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THE AGE ITERATIVE METHODS FOR SoLVING LARGE LINEAR SYSTEMS 

OCCURRING IN DIFFERENTIAL [QUA TIONS 

Abstract 

The work presented in this thesis is wholly concerned with the 

Alternating Group Explicit (AGE) iterative methods for solving large 

linear systems occurring in solving Ordinary and Partial differential 

equations (ODEs and PDEs) using finite difference approximations. 

The thesis spreads over four parts. Part I contains an intro-

duction where the general terms and classification of ODEs and PDEs are 

explained. This is followed by a discussion of the basic mathematical 

concepts which are involved in developing the methods. 

Part II is concerned with the numerical solution of ODEs. This 

part commences with the discussion of the existing well known iterative 

methods and a more recent method, i.e., the Alternating Group Explicit 

(AGE) to solve two-point boundary value problems. The AGE method will 

be discussed in great detail. This is followed by the application of 

the method for different boundaries, i.e., with a combination of 

Dirichlet, Neumann and periodic conditions and to show that it is 

comparable with other existing methods. 

It can be shown that the accuracy of the AGE method can be improved 

by using the Numerov formula and this is presented next. Then, this is 

followed by the determination of optimal AGE acceleration parameters 

from the well known schemes such as Peaceman-Rachford (PR), Douglas, 

Douglas-Rachford (DR) and the scheme proposed by Guittet. 

It can be shown further that, these schemes can take less computa-

tional time if they are written using different strategies, i.e., in the· 

approaches used in the methods Coupled AGE (CAGE) and Smart AGE (SMAGE). 
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The multi-parameter strategy for the AGE method is presented next. 

It opens with the discussion of the existing multi-parameter studies 

such as PR, Wachspress, Young and Jordan. These multi-parameter 

strategies are then applied to the existing schemes and also to the 

second order methods of Chebyshev and Richardson. 

Part III is mainly devoted to the solution of elliptic PDEs. This 

part commences with the determination of the optimal parameters of the 

AGE method by using the Douglas, DR and Guittet schemes. The region 

concerned is for a unit square for two dimensional (2D) problems 

involving the Laplace and Poisson equations and for the three 

dimensional (3D) problem in a unit cube. The Helmholtz equation is also 

considered. All problems are governed by Dlrlchlet boundary conditions. 

Part III is continued with the solution for the 2D problem governed 

by Periodic and Neumann boundary conditions. This is, then followed by 

the application of a computational molecular form which was presented in 

Part I, for the PDEs. 

problem. 

The discussion is only concerned with the 2D 

The nonstatlonary case; i.e., the application for more than one 

parameter is discussed next and involves three sections. Firstly, the 

discussion is devoted to the standard AGE for the 2D problem for, 

triangle and a hole in an unit square region but the results include the 

mul tl-parameter case for the 2D problem in a square region and the 3D 

problem in a unit cube. This is followed the section for Richardson's, 

the Chebyshev method and the section for the Explicit Alternating 

Direction (EAD) method for the unit square and cubic regions only. 

Part IV concludes the thesis with the conclusions together wl th 

some suggestions for further work. 

ill 
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1.1 Introduction 

CHAPTER 1 

INTRODUCTION 

A great many physical phenomena in science and engineering often involve 

the rate of change of unknown quantities called dependent variables such 

as temperature, pressure, ... , etc, with respect to one or more 

independent variables usually representing length or angles. These 

problems can usually be formulated in terms of differential equations. 

A differential equation is defined as an equation involving a 

relation between the values of an unknown function and one or more of 

its derivatives. The mathematical formulation involving rates of change 

with only one independent variable is called an ordinary differential 

equation (ODE) or a set of such equations. Another class of 

differential equations which govern physical systems are partial 

differential equations (PDE) in which two or more independent variables 

are present in the differential equations. 

Since the use of automatic digital computers "1 S becoming 

extensive, it is becoming apparent that numerical methods are found to 

be the best alternative to the analytical solution in solving these 

problems. Moreover, the analytical solutions for these equations are 

extremely difficult to obtain. 

Many approaches have been developed over the years for the 

treatment of both the ODE's and PDE' s. There are two well known and 

widely used methods called finite difference (FD) and finite elements 

(FE). The finite difference methods, which are the main interest of 

this work, are applicable to both linear and nonlinear problems. 

1 



A full description of the finite difference methods will be given 

in Chapter 2. 

1.2 The classification of differential equations 

As mentioned earlier, the differential equations can be classified as an 

ODE or a PDE. The equations can be further classified as follows: 

first order higher order 

single equation system of equations 

linear nonlinear 

homogenous inhomogenous 

lnit ial value boundary value. 

Let us consider the two equations, 1. e., 

d2U + BdU + cu + D 0, A- = 
dx2 dx (1.2-1) 

a2u a2u 2 

5au + Tau P- + Qaxay + Ra u + + vu + w = o. 
ax2 8y2 ax ay (1.2-2) 

Equation (1.2-1) is called the general second-order ordinary 

differential equation since its higher derivatives is of order two and U 

only depends on x. Equation (1.2-2) represents the general second-

order partial differential equation. Its higher derivatives is also of 

order two and U depends on both x and y. Nearly all equations of higher 

order can be reduced to a system of first order equations. This system 

is solved by using the same methods as those used for a single equation. 

Equations (1.2-1) and (1.2-2) are said to be linear if the 

coefficients A, ... ' D, and P, ... , Ware constants or function of one 

or both independent variable of x or x and y respectively. If those 

coefficients are functions of the dependent variable U, or its 

derivatives then the equations are nonlinear. 
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The equations are semi-linear applies only to when those 

coefficients are functions of the independent variables of x or x and y 

only. On the other hand, if the coefficients P, Q and R are functions 

of x, y , U, au/ax and au;ay but not of second derivatives then equation 

(1.2-2) is said to be quasilinear. 

The term homogenous applies when D and W in equations (1.2-1) and 

(1.2-2) respectively is equal to zero, otherwise they are all 

inhomogenous. 

Equation (1. 2-2) can be classified further into three particular 

2 types, depending on the discriminant (8 - 4AC) being either positive, 

negative or zero. We say that equation (1.2-2) is of 

Elliptic 82 -

Parabolic type when 82 -

Hyperbolic 82 -

For example, the Laplace equation in two variables, 

2 2 
v2u = a u + a u = o, 

ax2 ay2 

and the Poisson equation 

v2u a2u a2u --- +- = f(x y) 
ax2 2 • 

ay 
are of elliptic type, where v2 is 

differential operator, i.e., (a2 
+ a2 

)· 

ax
2 al 

the 

The diffusion or heat conduction equation 

a2u 1 au 
ax2 = a2 at 

2 is parabolic where a is a physical constant. 

two 

4AC < 0 

4AC = 0. 

4AC > 0 

dimensional 

The hyperbolic type can be represented by the wave equation 

a2u 1 a2u 
= 

ax2 c2at 2 

where c is the propagation velocity. 

3 

(1.2-3) 

(1.2-4) 

Lap lace 

(1.2-5) 

(1.2-6) 



Equations (1.2-3) and (1.2-4) are generally associated with a 

steady-state or equilibrium problem. For example, the Laplace equation 

may describe the velocity potential for the steady flow of an 

incompressible non-viscous fluid and is the mathematical expression for 

the physical law that the rate at which such fluid enters a given region 

is equal to the rate at which it leaves it. In contrast, the electric 

potential, associated with a two dimensional electron distribution of 

charge density, may satisfy the Poisson equation, stating that the total 

electric flux through any close surface is equal to the total charge 

enclosed. On the other hand, in general, parabolic and hyperbolic PDE 

are the result from diffusion, equalization or oscillatory processes and 

the usual independent variables are time and space. 

It is worth noting here that the form of the general (analytical) 

solution of a second order PDE depends very much on whether the equation 

is elliptic, parabolic or hyperbolic. The analysis is simplified if all 

the coefficients are constants. 

The ODE and PDE are normally associated with the initial and/or 

boundary value problem. The solutions of these equations will depend on 

these given values. In the theory of ODEs, for example, the simple 

first order equation 

dlJ 
dx 

= u, 0 < X < 1 (1.2-7) 

may have the general solution U(x) = Cex, where C is an arbitrary 

constant. If the lni tial condition U(O) = 1 is prescribed, then the 

exact solution can be written as U(x) = ex. Similarly, some additional 

initial conditions must be supplied along with ( 1. 2-1) and ( 1. 2-2) in 

order to determine a specific solution. Thus, in general for the ODE, 

... ' dU(n-l) (x )/dx are prescribed at one point 
0 

x = x
0

, we have an initial value problem. 

4 



For the PDE, since there are two independent variables x and y, 

then the added condition, which are actually the initial and/or boundary 

conditions, will have to be given along some curves, in the x-y plane. 

Depending on the type of equation that we are dealing with, in some 

cases the curve along which the information is given will be closed, 

i.e., when solving the elliptic problem. Here, the analytical solution 

U(x,y) must satisfy the given PDE at every point of the area of 

integration which is bounded by the closed curve, and the given boundary 

condition at every point of the curve. 

On the other hand, parabolic and hyperbolic equations may give rise 

to an open area of integration, since the initial and boundary 

conditions are known and normally located along the x-axis and along the 

parallel lines perpendicular to the x-axis respectively. Again, the 

solution U(x,y) must satisfy the given initial and boundary conditions 

and satisfy the PDE at every point p of the infinite area of integration 

bounded by the open curve on the x-y plane. 

In the ODE, if the initial conditions are prescribed at more than 

one point, then we have a boundary value problem. A simple example of a 

second order two point boundary value problem is, 

d 2U -=1 2 • 
dx 

0 < X < 1 

with the boundary conditions, 

U(O) = 0, U(1) = 1. 

The general solution is U(x) =~2 + Bx + C, where 

(1.2-8) 

B and C are 

arbitrary constants. With these given conditions, we would obtain the 

specific solution, i.e, U(x) = !x(x + 1). 
2 

This thesis will be concerned with the solution of the two-point 

boundary values problems in one dimension and the elliptic problems in 

two and three dimensions. 
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1.3 Types of boundary conditions 

As mentioned earlier, the solution of both ODEs and PDEs must satisfy 

the given initial and/or boundary conditions. There are four main types 

of boundary conditions which arise frequently in the description of 

physical phenomena, namely: 

1. The First Boundary Value Problem. 

It is also called the Dirichlet problem, where the solution u has to 

satisfy the given values 

(1.3-1) 

on the boundary T, If ~ = 0, we have the homogenous Dirichlet problem. 

2. The Second Boundary Value Problem. 

It is also known as the Neumann problem, where the solution U must 

satisfy the normal derivatives 

(1.3-2) 

on the boundary T of the region. 

3. The Third Boundary Value Problem. 

This problem is sometimes called 11ixed or Robin's problem, where the 

solution U must satisfy a combination of U and its derivatives 

[ :~ + h ]T = VJ, (1. 3-3) 

on the boundary T. 

4. The Fourth Boundary Value Problem. 

It is also referred to the Periodic boundary problem. Here, we seek the 

solution such that it has to satisfy the periodicity conditions, for 

example, 

6 



Ul - Ul x - x+l' 
(1. 3-4) 

where 1 is called the period. 

1.4 Properly posed and well-conditioned problems 

In practical applications, since a particular solution for an ODE or a 

PDE has to satisfy the 1nl tial and/or boundary condl tions, thus the 

appropriate numerical methods for solving these equations depends upon 

the nature of those conditions. 

We say that these differential equations together with some given 

initial and/or boundary conditions is properly or well posed if the 

given boundary conditions are specified in such a way that there exists 

one and only one solution to the problem, furthermore this solution 

depends continuously on the given data. 

A problem that is not properly posed is said to be ill-posed or 

nonproperly posed and may not have a solution. 

The differential equation is said to be well-conditioned if every 

small error (perturbation) in the data of the properly posed problems 

results in a relatively small change in the solution, otherwise we say 

they are ill-conditioned. 

We could illustrate the properly posed problem by considering the 

Laplace equation in two-dimension, 

(1.4-1) 

in the semi-strip y > 0, - ~ ~ x ~~under the conditions 

n: n: 
U(-2,y) = U(2 ,y) = 0 (1.4-2) 

U(x,O) = 0 (1.4-3) 

au a/x, oJ = if>(XJ (1. 4-4) 

7 



with 

1l 1l 
~C-z-l = ~c2 J. 

If we set ~(x) = 0, then the only solution to this equation is 

U(x,y) = o. 

On the other hand, if we take 

-V2n+1 
~(x) = e cos (2n+l)x 

then the particular solution will be 

1 -V2n+1 ) U(x,y) = Zn+l e cos (2n+l)x sinh (2n+l y. 

(1. 4-5) 

(1.4-6) 

(1.4-7) 

It is easy to verify that the function <j. and its derivatives for 

sufficiently large n differ by an arbitrary small amount from 0. 

Clearly, for any nonzero y, the function U has the form of a cosine 

function of arbitrarily large amplitude provided that n is large. 

Consequently, for sufficiently large n, this function differs by an 

arbitrarily large amount from the zero solution. 

8 



CHAPTER 2 

BASIC MATHEMATICAL PRELIMINARIES 

2.1 Basic matrix algebra 

The solution of ordinary and partial differential equations by numerical 

approaches such as the finite difference method yields a system of 

linear, simultaneous equations which can be denoted in the matrix form 

Au =b. The iterative methods for solving such systems depend on some 

matrix properties of A, for example, irreducibility, diagonal dominance 

and positive definiteness of the coefficient matrix of the system. 

These and some other properties together with some basic facts about 

matrix theory will now be discussed in this chapter. 

A matrix is defined as a two-dimensional array with each element 

denoted as a where i specifies the row and j specifies the column of 
I,J 

the array in which the element appears. A matrix A, for example, with N 

rows and H columns is said to be of size (NxH). We can denote this 

matrix as 

a a a 
1. 1 1,2 1, M 

a a a 
A = [a1,Jl = 

2,1 2,2 2,M (2. 1-1) 

a a a 
H, 1 H,2 H,M 

For N = 1, we would have a row matrix or row vector and for H = 1, 

we would have a column matrix or column vector. The vectors are usually 

denoted either by a small underlined or bold letter such as ~ or a which 

represent a vector. In this thesis, all vectors are written in bold. 

An element a
1 

represents the lth element of the vector a. 

'vector' without qualification will refer to a column vector. 

9 
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Thus, a vector b, for example, whose elements are b
1

, b
2

, ••• , bN IS 

s~;d. -\..beef order N is denoted by 

b = (2.1-2) 

A matrix A is said to be a square matrix of order N if N = 11. In 

this thesis, the term matrices are used to imply a square matrix, unless 

otherwise stated. In addition, we shall use italic capital letters for 

all matrices. 

The set of elements a , 
I, I 

1 = 1, 2, ... ' N of matrix A is a 

principal (main) diagonal of A. The transpose of a matrix A = [a 1 is 
I, J 

T denoted as A and is obtained by interchanging the rows and columns of 

T 
A, i.e. , the element a of A becomes a of A . 

l,j j,l 

A in (2.1-1) becomes 

a a a 
1. 1 2,1 N ,1 

a a a 
AT = 

1. 2 2,2 N,2 

a a a 
1, M 2,M N,M 

Thus a transpose of 

(2.1-3) 

The determinant of a square matrix A can be denoted either as 

det(A) or IAI. -1 
An inverse of a given square matrix A, denoted by A , 

if it exists, is also a square matrix such that 

(2.1-4) 

where I is the identity (unit) matrix having the same order as A and is 

defined as follows: 

a = 1, for all i = 1, 2, ... , N 
1.1 

a = 0, for all 1, j = 1, 2, ... , N and i ~ j. 
I, J 

10 



If an inverse of A does exist, then A is non-singular, otherwise it 

is singular. On the other hand, A is non-singular if det (A) * 0 and 

singular if det(A) = 0. 

If x and y are real numbers, then the conjugate of the complex 

number a = x + iy is a = x - iy . 

If the elements of a matrix A are complex numbers, the conjugate of 

A is the matrix A whose elements are conjugates of the corresponding 

elements of A, i.e., if A= [a I then A= [a I. 
l,j l,j 

H The Hermitian transpose or conjugate transpose of A, denoted by A, 

is the transpose of A and also the conjugate of AT, i.e., 

H - T T -A = (A) = A = [a ). ( 2. 1-5) 
J' I 

The sum of the diagonal elements of a matrix A is called the trace 

of A, denoted by trace(A), i.e., 

trace(A) 
H 

=Ea . 
1=1 1,1 

(2.1-6) 

A permutation matrix P = [p I is a matrix which has the entries 
I, J 

of ones and zeroes with exactly only one non-zero entry in each row and 

each column. Thus, for example, consider the matrix P as 

1 0 0 0 

p 0 0 0 1 = (2.1-7) 
0 0 1 0 

0 1 0 0 

is a permutation matrix of order 4. For any permutation matrix P we 

have, 

PPT = PTP = I. (2.1-8) 

T -1 Hence P = p • 

For any two vectors a and b, both of the same order, say N, we 

define the inner product of a and b by 

11 



N 

ca,bl =a~= E a
1
b

1
• 

1=1 

(2.1-9) 

Further, for any matrix A, 

H (a,Ab) = (Aa,b). (2.1-10) 

Given a matrix A = [a ], the integers i and j are associated with rows a._, 
I,J 

col""'' wi+-lrespect to A if a ~ 0 or a ~ 0. 
l,j j,l 

a). 

b). 

c). 

d). 

e). 

f). 

We say, the matrix A = [a I of order N is, 
I, J 

T Symmetric, if A = A • 

Orthogonal, if AT = A-1
• 

H Hermitian, if A = A. 

Null, usually denoted by 0 if a = 0, fori, j = 1, 2, ... , N. 
I, J 

Diagonal, if a = 0 for i~j. 
I, J 

i.e., li-jl > 0, where li-jl 

represents the modulus of any number (1-j). 

X 

X 

A= 

0 

'·· ..... 
"'·· ... 

X 

0 

X 

X denotes a possible non-zero 

element 

Figure 2.1-1: Diagonal matrix 

Banded, if a = 0, for li-jl > r, where 2r+l is the bandwidth of 
l,j 

A. 

g). Tridiagonal, if r = 1, see figure 2.1-2. 

A= 

X X 

X X X 0 

·····,··<"·· ... ::\'··, 

0 
X X X 

X X 

X denotes a possible non-zero 

element 

Figure 2.1-2: Tridiagonal matrix 
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h). Quindiagonal, if r = 2, see figure 2.1-3. 

i). 

J). 

k). 

1). 

X X X 

X X X X 0 
X X X X X 

A= ········· ... :::····· ... :::····· ... ::···· .... :::····· ..... , 

X X X X X 

0 X X X X 
X X X 

X denotes a possible 

non-zero element 

Figure 2.1-3: Quindiagonal matrix 

Lower triangular, (strictly lower triangular), if a = 
I, J 

1 < j, (i :s J). 

Upper triangular, (strictly upper triangular), if a = 
I' J 

i > j, (i i!: Jl. 

0, for 

0, for 

Sparse, if a relatively large number of its elements a are zero. 
I, J 

Dense, if a relatively large number of its elements a 
I, J 

are 

non-zero. 

m). Block Diagonal, if each D
1

, 1 = 1, 2, ... , s, (see figure 2.1-4) is 

a square matrix, but not necessarily of the same order. 

n). 

D 
1 

D 0 
2 

A '·· = ·· .. 
•··· .... 

0 
D 

s-1 

D 
s 

Figure 2.1-4: Block Diagonal matrix 

Block Tridiagonal, if each D, i = 1, 2, ... , s is a square matrix, 
I 

but not necessarily of the same order, while the E' s and F' s are 

rectangular matrices, as in figure 2. 1-5. 
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A= 

0 

F 
2 

0 

'··,······.... ············.••• ············· ... 

E D F 
s-1 s-1 s-1 

E D 
s s 

Figure 2.1-5: Block Tridiagonal matrix 

Young [1971], referred to this matrix as aT-matrix. 

2.2 Diagonal dominance and irreducibility 

First, we define diagonal dominance of a matrix A. 

Definition 2.2-1 

A matrix of order N is diagonally dominant if 

N 

l a I > ~ la I for all 1 ~ i ~ N 
11 -L.. lj' 

t j =1 , 
l''l 

and for at least one i 

N 

la I > L la I. 
1,1 l=l I,J 

] "I 

(2.2-1) 

(2.2-2) 

If (2.2-2) holds for all 1, we say A has strong diagonal dominance. 

The irreducibility of a matrix A as defined by Young [1971] is as 

follows: 

Definition 2.2-2 

A matrix of order N is said to be irreducible if N = 1 or if N > 1 

and given any two non-empty disjoint subset S and T of W, the set of the 

first N positive integers, such that S + T = W, there exists 1 e S and 

j e T such that a " 0. Varga [1962) stated that a matrix of order 1 
I, J 

is irreducible if its single elements is non-zero, otherwise reducible. 
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If a matrix is irreducible, then we cannot . r e& .... ce. a subsystem of 

the form 

Au = b (2.2-3) 

i.e., the system of linear equations, which preserves the correspondence 

between the equations and the unknowns, and which can be determined 

independently of the larger system. 

We state the following theorem of alternative definitions of 

irreducibility as given by Young [1971). 

Theorem 2.2-1 

A is irreducible if and only if there does not exist a permutation 

matrix P such that P-1AP has the form 

(2.2-4) 

where F and H are square matrices and where all elements of 0 vanish. 

Theorem 2.2-2 

A matrix of order N is irreducible if and only if N = 1 or, given 

any two distinct integers 1 and j with 1, j = 1, 2, ... , N then a * 0 
I.J 

or there exist 1
1

, 1
2

, ... , 1 such that 
• 

(2.2-5) 

The concept of irreducibility can be shown graphically. Given a 

matrix A we construct a directed graph of A as follows. Label any 

distinct N points in the planes as 1, 2, ... , N. For each 1 and j such 

that a * 0, draw an arrow form i to j. 
I, J If a * 0 and a * 0, 

l,j j,l 

there will be an arrow from i to j and vice-versa. if a * 0, we can 
I, I 

also draw a small loop which contains the points 1, but this does not 

affect the irreducibility. The matrix is irreducible if and only if 

either N = 1 or else the graph is connected as follows. 
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Given any two distinct points i and j, then either there is an 

arrow from i to j or else there is a path of arrows from i to 1
1

, 1
1 

to 

. . . ' i to j . 
• 

For example, let us consider the matrix P given below. 

p = 

0 

1 

0 

1 

1 

0 

1 

0 

0 

1 

0 

0 

1 

0 

1 

1 

The directed graph of (2. 2-6) is given in figure 2. 2-1. 

verify that the graph is connected. 

Figure 2. 2-1 

The matrix 

(2.2-6) 

We can 

(2.2-7) 

in which its directed graph is given in figure 2.2-2 is not irreducible. 
a __ _ 

1 ·"'-._)· 2 

u3 

Figure 2. 2-2 

Its directed graph is not connected since there is no path from 

point 3 to point 1. Also, we cannot reach the point 1 or point 2 

starting from point 2 or point 3 respectively. 

We now state some fundamental theorems. 
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Theorem 2.2-3 

If A is an irreducible matrix with diagonal dominance, then 

det(A) ~ 0 and none of the diagonal elements of A are zero. 

Corollary 2.2-4 

From theorem 2. 2-3, if A is strongly diagonallj dominant, then 

det (A) ~ 0. 

We now have a sufficient condition for an Hermi tian matrix to be 

positive definite. 

Theorem 2.2-5 

If A is an Hermitian matrix with non-negative diagonal elements and 

with diagonal dominance, then A is non-negative definite. If A is also 

irreducible or non-singular, then A is positive definite. We will 

discuss in more detail positive definite matrices in Section 2.5. 

2.3 Eigenvalues and eigenvectors 

Suppose that A is a matrix of order N and x ~ 0 is a vector of the same 

order. An eigenvalue of A is a real or complex number A such that 

Ax = AX. (2.3-1) 

It is also called characteristic or latent root of A. An eigen-

vector of A is a vector x such that x ~ 0 and (2.3-1) holds for some A. 

This vector sometimes is also called the characteristic or latent vector 

of A. 

The equation (2.3-1) can be written as 

(A-H)x=O. (2.3-2) 

The non-trivial solution, x ~ 0 to equation (2.3-2) exists if and only 

if the matrix of the system is singular, i.e., leads to the theorem 

2. 3-1. 
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Theorem 2.3-1 

The number A is an eigenvalue of A if and only if 

det(A - AI) = 0. (2.3-3) 

Obviously, (2.3-3) is a polynomial equation, referred to as the charac-

teristic equation of A of the form 

(-1)Ndet(A- AI)= AN- trace(A)AN-t + •.• + (-1)det(A) 

= 0. (2.3-4) 

Since the sum and product of the roots of (2. 3-4) are trace(A) and 

det(A) respectively, thus we have 

Theorem 2.3-2 

If A is a matrix of order N with eigenvalues At' A
2

, ... , AN, then 

N 

det(Al = 11 \• 
l=t 

N 

trace(A) = I: \. 
l=t 

(2.3-5) 

The left-hand side of (2.3-3) is called the characteristic polynomial of 

A, which can also be written as, 

oc +ocA+ 
0 t 

(2.3-6) 

1 = 0, 1, 
0 0 • ' 

N-1 are constants. 

N It is clear that, since the coefficient of A is not zero, the 

equation (2.3-6) has always N roots either real or complex which are the 

N eigenvalues of the matrix A, namely as At' A
2

, ..• , AN (not 

necessarily having the same values), each of them possessing a unique 

corresponding eigenvector. 

In physical problems we rarely need to find all the eigenvalues of 

equations (2.3-2). In particular, it is often necessary to determine the 

largest eigenvalue in modulus,. where it is often termed as the dominant 

eigenvalue or spectral radius. In this section we consider one of the 

methods for obtaining the dominant eigenvalue with its corresponding 

eigenvector, called the 'Power Hethod'. 
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Before we proceed further, first let us define the term 

, normalise'. 

Definition 2.3-1 

A vector is said to be a normalised vector if it is multiplied by a 

scalar in order to limit the element size without changing its 

direction. 

The most useful normalisation for our work is described as follows: 

Suppose that u = [u
1

, u
2

, Then, in order to normalise u we 

select a scalar« such that«= maxlu I, 1 < i < N, and the normalised 
1 

T vector is· then given by [u
1
1«, u

2
/«, ... uN/«]. This method of normali-

sation ensures that the modulus of every element of the vector is less 

than or equal to 1. 

The Power Method 

Let us consider a matrix A of order N which has the eigenvalues ~ 1 • 

i = 1, 2, 0. 0, N such that one of them, \ say, is the dominant 

eigenvalue, i.e., 

(2.3-7) 

By assumption, there exists N linearly independent eigenvectors x
1

, x
2

, 

... , xN, such that their linear combination can be expressed as an 

(0) 
arbitrary vector u , i.e., 

N 

=E«x 
1 1 

1=1 

(2.3-8) 

where «
1

, i = 1, 2, ... , N are constants coefficients, not all zero. If 

(0) 
we successively multiply u by matrix A, such that 

uUJ = Au 101 (2.3-9) 

u 121 = Au (1) = A2u 101 (2.3-10) 

(2.3-11) 
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and from (2.3-1), for any eigenvalue A
1

, we have 

1 :S i :S N. (2.3-12) 

Hence 

(2. 3-13) 

Akx Ak-1 Ax k 
= = AX. 

I I I I I 
(2.3-14) 

Now, from (2.3-8) and (2. 3-11) we have 

u (k) = Aku(O) 

N N 
k k 

= A L cxlxl = L cxiA xl 
1=1 1=1 

N 
k 

= L CXI\XI (2.3-15) 
1=1 

N A 
u (k) Ak[cx x + I k * 0. or = E cx1 <x-l x 1], IX 

1 1 1 1 
I =2 1 

(2.3-16) 

Now, from the initial assumption (2.3-7), it follows that lA/\ I < 1, 

Thus, the term (A/\ lk, i = 2, 3, 

converge to zero as k ~ oo so that 

i = 2, 3, ..• , N. 0 0 • , N will 

(2.3-17) 

Hence, we can deduce that the ratio between the jth component, 1 :S j :S N 

of u (k+l) and u (k) tends to \, i. e. , 

[ 

(k+l) ] 

lim UJ = A 
(k) 1 

k ~ 00 u 
J 

(2.3-18) 

and Where U (k+l) is the un-normalised i t f A di t e genvec or o correspon ng o 

the eigenvalue \. 

It is clear that the rate of convergence depends upon the ratio 

IA
2
/A

1
1, where A

2 
= max IA

1
1, 2 < i <N. The smaller the values of this 

ratio, the faster the convergence. 
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In order to avoid the possibility of overflow, we always normalise 

(k+l) 
the vector u , i.e., we divide by the element of largest modulus in 

the vector produced. 

We now summarise the algorithm for the Power Method as follows: 

Let u (Ol be the 1nl tial vector. 

element of the largest modulus in v<t>. 

Define 

steps below. 

Step 1: 

(1) 
u 

V (k+tl -- Au(kl. 

Then, 

Let v<tl = Au<o>, and a<ll be the 

the iteration proceeds with the 

Step 2: Determine a(k+tl, 1. e., the element of largest modulus in 

V (k+ll 

(k+t l <k+l l I (k+t > 
Step 3: u = v a 

Step 4 ·. if lu(k+tl - u<kl I < h 1 i t 1 th £, w ere £ s a g ven o erance, en 

terminate the iteration, otherwise repeat from Step 1. 

At the end, i.e., if the condition in Step 4 is satisfied, then the 

(k+l) (k+l) 
values of u and a will be a good approximation to x

1 
and \ 

respectively. 

Definition 2.3-2 

Given a matrix A of order N with eigenvalues ~ , 1 < i < N, then 
I 

!I'(A) = max 1\1 
I 

is the spectral radius of A. 

Definition 2.3-3 

(2.3-19) 

Two matrices A and B of order N are similar if there exists a non-

singular matrix P such that 

B = P-1AP. 

21 
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Matrix B is said to be obtained from matrix A by a similarity 

transformation and if B is symmetric then P will 

-1 _ PT orthogonal, i.e., P - , and hence 

T 
B =PAP. 

be 

(2.3-21) 

The advantage of such a transformation is that the eigenvalues of A 

and B are the same. This can be shown as follows: 

Let A and x be the eigenvalue and the eigenvector of the matrix A 

respectively. Hence 

Ax = AX (2.3-22) 

-1 then premultiply by P , we have 

P-1 Ax = AP-1x. 

-I Thus, if u = P x, then 

X= Pu. 

Substituting (2.3-24) into (2.3-23), we get 

P-1APu = AU 

or Bu = AU. 

(2.3-23) 

(2.3-24) 

(2.3-25) 

(2.3-26) 

Thus, A is the eigenvalue of B and u is the corresponding eigenvector. 

Theorem 2.3-1 (Gerschgorin's Theorem) 

If A = [a 1 is a matrix of order N, then all the eigenvalues of A 
I,J 

lie in the union of the discs, 

N 

lA- a1, 1 1 :S J~1 1a 1 ,JI, 1 :S 1 :S N. (2.3-27) 

JO'I 

Proof: 

Let A and x be the eigenvalue and the eigenvector of matrix A 

respectively. We can normalise x so that max lx I = 1. 
I I 

Hence, from 

(2.3-1), we have 

AX = Ax (2.3-28) 
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N 
;\x='t"'ax 

I j:-
1 

l,j j' 

N 
i.e., (;\-a )x 

1, 1 1 
= '[ a

1 1
x

1
, 

J=l ' 
J''l 

Now, lxkl = 1, then 

N 
lA- a I :S 

1~1 1ak) lx11 k,k 

JO'k 

(2.3-29) 

1 :S 1 :S N. (2.3-30) 

N 
,; E I ak 

1 
I - "Dk. 

J=1 • 
(2.3-31) 

J''k 

Thus, the eigenvalue A lies within the disc 1\, say, and since ;\ is 

arbitrary, then it follows that all the eigenvalues of A must lie in the 

union of discs, i.e., 

N 

lA- a1, 11 :S 1~1 1a 1 , 1 1, 

J"'l 

Corollary 2.3-1 

then 

If A = [a1,
1
l is a matrix of 

N 
V = max 

1 ~1 1a1 .JI, 1 1:SI:SN 

N 
V = max 1~11ai,JI, 2 

t::Sj::SN 

~(A) :S min (v , v ). 
1 2 

1 ,; i ,; N. 

order N and we have 

(2.3-32) 

(2.3-33) 

(2.3-34) 

The condition (2.3-34) is a direct consequence of the facts that A 

T and A have the same eigenvalues. 

Now, let A be a tridiagonal matrix of order N 

a b 

c a b 0 

A = "·· .... ·· .. 
··•····· .... ·· ... ·· .. ··. 

0 
c a b 

c a 
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where a, b and c may be real or complex numbers, then the eigenvalues of 

A are given by 

jL'O kit i\ = a + 2vbc cos -, 
k N+t 

k = 1, 2, ... , N. (2.3-35) 

For the proof, see Smith [1978), page 113. 

2.4 Vector and matrix norms 

It is important to have some measures of the size or magnitude of a 

vector or matrix. This measure is called norm and is denoted by 11 . 11. 

Definition 2.4-1 

The norm of a vector u, denoted by 11 u 11, is a non-negative number 

satisfying the following three axioms: 

1). 11 u 11 = 0, for u = 0 and 11 u 11 > 0 if u >#- 0. (2.4-1) 

2). 11 a.u 11 = la.l. 11 u 11 for any complex scalar a., (2. 4-2) 

3). 11 U +V 11 :s 11 u 11 + 11 v 11 for any vectors u and V. (2.4-3) 

The axiom (2.4-3) is called the triangle lnequali ty. 

Also from (2. 4-3), we have 

11u-v112:11 u 11 - 11 V 11. (2.4-4) 

The most commonly used norms are the L
1

, L
2 

and L
00 

norms of u and 

they are defined as follows: 

Definition 2.4-2 

If u = [u 
1' 

L = 11 
1 

u 

L = 11 u 
2 

L = 11 u 
00 

T ... , u
9

) is a vector of order N then 

H 

11 = E lu I 
1 I 

1=1 

(2.4-5) 

1 

11 = 
2 [ ;: lu1 1

2 r (Euclidean norm) 
1=1· 

(2.4-6) 

11 = max 
00 

I u
1

1. (maximum or uniform norm). (2.4-7) 
I 
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For these three special cases, hence we can define the general L 
p 

for p > 1, 

L = 11 u 11 (2.4-8) 
p p 

Similarly, we can proceed to define the matrix norm. 

Definition 2.4-3 

A norm of a matrix A of order N, denoted as 11 A 11, as a scalar 

satisfying the following axioms: 

1). 11 A 11 > 0 and 11 A 11 = 0 if and only if A= (0] 

2). 11 aA 11 = laj.l1 A 11 for any scalar a, 

3). 11 A + B 11 :S 11 A 11 + 11 B 11 for any matrices A and B. 

4). 11 AB 11 :S 11 A 11 11 B 11 for any matrices A and B. 

In similar fashion, L
1

, L
2 

and L~ are given by 

L = 
1 

11 A 11 = max 
1 

J 

(maximum absolute column sum) 

L
2 

= 11 A 11
2 

= (maximum of AHA) 112 (Spectral norm) 

L = max 
~ 

I 

(maximum absolute row sum). 

(2.4-9) 

(2.4-10) 

(2. 4-11) 

(2.4-12) 

(2.4-13) 

(2.4-14) 

(2.4-15) 

A norm compatible with the L
2 

vector norm is the Euclidean or 

SchUr norm and is defined as follows: 

L = 11 A 11 = L la 1
2 

[ 
N ]1/2, 

2 E l,J l.J 
(2.4-16) 

Definition 2.4-4 

A matrix norm 11 A 11 is said to be compatible with a vector norm 

11 u 11 if 

11 Au 11 :s 11 A 11 • 11 u 11, for all u * 0. (2.4-17) 
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From the definition (2. 3-4) we can show that for any matrix A of 

order N and any norm, 

.f(A) :s 11 A 11. (2.4-18) 

Proof: 

Let ~1 and u
1 

be an arbitrary eigenvalue and eigenvector of matrix 

A respectively, then 

and 

I~ I . 11 u 11 = 11 Au 11 :s 11 A 11 • 11 u 11 
I I I I 

for any compatible norm. Thus, I~ I :s 11 A 11. 
I 

chosen, hence from definition (2.3-1), then 

.f(A) :s 11 A 11. 

Definition 2.4-5 

(2.4-19) 

(2.4-20) 

Since I~ I was arbitrarily 
I 

A matrix norm is said to be subordinate to the corresponding vector 

norm if it can be constructed in the following form: 

IIAII=max 
u .. o 

or equivalent to 

11 Au 11 

11 u 11 

11 A 11 = max 11 Au 11, 11 u 11 = 1. 

2.5 Positive definite and special matrices 

(2.4-21) 

(2.4-22) 

There are many definitionsfor the property of positive definiteness of a 

matrix A. 

Definition 2.5-1 

If a matrix A of order N is Hermitian, and +h-e. q .. <~d,..,.tJ"c. ]or-"" 

(x,Ax) > 0 (2.5-1) 

for all x * 0, then A is positive definite. 
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The matrix A is non-negative definite if (x,Ax) >: 0. The other 

definition of positive definiteness of 'a matrix A, is stated by the 

following theorem. 

Theorem 2.5-1 

The necessary and sufficient condition for a Hermitlan or a real 

symmetric matrix A to be positive definite is that, the eigenvalues of A 

are all positive. 

Theorem 2.5-2 

An irreducible, diagonally dominant matrix which is also symmetric 

and has positive real diagonal elements is positive definite. The proof 

of these theorems may be found in Young [1971). 

The definition of some special matrices are given as follows: 

Theorem 2.5-2 

If A = [a I is a real matrix of order N then it is said to be 
l,j 

1). an L-matrix if 

a > 0, 1 = 1, 2, ... , N 
I, I 

and (2.5-2) 

a :s 0, 1, j = 1, 2, ... , N 
l,j 

(2.5-3) 

2). a Stleltjes matrix if A is positive definite and if 

(2.5-3) holds 

3). an M-matrix if A is non-singular matrix, if (2.5-3) holds 

and if A-1 > o. 

It should be noticed that, by stating A > 0, we mean that all 

elements of the matrix A are real and non-negative. A simple matrix A 

of order 3 which satisfies these three definition of special matrices is 

A • [ -: ~: -:] 
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2.6 Property A and consistently ordered matrices 

The property A of a matrix A of order N can be defined as follows: 

Definition 2.6-1 

A matrix A = [a ] of order N is said to have property A if there 
I' J 

exists two disjoint subset S and T of W = { 1, 2, ... , N} such that if 

i ~j and if either a ~ 0 and a ~ 0, then 1 e S and j e T or else 
1' j J' 1 

i e T and j e S. 

The property A can also be defined as follows: 

Definition 2.6-2 

A matrix A of order N has Property A if there exists a permutation 

matrix P such that PAPT has the form 

(2.6-1) 

where D
1 

and D
2 

are square diagonal matrices. 

Now, we define the consistently ordered matrix as follows. 

Definition 2.6-3 

A matrix A of order N is consistently ordered if for some t there 

exists disjoint subsets 5
1

, 5
2

, ... , St of W = {1, 2, ... , N} such that 

H 

E sk = w 
k=1 

and are such that if i and j are associated, then j e S if j > i and 
k+l 

j e S if j < 1 where Sk is the subset containing 1. 
k-1 

The following theorem, can be used as an alternative definition of 

a consistently ordered matrix. 

Theorem 2.6-1 

If A is T-matrix, then A is consistently ordered. 
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The proof of this theorem can be referred to in Young [1971]. 

Our discussion also concern the ordering vector for the matrix A. 

This is defined as follows. 

Definition 2.6-4 

A column vector v of order N with integer elements, is an ordering 

vector for the matrix A of order N if for any pair of associated 

integers i and j with i ~ j we have lv
1 

- vJI = 1. 

Further, we define a compatible ordering vector for the matrix A as 

follows: 

Definition 2.6-5 

T 
An ordering vector v = [v, v, ... , vN] for the matrix A of order 

1 a 

N is a compatible ordering vector of A if: 

1). v
1 

- vJ = 1 if i and j are associated and i > j. 

2). v
1 

- vJ = -1 if i and j are associated and i < j. 

We complete this section with the following theorem. 

Theorem 2.6-2 

There exists an ordering vector for a matrix A if and only if A has 

Property A. 

Moreover, if A is consistently ordered, then the matrix A has 

Property A. Again, the proof may be referred to in Young [1971]. 

2.7 Rate of convergence 

Let us define a linear stationary iterative method as 

u(k+U = Bu(kl + C 

where B is called the iteration matrix. 
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Practically, even if the method (2.7-1) converge') it may converge 

very slowly. Hence, it is important to evaluate the effectiveness of an 

iterative method. To carry this out, we should consider both the 

computation required for each iteration and the number of iterations 

required for convergence at a given accuracy. 

Before we proceed further, let us discuss the convergence of 

sequence of matrices. 

A sequence of matrix l 11
, A

121
, A

131
, ••• all of the same order is 

said to converge to a limit A if 

llm Alkl =A. 
k--+O> 

Theorem 2.7-1 

(2.7-2) 

Th f t i Al11 A121, Al3l, e sequence o ma r ces , converges to A if 

and only if for every matrix norm 11 . 11
13

, 

llm 11 Alkl - A 11{3 = 0. 
k ---+ ., 

Theorem 2. 7-2 (V tU'"j«- [I 'l f,zl> pa.je t:,) 

(2.7-3) 

If A is a matrix of order N, then A is convergent if and only if 

J'(A) < 1. (2.7-4) 

Theorem 2.7-3 

The matrix I-B is non-singular and the series I + B + B2 + .•• 

converges if and only if J'(B) < 1. Moreover, if J'(B) < 1, then ., 
(I-B)-1 =I+ B + B2 

+ 000 = L B1
• (2.7-5) 

1=0 

The proof of these theorems may be found in Young [1971]. 

Now, we state the basic convergence criterion of the method (2.7-1). 

We say that the method (2.7-1) converges if 

(k) 
llm u = u , for all 1 

and for 

I I 
k ---+ ., 

(0) 
all starting vectors u . 
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Theorem 2.7-4 

The iterative method (2.7-1) is convergent if and only if 

!f(B) < 1. (2.7-7) 

Thus, from equation (2.4.14), we have the following corollary. 

Corollary 2.7-1 

A sufficient condition for convergence of (2.7-1) is merely that 

11 B 11 < 1. (2.7-8) 

As we have stated earlier, the rate of convergence of the method 

(2.7-1) may be determined by calculating the number of iterations at a 

predetermined accuracy. In practice, the usual approach is to iterate 

(k) 
until the norm of the error vector e is reduced to less than some 

(0) 
given tolerance, say e, of the norm of the initial vector e . 

define the error vector after k iterations as 

If we 

e(kl = u<kl - U (2. 7-9) 

where U is the exact vector solution of (2. 2-3), then applying the 

method (2.7-1) we would have 

(2.7-10) 

and hence 

= Bk (O) e . (2. 7-11) 

From (2.7-11) we have, 

11 e 
(k) 

11 = 11 Bke(ol 11 

::s 11 Bk 11 11 e 
(0) 

11. (2.7-12) 

Then if 
(0) 

"# 0, then e 

11 
(k) 

11 ::s 11 Bk 11. e 
(0) 

11 e 11 
(2.7-13) 
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We require, 

11 e (k) 11 ::s c 11 e (O) 11 (2.7-14) 

where 11 11 denotes 11 • 11 as defined in section 2. 4. 
2 

By theorem 

k (2. 7-4) we know that 11 8 11 converges to zero as k --+ ., if and only if 

!1'(8) < 1. Hence, equation (2. 7-14) can be satisfied by choosing k 

sufficiently large so that 

11 8k 11 ::s c. (2.7-15) 

If k is large enough so that 11 8k 11 < 1, then it follows that (2.7-15) 

may be written as 

k 1:: - 1 og c I ( - .! 1 og 11 8k 11 ) • 
k 

(2.7-16) 

From this inequality, we can determine a lower bound for the number of 

iterations for the iterative method (2.7-1). 

Definition 2.7-1 

For any convergent iterative method of the form (2.7-1), the 

quantity 

(2.7-17) 

is called the average rate of convergence after k iterations. 

If Rk(8
1

) < Rk(8
2

) for matrices 8
1 

and 8
2 

then for k iterations, 8
2 

is iteratively faster than 8
1

• 

Definition 2.7-2 

The asymptotic average rate of convergence is defined by 

R(8) = lim Rk(8) =-log !1'(8). 
k --+ ., 

It is true, since 

!1'(8) = lim (11 8k 11)1/k 
k --+ ., 

as proved by Young [ 1971]. 
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It is usual for iterative methods to converge slowly for substan-

tially large problems corresponding to the values of ~(B) only slightly 

less than one, and a rate of convergence nearly zero. 

k k Now, upon replacing 11 B 11 by [~(B)] in equation (2. 7-16), we see 

that c ~ [~(B)]k, we can determine a rough estimation of the number of 

iteration k, as 

k ~ - log c 
= 

- log c (2.7-20) - log ~(B) R(B) 

However, the value of k from (2.7-20) could be very much lower when 

compared with the number required, in which 11 Bk 11 will behave like 

k[~(B)]k-1 , rather than [~(B)]k, as mentioned by Young [1971]. In this 

case, the smallest value of k such that 

k[~(Bl ]k-1 
:S c (2.7-21) 

estimates the number of iteration required more accurately. 

Finally, in this section, we discuss briefly the convergence test. 

There are many convergence tests which may be used in order to determine 

the number of iterations for a given tolerance. It is obvious that a 

different stopping criterion will yield a different number of 

iterations, but the better the test, the better the accuracy which is 

achieved. In this thesis, we shall use the average test, i.e., 

llu(k+1) - u(k)ll 
I I 

------~~--- < & 
11 1 + u (k) 11 

I 

-s where & = 10 . 

for all 1, (2.7-22) 

For a small values of this test approximates the absolute 

test llu(k+U- u(k)ll, and for large values of u(k)• it approximates the 
I I I 

relative test, i.e., ( llu:k+U - u:k) 11/llu:k) 11), for all 1. 
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2.8 Finite difference approximation 

It is important to note that not all the ordinary and partial 

differential equations can be conveniently solved analytically. Very 

often the solution is so complicated that any attempt to evaluate it 

analytically is worthless. Furthermore, in partial differential 

equations, it is almost impossible to determine an analytical solution 

if some changes are made to the shape of the area of integration, or to 

the initial and/or boundary conditions. 

With the high-speed computing machine of today at our disposal, we 

turn to discrete numerical methods of solving such differential 

equations, which are expected to be more amenable. In discrete 

numerical methods the continuous systems are reduced to 'equivalent' 

discrete systems which are sui table for high-speed computer solution. 

The development of discrete approximations can proceed in several ways, 

notably finite difference methods, finite elements methods, variational 

methods and the method of lines. Here, we confine ourselves to the 

finite difference methods only. 

Let us consider the general two-point boundary value problem 

d 2U dU 
- = f(x,U,-d ), a< x < b (2.8-1) 
dx2 x 

U(a) = a, U(b) = (3. (2.8-2) 

We will employ the finite difference methods to solve (2. 8-1) 

numerically. In the finite difference procedure, we choose equal mesh 

points a = x < x < x < • • • < x < x < x = b where x
1 

= x
0 

+ ih. 
0 1 2 N-1 N N+1 

It is obvious that our boundary condi lion is given by x =a 
0 

and 

x = b, whilst the interior mesh points are x, 1 = 1, 2, ... , N. We 
N+1 I 

next replace the derivatives of (2.8-1) by suitable difference quotients 

defined in terms of the points x
1

• 
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The well known method for deriving finite difference approximations 

to problem (2. 8-1) with a given condition (2. 8-2) is based on finite 

Taylor's series expansion of the solution U(x) to that problem. 

A typical one is to use the centered difference approximations with 

the local truncation error 

U(x ) - U(x ) 

d
d [U(x )] = 1+1 1-1 

X I 2h 

d
2 U(x ) 

1-1 -!U(x )] = 
dx2 I 

(2.8-3) 

(2.8-4) 

Now, let denote u
1 

= U(x
1

) and neglecting the truncation error by 

choosing h to be small, then 

du 
-I 
dx 

= 
u - u 

1+1 1-1 

2h 
(2. 8-5) 

u -2u +u 
= ~~-~1~-~~--~~·~1 

h2 
(2.8-6) 

When the approximations (2. 8-5) and (2. 8-6) are used in (2. 8-1), we 

obtain a system of equations of the form 

u -2u +u 
1-1 I 1+1 

u = ex 0 • 

h2 

u = (3. 
N+1 

u - u 
1+1 1-1) 

2h 

1 = 1, 2, ... , N 

It is obvious that the order of the accuracy is O(h2
). 

(2.8-7) 

(2.8-8) 

In (2. 8-7) we have allocated u , u , ... , uN as the unknown vector 
1 2 

since any solution U(x) of (2. 8-1) will probably not satisfy (2. 8-7) 

exactly. We consider equation (2.8-7) as an approximation to equation 

(2. 8-1) and we hope that for sufficiently small h, the solution u
1 

of 

(2.8-7) are good approximation to U(x ). In this case, h = (b-a)/(N+1). 
I 
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dU 
It should be noticed that the functions f(x, U, dx) can either be 

linear or non-linear and we faced with solving a system of N equations 

in N unknowns. dU In practice, the function f(x,U,dx) is frequently linear 

dU 
in U and dx' 

Equations (2.8-7) and (2.8-8) can be written in a matrix form 

Au = b, (2.8-9) 

where A is a tridiagonal matrix, as given in (2.8-10), 

a d 
1 1 

c a d 0 2 2 2 

A = ........ 
···· .... ·•··••······• ... ·······•····· ... (2.8-10) 

c a d 
N-1 N-1 N-1 

0 

and the vector u and b are 

U = [U U U U ]T b = [b
1

, b
2

, ••• bN_
1

, bN]T 
1' 2' " ' N-1' N ' 

respectively. 

Let us consider the special second order equation 

(2. 8-11) 

U(a) = «, U(b) = ~ (2.8-12) 

dU in which dx does not appear explicitly. Such equations are common in 

trajectory problems or elsewhere. 

formula 

u 
1•1 

- 2u 
I 

+ u 
1+1 

the Numerov method, based on the 

1, ... , N 

(2.8-13) 

where f
1 

= f(x
1
,U(x

1 
)), is convenient here, since we do not need to 

include the computation of :. This method gives a better accuracy 

compared to the usual finite difference methods, i.e., with accuracy of 

order O(h4
). 
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The derivation of the Numerov method can be shown as follows. Let 

us write the Numerov method with some undetermined coefficients as 

u ,. Au + Bu + h2 [Cf + Df + Ef ] + R. 
1+1 I 1-1 1+1 I l-1 

(2.8-14) 

By Taylor's expansion, 

U '"U +h-(dU) 
1+1 I dx I 

+ h2 [d2U) + h3 (d3 U) + 
2 dx2 1 6 dx3 1 

h4 (d4U) + h5 (d5U) 
24 dx4 1 120 dxs 1 

+ _J{(ct6 u) 
720 d 6 X I 

(2.8-15) 

u 
1-1 

,. _ h (dU) + h2 (d2 U) _ h3 (d3U) + 
ul dx 1 2 dx2 1 6 dx3 1 

h4 (d4U) _ _}j_(ct5U) 
24 dx4 1 120 dxs 1 

+ h6 (d6U) 
720 d 6 

X I 

(2.8-16) 

(2.8-17) 

(2.8-18) 

and matching the powers of h through to the fourth power on both sides 

of equation (2.8-14), we have 

A + B ,. 1, B ,. -1, !a+C+D+E 
2 

1 
= 2' 

1 -8-C+E,. 
6 

1 

6 
and ~B + !a + !e .. ~. 

24 2 2 24 

1 These give the values A ,. 2, B ,. -1, C ,. E '" 
12' 

The fifth power also match voluntarily. 

1 and D ,. 6. 

If we pretend that all 

factors designated as (::~) are the same, then the local truncation 

error is R,.- h
6 (d6U) . 

240 dx6 1 
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The form of (2.8-7) and (2.8-13) can now be solved directly or by 

using some well known iterative methods. We will study these methods in 

the next chapter. 

2.9 Symbolic computation- an introduction to REDUCE and Mathematica 

The purpose of this section is to introduce the new tool of symbolic 

algebraic computation (or symbolic computation, in short) and point out 

its potential in the numerical modelling and simulation of field 

problems. 

Symbolic computation refers to the technique of manipulating on a 

computer, symbolic expressions that may not necessarily have numerical 

values. Therefore, techniques of symbolic computation can be used, 

among other things, to perform algebraic manipulations of mathematical 

formulae. Roughly, one can think of symbolic computation as a 

computerised version of the traditional "pencil and paper" manipulations 

of algebraic expressions commonly arising in Applied Mathematics. Thus, 

symbolic computation can significantly reduce the tedium of analytic 

calculations and increase their reliability. This capability enables 

one to carry on the analytical calculations before numerical computation 

start. 

A number of symbolic manipulation systems suitable for manipulating 

algebraic expressions have been developed over the past few years such 

as REDUCE, SYHBAL, HACSYHA and Hathematica. In this section, we will 

discuss some capabilities of the symbolic computation REDUCE and a short 

introduction on Mathematlca, i.e., a system for doing Mathematics by 

computer. We commence the discussion for the symbolic computation with 

an introduction to REDUCE. 
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REDUCE 

REDUCE is a system for carrying out algebraic operations accurately on 

relatively complicated expressions. It can manipulate polynomials in a 

variety of forms, both expanding and factoring them, and extracting 

various parts of them as required. REDUCE can also do differentiation 

and integration, as well as the manipulation of the arrays and in the 

operations of matrices. These areas are the topics of interests to the 

physicists, mathematicians and engineers. 

REDUCE is also designed to be an interactive system, so that an 

algebraic expression can be input and its value inspected before moving 

on to the next calculation. However, REDUCE can also be used in a batch 

mode by inputting a sequence of calculations and obtaining results 

without any possibility of interaction during calculations. 

To show the interactive use of REDUCE, we shall give some examples 

which illustrates comprehensively the capabilities of the system. For 

4 example, one may wish to find the expansion of (x + y) . After logging 

the SUNA at Loughborough University of Technology successfully, one then 

enter (in lower case) 

reduce 

after which REDUCE will respond with a banner line and then prompt for 

the first line of input as follows: 

REDUCE 3.4.1, 15-Jul-92 

1: 

where (1:) is automatically assigned to the first command. We can now 

begin entering a command by typing a FORTRAN-like expression, terminated 

by a semi-colon as follows: 

1: (x+y) **4; 
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The semi-colon indicates the end of expression. By pressing the 

RETURN key, the system would then input the expression, evaluate it, and 

return the result in a form like: 

x4 + 4*X3*Y + 6*X2•v2 + 4*X*Y3 + v4 

2: 

where (2:) is automatically assigned to the second command. Input may 

be in the lower or upper case, but the lower case is converted to the 

upper case by the system, such that the output is in the upper case. 

The results of a given calculation are saved in the variable WS 

(for workspace), so this can be used in the next calculation for further 

processing. For example, one could enter on line (2: ) the expression 

df(ws,y); 

which calculates the derivatives of the previous evaluation with respect 

to y, and REDUCE responds with 

4*(X3 + 3*X2*Y + 3*X*y2 + Y3). 

Alternatively, 

int(ws,x); 

would calculate the integral of the same expression with respect to x 

and REDUCE responds with 

[x•(x4 + s•x3•v + to•xl•vl + to•x•v3 + s•v4l]/E~ 

In many cases, it is necessary to use the result of one calculation 

in succeeding calculations. One way to do this is via an assignment for 

a variable, such as, 

v : = (x+y)**4; 

If we now use v in later calculation, the value of the right hand side 

of the above will be used. 
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An important class of commands in REDUCE is that which defines 

substitutions for variables and expressions to be made during the 

evaluation of expressions. Such substitutions use forms of the command 

LET. LET rules stay in effect until replaced or CLEARed. For example, 

4 after assigning the expression (x+y) to v, we can give numerical values 

to x and y and hence find the numerical values of v by using the command 

LET as follows: 

let x = 3, y = 1; 

v; 

REDUCE responds with 

256. 

But if we want to have the value assigned to another variable u (say), 

we proceed as follows: 

let x = 1, y = 2; 

u := v; 

REDUCE then responds with 

u : = 81. 

Another powerful feature of the REDUCE system is the handling of 

symbolic matrix calculations which can be performed easily. For example 

to find the inverse matrix Q of a (4,4) matrix P given by 

d b c 0 

b d b c 
p = 

c b d b 

0 c b d 

and then evaluate the matrix S (say), which results from multiplying the 

matrix Q by the matrix R, where R is given by: 
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-a c 1 

b -a c 
R = = 

c b -a 

1 c b 

The input to the system REDUCE can be written as follows: 

The Input 

matrix p(4,4), q(4,4), r(4,3), s(4,3); 

p:=mat((d,b,c,O), (b,d,b,c), 

(c,b,d,b), (O,c,b,d)); 

r:=mat((-a,c,1), (b,-a,c),(c,b,-a), 

(1,c,b)); 

q:=l/p; 

s: =q*r; 

Conments 

Specify the dimension of 

the matrices P, Q, R and S. 

Assign to the matrix P 

its elements. 

Assign to the matrix R 

its elements. 

Find the inverse of matrix 

P and assign it to matrix Q 

Evaluate the matrix product 

of P and Q and assign the 

results to S. 

In many applications, it is necessary to load previously prepared 

REDUCE files into the system, or to write output on other files. REDUCE 

offers some commands for this purpose, two of these commands are IN and 

OUT. The command IN takes a list of file names as argument and directs 

the system to input each file (which should contain REDUCE statements 

and commands) into the system. For example, 

in matrix-1, "matrix-2"; 

will first load file matrix-1, then matrix-2. Files to be read using IN 

should end with; END;. 
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The commana OUT takes a single file name as argument, and directs 

the output to that file from then on, until another OUT changes the 

output file, or SHUT closes it. For example, 

out matrix-3; 

will direct output to the file matrix-3. 

To get out from the REDUCE system we use the command BYE. This 

command stops the execution of REDUCE and return us to the computer 

system monitor program. 

Mathematica 

Mathematica is a general computer software system and language intended 

for mathematical and other applications. It is currently used by many 

researchers, engineers and analysts, as well as students at school up to 

the university level. The applications of Mathematlca span all areas of 

science, technology and business where quantitative methods are used. 

Mathematlca was first released in June 1988 for the Apple Macintosh 

computers. Versions for other workstations soon followed, including the 

version for 386-based IBM PC compatible was released which running under 

MS-DOS and Microsoft Windows. This version needs 640 kilobytes based 

memory and 4 megabytes Random Access Memory (RAM). 

Mathematica can be used as a numerical and symbolic calculator 

where the question can be keyed in, and in return, Mathematlca prints 

out the answer. It is can also be used as a visualisation system for 

function and data. Mathematica can be used as a high-level programming 

language in which we can create a program, either large or small. It 

may also be used as a modelling and data analysis environment. 
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Another facility is the creation of interactive documents that can 

mix texts, animated graphics and sound with active formulas and many 

others. 

The "dialog" with 11athematica is fairly simple. The text on the 

lines labeled In[n]:= is the input that we enter, and the lines labeled 

Out[n]:= are the response from 11athematica for a given question. Let us 

consider an example as follows. 

To solve the integral Jx4/(x2-1) dx. The dialog is as follows. 

Enter the expression x4/(x2-1) in 11athematica. 

In[l]:= xA4/(xA2 - 1) 

11athematica will response by returning the answer 

x4 
Out [ 1 1 : = _ __:_:_---;;-

2 
• 

- 1 + X 

Now, we instruct 11athematica to integrate the expression by entering 

In[2]:= Integrate[%,x) 

and the result given by 11athematica is, 

3 
Out{2]:= X + ~ + Log[-1 

2 

+ x) Log[1 + x) 

2 

Other examples can be obtained from Wolfram [1991). 

There are several reasons why symbolic computations are useful in 

the context of modelling and simulation of field problems. Some of the 

reasons cited by Brown and Hearn [1978) are listed as follows. 

1. Sometimes it is too costly, or even impossible, to solve an 

essentially numerical problem by purely numerical means because it 

involves too many variables, requires greater accuracy, or is presented 

in an ill-conditioned or intractable form. However, a symbolic trans-

formation may reduce the dimensionality, evade a large source of round-

off error, I'YI rrove.. the ill-conditioning, and otherwise change the 
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problem into one that can be solved by standard numerical methods. 

2. The algebraic result obtained via symbolic computation can be 

subsequently evaluated over a wide range of parameter values. 

3. Symbolic computation provides an opportunity for realising the 

vital computational symbiosis between numerical experiments and symbolic 

theories. 

4. Symbolic computation can be used to generate a much needed 

computational formula. 
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CHAPTER 3 

THE SOLUTION OF THE TWO POINT BOUNDARY VALUE PROBLEMS 

3.1 Methods for solving the problem 

The application of finite difference approximations to ordinary 

differential equations often generates an associated algebraic problem. 

In many cases, even for some nonlinear problem, one must solve a large 

set of a simultaneous linear equations 

Au = b (3. 1-1) 

where A is a square (often spars.e) matrix, b is a known column vector, 

and u is the unknown column vector. 

Methods of solution for general computational problems, 1. e., to 

obtain the solution vector u, can be classified into two categories -

the direct and iterative methods. Direct methods of which the solution 

of a tridiagonal system is typical, are those which yield the exact 

answer in a finite number of steps, if there were no round-off error. 

The accuracy of the final solution usually turn out to be satisfactory 

depending on the word length of the machine. The algorithm for such a 

method is often complicated and non-repetitive. These methods have 

usually been omitted from consideration because of excessive computer 

storage requirements, both in program and in the necessity to store many 

intermediate results for later use. 

