLT parameters 

must be calculated. These are then used to estimate the principal point location in digitizer units which is 

required for the lens distortion models. Information about the control point locations in the object space 

and in digitizer units are combined to estimate the lens distortion model parameters. Once these have 

been obtained it is possible to reduce the systematic errors caused by lens distortion. The corrected 

coordinates are then used for locating digitized points in the object space. This procedure can be 

performed iteratively until no change in accuracy is achieved. Marzan and Karara (1975) performed the 

procedure once, whilst Walton (1981) performed the procedure iteratively until there was no improvement 

in the location of the control points. As Walton did not find an increase in accuracy, his routine only 

performed one iteration. 

To assess the value of incorporating a lens distortion model in the photogrammetric model, a number of 

different lens distortion models were compared. These were:-

1. One radial distortion term. 

2. Two radial distortion terms. 

3. Three radial distortion terms 

4. Four radial distortion terms. 

5. Five radial distortion terms. 
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6. Six radial distortion terms. 

7. Two terms to correct for asymmetrical distortion. 

8. Two terms to correct for asymmetrical distortion, and three terms to correct for radial distortion. 

9. Two terms to correct for asymmetrical distortion, and six terms to correct for radial distortion. 

The programme was sequentially run with each one of the lens distortion models listed. The programme 

ran iteratively until! 0 successive adjustments had been made with no improvement in accuracy, or until 

there was a decrease in accuracy. Accuracy was assessed by reconstructing the control points. The 

results from the static data capture will be discussed first. 

Option one was the same as that used by Wood and Marshal! (1986) and after 1 o iterations this resulted in 

no change in reconstruction accuracy. In his photogrammetric model Woltring (1980) reported that 

accuracy of reconstruction was only increased when incorporating one radial distortion term, and not when 

using more terms or correcting for asymmetrical distortion. Option two resulted in a decrease after three 

iterations as did option three. Options four, five, and six all resulted in a small increase in accuracy of 

0.1 mm along one axis only. This supports the recommendation of Ghosh (1979) that four or five radial 

distortion terms should be included in a lens model. Option seven resulted in no change in accuracy after 

10 iterations. Option eight was the model proposed by Marzan and Karara (1975) and used by Hatze 

(1988), but after 1 0 iterations there was no increase in reconstnuction accuracy. Rnally option nine 

resulted in an increase in reconstnuction accuracy of 0.1 mm along the X axis only. 

The increases in accuracy with the lens distortion models only occurred when using more than the three 

radial distortion terms usually used with the DLT (Marzan and Karara, 1975; Hatze, 1988). The 

recommendation of Hatze (1988) that lens distortion models should only be used when there are at least 

30 control points available has not been validated. With 51 control points and the same lens distortion 

model as used by Hatze (option eight) there was no increase in accuracy. Presumably the lens distortion 

model gave Hatze (1988) an increase in reconstruction accuracy as a consequence of being used in 

conjunction with his modified DLT, and not as a consequence of the number of control points. 

The effect of the nine lens distortion models on the dynamic data was also examined. In none of the 

cases did it result in an increase in reconstruction accuracy. Option eight was the only option not to 

decrease accuracy. These results are worse than those for the static data capture, but confirm the 

findings that these lens distortion models do not increase the accuracy of the DLT. These models were 

applied for both images from the dynamic data capture to see if any one of the models could account for 

any distortion that the mirror may have introduced into the image. The was no increase in accuracy using 

this approach. 

As there was no increase in reconstruction accuracy with the dynamic data, no lens distortion model was 

used. The increases in accuracy with the lens distortion model for the static data capture were very small 

and occurred at the precision limit of the system used to measure the calibration frame. Therefore no lens 

distortion model was incorporated for the static data reconstnuctions. 
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2:3.5 TEMPORAL MATCHING OF DATA 

At least two images from different angles are required to locate the digitized points in the object space. 

Exposures made with two different cameras are not automatically simultaneously exposed. There are 

three ways in which two images can be synchronised. The cameras can be phase locked so the opening 

and closing of the shutters occurs at the same time. With the LOCAM 11 the Red lake Corporation claim 

that when phase locked the shutter of one camera would be out of phase with the other camera's shutter 

by a maximum of 18 degrees. Alternatively two images can be recorded on the same piece of film by the 

appropriate placement of a mirror in the field of view of the camera (e.g. Woltring, 1980). This presents a 

number of problems: the size of the image is effectively reduced, the mirror can introduce distortions, and 

for many activities a large mirror would be required. The final technique is to interpolate the data sets over 

the same time base. Walton (1981) used a timer in view of both cameras to establish frame times. He 

then interpolated the data of the faster camera over the time base of the slower, this was done using linear 

interpolation. Dapena (1979) used a timer to obtain the start and end times of the activity then assumed 

that the framing rate was constant between these two points. This gave frame times for each camera, he 

then used an interpolating cubic spline to time match the data. 

The process of interpolating the data creates a few problems. There must be some way of measuring the 

time interval between frames. lt cannot be guaranteed that the cameras are running at a consistent 

framing rate. The manual for the LOCAM 11 ('Operating instructions and illustrated parts list", Redlake 

Corp., Campbell, Calif) claims that the camera takes 0.53 seconds to get up to 200 frames per 

second (fps). No claims are made about how consistently that framing rate is held. If the activity is filmed 

during this run-up period the framing rate cannot be used as a measure of time. If the framing rate is 

assumed constant then a time base can be calculated for each camera. lt is then necessary to 

synchronise the cameras by estimating the time of an event which can be clearly seen in both cameras, 

and then interpolating using this moment as a reference. lt is possible to have the time printed directly 

onto the film. This allows interpolalion of the film without recourse to an event in the field of view 

(assuming the same timing device is used for all cameras). The other option is to have a timing device in 

view of the cameras. When using such a device it is necessary that the shutter speed is quick enough to 

be able to distinguish the time to the desired accuracy. 

The temporal matching of the data was not necessary in this study as a mirror was used for the dynamic 

data capture so two images could be recorded simultaneously onto each film frame, which is a clear 

advantage of the mirror technique. As mentioned in section 2:3.2, digitizer coordinates of the projected 

image were smoothed prior to reconstruction. This also permitted an examination of the possible effects 

of incorrect data synchronisation. Using the data from one of the dumbell curls (trial #3), the data from the 

mirror image were interpolated over a new time ba.se at the same time as being smoothed, see section 

3:4.5. The phase locking of two cameras would maximally produce only an 18 degree mismatching of 

shutters. At a framing rate of 200 fps and a shutter opening of 1/3, this would produce images temporally 

offset by 0.00025 s. The reconstructed locations of the points from the synchronised images were used as 

the criterion with which the reconstructed locations from the non-synchronised images were compared. 

The results gave the root mean square error between the two measures over the total number of frames 
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for the trial examined (n m 232) for the 10 points digitized, eight on the subject, and 2 on the dumbell. 

The results are presented in table 2.6. The largest error was 3.2 mm for the V coordinate digitized point 9 

which was one end of the dumbell. This error is less than the precision of the reconstruction accuracy 

along that axis. For the other two axes the errors ane not as large as the precision of the reconstruction 

accuracy along the axis.· Therefore the error that would have been associated with synchronisation of the 

images had phase locking cameras been used would not have been significant in the present study. The 

velocity of the markers has an effect on the accuracy due to synchronisation; if the movement is very fast 

thene is more movement between the exposure of images and the associated errors are increased. 

Analysis of the velocity of the movement of the points digitized in the dumbell cu~ (trial #3), using the 

techniques described in Chapter 3, showed that the markers with the highest velocities (numbers 9 and 

1 0) had the largest inaccuracies associated with synchronisation of the non-synchronised images. 

2:3.5 OTHER ERRORS 

There will be other errors which will corrupt the final signal produced by the photogrammetric technique. 

These will arise from a number of sources, for instance imperfections in the photogrammetric model. Not 

all of the noise in the digitized coordinates can be removed, and some will transfer to the final signal, but 

will have been operated on by all computations involved in obtaining object space coordinates from 

digitized image coordinates. The mathematical techniques used to estimate various parameters ane 

subject to limitations, some imposed by the restriction of computers operating to a finite precision. Given 

these factors it must be anticipated that the final object space coordinates will be corrupted with noise, 

albeit at at lower signal to noise ratio than would have been achieved if the precautions mentioned had not 

been used. 

Systematic error may be present in the data. This can arise from any part of the photogrammetric 

process. On the calibration structure some of the control points may have been incorrectly measured, or 

the person doing the digitizing may consistently identify a marker incorrectly. Vigilance by the 

experimenter should keep these and other such systematic errors to a minimum. 

2:3.6 SUMMARY 

This section has detailed the errors which may arise in the photogrammetric process. Methods for 

reducing some of these errors have been investigated. Any systematic errors remaining are assumed to 

be small enough to be considered insignificant. The random noise affecting the sampled data is assumed 

to be white, the details for its reduction are given in the next chapter. 

2:4 EXPERIMENTAL DETAILS 

In the preceding sections the discussion ignored the quality of the image resulting from the filming 

process. This is influenced by the focus and aperture of the lens, shutter speed, available light, the quality 

and ASA rating of the film, and the processing of the film. Wherever possible those factors which were 

under the control of the experimenter were optimized. Details pertinent to the two filming sessions are 

now given. 
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TABLE 2.6- The root mean square errors in locating points in three-dimensions when the digitized images 

were not synchronised, compared with their locations estimated from synchronised images. (Difference 

between frames was 0.00025 s). 

NUMBER ROOT MEAN SQUARE ERROR 
OF 
MARKER X AXIS V AXIS Z AXIS 

1 0.0008 m 0.0025 m 0.0003 m 

2 0.0010 m 0.0028 m 0.0003 m 

3 0.0008 m 0.0022 m 0.0001 m 

4 0.0009 m 0.0024 m 0.0002 m 

5 0.0007m 0.0021 m 0.0001 m 

6 0.0007m 0.0019 m 0.0002 m 

7 0.0011 m 0.0032 m 0.0006 m 

8 0.0011 m 0.0030 m 0.0004 m 

(N.B. -the points to which the markers correspond are listed in section 2:4.4) 



2:4.1 CALIBRATION STRUCTURE 

This section details the design and manufacture of the calibration structure. A diagram of the structure 

was reproduced in figure 2.1. 
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Analysis of the activities to be studied showed that a structure of 1 .0 m • 0.6 m • 1.0 m would be sufficient 

to record all the information required. The structure was not particularly large so portability was not a 

problem. 

The calibration structure was designed so that there were control points throughout the structure. The 

outside of the structure formed a rectangular reference frame (Hatze, 1988), and the inside gave a 

"Christmas tree• reference frame (van Gheluwe, 1978). This design was selected tor two purposes: to 

ensure that there were control points throughout the calibrated space, and to permit a study of the 

influence of control point distribution on reconstruction accuracy (2:2.5). 

lt is important that the position of the control points to be digitized are precisely identifiable. A control point 

in the form of a two-dimensional marker may not be viewable from all camera positions. To circumvent 

this problem spheres were used since the centres are identifiable from whatever perspective they are 

viewed. The spheres were large enough to be clearly identified but small enough to facilitate accurate 

identification of their centres in the projected image. Golf balls were used as they are manufactured to a 

consistent size, and met the desired criteria. 

During manufacture of the frame emphasis was placed on stability. Twelve millimetre diameter steel 

tubing was used for the frame and the centrally drilled spheres were hammered onto the frame, where 

they remained firmly fixed. The frame was painted matt-black to reduce reflections. The spheres were of 

four different colours to allow for coding of the positions of the spheres. The spheres were placed at 

approximately 0.20 m intervals vertically, and 0.30 m intervals horizontally. Their precise locations were 

determined by surveying the calibration frame. 

A heavy metal base was manufactured on which the calibration structure rested. All measurements were 

made assuming that the base was horizontal. The calibration structure would only fit onto the base in one 

configuration. The base was adjusted until it was horizontal as indicted by a spirit level. 

The locations of the control points were determined using a surveying system developed in the 

Department of Civil Engineering, Loughborough University of Technology. The system incorporated two 

theodolites: a Sokkisha DT 4 and a Zeiss Elta 40. This system used a laser which was aimed through the 

eyepiece of the Zeiss Elta 40 onto the object to be measured, giving a common target for both theodolites. 

The combination of the information from both of the theodolites gave the three-dimensional coordinates of 

the point in an inertial reference frame. When the calibration frame was measured, a Kern sub-tense bar 

with a calibrated length of 2 m was measured as being 2.00001 m long using this system. 

Although the measurement system was accurate, the accuracy of the measurements depended on how 
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well the centres of the spheres were located. There was no way to directly assess this but repeat 

measures were taken of the positions of the spheres on the frame in order to assess how consistently 

these estimates were made. The RMS error when comparing the first measurement of the spheres on the 

calibration frame with the second was 0.0008 m. Both theodolites independently measured the location of 

points on the vertical axis, so it was possible to get an estimate of the accuracy in identifying the target by 

calculating the difference between the two measures. The mean difference was 0.58 mm(± 0.45 mm), 

indicating that the spheres were consistently located. 

To assess the accuracy of the DLT the calibration frame was rotated to a new orientation, see section 

2:2.4 for details. To obtain this new position the calibration structure was rotated approximately 180 

degrees about the central vertical axis of the structure. To determine the new positions of the control 

points, the new positions of four of the control points were measured, given the original and new positions 

of these four points it was possible using the procedures described in section 3:1.4 to determine the angle 

through which the frame had been rotated. Given this angle the locations of the remaining control points 

could be determined. 

2:4.2 EXPERIMENTAL SET-UP- STATIC DATA CAPTURE 

Two 35 mm cameras were used. The camera designated number one was a Canon EOS 750, camera 

two was a Canon EOS 620. The lens on each camera was set to a focal length of 35 mm. Both cameras 

were loaded with Kodacolor Ektrachrome 400 ASA film, and their F-stop and shutter speeds were selected 

automatically by the cameras. Both cameras were mounted at the same height, which was approximately 

level with the centre of the calibration frame. The cameras were then directed so the calibration frame 

was central to both of their fields of view. They were both 2.55 m away from the centre of the frame with 

an angle of convergence of 85 degrees. These camera positions were selected after a pilot study. The 

selected positions allowed all control points on the calibration structure to be clearly visible in both views. 

lt also penmitted viewing of the markers on the subject from both views for more anticipated arm positions 

than other camera positions examined. Two 1.25 kW halogen lamps were used. These were positioned 

approximately behind each camera and aimed at the centre of the activity. A white background was 

selected for the activity as this increased the contrast for the black markers on the subject. In the 

background of the field of view of each camera four markers were placed which served as reference 

markers (see section 2:3.1). 

During the static data capture the subject performed a number of maximum isometric elbow flexions at 

different joint angles. Photographs were also taken of a dry bone specimen of an upper limb, so 

measurements required for osteometric scaling could be made (see section 5:1.2). 

2:4.3 EXPERIMENTAL SET-UP- DYNAMIC DATA CAPTURE 

A minror was used so that two images could be recorded of the same object by one camera. A LOCAM 11 

(Model 51) was used, fitted with a Schneider Kreuznach Variogen 1.8/10-100 lens, the focal length of 

which was set at 20 mm. lt was loaded with Eastman Ektachrome 7250 film (tungsten 400 ASA). For 

filming the calibration frame and timing lights the F-stop was 5.6 and for the subject it was set to 4.0. 
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Initially the shutter on the LOCAM was set to 1/12 which when the camera ran at 200 fps gave an 

exposure time of 1/2400 of a second. This was done so that the camera framing rate could be calibrated. 

With this exposure time it was possible to identify the time of each exposure to a millisecond using a timing 

device. The· interval between exposures gave the framing rate. A number of frames were examined to 

ensure that the framing rate remained constant once the camera was up to speed. The shutter was then 

opened up to 1/3 and the remainder of the filming performed at the nominal framing rate of 200 fps. 

Analysis of the initial sequence of film showed that at a nominal speed of 200 fps the camera was running 

at 200 fps, a rate which was consistently maintained. 

A pilot study was performed to select the camera position. The position selected allowed all control points 

on the calibration structure to be clearly visible in both views. lt also permitted viewing of the markers on 

the subject from both views for more anticipated arm positions than other camera posilions examined. 

The camera position and its orientalion to the mirror are shown in figure 2.3. 

To illuminate the experimental area six halogen lamps were used giving 5.5 kW of light. These had to be 

positioned so they were not visible in the mirror and did not shine into the mirror. As a consequence the 

lights were placed in a straight line perpendicular to the mirror as close as possible to the activily without 

being in shot of the camera. They were aimed across the area of interest to avoid reflections in the mirror 

and the consequent reduction in the qualily of the mirror image. A white background was selected for the 

activily as this increased the contrast for the black markers on the subject. In the background of the field 

of view four markers were placed which served as reference markers (see section 2:3.1 ). 

The timing mechanism used consisted of four columns of ten LEDs, giving seconds, tenths, hundredths 

and thousands of a second respectively. 

During the Dynamic data capture a number of different elbow flexions were filmed:­

TRIAL #1 -elbow flexion wilh the forearm in a neutral position throughout movement 

TRIAL #2- a maximum dumbell curl wilh 17.5 kg 

TRIAL #3- first of five repetitions of dumbell curls with 15 kg 

TRIAL #4 - a dum bell curl with 15 kg executed as fast as possible 

This order was selected to reduce the effects of fatigue. The movements involved in a dumbell curl are 

illustrated in figure 2.4. 

2:4.4 DIGITIZING DETAILS 

The digitizer used throughout the present study was a Terminal Display Systems HR 48. This has an 

active area of 1.20 m by 0.90 m, with a resolution of 0.025 mm. The influence of this degree of accuracy 

has been discussed in section 2:3.3. 

For the static data the film negatives were placed on glass slide mounts and projected onto the digitizing 

tablet using a Kodak S-A V 2010 Projector fitted with an 85 mm lens. This resulted in a projected image 

which was half life size for both images. For analysis of the dynamic data the 16 mm projector used was 

an NAC Analysis Projector, fitted with 50 mm lens. This resulted in a projected image which was 
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FIGURE 2.3- The experimental set-up for the dynamic data capture. 
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(a) 

(b) 

FIGURE 2.4 ·A diagram illustrating a dumbell curl. (a) Anterior view. (b) lateral view. 
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approximately half life size for both images. To allow for any change in the film and the emulsion that may 

arise due to the change in temperature caused by the projectors, they were allowed to 'heat up" for 1 0 

minutes before any digitizing took place. After this time it was assumed that no temperature changes 

occurred. 

The digitizer was interfaced to an Archimedes A3000 Acorn computer which logged all the digitized data 

using software already available in the Department of Physical Education and Sport Science. After 

digitizing the data was converted into ASCII format and transferred either to the PRIME 750 (University 

mainframe) or the Archimedes 440 microcomputer. Here the raw image data were graphically inspected 

to check for any incorrectly digitized points. Where "outliers" occurred, the frame was re-digitized 

immediately and the new values substituted for the old values including the formerly incorrect point. 

The digitizing of each sequence of film was performed in one session. The length of any one of these 

sessions did not exceed 3 hours. The following points were digitized during the dynamic data capture:-

1. Styloid process of the ulna 

2. Styloid process of the radius 

3. Olecranon of the ulna 

4. Medial epicondyle of the humerus 

5. Lateral epicondyle of the humerus 

6. Lesser tubercle of the humerus 

7. Marker on the radial end of the dumbell 

B. Marker on the ulna end of the dumbell 

The first six points were marked superficially onto the skin at the sites believed to correspond to the bony 

landmarks. Target like markers were placed on the ends of the dumbells. The same points were digitized 

for the static data capture except ends of a handle attached a force plate were digitized rather than the 

dumbell ends. For the osteometric scaling additional sites were digitized on a dry bone specimen of the 

upper limb (see section 5:1.2). 

2:4.5 ACCURACY 

A detailed account of the reconstruction accuracy was given in section 2:2.4, and is summarized in this 

section. For the static data capture the RMS errors in locating a group of control points, distributed 

throughout the calibrated space were 0.0025 m, 0.0021 m, and 0.0023 m for X, V, and Z axes 

respectively, these control points were not used for detenmining the calibration coefficients. For the 

dynamic data capture the RMS errors in locating a group of control points were 0.0012 m, 0.0033 m, and 

0.0016 m for X, V. and Z axes respectively. The accuracy for the dynamic data capture was assessed by 

reconstructing the positions of the control points, used to determine the calibration coefficients, the 

limitations of this approach were discussed in section 2:2.4. These accuracy values were for a clearly 

identified point within the object space. lt cannot be anticipated that the location of all the markers on the 

subject were as accurate as this. The problem of marker identification is covered in more detail in the next 

chapter. 
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CHAPTER Ill 

DETERMINATION OF LIMB KINEMATICS 

INTRODUCTION 

The last chapter detailed how points are located in a three-dimensional object space. Although these 

reconstructed marker positions refer to significant body landmarks, the locations of these points do not 

describe limb kinematics. This chapter details the techniques used to determine the limb kinematics. As 

the reconstructed body landmarks contain noise, the reduction of noise in a signal is discussed and 

examined. Derivative information is required for the determination of limb kinetics; the calculation of 

derivatives is also examined in this chapter. Estimates are made of the errors associated with the state 

variables necessary to compute resultant joint moments. 

3:1 POSmON AND ATTITUDE DETERMINATION 

The location of a rigid body in three-dimensional space is specified by the position and attitude 

(orientation) of that body. lt is the purpose of the following sections to detail how the position and attitude 

can be calculated. 

3:1.1 OVERVIEWOFTECHNIQUES 

Consider a set of three non-collinear points pi (i•1,2,3), fixed to a rigid body. The locations of these points 

are known in an inertial reference frame. Assuming that there is also an orthogonal reference frame fixed 

to the rigid body (called the member reference frame), the locations of the three points in this reference 

frame are qi. The following relationship exists:-

qi • [R].pi + V 

Where:-

[R] - is an attitude matrix (sometimes called the rotation matrix) 

and V is a position vector. 

[3.1] 

The attitude matrix contains the direction cosines between the axes of the inertial and member reference 

frames, therefore suitable rotations and a translation are performed to bring the axes of one reference 

frame into line with the other. The attitude matrix can be used to compute the orientation angles (see 

section 3:1.4). The relationship expressed in equation 3.1 does not only apply in moving from an inertial 

reference frame to a member reference frame. lt can be used in moving from any orthogonal reference 

frame to any other. An important property of the attitude matrix [R] is that it is orthogonal, therefore:-

[R]T.[R] • [R].[R]T • [R]·1 .[R] • I [3.2] 

Where:-

1 - is the identity matrix. 
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Relationship 3.1 can also be used to describe the movement of a rigid body from one position to another, 

given the points measured in position one (pi), and then in position two (qi). it is possible to determine the 

attitude matrix and translation vector which would result in such a displacement. Given these two 

parameters it is possible to compute the helical or screw axis parameters which are often used in the 

kinematic analysis of joints. 

There are various techniques used to determine [R] and V, given that at least three non·collinear points 

have known locations in both reference frames. The majority of these techniques are concerned with the 

determination of helical axis parameters, whilst in the present study they are required for the computation 

of the position vector and the orientation angles. As this distinction only exists with regard to how these 

parameters are used, it is necessary to examine both sources of literature to review the techniques for [R] 

and V determination. Three different groups of techniques will be considered: direct; unweighted least­

squares; and iterative cine-photogrammetric. 

The direct techniques are those where [R] and V are calculated assuming that the coordinate data are free 

from error. These techniques make no assumptions about the rigidity of the body under study. Angeles 

(1986) and Friberg (1988) both advanced techniques to compute [R] and V which fall into this category. 

In the least-squares techniques, the points are not considered error free and the techniques minimise the 

difference between the measured coordinates and the calculated locations of those points. All of these 

techniques use unweighted least-squares. Selvik (1974) used a least-squares technique which required 

an initial approximation of [R] and V. Spoor and Veldpaus (1980) proposed a least-squares method which 

minimised the same function as Selvik (1974) but did not require an initial approximation of the 

parameters. Its chief disadvantage was that it required the calculation of the eigenvectors of a three by 

three matrix. Veldpaus, Woltring, and Dortmans (1988) presented a technique similar to Spoor and 

Veldpaus (1980), but their technique did not require the calculation of eigenvectors, and relied on a 

Newton-Raphson procedure to solve a system of non-linear equations. The technique also produced a 

figure of merit which reflected inaccuracies in the measurement data. and in the rigidity of the bodies to 

which the markers defining the member reference frame were fixed. A similar technique which also 

provides a least-squares estimate of [R] and V is that of Siegler, Chen, and Schneck (1988). They 

employed a non-linear optimization algorithm to find [R] and V. All of these techniques were optimal in a 

least-squares sense. 

There are two iterative cine-photogrammetric techniques, both of which obviate the need to compute the 

location of the points in the inertial reference frame as an intermediate step in the computation of [R] and 

V. Direct estimates of the position vector and the orientation angles of the rigid bodies are obtained from 

the image coordinates. The technique of Miller, Shapiro, and Mcl.aughlin (1980) used the DLT 

parameters reformulated using a Taylor series approximation for the determination of the orientation 

angles and position vector. The resulting system of equations was solved using linear least-squares 

implemented via Normal equations. The procedure required an initial approximation of the parameters. 

They presented the results for a number of conditions, all using the same basic formulation, and showed 



46 

that increased accuracy was achieved when the largest number of markers (eight) defined the member 

reference frame. Woltring (1982) combined the collinearity equations of photogrammetry with the relation 

which transforms points from one reference frame to another, in this case object space reference frame to 

member reference frame, equation 3.1. The resulting relationship was modelled using a second order 

Taylor series approximation, and solved given a suitable initial approximation by a Newton-Raphson 

iterative procedure. There was no report on the accuracy of this technique. As cine-photogrammetric 

techniques tend to have larger errors associated with measurements along one axis, see section 2:2.6, 

these approaches where the object space coordinates are not directly reconstructed may result in greater 

accuracy than techniques where the object space coordinates of all points are calculated. 

Woltring and Huiskes (1985) used a theoretical model to examine the accuracy of the estimation of the 

parameters describing the helical axis under a number of conditions. They employed different 

combinations of the following operations: prior smoothing of data; smoothing of resulting data; iterative 

adjustment calculus; and incorporation of a rigid body model. The filter used considered the data to be 

contaminated with stationary, uncorrelated noise with a mean value of zero. The most significant result 

was that more accurate estimates of the helical axis parameters were obtained when the raw data were 

smoothed prior to the determination of these parameters, rather than smoothing the computed parameter 

values. The lower accuracy as a result of smoothing the computed parameters is not surprising as the 

determination of the helical axis parameters involves non-linear transformations; these transformations 

would change the nature of the noise contaminating the signal, making conventional low-pass filtering 

inappropriate for removal of this noise. The determination of orientation angles involves similar non-linear 

transformations. 

3:1.2 MARKER MOVEMENTS 

The position vector and attitude matrix are determined from the positions of markers fixed to a theoretically 

rigid body. As the body may not be rigid there may be movement of markers relative to the genuine 

reference frame which they are intended to define. A consideration of the movement of these markers is 

necessary. The three-dimensional cine-photogrammetric procedures described in Chapter lllocated the 

positions of these markers but made no allowance for the markers moving from their ordained positions. 

Macleod and Morris (1987) examined the amount of marker movement using rigid markers during three 

activities: walking, stamping, and landing. Using a video based system they assessed the accuracy to 

which they could locate the markers to be 0.002 to 0.003 m. Shank length was measured during the 

activity by reference to a pair of appropriately placed markers. Variations in the inter-marker distances 

were compared with the shank length measured before the activity. The markers used weighed 3 g. 

During walking there was a variation in shank length of 0.01 m, and 0.02 m during landing. Using heavier 

markers (1 0 g) there was a variation of 0.015 m during walking, and 0.023 m during landing. This type of 

error must be considered systematic as it is correlated with the movement. An increase in reconstruction 

accuracy has little effect if these systematic errors are not reduced as they are much greater than the 

reconstruction errors. 

The movement of the markers in the study of Macleod and Morris (1987) was due to the movement of the 
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underlying skin. In a study of horses, the effect of skin movement was assessed. Van den Bogert, van 

Weeren, and Schamhardt (1990) examined horses walking normally. The researchers either embedded 

LEDs into the bones of the horses or used transcutaneous pins. This permitted quantification of skin 

movement. The peak to peak amplitude of skin displacement was 0.15 m. To illustrate the errors due to 

skin movements the moment arm of the gastrocnemius was calculated with skin effected marker positions 

and direct bone measurements. Errors of up to 30 percent were found at both the knee and tarsal joints. 

A two-dimensional model was developed to correct for marker movements due to skin movement. The 

authors concluded that 

" ... when using skin marker-based kinematic data of the horse for the calculation of biomechanical 

parameters, correction for skin displacement is nothing but a must. Furthermore, although the absolute 

values of skin displacement in human gait analysis will be substantially smaller resulting in a smaller error 

due to this artifact, there is no reason to believe that the situation is substantially different." (Page 100) 

The study of Macleod and Morris (1987) highlighted the influence of the mass of the markers on marker 

movements, no mention is made in the report of van Den Bogert et al. (1990) of the mass of their markers. 

Their study was only two-dimensional. The implicit assumpiions of such an analysis could disguise the 

true nature of skin movement, and its influence on marker movement. 

Both studies indicate the need to study the influence of skin movement on marker movement. Until more 

information is available the researcher must:-

1. Place markers where they will be least influenced by the movement of skin . 
• 2. Use markers which are as light as possible. 

3. Attempt to quantify the movement of these markers. 

The second consideration is circumvented by marking the skin directly with an appropriate marker. The 

last recommendation is hard to achieve, but one simple partial indication of the amount of marker 

movement is to plot the variation of distance between the positions of pairs of markers, measured before 

the activity and calculated from the cine-photogrammetric data during the activity. Pairs of marker may be 

equally effected by skin movement, but this will not be the case for all pairs of markers. Such an analysis 

has been undertaken in the present study. The results are reported in section 3:5.3. 

3:1.3 DETERMINATION OF POSITION AND AITITUDE 

For the determination of [R] and V an unweighted least-squares technique was adopted in this study. By 

using an unweighted least-squares based technique some of the errors in the measurements of the points 

in the inertial and member reference frames are accounted for. The technique used was that of Hanson 

and Norris (1981) which computes the singular value decomposition of a cross-dispersion matrix to 

compute [R] and V. 

[R] and V were computed as follows:-

qi - [R].pi + V (3.1 restated) 

Compute the cross-dispersion matrix:-

K 

[C] = ~ L 
i "" 1 [3.3] 
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Where:-

p - a! pi q- a! qi 
i- 1 i- 1 [3.4] and (3.5] 

and k is the number of non-collinear points on the rigid body, k;;. 3. 

The singular value decomposition of the cross-dispersion matrix was computed:-

[C] • [U].[S].[V]T (3.6] 

Section 2:2.3 gives more details of the computation of the singular value decomposition of a matrix. The 

attitude matrix is computed from:-

[R] = [U].MT [3.7] 

The position vector is computed from:-

V • q - [C].p 
[3.8] 

Matrix [S] contains the singular values of the cross-dispersion matrix. The rank of this matrix can be used 

to determine errors in the rigid body model. If the rank is three then the distribution of the reference points 

on the rigid body is three-dimensional, if the rank is two then the distribution is planar, and if the rank is 

one then all the points are collinear. 

This technique is computationally similar to that of Veldpaus et al. (1988). Their routine requires the 

inversion of a three by three matrix (see their equation 4.1 0), the most robust technique with which to 

perform such an inversion is the SVD (see section 2:2.3). The technique of Hanson and Norris (1981) 

employs the SVD of a three by three matrix but fewer additional calculations than Veldpaus et al. (1988). 

In light of the findings of Woltring and Huiskes (1985) the coordinates of the reference points on the rigid 

bodies measured in the inertial reference frame were smoothed prior to the computation of [R] and V. 

Because these points had been smoothed and a least-squares algorithm was used the angles computed 

from [R) were not smoothed further. As [R] is used to transform coordinates from one reference frame to 

another, filtering these angles may cause the matrix to become non-orthogonal in which case its use 

would be limited as the inverse of the matrix would not be so easily determinable. This assumes that the 

filtered angles are used to reconstruct the transformation matrix. 

3.1.4 ANGLE DETERMINATION 

The attitude matrix [R) is considered to consist of a sequence of three rotations, given by three rotation 

matrices. There is one angle associated with each matrix. The following may be stated:-



49 

(A]• [R3].[R2].[R1] [3.9] 

Where:-

[' 
0 . , I [R1] • O,cos~ , sin~ 

1 , -sin ~ • cos~ 
[3.1 0] 

[=' 0 

' ""] [R2] • 0 • • 0 

sin o, 0 • cos 0 
[3.11] 

[~·· sin 'If 0 l [R3] ~ -Sin 'If , cos 'If. 0 

0 • 0 
[3.12] 

Where:-

~. o, and 'If are angles. 

In this case Cardan angles (also known as Bryant angles) have been used. In the case of Eulerian angles 

matrix [R1] is the same in format as matrix [R3], but with a different associated angle, because these two 

rotations occur about the same axis (Wittenburg, 1977). As matrix multiplication is generally not 

commutative the values of the angles are dependent on the sequence of these multiplications. The 

sequence of these rotations varies with different definitions of these angles. Eulerian or Cardan angles 

have most commonly been adopted to define body orientations, although the former term is often used as 

a generic term for all types of orientation angles (e.g. Greenwood, 1965 page 332). 

Eulerian angles can be calculated from the following formulae:-

cos 0 R [R]33 (3.13] 

cos ~ ~ -[R]32 / sin o [3.14] 

cos 'If • [R]23 / sin o [3.15] 

The angles are not defined fore • n.1t (n=0,1, ... ). as the first and third axes cannot be distinguished: this is 

the gimballock condition. Therefore this definition of orientation angles is most useful when e remains 

non-zero and less than 180 degrees. 

Cardan angles can be calculated from:-

sine- [Rb1 [3.16] 
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sin q • - [R)32 / cos 9 [3.17] 

sin 'I' • - [Rb I cos 9 [3.18) 

For 9- 0 the three axes are still orthogonal unlike the Euler angles under this condition. Gimballock 

occurs when 9 •1</2 + (n.lt) (n-o, 1 , ... ),as here the rotation of the axes by q and 'Jf are Identical. it can be 

seen that if anticipated rotations about the Y axis fluctuate around zero degrees, and never achieve an 

angle± 90 degrees then Cardan angles are appropriate. Whereas if the angles are anticipated to be 

larger than± 90 degrees then Euler angles are more suitable, as long as angles of zero do not occur. 

For the determination of limb kinetics the angular velocity of the rigid body is also required. For Cardan 

angles this is expressed in matrix form:-

[

eo. I [ cos 9. c~s 'I' sin 'Jf 
C0y • • COS 9. Sin 1jf COS 1jf 

eo. sin 9 o 
[3.19) 

Where:-

ro,., my. and ro. -are the angular velocities 

and q', 9', and ljl' are the derivatives with respect to time ofq, 9, and 'I'· 

Verstraete and Soutas-Little (1990) proposed a new technique for the determination of the angular 

kinematics of a rigid body. Given two points on a rigid body the relative velocity between the two must be 

perpendicular to the position vector between the two points and the angular velocity. If it is assumed that 

linear velocity has already been calculated then the only unknown is angular velocity. If more than two 

points are measured on the rigid body it is possible to formulate a series of equations relating the known 

variables to the angular velocity, the resulting system of equations can be solved using a linear least­

squares technique. By using this approach the authors claimed that allowance was made for marker 

movement when computing limb angular kinematics. As this technique requires the determination of linear 

velocity of the rigid body landmarks, or linear acceleration if angular acceleration is required, the errors 

due to marker movement have not been completely eliminated from these variables so marker movement 

is only partially accounted for with this technique. The authors present some results for this technique but 

have no criterion with which to compare their results, so its accuracy is hard to assess. 

The rotation occurring at a joint is normally described by the rotations necessary to align a proximal 

segment member reference frame with that of a distal segment. There are three possible types of rotatory 

motion permitted at a joint. These can be described as flexion-extension, abduction-adduction, and 

internal-external rotation. Reference to figure 3.1 illustrates how the angles associated with these 

rotations can be obtained, by comparing the two member reference frames. In the figure rotations about 

the Xp axis corresponds to ftexion extension, the Yp axis to abduction-adduction, and the Zp axis to 

internal-external rotation. There are no commonly accepted definitions of joint axes, so researchers must 

choose those they feel are the most appropriate for the activity and joint being studied. If member 

reference frames are fixed to both distal and proximal segments, and the locations of at least three 
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FIGURE 3.1 ·a) Two rigid bodies and their member reference systems. 
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b) Two rigid bodies, showing the effect of rotation of the distal segment about the X axis. 
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non-collinear points are measured in an inertial reference frame for both frames, the attitude matrices and 

position vectors which transform points from the inertial reference frame to these member reference 

frames can be calculated using the procedures already discussed. The angles describing joint movement 

are then obtained from the attitude matrix produced from the product of the attitude matrix for the distal 

segment and the inverse of the attitude matrix for the proximal joint. This can be stated as follows:-

[3.20] 

[3.21 I 

Where:-

[RJ1 - is the attitude matrix defining joint orientation, or the orientation of the distal reference frame with 

reference to the proximal 

[R];p - is the attitude matrix for the inertial reference frame to the proximal member reference frame 

[R];d - is the attitude matrix for the inertial reference frame to the distal member reference frame 

and v1, V;d• V;p - are the position vectors. 

The transpose of an attitude matrix is its inverse, see equation 3.2. 

Alternative axes systems have also been defined, for example Chao (1980), and Grood and Suntay 

(1983). Grood and Suntay demonstrated their system on the knee with flexion occurring about a femoral 

medial-lateral axis, an axis for internal-external rotation embedded in the tibia, and the abduction axis 

defined by a floating axis. This alternative type of joint axis definition gives three axes which are not 

necessarily orthogonal. In examining joint motion a more appropriate system is the use of the helical axis, 

which is discussed in the next section. 

3:1 .5 HELICAL AXES 

A joint is the connection between two rigid bodies. Chalses theorem of the motion of a rigid body states 

that the motion of a rigid body can be considered to be a translation along, and a rotation about a suitable 

axis in space. In light of this theorem the motion between two rigid bodies can be defined by the screw or 

helical axis parameters. The helical axis parameters therefore describe the whole body motion as a 

combination of a translation along, followed by a rotation about a directed line in space (the axis). The 

four helical axis parameters therefore are the rotation about the axis, the translation along the axis, the 

location of a point on the axis, and the direction of the axis. Reference is often made to finite helical axis 

(FHA), and instantaneous helical axis (I HA). The former represents the helical axis as defined by the 

initial and final positions only, whilst the latter is considered continuous and therefore is evaluated over 

small movement steps using the FHA as the approximations to the IHA. The way in which joint angles are 

defined varies between researchers. This makes it difficult to compare studies. The FHA and the IHA are 

not dependent on the way in which joint angles are defined, so are very useful in examining joint function. 

Helical axes are most often calculated from the data resulting from Roentgen stereo-photogrammetry. 

This is the science of obtaining measurements from radiographic images. These measurements are 
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normally made on metallic markers placed in the skeleton. Selvik, Alberius, and Aronson (1983) reported 

an accuracy of 1 0 11m in measuring lengths using this technique. Siegler et al. (1988) used a three­

dimensional digitizing system to measure the position of bones, this system had a reported accuracy of 

0.0001 m in locating points. Both of these techniques demonstrate a high accuracy compared with cine­

photogrammetnc techniques. As the helical axis is an appropriate way to define joint motion, the accuracy 

of its estimation with the present quality of data Is examined here. 

Woltring, Huiskes, de Lange, and Veldpaus (1985) presented formulae for the estimation of the error 

variance associated with estimating the helical axis parameters. These formulae are presented here in a 

slightly simplified form:-

(J n ae = p 

(Jt = (J. n 
2.a 

an = 

(p.e.fn) 

Where:-

p - is the effective landmark distribution radius 

n - is the number of landmarks 

e- is the amount of helical rotation 

a - is the standard deviation of error in marker location 

a8 - is the standard deviation of error in helical rotation 

a1 - is the standard deviation of error in helical translation 

an- is the standard deviation of error in direction of helical axis 

and a5 is the standard deviation of error in location of point on the helical axis 

Where:-

r - is the root mean square distance of landmarks to mean position 

[3.22] 

[3.23] 

[3.24] 

[3.25] 

[3.26] 

There are a number of assumptions associated with these formulae which are discussed later. These 

formulae are now examined assuming that the !HA is computed in vivo using cine-photogrammetric data. 

An initial look at these formulae shows that the error of the calculated translation along the axis is 

proportional to the error in the marker locations, and inversely proportional to the square root of the 

number of markers. The number of markers is constrained by the number of bony landmarks visible 
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beneath the skin, some of these landmarks may not be used because the skin movement may be so great 

that the marker position does not accurately reflect the position of the bony landmark. The rotation about 

the axis is similar to the translation error term except it is also inversely proportional to the landmark 

distribution. The landmark distribution is limited by the size of the limb, and by the number of bony 

landmarks visible beneath the skin. The accuracy of the location of a point on the helical axis and the 

direction of the axis are both proportional to the accuracy of marker location, and inversely proportional to 

the angle of helical rotation, and the number of landmarks. These formulae indicate that a better estimate 

is achieved by a larger rotation angle, but the IHA is approximated by the FHA and the assumption is that 

the smaller the rotation the closer the FHA comes to approximating the I HA. The angle of helical rotation 

used in these formulae must also be considered in light of the error associated with the estimation of the 

helical rotation. 

A sample calculation was performed to examine the anticipated accuracy of IHA parameters estimated for 

the elbow joint in vivo. The standard deviation of the noise affecting marker locations was assumed to be 

0.002 m, which represents slightly better quality data than that obtained in the present study. Table 3.8 in 

section 3:5.4 presents an estimate of the standard deviations of noise affecting data sampled in this study. 

Additional assumptions were that n-4, P-0.1 0 m, and the joint was assumed to rotate 3 degrees. The 

results were: o9 - 0.81 °, o1 • 0.00141 m, "n - 21.9°, "•- 0.0382 m. 

The enror in the helical rotation was approximately a quarter of the total amount of rotation assumed. To 

improve this the accuracy of marker reoonstruction would have to be increased significantly. The error in 

locating a point on the axis was nearly 0.04 m, but for most of the joints investigated the location of the 

helical axis after a finite rotation has been shown to vary by only a few millimetres (e.g. Siegler et al., 

1988; Youm, Dryer, Thambyrajah, Ratt, and Sprague, 1979). The standard error in the estimation of the 

attitude of the helical axis was 21.9 degrees which is another signifiCant error. Given these enror estimates 

there are two options which would increase the accuracy of the IHA estimation: either increase the angle 

of rotation, or the accuracy of marker location. If the angle of rotation was increased this invalidates the 

IHA assumptions. Therefore the only practical option is to improve the accuracy of the marker locations. 

From the preceding analysis it can be concluded that in the present study the accuracy in locating the 

markers was too low to make IHA estimation practical. 

To arrive at the error formulae Woltring et al. (1985) had to make a number of assumptions about the data. 

These are now discussed:-

!. Marker distribution was considered to be isotropic, which means that there are no preferential directions 

or planes in the distribution of the markers. This effectively means that the markers are placed at the 

vertices of a regular polyhedron. Spoor (1984) further examined these formulae and showed that if this 

condition was only slightly violated the results of the formulae still applied. 

2. These formulae assumed that the noise contaminating the marker locations is zero mean, uncorrelated, 

and with the same standard deviation for each axis. With cine-photogrammetric data these conditions are 

hard to achieve, particularly that of having the same error associated with each axis, as shown in 

section 2:2.6. Depth enrors are normally greater than those of the other axes. lt may also be difficult to 



have the same error in all coordinates as points may be obscured in one or more cameras views at 

various times during the activity. 

3. They assumed that the helical axis parameters had been estimated using a statiStically optimal 

procedure. Such procedures were discussed in section 3:1.1. 

4. The error terms used here also assumed that one rigid body (normally the proximal) was fixed in 

relation to the measurement apparatus. If both are moving as is the case in the present study, the error 

terms are more complicated. 
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Although these assumptions could not be upheld in the present investigation, the general trends reflected 

in these formulae still apply, although the actual errors would be higher than those estimated. 

De Lange, Huiskes, and Kauer (1990) examined the increase in accuracy obtained when noisy positional 

data obtained from Roentgen stereophotogrammetry were smoothed using generalised cross-validated 

spline procedures. Using a physical model on which the helical axis parameters were known they found 

that the accuracy in the description of the FHA improved when the noisy data were operated on using a 

spline procedure. Their results confirmed the computer simulation model of Woltring and Huiskes (1985), 

and the error propagation formulae of Woltring et al. (1985). 

Studies of the helical axis on various joints (e.g. the knee, van Dijk, Huiskes, and Selvik, 1979; the wrist, 

Youm and Yoon, 1978; the ankle, Siegler et al., 1988) show that the IHA is non-stationary. As in vivo 

techniques normally rely upon Roentgen stereo-photogrammetric procedures, the helical axis is not 

estimated in normal loading situations when measurements are made on live subjects. If the 

measurements are made on cadavers, no indication is given of the influence on helical axis estimation of 

muscular contraction. The influence of such approximations on the variation in helical axis parameters is 

an area worthy of further investigation, as is the effect of the helical axis in the study of in vivo joint 

kinematics and kinetics. 

3:1.6 SUMMARY 

In the preceding sections a procedure has been adopted for the estimation of the attitude matrix and 

position vector of the rigid body in space. The orientation angles of rigid bodies are defined by Cardan 

angles. Using the formulae of Woltring et al. (1985) it was shown that given the quality of data available in 

this study it was inappropriate to compute the IHA of the elbow joint. 

3:2 THE HUMAN ELBOW JOINT 

To describe the motion of the forearm in relation to the upper arm it is necessary to define an appropriate 

set of member reference frames. To facilitate this the bones of the upper arm and forearm and their 

articulations are described in the following sections. No knowledge is required of the wrist and the hand 

as they were considered an extension of the forearm with no individual movement. In order to compile this 

section in addition to the observation of dry bone specimens details have been extracted from Steindler 

(1970), Kapandji (1970), and Hay and Re id (1982). 



3:2.1 THE BONES OF THE ARM 

An anterior view of the bones of the upper limb is shown in figure 3.2, a posterior view is shown in 

f~gure 3.3. 
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The head of the humerus is hemi·spherical, it is offset medially from the axis of the long shaft of the bone. 

Much of the humeral head lies outside the joint capsule, and this area is used for the attachment of various 

muscles. The tendon of the long head of the biceps runs between the greater and lesser tuberosities, 

which form the bicipital groove of the head of the humerus. 

The long shaft of the humerus narrows at the top to form the surgical neck. The shaft bulges in the mid­

shaft area to form the deltoid tuberosity. Distally the bone becomes wider and flatter. The distal end 

consists of two round condyles - the lateral and medial epicondyles, which are superseded by the medial 

and lateral supracondylar ridges. From these ridges many of the muscles of the forearm originate. 

Between these two epicondyles lie the articular surfaces of the humerus, the trochlea. Lateral to the 

trochlea is the hemi-spherical cartilage; the capitulum. 

The forearm is composed of two bones the radius and the ulna. When the arm is supinated the radius and 

ulna lie parallel to one another, with the ulna being on the medial side of the forearm. lt is possible for the 

forearm to rotate to a pronated position where the forearm has rotated about an axis along the length of 

the bones. In this movement the radius moves across the ulna. The axis of rotation passes distally 

through the head of the ulna, and proximally through the head of the radius. 

The radius is the shorter of the two bones in the forearm. The head is cylindrical with the upper surface 

being concave and cup·shaped for articulation with the capitulum of the humerus. The sides of the radial 

head are covered by articular cartilage. lt is these side heads which rest in the radial notch of the ulna. 

The neck is distal to the head and is much thinner; the radial tuberosity lies on the antero-medial aspect of 

the neck. The bone shaft has a sharp border, which is the line of attachment of the interosseous 

membrane, which connects the shafts of the radius and ulna. The larger end is the distal end, which has 

two articular surfaces. There is a small notch on the medial aspect which is for articulation with the ulna. 

The end-face is concave and angled medially. 

The proximal articular surface of the ulna has a trochlear notch, for the articulation with the trochlea of the 

humerus. The base of the trochlear notch is known as the olecranon, and it forms the olecranon process, 

onto which the triceps tendon inserts. On the distal side of the trochlea notch is the coronoid process 

which fits into the coronoid fossa in full flexion. Distal to the coronoid process is the ulnar tuberosity. As 

the ulna tapers towards the wrist, its lateral border is sharp and is the origin for the interosseous 

membrane. At its distal end it articulates with the notch of the radius. 

3:22 ARTICULATIONS OF THE JOINT 

The elbow joint has been described as a trochogiglymus joint (Steindler, 1970) due to the three 

articulations at the joint. The humero-radial articulation between the capitulum of the humerus and the 
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head of the radius, permits the rotation of the radius about its long axis. The humero-ulnar articulation 

between the trochlea and trochlear notch of the ulna is a hinge like joint which permits flexion-extension of 

the forearm. The radio-ulnar articulation is between the head of the radius and the radial notch of ulna; 

during pronation-supination the radius rotates around the ulna about this joint. Due to the geometry of 

these articulations and the ligamentous structures of the elbow joint there is little translatory movement at 

the joint (Morrey and An, 1983), and for the purposes of the present investigation none is assumed. 

3:2.3 MOVEMENT OF THE FOREARM 

The joint has two major degrees of freedom permitting flexion-extension, and pronation-supination. 

Supination is the rotation of the forearm so that the thumb moves laterally, pronation moves the thumb 

medially. The geometry of the joint and its ligamentous constraints result in the additional motion of 

abduction-adduction. The abduction-adduction angle of the elbow joint is generally called the carrying 

angle. This third angular component is passive in nature. The precise definition of the carrying angle 

varies between researchers. Some researchers have defined the carrying angle as the angle by which the 

long axis of the ulna deviates from the long axis of the humerus (e.g. Chao and Morrey, 1978). Whereas 

others have defined a longitudinal axis for the forearm and measured carrying angle in relation to this axis 

(e.g. Amis, Dowson, Unsworth, Miller, and Wright, 1977). The three angular orientations of the forearm 

are illustrated in figure 3.4. 

Kapandji (1970) measured the range of flexion-extension to be 145 degrees, with flexion being stopped as 

the flexor muscles meet the forearm. Whilst for supination and pronation he reported angles of 90 

degrees and 85 degrees respectively. Steindler (1970) investigating the carrying angle reported a range 

of 1 0 to 15 degrees for men, and 20 to 25 degrees for women, with the carrying angle zero at full flexion. 

You m et al. (1979) examined the arms of eight cadavers and reported a range of flexion of 140 degrees 

(standard deviation 5 degrees), a range of pronation of 70 degrees (S.D. of 5 degrees), and finally for 

supination a range of 85 degrees (S.D. of 4 degrees). 

Chao and Morrey (1978) performed an extensive analysis of the movements of the forearm of two 

cadavers. During flexion both specimens showed the same pattern of change in carrying angle; these 

changes were 16 and 20 degrees through out the full range of flexion. The change in carrying angle was 

independent of the position of the forearm which was in either a supinated, neutral, or pronated position. 

They also showed 5 degrees of axial rotation during flexion, independent of the starting position of the 

limb. 

Chao and Morrey (1978) claimed that supination-pronation was due to the rotation of the radius about the 

radio-ulnar joint with the ulna showing no movement, whilst the radius deviates medially from its position. 

You m et al. (1979) also showed that supination-pronation involves no movement of the ulna, with the 

radius performing the rotation. They demonstrated that during supination-pronation axial rotation of the 

ulna occurred distally, but not proximally. 
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FIGURE 3.4 - The three angular motions of the elbow joint. 
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There have been many contradictory reports as to how the carrying angle varies during flexion. Dempster 

(1955) examined the carrying angle and claimed that it changed in an oscillatory pattern with flexion. Am is 

et al. (1977) examined the variation in carrying angle during elbow flexion and claimed that the range of 

movement was the same when the hand was adducted and abducted, and that the carry angle changed 

throughout flexion. You m et al. (1979) also showed that the variation in the carrying angle varied with 

amount of flexion as a sinusoidal function, but claimed it remained constant after 1 00 degrees of flexion. 

London (1981) claimed that it remained constant during flexion, whilst Chao and Morrey (1978) showed 

that~ varied linearly during flexion with it being maximum at full extension and minimum at full flexion. 

In an attempt to clarify the variation of the carrying angle An, Morrey, and Chao (1985) examined how the 

carrying angle was affected by two different definitions of the carrying angle. The first technique measured 

the angle between long axis of the humerus and the long axis of the ulna in the plane containing the axis 

of joint flexion-extension and the humerus. The second defined the angle as the abduction-adduction 

angle of the long axis of the ulna to the long axis of the humerus using Eulerian angles. These definitions 

gave different results, but the authors did not attempt to evaluate their relative merits. This variation in 

results illustrates the effect of using different measuring techniques. lt must also be remembered that 

given the small number of cadaver elbow joints which have been investigated to date, it may be possible 

that much of this variation can be accounted for by the naturally occurring differences in human elbow 

joints. 

Rscher (1909) calculated the instant centre of rotation of the elbow during flexion, and found that it was 

located in the centre of the trochlea, and its location only varied by 2 to 3 mm during flexion. Similar 

results were found by Chao and Morrey (1978). Youm et al. (1979) measured the IHA of the elbow during 

flexion-extension and showed that the axis was located through the centre of the trochlea. For supination· 

pronation the axis passed distally through the ulna and proximally through the centre of the capitulum. In 

both cases there was little variation in the locations of the IHA in different limb positions. 

3:2.4 MARKER POSITIONING 

fll'arkers were positioned based on the discussion in section 3:1.2. Instead of using rigid markers, the 

points of interest were marked directly onto the skin. This was done using a black marker pen, making a 

target of 2 cm in diameter which gave an image size large enough to be easily recognised when digitizing 

but small enough so its centre could easily be estimated. Ink lines were extended from these markers so 

that if the marker was not directly visible a line associated with the marker gave an indication of the 

location of the marker. 

Points on the arm were chosen so that skin movement would be as small as possible whilst still defining 

meaningful bony landmarks. Three landmarks were identified for the humerus; these were the lateral and 

medial epicondyles, and the lesser tubercle of the humerus. The landmarks used for the forearm were the 

styloid process of the radius, the styloid process of the ulna, and the olecranon process (ulna). Other 

marker positions were considered but disregarded as it was either too difficult to clearly identify them, or 

they were too affected by skin movement. The ends of the dum bells were also marked defining a line that 



62 

passed centrally through the handle of the dum bells, so that when the forearm was supinated this line was 

approximately parallel to the flexion-extension axis. 

3:2.5 DEFINITION OF MEMBER REFERENCE FRAMES 

For the analyses undertaken in this study it was necessary to define sets of member reference frames 

which permitted description of the movements of the forearm relative to the upper arm, and had physical 

significance to the bones of the arm. The measurements of these frames were made during the static 

data capture. 

The axes were defined so that they were meaningful with reference to the angular orientations of the joint. 

The flexion-extension axis (X axis) was defined perpendicular to the common longitudinal axis, and 

orientated in the medial lateral direction. The abduction-adduction axis (Y axis) was defined perpendicular 

to the longitudinal axis, and orientated in the anterior-posterior direction. The supination-pronation axis (Z 

axis) was defined parallel to the longitudinal axis of the rigid body. 

Chao and Morrey (1978), when studying the motion of the elbow joint, defined four sets of member axes. 

One was fixed to the upper arm, one to the forearm, and one to each of the radius and the ulna. The latter 

pair of axes were used to define the rotation of the ulna relative to the radius during supination-pronation. 

For the study of forearm motion in this study the humeral and forearm axes were defined similarly to those 

of Chao and Morrey (1978). For the humeral reference frame the Z axis was defined as the long axis of 

the shalt of the humerus, the X axis was defined as a line through the centre of the trochlea perpendicular 

to the Z axis, and the Y axis was perpendicular to these two axes. The origin of this system was in the 

centre of the trochlea. This location corresponds with the location of the centre of rotation as determined 

by Rscher (1909) and Chao and Morrey (1978) during flexion. The locations of the axes also correspond 

well with the location of the I HAs during flexion-extension and supination-pronation calculated by Youm et 

al (1979). To give the angular orientation of the forearm a reference frame was then defined in this 

segment. The Z axis passed through the centre of the styloid process of the ulna distally, and through the 

radial head proximally, the X axis passed through the centre of the radial neck perpendicular to theY axis, 

the Y axis was orthogonal.to these two axes. These reference frames were also used to describe the 

origins and insertions of the muscles examined in this study. (The origins of the biceps were assumed to 

be onto the head of the humerus, removing the need to model the scapula, see section 5.1 .3). 

To determine the resultant joint moment a reference frame was defined which modelled the forearm, hand, 

and dum bell as a single rigid body. The humeral reference frame was modelled as described for the other 

analyses. The origin of the distal member reference frame was located at the centre of mass of the rigid 

body, see section 4:3.2 for how the location of the centre of mass was computed. A longitudinal axis (Z 

axis) was defined which passed through the olecranon of the ulna proximally, and centre of the dumbell 

distally. As the dumbell was grasped so the hand was central to the handle of the dumbell this axis 

passed approximately through the mid point between the styloid processes of the ulna and radius. The X 

axis was defined as being parallel to an axis centrally through the handle of the dumbell, when the forearm 

was supinated this axis was approximately parallel to the X axis of the humeral reference frame. TheY 
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axis was orthogonal to these two axes. 

There is a final choice of whether to use Eulerian angles or Cardan angles. Fnom previous studies it was 

possible to anticipate the range of motion that would be measured. In no case was any angle expected to 

exceed 180 degrees. Using the notation !nom section 3:1.4 Eulerian angles are not defined if e is 0 

degrees or 180 degrees, whereas the Cardan angles are undefined when e is 90 degrees. As in this study 

the V axis was associated with abduction-adduction (carrying angle) the expected range of movement was 

appnoximately !nom 0 degrees to 25 degrees. Euler angles would be undefined if e. the carrying angle, 

was 0 degrees, whereas the range of movement was not great enough to limit the Cardan angles. 

Therefore Cardan angles were used to describe the orientation of the forearm in relation to the humerus. 

3.3 LITERATURE REVIEW: SMOOTHING AND DIFFERENTIATION OF DATA 

Photogrammetrically derived human movement data is contaminated with noise as a result of the nature of 

the recording process. Noise can generally be defined as the undesirable parts of a signal. In the case of 

the photogrammetrically derived data in the present study the sampled signal was considered to consist of 

three parts:-

SAMPLED SIGNAL • TRUE SIGNAL + SYSTEMATIC NOISE + RANDOM NOISE 

I! is generally assumed that the sources of systematic noise have been identified and removed from the 

signal. The remaining sources of systematic noise are then assumed so to be small that they can be 

ignored, and of low enough frequency that they will have little effect on the derivatives. 

Unfortunately random noise cannot be directly identified. Noise can arise !nom many sources, as 

discussed in section 2:3. Winter, Sidwall, and Hobson (1974) analysed data !nom a television tracking 

system, which gave two dimensional coordinates of body landmarks, to ascertain the frequency 

characteristics of the noise from the data capture system. During one phase of gait the "heel and ball 

markers• were stationary therefore any signal measured during this period was due to the system. The 

noise was of a predominantly higher frequency than the biomechanical signal. Lesh, Mansour, and Simon 

(1979) performed multiple digitizations of the same sequence of data, to examine the frequency content of 

human gait data. The averaging of these five digitizations was assumed to have effectively eliminated the 

noise due to the digitization procedure. Analysis of the resulting signal suggested that the noise impinging 

on the signal was generally of a higher frequency than the frequency components of the signal. They also 

used the same technique as Winter et al. (1974) to quantify the noise and found that compared with the 

results !nom averaging, the noise levels were underestimated. 

