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ABSTRACT 

The aim of this study is to devise detectors for digital satellite 

modems, that have tolerances to additive white Gaussian noise which 

are as close as possible to that for optimal detection, at a fraction 

of the equipment complexity required for optimal detection. Computer 

simulation tests and theoretical analyses are used to compare the 

proposed detectors. 

Current proposals for digital satellite modems are discussed in 

relation to business and mobile radio systems. Two ~,~ modulation 

methods, correlative phase sh.ift keying and convolutionally encoded 

eight phase shift keying {coded 8PSK) , are introduced as the schemes 

for which detectors are to be devised. 

Maximum Likelihood detection implemented as the Viterbi Algorithm 

is considered, and is the preferred detector for the correlative phase 

shift keying modulation method. Near-maximum likelihood detectors, 

originally developed for data transmission systems with intersymbol 

interference, are investigated for coded 8PSK. They are shown to 

yield a tolerance to noise which is inferior to that of the Viterbi 

Algorithm detector, for similar levels of equipment complexity. The 

tests include the incorporation of suboptimal distance measures. A 

number of low complexity, but suboptimal, detectors for coded 8PSK 

are shown to have a low tolerance to noise. Two techniques, sequential 
Q.l'l~l 

decoding andjnoise-adaptive Viterbi-type detector , which adapt the 

' number of computations undertaken to suit the prevailing noise level, 

are considered~ Extensive computer simulation results of the latter 

technique are presented. These results suggest that the technique is 

potentially much superior to the others tested. 
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GLOSSARY OF MORE IMPORTANT SYMBOLS AND TERMS 

Tx 

Rx 

T 

D 

y (f) 

y 

qi(j) for j=l,2 

r. 
~ 

transmitter 

receiver 

duration of a signal element called the symbol 

interval 

the delay operator (a delay of T seconds) 

the baseband channel frequency response 

the vector of sample values {y.} of the impulse 
~ 

response of the baseband channel 

energy per transmitted data bit 

two-sided power spectral density of additive white 

Gaussian noise at the receiver input 

ith four-level data symbol 

the Gray Coded data bits carried by si 

,th 1 mbo h f ~ four-leve data sy 1 at t e output o the 

precoder 

the Gray Coded data bits carried by q. 
~ 

i th code symbol 

binary code symbols carried by ci (for a rate-2/3 

convolutional code) 

.th d ymbo . ~ complex-value s 1 at the ~nput to the 

modulator 

sample value of the noise waveform w(t) at the 

output of the demodulator 

.th . d 1 f d d ~ rece~ve samp e o the emo ulator output 

signal r(t) 



(vii) 

. th 1 1 f h h ~ ( ) . 1 ~ samp e va ue o t e p ase, ~ t , of a s~gna 

phase shift of a signal over the time interval 

(i-l)T~t~iT 

N-component vector, [q ~ N 
1 

,q ~ N 
2 

, ••• ,q! 1 of 
1- + 1- + 1 

possible values of the corresponding data symbols 

code symbol derived by coding the possible data 

symbol values in a vector Q~ 
~ 

c~ (j) for j=l,2,3 binary code symbols carried by c~ (for a rate-2/3 
~ ~ 

<l>i 

a{t) 

a' {t) 

fl{t) 

13' {t) 

G{D) 

convolutional code) 

complex-valued symbol derived from the mapping of 

code symbol c~ {for coded systems), or possible 
~ 

data symbol value q~ {for uncoded systems). 
~ 

cost of a stored vector Q~ 
~ 

the state of a Finite-State Machine at time t=iT 

the frequency modulating pulse, which is proportional 

to the instantaneous rate of change of the phase of 

the signal at the output of a premodulation filter. 

the composite frequency modulating pulse, derived 

by incorporating the effects of coding into a{t) 

the phase response function, which is proportional 

to the instantaneous phase of the signal at the 

output of a premodulation filter. 

the composite phase response function, derived by 

incorporating the effects of coding into fl{t) 

the generator matrix for a convolutional code, which 

has elements which are polynomials in D 



(viii) 

the syndrome former for a convolutional code, 

which is a matrix with elements which are polynomials 

in D 

(i,j)th convolutional code sub-generator, which is 

the vector [g
0

(i,j) ,g1 (i,j) , ... ,gk(i,j)] where k 

is the constraint length of the code. The vector 

elements have the possible values 0 or 1. 

BER bit error rate in the detected data 

binary-valued having the possible values 0 or l 

frequency-limited a frequency response is frequency-limited if it has 

time-limited 

baseband channel 

Inter symbol 
interference 

non-zero values over a finite range of frequencies 

a frequency response is time-limited if its sampled 

impulse response has non-zero values over a finite 

time interval 

the linear function which transforms the sequence 

of complex values {p.} into the complex waveform 
~ 

r(t) 

occurs when each complex sample r. at the input to 
~ 

the detector is a function of more than one complex 

number pj at the transmitter, in the absence of 

noise, (where j~i). 
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CHAPTER 1 

INTRODUCTION 



2 

1.1 BACKGROUND 

As the demand for all areas of communications services expands, 

it is inevitable that the demand for satellite services will increase. 

Traditionally, satellite communication has been the preserve of a small 

number of international consortia, such as the International 

Telecommunications Satellite Organisation, INTELSAT, and the correspond-

ing European organisation, EUTELSAT. These organisations are owned by 

the official telecommunications entities in the member countries, which 

operate the services. The services offered have been mainly trunk 

communications, using very large and costly earth stations. The traffic 

has comprised mainly of voice-circuits and television (TV) channels, and 

there is reason to believe that for many years to come, these services 

'11 . d . 3 
w~ rema1n om1nant . Increasingly though, there is a demand for a 

variety of new services, such as video-conferencing, direct broadcast 

of TV, radio communication between mobiles, and a multitude of new data 

services, including inter-computer links~-lO Clearly, such services are 

far removed from the more traditional trunk services, in that they are 

moving closer to the end-user. In particular, such traffic carried over 

satellite systems would probably require the provision of earth stations 

to the end-users. 

The rising demand for the traditional trunk services alone is causing 

. . h . b' 3 
increased congest1on 1n t e geostat1onary or 1t The additional demands 

expected for the new services will inevitably add to the problem. A 

number of techniques are available to "squeeze in" IIX)re services, given 

orbit and bandwidth restrictions. Higher frequency bands are now 

becoming available, in particular the 14/12GHz band and in the future 

11,12 
the 30/20GHz band. Since antenna gain increases with frequency, 



3 smaller antennas than those used in the 6/4GHz band can be used . 

Unfortunately, the higher frequency bands are more susceptible to 

signal fades and depolarisation, due to atmospheric conditions:• 12 

3 

Also, radio frequency (RF) equipment operating at these higher frequencies 

tends to be less efficient, so that the transmitter output power is 

more limited.
12 

Another technique involves the "reuse" of the available 

frequencies by the use of signal carriers with orthogonal senses of 

7,12 
polarisation, or by employing multiple spot-beam antennas. In 

addition, orbital slot "reuse" can be achieved by placing a number of 

satellites in the same orbital slot operating at different frequencies, 

or by employing a large space platform on which a number of different 

communications payloads can be operated, using multiple spot-beam 

12 3 
antennas. such techniques increase the level of eo-channel (CCI) and 

adjacent-channel (ACI)
3 

interference, as the systems are "squeezed" 

together, both spatially and in terms of frequency. The above approaches 

basically provide new resources for satellite systems, whereas the 

approach of using more efficient transmission techniques is basically 

one of conserving existing resources. These techniques are aimed at 

improving the tradeoffs between bandwidth and power efficiency, and 

system complexity. (The latter is at least to some extent self-limiting 

in terms of maximum data rate, in that for a given level of equipment 

complexity, the receiver requires a given minimum amount of time to 

process each incoming signal elementJ Such techniques include novel 

modulation and coding methods. 

Increasingly, new satellite systems are digital rather than analogue. 

There are a number of reasons for this, in addition to the fact that 

much of the new traffic described earlier is digital in nature
3 

Time-



Division Multiple-Access (TDMA) can be used as the multiple-access 

method in digital systems.
3 

This can achieve an increased capacity 

compared with analogue multiple-access systems3 
TDMA transponders 

relay only one digitally modulated carrier so that intermodulation is 

3 not as critical as in analogue systems. This increased capacity, 

linked to the decreasing cost of Large Scale Integration (LSI) digital 

circuit components, enhances the economic viability of digital satellite 

systems, compared with the corresponding analogue systems. Digital 

systems are inherently more robust in an interference environment, and 

can be operated at lower transmitter power levels than the corresponding 

analogue, Frequency-Division Multiplex, Frequency Modulated, (FDM-FM), 

3 
systems The bit stream which comprises the digital signal has similar 

properties, whether it is a TV signal, a voice signal, or computer data, 

which in analogue form all have very different properties. Thus signal 

multiplexing and processing is very much simpler in a digital system. 

Satellite signals are more easily interfaced to terrestrial systems, 

(optical fibre, cable, or microwave), when in digital form. The 

predominance of digital circuit components in a digital satellite system 

provides a very predictable and repeatable performance, which is not 

subject to drift with time. The increasing reliability of digital 

circuit components, and the relative ease with which "soft-fail" systems 

can be designed, (where failure in one component leads to a degraded 

6,8-10 
service rather than total breakdown), are also important factors. 

The increased confidence in the reliability of digital systems has 

led, in the last few years, to consideration of the feasibility of 

performing more complex functions on board the satellite, thereby 

. 13-16 simplifying the earth stat1on hardware. This is a very important 

4 



step in reducing the cost of earth'stations to the end-user who wishes 

to take advantage of the new satellite services. This philosophy is 

typified by the Communications Engineering Research Satellite (CERS) 

project~• 6 • 8 • 10 The on board processing envisaged in this project can 

be grouped into three categories. Firstly, the satellite becomes the 

Master Access Controller (MAC) for the system, controlling the (TDMA) 

timing. Secondly, the satellite would include a processor for control 

and monitoring purposes, and as an exchange for re-routing incoming data 

(a "switchboard in the sky") . Thirdly, the proposed satellite includes 

on board demodulation and remodulation, commonly termed regeneration. 

In such a regenerative transponder only the up-link errors are re-

transmitted on the down-link, whereas with conventional transparent 

transponders the up-link noise is amplified and re-transmitted on the 

down-link. Compared to a balanced transparent system, (equal signal to 

noise ratios on the up-link and down-link) , the regenerative system 

would require between 2.5dB and 3dB less power on both links~ When the 

comparison is with an unbalanced transparent system, (lower signal to 

noise ratio on the down-link), which is more common, the potential 

5 

power saving in the earth station transmitters is even greater, possibly 

as much as 9dB
8

• This benefit is available with direct phase regeneration 

I 
8,17 

as well as demodulation remodulation methods, but conversion of the 

signal stream into a baseband data sequence is essential for on board 

traffic processing. It is envisaged that the earth station modulators 

would operate in burst-mode, requiring a relatively complex on board 

burst demcdulator, (requiring very fast synchronisation to incoming data). 

In contrast the satellite would re-transmit in continuous-mode, further 

reducing the complexity of the earth stations, where relatively simple 



continuous-mode demodulators would be deployed. Additional power 

savings are to be achieved by adaptive coding techniques, separately 

matched to noise, interference, and fading conditions, on the up-links 

and down-links. 8 These power-saving techniques allow the complex and 

costly earth station Travelling Wave Tube Amplifiers (TWTA) to be 

replaced by cheaper and more reliable ("soft-fail") Solid State 

Amplifiers (SSA) 8 . This philosophy of incorporating many of the more 

complex functions on board the satellite, could in fact reduce the 

cost of the earth stations to such an extent, that satellite 

communication becomes attractive to businesses and mobile radio users. 

For example, the CERS project also includes a mobile radio experiment, 

in which the potentially massive cost and equipment size reductions are 

very evident. The project envisaged very low cost printed array 

antennas which could incorporate only limited electronic steering, 

glued flat to the mobiles' roofs
8 

This was possible because of the 

chosen 12 hour eliptical (Molniya) orbit, which places the satellite 

within 15° of the vertical during 8 hours of the day, for the UK user. 

The remainder of the earth station would consist of equipment similar 

6 

in size to a car radio. The orbit also alleviates many of the problems 

associated with mobile radio communications within built-up areas 

because of the Radio Frequency (RF) shadows thrown by tall buildings, 

since the satellite is essentially overhead during its operating period. 

Such a system could therefore be an attractive part of the solution to 

any proposed, Europe-wide, mobile radio system. 

The above discussion, in relation to the CERS project, indicates 

that the technology is available to provide a viable service for 

business and mobile radio users. Despite this, it is generally 



7 

accepted that satellites cannot compete with terrestrial fibre optic 

systems of the future, in the provision of general communications 

services. The 11 niche" for satellite services is where the broadcast 

nature of the service is of prime importance, in multi-point to point 

and point to multi-point communications such as mobile radio, electronic 

news gathering, remote printing, database transfer and updating, and 

as a back-up to terrestrial services. 

This thesis is concerned with one aspect of the new generation of 

digital satellite systems; the modulator/demodulator (MODEM), and in 

particular the detection processes which are required to generate the 

demodulated digital data stream at the output of the demodulator. The 

remaining two sections in this chapter are concerned with the choice of 

the modulation methods for which appropriate detection processes are 

investigated, and with an outline of the contents cf the thesis. 



8 

1.2 MODULATION METHODS 

The modulation methods commonly considered for application to 

satellite systems can be classified in a number of different ways, but 

they all have one thing in common. In all cases the signals are either 

constant envelope or near-constant envelope. The reason for this is 

that satellite transponders are pcwer limited, so that it is imperative 

that they should operate at or near the High Power Amplifier's (HPA) 

output level at saturation. At this point the typical HPA has a very 

nonlinear characteristic, so that an input signal with significant 

envelope variations, will be amplified such that the output signal has 

a significantly increased effective bandwidth, and is nonlinearly 

distorted. Therefore constant envelope, or near-constant envelope 

signals, are imperative. This means that only frequency or phase 

modulated signals are considered. 

Currently, by far the most popular signal is bandlimited Quaternary 

Phase Shift Keying (QPSK), since it is tried and tested, the hardware 

is available, and careful design yields a reasonably tight bandwidth 

with tolerable distortion, even in nonlinear channels. A carefully 

designed filtered QPSK modulation scheme can achieve a transmission 

34 rate of 1.4 bits per second per Hz of channel bandwidth. Bandlimited 

QPSK is an example of the first class of signals, of three classes in 

all, considered for the new satellite services. This class consists of 

non-continuous-phase signals which in a sense are not constant envelope, 

in that the envelope does fall to zero momentarily upon phase reversals. 

Figures 1.2.1 and 1.2.2 show two typical phase characteristics, ~(t) 

for non-continuous-phase signals, over a few symbol intervals. The 

phase is with respect to the phase of the carrier. Figure 1.2.1 depicts 

the case of Phase Shift Keying (PSK) modulation, while Figure 1.2.2 depicts 



9 

Frequency Shift Keying (FSK) modulation. Coding can be incorporated 

so that the number of possible signal waveforms over a symbol interval 

is greater than the number of levels that a particular data symbol 

h 
12,19-28 

can ave. By this means asymptotic coding gains, (that is, the 

coding gain as the signal to noise ratio gets very large), of several 

decibels (dB) in tolerance to additive white Gaussian noise (AWGN) are 

achievable, with no significant increase in bandwidth:
2 

Tolerance to 

noise is defined at a given bit error rate, as the value of the signal 

to noise ratio which is required to achieve the given bit error rate. 

(These gains in tolerance to noise are only achievable if Maximum 

Likelihood detection is used.) For example, a Rate-2/3 convolutional 

code can be used to increase the number of levels, from four for the 

uncoded data, to eight in the coded data. A rate-k
0
/n

0 
convolutional 

coder outputs n
0 

binary code symbols for every k
0 

data bits at the 

input to the coder, where n0~k0 . Eight Phase Shift Keying (SPSK) is 

used as the modulation method (see Appendix A4)~0-23 Systems using 

signals of this type can employ conventional methods of carrier-phase 

and element-timing synchronisation~ A coded scheme can achieve such 

gains in tolerance to noise through two related mechanisms. Firstly, 

redundancy is incorporated in that coded messages either contain extra 

symbols, or the code symbols have more possible values than the uncoded 

symbols. This redundancy accentuates the uniqueness of the whole 

message to be transmitted. The redundancy is arranged so that it is 

very unlikely that noise in the transmission channel will corrupt enough 

of the symbols in a message to destroy its uniqueness. The second 

mechanism is noise averaging. This is caused by making each code symbol 

dependent on a span of data symbols. In this way if one or more code 



symbols are corrupted by noise, e'nough information usually remains, 

carried by other code symbols, for the detector to determine the data 

symbols which were transmitted. A major weakness of these signals is 

that they require significant bandlimiting prior to the HPA, in order 

to reduce their bandwidth, if data rates approaching that quoted 

earlier (in Section 1.1) are required. 6 Such bandlimiting introduces 

envelope ripples into the signal. When this signal is amplified non-

linearly in an HPA operating at or near its output saturation level, 

the effective bandwidth of the signal is increased, and nonlinear 

10 

. 6,29-32 distortion is introduced into the demodulated signal at the rece1ver. 

The former effect is termed spectral spreading. The effect, for this 

6 
signal class, is more marked than for the other two classes. Despite 

this, this class of signals does allow the use of coding, and generally 

requires relatively simple equipment.
6 

The second set of signals is characterised by the fact that they 

are constant or near-constant envelope signals where the signal phase 

is continuous, and where the signal frequency is held constant over a 

symbol interva1. 6 •33 The collective name for such schemes is Continuous-

Phase Frequency Shift Keying (CPFSK) , (although strictly the class-

34 
ification includes signals in the third class as well) • 

A typical phase characteristic for CPFSK modulation is given in 

Figure 1.2.3. Signals of this class include Minimum Shift Keying 

29,31 29,31 
(MSK), Offset-QPSK (OQPSK), and Intersymbol Interference and 

Jitter-Free OQPSK (IJF-OQPSK):
3

•
35

•
36 

Also included in this class is 

the Multi-h modulation method, (where the signal frequency is here 

. 37-41 
taken to be constant over a symbol 1ntervall. This scheme involves 

the cyclic variation of the modulation index, h, between a number of 



11 

discrete values over consecutive Symbol intervals, (h is constant over 

a symbol interval) • The value h is proportional to the rate of change 

of phase (d~(t),tlt) , and therefore determines the slope of the phase 

characteristic at any point. This is again a coding technique by which 

the number of possible signal shapes in the modulating waveform over a 

symbol interval, is greater than the number of values that a data 

34 symbol can have. The advantage of this class of signals is that they 

are tolerant to the nonlinear effects of HPAs operating at, or near, 

their (output) saturation levels, even when the signals are bandlimited~ 

The third class of signals is categorised by the fact that the 

signals are constant or near-constant envelope modulations, where both 

. 42-49 51-62 
the phase and the frequency are cont~nuous. ' These essentially 

have rounded phase characteristics and are very often, (but not 

necessarily), correlatively coded, in that the shape of the phase 

trajectory over_a symbol interval is a function of a number of successive 

data symbols. Such signals are usually referred to as Co"t;•u..""-l Phase 

Modulation (CPM)~4 A typical phase characteristic is given in Figure 

1.2.4. Note, as in Figure 1.2.4, that the signal phase may not be 

constrained to pass through fixed points, (multiples of h 11 radians), 

at the symbol sampling instances, t=iT. (In particular, many of the 

schemes of References 49 and 55 to 61 are of this type.) The smoothed-

phase characteristics of such schemes restrict the bandwidth by reducing 

the maximum rate of change of phase. Correlation between the phase 

shapes over a number of symbol intervals can be achieved by explicit 

correlative-level phase 
d. 34,46-48,62 eo ~ng, or by specifying frequency 

modulating pulses which extend over a number of symbol . 142-45,55-57 
~nterva s. 



The two techniques are equivalent. (Appendix A2 describeS the theory 

for a scheme using explicit correlative-level phase coding.) Since 

the coding, explicitly or implicitly applied, contributes to the 

smoothness of the phase, it can contribute to restricting the signal's 

bandwiath~ Alternatively, this coding can also be seen again as 

increasing the number of phase shapes, (phase trajectories), possible 

for the signal over a symbol interval, compared with the number of 

values that a data symbol can have. For example the modulation method 

termed CORPSK(4-7,l+D) incorporates correlative-level phase coding, 

followed by premodulation filtering and a frequency modulator, (see 

Appendix A2 and References 34 and 62) • Each data symbol can have one 

of four different values, whereas the modulating waveform can have one 

12 

of seven different shapes, (phase trajectories), over a symbol interval. 

other modulation methods which come under this general heading include 

42-45 . 46-48 Gaussian filtered MSK (GMSK), Tamed Frequency ModulatLon (TFM), 

. 34 62 
the so-called CORPSK sLgnals, ' and a whole class of partial 

response signals which do not explicitly include coding~9 • 54 -57 In 

addition, a number of partial response schemes which include 

58-60 
convolutional encoding, have been proposed. These are similar 

in many ways to the schemes within the first class of modulations 

. 20-26 
defined above, which incorporate convolutional codLng, but are 

mere complex in that the phase is smoothed. The main advantage that 
tllil·<l 

this~class of signals has is that, in non-bandlimited form, they are 

not subject to distortion or spectrum spreading when fed through an 

HPA operating at, or near, its saturation level~' 34 • 49 Unfortunately 

they tend to have a wider bandwidth than many interesting signals in 

the other classes (when the latter are not subject to nonlinear distortion)~ 



The rounding of the phase waveform appears in general to result in a 

reduction of ldB in tolerance to additive white Gaussian noise, 

compared with what is theoretically achievable without phase shaping
6 

Also, any bandlimiting of the signals results in quite severe non-

linear distortion and spectrum spreading, when the signal is passed 

through an HPA operating at, or near, its saturation level~ This 

class of signals may also require quite sophisticated carrier-phase 

and element-timing synchronisation techniques, especially when the 

phase does not pass through fixed points at every symbol sampling 

. 49 
1nstant. 

Having described the general classes of signal which are being 

13 

considered for future satellite services, particular modulation schemes 

are now considered in relation to the technical requirements of the new 

services. From Section 1.1, an important feature is that the earth 

station should be simple, in order to make it cheap and reliable (and 

unmaned if possible). Because of this it will inevitably be power-

limited, so that the modulation method which yields an advantage in 

tolerance to noise over QPSK would be very attractive, (in addition to 

the power advantages listed in Section 1.1 due to on board regeneration). 

Clearly, as the available spectrum becomes more congested, bandwidth 

efficiency will rise in importance. 

Unfortunately, signals of the second class described above, 

despite having a relatively low level of spectrum spreading after non-

linear amplification, cannot generally provide additional coding gain 

over QPSK. The need to maintain an approximately constant envelope 

precludes the types of convolutional coding schemes which were described 

for the other signals~ In addition, bandlimiting of the signal introduces 
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intersymbol interference which results in a reduced tolerance to 

noise, if simple threshold-level detection is used. (Maximum 

Likelihood detection, (see Appendix A3), would be an added complication 

which only restores performance, in terms of tolerance to noise, to 

that of QPSK modulation. The exception with regard to coding gain is 

Multi-h modulation, which is considered later.) 

The general property of the signals in the first and third groups, 

which yields advantages in tolerance to noise over QPSK, is that the 

modulating waveform over a symbol interval is a function of a number 

of data symbols, so that the signals are correlated. This is evident 

in that the number of possible shapes of the modulating waveform over 

a symbol interval, is greater than the number of possible values of a 

single data symbol. Such correlation increases the minimum Euclidean 

distance (or equivalently, the mean square error) between possible 

19 
signal waveforms, as compared with the corresponding uncoded scheme. 

This increased distance means that, given optimal detection, a higher 

level of noise is needed to give detection errors in the coded case, 

than in the uncoded case. In order to exploit the increased distances, 

the detector must now consider the received signal over a number of 

consecutive symbol intervals, in order to detect one data symbol. In 

the limit, the whole of the received message can be detected in one 

operation. This so-called Maximum Likelihood detection selects as the 

detected message the possible sequence of data symbols, for which there 

is the minimum Euclidean distance, (mean square error), between the 

possible received signal corresponding to this data sequence (in the 

absence of noise), and the signal actually received. The detection 

process extends over the whole received signal. If the different 



possible signals are equally likely, this process minimises the 

4 
probability of choosing a wrong sequence of data symbols. Under 

certain conditions, this process can be implemented by means of the 

Viterbi Algorithm~ 3 Unfortunately, this usually results in a much 

more complex detector, than that required for QPSK modulation, (the 

15 

1 threshold-level detector). A signal of the first class which can gain 

substantially in tolerance to noise over QPSK, is convolutionally 

encoded and phase-mapped eight phase shift keying, referred to as coded 

BPSK in this thesis, (see Appendix A4 and References 20 to 23). In 

terms of bandwidth, the signal is very similar to QPSK, so that a very 

attractive power advantage can be gained at no expense in terms of 

bandwidth. Multi-h signalling can also yield quite significant gains 

4 
in tolerance to noise, but these schemes tend to be rather complex, 

and need modulation index synchronisation in addition to carrier-phase 

and element-timing synchronisation.
40

•49 Synchronization is, in fact, 

a major problem for such signals. (Reference 24 compares coded 8PSK 

modulation with Multi-h signalling, and concludes that the former 

technique is generally more attractive.) Synchronisation is also a 

problem for many CPM schemes, especially for those where the signal 

phase does not pass through fixed points at the end of each symbol 

. 6,49 h d 
~nterval. Because of t is, an because Maximum Likelihood detection 

is often unduly 
. 6,49 

complex for these s~gnals, the latter schemes are 

not considered further. A signal of the third group for which 

synchronisation is somewhat simpler, (because the signal phase does 

pass through fixed points at the end of each symbol interval) , is the 

. 34 62 class of correlative-level phase coded s~gnals termed CORPSK. ' A 

particularly attractive scheme is CORPSK(4-7,l+D), (see Reference 34 



and 62 and Appendix A2), in that' the scheme potentially gains 2dB in 

tolerance to noise (at high signal to noise ratios) , compared with 

differentially coded QPSK (DQPSK) , whilst its effective bandwidth is 

not much greater than that of QPSK (and its frequency spectrum has no 

sidelobes
62 >. In addition, the scheme yields advantages in tolerance 

. b' ( ) 1 . 62 to no~se at ~t error rates BER as ow as 1 ~n 100 • Coded 8PSK, 

16 

on the other hand, is inferior in terms of tolerance to noise compared 

. h Q f . f 1 . 1 .12 ,21 w~t PSK, or BERs ~n excess o ~n oo A demodulator suitable 

for the projected new satellite services would not be required to 

operate at signal to noise ratios such that the BER is much less than 

4 
1 in 10 at its output. This is because digitally coded speech, (the 

predominant type of traffic), can be transmitted at error rates as high 

8 
as 1 in lod 1 so that much lower error rates are unnecessary~ To achieve 

the required bit error rate for computer data, (less than 1 in Jo9 ), 

8 adaptive coding external to the modem would be used • For this reason 

the most promising signals are those which yield substantial gains in 

tolerance to noise in the region of BER, 1 in 1o2 to 1 in 1o
4

• In 

this thesis the region of interest for the BER is defined as 1 in 103 

. 4 to 1 ~n 10 . 

The two modulation methods, coded 8PSK and CORPSK(4-7,l+D) were 

chosen as being the most promising signals for application to new 

business and mobile radio satellite systems. In both cases the 

correlation in the signals is exploited to gain advantages in tolerance 

to noise over QPSK. This exploitation is achieved by using Maximum 

Likelihood detection in the form of the Viterbi Algorithm. This results 

in a significant increase in detector equipment complexity compared 

with threshold-level detection for QPSK, and may under certain circumstances 
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be unduly complex. This thesis is concerned with investigating 

near-maximum likelihood detection techniques which achieve, as 

closely as possible, the best tolerance to noise (which is achieved 

using Maximum Likelihood detection), with a significant reduction in 

detector equipment complexity, compared with Viterbi Algorithm 

detection. The discovery of practical alternatives to the Viterbi 

Algorithm for the detector should go a long way towards making these 

schemes feasible, justifying their increased complexity in comparison 

with QPSK modulation. 
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1.3 OUTLINE OF INVESTIGATION 

This investigation is primarily concerned with the study of 

suitable detection processes for coded modulation methods, as 

described in Section 1.2. The aim has been to devise detection schemes 

which are considerably less complex, in terms of hardware and cost, 

than Maximum Likelihood detection implemented by way of the Viterbi 

Algorithm. The performance of the simplified detectors, in terms of 

their tolerances to additive white Gaussian noise, should be as close 

as possible to the performance achieved by Maximum Likelihood detection. 

(As a rough indicator, the selected detectors' tolerances to noise 

should not be degraded by significantly more than ~.SdB, at a bit 

error rate of 1 in 1~4 .) Computer simulation tests have been used to 

compare the detection schemes, (see Appendix AS for a description of 

the techniques). 

Chapter 2 describes the system models used in the computer 

simulation tests, minus the detectors. Initially, a general system 

model is described, which applies to all the models. The following 

sections describe details of particular models, not dealt with in the 

general description. The models are of QPSK/DQPSK modulation, 

CORPSK(4-7,l+D) modulation, (both an ideal model, and a more practical 

model incorporating premodulation and equipment filtering), and coded 

8PSK modulation. 

Chapter 3 describes the optimal (or near-optimal) detection 

schemes for QPSK (threshold-level detection);'
2 

and the coded schemes 

( . . 1 . h d . ) 1 • 2 
V1terb1 A gor1t m etect1on • Simulation results are presented for 

the schemes, including results for QPSK with realistic equipment 

filtering. 



Chapter 4 describes the application of near-maximum likelihood 

techniques, 64 - 68 originally applied to telephone channels with inter-

21 

symbol interference, to coded BPSK modulation. Pseudobinary detection 

69-71 
schemes , and a number of extensions of the original System 1 

64,65 . 
scheme, are cons~dered. 

Chapter 5 describes a number of different detection techniques 

for coded 8PSK, all of which yield very degraded tolerances to noise, 

compared to Maximum Likelihood detection. A non-linear equaliser-like 

scheme, and the (feedforward) inverse coder were tested. Also a 

technique of redefining the meaning of the state of a stored vector 

and soft-decision table look-up syndrome decoding, are tested. 

Chapter 6 deals with two types of detector, wherein the number of 

computations performed changes from symbol interval to symbol interval, 

necessitating the provision of buffer storage for the received signal 

samples, and the detected data symbols. The class of detectors termed 

sequential decoders is addressed in the first section, but no simulation 

tests of such schemes are undertaken. The second section describes a 

rather different approach, termed noise-adaptive Viterbi-type detection, 

19 
which unlike sequential decoding requires no back-up searches, and is 

therefore a basically feedforward technique. Simulation results for a 

number of schemes are presented, including the schemes tolerances to 

noise and statistical measures of the processing load, (in terms of 

the number of possible transmitted sequences to be processed per symbol 

interval). 

Chapter 7 compares the results for the preferred Viterbi Algorithm 

detector for CORPSK(4-7,l+D) modulation, with those for Viterbi 

Algorithm, near-maximum likelihood System !,and noise-adaptive Viterbi-

type detection, for coded 8PSK. 



In order to deal with the many variants of the schemes, a 

unified method of describing the schemes being tested has been devised 

based on various parameters of the schemes. Appendix AB details the 

system, and should be consulted in order to fully understand the 

presentation of the results. 

22 
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CHAPTER 2 

DATA TRANSMISSION SYSTEM MODELS 
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This chapter briefly describes the mathematical models of the 

data transmission systems, within which the various detectors of 

Chapters 3 to 6 are incorporated. The models cover uncoded QPSK 

modulation and the two chosen modulation schemes which use coded data 

(see Chapter 1). Since QPSK is a standard modulation method for 

satellite systems (Chapter 1) , the results for the QPSK model are used 

as a reference by which the relative performance of the coded schemes 

incorporating different detectors- can be gauged. The models upon 

which the computer simulation programs are based are all described in 

this one chapter. This avoids unnecessary duplication in Chapters 3 

to 6 where the detectors are described. It also facilitates the 

description of techniques incorporated into the programs in order to 

reduce the computing time, during the simulation tests. 

In addition, the three modulation methods have a large number of 

common features which are described in the general model of Section 2.1. 

Sections 2.2 to 2.5 describe the functions of the various blocks 

introduced in the model of Section 2.1, for the four models used in 

the investigations. These descriptions are brief, since their function 

is to describe the signals which appear at the input to the detectors 

of Chapters 3 to 6. The_ characteristics of these signals clearly have 

a bearing on the complexity of the detectors' task. (More details 

concerning the two coded modulation methods are given in Appendices A2 

and A4.) 

Section 2.2 describes the model for QPSK modulation. Sections 

62 
2.3 and 2.4 both deal with the coded scheme called CORPSK(4-7,l+D) . 

The model of Section 2.3 is very simple, and is used to gain an 

indication of the potential performance of the scheme. Section 2.5 
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describes the model for the coded SPSK modulation method, which is 

the second coded modulation method chosen in Chapter 1. 

2.1 GENERAL SYSTEM MODEL 

A diagram of the generalised data transmission model for all 

schemes investigated is given in Figure 2.1.1. 

The baseband signal generator produces a sequence of four-level 

data symbols {si}; si=O,l,2 or 3, the symbols being statistically 

independent and equally likely to have any of their four different 

values. Each four-level symbol carries two bits of information. The 

mapping from the four-level data to the binary data is given by the Gray 

Code as outlined in Table 2.1.1. It is assumed that s.=O for i~O so 
~ 

that si is the ith transmitted symbol at time t=iT, where T is the 

symbol duration in seconds. In Figure 2.1.1, at the input to any 

filter or linear channel, the symbols are assumed to be carried by the 

corresponding impulses. For example the symbols at the input to the 

precoder are carried by the impulses {s.o(t-iT)}. Figure 2.1.1 
~ 

includes the option of preceding the data sequence. Preceding is used 

to reduce the lengths of the error bursts in the detected data, as 

explained in Appendix Al. The definition of an error burst is given 

in Appendix AS. At time t=iT, the output of the precoder is 

q, = [s.-q. 
1

JMODUL0-4 
.... l. 1.-

where the MODUL0-4 rule is defined as, 

q. < 0; q. = q.+4 
~ ~ ~ 

q, -4 
~ 

(2 .1.1) 

(2.1.2) 



As an example if s,=l and q. 
1

=3,. then q,=[l-3]MODUL0-4=2. 
~ ~- ]. 

The precoder output symbols {q,} are four-level, the symbols 
1 

26 

being statistically independent and equally likely to have any of their 

four different values~ 1 It is assumed at the start of transmission that 

q_
1

=o. For the remainder of Chapter 2 it will be assumed that preceding 

has been applied and therefore the symbols {q,} will be used. For 
1 

schemes where preceding is not applied (or is optional) , q. can be 
1 

directly replaced by s .• 
1 

The four-level symbols {q.} are fed to the encoder and mapper 
1 

shown in Figure 2.1.1. Coding is applied to all the systems investigated 

except QPSK. Coding is used to gain an improvement in tolerance to noise 

(termed a coding gain) over the corresponding uncoded system. Chapter 1 

introduced the concept, and Appendices A2 and A4 detail the coded 

schemes considered in this thesis. 

In general the coding process converts the four-level data symbols 

{qi} into £-level symbols (which are integers) {ci}. In general, any 

coding will involve correlating a number of symbols {q,}, j~i, to give 
J . 

a code symbol c .• 
1 

The £-level symbols {c.} are mapped onto a sequence of complex 
1 

numbers {pi} which have m possible values. (The {p1} are termed m-level 

numbers . ) The mapping of the {c.} into the {p,}is detailed in the 
1 1 

appropriate sections of Chapter 2. 

2 2 2 
In all cases lP. I ={Re(p.)} +{Im(p.)} =4.0. This sequence is fed 

1 1 1 

to a phase or frequency modulatcr which incorporates any premodulation 

filtering, and the transmitter equipment filters which are required to 

restrict the signal bandwidth. 

The modulator, satellite channel, and demodulator, comprise the 
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baseband channel. In practice the satellite channel is nonlinear, 

but for the purposes of this study, which is primarily concerned with 

detection processes, the channel is assumed to be linear. In particular 

this assumes that the Travelling Wave Tube Amplifier (TWTA) in the 

transmitter is backed-off sufficiently from saturation, so that operation 

is within the linear portion of its characteristic. In addition adjacent 

and eo-channel interference3 are neglected in this study. The 

demodulator includes all the receiver filters. 

The baseband channels which are used in the computer simulation 

tests are now defined. These definitions do not include the effects 

of any premodulation filtering. These latter effects are described 

in the sections of Chapter 2 which describe the models incorporating 

premodulation filtering, (Sections 2.3 and 2.4). Unless otherwise 

stated the filtering is shared equally between the transmitter and the 

receiver such that the channel frequency response is of the form given 

in Equation 2.1.3. Schemes using this baseband channel frequency 

response are called perfect channel schemes, since this channel has 

the minimum bandwidth required to transmit the signal with no inter

symbol interference~ 

T If I ~l/(2T) 
y (f) = (2.1.3) 

0 , lfl>l/(2T) 

This is termed the Ch=Il channel, (see Appendix AS). Alternatively 

the baseband channel may be defined by the impulse responses given in 

Graph 2.1.1. These impulse responses are those of actual filters 

designed by Mr. M.J. Fairfield of Loughborough University, in 

5-10 
conjunction with the UNIVERSE and CERS projects. A second 
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alternative channel is the Raised Cosine channel described by the 

frequency response in Equation 2.1.4, termed Ch=RC (see Appendix AS) . 

r 
l:T (l+cos11fT) 1 1 

< f <-T T 

y (f) = 

1 
(2 .1.4) 

0 elsewhere. 

Stationary white Gaussian noise, with zero mean and a two-sided 

power spectral density l:N
0

, is added to the modulated signal at the 

receiver input (see Appendix AS). The demodulator includes at its 

input a bandpass filter which removes the frequency components outside 

the frequency band of the data signal. The resultant passband signal 

is fed to two linear coherent demodulators whose reference carriers 

are in phase quadrature and have the same frequency as that of the 

received signal carrier. Perfect carrier frequency and phase 

synchronisation are assumed. The demodulated signals at the outputs 

of the in-phase and quadrature demodulators are taken to be real and 

complex-valued respectively. 

The complex-valued sampled impulse response of the baseband 

channel is given by the inverse Fourier Transform of the channel 

frequency response Y(f) (which includes the effects of premodulation 

filtering, where appropriate). 

y(t) = f~ Y(f)exp(j211ft)df (2 .1.5) 

-~ 

where j=I=I and f and tare, respectively, frequency in Hz and time 

in seconds. y(t) is assumed to be time-invariant so that y(t-iT) is 

a time-shifted version of y(t-kT) for i~k. The complex-valued 

Gaussian noise waveform at the output of the demodulator is w(t). 



Hence the received and demodulat~d signal is 

r(t) = 
00 

L p.y(t-iT) 
i=l 

1 
+ w(t) (2.1.6) 

The waveform r(t) is sampled once or twice per data element at the 

time instants {iT} or {~T} respectively to give the received samples 

{r
4

} where r.=r(iT), or {r.} where r.=r{j
2
T}, respectively. The case 

4 1 J J 

where r(t) is sampled once per symbol interval is now described. The 

extension to double sampling is described in the appropriate sections 

of the thesis. Perfect timing synchronisation is assumed. The noise 

component of the received sample, w.=w(iT), is a complex-valued 
1 

Gaussian random variable. The receiver filtering is such that the 

real and imaginary parts of the {w.} are statistically independent 
1 
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Gaussian random variables with zero mean and fixed variance o
2

, unless 

otherwise stated. The waveform r(t) is sampled at or near the Nyquist 

l 
rate. The sampled impulse response of the baseband channel is the 

(g+l)-component vector Y=[y
0

,y
1

, .•. ,y
9

J where yi is complex-valued. 

The delay introduced by the baseband channel has been neglected, so 

that the constituent filters are not physically realisable. 

The sample at the input to the Decoder/Detector at time t=iT is 

the complex-valued quantity, 

(2.1.7) 

The term Decoder/Detector is used to indicate that the detection 

processes inherently include the decoding operation for coded signals. 

The output of ,the Decoder/Detector is the sequence of symbols {qi} 

where q! is the detector's decision as to the value of q .• The 
1 1 

decoder which follows is the inverse of the precoder at the transmitter, 



30 

(see Appendix Al) . At time t=iT; the output of the decoder is given 

by 

(2 .1.8) 

where the MODUL0-4 rule is defined to be 

s!<O ; s~ = s' + 4 
~ ~ ~ 

0 :: s' ~ 3; s' = s~ i ~ 
(2 .1.9) 

s~ > 3 s~ = s~ -4 
~ ~ ~ 

Clearly, if preceding is not used at the transmitter, the output of the 

Decoder/Detector is the sequence of symbols {s~}. 
~ 

TWO BINARY SYMBOLS 
4-LEVEL SYMBOL CORRESPONDING TO THE 

4-LEVEL SYMBOL 

0 0 0 

1 0 1 

2 1 /o 
3 1 ;!i 

TABLE 2.1.1: Gray Code Mapping 

• 
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2.2 QUADRATURE PHASE-SHIFT-KEYING (QPSK) CHANNEL MODEL 

In the case of the QPSK channel model, the "CODER" block in 

Figure 2.1.1 is not incorporated. Preceding is used to produce DQPSK 

(Differential QPSK). The modulator now becomes the appropriate QPSK 

modulator while the demodulator becomes the appropriate QPSK demodulator. 

(No assumptions regarding the actual hardware configurations are made.) 

The representation of the {p.} in the complex number plane is 
l. 

given in the signal constellation of Figure 2.2.1. See Appendix Bl 

for the program listing. 

In addition, this model allows transmission at a lower rate than 

the nominal rate of say i bits/second. The additional lower rates 

i/2, i/4 and i/8 bits/second, are achieved at a constant transmitter 

symbol rate of i/2 bauds through repeated transmission of data symbols 

{s.}, see Table 2.2.1. At the receiver, the received complex samples 
l. 

corresponding to one transmitted data symbol are simply added before 

being fed to the detector. 

INFORMATION NUMBER OF THE {r.} 
l. 

TRANSMISSION RATE WHICH ARE A 
(bits/second) FUNCTION OF A SINGLE 

DATA SYMBOL s. 
J 

i 1 

i/2 2 

9./4 4 

9./8 8 

TABLE 2.2.1: Transmission Rate Options 



q' = 2 ------'------------+--------->---- Relp,) 

q .. :.: 3 

~Lgure 2.2.1 OPSK SLgnol ConscelLoCLon 
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2.3 CORPSK(4-7,l+D) PERFECT CHANNEL MODEL 

Three basic models are described in this section. The first is a 

simplified version of the differential-phase (Frequency Modulated) 

system described by Muilwijk.
62 

The remaining two are direct phase-

mapped derivatives, (Phase Modulation), of the differential scheme 

(termed direct phase-map schemes A and B) . The schemes differ only in 
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respect of the mapping function onto the complex number plane. Preceding 

is retained as an option in all cases. See Appendix B2 for the 

differential-phase scheme program listing and Appendix B3 for the direct 

phase-map scheme B program listing. 

The encoder in all three models is a correlative-level encoder 

with transfer function (l+D) where D is the delay operator describing 

a delay of T seconds (see Appendix A2). The encoder operates on the 

sequence of symbols {qi} as follows, at time t=iT. 

c. = q. + q. 1 
~ ~ J.-

(2.3.1) 

The interaction of preceding with the correlative-level coding is 

discussed in Appendix Al. The sequence of symbols {c.} is seven-level 
l. 

c
1
=o,l,2,3,4,5 or 6, where the seven levels are not all equally likely. 

The modulator includes a premodulation filter at baseband, whose 

smoothing action on the coded and mapped data produces a continuous-

phase waveform at the output of the modulator. The premodulation 

filter's smoothing action on the phase restricts the bandwidth of the 

signal in the channel, as discussed in Chapter 1. 

In the differential-phase model, the sequence of code symbols {ci} 

is mapped onto phase shifts.{~~.} which occur over the symbol intervals 
l. 

{ (i-l)T~t:>iT}. The resultant phase samples, {~.},where ~.=~(iT) are 
l. l. 



measured with respect to the phase of the carrier. The{$.} are the 
~ 

phase angles of the complex numbers {p,} in polar form. The mapping 
~ 

is given in Table 2.3.1. ($
0 

at the start of transmission is assumed 

to be zero radians.) Similarly, the mapping rules for the two direct 

phase-map schemes, A and B, are outlined in Table 2.3.2. In these 

cases the mapping is from the sequence of symbols {c.} to the complex 
~ 

numbers {p,} whose phase angles{~.} are given in Table 2.3.2. The 
L L 

direction of the phase trajectory for direct phase-map scheme B is a 

function of $. and $. 
1

, the present and previous phase samples 
~ ~-

respectively. For this reason, Table 2.3.2 distinguishes c.~2 and 
~ 

c.~6 by assigning phases -~/2 and +3~/2 radians to them respectively. 
~ 

The direction of the phase trajectory is found by considering$. and 
L 

$. 
1

• The intermediate phase at time t~(i-l/2)T is found by simply 
~-

adding~. and$. 
1 

and dividing by two (i.e. superposition). For 
~ L-

~i-l~-~ (ci_1~1) and ~i=+~/2 (ci~4), ~i-!~- ~~ radians. Therefore the 

direction of the phase change is clearly anticlockwise (increasing 

phase). Since in all cases the mapping is basically of seven-level 

symbols onto a four-point constellation, a MODUL0-4 constraint is 

inherent. In the direct phase-map schemes this is clearly apparent 

from the non-unique mappings indicated in Table 2.3.2. In the case of 

the differential-phase scheme, the phase shifts 6~.~+~/2 and -3~/2 
L 

radians yield the same final phase ~i' for a given initial phase ~i-l" 

This is shown in Figure 2.3.1. Therefore, if the received signal r(t) 

is sampled once per data element, these two different phase shifts 

cannot be distinguished. In order to distinguish between the seven 

different possible values of ci, seven different phase trajectories 
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are possible, given a particular·initial phase at time t~(i-l)T. 

The seven different phase trajectories are depicted in Figure 2.3.2 

for~· 1~o radians. 
~-

For the purposes of these initial investigations, it is assumed 

that the premodulation filter is such that, in the absence of noise, 

the demodulated baseband signal r(t) moves round the signal 

constellation at a constant rate, so that the value of r(t) at time 

t=(i-l/2)T is midway between the initial and final phase points on 

the envelope, given the direction of the phase trajectory outlined in 

Table 2.3.1 or Table 2.3.2. This assumption is not realistic, as will 

be seen in Section 2.4 when specific premodulation filtering is 

introduced. The results for this model are to be considered as an 
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upper-bound to the results for the more realistic model of Section 2.4. 

As a result of the detector's requirement for information 

concerning the phase trajectory during a symbol interval, the received 

signal must be sampled twice per signal element. This means that the 

channel frequency response (outlined in Equation 2.1.2), requires 

ammendment in order to satisfy Nyquist's sampling theorem, (so that the 

extra sample at time t=(i-l/2)T contains useful information)
1

• The 

ammended frequency response is given in Equation 2.3.2 

Y(f) ~ ! (2.3.2) 

T lfl~l/T 

0 

This is the perfect channelfrequency response when the received signal 

is sampled twice per signal element (see Section 2.1). 

The waveform r(t) is sampled twice per data symbol at the time 



instants {iT/2}. Clearly, given·the frequency response in Equation 

2.3.2, r(t) is sampled at the Nyquist rate: The impulse response of 

the channel includes the effects of· the premodulation filter, as 
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described earlier. The sampled impulse response is Y=[y_
1

,y
0

,y1 , ••. ,y2gl 

The values of the y. are not specifically given. 
J 

The assumption is that the {y,} are such that the received signal r(t) 
J 

is as described earlier for the three schemes under consideration. 

Equations 2.3.3 and 2.3.4 define the received samples r. 1 at time 
~-, 

t=(i-!)T, and ri at time t=iT 

= ~ pi-hy2h-l + W, l 
h=O ~-

(2.3.3) 

= ~ pi-hy2h + w. 
h=O ~ 

(2.3.4) 

c. PHASE SHIFT A</>. 
~ ~ 

(Radians) 

0 -3rr/2 
+: Anti-clockwise rotation 

1 -'IT 
• Clockwise rotation 

2 -"IT/2 

3 0 

4 +'IT/2 

5 +'IT 

6 +31T/2 
. 

TABLE 2.3.1: Mapping Function for Differential Phase CORPSK(4-7,l+D) 



39 

DIRECT PHASE-MAP SCHEME A DIRECT PHASE-MAP SCHEME B 
c. PHASE ~- & DIRECTION PHASE~. (radians) 1 

1 1 

TAKEN TO pi (radians) (see text for direction) 

0 
0 -371" /2 

(Clockwise) 

rr/2 -Tr 
1 (Clockwise) 

2 71" 
(Clockwise) 

-Tr/2 

3 371" /2 
0 (Clockwise) 

4 0 +Tr/2 
(Anti-clockwise) 

5 
rr/2 +Tr 

(Anti-clockwise) 

6 
71" +3Tr/2 

(Anti-clockwise) 

TABLE 2.3.2: Mapping Functions for Direct Phase-Map CORPSK(4-7,l+D) 



(11,_, =+ TT/2 

__ _..;::0"-, ..--------+-------+---- Re!p, l 

FLgure 2.3.1 ExampLe of Non-unLqueness for 
OLfferentLoL-Phose CORPSK(4-l,1+0) 

40 
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F~gure 2.3.2 CORPSK(4-l,1+0) Phase Trajector~es 
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2.4 FILTERED DIFFERENTIAL CORPSK{4-7,l+D) MODEL 

The filtered CORPSK{4-7,l+D) model is a less idealised version 

of the differential-phase scheme described in Section 2.3. In 

particular the model includes specific premodulation filters to smooth 

the signal's phase and therefore restrict its bandwidth {Chapter 1), 

and a wider range of channel impulse responses. This section 

introduces the characteristics of the premodulation filters, which are 

required for a full understanding of the computer program based on this 

model {Appendix B4). In addition this section outlines the method by 

which knowledge of the impulse response Y is used in the computer program. 

This technique considerably reduces the execution time of the computer 

program. Again, preceding is retained as an option. The correlative 

coding rule is, 
c. = q, + qi 1 

l. l. -
{2.4.1) 

Here qi has one of the values -1!,-!,+! and +1!, so that ci has one of 

the values -3,-2,-1,0,1,2,3. This definition of qi is required to 

facilitate the description of the premodulation filtering {see Appendix A2). 

qi itself has not changed. Only its representation has changed. The 

modulator is an FM modulator, which includes at its input a. premodulation 

filter with a phase characteristic described by its frequency modulating 

pulse a {t) • {See Appendix A2 for the physical significance of a {t).) 

Equation 2.4.2 gives the definition of the phase response function of 

the premodulation filter, ~{t), derived from a(t). 

~(t) = J~a{T)dT 
Appendix A2 describes a{t) and ~{t) in more detail. 

The input to the premodulation filter is, for convenience, 

{2.4.2) 



modelled as a sequence of phase shifts {6~.} as in Section 2.3, where 
l. 

the mapping of the code symbols {c} onto the {6~.} is given in Table 
i l. 

2.3.1. The phase of the signal at the input to the filter before 

transmission begins, ~0 , is zero radians. The {6~.} in conjunction 
l. 

with ~O give the phase of the signal at the input to the premodulation 

filter at the time instants {iT}. These are the phase angles of the 

complex numbers {p.} in Section 2.1. The {6~.} are taken to be the 
l. l. 

inputs to the premodulation filter in place of the {p.}, simply 
l. 

because the filter is here described by its phase response function 

a(t), (see Appendix A2). The output of the premodulation filter 

constitutes the baseband modulating waveform which is fed to the 

modulator. The samples of the modulating waveform at times {iT} are 

complex numbers of constant magnitude (equal to 2.0 as described in 

Section 2.1) with phase angles{~.}. It is convenient here to combine 
l. 
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the coding and premodulation filtering in the composite phase response functioi 

13' (t) (see Appendix A2). 

a· <t> = a <t> + a <t-T> (2.4.3) 

The phase angles{~.} can now be defined in terms of a•(t) and the 
l. 

uncoded symbols {q.} as below (from Appendix A2). 
l. 

~ = 21Th 
~i i 

j=l 
q .a~ j J l.-

h is the constant modulation index
34

'
49 = ! (Appendix A2) and 

a ·=a • < jTJ • 
j 

(2.4.4) 

A number of premodulation filters have been incorporated in the 

model. Both time-limited (non-frequency-limited), and frequency-

limited (non-time-limited), frequency modulating pulses a(t) have 
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been considered. An example of a time-limited frequency modulating 

pulse is the lRC pulse, (lOO% Roll-Off Raised Cosine pulse of 

duration T seconds), as defined by Equation 2.4.5. 

(l/2T) [1-cos (21Tt/T)] , O~t~T 

a(t) = (2.4.5) 

0 elsewhere 

The stages in deriving a• (t) from a(t) are given in Graphs 2.4.1 to 

2.4.3. See Appendix BS for the program which performs this operation. 

Graph 2.4.1 depicts the frequency modulating pulse a(t). The 

correlative-level coding is combined with a(t) to give the composite 

frequency modulating pulse a'(t), in Figure 2.4.2. 

a' (t) = Cl (t) + a (t-T) (2.4.6) 

Cl' (t) is integrated to give a· <t> in Figure 2.4.3. 

rt 
a· <t> = j_., a' (T)dT (2.4.7) 

a'(t) thus produced satisfies Nyquist's Third Criterion. This ensures that 

the phase of the transmitted signal with respect to the carrier at 

the time instants {iT} is ih11 where i=O,l,2, or 3 (see Appendix A2). 

An example of a frequency modulating pulse which is frequency-

limited, and which ·satisfies Nyquist's Third Criterion, is the Nyquist 

III-ammended 0% Roll-off Raised Cosine pulse. For this pulse, the 

filter's transfer characteristic without Nyquist III ammendment is 

given by Equation 2.4.8. 

l (2 .4 .8) 

1 lfl~l/(2T) 

0 elsewhere 
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where f is frequency in Herz. 

From Equation A2.9, the transfer characteristic after Nyquist III 

ammendment is given by Equation 2.4.9. Again, this ensures that the 

phase of the transmitted signal at the time instants {iT} is ihw, 

where i=O,l,2, or 3. 

j 
wfT/sin(wfT) lfj~l/(2T) 

AIII(f) = (2.4.9) 

0 elsewhere l 

This transfer characteristic is shown in Graph 2.4.4, and the 

corresponding frequency modulating pulse a(t) is given in Graph 2.4.5. 

a(t) is gained by taking the inverse Fourier Transform of the filter's 

transfer characteristic. Graph 2.4.6 shows the composite frequency 

modulating pulse a'(t), which includes the coding. Graph 2.4.7 depicts 

the composite phase response function S'(t), produced by integrating 

a' (t) and shifting the result by +T/2 seconds. Reference (62) develops 

the relationship between the FM and PM implementations of the system, 

which necessitates this shift in the composite phase response. Both 

the above premodulation filters have been incorporated in the model. 

Three sets of equipment filters have been incorporated in the 

model. The first yields the channel described by Equation 2.3.2, 

(the so-called perfect .channel when each received signal element is 

sampled twice). This produces an indication of the performance degradation 

due to the realistic premodulation filtering, compared to the idealised 

implementation of Section 2.3. The second channel utilises filters 

designed by Mr. M.J. Fairfield of Loughborough University 
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5-10 for the UNIVERSE and CERS projects The 

original filter impulse responses were given in Figure 2.1.2. 

Because of the double sampling required in the receiver (see Section 

2.3), the bandwidth of these filters must be doubled to produce impulse 

responses with a time duration halved as compared with Figure 2.1.2. 

Thus forT in Figure 2.1.2 read T/2 for the wideband filters. Both 

the channel defined by Figure 2.1.2 (Ch=Mn) and the double-bandwidth 

version (Ch=Mw) have been used. The third channel is the Raised 

Cosine channel described by Equation 2.1.3. 

As in Section 2.3, a channel impulse response, Y=[y_1 , .•. ,y2gl 

where y.=y(jT/2) is defined which includes the effects of all the 
J 

filtering. 
1 

Therefore the Nyquist rate (or near Nyquist rate) sampled 

signal at the detector input at time t=(i-!)T is given by Equation 

2.4.10. 

r. 1 = 
1-z 

g 

r pi-h y2h-l + 
h=O 

w. 1 1-, (2 .4 .10) 

Similarly, at time t=iT, the sample at·the input to the detector is 

given by Equation 2.4.11. 

g 

r. = 
1 h~O pi-h y2h + wi 

(2.4.11) 

In the computer program for this model (see Appendix B4) an 

explicit knowledge of Y is not used in the receiver. (Knowledge of Y is 

required in order that the detector can form possible values of the 

received samples in the absence of noise.) Instead, the baseband 

channel is modelled as a Finite-State Machine as depicted in Figure 

2.4 .1. A general Finite-state Machine has a finite number of states N , 
s 
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an input symbol which can have one of a number of different values, 

and an output symbol which can have one of a number of different 

values (which usually differ from the set of possible values of the 

input symbol). The states may or may not have a physical meaning. 

In this case they do, to be defined later in this section. The symbol 

at the output of the machine at time t=iT, and the state of the 

machine ~. 
1 

at time t=(i+l)T, are completely defined by the input 
1+ 

symbol q., and state of the machine~ .• at time t=iT?
2 

The number 
1 1 

of states in the model is a direct function of a number of data 

symbols {q.} (where j<i) , where 6<P. in the absence of noise is a 
J 1 

function of q. and only these earlier data symbols {q.}. The number 
1 J 

of data symbols q. (where j<i) involved in M. is termed the memory of 
J 1 

the channel. In the case of non-time-limited baseband channels, the 

definition requires some qualification. In such cases the memory of 

the channel is unlimited, (since 6<P. is dependent on all data symbols), 
1 

but it is possible to truncate the channel impulse response such that 

the discarded components are negligible and Ns is finite. A number 

of different truncations, and accordingly a number of different 

Finite-State Machine definitions, are utilised. The state of the 

machine at time t=iT (an integer value) is given by Equation 2.4.12. 

(2.4.12) 

This is a Finite-State Machine with 4i+L states where I<Pil is the 

positive value (modulus) of <Pi· A number of values of the parameter i 

t I 2 are used. The term 4 I<P. 
1 

• -is 
1- 71 

included since knowledge of the 

initial phase, (the phase state), is required in ·the Finite-State 



Machine in order to define the machine's output symbol. Immediately 

it can be seen that this definition poses problems for premodulation 

filtering which does not satisfy Nyquist's Third Criterion {see 

Appendix A2), since ~. 
1 

may have greater than four possible values, 
~-

these values not necessarily being multiples of Tih, where h is the 

modulation index, (see Appendix A2 and Reference 49). The definition 

is sound for the premodulation filters previously described, with 

truncation of the phase respcnse function where necessary. 

The implementation (in the computer program) of the Finite-

State Machine is by way of three look-up tables. All three are 

addressed by the initial state ~. and the input symbol q,. The first 
~ ~ 

table produces the state ~. 
1 

at its output. The other two produce 
~+ 

pcssible values of ri-! and ri respectively, in the absence of noise. 

The look-up tables are produced using a separate program which models 

the channel in the absence of noise (see Appendix B6). 
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Graph 2.4.11RC Frequency Modulating Pulse 
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Graph 2.4.2 1RC Composite Frequency Modulating Pulse 
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Graph 2.4.3 1RC Composite Phase Response Function 
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Graph 2.4.4 Nyquist Ill [N3] Ammended 0% Roll-Off Raised Cosine 
Premodulation Filter Transfer Characteristic 
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Graph 2.4.5 Nyquist Ill [N3] Ammended 0% Roll-Off 
Raised Cosine Frequency Modulating Pulse 

0.8 

0.6 

0.4 -

0.2 -

0 

(\ ~ ~(\ 
V V 

-0.2 -
\J V 

-0.4 
' ' -6 -4 -2 0 2 4 6 

t/Symbol intervals T 

54 



Graph 2.4.6 Nyquist Ill [N3] Ammended 0% Roll-Off Raised 
Cosine Composite Frequency Modulating Pulse 
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Graph 2.4.7 Nyquist Ill [N3] Ammended 0% Roll-Off Raised 
Cosine Composite Phase Response Function 
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2.5 CONVOLUTIONALLY ENCODED 8PSK• PERFECT CHANNEL MODEL 

This model is based on Coded Trellis Modulation (CTM) 

20 . 12,21-26 
introduced by Ungerboeck , which has since been wLdely studied. 

This section briefly describes the Rate-2/3 convolutional encoder using 

the concept of code sub-generators defined in Appendix A4. This 

technique allows a conceptually simple formulation of the coder as a 

number of digital feedforward filters using MODUL0-2 arithmetic, whose 

outputs are combined to produce a code symbol (see Figure 2.5.2). The 

coding, mapping, and baseband channel are modelled as a Finite-State 

Machine (Appendix A4) in order to reduce the execution time of the 

computer program based upon this model. Appendix A4 describes this 

modulation method more fully, and explains the relationship between 

the coding and mapping functions which is a special feature of the 

scheme. 

The "CODER" and "MAPPING FUNCTION" blocks of Figure 2.1.1 are 

depicted in expanded form in Figure 2.5.1. Preceding is not applied. 

The Gray Code mapping is given in Table 2.1.1. Here it is used to map 

the 4-level data symbol qi onto the two binary symbols qi(l), qi(2) 

which are the inputs to the coder at time t=iT. 

The Rate-2/3 (3,2,k) convolutional encoder, where k is the 

constraint length, is defined by its six code sub-generators gij; 

i=l,2, j=l,2,3, given in vector form in Equation 2.5.1. (See Appendix 

A4 for a more detailed description.) The elements of each vector g .. 
LJ 

are binary-valued, 

(2 .5 .1) 

for i=l,2, j=l,2,3 



As described in Chapter 1, coding is used to improve the signal's 

tolerance to noise, compared with the corresponding uncoded scheme. 

The input to sub-generator g .. at time t=~T is the ith input data 
~] 

stream of Figure 2.5.1, ~(i) where m~~. The output is a term which 
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is one of a number of similar terms which are combined to give the jth 

binary output symbol of Figure 2.5.1, c~(j). Figure 2.5.2 is the 

coder's block diagram. 

At time t=iT, the output of the encoder is given by Equation 2.5.2 

(From Equation A4.4). 

c. (j) = 
~ 

for j=l,2,3 where ~ denotes MODUL0-2 summation 

(2.5.2) 

The implementation of the encoder takes two forms in the computer 

programs based on this model. Early implementations included an 

explicit coder at both transmitter and receiver (see for example 

Appendix B7). Figure 2.5.2 depicts the explicit implementation for a 

general Rate-2/3 code. Later programs use the Finite-State Machine
72 

developed in Appendix A4 in order to speed up operation (see Appendix 

BB for example). Figure 2.5.3 is a diagram of the Finite-State Machine. 

Using the notation developed in Appendix A4, the integer ~. is the 
~ 

state of the machine at time t=iT. The output symbol expressed as the 

vector of binary-valued symbols [ci(l) ,ci(2),ci(3)) at time t=iT, and 

the state of the machine ~. 
1 

at time t=(i+l)T, are completely defined 
~+ 

by the input symbol expressed as the vector [qi (1) ,qi (2)), and state 

of the machine~., at time t=iT. The Finite-State Machine is implemented 
~ 



simply as two look-up tables addressed by q. and~ .• where Equation 
J. J. 

2.5.3 defines ~i in terms of the data symbols qi-k+l'qi-k+2 , •.• ,qi-l 

resident in the encoder's storage elements 

k-2 k-3 0 
~i = 4 qi-k+l + 4 qi-k+2+. 0 .+ 4 qi-1 (2.5.3) 

Clearly, from Figure 2.5.2, knowledge of ~i and [qi(l) ,qi(2)] is 

sufficient to determine [c. (l),c.(2),c.(3)]. 
J. J. J. 

The first look-up table yields the vector [c.(l) ,c.(2) ,c.(3)] at 
J. J. J. 

time t=iT, while the second yields the state ~. 
1 

at time t=(i+l)T. 
J.+ 

12 
The codes used are Codes 1 to 4 as defined by Hui et al. Table 
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2.5.1 lists the code sub-generators for each code. The following rule 

is used to yield a single code symbol c. from the vector of binary 
J. 

values [c.(l)p.(2) ,c.(3)] where cl.. has one of the eight values 0,1,2, 
J. J. J. 

3,4,5,6 or 7. 

(2.5.4) 

The mapping between the 8-level code symbols {c.} and the complex 
J. 

numbers {pi} is defined in Figure 2.5.4. The reason for this particular 

mapping is discussed in Appendix A4. 

The modulator and demodulator are the appropriate BPSK types. 

No assumptions are made as to their configurations. 
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CODE k 9ll 921 912 922 'i3 923 

1 3 0 1 0 1 0 1 1 1 1 0 0 1 0 0 0 0 1 0 

2 4 0 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 0 

3 4 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 00 1 1 

4 4 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 

TABLE 2.5.1: Code Generators 
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CHAPTER 3 

OPTIMAL AND NEAR-OPTIMAL DETECTION SCHEMES 



This chapter describes the detection schemes which achieve the 

best, or very nearly the best, tolerance to noise for the modulation 

schemes whose mathematical models were described in Chapter 2. 

For the QPSK model of Section 2.2, a received sample·r. is a 
1 

function of only one data symbol, so that simple threshold-level 

detection achieves the best tolerance to noise:•
2 

The detector is 

described in Section 3.1. 

The received signal in both the coded schemes is more complex, 
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since each received sample ri in the absence of noise is a function of 

a number of data symbols. The optimum detector (achieving the best 

tolerance to noise) is more complex since it must consider a number of 

possible data symbols for each received sampler .• The optimum detector 
1 

is the Maximum Likelihood detecto~, implemented using the Viterbi 

Algorithm (see Appendix A3 and Reference 63). This is described in 

Section 3.2. The detector stores a number of different vectors of 

possible data symbols, and uses the algorithm to determine which of 

these is most likely to contain the values of the data symbols 

generated at the transmitter, given the received samples {r.}. This 
1 

vector is called the Maximum Likelihood vector, and is defined more 

fully in Appendix A3. For coded 8PSK modulation the number of stored 

vectors is a function of the number of data symbols of which each 

sample ri is a function, in the absence of noise. The detector ensures 

that at time t=iT all possible combinations of the values of the data 

symbols of which r. is a function in the absence of noise, are contained 
1 

within the set of stored vectors. This organisation of the stored 



vectors ensures that the Maximum Likelihood vector is amongst the 

stored vectors (see Appendix A3, References 19 and 63, and Appendix 

A4). In the case of CORPSK(4-7,l+D) modulation the stored vectors 

contain all possible combinations of the data symbols of which the 

phase change between successive received samples is a function, in 
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the absence of noise. When the Nyquist III-ammended 0% Roll-Off 

Raised Cosine filter is used, each such phase change is strictly a 

function of all data symbols (see Section 2.4). In practice only a 

few data symbols affect the value of the phase change significantly. 

All combinations of these latter data symbols are held within the set 

of stored vectors. 

Each different combination of the above described values of the 

data symbols for both modulation methods is called a state. (It is 

important to distinguish between the meaning of a state, as used here 

for the stored vectors for CORPSK(4-7,l+D) modulation, and the meaning 

used in Section 2.4. In the latter case, the states are those of the 

Finite-State Machine model of the baseband channel. There, the 

definition of a state includes the phase of the signal at the previous 

sampling instance, as well as the combination of a number of data 

symbol values. It will be seen that the number of states in the Finite

State Machine may be varied independently of the number of stored 

vectors, in order to optimise performance in some way.) The concept 

of the state of a vector is important in the description of the Viterbi 

Algorithm. The mathematical definition of such states is given in 

Section 3.2, for both modulation methods. 

Table A8.1 defines the notation which is used to describe the many 

variants of the schemes for which computer simulation results are 

presented in this chapter. 
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3.1 THRESHOLD DETECTION FOR QPSK'AND DQPSK 

In this investigation, threshold detection is used for both QPSK 

and DQPSK (preceded QPSK). For all the filtering arrangements (see 

Section 2.1), the sampled impulse response of the channel from Section 

2.1, Y=[y ,y , ... ,y ], is such that only y
0 

is non-zero, and is equal 
0 1 g 

to one. Therefore a received sampler,, from Equation 2.1.7, is 
~ 

(3.1.1) 

pi is a complex number derived from the data symbol qi using the mapping 

described in section 2.2. w. is a sample value of the Gaussian noise 
~ 

waveform w(t) at the demodulator output. Sections 2.1 and 2.2 describe 

the model more fully. 

The detection process which minimises the probability of error in 

the detection of the data symbol qi, from the received sample ri at 

time t=iT, selects the value of q, such that p. is closest to r, (see 
~ ~ ~ 

Appendix A3 and References 1 and 2). The value of pi which is closest 

tor. is found by using two thresholds in the complex number plane. 
~ 

The thresholds are shown in Figure 3.1.1, which includes the mapping of 

the {q.} onto the {p.}. For example, if r. falls into the region 
~ ~ ~ 

between the thresholds where the value of p. is mapped from the data 
~ 

symbol q.=l, (as shown in Figure 3.1.1), the detected data symbol, q~, 
~ ~ 

is equal to one. 

The binary symbols corresponding to a particular value of q~ are 
~ 

given by the Gray code mapping of Table 2.1.1. The most likely error 

in qi is that a value of pi is chosen, which is one of the two possible 

values closest to the value of P. generated at the transmitter. Such 
~ 

an error results in only one of the two binary symbols, given by the 
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Gray code mapping of q~, being in error. The other possible error is 
~ 

that the chosen value of p. is that which is furthest from the value 
~ 

of p. generated at the transmitter. In this case both the binary 
~ 

symbols given by the Gray code mapping of q~ are in error. This 
~ 

latter case is very unlikely, because a large value of w. is required 
~ 

to cause it. Therefore at reasonable signal to noise ratios, the bit 

error rate will be only slightly greater than that for binary antipodal 

signalling: This is Q(--d--)
1

'
2

, where d is the shortest Euclidean 
I2N 

0 

distance in the complex number plane between two possible values of pi, 

(d=IB since iPil=2 from Section 2.1.) N
0
/2 is the two-sided power 

spectral density of the noise, and Q(x) is 

Q(x) = 
r"' 

J 
1 2 

- exp(-!V )dV 
l27i' 

(3.1.2) 

X 

The results are presented as graphs of bit error rate (BER) as 

the signal to noise ratio is varied. The signal to noise ratio is 

defined as ~/N0 where Eb is the energy transmitted per data bit. 

Appendix AS defines ~/N0 for various filtering arrangements, and 

describes the techniques used in the computer simulations. Appendix 

AS also describes a method of determining the accuracy of the results. 

For the results presented here, this accuracy is ±0.2SdB in the range 

of BER, 1 in 10
3 

to 1 in 10
4

• Appendix AS describes the notation used 

in the graphs. 

The results in Graph 3.1.1 include schemes using the filters 

described by Equations 2.1.3 and 2.1.4, and Graph 2.1.1, of section 2.1. 

It is clear that all the filtering arrangements yield very similar 

results. Since all the filters produce no significant intersymbol 
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interference in the {r.}, this is as expected. Graph 3.1.1 also shows 
1 

that the technique described in Section 2.2, for repeated transmission 

at lower than nominal data rates, does not degrade the performance of 

the scheme. The results for QPSK modulation are very close to those 

predicted theoretically (see earlier) .
1

'
2 

The preceding in DQPSK 

modulation (Equation 2.1.1), usually gives two bit errors in the 

decoded data {s~}, one at time t=iT and one at time t=(i+l)T, if the 
J 

complex number p! is wrongly chosen as one of the two possible values 
1 

closest to the value of p. generated at the transmitter. This is 
1 

because, from Equation 2.1.8, both s! and s~ 
1 

are a function of the 
1 1+ 

detected symbol q!, (which is itself a function of the chosen value of 
1 

p,). Therefore DQPSK modulation gives a BER which is approximately 
1 

twice that for QPSK modulation, at all values of Eb/N
0

• 

Graph 3.1.2 gives the results when phase demodulation is assumed, 

where the received sample is given by the phase angle ~(r.). The 
1 

decision rule is given in Table 3.1.1, where the angle is measured in 

an anticlockwise direction from the positive real axis. The rule is 

equivalent to the threshold tests previously described so that no 

degradation should be apparent as far as the detector is concerned. 

Graph 3.1.2 shows this to be the case. 

RANGE OF $(r.) degrees 
q! 1 

(MODUL0-360°) 1 

315~$ (r.) <45 0 
1 

45~$ (r.) <135 1 
1 

135~$ (r.) <225 2 
1 

225~$ (r.) <315 3 
1 

TABLE 3.1.1: Phase Demodulation Threshold Test Decision Rule 
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Graph 3.1.1 Uncoded QPSK. Threshold Detection 
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3.2 VITERBI ALGORITHM DETECTION FOR CODED MODULATIONS 

This section describes Maximum Likelihood detection for the 

coded modulation methods. Initially the detector for coded SPSK 

modulation is described, followed by the very similar detector for 

CORPSK(4-7,l+D) modulation. The mathematical models for these 

modulation methods were described in Chapter 2. Section 2.3 describes 

a simplified model for CORPSK(4-7,l+D) modulation and Section 2.4 

describes a more realistic model for CORPSK(4-7,l+D) modulation. 

Appendix A3 gives the theory for Maximum Likelihood detection, and 

Appendices A2 (for CORPSK(4-7,l+D)) and A4 (for coded SPSK) describe 

the modulation schemes more fully. 

The description of the detectors begins with a description of the 

received signals. The detectors are then described in terms of the 

stored vectors and costs, and the algorithm repeated during every 

symbol interval, which uses these stored values to yield the detected 

data {q:}, is defined. In all cases, the unitary distance measure is 
1 

used, (see Appendix A7). Other distance measures are also used in the 

computer simulation tests, and Appendix A7 should be consulted for their 

definitions. 

Equation 3.2.1 (from Equation 2.1.7) gives the received sample 

at the detector input at time t=iT for coded 8PSK modulation. Since 

the equipment filters introduce no significant intersymbol interference 

(see Section 2.5), the channel's sampled impulse response is 

Y=[y ,y
1

, ... ,y) where only y
0 

is non-zero, and is equal to one. 
0 . g 

(3.2.1) 

pi is the complex number given by the mapping of the code symbol ci 
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as described in Figure 2.5.4, and w. is a sample value of the Gaussian 
l_ 

noise waveform w(t) at the demodulator output. See Section 2.5 for 

more details. 

k-1 
The detector stores 4 vectors {Q~} of possible transmitted four-,_ 

level data symbols (where k is the constraint length of the code) . 

Each stored vector has a different state <I>., where this state is given 
l_ 

by the combination of the (k-1) most recent four-level symbols in 

t Q' ' ' q' vec or . 1 , q. k 1 , q. k 2 , ... , . 1 • ].- ].- + J.- + l.-
r,, in the absence of noise, is 

l_ 

a function of the data symbols q, k+l'q· k 2 , ... ,q, 
1

, (the state), and 
].- l.- + l.-

data symbol q,. The stored vectors therefore cover all the possible 
l_ 

values of the data symbols of which r. is a function, except for the 
l_ 

value of q,. 
l_ 

Just prior to the receipt of r., the set of stored vectors is 
l_ 

{Qi_
1
}. On the receipt of ri the detector forms possible values of ri 

in the absence of noise as follows, to be compared with r .• Each 
l_ 

stored vector is expanded four ways to form four expanded vectors, at 

time t=iT, by appending each of the four possible values of the data 

symbol q,; q~=O,l,2, or 3. 
l_ l_ 

k 
In this way 4 expanded vectors are 

produced. The {ql} are coded using the convolutional code described 

in Section 2.5, to give the vector of binary code symbols [c~ (1) ,c~ (2), c~ (3) l 
1 1 1 

k is the 

valued. 

from the 

2 k-1 
c~(j) = 

1 
§ 

£ =1 
§ qi-h(!)gh(!,j) 

h=O 
(3.2.2) 

for j=l,2,3. 

constraint length of the code and the{gh(!,j)} are binary-

2) denotes MODUL0-2 summation, and [q: (1) ,q: (2) l is derived 
1 1 

Gray-Code mapping of q: , 
1 

(see Table 2.1.1). The vector 
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[c~ (1) ,c~ (2) ,c~ (3) 1 is mapped onto the eight-level symbol c' 
1 1 1 i 

c' 
i 

(3.2.3) 

c' has 
1 

the possible values 0,1, ... ,7. 