It is well known that iterative methods, utilizing the great speeds 

of modern-day computers are extensively used in large scale computations 

for solving equation (3.1-1) which arise from finite difference 

approximations to elliptic partial differential equations at present. 
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These methods consist of repeated application of a simple 

algorithm. They give the exact solution only as a limit of a sequence, 

even without consideration of round-off errors. In addition, they can 

be programmed to take advantage of the zero elements in A. 

In an iterative method, one begins with an initial approximation 

and then successively modifies the approximation according to some 

rules. To be useful, the iteration must converge but it is not 

considered to be effective unless the convergence is rapid. We will 

discuss briefly the direct method for comparison, and later on, a 

greater detail on the iterative methods as these methods are our 

concern. 

3.1.1 Problem formulation 

Consider the two-point boundary value problem 

d
2
U - - + pU(x) = f(x), 

dx
2 

(3.1.1-1) 

subject to the boundary condition 

U(a) = IX, U(b) = (3 (3. 1. 1-2) 

where a and b denote the boundaries along the real axis x > 0. Here, we 

assume IX, (3 and p are given constants with p >: 0 and f(x) is a real 

continuous function on a ~ x ~ b. 

For simplicity, we place a uniform mesh of size, 

h = (b-a)/(N+1) (3. 1. 1-3) 

on the interval a ~ x ~ b, and we denote the mesh points of the discrete 

problem by 

x
1 

=a + i(b-a)/(N+1) 

= a + ih, 0 ~ 1 ~ N+1 (3. 1. 1-4) 
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as illustrated 

x =a 
0 

X = b 
N+1 

The well known method for deriving finite difference approximations 

to problem (3.1.1-1) is based on finite Taylor's series expansion of the 

solution U(x) to problem (3.1.1-1). 

Let us assume that the solution U(x) of problem (3.1.1-1) with the 

boundary condition (3.1.1-2) is of class C4 in as x s b, i.e., d4U/dx4 

exists and is continuous in the interval [a,b]. Now, denoting U(x
1

) by 

u
1

, then the finite Taylor expansion for u + is given by 
1-1 

+ h~ (d
2
U) ± h: (d

3
U) + h: (d

4
U) 

2. dx2 1 3. dx3 1 4. dx4 x = 

where 0 < le~l < 1. (3. 1. 1-5) 

2 2 By using equation (3.1.1-5), an approximation to d U/dx can be obtained 

as follows 

-u +2u -u ~(4 
= --~~-~1~--h~2~~----~1+"'1 + ~2 :x~)x = 0 s 

X + 9 h' 
I I 

le I < 1. 
I 

(3.1.1-6) 

By substituting (3.1.1-6) in (3.1.1-1) gives 

-u +2u -u 
1-1 I 1+1 

h2 
(3. 1. 1-7) 

where n· d 4
u 

= ---1. 

dx4 

If we take h small, then the term h
2 

W can be neglected. 
12 

Thus, 

the equation becomes 

- u + Zu - u 
1-1 I 1+1 

f + pu = 
h2 I I 

(3. 1. 1-8) 

or simplified to 

-u + 2gu - u = h2
f 

1-1 I 1+1 I' 
1 s 1 s N (3. 1. 1-9) 

where g = 1 + 1 h2 u = oc and u = (3. 2.P • 0 N+1 
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Equation (3.1.1-9) can be written in the matrix form Au = b, where 

and 

The 

2g 

-1 

-1 

2g -1 0 
A= ·····,·····.... ········•••·•..• ············ .... 

0 -1 2g -1 

-1 2g 

[u1, 
T u = u2, •• 0 , u UN] ' N-t' 

2 h2f' h
2
f /3+h2fN] r. b = [a:+h f • ... , 

1 2' N-t' 

solution vector u of the system of linear 

discrete approximation to the exact solution u(x). 

(3. 1. 1-10) 

equations is the 

The difference 

between this discrete approximation u
1 

and U(x
1

) can be made arbitrarily 

small for all 0 < i < N+l by choosing the mesh spacing h sufficiently 

small. 

3.1.2 The Gaussian elimination (direct) method 

This method, when applied to solve equation (3. 1-1), is very efficient 

and stable against the growth of rounding error because of. the positive 

definiteness property of A. For this problem, i.e., with the matrix A 

in (3.1.1-10), we may express the method as 

b = 2g, w = - 1/b; 
1 

w = - ll(b + 
I 

w )· 
l-1 , 2 :S i :S N-1. 

p1 = h2
b/b; PI = (h2b + p )/(b + w )· 

I 1-1 1-t t 
2 :S i :S N. 

z = pH; z = PI - w p . 1 :S i :S N-1. 
N I 1 1+1, 

However, for problems with two or more dimensions, 1. e. , partial 

differential equations, it is difficult to apply the direct methods and 

the application of iterative methods poses lesser problems. 
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3.1.3 The Jacobi iterative method 

The simplest of the iterative methods is that attributed to Jacobi, 

sometimes known as the method of Simultaneous Displacements. It is not 

widely used in practice, but its theoretical interest may provide a 

convenient starting point for our next discussion. 

Thus, solving Au = b will give us a reasonable approximation to the 

solution of the two-point boundary value problem (3.1.1-1). 

The matrix A of (3.1.1-9) can be expressed as 

A = 2g[I - B) (3. 1. 3-1) 

where B is NxN real symmetric matrix given explicitly by 

0 1 

1 0 1 0 
'·· '······ ... '\· ... 

B 
1 ···· .... ·· .. 

(3. 1. 3-2) = 2g ····· ... ····.\····· ... 
·· .. 

···· .... ····· ... 
·· .. 

0 1 0 1 

1 0 

It is easy to verify that the vector x(Jl, is the eigenvector of B 

for each j where its ith component x(Jl defined as sin (ijnh), 1 ~ i ~ N 
I 

and the corresponding eigenvalue ~ is given by 
J 

~ = =2_c:..:o;.;;s;7-(j"-'n:::h:..:..l 
J 2g 1 ~ j ~ N. (3.1.3-3) 

Clearly, the spectral radius !f(B) = max I~J 1. 1 ~ j ~ N is less 

than one and thus, from (3.1.3-1), A is positive definite. Thus, since 

-1 
!f(B) < 1, then A can be expressed in the form of the convergent matrix 

infinite series 

= 
2
!cr + B + B

2 
+ ..• J. (3.1.3-4) 
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Since all entries of B from (3.1.3-2) are non-negative, then so are 

all the powers of Bin (3.1.3-4). -1 Hence A only has the non-negative 

real entries. 

Now, from (3.1.3-~). let us form 

u=Bu+c (3.1.3-5) 

where c = b/2g and consider the following iterative method, called the 

Jacobi iterative method 

u (k+l) = Bu (k) + c, k > 0 (3. 1. 3-6) 

or in point form 

Ck+ll Ckl _ ....!.(zgu Ckl _ u Ckl 
ul = ul 2g 1 1-1 u - h c (k) 2 ] 

1+1 1 , 

(3. 1. 3-7) 

(0) 
where u is the initial guess of the unique solution of (3.1.3-6). 

We now seek to prove the convergence of the Jacobi iterative method. 

(k) (k) 
We define the error e = u - u at each iteration, where u is 

th t 1 ti f (3 1 1 1) to Obtain e (k+ll = Be(kl. e exac so u on o . . - , Now, take 

the difference between (3.1.3-6) and (3.1.3-5), we have 

u = B(uCkl - u) 

Ck+ll = B Ckl e e . (3. 1. 3-8) 

Equation (3.1.3-8) can be deduced to 

k > o. (3. 1. 3-9) 

The eigenvectorS {xJ}N of the real symmetric matrix B can be shown k+l 

to form an orthonormal basis for the associated N dimension vector 

space. Thus, there exists some constants dJ such that 

(0) 
e 

N 

= L d x 0 l 
j=l J 

where Bx(Jl = 1.t x(Jl, and from (3. 1. 3-9) if follows that 
J 

(k) 
e = N!:: 0. 
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Since I~JI < 1, 1 < j < N, e(k) clearly tends to the zero vector for any 

initial e (O) and this method converges for any initial guess u (O) In 

addition, each component of the error e(kl is reduced at every iteration 

by the factor Y(B), i.e., 

Y(Bl = max I~J I 

= max 2 cos (jnh l I 
2g 

1 2 2 4 = max I 1 - -(rr + p)h + O(h ) 
2 

(3. 1. 3-12) 

Although the method (3.1.3-7) does converge, it can be extremely 

very slowly convergent for small h. 

For our model problem, we now write the algorithm for the Jacobi 

iterative method as follows: 

Algorithm 3.1.3-1: The Jacobi iterative method. 

Set U <k> = o u<k> = o 
0 ' N+l ' 

Step 1. 
(k+l) To compute u 

for i = 1 to N, compute 

= (b + u<kl + (kl )/2 u 1 g. I 1-1 I+ 

Step 2. Repeat Step 1 until convergence is achieved. 

3.1.4 The Gauss-Seidel iterative method 

A simple modification of the Jacobi iterative method leads to the Gauss-

Seidel iterative method, is a better practical proposition. It is also 

known as the method of Successive Displacement. Instead of waiting to 

use the improved value at the end of the current iteration which is to 

be substituted into the next iteration, we now use the updated value as 

soon as they become available. 
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Now, let us express the matrix B of (3.1.3-2) as the sum of L + U, 

where L and U are strictly the lower and upper triangular matrices 

respectively. Then from (3.1.3-5), we have 

u = (L+U)u + c. (3. 1. 4-1) 

T Since U = L, equation (3.1.4-1) then becomes 

u = (L+LT)u + c (3. 1. 4-2) 

and after some rearrangement, we will have 

(3. 1. 4-3) 

Now, since L is strictly lower triangular, then (I-Ll is non-singular 

matrix. Thus, we can multiply (3.1.4-3) on both sides by (I-L)-1 which 

will give the form 

u = (I-L)-1LTu + (I-L)-1c. (3.1. 4-4) 

Now, we define the Gauss-Seidel method as, 

k l: 0. (3. 1. 4-5) 

It appears that the method (3.1. 4-5) is implicit. From the definition 

of matrix Bin (3.1.3-2), however, the method can be written in point 

form as 

(k+1) 
ul --2gu -u -u 1 [ (k) (k+1) (k) 

2g I 1-1 1+1 
1 :s 1 :s N. 

(3.1.4-6) 

It can be shown that (3. 1. 4-6) is an explicit method. Starting 

with k = 1, and taking an initial guess u = ex, 
0 

as from equation 

(3.1.1-1), the new value u(k+
1

l in (3.1.4-6) is solved in terms of the 
1 

old values of u~kl and u~kl. (k+!) 
Similarly, the new u can be obtained a 

i t f th t 1 f U (k+!l h 1 f (k) n erms o e recen va ue o 
1 

and t e old va ue o u
3 

• In 

general, for the ith component, i.e., the new u(k+
1

l is computed from 
I 

the latest value of u (k+ll and the old value of u (kl. 
1-1 1+2 
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We now seek the eigenvalues A of the Gauss-Seidel iteration matrix, 

(3. 1. 4-7) 

that is the roots of det(AI - ~Gs) = 0. Since det(I-L) = 1, then 

det(I-L)det(AI - ~ ) = det[Al- (AL +LT)] 
GS 

= 0. (3. 1. 4-8) 

In the same manner as before, it can be shown that the vector w(J>, 

with the ith component w(J), defined as -r: 1
/

2sinUjnh) is the eigenvector 
I 

T 1/2 of -r:L + L for any 1:, with the corresponding eigenvalue 1: JLj" Thus, 

with 1: =A, there is a natural pairing from (3.1.4-8) of the eigenvalues 

A of ~cs with the eigenvalues JL of B by the relationship 

A = IL2 

The relation (3.1.4-9) can be shown as follows: 

det(J!I-B) = 0 

For our model problem, the matrix Bin (3.1.3-2) gives 

det 

I! 

1 
···. ·· ...... 

0 

1 

11 
··· .... 

·· ....... 

1 

·· ... .. ·· ..... 
1 

0 
······· ..... 

.. ...... = 0 

IL 1 

1 IL 

Now, for the Gauss-Seidel method, i.e., from (3.1.4-8), then 

A -1 

-A -1 0 

det 
·· .. 

········· ... \ .. , 
·· .. 

............ ···.\ ..... = 0 

'·· ·· .. 
0 -A A -1 

-A A 

Now, for any non-singular matrix Q, 

det (Q-1 ~ Q) = det (Q-1 )det (~ )det (Q) 
GS GS 

(3. 1. 4-9) 

(3. 1. 4-10) 

(3. 1. 4-11) 

(3.1.4-12) 

(3. 1. 4-13) 

If we choose the appropriate Q, then from (3.1.4-12) det(Q-1~GsQ) 

could give us a symmetric matrix 
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A _AI/2 

-AI/2 _AI/2 0 
A 

··· .... 
'···,·········· ... 

···· ... 
(3. 1. 4-14) det · ............ ·· ... = 0 

........ 
-AI/2 A _AI/2 

0 _AI/2 A 

112 Since A ~ 0, then we can divide every element by -A . Thus, the 

equation (3.1.4-14) becomes 

-A 1/2 1 

0 
1 1 

·· .. 
det ····•••····· .... = 0 

0 
1 1 

Now, from (3.1.4-11) and (3.1.4-15), it is clear that 

-AI/2 = 1.1 

which on squaring it, yields the identical form of (3.1.4-9). 

(3. 1. 4-15) 

(3. 1. 4-16) 

Thus, from this relation, it can be concluded that the Gauss-Seidel 

iterative method does converge and its rate of convergence is twice 

cu: fast .. s that of the Jacobi iterative method. 

For the model problem, the algorithm for the Gauss-Seidel iterative 

method may be written as follows: 

Algorithm 3.1.4-1: The Gauss-Seidel (G-S) iterative method. 

Set u(kl = 0 u(kl = 0 
0 , N+t • 

Step 1. To compute u!k+!l 

for 1 = 1 to N, compute 

(k+1) 
ul = (b + u!k+ll + u(k1l )/2g. 

l t-1 l+ 

Step 2. Repeat Step 1 until convergence is achieved. 
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3.1.5 The Successive Overrelaxation (SOR) method 

A further simple modification of our improved Gauss-Seidel iterative 

method leads to a method which is more powerful, called the Successive 

Overrelaxation method (SOR). It is also known as the extrapolated Gauss 

Seidel method. 

If we multiply both sides of equation (3.1.4-2) by the real 

parameter w, the relaxation factor and then add u to both sides of the 

resulting equation, then we have the new equation 

u + uw = u + w[(L + LT)u +cl 

and after some rearrangement, (3.1.5-1) then becomes 

(3.1.5-1) 

(I-wL)u = {(1-w)I + wLT}u +we. (3.1.5-2) 

The matrix (I-wL) is non-singular for any choice of w, since L is a 

strictly lower triangular matrix. Thus, we can multiply both sides of 

-1 equation (3.1.5-2) by (I-wL) , which will give 

(3. 1. S-3) 

Now, the SOR method can be defined as 

(k+ll -1 T (k) -1 u = (1-wL) [ (1-w)I + wL ]u + w(I-wL) c, k ;,: 0. (3. 1. 5-4) 

Again, it appears that the method (3.1.5-4) is an implicit method. From 

(3.1.3-2), however, the method (3.1.5-4) may be rewritten equivalently 

in point form as 

(k) w [ (k) (k+1) (k) = u
1 

- - 2gu - u - u 2g I 1-1 1+1 
1 :S i :S N. 

(3. 1. 5-5) 

It can be verified that the method (3.1.5-5) is an explicit 

iterative method as we have shown for the Gauss-Seidel method in the 

previous section. 

In analogy with the Gauss-Seidel method, we simply seek the eigen-

values ~ of the matrix 
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!£ 
-1 T = (I-wL) [ (1-w)I + wL l (3.1.5-6) 

w 

i.e., the roots of det(?.I- !£) = 0. Since det(I-wL) = 1, then w 

det(I-wL)det(?.I-:t,) = det[(~+w-1)1 - w(?.L + LT)] 

= 0. (3. 1. 5-7) 

For our model problem, we have 

?.+w-1 -w 
0 

-w?. ?.+w-1 -w 

det = o. (3.1.5-8) ··········,· ... 
'• .. 

··,········ .... 
·· .. 

····•··· •.. 
····· .... 

0 
-w?. ?.+w-1 -w 

-w?. ?.+w-1 

Having performed the same manipulation as for (3. 1. 4-12), then 

using (3.1.5-8), we will have the symmetric matrix 

A+w-1 _,_1/2 
w 0 

-?. 1/2 ?.+w-1 _,.1/2 --w 
det ···· .... ········ .... ·· .. 0. ····· ..• = ., (3. 1. 5-9) 

_,.1/2 ?.+w-1 -?. 1/2 

0 
w 

_,.1/2 A+w-1 
w 

Since?.$ 0, then we can divide every element in (3.1.5-9) by -?.112 

gives 
D 1 

0 
1 D 1 

det 
····· ... ·· ...... ··· ...... 

0 ····•··· .... ........ .. .......... = 
·· .. 

0 1 D 1 

1 D 

where D = - ?.+w-1 . 
WA1/2 

Thus, from (3.1.4-11) and (3.1.5-10) we can conclude that 

?.+w-1 
---=JL 

WA1/2 
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and having squared it, we have 

2 2 2 
(;\+w-1) = AW 1-1 • (3. 1. 5-12) 

It is obvious that, if we take w = 1, then the relation (3.1.5-12) 

will yield the form of (3. 1. 4-9). Clearly, the relation (3. 1. 5-12) 

shows that the SOR method does converge and the rate of convergence 

depends entirely on w. 

By putting w = 1, the rate of convergence for this method is the 

same as the Gauss-Seidel method. However, we can verify that there is 

only one value of w which will give the best possible rate of 

convergence, i.e., that which minimizes the spectral radius of l. w 

The determination of a suitable value for the relaxation factor w 

of the SOR method is very important, and particularly the optimum value 

of w, denoted by wb, which minimizes the spectral radius of the SOR 

iteration matrix and thereby maximize the rate of convergence of the 

method. For an arbitrary set of linear equations, there is no formula 

to determine wb, though a simple but time consuming procedure in order 

to estimate wb is to run the problem on the computer for a range value 

of w that will give some idea of the values which shows the best rate of 

convergence. But, indeed it is well known that Wt.- Y ~ [1'1 :T!) 

m in !l(l ) = !l(l ) = w - 1 w w b 
b 

where 

2 w = b 

J 1 + 1 - !12(8) 

(3. 1. 5-13) 

If 1-1 is the spectral radius of B, then 

2 w = b 

J 1 + 1 2 
- J.1 

(3. 1. 5-14) 
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Thus, the spectral radius of :e is given by w 
b 

!P(:£. = w - 1 w b 
b 

2 
- 1 = 

1 + ~ 1 
2 

- IL 

1 - ~ 1 
2 

- IL 
= (3. 1. 5-15) 

1 + ~ 1 
2 

- IL 

Using the result of (3. 1. 3-12). we see that 

!P(:£. w = 1 - 2 (~n2 + p)h + O(h
2
), h > 0. (3. 1. 5-16) 

b 

Now, we state two theorems about the range of w that guarantee the 

convergent of the SOR method. We commence with the theorem of (Kahan 

[ 1958] ) . 

Theorem 3.1.5-1 (Kahan [1958]) 

If :£. is the SOR iteration matrix, then, w 

!P(:£. l >: lw -11, w 

for all real w. Moreover, if the SOR method converges, then, 

(3. 1. 5-17) 

0 < w < 2. (3.1.5-18) 

Proof: 

If ~ 1 are the eigenvalues of :ew' then from (2.3-5) we have, 

N 

det(:£. ) = TT~ 
W I 

1=1 

Hence, by (3.1.5-6) we have 

det(:£.w) = det[(I-wL)-1 ((1-w)I + wLT)] 

= det [ (l-wL)-1 ]det [ (1-w)I + wLT)]. 

(3. 1. 5-19) 

But (I-wL) is a lower triangular matrix with diagonal elements equal to 

T one and [ (1-w)I + wL I is an upper triangular matrix with diagonal 

elements equal to 1-w. Hence, 
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N det (£ ) = 1. (1-w) . 
w 

Then, from (3.1.5-19) and (3.1.5-20) we have, 

N N 
11 \ = (1-w) . 

1=1 

But, 

11-w)~ ~ mtl( PLir.JJ 

which implies !f(£ ) "' I (1-w) 1. w 

Now, if the SOR method converges, then 

!f(£ ) < 1, 
w 

which implies 

11- wl < 1, i.e., 0 < w < 2. 

Theorem 3. 1. 5-2 

(3. 1. 5-20) 

(3. 1. 5-21) 

(3. 1. 5-22) 

Let A be a symmetric matrix with positive diagonal elements. Then, the 

SOR method converges if and only if A is positive definite and 

0 < w < 2. 

The proof of this theorem can be found in Young [1971]. 

Let us summarize the principal findings of this section, i.e., the 

relationships between the spectral radii of the three iteration matrices 

as shown in Table 3. 1. 5-11 'rlhf.-re A 1.<;, c.. +r-i c4C..jOII<; l m&~;i-J-.Cx. 

Het hod Iteration Hatrix Spectral Radius 

Jacobi B IL 

Gauss-Seidel (I-L)- 1LT 2 
IL 

1 - j 1 
2 

-1 T - ll 
SOR with w = w (1-wL) [ (1-w)I+wL ] 

b 
+ j 1 1 

2 
- f.l 

Table 3.1.5-1: Comparison of the Spectral Radius 
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From Table (3.1.5-1), we can verify that the relation 

~(~ ) < ~(~ ) < ~(B) 
W GS 

(3. 1. 5-23) 
b 

holds for any value of ~. ~ < 1. 

Thus, so far, we may conclude that the SOR method is super.ior than 

the Gauss-Seidel method and far better than the Jacobi method. It is 

also obvious that having found the ~(B), we may determine ~(~ ) or 
GS 

~(~ ) if we wish to solve a problem via the Gauss-Seidel or SOR method 
w 

b 

respectively. 

For the model problem, the algorithm for the SOR method may be 

presented as follows. 

Algorithm 3.1.5-1: The SOR method. 

Set u!kl = 0, u!kl = 0. 
0 N+t 

Step 1. To compute u(k+ll 

for i = 1 to N, compute 

u(k+ll = w[ (b + u(k+tl + u!kl )/2g) + (1-w)u
1
!kl. 

I I 1-1 1+1 

Step 2. Repeat Step 1 until convergence is achieved. 

3.1.6 The Alternating Group Explicit (AGE) iterative method 

We now consider a class of methods for solving equation (3.1-1) which is 

based on the 'splitting' of the matrix A into two submatrices 

(3.1.6-1) 

We shall be concerned here with the situation where G
1 

and G
2 

are 

either small (2x2) block systems or can be made so by a suitable 

permutation on their rows and corresponding columns. This procedure is 

'convenient' in the sense that the work required is much less than would 

be required to solve the original system (3.1-1) directly. 
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For our model problem, we have 

g -1 g 

-1 g g -1 
g -1 -1 g 
-1 g 

·•···•··· ... 

·· .. 
···· .... 

g -1 
g -1 -1 g 
-1 g g 

if N is even, and 

g -1 g 

-1 g 
g -1 

·· ....... 
·· .. 

g -1 

-1 g 

···•· ... 
·· .. 

-1 g 
g -1 

g -1 g 

if N is odd. 

Evidently, G
1 

and G
2 

satisfy the following conditions. 

a) (ri + G
1

) and (ri + G
2

) are non-singular for any r > 0, where r 

is called the acceleration parameter. 

b) For any vectors c and d and for any r > 0, it is practical to 

solve the systems 

(ri + G )y = d 
2 

(3.1.6-2) 

in explicit form since they consist of only the (2x2) subsystems. 

Thus, (3.1-1) becomes 

(G + G )u = b 
1 2 

(3.1.6-3) 

and by applying the AGE method, u(k+
1l can be determined in two sweeps, 

i.e. ' 

(ri + G )u(k+112 l = b + (rl - G )u(kl 
1 2 

(3.1.6-4) 

(ri + G )u(k+ll = b + (ri - G )u(k+1l2l. 
2 1 

(3.1.6-5) 

Since ri + G
1 

and ri + G
2 

are non-singular, then the respective inverse 
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does exist. Thus, we can write the AGE method in the explicit form 

u(k+112l = (rl + G )-1 [b + (rl - G )u<kll 
1 2 

(3. 1. 6-6) 

u(k+1l = (rl + G l-1 [b + (rl - G )u(k+112l]. 
2 1 

(3.1.6-7) 

We now seek to analyse the convergence properties of the AGE 

method. If the true solution of (3.1-1) is u, then 

and 

(G + G )u = b 
1 2 

(rl + G )u = b + (rl - G )u. 
1 2 

Therefore, from (3.1.6-4), we have 

(rl + G )e(k+112l =- (rl - G )e(kl 
1 2 

and similarly, from (3.1.6-5) it gives 

(rl + G le(k+1l = - (rl - G )e(k+112l 
2 1 

and hence 

where 

T = (rl + G )-
1 (rl - G )(rl + G )-

1 (rl - G
2

). 
r 2 1 1 

We now prove the theorem 3.1.6-1. 

Theorem 3.1.6-1. 

(3.1.6-8) 

(3.1.6-9) 

(3. 1. 6-10) 

(3. 1. 6-11) 

(3. 1. 6-12) 

(3. 1. 6-13) 

If G
1 

and G
2 

are real positive definite matrices and if r > 0, then 

!f(T ) < 1. 
r 

Proof. 

and 

Evidently, Tr is similar to the matrix Tr, where 

T = (rl + G )T (rl + G )-l 
r 2 r 2 
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But since G
1 

and G
2 

are symmetric and since (ri - G
1

) commutes with 

-1 
(ri + G

1
) , we have 

ll(ri- G
1
)(ri + G

1
)-

1 11
2 

= Y'((ri- G
1
)(ri + G

1
)-

1
) 

= max lr- I! I (3.1. 6-17) 
I! r+J! 

where I! ranges over all eigenvalues of G
1

• But since G
1 

is positive 

definite, its eigenvalues are positive. Therefore, 

-1 Similarly, ll(ri - G
2
)(ri + G

2
) 11

2 
< 1, and we have 

Y'(T l = Y'(T l :s 11 'f 11 < 1. 
r r r 2 

(3. 1. 6-19) 

Hence, the convergence follows. 

Even if G
1 

and G
2 

are not symmetric, convergence may still hold. 

Theorem 3.1.6-2. 

If there exists a real non-singular matrix P such that G = P-1G P and 
1 1 

" -1 G = P GP have positive eigenvalues and if r > 0 then II(T )11 < 1. 
2 2 r 2 

Proof: 

As in the proof of Theorem 3.1.6-1, by a similarity transformation, T 
r 

is similar toT given by (3.1.6-15); then 'f in turn similar to 
r r 

(3. 1. 6-20) 

Since G
1 

and G
2 

have positive eigenvalues, then we can show that 

and ll(ri - G )(ri + G )-1 11 < 1. 
2 2 2 

Hence 

(3. 1. 6-21) 

64 



Now when r is constant, i.e., the stationary case, the optimum r is 

given by 

r = ViiE (3. 1. 6-22) 

where a and b are the lower and upper bounds of the eigenvalues of G
1 

and G
2 

respectively. This can be shown as follows: 

Let us now assume that G
1 

and G are real positive definite 
2 

matrices and that the eigenvalues ~ of G
1 

and v of G
2 

lie in the ranges 

0 < a :s ~ :s b, 0 < a :s v :s b. 

Evidently, if r > 0 we have 

9'(Tr) :s 9'((ri- G
1
)(ri + G1 )-

1 )~(('f"'l-t;'l-~L"l'":f:tt:;'zY 1 ) 

= (a:;~b~~ ~ ~l)(a=~~b~~ ~ ~~) 
= ( max ~~ ~ ~1))

2 

= ,P(a,b;r). 
a!!:IJ.::!i:b fl 

Since r - 7 is an decreasing function of 7, we have 
r + 7 

lr- 71 (lr- al lr- bl) max -- = max -- --
a~r~b r + r r + a , r + b · 

When r = ViiE, then 

Moreover, if 0 < r < ViiE, we have 

I 
r - b I _ lb - .fa = --'2;;.;./b.c.b...:.( ViiE'-a"'b'----r:....:....) _ > 0 , 

r + b lb +.fa (b + r)(/b + .fi.) 

and if ViiE < r, then 

I 
r - a I _ lb - .fa = _2_1b_b...:.(r_-_ViiE_a_b;;....) _ 
r + a lb + .fa (r + a)(lb + .fa) 

> 0. 

Therefore ,P(a,b;r) is minimized when r = ViiE and 

--= ( lb - .;a )2 9'(Tya;;l :5 ,P(a,b;vao) = • 
lb+.fi. 
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Thus, r = V8b is optimum in the sense that the bound ~(a,b;r) for 

1(T ) is minimized. 
r 

For the model problem, it is clear that the values of a and b are 

given by the roots of the (2x2) determinantal equation, 

;\-g -1 
det = 0 

-1 ;1,-g 

and are given by 

2 
a = g - 1 = ph /2, b = g + 1 

2 = 2 + ph /2. 

Thus the optimum parameter is 

r = V8b = hvp 

and the spectral radius is 

1<r J = ( lb - va )2 
vaE lb + va 

( ) 

1/2 

= 1 - 4 ~ for b >> a. 

Thus, the result 1(Tvab) = 1 - 2hvp. 

(3. 1. 6-30) 

(3. 1. 6-31) 

(3. 1. 6-32) 

(3. 1. 6-33) 

This shows that the convergence rate of the AGE method is of O(h) 

and similar to that given by equation (3.1.5-16) for the SOR method. 

Now for the model problem, we show the algorithmic procedure for 

the AGE method, for an even number of points N. Now, G
1 

and G
2 

are 

g -1 g 

-1 g g -1 

g -1 -1 g 

-1 g 
..... , 

·· ... 

····· ....... 

g -1 

g -1 -1 g 

-1 g g 

(k+l/2) d Hence, by applying the AGE method, one can determine u an 

(k+l) u successively from equations (3. 1. 6-6) and (3. 1. 6-7). Obviously, 

the (2x2) submatrices of (rl + G ) and (ri + G ) are of the form 
1 . 2 
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C = [IX -1] 
-1 IX (3. 1. 6-34) 

and the inverse of C ls given by 

c-1 = d [IX 

L1 ~1. (3. 1. 6-35) 
J 

where IX = r + g, and 2 
d = 1/(IX - 1). 

Hence, (k+1) (k) 
the vector u can be determined from u in two steps. 

One first determines u(k+1121 as follows 

which 

1 
(k+-) 

2 

simplifies 

1 
(k+-) 

1 2 

u 
2 

u 
3 

u 
4 

u 
N-1 

u 
N 

IX 

1 

= d 

to 

IX 

1 

= d 

1 

IX 

IX 1 

1 IX 

········ .... 
·· .. 

IX 

1 

/3 
/3 1 

1 /3 

1 

IX 

IX 1 

1 a. 

····,······ •... 

IX 

1 

b 
1 

b 
2 

b 
3 

X b + 
4 

1 b 
N-1 

IX b 
N 

1 
(k) 

u 
2 

u 

········•··· .... 
3 

u 
N-2 /3 1 

u 
N-1 1 /3 

u 
N /3 

b
1 

+ {3u
1 

(k) 

b
2 

+ {3u + u 
2 3 

b + u + {3u 
3 2 3 

b
4 

+ {3u + u 
4 5 

1 b +u +{3u 
N-1 N-2 N-1 

IX bN + {3uN 

and by using the values of u(k+1121 one determines u(k+ll 
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u 
N-2 

(k+1) 1/cx 

= 

cxd d 

d cxd 

which simplifies to 

u 
N-2 

(k+1) 

where {3 = r - g. 

1/cx 

= 

········· ... 
··, 

(3 

1 

cxd d 

d cxd 

cxd d 

d cxd 
1/cx 

1 

{3 
(3 1 

1 {3 

···· .... 

"····· ... 
·· .. 

cxd d 

d cxd 

X 

·· ...... 
(3 

1 

1/cx 

b 
1 

b 
2 

b 
3 

b 
N-2 

b 
N-1 

b 
N 

1 

{3 

b + (3u 
1 

b + u 
2 1 

b + {3u 
3 

1 

3 

+ 

1 
(k+-) 

2 

+ u 
2 

+ (3u 
2 

+ u 
4 

b +u +{3u 
N-2 N-3 N-2 

b + (3u + UN 
N-1 N-1 

b
9 

+ u + {3u 
N-1 N 

1 
(k+-) 

2 

(k+1/2) (k+1) Thus, one can write the algorithm to compute u and u as 

follows. 

Algorithm 3.1.6-1: The AGE method the model problem (3.1. 1-1). 

Set 
(k) 

u = 0, 1 = 0, ... , N+1 and ex = cxd. 
I 1 

Step 1. 
(k+1/2) To compute u • Set 1 = 1. 

while 1 :S N-1, compute 

r = b + u Ckl + /lu Ckl 
1 I 1-1 I 

r = b + {3u Ckl + u (k) 
2 1+1 1+1 1+2 
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Step 2. 

(k+1/2) 
ul 

(k+t/2) 
u 

1+1 

=a:r +rd 
I I 2 

= r
1
d + a; r 

I 2 

1 = 1 + 2. 

(k+l) 
To compute u . Set 1 = 2. 

(k+ll 
= (b + 13u (k+l/2) + u (k+l/2) )/a: u 

I I I 2 

while 1 :s N-2, compute 

r = b + u (k+l/2) + l3u (k+1/2l 
I I 1-1 I 

b 13 (k+1/2) + u (k+l/2) r = + u 
2 1+1 1+1 1+2 

u(k+1l = a:r + r d 
I I I 2 

(k+ll 
r d + u = a:r 

1+1 I 1 2 

1 = 1 + 2. 

UN(k+l) = (b + U (k+l/2) + /3U (k+l/2) )/a: 
N N-1 N 

Step 3. Repeat Step 1 and Step 2 until convergence is achieved. 

3.1.7 The computational complexity 

Now, concerning arithmetic calculations, we will estimate the amount of 

operations per iteration, required to solve the model problem via the 

Jacobi iterative method, Gauss-Seidel iterative method, SOR method and 

the AGE method. 

1. The Jacobi iterative method. 

From the algorithm 3.1.3-1, for N mesh points we need 

2N additions + N multiplications. 

2. The Gauss-Seidel iterative method. 

From the algorithm 3.1.4-1, for N mesh points we need 

2N additions + N multiplications. 
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3. The SOR method. 

From the algorithm 3.1.5-1, for N mesh points we need 

4N additions + 3N multiplications. 

4. The AGE method. 

From the algorithm 3. 1. 6-1, we evaluate the operations in two 

sweeps. 

(a) 
k+l/2 First sweep, i.e., to compute u 

To compute r
1 

and r
2

, 4 additions and 2 multiplications are needed. 

k+l/2: To compute u
1 

d 
k+l/2 an u , 
1+1 

we require 2 additions + 4 multipli-

cations. So, the amount of operations is 6 additions + 6 multipli-

cations. Since the operations are done in pairs, then the total 

operations required for N mesh points are 

(b) 

3N additions + 3N multiplications. 

k+l Second sweep, i.e., to compute u . 

For the first point, we need 2 additions + 2 multiplications. For 

the last point, we need 2 additions + 2 multiplications. The 

computation for the points in between is similar to the one in the first 

sweep. Thus, the amount of operations for every iteration is 6 

additions + 6 multiplications. Since, this is also done in pairs and 

involves N-2 mesh points, then the total operation is 

3N-2 additions + 3N-2 multiplications. 

Now, for the whole algorithm, we need 

6N-2 additions + 6N-2 multiplications. 

To summarise, the table 3. 1. 7-1 shows the amount of operations 

required for the iterative methods that have been discussed. 
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Method Multiplication Addition Overall 

Jacobi N 2N 3N 

G-S N 2N 3N 

SOR 3N 4N 7N 

AGE 6N-2 6N-2 12N-4 

Table 3.1.7-1: The amount of operations per iteration 

3.1.8 Experimental results 

Numerical results presented here are for the iterative methods described 

earlier in sections 3. 1. 3 - 3. 1. 6 for solving the two-point boundary 

value problem subject to Dirichlet boundary conditions. Four problems 

have been considered with some variations on Problem 1. Problems 1 and 

2 are linear whilst the 3rd and 4th problem are non-linear. Problem 4 

introduces the first derivative for which after replacing it with finite 

difference approximation, yields an unsymmetric matrix. 

Problem 1 - A Linear Problem 

-U" + pU = (p+1 )(sin x + cos x), 

ll U(O) = 1, U(a) = 1. 

The exact solution is U(x) = sin x + cos x. 

0 :S X 
ll 

:S-
2 

The results for various p are tabulated as follows. 

Method Jacobi G-S SOR AGE 

N iter iter w iter r 
10 194 106 1. 60 25 0.50 
20 595 329 1. 80 51 0.28 
40 1816 1027 1. 86-1.87 83 0.15 
80 5293 3104 1. 93 163 0.08 

160 13896 8703 1. 96 323 0.043 

Table 3.1.8-1: Problem 1 with p = 0 
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Method Jacobi G-S SOR AGE 

N iter iter w iter r iter 
10 160 88 1. 53-1.54 22 0.50 18 
20 492 272 1.72 42 0.29 34 
40 1514 852 1. 84 82 0. 16 72 
80 4469 2602 1. 92-1. 93 163 0.08 147 

160 12013 7421 1. 96 323 0.044-0.045 289 

Table 3.1.8-2: Problem 1 with p = 1 

Method Jacobi G-S SOR AGE 

N iter iter w iter r iter 
10 24 15 1. 12-1. 14 11 1. 21-1.27 6 
20 66 38 1. 30-1.35 21 0.57-0.66 11 
40 204 113 1. 53-1.57 40 0.33-0.35 21 
80 650 362 1. 72-1.73 75 0.18 42 

160 2020 1147 1. 85 144 0.10 84 

Table 3.1.8-3: Problem 1 with p =50 

Method Jacobi G-S SOR AGE 

N iter iter w iter r iter 
10 19 13 1. 05-1. 14 11 1. 1 - 1.6 6 
20 51 30 1. 25-1.33 19 0.5- 0.6 10 
40 156 87 1. 49-1.54 35 0.3- 0.4 19 
80 497 276 1. 69-1.71 66 0.2 37 

160 1560 881 1. 83 125 0.05 73 

Table 3.1.8-4: Problem 1 with p = 70 

Method Jacobi G-S SOR AGE 

N iter iter w iter r iter 
10 16 11 1. 08-1.09 9 1.56-1.74 5 
20 39 24 1. 22-1.27 16 0.58-0.95 9 
40 117 66 1. 43-1.50 30 0.27 0.46 16 
80 372 206 1. 64-1.67 56 0.12-0.16 31 

160 1175 660 1. 80-1.81 106 0.06 61 

Table 3.1.8-5: Problem 1 with p = 100 
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Method Jacobi G-S SOR AGE 

N iter iter w iter r iter 
10 11 8 1. 04-1. os 7 2.08-2.73 4 
20 24 15 1.11-1.17 12 o. 86-1.36 7 
40 66 38 1. 34-1.36 21 0.57 11 
80 208 116 1. 55-1.57 40 0.17 0.30 22 

160 665 371 1. 73-1. 74 76 0.08-0.09 42 

Table 3.1.8-6: Problem 1 with p = 200 

Method Jacobi G-S SOR AGE 

N iter iter w iter r iter 
10 8 6 1. 00-1. 06 6 4.0- 5.0 4 
20 15 11 1. 06-1. 11 9 1.6- 1.9 5 
40 38 23 1. 19-1.27 16 0.6- 0.9 9 
80 116 65 1. 43-1. 47 29 0.3- 0.4 16 

160 372 206 1. 65-1. 66 55 0.12 0.14 30 

Table 3.1.8-7: Problem 1 with p = 400 

Problem 2 - A Linear Problem 

- U" + U = 2sin x - x + 2, 

U(O) = 2, U(n) = 2 - n. 

The exact solution is U(x) = sin x - x + 2. 

The result is tabulated in Table 3.1.8-8. 

Method Jacobi G-S SOR AGE 

N iter iter w iter r iter 
10 115 56 1. 42 15 0.55-0.61 15 
20 360 179 1. 67 31 0.30-0.34 30 
40 1114 576 1. 78 54 0. 17-0. 19 60 
80 3550 1817 1. 88 102 0. 10 118 

160 10463 5436 1. 94 204 0.05 240 

Table 3.1.8-8: Problem 2 

Problem 3 - A Mildly Non-linear Problem. 

U" = ~ 2 • 0 :S X :S 1 

U(O) = 4, U(1) = 1. 
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The exact solution is U(x) = 4/(1 + x)
2

• 

The result is tabulated in Table 3.1.8-9. 

Method Jacobi G-S SOR AGE 

N iter iter w iter r iter 
10 197 73 1. 48-1.49 20 0.55-0.59 18 
20 603 234 1. 69 36 0.32 35 
40 1859 751 1. 883 10 0.17 12 
80 5576 2365 1. 91 139 0.09 143 

160 15733 1010 1. 95 275 0.05 286 

Table 3.1.8-9: Problem 3 

Problem 4 - A Linear Problem. 

U" + xU' - U = xex, 

U(O) = 1, U(1) = 1 + e. 

The exact solution is U(x) = x + ex. 

The finite difference approximation used for U' (x) is (u - u )/2h. 
N+l N-1 

The result is tabulated in Table 3.1.8-10. 

Method Jacobi G-S SOR AGE 

N iter iter w iter r iter 
10 188 99 1. 547-1.548 22 1. 000-1. 053 19 
20 588 306 1. 731-1.737 43 0.573 0.595 38 
40 1854 963 1. 851-1.859 83 0.312-0.320 76 
80 5684 2961 1. 921-1.933 163 0.166-0.171 153 

160 16318 8568 1. 958-1. 965 323 0.090 305 

Table 3.1.8-10: Problem 4 

The results show that the relation 

~(~ ) < ~(~ ) < ~(B) 
Wb CS 

holds for any ~ < 1, the eigenvalue of the Jacobi iterative methods, as 

~ depends on the mesh size, h, but our main interest is to look for the 

performance of the AGE method. 
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The results show the viability of the AGE method to solve the two 

point boundary value problem especially when the matrix A is diagonally 

dominant. In the case where the matrix A is strongly diagonally 

dominant, i.e., for large p, the AGE method is superior than the SOR 

method in terms of the number of iterations. 

However, for small p, where the matrix A is less diagonally 

dominant, the AGE method compares well with SOR. However, there are a 

few cases in the numerical experiments where the AGE method needs a 

slightly larger number of iterations compared to the SOR method. 

The simplicity of the method also needs to be considered. The AGE 

method is shown to be comprised of simple (2x2) block submatrix vector 

multiplications. This method can be expressed explicitly with the right 

hand side terms written in a more compact form as will be shown in later 

sections. This form, will ease the computational effort especially for 

parallel computation. 

By considering these results and the computational complexity for 

both the AGE and SOR methods, we can state that the methods are 

comparable. With the possible extensions to solving the multi-

dimensional problems, the AGE method can be shown to be more competitive 

than the SOR method. 

We will now discuss how to determine the optimal r for the AGE 

method. From the theory given in Section 3.1.6, we haver= fib, where 

a and b are the smallest and largest eigenvalues of the matrices G
1 

and 

2 
G , with a = ph /2, and b = 2 + a. This relation, however, appears to 

2 

give good results only if the matrix A is strongly diagonally dominant. 

The numerical results that indicate these agreements can be analysed as 

follows. 
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A very good agreement can be seen when p = 400, i.e., for Problem 1 

as shown in the Table 3.1.8-11 below. 

The AGE method 

N r r = lab a 
10 4.0 - 5.0 4.979 4.078 
20 1. 6 - 1.9 1. 869 1. 119 
40 0.6 - 0.9 0.821 0.294 
80 0.3- 0.4 0.395 0.075 

160 0. 12-0.14 0.196 0.019 

Table 3.1.8-11: Problem 1, p = 400, r .vs. r 
exp theory 

This agreement, however, deteriorates as p become smaller. Tables 

3. 1. 8-12 and 3. 1. 8-13 which represent the results for Problem 1 for 

p = 50 and 1 respectively, demonstrate this fact. 

The AGE method 

N r r = lab a 
10 1. 21-1.27 1. 310 0.510 
20 0.57-0.66 0.547 0.140 
40 0.33-0.35 0.273 0.037 
80 0.18 0.137 0.009 

160 0.10 0.069 0.002 

Table 3.1.8-12: Problem 1, p = 50, r . vs. r 
exp theory 

The AGE method 

N r r = lab a 
10 0.50 0.143 0.010 
20 0.29 0.075 0.003 
40 0.16 0.038 0.001 
80 0.08 0.019 0.000 

160 0.044-0.045 0.010 0.000 

Table 3. 1. 8-13: Problem 1, p = 1, r . vs. r 
exp theory 

Based on these results, when p "' 50, we may use r = lab as an 

estimation for the experimental value of r. For 0 :s p < 50, we may 

expect that the experimental value of r > lab or falls within the 

the aritho-geometric mean interval [.;ab, (a+b)/2], (Wachspress [1968]). 
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Further numerical experiments were completed on a variety of more 

difficult problems in order to ascertain the validity of this comparison 

between the AGE and SOR methods and the determination of optimal r. 

Again it was observed that in these examples the AGE matrices were only 

slightly diagonal dominant and therefore the AGE and SOR methods were 

comparable. 

Also, the optimal r occurred in the given interval [Vab, (a+b)/2]. 

However, for the problem 3 and 4, the theoretical determination of this 

interval and the bounds a and b are more complex. 

3.2 The solution with different boundary conditions (b.c.) 

There are several types of boundary conditions which arise frequently in 

the description of physical phenomena. These boundary conditions are 

needed in order to complete the formulation so that the problem becomes 

meaningful. 

It has been shown that in Section 3.1.6, that the AGE method has 

been successfully applied to the two-point boundary value problem 

subject to the Dirichlet boundary conditions. In this section, we will 

investigate further the application of the AGE method when the problem 

is subject to other boundary conditions, i.e., periodic, Neumann and 

Combined. 

Consider the second order ordinary differential equation 

d
2
U + pU(x) = f(x), 

dx
2 

(3.2-1) 

where f(x) is a real continuous function on a ~ x ~ b and p > 0. 

The boundary conditions associated to this problem is classified as 

follows: 
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1). Periodic, if U(a) = U(b) and U' (a)= U'(b). (3.2-2) 

2). Neumann, if U'(a) =a and U' (b)=~. (3.2-3) 

3). Combined, if U(a) = a and U' (b) = ~. 
or U' (a) = a and U(b) = ~. (3.2-4) 

3.2.1 Periodic boundary conditions 

For periodic boundary conditions, the mesh size is h = (b-a)IN, where N 

is the number of points on the interval [a,b]. Now, let us denote the 

mesh point x
1 

of the discrete problem as usual, i.e., 

x
1 

= a + ih, 0 ::s 1 ::s N. (3.2.1-1) 

Graphically, these points can be illustrated as 

u =u 
N 0 UO i UN 

I I --- +-1 --+---+-
x

0 
= a x

1 
x

2 
X X = b 

N-1 N 

where u 
0 

It is obvious that we are solving the N points in the 

interval [a, b]. 

Now, denoting U(x
1

) by u
1 

and applying the finite difference (F. D.) 

central approximation to the second-order derivatives, and for small h, 

we have 

-u +2u -u 
---~1-~1~--~~----~~·~1 = f 

2 + pul 1 
h 

which simplifies to 

where g = 1 + 
1 

h
2 

2p . 

unknowns. 

Since u 
0 

(3.2.1-2) 

1 ::s 1 ::s N. (3.2.1-3) 

then we have N equations for the N 

Equation (3.2.1-3) can be written in the matrix form Au = b, where 
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and 

2g -1 

-1 2g -1 0 
·· .. ·· .. 

···········.,, A 
·· .. ·· .. 

= ·•·•· .•. ·· .. 
0 

·· .. 
-1 2g 

-1 -1 

u = [ut' u
2

, ••• , 

2 
b = h [f1, f2, ...• 

-1 

(3.2.1-4) 

-1 

2g 

It can be seen that the matrix A in (3.2.1-4) has two more non-zero 

elements, i.e., one at the top right corner, and the other one is at the 

bottom left corner. These two elements show that the matrix is derived 

from a problem with periodic boundary conditions. 

Now, we split the matrix A in (3.2.1-4) into two submatrices as 

A= G + G 
1 2 

and first consider an even N which gives 

c 
c 0 

G1= ········ .... 

0 c 

with C = [g - 1] -1 g 

c 

and G = 
2 

(3.2.1-5) 

g -1 
c 0 

····•••·· ... (3.2.1-6) 

0 c 
-1 g 

We now seek to analyse the convergence properties of the AGE 

method. 

Evidently, G and G which consist of (2x2) block submatrices are 
1 2 

positive definite and symmetric. Obviously, (ri + G
1

) and (ri + G
2

) are 

non-singular for any r > 0. Thus, their respective inverse does exist. 

By using the AGE method, the iteration matrix can be written as 

Tr = (rl + G )-1 (ri - G )(ri + G )-1 (ri - G ). 
2 1 1 2 

We now need to prove that Y(T ) < 1. 
r 
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Since G
1 

and G
2 

are symmetric and since (ri - G
1

) commutes with 

(ri + G )-1 and by using a similarity transformation, 
1 

'f = ( r I + G ) T ( r I + G ) - 1 

r 2 r 2 
(3.2.1-8) 

then we have 

!f(T l = !f(T l 
r r 

= 11 rr 11 2 

= ll(ri- G
1
)(ri + G f 1 (ri- G )(ri + G )-1 11, 

1 2 2 .<.. 

:s ll(ri- G
1
)(ri + G

1
)-

1 11
2
11(ri- G

2
)(ri + G

2
)-

1 11 2 • (3.2.1-9) 

It is obvious that 

ll(ri- G
1
)(ri + G

1
)-

1 11
2

= !f((ri- G
1
)(ri + G

1
)-

1
) 

= max :r - "I < 1. 
I! r + 1-1 

(3.2.1-10) 

The matrix G
2 

can be transformed into compact (2x2) submatrices by 

T a suitable permutation matrix P where Q = PG
2
P have the same eigen-

values as G
2

. With this matrix permutation P, we have 

c 
c 0 

Q = PG P
1 

2 
= ·· .. \ 

·· .. (3.2.1-11) 

0 c 
c 

Thus, from (3.2.1-11) we can conclude that 

ll(ri - G
2
)(ri + G

2
)-

1 11z..= !f((ri - G
2
)(ri + G

2
)-

1
) 

lr - vi < 1 lr + vi · = max (3.2.1-12) 
V 

Hence, !f(Tr) = II(Trlil2< 1. Thus, the AGE method is convergent. 

N 1 th AGE method to d t i 
(k+1/2) d (k+1) ow we can app y e e erm ne u an u 

successively from equations (3.1.6-6) and (3.1.6-7). 
(k+1) 

The vector u 

can be determined from u (k) in two steps. 

as follows: 

80 

(k+1/2) One first determines u 



which 

1 

u 
2 

1 (k+-) 
2 

simplifies 

1 (k+-) 
1 2 

u 
2 

u 
3 

u 
4 

u 
N-1 

u 
N 

(l 

1 

= d 

to 

(l 

1 

= d 

1 

(l 

(l 1 

1 (l 

···· .... 
·•·· .... 

(3 
(3 

1 

1 

1 

(l 

(l 1 

1 (l 

·-········· ... 

b 
1 

b 
2 

b 
3 

X b + 
4 

(l 1 b 
N-1 

1 (l b 
N 

1 1 
(k) 

1 u 
2 

u 
3 

(3 
·., 

··••···• .... 
u 

N-2 (3 1 
u 

N-1 1 (3 
u 

N 
(3 

b + (3u + u 
1 1 N 

b + (3u + u 
2 2 3 

b + u + (3u 
3 2 3 

b + (3u + u 
4 4 5 

(l 1 b +u +(3u 
N-1 N-2 N-1 

1 (l bN+u +(3u 
1 N 

and by using the values of u(k+l/2) one determines u(k+1) 

u 
N-2 

(k+1) 

= d 

(l 

(l 

1 

1 

1 

(l 

,, 
········· ... 

(l 

1 
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1 
b 

1 
b 

2 

b3 

X + 

1 
b 

N-2 
b 

(l N-1 
(l b 

N 

(k) 



f3 1 

1 f3 
f3 
1 

which simplifies to 

1 
(k+ll 

oc 1 
u oc 1 

2 
u 1 oc 

3 
= d ···· .... 

'·· ·· .. 
u 

1 

f3 
·· .. · ..... 

··· ... 
f3 

1 

b + {3u 
1 

b2 + u 
1 

b + {3u 
3 

1 

f3 

+ u 
1 

+ {3u 

+ u 
3 

2 

2 

4 

u 
N-1 

u 
N 

1 
(k+-) 

2 

N-2 oc 1 
b +u +{3u 

N-2 N-3 N-2 

bN-1 + {3UN-1+ UN u 
N-1 1 oc 

bN + u + {3u 
N-1 N 

u 
N 

1 oc 

where oc = r + g and {3 = r - g. 

Now, consider the case when N is odd where the matrices G
1 

and G
2 

are given as follows 

c g -1 
c 

0 
c 

0 
............ ·· .. 

Gt = and G= ····· ... (3.2.1-13) 
2 

0 0 c c 
0 c c 

0 1 

with C = [g -1] c [-~ g] and C
1 

= [g -1] = -1 g • 0 -1 2g . 

We now analyse the convergence of the AGE method. 

It is obvious that G is symmetric and singular. However, for any 
1 

r > 0, (ri + G
1

) is non-singular and positive definite. 

inverse does exist. We will show that 

ll(ri- G
1
)(ri + G

1
)-1 112= !l'((ri - G

1
)(ri + G

1
)-

1
) 

lr - 111 = max lr + 111 ~ 1 
11 

holds. 
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Hence, its 

(3.2.1-14) 



From (3.2.1-13), the eigenvalues of G
1 

are 0, g- 'i(and g + 1f,• So, 

!f((ri - G
1
)(ri + G

1
J-1

) :s 1. Thus, (3.2.1-14) holds. 

We now analyse the matrix G
2 

in (3. 2. 1-13). It is obvious that G
2 

is symmetric and positive definite. By using a suitable permutation 

matrix P, it can be shown that 

Q =PG PT= 
2 

c 

0 

········· ... 

0 
(3.2.1-15) 

c 
c 

where Q is symmetric and positive definite and possess the same eigen-

values as G , with 
2 

[ 
g -1 0] c

2 
= -1 2g -1 . 

0 -1 g 

* -1 T Hence, for Q = P(rl - G
2

) (ri + G
2
J P we have 

D 
2 

0 ,. D 
Q = ·· ....... 

·· .. 
D 

0 D 

) ) 
-I -I where D

2 
= (rl- C

2 
(ri + C

2 
and D = (rl- C)(rl +C) . 

For the method to converge, we need the norm 

) 
-1 -1 

11 (ri - G
2 

(ri + G
2
J 112.= 9'( (ri - G

2
J (ri + G

2
J ) < 1. 

From (3.2.1-16), the eigenvalues of C
2 

are 

V = ~g - ~ ~g2 + 8, V = g 
1 2 2 2 , 

v
3 

= ~g + ~ Ji + 8. 
2 2 

(3.2.1-16) 

(3.2.1-17) 

(3.2.1-18) 

Since g depends on the coefficient p and the mesh size h, the least 

value of g is 1 when p = 0. When g = 1, the eigenvalues given by 

(3.2.1-18) are 0, 1 and 3. When g > 1, then it can be shown further 

that all the eigenvalues are positive. Thus, we can conclude that 
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ll(ri - G
2
)(ri + G )-1 112= !f((ri - G )(ri + G )-1

) 
2 2 2 

lr - vi 
= max lr + vi < 1. (3.2.1-19) 

V 

Hence, !f(T ) = 11 (T ) 11 2< 1. Thus, the AGE method is convergent. 
r r 

Now, by using the matrices G and G given by (3.2.1-13), we write 
1 2 

the algorithmic procedure for the AGE method when N is odd. 

From (3.1.6-6) and (3.1.6-7), one can determine uk+
1 in two sweeps 

in the usual manner. 

(k+112) 

= d 
u 

N-2 

which simplifies to 

u 
N-2 

(k+l/2) 

= d 

()'. 

1 

0 ~1/2 F1rst, to determine u . 

()'. 1 

1 ()'. 

·· .. 
····· ... 

·· .. 
()'. 1 

1 ()'. 

1/rd 

{3 
{3 1 

1 (3 
., 

·· ... ·· .. ·· .. 

1 

1 

()'. 

····••••···· .... 

()'. 1 

1 ()'. 

1/rd 
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b 

b 

X b 

b 

b 

1 

{3 1 

1 {3 
1 

1 

2 

+ 
N-2 

N-1 

N 

1 
u 

2 
u 

3 

u 
N-1 

u 
N 

+ u 
N 

+ u 
3 

(k) 

b +u +{3u 
N-2 N-3 N-2 

b + {3u + 
N-1 N-1 

bN + u
1 

+ u 
N-1 

(k) 



Now, to determine uk+
1 

From (3.2.1-13), we can write 

"' "' -1 

-1 "' 

0 

-1 

and the inverse is given by 

(rl + G )-1 = 
2 

p 

q 

5 

'·· 

0 

<Xd d 

d <Xd 

0 

···· .... 

·· ... 
'•, 

0 -1 

0 

"' 1 

-1 "' 
"' 1 

-1 "' 1 

q 5 

0 

., 
<Xd d 

d <Xd 
p 5 

5 t 

2 where p = (<X<X1 - 1)d q = d 5 = <Xd and t =<X d , and for <X = r + g, 
t' t' 1 1 

"' = r + 2g d = 1/(<X2 
- 1) and d = 1 • 1 

(k+l) Thus, u is given by 

(k+1) 

u = N-3 
u 

N-2 

p 

q 

5 

<Xd d 

d <Xd 
···· .... 

0 
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1/[<X(<X<X1 - 2)). 

b q s 1 

0 
b 

2 

b 
3 

···• .... 
<Xd d X b + 

N-3 

d <Xd b 
N-2 

p s b 
N-1 

5 t b 
N 



13 1 

1 13 
13 

1 

which simplifies to 

1 
(k+1) 

p 
u a:d d 

2 
u d 

3 
a:d 

'·· ... 
·•·· .... 

u = 
N-3 

u 
N-2 

0 
a:d 

d 
u 

N-1 
q 

u s 
N 

where 13 = r - g, /3
1 

= r - 2g. 

3.2.2 Neumann boundary conditions 

1 

(3 
·· .. 

"······· ... 

/3 
1 

q s 

0 

d 

a:d 
p s 

s t 

1 

(3 
r 

u 
N-2 

(k+1/2) 

+ u + f3u 
1 2 

+ (3u3 + u4 

(k+1/2) 

b +u +{3u 
N-3 N-4 N-3 

b +{3u +u 
N-2 N-2 N-1 

b +u +13u 
N-1 N-2 N-1 

bN + ruN 

Now with Neumann boundary conditions, the values become unknown at both 

ends of the boundary and the value of the derivatives are prescribed at 

both ends. The mesh points can be illustrated as 

X 
-1 

U' (x ) = a: 
0 

x =a 
0 

U'(x) = 13 
N 

X = b 
N 

X 
N+1 

where the mesh size is h = (b-a)/N, and N is the number of points on the 

interval [a, b). Now, let us denote the mesh point x
1 

of the discrete 

problem as usual, i.e., 

x = a + 1h, 
I 

0 ::s i ::s N. 
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Since the values at the boundaries are prescribed in terms of the 

derivatives, then we have to estimate these values. To get a better 

accuracy, this estimation can be obtained by using the centred finite 

difference approximation, for small h 

u· (x l = 
N 

u - u 
N+1 N-1 

2h 
or u 

N+1 
- u = 2hU' (x ) . 

N-1 N 
(3.2.2-2) 

From (3.2.2-2), the approximation for U' (x) and U'(x) are given by 
0 N 

u - u = 2hU' (x ) and u - u = 2hU' (x ) 
1 -1 0 N+1 N-1 N 

(3.2.2-3) 

respectively, where h is small. 

By using the usual finite difference approximation, the difference 

equation for the model problem is given by 

-u + 2gu 
1-1 I 

where g = 1 + !.ph
2

• 
2 

- u 
1+1 

O:si:sN (3.2.2-4) 

When these equations are expressed in the matrix form Au = b , then 

we have 

2g -1 
0 

-1 2g -1 

············· .•• 
·· .. ·· .. 

A = ·····•••· ... ····· •.. 
··, (3.2.2-5) 

0 -1 2g -1 

-1 2g 

where 

2 2 2 2 2 T 
b = [h f + u • h [1, h [2, • • • • h f • h f + u l . 

0 -1 N-1 N N+1 

Now, rearrange (3.2.2-3) and put in the boundary conditions then we have 

u = u - 2ha. and u = u + 2h(3. 
-1 1 N+1 N-1 

(3.2.2-6) 

By substituting u and u into the vector b and rearranging, we then 
-1 N+l 

have a new linear system of equations Au = b, where 
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2g -2 
0 

-1 2g -1 

····••••· ... ····· ... ·· .. 
A = ·· .. ····· ... (3.2.2-7) 

0 
-1 2g -1 

-2 2g 

and 2 2 2 2 2 T 
b = [h f O - 2hot, h f

1
, h f 

2
, ••• , h f N-l, h f N + 2h{3] • 

We now solve the system with N+1 number of points, including the 

two points on the boundary, i.e., u0 and uN. 