Although the noise intnoduced in the measuring procedure pnobably occurs acnoss the whole spectrum, its 

influence will be most significant in those parts of the frequency spectrum where there are no frequency 

components !nom the true signal, and when the amplitude of the noise and the signal frequency 

components are similar. The techniques reviewed in the following sections attempt to remove this higher 

frequency noise. lt is technically very difficult to ascertain how much of the signal within the bandwidth of 



the true signal is noise. The amplitude of any noise occurring in the lower range of frequencies in the 

estimated signal bandwidth is considered to be insignificant compared with the amplitude of the true 

signal. The way in which the data is differentiated is also very important as this has an affect on the 

accuracy of estimated derivatives (see section 3:4). 
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The terms smoothing and filtering are used interchangeably in the biomechanicalliterature. When 

smoothing a signal this normally involves the removal of the high frequency components from the signal; in 

which case it is equivalent to low-pass filtering. In this review the term filter will be used when referring to 

digital filters and the term smoothing used for other techniques which remove the high frequency 

components of a signal. To aid in the structure of this review the techniques have been placed in three 

categories: digital filters, truncated Fourier series, and splines. As some of the papers deal with a number 

of techniques, these are reviewed under the category of the technique which the author(s) favoured. 

3:3.1 DIGITAL FILTERS 

A digital filter operates on a set of data to produce an output in which selected frequencies contained in 

the input signal have been removed. The implementation of these filters can be in hardware or software 

form, in biomechanics the software option is most often used. The data has to be equidistantly sampled 

(equal sample intervals) and after operation by the filter a suitable differentiator has to be applied to obtain 

signal derivatives. Digital filters are commonly classified as being either low-pass, band-pass, or high­

pass. These refer to the frequency components of the original signal which are allowed to pass unaffected 

by the filter (see figure 3.5). Low-pass filters are used for the removal of noise from film derived data. 

Digital filters are also classified as being recursive or non-recursive filters. The output of a recursive filter 

is determined from the weighted sums of past output values as well as past and or present input values. 

The output of a non-recursive filter is determined from the sum of weighted past and present input values. 

Recursive filters tend to require fewer terms to obtain the desired frequency response of the filter, but 

introduce phase lag into the signal. Recursive filters are normally applied in forward and reverse 

directions to cancel phase lag. All the techniques reviewed here are attempts to implement an ideal low­

pass filter; this is never realised and the various phases of the frequency response of a typical low-pass 

filter are given in figure 3.5. 

One of the first smoothing techniques suggested for biomechanical data was the recursive Chebyshev 

filter (Piagenhoef, 1968). Plagenhoef presented a computer program for the kinetic analysis of human 

movement using data derived from photogrammetric techniques, using the Chebyshev filter for noise 

reduction. The frequency response of this filter has a ripple in the pass-band, which means that some of 

the frequencies of interest will be attenuated (Stearns, 1975). Ideally a low-pass digital filter with a flat 

frequency response in the pass-band would produce superior results. An example of such a filter is the 

Butterworth filter, which has been adopted by many researchers in biomechanics (e.g. Winter et al., 1974; 

Bobbert, Huijing, and van lngen Schenau, 1986). 

Winter et al. (1974) obtained data from a computer-television system, and filtered the data with a 
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FIGURE 3.5- Three types of digital filters (a.b.c). and the phases of a typical low-pass filter (d), where We 

is the cut-off frequency tor the filter, and WR is the rejection frequency for the filter. 
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Butterworth filter (an example of a recursive filter). The cut-off frequency was set after analysis of the 

frequency characteristics of the sampled signal. Later work by Winter and colleagues (Pezzack, Norman, 

and Winter, 1977) evaluated a number of filters- An aluminium arm fitted with an accelerometer was 

filmed as it rotated. The film was digitized to obtain angular displacement data, which was reproduced in 

the paper so that others could evaluate smoothing and differentiating techniques with these data. These 

data were then analysed using three separate techniques to estimate angular displacement and velocity 

values, which were compared with the criterion accelerometer data. The three techniques used were: the 

Chebyshev filter with derivatives calculated by direct differentiation of the resulting polynomial; no filtering 

of signal but differentiation with the second order finite difference differentiating formulae; and a second 

Butterworth filter, applied in forward and reverse directions followed by first order finite difference 

differentiating formulae. By inspection of the resulting curves they concluded that the Butterworth filter 

was superior to the other techniques. A spline fitting technique was not examined but was criticised 

because of knot placement 'encumbering the procedure': this shows ignorance of the work of Dierckx 

(1975) and Reinsch (1967) both of whom advanced spline fitting techniques which obviate the need for the 

manual placing of knots. The paper of Pezzack et al. (19n) led to a number of other researchers 

examining various techniques for data smoothing in biomechanics using the published data (e.g Soudan 

and Dierckx, 1979; Wood and Jennings, 1979; Hatze, 1981a). Unfortunately this was not an ideal 

approach as the data used was a poor approximation to data sampled from a real photogrammetric study 

of human movement. Although the data in question had been digitized and this is a source of error in 

most studies, many of the other sources of error were not present (e.g. skin movement, marker movement, 

problems in joint centre location). The second derivative values of this signal at both the beginning and 

end of the data set were zero, which does not provide an adequate test of many differentiating techniques, 

as will be discussed later. 

Recursive filters require filtered and non-filtered data points to produce the output. At the beginning of the 

data set there are no prior raw or filtered values. To eliminate phase lag these filters are applied in 

forward and reverse directions which means that this problem occurs at either end of the data set. Smith 

(1989) examined the effect of adding extra data points at the beginning and end of the data set to 

overcome the problems at the end points when using the Butterworth filter. Four data padding techniques 

were assessed: digitizing extra points at the beginning and end of the data set; duplication of the end 

points; linear extrapolation; and reflection of the data end points. The effect of this data padding was 

assessed by computing the mean residual difference between the estimated second derivative values and 

the criterion values. The middle of the data set of Pezzack et al. (19n) was used, leaving extra data for 

the padding operations. The number of padding points was varied from five to 30. Although the 

Butterworth filter was used to filter the displacement data, the data padding techniques were assessed by 

examining their estimates of the second derivative of the signal, which was computed from the Butterworth 

filtered displacement data which was then processed using the first order central difference differentiating 

formulae. Therefore the direct effects of the data padding techniques on the output from the Butterworth 

filter were masked by also using the differentiating formulae. Using extra digitized points either side of the 

data gave the most accurate results, reflection of the data points gave the next best. Padding with more 

than 1 0 points made no difference to the increase in accuracy with any of the padding techniques. 
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Lesh et al. (1979) reported the use of a non-recursive finite impulse response (FIR) filter, for noise 

reduction in displacement data and differentiation of data (first and second derivatives). They used the 

algorithm of McCiellan, Parks, and Rabiner (1973) to derive the filter coeffiCients tor the FIR filter. In this 

program the number of filter coefficients. pass-band, and cut-off must all be specified. Frequency analysis 

of an averaged signal provided them with the required cut-off frequencies. 

A recursive filter incorporating a dynamic programming filter was advanced by Busby and Trujillo (1985); 

Trujillo and Busby (1983) gave a more detailed description of this filter. Two data sets from Andrews, 

Cappozzo. and Gazzini (1981) were used to assess this technique. Busby and Trujillo (1985) used the 

same criterion measure as Andrews et al. (1981) used when assessing five data smoothing and 

differentiation techniques, and so it was therefore possible to compare results. Displacement data results 

were comparable, but second derivative results were superior using the dynamic programming filter tor 

both data sets. The technique was also tested on data from Anderssen and Bloomfield (1974a), from 

l.anczos (1967), and the data of Pezzack et al. (1977). The technique performed well for all these data 

sets. 

Jetto (1985) used a Kalman filter to smooth noisy data derived from the measurement of haemodynamic 

signals. This technique was extended by Fioretti and Jetto (1989) so that derivatives could also be 

estimated: they applied this technique 10 biomechanical data. The Kalman filter is a recursive filter with an 

infinite impulse response. In this case the Kalman filter minimised the noise remaining in the signal by 

assuming the measurement noise was Gaussian. On a noisy test data set this technique produced 

accurate estimates of the true displacement, first derivative, and second derivative values. 

3:3.2 TRUNCATED FOURIER SERIES 

A Fourier series is a representation of a signal by the weighted sum of a number of sine and cosine terms 

of increasing frequency. If enough of lhese terms are included in the series then a tight fit to the signal is 

obtained. By adjusting the number of lerms the tightness of the fit and therefore the amount of smoothing 

is adjusted. Once the appropriate fit is made to the raw displacement data the series can be directly 

differentiated to give the derivatives of the signal. To fit a Fourier series to a linite data set the Discrete 

Fourier Transform (OFT) is used giving the Discrete Fourier series (OFS). An alternative to the OFT is the 

Fast FourierTransform (FFT) (Cooleyand Tukey, 1965). The FFT fits a OFS to a set of data: it is 

computationally much quicker than the OFT and is less sensitive to computer round-off errors. The only 

drawback is that FFT algorithms impose restrictions on the number of data points, the most common being 

that the number of data points be a power of two (e.g. Cooley and Tu key, 1965). Another FFT algorithm 

requires that the number of data poiniS be prime, (Burrus and Eschenbacher, 1981 ). 

Probably the first person to fit a Fourier series to human movement data was Bemstein (1967), reporting 

work he performed in 1929. Cappozzo, Leo, and Pedotti (1975) also advanced the use of fitting a 

trigonometric series to displacement data. To determine the number of Fourier coefficients to be used, the 

residual (between sampled signal and filtered signal) was plotted against the number of terms retained. 

Visual inspection was then used to determine the highest coefficient to be retained. In 1983 Cappozzo 
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and Gazzani presented a comparison of four techniques used to determine the coefficients of a DFS. Two 

of the techniques calculated the DFS coefficients directly from the data, one using a standard DFT 

algorithm (Cappozzo et al., 1975), the other using a simplified DFT. The other two techniques evaluated 

used splines; one derived the coefficients using the routine of Dierckx and Piessens (1977). The other 

spline technique used the spline to smooth the data and then calculated the DFS coefficients using the 

simplified DFT. The simplified OFT performed least well, with the other three techniques producing better 

results, all three being equally accurate in computing the DFS coefficients. The greater the sampling rate 

the closer the simplified DFT came to the accuracy of the other three techniques. The technique of using 

the spline followed by the simplified DFT required the second lowest amount of computer time (the 

simplified DFS required the least). Consequently it was this technique the authors recommended. 

FORTRAN code was provided for the implementation of their simplified DFT. 

Cappozzo and Gazzani (1983) used the algorithm of Dierckx and Piessens (1977) to compute Fourier 

coefficients. Soudan and Dierckx (1979) examined this technique at greater length. Splines were fitted to 

the data and then the underlying functions were integrated using the technique advanced by Piessens 

(1971) to derive Fourier coefficients. The technique was assessed by visual inspection of the real and 

calculated second derivatives using the data of Pezzack et al. (1977). The authors were aware that this 

data had a low noise content compared with normal biomechanical data so more noise was added to the 

signal. Visual inspection of the graphical representation of the results showed this technique to be 

successful. 

Jackson (1979) proposed the use of a Fourier series to smooth biomechanical data. This paper focussed 

on the number of terms necessary in the Fourier series to accurately produce the desired signal. The 

residual was considered a function of the number of terms making up the Fourier series. A discrete 

Fourier series was fitted to the data using the maximum number of coefficients (this is limited by the rate at 

which the signal was sampled), the second derivative of this function was calculated. The second 

derivative was evaluated with each subsequent assessment ignoring the highest Fourier coefficient 

remaining. When the value of the second derivative fell below a certain prescribed level for the removal of 

three consecutive coefficients, this was considered to be the optimal number of coefficients with which to 

smooth the function. The work of Jackson is hard to assess as the prescribed level below which the 

second derivative must fall was not defined. In addition details were not given as to why the second 

derivative values were selected as being a criterion. 

Hatze (1979a, 1981 a) presented a DFT based technique to filter and differentiate biomechanical data. A 

Fourier sine series was fitted to the data. The data were initially linearly detrended. Hamming (1983) 

warned against such an operation as he claimed it adversely affects the low order frequency components 

of the signal. This process may have introduced errors into Hatze's processed signal but they were not 

evident in his analysis of this technique. This technique was based on the work of Anderssen and 

Bloomfield (1974a, 1974b), which employed a form of optimal regularization to select the degree of 

smoothing. The accuracy of this technique was examined by calculating the first and second derivatives 

of the data of Pezzack et al. (1977). Additional noise was added to this data, and the technique still 
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produced good estimates of the derivatives. 

Hatze claimed that the process could have been speeded up if an FFT had been employed. As an FFT 

places restrictions on the number of data points (e.g. the number must be a power of two, or prime) and 

the number of samples cannot be guaranteed to adhere to such restrictions, the data may have to be 

further manipulated. One solution to this would be to reflect the data about a vertical axis, making it 

cyclical, until a suitable number of data points are obtained. This solution would add to the number of data 

points and increase the amount of computation: one of Hatze's criteria for selecting this technique. An 

alternative solution to this problem would be to add data points to either end of the sample. This would 

effectively add a discontinuity to the data resulting in the approximating trigonometric function becoming 

oscillatory at these discontinuities (the Gibbs effect, Steams, 1975) making signal estimates poor at these 

end points. 

Sprigings, Burko, Watson, and L.averty (1987) in an anthropometry study, examined the optimally 

regularized Fourier Series of Hatze (1981a) (which is commercially available), for analysing the data of the 

vertical displacement of a metal ball dropping under the influence of gravity. The results for the second 

derivative showed very poor prediction for the end points, where the curve tended towards zero. The 

technique of Hatze (1981a) is based around a Fourier sine series: a sine series automatically has values 

of zero at both ends of the curve, this would also apply to the second differential of a sine series. lt is 

therefore not surprising that this technique behaves in the way reported by Sprigings et al. (1987). The 

data of Pezzack et al. (1977) which Hatze used to test his technique has values of zero at both ends of the 

second derivative so this data did not provide an adequate test of this technique. 

3:3.3 SPLINES 

A spline is a series of polynomials joined together to represent a signal; a piece-wise polynomial. The 

polynomials are all of the same order (2m) and join at positions called knots. There are certain conditions 

imposed on the spline which are detailed in section 3:4.5. There are various differences between the 

ways in which researchers have implemented spline techniques. These differences arise from the order of 

the polynomials making up the spline, the number and positions of the knots, and finally how the degree of 

smoothing is selected. The natural spline fitting routine of Reinsch (1967) has been often used in 

biomechanics (see following review for references). A significant feature of this spline technique is that the 

end points are constrained to be zero for the k th derivative of the spline where k-m, ... 2m-2; as the 

Reinsch spline was a cubic, k was equal to two. 

Zernicke, Caldwell, and Roberts (1976) compared the vertical force generated in a kick measured on a 

force plate with that estimated from film data. The Reinsch (1967) cubic spline was fitted to the film 

displacement data and differentiated permitting calculation of the velocities and accelerations. The spline 

routine of Reinsch (1967) has knots at all data points. The degree of smoothing of this spline is adjusted 

using a smoothing parameter'S' which controls the tightness of fit of the spline to the raw data. In this 

study 'S' was determined by visual inspection of the fitted curve. Combining the segmental acceleration 

data with the anthropometric data of Dempster (1955) the vertical ground reaction force was calculated. 
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The difference between the criterion values (force plate value for vertical reaction force) and the calculated 

values (from film using the spline) were numerically assessed. In addition to using a spline, an orthogonal 

polynomial was fitted to the data. The mean percent differences between force plate measured reaction 

force and film derived force estimations were 4. 75 percent for the spline and 10.27 percent for the 

polynomial. As both of these techniques require the specification of the closeness of the fit, these results 

indicate either the superiority of the spline, or the more appropriate choice of the tightness of the fit of the 

spline over the polynomial. The force data was recorded from four channels on a chart recorder and this 

trace was then digitized and summed to derive vertical force. The accuracy of this method of determining 

ground reaction force must be questioned. The smoothing and differentiating techniques were assessed 

in conjunction with anthropometric data, which means it is difficult to know which to apportion the 

inaccuracies to. Finally, the activity was assumed to be planar but to be sure of this a three-dimensional 

study should have been undertaken initially. Even with these deficiencies this paper does represent a 

structured attempt to assess the value of splines in smoothing biomechanical data. 

Mclaughin, Dillman, and lardner (1977) used a variety of sets of data to attempt to evaluate a cubic 

spline. The cubic spline of Reinsch (1967) was used with the standard deviation of each point being 

estimated so it could be used as a weighting factor in the spline routine. The degree of smoothing, 'S', 

was set equal to the number of data points. The first evaluation was the comparison of the vertical ground 

reaction force of a vertical jump measured by a force plate, with the value predicted using acceleration 

values calculated using the cubic spline. A graphical comparison with the force plate recording of the 

vertical acceleration, showed that the spline gave a good approximation. This evaluation of the spline 

using a force plate is very similar to that of Zernicke et al. (1976) and suffers from all the same problems. 

The spline was then compared with a least-squares polynomial technique. Both techniques were used to 

compute the angular acceleration of the lower leg during running. There was no criterion with which to 

compare the data, yet the least-squares polynomial was criticised for giving unrealistic end point values. 

In this case the spline gave end point values of zero which could also be considered unrealistic, but no 

mention was made of this. The spline was then compared with first order finite difference differentiating 

formulae for determining angular velocity for forearm flexion. Again no criterion was available for 

comparing the techniques. Finally the spline was used to derive the vertical acceleration of a weight falling 

freely to the ground, the spline at either end of the sample gave acceleration values of zero. To remedy 

these end point problems Mclaughin et al. (1977) suggested that 20 points be added at either end of the 

sample, or that the corresponding number of points be ignored. This differs from the recommendations of 

Zernicke et al. (1976) who for the same procedure suggested only three points. The lack of criterion 

measures on which to base the comparisons between the different techniques examined in this study 

means that the results are not enlightening. 

The limitations placed on the second derivative in the case of the cubic spline mean that unrealistic values 

are produced at either end of the data range when estimating second derivatives (see section 3:5.5). This 

is not the case with quintic or higher order splines. lt was one of the purposes of the paper of Wood and 

Jennings (1979) to compare the cubic with the quintic spline. They graphically compared the vertical 

acceleration curve of a vertical jump with the curve produced by a force plate. The graphical 
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representation showed that the second derivative of the quintic spline had greater accuracy than the cubic 

in calculating accurate second derivative data, especially at the end points. To further advance the use of 

the quintic spline they used the spline on the data of Pezzack et al. (1977). As with all of the other 

published studies using this data set the quintic spline produced an accurate estimate of the true second 

derivative. 

Dierckx (1975) presented a spline algorithm which fitted a spline of variable order using an automatic knot 

placement technique. The Butterworth filter followed by central difference equations to differentiate the 

filtered data were compared with the spline of Dierckx (1975), by Pellet! and Budney (1981 ). The details 

given of the implementation of their work with the spline were limited, as the selection of the smoothing 

parameter'S' was not outlined. Using displacement data from the motion of a golf club they evaluated the 

accuracy of the techniques using the same signal but two different sampling rates. Their results showed 

that greater accuracy was achieved in the calculated second derivative with the higher sampling rate. In 

addition they highlighted the fact that the spline was more effective than the digital filter in regions of rapid 

acceleration. These results have useful implications if sampled data is expected to contain regions of high 

acceleration. Unfortunately the authors did not establish how they derived their criterion data for the first 

and second derivative values, making it difficult to evaluate these results. 

Miller et al. (1980) filmed a motor driven 'spatial linkage'. The resulting three-dimensional data were used 

to assess five techniques for filtering and differentiating the data. The five techniques were: second-order 

finite difference differentiating formulae; least-squares polynomial fitting; digital filtering using a Butterworth 

filter followed by finite difference equations to obtain derivatives: fitting of a Fourier series and then 

differentiating this series to find derivatives: and finally fitting a cubic spline. Criterion values were 

obtained from knowledge of the rate at which the 'spatial linkage' was driven. The RMS errors were 

calculated. The first two techniques did not perform well, but the last three all produced very similar RMS 

errors for the first and second derivatives of the sampled signal. 

As mentioned previously the second derivative of a Reinsch cubic spline is constrained to have end point 

values of zero. Zemicke et al. (1976) and Mcl.aughin et al. (1977) both suggested solutions to this 

problem. Phillips and Roberts (1983) proposed that when a cubic spline is used, one data point should be 

added at either end of the data set to reduce the effect of the constrained second derivative values on the 

estimated second derivative values. They compared a digital filter, a cubic spline, and an 'augmented 

spline' (a normal cubic but with one data point added to either end of the data set). The Reinsch cubic 

spline was used with the smoothing parameter'S' set equal to the number of data points. Phillips and 

Roberts used two sets of artificial data and looked at the deviation of the second derivative of the last five 

data points from a criterion. In both cases the 'augmented spline' performed better than the digital filter 

and the standard cubic spline. Using the data of Pezzack et al. (1977), the digital filter produced an error 

in the last acceleration value of 38 percent, the cubic spline 28 percent, and the 'augmented spline' 4.3 

percent. This problem with inaccuracy in estimating end point second derivative values is less acute with 

quintic splines where the same restrictions are not placed on the second derivative. 
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Andrews et al. (1981) presented a comparative study of five techniques for the smoothing and 

differentiation of film derived displacement data, including a cubic spline. The techniques compared 

(which included some of those already discussed) were: a fourth order low-pass Butterworth fi~er followed 

by a Sterling differentiating formula; the cubic spline of Dierckx and Piessens (1977); a truncated Fourier 

series based technique (Cappozzo et al., 1975), and a non-parametric technique after Anderssen and 

Bloomfield (1974b). To evaluate these techniques two mathematically generated signals were used, both 

with Gaussian noise added to the signal. The first signal was a trigonometric series, and the second a 

fourth order polynomial. The technique was assessed by evaluating the mean square error as a 

percentage of the mean of the absolute values of the true signal. In all cases the various parameters in 

the filters were manipulated, to give optimal results. The authors reported that no one technique proved 

superior overall to the other techniques. Examination of the results revealed that the approach based in 

the frequency domain (Anderssen and Bloomfield, 1974b) gave the best results with the trigonometric 

series data, and best results for data generated from the polynomial series were obtained with the spline. 

This highlights the problem of using mathematically generated functions to test smoothing and 

differentiating techniques if the technique to be assessed has a similar underlying function to the test 

function. 

Vaughan (1982) filmed a golf ball dropping vertically and then tested the ability of three techniques to 

correctly predict the acceleration due to gravity (g). A quintic spline was more accurate than both a cubic 

spline and a Butterworth filter combined with finite difference differentiating formulae. The amount of 

smoothing was adjusted manually for all the techniques. These results are somewhat false, as it is very 

rare to know the values of the second derivatives when adjusting the amount of smoothing. 

Woltring (1985) circumvented the problem of having to manually adjust the amount of smoothing by using 

the Generalised Cross-Validated Spline (GCVS) routine of Utreras (1980), which automatically determines 

the tightness of the spline fit. He compared both the cubic and quintic GCVS's with the FFT based routine 

of Hatze (1981 a). They were tested on the data of Vaughan (1982), the data of Pezzack et al. (1977), and 

some data generated from a mathematical function. For the constant acceleration data neither the cubic 

spline nor the FFT method performed very well. The quintic GCVS predicted a constant acceleration 

value very close to the value of 'g' at the site of the measurements of Vaughan ( 1982). With the data of 

Pezzack et al. (1977) the quintic GCVS and the FFT technique both performed well, but when additional 

noise was added to the signal the FFT technique's performance deteriorated with particular problems at 

the end points. Using the mathematically generated function Woltring also demonstrated that the end 

point restriction placed on the mth and higher derivatives of a 2m order natural spline, affects the prediction 

of the mth derivative throughout the signal as well as at the end points. This problem had previously been 

highlighted for the cubic spline (e.g. Wood and Jennings, 1979), but was shown to exist generally for 

natural splines. For example a jerk (third derivative) would be poorly predicted by a quintic spline. 

3:3.4 SUMMARY 

The preceding review of literature shows that a variety of techniques have been suggested to process 

biomechanical data. Comparison of these techniques is difficult because researchers have used different 
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and In some cases inappropriate assessment techniques. lt has been shown that the data of Pezzack et 

al. (1977) without additional noise added to the signal does not represent a typical biomechanical signal. 

The zero end point values of this data set also make its use inappropriate 1or the assessment of some 

techniques. Mathematically generated data cause problems since a filtering technique whose underlying 

function is similar to that of the function generating the data can be predisposed to perform well. Even if a 

technique has been shown to produce accurate results there is still one very important consideration; how 

is the amount of smoothing selected ? In many of the assessments undertaken in the literature the true 

signal is known and the degree of smoothing adjusted until a good result is obtained. Once a technique 

has been shown to produce good results under these conditions the researcher is still left with the problem 

oi selecting the degree of smoothing for a real data set. 

3:4 EXAMINATION OF SMOOTHING AND DIFFERENTIATION TECHNIQUES 

The 1ollowing sections examine various filtering and differentiation techniques, to determine which is the 

most suited to the removal of noise from a film derived signal. 

3:4.1 SELECTION CRITERIA 

When selecting filtering and differentiating techniques, (a single technique may not necessarily be 

employed 1or both purposes), a number of preliminary criteria must be examined. 

1. Memory Size : Does the computer on which the software is to be run provide a limitation in terms of 

memory size ? 

2. Execution Time : Is the time in which the data are processed of prime concern ? Is filtering to be carried 

out on line? 

3. Sample Interval : Are the data equidistantly sampled in time ? (Some filters and differentiators will only 

operate with constant sample intervals in which case prior interpolation is required). 

Once limitations imposed by these criteria have been identified, the technique which provides the most 

accurate estimate of the required variables should be selected. In the present context these preliminary 

criteria did not limit the selection of techniques. Indeed execution time for a data filtering and 

differentiation technique was insignificant compared with the time required to manually digitize the film 

data. 

3:4.2 ASSESSMENT CRITERIA 

When trying to assess the accuracy of smoothing and differentiating techniques it is virtually impossible to 

obtain data from a biomechanical system where one knows the true signal underlying the noisy sampled 

signal. A number of approaches have been taken in trying to establish successful criteria for assessing 

filtering and differentiation techniques. Pezzack et al. (1977) used an accelerometer to provide criterion 

data against which the film data, once suitably filtered and differentiated, were compared. Analysis of this 

data (eg. Lanshammar, 1982), showed that it contained far less noise than would normally be expected 

from genuine film data. In addition these data had end point second derivative values of zero, which do 

not serve as a suitable test of the abilities of some techniques. During free flight the centre of mass of the 

body has a constant acceleration. Data derived from such situations can be of use when assessing 

smoothing and differentiating techniques. There are two major problems with using such data. The need 
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to employ anthropometric data to determine the centre of mass of the whole body clouds the assessment 

of the data smoothing and differentiation techniques because the accuracy of anthropometric data must 

also be assessed. Also, as the acceleration of the centre of mass of the body is constant, this does not 

test the technique's ability to estimate acceleration values which do not remain constant. Often the most 

practical solution is to use some mathematical function which approximates some aspect of human 

movement, to which noise can be added. The function can be differentiated direcHy to yield the true 

values of the first and second derivatives, which can then be compared with the estimated values 

produced by the techniques under investigation from the noisy data. In the selection of these functions the 

frequency profiles of the signal with and without noise must be examined to ensure that in both the time 

and frequency domains the data are similar to real biomechanical data. All techniques should be 

evaluated over a suitable range of data sets, avoiding any unique predisposition to favour the 

characteristics of each technique's underlying function. Once suitable data sets have been obtained a 

method is required with which to evaluate the accuracy of the techniques used to filter and differentiate the 

data. Often a graphical representation of both the noisy and filtered data is used, but this does not provide 

an easily comparable criterion. A better option is to evaluate the percentage root mean square error 

between the true and estimated values of the signal. This is computed as follows:-
1 

MSE • [n ~ 1 :t 
I • 1 

(~ -c\21 
Where:-

MSE- is the mean square error 

n- is the number of data points 

g - is the estimated value of point i 

and Ci is the criterion value of point i. 
1 

Mol = r~ :t ~ r-
,_ 1 

Where:-

MV - is the mean value of the criterion values 

( MSE) %RMSE • 100. -w 
Where:-

%RMSE - is the percentage root mean square error 

[3.27) 

(3.28) 

(3.29) 

By comparing results using a percentage value it is easier to compare results across different data sets. 

3:4.3 SELECTING THE AMOUNT OF FILTERING 

The problem is how to select the amount of filtering that a signal requires. This is equivalent to finding 

where the frequency components of the signal are insignificant compared with the frequency components 

of the noise impinging on the signal. For many of the digital filtering techniques this requires the 
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specification of a cut-off frequency and the number of filter terms which will effectively specify the width of 

the pass-band. Truncated Fourier series are usually fitted by adjusting the number of terms until the 

difference between the input signal and the output signal is the same as some predetermined error 

estimate for the sampled signal. For a spline, unless an automated technique is used, the degree of 

smoothing is normally specified by varying the 'S' value in accordance with the anticipated error in the 

signal. 

If the true underlying signal of a sampled biomechanical signal were known, optimal filters (for example 

Wiener) could be used to process the data. Unfortunately this is seldom the case in biomechanical 

studies. 

There are a number of commonly adopted options for selecting the amount of filtering, including:-

1. Visual inspection of curves, before and after implementation of the filter. 

2. Use of previously published criteria. 

3. Use of alternative experimental evidence. 

4. Multiple digitization of data to give an estimate of the error variance in the signal. 

5. Adoption of some form of optimal regularization. 

The first technique requires operator interaction and is unlikely to be highly repeatable. lt has been 

employed, for example by Wood (1975), and Vaughan (1982) when using spline routines. 

The second option assumes that some previously established smoothing parameter applies across a 

number of conditions. In fact it may be erroneous to use the same smoothing parameter repeatedly for 

different trials for the same subject. This approach was used by Winter et al. (1974) who determined the 

appropriate cut-off frequency for a digital filter for one body landmark and then used this for other body 

landmarks in the study, and recommended it for other gait studies. 

The third option relies on data collected using different equipment. The most common method is to find 

the signal bandwidth from a force plate recording of the ground reaction forces during some phase of the 

movement being examined (e.g. Antonsson and Mann, 1985). Although an indication of the signal 

bandwidth can be obtained this is insufficient information with which to determine the amount of smoothing 

a signal requires. lt is more important to know the ratio of signal to noise amplitude. Although signal 

bandwidth may be known, when sampling information from film the noise at the upper range of the signal 

bandwidth may have a larger amplitude than the signal, in which case a lower cut-off frequency is required 

for a filter. 

The fourth method results in a sequence being digitized a number of times and so is time consuming. 

Information derived from the mean of the samples is then used to select the amount of filtering, such a 

procedure was adopted by Lesh et al. (1979). If sufficient multiple digitizations of a sequence of film are 

performed computing the mean is an effective way of filtering the data, see section 3:5.2. Yeadon (1984) 

performed two digitizations of film sequences to obtain an estimate of local noise variance. This 
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information was then used as a weighting factor in a spline routine. Such an approach although it uses 

information from multiple digitizations still requires the selection of the degree of smoothing performed by 

the spline routine. 

The final option, optimal regularization, relies upon setting constraints on the properties of the resulting 

filtered signal, and often the signal's derivatives. To be of use these constraints must relate to the 

expected properties of the signal; such schemes can normally be automatically implemented. These 

features have a number of advantages: operator interaction is reduced, results are reproducible, and if the 

same technique is adopted by two researchers data can be more profitably compared. This does not 

mean that techniques employing optimal regularization should be applied without thought to the effect on 

the signal. Irrespective of the technique selected, the examination of the frequency spectra of both the 

processed and unprocessed data should be considered a basic step in ensuring the correct operation of 

the filtering and differentiating techniques employed. 

Two techniques have been adopted in biomechanics which allow automatic selection of the degree of 

filtering via optimal regularization: the use of optimally regularized Fourier series (Hatze, 1981a), and the 

Generalised Cross Validated Spline (GCVS) (Woltring, 1986). Both of these techniques seek a balance 

between the closeness of fit by the Fourier series or spline and the smoothness of the signal represented 

by the fit and its derivatives. In comparing the two it should be mentioned that the technique of Hatze 

(1981 a) will only handle equidistantly sampled data, and has second derivative end point values which are 

equal to zero. The shortcomings of the spline are dealt with in more detail in section 3:4.5. 

3:4.4 EXPERIMENTAL ASSESSMENT 

Three groups of techniques were investigated: splines, truncated Fourier series (TFS), and digital filters. 

In most biomechanical situations given genuine photogrammetrically derived data it is not possible to know 

the true signal underlying the noisy sampled signal. To overcome this problem mathematical functions 

were used to generate data to investigate these techniques. By analy1ical differentiation of these functions 

it was possible to find the true value of the first and second derivatives. Noise was added to the original 

data so that it would be similar to that normally found in biomechanical data. As indicated in the literature 

review techniques tend to perform well on data generated from mathematical functions with similar 

underlying functions. Therefore a number of data sets were chosen from a variety of sources. By 

comparing across these data sets it was hoped a clearer assessment would be obtained. The 

mathematical functions used to generate these data sets are presented in Appendix B. The techniques 

were evaluated by oomputing the %RMS error between the estimated signal and its true value. 

The techniques were:­

Spline TechniQues 

As outlined earlier a variety of techniques have been advanced for the use of splines in data analysis. 

Splines have been fitted to noisy data by estimating the ·s· value manually. To circumvent this problem 

the ordinary cross-validated spline (OCVS) technique of Wahba and Weld (1975) was used. In this 

technique a model of the data is made, by assuming an initial value of "S'. The validity of this model is 



then assessed by removing one of the data points from the noisy data set and fitting the model and then 

using this model to predict the missing point, this is done for each data point in tu m. The value of'S' is 

systematically varied until the model gives the be si prediction of each data point by means of the model 

and the other data points. This fit is then used to evaluate the first and second differential of the signal. 

The algorithm used was an adaptation of the routine of L.S.Jennings (University of Western Australia) 

which basically implements either a Reinsch cubic or quintic spline. Both cubic and quintic OCVS were 

investigated. 

Truncated Fourjer Serjes 
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A OFT was fitted to the data using the formulae presented by Cappozzo et al. (1975). The number of 

Fourier terms was then adjusted until the lowest "foRMS error was obtained. The data derived from 

recording human movement is not always strictly periodic, but the Fourier series should ideally be fitted to 

periodic data. For this reason four different approaches were tried:-

Operation A) null operation (i.e. the original data set was used) 

Operation B) data set increased by reflecting the data about a vertical axis 

Operation C) double reflection of data 

Operation D) data detrended (Hatze, 1981 a) so the data started and ended at the same value. 

These operations are illustrated in figure 3.6. 

Butterworth Filter 

The data were filtered in forward and reverse direction with a second order Butterworth filter. (The 

application of the filter in forward and reverse direction effectively makes the Butterworth filter a fourth 

order filter, and eliminates phase lag.) The cut-off of the filter was varied by 0.25 Hz from 0.25 Hz up to 

the Nyquist frequency of the signal, and the lowest "foRMS error found. To differentiate the data both first 

and second order finite difference differentiating formulae were used (Miller and Nelson, 1973). 

For all of the techniques except the OCVS the degree of smoothing was varied iteratively until the lowest 

"foRMS errors were found. This was done for the displacement, and the first and second derivatives of the 

signal separately. Therefore for the truncated Fourier series and Butterworth filter the same degree of 

smoothing may not have been applied to calculate the smoothed displacement data, and the first and 

second derivatives. The OCVS performed this tuning automatically and the degree of smoothing was the 

same for the displacement data and its first and second derivatives. 

The results for the estimation of displacement data from the noisy data sets are presented in Table 3.1. 

Data set a was a noisy cosine wave, for this data set the truncated Fourier series (A, B, and C) and the 

Butterworth filter produced better estimates of the displacement data than the spline techniques. This was 

to be anticipated for the truncated Fourier series because the underlying function of the test function and 

the smoothing technique are similar. On the other data sets the Butterworth filter performed well. The 

truncated Fourier series did not perform as well, and showed varying results for the different operations on 

the data sets, with operation C appearing to produce the best results overall. The quintic OCVS produced 

marginally better results that the cubic OCVS. The results for the quintic OCVS were not as good as those 
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FIGURE 3.6- Graphs illustrating three data operations used prior to use of truncated Fourier series. 
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TABLE 3.1 ·The percentage root mean square errors between estimates and true values of artificial 

displacement data using different smoothing techniques. 

DATA SET 

TECHNIQUE a b c e 

CUBICQCVS 126 1.90 0.57 1.63 

QUINTIC OCVS 1.24 1.052 0.78 1.30 

IFS OPERATION A 0.54 1.65 2.74 1.51 

IFS OPERATION B 0.91 2.04 1.23 1.80 

IFS OPERATION C 0.80 2.02 1.17 1.80 

IFS OPERATION D 3.23 3.81 0.63 3.27 

BUTTERWORTH FIL !ER 0.35 0.15 0.61 0.77 

(N. B.· data set d was not used for this analysis.) 
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for the Butterworth filter. lt must be noted that the amount of smoothing performed by the Butterworth filter 

was determined by comparing the filtered values with the true values, whereas the quintic OCVS 

estimated its degree of smoothing automatically. Given genuine photogrammetrically derived data the 

degree of smoothing of the Butterworth filter would have to be estimated, and as accurate results could not 

be guaranteed. 

As the second differential is the highest derivative required in this study, it was also used as a criterion for 

comparing the techniques. These results are presented in table 3.2. For data a the TFS (A,B, and C) 

again gave the best results, the reason for this has already been discussed. The Butterworth filtering 

technique followed by central difference differentiating formulae estimated the second derivative of the 

noisy signals with poor accuracy compared with other techniques. An examination of the transfer function 

of the central difference differentiating formula illustrates the reason tar this (see section 3:4.8). 

The quintic OCVS gave the lowest %RMS errors for three data sets (b, c. d) and had the second lowest 

for data set e. The cubic gave %RMS error values comparable with the quintic spline for the smoothed 

displacement data, but the corresponding values for the second derivative were poorer. This was due to 

the end point restrictions placed on the second derivative of a cubic spline. The same restrictions are 

placed on the third derivative of the quintic spline so were not evident in the present analysis. Further 

analysis of the spline is presented in section 3:4.5. 

Overall on the data sets investigated the quintie OCVS gave the best results. lt had a number of other 

advantages over the other techniques. lt automatically selected the degree of smoothing. The other 

techniques required that the data were over an equidistant time base before they could be applied. The 

OCVS does not require equidistantly sampled data, and if a new time base is required, for example to 

synchronise signals, the OCVS can output smoothed values, and the derivatives of that signal, over a new 

time base. Computationally the OCVS was the slowest of the techniques investigated. Craven and 

Wahba (1979) introduced a computationally more complex but faster alternative to the OCVS: the 

generalised cross-validated spline (GCVS) (see section 3:4.4 for details). This quicker alternative is still 

not as quick as the Butterworth filter or TFS techniques but does appreciably decrease processing time. 

On the data sets investigated the quintic OCVS took over one hour of CPU time to process the data, 

whereas the other two techniques completed their computations in a few seconds. The OCVS was 

compared with the GCVS using the GCVS package of Woltring (1986). The results are presented in table 

3.3. The OCVS produced slightly more accurate results than the GCVS, on the same data sets that were 

used for the earlier analysis of filtering and differentiating techniques. The quintic GCVS was several 

orders of magnitude faster at processing these data sets than the quintic OCVS. In light of the analyses 

performed in this section the .GCVS was used for the smoothing and differentiating of data in this study, as 

it was significantly quicker than the OCVS and only slightly less accurate. 

3:4.5 SPLINES 

The cubic and quintic GCVS that were used in this study to interpolate, smooth, and differentiate the data, 

are detailed in this section. 



TABLE 3.2- The percen1age root mean square errors between estimates and true values of second 

differential da1a estimated from noisy displacement da1a using different smoothing and differentiation 

techniques. 

DATA SET 

TECHNIQUE a b c d e 

CUBICOCVS 41.99 25.11 27.80 15.86 24.92 

OUINTIC OCVS 15.96 17.99 12.82 10.90 17.99 

TFS DATA SET A 1.62 20.98 84.94 67.88 23.45 

TFS DATA SET B 2.46 32.99 48.73 52.73 31.75 

TFS DATA SET C 2.56 32.29 48.63 52.39 34.19 

TFS DATA SET D 32.44 52.66 17.59 34.19 6.87 

BUTTERWORTH FILTER 67.84 42.56 31.89 115.53 50.78 
1ST ORDER C.DIFF 

BUTTERWORTH FILTER 75.41 49.59 33.28 132.64 59.09 
2ND ORDER C.DIFF 
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TABLE 3.3 ·Comparison of the percentage root mean square error for smoothing and differentiating data 

using the ordinary cross·validated spline and the generalised cross-validated spline. 

TECHNIQUE 

CUBIC OCVS 

CUBICGCVS 

OUINTIC OCVS 

QUINTIC GCVS 

CUBIC OCVS 

CUBIC GCVS 

OUINTIC OCVS 

QUINTIC GCVS 

a 

1.26 

1.32 

1.24 

1.10 

41.99 

41.58 

15.96 

14.72 

(N. B. - data set d was not used for this analysis.) 

DATA SET 

b c 

Displacement Data 

1.90 

1.90 

1.052 

1.84 

0.57 

0.77 

0.78 

0.81 

Second Derivatives 

25.11 

32.59 

17.99 

23.94 

27.80 

33.21 

12.82 

24.99 

e 

1.63 

1.63 

1.30 

1.58 

24.92 

32.48 

17.99 

23.92 
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The spline is defined as a func~on P(ti) where the spline is composed of a series of piece-wise 

polynomials. These polynomials are joined at positions called knots which must fall within the data interval 

(t1,tn). The polynomials are of order 2.m and must be continuous at the knots up to and including the (2m-

2) derivative. The order of the spline is limited by the number of data points so that n;:. 2m. Certain 

boundary conditions are Imposed on the record ends. These conditions vary with the type of spline: for 

periodic splines the Klh deriva~ve of P(ti) must be equal at the end points I.e. Pk(t1) • Pk(tn) K-O, ... ,(m-1 ); 

for complete splines the deriva~ves of the boundary values are measured constraints for k•1,m-1 (eg. Hu 

and Schumaker, 1986); and for natural splines the end points are set to zero for the Ktn derivative for 

k-m, ... 2m-2 (e.g. Reinsch, 1967). Early spline routines required the user to select the number of points as 

knots (Weld, 1974). Dierckx (1975) presented an automated knot fiWng technique, but it is now customary 

to treat all data points as knots as recommended by Reinsch (1967). 

Given the noisy data set (ti,yi) tor i-1,n where n is the number of samples, the natural cubic spline of 

Reinsch (1967) required the minimisation of the following function:-

J [ P"(ti) f dt 

t1 

subject to 

~ (P(ti) • Vir 
~ -'--a'Y"'i--'- ' S 

I • 1 
Where:-

P(ti) - is the polynomial fitted to sample point ti 

Pm(ti) • the mtn derivative of the polynomial P(ti) fitted to point ti, for a cubic spline m-2 

S - is the smoothing parameter 

and aYi is the standard deviation of the error associated with point Yi. 

[3.30) 

[3.31) 

In equation 3.4.1 the integral of the squared mtn derivative of the spline is considered to be a roughness 

penalty function. This effectively minimises the roughness of the signal whilst keeping the weighted root 

mean square error equal to or below the'S' value. If the variance associated with each sampled point is 

known, Reinsch recommended that'S' be selected in the range:-

n - (2.n)
0

'
5 

' S ' n + (2.n)
0

·
5 

[3.32) 

In 1975 Wahba claimed this approach would lead to systematic over smoothing of the signal. Wold (1974) 

suggested that ·s· should be set so that 

0.7 n < S < 0.95 n [3.33) 

The other approach is to adjust'S' after visual inspection of the fitted curve. From equation 3.31, if an 

interpolating spline is required the value of'S' is set to zero. 
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To overcome the problem of estimating'S' researchers have used the cross-validation procodure, which is 

a form of optimal regularization. Essentially this procedure fits a spline to a data set where a number of 

points have been omitted. The 'S' value is then varied to minimise the residual between estimated and 

sampled values of these omitted points. Such a procedure for splines, the OCVS, was initially advanced 

by Wahba and Wold (1975). The OCVS has two major drawbacks: it is costly in terms of computer time, 

and it can be numerically unstable under certain conditions (Woltring, de Lange, Kauer, and Huiskes, 

1987). Golub, Heath, and Wahba (1979) suggested a generalised cross-validation procedure, which 

circumvented these two problems. Craven and Wahba (1979) presented details of a GCVS. The 

procedure they proposed would find the optimal smoothing parameter tor equidistant data with uniform 

weighting. Utreras (1980) also presented a routine which approximated to the GCVS, which was 

computationally taster then that of Craven and Wahba (1979). Both of these routines are available in 

computer numerical libraries, but permit only cubic splines to be computed. The two shortcomings (only 

equidistant data and uniform weighting) reduce the general applicability of these routines. Hutchinson and 

de Hoog (1985) presented details of a routine which would compute the cubic GCVS for non·equidistant, 

non-uniformly weighted data. Execution times were given for this routine, and two others. For 100 data 

points their spline fitting routine took 11 seconds, as did the routine of Utreras. The routine of Craven and 

Wahba (1979) took 1358 seconds. 

Woltring (1985) combined aspects of the Fortran routines of Lyche, Schumaker, and Sepehrnoori (1983) 

tor the determination of natural splines, with those for the generalised cross-validation procedure of 

Hutchinson and de Hoog (1985), to produce a GCVS package written in Fortran 77 which permits the 

determination of a GCVS of any even order spline for non-equidistant, non-uniformly weighted data sets, 

for n :> 40. The function which has to be minimised is:-

tn 

A.f 2 
[P"(ti)] dt + 

n L wi(P(ti) 

11 I • 1 
[3.34] 

Where:­

wi - is the positive weight factor (which is inversely proportional to the local noise variance) of data point i 

and A adjusts the smoothness of the spline fit. 

A potential drawback is that this automatic spline fitting technique is a "black box" technique, and the 

experimenter must take care not to use it thoughtlessly. 

3:4.6 FURTHER ANALYSIS OF SPLINES 

a. EFFECT OF SPLINE ORDER 

Consideration must be given to the order of the spline selected. Lyche et al. (1983) claimed, given that m 

is the half order of the spline 

"Higher values of m will give splines with a greater tendency to oscillate." (page 5) 

Any unwarranted oscillations in a spline fit could result in inaccuracies in values estimated from the spline. 

This potential problem was examined by comparing GCVS of three different degrees: cubic, quintic, and 
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haptic (m - 2,3, and 4 respectively) using the noisy data sets in Appendix B. The results tor the accuracy 

of such an analysis are presented in table 3.4. 

With increasing order of the spline there is very little difference in the accuracy of the estimation of the true 

signal underlying the noisy data sets. For the second derivative data the cubic spline gave the poorest 

values but this was anticipated because of the restrictions placed on the second derivative of this order 

spline. The haptic spline produced more accurate results for all except one data set (set c) compared with 

the quintic spline. 

As all data points were considered to be knots it is important to see what the data does between the knots. 

A second analysis was performed, here the GCVS was fitted to the data from the various data sets and 

then the function was evaluated at the mid-points between the knots. The true mid-point values could be 

evaluated by reference to the functions used to generate the data. Splines from the fourth to the tenth 

order were used. The results for the estimation of the displacement data are presented in table 3.5. 

For four of the data sets (a, b, c, and d) the quintic spline gave the most accurate results. For the 

remaining two data sets (e and f) there was a small increase in accuracy with increasing order of spline. 

The increase in accuracy for data sets e and f using the splines of order eight and 1 0 was very small in 

comparison to the spline of order six. These results show that if interpolation between data points is to be 

undertaken the order of the spline has a signifJcant effect. lt should be noted that direct comparisons 

cannot be made between the results in tables 3.4, 3.5 and 3.1, 3.2, because the analyses were performed 

on different computers. These differences exist because of the differences in the random number 

generators used to add noise to the data, and in the precision limits of the computers. 

b. THE EFFECT OF THE CONSTRAINED DERIVATIVES 

The analysis in section 3:4.2 showed that the cubic spline estimates of second derivatives are not as 

accurate as those of the quintic spline. An analysis of a cubic polynomial illustrates why. For the cubic 

spline m- 2. If P(ti) is the polynomial for the interval i, then:-

[3.35] 

P(ti) • ~ + 2.qti + 3.qtf 
[3.36] 

P(ti) • 2.q + s.qti 

Where:-
(3.37] 

Aj, Bj, Cj, Dj- are polynomial coefficients 

P(ti) - is the first derivative of the polynomial P(ti) 

and P(ti) is the second derivative of the polynomial P(ti) 
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TABLE 3.4 ·The percentage root mean square errors for the estimation of true displacement and second 

derivative values from noisy data using different order generalised cross·validated splines. 

DATA SET 

TECHNIQUE• a b c d e t 

Displacement Data 

CUBIC (4) 1.32 1.90 0.77 1.81 1.63 1.28 

QUINTIC (6) 1.10 1.84 0.81 1.50 1.58 1.22 

HEPTIC (8) 0.76 1.80 1.01 1.50 1.54 1.05 

Second Derivatives 

CUBIC (4) 41.58 32.59 33.21 15.86 32.48 22.89 

QUINTIC (6) 14.72 23.94 24.99 10.90 23.92 20.71 

HEPTIC (8) 5.63 20.83 39.60 7.68 20.82 16.22 

(N.B. • • the figure in brackets refers to the order of the spline.) 
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TABLE 3.5 ·The percentage root mean square errors for the estimation of true displacement values from 

noisy data at the mid-points between knots using different order generalised cross-validated splines. 

DATA SET 

ORDER 

OF 

SPLINE a b c d e t 

4 1.06 1.58 0.74 2.00 1.87 1.15 

6 0.85 1.50 0.64 1.83 1.78 0.99 

8 0.94 1.56 0.70 1.92 1.74 0.95 

10 1.51 1.59 1.26 2.02 1.73 0.92 
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As can be seen the cubic spline only uses linear polynomials between the knots when estimating the 

second derivative. This may not be appropriate for many biomechanical applications were acceleration is 

not linear in these regions. In addition natural splines force the end points of the spline to go through zero 

for the mlh derivative, which means that incorrect estimates of the end points of the second derivatives will 

be given. 

To illustrate these problems figure 3.7 shows the graph of the second derivative of the data set A 

estimated using a cubic spline. The end point values of the derivative should be equal to one but the 

spline has constrained these end points to be zero. To further illustrate this end point problem a quintic 

spline was used to estimate the third derivative of a signal. The same procedure used to generate data 

set a, was used to generate a noisy sine wave. The third derivative of this signal also has non-zero end 

points, the quintic spline is constrained to have zero end point values for its third derivative, the graph is 

also shown in figure 3.7. Therefore the order of the spline used must be selected by considering which 

derivatives are required. Ragozin (1983) highlighted further problems in acquiring high order derivatives 

from low order splines. 

Dohrmann, Busby, and Trujillo (1988) presented a generalised cross-validated cubic spline routine which 

does not constrain the second (m) derivative to zero at the end points but constrains the third derivative. 

Dohrmann (1986) presented details of this technique when used with higher order splines. 

3:4.7 SAMPLE RATE 

Sampling theorem states that a signal should be sampled at a rate which is greater than twice the highest 

frequency component in the sampled signal. If this theorem is not followed the sampled signal will be 

aliased, which means that any frequency components higher than the Nyquist frequency (half of the 

sampling rate) will be folded back into the sampled frequency domain. This theorem only states what the 

minimum should be and does not provide any indication of the benefits of sampling at higher rates. To 

examine the effect of different sampling rates, data set b was used but only up to the tenth term so that 

the signal had no frequency components above 1 0 Hz. The sample interval was kept the same tor this 

data set but the sampling rate was varied from 40 to 200 Hz. A quintic GCVS was used to smooth and 

differentiate the data. The %RMS errors were evaluated between the true signal values and their 

estimated values at different signal sample rates. The effective cut-off for the spline was also calculated 

as was the rejection frequency. The results are presented in table 3.6. 

Analysis of these results shows that as the sample rate increased so did the accuracy with which 

displacement and first and second derivatives were estimated. Analysis of the cut-off frequency showed 

that it increased as the sample rate increased. This means that less of the true signal underlying the noisy 

sampled signal was lost when a higher sampling rate was used. At a sample rate four times the maximum 

frequency component of the signal the cut-off frequency was 6.82 Hz, and the rejection frequency was 

7.90Hz, which means that over 20 percent of the sample bandwidth was rejected. At 200Hz which is 

twenty times the maximum frequency component of the signal the spline had a cut-off frequency at 8.16 

Hz rejecting all frequencies above 9.45 Hz. The noise added to the original signal was white, which is 
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TABLE 3.6 ·The percentage root mean square errors arising when comparing true values with those 

estimated using the generalised cross-validated quintic spline, for data set b sampled at different rates. 

SAMPLE RATE 

200Hz 100Hz 67Hz 50Hz 40Hz 

DISPLACEMENT 1.19 1.60 1.95 2.03 2.82 
%RMSE 

1ST DERIVATIVE 5.13 7.35 7.95 8.28 10.87 
%RMSE 

2ND DERIVATIVE 20.13 26.50 27.96 28.14 31.52 
%RMSE 

CUT·OFF 8.16 7.98 7.37 7.27 6.82 
FREQUENCY (Hz) 

REJECTION 9.45 9.25 8.53 8.42 7.90 
FREQUENCY (Hz) 
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assumed to be wide-band. Therefore the increases in sample rate led to the true signal underlying the 

sampled signal and white noise becoming better defined making the noise easier to remove. 
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The frequency components of a signal and more significantly the highest frequency component of a signal 

are not known before the sampling process. Sample rate must therefore be set at a rate greater than 

twice the anticipated highest frequency of a signal. Using too high a sampling rate may be considered 

wasteful in terms of film and time but can result in more accurate definition of the displacement data and 

its derivatives. 

3:4.8 TRANSFER FUNCTIONS 

The behaviour of a filter can be described in terms of its frequency response (also known as transfer 

function). For a low-pass filter ideally all frequencies up to a given frequency should pass unattenuated 

and all frequencies above that level should be rejected. In practice such a filter is not realizable. Analysis 

of the frequency response of a filter is a good way of examining the effect of the filter on the signal. The 

transfer function of a filter is found by calculating the ratio of the amplitude spectra of the output signal to 

the amplitude spectra of the input signal. This is normally done by looking at the effect of the filter on a 

signal containing varying sinusoidal frequencies. Craven and Wahba ( 1979) highlighted the similarity of 

the transfer function of the GCVS in the uniformly weighted equidistantly sampled case with the 

Butterworth filter. The transfer function of a quintic GCVS and a 4 th order Butterworth filter are plotted in 

f~gure 3.8. 

Following low-pass filtering, to obtain first and second derivative information the smoothed signal must be 

differentiated. An ideal differentiator acts as a ramp function up to the signal bandwidth and allows no 

frequency components above this to pass. Following the use of the Butterworth filter the first order central 

difference differentiating formulae have been used to differentiate data (e.g. Vaughan, 1982). The 

frequency response of this filter is shown in figure 3.9. As can be seen the filter amplifies all frequencies 

up to one fourth of the sample rate, but the cut-off is not sharp. A similar shape curve is obtained for the 

second order central difference differentiating formulae which were also examined in section 3:4.4. When 

the signal is low-pass filtered some frequency components beyond the cut-off frequency will remain, and 

unless the cut-off is one quarter of the sampling rate these components will be amplified by the action of 

the first order finite difference formulae. To obtsin more accurate derivative estimation a differentiator 

must be selected which has a suitable frequency response with a cut-off at the same point as the low-pass 

filter employed. Analysis of the GCVS shows it fulfils these criteria for derivatives up to the m-1111 where 

2m is the order of the spline. 

3:5 ANALYSIS OF KINEMATIC DATA 

In this section the data collected in this study are examined, predominantly to ascertain the accuracy of 

derived variables. 

3:5.1 FREQUENCY ANALYSIS OF DATA 

The frequency components of the signal describing movement of the centre of mass, and the signal 
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FIGURE 3.8 ·The transfer functions of a generalised cross-validated spline, and a Butterworth filter, both 

with a cut-off frequency of 8.16 Hz. 
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describing the orientation of the forearm in relation to the upper arm were all determined, and the 

bandwidth of the signals computed for all film trials. These bandwidths were used in the analyses 

perfonmed in section 3:5.4, with the values reported in the table 3.8 being the highest of those determined. 

Trial #3 was representative of all the trials, so to illustrate the effect of smoothing, the amplitude spectrum 

of the Z coordinates describing the path of the centre of masS of the distal segment before and after 

smoothing is shown in figure 3.1 0. This analysis shows that the sampling rate of 200 Hz was over 20 

times higher than the highest frequency components in the sampled signal. This over sampling has an 

advantage as shown in section 3:4.7. 

3:5.2 SIGNAL AVERAGING 

If the noise contaminating a signal is white, this means the noise is not correlated between samples and 

has a mean value of zero. On summing repeat measures the true underlying signal is additive, the noise 

is statistically independent so it tends to average out to a constant value equal to the mean value of the 

random noise. Therefore by taking the average of a number of repeat samples the signal to noise ratio is 

improved. If n repeat measures are taken, the true signal size is increased by a factor n, the variance of 

the noise is increased by the same factor, while the standard deviation of the noise is increased by a factor 

equal to the square root of n. On taking the average the signal amplitude to noise standard deviation ratio 

is increased by the square root of n. 

To analyse the random noise introduced in the digitizing process four frames were randomly selected and 

digitized 1 0 times from trial #3. The maximum variance in digitizing a point in any one of these frames was 

0.6416 mm. To quantify the noise added to the points, all the points for each frame were relocated using 

the digitizer coordinates from one digitization, and the mean of ten digitizations. The maximum difference 

between locating a point with one digitization and the mean of ten was 8.3 mm. 

These data were then used to examine the effectiveness of the spline smoothing routine. The absolute 

error was calculated for locating the points with one digitization and the mean of ten digitizations. These 

errors were then averaged for each axis and across all four frames. This gave an indication of the noise 

that may occur across all the frames. These figures were compared with the results from smoothing. For 

trial #5 all the points were reconstructed with and without smoothing using the quintic GCVS. The mean 

absolute differences between these two estimates of the signal were computed. These differences were 

then averaged for all frames and for the three axes. Table 3.7 presents the absolute error estimates 

obtained from the averaging of multiple digitizations, and the mean absolute difference between smoothed 

and non-smoothed data. 

In table 3.7 the noise levels estimated from the mean data compare favourably with the amount of noise 

removed from the whole sampled signal using the spline. This indicates that for this analysis the spline 

was effective in removing much of the noise from the signal. The highest error estimates were for points 

number 2 and 6. Point 2 was the styloid process of the ulna which during the studied movements was 

periodically hard to locate as it was partially obscured by the dumbell, (this landmark was not actually 
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TABLE 3.7- The root mean square error for the mean of ten digitizations compared with the results for 

one digitization, and the root mean square error for all frames between the smoothed and non-smoothed 

signal. 

ROOT MEAN SQUARE ERRORS 

DIGITIZED 

POINT MEAN DATA SMOOTHED DATA 

0.0016 0.0019 

2 0.0040 0.0030 

3 0.0033 0.0021 

4 0.0030 0.0017 

5 0.0029 0.0010 

6 0.0042 0.0034 

7 0.0021 0.0021 

8 0.0029 0.0021 

Notes:-

a) The root mean square errors are in metres. 

b) The digitized points correspond to:-

1. Styloid process of radius 

2. Styloid process of ulna 

3. Medial epicondyle 

4. Olecranon process of ulna 

5. Lateral epicondyle 

6. Lesser tubercle of humerus 

7. Medial end of dumbell 

8. Lateral end of dumbell 
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used to form the member reference frame for the distal segment during the dynamic analysis). Point 6 

was the lesser tubercle of the humerus which also became partially obscured by the dum bell during part of 

the movement. The smoothed results compared with the mean results showed that the spline was in most 

cases removing most of the random noise as indicated by the mean data. The largest discrepancy was 

the 1.9 mm for point 5 the lateral epicondyle of the humerus. This analysis suggests that the random 

noise associated with the digitization process resulted in a mean error of 1.6 mm to 4.2 mm. 

In the preceding analysis the assumption has been made that the noise calculated for the four randomly 

selected frames gave an indication of the random noise present in the whole of the film sequence. The 

digitized points all have different amounts of random noise associated with them, as indicated by the 

absolute differences between the mean of ten digitizations and one digitization shown in table 3.7. This 

provides a rationale for the use of the GCVS separately for each landmark, as opposed to using it for one 

landmark, determining the amount of smoothing and then applying this to the signal from all other 

landmarks. 