A possible value of r. in the absence of noise is given by mapping 
1 

c ~ onto a complex number Pj_. (The mapping is defined in Figure 2.5.4.) 
1 

For each value of p~ thus produced, the quantity w' is calculated 
1 i 

which is a possible value of the noise sample wi 

p~ + w' 
1 i 

The expanded vector which has the minimum value of the quantity 

is the M·aximum Likelihood vector. 

(3.2.4) 

(3.2.5) 

I ·2 
w~ [ is called the cost and uses the unitary distance measure 

1 

(see Appendix A7) . The cost is a measure of how likely it is that a 

stored vector's element values are the same as those of the trans-

mitted data symbols. A low cost is indicative of high likelihood. 

lw~l 2 
is calculated for each expanded vector by adding the appropriate 

1 

value I w~ 12 
(the incremental cost), to the stored cost I 11: 

1
1
2 

of the 
1 1-

vector Q: 
1 

from which the expanded vector is derived. Clearly, 
1-

2 2 
= [Re (r. -p!) 1 + [Im(r. -p!) 1 

1 1 1 1 
(3.2.6) 

The Viterbi Algorithm selection process follows, which selects 

(k-1) k 
4 · vectors {Q~) from the 4 expanded vectors. One expanded vector 

1 

is selected for each particular state $. 
1

, from the four expanded 
1+ 
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vectors with state~. 
1 

(see Appendix A4). (~. 
1 

is given by the 
1+ l.+ 

combination of the values of the (k-1) symbols q: k+2 ,q: k 
3

, ... ,q:.) 
1.- 1.- + 1 

The selection criterion is simply that the chosen expanded vector is 

that with the lowest value of The resultant vectors, {Q:} are 
~ 

stored along with their costs 

lwil 2
. 

{[w:I 2 L The Maximum Likelihood vector 
~ 

is, as stated before, that newly stored vector Q: with the overall 
~ 

· · I 1
2 

mln1mum cost W ~ . 
~ 

This minimum cost is subtracted from all {f w: [2J 
~ 

to prevent overflow in the stored values. 

Ideally, no firm decision as to the value of data symbol q~ is 

made until the end of transmission, when all the {q~} are detected 

simultaneously. In practice, as large a delay as possible, (N symbol 

intervals) , is inserted before detecting q, . q is detected as 
x. i-N+l 

the value of q: 
1 

in the Maximum Likelihood vector Q! at time t=iT. 
l.-N+ l. 

The chosen delay, N symbol intervals, defines the number of symbols in 

each stored vector, since the values q~ ,q~ 
1

, ... are not required 
~-N ~-N-

in the detection of qi-N+l or any subsequent q~; ~= i-N+2,i-N+3, ... 

The {Q!} are therefore of the form given in Equation 3.2.7. 
~ 

= [q' q' q') i-N+l' i-N+2, ... , i (3.2.7) 

k 
The process involves 4 complex squaring operations (Equation 3.2.6), 

k-1 
followed by 4 cost ranking operations, each involving four costs 

lw: 12 
. For k=3 this means 64 complex squarings followed by 16 cost 

~ 

rankings, whereas for k=4 there are 256 complex squarings to be under-

taken, followed by 64 cost rankings. Clearly this level of complexity 

is prohibitive. For an example of a simulation program using the 

Viterbi Algorithm detector for coded 8PSK, see Appendix B9. 

For CORPSK(4-7,l+D), Equations 3.2.8 and 3.2.9 give the received 
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samples r. 1 and r. at times t=(i-l/2)T and t=iT respectively, where 
~-1 1 

these are repeated from Section 2.3, 

g 

I p, hy2h 1 + W, 1 (3 .2 .8) 

r. 
1 

= 

h=O 
1- - ~-z 

W, 
1 

(3.2.9) 

The sampled channel impulse respcnse is Y=[y_
1

,y
0

,y
1

, .•. ,y2gl where 

y .=y(jT/2), (see Sections 2.3 and 2 .4). 
J 

i 
The detector stores 4 vectors {Q~) where i~l, i depends on the 

1 

coding, and premodulation and channel filtering, and is taken to be a 

variable quantity in the simulations. Each stored vector has a 

particular and different state. The state of a vector Qi-l 

is given by the combination of the values of the symbols ql-i'q~-i+l' 

... ,q~ 
1

, in the vector. This meaning of a state should be distinguished 
1-

from the meaning used in Section 2.4, for the Finite-State Machine 

model of the baseband channel. The implementation of the Viterbi 

Algorithm is much the same as for coded 8PSK. The major differences lie 

in the algorithm which gives the possible values of r. in the absence 
1 

of noise, and in the definition of jw~j 2 • The elements of each 
1 

expanded vector at time t=iT are coded (from Sections 2.3 and 2.4), to 

give a code symbol ci· 

c' = q' + q' 
i i i-1 

(3 .2 .10) 

c~ is mapped onto a complex number p~, where the mapping is given in 
1 1 

Section 2.3 for the one differential-phase, and two direct-phase map 

schemes, described in that section. 
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As explained in Section 2.4, the coding and channel filtering 

giving the possible received samples (in the absence of noise), 

q g 

L Pj__hy2h-l and 
h=O 

L Pj__hy2h for each expanded vector, is implemented 
h=O 

by three look-up tables based on a Finite-State Machine model. The 

look-up tables are addressed by the appropriate initial state ~-
1 

(combination of the values of the symbolsq~ , ,q~ , ... ,q~ 
1

, and the 
1-, 1-1.+1 1-

phase of the signal at time t=(i-l)T, ~. 
1

>, and symbol q~. (Note that 
1- 1 

the phase ~. 
1 

is a function of the particular stored vector, and is 
1-

therefore known. See Section 2.4 for more details .. ) The first look-

up table provides the state 
g 

~-
1

. The other two tables provide possible 
1+ 

values of \ p y and 
1.. i-h 2h-l 

g g g 

L pi-hy2h; L Pi-hY2h-l and L Pi-hY2h 
h=O 

re spec ti ve ly. 

determined 

h=O h=O h=O 

For each expanded vector, the values w~ 1 and w' are 
l. -:I i 

r. 
1 

g 

L Pi-hY2h-l 
h=O 

g 

L Pj__hy2h + 
h=O 

+ w' i-t (3.2.11) 

w' 
i 

(3.2.12) 

w~ is a possible value of w. and w~ 1 is a possible value of w. 1 • 
1 1 1.-"l 1-:I 

The cost then calculated, by adding the appropriate 

I . 2 
value w~ 1 1 

l.-z 
(the incremental cost), to the value of :w• 1

2 
I i-1 1 

of the vector Q~ 
1 

from which the expanded vector is derived. 
1-

where 

+ [ Im (r. 1 -
1-z 

(3.2.13) 

(3.2.14) 



so 

and 

(3 .2 .lS) 

The performance results are given as graphs of bit error rate 

(BER) against signal to noise ratio, ~/N0 , where ~ is the average 

energy transmitted per data bit and N
0

/2 is the two-sided power 

spectral density of the additive white Gaussian noise. (See Appendix 

AS for more details of the simulation techniques. Appendix AB 

describes the notation used in the graphs.) 

The results for Viterbi detection of coded BPSK signals are 

presented in Graphs 3.2.1 to 3.2.3. Those for CORPSK(4-7,l+D) signals 

appear in Graphs 3.2.4 to 3.2.8. 

Graph 3.2.1 presents the results for all four convolutional codes 

which were used (see Table 2.S.l), and contrasts these with the curve 

for threshold detected QPSK. All the coded schemes gain significantly 

4 
in tolerance to noise over QPSK at a bit error rate of 1 in 10 

Table 3.2.1 outlines the results at this BER. The accuracy of the 

curves in the range of BER, 1 in 10
3 

to 1 in 10
4

, is ±0.2SdB (see 

Appendix AS). code 1 yields a theoretical asymptotic gain, (that is, 

the gain at high signal to noise ratios), of 4.ldB, while the remaining 

codes yield theoretical asymptotic gains of SdB, over uncoded QPSK. 

From Table 3.2.1 the shortfall in the actual gain compared to its 

asymptotic value at a BER of 1 in 10
4 

is quite significant, especially 

for the constraint length k=4 codes (Codes 2 to 4) • The result of 

this is that the much simpler system using Code 1 (k=3) compares very 

favourably, at practical signal to noise ratios, with the schemes 
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using the longer constraint length (k=4) codes. The detectors for the 

schemes using the codes with k=4 can be considered to be roughly a 

factor of four more complex than the scheme using code l. The differing 

performances of the schemes using the codes where k=4, down to a BER 

of l in 10
4

, imply that, although the codes have the same asymptotic 

gain, their distance profiles differ. A code•s distance profile is a 

measure of how quickly the distance between two sequences of code 

mb 1 
. 73 

sy o s 1ncreases. The two code sequences are those, of all possible 

code sequences, where this distance is a minimum given that the two 

sequences differ in their first symbol. This measure clearly has a 

bearing on the performance of coded schemes. For example, if the 

distance profile increases only slowly, the costs of the two code 

sequences as defined above, where one is the correct sequence, may 

remain very similar over quite a long period of time. This affects 

the probability of discarding the correct sequence over this period of 

time. An interesting comparison is given by the error burst character-

istics of the different schemes (where the definition of an error burst 

is given in Appendix AS), as outlined in Table 3.2.2. The trend is 

that schemes using the shortest constraint length code, Code l with 

k=3, produce the lowest number of bit errors per burst overall. The 

scheme using Code 3, whose performance resembles that of Code l most 

closely, produces the next lowest number of bit errors per burst. 

Graph 3.2.2 gives the results for the scheme using Code 3 as the 

detection delay, N, is reduced. Clearly a reduction in N from 80 to 

23 symbol intervals causes the relatively low reduction of 0.25dB in 

4 
tolerance to noise at a BER of 1 in 10 . As N is reduced further to 7 
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symbol intervals, the degradation increases substantially. At a BER 

of 2 in 10
3 

the degradation in tolerance to noise is 1.35dB. The 

reasons for this are most clearly seen by considering the code 

trellis diagram for the detector. This diagram is essentially a graph 

of the state of a stored vector~- (vertical axis), as it varies with 
1 

time in symbol intervals (horizontal axis) . The state ~. is an integer 
1 

which is a function of the data symbols ql-k+l'ql-k+2 , ... ,ql-l' (see 

Section 2.5). The code trellis diagram gives the {<I>. } for each 
J 

stored vector, over a period of time up to the current time instant 

t=iT. 
k-1 

Each line in the diagram is for one of the 4 stored vectors. 

More details are given in Appendix A4. Figure 3.2.1 is a code trellis 

diagram which was produced during a computer simulation test for coded 

8PSK using Code 1. When the current received sample is r., this 
1 

diagram shows that all the vectors have the same state at time t=(i-23)T. 

That is, amongst all the stored vectors at time t=iT, the state <l>i_
23 

is fixed. (In practical terms this means that the contents of all 

vectors for t<(i-23)T are identical). The convergence of the states is 

much less marked overall at time t=(i-20)T, so that a small number of 

different states {<l>i_20}, occur among the stored vectors at time t=iT. 

k-1 
At time t=(i-7)T, convergence is minimal, so that many of the 4 

possible states occur among the vectors. Many of the vectors contain 

different data symbol values at time t= (i-7)T. A detection delay of 7 

symbol intervals is too short, since the detector chooses a value of 

q~ 
7 

before all the vectors contain this value. Therefore, the detector 
1-

may not be choosing the value of q~ 
1 

from the Maximum Likelihood 
1-N+ 

vector. This explains the degradation in performance as N is reduced. 



Graph 3.2.3 gives the results when the phase distance measure is 

used for a scheme using Code 3. This is one of the distance measures 

proposed in Appendix A7 to reduce the complexity of the detector. It 

is simply the difference in the phase angles of r. and a possible 
1 

received sample in the absence of noise, (where this difference is 

MODUL0-180° so that the maximum difference is 180°) . The degradation 

in tolerance to noise is quite substantial, (0.8dB at a BER of l in 

4 
10 ), and the squared phase distance measure produces no advantage. 

The conclusion is that the relative sizes of the vectors' costs are 

considerably altered by this simple distance measure, compared with 

the use of the unitary distance measure1 and that the Viterbi detector 
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is relatively sensitive to these changes. A comparison in terms of the 

systems' error burst characteristics is given in Table 3.2.3. It can 

be seen that there is very little variation in the results, in comparison 

with the use of the unitary distance measure. 

Graphs 3.2.4 to 3.2.6 give the results for the perfect channel 

CORPSK(4-7,l+D) model described in Section 2.3. The accuracy of the 

3 . 4 
curves is ±0.25dB, for the range of BER, l in 10 to l 1n 10 • In 

all cases four vectors are stored (i=l), since in this simple model the 

phase change over the time interval, (i-l)T~t~iT is a function of only 

qi-l in addition to qi. 

Graph 3.2.4 gives results for both preceded and non-preceded 

versions of the three systems; differential-phase,and direct phase-map 

schemes Ph=Ma and Ph=Mb, with DQPSK as the reference scheme. Table 

3.2.4 gives the performance comparisons at a BER of l in 10
4 

It can 

be seen that there is no significant difference between the preceded 

and non-preceded schemes at a BER of l in 10
4 

At higher error rates 
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the case is somewhat altered. For the differential-phase scheme, a 

significant advantage is gained by preceding for error rates in excess 

. 4 
of l 1n 10 This is also true, but even more so, for the Ph=Ma 

direct map scheme. 
2 

At a BER of l in 10 , the gain for the preceded 

version of the latter scheme, in comparison with the non-preceded 

scheme, is 0.5dB. In all cases, the curves for the preceded and 

non-preceded schemes are converging as the BER reduces. This 

phenomenon can be explained by considering the error burst character-

istics given in Table 3.2.5. The preceding has consistently reduced 

the average number of errors per burst for all schemes. This is 

particularly marked in the case of the Ph=Mb direct map scheme. The 

mechanism by which preceding achieves this is that the coding in the 

signal is effectively removed by the preceding, if the coded data is 

interpreted MODUL0-4. Coding increases the number of bit errors per 

burst because if the detector chooses a wrong value for one code 

symbol c~, this will affect the values of more than one of the detected 
J 

data symbols {q:}. (See Appendix Al for a full treatment of preceding 
1 

as applied to CORPSK(4-7,l+D) modulation.) The improvement shown in 

Table 3.2.5 for the differential phase scheme is much less marked, 

(as in Graph 3.2.4). This may be due to the fact that in this case each 

value of p. is a function of all previous data symbols {q.}, because 
J 1 

the coded symbols are mapped onto phase shifts (see Section 2.3). 

Graph 3.2.5 presents results for the use of the phase distance 

measure for the differential-phase and direct phase-map Ph=Mb schemes. 

Clearly severe degradation is introduced. Table 3.2.6 gives the results 

at a BER of 1 in 10
4 

The error burst characteristics are outlined in 

Table 3.2.7. It is clear that there is little variation in the error 



85 

burst characteristics, in comparison with the use of the unitary 

distance measure. 

Graph 3.2.6 shows the degradation which occurs when realistic 

quantisation of the received signal is assumed. Results for both 3 bit 

and 4 bit quantisation per in-phase or quadrature component are 

contrasted with those for infinitely fine quantisation. At a BER of 

. 1 4 1 l 1n 0 , the degradations in to erance to noise due respectively, to 

4 bit and 3 bit quantisation, are 0.25dB and o.SdB. This could be 

significant if deep signal fades occur, when the quantisation may 

effectively fall to one or two bits per component. Automatic gain 

control is usually needed to prevent this. The error burst character-

istics are given in Table 3.2.8. The results show a trend towards an 

increase in the number of errors per burst as the quantisation becomes 

coarser. 

Graphs 3.2.7 and 3.2.8 give the results for the differential-phase 

CORPSK(4-7,l+D) model of Section 2.4 incorporating both premodulation 

and channel filtering. For these graphs the accuracy is ±0.3dB over 

3 . 4 
the range of BER, 1 in 10 to 1 1n 10 • The description of the 

detector earlier in this section noted the use of look-up tables to 

give the values of possible received samples at times t~(i-!)T and 

t~iT, in the absence of noise. The number of states in the model for 

these look-up tables can be varied independently of the number of stored 

vectors, (see Section 2.4). The results include variations in the number 

of stored vectors, and in the number of states in the model for the 

look-up tables. For example, the detector designated /Det=V4,16/, 

(from Appendix AS), has 4 stored vectors, and look-up Tables based on 

a model with 16 states. 
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In Graph 3.2.7 the effect of the premodulation filter is 

considered using the Ch=I2 channel (Appendix AB) . Pf=lRC (lOO% 

Roll-Off Raised Cosine) , and Pf=N3 (Nyquist III-ammended 0% Roll-Off 

Raised Cosine) premodulation filtering is used. Both preceded and non-

preceded schemes are included. The relative performance of these 

. 4 
schemes at a BER of 3 ~n 10 is given in Table 3.2.9. It is clear that 

preceding has again improved the performance of the schemes under 

consideration. For the Pf=lRC-filtered schemes the difference is 

4 
substantial, O.SdB at a BER of 3 in 10 . The result of increasing the 

number of detector-held vectors from 4 to 16, while keeping the number 

of states in the model of the look-up tables constant at 16, is of 

interest. For the Pf=lRC-filtered schemes with no preceding, there is 

a relatively large difference at high error rates, but the curves tend 

to converge at lower error rates. For the preceded Pf=lRC-filtered 

schemes there is no apparent difference. The Pf=N3-filtered schemes 

have a small gain in tolerance to noise when 16 vectors are held 

compared with 4 vectors, but this amounts to no more than O.ldB at a 

BER of 3 in 10
4 

It is interesting to note that the Pf=lRC-filtered 

schemes gain in tolerance to noise compared with the simple model 

(Pf=O, see Section 2.3), when preceding is applied, whereas the Pf=N3-

filtered schemes are considerably degraded. Clearly the implementation 

is difficult to pinpoint what this could be. The Pf=lRC-filtering is I 
of the Pf=lRC filter produces some advantage over the Pf=O model. It 

such that the received sample at time t=(i-!)T is midway between the 

received samples at times t=(i-l)T and t=iT, on the signal envelope 

(see Section 2.4). This is also true for the differential-phase 

scheme of Section 2.3, so one would expect both schemes to produce 

similar results. 



From Graph 3.2.7 the curves ·for the two schemes are nearly 

. 3 
identical down to a BER of l 1n 10 . At a BER of 3 in 10

4 
the 

difference in tolerance to noise is only 0.2dB which may be due to 

the accuracy limits (see earlier). The Pf:N3-filtered schemes are 

considerably degraded in tolerance to noise compared with the Pf:Q

filtered scheme, (0.6dB at a BER of 3 in 10
4
). This degradation may 
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be due to the smoothing action of the premodulation filter on the phase, 

which reduces the minimum distance between possible received sequences 

of samples, in the absence of noise. This is shown by the samples at 

times {(i-l/2)T}, which are nearer to one or other of the samples at 

times t:(i-l)T and t:iT, in the absence of noise. (Note that the 

62 
curve for /Pf:N3/Pr:D/ agrees very closely with Muilwijk's result .) 

In contrast the smoothing action of the Pf:lRC-filtered schemes is 

not apparent in the samples at times {(i-l/2)T}, so that the minimum 

distance remains unaltered. The major difference between the schemes 

lies in their effective bandwidth. The smoothing action of the Pf:N3-

filtered scheme leads to a signal with a much narrower bandwidth 

compared with the Pf:lRC-filtered scheme~4 • 49 • 62 The error burst 

characteristics are noted in Table 3.2.10. The average number of bit 

errors per burst converges, (to 3 approximately) , for all the preceded 

schemes. Clearly preceding is useful. 

Graph 3.2.8 gives the results for the cases where channel 

filtering, differing from the Ch:I2 arrangement, is used. Curves for 

the scheme where Pf:Q and Ch:I2, and for DQPSK are included. Overall, 

the degradation in tolerance to noise is severe. Table 3.2.11 lists 

the degradations in tolerance to noise with respect to the scheme where 

Pf:Q and Ch:I2 at a BER of 3 in 10
4 

at which point the scheme where 
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Pf=O and Ch=I2 gains 1.6dB in tolerance to noise over DQPSK . 

Clearly this degradation limits the possible gain in tolerance to 

4 
noise over DQPSK at a BER of 3 in 10 , to little over ldB, which is a 

severe reduction compared with the asymptotic gain of 2dB quoted by 

62 
Muilwijk. It is interesting to note though, that no significant extra 

degradation is introduced over the /Ch=I2/-filtered schemes of Graph 

3.2.7, in the case of the wideband (/Ch=Mw/) filters (see Section 2.4). 

Clearly a data rate of BM bits per second, using the narrower (/Ch=Mn/) 

filters, produces results which are worse than those for DQPSK below 

a BER of 1 in 103 . on the other hand, the test at BM bits per second 

over the Raised Cosine channel, (/:h=Rc/~ results in a much smaller 

degradation in tolerance to noise. This is 0.4dB at a BER of 1 in 10
3

. 

An interesting comparison involves the complexity of the Viterbi 

detector. There is apparently very little to be gained by increasing 

the number of stored vectors from 4 to 16. Therefore the 4-vector 

scheme seems adequate. On the other hand, changing the number of 

states in the model for the look-up tables from 16 to 64, makes a 

significant difference at bit error rates below 1 in 10
3

. At a BER of 

4 
3 in 10 the gain in tolerance to noise is o.2dB. Since the increased 

complexity in using 64 states lies mainly in the storage hardware, and 

not in implementation speed, it may well be an advantage to use look-

up Tables based on the model with 64 states. Note though, that the 

accuracy at a BER of 3 in 10
4 

is such that the o.2dB advantage may be 

inaccurate. 

The remaining graphs in this section give an idea of the effect 

of reducing the detection delay (N), and the effect of phase offsets in 

the received samples due to incorrect carrier phase tracking at the 
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receiver. Graph 3.2.9 charts the effect of reducing N for coded SPSK 

modulation using Code 1, for Viterbi detection using 16 stored vectors. 

It can be seen that the variation in the BER is negligible as N is 

reduced to 20 symbol intervals. For N<20 symbol intervals the BER 

rises rapidly. In contrast, the result of reducing N for the scheme 

using Code 3 is more serious, see Graph 3.2.10. The BER rises rapidly 

for N<3o symbol intervals. This is because at time t=iT the contents 

of the stored vectors for the scheme using Code 3 remain different over 

a longer span of symbols {q,}, where j~i, than do the contents of the 
J 

stored vectors for the scheme using Code l. This is influenced by the 

distance profiles of the codes, as discussed earlier. In contrast 

Graph 3.2.11 shows that N can be much smaller in the differential-phase 

CORPSK(4-7,l+D) scheme. Little degradation occurs for N~S symbol 

intervals. Each code symbol is a function of only two data symbols, 

and the distance between possible code sequences which differ in the 

value of their first symbol, increases quickly. The difference in the 

costs of such code sequences increases quickly, so that one with a high 

cost is likely to be discarded quickly. Therefore at time t=iT all 

vectors are probably derived from just one vector at time t=(i-~)T, 

where ~ is relatively small. This explains why such a small delay in 

detection is sufficient. 

The remaining plot, Graph 3.2.12, gives the results for a 

constant (but unknown) error in the receiver estimate of carrier phase 

for 4-vector Viterbi detection, and CORPSK(4-7,l+D) modulation. The 

effect on the BER is both large and reasonably linear, for phase errors 

greater than 5'. 



GAIN IN TOLERANCE TO 
CODE NOISE OVER QPSK AT 

BER = 1 x lo-4 
(dB) 

1 2.8 

2 3.25 

3 3.1 

4 3.15 

TABLE 3.2.1: Performance of Coded 8PSK using Codes 1 to 4 
for Viterbi Algorithm Detection 

AVERAGE NUMBER OF BIT ERRORS PER BURST AT GIVEN BER 
CODE (Approximate) 

3 X 10 
-2 7 X 10 

-3 
1 X 10 

-3 
5 X 10 

-4 
1 X 10 

1 17 13 11 10 9 

2 23 18 15 12 10 

3 20 13 11 10 10 

4 23 23 12 8 11 

-4 

TABLE 3.2.2: Error Burst Characteristics for Coded 8PSK using 
Codes 1 to 4 for Viterbi Algorithm Detection 
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AVERAGE NUMBER OF BIT ERRORS PER BURST AT GIVEN BER 
SCHHIE (Approximate) 

0.1 3 X 10 
-2 

6 X 10 
-3 

1 X 10 
-3 

/Dis=E/ - 20 13 11 

/Dis=P/ 26 19 11 10 

/Dis=P2/ 27 19 11 10 

TABLE 3.2.3: Error Burst Characteristics for Coded BPSK using Code 3, 
for Viterbi Algorithm Detection using the Phase Distance 
Measure 

GAIN IN TOLERANCE TO NOISE 
SCHEME COMPARED WITH DQPSK AT BER 

= 1 X 10 
-4 

(dB) 

/Ph=D/Pr=O/ 1.7 

/Ph=D/Pr=D/ 1.7 

/Ph=Ma/Pr=O/ 1.6 

/Ph=Ma/Pr=D/ 1.8 

/Ph=Mb/Pr=O/ 1.2 

/Ph=Mb/Pr=D/ 1.2 

TABLE 3.2.4: Performance Comparisons for Schemes using 
CORPSK(4-7,l+D) Modulation, over the Perfect 
Channel 



APPROXIMATE AVERAGE NUMBER OF BIT ERRORS PER 
SCHEME BURST AT GIVEN BER 

0.1 4 X 10 
-2 

1 X 10 
-2 

1 X 10 
-4 

/Ph=D/Pr=O/ 8 5.2 4.2 4.3 

/Ph=D/Pr=D/ 7 5 4 3 

/Ph=Ma/Pr=O/ - 4 2 1.6 

/Ph=Ma/Pr=D/ - 3 1.5 1.4 

/Ph=Mb/Pr=O/ - 3 2 1.6 

/Ph=Mb/Pr=D/ - 3 1.3 1.0 

TABLE 3.2.5: Error Burst Characteristics for Schemes Using 
CORPSK(4-7,l+D) Modulation, Over The Perfect Channel 

DEGRADATION IN TOLERANCE TO NOISE IN COMPARISON 
SCHEME WITH THE EQUIVALENT UNITARY DISTANCE SCHEME AT 

BER = 1 in 10 
4 

(dB) 

/Ph=D/Dis=P/ 0.9 

/Ph=Mb/Dis=P/ 0.5 

TABLE 3.2.6: Performance of Schemes using the Phase Distance 
Measure, for CORPSK(4-7,l+D) Modulation 
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APPROXIMATE AVERAGE NUMBER OF BIT ERRORS PER 
SCHEME BURST AT GIVEN BER 

o.l 4.5 X 10 
-2 

1 X 10 
-2 -3 

1 X 10 1 X 10 

/Ph=D/Dis=E/ 8 5.2 4.2 4.1 4.3 

/Ph=D/Dis=P/ 7 5.1 4.3 4.3 4.0 

/Ph=Mb/Dis=E/ - 3 2 1.3 1.6 

/Ph=Mb/Dis=P/ - 3.4 1.7 1.6 1.7 

TABLE 3.2.7: Error Burst Characteristics for Schemes using 
CORPSK(4-7,l+D) Modulation, Over the Perfect 
Channel, when the Phase Distance Measure is Used. 

APPROXIMATE AVERAGE NUMBER OF BIT ERRORS PER 
SCHEME BURST AT GIVEN BER 

0.1 1 X 10 
-2 

1 X 10 -3 1 X 10 
-4 

/Q=inf/ 8 4.2 4.1 4.3 

/Q=4/ 7.3 4.6 4.8 5.6 

/Q=3/ 7.6 4.7 4.2 5.2 

TABLE 3.2.8: Error Burst Characteristics for Schemes using 
CORPSK(4-7,l+D) Modulation, Over the Perfect 
Channel, when the Detector's Input Samples are 
Realistically Quantised. 
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SCHEMES 
GAIN IN TOLERANCE TO NOISE_

4 
OVER DQPSK AT BER = 3 X 10 

(dB) 

/Pf=O/Pr=D/Det=V4/ 1.6 

/Pf=lRC/Pr=O/Det=V4,16/ 1.3 

/Pf=lRC/Pr=D/Det=V4,16/ 1.8 

/Pf=lRC/Pr=O/Det=Vl6,16/ 1.45 

/Pf=lRC/Pr=D/Det=Vl6,16/ 1.8 

/Pf=N3/Pr=D/Det=V4,16/ 0.95 

/Pf=N3/Pr=D/Det=Vl6,16/ 1.0 

TABLE 3.2.9, Performance of the Premodulation Filtered, Perfect 
Channel, CORPSK(4-7,l+D), Modulation Schemes 
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APPROXIMATE AVERAGE NUMBER OF BIT ERRORS 
SCHEME PER BURST AT GIVEN BER 

0.1 1 10 
-2 1 X 10-3 

4 10 
-4 

X X 

/Pf=O/Pr=D/Det=V4/ 7.3 4 3.6 3.4 

/Pf=lRC/Pr=O/Det=V4,16/ 8 4.2 4.4 5.6 

/Pf=lRC/Pr=D/Det=V4,16/ 7.8 3.8 3.5 3.6 

/Pf=lRC/Pr=O/Det=Vl6,16/ 7.8 4.1 4.7 5.6 

/Pf=lRC/Pr=D/Det=Vl6,16/ 7.7 3.8 3.5 3.6 

/Pf=N3/Pr=D/Det=V4,16/ 8 3.9 3 .4 3.3 

/Pf=N3/Pr=D/Det=Vl6,16/ 7.9 3.8 3.5 3.3 

TABLE 3.2.10: Error Burst Characteristics for Premodulation Filtered, 
Perfect Channel, CORPSK(4-7,l+D) Modulation Schemes 

DEGRADATION IN TOLERANCE TO NOISE 
SCHEME IN COMPARISON WITH THE ~rf=O/Ch=I2/ 

SCHEME, AT BER = 3 x 10 (dB) 

/Pf=N3/Ch=RC/Det=Vl6,16/ 1.0 (approx.) 

/Pf=N3/Ch=Mw/Det=V4,16/ 0.6 

/Pf=N3/Ch=Mw/Det=V4,64/ 0.4 

/Pf=N3/Ch=Mw/Det=Vl6,16/ 0.6 

/Pf=N3/Ch=Mw/Det=Vl6,64/ 0.4 

/Pf=N3/Ch=Mn/Det=Vl6,16/ 2.0 (approx.) 

TABLE 3.2.11: Performance of the Channel-filtered CORPSK(4-7,l+D) 
Modulation Schemes 
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Graph 3.2.5 CORPSK[4-7,1+Dl Perfect Channel Schemes 
Phase Distance Measure 
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Graph 3.2.6 Quantised CORPSK[4-7,1+Dl Perfect Channel Scheme 
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Graph 3.2.7 Premodulalion Filtered CORPSK[4-7,1+D1 Perfect Channel Schemes 
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Graph 3.2.8 Filtered CORPSKf4-7,1+Dl 
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Graph 3.2.9 Variation of B.E.R. with Detection Delay at Eb/No=4.76dB 

0:: 
LJ 
CD 
Q> -0 
0:: 
.... 
e .... 

LU -CD 

0.1...--------------------. 

0.01 

O.OOI+---r----,r----r---'---.--...,----r----'1 
0 10 20 30 40 50 60 

Detection Delay/Symbol Intervals 

SYSTEM ATTRIBUTES 
/M=8/C=1/D•t=VI6/ 

70 

105 



Graph 3.2.10 Variation of B.E.R. with Detection Delay at Eb/No=4.76d8 
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Graph 3.2.11 Variation of B.E.R. with Detection Delay at Eb/No=6.3dB 
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Graph 3.2.12 Variation of B.E.R. with Received Constant 
Carrier Phase Offset at Eb/No=6.3d8 
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CHAPTER 4 

NEAR-MAXIMUM LIKELIHOOD DETECTION SCHEMES 

FOR CODED 8PSK 

109 
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This chapter describes a number of detectors which are derived 

from the Viterbi detector of Chapter 3. In all cases the detectors 

store a number of vectors of possible data sequences and their 

associated costs. These detectors differ from the Viterbi detector 

in the algorithms which use these stored vectors and costs to produce 

detected data symbols {q~}. The aim is to develop detectors which are 
~ 

considerably less complex than the Viterbi detector, without a 

significant degradation in tolerance to noise. 

These detection techniques were not applied to CORPSK(4-7,l+D) 

modulation, because Viterbi detection is relatively simple in this 

case, so that these techniques cannot provide a significant reduction 

in complexity. 

Table AB.l defines the notation which is used to describe the many 

variants of the schemes which are tested by computer simulation. 

4.1 SYSTEM 1 WITH ANTI-MERGING 

This detector is one of a number of Viterbi-type schemes initially 

1
64,65 

investigated by A.P. Clark et a • The family of detectors has since 

been investigated in a number of different applications, and with a 

number of modifications: 7 •
28

•
66

- 71 The description of the detector 

begins with a description of the received signals. The detector is 

then described in terms of its stored vectors and costs. The algorithm, 

repeated during every symbol interval, which uses these stored values 

to produce the detected data symbols, is described. The unitary 

distance measure (Appendix A7) is used for the stored costs. Other 

distance measures which are used are defined in Appendix A7. 
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Equation 4.1.1 (from Equation 2.1.7) gives the received sample at 

the detector input at time t=iT. Since the equipment filters 

introduce no significant intersymbol interference (see Section 2.5), 

the sampled impulse response of the channel is taken to be Y=[y ,y
1

, .•. ,y ], 
0 g 

where only y
0 

is non-zero, and is equal to one. 

r. =p. +w 
1 l. i 

pi is the complex number given by the mapping of the code 

(4.1.1) 

symbol c., 
l. 

described in Figure 2.5.4. wi is a sample value of the Gaussian noise 

waveform w(t) at the demodulator output. See Section 2.5 for more details. 

The detector stores k
1 

vectors {Qil of possible four-level data 

symbol values. At time t=(i-l)T these vectors have the form 

Q ' = [q' q' q' l i-1 i-N+l' i-N+2' ... ' i-1 (4.1.2) 

where qi is a possible value of the transmitted data symbol qt. 

On the receipt of ri the detector forms possible values of ri in the 

absence of noise as follows, to be compared with ri. Each vector Q~ 
1 l.-

is expanded four ways to form four expanded vectors at time t=iT, by 

appending one of the four possible data symbol values; q~ = 0,1,2, or 
l. 

3. The {q~} in an expanded vector are then coded using the convolutional 
l. 

code described in Section 2.5 to give the vector of binary code symbols 

[c~ (l) ,c~ (2) ,c! (3) J 
l. l. l. 

2 k-1 

~ ~ (4.1.3) 
t=l h=O 

for j=l,2,3, 

The {gh(i,j)} are binary-valued, and k is the code constraint length. 

~denotes MODUL0-2 summation. [q~ (l) ,q~ (2)] is a two-component vector 
l. l. 

that is uniquely related to q~ according to Table 2.1.1. 
l. 
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[c ~ (l) ,c ~ (2) ,c ~ (3}] is now niapped onto the 8-level symbol c ~. 
1 1 l. 1 

(4.1.4) 

Since c~ (l),c~(2) and c~(3) each have the two possible values 0 or 1, 
~ ~ ~ 

ci takes on one of the eight possible values 0,1,2, •.. ,7. A possible 

value of ri in the absence of noise is given by mapping ci onto a 

complex number Pi• where the mapping is defined in Figure 2.5.4. For 

each value of p~, the quantity w~ is determined, which is a possible 
~ ~ 

value of the noise component, w .. 
~ 

= P~ + w! 
~ ~ 

(4.1.5) 

Each vector Q~ at time t=(i-l)T has a cost lw~ 
1

1
2

, which is a 
~-1 ~-

function of the {w~}, i=l,2, .•• , (i-1). The cost is a measure of how 
~ 

likely it is that a vector contains data symbol values which are the 

same as those of the transmitted data. A low cost implies high 

lw •. l2 . likelihood. At time t=iT the cost of an expanded vector ~s 
~ 

given by calculating the appropriate value lw~l 2 , (the incremental 
~ 

cost), and adding this to the value of lwi_1 1
2 

of the vector Ql-l 

from which the expanded vector is derived. Clearly 

2 2 
= lw~ I + lw~ I 

~-1 ~ 
(4.1.6) 

Also, 
2 lw:l 

~ 

2 2 
= [Re(r.-p~)] + [Im(r.-p~)) (4.1.7) 

11 l.l. 

2 
The distance measure used in the calculation of lwil is the unitary 

distance measure (see Appendix A7). 
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Up to this point the Viterbi' and System 1 detectors are identical 

except that the number of stored vectors may be different in the two 

cases. The System 1 procedure for selecting k
1 

vectors {Qi} from the 

4k
1 

expanded vectors, differs from the procedure for the Viterbi 

algorithm. Initially the detector finds the expanded vector with the 

lowest cost lwi1
2

• This vector is stored along with its cost, and the 

value of q! 
1 

contained within this vector is taken to be the detected 
1-N+ 

value of qi-N+l. At this point all other expanded vectors, whose values 

of q! 
1 

are not the same as that in the vector with the lowest cost, 
~-N+ 

are discarded from all future detection processes. This prevents the 

merging (becoming the same) of the stored vectors, since it ensures 

that if they are all different at the start of transmission, no two of 

them can subsequently become the same. This procedure is called anti-

merging. Finally, the detector selects from the remaining expanded 

vectors, the (k
1
-ll with the lowest costs lwij

2
• Each selected vector 

Q!, and associated cost jw:j
2

, are stored. No expanded vector may be 
1 1 

selected more than once, so that after being selected the chosen 

expanded vector is excluded from further selection processes. As in 

the case of the Viterbi detector, the lowest value of jw:j
2 

is 
1 

subtracted from all costs lw:j
2 

to prevent overflow in their stored 
1 

values. 

A simple procedure at the start of transmission is to begin with 

k
1 

stored vectors that are all the same and if possible, (but not 

necessarily), all correct. A cost of zero is associated with one of 

these vectors, all other vectors having very high costs. In this way, 

after only a few symbol intervals, all the vectors will be derived 

from the original vector with zero cost, and will all be different. 



Graphs 4.1.1 to 4.1.13 give ·the results of the computer 

simulation tests for System 1 detection of coded 8PSK, under various 

conditions. For Graphs 4.1.1 to 4.1.8, which are graphs of bit error 

rate (BER) as the signal to noise ratio, ~/N0 , varies, the accuracy 

of the results is of the order of ±0.25dB within the range of BER, 1 
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in 10
3 

to 1 in 10
4

• ~ is the average energy transmitted per data bit. 

N /2 is the two-sided power spectral density of the additive white 
0 

Gaussian noise. (See Appendix AS for more details of the simulation 

techniques. Appendix AB gives the notation used to describe the 

variants of System 1 which were tested by computer simulation.) 

Graph 4.1.1 gives the results for System 1 detection of schemes 

using Code 1, where k
1 

is either 4 or 8. Graph 4.1.2 is the equivalent 

for Code 3, where k
1 

is 4,8, or 16. In both cases the reference curves 

are for threshold-detected QPSK, and for the appropriate Viterbi 

Algorithm-detected scheme. Graph 4.1.1 indicates that schemes using 

Code 1 and System 1 detection suffer an appreciable degradation in 

tolerance to noise, compared with the corresponding scheme using 

Viterbi detection. 
4 

At a BER of 1 in 10 the scheme where k
1

=8, 

(/Det=lNS/), loses approximately o.9dB in tolerance to noise, while 

the_ scheme where k
1

=4, (/Det=lN4/) loses approximately 2.2dB in 

tolerance to noise, compared with Viterbi detection. The scheme with 

k =4 only gains 0.65dB in tolerance to noise with respect to QPSK at 
1 

this BER. This degradation is all the more severe when the relative 

complexities of the schemes are considered. The algorithm for System 1 

is considerably more complex than the Viterbi algorithm, for the same 

number of stored vectors. This is because, whereas the Viterbi 

detector conducts 16 separate cost-comparison operations, each such 
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operation involving the costs of '4 expanded vectors, the detector for 

System 1 must conduct k
1 

separate cost comparisons through all 4k
1 

expanded vectors. Clearly the latter process is considerably more 

complex than the former, for the same number of stored vectors. 

Therefore, depending on the detailed method of implementation, it is 

quite probable that the schemes using System 1 detection are of the 

same order of complexity as the Viterbi detector. A comparison of the 

schemes' error burst characteristics is given in Table 4.1.1. The 

definition of an error burst is given in Appendix AS. It is evident 

that System 1 detection increases the average number of bit errors per 

burst. For k
1

=4, (/Det=lN4/), the increase is severe, since it tends 

to increase as the BER decreases. For k
1

=B, (/Det=lNS/), number of 

bit errors per burst is still more than twice that for the Viterbi 

. 4 detector, at a BER of 5 1n 10 . This is clearly significant. An 

analysis has been carried out of the typical state of the detector's 

code trellis diagram for a scheme using Code 1 and System 1 detection, 

as in Section 3.2 (see Figure 3.2 .1) . This diagram is essentially a 

graph of the state of a vector (vertical axis), as it varies with time 

in symbol intervals (horizontal axis). The state of a vector, as 

described in Section 2.5, is given by the combination of the values of 

the vector elements q: k 
1

,q: k 
2

, ..• ,q: 
1 

at time t=iT. An integer 
l.- + 1- + l.-

value is given to each possible state, as described in Section 2.5. 

The code trellis diagram gives the states for each of the stored 

vectors over a period of time up to the current time t=iT. Each line 

in the diagram is for one of the k
1 

stored vectors. More details are 

given in Appendix A4. Figures 4.1.1 to 4.1.3 are typical code 

trellis diagrams during computer simulation tests for a scheme using 
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Code 1, for k1 ~16,8, and 4, respectively. The code trellis diagrams 

should be contrasted with Figure 3.2.1. Figure 4.1.1 is of particular 

interest since k
1 

is equal to the number of stored vectors for the 

Viterbi detector (16). Note that the BER values for Figures 3.2.1 and 

4.1.1 are very similar. Whereas in Figure 3.2.1, every stored vector 

has the same state for time t~(i-22)T, every vector in Figure 4.1.1 

has the same state for time t~(i-lO)T. Clearly the variety in the 

stored vectors is much less marked for System 1 detection than for 

Viterbi detection, even when both store the same number of vectors. 

The shorter the period of time, (i-j)T<t<iT, for which the stored 

vectors' element values differ, the smaller will be the cost differences 

between the vectors in the absence of noise. In such a case it is more 

likely that the algorithm could discard the correct vector in the 

presence of noise, than in the case where the stored vectors have 

different element values over a longer period of time. Therefore final 

decisions as to the transmitted data are taken too early with System l 

detection. Another interesting point which emerges from Figure 4.1.1 is 

that certain vectors have the same element values over periods of time. 

For example from time t~(i-3)T onwards, vectors 13 and 15 are the same. 

These vectors at time t=iT have the same state, (combination of the 

values of q: 
2 

and q: 
1 

since k=3), but have different costs. The 
l.- l.-

reason for their different costs is that they have different element 

values for t<(i-3)T. Clearly the System 1 algorithm may discard one 

or both of these vectors before long, but it is possible that they may 

remain for a long period. (Clearly the anti-merging rule will prevent 

merging.) From the theory of Maximum Likelihood detection, (Appendices 



A3 and A4), the existence of more than one vector with a given state 

at time t=iT is superfluous. This is because once the state of two 

vectors becomes the same at time t=iT, as far as the calculation of 

the costs is concerned, the vectors are identical. Therefore the 

difference in the costs of the two vectors remains the same for t>iT. 

This effectively reduces the number of stored vectors by one. 

Clearly this problem is increased as k
1 

is reduced since if the 

number of stored vectors is effectively reduced in this way, there are 

correspondingly fewer remaining vectors. For example in Figure 4.1.2 
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for k
1

=8, vectors 4 and 6 have had the same state since time t=(i-l6)T. 

The points made about Figure 4.1.1 apply equally to Figures 4.1.2 and 

4.1.3, but even more so. For k
1

=4, (all the tests providing these 

diagrams having been conducted at the same value of 1b/N
0

=4.76dB, and 

with the same noise and random data sequences), only two vectors with 

different element values exist for time t~(i-3)T in Figure 4.1.3. 

Graph 4.1.2 indicates, overall, that the same is true for the 

schemes using the longer constraint length (k=4) code, Code 3. The 

comparison is with threshold-detected QPSK and Viterbi detection for a 

scheme using Code 3 (64 vectors). Schemes using System l with k
1

=16,8 

and 4 have been tested. Table 4.1.2 lists the degradations in 

tolerance to noise, compared with Viterbi detection, at a BER of l in 

4 
10 . Clearly the degradation is severe. It is interesting to note 

that the degradation caused by reducing the delay in detection for 

k
1

=16 from 64 to 32 symbol intervals is negligible. This should be 

considered in the light of the code trellis diagram for a scheme using 

Code 1, where k
1

=16 (Figure 4.1.1). Here all the stored vectors have 

the same element values for t~(i-lO)T. Therefore, a reduction of this 



sort in the detection delay should cause little degradation. In 

contrast, for k
1

=4, reducing the delay in detection from 32 to 16 

symbol intervals is significant. Therefore it can be concluded that 

usually more than one vector with different element values exists for 

t~(i-16)T, whereas for t~(i-32)T all the vectors usually have the same 
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element values. Note also that the curve for k
1

=8 compares rather 

favourably with that for k
1

=16. In the light of the accuracy of ±0.25dB 

stated above, this may not be surprising. Table 4.1.3 gives the error 

burst characteristics for System 1 detection of coded 8PSK using Code 

3. Again, System 1 detection significantly increases the average 

number of bit errors per burst, especially for the lower values of k
1

. 

It is interesting to note though, that bursts of nearly 200 errors 

which occurred for code 1, do not occur. This is probably a function 

of the codes themselves, and their relative suitability for System 1 

detection. This is corroborated by Graph 4.1.3 which contrasts System 

1 detection for schemes using Codes 1 to 4. Table 4.1.4 lists the 

degradations, where these can be accurately ascertaine~ in tolerance to noise 

compared with Viterbi detection for the scheme using Code 1, at a BER 

of 1 in 10
4

. Clearly, the performance for schemes using the k=4 

constraint length codes under System 1 detection, varies widely. 

Table 4.1.5 gives the error burst characteristics. Clearly, the schemes 

using Codes 2 and 4 are not suited to System 1 detection, in that 

large error bursts occur. In Chapter 3, it was suggested that the 

differing performances of schemes using the three codes with constraint 

length k=4, is probably due to differing distance profiles. The 

distance profile is a measure of how quickly the distance between two 

73 
code sequences increases. The two code sequences are those, of all 
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possible code sequences, Where this distance is a minimum given that 

the two sequences differ in the value of their first symbol. If this 

distance increases only slowly with time, the costs of the two sequences, 

where one is the correct sequence, may be very similar over quite a 

long period of time, even in the absence of noise. This affects the 

probability of discarding the correct sequence over this period in the 

presence of noise. Clearly the distance profile will also affect the 

length of time required to resume correct detection, once the lowest-

cost vector contains wrong element values. This affects the number of 

errors per burst. Another factor in this is the number of other code 

sequences which have very similar costs to the two minimum-distance 

code sequences defined above, (the near-minimum distance code sequences). 

The greater the number of such sequences, the more likely it is under 

noisy conditions, that the lowest-cost sequence will be one of these, 

rather than the correct one. For k
1

=4, the significant increase in 

the number of errors per burst as the BER reduces, signifies a situation 

where correct detection only resumes due to further noise-induced errors. 

This gives an increase in the number of errors per burst as the BER 

decreases since, as the noise level decreases, such noise-induced 

errors become fewer. 

Graph 4.1.4 contrasts System 1 detection for schemes using Codes 

1 and 3. Clearly, for the same value of k
1

, Code 3 is preferable. 

This highlights, as for Viterbi detection, the larger error-correcting 

capability of the longer constraint length code. 

Graphs 4.1.5 to 4.1.8 illustrate the effects of using suboptimal 

distance measures for the costs and the effect of realistic quantisation 

of the received samples {r.}. Appendix A7 describes these distance 
~ 



measures, which are used to reduce the complexity of the detectors. 

Graph 4.1.5 contrasts both the phase distance and the magnitude-

sum distance measures with the unitary distance measure, for a scheme 

using Code 3 under System 1 detection. The phase distance is simply 

the difference in the phase angles of the received sampler. and a 
1 

pcssible received sample in the absence of noise. The magnitude-sum 

distance measure is given by calculating the magnitudes of the 

differences between the real and imaginary parts of r. and a possible 
1 

received sample in the absence of noise. These are summed to give the 

distance measure. These measures involve no squaring operations and 

are therefore simpler to implement than the unitary distance measure. 

Results for k
1

=16,8, and 4 are presented. Table 4.1.6 lists the 

degradations in tolerance to noise for schemes using the suboptimal 
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distance measures compared with the equivalent schemes using the unitary 

distance measure at a BER of 1 in 10
4 

Clearly the degradations are 

quite severe, although in the case of the phase distance measure, not 

as severe as for Viterbi detection, (Graph 3.2.3). It can be seen that 

the magnitude-sum measure leads to a consistently larger degradation 

than does the phase distance measure, particularly for k
1

=4. Therefore 

the phase distance measure may have a particular advantage for constant 

envelope-type schemes, or more specifically, schemes where all the 

values of p. lie on a circle in the complex number plane, (see Appendix 
1 

A7). Table 4.1.7 gives the error burst characteristics for the schemes. 

Clearly the error burst characteristics are very similar in all cases. 

A true comparison between the schemes of Graph 4.1.5 is not 

possible, simply because a measure of their relative complexities is 

not available, (since this is implementation-dependent). A practical 



advantage can be gained if the received sample is simply the phase 

angle of r., (that is, phase demodulation is used), This is because 
l. 

the bits available in the receiver to represent the received sample 

can all be used to represent the phase angle of ri, ~(ri), rather than 

splitting these bits into two equal parts to represent the real and 

imaginary bits of r. separately. ~(r,) is used to address a look-up 
l. l. 

table of unitary distances. The incremental costs at the output of 
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the look-up table are those for a received sample with phase angle <P (r.) 
l. 

which lies on the circle in the complex number plane upon which the 

{p.} lie (see Figure 2.5.4). In other words, knowledge of the 
l. 

magnitude of r. is not used. To test this supposition, this system 
l. 

is compared with a system where ri is received, and the true unitary 

distance measure is used. 

The total number of available bits is set at 8 in both cases. 

For the scheme using the true unitary distance, r. is quantised into 4 
l. 

bits per real component and 4 bits per imaginary component. For the 

.case where the received sample is the phase angle of r., ~(r.) is 
l. l. 

quantised into 8 bits. In both cases the distances are calculated by 

means of a look-up table. In the unitary distance case, the real and 

imaginary parts of r
1 

are each separately quantised, where the outer

most quantisation levels are set at ±1.2jp, j where jp, I is the 
l. l. 

magnitude of pi (which is 2.0, see Section 2.1). The quantisation 

levels are uniformly spaced. In the 

complex number plane is divided into 

case where ~(r,) is received, the 
l. 

8 
2 equal sectors about the origin. 

The quantised value of ~(r.) is the average phase angle, of all 
l. 

possible phase angles, in the sector in which r. lies. The cost
J. 

calculation block diagrams for both schemes are given in Figure 4.1.4. 



Graph 4.1.6 presents the results for the quantised scheme where 

r. is received, which uses Code 3. The degradations in tolerance to 
1 

noise at various BERs are given in Table 4.1.8 compared with the 

scheme using infinitely fine quantisation. Clearly the degradations 

are negligible. The error burst characteristics are very similar to 

those of the infinitely-finely quantised scheme. 

Graph 4.1.7 gives the results for the (phase-quantisation) 

scheme where ~(r.l is received for a scheme using Code 3. The 
1 

comparison is with schemes using the phase distance measure where 

infinitely fine quantisation is assumed. Despite the use of unitary 
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distance, all the quantised schemes are degraded in tolerance to noise, 

compared with their infinitely-finely quantisedcphase distance measure 

equivalents. The results at a BER of l in 10
3 

are outlined in Table 

4.1.9. It can be seen that the degradations in tolerance to noise are 

negligible, although it may have been expected that the degradation 

due to 8-bit quantisation as compared with infinitely-fine 

quantisation, may have been more than offset by the use of the unitary 

distance in the look-up tables. Clearly the main reason for the 

degradation for schemes where the phase distance measure is used, is 

not the use of phase as the distance measure, but the loss of 

information about the magnitude of r .. Again, the error burst 
1 

characteristics are very similar to those of the infinitely-finely 

quantised schemes (see Table 4.1.7). 

Graph 4.1.8 contrasts the results of the two quantised schemes 

which, as noted earlier, are of a similar level of complexity as far 

as the quantisation is concerned. Clearly, the supposed advantage of 

representing ~(r,) in 8 bits compared with 4 bits per component for 
1 



the scheme using the true unitary distance, does not lead to an 

improved performance for the phase-quantisation scheme. In all 

cases the latter scheme has a lower tolerance to noise. The situation 

at a BER of 3 in 10
4 

is outlined in Table 4.1.10. 
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Graphs 4.1.9 to 4.1.11 give some idea of the effect of reducing 

the detection delay, at a BER of approximately 1 in 10
3 

for long 

detection delays. System 1 detection is used for schemes incorporating 

Code 3. This question was touched upon concerning Figures 4.1.1 to 

4.1.3. Of interest in these graphs is the point at which the detection 

delay becomes too short. As a measure of this, Table 4.1.11 notes for 

each system, the value of the detection delay at which the BER begins 

to rise substantially, and the value of the detection delay at which 

the BER is ten times that for long detection delays. It can be seen 

that the scheme with k
1

=16 suffers most due to reducing the detection 

delay, although the difference compared with the scheme where k
1

=8 is 

not very pronounced. The results of Table 4.1.11 and Graphs 4.1.9 to 

4.1.11 are to be compared with those of Table 4.1.2, which in part 

outlines the degradation in tolerance to noise due to a reduction in 

detection delay. In agreement with Graph 4.1.9, Table 4.1~2 indicates 

that for k
1

=16, reducing the delay from 64 to 32 symbol intervals has 

a negligible effect. Also in agreement with Figure 4.1.11, Table 4.1.2 

shows that the effect of reducing the delay for k
1

=4, from 32 to 16, 

is more appreciable. 

Graphs 4.1.12 to 4.1.14 present the results when constant phase 

offsets are introduced, (constant phase errors in the receiver estimate 

of carrier phase), for System 1 detection. In all cases the effects 

are quite severe, and relatively linear for phase offsets in excess of 
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a few degrees, and less than 15 degrees. Table 4.1.12 gives the phase 

offsets for which the BER is both 10 times and lOO times the BER for 

no phase offset. It is evident that the effects of the constant phase 

offsets are very similar for all the schemes, especially considering 

the fact that the BER with no phase offset is not exactly the same in 

all cases. Comparing these results with Graph 3.2.12 for CORPSK(4-7,l+D), 

which is a 4-phase scheme, the effects of phase offsets for 8-phase 

modulation are seen to be much more serious. 



APPROXIMATE AVERAGE NUMBER OF BIT 

SCHEME 
ERRORS PER BURST, AT GIVEN BER 

2 X lQ 
-2 

1 X 10 
-3 

5 X 10 
-4 

/Det~V16/ 17 ll 10 

/Det~1N8/ 36 40 25 

/Det~1N4/ 142 120 300 

TABLE 4.1.1: Error Burst Characteristics for System 1 Detection 
of Coded 8PSK, Using Code 1 

DEGRADATION IN TOLERANCE TO 
SCHEME NOISE IN COMPARISON WITH 

VITERBI DETECTION AT BER ~ 

1 X 10 
-4 

(dB) 
·----~.., '·""·~· . - . -· -· 

/Det~IN16/N~64/ o. 7 

/Det~1N16/N~32/ o.s 

/Det~1N8/N~32/ 0.9 

/Det~1N4/N~32/ 1.65 

/Det~1:<4/N~16/ 2.0 (approx.) 

TABLE 4.1.2: Performance of System 1 Detection for Coded 
8PSK Using Code 3 

125 



APPROXIMATE AVERAGE NUMBER OF BIT ERRORS 

SCHEME PER BURST AT GIVEN BER 

3 X 10 
-2 

7 X 10 
-3 

1 X 10 
-3 

/Det=V64/N=80/ 20 13 11 

/Det=lN16/N=32/ 25 22 14 

/Det=1N8/N=32/ 30 23 18 

/Det=lN4/N=32/ 55 53 27 

/Det=1N4/N=16/ 60 60 52 

TABLE 4 .1. 3: Error Burst Characteristics for System 1 Detection 
of Coded 8PSK using. Code 3 

DEGRADATION IN TOLERANCE TO NOISE IN 
SCHEME COMPARISON WITH VITERBI DETECTION 

(CODE 1) AT BER = 1 in 104 (dB) 

/C=2/Det=1N16/N=64/ 0 

/C=3/Det=1N16/N=64/ 0.4 

/C=4/Det=lN16/N=64/ 0.65 

/C=1/Det=lN8/N=32/ 0.85 

/C=2/Det=lN8/N=32/ o. 7 

/C=3/Det=1N8/N=32/ 0.6 

/C=4/Det=1NB/N=32/ 0.6 (approx.) 

/C=1/Det=1N4/N=32/ 2.2 

/C=2/Det=1N4/N=32/ -
/C=3/Det=1N4/N=32/ 1.2 

/C=4/Det=1N4/N=32/ -

TABLE 4.1.4: Performance of System 1 Detection for Coded 8PSK, 
for Codes 1 to 4 
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APPROXIMATE AVERAGE NUMBER OF BIT 

SCHEME ERRORS PER BURST, AT GIVEN BER 

3 X 10 
-2 

1 X 10 
-3 

/C=2/Det=lN16/N=64/ 93 75 

/C=3/Det=1Nl6/N=64/ 25 14 

/C=4/Det=lN16/N=64/ 121 164 

/C=l/Det=lN8/N=32/ 36 40 

/C=2/Det:l N8/N=32/ - 200 

/C=2/Det=l N8/N=32/ 30 18 

/C=4/Det=l N8/N=32/ 344 202 

/C=l/Det=1N4/N=32/ 140 120 

/C=2/Det=lN4/N=32/ 850 910 

/C=3/Det=lN4/N=32/ 55 27 

/C=4/Det=lN4/N=32/ >1000 >1000 

TABLE 4.1.5: Error Burst Characteristics for System 1 Detection 
for Coded 8PSK, for Codes 1 to 4 

DEGRADATION IN TOLERANCE TO NOISE 

SCHEME IN COMPARISON WITH EQUIVALENT 
UNITARY DISTANCE MEASURE SCHEME 
AT BER = 1 X 10-4 (dB) 

/Det=lN16/N=64/Dis=P/ 0.3 

/Det=lN16/N=64/Dis=MS/ 0.4 

/Det=lNS/ N=32/Dis=P/ 0.5 

/Det=lN8/N=32/Dis=MS/ 0.65 

/Det=lN4/N=32/Dis=P/ 0.25 

/Det=lN4/N=32/Dis=MS/ o. 7 

TABLE 4.1.6: Performance of System 1 Detection for Coded 8PSK, 
for Code 3, Using Suboptimal Distance Measures 
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APPROXIMATE AVERAGE NUMBER OF BIT 
ERRORS PER BURST, AT GIVEN BER 

SCHEME 

3 X 
-2 -3 -3 10 7 X 10 1 X 10 

/Det=lN16/N=64/Dis=E/ 25 22 14 

/Det=l Nl6/N=64 /Dis=P/ 23 18 15 

/Det=l Nl6/N=64/Dis=MS/ 24 19 13 

/Det=1N8/N=32/Dis=E/ 30 23 18 

/Det=l N8 /N=3 2/Dis=P I 37 22 13 

/Det=l N8/N=32/Dis=MS/ 31 26 19 

/Det=1N4/N=32/Dis=E/ 55 53 27 

/Det=lN4/N=32/Dis=P/ so 40 24 

/Det=1N4/N=32/Dis=MS/ 45 40 30 

TABLE 4.1.7: Error Burst Characteristics for System 1 Detection 
for Coded 8PSK, for Code 3, Using Suboptimal 
Distance Measures 
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DEGRADATION IN TOLERANCE TO NOISE 
IN COMPARISON WITH EQUIVALENT 

SCHEME INFINITELY-FINELY QUANTISED SCHEME, 
AT GIVEN BER (dB) 

3 X 10 
-2 

1. X 10 -3 1 X 10 
-4 

/Det=l'N16/N=64/ 0.2 0.15 <0.05 

/Det=lN8/N=32/ 0.2 o:2 o.1 

/Det=l N4/N=32/ 0.3 0.25 0.1 

TABLE 4.1.8: Performance of System 1 Detection for Coded 8PSK, 
for Code 3, with 4-Bits Per Component Quantisation 

DEGRADATION IN TOLERANCE TO NOISE 
IN COMPARISON WITH THE EQUIVALENT 

SCHEME INFINITELY-FINELY QUANTISED, PHA~~-

DISTANCE SCHEME, AT BER = 1 X 10 
(dB) 

/Det=1N16/N=64/ 0.1 

/Det=1N8/N=32/ 0.1 

/Det=1N4/N=32/ 0.25 

TABLE 4.1.9: Performance of System 1 Detection for Coded 8PSK, 
for Code 3, for 8-Bit Phase-Quantised Received 
Samples ~ (r.) 

l. 
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DEGRADATION IN TOLERANCE TO NOISE IN 

SCHEME 
COMPARISON WITH THE EQUIVALENT TRUE 
EUCLIDEAN COST SCHEME, AT BER = 

3 X 10 -4 
(dB) 

/Det=1Nl6/N=64/ 0.2 

/Det=1N8/N=32/ o.4 

/Det=lN4/N=32/ 0.35 

TABLE 4.1.10: Performance Comparison for System 1 Detection of 
Coded 8PSK for Code 3, for the 8-Bit Phase-Quantised 
Scheme and Equivalent Schemes using the Unitary 
Distance Measure using 4-Bits Per Component QUantisation 

DETECTION DELAY AT WHICH DETECTION DELAY AT WHICH 
SCHEME SIGNIFICANT DEGRADATION BER IS 10 x BER FOR LONG 

BEGINS (Symbol Intervals) DETECTION DELAYS (Symbol 
Intervals) 

/.Det=l Nl6/ 34 19 

/Det=il. N8/ 34 14 

/Det=lN4/ 27 8 

TABLE 4.1.11: Measures of the Effect of Reducing the Detection 
Delay for System 1 Detection of Coded 8PSK, for 
Code 3 

PHASE OFFSET AT WHICH PHASE OFFSET AT WHICH 
SCHEME BER IS 10 x BER FOR BER IS lOO x BER FOR 

ZERO.PHASE OFFSET ZERO PHASE OFFSET 
(degrees) (degrees) 

/Det=lN16/N=64/ 8.5 12.5 

/Det=lN8/N=32/ 6.5 11.5 

/Det=lN4/N=32/ 7.0 12.5 

TABLE 4.1.12: Measures of the Effects of Constant Phase Offsets 
for System 1 Detection of Coded 8PSK, for Code 3 
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Graph 4.1.9 Variation of B.E.R. with Detection Delay at Eb/N6-5.3d8 
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Graph 4.1.10 Variation of B.E.R. with Detection Defay at Eb/No=5.6d8 
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Graph 4.1.11 Variation of B.E.R. with Detection Delay at Eb/No=6.3d8 
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Graph 4.1.12 Variation of B.E.R. with Received Constant 
Carrier Phase Offset at Eb/No-5.3d8 
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Graph A.1.13 Variation of B.E.R. with Received Constant 
. Carrier Phase Offset at Eb/No=6.0dB 
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Graph 4.1.14 Variation of B.E.R. with Received Constant 
Carrier Phase Offset at Eb/No=6.3d8 
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4.2 SYSTEM 3 

This detector is another of those initially investigated by 

64,65 i 28,66-68 
A.P. Clark et al and developed in a number of ways s nee. 

It is referred to as System 3. The description of the detector begins. 

with a description of the received signals. The detector is then 

described in terms of its stored v.ectors and costs. The algorithm, 

repeated during every symbol interval, which uses these stored values 

to produce detected data symbols, is described. The unitary distance. 

measure (Appendix A7) is used for the stored costs. From Section 4.1 

·the 'c-omplex received sample at the input to the detector at time t=iT 

is, 

(4.2.1) 

The detector holds in store k
3 

vectors {Q2, of possible values of 

the data symbols. At time t=(i-l)T these. vectors have the form 

[ ' ' ' 1 q, N l'q· N+2' '•' ,q. 1 l.- + ~- ~-

where qi is a possible value of the data symbol qt. 

(4.2.2) 

k
3

_ is a multiple of 4, which is the number. of different values 

that q£ can have. The expansion, coding, mapping and costing processes, 

are analogous to those described in Section 4.1, and are not repeated 

here. The System 3 selection algorithm, which selects k
3 

vectors {Qi} 

from the 4k
3 

expanded vectors derived from the vectors {Qi_
1

}, is as 

follows. For each of the four possible values of ql-h+l' where h=k3/4, 

the detector selects the expanded vector with the given value of q~ h 
1 1- + 

2 
and·with the smallest value of jw~ j • The process is repeated in turn 

1 

for q
1
' h 2 ,q~ h 

3
, •.• ,q~, the process being such that an expanded 

- + l.- + l. 
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vector once selected is not available for selection again, so that no 

expanded vector may be selected more than once. After the selection 

process is completed, the minimum cost is subtracted from all costs to 

prevent their stored values overflowing, and the value of ql-N+l in 

the vector with the lowest cost is taken to be the detected value of 

qi~N+L" The process· continues in this way. 

This system can be seen (loosely) as a redefinition of the meaning 

of a state, compared to the previous definition (Sections 3.2 and 4.1). 

Instead of defin·ing a state as a combination of the values of a number 

of the most recent symbols, q£, System 3 defines a state in terms of 

the position, (time· t=(i-t)T), and value of a given symbol q~ • Clearly 
l.-JI. 

this is. not rigorously equivalent to a true Finite-State Machine 

representation 
72

, since a vector with a 'state' corresponding __ to a 

particular value of say, q: h' will clearly also have a particular 
l.-

value of q~ ·h 
1

, but it will not be taken to have the 'state' 
. l.- + 

corresponding to this particular value of ql-h+l Another completely 

separate vector will have the 'state' corresponding to this value of 

System 3 is an attempt to overcome a weakness of System 1. As 

has been shown in Section 4.1, it is quite possible that at any time, 

all the k
1 

stored vectors have the same values of ql-!1.' for some 

!1.=1,2, .•• , so that q: ,·is effectively detected with only a correspond
l.-~ 

ingly short delay. This was clearly shown in the code trellis 

diagrams of Figures 4.1.1 to 4.1.3. By using a system which constrains 

the vectors to be somewhat different, at least over a span of the h 

most recent symbols, it is hoped that this problem may be alleviated. 



The results of the simulation tests conducted with System 3 

detection for coded 8PSK, are given in Graph 4.2.1. This is a graph 

of bit error rate (BER) as the signal to noise ratio, Eb/N
0

, varies. 

Eb is.the average energy transmitted_per bit. N /2 is the two-sided 
0 

power spectral density of the additive white Gaussian noise. (See 

.Appendix AS for more details of the simulation techniques. Appendix 
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AB outlines the notation used to describe the schemes which were t.ested.) · 

Both Codes 1 and 3 are used. The accuracy of the results ar·e of the 

order of ±0.25dB in the range of BER, 1 in 10
3 

to 1 in 10
4

. Clearly 

from Graph 4.2.1, System 3 detection loses substantially in tolerance 

·to noise, compared with System 1 detection. The results at a BER of 1 

3 . 
in 10 are given in Table 4.2.1. 

The loss in performance due to the substitution.of System 3 for 

System 1 is at first sight surprising, since the published results
28

•
64

•
65 

(mainly concerning channels with intersymbol interference, but also 

involving some convolutionally coded schemes), have shown that System 3 

usually fai~ better than System 1. To gain an insight into a possible 

mechanism for the relatively poor performance of System 3 in comparison. 

with System 1, consider again the Viterbi Algorithm detector. Whenever·· 

the latter selects between a number of possible vectors, (choosing-one 

and discarding the remainder) , it is certain that whatever the future 

received samples {r.} may be, the chosen vector would always at each 
~ 

stage have the lowest cost of the vectors concerned in the present 

selection, if the remainder of the vectors were not discarded, (see· 

Appendix A4) . Therefore the discarded vectors will never provide 

detected data symbols, since none of their costs can ever be the overall 
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lowest cost. System 3 on the other.hand, selects between vectors on 

the basis of the value of just one symbol, q! h' being the same in all 
J.-

the vectors involved in the selection process. There is absolutely no. 

guarantee, if the JlOn-selected vectors were not discarded, that some of 

their future costs would not be lower than the cost of the .chosen 

vector, for some sequences of future received samples {r.}. If such 
. ~ .. 

a retained vector were to have a lower cost .than. the actually chosen 

vector, this vectqr could conceivably, at· Some later .stage, have the 

lowest cost and provide detected data symbols. In other words there is 

no guarantee that a discarded vector in one of the selection processes 

of system 3 is not the Maximum Likelihood vector, (see Appendix A3). 

Clearly this is also valid for System 1. The relative perfo~mance of 

the detectors is a function of how easy or difficult it is for the 

detector to discard vectors when they could possibly, (in the future, 

if retained) , have lower costs than the chosen vector. Sys.tem i simply 

chooses the kl expanded vectors with the kl lowest; costs' at each stage. 

The larger k
1 

is, the more unlikely it is that a discarded vector is 

one which could have the lowest cost, at a later ·stage. This is 

because, the larger k
1 

is, the larger will be the·cost of .. the discarded 

vector' of all the discarded vectors, with the lowest cost·.· The 

greater the difference in cost between the overall.lowest cost and the 

cost of this discarded vector, the more unlikely it is that .the ·latter 

vector could have the overall lowest cost at some future· .stage. The 

situation· is somewhat·different for System 3 and other. detectors, (for 

example the pseudobinary detector of Section 4. 3 and the· detectors Of 

Section 5. 3) • In these cases a number of separate selec.tioris, by means 

of the rankings of costs, takes place. For example .. for ·System 3 with 
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k
3 

stored vectors, k
3 

such separate selection processes take place. 

Therefore, a situation can be envisaged where one such selection 

process is amongst a number of expanded_vectors with high costs, 

whereas another is among a number of expanded vectors with low Costs, 

each of the costs involved in the second process being iower than 

every cost in the first process. Since the cost using the unitary 

distance measure is a good measure·of-the iikelihood.that a given 

vector is correct, it. may well be that all the vectors which were not 

chosen in the second selection process, are more likely to be correct 

than the one chosen vector in the first selection. process. Super-

ficially, the same could be said for Viterbi_detection. The major 

difference for the Viterbi detecto:r is that,. in the second selection 

process described above, each of the vectors which are not chosen is 

guaranteed not to be the Maximum LikelihoOd vector,. as described 

earlier. Clearly this cannot be guaranteed for System 3. System 3 

simply ensures some variety in the stored vectors, as described earlier. 

High likelihood vectors can be discarded_during the selection process. 

A number of points with regard to the modulation method, coded 

and phase mapped BPsK, give further insight into possible reasons for 

the relatively poor performance of :the System 3 detectors·. Compare a 

scheme using a non-systematic convolutional code, with the transmission 

of four-level data over a linear channel introducing intersymbol 

interference. For the latter, having a. sampled impulse response with 

(g+l) components, a received saml?le of._the signal in the absence of 

g+l 
noise has 4 possible values,· some of_ which may -be very close 

together but no two of which are likely to be exactly the same. In 

principle one received sample can be ·used to achieve the unique 



detection of the (g+l) four-level data symbols involved in that 

sample. On the other hand, with.a binary Rate-2/3 non-systematic 

19 
convolutional .code as implemented here, the sample involved in any 

one detection process can have one of only.eight values, (one of the 

eight possible values of p,). Therefore no one data symbol can be 
1 . . 

detected from one isolated received sample. It is the particular 

characteristics of the-mapping function of the code symbols {c.} onto 
1. 

·the complex. numbers {p.}, (Section 2. 5) , which increase the likelihood 
. ~ . . 

of discarding wanted vectors. When· a given vector is expanded, the 

values of p: produced, all belong to one of two sets. The two sets 
. 1 . 

(A and B) are shown in Figure 4.2.1. Each such set comprises, in its 

own right, a QPSK constellation. If the received sample is closest to 

a given-value of p~ in set A of Figure·4.2.l, then if the expanded 
. . 1 . . 

vectors of a given· vector give .values. of p: in set A, one of the {p:} 
1 . l. . 

is that which is neare.st to.the received sample. Conversely,_ if the 

expanded_ vectors-give values of p: in set B, none of the {p:} will be 
1 1 

that which is nearest to·the received sample. Therefore for an 

arbitrary vector, the likelihood that one of the .{p:} produced upon 
1 

_its expansion is that. closest to the received sample, is about l/2, 

since ail the {p.-} are· equally likel/0 The result is that quite a 
1 

few of th.e elements of two stored vectors may be different, while the 

costs of the two vectors in the absence of noise may be ·very similar. 

This is because·the distance between the corresponding sequences of 

the {p:} ·is· smaii.; A System 3 detector may have to choose between two 
1 . . . 

such vectors·, but ·since the distance between the two sequences of the 

{p:} is small, j:_he: chosen vector may be the wrong one. Clearly, ·the 
·1 

· minimum distance·.-properties of the scheme will eventually ensure a 
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reasonably large distance between the two vectors, but this distance 

may not have been built up before the detector has to choose between 

the two. 

As noted earlier, in the case of the Viterbi detector such a 

choice can be ~ade in the complete confidence that the discarded 

vector will never have -the lowest cost. Considering System l in the 

same light, it is very unlikely that one of the two above vectors will 

be discarded, while the other is retained, if they-have similar costs. 

In the vast majority of cases either both will be retained, {if they 

have low costs)·, or both will be discarded, {if they have high costs). 

In the former case System l assumes that both vectors have a high 

likelihood, whereas in the latter case System 1 assumes that both have 

a low likelihood. Since these assumptions are based on cost relative 

to·all 4k expanded vectors, which is a good measure of likelihood, 
1 -

they are likely to be correct in most cases .. On the other hand, 

·system 3 restricts the comparisons to be between only a few expanded 

vec_tors ·and a cost-comparison involving the whole set of 4k
3 

expanded 

vecto;r:-s does not take place as part of the selection process. 

A related question of importance, is the ability of a detector 

tO·recover, once an·error has been ~ade. The signal characteristics 

discussed above also hamper such recovery,· for Vi terbi, System 1, and 

sy·steni 3 detectors. Therefore, in all cases, an initial error is 

followed by a number of further errors which are a direct result of 
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· tlw first error, {an error burst) . Once an error has been made because 

the detector· has discarded the correct vector, a number of symbol 

- ifltervals pass where the values of the symbols {-q!} appended to the 
1. 



lowest-cost vector, are not equal to the values of the {q,}. This 
l. 

.number of symbol intervals in the case of coded and phase mapped 8PSK, 

depends on a number of points. The code itself may lead to this time 
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period being long by providing a number of possible future sequences of 

data symbols with relatively small, and relatively similar costs. The 

corresponding code sequences are usually termed near-mi'nimum distanc~ 

sequence's (Appendices A3 and A4 and References 12,19,21 and 74) .. This 

is discussed more fully in Section 4.1. Therefore, under noisy 

conditions, this period of time may be quite long even for Viterbi 

detection (Section 3.2 and Reference 12). The problem is increased 

by the characteristic of the mapper (which converts the {c,} into the 
l. 