First, we consider the case when N is odd. By using the AGE 

method, we split the matrix A into two submatrices G
1 

and G
2 

as 

0 

·· .. 
····•··· .... 

c 
0 

'············· ..... 

c 0 
(3.2.2-8) 

0 
c 

0 0 

where 

c = [g -1], et = [2g 
-1 g -1 

-
2
] and c

2 
= [g 

g -2 
(3.2.2-9) 

We now seek to analyse the convergence properties of the AGE method. 

Evidently, G
1 

is singular and symmetric. However, for any r > 0, 

(rl + G
1

) is non-singular and positive definite. Thus, its inverse, 

1. e. , 
-1 

(rl + G
1

) exists. Since the eigenvalues of G are non-negative, 
1 

it can be shown that the norm 

ll(ri - G
1
)(rJ + G

1
)-

1 11 = !f((ri - G
1
)(ri + G

1
)-

1
) 

= max I~ : ~I " 1 
(3.2.2-10) 

holds. 
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Now, let us examine the matrix G . It is obvious that, for p > 0, 
2 

the matrix G given in (3. 2. 2-8) is non-singular with positive eigen-
2 

values. Thus, convergence may still hold. Moreover, for any r > 0, 

(ri + G )-1 exists, and we have 
2 

D 0 
(ri - G ) (ri + G l-1 = 

2 2 

0 D 

(ri - c
1 
)(ri 

-1 where D = + Cl) ' D = (ri- C)(ri +Cl 
1 

(ri - C
2

) (ri 
-1 

and D = + C2) • 
2 

(3.2.2-11) 

-1 

From (3.2.2-9), the respective eigenvalues of c, c and c are 
1 2 

V = g ± 1 
1,2 

and 3 !.J 2 
V = -g ± g + 8. 

3,4 2 2 
(3.2.2-12) 

For g > 1, It is obvious that these eigenvalues are positive. When 

g = 1, the eigenvalues given by (3.2.2-12) are 0, 2 and 3. 

Thus, we may conclude that 

holds. 

11 (ri - G
2

) (ri + G
2
)-

1 11 = max 
V 

(3.2.2-13) 

The equals sign both in (3.2.2-10) and (3.2.2.13), because the 

eigenvalues in G
1 

and G
2 

can have the value zero. This implies that the 
• 

AGE method is only convergent when p > 0, i.e., g > 1. 

Now, we write the algorithmic procedure for the AGE method, i.e, to 

determine 
(k+l) 

u in two steps by using the equation 

(3.1.6-7). From (3.2.2-9) and (3.2.2-11), we have 

-1 

d [: :l D = (ri + c ) -1 

[: 
D = (ri + C) = = d 

1 1 1 

and D = (ri + C l-1 = d 
[;1 :]· 2 2 1 
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(3. 1. 6-6) and 

:J 
(3.2.2-14) 



with o: = 1 = r + 2g, d = and d
1 

= 
0:2 - 1 

1 
- 2 . 

0:0:1 

I) To determine u (k+1/2) 

u 
N-2 

1 
(k+-) 

2 

= d 

which simplifies to 

u 
N-2 

1 
(k+-) 

2 llrd 

= d 

1/rd 

0: 

1 

0: 

1 

131 
1 

1 

0: 

···•· ... 

1 

0: 

'· 
·······•· ... 

0: 1 

1 0: 

2 

13 
13 1 

1 13 
............ 

·· .. 

···· .... 

0: 1 

1 0: 

1/rd 
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b 
0 

b 
1 

b 
2 

X + 

b 
N-2 

b 
N-1 

1/rd b 
N 

0 
( k) 

u 
I 

u 
2 

u 
3 

(3 1 u 
N-3 

1 (3 
u 

N-2 
(3 1 u 

N-1 
2 (3 

1 
u 

N 

b
0 

+ (3 u + 2u 
1 0 1 

(k) 

b1 + u + (3u 
0 1 

b2 + (3u + u 
2 3 

b 
N-2 

+ u + (3u 
N-3 N-2 

b 
N-1 

+ (3u + u 
N-1 N 

bN + 2u N-1 
+ (3 u 

1 N 



II) 
(k+ll To determine u . 

(k+ll 
0 p r 

u d 
1 1 q 

u a.d d 
2 

u d o:d 3 
= 

·., 
·· .......... 

u 
N-3 o:d 

u N-2 d 
u 

N-1 
u N 

r 
(3 1 

1 (3 

which simplifies to 

(k+ll 
0 p r 

u 1 
d 

1 q 
u o:d d 

2 
u d o:d 

3 
= ··········,· ... 

u N-3 a.d d 
u N-2 d o:d 
u N-1 

q 

UN r 

d 

o:d 
q 

r 

···. 
'·· ... ·· .. 

d 
1 

p 

X 

d 
1 

p 

(3 1 

1 (3 
r 

b + ru 
0 0 

b 

b 

b 

b 

b 

b 

b 

b 

0 

1 

2 

3 

N-3 

N-2 

N-1 

N 

+ 

1 
(k+-) 

0 2 

u1 
u 

2 

u 
N-2 

b + (3u1 • u 
1 2 

b + u + (3u 2 1 2 
b + (3u3 + u 3 4 

b N-3 
b N-2 

... 
+ u + (3u N-4 N-3 
+ {3u + u 

N- 2 N-1 

b + u N-1 N-2 + {3UN-1 

bN + ruN 

where f3 = r - g, {31 = r - 2g, p = o:d1, q = o:1d1 and r = 2d1 

1 
(k+-) 

2 

Now we examine G for the case when N is even. Let us consider the 
2 

splitting of A into G
1 

and G
2 

as follows: 
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0 c 
c 0 1 c 

0 ············ .... c 

0 

(3.2.2-15) ····.... and G = 
··.. 2 c 

0 c2 

where C
1 

and C
2 

as given in (3.2.2-9). 

It is obvious both G
1 

and G
2 

are singular. However, for any r > 0, 

(ri + G ) and (ri + G ) are non-singular. Thus, their inverse exists. 
1 2 

For convergence, we need 

ll(ri- G
1
)(ri + Gl)-111 = max 1~1 < 1 

ll 
r + ll 

(3.2.2-16) 

and 

11 (ri - G
2

) (ri + G2)-111 = max 1~1 < 1. r + v 
V 

(3.2.2-17) 

It has been shown that the eigenvalues of C, C and C are positive 
1 2 

for g > 1. Again, when g = 1, we have a similar situation as in the 

case when N is even. Thus, we can conclude that (3.2.2-17) and 

(3.2.2-18) hold, i.e., the AGE method is convergent for p > 0. 

Now, we write the algorithmic procedure for the AGE method, i.e., 

(k+l) 
to determine u in two steps by using the equation (3.1. 6-6) and 

(3.1.6-7). The matrices (ri + G )-
1 and (ri + G )-

1 can be determined 
1 2 

by using (3.2.2-14). 

I) To determine u (k+l/21 

u 
H-3 

u 
H-2 

1 
(k+-l 

2 1/r 
a.d 

d 

= 

d 

a.d 
....... 

· ........ 
ad 

d 
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b 
0 

b 
1 

b 
2 

d 
X + 

b 
H-3 

a.d 
b 

H-2 
q d 

1 
b 

N-1 
r p b 

N 



which simplifies to 

1 
(k+-) 

2 0 

u 
K-3 

u 
K-2 

1/r 

= 

o:d 

d 

II) To determine u (k+U. 

(k+U 
0 p r 

u d 
1 1 q 

u 
2 

u 
3 = 

u 
K-2 

u 
K-1 

u 
K 

131 2 

1 13 
13 
1 

d 

o:d 

····•···· .•• 
·· .. 

o:d 

d 

o:d d 

d o:d 

····· ... 
···· .... 

r 
13 1 

1 13 
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1 

13 
·· .. 

····· •.. 
···. 

13 

1 

d 

o:d 
q d 

1 

r p 

o:d d 

d o:d 

rU 0 
(k) 

u 
1 

u 
2 

u 
3 

1 
u 

K-2 

13 
u 

K-1 
1 r u 

K 

b
0 

+ 13 u + 2u 
1 0 1 

b1 

b 
2 

+ U + /3U 
0 1 

+/3u +u 
2 3 

b 
K-3 

b 
K-2 

b 
K-1 

+ U + /3U 
K-4 K-3 

+ l3u + u 
K-2 K-1 

+ UK-2 + /3UK-1 

bK + ruK 

b 
0 

b 
1 

b 
2 

X 
b 

3 + 

b 
K-2 

b 
K-1 

1/r b 

·· .. 
········· ... 

13 1 

1 13 
13 1 

2 131 

K 

,.u 

u 

u 

. . 
u 

u 

u 

u 

1 
(k+-) 

0 2 

1 

2 

K-3 

K-2 

K-1 

K 

(k) 



which simplifies to 

u 
N-2 

(k+1) 

= 

p 
d 1 

r 

q 
o:d d 

d o:d 
·· ... \ 

·•··· .•• 
o:d 

d 

3.2.3 Combined boundary conditions 

b 

b 

b 

b 

d 
b 

o:d 
b 

1/r b 

0 
+ ru 

0 

1 
(k+-) 

2 
+ {3u1 + u 1 2 
+ u + {3u 2 1 2 
+ {3u3 + u 3 4 

+ u + {3u N-2 N-3 N-2 
+ {3u + u 

N-1 N-1 N 

N + 2u 
N-1 

+ {3 u 1 N 

Let consider the combined boundary conditions for the problem (3.2-1) as 

U(a) = o:, U'(b) = {3 (3.2.3-1) 

The left boundary is prescribed as a Dirichlet boundary condition, 

but the right boundary is given in derivative form. As for a Neumann 

boundary condition, this boundary can be approximated by using the 

centred difference formula (3.2.2-2). 

Let us consider the mesh size h = (b-a)/N, then the value on the 

boundary can be taken as u = o: and U'(x) = {3. Graphically, the points 
o N 

can be illustrated as follows: 

X 
N-1 

Thus, we solve N equations with N unknowns, including the V«.lue. uN at 

the boundary. 

By using the usual finite difference approximation, for small h, 

the difference equation for the model problem is given by 

94 



-u + 2gu - u = h
2f 

l-1 1 1+1 1' 

2 where g = 1 + ph /2. 

In matrix form, i.e., Au = b, equation (3.2.3-2) will give 

and 

2g -1 
0 

-1 2g -1 
··, ·., ··\· ... ·· .. ··, 

A = ···• ..... ····· ... '····· .... ·· .. ·· .. 

0 
-1 2g -1 

-1 2g 

T 
u = [u

1
, u

2
, .•• , uN] , 

2 2 2 2 T 
b = [h f + a, h f , ... , h f , h f + u I . 

1 2 N-1 N N+1 

By using the approximation (3.2.2-3), then we have 

u =u +2h(3 
N+1 N-1 

Thus, the new system of linear equations becomes 

2g -1 
0 

-1 2g -1 
··, 

'• 
··, 

··,····,· ..... 
··•···••·· .... 

·· .. ., 
A = ···· ..... ·· .. 

0 
-1 2g -1 

-2 2g 

T 
U = [u , U , , , • , UN) , 

1 2 

and b = [h2f
1 

+ a, h2f
2

, ••• , h
2f , h

2f + 2h(3) T. 
N-1 N 

(3.2.3-2) 

(3.2.3-3) 

(3.2.3-5) 

(3.2.3-6) 

We now seek to analyse the convergence properties of the AGE 

method. First, let us consider the case when N is even. We split the 

matrix A of (3. 2. 3-6) into two submatrices G and G , as 
1 2 

g 
c 

''····· .. , .... 
·· .. ···. 

0 

0 

c 
0 

and G = 
2 
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c 
c 0 

·· .. ·· .. 
........ 

c 
0 c 

1 
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where 

c = [g -1] , cl = [g 
-1 g -2 

Evidently, G
1 

is singular. However, for any r > 0, 

(3.2.3-8) 

(ri + G ) is 
1 

non-singular. Thus, (ri + G )-1 exist. 
1 

It is obvious that the smallest 

eigenvalue of G
1 

in (3.2.3-7) is zero. Thus, it can be shown that, the 

norm 

holds. 

ll(ri- G
1
)(ri + G

1
)-1 11 = max 

1.1 
I~ : ~I :s 1 

For convergence, we need to show that the norm 

ll(ri - G
2
)(ri + G

2
)-

1
11 = max 

V 

also holds. 

1~1 < 1 r + v 

(3.2.3-9) 

(3.2.3-10) 

It has been shown in the previous sections that the eigenvalues of 

C and C
1 

are positive for g > 1. Since these eigenvalues belong to the 

matrix G
2 

in (3.2.3-7), then (3.2.3-10) holds. 

Thus, from (3.2.3-9) and (3.2.3-10), the AGE method is convergent. 

From (3.2.3-8), we have 

-1 
D = (ri + C) = d [: :] . 

and D = (ri + C )-1 
1 1 = dl [:1 :] . (3. 2. 3-11) 

where o: = r + g, + 2g, d = 1 and d 1 
(l = r = 1 2 1 (l(l - 2 . 

0: - 1 1 

Now, we write the algorithmic procedure for the AGE method, 1. e. , 

to determine u (k+l) in two steps by using the equation (3.1.6-6) and 

(3. 1. 6-7). 

I) To determine u (k+l/2 ). 
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u 
N-2 

I 
(k+-) 

2 

= 

which simplifies to 

I 

1 

u 
N-2 

(k+-) 
2 

= 

1/cx 

1/cx 

Ill To determine u(k+1) 

(k+1) 
cxd 

cxd d 

d cxd 

(3 

1 

cxd d 

d cxd 

d 

d cxd 

u = 
N-3 

u 
N-2 

····· ....... 
·· .. 

····· ... 
·· .. ·· .. 

cxd d 

d cxd 

1 

{3 

··••···• .... 
.. .. 

(3 

1 

·••· .... 
..... \ 

cxd d 

d cxd 

cxd d 

d cxd 
q d 

r 
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(3 
(3 

2 

1/r 

X 

I 

p 
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1 
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2 

b 
3 

X + 
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b 
N 
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(k) 
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which simplifies to 

(k+l) 

u = 
N-3 

u 
N-2 

a.d 

d 

d 

o:d 

·••· ........ 
··, 

o:d 

d 

(3 
(3 1 

1 (3 

···•···•· ... 

d 

o:d 
q d 

1 

r p 

·,, 
/3 

1 

b 
N-3 

b 
N-2 

b 
N-1 

b + 
N 

1 

f3 

+ u 

r 

u 
N-2 

+ u 
3 

N-4 
+ {3u 

N-3 

1 
(k+-) 

2 

1 
(k+-) 

2 

+ {3UN-2 + u 
N-1 

+ u + {3u 
N-2 N-1 

ru 
N 

where {3 = r- g, {3
1 

= r- 2g, p = o:d
1

, q = o:
1
d

1 
and r = 2d

1
• 

We now, analyse the convergence properties of the AGE method when N 

is odd. Consider the splitting of A into G
1 

and G
2 

as follows: 

c g 
c 

0 
c 

0 
G = '·········· ... and G = '·········· .... 1 0 

2 
0 c c 

(3.2.3-12) 

0 c 
1 

-1] 2g . 

Evidently, G
1 

is singular. However, for any r > 0, (ri + G
1

) is 

non-singular and positive definite. Thus, its inverse exists. Since 

the eigenvalues of G are non-negative, then 
1 

ll(ri - G )(ri + G J-1 11 = !J'((ri - G
1
)(ri + G

1
)-

1
) 

1 1 2 

= max 
ll I !:....:.....!: I ,; 1 . 

r + ll 

holds. 
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Evidently. the matrix G
2 

is not symmetric but all the eigenvalues 

are positive. Thus, convergence may still hold. Hence, we can conclude 

that the norm 

ll(ri - G )(ri + G )-1 11 = 
2 2 

holds. 

max 
V 1~1 < 1 r + v (3.2.2-14) 

Thus, from (3.2.2-14) and (3.2.2-15), the AGE method is convergent. 

Now, by using the equation (3. 1. 6-6) and (3. 1. 6-7), we write the 

algorithmic procedure for the AGE method, (k+l) i.e., to determine u in 

two steps as follows: 

I) To determine u (k+l/2) 

I 
(k+-) 

2 I 

= 

which simplifies to 

I 
(k+-) 

2 I 

= 

a.d d 

d O'.d 

O'.d d 

d O'.d 

'·· ... ··, 
', 

., 
.... , 

··, 

a.d d 

d O'.d 
1/r 

(3 
(3 1 

1 (3 

O'.d d 

d a.d 
1/r 
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II) To determine u (k+ll 
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N-1 
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where {3 = r - g, {3
1 

= r - Zg, p = ru:l
1

, q = a
1
d

1 
and r = 2d

1
• 

3,2.4 Experimental results 

1 
(k+-) 

2 

Numerical results presented here are for the SOR and AGE methods for 

solving the two-point boundary value problem subject to boundary 

conditions described in Sections 3.2.1, 3.2.2 and 3.2.3. 
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Four problems have been considered except for the case for periodic 

boundary conditions. Problem 1 is presented in greater detail with some 

variations on p. 

I) The results for periodic boundary conditions. 

Problem 1 - A Linear Problem 

- U" + pU = (p+1l!sin x +cos x), 0 :S X :S 2n:, 

U(O) = U(2n:), and U'(O) = U'(2n:). 

The exact solution is U(x) = sin x + cos x. 

The results for various p are tabulated as follows. 

Method SOR AGE 

N w iter r iter 
10 1. 10-1. 15 30 1. 04-1.08 10 
20 1. 44 58 0.59 16 
40 1. 68-1.69 110 0.30 31 
80 1. 84 204 o. 13 62 

160 l. 92 374 0.06 109 

Table 3.2.4-1: Problem 1 with p = 0 

Method SOR AGE 

N w iter r iter 
11 l. 29-l. 33 32 0.97-0.98 11 
21 1. 45-1. 47 61 0.52 0.54 20 
41 1. 69 112 0.26 35 
81 l. 84 206 0.13 64 

161 1. 92 377 0.06 110 

Table 3.2.4-2: Problem 1 with p = 0 

Method SOR AGE 

N w iter r iter 
10 1. 25-1.27 17 1. 41-1.42 7 
20 1. 53 32 o. 71-0.72 13 
40 1. 74 61 0.36 23 
so 1. 82 113 o. 18 42 

160 1. 91 208 0.06 73 

Table 3.2.4-3: Problem 1 with p = 1 
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Method SOR AGE 

N w iter r iter 
11 1. 26-1. 31 19 0. 67-1.07 11 
21 1. 40-1. 42 36 0.62-0.63 15 
41 1. 66-1. 67 63 0.29-0.31 26 
81 1. 82-1. 83 115 0. 14 44 

161 1. 91 210 0.06 74 

Table 3.2.4-4: Problem 1 with p = 1 

Method SOR AGE 

N w iter r iter 
10 0. 99-1. 12 9 1. 69-2.91 5 
20 1. 15-1.27 15 o. 67-1.26 8 
40 1. 42-1. 43 26 0.54-0.57 13 
80 1. 66-1. 67 47 0.27 22 

160 1. 82-1.85 83 0. 13 36 

Table 3.2.4-5: Problem 1 with p = 7 

Method SOR AGE 

N w iter r iter 
11 1. 04-1. 10 9 2.67-3.15 7 
21 1. 21-1.22 15 0. 83-1.21 9 
41 1. 42-1.45 27 0.33 0.56 14 
81 1. 67 47 0.27 23 

161 1. 85 83 0.13 39 

Table 3.2.4-6: Problem 1 with p = 7 

Method SOR AGE 

N w iter r iter 
10 0. 98-1. 04 5 13.16-16.02 3 
20 1. 03-1. 04 6 3.66-4.90 4 
40 1. 10-1. 15 10 1. 29-1.80 6 
80 1. 31-1.35 17 0.69 0.70 9 

160 1. 55-1.58 31 0.28-0.34 16 

Table 3.2.4-7: Problem 1 with p = 70 
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Method SOR AGE 

N w iter r iter 
11 0. 99-1.04 5 19.61-23.40 6 
21 1. 00-1.09 7 6.26-6.43 6 
41 1. 12-1. 14 10 1.85-2.29 8 
81 1. 33-1.34 17 0.56-0.76 10 

161 1. 56-1.57 31 0.29-0.33 16 

Table 3.2.4-8: Problem 1 with p = 70 

These results show a substantial gain in terms of the number of 

iterations of the AGE method over the SOR method. These improvements, 

are due to the commutative properties of the matrices G and G for the 
1 2 

periodic case. We now analyse the estimation of the optimal value of r. 

For the case when N is even, the bounds of the eigenvalues of the 

matrices G 
1 

and G
2 

are a = g - 1 and b = g + 1, and when N is odd, we 

have the eigenvalues for the matrix G 
1 

i.e.' 0, g-1, g+1, and for the 

matrix G
2

, 3 ~ 2 + 8, g and ~g + !..! 2 + 8. the eigenvalues are -g - g 2 g 2 2 2 

Kellogg and Spanier [1965), has stated that we can choose the 

smallest nonzero eigenvalue instead of zero, to be the lower bound. In 

this case, by inspection, the lower bound is a = g - 1 and it is obvious 

that the upper bound is given b = ~g + ~g2 + 8. 
2 2 

The numerical results presented in Tables 3.2.4-9 - 3.2.4-14 show 

some good agreement between the theoretical and experimental values of 

r, especially for the larger values of N where it can be seen that the 

optimal r adheres more closely to r = iib. 

The AGE method 

N r iib (a+b)/2 
10 1. 41-1.42 0.659 1.197 
20 0.62-0.63 0.318 1. 049 
40 0.29-0.31 0.158 1. 012 
80 0.14 0.079 1. 003 

160 0.06 0.039 1. 001 

Table 3.2.4-9: Problem 1, p = 1, re [vab, (a+b)/2) 
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The AGE method 

N r Vab (a+b)/2 
11 0.67-1.07 0.731 1. 718 
21 0.62-0.63 0.371 1. 560 
41 0.29-0.31 0.188 1. 516 
81 0.14 0.095 1. 504 

161 0.06 0.048 1. 501 

Table 3.2.4-10: Problem 1, p = 1, re [Vab, (a+b)/2] 

The AGE method 

N r r = Vab a 
10 1. 69-2. 91 2.162 1. 382 
20 0.67-1.26 0.900 0.345 
40 0.54 0.57 0.424 0.086 
80 0.27 0.209 0.022 

160 0.13 0. 104 0.005 

Table 3.2.4-11: Problem 1, p = 7, r .vs. r 
exp theory 

The AGE method 

N r r = Vab a 
11 2.67-3.15 2.386 1. 142 
21 0. 83-1. 21 1. 052 0.313 
41 0.33-0.56 0.508 0.082 
81 0.27 0.253 0.021 

161 0.13 0.127 0.050 

Table 3.2.4-12: Problem 1, p = 7, r .vs. r 
exp theory 

The AGE method 

N r r = Vab a 
10 13.16-16.02 14.784 13.817 
20 3.66-4.90 4.341 3.454 
40 1. 29-1.80 1. 573 0.864 
80 0.69-0.70 0.692 0.216 

160 0.28-0.34 0.333 0.054 

Table 3.2.4-13: Problem 1, p = 70, r . vs. r 
exp theory 
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The AGE method 

N r r = va5 a 
11 19.61-23.40 16.896 11.419 
21 6.26-6.43 5.222 3.133 
41 1. 85-2.29 1. 905 0.822 
81 0.56-0.76 0.840 0.211 

161 0.29-0.33 0.406 0.053 

Table 3.2.4-14: Problem 1, p = 70, r .vs. r 
exp theory 

From these results, we may say that the value of p ~ 12 would give 

a clear indication that the optimal value of r = vab. When 0 ~ p < 12, 

we may expect that r > va5 or re [vab,(a+b)/2). Hence, this value can 

be used as a guide to determine the experimental value of r. This 

result is in agreement with the result given in Section 3.1.8 when the 

interval of integration is taken into consideration. 

Ill The results for Neumann boundary conditions. 

Problem 1 - A Linear Problem 

- U" + pU = (p+1)(s1n x +cos x), 0 :S X :S 1r, 

U'(O) = 1, U'(n) = -1. 

The exact solution is U(x) = sin x + cos x. 

The results for various p are tabulated as follows. 

Method SOR AGE 

N+1 w iter r iter 
10 1. 516-1. 534 20 0. 142-0. 148 18 
20 1. 625 34 0.072-0.075 29 
40 1. 797 65 0.035 58 
80 1. 929 138 0.017-0.018 115 

160 1. 965 249 0.008-0.009 227 

Table 3.2.4-15: Problem 1 with p = 1 
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Method SOR AGE 

N+1 w iter r iter 
11 1. 398 19 0.125-0.155 20 
21 1. 640 35 0.067-0.069 33 
41 1. 802 66 0.034-0.035 60 
81 1. 930 139 0.017 116 

161 1. 965 251 0.008 228 

Table 3.2.4-16: Problem 1 with p = 1 

Method SOR AGE 

N+1 w iter r iter 
10 1. 23-1.24 12 0. 83-1.05 10 
20 1. 50 23 0.26-0.42 17 
40 1.72 44 0.13-0.19 31 
80 1. 81 89 0.06 58 

160 1. 90 168 0.03 113 

Table 3.2.4-17: Problem 1 with p = 5 

Method SOR AGE 

N+1 w iter r iter 
11 1. 28 12 0.79-0.94 11 
21 1. 52 24 0.24-0.41 18 
41 1.72 47 0. 12-0. 19 32 
81 1. 81 90 0.06 59 

161 1. 90 171 0.03 114 

Table 3.2.4-18: Problem 1 with p = 5 

Method SOR AGE 

N+1 w iter r iter 
10 0. 99-1. os 6 8.28-8.77 6 
20 1. 05-1. 14 10 2.18-2.65 8 
40 1. 25-1.33 18 0.68-0.78 10 
80 1. 51-1.55 33 0.28 0.34 17 

160 1.72 61 0. 15-0. 16 30 

Table 3.2.4-19: Problem 1 with p = 70 
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Method SOR AGE 

N+1 w iter r iter 
11 1. 01-1.03 6 7.07-7.11 6 
21 1. 08-1. 13 10 2.17-2.39 8 
41 1. 27-1. 33 18 0.60-0.83 11 
81 1. 52-1. 54 33 0.29-0.33 17 

161 1. 72-1.73 62 0.15 30 

Table 3.2.4-20: Problem 1 with p = 70 

Problem 2 - A Linear Problem 

- U" + u = - X, Q:Sx:Sl, 

U' (0) = (1 + 4e- e
2
)/(e

2 
- 1), 

U'(1) = (e2 + 3)/(e2
- 1). 

The exact solution is U(x) = -2~
2=e~(ex - e-x) - x. 

e - 1 

The results are tabulated in Table 3.2.4-21 and 3.2.4-22. 

Method SOR AGE 

N+1 w iter r iter 
10 1.812 48 0.016-0.018 29 
20 1. 908 96 0.0084 45 
40 1. 954 175 0.0041 83 
80 1. 977 351 0.002 163 

160 1. 989 661 0.001 323 

Table 3.2.4-21: Problem 2 

Method SOR AGE 

N+1 w iter r iter 
11 1. 829 53 0.016-0.018 29 
21 1. 912 102 0.008 45 
41 1. 955 181 0.004 85 
81 1. 977 363 0.002 165 

161 1. 989 668 0.001 322 

Table 3.2.4-22: Problem 2 
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Problem 3 - A Mildly Non-linear Problem 

- U" + 3
'
2 = 0 0 < < 1 ..V' -X-, z 

U' (0) = - 8, U' ( 1) = - 1. 

4 The exact solution is U(x) = _::...._-= 
(1+xlz 

The results are tabulated in Tables 3.2.4-23 and 3.2.4-24. 

Method SOR AGE 

N+1 w iter r iter 
10 1. 592-1. 593 22 0.353-0.423 33 
20 1. 789-1. 791 44 0.165-0.184 62 
40 1. 894 79 0.084-0.086 117 
80 1. 947 145 0.041 0.044 227 

160 1. 974 274 0.022 440 

Table 3.2.4-23: Problem 3 

Method SOR AGE 

N+1 w iter r iter 
10 1. 623-1. 628 25 0.348-0.381 37 
20 1. 799-1. 804 46 0.154-0.173 65 
40 1. 897 83 0.080-0.085 120 
80 1. 948 150 0.041-0.043 229 

160 1. 974 270 0.022 442 

Table 3.2.4-24: Problem 3 

Problem 4 - A Linear Problem 

U" + xU' - U = xex 0 ~ x ~ 1 

U' (0) = 2, U' (1) = 1 + e 

The exact solution is U(x) = x + ex. 

The results are tabulated in Tables 3.2.4-25 and 3.2.4-26. 

Method SOR AGE 

N+1 w iter r iter 
10 1. 809 52 0.248-0.327 62 
20 1. 906 100 0.141-0.150 114 
40 1. 953 188 0.069-0.072 226 
80 1. 9769 361 0.034-0.040 456 

160 1. 988 770 0.021 902 

Table 3.2.4-25: Problem 4 
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Method SOR AGE 

N+1 w iter r iter 
11 1. 826 58 0.253-0.278 63 
21 1. 910 108 0. 131-0. 114 119 
41 1. 954 195 0.069-0.073 232 
81 1. 977 372 0.036-0.040 461 

161 1. 988 789 0.021 908 

Table 3.2.4-26: Problem 4 

The AGE method again, appears to be competitive than the SOR 

method, especially when the problem is linear and the matrix A derived 

is strongly diagonally dominant. However, for the nonlinear problems, 

the AGE method again needs more iterations. 

The estimation for the optimal value of r may be determined as 

follows. For the linear problems governed by Neumann boundary 

conditions, the relation r = vab will only be satisfied when p is large 

enough. In many cases, however, as shown in the tables below, the value 

of r lie in the interval [a,vab], where a= g-1, and b = ~g + !Wg2 + 8. 
2 2 

The AGE method 

N+1 r a vab 
11 0.125-0.155 0.049 0.390 
21 0.067-0.069 0.012 0. 193 
41 0.034-0.035 0.003 0.096 
81 0.017 0.001 0.048 

161 0.008 0.000 0.024 

Table 3.2.4-27: Problem 1, p = 1, re [a,vab] 

The AGE method 

N+1 r a vab 
10 0. 83-1.05 0.305 1. 035 
20 0.26-0.42 0.068 0.461 
40 0.13 0.19 0.016 0.222 
80 0.06 0.004 0.109 

160 0.03 0.001 0.054 

Table 3.2.4-28: Problem 1, p = 5, re [a,vab] 
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The AGE method 

N+1 r a Vab 
11 7.07-7.11 3.454 5.674 
21 2.17-2.39 0.864 1. 969 
41 0.60-0.83 0.216 0.852 
81 0.29-0.33 0.054 0.408 

161 0.15 0.013 0.202 

Table 3.2.4-29: Problem 1, p = 70, re [a,Vab] 

The AGE method 

N+1 r a b Vab 
11 17.30-20.05 9.870 21.920 14.709 
21 4.90-5.88 2.467 7.438 4.284 
41 1. 54-1.93 0.617 4.054 1. 581 
81 0.46-0.58 0. 154 3.259 0.709 

161 0.23-0.24 0.039 3.064 0.344 

Table 3.2.4-30: Problem 1, p = 200 

The AGE method 

N+1 r a Vab 
11 0.015-0.016 0.005 0. 123 
21 0.008 0.001 0.061 
41 0.004 0.000 0.031 
81 0.002 0.000 0.015 

161 0.001 0.000 0.008 

Table 3.2.4-31: Problem 2, re [a,Vab] 

From these results, we conclude that, for 0 < p < 5, we may use the 

interval [a,Vab] to estimate the experimental value of r, otherwise use 

[Vab, b] for p l!: 5. For other problems, when g is variable, we may 

consider any value of r in the interval [a,b]. 

Ill) The results for combined boundary conditions. 

Problem 1 - A Linear Problem 

-U" + pU = (p+1 )(sin x + cos x), 

U(O) = 1, U'(n) = -1. 
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The exact solution is U(x) = sin x + cos x. 

The results for various p are tabulated as follows. 

Method SOR AGE 

N w iter r iter 
10 1. 742 35 0.288-0.291 38 
20 1. 863 65 0.149-0.151 73 
40 1. 929 134 0.076-0.077 141 
80 1. 964 270 0.039 277 

160 1. 982 546 0.020 521 

Table 3.2.4-32: Problem 1 with p = 0 

Method SOR AGE 

N w iter r iter 
11 1. 762 39 0.225-0.286 44 
21 1. 869 68 0.143-0.153 83 
41 1. 931 135 0.081-0.083 157 
81 1. 964 276 0.044 307 

161 1. 982 549 0.023-0.024 605 

Table 3.2.4-33: Problem 1 with p = 0 

Method SOR AGE 

N w iter r iter 
10 1. 50-1. 51 20 0.41-0.51 19 
20 1.72 35 0.21-0.25 35 
40 1. 85 65 0.12 63 
80 1. 92 127 0.06 123 

160 1. 960 227 0.034 235 

Table 3.2.4-34: Problem 1 with p = 1 

Method SOR AGE 

N w iter r iter 
11 1. 539-1. 546 21 0.419-0.462 20 
21 1. 729-1. 732 37 0.225-0.256 38 
41 1. 853 67 0.134-0.138 72 
81 1. 923 122 0.073-0.076 142 

161 1. 961 222 0.041 280 

Table 3.2.4-35: Problem 1 with p = 1 

111 



Method SOR AGE 

N w iter r iter 
10 1. 25 11 0. 75-1.06 11 
20 1. 50 21 0.27-0.28 16 
40 1. 70 41 o. 11-0. 18 31 
80 1. 84 81 0.05-0.09 61 

160 1. 91-1.92 161 0.04-0.06 121 

Table 3.2.4-36: Problem 1 with p = 5 

Method SOR AGE 

N w iter r iter 
11 1. 28-1. 30 13 0.76-0.87 11 
21 1. 51-1.52 23 0.39-0.42 18 
41 1.71 42 0.22-0.23 34 
81 1. 84 82 o. 122-0. 128 67 

161 1. 91-1.92 162 0.07 133 

Table 3.2.4-37: Problem 1 with p = 5 

Method SOR AGE 

N w iter r iter 
10 1. 01-1.03 6 6.96-7.15 6 
20 1. 06-1. 13 10 2.04-2.43 8 
40 1. 24-1.33 18 0.67-0.78 10 
80 1. 49-1.54 33 0.29-0.33 17 

160 1. 70-1.72 61 0.13 31 

Table 3.2.4-38: Problem 1 with p = 70 

Method SOR AGE 

N w iter r iter 
11 0. 98-1.08 7 5.38-6.92 7 
21 1. 13 10 1. 92-2.20 8 
41 1. 27-1. 33 18 0.66-0.74 10 
81 1. 50-1.53 33 0.22-0.37 19 

161 1.71 61 o. 10-0. 11 36 

Table 3.2.4-39: Problem 1 with p = 70 

Problem 2 - A Linear Problem 

- U" + u = - X, 0 ::S X ::S 1 

U(O) = 0, U'(1) 2 2 = (e + 3)/(e - 1). 
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The exact solution is U(x) = 
2 

2e 

e -

The results are tabulated in Table 3.2.4-40 and 3.2.4-41. 

Method SOR AGE 

N (,) iter r 
10 1. 699-1. 703 31 0.310 0.316 
20 1. 835-1. 841 61 0.160-0.163 
40 1. 918 105 0.081-0.083 
80 1. 957 204 0.043 

160 1.979 370 0.022-0.023 

Table 3.2.4-40: Problem 2 

Method SOR AGE 

N (,) iter r 
11 1. 722-1. 726 34 0.283-0.291 
21 1. 842-1. 848 64 0.152-0.156 
41 1. 918 107 0.079-0.082 
81 1. 958 202 0.042 

161 1. 979 375 0.022 

Table 3.2.4-41: Problem 2 

Problem 3 - A Mildly Non-linear Problem 

- U" + ~ = 0 0 :S X :S 1 2 • 

U(O) = 4, U'(1) =- 1. 

The exact solution is U(x) = 4 

(1+x) 2 

iter 
30 
58 

114 
225 
442 

iter 
33 
61 

117 
228 
444 

The results are tabulated in Table 3.2.4-42 and 3.2.4-43. 

Method SOR AGE 

N (,) iter r iter 
10 1. 584-1. 595 22 0.387-0.413 27 
20 1. 769-1.782 42 0.194-0.205 52 
40 1. 877-1. 887 82 0.097-0.100 100 
80 1. 935-1. 941 162 0.050-0.051 197 

160 1. 966-1. 970 332 0.026 386 

Table 3.2.4-42: Problem 3 
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Method SOR AGE 

N "' iter r iter 
11 1. 615-1. 626 24 0.387-0.413 30 
21 1. 779 1. 792 44 0.194-0.205 56 
41 1. 879-1. 889 84 0.097-0.100 112 
81 1. 936-1. 942 164 0.050-0.051 219 

161 1. 966-1. 970 334 0.10.0266 429 

Table 3.2.4-43: Problem 3 

Problem 4a - A Linear Problem 

U" + xU' - U = xex 0 ~ x :s 1, 

U(O) = 1, U' (1) = 1 + e 

The exact solution is U(x) = x + ex. 

The results are tabulated in Table 3.2.4-44 and 3.2.4-45. 

Method SOR AGE 

N "' iter r iter 
10 1. 719 32 0.603-0.609 31 
20 1. 848 61 0.312 60 
40 1. 921-1.922 122 o. 159-0. 161 120 
80 1. 959-1. 961 242 0.079-0.082 239 

160 1. 979-1. 982 482 0.042 474 

Table 3.2.4-44: Problem 4a 

Method SOR AGE 

N "' iter r iter 
11 1. 741 34 0.546-0.557 34 
21 1. 854 64 0.298 63 
41 1. 923-1. 924 125 o. 155-0. 158 123 
81 1. 961-1.962 245 0.078-0.082 242 

161 1. 979-1. 982 485 0.043 474 

Table 3.2.4-45: Problem 4a 

Problem 4b - A Linear Problem 

U" + xU' - U = xex 0 :s x ::s 1, 

U'(O) = 2, U(l) = 1 + e 

The exact solution is U(x) = x + e. Set h = 1/(N+1). 
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The results are tabulated in Table 3.2.4-46 and 3.2.4-47. 

Method SOR AGE 

N w iter r iter 
9 1. 652 29 0.715-0.735 29 

19 1. 819 58 0.366-0.373 59 
39 1. 907-1. 908 118 0.186-0.188 120 
79 1. 953 238 0.101 261 

159 1. 976 478 0.053 517 

Table 3.2.4-46: Problem 4b 

Method SOR AGE 

N w iter r iter 
12 1. 728 37 0.527 0.558 37 
22 1. 842 67 0.297 0.309 65 
42 1. 914 127 0.162-0.166 121 
82 1. 955 247 0.086 234 

162 1. 977 487 0.045 458 

Table 3.2.4-47: Problem 4b 

The results have shown that the AGE method has a competitive edge 

over the SOR method in solving the linear problems governed by combined 

boundary conditions, especially when the matrix A is strongly diagonally 

dominant. For other problems, the AGE method needs slightly more 

iterations for convergence. This is due to the fact that one of the 

boundaries is prescribed in derivatives which will allow the errors to 

propagate towards this boundary and be reflected. Consequently, this 

will slow down the rate of convergence, as shown by the experimental 

results. 

As these problems have one end point prescribed in derivative form, 

we would expect that the bounds of the eigenvalues be similar to the 

previous one, 1. e., a = g - 1 and b = ~g + ~g2 
+ 8. As a result, the 

optimal value of r will either be within the interval [a, Vabl or 

[Vab,b). Tables 3.2.4-48- 3.2.4-54 confirm these arguments. 
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The AGE method 

N r Vab a (a+b)/2 

10 0.41-0.51 0.390 0.049 1. 566 
20 0.21-0.25 0.193 0.012 1. 516 
40 0.12 0.096 0.003 1. 504 
80 0.06 0.048 0.001 1. 501 

160 0.034 0.024 0.000 1.500 

Table 3.2.4-48: Problem 1, p = 1, re [Vab, (a+b)/2] 

The AGE method 

N r Vab a (a+b)/2 

11 0.42-0.46 0.354 0. 041 1. 554 
21 0.23-0.25 0.184 0. 011 1. 515 
41 0. 13-0. 14 0.094 0.003 1. 504 
81 0.07 0.048 0.001 1. 501 

161 0.04 0.024 0.000 1. 500 

Table 3.2.4-49: Problem 1, p = 1, r e [Vab, (a+b)/2] 

The AGE method 

N r Vab 
10 0.75-1.06 0.918 
20 0.27-0.28 0.438 
40 0. 11-0. 18 0.216 
80 0.05-0.09 0.108 

160 0.04-0.06 0.054 

Table 3.2.4-50: Problem 1, p = 5, r ~ Vab 

The AGE method 

N r Vab 
11 0.76-0.87 0.826 
21 0.39-0.42 0.416 
41 0.22-0.23 0.211 
81 0.122-0.128 0.106 

161 0.07 0.053 

Table 3.2.4-51: Problem 1, p = 5, r ~ Vab 
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The AGE method 

N r Vab a 
10 1. 36-1.62 1. 376 0.439 
20 0.35-0.60 0.629 0.123 
40 0.19 0.307 0.031 
80 0.09-0.10 0.152 0.008 

160 0.05 0.076 0.002 

Table 3.2.4-52: Problem 1, p = 10, re [a,Vab] 

The AGE method 

N r Vab a b 
11 5.38-6.92 4.830 2.855 2.855 
21 1. 92-2.20 1. 845 0.783 4.347 
41 0.66-0.74 0.829 0.205 3.346 
81 0.22-0.37 0.403 0.053 3.088 

161 0.10-0. 11 0.201 0.013 3.022 

Table 3.2.4-53: Problem 1, p = 70, re [a,Vab] 

The AGE method 

N r Vab a (a+b)/2 

11 0.283-0.291 0.111 0.004 1. 506 
21 0.152-0.156 0.058 0.001 1. 503 
41 0.079-0.082 0.030 0.000 1. 500 
81 0.042 0.015 0.000 1. 500 

161 0.022 0.008 0.000 1. 500 

Table 3.2.4-54: Problem 2, r e [Vab, (a+b)/2] 

The results for Problem 1 show some agreement with the same problem 

governed by Neumann boundary conditions. It is found that when p = 5, 

the value of r agrees with the theoretical value given by Va.b. When 

0 < p < 5, the experimental r falls within [Vab, (a+b)/2]. For larger 

p, i.e., p > 5, the value of r tends to divert to the interval [Vab,b] 

especially for a smaller number of points. In other cases, the value of 

r is within the interval [a, Vab]. For the other problems, it can be 

shown that the value of r lies in the interval [Vab, (a+b)/2]. 
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3.3 On improving the accuracy of the AGE method 

We have already shown in Section 3.1 and 3.2, that the finite difference 

approximations are successfully applied to solve the two-point boundary 

value problem (3.1.1-1) subject to different boundary conditions. With 

this approximation, 2 the truncation error is usually of order O(h ). 

This error, however, can be made smaller by using a more accurate 

formula, i.e. , Numerov' s formula. With this formula, the accuracy of 

the solution is greater since the truncation error of the Numerov 

formula is of order 0(h4
). 

In this section, we shall investigate the application of the 

Numerov formula on the two-point boundary value problem subject to the 

Dirichlet boundary conditions. For comparison, we commence with the 

discussion of the replacement of the problem by the usual finite 

difference equations. 

3.3.1 The standard (2nd order) finite difference formula 

Let consider a more general two-point boundary value problem 

- U" + q(x)U = f(x), a :s x :s b (3. 3. 1-1) 

subject to the boundary condition 

U(a) = a, U(b) = ~- (3.3.1-2) 

Here, a, ~ are given real constants, and f(x) and q(x) are given real 

continuous functions on a :s x :s b, with q(x) ~ 0. We place a uniform 

mesh of size, 

h = (b-a)/(N+1) (3.3.1-3) 

on the interval a :s x :s b, and we denote the mesh points of the discrete 

problem by 
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x
1 

=a+ i(b-a)/(N+1) 

= a + ih, 

as illustrated 

x =a 
0 

0 :s 1 :s N+1 (3.3.1-4) 

X = b 
N+ 1 

By applying the centred finite difference approximation, for a 

small h, the equation (3.3.1-1) can now be written as 

u - 2u + u 
1-1 I 1+1 

....:.....:__-:-=---~ + q u = fl 
h2 I I 

or simplified to 

- u + 2g u 
1-1 I I 

- u 
1+1 

(3.3.1-5) 

(3.3.1-6) 

1 2 
where g

1 
= 1 + ~1h . On the boundaries we have u

0 
= «, uN+

1 
= ~-

The equation (3.3.1-6) can be written in the matrix form 

Au = b (3.3.1-7) 

where 

-1 -1 0 

A= 
··... ····.... ·· .. , 

···... '•, ·········· .. 
···......... ·····.... . . .... ·· .. 

-1 

0 

and ... ' 

Now, split the matrix A into two submatrices 

A= G + G 
1 2 

(3.3.1-8) 

where 

119 



g1 -1 

-1 g2 

g3 -1 

-1 g4 (3.3.1-9) 

·······•········· ... 

gN-1 -1 

-1 gN 

g1 

g2 -1 

-1 g3 
·· .. 

......... (3.3.1-10) 
....... 

gN-2 -1 

-1 gN-1 

c g 
N 

if N is even, and 

g1 -1 

-1 g2 

'· ·· .. 
···•···· .... 

(3.3.1-11) 

gN-2 -1 

-1 gN-1 

gN 

g1 

g2 -1 

-1 g3 
,, 

·········,,, (3.3.1-12) 

gN-1 -1 

-1 gN 

if N is odd. 
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Thus, (3.3.1-7) becomes 

(G + G )u = b. 
1 ·2 

(3.3.1-13) 

Evidently, G
1 

and G
2 

are symmetric and positive definite. Thus, 

for any r > 0, (rl + G ) and (ri + G ) are also symmetric and positive 
1 2 

definite. Now, 
(k+1) 

by applying AGE method, u can be determined in two 

sweeps, i.e., 

(rl + G )uCk+l/21 = b + (rl - G )uCkl 
1 2 

(rl + G )uCk+1l = b + (rl - G )uCk+1/2l 
2 1 

or explicitly as 

uCk+1/ 2 l = (rl + G
1

)-1[b + (rl - G
2

JuCkll 

uCk+ll = (rl + G J-1[b + (ri-G )uCk+1/ 21 ]. 
2 1 

The iteration matrix is given by 

-1 -1 
T = (rl + G ) (ri - G ) (ri + G

1
) (ri - G

2
). 

r 2 1 

By a similarity transformation, we then have 

T = (rl + G )T (rl + G )-1 

r 2 r 2 

(3.3.1-14) 

(3.3.1-15) 

(3.3.1-16) 

(3.3.1-17) 

(3.3.1-18) 

(3.3.1-19) 

Since G1 and G
2 

are positive definite, then their eigenvalues are 

positive. Moreover, since G
1 

and G
2 

are symmetric, then 

ll(ri - G
1
)(ri + G

1
J-1

11 = !f((ri - G
1
)(ri + G

1
J-1J 

= max lr - ~I < 1 
~ lr +~I 

and 11 (ri - G
2

) (rl + G
2

)-
1

11 = !I'( (rl - G
2

) (rl + G
2
)-

1) 

lr - vi = max < 1 
lr + vi · 

V 

(3. 3.1-20) 

(3.3.1-21) 

Thus, from (3.3.1-20) and (3.3.1-21), we then have !f(T) = !f(T) < 1. 
r r 

Hence, the AGE method is convergent. 
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It is obvious that the (2X2) submatrices of (ri + G
1

), (ri + G
2

), 

(ri - G ) and (rl - G ) are respectively of the form 
1 2 • 

G = [:: 
-1] [(3 1] - I and G = 

«1+1 1 (31+1 

where a
1 

= r + g
1

, (3
1 

= r- g
1

, and the inverse of G is given by 

G-1 = d 1+1 • [a 
I 1 

where d
1 

= 1/ (a a - 1), 1 = 1, 2, ... , N/2. 
I 1+1 

By using equations (3.3.1-16) and (3.3.1-17), we now write the 

algorithm for the AGE method for N even with G
1 

and G
2 

in (3.3.1-9) and 

to t 
(k+l/2) d (k+l) (3. 3. 1-10) compu e u an u . In computation, we need the 

arrays to store the values of g
1

, «
1 

and (3
1

• 

computed as a variable. 

The values d
1 

can be 

Algorithm 3.3.1-1: The AGE method for the model problem (3.3.1-1). 

Set u:kl = 0, i = 0, ... , N+l. 

Step 1. 

Step 2. 

(k+l/2) 
To compute u . Set 1 = 1. 

while i ~ N-1, compute 

= b + u (k) + (3 u (k) 
r I I 1-1 I I 

= b + (3 (k) + u {k) 
r2 l+t l+tul+t 1+2 

d = ll(a a - 1) 
1 1+1 

(k+l/2) 
ul 

(k+l/2) 
u 

1+1 

= (a r + r
2

)d 
1+1 1 

1 = i + 2. 

(k+l) 
To compute u . Set 1 = 2. 

u (k+ll ( b + (3 u (k+l/2) (k+l/2) )/ = + u a 
I 1 I 1 2 1 

while i ~ N-2, compute 

b 
(k+l/2) (3 (k+l/2) 

r = + u + u 
I I 1-1 I I 
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r = b + {3 u (k+1/2l + u (k+1/2l 
2 1+1 1+1 1+1 1+2 

d=l/(exex -1) 
1 1+1 

u:k•ll = (exl+lr1 + r2)d 

u(k+ll = (r + ex r )d 
1+1 1 I 2 

1 = 1 + 2. 

(k+ll = (b + u (k+1/2l + , u (k+1/2l )/ex 
UN N N-1 '"'N N N 

Step 3. Repeat Step 1 and Step 2 until convergence is achieved. 

3.3.2 The Numerov-AGE formula 

To achieve greater accuracy in the numerical solution, one can use the 

well known recurrence solution called the Numerov formula which is given 

by 

u - 2u + u = ...!.h 2 (u" + 10u" + u" ) 
1-1 I 1+1 12 1-1 I 1+1 

(3.3.2-1) 

where u; = U"(x
1
), to replace equation (3.3.1-1). 

The finite difference equation (3.3.2-1) has been shown to have the 

truncation error of O(h4
). Thus, it is obviously superior to the O(h2

) 

accuracy of the finite difference formula used in equation (3.3.1-5). 

This equation is then used at each point 1 ~ 1 ~ N in the interval (a,b) 

to construct the matrix A and its constituent component G
1 

and G
2 

which 

form the AGE method. 

Now, rewrite equation (3.3.1-1) as 

U" = q(x)U - f(x). (3.3.2-2) 

u" = q u - f u" = q u - f 
1-1 l-1 1-1 1-t' 1 1 1 t' 

(3.3.2-3) 

By substituting (3.3.2-3) in (3.3.2-1), we have the new equation 
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u - 2u + u = 1
h

2 
[ - f + 10 (q u - f ) 

1-1 I 1+1 12 q1-1u1-1 1-1 I I I 

+q u -f 1 
1+1 1+1 1+1 

or 

- u 
1-1 

+ 2u 
I 

- u 
1+1 

1 2 = - -h [q u - f
1
_

1 
+ 10 (q

1
u

1 
- f

1
) 

12 1-1 1-1 

+q u -f 1 
1+1 1+1 1+1 

(3.3.2-4) 

which simplifies to 

su + 2g u + t u = w 
I 1-1 I I I 1+1 I 

(3.3.2-5) 

where s = - 1 + 1h2 
gl = 1 + 5h2 t =- 1 + _!.h2 

I 12 ql. 12 ql. I 12 ql, 

and w = ...:h
2 (f + 10f +f l. for 1 :S i :S N. 

I 12 1-1 I 1+1 

The equation (3.3.2-5) can be written in the matrix form Au = b, 

where 

u = [u 
1' 

0 0 0 , [w -s , w
2

, 
1 1 0 • 0 ' 

T 
w -t 1 

N N ' 

and the matrix A is given by 

2g 1 t 
1 

s 2g2 t 0 2 2 

'·· ············, .. .... .................... 
. , 

A = ·· ... 
····••• ..... ., ..... 

s ZgN-1 t 
0 

N-1 N-1 

s 2gN N 

Now, split the matrix A into two submatrices A = G
1 

+ G
2

, where 

g1 t 
1 

s g2 2 

g3 t 
3 

G
1 

= (3. 3. 2-6) s g4 4 

···· ......... 

'·· ... 
gN-1 

t 
N-1 

s gN N 
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g1 

g2 

s 
3 

if N is even, and 

g1 

G = 
1 

G = 
2 

s 

if N is odd. 

2 

g1 

t 
1 

g2 

g2 

s 
3 

t 
2 

g3 

·· .... 
··· ... 

t 
2 

g3 

····••·•····· ... (3.3.1-7) 

·· .. 
gN-2 t 

N-2 
s gN-1 N-1 

g 
N 

·· ...... 
(3.3.2-8) 

gN-2 t 
N-2 

s gN-1 N-1 

gN 

., ·· ... 
·· .......... 

(3.3.2-9) 

gN-1 t 
N-1 

s gN N 

Evidently, G
1 

and G
2 

are unsyrnmetric and consists of (2X2) block 

submatrices of the form 

(3.3.2-10) 

It can be shown for the unsyrnmetric matrices, the AGE method is 

convergent provided that all the eigenvalues of the matrices are 

positive. 
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The eigenvalues of G
1 

and G are A = g and which are given by the 
2 I I 

determinantal equation derived from (3.3.2-10), i.e., 

det 
A - g 

I 

s 
I +I 

t I 
A - g 

1+1 

= 0 

which simplifies to 

A
2 

- A(gl + gl+l) + glgl+l- 5 1+1 tl = o, 

which has the roots 

A
2 

= 1 (g + g ) - !_j (g - g )2 + 4s t 2 1 1+1 2 1 1+1 1+1 1 

and A
3 

= 1 (g + g ) + !_j (g - g ) 2 + 4s t 2 I 1+1 2 I 1+1 1+1 I 

Both \ and A
3 

are positive and we will show that A
2 

is also 

positive. This can be shown as follows. 

!( ) 1( 1 Sh2 1 Sh2 ) 1 Sh2( ) 
-2 gl + g = - + - q + + - q = + 24 ql + ql+l • I +1 2 12 I 12 I +I 

4s t 
1+1 l 

I 2 I 2 = 4(- 1 + -h q ) (- 1 + -h q ) 
12 1+1 12 I 

I 2 I 4 = 4 - -h (q + q ) + -h q q 
3 I I +I 36 I I +I 

By neglecting all the terms which contain h4
, then we have 

!.J (g - g ) 
2 + 4s t = !.J 4 - !.h2 (q + q ) < 1. 

2 I I +I I +I I 2 3 I I +1 
b~ (3.~·1-:lo) c....t.. (3.:1 .1-ZI) 

Hence, A
2 

is positive. Hence,lthe AGE method is convergent. 

(k+l) 
Now, by using the AGE method, we determine u in two steps from 

the explicit form of (3.3.1-16) and (3.3.1-17). 

Let us consider N even. For any r > 0, the (2X2) block submatrices 

A ["' 
G = I 

sI +I 

where <X
1 

= r + g and ~ = r - g 
I I I' 
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The inverse of G is given by 

• [ a G-1 = d 1+1 
1 -s 1+1 

1 where d1 = --.,---~~-., €Xcx -s t' 
I 1+1 1+1 I 

1 = 1, ... , Nl2. 

In programming the AGE method, we need to store the arrays g1, a
1

, 

~1 • t
1 

and s 1, but not d1 as this value may be assigned as a variable. 

We now write the algorithm for the Numerov-AGE formula. 

Algorithm 3.3.2-1: The Numerov-AGE method the model problem (3.3.2-1). 

Set u:k) = 0, 1 = 0, ... , N+1, s
1 

= 0, t
9 

= 0. 

Step 1. To compute u(k+l/2) Set 1 = 1. 

Step 2. 

while 1 ~ N-1, compute 

(k) + ~ (k) r=b-su u 
I I I 1-1 I I 

r = b + ~ u !kl - t u !kl 
2 1+1 1+1 1+1 1+1 1+2 

d = ll(a a - s t ) 
1 1+1 1+1 1 

(k+l/2) 
ul = (al+lrl - tlr2)d 

u(k+l/2) = (-s r + a r )d 
1+1 1+1 1 1 2 

1 = 1 + 2. 

(k+l) 
To compute u . Set i = 2. 

(k+l) 
ul = (b + ~ u (k+l/2) - t u (k+l/2) )la 

I 11 12 I 

while 1 ~ N-2, compute 

b 
(k+l/2) ~ (k+l/2) 

rl = - s u + u 
I I 1-1 I I 

b 
~ (k+l/2) r = + u -2 1+1 1+1 1+1 

d = 1l(alal+1 - sl+1tl) 

u:k+U = (al+lrl - tlr2)d 

u (k+U = ( -s r + a r )d 
1+1 1+1 I I 2 

1 = i + 2. 

t u(k+l/2) 
1+1 1+2 

(k+U = (b - s u (k+l/2) + ~ u (k+112l )la 
UN N N N-1 N N N 

Step 3. Repeat Step 1 and Step 2 until convergence is achieved. 
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3.3.3 Experimental results 

Two problems were considered, the first problem is linear while the 

second is non-linear. The linear problem yields a symmetric matrix, but 

the non-linear problem gives an unsymmetric matrix. Both problems 

converge to the true solution, but the main concern in this section is 

achieving the gain in accuracy of the solution. To compare the accuracy 

of the solution, the principal truncation errors, E is considered. 
pte 

In addition, the absolute error, E is also included in the results. 
abs 

The respective E for the finite difference (FD) formula and the 
pte 

Numerov (NU) formula is given by 

h2 d4U 
= 

12 dx4 
f!D 

pte 
and E"u 

pte 

Problem 1 - A Linear Problem. 

- U" + u = - X, o:sx:s1, 

U(O) = 0, U(1) = 1. 

The exact solution to this problem is given by 

2e ( x -x) =--e -e 
e2

- 1 
U(x) - x. 

The respective matrix A derived from the finite difference approximation 

and Numerov's formula are given by 

2g -1 

0 
-1 2g -1 

'··········,.. ········.,·... ··,'······ ...• 

0 

1 2 where g = 1 + -h . 
2 

-1 2g 

-1 

-1 

2g 

2g -c 
0 

-c 2g -c 

···· .... 
···· .... ····••··•····••• '·········· .... 

-c 2g -c 

0 
-c 2g 

The respective E for Problem 1 with FD approximation and NU 
pte 

method are as follows. 
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J!D h
2 

pte = 12 (x + U) and 

The results at the respective optimal iteration parameter, r ' opt 

are tabulated in Table 3.3.3-1, 3.3.3-2, 3.3.3-3 and (3.3.3-4). 

X Exact Computed E E 
abs pte 

0 09 .64016497E-01 .64033024£-01 .16S26873E-04 .1067094SE-03 
.18 .1293142SE+OO .12934656£+00 . 32303413£-04 .21430080E-03 
.27 .19718S12E+OO .19723170E+OO .46578798E-04 .32366323E-03 
0 36 .26894224E+OO .26900080E+OO .S8S60328E-04 .43S70056E-03 
.45 . 34S93088E+OO . 34599831E+OO .6742S282E-04 .SS133872E-03 
.ss . 429S3959E+OO . 42961188£+00 .72292630E-04 .67153341£-03 
.64 . 5212116SE+OO . S2128386E+OO .72203S83E-04 .7972779SE-03 
.73 .6224S705E+OO .622S2318E+OO .661289S8E-04 . 929611S7E-03 
0 82 .73486491£+00 .73491783£+00 .S2911860E-04 .10696279E-02 
.91 . 86011672E+OO . 86014801E+OO .31286319E-04 .12184842£-02 

Table 3.3.3-1: Problem 1 for N = 10 with FD formula, r = 0.5 
opt 

X Exact Computed E E 
abs pte 

.09 .64016497£-01 . 64016481E-01 .1611S9SOE-07 . 44090110E-07 

.18 .1293142SE+OO .12931422E+OO .36943794E-07 .88S448S1E-07 

.27 .19718S12E+OO .19718S07E+OO . 54031069E-07 .13373187E-06 

.36 . 26894224E+OO .26894217E+OO .73961S4SE-07 .18002488£-06 

.4S .34593088£+00 .34593079E+OO . 920353S9E-07 .22780672£-06 

.ss .42953959£+00 .429S3949E+OO .106S2684E-06 .277472S6E-06 

.64 . S212116SE+OO .S2121153E+OO .12246147E-06 .32943313£-06 

.73 .6224S70SE+OO .62245692E+OO .128S5725E-06 . 38411818E-06 

.82 .73486491£+00 .73486478E+OO .13710193E-06 . 44197994E-06 

.91 . 86011672E+OO . 86011658E+OO .14666171E-06 . S034969SE-06 

Table 3.3.3-2: Problem 1 for N = 10 with NU formula, r = O.S 
opt 

X Exact Computed E 
abs 

.os .334S1410E-01 .33453792E-01 .23820S99E-05 

.14 .10109012£+00 .10109715E+OO .70332191£-05 

.24 .17094317£+00 .1709S450E+OO . 11329837E-04 

.33 .24450913£+00 .24452416£+00 .15027712E-04 

.43 .32332026E+OO .32333813£+00 .17871012E-04 
0 52 . 40895642E+OO . 40897601E+OO .19587364£-04 
.62 .5030S944E+OO .S0307932E+OO .1988260SE-04 
.71 .60734799£+00 .60736643E+OO .1843S007E-04 
.81 .72363322E+OO . 72364811E+OO . 14888737£-04 
.90 .8S383515E+OO .85384400£+00 .88452199E-05 

Table 3.3.3-3: Problem 1 for N = 20 with FD formula, 
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E 
pte 

.1S319887E-04 

.46098697£-04 

.7729S873E-04 

.109194S4E-03 

.14208420E-03 
0 17626334£-03 
.21204214E-03 
.24974531E-03 
.28971S04E-03 
.33231406£-03 

r = 0. 29 
opt 



X Exact Computed E 
abs 

.os . 33451410E-01 .33451400E-01 .96064188E-08 

.14 .10109012E+OO .10109009E+OO .24247434E-07 

.24 .17094317E+OO .17094314E+OO . 38791919E-07 

.33 . 24450913E+OO . 24450908E+OO .53225150E-07 

.43 .32332026E+OO .32332019E+OO .67358982E-07 

.52 .40895642E+OO . 40895634E+OO .80788720E-07 

.62 . 50305944E+OO . 50305934E+OO . 92956667E-07 

.71 .60734799E+OO .60734789E+OO . 10343102E-06 

.81 .72363322E+OO . 72363311E+OO .11256922E-06 

.90 .85383515E+OO .85383503E+OO .12381932E-06 

Table 3.3.3-4: Problem 1 for N = 20 with NU formula, 

Problem 2 - A Mildly Non-linear Problem. 