To reduce the effect of noise contaminating the digitizer coordinates of the points on the calibration frame, 

these points were digitized ten times and the mean used to calculate the calibration coefficients. The 

effect of this procedure was analysed in section 2:2.4. 

The data from the repeat digitizations of four randomly selected frames was used again to estimate the 

variance of the noise, see section 3:5.4. 

3:5.3 MARKER MOVEMENTS 

The distance between the markers was measured on the subject using a caliper. The distances between 

the markers was also calculated during the filmed activity from the reconstructed three-dimensional 

coordinates of the digitizer coordinates of these markers. The differences between the film estimated 

distances and their measured distance gave an indication of the effect of reconstruction accuracy and 

marker movement. 

Analysis of trial #3 was undertaken to examine marker movements. To evaluate the error in length 

estimation without marker movement the distance between the two markers rigidly fixed onto the dumbell 

was considered. The ends of the dum bell were clearly marked, and the markers could not change their 

positions on the dum bell during the movement. For all the film frames the standard deviation in comparing 

known length with actual length was 0.0035 m for the smoothed data. This error is in keeping with the 

error associated with locating points in space using the cine-photogrammetric procedures adopted in this 

study (see section 2:2.4). To examine marker movement due to skin movement two markers were 

selected which were on the same bone and that were sufficiently far apart so that the errors associated 

with estimating their positions were independent. The markers considered were the marker on the lesser 

tubercle of the humerus and the marker on the lateral epicondyle of the humerus, the measured distance 

between which was 0.3005 m. The standard deviation over all the trials in comparing the calculated length 

with actual length was 0.0078 m when the data were not smoothed and 0.0064 m when the data were 
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smoothed. Figure 3.11 shows how the estimated length varied throughout the course of the movement. 

Rgure 3.11 shows that the estimated length varied throughout the movement. Van den Bogert et al. 

(1990) showed that during horse locomotion skin movement was correlated with the movement patterns of 

the horses. There is no clear indication in the present data whether the differences were correlated with 

the movement. This analysis does not fully quantify the amount of marker movement. If the markers both 

move in the same directiOn then the error is reduced, equally the opposite case may apply. Some of these 

errors may be due to digitizer operator errors both random and systematic, and include errors due to the 

precision and accuracy of the measurement system. The maximum error in the length estimation was 

0.0173 m. The errors associated with marker movements impose an additional limit on the accuracy of 

calculated variables. lt was not possible to further quantify marker movement or the effect of this 

movement on the calculated parameters. 

3:5.4 LANSHAMMAR ANAL VS IS 

Lanshammar (1980) presented a formula which gives an estimate of the noise which can be expected to 

remain in a noisy signal after smoothing and or differentiation. The formula is:-

Where:-

a2. 't. ro.(2.K+ 1) 

~ = lt.(2.K + 1) 

K - is the order of the derivative 

a2K - is the variance of the noise contaminating the l(lh derivative after processing 

az - is the variance of the additive white noise 

't - is the sample interval 

m8 - is the bandwidth of the signal in radians (m8 - 2.lt.f8 ) 

and f8 is the sample band-width in Hertz. 

There are three major assumptions in this formula. 

1. The signal is band-limited. 

2. The noise contaminating the signal is white. 

3. The frequency response of the filter or differentiator is ideal. 

[3.38] 

Slepian (1976) has shown that from a mathematical point of view no signal is band-limited. Effectively 

frequencies above the Nyquist frequency have to be ignored. lt is not possible for the noise contaminating 

a signal to be perfectly white, for example the noise may be correlated between samples. The assumption 

that the filter is ideal means that the signal passes unattenuated up to the specified filter cut-off, after 

which all of the remaining signal is removed irrespective of whether it is noise or true signal. For a 

differentiator to be ideal means that the signal is suitably amplified up to the cut-off frequency after which 

no signal is allowed to pass. Such filters and differentiators are not practically realizable. These 

assumptions mean that the formula gives only a minimum estimate. 
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FIGURE 3.11 -The variation in calculated length between markers on the humerus: lateral epicondyle and 

lesser tubercle. 



Re-arrangement of the formula shows how the sample rate should be adjusted to give acceptable 

derivative estimates:-

<f!.m;2.K+1) 

<?~t.(2.K + 1) 

100 

[3.39] 

This Illustrates that the noise level of rigid body position and attitude estimates, and their derivatives can 

be significantly reduced by sampling at rates much greater than twice the Nyquist frequency, even if the 

variance of the additive white noise remains constant. 

To estimate the errors in the sampled signal a Lanshammar analysis was performed on the data. To 

determine the variance of the noise added to the sampled signal the information from the four frames 

which were digitized 1 0 times was used. Using the procedures already described the position of the origin 

of the distal segmenrs member reference frame (the centre of mass) and the Cardan angles were 

determined. For each of the four frames 10 estimates of these variables were made. The variances of 

these variables were estimated for each frame, and then the mean variances for the four frames 

calculated. The highest estimated bandwidth of the sampled signal from section 3:5.1 was also used. The 

results for this analysis are presented in table 3.8. 

The error standard deviation values were calculated assuming that an ideal filter and differentiator were 

used. Therefore the true error standard deviations were probably higher. These error estimates are used 

in section 4:5.1 to perform a sensitivity analysis of the computed resultant intersegmental moment. 

3:5.5 LIMB KINEMATICS 

To illustrate how the procedures described in this chapter may be used this section examines the change 

in the carrying angle during elbow flexion. The subject was instructed to keep the forearm and hand in a 

neutral position, that is with the hand mid-way between full pronation and full supination. The subject then 

flexed the elbow joint. The variation in carrying angle was considered as a function of elbow flexion angle, 

see figure 3.12. 

The range for elbow flexion of 0 to 145 degrees is similar to values from the literature (see section 3:2.3), 

as is the range for the carrying angle -7 to 17 degrees. The carrying angle was measured approximately 

on the subject using a goniometer (Atha Flexitractor) when the elbow was fully extended and fully flexed. 

These measurements compared well with the extremes of the range of movement reported here as 

measured from the film. 

To see if the subject permitted any longitudinal rotation of the forearm during the movement, the amount of 

longitudinal rotation was plotted against flexion angle, see fiQure 3.13. The graph shows that the subject 

did permit longitudinal rotation during the examined movement. The member reference frame used for 

this analysis assumed that the radius did not move in relation to the ulna, and this Is a possible source of 

error in these angular measures. There was no way of quantifying the effect of this on the computed state 

variables; the following discussion assumes that its influence was small. 



TABLE 3.8- An analysis of the anticipated minimum standard deviation of the noise affecting state 
variables, calculated using equations of lanshammer (1980). 

STANDARD STANDARD DEVIATION OF NOISE 
DEVIATION SIGNAL FOR DERIVATIVE 
OF NOISE BANOWIOTH 0 1 2 

POSITION m Hz m m.s-1 m.s-2 

X 0.0016 6.3 0.000402 0.009178 0.281414 

y 0.0050 6.3 0.001255 0.028681 0.879420 

z 0.0019 4.7 0.000412 0.007023 0.160647 

ANGLES' rad Hz rad rad.s·1 rad.s·2 

FiE 0.0075 3.0 0.001299 0.014137 0.206414 

AB/AD 0.0112 4.0 0.002240 0.032503 0.632765 

SiP 0.0134 2.6 0.002161 0.020379 o.2578n 

(N. B. •- the angles refer to rotations about the FiE flexion-extension axis, AB/AD abduction-adduction 
axis, and SiP supination-pronation axis.) 

101 



102 

Carrying Angle (degrees) 

+12.5 

+10.0 

+7.5 

+5.0 

+2.5 

0.0 

·2.5 

-5.0 

-7.5 

0.0 +25.0 +50.0 +75.0 +100.0 +125.0 +150.C 

Flexion Angle (degrees) 

FIGURE 3.12- The variation in carrying angle with amount of elbow flexion. 
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FIGURE 3.13 - The variation in longitudinal rotation of the forearm with amount of elbow flexion. 
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Chao and Morrey (1978) examining dry bone specimens found that, during a simulated flexion, the 

forearm rotated about its longitudinal axis when the arm was in any one of three initial positions. In light of 

their findings some longitudinal rotation should be expected. In this study this rotation was greater in 

range than reported by Chao and Morrey (1978), this additional rotation could be due to two factors. 

Either the subject differs structurally from those in the study of Chao and Morrey (1978), or the subject 

executed the movement with additional longitudinal rotation of their own volition. The shape of the curve 

in figure 3.13 is very similar to that of Chao and Morrey (1978). The fact that the subject exhibited 

longitudinal rotation during the movement does not affect the reported change of carrying angle with 

flexion as Chao and Morrey (1978) showed that carrying angle was independent whether the forearm was 

in a supinated or pronated position during flexion. 

The non-rigidity of the distal member reference frame for these analyses makes it difficult to precisely 

define the motion of the bones of the forearm. Another reference frame was used for the analyses of the 

dumbell curls in which the rigidity assumption is not invalidated by longitudinal rotation of the forearm. 

3:5.6 SUMMARY 

The preceding sections have analysed and quantified the errors associated with the measurement 

processes. In the next chapter kinematic information is used to compute the resultant intersegmental 

moments at the elbow joint during a dumbell curl, and the errors associated with this kinematic information 

are used to estimate the accuracy of these moments. 
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CHAPTER IV 

MUSCLE MOMENT DETERMINATION 

INTRODUCTION 

Inverse dynamics permits the estimation of the resultant joint forces and moments. These forces and 

moments are the result of forces due to the muscle, ligament forces, and forces due to articular surface 

contact. By making certain assumptions it is possible to estimate the net moments caused by the muscles 

crossing a given joint. This chapter is concerned with calculating the muscle moments acMg about a joint. 

The kinematic variables required for this process were derived using the procedures described in chapter 

Ill. To determine the resultant joint moments and forces, the inertial properties of the distal rigid body must 

be known. Therefore this chapter contains details of the computation of the inertial properties of the 

subjecrs forearm and hand, and of the dumbell which the subject grasped. A sensitivity analysis was 

performed to estimate the accuracy of the resultant joint moments, the results of which are reported in this 

chapter. 

4:1 REVIEW OF ANTHROPOMETRIC TECHNIQUES 

To determine the forces and moments acting about a joint due to the movements of a rigid body 

articulating about that joint it is necessary to know the mass, location of the centre of mass, and moments 

of inertia of the rigid body about three orthogonal axes. In studies of human movement the segments of 

the human body are idealised as rigid bodies. The inertial properties of body segments can be obtained 

using various techniques which are reviewed in the following sections. 

This review is divided into three sections reflecting the major initiatives in the determination of body 

segment inertial parameters. This information can be derived from cadaver data, measurements on live 

subjects, or the geometric modelling of body segments. These divisions are notional as there are many 

overlaps, for example density data from cadaver studies are often incorporated into geometric models. In 

each section a selection of techniques is reviewed. 

4:1.1 CADAVER STUDIES 

Dempster (1955) dissected eight male cadavers. From measures taken on these cadavers he presented 

figures for estimating segment mass as a fraction of total body mass, and centre of mass location as a 

fraction of segment length. Barter (1957) combined the data of Dempster (1955) with the data from three 

male cadavers dissected by Braune and Fischer (1889), and one cadaver dissected by Fischer (1906). 

Using only one independent variable (body mass) he produced regression equations for estimating 

segment mass. 

Dempster (1955) used a compound pendulum to derive the transverse moments of inertia of cadaver body 

segments about joint axes. Plagenhoef (1971) used the data of Dempster to calculate the mean radius of 

gyration values for each segment. 



106 

Clauser, McConville, and Young (1969) dissected 14 male cadavers and produced regression equations 

for estimating segment mass and centre of mass location for 14 body segments. They used up to three 

dimensions in these equations including segment length, depth, breadth, and circumference, in addition to 

subject mass. The locations of the centres of mass of the segments were presented in their report as 

percentages of segment length. Segment lengths were measured using appropriate bony landmarks. 

Hinrichs (1990) re-examined their data and presented centre of mass locations based on segment length 

measured from joint centres. 

Chandler, Clauser, McConville, Reynolds, and Young (1975) dissected six cadavers, and calculated the 

three principal moments of inertia for 14 segments. Hinrichs (1985) used these data to produce 

regression equations to calculate segment moments of inertia, based on the lengths and perimeters of the 

segments. The author recommended that these equations should not be applied to limbs with perimeter 

and length values outside the range of the subjects in the original study of Chandler et al. (1975). 

Of the many cadaver studies attempting to estimate body segment parameters, most include segment 

mass and centre of mass location but few estimate moments of inertia of the segments or the whole body. 

Due to the relative paucity of moment of inertia data some authors have recommended the scaling of the 

moment of inertia values of a cadaver or group of cadavers so that they can be used for a living subject. 

Hay (1974) suggested that if the data of Dempster (1955) were used, the subject for whom the parameters 

were required should be matched in terms of anthropometric measurements to one of the cadavers, and 

that cadaver's moment of inertia values used. Wilson and Hay (1974) scaled cadaver moment of inertia 

values for living subjects using variations in segment mass and length. Dapena (1978) used a similar 

procedure but used subject height in place of segment length. Presumably this substitution was based on 

the assumption that segment lengths are directly proportional to subject height. Forwood, Neal, and 

Wilson (1985) examined these scaling techniques using moment of inertia values about the transverse 

axis from Chandler et al. (1975) as the criterion. The techniques compared were: matching the subject to 

a selected cadaver; scaling of moment of inertia data using subject height and subject mass; and scaling 

moment of inertia data using subject segment length and subject mass. Statistical analysis of the results, 

with the limitation of the sample size of only five (one set of data from one of the cadavers of Chandler et 

al. (1975) was not used), showed that scaling data using subject height and mass produced the most 

accurate results. In addition to these experimental results it should also be noted that such a scaling 

procedure would probably not be appropriate for moment of inertia about the longitudinal axis as the 

distribution of mass in this plane is not strongly related to subject mass. 

Cadaver studies have a number of common problems. it is difficult to make inter-study comparisons 

because different investigators have used different definitions of segments, and different dissection 

techniques. The age and former health of the cadavers makes extrapolation to a live population dubious. 

The samples are small, and generally not typical of the general population. The measurements taken from 

cadavers may not reflect those of a live population, due to changes in the inertial properties of the 

segments, caused by changes in the density of tissues resulting from degeneration, loss of fluids, changes 

in the distribution of fluids within the segments, and because some cadavers are embalmed or placed in a 
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preserving medium prior to dissection. 

4:1.2 EXPERIMENTAL DETERMINATION 

lt Is possible to determine body segment inertial parameters experimentally on live subjects. The simplest 

method Is to obtain segmental volume using an immersion technique (e.g. Katch, Wettman, and Gold, 

1974; Dritlls, Contini, and Bluestein, 1964). These techniques are harder to apply to proximal segments, 

but can be satisfactorily applied to the hand and forearm. Given segment density, segment mass can be 

computed. 

If the volume of a segment is estimated using an immersion technique then centre of mass can be found 

by locating the point of mid-volume. This technique was used by Dritlis et al. (1964). Clauser et al. (1969) 

using cadaver segments of known centre of mass showed that this technique tended to estimate the 

centre of mass proximal to its true location. This has implications for geometric modelling of limbs, where 

if uniform density is assumed, the centre of mass is assumed to be mid-volume. Experimental difficulties 

in measuring the total segment volume and mid·volume may account in part for the results of Clauser et 

at. (1969). The variation in density along a segment would also tend to displace the centre of mass away 

from the mid-volume point. 

Bemstein (1967) used a reaction board to compute the mass and centre of mass of the limbs on 152 

subjects. lt is not possible using this technique to compute both segment mass and centre of mass 

simultaneously; one parameter must be known to compute the other. Another problem arises as the 

distribution of mass within the segment may vary as the limb is moved. 

Drill is et at. (1964) computed moment of inertia values by taking plaster casts of body segments. The 

compound pendulum technique was then used to assess the moments of inertia of the plaster casts. 

Corrections were made to allow for the differences in the densities of the cast and body segment. Uniform 

density was assumed throughout the plaster casts and the segments. 

Fenn, Brody, and Petrilli (1931) proposed a quick-release technique for determining the moment of inertia 

of proximal segments. Bouisset and Pertuzon (1968) employed this technique for determining the moment 

of inertia of the forearm and hand. The quick release technique is based on the measurement of linear 

force and acceleration when the limb has been released from exerting a static moment. Moment and 

angular acceleration were computed from the linear force and acceleration values, and the moment of 

inertia evaluated as the quotient of these two variables. Cavanagh and Gregor (1974) examined the 

vartations in estimated moments of inertia for the shank and foot about the knee joint axis, when different 

moments were exerted by the subjects and when the position of force application was varied. The authors 

showed that by changing these two vartables the estimated moments of inertia varied, consequently they 

questioned the reliability of this technique. 

Hatze (1975) used a suspension method for estimating the passive visco-elastic moments of a joint, the 

location of the centre of mass, and the moment of inertia of a segment. The limb was oscillated when 



suspended from a spring based mechanism. The time period and the change in amplitude of the 

oscillations permitted calculation of the parameters. The mass of the limb was required to compute the 

location of the centre of mass. This technique and the quick release technique are most applicable to 

distal segments and for calculating transverse moments of inertia. 
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Dainis (1980) expressed the location of the centre of mass of a system of linked rigid segments as a 

polynomial function of time during free-flight. Records of the positions of the end points of the segments 

served as inputs for the polynomial, the coefficients of which could then be evaluated using a linear least­

squares technique. it was then possible to derive the centre of mass location of the whole system, and 

then the mass and centre of mass locations of the segments. Results were obtained in two-dimensions for 

three different systems: three linked rods; a three segment representation of a body during a gymnastic 

vault; and a six link representation of a body performing a tucked somersault. Errors in the prediction of 

the acceleration of the whole body centre of mass served as an estimate of accuracy of the derived 

parameters. The predicted centres of mass locations for some segments were outside the segments. The 

accelerations of the centres of mass of the systems were less than 0.1 m.s·2 away from their true values, 

whereas using the data of Dempster (1955) produced errors of up to 1.2 m.s·2. 

Vaughan, Andrews, and Hay (1981) performed a two-dimensional analysis of three different movements 

all including a single footed contact with the ground, and two of which included a flight phase. A non-linear 

objective function was formulated which minimised the difference between the terminal segment ground 

reaction force as measured directly by a force plate and as calculated from a combination of segment 

anthropometry and kinematics. The mass, centre of mass locations, and moments of inertia for 14 

segments were all calculated. Comparisons were made with values derived from the data of Dempster 

(1955), Clauser et al. (1969), and Chandler et al. (1975). The activities examined were a long jump take 

off, a running stride, and kicking. There was a large variation in predicted parameters for the same subject 

for the different activities. 

The studies of Dainis (1980) and Vaughan et al. (1981) both have common assumptions which may 

account tor their inaccuracies. They assumed the mechanical model adopted was valid, that the 

segments were rigid, and the movements studied could be represented in two-dimensions. Deriving 

accurate kinematic data is also problematic. it is particularly difficult when second derivative values are 

calculated from noisy displacement data. Dainis (1980) made his measurements on bodies in free-flight. 

This is more likely to produce more accurate kinematics than the measures taken during the impact 

situations studied by Vaughan et al. (1981 ). 

it is possible to measure the inertial properties of segments using a variety of imaging techniques. Brooks 

and Jacobs (1975) used gamma mass scanning to measure mass distribution in animal segments and 

found a maximum error of 4.6 percent in calculating the moments of inertia of three lambs legs. The 

measurements were derived from the principle that when a gamma radiation beam passes through a 

substance the strength of the beam diminishes in relation to the density of the substance. Zatsiorsky and 

Seluyanov (1983, 1985) were the first (and only researchers to date) to apply this technique to a large 
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number of male subjects (n-1 00). Their sample population included large athletic specimens. In their 

1983 paper multiple linear regression equations for estimating segment inertial properties were presented 

using subject height and mass as the independent variables. New multiple regression equations for 

estimating the segment inertial properties were presented in their 1985 paper, where segment length and 

different circumferences were used as the independent variables. 

Huang and Wu (1976) developed a technique which allowed the calculation of tissue densities in a 

segment in vivo using computerized tomography (CT). Rodrigue and Gagnon (1983) used CT scans to 

compute the densities of the forearms from 1 0 cadavers (20 forearms in total). Comparison of the density 

values with those obtained from hydrostatic weighing showed that the CT scan overestimated density by a 

mean value of 2.1 percent. Ackland, Henson, and Bailey (1988) used CT scans to examine the variation 

in density along the longitudinal axis of the leg, and found that the density data of Dempster (1955) 

overestimated shank density for both a cadaver specimen and a live subject. 

Magnetic resonance imaging (MRI) unlike gamma mass scanning and CT scans does not expose the 

body to radiation. Martin, Mungiole, Marzke, and Long hill (1989) used MRI to calculate the inertial 

parameters of eight baboon cadaver arm segments. Images were taken at 0.015 m intervals along the 

limbs and then manually digitized. Criterion values were obtain by hydrostatic weighing, direct weighing, a 

reaction board, and a compound pendulum. The mean percentage differences and standard deviations 

were: volume 6.3 ± 5.0; density 0.0 ± 3.1; mass 6.7 ± 2.8; centre of mass location -2.4 ± 8.2; and 

transverse moment of inertia 4.4 ± 3.0. The standard deviations for these estimates were very high which 

indicates that this technique was not very precise. The same research group performed a study on live 

subjects using MRI (Mungiole and Martin, 1990). Their paper is discussed in section 4:1.4. Of note here 

is the reported higher density values for the shank of 12 adult males, compared with values reported in 

Dempster (1955), Clauser et al. (1968), and Chandler et al. (1975). 

4:1.3 GEOMETRIC MODELS 

Body segments are generally of irregular shape, but for the purposes of modelling, body segments have 

been represented by geometric solids. These solids can be described mathematically, permitting 

derivation of segmental inertial parameters. The dimensions of these shapes are obtained by taking 

anthropometric measurements on the experimental subject (e.g. segment length and circumference). 

Amar (1920) was one of the first researchers to use this approach when he computed the moments of 

inertia of the limbs by modelling them as truncated cones, and the trunk as a cylinder. Whitsett (1963) 

developed a 14 segment model of the human body. The shapes used were ellipsoids, elliptical cylinders, 

truncated cones, spheres, and rectangular parallelepipeds. The segment masses were determined from 

the regression equations of Barter (1957) and centre of mass locations were determined from Dempster 

(1955). Moments of inertia were computed from equations relating to the geometric solid, for these 

calculations density was assumed uniform longitudinally along a segment. Hanavan (1964) modelled the 

whole body as 15 segments. Segment density was computed as the quotient of the mass of the segment 

computed from Barter (1957) and the volume of the geometric solid modelling the segment. 
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Jensen (1976) used a photogrammetric technique based on an original suggestion by Weinbach (1938). 

The body was divided into 0.02 m thick elliptical discs from which segmental inertial parameters were 

estimated for the 16 segments into which the body had been divided. Jensen applied his model, and that 

of Hanavan (1964), to an 11 year old male swimmer and found large differences between the models. In 

1978 a further analysis of three boys was undertaken. Body mass estimates using Jensen's model had a 

less than two percent error, compared with direct measurement. Density values were obtained from 

Dempster (1955) and density was assumed uniform longitudinally along each segment. 

Gagnon and Rodrigue (1979) showed that the forearm model of Hanavan (1964) underestimated segment 

volume by an average of 15 percent when applied to 29 male college students. When the limb was 

modelled as five truncated cones in series, segmental volume was under estimated by five percent. 

Hatze (1980), presented a 17 segment model for which 242 anthropometric measures had to be made 

directly on the subject. Each body segment was divided into a number of geometric solids. The variations 

in density values along the longitudinal axis of a segment were taken from measurements made by 

Demspter (1955) on one subject. Account was also taken of variations in density due to fat, utilizing the 

data from •a special sub-cutaneous fat indicator". The geometric solids employed did not assume that all 

the segments were symmetrical. Model predictions were made on four subjects, and the model values 

were compared with values determined experimentally. Transverse moment of inertia values were 

computed using the suspension method of Hatze (1975). The parameters calculated from the model were 

reported to give accuracy better than three percent with a maximum error of five percent. 

The model of Hatze is the most sophisticated and complete model of the human body yet undertaken. it 

suffers as all models do because it cannot be completely validated. Its accuracy must be assessed in 

relation to experimentally determined segmental inertial parameters and the efforts of the modeller to 

consider as many pertinent factors as possible. In Hatze's case this has resulted in a complex model. 

Hall and Depauw (1982) developed an 18 link model composed of geometric solids. The centre of mass 

of the whole body as computed by the model was compared with that measured by a reaction board. For 

40 subjects of varying age, the mean error in whole body centre of mass location was 1.6 percent. 

4:1.4 DISCUSSION 

Little work has been done on comparing the various approaches. Sprigings, Burko, Watson, and Laverty 

(1987) compared the model of Hatze (1980) with the ratio data of Demspter (1955) and the regression 

equations of Clauser et al. (1969) for the determination of the centre of mass. Ten male subjects were 

filmed performing a tucked jump. The acceleration of the centre of mass was used as the criterion. The 

model of Hatze gave the acceleration values closest to that due to gravity. Mungiole and Martin (1990) 

compared criterion data derived from MRI to assess a number of commonly used techniques for deriving 

inertial properties of the lower leg of 12 athletic adult males. The same research group (Martin et al., 

1989) examined the MRI technique using the arms of baboon cadavers. In this earlier study the standard 

deviations of the errors for the MRI technique compared with direct measurement of parameters were high 
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(see section 4:1.2 for more details). They claimed that these errors were due to a problem with the 

preparation of the specimens; they anticipated that these errors were smaller in the later study. Mungiole 

et al. (1990) reported that for the determination of lower leg inertial parameters the different models all 

gave similar estimates of the centre of mass location. The mass and transverse moment of inertia values 

showed a greater spread in estimates for the different techniques. lt was not possible to draw any further 

conclusions as the MRI data were not considered accurate enough to be a criterion. 

A study was therefore undertaken to further evaluate a number of techniques for deriving body segment 

inertial parameters. The moments of inertia values were used as the criterion, as their values are 

influenced by all the other parameters. 

4:2 INVESTIGATION OF ANTHROPOMETRIC METHODS 

The purpose of this section is to evaluate a number of models for the determination of the moments of 

inertia of the upper nmb. As this study was concerned with elbow flex ion the inertial parameters of the 

forearm and hand were all that were required; the upper arm is included for completeness. 

4:2.1 METHODOLOGY 

To assess the anthropometric techniques under investigation it was necessary to have a suitable criterion 

with which to compare the computed values. 

Anthropometric data derived from cadavers are accurate but scarce. The study by Chandler et al. (1975) 

derived the centre of mass, segment mass, and moment of inertia about three axes for each of 14 

segments on six male subjects. These moment of inertia data for the upper limb were used as the 

criterion in the present study. In addition to these body segment inertial parameters Chandler et al. (1975) 

provided other measurements which facilitated the application of a number of anthropometric techniques. 

The moments of inertia were defined about three orthogonal axes through the centre of mass of each 

segment, see figure 4.1. Data for the right and left limbs were averaged, following the procedure of 

Hinrichs (1985). The moment of inertia data for two mutually perpendicular axes orthogonal to the 

longitudinal axis of each limb were also averaged to give one transverse moment of inertia. In the study 

by Chandler et al. (1975) the hands were measured in " ... various relaxed positions ... " (page 63). 

Therefore it was not possible to accurately compare computed moment of inertia values for this segment. 

To aid analysis the techniques assessed in this study were divided into three groups: 1 a, simple statistical 

models; 1 b, complex statistical techniques; and 2, geometric models. The differences between calculated 

and true values were computed and used to determine the mean absolute percentage error. 

ME 

Where:-

100 =n 

ME - is the mean absolute percentage error 

[4.1] 
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FIGURE 4.1 ·A body segment represented by a truncated cone. with the principal axes passing through 

the centre of mass of the segment. 
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n - is the number of values 

ltr - is the true moment of inertia value 

and 19 is the estimated moment of inertia value. 

GROUP 1 a: Simple Statistical Techniques 

The moment of inertia values about the transverse axes through each segment centre of mass for eight 

male cadavers were reported by Dempster (1955). These data were used to examine the accuracy of 

scaling moment of inertia data. A study by Forwood et al. (1985) suggested that from a variety of scaling 

techniques investigated the most successful procedure employed the group mean moment of inertia for 

each segment and scaled it for each subject using subject height and mass (Dapena, 1978). This 

procedure was adopted for the data of Dempster (1955) in the present study. Therefore the mean data of 

Dempster (1955) were scaled to provide estimates of the moments of inertia of the individual cadavers in 

the study of Chandler et al. (1975). 

The segment moments of inertia for the subjects in the study of Chandler et al. (1975) were estimated 

using the formulae:-

Where:-

lp - is the predicted segment moment of inertia 

10 - is the the mean segment moment of inertia of the sample group 

and C is the subject specific scale factor. 

Where:-

H0 - is subject height 

Ms -is subject mass 

Hm - is the mean height of the subjects 

and Mm is the mean mass of the subjects. 

GROUP 1 b: Complex Statistical Techniques 

[4.2] 

[4.3] 

Three different complex statistical models were assessed, each involving a set of equations which related 

the segment moment of inertia values to one or more easily measurable parameters. The first set of 

equations was that of zatsiorsky and Seluyanov (1983) who related subject height and mass to segment 

moment of inertia. Their moment of inertia data were derived from gamma scanning measurements on 

1 00 healthy subjects. These equations produced moment of inertia values for two transverse axes which 

were averaged to give one transverse moment of inertia value. There was insufficient information in the 

report of Chandler et al. (1975) to implement the equations of zatsiorsky and Seluyanov (1985). 
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The second set of equations assessed was that of Hinrichs (1985) who presented a set of linear 

regression equations derived from the data of Chandler et al. (1975). The results reported for the 

regression equations of Hinrichs were the best results obtained from all the different regression equations 

presented in that report. 

The regression equations of Hinrichs (1985) do not reflect how the moment of inertia values of a segment 

were affected by the dimensions of the limbs e.g. length and circumference. Therefore a third set of 

equations was formulated which attempted to relate these pertinent physical dimensions to segment 

moment of inertia. The volume and mass values for the segments can be attained by representing them 

as geometric shapes. If a segment is modelled as a cylinder the following equations may be stated:-

Where:-

r- is the radius of the cylinder 

L- is the length of the cylinder 

Volume = V = 1t. r. l 

Mass - m = V.p 

and pis the density of the cylinder. 

The moment of inertia for the cylinder is calculated using:-

Where:-

m.rl 
= -2-

m.( L
2 + 3.r ) 

\ = 12 

11- is the longitudinal moment of inertia 

and 11 is the transverse moment of inertia. 

[4.4] 

[4.5] 

[4.6] 

[4.7] 

Using the relationship between the circumference of a circle and its radius it is possible to represent these 

equations in the form of the following non-linear equations:-

4 = Kl. C .L 

\ 
2 3 

=K2.C.l+ 

Where:-

C - is the circumference of the cylinder 

and K1 and K2 are constants .. 

[4.8] 

I 
I · 2 [4.9] 



Using a linear regression technique, the constants were determined. These constants are presented in 

table 4.1. The circumferences were defined as follows:-

The hand - the mean of hand and wrist perimeter values. 

The forearm - the mean of wrist, maximum forearm, and elbow perimeter values. 

The upper arm - the mean of the elbow, maximum upper arm, and axillary perimeter values. 
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A cylinder is a simple geometric shape which offers an approximation to the shape of the limbs under 

investigation, and has moment of inertia equations that are easily put into the form of non-linear equations. 

This approach was taken by Morlock and Yeadon (1986) who produced non-linear equations for 

estimating the moments of inertia of the thigh also using the data of Chandler et al. (1975). While this 

study was being undertaken Yeadon and Monock (1989) produced a more complete treatment of the use 

of non-linear equations for the prediction of moment of inertia. 

GROUP 2 : Geometric Models 

The upper arm and forearm were modelled both as one truncated cone, and two truncated cones in series. 

There were insufficient measures in the report of Chandler at al. (1975) to extend the modelling to more 

than two truncated cones. Such an approach is common in the literature e.g. Apkarian, Naumann, and 

Cairns (1989) modelled limb segments as single truncated cones, and Yeadon (1984) used two truncated 

cones in series to model the upper arm and forearm. In the present study the dimensions provided in 

Chandler et al. (1975) were used to model the hand as both a single elliptical disc and a truncated cone. 

The equations used to compute the inertial properties of these geometric solids are presented in 

Appendix C. 

Various density data were used as inputs for the geometric models, see table 4.2. Rodrigue and Gagnon 

(1983) reported density values at 16 equidistant locations along the longitudinal axis of the forearm of a 

"typical subject". The three available circumferences on the forearm were used and via linear interpolation 

the circumferences determined when the forearm was further divided into 16 truncated cones. The 

variable density data were then used in the model of the forearm. 

4:2.2 RESULTS AND DISCUSSION 

Table 4.3 presents the results for the data scaling. The results for the scaling of the data of Dempster 

(1955) were not very accurate, even though the procedure used was found to give the most accurate 

results In the study of Forwood et al. (1985). In this later study the mean data of Chandler et al. (1975) 

were scaled back onto the individual subjects in the study using various scaling techniques. In the present 

study a more rigorous assessment was performed as the data which were scaled were those of Dempster 

(1955) which were scaled onto the individual subjects of Chandler et al. (1975). 

The results for the complex statistical techniques are presented in table 4.4. The results from the model of 

Zatsiorsky and Seluyanov (1983) were very poor. One possible explanation for this may be the different 

division of limbs into separate segments. The designation of segment boundaries is often "fuzzy", and 

varies between researchers. The details presented by Zatsiorsky and Seluyanov (1983) provided 
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TABLE 4.1 · The constants of the non·linear equations. 

UPPER ARM 0.9601 6.2178 

FOREARM 0.9185 5.4034 

HAND 1.2774 8.0112 

(N.B - circumference and length measurements in metres, moment of inertia in kg.m2) 

TABLE 4.2- The densities of the segments of the upper limb, as reported in major studies (kg.m-3 x 1 03). 

STUDY UPPER ABM FOREARM HAND 

DEMPSTER 1.07 1.13 1.16 

CLAUSER' 1.056 1.098 1.1 09 

CHANDLER 1.080 1.052 1 .004 

(N. B.- • these values are not reported in this study but are calculated from mean volume and mass 

values.) 

TABLE 4.3- The mean absolute percentage error in predicting the moments of inertia of the segments of 

the upper limb, using scaling of data. 

TECHNIQUE 

Scaling of data of 

Dempster (1955) 

MEAN ABSOLUTE PERCENTAGE ERROR 

UPPER ARM FOREARM HAND 

10.3 19.1 19.1 
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insufficient information to facilitate a detailed analysis of their segment boundary definitions. Using the 

same data as in their 1983 study, zatsiorsky and Seluyanov (1985) developed multiple linear regression 

equations to describe body segment inertial parameters. Their study is to be commanded for its sample 

size (n-1 00), and the fact that measurements were made on a live, athletic population, as opposed to 

cadavers resulting from geriatric or chronically ill subjecta. These aspects may also account for some of 

the inaccuracies found in the present study, as cadaver data was used as the input into their regression 

equations. 

The results tor the remaining two sets of regression equations are flattering as the equations were derived 

from the data upon which they were subsequently tested. The regression equations of Hinrichs (1985) 

produced better results than the non-linear equations. In an attempt to estimate the effect of trying these 

techniques on new data, both sets of regression equations were re-formulated for the forearm only, but 

leaving out the data of subject number three. The linear regression equations related moment of inertia to 

maximum foreanm circumference. These equations then had to estimate the moment of inertia values for 

subject number three. The results of this analysis are shown in table 4.5. Subject number three was the 

largest of all the subjects, having the largest longitudinal moment of inertia, and the second largest 

transverse moment of inertia. This result illustrates the weakness in the linear regression fit when data 

outside the original data range are considered. The non-linear equations approximate more closely the 

relationship between body dimensions and moment of inertia therefore in this analysis better results were 

obtained outside the original data range using these equations. 

The results tor the various geometric models are presented in table 4.6. The geometric models of the 

forearm and upper arm showed increased accuracy when more sections were used in the models. The 

accuracy in the volume estimation places a limit on the accuracy of the moment of inertia predictions. The 

accuracy of the volume estimations are presented in table 4.7. Examination of equations 4.5 and 4.6 for 

the cylinder and the equations in Appendix C suggests that with greater accuracy in volume estimation 

more accurate moment of inertia estimates could be obtained. If sufficient measurements had been 

available it would have been possible to model the limbs using more truncated cones (or other appropriate 

shapes), which should result in greater accuracy in volume estimation. Such an approach has been taken 

in the work of Jensen (1978) and Hatze (1980). 

The geometric models showed sensitivity to the density estimates used. Of the three sets of density data 

reported in table 4.2 that of Dempster (1955) were the highest. The mean forearm density reported by 

Rodrigue and Gagnon (1983) of 1.06 x 10·3 kg.m-3 (n-12) was also less than that reported by Dempster 

(1955). lt was only possible to consider variable density for the forearm segment. These data were 

obtained using CT scanning on one subject only (Rodrigue and Gag non, 1983). These data did not result 

in an increase in accuracy of the moment of inertia estimation. There could be an error here resulting from 

extrapolating data from one subject. 
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TABLE 4.4 - The mean absolute percentage error in predicting the moments of inertia of the segments of 

the upper limb, using statistical techniques. 

MEAN ABSOLUTE PERCENTAGE ERROR 

UPPER ABM FOREARM HAND 

TECHNIQUE 

Zatsiorsky and 25.4 50.9 16.0 23.4 50.9 153.2 

Seluyanov (1983) 

Hinrichs (1985) 0.9 1.9 6.3 9.1 7.6 19.5 

Non-linear equations 6.1 6.2 4.3 19.8 9.4 28.0 

TABLE 4.5- The longitudinal and transverse moments of inertia of one cadaver forearm, using equations 

calculated from a reduced data set. 

%DIFF %DIFF 

REAL VALUE 15.0 83.0 

LINEAR BEG. 18.3 22.0% 106.1 27.8% 

NON-UN EQN. 12.8 14.7% 75.1 9.5% 

(N. B.· in this table units for moments of Inertia were kg.m2 x 1 04.) 
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TABLE 4.6 ·The mean absolute percentage error in predicting the moments of inertia of the segments of 

the upper limb, using different geometric models with various density values. 

MEAN ABSOLUTE PERCENTAGE ERROR 

UPPER ARM FOREARM HAND 

MODEL 

1 TRUNCATED CONE 

Dempster Density 12.2 8.5 14.8 24.3 7.5 25.9 

Clauser Density 11.2 7.0 11.6 22.9 9.8 26.4 

Chandler Density 7.3 4.6 8.2 20.4 12.1 23.9 

2 TRUNCATED CONES 

Dempster Density 11.7 7.7 13.1 20.7 

Clauser Density 7.2 4.6 9.9 18.5 

Chandler Density 7.2 4.3 5.3 14.9 

Variable Density 9.6 15.8 

1 ELLIPTICAL DISC 

Dempster Density 7.7 28.1 

Clauser Density 10.6 24.5 

Chandler Density 11.8 22.3 

(N. B. • in the table •.• refers to values which were not possible to calculate due to insufficient information in 

the report of Chandler et al. (1975).) 



120 

TABLE 4.7- The mean absolu1e percen1age error between the volume of the body segments and 

their estimated values. 

MODEL 

1 TRUNCATED CONE 

2 TRUNCATED CONES 

1 ELLIPTICAL DISC 

MEAN ABSOLUTE PERCENTAGE ERROR 

UPPER ARM 

7.2 

6.7 

FOREARM 

12.2 

7.4 

HAND 

5.4 

7.6 



121 

4:2.3 SUMMARY 

On the data investigated the regression equations of Hinrichs (1985) gave the best results. it was shown 

that these regression equations do not perform well outside of their sample range whilst the non-linear 

equations showed improved accuracy for extrapolation outside of the sample range. Problems can also 

arise due to variations between studies in the precise definitions of segments. The geometric modelling 

techniques gave acceptable accuracy. An increased number of truncated cones making up the model 

could have resulted In better volume estimation, and consequently potentially better moment of inertia 

estimation. There would appear to be no limitation to the sample range with these techniques, and 

researchers are free to define segment boundaries which are most suitable for their study. There is a 

need for further examination of the ways of determining accurate body segment inertia parameters, with 

imaging techniques (gamma mass scanning, CT, and MRI) perhaps providing the most promising avenue 

for research in the clarification of this important area. 

4:3 SUBJECT SPECIFIC ANTHROPOMETRY 

In light of the investigation in the previous section the inertial properties of the forearm and hand were 

determined using a geometric modelling approach. 

4:3.1 GEOMETRIC MODELLING 

This section discusses three issues relating to geometric modelling of segments: choice of geometric 

solids; the assumption that each segment is a rigid body; and the assumption of uniform density. 

Table 4.8 gives details of some of the different solids used to represent the hand and forearm segments. 

The differences in the models of the hand are due to it being modelled in either a closed (gripping) or flat 

position. The most complex model is that of Hatze (1980) where the hand is modelled as a prism to which 

a hollow half-cylinder and an arched rectangular cuboid (thumb) are attached. The model of Hatze (1980) 

does not assume that the segment is symmetrical. In 1982 Hall and Depauw modelled the hand as a 

triangular section of a right-angled parallelepiped. The hand was modelled in an open flat position. This 

solid meant that the centre of mass location was fixed at one third of the segment length from the wrisf. 

Yeadon (1984) also modelled the hand in an open position as a cone. The centre of mass was fixed at 

one quarter of the segment length from the wrist joint. The hand in this study was gripping a dumbell, so a 

model was adopted of the hand in this position. it consisted of a truncated cone to represent the heel/ 

base of the hand and a hollow cylinder representing the fingers grasping the dumbell. 

The forearm has been modelled as a variety of shapes, see table 4.8. The models of Hatze (1980) and 

Jensen (1978) both assume that the forearm has different moments of inertia about its two transverse 

axes. In their study of six cadavers Chandler et al. (1975) found that for the forearm segment the 

moments of inertia through the two transverse axes were very similar, see table 4.9. This supports the 

assumption that this segment can be considered to be symmetrical about its long axis. The model 

adopted here for the forearm was a series of truncated cones, therefore the two transverse axes will have 

the same moment of inertia value. As the accuracy of volume estimation has an influence on the other 

derived parameters, a model consisting of more solids will give a better estimate of volume. Therefore the 
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TABLE 4.8 ·Geometric solids used to represent the forearm and hand segments. 

AUTHOR FOREARM HAND 

Whitsett (1963) truncated cone sphere* 

Hanavan ( 1964) truncated cone sphere* 

Jensen (1976) series of elliptical discs series of elliptical disc 

Hatze (1980) ten elliptical discs a prism. hollow 
half-cylinder and an 
arched rectangular cuboid* 

Hall and truncated cone triangular section of right-angled 
Depauw (1982) parallelepipeds. 

Yeadon (1984) two truncated cones cone 

(N.B. • * Hand • modelled in grip position) 
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TABLE 4.9- The moments of inertia about the two transverse axes through the forearm of the cadavers 

of Chandler et al. (1975) (Units kg.m2 x 1 Q4). 

SUBJECT RIGHT LEFT 
NUMBER lxx lvv lxx lyy 

54 52 67 62 

2 99 94 80 81 

3 94 90 75 73 

4 45 45 49 49 

5 59 55 54 52 

6 50 51 64 61 

(N. B.- lxx and lyy were the moments of inertia about two transverse axes passing through the centre of 

mass, as defined by Chandler et al. (1975).) 
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forearm was modelled as a series of truncated cones. The truncated cones were each 0.02 m high except 

the final cone which was shorter to allow for segment length not being a precise multiple of 0.02 m. 

In using a geometric solid to model a segment it is assumed that the segment is rigid, but this does not 

strictly apply because the mass does not remain stationary, and because segment boundaries are not 

fixed. When the forearm rotates about its longitudinal axis it does not move as a rigid body. The distal 

part of the segment rotates more than the proximal, causing a relative redistribution of the mass of the 

segment between the two transverse axes. There is no currently adopted technique for accounting for this 

variation during longitudinal rotation of the forearm. In this study the forearm was modelled in the neutral 

position. 

As mentioned in section 4:1.2 the precise definition of segment boundaries is a problem. These 

boundaries should be clearly defined for the purposes of modelling, but in reality are "fuzzy". Although 

geometric modelling does not circumvent this problem it does permit the researcher to define the 

boundaries as deemed appropriate for the particular study. 

Related to the assumption that the model segments are rigid is the assumption that the density throughout 

the segment is constant. If constant segment density is assumed in geometric modelling, the centre of 

mass is assumed to coincide with the centre of volume. Using cadaver segments Clauser et al. (1969) 

showed that this assumption led to systematic error when using an immersion technique to estimate 

centre of mass. This discrepancy could be part explained by methodological problems in finding the mid­

volume point. The difference could also be due to variations in segment density, and therefore mass 

distribution along the longitudinal axis of the segment. 

Only Hatze (1979b, 1980) has incorporated variable density values into an anthropometric model. Hatze 

(1979b, 1980) used the variable density data of Dempster (1955) from his dissection of one cadaver. 

Rodrigue and Gagnon (1983) have shown that for one subject the density of the forearm varies along the 

longitudinal axis of the segment. A study by Ackland et al. (1988) examined density distribution in the leg 

using CT scanning. Using one leg from a cadaver specimen and a live subject's leg they showed that the 

mean density data of Dempster (1955) overestimated the density of both limbs. The pattern of variation in 

density along the longitudinal axes of the cadaver limb and live subjecrs limb were the same, although the 

cadave~s density values were lower. Ackland et al. (1988) also examined the influence of using variable 

density values rather than a constant density value as inputs to a model of the lower leg consisting of five 

elliptical discs. Their results indicated that the constant density assumption 

" ... when modelling the human body was shown to produce minor errors in the estimation of inertial 

properties of the leg segment." (page 154) 

it has not yet been shown whether this result is applicable to other segments. 

In this study the task was to choose the most appropriate density data. There are still insufficient variable 

density data to justify incorporating these into the present model. As the study of Clauser et al. (1969) had 

the largest sample size and carefully controlled experimental protocol these density values were used. 
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Recent studies have shown that it is possible to obtain variable density information from CT scanning (e.g. 

Rodrigue and Gagnon, 1983; Ackland et al., 1988). A larger variable density data base may soon be 

available and consequently improve the accuracy of moment of inertia predictions using geometric 

models. 

4:3.2 SUBJECT ANTHROPOMETRIC DETAILS 

The forearm, hand, and dum bell were all modelled using geometric solids. A diagram of the model is 

presented in figure 4.2. 

The forearm was modelled as a series of truncated cones. The level of the elbow flexion-extension axis 

was marked on the subject using a marker pen. The forearm was then divided longitudinally into sections 

of 0.02 m, with marks made on the skin at each of these divisions. The perimeters of these sections were 

obtained using a measuring tape. The forearm consisted of 13 truncated cones. 

The hand was modelled whilst gripping the dumbell. The hand was modelled in two parts: a truncated 

cone on top of which was a hollow cylinder. The truncated cone represented the section of the hand from 

the flexion-extension axis of the wrist to the first metaphalangeal joint of the thumb. The appropriate 

perimeter measures were taken. The length of the hollow cylinder was the width of the four knuckles 

measured when th.e hand was gripping the dum bell. The inner radius of the cylinder was the radius of the 

dumbell handle. The perimeter was measured at both ends of the hand whilst gripping the dumbell, and 

the mean of these two values was used as the outer radius. 

11 was also necessary to know the inertial characteristics of the dum bells. They were modelled as a series 

of three cylinders. 11 was possible to measure accurately the radii of the cylinders and so derive the 

volume of the dumbells. The mass could be measured directly, and as the dumbell was perfectly 

symmetrical about all three axes the centre of mass location was easily calculated. By assuming that the 

dumbells were of uniform density it was possible to determine the remaining inertial parameters. As the 

dumbells were made of a single material and were not hollow, the assumption of uniform density was 

valid. The inertial parameters for the dumbells were therefore considered to be accurate. 

The inertial properties of the forearm, hand, and dum bells are presented in table 4.1 0. The subject at the 

time of data capture was 1.68 m tall, with a mass of 65.10 kg, and 25 years of age. 

4:3.3 ACCURACY OF INERTIAL MEASURES 

11 was not possible to directly assess the accuracy of inertial parameters of the forearm and hand used to 

compute limb kinetics, estimated using the geometric models. This section investigates the accuracy of 

these measures by perturbating the forearm and hand inertial values used to compute the inertial 

parameters of the whole system (forearm, hand, and dumbell). 

As there were no criterion values for inertial properties of the subjecrs forearm and hand it was not 

possible to directly assess the model accuracy. However the relative influence of these parameters on the 
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FIGURE 4.2- A diagram showing configuration of the geometric solids used to model the forearm, hand, 

and dumbell for determination of inertial properties. 
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TABLE 4.10 ·The inertial properties of the forearm, hand, and dumbells. 

15 kg 17.5 kg 

INERTIAL PROPERTY FOREARM HAND QIJMBELL QUMBELL 

MASS (kg) 0.998 0.411 15.100 17.37 

CENTRE OF MASS (m)" 0.1059 0.0599 0.000 0.000 

lx (kg.m2) 0.0052 0.0005 0.04067 0.04704 

lv (kg.m2) 0.0052 0.0006 0.13929 0.17355 

lz (kg.m2) 0.0006 0.0003 0.13929 0.17355 

(N.B • • for the subject the centre of mass location is the distance from the proximal joint centre to the 

centre of mass along the longitudinal axis only, as the segment was assumed symmetrical about the other 

axes.) 
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inertial properties of the whole system could be examined. lt can be assumed that the mass, centre of 

mass loca~on, and moments of inertia of the dumbells are accurate. These values for the two dumbells 

are much larger than the values for the hand and forearm, see table 4.1 0. As the forearm, hand, and 

dumbell were all considered to be one rigid body the influence of inaccuracies in the estimation of the 

inertial parameters of the forearm and hand on the whole system were examined. The following analysis 

is for the 15 kg dumbell only. 

The only direct check on the accuracy of the anthropometric measures was direct measurement of the 

volume of the forearm and hand. The volume of displaced water when the forearm and hand were 

immersed was measured as 1.299 litres. This compares favourably with the value of 1.297 litres 

calculated with the geometric model, a difference of 0.15 percent. This is better than the accuracy in 

volume estimation that was reported by Gagnon and Rodrigue (1979), for the forearm only, which was 

modelled as five truncated cones in series. Reference to tables 4.6 and 4.7 shows that the more accurate 

the volume estimation the more accurate the es~mated moment of inertia values were. The volume 

estimation here is much better than the accuracy of volume estimations reported in table 4.7. Ackland et 

al. (1988) claimed that accurate volume es~mation was more important than accurate density values for 

predicting lower limb moments of inertia. 

To examine the effect of the accuracy of density estimates, different density values were used as inputs to 

the model of the forearm and hand. This information was combined with the details of the dumbell to 

compute the inertial parameters of the whole system. The percentage differences were evaluated 

between the whole system inertial parameters as originally calculated using the density values of Clauser 

et al. (1969) and the whole system inertial parameters computed using other density values. These 

results are reported in table 4.11. The effect of different density values on the mass and location of the 

centre of mass of the whole system differed by less that one percent in all cases examined. The largest 

difference was for the moment of inertia for the X axis where the error reached 2.67 percent. This 

occurred when the density values were five percent different from the selected values. With the other 

cadaver density data sets the maximum difference in any of the computed parameters was less than 2.5 

percent. 

The influence of constant density values has been assessed, but it is also possible to use variable density 

values in geometric models (Hatze 1979b, 1980). If volume is well estimated and an appropriate mean 

density value is used, mass will be estimated with good accuracy. But variable densities in the truncated 

cones making up the segments could have an effect on the centre of mass location and the moments of 

inertia of the segments. Using the same procedure as in section 4:2.1 the forearm was further divided into 

16 sections so the variable density values of Rodrigue and Gagnon (1983) could be used as inputs to the 

model of the forearm. As this paper had no density values for the hand it was not possible to perform a full 

analysis of the effect of this variable density data on the whole system. The effect of these variable 

density values on the inertial properties of the forearm was small, giving a percentage differences of -2.42 

percent for mass, -1.25 percent for centre of mass location, -0.35 percent for transverse moment of inertia, 

and -2.19 percent for longitudinal moment of inertia. The effect of an error in any one of the parameters is 
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TABLE 4.11 ·The effect of different density values for the forearm and hand on the inertial parameters of 

the whole system. expressed as the percentage difference between the inertial parameters calculated 

using the density values of Clauser et al. (1969). 

DENSITY 
DATA 

Clauser et al. (1969) 

increased by 5 % 

Clauser et al. (1969) 

decreased by 5 % 

Dempster (1955) 

Chandler et al. (1975) 

MASS 

0.43 -0.20 

0.43 0.20 

0.29 -0.12 

-0.49 0.18 

2.67 1.31 3.37 

-2.69 -1.32 -0.03 

1.57 o.n 0.02 

-2.28 -1.12 -0.04 
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analysed next. lt is shown that if these errors were assumed to apply for both the forearm and hand these 

percentage differences are small enough that they would have little effect on the inertial properties of the 

whole system. 

To assess the influence of inaccuracy in any one of the parameters, each of the parameters computed 

using the density data of Clauser et al. (1969) was changed by five and 1 0 percent, and its influence on 

the whole system examined. These changes are artifiCial because it is unlikely that any one parameter 

would change without another also changing. The results for this analysis are shown in table 4.12. The 

mass of the whole system was not very sensitive to changes in the mass of the forearm and hand. The 

effect of this parameter was greatest on the transverse moments of inertia of the whole system. The 

accuracy of mass estimation is dependent on the accuracy of the volume and density values. lt has been 

established that volume has been well estimated by the model, and the accuracy of the density estimates 

has already been discussed. 

Centre of mass location depends on how well the changes in volume of the forearm have been estimated 

(if density is assumed constant). Mungiole and Martin (1990) showed that a variety of techniques 

produced estimates for the location of the centre of mass within 2.5 percent of one another. lt would 

appear that this parameter is well predicted by a variety of techniques. As volume has been accurately 

modelled, if the assumption of constant density is valid the centre of mass location can be regarded as 

fairly accurate. The change in centre of mass location when using variable density for the forearm was 

shown to be small. If centre of mass location had been poorly located it would have resulted in large 

errors in the moment of inertia values about the transverse axes. 

The total system moment of inertia values were not strongly influenced by the variations in the moment of 

inertia values of the forearm and hand. Moment of inertia values of the whole system were more 

dependent on the location of the centre of mass than on the forearm and hand moment of inertia values. 

4:3.4 SUMMARY 

Although it was not possible to directly assess the accuracy of the anthropometric measures used in the 

present study, an indirect estimation was performed. The volume estimation produced by the geometric 

model was accurate and compared favourably with figures from the literature. The use of different density 

values produced an error of less than three percent in any one of the parameters. If any one of the 

derived parameters was varied by five percent its effect on the whole system was also found to have less 

than four percent difference on the whole system. The whole system seemed most sensitive to the 

estimation of the location of the centre of mass. This parameter was dependent on accuracy of volume 

estimation and the assumption of constant density. The effect of the available variable density values on 

this parameter was shown to be small. 

Although not evaluated, the influence of inaccuracies in the inertial parameter values for the forearm and 

hand on the whole system for the trial with the 17.5 kg dumbell were anticipated to be further reduced as 

the dumbell's inertial properties would have had increased influence. 
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TABLE 4.12- The effect of change in any one of the parameter values on the inertial parameters of the 

whole system, expressed as the percentage difference between the inertial parameters of the whole 

system calculated using the density values of Clauser et al. (1969), and the perturbated values. 

~EBQEtiTAGE C!IEEEBENQE 

VARIED CENTRE 

PARAMETER MASS OF MASS lx ly lz 

MASS 0.427 -0.202 1.707 0.834 0.000 

5% 

MASS 0.853 -0.403 3.399 1.660 0.000 

10% 

CENTRE OF 0.000 0.223 -3.672 -1.794 0.000 

MASS5% 

CENTRE OF 0.000 0.447 -7.155 -3.495 0.000 

MASS 10% 

MOMENT OF 0.000 0.000 0.969 0.475 0.034 

lxand lv 5% 

MOMENT OF 0.000 0.000 1.938 0.951 0.067 

lz10% 
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4:4 MUSCLE MOMENT DETERMINATION 

The purpose of this section is to detail the procedures used to determine the muscle moments about the 

elbow joint during arm flexion. 

Resultant joint moments can be calculated for an activity given the appropriate kinematic data and the 

external forces (zero for a body end point free in space). These moments are caused by the active 

muscular tension, and by the passive deformations of any tissues which may cross or surround the joint. 

All of these contributions must be accounted for if a resultant joint moment is to be called the muscle 

moment. 

4:4.1 ASSUMPTIONS ABOUT RIGID BODY SYSTEM 

This section will discuss the assumptions inherent in a rigid body analysis of human movement. 

The assumption of rigidity implies that there is no motion of the segment relative to its own member 

reference frame. In the general case this assumption is false as the muscles, organs, blood, and other 

bodily fluids move relative to the member reference frame. Denoth (1986) in a theoretical analysis of the 

impact of a segment onto a hard surface showed that this "wobbling mass" was a significant variable 

contributing to the ground reaction forces. it is still difficult to measure these effects and until they can be 

quantified the rigid body model is the best approximation. 

In the rigid body model adopted for kinematic and kinetic analysis of human movement there are often 

restrictions placed on joint motion. The maximum number of degrees of freedom a joint can have is six. 

In most two-dimensional studies the joints are assumed to have only one degree of freedom, for example 

the elbow joint in the study of Yeo (1976). The current model considers the joint to have three degrees of 

freedom, rotational only. The assumption here is that the joint structure does not allow any translational 

movement. This assumption is common to other researchers examining the elbow (e.g. An, Morrey, and 

Chao, 1985; Youm, Dryer, Thambyrajah, Flatt, and Sprague, 1979). The joint is also considered to be 

friction less, although some joint friction may be included in models of joint passive visco-elasticity (see 

section 5:2.5). 

In the computation of the joint moment the point of force application at the joint is required. The point is 

assumed to be the joint centre, but in human movement the joint centre or axis is non-stationary (e.g. 

You m et al., 1979). The joint centre, or correctly for three-dimensional studies the joint axis, is assumed to 

be fixed at a position ascribed before the processing of the.data. As discussed in section 3:1.5 the 

accuracy of the kinematic data in this study did not permit the in vivo calculation of the instantaneous 

helical axes. If the true joint centre or axis was computed for each sample interval and used to compute 

the resultant joint moment this could result in a change of resultant moments. If it is not possible to 

compute the joint centre or axis for each sample interval, the ascribed joint centre or axis should be 

positioned in relation to its reported location in the ltterature. Such an approach was taken in this study. 

Implicit in this modelling assumption is that there is a single bony contact point, although this would rarely 

be the case in human joints. 
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The problem of lack of rigidity also has an influence on the inertial properties of the rigid body. This was 

discussed in section 4:3.1. 

Finally one assumption specific to the present model is that the forearm and hand were considered to be 

one rigid link. This assumption is invalidated if there is any movement at the wrist. The subject was 

instructed to allow no movement at the wrist and trials were disregarded if the subject reported this to 

happening. 

4:4.2 CALCULATION OF RESULTANT JOINT MOMENT 

Inverse dynamics allows the estimation of the intersegmental resultant forces and moments. These forces 

and moments are the result of muscle forces, ligament forces, and forces due to articular surface contact. 

The following relationships can be stated:-

Where:-

FJ -is the intersegmental resultant force with reference to some predefined joint centre J 

FM - is the muscle force of the ith muscle 

F4 - is the ligament force of the jlh ligament 

Fck- is the force at the kth articular contact point 

[4.1 OJ 

and NM, NL, and NC are the number of muscles, ligaments, and articular contact points respectively. 

Where:-

(rM X FM~ + ! 
j"" I 

MJ - is the intersegmental resultant moment at the joint centre J 

I: 
k = 1 [4.11 I 

and rM, r4 , and rck are the vectors from the joint centre to the line of action of the muscle, ligament, and 

articular contact point respectively. 

{x - refers to the cross-product.) 