{p,}), described above, which may produce a number of stored vectors 
l. 

with similar costs. The Viterbi Algorithm has the following advantage 

. over· the other detectors. It forces the. consideration of a vector 

with element values that are the same as the transmitted data symbol 

values, for the·most recent (k-1) symbols,· (where'k is the code 

constraint length) • It does this by ensuring that all possible 

combinations of the last (k-1) data symbol values exist within the 

stored vectors. This does not, of course, guarantee convergence. A 

vector which has element values which are the same as the transmitted 

data symbol values over the. last ~ symbol intervals, where ~>(k-1), may 

be discarded in preference to a vector which has element values which 

are the same as the transmitted data symbol values over the most recent 

(k-1) symbols. 

The error burst characteristics of System 3 are contrasted against 

those of System 1, for schemes using. Codes ·1 and 3, in Table 4.2.2. 
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Appendix AS defines an error burst. Clearly, System 3 has a larger 

number of bit errors per burst than does System 1, for the same number 

of stored vectors. The increased number of errors per burst is 

probably due to the characteristics of System 3 discussed earlier. 



SIGNAL TO NOISE RATIO (~/N ) SCHEME -3 0 
AT WHICH BER ; 1 X 10 (dB) 

/C;1/Det;1N8/N;32/ 5.75 

/C;1/Det;3N8/N;64/ 6.25 

/C;1/Det;lN4/N;32/ 6.9 

/C;3/Det;1N16/N;64/ 5.35 

/C;3/Det;3N12/N;64/ 5.65 

/C;3 /Det;l NB/N;32/ 5.65 

/C;3/Det;3N8/N;32/ 6.5 

ic;3/Det;l N4/N;32/ 6.35 

TABLE.4.2.1: Performance Comparisons for System l and System 3 
Detection, for Coded BPSK, Using Codes 1 and 3 

APPROXIMATE AVERAGE NUMBER OF BIT ERRORS 

SCHEME PER BURST AT GIVEN BER 

-2 -3 -3 
5 

-4 .. 3 X 10 7 X 10 1 X 10 X 10 

/C;1/Det;1NB/N;32/ 35 - 40 25 

/C;1/Det;3N8/N;64 so so 60 75 

/C;l/Det;1N4/N;32/ 140 - 120" . 300 

/C;3/Det;1N16/N;64/ 25 22 14 -
/C;3/Det;3N12/N;64/ 27 2l 17 14 

/C;3/Det;1NB/N;32/ I 30 23 18 -
./C~3/Det;3NB/N;64/ 40 32 30 25 

/C;3/Det;1 N4/N;32/ 60 60 52 -

TABLE 4.2.2: Error Burst Characteristics for System 3 Detection 
· of Coded BPSK, Using Codes 1 and 3 
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4.3 PSEUDOBINARY DETECTORS 

Pseudobinary techniques have been studied in conjunction with 

. b' 70 d . l'k l'h d69 ' 71 d . h V1ter 1 an near-max1mum 1 e 1 oo etect1on se ernes. In this 

instance pseudobinary techniques are applied to both Viterbi Algorithm 

and near-maximum likelihood System 1 detectors for coded BPSK. (See 

Section 2.5 for a description of the model.) The pseudobinary technique 

simplifies the detection process by allowing only two expanded vectors,· 

(Section 4.]), to be derived from any one stored vector;· These two. 

expanded vectors are those with the smallest costs and are usually 

determined without the need to actually calculate their costs.
70 

In 

the case of System l detection, k
1 

vectors are still stored, so the· 

reduction in complexity is simply a direct result of halving the. total 

number of expanded vectors considered in each symbol interval. The 

possible savings for the Viterbi detector are more considerable, .since 

the pseudobinary technique involves, in effect, a redefinition of the 

meaning of a state, (see Section 3.2). This redefinition leads to a 

reduction in the number of stored vectors. Initially the basic idea 

·for the Viterbi detector will be outlined, followed by the differences 

for System 1 detection. Finally, the use ·of a redefined mapping ·for 

the {pi} is described, which simplifies the determination of the two 

expanded vectors of a given vector,with the smallest costs. 

The initial selection process at time t=iT,. (upon the receipt 

of sampler.), determines the two expanded vectors of each stored 
~ 

vector Q~ 
1

, with the lowest costs·. This involves the selection of 
~-

two values of q:, for each vector Q: 
1

. In effect the detector 
~ ~-

recedes each symbol q: into a.binary symbol. One such symbol is an 
~ 

element in the expanded vector derived from Qj__
1 

with the lowest. cost', 



(recorded value 0) The other is an element in the expanded vector 

derived from Q: 
1 

with the second lowest cost, (recorded value 1). 
1-

The two chosen values of qi_ for one particular vector Qj__1 are not 

usually the same as those of another vector. The recording does not 

change the value of the {q:l involved, nor does it involve the 
1 

storage of any other value, but rather it implies that the locations 
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for the temporary storage of the expanded vectors before-selection, are 

governed by the receded binary values of a number of their most recent 

elements, { qh} . 
The particular arrangement for the pseudobinary Viterbi detector 

will now be described. Since the algorithm is very similar to .the 

Viterbi Algorithm, only those points which differ. from the_ procedure 

of Section 3. 2 will be described-. As noted above, the pseudobinary 

process involves the recording of four-level symbols qh into binary 

symbols. In the case of the pseudobinary Viterbi detector, this also 

implies a receding of the meaning of a state. :The definition of a state 

was previously a combination of the values of a number of the most 

recent symbols held in a stored vector. The new definition also 

involves the same most recent symbols,. but in this ·case th_e definition 

uses the receded values, (0 and 1), of these symbols.· For· a constraint 

k-1 
length-k code, the number of states reduces from 4 , (Section 3 .2), 

k-1 
to 2 , when the new definition of a state is used. Clearly·, this is 

t . . . h" . 72 no a true F~n~te-State mac Lne representat1on. . In· particular the 

newly-defined state at time t=iT, and the receded Value· of q:, do not define 
1 

the code symbol cj_ ?2 
(See Appendix A4 for a full description Of th(l Finite-
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State Machine for coded BPSK. 
k-1 

The algorithm which processes the 2 

vectors {Q! . l on the receipt of the sample r. is much the same as 
~-l ~ . 

that for the true Viterbi detector, .(see Section 3 ,2). The selected 

vectors {Q!} are those with the lowest costs, for each combination of 
~ 

k .. 
the receded values of qi-k+2 ,qi-k+), ... -,qi_, in the 2 . expanded vectors 

of the {Q! 
1

}. 
~-

For the System 1 detectors, the process is exactly as in Section 

4.1, except that the selection·process now involves only 2kl expanded· 

vectors instead of 4k
1 

expanded vectors. As described above, there are 

just two expanded vectors derived from each vector Qi~l· 

In both the above detectors, the two chosen expanded vectors 

derived from a vector Qi-l, of the four possible expanded vectors, are 

chosen in the following way. ·The incremental costs {Jwil
2 l for the 

four expanded vectors are determined, (see ·sections 3.2 imd. 4 .1} , and 

ranked. The two expanded vectors .with the lowest values of are 

chosen. Clearly, contrary to:.the assumption stated at the beginning 

of this section, this process·does involVe the· determination-of costs. 

In order to be able to perform this selection process without recourse. 

to determining and ranking indremeiltal costs, a slight anunendment is 

required to. the mapping function (Figure· 2.5.4). Figure 4·.3.1 gives 

the ammended mapping function of the {c.} onto the {p.}. The mapping 
~ ~ 

is now such that the ratio of the rea1 and imaginary components of 

every possible value of pi is either·2:1 or 1:2. For example, for the 

value of p. mapped from c. = o·, the r,;tio of the real and imaginary 
~ ~ 

components of p. is 2:1. When a vector Q! .
1 

is expanded, the four 
1 . 1-

possible values of p! are fixed by th.e original vector. They are 
~ . 
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·all either of set A, or all of set B in Figure 4.2.1. If the 

detector knows which of these two sets is involved for vector Q~ 
1

, 
].-

the ammendment to the mapping function allows the use of simple 

threshold tests to determine the two values of p: closest to the 
l. 

received sampler .. Figure 4.3.2 shoWS the thresholds which are used 
l. 

when the possible. values of pi are. in set A. · The four thresholds are 

the lines Re.(pi)=!Im(p:), Re(p.)=-2Im(p.), Re(p.)=2Im(p.), and 
. . 1 1 . 1 1 1 . 

Re (p.) '=-! Im (p·.) , .in the complex number plane. The first two thresholds 
. 1 l. :. 

are used to determine the value of pi nearest_to ri .. The second 

nearest value of p. tor. is ·determined by using the threshold which 
. ~ .. 1. 

passes through the value of p. which is nearest tor.. (The tests for 
-. l. l. 

set B are similar, excep_t ·that the last two thresholds defined above 

are used to determine the value. of p. nearest to r.J 
l. l. 

For the original 

mapping function, the thresholds would have been the lines 

Re (pi) =tan (22 .5°). Im(p.) ; t;,n(i2 .S 0
) .Re (p.) =-Iin(p.) ,tan (22 .S 0

) .Re (p.) =Im(p.), 
. - l. l. l. l. .1. 

and Re(pi)=-tim(22.S 0 )·.rrn(p.), in the complex number plane. Since tan(22.5°) 
. l. 

is irrational, the tests:using these thresholds are much more complex 

to implement; In-fact, it .j.s.easier to calculate the costs of the 

expanded vectors in this _.case, (The o..mended mapping function was 

only used in one set of simulation tests, using System 1 detection.) 

The ~mendment effectively rotates the two sets of points A and B in 

the complex number plane·, both with respect to the axes and with 

respect to each other._ In the limit, a rotation of one of the sets 

of points with re·spect to the other will eventually cause the sets 

of points to coincide. _When this happens, the scheme's tolerance to 



noise is that of uncoded QPSK. Therefore, the a.mendment to the 

mapping function must affect the tolerance to noise. 

Graphs 4.3 .1 to 4 ;3 .11 give the results for the pseudobinary 

detectors. These are graphs of bit error rate (BER) as the signal 

to noise ratio, Eb/N
0

, is-varied. Eb is the average energy per 

transmitted data bit.~. ·N /2 is the~ two-sided power spectral density 
0 ~ . 

of the a·dditive white Gaussian noise. (See Appendix AS fo:.: more 

details of the simulation techniques. Appendix AB gives the notation 

used to describe the many variants~ of these. detection schemes, which 

were tested by computer simulation.) For Graphs 4.3.1 to 4.3.S, the 

3 4 
accuracy of the results in the range of BER, l. in 10 to 1 in 10 , is 

of the order.of ±0.2SdB. 

Graph 4. 3 .1 compares the performance. of pseudobinary Viterbi 

detection, (S · stored vectors) , with Viterbi detection for coded 8PSK, 

(Section 3 .2), and threshold detection for QPSK, (Section 3 .1). Code 

·3 :is used in the coded systems. Clearly the degradqtion in tolerance 

to· noise for pseudobinary Viterbi detection is substantial, compared 

with Viterbi detection·~ This degradation is 3. ?dB at a BER of 1 in 

3 
10 •. Table .4 .. 3.1 gives the error burst characteristics in comparison 

with Viterb·i detection, Appendix AS defines an error burst. Clearly 

the severe degradation of Graph 4.3.1 is linked with very long error 

bursts .. An analysis of pseudobinary Viterbi detection for coded 8PSK 

has been undertaken, related specifically to Code 1, (with four 

stored·vectors since 2k-l=4). (No curves for Code l are presented 

here, but· computer simulation tests have produced results in·broad 

agreement·with those for Code 3.) The analysis was undertaken under 

l6S 



near-noiseless and typical noise level conditions. Figures 4.3.3 and 

4.3.4 illustrate typical code trellis diagrams for the detector, for 

the near-noiseless (Eb/N
0

=37dB), and typical noise level (Eb/N
0

=6dB), 

conditions. These diagrams are essentially graphs of the state of a 

vector (vertical axis), as it varies with time in symbol intervals 

(horizontal-axis). The state is that of the original definition 

_·(section 3.2), not the redefined states of this section. It is given 

by the combination of the values of the vector elements qi-k+l'ql-k+2 ' 

... ,qi-l at time i=iT .. An int~ger value is given to each possible 

state,· as described in Section 2.5. The code trellis" diagram gives 

_the states for each of the stored vectors over a period of time up to 

the current time t=iT. Each line in the diagram is for one of the 

stored vectors.- More details are given in Appendix A4. In Figure 

4.3."5, a section of the code trellis diagram is given where the re-
. . 

defined values of the states are used. (This will be used, in 
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·conjunction with Figures 4.3.6 and 4.3.7 to explain some of the features 

of. the code trellis diagrams of Figures 4.3.3 and 4.3.4.) Here, all 

possible values of the redefined states of the vectors at time t=iT 

_are shown, rather than the actual redefined states of the vectors at 

"time ·t=iT. The redefined states are. given in terms of the receded 

values of the two most recent symbols in the associated vectors. In 

Figure 4 ~3 .5 the left-most value in the state definition is the 

. rei::oded value of the oldest of the two symbols defining the state, 

for Code l. The right-most value in the state definition is the 

receded value of the most recent of the two symbols defining the state 

·for Code l. 



Figure 4.3.5 can be split into smaller units called sub-

trellises, (in this case two), where the vectors {Q~l in a sub
~ 

. trellis are derived from the vectors {Q~ 
1

} in the same sub-trellis. 
~-

These four vectors and the values of their redefined states are part 

of. no other sub-trellis. Appendix A4 deals with this in more detail . 

. The two sub-trellises for the redefined states for code l·are·given 

in Figure 4.3.6. These sub-trellises can be used in the explanation· 

of the near-noiseless code trellis diagram of Figure 4.3.3. From 

Figure 4.3.3 it is evident that all the vectors at any point in time· 

.t=jT are· most often derived from just two' vectors at time t=(j-l)T. 

This is shown more clearly in Figure 4.3.7. Under no-noise conditions 

it is clear that the vector Q~ 
1

, which has redefined state. (00), is 
~-

the.Maximum Likelihood vector (and is in fact correct). It will 
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therefore always yield the vectors {Q~} which have the redefined states 
~ , . 

(00) and (01) • (See sUb-trellis. 'A' in Figure 4.3.6.) In the case of 

sub-trellis 'B' it is clear that the vector Q~· 
1 

which has state (01) 
~-

is likely to have a lower cost than the vector Q~ 
1 

which has state 
~-

(11) because of the definition of the recoded symbols o and 1. 

Therefore it is likely that the vectors {Q~l which have states (10) 
~ . 

and (ll) will be derived.from the vector Q~ 
1 

which has state (01) 
~-

This is seem to be true in Figure 4.3.3. Figure 4.3.4, the typical 

noise level code trellis diagram, indicates that this is still largely 

true when the signal to noise ratio is lower. For example the four 

vectors at time t=iT are derived from the single vector which has the 

redefined state (00) at time t=(i-4)T. 

An interesting point arising from Figure 4.3.4, specifically at 
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time t=iT, is the possibility that two differing redefined states are 

actually the same state as originally defined, (vectors 2 and 3) . 

In. this particular case, although both vectors 2 and 3 have the same 

values of q: 
1 

and q' they do not have the same values of the 
1- i-2' 

receded symbols q: and q: 
2 J.-1 ]_-

From Appendix A4 and the discussion in 

Section 4. 2, when the Vi terbi detector selects between po.ssible data 

sequences which have the same state as originally defined, it is assured 

that·, of the vectors it -discards, one can never be the Maximum Likelihood 

vector. Clearly then, a system which allows vectors with the same state 

(as originally defined) to 'exist includes wasteful redundancy, in that 

only the vector with the lowest cost which has this given· state, needs 

to be stored. Again, as for System 3 of Sect.ion 4 • 2, there is no 

guarantee that, when the pseudobinary detector selects an expanded 

vector from those expanded which have the same redefined state 1 the 
-.1 

discarded vectors.could not in the future if retained, have lower 

costs than the vector actually chosen. In other words, such a 

discarded vector could be the Maximum Likelihood vector. As discussed 

for System 1, the shorter the period of time, (i-j)T<t<iT, for which 

the stored vectors' element values differ, the· smaller will be the 

cost differences between the vectors in the absence of noise. In such 

a case it is more likely that the algorithm could discard the correct 

vector in the presence of noise, than in the case where the stored 

vectors have different element values over a longer period of time. 

This point is even more important for the pseudobinary detector, 

because the time interval· over which the vectors' element-values 

differ is typically very much sh.orter than in the System 1 detector. 



This point also affects the ability of the detector to recover, 

. once an error has been made. The tendency, even under noisy 

conditions, that all vectors are derived from one vector only a very 

few symbol intervals in the past, means that once an error has 

occurred such that the lowest-cost vector, (whose state is (00)) is 

wrong, the system will often discard the correct vector very rapidly. 

One~ the correct vector is discarded~ since the lowest-cost vector is 

very often derived from the previous lowest cost vector, (where both 

have redefined state value (OO», it may be a long time before the 

lowest-cost· vector's element values are the same as those of the data 

sequence at.the transmitter. 

State redefinition has·produced a system which is very inferior. 

This system, which redefines the states on the basis of the relative 

costs o~ the expanded vectors over 5k-l) symbol intervals, yields a 

k-1 
set of 2 stored vectors which is very often not the set of most 

likely transmitted sequences. The extremely poor performance of this 

detector may indicate that the detector is effectively storing only 

one truely unique vector. (In Section 5.1 a detector is described 
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which does store only one vector. It will be seen that its performance 

is not very inferior to that of this detector.) Therefore, an important 

point.is the fact that anti-merging, (which is incorporated in System 

l detection), is not incorporated in this detector. The original 

pseudobinary Viterbi detector was proposed for linear channels with 

intersymbol.interference.
70 Anti~merging was not incorporated 

because:there was no tendency for the vectors to merge, (become the 

same) • 
28 

Studies have shown that there is a greater tendency for 
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vectors to merge when coded signals are used. Anti-merging was not 

incorporated into this detector because analyses of the stored vectors 

during a number of simulation tests showed that all the stored vectors 

were different, (although they differed over only a few symbol intervals). 

(The systems described in Section 5.3 are attempts at redefining the 

meaning of a state, based on t:he actual values of the symbols q~ .) 
r 

Graph 4.3~2 gives the results for pseudobinary System 1 detection, 

compared with System 1 detection, for a scheme using Code 3. The 

original mapping function was used, so that the two chosen expanded 

'Vectors were determined using their costs. It is apparent, except for 

the schemes where k ;81 that the performances of the two techniques are 
. . 1 

very similar. (As noted in Section 4.1, the relatively good perform-

ance of System 1 detection with k
1
;s may be. due to the accuracy quoted.) 

4 
At a BER of 1 in 10 , the degradations in tolerance to noise compared 

with System 1 detection are <0.05dB, 0.4dB and O.lSdB, for k
1
;16,8, 

and 4 respectively. The error burst characteristics are ·outlined in 

Table 4.3.2. Clearly, there is very little difference between the 

schemes' error burst characteristics. A fair comparison of the schemes 

must include some idea of the schemes' relative complexities. Leaving 

aside the method by which the two best expanded vectors are determined, 

(see earlier), the pseudobinary scheme, for a given number of stored 

vectors k
1

, at best halves the processing time compared with the 

System 1 scheme. Conversely, for the same available processing time 

per symbol interval, the pseudobinary scheme can at best deal with 

·twice the number of stored vectors of the System 1 scheme. It must 

be stressed that this is an 'upper-bound'. In practice the advantage 



will be less, because of the required processing which is identical 

in both detectors, and because of the time spent determining the 2k
1 

expansions to be processed. In the light of the above, System 1 

detection with k
1

=8 should be compared with pseudobinary System 1 

detection with k
1

=16, and System 1 detection with k
1

=4 should be 

compared with pseudobinary System 1 detection with k
1 

=8. Particularly 

in the case of the latter comparison, the pseudobinary scheme provides 

a reasonable improvement in tolerance to noise (0.4dB at a BER of 1 

4 
inlO). 

Graph 4.3.3 contrasts the results of pseudobinary System 1 

detection using the redefined mapping function of Figure 4.3.1, with 

pseudobinary System 1 detection using the original mapping function of 
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Figure 2.5.4. Clearly, the degradation sustained by using the redefined· 

mapping function is negligible. At a BER of 1 in 10
4

, the degradations 

in tolerance to noise, compared with the use of the original mapping 

function, are <O.OSdB, o.lSdB and·o.ldB, for k
1

=16,8 and 4, 

respectively. The error burst characteristics are presented in Table 

4.3.3. It is apparent that overall the average number of bit errors 

per burst is increased for the scheme using the ammended mapping 

function. 

For all the remaining tests presented here, the original mapping 

function was used. Graph 4.3.4 presents the results where the sub-

optimal phase distance measure is used. The phase distance is simply 

the difference in the phase angles of the received sample r. and a 
~ 

possible received sample in the absence of noise. This measure 

involves no squaring operations and is therefore simpler to implement 

than the unitary distance measure. Appendix A7.gives further details. 



Clearly, as in Sections 3.2 and 4.1, the degradation in tolerance to 

noise compared with System 1 detection using the unitary distance 

measure, is substantial. At a BER of 1 in 10
4 

the degradations are 

0.5dB, 0.35dB, and 0.4dB, for k
1

=16,8 and 4, respectively. Table 

4.3.4 gives the error burst characteristics. Clearly, there is very 

little difference in the error burst characteri~tics, when the phase 

distance measure is substituted for the unitary distance measure. 

Graph 4.3.5 gives the results for a scheme which is basically a 

cross between·the Viterbi detector and the pseudobinary System 1 

detector. It is called two-symbol expansion Viterbi-type detection. 

The scheme uses the. original definition of a state, but only allows 

two expanded vectors per vector Qi_
1

• In this way the total number of 

expanded vectors is reduced from 4k to 2 .4k-l, the reduction being 

therefore a factor of two. Otherwise the detector is exactly as in 

Section 3.2. This upper-bound complexity advantage may not be 

achievable in practice· since it depends very heavily on the implement-

ation. In the case simulated, _expanded vectors were chosen by ranking 

their incremental costs, as for the pseudobinary System 1 scheme using 

the original mapping function of Figure 2.5.4. The results of Graph 

4.3.5 are for Codes 1 to 4, the comparison being with Viterbi 
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detection. Table 4.3.5 outlines the degradations in tolerance to noise 

compared with the corresponding Viterbi detectors, at a BER of 3 in 

10 
4 

Clearly, the. ·degradations are severe, especially in the light of 

the low achievable complexity reductions. ·The average numbers of bit 

errors per burst are very similar to those for Viterbi detection, (see 

Table 3.2.1) .. 



The degradations in tolerance to noise for this detector are 

much more severe than those for System 1 detection, although in both 

cases, the same expanded vectors are discarded if k
1
=4k-l. For the 

two-symbol expansion Viterbi-type detector, it can clearly no longer. 

be guaranteed that the Maximum Likelihood vector is among the stored 

vectors. The System 1· detector ;ranks the costs of all the non-

discarded expanded vectors to select each stored vector. The two-

symbol expansion Viterbi-type detector ranks the costs of disjoint 

subsets of the non-discarded ·expanded vectors, (see Chapter 3.2). In 

tne· latter case it is more likely that a relatively low-cost expanded 

vector, which is not discarded by the pseudobinary algorithm, will be 

dis"carded by the selection process which follows. 
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Graphs 4.3.6 to 4.3.8·show the·effect, (for k
1

=16,8 and 4, 

respectively), of varying the delay in detection, N, in symbol intervals 

for pseudobinary System 1 detection, at a value of ~/N0 for which the 

3 ... 
BER is ·approximately 1 in 10 for large N. (Code 3 ·is used.) These 

should be compared with Graphs 4.1.9 to 4.1.11 for System !"detection. 

It is clear that the results for the pseudobinary version are very 

similar to those for System 1, (see Section 4.1, and in particular 

Table 4.1.11). 

Graphs 4.3.9 to 4.3.11 show the results of introducing constant 

phase offsets, (constant phase errors in the receiver estimate of 

carrier phase), for pseudobinary System 1 detection.(Code 3 is used.) 

These are to be compared with Graphs 4.1.12 to 4.1.14 for System 1 

detection. Table 4.3.6 gives the phase offsets for which the BER is 

both 10· times and lOO times the BER when there is no phase offset, 
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for both System l detection (repeated from Table 4.1.12), and pseudo

binary System l detection. Although comparison between the pseudo

binary and original versions of System 1 detection is difficult, since 

the BERs when there is no offset tend to be somewhat different, it can 

be concluded that the pseudobinary system suffers less when constant 

phase offsets occur. This is particularly so for k
1

=4, since the BERs 

where there· is no offset in Figures 4.1.14 and 4.3.11 are very similar 

(6 in 10
4 

and 5 in 10
4 

respectively). 



APPROXIMATE AVERAGE NUMBER OF BIT 

SCHEME ERRORS PER BURST, AT GIVEN BER 

3 X 10 
-2 

7 X 10 -3 
1 X 10 

-3 

/Det;V64/N;BO 20 l3 ll 

/Det;VB/PB;Pb/N;BO/ 120 93 116 

TABLE 4o3o1: Error Burst Characteristics for Pseudobinary 
Viterbi Detection for Coded BPSK, using· Code 3 

APPROXIMATE AVERAGE NUMBER OF BIT 
ERRORS PER BURST, AT GIVEN BER 

SCHEME 

3 X 10 
-2' 

1 X 10 
-3 

/Det;1 N16 /N;64 I 25 14 

/Det;1 N16/PB;Pb/N;64/ 25 ll 

-
/Det~N8/N;32/ 30 18 

/Det;1N8/PB;Pb/N;32/ 31 17 

· /Det;1N4/N;32/ 55 27 

/Det;1N4/PB;Pb/N;32/ 53 32 . 
. 

'· 

TABLE 4 o 3 o 2 :· Error Burst Characteristics for Pseudobinary 
System 1 Detection for Coded BPSK, using Code 3 
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APPROXIMATE AVERAGE NUMBER OF BIT 
ERRORS PER BURST, AT GIVEN BER 

SCHEME 

3 X 10 
-2 "1 X .10 

-3 

/Det=1Nl6/PB=Pb/ 25 11 

/Det=1Nl6/PB=Pbr/ 24 20 --- -
/Det=lNS/PB=Pb/ 31 17 

/Det=lNS/PB=Pbr/ 46 20 
.. 

/Det=lN4/PB=Pb/ 53 32 

/Det=lN4/PB=Pbr/ 65 so 

TABLE 4.3.3: Error Burst Characteristics for Reduced-Complexity 
Pseudobinary System 1 Detection-for Coded 8PSK, 
using Code 3 

APPROXIMATE AVERAGE NUMBER OF BIT 
ERRORS PER BURST, AT GIVEN BER 

SCHEME 

3 X 10 
-2 

1 X. 10 
-3 
-

/Det=lN16/Dis=E/ 25 
•" 

11 

/Det=lN16/Dis=P/ 24 - . i2" 

/Det=lNS/Dis=E/ 31 17. 

/Det=lNS/Dis=P/ 28 .15 

/Det=lN4/Dis=E/ 53 _32 
··. 

/Det=lN4/Dis=P/ 51 35 

TABLE-4.3.4: Error Burst Characteristics for Pseudobinary System 
1 Detection for Coded BPSK; "using· Code 3; when the 
Phase Distance Measure is Used. 
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DEGRADATION IN TOLERANCE TO NOISE 
SCHEME IN COMPARISON WITH THE CORRESPOND-

ING VITERBI DETECT OR AT BER = 

3 X 10 
-4 

(dB) 

/C=l/Det=V16/PB=2E/ - 0.4 

/C=2/Det=V64/PB=2E/ - ·. o:9 

/C=3/Det=V64/PB=2E/ . - 0.65 

-
/C=4/Det=V64/PB=2E/ 0.8 

TABLE 4. 3. 5: Performance of Two.:.symbol Expansion Viterbi-type 
Detection for-Coded BPSK 

. 

.. 

PHASE- OFFSET FOR WHICH PHASE-OFFSET FOR 
SCHEME BER IS 10 x BER FOR NO BER IS lOO X BER 

PHASE'OFFSET NO PHASE OFFSET 
(degrees) (degrees) 

/Det=1Nl6/PB=O/ 8 ;5' 12.5 

/Det=1Nl6/PB=Pb/ 10 16 

/Det=1N8/PB=O/ '· 6.5 11.5 

-/Det=lN8/PB=Pb/ 9·. 14 

/Det=1N4/PB=O/ 7. . 12.5 

/De't=1N4/PB=Pb/ i2 - >18 .. . . 

TABLE 4.3.6: Measures of the-Effect of Constant Phase Offsets on 
Pseudobinary System 1. Detection for Coded 8PSK, 
Using Code 3· 

WHICH 
FOR 
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· Graph 4.3.5 Two Symbol Expansion Viterbi-type Detection 
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Graph 4.3.6 Variation of B.E.R. with Detection Delay at Eb/No=5.3dB 
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Graph 4.3.7 Variation of B.E.R. with Detection Delay at Eb/No=5.6d8 
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Graph 4.3.8 Variation of B.E.R. with Detection Delay at Eb/No=6.3d8 
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Graph 4.3.9 Variation of B.E.R. with Received Constant 
Carrier Phase Offset at Eb/No 5.3d8 

0.1 

ci 
LJ 
a:i 
CP .... 
0 

0::: ... 
o· ... ... 

a..J .... 
CD 

0.01 

5 10 15 

Phase Offset/degrees 

. SYSTEM ATTRIBUTES 
/M=8/C=3/Det=1N 16/PB=Pb/ 

20 

193 



· Graph 4.3.10 Variation of B.E.R. with Received Constant 
Carrier Phase Offset at Eb/No=5.6dB 
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Graph 4.3.11 Variation of B.E.R. with Received Constant 
Carrier Phase Offset at Eb/No=6.3d8 
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4.4 LOOK-FORWARD DETECTION SCHEMES 

This algorithm is a development of near-maximum likelihood 

detection and is an attempt to provide a solution to some of the 

problems discussed in Sections 4.1 to 4.3, which are particularly 

apparent for the coded 8PSK scheme, but which also occur to some 

extent in all convolutionally encoded schemes. It was noted in 

Section 4.2 that all convolutional codes have, in a certain-sense, a 

non-uniqueness, when a single code symbol is considered. To take the. 

example of a constraint length-k, Rate-2/3 convolutionai code, a code 

symbol has one of 8 possible values. 
k 

In contrast there are 4 possible.· 

combinations of the values of the four-level data Symbols at the input 

to the coder, which determine this code symbol •. Therefore, for each 

k 
of the 8 possible code symbols, there are 4 /8 possible combinations 

of the data symbols. As stated in Section 4. 2 therefore, no one data 

symbol can be detected from one received symbol in the absence.of 

noise. As the code constraint length (k) increases, this non-uniqueness 

becoffies greater. This is apparent, for example, in the ~onger·error 

bursts for the codes where k=4 than for the codes where k=3., ·(see 

Table 3.2 .2). 

In conclusion the degradations in tolerance tonoise for the 

near-maximum likelihood detectors of Sections 4.1 to 4.3, could be 

r<;iduced by ammendments to the above detectors which aim ·to ·reduce the 

non-uniqueness discussed above. Such an attempt .is·embodied in the 

look-forward detectors. The basic idea is that the incremental costs 

of the four expanded vectors of vector Qj__
1

, shotild·be ·functions of 

the distances between more than one received sample .(_r·j:}, where j~i, 



and the corresponding possible received samples in the absence of 

noise,{p~l By involving more than one received sample in the 
J 

determination of the incremental costs it· is hoped that this non-

·uniqueness can to some extent be reduced, Figure 4.4.1 illustrates 
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the case for one vector Qj__
1 

.. This diagram shows the· four expanded · 

vectors at time t=iT, and the four expanded vectors for_each·expanded 

vector at time t=(i+l)T. · This is the case where r. and.r. 
1 

are used 
~ ~+ 

to determine the incremental costs of the expanded vectors of. Qj__
1

. 

The vectors at time t=(i+l)T are called level-1 extended vectors, 

since they extend the expanded vectors of Q~ 1 by one symbol. They 
~-

are called extended rather than expanded vectors, since the· expanded 

vectors are those from which the vectors {Q!} are selected. There 
~ 

are clearly four extended vectors per expanded vector at time t=(i+l)T. 

In general, if t samples, r. 
1
,ri 

2
, .•• ,r. ,, are used in addition to 

1.+ + . l.+x.. 

ri in _the determination of the incremental costs, the extended vectors 

at time (i+j)T, for j=l,2,.:.; ,11,, .are called level-j extended vectors, 

and there are clearly a total of 4!1, extended vectors per expanded 

vector at time t=(i+JI,)T. 

In all cases the .method of -operation·: is a·s ·follows. For a given 

expanded vector at time t=iT, of·a given vector Q! 
1

, the costs of a 
~-

JI, . 
number of the 4 possible extended vectors at time (i+J/,)T are 

calculated, 

all cases, given the 

(4.4.1). 

+ .•. +I~<! , i 2 
is ·called the incremental cost. In 

~+;o 

{ lw! 1
2

} ~or a gilCen· expanded vector at time t=iT, 
-~ 
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·the detector simply attributes the lowest of these costs to the given 

expanded vector at time t=iT by ranking the costs, In the standard 

. - . t 
implementation, the costs of all 4 · extended vectors at time (i+.t)T 

are ranked. The alternative pseudobinary implementation, is a 

derivation of the pseudobinary scheme-of Section 4.3 using the original 

mapping function of Figur_e 2.5.4.- This_ means -that the number of 

- - - .t 
extended-vectors is reduced to 2 per expanded vector at time (i+t)T. 

At time t=jT (where .j~i) the two extended vectors of a given vector 

at time (j-l)T are those, of the four possible- ones 1 with the lowest 

costs .. Figure 4.4.2 illustrates the case for one vector Q! 
1

, where r 
l.- i 

and r. 
1 

are used to determine the incremental costs of the expanded 
J.+ .. 

vectors of Q! 
1

. 
. l.-

The justification for including a pseudobinary version is as 

follows. At reasonable ·error rates, errors usually-involve the 

received sample r. -being ·closer to a possible value of pi adjacent to 
l. 

the transmi t·ted \?alue or closer to a value p. two points removed from 
l.. 

the transmitted value. It is ve_ry unlikely that a noise spike occurs 

which gives a received sample r i IllQre than two points removed from the 

transmitted value in_ the e.6mplex number plane·. Given this, the scheme 

as described above should not be degraded substantially compared with 

the standard implementation._-

The standard implementation_ is applied to both Viterbi and System 

1 detection, while· the pseudobinary_ implementation is applied to 

System 1 detection; In .all cases, once the costs of all the expanded 

vectors have been deternlined as described earlier, the detection 

processes are exactly-the same as the corresponding non-look-forward 
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schemes (Section 3.2 for Viterbi detection, Section 4.1 for System 1 

detection, and Section 4.3_ for pseudobinary System 1 detection). 

Clearly the implementation of Equation 4.4.1 and the associated 

storage of extended vectors and costs, must be such that as little 

extra complexity as possible-is entailed. All extended vectors at 

time (i+i::-l)Tfor a given vector_Qj__
1 

are stored along with their costs. 

·At time t=iT the previous level-1 extended vectors become the _expanded 

vectors, ·and the previous level-j extended vectors, for j=2;3, .•• ~. 

become the level-(j-1) extended ve·ctors. The outer-most level is now 

level- (_~-1) . For each new' expanded vector (which was a level-1 

.£-1 
extended vector), the·a extended vectors at the outer-most !evel, 

level -(R.:-1-) (where a· is 4 for_ the standard implementation and 2 for 

the pseudobinary implementation), are expanded to- give aR. level-£ 

extended vectors. · The costs· of all these aR. extended vectors are 

calculated from Equation 4.1.1. These costs are ranked, ar\d the 

lowest is taken to·be the cost of the expanded Vector, as described 

earlier. The remainder of the detection process is that for the_ 

corresponding non:-look-for_ward detector. 

Graphs_ 4.4 .1 ·to 4.4 .9 give the results of computer simulation - . •. . . 

tests of the various look-forward schemes. These-are _graphs of bit 

error rate (BER) as_the signal to noise ratio, Eb/N, is varied •. . 0 

is the average energy per transmitted data bit. N
0
/2 is the two-

sided power spectral density of the additive white Gaussian noise. 

(See Appendix AS .. for more details of the simulation techniques. 

Appendix AB de~ines the notation used to describe the variants of 

these detection schemes, which are tested by computer simulation.) 
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The accuracy of the results in the range of BER, 1 in 10
3 

to 1 in 10
4

, 

is of the order of ±0.3dB. 

Graph 4~4-.1 gives the results for the standard implementation of 

look-forward Viterbi detection for coded BPSK using Code 1. Systems 

incorpo"rating level-1· extended vectors (LF=l) , and level-2 extended 

vectors (LF=2), are compared· with the basic Viterbi Algorithm, (LF=O). 

From Graph 4.4.1 _there is no appreciable difference between the 

three schemes depicted, Table 4 .4 .1 outlines the error burst character-

istics, in terms of the average number .of bit errors per burst at 

various bit error rates . (See Appendix AS for the definition of an 

. error burst.) Table 4.4 ;.l ·suggests that the look-forward scli.eme may 

reduce the nuniber of errors per burst for the Viterbi detector,.but 

only very marginally, and not sufficiently to affect the s~heme's 

performance. · 

Graph. 4 .4. 2 gives the results for the standard implementation of 

lock-forward System 1 detection where k =8 and Code 1 is used. 
1 

Clearly some iffiprovement is apparent, increasing as LF is increased. 
. . 4 

At a BER of·3 in 10 the gains in tolerance to noise, compared with 

. the .. non-extended, (LF=O), scheme are, 0.3dB, 0.5dB and O.SdB, for the 
. . . 

schemes where .LF=l, LF=2, and LF=3, respectively. The scheme where 

LF:::l provid~s ·the· greatest incremental gain in tolerance. to noise, 

whereas the· added gains fall off as LF is increased. Therefore there 

is no" advantage to be gained from the use of large values of ·tF. 

Table 4.-4.2 gives the error burst characteristics. Clearly, these 

look-forward schemes reduce the number of errors per burst: considerably. 

For. the·· scheme where LF=3, the number of errors per bu"rst is sim{lar 

·to.that for Viterbi detection. 



Graph 4.4.3 gives the results for the standard implementation of 

the look-forward technique applied to coded BPSK using Code 1, for 

System l detection with k
1

=4. The gains in tolerance to noise are 

relatively substantial. At a BER of l in 10
3 

the gains over System l 

detection where k
1

=4 are O.SdB, o.BSdB, and l.2dB, for LF=l, LF=2, 
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and LF=3, respectively. The scheme where k
1

=4, and LF=3 is equivalent, 

in terms of tolerance to noise,to the scheme where k
1

=B, and LF=O. 

The error burst. characteristics are given in Table 4.4. 3. Clearly, 

although the· number of.errors per burst is still quite large, there is 

· a dramatic ·reduction in the number of bit errors per burst, especially 

for the scheme·where LF=3. The gains in tolerance to noise of Graph 

·4.4.3 are probably. largely due to this reduction in the number of 

errors per burst. 

· Graph 4.4 .4 gives the results for the standard implementation of 

look-forward System 1 detection when .code 3 is used. Clearly the gains 

are not as large as in the case where Code 1 is used, (Graph 4.4.2). 

At a BER of 3 in 10
4

, the gains in tolerance to noise over the scheme 

where k
1

=B and LF=O are O.ldB, O.ldB,and o.3dB, for LF=l, LF=2, and 

.LF=3, respectively. The latter scheme, where LF=3, actually gains 

.with respect to System l detection where k
1

=16. The error burst 

characteristics are given in Table· 4.4.4 .. Clearly the reduction in 

the number of bit errors per burst is noticeable, but not dramatic. 

Graph 4.4.5 gives the results for the standard implementation of 

look-forward system l detection, using Code 3, for k
1 

=4. The improved· 

performance is more apparent than in Figure 4.4.4. At a BER of l in 

10
3 

the gains in tolerance to noise in cbmparison w·ith the scheme 
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where k1~4 and LF~o are 0.2dB, o.4dB, and O.SdB, for LF~l,LF~2, and LF~3, 

respectively. The error burst characteristics are outlined in Table 

·4.4.5 which indicates that.the number of bit errors per burst does 

decrease as LF increases, but not substantially. 

Graphs 4.4.6 to 4.4.9 give the results for the pseudobinary 

impiementation of look-forward System 1 detection. In all cases·the 

average numbers of bit errors per burst are very similar to those of 

the_standard implementations of the look-forward System 1 schemes, 

which use the- same number of samples {r.} in the calculation of the 
~ 

incremental costs. These graphs_ give comparisons with the standard 

·.implementations of look-forward System 1 detection, which use the same 

number of samples { r.} in the calculation of the incremental costs. 
. . ~ 

Grapn 4.4 .6 gives the results for the pseudobinary :implementation 

of System.l look-forward detection for coded 8PSK using Code.l, for 

. k
1 
~s. The degradations in tolerance to noise at a BER of 1 in 10

3
, 

where each scheme using the pseudobinary implementation is. compared 

with the scheme using the standard implementation which has the same 

value of LF, are o.45dB, 0.45dB and 0.25dB for LF~l, LF~2, and LF~3, 

respectively. Clearly such a comparison is unfair, since the schemes 

using the pseudobinary implementation are less complex, than those 

using the standard implementation. _This will be discussed later within 

an analysis of the schemes' relative c_omplexities. 

Graph 4,4.7 gives the results for the pseudobinary implementation 

of look-forwa·rd System 1 detection, for coded 8PSK using Code 1, for 

k 1~4. The degradations in tolera-nce to noise compared with the 

standard implementations using the same values of LF at a BER of 3 
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3 
in 10 are o.25dB, o.2dB and 0.2dB for LF=l, LF=2 and LF=3, 

respectively. Clearly at lower BERs, the losses increase somewhat. 

Graph 4.4.8 gives the results for the pseudobinary implementation 

of look-forward System 1 detection, for Coded BPSK using Code 3, for 

k =8. At a BER of 3 in. 10
4 

the degradations in tolerance to noise 
1 

compared with the standard implementations using the same values of LF 

are O.l5dB, 0.2dB and O.ldB, for. LF=l, LF=2 and LF=3, respectively. 

Graph 4.4 .9 gives the results for the pseudobinary implementation 

of look-forward System 1 detection, for coded BPSK using Code ·3, for 

k =4 1 0 

. 3 
At a BER of 1 in 10 , the degradations in tolerance to noise 

compared with the standard implementations using the same values of LF 

are o.oSdB, O.ldB and o.ras for LF=l, LF=2 and LF=3, respectively. 

Given that. the comparisons used for the pseudobinary implementation 

are unfair, their performance, especially for Code 3, is definitely 

useful. Given that the look-forward schemes differ from the non-look-

forward schemes only up to the point at which the expanded vectors' 

costs are determined, Table 4.4.6 gives estimates of their relative 

complexities, in terms of the processing time required to determine 

the expanded vectors' costs. Clearly, these· measures do not indicate 

the rela.tive complexities of the full algorithms, but they give an 

indication of the increase in complexity when look-forward techniques 

are used. ·(It also ignores the possibility of devising an ·algorithm 

to determine the lowest-cost extended vector at time (i+i)T for each 

expanded vector without. calculating and ranking the costs of all 

extended vectors. No such scheme has been devised.) Clearly the 

added complexity of the· look-forward technique is not balanced by a 



commensurate improvement in performance. The table does indicate 

that the pseudobinary implementation is to be favoured, especially 

for large values of LF, but it is clear that these still do not 
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proVide an improved performance to balance their increase in complexity. 

In the case of the look-forward Viterbi Algorithm, the absence 

of any noticeable performance gain is clearly because the look-forward 

technique cannot reduce the probability of a first error in an error 

burst, (the error event probability). The number of errors per burst 

for the Viterbi detector is also largely unchanged, when the look

forward technique 'is used. The gains in tolerance to noise for System 

1 detection, when the look-forward techniques are incorporated, are also 

relatively small. 'rhe.refore it must be concluded that the look-

forward technique cannot reduce the non-uniqueness, (described at the 

beginning of this section) ' in order to yield substantial gains in 

·tolerance to noise over System 1 detection. 



APPROXIMATE AVERAGE NUMBER OF BIT 

SCHEME ERRORS PER BURST, AT GIVEN BER 

3 X 10-2 
7 X 10 -3 

1 X 10 -3 

/LF=O/ 17 13 11 

/LF=1/ 17 13 10 

· /LF=2/ 15 13 10 

TABLE 4.4.1: Error Burst Characteristics for Look-forward Viterbi 
Algorithm Detection of Coded 8PSK, Using Code 1 

APPROXIMATE AVERAGE NUMBER OF BIT 

SCHEME ERRORS PER BURST, AT GIVEN BER 

2 X 10 
-2 

1 X 10 
~3 

5 X 10 
. 

/LF=O/ 36 40 25 

/LF=1/ 34 23 18 

/LF=2/ 27 19 14 

/LF=3/ · 23 19 13 

TABLE 4.4.2: Error Burst Characteristics for Look-forward 
System 1 Detection of Coded 8PSK, Using Code 
1, with 8 Stored Vectors 

-4 
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APPROXIMATE AVERAGE NUMBER OF 
BIT ERRORS PER BURST, AT GIVEN 

SCHEME 
. 

2 
-2 10-3 X 10 1 X 

/LF;O/ 140 120 

/LF;l/ 85 lOO 

/LF;2/ 42 so 

/LF;3/ 30 31 
. 

TABLE 4.4.3: Error Burst Characteristics for Look-Forward 
System 1 Detection of Coded 8PSK, Using Code 1, 
with 4 Stored .Vectors 

APPROXIMATE AVERAGE NUMBER OF 

BER 

SCHEME BIT ERRORS PER BURST, AT GIVEN BER · 

-

3 X 10 
-2 

7 X 10 -3 
1 X 10 

/LF;O/ 30 23 18 

/LF;,l/ 33 25 15 

/LF;2/ 30 20 12 

/rii';3/ 28 22 11 

TABLE 4.4.4: Error Burst Characteristics for Look-forward 
System 1 Detection of Coded 8PSK, Using Code 3, 
with 8 Stored vectors 

-3 
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APPROXIMATE AVERAGE NUMBER OF BIT 
ERRORS PER BURST, AT GIVEN BER 

SCHEME 
-2 

7 
-3 -3 

3 X 10 X 10 1 X 10 

/LF=O/ 55 53 27 

/LF=1/ 45 41 35 

/LF=2/ 43 33 25 

/LF=3/ 40 30 22 
. 

TABLE 4.4.5: Error Burst Characteristics for LOok-forward System 
1 Detection of Coded 8PSK, for Code 3, with 4 Stored 
vectors 

APPROXIMATE RELATIVE PROCESSING 
SCHEME TIMES PER SYMBOL INTERVAL, 

I 
RELATIVE TO /Det=IN4/LF=O/PB=O/ 

/Det=lN4/LF=O/PB=O/ 1 

/Det=1N4/LF=1/PB=Pb/ 2 

/Det=lN4/LF=2/PB=Pb/ 4 

/Det=lN4/LF=3/PB=Pb/ 8 

/Det=lN4/LF=4/PB=Pb/ 16 

/Det=lN4/LF=1/PB=O/ 4 

/Det=lN4/LF=2/PB=O/ 16 

/Det=lN4/LF=3/PB=O/ 64 

/Det=1N8/LF=O/PB=O/ 2 

/Det=lN8/LF=1/PB=Pb/ 4 

/Det=lN8/LF=2/PB=Pb/ 8 

/Det=lN8/LF=3/PB=Pb/ 16 

/Det= 1N8/LF=4/PB=Pb/ 32 

/Det=1N8/LF=1/PB=O/ 8 

/Det=lN8/LF=2/PB=O/ 32 

/Det=lN8/LF=3/PB=O/ 128 

TABLE 4.4.6: Measures of the Relative Complexity of Look-forward 
System 1 Detectors 
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I, E)(t.onded 
Voct'Jr-s par 
Expanded Vector 

Flgure 4. 4. 1 Expanded and Extend.ed Vectors for One lnltLaL Vector 
SLngLe-ExtensLon (L=11 Look-Forward Scheme 
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• 
• 
• 
• 

FLgure 4.4.2 Expanded and Extended Vectors for One In~tLaL Vector 
SLngLe-ExtensLon IL=11 PseudobLn~ry Look-Forwa~d Scheme· -.-
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Graph 4.~.3 Look Forward System 1 Detection. Code 1: 4 Stored Vectors 
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Graph 4.4.4 Look Forward System t Detection. Code 3. 8 Stored Vectors 
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Graph 4.4.5 Look Forward System 1 Detection. Code 3. 4 Stored Vectors 
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Graph 4.4.6 Pseudobinary Look Forward System 1 Detection 
Code 1. 8 Stored Vectors 
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Graph 4.4.7 Pseudobinary Look Forward System 1 Detection 
Code 1. 4 Stored Vectors 
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Graph 4.4.8 Pseudobinary Look Forward System 1 Detection 
Code 3. 8 Stored Vectors . 
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Graph 4.4.9 Pseudobinary Look Forward System 1 Detection 
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·4·,5·- VECTOR RETENTION-FORCING ALGORITHM FOR SYSTEM 1 DETECTION 

This scheme involves a relatively minor change to System 1 

detection as described in Chapter 4.1. The scheme is based on an idea 

. 75 
by.H. Najdi. The basis of the a~endment is an attempt to force the 

·.retention of the stored vector whose element values are those of the 

actual transmitted sequence of data symbols, if the noise causes this 

vector to have a cost which is higher than the costs of one or more of 

the· otJ:>er stored vectors; No o;mendment of costs is involved in this. 

The _algorithm sim~ly tries. to retain such a vector for a long enough 

period, to allow the difference between its cost and that of the lowest-

cost vector to decrease sufficiently, so that the correct vector will 

not be· discarded due to the effects· of the noise. 
. 75 

Prevl.ous.work 

simply forced the retention of the vector Ql-l which has the lowest 

cost, as a selected vector Q' at time t=iT, if the latter did not have 
i 

the lowest cost. For time t>iT, no attempt was made to retain this 

vector. From previous_sections {Section 4.2 in particular) the 

characteristics of coded 8PSK suggest that this may not be sufficient, 

since quite a few symbol intervals may be required for the correct 

vector's cost to decrease enough to approach that of the {incorrect) 

loWest-cost vector. Therefore, even if retention of the correct 

vector is forced at the time at which it no longer has the lowest 

cost {at time t=iT), it could still be discarded later on. This 

vector retention algorithm attempts to reduce this problem by forcing 

the retention of the lowest cost expanded vector of a vector which was, 

·{but is no longer), the lowest-cost vector, over ·a longer period of 

time, {~T seconds, where ~=1,2, ... ,11). {~ is called the retention 
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perioq·.) such a scheme" could, if t is too large, be counterproductive 

for System 1 detection, because it could conceivably fill all, or 

·nearly all, the available kl storage locations with such retained 

vectors. In such a case, System 1 no longer selects vectors on the 

basis of lowest cost, so that the vectors actually selected may have 

·large costs and correspondingly, low likelihoods. 

The algorithm is implemented as follows, for a scheme which forces 

·the retention of such previous lowest-cost vectors, for 2 succeeding 

s-Ymbol·, int-ervals. The .retention algorithm is inserted after all the-

. expanded vectors' costs have been determined, but before the System 1 

selection algorithm (see Section 4.1). At this point, the detector 

searches through a list of previous lowest-cost vectors, Q~ , ,Q~ , 
1

, 
1.-A. l.-N+ 

•. ·• ,Ql-l, and notes which of these, at the times t=(i-Hl) r, (i-t+2)T, 

•· •. ·;iT, respectively, did not yield the corresponding lowest-cost 

vectors. For each such previous lowest-cost vector Q~ h noted in-the 
1.-

above test, the algorithm ensures that the lowest~cost expanded vector 

of th_e vector Qj__l which is derived from the vector Qj__h, is retained 

at time t=iT as a vector Q~. Once such a lowest-cost expanded vector 
l. 

has been selected for a given Q! h' it cannot be selected again for a 
1.-

differing previous lowest-cost vector Q: , where gth. In such a case, " . 1.-g 

the singie_expanded vector is retained for both previous lowest-cost 

vectors, so that no additional expanded vector is retained for Q: . 
" 1.-g 

After this, any remaining vector storage locations are filled by 

implementing the System 1 selection algorithm, ensuring that any 

expanded vectors selected by the retention algorithm cannot be re-

selected-at this stage. 
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Graph 4 .S.~l ·gives the results for the vector retention-forcing 

algorithm,.when.applied to near-maximum likelihood System 1 detection 

foi" coded 8PSK, · (Code 3), with k =4 and k =8 This is a graph of bit l 1 . 

error rate (BER) as the signal to noise ratio, Eb/N
0

, is varied. Eb is 

the average ·energy" transmitted per data bit .. N /2 is the two-sided 
0 

power spectral density of the additive white Gaussian noise. (See 

Appendix AS for more details of the simulation techniques. Appendix 

AS gives .the notation used to describe.the schemes tested.) The 

accuracy ·of the results in the ·range of BER, l in 10 
3 

to 1 in 10 
4

, is 

of the order of ±o.2SdB. It can be seen that, for k
1 

=8, no performance 

gains are apparent, while for k
1 

=4, the results are inferior to System 

1 detection, especi~lly as the retention p~riod, (Ret), is increased. 
. . 3 

At a.BER.of l in lo, the scheme where .k
1

=4 and Ret=ll is degraded by 

· o;lSdB :in. tolerance to noise, compared with System 1 detection with k
1 

=4. 

The error burst characteristics, in terms of the average number of bit 

errors·per.burst; are outlined in Table 4.S.l. Appendix AS defines an 

error burst. Clearly there is not a great deal of difference in the 

number ·of errors per burst, for System l compared with the retention-

forcing variants. For k
1

=4 there is a tendency for the number of 

e_rrors per -burst to· increase, .as the retention period increases. This 

is paral~elled by an increasing degradation in tolerance to noise, from 

Graph 4.5.1. This can be explained by noting that all, or nearly all, 

the vector storage locations will be involved in the retention algorithm 

as the retention. period is lengthened, as discussed earlier. With k
1 

=ll, 

this is clearly iess of a problem, since there are twice as many 

available storage locations, before the retention algorithm is implemented. 



Clearly the vecto.r. retention-forcing algorithm does not provide 

any useful advantage.for System 1 detection of coded BPSK. 

APPROXIMATE AVERAGE NUMBER OF BIT 

SCHEME ERRORS PER BURST, AT .GIVEN BER 

3 
-2 

7 10 
-3 -3 

X 10 X 1 X 10 
. 

. 

/Det=l N8/Ret=O/ 30 23 18 

/Det=lNS/Ret=l/ 29 23 18 
. .. 

/Det=l!i8/Ret=(;/ 29 24 19 

/Det=lNS/Ret=ll/ . 30 23 20 

/Det=lN4/Ret=O/ 55 53 27 

/Det=lN4/Det=l/ . 55 48 28 

/Det=lN4/Ret;,6/ 56 49 30 
. 

"/Det=lN4/Ret=ll/ 58 51 35 
. 

TABLE 4 .. 5.1: Error Burst Characteristics for System 1 Detection 
Incoicporatirig the Vector Retention:_Forcing Algorithm, 

.for Coded 8PSK Using Code 3 
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Graph 4.5.1 Near Maximum Likelihood System 1Detection 
Vector Retention Scheme · 

0.1 

o2 
t.J 0.01 
m 

.Q) -0 
0: 
L 

~ 
..... 0.001 
iii 

0.0001 

~-.· 
" \ 

\ 
\ 

0.00001·!.-----.-----.--'-----r-'------r-----1 
0 2 4• 6 

Eb/NO [dB] 

COMMON ATTRIBUTES 
/M=B/C=3/N=32/ 

8 10 

223 

Legend 

X 
~ 

l8l 
sx 

"' ~ 
8) 

!', /Oei=!NB/Rei=O/ 

. /De1.=1NB/Rel=1.(_ 

/Dei=1!"!1/Rel=6/ 
/De1=1NB(Rel=11{ 

/[)•!': 1 ~H.R.~!=.91. 
LD•_!.=~ 4/J!!.I.= tL 
~-•1=].!:1_4/Rei=GL 

/~1=~/f!!!.~t!L 



4.6 NEAR-MAXIMUM LIKELIHOOD DETECTION· BASED ON SEQUENCE NUMBERS 

A reduced-complexity detection scheme has been developed, for 

.. 76 
constant envelope modulation methods .. The technique considers the 

case· where many of the costs of the. stored vectors in the Viterbi 

Algorithm detector are large compared with that of the lowest-cost. 

vector. In such cases man~ of_ -the stored v~ctors have very low 
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likelihoods of containing values which are the same as those of the 

corresponding data symbols, ~nd the :detector .should be able to discard 

such vectors without affectirig performance_very greatiy. For many 
.. . . 4·9-62 

continuous phase modulations, . this: is typical when Vi terbi 

detection is used. 

This particular scheme relies on there being a simple relationship 

between the difference in cost between tWo stored vectors and the 

difference in the vectors' element. values. The vectors are ordered 

in the store in the ·following way (where the possible data symbols, qj_ 1 

have the values 0,1,2 or 3). The contents of each N-component stored 

vector (see section 3 .2), 

(4.6.1) 

are used to define a sequence number, whiCh is an integer, as below. 

u. 1-
].-

= (4.6.2) 

where the possible data symbols qi,q2•···•qi-N-l' are those shifted out. 

of the vector in question, over previous symbol intervals. Clearly, 

as i -io<n, u -+eo. 
i-1 

If each stored vector is different, no two vectors have the same 



sequence number. Note that the sequence number is interpreted 'base-

4' with the oldest symbol (qi) being the most signific.ant digit and 

the most recent symbol (qj__
1

) being _the· least significant digit. 

These sequence numbers are never actually calculated. The detector 
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simply requires to know, given two· stored vectors,. that their sequence 

numbers are separated by greater than 
. 76 
some value s. The 

detector orders the vectors in descending order of sequence number, 

the vector with the highest sequence number: occup ying: the first 

storage location. The following example_ indicates how this storage 

structure is maintained by the detector. Consider: a detector which 

sto:.;es ku vectors Qj__
1 

of qua ternary symbols qj_;_ where their sequence 

numbers are the {u. 
1
}. On. receipt of_.r. each stored vector forms 

1.- ·]. 

four expanded vectors by appending the four possible values of q~ (see
]_ 

section 3 .2t ._ Clearly, the- sequence numbers ·for the expanded vectors 

- are of the form,_ 

(4.6.3) 

where q~ takes on one of its four-possible values. From Equation 4.6.3 
L 

·it is clear that the sequence numbers of all the expanded vectors1 of 

a vector Qi-l whose sequence.nu~er .ui~~ ~s greater than the sequence 

number of a second vector Qj_~l.; are grea:er tJo.an _the sequence numbers 

of the expanded vector~ -of the second vector. ·This is shown 

diagrammatically .in Figure 4.6.-l, ·which lists. the vectors { Qj__
1
l and 

their expanded vectors in order of sequence "number. Thi.s ordP.ring can 

be achieved for any modulation scheme but, in order to exploit this 

76 
structure, the modulation method must have the following property .. 

There is some integer ~. such that all stored vectors with sequence 



numbers separated by 1::. or more have distance separatio!'s,.(that is 

the squared unitary distance between the sequences of the {p!} in 
. J. 

the complex number plane corresponding .to the element values in the 

2 
vectors), of d or more, for some value d 

u u 
This implies a direct 

monotonic relationship between sequence number separation and the 

distance betwe~n the corresponding points in_ th~- unitaiy v_ector 

2 
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space. Given this, the detection algorithm is as follows . 4k expanded 
. u 

vectors are derived from the k . stored vectors {Q!. l. on the receipt 
u J.-1 ' ' 

of sample r. , and their costs are calculated rsee_ -Section _4. i>.. The 
J. 

detector then performs 3k selection operations,· each selection 
u • 

operation involving just two expanded vectors. The detector considers 

the expanded vector with the highest sequence number, and the expanded 

vector with the lowest sequence number, (a selection which is very 

simple, see Figure 4.6.1), and compares their costs. 

discards the expanded vector with the-highest cost. 

The detector 

There are- 4k -1 
u 

remaining expanded vectors at this point. The detector then repeats 

this operation on the reduced set of expanded vectors-, yielding 4k -2 
. u 

,rema~ning expanded· vectors. This selection operation is performed 3k 
. u 

times in all, at the 'end of wnich·k vectors {Q!}, remain and are stored 
u J. -

along with their costs. As for System l detection, the detected 

symbol is taken-to be the value of .q! 
1 

in the vector with the lowest 
~-N+ . . 

cost. The detection operation- therefore irivolves 3k ·-~~binary" cost 
u -

ranking operations, (where binary implies the involvement of just two 

costs) , and one ranking operation involving k costs to find the 
u 

overall minimum cost. 
76 ' 

Simmons et al. note that for con·stant envelope 

modulation schemes involving correlative-level coding, and with a 



227 

modulation index of less than unity, a minimum value of k can .i:?e· 
u 

found which ensures that d is equal to the minimum distance between 
u 

points in the unitary vector space, 

modulations the minimum value of k 
u 

d . (see Appendix A3) . For these 
m~n 

is M(L-l) for M-level data symbols 

q. where the modulator's composite frequency modulat~.·ng pulse has a 
~· 

duration of LT seconds (see Appendix A2) . If k is such that· d ~d , , 
u u m1n 

. 176 ' 
s~mmons et a . show that the simplified detector's tolerance to no~se 

should be·asymptotic to tliat of Viterbi detection, at high. signal: to 

noise ratios, as long as the length of the error bursts ·is·.finite. 

The possible application of this detection scheme, to CORSPK(4-7 ,i+P) 

and coded 8PSK, will be discussed . 

. CORSPK(4-7,l+D) is a constant envelope, correlatively.encoded 

scheme, with a modulation index of 1/2,. (see Appendix A2 and Sections 

2.3 and 2.4), and fits the requir.ements for this ·detection. scheme, as 

described above. The premodulation· filter is the Nyquist III-ammended 
·----·-

0% Roll-qff Raised Cosine filter of Section 2.4. The duration of 

the filter's composite frequency modulating pulse, .(see Appendix A2) , 

is taken. to be 2T. (This assumes that the effect of the· components 

of the frequency modulating pulse outside this inverval are negligible.) 

In this case k =M$ .=4. With k =4·, the number o{ binary cost rankings · 
u u 

becomes 12, followed by ohe ranking operation through 4 c 0sts to · 

determine the lowest overall cost. On the other hand, the Viterbi 

detector stores 4 vectors and requ.ires 4 rankings, each involving 4 

cusLs, followed by one ranking W'l.roug~1 4 costs to find the ov~eral~ 

lowest cost. Making the assumption that a ranking of four costs to 

find the lowest is twice as complex as a similar ranking involving 
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two costs, the sequence number-directed detector is more complex than-.· 

Viterbi detection by,a factor of approximately 1.4. (This assumes 

that the cost rankings are the most time-intensive processes in the 

detector.) 
3 4 ' 

Iri addition, at bit error rates of 1 in 10 to 1 in 10 , 

the performance of the sequence number-directed scheme may well be 

inferior to Viterbi detection,. since the detector's performanc~- is. 

asymptotic to that of the Viterbi detector at high signal to noise 

ratios. In addition this detector, as in the case of the other 

detectors of Chapter 4, does not guarantee the·retention of the 

Maximum Likelihood vector, (see Sections 4.2 and 4.3), although· 

because the costs are widely separated for COR~SK(4-7,l+D), this is 

not as great a problem as for coded SPSK, (see Section 4.2) •· In· 

conclusion, no advantage· is gained from applying .this' detector to· the 

CORPSK(4-7,l+D) modulation_scheme. 

On the face of it! the application of the sequence number-

directed detec.tion scheme to coded BPSK would seem to be beneficial, 

since the Viterbi detectors require a large immber'· of stored vectors 

(16 for the con.straint length k~3 codes, 64 for the k~4 codes). 

Unfortunately, there are a number of· problems·. To beg in with, there 

is no formula for the minimum value of k as given above for continuous 
u 

phase modulations. In addition, the neat ordering.of the vectors 

breaks down for coded SPSK, since there is no-simple monotonic 

relationship between the sequence numbers of the possible data 

st!quE;!nces, and t.l1e distances between the c~rresponding points in 

unitary vector space. This is due to the coding a·nd phase mapping_. 

Therefore in this application the sequence numbers would have to be 



229 

based on the coded B~level symbols, rather than on the possible data 

symbol values, and would have· to be calculated, after which the stored 

vectors would have to be ordered according to their sequence numbers. 

Note that these sequence numbers cannot be interpreted 'base-8', in 

the same way that those of the 4-level data in the CORPSK(4-7 ,·l+D) 

scheme are interpreted 'base-4', since some way of noting that the 

complex number p. mapped from the coded symbol c.=O is very close to 
~ . . 1 

the ~omplex number p, mapped from the coded symbol c,=7, is required. 
1 . 1 . 

Simply interpreting the coded symbol sequences 'base-S' would imply 

that two vectors which only differ in one code symbol, c.=o and c =7 
~ i 

respectively, are much further apart in the unitary space, than two 

vectors which differ in the same code symbol, where c. =O and c =1 
1. i-

respectively. In fact in both cases the distance in unitary vector 

space is identical. The sequence number-directed scheme is clearly 

designed for differential-phase schemes, where the phase at.a given 

time instant is the accumulation of previous phase shifts. In such 

cases, a sequence number_ dLfference between two vectors due to ·a 

difference in their respective values of symbol q ~ h, produces ··a 
~-

larger cost difference between the vectors than for a sequence number 

difference due to a difference in their respective·values of. symbol 

qi-~· where h<~. This is because the cost difference is cummulative 

for time t>hT in the first case, and time t>~T in the second case, 

since the signal phase itself is cummulative. This means that-the 

difference in the value of the earlier symbol, q: h' has had a longer. 
~-

period of time over which the cost difference can increase, compared 

with the difference in the value of q: ,. Clearly the 'base-4' 
~-~ 
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sequence number definition reflects this fact by making the older 

symbol, qj__h, more significant. than the more recent symbol, qj__~, 

(see Equation 4.6.2). Providing a sequence number definition for the 

direct phase mapping associated with 'coded BPSK is a much more 

difficult task and will not have the preferred structure of Figure 

4.6.1. This means that the sequence numbers of the expanded vectors 

derived from a vector Q~ 
1

, where its sequence number u. 
1 

is greater 
1- 1.-

than that of a second vector Qj__
1

, may not all be greater than the 

sequence numbers of the expanded vectors of the second vector. This 

would obviously negate the major advantage of the scheme as envisaged 

for continuous .phase modulation, where vector reordering is not 

required. In addition, the initial premise (which holds for continuous 

phase schemes) , that many of the vectors • costs are large compared to 

the lowest cost, is not as valid for coded 8PSK. Section 4.2 considers 

the properties of coded 8PSK which can produce very similar costs 

among the stored vectors. Because of this k may well need to be 
u 

large for coded BPSK. Therefore sequence number-directed detection·· is: 

not considered as a practical alternative for coded 8PSK. 
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CHAPTER 5 

SUBOPTIMAL DETECTION SCHEf1ES FOR CODED 8PSK 
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This Chapter describes a number of detectors which differ 

significantly from the Maximum Likelihood techniques of Chapter 3, 

and the near-maximum likelihood techniques of Chapter 4. Only one, 

(Section·S.3), holds stored vectors of possible data symbol values, 

as do the detectors of Section 3.2 and Chapter 4. This is an ~mendment 

of the Viterbi detector which redefines the meaning of a state, (as 

did the pseudobinary Viterbi detector of Section 4.3). Section 5.1 

describes a detector which operates in much the same way ·as a nonlinear 

. .. 1 2 
equaliser.' It is. equivalent to System 1 detection, (Section 4 .1), 

.with only one stored vector. Section 5.2 describes a very simple 

detector which uses the feedforward filter which is the inverse of the 

·convolutional coder at the transmitter. Section 5.4 describes a 

detector which uses a syndrome decoding technique. such techniques are 

19 
widely used to decode block codes. 

Table A8;l defines the notation which is used to describe the 

schemes whose performance is tested by computer simulation. 

5.1 PSEUDO-NONLINEAR EQUALISER; A DECISION-FEEDBACK TECHNIQUE 

Figure 5.1.1 illustrates the configuration of the pseudo-nonlinear 

equaliser at the receiver for coded 8PSK. This is a process of decision-

directed.cancellation of components of the received sampler., involving 
~ 

already detected data {q~}, where j<i. The decision-directed cancellation 
J 

is here effected by feeding back the detected data symbols to a store 

of k-1 previous detected data Syubols q • q' q• where k ' k 1' ' k +2 I • • • I ' 1 ' 1- + 1- 1-

is the constraint length of the code. The coder, (Section 2.5), uses 

these values and each of the four possible values of q!, to give the 
~ 

four possible·vectors of binary code symbols [c! (l),c! (2) ,c! (3)], where 
1 1 ~ 
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2 k-1 

~ 
£=1 

~ qi-h(i)gh(i,j) 
h=O 

(5.1.1) 

!qJ. (1). ,qi (2) 1 is a two-component vector that is uniquely related to 

qf_· according to Table 2 .1.1. The { gh ( £, j) } are binary-valued and ~ 

denotes· MODUL0-2 summation. Each vector [c! (1) ,c! (2) ,c! (3)] is mapped 
1 1 1 

onto the eight level code symbol c! 
1 

c' 
i 

(5.1.2) 

. Since c! .. (T) ,c! (2), and c! (3) each have the two possible values 0 or 1, 
- ~ ~ 1 

c! ·takes'on one of the eight values 0,1, .•. ,7. A possible value of 
.1 

tpe received sample. ri in the absence of noise is given by mapping 

each of the four possible values of ·c ~ onto a complex number .. ' where 
l. pi' 

the mapping is defined in Figure 2.5.4. These {p ~} are used to 
l. 

calculate the costs of choosing each ~ossible value of qj_ as the value 

of the data symbol q,. 
. . . . l. 

{Re(r.-p!)}
2 

+ {Im(r.-p!)}
2 

(5.1.3) 
l. l. l. l. 

The ·value of q! ·with the lowest cost is taken to be the detected data 
. 1 

symbol, (no preceding having been used at the transmitter, see Section 

2;1), and is fed back to the store of k-1 detected data symbols. This 

now consists of the detected data symbols qi-k+Z'qi-k+3 , ••• ,q;,. 

Clearly this is equivalent to near-maximum likelihood System 1 

detection (Section 4.1) with one stored vector (k
1

=1) and no delay in 

detection. 

Graph 5.1.1 gives the results of computer simulation tests, where 
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Code 3 is used; · This is a graph of bit error rate (BER) as the signal 

to noise ratio, ~/N0 , is varied. ~ is the average energy trans-

. mitted per data bit and N
0

/2 is the two-sided power spectral density 

of the additive white Gaussian noise. (See Appendix AS for more 

details·of-the simulation techniques. Appendix AS gives the notation 

used to describe the variants of System 1 which were tested by computer 

simulation.): Because of the large size of the error bursts, (see 

later).,. the accuracy of the results is of the order of ±0.6dB in the 

range_ -df:.:B~R, .1 in. 103 to 1 in 104 • The definition of an error burst 

is given in ·Appendix AS. 4 
At a BER of 1 in 10 the pseudo-nonlinear 

equaliser has a tolerance to noise which is approximately 2.3dB worse 

than that of th·reshold detected QPSK, and S.3dB worse than. that of 

(64 vector) Viterbi:-detected coded 8PSK using Code 3. Table S.l.l 

gives tlie error burst characteristics in terms of the average number 

of bit errors per burst at a number of BERs. The fact that the 

average-number of bit errors per burst increases as the BER decreases, 

indicates· thqt future detected data symbol values often only become 

the same as the actual data symbol values after further noise-induced 

errors in the received samples. This is because, as the noise level 

reduces, such noise-induced effects become less likely, so that the 

number 6f .. errors per burst increases. Once a false detection q~ 
1 ~-

-has been made,·the store of previous detected data is incorrect. As 

a result the values of p~ produced on the receipt of the next sample 
~ 

all probability be incorrect. Therefore, in all proLal>ility 

the .next detected data symbol, q~ will be incorrect. Errors will 
. ~ 

therefore perpetuate as long as the values in the store of previous 

detected symbols are incorrect. ·Resumption of correct detection is 
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code-dependent in that ·.it ·depends on the likelihood, given one or more 

incorrect previous detections, that the correct values of p, can be 
~ 

produced by the correct (k-1) following data symbol values. For Codes 

2 and 4 the error burst were thousands of bits long, so that accurate 

curves cannot be produced: For the latter codes it seems that this 

likelihood described. above is less than for Code 3. · (The results 

agree with those for system 1 detection in Section 4.1, where schemes 

using Codes 2 and 4-produced·very long error-bursts.) Given correct 

decision-directed ca-ncellation; the performance of the system is 

similar to that of QPsK; since the set of possible values of {p~} for 
~ 

the four possible:values of qj_,·are all in one of the two complex 

number plane diagrams ·of Figure '4 ;2 .1. The cost ranking exercise in 

such a case, (see_ Figure 5.l.l); -becomes equivalent to threshold 

detection. This. can- also be seen in Graph 5 .1.1, which indicates that 

the performance of the pseudo-nonlinear equaliser may well be asymptotic 

to that of-QPSK; at high signal to noise ratios. 

._APPROXIMATE AVERAGE NUMBER OF BIT ERRORS PER BURST 
AT GIVEN BER 

-2 
1 10-] X 10 

-4 
1 X 10 X 1 

150 170 200 -
. 

TABLE- 5;1.1: Error Burst Characteristics for Pseudo-Nonlinear 
Equaliser Detection for Coded 8PSK, using Code 3 
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Graph 5.1.1 Pseudo-Nonlinear Equaliser 
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5.2 INVERSE CODER; A FEEDFORWARD TECHNIQUE 

_This system is an attempt to find the detector for. coded SPSK 

with the minimum dependence on previous detection decisions, (in. 

contra·st to the pseudo-non! inear equaliser of Section 5 .1) , . It was 

thought that such a detector could form the basis of a two-stage 

detection process where the initial (soft) detected data, provided by 

a simple detector with minimum dependence on previous detection 

decisions, is improved upon by a more sophisticated second-stage 

detector. It was hoped that such a detector would not·have the _error 

burst problems of the detectors of Chapter 4' and· would :reci>ire._ a 

second-stage detector which is relat~vely simple compared with the 

_Viterbi Algorithm detector. 

Appendix ·A6 deals at length with the procedure for determining 

the feedforward,_ (tapped. delay line) , inverse of a feedback-free 

convol11tiona,l encoder. References 77 and 78 provide much of the theory 

which is used in Appendix A6. Appendix A6 provides an inverse coder 

of this type for Code 1, given below-in inatrix-form. See Appendix A6 

for a description of this matrix presentation,· where the matrix 

elements are polynomials in the delay operator D. 

2 ·2 
D l+D+D 

G-l(D) l+D. D ·(s .2 .1) 

2 
D +D 

3 
l+D 

3 

Figure 5. 2 .1 is a diagram of the inverse coder. The inP:nt symho l s, 

cj_ (1) ,c;_ (2),. and cj_ (3) are binary valued and the binary output symbols 

q~ (1) and q~ (2)·are uniquely related to the four-level detected data 
~ ~ . 

symbol q~, by the Gray Code Mapping of Table 2.1.1. The values of 
~ 
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cj_ (1) ,ci(2) and cj_ (3) are determined as follows. Each received sample· 

r , is tested to find the point p! in the complex number plane, of the 
i . 1 

8 possible points (see Figure 2.S.4), which is nearest to ri •. In this 

way the sequ-ence which is an estimate of the code sequence {c.} at_ the 
1 . 

transmitter, (that is the symbols {c!}), is produced, by mapping the· 
1 

chosen values of {pj_} onto the {cj_}, (see Figure 2.S.4). Each code 

symbol c! is mapped onto the vector of binary symbols [c: (1) ,c: (2) ,c
3
• (3) 1. 