- U" + ~ = 0, 
2 

U(O) = 4, U(1) = 1. 

O:sx:s1, 

The exact solution to this problem is given by 

U(x) - -
4-

- (1+x) 2 . 

E 
pto 

.17368975E 08 

.52264587E-08 

.87634612E-08 

.12380011E-07 

.16108936E-07 

.19984085E-07 

. 24040632E-07 

.28315399E-07 

.32847190E-07 

. 37677140E-07 

r = 0. 29 
opt 

The respective matrix A derived from the finite difference approximation 

and Numerov's formula are given by 

2g1 -1 
0 

-1 2g~., -1 
·· .. '·· ····· ... ., 

A = ···•· ... ·· ... 
FD ·· .. ·· .. 

-1 ZgN-1 -1 

0 
-1 2gN 

where g
1 

3 2 =1+-hu 
4 I' 

1 :s 1 :s N, 

W = 1 + ~h2u 1 ~ 1 < N 
I 8 I' ~ - ' 

2w t 1 1 
0 

s 2w t 
2 .... 

'• ·~, .. 1 ..... 
·· ........ '· and A = ····· ... ·· .. 

NU ·· .. 
s 2w t 

0 N-1 N-1 N-1 

s 2w N N 

1 2 s = -h u - 1, 2 :s 1 :s N, 
I 8 1-1 

1 2 and t = -h u - 1, 1 :s i :s N-1. 
I 8 1+1 

The respective E for Problem 2 with FD approximation and NU 
pto 

method are as follows. 

~ = h2 [ ~] = ?_h2~ 
pte 12 2 8 and ~ 

pto 
= 21h4U4 

64 . 
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The results for the respective optimal iteration parameter, r ' opt 

are tabulated in Tables 3.3.3-5, 3.3.3-6, 3.3.3-7 and 3.3.3-8. 

X Exact Computed E E 
abs pte 

.09 . 33611111E+01 .33636121E+01 .25009683E-02 . 19656780E+OO 

. 18 .28639053E+01 .28674789E+01 .35736302E-02 .12178544E+OO 

.27 .24693877E+01 .24732768E+01 .38890889E-02 .78147097E 01 

. 36 . 21511111E+01 .21549065E+01 . 37954349E-02 .51686839E 01 

.45 .18906250E+01 .18941018E+Ol .34768061E-02 . 35099797E-01 

.ss .16747404E+01 .16777717E+01 .30312285E-02 .24394575E 01 

.64 .1493B271E+01 .14963373E+01 .25101404E-02 .17305460E-01 

. 73 .13407202E+01 .13426594E+Ol .19391802E-02 .12502366E-01 

.82 .12100000E+01 . 12113294E+01 .13294563E 02 . 91808200E 02 

.91 .10975056E+01 .10981894E+01 .68373753E-03 .68411070E-02 

Table 3.3.3-5: Problem 2 for N = 10 with FD formula, r = 0.59 
opt 

X Exact Computed E E 
abs pte 

.09 . 33611111E+01 . 33610787E+01 . 32413569E-04 . 28601140E-02 

.18 .28639053E+01 .28638621E+01 .43177241E-04 .150756BSE 02 

.27 .24693877E+01 .24693435E+01 .44248244E-04 .83328707E-03 

. 36 . 21511111E+01 .21510701E+01 . 41006200E-04 .47982941E-03 

. 45 .18906250E+01 .18905890E+01 .3593499BE-04 .28632361E-03 

.55 .16747404E+01 .16747103E+01 . 30169626E-04 .1762898BE-03 

.64 .14938271E+01 .14938029E+01 .24187112E-04 . 11159426E-03 

. 73 . 13407202E+01 .13407020E+01 .18167801E-04 .72409857E 04 

.82 .12100000E+01 .12099878E+01 .12156174E-04 . 48038851E-04 

.91 .10975056E+01 .10974995E+01 . 61126772E-05 . 32515168E-04 

Table 3.3.3-6: Problem 2 for N = 10 with NU formula, r = 0.57 
opt 

X Exact Computed E E 
abs pte 

.os .36446281E+01 . 36450590E+01 . 43093159E-03 .68636502E-01 

.14 .30625000E+01 .306339B9E+01 .B9887826E-03 . 40742914E 01 

.24 .26094674E+01 .26105304E+01 .10629317E-02 . 25213184E-01 

.33 .22500000E+01 .22510694E+01 .10693774E-02 .16166205E-01 

.43 .19600000E+01 .19609925E+01 .99250881E-03 .10687330E-01 

.52 .17226562E+01 .17235268E+01 .87053843E-03 . 72559710E-02 

.62 .15259515E+01 .15266745E+01 .72300267E-03 .50429055E-02 

.71 . 13611111E+01 .13616705E+01 . 55940723E-03 . 35781416E 02 

.81 .12216066E+01 .12219906E+01 .38394051E-03 .25860982E-02 

.90 . 11025000E+01 .11026976E+01 .19766021E-03 .19002502E 02 

Table 3.3.3-7: Problem 2 for N = 20 with FD formula, r = 0.32 
opt 
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X Exact Computed E 
abs 

E 
pte 

.05 . 36446281 E +0 1 .36446265E+01 .15918710E-05 .29769688E-03 

.14 .30625000E+01 .30624969E+01 .30689776E-05 .14841056E-03 

.24 .26094674E+01 .26094640E+01 .33958169E-05 .78228939E-04 

.33 .22500000E+01 .22499967E+01 . 32330233E 05 .43240403E-04 
0 43 .19600000E+01 .19599971E+01 .28590099E-05 . 24899115E-04 
.52 .17226562E+01 .17226538E+01 .24075751E-05 .14857790E-04 
0 62 .15259515E+01 .15259496E+01 .19174682E-05 .91479325E-05 
0 71 . 13611111E+01 . 13611096E+01 .14536154E-05 .57907472E 05 
.81 .12216066E+01 .12216057E+01 .95769346E-06 .37573905E-05 
.90 . 11025000E+01 . 11024995E+01 . 47687908E-06 .24927331E-05 

Table 3.3.3-8: Problem 2 for N = 20 with NU formula, r = 0.32 
opt 

-8 
The numerical results are carried out to a tolerance c = 10 . The 

results clearly show that the greater accuracy is achieved when using 

the Numerov formula. The gains in accuracy in terms of E and E 
abs pte 

can be viewed as follows. 

Table 3.3.3-1 (FD) versus Table 3.3.3-2 (NU) for 10 points, and 

Table 3.3.3-3 (FD) versus Table 3.3.3-4 (NU) for 20 points. 

Table 3.3.3-5 (FD) versus Table 3.3.3-6 (NU) for 10 points, and 

Table 3.3.3-7 (FD) versus Table 3.3.3-8 (NU) for 20 points. 

The results agree to the order of accuracy for the respective 

formula. However, more work is needed for both problems if the Numerov 

formula is considered. By considering the second problem which 

satisfies the algorithms 3.3.1-1 and 3.3.2-1, then for large N, we have 

Formula The sweep Operations Extra work 

First 4N M+ 3.5N A 
FD Second 4N M+ 3. SN A -Total = 8N M+ 7N A 

= 15N operations 

First 6.5N M+ 3.5N A 2 storage + 
Numerov Second 6.5N M+ 3.5N A 4 M+ 3 A 

Total = 13N M + 7N A for the 
I = 20N operations formula 

Table 3.3.3-9 The computational complexity 
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where M stands for multiplication and A for addition. Thus, from Table 

3. 3. 3-9, it can be deduced that for large N, 33% more work is needed 

plus extra storage, i.e., the array s
1 

and t
1 

when using the Numerov 

formula. 

3. 4 Slllllll3ry 

This chapter begins with some discussion on the existing and well known 

iterative methods which are frequently used for solving the ODEs and 

PDEs. The SOR method has been shown to be more competitive than all the 

others. The AGE method based on the Alternating Direction Implicit 

(AD I) method as introduced by Evans [ 1984], is then given in full 

detail, to demonstrate that this method is competitive with the SOR 

method. 

The experimental results in Sections 3.1.8 and 3.2.4 show how the 

AGE method competes with the SOR method. Some results show that the AGE 

method is superior than the SOR method especially for solving linear 

problems, when the number of iterations are compared. The only setback 

is perhaps due to the simplicity of the SOR method compared to the AGE 

method. However, since the matrices involved are purely small (2x2) 

block submatrices and these matrices are invertible, then, the AGE 

method seems fairly easy to implement. Also, with the capability of 

solving the problems governed by different boundary conditions, the AGE 

method may well be taken into consideration. 

In actual fact, the algorithmic procedure given in this chapter can 

be written in a more compact form, which will avoid unnecessary 

computational effort. We will discuss these forms later in Chapter 4. 
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The AGE method is also proved to be numerically stable when using 

the Numerov formula in order to attain a greater accuracy. This is a 

very significant point for the AGE method as it is not only capable of 

solving a problem that yields a symmetric matrix A, but also the 

unsymmetric matrix A which is derived from the Numerov formula for 

nonlinear problems. 

Finally, the experimental results indicate that the optimal value 

of the acceleration parameter r adheres closely to the theoretical 

analysis given when the matrix is diagonally dominant. For other 

matrices, it appears that the optimal value of r lies in the aritho

geometric mean interval of the eigenvalue bounds of the matrices 

involved. 

Chapter 5. 

This interval will be discussed in greater detail i'n 
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CHAPTER 4 

THE OPTIMAL SINGLE AGE PARAMETER FOR ODE's 

4.1 Determination oi optimal AGE acceleration parameter 

It has been shown in Chapter 3 that the AGE iterative method written in 

Peaceman-Rachford form is competitive compared to other existing 

iterative methods when solving the two-point boundary-value problem 

subject to Dirichlet boundary condition. The method is also stable when 

the problem is subjected to other boundary conditions. It has also been 

shown that the AGE method is stable when a more accurate formula, i.e, 

Numerov's method, is used to achieve a greater accuracy. 

Since the AGE method in Peaceman-Rachford form will only serve to 

solve the one dimensional problem, then it is necessary to investigate 

alternative forms that allow solving the solution of a multi-dimensional 

problem. In this chapter, we will introduce the forms suggested by 

Douglas-Rachford, Douglas and Gui t tet. However, for comparison, we 

summarise briefly the AGE method in Peaceman-Rachford form. 

Consider the linear system 

Au = b 

where u and b are N-dimensional vectors and A is given as 

A= ············, .. '···· .... 
a 

N-1 

·· .. 
···•········ .... 

c 
N-1 
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The AGE iterative method consists of splitting the matrix A into 

the form 

A= G + G 
1 2 

(4.1-3) 

where 

g1 c 
1 

a g2 2 

g3 c 
3 

a 
G

1 
= (4. 1-4) 

g4 4 

·· ...... 
............ 

gN-1 c 
N-1 

a gN N 

g1 

g2 c 
2 

a g3 3 

·· .. 
G

2 
= (4. 1-5) ··········,·., 

gN-2 c 
N-2 

a gN-1 N-1 

gN 

for N is even. Let us assume that all the eigenvalues of G
1 

and G
2 

are 

1 real and positive, i.e., g >-(a + c
1
), i = 1, 2, ... , N. 

I 2 I 

4.1.1 The generalised AGE method in Peaceman-Rachford form 

By applying the Peaceman-Rachford form, then for any iteration parameter 

r > 0, the AGE-PR(1) iterative scheme can be written as 

(ri + G )u(k+1/2l = b + (ri - G )u(kl 
1 2 

(ri + G )u(k+1l = b + (ri - G )u(k+l/2l 
2 1 

or explicitly as 
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u(k+1/2) = (rl + G )-1 [b + (rl- G )u(k)l 
1 2 

(4. 1. 1-3) 

u(k+ll = (rl + G )-1 [b + (rl - G )u<k+1/21]. 
2 1 

(4. 1. 1-4) 

It has been shown earlier that the AGE-PR(1) scheme is convergent. 

Now, let us consider the modification of equation (4. 1. 1-2) of the 

scheme. Then, for any r > 0, the AGE-PR(2) scheme can be written as 

(rl + G )u(k+1/ 2 ) = b + (rl - G )u(k) 
1 2 

(4. 1. 1-5) 

(rl + G )u<k+1 ) = 2ru(k+1/ 2 ) - (rl - G )u<kl 
2 2 

(4. 1. 1-6) 

after using equation (4. 1. 1-1) to express G
1
u(k+1

/2) in terms of G
2
u(k), 

thereby saving on the evaluation of the right hand side vectors. The 

matrices G and G are as in (4.1-4) - (4.1-5). In explicit form, the 
1 2 

AGE-PR(2) scheme can be written as 

u(k+1/2) = (rl + G )-1 [b + (rl - G )u(k)l 
1 2 

u(k+1 ) = (rl + G )-1 [2ru(k+1/ 2) - (rl - G )u(k)l 
2 2 

where the iteration matrix, T is given by 
r 

-1 -1 
Tr = (rl + G

2
) [2r(r/ + G

1
) - I] (r/ - G

2
).. 

(4. 1. 1-7) 

(4. 1. 1-8) 

(4. 1. 1-9) 

It is obvious that, after dropping all the superscripts, the 

AGE-PR(2) scheme is consistent. Since G
1 

and G
2 

o-re unsymmetric, for the 

convergence, we need to show that liT 11 < 1. 
r 2 

For this scheme, 

liT 11 
r 2 

(4. 1. 1-10) 

Let ~ and v be the respective eigenvalues of G
1 

and G
2

. Since all the 

eigenvalues of G and G are positive, then from (4.1.1-10) 
1 2 

liT 11 = ll(rl + G )-1 [2r(ri + G )-1 
- I] (r/ - G )11 

r 2 2 1 2 2 

= lll~x l(r- JLHr- v)l 1 f-•" I (r + JLHr + v) I < · (4.1.1-11) 
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Thus, the AGE-PR(2) scheme is convergent, and its rate of convergence is 

similar to the AGE-PR(1) scheme. 

Now, let us introduce a parameter w into equation (4.1.1-5). Then, 

the new set of equations become, 

(rl + G )u(k+l/2l = b + (rl - G )u(kl 
1 2 

(rl + G )u(k+ll = (2-w)ru(k+1/2l - [r(1-wll - G ]u(k) 
2 2 

or in explicit form 

u(k+112l = (rl + G
1
)-1[b + (rl - G

2
)u(kll 

(k+1) -1 (k+1/2) u = (rl + G
2

) [(2-w)ru - [r(l-w)I 

resulting in the generalised AGE scheme. 

(4. 1. 1-12) 

(4. 1. 1-13) 

(4. 1. 1-14) 

Putting w = 0, we then have the AGE scheme (4.1.1-5) - (4.1.1-6). 

For w = 1, the scheme is analogous to one given by Douglas and Rachford 

[1956). We call this scheme as the AGE method in Douglas-Rachford form 

(AGE-DR(1)). The AGE-DR(1) scheme can be written as 

u(k+112l = (rl + G )-1[b + (rl - G )u(kll 
1 2 

(4. 1. 1-16) 

u(k+1l = (rl + G )-1 [ru(k+1/2l + G u<kl ). 
2 2 

(4. 1. 1-17) 

The important feature for the new generalised scheme, w = 1, is 

that it can be applied to solve the boundary value problems with two or 

more variables, i.e., the two and three dimensional problems. This will 

be derived later in Chapter 6. 

We now show that the AGE-DR(1) scheme is convergent. 

The iteration matrix, T of (4.1.1-16) - (4.1.1-17) is given by 
r 

T = (rl + G f 1 [r(rl + G f 1 
(rl - G ) + G ) 

r 2 1 2 2 

= (rl + G
2

)"1 (rl + G1)-1[r2I + G1G2). (4. 1. 1-18) 

of 
Since all the eigenvalues,(.G1 and G are positive, then 2 
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liT 11 = 11 Cri 
r 2 

+ G )-1 (ri 
2 

+ G ) -
1 

[ r 2 
I + G G ]11 

1 1 2 2 

I r2 + flV I 2 I r + flV < 1 (4.1.1-19) = I (r + 11ltr + V l I = I 2 flVI r + rCil + v) + 

where fl and v are the . mq><imul\'l eigenvalues of G
1 

and G2. Thus, the 

AGE-DR(1) scheme is convergent. If r = max(J.l,V), then (4. 1.1-19) can be 

simplified to 

2 + 
7

2 
liT 11 ~ r < 1. 

r 2 (r + rl2 
(4. 1. 1-20) 

For the AGE-PR(2) scheme, liT 11 is given by 
r 2 

liT 11 = 
I (r - J.l}(r - v) I < 1. 

r 2 I (r + 11ltr + V l I 
Thus, 

- 1 < (~)(~) r + fl r + v < 1 

- 1 < (r - 11Hr - v) < 1 (r + 11ltr + v) 

_ 
1 

< 
1 

_ 2r(fl + v) 
1 (r + J.ll(r + vl < · (4. 1. 1-21) 

Now, from (4.1.1-19) 

I r
2 

+ flV I 
H7rll2= ',:.:~ I (r + 11ltr + vl I < 1 

which gives 
2 

r + flV 
- 1 < (r + J.ll(r + vl < 1 

1 1 - r(fl + V) < 1 
- < (r + Ill (r + v l · (4. 1. 1-22) 

Generally, for 0 ~ w ~ 1, we then have 

1 1 (2-w)r(J.l + v) < 1 - < - (r + Ill (r + v l · (4. 1. 1-23) 

It is clear that the inequalities (4.1.1-21) and (4. 1.1-22) differ 

by a factor 2. Hence, it can be concluded that the rate of convergence 

of the AGE-PR(2) scheme is twice the rate of convergence of the 

AGE-DR(1) Scheme. 
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Now, by using the matrices G1 and G
2 

in (4.1-4)- (4.1-5), then the 

algorithm for a generalised scheme (4. 1..1-14) (4.1.1-15) may be 

written as follows. 

Algorithm 4.1.1-1: The generalised AGE scheme, (4.1.1-14)- (4.1. 1-15). 

Set u:kl = 0, 1, = 0, ... , N+1, a1 = 0, c = 0 
N ' 

St 1 T t U (k+1121 Set i -- 1. ep . o compu e 

while i ~ N-1, compute 

b (k) + (3 (k) r= -au u 1 I I 1-1 I I 

r = b + 
(k) (k) 

(3 u -c u 

Step 2. 

2 1+1 1+1 1+1 1+1 1+2 

d = 1/ (« <X - a c ) 
1 1+1 1+1 1 

(k+1/2) 
ul = (<X r - c r )d 

1+1 1 I 2 

u(k+l/2) = (-a r + <X r )d 
1+1 1+1 1 I 2 

1 = 1 + 2. 

(k+ll To compute u . 

(k+1) ( (k+1/2) u = su1 1 

Set i = 2. 

(k) - r u l I« 1 1 1 

while i ~ N-2, compute 

(k+l/2) (k) 
r = su rlul + 
1 I 

su(k+1/2) + a 
(k) 

r = u 

cu 
I 

(k) 
1+1 

(k) 
2 1+1 1+1 I 

- r u 
1+1 1+1 

d = 1/(<X <X - a c ) 
1 1+1 1+1 1 

u
1
(k+ll = (<X r c r )d 

1+1 1 - I 2 

u(k+1l = (-a r + <X r )d 
1+1 1+1 1 1 2 

i = 1 + 2. 

U~k+1) = (su~k+l/2) - 7NU~k) )/<XN 

s = (2-w)r. 

Step 3. Repeat Step 1 and Step 2 until convergence is achieved. 

Here a
1 

= r + g1, (31 = r- g1, r 1 = (1-w)r- g1, i = 1, 2, ... , N. 

Since this scheme is not competitive, i.e., when w = 1, we now 

investigate another variant of the AGE method. 
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4.1.2 The generalised AGE method in Douglas form 

Let us consider the modification of equation (4.1.1-16) of the AGE-DR(1) 

scheme as follows. Then, for any r > 0, the new scheme can be written 

in explicit form as 

u(k+1/ 2 l = (ri + G )-1 [b - Au(kl + (ri + G )u<kll 
1 1 

or 

u<k+1/2 l = (ri + G l-1 [b + {(ri +G) - A}u<kll 
1 1 

with the iteration matrix is given by 

T = (rl + G )-1 [r{I - (rl + G )-1A} + G] 
r 2 1 2 

= I - r(rl + G
2
)-

1 (ri + G
1

)-
1A 

which simplifies to 

1 

Tr = I - r n (ri + G
1 
)-

1A. 
1=2 

(4.1.2-1) 

(4. 1. 2-2) 

(4. 1. 2-3) 

(4. 1. 2-4) 

(4.1.2-5) 

It is obvious that the scheme (4.1.2-3) - (4.1.2-4) is consistent. 

We now seek to analyse its convergence. 

and G are positive, then 
2 

liT 11 
r 2 

1 

= III - r n (ri + 
1=2 

11 
1 1 

= - d--H--HJ.t r + v r + J.1 

= 11-
rJ.I + rv 

v) I (r + J.tHr + 

- I r2 + J.IV I 
- (r + v) (r + f.!l < 1 

IY\lW it<>-c<""' 

+ v) I 

Since all the eigenvalues G 
1 

where f.! and v are the~eigenvalues of G
1 

and G
2 

respectively. Thus, the 

scheme is convergent and similar to the AGE-DR(1) scheme. 
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We now introduce a parameter win equation (4.1.2-3). The new set 

of equations then becomes 

u(k+l/21 = (ri + G )-1 [wb + {(ri +G) - wA}u(kll 
I I 

(k+l) 
u 

(4.1.2-6) 

(4. 1. 2-7) 

This is another important feature, since the generalised AGE method 

(4.1.2-6) (4.1.2-7) is applicable to solve problems with higher 

dimensions. This will be shown later in Chapter 6. 

Putting w = 1, we have the scheme which is similar to AGE-DR(1) and 

denote this scheme as AGE-DR(2). For w = 2, the scheme is analogous to 

one given by Douglas [1956]. We denote this scheme as the AGE method in 

Douglas form (AGE-DG). Hence, The AGE-DG scheme is given by 

u(k+1121 = (ri + G )-1 [2b + {(ri +G) - 2A}u<kll 
I I 

u(k+!l = (ri + G )-l[ru(k+l/2l + G u<kll 
2 2 

with the iteration matrix is given by 

I 
( -1 

Tr = I - 2r TT ri + G
1

) A. 
1=2 

(4. 1. 2-8) 

(4. 1. 2-9) 

(4. 1. 2-10) 

Obviously, The AGE-DG scheme is consistent. We now show that this 

scheme is convergent. Since all the eigenvalues of G and G are 
I 2 

positive, then 
I 

11Trll
2 

= Ill - 2r TT (ri + G
1
)-

1
AII

2 
1=2 

= 11 - r(-1-)(_1_)2(1! + v) I 
r + v r + J! 

=1 1 - 2rJL+2rv I 
(r + JLl!r + v) 

rJ! - rv + J!VI 
+ J!Hr + v) 

- I (r - v)(r - J!) I < 1 
- (r + v) (r + Ill 

1"1 {,1. )< I 1>1 u 1\'\ 
where J! and v are the~eigenvalues of G and G respectively. 

I 2 
Thus, the 

AGE-DG scheme is convergent and similar to the AGE-PR(2) scheme. 
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In general, the generalised AGE scheme (4.1.2-6) - (4.1.2-7) with 

the values of w in [1,2] will have the iteration matrix as 

1 
-1 

T = I - wr TT (ri + G ) A 
r I 

1=2 

and the scheme is convergent. 

(4. 1. 2-11) 

It is clear that the generalised AGE scheme (4.1.2-6) - (4. 1.2-7) 

will give the AGE-DG scheme when w = 2 and the AGE-DR(2) when w = 1. 

The AGE-DG scheme has also been shown to achieve a similar rate 

convergence as the AGE-PR(2) scheme. To prove the arguments, we present 

the algorithm in 4. 1. 2-1 which can then be transformed into a program 

and tested on the computer. 

Let us recall the scheme (4.1.2-6)- (4.1.2-7), and write 

(4. 1. 2-12) 

(4. 1. 2-13) 

where 

P = (ri + G
1

) - wA. 

By using A in (4.1-2), G
1 

in (4.1-4) and G
2 

in (4.1-5), we have 

p = 

0 

where PI = oc - 2g
1
w, i 

I 

s = - a
1
w, t = 

I I 

and s = 
j 

- aJ(1 - w)' 

with oc = r + g • a = 
I I 1 

s 
N-1 

= 1, 

c (1 
I 

-
t = 

j 

0 and 

2, • 0 0 , 

w), i 

- c /.JJ, 

c = 0. 
N 

0 

= 

j 

t 
N-1 

N, 

1, 3, 

= 2, 
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5, ••• t N-1, 

4, 6, .. 0' N, 



In programming, the arrays s , 
1 

t 
1

, s J and t J may be assigned as 

variables, which will then consume less computer storage. 

We now, present the algorithm in detail. 

Algorithm 4.1.2-1: The generalised AGE scheme, (4.1.2-6)- (4.1.2-7). 

Set 
(k) 

u
1 

= 0, 1, = 0, ... , N+l, a
1 

= 0, eN= 0. 

Step 1. To compute u (k+1/ 2) Set 1 = 1. 

Step 2. 

while 1 s N-1, compute 

s = 

V = 

r = 
I 

r = 
2 

-aw 
I ' 

a (1 
1+1 

su 
(k) 

1-1 

vu (k) 

I 

P =a-2gw 
1 1 1 , 

- w), p2 =a 
1+1 

+ (k) 
plul + tu (k) 

1+1 

+ (k) 
p2ul+l 

+ (k) 
qul+2 

d = 1/ (a a - a c ) 
l 1+1 1+1 1 

(k+l/2) 
ul = (a r - c r )d 

1+1 1 1 2 

(k+1/2) 
u 

1+1 
= (-a r + a r )d 

1+1 I I 2 

1 = 1 + 2. 

(k+l) 
To compute u . Set 1 = 2. 

(k+l) ( (k+l/2) (k) 
u

1 
= ru

1 
+ g

1
u

1 
)la

1 

while 1 s N-2, compute 

- 2g w 
1+1 ' 

+ wb 
I 

+ wb 
1+1 

r = ru (k+l/2 ) + g u (kl + c u (kl 
1 I I I I 1+1 

= ru (k+112l + a u (kl + (kl 
r2 t+t t+t 1 gt+tut+t 

d = 1/ (a a - a c ) 
1 1+1 1+1 1 

u:k•ll = (al+1r1 - clr2)d 

u (k+1 > = (-a r + a r ) d 
1+1 1+1 1 1 2 

1 = 1 + 2. 

(k+1) = (ru (k+1/2) + g u (k) )/a 
UN N N N N 

q = - c w 
1+1 

Step 3. Repeat Step 1 and Step 2 until convergence is achieved. 
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4.1.3 The generalised AGE method in Guittet's form 

Guittet [1967] has considered another generalised form to solve the PDE 

problems with higher dimensions. Analogous to the one dimensional 

problem, the AGE method in Guittet's form (AGE-GT) may be written as 

2 
(ri + G

1
)u(k+1/ 2) = wr[b- Au(k)l +TT (ri + G

1
)u(k) (4.1.3-1) 

1=1 

(ri G ) 
(k+1) (k+l/2) 

+ u = u 
2 

(4. 1. 3-2) 

where the iteration matrix can be shown to have the form of (4.1.2-11). 

Thus, the scheme is also convergent and can be shown to be consistent. 

Guittet has also considered the value of w which will give the 

iterative method (4.1.3-1) and (4.1.3-2) better convergence. But, it is 

obvious that by putting w = 1, we have the AGE-DR(2) in Guittet's form, 

(AGE-DRGT), whilst for w = 2, yields the AGE-DG in Gui ttet' s form 

(AGE-DGGT). This shows that the rate of convergence of the new scheme, 

at best, is similar to the AGE-DG scheme. The advantage of this form is 

that it also can be applied to solve problems with higher dimensions. 

This will be shown later in Chapter 6. 

Let us rewrite the AGE-GT scheme (4.1.3-1)- (4.1.3-2) as 

2 
(ri + G

1
)u(k+1/2l = [TT (ri 

1=1 

(ri + G )utk+U = u(k+1/2) 
2 

or in explicit form 

2 

+ G ) - wrA]utkl + wrb 
1 

u (k+1/2) = (rl + G
1
)-1 [{ TT (ri + G

1
) - wrA}u(k) + wrb] 

1=1 

u (k+U = (r I + G ) -1u (k+1/2l. 
2 

(4. 1. 3-3) 

(4. 1. 3-4) 

(4. 1. 3-5) 

(4.1.3-6) 

The disadvantage of the AGE-GT is in the evaluation of the matrix 

2 

P = TT (r I + G
1

) - wrA. 
1=1 

(4. 1. 3-7) 

which takes more computational effort. 
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The evaluation of P becomes more difficult when solving the problem 

with higher dimension as the multiplication of (ri + G ) becomes more 
I 

complex. However, this is compensated by the simple calculation of the 

second equation. 

Now, by considering the matrices A, G
1 

and G
2 

given in (4. 1-2), 

(4.1-4) and (4.1.5), we write the algorithm for the AGE-GT scheme. 

First, to evaluate the matrix Pin (4.1.3-7). Let ~1 = r + g
1

• 

~ c 
1 1 

a ~ 
2 2 

~ c 
3 3 

a ~ 
4 4 

•··········· .... 
p = 

·· .. 
~ 

H-1 
a 

H 

- wr 

p1 r s 
1 1 

w p2 q2 1 
s 

3 
V p3 r 

3 3 

q4 t w p4 3 3 

= 
·,, ·· .. 

'·· 
· ........... 

V 
H-3 

t 

·····...... ·· ................. . 
· ........... . 

······ ...... 

0 
H-3 

~ 
1 

c 
H-1 
~ 

H 

···. ·· .. 
····· ... 

0 

••·•···· ... 

~ c 
2 2 

a ~ 
3 3 

••·········· .... 

a 
H-1 

0 

·· .. 
····· ... 

c 
2 

····· ... 
~ 

H-2 
a 

H-1 

0 

'·········· ... 

ZgH-1 

a 
H 

c 
N-1 

·· ... ·· .. 
'· '·· 

····••·· .... 
·· .. 

"······· ... 
PH-3 

r s 
H-3 H-3 

w 
PH-2 qH-2 H-3 
V 

PH-1 
r 

H-1 H-1 
t w PN H-1 H-1 
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H-2 

~ 
H-1 

~ 
H 

(4. 1. 3-8) 



where 

p
1 

= oc2 
- 2wrg , 1 ~ i ~ N, 

I I 
s = c c , 1 = 1, 3, ... , N-3, 

1 1 1+1 

tl = alal+1' vi = al (ocl wr), i = 3, 5, ... , N-1, 

z 1 = c1 (oc1•1 - wr), w
1 

= a 1•1 (oc1 - wr), 1 = 1, 3, ... , N-1, 

and q 1+1 = c 1+1 (oc1+1 - wr), 1 = 1, 3, ... , N-1. 

It should be noticed that since eN = 0, then s = 0 and q = 0, 
N-1 N 

and since a1 = 0, then t 1 = v 1 = 0. In programming, these arrays may be 

assigned as variables, and hence conserve a lot of storage. 

We now write the algorithm for the AGE-GT as follows. 

Algorithm 4.1.3-1: The AGE-GT scheme, equations (4.1.3-5)- (4.1.3-6). 

Set u (kl = 0, i = 0, 
I 

.•• , N+1, a
1 

= 0, eN = 0. 

(k+112) 
Step 1. To compute u from equation (4.1.3-5). Set 1 = 1. 

Step 2. 

while i ~ N-1, compute 

2 
v = a 1(oc1 - wr), p1 = oc - 2wrg, z = c (oc - wr), 

I I I 1+1 

t = a a , w = a (oc - wr), 
1 1+1 1+1 1 

2 
- 2wrg1•1, q = c (oc p2 = oc 1+1 1+1 1+1 

= (k) + (k) + zu (k) 
r1 vu p1ul 1-1 1+1 

tu 
(k) 

+wu 
(k) + (k) r = p2ul+1 2 1-1 I 

d = 1/(oc oc - a c ) 
1 l +1 1 +1 1 

(oc r - c r )d 
1+1 1 I 2 

(k+112) 
u = (-a r + a r ) d 

1+1 1+1 1 1 2 

1 = 1 + 2. 

+ su (k) 
1+2 

+ (k) 
qul+2 

- wr), 

+ wrb 
I 

+ wrb 1+1 

(k+1) 
To compute u from equation (4.1.3-6). Set i = 2. 

u (k+1) 
1 

= (k+l/2) / 
u1 <X1 

while i ~ N-2, compute 

d = 1/(oc a - a c ) 
1 1 +1 1 +1 1 

= (oc u (k+1/2l - c u (k+l/2) )d 
1 +1 1 1 1 +1 
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(k+l) 
u 

1+1 
= (-a u (k+l/2) + a u (k+l/2) )d 

1+1 1 1 1+1 

1 = 1 + 2. 

Step 3. Repeat Step 1 and Step 2 until convergence is achieved. 

4.1.4 The computational complexity 

It has been shown that the AGE-PR, AGE-DG and AGE-DGGT schemes have a 

similar rate of convergence, whilst the AGE-DR method converges slower 

than the three schemes. To determine which scheme is the best, we now 

analyse the arithmetic operations involved in the respective schemes. 

For each scheme, we will estimate the amount of operations needed in 

each iteration that is required to solve the model problem. 

In this section, the comparison of the computational complexity for 

the three schemes will be based on the algorithms 4.1.1-1, 4.1.2-1 and 

4.1.3-1 respectively. Table 4.1.4-1 summarises the amount of operations 

required for each algorithm when N is large. 

Algorithm Multiplication Addition Overall 

4. 1. 1-1 14N 1N 21N 

4. 1. 2-1 18N 10N 28N 

4. 1. 3-1 19N 10N 29N 

Table 4.1.4-1: The amount of operations per iteration. 

The amount of computational work in presented Table 4.1.4-1 serves 

as a general comparison for the three schemes. Moreover, the amount of 

work shown satisfies a problem that yield the matrix A in (4.1-2) where 

g
1 

is not a function of u
1

• However, faster scheme can be derived if 

g
1 

= g, a
1 

and/or c
1 

= -1, \1 i, which reduces the computational work 

accordingly. 
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4.1.5 Experimental results 

Three linear and one non-linear problems were tested to compare the 

results for the schemes that have been discussed. Problem 1 is run with 

several values of constant p to see how the schemes compare. The matrix 

A derived from each problem is also presented and is used as a guide to 

compute the amount of computational work needed by the problem. 

Problem 1 - A Linear Problem 

- U" + pU = (p+1 )(sin x + cos x), 

U(O) h = n/2(N+1). 

The exact solution is U(x) = sin x + cos x. 

The matrix A is 

where g 

A = 

2 = 1 + 0. Sph . 

2g -1 

-1 2g 

····•···· ... 
·· .. 

·· ......... . 

-1 
0 

.... 

-1 

2g 

-1 

····•··· .... 

0 

·· .. 
-1 

2g 

ll 
0 :S X :S 2' 

Algorithm - Scheme Multiplication Addition 

4. 1. 1-1 - AGE-DR(1) (w = 1) 7N 6N 

4. 1. 1-1 - AGE-PR(2) (w = 0) 7N 6N 

4. 1. 2-1 - AGE-DR(2) (w = 1) 7N 6N 

4. 1. 2-1 - AGE-DG (w = 2) SN 7N 

4. 1. 3-1 - AGE-DRGT (w = 1) 7N 6N 

4. 1. 3-1 - AGE-DGGT (w = 2) 7N 6N 

Overall 

13N 

13N 

13N 

15N 

13N 

13N 

Table 4. 1. 5-1 Problem 1, The amount of computation per iteration 
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The results for various p are tabulated as follows: 

AGE-PR(2), AGE-DG, AGE-DGGT AGE-DR(1), AGE-DR(2), AGE-DRGT 
"' = 0 "' = 2 "' = 2 "' = 1 "' = 1 "' = 1 

N optimum r iter r iter 

10 0.490 17 0.490 38 
20 0.277- 0.280 38 0.277 - 0.280 70-73 
40 0.150- 0.151 77 0. 150 - 0. 151 139-141 
80 0.080- 0.081 156 0.080 - 0.081 278-286 

160 0.043 312 0.043 565 

Table 4.1.5-2 Problem 1, Number of Iterations when p = 0 

AGE-PR(2), AGE-DG, AGE-DGGT AGE-DR(l ), AGE-DR(2), AGE-DRGT 
"' = 0 "' = 2 "' = 2 "' = 1 "' = 1 "' = 1 

N optimum r iter r iter 

10 0.510 - 0.529 17 0.510 - 0.529 33-37 
20 0.290 - 0.291 34 0.290 - 0.291 61-62 
40 0.155 - 0.158 69 0.155 - 0.158 116-123 
80 0.082- 0.084 142 0.082- 0.084 231-244 

160 0.044- 0.045 289 0.044 - 0.045 474-493 

Table 4.1.5-3 Problem 1, Number of Iterations when p = 1 

AGE-PR(2), AGE-DG, AGE-DGGT AGE-DR(1), AGE-DR(2), AGE-DRGT 
"' = 0 "'= 2 "' = 2 "' = 1 "' = 1 "' = 1 

N optimum r iter r iter 

10 0. 705 - 1.193 7 o. 705 - 1.193 20-21 
20 0.556- 0.608 12 0.556- 0.608 27-29 
40 0.303- 0.322 23 0.303- 0.322 44-48 
80 0.158- 0.176 47 0. 158 - 0.176 79-91 

160 0.087 - 0.097 96 0.087- 0.097 159-179 

Table 4.1.5-4 Problem 1, Number of Iterations when p = 40 

AGE-PR(2), AGE-DG, AGE-DGGT AGE-DR( 1), AGE-DR(2), AGE-DRGT 

"' = 0 "' = 2 "' = 2 "' = 1 "' = 1 "' = 1 

N optimum r iter r iter 

10 1. 044 - 1. 619 6 1. 044 - 1. 619 18-19 
20 0.495- 0.781 10 0.495- 0.781 24-25 
40 0.219 - 0.414 19 0.219- 0.414 40-41 
80 0.102- 0.109 36 0. 102 - o. 109 69-68 

160 0.044- 0.047 71 0.044- 0.047 129-125 

Table 4.1.5-5 Problem 1, Number of Iterations when p = 70 
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AGE-PR(2), AGE-DG, AGE-DGGT AGE-DR(l), AGE-DR(2), AGE-DRGT 
w = 0 w = 2 w = 2 w = 1 w = 1 w = 1 

N optimum r iter r iter 

10 1. 555 - 1. 741 5 1. 555 - 1. 741 17-18 
20 0.571 - 0.950 9 0.571 - 0.950 22-24 
40 0.270 - 0.460 16 o. 270 - 0.460 35-35 
80 0.117 - 0.163 31 0.117 - 0.163 59-54 

160 0.051 0.063 61 0.051 - 0.063 110-100 

Table 4.1.5-6 Problem 1, Number of Iterations when p = 100 

AGE-PR(2), AGE-DG, AGE-DGGT AGE-DR( 1), AGE-DR(2), AGE-DRGT 
w = 0 w = 2 w = 2 w = 1 w = 1 w = 1 

N optimum r iter r iter 

10 2.675- 2.739 4 2.675 - 2.739 17 
20 0. 851 - 1. 369 7 0.851 - 1. 369 19-20 
40 0.569 ,_ 0.577 11 0.569 - 0.577 26 
80 0.169- 0.308 22 0.169 - 0.308 44 

160 0.077- 0.090 42 0.077- 0.090 79-73 

Table 4.1.5-7 Problem 1, Number of Iterations when p = 200 

Problem 2 - A Linear Problem 

u" - (~ : ~)u = o, o:sx:s1, 

U(O) = 1, U(1) = 0. h = li(N+1 ). 

The exact solution is not known, but the computed solution can be 

obtained when 11 r 11 = Jib - Au (k+ll 11 < c. The matrix A for this problem 

is given by 

-1 -1 0 

A = ............ •··· .... .. ...... 
·· .. ····· ... ····· ... 

-1 2gN-1 -1 

0 -1 2gN 

where gl = 1 + 0. 5h
2u : ~:J. 1 :s i :s N. 
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The results are tabulated as follows: 

Algorithm - Scheme Multiplication Addition Overall 

4. 1.1-1 - AGE-DR(1) (w = 1 ) 9N 7N 16N 

4. 1. 1-1 - AGE-PR(2) (w = 0) 9N 7N 16N 

4. 1. 2-1 - AGE-DR(2) (w = 1) 10N 7N 17N 

4. 1. 2-1 - AGE-DG (w = 2) 10N 8N 18N 

4. 1. 3-1 - AGE-DRGT (w = 1) 10N 7N 17N 

4. 1. 3-1 - AGE-DGGT (w = 2) 10N 7N 17N 

Table 4.1.5-8 Problem 2, The amount of computation per iteration 

AGE-PR(2), AGE-DG, AGE-DGGT AGE-DR(l), AGE-DR(2), AGE-DRGT 
w = 0 w = 2 w = 2 w = 1 w = 1 w = 1 

N optimum r iter r iter 

10 0.488- 0.520 19 0.488 - 0.520 37-45 
20 0.277- 0.294 39 0.277 - 0.294 69-82 
40 0.153 - 0.156 78 0.153- 0.156 143-149 
80 0.083- 0.085 159 0.083- 0.085 289-300 

160 0.046 314 0.046 592 

Table 4.1.5-9: Problem 2, Number of Iterations 

Problem 3 - A Linear Problem 

U" - ( 1 + x2
)U = - 1, -1 :S X :S 1, 

U(-1) = O, U(1) = 0. h = 2/(N+1). 

The computed solution is obtained when 11 r 11 = 11 b - Au(k+ll 11 < c. 

The matrix A for this problem is given by 

0 

A = ····· ... \..... '···,···· .... 

-1 

0 
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The results are tabulated as follows: 

Algorithm - Scheme Multiplication Addition Overall 

4.1.1-1 - AGE-DR(1) (w = 1) 9N 7N 16N 

4. 1. 1-1 - AGE-PR(2) (w = 0) 9N 7N 16N 

4. 1. 2-1 - AGE-DR(2) (w = 1) 10N 7N 17N 

4. 1. 2-1 - AGE-DG (w = 2) 10N 8N 18N 

4. 1. 3-1 - AGE-DRGT (w = 1) 10N 7N 17N 

4. 1. 3-1 - AGE-DGGT (w = 2) 10N 7N 17N 

Table 4.1.5-10 Problem 3, The amount of computation per iteration 

AGE-PR(2), AGE-DG, AGE-DGGT AGE-DR(l), AGE-DR(2), 
w = 0 w = 2 w = 2 w = 1 w = 1 

N optimum r iter r 

10 0.560 - 0.580 12 0.560 - 0.580 
20 0.303- 0.305 20 0.303 - 0.305 
40 0. 160 - 0. 161 39 o. 160 - o. 161 
80 0.080 70 0.080 

160 0.040 132 0.040 

Table 4.1.5-11 Problem 3, Number of Iterations 

Problem 4 - A Mildly Nonlinear Problem. 

- U" + ~ = 0. 
2 

U(O) = 4, U(1} = 1. h = 1/(N+l). 

AGE-DRGT 
w = 1 

iter 

30-32 
46-47 
82-83 

144 
267 

The exact solution to this problem is given by U(x} = 4/(1+x) 2. 

The matrix A is given by 

-1 2g2 -1 0 

A 
·· .. ··, 

····,·.,· ••. = ·,, ''· .... '·· ·· .. ·· .. 
-1 2gH-1 -1 

0 -1 2gN 

where gl = 1 + 2 0.75h u 
I' 

1 :S i :S N. 
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The result is tabulated as follows: 

Algorithm - Scheme Multiplication Addition Overall 

4. 1. 1-1 - AGE-DR(1) (w = 1) 10N 10N 20N 

4. 1. 1-1 - AGE-PR(2) (w = 0) 10N 11N 21N 

4. 1. 2-1 - AGE-DR(2) (w = 1) 11N 10N 21N 

4. 1. 2-1 - AGE-DG (w = 2) 13N 10N 23N 

4. 1. 3-1 - AGE-DRGT (w = 1) 14N 14N 28N 

4. 1. 3-1 - AGE-DGGT (w = 2) 14N 14N 28N 

Table 4.1.5-12 Problem 4, The amount of computation per iteration 

AGE-PR(2), AGE-DG, AGE-DGGT AGE-DR( 1), AGE-DR(2), AGE-DRGT 
w = 0 w = 2 w = 2 w = 1 w = 1 w = 1 

N optimum r iter r iter 

10 0.572 - 0.579 17 0.572- 0.579 35-36 
20 0.317 - 0.323 35 0.317- 0.323 63-66 
40 0.164 - 0.179 72 0.164- 0.179 109-135 
80 0.089 - 0.093 143 0.089- 0.093 233 253 

160 0.048 - 0.049 285 0.048 - 0.049 478-493 

Table 4.1.5-13: Problem 4, Number of Iterations 

The results also show that, for each problem, the amount of work 

needed per iteration is almost equal regardless of the algorithms. 

However, in terms of the amount of computational work needed for each 

iteration, for large N, the AGE-PR(2) scheme requires less work than the 

other two schemes. For Problem 4, Algorithm 4.1.3-1 shows a little more 

(k) 
extra work since g

1 
depends on u

1 
• 

The results show that the number of iterations for each problem 

determined by the above algorithms are in qualitative agreement with the 

theory presented in Sections 4.1.1 - 4.1.3. This can be seen from the 

tables, that the AGE-PR(2), AGE-DG and AGE-DGGT schemes yield similar 

results in terms of optimal r and number of iterations. 
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This shows that AGE-PR(2), AGE-DG, AGE-DGGT schemes are better than 

the scheme based on AGE-DR. The results for the AGE-DR(l), AGE-DR(2) 

and AGE-DRGT schemes are presented in the form of ranges to show the 

variation in iterations over the range of r. For example, in Problem 4, 

for N = 160, r ranges from 0. 048 to 0. 049 which gives the number of 

iterations from 478 to 493. The other ranges can be described in the 

same way. 

Now, by careful consideration of the simplicity of the algorithms 

and the possible need to extend it to solve problems with higher 
' 

dimensions, then, at this stage, we may say that Algorithm 4.1.2-1 for 

w = 2, i.e., the AGE-DG scheme is the best choice. 

4.1.6 The AGE-OR method with optimal single parameter

experimental results 

Since the optimal single parameter for the AGE-DR method is based 

on the closely related AGE-PR(1) form, no theoretical analysis has 

been given. So, the optimal single parameter for the AGE-DR(1), 

AGE-DR(2) and AGE-DRGT schemes are now determined experimentally. 

Obviously we cannot expect that, the optimal single parameter to be the 

same since the iteration matrices are no longer of symmetric and regular 

form. The results for each problem are presented below. 

AGE-DR(1), AGE-DR(2), AGE-DRGT 
w = 1 w = 1 w = 1 

N optimum r iter 

10 0.474 33 
20 0.262 54 
40 o. 138 97 
80 0.069 161 

160 0.035 317 

Table 4. 1. 5-14 Problem 1, Number of Iterations when p = 0 
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AGE-DR(l), AGE-DR(2), AGE-DRGT 
"' = 1 "' = 1 "' = 1 

N optimum r iter 

10 0.498 0.500 31 
20 0.277- 0.278 51 
40 0. 144 84 
80 0.074 161 

160 0.037 316 

Table 4.1.5-15 Problem 1, Number of Iterations when p = 1 

AGE-DR(l), AGE-DR(2), AGE-DRGT 

"'= 1 "' = 1 "' = 1 

N optimum r iter 

10 o. 788 - 1. 023 19 
20 0.484- 0.551 26 
40 0.269- 0.277 40 
80 0. 137 - o. 139 69 

160 0.069 127 

Table 4.1.5-16 Problem 1, Number of Iterations when p = 40 

AGE-DR(l l, AGE-DR(2), AGE-DRGT 

"'= 1 "' = 1 "' = 1 

N optimum r iter 

10 1. 012 - 1. 501 18 
20 0.514- 0.713 23 
40 0.318- 0.340 33 
80 0.169 54 

160 0.080- 0.081 86 

Table 4.1.5-17 Problem 1, Number of Iterations when p = 70 

AGE-DR(l), AGE-DR(2), AGE-DRGT 

"'= 1 "' = 1 "' = 1 

N optimum r iter 

10 1. 453 - 1. 691 17 
20 0.617- 0.824 21 
40 0.351 - 0.392 29 
80 0. 184 - 0.190 46 

160 0.092 83 

Table 4.1.5-18 Problem 1, Number of Iterations when p = 100 
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AGE-DR(l), AGE-DR(2), AGE-DRGT 
w = 1 w = 1 w = 1 

N optimum r iter 

10 1. 800 - 3.332 17 
20 0.816- 1. 249 19 
40 0.477 - 0.520 24 
80 0.245- 0.250 37 

160 0.125- 0.126 64 

Table 4.1.5-19 Problem 1, Number of Iterations when p = 200 

AGE-DR(1), AGE-DR(2), AGE-DRGT 
w = 1 w = 1 w = 1 

N optimum r iter 

10 0.473- 0.474 32 
20 0.266 59 
40 0.141 115 
80 0.073 224 

160 0.037 444 

Table 4.1.5-20 Problem 2, Number of Iterations 

AGE-DR(1), AGE-DR(2), AGE-DRGT 
w = 1 w = 1 w = 1 

N optimum r iter 

10 0.520- 0.526 26 
20 0.290 - 0.291 42 
40 0.150 72 
80 0.076 133 

160 0.038 249 

Table 4.1.5-21 Problem 3, Number of Iterations 

AGE-DR(1), AGE-DR(2), AGE-DRGT 
w = 1 w = 1 w = 1 

N optimum r iter 

10 0.539 - 0.541 30 
20 0.296 so 
40 0.154 88 
80 0.078 163 

160 0.039 317 

Table 4.1.5-22 Problem 4, Number of Iterations 
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These results show that the range of optimum r is slightly 

different from that given by the earlier AGE-PR(2) form. Although, 

there are some small gains in the number of iterations, these 

improvements do not show any sign of superiority of the AGE-PR(2), 

AGE-DG and AGE-DGGT schemes. Thus, again we may consider that, at this 

stage, the AGE-DG scheme is a better choice. 

4.2 The solution with alternative computational forms 

Now, it is obvious that the form and rearrangement of the equations to 

be solved is important in order to save time in the computation. In 

this section, we will consider alternative forms for the schemes in 

solving the two-point boundary-value problem in relation to the time 

taken for each iteration. 

Let us recall the three generalised schemes given in Section 4.1. 

Then, the respective explicit formula for these schemes can be written 

as follows: 

The AGE-PR(2) Scheme 

uCk+l/2 ) = (rl + G )-1 [b + (rl - G )uCkll 
1 2 

uCk+ll = (ri + G )-1 [2ruCk+1121 - (ri-G )uCkl]. 
2 2 

The AGE-DG Scheme 

uCk+1/2l = (ri + G )-1 [2b + {(ri +G) - 2A}uCkll 
1 1 

uCk+ll = (ri + G )-1 [ruCk+1/2l + G uCkl ]. 
2 2 

The AGE-DGGT Scheme 
2 

uCk+l/2l = (ri + G
1

)-1 [{ n (ri + G
1

) - 2rA}uCkl + 2rb] 

1=1 

u Ck+ll = (r 1 + G ) -1u Ck+1/2l. 
2 

We will also consider the AGE-PR(1) Scheme 

(k+1/2) 
u 
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(4.2.1-1) 

(4.2.1-2) 

(4.2.1-3) 

(4.2.1-4) 

(4.2. 1-5) 

(4.2.1-6) 

(4.2.1-7) 



(k+1) 
u = (ri + G )-1 [b + (ri - G )u(k+!/2)). 

2 1 
(4.2.1-8) 

In this section, we will use the matrices A, G
1 

and G
2 

as given in 

(4.1-2), (4.1-3) and (4.1-4). 

4.2.1 The computational forms of AGE-PR, AGE-DG and AGE-DGGT schemes 

The Algorithms 4. 1.2-1, 4.1.2-2 and 4.1.2-3 show that the computation of 

(k+l/2) (k+1) u and u are made up of terms involving intermediate values 

Now, instead of computing r and r separately, we will 
1 2 

(k+1/2) 
consider the substitution of these values into the solutions of u 

and u (k+1 ) (k+1/2) 
By doing so, we will then have the solutions of u 

and U (k+
1

) in terms of a t ti 1 1 1 hi h 1 d t i compu a ona mo ecu e w c may ea o sav ng 

in computational work. 

In algorithmic form, the respective molecular forms of the three 

schemes can be presented as follows. We commence with the AGE-PR(2) 

scheme. Let a
1 

= r + g
1
, ~1 = r- g

1
, 1 = 1, 2, ... , N. 

Algorithm 4.2.1-1: The Computational form of the AGE-PR(2) Scheme, 

(COMP-AGE-PR(2)), equations (4.2.1-1)- (4.2.1-2). 

Set u:k) = 0, 1 = 0, ... , N+1, a
1 

= 0, cN = 0, s = 2r. 

(k+l/2) Step 1. To compute u . Set i = 1. 

while 1 s N-1, compute 

d=1/(aa -a c),A=-da a,B=da ~. 
I 1+1 1+1 I 1+1 I 1+1 I 

C =- dc
1

13
1
•

1
, D = dc

1
c

1
•

1
, E = d(a

1
•

1
b

1 
- c

1
b

1
•

1
), 

p = da a , Q = - da 13 , R = da
1

13
1
•
1

, 
I 1+1 1+1 l 

s = - da c T = d(a b - a b ) 
I 1+1, I 1+1 1+1 1 , 

(k+l/2) 
Au 

(k) + Bu (k) + Cu (k) + Du (k) + E u = 
I 1-1 I 1+1 1+2 
(k+l/2) 

= Pu(k) + Qu (k) + Ru 
(k) + Su(k) + T u 

1+1 1-1 I 1+1 1+2 

1 = i + 2. 
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Step 2. 
(k+1) 

To compute u Set i = 2. 

= (su(k+1/2l - /3 u(kl)/ex 
1 1 1 1 

while i ~ N-2, compute 

d = 1/ (ex ex - a c ) , A = dsex , B = - dsc , 
l 1+1 1+1 1 1+1 1 

C =- d(ex f3 + a c ), D =de (ex + f3 ) 
1+1 I 1+1 I I 1+1 1+1 ' 

P = - dsa , Q = dsor. , R = da (ex + f3 ) , 
1+1 1 1+1 1 1 

S = - d (ex f3 + a c l. 
1 1+1 1+1 1 

(k+l) 
ul 

(k+1) 
u 

1+1 

= Au (k+1/2) + Bu (k+1/2l + Cu (kl 
I 1+1 I 

= Pu (k+1/2l + Qu (k+1/2l + Ru (kl 
l 1+1 1 

i = i + 2. 

uN(k+1l = (su(k+112l - /3 u(kl)/or.. 
N N N N 

+ Du (k) 

1+1 

+ Su (kl 
1+1 

Step 3. Repeat Step 1 and Step 2 until convergence is achieved. 

The computational molecules for Step 1, i.e., to compute u (k+1/2l 
I 

i = 1, 3, 
• 0 0 ' 

N-1, 

0-
i-1 1 i+1 

are given by Figure 4.2.1-1. 

i+2 i-1 i i+1 1+2 

1 k+-
2 

Figure 4. 2. 1-1 : The computational molecule for u (k+1/2l, AGE-PR(2). 

(k+1) . 
For the computation of u

1 
, 1 = 2, 4, ... ' N, the computational 

molecules can be presented as in Figure 4.2.1-2. 

k+1 

-0 1 k+-
2 

-0 0 k 

i i+1 i i+l 

Figure 4.2.1-2 The computational molecules for u(k+ll, AGE-PR(2) 
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Now, we present the algorithm for the AGE-DG scheme in the computational 

by using equations (4.2.1-3)- (4.2.1-4). 

Algorithm 4.2.1-2: The Computational form of the AGE-DG scheme, 

(COMP-AGE-DG), Equations (4.2.1-3) - (4.2.1-4). 

Set 
(k) 

u1 = 0, 1 = 0, ... , N+1, a1 = 0, eN = 0. 

Step 1. 

Step 2. 

(k+l/2) 
To compute u Set 1 = 1. 

while i s N-1, compute 

d = 1/(ex ex - a c ) A=-2daex, D = 2dc c 
1+1 1 , 1 1+1 1 1+1 

B = 1 +2d(a c -2gex ), P = 2da a 
1 +1 1 1 1 +1 1 l+t' 

= c 2dc (2g - ex ) E = 2d(ex b - c b ) 
1 1+1 1 +1 , 1+1 1 1 1+1 ' 

Q = 2da (2g - ex ) T = 2d(ex b - a b ) 
1+1 l 1 • 1 1+1 1+1 1 , 

R = 1 + 2d (a c - 2g ex ) , S = - 2dc ex 
1+1 1 1+1 1 1+1 1 

u 
(k+l/2) 

= Au (k) + Bu<kl + Cu(kl + Du<kl + E 
1 1-1 1 1+1 1+2 

u (k+l/2) = Pu (kl 
1+1 1-1 

+ Qu (kl + Ru (kl + Su (kl + T 
1 1+1 1+2 

1 = 1 + 2. 

(k+l) 
To compute u . Set 1 = 2. 

u~k+ll = (ru~k+l/2) + glu~kl )/ex! 

while 1 s N-2, compute 

d = 1/ (ex ex - a c ) A=drex, 
1 1+1 1+1 l t 1+1 

c = d(ex1+1g1 - a c ) D = de (ex 
1+1 1 , 1 1+1 

p = - dra Q = drex1, R = da (ex 
1+1' 1+1 1 

s = d(ex1g1+1 - a c ). 
1+1 1 

(k+l) 
u1 

u<k+ll 
1+1 

= Au (k+l/2) 
1 

= Pu(k+l/2) 
I 

1 = 1 + 2. 

B 
(k+1/2) 

+ u 1+1 
+ Qu(k+l/2) 

1+1 

uN(k+ll = (ru(k+1/2l + g ulkl )/ex . 
N N N N 

+ Cu (kl 
1 

+ Ru (k) 

1 

B = - drc 

- g1+1), 

- gl). 

+ Du (k) 

1+1 
+ Su (kl 

1+1 

1. 

1 1+1 

Step 3. Repeat Step 1 and Step 2 until convergence is achieved. 
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The computational molecules for the evaluation of u:k•112
l 1 = 1, 

3, ... , N-1, are given by Figure 4.2.1-3. 

1 k+-
2 

0- -0-0 0-8- --0 k 

1-1 1 1+1 1+2 i-1 1 1+1 1+2 

(k+1/2) Figure 4.2.1-3: The computational molecule for u AGE-DG. 

(k+1) For the evaluation of u
1 

, 1 = 2, 4, ... , N, the computational 

molecules can be presented as in Figure 4.2.1-4. 

-0 
1 1+1 i i+1 

k+1 

1 k+-
2 

k 

(k+ll Figure 4.2.1-4: The computational molecules for u , AGE-DG. 

By using equations (4.2. 1-5) (4.2.1-6), we next present the 

algorithm for the AGE-DGGT in computational form as follows. 

Algorithm 4.2.1-3: The Computational form of the AGE-DGGT scheme, 

(COMP-AGE-DGGT), equations (4.2.1-5)- (4.2.1-6). 

Set u:kl = 0, i = 0, ... , N+1, a
1 

= 0, c
8 

= 0. 

Step 1. To compute u (k+l/2
). Set i = 1. 

while i ~ N-1, compute 

d = 1/(« « -a c ), w = 2rd, A= a (1 - w« ), 
1 1+1 1+1 1 1 1+1 

B = « + w(a c - 2« g ) , C = we (2g - «
1
•

1
), 

1 1+1 l 1+1 1 1 1+1 

D = we c , E = w(« b - c b ) , 
1 1 +1 1+1 1 1 1 + 1 
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Q = wa (2g 
1+1 1 

- 0: ) 
I ' 

S=c (1 1+1 
- WO: ) 

I ' 

R = 0: + w(a c - 2g 0: ), p = wa a , 
1+1 1+1 1 1+1 1 1 1+1 

T = w(oc b -
1 1+1 

a b ). 
1+1 1 

(k+1/2) Au<kl + Bu<kl + Cu 
(k) + Du (k) + E u = I 1-1 I 1+1 1+2 

(k+1/2) Pu(k) + Qu (k) + Ru 
(k) + Su (k) + T u = 1+1 1-1 I 1+1 1+2 

i = i + 2. 

Step 2. To compute u(k+1) from equation (4.1.3-6). Set 1 = 2. 

(k+1) 
u1 = 

(k+1/2)/ u 0: 
1 1 

while i ~ N-2, compute 

d = 1/(o: o: - a c ) 
1 1 +1 1 +1 1 

A=do: ,B=-
1+1 

(k+ll = A (k+1/2l 
ul ul 

u (k+ll = 
1+1 

Cu (k+1/2l 
I 

i = i + 2. 