There are a number of common assumptions incorporated into the rigid body model used to determine 

joint kinetics. The articular contact force is assumed to act through a single point only, which is the pre­

selected joint centre. This makes the moment arm zero and makes its contribution to the resultant 

intersegmental moment zero. lt is also assumed that ligament forces can be ignored, therefore the 

resultant intersegmental moment is assumed to be caused entirely by the muscles. As a consequence of 

these simplifications the resultant intersegmental moment is often called the muscle moment. 

All of the preceding assumptions were made in this study with the following modification. In section 5:2.5 
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the joint passive visco-elasticity (JPV) was modelled. JPV is a composite term taking into account the 

passive moments caused by any structures crossing the joint. If the resultant joint moment is calculated 

and the moments caused by joint passive visco-elasticity subtracted, some of the contribution to the 

moment from the ligaments and joint friction will have been accounted for. This procedure was adopted in 

this study to calculate the muscle moments about the elbow joint. 

The net effect of all the forces acting on the segment can be expressed using Newtons second axiom:-

m.a • F1 • Fp + F0 + Fg 
Where:-

m - is the mass of rigid body 

a - acceleration of centre of mass of rtgid body 

F1 - is the inertial force 

F0 - is the distal reaction force 

Fp - is the proximal reaction force 

and F 9 is the force due to gravity acting on the segment. 

[4.12] 

The forearm, hand, and dumbell were considered to be one segment. As they were freely moving in 

space throughout all analysed movements there was no distal reaction force or moment. 

The inertial forces were calculated as the product of the acceleration of the centre of mass in the inertial 

reference frame and the mass of the segment. The acceleration of the centre of mass was computed 

using the quintic generalised cross-validated spline described in section 3:4.5. The mass of the segment 

was computed from the anthropometric model. The gravitational force is the product of the mass of the 

segment and g (the acceleration due to gravity). F1 and Fg were computed in the inertial reference frame 

and then transformed into the forearm reference frame. 

~ = [T].m. [::::] 

ZACM 

Where:-

[T]- transformation matrix from inertial reference frame to member reference frame 

m - is the mass of the rtgid body 

and XAcM• Y ACM• ZAcM are the accelerations of the centre of mass. 

The proximal force was calculated by substitution of the appropriate values in equation 4.12. 

(4.13] 

[4.14] 



The effect of all the moments acting on the joint is given by:-

McM- M0 + Mp + r1.Fp + r2.F0 

Where:-

McM- is the moment about the centre of mass of the segment 

Mp - is proximal joint moment 

M0 - is the distal joint moment 

and r1, r2 are the moment arms of the force vector about the centre of mass. 
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[4.15] 

1>s the axes of the member reference frame are coincident with the principal axis of the segment the 

moment of force about the centre of mass can be computed using Eule~s equations:-

~MX = 'x-Wx + (~ - (,.l.IDzC!ly 

~MY = l.rril, + <ix - 'z>.Cll)("Olz 

~MZ = izcilz + (y - ix>·Ol.;Cllx 

Where:-

McGx• McGY• and McGz- are the moments about the centre of mass along the axes X, V, and Z 

lx, ly, lz - are the moments of inertia about the axes of the member reference frame 

COx· COy. O>z - are the angular velocities 

~ , rily , and roz are the angular accelerations. 

[4.16a] 

[4.16b] 

[4.16c] 

The details of the calculations of the angular velocities and angular accelerations are given in section 

3:1.4. 

The resultant joint moment can then be calculated for the three axes by substitution of computed values in 

equation 4.15. Once these have been calculated the moments due to the joint passive visco-elasticity can 

be subtracted and the muscle moment acting about the joint calculated. A positive moment about the 

flexion-extension axis was assumed to be a flexion moment, and a negative moment about the supination­

pronation axis a moment causing supination. The moments about the y axis (abduction-adduction axis) 

were small compared to those about the other axes, therefore they were not considered further. 

4:5 EXPERIMENTAL RESULTS 

This section analyses the resultant joint moments recorded for the activities studied. 

4:5.1 ASSESSMENT OF ACCURACY 

There was no criterion data available with which to assess to the accuracy of the estimated moments, but 

estimates have been made of the accuracy of the state variables and parameters used to compute these 

moments. Using this information it was possible to make an estimate of the errors associated with the 
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calculation of the resultant joint moments during the studied activities. This analysis is for trial #3 only, but 

the general trends reported also apply for the other trials. 

The accuracy of the inertial parameters were estimated in section 4:3.3. To investigate the effect of 

inaccuracies in the different inertial parameter values on the estimated resultant joint moments the inertial 

properties of the dislal system were varied by amounts comparable with their relative accuracies. This 

was done separately tar each of the parameters and for all of them together. The changes in the 

estimated resullant joint moments were evaluated by computing the mean difference between the moment 

values calculated using the non-perturbated and the perturbated values. The slandard deviation of this 

difference was also computed. The mass of the system and the location of the centre of mass were 

changed by one percent, the moments of inertia about the X and Y axes by five percent, and the moment 

of inertia about the Z axis by three percent. The results for this analysis are presented in table 4.13. 

Both the resultant joint moments about the flexion and supination axes were fairly insensitive to 

inaccuracies in the inertial parameters of the distal segment. The maximum difference for the resultant 

moment about the flexion-extension axis was less than 1.0 N.m, and less than 0.08 N.m for the supination­

pronation axis. 

The effects of the accuracy of the kinematic variables used to compute the resultant joint moments were 

assessed. In section 3:5.4 estimates were made of the standard deviation of the noise contaminating the 

kinematic variables describing the position and attitude and their derivatives. The errors in the linear and 

angular displacement values were ignored due to their small magnitude. For each of the remaining 

kinematic variables used to compute the resullant joint moments one or two standard deviations of the 

noise was added to, or subtracted from these variables. The resultant joint moments were then calculated 

and the mean difference found between these and the moments computed using the non-perturbated 

kinematic variables. This was performed for all of the perturbated kinematic variables separately and for 

all of them together. To complete this analysis the effects of inaccuracies in both the inertial parameters 

and kinematic variables were assessed. This was done by perturbating all the inertial parameters by the 

amounts used previously and all the kinematic variables by one and two standard deviations. The results 

for this analysis are presented in table 4.14. 

Comparison of tables 4.13 and 4.14 shows that the resultant joint moments were more sensitive to errors 

in the kinematic variables than to errors in the inertial parameters. The mean differences were small for 

the resultant joint moments about both the flexion-extension and supination-pronation axes. For the 

resultant joint moment about the flexion-extension axis the standard deviations were larger than the mean 

values, indicating the sensitivity of these measures to the kinematic variables. The maximum absolute 

difference for the one slandard deviation case was 4.78 N.m, and tar the two standard deviation case was 

9.55 N.m. These differences occurred early during the movement. 
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TABLE 4.13- The variation in the resultant joint moment when different inertial values were used tor the 

distal rigid body (forearm. hand, and dumbell). 

ELEXIQ!:!I MQMEtiT (!:!! m) SUEI!:!IAIIQ!:!I MQME!:!II (!:!l.ml 
PARAMETER AND 
PERCENTAGE MEAN STANDARD MEAN STANDARD 
CHANGE DIFFERENCE PEYIA!IQN DIFFERENCE DEVIAIIQN 

Mass +1% .26 .154 ·.02 .043 

Mass -1% ·.26 .154 .02 .043 

Centre of mass + 1 % .32 .154 ·.02 .013 

Centre of mass ·1 % ·.32 .154 .02 .013 

Moments of inertia .01 .008 .00 .014 
X and V axes +5% 

Moments of inertia -.01 .008 .00 .014 
X and V axes -5% 

Moment of inertia .00 .005 .00 .030 
Zaxis+3% 

Moment of inertia -.00 .005 .00 .030 
Zaxis-3% 

Mass + 1 %. centre of .59 .309 -.04 .054 
mass + 1 %. Moments of 
inertia X and Y +5 %, 
Z+3% 

Mass + 1 %, centre of -.58 .306 .04 .054 
Mass + 1 %, Moments of 
inertia X and Y +5 %, 
Z+3% 
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TABLE 4.14 - The variation in the resultant joint moment when perturbated kinematic data and inertial 

parameters were used for the distal rigid body. 

EI.EliiQM MOME!fi !M.ml SUEII'!ATIQM MOME!fi !M ml 

AMOUNT ADDED 
TO KINEMATIC MEAN STANDARD MEAN STANDARD 
VARIABLES DIEEERENCE DEVIATION PIEEERENCE DEYIATIOM 

Plus one standard -.37 3.722 -.23 .174 
deviation 

Minus one standard .37 3.722 .23 .174 
deviation 

Plus two standard -.75 7.444 -.46 .348 
deviations 

Minus two standard .75 7.444 0.46 .348 
deviations 

Plus one standard -.95 3.793 -.19 .187 
deviation and inertia values* 

Minus one standard -.21 3.522 .26 .175 
deviation and inertia values* 

Plus two standard -.58 .306 .04 .054 
deviation and inertia values* 

Minus two standard .15 7.163 .49 .343 
!le~iatiao am:t inel:!ia ~alues* 

(N.B - • the inertial parameters of the distal segment were varied as follows: mass of the system by ±1 %, 

the location of the centre of mass by ±1 %, the moments of inertia about the X and Y axes ±5 %, and the 

moment of inertia about the Z axis by ±3 %) 
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The resultant joint moments about the supination-pronation axis were much smaller than those about the 

flexion-extension axis. The standard deviations for the resultant joint moment were much smaller than the 

mean value for the supination-pronation axis, indicating that these moments were less sensitive to errors 

in the kinematic variables than the moments about the flexion-extension axis. The maximum absolute 

differences were 0.53 N.m for the one standard deviation case, and 1.07 N.m for the two standard 

deviation case. 

When inaccuracies in the kinematics were combined with the anticipated inaccuracies in the inertial 

parameters, there were small changes in the resultant joint moments. These results serve to confirm that 

these moments are more sensitive to the anticipated errors in the kinematic variables than to the 

inaccuracies in the inertial parameters. 

The joint centre of the system was selected with reference to studies of joint kinematics in the literature, 

see section 3:2.3. If the joint centre had been incorrectly located this could have resulted in an error in the 

estimated resultant joint moments. The location of the joint centre was therefore varied by 0.01 m from its 

pre-selected position sequentially for all three axes on the distal member reference frame. This variation 

of 0.01 m was greater than the errors anticipated from the three-dimensional measurement system, and so 

reflects the combined effects of errors in the measurement system and variations in the location of the joint 

centre. These variations in the location of the joint centre would be caused by incorrect initial positioning 

of the joint centre or by movement of the joint centre during the course of the movement away from its 

assumed fixed location. Small variations in the location of the joint centre and the instantaneous helical 

axis have been reported in the literature for the elbow joint during flexion and supination (e.g. Youm et al., 

1979; Chao and Morrey, 1978). For completeness these different joint centre locations were also 

combined with anticipated errors in the kinematic variables and inertial parameters. The results of this 

analysis are presented in table 4.15. 

The differences in estimated moments due to incorrect location of the joint centre were small. The 

maximum absolute differences were 1 .44 N.m for the flexion-extension axis, and 2.53 N.m for the 

supination-pronation axis. When combined with anticipated errors in the inertial parameters there were 

small differences in the moments. When errors in the location of the joint centre were combined with 

errors in the kinematic variables, the differences were increased compared with the cases when only the 

joint centre location was changed. When the joint centre location and inertial parameters were changed 

the differences were comparable with the differences for the case when only the kinematic variables were 

changed. This demonstrates that the moments estimated in this study were most sensitive to inaccuracies 

in the kinematic variables. Increased differences may have arisen if the joint centre location had been 

varied by different amounts throughout the movement. 

4:5.2 COMPARISON OF TRIALS 

The resultant joint moments were calculated for three of the trials: a single dum bell curl with the maximum 

load the subject could curl (17.5 kg), trial #2; the first repetition of five consecutive curls with 15 kg, trial #3; 

and a single dum bell curl with a 15 kg dumbell at maximum speed, trial #4. The resultant joint moments 
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TABLE 4.15 · The variation in the resultant joint moment when joint centre location was varied; in addition 

perturbated kinematic data and inertial parameters were used for the distal rigid body. 

FLEXION MOMENT CN m) SUPINAIIQ~ MOMENT (~ ml 
CHANGE IN 
JOINT CENTRE MEAN STANDARD MEAN STANDARD 
LOCAIIQ~' OIEEEBE~QE ll~IAIIQ~ OIEEEBE~QE ll~IAIIQ~ 

Moved ..0.01 m .00 .000 -.41 1.045 
along X axis 

Moved -0.01 m .00 .000 .24 .950 
along X axis 

Moved +0.01 m .04 .055 .04 .889 
along Y axis 

Moved -0.01 m -.02 .043 -.12 .915 
along Y axis 

Moved +0.01 m -.82 .484 .00 .000 
along Zaxis 

Moved -0.01 m .82 .484 .00 .000 
along Zaxis 

Moved +0.01 m -.78 .440 -.41 1.340 
along X, V, and Z axes 

Moved -0.01 m .81 .457 .07 1.274 
along X,Y, and Z axes 

Moved +0.01 m 
along X, V, and Z axes, -.20 .146 -.46 1.369 
plus inertial values 

Moved -0.01 m 
along X,Y, and Z axes, .81 .457 .27 1.326 
minus inertial values 

Moved +0.01 m 
along X,Y, and Z axes, -1.14 3.780 -.71 1.520 
and plus one s.d. 
of kinematic errors 

Moved +0.01 m 
along X,Y, and Z axes, .59 3.788 .07 1.274 
and minus one s.d. 
of kinematic errors 

Moved +0.01 m 
along X,Y, and Z axes, -.57 3.698 -.77 1.548 
plus positive kinematic and 
inertial values errors 

Moved +0.01 m 
along X,Y,and Z axes, .59 3.788 .27 .1326 
plus negative kinematic and 
imutial ~lues errors 

(N. B.- • movemen!s in joint centre were made along the member reference frame for the distal segment.) 



were used as inputs to the models described in the next two chapters. These moments are shown in 

figures 4.3 and 4.4. A brief description of the moments follows. 
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The flexion moments were all non-zero at the start of the activity. This was because the subject had to 

support the dum bell. Analysis of the orientation of the forearm also shows that the arm was partially flexed 

before the curl actually started. All sequences were analysed until the subject started to lower the dumbell 

again, therefore the final part of each curve passes through zero and becomes an extension moment. The 

zero moment occurs at the point of maximum flexion during the curl. The absolute maximum flexion 

moment was 46.24 N. m, 48.24 N.m, and 44.78 N.m for the fast curl, the maximum curl, and the first 

repetition of five curls respectively. The maximum curl may not have been truly the maximum because the 

dumbells were available in increments of 2.5 kg only. The subject was not capable of 20 kg but may have 

been able to curl some intermediate weight. The fast repetition, trial #4, was only just faster than the first 

repetition of five with the same weight, trial #3. 

The supination moments from all of these trials showed a rapid change after around a quarter of a second. 

This change can be explained because it is around this time that the dumbell moves clear of the body. If 

too large an amount of supination occurred before this time the path of the dum bell would be obstructed by 

the body, unless the arm is abducted from the body which did not happen in any of these trials. Once the 

dumbell had moved clear of the body there was a rapid supination of the forearm which explains the rapid 

change in the supination moment. If the dumbell was held in a fully supinated position throughout the curl, 

during the top range of the movement the path of the dum bell would again be obstructed by the body, 

which explains why before full flexion there was a pronatory moment as the dumbell was rotated in order 

to allow full flexion. 

4:5.3 SUMMARY 

The preceding sections reported the results of a sensitivity analysis of the resultant joint moments at the 

elbow joint during dumbell curls. These moments were most sensitive to the kinematic variables used to 

compute them, and were least sensitive to errors in the joint centre location and inertial parameters of the 

forearm and hand. These moments are used in the next two chapters to examine the individual muscle 

forces during these dumbell curls. 
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FIGURE 4.3a- The muscle moment for trial #2 (maximum repetition). 
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FIGURE 4.3b- The muscle moment for trial #3 (first of five repetitions). 
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FIGURE 4.3c- The muscle moment for trial #4 (last repetition). 

(N. B. - For all these trials a positive moment indicates flexion, a negative one extension.) 
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FIGURE 4.4a- The muscle moment for trial #2 (maximum repetition). 

MJscle Mlment (N.m) 
+12.0 

+10.0 

.a.o 

... o 

... o 

... o 

0.0 

-2.0 

~.0 

-6.0 

.a.o +-"'T'--.---,--,--T'"-"T"'_"T"_-r--, 
0. .0.2 +0.4 +{1.6 +0.8 +1.0 +1.2 +1.4 +1.6 

lime (s) 

FIGURE 4.4b ·The muscle moment for trial #3 (first of five repetitions). 
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FIGURE 4.4c ·The muscle moment for trial #4 (fast repetition). 

(N. B. - For all these trials a positive moment indicates supination, a negative one pronation.) 
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CHAPTER V 

MODELLING THE MUSCLES 

INTRODUCTION 

The purpose of this chapter is to present the model used to represent the muscles causing elbow flexion. 

The chapter is divided into six parts each dealing with some aspect of muscle modelling. The property to 

be modelled is first reviewed then modelling approaches are discussed before a model is adopted. The 

procedures for the determination and validation of the model parameters are also detailed. 

5:1 MUSCLE ARCHITECTURE 

The following sections give details of muscle architecture. For the model of muscle developed in this 

study, the relevant aspects of muscle architecture were considered to be: the posttions of the ortgins and 

insertions, the lines of action, the moment arms. and the angles of pennation of the muscles. Muscle 

lengths and moment arms are required as inputs for the optimization procedures discussed in Chapter VI; 

the methodologies used to compute these state vartables are given in the following sections. 

5:1.1 THE MUSCLES 

The three muscles included in the model are the biceps, brachialis, and brachioradialis. Although there 

are other muscles crossing the elbow joint that may contrtbute to flexion of the elbow joint and rotation of 

the forearm, these muscles were ignored. This simplifiCation has previously been made by other 

researchers (e.g. Wilkie, 1950; V eo, 1976; Crowninshield and Brand, 1981; and An, Kaufman, and Chao, 

1989). This assumption is supported by the research of An, Hui, Morrey, Linscheid, and Chao (1981 ). 

They examined four cadavers and measured the muscle moment arms at a variety of joint configurations. 

They also calculated the cross-sectional area of the muscles crossing the elbow joint. The product of the 

moment arm of the muscle and its cross-sectional area was used as an indicator of each muscle's 

contrtbution to joint moment. The results of their analysis showed that the biceps, brachialis, and 

brachioradialis were the major flexors of the elbow joint. Figure 5.1 is a diagram of the origins and 

insertions of the three muscles, and includes the approximate lines of action of the muscles. 

The biceps has two heads which join together as they approach the elbow. The long head originates from 

the supra-glenoid tubercle of the scapula, and runs along the bicipital groove of the humerus. The short 

head ortginates from the coracoid process of the scapula. The long head lies on the lateral side of the 

short head. The distal tendon of the biceps inserts onto the poste nor edge of the radial tuberosity. 

Although the biceps commonly has two heads, Am is (1978) in his analysis of four cadavers found a third 

head present in one of the cadavers. The physiological cross-sectional area of this muscle was only 1 0 

percent of·the total physiological cross-sectional area of the whole bicep. Greig, Anson, and Budinger 

(1952) found 28 out of 130 limbs investigated had a third head. 

The brachia lis lies beneath the biceps, and has a broad origin on the lower two thirds of the ante nor 

surface of the humerus. The muscle passes over the anterior surface of the elbow joint. It converges and 



Supra-glenoid tubercle 
of scapula 

BRACHIORADIALIS ----

Posterior edge of 
radial tuberosity 

Ulna tuberosity 

Coracoid process 
of scapula 

FIGURE 5.1 -Medial view of right arm, showing origins, insertions, and approximate lines 
of action of the biceps, brachialis, and brachioradialis. 
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inserts onto the ulnar tuberosity and coronoid process. 

The brachioradialis has its origin on the proximal two thirds of the lateral supracondylar ridge. After 

passing over the capitulum it passes on the lateral surface of the radius to insert onto the radius distally 

near the styloid process. 

The positions of the origins and insertions of the muscles of interest on the subject were detenmined using 

osteometric scaling. 

5:1.2 OSTEOMETRIC SCALING 

Osteometric scaling is the extrapolation from dry bone specimen landmarks to another specimen, nonmally 

a live subject. The locations of the origins and insertions of muscles and ligaments are often inaccessible 

on a live subject. This infonmation can be obtained from the results of cadaver dissection. Direct 

application of these data to a live subject is inappropriate as demonstrated by the analysis of Lew and 

Lewis (1977) on human femurs and tibias. Therefore some form of scaling is appropriate as the physical 

dimensions of the bones of the cadaver and the subject are likely to be different. Osteometric scaling 

attempts to circumvent these problems. 

The following procedures have been adopted for using cadaver data for a live subject:-

1. No scaling - some researchers have adopted data from cadavers or dry bone specimens with no scaling 

allowance for the differences in geometry between subjects e.g. Amis, Prochazka, Short, Trend and Ward 

(1987). 

2. Unifonm scaling- where all the dimensions of the bone are scaled in the same proportions e.g. 

Crowninshield and Pope (1975). 

3. Homogeneous Scaling - scaling along prescribed principal axes, these being placed along the critical 

dimensions of the bone of interest. For example Morrison (1970) used this procedure for the tibia and 

femur: the axes were defined relative to the important dimensions of the tibia and femur (e.g. condylar 

width and depth, bone length). Lew and Lewis (19n) scaled along principal axes, as did Sommer, Miller, 

and Pijanowski (1982). Homogeneous scaling is at best only an approximation to the variations in the 

shapes of bones, between specimens and subjects. 

4. Non-homogeneous scaling - scaling is performed along arbitrary axes, as opposed to the predefined 

axes used to define the bone. Lewis, Lew, and Zimmerman (1980) suggested a scaling method involving 

non-homogeneous scaling based on finite-element principles. 

The homogeneous transformation technique of Lew and Lewis (1977) incorporates a uniform stretch of 

differing amounts along three mutually orthogonal axes. The transformation matrix is derived from the 

three-dimensional coordinates of four landmarks on both a dry bone specimen, and the same four 

landmarks on the subject. They compared their technique with the scaling technique of Morrison (1970), 

and with no scaling, on human tibias and femurs. Their technique and the scaling procedure of Morrison 

(I 970) were more accurate than no scaling. They used this technique to estimate in vivo ligament lengths 

in the human knee (Lew and Lewis, 1978). There is no account taken in their technique of the errors in 
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the measured positions of landmarks on either the specimen or subject. 

The non-homogeneous scaling technique of Lewis et al. (1980) is based on finite element principles, 

where either four landmarks are modelled as a tetrahedron, or eight landmarks as a hexahedron. Only the 

eight noded hexahedron permits non-homogeneous scaling. In an analysis of two human femurs the non­

homogeneous scaling was more accurate than the homogeneous scaling. Unfortunately in the analysis of 

human subjects it is very hard to locate eight bony landmarks so that a non-homogeneous transformation 

can be undertaken, this reduces the general applicability of this technique. As with the homogeneous 

scaling of Lew and Lewis (19n) there was no attempt in their technique to account for errors in locating 

the bony landmarks. 

The homogeneous scaling technique of So m mer et al. (1982) incorporates a mirror transformation which 

allows a right hand specimen to be scaled to the left hand side of a subject. As the measured locations of 

points on both the specimen and subject will contain some errors, a linear least squares technique is 

employed to reduce the effect of these errors. 

These osteometric scaling techniques are of use when examining the kinematics of muscle, but there is a 

general lack of data. There are two major sources for the lower limb. Brand, Crowninshield, Wittstock, 

Pedersen, Clark, and van Krieken (1982) provided data of the averaged scaled locations of the origins and 

insertions of 47 muscles from the dissection of three cadavers (six lower limbs). White, Yack, and Winter 

(1989) also provided data suitable for osteometric scaling for 40 muscles of the lower limb. To date no 

such data are available for the upper limb. 

5:1.3 PROCEDURE FOR DETERMINING ORIGINS AND INSERTIONS 

In this study it was not possible to identify enough bony landmarks on the subject to permit use of the non­

homogeneous scaling technique of Lewis et al. (1980), therefore a homogeneous scaling technique was 

used. As the homogeneous scaling technique of Sommer et al. (1982) uses a least squares formulation to 

account for errors in the locations of the identified landmarks, this technique was used. The 

transformation matrix incorporates:-

1. A three-dimensional rigid body translation. 

2. A three-dimensional rigid body rotation. 

3. Some form of size adjustment. 

The first two transformations result in alignment and orientation of the specimen limb onto the subjects. 

whilst the scaling. either stretches or compresses the relevant dimensions. The product of this 

transformation matrix and the location of the points measured on the specimen gives the estimated 

position of these points on the subject. 

To determine the positions of the origins and insertions. measurements were made of a dry bone 

specimen approximately matched for size with the experimental subject. The measurements were taken 

using the same experimental protocol as described for the static data capture which was able to locate 

points with a RMS error of 2.3 mm, which compares favourably with the RMS error reported by White et al. 
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(1989) of 2 mm tor a three-dimensional anthropometer. On the dry bone specimen a humeral and a 

forearm reference frame were defined, using tour bony landmarks tor each reference frame. Humeral and 

fOrearm reference frames were defined on the subject with reference to the same tour bony landmarks. 

The centroid of the muscles' origins and insertions were marked on the specimen. For the biceps both 

heads were considered to originate from the top of the bicipital groove. Using the technique of Sommer et 

al. (1982) transformation matrices were formed relating the humeral reference frame of the specimen to 

the humeral reference frame of the subject, and forearm reference frame of the specimen to the forearm 

reference frame of the subject. The positions of the origins and insertions on the specimen were multiplied 

by the appropriate transformation matrix which scaled and mapped them onto the subject. The locations 

of the origins and insertions of the muscles were now known on the subject. 

There are a number of errors associated with such measurements. There will be errors in the location of 

these points as a direct consequence of errors in the measuring device, and difficulties in locating the 

points. The latter may be particularly difficult on the subject where the landmark is covered by skin, 

especially as it may be necessary to use landmarks which are covered by muscle and other tissues. 

Finally errors may arise from the assumption that geometric differences between specimens can be 

accounted tor by homogeneous scaling, although Lew and Lewis (1978) have shown that these errors 

may not be too great. To assess the errors in locating the points on the skeleton in this study, all points on 

the skeleton were digitized twice, on two separate days. The RMS difference between the two 

digitizations gave an indication of the precision of the location of origins and insertions. The mean RMS 

difference for all three axes was 3.5 mm. As the system could only locate points with a RMS difference of 

2.3 mm this was accepted as reasonable precision. 

5:t .4 LINES OF ACTION 

There are two common approaches tor modelling the line of action of muscles. These are the straight line 

model and the centroid line model. With the straight line modelling approach an approximate origin and 

insertion are identified on the appropriate body segments between which a straight line is considered to be 

the line of action of the muscle. Therefore any force as a consequence of the modelled muscle is along 

the line of this model. 

Researchers may use various assumptions tor their particular problem. Muscles with broad attachments 

(e.g. brachioradialis in Yeo, 1976) are simplified to one central point. Dostal and Andrews (1981) in their 

model of hip musculature "re-attached" muscles as was appropriate tor their study e.g. the bicep femoris 

which inserts on to the head of the fibula and lateral head of tibia, was considered attached to the femoral 

condyles. Such a "re-attachment• is only performed once the effects of the line of action of the muscle 

have been considered. 

In the centroid line model the line of action of the muscle is considered to be the line defined by the locus 

of the centre of the transverse cross-section of the muscle. lt was originally proposed by Jensen and Davy 

(1975). This technique allows for the curvature of the muscle's line of action. Therefore the force 

transmitted by the muscle is at a tangent to the curve joining the centroids of the consecutive cross-
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sections. Jensen and Davy (1975) compared moment arms calculated using the centroid model with 

those calculated with a straight line model. For the muscles crossing the hip they found that moment arms 

differed from one to 12 percent between the two representations of the muscles' lines of action. 

One of the major drawbacks of the centroid line model is that it requires a lot of data collection and 

processing to derive the required information. At present this information is only available for a few 

muscles, as a consequence of cadaver studies (e.g. Jensen and Metcalf, 1975). The technique requires 

sectioning of the muscles, therefore the centroid path for one muscle can only be calculated for one joint 

configuration per specimen, although some researchers have estimated the centroid by taking appropriate 

measures around the outside of the muscle under examination (e.g. Amis, Dowson, and Wright, 1979). lt 

is also questionable how applicable such information is to different subjects as between subject variations 

in muscle cross sectional area may change the centroid line of the muscle. If the muscle is not fusiform 

the cross-section may be oblique to the fibre length and the centroid will not be the same as the line of 

action of the muscle. When the muscle is under tension in vivo the centroid line model may not represent 

a muscle in such a state as well as the straight line model. If the muscle's line of action is moved due to 

the motion of the joint or other muscles, a straight line model could be adjusted to allow for changes more 

easily than the centroid model. With increased availability of imaging techniques many of the drawbacks 

of the centroid line model may be obviated. 

5:1.5 PROCEDURE FOR DETERMINING MUSCLE LENGTH 

There is note nough information currently available in the literature to use a centroid line model of the 

muscles in this study, nor was it feasible to generate such data. Therefore a straight line model was used. 

From the osteometric scaling the positions of the origins and insertions of the muscles were known. 

During the activity, given three non·collinear landmarks on the upper arm and three on the forearm the 

corresponding reference frames could be calculated using the technique described in section 3:1.3. To 

compute the Cardan angles (section 3:1.4) it was necessary to compute the orientation matrix which 

transformed points from the humeral reference frame to the forearm reference frame. Origins of the 

muscles were defined in the humeral reference frame, and the insertions were defined in the forearm 

reference frame. As the locations of the insertions were known in the forearm reference frame, it was 

necessary to transform these points onto the humeral reference frame, so all points were known in the 

same reference frame. This transformation was performed using the transpose of the matrix used for 

computing the Cardan angles. A line could then be defined between the origin and insertion of the 

muscle, the length of this line giving the length of the muscle at that moment. 

The true origin of the biceps is on the scapula. This means that it is possible that movement of the 

shoulder will influence the length of this muscle. During the activity studied the humerus did not move 

significantly. Therefore changes in length of the biceps due to movement of the shoulder joint were 

minimised, and so ignored in the calculation of the length of this muscle. 
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5:1.6 MUSCLE MOMENT ARMS 

Moment arm data can be derived from a number of sources:-

1. Direct measures -where the measures are taken from the experimental subject for example using X­

rays (e.g. Smidt, 1973), or another imaging technique. 

2. Cadaver measures - where moment arms are measured on cadavers. These techniques either employ 

the centroid method for estimating the line of action of the muscle (e.g. An et al., 1981 ), or the straight line 

model (e.g. Edgerton, Roy, and Apor, 1986) . 

3. Geometric models -where the moment arm of the muscle is described using a geometric relationship 

between joint angle and the moment arm of the muscle (e.g. Wilkie, 1950). 

4. Dry bone models - measurements are made on a dry bone specimen, and then extrapolated to an 

experimental subject. Dostal and Andrews (1981) measured the moment arms of muscles using "string" 

running between the origins and insertions of a dry bone specimen. Alternatively the origins and insertions 

of the muscles are identified on a dry bone specimen and extrapolated to an experimental subject, and the 

moment arms are estimated by assuming that the muscles run in a straight lines from their origins to their 

insertions (e.g. Pierrynowski and Mornson, 1985b). 

Crowninshield and Brand (1981) obtained moment arm information tor the three major elbow flexors using 

X-rays. This information was not generally applicable as it was for one joint configuration only. 

Amis et al. (1979) calculated the moment arms of the muscles crossing the elbow joint about a flexion­

extension axis for one embalmed cadaver. The centroid technique of Jensen and Davy (1975) was used 

but rather than taking a cross-section this was estimated by taking the appropriate measures around the 

outside of the muscle under examination. Joining the centroids gave the line of action of each muscle, 

which were then used to calculate the moment arms of the muscles. This technique permitted one 

cadaver limb to be used for more than one joint configuration. In this analysis the moment arms of the 

biceps, brachialis, and brachioradialis remained constant up to 35 degrees of flexion, after which angle 

they changed with increasing angle of flexion. 

An et al. (1981) examined four cadavers to determine the moment arms of the muscles crossing the elbow 

joint about a flexion-extension axis, and a supination-pronation axis. They used the centroid method of 

Jensen and Davy (1975). Their results were compared with other studies and they concluded that the 

direct measurement of moment arms on cadavers and use of the centroid method gave comparable 

results. Their results showed that longitudinal rotation of the forearm changes the moment arm of the 

muscles about the flexion-extension axis when the angle of flexion remains constant. 

Cadaver based studies have to assume that measurements made on the cadaver reflect what happens in 

a live subject. This assumption may be invalid. If the muscle is active its path may be changed due to 

tension in the muscles, movement of other muscles, or joint movement. In cadaver studies it is difficult to 

allow for these eventualities. 

Both Wilkie (1950) and van Zuylen, van Velzen, and Denier van der Gon (1988) have presented models 
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which permit the calculation of the moment arms of the elbow flexors. The upper arm and forearm were 

modelled as straight lines with their intersection at the elbow joint centra. The angle between these two 

lines is the amount of flexion at the elbow joint. To determine the muscle moment arms the distances of 

the origins and insertions from the elbow joint centre are raquired. Assuming that muscles work in straight 

lines muscle moment arms can be calculated using the Cosine Rule, at any elbow joint angle. Van Zuylen 

et al. (1988) presented a similar model to Wilkie but the muscles were not assumed to attach directly onto 

the upper arm and forearm axes. They presented data for the biceps, brachialis, and brachioradialis. 

Only the brachioradialis did not attach directly onto either axis. To compare the two models the data from 

van Zuylen et al. (1988) for the brachioradialis were used as inputs to both models. Both models assume 

that the forearm does not rotate about its longitudinal axis during flexion. A graph of the rasults is shown 

in figura 5.2. The graph shows that the refinement of van Zuylen et al. (1988) makes very little difference 

to the moment arm values when compared with the model of Wilkie (1950). 

Examination of the graph shows that both models predict a moment arm of zero for a fully extended arm; 

the results of cadaver studies show that this is not the case (Am is et al., 1979; An et al., 1981 ). The 

models of Wilkie (1950), and van Zuylen et al. (1988), and the data of Braune and Fischer (1889) suggest 

that as a result of flexion the moment arm of the brachioradialis follows a parabolic path, whereas the data 

of Amis et al. (1979) suggests that it is linear. This difference may be because Am is et al. (1979) used the 

centroid method for determining the line of action of the muscles, whereas in the other cases a straight line 

model was used. 

Brand et al. (1982) examined the influence of incorrect location of the origins and insertions of muscles on 

the moment arms of 47 muscles of the lower limb. The true locations of the origins and insertions were 

perturbated by ±1 0 mm separately in the three coordinate directions. They reported that the errors in the 

moment arm estimations after these perturbations were •generally less that 10 percent". 

In vivo moment arms have been measured using a variety of techniques. Smidt (1973) used X-ray 

analysis to measura the moment arms of muscles crossing the knee. He calculated the centre of rotation 

of the knee joint using a graphical technique. Nemeth and Ohlsen (1985) used computer-aided 

tomography (CT) to calculate the moment arms for the hip flexors and extensors. Rugg, Gregor, 

Mandelbaum, and Chiu (1990) used magnetic resonance imaging (MRI) to compute the moment arms of 

the triceps surae and the tibialis anterior about the ankle joint They also compared the moment arm 

calculations when the centre of rotation was either assumed fixed centre or moving; the moving centre of 

rotation was calculated using the technique of Reuleaux (1875). The moment arm of the triceps surae 

tendon was found to be an average of 3.1 percent greater using a fixed centre of rotation than it was using 

the moving centra of rotation. The difference for the tibialis anterior was 2.5 percent. These in vivo 

studies also have the advantage that the muscles can be under tension when the measurements are 

taken. 

5:1.7 PROCEDURE FOR DETERMINING MOMENT ARMS 

To determine the length of the muscle it was necessary to define a line representing the line of action of 
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FIGURE 5.2- The moment arm of the brachioradialis using the models of Wilkie (1950), and van Zuylen et 

al. (1988). 
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the muscle. The moment arm is the shortest distance from the muscle line of action to the centre of 

rotation of the joint. The procedure for calculating the lines of action of the muscles was given in see1ion 

5:1.5, given this information three-dimensional geometry gave the moment arms of the muscles. The joint 

centre was assumed fixed. Am is (1978) and An et al. (1981) showed that at zero degrees flexion the 

moment arms of the biceps, brachialis, and brachioradialis were not zero. To account for these variations 

when the straight line actually passed through the trochlea, a constant value was assigned to the flexion 

moment arm up to 35 degrees of flexlon. This data was derived from the earlier scaling of the data and 

was assumed to be half of the breadth of the trochlea. 

5:1.8 MUSCLE PENNATION 

To examine the effect of muscle pennation researchers have modelled the pennated muscle using simple 

geometry. In modelling pennated muscle it is assumed that muscle volume during contraction remains 

constant, and the thickness of the muscle remains constant. Authors using these assumptions include 

Alexander (1968), Woittiez, Huijing, Boom, and Rozendal (1984), Pierrynowski and Morrison (1985b), and 

Otten (1988). There is limited evidence to support the assumption of constant volume. Baskin and Paolini 

(1967) examined the volume changes in the frog gastrocnemius and found that there was only a 0.03 

percent change in volume as a result of a twitch. Rgure 5.3 is a schematic diagram of pennated muscle. 

For this model if volume remains constant then thickness must remain constant (i.e. -the distance 

between the planes of the insertion remains constant). A model of pennated muscle architecture is now 

developed and this assumption examined:-

T • LF. Sin(e) 

Where:-

T - is the thickness of the muscle 

LF - is the length of the muscle fibres 

and e is the angle of pennation. 

Volume= V • T.Lrs.W 

Where:-

Lrs - is the length of the tendon sheet (see figure 5.3) 

and W is the width of the muscle. 

At rest:-

VR-TR.lrs.W 

• LFR·Sin(e,).Lrs.W 

Where:-

T R - is the thickness of the muscle at rest 

LFR- is the length of the muscle fibres at rest 

and e, is the angle of pennation at rest. 

[5.1) 

[5.2) 

[5.3] 
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FIGURE 5.3 • Diagram of a pennate muscle, where ~ is the angle of pennation. 

(See text for explanation of other abbreviations.) 
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During a contraction:-

V -T.LTs.W [5.4) 

• Y,.Sin(O).LTs·W 

The assumption is that the volume remains constant therefore:-

[5.5) 

Which implies:-

[5.6) 

Dividing by LTs·W gives:-

[5.7] 

Which shows that if volume is assumed to remain constant so must muscle thickness. 

Using a model based on the assumptions it is simple to make adjustments to allow for the force in the 

tendon being different from the muscle force. For parallel fibred muscles:-

[5.8] 

Where:-

FT - is the force in the tendon 

and FM is the force produced by the muscle fibres. 

For pennated muscles:-

[5.9] 

The short head of the biceps is the only pennated muscle in the model of the flexors causing forearm 

flexion (see section 5:4.1.3). At rest with an angle of pen nation of 3.3 degrees, the influence of muscle 

pen nation is not significant (cos(3.3) • 0.998), but as the muscle contracts the angle of pennation will 

increase and its influence may be more significant. The effect of a change in angle of pennation can be 

investigated using the following calculations:-

At rest:-

[5.1 0) 

Where:-

LeR is the length of the belly of the muscle at rest. 



If as the muscle contracts the length of the muscle belly (L8 ) is known then:-

Le • LTA + [ Cos(e).Y, I 

le- LTA • Cos(e).LF • T. Cos(e).(Sin(e))-1 

Cos(e).(Sin(e))-1 • ( Tan(e) )·1 

Therefore:-

Tan(e)- T 

(Le-LTA) 

Using mean data of the four cadavers analysed in Amis (1978):­

e, • 3.3 degrees 

Lrn ·164.8 mm 

T· 9.5mm 
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[5.11) 

[5.12) 

[5.13) 

[5.14) 

The length of the muscle belly at rest is not known but substitution of equation 8 into equation 12 after 

suitable re-arrangement gives:-

_l_ - ( Cos( a,) . Lrn ) • L8 - L8R 

Tan(e) 

[5.15) 

The right hand side remains unknown, but if the angle of pen nation is assumed to increase to eight 

degrees, then the change in length of the belly of the short head of the biceps would be 96.9 mm. 

Although the length of the belly of the muscle was unknown in this example, if it is assumed to be around 

180 mm, this represents a 50 percent reduction in the length of the belly which is beyond the expected 

maximum reduction resulting from full elbow flexion. Therefore as cos(8) = 0.990, it is still reasonable to 

ignore the influence of muscle pen nation on the length of the muscle fibres in the short head of the biceps. 

The tendinous sheet will stretch as a result of the force from the fibres, causing the fibres to curve to 

maintain constant volume. Otten (1988) modelled the stretching of the tendinous sheets and 

consequential curving of the fibres. He found that these two factors had no influence on the force-length 

curve of the muscle tendon complex. 

5:1.9 SUMMARY 

In the preceding sections the bones and muscles which are modelled have been described. The 

techniques used to determine the lengths and moment arms of the muscles causing elbow flexion have 

been presented. The influence of pennation of muscle fibres has been examined, and its influence on the 

present model assessed and shown to be negligible. 



5:2 MUSCLE MECHANICS 

The purpose of this section is to detail the mechanical properties of skeletal muscle. In this context 

muscle is considered to include the tendon and the muscle fibres. These properties are reviewed, then 

modelling approaches discussed, before a model is adopted for this work. 

5:2.1 MUSCLE MODELS 

There are two types of muscle model: those which are mechanical analogues of muscle, which are 

phenomenological in nature, and those which model events at a microsoopic level such as the kinetic 

model of Huxley (1957). 
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M>st mechanical models consist of a series elastic component (SEC), a contractile component, and 

sometimes a parallel elastic component (PEC). Hill (1938) presented one of the earliest models which 

consisted of an elastic component in series with a contractile component, with an elastic component 

parallel to these components, see figure 5.4c. There are two possible arrangements for the three 

component model; these are shown in figure 5.4. The work of Jewell and Wilkie (1958) showed that both 

of these model types (figure 5.4b, and 5,4c) describe the mechanical behaviour of muscle well. Others 

have used the simpler two component model of muscle (e.g. Bobbert, Huijing, and van lngen Schenau, 

1986). The sites of the SEC, PEC, and contractile component will be discussed in later sections. A Hill 

type mechanical model was used in this study. 

In 1957 Huxley suggested a kinetic model of muscle which attempted to predict the mechanics and 

energetics of muscle by considering the chemical Interactions of the actin, and myosin cross-bridges. The 

model was based on the acceptance of the sliding-filament theory of muscular contraction (Pollack, 1983). 

The model assumed that the cross-bridges could exist in two biochemical states, either attached or 

detached. There have been many revised models based on this original model. Huxley and Simmons 

(1971 b) extended the 1957 model to account for tension transients when the cross-bridges remain 

attached, by considering changes in the cross-bridge structure while the bridges are being formed. Hill, 

Eisenberg, Chen, and Podolsky (1975) presented a detailed mathematical model which combined the 

details of Hux!ey's 1957 model with the 1971 revisions. Their treatment demonstrated that Huxley's 1957 

model was incomplete thermodynamically as it did not take account of the relationship between the 

bonding rates of the cross-bridges, the stiffness of the cross-bridges, and the energy associated with 

certain biochemical states. Their formulation of this two-state model took account of the thermodynamic 

defiCiencies of Huxley's model; it was called the •self-consistent two-state model". Eisenberg, Hill, and 

Chen (1980) extended this model to allow for four cross-bridge states, two attached, and two detached. 

The detached states were considered to occur the moment just after detachment, and just before re­

attachment. The attached states corresponded to the states in the model of Huxley and Simmons 

(1971 b). 

These models do not include the properties of tendon, or allow for the passive visoo-elasticity of the 

muscle. Such models provide a theoretical framework for considering the actual mechanisms underlying 

muscle action and have explained many of the observed phenomena of muscle action (Huxley, 1980). 
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FIGURE 5.4- Two and three element mechanical analogue models of muscle. 
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They have not yet been regularly incorporated into biomechanical studies of human movement. Zahalak 

(1981, 1986) has performed work in this area, working with a simplified version of Huxley's 1957 model. 

The model Is represented by four first order differential equations, resulting in a model that is more 

complex than the Hill type models often used, but significantly simpler than the Huxley model. Predictions 

made using the model were compared with data obtained from studies on cat soleus. The model was able 

to predict accurately the force produced by a muscle yielding to a constant velocity stretch, and the 

decrease below the isometrtc level of muscle force production after small amplitude sinusoidal stretches 

(Zahalak, 1986). Hill's model tails to take account of these phenomena. Ma and Zahalak (1987) extended 

the earlier muscle model of Zahalak (1981, 1986) to incorporate the thermodynamic changes of Hill et al. 

(1975), developing what he referred to as a self-consistent distribution-moment model of muscle. These 

modifications of the earlier model resulted in a simpler formulation, and demonstrated increased accuracy 

in the predictions of the energetics of muscle particularly for slow stretches, durtng which it has been 

shown experimentally that heat production is lower than durtng an isometrtc muscle action (Abbott and 

Aubert, 1951 ). 

5:2.2 FORCE-LENGTH RELATIONSHIP 

The contractile component of muscle has two properties: the force-length relationship, and the force­

velocity relationship. The former is dealt with in this section and the latter in the next. 

The force produced by the contractile component is due to the interaction of the actin and myosin 

filaments which make up the sarcomere of the muscle. There are a number of theories which attempt to 

explain how the force is generated. The most popular of these is the cross-bridge theory (Pollack, 1983). 

This theory claims that force is generated as cross-brtdges extend from the thick filaments (myosin) to 

attach to the thin filaments (actin), the cross-brtdges then undergo a chemical and structural transition 

which cause a tensile force. This cycle continues as the cross-brtdges detach and re-attach. The force 

produced is dependent upon the degree of the overlap between the actin and myosin filaments (Gordon, 

Huxley, and Julian, 1966). if the muscle is maximally active. As the muscle lengthens, the area of overlap 

between the thick and thin filaments decreases and therefore the number of possible cross-bridges is 

reduced thus reducing the maximal tension. At short muscle lengths there is a tall in the force produced. 

This is attributed to the extensive overlap of the filaments interfering with the formation of the cross­

bridges. The results of Gordon et al. (1966) were for amphibian muscle, the same relationship between 

filamentary overlap and muscle tension was demonstrated for human muscle by Stevens, Dickinson, and 

Jones (1980). M.ihl (1982) has shown that the length-force curve of whole muscle has a larger ascending 

limb than descending limb. 

There are vartous mathematical models used to represent the force-length relationship of muscle. 

Although the relationship between muscle fibre length and force is non-linear, ~has been modelled as a 

linear function e.g. Bahill (1981 ), and Pedotti, Krishnan, and Stark (1978). Bahler (1968), Woittiez, Huijing, 

Boom, and Rozendal (1984), and van lngen Schenau, Bobbert, Ettema, de Graaf, and Huijing (1988) 

modelled this relationship using a polynomial and assumed the relationship was parabolic. Hatze (1981 b) 

used a Gaussian function, which assumed that this relationship was asymmetrical. Otten (1987) 
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extending his study of 1985 presented a model which also assumed the relationship was asymmetrical. 

The equation presented by Otten (1987) was similar to that of Hatze (1981 b) but took more account of the 

asymmetries of the force-length relationship. 

Hof and van den Berg (1981) and Winters and Stark (1985) combined the force-length and joint angle 

muscle moment arm relationships, giving a joint moment-angle relationship. Such a relationship is hard to 

formulate, as although a muscle's moment arm may be constant for a given joint angle, the muscle fibre 

length is not. Both of these relationships are subject specific, and are complex functions of joint angle. 

The combination of these functions makes it difficult to partition their relative contribution to joint moments. 

Pierrynowski and Morrison (1985a,b) used the force-length model of Hatze (1981 b) (their equation a, 
Hatze (1981b) equation 3.33). The adoption of this model by Pierrynowski and Morrison (1985b) was 

incorrect. Instead of using the optimal length of the muscle they used the maximum length of the muscle 

as one of the equation parameters: the latter is much easier to estimate than the former, but they are not 

interchangeable. Furthermore this model was advanced by Hatze (1981 b) as the model of the force­

length relationship of an isolated fibre; the force-length relationship of a whole muscle is different as the 

optimum length of the fibres making up this muscle will show a Gaussian distribution. Bagust, Knoll, and 

Lewis (1973) have shown that the variance in the optimal length of muscle fibres can be very large in cat 

fast twitch muscle fibres. Stephens, Re inking, and Stuart (1978) found a standard deviation in the motor 

unit of cat medial gastrocnemius of 3 mm in the optimal length of fibres which had a mean length of 18 

mm. The rat gastrocnemius muscle fibres were shown to have a variation in optimal length of 

approximately 20 percent (Holewijn, Plantinga, Woittiez, and Huijing, 1983). Therefore Hatze (1981 b) 

presented a different model for the force-length relationship of whole muscle. 

The model of the force-length relationship used in this study is that of Hatze (1981 b):­

FI = FIO 0 exp [~COs~ ln 

Where:-

~ 
Q =~0 

F1 - is the maximum isometric tension used at a given muscle fibre length 

F10 - is the maximum isometric force produced at the optimum length of the muscle fibres 

~ - is the length of the muscle fibres 

~0 - is the length at which the muscle fibres exert their maximum tension (optimum length) 

and SK is a constant specific for each muscle where SK>0.28. 

[5.16] 

[5.17] 

This model was selected for a number of reasons. lt takes into account the non-linear and asymmetrical 

force-length relationship of muscle. lt is not as complete as the model of Otten (1987) but requires the 

determination of few~r parameters. This model also takes into account the statistical variations in the 

optimum length of the muscle fibres. The parameter SK reflects the spread of the length-tension curve. lt 

assumes that the muscle fibres are all of the same resting length. With specific reference to the muscles 



causing elbow flexion, Kaufman, An, and Chao (1989) claimed that on close examination the lengths of 

the individual muscle fibres making up a muscle were all similar. 

5:2.3 FORCE-VELOCITY RELATIONSHIP 
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The accepted convention in studies of muscle is for muscle shortening to be designated a positive velocity 

(concentric muscle action), and muscle lengthening a negative velocity (eccentric muscle action). The 

force-velocity relationship is non-linear. Taking an isometric contraction as the starting point, as the 

muscle fibre velocity increases the muscle force decreases. During an eccentric muscle action as muscle 

fibre velocity decreases the muscle force increases. This description of the force-velocity relationship 

assumes that the muscle remains at the same length for all velocities. If there was a change in muscle 

length the maximum isometric force would change and therefore the capability for force production at 

different muscle velocities at that length would change. 

The force-velocity relationship can be explained by cross-bridge theory. If the muscle is shortening the 

actin binding sites will be moving past the myosin cross-bridges. The amount of time in which the cross­

bridges can bind is limited, as the velocity of contraction increases the time for the formation of cross­

bridges decreases: Therefore as velocity increases there is a decrease in the number of active cross­

bridges that exert a force. For negative velocities the increasing force with decreasing velocity is attributed 

to stretching of the cross-bridges (Huxley, 1957), resulting in higher force generation per cross-bridge 

even though the number of cross-bridges formed is reduced. 

A number of mathematical models have been used to represent the force-velocity relationship of muscle. 

Fenn and Marsh (1935) and Aubert (1956) both used exponential functions, each requiring two constants. 

Van lngen Schenau et al. (1988) used a polynomial requiring three constants. In this study the model of 

the force-velocity relationship of Hill (1938) was adopted. This relationship was chosen because so many 

studies have fitted Hill's equation to their data that it is relatively easy to obtain the parameters required for 

the model. The equation described by Hill (1938) was:-

b. (F1 + a) 
= . a 

Where:-

Fv. is the maximum possible force at a given muscle fibre velocity 

a,b ·are constants 

VMAx ·is the maximum speed of shortening of the fibres 

VF ·is the current speed of shortening of the fibres 

and F1 is the maximum isometric tension used at a given muscle fibre length. 

[5.18) 

Hill (1970) demonstrated that his model of the force-velocity relationship is appropriate even when the 

properties of the muscle fibres making up the muscle vary. 

This equation has dominated the literature, with most studies on isolated muscle fitting force-velocity data 



to this function. However there are some shortcomings of the model. The equation does not apply to 

eccentric muscle action. Also it may not also apply for very fast extensions of muscle when the force­

velocity relationship may be discontinuous (Sugi, 1972). The force-velocity relationship of muscle has 

been shown to be affected by pre-stretching of the muscles (e.g. Cavagna and Citterio, 1974; Edman, 

Elzinga, and Noble, 1978). The activities examined in this study were selected so that the anticipated 

force-velocity behaviour of the muscles would be within the limitations imposed by Hill's equation. 

Some of the key features of the equation are:-

1. lt reflects the maximum speed of the muscle fibres as:-
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b • a. VMAx/FI [5.19] 

2. At V MAX• Fv must be zero. 

3. The greater the curvature of the force-velocity curve the lower the ratio a!F1• 

4. The values of the constants vary with temperature. 

5. As the value of F1 is length specific as soon as the length of the muscle is changed F1 must be a re­

calculated. 

6. The constants 'a' and 'b' are normally considered numerically in relation to maximum isometric force and 

maximum velocity respectively. 

5:2.4 MUSCLE PARALLEL VISCO-ELASTICITY 

Passive visco-elasticity has been considered in two ways, first by muscle physiologists who have tried to 

identify the sites and quantify the passive visco-elasticity of isolated muscle (e.g. Hill,1938; Jewell and 

Wilkie, 1958), and by biomechanicians who have looked at the passive visco·elasticity about joints (e.g. 

Engin, 1979; Yoon and Mansour, 1982). To avoid confusion the former shall be called muscle passive 

visco-elasticity (MPV), and the latter joint passive visco-elasticity (JPV). MPV is reviewed in this section, 

and JPV in the next. 

MPV can be seen in isolated muscle when it is receiving no neural stimulation: as the muscle lengthens 

the tension developed is due entirely to those elements lying parallel to the contractile element of the 

muscle. These elements have been grouped together and called the PEC. A muscle develops no tension 

in the PEC until the muscle is at a length greater than its resting length, before this the PEC are "slack". 

Work on isolated muscle is normally concerned with a range of lengths which do not involve MPV. 

Banus and Zetlin (1938) completed some of the earliest work on MPV and identified the site of parallel 

visco-elasticity as the connective tissue surrounding the muscle, the fasciae. The fasciae are the 

sarcolemma surrounding the individual muscle fibres, and the outer connective tissue - endomysia, and 

perimysia. Street and Ramsey (1965) examined isolated frog muscle fibres and showed there was visco­

elasticity in the sarcolemma of the fibres. Carlson and Wilkie (1974) claimed that the tension-length curve 

tor the PEC is directly dependent on the amount of connective tissue in the muscle. These tissues 

causing parallel visco·elasticity all move in fluid, which causes a damping element associated with the 
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parallel visco-elasticity (Alexander and Johnson, 1965). 

Jewel! and Wilkie (1958) produced a stress-strain curve for the PEG of frog skeletal muscle. This curve 

was very similar to those produced by Yamada (1970) for human muscle. Both curves were exponential. 

By examining the stress-strain relationship for resting muscle and its fasciae, Yamada (1970) detenmined 

that the major site for the PEG was the fasciae. Although MPV has primarily been identified in sites lying 

in parallel with the contractile element, when the muscle is at rest there may be some residual cross­

bridges which could account for some MPV, (Ebashi and Endo, 1968; Hill, 1968). 

The MPV Is not always included in models of muscle in vivo. In their study of locomotion, Pienrynowski 

and Morrison (1985a,b) decided that based on the available evidence the moments due to the MPV were 

small enough to ignore in the model they used to estimate muscle forces. In the muscle model used to 

examine human jumping, Bobbert et al. (1986) also ignored MPV. In contrast to these studies Hatze 

(1976) incorporated both types of visco-elasticity uoint and muscle) into his model of muscle, although 

MPV was only considered for biarticular muscles, as it was felt that MPV for the mono-articular muscles 

was incorporated into the model of joint passive visco-elasticity. In later work this distinction between the 

MPV for mono-articular and biarticular muscles was not made (Hatze, 1981 b). 

Analysis of flexion and supination of the elbow by Ghapman (1975), and Ghapman, Galdwell, and Selbie 

(1984), detenmined that the PEG of muscle made no significant contribution to the joint muscle moment 

throughout nea~y all of the range of elbow flexion and supination. In light of these findings MPV was not 

directly included in the present model. Even though the MPV has been ignored in the model of muscle 

developed here, much of the MPV is incorporated in the model of joint passive-visco-elasticity (section 

5:2.5). Therefore MPV is included, at least in part, as a lumped term for all the muscles crossing the 

elbow joint. Although some of the contribution of MPV to the joint moment will be included in the joint 

passive visco-elasticity, this would not be the case for biarticular muscles, as it may require movement of 

both joints to stretch the muscle enough to bring any contribution from MPV into action. The biceps 

crosses three joints, and the influence of one of these joints, the shoulder joint, on the length of the biceps 

has been ignored (see section 5:1.5). 

5:2.5 JOINT PASSIVE VISGQ-ELASTICITY 

Joint passive visco-elasticity (JPV) can be quantified by the forced movement of a passive limb through a 

prescribed range of movement whilst measuring the resistive moments (e.g. Engin, 1979). Others have 

used techniques based around the passive movement of a limb at a constant velocity about a joint (e.g. 

Hayes and Hatze, 1977). There has been to date no comparison of the different techniques employed to 

measure JPV. The JPV of various joints has been assessed, for example Yoon and Mansour (1982) 

detenmined it for the hip, whilst Siegler, Moskowitz, and Freedman (1984) detenmined JPV for the ankle, 

and Engin and Ghen (1986) for the shoulder complex. 

Johns and Wright (1962) examined the JPV of the wrist of a cat. Structures considered to contribute to the 

passive moment about the joint were sequentially severed and the passive moment re-assessed. By 
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following this procedure the contributions of different structures to the JPV were assessed. Their analysis 

showed that in the mid-range of movement the joint capsule contributed 47 percent of the passive 

moment, the muscles 41 percent, the tendons 10 percent, and the skin two percent. Towards the 

extremes of joint motion the tendons had a greater effect. Therefore JPV is the net moment about a joint 

caused by all the passive structures crossing or surrounding the joint. 

Broadly there are two sources of JPV, one resulting from the muscles crossing the joint, and the other due 

to the structure of the joint. The muscles as described in section 5:2.4 have a muscle specifiC passive 

visco-elasticity, therefore the JPV will reflect the sum of this muscle passive visco-elasticity for all the 

muscles crossing the joint. MPV is dependent on the length of the muscles, so varies with joint angle and 

muscle force. For some multi-articular muscles the movement of one joint may not stretch the muscle 

sufficiently for it to lengthen beyond its resting length and so they will not contribute to the JPV. 

Structures other than the muscles contribute to the JPV. Ligaments may cause a moment at some joint 

angles, particularly towards the end of the range of joint motion where the ligaments are responsible for 

maintaining joint integrity. There may also be a contribution from the friction at the joint. JPV is generally 

measured under conditions of low joint loading, with little or no active muscle tension, where the 

contribution from joint friction would be expected to be small. When the joint load is increased friction may 

also increase, and with it JPV. 

Engin (1979) examined the passive moments about the elbow joint on three subjects. The JPV was 

measured for pronation and supination about the radius-ulna axis of the elbow, and for elbow flexion. For 

pronation and supination within the voluntary range of motion (which permitted 75 degrees of pronation 

and 85 degrees of supination), the highest resulting passive moments were between 2 N. m and -2 N.m for 

all the subjects. 

Hayes and Hatze (1977) also examined JPV at the elbow joint about the flexion-extension axis only. Their 

data for the elbow joint had a constant value in the mid-range of 1.4 N. m, 1.0 N.m, and 1.4 N.m for their 

three subjects for both flexion and extension. At the extremes of joint motion the value for the JPV 

increased to around 10 N.m for full extension and -10 N.m for full flexion. The value for full extension and 

the mid-range compare well with the data of Engin (1979), but for full flexion Engin reported a value of -20 

N.m. The data of Engin was collected by the forced movement of a limb and the flexion values were 

actually beyond the normal voluntary range of motion. The JPV value from the data of Engin (1979), for 

the maximum degree of elbow flexion reported by Ha yes and Hatze (1977), was approximately -10 N. m 

which compares well with the data reported by Hayes and Hatze (1977). 