1 1 . 1 

The relationship between c: an·d this vector was given in Equation. 5.1;2. 
1 . . 

Graph S.2.1 gives the results of computer simulation tests·on. 

this system for coded 8PSK using Code 1. This is a graph of bit: error 

rate (BER) as the signal to noise ratio, ~/N0 , is varied. · Eb is the 

average energy transmitted per data bit and N /2 is the two-sided 
0 . -

power spectral density· of the additive white Gaussian noise. (See 

Appendix AS for more details of the simulation techniques. Appendix 

AB defines the .notat:j.on used to describ-e the schemes for which results 

are given.-in .. Graph S.2.1.) The accuracy of the results at a BER of 1 

in 1o
3 

is of the o~der of ±o.2ciD. The degradations in tolerance to 

noise that the system suffers at a BER of 1 in 10
3

, ·in comparison with 

threshold detected QPSK and (64 vector) Viterbi--detected coded BPSK 

using Code 3, are respectively, 6.2dB and 8.6dB. The error burst 

characteristics, in terms of the average number of bit errors_per burst 

at various BERs are given in Table S.2.1. The definitio~ of an err~r 

burst is given in Appendix AS. The number of errors per burst at low 

BERs tends to an average of 5 bits per bu;rst. This low valu~ ca.n·be 

explained with reference to Figure S.2.1. For example, a false 

estimate of c!(3) will affect the detected symbols q!(2) ,q: 
2

(1), 
l. l. l.+ 
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Errors in c~(l) and c~(2) due to isolated 
1· 1 

single noise spikes affect the output symbols over a shorter period 

of time. Therefore if all errors in the {c!} were spaced far enough 
1 

apart, the average number of bit errors per burst must be less than 8, 

since such errors can only affect the {q!} over a maximum of four 
1 

consecutive symbol intervals. 

Tests have been conducted to find the average error rate in the 

{p!}, at various values of K /N • The results are given in Table 
1 . b 0 

5.2.2. The thresholds used to measure the number of so-called boundary 

crosses, given a symbol error, are shown in Figure 5.2.2,-which 

includes an example of_ a double boundary cross. Clear~y the error 

rate in the {p!}, even at quite high signal to noise ratios, is very 
l. . : 

high. For example at the signal-to noise ratio, ~/N0=5.5dB,-the 
bit error rate for Viterbi detection for coped BPSK using Code ·1, is 

2 ·in 10
4

, at which point nearly 15% of the {p!} a·re in error. From· 
1 

Table· 5.2.2 it is also .. clear that the vast majority of the errors, in

all cases, are single boundary crosses, (that is c!=lc.:!:ljMODUL0-8). 
. ]. 1 

Therefore this is the error-type on which a detector should place most· 

of its efforts. 

In conclusion, the inverse coder detection scheme. _prqduc€s 

detected values wherein the lengths of the error bursts are minimised. 

Unfortunately the performance of the detector is inferior, even fn 

comparison with the pseudo-nonlinear equaliser of Section 5.1. 

Tnerefore it is unlikely that, at typical values of_~/N0 , this scheme 

used as the initial detector in a two-stage detector as described 

earlier, would provide a low enough bit error rate to be of sufficient 

use to the second stage detector. 



APPROXIMATE AVERAGE NUMBER OF BIT ERRORS PER BURST, 
AT GIVEN BER 

5 X 10 
-2 

l .X 10 
-2 

2 X 10 
-3 

6.6 5.4 5.1 

TABLE 5.2.1: Error Burst Characteristics for Inverse Coder 
Detection of Coded 8PSK, Using Code 1 

ERROR RATE TOTAL NUMBER % OF ERRORS IN THE Pi ' 
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FOR. 

~/No IN THE OF TRANS- GIVEN NUMBER OF BOUNDARY CROSSES 
{p ~} MITTED DATA 

(dB) l. 
SYMBOLS q,. 1 2 3 

l. 

.. 

10
4 

3 0.28 9 X 97 2.6 0.32 

4".6 0.194 9 
4 

X 10 99.22 0.74 o·.o2 ... 

5 .. 

5.5 0.149 5 X 10 99.69 0.3 0 • .01 

lo
4 . 

9.5 0.022 9. X lOO 0 0 

13.5 3 
-4 

10 
5 -

X lQ 4 X lOO 0 0 

TABLE 5.2.2: Error Statistics for the Estimated Values {p~-} 
l. 

4 

0.08 

0.02 

0 . 

0 

. 0 ·. 

/~ 



•' 

c: ( 2) 

n n 

'• 

' .. 

'.: . . ,, 
, ''I' 

c-;_g,re 5. 2. ·1· lrrJerse Coder [1'1pLe".'lentct~o~ fo:- Code ·1 

n 

. q, ( 2) ' . 

D 

0 .. : Oel. C\;J of One 
S\;jmboL l ht erval 

N 
.1> 
w 



... h1·oshoi. ds 

'· 
' ' o·JO 

' 0 ' 
' 

' CL=2 
' ' 

' 
' 

0'11 ' 

0 ' 
' 

' 
c, '"'3 

c, :=4 / 

0 
/ 

/ 

/ 

100 / 

/ 

/ 

/ 

/ 

/ c. :::5 / 

./ 0 / 

/ 

/ 101 
/ 

/ 

' 

/ 

/ 

! 

'·. 

i . 
. I 

Jm ( p, 

/ 
./ 

'· 
: "· 

000'1 

c. :=I 

/ 
·.·" 

· .. · 
. ' 

' 

. '·. 

'· 

X 

'· 
. ' 

' ' 

/ 

' ' '· 

\, 
/ 

' ' 

FLgure 5.2.2 ThreshoLds used to ProvLde a Measure of 
The Number of Boundary C~osses. GLven an Error Ln p~ 

\ 

244 

2 Boundury 
Crosses f'Jr 
RecaL ved Scmp;,.a 



Graph 5.2.1 Feedforward Inverse Coder Detection · 
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5.3 STATE REDEFINITION TECHNIQUES 

Following on from the state redefinition described for the 

pseudobinary Viterbi detector, _(Section 4.3), this section introduces 

two state redefinition techniques which are based, respectively, on the 

symbol values involved in the original state definition, and on the 

original states themselves. For coded 8PSK modulation, the original 

definition of the state of a stored vector, is the particular 

combination of the values of the symbols.q~k 1 ,q~ k- 2 ,.- .. ,q~ 1 , in 
~- + .1- + . 1-

the vector at time t=iT.· k is the constrairit .. length of the code. 

Both approaches involve the regrouping of subsets of the. set of all 

originally defined states into redefined states, The first approach 

is derived from the pseudobinary Viterbi detector,: whereas the second 

approach is not a pseudobinary ·technique. -It is to be noted that the 

d
. . . 72 

resulting states o not form true FLnite~state machines. 

The first· approach uses a·non-unique mapping of the four-level 

symbols which define-the state in the original defi~ition, onto binary 

(recoded) symbols. In this·- sense the ·scheme is similar to the pseudo-
. . . 

binary Viterbi detector •. The difference is that the technique maps 

two possible values of. the. four-level symbol onto one of the recoded 

symbols, and the other two possible values of the· four~level symbol 

onto the -other recoded symbol. Since the pseudobinary Viterbi detector's 

mapping is based on incremental costs, (Section 4.3), its mapping rule 

does not involve the same four-level symbol va-lues every time. Given 

the mapping rule, the detector operates as does the pseudobinary 

Viterbi detector, allowing two expanded v.ectors per vector Q~ 1 , at 
L-

time t=iT. The determination of the two expanded vectors to be 

discarded is explained later. As for the pseudobinary Viterbi detector, 
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k-1 k-1 
the number of stored vectors is reduced from 4 to 2 · ·. · This 

technique is called the First Approach state redefinition. Both 

schemes for coded SPSK using COde l, {4. stored vectors) 1 and for coded 

SPSK using Code 3, {8 ·stored vectors) , were tested. · .. The four-level 

symbol to binary symbol mapping rules are given in Tables 5.3.1 and 

5.3.2, respectively. For the constraint length _k~4 code, {Code 3), 

the mapping operates on the three symbols q_;__
3

,q_;__
2 

and q_;__
1 

at time 

t~iT, whereas for the k~3 code, {Code l), the mapping_-operates _on the 

two symbols q_j__
2 

and q_;__
1 

at time t~iT. Cleariy,. in -b<;>th cases, these 

are the symbols which define the state of a vector .in the original 

definition. 

The Second Approach· state redefinition directly maps· subse'ts of 

states as originally defined onto redefined states' In contrast to the 

schemes using the First Approach state redefinition;. the detector, given 

the redefined states, operates as does the Viterbi detector of ·section 

3.2 1 not as the pseudobinary Vite~bi detector of Sec-tion ·4. 3 ~ Four 

.. second Approach State redefinitions ·were used·; -twO· for Code 1 and two 

for Code 3. Tables 5.3.3 to 5-.3.6 define the redefinitions by listing 

the subsets of states-asorigirially defined, regrouped into redefined 

states. Tile states as originally defined, within each redefined state.,· 

are given by the· values of the four-level symbol'? qi-k+l ,-qi-k+2 ; • • • ,qj__1-~ 

where the left-most value is that of qi-k+-l and the right-m6st value is 

that of qj__
1

, {see Tables· 5.3.3 to 5.3.6). 

These six state redefinitions have a number of impo~tant character-

is tics. Short sections of the code ·trellis diagrams for ·the two First 

Approach redefinitions are given in Figures 5.3.1 and 5.3.2. These 

diagrams are essentially graphs of the redefined state of a stored vector, 
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(vertical axis) ,_as it varies with time in symbol intervals~ ·(horizontal 

-axis).: Only one symbol interval is included in these figure-s. The 

states· at time t=iT are given by each combination of _the recoded.values 

of the'vector elements q~ k. 1 ,q~ k 2 , .•• ,q~ 
1

• Each line .. in the diagram 
l.- + l.- + l.-

k is for one of the 2 expanded vectors. For a given vector at-time t=iT, 

the diagram gives the possible values of its (redefined) state at time 

t= (i+l) T. The two arrows on each line signify that each line is for two 

expanded vectors of an original vector, (that is, for two _dif_ferent _values 

of q~). These lines with two arrows· are called para11e·1 transitions in 
~ 

Reference 19. Since the diagrams are for pseudobinary schemes,: the -two 

chosen expanded vectors for each vector at time t=iT are. determined· as 

_follows. The costs of the two expanded vectors of each -parallel 

transition are ranked, and the one.with the lowest cost· is-chosen. In 

order to optimise performance where such.paritllel transitions occur in 

the code trellis diagram, it is essential that the values of the complex 

numbersp~ for the two expanded vectors of one parallel transition, are - ~ 

- - - 19 
as far apart as possible in the complex number -plane. (pi_ is a possible 

value of the received sampler., in the-absence of noise. The procedure 
~ 

for determining p~ was described in Section 5.1.) If the two values of 
~ 

p~ are as far-apart as possible, the_ two chosen expanded vectors derived 
~ 

from one vector at time t=iT are assumed-to. be· those,_ of the four possibie 

ones, with the lowest costs. For example if c!=o for one expanded vector 
~ 

of a parallel transition, .then the other. expanded vector o"f the same 

parallel transition should be such that c i =4, (see Figure 2 .5 .4) • The 

state redefinitions of Tables-5.3.1 and 5.3.2 are such that this is the 

. 19 
case. Clark and Cain note that parallel transitions in the code 

trellis diagram limit the maximum coding gain to 3dB, (given the 
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arrangement·just described for the values p~). It was as an attempt 
l. 

to develop state redefinitions with code trellis diagrams whi.ch do not 

have parallel transitions, that the Second Approach state redefinition 

technique was tried. In order to avoid parallel transitions in. the 

code trellis diagram the following rule, concerning the regrouping of 

states as originally defined into redefined states, is applied. States 

as originally defined are grouped into redefined states, such that no 

two states as originally de.fined in a given redefined state have the 

same combination of the values of q~ k 1 ,q~ k 
2

, ... ,qi' 
2

.- The st;ate ].- + ].- + -

redefinition of Table 5.3.3 is effectively that for states-as:orlginally 

defined, for a code with constraint length_ k=2., whereas the. code used, 

(Code 1), is a code where k=3. In such a regrouping 4k-2 -red~flned: 

states are produced; each containing four states as·originally-defined 

and each of these four states {'lS originally defined has a different 

value of the_ symbol qj__k+l, so that all possible- values· of. qj__k+l are 

included in each redefined state. Such regroupings effec-tively. delete· 

q~ k 
1 

from the sequence of symbols defining the state.· ·In- general, 
J.- + 

by includii)g all combinations of the values _of the symbols qj__k+l ,qj__k+
2

, 

..• ,q~ 1<. ., in each redefined state, wher-e k~j+2, the resulting states 
J.- • J 

are those for a constraint length-(k-j) code,_ and there_ are 4k-l-j ~tates. 

This is a technique, usually termed reduced-state_ Viterbi detection-, 

which is used on channels with intersymbol interference to reduce 

detector complexity. 

Given the state redefinition, the detector operates in the following 

manner. (In the case of the First Approach detectors, this procedure 

takes place after choosing the two expanded vectors of each original 

vector, as described earlier.) For each redefined state, the detector 
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chooses the lowest-cost expanded vector which has this redefined state: 

The calculation of the costs of the expanded vectors is fully explained 

in Chapters 3 and 4. It is clear that the procedure is exactly as that 

for the corresponding Viterbi or pseudobinary Viterbi. detector, except 

that the redefined states are used. 

Graphs 5.3.1 and 5.3.2, for Codes 1 and 3 respectively; give the 

results of computer simulation tests for schemes using the state 

definitions given in Tables 5.3.1 to 5.3.6. These are graphs of.bit 

error rate (BER) as the signal to noise ratio, Eb/N
0 

is varied. :_~ is 

the average energy transmitted per data bit and N
0

/2 is the two-sided 

power spectral density of the additive white Gaussian noise ... (See· . 

Appendix AS for more details of the simulation techniques. Appendix AB 

gives the notation used to describe the variants of the .. sche!Jle·s which 

were tested by computer_simulation.1 The accuracy of the results is of 

the order of ±0.6dB at bit error rates (BER)· in the regi6n of 1 in 10
3 

. . 

This low_.ac_curacy is largely due to the long error bursts occurring in 

many cases.. The error burst characteristics,· iri. terms of the ·average 

number of bij: errors per burst at various BER_s,. are given in Table 

5. 3. 7. The definition of an error burst i~ given in Appendix AS. From 

Graph 5.3.1 it is clear that all the state redefiniti.ons produce very 

poor detectors. The reduced·-state Viterbi scheme,. (Rec~la) ,_is _better 

than the scheme using the Rec~lb state redefinition, and the pseudo-

binary scheme using the Rec~Pbla state redefinition is the best overall. 

Table 5.3.7 shows that the number of errprs per burst for all the 

schemes is very large, which is the same as for System 1 detection for 

Code 1, (see Table 4.1.1). 

Graph 5.3.2 is the equivalent of Graph 5.3.1, for Code 3. In 



agreement with Table 4.1.3, the numbers of errors per burst in Table 

5. 3. 7 for the schemes using Code 3, are considerably smaller than: 

those for the schemes using Code 1. In particular the pseudobinary 
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scheme where. the Rec=Pb3 redefinition is used begins to gain over. 

threshold detected QPSK below a BER of l in 10
3

. Clearly, the technique 

of ensuring that the expanded vectors of parallel transitions. have 

values of Pi spaced as far apart as possible in the complex number 

plane, does in fact pay-off. Tests were conducted with Code 3 using 

First Approach State redefinitions which did not have this character-

istic, at a few values of Eb!N
0

. In all cases the tolerance to noise 

was considerably inferior. 

From the results of Graphs-5.3.1 and 5.3.2 it is clear that these 

state redefinition techniques produce a very inferior performance for 

a relatively small reduction in complexity, compared ·with Viterbf· · 

detection. It is clear that reduced-state Viterbi ·detection. for coded 

systems, fRec=la) , does not perform nearly as well as the same 

. . ·. . ·. . 64 ,65 
technique applied to channels with intersymbol interference. This·· 

is because in. the latter case the detector ignores only" those components 

of the channel sampled impulse response which are negligible, compared 

with the main components. In a convolutionally .coded system, all 

symbols involved in the original definition of a·state have equal_ 

significance, and the removal of any one symbol from the definition of 

a state inevitably leads to a large performance degradation. Comparing 

these schemes with pseudobinary Viterbi detection, only the scheme 

using the Rec=Pb3 redefinition performs better. The advantage that the 

pseudobinary Viterbi detector has over most of these schemes, is that 

the state redefinition is based on the selection of those two expanded 
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vectors of a given vector with the lowest costs, which at least 

involves a measure of the likelihood of each: expanded vector. State 

redefinition techniques based on the possible values of the data symbols 

are not based upon the distances in unitary vector space between. 

sequences of coded and mapped symbols {p~}, which in fact determine 
1 

the likelihoods of the possible sequences. The exceptions are the 

pseudobinary First Approach state redefinitions, which.consider this 

to the extent that the expanded vectors of parallel transitions have 

values of p~ spaced as far apart as possible· in the complex number 
1 

plane. In conclusion, such state redefinitions are not viable 

techniques for reducing the complexity of the detector for coded BPSK 

modulation. 

4-LEVEL VALUE OF q~ RECODED BINARY VALUE OF q~ 
J J 

0 0 

1 . . 0 

3 1 

2 1 

TABLE 5.3.1: State Redefinition Mapping Pbla for the First 
Approach (Pseudobinary) Technique for Code 1 

4-LEVEL VALUE OF q~ RECODED BINARY VALUE OF q~ 
) J 

0 0 

1 1 

3 0 

2 1 

TABLE 5.3.2: State Redefinition Mapping Pb3 for the First 
Approach (Pseudobinary) Technique for Code 3 



REDEFINED STATE SUBSETS OF ORIGINAL STATES 
DESIGNATION REGROUPED INTO A REDEFINED STATE 

[0 0] [3 0] 
0 

[1 0] [2 0] 

[0 1] [3 1] 
1 

[1 1] [2 1] 

2 [0 3] [3 3] 

[1 3] [2 3] 

3 [0 2] [3 2] 

[1 2] [2 2] 

TABLE 5.3.3: Non-Pseudobinary Second Approach State 
Redefinition ·la for Oode 1 

. 

REDEFINED STATE SUBSETS OF ORIGINAL STATES 
DESIGNATION REGROUPED INTO A REDEFINED 

[0 0] [3 3] 
0 

[1 1] 12 
.-
- 2! -
-

[0 1] [-3 2] 
1 

[1 3] [2 0] 

[0 3] [3 0] 
2 

[1 2] [2 1] 

3 [0 2] [3 1] 

[1 0] [2 3] 

STATE 

TABLE 5.3.4: Non-Pseudobinary Second Approach State Redefinition 
lb for Code 1 
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REDEFINED STATE SUBSETS OF ORIGINAL STATES 
DESIGNATION REGROUPED INTO A REDEFINED STATE 

[0 0 0] [0 2 0] [1 3 0] 

0 [0 1 0] [1 0 0] [1 2 0] 

[0 3 0] [1 1 0] 

[0 0 l] [0 2 1] [1 3 1] 

l [0 1 1] [1 0 1] [1 2 1] 

[0 3 1] [1 1 1] 

[0 0 3] [0 2 3] [1 3 3] 

2 [0 1 3] [1 0 3] [1 2 3] . 

[0 3 3] [1 1 3] 

[0 0 2] [0 2 2] [1 3 2] 
.. 

3 [0 1 2] [1 0 2] [1 2 2] 

[0 3 2] [1 1 2] 

[3 o·ol [3 2 0] [2 3 0] 

4 [3 1 0] [2 0 0] [2 2 0] .. 
-

[3 3 0] [2 1 0] 

[3 0 l] [3 2 1] [2 3 1] 

5 [3 1 1] [2 0 1] [2 2 1] 

[3 3 l] [2 1 1] 

[3 0 3] [3 2 3] [2 3 3] 

6 [3 1 3] [2 0 3] [2 2 3] 

[3 3 3] [2 1 3] 

[ 3 0 2] [3 2 2] [2 3 2] 

7 [3 1 2] [2 0 2] [2 2 2] 

[3 3 2] [2 1 2] 

TABLE 5.3.5: Non-Pseudobinary Second Approach State Redefinition 
3a for Code 3 
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REDEFINED STATE SUBSETS OF ORIGINAL STATES 
DEFINITION REGROUPED INTO A REDEFINED STATE 

[0 0 0] [2 0 0) [3 .1 0) 

0 [1 0 0) [0 1 0) . [2 1 0) 

[3 0 0] [1 1 0) 

[0 0 1) [2 0 1) [3 1 1) 

1 [1 0 1) [0 1 1) [2 1 1) 

[3 0 1) [1 1 1) 

[0 0 3) [2 0 3) . [3 1 3) 

2 [1 0 3) [0 1 3) [2 1 3) 

[3 0 3] !1 1 3) 

[0 0 2) [2 0 2) [3·1 2) 

.. 
3 [1 :o 2) [0 1 2) [2 1 2) 

[3 0 2) [1 1 2) 

[0 3 0) . [2 3 0) [3 2 0) 

4 
[1 3 0) [0 2 0) [2 2 0) 

[3 3 0) [1 2 0) -
. 

[0 3 1) [2 2 1) [3 2 1) 

[1 3 1) [0 2 1) [2 2 1] 
5 

[3 3 1) [1 2 11 

[0 3 3) [2 3 3) [3 2 3) 

6 [1 3 3) [0 2 3) [2 2 3) 

[3 3 3) [1 2 3) 

[0 3 2) [2 3 2) [3 2 2) 

7 [1 3 2) [0 2 2) [2 2 2) 

[3 3 2) [1 2 2) 

TABLE 5.3.6: Non-Pseudobinary Second Approach State Redefinition 
3b for Code 3 
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APPROXIMATE AVERAGE NUMBER OF BIT ERRORS 

SCHEME PER BURST, AT GIVEN BER 

3 X 10 
-2 

1 X 10 -2 
3 X 10-3 

l X 10-3 

/C=l/Det=V4/Rec=Pb1a/ 280 360 - 400 

/C=3/Det=V8/Rec=Pb3/ 50 46 40 30 

/C=l/Det=V4/Rec=la/ 300 310 580 380 

/C=1/Det=V4/Rec=1b/ 970 >1000 >1000 >1000 

/C=3/Det=V8/Rec=3a/ 56 60 43 35 

/C=3/Det=V8/Rec=3b/ 75 75 71 69 

TABLE 5.3.7: Error Burst Characteristics for the Schemes Using 
. State Redefinition Techniques for Coded 8PSK, 

Using Codes 1 and 3 



RedefCned Scace ~l Redef(,ned Scuce ~L•1 · 

--=::::------------------~-~~ 0 0 0 0 

0 1 

1 0 

1 1 

FLgure 5.3;1 A SeccLon of The RedefCned-Sccce Code TreLLLs 
DLagram for Syscem Pb1a (Code 1) 

0 1 

1 0 

1 1 
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0 1 0 0 1 0 

0 1 1 0 1 1 

1 0 0 1 0 0 

1 0 1 1 0 1 

1 1 0 

1 1 1 

FLgure 5.3.2 A Se6~Lon of The RedefLned-State Code TreLLLs 
DLagram for.System Pb3 <Code 3) 



Graph 5.3.1 Redefined State Viterbi Detection. Code 1 

0.1 

0:: 
uj 0.01 
£D 
Q) -0 

0:: 
!.... 

2 
!.... w 
;!: 0.001 
CD 

0.0001 

\ 
\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
}; 

' ' 
\ 

' \ 
' \~ 

' 

0.00001·!-, ---.,.-"----,..------.-----,-----! 
0 2 4 6 

Eb/No [dBj 

COMMON ATTRIBUTES 
/M=8/C=1/N=64/ 

8 10 

259 

Legend 
!; /M=O/Dei=T/ 

X ~I=V.!_GL-
r:::J /Dei=V4/_R_ec=lo/_ . 

Z1 /Dei=V4/Rec=lb/ 

Sl( /D_e_t:=_V:"J:Rec~~bln( 



Graph 5.3.2 Redefined-State Viterbi Detection. Code 3 
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. 5.4 SOFT-DECISION SYNDROME DECODING 

Syndrome decoders were among the first considered for application 

.to convolutionally encoded systems, simply because at the time Maximum 

. i . 19 Likel hood detection was considered too complex. In Section 5.2 it 

was noted that the inverse coder, (a feedforward filter), could be used 

as the first part of a·system using two detectors, (a dual-detector 

system). ·The inverse coder would produce a sequence of initial (soft) 

·detected data, and this would be improved upon by a more sophisticated 

.second-stage d!3tector. · It was hoped that this system would not have 

some of the error burst problems of the systems of Chapter 4, and would 

require a second~stage detector which is relatively simple compared 

with ·the Viterbi Algorithm detector. Also; in Section 5.2 it was shown 

that most errors in the received samples {r,} are where ri is nearer 
l. . 

to a point Pi which is either directly clockwise or anticlockwise from 

the transmitted point p,, in the complex number plane. (Such errors are 
l. . 

called single boundary crosses as in Section 5.2.) It was felt that a 

syndrome decoder could exploit this latter point. This is discussed 

more fully later. 

Initial dual-detector studies concentrated on the inverse coder 

of· Section- 5.2 producing a sequence of soft-detected symbols. The 

second detector would then permutate reasonably short blocks of the 

inverse coder output sequence. The cost of each block of permutated 

data symbol values, q! , 
1

,q! , 
2

, .•• ,q!, is determined by calculating 
~-N+ l.-N+ 1. 

the squared unitary distance between the received samples r. , 
1

, 
1-)(,+ 

r. , 
2

, ••. ,r,, and the complex numbers {p!} which result from coding 
l.-.c+ l. J 

the {q!} above, and mapping the resulting code symbols {c!} onto the 
J J 

complex number plane. Figure 2.5.4 defines the mapping. The unitary 
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distance measure is defined in Appendix A7. These costs include that 

for the ·non-permuted block of possible data symbol values. The 

resulting costs are ranked and the value of ql-i+l in the permutated 

block of possible data symbol values with the lowest cost, is taken to be 

the (hard) detected data symbol. The use of the inverse coder to produce 

a sequence of soft decisions should reduce the number of permutations 

which need to be considered, as long as the bit error rate in the inverse 

coder output sequence is not too high. This is because in such a case, 

the sequence at the output of the inverse coder will include only a few 
- -- . 

errors ·.i;. the ... {qi r. For ·the calculated costs to be· reasonable measures 

of the"likelfhoods of the permutated blocks of possible data symbol 

values,_ the blocks must be reasonably long. For a given block of possible 

data symbol values with i components at ·the output of the inverse- coder, 

the·total number of permutated blocks of possible data symbol values 
.. -

i 
to• be considered .must be reduced from the _maximum of 4 ' which would be 

proh~itive for even quite small values of i. Attempts to restrict· the 

number ·of such .permutated blocks by allowing only a few changes in the 

blocks-of possible data symbol values failed, because such minor 

changes could produce quite major changes in the complex numbers {p:}. 
~ 

Converseily, a block of permutated data symbol values where quite a few 

of the component values are changed, may produce only a few changes in 

the cgmplex numbers {p: } • · In addition the poor performance of the 
- . 1 

inverse coder, (a.bit error rate approaching 0.5 at typical signal to 

noise.ratios), drastically limits the performance of the second detector. 

The study then considered the use of table look-up syndrome decoding 

19 
as a basis for the detector. The idea is very similar to that for the 

scheme just described, in that an initial selection of the most likely 

data symbols is made, before any intensive processing is undertaken. 
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In the former case this initial selection is provided by the sequence 

of possible data symbol values at the output of the inverse coder. 

In this case a sequence of .syndrome symbols, (see Appendix A6), is used 

to select a list of .possible changes to the code symbols {c;_l. (The 

stored sequences of symbols which produce these changes are called 

error vectors. J. The syndrome symbols are binary-valued. In addition, 

the fact that most errors in the received samples are single boundary 

crosses, ·(Section. 5.:2> •: means _that a considerable number of possible 

error vectors· can· be. deieted ·from the list for a particular syndrome 

sequence.· A singl·e boundary cross is where the point p~ which is 
l. 

nearest to the received sampler,, is either directly clockwise or 
. l. 

directly. anticlockwise, from the point pi actually transmitted, (see 

Figure 2.5.4). Aiso; for· reasonably high signal to noise ratios, there 

clr~ occasions When -error's in the received samples become more seldom . 

. In such.low•noise periods the·Viterbi Algorithm, which performs the 

same operation.; wh·atevei the noise level is, will clearly perform 

little better· tlian much .simpler detectors, such as the inverse coder. 

Therefore a detector which adapts the amount of processing undertaken, 

to suit the noise level, could be an advantage. A table look-up 

syndrome decoder could do this to the following extent. When ·the 

~"receiyed-sample.s over a-period-of time-·are the ·same as those trans-

mitted, the syndrome sequence will be all-zero, indicating that no 

19 
errors in the received samples have occurred. In such cases the 

inverse coder can be used as the detector as in Section 5.2. · Since 

the processing load for such a system varies from symbol interval to 

symbol interval, buffer stores must be provided to store received 

samples {ri} at the input, and detected symbols {qj_} at the output, 
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of the detector. This added complexity is .probably not compensated 

for by an equivalent reduction in the de.tector's complexity since, 

from Table 5.2.2, errors .in the received samples are quite frequent 

even at reasonably high signal to noise ratios. 

A short description of the relevant· theory is now given, followed. 

by a description of the system as implemented. 

The notation of Appendix A6 will be used. This notation differs 

from that used in the other· chapters of. this thesis, and in the · 
-. . . . -

remainder of Chapter 5. SequeilCies ·.of I:Ji_nai:y-valued symbols (having the 

positive values 0 or 1) ' are presented as polynomials in the delay 

operator D. The coder is described as a.·finite matrix whose elements 

are polynomials in the delay operator o .•. · as is the· circuit which 

produces the sequence of syndrome symbols,- (called the syndrome-former). 
. - . -

This change in notation simplifies_th~:description of tha detector. 
. . . T . - . • - . 

The synarome-former H (D), which generates the syndrome sequence, is 

- 77 
by definition· the null-space of ·the code generated by the coder G(D) , 

and is such that ·_ -

For Code 1, 

G (D) 

. T . 
G (D) H (D) = 0 

l+D+D
2 

2 
D 

(5.4.1) 

(5.4.2) 

T 
H (D) is not uniqlie as noted-in Appendix A6.· Equation 5.4.1 is used 

T 
to generate a syndrome-former H (D) for Code 1. 

2 3 2 4 
[D+D +D ,D ,l+D+D ] (5.4.3) 

The operation of the detector is as follows. The possible value of 

received sample rj in the absence of noise, Pjr which is nearest to 
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rj in the complex number plane, is found. p~ is mapped onto the 
J . . . 

vector of binary code symbols [c': (1) ,c': (2) ,c': (3)]•;. (This mapping is 
J J J -

the inverse of the mapping which at .the transmitter converts the 

vector of code symbols [c. (1) ,c. (2) ,c. (3)] onto the. complex number pJ., 
. J J J 

given in Figure 2.5.4.) The sequences of these code-symbols are given 

by the vector of polynomials in the delay operator· D, C" (D)= [Cl (D) , c;; (D) ,C) (D)] 

i-1 
where C~(D) = cl(.ll)+c2(£)D+ ... +cj'(£)D , at. time t=iT. 

The sequence of code symbols given by the vector :c;, (D) ·may not be 

one that· can be generated by the coder. This is because· no·ise may 

change some of the values of the transmitted. complex numbers. {p.}, 
. . ~ 

such that some of the values -of the binary code 'symbols (c•: (R,)} are 
.• . . . . J 

not the same as the corresponding values at .the transmitter: These 

changes in the values of the binary code· symbols are given by the 

three-component vector of polynomials E(D) =[E
1

'(D) ·,E2 (D) ,E
3 

(D)] where 

. . . i-1 . . : . . 
E£(D)=e

1 
(r.)+e

2
(r.)D+ •• _.+e

1
(£)D . and ej(£) is binary-valued. The 

code generated at the t'ransmitter is C(D) =[C
1 

(D) ,c
2
_ (D) :c

3 
(D) l where 

.· . . . ·.i'-1 :· 
C£(D)=c

1
(£)+c

2
(£)D+ .•. +c

1
(£)D . C(D)" and C"(D) are 'related by 

Equation 5.4.4 

C"(D)- C(D) (i)E(D) (5.4.4) 

where Q denotes MODUL0-2 addition. The task of the detector .is simply 

to determine E(D), since if E(Di is known, C(D) can·be determined. 

To this end, the detector uses the syndrome-former_HT (D) to determine 

the sequence of binary-valued syndrome symbols, S.(D), from the three-

component vector C" (D) . 

8 (D) 
T . 

C" (D) H (D) (5.4.5) 
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In Appendix A6, it is shown that S(D) is also given by 

f3(D) = E(D)HT(D) (5.4.6) 

E(D) cannot be uniquely determined from Equation (5.4.6), given f3(D). 

Equation (5.4.6) defines a set of possible vectors {E(D)} given S(D). 

The detector's task is to produce an estimate of E (D) . From this, 

Equation (5.4.4) can be used to produce an estimate of C(D), called 

C'(D), which is hopefully the same as C(D). 
. -i 

The 1nverse coder G (D) 

is then· used to produce the two-component vector of polynomials Q' .. (D)· •. 

. -1 . 
Q'.(D) = C' (D)G (D) (5.4.7) 

i-1 . 
Q'D()=[Qi(D),Q2(D)] where Q,;,(o)=ql(tl+q2(.£)D+ •.. +qi_(t)D .• · .. The· {qjW} 

have- the possible values 0 or 1. The output.of. the inverse ·coder at 

time t=iT is the two-component vector (·q~ (1) ,q~ (2)].. · This .is uniquely 
J J 

related to the four-level detected data symbol q~ by the. Gray code 
. . . J 

mapping of Table -2 .1.1. Clearly it would be possible to pass C" (D) 

directly. through the inverse coder, and then convert the resuLtant 

two-component vector of polynomials in D into detected data which are 

hopefully·equivalent to the transmitted data; It was decidedto do the 

correction before the inverse coder, co"nverting C11 (D) into c • {Pl, _Since 

in comparing possible sequences in terms of costs as described later, 

(soft-decision detection)' a method which peimutates the inverse coder 

output sequence requires a coder at the receiver, in order to determine 

the code sequences for the permutated data_sequences. The block 

diagram of the implementation is given in Figure 5.4.1. Short blocks 

of code symbols are permutated. Such a block is defined as a vector 

[Cl(D) ,C2(D),C)(D)] as before where the vector's elements are now 

taken to be the truncated polynomials, 
i-£ i-1 

C~(D)=c'.' , 
1

(t)D ~+ ... +c'.'(£)D , 
),. l-A. + l 

" 



where t is an integer. The stored syndrome symbols provide the 
e 

address of a look-up: table which consists of a list of blocks of 

possible error symbols. Such a block, called an error vector, is 

the vector [E
1 

(D);E
2

{D),E
3

(D)] where the vector's elements are now 

. i-t. i.:.l 
the truncated polynom1als, E (D)=e. , 

1
(t)D + ••• +e. (t)D . The 

R, ~ _....., + 1 
e 

error vectors are stored in order of likelihood (see later) • The 
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vector [Cl (D) ,c:; (D) ,C) (D)] is permutated by adding, HODUL0-2, [Cl (D) ,c;z (D) ,C) ([ 

to one of the stored error vectors [El (D) ,E
2

(D) ,E
3

(D)]. 

The result of such an addition-is called a permutation. The costs of 

the resulting permutations are determined using the stored incrementaL 

cost look-up tables. An incremental cost is the sguared unitary 

distance between a received sample rj·, and a possible value of rj 

the absence of noise. There are eight such possible values of.r., (see 
J . 

Table 2.5.4). Appendix A7 defines the ~nitary distance measure. The 

detector determines the permutation with 'the 'lowest· cost: The values 

oi the binary symbols e. (1) ,e. (2), and e. (3) in the error vector which 
. . . J J J 

produces the lowest-cost permutation are added to t-he ;,orresponding 

symbols c':(l),c':(2), and c':(3), to give the correcte(l code symbols· 
J J J 

c~{l),c~(2) and c~(3). With correct detection c~-(t)='c.(t), for 
J J J J J 

2=1,2 and 3. The value of j is detector-dependent _and will be defined 

later. The corrected code symbols are fed to the inverse. coder, wh0se 

output is the detected data sequence. The three symbols e. (1) ,e. (2) 
J J 

and e. (3) are called the correction symbpls: 
J 

The error vector tables are produced by one of two methods, the 

latter method being used in practice. The first method uses the 

following equation to estimate the likelihood, (probability), of various 

error vectors. 
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L [Tf 
j=l 

- e e 
p p

0
(i.)J(l-p) , for l~n st 

e e 
(5 .4 .8) 

s . J . s . 

psis the error rate in the complex numbers {p~} at a given value of 
. 1 

& /N
0

, p (i.) is the proportion of all errors in the {p~} which are 
b 0 J 1 

single (i.=l), double (i.=2), triple(i.=3), or quadruple (i.=4), 
J J . J J 

boundary crosses at the same value of 1b/N
0

, (see Section 5.2). R,e is 

as defined earlier and n is the number of the {p~} which are changed, . e ~ 

given the error vector. ~/N0 is the signal to noise ratio where ~ 

is the average energy transmitted·per data bit, and N
0
/2 is the two-

· sided power spectral density.of the additive white Gaussian noise. 

Equation 5.4.8 assumes that errors in the {p~} are independent .. The 
. . 1 

values of ps and p
0

(ij) are-taken from Table 5.2.2 at ~/N0=5.5dB. 

For a given combination of the syndrome symbols, the error vectors are 

listed in order of their values of L, that with the highest value of. L 

at the top of the list. The highe-r L is, the more likely the error· 

vector is. A minimum value of L is given to restrict the size of the . 

look-up tables. This method of generating the ·error vector tables is 

optimal, under the assumed conditionS. _The problem is. that as "t. 
. . . . e 

increases, the computational effort to produce the tables becomes 

prohibitive. Since most errors in the_ {p.} consist of single boundary 
1 

crosses, (see Table 5.2.2), the following technique for producing the. 

look-up tables was used in practice. Only error vectors which produce 

changes in the vector [Cl(D) ,C2(D),C](D)] such that the changed values 

of the {p ~}, (see earlier) , are directly clock wise or directly anti-
1 . 

clockwise from the unchanged values of the {p~}. are included in the 
1 

look-up tables. Such changes to the {p~} were called single boundary 
1 
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crosses in Section 5.2. L is now redefined as the number of the {p!} 
. ~ 

which are changed, because of the changes in the vector [C]' (D) ,c:; (D), c:; (D)]. 

(L is now equal to n in Equation 5.4.8}. Computer simulation 
. . e 

tests showed that the two methods of producing-the look~up tables 

yielded similar performance results. 

A problem occurs in that the combination of the values of, for 

example e. (1} ,e. (2}, and e. (3}, which produce a single boundary cross 
J J J . 

in the complex number p~, are dependent on the values of c':(ll ,c':(2) 
. J . . . J J 

and c':(3}. The look-up tables must store all combinations of the values 
J 

of e. (1} ,e. (2} and e. (3} which produce a single boundary cross ·in the 
J J . J 

value of Pj· Clearly this requires extra storage capacity. A test 

is required,_given c':(l},c':(2}, and c'!(3), to find the values of e.(l}, 
J J J J 

e. (2} and e. (3}, which produce a single boundary cross in the value of 
J J 

Pj· This adds to the complexity of the detector. 

Two different detectors are considered. The first is a syndrome 

19 
resetting detector and the number of symbols of the syndrome sequence· 

which are stored, L , is the same as 2 
s e 

Once the correction symbols 

e.(l} ,e.(2} and e.(3} have been chosen a sequence oft binary symbols 
J J J e 

is added, MODUL0-2, to the stored syndrome symbols. This operation is 

called syndrome resetting. This sequence of binary symbols constitute 

the syndrome symbols which would be stored in the syndrome register 

if the change in C" (D) caused by e. (1} ,e. (2}, and e. (3}, is the only 
J J . J 

error in C" (D) which affects the syndrome symbols presently stored. 

Clearly the change to C" (D) is assumed to be correct. Syndrome resetting. 

removes the effects of corrected errors in the stored syndrome symbols. 

For this detector, the value of j for the correction symbols e.(l} ,e.(2}, 
J J 

and e.(3}, is (i-£ +1}. Given correct syndrome resetting, (which occurs 
J e 
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if the changes made to C"(D) are correct), the resultant syndrome 

symbols in the syndrome register, are those for the case where the 

{ej(l)}.{ej(2)}. and {ej(3)}. for j<(i-ie+l), are all zero.· The other 

h i 1 d f . . d . 19 . 1 f se erne s cal e de 1n1te ecod1ng and 1nvo ves no eedback of 

possible syndrome symbols. The stored error vectors have 4 more 

symbols than does the syndrome sequence, (i =L +4). This increase in 
e s 

Z is because, in contrast to the case where syndrome resetting is used, 
e 

the resultant syndrome symbols in the syndrome register after a change 

to C" (D), are not those for the case where the {e. (1) }.{e. (2)}. and 
J J 

{e.(3)} for j<(i-ie+l) are all zero. In fact the syndrome symbols are 
J 

still those for the ·{e. (1)} ,{e. (2)} and {e. (3)} which are required to 
J J J . 

correct C"(D) to give C(D). In this case the syndrome symbol at time 

t=(i-L +l)T is a function of the values:{e,(l)}.{e,(2)}. and {e.( 3)}. 
s J J J 

for j=(i-L :..3), (i-L -2) , ..• ,(i-L +1), from Equations 5.4.3 and 5.4.6, 
s s s 

Therefore possible values of the correction symbols over this time 

period must be included in the error vectors, so that i =L +4. 
·e ··s. 

Clearly the look-up tables are considerably larger for definite decoding, 

than for the syndrome resetting case, (if L is fixed). The correction . s 

symbols e.(l) ,e,(2) ,e,(3), at time t=iT, are those where j=i-L +1. 
J J J s 

The results of computer simulation tests on the syndrome resetting 

and definite decoding detectors are given in Graphs 5.4.1 and 5.4.2 

respectively. These are graphs of bit error rate (BER) as the signal 

to noise ratio, ~/N0 is varied. (See Appendix AS for more details of 

the simulation techniques. Appendix AB gives the notation used to 

describe the variants of these detectors which were tested by computer 

simulation.) The accuracy of the results for Graphs 5.4.1 and 5.4.2 

are respectively ±O.SdB and ±0.2dB, for BERs in the region of 3 in 10
3

. 
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(The difference is due to the large error bursts for most of the 

systems of Graph 5.4.1). 

Table 5.4.1 outlines the error burst characteristics for the 

syndrome resetting variants, in terms of the average number of bit 

errors per burst at various BERs. Appendix AS defines an error burst. 

It is clear that none of the schemes both restricts the burst size and 

provides a performance which is degraded by less than 3dB in tolerance 

to noise, compared with the 16-vector Viterbi detector of Chapter 3. 

As L increases, the number of permutations to be considered, and the 
s 

total required storage capacity, increase dramatically. This is 

outlined in Table 5.4.2. Clearly, the total storage requirement rises 

steeply with L and E . (E was called n earlier in this section,) 
s m· m e 

Also, as both L and E rise, performa~ce does not improve over that 
s m 

of the scheme where L =7 and E =4. From Table 5.4.1 most schemes have 
s m 

a very large number of errors per burst. It is useful to consider the 

schemes where L =9. ForE =2 it is clear that the number of errors 
s m 

per burst is not much greater than that for Viterbi detection, (Table 

3.2.2), whereas for E =4 the number of errors per burst is large, and 
m 

increases as the noise level decreases. An analysis of the error bursts 

of the schemes where L =9, shows that the low number of errors per burst 
s 

for low values of E is due to the fact that few syndrome resettings 
m 

occur after an initial wrong correction is made. After an initial 

correction error, the binary symbols added to the contents of the 

syndiome register are incorrect so that the resulting contents of the 

syndrome register are incorrect. During the next symbol interval the 

syndrome symbols will address the wrong table of error vectors which 

may well yield further incorrect values for e. (l) ,e. (2) and e. (3) 
J J J' 



Clearly this problem is liable to perpetuate. For low values of E , 
m 

once an initial error has been made, few of the binary symbols added 

to the contents of the syndrome register in subsequent syndrome re-

setting operations are non-zero, either because there are no error 

vectors. in the addressed table, or because the chosen error vector is 

such that e. (~)=0, for ~=1,2.,3. In such cases the incorrect syndrome 
J 

symbols in the register are shifted out very quickly, so that correct 

operation resumes. From References 19 and 79, long error bursts may 
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be due to the following point. If L is too small there may not always 
s 

be a path, (the result of a number of syndrome resettings over future 

symbol intervals), back to the all-zero syndrome sequence from any given 

syndrome sequence, even i£ no further errors in the {p~} occur:
9 

. ~ 

Clearly the number and lengths of such paths, (if. they exist) , also 

affect the likelihood of resuming correct decoding. The error vector 

table chosen in the next symbol interval after the syndrome has been 

reset, falsely or correctly, is always such that the sequence C'(D) 

T 
which is produced, is such that C'(D)H (D)=O, whatever error vector, 

19 
E(D), is chosen. This means that there is no way of testing C'(D) to 

see if a false syndrome resetting has occurred. 

Table 5.4.3 gives the error burst characteristics for the definite 

decoding variants of Graph 5.4.2. The numbers of errors per burst are 

very similar to those of the inverse coder, (Table 5.2.1), but the 

tolerances to noise of these schemes are very inferior to those of the 

syndrome resetting variants. This is because, at a given value of L 
s 

the syndrome resetting detector needs to consider far fewer possible 

error vectors than the definite decoding scheme, (since ~ =L in the 
e s 

former case). The resulting sequences of complex numbers {p~}, (see 
~ 
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earlier), are distanced quite far apart in the unitary vector space. 

This means that the·costs to be ranked are reasonable measures of 

likelihood. On the other hand, in the definite decoding case, many 

more error vectors are stored per look-up table, and many produce 

permutations with simi.lar costs. Therefore the cost in this case is 

less reasonable as a measure of likelihood. A particularly interesting 

case where for both schemes the cost measure for a given value of L 
s 

is degraded, is the following. Consider the case outlined in Figure 

(Here the code symbol c,=2
2
c. (1)+21c. (2)+2°c.(3), as in 

. ~-~ l. 1.-
. 5.4.2. 

$ection 2.5.) · A single boundary cross has occurred but the received 

sampler. is closer to the point p, where c,=4, than to the point p
1
, 

l. l. l. . 

. where ci=6. The foriner point- is that value of P.f. which is chosen 

after a double boundary cross, (as described earlier), while the.latter 

point is the transmitted value of p,. The correct permutation is that 
J. 

where c'.':::S is changed to 
J. 

c ~ =6, but since 
J. ri is closer to the point 

where c. =4, the detector may change c'.'=S to c ~ :::4. Clearly, this can 
J. J. J. 

only occur if the list of error vectors contains an error vector which 

can produce this latter change. As L is increased, the likelihood that 
s 

the list of error vectors contains an error vector producing the latter 

chang~ ~ecreases. In addition t6 the above, there may be occasions 

when the correct error vector is not included in the look-up table, 

because it involves double, triple, or quadruple, boundary crosses. 

Also, for a given value of L , there are a finite number of non-zero 
s 

error vectors for the all-zero Syndrome sequence, which these schemes 

clearly cannot correct. The latter problems are secondary to the first 

problem stated above, which in various analyses of computer simulation 

tests,has been the major cause of detection errors. 
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Clearly both schemes do not provide a viable alternative to the 

yiterbi detector,· in terms of a trade-off between complexity and 

tolerance to noise. Clark and Cain note that soft-decision techniques 

are not usually used in look-up table schemes, because of the large 

k . . abl . 19 . h d b h loo -up t e s1ze. Thls as in eed been the case for oth se ernes . 

. Syndrome decoding schemes which use the Viterbi algorithm have been 

80-83 
put forward, but in this case a large saving in complexity, over 

_tpe ·viterbi'Algorithm detector, cannot be achieved. . . . 

The_ advantage of using a technique which adapts to the prevailing 

noise level, as noted earlier, is· exploited in the system of Section 6.2. 
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SCHEME '• APPROXIMATE AVERAGE NUMBER OF BIT ERRORS 
(Syndrome Resetting) PER'BURST, AT GIVEN BER 

6 X 10 -2 
2 X 10 

-2 
3 10 

-3 
1 

-3 
X X 10 

/L =7/E =3/ 261 438 - -
s m 

/L =7/E =4/ 119 lo6 117 120 
s m 

/L =7/E =5/ 255 348 290 250 
s m 

/L =8/E =4/ 270 300 - -
s. m 

/L =9/E =2/ 12 10 - -
s ffi' .. 

/L =9/E. =3/ . .. 25. 22 20 -s · ·m· 

/L =9/E =4/. 171 169 180 -s m 

/L-=10/E ";5/. 
s m 

80 75 62 65 

TABLE 5 ;4 .1·: Error Burst Characteristics for Soft-Decision Table 
Look-up Syndrome Decoding of Coded 8PSK, for Code 1, 
Using Syndrome Resetting 

.. -
L· 7 7 9 9 10 11 

S· 

- -E 2 4 2 4 4 4 m 
[Only single boundary 
Crosses) 

Total Number ·cif Error 210 3990 351 12,825 20,685 31,713 
Vectors 

Average ,Number of Error 6.6 125 o. 7 25 20.2 15.5 
vec~ors Per.Table 

Total Storage 4.41 83.79 9.477 346.275 620.55 1046.79 
Requirement (k bits) 

TABLE 5.4. 2: OUtline of the Look-Up Table Storage Requirements for 
Various Configurations of the Syndrome Resetting 
Detector, for Coded 8PSK Using Code 1. 



SCHEME '• 
APPROXIMATE AVERAGE NUMBER OF BIT 

(Definite Decoding) ERRORS PER BURST, AT GIVEN. BER 
.·· 

2 X .10 
-2 

1 X 10 
-2 

1 10 
-3 

X 

/L =5/E =1/ 6.2 5.8 -
s m 

/L =7/E =2/ 6.5 5.3 -
s m 

/L =8/E 
s m 

=2/ 6.6 5.9 5.0 

/L =8/E 
s m 

=4/ 6.4 5.4 5.1 

/L =9/E =3/ 
s m 

' '6 .s 5.7 5.3 

.. 
/L =9/E =4/ . 6·.4 5.8 . 5;4 

s m . 

TABLE 5.4.3: Error·Burst Characteristics for Soft-Decision 
Tab1e:Loo~-up Syndrome Decoding of Coded 8PSK, 

. for .. Code· 1, Using _a Definite Decoding Scheme 
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CHAPTER 6 

NOISE~ADAPTIVE (BUFFERED-DATA> DETECTION 

FOR CODED 8PSK 
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The two detectors to be described in this Chapter differ from 

:the detectors of Chapters 3 ·and 4, in that the operations to be under-

taken to produce one detected data symbol,·vary from detected data 

symbol to detected data symbol. Th~ price to be paid for this varying 

processing load is that buffer stores must be provided to store the 

·received samples {r.} and the detected data symbols· {q~}. When a 
1 . 1 

suitable store .for the {r.} is provided, the probability of losing 
·1 

samples because of buffer store overflow is low, at times when the 

nUm?er of operations per detected data symbol is high. The buffer 

·store of detected· data: is used- to ensure a continuous, constant-rate, 

stream of detected data symbols. The advantage of such schemes is that 

the number of operations performed per detected data symbol can suit 

the.· prevailing noise level, so that more operations are performed as 

the instantaneou~ noise level increases. The Viterbi Algorithm 

detector. performs the same operatlons in every symbol interval, 

whatever the noise level is. Clearly, this is wasteful during low-

·noise periods. A suitable noise-adaptive detector of the type 

described above; may provide substantial reductions in detector 

complexity, for only small reductions in tolerance to noise . 

. Table AS.l defines the notation which is used to describe the 

schemes tested by· computer simulation, in Section 6.2 . 

. 6.1 SEQUENTIAL DECODING FOR CODED 8PSK 

The two basic sequential decoding techniques are briefly outlined, 

together with some more recent variants. The possible application of 

sequential decoding to coded SPSK is then analysed. (No computer 

simulations of sequential decoding were undertaken) 
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Sequential. decoding was initially introduced by Wozencraft, but 

. .. 19,74 i the 100st widely used algorJ.thm is due to Fano. The Fano Algor thm 
.. · .. 19" 

will be described, followed by the conceptually simpler Stack 

1 
. 74 A gorJ.thm.· 

While the Viterbi detector stores all vectors which could 

conceivably be the Maximum Likelihood vector, sequential decoder·s 

essentially consider only one vector at any time. The one vector is 

19 
·that Which •:appears" to be most probable. The decoder is allowed to 

back-up._ ih _time and change symbol values in this stored vector, 

(termed a· back-up search) • A metric associated with the stored vector 

is used to de~ide.whether a back-up search is required. The metric 

used is ·.n6t: _equivalent -to the cost used i·n a hard-decision Vi.terbi 

.detect~r unless· _the ve.ctors being compared contain the same number of 

symbols:· _-In particular the metric is biased to favour longer vectors. 

_This ensures that the. detector will tend to favour long vectors, so 

· _that -the stored· vector, over a reasonably long time span, tends to 

become longer, towards the end of the transmitted code sequence. 

Because of. the bias, a vector which may· be retained by a Maximum 

Likelihood detector, might not be considered by the sequential 

detector. The metric, here termed w~ at time iT, is outlined in 
. l. 

~eferences "19 ar!d 74. · The ·bias term is usually chosen to ensure that, 

over a reasonably· short length of time, the metric of the correct 

·vector increases, while the metrics of incorrect vectors decrease .. 

The metrics used here are based on the inner product· of the received 

sequence of code symbols, and possible forms of the sequence in the 

absence of noise, rather than on Euclidean or Unitary distance. Thus 

the more positive the metric, the greater the likelihood that the 
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corresponding possible sequence is correct. Usually the metrics take 

on only integer values;. being associated with the Hamming distance. 

For coded-BPSK, the latter is .the number of differences between the 

values of the binary code symbols {c. (1)} ,{ci(2)}, and {c. (3)}, in 
1 1 

two sequences. (The convoll.itional code is described in Section 2.5.) 

Two incremental metrics are defined. A small positive incremental 

metric is added to the metric of a possible code sequence if the values 

of c. (R.) in ·this sequence and the· sequence of ·code symbols actually 
1 

received are the· same·, ·_(where R.=l ,2, or 3") • A larger negative 

incremental metric" is added, if the values of c. (R.) are· not the same. 
. - - : . : l. 

An efficient seq_uential decoding algorithm must be able to quickly 

detect a generally decreasing metric associated with. an incorrect 

. stored vector., _so that _the required back-up search to find the correct 

vector is·not too.computationally intensive. A running threshold metric, 

r,- is stored which may be raised·or low_ered by increments"t., where t. 

is called the threshold spacing. When the stored metric falls below 

.tne· ci.n:rent.value of r, .it.indicates that a back-up search may be 

needed. ·The principle .rule for the Fano Algorithm. is that the decoder 

-neither extends a stored vector by appending symbols, nor moves back 

along a· stored. vector by dele·ting symbols; if the stored metric is less 

tha:n the. current value -of ·r; The· stored vector is expanded, (see 

Section 3.2), and the associated metrics are determined. The decoder 

usually selects the expanded vector with the highest metric as the new 

stored vector. If the metric of the new stored vector is greater than 

r+t., r is raised by t.. When the metric of the chosen expanded vector 

is less than r, the decoder attempts to move backwards along the current 

vector to produce a vector with a metric which· is greater than r. 
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.When such a vector is found, the value of the most recent data symbol 

in the stored vector is changed to tha.t which gives the next highest 

metric, (a lateral move). Forward· de.coding ·is then resumed. If no 

such· value of this data symbol exists, because the current value is 

that producing the lowest metric, a further backwards move is made. 

When no vector with a metric greater than r is found, r is lowered by 

~and forward decoding·is resumed as before. The full set of rules 

is given in Table 6.1.1, .(from·Reference 19). A forward move implies 

the selection of the most likely·_ expanded .vector as .. above. A backward 

move simply involves deleting :the inO_st recent' data symbol value in the 

vector. A lateral move. implies chiu'lging. the value of the oost recent 

data symbol in the stored vector.;· to the value associated with the 

next highest metric; Reference 19: details the algorithm more fully·, 

Ill the basic Stack Algori.thm1: an .ordered list or stack of 

previously .examined vectors of possible data symbols is kept. Each . . . 

stack.· entry contains the vector along with its metric (which is 

. usually the same as that used in. the Fano Algorithm) • The vector 

with the largest metric is stored at the top of the .stack. This vector 

is.expanded and the associated metrics are determined as for the Fano 

Algorithm. The original top .vecto·r· is deleted and the remaining 

vectors, along with the expanded vectors, are reorder:ed in the stack 

according to their·metrics. When the vector at the top of the stack 

reaches the end of the transmitted code sequence, the top vector gives 

the detected data sequence. The reordering of the stack, which may 

be thousands of vectors in length, is very time consuming. The Stack

Bucket Algorithm by Jelinek
19

;
74 

requires no reordering. The range of 

possible metrics is quantised into a number of fixed intervals called 

buckets, each of which is assigned a number of storage locations. 
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When a particular vector is expanded, the vector is deleted from its 

bucket and the expanded vectors are inserted as. the· .top entries in the 

buckets associated with their metric values. The ··tap vector in the 

top, (highest metric), non-empty bucket is expanded;· ')::he disadvantage 

is that the best vector is not always that expanded .. A very good, 

(high likelihood), vector is expanded, which may be. the best vector. 

74 
Most practical implementations of the Stack Algorithm use this approach. 

A number- of problems arise out of.the t.wo basic approaches, some . . .. 

. . . . 

of which are at least partly. remedied by the modified· schemes to be·. 

described. The number of computations·required .. in increasing the number 

of symbols in the (best) stored vector is a random. variable·. Therefore 

input and output buffer stores are required to_· store the' rece.ived. 

samples, and the detected data symbols, respectively.· -Under severe 

noise conditions the number of· computations rises: dramatically. In the 

case of the Fano Algorithm the number and: lengths' of the re<:ruired back-

up searches increase, while equivalently in the-case of the Stack 

Aigorithm, the· vector at the. top of the sj:ack- will: cont·ain fewer data 

symbols. Long searches may cause. the 'input_ buffer store to overflow 

causing the complete- loss,'· (erasure) , of large blocks Of data. In the 

case of the Fano Algorithm such overflows are made less likely by 

restricting the back-search dep~h, (d~fined in te~ms of a maximum 

number of symbols in the stored vector which may be deleted) ' or by 

using an alternative .and simpler detector when the input buffer store 

is full. A technique of quick threshold-loosening is also used to 

reduce the number of 
·>!k. o.l~alD~"-<c.. ptop~b<Ll> 

l 

short back-up 
.. Of- Co~ 

. 19 . . 84-86 
searches. Goodman et al use 

··: · ··, to simplify an essentially Fano-type 

algorithm. All short back-up searches are replaced by a direct mapping 
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operation· which finds the vector at the minimum distance from ·the 

received sequence, (where minimum distance is defined in Appendix A3). 

When a longer back-up search is required, the algorithm-points out· the 

most likely vector elements where the wrong symbol value may· have been 

chosen. For the Stack Algorithm, a technique termed the Multiple 

Stack Algorithm, (MSA)_, guarantees that no buffer store-overflows 

87 
occur. The size of the first stack is limited to z

1 
vectors.·. Decoding 

proceeds as for the original algorithm. If the first stack-dOes not 

fill before the end· of the transmitted code sequence is r!!ach_ed, the 

algorithm, produces the same sequence of detected data" as th_e .ori"gi~al 

algorithm. If the first stack fills, the top f vectors are~. tr"ansferred 

to .a second stack with Z storage locations·,. where Z<<Z
1 

•. Decoding 
. . . . 

proceeds in the second stack. If the-end :of the .transmitted .code . 

.. · 
sequence is reached. before the second stack ·fills, the _top vector in 

the s.econd stack is stored as a tentative decision. Decoding continues 

in t)1e .first stack, (which now has r empty locations) , unt-il :the end 

of the transmitted code sequence is reached;. if possible .. If_ so; the 

metric of the top vector in the first .stack· is. compared with. the metric 

of the tentative decision from the second stack. The vector- _with· the 

highest metric gives the detected data. If the first stack should 

fill again, a new second" stack is formed using-the r top-vectors"in 

the first stack. If the second stack should also fill, a third stack 

of the r top vectors from the second stack is formed, where the third 

stack also has Z storage locations .. Additional stacks of Z storage 

locations are formed until a tentative decision is made.· The decoder 

always compares each new tentative decision with the previous one, 

retaining the vector with the highest metric. The algorithm terminates 
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when the end of the transmitted code sequence is reached in the first 

stack. In addition a computational time limit is given. If this is 

exceeded, the best :tentative decision is taken to be the_detected data 

sequence. With a reasonable computational time limit, at least one 

tentative decision is always made. The Stack Algorithm in particular, · 

but also Fano-type· algorithms to a lesser extent, are really only_. 

suited to block data transmission with guard bands of non-data. sYmbols 

inserted inbetween _blocks. This is because back-up searches could ,_ 

theoretically extend back to .the first transmitted code symbol, ·so-__ -

that detection is only possible, en-bloc. , when all- the transmitted 

data has been fully processed. This precludes symbol by symboL deteC:tio_n. 
. ... 

Such data blocks are terminated by (k-1) zeroes where k is_ the code 

constraint length, (see Section 2 .5), in order to yield: a code_ sequen-ce 

with a final zero-valued code symbol _which- is clearly known at the -

receiver. In such cases, the computational time limit·for_theMSA would 

refer to the time required to decode one block or frame of.data. In-

the case of block transmission, resynchronisatioir after an _erasure·,-

(a buffer store oyer flow) , is simplified, since· the ,whole data block is 

discarded. In a retransmission (ARQ) scheme this discarded data is not 

lost. In non-blocked data transmission,. re synchronisation upon an 

erasure can be a major problem, involving the loss-of a_ large number 

19 
of data symbols. 

A discussion of sequential coding characteristics with reference 

to the coded 8PSK scheme, (Section 2.5), follows. Comparisons with 

Viterbi detection are also included, with _reference to the same 

modulation scheme. The codes used in sequential decoding schemes can 

have very long constraint lengths, (often SO or more symbols), 
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since decoding speed is largely independent of code constraint length •19 · 

Such codes are impractical for Viterbi detection since a large number 

of stored vectors =uld be requii:ed. · In addition, the processing load 

in the case of the sequential·decoder is noise-adaptive. The algorithm 

tends to do more work when the noise level is high, (such as during a 

burst of noise). The Viterbi Algorithm performs the same operations 

whatever the prevailing noise levei is, and is therefore wasting 

effort during low noise periods.. It was noted in Chapter 1 that a 

basic aim of this study is to achieve a performance which is as close 

as possible to the best available tolerance to noise, at the lowest 

feasible level of· complexity, at a bit error rate in the region of 1 in 

'4 
10 • A characteristic of optimal free-distance convolutional codes, 

(such as Codes 1 to 4 of Table 2.5.1), is that the promised asymptotic 

19 
coding gain is achieved only at very low error rates. ·At higher 

error rates, such a·s within the range noted above, the coding gain is 

much lower. Therefore, as the constraint length k increases, the 

incremental coding gain per increment in k, (for optimal free-distance 

codes within the above error rate range), is very small. This tends 

to diminish this advantage of sequential decoding, for·coded.BPSK. 

Whether or not the noise-adaptive characteristic is an advantage is 

influenced by the possibility of buffer store overflow. The lat.teJC is 

.influenced by the code properties and by the signal properties; (in 

particular the mapping function). Taking these in turn; a particularly 

important code characteristic for sequential decoders is the code 

73 
distance profile, which is itself a function of the code's column 

. 73 
distance funct1on (CDF). The CDF, d (n), is defined in terms of the 

c 

minimum Hamming distance between all pairs of code sequences with n 
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symbols, which differ in the earliest symbol, as given below. 

d (n) 
c 

(6.1.1) 

i i 
{q} and {c }, i=l,2 are respectively, then-symbol data and code 

sequences, and dH(.,.) is the Hamming distance between the sequences 

of symbols in the brackets. The distance profile is the vector 

D = [d (l) ,d (2) , ..• ,d (k)] 
p c c c 

(6.1.2) 

where k is the code constraint length. This is a measure of the 

rate of growth of the CDF with time. Rapid initial growth in the 

values ·of the elements of D ensures fast sequential decoding, (a low 
p 

) b 
. . 73,74 

number of usually short back-up searches , and low erasure pro abJ.lJ.ty. .· 

Good codes for sequential pecoding also have large minimum free 

. . '73,74 
distances for maximising the asymptotic coding gaJ.n. The codes 

of Table 2.5.1 are optimal with respect to their minimum free· 

d
. 12 
1.stances. This may well imply that a sequential decoder, employed 

in the detection of data coded using one·of these codes, would be 

prone to buffer store overflow, (or, i!l the case of the MSA, would 

yield a poor tolerance to noise because of a computational time limit 

which is too low) . This is because their distance profiles are not 

optirnised. The mapping function onto the complex number plane also 

causes problems. Sequential decoding theory usually assumes that the 

stored metrics are determined using the. Hamming distance. This cannot 

be used for this coded scheme, because large unitary distances are not 

equivalent to large Hamming distances, (see Figure 2.5.4 and Table 

2.1.1). The unitary distance measure is optimal for these codes, (see 

Appendix A7). In Section 4.2 it was noted that all four expanded 
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vectors of a given vector produce values of p: in the complex number 
]. 

plane, (after coding and mapping), which all belong to one of the two 

sets of Figure 4.2.1. It was noted that for an arbitrary stored vector 

the likelihood that one of these values p: is that closest to the 
]. . 

received sample, is about ! . The result is that quite a few of the 

-data symbol values in two vectors may be different, while the metrics 

of the vectors in the absence of noise may be very similar. This is 

because the distance between the corresponding sequences of the {p:}, 
]. 

is small. Clearly, the minimum distance properties of the code will 

eventually ensure a reasonably large distance between the two vectors, 

but this may only occur after quite a long span of the {p:}. It will 
]. 

be easy for a sequential decoder to advance quite a long way with a 

vector containing the wrong data symbol values before the error is 

detected. In such cases long back-up searches are required, increasing 

the erasure probability. In addition the ~hannel error .statistics of 

Table 5.2.2 indicate that the sequential decoder may well need to back-

up quite often, since the error rate in the received-samples is 

significant, even at reasonably high signal to noise ratios. 

Clearly, since the unitary distance measure is optimal in this 

situation, soft-decision decoding is imperative. Many comparisons 

of Viterbi and sequential decoding tend to be biased since they assume 

th H 0 do t f th 0 bo h 74 •87 h h e ammLng 1s ance measure or e V1ter 1 se erne, w ereas t e 

Viterbi detector can gain nearly 3dB in tolerance to noise at high 

signal to noise ratios by using soft-decision metrics, even when the 

19 quantisation is quite coarse. This gain is achieved with little 

0 0 1 0 19 1ncrease 1n camp ex1ty. On the other hand, the complexity increase 

for a sequential decoder using soft decisions is considerable, 
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principally because it requires so much buffer store capacity, 

(together with the required control circuitry). In addition, quick· 

threshold-loosening cannot be used in soft-decision sequential decoders, 

and sequential decoders are very sensitive to AGC, (automatic g·ain 

control), inaccuracies, which affect the threshold settings for 

determining the soft-decision metrics~9 Therefore, soft decision 

decoding is not advised for sequential decoders. 

Many comparisons of Viterbi and sequential decoding are based on 

the number of "computations" required, where one computation is defined 

as those operations required ·to increase by one the value of i ,, of the 

most recent data value q~, in each stored vector (where there is only 
~ . 

one such vector in the 
. 74,87 

sequent~al decoder) . A measure of the 

relative effort required to :undertake. such a computation, and the 

relative ease of performing operations in parallel, are not fully 

considered. Because of this the speed gains claimed for sequential 

.decoders are somewhat biased, since such a computation is often more 

74 
·complex for the sequential decoder. 

In addition, as noted earlier, sequential decoding is really 

only advis.able for block data transmission using ARQ, (automatic 

retransmission request), techniques. It was noted that the data blocks 

require (k-1) redundant zero-valued symbols appended to the-end 

of the blocks to terminate them:
9 

Since very long constraint length 

codes are used when sequential decoders are implemented, these 

redundant symbols can constitute a considerable proportion of the 

total number of symbols in the data block, giving an undesirable 

overhead of symbols carrying no information. Since the constraint 

lengths are so much shorter for the codes used when Viterbi detection 
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is implemented, there is only a very small overhead of code symbols 

in a blocked data scheme. Finally, if the sequential decoder is·to 

be transparent, (that is, seen as a "black box" with a constant-rate 

sequence of input samples and a constant-rate sequence of detected 

output data) , a delay of possibly hundreds of data symbols is required 

to ensure that the detected data stream is continuous, even when very 

19 
long back-up searches are underway. 

In conclusion sequential decoding, although offering a number of 

possible advantages, (especially the noise-adaptive characteristic), 

is not considered further for this coded 8PSK scheme. The major 

problems involve the signal characteristics which could lead to long 

back-up searches, and. the need to use.soft-decision metrics. Section 

6.2 introduces a noise-adaptive detector where the maximum computational 

effort, in contrast to the sequential decoder, is fixed, and at a level 

which is only marginally greater than that of the Viterbi detector •. 

Because of this, and despite the signal characteristics, the potential-

buffer store overflow problems are much less severe in this case. 

Since. it is very heavily based on the Viterbi Algorithm, it carries 

with it many of the attendant advantages that Viterbi detection has in 

comparison with sequential decoding, (as outlined above). 



Conditions Action 

Rule 
Final 

Previous Move Comparisons Threshold· Move 

Forward Raise '. Forward 
1 or w~ 

1 
<r+t.,w~>,r (if pOSSible) 

Lateral 
].- l. 

Forward 
2 or w ;__1>. r+t. ,w;_>. r No change Forward 

Lateral 

Forward Any w ~ 1, No change Backwards 3 
]_-

or 
Lateral w.<r 

l. 

4 Backwards W' <f 
i-1 ' 

Lower Forwards 

any w~ 
l. 

w~ 1 ~r, Lateral if possible 
5 Backwards 

].-
No change otherwise backwards 

any w: 
l. 

TABLE 6.1.1: Sequential Decoding Rules for the Fano Algorithm 
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6.2 NOISE-ADAPTIVE VITERBI-TYPE DETECTORg) 

In Reference 76, for channels with intersymbol interference, the 

authors propose that a decision can be made between two possible 

sequences of received samples in.the absence of noise, once the distance 

between them exceeds the minimum distance dmin' (equivalent to dfree 

for coded systems). d i and df · are defined in Appendix A3. m n ree 
These 

values are calculated using the unitary distance measure defined in 

. ·Appendix A7 •· They contend that the probability of discarding the correct 

sequence, when a number of sequences are to be decided between, is 

-upper-bo~nded. by CXQ(d· .. /hN
0

) where ex is a constant, cx~l, and Q·(.) is 
mJ.n 

· the error-function
1
• 

88 
Vermeulen , considering a similar proposal for 

·:channels involving intersymbol interference, defines. the probability of 

error as being wide-sense asymptotically optimal, (wsao), when; 

(6.2.1) 

P t(e) is the bit error probability for Maximum Likelihood detection, 
op 

P(e) is the bit error probability in the proposed scheme, and B is a· 

constant, B~l. Eb/N
0 

is the signal to noise ratio. Eb is.the average 

energy transmitted per data bit, and N
0

/2 is the .two-sided power spectral 

density of the additive white Gaussian noise. wsao ensures that as the 

signal to noise ratio, (~/N0) , tends to infinity, the additional trans-

mitter power, (in decibels), required to compensate for a degradation 

in tolerance to noise compared with the optimal tolerance to noise,tends 

to zero. d .b 1 . . l. t 76 
The above escrJ. ed proposa ensures asymptotJ.c optJ.ma J. y. 

Consider the following adaption of the Viterbi Algorithm. Each 

stored vector is expanded, the relevant costs are calculated, and the 
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Viterbi selection algorithm is undertaken, as in Section 3.2. The 

):"esulting vector with the lowest cost is found as usual. Then, for 

all the other stored vectors, the distances-between the sequence of 

the .fpj_} of the vector with the lowest cost, and_the sequences of the 

-_{pi.} of the other vectors, are- determined as in Equation 6.2 .2. The 

{pj_} and the {pJ:} are the sequences of the possible -values of the 

received samples in the absence of noise, for the lowest-cost vector 

.an~ on_e of the other stored vectors respectively. 

i 
i = ~ (6.2.2) 

j=l 

The value of d
2 

for each stored vector is compared with d
2
f /4. 
ree 

If 

: 2 . 2 - . 
:d ~df /A,- the vector is discarded. ~e algorithm continues in this . . ree 

way,· the major difference compared with the Viterbi Algorithm being that

·-""the: number of stored vectors is a variable, less than or equal to 4k-l, 

where k is the code constraint length. The philosophy of such a scheme 

.is that the Viterbi 
- 1'\<>M.f.\l:..r;~ 

detector may~reject the correct vector, if the 

noise produces a received sequence which is-nearer to a sequence of the 

_{p~} which is not the transmitted sequence. This happens if the 
1. 

88 
magnitude of_ the noise vector is greater than df /2. A scheme that ree 

discards-· sequences- of the {p'.'} which are distanced d /2 or more 
1 free 

. -away- from 'the cur~ent m:>st likely sequence, (the {p ~}) , will be 
1. 

asymptoti~ally optimal~8 

Such a scheme is in practice difficult to implement since the 

determination of d
2 

is not simple. As long as a particular vector has 

2 
the lowest cost, the determination of d simply involves updating 

stored values of d
2 

for the other stored vectors, at the end of each 

symbol interval. Clearly though, when the lowest-cost vector changes, 
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. 2 
such stored.values of d will be incorrect, and require recalculation 

which is:· _tl:lile-consuming. 

·consider the following =dification. Instead o{ comparing 

distance·s between possible sequences of received samples in the absence 

of noise, a_scheme could alternatively consider the costs of the stored 

seq~ences ,-compared with the zero-cost attributed to the lowest-cost 

.sequence. Section 3.2 describes the calculation of these costs, which 

use .the unitary-distance measure described in Appendix A7. The cost of 
-.--. 

a vect~·r:_is ,;. _meas~re of how likely it_ is that the vector's element 

values ~are- the same as those of the corresponding transmitted data 

Symbo~s,~ A low cost implies high likelihood. Here, vectors are 

dis.cardeci once their. costs exceed (d' /2) 
2 

_where- d' is some- constant 

_value.: ·This -i-s not.equivalent to the initial proposal, and therefore 

asyrilp_tot'ic optimality cannot be assumed, but one would expect the 

iesu_lts be very similar, _since the difference in the costs of two 

possi~le_code sequences is to some extent a measure of the distance 

between the two sequences. Since the costs are stored in a conventional 

Viterbi detector, such a scheme· would not involve the calculation of any 

new values. _The only addition would be a test, which discards all stored 

vectors whose costs are greater than (d'/2)
2

. 

The ·--following section describes in detail a scheme incorporating 

·this techri.ique; The first part of the algorithm decides for a given 

vector, how many expanded vectors are to be derived from it. These 

expanded. vectors are those, of the four possible expanded vectors, 

with the lowest costs. The second part of the algorithm is that 

described above, which discards vectors after the selection procedure, 

(see Section 3 .2) , if their costs are greater than a given value. 
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The two parts of. the algorithm are described for a scheme using 

Code 1, (from Table: 2:."s .1). Initially, the stored values in the 

detector are described. just prior to the receipt of the sample r. at . ~ 

time t=iT. The proposed "detector contains storage locations for 16 

vectors of possible data symbol values and their associated costs, 

just as in the .case of the Viterbi Algorithm detector. The difference 

is that orily ki-l of these locations; where ki--l ~ 16 contain vectors 

which are to take•part_ -_in the _detection process upon the receipt of r i. 