= -

+ Bu (k+l/2) 
1+1 

+ Du (k+1/2l 
1+1 

Step 3. Repeat Step 1 and Step 2 until convergence is achieved. 

(k+1/2) 
The computational molecule for this scheme for evaluating u1 , 

i = 1, 3, ... ' N-1, are given by Figure 4.2.1-5. 

1 k+-
2 

0- -0-0 0-G-
i-1 i i+1 i+2 i-1 i i+1 i+2 

(k+l/2) Figure 4.2.1-5: The computational molecules for u , AGE-DGGT. 

(k+1) . 
For the evaluation of u1 , 1 = 2, 4, • 0 0, N, the computational 

molecules can be presented as in Figure 4.2.1-6. 
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k+1 

-0 0 1 k+-
2 

1 i+1 i 1+1 

Figure. 4. 2. 1-6 The computational molecules for u (k+l) AGE-DGGT. 

Finally, we present the computational form of the AGE-PR(1) scheme 

(COMP-AGE-PR(1)), derived from equations (4.2.1-7)- (4.2.1-8). 

Since equation (4.2.1-7) is similar to equation (4.2.1-1), we then 

have the computational molecules for computing u (k+1
/2) via this scheme 

similar to the one given in Figure 4. 2.1-1. We will now derive the 

computational molecules for computing u(k+1l from equation (4.2.1-8). 

In algorithmic form, equation (4.2.1-8) can be presented as 

follows. 

(k+1) 
To compute u Set i = 2. 

(k+1) 
u1 = (b + (3 U (k+l/2) - C U (k+1/2) )/IX 

1 11 12 1 

while 1 ~ N-2, compute 

d = 1/(IX IX 
I 1+1 - a c ) 

1+1 1 ' 
A=-daiX 

l+t' 
B = diX 1+1(31' I 

= = c - de (3 D de c 
l 1+1' I l+t' 

E = d(IX b 
1+1 1 

- c b ) 
1 1+1 ' 

p = da a 
1 1+1' 

Q = - da 1+1(31' R = diXI/31+1' 

s = - da. c ' T = d(b IX - a 1•1b1) 
I 1+1 1+1 I 

(k+l) 
= Au 

(k+112) B (k+112l Cu (k+1/2) + Du (k+1/2) 
ul + u + 

1-1 I 1+1 1+2 
u<k+1l = Pu (k+l/2) + Qut•112l + Ru (k+112l + Su 

(k+l/2) 
1+1 1-1 1+1 1+2 

i = i + 2. 

u (k+l) = ( b (k+112) + Q (k+1/2) )/ 
N N - aNuN-1 "NUN IXN, 

The computational molecules for computing u(k+O 
I 

+ E 

+ T 

i = 1' 3, 

N-1, via the COMP-AGE-PR(1) can be derived as in ·Figure 4.2.1-7. 
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i-1 

-0-0 0-0-
i i+1 i+2 i-1 i 

-0 
i+1 i+2 

k+1 

k+.!. 
2 

Figure 4.2.1-7: The computational molecule for u(k+tl, AGE-PR(1). 

From the figures, we can summarise the total number of nodes in the 

computational molecules (Comp. Molec. ) at each point u
1 

for each scheme 

as follows. 

No of Nodes in Comp. Molec. 

The Scheme Step 1 Step 2 Total 

COMP-AGE-PR(2) 4 4 8 

COMP-AGE-DG 4 4 8 

COMP-AGE-DGGT 4 2 6 

COMP-AGE-PR(1) 4 4 8 

Table 4.2.1-1 The number of nodes in the computational molecules 

at each point u
1 

Table 4.2.1-1 clearly shows that the COMP-AGE-DGGT scheme requires 

a smaller number of nodes in the computational molecules. Since it is 

obvious that the smaller the number of nodes, then a smaller amount of 

computational work is needed in each iteration. This scheme, however, 

uses many intermediate values prior to determining the computational 

molecules which will require extra computational work. Thus, at this 

stage, no scheme seems superior over the others. We continue our 

investigation into a further arrangement of the schemes. This 

arrangement is called the Coupled AGE (CAGE) scheme, in which both 

computational sweeps are compressed into a single stage AGE. 
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4.2.2 Coupled AGE (CAGE) form of PR, Douglas and Guittet 

Until now, all the schemes discussed previously have used two stages, 

i.e., the first to solve for u(k+l/2
) followed by the solution for 

(k+1) 
u In this section, we will show that the two stage schemes can be 

combined into a coupled single stage AGE (CAGE) method. 

Let us recall the four schemes that have been discussed in Section 

4.2.1. The respective CAGE for these schemes can be written as follows. 

Let ~ and v be the respective eigenvalues of G1 and G
2

• 

The CAGE-PR(2) Scheme 

u(k+ll = (ri + G )-1[2 ( I + G )-1 - I] (ri - G )u<kl 
2 r r 1 2 

+ 2r(ri + G
2
)-

1 (ri + G
1 

)-1b. 

The iteration matrix, T is given by 
r 

T = (ri + G )-1 [2r(ri + G )-1 
- I](ri -G). 

r 2 1 2 

We now show that the scheme is convergent. Since 

::: ""'W-~~~~~~ h"' r + v r + ~ 
< 1. 

Hence the scheme is convergent. 

The CAGE-DG Scheme 

u(k+ll = (ri + G
2
)-1[r{I - 2(ri + G

1
)-1A} + G

2
]u<kl 

+ 2r(ri + G )-1 (ri + G )-1b 
2 1 

= (ri + G )-1 [ (ri + G ) - 2r(ri + G )-1 A]u!kl 
2 2 1 

+ 2r(ri + G
2
)-1(ri + G

1
)-1b 

= !I - 2r(ri + G )-1(ri + G )-1A]u<kl 
2 1 

+ 2r(ri + G
2
)-

1 (ri + G
1 

)-1b. 
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The iteration matrix, T is given by 
r 

Tr =I - 2r(ri + G
2

)-
1 (ri + G

1
)-

1A. 

For convergence, we need liT 11 < 1. Since 
r 2 

liT 11 = Ill- 2r(ri + G )-1 (ri + G )-1AII 
r 2 2 1 2 

= 11 - (r + ~~tr + v) (~ + v)j 
= lr2

- r(~ + v) 
(r + ~)(r + 

+ ~vj 
v) 

= 1~11!....:.....!!.1 < 1. r + v r + ~ 

Hence the scheme is convergent. 

The CAGE-DGGT Scheme 

u(k+1l = [I - 2r(ri + G
2
)-1 (ri + G

1 
)-1A]u<kl 

+ 2r(ri + G
2
)-

1 (ri + G
1 
)-

1b. 

The iteration matrix, T is given by 
r 

Tr = I - 2r(ri + G
2
)-

1 (ri + G
1
)-

1A. 

(4.2.2-3) 

Since the iteration matrix of the CAGE-DGGT scheme is similar to the 

iteration matrix of the CAGE-DG scheme, then the scheme converges. 

The CAGE-PR(1) Scheme 

u(k+1l = (ri + G )-1(ri - G )(ri + G )-1(ri - G )u<kl 
2 1 1 2 

+ (ri + G )-1 [1 + (ri - G) (ri + G )-1 ]b. 
2 - 1 1 

The iteration matrix, T is given by 
r 

T = (ri + G )-1 (ri - G )(ri + G )-1 (ri - G). 
r 2 1 1 2 

We now show that the scheme converges. Since 

liT 11 = ll(ri + G )-1 (ri - G )(ri + G
1

)-1 (ri - G )11 
r2 2 1 2 2 

= 1-1- (r- ~) r + v 
1 --r + ~ 

Hence the scheme is convergent. 
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In general, the CAGE method is of the form 

u (k+1) Tu (k) 
+Cb (4.2.2-5) = r 

with T ' a matrix of the form given by 
r 

X X X 

X X X X X 
0 

X X X X X 

X X X X X X 

X X X X X X 

·· .. ·· .. .. .. 
''·,······ ... ··· ......... ·· .. T = •···•·• ..... ···•···· .... ·· .. ·· ........... (4.2.2-6) 

r ····· ... '·· 
X X X X X X 

X X X X X X 

0 X X X X X 

X X X X X 

X X X 

and C is given as 

X X 

X X X X 

X X X X 0 

X X X X 

X X X X 

', 
··,········.,. ............ 

.. 
'·· .......... c = · ....... (4.2.2-7) 

··., ·· .. 
X X X X 

X X X X 

0 X X X X 

X X X X 

X X 

where X represents a non-zero element. 

The coefficient for each non-zero element can be determined by 

solving the iteration matrix, T and matrix c from each scheme of the 
r 

CAGE method. 
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From (4.2.2-6) and (4.2.2-7), we now present the algorithm for the 

CAGE method, i. e, 
(k+ll to compute u1 as follows. We commence with the 

algorithm for the CAGE-PR(2) scheme, i.e., equation (4.2.2-1). 

Algorithm 4.2.2-1: The CAGE-PR(2) scheme, equation (4.2.2-1). 

(k) 
u

1 
= 0, i = 0, ... , N+l. Set 

Step 1. 
(k+l) 

To compute u . Set i = 2. 

d = 1/(0:1«2 - a2c1), w1 = 2rd, E = - w1c1/"'1' 

A = 131 (w1o:2 - 1)/o:1, B = £(3 C =- Ec2, D = w <X /o: 2' 1 2 1 
u (k+ll Au 

(k) 
+ Bu 

(k) 
+ Cu 

(k) 
+ Db + Eb = 1 1 2 3 1 2 

while i ~ N-2, compute 

d
1 

= 1/(o: o: -a c ), d = 1/(o: o: -a c), 
1-1 I I 1-1 2 I 1+1 1+1 I 

d
3 

= 1/ ( o: o: - a c ) , w = 2rd d w
2 

= 1+1 1+2 1+2 1+1 1 1 2' 

A
1

=wa<t A=Aa B=-A(3 
1 1 1+1' 1 1-t' 1 1-t' 

D = c [d (o: + (3 ) - w o: o: - w o: (3 ], 
1 2 1+1 1+1 1 l-1 1+1 2 1+2 1+1 

=-

G = -wacx 
1 l 1+1 t 

H=w«"' J=-wc<t 
1 1-1 l+t' 2 1 1+2' 

P =waa P=-Pa Q=P(3 
1 1 1 l+t' 1 1-t' 1 1-t' 

R = a [d (« + (3 ) - w o: (3 - w o: "' 1 1+1 2 I I 1 1-1 I 2 I 1+2 ' 

5 = al+1cl (w1"'1-1 - d2) + o:llll+1 (w2o:l+2 - d2), 

y = -w<tc 
2 1 1+1' T = Yll , U = - Ye , 

1+2 1+2 

V-waa W--wa o: X=wo:o: 
- 1 1 1+1, - 1 1+1 1-1, 2 1 1+2' 

(k+1) 
ul 

u(k+ll 
1+1 

= Pu (k) 

1-2 

i = i + 2. 

+ Gb + Hb 
1-1 I 

+ Qu (k) + Ru (k) 
1-1 I 

+ Jb 1+1 
+ Su (k) 

1+1 

+ Kb 1+2 
+ Tu (k) 

1+2 

+ Vb + Wb + Xb + Yb 1-1 I 1+1 1+2 
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d = 1/(o: o: - a c ) , w = 2rd, D = - w a la. , 
N-1 N N N-1 1 1 N N 

A = -Da B 
N-1' 

= D/3 , C = {3 (w o: - 1 )/o: , E = w o: /a: 
N-1 N 1 N-1 H 1 N-1 N 

(k+1 l = Au !k) 
UN N-Z 

+ Bu(k) + Cu(k) + Db + EbH. 
N-1 N N-1 

Step 2. Repeat Step 1 until convergence is achieved. 

The following algorithm is for the CAGE-DG and CAGE-GT schemes, 

since both schemes have similar iteration matrix, T and matrix C. 
r 

Algorithm 4.2.2-2: The CAGE-DG scheme, equation (4.2.2-2) and 

the CAGE-DGGT scheme, equation (4.2.2-3). 

Set U !kl = 0 1' = 0 N+1 1 , , ••. , . 

Step 1. To compute u (k+U. Set 1 = 2. 

d = 1/(a. o: - a c ) , w = 2rd/a.
1 

E = - wc , C = - Ec , 1a 21 1 a 

A = 1 + w(azc1 - 2g1o:z), B = - E(2gz - o:z), D = wo:2• 

= Au!kl + Bu!kl + Cu!kl + Db + Eb 
1 2 J 1 a 

while 1 s N-2, compute 

d
1 

= 1/ (a: o: - a c ) , d = 1/ (a: o: - a
1
•

1
c

1
), 

1-1 I I 1-1 2 I I +1 

d = 1/(o: a. - a c ) w - 2rd d 
3 1+1 1+2 1+2 1+1 , 1 - 1 2' 

w =2rdd, A =wao: K=wcc 
2 2 3 1 1 1 1+1, 2 l 1+1, 

A= A1a1-1' B = A1( 2g1-1- o:l-1), 

C = 1 + w a c o: + w o: (a c - 2a. g ) 
2 1+1 1 1+2 1 1+1 1 l-1 1-1 1 

D = cl [w2(2a.i+2gl+1 - ai+Zcl+1) - w1o:l-1a.l+1)' 

E = K(o: - 2g ) , F = - Kc , G = - w a o: 
1+2 1+2 1+2 1 l 1+1' 

H=wo: o: J=-wco: P =waa 
1 1-1 1+1 f 2 1 1+2' 1 1 1 1+1 

p =- P1a1-1' Q = P1(o:l-1- 2g1-1), 

R = al+1 [w1 (2a.1-1g1 - a1c1-1) - wzo:lo:I+Zl' 

S = 1 + w1cla1+1o:l-1 + wzo:1 (al+2cl+1 - 2g1+1o:1+2)' 

y = - w c 0: 
2 1+1 I' 

V= 
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(k+l) 
Au 

(k) + Bu Ckl + CuCkl + Du (k) + Eu Ckl + Fu 
(k) 

u = 
I 1-2 1-1 I 1+1 1+2 1+3 

+ Gb + Hb + Jb + Kb 
1-1 I 1+1 1+2 

u 
(k+l) 

= PuCkl + QuCkl + Ru Ckl + Su Ckl + Tu Ckl + Uu Ckl 
1+1 1-2 1-1 I 1+1 1+2 1+3 

+ Vb + Wb + Xb + Yb 
1-1 I 1+1 1+2 

1 = 1 + 2. 

d = 
1 

1/(ex ex -
N-1 N aNCN-1)' w = 2rd/exH, D = - wa 

N 

A = - Da N-t' 
B = - D(2g - ex ) , 

N-1 N-1 

C = 1 + w(a c - 2g ex ) , E = wa: 
N N-1 N N-1 N-1 

= Au Ckl + Bu Ckl + Cu Ckl + Db 
N-2 N-1 H N-1 

+ Eb. 
N 

Step 2. Repeat Step 1 until convergence is achieved. 

Finally, we present the algorithm for the CAGE-PR(1) scheme. 

Algorithm 4.2.2-3: The CAGE-PR(1) scheme, equation (4.2.2-4). 

(k) 
u

1 
= 0, 1 = 0, ... , N+l. Set 

Step 1. 
(k+l) 

To compute u . Set 1 = 2. 

A = w(3 (a: (3 + a c ) B = - w (3 C = w c 
1 2 1 2 1 , 1 2' 1 2' 

D = ( 1 + da c + do: (3 )/a: , E = - de (a: + (3 )/a: 
21 21 1 1 1 1 1 

= Au Ckl + Bu Ckl + Cu Ckl + Db + Eb 
1 2 3 1 2 

while 1 ~ N-2, compute 

d = 1/(o: 0: - a c ) , d = 1/ (a: 0: - a c ) 
1 1-1 I I 1-1 2 1 1+1 1+1 1 , 

d = 1/(o: ex - a c ) w = d d w = d d 
3 1+1 1+2 1+2 1+1 , 1 1 2' 2 2 3' 

A = wao: 
1 1 l +1, A2 = Al (a: I + (3 ), A = A a 

1-1' 1 I 2 

B=-A/3 C =a: (3 +ac , 
2 1-1' 1 1-1 I I 1-1 

Dl = «1+2(31+1 + al+2cl+l' C = wlo:I+1(31Cl + w2al+lc1Dl, 

D =-cl (wlo:l+lcl + w2(31+1Dl), El = w2clcl+l' 

E2 = El (o:l+l + (31+1 ), E = £2(31•2' F = - E2cl+2' 

P=-A,Q=dex (1+dac +do: (3) 
2 2 1+1 1 I 1-1 1 1-1 I 
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= Au (k) + Bu (k) + Cu (k) + Du (k) + Eu (k) + Fu (k) 
1-2 1-1 1 1+1 1+2 1+3 

+ Pb + Qb + Rb + Sb 
1-1 1 1+1 1+2 

A1 = w1alal+1' A2 = A1(o:l + (31), A=- A2a1-1' 

B = A , C = - a (w , C + w o: D ) 
2fJ1-t' 1+1 lf-'l 1 2 1 1 ' 

D = w1al+1ciC1 + w2o:I(3!+1D1, £1 = w2o:lcl+1' 

£2 = £1 (o:!+1 + (31+1 l' E = - £2(31+2' F = £2c!+2' 

P=A Q=-da (l+dac +do: (3) 
2' 2 !+1 1 I 1-1 1 1-1 I 

R = do: (1 + d a c + do: (3 ) S = - E 
2 1 3 1+2 1 +1 3 1 +2 1 +1 ' 2 

(k+l) 
u = Au (k) + Bu (k) + Cu (k) + Du (k) + Eu (k) + Fu (k) 

1+1 1-2 1-1 1 1+1 1+2 1+3 

+ Pb + Qb + Rb + Sb 
1-1 I !+1 !+2 

i = i + 2. 

d = 1/(o: o: -a c ), w = d/o:, w = wa (o: + (3 ), 
N-1 N N N-1 N 1 N N N 

A= w a , B 
1 N-1 

D = - daN(o:N + 13N)/o:N, E = (1 + daNcN-1 + do:~N-1 )/o:N 

(k+1l = Au(kl + Bu(kl + Cu<kl + Db + Eb. 
UN N-2 N-1 N N-1 N 

Step 2. Repeat Step 1 until convergence is achieved. 

The algorithms 4.2.2-1, 4.2.2-2 and 4.2.2-3 show that, in order to 

determine the coefficient for each node and element b
1

, we need to 

compute many intermediate values. Also, extra work is needed in each 

iteration if g
1 

(for a given problem) depends on the solution vector u
1

• 

However, in the case where g
1 

is independent of u
1

, all the intermediate 

values can be computed outside the loop and thereby save time in each 

iteration. Moreover, from these algorithms, it can be deduced that the 

computational molecule for the CAGE method for large N, is given by the 

6 nodal formulae, i.e, 
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k+1 

0-8-
1-2 1-1 1 

-G-0-0 
1+1 1+2 1+3 

k 

Figure 4.2.2-1: Computational molecule for the one step CAGE method. 

Table 4. 2. 2-1 below shows the number of nodes for each scheme 

presented in Section 4.2.1 compared to the scheme derived in the form of 

the CAGE method above. 

Comp. Molec. Scheme No. of Nodes The CAGE method No. of Nodes 

COMP-AGE-PR(2) 8 CAGE-PR(2) 6 

COMP-AGE-DG 8 CAGE-DG 6 

COMP-AGE-DGGT 6 CAGE-DGGT 6 

COMP-AGE-PR(1) 8 CAGE-PR(l) 6 

Table 4.2.2-1 : The number of nodes in the computational molecules 

Table 4.2.2-1 indicates that there is a 25% saving in computational 

work in the CAGE method over the COMP-AGE schemes, except the case for 

CAGE-DGGT over COMP-AGE-DGGT. Although, many intermediate values are 

needed prior to calculating the coefficients for the solution vector u, 

these gains make the CAGE method better than the two step COMP-AGE 

schemes. 

Although Table 4. 2. 2-1 does not include the computation of the 

vector b, it is obvious that the CAGE-PR(1) scheme requires more work 

compared to the CAGE-PR(2), CAGE-DG and CAGE-DGGT schemes. 
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In the CAGE-PR(2) scheme, the evaluation of the coefficients A, B, 

C, etc of the matrix T is more difficult than in the CAGE-DG 
r 

scheme. Thus, at this stage, we may consider the CAGE-DG or CAGE-DGGT 

schemes to be the best choice. 

In the next section, we will consider another possible time saving 

form of presenting the AGE method, which is called the smart AGE (SMAGE) 

in PR form. 

4.2.3 Smart AGE (SMAGE) in PR form 

In this section, we will investigate an alternative approach of 

evaluating the AGE method based on the AGE-PR(2) scheme. This new 

scheme is called Smart AGE (SMAGE), and is predicted to save time as the 

idea involved is to eliminate evaluating two similar terms on the right 

hand sides of the AGE-PR(2) scheme. 

If we recall the AGE-PR(2) scheme in explicit form, we have, i.e., 

(k+1) 
u = (ri + G )-1 [2ru(k+l/2 l 

2 

(4.2.4-1) 

(4.2.4-2) 

The two similar terms in these equations is (ri - G )u(kl and we 
2 

let this term be '(1. The evaluation and saving of '{I depend upon the 

problems, i.e., either linear or nonlinear. The matrix A derived from 

the linear problems give either a constant or variable diagonal element, 

wnere~s from the nonlinear problems, this element is variable. 

The SMAGE-LINEAR scheme for the linear problems is envisaged to 

save 2 multiplications and 1 addition for every iteration. Whilst, the 

SMAGE-NONLINEAR scheme for the nonlinear problems is expected to save 1 

multiplication and 1 addition . : for every iteration. 

The algorithms for these schemes are presented as follows: 
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Algorithm 4.2.3-1: The SMAGE-LINEAR scheme. 

(k) 
u

1 
= 0, 1 = 0, ... , N+l, a

1 
= 0, eN = 0, Set 

«
1 

= r + g
1

, ~ 1 = r- g
1

, 1 = 1, 2, ... ,N. 

Step 1. 

Step 2. 

To compute ~ = (rl -

while i s N-1, compute 

(0) + (3 (0) 
~ =-cu u 

I I 1-1 I I 
_ U(O) (O) 

~ -(3 -a u 
1+1 l+l 1+1 1+1 1+2 

1 = 1 + 2. 

(k+112) To compute u Set i = 1. 

while 1 s N-1, compute 

set 1 = 1. 

r
1 

= b
1 

+ ~1 • r
2 

= b + ~ 
1+1 1+1 

d = 1/ ( « « - a c ) 
1 1+1 1+1 1 

1 = i + 2. 

Step 3. For i = 1, 2, • 0 0 , 

2 (k+l/2) N, compute ~1 = - ~1 + ru
1 

• 

Step 4. 

Step 5. 

(k+l) 
To compute u 

u (k+l) = ~ /« 
1 1 1 

while i s N-2, compute 

d = 1/(«1«1+1 - al+1cl) 

u:k+
1

) = («1+1~1 - cl~l+1)d 
(k+1) 

u = (- a ~ + oc ~ )d 
1+1 1+1 l 1 1+1 

1 = i + 2. 

u(k+1) = ~ /« • 
N N N 

For i = 1, 2, . .. , (k+l) 
N, compute ~ = - ~ + 2ru . 

I I I 

Step 6. Repeat Step 2 to Step 5 until convergence is achieved. 
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Algorithm 4.2.3-2: The SMAGE-NONLINEAR scheme. 

(k) 
u

1 
= 0, 1 = 0, ... , N+l, a

1 
= 0, eN = 0, Set 

Step 1. To compute g
1

, "\ and (3
1

• 

for i = 1 to N 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

compute g
1

, cx
1 

= r + g
1

, (3
1 

= r - g
1

, 

To compute rp = (ri - G )u Ck). set 1 = 1. 
2 

while 1 ~ N-1, compute 

(0) + Q (0) rp =-cu ,..u 
I I 1-1 I I 

_ uCO) eo) rp -(3 -au 
1+1 1+1 1+1 1+1 1+2 

1 = i + 2. 

(k+l/2) 
To compute u Set i = 1. 

while 1 ~ N-1, compute 

d = 1/ (ex ex - a c ) 
1 1+1 1+1 1 

u:k+t/2) = (cxl+trt - clr2)d 

u(k+t/2) = (-a r +ex r )d 
1+1 1+1 1 1 2 

i = i + 2. 

For i = 1, 2, ••• t 2 
(k+l/2) N, compute ~ = - m + ru 

'I" I r I I • 

(k+l) 
To compute u 

(k+l) 
ut = rf>/cxt 

while i ~ N-2, compute 

(k+l) 
ul = (ex t/> - c ,P )d 

I +1 I I I +1 
(k+l) 

u 
1+1 

= (- a t/> + ex t/> )d 
1+1 I I 1+1 

i = i + 2. 

(k+l) 
u = t/> /ex • 

N N N 

Step 6. Repeat Step 1 to Step 5 until convergence is achieved. 
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It should be noticed that the Algorithms 4.2.3-1 and 4.2.3-2 differ 

in some aspects. For the linear problems, since the values of g
1

, o:
1 

and ~ are unchanged for every iteration, these values can be computed 
I 

outside the iteration loop, i. e, in the SMAGE-LINEAR scheme. As a 

result, the first set of rp
1 

is also computed the loop. 

routine work will start from Step 2. 

Thus, the 

For the nonlinear problems, the values of g
1

, o:
1 

and ~ 1 varies at 

every iteration. Thus, the computations for these values must be kept 

within the iteration loop. Consequently, the computation of rp
1 

must 

also be carried out within the loop. The next calculation of rp 
1 

is 

performed by a simple operation as outlined in the SMAGE-NONLINEAR 

scheme. 

4.2.4 Experimental results 

The COMP-AGE, CAGE and SMAGE schemes of Sections 4.2.1, 4.2.2 and 4.2.3 

were investigated experimentally on three problems, two linear and one 

mildly nonlinear and the results obtained are presented as follows. 

Each problem will be concerned with the computational complexity and the 

speed (CPU time) for the schemes discussed in this chapter. The time is 

0 measured initially from the initialisation of u until the solution 

(k) 
converges to u , where k is the number of iterations. 

Problem 1 - A Linear Problem 

- U" + pU = (p+1 )(sin x + cos x), 

U(O) h = n/2 (N+1). 

The exact solution is 

U(x) = sin x + cos x. 

The matrix A is given by 
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A = 

2 where g = 1 + 0. Sph • 

2g 

-1 

-1 

2g 

·· .. ···•· ... 
········· ... ···· ••.. 

-1 
0 

1) The computational complexity. 

-1 0 

····· ... 
··, ··, 

2g -1 

-1 2g 

Since g is independent of the solution vector u and is a constant, 

all intermediate calculations may be computed outside the i teratlon 

loop. The evaluation of vector b at each point, can be assigned as an 

array so that it will save 1 addition and 2 multiplications per 

iteration. Thus, the work involves only the addition and multiplication 

of each node and the addition of an element of an array. 

It should be noticed that for the three CAGE schemes, the amount of 

computational work is the same, i.e., 6 multiplications and 6 additions. 

Thus, it is sufficient to tabulate the amount of work for the CAGE-PR(2) 

scheme in Table 4.2.4-1. The total operations for other schemes may be 

derived in the same way. 

The results for large N are tabulated in Table 4.2.4-1. 

The Scheme Mul tipllcatlon Addition Overall 

COMP-AGE-PR(2) SN 7N 15N 

COMP-AGE-DG SN 7N lSN 

COMP-AGE-DGGT 6N SN llN 

COMP-AGE-PR(l) SN SN l6N 

CAGE-PR(2) 6N 6N 12N 

SMAGE-LINEAR 7N 6N 13N 

Table 4.2.4-1: Problem 1, the amount of work per iteration 
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2) The CPU Time. 

Table 4.2.4-2 shows the times taken for each prescribed scheme for 

solving Problem 1. 

p=70 The schemes [ l with times taken in sec. 

N r iter [1] [2] [3] [4] [5] [6] 

20 0.60 10 0.04 0.04 0.03 0.04 0.03 0.04 

40 0.30 19 0. 15 0. 15 0.11 0.16 0.12 0.14 

80 0. 11 37 0.59 0.57 0.44 0.61 0.45 0.56 

160 0.05 73 2.30 2.24 1. 75 2.43 1. 78 2.15 

320 0.02 140 8.74 8.63 6.69 9.21 6.80 8.30 

Table 4.2.4-2: Problem 1, the CPU time taken for each scheme 

Notation: [1]: COMP-AGE-PR(2), [2]:COMP-AGE-DG, [3]: COMP-AGE-DGGT, 

[4]: COMP-AGE-PR(1), [5]: CAGE-PR(2), [6]: SMAGE-LINEAR. 

Problem 2 - A Linear Problem 

U" - 2 
(1 + X )U = - 1, -1:sx:s1, 

U(-1) = 0, U(1) = 0. h = 2/{N+1). 

The computed solution is obtained when 

11 r 11 = 11 b - · Au (k+1l 11 < c. 

The matrix A for this problem is given by 

-1 -1 0 

A= (4.2.4-1) ··...... . ... 
.. ·· ......... . ··· ... 

............. 
·· .. 

-1 

0 

where g
1 

i :s N. 
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1) The computational complexity. 

Now g
1 

is independent of the solution vector u but varies as x
1 

takes different values. The value g
1

, however, can be computed outside 

the iteration loop to save time. Hence, the values tt and ~ may also 
I I 

be computed outside the loop. All other intermediate calculations may 

be kept within the loop to avoid the substantial use of arrays. Thus, 

the total work is the amount of work in Table 4.2.4-1 together with the 

calculations for the intermediate values. The amount of work at each 

iteration for large N is tabulated in Table 4.2.4-3. 

For these particular problems, the CAGE-PR(2) is found to give the 

best time compared to other CAGE schemes. We would expect a similar 

amount of work for every CAGE scheme, however, due the different style 

of presentation for these scheme, the results are different. Thus, it 

is sufficient to tabulate the results for the CAGE-PR(2) scheme. 

Problem 2 is linear with g
1 

variable. 

use the SMAGE-LINEAR scheme. 

The Scheme Multiplication 

COMP-AGE-PR(2) 19.5N 

COMP-AGE-DG 21N 

COMP-AGE-DGGT 16.5N 

COMP-AGE-PR(1) 20N 

CAGE-PR(2) 16.5N 

SMAGE-LINEAR 9N 

Hence, for comparison, we 

Addition Overall 

11N 30.5N 

14N 35N 

11N 27.5N 

11N 31N 

24.5N 41N 

7N 16N 

Table 4.2.4-3: Problem 2, the amount of work per iteration 

2) The CPU Time. 

Table 4.2.4-4 shows the times taken for each prescribed scheme for 

solving Problem 2. The notation for the schemes as in Table 4.2.4-2. 
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The Schemes [ 1 with times taken in Sec. 

N r iter [1] [2] [3] [4) [5) [6) 

20 0.31 22 0.23 0.25 0.21 0.22 0.25 0.13 

40 0. 16 39 0.79 0.89 0.73 0.78 0.92 0.46 

80 0.08 70 2.88 3. 19 2.61 2.85 3.34 1. 65 

160 0.04 132 10.77 12.06 9.85 10.67 12.76 6.22 

320 0.02 248 40.69 45.59 37. 15 40.32 47.63 23.58 

Table 4.2.4-4: Problem 2, the CPU time taken for each scheme 

Problem 3 - A Mildly Nonlinear Problem. 

- U" + ~ = 0 2 • 0 :S X :S 1, 

U(O) = 4, U(l) = 1. h = 1/(N+1). 

The exact solution to this problem is given by 

U(x) = 4/(l+x) 2
• 

The matrix A is given as in (4.2.4-1), where 

2 g = 1 + 0.75h u, 1 s 1 s N. 
I I 

1) The computational complexity. 

Since g
1 

depends on the solution u
1

, all intermediate calculations 

must be kept within the iteration loop. Consequently, a little more 

extra work is needed compared to the amount of work for Problem 2. This 

work comes from the computation of g , a and ~ 1 • For this problem, a 
I I 

critical assessment of the computational work required is necessary to 

determine which of the schemes is the most efficient. 

The CAGE-PR(2) scheme again is found to have the fastest CPU time 

among the CAGE schemes. Hence, the results for this scheme is displayed 

in Tables 4. 2. 4-5 and 4. 2. 4-6. Since problem 3 is nonllnear, we then 

use the SMAGE-NONLINEAR scheme for the amount of work and time. 
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Table 4. 2. 4-5 shows the amount of work needed for each iteration 

for solving Problem 3. 

The Scheme Mul tipllcation Addition Overall 

COMP-AGE-PR(2) 20.5N 14N 34.5N 

COMP-AGE-DG 22N 16N 38N 

COMP-AGE-DGGT 17.5N 13N 30.SN 

COMP-AGE-PR(1) 21N 14N 35N 

CAGE-PR(2) 13.5N 26.5N 40N 

SMAGE-NONLINEAR 9N 9N 18N 

Table 4.2.4-5: Problem 3, the amount of work per iteration 

2) The CPU Time. 

Table 4.2.4-6 shows the CPU time taken for each prescribed scheme 

for solving Problem 3. For the notation of the schemes, please refer to 

Table 4. 2. 4-2. 

The Schemes [ I with times taken in Sec. 

N r iter [1) [2) (3] (4] [ 5) [6) 

20 0.32 35 0.36 0.39 0.31 0.34 0.43 0.21 

40 0. 17 72 1. 46 1. 59 1. 28 1. 43 1. 76 0.87 

80 0.09 143 5.80 6.37 5.12 5.69 7.02 3.43 

160 0.05 286 23.10 25.29 20.38 22.93 28.12 13.58 

320 0.03 636 103.54 114. so 90.50 102.33 125.50 60.62 

Table 4.2.4-6: Problem 3, the CPU time taken for each scheme 

The results show the agreement between the computational work and 

the CPU time for each scheme. First, we outline the results for the 

CAGE schemes. 
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By inspections, the CAGE-PR(2) scheme gives a better performance in 

terms of computations and CPU time compared with the other CAGE schemes. 

However, the best CPU time is only shown for the linear problem where g 

is a constant. As many intermediate variables involved prior to the 

computation the solution vector u, the scheme needs more CPU time and 

becomes less competitive compared with other scheme. However, the 

CAGE-DG and CAGE-DGGT schemes seem more sui table to be used with the 

Richardson and Chebyshev semi-iterative methods. Thus, for the CAGE 

method, we may consider either the CAGE-DG or CAGE-DGGT scheme for the 

multi-parameter case which will be discussed later in Chapter 5. 

The COMP-AGE-DGGT scheme gives the best CPU time for solving linear 

problems. However, its computation is quite cumbersome since we need 

many intermediate variables prior to the use of the scheme. Hence, we 

might discard this scheme for its laborious computational effort. 

The SMAGE scheme is competitive as it is simple to implement and 

just falls slightly behind the COMP-AGE-DGGT scheme in terms of CPU time 

when solving linear problems with g, a constant. However, the scheme 

takes less work and gives the best CPU time when g is variable, as shown 

in Problems 2 and 3. The setback for the SMAGE scheme is that it is not 

suitable for the solution with multi-parameters, i.e., to be used with 

the Richardson or Chebyshev semi-iterative methods. Thus, the scheme is 

highly recommended for the solution with a single parameter. 

4.3 SUIIIDary 

The aim of this chapter is to find alternative forms of presenting the 

AGE method so that it can be used to solve the multi-dimensional 

problems. 
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The standard form of PR, i.e., the AGE-PR(l) scheme is known to be 

limited as it will only serve to solve the one dimensional problem. 

This equation, when rewritten in generalised form results in the 

AGE-PR(2) scheme. 

This approach, together with the strategy suggested by Douglas and 

Guittet, present new schemes which are analysed theoretically and tested 

for convergence. The results show that all the schemes give a similar 

rate of convergence when w = 2, i.e., all the schemes are identical. 

By comparing the computational complexity for each scheme, the 

AGE-PR(l) scheme has less computations although as stated previously, it 

is limited in application. The AGE-DG scheme can be extended to solve 

the two and three dimensional problems. The scheme has been shown to 

have slightly less computational work over the AGE-DGGT scheme and it is 

easier to implement. Also, all these formulae can be written in a 

compact form, i.e., in the form of a computational molecule. Thus, we 

might consider the AGE-DG scheme is the best choice. 

Since we have discarded the PR form, our main interest now lies 

only in the COMP-AGE-DG and COMP-AGE-DGGT schemes. It is found that the 

COMP-AGE-DGGT scheme gives a smaller number of nodes and thus better CPU 

time but with more complex computational work. Hence, we again might 

consider the AGE-DG scheme as being more competitive over the other 

schemes. 

The formulae above, when rewritten in a single stage or coupled 

form, produces the CAGE formula. Based on the fact that the CAGE method 

for the schemes give a similar matrix, one would expect that the CPU 

times would be the same. Experimentally, this is not true and the 

CAGE-PR(2) scheme is shown to give a better time. 
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The obvious reason is, more intermediate variables are needed in 

the other CAGE schemes compared to,the CAGE-PR(2) scheme. The results 

conclude the CAGE method is not competitive to solve the one dimensional 

problem, by a single parameter, sequentially. However, the CAGE-DG and 

CAGE-GT schemes can easily be combined with other methods such as the 

Richardson method to form a good second order method. 

Although the SMAGE scheme shows a significant improved CPU time, it 

can only be considered for solving the one dimensional problem. The 

scheme which is based on the AGE-PR(2) scheme cannot be extended to 

solve a problem with higher dimensions. Moreover, this form is not 

suitable to be used with a second order method. 

Hence, for the recommendations, we may consider the AGE-DG or SMAGE 

scheme for solving the one dimensional problem with a single parameter. 

For the solution with multi-parameters, the CAGE-DG or CAGE-DGGT schemes 

are recommended to be used with the sect> .. d. or-der r:te+hoJ-s. 
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CHAPTER 5 

MULTI-PARAMETER ITERATIVE METHODS FOR ODE's 

5.1 The application of multi-parameters to iterative methods 

The AGE method and the variation of schemes that have been discussed so 

far, were fully concerned with the determination of a single optimal 

iteration parameter, 1. e, the stationary case. Young [ 1971] has shown 

that in the nonstationary case, i.e., the application of more than one 

iteration parameter, the Alternating Direction Implicit (ADI) in 

Peaceman-Rachford form to solve the two dimensional problem, yields a 

faster rate of convergence. Since the AGE method is analogous to the 

ADI method, then it may be worth while to investigate a similar strategy 

to achieve a better convergence .. 

In the non stationary case, one allows the iteration parameter to 

vary from one iteration to the next. However, a number of parameters 

are used in a cycle in order to determine the least number of 

iterations. For example, a cycle of four are made up of parameters r
1

, 

r
2

, r
3 

and r
4

• These parameters, will be used in turn in the first four 

iterations, the next four iterations and so on. The convergence may be 

achieved without having to use all the parameters in a cycle, and if 

this happens then there is no need to complete the cycle as the solution 

has converged. 

We now seek to analyse the convergence properties for the 

application of multi-parameters in the AGE method. 

Let us recall the AGE-PR(1) scheme given in Chapter 4, by the 

equations (4.1.1-1)- (4.1.1-2), 
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(ri + G )u(k+112l = b + (ri - G )u(kl 
1 2 

(5. 1-1) 

(ri + G Ju(k+1l = b + (ri - G )u(k+1/2l 
2 1 

(5.1-2) 

or explicitly as 

u(k+1/2l = (ri + G J-1 [b + (ri - G Ju(kll 
1 2 

(5.1-3) 

u(k+1l = (ri + G J-1 [b + (ri-G Ju(k+112l]. 
2 1 

(5.1-4) 

Now, let us introduce an iteration parameter, rk. Then, for any rk > 0, 

we have 

(rki + G )u(k+1/2 l = b + (r I - G )u(kl 
1 k 2 

( I + G )u(k+1l = b + (r I - G )u(k+112l 
rk 2 k 1 

or explicitly as 

u(k+1/2l = (r I + G J-1 [b + (r I - G )u(k)l 
k 1 k 2 

u(k+1l = (r I + G J"1 [b + (r I - G )u(k+112l]. 
k 2 k 1 

with the iteration matrix, T , as 
rk 

(5.1-5) 

(5.1-6) 

(5.1-7) 

(5.1-8) 

-1 -1 
T = (r/ + G

2
) (rki - G

1 
)(rki + G

1
) (r/ - G

2
). (5.1-9) 

rk 
t'''t::p(l ""''"'V>'\. 

Let 1.1 and v 1"- the,(eigenvalues of G
1 

and G
2 

respectively. T"e"-, a rr~"'"";.,j 

co"'•·-il<h~;o-, wt. l.. .. ve (rki + G l"1v = (rk + J.!)-1v, (r I + G )-1v = (r + v)-1v, it 
J 1 k 2 k 

follows that 

where v is an eigenvector of liT 11 for any rk. 
rk 

... , r we have 
m 

m 

11 
k=1 

(5.1-10) 

Hence, for any set of 

(5. 1-11) 

m 

Thus, v is an eigenvector of the matrix 11 
k=1 

T which corresponds to the 
rk 

AGE method for m iterations using r
1

, r
2

, ... , r... If 1.1 and v lies in 

the ranges 0 < a $ 1.1 $ b, 0 < a $ v $ b, we have 

187 



~( 
m 

) ( 
m (rk 

!I T !I :s max 
(rk k=l rk a~IJ.~b 

k=l 

a:5V:5b 

( 
m (rk 

= max !I 
(rk a:Sr:Sb 

k=l 

= q,(a, b: rl, r2, 

Since each factor of the product 

m (r - rl 
Qm(¥,rk) = !I 

k 
k=l (rk + rl 

is less then unity, then 

~( ; T ) < 1. k=l r 
k 

- !!Hr - v) 

) k 
+ l!l (rk + v) 

- rl r + rl 

.-.. ' r ) . 
m 

Hence, the multi-parameter AGE method is convergent. 

(5. 1-12) 

(5.1-13) 

(5.1-14) 

The analysis for the convergence of the AGE-PR(2), AGE-DG, AGE-DGGT 

and other schemes can be shown in a similar way. 

The task now is to minimise the function q,(a, b: r,r, ... ,r), 
I 2 m 

i.e., to speed up the rate of convergence by a careful choice of rk. In 

the next section, we will discuss the existing multi-parameter formulae 

that are used to minimise the analogous ADI method. 

5.1.1 The existing multi-parameter ADI formula 

The problem of minimising the function q,(a, b: r 
1

, r 2, ... ' r ) was 
m 

initially solved analytically in terms of Fourier analysis by 

Peaceman-Rachf ord [ 1955). These parameters were used in solving an 

elliptic equation in a square region bounded by Dirichlet boundary 

conditions via the ADI method. In the ADI method, the matrix A derived 

from the equation, is split into H and V, giving both H and V as 

tridiagonal matrices. The eigenvalues of H and V are found to be 
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2 nh 2 nh 
~ = 4 sin z- and v = 4 cos z-· 

The Peaceman-Rachford (PR) parameters are given by 

r = v ~ 
PR ( ) (2k-1)/(2m) 

k V ' 
k = 1, 2, ... , m. 

Evidently by (5.1.1-2), we have 

PR PR PR 
~ < r < • . . < r < r < v. 

m 2 1 

With this set of parameters we can show that 

m 

~[ IT 
k=1 

1/(2m)]2· 

~ 1/(2m) 

V 

(5. 1. 1-1) 

(5.1.1-2) 

(5. 1. 1-3) 

(5. 1. 1-4) 

We now determine the rate of convergence for the PR parameters. 

For~ and v in (5.1.1-2), the PR parameters are given by 

PR 2 n 2 n h( h) (2k-1)/(2m) 

rk = 4 cos z- tan z- , k = 1, 2, ... , m. (5.1.1-5) 

Substituting rPR in (5.1-12), gives 
k 

) [ I -
nh 

•m r [ m 
tan z-

~ IT T PR :s 
k=1 rk 1 + 

nh 1/m 
tan z-

[ 
1 -

nh 
•m r z-

1 + 
nh 1/m 

z-

- 1 - 4( ;h (m. (5. 1. 1-6) 

Therefore, for the rate of convergence we have 

(5. 1. 1-7) 

Thus, the rate of convergence is asymptotically proportional to h1/m, 

and the number of iterations needed to reduce the error by a given 

-1/m tolerance is proportional to h . For m > 1, this shows an order of 

magnitude improvement over the SOR method where its rate of convergence 

is proportional to h. 

189 



Young and Gregory [1973] has shown numerically that the parameters 

used by PR were nearly as good as the theoretical optimum parameters. 

Numerically, the bound on the average spectral radius 

can be shown to decrease at first, and then increases. For h = 1/20, it 

was found that the optimUm number of parameters, m = 3 in the sense that 

the bound on (5. 1. 1-8) is minimised. Theoretically, this can be shown 

as follows. Let 

zm = ( ~ ) 

1/ (2m) 

(5. 1. 1-9) 

where~ and v are as in (5.1.1-1). We now seek to determine m so that 

[ ~[ m 
) rm 1 

- zm )2/m. 
IT = lT Tr:R = ( 1 (5. 1. 1-10) 

m k=l + z m 

If we let 

1 - z 
0 = m 

(5. 1.1-11) 
1 + z 

m 

then 

1 - 0 (5. 1. 1-12) z = m m 

and, from (5.1.1-9) 

log (a/b) 
(5. 1. 1-13) m= 2 log [ ( 1 - o)/(1 + ol J 

and from (5. 1. 1-10), we get 

<m = - log IT m 

( 
1 - z 

2 log 
1 + /) = m 

m 

= 4 log [(1- o)/(1 + oll log o (5. 1. 1-14) log (a/b) 

By equating to zero the first derivative of (5.1.1-14) with respect 

to o, we get 
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2 
1 - 0 

2 
1 - 0 

log ~ = o log o 

which has the solution 

~ = V2- 1 ~ 0.414. 

(5. 1. 1-15) 

(5. 1. 1-16) 

Thus, the optimum value of m can be determined by finding the smallest 

integer such that 

(0. 414)2m :S ~ (5. 1. 1-17) 

2 For the model problem, a/b = tan (rrh/2). Hence, for h = 1/20, 

(0.414)2m :S tan2 (rrh/2) ~ 6.194 X 10-3 

which gives m = 3. 

The other parameter sequences are given as follows. 

Wachspress Parameter Sequence 

Wachspress [1968), has also solved the problem analytically in 

terms of elliptic functions and gives another set of parameters, 

r=v~ ml!:2k 
W ( ) (k-1)/(m-1) 

k V ' ' 
= 1, 2, ... , m. (5. 1. 1-18) 

This set of parameters can be shown to have the similar ·rate of 

convergence as in (5.1.1-7). Evidently by (5.1.1-18), we have 

Jl < rw < . . . < rM3 < r2M < v 
m-1 

w w 
with r = v and r = Jl. 

1 .. 

With this set of parameters we can show that 

1/(m-1)] Jl 2 

; 1/(m-1) • 

(5. 1. 1-19) 

(5.1.1-20) 

We now determine the rate of convergence for the Wachspress 

parameters. For Jl and v in (5.1.1-1), these parameters are given by 
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By 

w 
4 

2 nh ( 2 nh ) (k-1)/(m-1) 
r = cos 2 tan 2 , 

k 

k = 1, 2, ... ' m, m "' 
substituting w 

in (5. 1-12), have r we 
k 

' [ :~: T •:" l < [ : : 

t 2 nh an 2 
t 2 nh an 2 

1/(m-1) ]2 
1/(m-1) 

[ 

1 -

1 + 

nh 
2 
n:h 
2 

1/(m-1) l 
1/(m-1) 

2. 

where m "= 2. Therefore, for the rate of convergence we have 

'R( m~1 T W) = 4( n:2h )1/(m-1) 

k=2 rk 

(5. 1. 1-21) 

(5. 1.1-22) 

(5. 1. 1-23) 

Hence, the rate of convergence is again asymptotically proportional to 

O(hl/m). 

Young and Ehrlich Parameter Sequence 

Young and Ehrlich [1960], introduced another set of parameters 

given by 

Y 1 ( nh) (1-2k)/m 
rk = 4 sin 2 , k = 1, 2, ... , m. (5. 1. 1-24) 

Young has shown that these parameters also have a similar rate of 

convergence as in (5.1.1-7). Unfortunately, the application of the 

Young parameters can lead to a rounding error growth. 