In an extension to his earlier work Engin examined the JPVof the elbow joint beyond the normal full elbow 

extension (Engin and Chen, 1987). These data are of particular use in the examination of how the human 

body responds to trauma, where the elbow may be extended beyond its normal range. The data provides 

JPV values for the region 20 degrees beyond normal full extension. In the context of the present study 

such data were not required. 
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A model was developed which relates the angle of elbow flexion to the moment caused by the JPV about 

the elbow joint centre. The function was fitted to the data of Engin (1979). The major assumption of this 

model is that JPV is similar tor different subjects. The data from three subjects reported by Engin (1979) 

were all very similar. These data also showed good correspondence with that of a further three subjects in 

the study of Hayes and Hatze (1977), so this assumption is justified with reference to the limited evidence. 

The function used was:-

Mpta) = Cl.exp(C2.a) + C3.exp(C4.a) + C5 
[5.20] 

Where:­

Mp(a) ·is the passive moment at joint flexion angle a 

and C1, C2, C3, C4 and C5 ·are constants. 

The values of these constants are 12.49, -5.73, -0.02, 2.58, and 0.04 respectively, when joint flexion 

angle is measured in radians. 

The graph of this function is shown in figure 5.5. The shape of this curve is typical of the curves presented 

tor the JPV of the elbow joint (Engin, 1979; Hayes and Hatze, 1977). As the results of Engin (1979) only 

produced small passive moments about the supination-pronation axis these moments were ignored and 

consequently not modelled. As the model is only related to joint angle and not angular velocity there is no 

viscous component included in the model. This model takes no account of the changes in JPV which may 

occur when the muscles are more active, or when the joint is subjected to a higher load. Although JPV 

includes some influence from MPV, this relationship is only approximate as MPV depends on muscle 

length which is a function not only of joint angle but also of muscle force. 

5:2.6 TENDON ELASTICITY 

When activated a muscle develops tension in the muscle fibres. This tension is transferred to the skeleton 

via the elastic structures in series with the fibres. There are two sites of series elasticity: in the tendon, 

and in the muscle fibres themselves. This section will review tendon elasticity and the next muscle fibre 

elasticity. 

Tendons are composed mostly of the protein collagen. Harkness (1961) examined the achilles tendon of 

man, and found it to be composed of 86 percent collagen. When viewed under a light microscope tendons 

have a crimped wave like appearance. Dale and Baer (1974) showed that this crimping (actually in the 

collagen) unfolds during the initial loading of the tendon. The initial part of the stress-strain curve tor 

tendon is due to the unfolding of the collagen. Tendon is not uniform along its whole length. The insertion 

onto the bone is a gradual transition from tendon to fibro-cartilage. The tendon is also anchored onto the 

bone by fibres from the periosteum of the bone (Cooper and Misol, 1970). At the other end there is a 

gradual transition from tendon to muscle. 

A number of researchers have determined the stress-strain relationship tor tendon. Benne!, Ker, Dimery, 

and Alexander (1986) working with mammalian tendon found that it had a breaking strain of 0.08. They 

also found that the stress-strain curve of tendons has a hysteresis, which means there is a difference in 

the modulus of elasticity depending on whether the tendon is being loaded or unloaded. 
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FIGURE 5.5- The passive visco-elastic moment of the elbow joint as a function of the joint flexion angle, 

estimated using equation 5.20. 
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The precise role of tendon in animal movement is unknown. Ker, Dimery, Bibby, Kester, and Alexander 

(1987) examined the storage of energy in running, and identified the achilles tendon as a major site of 

energy storage. Others have suggested that it is not the ability of tendon to store energy but its 

compliance, which allows the muscle to have one velocity whilst its components have different velocities, 

which determines its role in movement. Bobbert et al. (1986) in the examination of plantar flexion during 

jumping, showed that without the compliance of tendon the high shortening velocity of the triceps surae, 

and high joint moment produced by this muscle group would not be possible. Similar results were shown 

for level walking in man by Hof, Geelen, and van den Berg (1983) and for wallabies hopping by Morgan, 

Proske, and Warren (1978). During hopping when the wallaby gastrocnemius muscle was developing 

near maximum tension there was eight times as much movement in the tendon as in the muscle (Morgan 

et al., 1978). The wallaby gastrocnemius tendons are long to accommodate this, and the animals become 

more efficient with increasing speeds of hopping as this mechanism plays an increasing role. 

A number of models have been suggested to model tendon elasticity: Hatze (1981 b) presented an 

exponential function; Bahler (1967) used a polynomial series; Pierrynowski and Morrison (1985a,b) and 

Ker, Dimery, and Alexander (1986) used Hooke's law. A model of tendon elasticity based on Hooke's law 

was used in this study. The model used in this study was:-

L,. = L,.R . [ 1.0 + ~ME] 
Where:-

Lr -is the length of the tendon 

Lrn - is the resting length of the tendon 

FM- is the force exerted by the muscle on the tendon 

Ar- is the cross-sectional area of the tendon 

and E is Young's modulus of elasticity for tendon. 

[5.21] 

Although Benne! et al. (1986) showed that there was hysteresis in the stress-strain curve of tendon no 

model has yet included this. Its effect can be considered small enough to be insignificant for the purposes 

of the analysis undertaken here. 

5:2.7 MUSCLE FIBRE ELASTICITY 

When muscle, with the tendon removed, is released from an isometric contraction and allowed to shorten 

against a load less than the previous isometric load, the shortening has two phases; a fast phase followed 

by a slow phase. The fast phase is attributed to the release of the energy stored in the elastic components 

of the muscle fibres. As the contractile machinery is slower to react than the SEC the second phase is 

attributed to the contractile component of the fibres. Such analysis, which shows the existence of muscle 

elasticity, has been undertaken by a number of researchers e.g. Hill (1950), and Bahler (1968). 

Huxley and Simmons (1971 a) in a theoretical analysis of isolated frog muscle suggested that the site of 

the elasticity was the cross-bridges. They hypothesised that the specific site may be within the myosin 

filaments. This proposal was further supported by the work of Morgan (19n), on the soleus of 
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anaesthetised cats. As well as having an elastic component, muscle fibres have a viscous component. 

Woledge (1961) quantified the damping component for the frog sartorius muscle, whilst Bahler (1967) 

quantified it for the rat gracilus anticus muscle. This damping component is so small compared with the 

elastic component, that Ford, Huxley, and Simmons (1977) reported that muscle fibre elasticity seemed to 

be almost completely free of damping. 

Jewell and Wilkie (1958) examined the elasticity of muscle at different lengths and maximum stimulation. 

Their results indicated that muscle elasticity was not dependent on muscle length. Huxley and Simmons 

(1971 a) showed that muscle elasticity was dependent on the number of cross-bridges formed. Morgan 

(1977) found muscle elasticity to be a linear function of force. This confirmed the findings of Huxley and 

Simmons (1971 a) that muscle elasticity is proportional to the number of cross-bridges formed. Ford, 

Huxley, and Simmons (1981) working with the frog tibialis anterior showed that muscle elasticity was 

directly proportional to the number of active cross-bridges. At maximum overlap they estimated that 80-90 

percent of the. compliance was due to cross-bridge elasticity. 

Stienen, Blange, and Schnerr (1978) working with frog sartorius claimed a maximal stretch of 11-15 nm 

per half sarcomere. Bagshaw (1982) reports a resting length of the sarcomere of frog sartorius of 2.511m 

(range in contraction of 2.0-3.611m). Combining these two sets of data suggests a maximum stretch from 

resting length of 0.88 to 1.2 percent. These results indicate that the muscle fibres will maximally stretch 

around 1 percent. As the muscle fibres do not make up all of the muscle length the effect of muscle fibre 

stretch on muscle length would be smaller. 

In the muscles modelled in this study the length of the muscle belly was not large enough for muscle 

elasticity to be a more dominant form of SEC elasticity than tendon elasticity. As muscle elasticity is 

dependent on the number of cross-bridges formed, during sub-maximal activity the amount of stretch 

would be a complex function of muscle fibre length and the active state. In the procedures used in the 

next chapter to estimate muscle forces during sub-maximal activity it would be difficult to estimate the 

amount of stretch in the muscle fibres. Therefore muscle elasticity was not included in the model of 

muscle; this makes the modelling procedures used in the next chapter more tractable. 

5:2.7 SUMMARY 

The elements of a model to represent mechanical properties of muscle have been presented. The model 

incorporates three components. Each muscle has a contractile component in series with an elastic 

component. There is a PEC representing the joint passive visco-elasticity, which is parallel to all of the 

muscles. The elasticity of the muscle fibres has been ignored. The parameters for each of the models 

have been identified, their determination is detailed in section 5:4. 

5:3 ACTIVE STATE DYNAMICS 

Muscles are capable of exerting different force levels concomitant with the activity being undertaken. The 

active state is a measure of how active the muscle is. lt is the purpose of the following sections to 

describe how the active state of muscle is varied: active state dynamics. To understand active state 
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types. The way in which muscle force is modulated, and the role of calcium in this process are also 

diScussed. 

5:3.1 MOTOR UNITS 
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In human skeletal muscle one motoneuron will innervate a number of muscle fibres via its axonal 

branches. All the fibres innervated by a motoneuron constitute a motor unit. When the motoneuron fires, 

all the fibres in that motor unit will be active simultaneously. The muscle fibres making up a motor unit are 

not constrained to be adjacent. Muscles vary in the number of motor units they contain, the size of these 

motor units, and the number of fibres making up the motor units. For the larger muscles in man the 

number of motor units per muscle can vary from around 100 to over 1000 (Henneman and Mendell, 1981). 

Buchthal and Schmalbnuch (1980) collected and re-examined data from the literature and presented the 

following details for the biceps, and brachioradialis. 

TABLE 5.1 ·The properties of the motor units of the biceps and brachioradialis. 

Number of motor units in muscle 

Number of muscle fibres in muscle 

Mean number of fibres per motor unit 

No information was reported for the brachialis. 

BICEPS 

774 

580000 

750 

5:3.2 MOTOR UNITS AND MUSCLE FIBRE TYPES 

BRACHIORADIALIS 

330 

130000 

390 

Muscle fibres can be divided into two major groups: fast twitch and slow twitch. The work of Brooke and 

Kaiser (1970) has provided a nomenclature for these fibre types which relates to their histochemical and 

biochemical profiles. Type I fibres have a long contraction time (slow twitch), compared with the type 11 

fibres, and are well adapted for aerobic glycolysis. All type 11 fibres have short contraction times (fast 

twitch), this fibre type has two subdivisions. The type lla fibres have a high capacity for anaerobic 

metabolism but also have a capacity for aerobic metabolism e.g. relatively high levels of succinic 

dehydrogenase-tetrazolium, nicotinamide dinucleotide-tetrazolium reductase (necessary eo-enzymes in 

the Krebs cycle), and myoglobin compared with the type lib fibres. Type llb fibres also have a high 

capacity for anaerobic glycolysis but have little capacity for aerobic metabolism. 

The properties of the muscle fibres are determined by the motoneurons that innervate the fibres. Cross­

innervation studies have demonstrated this dependence (e.g. Buller, Eccles, and Eccles, 1960; Yellin, 

1967). Yellin (1967) re-innervated the soleus of the cat which is composed predominantly of type I fibres, 

with a nerve from muscle with a heterogeneous fibre type distribution. As a consequence of the re­

innervation the soleus eventually contained an increased proportion of type 11 fibres. 
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Burke, Levine, Tsairis, and zajac {1973) provided a nomenclature for motor unit types which correlates 

strongly with the fibre type classification of Brooke and Kaiser {1970). Burke et al. {1973) used the 

following classification system: FF fast twitch and fatiguable; FR fast twitch fatigue resistant; and S slow 

twitch. Table 5.2 demonstrates the relationship between fibre types and motor units classified in these 

ways. 

As there is a very close correlation between muscle fibre types and motor unit types, it is possible to imply 

the properties of one trom data gathered from the other. 

5:3.3 MUSCLE RECRUITMENT 

In some of the earliest work examining the modulation of muscle force, Adrian and Bronk (1929) Identified 

two mechanisms that could increase the force of a voluntary contraction: either more motor units could be 

recruited; or the rate of discharge of the already active motor units could be increased. The latter 

mechanism is known as rate coding. This section reviews recruitment, the next reviews rate coding. 

Research has indicated that in the majority of cases recruitment takes place in a fixed order; motor units 

are recruited in increasing order of their motoneuron size. This order is known as either the "Hen ne man 

size principle" {Henneman, Somjen, and Carpenter, 1965), or the "size principle". The S motor units have 

the smaller motoneurons, and the FF and FR the larger. The smaller the motoneuron the lower the input 

resistance, and therefore the lower the excitation threshold; therefore smaller motor units are recruited 

first. Milner-Brown, Stein, and Yemm {1973a) found a correlation of greater than 0.8 between the size of 

the motoneuron and the order in which the motor units were recruited. Freund, Budingen, and Dietz 

{1975) reported that the total force at which motor units were recruited was a direct function of their axonal 

conduction velocities, for human forearm muscles. The axonal conduction velocity is in turn a direct 

function of the diameter of the motor axon, showing the inter-relationship of motor unit properties. 

Desmedt and Godaux {1977) accepted the size principle for normal movements, and investigated how it 

applied for fast and ballistic movements. They measured the activity of single motor units in the tibialis 

anterior in man using indwelling electrode electromyography {EMG). Their measurements supported the 

concept of the orderly recruitment of motor units moving from S to FR and FF units. In fast movements 

the FT units were firing sooner than in "normal" activity but the ST units were not silent. Most of the 

studies which confirm the size principle have been on muscles during isometric or ramp contractions. 

Grimby {1984) has shown that the principle also applies during human locomotion. He examined the 

tibialis anterior during walking of increasing speed and during slow running. 

If all motor units produced the same tension when tetanically stimulated, the relationship between 

percentage of motor units recruited and the percentage of maximum force developed would be linear. In 

practice, as more motor units are recruited, the increase in the proportion of the muscles maximum tension 

developed is logarithmic {Burke, 1980). Milner-Brown et al. {1973a) examined the contractile properties of 

145 motor unitS from the first dorsal interosseous muscles of three males. They found that the maximum 

twitch tension in the units varied from 0.1 to 10 g {sic). They showed that there was an approximately 
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TABLE 5.2 ·The inter-relationship of muscle fibre type and motor unit types, and the major properties of 

each. (The information to produce this table was obtained from Burke and Edgerton, 1975.) 

FIBRE TYPE: 

MOTOR I !NIT TYPE· 

AXONAL CONDUCTION 
VELOCITY 

CAPILLARY SUPPLY 

FIBRE DIAMETER 

CONTRACTILE TIME 

ENDURANCE TIME 

REIATNE 
CQNCENTBATIONS OF:-

OXIDATIVE ENZVMES 

GLYCOLYTIC ENZYMES 

GLYCOGEN 

MYOGLOBIN 

lib 

FF 

*** 

* 
*** 

* 
* 

* 
*** 

*** 

* 

Where *** • HIGH ** • MEDIUM *=LOW. 

!la 

FA 

*** 

**!*** 
*** 

*t** 
**t*** 

**t*** 
*** 

** 

*** 

s 

* 
*** 

* 
*** 

*** 

*** 

* 
* 
*** 
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logarithmic relationship between the number of motor units recruited and the twitch tension. The same 

relationship had earlier been demonstrated with the motor units of the cat gastrocnemius (Wuerker, 

McPhedran, and Henneman, 1965). In the former study the "weaker" units had longer contraction times. 

lt was these slower contracting units which were recruited first. 

In summary the size principle states that motor units are recruited In the following order:-

S·FR-FF 

or In terms of fibre type:-

Type I - Type llb - Type lla 

Stephens and Usherwood (1977) have suggested that although the size principle holds, the clear division 

of motor unit types may not exist and that some low force units may be fast twitch, and some high force 

units may have long twitch times. 

5:3.4 RATE CODING 

Variation in motor unit excitation frequency causes different levels of force output (Burke, 1967), this is 

called rate coding. The lowest firing rate for a motor unit is its force recruitment threshold. The maximum 

firing ~te for a motor unit causes the motor unit to produce its maximum force. The lowest firing rate for a 

motor unit is 6·8 Hz, whilstthe maximum firing rates range from 10Hz to 60Hz (Freund, 1983, Burke, 

1981 ). Smaller muscles responsible for fine controlled movements tend to have higher maximum firing 

rates compared with larger muscles responsible for gross movements. 

In fast ramp and ballistic contractions the motor units initially fire at rates greater than that required to 

produce maximum force in the specific motor units. For example Grim by, Hannerz, and Hedman (1981) 

examining the short toe extensors of man found an initial firing rate of 100 Hz, whereas a rate of only 50 

Hz was required to produce maximum force. These higher firing rates did not produce a greater muscle 

tension, but did increase the rate of force development. 

5:3.5 RATE CODING VERSUS RECRUITMENT 

When modelling muscle activation dynamics it is important to know the relative contributions of these two 

mechanisms: rate coding and recruitment. Using EMG techniques some researchers have measured the 

activity of individual motor units. Using EMG it is possible to determine the voluntary force level at which a 

motor unit is recruited. The force at which a motor unit is recruited is expressed as a percentage of the 

maximum voluntary contractile force (MVCF) of that muscle. Such analyses are limited to muscles which 

are easily accessible. 

Milner-Brown, Stein, and Yemm (1973b) examining the first dorsal interosseous (a small hand muscle) 

found that up to 33 percent of MVCF the increased force was due to the recruitment of more fibres rather 

than from increased force output from the already recruited fibres. They claimed 

"Increased rate proved to be responsible for the coarser adjustments that are made at higher force levels.• 
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(page 384, Milner-Brown et al.,1973b) 

In the extensor digitorum communis of the middle finger, motor units were recruited up to 70 percent of 

MVCF, (Monster and Chan, 1977). In both the biceps and the deltoid, motor units were recruited up to 80· 

90 percent of MVCF (Kukulka and Clamann, 1981; de Luca, Le Fever, McCue, and Xenakis, 1982). 

Denier van der Gon, Ter Haar Romany, and van Zuylen (1985) showed that in the biceps during a slow 

ramp contraction the firing rate of the motor units generally remained constant. This suggests that in this 

type of contraction the biceps increments its force using recruitment rather than rate coding. At lower 

forces recruitment was the mechanism responsible for increasing force output rather than rate coding. 

The work of Milner-Brown and colleagues (1973a,b) demonstrates the general principle that small motor 

units tend to have recruitment as the major mechanism for muscle tension modulation, whereas larger 

motor units tend to use rate coding as the major mechanism. De Luca et al. (1982) gave the following 

explanation for this mechanism. Small motor units tend to be responsible for fine movements and as they 

are small, recruitment would permit smooth transitions in force levels. The larger motor units can still 

produce relatively smooth contractions using rate coding, but recruitment penmits the rapid development of 

large forces. 

5:3.6 EFFECTS OF DIFFERENT MOVEMENT PATTERNS 

There is evidence to suggest that different motor units are preferentially recruited in the same muscle for 

different movements. Denny-Brown (1949) showed that in the flexor profundus digitorum the motor units 

recruited to initiate wrist flexion were different from those used for gripping. Person (1958) examining the 

rectus femoris, a biarticular muscle, showed that the order in which some motor units were recruited was 

reversed when the muscle was engaged in either hip flexion or knee extension. Examining the 

gastrocnemius, Wag man, Pierce, and Surges (1965) suggested that the pattern of activation of the motor 

units depends on: joint position, the position of the limb in space, and the task being undertaken. 

Examining motor unit recruitment in the long head of the biceps, Ter Haar Romeny, van der Gon, and 

Gielen (1982) showed that up to 50 percent of the MVCF, some motor units were only recruited for flexion, 

whilst others were recruited only for supination. They also showed that the recruitment threshold seemed 

to depend on the task, therefore units with a high threshold for flexion have that threshold lowered if flexion 

and supination are performed simultaneously. Research performed by the same group, Ter Haar 

Romeny, van der Gon, and Gielen (1984), suggested that the movement specific recruitment thresholds 

were related to the location of the motor unit in the long head of the biceps brachii. Those motor units 

recruited for all activities were located centrally and medially, whilst laterally located motor units were 

preferentially recruited for flexion, and the medially located ones for supination. 

Freund (1983) has suggested that there may be advantages in movement selective recruitment. Firstly, 

having units for a similar task all in the same place may allow them to be recruited by a localised reflex 

response. Secondly the location of the motor unit may allow the motor units to be more effiCient at 

executing that task. Another advantage maybe that in repetitive activity a slight change in movement 

pattern may use another set of motor units therefore changing the site of fatigue and allowing the fonmerly 
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recruited units to recover. 

In summary, the force output of a muscle depends on a number of factors:-

1. Which motor units are recruited. (This may in part be movement dependent.) 

2. The rate of discharge of the motoneuron attached to the motor unit (rate coding). 

3. The mechanical properties of the muscle fibre/motor unit. 

4. The biochemical properties of the muscle fibre/motor unit. 

The chemical messenger which causes a fibre to exert a force is calcium. The details of calcium activity 

are given in the next section. 

5:3.7 CALCIUM ACTIVITY 

In resting muscle the interaction between the actin and myosin is inhibited by the troponin-tropomyosin, 

which prevents the hydrolysis of the adenosine triphosphate (ATP) and therefore the release of energy 

necessary for interaction of the actin and myosin. Excitation causes the release of calcium ions into the 

sarcoplasm from the terminal cisternae of the sarcoplasmic reticulum. The calcium diffuses across the 

sarcomere to bind to the troponin, decreasing the inhibitory effect of the troponin-tropomyosin (Civan and 

Podolsky, 1966). The resulting hydrolysis of ATP provides the energy for the formation of cross-bridges. 

The amount of calcium therefore determines the amount of activation. Relaxation is the reverse process, 

the removal of the calcium ions, where the uptake by the sarcoplasmic reticulum is aided by the buffers in 

the myoplasm. 

As the degree of activation of the muscle is dependent on the concentration of calcium ions. the rate of 

change of concentration in the sarcoplasmic reticulum gives an indication of the change in activation of the 

muscle. Aequorin is a protein which gives off light when it binds with a calcium ion, and has been used in 

many studies to demonstrate the relationship between muscle activation and calcium ion concentration 

(e.g. Ridgway and Gordon, 1975; Rudel and Taylor, 1973; Alien, Blinks, and Pendergast, 19n). 

Julian (1971) attempted to quantify the relationship between the concentration of calcium and the 

percentage of maximum force a muscle was exerting. Examining the semitendinosus of frog he found a 

non-linear relationship between calcium ion concentration and the percentage of maximum force the 

muscle was exerting. These results were questioned because of the high potassium chloride 

concentrations in the bathing solution, (Edman,1979). Julian and Moss (1981) have repeated much of the 

methodology of Julian (1971) with careful control of the ionic strength of the bathing solutions and found 

similar results for variations in force with calcium ion concentration. A similar curve showing the same 

relationship between calcium ion concentration and percentage of maximum muscle force. was produced 

for the rabbit psoas muscle by Kawai (1982). 

Podolsky and Teichholz (1970) showed that for muscle forces greater than 20 percent of maximum, 

calcium ion concentration had no effect on muscle velocity. They suggested that calcium ion 

concentration controls the number of cross-bridges which may be formed but not the kinetics of the cross-
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bridges. Julian and Moss (1981) and Julian, Rome, Stephenson, and Striz (1986) suggested that the 

velocity of contraction of the muscle fibres is also controlled by the concentration of calcium ions but for 

the full range of muscle forces. Edman (1979) and Thames, Teichholz, and Podolsky (1974) have 

suggested that this mechanism only applies up to around one third of a muscle's maximum force. 

There have been a number of models of the dynamics of calcium activity. Taylor (1969) described calcium 

dynamics by a set of third order differential equations where the output force was a linear function of the 

concentration of calcium ions. This relationship has since been shown not to be the case for non·static 

muscle actions (e.g. Julian, 1971 ). The model of Gill is, Thomason, Le Fevre and Kretsinger (1982) 

included parvalbumin, which is a soluble calcium binding protein. The model was described by five first 

order non-linear differential equations. Their model showed that parvalbumin had little effect on the time 

course of calcium ion concentration during stimulation, but had a significant effect on removal of calcium 

ions during relaxation. 

5:3.8 ACTIVE STATE 

The active state of a muscle was originally defined by Hill (1938) as relating to the immediate ability of a 

muscle to exert a force as a result of stimulation. This active state declined gradually once the stimulus 

was removed. In 1949b Hill redefined active state as the tension which could be developed after 

stimulation without lengthening or shortening. This definition has a number of deficiencies. particularly 

because it takes no account of the influence of the SEC, and the force-velocity relationship of the muscle 

fibres, and because the active state is assumed to be achieved immediately upon stimulation. Hill (1965) 

said with reference to his own work, 

' .. .in the end one begins to wonder whether the term has any exact meaning I The facts are certainly not as 

simple as they seemed at first, but that is the usual history of research.' (page 68) 

Sandow, Taylor, and Preiser (1965) introduced the concept that the active state should be related to the 

number of calcium ions bound to the troponin. The definition of active state is one that has growing 

prevalence in the literature, and which is used in this study is:-

' ... we define the active state q to be the relative amount of Ca bound to troponin.' (page 139, Ebashi and 

Endo, 1968). 

Therefore when q-o there are no calcium ions bound to the troponin, or at least it is at its resting level, so 

the muscle is inactive. When q-1 the troponin is saturated with calcium ions, so the muscle is maximally 

active. Therefore for a given length and velocity the force developed by a contractile element is a function 

ofq. 

lt has been suggested by Rack and Westbury (1969) that there is a relationship between the length of the 

muscle fibres and the active state. This means that the active state caused by a certain concentration of 

calcium ions is dependent on the length of the fibre. These results have not been generally accepted, for 

example Julian, Moss, and Sollins (1978) questioned the findings because of the way in which the whole 

muscle was innervated, which they claimed did not guarantee that all the fibres were activated. 
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5:3.9 MODELS OF ACTIVATION 

This section is concerned with the models which have been used to represent activation dynamics. 

wani and Guha (1975) presented a model in which the force output of a muscle was dependent on the 

number of motor units recruited and the frequency at which those motor units were stimulated. Each 

motor unit was ascribed a different maximum tension threshold force which increased through the motor 

unit population with order of recruitment. As size increased there was a decrease in contraction time. 

They assumed that the force output of a motor unit increased linearly with increasing frequency of 

stimulation, although this relationship is in fact non-linear (Milner-Brown et al., 1973b). In their model, rate 

coding becomes the dominant factor for increasing muscle tension as more motor units are recruited. This 

corresponds well with the literature, but the model is constrained so that there is rate coding in the smaller 

motor units, which is not necessarily the case (Burke, 1980). This model does not consider calcium 

activity. 

Zheng, Hemami, and Stokes (1984) presented a model for a single motor unit. They presented an 

equation which relates muscle force to stimulation frequency, thereby eliminating the need to define a 

relationship between calcium activity and muscle force. 

Winters and Stark (1985) divided neuromuscular excitement into two parts: electromechanical coupling 

dynamics and neural excitation. Electromechanical coupling dynamics was represented by a time 

constant which effectively puts a delay into their model to allow for events such as neural conduction, 

passage through the neuromuscular junction, and the time for the muscle to conduct the impulse. The 

time constants were dependent on the muscle fibre type being considered. Neural excitation was 

determined from EMG, with muscle force being a direct linear function of activation. 

In a series of publications Hatze presented details of a model for activation dynamics (Hatze, 1977a; 

Hatze, 1977b; Hatze and Buys, 1977). The definition of Ebashi and Endo (1968) was adopted for the 

active state. Therefore the model developed was based around the dynamics of calcium. In Hatze's 

model the muscle is divided into motor units which are of increasing size, permitting the model to follow 

Henneman's size principle. Although Hatze and Buys (1977) divided the muscle into motor units of 

different sizes they did not allow for a decrease in contraction time with increasing size, which is a typical 

phenomena of motor units (eg. Mllner-Brown et al., 1973b). 

Hatze (1977a,b) determined the active state using a second order differential equation which incorporated 

a length dependent function. This length dependence was derived from the results of Rack and Westbury 

(1969) who showed that in the cat soleus the stimulus rate produces an 'S' shaped curve in relation to 

relative tension. They also showed that the stimulus rate required to produce tension varied with the 

length of the muscle. At short lengths a high stimulation frequency was required to produce a response, 

whereas near the optimum length of the muscle fibres a lower rate was required. This length dependent 

activation is not a generally accepted phenomena (see section 5:3.7). The relationship between the active 

state and muscle force was described by a first order differential equation. 
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Davy and Audu (1987) used a simplified version of the Hatze model to study muscle activity during 

locomotion. Muscles were not divided into motor units but recruitment of the muscle was considered as a 

fraction of the whole muscle activated. Their formulation is inconsistent because some equations 

appearing in the main body of the text are re-formulated in the appendix to the paper with different 

constants. 

5:3.1 0 MODEL OF ACTIVATION DYNAMICS 

In the next chapter details are given of a model to estimate the individual muscle forces of a number of 

muscles contributing to a moment about a joint. This model requires, given the previous active state of the 

muscle, the maximum and minimum active states which can be expected at the next instant in time, as a 

consequence of either an increase in stimulation (where possible) or the maximum possible reduction in 

stimulation. To do this two parts of the activation process are considered: effect of stimulation on the 

active state, and the relationship between calcium concentration and muscle force. In this section the 

model of activation dynamics used in this study is presented. 

lt was decided to assume that the muscle force of the elbow flexors is controlled by recruitment (Kukulka 

and Clamann, 1981; De Luca, et al., 1982; Denier van der Gon, et al., 1985) rather than rate coding. lt 

was therefore not necessary to model the individual motor units, but it was assumed that at any moment a 

certain proportion of the whole muscle was active. This may not be so when the muscle is fatigued but 

such conditions were not examined in this study. 

Pierrynowski and Morrison (1985b) presented equations that allowed the next level of active state of a 

muscle to be determined given the previous state and allowing tor either maximum stimulation or no 

stimulation. The equations were:-

For full stimulation q(t) • q(t-t.t) + [ 1 - exp( -t.t/TC) 1 . [1 - q(t-t.t) 1 

and for full relaxation q(t) = q(t-t.t) - [ 1 - exp( -t.t/TC) 1 . q(t-t.t) 

Where:-

q(t) - is the active state at time t 

t.t- is the sample interval 

and TC are time constants 

[5.221 

[5.231 

These constants were 0.034 for fast fibres, and 0.073 for slow fibres tor full relaxation, and 0.003 for full 

stimulation, for both fibre types. 

The different constants ascribed for the two muscle fibre types are appropriate, as Wells (1965) when 

examining rat muscle showed that there was a much quicker decay in active state in a muscle of 

heterogeneous fibre composition than in one of predominantly type I fibres. The curves resulting from the 

equations 5.22 and 5.23 are very similar to those produced by Miledi, Parker, and Sea low (1977) and 

Melzer, Rios, and Scneider (1986). Figure 5.6 shows the effect of stimulation on the active state using this 
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model. 

The isometric force a muscle can exert is a linear function of the active state; the following relationship can 

be stated:-

[5.24) 

Where:-

F1 is the maximum isometric force the muscle can exert at the current active state. 

But for dynamic muscle actions the relationship is more complex. The data of Julian (1971) demonstrates 

that the ratio a/F1 is dependent on the active state of the muscle. Hatze and Buys (19n) fitted an 

exponential function to the data of Julian (1971 ). The results of Julian and Moss (1981) also show such a 

relationship. Therefore:-

Where:-

a!F,- is the ratio scaled as a consequence of active state q 

and a/F1 is the ratio when the q -1. 

[5.25) 

Therefore once the active state is known it is possible to calculate the force output of the muscle using the 

relationships in equations 5.24 and 5.25. The graph in figure 5.7 illustrates this relationship. 

5:3.11 SUMMARY 

This section has reviewed the mechanisms by which muscle force is modulated. The relationship between 

motor unit type and muscle fibre type has been examined. A model of muscle activation was adopted 

which assumes that the force output of a muscle is determined by recruitment. The model is based on the 

principle of active-state. The model ignores the influence of fatigue on the activation and force output of 

muscle. 

5:4 DETERMINATION OF MUSCLE MODEL PARAMETERS 

For the muscle model described in earlier sections various parameters are required for each muscle. 

These parameters are LFR• LFO, LrR• F10, SK, V MAX• 'a', 'b', Ar, and E. I! is the purpose of the following 

sections to give the details of how these parameters were obtained. For the purposes of this study a 

number of different lengths were defined for each muscle: these are represented diagrammatically in 

figure 5.8. 

5:4.1 LITERATURE SOURCES 

This section reviews the sources of parameter values that were derived from the literature. 
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(NB - Arrows mark full stimulation of the muscle fibres for a period of 0.02 s; the second stimulation was 

for the fast fibres only.) 
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FIGURE 5.7- The effect of the active state on Hill's constant 'a'. 
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FIGURE 5.8 ·The dimensions of a muscle at rest and during a concentric muscle action. 
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5:4.1.1 TENDON FIBRE LENGTH RATIO 

Close (1965) gave the ratio of 0.35·0.40 for muscle fibre length to resting muscle-tendon complex length. 

Van Zuylen et al. (1988) calculated the fraction of muscle resting length which was muscle fibre for the 

major elbow flexors. These were: biceps 55 percent; brachial is 70 percent; and brachioradialis 65 percent. 

A similar ratio for the biceps was found by Am is et al. (1987) from the dissection of one cadaver. 

Friederich and Brand (1990) examined this ratio of muscle fibre length to muscle length in the lower limbs 

of two cadavers. They claimed 

"The ratios of muscle length to muscle fiber length show considerable variability between muscles, but 

remarkable consistency in a given muscle in various specimens." (page 93) 

Without any contradictory evidence it has been assumed that this consistency also applies to the upper 

limb. 

5:4.1.2 TENDON ELASTICITY 

There are a number of techniques that purport to measure series elasticity in vivo (e.g. Goubel, Bouisset, 

and Lestienne, 1971; Cnockaert, Petuzon, Goubel, and Lestienne, 1978). There are a number of 

problems with such techniques. A major problem is that it is very difficult to isolate the SEC of the different 

muscle groups, so values are for the net effect of all muscles crossing a joint. For modelling individual 

f!1Uscles such data are of little use. Therefore values for the elasticity of the tendon were adopted from the 

literature. Accurate data are required, the source of which must be considered. Blanton and Biggs (1970) 

compared the tensile strength of tendons from different sources. Their major findings were:-

1. Embalming enhanced the tensile strength. 

2. The was no significant difference between superior and inferior limbs. 

3. Extensors had greater tensile strength than flexors (in adults only). 

4. Foetal tendon tensile strength was less than adult tendon tensile strength. 

Bendict, Walker and Harris (1968) also demonstrated that the tensile strength of extensor muscle tendons 

was 20 percent greater than that of the tendons associated with flexors. Their tendon samples were all 

taken from the lower limb. 

From equation 5.21, the model of tendon elasticity, the following relationship can be stated:· 

'-rR . FM 
&1, = E.~ 

Where:-

&Lr ·is the change in length of the tendon 

LTR ·is the resting length of the tendon 

FM • is the force exerted by the muscle on the tendon 

Ar • is the cross-sectional area of the tendon 

and E is Young's modulus of elasticity for tendon. 

[5.26] 

Of the variables used in this model the resting length of the tendon is known, and the muscle force will be 

determined, but the cross-sectional area of the tendon and the Young's modulus of elasticity remain 
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unknown. 

The data of Ker et al. (1986) for tendon gave a value for Young's modulus of elasticity outside of the "toe 

region" of 1500 MPa, and reported tendon rupturing at a strain of 0.08. At maximum muscle isometric 

stress the strain in tendon has been shown to be 0.04 (Bobbert, Brand, de Hann, Huijing, van lngen 

Schenau, Rijnsburger, and Woittiez, 1986; Morgan et al., 1978). As the tendon model used is linear there 

is enough information to determine the remaining parameters. 

If the muscle is not pennated:-

FT· FM 

then:-

0.04 = 
F;o 

= ~E 

If F10 is known then it is possible to calculate a constant K:-

[5.8 re-stated] 

[5.27] 

[5.28] 

F10 is calculated using the procedure described in section 5:4.2. it Is not necessary to separate the cross­

sectional area of the tendon from the modulus of elasticity for the tendon. 

The two assumptions in this model are that the stress-strain relationship of tendon is linear, and that the 

relationship between the maximum isometric force of a muscle and the extension of that muscle's tendon 

at that force, is constant for different muscles. The first assumption is valid outside of the "toe region• of 

the stress-strain curve (Ker et al., 1986). There is some indirect evidence supporting the second 

assumption. 

The stress that a muscle can develop is greater when a muscle yields to a force than it is during either an 

isometric or concentric muscle action, the strain in the tendon is consequently greater. As the model 

parameters were determined assuming a tendon strain of 0.04 during a maximum isometric action, and as 

tendon ruptures at much higher strains (e.g. 0.08, Ker et al., 1986), there is still ample tendon stretch 

available for safety during an eccentric muscle action. Elliot and Crawford (1965) examined the tendons of 

adult rabbits. Their study reported that the ratio of maximum tetanic tension of a muscle to its tendon 

thickness was constant. This implies that for their sample the tendon properties were directly correlated 

with the muscle they were attached to. Such an assumption for the elbow flexors may be justified in light 

of the study of An, Hui, Morrey, Unscheid, and Chao (1981) who claimed that 

" .•. an interesting and potentially useful observation has been noticed during this study. The physiological 

cross-section of a muscle was found to be closely correlated to its tendon cross-sectional area.• (page 

667). 
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5:4.1.3 MUSCLE PENNATION 

From the dissection of four cadavers by Am is (1978) the angles of pen nation of the elbow flexors were 

calculated. The long head of the biceps showed no pennation, the short head at its resting length had a 

mean angle of pennation of 3.3 degrees. Both the brachialis and brachioradialis were parallel fibred. The 

influence of muscle pen nation on the force output of muscle fibres was examined In section 5:1.6. 

5:4.1.4 MUSCLE FIBRE TYPES 

Although there is a lot of data on the muscle fibre type distribution in the lower limbs, there is less data on 

the upper arm. One of the few studies to determine the muscle fibre type distribution for the upper limb 

was that of Johnson, Polgar, Weightman, and Appleton (1973). They took two muscle samples from each 

of six cadavers; one superficially and one from deep in the muscle belly. For muscles with more than one 

head "in several instances• they took samples from all the heads, but this was not the case for the biceps, 

and no samples were taken from the brachialis. The mean percentage of type 11 fibres was 53.6 for the 

biceps, and 60.2 for the brachioradialis. Nygaard, Houston, Suzuki, Jorgensen, and Saltin (1983) took one 

biopsy sample from each of four subjects from the biceps, they reported that the biceps contained a mean 

value of 58 percent type 11 fibres. MacDougall, Sale, Alway, and Sutton (1984) took one biopsy sample 

from 25 male subjects and found that the biceps consisted of 61 percent (± 5.1 percent) type 11 fibres. 

There is a lack of reliable information on muscle fibre type distribution although such information is 

necessary for muscle modelling. Though biopsy studies provide useful information, their accuracy is 

questionable. Blomstran and Ekblom (1982) in a methodological examination of the estimation of muscle 

fibre distribution using the muscle biopsy technique, have shown that at least two samples are required to 

reduce the variability of the muscle fibre type distribution estimation. Lexell, Henriksson-Larsen, and 

Sjostrom (1983) and Johnson et al. (1973) have shown that there is regionalization in the distribution of 

muscle fibre types, so that one fibre type predominates towards the centre of the limb. These limitations 

mean that accurate biopsy data is difficult to obtain. 

For the model the following values for the type 11 fibres were adopted: biceps 53.6 percent, brachialis 50 

percent, and the brachioradialis 60.2 percent. The value for the brachialis was assigned arbitrarily, the 

other values were based on the data of Johnson et al. (1973). The appropriateness of these values is 

assessed via a sensitivity analysis in section 5:5.2. 

5:4.1.5 FORCE-LENGTH MODEL PARAMETERS 

The parameters required for the force-length relationship were estimated using the procedure described in 

section 5:4.2. Initial estimates of these parameters were required, the estimation of these parameters is 

discussed in this section. The parameters to be estimated are: the optimum length of the muscle fibres 

(LFO), the maximum isometric force of the muscles (FIQ), and the shape parameter SK. 

The resting lengths of the muscle were measured in vivo using the procedures described in section 5:1.5, 

the portion of these lengths which were muscle fibre were estimated using the ratio data of van Zuylen et 

al. (1988), see section 5:4.4.1. Close (1972) estimated that the resting length of the muscle fibres was 
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120 percent of their optimal length. An et al. (1989) examined the muscles causing elbow flex ion and 

estimated the optimal lengths of the muscles. This information is not generally applicable because 

individuals' muscle lengths are unique. However, the authors more usefully reported that the flexion 

angles at which these optimal lengths occurred were 75, 78, and 80 degrees for the biceps, brachia lis, and 

brachioradialis respectively. These f~gures correlate well with the data of Edgerton, Roy and Apor (1986) 

who examined 14 subjects performing maximum isokinetic elbow flexions at a number of different 

velocities. They found that the maximum moment occurred at a mean joint angle of 80 degrees. The 

lengths of the three elbow flexors were computed at 78 degrees of flexion, and initial estimates made of 

the optimum lengths of the muscle fibres assuming that the tendon in series with each of the muscles was 

Inelastic. 

Table 5.3 present the details of four studies which computed the cross-sectional areas of the muscles 

causing elbow flexion. it was possible to express the mean cross-sectional areas of the muscles as 

relative ratios. Specifically the following ratios were calculated:-

2.9 

(BICEPS 

3.7 

BRACHIALIS 

1.0 

BRACHIORADIALIS) 

Assuming during a maximum isometric elbow flexion, that 78 degrees of elbow flexion is the angle at 

which all three muscles are closest to their optimal lengths, the muscles will all be exerting near their 

maximum tension. The muscle moment about the joint would therefore be approximately:-

MM = ! r1 • SM. CS~ 
i = 1 

Where:-

MM • is the muscle moment about the joint 

NM • is the number of muscles (3 in this case) 

r1 - is the moment arm of the ilh muscle 

SM- is the specific tension of muscle 

and CSA; is the cross-sectional area of lhe ith muscle. 

[5.29] 

As the approximate cross-sectional areas of the muscles are known and have been expressed in terms of 

the CSA of one of the muscles, equation 5.29 can be expanded and with the appropriate substitution the 

following equation results:-

MM = SM.CSAj2.9 r1 + 3.7 r2 + r3) 
[5.30] 

There is considerable debate in the literature as to the specific tension of muscle, e.g. Powell, Roy, 

Kanim, Bello, and Edgerton (1984), Ariano, Armstrong, and Edgerton (1972), and Witzmann, Kim, and 

Fitts (1983) have all suggested that fast and slow twitch muscle fibres have different specific tensions, 

whereas Hellander and Thulin (1962), Sexton and Gerston (1967), and Close (1972) have argued that 

they are the same. Spector, Gardiner, Zemicke, Roy, and Edgerton (1980) have proposed that this 
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TABLE 5.3- Summary of the cross-sectional areas (CSA) of the major elbow flexors. 

NUMBER OF BICEPS BRACHIALIS BRACHIORADIALIS 

STUDY CADAVERS CSA (cm2) CSA (cm2) CSA (cm2) 

Braune and 4 9.0 12.4 3.0 
and Rscher (1989) 

Amis (1978) 4 5.7 5.6 1.7 

An et al. (1980) 4 4.6 7.0 1.5 

Edgerton et al. (1986) 4 3.8 4.7 1.8 

Group Mean 16 5.8 7.4 2.0 
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difference occurs only when the slow twitch fibres are found in a muscle of predominantly fast twitch 

muscle fibres. These studies have estimated specific tension from collections of fibres. There are a 

number of methodological problems with such an analysis. lt is not possible to guarantee that all the fibres 

are activated. If the muscle has any degree of pennation, the force the fibres develop will be different from 

that measured at the tendon. Therefore specific tension values from single fibre preparations are 

preferable to those from whole muscle or many fibred preparations. L.annergren and Westerblad (1987), 

and Stephenson and Williams (1981) from the results of the analysis of single fibre preparations reported a 

specific tension of muscle of 350 kPa. 

As the difference between the specifiC tension of fast and slow twitch fibres has not been conclusively 

established their maximum specific tensions were assumed equal. This means that the specific tension of 

muscle does not need to be explicitly known to solve equation 5.30. Solution of this equation and use of 

the ratio information derived earlier gives estimates of the maximum isometric tensions of each of the 

three elbow flexors. 

The shape parameter SKin the model of Hatze (1981 b) has to be greater than or equal to 0.28, with no 

upper limit specified. SK was arbitrarily assigned an initial value of 0.50. 

5:4.1.6 HILL'S CONSTANTS 

Hill's constants are normally expressed as ratios of the maximum isometric force and the maximum 

contraction velocity of a muscle. In an extensive review of the properties of muscles, Close (1972) 

reported the normal range tor the a/F1 ratios as 0.25-0.30 for fast twitch muscle fibres, and 0.15-0.17 for 

slow twitch muscle fibres, in mammalian muscles. 

Herzog (1987a) used an optimization approach to find the values of 'a' and 'b' for his model of four leg 

extensor muscles executing a leg extension. Using Hill's model 'a' and 'b' were adjusted until the results of 

the model were as close as possible to the observed output of the leg extensors under various isokinetic 

conditions. No account was made for possible different fibre types in the leg extensors. 

The procedure of Herzog (1987a) is attractive but has certain restrictions. lsokinetic contractions do not 

occur naturally. Even if the joint angle changes at a constant velocity this does not guarantee constant 

velocity in the leg extensor muscle fibres, but this constant velocity was assumed in the study of Herzog 

(1987a). With changing joint angle the moment arms of the muscles also change and this has a potential 

effect on the velocity of the muscle. Even if muscle velocity remains constant this does not mean that 

muscle fibre velocity is constant. Muscle velocity is the sum of tendon velocity and muscle fibre velocity, 

but these two values are not necessarily equal at any instant In time (e.g. Bobbert et al., 1986), with the 

former being dependent on muscle force, which as has been established is a non-linear function of 

muscle fibre length and velocity. At the higher velocities there may be no involvement of the slow fibres 

which will not be able to contract actively at such velocities. In this case adjustment of 'a' and 'b' will be for 

the fast fibres, whilst at lower velocities where both fibre types are involved, adjustment of 'a' and 'b' will be 

for a combination of fast and slow fibres. The optimization algorithm attempted to adjust 'a' and 'b' across 
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a wide range of velocities. A superior approach would have been to estimate 'a' and 'b' for the fast muscle 

fibres at the high isokinetic velocities. This would have given an estimate of the distribution of muscle fibre 

types and the constants 'a' and 'b' for the fast fibres. Slower isokinetic velocities could have been used to 

calculate the constants for the slow fibres, given that the contribution from the fast fibres would already 

have been known. 

The values of the constants 'a' and 'b' are dependent on the maximum isometric force (F1) of the muscle 

and the maximal contractile velocity (V MAxl· The maximum isometric force and maximal contractile 

velocity are very sensitive to variations in temperature, therefore so are 'a' and 'b'. Ranatunga 

(1983, 1984) examined the effect of a ten degree change in temperature on the shortening velocity of rat 

muscle. (010 is the Temperature CoeffiCient- the measure of the increase in the rate of a process 

produced by raising the temperature by 1 o degrees Celsius). Changing the temperature from 25 to 35 

degrees Celsius had a 01 0 value for fast fibres of 1.8, and 2.0 for slow fibres. Edman (1979) working with 

isolated frog muscle found a 010 of 2.7 for velocity of shortening, and 1.2 for maximum tetanic force for 

starting temperatures from 2 to 1 0 degrees Celsius. 

Considering the limitations of the procedure of Herzog (1987a) and the lack of other well established 

procedure, the values of 'a' and 'b' were taken from the literature. In light of the preceding review it was 

required that the muscle from which the parameters had been determined should be human skeletal 

muscle, examined at a temperature of 37 degrees, and that fast and slow fibres should be differentiated. 

A study that meets these criteria is that of Faulkner, Clafin, and McCully (1986). The ratio of a/F1 was 

computed, fitting the data to Hill's equation by minimising the sum of squared errors in the velocity 

dimension. For type 11 fibres the value was 0.25 and for the type I fibres 0.15. The maximum Isometric 

force was computed using the procedure detailed in section 5:4.2, and the maximum shortening velocity 

was computed using the procedure given in the following section. Given these two values 'a' and 'b' were 

obtained from:-

a.VMAx • b.F1 [5.31) 

5:4.1.7 MAXIMUM VELOCITY OF MUSCLE 

The maximum velocities of the muscle fibres are required for input into Hill's equation. The maximum 

velocity of shortening is often expressed in terms of the number of resting fibre lengths per second (fl.s-1). 

Faulkner et al. (1986) examining bundles of human muscle fibres found that type 11 fibres had a maximum 

velocity of shortening of 6 fl.s·1, and type I fibres 2 fl.s-1. The ratio of these velocities corresponds well 

with animal studies. Close (1964) examined the predominantly slow twitch soleus and the predominantly 

fast twitch extensor digitorum longus of female Wistar rats. The speed of shortening of the extensor 

digitorum longus was three times faster than the soleus. The values of Faulkner et al. (1986) were used in 

this study. 

5:4.1.8 SUMMARY 

The preceding sections have detailed the sources of the parameters used in the muscle model. For those 

parameters determined experimentally the initial values required in the estimation procedure have been 
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presented. Many of these parameters are at best only approximations; their influence on the model will be 

assessed by a sensitivity analysis in section 5:5.2. 

5:4.2 EXPERIMENTAL DETERMINATION 

The previous section has provided information on most of the muscle parameters. The following 

parameters were determined experimentally: 4-0 , F10, and SK. This section describes the procedure used 

to estimate these parameters. 

The resultant joint moment was determined tor maximum isometric contractions of the elbow flexors at 

different degrees of elbow flexion. The subjecfs upper body and upper arm were fixed while the degree of 

elbow flexion varied. The subject pulled on a handle using the elbow flexors only. The handle was 

attached to the force plate (Kistler 9281 B12) by an inelastic steel cable. The force of the pull on the 

handle was measured by the force plate, which was connected to an analogue to digital converter 

interfaced to an Acorn BBC computer. The force was sampled at 1 00 Hz for a sample period of 1 0 

seconds, and the maximum force calculated, this was assumed to reflect the force at the hand grasping 

the handle. Rest was allowed between each of twelve trials which were performed in a random order to 

reduce and distribute the effect of fatigue. Trials were rejected if the maximum force recorded via the 

force plate was not maintained for three seconds; if the subject considered the trial to be non-maximal; or 

if the subject reported wrist movement. The position and orientation of the upper arm, forearm, and hand 

were determined using the procedures described tor the static data capture. The resultant joint moment 

was calculated assuming the reaction forces at the hand were in static equilibrium with the joint reaction 

forces. Using the assumptions discussed in section 4:4.2 the resultant joint moment was considered to be 

the net muscle moment about the elbow joint. 

From the position and orientation of the upper arm and forearm, and using the procedures described in 

sections 5:1.5 and 5:1.7, the lengths and moment arms of the modelled muscles were determined tor each 

of the trials. The net muscle moments, muscle lengths, and moment arms were all known for the 12 

different joint angles. The following relationship can be stated:-

Tmodel = ! rr .F1a .exp[-('\~ 'Y] 
I= I (5.32] 

Where T model is the muscle moment determined from the muscle model 

The remaining variables have been described elsewhere, the addition of the i subscript provides a 

reference to a specific muscle. 

If estimates are made of the muscle parameters the accuracy of these muscle parameters can be 

assessed by evaluating the difference between the muscle model predicted moment and the measured 

moments, over a number of trials at different joint angles. This can be stated as:-

u = 

[5.33] 



Where:-

U - is 1he sum of the square of 1he difference between 1he experimentally measured moments and the 

muscle model calculated moments 

NT- is the number of experimentally determined moments 

T reaJJ - is 1he experimentally determined moment for trial j 

and T m-J is 1he moment estimated by 1he muscle model for trial j. 

189 

Equation 5.33 is suitable to use as an objective function in an optimization routine, where the task would 

be to minimise U by systematically varying 1he nine unknown muscle parameters. More details of 1he 

optimization procedure used are given in section Appendix D. For 1he optimization routine initial estimates 

of the parameters were required and constraints were placed reflecting the expected maximum and 

minimum values of 1he parameters. 

The optimum leng1h of the fibres was constrained to be less than the resting leng1h of the muscle fibres 

and greater than half of 1his leng1h. The initial estimate of the optimum length was set at 1he length of the 

muscles at 78 degrees of flexion, minus 1he resting leng1h of each muscle's tendon (see section 5:4.1.5). 

The maximum isometric force of the muscles was estimated using the procedure described in section 

5:4.1.5. The upper and lower limits were set at twice and half of 1hese initial estimates respectively. The 

value of SK was constrained by the model used, see section 5:2.2, and its initial value was set to 0.50. 

Equation 5.32 requires the length of 1he muscle fibres for each trial. For 1he first run of 1he optimization 

routine it was assumed that 1he tendon in series with each of 1he muscles was inelastic, 1herefore:-

[5.34) 

After the first run 1he new estimates of the muscle parameters were used to estimate 1he muscle fibre 

lengths for each of the trials. The following relationship was used:-

[5.35] 

The force 1he muscle fibres could exert was calculated using 1he new parameter 1hat was set assuming 

the tendon was at its resting length. Once a force had been computed 1he leng1h of 1he tendon (Lr) was 

calculated using equation 5.21. A new estimate of the leng1h of 1he muscle fibres was 1herefore obtained, 

so 1he muscle force was again estimated using 1his new muscle fibre length. Before each new run of 1he 

optimization routine, the computation procedure to estimate the muscle fibre lengths was repeated until 

1he change in tendon leng1h was insignifiCant (<0.0001 m). Using 1he revised set of muscle parameters 

and muscle fibre lengths, equation 5.33 was again minimised, giving new estimates of 1he parameters. 

This whole procedure was repeated until U could not be minimised further. The parameters determined 

using this procedure are presented in table 5.4. 
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TABLE 5.4 ·The muscle parameters determined for the force-length model of the elbow flexors. 

PARAMETER BICEPS BRACHIAL!$ BRACHIORADIAL!S 

~R(m) 0.301 0.126 0.280 

4R(m) 0.166 0.088 0.182 

LrR (m) 0.135 0.038 0.098 

4o(m) 0.142 0.085 0.143 

SK 0.280 0.280 0.378 

F,o (N) 600.6 1000.9 262.2 

(N. B.· the remaining muscle model parameters can all be determined from these values.) 
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lt was diffiCult to assess the accuracy of these muscle parameters. The final value of U in equation 5.33 

was 1.11. The tightness of the fit of the parameters to the test data was good considering that the 

experimentally determined moment values can be considered to contain errors. These parameters are 

valid in that they gave a good fit to the experimentally determined muscle moments. But it is possible that 

there were other parameter combinations which may have produced a minimum. To test whether the 

result was a minimum, a second optimization routine was used on the same problem to see if it arrived at 

the same solution (see Appendix D for details of this routine). The same results were produced from both 

algorithms indicating that this was a minimum solution. 

The solution space was limited by the constraints placed on the variables. Therefore the solution is part 

dependent on the validity of the constraints placed on the model parameters. The constraint placed on SK 

was dependent on the model used to represent the force-length relationship. The upper constraints on the 

optimal lengths were only that they should be less than the resting length of the muscle fibres, which is 

reasonable because it is unlikely that the optimal lengths of the muscle fibres would be greater than their 

resting lengths. If the optimal length of the muscle fibres was greater than or equal to the resting length of 

the muscle fibres the muscle would not be able to exert its maximum tension in vivo. The lower constraint 

was arbitrarily assigned to speed up the convergence of the algorithm by limiting the solution space. 

Validation of this assumption was obtained when the algorithm was re-run with the lower constraint being 

that the optimal muscle fibre length be equal to or greater than zero, and the same parameters were 

determined. 

The final constraint was placed on the maximum isometric force of each of the three muscles. The 

constraint on this parameter was based on cross-sectional area data from the literature (section 5:4.1.5). 

The initial estimates were based on this information, see section 5:4.1 .5. The maximum values were set 

at twice these initial values, and the minimum at half these initial values. These constraints were used to 

reduce the solution space and to stop the optimization routine selecting one muscle only to produce all the 

joint moments. The resulting ratio of the muscle forces was approximately 2.3 : 1.0 : 3.8 (biceps, 

brachioradialis, brachialis). These ratios are similar to those indicated in table 5.3 for the cross-sectional 

areas of the muscles. 

The force-length relationships of the three elbow flexors are presented in figure 5.9, using the parameters 

determined in this section. 

5:5 MODEL VALIDATION 

In the preceding sections the parameters for the muscle model have been presented. To validate the 

model of the force-length relationship an independent test is required, as the tightness of the fit of the 

model to the experimental data in not an independent assessment. The parameters for the force-length 

model were also used to determine the parameters for the force-velocity model. Therefore a validation of 

the muscle model under dynamic conditions is required, which would effectively assess both the force­

length model, and force-velocity model simultaneously. To accomplish a validation of the model a 

simulation of movement was undertaken, using the muscle model. By comparing the results from the 
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simulation with the actual performance, an assessment of the validity of the model could be made. The 

following sections present the details of the simulation and the results. 

5:5.1 SIMULATION PROCEDURE 

Trial #4 was a dum bell curl at maximum speed. lt was therefore assumed that during part of this 

movement the three elbow flexors in the model were being maximally stimulated simultaneously. As the 

activity started with the dum bell still and no movement of the upper arm, during the initial phase of the curl 

the muscles are assumed to have been at non-maximal stimulation but to have rapidly reached a 

maximum once the movement started. As the initial degree of activation in each of the muscles remains 

unknown, it is only valid to assume maximum activation during the middle phase of the activity. After the 

middle phase the subject must slow the dum bell down to avoid personal damage at the extreme of joint 

flexion. A simulation routine was developed which permitted the estimation of the muscle moments during 

this middle phase of the dumbell curl, assuming maximum activation. By comparing the results from the 

simulation with the muscle moments computed using inverse dynamics, it was possible to assess the 

accuracy of the parameters used for the muscle model. 

The force in the tendon is equal to the force in the muscle fibres, if the fibres are not pennated. As the 

model used for the stress-strain relationship of tendon is linear, the stiffness of the tendon is constant for 

all lengths of the tendon, and is given by:-

dFT dFM 
K = dl, = dt,. 

Where K is the stiffness of the tendon 
[5.36] 

The rate of change of the muscle force is the product of tendon stiffness and the rate of change in length 

of the tendon. The following relationship can be stated:-

[5.37] 

The rate of change in tendon length is equal to the difference between muscle velocity and muscle fibre 

velocity:-

[5.38] 

Re-arrangement of equation 5.18 allows muscle fibre velocity to be calculated from muscle force:-

b(~ a) 
VF = ( ) - b 

Fm + a 
[5.39] 

Substitution of equation 5.38 into equation 5.37 gives the following:-

dFM ( ) dt = K VM - VF 
[5.40] 



194 

The ordinary differential equation in equation 5.40 was solved using a variable step-size fifth order Runge­

Kutta technique (Press. Flannery, Teukolsky, and Vetterling, 1986). The length of the muscle was 

computed for each sample interval using the procedures described in section 5:1.5. Differentiating the 

length of the muscle with respect to time using the spline routine described in section 3:4.5 gave the 

velocity of the muscle (V M). The velocity of the muscle fibres (V F) was calculated using equation 5.39. To 

reduce the size of the integration step the data was interpolated over a new time base (at • 0.0001 ). At 

each sample interval once the muscle force had been computed the new length of the muscle fibres was 

computed, by integrating muscle fibre velocity. This new muscle fibre length was used to compute the 

maximum isometric force (F1) for input into equation 5.39, and this value of maximum isometric force was 

used for the next integration step. The initial values for the muscle forces were set for the integration 

assuming that each of the muscles was exerting a maximal isometric action. 

This procedure was repeated for each of the muscles in the model. Once the muscle forces had been 

computed, this information was combined with the muscle moment arm information to estimate the muscle 

model moment:-

T = ~~ •.. FMI model £..i 
j = 1 

Where:-

T model - is the muscle moment estimated by the muscle model 

NM - is the number of muscles 

r1 - is the moment arm of the ilh muscle 

and Ft.t is the force exerted by the ilh muscle. 