The remaining 16'"'ki.:_
1

, locations_ are taken to be empty in that they 

contain no useful ·information.- Each of the k vectors is called a 
i-1 

valid vector.- The; state of a vector at time t=iT is given by the 

combination of the values of the symbols, q~ k l'q~ k" 2, •• ;,q~ 1' in 
~- + 1.- t 1-

the vector •. k is· the constraint length of the code (=3). The state 

of .a valid vector i·s· called a valid state. In the Viterbi detector, 

·each-stored ·vector has a different state, and all possible states occur 

am6ng the stored· vectors •. Clearly in this case if ki-l <16, all 

possible states dO not occur, but the states of the k. 
1 

stored vectors 
~-

;>re still all different. Each valid vector has a stored cost -~W~ 
1

1
2

• 
~-

On the receipt. of. sample r i, the detector forms a number of possible 

value·s of the received sample, using -the stored vectors. Each vector 

Q~ -
1 

is expanded, to' give four expanded vectors, by appending one of the 
~-

-four possible data symbol values, q~=O,l,2 or 3. The elements of such 
- ~ 

an_expanded vector are coded using the convolutional code described 

in Section 2.5 to give the vector of binary code symbols [c~(l),c~(2),c!(3)] 
~ ~ ~ 

2 
c_i (j) = ~ 

!1.=1 

k·) 

~ q_;__h(!l)gh(!l.,j) 
h=O 

(6.2.3) 
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£} denotes MODUL0-2 summation. T~e. (gh (R., j) } have .the possible values 

0 or 1. The two-component vector·}qj_ (1) ,qj_ (2)); where qj_ (t), (for 

R-=1 or 2) , has the possible· values. 0 or 1," is uniquely related to the 

possible data symbol qf_ by the ·Gray-code mapping of Table 2 .1.1. The. 

vector [ci' (1) ,c~ (2) ,c~ (3) l is mapped ·onto the 8-level symbol c~ 
.l. l- 1.· 

c~ 
l. 

2 1 0 
= 2 c~ (1) + 2 c~ (2) + 2 c~ (3) 

"1. 1. 1. 
(6.2 .4) 

Since c~ (1), c~ (2) and c~ (3) •. each-. have the two possible values 0 or 
1. l. l. - .- . -.. - -. - . 

1, c j_ has one of the eight posslble· yaiue~ 0,1,. ;·; , 7. A possible 

value of p, in the absence·of·rioi"se is giyen by mapping c~ onto·-a 
l. l. 

complex number Pj_. The mapping onto the .complex number plane is given 

in Figure 2.5.4. 

The first part·of the algorithm"is now outlined, which for a given 

vector Qj_'-
1

; determines the·costs of j of its four expanded vectors, 
- ~ - . -

where j ~4. . These expanded. vectors are called valid expanded vectors. 

The remaining · (4-j)' .expanded vectors are discarded. The value of j is . - . - -

not the ·same for every vector Qj_~1 •. Initially the possible value of 

r. in the· absence of: noise is found· which is nearest to the· received 
l. . 

·sample r.i, (using threshold tests) • Let this value of p. be p'.'. 
. l. l. 

For each expanded vector, the difference. between the phase angles of 

Pj_ and p j_ is f;ound, .where this· is the smaller of the two pt>ssible 

angular differences.: · (p~ is the· possible value of the received sample 
1 

in ·the absence of· noise, derived from the expanded vector.) An 

example is given in Figure 6.2,1. A look-up table could be used to 

give the angle, given p'.' and p~. These angles are measures of the 
1. . .1. 

distances between p'.' and the values of p ~ • The costs of those expanded 
1 . 1 

vectors is now calculated, whose differences between the phase angles 
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of Pi and Pi_ are less than or equal to 67T /4, where 6 has one of 

the four values, 1,2,3 or 4. Clearly if 6=4, no· expanded vectors are 

discarded. Note that 6 is not necessarily equal to the number of 

expanded vectors whose costs are calculated. Fig\jre 6.2 .2 shows (for 

6=2), that either 6 or 6+1 expanded vectors' costs. are calculated, 

depending on the values of Pi_• Two methods are used to set the value 

of 6. In the first, termed the static -expansion limitation method, 

a constant value for 6, ( 6=1, 2, 3 or 4) is stored within. the detecto+. 

·The second is termed the dynamic expansion'-i~niitati~n inethod, where 6 

is set individually for each stored vector·._Qi-i :in relation to its 

stored cost lwi__
1

1
2

• Three cost thresholds, ~th(l) ,cth(2) and cth(3) 

are stored. They are used to ascertain th<( i7ange: of c<;>sts, of four 

- (. 2 . - . . . -
ranges in all, into which_lwi~ll _falls 'for.each·vector_ Qi__1 . The 

range of costs into which-the cost of Qi~l falls-is used to set 6 for 

this vector. . 

lw~ 1
2 

< . i-1 ... cth (1-) 6_=4 

cth(l) < I , 12 - . 6=3. wi_-1 . _::; ~th(2) _, 

2 
(6 .2 .5) 

cth (2) < I w~ 1 1 ::; cth(3l·:; 6=2 
J.-

I w ~ 1
2 

J.-1 :> cth(3) 6=1 

Clearly, 6=1 is for the- range of highest costs, · (least likely· possible 

data sequences) ' whereas 6=4 is for the ·rang~ or lowest- costs' .(IJ>Ost 
. - -

likely possible data sequences) • Once the set of valid expanded vectors 

has been determined, their costs are calculated. For each such expanded 

vector 
lw~ 12 = lwi-112 + lr.:..p~ 12 (6.2.6) 

l. . l. l. 

2 2 2 I r. -p~ I = [Re(r.-p:)J + [Im(r. -p~)] (6.2.7) 
l. l. l. l. l. l. 

where 



The cost is based on the unitary distance measure (see-Appendix A7). 

(Clearly the value of lwi_
1

1
2 

is that of the vector from·which the 

expanded vector is derived, and the value of p~ is that for the 
. ~ . 

·.expanded vector . ) For. each combination of the values of the symbols 
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ql:_k+2 'ql-k+3 , ••• ,qi, (the state of a vector at time t=(i+l)T), the 

detector selects the expanded vector with this combinat-ion pf values, 

which has the lowest cost. If there are no.expanded vectors with a 

given state, the selection proceSs _for this stat~· is n~t .. Undertaken. 

After this procedure has been undertaken for all states whieh- occur 

among the expanded. vectors' the selected vector- with the :lowest cost 

is found. This cost is subtracted from the costs of· all- the· vectors, 

to·prevent overflow in their stored values. The value: of q' · . in the 
i-N+l 

vector with the lowest cost is the detected data SYmbol. ·The delay 

·in-detection is NT secondS'. Clearly, this.is equivalent to the Viterbi 

Algorithm procedure of .. Section·3.2, amr£ended by the. fact that all 
. I -· . 

possible states do not occur·among.the expanded.vectors at times. The 

second-part of the algorithm is not l?erformed .in the Viterbi Algorithm 

detector. 

The second part of ·the algorithm simply discards those vectors 

which were selected in the above'procedure, whose costs are greater 

than a value c , 
m 

.stored in the detector: The result ·i.9 a· set of·k. 
~ 

stored vectors called valid vect;ors, (k. !'16) -, where 'k. · may-not be 
~ ~ 

equal to k. 
1

• The process continues in· this way for received sample 
~-

ri+l' etc. 

The philosophy of this algorithm is as follows. The first part 

of the algorithm has two characteristics. The first characteristic is 

that vectors {Q: 
1

} with low costs are more likely to be the Maximum 
~-
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Likelihood vector than those with high costs. Therefore 1'. is made. 

large for low. cost vectors, and small for high cost vectors _(in ·:tne_. 

dynamic expansion limitation method}. This ensures tha"t fewer of-the 

expanded vectors of low-cost vectors are discarded than ·for high-cost·· 

vectors. Secondly, the j expanded vectors whose costs are calculated 

for each vector Qj__
1

, are _the j expanded vectors of Qj__
1 

with the_ 

lowest costs. The arguments in favour of the second part of the 

algorithm were considered in ·depth at the start of -this sect-ion, -Where 

C is the maximum cost referred to in that section. Since thii n1l.mber -
m 

of stored vectors, ki, and therefOre the processing time per detected· 

data symbol, vary from symbol interval to symbol interval,- buf£;,r ·stores 

are required to hold a number Of received samples {r.}, and a··_similar · 
. . . 1. ·. . .- .: . 

number of detected data symbols { qj_}. . The operation of. such. a system . 

iS transparent in that COntinUOU_S 1 COnstant-rate 1 SeqUenCeS_ ~f Samples 

{r.} and detected data {q~} are sent into, and out of the-detector, 
~ - . l. . 

respectively_. 

A number of· computer simulation tests were :undertaken to ascertain 

values of the;> parameters Rexp (equivalent to. !;. in the _"static expansion 

limitation method}, C and cth(l} ,cth(2} and cth(3}, which yield. cost
m 

effective compromises between equipment comple;>xity and tolerance to noise. 

The criterion used to define·these compromises is a de9radation ~ri 

tolerance to noise, compared to Viterbi detection for a system 

incorporating Code 1, of approximately O.SdB at.a bit error rate (BER}, 

of about 1 in 10
3

, for as low a_level of equipment complexity as possible. 

Initially tests were undertaken for a scheme using Code ·1, (Table 

2.5.1}, using the static expansion limitation method. A number of values 

of Rexp and the maximum cost cm' were used at the signal to noise ratios, 
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E /N = 4.6dB and.SdB. (See Appendix AS for mre details of the 
b 0 •. 

simulation:techniques. Appendix AS describes the notation used to 

describe the variants of this detector which were tested by computer 

simulation.).· The results of these initial tests·, and similar tests 

for schemes. using the dynamic expansion limitation method and the 

constr.aint length k=4 codes, are presented by way of performance 

comparison tables, and two types of graph providing statistical 

.. information~· .. ')'he finit type of graph gives the distribution of the 

number of vectors,. ki,. averaged over the ·transmission of 3 x 10
5 

data 

.symbols; for each value of Eb/N
0

, for a number of values of Eb/N
0

. 

This type 'of graph is called the Type-A distribution in the following. 

The secdnd type ·of graph gives a measure of the buffer store ·requirements .. 

OncE'! the number of stored vectors rises to be greater than or equal to 

.a given .. vaiue x, there will be X or mre stored vectors for j consecutive 

symbol-intervals, where j=l,2,... When the number of stored vectors 

falls below- X again, j is fixed. One "occurrence" of the fact that X 

or roere. vectors-have been stored for exactly j symbol intervals, (after 

which·the number of stored vectors fell below X), is said to have 

taken place. _The second type of graph gives the number of such 

k-1 
occurrences as X ranges over· the values 2 to 4 , where k is the code 

constr&int_ length, and. j has the values 1,2,... • This type of graph 

'is called a Type-B distribution in the following. 

Table 6.2.1 gives the results of these initial tests atE /N = 
b 0 

4.6dB. From Section 2.1, the value of p, at the transmitter is such 
. ~ 

that 
2 IP-1 = 

~ 

2 2 
[Re(p.)) + [Im(p.)) =4.0. Also included in Table 6.2.1 

~ ~ 

is a column stating the maximum number of vectors Sv. This simply 

gives the number of vector storage locations held in the detector. 
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If at any time the number of valid vectors exceeds sv, the detector 

simply retains those vectors· with the lowest costs, such that Sv 

vectors are retained. ·The re.sul ts for C m~120 show that a scheme with 

Rexp~2 yields results which are·-very similar to schemes with Rexp>2, 

but that Rexp~l is too low .. -Also from Table 6.2.1, a smal~ degradation 

in tolerance to noise occurs, if Rexp~2, when C is reduced to 8,6 or 
m 

5. For example when ·Rexp~2 and C ~5, the degradation in tolerance to . . ~ m 

noise is less than 0 .4dB,. compared with Viterbi detection, for an 
·.--. 

average of 9 valid. expanded vect:ors ._per symbol interval.. For C ~120, 
m 

and Rexp~l, the. degradation in tolerance to noise is somewhat higher 

at 0.6dB, whilst the average.number of expanded vectors per·symbol 
. . . ~ : 

interval is considerably: higher: at 24. · For Cm ~4, the degradation. 

rises more sharply. Despite this, it.is useful to compare the case 

where c· ~4 and Rexp~l; _with near-maximum likelihood System 1 detection 
m 

-with t:our stored vectors, (k1~4). The number of expanded vectors per 

symbol 'interval. is 16 :iT! ·the latter case. 
. . 2 

At a BER of 5 in 10 from 

Graph· ·4-.1-.-1, the degradation i11 tolerance to noise with respect to 

Viterbi detection is .about 1. 75dB for the system 1 detector. Therefore 

the_ detector using the new algorithm where C ~4 and Rexp~l gains some . . m 

0.4dB in tolerance to·noise over System l detection with k1~4, at the 

same BER,_ despite requiring. on. average less than a quarter of the 

expanded vectors per symbol 1nterval. Clearly this is a very 

significant improvement. Table 6.2.2 outlines the results at a signal 

to noise ratio, (Eb/N
0
), of 5dB. The results are very similar to those 

at 4 .6dB. From a comp_arison of the results where C ~5 in Tables 6.2 .1 
m 

and 6.2.2 the schemes at Eb/N0~5dB are degraded more heavily than 

those at Eb/N0~4.6dB, but this is attributable to a drop in the average 
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number of valid expanded vectors per symbol .interval. Graph_6.2.l is the 

Type-A distribution at 4 .6dB, for a nlllllbEir:of variants of the 

detectors. As C is decreased the curves become. more concentrated 
m 

towards the lower numbers of valid vectors.' At. a given value of C , 
m 

the curves become more. concentrated towards· .thE:; lower numbers of valid 

vectors when Rexp is decreased from 2 to·l;· The difference in the 

curves whim Rexp is decreased from· 4 to 2, at constant C i is negligible. . . m . 

For c~ <6 the curves have a markedly expon<'mtia.l-like fall-off. Graphs 

6.2.2 to 6.2.5 are the Type-B distributlo~~ for· certain of the schemes 

of Table 6.2.1. Since ·the curves £all-6ff very_ sharply with time, 

especially for large X, it is clear tha~ the probability of buffer 

store overflow will be.low, as long· as the. _ch~se~ d!!tector can process 

a reasonable number of_expanded _vectors per sYmbol interval. The 

approximate size of .the buffer· store· C;an'be obtained by cons-idering 

the curve for the number of valid'vec;tors which is just higher than the 

average number of valid vectors, (from.Table 6.2."1}. If the rate of 

computation in the·. detector is. adju"sted so that this average number of 

vectors can be processed during one-symbol interval, then if more than 

this number of valid vectors are stored the buffer store will tend to 

fill, and if less than this number of valid vectors are stored the 

buffer store will tend to empty. For example-take Graph ·6.2:2. The 

average number of valid vectors for this scheme· is 2.5 from Table 6.2.1. 

Therefore, considering the X~ 4 curve in Graph 6.2.2, a suitable 

buffer store would have in the region of 30 to 50 storage locations. 

This range is also typical of the other schemes of Graphs 6.2.2 to 

6.2.5. Graph 6.2.6 is the Type-A distribution at a signal to noise 



ratio, (Eb/N ) of 5dB, while Graphs 6.2.7 to 6.2.10 are the Type•B 
. 0 

distributions for a selection of schemes at the same signal to ·_noise 

ratio.- The results are similar to those at 4.6dB. 

Graph"6.2.ll gives the initial computer simulation results-for· 

the dynamic expansion limitation method, for a number of schemes, at 

a signal to noise ratio., (Eb/N
0

) , of 5. 3dB. From the result's of the 

static expansion limitation method, a value of C iri ·the region ·.o·f ; 
m 
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5 .o is seen to be a good compromise between performance and'" equipment 

complexity. This 

2 
equal to df /2. 

ree. 

value of cm for a scheme using Code 1 is·."very, nearly· 
. 2 . . . . 

Therefore df /2, (5.172), was chosen as· one of. ne · · 
. . 

the ·values of Cm in the tests. The resu1ts are given in Table ·6-,2. 3 

at the same value of Eb/N
0

•· The last column_. (b/a), gives.the·average 

number of valid expanded vectors derived from a single ve0tor,· Table 

6.2 .3 indicates that, as for .the static ·expansion iimitation·-~thod, 
. - - . . 

the lowest. feasible value of the average number of vaiid expanded 

vectors .derived from a single vector, lies in the region 2 -.0_ to 2 .5 _. 

Below this the BER tends to rise substantially. In geherai, for 

comparable values of the average number of valid expanded vectors 

derived from a single vector, the static and dynamic expansion 

limitation methods are very similar. The latter method though, allows 

values of the average nuiDber of valid expanded vectors derived from 

a single vector within the range 1.5 to·2.5, whereas the static 

expansion limitation method only allows the discrete values l.·s and 

2.5 (approximately, for random data). Clearly the dynamic expans_ion 

limitation method allows more scope for optimisation. Graph 6.2.11 

is very similar to the Type-A distribution for the static expansion 

limitation method, while the Type-B distributions in Graphs 6.2.12 
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to 6.2.15 suggest that the buffer store requirements are very similar 

to those for the static expansion limitation method, (20 to 50 

storage locations). 

Tests were also carried out using the constraint length k=4 code, 

Code 3, at the si_gnal to noise ratios, (Eb/N
0

) , 4 .6dB, SdB, and 5 .25dB. 

The results are given in Tables 6.2.4. (4.6dB), 6.2.5 (5dB), and 6.2.6 
. . 

(5 .25dB) • The Type-A distributions· for a selection of the sche100s in 

_the preceeding tables, are given in Graphs 6.2.16, (4.6dB), 6.2.17, 

(5dB), and 6.2.18, (5.25dB). Table 6.2.5 shows again that reducing 

the average number of valid expanded vectors derived from·a singl~ 

vector, to a value· below 2 .o, leads to an increased deg_radation in 

tolerance to noise. For values of this measure above 2 .0 ·for C =6. 344, . m 

the degradation in tolerance to noise compared with Viterbi detection 

for Code 3 is effectively constant .. This is soover a·consider.abie 

range of the average. number of .valid expanded vectors per symbol·· 

interval, (13.3 to over.l8.3). Reducing C to values below. 6. 344· 
m 

leads to a sizeable increase in the degradation in tolerance to noise, 

but also to a sizeable reduction in the average number of valid e_xpanded 

vectors per symbol interval. Clearly the potential equipment 

complexity gains indicated by Tables 6.2.4 to 6.2.6 are. considerable, 

since the corresponding Viterbi detector processes 256 expanded vectors . 

during every symbol interval. For example, the last row in Table 6.2.5 

is for a scheme which processes on average only i/34th of the expanded 

vectors per symbol interval that the Viterbi detector processes, 

whilst losing only 0.83dB in tolerance to noise. Also, included, for 

c ~4.8, are two tests where the maximum number of vectors Sv is 
m 

reduced from 64. The results show that the degradation in tolerance 



to noise is negligible, if Sv is reduced to 16. _This is important, 

since long constraint-length codes require ·a phenomenal amount of 

storage capacity in a Viterbi detector; If Sv can be reduced 

considerably in such cases, the amount'of storage capacity required 

is also reduced considerably, (but with the penalty that a cost 

ranking process must be introduced when the number of vectors exceeds 

Sv, as described earlier). From Table 6.2.6 it is clear that even 

for large values of C , the performance of these schemes using Code 3 
m 

does not approach the performance of Viterbi detection as closely as· 

certain schemes using Code 1. Graphs 6.2.16 to 6.2.18 indicate that 

the curves of the Type-A distributions do not have exponential-like . 

fall~ffs for typical values of ~ , (although they do for low values 
.. m 

of C). Also for C =6.344, the proportion of. the total transmission -m m 

time becomes negligible well before the maximum number of vectors,-

(Sv = 64) is reached. This sugges.ts, (as was seen in Table 6.2.5), 

that Sv can be reduced considerab~y ~ithout impairing performance. 
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Graph 6.2 .19 is the TyPe-A distribution for a scheme using Code ·_z·, 

at a number of signal to noise ratios.. Table 6.2. 7 gives the results,_ 

with respect to Viterbi detection for Code 3. The definition of an 

error burst is given in Appendix AS. From Table 6.2.7 it is clear 

that the complexity, measured in terms of the average· number of valid 

expanded vectors per symbol interval, reduces as the noise level falls. 

The scheme is therefore noise-adaptive-in the sense that more "processing. 

is undertaken when·the noise level is high. Table 6.2.8 gives the 

results for schemes using Code 4 at a signal to noise ratio, (Eb/N0 ), 

of 5.25dB. Again, the BER tends to rise significantly when the average 

number of valid expanded vectors derived from a single vector falls 
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below about 2.0. 

From these initial tests three schemes, two. using· Code 1 and one 

using Code 4, were chosen. Full computer simulation tests of these 

three schemes were undertaken. A scheme using Code 4 was chosen in 

preference to a scheme using Code 3 because the schemes of Table 6.2.8 

perform consistently better than those of Table 6.2.6, both in-terms 

of tolerance to noise and complexity. (Schemes using Code 2· produce 

results which are very similar to those of schemes: using Code 4 .) The 

chosen schemes are outlined in Table 6.2.9. The accuracy of the results 

3 . 4• 
is of the order-of ±0,25dB over the range of BER, 1 in 10 to 1 in 10 • 

The results are shown in Graph 6.2.20 in comparison with Viterbi 

_detection for schemes using Codes 1 and 3, _and threshold detection for 
. . . 

QPSK. It is evident that the degradation in tolerance to nois~ compared 

with Viterbi detection, for the noise-adaptive schemes, is low. Tables 

6.2.10 to 6.2.12 give the results for the three schemes at various 

signal to noise ratios. Table 6.2.13 gives results for a less complex 

scheme using Code 4, than that of Table 6.2.12. From Graph 6.2.20 

and Table 6.2.10, the first scheme using Code 1 is only marginally 

degraded in tolerance to noise compared with Viterbi detection, (0.44dB 

at a BER of 3 in 10
4
). It can be seen that this scheme has an average 

number of valid expanded vectors derived from a single vector in excess 

of 2.5. The average number of bit errors per burst is not significantly 

higher than that for Viterbi detection, (Table 3.2 .2). At a signal to 

noise ratio, (Eb/N
0
), of S.BdB, using the average number of valid 

expanded vectors per symbol interval as a measure, this scheme is 

approximately 8.5 times less complex than Viterbi detection, (which 

processes 64 expanded vectors per symbol interval). From Table 6.2.11, 
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the less complex scheme using Code 1 is some 12 times less complex 

than Viterbi detection at the same signal to noise ratio •. At this 

signal to noise ratio the degradation in tolerance to noise compared 

with Viterbi detection is 0.6dB, only marginally greater than. that 

for the other scheme using Code 1. In addition, the average number 

·Of bit errors per burst is only marginally greater than in the former 

scheme. In this case the average number of valid expanded vectors 

derived from a single vector is in the region l. 7 to 2.2 whic;h, from 

the initial tests, approaches the lower limit at which the BER rises 

substantially. Graph 6.2 .21 is the Type-A distribution for the .first 

scheme using Code 1 described in Table 6.2.9. The curves become more 

concentrated towards the lower numbers of valid vectors as the noise 

level falls. This indicates·the noise-adaptive nature of the algorithm. 

in that more vectors are stored, and therefore more processing is 

required, when the noise level is high. Graphs 6.2.22 and 6.2.2?. are 

the Type-B distributions at two values of BER. Clearly these,Type-B 

·distributions are very similar to those presented earlier. The 

required buffer store size is again in the range, 20 to 50 samples .. 

Graph 6.2.24 is the Type-A distribution for the second scheme of Table 

6.2.9 using Code 1, at three values of the BER. The Type-B distributions 

at two values of the BER are given in Graph 6.2.25 and 6.2.26. These 

are very similar to those of the first scheme of Table 6.2.9 which uses 

Code 1. 

From Graph 6.2.20, the tolerance to noise of the scheme using 

Code 4 is approximately equivalent to that of Viterbi detection for a 

4 
scheme using Code 1, at a BER of 1 in 10 • In terms of complexity, 

from Table 6.2.12 at a signal to noise ratio, (Eb/N
0
), of S.SdB, the 
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the scheme is about 4.7 times less complex than Viterbi detection for 

Code 1, which is a significant saving. The measure of complexity is, 

as before, the average number of valid expanded vectors per symbol 

interval. Compared with the noise-adaptive schemes using Code 1, this 

scheme is considerably more complex, although it does gain somewhat in 

tolerance to noise. A comparison is given in Table 6.2.14. Clearly 

the noise-adaptive schemes using Code 1 are more attractive. Graph 

6.2 .27 is the Type-A distribution for the scheme of Table 6.2. 9 using 

Code 4. As noted earlier, the curves fall-off very quickly at 

-relatively low numbers of valid vectors. No Type-B distributions for 

the-constraint length k=4 codes have been produced, because of computing 

restrictions. 

Graphs 6.2.28 and 6.2.29 use the third-to last and second to last 

columns of Tables 6.2.10 to 6.2.12 to give measures of system complexity, 

as the signal to noise ratio is varied. These graphs support the 

supposition that the processing load reduces as the noise level falls, 

so that the algorithm is noise-adaptive. Clearly, from Graphs 6.2.28 

and 6.2.29, the difference between the two schemes using Code 1, lies 

solely in the number of valid expanded vectors per symbol interval, 

and therefore in the number of valid expanded vectors derived from a 

single vector. An interesting point is that the complexity of the 

scheme using Code 4 falls off more rapidly than does the complexity 

of the schemes using Code 1. Therefore at high signal to noise ratios 

the scheme using Code 4 may compete, both in terms of tolerance to 

noise and complexity, with the schemes using Code l. 

The following is an analysis of the feasibility of implementing 

such a system in practice, in the light of the potential savings 
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highlighted in the preceeding sections. Also included is a comparison 

of the scheme with Viterbi Algorithm and sequential decoding techniques. 

In a practical implementation of the algorithm, the rate of 

operation of the detector is adjusted to handle conditions where the 

signal to noise ratio has its typical or average value. During high 

noise periods the input buffer store holding the received samples 

will gradually fill, and the output buffer store holding the detected 

data symbols will gradually empty. When the input buffer store is 

full, the following is implemented. The maximum number of stored 

vectors, sv, is reduced to a value such that in succeeding detection 

processes the input buffer store gradually empties. The chosen value 

of Sv is clearly influenced by the time required_ to rank the costs of 

the vectors, when the number of these exceeds sv, as well as by the 

average rate of operation of the detector. Eventually, Sv is reset to 

its previous value, (when the number of samples held in the input 

buffer store has reduced sufficiently) . 

An essential feature of the new algorithm is that its implementation 

is based· firmly on that of a conventional Viterbi Algorithm detector. 

A store is available which is capable of holding Sv.vectors together 

with-their associated costs~ where Sv is, for short constraint length 

codes, equal to the number of vector storage locations in the 

corresponding Viterbi Algorithm detector. In the vector selection 

process, the same procedure is carried out as for the Viterbi detector, 

but modified by the fact that the majority of the vectors are not 

normally present. The efficiency with which the detector manages the 

set of unused storage locations is crucial in any attempt to approach 

the theoretical savings in system complexity. More specifically, the 
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problem lies in minimising the time spent in determining· the valid 

vectors and valid expanded vectors. Also, it_ is :crucial that Viterbi 

Aigorithm processing, (that is, cost calculation,: selec.tion of the 

vectors, lowest cost determination, followed by storage-of the selected 

vectors and costs), is not held up. A short prelimimiry study of the 

problem has produced a possible solution, in.the.form of the block 

diagrams of Figures 6.2.3 and 6.2.4. These stress the _main points· 

pertaining to ·the implementation problem described .at>ove; so· that it 

has been. necessary to dispense with some of tne·. details-. The figures 

refer to a scheme using Code 1,· where Sv=l6. 

The proposed implementation.separates the ftetermination of the 

valid expanded vectors. (validity test.) • from th~ a-lgorithm which chooses 

the valid vectors from these valid expan<;led vectors and determines the 

detected data symbols, (performed by· the Viterbi 'processor) • Figure· 

.. 6 .2. 3 is the block. diagram of· the validity test circuit. Figure 6 .• 2 .4 

is the block diagram of. the Vite:i:bi processor.·. The two operations can . . 

proceed independently. feedin·g· the outputs .. of .the vali-dity test circuit 

into a buffer store for use by_ the Viterbi processor. (The way in 

which this information is used by the Viterbi pro.cessor is not .included 

in Figure 6.2.4.) 

In Figure 6.2 .3 the input to the valid-v,ctor·test circuit is one 

of the possible states of a ·vector, (given by a four-bit integer). 

The test determines whether a ve<;::tor Q: 
1 

is stored which has this 
. 1-

state. If so the valid expanded vectors are determined, using the 

valid expanded vector test. The latter test can be implemented using 

a Read Only Memory (ROM). The resuit of the latter test is fed to the 

Viterbi processor, and to a counter which designates the data symbol 



value for the next expanded vector, qi· In addition, the result. of 

the valid-vector test is fed back to a counter to designate the :next 

possible state when appropriate. 
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Figtire: 6.2 .4 is very similar to a conventional .implementation of 

the. Viterbi Algorithm:
9 

The possible data symbol value, qi,. and the· 

state of the vector Q ~ 
1

, called <I>, , are used to extract the 'following 
~- ~ 

quantities. (As a reminder, the state <I> i at time t=iT fo~ Code .. ~· .is, 

given by the combination of the values of the symbols q.i__
2

· a~d _·qi__:;
1

, 

in an expanded vector). 

(a) The value of qi__
2 

given by· state <I> i is fed to the inain processo:-. 

(b) The value of the state, <I> i+ 
1

, and thE! value of the complex ·number 

p! . 
. . ~ 

The state <I> i+l is the combination of the values·· ;,f ·:the 

possible data symbols qi_'-l and qi_ .. The determination. of -~.i. was 

considered earlier in this section. 

(c) The value of. the cost lwi_-~1 2 ; of vector Qi__1 • 

calcMlated using Equation 6.2.6. 

fw: 1
2 

is 
~ . 

In the main processor, for each possible ·state .. <I>,. 
1

, there· is a 
. ~+ . 

stored cost and a value of qi_
2

, This stored cost is the lowest of · 

those costs lw! 1
2 

fed so far to the processor·, o_f expanded vectors ··with 
. ~ 

the state <1> i+l. The associated value of qi_2 is the value of :q;__2 in 

the valid expanded vector which has this particular c9st, and .has the 

given state <1>. 
1 

. 
. ~+ 

vector which has 

processor-stored 

the stored cost, 

2 
When the new value of lw! I of a.valid expanded 

~ . 

state <l>i+l is fed in, it iS compared with the· 

cost for state <I> i+l. If the new cOst is lower than 

it is stored in place of the latter, and the value of 

q~ 
2 

in the valid expanded vector which has this new cost is stored in 
~-
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place of the processor-stored·value of qi_2 . This procedure continues 

until all the costs of .the valid expanded vectors have been fed to 

the main processor. The result is the set of selected vectors and 

costs before the second part of the algorithm, (to discard selected 

vectors whose costs are greater than c ) , is implemented. The process 
m 

of comparing costs as they are fed into the main processor is called 

continuous ranking. A stored value of q! 2 does not of itself define 
1-

a selected vector, but in conjunction with ~~+l' (the values of qi-l 

and q!), the position of the vector in the store is fully defined. 
1 

Continuous ranking is also used to ascertain the overall minimilm cost · 

at time t=iT. Once determined this is added to C in order to provide 
m ' 

a means of undertaking the second part of the algorithm. In Figure 

6.2;4 this is undertaken before the lowest cost is subtracted from all 

the costs, contrary to the method described earl.ier. If the post of 

a selected vector passes .the t~st the post-detect;r processor is 

enabled. Otherwise the pos:t.-detection processor is disabled. !ts 

job is to store the valid vectors and associated costs.. The·. proposed . 

arrangement for the storage of the vectors is often termed the .Path 

b k l9 ,89 . . d90 h d . Memory Trace ac , or Po~nter-organ1se storage met o .. The 

contents of a number of vectors will be identical for time .t~jT, for 

some j. Therefore storing separate vectors is very wasteful of· 

storage capacity. This method does not store separate vectors. For 

example, if two vectors have become the same for t~jT, only one. set 

of the possible data symbols for t~jT, is stored for both vectors. 

This method also dispenses with the need to change the contents of 

many storage locations after the selection procedure. The method is 

described more fully in Reference 19. 



Detection now·involves the transfer of a block of N' detected 

data symbols·(:j'f, for j=i-N-N'+l, i-N-N'+2,· •.• ,i-N+l, to the output 

buffer store every N'. symbol intervals. Clearly the detection delay 

is increased by .at least N' symbol. interv~ls:-9 In addition, the 

subtract :ion of .the· m'inimum cost from an 1 w: !2
. to prevent over now, 

. 1 

is undertaken ·in the· post-detection processor. 

Clearly the-proposed implementation.is essentially serial so 

that data ··transll)iSsioh of the order of megabits per second is not 

possible, ·.(This. does not _preclude the introduction of some measure 

of paraLlel processing to increase the operatirig speed.) At lower 
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data rates:,' the. algorithm seems an ideal application for digital 

signal proce~sbrs such as the TMS320l0/I'MS32020 series-~! •92 
Such 

processors are_very,efficient at dealing with algorithms of this type, 

where th~ _required processing changes from symbol interval to symbol 

interval .. 

The new algod.thm has a number of advantages over sequential 

decoding, for the present application to coded SPSK. Clearly the 

buffer store size ~equirements are le.ss se.vere for the new algorithm. 

20 to 50 stored samples are. typical compared with some hundreds of 

stored samples for typical sequential decoders, (see Section 6.1). In 

.addition,.the ·Type-B distributions, which. were presented to gain 

mea.sures of the required size of the buffer store, show that buffer 

store overflow. is probably less likely in the new scheme. A major 

factor in this is_ that there is an upper-bound to the processing time 

required per detected data symbol, which is only slightly greater 

than the time required to yield a detected data symbol in the Viterbi 

detector. (The overhead in processing time compared to Viterbi detection 



is due to the need to determine the valid expanded vectors, and due 

to the required cost ranking, if sv is set below that required. for 

the Viterbi detector.) Sequential decoders have no such inherent 

upper~bound, although some techniques, (such as the Multiple )ltack 

Algorithm), do specify a computational time limit.· This also·means 

that the range of processing times per detected data symbol is much 

smaller than for the sequential decoder, which may· have to undert!lke 

some very long back-up searches. This is essentially· becausEl no.· 
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back-up searches are required in the new scheme' the tecl;utique being·. 

fundamentally "feedforward". · Clearly, wi·thout significant restrictions 

on the value of Sv, long constraint length.codes cannot:l:>e accommodated 

by the n.;,w technique since the required storage .capacity·wauld become.' 

prohibitive. This advantage that sequential decodii:ig has· is· 

insignificant in the range .of BER considered, (L in 10
3 

.to-'! in: 10
4

) , 

since longer constraint length codes. do not lead to· significant gains· 

in tolerance to noise in this region, (Section 6.1). · As.noted in 

' Section 6.1, sequential decoding is not really suited. to ·continuous 

data transmission because of the risk of buffer store ·overflow. A 

block transmission scheme with ·repeated transmission of erqsed blocks, 

(automatic retransmission request, ARQ), was "considered to ·be the best 

method. Clearly, the new method could also be used in a block trans

mission scheme, but in addition, with ·an efficierit-algorithm to prevent 

buffer store overflow as described earlier, the new scheme can also be 

used for continuous data transmission. 

The conclusion is that the novel technique promises significant 

reductions in equipment complexity over the corresponding Viterbi 

Algorithm detector, for negligible losses in tolerance to noise. Also, 
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of the two noise-adaptive schemes considered in this Chapter, the 

novel technique provides a number of important: advantages with only 

a few, insignificant, disadvantages. 



DEGRADAT!bN IN TOLERANCE!. AVERAGE NUMBER OF 
TO.NO!SE CF VITERBI AVERAGE NUMBER VALID EXPANDED 

Rexp Sv B.E.R. c . DETE;CTION (CODE, 1}.' AT ' OF' VALID vECTORS . VECTORS PER SYMBOL m 
'' " INTERVAL GIVEN:BER (d8). ... 

''' . ' ' ''·' 

x. ·10-3 
'' " ; 

"• 
120 4 16 J.38 0.0 ' 16 . 64 

120 3 16 3.5 X 10 
-3 

<0.'1 " 16 ·. 56 

120 2 1,6 3.7 X lo-3 
.0.1 '16 40 

120 1 16 1.2 X 10 
-2 

0.6 16 24 

120 4 12 4.5 X 10 
-3 

0.2 12 48 

120 4 8 1' X 10-2 0.5. 8 32 

8 4 16 3.4 X 10 
-3 

<0.1 9.4 37.5 

6 4 16 4.33 X l0- 3 
0.15 5.2 20.7 

6 2 16 4.89 X 10 
-3 

0.2 5.1 12.9 

6 1 16 1.84 X 10 
-2 

0.8 4.05 5.88 

5 4 16 6 X lo-3 
0.3 3.6 14.3 

5 2 16 7.5 X 10 
-3 

<0.4 3.5 9 .o. 

5 1 16 2.7 X 10 
-2 

1.0 3 .15 4.5 

4 4 16 1. 75 X 10 
-2 

0.8 2.5 10 

2.0 
-2 

0.85 2 .5 6.47 4 2 16 X 10 

4 1 16 5.0 X 10 
-2 

1.35 2.5 3.55 

TABLE 6.2.1: Performance Results for Schemes Using the Static Expansion Limitation Method for Code 1 
at a Signal to Noise Ratio (Eb/N

0
J of 4 .6dB 

' 



. 

DEGRADATiON IN T()LERANCE AVERAGE NUMBER 
AVERAGE NUMBER OF 

c Sv B.E.R. TO NOISE ·CF VITERBI VALID EXPANDED VECTORS 
VALID Rexp OF VECTORS m · DETE.CTION (CODE 1) (dB) PER SYMBOL INTERVAL 

120 4 ~6 9.73 X 
'-4 10 0.0 16 

2 16 i.2 lo-3 . .. 
16 120 X <O.l 

120 16' 6.2 
-3 

' '.o. 7' 16 1 X 10 •' 

-3 '. .. 
b.2 

... •, ... 
3.66 5.5 .4 16· 1.81· X 10 . 

' 
' ' -3' ''' ''.' '' ,. '' .. 

5.5 2 16 2.27 X 10 '0.29 " 3.62 .. ' 

-2 ·' 

5.5 1 11? 1.34 X 10 i:o5 
" 

,, 2.95 

5 4 16 . 2.9 X lo- 3 
<0.4 3.03 

5 2 16 3.38 
-3 

0.45· 
.. 

3.0 X 10 

5 1 16 1.87 X 10 
-2 

<1.2dB 2.65 

4.6 4 16 4.9 X lo- 3 
0.6 2.58 

TABLE 6.2 .2: Performance Results for the Schemes Using the Static Expansion Limitation Method 
for Code 1 at a Signal to'Noise Ratio (~/N0) of 5dB 

64 

40 

24 

'·14 .64 
•' 

·'9'.22 

4.18 

12.1 

7.7 

3.73 

!'0.33 
' 

w 

"' 0 
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cth( ) 
DEGRADATION IN AVERAGE NUMBER AVERAGE NUMBER 

c Sv B.E.R. TOLERANCE TO NOISE OF VALID VECTORS OF VALID m 
(a) cth(l) cth(2) cth( 3) CF VITERBI DETECTION EXPANDED VECTORS 

(CODE l) (dB) PER ·SYMBOL INTERVAL 
(b) 

5.172 16 0.75 2.586 4.422 1.5 X 10 -3 
0.4 2.89 8.52 

5.172 16 1.67 2.586 4.422 1.5 X lO 
-3 

0.4 2.89 8.58 

5.172 16 0 2.586 4.422 1.5 X 10-3 • 0.4 2.89 8.49 

5.172 16 0 0 3 1.5 X 10-3 
0.4 2.89 7.4 

5.172 16 0 0 l l. 7 X lo- 3 
0.48 2.87 6.99 

5.172 16 0 0 0.5 1.85 X lQ -J 0.51 2.86 6.93 

5.172 16 0 0 0 2.1 X 16-3 
0.55 2.85 .. 6 .sa. 

5.172 16 -1 -1 3 1.7 X 10 
-3 

0.48 2 .86. 6.19 

5.172 16 -1 0 l 1.8 X 10-3 
0.5 2.86 6.16 

5.172 16 -1 -1 l l.S9 X 10-3 
0.52 2.84 5.7S 

5.172 16 -1 -1 -1 l.l X 10 -2 
1.25 2.39 3. 32 

4.5 16 0 0 3 2.9 X 10-3 . 0.68 2.25 6;41 

4.5 16 -1 -1 3 3.2 X 10-3 
o. 72 2.24 5.21 

. 

TABLE 6.2.3: Performance Results for the Dynamic Expansion Limitation Method for Code lata Signal to Noise 
Ratio (Eb/N

0
) of 4.6dB 

b/a 

2.95 

2.97 

2.94 

2.56 

2.44 

2.42 

.2 .41 

2;16 

2.15 

2.04 

1.39 

2 .ss 
2.33 



c Sv cth( ) DEGRADATION IN AVERAGE NUMBER AVERAGE NUMBER 
m B.E.R. 

TOLERANCE TO NOISE OF VALID EXPANDED OF VALID 
1 2 3 CF VITERBI DETECTION VECTORS (a) VECTORS PER 

(CODE 3) dB SYMBOL INTERVAL (b) 

8.7 64 1.26 4.35 7.44 4.4 x.1o -3 
0.2 19.23 46.5 

6.344 64 0.92 3~172 5.425 4.8 X 10-3 0.25 7.96 20.6 

5.6 

4.8 

4 

64 0.81 2.8 4.79 5.7 
' -3 

X 10 0.3 5. 74 15.48 

64 0.7 2.4 4.1 8'6 X 10 
-3 

0.45 4 11.44 

64 0.58 2.0 3.42 1.6X 10 
-2 

0.7· 2.85 8.74 

TABLE 6.2.4: Performance Results for the Dynamic Expansion Limitation Method for Code· 3 at a Signal 
to Noise Ratio (Eb/N

0
) of 4.6dB 

b/a 

2 .42 

2.59 

2.7 

2.86 

3.07 

w 

"' "' 



DEGRADATION IN .TOLERANCE <I VERAGE NUMBER AVERAGE NUMBER 

sv cth( ) B.E.R. TO NOISE CF .VITERBI OF VALID VECTORS OF VALID EXPANDED c DETECTION (CODE 3) (dB) (a) VECTORS PER SYMBOL m 
1 2 3 INTERVAL (b) 

8.7 64 1.26 4.35 7.44 
. -3 

1.7 X 10 0.34 16.7 39.9 

6. 344 64 0.92 3.172 5.425 1.86 X 10-3 
0.37 6.66 17.3 

6.344 64 0.9.2 4.3 5.425 1.86 X 10 
-3 

0.37 6.66 18.31 

6.344 64 0.92 3.172 5.895 1.86 X 10-3 
0.37 6.66 18.1,2 

6. 344 64 2.0 3.172 5.425 1.86 X 10-j 0.37 6.66 17.4 

6.344 64 0 3.172 5.425 1.87 X 10-3 
0.37 6.66 17.18 

6. 344 64 0.92 2.0 5.425 1.86 X 10 
-3 

0.37 6.66 16.69 

6. 344 64 0.92 3.172 4.3 1.86 X 10 
-3 

0.37 6.66 15.5 

6. 344 64 0 0 4.3 1.88 X 10-3 0.37 6.65 14.5 

6.344 64 0 0 3 1.88 X 10-3 0.37 6.61 13.28 

6.344 64 0 0 1.5 1.95 X lo-3 
0.39 6.5 12.49 

5.6 64 0.812 2.8 4.79 2. 32 X 10-3 
0.43 4.79 13.03 

4.8 64 0.7 2.4 4.1 3.77 X 10 -3 
0.57 3.36· 9.77 

. -3 .9. 76 4.8 24 0.7 2.4 4.1 3.85 X 10 o.58·. 3.36 

4.8 16 0. 7 2.4 4.1 4.1 X 10 
-3 

0.6 3.33 9.7 

4 64 0.58 2 3.42 8 X 10-3 
0.83 2.43 7.61 

TABLE 6.2.5: Performance Results for the Dynamic Expansion Limitation Method for Code 3 at a Signal to Noise 
Ratio (Eb/N

0
) of 5dB 

b/a 

2. 39 

2.6 

2. 75 

2.72 

2.61 

2.58 

2.51 

12.33 

2.18 

2.01 

1.92 

2. 72 

2.91 

2.9 

2.91 

3.13 



c 
m 

9.3 

9.9 

12 

-~ 

DEGRADATION IN 
Sv 

cth ( } AVERAGE NUMBER AVERAGE NUMBER 
B.E.R. TOLERANCE TO NOISE OF VALID VECTORS OF VALID EXPANDED 

l 2 3 CF VITERBI DETECTION (a} VECTORS PER SYMBOL 
(CODE3) (dB} INTERVAL (b) 

64 1.35 4.65 7.95 9.3 X 10-4 
0.42 18.68 43.99 

64 1.44 4.95 8.47 9.3 X lo-4 
o.42 22.36 52.45 

64 l. 74 6 10.26 9 X 10-4 0.4 36.5 86.4 

TABLE 6.2 .6: Performance Results .. for the Dynamic Expansion Limitation Method for Code 3 at a 
Signal to Noise Ratio (E~/N0} of 5 .25dB . 

. ,, ... · 
... . ' .. 

b/a 

2. 35 

2. 35 

2.37 

w 

"' "' 



AVERAGE NUMBER OF . DEGRADATION IN. TOLERANCE AVERAGE NUMBER OF 
Eb/NO B.E.R. BIT ERRORS PER BURST. TO NOISE CF VITERBI VALID VECTORS 

(dB) ·.DETECTION. (CODE 3) (dB) 

.. 

-2 
3.75 2.69 X 10 29.8 o.l l3 .8 

4.25 9.16 X 10 
-3 

26.7 0.13 10.1 

4.75 1.84 X 10 
-3 

21.3 0.1 7;4 

5.35 2.44 X 10 
-3 

15.3 0.2 . 5 .5 

TABLE 6.2.7: Performance Results for. a Scheme Using Code 2 where C =6.344 and cth=3,0,0. 
m 

. 

DEGRADATION.IN TOLERANCE 'AVERAGE NUMBER 
c Sv cth ( ) .B.E'.R. 

' 
TO NOISE·CF VITERBI. VALID VECTORS m 

l 2 3 
DETECTION. (CODE 3) (dB) 

6. 344 64 0.92 3.172 5.425 4.8 X 10-4 o;25 5.79 
. .. -'4' 

6.344 64 0 0 l. 9.6 X 10 0.44. 5.68 .· 

6.344 
. -3 

64 -1 -1 l 1.86 X 10 0.6 5.59 

5.6 64 0.812 2.8 4.78 1.33 X 
-3 

10 0.5 ' •' ~Ll4 '' 
-3 .... ·' ... 

5.6 64 0 0 3' 1. 3.5 X 10 ' .. 0,52. . .4 .• 12 
'' 

10-3 " 
5.6 64 -1 -1 3 2.55 X 0. 7 o4 .• 1 

4.8 64 0.7 2.4 5.9 
-3 

0.96 2.98 4 .. 1 X 10 " ' 

4.8 64 0 0 3 5.94 X 10-3 0.96 2.97 

10-3 '' 

4.8 64 -1 -1 3 8.26 X 1.32 2.99 

(a) 

OF 
(a) 

AVERAGE NUMBER OF 
VALID EXPANDED 
VECTORS PER SYMBOL 
INTERVAL .(b) 

25.9 

19.3 

14.7 

11.4 

AVERAGE NUMBER OF 
VALID EXPANDED 
VECTORS PER SYMBOL 
INTERVAL (b) 

14.99 

11'.24 

9.92 

. 1L35 

'• ·9 ;38'' 
: 

'· 8.17 

8.8 

7 .6.7 

6.54 

TABLE 6.2.8: Performance Results for the Dynamic Expansion Limitation Method for Code 4 at a Signal to Noise 
Ratio (Ep/N0) of .S.25dB 

b/a 

1.88 

1.91 

1.99 

2.07 

b/a 

2.59 

1.98 

l. 77 

2.74 

2.28 

1.99 

2.95 

2.58 

2.19 
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.. 

Code ' c Sv 
cth( ) 

m 
cth(l) cth(2) c;th (3) 

1 5 .172 16 0.75 2.586 4.422 

1 5.172. 16 -1 -1 1 

4 6.344 64 0.92 3.172 5.425 

TABLE 6.2.9: Schemes Chosen for Full Simulation Tests 
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AvE;RJ\GE NUMBER' 
EiNo ' AVERAGE 'NUMBER OF DEGRADATION' IN .. AVERAGE . NUMBER 

B.E.R. BIT ERRORS PER BURST TOLERANCE TO NOI$E OF"VALiD VECTORS OF VALID EXPi\NDED; .· 
dB CF VITERBI ·DETECTION i.O:) . VECTOR.S PER SYMBOL 

(CODE 1) dB .. " INTERVAL '(b) 
' 

7.07 
-2 0.2 . 6 . .7 19.2 . . 3 .25 X 10 2 3.6 

3.5 4.78 X 10 
-2 2i.8 0.23 6.0 17.2 

3.75 2.86 10 
-2 

19.3 0.18 5.4 15.5 X 

4.0 1.99 X 10 
-2 

18.9 0.25 4.9 14 

4.25 1.04 X 10 
-2 

17.3 0.19. 4 ."4 12.7 

7.59 
-3 18.1 0.29 4.0 1)..4 4.5 X 10 

4.75 3.78 X 10-3 16.2 0.25 3.6 . 10.3 

5.0 2.46 
-3 17.8 0.3 3.2 9.5 X 10 

5.3 1.5 X 10-3 15.9 0.4 2.9 8.5 

5.6 3.9 X 10-4 12.9 0.4 2.6 • 7.8 

5.8 2.9 
. -4 

15.5 0.44 2.5 7.4 
X 10 

TABLE 6.2.10: Performance Results for the Scheme Using Code 1 where c =5.172 and cth=4.422, 2.586, 0.75 
m 

b/a 

2.87 

2.87 

2.87 

2.86 

2.89 

2.85 

2.86 

2.97 

2.93 

3 .o 

2.96 

w 
N ...., 



E /N 
b 0 

(dB) 

3.25 

3.5 

3.75 

4.0 

4.25 

4.5 

4. 75 

5.0 

5.3 

5.6 

5.8 

AVERAGE NUMBER DEGRADATION IN TOLERANCE AVERAGE NUMBER OF AVERAGE NUMBER OF 

B.E.R. OF BIT ERRORS TO NOISE CF VITERBI VALID VECTORS (a) VALID EXPANDED 
PER BURST DETECTION (CODE 1) dB VECTORS PER SYMBOL 

INTERVAL (b) 

7.65 X 10 -2 
24.7 0.23 6.5 11.5 

5.22 X 10-2 22.8 0.26 5.8 10.4 

3.31 X 10 -2 
20.4 0.25 5.3 9.6 

2. 35 X 10 -2 
20.4 o·.3 4.8. 8 .8 . 

1.27 X 10 
-2 

18.2 0.3 4.3 8 .. 1 

9.36 X 10 -3 
19.8 o. 33 3.9 7.4 

4.76 X 10-3 
17.4 0.35 3.5 6.8 

3.19 X 10 -3 
18.9 0.4 3.2 6.3 

1.89 X 10-3 
16.5 0.49 2.8 5.8 

6.8 X 10-4 
16.4 0.62 2.6 5.4 

5.26 X 10 
-4 

18.5 0.62 2.4 5 .2 

TABLE 6.2.11: Performance Results for the Scheme .Using Code 1 where C ,;5.172 and cth=l,-1,-1 
m 

b/a 

1.77 

1. 79 

1.81 

1.83 

1.88 . 

1.9 

1.94 

1.97 

2.07 

2.08 

2.17 



Eb/NO 

(dB) 

3.75 

4.0 

4.25 

4.5 

4.75 

5.0 

5.25 

5.5 

5.8 

AVERAGE NUMBER DEGRADATION IN TOLERANCE AVERAGE NUMBER AVERAGE NUMBER 

B.E.R. 
OF BIT ERRORS TO NOISE CF VITERBI OF VALID VECTORS OF VALID EXPANDED 
PER BURST DETECTION (CODE 3) dB (a) VECTORS PER SYMBOL 

INTERVAL (b) 

2.62 X 10 
-2 

28.7 0.13 14.5 37.3 

1.28 X 10 
-2 

25.4 0 12.1 31 

8.01 X 10 
-3 27.2 0.1 10.4 26.7 

3.81 X 10 
-3 

25.9 0.1 8.9 22.8 

2.49 X 10-3 27.1 0.18 7.7 19.8 

1.17 X 10-3 27.1 0.25 6.7 17.2 

4.8 X 10-4 18.5 0.3 5.8 15 

3.4 X 10-4 37.8 0.43 5.2 13.5 

1.3 X 10-5 6.5 0.4 4.5 11.9 

TABLE 6.2.12: Performance Results for the Scheme Using Code 4 where C =6.344 and cth=5.425,3.172,0.92 
m 

b/a 

2.57 

2.56 

2.57 

2.56 

2.57 

2.57 

2.59 

2.6 

2.64 



AVERAGE NUMBER OF DEGRADATION IN TOLERANCE AVERAGE NUMBER 

Eb/NO BoEoRo BIT ERRORS PER BURST TO.NOISE CF VITERBI OF VALID VECTORS 
DETECTION (CODE 3) dB (a) 

(dB) 

3o75 9 o23 X 10 
-2 

75o3 Oo9 7o6 

4 oO 6o2 X 10 -2 
75 Oo9 6o4 

4o25 4o83 X 10 
-2 

80o1 Oo95 So6 

4o5 3 o 3 X 10-2 
86o3 1.0 4o7 

4o75 1.83 X 10 -2 
76o4 Oo95 4o0 

SoO 1.37 X 10 
-2 

84 LOS· 3o4 

So25 8o26 X 10 
-3 

96o2 1.3 3 oO 

5oS 5o9 X 10-3 
l07o4 1.2 2 0 7 

So65 3o43 X 10 -3 
91.4 1.2 2o4 

TABLE 6o2ol3: Performance Results for the Scheme Using Code 4 where c =4o8, and cth=3,-l,-l . . m . . 

AVERAGE NUMBER 
OF VALID EXPANDED 
VECTORS'PER 
SYMBOL INTERVAL 

(b) 

lSoS 

l3ol 

11.5 

9o9 

8o4 

7o4 

6oS 

So9 

5oS 

b/a 

2o04 

2o05 

2o05 

2 oll 

2ol 

2ol8 

2ol7 

2ol9 

2 o29 

w 
w 
0 



Code 

1 

3 

1 

1 

4 

4 

. . . . . . : 
' .. 

" 

I 
DESCRIPTION· OF SCHEME DEGRADATION IN TOLERANCE . REDUCTION' .IN COMPLEXITY 

TO NOISE CF VITERBI DETECTION
4 

[cf 64 EXPANDED VECTORS 

<1n cth( ) FOR CODE 1 (AT BER OF 6 ·in 10 ) PER SYMBOL INTERVAL FOR 

cth (1) cth(2) cth(3) (dB) 
VITERBI DETECTION FOR 

4 CODE 1] (AT BER = 6 in 10 ) 

VITERBI o.o 1:1 
I 

VITERBI -o.25 1:4 
(Gain) (more complex) 

5.172 0. 75 2.586 4.422 0.4 7.8:1 

5.172 -1 -1 1 0.6 11.8:1 

6.344 0.92 3.172 5.425 0.1 4:1 

6.344 -1 -1 3 0.95 >11:1 

TABLE 6.2.14: Comparison of Performance and Complexity ·for the Chosen Configurations 
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Graph 6.2.1Type-A Distribution. Static Expansi<x1 
Limitation Method. Code 1. Eb/No~4.6dB- --· ; '_ 
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Graph 6.22'Type:-:-B Distribution. Static Expansion 
Limitation Method; Code 1. Eb/No=4.6dB. BER=O.OS 
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. • - - Graph 6.2.3 Type-8 Distribution. Static Expansion 
: Limitation Method. Code 1 Eb/No=4.6d8 BER=0.0175 
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Graph 6.2.4 Type-8 Distribution. Static Expansion 
Limitation Method .. Code 1 Eb/No=4.6d8 BER=0.0184 
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. Graph 6.2.5 Type~B Distribution. Static Expansion 
Limitation Method. Code 1 Eb/No=4.6dB BER=0;00433 
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Graph 6.2~6 Type-A Distribution .. Static Expansion . ·· 
Limitation Method. Code·1 Eb/No=5d8 . · · '. 
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Graph 6.2.7 Type:-8 Distribution. Static Expansion 
Limitation Method. Code 1 Eb/No=5d8 BER=0.0187 
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Graph 6;2.8 Type-8 Distribution. Static Expansion 
·Limitation Method. Code 1 Eb/No _ 5d8 BER=0.0029 
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Graph 6.2.9 Type-8 Distribution. Static 'Expansion 
Limitation Method. Code 1 Eb/No=5dB BER .0.0134 
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Graph 6.2.10 Type-8 Distribution. Static Expansion 
Limitation Method. Code 1 Eb/No=SdB BER=0.00181 
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:_ '.. ·_ ~raph 6.2.11 Type-A Distribution. Dynamic Expansion 
. · · ... ··· ·. . · Limitation Method. Code 1 Eb/No=5.3d8 · · 
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Graph 6.2.12 lype....:_B Distribution. Dynamic Expansion 
Limitation Method.~Code 1 Eb/No=5.3d8 BER=O.D0289 
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Graph 6.2.13 Type-8 Distribution. Dy'n.dmlc Expansion 
. Limitation Method. Code 1 Eb/No=5.3dHBER=0.011 · 
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Graph 6~2.14 Type-_8 Distribution. Dynamic Expansion 
· Limitation Method. Code 1 Eb/No::::5;3d8 BER::::0.00178 
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Graph 6.2.15 Type-:-8 Distribution. Dynamic. Expansion 
Limitation Method. Code 1 Eb/No=5.3d8 BER=0.0017 
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Graph 6.2.16 Type-A Distribution. Dynamic Expansion 
Limitation Method. Code 3 Eb/No=4.6dB 

35 

30 

Q) 

E 25 :;:: 
s::: 
0 ·c;; 
·~ 20 

"' s::: 
c 
l:: 15 

~ 
0 10 

~ 

5 

0 

- .. 

Legend 

- /::; LCm=4[Cth=3.42,2,0.5BL 

X LCm=4.8/C!h=4.1,2.4,0_.696,( ___ 
' 0 /Cm:=_5co/.Cth=~}_B8,2.8,q.~_g[__ _. j 

!ll:l /Cm=~-~44/Cth=§:425,3.1!..2_,0.92/ 

:'lX ! ':!1:' -==~:?I. C:! ~ ::? :~ ~!~~ .. -~? .. ! : ~ ?!.' ------
- i 

' ' 

~-' 
., 

]/ . 

; ~,\ . 

-. 

-
0 

. \\,--------
: ~,~-----

: '\.:: ', ------: :::---:... ~-. _______ ,_ 
• 0 --:::-:-:-,..._ •• - '----- --- --------

' ' - ~ 

10 20 30 40 50 
Number of valid vectors 

COMMON ATTRIBUTES 
/M=B/C=3/Det=V64/N=64/ 

~ 

60 70 

351 



Graph 6.2.17 Type-A Distribution. Dynamic Expansion 
· . Limitation Method. Code 3 Eb/No=SdB 
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Graph 6.2.19 Type-A Distribution. Dynamic Expansion 
Limitation Method.· Code 2. 
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Graph 6.2.21 Type-A Distribution. Dynamic Expansion 
· -Limitation Method. Code 1 
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Graph 6.222 Type-S Distribution. Dynamic Expansion 
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Graph 6.2.23 Type-8 Distribution. Dynamic Expansion 
·Limitation Method. Code 1 Eb/No=5.3d8 8ER=0.0015 
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Graph6.2.25 Type-:-8 Distribution. llyna.rnic Expansion 
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Graph 6.2.27 Type-A Distribution. Dynamic Expansion 
Limitation Method. Code 4 

20 

Ql 15 E 
+= 

r:::_ 
0 
'iii 
"' .E 
"' 10 r::: e -0 -0 --0 

~ 5 

0 
0 

t. 
I' 

: \ 
' ' I 

Legend (\\ /:,. BER = 0.03 

I \ X BER = 0.001 

\: 
---· 

0 BER = 0.00001 -----

\ 
\'\ 
\~ -::-::---_ 
10 20 30 40 50 

Number of valid vectors 

COMMON ATTRIBUTES . 
/M=8/C=4/0et=V64/N=64/ 
/C!h=5.42S,3.172,0.92/Cm=6.344/ 

60 70 

362 



363 

... 

-· ~· 

, Graph 6.2.28_ Variation in the average number of valid vectors 

·. , .... 

. - : 

· with signal to noise ratio 

16,-----------------------------------~ 

. 14 

VI ,__ 
Q. 

+-u 
.Q) 

>-
3!" 
0 
> -0 
,__ 
Q) 
_a. 

E 
:I 
c: 
Q) 
Ol 
0 ,__ 
Q) 

~ 

12 -

_tO 

8 -

6 

4 

' ' ' 

\ 
' ' ' 
\ 

' ' 

\ 
' ' ' 

Legend 
!;,. /C=1/Det-V16/Cth=4.422,2.586,0.75/Cm=5.172/ 

X /C=1/Det=V16/Cth=1,-1,-1/Cm=S.172/ __ 

. 0 ~Q!I';'~I,!t;';?·425,3.J'?_2"~!!'-=_6~ 

\ 
' ' ' \ 

' ' 

.'""' ' 
',~', 

''El 

~ 

2+-----T-----~--~----~----~----~ 
3 3.5 4 4.5 5 

Eb/No [dB] 

COMMON ATTRIBUTES 
/M=8/N=64/ 

5.5 6 



_. -· 

Graph 6.2.29 Variation in the average-number of valid expanded 
vectors per symbol_ interval witb sign~l to noise ratio 

0 - > 
'- 35 
~ 
.s 
0 

..0 

' ' ' 

\ 
' ' 

-. :· .. . 

364 

~ 30 
(/) 

'
Cl> 
a. 
~ 

\ 
' ' 

\ 

. ,-Legend: 
6. ;c.,vo-.t.,vts/cth.,4.422,2.5Bs,o.75/Cm.,s.tn/ . 

X jc::01(oet.,V16/Cth.,1. -1,-1/Cm.,5.172/ __ 

-- 0 -~Q!_i~~l_!l_:'~~-1?.2"~!!'-~~ 
~ 25 

Cl> 
> 

"0 
Cl)· 

"0 
c: 
0 20 a. 
~ -0 
I
Q) 

'E 15 
::1 
c: 
Cl> 
m 
~ 
Cl> 10 

~ 

><-.:... .'-...... 

' 

' 

'-...... . 

. '-----....... 

\ -- ' 
' 

'""' ~ - ' 

-- ......__ -- -

-------

',~', 
'"El 

:------:.----5-~--~~--~----~----~----~~~ 
3_ 3.5 -4-- 4.5 5 

Eb/No [dB] 

COMMON ATTRIBUTES 
/M.,8/N.,64/ 

5.5 6 



365 

·- · .. 

· .. CHAPTER 7 . - ; -

DISCUSSION OF RESULTS 

.... 



366 

This Chapter is split. into three sections. In the first, a 

selection of the schemes· outlined in Chapters 3 to 6 are compared, 

where the chosen schemes are those which are regarded as the most 

promising. The second section considers the originality of. the study, 

and specifically notes :those ideas which are not solei.y attributable 

to the author;. The final ·se'ction outlines further work which is 

required in order· to be able to make a .reasoned choice between the 

modulation ·methods. ·and,their .attendant detectors. 
:· . 

7.1. COMPARtSON·OF THE.MORE PROMISING SCHEMES 
... 

As noted in t:hapter-3,· a Viterbi Algorithm detector with four 

stored vectors .is coii.sidered ·to be a viable scheme for the CO;RPSK(4-7 ,l+D) 

IIX>dulation. method:· · For. the· coded BPSK modulation method, Viterbi 

. detection, near-max.imum likelihood System 1 detection, and the noise-

adaptiv~ viterbi-type detection scheme, are considered. Graphs 7.1.1 

to'7.~.4 compare ~he·schemes in terms of tolerance to noise. Eb is_ the 

average energy .. transmitted )er data bit. N
0

/2 is the two-sided power 

~spectral density .·of the additive white Gaussian noise. (See Appendix 
,. -

. AS. for more details of the simulation techniques. Appendix AB describes 

' 
the notation used·to describe the schemes-being compared.) In all the 

graph_s; the, accuracy at. the ·results,. in the region of bit error rate 

.{BER) 1 in 10
3 

to 1 in ro4 
i.s of the order of ±o.3dB. 

From Graph 7.1.1 it is clear that Viterbi detection in the case 

of the coded BPSK modulation method gains substantially in tolerance 

to noise, compared with the preferred scheme for CORPSK(4-7,l+D) 

modulation, below a BER of 1 in 10
2 

At a BER of 1 in 10
4 

this 

advantage is over l.SdB. This advantage is achieved at the expense of 
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a considerable· increase in complexity for the detectors in the case 

of coded BPSK.-iriodulation. (The Viterbi detector for the eight phase 

. . . . I 
scheme using Code _l. is approximately 4 times more complex than the 

chosen Vi.tei:bi· detector for the CORPSK(4-7 ,l+D) scheme, while ·for 

Code 3 the. required detector is some 16 times more complex than for 

the CORPSK(4-7 ,l+D) scheme.) From Graph 3.2.7, the addition of a 

premodtilation filt,er with a Nyquist III-ammended 0% Roll.,-Qff Raised 

Cosine.' f:req\lency. inodulating pulse l"eads to a degradation in tolerance 

to noise :o~ the orde"r of o.SdB at a BER of. 2 in 104 , for CORPSK(4-7 ,l+D) 

modulation;. Sirice such a filte~62 is requir~d to restrict the otherwise 

rather wid~ bandwidth of the scheme in Graph 7.1.1, this degradation 

must· be taken into ·account. The CORPSK(4--7 ,l+D) modulation method 

does provide a n~er of possibly important advantages. Since it 

·.provides _a constimt envelope signal in non-bandlimited form, the 

signal is not affected-by nonlinear operations in high power amplifiers 

. (HPA) ,- bot;h · in the earth stations and on board the satellite. The 

effect or·such nonlinear operations on non-constant envelope signals, 

such as band~imited QPSK, is that the s~ctral sidelobes of the signal 

d 
. . 12,22 

ten to spread, causing an unacceptable level of out of band rad~ation. 

In a_ system comprised of many. closely packed channels this inevitably 

leads to an unacceptable level of adjacent channel interference (ACI).
3 

Therefore, for QPSK-type signals, these HPAs are often backed-off from 

saturation so· that they operate in the linear portion of their 

characteristics. This may require a back-off (relative to the output 

level of. the saturated amplifier) of up to 6dB. If the corresponding 

constant envelope scheme requires no such back-off, this translates 

into a gain of 6dB in tolerance to noise, since more power can be 
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radiated in the case of CORPSK(4-7,l+D) modulation using the same HPA. 

Unfortunately, it is often found that the CORPSK(4-7,l+D) modulation 

·scheme cannot be implemented in schemes with closely packed channels, 

without significant bandlimiting. ,The minimum channel spacing for 

the pure, non-bandlimited, CORPSK(4-7,l+D) signal is iri the range 0.9 

to 1.0 times the bit rat~. 34 Simulation tests have tended to show that 

the CORPSK(4-7,l+D) signal's bandwidth increases substantially at the 

output of a HPA, if the inp.ut ·signal to the HPA is bandtimited. 
6 

This 

in fact, tends to be more severe than· for offset QPSK-type schemes, 

under similar circumstances. 
6 

Also from Graph 7 .1.1 the gain· in 

tolerance to noise over QPSK at a BER of 1 in lo\ (less than ldB when 

the premodulation filter is taken into account) , does not really justify 

the increased complexity due to the Viterbi detector. A second advantage 

of this signal is that, since CORPSK(4-7,l+D) modulation is a differential. 

scheme, it is inherently immune to .sudden phase changes; Pifferential_ 

coding for the coded 8PSK m6dulation scheme does not solve.this·problem 

since the codes are not transparent to· sudden phase changes, but_ there-

. . . . .- .. 19 
are techn1ques wh1ch are ava1lable to overcome th1s. Carrier. 

frequency and phase synchronisation, and timing synchronisation, are 

. . 3~2 
additional problems wh1ch have not been fully solved for CORPSK(4-7 ,l+D) , . 

49 .. 
or similar correlative phase modulation, (CPM) , schemes. Indeed,-_. for 

coded 8PSK this may also be a major problem, simply because the_ signal 

to noise ratio at which the synchronisation circuitry must operate, is 

. . f. h h f . i 8 49 
s1gn1 1cantly lower t an t at or 1n-serv ce PSK systems. From 

Tables 3.2.2, 3.2.5 and 3.2.9, it can be concluded that the error 

burst characteristics for the eight phase schemes are not very greatly_ 

increased compared with those for the CORPSK(4-7,l+D) modulation method. 



369 

The definition of an error burst is given in Appendix AS. In the latter 

case the average number of bit errors per burst is about 3 at a BER of 

4 
1 in 10 . In the former case this figure is about 10 for both schemes 

shown in Graph 7.1.1, at the same BER. In general, and given the above 

discussion, the results tend to point to coded 8PSK as the preferred 

modulation method when the detector uses the Viterbi Algorithm, as long 

as such detectors are feasible at the required data rates. 

Graph 7.1.2 compares near-maximum likelihood System 1 detection, 

(Section 4.1), with noise-adaptive Viterbi-type detection, (Section 

6.2), for schemes using Code 1 •. System 1 has been chosen as the 

representative near-maximum likelihood scheme for this comparison, 

since in Chapter 4 it provides the best results for the detectors 

tested. Graph 7 .1. 3 provides a similar comparison for the .longer, 

constraint length k=4, codes, .<codes 3 and '4. in particular). From 

Graph 7.1.2, the noise-adaptive schemes have a better tolerance to noise 

than both System 1 schemes, at least down to a BER of 5 in 10 
4

• The 

shapes of the curves for the noise-adaptive schemes suggest that this 

may no longer be the case at lower BERs, but certainly in the range 

of.BER 1 in 10
3 

to 1 in 10
4

, the noise-adaptive schemes have a 

performance which is similar to the 8-vector, (k
1

=8), System 1 scheme. 

The reason for the difference in the slopes of the curves is most 

easily explained with reference to Graphs 6.2.28 and 6.2.29. These 

show that the equipment complexity required for a given variant.of the 

noise-adaptive scheme, (that is, given the values of c , cth(l) ,cth(2) 
m 

and cth(3)), reduces as. the signal to noise ratio increases. If a 

method of adjusting these parameters could be found such that the 

complexity remains constant as the signal to noise ratio varies, 
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one ""'uld expect the. slopes of the curves to be very similar to that 

for Viterbi detection. In order to compare the schemes in terms of 

complexity, a· BER <;>f 6 in 10
4 

has been chosen as the point of· comparison 

·in Table- 7 .1.1: ·The complexity measures are difficult .to compare 

directly' but it. can be seen that the number of expanded vectors that 

require processing ·:Ln ·the case of the System 1 schemes, are considerably 

greater·thari the numbe~ requiring processing in the two noise~adaptive 

cases: This .. ignores--the· fact that the number of costs which have to 

be compared, (_that _is" ranked)' in the selection of one vector in the 

case of. System 1 detection,. is considerabty grE!ater than the averagE! 

number of. cost~:-to·be ranked in the selection of one vector in the 

case of the noise-:-adaptive detector. Of course·, the noise-adaptive. 

detector requires input and· output buffer stores and the attendant 

control circuitry, and the design of. ·a system to fully exploit these . . 

potential'_reciuctiC:,ns in complexity is by no means siinple, (Section 6.2) • 

Despite. this, _for_ code 1; these noise-adaptive schemes potentially 

·provide a --very· significant reduction in system complexity over System 1 

_·_detecd.on' at no degradation in tolerance to noise' in the range of 

BER co~sidered, (1 in _io3 
to 1 in 10

4
). In general the average number 

of· bit errors per burst is • lower for- the noise-adaptive schemes, (see 

.Tables. !1.1.1, 6.2-.10,. and 6.2.11). 

The same conciusion can be drawn from Graph 7.1.3 for the longer 

constraint length ··codes. The complexity comparison is given in Table 

7 .1.2. (Code 3 .was chosen for the schemes using System 1 detection 

despite using Code 4 in the noise-adaptive scheme, because schemes for 

System 1 detection using Code 4 were shown to yield very poor results 

in Section 4.1. Therefore it was felt that this comparison is fairer.) 
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The results indicate a significantp6tential reduction in complexity, 

together with a considerable_ gairi ·.ii1 tolerance to noise over the 

System 1 detectors. No'tice_thatceven the simplest System 1 detector, 

(k
1 

=4), is 100re complex ·than the_. n9is~·-adaptive detector. The noise

adaptive scheme for Oode 4 ·tends to-have a larger number of bit errors 

per burst than System 1 detection for Code 3 , (see Tables 4 .1. 3 and 

6.2.12). Note though that. System 1 detection with Code 4 produces 

very large error bursts, (Tab_le -4'; 1:5) • 

Graph 7 .1. 4 compares noise·~<~;daptive Viterbi -type detection with 

four-vector Viterbi detection for the ideal· CORPSK(4-7,l+D) 100dulation 

method. (O._SdB should be adde~i_to· the degradation in tolerance ta" 

. - . - 4 
noise for the latter scheme at -a BER of 2 in 10 compared with noi_se-

adaptive detection, due_ t.o t}Je premodulation· filtering.) Clearly, the 

noise:..adaptive deteC:tors for coded SPSK are a significant improvement . . . .. ' - -

over Viterbi detection for the CPM scheme. - Despite the fact that the 

complexity of the noise-adaptive schemes as defined in Section 6.2 

falls off· ·as· the· signal t6 ·noise ratio rises, the relative slopes of 

the curves snow--that the noise-adaptive schemes may give even greater 

gains in to-lerance to noise at higher signal to noise ratios. This 

advantage irl. tolerance to. noise is linked to a consi"derable potential 

reduction in complexity. The results· are summarised.in Table 7.1.3, 

where the complexity i~ ~elative to the. preferred, 4-vector, Viterbi 

detector for CORPSK(4-7 ,l+D) 100dulation, and the measure used is the 

average number of expanded vectors per symbol interval at a BER of 6 

4 
in 10 _. It can be seeii that in all cases, the potential gain in the 

trade-off between equipment complexity and tolerance to noise, is 

considerable. For example, at a BER of 6 in 10
4

, a scheme using Code 1 
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could gain 0.4dB in tolerance to noise, with only about 1/3 of the 

complexity of the 4-vector Viterbi detector for CORPSK{4-7,l+D) 

modulation. The scheme using Code 4 could gain nearly ldB in tolerance 

to noise at the same BER, for approximately the same complexity as the 

Viterbi detector for CORPSK{4-7,l+D) modulation. These gains increase 

significantly at ~lower values of the BER, {see Graphs 6.2 .28, 6.2 .29 

and 7·.1.4). These results do beg the question, would the noise-adaptive 

technique be applicable to CORPSK{4-7,l+D) modulation, and if so what 

reductions in equipment complexity are feasible?. Note that these gains 

cannot be as significant as in the case of coded 8PSK modulation, 

simply because four-vector Viterbi detection is already reasonably 

.simple. A much more interesting application would lie in the area of 

49 
general CPM schemes, where the Viterbi detector requires a prohibitive 

number of stored vectors, {as long as the attendant synchronisation 

. 49 
problems can be solved ) • This would also include multi-h modulation, 

where the modulation index is varied in some cyclic and systematic way 

over consecutive symbol intervals, {again, given a solution to the 

. h . t. . bl 49) sync ron~sa 1on pro ems . 