Wachspress and Jordan Parameter Sequence 

Wa.ch.spt"Q.SS[1963], has obtained another set of m 

parameters when m = 2k but later generalised for all m. It was based on 

the hypothesis that these k optimum parameters which minimise the 
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function (5.1-12) lie on the interval governed by the aritho-geometric 

~~~e~vat [vab, (a; b)). The two parameter formula given by Varga [1962), 

1. e. ' 

J 
r 

1,2 

1 

= [vab(a ; b)]2 ± [Yib(a ; b) 

where 0 < a s b, can be derived as follows. 

(5. 1. 1-25) 

It has been shown that for a single parameter, the optimum value is 

r = vab or r 1 = ab/r1. Suppose now that we can algebraically determine 

the m parameters which minimise the function (5.1-12) for any interval. 

As shown by Wachspress [1963), this leads to a precise determination of 

k the 2 parameter problem. If the rk are the parameters that minimise 

the function for the interval 0 < a s r s b, then 

m 

II k=1 

m 

= II k=1 ( 
r k - r ) ( ab/r k - r ) ; 
r + r ab/r + r 

k k 

(5. 1. 1-26) 

Thus, we can reduce the interval from [a,b) to [a, vab). Hence, 

m 

) 
s max ( m ((rk- r)) [(ab/rk- rl)) 2 

Trk _£"7' k!I1 (r + rl (ab/r + rl 
a:!i:r::!:vab k k 

(5. 1. 1-27) ~[ II k=1 

Now we can divide each factor in the numerator and denominator of 

(5.1.1-26) by vab. Then, Qm can be expressed as a product of 

quadratics, i.e., 

~ [ (~)2 
+ 1 - (~)(~ + ~ ]· 

k-
1 

( A )2 + 1 + ( A)( rk + ~ 
vab vab vab ~J 

By multiplying each quadratic by ab/2A, we have 
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Then, by letting 

we thus have 
m 

rr k=1 

where 0 < iab s ~ s a;b. 

-H 
+H (5.1. 1-29) 

(5.1. 1-30) 

(5. 1. 1-31) 

By using this hypothesis, one then may use (5.1.1-30) to determine 

the corresponding k parameters r for the interval a s ~ s b by solving 
k 

the quadratic equations arising from (5.1.1-30). Now, let us define 

a = a, 
0 

a = vakbk, k+1 b = (a + b )/2, k+1 k k 
k ;,: 0. (5. 1. 1-32) 

Thus, the problem of finding the 2k parameters for the interval 

[a, b I is reduced to the problem of finding a single optimum parameter 

for the interval [ak,bk), whose solution is obviously vakbk. Hence, for 

a+b 
two parameters with iab s ~ s -z-• the problem is reduced to solving 

r +ab) =a 
k rk 2 

(5. 1. 1-33) 

where 

= Vab = [iab(a+b))1/2. 
a2 1 1 2 (5. 1. 1-34) 

The relation (5.1.1-33) can be solved quadratically, giving 

1 1 

<_
2 

= [iab(a; b)]2 ± [iab(a; b)- ab]2. 

Douglas Parameter Sequence 

Douglas [1962), has also given a set of PR parameter formulation 

for the multi-parameters. It is called the finite geometric parameter 
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sequence and is given in the form 

or 

D 
r 

k+1 =H~ri~~ 
s n 2N 

r~+1 = ~( ~ )k ~ n 
cos 2N 

(5. 1. 1-35) 

(5. 1. 1-36) 

where k = 0, 1, 2, ... , (k
0

- 1), with k
0 

given approximately by 

k _ 2 log tan (n/2N) 
o - log (~v) 

The formulation (5.1.1-35) can be derived as follows: 

Let ,. = 2r , k = 0, 1, 2, 
"k+1 k+1 

and ~(sl = sin2 ~~· s = 1, 2, ... , N-1, 

Then, from (5.1.1-38), it follows that 

J! 
<1= 2n' 

sin ZN 
~< 2 l = .'::: sin2 ~ 

J! 2N 

Similarly, if 1;1~(1) = J!, 1;1~(
2 ) = v, then 

I; = !!: J! 
2 v . 2 n 

Sln 2N 

~(3) 
( )

2 v 2 n 
= ji sin 2N 

2 n 
sin 2N 

By continuing this process, we have in general 

and 

l;k+1 = ( ~ r i ~ ~· k = 0, 1, 2, . . . • (ko - 1) 
s n 2N 

(k+ll v 2 n 
)

k 

~ = ( ji sin 2N' k = 0, 1, 2, ... , k
0 

are obtained where k is the largest number such that 
0 

v o 2n 2n 
( )

k 

ji sin 2N :s cos 2N • 

Thus, the finite geometric sequence is given by 

D 
r 

k+1 = H ~ r i ~ ~· 
s n 2N 

k = 0, 1, 2, ... , (k
0

- 1). 

195 

(5. 1. 1-37) 

(5. 1. 1-38) 
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(5.1.1-40) 

(5. 1. 1-41) 
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(5. 1. 1-43) 
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Similarly, the formulation for (5.1.1-36) is as follows: 

(1) 
By putting I; ~ 

1 
= V, I; ~ (2) 

1 
= IJ., with ~< 1 > 2 lt 

= cos 
2N' 

the 

formulation can be derived in a similar way. These results are obtained 

when q is the largest integer such that 

( 

V )q 2 lt < 2 lt 
1.1 cos ZN - sin ZN (5. 1.1-45) 

From (5.1.1-44) and (5.1.1-45), it can be deduced that 

2 log tan (n:/2N) 
q ~ log (j.tlv) 

Douglas also gives another version using the Wachspress parameter 

sequence and it is given by 

r 
k+1 

= 1 ( 2 1t 
----''-:2:-=rr:-- cot 2N 
2 cos 2N 

k = 0, 1, 2, 0 0 0. q - 1 

where q ~ 2 is the smallest integer given by 

-' (q-1) lt ( v2 - 1) :S tan 
2
N . 

(5. 1. 1-46) 

(5. 1. 1-47) 

The details of the derivation of this parameter sequence, which is close 

to the optimum value for the model problem (elliptic 2D problem), are 

omitted. The derivation requires a commutativity property on H and V. 

In the next section, we present an alternative approach, i.e., The 

Heuristic Search, to find a sequence of parameters for attaining an 

improved rate of convergence. 

5.1.2 The heuristic search £or multi-parameters 

All the existing multi-parameters discussed in Section 5.1.1, are based 

on solving the two dimensional elliptic problem in a square region 

bounded by the Dirichlet boundary conditions using the ADI method in PR 

form. 
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Although the technique of splitting A into two submatrices via the 

AGE method is similar to the splitting in the ADI method, the resultant 

matrices G and G consists of only (2X2) block submatrices. Hence, it 
1 2 

is a natural extension to apply the ADI parameters strategies to the AGE 

method. However, we must also bear in mind that in ADI, H and V are both 

tridiagonal matrices. Moreover, this shows that the eigenvalues of G 
1 

and G
2 

are clustered whereas the eigenvalues of H and V are distinct and 

distributed. Hence, it is envisaged that it may only be necessary to 

consider a cycle of only 1, 2 or 3 parameters from the existing 

parameter sequence of Section 5.1.1 for the AGE method in order to show 

whether an improved rate of convergence is possible. 

The alternative approach to the multi-parameter case is to perform 

a heuristic search for the parameters. The simplest heuristic search is 

a two parameter search. The greater the number of parameter to be 

found, the more laborious the search. In this section, we will only 

consider the heuristic search for parameters in a cycle of 2 and 3. 

In a cycle of 2, one chooses two arbitrary values, say, r
1 

and r
2 

with r
1 

to be near the optimal single parameter. The parameter r is 
1 

fixed whilst the other parameter r is varied until the minimal number 
2 

of iterations is reached. At this stage, the parameter r
2 

can be taken 

as a local optimal parameter. Now, with the parameter r
2 

fixed, we 

search for the new value of parameter r
1 

that gives a minimal number of 

iterations. At this stage, the parameter r
1 

can be considered as a 

local optimal parameter. This process must be repeated at least once. 

This is to ensure that r
1 

and r
2 

are the optimal parameters that yield 

the global minimal number of iterations. 
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In a cycle of 3, the search becomes more tedious. Now, one has to 

choose three arbitrary parameters, say, r , r and r
3 

with one of them, 
1 2 

let r
1 

to be near to the optimal single parameter. Now, with r
1 

and r
2 

fixed, the parameter r
3 

is varied until the local minimal number of 

iterations is found. Then, at this stage, one can take r as a local 
3 

optimal parameter. 

Now, one varies r
2 

whilst the parameters r
1 

and r
3 

are fixed until 

one gets the local minimal number of iterations. At this stage, r
2 

can 

be considered as a local optimal parameter. Finally, one searches for 

r
1 

while having fixed the parameter r
2 

and r
3

• Then, r
1 

can be taken as 

a local optimal parameter when the local minimal number of iterations is 

reached. As in a cycle of 2, this process must also be repeated as to 

confirm that these three parameters are optimal and giving the global 

minimal number of iterations. 

5.1.3 The solution for two and three parameters 

Consider a linear system derived from a two-point boundary-value problem 

Au = b 

where u and b are N-dimensional vectors and A is given as 

A= 

a 
2 

············, .. 

0 

·· .. 
········· ... 

a 
N-1 

0 
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The AGE iterative method consists of splitting the matrix A into 

the form 

(5. 1. 3-3) 

where 

g1 c 
1 

a g2 2 

g3 c 
3 

a g4 4 

····,··,······· ... 

(5. 1. 3-4) 

gN-1 c 
N-1 

a gN N 

and 

g1 

g2 c 
2 

a g3 3 

······,········ .... G
2 

= (5. 1. 3-5) 

gN-2 c 
N-2 

a gN-1 N-1 

gN 

for N is even. Let us assume that all the eigenvalues of G
1 

and G
2 

are 

real and positive, i.e., g
1 

> ~(a 1 + c
1
), i = 1, 2, ... , N. 

It is obvious that G and G consist of (2X2) block submatrices and 
1 2 

the eigenvalues of G
1 

and G
2 

are given by 

det 

;1.-g 
I 

a 
1+1 

;1.-g 
1+1 

= 0 

2 
1. e. , A - (g

1 
+ g );I. + g g - a c = 0, 

1+1 I 1+1 1+1 I 
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or A = _21 (gt + g l ± U21 (g - g )2 + 4a c 
l, 1+1 l+l 1 1+1 1+1 1 

(5. 1. 3-7) 

The matrix G
2 

has two more eigenvalues and these are given by 

A =g andA =g. 
1 1 N N 

(5.1.3-8) 

The bounds for these eigenvalues can be obtained by inspection for the 

different cases below. Let a= max a
1 

and c = max c
1

. 

Case I. All g
1 

are equal, i.e., g = g
1

• 

Thus, the bounds are ~ = g - laC and v = g + laC. (5. 1. 3-9) 

Case II. All g
1 

are monotonically increasing, i.e., g
1 

< g
1

•
1

, V 1. 

(5. 1. 3-10) 

1 u 2 v = -
2

(g + g l + 
2 

(g - g l + 4ac • 
N-1 N N-1 N 

(5. 1. 3-11) 

Case Ill. All g
1 

are monotonically decreasing, i.e., g
1 

> g , V 1. 
1+1 

Thus, ~ = -
2
1 

(g + g ) - U
2
1 

(g - g )
2 + 4ac, and 

N-1 N N-1 N 
(5. 1. 3-12) 

(5. 1. 3-13) 

With this bounds, we may investigate the possibility of reducing 

the number of iterations for the case of 2 and 3 parameters, from the 

relation (5.1.1-17), i.e., (0.414)2m :< ~· Since ~ and v differ from 

problem to problem, the analysis will be presented experimentally in 

greater detai 1. First, we present the sequence of 2 and 3 parameters 

from the existing parameter discussed in Section 5.1.1. 

(1) The PR Parameter sequence. 

(a) 2 parameters. 

rPR = V /!. 
( ) 

1/4 

1 V ' 
(5. 1. 3-14) 
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(b). 3 parameters. 

( r6 ( r/2 v[ ~ r~ rPR = V f! rPR = V f! PR 
r = 1 V ' 2 V ' 3 

(5. 1. 3-15) 

(2) The Wachspress Parameter sequence. 

(a) 2 parameters. 

w w 
r = v r 2 = IL· 1 • (5. 1. 3-16) 

(b) 3 parameters. 

( r2 
w rw = v !! w 

r = v r = IL· 1 • 2 V ' 3 
(5.1.3-17) 

(3) The Young Parameter sequence. 

(a) 2 parameters. 

y 1 ( llh) -
112 y 1 ( . 7rhr3/2 r = - sin - r = 4 s1n 2 . 1 4 2 • 2 

(5. 1. 3-18) 

(b) 3 parameters. 

y 1 ( llh) -l/
6 y 1 ( llh) -

112 y 1 ( llh) -S/
6 

r =-sin- r2 = 4 sin 2 , r = 4 sin 2 1 4 2 • 3 

(5. 1. 3-19) 

(4) The Jordan Parameters 

(a) 2 parameters. 

I 1 

= [Vab(a ; b)]2 ± [Vab(a ; b)- abr (5. 1. 3-20) 

(5) The Douglas Parameters - PR version. 

(a) 2 parameters. 

DPR V DPR I! r = r2 = 1 
2 

2 nh' 
2 sin 2 llh sin 2 2 

(5. 1. 3-21) 

or 

DPR I! DPR V 
r1 = r = 

2 
2 nh' 2 

2 
2 llh cos 2 cos 2 

(5.1.3-22) 
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and 

(b) 3 parameters. 

r
1 

and r
2 

are as in (5.1.3-21) or (5.1.3-22) respectively, 

= 
2 

f1. 

2v 
. 2 nh' 

s1n 2 

or = 
2 

V 

2 1lh 
2f.l. cos 2 

(5. 1. 3-23) 

(6) The Douglas Parameters - Wachspress version. 

(a) 2 parameters. 

1 
=-~-= 2 nh' 

DW 
r = 

2 

2 nh ) 
1

/
2 

cot 2 . (5. 1. 3-24) 
2 cos 2 

(b) 3 parameters. 

rn
1
w and rn

2
w are as in (5. 1. 3-24), and rn

3
w = -----'1'-::-= 

2 1 2 1lh . sn 2 
(5. 1. 3-25) 

5.1.4 Other methods to determine the m (>1) parameters 

Since no established theory is known to date, apart from using the 

existing ADI multi-parameter formula and by heuristic search, several 

methods to determine the m parameters have also been investigated. 

Firstly, based on the arithmetic mean principle. Here, we consider the 

parameters, r
1

, r
2

, 

s 

a 

... r to be evenly distributed as in Figure 5.1.4-1 
m 

s 

r 
m-1 

s 

r 
m 

s 

b =a+ (m+1)s 

Figure 5.1.4-1: The arithmetic mean principle 

where a and b are the bounds of the eigenvalues of G
1 

and G
2

. This will 

give 

r = a + 
k 

(b-a)k k = m+l , 1, 2, ... , m. 
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Secondly, the geometric mean principle is used, i.e, by considering 

the parameters to be distributed as r
1 

m+1 finally, b =at as in Figure 5.1.4-2 

2 =at, r
2 

=at, ... , rm = atm and 

a r 
m-1 

r 
m 

b = atm+1 

Figure 5.1.4-2: The geometric mean principle 

where t is defined as the geometric ratio, i.e., t = (b/a) 1
/(m+ll. This 

will give 

rk 
= a( £a )k/(m+1)' k = 1, 2, ... , m. (5.1.4-2) 

Another hypothesis based on the inverse law is also considered. 

This is due to the nature of the submatrices G
1 

and G
2 

which consist of 

the (2X2) block of the matrix G, 

G = [ g -
1 

] (5. 1. 4-3) 
-1 g 

which has the eigenvalues g-1 and g+1. The third eigenvalue, i.e., for 

the odd case, (N is odd) is g. 

Since the smallest eigenvalue is zero, then the parameter r 
1 

is 

also close to zero. Thus, for the method to converge, we must choose 

the parameter r
2 

large enough in the relation r
2 

= a./r
1 

where a is a 

certain number in the eigenvalue range. When r
1 

= r
2 

( in a single 

parameter case), we have the relation r = V« which guarantees that the 

solution converges. 

However, this principal can lead to large parameter values and 

hence round off error growth as will be discussed later. 
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5.1.5 Experimental results 

The application of the existing multi-parameters theoretical analysis 

(Section 5.1.1), the heuristic search for multi-parameters (Section 

5.1.2) and other methods in Section 5.1.4 were all investigated on three 

problems, the linear and non-linear problems bounded by Dirichlet 

boundary conditions and a linear problem which has periodic boundary 

conditions. The results obtained were compared for the rate of 

convergence. 

Problem 1 - A Linear Problem 

2 U" - (1 + x )U = - 1, -1 :S X :S 1, 

U(-1) = 0, U(1) = 0, h = 2/(N+1). 

The computed solution is obtained when 11 r 11 = 11 b - Au(k+O 11 < c. 

The matrix A for this problem is given by 

-1 -1 0 

A= ············· ... ············· ... ·····,····· .... 

-1 

0 

2 2 where g
1 

= 1 + 0.5h (1 + x
1
), 1 :s 1 :s N. 

The value g
1 

is monotonically increasing for 1 increasing, then by 

splitting the matrix A into G
1 

and G
2

, the bounds of the eigenvalues may 

be determined from the relation (5. 1.3-10). These values are 

~ = i(g1 + g2)- ~(g1- g2)
2 

+ 4 

and V = .!.(g + g ) + ;_j21 (g - gH)2 + 4 • 
2 H-1 H H-1 
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By inspection, it can be shown that the relation (5. 1. 1-10) is 

minimised for a specified value of m used in the relation (5. 1. 1-11). 

However, the experimental results obtained on using this sequence of 

parameters do not show any improvement concerning the rate of 

convergence. For this problem, although the eigenvalues of the 

iteration matrix are well separated, they are of high order in multipli-

city. Thus, there is a possibility of rounding errors in the minimi-

sation process which reduces the rate of convergence. 

The heuristic 2 parameter search yields r = r , which signifies 
1 2 

that the optimal single parameter is the best. These results are shown 

in Table 5.1.5-1 below. 

AGE-DG Scheme Heuristic Search 

N Optimum r Iter r r Iter 
1 2 

10 0.560 - 0.580 12 0.560 0.560 12 
20 0.303- 0.305 20 0.303 0.303 20 
40 o. 160 - 0. 161 39 0.160 0.160 39 
80 0.080 70 0.080 0.080 70 

Table 5.1.5-1: The number of iterations 

Problem 2 - A Mildly Nonlinear Problem. 

- U" + ~ = 0 0 ::5 X ::5 1, 
2 ' 

U(O) = 4, U(l) = 1, h = l/(N+1). 

The exact solution to this problem is given by U(x) = 4/(1+x) 2
. 

The matrix A is given by 

-1 0 

A= 
··.. . .. 

··.. ········· .... · ...... . ········•··· .... 

-1 

0 

where g
1 

2 = 1 + 0.75h u
1
, 1 ~ 1 ~N. 
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The value g
1 

is now monotonically decreasing, thus we may use the 

relation (5.1.3-11) to determine the bounds of the eigenvalues. Having 

split the matrix A into G and G , we then have 
1 2 

.. = .!.<g • g l • U21 <g - g l2 • 4 
'" 2 N-1 N N-1 N 

and V = .!_(g + g ) - u (g - g ) 2 + 4 
2 1 2 2 1 2 

Experimentally, we found there is no gain in the number of 

iterations when solving the problem either by using the existing 

parameters or via the heuristic search. This is again due to the same 

reasons as given previously. Thus, the optimal single parameter is 

definitely the best choice. For the results, see Table 5.1.5-2. 

AGE-DG Scheme Heuristic Search 

N Optimum r Iter r r Iter 
1 2 

10 0.572- 0.579 17 0.576 0.576 17 
20 0.317- 0.323 35 0.320 0.320 35 
40 0.164- 0.179 72 0.170 0.170 72 
80 0.089 - 0.093 143 0.090 0.090 143 

Table 5.1.5-2: The number of iterations 

Problem 3 - A Linear Periodic Problem 

- U" + p1J = (p+1) (sin x + cos x), 0 s x s 2n, 

U(O) = U(2n), u• (0) = u• (2n), h = 2n/N. 

The exact solution is U(x) = sin x + cos x. The matrix A is 

where g 

A = 

2 
= 1 + 0. Sph . 

2g 

-1 

-1 

-1 

2g 

····· ... · ....... 
····· ... 

0 -1 

-1 

-1 0 
'·· ·· .. .. ...... ·· ...... 

2g -1 

-1 2g 
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Since g is constant, then by splitting the matrix A into G
1 

and G
2

, 

we can use the relation (5. 1. 3-9) to the determine bounds of the 

eigenvalues and these are given by 

~ = g- 1 = 0.5ph2and v = g + 1 = 2 + 0.5ph2
• 

The results upon using the PR, Wachspress and Jordan parameters, 

1. e., for 2 and 3 parameters derived in Section 5. 1. 3, are given in 

Tables 5.1.5-3 and 5.1.5-4. NC in Table 5.1.5-3 means no convergence. 

p=70 AGE-DG Scheme 2 parameters 

N Optimum r Iter PR Wachspress Jordan 

20 3.652 - 4.908 4 4 4 4 
40 1. 283 - 1. 807 6 5 5 5 
80 0.686 - 0.708 9 7 6 7 

160 0.271 - 0.342 16 11 6 9 
320 0.138 - 0. 154 26 NC 6 NC 

Table 5.1.5-3: The number of iterations 

p=70 AGE-DG Scheme 3 parameters 

N Optimum r Iter PR Wachspress 

20 3.652 - 4.908 4 4 4 
40 1. 283 - 1. 807 6 5 6 
80 0.686 - 0.708 9 8 8 

160 0.271 - 0.342 16 10 8 
320 0.138 - o. 154 26 13 8 

Table 5.1.5-4: The number of iterations 

The results show a clear gain in the number of iterations when 

using the multi-parameter formula for solving the linear problem subject 

to periodic boundary conditions. It is clear that the Wachspress 

parameters are the best over all other parameters. Although the results 

given are only for the value p = 70, it can also be shown that for 

larger p, the gain in the number of iterations is also significant. The 

PR and Jordan parameters do not give convergence for these cases since 

one of the parameters is not large enough. 
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5.2 The multi-parameter case for semi-iterative method 

In this section, we intend to make an improvement on the rate of 

convergence of the AGE method by applying the multi-parameter case for 

the semi-iterative method. Two methods will be discussed, i.e, the 1st 

order Richardson iterative method and the 2nd order Chebyshev semi-

iterative method. Initially, we derive the general concept of the 

semi-iterative method. 

For any stationary iterative process to solve Au = b, we can write 

Nu(k+ll = Nu!kl - (Au!kl -b), N *- 0 (5.2-1) 

or (5.2-2) 

= §'u(kl + ~ (5.2-3) 

where N is easily inverted. §' is the iteration matrix with ~(§') < 1. 

Thus, all the eigenvalues of §', X satisfy 
m 

- ~(§') < X < 1(11') (5. 2-4) 
m 

Now, consider the splitting of A = D - L - U, then we can identify 

the process as 

Jacobi, if N = D, (5.2-5) 

Gauss-Seidel, if N = D - L, (5.2-6) 

and 
1 

SOR if N = -(D - wL) • w • 0 < w < 2. (5.2-7) 

We now, find the values of §' and N for the AGE method. 

By Combining (5.1-3) and (5.1-4) in order to eliminate u(k+1/2l, we then 

have 

(k+l) 
u = (ri + G )-1 (ri - G) (ri + G )-1 (ri - G )u(kl 

2 1 1 2 

+ (ri + G
2

)-
1b + (ri + G

2
)-

1 (ri- G
1
)(ri + G

1
)-

1b. 

(5.2-8) 

This form is similar to the previously discussed CAGE-PR(l) scheme. 
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It has been shown that the CAGE-PR(1) scheme has a similar rate of 

convergence compared to the CAGE-DG scheme. Thus, instead of using 

equation (5.2-8), we now apply the CAGE-DG scheme to find~ and N. 

Now, if we recall the CAGE-DG scheme, in explicit form, we have 

u(k+ll = !I - 2dri + G )-1 (ri + G )-1A)u(k) 
2 1 

+ 2r(ri + G
2

)-
1 (ri + G

1
)-

1b (5.2-9) 

which gives 

~ = I - 2r(ri + G
2
)-

1 (ri + G
1

)-
1A. (5.2-10) 

-1 -1 -1 Thus, N = 2r(ri + G
2

) (rl + G
1

) • (5. 2-11) 

It can be shown further that after some manipulations, 

~ = I - 2r(rl + G
2

)-
1 (ri + G

1 
)-

1 A 

= (ri + G
2
)-

1 (ri - G )(ri + G )-1 (rl - G) 
1 1 2 

and 

~ = 2r(ri + G
2
)-

1 (ri + G
1

)-
1b 

= (ri + G J-1
b + (rl + G J-1 (ri - G ) (ri + G )-1

b 
2 2 1 1 • 

5.2.1 The Richardson method 

In an early paper, Richardson [1910) presented a method for solving the 

linear system Au = b. The method, known as the Richardson method, is 

defined as 

Nu (k+ll = Nu (k) - w (Au (k) - b), N "'- 0 
k+l 

or after some manipulation, as 

..• , w are the iteration parameters. 
m 

(5.2.1-1) 

(5.2.1-2) 

It is obvious that the method (5. 2. 1-2) defines a nonstationary 

linear iterative method. Moreover, the method is consistent for any 
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Evidently if A is nonsingular, then the method is convergent if and 

only if 
m 

lim IT (I - w N-1 A) = 0. 
k+1 

(5.2.1-3) 

It is obvious that if we choose w = 1, we would get the form of 
k+1 

(5. 1-1). Now, for w = w, we have the Jacobi overrelaxation method. 
k+1 

In fact, if N-1 A has the property that all the eigenvalues of N-
1 A are 

positive and real, and the maximum and minimum eigenvalues for N-1A are 

.M(N-1A) and m(N-1A) or M
1 

and m
1 

respectively, and for I - N-1A are 

.M(I - N-1 A) and m(I - N-1A) or M
2 

and m
2 

respectively, then 

m = 1 - M 
1 2' 

m =1-M. 
2 1 

-1 For I - wN A, we have M(I - wN-1A) 

respectively, where it can be verified that 

(5.2.1-4) 

(5. 2. 1-5) 

For the values of w , w , ••• , w , Young[1954) has shown that the 
1 2 m 

optimum choice of these parameters is given by 

2 
wk = (M + m ) - (M - m ) t ' k = 1• 2 • • · · ' m 

1 1 1 1 k 

(5.2.1-6) 

where 

= [ (2k - 1 )ll ] k = 1 tk cos Zm , , 2, ... , m (5.2.1-7) 

are the zeroes of the kth Chebyshev polynomials. 

For m parameters, the method is expected to converge faster than a 

single parameter case, but round-off errors may cause difficulties in 

the actual calculation. If the original iteration does not have this 

property (the SOR method has complex eigenvalues for w > 1), then no 

acceleration of the basic iteration may result. 
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Now, by applying the Richardson method of the form (5.2.1-2) to the 

AGE method in (5.2-9), we then have 

u (k+1) = [I - 2rw (rl + G )-1(rl + G )-1A)u(k) 
k+1 2 1 

+ 2rw (rl + G
2
)-

1 (rl + G
1 

)-1b 
k+1 

(5.2.1-8) 

where w is defined in (5.2-1-6). As before, we will consider a cycle k+1 

of 2 or 3 parameters. 

We shall remark here, although a cycle of 2 or 3 parameters has 

been chosen, however the order in which the w are used within a cycle k+1 

of 2 or 3 iterations is arbitrary. This ordering does not effect the 

theoretical rate of convergence, but it may be important because of the 

growth of round-off errors. 

In the non-stationary case, we could simply do it by substituting 

r = rk, giving the equation 

u(k+il = [1- 2rkwk+
1
(r/ + G

2
)-1(rkl + G

1
)-1Alu<kl 

+ 2rkwk+i (rkl + G2)-
1
(rki + G1)-

1
b. (5.2.1-9) 

However, we will only investigate the Richardson method when r is 

constant. i.e., equation (5. 2.1-8). The algorithm for the method is 

similar to Algorithm 4.2.2-2 except the multiplication of 2r, we change 

to 2rw k+1 

5.2.2 The Chebyshev semi-iterative method 

In this section, we shall be concerned with the application of the 2nd 

degree Chebyshev semi-iterative procedure to speed up the AGE method. 

This procedure represents a slightly different process where 

(5.2.2-1) 
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and u(k+l) = wk[(I - N-1A)u(kl + N-1b] + (1 - wk)u(k-1) 

k = 1, 2, (5.2.2-2) 

where the sequence w
1

, w
2

, is determined by, 

with ;\, 
max 

w = 1, w = ( 1 - .!;\, 2 r 0 1 2 max 

( 1 r 1 2 w = - -;\, w k+l 4maxk ' 
k = 1, 2, ... 

-1 is the maximum eigenvalue of the matrix (I - N Al. 

(5.2.2-3) 

It is obvious that w monotonically tends to the limit w , the SOR 
I b 

acceleration parameter. These parameters are also based on the use of 

Chebyshev polynomials, see Young [1971]. It should be noticed that as 

it is a second degree process, u(k+l) is calculated not only from u(kl 

but also from u<k-ll. A fuller account of the derivation of the method 

may be found in Varga [1962]. 

The spectral radius is given by, 

(w - 1)k/2{ 2 }· 1 + (w - 1 )k 
(5.2.2-4) 

where 
2 

w = (5.2.2-5) 
1 + J 1 - ;\,2 

max 

Now, for the AGE method in (5.2-9), the Chebyshev semi-iterative 

procedure (5.2.2-1) - (5.2.2-2) takes the form, 

(5.2.2-6) 

and 
(k+l) 

u = w (!i'u<kl + ~) + (1 - w )u(k-1) k = 
k k • 1' 2, ... (5.2.2-7) 

where 

~ = 2r(ri + G )-1 (ri + G )-
1b. 

2 1 

Again, we will consider a cycle of 2 or 3 parameters. Thus, we have, 

for a cycle of 2 parameters, 

( 1 2 ) -l 
( 1 - .!;\, 2 w r. w = 1 - -;\, and w = 

1 2 max 2 4 max 1 
(5.2.2-8) 
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and for cycle of 3 parameters 

( - .!_:\2 r. ( 1 
1 2 r w = 1 w = - -:\ w and 

1 2 max 2 4 max 1 

= ( r w 1 - 1:\2 
3 4 maxw2 

In the non-stationary case, we could simply substitute r 

(5.2.2-9) 

= r in 
k' 

equations (5.2.2-6) and (5.2.2-7). However, we will only consider the 

solution to the given problem for a constant r, i.e., by using equations 

(5.2.2-6) and (5.2.2-7). 

The Algorithm for this method consists of two parts. The solution 

for u(ll in equation (5. 2. 2-6) is similar to the first iteration of 

Algorithm 4. 2. 2-2. The routine calculation is in equation (5. 2. 2-7) 

which is similar to the next iteration of Algorithm 4.2.2-2 except for 

the addition of the term (1-wk) u(k-lland the multiplications of wk to 

each of the coefficient to the elements of the vector u<kl and b. 

5.2.3 The computational complexity 

By comparison, the Richardson method and Chebyshev semi-iterative 

methods need only a / iJ+Ie more computational work in relation to the 

CAGE-DG scheme. 

In Richardson' s method, the multiplication of w are required in 
k+l 

both the vector u (k) and b. Thus, for large N, it is only 2N extra 

multiplications for every iteration. 

The Chebyshev semi-iterative method takes slightly more work. By 

considering equation (5. 2. 2-7), we have the multiplication of wk for 

each element involved, and one subtraction plus one multiplication for 

(k-1) 
the second component, 1. e., u . Thus, for large N, the extra work 

is only N addition and 2N multiplications for every iteration. 
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5.2.4 Experimental results 

The problems given in Section 5.1.5 were investigated further by using 

the AGE method with the Richardson and Chebyshev semi-iterative methods. 

Our investigation is again concerned with the gains in the number of 

iterations, i.e. the rate of convergence. 

Problem 1 - A Linear Problem 

U" - ( 1 + x
2 J U = - 1, 

U(-1) = 0, U(1) = 0. 

-1 :S X :S 1, 

h = 2/(N+1). 

The computed solution is obtained when 11 r 11 = 11 b - Au (k+ll 11 < c. 

The result is tabulated in Table 5.2.4-1. 

CAGE-DG Scheme Richardson Method Chebyshev Method 

N Optimum r Iter r w Iter r w Iter 

10 0.560- 0.580 12 0.570 1.0 12 0.570 1.0 12 
20 0.303- 0.305 20 0.304 1.0 20 0. 304 1.0 20 
40 0.160- 0.161 39 0.161 1.0 39 0.161 1.0 39 
80 0.080 70 0.080 1.0 70 0.080 1.0 70 

Table 5.2.4-1: The number of iterations 

The results show no gain in terms of the number of iterations. In 

Table 5.2.4-1, the optimal r for the Richardson and Chebyshev method are 

similar to the optimal r for the CAGE-DG scheme. By having w = 1, these 

methods are merely reduced to the CAGE-DG scheme which clearly give the 

least number of iterations at the given optimal r. This setback is due 

to similar arguments which have been described for the same problem in 

Section 5. 1. 5, 1. e., Problem 1. Thus, we may conclude that, the 

application of single parameter is the best to solve this problem. 

Problem 2 - A Mildly Nonlinear Problem. 

-U"+~=O 2 • 0 :S X :S 1, 

U(O) = 4, U(1) = 1. h = l/(N+1). 
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The exact solution to this problem is given by U(x) = 4/(1+x) 2
. 

The result are tabulated in Table 5.2.4-2. 

CAGE-DG Scheme Richardson Method Chebyshev Method 

N Optimum r Iter r w Iter r w Iter 

10 0.572 - 0.579 17 0.575 1.0 17 0.575 1.0 17 
20 0.317 - 0.323 35 0.320 1.0 35 0.320 1.0 35 
40 0.164 - 0. 179 72 0.170 1.0 72 0.170 1.0 72 
80 0.089 - 0.093 143 0.090 1.0 143 0.090 1.0 143 

Table 5.2.4-2: The number of iterations 

This problem, yields a similar situation as the previous one. 

Since these methods for the linear problem do not give any improved 

results, we may expect that for the nonlinear problem, it would be even 

more difficult to obtain a better performance. The values of r and w 

should be similar to those given in Problem 1. Thus, for these problems 

it appears that no advantage is obtained in going to the second order 

methods. 

Problem 3 - A Linear Periodic Problem 

- U" + pU = (p+1)(s1n x +cos x), 0 :S X :S 21l, 

U(O) = U(2n), U'(O) = U'(2n), h = 2n/(N+1). 

The exact solution is U(x) = sin x + cos x. 

The matrix (I - N-1A) derived for the CAGE-DG scheme for this type 

of problem may be referred to in Evans [1990). 

The result is tabulated in Table 5.2.4-3. 

CAGE-DG Scheme Richardson Method Chebyshev Method 

N Optimum r Iter r w Iter r w Iter 

20 3.652- 4.908 4 4.90 1. 00 4 4.90 1. 00 4 
40 1. 283 - 1. 807 6 1. 70 1. 10 4 1. 70 1. 00 6 
80 0.686 - 0.708 9 0. 70 1.38 5 0.70 1. 00 9 

160 0.271 - 0.342 16 0.30 2.00 5 0.30 1. 00 16 
320 0.138 - o. 154 26 0.15 1. 46 18 0.15 1.00 26 

Table 5.2.3-3: The number of iterations when p = 70 
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The results obtained for the Richardson and Chebyshev methods in 

Table 5. 2. 3-3 are based on the heuristic search technique and since 

there appears to be no significant improvement, we discard this 

technique to obtain the Richardson and Chebyshev parameters. The 

results in Tables 5.1.5-3 and 5.1.5-4, also show that the best 

performance is obtained when using 2 parameters (PR, Wachspress). 

However, the Richardson and Chebyshev formulae have also been tested, 

but did not give any gain in terms of the number of iterations. 

The value of w for both methods is determined as follows. It is 

obvious that by having w = 1, both methods are identical to the CAGE-DG 

scheme for the periodic problem. By varying the value of w, we can then 

determine the best w and r. Although the results shown are only for 

p = 70, the gain in the number of iterations is also significant, 

especially for the Richardson method and larger p. 

5.3 SWIIOal"y 

This chapter is mainly concerned with the application of multi

parameters to acceleration of the AGE methods. The chapter begins with 

a discussion of the existing AGE (ADI) parameters followed by other 

heuristic methods to determine these parameters. The application of 

multi-parameters is divided into two part. The first part is concerned 

with the use of the Jordan, PR, Wachspress and other existing 

parameters, and in the second part, the application of the second order 

methods, i.e., the Richardson method and the Chebyshev semi-iterative 

method. Since the size of the block submatrices is small (2x2), we are 

only interested in applying the 2 or 3 parameters to the AGE method. 

216 



The results obtained in Sections 5. 1. 5 and 5. 2. 4, show that the 

application of multi-parameters is only worth while when solving the 

problems governed by periodic boundary conditions which indicates that 

the size of the chosen problems is too small. We would expect to obtain 

better results for large size problems. 

It has also been shown that although the eigenvalues of the 

iteration matrix are well separated, they are of high order in 

multiplicity. Thus, there is a possibility of rounding errors in the 

minimisation process which reduces the rate of convergence. The block 

submatrices in the AGE method are small (2x2) as compared to the ADI 

method which may have the bigger submatrices, 1. e., (40x40). 

Consequently, this reduction in the size of the submatrices, could 

reduce the optimal set of multi-parameters to just a single parameter. 

By comparison, the Richardson method give slightly better results 

over the application of Wachspress parameters. However, these 

parameters are not easily determined compared to the ease of use of the 

Wachspress parameter. Hence, we may conclude that the application of 

the Wachspress parameters, i.e., 2 parameter case is highly recommended 

for use with the AGE method for solving the linear two point boundary 

value problems governed by periodic boundary conditions. 
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CHAPTER 6 

THE OPTIMAL SINGLE AGE PARAMETER FOR ELLIPTIC PDE's 

6.1 Determination of the optimal AGE acceleration parameter 

The methods discussed in Part II, are mainly concerned with the solution 

for the two point boundary value problem, 1. e, the one dimensional 

problem. Now, in Part III, we discuss the applicability and the 

viability of the methods for solving two and three dimensional problems. 

The scope will be limited to the investigation of the extension of the 

methods to solve the Helmholtz, Laplace and Poisson equations in two and 

three dimensions. 

As shown in Part II, The PR scheme had a limitation in solving the 

two and three dimensional problem via the AGE method. Thus, our concern 

will be centred on utilising the Douglas-Rachford, Douglas and Guittet's 

schemes. First, we outline the model for two dimensional problem, i.e., 

the Helmholtz equation. 

6.1.1 The two dimensional model problem 

Consider the Helmholtz equation in two dimensions 

a2u + - - pU = f(x,y), 
al 

O::sx,y::sl, (6. 1. 1-1) 

subject to U = f(x,y) on the boundary of the unit square, 0 ::s x, y ::s 1 

with p ~ 0 and f(x,y) ~ 0. When p = 0 and f(x,y) = 0, the problem is 

reduced to the well known Laplace equation. If p = 0 and f(x,y) is a 

constant but not zero, we then have a Poisson equation. 
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The square region is covered by a grid with sides parallel to 

coordinate axes and the grid spacing is h. For h = 1/(N+1), the number 

of internal grid points or nodes is N2
. Figures 6.1.1-1 shows the nodes 

for h = 1/6, i.e, N = 5. 

y 
(1 • 1) 

-- --
1,5 2,5 3,5 4,5 5,5 

-- --
1,4 2,4 3,4 4,4 5,4 

-- --
1,3 2,3 3,3 4,3 5,3 

-- --
1,2 2,2 3,2 4,2 5,2 

-- --
h 

1,1 2,1 3,1 4,1 5,1 

0 h X 

Figure 6.1.1-1: The number of nodes for h = 1/6. 

The coordinates of a typical internal grid point are x = lh, 
I 

yJ = jh, where 1 and j are integers, and the value of u at this grid 

point is denoted by u 
l,j 

For example, from Figure 6.1.1-1, the value 

of u at the point (1,1) is u 
1,1 

By using the Taylor's theorem, we obtain 

and 

u = ( u -
l-1,j 

hau 
ax 

u 
l+t,j ( 

au 
= u+h-+ ax 

By adding (6.1.1-2) and (6.1.1-3), we have 

u + u - 2u = ( 
1-t,J 1+1,j 1,j 
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Similarly 

u 
I,J-1 

+ u - 2u 
l,j+l l,j = ( + ... L.J 

Now, by adding (6.1.1-4) and (6.1.1-5), we get 

u + u - 4u + u + u = 
1-t,j l+t,j l,j l,J-1 l,j+l 

+ ••• L.J . 
which leads to the five-paint finite difference replacement 

u +u -4u +u +u "0 
1-t,j l+l,j l,j l,j-1 l,j+l 

(6. 1. 1-5) 

(6. 1. 1-6) 

(6. 1. 1-7) 

for Laplace's equation, with a local truncation error, E , given by 
tr 

E th4 a u a u 
( 

4 4 ) 

tr = i2 ax4 + ay4 l,j + ... 
(6. 1. 1-8) 

The principal part of the truncation error will only make sense if the 

derivatives of U are continuous up to order four in x and y. 

Now, for the Helmholtz equation (6.1.1-1), we then have the five-

point difference equation at the point u , 1, j = 1, 2, ... , N, 
I' J 

-u -u +4gu -u 
1-t,J l+l,J l,j l,j-1 

- u 
l,j+l 

(6. 1. 1-9) 

as an approximation to the solution of (6.1.1-1), where his small. 

This equation can be represented as a computational molecular form 

l,j+l 

8--1 (6. 1. 1-10) 

1-1 ,j 1 +1, J 

I,J-1 

with i, j = 1, ... , N, where N is the number of points and g = 1 + ~ph2 • 

220 



Our task now is to solve the linear system Au = b, derived from 

equation (6.1.1-9) for the totality of equations, 1, j = 1, 2, .•. , N. 

From this equation, we have 

A -I 
0 

4g -1 
0 1 

-I A -I -1 4g -1 
1 

····••·• .... 
.. ·· .. 

··••····· ... 
·· .. 

•······· •... A = ··· ....... .•. with A = ···•· ... · .... 1 

-I A -I -1 4g -1 
1 

0 -I 0 -1 4g 

(6.1.1-11) 

The vector u and b are given by 

u ' .. 0' 
1,2 

u . 
N,2' 

... , • 0 • , 

(6. 1. 1-12) 

and ... , b . 
N,2' 

... , ... , 
(6. 1. 1-13) 

where the elements of vector b are as follows: 

2 
Set b

1
,J =- h f(x

1
,yJ), 1, j = 1, ... , N. Hence, 

1. The elements next to the boundary, parallel to the x-axis are 

b = b + u , b = b + u , 1 = 1, ... , N 
1,1 1,1 1,0 t,N t,N t,N+l 

and 2. The elements next to the boundary, parallel to the y-axis are 

b = b + u , b = b + u , j = 1, ... , N. 
t,j t,j O,j N,j N, J N+t,j 

We now consider the AGE method for solving Au = b, which is based 

on the splitting of the matrix A into 

A=G +G +G +G 
1 2 3 4 

(6. 1. 1-14) 

where G , G , G and G are symmetric and positive definite. 
1 2 3 4 

These matrices can be shown to be comprised of small (2x2) block 

systems or can be made so by a suitable permutation on their rows and 

corresponding column. As shown in the one dimensional case, this 
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procedure is convenient in the sense that the work required is much less 

than would be required to solve Au = b directly. 

For the model problem, let us consider when the case N is odd. 

Hence, for the two dimensional problem where the matrix A as in 

(6.1.1-11), we have 

a 
0 

2g -1 
0 

G -1 2g -1 

G G '·· with G ............ ·· .. · ....... + = '•, = · ... 
1 2 ·· ... '• ., ·· .. 

a -1 2g -1 

0 a 1fXN2 
0 -1 2g 

and we let a = G + 
1 

G 
2' 

then 

g -1 g 

-1 g g -1 

·····•• ... .. 
g -1 

-1 g 

········· ... 

-1 g g -1 

g -1 g 

Also, we have 

a' -I 
0 

Zg 
0 

-I a' -I 2g 

G G 
·· .. · ........... ····· ........ + = ........ 

3 4 

-I a' -I 
. a'= '······ ..• 

2g 

0 -I 0 2g 

(6. 1. 1-15) 

Evidently by interchanging the order of direction we have (G + G ) 
1 2 

in the form of (G
3 

+ G
4

) and vice-versa. 
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6.1.2 The three dimensional model problem 

To present the model for the three dimensional problem, let us consider 

the Helmholtz equation in three variables x, y and z 

al 
au2 

+-- tTU = g(x,y,z), 
az2 

(x, y, z) e aR, (6.1.2-1) 

bounded by 

U(x,y,z) = f(x,y,z), (x,y,z) e aR (6.1.2-2) 

where aR is the boundary of the unit cube 0 ~ x,y,z ~ 1. 

An equally spaced three-dimensional grid is placed over the cube in 

such a way that it leads to N3 internal grid points where h = 1/(N+1), 

with h is the grid spacing. The coordinates of a grid points are 

x
1 

= ih, yl = jh, Zk = kh (6. 1. 2-3) 

where i, j, k are integers, and the value of u satisfying a difference 

replacement of equation (6.1.2-1) at this grid point is given by u . 
l,j,k 

By following Section 6.1.1, the conventional seven-point finite 

difference replacement of equation (6.1.2-1), for small h, is given by 

- u - u + 6gu - u - u 
1-t,J,k l+t,j,k l,j,k l,J-t,k l,j+l,k 

1 2 where i, j, k = 1, ... , Nand g = 1 +~h. 

(6.1.2-4) 

It is quite tedious to illustrate every internal grid point for a 

given N, but each grid point can be represented in molecular form as 

8-- (6. 1. 2-5) 

1, j-t,k l,j+l,k 

1-1, j, 
l,j,k-1 
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The linear system Au = b derived from equation (6.1.2-4) gives 

-J 
0 

-J -J 

A= ···· ........ ·· ...... 
·· .. ········· ... 

-J -J 

0 

\ -I 
0 

-I -I 

............ \ .••..... '····· .... 

0 

the vector u = 

[u ' t, 1,1 
... ' 
0 •• , 

[u ' t, t,N 
0 0 0 , 

-I 

u . 
N,t,t' 

u • 
N, 1,2 

u . 
N, t,N' 

-I 

u • 
1,2, 1 

... , 

u t 0 •• ' 

1, 2,2 

u ' . 0.' 1,2,N 

and the vector b = 

... , 
[b • 

1,1,2 
•• 0 , 

[b • 
t,t,N 

. . . , 

b ; b • 
N,t,t 1,2,1 • 0 • ' 

b ; 
N,1,2 b ' 0 •• ' 1,2,2 

b ' b ' N,t,N 1,2,N . . . ' 

, with J = 

, and A
1 

= 

u • 
N,2,1 

u • 
N,2,2 

u . 
N,2,N' 

b . 
N,2,t' 

b • 
N,2,2 

b • 
N,2,N 

where the elements of vector b are as follows: 

I 
0 

I 

·•······ ..•. 

I 

0 I 

6g -1 
0 

-1 6g -1 

............ •••••••• .... 

0 

u • t,N,t 

u • 
1,N,2 

u • t,N,N 

b • 
l,N, 1 

b • 
t,N,2 

b • 
l,N,N 

-1 

. .. ' 

• 0 0 ' 

... ' 

0 .... 

... ' 

•• 0 • 

'· ·· .. ·· .. 
6g -1 

-1 6g 

(6. 1. 2-6) 

u • 
N,H, 1 

u • N,N,2 

U ]T 
N,N,N 

(6.1.2-7) 

b ; 
N,N, 1 

b • N,N,2 

b ]T 
N,N,N 

(6. 1. 2-8) 

Set b 
l, J 'k 

1, ... , N. Hence, 
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1. The elements next to the boundary, parallel to the xy-plane are 

b =b +u ,b =b +u , 
l,j,l l,j,l l,j,O l,j,N l,j,N l,j,N+l 

i, j = 1, ... , N. 

2. The elements next to the boundary, parallel to the xz-plane are 

b =b +u ,b =b +u , 
t,l,k t,l,k t,O,k l,N,k l,N,k t,H+t,k 

i, k = 1, ... , N, 

and 3. The elements next to the boundary, parallel to the yz-plane are 

b =b +u ,b =b +u , 
l,j,k l,J,k O,j,k N,j,k N,j,k N+l,j,k 

j, k = 1, •.. , N. 

By applying the AGE method, we consider a splitting of A into six 

submatrices. i.e, 

A=G +G +G +G +G +G 
1 2 3 4 5 6 

where G , 1 = 1, 
I 

... ' 6 are symmetric and positive definite. 

(6.1.2-9) 

These matrices can also be shown to be comprised of small (2x2) 

block systems or can be made so by a suitable permutation on their rows 

and corresponding column. This procedure is convenient in the sense 

that work required is much less than would be required to solve Au = b 

directly. 

Let us consider when N is odd. Thus, for the model problem where 

the matrix A as in (6.1.2-6), we have 

G' 
l 0 

G" 0 
G' 

I 
G" 

•·. '· G + G = .... with G' = ·· .. 
1 2 ··, 1 ·· .. 

G' G" 

' 0 G' rXN3 0 G" WXN2 
I 

where 
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2g -1 
0 

-1 2g -1 
•. 
' '·· '· .. 

G" = ····· ... '·· ·· .. ·· .. .. , 
-1 2g -1 

0 -1 2g 

If we let G" = G" + G", then we have 
1 2 

and 

G + 
3 

G + 
5 

and 

G" = 
1 

also 

G = 
4 

G = 
6 

a = 

g -1 

-1 g 
·· .. , 

··, 

G' 

G' 

·· .. 

0 

a -J 

-J a 

g -1 

-1 g 
g 

0 

···· ... 
G' 

G' 

0 
-J 

G" = 
2 

g 

• with G' 

WXN3 

· ....... ····· •.. ·· .. with ···· .... • ·· .. ·· .. 
-J G -J 

0 -J a WXN3 

G" :3 0 
G" 

3 

·· .. , with G" • = ··, e 
G" 3 

0 G" rfXN2 
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g -1 

-1 g 
·· .. 

····· ... 
g -1 

-1 g 

G" 
3 -I 

0 
-I G" 

3 
-I 

'• 

·•···· .... ····· ... ··•·· ... = ·· .. ·· .. 
-I G" 

3 
-I 

0 -I G" 1f-xN2 3 

I 
0 

I 

J = ·······•· ... 

I 

0 I rh.N2 

2g 
0 

2g 

·· .. 
· ....... 

2g 

0 2g 

(6. 1. 2-10) 



It is obvious that by interchanging the order of direction, we have 

(G
1 

+ G ) in the form of (G + G ) or (G + G ) and vice-versa. 
2 3 4 5 6 

With the splitting of the matrix A in both model problems, we will 

investigate the viability of the Douglas-Rachford, Douglas and Guittet's 

schemes to solve the problems by using the AGE method. 

6.1.3 The Douglas-Rachford (DR) and Douglas schemes 

It has previously been shown that the DR and Douglas schemes for the AGE 

method to solve the two-point boundary-value problem, i.e., the problem 

in one dimension, is given by 

(ri + G
1 

)u(k+l/2) = [ (ri + G
1

) - wA]u(k) + wb (6. 1. 3-1) 

(ri + G
2

)u(k+U = ru(k+l/2) + G
2
u(k) (6.1.3-2) 

where A = G
1 

+ G2 and r > 0 is the iteration parameter. When w = 1, we 

have the DR scheme, and for w = 2, we have the Douglas scheme. The 

scheme can also be extended to solve the higher dimensional problems. 

Consider the two dimensional problem where the splitting of A into 

the four submatrices is as in (6.1.1-14). The AGE method in the DR and 

Douglas (AGE-DG-2) schemes can be presented as 

(ri + G )u (k+l/4) 
1 

= [(ri+G) 
I 

- wA]u(k) + wb (6. 1. 3-3) 

(ri + G )u (k+l/2) (k+l/4) + G u(k) (6. 1. 3-4) = ru 2 2 

(ri + G )u (k+3/4) (k+l/2) 
+Gu 

(k) 
(6.1.3-5) = ru 3 3 

(ri + G )u 
(k+l) 

=ru 4 
(k+3/4) + G u(k) (6.1.3-6) 4 

with w = 1, for the DR scheme and w = 2 for the Douglas scheme. 

This scheme corresponds to sweeping through the mesh parallel to 

the coordinate x and y axes. At each stage of iteration, we solve the 

2X2 block systems. It is obvious that the vector u(k+U is computed in 

four steps. 
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We now seek to analyse the convergence of the AGE-DG-2 scheme, 

i.e., equations (6.1.3-3)- (6.1.3-6). 

It is obvious that the AGE-DG-2 scheme is consistent. We now show 

that this scheme is convergent. By eliminating all the intermediate 

vectors of u, we then have the iteration matrix as 

1 

T = 
r 

3 -1 
I - wr TT (r! + G

1
) A. 

1=4 

(6. 1. 3-7) 

Let o:, 13, r and 1i are the respective eigenvalues of G , G , G and 
1 2 3 

G
4

• Since G
1

, 1 = 1, ... , 4 are symmetric and positive definite, hence 

all the eigenvalues are positive. By inspection, it can be shown that 

these eigenvalues are in the interval [0,2]. 

We need to show that ~(T ) < 1. 
r 

~(T ) = liT 11 
r r 2 

3 1 
= 11! - wr TT (r! 

1=4 

= 11 - wr3(_1_)(_1_)(_1_)(_1_)(o: + 13 + r + 11) I 
r + o: r + 13 r + r r + 1i 

= 11 -
3 

2wr (~ + v) I h 
2 2 

, w ere ~ = 
(r + ~) (r + v) 

max (o:,l3), v = max (r,li), 

= 11 - 3 I 4wr ;\ 

(r + ;\)4 
< 1, where ;\ = max (~,v), for r > 0. 

Thus, the AGE-DG-2 scheme is convergent. 

In programming, we only need to consider the matrices G
1 

and G
2 

since after changing the direction, i.e., from row to column, equations 

(6.1.3-5) and (6.1.3-6) can be written as 

(ri 

(ri 

+ G )u !k+3/4l 
1 c 

+ G )u lk+ll 
2 c 

= ru lk+1/2l + G u lkl 
c 1 c 

= ru !k+3/4l + G u !kl. 
c 2 c 

(6. 1. 3-8) 

(6.1.3-9) 

where u stands columnwise reordering. Hence, the new set of equations 
c 

for the AGE-DG-2 scheme is given as 
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(ri + G )u(k+1/4) [ (rl + G
1 
l - wA]u 

(k) 
+ wb (6. 1. 3-10) = 

1 

(ri + G )u (k+112) (k+1/4) + G u !kl (6.1.3-11) = ru 
2 2 

(ri + G )u (k+3/4l (k+l/2) + G u !kl (6.1.3-12) = ru 
1 c c 1 c 

(ri + G )u (k+1) = 
2 c 

ru (k+3/4) + G u !kl 
c 2 c 

(6. 1. 3-13) 

The AGE-DG-2 scheme in equations (6.1.3-10) - (6.1.3-13) also converge 

and its convergence can be shown in similar way. 

It is obvious that the matrices G and G consist of the 2X2 block 
1 2 

submatrices G, where 

G = [g -1
], with g = 

-1 g 
(6. 1. 3-14) 

Hence, for any r > 0, the matrices (ri + G
1

) and (ri + G
2

) are the form 
A 

of (ri + G), where 

(ri + G) = [<X -
1
], with <X = r + g 

-1 ()( 

and the inverse, (ri + G )-1 and (rl + G )-1 are in the form 
1 2 

-1 A [()( 

(ri + G) = d 
1 

1 
with d = --::--=--

()(2 - 1 

From equation (6.1.3-10), we set C = (rl +G)- wA. 
1 

Let us consider when N = 5. Thus, we have 

c wi 
0 1 t 

wi c wi 
1 s 

c = wi c wi with C = 
1 1 

wi c wi 
1 

0 
0 wi c 52x52 

1 

where t = <X - 4gw and s = w - 1. 
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s 

t w 

w t 

s 

(6.1.3-15) 

(6. 1. 3-16) 

0 

s 

t w 

w t 



We now write the algorithm for general N for the AGE-DG-2 scheme 

using equations (6.1.3-10) - (6.1.3-13). In this algorithm, the number 

of points, N is considered odd. 

Algorithm 6.1.3-1: The AGE-DG-2 scheme. 

Set 

Step 

u (k) = 0 i. J = 0, N+1, d 1/(a. 2 
1). ... , a. = r + g, = -

1, J ' 

t = 

1: 

a. - 4gw, s ="' - 1, a. 
I 

= a.d. 

To compute 
(k+l/4) 

Set i. J 1. u = 

while j s N, compute 

while i s N-2, compute 

= wu(k) + wu(k) + tu(k) + su(k) + wu(k) 
rt t,J-t 1-t,J l,J l+t,J t,J+t 

+ wb 
I,J 

= wu Ckl + su (k) + tu (k) + wu (k) + wu (k) 
r2 t+t,J-t t,J l+t.J t+2,J t+t,J+t 

(k+l/4) 
u = r

1
d + a.

1
r

2 l+t,J 

1 = i + 2 

+ wb 
l+l,J 

(k+l/4) 
u 

N,J 
= (wu (k) + wu Ckl + tu Ckl + wu Ck) + wb )la. 

N,j-1 N-t,j N,J N,J+l N,J 

j=j+l. 

Step 2: 
(k+l/2) 

To compute u Set 1 = 2, j = 1. 

while J s N, compute 

u (k+l/2) 

l,j 

while 1 s N-1, compute 

= (k+l/4) + (k) (k) 
r 1 ru1,J gu1,J - ui+I,J 

(k+l/4) 
r = ru 

2 1+1' J 

1 = i + 2 

(k) + (k) 

u,, J gul+t, J 

(k+l/2) 
u = r

1
d + a. r 

l+t,j 1 2 
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Step 3: 

Step 4: 

j=j+l. 

(k+3/4) To compute u Set i, j = 1. 

while i s N, compute 

while j s N-2, compute 

= (k+l/2) + (k) (k) 
rl rui,J gui.J - ui,J+l 

(k+l/2) r = ru 
2 1, j+l 

(k) + (k) 

ui,J gui,J+l 

(Change in direction). 

(k+3/4) 
u = r

1
d + o:

1
r

2 l' j+1 

j = j + 2 

u (k+3/4) 

l,N 
= (ru(k+1/2l + gu(kl)/o: 

l,N l,N 

i=i+l. 

(k+ll 
To compute u Set i = 1, j = 2. 

while i 

u (k+l) 

1,1 

s N, compute 

= (ru Ck+3/4l + gu Ckl )la 
1,1 1,1 

while j s N-1, compute 

= ru Ck+3/4l + gu Ckl _ u (kl 
rt l,J l,J l,J+t 

(k+3/4) r = ru 
2 1 ,j+l 

uCkl + Ckl 
I,J gui,J+l 

(change in direction). 

(k+l) 
u = r

1
d + o:

1
r

2 l,j+l 

j = j + 2 

i=i+l. 

Step 5: Repeat Step 1 to Step 4 until convergence is achieved. 

We now investigate the DR and Douglas scheme for the 3 dimensional 