5:5.2 RESULTS 

[5.41) 

To assess the accuracy of the model the moments computed using it were compared with the moments 

computed using inverse dynamics. Because the model assumed maximal activation throughout the 

movement, and this was only assumed to occur in the middle section of the actual movement, comparison 

between the two data sets was only performed for the middle section of the data, commencing after 30 

percent of the activity and stopping after 80 percent. Figure 5.1 0 shows the moment predicted using the 

model and that produced using inverse dynamics. 

The sensitivity of the model to the parameters was assessed by varying certain parameters in the model 

and seeing the change in the model predicted moments compared with those produced by inverse 

dynamics. The results of this analysis are presented in table 5.5. If all the muscle fibres were considered 

to be type I fibres, the difference between the muscle model produced moment and that produced by 

inverse dynamics was greater than with the original parameter set. If all the fibres were considered to be 

type 11 fibres the decrease in accuracy was not as great as when the fibres were considered to be all type I 

fibres. When the fibre type distribution for each of the muscles was assumed to be 50 percent for each of 

the two fibre types there was an increase in accuracy of the muscle model to inverse dynamics fit. This 

either indicates that this ratio was closer to the actual fibre type distribution of the subject than the ratio 

originally chosen, or that changing this parameter in the model accounted for some unknown deficiency in 
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FIGURE 5.10- The muscle moment for a dumbell curl (trial #4) predicted using a muscle model, and that 

predicted using inverse dynamics. 
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TABLE 5.5 ·The difference between the muscle moment at the elbow joint during flexion, computed using 

a muscle model and inverse dynamics, when the parameter values for the muscle model were varied. 

CHANGE IN MEAN %ROOT MEAN 
MODEL DIFFERENCE STANDARD SQUARED 

PARAMETER 1Nl DEVIATION DIFFERENCE 

Original parameter set 1.37 2.22 6.59 

All fibres considered type I 16.80 5.07 44.37 

All fibres considered type 11 ·5.94 3.87 17.91 

50% type I, and 50% type 11 fibres 0.37 2.15 5.50 

Tendon strain 0.08 at F10 ·3.39 3.49 12.28 

Tendon inelastic 0.83 3.70 9.55 

Pedotti parameter set 0.12 3.54 8.93 

Muscle moment arms ·0.49 2.38 6.12 
increased by 5% 

Muscle moment arms 3.23 2.15 9.81 
decreased by 5% 

Muscle moment arms ·2.36 2.59 8.85 
increased by 1 0% 

Muscle moment arms 5.10 2.16 14.00 

decreased by 1 0% 
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one or more of the other parameters in the model. 

Tendon elasticity was changed to assess the sensitivity of the model to this parameter. In the muscle 

model of Bobbert et al. (1986) the tendon was assumed to exhibit a strain of 0.08 when the muscle 

exerted its maximal isometric force, therefore in the present model this value was substituted for the value 

of 0.04 in equation 5.27. The muscle model predicted muscle moment compared much less favourably 

with the inverse dynamics predicted moment when tendon had this degree of elasticity. The performance 

of the model was investigated when the tendon was assumed inelastic. In this case the tendon remained 

at its resting length, and muscle fibre velocity was equal to muscle velocity. The model fit was more 

accurate for this parameter change than the other parameter change for the tendon model, but was not as 

accurate as with the original parameter set. 

Pedotti, Krishnan, and Stark (1978) included a muscle model in their examination of the muscle forces 

during human walking. For this model they assumed a/F1 was equal to 0.30 for all the muscle fibres 

making up the muscle, this is higher than the value used here. They also assumed that the maximum 

velocity of the muscles was 2.5 fl.s·1 (resting fibre lengths per second). These parameter values were 

substituted into the model. The mean error was very small with these values but the standard deviation of 

the difference was much larger, as was the %RMS difference, than with the original parameter set. 

To determine the moment caused by each muscle about the joint it is necessary to calculate their moment 

arms. The final analysis looks at the sensitivity of the model to changes in this variable. For each sample 

interval the moment arm was either increased or decreased by five or 1 0 percent. These changes 

generally resulted in an increase in the difference between the two data sets. In the case where the 

moment arms were increased by five percent there was a small decrease in the difference between the 

two data sets, which could be explained by some error in the moment arm information or because the 

changes in this variable accounted for a deficiency in one or more of the other parameters. The moment 

arms were calculated assuming that the muscles acted in straight lines, whereas the line of action of the 

muscles and therefore their moment arms could be altered by a number of factors, see section 5:1.4. 

There may have been errors in the location of the origins and insertions of the muscles. Therefore the 

precise source of any errors in the moment arm information is hard to identify. The change in the 

accuracy due to increasing the moment arm by five percent did not provide a large increase in model 

accuracy compared with the original parameter set. 

The preceding analysis constitutes a limited sensitivity analysis on some of the parameters and one of the 

variables in the muscle model. This analysis has indicated that the original parameter set produced 

estimations of the muscle moments in close agreement with the muscle moments as determined by 

inverse dynamics. The muscle fibre type distributions were the parameters in the original parameter set 

based on the least information. When these parameters were changed so the muscles all had equal 

proportions of type I and 11 fibres, the muscle model showed closer agreement with the muscle moments 

computed using inverse dynamics. Therefore for all subsequent analyses the fibre type distribution was 

changed to 50 percent type I and type 11 fibres for all the muscles. 
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This sensitivity analysis was limited as the parameters have only been changed for all muscles 

simultaneously, and for a limited number of parameter value changes. This was necessitated because the 

muscle force estimation procedure was very slow, taking over 30 minutes of CPU time per muscle for the 

trial investigated. However the analysis performed here has shown that the model gives reasonable 

accuracy in predicting muscle moments during maximal activity. The muscle model and parameters are 

therefore presumed to have a degree of validity, although they were examined here for a maximal activity, 

and in the next chapter they are used to examine sub-maximal activity. 

5:5.3 MODEL ASSUMPTIONS 

There were a number of assumptions in the muscle model developed in this chapter. This section 

Identifies those assumptions which are pertinent to the simulation procedure just described. The model 

assumed that only three muscles were responsible for elbow flexion, and these muscles were assumed to 

be maximally active. There were a number of variables used as inputs to the model: moment arms, 

muscle lengths, and muscle velocities. The accuracies of all of these variables are dependent on the 

accuracy with which the estimations of the origins and insertions of the muscles were calculated, and on 

the assumption of a straight line of action between origin and insertion. To obtain the velocity of the 

muscle it was necessary to differentiate the muscle length with respect to time. Such differentiation is a 

source of error as discussed in section 3:4.8. Finally the model had to assume that tendon elasticity was 

constant, and that by comparison muscle fibre elasticity was insignificant. 

5:5.4 SUMMARY 

The earlier sections of this chapter presented a muscle model, these later sections have been concerned 

with the validation of this model and its parameters. The model parameters, although many are estimates, 

demonstrated a reasonable accuracy in predicting muscle forces during maximal activity. 

5:6 MUSCLE ENERGETICS 

The energy necessary for the interaction of the contractile proteins comes directly from adenosine 

triphosphate (ATP). ATP is a high energy compound which when broken down to adenosine diphosphate 

and a phosphate group produces energy. There are four potential sources of ATP: that stored in the 

muscle; from the breakdown of phosphocreatine; and from aerobic, and anaerobic glycolysis. The 

contractile proteins utilize this energy to do work, a by product of which is heat. 1t is the purpose of this 

section to review the sources of heat and work in active muscle, and to present expressions which 

estimate the rate of energy consumption. These expressions will be used in the next chapter to formulate 

an objective function used to estimate muscle forces. 

There are three components associated with heat production in a muscle. 

1. Resting heat- which provides the base line, and is constant. 

2. Initial heat- produced when a muscle is active. 

3. Recovery heat- liberated after contraction, as the muscle recovers. 

By studying the liberation of these heats, which have been assumed to mirror the energetlcs occurring in 
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the muscle, greater understanding has been achieved of the energetics of a muscular contraction. The 

initial heat varies depending on whether the muscle is acting isometrically, concentrically, or eccentrically. 

This review will focus on the initial heat. 

5:6.1 SOURCES OF ENERGY CONSUMPTION 

Mlmmaerts (1969) showed that the rate of energy consumption as a result of a muscular contraction was 

the sum of five components:-

E • AHR + MMHR + MSHR + MWR + DHR 

Where:-

E- is the rate of energy consumption of an active muscle 

AHR - is the activation heat rate 

MMHR- is the muscle maintenance heat rate 

MSHR - is the muscle shortening heat rate 

MWR - is the mechanical work rate of muscle 

and DHR is the rate of energy dissipation in the passive structures. 

[5.42) 

Stein, Oguztoreli, and Capaday (1986) formulated a similar expression but included a term for the rate of 

energy expended at rest. This rate was not included in the above expression as only the heat required 

above resting level for a muscular contraction was considered. 

Gibbs (1978) was concerned about the division of the heat produced by muscle into various components 

"The adoption of such a format does not imply a belief that the basis for such a subdivision is interpretable 

at a molecular level. lt seems that at best these equations are phenomenological and may obscure rather 

than enhance thermodynamic understanding of how muscle functions.· (page 185). 

As endeavours are made to further understand muscle function, these divisions are still made and are 

justified as they account for all of the heat released during a muscular contraction. 

The final term in equation 5.42 is due to the rate of energy dissipation in the muscles due to the viscous 

component of muscle. The contribution to E from DHR is small compared with the other sources (Hatze 

and Buys, 1977) and so is ignored in the model developed here, and therefore it is not further discussed in 

this review. 

5:6.2 MECHANICAL WORK 

Work is done when a force moves an object through a distance, therefore the mechanical work rate of a 

muscle is the product of the muscle force and its contraction velocity. The expression for the work rate of 

muscle is:-

[5.43) 

Where:-

FM - is the force exerted by the muscle fibres 

and V F is the velocity of contraction of the muscle fibres 



5:6.3 ACTIVATION HEAT 

Hill (1949a) defined the activation heat as a 

• ... 'triggered' reaction setting the muscle in a state in which it can shorten to do work." (page 21 0) 

The knowledge of the mechanisms causing this heat have evolved since the definition was suggested. 

The process of activation involves the release of calcium ions, the binding of these ions to the troponin, 

and the other reactions associated with initiating the cross-bridge cycle. Woledge (1971) related the 

activation heat rate to the release and uptake of the calcium ions by the sarcoplasmic reticulum. 

Activation heat was defined by Homsher, Mommaerts, Ricchiuti, and Wallner (1972) as 
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• ... the thermal accompaniment of the liberation of calcium into the sarcoplasm, its movements to and from 

the myofibrillar binding sites and its return to its storage site by an ATP dependent transport system in the 

sarcoplasmic reticulum." (page 602). 

This is the only portion of the heat production not associated with the consequences of the interaction of 

actin and myosin. Woledge (1971) gave the following equation for quantifying activation heat rate:-

AHR- H •. exp(-a.t) 

Where:-

AHR - is the heat rate due to activation 

Ha - is the activation heat rate constant 

a - is a constant 

and t is time. 

[5.44] 

To study this heat the muscles are stretched before stimulation so that cross-bridges cannot form between 

the actin and myosin filaments, therefore no tension develops and the heat liberated is entirely due to the 

activation heat. Homsher et al. (1972) used such a protocol when studying the activation heat in frog 

semitendinosus muscles and found that activation heat accounted for 20-25 percent of the total heat of an 

isometric contraction at optimal length. Similar results were presented by Smith (1972). Kean, Homsher, 

Sarian·Garibian, and Zenplenyi (1976) during a live second stimulus of muscle, found that 50 percent of 

the activation heat was accounted for by ATP splitting. The remaining heat was assumed to come from 

the activation process involving calcium, for example the release of the calcium, and the binding of the 

calcium to the troponin, and to the parvalbumin. Fraser (1972) used infra-red to measure the temperature 

of amphibian skeletal muscle, and suggested that the binding of the calcium to the troponin-tropomyosin 

contributed to the activation heat. 

5:6.4 MAINTENANCE HEAT 

Maintenance heat is the heat required to maintain a force. it is therefore dependent on the amount of 

tension in the muscle. 

Aubert (1956) modelled the heat production during an isometric contraction, excluding the activation heat, 

with the following expression:-

MMHR • Hl.exp(-lt) + Hb [5.45] 



Where:-

MMHR- is the maintenance heat rate 

HI - is the labile heat rate 

L- is a labile heat constant 

I- is time 

and Hb is the stable heat rate. 
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The rate of labile heat production becomes stable during the first five seconds at zero degrees Celsius in 

frog muscle. The claim ofWoledge (1971) that labile heat is associated with activation is confirmed, as 

the amount of heat is independent of length and tension in the muscle. Woledge also claimed that stable 

heat is due to actin and myosin interaction. Abbot! and Howarth (1973) confirmed that 75-80 percent of 

the stable heat is due to the actin and myosin reaction, whilst the remainder is dependent on activation. 

Early work by Hill (1938) examined the rate of energy consumption in maximally active muscle, and 

identified all the sources of heat that Mommaerts (1969) identified except for the rate of dissipation of heat 

in the passive structures. Hill (1938) presented the following equations for the rate of energy expenditure 

for a fully active muscle:-

Where:-

e - is the rate of energy consumption 

and h is rate of heat production 

The activation and shortening heat were shown to be the sum of:-

h -hm+MSHR 

Where:-

hm - is the maintenance and activation heat 

Hill (1964b) re-examined this work and showed that the maintenance and activation heat were 

approximately equal to the product of the force velocity coefficients 'a' and 'b'. 

[5.46] 

[5.47] 

[5.48] 

Woledge (1971) examined the use of the product 'a' and 'b' as the maintenance heat. Heat measurements 

have only been made on the muscles of a few species of animals. He found this assumption to be 

supported by experimental evidence from frog (Hill, 1938) and tortoise muscle (Woledge, 1968), but not for 

muscle from chicken (Cranfield, 1971 ). This assumption has not been validated for human muscle, 

although similar energetic modelling based around this assumption has been undertaken (e.g. Hatze and 

Buys, 19n; Davy and Audu, 1987). 
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5:6.5 SHORTENING HEAT 

To discuss the shortening heat it is necessary to describe the Fenn Effect. Fenn (1923,1924) found that 

the total energy liberated during a contraction (the sum of the heat released and the work performed) 

increased if the muscle was allowed to shorten and therefore to do work. Prior to this it had been believed 

that a set amount of energy was available as a consequence of stimulation, and that this energy would 

appear as heat and work, with the precise ratio depending on the conditions under which the muscle 

operated (e.g. load, length change). This result showed that the events associated with a muscle action 

are dependent on chemical changes, and that these changes are regulated by the load on the muscle and 

the amount of shortening. The measures made in these early studies of Fenn were erroneous due to a 

calibration error (Hill and Woledge, 1962), but the principle presented is still upheld. 

The shortening heat rate is the heat produced by the muscle as it shortens. lt is proportional to the degree 

of activation and the velocity of shortening 

As muscle fibres shorten the muscle liberates heat. Curtin and Woledge (1978) attributed this heat to the 

increased rate of cross-bridge cycling, which leads to an increased rate of ATP splitting. 

Hill (1938) claimed that the shortening heat rate for a fully active muscle is:-

MSHR· a.VF 

Where:-

a - is the constant from Hill's force-velocity equation 

and V F is the absolute velocity of shortening . 

[5.49] 

Hill (1964a) showed after more sensitive measurements of isolated muscle that the coefficient 'a' was not, 

as he had originally believed, the coefficient of the shortening heat. The term alpha was introduced 

Where:-

ex- 0.18 F1 + 0.16 F [5.50] 

Therefore the rate of heat production becomes:-

h • hm + Vp.(0.18 F1 + 0.16 F) [5.51] 

or [5.52] 

Woledge (1968) suggested that the ratio atF1 is related to the thermodynamic efficiency of muscle. Wend! 

and Gibbs (1973) examining rat muscle claimed that slow twitch muscle fibres are more efficient than fast 

twitch muscles, at sustaining a contraction. This 1973 study seems to verify the claim of Woledge, as 

results from various sources (e.g. Wells, 1975, Close, 1972, and Faulkner et al., 1986) report the type 11 

fibres having a higher atF1 ratio than type I fibres. 
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Homsher and Kean (1978) found that the shortening heat is influenced by the degree of filamentary 

overlap. This relates to equation 5.51 as according to the work of Gordon et al. (1966) the F1 will vary with 

the degree of filamentary overlap. 

5:6.6 HEAT OF ECCENTRIC MUSCLE ACTION 

So far the discussion has only dealt with concentric muscle actions; in this section the heat production 

during an eccentric muscle action will be briefly discussed. Abbot!, Aubert, and Hill (1951) and Abbot! and 

Aubert (1951) showed that as muscles were subjected to a slow stretch the rate of heat production 

increased, but the proportion of heat output to work done decreased compared with equivalent concentric 

studies. Hill and Howarth (t 959) showed that by stretching an active muscle much faster than in the study 

of Abbot! et al. (1951) it was possible to reduce the heat given out by the muscle, and in certain conditions 

it was possible to reduce this heat to zero. Chemical measurements on stretched muscles have shown 

that there is less ATP usage during these contractions than during an isometric contraction (Curtin and 

Davies, 1975). Gillis and Marechal (1974) studied the incorporation of radio-active labelled phosphorus 

into ATP of rabbit muscle, and examined eccentric muscle action. The amount of the phosphorus 

incorporated was very small during stretches, which suggested that the re-synthesis of ATP was of less 

importance during these stretches. 

The present study does not attempt to model the energetics of eccentric muscle actions. This has been 

undertaken by Fitzhugh (1977) who by making assumptions about that the maximum force of an eccentric 

muscle action and by setting the constants in Hill's equation as direct ratios to this value, provided 

equations to estimate the heat production during eccentric muscle action. 

5:6.7 SUMMARY 

The energetics of muscular contractions were discussed in this section. Given the information presented 

in this section it is possible to formulate a model which gives the rate of energy consumption associated 

with a muscular contraction. The model used equations 5.43, 5.48, and 5.51. 
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CHAPTER VI 

ESTIMATING MUSCLE FORCES 

INTRODUCTION 

The purpose of this chapter is to detail the procedures used to estimate the individual forces in the 

muscles causing elbow flexion. The problem of estimating muscle forces is discussed in the first section. 

There have been a number of techniques used to estimate muscle forces and these are reviewed in the 

next sections. Procedures for determining muscle forces using static optimization procedures are 

discussed. The following sections present a comparison of a number of techniques. The final section 

presents a new procedure for the estimation of individual muscle forces. 

6:1 THE PROBLEM OF ESTIMATING MUSCLE FORCES 

In section 4:4.2 it was shown that given appropriate kinematic and kinetic information and by making 

certain assumptions, it is possible to compute the moments caused by the muscles. These muscle 

moments represent the net effect of all the muscles acting about a joint. The system producing these 

moments and forces is generally redundant, therefore finding the individual contribution of each muscle to 

a joint moment is an indeterminant problem. To illustrate the problem an example is given. 

The upper limb is modelled as a two segment, planar, frictionless, articulated linkage. The forearm and 

hand are considered one segment, the upper arm the other; these two segments articulate about a pin 

joint. Joint flexion is assumed to be caused by three muscles: the biceps, brachial is, and brachioradialis. 

The moment about the y axis is:-

MM,. • 'I, ~ . FMi 
j - 1 

Where: 

MMy - is the muscle moment about the Y axis, which is coincident with the flexion axis of the elbow 

NM- Is the number of muscles 

R1 - is the moment arm of the ilh muscle 

and FM is the muscle force of the ilh muscle. 

[6. I] 

Using the subject specific muscle data gathered in the last Chapter, the muscle moment arms were 

computed for the elbow joint flexed to a joint angle of 90 degrees. Although not strictly the case the 

muscles were assumed to be able to exert a maximum isometric force at this joint angle equal to the force 

they could exert at their optimal lengths. This information is presented in table 6. I. If a muscle moment of 

I 0 N.m is acting about the Y axis it can be deduced from equation 6. I that any one of the three muscles in 

the model could produce this moment. The graph in figure 6.1 represents the solutions available to this 

problem. lt can be seen that there are an infinite number of solutions available in the solution plane for 

this problem. This analysis assumes that there was no eo-contraction of the antagonists at the elbow joint. 



TABLE 6.1- The maximum muscle force, and the moment arm for a two-dimensional example of 

isometric elbow flexion. 

MUSQLE 

BICEPS 

BRACHIALIS 

ElBAQI:JIQBAQIALIS 

M
3 

Force (N) 

(Brachloradialis) 

MOMENT 

ABM 

0.036 m 

0.021 m 

Q Q:i~ ID 

MAXIMUM 

FOBQE 

600.6 N 

1000.9 N 

262.2 ~ 

MAXIMUM 

MOMEtfi 

21.6 N.m 

21.0 N.m 

13.9 ~-m 

M1 Force (N) 

(Biceps) 
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FIGURE 6.1 ·Diagram showing the possible solutions for the three elbow flexors producing a joint torque 

of 10 N.m. The solution plane is shaded. Point a represents a solution using one muscle only, point b 

uses two muscles, and point c uses all three muscles to satisfy the moment. 
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In essence it can be stated that it is not possible to compute the muscle forces causing a movement using 

kinematic and kinetic intonmation only, if the number of muscles is larger than the number of degrees of 

freedom at the joint. Therefore to estimate the individual muscle forces it is necessary to gather more 

information so that the solution becomes determinant. This is normally done by placing restrictions on the 

physiological system, tor example the maximum force that any one of the muscles can exert. 

6:2 REVIEW OF METHODS: ESTIMATING MUSCLE FORCES 

There are a number of ways of estimating individual muscles forces; for ease of reviewing these are 

divided into fiVe categortes. 

6:2.1 DIRECT MEASUREMENT OF MUSCLE FORCES 

A strain gauge of some kind fitted to the tendon has been used to measure the sum of the forces 

produced by the motor units in the muscle attached to the tendon. Such an approach has been taken in a 

number of animal studies. Walmsley, Hodgson, and Burke (1978) measured the force produced by the 

medial gastrocnemius and soleus of the cat during locomotion. Van den Bogert, Hartmann, Schamhardt, 

and Sauren (1988) determined the force in the digital flexor of a horse using a liquid metal strain gauge 

(Riemersa and Lammertink, 1988). As such techniques are highly invasive there have been few studies 

using these techniques in man. Komi, Salonen, Jarvinen, and Kokko (1987) have measured the force in 

the Achilles tendon of man durtng locomotion. 

There are a number of drawbacks in the direct measurement of muscle forces. Hahs and Stiles (1989) 

have shown that buckle transducers attached to muscles may not only measure the muscle force but also 

the other forces acting on the limb. As the techniques used are highly invasive, measured muscle forces 

may not be representative of what actually occurs in the muscle during normal activity. To measure the 

force in a muscle it must be accessible, restricting which muscles can be examined. As a consequence of 

this restriction not all the muscles crossing a joint can necessarily have their muscle forces measured. 

In the future direct measurement of muscle force in man may become technically more viable, at which 

time such measures could be used to validate other non-invasive methods used to estimate muscle 

forces. 

6:2.2 ESTIMATING MUSCLE FORCES FROM ELECTROMYOGRAPHY 

Electromyography (EMG) is used to study the electrical activity produced by a muscle. The 

measurements of Lippold (1952) suggested that the mean rectified integrated EMG is linearly proportional 

to the muscle contractile force for isometric contractions. This relationship has subsequently been 

supported by other researchers (e.g. Komi, 1973; Hagberg, 1979). By taking into account the force-length 

and force-velocity relationship of muscle, it has been argued (Hof and van den Berg, 1981 a) that this linear 

relationship holds for dynamic contractions. This linear relationship between force and rectified integrated 

EMG for isometric actions has been questioned by some researchers, for example Simons and Zuniga 

(1970), and Rau and Vredenbreght (1973). The latter researchers claimed that this relationship is 

quadratic. Hof and van den Berg (1977) suggested that the failure of researchers to find a linear 
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relationship was due to them only analysing one of the muscles causing the measured joint moment. In 

their analysis of plantar flexion when the weighted sum of the integrated EMG of the triceps surae and 

tibialis anterior were considered, a linear relationship was found between the EMG signal and muscle 

forces, but when each muscle was considered individually such a clear relationship was not found. The 

problem with such techniques is that there are many methodological problems associated with the use of 

EMG which may explain these difference (Bigland-Ritchie, 1981 ). 

The model developed by Hot and van den Berg (1981 a-d) predicted individual muscle activity by assuming 

that the relationship between integrated EMG and muscle activity is linear. Their model included a model 

of muscle which incorporated a contractile component demonstrating a linear force-length and a non-linear 

force-velocity relationship, as well as a SEC and PEC. After the experimental determination of muscle 

parameters the model was evaluated by comparing plantar flexion moments predicted by the model with 

values determined from a kinetic analysis of the movements. Hot and van den Berg (1981 b) reported 

RMS errors in predicting plantar flexion moments from 4 N. m to 19 N.m, for eight subjects whose peak 

moments were between 80 and 180 N.m. Comparison of the computed moments with those estimated by 

the EMG driven muscle model tor slow concentric muscle actions produced peak errors of 50 N.m (Hot 

and van den Berg, 1981c). In a later analysis of stepping and walking by Hot, Prank, and van Best (1983), 

the muscle moments computed via a kinetic analysis were compared with those predicted by the EMG 

model. Although not explicitly reported, analysis of their figure 1 suggests that for the five subjects peak 

differences were all in excess of 40 N.m. 

Olney and Winter (1985) presented a model which considered the activity of the ankle dorsiflexors and 

plantarflexors, and the knee extensors and flexors during walking. Four different models were evaluated 

by comparing the muscle moments computed by the EMG model with those produced after an inverse 

dynamics analysis of the activity. The most complex model gave the most accurate results. The muscle 

model employed was quite simple, with force-length and force-velocity both modelled using linear 

relationships. The RMS error for this model in predicting ankle moments for four subjects during walking 

was 8.1 N. m. An interesting observation about these two EMG driven muscle models (Hot and van den 

Berg, 1981 a-d; Olney and Winter, 1985) is the difference in the way in which the EMG signals were 

processed. Hot and van den Berg (1981 a·d) used a band-pass filter on their EMG signal (30·600 Hz) 

whereas Olney and Winter (1985) used a low-pass filter, with the highest cut-off frequency for the EMG 

signal from any one of the muscles being 2.8 Hz. 

There are many methodological problems associated with obtaining a reliable and quantifiable EMG signal 

(Hof, 1984; Bigland·Ritchie, 1981 ). Both of the techniques reviewed required extensive calibration. These 

techniques are invasive and not all the muscles of interest may be accessible if surface electrodes are to 

be used. 

6:2.3 DYNAMIC OPTIMIZATION 

The basic methodology in dynamic optimization is that the human body segment dynamics are modelled 

(e.g. Marshal!, Jensen, and Wood, 1985; Pandy and Berme, 1988), using such a model the joint moments 
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have to be found which cause the body segments to move so that some performance criterion is 

maximised. The joint moment generators are complex muscle models in the more sophisticated models, 

in which case the optimization procedure has to find the activation of the muscles necessary to produce 

the body motion which will maximise some performance criterion. Although this methodology intends to 

examine the control mechanisms of human movement, if the simulated movement compares well 

kinematically and kinetically with the measurements on an experimental subject, the muscle activity can be 

inferred from the simulation. Such studies can also be called optimal control problems. 

Hatze (1976) examined a task where a subject had to kick a target as quickly as possible. A weight was 

attached to the foot to make this kicking motion slow. The performance criterion was to minimise the time 

to perform the action. A two segment model was used, with five muscles. The muscle model included a 

SEC, PEC, and a contractile component which had a non-linear force-length, and force-velocity 

relationship. A model of the activation dynamics was also included. The simulated movement showed 

close correspondence with the actual performance. In later work Hatze (1981c) used a 17 segment, 46 

muscle model to perform a two-dimensional analysis of long jumping. The performance criterion was to 

achieve maximum horizontal distance. The more complex muscle model of Hatze (1978) was used for 

these simulations. The ground reaction forces predicted using the optimal solution compared well with 

those measured using a force plate. Hatze (1983) claimed that the differences between an optimal 

simulation of a long jump and the actual performance of an athlete indicated potential for improved 

technical execution of the skill. 

Zajac, Wicke, and Levine (1984) examined jumping caused by plantar flexion only. Both maximal vertical 

and horizontal jumps were examined. The performance criterton was to maximize hortzontal or vertical 

displacement of the centre of mass of the body. Three different muscle models were evaluated, the most 

complex included a SEC, and a contractile component with force-length and force-velocity relationships. 

The force-velocity relationship was assumed to be linear, and the moment arm of the triceps surae at the 

ankle was assumed to remain constant. Given initial starting conditions the activation of the triceps surae 

had to be calculated which would satisfy the performance criterion. Kinematic data were also presented 

for one experimental subject performing a maximum vertical jump, this showed reasonable temporal 

correspondence with the model predictions. A later study by the same research group modelled more 

body segments and used a more sophisticated muscle model. Pandy, Zajac, Si m, and Levine (1990) 

presented a four segment eight muscle model of the human body jumping, with the performance criterion 

being that the centre of mass of the body should obtain maximum vertical displacement. The kinematics 

and kinetics of the model of jumping were compared with measurements made on eight subjects 

performing maximum vertical jumps, Pandy and Zajac (1991 ). The mean kinematics and kinetics of the 

subjects jumping showed good temporal correspondence with those derived from the model. 

For maximum effort jumping studies (Hatze, 1981c; Zajac et al., 1984) a performance criterion is easily 

established; maximal vertical or horizontal distance. In other movements such a criterion is not easily 

identified, particularly for everyday activities. Therefore these techniques are not generally applicable. 
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Marshal!, Wood, and Jennings (1989) simulated the two-dimensional segmental kinematics of the single 

stance phase of walking. Using the start of the stance phase as the Initial condition, the movement was 

simulated with the performance criterion being constrained so that the body should end in the same final 

position as was achieved in the actual movement. Seven different objective functions were investigated 

with their appropriateness being assessed by comparing how well the simulated movements compared 

with the actual movements. The three objective functions which gave the best results were minimising the 

sum of the joint moments, minimising the segmental angular jeriks, and minimising the sum of the 

segmental mechanical energies. This model did not include muscle. For comparison purposes the 

kinematics of the body were considered in three groups: head and trunk; the support leg; and the free leg. 

Their results highlight the problem in finding a general performance objective for an everyday activity such 

as walking, as none of the criterion provided the best results for all three groups. The authors 

hypothesised that a different performance criterion may be operating for each body part. 

6:2.4 CONTROL MODELS 

In these techniques the way in which the system is controlled is assumed to be known. There is no 

optimization of some criteria. The simplest control model is to assume that the muscles satisfy the muscle 

moment in some fixed ratio of individual forces. Bankov and Jorgensen (1969) assumed that the muscles 

causing elbow flexion exerted forces in a ratio similar to the masses of the muscles. This resulted in:-

BICEPS FORCE- BRACHIALIS FORCE. 2 • BRACHIORADIALIS FORCE [6.2] 

Using a similar model, Simpson (1975) assumed that the three major elbow flexors produced forces in 

proportion to their cross-sectional areas, therefore:-

BICEPS FORCE • 2 • BRACHIALIS FORCE • 2 * BRACHIORADIALIS FORCE [6.3] 

Such a procedure was also used by Amis, Dowson, and Wright (1980). The ratios in equation 6.3 are 

somewhat different from the ratios of the cross-sectional areas discussed in section 5:4.1.5. 

These criteria have some physiological basis, as the force a muscle can exert is proportional to both its 

mass, and its cross-sectional area. None of these criteria takes into account the force-length or force­

velocity relationships of the muscles. 

Pierrynowski and Morrison (1985a,b) examined the muscle forces in walking. The muscle model used 

incorporated a SEC for both the muscle fibres and tendons, and a contractile component exhibiting non­

linear force-length and force-velocity relationships. Muscle length and velocity were obtained from the 

three-dimensional kinematics of the movement, and this information was combined with information 

concerning the previous activity of the muscles, to compute the length and velocity of the muscle fibres 

and tendons. Using the muscle model and a model of activation, the maximum and minimum force each 

muscle could produce at each sample interval was calculated. A control model then selected the muscles 

to satisfy the resultant joint moments, which took into account the muscle fibre type distribution. 
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By assuming that muscle activation in the triceps surae was maximal throughout a vertical jump, Bobbert, 

Huijing, and van lngen Schenau (1986) estimated the forces produced by these muscles. A Hill type 

model of muscle was used, (Hill, 1938). The muscle lengths were obtained from kinematic data of the 

movement of the limbs. Solution of a first order differential equation gave the muscle forces. To evaluate 

the accuracy of the model the muscle moment was estimated from a kinetic analysis of the movement and 

compared with the muscle moment estimated from the sum of the products of the muscle forces and their 

moment arms. The results for this comparison were presented graphically and showed good agreement 

except at the beginning of the movement, where the muscle would be least likely to be maximally active. 

Such an analysis is not generally applicable because it cannot routinely be assumed that muscles are 

maximally active. 

A control model similar to that of Bobbert et al. (1986) was used in section 5:5.2 to validate the muscle 

model used in this study. 

6:2.5 STATIC OPTIMIZATION 

This group of techniques uses the mathematical technique of static optimization to estimate muscle forces. 

The problems are formulated in the following way:-

Objective Function 

Minimise u( X, , JS, ..... , X, ) 
Subject to 

Equality constraints 
'1'.( X, , X:! ....... ><n ) -o 

Inequality constraints 

Where:-

n - is the number of independent variables 

X1 - are the independent variables 

e - is the number of equality constraints 

and f is the number of inequality constraints. 

[6.4) 

k -1 , e 
[6.5) 

I • 1 , f 
[6.6) 

The objective function, U, indicates the way in which the muscles are considered to be recruited to 

produce the joint moment. Seireg and Arvikar (1973) were the first to use such a technique, their objective 

function minimised the sum of the muscle forces. The equality constraint was that the sum of the products 

of the muscle forces and their moment arms should equal the muscle moment. This constraint has been 

relaxed by some researchers to allow for the inaccuracies in the model used to compute the muscle 

moment (e.g. Patriarco, Mann, Simon, and Mansour, 1981 ). Inequality constraints are sometimes 

imposed, for example the muscle forces are limited to values below those indicated by the product of the 

cross-sectional areas of the muscles and the maximum muscle stress (e.g. Koolstra, van Euden, Weijs, 

and Naeije, 1988). 
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The objective functions are either linear or non-linear with different solution procedures required tor these 

different fOrmulations. To obtain the muscle forces over the course of a limb's movement, the static 

optimization must be used tor each sampled interval. These techniques are reviewed in more detail in 

section 6:3. 

6:2.6 SUMMARY 

There are a number of different techniques available to estimate muscle forces. Direct measures are 

highly invasive, but may be of use for validating other techniques. EMG based models are invasive and 

require extensive calibration, and some of the assumptions upon which the models are based have been 

questioned. Dynamic optimization is used in part to analyse motor control, but the results can also give 

muscle activity. The major disadvantage of these techniques is their lack of general applicability, as it is 

difficult to fOrmulate a performance criterion. They can be easily validated by comparing the simulated 

movement with the actual movement. Control models do not optimize a function but present a possible 

way in which the neuro-muscular system may be working. The simplest of these models provide only 

crude approximations, the more complex are based on physiological principles so theoretically may give 

better estimates. Static optimization assumes that when muscles are recruited they are recruited in such a 

way that some function relating to the muscle forces is minimised, for example the sum of the all the 

muscles stresses. These procedures are difficult to validate. 

6.3 STATIC OPTIMIZATION 

The following sections review some of the linear and non-linear optimization approaches for estimating 

muscle forces. In this review it is taken that the objective function is minimised, and that even if no other 

equality constraints are applied the sum of the products of the muscle forces and their moment arms must 

equal the muscle moment, and muscle forces must be equal to or greater than zero. General problems 

with optimization procedures are also discussed, and the problem of model validation is considered. 

6:3.1 LINEAR OPTIMIZATION 

Linear optimization is sometimes referred to as linear programming. The algorithm most commonly used 

to solve linear optimization problems is the Simplex developed by Dantzig (1963). Seireg and Arvikar 

(1973) used a number of linear objective functions to examine the quasi-static activities of leaning forward 

from the hip and squatting. Their study was two-dimensional with the body being modelled as five 

segments, with the lines of action of the muscles being modelled as straight lines. The locations of the 

origins and insertions were estimated from measurements taken from an anatomy text and scaled to the 

experimental subject in some unspecified way. Seven objective functions were examined by Seireg and 

Arvikar (1973); they claimed that the best correspondence of predicted muscle activity to that indicated by 

EMG signals, was obtained when using an objective function which minimised the sum of the muscle 

forces plus four times the sum of the resultant moments produced at all the joints in the lower extremity. 

Seireg and Arvikar (1975) applied this objective function to the examination of walking. The predicted 

muscle forces showed good temporal correspondence with EMG data. The accuracy of this objective 

function is questionable. Examination of their results shows that few muscles were active simultaneously. 

Also muscles with relatively small physiological cross-sectional areas, as reported by Friederich and Brand 
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(1990), were reported as developing large forces, for example the tibialis anterior had a reported force of 

2100 N. 

Calderale and Scelfo (1987) used a similar objective function to Seireg and Arvikar but used a different 

weighting scheme for the joint moments. Rather than employ the same weighting for all joints, the 

weighting differed for the four joints considered (4000 for hip and ankle, 400 for the knee, and four for the 

patella). No justification was given for selecting these weightings. Maximum stress levels were also 

imposed on the muscles. EMG measurements taken from five muscles during locomotion showed that the 

activity of the muscles had good temporal matching with the muscle activity indicated by EMG signals. 

Mcl.aughlin and Miller (1980) examined the forces in the muscles of the wrist during a tennis backhand 

stroke. They formulated an objective function based on the work of Seireg and Arvikar (1973, 1975) which 

minimised the weighted sums of the muscle stresses, joint moments, and joint reaction forces. The 

muscle stresses were constrained to some non-stated value. The weighting factors resulted in the sum of 

the reaction forces being removed from the criterion, as the weighting for this was zero. 

MacConaill (1967) claimed that muscular action, under certain conditions, is governed by a principle of 

minimal action 

"Principle of Minimal Total Muscular Force states that 'no more total muscular force is used than is both 

necessary and sufficient for the task to be performed, whether this be one of supporting some weight or 

carrying out a movement, the resistance to which may vary from zero upwards.~ (page 413). 

Penrod, Davy, and Singh (1974) proposed an objective function which minimised the sum of the muscle 

forces, which they claimed was equivalent to minimizing the muscular effort. They claimed that this 

function 

• •.•. is intuitively appealing and may represent an accurate picture for a normal, healthy system familiar with 

the loads it sustains.• (page 128) 

They suggested that it may be appropriate to place constraints on the maximum muscle forces, but did not 

impose any such constraints. 

Yeo (1976) examined static elbow flexion, using the objective function of minimisation of the sum of the 

muscle forces. The EMG studies of Basmajian and L.atif (1957), and Pauly, Rushing, and Scheving 

(1967), showed the three major elbow flexors were all active during elbow flexion. The objective function 

resulted in the muscles being recruited in decreasing order of size of their respective moment arms. If no 

constraint was placed on the force the individual muscles could exert, then the moment was entirely 

provided by the brachioradialis which had the largest moment arm in the model. 

Barbenel (1983) examined mastication and biting in a model consisting of four muscles. Using the 

objective function of minimization of the sum of muscle forces, he found only one muscle was predicted to 

be active yet EMG data indicated that this was not the case. 

Hard! (1978) used a four link model of walking, with 31 muscles modelled as straight lines. Two linear 
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objective functions were compared. The first function was the minimisation of muscle forces as proposed 

by Penrod et al. (1974). The muscle activities predicted using this function showed poor correspondence 

with muscle activity indicated by EMG signals. The second function was a linear model which attempted 

to minimise the instantaneous energy requirements of the active muscles. The model consisted of: 

mechanical work rate, which was considered constant for eccentric muscle actions, and to be the product 

of muscle velocity and muscle force if a muscle was shortening; and maintenance heat rate which was 

assumed constant for concentric muscle actions and zero for eccentric muscle actions. Muscle energetics 

was discussed in section 5:6, a brief critique of Hardrs model follows. 

The first component in the model corresponds to mechanical work rate, but here Hardt (1978) used 

muscle velocity rather than muscle fibre velocity to compute this term. As the rate of shortening of the 

muscle fibres often differs from that of the muscle (e.g. Bobbert et al., 1986) this term will generally provide 

an over estimate of energy requirements. The use of a constant value for mechanical work rate during 

eccentric muscle actions is not strictly correct, as the energy during an eccentric muscle action varies with 

the force and velocity of contraction (e.g. Woledge, 1971 ). The final component, maintenance heat rate, 

was represented by a constant value, but is actually a function of muscle fibre length (e.g. Hill, 1964b). it 

also varies for eccentric muscle actions (Hill and Howarth, 1959). The model ignores shortening heat and 

activation heat which both make significant contributions to the energy consumption of a muscle 

(Oguztoreli and Stein, 1983). This objective function showed good correspondence between muscle 

activity and muscle activity indicated by EMG signals. The objective function preferentially selected 

lengthening muscles because they were the least expensive in energetic terms. it also favoured muscles 

with shorter moment arms as these muscles had the lower velocities. Low velocities were also less costly 

energetically according to the model of Hard! (1978). 

Patriarco et al. (1981) performed a three-dimensional analysis of walking. They used two systems 
simultaneously to obtain kinematic data which was used to give an error estimate for the muscle moments. 

This information was then used to relax the normal equality constraint that the sum of the products of the 

muscle forces and their moment arms have to equal the resultant joint moment. Two objective functions 

were compared: the minimisation of the sum of the muscle forces, and an adaptation of the model of Hard! 

(1978). In addition two constraints were applied: the maximum forces in the muscles were constrained to 

be less than the maximum force as estimated using the muscle model of Pedotti, Krishnan, and Stark 

(1978); and similar muscles were forced to share the load in proportion to their cross-sectional area. The 

second objective function produced results which showed good correspondence with EMG data. 

Crowninshield (1978) proposed an objective function which required the minimisation of the sum of the 

muscle stresses, with the addition of the constraints that the muscle stresses should be above zero and 

less than a value associated with the maximum muscle stress. A two-dimensional analysis of static and 

isokinetic elbow flexion was performed, with the lines of action of the three major flexors modelled as 

straight lines. This objective function selected those muscles with the largest product of muscle moment 

arm and physiological cross-sectional area. In this study when no limit was placed on muscle stress the 

biceps was used exclusively, as it had the largest product of moment arm and physiological cross· 
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sectional area. When the maximum stress for each of the muscles was constrained to less than 60 N.cm·2 

the biceps was used exclusively until it reached this stress level, then the brachioradialis was used until it 

reached the same stress level, and finally the brachialis was recruited. When the maximum stress was set 

to 40 N.cm·2 there was continuous synergism in all three muscle for the activities investigated. The 

muscle activity predicted by this objective function and the last constraint (40 N.cm·2) were temporally well 

correlated with EMG data. 

Crowninshield, Johnston, Andrews. and Brand (1978) used the same objective function to analyse muscle 

foroe during walking. The study was performed in three-dimensions and included 30 muscles modelled as 

straight lines. For two subjects EMG data were collected at the same time as the kinematic and kinetic 

data. Muscle activity corresponded well with muscle activity indicated by EMG signals. 

An. Kwak, Chao, and Morrey (1984) compared the results of five different objective functions used to 

compute the forces in seven muscles considered to cause elbow flexion, and supination. The objective 

functions included the minimisation of: the sum of the muscle forces; the sum of the muscle stresses; the 

sum of the square of the muscle forces; and the sum of the square of the muscle stresses. The last two 

objective functions were non-linear. A new objective function was also formulated: the minimisation of the 

maximum muscle stress experienced by the most stressed muscle, with the addition of an inequality 

constraint limiting the upper stress of the individual muscles. The two linear objective functions reported 

activity in one muscle only. The non-linear functions and the new function predicted that all the muscles 

were active. A further analysis was undertaken where the new objective function was evaluated when the 

muscles had to provide a moment for supination as well as for flexion. In this case the activity of the 

muscles compared well with EMG data from the literature. 

Koolstra et al. (1988) performed a three-dimensional analysis of the human masticatory system during 

static biting. The model consisted of 16 muscles whose activities were selected by minimising the relative 

activity of the most active muscle. The relative activity was defined as the force in the muscle divided by 

its maximum possible force. The maximum force a muscle could develop was calculated from the product 

of the muscle's physiological cross-sectional area and the maximum stress associated with muscle. Their 

objective function is essentially the same as that of An et al. (1984) as:-

FRi • Ft.ll/ (CSA1 • MMS) 

Where:-

U8 ·is the objective function of An et al. (1984) 

Ub- is the objective function of Koolstra et al. (1988) 

0'1 - is the stress in the ilh muscle 
Ft.ll - is the force in the ilh muscle 

FRi - is the relative muscle force in the ilh muscle 

CSA1 • is the cross-sectional area of the ilh muscle 

[6.7] and [6.8] 

[6.9] and (6.1 0] 
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and MMS is the maximum muscle stress associated with muscle. 

As MMS is constant, the two objective functions give the same results, as long as there is no pennation in 

one or more of the muscles. 

Bean, Chaffin, and Schultz (1988) presented a technique where the muscle forces were predicted after 

having to fulfil two objective functions sequentially: the double linear programming method. The first 

objective function was the minimisation of the sum of the muscle stresses, and the second was the 

minimisation of the sum of the muscle forces. Both objective functions had the same constraints in that 

the muscle stresses could not be greater than some predefined value. They compared their approach of 

double linear programming with solutions from other objective functions; the others gave unrealistic 

muscle forces. Their model was a three-dimensional model of lateral bending of the back and contained 

10 muscles. The phasing of the recruitment of the muscles in the model, predicted using the double linear 

programming approach, was temporally similar to EMG data. In their analysis they showed that the 

sequential application of the linear programming procedure with the different objective functions gave very 

similar results to the double linear programming method, but took more computation time. 

All of the techniques described in this section rely on the Simplex algorithm to solve their specific 

optimization problem. The Simplex algorithm is described in Appendix D. The nature of the solution 

requires that the number of non-zero variables is less than the total number of constraints plus one. For 

example in a two-dimensional study if the only constraint is that the muscle moment should be satisfied by 

the predicted muscle forces, only one muscle will be predicted to be active. This presents a major 

limitation for linear objective functions, and means that constraints are necessary if load is to be shared 

between more than one muscle. 

6:3.2 NON· LINEAR OPTIMIZATION 

The first non-linear objective function was suggested by Pedotti et al. (1978). They performed a two· 

dimensional examination of walking, with an 11 muscle model. Four objective functions were compared: 

sum of the muscle forces; sum of the muscle forces squared; sum of the relative muscle forces: and the 

sum of the relative muscle forces squared. Relative muscle force was detenmined by dividing the muscle 

force by the maximum muscle force at the current length and velocity for each of the muscles. To account 

for the length and velocity of the muscles the force-length relationship was modelled as being linear, and 

the force-velocity relationship was modelled using the equation of Hill (1938). Pedotti et al. (1978) failed to 

take account of the tendon in series with the muscle fibres, and rather than use muscle fibre length and 

velocity as inputs to their equations for the force-length and force-velocity relationship they used muscle 

length. As discussed previously the velocity of the muscle may not be the same as the velocity of the 

muscle fibres. There was also no account taken of the muscles in the model which showed significant 

degrees of pennation. Even so this model was one of the first to take account of the properties of 

muscles. All the objective functions were constrained so the predicted muscle forces were below their 

respective maximum levels as computed using the force-length and force-velocity relationships. EMG 

data were collected on two subjects, and used to indicate when muscles were active. Using this as the 
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criterion, the fourth objective function (the sum of the relative muscle forces squared) was judged to give 

the best estimation of individual muscle activity. There was no physiological justification offered for this 

objective function. 

Herzog (1986) used a similar objective function to Pedotti et al. (1978) but used a more sophisticated 

model to predict the maximum muscle force at any given muscle fibre length and velocity. To validate the 

model isokinetic knee extensions were examined, with four muscles assumed to produce the knee joint 

muscle moment. A muscle model was used to estimate what the actual muscle forces were at various 

instances during different velocity maximum isokinetic actions. The resultant joint moment predictions 

using the muscle model were within 12 percent of the values from the isokinetic dynamometer. These 

muscle force predictions from the muscle model were used to evaluate three objective functions. The 

three objective functions assessed all had different ways of computing the denominator (the maximum 

muscle force) in the objective function. In the first case maximum muscle force was based solely on the 

physiological cross-sectional area of the muscles. In the second case muscle size, maximum muscle 

stress, and muscle fibre type distribution were all used in the model to predict the maximum muscle force. 

The third objective function used a model which also incorporated the physiological cross-sectional area, 

the pennation, length, and velocity of the muscle. The first two objective functions were not as accurate as 

the third. 

A similar analysis of the more successful objective function was performed by Herzog (1987b,c) where he 

showed his objective function to be more accurate than that of Dui, Johnson, Shiavi, and Townsend 

(1984b), and Crowninshield and Brand (1981 ). Even though his objective function was superior to the 

other two, the muscle force predictions from his objective function were± 200 N from the muscle model 

predictions in some of the cases examined. This objective function incorporated more information about 

the contractile conditions of the muscle than any other study to date, for which it should be commanded. 

However, the model still managed to predict muscle forces which were greater than those which the 

muscles could achieve at their current contractile conditions. Herzog (1987c) claimed that this objective 

function was dependent on the contraC1ile conditions of the muscles and kept the metabolic cost of the 

movement low. 

Crowninshield and Brand (1981) proposed a new objective function, which was the minimisation of the 

sum of the cube of the muscle stresses. As endurance time is a non-linear function of muscle stress, it 

was claimed that this function effectively maximised endurance time. This objective function was first 

demonstrated for static elbow flexion, where all three flexors in the model were predicted to be active. The 

funC1ion was then applied to some three-dimensional data of walking. Muscle activity for this analysis 

showed good correspondence with EMG data. This model was recommended for prolonged repetitive 

activities. 

Pedersen, Brand, Cheng, and Arora (1987) examined four objective functions for estimating muscle forces 

during walking. Results were compared with EMG signals taken from 10 muscles on the experimental 

subjects, and EMG information for a further 20 muscles was obtained from the literature. They evaluated 
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the objective functions using a figure of merit which indicated the degree of correspondence between the 

period of muscle activity indicated by the EMG, and that predicted by the objective functions. They 

suggested that EMG signals should not be used quantitatively for validation, but only qualitatively. The 

objective functions were: minimisation of the sum of muscle forces; minimisation of the sum of muscle 

stresses; minimisation of the sum of muscle forces cubed; and minimisation of the sum of muscle stresses 

cubed. Although the sum of the muscle forces is a linear objective function it was minimised using a non­

linear algorithm. The two non-linear objective functions were also examined with the relaxation of the 

equality constraint that the sum of the product of the muscle forces and their moment anms had to equal 

the muscle moment, so that these muscle moment estimations had to lie within boundaries reflecting the 

accuracy of each joinfs muscle moment. The linear objective function only predicted a limited number of 

muscles active. The sum of the muscle stresses cubed and the sum of muscle forces cubed, gave the 

highest results for the figure of merit. The relaxation of the net muscle moment values in the equality 

constraint did not result in a large change in the muscle forces for the non-linear objective functions, but 

did result in a reduced hip joint contact force. 

Denoth (1988) perfonmed a closer examination of the objective function of Crowninshield and Brand 

(1981 ). Using the static elbow flexion data of Crowninshield and Brand (1981) it was demonstrated that 

their objective function did not maximise endurance time, which was longer if all the muscles exerted equal 

stress. A model was presented of the leg which consisted of three muscles. There were moments at both 

the ankle and the knee. One of the muscles was biarticular and could contribute to moments at both 

joints. The analysis showed that the stress in the biarticular muscle was in direct ratio with the order to 

which the stress was raised. The study of Crowninshield and Brand (1981) claimed good correspondence 

of predicted activity with EMG data, although Denoth (1988) questioned the use of EMG data for the 

validation of objective functions. 

Pedersen and Brand (1989) compared hip joint contact forces predicted using the optimization procedure 

of Crowninshield and Brand (1981) with the direct measurement from a radio-telemetered hip prosthesis 

(Davy, Kotzar, Brown, Heipe, Goldberg, Barilla, and Burstein, 1988). Their model assumed that the hip 

contact force passed through the hip joint centre, and the ligaments at the hip made no contribution to the 

hip moment. A number of muscles in the model crossed both the hip and knee joint, three different 

constraints were placed on these muscles: they could only contribute to the flexion-extension component 

at the hip; they could only contribute to the flexion-extension and varus-valgus components at the hip; and 

finally they could contribute to all moments. The model predicted hip forces which were much greater than 

those measured in vivo. The model which allowed the biarticular muscles to contribute only to the flexion­

extension moment, gave the most accurate results. No infonmation was presented to demonstrate any 

temporal matching of the data. In their study the cross-sectional areas of the muscles were estimated for 

the subject from cadaver data; Brand, Pedersen, and Friederich (1986) had already demonstrated the 

sensitivity of this objective function to errors in these data. As well as assumptions involved in the 

kinematic and kinetic data gathering, it may be that after total hip arthroplasty the subject was using a new 

strategy for recruiting muscles, rather than the strategy which the objective function was intended to 

model. 
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Dui, Townsend, Shiavi, and Johnson (1984b) examined 13 different objective functions and associated 

constraints, using a theoretical model of isometric knee flexion. The objective functions were all 

concerned with the minimisa~on of the sum of either the muscle forces, or the muscle stresses, with these 

values to the power of one, two, or three. Constraints were also imposed, which limited either maximum 

muscle force or maximum muscle stress. Also a degree of load sharing between the muscles was 

enforced by imposing that the forces or stresses in certain pairs of muscles were in fixed ratios. The 

findings of this study confirmed that linear objective functions tend to recruit muscles in a set order, and 

that non-linear functions show muscle synergism over a range of loads. The paper concluded that a 

method is needed to validate non-linear objective functions. 

Dui et al. (1984a) proposed an original obje~ve function. The function was selected so that the load 

sharing between the muscles was such that the absolute time for which the activity could be performed 

was maximised. A function was developed which, given the muscle fibre type distribution and the 

maximum force the muscle could develop, gave the endurance time of a muscle when exerting a given 

force. The objective function selected the muscles so that the endurance time of the muscle with the 

shOrtest endurance time was maximised. The objective function was selected because of the assumption 

that for everyday learned activities, muscle are recruited so muscular fatigue is minimised. This function 

was used to examine the theoretical model of knee flexion of Dui et al. (1984b). All three functions 

predicted all the muscles to be simultaneously acwe. The objective functions of Pedotti et al. (1978) and 

Crowninshield and Brand (1981) recruited the muscles in a linear order related to the moment arms of the 

muscles. 

Walmsley et al. (1978) took direct measures of muscle forces in cats. Dui et al. (1984a) compared these 

forces with the forces predicted using a number of different objective functions. The muscle force 

predictions using the objective function of Dui et al. (1984a) were similar to the measured forces. A 

number of other objective functions were evaluated on the same data, and the linear objective functions 

were found to be very poor at predic~ng muscle ac~vity, no constraints were placed on these functions. Of 

the other non-linear objective functions the best results were found by minimising the sum of the muscle 

forces squared. The other objective functions evaluated were the sum of the muscle stresses squared 

and cubed, and the sum of the relative muscle forces squared and cubed. Although the authors called this 

the minimum fatigue criteria, it does not account for changes in recruitment patterns when one of the 

muscles is at the end of its endurance limit or approaching this limit. The objective function of Pedotti et 

al. (1978) was assessed, but not strictly, as the maximum muscle force term used by Dui et al. (1984a) 

was based on the product of the physiological cross-sectional area and the maximum muscle stress. 

Pedotti et al. (1978) evaluated the maximum muscle force for each sample interval, and took into account 

variations in the maximum muscle force due to the force-length and force-velocity rela~onships. 

A further analysis of objective functions takes place in section 6:4. 

6:3.3 DISCUSSION 

This section is concerned with general principles of static optimization. The basic premise of estimating 



muscle force using static optimization is that it is possible to formulate an objective function and 

appropriate constraints which reflect how the body actually recruits the muscles concerned. 
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The human body is capable of a wide range of activities, and it is unlikely that the body recruits muscle 

using the same protocol for sprinting 1 00 metres as it would for running a marathon. If such criteria do 

exist there are perhaps different functions for different types of activity. Also it could not be expected that 

the same criterion would apply to unlearned activities. 

The objective functions formulated are generally concerned with minimisation of muscle force or muscle 

stress. There is no physiological evidence to suggest that the human body recruits muscle in such a way 

as to minimise either of these factors. The study of Hard! (1978) attempted to model the energy 

consumption concerned with muscular actions. To test these formulations some valid criterion is required. 

lvlany of the objective functions do not have a proven physiological basis. The force output of a muscle is 

a complex function of the length, velocity, and degree of activation of its fibres. By taking account of the 

previous or current states of the muscles, some knowledge of the mechanics of muscle could be 

incorporated into the model used to estimate muscle forces. However, most models do not attempt to do 

this. In the objective functions of Pedotti et al. (1978) and Herzog (1986) some of the properties of muscle 

were considered. Factors such as fatigue and storage of elastic energy are even more complex 

phenomena which occur in human muscles but which have not yet been considered in static optimization 

studies of muscle forces. 

6:3.4 VALIDATION 

The primary method used to validate both linear and non-linear optimization formulations has been the use 

of EMG signals. These signals are used to indicate when the muscles are active and this information is 

then compared with the activity of the muscles as predicted by the optimization procedure. Most of the 

non-linear objective functions predict load sharing between all of the modelled muscles. and have 

generally been validated using this criterion. Such information does not give a true indication of the 

relative or absolute activity of the muscles. 

Muscle models of varying degrees of sophistication have been used to examine the validity of optimization 

formulations. For example, by using a muscle model to compute the maximum force that a muscle can 

exert, optimization criteria have been invalidated if muscle force estimates have been higher than these 

physiologically based maxima. lt could be argued that such information should be included in the 

optimization model as an inequality constraint. Herzog (1986) evaluated optimization formulations by 

predicting muscle forces using a muscle model which assumed the muscles were maximally active. The 

muscle forces predicted using different objective functions were then compared with the muscle model 

forces. Such a validation is primarily only as good as the estimates of the muscle forces made by the 

muscle model, and is only applicable for maximal and near maximal conditions, which do not frequently 

occur in the everyday activities which many of these objective functions were formulated to investigate 

(e.g. walking). If the activity is maximal or near maximal, and there is no eo-contraction of antagonists. an 
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optimization procedure is not required to estimate muscle forces: a muscle model such as that described 

in section 5:5.1 can be used. Herzog (1986) used such a method to arrive at his criterion values. This 

approach of course assumes that the muscle model used is valid. 

Dui et al. (1984a) used data of muscle forces measured in vivo in cats to evaluate their objective function. 

Their validation was only partial as they had to estimate many of the parameters for their model without 

much knowledge of the experimental animals. Pedersen and Brand (1989) attempted a validation of the 

objective function of Crowninshield and Brand (1981) using hip contact force data measured in vivo. The 

number of studies where muscle forces or joint contact forces have been measured are small. If such 

data are used from the literature, model parameter estimation is more difficult than if the researcher 

measures the muscle forces in vivo and tests the objective function. Such sources of data are generally 

highly invasive. 

Most of these methods are at best only partial validations and are better viewed as methods to invalidate 

optimization formulations. No optimization technique can be classified as having been truly validated but a 

number can be said to have been invalidated. The next section will further examine the "invalidation" of 

optimization formulations. 

6:4 COMPARISON OF OBJECTIVE FUNCTIONS 

lt is the purpose of the following sections to examine a number of optimization formulations: objective 

functions and constraints. Their validity will be examined by considering the EMG signal from the 

muscles, and basic muscle properties. 

6:4.1 METHODOLOGY 

A number of objective functions were examined under three different conditions: isometric muscle action; 

sub-maximal concentric muscle action; and maximal concentric muscle action. Three different constraints 

were also used in combination with the objective functions. 