The noise-adaptive Viterbi-type detector could in fact be a 

candidate for any coherent detection scheme which at present requires 

Viterbi or near-maximum likelihood detection, {for example for 

telephone or HF radio channels). 
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/Det=lN4/N=32/ 

/Det=lN8/N=32/ 

/Det=Vl6/N=64/C =5.172/ 
m 

cth=4.422,2.586,0.75/ 

/Det=Vl6/N=64/C =5.172/ 
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cth=l,-1,-1/ 

Eb/N0-value 

at whi<;:h BER 
-4 

= 6 X 10 (dB) 

7.1 

5.9 

5.6 

5.8 

Measure of Relative Complexity 
(Per Symbol Interval) 

16 expanded vectors/symbol interval 
4 cost rankings, each involving 16 costs 

32 expanded ,vectors/symbol interval 
8 cost rankings, each involving 32 costs 

On average, approximately 
7.75 expanded vectors/symbol interval 
2.5 cost. rankings 

On average, approximately 
5.75 expanded vectors/symbol interval 
2.5 cost rankings 

TABLE 7.1.1: Complexity Comparisons for Near-Maximum Likelihood System 1 and Noise-Adaptive 
Viterbi-Type Detectiono-f Coded 8PSK, for Code 1 

w ...., 
w 
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/Det=lN4/N=32/ 

/Det=lNS/N=32/ 

/Det=1N16/N=64/ 
' 

/Det=Vl6/N=64/C·=6,344/ 
m 

cth=5 .425 ,3 .172 ,0. 92/ .. 
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,(Per .. Symbol Interval) 
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·32, expanded vectors/symbol interval 
8. cost ~ankings, each involving 32 costs 

. ' .. 
64 expahd~d. ir~ctd~·~/symbol .interval·. 

. . 16 cost rankings', e,;;ch ~nvolving .64 'co~ts 
'. 

on ave:rage,"approximately 
12.5 expanded vectors/symbol interval 
4;5 cost ·rankings 

TABLE 7 .1.2: Complexity Comparisons for Near-Maximum Likelihood, System l and Noise-Adaptive 
Viterbi-TY.Pe Detection of Coded SPSK, for Code 3 
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SCHEME at which BER Average Number of Expanded Vectors/ 

6 X 10-4 (dB) Symbol Interval = 
. _.:_ 

/M=C/Ch=I2/Ph=D/Pr=D/Det=V4(N=32/ 6.2. l 

/M=8/C=l/Det=Vl6/N=64/C =5.172/ 5 .• 6. 0.48 
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,. 
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' ' 

" . 

TABLE 7 .1.3: co~plexity c~mparisons !o;r;. .viterlii' Detec.tion•of CoRPSK(4-7,l+D)·'.' 
and Noise-Adaptive Viterbi-Type Detection for Coded SPSK 

' 

" 

' 

. 

' '·· 

' 
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Graph 7.1.2 Code 1. Comparison of Near Maximum Likelihood 
System 1 Detection with Noise-Adaptive Detection 
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Graph 7.1.3 Comparison of Near Maximum Likelihood System 1 

Detection [Code 3] with Noise-Adaptive Detection [Code 4] 
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Graph 7.t4 Comparison of CORPSK[4-7,1+D] Differential-Phase 
Perfect Channel Scheme with Noise'-Adaptive Detection ' · 
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7.2 NOTE ON ORIGINALITY 

As far as the author is aware, all of the work described within 

this thesis is attributable to the author, except either where credit 

is specifically given in the text, (for example in the form of 

references), or in certain cases, (noted below), where an idea 

originated from the ·author's · suj:>ervisor. In particular, all the 

computer simulation .tests described within this thesis were undertaken 

by the author, and all the computer programs were written by the author: 

The following lists the most important ideas which originated either 

from the author, or from the author's supervisor, during the course of 

the· research. 

(1) The use of phase as a measure of distance originated from the 

author's supervisor. 

(2) The reduced complexity, pseudobinary System 1 detector, originated 

from the author, (Section 4.3). 

(3) The look-forward detection scheme originated from the author's 

supervisor, and·. was further developed by the author with the 

addition of pseudobinary versions, (Section 4 .4). 

(4) The vector retention-forcing algorithm originated from Reference 

75. The idea of extending the retention period to greater than 

one symbol interval is attributable to the author's supervisor 

(Section 4.5). 

(5) The analysis of near-maximum likelihood detection techniques 

76 
based on sequence numbers, as applied to CORPSK(4-7,l+D) and 

BPSK modulation, is the author's work. 

(6) The application of soft decision techniques to table look-up 

syndrome decoding for coded BPSK, and the algorithms by which the 

look-up tables were formulated, originate with the author. 
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.P> The use of a .. maximum cost for the chosen vectors in the noise

adaptive viterbi-type detector is the author's idea, although 

similar ideas have been discussed before, in References 76 and 88. 

·The static expansion limitation.method is the author's idea. The 

·idea of using cost thresholds in the dynamic expansion limitation 

·method, originates from the author • s supervisor·. The design of 

.the implementation for a noise-adaptive detector, for a scheme 

using Code 1, is the author's, (Section 6.2). 
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7.3 RECOMMENDATIONS FOR FURTHER STUDY 

The aim of this section is to out~ine further areas of work which 

are required to prove the worth of the noise-adaptive Viterbi-type 

detector under non-ideal conditions, and to investigate the possible 

application of the detector to other modulation methods presently 

being considered for satellite systems. The.following is .a list of 

the possible avenues for further study. 

(1) The effects of non-ideal channel.characteristics should.be 

considered, leading to measures of the performance of the noise-

adaptive algorithm relative to Viterbi detection over represent-

ative satellite channels. The investigation would include the 

effects of adjacent~ and eo-channel inte~ference 3 , and the effects 

of nonlinear amplification in the.form of high power amplifiers, 

(HPA), with various back-offs from saturation. The effect .of 

baseband pulse-shaping of the complex modulating waveform before · 

application to the 8PSK modulator is r~quired. A study of the 

effect of bandlimiting the SPSK signal.before application to the 

HPA is required. ·This work would also include implementation-

oriented investigations' such as the effects of quantisation and 

the approximations which have to be made in digital filter 

implementations. In addition, the effects of carrier and timing 

synchronisation errors require investigation. This work would 

also include the specification of complete satellite channels, 

either incorporating or not incorporating regeneration.of the data 

on board the satellite. 

(2) Further statistical results are required to enable firm decisions 

to be made on the buffer store requirements for the noise-adaptive 
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detector, for a number of variants of the detector, and various 

signal to noise ratios. This study would also increase knowledge 

of the effects of varying the detector parameters. New codes 

could be tested, and in particular, codes with specific column 

distance functions or distance profiles, (see Section 6.1), in 

order to ascertain the opfimum codes. 

(3) _There is the possibility of varying the detector parameters within 

the detector, (C ,cth(l) ,cth(2), and cth(3)), in order to either 
m 

increase the slope of the curves in Graph 7.2.2, or to optimise 

the detector in non-Gaussian noise environments. This 

investigation could also include variants of the rules governing 

the number of valid expanded vectors, (Section 6 .2). 

(4) A more detailed study of possible practical implementations is 

required for various applications~ 3 This would include the 

feasibility of high bit-rate schemes using more parallel processing, 

. 91,92 
and lower bit-rate schemes where digital signal processors (DSPs) 

are an attractive-solution in terms of cost and flexibility, 

(including the ·option of reprogramming) • The possibility of 

implementing the required functions using a very small number of 

Very Large Scale Integration, (VLSI), integrated circuits requires 

study. Detector structures for determining the valid expanded 

vectors, for vector and cost storage, and for the cost-ranking 

functions, require investigation. 

(5) The application of noise-adaptive Viterbi-type detectors to 

different modulation schemes could provide attractive alternatives 

to coded BPSK. These include correlative phase modulation, (for 

example CORPSK(4-7,l+D)), and multi-h schemes. 
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- (6) An investigation into the feasibility of carrier and timing 

synchronisation is required, since the synchronisation circuitry 

is required to operate at much lower signal to noise ratios than· 

in current systems (such as.QPSK and SPSK) • 
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The investigation has noted that Viterbi Algorithm detection is 

generally too complex for coded 8PSK modulation, (although a.scheme 

using Code 1 with a soft-decision 16-vector Viterbi detector is 

· . I 6,8,9> considered technically feasible at data rates of up to SMb~ts second • 

On the other hand, Viterbi Algorithm detection is considered to be 

very attractive for CORPSK(4-7,l+D) modulation, with the specified 

rather wide equipment filtering, using 4 stored vectors. 

Traditional near-maximum likelihood detection schemes, including 

. 64-71 
pseudobinary var~ants, . are not really suited to convcilutionally 

coded schemes, in that they provide only small reductions in detector 

equipment complexity, coupled.to relatively high degradations in 

tolerance to noise compared with Viterbi Algorithm detection. 

State redefinition techniques and soft-decision syndrome decoding 

for code·d 8PSK are not viable techniques, since they yield considerable 

losses in tolerance to noise compared with optimal,. (Viterbi Algorithm), 

detection. 

Sequential decoding is not considered to be a viable technique 

for coded 8PSK, because the signal characteristics woul.d probably 

lead to a large number of rather lengthy back-up searches. 

Noise-adaptive Viterbi-type detection is a very promising 

technique in that it yields relatively small degradations in tolerance 

to noise compared with Viterbi Algorithm detection, coupled with 

considerable potential reductions in detector equipment complexity. 

The key to the complexity reduction is that it is a basically feedforward 

technique, with no time-consuming back-up searches, and with a well-

defined maximum processing load per symbol interval, which is (potentially) 

only marginally greater than the corresponding processing load per 
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symbol interval for Viterbi Algorithm detection. The feasibility of 

the technique is subject to ttie detailed development of practical 

implementations of the algorithm which approach, as closely as possible, 

··the potential reductions in det.ector equipment complexity. 
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Al PRECQDING 

Preceding is a technique by which the effects of coding in 

. 1 53 
correlative-level encoded ' · systems may be effectively removed whilst 

retaining the coding gains that such schemes offer. In this way 

excessive error propagation is avoided. Error propagation is defined 

as the effect by which ~ ~umber ·of c6nse:Outive or near-consecutive 

detection errors are made, du~·to:one·i~olated noise-induced error. 

Such effects occur because. one. code ··symbol is. a function of more than 

one data symbol. . This ineans that an ~rror in the value of one code 

symbol will affect more than one·_:detected_ data symbol. This analysis 

deals in particular with the· c;a.se of correlative coding as_ implemented 

in theCORP.SK(4-7,HD) modulation scheme.
62 

.The correlative-level encoder, is define9, by its generator function, 

which is a polynomial in the-delay operator D, 

(Al.l) 

.A diagram o.f. the--system is given in Figure Al.l. 

· - If the .input data -{ s.} are statistically independent and equally 
. : l. 

likely to have any of their four values; 0,1,2 or 3 it can be shown 

that the four-le':'el symbols {qi} are also statistical_ly independent 

and equally likely "to have an; of their ·four different values. 
51 

In 

Figure Al.l the sequences at the input and output of the coding blocks 

are expressed ln terms of polynomials in the delay operator D, as per 

equations Al.2 to Al.4 

S (D) 
i-1 

= s
1 

+ s
2

D+ ... + siD + ..• (Al.2) 

Q(D) 
i-1 

ql + q2D+ ... + qiD + ... (Al.3) 



The symbols {ci} have the possible values 0,1,2, ••. ,6. 

The preceding equation is 

Q(D) = [S(D)/G(D)]MODUL0-4 

The MODUL0-4 rule is given in Equation (Al.6). 

qi < 0 q. = qi + 4 
·~ 

0 ~ qi ~ 3 qi qi 

qi > 3 qi = qi - 4 

The correlative-level encoder codes the .data symbols { q.} 
~ 

according to Equation Al.7. 

C(D) = Q(D}G(D) 

From equations Al.S and Al.7 it follows that 

C(D) = [S(D)/G(D)]MODUL0-4.G(D) 

Therefore, 
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(Al.4) 

(Al. 5) 

(Al. G) 

(Al. 7) 

(Al.8) 

(C(D}lMODUL0-4 = [ [S(D)/G(D)]MODUL0-4.G(D) ]MODUL0-4 (Al.9) 

= S (D) (Al.lO) 

Clearly S(D) is immediately recoverable from C(D) by interpreting 

C(D) MODUL0-4 as in Equation Al.ll. 

sj " [cj]MODUL0-4 , j=l,2, ..• (Al.ll) 

Clearly the operation described by Equation Al.ll recovers sj from 

cj alone. This means that the size of the error bursts can be 

reduced, since an error in one symbol cj affects only one data symbol 



The receiver is given in Figure 2.1.1. The detector operates 

on the received ·.samples {r i} and outputs the detected data symbols 

{qj_l· (the ·pol~omial. Q' (D)). Equation Al.ll is not explicitly 

implemented. Instead the inverse of the precoder at the transmitter 

is·used·to convert the {q~} into the detected.and decoded data 
1 

symbols {s~}.. 
1 
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S' (D) = [Q' (D)G(D)]MODUL0-4 (Al.l2) 

(Q' (D) G(D) i_s .the ·.noisy code sequence Which is possibly incorrect 

in .some·of its· element values). 
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A2 A MATHEMATICAL TREATMENT FOR 

DIFFERENTIAL-PHASE CORPSK(4-7,l+D) 

The transmitter section of Figure 2.1.1 is expanded in Figure A2 .l. 

The precoder has been described in Appendix Al, so that in this 

treatment, the analysis will begin with the preceded data symbols.{q,}. 
. ]. . 

The precoder is an option, and the following is unchanged for ·the· non-. 

preceded case, where qi is replaced by si. 

The correlative-level coder has at its input a level shifter 

which produces a polar signal at its output. The operation of the ... 

level shifter is outlined in Table A2.1. Clearly the output of the 

le.vel shifter, ·which for convenience will continue to be represented 

as q,, has one of the ·values -H, 
]. 

-L +! or +H. The symbols at the 

output of the level shifter are statistically independent and equally 

likely to have any of their four different value·s. Clearly the sign1'l 

itself has not changed, only .its representationhas been ammended. · 

The correlative level coder is described as a· powez: series in the 

delay operator D, 

G(D) ~ l+D. 

The code symbol c. is then given by 
]. 

(A2.1) 

C. ~ qi + q, l (A2.2) 
]. ].-

c. has the possible values -3, -2, -1 o, +1, +2, and +3. (This 
]. 

definition of c. is different from that of Section 2. 3. The Cc.} in 
1 ·-1 

Section 2.3 are level-shifted to produce the polar versions, defined 

here. As for the {q,}, the symbols themselves have not changed, only 
]. 

their representation has been ammended.) 



The premodulation filter is defined by its frequency modulating 

49 76 
pulse, a(t). ' a(t) is normalised to have area 1/2. a(t) is 

proportional to the instantaneous rate of change of the phase of the 
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signal-at the filter's output, for a unit-valued impulse at its input. 

a (t) 

(k is a constant . ) 

d~ (t) 
k. dt (A2 .3) 

~(t) is the variation of signal phase with time, (the phase trajectory), 

caused by a unit impulse o(t-iT). It is assumed that a(t) is of 

finite duration. 

The phase response function for the filter is obtained from a(t) 

using Equation A2.4. (The phase response function gives ~(t) for-a 

unit-valued impulse at the input to the filterJ 

8 (t) (A2 .4) 

Given the phase response function, the phase of the filter's_.output 

signal, ~ (t), is given by Equation A2 .5. 

~(t) = 27fh L c.S(t-iT) -<t<oo 
i l. 

(A2 • 5) 

h is the modulation index which is assumed to be constant in the case 

of CORPSK(4-7,l+D). T is the symbol interval in seconds. For 

CORPSK(4-7,l+D) the maximum phase change over any symbol interval is 

arranged to be 37f/2, and the modulation index h is set to 1/2. 

The sampled form of the phase function at the time instants {iT} 

is given by Equation A2.6. 

2nh z: 
j=l 

c .8, . 
J l.-) 

(A2.6) 
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· . where S. = S ( jT) • To this point the analysis of the premodulation . . . . J .. 

_··filtering could apply to any correlative Phase Modulation, (CPM), 

scheme. ·The subset of CPM schemes denoted by the acronym CORPSK 

,·requires that the premodulation filter should meet Nyquist' s Th'ird 

.Criterion, (Nyquist III), when followed by a frequency modulator. 

This ensures that the phase at the symbol .sampling. point, $. , is 
. l. 

one of the fixed phases jh11; j=O,l,2, or 3. This facilitates carrier 

. 34 62 62 
:(egeneration at the receJ.ver. ' Nyquist's Third Criterion states 

(2j+l) T 
r 1 for j=O 

2 

cx(t)dt = ~ (A2. 7) 

I 
(2j-l) T l Ofor j;<o 

2 l 

Where j is an integer. 

The Nyquist III property is. such that the area under the frequency 

modulating pulse ex (t) , for each symbol interval for which it exists, 

is a fraction 1/a of the total area under the pUlse, where a is an 

i~teger~4 This ensures that the phase of ·the signal reaches exact 

sub-multiples of 211 radians at the end of each symbol interval~ 4 

In reference (62) it is shown that the premodulation filter must 

have the following transfer function in order to satisfy Nyquist's 

Third Criterion. 

11fT 
sin 11fT 

(A2 .8) 

X (f) is the transfer function of the 'filter whose frequency modulating 
I . 

pulse, cx
1 

(t), obeys the First Nyquist Criterion, given in Equation A2.9. 

r 1 for j=O 

"l(jT).=1 

l 0 for j;iO 

(A2. 9) 



j is an integer •. · -Clearly the Nyquist III-ammendment of AI(f) 

emphasises the.filter's transfer function around f,;±l/2T Hz, (see 

Figure 2.4;4); 

It is convenient-to combine the correlative-level coding and ... 
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premodulation·filtering as shown below, in the.compcsite premodulation 

filter with phase response 8' (t) • 

Let il' {t) . 8 {t) + il (t-T) , -«~<t<c:o {A2.10) 

Then 
~ (~) 0 2rrh I q,il' (t-iT) , -oo<t<c:o_ {A2 .11) 

i 
. l. . 

00 

</>. 0 2rrh· I q. e: . (A2 .12) .. l. . J l.-J Jol 

The. ccintiil.uous-phase waveform at the outpuj; of the modulator is 
. . 49 

·giv~n by Equation A2.13 

. -~E), 
x' (t) o --

T 
(A2.13) 

_ \, ·is the·. energy per_ bit transmitted, f
0

. is the carrier frequency, and 

$
0 

.is_an arbitrary· constant phase shift which can be neglected in the 
. . . . . . . 49 

case of coherent detection • The signal x'(t) may or may not be 

bandlimited as. shown in Figure A2.1 to produce the transmitted signal 

X (t) • 

SYMBOL VALUE AT THE . SYMBOL VALUE AT THE 
INPUT TO THE LEVEL SHIFTER OUTPUT FROM THE LEVEL SHIFTER 

0 -1! 

1 -t 

' 2 +t 

3 +1! 

TABLE A2.1: Mapping Function Performed by the Level Shifter 
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A3 MAXIMUM LIKELIHOOD DETECTION FOR TWO 

DIMENSIONAL MODULATIONS IN THE PRESENCE 

OF ADDITIVE WHITE GAUSSIAN NOISE 

This is an analysis leading to the mathematical definition of 

Maxinrum L.ikelihood detection for two dimensional modulation schemes 

over additive white Gaussian noise, (AWGN), channels. Maximum Likelihood 

detection, as opposed to estimation, is considered. Detection is defined 

to be a process whereby a decision is made as to the value of a parameter; 

where that parameter has one of a given finite set of discrete poss.ible. 

values. In contrast, e.stimation is the. process whereby a decision ·is 

made as to the value of a parameter, where the parameter can have any 

value within a given continuous range, (infinite set), of values. The 

analysis is restricted to schemes where the received waveform is sampled 

once per data symbol. Extension to multiple sampling is quite trivial~·· 

It is assumed that the received waveform r (t) in Figure A3 .1 is 

sampled at the Nyquist rate, so that all the information in r(t), over 

the whole transmission period, O~t~nT, is contained in the vector of 

received samples R = [r
1
,r

2
, .•• ,rn]. The vector of n data symbols is 

given by Q = [q
1

,q
2

, ••• ,~] where the {qi} are statistically independent 

and equally likely to have any of their m different possible values. 

The coding and mapping process produces a complex-valued signal p(t), 

whose ·sampled representation in the complex number plane is 

P= [If p2 , ••• , p n 1 where pi is complex-valued. In general the {p,} are not 
l. 

statistically independent and p, has m' possible values, where m'~m. 
J 

The additive white Gaussian noise at the output of the demodulator, w(t), 



is a sample function of a stationary Gaussian random process. The 

noise:·s<iinple at the input to the detector at time t=jT, wj=w(jT), is 

a co~lex sample ·value of a statistically independent Gaussian random 

2 variable· wit.h zero mean and variance a per .component. The {w:i} are 

also st_atistically independent of the {p.}. The noise vector is . J 
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defined·as.W=[w
1

,w2 , ••. ,wn]. The received signal is given by Equation 

. A3.1 

R - P + W (A3 .1) 

- . ·f.n:general the n-component vector P is a direct and unique 

. fun~ion of:the n-component row vector Q. 

p = F(Q) (A3. 2) 

n ·P."has any of its m possible values defined by Equation A3.2 with 

equal probability. 

The detector has prior knowledge of the m possible values of qj 

n 
(and therefore the m possible values of Q), and the function F(Q) (and 

t·h~~efore :the mn possible values· of P). For any received vector R, 

it is. possible that any of the mn possible values of Q, Qt, R-=1,2, ••• ,mn, 

was transmitted, so that the detector can never detect the value of t 

with certainty. 

n 
Clearly the detector can make one of m hypotheses, HR. that Q=Qt. 

The q.etector requires a decision rule to decide which values of R 

lead to the acceptance of particular hypotheses HR.. The vectors 

R,P and w, can be represented as points in an n-dimensional linear 

unitary vector space. The orthogonal projections of any point in 

the vector space onto the n orthogonal complex axes give the n complex. 

components of the corresponding vector. The detector uses the position 



of R in this vector space to decide on the value of~. It divides 

n 
the vector space into m regions D~. If R lles in region o~·, the 

detector accepts hypothesis H~ , and so dete·~ts Q as Q~ ~ 
n 

The m 

regions are termed decision regions and the ·bo,;ndaries separating 

them are known as decision boundaries; 

If R lies in decision region D~, this. is· ~ritten R € D~. The 

probability· that this occurs is written P (R € D~); It is assumed 

that R must lie in· one of the deci.sion .;regions •. ··It cannot lie in 

more than one decision·region since the .. re-gions· are· disjoint. In 

addition· it cannot lie in a region separated from all .the D~, since . 

. ··.- . n·-
the set of all decision regions D~, ~=1!~ i, •• • ,m , fills the whole of 

: ' . 
the n~dimensional unitary vector space. 

The problem now. is the definition of the optimal·decision 

boundaries. between. the mn decision regions ,:·:whei:e the optimal 

definition minimises. the probability of error in the detection of the 

whole message Q. In order· to achieve· Maxim~ Likelihood detection, 
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the detector must mai<iinise:· the probability of a. correct decision P (C) , 

given in Equation A3:3:'
2 

00 00 00 

J 
r ( P (Ci = P (C/R) p (R) dR = J 

P(C/R) p (r 
1 
,r 

2
, ••• ,rn) dr 

1
, ••• drn 

J 
-oo -oo -oo 

!A3. 3) 

where P(C/R) is the conditional probability of a corre·ct decision 

given R and.p(r) is the.value of the joint.probability density 

function of the random variables. corresponding'to rl;r2, ... ,rn at 

the given values r
1
,r2 , .•. ,rn. Prom the integration limits in 

Equation A3.3, R ranges over all its possible values in the calculation 

of P(C). 



p (R) is non-negative, so P(C) is maximised by maximising 

P(C/R) for every possible value of R. For a given received vector 

R, P(C/R) is maximised by selecting as the detected value of Q, the 

vector Q., such that
1

•
2 

J 

(A3.4) 

where P(Qo/R) is the conditional probability of Q, given R. Note 
~ . 6 

that this is equivalent to selecting the vector PJo such that Po=F(Qo) 
J . J 

from Equation A3.2. 

p (Q./R) 
~ 

. . 1,2 
Using Bayes theorem 

p (R/Qi)P(Qi) 

p (R) 

where P(Qi) is the a priori probability of Qo• 
~ . 

(A3 .5) 

m 
(Since all m values 

. . -n 
of Qi are equally likely, P (Qi)=m ·) P (R/Qi) is the value of the 
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conditional joint probability density function of the random variables .. 

r
1 

,r2 , ••• ,rn, at the given values r 
1 
,r2 , ••• ,rn, and given. the: value 

-n 
of Qi· Substituting Equation A3.5 in Equation A3.4, where P(Qi)=m. 

for i=l,2, ••• ,mn, yields the decisio~ rule of Equation A3.6. 

Detect Q as Qo where 
J 

0 1 2 n 0-'0 1= , , •.• ,m, 1rJ 

Since the noise samples { w 0} are complex sample values of 
J . 

(A3 .6) 

statistically independent Gaussian random variables with zer6 mean 

2 
and variance a per real or imaginary component in the complex number 

plane, it follows from Equation A3.1 that rj is a sample value of a 

statistically independent Gaussian random variable with mean value 

Po 0 and variance a
2 

per real or imaginary component in the complex 
~J 

number plane. pij is the jth component of vector Pi, which is a 
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possible value of the transmitted signal vector P. Therefore the 

conditional probability density function of rj _given Pi takes the 

form of Equation A3.7. 

1 
-- exp ( 

.Q 

. : 2 
-1 rj~pijl 

2(2o 2 ) 
(A3.7) 

If Re(x) and Im(x) are, respectively, the real and imaginary 

components of complex number x, then Jr. -p .. 1
2 

= 
J l.) 

. 2 
[Re (r ;-p .. ) 1 + 

. ) l.) 

Since the {r.} are statistically independent, 
J 

Equation A3.8 holds. 

P(R/Pi) 

= P (rl/Pi)p (r2/Pi). ;.p (rri/Pi) 

n 1 -lrj-p .. l
2 

= Tf ( l.J 
,l.;;;iexp 

j=l 2'1TO . 4o
2 

1 
n 

lr.-p .. 1
2

> 
1 exp(- L = 

(2'1T02) n/2 
-2. 
40 j=l . - J l.J 

(A3.8) 

n 
But L I r. -p .. 1

2 
is simply the 

j=l J l.) 
squared distance I R-P. 1

2 
be-tween the 

- ~ .. 

vectors R and P. in the unitary 
l. 

vector space. Since, for a given 

value of Qi' Pi is uniquely defined, Pi can be replaced by F(Qi) in 

Equation A3 .8. The decision rule of Equation A3 .6 can now be re.written 

in terms of these distances as shown in Equation A3.9. 

Detect the value of Q as Qj such that 

i=l ,2, ••• ,mn, i#j (A3. 9) 

The decision boundaries are now (n-1)-dimensional hyperplanes which 

n 
bisect the lines joining the possible values of Pj' j=l,2, .•. ,m. 



A decision error occurs when the chosen value Pj is not equal 

to P. Equivalently this occurs when the chosen value Qj is not 

equal to Q. The exact calculation of the probability of error is 

difficult-but an approximate value can be obtained by considering 

the minimum distance, d i , between a pair of possible vectors P 
m n . a 

and Pb, in the unitary vecto·r space. (For convolutionally encoded 

systems this minimum distance is usually termed the minimum free 

distance df .) The decision boundary lies at a distance d . /2 
ree m1.n 

fr.om both points P a and Pb in the unitary vector space. Therefore 

if vector Pais actually transmitted, the probability that Pa is 

incorrectly detected as Pb is given by Equation A3.lo.· 

d . 
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P(e) = Q( ~~n) (A3 .10) 

2 
since the variance of the complex additive noise is a along the line 

connecting Pa and Pb. Also, 

Q(y) = r 
y 

1 2 -- exp(-!v )dv 
/2; 

P (e) is accurate at high signal to noise ratios where most of the 

errors will be due to crossings of these minimum distance boundaries. 

Clearly the probability of error P(e) refers to the whole 

transmitted message Q. An error in the detected value of Q is 

associated with errors in one or more of the n components of Q. 
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A4 COMBINED CONVOLUTIONAL CODING. AND 

PHASE MAPPING 

In general an (n
0

,k
0

,k) convolutional encodet: over the field of 

. (2) 77 . . 4 l . . i bJ.nary numbers GF J.s as portrayed in Figure _A • ·, ·where k
0 

s 

the number of binary data symbols (bits) _at the encoder input at time 

_ t=!T, n
0 

is ·the number of binary code symbols at tl'\e en·coqer output 
. . . k 

at time t=iT, and k is the constraint length-of the ·code.in (2 °)-

level symbols. 

The encoding equation in matrix form is given by. Equation A4.1 

c = QG (M.l) 

Q is the semi-infinite vector of input ':'ymbols [q
1 

,q
2
,. :.] ' qi is 

a vector of k
0 

dat;a bits [qi. (1) ;q
1 

(2)";.;. ,qi ~k0)] :which are the 

binary-valued inputs to ·the-encoder· at tim9 t=iT. (Note that semi-_ 

infinite in this case implies that there is no e_xplicit upper limit 

on i.) Similarly c is the-semi~infinite vector·of output symbols 

[c
1

,c
2

, ... ] . c
1

· is a vector ·of n
0 

bina~y symbols [ci (l) ,ci (2), ..• ,c~ (n0 ) l 

which are the binary-valued. outputs of the encoder at time t=iT, G 

is the semi-infinite code gen~rator. matrix given. in Equation A4.2. 

G = 

GO, Gl' .. • '. Gk-1'·- 0 ; .... 

o, Go, ... ,Gk-1, o ' 

(M .2) 

Gi, o~~~k-1, is a k
0

xn
0 

sub-matrix. The element in the ith row and 



jth column of Gt is gt (i,j), for i~l,2, ••• ,k
0 

and j=l,2, ••• ,n
0

, 

where gt (i,j) can have the value 0 or L The {qt (i,jl} are used 

to define the (i,j)th code sub-generat·or as in Equation A4.3. 
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(A4. 3) 

(Note that the constraint length k_is such that (k-1) is the 

smallest integer such that gk-l (i,j)=l for some i and .j, but gt (i,j)=O 

for all i,j when i>(k-1) .) · In practical terms·the output of- sub-

generator gij is the contribution of the ith·parallel input bit 

sequence to the jth parallel binary-valued sequence at the-output, 

in Figure A4.1. The determination of output sequence j is shown 

in Figure A4.2_. 

In terms of the binary..:valued sequence_s, Equation A4 .4 defines 

the output of the encoder at time t=iT. 

k-1 
~ qi~h(t)gh(t,j) 

h=O : . 
, for j=l,2, •• : ,n

0
_ (A4 .4) 

. where ~ denotes MODUL0-2 addition. 

The encoder thus defined can be regarded as an outp~t-independent 

Finite-State Machine as depicted in Figure A4 .3, where ~. is the state 
~ 

. 72 
of the machine at time t=iT. The state ~ i is the contents, 

qi-k+l'qi-k+2 , ••• ,q1_1 , of the storage elements in the encoder 'at 

time t=iT. The output-independent Finite-state Machine is such that 

the output symbol ci at time t=iT, and the machine state ~i+l at 

time t=(i+l)T, are completely defined by the input slfmbol qi' ·and 

state ~-, at time t=iT. 
~ 

The code itself is usually represented diagrammatically in the 



form of a code trellis diagram. The initial diverging portion of 

such a diagram for a code with 16 states where each input symbol qi 

has one of ··four possible values, is shown in Figure A4 .4. It has a 

root node defining the_-- initial state of" the machine, <I> 1, before 

transmission begins •. Usually this is the all-zero state where all 
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the memory elements irt ·the encoder contain zeroes. The vertical -axis 

in the diagram denotes the_ state value while the horizontal axis 

_ denotes time·, graduated-- in -integer multiples of T seconds where T is 

- the symbol interval.. The_ co-de trellis- diagram portrays the code 
- . •. . . 

sequences for· all J;X>sslble_ input sequences Q-, given the initial 

encoder state. ThE1 symbol <I>. (-j} denotes the existence of state j at 
- . _- -_-_ - 1 

time t=iT. Four branches extend from the root node, and terminate 

at four d~ffere~t- nodes,-which- are the possible states, <1>
2

(j}, at 

time t=2T. Each _such branch is for one of the four possible vectors 

of data symbOls _q
1

=[q
1 

(1} ,q
1 

(2)]. Alongside each branch, the code 

vector, .c
1 

= [ci(i}_,i:i_J2) ,c
1 

(3} 1, is usually displayed, (not in Fig1.1re 

-A4 ;4}. Thus 1- given a particular input sequence Q and the initial 

state .<1>
1 
,'a path can be traced through- the diagram which gives· the 

associated code sequence C, and the state which the encoder has at 

each _sampling inst.ant. 

Figure A4.4 shows the diverging part of the code trellis diagram 

·where the· nUmber of states·, (on the vertical axis} , is increasing with 

time. ·since the machine is finite-state, the number of states must 

reach an upper limit. The time taken to reach this limit is a 

function of the .constraint length k of the code , since this determines 

the number of states in the machine. Equation A4.5 defines the total 

number of possible states, N • 
s 



k 
N = (2 0) (k-1) 

s 

k (k-1) 
= 2 0 
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(M .5) 

k 
Clearly, since the number of states is increasing by a factor (2 °) 

at' each stage during the expanding part of the code trellis diagram, 

this part ;is 9.T seconds in length where 

so that 

N 
s 

k
0 

(k-1) k i 
= 2 = (2 °) 

9. = k-1 (M. 6) 

Thils at time,t=(R.+l)T,·an N states are shown as in Figure A4.4. 
~. .. s 

For t>R.T, branches occur between the -N initial states at time t=jT ·s 

···and- th;. N,; final states at time t=(j+l,)T. There are k
0 

branches 

le'avi_ng each initial state and there are k
0 

branches entering each 

- final state. This is seen IOC>st clearly by considering the { qj} 

defiping-a particular state, (the contents of the encoder storage

elements). For a given initial state at time t=iT, the k
0 

final 

states into which the branches diverge are given by the vectors in 

Equation A4. 7 • 

il>i+l = F{ [q. -k 2' ' • • ,q. 1 ,q. J } 
1- + 1- 1 

(M. 7) 

k 
where [qi~k+2 , ••• ,qi-ll is fixed and qi has one of its (2 °) possible 

values. F{.} denotes a· function of the vector elements, which gives 

the.integer value il>i+l. _The function is defined in the relevant 

sections of Chapter 2. The initial states from which these k0 final 

states emanate are given by Equation A4.8 at time t=iT. 

(M.S) 

where [q. k 2 , ••• ,q. 11 is again fixed, but in this case q. k 
1 1- + l.- l.- + 

ko 
has one of its (2 ) possible- values. This is depicted in Figure A4.5. 
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Clearly, for the portion of the code trellis diagram where N states 
s 

exist, a segment of the diagram for one isolated symbol interval, 

i~t~ (i+l)T, can be split up into a number of ·parts called sub-trellises, 
k 

in each of which the (2 °) 
k 

initial states completely define the (2 °) 

final states, as shown in Figure A4.5~ Clearly Nk such sub-trellises 
0 

exist, 

(M • 9 l 

The close of transmission causes the convergence of the code 

trellis diagram to a single final state, (usually the all-zero state)·, 

in an analogous manner to the start of transmission, but in reverse. 

Clearly this convergence takes tT symbol intervals. 

Maximum Likelihood decoding, (see· Appendix A3) , of convolutional 

code sequences is possible using the Viterbi Algorithm, (VA) ~ 3 
The 

VA finds the Maximum Likelihood path through the code trellis diagram 

for a particular received sequence of samples R in the presence of 

additive white Gaussian noise, (AWGN) , thereby minimising the probability . 

of choosing an incorrect sequence. This is not the same as minimising 

the bit error rate, (BER), but in practice the BER is very nearly 

i . . d 19 m n~ml.se • The VA is adept at exploiting the very regular structure 

of the code. For one thing it uses the sub-trellises. This allows 

the splitting of the hardware into Nk parallel processing units, 
0 

each dealing with a particular sub-trellis. Also, and more 

importantly, it exploits a property concerning the convergence of k0 

branches into each final state during the time for which there are Ns 

st.ates. The VA only retains one of the k0 paths converging into a 

given final state. The algorithm selects the path into the final 



state associated with the greatest likelihood, (Appendix A3)'. The 

remaining (k
0 

-1) converging paths are discarded with the following 

justification. If a path converging into a final state has a lower 

likelihood than another path converging into the same state then, 

since the paths are indistinguishable in the future,~ the converging 
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path with the lower likelihood will always have the lower likelihood, 

and therefore cannot be the Maximum Likelihood path. 

Coded Trellis Modulation (CTM) is a broad class of techniques 

hi h d h di it
l2 ,19-26 

w c regar s t e eo ng and modulation processes as a single ent y. 

The scheme considered here is convolutionally encoded and phase mapped 

20 
SPSK, (coded SPSK), introduced by Ungerboeck. The idea is based on 

tbe argument that if the number of points in the signal set, (the {pi} 

in Figure A4.6), is increased, while keeping the data rate constant; 

it is possible to gain a considerable advantage in tolerance to noise 

20 24 
over the original unexpanded scheme. ' In the case considered 

four-level data are convolutionally encoded to produce eight-level 

code symbols which are mapped onto eight-phase signal elements. In· 

general such schemes ~involve rate-m/(m+l) coding of 2m-level data, 

. i m+l . followed by mapp1ng onto a signal set w th 2 po1nts. See Figure 

A4.6. Since there is no change in the symbol transmission rate, the 

coded system will have approximately the same bandwidth as the uncoded 

21 
system. (In the case considered, coded SPSK will have approximately 

the same bandwidth as uncoded QPSK.) This assumes that the 

' ' d2Ml d . correlat1on in the transm1tte -phase signals ue to the cod1ng 

has no effect on the bandwidth. The theoretical gains in tolerance 

to noise for such systems are discussed in References 12 and 19 to 

26. 
. 19 

The requirement of soft-decision decod1ng leads to the use 



of codes designed t6 achieve an optimum unitary rather than Hamming 

distance. Fo~-_four-phase signalling the optimisation is equivalent 

for both distance measures, but for signal sets with more points 

19 
this is no longer_ true. 

The remaining problem is the efficient allocation of the code 

symbols. to· points-in the expanded signal set by means of a mapping 

function. Defined mathematically the problem is the maximisation of 
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the minimum- unitary distance between possible sequences of the {pi}, 

(see Figure· "A4 .6) -•.. This distance. is usually termed the Free Euclidean 

Distanced£-· •· Maximisation of d£ ensures r.n asymptotic coding · .. . ree . - ree 

gain whii::ho.is a_ function of the minimum distances for the codes and 

uncoded s~hemes since .. at high signal to noise ratios' the maj"Or 

cause Of errors will be· the selection of a possible transmitted 

19 
sequence ·"of·· tf!e {pi} at minimuni distance from the correct sequence. 

The bit· error probabil-ity is -lower-bounded by E~uation A4 .10
20 

P (e-) >. N.Q(df /2o) 
ree 

(A4.10) 

where· N is the average number of bit errors due to selection of an 

incorrect sequence of the {p. } at minimum distance from the correct 
~ . 

sequence, ·and Q(y) is the Gaussian Error Function, 

"' 
Q("y) f 

1 . 2 
= exp(-!v )dv (A4.11) 

rz:rr 
y 

"2 • 
the 

.. 
of the noise samples along each axis the a ~s variance in 

complex number_plane. 

If ·d is the minimum distance between signals in the uncoded 
0· 

system, (for the. same average signal power), then the asymptotic 

coding gain, Ga' using an optimum decoding scheme, is given by Equation 

A4 .12. 



(M .12) 

Ungerboeck' s approach is to view .the coding and mapping as a 

single entity in the code trellis diagram. The problem is then 

reduced to assigning points { p.} to branch~s in- ·the ~ode trellis 
L . -.--

diagram. The first step in the process is the partitioning of the 

set of all possible values of p. into subsets, where each partition 
1 . 

. .. 
splits the original subset into two new·subsets_with.an equal number 
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·of points in each. Each p-artition produces new_-subsets- with a greater 

minimum Euclidean distance between its constituent points, than in-

the original. Ungerboeck now.assigns binary code symbols to the 
. - : 

partitioned subsets of the possible val.ues of· 'pi. In .this way he · 
. . - - . 

defines the mapping function of the code' symbols {c·;l, onto the complex 
l. -

numbers {pi} for every cc:>de. Figure A4.7 showfhow-this mapping 

function is developed, as the or_igirial set of possible values of pi 

is progressively partitioned. _ Clearly after n0 partitions the 

allocation of code symbols_ is .complete. It. is important to note here 

that this simply defines~ the mapping· function for all codes. It does 

not optimise the mapping .for_ any code. Ungerboeck' s -approach is to 

optimise the code, given the mapping function. In 'fact, his initial 

work did not explicitly use ·.c~nvolutional codes., (although the cod!!S 

he developed were convolutional ·codes~. In very-simple terms the 

strategy of assigning points in the ·signal set,_ (and therefore code 

symbols), to branches in the code trellis diagram is as follows. The 

branches of paths in the code trellis diagram which do not converge 
-- -

very quickly are assigned points_in -the signal subsets A orB of 

Figure A4.7, since the points in these subsets are quite close to one 

another a 



The subsets of possible values of pi with larger distances, {e.g. 

sets C and D), are assigned to paths which converge more quickly. 

In particular the branches of paths that converge lllOst quickly, {the 
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minimum distance paths), must be assigned, as far as possible, to the 

subsets D. Clearly," apart from certain trivial examples, the 

20 
. assignment algorithm is complex and requires a rigorous computer search. 

Ungerboeck
20 

and Clark and Cain
19 

describe a "by-hand" assignment 

technique for some very simple code trellis" diagrams. 

" 12 
The approach taken by Hui and Fang in producing the" optimal 

codes used extensively in this study, is slightly different.· They 

standardise on a straight binary mapping of the encoder output vector 

c.=[ci(l) ,c. {2) , ••• ,c. {n
0

JJ as given in Equation A4.12, rather than 
1 1 -~ 

using the set partitioning method. 

n
0

-1 . 
=2 c.{l)+ 

l. 
{A4.12) 

They then use a code search algorithm to optimise the code given· 

Equation A4.12. It must be noted that this search is" very laborious 

because the code produced" by a .combined coding and phase mapping" 

19 24 
scheme does not have the group property. ' This" mans. 'that" in 

the calculation of df , one of the paths in the code trellis d"iagram ree 

cannot be fixed as the all-zero path while varying the other path. 

Instead the comparisons of paths to determine df must ·include all ree 

possible different pairs of ·paths. 

Finally, a number of points are worth noting with.regard to CTM 

schemes. The quite considerable gains which are po"ssible by moving"· 

49 
to expanded signal sets may well cause synchronisation problems." 

For example, carrier frequency and phase-tracking synchronisation for 



414 

8PSK at typical signal to noise ratios for the· coded scheme .may 

. create. real problems. 
•. 20 

Ungerboeck considers this in some .de.tail . 

12 
Also, the codes designed by Hui and Fang are not tranparer1t to 

phase inversions. in the sense that for a transparent code • :a: polarity 

inversion at the decoder input simply causes a·polarity inversion at the 

decoder output, after an initial transient due to the encoder•·s: 

19 
memory. Ungerboeck notes· that the use of systematic codes,. (where 

the {ci} explicitly contain the data symbols {qi}) ; with feedl::>ack 

phase-differential coding. (that is,. preceding) • can reso.lve phase 
-- - -

ambiguity. 
20 

Unfortunately phase ambiguities for non-transparent . . . _. 

·COdes cannot be resolved using this method. It has been noted· 

'·.. . 19 . 
. though, that phase ambiguities.can be detected quite. easily .. 
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AS SIGNAL TO NOISE RATIO DEFINITIONS 

AND SIMULATION TECHNIQUES 

The definition of signal to noise ratio is developed. Initially 

the general case is considered, followed by two special cases where 

the definitions are analytical, requiring no averaging operations 

within the computer programs. A short description of the techniques 

used within the computer simulations is given, and the method by which 

the accuracy of the results is gauged, is given. 

In general the signal to noise ratio w(dB) is given by Equation 

AS .1. 

W(dB) = l0log
10 

2 
E <Jp.J ) 

[ ~ l 
2 

E <J w.J ) 
~ 

(AS.l) 

where E(x) is the Expected Value of quantity x, pi is the complex 

number derived from the appropriate mapping function of Chapter·2, and 

wi is the noise component of the ith received sample, ri. The additive 

white Gaussian noise in the channel has a two-sided power spectral 

density of !N
0 

and a mean of zero. Although tolerance to additive 

white Gaussian noise may not be an accurate measure of tolerance to 

noise over satellite channels, the relative tolerances to additive 

white Gaussian noise of different data transmission schemes are a good 

measure of their relative tolerances to additive noise over satellite 

1 2 
channels.' If H(f) is the frequency response of the receiver 

filtering, Equation A5.2 gives the variance of the noise at the 

detector input along either the real or imaginary axis in the complex 

number plane. 



2 
a = (AS .2) 

Therefore, since the noise samples are zero-mean and statistically 

independent, the resultant noise variance is given by Equation AS.3. 

2 2 2 
E [I w .j l = E [(Re (w.)) + (Im (w.)) l 

~ ~ ~ 

2 
= E [Re (w.) l 

~ 

= 2a
2 

2 
+E[Im(w.)] 

~ 

(AS • 3) 

1 
Using Parseval's Theorem , Equation AS.2 can be rewritten in terms 

of the impulse response of the receiver filtering. 

A similar technique 

transmission period 

2 
can be used to calculate E[jp.j ) 

~ 

where jp.j
2
=(Re(p.))

2
+(Im(p.))

2
• 

~ J. J. 

(AS . 4) 

over the whole 

In all cases W(dB) is converted into Eb/N0 (dB) where Eb is the 

average energy per data bit transmitted, in order to compare all 

422 

schemes fairly, for all receiver filter configurations. From Equation 

AS.4 

,~ 

J~'h(t)j 2dt 
Equation AS.6 is the equation for the calculation of Eb. 

rtT 
1/(211.) J jp(t) i2dt 

0 

(AS .S) 

(AS.6) 

(p(t) is the continuous waveform, of which the {pi} are sample values.) 

11. is the number of transmitted data symbols, each symbol carrying two 

bits of information in all cases. 



In the simulation tests which utilise the filtered models, (see 

Chapter 2), the above described calculations are actually performed 

within the computer programs. For the perfect-channel models, an 

analytical method can be used making these calculations unnecessary. 

The frequency responses for the two receiver filters used in the 

perfect-channel simulations are given in Equation A5.7. 

H(f) = j 
fn/ (aT) 

(AS. 7) 

0 f>l/(aT) 

where a=2 for single sampling systems, (sampling instants t=iT), 

and a=l for double sampling systems, (sampling instants iT/2). 

Equation AS.S can be used to calculate N
0 

in both cases, as shown in 

Equation A5.8 for single sampling, and Equation A5.9 for double 

sampling. 

(AS .8) 

df 

2 = a (A5.9) 

df 

In both cases 2~ = 
2 

The noise variance, a , is set by the 

Gaussian random number generator, to be described later. Equation 

AS.l can now be used to define the signal to noise ratio in terms 

of ~/N0 for the two filtering arrangements. Equation AS.lO defines 

o/s(dB), the signal to noise ratio for single sampling systems, while 

Equation AS.ll defines o/d(dB), the signal to noise ratio for double 

sampling systems, 
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tj! s (dB) ~ lOloglO (2Eb/N0 ) 

tj!d(dB) ~ l0log10(Eb/N
0

) 
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(AS.lO) 

(AS .11) 

The signal to noise ratios determined in the simulations are adjusted 

in all cases to give curves of bit error rate, (BER), against Eb/N
0

• 

The computer simulations use a Numerical Algorithms Group 

(NAG) random number generator subroutine to generate both the random 

data, {s.}, using a uniform distribution, and the additive noise 
l. 

samples, {wi}' using a Gaussian random number generator with zero 

mean. All programs were written in FORTRAN 77. The noise variance 

is varied to produce different signal to noise ratios. The range of 

signal to noise ratio is adjusted to produce bit error rates in the 

-1 -4 
range 10 to 10 • The number of transmitted symbols is adjusted 

to produce greater than one hundred isolated error bursts wherever 

possible. An error burst is defined as follows. Following an 

incorrectly detected symbol, if twenty or more subsequent bits are 

detected correctly, the next incorrectly detected bit is considered 

to be the start of a new error burst. Otherwise the bit in error is 

counted as part of the previous burst. The figure of twenty is 

large enough to.ensure that the first error in a burst is independent 

of all errors in a previous burst. In some cases, at the lower end 

of the range of BER, computing-time restrictions led to the production 

of less than one hundred bursts, affecting the accuracy of the results. 

The method used to gauge the accuracy of the results is now given. 

Assume that the number of statistically independent errors occurring 

during a test Nb, is equal to the number of error bursts which occur. 

(This may lead to a pessimistic estimate, since independent errors 
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may occur within error bursts as· defined above.) Also, let the 

average error burst probability be p , and the number of transmitted 
av 

data symbols be i. Then 

::; p .. R. 
av 

(AS .12) 

95 96 
It has been shown ' that if the errors are statistically independent, 

for Nb>30, and p <<1, and if an accuracy of no more than 20% is av 

required for the confidence limit, then it can be assumed that the 

number of error bursts has a Gaussian probability density function 

2 
with mean ~ = Nb and variance n =Nb. For a given value of p >O, av 

the 95% confidence limit for the value of p is given in Equation av 

A5 .l3.95,96 

95% confidence limit is 

(A5.13) 

The limit is expressed as a deviation from the given value of p . av 

An approximate accuracy in the tolerance to noise is given for low 

bit error rates in the results discussion sections, based on the 

above analysis. 
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A6 SYNDROME DECODING THEORY 

The Invariant-factor Decomposition Theorem
77 

is introduced, leading 

to the determination of the inverse coder and syndrome-former for the 

code used in Chapter 5, (Code 1 in Table 2.5.1). A description of 

general syndrome decoding is then given. 

Some definitions of Appendix A4 must be extended to develop them 

in a form suitable for this analysis. The code sub-generator 

definition developed in Appendix A4 is restated here in Equation A6.1 

for a general (3,2,k) convolutional code. For further details see 

Appendix A4 • 

gij ~ [go(i,j) ,gl (i,jl •· • • ,gk-1 (i,j)J 

for i~l,2 

(A6 .1) 

For the purposes of this work g .. is given in terms of a polynomial 
l.J 

in the delay operator D as shown in Equation A6.2. 

gij(D) ~ gO(i,j) + gl (i,j)D+ .•• +gk-l(i,j)Dk-1 (A6 .2) 

The {gi(i,j)} are binary-valued. 

A code generator matrix can be defined as in Equation A6.3. 

-- ~11 (D) G(D) 
g21 (D) 

gl3 (D~ 

g23 (D>J 
(A6. 3) 

The elements of G(D) are in the ring of rational polynomials F[D]~ 7 • 78 

(G (D) is said to be a matrix over F [D],) 

For Code 1 this is 

G(D) ~ (A6 .4) 
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The Invariant-factor decomposition of G(D) is given in Equation 

77 
A6.5. 

G(D) = A(D)f(D)B(D) (A6 .5) 

where A(D) is a 2X2 matrix over F[D) with an inverse A-
1

(D) over 

-1 
F[D), and B(D) is a 3X3 matrix over F[D] with an inverse B (D) 

over F[D!. f(D) is a 2X3 matrix over F[D) of the form [f
1 

(D),O] 

where r1 (D) is a diagonal matrix consisting of the invariant factors 

Y. (D) of G (D), which are elements of F [Dl ?7 
l. 

(A6. 6) 

A coder with a feedback-free inverse, thus avoiding catastrophic 

.77 
error propagat1.on , has Yi(D) = 1, i=l,2. A method of column and 

row manipulations of G(D) is used to determine A(D), f(D) and B(D) ?7 

Equivalently, the inverse coder, G-l(D), can be defined as
77 

(A6. 7) 

-1 -1 T Where f (D) is a diagonal 3x2 matrix Of the form [fl (D), 0) Where 

(A6 .8) 

The matrices A(D),f(D), and B(D), can be inverted and inserted in 

Equation A6.7 to give 
-1 

G (D). This has been done for Code 1, yielding 

Equation A6.9. 02 l+D+D 
.. 

G-l(D) = l+D, D (A6 .9) 

2 3 
D +D , l+D3 

T 
The syndrome-former, H (D), by definition generates a code which is 

the null-space of the code generated by G(D). Mathematically 
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G (D) .HT (D) = 0' (A6.10) 

T ) . . 76,77 
H (D is not a un1que matr1x. Equation A6.10 has been used to 

generate a syndrome-former for Code 1. The result is given in 

Equation A6.ll. 

2 3 2 4 
= [D+D +D ,D ,l+D+D 1 (A6.ll) 

A generalised syndrome decoder can be split into two parts, a 

-1 
codeword estimator and the inverse coder G (D), as depicted in 

Figure A6.1. The signals shown in Figure A6.1 are in polynomial 

form. The chosen notation, also used in Chapter 5, is in contrast 

to that in the remainder of the thesis, which is described in Appendix 

A4. The change has been made to facilitate the use of the definitions 

-1 T 
of G(D), G (D), and H (D) given in Equations A6.3, A6.9, and A6.ll, 

respectively, whereby the analysis for syndrome decoding is much 

simplified. R(D) is a polynomial in D and is the noisy received 

signal. 
i-1 

R(D) = r 1 + r 2D + ••• +riD at time t=iT, where rj is 

complex-valued. The threshold test operates separately on each 

individual element r. of R(D). The possible value of r. in the 
J J 

absence of noise, Pj• which is nearest to rj in the complex number 

plane, is found. p~ is mapped onto the vector of binary code symbols 
J 

[c': (1) ,c•: (2) ,c•: (3) 1. (This mapping is the inverse of the mapping 
J J ') 

which at the transmitter converts the vector of code symbols [c.(l) ,c.(2),c.(3) 
J J J 

onto the complex number p. (see Figure 2.5.4). The 
J 

sequence of these code symbols is given by the vector of polynomials 

in the delay operator D, C" (D)= [Cl (D) ,c;; (D) ,c:; (D) 1 where C~ (D)= 

i-1 
cl(t)+c;;(t)D+ ••• +ci(i)D • The sequence of code symbols given by 

the vector C" (D) may not be one that can be generated by the coder. 
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This is because noise may change the received samples {r.} such that 
~ 

some of the values of the binary code symbols {c•:(R.)} 
J 

are not the 

same as those at the transmitter. The codeword estimator converts 

C" (D) into a three-component vector of polynomials in D, c' (D) . C' (D) 

could have been generated by the coder, and it should ideally be the 

same as the sequence of code symbols generated at the transmitter, 

given by the three-component vector of polynomials C(D). As for C" (D), 

C' (D)=[Ci (D) ,Ci(D) ,Cj(D)) where CR_ (D)=ci (R.)+c;2(R.)D+ ••• +cj_ (!)Di-l, and 

i-1 
C(D)=[C

1
(D),C2 (D),c 3 (D)) where c 1(D)=c

1
(R.)+c2 (t)D+ ••• +ci(R.)D • 

The {cj(R.)} and the {cj(R.)} are binary valued. The output of the 

inverse coder is the two-component vector Q' (D)=[Qi (D) ,Qi(D)) where 

The {q ~ (R.)} are binary valued. 
J 

The output of the inverse coder at time t=·iT is the two-component 

vector [q!(l),q!(2)]. This is uniquely related to the four-level 
J J 

detected data symbol q~ by the Gray code mapping of Table 2.1.1. 
J 

The major complexity in any syndrome decoder lies in the codeword 

estimator, (although, in a practical implementation, the codeword 

estimator may not be a distinguishable or separate function). The 

vector C" (D) is related to the correct vector C (D) by the three-

component vector E(D), called the error vector. E(D) is a vector of 

polynomials in the delay operator D. E(D)=[E1 (D) ,E2 (D) ,E3 (D)) where 

i-1 
ER. (D)=etil+e2 (R.)D+ ••• +ei(R.)D • The symbols {ej(R.)} are binary-valued. 

C"(D) = C(D) ~ E(D) (A6.12) 

(±) denotes MODUL0-2 addition. 

The sequence of binary syndrome symbols in polynomial form, denoted 

S(D), is given by Equation A6.13. i-1 
( S(D)=I\+S2D+ .•• +SiD Where sj 

is binary-valued.) 



8(D) = C"(D)HT(D) (A6 .13) 

The encoding equation at the transmitter is given by Equation A6.14 

Q(D) is the two-component vector !Q
1 

(D) ,Q2 (D)) 

i-1 
••• +qi(i)D • The data symbol q. is given by the Gray code mapping 

J 

of the two-component vector of binary-valued symbols [qj(l),qj(2)), 

(see Table 2 .1.1). 

C(D) = Q(D)G(D) (A6.14) 

Substituting Equation A6.14 in Equation A6.13, and incorporating 

Equation A6 .12 , 

a CDl = re <Dl Gh CDl !HT <Dl 

= E(D)HT(D) G Q(D)G(D)HT(D) (A6.15) 

But from Equation A6.10, the last term on the right-hand side of 

Equation A6.15 vanishes leaving Equation A6.16. 

f!(D) = E(D)HT(D) (A6 .16) 

Therefore the syndrome sequence is independent of the actual 

transmitted code symbols. The problem to be solved by the codeword 

estimator now becomes the choice of the vector E(D) from a set of 

possible error vectors {E(D)} satisfying Equation A6.16. Equation 

A6.17 can then be used to produce the vector of polynomials C'(D), 

which is the output of the codeword estimator. 

C' (D) = C"(D) G E(D) 

The vector of detected data, Q' (D) is then given by, 

-1 
Q' (D) = C' (D)G (D) 

(A6.17) 

(A6 .18) 
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A7 DISTANCE MEASURES 

For all the detectors considered in this investigation, the 

detector input samples, {ri}, are in quantised, or soft-decision, form. 

The quantisation is assumed to be infinitely fine unless otherwise 

stated. This soft-decision information is utilised in terms of 

measures of the distance between the received noisy sequence of complex 

samples, and a number of possible received sequences (in the absence 

of noise) • These possible received sequences in the absence of 

noise are determined within the detector as follows. At time t=jT 

the detector generates possible values of the j-component vector of 

complex numbers Pj=[p1 ,p2 , ••• ,pj] at the transmitter (see Section 2.1). 

Such a vector generated in the detector is termed Pj=[pi•Pz•···•Pjl. 

The detector uses its knowledge of the channel impulse response Y, (see 

Section 2.1), to generate the j-component vector of possible received 

complex samples Rj=[ri,rz•···•rjl, (in the absence of noise). Each 

component r' of R~ is determined from Equation A7.1. i, J 

r! 
l. 

g 

= I Pj__hyh ' 
h=O 

for i=l,2, ... ,j (A7 .1) 

The optimum distance measure, (see Appendix A3), is the squared 

unitary distance, d~, between Rj and the j-component vector of 

received noisy samples, Rj=[r1 ,r2 , ..• ,rj]. 

! [ Im (r. -r! ) 12 

i=l l. l. 
(A7.2) 
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Re(x) and Im(x) are, respectively, the real and imaginary parts of 

the complex value x. 

Since the unitary distance measure inherently involves squaring 

operations, complexity problems are caused at the receiver, because 

such operations require excessive computation. Even if a look-up 

table implementation of distance measurement is used, accuracy problems 

exist because of the increase in dynamic range of the possible squared 

distances {d;} compared with the distances{9El This leads to a require

ment to represent distances with longer (binary) words than may be 

considered appropriate. That is, finer quantisation may be required. 

In order to alleviate these problems, various less complex, but sub-

optimal distance measures are considered in some of the previously 

described models. The basis for most of these proposed measures is 

that no squaring operations are involved. The ideas are based on 

Reference (68). In addition a completely new distance measure is 

introduced which is possibly of especial relevance to constant 

envelope-type schemes, where the definition of such schemes is extended 

to include schemes which are not truely constant envelope, but where 

every point p. lies on a circle in the complex number plane, (see 
J. 

Figure 2.5.4 for example). 

The first measure to be considered is termed the Magnitude/Sum 

68 distance measure. Equation A7.3 defines this distance measure 

dM = IIRj-Rjll 

~ IRe(r.-r~) I + 
i=l J. J. 

= r IIm(r.-rj_>l 
i=l J. 

(A 7. 3) 

where IYI is the unsigned value of y, and I I .1 I denotes the 

Magnitude/Sum distance measure; Clearly no multiplications are 
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required, considerably reducing the complexity of the distance 

calculations. 

The remaining distance measure is of especial relevance for 

constant envelope-type schemes. For the purposes of this description, 

it is useful to redefine the received sampler. at time t=iT in polar 
l. 

coordinates, as in Equation A7.4. 

(A 7. 4) 

$(r.) is the phase angle of r. with respect to the positive real axis 
l. l. 

in the complex number plane, (that is, with respect to the phase of 

the carrier), and lr.l is the magnitude of r. as defined in Equation 
l. l. 

A7.5. 

= [Re(r.)J
2 

+ [Im(r.)J
2 

......... 1 1 
(A7.5) 

In the presence of noise, r. will lie off the signal envelope, and 
l. 

in addition $(r.) will change by an amount $6 .• The proposed distance 
l. l. 

measure ignores the value of lr.l
2 

with the argument that, for constant 
l. 

envelope schemes, the most important error that the additive noise 

induces is the phase change, 6~i· This distance measure takes lril
2 

2 
to be equal to IPil in a limiting operation as shown in Figure A7.1. 

In order to formulate the distance measure·mathematically, the 

detector's set of possible received signal vectors {R~} at time t=jT, 
J 

must also be defined in polar form, as in Equation A7.6. 

r~ = lr!l/~(r!) 
l. l.~ 

The phase distance measure is given by Equation A7.7. 

d = 
p t I ~ (r. ) -~ (r ~ ) I 

i=l l. . l. 

(A7.6) 

(A7. 7) 



In this case j$(ri)-$(r:i_>J is the magnitude of the smaller of the 

two possible differences between the phase angles of ri and r:i_ in 

the complex number plane. Clearly this distance measure potentially 
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provides a large saving in complexity. The one proviso is that $(ri) 

must be available. Clearly an explicit calculation is out of the 

question since it involves trigonometric functions. (An obvious 

implementation uses a look-up table addressed by the quantised real 

and imaginary parts of the complex value ri.) An ammendment to the 

above distance measure was attempted in one case, (see Section 3.2), 

in which the distance measure proposed in Equation A7.8 was used. 

(A7 .8) 

Clearly this includes squaring operations which, for the reasons 

outlined at the beginning of this section, are undesirable. 

In all the detectors to be considered, the distance measures 

given by Equations A7.2, A7.3, A7.~ and A7.81 are described as costs. 

The term cost implies that there is a penalty, (in terms of increased 

error rate in the detector's output symbols), in choosing a value of 

P~ where the distance between the corresponding vector R~ and RJ. is 
J J 

large, compared with choosing a value of P~ where the distance between 
J 

the corresponding vector Rj and Rj is small. The larger the cost is 

for a particular value of Pj, the less likely it is that Pj is equal 

to Pj at the transmitter. Also, in all cases, the costs are normalised 

by subtracting the minimum cost at time t=iT from all costs, in order 

to prevent overflow. This operation in no way affects the performance 

of the detectors. 
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A8 UNIFIED SYSTEM DESCRIPTION 

In order to deal with the many variants of the basic schemes 

considered in this investigation, a system has been developed which 

describes these variants in a simple and concise way. The schemes 
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are described in terms of descriptors delimited by slashes. For 

example, /M=Q/Ch=Il/Det=T/. Within the delimiters, the character on 

the left hand side of the equals sign is the system attribute to be 

defined. The character on the right hand side is the actual "value" 

of this attribute. For example /M=Q/ defines the modulation method (M) 

as being QPSK (Q). Every attempt has been made to associate system 

attributes with sensible acronyms so that these can be understood 

without constant recourse to the table of definitions, (Table AB.l). 

The system descriptors appear in the graphs throughout Chapters 

2 to 7. The legend which appears in each graph describes only the 

the system attributes which vary between the curves in the graph. 

System attributes common to all curves are given in a message entitled 

"COMMON ATTRIBUTES", unless an attribute in question is a default 

value for all curves on the graph, in which case it does not appear 

in the message or the legend. The default values are listed in Table 

AB.l. In this way, the systems are described in a very concise and 

understandable way. Table AB.l lists the definitions, (right hand 

side of the equals sign) for each system attribute, (left hand side 

of the equals sign) • Note that some system attributes are only valid 

for certain modulation methods (M) • Also it will be noticed that 

some legend descriptors contradict the common attributes. This is so 



that, for example, QPSK can be contrasted against a number of SPSK 

systems which differ in respect of detection delay, (N), only. In 

such cases the legend descriptors take precedence. 
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SYSTEM PARAMETER ACRONYM PARAMETER DEFINITION 
(LHS of Equation) (RHS of Equation) 

Modulation Method M QPSK 
8PSK 

CORPSK(4-7,l+D) 

Channel Ch Perfect Channel, Bandwidth ±l/2T Hz 
" " " ±1/T Hz • 

Raised Cosine 
Lcughborough Filters, narrow bandwidth 

" " wide " • 
Data Transmission Tr 8 M bits/second 
Rate 4 " 

2 " 
1 " 

Differential Phase/ Ph Differential phase mapping 
Direct Phase Mapping Direct Map Scheme A 

" " " B 

Preceding Pr No Preceding 
Preceding 

Coding c Code 1 
" 2 
" 3 
" 4 

TABLE A8.1: Unified System Description 

ACRONYM 

Q 
8 
c 

Il 
I2 
RC 
Mn 
Mw 

8 
4 
2 
1 

D 
Ma 
Mb 

0 
D 

1 
2 
3 
4 

NOTES 

(Default) 

(Default) 

/M=C/ Only 

(Default) 

/M=8/ Only 
(see Table 2 .5 .1) 

.. 
w 

"' 



SYSTEM PARAMETER ACRONYM 
PARAMETER DEFINITION 

(LHS of Equation) (RHS of Equation) 
-

Detector Det Threshold-Level 
Viterbi 

" 

--

Near-Maximum Likelihood, System 1 

" " " System 3 , 
Inverse Coder 
Pseudo Nonlinear Equaliser 
Soft-Decision Syndrome; definite 

decoding 

" " " . syndrome , 
resetting 

Pseudobinary PB Standard Technique using Costs 
Reduced Complexity 
Two-Symbol Expansion 

Distance Measure Dis Unitary Distance 
Phase -Distance 
" " -Squared 

Magnitude-Sum Distance 

Detection Delay N Symbol Intervals 

TABLE AS.l (cont.) 

ACRONYM 

T 
V a 
Va,b 

lNa 

3Na 
~ 
NLE 

Sd 

Sf 

Pb 
Pbr 
2E 

E 
p 

P2 
MS 

N 

NOTES 

/M:Q/ only 
a : Number of stored 

vectors 
" " " 

b : Number of states in 
the receiver look-
up table model 

a : Number 

" " 

/M:S/ Only 

(Default) 

l~N:S80 

of 

" 

stored 
vectors 

" 

.. .. 
0 



SYSTEM PARAMETER 
ACRONYM PARAMETER DEFINITION 

(LHS of Equation) (RHS of Equation) ACRONYM NOTES 

No specific filter 0 
Premodulation Filter Pf lOO% Roll-Off Raised Cosine, 

Length T seconds lRC /M=C/ Only 
Nyquist III-ammended 0% Roll-

off Raised Cosine N3 

Quantisation Q Number of bits per axis in the An integer Q=inf (infinity) is 
complex number plane value Default 2'Q~inf 

Look-Forward Scheme LF Number of symbol intervals An integer /M=B/ Only, O~LF~4 
value 

·vector Retention Ret " " " " An integer /M=B/ Only, O~Ret~ll 
Scheme value 

Number of Symbols in Ls " " " " An integer /M=B/ Only, l~L ~10 
the Syndrome Sequence value s 

Maximum Number of Em Number of Non-Zero Components An integer /M=B/ Only, l~E :;5 Single Boundary Crosses in the Error Vector value m 
per Error Vector 

State Redefinition Rec Redefinition Scheme Pbl Pbl Code 1, Pseudobinary 
" " Pb3 Pb3 Code 3, " 
" " la la Code 1, Non-pseudo- /M=B/ 
" " lb lb Code 1, " binary only 
" " 3a 3a Code 3, " 
" " 3b 3b Code 3, " -

TABLE AB.l (cont.) 



SYSTEM PARAMETER 
ACRONYM PARAMETER DEFINITION 

{LHS of Equation) {RHS of Equation) 

Noise-Adaptive Rexp 1 or 2 Expanded Vectors per vector 
Viterbi-Type Scheme, 2 or 3 " " " " 
Static Expansion 3 or 4 " " " " 
Limitation Method 4 " " " " 

Noise-Adaptive Cm Maximum Cost 
Viterbi-Type Scheme, 
Maximum Cost 

Noise-Adaptive cth Three Cost Thresholds per Equation 
Viterbi-Type Scheme, 6.2.3 
Dynamic Expansion 

{/cth=cth{3),cth{2),cth{l)/) Limitation cost 
Thresholds 

Noise-Adaptive sv 
Viterbi-Type Scheme, Maximum number of stored vectors 
Maximum Number of 
Vectors 

TABLE AB.l {cont.) 

ACRONYM 

1 
2 
3 
4 

A real 
positive 
value 

Real 
values 

An integer 
value 

NOTES 

/M=S/ Only 

/M=S/ Only 
3l:C l:l20 m 

e.g. /cth=4.8,3.0,0.0/ 
/M=B/ Only 

k-1 Default is 4 where 
k is the code 
length. 

Ol:Sv~64 

constant 

... ... 
N 



L' 

c· 
(' 

c 
c 
c 
c 
c 

r_; 

c 

Bl QPSK/DQPSK PROGRAM 

Ql'SK CHA:-!NEL MODEL WITH THRESHOLD DETECTJON 

dimension is ( ··1 00: 0 l , ffr· CO: 1 6 l 
COMPLEX stO ( -300: 100 l ,stJ ( ··300: 100 J ,a.; ,aw ,st4 < -100:1 OOJ, 

1ft CO: 100 l ,fr CO: 100 J ,,.;t2 (--300: 100 l ,st 1 (-300: 1 00 l, 
2w ( -300: 1 00 l, rm CO: 3 l, wf ( -300: 100 l 

OOUBLE PRECISION P,G05DDF,G0~'DAF 
intejJer tr·3, tr·4 ,q1 
char·acterc<J f'ile1 ,file2 
open CO ,defer". true., pr·ompt;. tr·ue. J 
write (0, ) "Cl:annel F i 1 ters" 
r·ead CO, lf'ile1 
write CO, )"Run P~warneter"~";" 

·read((), lrile2 
open<O,defer:;.f'alse~J 

open(1 ,file.:file1 ,form-''fot'rnatted' ,mode==' in') 
open(2,fi1e:.:.file2,f'orm='formatted' ,:node:.:.' iu') 
read ( 1 , * l tr3, tr·4 
readC2,*l!Q,M,L,L1 ,n,P,pp,ibr,tt1 

c Calculate paramt~ters r·equired to read in filter·s. 
c 
c 

c 

j3"tr3*q1 
j4=tr4*q1 

c Set trr for retiming if ibr>1 
c 

c 
c Read in files 
c 

c 

do 20 i-=O,j3, 1 
read(1 ,*Jb1 ,b2 
ft ( i l' crnp! x ( b 1 , b2 l 

20 continue 
do JO ioO,j/4,1 
read(1 ,*lb1 ,b2 
f!'Ci l"cmp!x (b1, b2 l 

30 continue 
do 32 i=O, 15,1 
r·ead(1 ,*lffr(i l 

32 continue 

c Set Array/Vector 1 irni ts in time 
c 

j1st0"-tr3*q1 
j2stO=q1 
j 1 s t2~- tr·4*q1 
j2st2:.:.j2st0 
j1stJ-O 
j2:.::;~.J:.j2st0 
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: ~ ;::• .. 

( ~ [,:· • ;_;!.. • 1 ! j : ;:) - ..i!. :3. : 

t:.: l ::;t-: 
jis"'-JH1 
E~nc:ir 

(• lnit.icdise c(lffiJ..'!(•X Ma.pper· 
c 

rm(OJ- (1.0,0.0) 
t'ml1 l' W.O, 1 .OJ 
r·mc J- 1-1 .o.o.OJ 
!'ffi u) 0 (Q. 0. - 1 . 0) 

c SNR LOOP 
c 
c 

c 

ea.~~ gOScbf (IQ J 
\12ITE (0,600 J 
do 3000 1 rn-= 1 , !1, 1 
P"P-pp 
:e;.:O 

ib1=0 
icoO 
eeoO.O 
e\1'0.0 

c lni Lied isation of var'ious '.'t?ctors 
c 
C !S: 

c 

c 

do i05 i"jis,0,1 
is<i ):::0 

10S continue 

c Initialise stO,w 
c 

c 

do 120 i•j1st0,j2st0,1 
stOiiJ=IO.O,O.Ol 

120 continue 

c Set noise vector and st2 to zero 
c 

c 
c 

do 125 i~j1st2,j2st2,1 
wlil=IO.O,O.Ol 
st21i )oo 10.0,0.0) 
st1 li l= IO.O,O.Ol 

125 continue 

c :'\n"'ay Initialisation by preamt,le of data in is, 
c 
c 

c 
c t.ert-shift st.O.st2 
(. 

__ ; _j ;; j .. ,:; ~ 

444 



c 

~,I_(\ t' .. : I . , t (_) f ' 

lq(: '_\_,_,._ ~ll:!·.: 

1_;._) i ~--0 j : ._i 1 ~; L''' 1 ..• ':..: !...! 
\ .i - i ' . .j ! 