problem using the AGE method, the AGE-DG-3 scheme. 

Let us recall the splitting of A in (6.1.2-7). Then, the AGE-DG-3 

scheme can be presented as 
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(rl + G )u (k+1/6l = [(ri + G
1

) - wA]u 
(k) 

+ wb (6. 1. 3-17) 
1 

(rl + G )u (k+113l = 
ru(k+t/6) + G u 

(k) 
(6. 1. 3-18) 

2 2 

(rl + G )u 
(k+l/2) 

= 
(k+1/3) + G u (k) 

(6.1.3-19) ru 
3 3 

(rl + G )u 
(k+2/3) 

= ru(k+1/2l + G u 
(k) 

(6. 1. 3-20) 
4 4 

(rl + G )u 
(k+5/6) 

= 
(k+2/3) + G u (k) 

(6.1.3-21) ru 5 5 

(rl + G )u 
(k+ll = ru (k+5/6l + G u<kl (6.1.3-22) 6 6 

with w = 1, for the DR scheme and w = 2 takes the Douglas scheme. 

This scheme corresponds to sweeping through the mesh parallel to 

the three coordinate axes x, y and z. At each stage of the iteration, 

we solve the 2X2 block systems. It is obvious that the vector u(k+1l is 

computed in six steps. 

We now seek to analyse the convergence of the AGE-DG-3 scheme, 

i.e., equations (6.1.3-14) - (6.1.3-19). 

It is obvious that the AGE-DG-3 scheme is consistent. We now show 

that this scheme is convergent. By eliminating the intermediate vectors 

u, we then have the iteration matrix as 

(6. 1. 3-20) 

Let IX, {3, r. T, ,. and Cl are the respective eigenvalues of G , G , 
1 2 

G3, G
4

, G5 and G6. Since G
1

, i = 1, ... , 6 are symmetric and positive 

definite, hence all the eigenvalues are positive. By inspection, it can 

be shown that these eigenvalues are in the interval [0,2]. 

We need to show that ~(T ) < 1. 
r 

!I(T ) = liT 11 
r r 2 

5 1 
= Ill - wr TT (ri 

1=6 

_ wr5(_1_)(_1_)(_1_)(_1_)(_1_)(_1_) x 
r+IX r+{3 r+r r+T r+IJ" r+o 

(IX + f3 + r + T + ,. + o l I 
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I 
2wr

5
(a+b+c) I 

= 1 - _(_r_--=:::2:,.-;:.=....-=-=-2 ---=:..:...--=2 ' 
+ a) (r + b) (r + c) 

where a = max (a,~). b = max (~,T) and c = max (~.a). 

If A = max (a, b, c), then 

< 1, for r > 0. 

Thus, the AGE-DG-3 scheme is convergent. 

Again, in programming, we only need to consider G
1 

and G
2 

matrices 

since after reordering the direction, the new set of equations becomes 

(rl + G ) u (k+1/6l = [(ri + G
1

) - wA]u(k) + wb (6. 1. 3-21) 
1 

(rl + G )u (k+1/3) = (k+1/6) 
+ G u 

(k) 
(6. 1. 3-22) ru 2 2 

(rl + G )u (k+1/2l = (k+l/3) + G u (kl (6. 1. 3-23) ru 
1 y y 1 y 

(rl + G )u (k+2/3) = ru(k+1/2) + G u (kl (6. 1. 3-24) 2 y y 2 y 

(rl + G )u (k+S/6) = ru(k+2/3l + G u(k) (6. 1. 3-25) 
1 z z 1 z 

(rl + G )u (k+ll 
2 z 

= ru(k+S/6) + G u<kl 
z 2 z 

(6. 1. 3-26) 

where u stands for the y-direction and u stands for the z-direction. 
y z 

The scheme (6. 1. 3-21) - (6. 1. 3-26) also converges and its convergence 

can be shown in similar way. 

It is obvious that the matrices G
1 

and G
2 

in the AGE-DG-3 scheme 

consist of the 2X2 block submatrices G, where 

(; = [g -1]. 
-1 g 

with g (6. 1. 3-27) 

Hence, for any r > 0, the matrices (ri + G ) and (ri + G J are in 
1 2 

A 

the form of (ri + G) in (6.1.3-15), whilst the inverse, (ri + G J-1 and 
1 

-1 .... -1 
(rl + G2) are in the form of (ri + G) in (6. 1. 3-16). 

Let us consider the case when N = 5. From equation (6.1.3-21), we 

set C = (rl + G ) - wA. Thus, we have 
1 
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c wl 
0 1 

wl c 
1 

wl 

c = wl c wl • for 
1 

wl c wl 
1 

0 wl c 
5

3
X5

3 
1 

c wl 
0 

t s 
2 0 

wl c wl s t w 
2 

c = wl c wl with C = w t s 
1 2 2 

wl c wl s t w 
2 

0 wl c 
5

2
XS

2 0 
2 

w t 

where t = a - 6gw and s = w - 1. 

We now write the algorithm for general N for the AGE-DG-3 scheme 

using equations (6.1.3-21) - (6.1.3-26). In this algorithm, the number 

of points, N is considered odd. 

Algorithm 6.1.3-1: The AGE-DG-3 scheme. 

Set u (k) = 0 1 j, k = 0, 
l,j,k ' , 

... , N+l, a = r + g, 

d = l/(a
2 

- 1), t = a - 6gw, s = w - 1, «
1 

= ad. 

Step 1: 
(k+1/4) 

To compute u . Set 1, j, k = 1. 

while k ~ N, compute 

while j ~ N, compute 

while 1 ~ N-2, compute 

= 
(k) 

+ wu 
(k) + wu (k) + tu(kl r wu 

1 l,j,k-1 l,j-t,k 1-1, j,k 1' j, k 

+ su (k) + wu (k) + wu (k) + wb 
1+1, j,k l,j+t,k l,J,k+l 1, j,k 

= wu(kl + wu (k) 
+ su 

(k) 
+ tu(k) r 

2 1+1, j,k-1 l+l,j-t,k l,J,k 1+1, j,k 

+ wu (k) 
1+2,j,k 

+ wu (k) 

1+1,j+t,k 
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+ wu (k) 
l+t,j,k+l 

+ wb 
1+1, J,k 



Step 2: 

(k+l/6) 
u = a. r + r

2
d, 

l,j,k 1 1 
U (k+l/6) = d + 

rt atr2 l+l,J,k 

i = i + 2 

(k+l/6) 
u ( 

(k) 
= wu 

N,j,k N,j,k-1 
+ wu (k) 

N,j-t,k 
(k) 

+ wu 
N-1, j,k 

+ tu (kl 
N,J,k 

+ wu<kl + wu(kl + wb )la 
N,j+t,k N,j,k+l N,J,k 

J = j + 1 

k=k+l. 

(k+l/3) 
To compute u Set i = 2, j, k = 1. 

while k ~ N, compute 

while j ~ N, compute 

(k+l/3) 
u 

l,j,k 
= (ru (k+t/61 + gu (kl )la 

l,j,k t,J,k 

while 1 ~ N-1, compute 

= ru (k+t/6l + gu (kl 
rt l,J,k l,J,k 

(k) 
- u 

l+t,j,k 

(k+l/6) 
r = ru 

2 1+1, j,k 
u(kl + gu<kl 

l,j,k l+l,j,k 

(k+l/3) 
u = a

1
r

1 
+ r

2
d, 

l,j,k 

(k+l/3) 
u = r

1
d + a

1
r

2 1+1, j,k 

i = 1 + 2 

J = J + 1 

k=k+l. 

Step 3: To compute u(k+t/2) Set i, j, k = 1. (Change in direction) 

while i ~ N, compute 

while k ~ N, compute 

while j ~ N-1, compute 

= ru (k+1/3l + gu Ckl _ u Ckl 
rt t,J,k t,J,k l.J+t,k 

(k+l/3) = ru 
l,j+l,k 

uCkl + guCkl 
l,J,k l,j+t,k 

U (k+l/2) -- d + r
1 

a r 
l,J+t,k 1 2 

J = j + 2 
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Step 4: 

(k+l/2) 
u = 

1 ,N,k 

k = k + 1 

1=1+1. 

(k+2/3) 
To compute u Set j = 2, 1, k = 1. (Change in direction) 

while 1 s N, compute 

while k s N, compute 

u Ck+2/Jl = (ru Ck+l/2) + gu Ckl )/a 
l,t,k l,l,k l,t,k 

while j s N-1, compute 

= ru Ck+l/2) + gu Ckl _ u Ckl 
rt t,J,k t,J,k t,J+t,k 

(k+l/2) 
r = ru 

2 l,J+l,k 

j = j + 2 

k = k + 1 

1=1+1. 

u Ckl + gu Ckl 
l,j,k l,j+l,k 

(k+2/3) 
u = r

1
d + ex r 

l,j+l,k 1 2 

Step 5: To compute u Ck+S/6) Set 1, j, k = 1. (Change in direction) 

while j s N, compute 

while 1 s N, compute 

while k s N-1, compute 

r = ru 
(k+2/3) 

- u 
(k) 

1 l,j,k 
+ gu Ckl 

1, J ,k l,j,k+l 

(k+2/3) (k) + gu Ckl 
r2 = ru u 

l,j,k+l l,j,k l, j,k+l 

(k+S/6) u = cx
1
r

1 
+ r

2
d, 

l,j,k 

(k+S/6) 
u =rd+a:r 

l,j,k+l 1 1 2 

k = k + 2 

(k+S/6) 
u 

1, j,N 

1 = 1 + 1 

j=j+l. 

= (ru Ck+2/3) + gu (k) )/ex 
l,j,N l,J,N 
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Step 6: 
(k+l) 

To compute u Set i, j = 1, k = 2. (Change in direction) 

while j ~ N, compute 

while i 

(k+l) 
u 

1' J, 1 

while 

r = 
1 

r = 
2 

~ N, compute 

( (k+S/6) (k) ) I 
=ru +gu a: 

l,j,t l,j,l 

k ~ N-1, compute 

ru(k+S/6) + gu (k) (k) 
- u 

1' J,k 1' J, k l,j,k+t 

(k+S/6) (k) + gu (k) ru - u 
1, j,k+t l, j, k 1, j,k+t 

u(k+1) = r
1
d + a: r 

'· J,k+l 1 2 

k = k + 2 

i = 1 + 1 

J=j+l. 

Step 7: Repeat Step 1 to Step 6 until convergence is achieved. 

6.1.4 The Guittet formula 

Now Guittet's formula has been shown to successfully solve the two-point 

boundary-value problem by using the AGE method. Guittet [1967]. has 

shown that this scheme can be extended to solve the problem with the 

higher dimension. 

For the two dimensional problem with the splitting of A as in 

(6.1.1-14), the AGE method in Guittet's formula, the AGE-GT-2 scheme can 

be presented as 

+ G )u !k+1/4l 
4 (k) 

(rl [ IT (r I + G ) 
3 3 (6. 1. 4-1) = - wr A)u + wr b 

1 I 
1=1 

(ri + G ) u (k+1/2) = u(k+1/4) (6. 1. 4-2) 
2 

(rl + G )u(k+3/4) = u(k+1/2) (6. 1. 4-3) 
3 

(rl + G )u 
(k+l) ·(k+3/4) (6.1.4-4) = u 4 

where r > 0, r is the iteration parameter. 
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After eliminating the intermediate vectors u, we have the iteration 

matrix for the AGE-GT-2 scheme as, 

1 
T = I - wr3 IT (ri + G )-1 A 

r I 
1=4 

(6. 1. 4-5) 

which is similar to the iteration matrix of the AGE-DG-2 scheme. Thus, 

the AGE-GT-2 scheme converges and the proof of convergence is similar to 

the AGE-DG-2 scheme. 

In programming, the computational work can be made more easier by 

interchanging the rows and columns in equations (6.1.4-3) and (6.1.4-4). 

However, it is better to consider the matrices G and G as part of 
3 4 

(k+1/4) 
equation (6.1.4-1) as this leads to a simpler computation for u 

Thus, the new set of equations become 

+ G )u (k+1/4l 
4 

(ri = [ IT (ri + G ) 3Al (kl + wr3b (6. 1. 4-6) - wr u 
.1 I 1=1 

(ri + G )u (k+1/2l 
2 = u (k+1/4) (6. 1. 4-7) 

(ri + G )u (k+3/4l (k+l/2) 
(6.1.4-8) = u 1 c c 

(ri + G )u (k+ll (k+3/4) (6.1.4-9) = u 2 c c 

where c denotes columnwise ordering. 

The scheme also converges and its convergence can be shown in a 

similar way. The three dimensional problem with the splitting of A in 

(6. 1. 2-9), gives the AGE method in Guittet' s formula, the AGE-GT-3 

scheme as 

+ G )u (k+1/6l 
6 5 (k) 

(ri [ IT (r I 5 (6. 1. 4-10) = + G ) - wr A]u + wr b 1 I 1=1 

(ri + G )u (k+1/3l = (k+1/6) (6. 1. 4-11) u 
2 

(ri + G )u (k+1/2l = u(k+1/3l (6. 1. 4-12) 
3 

(ri + G )u (k+2/3) 
4 

= u(k+1/2l (6. 1. 4-13) 

(ri + G )u (k+5/6) (k+2/3) (6. 1. 4-14) = u 5 

(ri + G )u 
(k+l) (k+5/6) (6. 1. 4-15) = u 6 
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where r > 0, r is the iteration parameter. 

After eliminating the intermediate vectors u, we have the iteration 

matrix for the AGE-GT-3 scheme as, 

1 
T = I - wr5 TT (ri + G )-1 A 

r I 
1=6 

(6. 1. 4-16) 

which is similar to the iteration matrix of the AGE-DG-3 scheme. 

Thus, the AGE-GT-3 scheme converges and the proof of convergence is 

similar to the AGE-DG-3 scheme. 

As in the AGE-GT-2 scheme, the computation can be made simpler by 

considering the interchange between the x, y and z directions. However, 

the matrices G, G, G and G may be kept in equation (6.1.4-10) to 
3 4 5 6 

ease the computational effort. Thus, we only need to consider the 

AGE-GT-3 scheme in the form 

(k+1/6) 
6 

(rl + G )u [ TT (ri + G ) sA] (kl 5 (6. 1. 4-17) = - wr u + wr b 
1 I 

1=1 

(rl + G )u 
(k+1/3) (k+1/6) (6. 1. 4-18) = u 

2 

(rl + G )u (k+112l (k+1/3) (6. 1. 4-19) = u 
1 y y 

(rl + G )u (k+2/3l = u (k+112) (6. 1. 4-20) 
2 y y 

(rl + G )u (k+S/6) (k+213) (6.1.4-21) = u 
1 z z 

(rl + G )u (k+ll (k+S/6) (6. 1. 4-22) = u 
2 z z 

where y and z stands for the ordering in the y and z directions. 

The scheme also converges and its convergence can be shown in a 

similar way. 

The disadvantage with the AGE-GT-2 and AGE-GT-3 schemes is in the 

labourious calculation for obtaining the matrix 

4 

C = TT (ri + G ) - wr
3
A 

2 I 
1=1 

for the AGE-GT-2 scheme, and 
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6 

C = TT (r I + G ) - wr
5 A 

3 I 
(6. 1. 4-24) 

1=1 

for the AGE-GT-3 scheme. However, this is compensated by a simple 

calculation for the remaining equations. 

We now illustrate the computational algorithm to determine the 

matrix c
2 

in (6.1.4-23). 

Let consider when N = 7. Thus, 

A 
1 

-I 

-I A -I 0 1 

-I A -I 
1 

A = -I A -I 
1 

-I A -I 
1 

0 -I A -I 
1 

-I A 
1 72X72 

4g -1 

-1 4g -1 0 
-1 4g -1 

where A = -1 4g -1 
1 

-1 4g -1 

0 -1 4g -1 

-1 4g 7 XT 

The other matrices are given as follows: 

G' 
1 

G' 0 1 

G' 
1 

(ri + G
1

) = G' 
1 

G' 
1 

0 G' 
1 

G' 
72X72 

1 
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(ri + 

where 

and 

G' = 
1 

"-

-1 

L 

where a. 

G' 
2 

G' 
2 

G ) 
2 

= 

0 

-1 

"-
"- -1 

-1 "-
"-

-1 

= r + g. 

G' 
2 

G' 
2 

-1 

"-

"' 

G' 
2 

0 

G' 
2 

G' = 
2 

G' 
7

2
X7

2 
2 

"' 
"' -1 

-1 "' a. -1 

-1 "' 

Having chosen G and G matrices, we can then determine 
3 4 

and (ri+G). Let us consider the selection of the matrices 
4 

that gives the matrices (ri + G ) and (ri + G ) as 
3 4 

G' -I 
3 

-I G' 
3 0 

G' -I 
3 

(ri + G ) = -I G' 
3 3 

G' -I 
3 

0 -I G' 
3 

G' 7~2 3 

G' 
3 

G' 
3 

-I 0 
-I G' 

3 
(ri + G ) = G' -I 

4 3 

-I G' 
3 

0 G' -I 
3 

-I G' 7~2 3 
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a. -1 

-1 a. 

(ri + G
3

) 

G and G 
3 4 



where 

a 
0 et 

et 
G' 

3 
= et ' for et = r +g. 

et 

0 et 
et 

Now, 
4 

c TT (rl + G ) 3 
= - wr A 

2 I 
1=1 

Q p R 

p Q p 0 
p Q p R 

= R p Q p 

p Q p R 

0 R p Q p 

p Q 72X72 

where 

p 3 
- G'G'G' = wr 

1 2 3 

X w -a 

w X w 0 
w X w -et 

= -et w X w 

w X w -a 

0 -a w X w 

w X 

Q = G'G'G' 2 
- wr3A 

1 2 3 

y X w 

X y X 0 
X y X w 

= w X y X 

X y X w 

0 w X y X 

X y 
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w -a: 1 

-(X w -(X 0 
-(X w -(X 1 

and R = G'G' = 1 -(X w -(X 
1 2 

-(X w -(X 1 

0 1 -(X w -(X 

-(X w 

with 2 3 3 and y 4 3 w = "'· X= wr - (;( = (;( 4gwr • 

We now write the algorithm for the AGE-GT-2 scheme in detail. In 

this algorithm, the number of points, N is assumed odd. 

Algorithm 6.1.4-1: The AGE-GT-2 scheme. 

Set u(kl = 0, i, j = 0, ... , N+1, et= r + g, d = l/(ct2
- 1), 

I' J 
2 3 3 4 3 

w = et , x = wr - et , y = et - 4gwr and ct
1 

= <Xd. 

Step 1: 
(k+1/4) To compute u . Set 1, j = 1. 

while j ~ N-2, compute 

while i ~ N-2, compute 

r = wu!kl 
1 1-1,)-1 

+ xu (k) + wu (k) 

l,j-1 1+1,)-1 

(k) -= l+2,j-t 

+ xu (k) 
1-1,) 

+ 
(k) (k) 

yu + xu + wu (k) 

1+2,j 
+ wu (k) 

+ xu (k) 
l,j+l 

+ wu (k) 

l,j+2 

l,j 1+1,) 

+ wu!kl 
1+1,]+1 

(k) - = 1+2, j+l 

1-1, j+l 

(k) - = l-t,j+2 

ctu !kl + u !kl + wr3b 
1+1' j+2 1+2, j+2 l, J 

= - = (k) + wu (k) + xu (k) + wu (k) 
r2 t-1,)-1 t,J-1 1+1,J-1 1+2,J-1 

+ wu(kl 
1, j+t 

+ XU (k) + U (k) + XU (k) - <XU (k) 
l,j y 1+1,) 1+2,) 1-1,)+1 

+ xu (k) 
1+1, j+l 

+ wu (k) 

1+2,J+l 
+ u (k) 

l-t,j+2 

- =!kl + wu(kl - =!kl + wr3b 
l,j+2 1+1,j+2 1+2,j+2 l+l,j 

(k+1/4) 
u = a. r + r d, 

l,j 1 1 2 

(k+1/4) 
u = r

1
d + et r 

l+l,j 1 2 

1 = i + 2 
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(k+l/4) 
u 

N,J 

i = 1. 

= (wu (k) 
N-t,j-1 

+ xu!kl 
N,j-1 

+ xu (k) 
N-t,j 

+ (k) 
yuN,J 

+ wu (k) 
N-1, j+l 

+ xu!kl 
N,j+l 

(k) 
- au 

N-1, j+2 

while 1 ~ N-2, compute 

(k) 
au 

1-t,j-1 

+ wu (k) 

1-1, J 

(k) 
+wu 

I,J-1 

(k) 
- au 

i+t,j-1 
+ u (k) 

1+2,j-1 

+ xu (k) + wu (k) - au<kl + xu!kl 
l,j l+t,J 1+2,j 1-l,j+l 

(k) (k) 
+yu +xu + wu!kl + wu!kl 

l,j+t l+t,j+l 

+ xu (k) 
l,j+2 

+ wu (k) 

1+1,j+2 

l+2,j+1 l-t,j+2 

- au !kl + wr3 b 
1+2, j+2 1, j+t 

r = u !kl (k) 
au 

(k) 
+wu 

l+t,j-1 

(k) 
-au 

1+2,j-1 4 1-1,]-1 1, J-1 

(k) + wu (k) + xu 
(k) (k) + wu (k) - au +wu 

1-1,] l,j l+l,j 1+2,J 1-t,j+l 

+ xu (k) + (k) + 
(k) (k) 

yul+t,J+t 
xu - au 

l,j+l l+2,j+l l-1,j+2 

+ wu (k) (k) + wu!kl 3 
+ xu + wr b 

l,j+2 l+l,j+2 1+2,j+2 l+t,j+l 

(k+1/4) u =rd+or:r 
l+t,j 3 4 2 

i = i + 2 

(k+1/4) 
u 

N,J 

J = j + 2 

i = 1 

= (- au (kl 
N-1, J-1 

+ wu (k) 

N,J-1 
+ wu!kl 

N-t,j 

(k) 
+ xu 

N,J 

+ 
(k) 

xu 
N-t,j+l 

+ (k) (k) 

yuN, ]+1 + WUN-1, ]+2 

+ xu (kl + wr3b )/or: 
N,j+2 l,j+l 

while 1 ~ N-2, compute 

= wu!kl + xu!kl 
l-t,N-1 l,N-1 

+ wu!kl 
l+t,N-1 

(k) 
- au 

l+2,N-1 

+ 
(k) (k) 

yu + xu 
I,N 1+1,N 

+ wu (k) 

1+2,N 

3 
+ wr b 

I,N 
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Step 2: 

r = - IXU (k) + wu<k) + xu (k) + wu (k) + wu (k) 
6 1-t,N-1 1 ,N-1 1+1, N-1 1+2,N-1 1-t,N 

(k) + yu(k) + xu(k) 3 
+ xu + wr b 

I,N l+l,N 1+2,N l+t,N 

(k+l/4) 
u = a r + r d, 

l,N 1 5 6 

(k+l/4) 
u =r

5
d+a.r 

l+l,N 1 6 

1 = 1 + 2 

(k+l/4) 
u = 

N,N 
(wu(k) + xu(k) + xu(k) + yu(k) + wr3b )/a. 

N-t,N-1 N,N-1 N-t,N N,N N,N 

(k+l/2) To compute u Set i = 2, j = 1. 

while j s N, compute 

(k+l/2) (k+l/4)/ 
u = u a. 
l,j t,j 

while i s N-1, compute 

(k+1/2) 
u 

I, j 

(k+112) 
u 

l+l,j 

1 = i + 2 

(k+1/4) d (k+1/4) 
=a u + u 

1 l,j l+t,j , 

du
(k+1/4) (k+l/4) 

= +a u 
l ,j 1 l+l,j 

Step 3: To compute u (k+J/4 ) Set 1, j = 1. (Change in direction). 

Step 4: 

while i s N, compute 

while j s N-2, compute 

(k+3/4) 
u 
l,j 

(k+3/4) 
u 

l,J+l 

j = j + 2 

(k+3/4) 
u = 

I,N 

1 = i + 1 

(k+112) 
= a. u 

1 I, j 

= du (k+l/2) 
I, j 

u (k+1/2) /a. 
I,N 

d 
(k+1/2) 

+ u 
l,j+l 

(k+1/2) 
+a.u 

1 1' j+l 

(k+1) To compute u Set 1 = 1, j = 2. 

while i s N, compute 

(k+1) 
u = 

1,1 
u (k+3/4) /a. 

1,1 
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while j ~ N-1, compute 

(k+l) 
u 

I, J+l 

(k+3/4) d (k+3/4) =a:u + u 
1 1, j 1,J+1 

du 
(k+3/4) (k+3/4) 

= + a. u 
l,j 1 l,j+l 

j = j + 2 

1 = 1 + 1 

Step 5: Repeat Step 1 to Step 4 until convergence is achieved. 

Based on the Algorithm 6.1.4-1, more computational work will be 

required to derive the matrix C for the AGE-GT-3 scheme. Hence, it is 
3 

just sufficient to show Algorithm 6. 1. 4-1. Moreover, Mitchell [1969] 

has stated that, the best splitting for general w is in the form of the 

AGE-DG-2 and the AGE-DG-3 schemes. The details of the amount of work 

needed will be shown later. Concerning w, Guittet [1967] has also 

considered the choice of the parameter w and showed that the best value 

of w is 2, for the Douglas scheme which is also applicable to the 

AGE-DG-2 and the AGE-DG-3 schemes. 

6.1.5 The Successive Overrelaxation (SOR) method 

For the purpose of comparison, we write the algorithm for the SOR method 

to solve the two and three dimensional model problems discussed in the 

previous sections. 

A) For the two dimensional problem, equation (6.1.1-1). 

Algorithm 6.1.5-1: The SOR method for equation (6.1.1-1). 

Set u<kl = 0, 1, j = 0, ... , N+l. 
I, J 

Step 1: 
(k+l) 

To compute u . 

for 1 = 1 to N, compute 

for j = 1 to N, compute 
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u(k+ll ="' [(b + u(k+ll + u(k+ll + u(kl + u!kl )/4g) 
l,j l,j 1-l,j l,j-1 1+1,j l,j+l 

+ (1- w)u(k). 
I, J 

Step 2: Repeat Step 1 until convergence is achieved. 

B) For the three dimensional problem, equation (6.1.2-1). 

Algorithm 6.1.5-2: The SOR method for equation (6.1.2-1). 

Set u (k) 

1' j, k 
= 0, 1, j, k = 0, ... , N+1. 

Step 1: 
(k+ll To compute. u . 

for 1 = 1 to N, compute 

for J = 1 to N, compute 

for k = 1 to N, compute 

u(k+ll = "' [ (b + u!k+ll + u(k+ll + u(k+O 
l,j,k l,j,k 1-t,j,k l,j-t,k l,j,k-1 

+ u !k> + u !k> + u !k> l /6g I 
l+l,j,k l,j+l,k l,j,k+l 

+ (1 - w)u(k) • 
1, J,k 

Step 2: Repeat Step 1 until convergence is achieved. 

6.1.6 The computational complexity 

In this section, we will be concerned with the estimation of the amount 

of arithmetic calculation needed in the algorithms derived in Sections 

6. 1. 3 to 6. 1. 5. 

In solving equation (6.1.1-1), i.e., the two dimensional problem, 

the amount of work per iteration is determined from the AGE-DG-2, 

AGE-GT-2 schemes and the SOR method, whilst the solution for the three 

dimensional problem, i.e., equation (6.1.2-1), the calculation is based 

on the AGE-DG-3 scheme and the SOR method. 
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Table 6.1.6-1 and 6.1.6-2 show the amount of operations for every 

iteration in solving equations (6.1.1-1) and (6.1.2-1) respectively. 

Method Multiplication Addition Overall 

AGE-DG-2 17(N-1) 2 15(N-1) 2 32(N-1) 2 

AGE-GT-2 13(N-1) 2 20(N-1) 2 33(N-1) 2 

SOR 3N2 6N2 9N2 

Table 6. 1. 6-1: The amount of operations per iteration 
for solving equation (6.1.1-1) 

Method Multiplication Addition Overall 

AGE-DG-3 25(N-1) 3 23(N-1) 3 48(N-1) 3 

SOR 3!? s!l u!l 

Table 6.1.6-2: The amount of operations per iteration 
for solving equation (6.1.2-1) 

Tables 6.1.6-1 and 6.1.6-2 show that the SOR method is far better 

than the AGE-DG and AGE-GT schemes in terms of the amount of 

computational work. However, with the limited application of the SOR 

method, 1. e, the method requires with a single parameter, then the 

AGE-DG and AGE-GT schemes need further consideration. Since the 

computational work of the AGE-GT scheme is quite substantial, then we 

may consider further that the best method is the AGE-DG. 

In the next section, the numerical results are presented to show 

the number of iteration needed for each method. 

6.1.7 Experimental results 

Numerical results presented here are for the AGE-DG-2, AGE-DG-3 and 

AGE-GT-2 schemes and also for the SOR method for solving both the two 
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and three dimensional problems. Five problems are considered with the 

first three concerned with the solution of the two dimensional problem. 

Problems 4 and 5 are devoted to the solutions for problem in three 

dimensions. Problems 1 and 4 are the Helmholtz equation in two and 

three dimensions respectively. The results are presented for various 

values of p and ~. Problems 2 and 5 are the Laplace equation in two and 

three dimensions, whilst Problem 3 is a Poisson equation. 

Problem 1 - The Helmholtz equation in two dimensions. 

a2u 2 2 
-

2 
- pU = 6- p(2x + y ), 

ay 
0 :S X, y :S 1, 

subject to the boundary conditions 

U(x, oJ = 2.xz.., U(/., 1) ~ ~)(~ r) 0 :S X :S 1, 

U(O,y) 2 2 = y, U(l,y) = 2 + y, Q:sy:sl. 

The exact solution is given by U(x,y) = 2x
2 

+ y2
• 

The results are tabulated as follows: 

p = 0 SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

81 1. 54 25 0. 95-1.04 25 
361 1. 74 49 0.56 49 

1521 1. 86 92 0.33 108 
6241 1. 93 178 0.19 230 

Table 6.1.7-1: Problem 1 with p = 0 

p = 5 SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

81 1. 49-1. so 24 1. 04-1. 11 22 
361 1. 71-1.72 46 0.59-0.61 44 

1521 1. 84 89 0.35 95 
6241 1. 92 171 0.20 205 

Table 6.1.7-2: Problem 1 with p = 5 
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p = 20 SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

81 1. 40-1. 45 22 1. 19-1. 37 18 
361 1. 63 42 o. 71-0.72 34 

1521 1. 79 83 0.41 73 
6241 1. 89 164 0.24 158 

Table 6.1.7-3: Problem 1 with p = 20 

p = 40 SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

81 1. 31-1.34 20 1. 38-1.63 15 
361 1. 55-1.56 40 0,79-0.84 28 

1521 1. 74-1. 74 80 0.47 58 
6241 1. 85 155 0.28 127 

Table 6.1.7-4: Problem 1 with p = 40 

p = 70 SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

81 1. 23-1.26 18 1. 75-1.83 12 
361 1. 50 34 0.91-0.99 23 

1521 1. 70 66 0.54 46 
6241 1. 83 131 0.33 101 

Table 6.1.7-5: Problem 1 with p = 70 

p = lOO SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

81 1. 21-1. 23 16 1. 89-2.20 11 
361 1. 46 30 1.01-1.12 20 

1521 1. 67 58 0.60-0.61 40 
6241 1.81 114 0.35-0.36 87 

Table 6.1.7-6: Problem 1 with p = 100 
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p = 200 SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

81 1. 12-1. 20 13 2.57-3.09 9 
361 1. 36-1. 38 23 1. 29-1.46 15 

1521 1. 59-1.60 44 0.74-0.77 29 
6241 1. 76 83 0.44 61 

Table 6.1.7-7: Problem 1 with p = 200 

Problem 2 - The Laplace equation in two dimensions 

o:sx,y:s1, 

subject to the boundary conditions 

U(x,O) = U(x,1) =sin nx, O::sx:sl, 

U(O,y) = U(1,y) = 0, O:sy:st. 

The exact solution is given by 

n 1 U(x,y) = sech - cosh n((y - -) sin nx. 
2 2 

The results are tabulated in Table 6.1.7-8. 

SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

81 1. 53-1.55 23 o. 96-1. 00 22 
361 1. 74 43 0.57-0.58 47 

1521 1. 86 85 0.34 102 
6241 1. 93 167 0.19 209 

Table 6.1.7-8: Problem 2 

Problem 3 - The Poisson equation. 

0 :5 X, y :5 1, 

subject to the boundary conditions 

U(x,O) = U(x,1) = x(1- x), O:sx:sl, 

U(O,y) = 0, U(l,y) = sinh n sin ny, O:sy:st. 
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The exact solution is given by 

U(x,y) = sinh nx sin ny + x(l - x). 

The results are tabulated in Table 6.1.7-9. 

SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

81 1. 54 26 o. 97-1.08 27 
361 1. 74 52 0.58-0.59 56 

1521 1. 86 94 0.34 116 
6241 1. 93 191 0. 18 228 

Table 6.1.7-9: Problem 3 

Problem 4 - The three dimensional Helmholtz problem 

(3-~) cosh x cosh y cosh z, 0 :s x,y,z ::s 1, 

subject to the boundary conditions 

U(x,y,O) = cosh x cosh y, 0 :s x,y :s 1, 

U(x,y,l) = cos/../ cosh x cosh y, 0 ::s x,y :s 1, 

U(x,O,z) = cosh x cosh z, 0 :::s x,z ::s 1, 

U(x,l,z) = cosh. I cosh x cosh z, 0 :s x,z :s 1, 

U(O,y,z) = cosh y cosh z, 0 :s y,z :s 1, 

U(l,y,z) = (O~l/ cosh y cosh z, 0 :s y,z :s 1. 

The exact solution is given by U(x,y,z) = cosh x cosh y cosh z. 

The results are tabulated as follows. 

IT = 0 SOR AGE-DG-3 (w = 2) 

N3 w iter r iter 

729 1. 51 30 1. 53-1.53 26 
1331 1. 57-1.59 37 1. 32-1.37 33 
2197 1. 62 43 1. 21 39 
3375 1. 65 49 1.11 46 
4913 1. 68-1.70 56 1. 03-1.04 54 

Table 6.1.7-10: Problem 4 with IT= 0 
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(J' = 5 SOR AGE-DG-3 (w = 2) 

N3 w iter r iter 

729 1. 41-1.51 30 1. 60-1.62 24 
1331 1. 53-1.56 36 1. 40-1.43 30 
2197 1. 58-1.60 42 1. 26-1.28 36 
3375 1. 62-1.63 48 1. 15-1. 19 43 
4913 1. 66 54 1. 08 49 

Table 6.1.7-11: Problem 4 with 11' = 5 

(J' = 25 SOR AGE-DG-3 (w = 2) 

N3 w iter r iter 

729 1. 40-1. 41 24 1. 88-1.92 19 
1331 1. 47-1. 48 29 1. 65 23 
2197 1. 52-1. 54 34 1. 46-1. 49 28 
3375 1. 57 38 1. 33-1.37 33 
4913 1. 61 43 1. 23-1.26 38 

Table 6.1.7-12: Problem 4 with 11' = 25 

(J' = 50 SOR AGE-DG-3 (w = 2) 

N3 w iter r iter 

729 1. 36-1. 38 22 2.04-2.12 17 
1331 1. 44 26 1. 75-1.87 21 
2197 1. 49-1. 50 30 1. 57-1. 66 25 
3375 1. 54-1.55 34 1. 43-1.50 29 
4913 1. 58-1.59 39 1. 33-1.37 33 

Table 6.1.7-13: Problem 4 with 11' =50 

(J' = 100 SOR AGE-DG-3 (w = 2) 

N3 w iter r iter 

729 1. 30-1. 31 17 2.61-2.80 13 
1331 1. 37 20 2.28-2.31 15 
2197 1. 40-1.43 24 1. 97-2.09 18 
3375 1. 46-1. 47 27 1. 76-1.90 21 
4913 1. 50 30 1. 66-1.67 23 

Table 6.1.7-14: Problem 4 with a-= 100 
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er = 200 SOR AGE-DG-3 (w = 2) 

N3 w iter r iter 

729 1. 23 13 3.29-3.92 11 
1331 1. 27-1. 31 16 2.88-3.07 12 
2197 1. 33-1.34 18 2.46-2.72 14 
3375 1. 36-1.39 21 2.18-2.44 16 
4913 1. 41-1.42 23 2.06-2.07 17 

Table 6.1.7-15: Problem 4 with er= 200 

Problem 5 - The Laplace equation in three dimensions 

= 0, 0 :S x,y,z :S 1, 

subject to the boundary conditions 

U(x,y,O) = U(x,y,l) = 0, 0 :S x,y :S 1, 

U(O,y,z) = U(1,y,z) = 0, 0 :S y, z :S 1, 

U(x,O,z) = 0, U(x,1,z) =sin nx sin nz, O:Sx,z:Sl. 

The exact solution is given by 

U(x,y,z) = sech ~sin nx cosh [VZn(y 

The results are tabulated in Table 6.1.7-16. 

!) sin nz. 
2 

SOR AGE-DG-3 (w = 2) 

N3 w iter r iter 

729 1. so - 1. 53 27 1. 42 21 
2197 1. 62 36 1. 08 - 1. 10 31 
4913 1. 69 46 0.88- 0.89 40 
9261 1. 74 56 0.74- 0.75 49 

Table 6.1.7-16: Problem 5 

The results presented in this section are purely experimental, as 

no theory exists for the optimal single parameter for solving the two 

and three dimensional problems. The theoretical background given for 

the prescribed method is only concerned with the convergence of the 

method. However, as shown for the one dimensional problems, the AGE 

254 



method again appears to be co,..pe.+iti.eto the SOR method in the number of 

iterations when solving two and three dimensional problems governed by 

Dirichlet boundary conditions especially when the matrix A is strongly 

diagonally dominant. 

Evidently, the bounds of the eigenvalues for the problems given in 

this section can be determined from the. (2x2) block submatrices, 1. e., 

a=g-1andb 1 2 = g + 1, where g = 1 + -ph for the two dimensional 
4 

problems and g = 1 + !o-h2 for the three dimensional problems, where p 
6 

and ~ are constants. 

1 2 For the one dimensional problems, with g = 1 + 2ph , where p is a 

constant, the relation r = vab is satisfied for large p as the AGE-PR(1) 

scheme is theoretically derived from the ADI-PR method. It is then, 

shown that the AGE-DG scheme gives a similar convergence as the 

AGE-PR(1) scheme. Thus, in order to determine the theoretical optimal r 

for the two and three dimensional problems we notice that a ~ 0, hence 

as a guide to the experimental value of r, we should look closely to the 

pattern of r in the one dimensional problem when p = 0. 

For a symmetric matrix, when p = 0, the value of re [0,1], i.e., 

say, r
1 

~ 0.5. The results for the two and three dimensional problems 

clearly shows that when ~ = 0, we obtain, r
2 

~ 1, and r
3 

~ 1.5 

respectively. This assumption is based on N = 9 as a starting number of 

points. The values of r and r may be interpreted in many ways. 
2 3 

The 

simplest is by considering the splitting of the matrices and the 

repetition of the same matrices used for solving the problems. Thus, 

this gives the value r
2 

= 2r
1 

and r
3 

= 3r
1

• The value of r for the case 

of larger numbers of points can then be considered to lie in the 

interval [O,r
2

] or [O,r
3

] as shown in Tables 6.1.7-1 to 6.17-16. 
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For a larger~. i.e., ~ > 25 and a smaller number of points, the 

results show that r > b. But, for a larger number of points, the values 

of r again appears to fall in the interval [O,r
2

] or [O,r
3
]. 

Although the the AGE-DG-2 and AGE-DG-3 schemes needs more 

computational work, we see from the simplicity of the schemes and that 

its parameters are easily determined, then these schemes may well be 

considered competitive to solve the two and three dimensional problems. 

6.2 The solution with different boundary conditions 

We have shown in Section 3.2 that the AGE method has been successfully 

applied to solve the two-point boundary-value problem with different 

boundary conditions. Now, with the AGE-DG-2 scheme discussed in the 

previous section, we will investigate the solution for the problem in 

two dimensions governed by periodic and Neumann boundary conditions. In 

this section, we will consider a general problem, 1. e. , the Helmholtz 

equation in two dimensions. 

6.2.1 Periodic boundary conditions 

Consider the Helmholtz equation in two dimensions 

0 :S X, y :S 1, (6. 2. 1-1) 

in a square region 0 :S x, y :S 1, governed by the periodic boundary 

conditions 

U(x,O) 

U(O,y) 

= U(x,l), U (x,O) = U (x,l), 
y y 

= U(l,y), U (O,y) = U (l,y) 
X X 

0:Sx:S1, 

O:Sy:Sl. 

(6.2.1-2) 

(6.2.1-3) 

The periodic boundary conditions (6.2.1-2) and (6.2.1-3) are treated in 

a similar fashion as in Section 3.2.1. 
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Now, applying the centred finite difference approximations, for a 

small mesh size h, yields the conventional five-point formula 

2 
= h f(x

1
,yJ) -u -u +4gu -u -u 

l,J-1 1-t.J l,j l+l,j l,j+l 

1, j, = 1, ... , N (6.2.1-4) 

where g = 1 + ~ph2 and N is the number of grid points or nodes in the 
4 

region. Let us consider h = 1/N and if we take N = 6, then the grid 

points can be represented as in Figure 6.2.1-1. 

y -- -- (1' 1) 
6,6 1,6 2,6 3,6 4,6 5,6 6,6 

-- -- --6,5 1,5 2,5 3,5 4,5 5,5 6,5 

-- --
6,4 1,4 2,4 3,4 4,4 5,4 6,4 

-- -- -- --6,3 1,3 2,3 3,3 4,3 5,3 6,3 

-- -- -- -- --
6,2 1,2 2,2 3,2 4,2 5,2 6,2 

-- -- -- -- --
!,1 2,1 3,1 4,1 5,1 6,1 

Figure 6.2.1-1: The number of nodes for h = 1/6. 

In general, for an even N, equation (6.2.1-4) can be written in a 

matrix form Au = b, giving 

AI -I -I 4g -1 -1 

-I A -I 0 
I -1 4g -1 0 

A '·· .............. .. .•.... with A ········ .... · ....... ·····•·•· ... = ·· ...... = 
'·· 1 .,. 

0 
-I A 

I 
-I 

0 
-1 4g -1 

-I -I A 
1 ~XN2 -1 -1 4g 

(6.2.1-5) 

The vector u and b are given by 

(6.2.1-6) 
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and b = [b
1

,
1

, ... , bN,t; b1, 2, ... ' b . 
N,2' ... ' ... ' 

(6.2.1-7) 

where the elements of vector b are 

2 
b

1
,J = h f(x

1
,yJ), 1, J = 1, ... , N. 

Now, consider the splitting of the matrix A into 

A=G+G+G+G 
I 2 3 4 

(6.2.1-8) 

where G
1
, G2, G and G are symmetric and positive definite submatrices. 

3 4 

Let us consider the matrices (GI + G ) and (G + G4) as follows: 
2 3 

A2 2g -1 -1 

A 2 
0 -1 2g -1 0 

G + G ···•···•· ... where A 
·· .. ·· .. ·· .. 

= = ·· .. ', ·· .. 
I 2 2 ·· .. ·· .. ·· .. 

0 
A 

0 2 
-1 2g -1 

A ~XN2 -1 -1 2g 2 

and 

A -I 
3 

-I 2g 

-I A -I 0 2g 0 
3 

G + G 
·· .. ··, ·· .. 

where A '······ ... = ···· .... ......... ····· ... = 
3 4 3 

0 
-I A -I 

0 
2g 

3 

-I -I A ~XN2 2g 
3 

Let us consider further the matrices G and G for the case when N I 2 

is even, 1. e. ' 

G' G' I 2 

G' 0 G' 0 
1 2 

G 
., 

G ·· ....... = ····· ... = 
1 2 ·· .. 

0 
G' 

0 
G' 

1 2 

G' ~~ G' ~ I 2 

where 
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G' = 
1 

g 

-1 

g -1 

-1 g 

· ........... 
g -1 

-1 g 

-1 

g 

G' = 
2 

g -1 

-1 g 
·· .. ·· .. ·· .. 

g -1 

-1 g 
g -1 

-1 g 

(6.2.1-9) 

It. can be shown that, after reordering the direction, i.e. , from 

row to column, the matrices (G + G ) becomes (G + G ) and vice-versa. 
1 2 3 4 

Let a = r + g, r > 0, where r is the iteration parameter. Thus, we 

have the matrices G
1 

= (ri + G ) and G = (ri + G ) which are given as 
1 2 2 

where 

G" 
1 

a 

-1 

and invertible. 

0 

a 

-1 

G" 
1 

1 

a 

···· ....... . 

····· ... 
·· .. 

G" 
1 

a 

0 

-1 

G" 
1 

-1 

a 

-1 

a 

G" = 
2 

G" 
2 

a 

-1 

0 

-1 

a 

G" 
2 

·· .. 
····• ... 

··••····· ... 

a 

-1 

G" 
2 

-1 

a 

0 

a 

G" 
2 

-1 

-1 ex 

We now seek to analyse the convergence of the AGE-DG-2 scheme for 

the Poisson equation subject to periodic boundary conditions. It has 

been shown in Section 3. 2 (for a problem subject to periodic boundary 

condition) that by a suitable matrix permutation P, 

G" = PG" PT. 
2 1 
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Thus, the eigenvalues of G" and G" are similar. 
1 2 

Hence, the AGE-DG-2 

scheme for solving the periodic problem is convergent. 

It is obvious that, if one choose G' in the form of G' and vice-
2 1 

versa, the scheme is also convergent. However, by having G' and G' as 
1 2 

given in (6.2.1-9), the algorithm is found to be much shorter. 

By using the AGE-DG-2 scheme in Section 6.1.3, the algorithm can be 

presented as follows. First, to obtain the matrix 

with 

C = [ (rl + G ) - wA]. 
1 

Suppose that N = 6. Then, the matrix C is given as 

wl wl 

wi wi 0 

c = wi wi 

wl wl 

0 wl wl 

wi wi 

t s 

w t s 0 

s t w 

t s 

0 
s t 

s w t 

where t = a - 4w and s = w - 1. 

We now write the algorithm for a general N (even) in detail. 
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Algorithm 6.2.1-1: The AGE-DG-2 Scheme for equation (6.2.1-1). 

Set u(kl = 0 · 
1, J ' l' 

2 j = 0, ... , N+1, oc = r + g, d = 1/(oc - 1), 

t = oc - 4gw, s = w - 1, oc
1 

= ocd. 

Step 1: To compute u(k+1/ 4l 

A. The elements u (k+1/ 4l to u (k+1/ 4l Set 1 = 2. 

B. 

1,1 N, 1 

= tu (kl + wu (kl + su <kl + wu (kl + wu (kl + wb 
rt 1,1 2,1 N,t 1,2 t,N 1,1 

r
2 

= su (kl + wu (kl + tu (kl + wu (kl + wu (kl + wb 
1,1 N-1,1 N,t N,2 N,N N,l 

U
(k+1/4) = d a r + r , 
1,1 1 1 2 

while 1 ,; N-2, compute 

(k+1/4) 
u = r

1
d + oc r 

N, 1 1 2 

= 
(k) 

tu 
(k) + su (k) + wu (k) + wu(kl r wu 

1 1-1,1 1,1 1+1,1 1,2 I,N 

(k) 

+ wb 
1,1 

r = su + tu (kl + wu (k) (k) (k) 
+ wu + wu 

2 1,1 1+1, 1 l+2, 1 1+1,2 l+t,N 

+ wb 
1+1,1 

1 = 1 + 2. 

U
(k+1/4) = d 

rl + oc1r2 1+1,1 

The Elements u (k+1/ 4l to u (k+1/ 4 ) Set 1, j = 2. 
1,2 N-t,N 

while j ,; N-1, compute 

= wu(kl + tu 
(k) 

+ wu 
(k) + su (k) (k) 

+ r + wu 
1 1,j-1 1,j 2,j N,j t,j+l 

= 
(k) + su (k) + wu (k) tu 

(k) (k) 
r wu + + wu 

2 N,j-1 1,j N-1,j N,j N,j+t 

u(k+l/4) = r d + oc r 
N, j 1 1 2 

while 1 s N-2, compute 

wb 
1,j 

+ wb 
N,j 

r = wu(kl + wu(kl + tu(kl + su(kl + wu(kl 
1 l,j-1 1-l,j l,J l+l,j l,j+t 

(k) 
= wu 

l+l,J-1 
+ su(kl + tu(kl 

l,j l+l,J 
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+ wu (k) 

1+2,] 

+ wb 
I, j 

(k) 
+ wu 

l+l,j+l 

+ wb 
l+l,j 



Step 2: 

c. 

(k+1/4) 
u = r

1
d + «

1
r

2 l+l,j 

1 = 1 + 2 

j = j + 1. 

The elements u (k+1/4) to u!k+1/4l Set 1 = 2. 
1,N N,N 

(k) (k) 
tu 

(k) (k) (k) 
+ wb r = wu + wu + + wu + su 

1 1,1 t,N-1 1,N 2,N N,N 1,N 

(k) 
+ 

(k) (k) (k) tu!kl wb r = wu wu + su + wu + + 
2 N,1 N,N-1 1,N N-t,N N,N N,N 

(k+1/4) 
u =rd+«r 

N,N 1 1 2 

while 1 s N-2, compute 

= wu (k) + wu (k) + wu (k) 
rl 1,1 l,N-1 1-t,N 

+ tu (kl + su (kl + wb 
I,N 

= wu!kl + wu!kl 
r2 l+t,t t+t,N-t 

1 = 1 + 2. 

+ su (k) 
I,N 

l,N l+t,N 

+ tu !kl 
l+l,N 

+ wu (k) 
1+2,N 

+ wb 
l+t,N 

(k+1/4) 
u =rd+«r 

1+1, N 1 1 2 

(k+1/2) 
To compute u . 1 = 1, j = 1. 

while j s N, compute 

while 1 s N-1, compute 

(k+1/4l gu !kl !kl 
r=ru + -u 

1 l,j l,j l+l,J 

= ru (k+114l 
r2 t+t,J 

(k) + (k) 

ui.J gui+1,J 

(k+1/2) u = r
1
d + « r 

l+t,j 1 2 

1 = 1 + 2 

j=j+l. 

Step 3: To compute u(k+J/
4

) 1 = 1, j = 2. (Change in direction). 

while 1 s N, compute 

= ru !k+1/2l + gu !kl _ u (kl 
rt 1,1 1,1 t,N 
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(k+1/2) (k) + (k) r = ru u gui,N 2 I,N 1,1 

(k+3/4) 
+ r d, u (k+3/4) = rd + o: r u = ex r 

1,1 1 1 2 l,N 1 1 2 

while j :S N-2, compute 

= ru (k+1/2l + gu (kl (k) 
r1 - u 

l,j l,j l,j+l 

r2 = ru (k+1/2l u<kl + (k) 
l,j+l I, j gui,J+1 

(k+3/4) u = r
1

d + o:
1
r

2 1,j+1 

j = j + 2 

1=1+1. 

Step 4: 
(k+1) 

To compute u 1 = 1, j = 1. (change in direction). 

while 1 :S N, compute 

while j :S N-1, compute 

= (k+3/4) + (k) (k) 
r1 rui,J gui,J - ui,J+1 

(k+3/4) 
r = ru 

2 1, j+l 

j = j + 2 

1=1+1. 

u (k) + (k) 

t,J gut,J+l 

(k+1) 
u = r

1
d + o: r 

1' j+l 1 2 

Step 5: Repeat Step 1 to Step 4 until convergence is achieved. 

6.2.2 Neumann boundary conditions 

We now consider the Helmholtz equation in two dimensions 

0 :S x,y :S 1, 

subject to the Neumann boundary conditions 

UY(x,O) = g
0
(x), UY(x,1) = g

1
(x), 

Ux(O,y) = h
0
(y), Ux(1,y) = h

1
(y) 

on the boundary of a square region 0 :S x, y :S 1. 
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Let h be the grid spacing and if h = 1/N, then for N = 4, the grid 

points can illustrated as in Figure 6.2.2-1. 

-1,4 

-1,3 

-1' 1 

-1,0 

y *··-->.<---->.(:---->.<-->.< 
o,s: t,s; 2,s: J,s 1 4,5; 

: : : ' . 
>.< -·· ..• : --: --: --; --; -~!.• __ 1_) >.< 
: 0,4 1,4 2,4 3,4 4,4 5,4; 

' 
::k--
i 0,3 1, 3 2, 3 

1, 2 2, 2 
-- -- ···--···-··-).( 

3,2 4,2 5,2; 

1,1 2,1 3,1 4,1 
--::k s,t; 

' ;i<---.--.--. --.--.---;i<---7 o,o; t,o 1 2,0; J,o; 4,o 1 s,o x 
: : . . . . 
x---····X· ----x----·-· X··--·-X o, -1 t,-1 2,-1 3,-1 4,-1 

Figure 6.2.2-1: The number of nodes for h = 1/4. 

Unlike the Dirichlet problem, we are now dealing with fictitious 

points, i.e. , these are the points which lie just outside the region. 

These false boundaries are illustrated in Figure 6.2.2-1 as the points 

joining to the region by the dotted line. These points can be 

eliminated by using the centred approximation, for small h, 

[ 
8U ] = U.:.l.:_+ 1:.!'~J=--U.:_I-...:1:!.,~J 
ax I.J 2h and [ 

8U ] = U.:.l ~· )!.:+_:1=--U.:_I,'-'J'--_:1 
8y I,J 2h 

(6.2.2-5) 

which gives 

u = u 2h[ au ] and u 
1-t, j l+l.J - 8X l,j I, j-1 

(6.2.2-6) 

For example, u = u - 2h[ 8
8
U ] , etc. 

-1,0 1,0 X 0,0 

for 
Obviously, we have to solvej(N+1) 2 points including the points at 

the boundaries. By using the centred finite difference approximations, 

for small h, we have a conventional five-point formula 
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-u -u +4gu -u -u =h
2f(x

1
,yJ) 

l,J-1 1-t,j l,J 1+1,j l,j+l 

1, J, = 1, ... , N (6.2.2-7) 

1 2 where g = 1 + 4ph , which gives the linear system Au = b. For our model 

problem, the linear system derived from equation (6.2.2-7) gives 

-2I -2 

-I 0 

4g 

-1 4g -1 0 

A = ·····•·· .... ········ .... ····· ... 
'·· 

with A
1 

= ········.•.• ··•····· ...• ···· ....... . 

0 
-I 

0 
-1 

The vector u and b are given by 

u ' .. 0, 
0,1 

... , 

u • 
N,t' 

b . 
N, t' 

• • •' UO N' 
• 

. .. , bo,N' 

where the elements of vector b are 

2 [ au ] 2 
b = h f(xl,yo) - 2h ay l,o' b = h f(x

1
,yN) 

1,0 I,N 

1 = 1, ... , N. 

2 [ au ] = h2
f(xN,yJ) b = h f(x0 ,yJ) - 2h ax o,j' b O,j N,J 

J = 1, ... , N, 

2 
- 2h {[ ~~ ]o,o + [ ~~ ]o,o } b = h f(x

0
,y

0
) 

o,o 

2 
{[ ~~ ]N,O - [ ~~ ]N,O } b = h f(XN,y

0
) + 2h 

N,O 

b = h2f(XO,yN) + 2h {[ ~~ ]o,N - [ ~~ ]o,N } O,N 

and b = h2f(XN,yN) + 2h{[au] + [au] } N,N 8X N,N 8y N,N • 
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4g -1 

-2 4g 

(6.2.2-8) 

... , 
(6.2.2-9) 

•• 0 ' 

(6.2.2-10) 

+ 2h[~u], y I,N 

2h[ au ] + 8x N,j' 



Evidently, for p = 0, the matrix A is singular since one of the 

eigenvalues is zero. Thus, we will only consider p > 0. 

Now, consider the splitting of the matrix A into 

(6. 2. 2-11) A=G+G+G+G 
1 2 3 4 

where the matrices G1, G2, G
3 

and G
4 

have non-negative eigenvalues. 

We now seek to analyse the convergence of the AGE-DG-2 scheme for 

the Helmhol tz equation in two dimensions subject to Neumann boundary 

conditions. 

Let us consider the matrices (G
1 

+ G
2

) and (G
3 

+ G
4

) as 

G' 
1 

G' 
3 

-I 

0 

G' 
1 

-21 

G' 
3 

······ ...... 

-I 

G' 
1 

····•·•·.... ········ .... ·· .. 

0 
-I Gl 

3 

-21 

0 

0 

·· ...... 

G' 
1 

-I 

G' 
3 

where G' = 
1 

where G' = 
3 

2g 

-1 

2g 

-2 

2g -1 0 

·· .. 
········ .... ·· .. ·· .. 

0 
-1 

2g 

····•···· ... 

0 

··· ... 
·· .. 

2g -1 

-2 2g 

(6.2.2-12) 

0 

2g 

2g 

(6.2.2-13) 

Now, let us consider further for the case when N is odd, the matrices 

G" 
1 

0 

G" 
1 

............ 

G" 
1 

0 

G" 
1 

where G" = 
1 
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G 

G 

(6.2.2-14) 



G" 
2 

0 

G" 
2 

···•····· ... 

G" 
2 

0 

G" 
2 

where G" = 
2 

0 

G 

·••·····•••········· .... 

G 
0 

(6.2.2-15) 

and A [g -1] [2g where G = _
1 

g , G = _
1 

-;] and G = -1] 
2g . 

The matrix (G + G ) can have the form of the matrix (G + G ) by 
3 4 1 2 

interchanging from row to column, and vice-versa. 

From (6.2.2-14), the eigenvalues of the matrix G are given as 
1 

g - 1, g + 1 ~g - !.Ji + 8 and ~g + !.Jg2 + 8 
' 2 2 , 2 2 

and from (6.2.2-15), we have the eigenvalues of the matrix G
2 

as 

0, g - 1, and g + 1. 

It is clear that the matrix G
2 

is singular. However, for any 

iteration parameter, r > 0, the matrix (ri + G ) is non-singular, thus 
2 

its inverse, (rl + G l-1 exists. 
2 

The inverse of the matrix (ri + G
1

), 

1. e.' (rl + G )-
1 also exists. 

1 
As been shown in Section 3. 2. 2 for the 

one dimensional problem, the proof for the convergence is similar. 

Thus, for any p > 0, the AGE-DG-2 scheme for solving the Neumann problem 

is convergent. 

By using the AGE-DG-2 scheme, we now present the algorithm for the 

model problem governed by the Neumann boundary conditions. 

Let us consider the case when N = 5. Then, the solution vector u 

are u
0

,
0

, ... , u ; ... ; u , , .. ,u . 
s,o o, 5 s,s 

First, to obtain the matrix C = [(rl +G) - wA). 
1 

For N = 5 the matrix C is given as 

267 



c s I 1 2 

wi c wi 0 
1 

wi c wi 
1 

c = 
wi c wi 1 

wi c wi 
0 

1 

s I c 6~62 
2 1 

t s 
1 1 

s t w 0 

t s 

with C = 
1 t s w 

w t s 
0 

where t 1 = a1 - 4gw, t = a - 4gw, s = w - 1, s 1 = 2s, and s
2 

= 2w, with 

a= r + g, and a
1 

=a+ 2g. The matrices G
1 

and G
2 

are as in (6.2.2-14) 

and (6.2.2-15) respectively. For any r > 0, 

(ri + G)-1 
= d[: :] . (ri + G)-1 = d1[: a~] 

(ri + G)-1 = d [a! :] . 2 ll(aa
1 

- 2). and 
1 2 where d = 1/(a - 1), d1 = 

We now write the algorithm for a general N (odd) in detail. 

Algorithm 6.2.2-1: The AGE-DG-2 scheme for equation 6.2.2-1. 

Set u:~~ = 0, 1, j = 0, ... , N, g = 1 + ~ph2 , a= r + g, a 1 = r + 2g, 

d = 1/(a2
- 1), d = 1/(aa

1 
- 2), t =a- 4gw, t =a - 4gw, 

1 I 1 

s = 2w s = w - 1 and s 1 = 2s. 2 • 
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Step 1: 
(k+l/4) To compute u 

The 
(k+l/4) (k+l/4) A. elements u to u Set i = 2. 
0,0 N,O 

r
1 

= t u !kl + s u !kl + s u !kl + wb 
t o,o t t,o 2 o,t o,o 

= su (kl + tu (kl + wu !kl + s u !kl + wb 
r2 o,o t,o 2,0 2 1,1 1,0 

u (k+l/4) 
(ocr

1 
+ 2r 

2
)d

1
, 

(k+1/4) = (rl + "'1r 2ld1 = u o,o 1,0 

while i :S N-3, compute 

= (k) tu !kl + su!kl + s u 
(k) 

+ wb r wu + 
1 l-1,0 l ,o 1+1,0 2 1,1 1,0 

= (k) tu!kl + 
(k) 

+ s u 
(k) 

+ wb r su + wu 
2 1,0 1+1,0 1+2,0 2 1+1, 1 1+1,0 

u (k+l/4l = (1Xr )d 
1 ,o 1 + r 2 ' 

u !k+l/41 = (r + 1Xr )d 
1+1,0 1 2 

i = i + 2. 

= (k) 
+ tu 

(k) 
+ 

(k) 
+ 

(k) 
+ wb r wu su su 

I N-2,0 N-1,0 N,O 2 N-1,1 N-1,0 

= s u (k) + t u 
(k) 

+ s u!kl + wb r 
2 1 N-1,0 1 N,O 2 N, 1 N,O 

(k+l/4) 
(IX

1
r

1 
+ r2)d1, 

u (k+1/4) = (Zr
1 

+ ocr2)d1. u = N-1,0 N,O 

B. The elements u (k+1/ 4l to u (k+1/ 4 l 
0,1 H,H-1 

Set i = 2, j = 1. 

while j :S N-1, compute 

= 
(k) 

+ t u 
(k) 

+ s u 
(k) 

+ wu 
(k) 

+ wb r wu 
1 O,J-1 I 0, J 1 1,] O,j+l o, J 

= 
(k) 

+ su 
(k) 

+ tu 
(k) 

+ wu 
(k) 

+ wu 
(k) 

+ wb r wu 
2 I,J-1 O,J 1,] 2,] t,j+t 1,] 

(k+1/4) 
u

0
,J = (1Xr

1 
+ Zr

2
)d

1
, 

while i :S N-3, compute 

= wu !kl + wu !kl + tu !kl + su !kl + wu !kl 
rt t,J-t t-t,J t,J t+t,J t,J+t 

+ wb 
I' J 

(k) 
r = wu + 

(k) 
su + tu !kl 

l+t,j 
+ wu (k) 

1+2,j 

(k) 
+ wu 

2 1+1, J-1 I' J 

u (k+1/ 4l = (ocr + r )d, 
1, j 1 2 
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1+1, j+l 

+ wb 
l+t,j 

(k+1/4) 
u = (r

1 
+ "'r~)d 

l+l,j 0::. 



Step 2: 

c. 

i = i + 2 

(k) (k) tu (kl (k) 
+ wu (k) 

r = wu + wu + + su 
1 N-l,j-1 N-2,j N-l,j N, J N-t,j+t 

+ wb 
N-t,j 

(k) 
+su 

(k) 
+ t u 

(k) 
+ 

(k) 
+ wb r = wu wu 

2 N, j-1 I N-t,j 1 N, J N,j+l N,j 

u (k+ 1/ 4 l = (2r + a.r )d 
N, J 1 2 I 

J = J + 1. 

The elements u (k+1/4) to u<k+l/4) Set 1 = 2. 
O,N N,N 

(k) 
+ t u 

(k) 
+ s u 

(k) 
+ wb r = su 

1 2 O,N-1 1 O,N 1 t,N O,N 

(k) 
+ su (k) 

+ tu 
(k) 

+ wu (k) 
+ wb r = su 

2 2 1, N-1 O,N 

while i :s N-3, compute 

i 

(k) + wu (k) r = s u 
1 2 l,N-1 1-t,N 

(k) (k) 
r2 = su + su 

2 l+t,N-1 I,N 

U (k+l/4) = (~r )d 
I,N ~ 1 + r 2 ' 

= i + 2 

1,N 2,N 1,N 

(k+1/4) 
u = (r + a. r )d 

t,N 1 1 2 1 

+ tu (k) + su (k) 
+ wb 

I, N l+t,N I,N 

+ tu (kl + 
(k) 

+ wb wu 
l+t,N 1+2,N l+t,N 

(k+l/4) u = (r
1 

+ a.r
2
)d 

l+t,N 

(k) 
+ wu (k) 

+ tu <kl + su (k) 
+ wb rl = su 

2 N-t,N-1 N-2,N N-t,N N,N N-t,N 

(k) 
+ s u 

(k) 
+ t u 

(k) 
+ wb r = su 

2 2 N,N-1 I N-l,N 1 N,N N,N 

u (k+1/4l = (a. r )d 
N-1, N 1 I + r 2 1' 

u(k+l/4 J = (2r + a.r )d • 
N, N 1 2 1 

(k+l/2) 
To compute u 1 = 1, J = 0. 

while J :s N, compute 

(k+l/2) 
u 

O,j 
= u<k+l/4) 

O,j 

while 1 :s N-2, compute 

= (k+1/4) + (k) (k) 
r1 rui,J gui,J - ui+1,J 
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Step 3: 

Step 4: 

(k+l/4) 
r = ru 

2 l+t,j 
u (k) + (k) 

1, J gul+t, J 

u (k+t/2) = (cxr + r Jd, (k+l/2) 
u = (r + cxr )d 

l+l,j 1 2 l,j 1 ~ 

i = i + 2 

(k+1/2) 
u 
N,j 

j=j+l. 

(k+l/4) 
= u 

N,j 

(k+3/4) 
To compute u i = 0, j = 2. 

while i ~ N, compute 

= ru(k+l/21 + 2gu<kl 2 (k) 
rt t,o 1,0- ul,t 

(k+1/2) 
r = ru 

2 1,1 
u (k) + (k) 

t,o gut,t 

(Change in direction). 

(k+3/4) 
(art + 2r

2
)d

1
, 

(k+3/4) 
(rt + cx1r2)d1 = u u = I, 0 1,1 

while j ~ N-3, compute 

= ru(k+l/2) + gu (k) (k) 
r - u 

1 I, J I, j 1, j+l 

= ru(k+l/2) (k) + (k) 
r - u gui,J+1 2 l,j+t l,j 

(k+3/4) ( 
u = cxr + r)d, 

I, j 1 ~ 

j = j + 2 

= (k+l/2) + gu (k) (k) 
r ru - u 

1 l,N-1 l, N-1 I,N 

= (k+1/2) 
2u 

(k) 
+ 2 (k) 

r ru gui,N 2 I,N l, N-1 

(k+3/4) 
ui,N-t = (cxlr1 + r2ld1' 

u(k+J/41 = (2r + cxr )d 
l,N 1 2 1 

i=i+l. 

(k+1) 
To compute u 1 = 0, j = 1. (change in direction). 

while i ~ N, compute 

(k+1) 
= u (k+3/4) 

u 
1,0 1,0 

while j ~ N-2, compute 

r1 = ru (k+3/4l + gu (k) (k) 
- u 

l,j I, j l,j+t 
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(k+3/4) (k) + (k) 
r=ru -u gu 

2 l,j+l l,j l,j+l 

(k+l) 
u = (r + <Xr )d 

l,j+l 1 2 

j = j + 2 

(k+l) 
u 

I,N 
= u (k+3/4) 

I, N 

i=i+l. 

Step 5: Repeat Step 1 to Step 4 until convergence is achieved. 

6.2.3 Experimental results 

Numerical results presented in this section are for the AGE-DG-2 scheme 

and SOR method for solving the two dimensional problems subject to the 

periodic and Neumann boundary conditions discussed in Section 6.2.1 and 

6.2.2. One problem is considered for each boundary condition. 

Problem 1 - Periodic boundary conditions. 

a2u a2u 
+ - pU = - (8n2 + p) sin 2nx sin 2ny, 

ax2 ay2 

subject to the boundary condition 

U(x,O) = U(x,1), U (x,O) = U (x,1), 
y y 

U(O,y) = U(1,y), U (O,y) = U (1,y), 
X X 

Q:sx,y:s1, 

0 :S X :S 1 

O:sy:sl. 

By applying the centred finite difference approximation, for small h, 

yields 

-u -u +4gu -u -u = 
l,j-1 1-l,J l,j l+l,j l,j+l 

2 2 (Sn + p)h sin 2nx
1 

sin 2nyJ, i, j, = 1, ... , N, 

1 2 with g = 1 +-ph . The exact solution is U(x,y) = sin 2nx sin 2ny. 
4 

In the linear system Au = b, we have the matrix A as in (6.2.1-5), 

the vector u as in (6. 2. 1-6) and the vector b as (6. 2. 2-7) with its 

elements 

b = (Sn + p)h sin 2nx
1 

sin 2nyJ, i, j = 1, ... , N. 
l,j 
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The results for various pare tabulated in Tables 6.2.3-1 - 6.2.3-7. 

p = 0 SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

100 1. 27-1. 32 30 1. 75-2.07 12 
400 1. 54-1.58 57 1. 06-1. 11 24 

1600 1. 75 108 0.58 48 
6400 1. 85 1. 86 202 0.21 38 

Table 6.2.3-1: Problem 1, p = 0 

p = 1 SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

100 1. 31-1.32 29 1.75-2.09 12 
400 1. 54-1.55 56 1. 06-1. 12 24 

1600 1. 74-1.75 107 0.58-0.59 48 
6400 1. 85-1.86 199 0.21 37 

Table 6.2.3-2: Problem 1, p = 1 

p = 5 SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

100 1. 25-1.26 32 1. 74-2. 16 12 
400 1.51 1.53 54 1. 11-1. 12 23 

1600 1. 73-1.74 102 0.59-0.60 47 
6400 1. 85-1.86 190 0. 18 41 

Table 6.2.3-3: Problem 1, p = 5 

p=10 SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

100 1. 22-1. 27 32 1. 99-2. 11 11 
400 1. 47-1. 53 52 1. 09-1. 17 23 

1600 1. 71-1.73 97 0.59-0.62 46 
6400 1. 85 180 0.18 40 

Table 6.2.3-4: Problem 1, p = 10 
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p=20 SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

100 1. 27-1. 42 26 1.95-2.28 11 
400 1. 48-1. 49 47 1. 12-1.23 22 

1600 1. 70-1.72 88 0.62-0.63 43 
6400 1. 84-1.85 164 0.22 32 

Table 6.2.3-5: Problem 1, p = 20 

p=SO SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

100 1. 28-1. 31 19 2.22-2.56 10 
400 1. 47-1. so 37 1. 25-1.33 19 

1600 1. 69-1. 73 70 0.68-0.69 37 
6400 1. 84-1.85 130 0.24 32 

Table 6.2.3-6: Problem 1, p =SO 

p=100 SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

100 1. 26-1.29 15 2.60-3.00 9 
400 1. 42-1. 58 29 1. 44-1. 49 16 

1600 1. 68-1.72 53 0.76-0.77 31 
6400 1. 84-1.85 98 0.21 30 

Table 6.2.3-7: Problem 1, p = 100 

p=200 SOR AGE-DG-2 (w = 2) 

N2 w iter r iter 

100 1. 10-1. 29 12 3.19-3.79 8 
400 1. 47-1. 49 20 1. 72-1.77 13 

1600 1. 66-1.72 37 0.88-0.92 25 
6400 1. 82-1. 85 68 0.22 25 

Table 6.2.3-8: Problem 1, p = 200 
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The results presented for Problem 1 with various p in this section 

are based on the numerical experiments. These results show a good 