The objective functions were divided into three sets. The first was only concerned with the minimisation of 

the sum of muscle forces, this was done with the forces being raised to different powers. The second set 

examined objective functions which minimise some function of the sum of muscle stresses. The final set 

was concerned with the minimisation of the sum of the relative muscle forces. The basic formulation can 

therefore be stated as:-

Minimise U - ! g(FMi ) 
i- t [6.11] 

Subject to 

MM - ! A; • FMi 
i- 1 [6.12] 

Where:-

NM • is the number of muscles in the model 



g(FM ) • is some function of the force of the ith muscle 

FM· is the force exerted by the ith muscle 

MM • is the muscle moment 

and R1 is the moment arm of the ith muscle. 
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Both linear and non-linear objective functions were examined. for which different solution procedures were 

required. The linear objective functions were solved using the Simplex algorithm based on the FORTRAN 

code presented by Siddall (1982). The non-linear objective functions were solved analytically using 

L.agrangian multipliers. All these techniques are described in Appendix D. Three different constraints 

were used with these objective functions. The constraints placed on each muscle were:· 

Constraint 1 • limiting muscle force so it was less than or equal to the maximum isometric force possible by 

the muscle (this occurs at the muscle fibres optimal length), 

Constraint 2 • limiting the maximal muscle force by accounting for the current length of the muscle using 

the force-length model of muscle described in 5:2.2, 

Constraint 3 • limiting the maximum force that the muscle can exert by taking into account the force· 

velocity model of muscle described in section 5:2.3. This constraint was not appropriate for condition A 

which was an isometric muscle action. 

As discussed in section 6:3.4 there are three basic methods used to try and validate objective functions. 

They are comparison of the muscle forces or activity as predicted by the objective function with: muscle 

activity indicated by EMG data, muscle forces predicted by a muscle model, and muscle forces as 

measured in vivo. The conditions examined here were concerned with the first two methods, there were 

no data available with which to implement the third method. 

The objective functions were examined under three conditions. These conditions were formulated using 

data described in the earlier chapters. The three conditions were:· 

Condition A 

The subject had their elbow flexed to 130 degrees, and during an isometric muscle action produced a joint 

flexion moment of 20 N.m; this was 76 percent of the maximum moment that the subject could exert at this 

joint angle. Basmajian and L.atif (1957) examined EMG signals from the three major elbow flexors in 20 

subjects using indwelling electrodes. They reported that with and without load during elbow flexion the 

three flexors modelled here were all active simultaneously, irrespective of whether the activity was 

dynamic or static. Pauly et al. (1967) examined the EMG activity of 18 subjects using indwelling 

electrodes, and reported that during flexion all the flexors were active simultaneously. In condition A 

atthough the forces exerted by the muscles were not known, from these EMG studies it can be inferred 

that the objective functions should predict all of the muscles to be active simultaneously. The forces 

predicted should also be below physiological maxima. 

Condition B 

The second condition was to predict muscle forces during elbow flexion when the muscle fibre velocities 
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were known. The conditions were the same as in condition A, but this time the muscle fibres had known 

velocities .. Again the muscle forces were not known but the objective function should predict all the 

muscles to be active simultaneously, and predict force levels which should be equal to or below the 

maxima that the muscles should be able to exert as indicated by the force-length and force-velocity 

relationships. 

Condition C 

The final case investigated was based on the data gathered in section 5:5.2, the simulation of the maximal 

dumbell curl. Herzog (1987b,c) used muscle forces estimated using a muscle model to evaluate his 

objective function. The simulation model presented in section 5:5.1 allowed the prediction of the individual 

muscle forces during this maximal activity. One instant during the dumbell curl (trial #4) was chosen and 

the muscle forces predicted using the muscle model from that instant were used as the criterion. The data 

from this same instant were used as inputs for the objective functions and muscle model. 

For each of the conditions various parameters and variables were required as inputs to either the muscle 

model or the objective function. The muscle parameters were the same as those described in section 

5:4.2. The variables required were the moment arms, lengths, and velocities of the muscles and their 

fibres, and the net muscle moment. For condition A these were obtained from the static data capture at a 

joint angle of 130 degrees. For condition B these were obtained from trial #3, again at a joint angle of 130 

degrees, and muscle fibre velocity was assumed equal to muscle velocity. For condition C the variables 

were obtained from trial #4 and the simulation procedure described in section 5:5.1. For condition C the 

muscle fibre velocity was obtained from the simulation procedure. As muscle velocity is sometimes used 

rather than muscle fibre velocity as the input to models (e.g. Pedotti et al., 1978; Hard!, 1978), this value 

was also used to evaluate the potential error when using muscle velocity rather than muscle fibre velocity 

as the input to the models of the force-velocity relationship. 

1t is assumed that for the three conditions examined the three modelled muscles were solely responsible 

for producing the moment about the joint. 

6.4.2 OBJECTIVE FUNCTIONS 

The objective !unctions were divided into three sets. 

~ - the objective functions evaluated in this set were all concerned with the minimisation of some 

function of the muscle forces. Specifically the objective functions were:-

NM NM NM 

L, L, 2 L, 3 
Ut - FMi U2 ~ (F.,. ) U3 = (F.,. ) 

I • 1 I • 1 i • 1 
NM 

(F ... r NM 

U4 - L, U5 -L, (F" r' 
I • 1 i- 1 

Where:-

NM- is the number of muscles 
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and FMi is the force exerted by the ith muscle. 

Sllll- the objective functions evaluated in this set were all concerned with the minimisation of the sum of 

some function of the individual muscle stresses. The cross-sectional areas of the muscles were not 

known but the maximum isometric muscle forces were known. From the discussion in 5:4.1.5, the specific 

tension of muscle is known so it was possible to calculate the muscle cross-sectional areas. The objective 

functions were:-

U9- i 
I • 1 

Where:-

U7 - ! (o; 
i • 1 

NM 

UIO - L 
i- 1 

NM- is the number of muscles 

0 1 - is the stress in the i1h muscle 

FMi 
o; - CSA 

I 

FM - is the force exerted by the ith muscle 

CSA1 - is the cross sectional area of the ith muscle 

NM 

us- :L 
i - 1 

u11 - cr 

and 0' is the stress experienced by the most stressed muscle. 

Objective function U11 was the function recommended by An et al. (1984), and requires the minimization 

of the maximum muscle stress experienced by the most stressed muscle. In this case the muscle forces 

are therefore distributed as a function of their cross-sectional areas, which is the same as one of the 

control models described in section 6:2.4. 

snill - the objective functions in this set were concerned with the minimisation of the sum of the relative 

muscle forces. Relative muscle force is defined as the fraction of muscle force which the muscle is 

producing divided by the maximum muscle force the muscle could produce under the current physiological 

conditions. The objective functions evaluated in the previous set were all concerned with the minimisation 

of some function of the muscle stress. The objective functions in this set can be considered to use muscle 

stress, but they update it to allow for the current physiological state of the muscle. This has been done by 

using maximum muscle force rather than muscle cross-sectional area as a denominator for the equations. 

When a muscle is exerting its maximum isometric force at optimal length, the objective functions are 

identical, as in this case muscle force is equal to the product of muscle cross-sectional area and the 

specific tension of muscle, with the latter being constant. As soon as the muscle fibres move away from 

this length or have a velocity, this relationship does not apply. Therefore for these objective functions the 

denominator is based on muscle properties. Such objective functions have been formulated by Pedotti et 

al. (1978), and Herzog (1987b,c). The objective functions were:-



Ul2 ~FM =i..J FMM 
i = I 

U13 =! [:;J U14 

i = I 

NM Jo 
UIS = L [~: Ul6 = ! [ ::~r 

i =I 
Where:-

NM- is the number of muscles 

i = I 

FM - is the force exerted by the ilh muscle 

=! [~:J 
i =I 

and FMM is the maximum possible force, under current physiological conditions, of the ilh muscle. 
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FMM; was calculated by each of three methods; these methods were designated a, b, and c. In method a 

FMM was calculated based on the force-length relationship of the muscles. In method b FMM was 

calculated by considering the force-length and force-velocity relationships of the muscles, in this case 

using muscle fibre velocity. In method c FMM was also calculated by taking into account the force-length 

and force-velocity relationships of the muscle, but in this case muscle velocity was used rather than 

muscle fibre velocity. 

6:4.3 RESULTS AND DISCUSSION 

The results for the three conditions are presented in Appendix E in tables E.1, E.2, and E.3, (because 

there were criterion values for condition C the percentage difference between the predicted and criterion 

values are also presented in table E.3). Any reference to accuracy refers to condition C only. The term 

physiological maximum muscle force is used in this and following sections; it refers to the maximum force 

a muscle can produce given the current length and velocity of its muscle fibres. 

Four linear objective functions were examined, U1, U6, U11, and U12, but the following discussion in this 

paragraph does not refer to objective function U11. As discussed in Appendix D, the number of active 

muscles predicted by a linear objective function depends on the number of constraints imposed, therefore 

without the imposition of equality constraints none of these objective functions predicted all the muscles to 

be simultaneously active under any of the conditions. For objective function U1, the muscle with the 

largest moment arm was selected in preference to the other muscles. This selection was particularly 

inappropriate because in the present study the muscle with the largest moment arm in all three conditions 

was the brachioradialis, which also had the lowest possible maximum force. When the muscle forces 

were constrained, the brachioradialis was always estimated to be maximally active. For condition A 

where the subject was exerting 76 percent of the maximum joint moment, it would seem to be unlikely that 

one muscle would be maximally acUve. For objective functions U6 and U12 the muscle with the largest 

product of the muscle moment arm and the denominator in each of the objective functions was 

preferentially selected over the other muscles. These objective functions therefore chose the muscle 

which could make the largest contribution to the joint moment; in both cases this was the biceps. When 

the muscle forces were not constrained, the biceps was predicted to produce all of the joint moment. The 



procedures by which these objective functions recruited muscles were not based on any established 

physiological principles. 
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Objective function U11 selected the muscles in relation to their cross-sectional areas. At its optimal length 

the maximum isometric force a muscle can exert is a linear function of its cross-sectional area, under 

which conditions this objective function would theoretically be realistic. All three muscles would not obtain 

their optimal lengths simultaneously, and away from these lengths the isometric maximal forces are 

complex non-linear functions of each muscle's cross-sectional area. In conditions A and B the muscle 

fibre lengths were significantly different from their optimal lengths so that the maximal forces they could 

exert were different from their maximum isometric forces. The force that the brachioradialis could exert in 

relation to its maximum force was the most diminished, due to its particular force-length relationship, 

consequently this muscle was always predicted to be producing a force greater than or equal to its 

maximum force. For conditions Band C the brachioradialis had the highest velocity so again it was 

predicted to have a muscle force greater than or equal to the maximum possible force, depending on 

whether constraints were imposed or not. This objective function does have a physiological basis as the 

muscle forces are indirectly distributed in relation to the maximum force a muscle can exert. but such a 

condition is most valid when all of the muscles are closest to their optimum lengths during isometric 

muscle actions. Away from such conditions due to the force-length and force-velocity relationships, the 

forces the muscle can exert are more complex functions of the properties of the muscles. 

Non-linear problems sometimes converge to a local rather than a global minimum. The advantage of 

linear objective functions is that they are guaranteed to converge to a global minimum (Arora, 1989). Of 

the linear objective functions examined here (U1. US, U11, and U12) only U11 predicted all three muscle 

to be simultaneously active without the imposition of additional constraints. When constraints were added 

the muscle which had been preferentially selected under the no constraint condition automatically had a 

muscle force value equal to the imposed constraint. 

All of the objective functions in set I estimated muscle forces which were in excess of the physiological 

maximum when no constraints were placed on the muscle forces. This was also the case when the 

muscle forces were constrained to be less than the maximum isometric force possible by the muscles. 

Ignoring U1 the other objective functions in this set predicted all the muscles to be active simultaneously, 

but in most of the cases one or two of the muscles were predicted to be maximally active whilst the third 

muscle was often predicted to be producing less than half of its physiological maximum force. lt seems 

unlikely that the body would recruit muscles in such a way because the maximally active muscle would not 

be able to sustain that level of activation for prolonged periods, whereas if the muscle moment was 

satisfied by all three muscles working at sub-maximal levels the activity could be maintained for longer 

periods. For conditions Band C when the muscle forces were constrained to be equal to or less than the 

muscle forces predicted by the force-velocity relationship (constraint 3), the muscle forces were 

constrained to such an extent that the objective function made little difference to the predicted force levels. 

The non-linear objective functions in set I were solved analytically using the procedure described in 

Appendix D. Analysis of equation 0.8 shows how the load is shared between the two muscles, i and j. 
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with this group of objective functions:-

[6.13] 

Where p is the power to which the muscle force has been raised in the objective function. 

lt can be seen that in this set of objective functions, the way the load is shared between pairs of muscles is 

a function of the moment arms of the muscles and p, but takes no account of physiological properties of 

the muscles. This equation also indicates that as the value of p increases, the influence of the muscle 

moment arms on the ratio of load sharing between the muscles decreases, and for larger values of p the 

right-hand side of the equation tends towards one. Therefore for large values of p the muscles all have 

equal or similar forces; the tendency for this to occur is illustrated by objective function US where p was 

equal to 100. 

Some of the objective functions in set 11 have been used by researchers, for example Crowninshield 

(1978), and Crowninshield et al. (1978) used objective function U6, and Crowninshield and Brand (1981) 

used objective function US. For the non-linear formulations the objective functions all predicted the 

muscles to be simultaneously active, but for condition A tor all of the objective functions one or two of the 

muscles were predicted to be producing muscle forces which were either equal to or greater than the 

maximum force the muscle could exert under the physiological conditions. The solutions for these 

objective functions, and those in set Ill, were obtained using the analytical solution presented in Appendix 

D, a re-arrangement of equation 0.8 illustrates how the difference in force varies between two muscles i 

and j:-

[6.14] 

Where A; is either the cross-sectional area of muscle i or the maximum muscle force, depending on 

whether an objective function from set 11 or Ill is being solved. 

lt can be seen that the way in which the moment is accommodated by the solution of the objective function 

is not dependent on load, but is a function of the moment arm and the cross-sectional area of the muscles. 

For example for objective function U7 the degree of load sharing between the muscles is solely dependent 

on the product of the muscle moment arms and cross-sectional areas. Although these mechanical 

considerations must be important, there is no allowance made here for the physiological properties of the 

muscles, other than their maximum isometric force. Allowance can be made tor the properties of the 

muscles in the constraints but the objective functions will predict the muscle forces in the ratios described 

in equation 6.14 up to the constraint level. 

Further analysis of equation 6.14 shows that as the value of p increases, the value resulting from the 

division of one moment arm value by another, all raised to the power of 1/(p-1 ), tends to one, and so has 
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no influence. As the value of p increases, the result of pl(p-1) tends to one, meaning that for large values 

of p the muscle forces are shared between the two muscles in direct proportion to their cross-sectional 

areas. This was the case for U10 with no constraints where p-1 00, and so results for all conditions using 

this objective function were very similar to the results for U11 which distributed the muscle forces in 

proportion to their cross-sectional areas. 

The objective functions in set Ill are based on those suggested by Pedotti et al. (1978) and Herzog 

(1987b,c). For condition A all of these objective functions predicted muscle forces which were equal to or 

greater than the physiological maxima; as this was a sub-maximal activity such estimates are unrealistic. 

Except for the linear objective function U12 all these objective functions predicted all the muscles to be 

active simultaneously for all conditions. 

Objective function U13b was equivalent to the function used by Herzog (1987b,c), who did not impose any 

constraints on his muscle force values. Herzog (1987b,c) used a muscle model to produce maximum 

muscle force estimates for the denominator in his objective function. lt would seem to be a logical 

extension to use these to constrain muscle forces. For all conditions examined here, without constraints, 

this objective function predicted muscle forces in excess of physiological maxima. 

Under the dynamic conditions when only the force-length relationship was used (U13a·U16a), this group 

of techniques was not very accurate. For all of these non-linear objective functions, for condition A the 

brachioradialis was estimated to produce muscle forces greater than or equal to its physiological 

maximum. The most accurate results were obtained when the relative muscle forces were calculated from 

the force-length and force-velocity relationships, using muscle fibre velocity as input to the force-velocity 

relationship (U13b-U16b). Placing constraints on this group of objective functions made little difference to 

the accuracy of the results. As p increased so did the accuracy of the muscle force prediction using the 

non-linear objective functions in set Ill. This can be explained by analysing equation 6.14. lt has already 

been established that as p increases the ratio of muscle forces depends on the ratio of the cross-sectional 

areas in equation 6.14. For this class of objective functions the muscle cross-sectional areas are replaced 

by the maximum muscle force under current physiological conditions. For objective function U16b, which 

gave the most accurate results for condition C. this meant that the objective function made all the muscles 

have the same relative force. Such a procedure is attractive because it ensures load sharing between the 

muscles, and for sub-maximal activity one muscle is not preferentially selected to be maximally active. 

For condition C the results were more accurate when using muscle velocity rather than muscle fibre 

velocity, for all the objective functions except U13b-U16b. Consideration must be given to implementing 

these objective functions in this way, thus avoiding the complexity of having to compute muscle fibre 

velocity. 

This discussion has focussed on the results from the three conditions all of which were performed at high 

intensities (75 to 1 oo percent of maximum). This level of intensity occurs frequently in many sporting 

activities but not so frequently in everyday activities. These results must be regarded in this light, although 
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some of the trends reported clearly apply across the full range of lntensities because of the nature of the 

mathematical formulation used to obtain the muscle force estimates. 

6:4.5 CONCLUSION 

For the linear objective functions U1, U5, and U12 there was no sharing of the load unless additional 

constraints were placed on the solution plane. These objective functions preferentially selected a single 

muscle: when the sum of the muscle forces was minimised (U1 ), the muscle with the largest moment arm 

was selected; when the sum of the muscle stresses was minimised (U5), the muscle with the largest 

product of cross-sectional area and moment arm was selected; and when the sum of the relative muscle 

forces was minimised (U12), the muscle with the largest product of maximum muscle force and moment 

arm was selected. Even when constraints were imposed, the other muscles only became active once the 

preferred muscle was maximally active. The results of this analysis invalidate the "Principle of Minimal 

Total Muscular Force• (MacConaill, 1967), tor the cases examined here. 

The non-linear objective functions estimated load sharing between the muscles for all conditions 

examined. Without the addition of constraints muscle forces in excess of the physiological maximum were 

estimated, except U16b condition B. Analysis of the analytical solutions to these non-linear objective 

functions shows that the solution to these functions does not depend on load but on the muscle moment 

arm, and the denominator in the objective function (if there is one), see equations 6.13 and 6.14. 

In the two dynamic conditions the muscle forces were more realistic when the third constraint was added. 

This constraint was particularly appropriate because condition B was near maximal activity and condition 

C was maximal activity. In the latter case the muscle forces were equal to the constraint conditions so the 

objective functions became redundant. These results do indicate that the imposition of constraints is 

required if the estimated muscle forces are going to have any degree of validity. To impose these 

additional constraints there are a number of requirements: a model of the muscles causing the activity, 

parameters for the model, and the input variables for the model. To date very few of the optimization 

studies have incorporated a muscle model where model parameters have been obtained from the 

experimental subject, Herzog (1987b.c) being a notable exception. If such a model is employed, it is 

relatively simple to impose constraints based on the force-length relationship of muscle, but the force­

velocity relationship is harder to apply. To use the force-velocity relationship the muscle fibre velocity is 

required. As can been seen from the analysis for condition C, if muscle velocity is used instead of muscle 

fibre velocity, different maximum values are obtained. In this case the maximum forces the muscles could 

exert were so constrained that it was not possible tor them to satisfy the equality constraint, that Is the sum 

of the products of the maximum muscle forces and moment arms was less than the muscle moment at the 

joint. A possible solution to this would be to use muscle velocity to obtain an estimate tor constraint 

values, asH is much easier to estimate in vivo than muscle fibre velocity. These constraints could then be 

relaxed by some amount allowing for the fact that muscle fibre velocity may be lower than the muscle 

velocity. 

No one objective function was clearly superior. The accuracy of the results increased when constraints 
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were placed on the solutions, which were based on established properties of muscle, i.e. force-length, and 

force-velocity relationships. 

lt may be concluded that objective functions with a greater physiological basis are required. If this is not 

attempted, physiological constraints should be placed on the muscle forces estimated using other 

objective functions. There is also a need for a means of validating such procedures: measurement of the 

individual human muscle forces in vivo for all the muscles crossing a joint, for a range of activities, would 

provide a valuable contribution to this area of research. 

6:5 A NEW OBJECTIVE FUNCTION 

The purpose of the following sections is to present a new objective function designed to estimate individual 

muscle forces in vivo. The objective function is tested under the same conditions used to evaluate the 

other objective functions and is then used to compute the muscle forces during two of the dumbell curls, 

trials #2, and #3. 

6:5.t RATIONALE 

The most successful objective functions examined in the previous sections focussed on functions of 

muscle stress or relative muscle force. In engineering applications minimising the sum of the stresses in 

the component parts of a system is a justifiable approach. Human muscles are capable, in vivo, of 

tolerating stresses greater than the maximum that they can exert themselves (Yamada, 1970), therefore 

minimising the sum of the muscle stresses only has limited physiological justification. lt has been shown 

in a limited number of studies that the human body moves to minimise the energy requirements necessary 

to produce the movement. Cotes and Meade (1960) examining horizontal treadmill walking showed that 

the stride frequency selected by the walkers required the least energy expenditure, compared with walking 

at stride frequencies less than or greater than the selected frequency. In a similar study examining 

running, Cavanagh and Williams (1982) have shown that when running at a constant speed a group of 

subjects selected a stride length which minimised the energy cost for running at that speed, with changes 

in stride length resulting in an increased energetic cost to run at the same speed. McMahon, Valiant, and 

Frederick (1987) presented evidence to suggest that the preferred style of running also requires the lowest 

energy cost. Similar phenomena have been reported in swimming salmon (Brett, 1965). Based on this 

concept it is hypothesised that the human body recruits muscles to produce a joint moment in such a way 

that the total energetic cost to the muscles causing the movement is a minimum. The next section 

presents the formulation of an objective function designed to select muscles to satisfy a joint moment 

which attempts to minimise the energetic cost of producing that movement, whilst taking into account other 

physiological properties of the muscles. 

6:5.2 FORMULATION 

The objective function was designed to minimise the energetic cost of satisfying the moment. 

The objective function was:-



Where:-

NM · Is the number of muscles 

and ~is the rate of energy consumption by the ith muscle. 

This non-linear objective function was selected because of the limitations of the solutions to linear 

objective functions discussed in Appendix D. 
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[6.15) 

Objective functions are normally constrained so that the product of the muscle forces and their respective 

moment arms were equal to the muscle moment. In this case this constraint was relaxed to allow for the 

inaccuracy of the muscle moment estimations, therefore using the results reported in section 4:5.1 the 

following constraints were enforced:· 

NM 

MM • TOL ( L, 
"' 

-F; 
i- 1 [6.16) 

NM 

MM+TOL) L, "' ·F; i. 1 

Where:­
[6.17) 

MM • is the muscle moment 

TOL • is the tolerance selected to reflect the accuracy with which the muscle moment has been estimated 

R1 • is the moment arm of the ith muscle 

and F1 is the force exerted by the ith muscle. 

The tolerance levels (TOL) were set at 1 N.m, although the estimated errors in the joint moments were 

greater than this (see section 5:4.1 ), particularly for errors in the kinematic data. Given a broader range of 

tolerances, muscle moments were only predicted for the lower tolerance band, equation 6.16, because 

generally this required lower muscle forces and therefore had a lower energetic cost. With the tolerance 

limits used this did not occur. 

The rate of energy consumption by an active muscle was described in Chapter V, and represented by 

equations 5.43, 5.48, and 5.51. Therefore the rate of energy consumption of a muscle is:-

~ • F; vfi + 8r~ + vfi (0.18 F;, + o.16 F; l [6.18) 
Where:-

Vfi ·is the velocity of the muscle fibres of the ith muscle 

a1 and b1 • are the constants from Hill's equation, see equation 5.18 

and F11 is the maximum isometric force of the ith muscle at the current length of its muscle fibres. 

The force output of each muscle is determined by the length and velocity of the muscle fibres, and the 

active state of the muscles. Therefore from equation 6.18, the rate of energy consumption of an active 
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muscle is also determined by the length and velocity of the muscle fibres and the active state of the 

muscle. Control of the muscles by the nervous system is not instantaneous, a muscle is not turned on and 

off in an instant (bang-bang control) rather it takes time for force to develop, and time for it to reduce. 

Therefore a model of active state was used to allow for the nervous control of movement, this model used 

equations 5.22 and 5.23. Given the current active state of the muscles these equations gave the 

maximum and minimum active states that could be attained by the next time interval assuming either full 

stimulation or no stimulation respectively. Therefore the active states of the muscles were constrained so 

that the active states chosen to produce the muscle force to satisfy equations 6.15, 6.16, and 6.17 were 

between the minimum and maximum active state values:-

Where:-

q;;. Qmi~ 
q ,. Qma~ 

01 - is the active state of the ith muscle 

Qmin1 - is the minimum active state the ith muscle can attain 

and Qmax1 Is the maximum active state the ith muscle can attain. 

[6.19] 

[6.20] 

Equations 5.22 and 5.23 automatically constrain the maximum active state to greater than zero and less 

than or equal to one. Based on these equations the shortest time in which the active state can change is 

0.003 seconds. Therefore data was interpolated over a new time base (&t • 0.005), to allow for a finer 

adjustment of the active state. Interpolation was performed using the spline procedures described in 

Chapter Ill. 

The whole procedure for calculating the muscle forces is presented in the form of a flow diagram in figure 

6.2. The equations used for each stage in the process are written in the appropriate box in the flow chart. 

The initial conditions were computed by assuming that the velocity of the muscle fibres was equal to the 

velocity of the muscle. The initial maximum isometric force was computed by assuming that at the current 

muscle lengths each muscle was exerting a maximum isometric force, using the iterative procedure 

described in section 5:4.2. For this first Instant the activation levels were not bounded. The velocities of 

the muscle fibres were determined by computing the velocity of the tendon using first order backwards 

central difference equations (Miller and Nelson, 1973). The difference between tendon velocity and the 

muscle velocity gave the velocity of the muscle fibres. The optimization algorithm used to find the 

activation levels and therefore the muscle forces, was based on the direct search method of Hooka and 

Jeeves (1961), it is described in Appendix D. 

In summary the muscle forces were computed by considering the objective function (6.15), subject to the 

constraints (6.16, 6.17, 6.19, and 6.20). The active state was selected to find a minimum solution to 

equation 6.15 and to satisfy equations 6.16 and 6.17 whilst keeping active state values within boundaries 

dictated by the previous activity of the muscle and the limitations placed on the maximum rate at which the 

active state can either rise or fall. The procedure had to be repeated for each sample interval, with new 

constraints for the muscle moment, muscle moment arms, and minimum and maximum active states for 
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FIGURE 6.2 - A flow diagram illustrating the procedure for estimating the muscle forces, using the new 

objective function. The figures in the boxes refer to the equations which are the embodiment of the model 

used to compute the variables. 
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each muscle. 

6:5.3 RESULTS 

To test the objective function it was used to compute the muscle forces for the three conditions described 

in section 6.4.1 . The results for this analysis are presented in table 6.5. For condition A all three muscle 

were estimated to be producing non-maximal forces, for condition 8 there was also load sharing between 

the muscles. For condition C the optimization formulation predicted all three muscles to be maximally 

active simultaneously. 

TABLE 6.2- The muscle forces estimated using the new objective function, for the three conditions. 

CONDITION BICEPS BRACHIA LIS BRACHIORADIALIS 

FOBCE(N) FORCE (N) FORCE(N) 

A 457.5 672.1 32.5 

8 480.4 536.5 68.1 

c 438.9 995.6 103.7 

To complete this analysis, the objective function and associated constraints described in the previous 

section were used to estimate the muscle forces for two of the trials. The muscle forces were estimated 

for trials #2, and #3. To show the effect of the objective function the muscle forces were also computed for 

each instant assuming that the muscles were maximally active, these are plotted on the same graph. The 

graphs showing the estimated and maximal muscle forces are shown for the two trials in figures 6.3 

and 6.4. 

Trial #2 was performed with the heaviest dum be 11 the subject could curl. In section 4:5.2 it was discussed 

how this may not have been the true maximum of the subject and the muscle force estimations reflect this. 

Trial #3 was the first of 5 repetition of a dumbell curl with 15 kg, the objective function estimated that the 

muscles were generally not exerting a maximal force throughout the movement. As the subject had to 

perform a further four repetitions after this analysed effort this pattern of recruitment has some justification. 

6:5.4 DISCUSSION 

The ability of the model presented, to estimate muscle forces in vivo has not been proven by direct 

experimental evidence. This criticism can also be made of the other objective function based models used 

to estimate muscle force in human movement. The results of the model for the three conditions presented 

in section 6.4.2 were all physiologically realistic, so it is validated from that point of view. The objective 

function was formulated based on the assumption that muscles are recruited in such a way that the rate of 

energy expenditure is minimised. No direct experimental evidence was found to support this theory, and it 

is not claimed that this is how the body recruits muscle, however a possible mechanism is presented. 

Such a mechanism may well come into play in a "fright, flight, or fight response•, where presumably there 

are two possible "strategies": the minimization of metabolic energy expenditure, or the maximization of the 
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FIGURE 6.3 -The muscle forces for trial #2, estimated using the new objective function. The dotted line 

shows the maximum forces the muscles could have exerted given maximum activation. 
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FIGURE 6.4- The muscle forces for trial #3, estimated using the new objective function. The dotted line 

shows the maximum forces the muscles could have exerted given maximum activation. 
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muscle power. Whether such a "strategy• is in use in the situations studied here is as yet unknown. 

Hard! (1978) presented an objective function designed to minimise the energy cost of producing a muscle 

moment, the shortcomings of which were discussed in section 6:3.1. The model presented in 

section 6:5.2 attempts to include more pertinent details of the physiological system which is being 

modelled. Most of the objective functions reviewed in sections 6:3.1 and 6:3.2 included little if any of the 

mechanical or physiological properties of the muscles in their optimization formulations. 

The objective function used is physiologically based, although it is not supported by direct experimental 

evidence. The model includes nervous control of muscles, allowing for the previous activity of the 

muscles. The forces exerted by the muscles were automatically within physiological maximum limits 

because the force-length and force-velocity relationships were included in the model. The tendons which 

lie in series with the muscle fibres of each muscle have also been included in the model, because the 

elastic properties of these tendons can influence the force-length and force-velocity properties of the whole 

muscle. 

6:5.5 SUMMARY 

As discussed previously, it is difficult to thoroughly validate a model designed to estimate muscle forces 

during sub-maximal activity. The model presented here has not been validated fully although it has 

estimated muscle activity in accordance with EMG signals and the physiological properties of muscles. 

The model is not presented as an answer to the problem of estimating individual muscle forces in vivo, but 

to show how more physiological information can be incorporated into static optimization schemes used to 

estimate individual muscle forces. 
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CHAPTER VII 

DISCUSSION AND SUMMARY 

INTRODUCTION 

The purpose of this Chapter is to summarise the analyses undertaken in each of the chapters, and discuss 

their significance and implications for further research. 

7:1 CINE-PHOTOGRAMMETRIC PROCEDURES 

Human movement generally occurs in three spatial dimensions. Although others have examined elbow 

flexion in two dimensions only (e.g. Hay, Andrews, and Vaughan, 1983), such a simplification was not 

made in this study. In fact as shown by An, Hui, Morrey, Linschied, and Chao (1981) the moment arms of 

the elbow flexors are dependent on the three-dimensional orientation of the forearm, therefore to obtain 

accurate moment arm information it was necessary to study the movements in three dimensions. lt was 

the purpose of Chapter 11 to review some of the photogrammetric techniques used in biomechanics to 

obtain the position of points in space using three-dimensional cine·photogrammetry, and to detail the 

technique used in the present study. 

The technique used to obtain this three-dimensional information was the direct linear transformation (DLT) 

(Abdei-Aziz and Karara, 1971 ). Its primary advantages were that it permitted non-metric cameras to be 

used, positioning of the cameras was arbitrary and did not need to be measured. The major disadvantage 

was the requirement of a three-dimensional distribution of control points throughout the space in which the 

activity was to take place. To obtain these control points a calibration structure was used. Due to the 

dimensions of the space in which the activity to be studied took place, the size, manufacture, and stability 

of the calibration structure did not present a problem. 

The assumption of measuring the accuracy of the DLT using the reconstruction of the control points used 

to perform calibration, was examined. Such an assessment procedure does not provide an independent 

measure of accuracy, and cannot be considered a real test of the accuracy of a technique as the control 

points were used to calibrate the system initially. Reconstruction of control points reflects the accuracy of 

the mathematical techniques employed and any unaccounted for aspects of the photogrammetric process 

(including noise); it does not necessarily reflect the accuracy of the technique in locating unknown points in 

space. The results of this analysis indicated that with the DLT to get a true estimation of accuracy, an 

alternative assessment criteria to that of reconstruction of the control points used for calibration, is 

required. In this study a second set of control points was used to evaluate the accuracy of the DLT 

photogrammetric technique. 

The control points required for the DLT are normally mounted on a calibration structure which is placed in 

the space of interest before the activity, filmed, and removed. The shape and size of the calibration 

structure is dependent on the activity to be studied, but there have been different methods used to 

distribute the control points in the space of interest. To assess the influence of control point distribution, 
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different control point configurations were investigated. This analysis indicated that the so called 

"Christmas tree" control point configuration (van Gheluwe, 1978) was the least accurate of the all the 

configurations investigated. These results also indicated that it is more important to surround the space in 

which the activity is to take place than to have control points inside the space. Other control point 

configurations may exist which could result in superior reconstruction accuracy. 

The reduction in reconstruction accuracy if the activity took place outside of the calibrated space was 

quantified. These figures were not relevant in this study as all of the activities studied took place in the 

calibrated space. A further and more detailed examination of these errors would be of value. particularly if 

the DLT was going to be used in the field where only a small calibration object may be viable. 

Hatze (1988) presented a modified version of the DLT for which he reported a greater accuracy in the 

location of points in space than the normal DLT. Miller, Shapiro, and Mclaughlin (1980) discuss a similar 

procedure to Hatze (1988) which they claimed resulted in no increase in accuracy compared with the 

conventional solution. The accuracy figures reported by Hatze (1988) must be questioned because he 

assessed the accuracy of his technique by reconstructing the positions of control points used for 

calibration. There is also some question as to whether his implementation of the conventional DLT was 

optimal in a least squares sense, see section 2:1.5. Ignoring these criticisms the modified DLT technique 

of Hatze warrants further investigation in the future due to the significant increases in accuracy which he 

reports compared with the conventional DLT. 

There are methods used in photogrammetry where the positions of the control points are only considered 

as approximations and are adjusted along with parameter estimation (e.g. Kenefick, Gyer, and Harp, 1972; 

Brown, 1978). This approach automatically adjusts for errors in the locations of the control points. In fact 

Brown (1968, 1978) found using such an approach that a three-dimensional distribution of control points 

was not required, but that multiple views of a two-dimensional distribution of control points is sufficient to 

perform calibration which will subsequently permit the location of points in a three-dimensional reference 

frame. Such methods have not been commonly employed in biomechanics, yet they offer the potential for 

increased reconstruction accuracy and eliminate the requirement of a three-dimensional distribution of 

control points. Woltring (1978, 1980) used a modified version of this type of approach. 

An issue related to the cine-photogrammetric process is the location of points which have been obscured 

during the recording process. Obscured markers are often estimated during digitizing, or given a value as 

a result of interpolation using adjacent values. An analysis of this problem to detemnine the best 

procedures to locate these points, or to permit an estimation of the errors introduced when using such a 

procedure, would provide useful insight into the problems arising due to these errors. This problem is 

particularly relevant for opto-electronic techniques when analysis is attempted on-line, or when the system 

tries to automatically track markers during data processing. 

Although Chapter 11 focussed on the procedures for cine-photogrammetry, many of the procedures 

examined could also be applied in opto-electronic measurement techniques, which have increasing use in 
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the study of human movement (e.g. WATSMART, SELSPOT). 

7:2 LIMB KINEMATICS 

Chapter Ill was concerned with the procedures used to determine the kinematics of the movements 

studied. The location of a rigid body in three-dimensional space is specified by the position and attitude 

(orientation) of that body. The techniques used to determine the position and attitude of a rigid body were 

divided into three groups: direct, unweighted least-squares, and iterative cine-photogrammetric. There 

has not to date been a direct comparison of techniques representing each of these groups; such a 

comparison would be valuable. An unweighted least-squares technique was used in this study. 

To determine the attitude and position of a rigid body requires knowledge of the positions of at least three 

non-collinear markers on the rigid body. The points from which the position and attitude of a rigid body are 

determined in human movement analysis are generally marked or placed on the skin of the subject, in 

which case the markers are likely to move. This movement will be due to movement of the underlying 

skin. In this study the influence of marker movement on inter-marker distances was examined, but this 

only gave a partial indication of the amount of marker movement. The problem of determining the 

kinematics of the bone(s) making up a segment was described by Chao and Morrey (1978) who said 

"Accurate reconstruction of skeletal axes based on cinematographic data is extremely difficult because of 

the relative motion existing between the skin and the bone, and the obscureness of the prominent bony 

landmarks from the X-ray projection views. Imposition of soft tissue constitutes another source of error in 

both of these methods. The best one can hope for is to produce the gross motion of the segments but not 

the actual rotations occurring at the skeletal structure." (page 57) 

The estimated movements of the bones in the forearm using the techniques discussed in this study were 

similar to the data of Chao and Morrey (1978) but is was not possible to quantify any further how 

accurately the movements of these bones had been measured. La fortune and Hennig (1991) affixed 

markers directly to the skeleton using cortical pins. a study comparing skin based marker attitude and 

position estimates with those based on markers affixed directly to the skeleton would be valuable as such 

an approach would allow an assessment of how well the skin based markers permit the description of the 

movement of the underlying bones. These cortical pins may well be subject to vibrations which could 

hinder the measurement process. A correction procedure presented by van den Bogert, van Weeren, and 

Schamhardt (1990) for skin movement in horses may also have an application in human movement 

studies; a preliminary study would be to fully quantify these skin movements in human movement. Rnally 

if these problems are circumvented another problem arises. that is the precise definition of member 

reference frames, which have a functional significance to the bone(s) of the segment. With the continued 

development of imaging techniques (e.g. computerized tomography. magnetic resonance imaging) it may 

lead to better description of member reference frames and allow their relationship to the movements of the 

bones they are used to describe to become better defined. 

The definition of joint angles depends on how the appropriate member reference frames have been 

defined, therefore the way in which joint angles are defined varies between researchers. making it difficult 

to compare studies. Some researchers have used helical axes to describe joint motion (e.g. van Dijk, 
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Huiskes, and Selvik, 1979; Youm and Yoon, 1978; Siegler, Chen, and Schneck, 1988). The use of helical 

axes to describe joint motion has an advantage because their determination is not dependent on the way 

in which reference frames are defined. Using the formulae presented by Woltring, Huiskes, de Lange, and 

Veldpaus (1985) it was shown that the data produced in this study were not accurate enough to allow the 

instantaneous helical axes to be defined. lt was concluded that in the present study the accuracy in 

locating the markers was too low to make instantaneous helical axis estimations feasible. As the 

reconstruction technique used had high accuracy levels compared with other techniques, these results 

suggest that unless improved reconstruction accuracy is available it is not possible to compute the 

instantaneous helical axes for gross body movements in vivo using cine-photogrammetric techniques. 

Even if the reconstruction accuracy was improved, it might still be necessary to model skin based marker 

movements so the instantaneous helical axes could be estimated. 

Due to the nature of the recording process the data in this study were contaminated with noise, therefore it 

was necessary to smooth these data to reduce the high frequency components of the signal which were 

identified as noise. In addition to this smoothing of the raw data, accurate derivative data were required. 

Smoothing of noisy data prior to differentiation improves the accuracy of the estimated derivatives as does 

the appropriate selection of a differentiation technique. Therefore a number of techniques were 

investigated in order to select techniques (or a technique, as sometimes one technique will suffice for both 

smoothing and differentiation) to use in this study. These techniques were assessed using data generated 

from mathematical functions which approximated some aspect of human movement, noise was added to 

these data. The function was differentiated directly to yield the true values of the first and second 

derivatives. These true values were then compared with the values estimated from the noisy data by the 

techniques under investigation. To evaluate the accuracy of data smoothing and differentiating techniques 

a graphical representation of both the noisy and filtered data is often used, but this does not provide an 

easily comparable criterion. Therefore the accuracies of the techniques were assessed by evaluating the 

percentage root mean square error between the true and estimated values of the signal. This gave a 

quantifiable criterion, and by using a percentage value it was possible to compare results across the 

different data sets used. Of the techniques compared the ordinary cross-validated quintic spline gave the 

most accurate results. This technique was computationally very slow, therefore a quicker alternative was 

used: the generalised cross validated spline, which was found to give slightly less accurate results 

compared with the ordinary cross-validated spline, but was superior to the other investigated techniques. 

In applying a data smoothing and differentiation technique in biomechanics the difficulty is determining the 

amount of smoothing. This is equivalent to finding where the frequency components of the true signal are 

insignificant compared with those of the noise impinging on the signal. For many digital filtering 

techniques this requires the specification of a cut-off frequency and sometimes the number of filter terms, 

which will effectively specify the width of the pass-band. Truncated Fourier series are usually fitted by 

adjusting the number of terms until the difference between the input signal and the output signal is the 

same as some pre-determined error estimate for the sampled signal. For a spline, unless an automated 

technique is used, the degree of smoothing is normally specified by varying a smoothing parameter value 

(e.g.'S') in accordance with the anticipated error in the signal. lt is rarely the case in human movement 
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studies that one knows the precise frequency components of the true signal underlying a sampled signal, 

in which case some procedure must be adopted for the determination of the filter cut-off or other 

smoothing parameter. The techniques adopted to specify cut-off frequencies include using previously 

published values (e.g. Winter, Sidwall, and Hobson, 1974), and manual adjustment of the degree of 

smoothing after visual inspection of smoothed curves (e.g. Vaughan. 1982). For such biomechanical 

analysis to have genuine validity a repeatable process is required, where the degree of smoothing or filter 

cut-off is selected by a justifiable procedure which accounts for the peculiarities of each new data set, be 

that data set from another trial or another body landmark. The generalised cross-validated spline employs 

such a procedure. Whilst other techniques may be suggested which provide more accurate predictions of 

the true signal and derivative values, the technique cannot be considered complete unless it includes a 

procedure for detenmining how the degree of smoothing is selected. 

The examination of data smoothing and differentiation techniques described in this study did not examine 

what was happening at the end points of the data sets. Visual inspection of the curves indicated that 

inaccuracies at the end of the data sets were proportional to the errors in the middle for the appropriate 

order spline, but these differences were not quantified. An assessment of data smoothing and 

differentiation techniques where end point accuracy is quantified may provide further insight into the 

suitability of the different techniques used to process biomechanical data 

A further examination of the generalised cross-validated spline was undertaken, which illustrated that the 

accuracy of the spline is dependent on what order of spline is chosen, with the quintic spline being the 

most applicable for the purposes of this study. When designing a study, sample rate for cine­

photogrammetric technique or similar opto-electronic technique must be selected prior to data collection, in 

which case the frequency components of the activity to be studied are not known. Using a numerical 

example it was shown that when using the generalized cross-validated quintic spline the accuracy of the 

results increased with sample rate. This accuracy was due to the effective cut-off frequency of the spline 

increasing with the sample rate, resulting in more of the true signal remaining in the smoothed signal. 

These results correspond to the formulae of L.anshammar (1980), which indicate increased accuracy in the 

estimation of derivatives with increasing sample rate. This illustrates that the noise levels of rigid body 

position and attitude estimates and their derivatives can be significantly reduced by sampling at rates 

much greater than twice the Nyquist frequency, even if the variance of the additive white noise remains 

constant. 

Signal averaging was used to analyse the effectiveness of the spline routine. The results showed that the 

noise associated with each of the digitized points was different, and the spline was effective in removing 

this noise. The information gained from multiple digitizations of data was combined with infonmation 

gained from frequency analyses of the signals and used to quantify the errors in the data. This analysis 

used the formulae of L.anshammar (1980). 

The technique of Miller et al. (1980) determines the attitude and position of a rigid body directly from the 

digitizer coordinates of the markers on that rigid body. Three-dimensional data derived from three-
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dimensional cine-photogrammetric techniques normally have a larger reconstruction error associated with 

one axis (the depth axis), this difference in errors between axes can introduce errors when estimating the 

position and attitude of a rigid body. The approach of Miller et aL (1980) has an advantage because the 

reconstruction of landmarks on the rigid body in an inertial reference frame prior to the estimation of the 

attitude and position of the rigid body is avoided, potentially reducing the influence of the error associated 

with one axis. Woltring (1981) has suggested a further extrapolation of this concept with the development 

of a state-space model of the whole process of determining rigid body kinematics. The usual procedure is 

to follow a sequence of steps: identify and measure images of body landmarks, locate body landmarks in 

three-dimensional reference frame, smooth data, determine rigid body position and attitude, estimate 

derivatives of position and attitude information. A state-space model could be defined which would perm~ 

all of these parameters to be estimated using a single computational procedure. Such state-space models 

are used in control engineering and navigation, e.g. Eykhoff (1974), but have not yet been used in 

biomechanics although future attempts to obtain more accurate data may hinge on such an approach. 

Although more accurate cine-photogrammetric techniques are desirable, before this accuracy can be 

directly transferred into a more accurate description of limb kinematics there are a number of problems 

associated with determining limb kinematics which require further investigation. Specifically these are: the 

quantification of skin/marker movement; the definition of member reference frames; and the accurate 

smoothing and differentiation of data. Of these three areas the last has probably been the most 

thoroughly investigated. In this study it has also been shown that high sampling rates produce more 

accurate derivative estimates, so any cine-photogrammetric technique or similar opto-electronic technique 

which provides increased spatial resolution must not neglect temporal resolution. 

7:3 MUSCLE MOMENT DETERMINATION 

Techniques to determine the inertial parameters of body segments were reviewed in Chapter IV. The data 

tor this were divided into three notional groups: cadaver data, measurements on live subjects, and the 

geometric modelling of body segments. The most recent initiative in this area of study has been the use of 

a variety of imaging techniques to measure the inertial properties of body segments. These imaging 

techniques include gamma mass scanning (Brooks and Jacobs, 1975; Zatsiorsky and Seluyanov, 1983, 

1985), computerized tomography (CT) (Huang and Wu, 1976; Rodrigue and Gagnon, 1983), and magnetic 

resonance imaging (MRI) (Martin, Mungiole, Marzke, and Longhill, 1989). Measurements made using 

these techniques are not yet as accurate as measurements made on cadavers, but may have more face 

validity because a cadaver is not representative of a live subject. In the future these techniques may be 

the source of more inertial information, which at least will offer a new source of density data to be used as 

the input to geometric models of human body segments. 

This study was concerned with elbow flexion and so the only body segment inertial parameters required 

were those of the forearm and hand; therefore a number of different techniques for computing these 

parameters were compared. The techniques compared were: scaling of data; the linear regression 

equations of Zatsiorsky and Seluyanov (1983); the linear regression equations of Hinrichs (1985); a new 

set of equations which attempted to relate pertinent physical dimensions of a segment to the segment's 
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moment of inertia; and finally modelling the segments as it they were geometric solids, tor which the 

inertial parameters could be calculated. Sufficient information was given in the report of Chandler, 

Clauser, McConville, Reynolds, and Young (1975) on six cadavers, to allow each of these techniques to 

be used to estimate the inertial parameters of each of the cadaver's forearm and hand segments. The 

values estimated using each of these techniques were compared with the direct measurements made by 

Chandler et al. (1975). 

The results for the scaling of the data of Dempster (1955) were not very accurate, even though the 

procedure used was found to give the most accurate results in the study of Forwood, Neal, and Wilson 

(1985). In the study of Forwood et al. (1985) the mean data of Chandler et al. (1975) were scaled back 

onto the individual cadavers in that study using vartous scaling techniques. In the present study a more 

rigorous assessment was performed as the data which were scaled were those of Dempster (1955) which 

were scaled onto the individual cadavers of Chandler et al. (1975). The regression equations of Zatsiorsky 

and Seluyanov (1983) also did not produce very accurate results, but this raised the problem of how 

different researchers define the body segments, particularly segment boundaries. For the remaining two 

sets of equations the regression equations of Hinrtchs (1985) produced better results than the non-linear 

equations, but tor extrapolation outside of the sample population the non-linear equations produced the 

more accurate results. it was suggested that this was because the non-linear relationships used to 

formulate the equations approximated more closely the relationship between body segment dimensions 

and moment of inertia, than the linear regression equations. The geometric models of the forearm and 

upper arm showed increased accuracy when more solids were used in the models, with the lack of 

accuracy in the volume estimation placing a limit on the accuracy of the moment of inertia predictions. it 

was suggested that if sufficient measurements had been available it would have been possible to model 

the limbs using more truncated cones (or other appropriate shapes). which could have resulted in greater 

accuracy in volume esbmation, therefore potentially increasing moment of inertia estimation accuracy. 

The regression equations of Hinrichs (1985) gave the best results on the data investigated to assess 

different anthropometric models. The geometric modelling techniques gave acceptable accuracy, but 

were limited in the number of solids used to model the segments. More solids could have resulted in 

better volume estimation, and consequently potentially better moment of inertia estimations. There would 

appear to be no limitation to the sample range with these techniques, and researchers are free to define 

segment boundaries which are most suitable tor their study. Therefore the geometric modelling of body 

segments was used in this study. There is a need tor further examination of the ways of determining 

accurate body segment inertia parameters, with imaging techniques, such as gamma mass scanning, CT, 

and MRI, perhaps providing the most promising avenue for research in the clarification of this important 

area. 

Modelling the forearm as a series of truncated cones, each 0.02 m high, and the hand as a truncated cone 

and a hollow cylinder, see figure 4.2, resulted in a good estimate of their volume. lt was not possible to 

directly assess further the accuracy of inertial parameters of the forearm and hand used to compute limb 

kinetics. it was assumed that the dumbell inertial parameters were accurately determined. so it was 
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possible to investigate the influence of errors in the inertial parameters of the hand and forearm on the 

whole system (forearm, hand, and dumbell). The system was most sensitive to errors in the location of the 

centre of mass. This parameter was dependent on the accuracy of volume estimation and the assumption 

of constant density. The effect of available variable density values on this parameter was shown to be 

small. As volume was accurately estimated, it was assumed that centre of mass location was well 

predicted in this study. Other work, e.g. Mungiole and Martin (1990) has shown that a variety of 

techniques, including modelling the segments as geometric solids, provide good estimates for the location 

of the centre of mass. 

Resultant joint moments can be calculated for an activity given the appropriate kinematic and 

anthropometric data, and the external forces. These moments are computed by assuming that the body 

segments are rigid. The marker movements identified in Chapter 11 show that these segments are not truly 

rigid. The influence of the non-rigidity of the body segments has not been thoroughly investigated in 

human movement, although Denoth (1986) in a theoretical analysis showed that the "wobbling mass" was 

a significant variable contributing to ground reaction forces. There are branches of mechanics dealing 

specifically with the movement of non-rigid bodies, or pseudo-rigid bodies (e.g. Cohen and Muncaster, 

1988) with improved measurement techniques these methods may be applied to the study of human body 

movement. If these moments are calculated, assuming the body is rigid, they represent the sum of the 

moments caused by the active muscular tension, and by the passive deformations of any tissues which 

may cross or surround the joint. All of these contributions must be accounted for if a resultant joint 

moment is to be called the muscle moment. 

There was assumed to be only one articular contact point, which was assumed coincident with the pre­

selected joint centre. There can of course be more than one effective articular contact point, but it is 

obviously difficult to determine these points of force application in vivo. 

So that the resultant joint moments could be considered to represent the muscle moments about the joint, 

a number of assumptions were made, and have been discussed in Chapter IV. To allow for the moments 

caused by any passive structures crossing the joint, a model of passive visco-elasticity was used to 

estimate the values of the moments produced by these structures at the different joint angles, and these 

were subtracted from the resultant joint moments. There have been few studies which have quantified the 

passive visco-elastic moments about the elbow joint; three were reviewed in this study, a further 

quantification and analysis of these moments to provide a larger database on which to base future models 

would be valuable. 

Estimates were made of the accuracy of the state variables and parameters used to compute the resultant 

joint moments. This information was used to make an estimate of the accuracy of these moments. Each 

state variable or parameter was varied in accordance with its estimated accuracy level, and then the 

resultant joint moments were computed. These new values were compared with the values obtained with 

the non-perturbated parameter or variable values. In this study the joint centre was selected based on its 

reported location in the literature, its position was then varied to see if this affected the moments. The 
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differences obtained were very small. The differences when the inertial parameters were varied were also 

small. For another activity the inertial parameters may have made a larger difference, but in this study the 

error levels were low because the dumbell, held in the subjecfs hand, dominated the values of the inertial 

parameters tor the whole system (forearm, hand, and dumbell), and the inertial parameters for the dumbell 

were accurately determined. The moments estimated in this study were most sensitive to inaccuracies in 

the kinematic variables. This dependence on the accuracy of the kinematic data illustrates the need, as 

highlighted in section 7:3, for the further investigation of techniques with which to obtain more accurate 

kinematic data. 

The procedures used in Chapters 11, Ill, and IV to provide the necessary data for a sensitivity analysis of 

the muscle moments, are steps which should be seen as part of the accepted experimental protocol in this 

type of biomechanical analysis. By estimating the errors in parameters and state variables, it is possible to 

give an indication of the error in any variables derived from them. 

The reviews of Chapters 11, Ill, and IV have highlighted a number of problems in obtaining accurate 

biomechanical data. To determine the resultant joint moments it was necessary to combine information 

obtained from a number of techniques. The principal problems which impinge on calculating these 

moments are listed here:-

1. Limited accuracy in estimation of landmark locations. 

2. Inability to precisely define member reference frames (in addition to problems due to marker 

movement). 

3. Motion of skeleton measured from markers made on soft tissue. 

4. Determining signal to noise ratio of sampled signal. 

5. Selection of appropriate data smoothing and differentiation techniques. 

6. Errors in the determination of the segmental inertial parameters. 

7. Segments are not rigid. 

8. Axes or centres of rotation are only estimates. 

lt can be seen that there is still much research to be performed in the area of determining accurate 

kinematics and kinetics of human movement. 

7:4 MUSCLE MODELS 

Chapter V focussed on the development and validation of a muscle model. Only three muscles were 

included in the model. These muscles were selected as a consequence of the size of their moment arms 

and cross-sectional areas as reported in the literature. Although other muscles may contribute to the 

flexion muscle moment at the elbow joint, their potential contributions were considered small enough to be 

ignored. To obtain the locations and insertions of the muscles osteometric scaling was used. The 

locations of the origins and insertions were measured on a dry bone specimen and then extrapolated to 

the experimental subject. To do this each muscle's attachments onto the skeleton had to be represented 

as a single. point. The scaling was performed using a least-squares homogeneous scaling technique 

(Sommer, Miller, and Pijanowski, 1982). A non-homogeneous scaling technique may have been more 
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appropriate, but the technique currently available in the literature (Lewis, Lew, and Zimmerman, 1980) 

requires eight bony landmarks on a single bone, therefore in this study this technique was not applicable 

as this number of landmarks could not be clearly identified. 

The lines of action of the muscles were modelled assuming that they acted in straight lines from origin to 

insertion. An alternative model was discussed, the centroid line model. In this model the line of action of 

the muscle is considered to be the line defined by the locus of the centre of the transverse cross-section of 

the muscle. No evaluations have been performed to assess the difference between using a centroid line 

or a straight line model in a muscle model. Jensen and Davy (1975) compared the two methods for 

estimating moment arms for the muscles crossing the hip, and found differences from one to 12 percent 

between the two representations. With increased availability of imaging techniques many of the 

drawbacks of the centroid line model may be obviated, and such data may be able to be readily 

incorporated in muscle models. 

A model of pennated muscle was developed. This model was used to examine whether it was possible to 

ignore the degree of pennation in the short head of the biceps in the model of muscle used in this study; 

the results indicated that it was reasonable to do so. The degree of pennation in the short head of the 

biceps in the experimental subject was assumed to be equal to figures published in the literature (Amis, 

1978). In the literature none of the other modelled elbow flexors were reported as being pennated. 

However in the future it may ·be possible to measure muscle pen nation in vivo; Wage mans, Willems, and 

Marchal (1990) have presented details of how the angle of muscle fibre pennation can be determined in 

vivo using an ultrasound technique. 

A model was developed of the mechanical properties of muscle, it was phenomenological in nature. lt 

attempted to account for all the significant factors (linear and non-linear) which affect the force output of a 

muscle. Although it does not model the kinetics of muscular contractions at a molecular level, as for 

example the model of Huxley (1957) does, it attempts to reflect the consequences of these interactions as 

in evidence at a macroscopic level. 

There have been a number of models presented in the research literature of the force-length and force­

velocity relationships. In selecting the models for this study there were two considerations: how well does 

the model reflect observed phenomena, and are the parameters for the model determinable? Both models 

used are well supported by experimental evidence, and procedures were developed which permitted the 

model parameters to be determined experimentally. 

Isolated muscle exhibits a force-length relationship even when not stimulated, due to the passive 

structures surrounding the muscle. This passive force can contribute to the moment acting at a joint. 

Joints also produce moments due to the passive structures surrounding the joint. A model of the moments 

produced by the passive structures crossing the elbow joint was developed which estimated the moment 

due to these sources for any given joint angle. This model was assumed to include the moments caused 

by the passive forces caused by the muscles. This relationship was only approximate as the passive force 
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exerted ·by the muscles depends on muscle length which is a function not only of joint angle but also of 

muscle force. The model was based on the data of Engin (1979), and Hayes and Hatze (1977). Further 

examination of these moments is required for all joints, particularly to determine variations between 

subjects and how the moment depends on the speed of movement of the limb. 

The tension developed in the muscle fibres is transferred to the skeleton via the tendons in series with the 

fibres. Tendons are elastic, but the precise role of tendon in animal movement is unknown. it has been 

hypothesised that tendon has two potential roles in human movement: as a site of elastic energy storage 

(Ker, Dimery, Bibby, Kester, and Alexander, 1987), or as a way of allowing the muscle fibres to shorten at 

lower rates than the whole muscle-tendon complex, enabling the muscle fibres to exert higher forces due 

to the force-velocity relationship of muscle (Bobbert, Huijing, and van lngen Schenau, 1986). Although the 

stress-strain relationship of tendon is non-linear, it was modelled using a linear relationship in this study. 

Recent studies have in fact suggested that between 20 and 80 percent of the maximum isometric force of 

a muscle the stress-strain relationship is linear (Baratta and Solomonow, 1991 ). it has been assumed by 

some researchers that during human activity the tendon can be considered inelastic (e.g. Pedotti, 

Krishnan, and Stark, 1978), whilst others have ignored the tendon in series with the muscle fibres and 

have modelled the activity of the whole model using models designed to represent the muscle fibres (e.g. 

Yoshihuku and Herzog, 1990). Further studies to investigate the validity of such assumptions would be 

valuable. If it could be demonstrated that making either of these assumptions gave an adequate 

representation of the mechanical behaviour of muscle in vivo, there would be advantages in such an 

approach because ignoring tendon elasticity would grea~y simplify a muscle model. 

Contrary to the suggestion that these simplified muscle models may provide sufficient insight into muscle 

behaviour at a macroscopic level, results of a recent study suggest that a more detailed model of muscle 

architecture is required. Recent research by Ettema and Huijing (1989) examined the lengthening of the 

tendon and aponeurosis during isometric contractions of an isolated muscle. Although in muscle models 

the aponeurosis is often considered to be stiff (e.g. Woittiez, Huijing, Boom, and Rozendal, 1984), or to 

have similar properties to the tendon (e.g. Otten, 1988), the work of Ettema and Huijing (1989) indicates 

that the lengthening of the aponeurosis is dependent on both muscle fibre force and muscle fibre length, 

whereas tendon length is only dependent on muscle fibre force. Such considerations may need to be 

incorporated into future models of pennated muscles, with Ettema and Huijing (1989) hypothesising that 

the different elastic properties of the aponeurosis gives similar advantages to muscle as tendon. 