~-~t?(jJ-::;L'(_jj) 

st1 (j );..:3tl (jj J 

1 SO conti n 1 .~·.: 

c Complex M~pping 
c 

c 
c lni tial ise ::lt2 
c 

,1 \ ' 
j ' •. 

do 180 ii"(j2st.2-q1+1 l,j2st2,1 
ad~ <O.O,O.Ol 

c 

do 17Ci j--O.j3, 1 
da~aa+ft(jl•stOiii-jl 

1?5 continue 
st21ii l•aa 
st1(ii)-=-aa 

130 continue 
190 continue 

c TRANSMISSION LOOP 
c 
c 

c 

do 11 00 111•1 , L 1 , 1 
do 1 000 11 •1 , L, 1 

c Shift is 
c 

c 

do 220 j•jis,-1,1 
jj•j+1 
islj l•is(jj) 

220 continue 

c Data Generation 
c 

c 
c Bit 
c 
c 
c 
c 
c 

c 

w1 •g05daf < -2 .Od+OO, 2 .Od+OO l 
iflw1 .1t.-1 .Olthen 
is<Ol=O 
e1seiflw1.ge.-1.0.and.w1.1t.O.Olthen 
isl0l=1 
elseif(w1 .ge.O.O.~nd.w1.1t.1.0lthen 
is10l=2 
else 
isl0l•3 
end if 

Rate choice:-
la l i br" 1 8Mb/s 
lb) i br=2 4Mb/s 
le) i bl'"4 2Mb/s 
Id l i bl'• 8 1 Mb/s 

c Shift c:w:-·ay~; s tO, :.;;t2, w, onr~ 

t; ~:ymbul i11t~r·v.1t left 
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c 

':. t.C' •. ...... V) 

.. i..i .;. i •.. ; 1 

do :.!50 j=j1st.:~,(j2st~~-·~i),·J 

jj ~J t-q1 
st2(j J~st21jj J 
s t 1 ( j ) "3 t 1 (j j ) 
w(jlcw(jj) 

250 continue 

c C.omplex Mdpping 
c 

c 
c..: Tx Filterin~ 
c 

c 

do 300 i= (j2st2-q1 +1 J ,j2st2 ,1 
aa= W.O,O.OJ 
do 290 j"O,jJ, 1 
aa=aa+ft(jJ•stO(i-jJ 

290 continue 
st2 (i J=aa 

300 continue 

c Rx Filter st2 alone 
c 

c 

do 303 i= lj2st3-q1 J ,j2st.J, 1 
aa= W.O,O.OJ 
do 301 J=O,j4,1 
aa=aa+frljl•st21i-jl 

301 continue 
st4 I i l=aa 

303 continue 

c Noise addition 
c 

c 

do 310 i=(j2st2-q1+1 J,j2st2,1 
w1=g05ddfiO.Od+OO,Pl 
w2=g05ddfiO.Od+OO,?J 
w<i l=cmplx lw1, w2 J 
st1 <i J=st21i J+w<i J 

310 continue 

c Rx Filtering 
c 

c 

do 330 i = (j2st3--q1 +1) ,j2stJ, 1 
aa= CO.O,O.O) 
aw=IO.O,O.OJ 
do 320 j=O,j4, 1 
aa=aatfrlj J•st1 li·-j) 
aw•aw+frljJ•wli-jl 

320 continue 
st3 ( i J =aa 
wf(i)oaw 

330 continue 

c CalcuJ.:~t .. e contribut.lCJn ut' Rx ::;ymbcd tu tot.~d 

c :3iQnul en~.~rl~.Y aJ1d ~~Ot'r<.::sponding C•)ntr'ibutiul: 
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c 

do Jti1 j=- (j:;'~_;t.J·-q1 +1) ,j2~3t.J, ·1 
t:e=e,~+ <re.J.l (~:;t2 ( j) )~*2+a i m.Jk! (::.; t:? ( j) )**2 .1/f loci t {211-L 1 vL) 

ewoew+ Cre<'ll ( wf (j l l *>2 +a i mc1:;: C wf (j l )~*2 l/f loat Cq1 *L•L1 l 
.341 continue 

c Rx signal conditioning for detection 
c 

c 

ifCibr.eq.1 )then 
tTeal =real Cst3 (j2st3) ) 
r-imag"airnagCstJ Cj2st3)) 
else if C ibt' .eq.2 !then 
if (i b.eq. 1 lt.hen 
t't'e=r·eal Cst3 (j2st3)) 
r irno,aimag C st.3 (j2st3)) 
else 
rreal~rre+rea1Cst3Cj2st3)) 

t'ill'.att=l'im+aimag Cst3 (j2st3)) 
end if 
else 
if C i b. ne. trr- lthen 
r-r-e=rre+t'eal Cst3 (j2st3)) 
l'irn=rirn+a imagCst3 Cj2st3)) 
else 
rreal=rre 
r·irnag=rim 
n·e=real Cst3 Cj2st3 l) 
l'irn=aimag Cst3 (j2stJ)) 
end if 
end if 

340 continue 

c Threshold Detection 
c 

c 
c 

if Cabs Crreal ) .gt .abs Crimag) .and .rrea1 .gt.O .0 )then 
ISS=O 
inn1=0 
inn2=0 
elseif Cabs Crreal). gt. abs Cdmag) .and. rrea1 .1 t .0 .0 lthen 
ISS=2 
inn1=1 
inn2=1 
else if Cabs (rreal ) .1 t. abs Cl'imag). and. rimag. gt. 0. 0) then 
ISS=1 
inn1=0 
inn2=1 
else 
ISS=3 
inn1 =1 
inn2=0 
end if 

c ERROR COUNT 
c 
c 

if C is (j is) .ne. !SS lthen 
if C is Cj iG) ·''q .0 !then 
in1=0 
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in2;_0 
cJ::;eif(i::::;<jis) .eq.1 lt~·:(·n 

in 1 -0 
ln2:.: 1 
else if< is (j is) .e(~ .2 )then 
in1~1 

in2= 1 
else 
in 1 = 1 
in2=0 
end if 

if<inn1.ne.in1 lie=ie+1 
if<inn2.ne.in2lie=ie+1 
if<ie.ne.1 lgoto 500 
i b1 = 1 
goto 510 

500 if ( ic .gt .20 lthen 
ib1 =ib1 +1 
else 
end if 

510 continue 
ic=O 
else 
ic=ic+2 
end if 

1000 continue 
1100 continue 

c 
C THE ERROR RA1E,ER, AND THE AVERAGE NUMBER OF ERRORS PER BVRST, 
C AEPB,ARE NOW CALCULATED. THE SNR IS ALSO CALCULATED AND THE 
C RESULTS ARE OVTPVTED. 
c 

c 

ER=FLOAT<iel/(FLOAT<Ll*2*FLOAT<L1 ll 
IFCib1.EQ.OlGOTO 680 
AEPB=FLOATCiel/FLOATCib1 l 
GOTO 690 

680 AEPB=O 
690 CONTINUE 

ef=O.O 
do 691 i=1, 15,1 
ef=ef+ffrCil**2 

691 continue 
ef=(1.0/16.0l*Cef+ef+ffrCOl**2l 

c IFFT relationship 'Fiddle Factor• 
c 

ek1 = (64.0/17 .351 1**2 
c 
c RCOS Channel noise variance compensation for 
c super--Nyquist sampling and for data r-ate reduction 
c 
c ek1=16.0*ibr 

ee=ee/float Cq1 l 
EEE=ek1*ef*ee/ew 
SNR=10.0*ALOG10<EEEl 

600 FORMATC1H ,10X,4H SNR,10X,10HERROR RA"IE, 
110X,16HERRORS PER BVRSTl 

WRITE<0,700lSNR,ER,AEPB 
700 FORMAT< 1 H , 7X,F9 .5 ,6X,E12 .5, 13X,F9 .5 l 

3000 continue 
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c 449 

C 1\ NUMBER OF E1POI(fi\NT Fi\!?1\J"'J'TERS /\RE Pfl I NTED U\fJ' 
c 

if(ihr·.eq.1 Jt!Jc'll 

i bt'l'"B 
else if ( ibr .eq.2 Jthen 
ibrr•;4 
elseif(ibr.eq.4Jthen 
ibrr;2 
elseif(ibr.eq.8Jthen 
i brr=1 
else 
ibrr;O 
end if 
write(0,800JIQ,M,L,L1 ,N,P,pp,ibrr 

800 format(10x,' IQ= ',i2,3x,'M = ',i2,3x,'L = ',i6,3x,'L1 = ',i2, 
13x, 'N = ',i2,3x, 'P = ',f6 .. 4,3x, 'PP = ',f6.4,3x, 
2'Bit Rate= ',i2,'Mb/s'//l 
write<0,810lee,ew,ef,q1,tr3,tr4,Cj2st3l, 

1(1-jisl 
810 format(5x,'Energy per bit= ',f10.6,5x, 

1'Expected Noise Power; ',f10.6// 
a5x,'Filter Energy= ',f10.6// 
25X,'No. OF SAMPLES PER SYMBOL INTERVAL= ',!2// 
45x,'SYMBOL LENGTH OF SYMMETRICAL Tx CHANNEL FILTER= ',I2// 
55X, 'SYMBOL LENGTH OF SYMMETRICAL Rx CHANNEL FILTER = ' , I2// 
65X,'MAIN SAMPLING INSTANT; ',I3,2X,'SAMPLING INTERVALS'// 
85X,'No. OF COMPONENTS IN Tx VECTOR= ',I2////l 

write<0,820l Cftci l, i=O,j3-1 l, 
1 <frCil,i=O,j4-1 l 

820 formatC'Tx Channel Filter:'/ 
22C4C5x,f10.6,3h + ,1hj,f10.6l/l// 
3'Rx Channel Filter:'/2(4C5x,f10.6,3h + ,1hj,f10.6l/l////l 
writeC0,830lCis(!l,i=jis,Ol 

830 formatC'1x Source Jlata:'/2i2//l 
STOP 
END 



B2 DIFFERENTIAL PHASE CORPSKI4-7.l+Dl PROGRAM 
,_lOB Zt11SON'/, :EUX::O~.CF'/(,(~'U'Y)U,111t::~n0} 
FTN'J(DRcO/PMDl 
L! LH<Al<Y ( PROCLJ B, • l 
NACCFTNS l 
LGO. 
£f.J:£3 
C PROGRAM CORPSK4-7_D2 
c 
c 

450 

C THIS PROGf<AM SIMULATES THE TRANSMISSION OF CORRELATIVELY ENCODED 
C 4 PHASE CPSK> SYMBOLS OVER AN AWGN CHANNEL WHICH INTRODUCES NO 
C DISTORTION CMEMORYLESS CHANNEL>. THE VITERBI ALGORITI-lM IS USED AT 
C THE RECEIVER TO PERFORM THE DECODING/DETECTION PROCESS. THIS IS A 
C DIFFERENTIAL IMPLEMENTATION OF THE SYSTEM. FOR MORE DETAILS 
C SEE THE PROGRAM DOCUMENTATION ENTITLED 'SIMULATION OF 
C CORPSKC4-7,1+D> OVER A DISTORTIONLESS CHANNEL'. 
c 
C DECLARE ALL VARIABLES 
c 

c 

PROGRAM COR47DCINPUT,OUTPUT,TAPE1=INPUT,TAPE2=0UTPUT> 
DIMENSION IS (85 >,IX (32 ,85 > ,CXC32 > ,CXX (32 ,4 >, JXX(32, 85 >, 

1 IN ( 2 > , INN (2 >, IZ ( 32 > ,I ZZ (32 ,4 >,I VV ( 2 > , AR C2 >,AI (2 > , RR C2 > , RI (2 > , 
2CNC2,8) 

REAL CC,ER,AEPB, W, WI, WR,!1AP(4 > ,MAP2 (8,2 > 
INTEGER IQ,M,L,K,N, lE, 181, IC, !V 

C INITIALISE ALL VARIABLES 
c 

c 

IQ=30 
M=1 
L=50000 
K=4 
N=2 
P=0.6867 
All =2*ATAN ( 1 • 0 > 
!1AP(1 >=0.0 
!1APC2 >=All 
MAPC3 >=All+All 
MAPC4l=MAPC3>+All 
AII=SQRTC2.0> 
MAP2t1,1 >=2.0 
MAP2t1 ,2>=0.0 
MAP2 C2, 1 >=All 
!1AP2t2,2l=AII 
MAP2t3, 1 >=0.0 
MAP2(3,2>=2.0 
MAP2 (4, 1 >=-All 
MAP2 t4 ,2 >=All 
MAP2t5, 1 >=-2.0 
MAP2C5,2>=0.0 
MAP2(6,1 >=-All 
MAP2t6,2>=-AII 
MAP2C7,1 >=0.0 
MAP2C7,2l=-2.0 
MAP2(8, 1 >=All 
MAP2 (8 ,2 >=-All 
WRITEC2,600> 

C CALL RANDOM NUMBER GENERATOR BEFORE ALL PROGRAM LOOPS AND 
C GENERATE THE NEXT SYMBOL. 



c 

c 

CA!.!. GO'iC'&' ( ! 0 l 
eo eoo LM.:1 ,M, 1 
IQM" 1 
!Z(1 >=7 
JZ(;0)"1 

!Z(J l"J 
IZ<4J"S 
P=P-0.00 
IE=O 
IB1 =0 
!C=O 
0010 !=1,N,1 
IS(! >~1 

10 CONTINUE 
00 30 I=1 ,K, 1 
NN=N-1 
00 20 J=1,NN,1 
!X(J,Jl=1 

20 CONTINUE 
CX(J l=+1 .OE+06 
IXCI ,Nl"l-1 

30 CONTINUE 
CX<2l=O.O 
00 671 LLL=1 ,20,1 
00 670 LL=1 ,L, 1 
NN=N-1 
00 40 I=1 ,NN, 1 
JJ=I+1 
ISCI l=IS<JJJ 

40 CONTINUE 
00 60 I=1 ,K, 1 
NN=N-1 
00 50 J=1 ,NN, 1 
JJ=J+1 
IXCI,Jl=IX<I,JJ) 

50 CONTINUE 
60 CONTINUE 

W=G05DAF<-2.0,2.0l 
IFCWJ70, 70,100 

70 IFCW+1 .0)80,80,90 
80 ISCNJ=O 

GOTO 130 
90 IS<Nl=1 

GOTO 130 
100 IF<W-1.0)110,110,120 
110 IS<Nl"2 

GOTO 130 
120 IS(Nl=3 
130 CONTINUE 
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C TiiE DATA SYMBOLS ARE CODED : <1 +Dl TO PRODUCE 
C TiiE CODE SEQUENCE. THIS IS LEVEL SHIFTED,ADDED TO TiiE PREVIOUS 
C PHASE STORED IN IQM,AND TiiE RESULT IS MAPPED ONTO ONE OF 
C FOUR QPSK SYMBOLS. NOTE THAT TI-lE CODE SEQUENCE CONSISTS OF SEVEN 
C LEVELS WHICH REPRESENT PHASE CHANGES. TiiE SIGN OF TiiE CHANGE 
C DETERMINES TI-lE DIRECTION AND TI-IEREFORE THE MID-POINT. 
C THE QUADRATURE COMPONENTS,AR<Il&AI<Il,ARE NOW TRANSMITTED AND ARE 
C SUBJECTED TO THE AWGN COMPONENTS, WR &WI, WHICH ARE GENERATED 
C USING A RANDOM NUMBER GENERATOR WITil A GAUSS IAN PDF, WITH IT'S 



C STANDARD DEVIATION GIVEN BY P. 
c 

c 

IV"JS(Nl+lS<NNJ-3 
IHIVJ116,13J.116 

116 IVV<1 J-,JQM>!V 
IVV<2J~IQM+IV+IV 

00 132 I"1 ,2, 1 
IF<IW<IJJ117,117,118 

117 IW(IJ~IVV<lJ+8 
118 CONTINUE 

IF<IVV<I J-8)131, 131,119 
119 IW<I J=IVV<I>-8 
131 CONTINUE 
132 CONTINUE 

GOTO 134 
133 IVV<1 J=IQM 

IVVC2J=IQM 
134 CONTINUE 

IQM=IVV<2 J 
DO 135 I= 1 , 2, 1 
AR<IJ=MAP2<IVV<I J,1 J 
AI <I J = MAP2 ( I VV < I J , 2 J 
WR=G05DDF(O.O,PJ 
RR<I J=AR<I l+\o/R 
WI=G05DDF<O.O,PJ 
RI <I J=AI <I J+WI 

135 CONTINUE 

C CALCULATE TilE 12 DISTINCI" COST HALF-INCREMENTS 
c 

c 

00 142 J=1 ,7,2 
CN<2,JJ=<RRC2J-MAP2<J,1 ll*<RR<2J-MAP2(J,1 JJ 

1+<RI<2J-MAP2(J,2ll*<RI<2J-MAP2<J,2JJ 
142 CONTINUE 

DO 144 J=1 ,8,1 
CN(1 ,JJ=<RR<1 J-MAP2CJ,1 ll*<RRC1 J-MAP2CJ,1 JJ 

1+<RIC1 J-MAP2(J,2JJ*<RI (1 J-MAP2(J,2JJ 
144 CONTINUE 

. C MAXIMUM LIKELIHJOD DECODING/DETECI"ION IS NOW PERFORMED. 
C FOR EACH OF TilE EXPANSIONS,0,1 ,2,3,11-IE IX ARE CODED & 
C MAPPED AND ADDED TO TilE PREVIOUS PHASE IZC I J. TilE ASSOCIATED 
C COSTS ARE FOUND BY ADDING THE APPROPRIATE CNC1, J, 
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C AND CNC2, J TO CXCI J. VITERBI DECODING/DETECriON IS NOW PERFORMED 
C BY PICKING THE BEST VECTOR FOR EACH EXPANSION. THE BEST OF 
C THE RESULTING VECTORS IS THE TRUE I1L VECTOR AND IT'S 
C LEFT-MOST ELEMENT IS THE DETECTED SYMBOL VALUE. 
c 

DO 150 1=1 ,K, 1 
DO 140 J=1,4,1 
JJ=J-1 
NN=N-1 
IV=JJ+IXCI,NNJ-3 
IF CIVJ1 02,112,102 

102 IVVC1J=IZ<Il+IV 
IVVC2>=IZCIJ+IV+IV 
DO 108 IJ=1 ,2,1 
IF<IVVCIJ J )103 ,103,104 

103 IVV<IJJ=IVV<IJJ+8 
1 04 CONTINUE 



c 

; F c 1 vv u J 1- s 1 1 06 , 1 06 • ' oc; 
1 05 I VV c 1 ,JJ" ! VV C ! ,J I -13 
1 06 CONTl NUE 
1 05 ())NT! NUE 

COTO 11IJ 
112 !WC1 I=!ZCI I 

!VVC2J=IZ<I I 
114 OJNTIMJE 

IZZ<I,JJ=IVV<2J 
CXX<I ,Jl=CN<1,IVV<1 JJ+CN<2,IVV<2ll+CX<I J 

1 40 OJNTI NUE 
150 CONTINUE 

DO 210 J=1,4,1 
CC=10.0E+06 
DO 180 !=1,K,1 
IFCCXXCI,JI-CCJ160,170,170 

160 CC=CXX<I ,J J 
I II=I 

170 OJNTINUE 
180 OJNTINUE 

IZ<JJ=IZZ<III,JJ 
NN=N-1 
DO 200 IL=1 ,NN, 1 
IXX<J,!LJ=IX<III,ILJ 

200 CONTINUE 
IXX<J ,Nl=J-1 
CX<J l=CC 

210 CONTINUE 
CC=10.0E+06 
DO 240 !=1 ,K,1 
IF<CX<IJ-CCJ220,230,230 

220 cc= ex o > 
III =I 

230 OJNTIMJE 
240 CONTINUE 

ISS=IXX<III,1 J 

C TRANSFER THE !XX BACK INTO THE IX VECIDRS. 
c 

CC=CX<III J 
DO 310 I=1,K,1 
00 300 J=1,N,1 
!XCI ,JJ=IXXCI ,JJ 

300 OJNTIMJE 
CX< I l=CXCI )-CC 

31 0 OJNTI MJE 
c 
C THE NEXT SECTION TESTS FOR ERRORS IN THE DETECTED DIGITS. 
C IF A SYMBOL IS FOUND TO BE IN ERROR, B01H IS<1 I & !SS ARE 
C OJNVERTED TO THEIR BINARY EQUIVALENTS USING THE GRAY OJDE. 
C THE INDIVIDUAL BITS ARE THEN Q)MPARED TO Q)UNT THE ERRORS. 
C THE BIT ERROR Q)UNT,IE,IS INCREMENTED WHENEVER A BIT ERROR 
C OCCURS. IF THE NUMBER OF CORRECfLY DETECTED BINARY SYMBOLS 
C SINCE THE LAST ERROR IS GREATER OR EQUAL TO 20,THE BURST 
C ERROR Q)UNTER, I B1 , IS I NCREMENTED ON THE OCCURRENCE OF AN 
C ERROR. OTHERWISE, CIF AN ERROR HAS OCCURRED1,1HE OJUNT OF 
C OJRRECfLY DETECTED SYMBOLS,IC,IS SET TO ZERO. IN ADDITION 
C WHEN 1HE FIRST ERROR OCCURS,IB1 IS SET TO ZERO. 
c 
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c 

!FCISC1 l IS::>l320,490,J:20 
90 IHJ:i(1 l--2JY:,O.J30,J"0 
JJO INC1 '"'· 

!NC?J-1 
COTO JI}Q 

JIJO IN ( 1 J -' 1 
!NC2l=O 
COTO 350 

350 !FC!S(1 l-1 )360,370,370 
360 !NCll"O 

INC2l=O 
GOTO J80 

370 INCl l=O 
!NC2l"1 

350 CONTINUE 
!FCISS-2l410,390,400 

390 INN(J l=1 
INNC2l=1 
GOTO 440 

400 INNC1 l=1 
!NNC2l=O 
GOTO 440 

410 !FC!SS-1 l420,430,430 
420 !NNC1 l=O 

INNC2 )=0 
GOTO 440 

430 INNC1 )=0 
INNC2l=1 

440 CONTINUE 
IFCINNC1 l.NE.INC1 lliE=IE+1 
IF C INN C2 l .NE. INC2) liE= IE+1 
IFCIE.NE.1 JGOTO '-l50 
IB1 = 1 
GOTO 470 

'-l50 IFCIC-20l480,'-l80,460 
'-l60 !81=181+1 
470 CONTINUE 
480 IC=O 
'-l90 CONTINUE 
670 CONTINUE 
671 CONTINUE 

C 11-IE ERROR RATE,ER,AND 11-IE AVERAGE NUMBER OF ERRORS PER BURST, 
C AEPB,ARE NOW CALCULATED. 11-IE SNR IS ALSO CALCULATED AND 
C 11-IE RESUI. TS ARE SENT TO 11-IE OUTPUT. 
c 

c 

ER=CFLOATC!Ell/CFLOATCL+Lll/20.0 
!FC!B1 .EQ.OJGOTO 680 
AEPB=CFLOATCIEll/CFLOATCIB1 ll 
GOTO 690 

650 AEPB=O 
690 CONTINUE 

SNR=10.0*ALOG10C2.0/(P*Pll 
600 FORMATC1H ,10X,4H SNR,10X,10HERROR RATE, 

110X,16HERRORS PER BURST> 
\.IRITEC2,700lSNR,ER,AEPB 

700 FORMATC1H ,7X,F9.5,7X,E12.5,13X,F9.5l 
800 CONTINUE 

C A NUMBER OF IMPORTANT PARAMETERS ARE PRINTED OUT. 
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c 
WR 11F. ( 2 , 900 J ( ( MAP2 (] , J J , I o.1 , C ) , J ·' 1 , 2 J , P, IQ, L , K, N 

900 FOR!".i\T(1H ,:1(1H ,10X,OF9.5/J/1H ,10X,'P o ',F6.4,5X, 
1 I ! Q - •. 13. sx. 'L '- I , I 6 '5X' 'K " I • I 2. ~)X •• !\1 ;..;. I '! 21 I I I) 

WR lTE ( 2 , O,l'JO J ( ( I X ([ , J J , J o 1 , N J , I = 1 , K J , ( CX (l J , I = 1 , K J 
950 FORI'".i\'f( 1 H , q ( 1 H , 1 OX,33!1-/ J ,q ( 1H , 1 OX,F11 .5/ J J 

STOP 
END 

££££5 

**** 
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B3 DIRECT MAP SCHEME B CORPSK(4-7,l+D) PROGRAM 

,JOB ZS150B3, :E:UXXX,CP76<P2000,'l'D256:• 
Fl'N5 WB=O/PMD J 
LIBRARY < PROCLI B , * l 
NAG<FTNS l 
LGO. 
££££S 
c 
c 
c 

PROGRAM CORP:3K4-7_N04 
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C THIS PROGRAM Sil1\JLATES THE TRANSMISSION OF CORRELATIVELY ENCODED 
C 4 PHASE <PSKJ SYMBOLS OVER AN AliGN CHANNEL WHICH INTRODUCES NO 
C DISTORTION <ME!'VRYLESS CHANNEL l. THE VITERBI ALGORITHM IS USED AT 
C THE RECEIVER TO PERFORM THE DECODING/DETECTION PROCESS. THIS IS A 
C NON-DIFFERENTIAL IMPLEMENTATION OF 11-!E SYSTEM. FOR IDRE DETAILS 
C SEE 11-!E PROGRAM DOCUMENTATION ENTITLED • Sll1\JLATION OF 
C CORPSK<4-7,1+Dl OVER A DISTORTIONLESS CHANNEL'. 
c 
C DECLARE ALL VARIABLES 
c 

c 

PROGRAM C47N04 < INPUT,OUTPUT, TAPE1 • INPUT, TAPE2=0UTPUTJ 
DIMENSION IS <85 l, IX<32 ,85 l ,CX<32 J ,CXX<32 ,4 J, IXX<32 ,85 J, 

1 IN<2 J, INN<2 J, IZ<32 J, IZZ<32 ,4 J ,CN<2 ,8 J, 
2IMAP<7 ,7J,AR<2J ,AI <2J,RR<2J ,RI <2J,IU<2J 

REAL CC,ER,AEPB,W,WI,WR,MAP<8,2J 
INTEGER IQ,M,L,K,N,IE,IB1,IC,IV 

C INITIALISE ALL VARIABLES 
c 

c 

IQ=83 
M=1 
L=50000 
K=4 
N=33 
P=0.576 

C DEFINE MAPPING 
c 

AII=SQRT<2 .0 J 
MAP<1,1l=O.O 
MAP<1 ,2J=2.0 
MAP<2,1 J=-2.0 
MAP<2,2l=O.O 
MAP<3,1 l=O.O 
MAP(3,2l=-2.0 
MAP<4,1 l=2.0 
MAP<4,2J=O.O 
MAP<5, 1 J=AII 
MAP<5 ,2 J=AI I 
MAP<6, 1 l=-AII 
MAP<6,2 J=All 
MAP<?, 1 l=-AI I 
MAP<? ,2 l=-AII 
MAP<8, 1 l=AI I 
MAP<8,2l=-AII 
Il"T.AP<1 ,1 J;1 
IMAP<1 ,2)=6 
IMAP<1,Jl"2 
!l"T.AP(1 ,LJ )=7 



c 

IMJI.P<2, 1 J c6 
IMAP<2 .2) -2 
IM!\P(2,JJ"7 
!M!\P(2,4J:3 
!M!\P(2,5J~8 

IM!\P<3, 1 )•2 
IM!\P<3 ,2 J"7 
IM!\P(3,JJ:3 
!M!\P(3,4J:8 
!M!\P(3 ,5 )"4 
IM!\P<3,6J=5 
!M!\P(4,1J=7 
IM!\P(4,2J:3 
!M!\P(4 ,3 ):8 

!M!\P(4,4):4 
!M!\P(4,5J:5 
!M!\P(4,6)=1 
IM!\P(4,7J=6 
!M!\P(5,2J:8 
1M!\P(5,3J=4 
1M!\P(5,4J=5 
!M!\P(5,5J=1 
!M!\P(5,6J=6 
JM!\P(5, 7)=2 
IM!\P<6,3J:5 
1M!\P(6,4J=1 
JM!\P(6,5J=6 
1M!\P(6 ,6 J=2 
!M!\P(6,7J=7 
IM!\P<7,4J:6 
!M!\P(7,5J:2 
1!1!\P(7,6J=7 
1M!\P(7 '7 ):3 
WRITE<2,600J 

C CALL RANOOM NUMBER GENER!\TOR BEFORE ALL PROGRAM LOOPS AND 
C GENERATE TilE NEXT SYMBOL. 
c 

CALL G05CBF < IQ J 
00 800 LM: 1 ,M, 1 
P=P-0.00 
IE=O 
IB1:0 
IC=O 
IQM=3 
!2(1 )=2 
12(2):3 
!2(3)=4 
!2(4)=5 
IU<1 J:O 
IUX:O 
00 10 1=1 ,N,1 
IS<I J=1 

10 CONTINUE 
00 30 1=1 ,K, 1 
NN:N-1 
00 20 J"1 ,NN, 1 
IX<I,JJ"1 

20 CONTINUE 
IX<! ,NJ"I-·1 
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c 

, __ :xo Jcc+1 .oE,06 
30 DJNT I NIJE 

CX(2J-0.0 
00 671 LLL~1 ,10,1 
00 670 LL~1 ,L, 1 
NN=N-1 
00 110 !:1 ,NN, 1 
JJ"I+1 
IS(! J:!S(JJ) 

40 CONTINUE 
00 60 1•1 ,K,1 
NN•N-1 
00 SO J•1 ,NN,1 
JJ~J+1 

IX(I,Jl=!X(l,JJJ 
50 CONTINUE 
60 CONTINUE 

W•GOSDAF(-2.0,2.0) 
!F(WJ70,?0, 100 

?0 IF(Wo1 .OJ80,80,90 
80 !S(NJ"O 

GOTO 130 
90 IS(NJ"1 

GOTO 130 
100 IF(W-1 .OJ110, 110,120 
110 IS(NJ•2 

GOTO 130 
120 IS(NJ=3 
130 CONTINUE 

C PRECODE THE ISCIJ 
c 

IUC2J•!S(NJ-IIJ(1 J 
IF ( IU(2 J .LT.O l IUC2 J•IUC2 J+4 

c 
C THE DATA SYMBOLS ARE CODED : ( 1 +DJ TO PRODUCE 
C THE CODE SEQUENCE. TillS IS LEVEL SHIFTED AND MAPPED ONTO ONE OF 
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C FOUR PHASES. THE INITIAL AND FINAL PHASE DESIGNATIONS ARE USED AS 
C POINTERS INTO THE !MAP ARRAY TO FIND THE MID-POINT. 
C THE QUADRATURE COMPONENTS,ARCI l&AICI J ,ARE NOW TRANSMITTED AND ARE 
C SUBJECTED TO THE A'IIGN COMPONENTS, WR &WI, WHICH ARE GENERATED 
C USING A RANOOM NUMBER GENERATOR WITII A GAUSS IAN PDF, WITII IT'S 
C STANDARD DEVIATION GIVEN BY P. 
c 

NN•N-1 
IV=IUC2l+IU(1 l+1 
IUC1 l•IU(2J 
I VS= IV 
IF ( IV-4 l 117,117, 116 

116 IVS= IV-4 
11 7 CONTINUE 

IVV•IMAP ( IQM, IVJ 
IQM:!V 
AR(1 l=MAPOVV,1 l 
AI (1 l=MAP(IVV,2J 
ARC2J•I<AP(!VS,1 l 
Al(2J•MAP(IVS,2l 
001151=1.2,1 
WR•Cn5DDF(O.O,Pl 
RRU l"ARU l+WR 



c 

11!-GOSDDF<O.O,!-'l 
RI(! J~AI (! l+\1! 

110 CONTINUE 

C CALCULATE 1HE 12 DISTINCT COST HALF-INCREMENTS 
c 

00 1L!2 J=1,L!,1 
CNC2,JJ=CRRC2J-MAP<J,1 ll*CRRC2l-MAP<J,1 ll 

1 +CRI C2l-MAPCJ,2l l*<RI (2l-MAPCJ,2l l 
142 CONTINUE 

00 144 J=1 ,8, 1 
CN<1 ,Jl=<RRC1 l-MAPCJ,1 ll*<RR<1 l-MAP<J,1 ll 

1+<RI<1 l-MAP<J,2ll*<RIC1 l-MAPCJ,2ll 
144 ffiNTINUE 

c 
C MAXIMUM LIKELIHOOD DEffiDING/DETECTION IS NO\/ PERFORMED. 
C FOR EACH OF mE EXPANSIONS,0,1 ,2,3,THE IX ARE CODED & 
C MAPPED. mE ASSOCIATED COSTS ARE FOUND BY ADDING mE 
C APPROPRIATE CNC1, l & CN<2; l TO CX<I l. VITERBI 
C DECODING/DETECflON IS NOli PERFORMED BY PICKING mE BEST 
C VECTOR FOR EACH EXPANSION 0,1 ,2,3,4. mE BEST OF THE RESULTING 
C VECTORS IS mE TRUE ML VECTOR AND IT'S LEFT-MOST ELEMENT 
C IS mE DETECTED SYMBOL VALUE. 
c 

00 150 I=1 ,K, 1 
00 140 J = 1 '!j ' 1 
NN=N-1 
IV=J+IX< I ,NN l 
I VS= IV 
IF ( IV-4l103, 103,102 

1 02 !VS= IV-L! 
103 ffiNTINUE 

IVV=IMAPCIZ<I l,IVl 
IZZ<I ,Jl=IV 
CXX<I,Jl=CN(1,IVVl+CN(2,IVSl+CX<Il 

C CXX<I,Jl=CN<2,IVSl+CX<Il 
140 ffiNTINUE 
150 ffiNTINUE 

00 210 J=1 ,4, 1 
CC=10.0E+06 
00 180 1=1 ,K, 1 
IF <CXX<I ,J l-CCJ160, 170,170 

160 CC=CXXCI ,J l 
III=I 

170 ffiNTINUE 
180 CONTINUE 

NN=N-1 
00 200 IL=1 ,NN, 1 
IXX<J,ILl=IX<III,ILl 

200 ffiNTINUE 
IXX<J,Nl=J-1 
CX<J l=CC 
IZ<Jl=IZZ<III ,Jl 

210 CONTINUE 
CC=10.0E+06 
00 240 1=1 ,K, 1 
IFCCX(IJ-CCJ220,230,230 

220 CC=L'X <I J 
Il I= I 

2:30 CONTINUE 
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240 CONTINUE 
c 
C DEC"'ODE THE PRECOUED DETECJED VALUE 
c . 

c 

ISS~IXXCIII,1 l+!UX 
IUX=IXXCIII,1 > 
IFC!SS.GE.4>ISS•ISS-4 

C TRANSFER THE !XX BACK IN1D THE !X VEC1DRS. 
c 

00 310 I=1,K,1 
00 300 J=1 ,N, 1 
IX< I ,J >=IXX< I ,J > 

300 CONTINUE 
cxci >=CX<I >-cc 

31 0 CONTINUE 
c 
C THE NEl-.'T SECriON TESTS FOR ERRORS IN THE DETEC!'ED DIGITS. 
C IF A SYMBOL IS FOUND 1U BE IN ERROR, BOTH IS<1 > & ISS ARE 
C CONVERTED TO THEIR BINARY EQUIVALENTS USING THE GRAY CODE. 
C THE INDIVIDUAL BITS ARE THEN COMPARED TO COUNT THE ERRORS. 
C THE BIT ERROR COUNT,IE,IS INCREMENTED WHENEVER A BIT ERROR 
C OCCURS. IF THE NUMBER OF CORRECTLY DETECTED BINARY SYMBOLS 
C SINCE THE LAST ERROR IS GREATER OR EQUAL TO 20,THE BURST 
C ERROR COUNTER, IB1, IS INCREMENTED ON THE OCCURRENCE OF AN 
C ERROR. OTHERYISE,<IF AN ERROR HAS OCCURRED>,THE COUNT OF 
C CORRECTLY DETECTED SYMBOLS,IC,IS SET TO ZERO. IN ADDITION 
C WHEN THE FIRST ERROR OCCURS,IB1 IS SET TO ZERO. 
c 

IC=IC+2 
IFCIS<1 l-!SSI320,490,320 

320 IFCIS<1 1+1 1330,340,350 
330 INC1 >=1 

IN<21=1 
GOTO 380 

340 INC1 1=1 
INC21=0 
GOTO 380 

350 IF<ISC1 1-21360,370,370 
360 IN<1 >=O 

IN<2>=0 
GOTO 380 

370 IN<1 1=0 
IN<2 >=1 

380 CONTINUE 
IF<ISS+1 1390,400,410 

390 INNC1 1=1 
INN<21=1 
GOTO 440 

400 INNC1 1=1 
INNC21=0 
GOTO 440 

410 IFCISS-21420,430,430 
420 INN<1 >=O 

INNC21=0 
GOTO 440 

'130 INNC1 >=O 
JNN<21"1 

440 CONTINUE 
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c 

IFC!NNC1 l.NE.!NC1 »Ic>IE+1 
IF CINNC2 J .NE. INC2 l l lE" lE+ 1 
IF (lE .NE .1 JGOTO 4:;o 
I 81 ; 1 
CXJTO 470 

450 IFCIC-20J480,480,460 
460 IB1 "IB1 +1 
470 C'ONTI NUE 
480 IC=O 
490 CONTINUE 
670 CONTINUE 
671 C'ONTINUE 

C THE ERROR RATE,ER,AND THE AVERAGE NUMBER OF ERRORS PER BURST, 
C AEPB,ARE NOW CALCULATED. THE SNR IS ALSO CALCULATED AND 
C THE RESULTS ARE SENT TO THE OUTPUT. 
c 

c 

ER=CFLOATCIEJJ/CFLOATCL+Lll/10.0 
IFCIB1 .EQ.OJGOTO 680 
AEPB= CFLOATCIEJ l/CFLOATCIB1 l l 
CXJTO 690 

680 AEPB=O 
690 CONTINUE 

EE=2.0/CP*Pl 
SNR=10.0*ALOG10CEEJ 

600 FORMATC1H ,10X,4H SNR,10X,10HERROR RATE, 
110X,16HERRORS PER BURSTJ 

WRITEC2,700JSNR,ER,AEPB 
700 FORMATC1H ,7X,F9.5,7X,E12.5,13X,F9.5l 
800 CONTINUE 

C A NUMBER OF IMPORTANT PARAMETERS ARE PRINTED OUT. 
c 

WRITE <2, 900 J C CMAP CI , J l, I= 1 , 8 l ,J= 1 , 2 l, P, IQ, L ,K ,N 
900 FORMATC2C1H ,10X,8F9.5/J/1H ,10X,'P = • ,F6.4,5X, 

1' IQ= ',I3,5X,'L = • ,I6,5X,'K = • ,I2,5X,'N =' ,12////J 
WRITEC2,950l CC IX< I ,Jl,J=1,Nl,I=1,KJ, <CX<I J,I=1,KJ 

950 FORMATC4C1H ,10X,33I1/J,4C1H ,10X,F11.5/ll 
STOP 
END 

££££S 

**** 
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B4 FILTERED DIFFERENTIAL CORPSK(4-7,1+D) PROGRAM 

c 
c 

dimension izz(0:63,0:JJ,hd(-60:76J,thr<0:255l,is<-100:0l, 
3ix<0:63,65l,cx<0:63l,cxx<0:63,0:3J,iz(0:63l, 
4icheck<0:6Jl,ifull<0:63l,sph<-100:100l,ffr<0:15l 

COMPLEX stO (-300: 100 l ,st3 ( -300:100 J ,aa ,aw,st4 ( -100:100), 
1ft <0: 100 l ,fr <0: 100 l ,st2 <-300: 100 J ,!'map <0:255 l ,st 1 (-300: 100 l, 
2C00(0:255 ,0:3) ,C01 (0: 255,0:3), W( -300:100), wf (-300: 100) 

DOUBLE PRECISION P,005DDF,005DAF,a1 ,a2,pi 
integer· g,gg ,gg1 ,gg2 ,gg3 ,e <0:63) ,ett <0:63) ,et <0:63 ,0:3 J, 

1tr1 ,tr2,tr3,tr·4,sa,q1 ,q,ics(0:255,0:3J,sa1 ,sa2,sa3 
character•3 file1,file2,file3,file5 
open<O,defer=.true.,prompt=.true.l 
write<O, )"Run-dependent Par·ameters File" 
read(Q, lfile1 
write<O, l"Premod. Filter Parameter,; File" 
read (Q, Jf ile2 
write<O, l"Premodulation Filter File" 
r·ead (Q. ) f il e3 
write<O, l"Rx State Arr'ays and Minimum-phase Channel Filters" 
read<O, lfile5 
open<O,defer=.false.l 
open(1 ,file=file1 ,form=' formatted' ,mode=' in') 
open (2 ,file=file2 ,form= • for·matted' ,mode= • in • l 
open(3,file=file3,form='formatted' ,mode=• in' l 
open <5 ,file=file5,form= • formatted • ,mode= • in' J 
r·ead ( 1 , * liQ ,M,L ,L 1 ,N, P, pp,g ,nb 
read(2,•lq,q1,tr1 ,tr2 
read(5,•ltr3,tr4 

c Calculate parameters required to read in filters. 
c sa: No. states in Rx array model 
c 
c 

c 

j 1 =-trhq1 
j2=<tr2+2l•q1 
j3=tr3•q1 
j4=tr·4•q1 
nn=tr1+tr2 
read(2,•lifft,ishift,isa 
if<isa.eq.Olthen 
sa=4•• <nn+1 l 
nnn=nn 
else 
sa=L1**isa 
nnn= isa-1 
end if 

c Read in files 
c 

do 10 i=j1 ,j2,1 
t'edd U , * J hd < i J 



c 
c 

10 continue 
do :.?0 i - 0, j J • 1 
read(~-).* >b1, lJ2 
ft(i l"cmplxtb1 ,b21 

20 continue 
do 30 i"O,j4,1 
r·ead ( S, • ) b 1 , b2 
ft•(i l•cmplx(b1,b2) 

30 continue 
do 50 i•O, tsa-1) ,1 
do40j=0,3,1 
r·ead<5,,.1b1,b2 
coO<i,jl•cmplx<b1,b2) 

40 continue 
50 continue 

do 70 i•O, <sa-1) ,1 
do 60 j"0,3,1 
read ( 5 , " I b 1 , b2 
co1 (i ,j l=cmplx(b1,b21 

60 continue 
70 continue 

do 90 i=O, (sa-1) ,1 
do 80 j=0,3,1 

_ r·ead<5,,.lics<i,jl 
80 continue 
90 continue 

do 95 i=O, 15,1 
read (5, * lffr (i) 

95 continue 

c Phase Quantiser Initialisation 
c 
c 
c 
c 
c 
c 
c 
c 
c 

nb: No. of quantiser bits 
jx: No. of levels/thresholds 

xincr: Spacing between thresholds <angle) 
thr < I: Thresholds spaced xincr apart 

fmap( 1: Levels spaced xincr apart-complex array 
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c Initialise mapping of phase <sphl onto quadrature components tstOI 
c Initialise thresholds 
c 

c 
c 

jx=2**nb-1 
xincr·•2.0/float(jx+1 I 
pi=dacos(-1 .Od+OOI 
do 100 i=O,jx,1 
a1=dcos<pi•float(il•xincrl 
a2=dsin(pi•float(il•xincrl 
fmap<i l=cmplx (a1 ,a2 I 
thr<il=float<il•xincr+(xincr/2.01 

100 continue 
ahd=4.0•hd< <tr2+1 l•q1 I 

c SNR LOOP 
c 
c 

•:all .:;05cbf t!Ql 



c 

I.'R ITE <0 , 600 l 
do JOOO l "'" 1 • !·i, 1 
P-P-pp 
ic"O 
ib1~0 

ic=O 
ee=O.O 
ew=O.O 

c Initialisation of various vectors 
c 
c is: 
c 

c 
c Ammend jis if channel is symmetrical (ilmc not equal to 1 J 
c 

c 

ilmc=O 
if<ilmc.ne.1 lthen 
jis=-<N+tr1 l+1-(tr3+tr4l/2 
else 
jis=-<N+tr1 l+1 
end if 
do 105 i=jis,0,1 
is(i l=O 

105 continue 
gg= (4ng)-1 

c Initialise sph,stO,w 
c 

c 

do 110 i=j1 ,j2,1 
sph(i l=hd<q1 l 

110 continue 
j1st0=-(tr1+tr3l*q1 
j2st0=- <tr1-1 l*q1 
j1st2=-(tr1+tr4l*q1 
j2st2=j2st0 
j1st3=- <tr1 +1 l*q1 
j2st3=j2st0 
do 120 i=j1st0,j2st0,1 
stO(il=<O.O,O.Ol 

120 continue 

c Set noise vector and st2 to zero 
c 

c 

c 

do 125 i=j1st2,j2st2,1 
w<i >= <0.0,0.0 l 
st2(iJ=(O.O,O.OJ 
st1 (i >= <0.0,0.0) 

125 continue 

c Left-shift sph,st0,st2 
c 

do 130 j=jl , (j2-q1 >, 1 
jj=j+ql 
sph(j >'··eJph(jj J 

130 continue 
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c 

do 1'10 j"j1st0, l.\2st0-q1 J, 1 
jj;_j·H~1 

c1t.C> (j )"stO (jj) 
140 continue 

do 150 j"j1st2, Cj2st2-q1~,1 
jj;J+q1 
st2Cj);st2Cjj) 
st1 Cj );st1 Cjj) 

150 continue 

c Filter data (;0) through premodulation 
c filter. 
c 

c 

do 160 j;j1 ,j2, 1 
sphCjJ;sphCjl-3.0*hdCj) 
ifCsphCjJ.gt.2.0lsphlj);sphCjl-ahd 
if (sph Cj) .1 t.O.O lsphlj );sphlj l+ahd 

160 continue 

c Calculate stO 
c 

do 170 ii;Cj2st0-q1+1 J,j2st0,1 
c 
c Phase quantisation & mapping 
c 

ij"jx-1 
do 165 j;O,ij,1 
jj;j+1 
if ( sph C i i ) . ge. thr (j ) . and. sph C i i ) .lt. thr C j j ) ) then 
stOCii );fmap(jj) 
j;ij+1 
else 
continue 
end if 

165 continue 
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if Csph Cii) .ge. thrljx) .or.sphCi i) .1 t. thrCOl lstO C i i );fmapCO) 
170 continue 

c 
c Initialise st2 
c 

c 

do 180 ii;(j2st2-q1+1 l,j2st2,1 
aa;CO.O,O.Ol 
do 175 j"O,j3, 1 
aa"aa+ftCjl*stOCii-jl 

175 continue 
st2CiiJ;aa 
st1 Ciil"aa 

180 continue 
190 continue 

c Initialisation of states of Rx vectors 
c 
c 
c Determine Initial Phase 
c 

iflilmc.ne.1 )then 
ill=j2st0-q1*Ctr3+tr4l/2 
else 
i 11 =j2st0 
end if 



pre- t'ea1 (st.O (ill J J 
pim"aimag(stO (j 11 J J 
if (abs (pr'e) .gt .ab:3 (pi m) .and .pr'e .gt .0 .0 Jthen 
iz1 "0 
e1 se if (abs (pre J. gt .• abs (pi m J. and. pre .1 t. 0. 0 Jthen 
iz1=2 
e1seif (abs (pre J .1 t.abs (pi mJ .and. pi m. gt .0 .0 Jthen 
iz1 = 1 
else 
iz1=3 
end if 
if(sa.ge.4*(gg+1 llthen 
do 210 i"O,gg,1 
iz(il=i+iZ1*(4**nnn> 

210 continue 
else 
sa1=4**nnn 
sa2=2*sa1 
sa3=3*sa1 
do 200 i=O,gg,1 
if (i .lt.sa1 >then 
is1=0 
else if (i .ge .sa1 • and. i .1 t .sa2 Jthen 
is1=sa1*4 
elseif(i.ge.sa2.and.i.1t.sa3Jthen 
is1 =sa2*4 
else 
is1=sa3*4 
end if 

iz(il=i+<4**nnnl*<iz1-is1 J 
200 continue 

end if 
c 
C******************$$$$$$$$$$$$******************* 
c 
C DETECTOR INITIALISATION 
c 

ivec=N-g 
ivec2=ivec-1 
gg1 = (gg+1 )/lj 

gg2=(gg+1 )/2 
gg3= (gg+1 )*3/4 
do 21 i=O,gg,1 
do 11 j = 1 , i vec, 1 
ix (i ,j l=O 

11 continue 
cx<i )=1.0e+06 
e(il=i 
ett (! l=i 

21 continue 
cxCOl=O.O 

c 
C*******************$$$$$$$$$$$$************** 
c 
c 
c TRANSMISSION LOOP 
c 
c 

do 1100 111 = 1 , L 1 , 1 
do 1000 11"1 ,L,1 

466 



~;l1if't. ,:w:--ays i:::>,sph.~~LO~:..;t-2,\.J, Clnt: 

'' symbol inter'val left 

c 

do 220 j"jic,,-1 ,1 
jj=j•1 
is (j )"is (jj) 

220 continue 
do 230 j"j1, Cj2-q1 J ,1 
jj=j+q1 
sph(j J~sph<jj) 

230 continue 
do 240 j=j1st0, (j2st0-q1 J ,1 
jj=j +q1 
stO(j J~stO(jj J 

240 continue 
do 250 j=j1st2, Cj2st2-·q1 ),1 
jj=j+q1 
st2CjJ=st2(jjJ 
st 1 (j J :st 1 (j j J 
w(j J=wCjj J 

250 continue 

c 
C*******************$$$$$$$$$************** 
c 
C SHIFT THE IX LEFT 
c 

ifull1 =0 
do 41 i=O,g(l,1 
icheckCi J=O 

41 continue 
do 61 i=O,gg,1 
ifCicheckCett(iJJJ44,44,51 

44 icheckCett(iJJ=1 
do 46 j = 1 , i vec2 , 1 
jj=j•1 
ixCettCiJ,jJ=ixCettCi J,jjJ 

46 continue 
if< i.l t.gg1 Jthen 
ixCettCiJ,ivecJ=O 
elseifCi.ge.gg1.and.i.lt.gg2Jthen 
ix<ettCiJ,ivecJ=1 
elseifCi.ge.gg2.and.i.lt.gg3Jthen 
ixCettCiJ,ivecJ=2 
else 
ixCettCiJ,ivecJ=3 
end if 
eCiJ=ettCiJ 
goto 59 

51 do 58 j=ifull1 ,gg,1 
ifCifullCjJJ54,54,57 

54 do 55 jj=1 ,ivec2,1 
i X ( j , j j ) : i X (et t ( i ) , j j ) 

55 continue 
if ( i.l t .gg1 Jthen 
ix<j,ivecJ=O 
else if ( i .ge.gg1 .and. i .1 t .gg2 )then 
i x ( j , i vec ) ; 1 
elseif<i.ge.gg2.and.i.lt.gg3Jthen 
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ix(j,lvec}o:? 
else 
ix(j,ivcc)o3 
end if 
e <i l=j 
ifull1=j+1 
j=gg+1 

57 continue 
55 continue 
59 continue 
61 continue 

c 
C***************$$$$$$$$$$$$$$$$$**************** 
c 
c 
c Data Generation 
c 

c 

w1=g05daf(-2.0d+00,2.0d+00l 
if<w1.lt.-1.0lthen 
is<Ol=O 
elseif<w1.ge.-1.0.and.w1.1t.O.Olthen 
is<Ol=1 
elseif(w1.ge.O.O.and.w1.1t.1.0lthen 
is<Ol=2 
else 
is<Ol=3 
end if 

c Pr·ecoding 
c 

isd=is<Ol-isd 
if < i sd .1 t • 0 l i sd = i sd +4 

c 
c Premodulation Filtering 
c 

c 

sso2*(float(isdl-1 .5) 
do 260 j=j1,j2,1 
sph<jl=sph(j)+ss*hd(j) 
if<sph(j),gt.2.0lsph(jl=sph<jl-ahd 
if(sph<jl.lt.O.Olsph<jl=sph(jl+ahd 

260 continue 

c Convert sph into stO 
c 

do 280 i= (j2st0-q1 +1 l ,j2st0, 1 
c 
c Phase quantisation & mapping 
c 

ij=jx-1 
do 270 j=O, ij, 1 
jj=j+1 
if (sph( i l ,ge. thr(j l .and.sph(i l .lt. thr(jj l lthen 
stO(i l=fmap(jj l 
j=ij+1 
else 
continue 
end if 

270 continue 
if (sph<i l .ge. thr· <jx l .or.sph <i l .1 t. thr <Ol lstO ( i l=fm..op<O l 

200 continue 
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c 
c Tx Filtel'ing 
c 

c 

do JOO i"(j2st2-q1+1 l,j2st2,1 
aa•(O.O,O.Ol . 
do 290 j•O,j3,1 
aa•aa+ft(j)*StO<i-j) 

290 continue 
st2 <i) •a a 

300 continue 

c Rx Filter st2 alone 
c 

c 

do 303 i•(j2st3-q1 ),j2st3,1 
aa• <0.0,0.0> 
do 301 j•O,j4,1 
aa•aa+fr(j)*st2<i-jl 

301 continue 
st4 <i>•aa 

303 continue 

c Noise addition 
c 

c 

do 310 i•<j2st2-q1+1 l,j2st2,1 
w1 • g05ddf <0. Od +00 ,P l 
w2•g05ddf<O.Od+00,Pl 
w<i l•cmplx<w1,w2l 
st1 <i l=st2<i l+w<i l 

310 continue 

c Rx Filtering 
c 

c 

do 330 i• (j2st3-q1 +1 ) ,j2st3 ,1 
aa• <0.0,0.0) 
aw= <0.0,0.0> 
do 320 j•O,j4,1 
aa•aa+fr<j l*Stl <i-j l 
aw•aw+fr<j>*w<i-jl 

320 continue 
st3<il•aa 
wf(il•aw 

330 continue 

c Calculate contribution of Rx symbol to total 
c signal ener·gy and corresponding contr-ibution 
c to total noise energy 
c 

c 

do 341 j=(j2st3-q1+1 l,j2st3,1 
ee•ee+<real<st2<jll**2+aimag<st2<j>>**2l/float<2*L1*Ll 
ew=ew+<real<wf(jll**2+aimag<wf<jll**2l/float(q1*L*L1 l 

341 continue 

c 
C*********************$$$$$$$$$$$$$$************** 
c 
C MAXIMUM LIVELIHOOD DECODING/DETECTION IS NOW PERFORMED. 
C FOR EACH OF THE EXPANSIONS 0,1 ,2,3, THE IX ARE CODED & 
C MAPPED. THE ASSOCIATED INCREMENTAL COSTS ARE FOUND BY 
C COMPARING THE RECEIVED COMPLEX SIGNALS \IITii THE 
C APPROPRIA1E MID & END POINTS HELD IN 11-!E 

469 



C TABLEci COO & OJl. V!TEREII 
C DECOD!NG/DETECT!ON !~; NOI,J f'ERFORMED B'i P!C:Kli'!G "D-!E BEST 
C VECTOR FOR EACH EXPANSION. THE BEST OF THE RE:)ULTING 
C VECTORS IS 11-!E TRUE ML VEC'IDR AND IT'S LEFT-MOST ELEMENT 
C IS 11-!E DETECTED VALUE . 
c 
c Expansion & Cost calculation 
c 

c 

do 3SO i-O,{Jg,1 
do 340 j=0,3,1 

c Vir'tual Sub-vector le!'t-shift 
c 

c 

if<i.ge.gg3Jthen 
ii=(4*i)-(4*gg3J+j 
et<ii,3J=e<i J 
ij=3 
elseif(i.ge.gg2.and.i.lt.gg3Jthen 
ii=(4*i)-(4*gg2)+j 
et<ii,2>=e<i> 
ij=2 
elseif<i.ge.gg1.and.i.lt.gc2>then 
ii= (4*i )-(4*gg1 )+j 
et ( i i , 1 > "e ( i ) 
ij = 1 
else 
ii•4*i+j 
et ( i i , 0) -e <i ) 
ij=O 
end if 

c Expansion and mapping to points in the constellation 
c 

i ZZ (i i , i j ) = i CS ( i Z ( i ) , j ) 
c 
c Real & imag. parts of main received sample 
c 

c 

sepr=real<st3<j2st3JJ 
sepi=aimag<st3<j2st3JJ 

c Real & imag. parts of interm. received sample 
c 

c 

sipr=real(st3(j2st3-q1/2JJ 
sipi=aimag(st3(j2st3-q1/2JJ 

c Real & imag. parts of possible received interm sample 
c 

c 

cOr=real<coO(iz<iJ,jJJ 
cOi=aimag(coO<iz<i J,j JJ 

c Real & imag. parts of possible received main sample 
c 

c 

clr•real (col <iz(i J ,j J J 
cl i=aimag<col (iz(i J ,j J) 

c Cost Calculation 
c 

cxx(ii,ijJ•cx<iJ+(sepr-c1rl*<sepr-c1r> 
1 +(se pi -c 1 i Ht (se pi -c 1 i ) +(si pr-·-r.::Or·) *(si pr-cOr·) 
1+ <sipi-cOi h' {~:.dpi-cOi) 
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1 1'1 1 
~' l ., .. CL>nt.il1U•.: 

J~-_,0 continue 
<' 

c St.•t ifull for all vectors to siGrlify empty 
c 

c 

do 375 i=O,gg, 1 
ifull Ci l=O 

375 continue 

c Selection 
c 

c 

do 410 i=O,gg, 1 
cc=10.0e+06 
do 400 j=0,3,1 
if<cxx(i,jl-ccl380,390,390 

380 jj=j 
cc=cxx <i ,j l 

390 continue 
400 continue 

ett(i l=et(i,jj l 
ex Ci l=cxx (i, jj l 
ifull (ett(i l )=1 
iz(i l=izz (i ,jj) 

410 continue 

c Detection 
c 

c 

cc=10.0e+06 
do 440 i=O,gg,1 
if(cx(il-ccl420,430,430 

420 ii=i 
cc=cx ( il 

430 continue 
440 continue 

ISS=ix( <ett(ii l), 1 l+issd 
if(!SS.gt.3liSS=ISS-4 
issd=ix(ett<ii) ,1) 

c Subtract lowest cost from all costs 
c 

c 
c 

cc=cx (i i l 
DO 311 i=O,gg,1 
ex ( i l=cx ( i l-cc 

311 CONTINUE 

c ERROR COUNT 
c 
c 

if<is<jisl.ne.ISSlthen 
if(is<jisl.eq.Olthen 
in1=0 
in2=0 
else if (is (j is) .eq. 1 )then 
in1=0 
in2=1 
elseif(is(jisl.eq.2lthen 
in 1 "1 
in2=1 
else 
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i n1:... 1 
in:2;;0 
end if 
ifi!SS.eq.Oithcn 
inn1~0 

inrQ;:Q 
else if I ISS.eq.1 I then 
inn1=0 
inn2=1 
elseifiiSS.eq.21then 
inn1=1 
inn2=1 
else 
inn1=1 
inn2=0 
end if 

iflinn1.ne.in1 lie=ie+1 
if <i nn2 .ne. in2 I ie= ie+1 
iflie.ne.1 Jgoto 500 
ib1 = 1 
goto 510 

500 iflic.gt.201then 
ib1 =ib1 +1 
else 
continue 
end if 

510 continue 
ic=O 
else 
ic=ic+2 
end if 

1000 continue 
1100 continue 

c 
C THE ERROR RATE,ER, AND THE AVERAGE NUMBER OF ERRORS PER BURST, 
C AEPB,ARE NOW CALCULATED. 1HE SNR IS ALSO CALCULATED AND 1HE 
C RESULTS ARE OUTPUTED. 
c 

c 

ER=FLOATiiei/IFLOATILI*2*FLOATIL1 11 
IF(ib1 .EQ.OIGOTO 680 
AEPB=FLOATiiei/FLOATiib1 I 

. GOTO 690 
680 AEPB=O 
690 CONTINUE 

ef=O.O 
do 691 !=1, 15,1 
ef=ef+ffr (i 1**2 

691 continue 
ef=(2.0/16.01*(ef+ef+ffr!Ol**2) 

c IFFT relationship 'Fiddle Factor' 
c 

ek1 = (64.0/17 .351 )H2 

ee=ee/float (q1) 
EEE=ek1*ef*ee/ew 
SNR=10.0*ALOG101EEEJ 

600 FORMATI1H ,10X,4H SNR,10X,10HERROR RATE, 
110X,16HERROR5 PER BURSTI 
WRITEI0,700ISNR,ER,AEPB 

700 FORMATI1H ,7X,F9.5,6X,E12.5,13X,F9.51 
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JO('l() .:·or1tinu~-~ 473 
c 
C 11 Nl!MBF.R OF IMl''ORTf•'ff PIIRAMr:TERS ARE P!IINTED 0\JT 
c 

7'99 format< • af= • no.:; l 
write<0,800liQ,M,L,L1 ,N,P,pp,g, (IJ(l+1 l ,sa 

C.\00 for·mat<10x,' IQ "' ',i2,Jx,'M.:... ',i2,3x,'L;.:; ',i6,3x,'L1 :.:. ',i2, 
13x,'N ~ ',i2,3x,'P = ',f6.4,3x,'pp.;; ',f6~4,3x,'g = ',i2, 
2/'No. states in Viterbi Model " • ,i2/ 
3'No. states assumed in Rx an·ay model " ',i2////l 

write(Q,810lee,ew,q1 ,tt•1,tr:2,trJ,trl4, <j2st3l, (j2st3-q1/2l, 
1 (1-.jisl 

810 format<5x,'Energy per bit= ',f10.6,5x, 
1'Expected Noise Power= • ,f10.6// 
25X,'No. OF SAMPLES PER SYMBOL INTERVAL= ',I2// 
35X, 'SYMBOL LENGTI-1 OF "FREQ. PULSE" FILTER = -', I2, 
a' TO+' ,i2,' INTERVALS'// 
45x,'SYMBOL LENGTI-1 OF SYMMETRICAL Tx CHANNEL FILTER= • ,I2// 
55X,'SYMBOL LENGTI-1 OF SYMMETRICAL Rx CHANNEL FILTER= ',I2// 
65X,'MAIN SAMPLING INSTANT • ',I3,2X,'SAMPLING INTERVALS'// 
75X,'INTERM. SAMPLING INSTANT" ',I3,2X,'SAMPLING INTERVALS'// 
85X,'No. OF COMPONENTS IN Tx VECTOR= • ,I2////l 

write<O,B20l <hd<i l,i=j1 ,j2-1 l, <ft<i l,i=O,j3-1 l, 
1 (ft•<i l,i=O,j4-1 J 

fJ20 format ( • Phase Response FiJ ter·:' I 
112(8(5x,f10.6l/l// 
2'Tx Channel Filter·:'/8(4(5x,f10.6,3h + ,1hj,f10.6l/l// 
3'Rx Channel Filter·:'/8(4(5x,f10.6,3h + ,1hj,f10.6l/l///ll 
write <0,830 l <is< i l, i"jis ,0 l, isd, ( <ix <i ,j l ,j=1, i vec l, i"O,gcr l, 

1 i ssd, (ex ( i l , i =0, gg l 
830 format<'Tx Source Data:'/40i2/ 

a'Tx Preceded Value:• ,i2// 
1'Rx Vectors:'/16(5x,31i2/l/ 
b'Rx Pr·eviously ~coded value:• ,i2// 
2'Rx Vector Costs:'/16<5x,f11 .5/l////l 

wl'i te <0, 840 l <e ( i l, i =0 ,gg l , ( i check ( i l, i = 0, gg l , 
1 <ifull ( i l, i=O,ggl, <iz (i l, i =O,gg l 

840 format('Sub-vector designations:' ,16i3// 
l'Rx vector availability condition flags;',16i2// 
a'Rx vector· full/empty condition flags;• ,16i2// 
2'Rx vector state desicrnations:• ,16i3////l 
write<0,850J((coO<i,jl,j=0,3l,i=O,<sa-1 ll, 

1 ((col (i ,j l ,j=0,3l ,i=O, (sa-1 l l, ( ( ics<i ,j l ,j=0,3l ,i=O, (sa-1 l l 
850 format<'Rx Array of possible r·eceived interm. samples; coO:'/ 

164<4<5x,f10.6,3h + ,1hj,f10.6J/l// 
2'Rx Array of pcssible received main samples; col:'/ 
364<4<5x,f10.6,3h + ,1hj,f10.6J/l// 
4'Rx Array of pcssible final states; ics:'/ 
516<16<2x,i3l/l////l 
write ( 0, 860 lnb, xi ncr, ( thr ( i l, i =0, jx l , (fmap <i l , i =0, jx l 

860 format('No. of Quantiser bits:• ,i2/ 
l'Quantiser Spacing:' ,f10.6/ 
2' Arr·ay of TI1resholds: '/32(8(5x,f10.6)/l// 
3'Array of complex levels:'/64(4(f10.6,3h + ,1hj,f10.6l/l////) 

STOP 
END 



c 
c 
c 
'-' 
c 
c 

B5 PHASE RESPONSE GENERATION PROGRAM 

Prow-am premod 1 . fortran 

c This program assertains the phase response filter for 
c Raised Cosine filters of various lencrths and 
c roll-off factors. 
c The parameters concer-nincr sampl incr rate for the 
c premodulation and phase response filters and the 
c premodulation filter length are loaded from an 
c input file at the start of the program. The algorithm 
c consists of 
c 
c 
c 
c 
c 
c 
c 

c 
c 

Cal Premod. filter calculation 
(b J ( 1 +d) correlation 
Ccl Trapezoidal integration to yield the 

phase response. 

integer q,q1 ,tr1,tr2 
double precision hhC-3000 :3000 J ,ha ( -3000:3300 J ,hd ( -500:500 J, 

1dx,pi,aa 
real hfC-256:256) 
complex a(16390J,w,u,t 
character*3 filein,fileout 
openCO,defer=.true.,prompt=.true.J 
write CO, l"Input data filename" 
read CO, Jfilein 
write CO, )"Output filename" 
read CO, l f il eout 
open<O,defer=.false.J 
open(! ,file=filein,form='formatted' ,mode=• in' J 
open<2,file=fileout,form='formatted' ,mode='out' J 
readC1,*Jq,q1,tr1,tr2 
readCT,*lifft,ishift 

c Define premod. filter 
c 

c 
c 

pi=dacos(-1.0d+00J 
j1=-(tr1*ql 
j2=q* Ctr2 J 
j3=j2+q 
j4=-Ctr1*q1J 
j5=q1 * <tr2+2 J 

if ( ifft .ne .1 Jgoto 21 
c IFFT PROCEDURE 
c 
c 

c 

alpha=O.O 
if<q.eq.16Jm=9 
if(q.eq.32Jm=11 
if(q.eq.64Jm=13 
n=2**m 

c Fr-eq. response definition 
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c 
:..s nint<q ... (1.0-·c.dph.u) )+1 

Jo 2 i ;_ 1 , i :i , 1 
a(i J" (1.0,0.0) 
hf (i-1 )o1 ,Q 

hf(1-iJ=1.0 
2 continue 

isxonint (q·• ( 1 . O•al pha) h1 
aa=l1-alphaJ/2.0 
dx=0.5/float(q) 
do 3 i=is•1 ,isx,1 
aa=aa•dx 

c a1 =0.5*(1.0-sinlpi*(aa-0.5J/alphaJ) 
a1•C1.0,0.0J 

c 

aCi )•cmplxla1 ,O.OJ 
hfli-1 J•a1 
hf(1-i J•a1 

3 continue 
isx=65 
al1 )=(1.0,0.0) 
aa=O.O 
do 201 i=2,isx,1 
aa=aa+dx 
a1•Pi*aa/sinlpi*aaJ 
hf(i-1 J=a1 
hf(1-i )•a1 
aliJ=cmplxla1 ,O.OJ 

201 continue 
nv2=n/2 
do 4 i=isx+1,nv2,1 
aCiJ•CO.O,O.OJ 

4 continue 
j=2 
do 5 i=n,nv2,-1 
aliJ=aljJ 
j =j +1 

5 continue 

c IFFT 
c 

nm1 =n-1 
j· 1 
do8i•1,nm1,1 
if<i.ge.jJgoto 6 
t•a (j J 
a(jJ•aliJ 
aCi J•t 

6 k•nv2 
7 ifCk.ge.jJgoto 8 

j·j-k 
k•k/2 
goto 7 

D j•J+k 
do 20 1=1,m,1 
le•2**1 
lel=le/2 
u=(1.0,0.0) 
w=cmplx (cos lpi/le1) ,sin lpi/lel J J 
do 20 J'1 ,le1, 1 
do 10 i=j,n,le 
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c 

c 
c 

ip~i+lei 

t...:.) ( ip)ii'IJ 

d<ipl-ali l-t 
10 aliJ;a(il+t 
20 u~U*W 

dx;1.0d+00/lfloat(nl*dXl 
21 continue 

if(ifft.eq.1 lthen 

c Tr-ansfer a <i l to hh(i+1 l and normalise 
c 

c 

do 31 i"O,j2, 1 
hh<il=real<a<i+1 ll/real(a(1 ll 
hh(-il=hh(i) 

31 continue 

c E~se define hh(t) 
c 

c 

else 
do 22 i"-400,j1-1 ,1 
hh<il"O.O 

22 continue 
dx=1.0d+00/float(ql 
aa=-dx 
xl"float<tr2+tr1 l 
do 24 i"j1 ,j2, 1 
aa"aa+dx 
hh(il=(0.5d+00/xll*(1 .Od+00-dcos(2.0d+00*Pi*aa/xlll 

24 continue 
do 23 i=j2+1,400,1 
hh<il"O.O 

23 continue 
end if 

c [l+Dl correlation 
c 

c 
c 

do JO i"jl ,jJ, 1 
ha(il=hh<il+hh<i-ql 

JO continue 

c Tr'apezoidal integration 
c 

aa"o.o 
if(ifft.eq.1 lthen 
ib;j1+q 
jst=j4+q1 
jfi=j5-q1 
else 
ib;jJ 
jst"j4 
jfi;j5 
end if 
hd (jst l"O.O 
qq=q/ql 
do 50 i:.;jst+1 ,jfi, 1 
do 40 j=l ,qq, 1 
ib=ib+1 
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c 
c 

aa=aa+ha ( ib l*dX 
40 continue 

hd ( i J =a a 
50 continue 

c Test ishift & ifft in case T/2 shift is r-equired 
c 

c 
c 

iflishift.eq.1.and.ifft.eq.1 lthen 
do 57 i=j5,j4+q1/2,-1 
ii = i -q1/2 
hdli )=hd<ii) 

57 continue 
do 58 i=j4,j4+q1/2+1,1 
hd I il=O.O 

58 continue 
else 
continue 
endil' 

c Scale hdlil so that hdl(tr2+1 )Tl=l/2 
c 

c 
c 
c 
c 
c 
c 
c 

if lifft.eq.1 Jthen 
do 52 i=jfi+1 ,j5,1 
hdli J=hd(jfi) 

52 continue 
else 
continue 
end if 
aa=hdlltr2+1 l*q1 l/0.5d+00 
do 55 i=j4,j5, 1 
hdlil=hdlil/aa 

55 continue 

Output 
lal hhliJ,halil,hdlil to fileout for 

graph production and corpsk4-7_d3 use 
lbl parameters & hdlil to .absout for print-off 

writel2,60llhdlil,i=j4,j5l, lhhlil,i=j1 ,j2l, <hall J,i=j1 ,j3J 
60 formatlf25.20J 

if I ifft.eq.1 Jwri te 10,63 lis, isx, lhf I i l, i=-127, 128 l 
63 formatl'is = ',i3,5x,'isx = ',i4/'hf ='I 

132181f10.6,3xl/l//J 
write 10,70 Jq,q1 , tr1 , tr2, lhh I i l, i =j 1 , j2-1 l, I ha I i l, i = j 1 , j3-1 l, 

1 (hd(il,i=j4,j5-1) 
70 format('No. samples perT for Premod. filter:',i5/ 

1'No. samples perT for phase response:• ,15/ 
2'Length of Premod. filter: -' ,13,' to +',13,' symbols'// 
3'Premod. Filter Characteristic:'/ 
480C815x,f10.6J/l// 
5'(1+d) adjusted filter:'/ 
588C8C5x,f10.6l/l// 
7'Phase Response Filter Characteristic:'/ 
8121815x,f10.6J/l//l 
stop 
end 
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c 
c 
c 
c 

.tsb CUKI-'::iK\4-/ 1 l+UJ LOOK-UP I ABLE llENERATION 

ProCrdm cor·l up2 

c This program determines the l,ook-up tables to be 
c stored at the receiver· in corpsk4-7 _d3. 1hese are 
c 
c (a) coO ti ,j): Array of mid-points 
c (b) co1ti ,j l: Arr·ay of end-points 
c tc) icsti,jl: Array of new states 
c 
c The program sets up the input and output files and 
c then inputs q,q1 ,tr1 ,tr2, and the phase response filter 
c hdtil. The program then decides on the number of 
c states defined by the look-up tables and determines 
c the arrays in a loop. 1he mid- and end-point arrays 
c are found by starting from a particular state and 
c input symbol and passing the appropriate symbols 
c through the phase response filter. The new state is 
c determined from the old state variables and the output 
c phase point. Finally the arr·ays are printed in .absout 
c along with the other pertinent parameters and the 
c tables are also outputed to a separate file for use 
c in corpsk4-7_d3/d4 
c This version also determines the minimum phase 
c equivalents of the channel !'il ters and incorporates 
c these into the determination of the Rx Arrays if 
c a minimum phase channel is desired. 
c 
c 

c 
c 

complex coO (0:511, 0:3) ,co1 tO: 511 ,0:3) ,st0(-300: 100), 
1 st2 (-300: 100) ,st3 ( -300:100) ,fr tO: 100) ,ft tO: 100) ,aa 
double precision si (-1 :45) ,hdt-500:500) ,a,b,sxx, 

1bb,ahd,sph(-100:100l 
integer q,q1, tr1, tr2, ics t0:511 ,0:3) ,s,ss, is (-1: 10) ,1, 

1tr3,tr4 
character*3 filep,file1,file2,file4 
double precision tol,x02aaf,qq 
integer imt2) ,n, if ail 
double precision ar (1 00) ,aj ( 100 l ,rr ( 100) ,r j (1 00) 
complex xvectt100J,xval,xsum,xroot,f(2,64l 
opentO,defer=.true.,prompt=.true.l 
write tO, )"Input Parameter Filename" 
read tO, lfilep 
write tO, )"Input Data Filename" 
read tO, lfile1 
write tO, )"Output Filename" 
read tO, lfile2 
write tO, )"Channel Filter & Parameters file" 
read tO, lfile4 
opentO,defer=.false.l 
open(1,file=filep,form='formatted' ,mode=• in•) 
opent2,file=file1,form='formatted',mode=•in•) 
opent4,file=file4,form='formatted' ,mode=• in•) 
opent6,file=file2,form='formatted' ,mode='out•) 
readt1,*)q,q1,tr1,tr2 
readt1,*lifft,ishift,isa,ila 

c Input hd(i) 
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c 
pi~dacos(-1 .Od+OOl 
j1"-tt'hq1 
j2"q1-< Ctr2+2 l 
do 10 i•j1 ,j2,1 
read (2,* lhd (i l 

10 continue 
c do 12 i=j1 ,0, 1 
c hd<il=O.O 
c 12 continue 
c do 14 i=17,j2,1 
c hd<i )=hd(16) 
c 14 continue 
c 
c Read in the filters and their lengths 
c 

c 

readC4,i+)tr3,tr4 
j3=q1*tr3 
j4=q1*tr4 
do 390 i~1 ,j3+1 ,1 
read (4, * lb1 , b2 
f(1 ,i l=cmplxCbl ,b2l 

390 continue 
do 395 i=1,j4+1,1 
readC4,*lb1 ,b2 
f(2,il~cmplxCb1,b2l 

395 continue 

c Linear/minimum phase choice 
c 

c 

ilmc=O 
imC1 l=j3+1 
imC2 l=J4+1 
if(ilmc.eq.1 )then 

c Filter Loop 
c 

do 500 iend=1 ,2,1 
c 
c Transfer filter to ar,aj 
c 

c 

do 400 i=1 ,imCiendl,1 
ar(il=realCfCiend,ill 
ajCil=aimag(f(iend,ill 

400 continue 

c Root Calculation 
c 

c 

do 405 i=1, 100,1 
rrCi l=O.O 
rj<i l=O.O 

405 continue 
ifail =0 
n=im(iendl 
tol=x02aaf(qql 
call c02adf(ar,aj,n,rr,rj,tol,ifaill 

c Check for failure 
c 

if(ifail.ne.O.or.n.ne.l lthen 
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c 

wr·i te <0,410 ln, ifai 1 
410 format('Algorithm FcdlLwe'/10x,'n 

else 
' , i 2, 2x, ' i fail ; ' , i 2 ) 

c Multiply out factors as a ch~ck 
c 

c 
c 

xvect(1 l= (1.0,0.0) 
do 415 i=2,im<iendl,1 
xvect(il=<O.O,O.Ol 

415 continue 
do 425 j = 1 , i m ( i end > , 1 
xsum= <O.O,O.Ol 
xroot=cmplx(-rr(jl,-rjCjll 
i=1 

420 xval=xvect<i> 
xvect<i>=xvect<il+xsum 
i = i+1 
xsum=xval*xroot 
if<i-im(iendll420,420,425 

425 continue 
do 430 i=1, im<iend l, 1 
xvect<i l=xvect<i l*f<iend,1 l 

430 continue ' 
write (0,435) <xvect( i), i=1, im<iend l-1 ) , 

1 <rr(i l,i=1,im<iendl-1 l, <rj(i l,i=1,im(iendl-1 l 
435 format<'Factor Multiplication-Test Results'/ 

12(4Cf10.6,3h + ,1hj,f10.6,2xl//l 
2'rr = ',1 <8Cf10.6,2xl/l// 
3'rj = ',1 <8Cf10.6,2xl/l//l 

end if 

c Take the complex conjugate of the roots 
c outside of the unit circle. 
c 
c 

c 

do 440 i=1,im<iendl,1 
rmag=rr<i>**2+rj<i>**2 
if(rmag.gt.1.0lthen 
rr(il=rr<il/rmag 
rj<il=rjCil/rmag 
else 
end if 

440 continue 

c Calculate the Minimum-phase Filter Response 
c 

xvect(1 >=<1.0,0.0> 
do 445 i=2,im(iendl,1 
xvect<i>=<O.O,O.Ol 

445 continue 
do 455 j=1, im<iend), 1 
xsum= <O.O,O.Ol 
xroot=cmplx<-rrCjl,-rj<jll 
i=1 

450 xval=xvect<il 
xvect<il=xvect<il+xsum 
i= i+1 
xsum=xval*xroot 
if<i-im(iendll450,450,455 
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455 continue 
c 
c Multi ply by Yo 

c 

do 460 i = 1 , i m< i end l , 1 . 
f <iend, i l=xvect ( i hf < iend,1 l 

460 continue 
500 continue 

else 

c C11J of linear/minimum phase choice 
c 

end if 
c 
c n-ansf er filters to ft • fr 
c 

c 
c 

do 503 i" 1 , i m< 1 l , 1 
ft ( i -1 ) "f ( 1 • i ) 

503 continue 
do 507 i"1,im<2l,1 
fr<i-1 l"f<2,i l 

507 continue 
ahd"4* <hd <j2-q1 l l 

c Calculate No. states in Finite State Machine 
c not including the Phase State 
c 

c 

nn"tr1+tr2 
if<isa.eq.Olthen 
S"4**nn 
nnn=nn 
else 
s=4**<isa-1 l 
nnn=isa-1 
end if 
j1st0=-(tr1+tr3l*q1 
j2st0=-(tr1-1 l*q1 
j1st2=-<tr1+tr4l*q1 
j2st2=j2st0 
j1st3=-<tr1+1l*q1 
j2st3=j2st0 

c Look-up Table calculation loop. Convert initial state into:
c 
c 
c 
c 

<al Previous symbols, si(1 l to si<nnl 
<bl Phase State, si (-1 l 

do 100 l=O,s-1 ,1 
ss=l 
do 30 i=nnn,1,-1 
ii=4**<i-1) 
if<ss.lt.iilthen 
si<iJ=-3.0d+00 
is(il=O 
elseif(ss.ge.ii.and.ss.lt.<ii+iillthen 
si< i l=-1 .Od+OO 
is<il=1 
ss=ss-i i 
elseif<ss.ge. <ii+ii J.and.ss.lt. <3*ii J Jthen 
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c 
c 
c 

si (i )"1 .Od+OO 
isCi)"2 
ss;;:ss-ii-ii 
else 
si Ci l"3.0d+00 
is(i )•3 
ss=ss-ii-ii-ii 
end if 

30 continue 

c Phase State Inner Loop 
c 

do 90 11 •0 ,3, 1 
c 
c Expansions Inner Loop 
c 

do 80 ijj•0,3,1 
c 
c Initialise sph in accordance with 11 and 
c reset all other arrays 
c 

c 

spp•hd(q1 )+float(l1 )*(1.0d+00/2.0d+00l 
do 35 i•j1 ,j2, 1 
sph(i l•spp 

35 continue 
do 40 i•j1st0,j2st0,1 
stOCil•CO.O,O.Ol 

40 continue 
do 42 i=j2st0-q1+1 ,j2st0,1 
a1=cos(pi*sphCill 
a2=sinCpi*sphCi l l 
st0Cil=cmplxCa1,a2l 

42 continue 
do 45 i=j1st2,j2st2,1 
st2Cil=CO.O,O.Ol 

45 continue 
do 47 j=j1st3,j2st3,1 
st3Cjl=CO.O,O.OJ 

47 continue 

c Tx Filtering 
c 

c 

do 54 j=j2st2-q1+1 ,j2st2,1 
aa•CO.O,O.Ol 
do 53 jj=O,j3, 1 
aa•aa+ftCjJl*stOCJ-jjl 

53 continue 
st2 (j l=aa 

54 continue 

c Rx Filtering 
c 

do 56 j=j2st3-q1/2,j2st3,4 
aa=CO.O,O.Ol 
do 55 jj=O,j4,1 
aa•aa+frCjjl*st2Cj-jjl 

55 continue 
st3(j )•aa 

482 



c 

~~G contir.Ur-:! 
if (.l . '''-I· 1 0. nnd. I 1 • eq. 1 0. <ll"ld. i j j . eq. 1 l then 
\W i t.ec ( <) • 4/J l ( sph ( i ) , i "j 1 , j 2 ) 

lfO t'<..~~-·mot('~ph ;..; ',!'10.6) 
wr'i teW,49l LotO(i l, i"j1s,t0,j2st0l 

49 formatt'stO " • ,f10.6,3h + ,1hj,f10.6l 
writeW,51 l(st2(i l,i•j1st2,j2st2l 

51 format('st2 • ',f10.6,3h + ,1hj,f10.6l 
wl"i te <0,52 l <st3 ( i l, i •j1st3 ,j2st3 l 

52 format('st3 = ',f10.6,3h + , 1hj,f10.6l 
else 
end if 

c Pass si (1 l to si tnnn) through the ct>annel 
c including the preamble si tn2J 
c 

c 

sxx~+3.0d+OO 

do 59 ii=nnn+1 ,nnn+20,1 
sxx=-sxx 
sitii l•sxx 

59 continue 
do 60 ij=nnn+20,1,-1 

c Left-shift 
c 

c 

do 200 j=j1 ,j2-q1 ,1 
jj=j+q1 
sph(jl•sph(jjl 

200 continue 
do 210 j"j1stO,j2st0-q1,1 
jj•j+q1 
stO(j l•stO(jj l 

210 continue 
do 220 j=j1st2,j2st2-q1,1 
jj=j+q1 
st2 (j l•st2 (jj l 

220 continue 
do 222 j=j1st3,j2st3-q1,1 
jj•j+q1 
st3 (j J=st3 (jj J 

222 continue 

c P1'emodulation Filtering 
c 

c 

do 230 j=j1 ,j2, 1 
sph(jJ=sph(j l+s! (ijl*hd(jJ 
iftsph<jJ.gt.2.0Jsph<jl=sph(jl-ahd 
if(sphtjl.lt.O.Olsph(jJ=sphtjl+ahd 

230 continue 

c Convert to stO 
c 

c 

do 240 j•j2st0-q1+1 ,j2st0,1 
a1=cos(pi*sph(jll 
a2•sin<pi*sph(j)) 
st0(jl=cmplx(a1 ,a2l 

240 continue 

c Tx Filtering 
c 
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c 

do 260 j-j2.st2--q1 +1 ,j2::;t2, 1 
.)il~ (0.0,0.0) 
do 250 jj~O,j3,1 
.Ja~aa ,f t (jj l l*:3t0 < j- jj! 