In a review of muscle activation, two mechanisms were identified by which the force of a voluntary 

contraction could be increased: either by recruiting more motor units, or by increasing the rate of discharge 

of the already active motor units (rate coding). A review of literature indicated that the mechanism for 

controlling the force output of the elbow flexors is generally recruitment rather than rate coding. Therefore 

the individual motor units were not modelled, but it was assumed that at any moment a certain proportion 

of the whole muscle was maximally active. This model of activation may not be appropriate when a 

muscle is fatigued but such conditions were not examined in this study. 
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The definition of the active state of a muscle was based on the relative concentration of calcium ions 

bound to the troponin. The model ol the activation process developed considered the effect of stimulation 

on the active state, and the relationship between calcium concentration and muscle force. 

As mentioned previously, the sub-models making up the model of the muscles were selected according to 

how well they reflected observed phenomena, and how easy it was to determine the parameters for the 

model. Some of the parameters were determined from the literature. As research into muscle continues, 

the database from which parameters for this type of model are derived will grow. With the increased 

availability of such information the accuracy and specificity of parameters for such models will increase. In 

this study the parameter based on the least information was the distribution of the different muscle fibre 

types in the muscles modelled. 

The remaining parameters for the models were determined using an experimental procedure. This 

procedure was similar to that used by Hatze (t981d), although the procedure he used attempted to 

estimate more parameters. The model was validated using a simulation procedure. Given the rate of 

change of the length of the muscles, and assuming muscle activations were maximal, the forces of the 

muscles were estimated. Given the moment arms of these muscles it was possible to compare the model 

predicted muscle moments with those estimated using inverse dynamics. The model predicted moments 

fell within the anticipated accuracy range for the muscle moments as estimated using inverse dynamics. 

As this was a maximal dynamic activity it validated the muscle model, but did not validate the model for 

sub-maximal activity. As discussed in section 6:1 it is very difficult to obtain muscle forces during sub­

maximal activity. Therefore it had to be assumed that as the muscle model was valid for maximal activity it 

would also be valid for the sub-maximal activities examined in Chapter VI. 

Although not used for this purpose the validation procedure could have been used to further examine and 

provide insight into muscle during maximal activity. lt would therefore be well suited to a range of sporting 

activities. 

The model assumed that only three muscles were responsible for elbow flexion, although others may 

contribute to the flex ion moment at the elbow joint. If other muscles did contribute to the moment their 

contribution would have been grouped with the three modelled muscles in the experimental procedure 

used to estimate the model parameters. The moment arms of the elbow flexors are dependent on the 

attitude of the forearm, therefore it is possible that other muscles may not have significantly contributed to 

the flexion moment during the static data capture that was used to initialise the muscle parameters, as the 

forearm was maintained in a supinated position. However during the dynamic data capture although 

predominantly held in a supinated position the forearm did vary from this position during some of the 

movement, in which case some muscles may have been able to contribute to the flexion moment, which 

were not accounted for in the experimental procedure used to determine some of the model parameters. 

The results of the validation procedure would seem to indicate that this was not the case. Due to the 

nature of the activities examined in this study it was assumed that throughout most of the range of 

movement no eo-contraction of antagonists occurred. 
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The model also relied on a number of other variables: moment arms, lengths, and velocities of the 

muscles. If the moment arms had been inaccurately determined this would have introduced systematic 

error into the measurements, which would have been incorporated into the experimental determination of 

the model parameters. Given the recent advances in imaging techniques it may soon be possible to 

routinely determine the necessary details to describe muscle geometry in vivo, the work of Rugg, Gregor, 

Mandelbaum, and Chiu (1990) provides an example of such an approach. The same comments apply 

equally to the muscle length calculations. To obtain the velocity of the muscle it was necessary to 

differentiate the muscle length with respect to time. Such differentiation is a source of error as discussed 

in section 3:4.8. Again imaging techniques may soon provide a means of validating the modelling 

approach taken here to determine the moment arms and lengths of muscle in vivo. 

The energetics of muscular actions were discussed and the equations presented which permitted the 

modelling of the initial heat associated with isometric and concentric muscle actions. A future 

development of this model would be to model the energetics of eccentric muscle actions which occur in 

most everyday and sporting movements. 

As muscle models become more sophisticated it may be possible to gain further insight into the role of 

muscle in human movement; with the elucidation of the role of tendon, and biarticular muscles in human 

movement already being identified as areas of interest (e.g. Bobbert et al., 1986; van lngen Schenau, 

1990). 

7:5 MUSCLE FORCE ESTIMATION 

Chapter VI tocussed on the procedures which have been used to estimate individual muscle forces in vivo. 

lt is not possible to compute the individual muscle forces causing a movement using kinematic and kinetic 

information only, if the number of muscles is larger than the number of degrees of freedom at the joint. As 

this is generally the case, estimating these forces is a complex problem. Muscle forces have been 

measured directly by affixing force transducers to tendons (e.g. Komi, Salonen, Jarvinen, and Kokko, 

1987), but such highly invasive procedures are not generally applicable. In the future direct measurement 

of muscle force in man may become technically more viable, at which time such measures could be used 

to validate other non·invasive, or at least less invasive, methods tor estimating muscle forces. 

Indirect procedures tor estimating muscle forces include: models involving EMG, control models, dynamic 

optimization, and static optimization. EMG based procedures are invasive as electrodes must be affixed 

to the subject, and there are methodological problems associated with such procedures (e.g. Hot, 1984; 

Bigland-Ritchie, 1981 ). Control models attempt to model the way in which the body distributes the load 

between the muscles, there is no maximization or minimization of some function. In the simplest of these 

models muscle forces are distributed according to the estimated cross-sectional areas of the muscle (e.g. 

Amis, Dowson, and Wright, 1980). The more complex models, tor example Pierrynowski and Morrison 

(1985a,b), incorporate a complex muscle model, and muscle forces are estimated based on the 

physiological properties of the muscles. The mechanism by which the human body recruits muscle to 
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produce a moment is not known, so these control models are hypothetical. In dynamic optimization 

studies the human body segment dynamics are modelled; the joint moments have to be found which 

cause the body segments to move in such a way that some performance criterion is maximised. In the 

more sophisticated models the joint moments are produced by muscle models. If the simulated activity 

compares well with the actual activity, in terms of kinematics and kinetics, then the muscle forces 

predicted by the model can be considered to reflect what the actual muscle forces are. These techniques 

are not generally applicable because it is difficult to formulate a performance criterion. For certain sporting 

activities a performance criterion may be obvious, but for everyday activities they are not so obvious. 

They therefore represent powerful tools for examining human muscular coordination for a limited range of 

activities. 

Static optimization procedures were examined in detail in this study. A review of literature revealed that a 

large number of researchers had attempted to accurately estimate muscle forces using these procedures. 

These studies have led to there being a number of different objective functions which have been used to 

estimate individual muscle forces. Along with the application of these objective functions different 

constraints have been placed on either the muscle forces or the muscle stresses. The belief that some 

objective function, at least in part, reflects how the body recruits muscle is reflected in this quote from 

Chao and An (1978) 

"However, in examining the voluntary functions of an anatomical structure, there is a striking ability for it to 

produce consistent functional activities. Such unique ability must be controlled by certain physiological 

laws based on which proper solutions to the redundant problem may be obtained. Consequently, it would 

be important for the biomechanicians to quantitate these laws, not only for the purpose of seeking basic 

understanding of how musculoskeletal systems function but also to establish workable models and 

theories for the analysis of abnormal functions in the hope of providing valuable clinical information." 

(page 159). 

Whether the solution of this problem lies in the formulation of an appropriate objective function remains to 

be discovered. The human body is capable of a wide range of activities, and it is unlikely that the body 

recruits muscle using the same protocol for sprinting 1 00 metres as it would for running a marathon. If 

such criteria do exist there are perhaps different functions for different types of activity. But while 

researchers endeavour to uncover the truth, the problem of model validation provides a major obstacle to 

fruitful research. 

There have been three methods used to validate the muscle forces estimated using objective functions: 

comparison of muscle activity as indicated by EMG signals with estimated muscle activity from the 

objective function; comparison of muscle forces predicted by the objective function with that predicted by a 

muscle model; and the use of muscle forces measured in vivo for evaluation. Unprocessed EMG 

information does not give a true indication of the relative or absolute activity of the muscles, only whether a 

muscle is active; further processing of EMG signals introduces many methodological problems. Validation 

using a muscle model requires a valid muscle model, and generally these can only provide good estimates 

of muscle activity during maximal activity, and therefore only validate the objective function for this limited 

case- maximal activity. The final method is limited as the number of studies where muscle forces have 
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been measured in vivo are small. If such data is used from the literature, model parameter estimation is 

more difficult and potentially less accurate, than it would be if the same researcher measures the muscle 

forces in vivo and tests the objective function. Such sources of data are generally highly invasive, in which 

case muscle recruitment patterns may be different from normal activity. lt can therefore be concluded that 

data with which to validate objective functions and other alternative procedures used to predict muscle 

forces, are required. 

As discussed it is not possible to validate fully one cif these optimization procedures. To examine further a 

number of objective functions and constraints partial validation was sought. This was achieved by 

considering muscle activity as indicated by EMG signals, maximum muscle activity as indicated by the 

physiological properties of the muscles, and by comparing muscle force estimations with those predicted 

using the muscle model described in Chapter V. 

For the linear objective functions examined there was no sharing of the load unless additional constraints 

were placed on the solution space. In these objective functions a single muscle was preferentially 

selected depending on either the moment arms or the cross-sectional areas of the muscles in the model, 

or the product of these two variables. The linear objective functions were limited because the number of 

active muscles predicted by a linear objective function depends on the number of constraints imposed. 

Therefore without the imposition of equality constraints none of the objective functions investigated 

predicted all the muscles to be simultaneously active under any of the conditions. One of the linear 

objective functions behaved slightly differently from the remainder; this function minimised the maximum 

stress experienced by the most stressed muscle. This meant the muscles were recruited in direct 

proportion to their respective cross-sectional areas. Of the linear objective functions examined this was 

the only one which predicted all three muscles to be simultaneously active without the imposition of 

additional constraints. 

A number of non-linear objective functions were also examined. All of these functions predicted all the 

muscles to be active simultaneously. These were all concerned with the minimization of the sum of some 

function of: a) the muscle forces; b) the muscle stresses; or c) the relative muscle activities. As all the 

non-linear objective functions were solved analytically using a L.agrangian multiplier technique, it was 

possible to see how mathematically the solution to these objective functions was found. For the non-linear 

objective functions concerned with the sum of a function of the muscle forces. the way the load was 

shared between pairs of muscles was a function of the moment arms of the muscles and p, where p is the 

power to which the muscle force had been raised. However such a solution takes no account of 

physiological properties of the muscles. The objective functions which were a function of the muscle 

stresses predicted muscle forces which depended on the moment anms and cross-sectional areas of the 

muscles, and p. Again although these mechanical parameters are important there is no account taken of 

the physiological properties of the muscles. The final group of objective functions was concerned with the 

minimization of the sum of a function of the relative muscle forces. Analysis of the analytical solution to 

this group showed the results to be functions of the moment arm, the maximum force the muscle could 

exert, and p. This maximum muscle force was dependent on the muscle model used to predict it. For 
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most of the objective functions examined it was necessary to impose constraints on the muscle forces so 

that the predicted muscle forces did not exceed the physiological maxima. The objective functions 

examined were based on those reported in the literature, none of which could claim to have a genuine 

physiological basis. The force output of a muscle is a complex function of the length, velocity, and degree 

of activation of its fibres. By taking account of the previous or current states of the muscles. some 

knowledge of the mechanics of muscle could be incorporated into the model used to estimate muscle 

forces. 

MJst of the studies reviewed did not attempt to estimate or scale muscle parameters to their subjects, 

rather they used figures from the literature (e.g. Mclaughlin and Miller, 1980). This procedure has the 

potential for producing errors in the estimated muscle forces, particularly for athletic subjects whe.re certain 

muscle groups may be developed beyond the norm, and so for example would not match the cross· 

sectional data obtained from cadavers. Many of the objective functions were not based on the 

physiological properties of the muscles, the objective function of Hard! (1978) being a notable exception. 

A muscle model of some description provides a valid way of constraining the muscle forces, but very few 

studies have included a muscle model, exceptions being Pedotti et al. (1978), and Herzog (1987a,b). 

A new objective function was formulated which attempted to take account of more of the physiological 

properties of muscle. it was hypothesised that the human body recruits muscles in such a way that the 

rate of energy expenditure to produce the current muscle moment is a minimum. An objective function 

was formulated to reflect this hypothesis. The rate of energy expenditure was modelled as a function of 

the length and velocity of the muscle fibres of each muscle, therefore these factors are accounted for in 

the objective function. The nervous systems control of the muscles is not instantaneous, a muscle is not 

turned on and off in an instant (bang-bang control) rather it takes time for force to develop, and time for it 

to reduce. To account tor these delays a model of active state was used to give upper and lower active 

state levels for each time interval. Under three different conditions (sub-maximal isometric, sub-maximal 

dynamic, and maximal dynamic) this objective function estimated muscle forces which were 

physiologically realistic. Further assessment of the validity of the model was not possible because of lack 

of suitable criterion data. 

The new objective function illustrated how more physiological properties of muscle could be incorporated 

into an objective function designed to estimate muscle forces. The objective function used was 

physiologically based, although it is not supported by direct experimental evidence. Unlike any other 

model reviewed, for static optimization studies, this model included aspects of the nervous control of the 

force output of a muscle. The forces exerted by the muscles were automatically within physiological 

maximum limits because the force-length and force-velocity relationships were included in the model. The 

tendons which lie in series with the muscle fibres of each muscle were also included in the model; the 

elastic properties of these tendons can influence the force-length and force-velocity properties of the whole 

muscle. Although it was not possible to validate this model, th~ muscle forces predicted by it were within 

the physiological maximum bounds which the muscle could exert. Examination of other objective 

functions showed this was not commonly the case. 
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The procedures adopted in this study differ from many of those in the literature. In particular the 

parameters required to describe the muscles in the study were experimentally determined. lt is more 

common in static optimization studies to adopt muscle parameters from the literature, without trying to 

customise them to the experimental subject or validate them. The experimental determination of muscle 

model parameters does not necessarily make the muscle force predictions any more valid, but does make 

any constraints placed on these muscle foroas based on these models more valid. 

The most successful procedure examined for estimating individual muscle forces was the one described in 

section 5:5. The simulation model developed estimated the individual muscle forces during maximal 

activity, where the only input variable was the rate of change of the lengths of the muscles. As this 

procedure was successfully validated, by comparing estimated net muscle moments with those computed 

using inverse dynamics, the muscle force estimations can be viewed with some degree of confidence. 

Although this model is only applicable for maximal activity, it potentially offers the ability to obtain greater 

insight into muscular performance in athletic activity. 

The dynamic optimization procedures discussed in section 6:2.3 have been used by relatively few 

researchers, and clearly warrant further study. They potentially offer insight into the coordination of 

muscles to produce a desired activity. In sporting activities where it is more likely that a clear performance 

criterion can be established, these methods, although complex, may greatly aid understanding of muscle 

recruitment patterns and the role of different muscles in influencing coordination of limbs. 

For the examination of sub-maximal activity there is also a need for a means of validating procedures for 

estimating individual muscle forces. The measurement of the individual human muscle forces in vivo for 

all the muscles crossing a joint, for a range of activities, would provide a valuable contribution to this area 

of research. Such a validation would assume that the muscle forces measured under these conditions are 

reflective of the muscle forces under normal conditions. 

The muscle force estimations analysed in this study were for movements where the intensity was near 

maximum. Many everyday movements are performed at a much lower intensity. Even if one of the 

current models was accurate for high intensity activity, it may not be appropriate for less intense activities. 

In section 5:3.5 movement specific motor unit recruitment was discussed. If this phenomenon does occur 

in muscles, where it may be possible to vary not only which muscles but also which motor units are active 

for different activities, individual muscle force estimation during sub-maximal activity becomes an even 

more complex task. 

7:6 MODELLING 

The basic methodology of this study has been underpinned by the extensive use of models. The problems 

of ensuring model validity have been examined at each stage of the modelling procedure. But the problem 

of a thorough validation of some of the models developed still remains, particularly the objective function 

designed to estimate individual muscle forces. Panjabi (1979) claimed 

"Alter all, a mathematical model is only a set of equations. Its link to reality is via the physical properties 
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data of the system it is intended to simulate. Its success at simulation is not guaranteed but must be 

proven by suitable validation ......... The basic dilemma in the process of validation may be stated in the 

following manner: a mathematical analogue can be validated only in a given number of known situations. 

Thus, no perfect validation is possible." (sic, page 238). 

7:7 SUMMARY OF FINDINGS 

The aim of this study was to develop and examine the methodology necessary to estimate the individual 

muscle forces causing elbow flexion. This section summarises the principal experimental findings of the 

study. 

1. When employing the direct linear transfonmation for three-dimensional reconstruction of image 

coordinates the configuration of control points, used for camera calibration, was shown to have an 

influence on reconstruction accuracy in that having control points surrounding the calibrated space 

resulted in better reconstruction accuracy than having control points within that space. 

2. There was a 20 percent reduction in accuracy when reconstructing points which were in the space 

equivalent in size and directly adjacent to the calibrated space. 

3. The modelling and removal of lens distortions resulted in no increase in reconstruction accuracy. 

4. Eight data smoothing and differentiation techniques were evaluated; the cross-validated quintic spline 

produced the most accurate results. 

5. The accuracy of derivatives computed from displacement data using the generalised cross-validated 

quintic spline increased with increasing signal sample rate. 

6. The accuracy of three groups of anthropometric methods (simple statistical models, complex statistical 

techniques, and geoiTjetric models) were compared. The linear regression equations of Hinrichs (1985) 

produced the most accurate estimates of moment of inertia values. 

7. The linear regression equations of Hinrichs (1985) were not as accurate as a set of non-linear 

equations, when moment of inertia values were predicted for data which fell outside of the range of values 

in the data from which the equations were formulated. 

B. The influence of the accuracy of the inertial parameters for the forearm, hand, and dumbell on the 

inertial parameters for the whole system was assessed using a sensitivity analysis. The inertial 

parameters for the whole system were most sensitive to errors in the centre of mass locations of the 

constituent parts of the whole system. These centre of mass locations were found to be well located with 

the techniques used. 

9. A sensitivity analysis of the parameters and variables required to compute the resultant joint moments 

showed that these moments were most sensitive to errors in the kinematic data; suitable steps were taken 

to ensure high accuracy in these data. 

I 0. A model was used to show that small amounts of muscle pen nation may be ignored when modelling 

muscle architecture. 

11. A model designed to examine the muscles causing elbow flexion, was shown to accurately simulate 

the activity of the muscles during a maximum dum bell curl. 

12. Sixteen commonly used objective functions (e.g. minimisation of the sum of the muscle forces, and 

minimisation of the sum of the muscles stresses), each implemented with three different constraints, were 
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evaluated under three test conditions, and shown to estimate muscle forces which were physiologically 

unrealistic. The forces estimated by these objective functions were shown to be functions of the muscle 

cross-sectional areas and moment arms, but did not take account of the contractile properties of the 

muscles. 

13. A new objective function was presented which both took account of the contractile properties of the 

muscles and minimised the energetic cost of producing the moment at a joint. This objective function, 

under the same test conditions with which the other objectives functions were evaluated, estimated 

physiologically realistic muscle forces. 

7:8 SUMMARY 

This study focussed on the development and examination of the procedures necessary to estimate 

individual muscle forces in vivo. These procedures included the measurement procedures required to 

determine the input parameters and variables required for the models used to estimate the muscle forces. 

The review, examination, and development of procedures undertaken in this study will hopefully increase 

understanding in this area, and increase the base from which future research will take place. 

Individual muscle forces are of interest to researchers to provide insight into the etiology of injuries and the 

training of muscle for rehabilitation and sport. Such analyses may provide new insight into the limits of 

athletic performance, and facilitate the maximization of an athlete's abilities. In the exciting area of 

functional neuro-muscular stimulation, and the important area of optimization of worker performance, this 

information may also provide vital insight. New technologies may make the in vivo determination of 

individual muscle force more practicable and less invasive than direct assessment techniques. Models 

such as the ones developed here are the primary methods currently available to gain insight into these 

important phenenomena. 
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APPENDIX A 

THE DIRECT LINEAR TRANSFORMATION 

The Direct Linear Transformation (DLT) produces a direct linear relationship between the digitizer 

coordinates of a point and the object space coordinates of that point. Assuming the image (film frame, 

photograph) is a perfect plane, it represents a central projection of the object space onto the image plane. 

Given the coordinates of points known in the object space and their corresponding image coordinates the 

~rejective transformation matrix is (Ghosh, 1979):-

[
y-ul ~x-x,l 
V1 ~ = s. 1~ : _ ~ 

Where:-

U1,V1- are the image coordinates of a point 

U10,V~o ·are the image coordinates of the principal point 

C • is the principal distance (or calibrated focal length) 

S - is a scale factor 

(~ - is a rotation matrix 

X,Y,Z- are the object space coordinates of a point 

and X,,Y0 ,Zo are object space coordinates of the perspective centre 

[A.1J 

The principal point is the point of intersection of the image plane and the optical axis. The perspective 

centre is the common point on the optical axis at which the light rays are considered to intersect. 

The image coordinates are not directly measured, instead the images are projected onto a digitizing tablet 

and measured from the projected image. If the image and its projection are parallel the following 

relationship between image coordinates and digitizer coordinates exists:-

[A.2J 

[A.3J 

Where:-

Su,Sv- scale factor for the two axes 

Ud,V d- are the digitizer coordinates of a point 

Ud0 ,V 00 - are digitizer coordinates of the principal point 

and t.Ud, t. V d are the errors associated with the coordinates 

This relationship allows for correction for uniform and differential deformations in the image. 



Expanding equation A.1 :-

- C • S [M31(X-X,) + M32(Y-Y0) + ~(Z-Z.,)] 

Where:-

M;1 -are the elements of the rotation matrix [M] 

Dividing equation A.4 by A.6 and multiplying both sides of the equation by -C gives:-

Similarly:-

Substitute A.2 and A.3 into A.7 and A.8 and simplify:-

Where:-

Ud + t.Ud • AX + BY+ CZ +P 

IX t JY + KZ t 1 .0 

Vdtt.Vd = EXtFY+GZtH 

IX t JY t KZ t 1.0 

A -K - are the calibration coefficients 

Re-arrangement of these equations allow them to be put into matrix form:-

A.x•b 

Where:-

A - is a m'n matrix, composed of the object space coordinates of the control points, and the image 

coordinates of these points. 

m - is twice the number calibration points 
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[A,4] 

[A.5] 

[A.6] 

[A.7] 

(A.8] 

[A.9] 

[A.1 0] 

[A.11] 



n - is the number of calibration coefficients (11) 

x - is an n•t unknown column matrix containing the camera specific calibration coefficients 

and b is an m•t column matrix containing the digitizer coordinates of the control points. 
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This system of equations requires at least six control points to make it determinant, but more control points 

can be accommodated. Solution of this system is perfomned using the linear least squares technique 

described in section 2:2.3. Once solved it yields the calibration coefficients. Comparison of equations 

A.7, A.8, A.9 and A. I 0 shows that given these coeffiCients it is also possible to calculate the variables 

contained in equation A. I. 

LENS DISTORTION 

The error in the digitizer coordinates is of two sources random and systematic. The removal of the 

random errors was discussed in section 3:4. One of the sources of systematic errors is lens distortion. 

The amount of radial lens distortion can be calculated from:-

Where:-

t.Udr, t. V dt _ are the errors associated with radial lens distortion 

Kt, K2, and K3 -are constants 

and 

ud·- ud- udo 
Vd'-Vd-Vdo 

R2. U'2 + V'2 

This model contains three parameters, additional parameters as used in section 2:3.4 are easily 

accommodated. 

The amount of de-cantering distortion (asymmetrical) can be calculated from:-

Where:-

t.Uda, t. V da - are the errors associated with de-centering lens distortion 

and PI and P2 are constants. 

[A.12] 

[A.13] 

[A.14] 

[A.15] 



Combining equations A.12, A.13, A.14, and A.15 gives:-

AUd • AUdr + AUda • Ud'(K1.R2 + K2.R4 + K3.R6) 

+ P1(R2 + 2.Ud'2) + 2.P2.UlVd' 

1J. V d • AV dr + IJ.Uda • V d'(K1.R2 + K2.R4 + K3.R6) 

+ P2(R2+ 2.Vd'2) + 2.P1.Vd'·Ud' 

Substitute these equations into A.9 and A.1 0 and re-arrange:-

Where:-

a • IX + JY + KZ + 1.0 

-U/a • ·(AX + BY + CZ + D) I a 

+ U(IY + JY + KZ) I a 

+ AU 

-VIa • -(EZ + FY + GZ +H) I a 

+ V(IX +JY +KZ) la 

+AV 
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[A.16] 

[A.17] 

[A.18] 

[A.19] 

These equations are put into matrix form, and solved to give the lens distortion coefficients, using the 

linear least squares technique described in section 2:2.3. To make the system of equations determinate at 

least eight control points are required. The digitizer coordinates of the principal point are also required. 

These can be calculated from the initial estimates of the calibration coefficients. Once this procedure has 

been implemented the digitizer coordinates can be corrected for lens distortion and (hopefully) an 

improved estimate of the calibration coefficients obtained. This procedure is repeated iteratively until no 

improvement is found in the locations of the points used for calibration, or until the accuracy in locating 

these points is no better than the accuracy to which they were measured originally. 

SPACE INTERSECTION 

The digitizer coordinates are first filtered to remove any random noise arising from the digitizing process. 

For the digitized control points the mean of ten digitizations is assumed to remove the random errors. The 

digitizer coordinates are then corrected for lens distortion. Re-arrangement of equations A.9 and A.1 0 

gives:-

[A.20] 

[A.30] 

These equations can be put into matrix form, and given the digitizer coordinates of points in the object 

space from at least two camera images, the system of equations can be solved using linear least squares 



to produce the object space coordinates of that point. 

CAMERA LOCATION 

Analysis of equations A.7, A.S, A.9, and A.1 0 leads to the following formulae:-

- D • AXo + BY0 + CZa 

-1.0 ·IX0 +JY0 +KZ. 

-H • EXo + FY0 + GZa 

In matrix form:-

[
A , B , C l [X.] ~- D l I , J , K Y0 • -- 1.0 
E,F,G Z. H 

Solving this system of equations gives the location of the cameras perspective centre. 
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[A.31] 

[A.32] 

[A.33] 

(A.34] 
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APPENDIXB 

TEST FUNCTIONS 

To evaluate the data smoothing and differentiation techniques in Chapter Ill a number of different data 

sets were used. These data sets were generated from test functions, which meant that true 'displacemenr 

and first and second derivative values could be determined directly from these functions. Some of these 

functions were 'purely mathematical', whilst others attempted to model aspects of human movement. The 

functions are detailed in this appendix. The problems of deriving genuine data to test data smoothing and 

differentiation techniques were discussed in section 3:4.2; these functions enabled them to be 

circumvented. 

Once the data had been generated from one of the functions, noise was added to the signal so that it 

approximated genuine noisy film derived data. The noise was white noise which means that the noise was 

stationary, uncorrelated, and with a mean value of zero. The noisy test data sets on which the smoothing 

and differentiating techniques had to operate on were generated from:-

g(t) = J(t) + e(t) 

Where:-

g(t) - is the noisy data set value at time t 

f(t) - is the true signal value at time t 

and e(t) is the value of the noise contaminating f(t) at timet. 

For each data set the standard deviation (a 9) of the noise is stated. 

[B.1] 

The test functions were initially implemented on the PRIME 750 Mainframe Computer, operating under the 

Salford University FORTRAN 77 compiler. The noise was added to the signals using a random number 

generator. When these programs were transferred to the Archimedes 440 microcomputer (Acorn), running 

an Acornsoft FORTRAN 77 compiler, a similar procedure was employed to generate the noise. Although 

every attempt was made to make these random number effects as similar as possible, there are some 

differences. All results therefore pertain to numerical studies carried out on the PRIME, unless otherwise 

stated. 

DATA SET· a 

This data set was a cosine wave. The following functions were used to obtain the criterion data:-

f(t) = cos(!) 
[B.2] 

f(l) = -sin(!) [B.3] 



262 

f'(t) = -cos(t) 
[8.4] 

Where:-
[8.5] 

f(t) , f'(t) , and f"(t) - are the function and its first and second derivatives. 

n- is the number of data points (n-1 01 ). 

For the noisy data set generated from this function the noise had a standard deviation of 0.02, (cr0 - 0.02). 

DATA SET - b 

This was based on one of the functions presented by Cappozzo (1982). it was designed to model the 

displacement of the iliac crest tubercle of an amputee during level walking. The functions used to provide 

the criterion data were:-

Where:-

0 .; t .; 1.0 

13 

f(t) -L <~; sin(i w0t + ~) 
i- 1 

13 

f'(t) -L w0 <~; cos(i w0 t + ~) 
i-t 

1 
91 samples were used so .1.t- 90 

The constants ai, and ip; are presented in table 8.1 

[8.6] 

[8.7] 

[8.8] 

For the noisy data set generated from this function the noise had a standard deviation of 0.05, (cr0 - 0.05). 
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Table 8.1 ·Trigonometric constants. 

al 21 
1 16.0 0.99 

2 12.0 0.23 

3 6.3 -2.97 

4 0.5 0.0 

5 1.2 -3.13 

6 0.6 -0.84 

7 0.3 2.14 

8 0.2 0.58 

9 0.1 1.15 

10 0.09 0.17 

11 0.04 -1.13 

12 0.06 0.76 

13 0.01 -1.21 

DATA SET- c 

This function was derived from a function of Felkel (1951 ). lt was designed to model the displacement of 

the shank during walking. The functions used to produce the criterion data were:-

For I < 0.85 s 

For I > 0.85 s 

Where:-

0 ( t <1.00 s 

1 
ll.t- 91 

t<t)- -s5.1 1 + 427 e- 342 t
4 

r<t)--55.1+1281 t-1368 e 

f'(t)- 2562 t- 4104 f 

/(t) • 579.97- 304.32 I- 241.77 f 1 

f(t)- -304.32 + 241.77 i 2 

f'(t) = 483.54 f 3 

[8.9) 

[8.1 0) 

[8.11) 

[8.12) 

[8.13) 

[8.14) 

For the noisy data set generated from this function the noise had a standard deviation of 0.5, (a9 = 0.5). 

DATA SET- d 

This data set was generated from a function proposed by Trujillo and Busby (1983) for testing techniques 



designed to differentiate noisy data. The criterion data were obtained from:-

For o c t C4.0 

J(t) • ~ sin (!tl) 

f'(t) • ~ cos (!tl) 

f"(t) - -sin (nt) 

For 4.0 c t c 5.0 

1 
f(t) - ii (t- 4) 

f'(t) - ~ 

f"(t) • 0 

Where:-

0 c; t c; 5.0 

1 
(n • 200) 6t. 40 
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[9.15] 

[9.16] 

[9.17] 

[9.18] 

[9.20] 

[9.19] 

For the noisy data set generated from this function the noise had a standard deviation of 0.025, (<>0 • 

0.025). 

DATASET-e 

This data set was presented by Cappozzo (1982) and used part of the function presented for data set b. 

The criterion data were obtained from:-

Where:-

13 

f'(t) • (2 k t) - (k p) + L i w0 a, cos(i w0 t + ~) 
i- 1 

13 

f"(t) = (2k) ·L {i wJ a, sin(i w0 t + <~~) 
i - 1 

0 c; t c; 1.0 s 

[9.20] 

[9.21] 

[9.22] 



1 
ll.t- 91 n = 91 
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For the noisy data set generated from this function the noise had a standard deviation of 0.5, (a9 • 0.5). 

DATASET-f 

This data set was presented by Bar, Eden, lshai and Seliktar (1979) for the investigation of numerical 

differentiation techniques. The criterion data were obtained from:-

f(t) • cos(2.~r.4.t) + 0.5 sin(2.~r.12.t) 
(8.23] 

f(t) • [(2.~t.12).cos(2.~r.12.t)] • [(2.~<.4) .sin(2.!t.4.t)] 
(8.24] 

f'(t)- [ • (2.~t.12fsin(2.~r.12.t)]· [(2.~r.4,cos(2.!t.4.t)] 

Where:-
(8.25] 

0 .. t .. 0.255 s 

(n-101) 

For the noisy data set generated from this function the noise had a standard deviation of 0.025, (a9 = 

0.025). 
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APPENDIX C 

INERTIAL PROPERTIES OF GEOMETRIC SOLIDS 

To determine the inertial properties of body segments these segments have been modelled as geometric 

solids. This appendix gives the formulae necessary to calculate the inertial properties of the geometric 

solids used in this study. 

h 

For this cylinder, the following equations apply:-

Where:-

2 
V - 1t.h.r 

M- V.p 

y-0 

- h 
z~-

2 

V - is the volume of the solid 

r - is the radius of the cylinder 

h - is the height of the cylinder 

M - is the mass of the solid 

p - is the density of the solid 

/ 
I 
I 

..... 
X 

)'lly 

x , y , z - are the locations of the centre of mass of the solid 

[C.1] 

[C.2] 

[C.3] 

[C.4] 

[C.5] 

[C.6] 

[C.7] 

~ , 1y , ~ - are the moments of inertia about the x , y and z axes; with 

their origins passing through the mass centre 



267 

h 

.... 
X 

For this hollow cylinder the following equations apply:-

V = x.h(r2
2- rf) [C.8] 

M•V.p [C.9] 

X•O [C.t 0] 

Y=O [C.tt] 

- h [C.12] Z•-
2 

( 2 2 2) 
~- ~= 

M 3.r1 + 3.r2 + h 
[C.t3] 12 

~-
M(r12 + rt) 

[C.t4] 2 

Where:-

r1 - is the radius of the hollow 

r2 - is the radius of the outer cylinder 
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z 

• ' 
.......... 

-· y 

X 

For an elliptical disc there are two radii: a is the semi-axis associated with the x axis, and b is the semi­

axis associated with they axis. If a is calculated as half the diameter and the perimeter of the disc is 

measured as U, then b can be calculated from:-

1 

[
1 u 

2 
]

2 

b. 2(x) -a2 [C.15] 

V- n.a.b.h [C.16] 

M~p.V [C.17] 

x-o [C.18] 

yQO [C.19] 

- h z,.2 [C.20] 

~-
M(3b

2 
+ h

2
) 

[C.21] 
12 

~-
M(3a2 + h

2
) 

[C.22] 
12 

~-
M(a2 + b

2
) 

[C.23] 
4 
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z 
+ 

X 

-·" -· .-· 
--- ---------~:::: ______ ---~ y 

,. .. I ,.. 

~<"" I -· ' ' -· 

For this truncated cone, the following equations apply:-

[C.23] 

M-p.V [C.24] 

[C.25] 

v-o [C.26] 

[C.27] 

Let: [C.28] & [C.29] 

1 = 1 =M ~ 1 +A+ A +A +A M ~ 1 + 4A + 10A + 4A +A 
[ 

2 3 4 2 2 3 4] 

'X y 2011 . rf 'ph + 80 . rf [C.30] 

[C.31] 
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For each body segment a member reference frame is defined. The origin of this reference frame is 

originally at the proximal end of the segment, the precise definitions of these axes are given in section 

3:2.5. The locations of the centres of mass of the sections making up the segment are all defined relative 

to the appropriate member reference frame. Once the location of the centre of mass of the whole system 

has been calculated the origin of the member reference frame is translated so that it is coincident with the 

centre of mass of the system. To determine the volume, mass, and location of the centre of mass these 

parameters are summed for all the solids used to represent the segment. 

Where:-

V - is the volume of the whole segment 

n - is the number of solids used to represent the segment 

and vi - is the volume of the jth solid 

Where:-

M is the mass of the whole system 

~ is the mass of the jth solid used to represent the segment 

Where:-

X , V , Z are the locations of centre of mass of the segment 

[C.32] 

[C.33] 

[C.34] 

[C.35] 

[C.36] 

xi , y
1 
• z1 are the locations the centre of mass of the jth solid used to represent 

the segment 
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To compute the moments of inertia of the segment about the principal axes, the moments of inertia of all 

the geometric solids must be summed using the parallel axis theorem. 

Where:-

~ , ~ , ~ - are the moments of inertia of the segment about the 
x , y , z axes respectively 

T xi , T Yi , T zi - are the moments of inertia of the jth solid used to 

represent the segment 

[C.32] 

[C.33] 

[C.34] 
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APPENDIX D 

SOLUTION OF OBJECTIVE FUNCTIONS 

In Chapters V and VI it was necessary to minimise a number of objective functions. This appendix gives 

the details of the procedures used to find the minimum solution to these objective functions. 

The non-linear objective func~ons examined in section 6:4, were suitable to be solved using an analytical 

solution to the objective functions and associated constraints. lt is possible using Lagrangian multipliers 

and forming the resultant Lagrangian Function, to find an analytical solution to the problem to be optimised 

(Bertsekas, 1976). Differentiation of the Lagrangian Function gives the minima points which can be, in 

some cases, analytically solved. Alternatively it forms a set of non-linear equations which can be solved 

eg. using Newton-Raphson method (Arora, 1989). The analytical solution for finding the minimum of the 

sum of the muscle forces, is presented. 

The general problem is to find the minimum of:­

N 

U(F;)=I, 
i = 1 

Where:-

N - is the number of muscles 

F1 - is the force in the ith muscle 

F P 
' 

and p is the power to which the force is raised (P> 1 ). 

The minimum must be found subject to the constraint:-

N 

g(~ ) = M • L ~ . ~ = 0 
i = I 

Where:-

R; • is the moment arm of the ith muscle 

and M is the net moment caused by all the muscles crossing a joint. 

The Lagrangian Function is:-

L(~ , ;\.,) = U(~ ) + A. g(~ ) 

Where A. is a Lagrangian multiplier. 

Differentiate to find the minimum:-

dl 
d~ = 0 

[8.1] 

[8.2) 

[8.3] 

[8.4) 
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From equation 8.4, for i:-

dl p Ffl A. ~ 0 
df; = + = 

[8.5] 

Re-arrange to give:-

-A. 
p Ffl 

= R 
I [8.6] 

If i-j then:-

p Ffl p Ffl 
R; = 

~ [8.7] 

Re-arrangement gives:-

[~] 
(~I) 

F. = F; I 

[8.8] 

Substitution of 8.8 into 8.2 after appropriate re-arrangement gives:-

[8.9] 

From 8.9 the muscle forces can be calculated subject to 8.1 and 8.2. Equation 8.8 shows that for non­

linear problems (p>1) there is load sharing between the muscles. Although equation 8.9 cannot be used 

to estimate the muscle forces for the linear case (p-1 ), equation 8.8 indicates that in this case there is no 

load sharing between the muscles, because the muscle with the largest moment arm is recruited solely to 

produce the moment. The preceding formulation automatically constrains F; to be greater than or equal to 

zero. To handle maximum and minimum constraints on the muscle forces equation 8.9 is used and if one 

of the F;'s is above some constraint level the F; is set to that constraint level, and the contribution of that 

muscle to the moment subtracted from the total moment, and the other muscle forces computed so as to 

satisfy the new moment. If another muscle exceeds a constraint the same procedure is repeated. 

The preceding method has been used to compute the solution for the minimisation of the sum of the 

muscle forces, but if the sum of the muscle stress or relative muscle forces is to be minimised, the moment 

arm values have to be multiplied by the appropriate denominator in the objective function and a solution 

can then be found. The program, MUSCFOR, to compute the solution to these non-linear objective 

functions was coded in FORTRAN77. 

SIMPLEX- was a program written to solve linear optimization problems. The FORTRAN77 code was 

based on that of Siddall (1982), and implements the revised simplex method. In the program slack 

variables were automatically introduced into the inequality constraints. The simplex algorithm was first 
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proposed by Dantzig (1963), and was designed to solve optimization problems with a linear objective 

function and linear constraints. The set of feasible solutions can be described graphically by a polyhedron 

(e.g. figure 6.1 ). The optimal solution must be at the corners of the polyhedron, therefore the simplex 

algorithm effectively finds the optimal solution by moving from one corner to the next until the lowest value 

for the objective function is obtained (assuming the function is to be minimised). The nature of the solution 

requires that the number of non-zero variables is less than the total number of constraints plus one. 

Therefore if in a two-dimensional study the only constraint is that the muscle moment should be satisfied 

by the predicted muscle forces, only one muscle will be predicted to be active. Therefore it is possible if 

sufficient constraints are not placed on a problem that the number of active muscles predicted will be a 

function of the mathematical technique not the objective function formulated. 

SEEKER· was a program written to solve a number of non-linear optimization problems. A minimum 

solution was found to the objective function using the direct search method of Hooke and Jeeves (1961 ), 

with the computer program being adapted from the FORTRAN77 code of Siddall (1982). Given a feasible 

initial estimate of the solution the objective function is evaluated giving a value U. One of the variables is 

then increased by some predefined step size, if the value of U improves (i.e. becomes smaller if a 

minimum is required) then this value of the variable is retained if not then the variable value is reduced by 

the same step size, if this does not result in a improvement in U then the initial value is retained. This 

procedure is then repeated for the other variables. This results in a new base point, the whole procedure 

is repeated from new base points until a better set of values cannot be obtained. When this occurs, if the 

initial values are not changed then a smaller step size is used. The step size reduction continues until 

some user defined maximum reduction has occurred, or until a minimum is obtained. A minimum is 

defined as the lowest value for U found within the limits placed on number of searches and reductions in 

step size. The procedure which has just been described does not account for constraints. therefore 

running in conjunction with this routine is another routine which uses a penalty function to constrain the 

solution. The routine used was that of Fiacco and McCormick (1968), which if the search was tending 

toward using variables which defied a constraint. effectively changed the direction of the search to 

maintain the feasibility of the solution. 

APPROXER • was a program written to solve non-linear optimization problems. The minimum for the 

objective function and associated constraints was found using the method of successive linear 

approximations (Griffith and Stewart, 1961 ). The computer program was based on the FORTRAN77 code 

of Siddall (1982). The objective function in this technique is modelled using a Taylor series approximation, 

in which only the linear terms are used. Once the objective function is in this linear form, a minimum for 
c~ 

the objective function can be found using a linear programming technique. These linear approximations to 

the objective function are only valid close to the point for which they are formulated, so when a global 

minimum is sought successive linearisations of the objective function are performed. As the solution is 

found using a linear programming method constraints are directly considered in obtaining a solution (see 

notes for SIMPLEX), although the constraints may also need linearisation. Umits are placed on the 

number of successive linearisations, a minimum being the lowest value of U found. 
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APPENDIX E 

RESULTS OF OBJECTIVE FUNCTIONS EVALUATION 

lt is the purpose of this appendix to present the results for the evaluation of the objective functions 

discussed in section 6:4.3. The objective functions were evaluated under three conditions, the details of 

these conditions are also presented in this appendix. For ease of reviewing the results, the objective 

functions and constraints are re-presented . 

The objective functions were divided into three sets:­

.5l11.1- the objective functions were:-

NM NM 

L L 
2 

Ut ~ F"" U2 - (Ft.t ) 
i- 1 i- 1 

NM NM 

L 
10 

L 
100 

U4 - (F t.t ) U5 - (F~ ) 
i- 1 i .. 1 

Where:-

NM - is the number of muscles 

and F~ is the force produced by the ith muscle. 

NM 
3 

L U3 - (Ft.t ) 
i- 1 

SfUI- the objective functions evaluated in this set were all concerned with the minimisation of the sum of 

some function of the individual muscle stresses; they were:-

NM 

us - L cri 
NM 

U7 - L (0: )2 us - ~ 
i .. 1 

U9 ! UIO 
i- 1 

Where:-

cri - is the stress in the ith muscle 

FMi 
cri = CSA 

' 

i .. 1 

! (cr. i 00 

' i- 1 

and CSA; is the cross sectional area of the ith muscle. 

i - 1 

Uti 

Objective function Uti was the function recommended by An et al. (1984), and requires the maximum 

muscle stress that is experienced by the most stressed muscles, to be minimized. 

~ - the objective functions in this set were concerned with the minimisation of the sum of the relative 
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muscle forces. The objective functions were:-

U12 =! ~: U13 = 
U14 =! [~:J 

i = I i = I 

NM Jo 
UIS = L [~: 

i =I 

Ul6 = ! [ ~M~r 
i = I 

Where FMMi is the maximum possible force, under current physiological conditions, of muscle i. 

FMMI was calculated by each of three methods; these methods were designated A, 8, and C. In method A, 

FM,. was calculated based on the force-length relationship of the muscles. In method 8, FMMi was 

calculated by considering the force-length and force-velocity relationships of the muscles, in this case 

using muscle fibre velocity. In method C, FMMi was also calculated by taking into account the force-length 

and force-velocity relationships of the muscle, but in this case muscle velocity was used rather than 

muscle fibre velocity. 

The three constraint conditions were:-

Constraint 1 - limiting muscle force so it was less than or equal to the maximum isometric force possible by 

the muscle (this occurs at the muscle fibres optimal length), 

Constraint 2 - limiting the maximal muscle force by accounting for the current length of the muscle using 

the force-length model of muscle described in 5:2.2, 

Constraint 3- limiting the maximum force that the muscle can exert by taking into account the force­

velocity model of muscle described in section 5:2.3. This constraint was not appropriate for condition A 

which was an isometric muscle action. 



TABLE E.1 - Details for condition A, and results of muscle force estimation using different objective 

functions. (MU1 is the biceps, MU2 is the brachialis, and MU3 is the brachioradialis.) 

MUSCLE 

M:lment arm (m) 

Constraint 1 

Constraint 2 

BICEPS 

0.023 

600.6 N 

556.3 N 

BRACHIALIS 

0.012 

1000.9 N 

878.8 N 

BRACHia­

RADIALIS 

0.032 

262.2 N 

92.5 N 
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N. B. - The maximum isometric muscle force values are used as constraint 1; constraint 2 is based on the 

maximum possible force the muscle can exert at its current length. 

JOINT ANGLEs 130 degrees 

JOINT MOMENT TO SATISFY- 20 N. m 

MAXIMUM JOINT MOMENT- 34.2 N.m (based on maximum isometric force) 

MAXIMUM JOINT MOMENT. 26.3 N.m (based on force-length relationship) 

MUSCLE FORCES (N) 

Objective No Constraints Constraint 1 Constraint 2 

Function MU1 MU2 MU3 MU1 MU2 MU3 MU1 MU2 MU3 

U1 0.0 0.0 625.0 504.8 0.0 262.2 ~ 353.8 .92.5 

U2 271.1 141.4 377.1 396.8 207.8 262.2 ~ 353.8 .92.5 

U3 288.1 208.1 339.9 366.6 264.8 262.2 538.1 388.7 .92.5 
U4 296.9 276.2 308.0 339.8 316.1 262.2 498.8 464.0 .92.5 

us 298.4 296.4 299.4 332.4 330.3 262.2 488.0 484.8 .92.5 

U6 869.6 0.0 0.0 600.6 515.5 0.0 .552..2 600.7 0.0 

U7 409.2 593.0 108.5 409.2 593.0 108.5 421.9 611.3 .92.5 

us 380.7 591.6 129.5 380.7 591.6 129.5 409.1 635.7 .92.5 

U9 357.7 587.0 147.8 357.7 587.0 147.8 399.1 654.9 .92.5 
U10 351.7 585.3 152.8 351.7 585.3 152.8 396.5 659.9 ~ 

U11 351.1 585.1 153.3 351.1 585.1 153.3 396.3 660.4 .92.5 

U12a 869.6 0.0 0.0 600.6 515.5 0.0 .556.3 600.4 0.0 

U13a 271.1 141.4 377.1 396.8 207.0 262.2 ~ 353.8 .92.5 
U14a 288.1 208.1 339.9 366.6 264.8 262.2 538.1 388.7 .92.5 
U15a 296.9 276.9 308.0 339.8 316.1 262.2 498.8 464.0 ~ 

U16a 298.4 296.4 299.4 332.4 330.3 262.2 488.0 484.8 ~ 

N. B.- Where muscle forces are emboldened, they are greater than the physiological maximum, and where 

they are underlined they are equal to the physiological maximum. 



TABLE E.2 - Details for condition 8, and results of muscle force estimation using different objective 

functions. (MU1 is the biceps, MU2 Is the brachialis, and MU3 is the brachioradialis.) 

BRACHIO-

MUSCLE BICEPS BRACHIALIS RADIALIS 

Moment arm (m) 0.023 0.012 0.032 

Constraint 1 600.6 N 1000.9 N 262.2 N 

Constraint 2 556.3 N 878.8 N 92.5 N 

VF(m.s·2) 0.017 0.029 0.041 

Constraint 3 4800 N 5722 N 68,1 N 
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N.B. - The maximum isometric muscle force values are used as constraint 1: constraint 2 is based on the 

maximum possible force the muscle can exert at its current length; and constraint 3 is based on the 

maximum possible force the muscle can exert at its current length and velocity. 

JOINT ANGLE- 130 degrees 

JOINT MOMENT TO SATISFY· 20 N.m 

MAXIMUM JOINT MOMENT • 34.2 N.m (based on maximum isometric force) 

MAXIMUM JOINT MOMENT- 26.3 N.m (based on force-length relationship) 

MAXIMUM JOINT MOMENT • 20.1 N.m (based on force-velocity relationship) 

Continued over page ... 
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(TABLE 6.3 continued) 

MUSCLE FORCES (N) 

Objective No Constraint Constraint 1 Constraint 2 Constraint 3 

Function MU1 MU2 MU3 MU1 MU2 MU3 MU1 MU2 MU3 MU1 MU2 MU3 

U1 1llM 565.1 2.a.1 
U2 1llM 565.1 2.a.1 
U3 1llM 565.1 2.a.1 
U4 1llM 565.1 2.a.1 
U5 1llM 565.1 2.a.1 
U6 FOR THESE VALUES SEE CONDITION A. 1llM .572..2 65.4 

U7 476.3 ill..2 2.a.1 
U8 476.3 ill.2 2.a.1 
U9 476.3 5Z2..2 2.a.1 

U10 476.3 ill.2 2.a.1 
U11 476.3 ill.2 2.a.1 
U12a .1l!Q.Q ~ 65.4 

U12b 869.6 0.0 0.0 600.6 515.5 0.0 556.3 600.4 0.0 .1l!Q.Q ill..2 65.4 

U13a .1l!Q.Q ~ 65.4 

U13b 609.9 452.2 17.1 600.6 468.3 17.7 556.3 545.5 20.6 .1llll.ll .5Z2..2 65.4 

U14a .1llll.ll .5Z2..2 65.4 

U14b 551.0 518.0 34.7 551.0 518.0 34.7 551.0 518.0 34.7 .1llll.ll .5Z2..2 65.4 

U15a 4n.2 ~ 67.4 

U15b 495.5 560.4 58.7 495.5 560.4 58.7 495.5 560.4 58.7 .1llll.ll .572..2 65.4 

U16a 476.3 ill..2 2.a.1 
lJ16b 479 6 569 0 66 9 479 6 5690 66 9 479 6 569 0 66 9 479 6 569 0 66 9 

N. B.· Where muscle forces are emboldened, they are greater than the physiological maximum, and where 

they are underlined they are equal to the physiological maximum. 



TABLE E.3 • Details for condition C, and results of muscle force estimation using different objective 

functions. (MU! is the biceps, MU2 is the brachialis, and MU3 is the brachioradialis.) 

MUSCLE BICEPS BRACHIAL!$ BRACHIO· 

RADIALIS 

Moment arm (m) 0.036 0.020 0.053 

Constraint 1 600.6 N 1000.9 N 262.2 N 

Constraint 2 600.5 N 995.7 N 244.4 N 

VF (m.s-2) 0.0376 0.000 0.1307 

VM (m.s-2) 0.0323 0.0030 0.1451 

Constraint 3 441 3 N 995 7 N 105.7 N 
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N. B. - The maximum isometric muscle force values are used as constraint 1; constraint 2 is based on the 

maximum possible force the muscle can exert at its current length; and constraint 3 is based on the force· 

velocity relationship of the muscles. 

JOINT ANGLE- 90 degrees 

JOINT MOMENT TO SATISFY- 41.4 N.m 

MAXIMUM JOINT MOMENT- 55.5 N.m (based on maximum isometric force) 

MAXIMUM JOINT MOMENT- 54.4 N.m (based on force-length relationship) 

MAXIMUM JOINT MOMENT- 41.4 N.m (based on force-velocity relationship) 

MAXIMUM JOINT MOMENT- 40.6 N.m (based on force-velocity data using muscle velocity rather than 

muscle fibre velocity) 

MUSCLE FORCES 

Objective No Constraint Constraint 1 Constraint 2 Constraint 3 

Function MU! MU2 MU3 MU! MU2 MU3 MU! MU2 MU3 MU! MU2 MU3 

Ut 0.0 0.0 781.1 600.6 294.1 262.2 600.5 341.4 244.4 .41L3 .9.95..6 .1Q5.Z 

% 100 100 638.98 36.10 -70.46 148.06 36.08 -65.71 131.22 0.00 -0.01 0.00 

U2 330.8 183.8 487.1 583.8 324.3 262.2 600.5 341.4 244.4 .41L3 .9.95..6 .1Q5.Z 

% -25.04 -8/.54 360.83 32.29 -67.43 148.06 36.08 -65.71 131.22 0.00 -0.01 0.00 

U3 359.3 267.8 436.0 540.3 402.7 262.2 558.8 416.5 244.4 M.1...J .9.95..6 .1Q5.Z 

% -18.58 -73.10 312.49 22.43 -59.56 148.06 26.63 -58.17 131.22 0.00 -0.01 0.00 

U4 376.1 352.4 392.7 502.5 470.7 262.2 519.7 486.9 244.4 .41L3 .9.95..6 .1Q5.Z 

% -14.77 -64.61 271.52 13.87 -52.73 148.06 17.77 -5l.IO 131.22 0.00 -0.01 0.00 

us 379.5 377.3 381.0 492.2 489.3 262.2 509.1 506.0 244.4 441.3 .9.95..6 m 
% -14.00 -62.ll 260.45 ll.53 -50.86 148.06 15.36 -49.18 131.22 0.00 -0.01 0.00 

U6 1150.0 0.0 0.0 600.6 988.9 0.0 600.5 989.1 0.0 M.t..J .99.5..6 m 
% 160.59 -100.00 -100.00 36.10 -0.68 -100.00 36.08 -0.66 -100.00 0.00 -0.01 0.00 

U7 506.6 781.6 142.1 540.6 1000.9 36.2 543.2 ~ 36.4 .41L3 .9.95..6 .1Q5.Z 

% 14.80 -2150 34.44 22.50 0.52 -65.75 23.09 0.00 -65.56 0.00 -0.01 0.00 

ntinued· 



Objective 

Function 

us 
% 

U9 

% 

U10 

% 

U11 

% 

U12a 

% 

U12b 

% 

U12c 

% 

U13a 

% 

U13b 

% 

U14a 

% 

U14b 

% 

U14c 

% 

U15a 

% 

U15b 

% 

U15c 

% 

U16a 

% 

U16b 

% 

U16c 

% 

MUSCLE FORCES 

No Constraint 

MU1 MU2 MU3 

Constraint 1 

MU1 MU2 MU3 

478.0 766.4 167.3 505.0 1000.9 60.4 

8.32 -23.03 58.28 14.43 0.52 -42.86 

454.6 751.1 188.9 471.5 987.0 88.5 

3.01 -24.57 78.71 6.84 ·0.87 -16.27 

448.3 746.6 194.9 467.9 966.2 98.7 

1.59 -25.02 84.39 6.03 ·2.96 ·6.62 

447.7 746.1 195.5 447.7 746.1 195.5 

1.54 -25.07 84.96 

1150.0 0.0 0.0 

1.45 -25.07 84.96 

600.6 988.9 0.0 

160.59 -100.00 -100.00 36.10 -0.68 -100.00 

0.0 2070.0 0.0 593.9 1000.9 0.0 

-100.00 107.89 -100.00 34.58 0.52 -100.00 

0.0 2070.0 0.0 593.9 1000.9 0.0 

-100.00 107.89 -100.00 34.58 0.52 -100.00 

520.9 795.7 127.0 520.9 795.7 127.0 

18.04 -20.09 20.15 

426.6 1206.6 36.0 

18.04 -20.09 20.15 

528.3 1000.9 44.6 

-3.33 21.18 -65.94 19.71 0.52 -57.81 

489.8 779.5 154.3 489.8 779.5 154.3 

1099 ·21.71 4598 

440.1 1111.9 62.6 

-0.27 11.67 -40.78 

478.7 1056.6 57.2 

10.99 -21.71 45.98 

491.1 1000.9 69.9 

11.28 0.52 -33.87 

505.0 1000.9 60.4 

8.47 6.12 -45.88 14.43 0.52 -42.86 

463.9 762.3 178.4 463.9 762.3 178.4 

5.12 -23.44 68.78 5.12 -23.44 68.78 

442.4 1023.6 94.4 452.0 1000.9 96.4 

0.25 2.80 

471.5 987.0 

·10.69 

88.5 

2.42 0.52 ·8.80 

465.4 1000.9 87.4 

6.84 ·0.87 -16.27 5.46 0.52 -17.31 

457.0 757.1 185.0 457.0 757.1 185.0 

3.56 -23.96 75.02 3.56 -23.96 75.02 

441.4 998.2 104.6 441.4 998.2 104.6 

0.02 0.25 -1.04 

467.9 966.2 98.7 

0.02 0.25 -1.04 

456.4 992.3 96.3 

6 03 -2 96 ·6 62 3 42 -0.34 -8 89 

Constraint 2 

MU1 MU2 MU3 

507.5 .aa5..Z 60.7 

15.00 0.00 -42.57 

471.5 987.0 88.5 

6.84 -0.87 -16.27 

467.9 966.2 98.7 

6.03 -2.96 -6.62 

447.7 746.1 195.5 

1.45 -25.07 84.96 

600.6 989.1 0.0 

36.10 ·0.66 -100.00 

596.8 .aa5..Z 0.0 

35.24 0.00 ·100.00 

596.8 .aa5..Z 0.0 

35.24 0.00 -100.00 

520.9 795.7 127.0 

18.04 -20.09 20.15 

530.8 .aa5..Z 44.8 

20.28 0.00 -57.62 

489.8 779.5 154.3 

1099 -21.71 45.98 

493.5 .aa5..Z 70.2 

11.83 0.00 -33.59 

507.5 .aa5..Z 60.7 

15.00 0.00 -42.57 

463.9 762.3 178.4 

5.12 -23.44 68.78 

454.2 .aa5..Z 96.9 

2.92 0.00 -8.33 

467.7 .aa5..Z 87.7 

5.98 0.00 -17.03 

457.0 757.1 185.0 

3.56 -23.96 75.02 

442.4 .aa5..Z 1 04.9 

0.25 0.00 -0.76 

456.9 992.3 96.3 

3.54 -0 34 -8.89 

Constraint 3 

MU1 MU2 MU3 

M1...3 .ll9M 1ll5.Z 
0.00 -0.01 0.00 

ill....3 .ll9M 1ll5.Z 
0.00 -0.01 0.00 

M1...3 .ll9M 1ll5.Z 

0.00 -0.01 0.00 

M1...3 .ll9M 1ll5.Z 
0.00 -0.01 0.00 

ill....3 .ll9M 1ll5.Z 
0.00 -0.01 0.00 

M1...3 .ll9M 1ll5.Z 
0.00 ·0.01 0.00 

ill....3 .ll9M 1ll5.Z 
0.00 -0.01 0.00 

441.3 ~ 1ll5.Z 

0.00 ·0.01 0.00 

M1...3 .ll9M 1ll5.Z 
0.00 -0.01 0.00 

M1...3 .ll9M 1ll5.Z 
0.00 -0.01 0.00 

ill....3 .ll9M 1ll5.Z 
0.00 -0.01 0.00 

M1...3 .ll9M .1Q5.Z 

0.00 -0.01 0.00 

M1...3 .ll9M .1Q5.Z 

0.00 -0.01 0.00 

ill....3 .ll9M 1ll5.Z 
0.00 -0.01 0.00 

M1...3 .ll9M .1Q5.Z 

0.00 -0.01 0.00 

ill....3 .ll9M 1ll5.Z 
0.00 -0.01 0.00 

M1...3 .ll9M .1Q5.Z 

0.00 -0.01 0.00 

M1...3 .ll9M .1Q5.Z 

0 00 -0 01 0 00 

281 

N.B.- Where muscle forces are emboldened, they are greater than the physiological maximum, and where 

they are underlined they are equal to the physiological maximum. Figures in italics are percentage 

differences from criterion values. 
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