2~~0 continue 
st:? <j l=aa 

260 continue 

c Rx F il tel'i ng 
c 

c 

do 264 j=j2st3-q1/2,j2st3,4 
aa• (0.0,0.0 l 
do 262 jj•O,j4,1 
aa~aa+frljjl•st21j-jjl 

262 continue 
st3<jl=aa 

264 continue 
if O.eq. 1 O.and .11 .eq. 10 .and. ijj .eq. 1 !then 
writeW,48l (sphli l,i=j1,j2l 
writel0,49)(st01il,i=j1st0,j2st0l 
writeC0,51 l <st21i l,i=j1st2,j2st2l 
write(0,52llst31il,i•j1st3,j2st3l 
else 
end if 

60 continue 

c Expansion symbol contribution 
c 
c 
c Shift Left 
c 

c 

do 310 j=j1 ,j2-q1 ,1 
jj•j+q1 
sph(j l=sph(jj) 

310 continue 
do 320 j=j1st0,j2st0-q1,1 
jj•j+q1 
stO (j l=stO (jj l 

320 continue 
do 330 J=j1st2,j2st2-q1,1 
jj=j+q1 
st2 Cj l=st2 ljj l 

330 continue 
do 333 j=j1st3,j2st3-q1 ,1 
jj=j+q1 
st3 (j l=st3 (jj l 

333 continue 
is(O)=ijj 

c Premodulation Filterina 
c 

c 

sx=2•<floatlijjl-1.5l 
do 340 j=j1,j2,1 
sphljl=sphljl+sx•hdljl 
iflsphljl.gt.2.0lsphljl=sphljl-ahd 
iflsphljl.lt.O.Olsphljl=sphljl+ahd 

340 continue 

c stO Conversion 
c 

484 



c 

do 350 j"j2o;t0-q1 +1 ,j2st0, 1 
a1=coslpi•sphljll 
a2=sinlpi•sph(j) I 
stO(jJ=cmplxla1 ,a21 

350 continue 

c Tx Filtering 
c 

do 370 j=j2st2-q1+1 ,j2st2,1 
aa= 10.0,0.01 
do 360 jj=O,j3,1 
aa=aa+ftljjJ•stOCj-jjJ 

360 continue 
st2CjJ=aa 

370 continue 
c 
c Rx Filtering 
c 

c 

do 374 j=j2st3-q1/2,j2st3,4 
aa= CO.O,O.OJ 
do 372 Jj=O,j4,1 
aa=aa+ft•(jj J•st2(j-jj I 

372 continue 
st3 (j J =aa 

374 continue 
ifll.eq.10.and.l1 .eq.10.and.ijj.eq.1 Jthen 
write CO, 48) Is ph ( i J, i = j 1 , j2 J 
writeC0,49Jist0Cil,i=j1stO,j2stOJ 
write CO, 51 J I st2 ( i J , i = j 1 st2, j 2st2 J 
writeC0,52Jist3(iJ,i=j1st3,j2st3J 
else 
end if 

c End of Tx: Post-amble of.zero-data 
c 

c 

iflilmc.ne.l )then 
iff=tr1+1tr3+tr4J/2 
else 
iff=tr1 
end if 
do 680 if=1,iff,1 

c Left Shift 
c 

do 600 J=j1,j2-q1,1 
JJ=J+ql 
sph(j l=sphljj J 

600 continue 
do 610 j=j1stO,j2stO-q1 ,1 
Jj=j+ql 
stO (j J=stO (jj J 

610 continue 
do 620 j=j1st2,j2st2-q1 
Jj=J+ql 
st2 (j J=st2 (jj J 

620 continue 
do 625 j=j1st3,j2st3-q1 
jj=j+q1 
st3 (j J=stJ (jj J 

625 continue 
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c 
c Pcemodulation Filt.edng 
c 

c 

do 627 j"jl ,j2, 1 
sph(jl•sph(jl-O.Od+OO•hd(jl 
if (sph (j l. gL2 .0 lsph (j l••sph (j l-iJhd 
if(sph(jl.lt.O.Olsph<jl=sph(jl+ahd 

627 continue 

c Convert to stO 
c 

c 

do 630 j=j2st0-q1 +1 ,j2st0,1 
a1 =cos (pi •sph (j l l 
a2=sin<pi•sph(jll 
stO(j l=cmplx (a1 ,a2 l 

630 continue 

c Tx Filtering 
c 

c 

do 650 J=j2st2-q1+1 ,j2st2,1 
aa= <0.0,0.01 
do 640 jj=O,j3,1 
aa=aa+ft(jjJ•stO<j-jjl 

640 continue 
st2(j l=aa 

650 continue 

c Rx Filtering 
c 

c 

do 670 j=j2st3-q1/2,j2st3,4 
aa= (Q.O,O.Ol 
do 660 jj=O,j4,1 
aa=aa+fr(jjl•st2(j-jjl 

660 continue 
st3 (j l=aa 

670 continue 
if (l.eq.10.and.l1 .eq.lO.and. ijj .eq.1 lthen 
write <0, 48 l <sph ( i l, i = j 1 ,j2 l 
write(0,49l(st0(iJ,i=j1stO,j2st0l 
write <0,51) (st2 ( i l, i=j1 st2 ,j2st2 l 
write <0,52 l <st3 ( i l, i"j1 st3 ,j2st3 l 
else 
end if 

680 continue 

c Determine initial state si(-1 l from st3 at 
c end-point (j2st3-q1l and thus the initial state 
c 

write(0,300lst3(j2st3-q1 l 
300 format<•st3 = ',f10.6,3h + ,1hj,f10.6l 

pre=real(st3(j2st3-q1 ll 
pim=aimag<st3(j2st3-q1ll 
if(abs(pre>.gt.abs<piml.and.pre.gt.O.Olthen 
is (-1 l=O 
isold=l 
elseif<abs(prel.gt.abs<piml.and.pre.lt.O.Olthen 
is(-1)=2 
isold"l+2•<4••nnnl 
elseif <abs <pre l .1 t .abs <pi m l .and .pim.gt .0 .0 lthen 
is(-1 >=1 
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c 

isold•l+4••nnn 
else 
is(-1 )c) 

isold•l+3•C4••nnnl 
end if 

c Rx Array Values 
c 

c 

co0Cisold,ijj)•st3Cj2st3-q1/2l 
col (isold,ijjl=st3Cj2st3l 

c New State calculation for ics 
c 

isnew=is(-1 l+is(1 l+is(0)-3 
if(isnew.lt.Olisnew=isnew+4 
1f(1snew.gt.3lisnew=1snew-4 
isnew=C4••nnnl•isnew 
do 50 j=O,nnn-1,1 
isnew=1snew+(4••J>•is(j) 

50 continue 
ics(isold,ijjl=isnew 

80 continue 
90 continue 

100 continue 
c Output. 
c 
c 
c 

(a) Everythin~ o/p to .absout! 
(bl Look-up tables o/p to file2, no format 

iss=4•s 
write(6,108ltr3,tr4 

108 format ( i2 ,2x, i2 l 
write(6,110Hft(i l ,i=O,j3l, (fr(i l,i=O,j4l, 

1 ((co0Ci,jl,j=0,3l,i=O,(iss-1 ll, 
1 ( (col ( i , j l , j =0, 3 l , i =0, ( i ss -1 l l 

110 format(f25.20,1x,f25.20l 
writeC6,115HCicsCi,jl,j=0,3l,i=O,Ciss-1 ll 

115 formatCi4l 
writeC0,120lq,q1,tr1,tr2,iss, ChdCi l,i=j1,j2-1 l, 

1tr3,CftCi l,i=O,j3-1 l,tr4, CfrCil,i=O,j4-1 l, 
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2 C (coO C i , j l , j =0, 3 l , i = 0, C i ss-1 l l , C C co 1 C i , j l , j =0, 3 l , i =0, Ci ss-1 l l , 
3CCicsCi,jl,j=0,3l,i=O,Ciss-1 ll 

120 formatC'No. samples perT for Premod. Filter:' ,15/ 
!'No. samples perT for phase response:• ,15/ 
2'Length of Premod Filter: -' ,i2,' to+' ,12,' symbols'/ 
3'No. States: ',i3// 
4'Premod. Filter Characteristics:'/ 
512C8C5x,f10.6l/l// 
6'Symbol length of Tx Channel Filter',i2/ 
a'Tx Channel Filter:'/2C4C5x,f10.6,3h + ,1hj,f10.6l/l// 
?'Symbol length of Rx Channel Filter' ,i2/ 
b'Rx Channel Filter:'/2C4C5x,f10.6,3h + ,1hj,f10.6l/l// 
8'Array of mid-points,coO:'/ 
916C4C5x,f10.6,3h + ,1hj,f10.6l/l// 
a'Array of end-points,co1:'/ 
b16C4C5x,f10.6,3h + ,1hj,f10.6l/l// 
c'Array of Final States,ics:'/4C16C2x,i3l/l////l 
stop 
end 
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DETECTION, FOR CODED 8PSK 
JOB 281 SONR, : EUXXX, CV/6 C POOOO, 1D1 280 l 
FTN5 CDIJcO/PMD l 
LI l:!f<ARY C PROCLJ B, * l 
NAGCFTNS l 
LGO. 
££L£S 
c 
c 
c 
c 
c 

PROGRAM CONV-8PSK_NML1A 
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C THIS PROGRAM SIMULATES THE TRANSMISSION OF CONVOLUTIONALLY ENCODED 
C CRATE-2/3) BINARY SYMBOLS USING 8PSK MODULATION OVER AN AWGN CHANNEL 

C WHICH INTRODUCES NO SIGNAL DISTORTION CMEOORYLESS CHANNEL>. A NEAR 
C MAXIMUM LIKELIHOOD PROCESS IS USED AT THE RECEIVER TO PERFORM THE 
C DECODING/DETECTION PROCESS. CONVOLUTIONAL CODE 2 C\J'ITH A CODE MEMORY 

C OF 6 BITSl PROPOSED BY J. HUI AND R.J. FANG, CICC 1981 l, IS USED. 
C FOR MORE DETAILS SEE THE PROGRAM DOCUMENTATION ENTITI.ED 'SIMULATION 

C OF CODED 8PSK OVER A DISTORTIONLESS CHANNEL'. 
c 
c 
c 
c 
C DECLARE ALL VARIABLES 
c 
c 
c 

c 
c 
c 
c 

PROGRAM CONVCINPUT,OUTPUT,TAPE1=INPUT,TAPE2=0UTPUTl 
DIMENSION IS C2, 70 l, IGC3 ,2 ,4 l, IXC32 ,2, 70l ,CXC32 l, 

1 IAC3 l, IBC3 l,ISSC2,1 l ,ICONVC4 ,3 l ,IBBC3 l ,CXXC32 ,4l ,IXXC32 ,2, 70l 
REAL CC,AR,AI,RR,Rl,AAR,AAI,D,ER,AEPB,W,WI,WR,MAPC8,2l 
INTEGER IQ,M,L,K,N,IE,IB1 ,!C,QQ,PS,IV 

C INITIALISE VARIABLES 
c 
c 
c 
c 

c 

IQ=? 
M=1 
L=45000 
K=16 
N=65 
PS=O 
IV=O 
P=0.547 

C CODE 4 
c 

IGC1,1,1l=1 
IGC1 ,1 ,2 l=1 
!GC1,1,3l=1 
IGC1,1,4l=O 
IGC1,2,1l=1 
!GC 1 ,2 ,2 l=O 
IGC1,2,3l=1 
IGC1,2,4Jc1 



c 
c 
c 
c 

lGC2,1 ,1 J"O 
IG<2,1,2J=O 
IGC2,1,3J=O 
IGC2,1,4J=1 
IG<2,2,1J=1 
IGC2,2,2J=O 
IG<2,2,3J=1 
IG<2,2,4J=O 
IGC3, 1,1 J=O 
IGC3, 1 ,2 J=O 
IG<3,1 ,3J=O 
IGC3, 1 ,4 J=O 
IGC3,2, 1 J=O 
IGC3,2,2J=1 
IG<3,2,3J=1 
IGC3,2,4J=O 
AI=ATANC1.0J 
00 30 I= 1 , 8, 1 
MAPCI,1 J=2*COSCCI-1 l*AI+CAI/2JJ 
MAPCI,2J=2*SINC CI-1 l*AI+CAI/2J J 

30 CONTINUE 
ICONVC1,1 J=O 
ICONVC1,2J=O 
ICONVC1 ,3 J=O 
ICONVC2, 1 J=IGC1 ,2, 1 J 
ICONVC2,2J=IGC2,2,1 J 
ICONVC2,3J=IGC3,2,1 J 
ICONVC3,1 J=IGC1 ,1 ,1 J 
ICONVC3,2J=IGC2,1 ,1 J 
ICONVC3 ,3 J= IGC3, 1 ,1 J 
00 60 I=1 ,3, 1 
IF<IGCI,1 ,1 J.EQ.IGCI,2,1 JJGOTO 40 
ICONVC4,I J=1 
GOTO 50 

40 ICONVC4, I J=O 
50 CONTINUE 
60 CONTINUE 

WRITEC2,600J 

C CALL RANOOM GENERATOR ROUTINE BEFORE ALL PROGRAM LOOPS AND 
C GENERATE NEXT PAIR OF SYMBOLS 
c 
c 
c 
c 

CALL G05CBF C IQ J 
00 800 LM=1 ,M, 1 
P=P-0.00 
IE=O 
IB1=0 
IC=O 
00 20 I=1 ,2, 1 
00 10 J=1,N,1 
ISCI,JJ=1 

10 CONTINUE 
20 CONTINUE 

00 125 11=1 ,K,1 
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c 
c 
c 
c 

00 120 I-1,2, 1 
D0110J=1,N,1 
IX<II,I,JJ,1 

110 CONTINUE 
120 CONTINUE 

CX<II J=1 .OE+06 
1 25 CONTINUE 

CX<1J,O.O 
DO 671 LLL=1,5,1 
DO 670 LL=1 ,L, 1 
DO 160 I, 1 , 2, 1 
NN"N-1 
DO 155 J,1 ,NN, 1 
JJ,J+1 
IS<I,Jl=IS<I,JJ) 

155 CONTINUE 
160 CONTINUE 

00 168 I,1 ,K, 1 
00165 IL=1,2,1 
NN,N-1 
00 162 J=1 ,NN, 1 
JJ=J+1 
IX<I,IL,Jl,IX<I,IL,JJJ 

162 CONTINUE 
165 CONTINUE 
168 CONTINUE 

00 200 I=1 ,2, 1 
U,G05DAF<-1 .0,1.0D+00l 
IF <WJ170, 170,180 

170 IS <I ,Nl=O 
GOTO 190 

180 IS<I,Nl=1 
1 90 CONTINUE 
200 CONTINUE 

490 

C USE IG<I,IL,Jl TO CALCULATE IA<Il,(I,1,2,3l. CONVERT VECTOR IA INTO 

C VARIABLE IV BY PERFORMING A BINARY TO DECIMAL CONVERSION. USE 
C MAP<J J TO MAP 11-US VALUE ONTO 11-IE TWO QUADRATURE 
C COMPONENTS TO BE TRANSMITTED,AR & AI 
c 
c 
c 
c 

00 250 I=1 ,3, 1 
IA<I J,O 
00 240 J,1 ,2, 1 
LN,N+1 
00 230 IL=1 ,4,1 
LN=LN-1 
PS=IS<J,LNl*IG<I,J,ILJ 
IF<PS.EQ.IA<IJJOOTO 210 
IA<I l,1 
OOTO 220 

210 IA<I l=O 
220 CONTINUE 
2JO CONTINUE 
240 CONTINUE 



c 
c 
c 
c 

250 CONTINUE 
IV"1+IA<3J+!A(2l+!AC2l+IA<1 l+IA<1 l+IA<1 l+IA<1 J 
AR;MAP(IV,1l 
AI;MAP<IV ,2J 

C THE QUADRATURE COMPONENTS ,AR &AI ,ARE NOW TRANSMITTED AND ARE 
C SUBJECTED TO THE A\./GN COMPONENTS, \.1R &\./I, IIHICH ARE GENERATED 
C USING A RANOOM NUMBER GENERA1DR WITii A GAUSS! AN PDF, WITH IT'S 
C STANDARD DEVIATION GIVEN BY P 
c 
c 

c 
c 

\JR;GQ5DDF<O.O,Pl 
RR;AR+\./R 
WI=G05DDF(O.O,Pl 
RI ;AI +\./I 

C NEAR MAXIMUM LIKELIHOOD DECODING/DETECTION IS NOW PERFORMED. 
C THE COSTS OF EACH OF THE~ EXPANSIONS, <O,OJ,(0,1 l,(1,0l, 
C AND <1,1 l ARE CALCULATED FOR EACH OF THE INITIAL IX. 
C THIS IS DONE BY CODING AND MAPPING THE EXPANDED VEC1DRS 
C AND THEN FINDING THE EUCLIDEAN DISTANCE BETWEEN THIS 
C AND THE SIGNAL ACTUALLY RECEIVED FOR EACH EXPANSION. 
c 
c 

c 

DO 360 I=1 ,K,1 
DO 3~0 I2=1 ,3, 1 
IB02 J=O 
DO 330 J;1,2,1 
LN=N 
DO 320 IL;2,~,1 
LN=LN-1 
PS;JX(I,J,LNl*IG<I2,J,ILJ 
IF<PS.EQ. IB<I2l lG01D 300 
JB(J2);1 
coro 310 

300 IB<I2l=O 
31 0 CONTINUE 
320 CONTINUE 
330 CONTINUE 
3~0 CONTINUE 

DO 358 JJ=1 .~. 1 
DO 355 12=1 ,3, 1 
IBB<I2 J;JB<I2l 
IF<ICONV(JJ,I2J-IBB<I2JJ342,3~5,3~2 

3~2 IBB(J2)=1 
GOTO 350 

345 IBBU2J;Q 
350 CONTINUE 
355 CONTINUE 

IV=1+IBB<3l+I88(2J+IBB<2l+IBB(1 )+!88(1 )+188<1 l+IB8<1 J 
AAR;MAP<IV, 1 J 
AAI=MAP<IV,2J 
CXX(I,JJJ;<<RR-AARl*<RR-AARll+<<RI-AAJ l*<RI-AAIJJ+CX(JJ 

C MAG/SUM COST 
c 
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C CXX< I ,JJ l"ABS < RR-AAR l+ABS,<Rl-AAI l +CX <I l 

c 
c 
c 
c 

353 CONTINUE 
360 CONTINUE 

C THE EXPANSION ASSOCIATED WITH THE MINIMUM COST CXX<I,Jl IS 
C FOUND AND THE ELEMENTS IN THE LEFT-M:JST POSITIONS OF IXX ARE 
C THE DETECTED VALUES CORRESPONDING TO THE ELEMENTS IS< 1,1 l 
C AND IS(2,1 l IN THE TRANSMITTED SIGNAL. 
C ALL IX WHICH DO NOT CONTAIN THE DETECTED VALUES 
C ARE DISCARDED BY ASSIGNING VERY HIGH COSTS TO THEM. 
c 
c 

c 
c 

CC=10.0E+06 
DO 400 I: 1 , K, 1 
DO 390 J"L4, 1 
IF<CXX<I,Jl-CCl370,350,JBO 

370 CC•CXXO ,J l 
I I I= I 
JJJ=J 

380 CONTINUE 
390 CONTINUE 
400 CONTINUE 

DO 410 J"1,2, 1 
NN=N-1 
DO 405 IL:1 ,NN,1 
IXX<1 ,J,ILl=IX<III ,J,ILl 

405 CONTINUE 
410 CONTINUE 

CX( 1 l=CC 
CXX<III,JJJJ:100.0E+06 
IF<JJJ-2)415,420,425 

415 IXX<1, 1 ,Nl=O 
IXX<1 ,2,Nl=O 
GOTO 440 

420 IXX<1,1,NJ=O 
IXX<1 ,2,NJ=1 
GOTO 440 

425 IF<JJJ-4)430,435,435 
430 IXX(1, 1 ,NJ=1 

IXX<1 ,2,Nl"O 
GOTO 440 

435 !XX(1, 1 ,NJ=1 
IXX<1 ,2,NJ=1 

440 CONTINUE 
I SS < 1 , 1 l =I XX (1 , 1 , 1 l 
ISS<2, 1 l=IXX<1 ,2, 1 J 
DO 470 I"1 ,K, 1 
IF<IX<I,1 ,1 J-IXX<1 ,1 ,1 Jl450,445,450 

445 IF<IX<I,2,1 J-IXX<1 ,2,1 Jl450,460,1l50 
450 DO 455 J=1 ,4,1 

CXX<l,JJ"100.0E+06 
455 CONTINUE 
460 CONTINUE 
470 c;oNT!NUE 

C SELEC..l' THE (K-1] fiEMAIN!NG VEC!DRS WHICH HAVE 
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C THE SMALLEST COSTS. 
c 
c 

c 
c 

00 590 I=2 ,K,1 
CC=10.0E+06 
00 510 Il=1 ,K,1 
00 500 J=1,4,1 
IFCCXXCII,JJ-CCJ480,490,490 

480 CC=CXXC II ,J J 
III=II 
JJJ=J 

490 CONTINUE 
500 CONTINUE 
510 CONTINUE 

CXCIJ=CC 
CXXCIII,JJJJ=100.0E+06 
00 520 J = 1 • 2 • 1 
NN=N-1 
DO 515 IL=1,NN,1 
Il<XCI ,J ,ILJ=IXCI I! ,J, ILl 

515 CONTINUE 
520 CONTINUE 

IFCJJJ-2>530,540,550 
530 IXXU,l,NJ=O 

IXXCI ,2,NJ=O 
GOTO 580 

540 IXXCI,1,NJ=O 
IXXCI ,2,NJ=1 
GOTO 580 

550 IFCJJJ-4)560,570,570 
560 IXXCI,1,NJ=1 

IXX(J ,2 ,NJ=O 
GOTO 580 

570 !XX(!, 1 ,NJ=1 
IXXCI ,2,NJ=1 

580 CONTINUE 
590 CONTINUE 

C TRANSFER THE I XX BACK INTO THE I X VECTORS. 
c 
c 

CC=CXC1 J 
00 598 !=1 ,K, 1 
DO 595 J=1,2,1 
00 592 IL=1 ,N,1 
!XCI ,J, ILJ=IXXCI ,J, ILl 

592 CONTINUE 
595 CONTINUE 

CXCI J=CXCI J-CC 
598 CONTINUE 

c 
c 
C THE NEXT SECTION TESTS FOR ERRORS IN THE DETECTED PAIR OF 
C DIGITS. THE BIT ERROR COUNT,IE,IS INCREMENTED WHENEVER A 
C BIT ERROR OCCURS. IF THE NUMBER OF CORRECTLY DETECTED 
C BINARY SYMBOLS SINCE THE LAST ERROR IS GREATER OR EQUAL 
C TO 20,THE BURST ERROR COUNTF.R,IB1 ,IS INCREMENTED ON 
C THE OCCURRENCE OF AN ERROR. OTHERWISE, CIF AN ERROR 
C HAS OCCURREDJ.1l!E COUNT OF CORRECTLY DETECTED SYMBOLS,IC, 
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C IS SET TO ZERO. IN ADOITION,~N THE FIRST ERROR OCCURS, 
C IB1 IS SET TO ONE. 
c 
c 
c 
c 

c 
c 
c 
c 

DO 660 !=1 ,2,1 
IC= IC+1 
IF<IS<I,1 J-ISS<I_,1 JJ605,650,605 

605 IE=IE+1 
IF!IE.NE.1 JGOTO 610 
IB1 =1 
GOTO 625 

610 IF<IC-20)630,630,620 
620 IB1=IB1+1 
625 CONTINUE . 
630 IC=O 
650 CONTINUE 
660 CONTINUE 
670 CONTINUE 
671 CONTINUE 

C THE ERROR RA1E,ER,AND THE AVERAGE NUMBER OF ERRORS PER BURST 
C AEPB,ARE NOW CALCULA1ED. THE SNR IS ALSO CALCULA1ED AND 
C THE RESULTS ARE SENT TO THE OUTPUT. 
c 
c 
c 
c 

c 
c 
c 
c 

ER=<FLOAT<IEJJ/FLOAT<L+Ll/5.0 
IF!IB1 .EQ.OJGOTO 680 
AEPB=<FLOAT<IEJJ/(FLOAT<IB1 JJ 
GOTO 690 

680 AEPB=O 
690 CONTINUE 

SNR=10.0*ALOG10!2.0 /(P*Pll 
600 FORMAT!1H ,10X,4H SNR,10X,10HERROR RA1E, 

110X,16HERRORS PER BURSTJ 
WRI1E<2,700JSNR,ER,AEPB 

700 FORMAT<1H ,7X,F9.5,7X,E12.5,13X,F9.5J 
800 CONTINUE 

C A NUMBER OF IMPORTANT PARAME1ERS ARE PRIN1ED OUT 
c 
c 
c 
c 

WRI1E!2,900J(MAP(J,1 J,J=1 ,8J,(MAP(J,2J,J=1 ,8J,P,IQ,L,K,N 
900 FORMAT<1H ,10X,'MAP1 = ',8F9.5/1H ,10X, 

1'MAP2 = • ,8F9.5/1H , 10X, 
2'P = ',F6.4,5X,'IQ = ',!3,5X,'L:.: ',I6,5X,'K:; I ,!2, 
LJ5X,'N;:; ',!2////) 

WRI1E<2,950l (<<IX(! ,J,MI1l,Ml1=1 ,33l,J=1 ,2l,I=1 ,8l 
950 FORMAT<1H ,10X,66!1/l 

STOP 
'"'J f' 
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c 
c 
c 
c 

DETECTION, FOR CODED 8PSK 
PROGRAM CONV-tJPSK __ VIT3E 

c This program simulates the us~ of the VA detection 
c scheme on the conv. code/phase mapping modulation 
c using a variable number of states and a variable 
c number of expansions per initial state. The 
c restrictions are probabilistic in nature: 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

(al No. states restricted by max. cost 
constraint, cxmax 

<bl No. expansions for a given initial state 
constrained by; 

either <i> hard limit on No. boundary 
relative to Rx sample 

or <ii> a set of cost thresholds 

c In addition a hard limit on the max. No. states can be set. 
c 
c Declarations 
c 

c 

library •nagf' 
integer j4<0:2J,ig<3,2,4J,icc(64>, 

1 ib(3 >, ibb<3), iconv<4,3 > ,j3 <2,0:2), icp!64 ,600), ic02 !64 >, 
2ffin<0:63J,fexp<0:63,0:3J,isinit<0:63J, 
3isinit2<0:63J,cst<0:63,0:3J,cot<0:63,0:3),jold<0:63J, 
4jnew<0:63), ifull <0:63 >, icheck <0:63), ix <0:63 ,65), 
5ixd<2>,is<65,2) 
real map<8,2>,cx<0:63J,carr<8>,xx<0:63,0:3J,ccc<64J, 

1cth(4) 
double precision g05ddf,g05daf,p 
character*3 file1,file2 
open<O,defer=.true.,prompt=.true.l 
write <0, l"Run Parameters File" 
read<O, Jfile1 
write<O, )"Graphics File" 
read <0, Jfile2 
open<O,defer=.false.J 
open(1,file=file1,form='formatted' ,mode=' in'> 
open(2,file=file2,form='formatted' ,mode=•out•) 
read(1 ,*Jiq,m,l,l1 ,n,p,pp,ilim,cxmax,ismax, 

1ja, <cth<i J,i=1,4> 

c Code Initialisation 
c 
c CXJDE 1 
c 

ig<1,1,1l=O 
ig(1 ,1 ,2l=1 
ig<1,1,3J=O 
ig(1 ,2,1 )=1 
ig(1 ,2,2)=0 
ig(1,2,3)=1 
ig(2,1,1l=1 
ig(2,1,2)=1 
ig(2,1,3l=1 
ig!2,2,1 l=O 
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c 

i{J(2,2,2J=0 
i~(2,2,3)=1 

i{J0,1,1l=O 
ig(3 ,1 ,2 )=0 
ig(J ,1 ,3 )=0 
ig(3,2,1 )=0 
ig(3,2,2l=1 
ig(3,2,3l=O 

c CODE 3 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

ig(1,1,1 )=1 
ig(1,1,2l=O 
ig(1,1,3l=1 
ig(1 ,1 ,4 )=1 
ig(1 ,2, 1 )=1 
ig(1 ,2,2>=0 
ig(1 ,2,3>=0 
ig(1 ,2,4)=1 
igC2,1 ,1 l=O 
ig(2,1,2l=1 
igC2,1 ,3l=O 
igC2,1 ,4l=1 
igC2,2,1 l=1 
ig(2,2,2l=O 
igC2,2,3l=O 
igC2,2,4l=O 
ig(3,1 ,1 l=O 
ig(3, 1 ,2 l=O 
ig(3,1 ,3)=0 
ig(3, 1 ,4)=0 
igC3,2,1l=O 
igC3,2,2l=O 
igC3,2,3l=1 
ig(3 ,2 ,4)=1 

Initialise Coder F.S. 

ifCja.eq.15lthen 
jaa=1 
else 
jaa=2 
end if 
iconvC1 ,1 l=O 
iconv(1,2l=O 

Machine 

iconv(1 ,3 l=O 
iconvC2, 1 l=ig(1 ,2, 1 l 
iconvC2,2l=igC2,2,1 l 
iconvC2,3l=igC3,2,1) 
i conv ( 4, 1 ) = i g ( 1 , 1 , 1 ) 
i conv ( 4, 2 ) = i g ( 2, 1 , 1 l 
iconvC4,3l=igC3,1 ,1) 
do 16 i=1 ,3, 1 
ifCig(i,1, 1 l.eq.igCi,2,1 llthen 
iconvC3,il=O 
else 
iconvC3,i >=1 
end if 

16 continue 
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c .State decomposition into symbol values 

c 

LiO 1SO i.o.O,ja, 1 
i i :. i 
do JO j"jaa,0,-1 
jj•4Uj 
if<ii.ge.3*jjJthen 
j4(jl=3 
j3(1,jl=1 
j3<2,j J=O 
ii=ii-(3*jj) 
else if <ii .lt .3*jJ .and. i i .ge.2*jj lthen 
j4 (j )=2 
j3(1,jl=1 
j3<2,jl=1 
ii=ii-<2*jjJ 
e1seif<ii.lt.2*jj.and.ii.ge.jjlthen 
j4(jl=1 
j3(1,jl=O 
j3<2,jl=1 
ii=ii-jj 
else 
j4(j )=0 
j3(1,jl=O 
j3<2,jl=O 
end if 

30 continue 

c Partial coding;ie of state j3 alone 
c 

c 

do 90 i2=1 ,3,1 
ib<i2J=O 
do80jj=1,2,1 
do 70 il=2,jaa+2,1 
ps=j3(jj, <il-2> l*ig<i2,jj,il l 
if<ps-ib<i2JJ40,50,40 

40 ib(i2J=1 
goto 60 

50 ib(i2J=O 
60 continue 
70 continue 
80 continue 
90 continue 

c Completion of Coding/element determination 
c 

c 

do 140 j=0,3,1 
do 130 i2= 1 ,3, 1 
ibb(i2J=ib<i2J 
if ( i conv ( (j + 1 l , i 2 l • eq. i bb ( i 2 l J then 
ibb<i2J=O 
else 
ibb(i2J=1 
end if 

130 continue 

c Set up state/element link vectors and TX FS machine 
c 

jold ( i l =j'l (jaa J 
if(ja.eq.15Jthen 
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c 

imm•'l 
else 
imm•16 
end if 
est ( i ,j Jo4* (i- <imnl*j4 (jaa J J l+j 
jnew<cst(i,jll•j 
cot(i ,j Jo1 +ibb(3 )+2*ibb(2 l+4*ibb(1) 

140 continue 
150 continue 

c Initialise constellation mapping 
c 

c 

ai=atan(1.0l 
do160i=1,8,1 
map<i,1 J=2*cos<C!-1 l*ai+(ai/2.0)) 
map<i,2l=2*sin< (i-1 l*ai+<ai/2.0JJ 

160 continue 

c SNR loop 
c 

c 

call g05cbf ( iq J 
write <0 ,600 J 
do 800 lm•1,m,1 
p•p-pp 
ie=O 
ib1 •0 
ic•O 
ss1=0.0 
es1 =0.0 
do 739 i•1 ,ja+1 ,1 
ice <i J=O 

739 continue 
istemp=1 
is1•0 
isep=n-1 
do 180 i • 1 , n, 1 
do 165 ij=O,ja,1 
ix<ij,i J•O 

165 continue 
do 170 j=1,2,1 
is<i,jl=O 

170 continue 
180 conti"nue 

do 190 i=1 ,ja,1 
cx(i l=10.0e+06 
isinit<i J=-1 

190 continue 
ex (0 J=O.O 
isinit<OJ=O 

c Tx loop 
c 

c 

do 671 111=1,11,1 
do 670 11=1 ,1,1 

c Left shift 
c 

isep=isep+1 
if(isep.gt.nlisep=1 
isbp=isep+1 
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if(isbp.gt.nlisbp=1 
c 
c Data Generation 
c 

c 

w=g05daf(-2.0d+00,2.0d+0Ql 
if<w.lt.-1.0d+00lthen 
isx=O 
is(isep,1 l=O 
is <isep,2 l=O 
elseif<w.ge.-1.0d+00.and.w.lt.O.Od+00lthen 
isx=1 
is<isep,1 l=O 
is<isep,2l=1 
elseif(w.ge.O.Od+OO.and.w.lt.1 .Od+OOlthen 
isx=2 
is<isep, 1 l=1 
is(isep,2l=1 
else 
isx=3 
is<isep, 1 l=1 
is <isep,2 l=O 
end if 

c Conv. coding/mapping 
c 

c 

i v=cot <is1 , isx l 
is1=cst<is1,isxl 
ar=map < i v, 1 l 
ai=map<iv,2l 

c Noise addition 
c 

c 
c Rx: 

wr=g05ddf(0.0d+OO,pl 
rr=ar+wr 
wi=g05ddf(O.Od+OO,pl 
ri=ai+wi 

c Threshold test the Rx sample to allow expansion validity 
c testing later on. The VA is used in a reconfigurable sense with 
c a variable No. of states and a variable No. of expansion 
c per initial state. 
c 
c Threshold testing 
c 

if<rr.gt.O.O.and.ri.ge.O.O.and.abs<rrl.gt.abs<rillthen 
ivv=1 
elseif<rr.gt.O.O.and.ri.gt.O.O.and.abs<ril.ge.abs<rrllthen 
ivv=2 
elseif<rr.le.O.O.and.ri.gt.O.O.and.abs<ril.gt.abs<rrllthen 
ivv=3 
elseif(rr.lt.O.O.and.ri.gt.O.O.and.abs<rrl.ge.abs<rillthen 
ivv=4 
elseif<rr.lt.O.O.and.ri.le.O.O.and.abs<rrl.gt.abs<rillthen 
ivv=5 
elseif<rr.lt.O.O.and.ri.lt.O.O.and.abs<ril.ge.abs<rrllthen 
ivv=6 
elseif<rr.ge.O.O.and.ri.lt.O.O.and.abs<ril.gt.abs<rrllthen 
ivv=7 
else 
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c 

ivv~e 

end if 

c Incremental cost determination 
c 

c 

do 260 j, 1 , 8, 1 
carr (j ), (rr-map(j, 1 > >**2+ <ri -map (j ,2 J )**2 

260 continue 

c VA 
c 
c Reset final state flags 
c 

c 

do 420 i,O,ja, 1 
ffin(i J,O 
do 410 j,0,3, 1 
fexp(i ,j J,-1 

410 continue 
420 continue 

c Initial state/expansions loop 
c 

c 

if<ll.gt.11000Jthen 
write (Q, 1010 J (is ini t Ci J, i ,0, 15 J 

1010 format<'isinit~· ,16i3/J 
else 
end if 
istemp2,istemp 
istemp,O 
do 439 i,O,ja,1 
ifCisinit(i J.ne.-1 Jistemp,istemp+1 

439 continue 
do 1111 j,2,ja+1,1 
ifCistemp.ge.jlthen 
ic02<jl,ic02(jl+1 
else 
if Cic02 ( j J . ne. 0 J i cp (j, ic02 (j J J, icp ( j, ic02 (j J J + 1 
ic02(jJ,O 
endif -

1111 continue 
ss1,ss1+float(istemp) 
icc(istempl,icc(istempl+1 
do 440 ist"O,ja,1 

c Check on existence of initial state 
c 

ifCisinit(istl.ne.-1 )then 
c 
c If flexible ilim allocation is in operation 
c threshold-test initial state's cost. 
c 

if <ex (ist J .le .cth (4 J )then 
i 1 im,4 
elseif<cx(istl.gt.cth(4J.and.cx<istl.le.cth(3Jlthen 
i 1 im,3 
e1seif (ex ( ist J .gt .cth (3 J .and .ex ( ist J .le .cth(2 J )then 
il i ffi"2 
else 
i 1 i mo 1 
end if 
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do 430 iex=0,3,1 
c 
c Check on legality of' state transition 
c 

c 

i v1 ~cot <i st, i ex l 
ivd=iabs<iv1-ivvl 
if!ivd.gt.4livd=8-ivd 
if<ivd.le.ilimlthen 
es1 =es1 +1 .0 

c Transfer vector/state linkage and flag existence of 
c final state 
c 

c 

fexp <est ( ist, iex l ,jold <ist l l=isini t <ist l 
ff in <est ( ist, iex l l = 1 

c Costing 
c 

c 

xx (est ( ist, iex l ,joldC ist l l=cxC ist l+carr(cot Cist, iex l l 
ifCll.gt.11000lthen 
write <0, 1020 list, iex,cst Cist,iex l ,jold Cist l, 

1xxCcstCist,iexl,joldCistll 
1020 format<' ist:::• ,i3,2x,' iex=' ,i3,2x,'cs=' ,i3,2x,'jold=', 

1 i3,2x,•xx=' ,f8.5l 
else 
end if 
else 
end if 

430 continue 
else 
end if 

440 continue 
ifCll.gt.11000lthen 
wri te<O, 1030 l C CfexpCi ,j l ,j=0,3 l, 1=0, 15l, Cffin< i l, i=O, 15 l 

1030 format('fexp='/4C10x,16i3/l/'ffin=' ,16i3l 
else 
end if 

c Selection 
c 
c Reset isinit and ifull flags 
c 

do 450 i=O,ja, 1 
ifull C i l=O 
isinitCil=-1 

450 continue 
do 470 isf=O,ja,1 
if(ffinCisfl.eq.1 lthen 
cc=10.0e+06 
do 460 j=0,3,1 
if Cfexp <isf, j l. ne. -1 lthen 
ifCxxCisf,jl.lt.cclthen 
cc=xxCisf,jl 
jchos=j 
else 
end if 
else 
end if 

460 continue 
isini t2 <isf l -fexp ( isf ,jchos l 
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c 

cxCisf>=xxCisf,jchos> 
ifullCisinit2Cisf>l=1 
else 
end if 

470 continue 
ifCll.gt.11000lthen 
do 1043 1=0,15,1 
writeC0,1040lisinit2Ci l,cxCi l,ifull Cisinit2Ci > > 

1040 format C • isini t2= • , i3 ,3x, • ex= • ,f8 .5 ,3x, • ifull= • , i3 > 
1043 continue 

else 
end if 

c Restoration of unique vector/state relationship 
c 

c 

do 480 i=O,ja,1 
icheckCil=O 

480 continue 
ifull1 =0 
do 510 isf=O,ja,1 
ifCffinCisfl.eq.1lthen 
ifCicheckCisinit2Cisfll.eq.Olthen 
isinitCisfl=isinit2Cisf> 
icheckCisinitCisf) >=1 
ix C isini t <isf >, isepl=jnewC isf > 
else 
iflag=O 
do 500 J=ifull1,ja,1 
if C iflag.ne .1 >then 
ifCifull(j).eq.Olthen 
do 490 ij=1 ,n, 1 
ix Cj ·, ij >= ix ( isini t2 Cisf >, ij) 

490 continue 
ixCj,isep)=jnew(isfl 
isinit<isf>=J 
ifull (j >=1 
iflag=1 
ifull1 =J+1 
else 
end if 
else 
end if 

500 continue 
end if 
else 
end if 

510 continue 
if(ll.gt.11000lthen 
writec0;1050lCisinit<il,i=0,15> 

1050 format('isinit=',16i3l 
else 
end if 

c Detection 
c 

cc=10.0e+06 
do 520 isf=O,ja,1 
if (ffinCisf > .eq.1 >then 
if(cx<isfl.lt.cc>then 
cc=cx ( isf > 
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c 

ii=isf 
else 
end if 
else 
end if 

520 continue 
if <ix ( isini t( i i l, isbpl .eq.O lthen 
ixd(1 l=O 
ixd(2l=O 
else if ( ix ( isini t ( i i ) , is bp) • eq. 1 lthen 
ixd(1 l=O 
ixd(2l=1 
elseif<ix<!sinit<iil,isbpl.eq.2lthen 
ixd(1 l=1 
ixd(2l=1 
else 
ixd<1 l=1 
ixd(2l=O 
end if 
if(ll.gt.11000lthen 
write <0, 1060 lixd (1 l, ixd (2 l, 

1is<isbp,1 l,is<isbp,2l 
1060 format(' ixd=' ,2i2,3x,• is=' ,2i2l 

else 
end if 

c Cost size reduction 
c 

c 

cc=cx ( i i l 
do 540 i=O,ja,1 
ex <i l=cx ( i l-ee 

540 continue 
icount=O 
do 542 i=O,ja,1 
if(cx<il.gt.cxmaxlisinit<il=-1 
if(isinit<i l.ne.-1licount=icount+1 

542 continue 

c Check No. states does not exceed ismax 
c 

c 

if<icount.gt.ismaxlthen 
do 733 i=1,<icount-ismaxl,1 
cc=O.O 
do 731 ij=O,ja, 1 
if(isinit(ij l.ne.-1 )then 
if(cx(ijl.gt.cclthen 
cc=cx ( ij l 
ii=ij 
else 
end if 
else 
end if 

731 continue 
isinit<ii l=-1 

733 continue 
else 
end if 

c ErTOl' Count 
c 
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c 
c 
c 
c 

do 695 i=1,2,1 
ic=ic+1 
if ( is ( i s!Jp, i l . ne. i xd ( i l )then 
ie= ie+1 
if(ie.ne.1 lgoto 683 
ib1 =1 
goto 685 

683 if(ic.gt.20lthen 
ib1=ib1+1 
else 
end if 

685 continue 
ic=O 
else 
end if 

695 continue 
670 CONTINUE 
671 CONTINUE 

C THE ERROR RATE,ER,AND THE AVERAGE NUMBER OF ERRORS PER BURST 
C AEPB,ARE NOW CALCULATED. TiiE SNR IS ALSO CALCULATED AND 
C THE RESULTS ARE SENT TO THE OUTPUT. 
c 
c 
c 
c 

c 
c 
c 
c 

ER=(FLOAT(IEll/(FLOAT(Ll*FLOAT(L1 l*2.0l 
IF<IB1 .EQ.OJGOTO 680 
AEPB=(FLOAT<IEll/(FLOAT(IB1ll 
GOTO 690 

680 AEPB=O 
690 CONTINUE 

eee=2.0/(P*Pl 
SNR=10.0*alog10(eeel 
es1 =es1/(float(l l*float(l1 l l 
ss1•ss1/(float(ll*float(l1 ll 
do 737 i=1 ,ja+1, 1 
if(icc(iJ.ne.Olthen 
ccc(il=(float(icc(ill*100.01/(float(l1 l*float(lll 
else 
ccc (i )=0 .o 
end if 

737 continue 
600 FORMAT<1H ,10X,IjH SNR,10X,10HERROR RATE, 

110X,16HERRORS PER BURST> 
write<0,700JSNR,ER,AEPB 

700 FORMAT(1H ,7X,F9.5,7X,E12.5,13X,F9.5l 
800 CONTINUE 

C A NUMBER OF IMPORTANT PARAMETERS ARE PRINTED OUT 
c 
c 
c 
c 
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do 1011 j=2,ja+1,1 
do "1o6'9i~·1,300,1 
write(2,*li,icp(j,il 

1009 continue 
1011 continue 

505 

write <0, 900 l <MAP <J, 1 l ,J= 1 , 8 l , <MAP <J ,2 l , J= 1 , 8 l ,P, PP, IQ, L, L 1 , N 
900 FORMAT<1H ,10X,'MAP1 = ',8F9.5/1H ,10X, 

1'MAP2 = ',8F9.5/1H ,10x, 
2'P = ',F6.4,5X,'PP = ',F6.4,5X,'IQ = ',I3,5X, 
3'L = ',I6,5X,'L1 = ',I3,5X, 
45X,'N = ',I2////l 
write<0,940l <cth<i l,i=1 ,4l,cxmax,ismax 

940 format<'ilim Cost Thresholds' ,4f9.5//'Max. Cost='f9.5/ 
1'Max. No. States=' ,13/l 
write <0,945 l isep, ((is <i ,j l ,j=1 ,2 l, 1=1 ,nl 

945 format<'isep=',i3/'Tx Data'l2<5x,65i1/l/l 
write<0,950l «ix<i ,j l ,j=1 ,nl, i=O,jal 

950 format<'Rx Vectors'/64<5x,65i1/ll 
write <0,955 l (ex< i l, i=O,ja > 

955 format('cx='/64<10x,f10.7/ll 
write<0,960l<isinit<il,i=O,jal 

960 format<'isinit='/4(10x,16i3/ll 
write <0,930) <(est< i ,j l ,j=0,3 l, i=O,ja l, <<cot< i ,j l ,j=O ,3 l, i=O ,ja) 

930 format<'Tx code FS Machine final state look-up Table'/ 
116<5x,16i3/l/'Tx code FS M3chine o/p look-up Table'/16(5x,16i3/JJ 

write <0,933 l <jold( i l, i=O,ja l, (jnew<i l, i=O,ja l 
933 format<•Jold='/4(10x,16i2/l,/'jnew='l4<10x,16i2/ll 

write(0,934lss1,es1 
934 format<'Av. No. States/Interval=' ,f9.5/ 

1'Av. No. Expansions/Interval=',f9.5l 
do 936 i=1,ja+1,1 
write<0,937li,ccc<il 

937 format<•state Count :',i5,2x,'7. Occurrence :',f9.5l 
936 continue 

stop 
end 



J1':J t-'ROGRAM FOR VITERBI UETECTION, FOR CODED IW~K 

USING CODE 1 OF TABLE 2,5,1 
CJOB Z8150P3,:EUXXX,Ct76CPOOOO,TD1280) 
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CFTNS <DB= 0/PMD l 
CLIBRARY<PROCLIB,*l 
CNAGCFTN5l 
CLGO. 
C££££S 
C PROGRAM PSKVITCINPUT,OUTPUT,TAPE1=INPUT,TAPE2=0UTPUTl 
C PROGRAM CONV-8PSK_VIT3 
c 
c 
c 
c 
C TiilS PROGRAM SIMULATES TiiE TRANSMISSION OF CONVOLUTIONALLY ENCODED 
C CRATE-2/3 l BINARY SYMBOLS USING 8PSK MODULATION OVER AN AWGN CHANNEL 

C WHICH INTRODUCES NO SIGNAL DISTORTION CMEMORYLESS CHANNEL>. TiiE 
C VITERBI ALGORITiiM IS USED AT TiiE RECEIVER TO PERFORM TiiE 
C DECODING/DETECTION PROCESS. A CONVOLUTIONAL CODE. CWITii A CODE MEr-mY 

C OF 4 BITS) PROPOSED BY J. HUI AND R.J. FANG, CICC 1981 l, IS USED. 
C FOR MORE DETAILS SEE TiiE PROGRAM DOCUMENTATION ENTITLED 'SIMULATION 

C OF COOED 8PSK OVER A DISTORTIONLESS CHANNEL•. 
c 
c 
c 
c 
C DECLARE ALL VARIABLES 
c 
c 
c 

c 
c 
c 
c 

LIBRARY 'NAGF' 
DIMENSION ISC2,85l,IG<3,2,3l,IXC16,2,85l,IRESC3l,ICHOSC3l, 

1CXC 16l, IAC3 l, IB<4,3 l, !SS (2,1 l ,XXC4 l, IBBC3 l ,CXXC4 l ,ICONVC4 ,3 l, 
1ISDC2,4l,ISSDC2,1 l,IS1 <2l 

REAL CC,AR,AI,RR,RI,AAR,AAI,ER,AEPB,W,WI,WR,MAPC8,2l 
INTEGER IQ,M,L,K,N,IE,IB1 ,IC,PS,IV,E<4,4l,EXC4,4l 
DOUBLE PRECISION G050DF,G05DAF,P 

C INITIALISE VARIABLES 
c 
c 
c 
c 

c 

IQ=30 
M=1 
K=16 
L=400 
N=65 
PS=O 
IV=O 
P=O.OO 

C CODE 1 
c 

IGC1,1,1 )=0 
IGC1,1,2l=1 
IGC1,1,3l=O 
IGC1,2,1l=1 
IGC1,2,2l=O 



IG!1,2,3J=1 
IG!2,1,1J=1 
IG!2,1,2J=1 
IG!2,1 ,3)=1 
IG<2,2,1 l=O 
IG!2,2,2l=O 
IG!2,2,3l=1 
IG!3,1 ,1 l=O 
IG!3 ,1 ,2 J=O 
IG!3,1,3J=0 
IG!3,2,1 l=O 
IG!3,2,2l=1 
IG!3,2,3J=O 
AI=ATAN(1 .0) 
[X) 30 !=1 ,6,1 
MAPCI ,1 J=2*COS ( CI-1 l*AI+ CAI/2)) 
MAP( I ,2 J=2*SINC CI-1 l*AI+ CAI/2) J 

30 CONTINUE 
ICONVC1 ,1 l=O 
ICONV C 1 ,2 l=O 
ICONVC1,3J=O 
ICONVC2,1 l=IGC1 ,2,1 J 
ICONVC2,2 J=IGC2 ,2,1 l 
ICONVC2,3J=IGC3,2,1 J 
ICONVC3,1 l=IGC1 ,1 ,1 l 
ICONVC3,2J=IGC2,1,1 l 
ICONV!3,3l=IGC3,1,1 l 
[X) 45 I=1,3,1 
IFCIG!I,1,1 l.EQ.IGCI,2,1 llGOTO 35 
ICONV!4, I l=1 
GOTO 40 

35 ICONVC4,Il=O 
40 CONTINUE 
45 CONTINUE 

WRITEC1,600l 
CALL G05CBF!lQl 
00 600 LM=1 ,M,1 
[X) 20 I=1,2,1 
00 10 J=1,N,1 
ISCI,Jl=O 

10 CONTINUE 
20 CONTINUE 

[X) 60 I=1,16,1 
00 55 IL=1,2,1 
NN=N-2 
00 50 J=1 ,NN,1 
IX!I,IL,Jl=O 

50 CONTINUE 
55 CONTINUE 
60 CONTINUE 

00 65 !=1 ,4,1 
IXCI,1,Nl=O 
!XCI ,2,Nl=O 

65 CONTINUE 
00 70 !=5,8,1 
IXC I ,1 ,NJ=O 
IXCI,2,NJ=1 

70 CONTINUE 
00 75 1=9,12,1 
IXCI,1,NJ=1 
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IX( I ,2,Nl=O 
75 CONTINUE 

00 80 I=13,16,1 
IXU ,1 ,Nl=1 
IX(! ,2,Nl=1 

80 CONTINUE 
NN=N-1 
00 90 I=1 ,13,4 
IX(!,1,NN>=O 
IX(! ,2,NN>=O 

90 CONTINUE 
00 130 I=2,14,4 
IX(! ,1 ,NNl=O 
IX(! ,2,NN>=1 

130 CONTINUE 
00 135 I=3,15,4 
IX(! ,1 ,NNl=1 
IX(! ,2,NN>=O 

135 CONTINUE 
00 140 I=4,16,4 
IXCI,1,NNl=1 
IXO ,2,NNl=1 

1'10 CONTINUE 
00 141 I=1,16,1 
CXO >= 1 .0E+06 

141 CONTINUE 
CXC1 >=0.0 
!51 (1 l=O 
ISDD=O 
ISDC1 ,1 >=O 
ISDC2,1l=O 
ISDC1,2l=O 
ISDC2,2l=O 
ISDC1,3l=O 
ISDC2,3 l=O 
II=O 
00 150 J=1,4,1 
00 145 IL=1 ,4,1 
II=II+1 
ECIL,Jl=II 

1'15 CONTINUE 
150 CONTINUE 

c 
c 
C CALL RANDOM GENERATOR ROUTINE BEFORE ALL PROGRAM LOOPS AND 
C GENERATE NEXT PAIR OF SYMBOLS 
c 
c 

P=P-0.00 
IE=O 
IB1=0 
IC=O 
00 671 LLL=1 ,1,1 
DO 670 LL=1,L,1 
DO 160 I=1 ,2,1 
NN=N-1 
DO 155 J = 1 , NN, 1 
JJ=J+1 
ISCI,J>"lSCI,JJ> 

1 55 CONTINUE 
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160 aJNTINUE 
00166 I=1,16,1 
00 164 IL=1 ,2,1 
NN=N-1 
DO 162 J=1,NN,1 
JJ=J+1 
IXCI,IL,Jl=IXCI,IL,JJl 

162 aJNTINUE 
164 aJNTINUE 
166 CONTINUE 

DO 169 !=1 ,2,1 
ISDCI,3l=ISDCI,2l 
ISDCI,2l=ISDCI,1 l 

169 CONTINUE 
00,200 I=1,2,1 
W=G05DAFC-1 .OD+00,1.0D+00l 
IFCWl170, 170,180 

170 ISCI,Nl=O 
CX>TO 190 

180 ISCI,Nl=1 
190 aJNTINUE 
200 CONTINUE 

ID=!SC1 ,Nl+ISC1,Nl+ISC2,Nl 
IFCID-2>206,202,204 

202 ID=3 
G011) 206 

204 ID=2 
206 CONTINUE 

c 
C DIFF. ENCODE ID 
c 

c 

ISDD=ID-ISDD 
IFCISDD.LT.OliSDD=ISDD+4 
IFCISDD.EQ.OlTHEN 
ISDC1, 1 l=O 
ISDC2,1l=O 
ELSEIFCISDD.EQ.1 >THEN 
ISDC1, 1 l=O 
ISDC2, 1 )=1 
ELSEIFCISDD.EQ.2lTHEN 
ISDC1, 1 l=1 
ISDC2,1l=1 
ELSE 
ISDC1, 1 l=1 
ISDC2,1l=O 
END IF 

C ISDC1, 1 l=ISC1 ,Nl 
C ISDC2,1 l=ISC2,Nl 
c 
c 
c 
c 
c 
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C USE IGCI,IL,Jl TO CALCULATE IACil,CI=1 ,2,3l. CONVERT VECTOR IA INTO 

C VARIABLE IV BY PERFORMING A BINARY TO DECIMAL CONVERSION. USE 
C MAP(Jl 1U MAP THIS VALUE ONTO THE TWO QUADRATURE 
C COMPONENTS TO BE TRANSMITTED,AR & AI 
c 
c: 



c 
c 

c 

00 250 !=1 ,3, 1 
!A( I l=O 
00 240 J=1 ,2, 1 
00 230 IL=1 ,3,1 
PS=ISD<J,ILl*IG<I,J,ILl 
IF<PS.EQ.IA<IllGOTO 210 
IA<I l=1 
GOTO 220 

210 IA<I l=O 
220 CONTINUE 
230 CONTINUE 
240 CONTINUE 
250 CONTINUE 

IV=! +IA<3 l+ (2*IA<2 l l+ <4dA<1 l l 

C SUDDEN PHASE SHIFT 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

IF<LL.GT.500lTHEN 
IV=IV+4 
IF<IV.GT.8 liV=IV-8 
ELSE 
END IF 

AR=MAP<IV,1 l 
AI=MAP<IV,2l 

C THE QUADRAnJRE COMPONENTS,AR &AI ,ARE NOW 1RANSMITTED AND ARE 
C SUBJECTED TO THE AI.'CN COMPONENTS, WR &WI, WHICH ARE GENERATED 
C USING A RANOOM NUMBER GENERATOR WITH A GAUSSIAN PDF,WITH IT'S 
C STANDARD DEVIATION GIVEN BY P 
c 
c 
c 
c 

c 
c 

WR=G05DDF<O.OD+OO,Pl 
RR=AR+WR 
WI=G05DDF<O.OD+00,Pl 
RI=AI+WI 

C DETECTION PROCESS: EACH GROUP OF 4 IX'S CORRESPONDING TO 
C THEE< ,I,Jl'S IS TAKEN IN TURN. THE IX'S ARE EXPANDED 
C AND THEIR COSTS ARE CALCULATED. THEY ARE THEN RANKED TO 
C FORM THE GROUP OF FOUR POINTERS EX< I , J, l • 
c 
C FOR EACH SUBGROUP OF 4 E< ,I,Jl'S RAW VERSIONS OF IB<Il 
C ARE CALCULATED FROM THE APPROPRIATE UNEXPANDED IX'S. THEN 
C THE PRE-CALCULATED ICONV<I ,J l ARE APPENDED TO GAIN FINAL 
C VERSIONS OF IB<Il CORRESPONDING TO THE REQUIRED EXPANSION. 
C FOR EACH EXPANSION, CORRESPONDING TO ONE OF 4 EX<I,J, l, 
C TilE CODED RESULTS ARE MAPPED AND THE NEW COSTS ARE CALCULATED. 
C THE FOUR RESULTS CORRESPONDING TO A PARTICULAR EX <I ,J, l 
C ARE COMPARED, AND THE BEST VECTOR IS CHOSEN, WHERE 
C EX<l,J, l MINTS TO IT. 
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c 
c 

00 435 J=1 ,4,1 
00 283 IJ=1 ,4,1 
I I=E CIJ ,J J 
00 280 I2=1 ,3 '1 
IB<IJ,I2J=O 
00 275 JJ=1 ,2 '1 
LN=N 
00 270 IL=2,3,1 
LN=LN-1 
PS= IX< I I ,JJ ,LNl*IGCI2 ,JJ, IL J 
IF<PS-IB<IJ,I2JJ255,260,255 

255 IB<IJ,I2J=1 
mm 265 

260 IB<IJ,I2J=O 
265 CONTINUE 
270 CONTINUE 
275 CONTINUE 
280 CONTINUE 
283 CONTINUE 

00 325 JJ=1 ,4, 1 
DO 305 IJ=1,4,1 
II=ECIJ,JJ 
DO 300 !2=1 ,3, 1 
IBB<I2J=IB<IJ,I2J 
IFCICONVCJJ,I2l-IBBCI2JJ285,290,285 

285 IBB<I2 J=1 
mm 295 

290 !BBC 12 J=O 
295 CONTINUE 
300 CONTINUE 

IV=1 +IBB<3J+IBB<2l+IBB<2J+IBBC1 l+IBB<1 l+IBB<1 l+IBB<1 J 
AAR=MAP<IV, 1 J 
AAI=MAP<IV,2J 
XX<IJJ=CX<IIJ+<<RR-AARJ*<RR-AARJJ+<<RI-AAil*<RI-AAIJJ 

305 CONTINUE 
c 
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CRANK THE 4 CALCULATED COSTS m FIND THE VALUE OF E<I,J,JJJ,I=1 m 4 

c 
CC=+10.0E+06 
DO 320 IJ=1,4,1 
IF<XX<IJJ-CCJ310,315,315 

310 CC=XX<IJJ 
I I!= IJ 

315 CONTINUE 
320 CONTINUE 

EX<J,JJJ=E(!!I,JJ 
CXX<JJJ=XX<IIIJ 

325 CONTINUE 
c 
c 
C TilE NEXT SEC!'! ON FINDS TI-IOSE IX'S POINTED TO BY TilE 4 E' S 
C WHICH ARE NOT INCLUDED AMONGST TilE EX'S BECAUSE OF 
C DUPLICATION IN THE EX'S. THESE ARE STORED IN IRES<IJ 
C 1=1 TO 3 
c 
c 



c 
c 

IRESC3 J•O 
ID•O 
DO 355 122•1,4,1 
III=O 
DO 340 IZ=1 ,4,1 
IF <E < IZZ, J J-EX<J, IZ J J335 ,330, 335 

330 III=1 
335 CONTINUE 
340 CONTINUE 

IFCIIIJ350,345,350 
345 ID=ID+1 

!RES <IDJ•E <IZZ,J J 
350 CONfiNUE 
355 CONTINUE 

C TI-lE NEXT SECTION INITIALISES A STORE TO NOTE TIJOSE IX'S 
C WHICH HAVE BEEN ASSIGNED PERMANEN'IL Y TO EX'S. lliEN TI-lE I X 
C POINTED TO BY EXCI,J,1 J IS EXPANDED AND IT'S COST IS PLACED 
C IN IT'S CX POSITION. IT'S DESIGNATION IS ALSO STORED IN 
C TI-lE STORE, I CHJS <I J , NOTED ABOVE. TilE PROCESS TIIEN MJVES ON 
C TO EXCI,J,2J. IF IT IS NOT INCLUDED IN ICHOSCIJ, TilE IX IT 
C POINTS TO IS EXPANDED ETC AS BEFORE. OTI!ERWISE A 'SPARE' 
C IX IS FOUND FROM AMONG TilE IRESCIJ. 
c 
c 

ICHOSC1 J•O 
ICHOSC2 J=O 
ICHOSC3 J=O 
II=EXCJ,1 J 
!XCII, 1 ,NJ=O 
!XCII ,2,NJ•O 
ICHOS C1 J•II 
CXCII J=CXXC1 J 
IZ=1 
II=EX<J,2J 
IFCII-ICHOSC1 JJ375,360,375 

360 EXCJ,2J=IRESCIZJ 
II I =II 
II=IRESCIZJ 
IZ= IZ+1 
DO 370 IJ=1 ,2, 1 
NN=N-1 
DO 365 IL=1 ,NN, 1 
IXCII,IJ,ILJ•IXCIII,IJ,ILJ 

365 mNTINUE 
370 CONTINUE 
375 mNTINUE 

IXC II, 1 ,NJ=O 
IX< II ,2 ,NJ=1 
ICHOSC2J=II 
CXC !I J•CXXC2J 
II=EX<J ,3 J 
IFCII-ICHOSC1 ))380,385,380 

380 IFCII-ICI-KJSC2JJ400,385,400 
385 EX<J,3J,IRESC!ZJ 

III•II 
II•IRES< IZJ 
JZoJZ+l 
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NN=N-1 
00 390 IL=1 ,NN,1 
IX<II,IJ,ILJ=IX<III,IJ,ILJ 

390 CONTINUE 
395 CONTINUE 
400 CONTINUE 

IX<II ,1 ,NJ=1 
IX<II ,2,NJ=O 
ICI-IJS (3 J =!I 
CX<II J=CXX(3J 
II=EX<J ,4 J 
IF<II-ICHOS<1 JJ405,415,405 

405 IF<II-ICHOSC2JJ410,415,410 
410 Ir<rr ICHos<3J >430,415,430 
415 EX<J,4J=IRESCIZJ 

III=II 
II=IRES<IZJ 
00 425 IJ=1,2, 1 
NN=N-1 
00 420 IL=1 ,NN,1 
IX<II,IJ,ILJ=IX<III,IJ,ILJ 

420 CONTINUE 
425 CONTINUE 
430 CONTINUE 

IX<II ,1 ,NJ=1 
IX( I! ,2,NJ=1 
CX<II J=CXX<4 J 

435 CONTINUE 
c 
c 
C FROM TilE 16 VECTOR PAIRS, IX, TI-lE ONE ll!Tii TI-lE LOWEST COST 
C IS FOUND AND TilE ELEMENTS IN TI-lE FIRST POSITION OF TI-lE 
C VECTOR PAIR ARE TAKEN TO BE TI-lE DETECTED BITS. 
c 
c 

CC=+10.0E+06 
00 455 I= 1 , 16, 1 
IF<CX<IJ-CCJ445,450,450 

445 CC=CX( I J 
II=I 

450 CONTINUE 
455 CONTINUE 

I SSD < 1 , 1 J =I X< II , 1 , 1 J 
ISSD<2,1 J=IXOI,2,1 J 
IS 1 ( 2 J =I SSD ( 2, 1 l+ I SSD < 1 , 1 J +I SSD ( 1 , 1 J 
IF<IS1 <2)-2)446,442,444 

442 IS1 <2 J =3 
GOTO 446 

444 IS1 <2 J =2 
446 CONTINUE 

c 
c 
C DIFF. DECODE 
c 
c 

INN=IS1 <1 l+!S1 <2J 
IS1 <1 J=IS1 <2J 
IF<INN.GT.3JINN=INN-4 
IF< INN. ECJ.O l1HEN 

513 



c 

ISSC2,1J;O 
ELSE IF C INN .EQ.1 JTiiEN 
ISSC1,1J;O 
ISSC2,1J;1 
ELSEIFCINN.EQ.2JTHEN 
ISSC1,1J"1 
ISSC2,1 J;1 
ELSE 
ISSC1 ,1 J;1 
ISSC2,1 J;O 
END IF 

C ISSC1,1J;IXCII,1,1J 
C ISSC2,1J;IXCII,2,1) 
c 
c 
C NOW THE EX' S ARE TRANSFERRED BACK TO THE E' S AND ex C 1 J IS 
C SUBTRACTED FROM ALL THE ex• S 
c 

DO 465 J;1,4,1 
DO 460 IJ;1,4,1 
ECJ,IJJ;EXCJ,IJJ 

460 CONTINUE 
465 CONTINUE 

cc;ex<IIJ 
DO 475 I; 1 , 16, 1 
exll J;exc I J-CC 

475 CONTINUE 
c 
c 
C THE NEXT SECfiON TESTS FOR ERRORS IN THE DETECTED PAIR OF 
C DIGITS. THE BIT ERROR COUNT,IE,IS INCREMENTED WHENEVER A 
C BIT ERROR OCCURS. IF THE NUMBER OF CORRECTLY DETECTED 
C BINARY SYMBOLS SINCE THE LAST ERROR IS GREATER OR EQUAL 
C TO 20,THE BURST ERROR COUNTER,IB1 ,IS INCREMENTED ON 
C THE oo::uRRENCE OF AN ERROR. OTHERWISE, CIF AN ERROR 
C HAS OCCURRED), THE COUNT OF CORRECTLY DETECTED SYMBOLS, IC, 
C IS SET TO ZERO. IN ADDITION, WHEN THE FIRST ERROR OCCURS, 
C IB1 IS SET TO ZERO. 
c 
c 
c 
c 

DO 660 !;1 ,2, 1 
IC; IC+1 
IF <IS <I, 1 J-ISSCI, 1 J )605,650 ,605 

605 IE;IE+1 
IF<IE.NE.1 JGOTO 610 
IB1; 1 
GOTO 625 

610 IFCIC-20J630,630,620 
620 IB1 ~ IB1 +1 
625 CONTINUE 
630 IC;O 
650 CONTINUE 
660 CONTINUE 
670 CONTINUE 
6 71 CONTINUE 
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c 
c 
C THE ERROR RATE,ER,ANO THE AVERAGE NUMBER OF ERRORS PER BURST 
C AEPB,ARE NOW CALCULATED. THE SNR IS ALSO CALCULATED AND 
C THE RESULTS ARE SENT TO THE OUTPUT. 
c 
c 
c 
c 

c 
c 
c 
c 

ER~ CFLOATC IE l l/ CFLOATCL+Ll l /1 .0 
IFCIB1 .EQ.OJGOTO 680 
AEPB~CFLOATCIEJJ/CFLOATCIB1 ll 
coro 69o 

680 AEPB~O 
690 CONTINUE 

EE~2.0/(P*Pl 

SNR=10.0*ALOG10CEE1 
600 FORMATC1H ,10X,4H SNR,10X,10HERROR RATE, 

110X,16HERRORS PER BURST> 
WRITEC1 ,700JSNR,ER,AEPB 

700 FORMATC1H ,7X,F9.5,7X,E12.5,13X,F9.5l 
800 CONTINUE 

C A NUMBER OF IMPORTANT PARAMETERS ARE PRINTED OUT 
c 
c 
c 
c 

WRITE ( 1 , 900 l CMAP ( J, 1 l, J = 1 , 8 l , CMAP CJ, 2 l, J~ 1 , 8 l , P, IQ, L, K, N 
900 FORMATC1H ,10X,'MAP1 ~ ', 8F9.5/1H ,10X, 

1'1'lAP2 ~ • ,8F9.5/1H ,10X, 
2'P = ',F6.4,5X,' IQ~ ',I3,5X,'L = ',I6,5X,'K = ',12, 
45X,'N ~ ',I211/Il 

WRITEC1 ,950JCCCIXCI,IL,Jl,J=1 ,65J,IL~1 ,2l,l=1 ,16) 
950 FORMATC1H , 10X,65I1/l 

WRITEC1 ,960)(CXCIJ,I=1 ,16) 
960 FORMATC1H ,10X,F10.6l 

STOP 
END 

C££££S 
C**** 
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