improvement in terms of the number of iterations for the AGE-DG-2 scheme 

over the SOR method which give clear evidence of the superiority of th~ 

AGE method. These gains are significant irrespective of the value of p. 

The factors which help to speed up the convergence, especially for the 

larger number of points are the commutativity properties between G and 
I 

G
2

, and when the matrix A becomes strongly diagonally dominant. 

Our concern here is the determination of the optimal single 

parameter r. To date, no such theory exists on how this parameter might 

be determined. Again, we will use some similarities from the solution 

of the one dimensional problem governed by periodic boundary conditions. 

Let us consider the starting value of N as 10. This will give the grid 

mesh size h = 1/10. 

It has been shown that for the one dimensional problem, the 

experimental r e (1, b), where b = 2 + ~ph2 , is the largest eigenvalue. 

The value of r, however, is greater than b when the matrix A is strongly 

diagonally dominant. Since we are now solving a similar but larger 

problem, then for some p, we may expect that the value of r to fall in 

I 2 the interval (1,b), where b = 2 + 4ph and for larger p, r >b. 

The results for Problem 1, agree with these assumptions and for 

p ~ 10, we may consider the value of r e (1,b). For p > 0, we consider 

r > b as a guide to the experimental value of r. 

With these gains, i.e., the number of iterations, the simplicity of 

the method and that the value of r can easily be determined, indicates 

that the AGE method to solve 

boundary conditions might be 

the Helmholtz equation governed by periodic 
t.n rrtfue~u.. to 

well be recommended.( _ . SOR method. 
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Problem 2 - Neumann boundary conditions. 

a2u 2 2 + - - pU = 6 - p(2x + y ) , p > 0, 
8y2 

0 :S x,y :S 1 

subject to the boundary conditions 

U (x,O) = 0, U (x,1) = 2, 
y y 

0 :S X :S 1, 

U (O,y) = 0, U (1,y) = 4, 
X X 

O:Sy:Sl. 

By applying central finite difference approximations, for small h, 

yields 

1 2 
where g = 1 + -ph, with h = 1/N. 

4 

The exact solution is U(x,y) = 2x2+ y2. 

i, j, = 1, ... , N, 

In the linear system Au = b, we have the matrix A as in (6.2.2-8), 

the vector u as in (6. 2. 2-9) and the vector b as (6. 2. 2-10) with its 

elements 

b = h2[ (2x2+ 2) - 6 + 4h, 1 = 0, . 0.' N, 
I,N p I YN 

2 2 2 
- 6 1 + 8h, j 0, N b = h [p(2x + y ) = 0 • 0 ' N,j N J 

and b 
I,J 

= h2[ (2x2+ 2) 
p I YJ - 6 l. i. j = 0 . 0.' N-1. 

The results for various pare tabulated in Tables 6.2.3-9- 6.2.3-16. 

p = 1 SOR AGE-DG-2 (w = 2) 

(N+1) 2 w iter r iter 

100 1. 86 77 0.09 54 
400 1. 93 167 0.01 49 

1600 1. 97 340 0.005 99 
6400 1. 984 567 0.002 186 

Table 6.2.3-9: Problem 2, p = 1 
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p = 5 SOR AGE-DG-2 (w = 2) 

(N+l) 2 w iter r iter 

100 1. 72-1.73 41 0.35 32 
400 1. 85 82 0.07-0.08 48 

1600 1. 93 171 0.02 66 
6400 1. 96 349 0.01 132 

Table 6.2.3-10: Problem 2, p = 5 

p=lO SOR AGE-DG-2 (w = 2) 

(N+1 )2 
w iter r iter 

100 1. 62 32 0.50-0.54 25 
400 1. 80 65 0.14-0.17 36 

1600 1. 90 130 0.04 61 
6400 1. 95 235 0.02 119 

Table 6.2.3-11: Problem 2, p = 10 

p=20 SOR AGE-DG-2 (w = 2) 

(N+1 )2 w iter r iter 

100 1. 50-1. 51 26 0.72-0.80 19 
400 1. 74 52 0.26-0.27 29 

1600 1. 87 101 0.07 43 
6400 1. 93 204 0.04 87 

Table 6.2.3-12: Problem 2, p = 20 

p=50 SOR AGE-DG-2 (w = 2) 

(N+1) 2 w iter r iter 

100 1. 34 20 1. 20-1.29 13 
400 1. 60 40 0.47-0.51 22 

1600 1. 78 81 0.14-0.18 32 
6400 1.89 161 0.07 58 

Table 6.2.3-13: Problem 2, p =50 
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p=lOO SOR AGE-DG-2 (w = 2) 

(N+ll 2 
w iter r iter 

100 1. 26 16 1. 80-1.86 10 
400 1. 52 31 0.71-0.79 17 

1600 1.72 60 0.25 25 
6400 1. 85 116 0. 11-0. 12 46 

Table 6.2.3-14: Problem 2, p = lOO 

p=200 SOR AGE-DG-2 (w = 2) 

(N+l) 2 w iter r iter 

100 1. 18-1.20 12 2.31-3.49 9 
400 1. 39-1. 41 23 1. 03-1. 21 13 

1600 1. 64 42 0.42-0.43 20 
6400 1. 79 80 0. 16-0. 17 33 

Table 6.2.3-15: Problem 2, p = 200 

p=400 SOR AGE-DG-2 (w = 2) 

(N+l) 2 w iter r iter 

100 1. 09-1. 13 9 3.60-5.80 8 
400 1. 27-1.29 16 1. 55-1.76 10 

1600 1. 52-1. 53 30 0.65-0.72 16 
6400 1.72 56 0.21-0.27 24 

Table 6.2.3-16: Problem 2, p = 400 

The results repeat the impressive performance by the AGE method 

over the SOR method as shown in the one dimensional problems governed by 

Neumann boundary conditions. In addition, the gains in terms of the 

number of iterations are significant irrespective of the value of p. 

Our concern is again to find a suitable method to determine the 

optimal single parameter r, theoretically, that would become a guide to 

determine the value of r, experimentally. It has been shown that for 

the one dimensional problems, re [a,Yib] for smaller p, and r e [Yib,b] 

for larger value of p. However, this assumption is not valid for the 

two dimensional problem as the relation r = Yib no longer exists. 

278 



Instead, we will consider the relation r = (a+b)/2. Since we are 

solving a similar but higher dimensional problems, we may expect that 

the value of r would either be in [a, (a+b)/2] for smaller values of p, 

or in [(a+b)/2,b], for larger p. The results in Table 6.2.3-17 confirm 

this argument. 

N = 9 AGE-DG-2 The eigenvalues 

p r a (a+b)/2 b 

1 0.09 0.003 1. 504 3.005 
5 0.35 0.015 1. 521 3.026 

10 0.50-0.54 0.031 1. 541 3.052 
20 0.72-0.80 0.062 1. 582 3.103 
50 1. 20-1.29 0.154 1. 707 3.259 

100 1. 80-1.86 0.309 1. 915 3.521 
200 2.31-3.49 0.617 2.336 4.055 
400 3.60-5.80 1. 235 3.194 s. 154 

Table 6.2.3-17: Problem 2- the range for r 

The results outline that for p ~ 100, the value of r is within the 

interval [a, (a+b)/2]. For larger value of p, r is in [ (a+b)/2, b]. By 

having this starting value, the value of r for larger numbers of points, 

can easily be determined, i.e., this value is in a smaller range than 

the previous interval. 

It should be noticed that, these results do not include the case 

when p = 0 as the matrix A will yield a zero eigenvalue. Consequently, 

the matrix A is singular and the computed solution will not converge to 

the exact solution but to the corresponding eigenvector of the matrix A. 

The results obtained for other values of p are only from one problem but 

it is sufficient. A given problem differs only on the right hand side 

vector b, hence, it will only affect the number of iterations. 

With this findings, the AGE method can be considered to be better 

than the SOR method, and be recommended to solve the Helmholtz equation 

in two dimensions. 
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6.3 The solution with alternative computational forms 

It has been shown in Section 4. 2 that the solution of the two-point 

boundary-value problem with alternative forms give an improvement on the 

CPU time. In this section, we will investigate further the forms given 

in Section 4.2 to solve the two and three dimensional problems. 

With the limitation of the method, our discussion in Section 6. 1 

and 6. 2 is mainly concerned with the AGE-DG and AGE-GT schemes. As 

shown in Section 6.1, between these two schemes the AGE-DG performed 

better in terms of computational work. Thus, we would expect more 

laborious work if the AGE-GT scheme is rearranged into other forms. 

Thus, we will confine our investigation only to the AGE-DG scheme. 

6.3.1 The computational form of the AGE-DG method 

Let us recall the respect! ve Algorithms 6. 1. 3-1 and 6. 1. 3-2 for the 

AGE-DG-2 and AGE-DG-3 schemes. In these algorithms, we have used the 

intermediate variables r
1 

and r
2 

prior to computing the vector u and its 

intermediate value at each step. Our aim now is to eliminate these 

variables so that each equation will be in a complete computational 

molecule form. Having eliminated r
1 

and r
2 

at each step, the algorithm 

for the AGE-DG-2 scheme in this form, i.e., the COMP-AGE-DG-2 scheme can 

be written as follows. 

Algorithm 6.3.1-1: The COMP-AGE-DG-2 scheme. 

Set u(kl = 0 
1, J ' 

i, j = o, ... , N+l, « = r + g, d = 2 11(« - 1), s = w - 1, 

t = tt - 4gw, D = dw, A= D«, B = d(«t + s), C = d(«s + t), 

Q = dr, P = Q«, R = d(«g- 1), T = d(g- «). 
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Step 1: To compute u (k+l/4 ) 1 = 1, j = 1. 

while j ~ N, compute 

while 1 ~ N-2, compute 

tk+l/4) Autkl u = + + Au (k) + Au (k) + Bu (k) + Cu (k) 
l,j 1-t,j l,J-1 l,j+l l,j l+l,j 

(k+l/4) 
u 

l+t,j 

1 = i + 2 

(k+l/4) 
u = N,j 

j=j+l. 

+ Du (kl 
1+2,j 

+ Du(k) 
l+l,j-1 

+ Du (k) + Ab 

= Du(k) 
1-I,J 

+ Du (k) 
I,J-1 

+ Du (k) 

l,j+l 

1+1, j+l I, J 

+ Db 
l+l,J 

+ Cutkl + Butkl 
l,j l+l,j 

+ Au (k) 
1+2,J 

+ Au (kl 
l+l,J-1 

+ Au!kl + Db 
l+l,j+l l,j 

+ Ab 
l+l,j 

(wutkl + wu(kl + tutkl + wu(kl + wb )/oc 
N,J-1 N-t,j N,j N,J+l N,J 

Step 2: To compute u (k+l/2 ) 1 = 2, j = 1. 

Step 3: 

while j ~ N, compute 

u (k+l/2) = (ru (k+1/4l + gu (kl )/oc 
1,] l,j 1,] 

while 1 ~ N-1, compute 

u (k+1/2) 

l,j 
= Pu (k+t/4) + Qu tk+1/4l + Ru tkl + Tu tkl 

l,J l+t,j l,j l+l,j 

(k+1/2) 
u 

1+1, J 

1 = 1 + 2 

j=j+l. 

= Qu (k+1/4l + Pu (k+114l + Tu (kl + Ru (kl 
l,j l+l,j l,J l+l,j 

(k+J/4) 
To compute u 1 = 1, j = 1. (Change in direction). 

while 1 ~ N, compute 

while j ~ N-2, compute 

(k+3/4) 
u 

l,j 
= Pu tk+1/2l + Qu (k+112l + Ru !kl + Tu !kl 

l,j l,j+l l,j l,j+l 
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Step 4: 

u(k+3/4) 

l,j+l 
= Qu (k+112) + Pu (k+112) + Tu (k) + Ru (k) 

1 t j 1 1 j+l l t j 1 t j+l 

j = j + 2 

(k+3/4) 
u 

I,N 
= (ru (k+1/2) + gu (k) )/tt 

l,N l,N 

1=1+1. 

To compute u 
(k+1) 

i = 1, j = 2. 

while i :S N, compute 

(k+l) ( (k+3/4) + gu (k) )/a. u = ru 
1,1 1,1 I, 1 

while j :S N-1, compute 

u (k+1) = Pu (k+3/4) + Qu (k+3/4) 
l,j I, j l,J+l 

u (k+l) Qu (k+3/4) p (k+3/4) 
= + u 

1,)+1 I, J l,j+t 

j = j + 2 

1 = 1 + 1. 

(change in direction). 

+ Ru (k) + Tu (k) 
l,j l,j+l 

+ Tu (k) + Su (k) 
l,j l,j+l 

Step 5: Repeat Step 1 to Step 4 until convergence is achieved. 

The computational molecule for each intermediate vector u derived 

from Algorithm 6.3.1-1, can be given as follows: 

1 t j+ 1 1+1, j+l 

0.-_-1-, j-r/--·\ 1~+2,) 
\.V l,j-1 1+1, J-1 

(k+1/4) Figure 6.3.1-1: The computational molecule for u 
l,j 

for large N, Algorithm 6.3.1-1. 
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l,j+ 1 1+1 ,j+ 1 

0---~.-J---1 -----8.2,] 
1+1, J-1 

Figure 6.3.1-2: The computational molecule for u(k+l/
4

) 
l+t,j 

for large N, Algorithm 6.3.1-1. 

-0 
I ' J l+t,j 

Figure 6. 3. 1-3: The computational molecule for (k+l/2) and u u 
I, J 

for large N, Algorithm 6.3.1-1. 

The computation for the vectors u (k+3/4) and u 
(k+l) 

has 

1 
k+-

4 

k 

k+.: 
2 

k 

(k+l/2) 

l ,j+l 

a similar 

form as u (k+l/2 ) Thus, is it sufficient to present only the molecules 

for this vector. 

The algorithm for the AGE-DG-3 scheme in the computational form, 

i.e., the COMP-AGE-DG-3 scheme, can be presented as follows: 

Algorithm 6.3.1-2: The COMP-AGE-DG-3 scheme. 

Set u (k) = 0, 1, 
1, j,k 

J, k = 0, ...• 
2 N+1, a= r + g, d = 1/(a - 1), 

s = w - 1, t =a- 4gw, D = dw, A= Da, B = d(at + s), 

C = d(as + t), Q = dr, P = Qtt, R = d(ag - 1), T = d(g - tt). 
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Step 1: 

Step 2: 

(k+l/6) To compute u 

while k ~ N, compute 

Set 1, j, k = 1. 

while j ~ N, compute 

while 1 ~ N-2, compute 

(k+l/6) 
u 

l,J,k 
= Au (kl 

1-t,j,k 
+ Au<kl 

l,j,k-1 
+ Au (kl 

l,j,k+l 
+ Bu<kl 

1' J ,k 

+ Au (k) 
1, J-l,k 

+ Au (k) 
l,j+l,k 

+ Du<kl 
l+t,j,k-1 

+ Du(k) 
l+t,j,k+t 

+ Du<kl 
l+l,j+l,k 

+ cu<kl 
l+t,J,k 

+ Du (kl 
1+2,j,k 

+ Du (kl 
l+l.J-l,k 

+ Ab 
1, j,k 

+ Db 
1+1, j,k 

(k+l/6) 
u 

1+1, j,k 
= Du<kl 

1-t,j,k 
+ Du<kl 

1, j,k-1 
+ Du (kl 

l,j,k+l 
+ Cu (kl 

1' J' k 

+ Du (k) 

l,j-t,k 
+ Du (k) 

l,j+t,k 
+ Au<kl 

l+t,j,k-1 

+ Au !kl 
l+l,j,k+t 

+ Au !kl 
l+t,j+l,k 

1 = i + 2 

(k+l/6) 
u 

N,j,k 
= (wu !kl 

N,j,k-1 
+ wu (k) 

N,j-t,k 

+ Bu (kl 
l+t,j,k 

+ Au !kl 
1+2,j,k 

+ wu (k) 
N-t,J,k 

+ Au !kl 
l+l,j-t,k 

+ Db 
1' j,k 

+ Ab 
l+t,j,k 

+ tu (kl 
N, j,k 

+ wu <kl + wu (kl + wb )/ex 

j = j + 1 

k=k+l. 

(k+l/3) 
To compute u 

while k ~ N, compute 

N,j+t,k N,j,k+t N,j,k 

Set 1 = 2, j, k = 1. 

while j ~ N, compute 

(k+l/3) 
u 

t,j,k 
( 

(k+l/6) (k) 
= ru + gu )/ex 

t,j,k t,j,k 

while 1 ~ N-1, compute 
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Step 3: 

Step 4: 

(k+l/3) 
Pu 

(k+l/6) + Qu (k+l/6) + Ru (k) + Tu<kl u = 
1, j,k 1' J, k 1+1, J,k 1, J, k l+t,j,k 

(k+l/3) 
= 

Qu (k+116l + Pu (k+l/6) + Tu (k) + Ru (k) u 
l+t,j,k l, J, k l+t,j,k 1' j, k l+l,j,k 

1 = i + 2 

J = J + 1 

k=k+l. 

(k+l/2) To compute u Set i, J, k = 1. (Change in direction) 

while i ~ N, compute 

while k ~ N, compute 

while J ~ N-1, compute 

(k+l/2) Pu (k+l/3) + Qu (k+l/3) u = 
1, J,k 1 ,j,k l,j+t,k 

u (k+l/2) Qu (k+l/3) + Pu (k+l/3) 
= 

l,j+l,k 1, j,k 1, j+l,k 

J = J + 2 

(k+l/2) 
u 

l,N,k 
= (ru (k+l/3) + gu (k) )/ex 

l,N,k l,N,k 

k = k + 1 

i = i + 1 

+ Ru 
(k) 

1, J ,k 

+ Tu (k) 
1, j, k 

(k+213) To compute u Set i, k = 1, J = 2. 

(Change in direction) 

while i ~ N, compute 

while k ~ N, compute 

u (k+2/3) = (ru (k+l/2) + gu (k) )/ex 
l,t,k l,t,k t,t,k 

while j ~ N-1 •. compute 

(k+2/3) Pu (k+l/2) Q (k+l/2) Ru(k) 
u = + u + 

l,j,k l,j,k l,j+l,k t,j,k 

(k+2/3) Qu (k+l/2) + Pu (k+l/2) 
+Tu 

(k) 
u = 

1, j+l,k l,J,k 1, j+t,k l,J,k 

J = J + 2 

k = k + 1 
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+ Tu 
(k) 

l,j+l,k 

+ Ru 
(k) 

1, j+t,k 

+ Tu 
(k) 

l,j+l,k 

+ Ru (k) 
l,j+l,k 



1=1+1. 

Step 5: To compute u (k+S/6) Set 1, j, k = 1. (Change in direction) 

Step 6: 

while j s N, compute 

while 1 s N, compute 

while k :s N-1, compute 

(k+S/6) 
Pu 

(k+2/3) Q (k+2/3) u = + u 
1, j,k l,j,k l,j,k+l 

(k+S/6) Qu (k+213l p (k+2/3) 
u = + u 

l,j,k+l 1, j,k l,j,k+l 

k = k + 2 

(k+S/6) 
u 

l,J,N 
= (ru (k+213l + gu (kl )/a 

l,j,N l,J,N 

1 = i + 1 

j=j+l. 

+ Ru 
(k) + Tu (kl 
l,j,k l,j,k+l 

+ Tu 
(k) + Ru(kl 
1, j,k l,j,k+l 

(k+l) 
To compute u Set i, j = 1, k = 2. (Change in direction) 

while j s N, compute 

while 1 s N, compute 

(k+ll 
u 

l' J, 1 
= (ru (k+S/6) + gu (kl )/a 

l,j,t l,j,l 

while k s N-1, compute 

(k+l) 
u 

l,J,k 
= Pu (k+S/6) + Qu (k+S/6) + Ru (k) + Tu (kl 

l,j,k l,j,k+t l,j,k l,J,k+l 

(k+1) 
u 

l,j,k+t 

k = k + 2 

1 = 1 + 1 

j=j+l. 

= Qu (k+S/6) + Pu (k+S/6) + Tu (kl 
l,j,k l,j,k+l l,j,k 

+ Ru (kl 
l,j,k+l 

Step 7: Repeat Step 1 to Step 6 until convergence is achieved. 

The computational molecule for each intermediate vector u derived 

from Algorithm 6.3.1-2, can be given as follows: 
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~ lt /Y 
)V----x 

l, j+t,k 

B 0k 
t,j-t,k 1, J, k-1 

~ /""'-~ 1+2, J,k 

l+t,j-t,k l+l,j-t,k 

1 k+-
6 

k 

Fl 6 3 1 4 Th t ti 1 1 1 for U
(k+1/6)' gure . . - : e compu a ona mo ecu e 
1, j,k 

t,j-l,k 

for large N, Algorithm 6.3.1-2. 

1, j' k 

l,J,k-1 

k+.!. 
6 

--=-, .-1:-,-:j-:, k,---f:\ k 
\...:..{ +2, j' k 

l+t,j-t,k l+t,j-t,k 

(k+1/6) Figure 6.3.1-5: The computational molecule for u , 
1+1, j,k 

for large N, Algorithm 6.3.1-2. 

8 0 
0 0 

1, j, k l+t,j,k l' J, k l+t,j,k 

1 k+-
3 

1 k+-
6 

k 

(k+1/3) (k+l/3) Figure 6.3.1-6: The computational molecule for u and u , 
l,J,k l+t,j,k 

for large N, Algorithm 6.3.1-2. 
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From the Algorithm 6.3.1-2, we find that the vectors 
(k+1/2) 

u 

(k+2/3) 
u 

(k+S/6) 
u and 

(k+1) 
u have a similar computational form as 

(k+1/3) 
u Thus, it is sufficient to present the molecules from this 

vector. 

Before we summarize our findings, i.e., the number of operations 

per iteration for this scheme, let us consider the other f"orm of" 

presentation of the AGE-DG scheme, called the coupled AGE (CAGE) method. 

6.3.2 The CAGE form of the AGE-DG method 

We now consider the solution of vector u in a coupled form, where the 

four equations and six equations in the respective AGE-DG-2 and AGE-DG-3 

schemes are made up into two and three equations. In other words, the 

first equation is combined with the second equation, the third with the 

fourth and the fifth with the sixth (in the AGE-DG-3 scheme). 

Let us recall the AGE-DG-2 scheme, i.e., equations (6. 1. 3-10) -

(6.1.3-13) which can be written explicitly as 

(k+1/4) -1 (k) 
+ w(ri + G )-1b (6.3.2-1) u = [I - w(ri + G

1
) A]u 

1 
(k+l/2) 

= (ri + G )-1 [ru!k+1/4l +Gu!kll (6.3.2-2) u 2 2 
(k+3/4) 

= (ri + G f1 [ru !k+1/2l + G u<kll (6.3.2-3) u c 1 c 1 c 
(k+1) 

= (ri + G l-1[ru(k+3/4l + G u<kl]. (6.3.2-4) u c 2 c 2 c 

In the coupled form, equations (6.3.2-1) - (6.3.2-4) can be explicitly 

combined to give a set of new equations, i.e., the CAGE-DG-2 scheme, 

u(k+1/ 2l = [I - wr(ri + G
2

)-1(ri + G
1

)-1A]u<kl 

<k+1l 2( I u = r r 
c 

• where w 
c 

(k+1/2) 
=u 

c 

(k) -u 
c 

+ wr(ri + G )-1 (ri + G )-1b 
2 1 
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(6.3.2-5) 

(6.3.2-6) 



Let us consider A and (G + G ) as given in (6. 1. 1-11 l and 
I 2 

(6.1.1-15) respectively. Obviously, for w = 2, equation (6.3.2-5) is 

similar to the CAGE in one dimensional problem, i.e., equation 

(4.2.2-3), except that the matrices A, G
1 

and G
2 

are derived from a two 

dimensional problem. Thus, we may expect that the matrix 

er = I - wr(ri + G
2

)-
1 (rl + G

1 
)-

1 A (6.3.2-7) 

at least has the form of the matrix in (4.2.2-6), and 

Dr = wr(ri + G
2
)-

1 (ri + G
1
)-

1 and Er= r 2 (ri + G
2

)-
1 (ri + G

1
)-

1 

(6.3.2-8) 

have the form of (4. 2. 2-7). We now write the matrices C , D and E for r r r 

the case when N = 7. 

From (6.1.1-15), for general N (odd) and for any r > 0, we have 

(rl + G l-1 = 
I 

(rl + G l-1 = 
2 

0 

0 

--I 
G 

2 

········· ... 

·· ..... 
·· ... 

G-1 
I 

0 

--1 
G 

I 

0 

2 where o: = r + g and d = 1/(o: - 1). 

G-1 = 
2 

cxd d 

d o:d 
'•, 

··•· .... 
o:d d 

d o:d 
1/o: 

(6.3.2-9) 

1/o: 
cxd d 

d o:d 

········· .•. 

o:d d 

d o:d 

(6.3.2-10) 

) -1 G )-1 Now, we multiply the matrices (ri + G
2 

and (ri + 
1 

gives 
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--1 --1 
G 

0 
G 

0 2 1 
--1 a-1 G 

2 1 

(rl + G
2
l-1 (ri + G )-1 = ····•·· ... ·· ... 

1 .. ···· ... 
--1 
G 

--1 
G 

2 1 

0 a-1 0 a-1 
lfXN2 

2 1 

a-1 a-1 

0 2 1 

--1 
G a-1 

2 1 

= •···· .•• (6.3.2-11) ·· .. 
a-1 a-1 

2 1 

0 a-1 a-1 
tfXN2 2 1 

where, for the case N = 7, 

d s 
4 

s s s s 
2 3 2 1 

s s s s 
1 2 3 2 

--1 a-1 s s s s G = 
2 1 2 3 2 1 

(6.3.2-12) 

s s s s 
1 2 3 2 

s s s 
2 3 4 

s s d 
1 2 

D = wr G-1 G-1 and E = r 2 G-1 G-1
• 

r 2 1 r 2 1 
(6.3.2-13) 

Now, for the matrix C with the matrix A as in (6.1.1-11), we have 
r 

A -D 
r r 

0 -D A -D 
r r r 

-D A -D 
r r r 

= -D A -D (6.3.2-14) 
r r ... 

-D A -D 
r r r 

0 
-D A -D ... r r 

-D A 72'K72 r r 
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where 

A B c 
Q R s T V 0 

T s R Q p 

A = p Q R s T V (6.3.2-15) 
r 

V T s R Q p 

0 
p Q w X 

V T y z 

with d
1 

= dwr, C = d
1
/a, V = d

1
d, A = 1 + C(1 - 4ga), B = C(1 - 4g), 

P = Va, Q = P(a - 4g), R = 1 + 2P(1 - 2ga), S = V(1 + a 2 
- 4ga), 

T = V(a - 4g), W = 1 + C + P(1 - 4ga), X= C(da3 
- 4g), 

Y = d [1 + d(1 - 4ga)], Z = 1 + P - 4d g. 
2 1 

The computation that involves the vector b can be performed outside 

the iteration loop and can be assigned to a single array. We now write 

the algorithm for the CAGE-DG-2 scheme for general N (odd). 

Algorithm 6.3.2-1: The CAGE-DG-2 scheme. 

Set u:~~ = 0, 1, j = 0, ... , N+1, a= r + g, d = 1/(a2
- 1), 

and other coefficients as given in (6.3.2-11) - (6.3.2-14). 

Step 1: To compute the vector v. Set 1 = 2, j = 1. 

while j ~ N, compute 

v = wr(db + S b ) 
1,j 1,j 42,j 

while 1 ~ N-3, compute 

V = wr(S b + S b + S b + S b ) 
l,j 2 1-t,j 3 l,j 2 l+t,j 1 1+2,j 

v = wr(S b + S b + S b + S b ) 
l+l,j 1 l-1,j 2 l,j 3 1+1,j 2 1+2,j 

1 = 1 + 2 

V = wr(S b + S b + S b ) 
N-1,j 2 N-1,j 3 N,j 4 N+1,j 

V = wr(S b + S b + db ) 
N,j 1 N-1,j 2 N,j N,j 

j=j+l. 
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Step 2: 
(k+1/2) 

To compute u 

while j s N, compute 

Set 1 = 2, j = 1. 

(k+1/2) 
u =- du(kl S 

(k) 
- u + Au<kl + Bu(kl + Cu(kl 

1,) 1, J-1 4 2, J-1 

d 
(k) 

- u 
1, j+t 

t,j 2,J 3,j 

S 
(k) 

- u 
4 2, j+l 

while 1 s N-3, compute 

(k+112) 
u 

I,J 
= - S u(kl 

2 1-1, J-1 
S 

(k) 
- u 

3 I, J-1 
S 

(k) 
- u 

2 1+1, J-1 

- S u<kl + Pu(kl + Qu(kl 
1 !+2, J-1 1-2,J 1-t, J 

+ Ru(kl 
I.J 

+ Tu (kl + Vu (kl - S u <kl + Su (kl 
l+l,J l+2,j 1+3,j 2 1-l,J+l 

S 
(k) 

- u 
3 1 ,j+l 

S 
(k) 

- u 
2 l+l.j+t 

S 
(k) 

- u 
1 1+2, j+l 

+ V 
I, J 

(k+1/2) 
u = - s u (k) S 

(k) 
- u S 

(k) 
- u 

1+1, j 

1 = 1 + 2 

u (k+1/2) 
N-t,j 

= -

1. 1-1, J-1 

S 
(k) 

- u 

2 I, J-1 3 1+1, J-1 

2 1+2, j-1 
+ Vu (kl 

I-2,J 
+ Tu (kl 

I-1,J 
+ Su (kl 

I, J 

+ Ru(k) + Qu(k) 
l+l,J 1+2,J 

+ Pu (k) 

1+3,J 
S 

(k) 
- u 

1 1-1, j+t 

S 
(k) 

- u 
2 1 ,J+t 

S 
(k) 

- u 
3 l+l,j+l 

S 
(k) 

- u 
2 1+2, j+t 

+ V 
l+t,j 

S u<kl S 
(k) 

- u S 
(k) 

- u + Pu (kl 
11-2, J 2 II-1,J-1 

+ Qu (kl 
II-1,J 

S 
(k) 

- u 
3 N, j+l 

3 11, J-1 4 N+t, J-1 

+ wu<kl + xu<kl - S u(kl 
N,j N+t,J 2 N-t,j+l 

- S u<kl + v 
4 N+t ,j+l N-1, j 

(k+112) 
u = - S u (kl - S u (kl - du (kl + Vu (kl 

1 N-1, J-1 2 N,j-1 N+l, J-1 N-2, j ll,j 

j=j+l. 

+ Tu (kl 
II-1,J 

S 
(k) 

- u 
2 N, j+l 

+ Yu(kl + zu<kl 
N,j N+l,j 

- du<kl + v 

S 
(k) 

- u 
1 N-t,j+l 

N+t,j+l N,j 

• Step 3: To compute the vector w 

for j = 1 to N, compute 

for 1 = 1 to N, compute 
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• (k+l/2) 
w = u 
l,j l,j 

(k) 
- u 

I, J 

Step 4: 
(k+l) 

To compute u . Set i = 1, j = 2. (change in direction). 

while 1 ~ N, compute 

(k+1) 
u 

1,1 

while j ~ N-3, compute 

(k+1) 
u 

I,J 

u (k+l) 

l,j+l 

2 • • • • 

= r (S2wi,J-1 + S3wi,J + S2wi,J+1 + S1wi.J+2) 

+ u (k) 

I, J 

2 • • • • 

= r (S1wt,J-1 + S2wi,J + S3wi,J+1 + S2wi.J+2) 

+ ulkl 
l,j+l 

j = j + 2 

(k+1) 2 • • • (k) 
u = r (S2wi,N-1 + s w + s w ) + u 

I ,N-1 3 I,N 4 1, N+l l,N-1 

u (k+1) 2 • • • (k) 
= r (S w + s w + dw ) + u 

I,N 1 1 ,N-1 2 I,N I,N I,N 

1=1+1. 

Step 5: Repeat Step 2 to Step 4 until convergence is achieved. 

From Algor! thm 6. 3. 2-1, it can be deduced that for large N, the 

computational molecules for the CAGE-DG-2 scheme as follows. 

X 

8. Q l-2y 
(:91-1,)-1 

1+2, J+l 

I , J -1 

1 k+-
2 

k 

(k+112) Figure 6.3.2-1: Computational molecules for computing u , for 
I, j 

large N, Algorithm 6.3.2-1, the CAGE-DG-2 scheme. 
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X 

1-1,)-1 

1-1, j+t 

I , J -1 

1 k+-
2 

k 

(k+1/2) Figure 6.3.2-2: Computational molecules for computing u
1

+
1
,J , for 

large N, Algorithm 6.3.2-1, the CAGE-DG-2 scheme. 

k+1 

t /X ?·'" y I ' J 

~ eJ ~ 
• w 

l,j-1 I' j 1, J +1 l,j+2 

Figure 6.3.2-3: Computational molecules for 

large N, Algorithm 6.3.2-1, 

(k+ll computing u , for 
I, j 

the CAGE-DG-2 scheme. 

k+1 

t 

/ 
X 

(k) 
u y 1, J + 1 

~ ~ 0 • w 

I, j -1 I ' J 1, J + 1 l,j+2 

(k+1) 
Figure 6.3.2-4: Computational molecules for computing ui,J+

1
, for 

large N, Algorithm 6.3.2-1, the CAGE-DG-2 scheme. 
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We now extend the coupled form of the AGE-DG method to three 

dimensions, the CAGE-DG-3 scheme. Let us recall the AGE-DG-3 scheme, 

i.e., equations (6. 1. 3-21) - (6, 1. 3-26). In explicit form, we have 

(k+1/6) 
[I -

-1 (k) 
+ w(ri + G )-1b (6.3.2-16) u = (ri + G ) Alu 

1 1 
(k+1/3) (ri -1 (k+1/6) + G uCkll (6.3.2-17) u = + G ) [ru 

2 2 
(k+1/2) 

= (ri + G J-1 [ruCk+1/3l + G uCkll (6.3.2-18) u 
y 1 y 1 y 
(k+2/3) 

= (ri + G J-1[ruCk+1/2l + G uCkll (6.3.2-19) u 
y 2 y 2 y 
(k+S/6) 

= (ri + G J -1 [ru Ck+2/3l + G uCkll (6.3.2-20) u 
z 1 z 1 z 
(k+ll 

= (ri + G )-1[ruCk+5/6l + G uCkll (6.3.2-21) u 
z 2 z 2 z 

In the coupled form, equations (6.3.2-16) - (6.3.2-21) can be combined 

explicitly to give a set of new equations, i.e., the CAGE-DG-3 scheme as 

u(k+1/ 3l = [I - wr(ri + G
2
)-1(ri + G

1
f 1AiuCkl 

+ wr(ri + G
2

)-1 (ri + G
1 

J-1b 

u Ck+2/ 3l = r 2 (r I + G f 1 (r I + G ) -1/ + u Ckl 
y 2 1 y y 

uCk+1l = r 2(ri + G J-1(ri + G J-1w•• + uCkl 
z 2 1 z z 

• where w 
y 

[ Ck+1/3l Ckl I d •• [ Ck+2/3l Ckl I = u -u an w = u -u . 
y y z z z 

(6.3.2-22) 

(6.3.2-23) 

(6.3.2-24) 

Obviously, by choosing a similar pattern for the matrices G
1 

and G
2 

we have for the CAGE-DG-3 scheme, the computational molecules for 

equations (6.3.2-22) are expected to be similar to the ones derived in 

Figures 6.3.2-1 and 6.3.2-2 with the additional complexity of the z 

direction. 

In equations (6. 3. 2-23) and (6. 3. 2-24), we would also expect its 

computational molecules to be given as Figures 6.3.2-3 and 6.3.2-4. The 

molecules for computing 

follows. 

uCk+1/3l 
l, J 

and 
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(k+1/3) 
u 

l+l,J 
can be illustrated as 



~y 
X 

1-1, j,k+t 1-t,j+l,k l,j, k+l l,j+t,k 

@ 6) a (5) 

G~-2. J.k 

~ @ s 
3 

1-t,j-t,k 1-1, j,k-1 l, J-t,k 1' J 'k-1 

1 
l+l,j,k+l 1+1, j+t,k 1+2, j,k+ 1 l+2,j+t,k k+-

3 

6) 6) ~ (3) 

0 k 
l+t,j,k 

1+3,j,k 

@ 
l+t,j-l,k 1 + 1, J' k-1 1+2,j-1, k 1 +2, j,k-1 

Figure 6. 3. 2-5: Computational molecules for computing (k+l/3) for u • l,j 
large N, the CAGE-DG-3 scheme. 

1-1, j,k+t 1-1' j+l,k l,j,k+l l,j+l,k 

6) 6) ~ 
/ 

Gl-2,j,k 

0 
1-t,j-t,k 1-1, j,k-1 l,j-t,k 1 ' j, k-1 
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1+1,j,k+1 1+1, j+1,k 1+2, j,k+ 1 

l+1,j,k 

l+1,J-1,k l+l,j,k-1 1+2, J-1, k 

l+2,j+1,k 

l+3,j,k 

l+2,j,k-1 

k+.!. 
3 

k 

Figure 6.3.2-5: Computational molecules for computing u(k+l/
31

, for 
I, J 

large N, the CAGE-DG-3 scheme. 

6.3.3 The computational complexity 

In this section, our concern is to find the best computational form 

which gives the fastest CPU time. In other words, we will determine the 

computational scheme that needs the least amount of mathematical 

operations in each iteration. Table 6.3.2-1 below summarises our 

findings from Sections 6.3.1 and 6.3.2. 

Method Mul tiplicatlon Addition Overall 

AGE-DG-2 17(N-1) 2 15(N-1) 2 32(N-1) 2 

COMP-AGE-DG-2 16(N-1) 2 18(N-1) 2 34(N-1) 2 

CAGE-DG-2 12(N-3) 2 18(N-3) 2 30(N-3) 2 

AGE-DG-3 25(N-1) 3 23(N-1) 3 48(N-1) 3 

COMP-AGE-DG-3 24(N-1) 3 28(N-1) 3 52(N-1) 3 

CAGE-DG-3 15(N-3) 3 30(N-3) 3 4S(N-3) 3 

Table 6.3.2-1: The number of operations per iteration 
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The result indicates that there is a slight difference in the 

amount of work needed for each scheme. It appears that the COMP-AGE-DG 

schemes are less effective since the schemes takes more work (overall) 

when compared with the other schemes. Although the CAGE-DG schemes give 

the best performance for the computational work, symbolically, these 

schemes require more mathematical work to obtain. Thus, the best scheme 

is the standard AGE-DG-2 and AGE-DG-3 schemes. 

6.4 Sunmary 

The extension of the AGE-DG scheme for solving the two and three 

dimensional elliptic problems governed by different boundary conditions 

is the main concern in this chapter. The results obtained not only show 

that the extension is viable, but also, gives further clear evidence of 

the superiority of the AGE method over the SOR method. Although, the 

SOR method needs less computational effort, the simplicity of the AGE 

method, makes the method as powerful as SOR. 

The focal point in the early sections was to ascertain the 

consistency of the method and that the method converges to the exact 

solution when solving the problems subject to Dirichlet boundary 

conditions. This has been shown in detail on how the convergence is 

achieved. The other interesting matter is the determination of the 

theoretical optimal parameter, r. By applying a simple assumption, this 

parameter is shown to be closely related to the theoretical optimal 

parameters for the one dimensional problem. As the theory is not 

available to date, this assumption can be regarded a good approximation 

for determining the experimental value of r. 
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The AGE method is also shown to perform well for the problems 

governed by periodic and Neumann boundary conditions. Although only one 

problem has been assigned to each boundary condition, the variation of 

the value of p in the Helmholtz equation in two dimensions is sufficient 

to study the characteristics of other similar equations. This might be 

seen when solving some problems governed by Dirichlet boundary 

conditions in the earlier sections. 

The optimal single parameter r for both problems was also obtained 

experimentally, as no existing theory for this parameter would be 

determined. However, by using a rather simple assumption, the value of 

r can easily be obtained. This assumption is shown to have a similar 

pattern derived from the optimal single parameter for the one 

dimensional problem and can be considered as a good guide to obtain the 

experimental value of r. 

This chapter ends with the study of other forms of presentation of 

the AGE method. The forms which we are concerned with is the COMP-AGE 

scheme and CAGE method. The CAGE method is shown to have less 

computational work and is suitable for parallel computation. However, 

if sequential computation is considered, the AGE-DG method should be 

competitive. 

For the viability of the AGE method to solve the two dimensional 

problems governed by different boundary conditions, the simplicity of 

the method, an easy way to determine the optimal parameter r and the 

possibility of solution on parallel computers, indicates that the AGE 

method should be highly regarded as a substitute to the SOR method. 
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CHAPTER 7 

MULTI-PARAMETER ITERATIVE METHODS FOR ELLIPTIC PDE's 

7.1 The application of multi-parameters to iterative methods 

The application of multi-parameters to the one dimensional problem has 

shown rather disappointing results as the matrix derived from the 

problem does not possess the commutative properties for the matrices G
1 

and G
2

• These setbacks, however, are compensated by the reasonably good 

results from a periodic boundary value problem where the properties do 

hold. 

Young and Ehrlich [1971], have carried out some numerical 

experiments on the ADI method using more than one parameter for a 

variety of different regions for the two dimensional problem in order to 

test the applicability of the theoretical results in Section 5.1.1. The 

results obtained shows that there are some improvements in terms of the 

number of iterations and some regions where the results confirm that the 

theoretical rate 

parameters. 

of convergence -1/m 
h • where m is the number of 

In this chapter, we will again rely on the applicability of the 

theory discussed in Section 5.1.1 for these problems by using the AGE-DG 

scheme. We will also consider the heuristic search discussed in Section 

5.1.2 and other methods (Section 5.1.4), to determine the possibility of 

the improvement of the rate of convergence for these problems. 

The problem of interest is to solve the two dimensional elliptic 

partial differential equation (20-PDE) governed by Dirichlet boundary 
ov.e..-

conditions(some different regions given as follows. The regions are 
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(1) a unit square, 

(2) a unit square with a square removed from the centre, and 

(3) a right isosceles triangular region. 

For the three dimensional elliptic PDE problem (30-PDE), we confine pur 

attention only to a problem subject to Dirichlet boundary conditions on 

the unit cube. 

7.1.1 Convergence of the AGE-DG method for m (>1) parameters 

Let us recall the AGE-DG-2 scheme in Section 6. 1. 3, i.e., equation 

(6.1.3-3) - (6.1.3-6). By combining these four equations, we have 

(k+1) (k) 
u =Tu +C (7.1.1-1) 

r 

where 

1 1 
T = I - wr3 rr (ri + G )-1 A and c = wr3 II (ri + G )-1b 

r 1=4 I 1=4 I 
(7.1.1-2) 

for r > 0, r is the iteration parameter. The spectral radius ~(T ) has 
r 

been shown to be 

~(T ) = 1 -
r 

3 4wr ~ 

(r + ~)4 
< 1, (7.1. 1-3) 

where ~ is the largest eigenvalue, i.e. , the spectral radius of the 

matrices G
1

, G
2

, G3 and G4. Thus, the AGE-DG-2 scheme for a single 

parameter is convergent. 

Now, consider the nonstationary case, i.e., where the parameter rk 

varies from iteration to iteration in a cyclit manner. If we now assume 

that the matrices G1 and G2 are commutative (the matrices G3 and G4 will 

take the form of the matrices G and G after columnwise ordering), then 
1 2 

we have 

(k+l) 
u = T u<kl + C 

k+1 
(7.1. 1-4) 
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where 
1 

T = I - wr3 IT (r I + G )-1A 
k+l k+l 1=4 k+l 1 

1 

and C = wr3 IT (r I + G )-1b, for r > 0. 
k+t 1=4 k+l l k+t 

Hence, the spectral radius, ~(T ) is given by 
k+l 

3 
4wr A 

~(T ) = 
k+l 

1 - ___ k::.•...;l;__ 

(r + A)4 
k+l 

< 1, 

(7. 1. 1-5) 

(7. 1. 1-6) 

(7. 1. 1-7) 

where A is the largest eigenvalue, i.e. the spectral radius of the 

matrices G
1

, G
2

, G
3 

and G
4

. Hence, by (7.1.1-7), the AGE-DG-2 scheme for 

the nonstationary case is also convergent. 

Similarly, recall the AGE-DG-3 scheme for solving the problem in 

three dimensions, i.e., equations (6.1.3-17)- (6.1.3-22). By combining 

these six equations, we have 

(k+l) (k) 
u =Tu +C 

r 

where 

5 
1 

-1 5 
1 

-1 
T = I - wr IT (ri + G

1
) A and C = wr IT (ri + G ) b 

r 1=6 1=6 I 

for r > 0. The spectral radius ~(T ) has been shown to be 
r 

~(T ) = 1 -
r 

5 
4wr A 

(r + A)
6 

< 1, 

(7. 1.1-8) 

(7. 1. 1-9) 

(7. 1. 1-10) 

where A is the largest eigenvalue, i.e. , the spectral radius of the 

and G. 
6 

single parameter is also convergent. 

Thus, the AGE-DG-3 scheme for a 

It should be noticed that the matrices G
3 

and G
4

, G
5 

and G
6 

will 

take the form of the matrices G and G after reordering along the y and 
1 2 

z axis respectively. We now apply the nonstationary case where the 

parameter rk varies from iteration to iteration. If we assume that the 

matrices G
1 

and G
2 

commutative, then we have 
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where 

and 

u (k+l) = T u(k) + c 
k+l 

1 

T = I 5 IT (r I + G )-1 A - wr 
k+1 k+1 1=6 k+l I 

1 

C = wr5 IT (r I + G )-
1b, for r > 0. 

k+1 1=6 k+1 I k+1 

Hence, the spectral radius, ~(T ) is given by 
k+l 

~(T ) = 
k+l 

4wr5 A 
1 - ___ k::.+:..:l:.._...., 

(r + A) 6 

k+l 

< 1, 

(7.1.1-11) 

(7. 1. 1-12) 

(7.1.1-13) 

(7.1. 1-14) 

where A is the largest eigenvalue, i.e., the spectral radius of the 

matrices G
1

, G
2

, G
3

, G
4

, G
5 

and G
6

. Hence, by (7.1.1-14), the AGE-DG-3 

scheme for the nonstationary case is also convergent. 

7.1.2 The unit square region with a square removed from centre 

A unit square region for the 20-PDE, can be illustrated as 

f.-' - - - - - - - - K-

1---' - - - - - - - - ~-

f.-' - - - - - - -~--K-

1---' - - - - - - - -~-

1---'-- - -IU - - -K-

f.-' - - - - - - - -K-

1- -- ---- - -K-

1- ----- - - -~-

hi---------K-

0 

i 

X 

Figure 7.1.2-1: The number of nodes for h = 1/10. 

with the grid points or nodes shown as-*- in Figure 7.1.2-1. The model 

problem is governed by Dirichlet boundary conditions. 
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Now, consider a square removed from the centre of this region, as 

illustrated in Figure 7.1.2-2. 

y j 
(1 • 1) 

1--: - - - - - - - - (-

1--' - - - - - - - - (-

1--: (-

r-: - (- -: - (-

1--: - (- -: - (-

1--' - (- :---: - (-

H (-

1--' - - - - - - - - K-

1--' - - - - - - - - K-
u 

i 

0 X 

Figure 7.1.2-2: The number of nodes for h = 1/10. 

The inner boundaries are also subjected to the Dirichlet boundary 

conditions. The grid points in the region is solved by partitioning the 

region as shown Figure 7.1.2-3, 

y F------------., (1,1) 

7J 

...... -........................... ...-------, .............................. . 

·-·--········--···-L------' ····-··· .... -········-.. ·· 

0 X 

Figure 7.1.2-3: Partitioning the region. 

First, we compute the points in the area A. Obviously, the points 

on the dotted line become the boundaries for the area A, B and e. The 
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values on these boundaries keep changing as the points along these 

boundaries have also to be evaluated. We next solve the points in the 

area :8 and t;' including the points along the dotted line. Finally, 

having calculated the value for the points along the common boundary :8, 

t;' and V, all 'the points in the area V can be solved in similar way as in 

the area .a. 

Since the square inside the region is fixed, one must be careful 

when choosing the mesh size, h. Let us consider the case when N is odd. 

For h = 1/(N+1), if we choose h = 1/10, then the next mesh size must be 

1/20, 1/40, 1/80, so on. In other words, the next interval must be half 

that of the previous interval. In Figure 7.1.2-2, we have h = 1/10. 

It is quite difficult to derive a general matrix A which represent 

all values of h. But, by careful design we can derive each matrix A for 

each h. In this section, we will derive the matrix A for h = 1/10, 

whilst the algorithm is written for h = 1/80. As usual, we will apply 

the finite difference approximation to the Laplace equation to get the 

conventional five-point difference equation. 

Let us recall Figure 7.1.2-2, where each point is denoted as u 

The matrix A derived from Figure 7.1.2-2 can be written as follows: 

B -I 

-I B 

-c 
-c 

D 

-c 

0 
-c 
D -c 

l' J 

A = -c D -c (7.1.2-1) 

-c D -c 

0 -c D -c 
-C B -I 

-I B 

where 
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4 -1 -1 

B = 

-1 4 -1 

c = 

-1 
0 

··········•·· ... ·········••· .. , ····,'···· .. , 

-1 4 

-1 

-1 

4 
9X9 

4 -1 
-1 4 

0 

and D = 
., 

··· .. ··, 
0 

4 -1 
-1 4 

9X9 

The vector u is given by, 

u = [ut,t' .... u 
9,1' 

u 
1,2' 

• 0 • , u 
9,2' 

• 0 0 • 

and the vector b is 

b = [bt,t' .... b 
9,1' 

b 
1,2' 0 •• ' 

b 9,2; b 
1,3' 

b 
t, 7' 

b 
2,7' 

b 
8,7' 

b 
9,7' 

b 
t, a' 0 0.' b 9,8; 

By applying the AGE method, we consider 

four submatrices, i.e., 

A=G +G +G +G 
1 2 3 4 

•···•·•·· ..• 

0 
-1 

-1 
9X9 

(7. 1. 2-2) 

T u 
1,9' 

• 0 0 , u 1 • 
9,9 

b 
2,3' 

b 
8,3' 

b 
9,3' 0 0 0 ' 

b 
1,9' 

• 0 0' b 1 T• 
9,9 

the splitting of A into 

(7.1.2-3) 

where G
1

, G
2

, G
3 

and G
4 

are symmetric and positive definite. 

Now, with A in (7.1.2-1), we have 

(7. 1. 2-4) 

where 

306 



2 -1 

-1 2 -1 

········,· ..... •·••····••·•·... '·········· .... 

-1 2 

-1 

-1 

2 
9X9 

2 
-1 

-1 
2 

0 

·· .......... (7.1.2-5) 

0 
2 -1 
-1 2 

9X9 

By interchanging the direction from row to column, it can be shown 

that the matrix (G
3 

+ G
4

) has the form of (G
1 

+ G
2

) and vice-versa. 

Let us consider the matrix G as 
1 

where 

1 -1 

-1 1 

G' 

'· 

1 G' 
1 D' 

1 D' 
1 D' 

1 D' 
1 D' 

1 G' 
1 G' 2 

1 9 X9
2 

1 -1 

-1 1 

G' = D' = 
1 1 

········ .... 
'•, 

1 -1 

-1 1 

0 

'· ···· .... 
0 

1 -1 

1 -1 1 
9x9 9x9 

and the matrix G
2 

as 

G' 
2 G' 

2 D' 
2 D' 

2 D' 
2 D' 

2 D' 
2 G' 

2 
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where 

1 1 

1 -1 1 

-1 1 0 

G' = D' = 
2 2 

············•··· .. , 

1 -1 

········ .... 

0 
1 

-1 1 
L 

1 9x9 9x9 

(7.1.2-7) 

From (7.1.2-6) and (7.1.2-7), it is clear that the matrices G and 
1 

G
2 

consist of (2X2) block submatrices, symmetric and positive definite. 

-1 -1 Thus, for any iteration parameter, r > 0, (rl + G
1

) and (rl + G) do 

exist. Hence, we can use the AGE method to solve the region with N = 9. 

For other grid meshes, such as h = 1/20 or 1/40, the linear system 

Au = b can be derived in similar way. The Algorithm 7.1.2-1 is written 

for h = 1/80, i.e, N = 79, by using the AGE-DG scheme. 

Algorithm 7.1.2-1: The square region with a square removed from the 

centre, Section 7.1.2. 

Set u:~~ = 0, 1, J = 0, ... , N+1, « = r + 1, d = 1/(«
2

- 1), 

t = oc - 4w, s = w - 1, «
1 

= «d. 

Step 1: 
(k+1/4) To compute u . 

The area A in Figure 7.1.2-3. 

Step 1.1: Set 1 = 1, J = 1, H = N-2, K = 22. 

while J ~ K, compute 

while 1 ~ H, compute 

= wu (kl + wu (kl + tu (k) + su (kl + wu (kl 
rt l,J-1 1-t,J l,J l+t,J l,J+t 

+ wb 
l,j 

= wu (k) + su (k) + tu (k) + wu (k) + wu (k) 
r2 l+t.J-1 l,J l+t,J l+2.J l+t.J+t 
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+ wb 
1+1' j 

(k+l/4) 
u = a. r + r d, 
l,j I I 2 

(k+l/4) 
u = r

1
d + a. r 

l+l,j I 2 

i = i + 2 

(k+l/4) 
u = (wu !kl + wu !kl + tu !kl + wu !kl + wb )/a. 

N,j-1 N-l,j N,J N,j+t N,J N,j 

j=j+l. 

Step 1.2: Set i = 1, j = 23, H =N-Z. 

while i s H, compute 

(k) 
r = wu + wu (k) 

1-l,j 
+ tu!kl + su!kl + wu!kl 

l,j+t 1 1' J-1 l,j l+t,j 

if (23 < 1 < (N-22)) then r 
I 

(k) 
r = wu 

2 1+1, J-1 
+ su!kl + tu!kl 

l,j l+t,j 

(k) 
= r - wu 

+ wb 
I, J 

1 1' j+l 

+ wu (k) 

1+2,J 
+ wu (k) 

1+1,j+1 

+ wb 
l+l,j 

if (23 < (i+1) < (N-22)) then r = r - wu!kl 
2 2 l+t,j+l 

U (k+l/4) -- d + r
1 

a. r 
l+l,j I 2 

i = i + 2 

u (k+l/4) = 
N,j 

(wu!kl + wu!kl + tu!kl + wu!kl + "'b )/a. 
N,j-1 N-l,j N,J N,j+l N,j 

The area Bin Figure 7.1.2-3. 

Step 1.3: Set i = 1, j = 24, H = 21, K = N-23. 

while j s K, compute 

while 1 s H, compute 

(k) r = wu + wu (k) 
1-t,j 

+ tu!kl + su!kl + wu!kl 
1 1, J-1 

r = wu!kl 
2 1+1, J-1 

l,j l+l,j 

+ su!kl + tu!kl 
l,j 1+1,j 
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+ wu (k) 
1+2,j 

1' j+t 

+ (,)b 
l,j 

+ wu (k) 
l+t,j+l 

+ (,)b 
l+t,j 



(k+1/4) 
u = a. r + r d, 

l,J 1 1 2 

(k+1/4) 
u = r

1
d + IX r 

l+l,j 1 2 

I = i + 2 

(k+1/4) 
u = 

N,j 
(wu (k) + wu (k) + tu (kl + wu (k) + wb )/IX 

N,j-1 N-t,j N,J N,j+l N,j 

j = j + 2. 

The area~ in Figure 7.1.2-3. 

Step 1.4: Repeat Step 1.3 fori= 57, j = 24, H = 77, K = N-23. 

The area V in Figure 7.1.2-3. 

Step 1.5: Repeat Step 1.2 for i = 1, j = N-22, H = N-2. 

Step 1.6: Repeat Step 1.1 fori= 1, j =58, H = N-2. K =N. 

Step 2: 
(k+1/2) To compute u I = 2, j = 1. 

The area A in Figure 7.1.2-3. 

Step 2. 1: Set i = 2, j = 1, H = N-1, K = 23. 

while j :s K, compute 

(k+1/2) ( (k+1/4) + U (k) )/IX u = ru 
1-1,] l-1,j 1-1, j 

while i :s H, compute 

= ru (k+1/4) + u (k) _ u (k) 
r1 1 ,J l,j 1+1,J 

u (k) + u (k) 

l,j i+t,j 

(k+1/2) 
u = r

1
d + IX r 

l+t.J 1 2 

I = i + 2 

j = j + 1 

The area Bin Figure 7.1.2-3. 

Step 2.2: Repeat Step 2.1 fori= 2, j = 24, H = N-1, K = N-23. 

The area~ in Figure 7.1.2-3. 

Step 2.3: Repeat Step 2.1 fori= 58, j = 24, H = N-1, K = N-23. 

The area V in Figure 7.1.2-3. 

Step 2.4: Repeat Step 2.1 fori= 2, j = N-22, H = N-1, K =N. 
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Step 3: To compute u (k+J/4) (Change in direction). 

The area A in Figure 7.1.2-3. 

Step 3.1: Set fori= 1, J = 1, H = 23, K = N-2. 

while i s H, compute 

while J s K, compute 

= ru (k+1/2l + u !kl _ u !kl 
r1 I,J I,J I,J+1 

= ru(k+1/2l 
r2 l,J+t 

(k+J/4) 
u = ex r + r d, 

l,j 1 1 2 

(k+J/4) 
u = r

1
d + «

1
r

2 l,j+l 

J = J + 2 

(k+J/4) 
u 

I,N 
= (ru (k+l/2l + u !kl )/« 

l,N l,N 

i=i+l. 

The area~ in Figure 7.1.2-3. 

Step 3.2: Repeat Step 3.1 fori= 24, J = 1, H = N-23, K = 21. 

The area~ in Figure 7.1.2-3. 

Step 3.3: Repeat Step 3.1 fori= 24, j =57, H = N-23, K = N-2. 

The area V in Figure 7.1.2-3. 

Step 3.4: Repeat Step 3.1 fori= N-22, J = 1, H = N, K = N-2. 

Step 4: 
(k+1) 

To compute u i = 1, J = 2. (change in direction). 

The area A in Figure 7.1.2-3. 

Step 4.1: Set fori= 1, J = 2, H = 23, K = N-1. 

while i s H, compute 

(k+ll 
u 

1, J-1 
= (ru (k+J/4) + u !kl )/« 

l,j-1 l,j-1 

while J s K, compute 

= ru (k+J/4) + u (kl - u (kl 
r1 I.J 1,) 1,)+1 

= ru(k+3/4l 
r2 l,J+t 

u<kl + u<kl 
l,j l,j+t 
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(k+l) 
u =rd+«r 

l' j+l 1 1 2 

j = J + 2 

1 1 + 1. 

The area~ in Figure 7.1.2-3. 

Step 4.2: Repeat Step 4.1 for 1 = 24, j = 2, M= N-23, K = 22. 

The area~ in Figure 7.1.2-3. 

Step 4.3: Repeat Step 4.1 for i = 24, J =58, M= N-23, K = N-1. 

The area V in Figure 7.1.2-3. 

Step 4.4: Repeat Step 4.1 fori= N-22, J = 2, M= N, K = N-1. 

Step 5: Repeat Step 1 to Step 4 until convergence is achieved. 

7.1.3 The right isosceles triangular region 

Let us consider the right isosceles triangular region given in Figure 

7.1.3-1. 

J 
y ·r--.--.--.--.--.--.--.~~ (1,1) 

i 

X 

Figure 7.1.3-1: The Right Isosceles Triangular Region, where h = 1/8. 

This right isosceles triangular has two equal sides of length unity 

and the boundaries are prescribed on each side and the hypotenuse. The 
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grid points, as usual, are denoted as u . 
I, J 

It is obvious that the 

number of grid points on the line are alternately even and odd, along 

the y axis, and vice versa. This characteristic gives a rather unusual 

matrix A compared to the one derived from a square region. 

By applying the usual five-point finite difference approximation, 

yields the linear system Au = b, with A given as in (7.1.3-2), and the 

respective vector u and b are 

u = [u12' • 0 • ' 
u 17' u 23' ... , u 27; u 34' 0 •• , u 37; u 45' u 46' u 47' 

T ... , u 56' u 57; u671 

... , 0, b·b OOb· 
27' 34' , , 37' 

By applying the AGE method, we consider a splitting of the matrix A 

in (7.1.3-2) in four submatrices, i.e, 

A=G+G+G+G (7.1.3-1) 
1 2 3 4 

where G
1

, G
2

, G
3 

and G
4 

are symmetric and positive definite. 

4 -1 
-1 4 -1 -1 

-1 4 -1 -1 
-1 4 -1 -1 

-1 4 -1 -1 
-1 4 -1 

-1 4 -1 
-1 -1 4 -1 -1 

-1 -1 4 -1 -1 
A= -1 -1 4 -1 -1 

-1 -1 4 -1 
-1 4 -1 

-1 -1 4 -1 -1 
-1 -1 4 -1 -1 

-1 -1 4 -1 
-1 4 -1 

-1 -1 4 -1 -1 
-1 -1 4 -1 

-1 4 -1 
-1 -1 4 -1 

-1 4 

(7.1.3-2) 
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From (7.1.3-2), we have A
1 

= G + G, 
1 2 

2 -1 
-1 2 -1 

-1 2 -1 
-1 2 -1 

-1 2 -1 
-1 2 

2 -1 
-1 2 -1 

-1 2 -1 
-1 2 -1 

-1 2 
2 -1 
-1 2 -1 

-1 2 -1 
-1 2 

2 -1 
-1 2 -1 

-1 2 
2 -1 
-1 2 

2 

(7. 1. 3-2) 

From (7.1.3-2), we can show that the matrices G and G consist of 
1 2 

(2X2) block submatrices, symmetric and positive definite. The matrices 

G
1 

and G
2 

are given as follows: 

G = 
1 

where 

1 
-1 

-1 
1 

1 
-1 

-1 
1 

-1 1 
-1 

1 

-1 
1 

G = 
2 

314 

c 
2 

c 
4 

(7. 1. 3-3) 
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c = 
1 

1 
1 
-1 

-1 
1 

1 
-1 

[1 -1] 
-1 1 • 

-1 
1 

1 

[

1 

1 -1 ] c
2 

= -1 1 :1 -~ . 

c, _ lMJ. c,. [t,;l·"' "·. [!Jr] 

Evidently, for any r > 0, the matrices (ri + G
1

)-
1 and (ri + G

2
)-

1 

do exist, where r is the iteration parameter. Hence, we can use the AGE 

method, i.e., the AGE-DG scheme, to solve the right isosceles triangular 

region. First, to derive the matrix er = (rl + G1) - wA. 

For N = 7, we then have 

c = 
r 

t 
s 

s 
t 
s 

w 

s 
t 
s 

w 

w 
s 
t s 
s t s 

s t 
t 
s 

w 
w 

w 

w 
w 

w 
w 

s 
t s w 
s t s 

s t s 
s t 

w t 
w s 

w 
w 

where t = a - 4w, s = w - 1, with a = r + 1. 
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w 
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t s w 
s t s w 

s t 
w t s 

w s t 
w s 

w 

w 

s w 
t w 

t s 
w s t w 

w t 



In general, for the case when N is odd, the algorithm for solving 

the region can be written as follows. 

Algorithm 7.1.3-1: The right isosceles triangular region. 

Set u (k) = 0 1 J = 0, 
1, J , t 

2 ... , N+1, a;= r + 1, d = 1/{a; - 1), 

t = a; - 4w, s = w - 1, «
1 

= a;d. 

Step 1: 
(k+1/4) To compute u . 

Even number of points on a line. Set 1 = 1, j = 1 + 1. 

while i ~ N-2, compute 

while j ~ N, compute 

(k) 
r = wu + wu (k) + tu (kl + su <kl + wu (kl 

1 1-1, J 

r = wu<kl 
2 1-l,j+l 

1 = i + 2 

J = i + 1 

l,j-1 l,J l,j+l l+t,j 

+ su(k) + tu(kl 
l,J l,J+l 

+ wu (k) 
l,j+2 

+ wb 
l,j 

+ wu (k) 
l+l,j+l 

+ wb 
l,j+l 

u(k+114l = r d + a; r 
l,J+t 1 1 2 

Odd number of points on a line. Set i = 2, j = 3. 

while 1 ~ N-1, compute 

while j ~ N-2, compute 

r = wu(k) + wu (kl + tu (kl + su (kl + wu (k) 
1 1-1,] 

r = c.>u (kl 
2 1-t,j+t 

l,j-1 l,j l,j+l l+t,J 

+ su(k) + tu(kl 
l,j l,J+l 

+ wu (k) 
l,j+2 

+ c.>b 
I, J 

(k) 
+c.>U 

l+t,j+l 

+ wb 
l,j+l 

(k+1/4) 
u = r

1
d + a;

1
r

2 l,j+t 
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Step 2: 

j = j + 2 

(k+1/4) 
u = (wu (kl + wu (kl + tu (kl + wu (k) + wb )/a 

I,N 1-t,N l,N-1 

1 = 1 + 2. 

(k+1/2) To compute u . Set 1 = 1. 

Even number of points on a line. 

while 1 s N-2, compute 

k = i + 1, j = k + 1 

u (k+l/2) = (ru (k+1/4l + u (kl )/a: 
l,k l,k l,k 

while j s N-2 , compute 

= ru (k+1/4l + u (kl _ u (kl 
r1 t,J I.J I,J+1 

(k+1/4) 
r = ru 

2 1' j+l 
u(kl + u(kl 

1' j 1, j+t 

l,N l+t,N l,N 

(k+1/2) u = a. r + r d, U 
(k+1/2) = d + 

r1 <X1r2 I.J 1 1 2 

j = j + 2 

(k+1/2) 
u 

I,N 

1=1+1. 

l,j+t 

Odd number of points on a line. Set i = 2. 

while 1 s N-1, compute 

k = i + 1, j = k + 1 

(k+1/2) 
u 

l,k 
= (ru(k+1/4l + u(kl)/o: 

l,k 1, k 

while j s N-1 , compute 

= ru (k+l/4) + u (kl _ u (kl 
r1 I.J l,j l,j+1 

(k+l/4) 
r = ru 

2 1 ,j+l 
u (k) + u (k) 

l,j 1, j+t 

(k+l/2) u = a. r + r d, U (k+1/2) = d + 
r1 "'1r2 l,j 1 1 2 l,j+l 

j = j + 2 

1=1+1. 
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Step 3: 
(k+3/4) 

To compute u Set m = 2, k = 1. 

Even number of points on a line. 

while m ~ N-1, compute 

1 = m, j = m + 1 

while k ~ m/2 , compute 

= ru (k+l/2) + u (k) - u (k) 
rl l,j l,j 1-I.J 

(k+l/2) 
r = ru u (k) + u (k) 

2 1-1, J l,j 1-l,j 

(k+3/4) 
u =a r + r d, 
l,j I I 2 

(k+3/4) 
u =rd+a.r 

1-1, J I I 2 

1 = 1 - 2 

k = k + I 

m= m + 2. 

Odd number of points on a line. Set j = 2, k = 1. 

while j ~ N-1, compute 

(k+3/4) ( (k+l/2) u(k) )/a. u = ru + 
1,] I,J I,J 

1 = j - 1, m = (J - 2)/2 

while k ~ m , compute 

(k+l/2) (k) 
r=ru +u 

I l,j l,j 

(k+l/2) 
r = ru 

2 1-1, J 

1 = 1 - 2 

k = k + 1 

j = j + 2. 

(k) 
- u 

1-l,j 

(k+3/4) 
u = r

1
d + a.

1
r

2 1-l,j 

Step 4: To compute u (k+!) Set m = 2, k = 1. 

Even number of points on a line. 

while m ~ N-1, compute 

1 = m, j = m + 1 
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u (k+l) 
l,j = ( (k+3/4) 

ru 
I, J 

+ u<kl)lll 
I, j 

i = 1 - 1 

while k :s (m - 2)12 • compute 

= (k+3/4) 
+ u 

(k) (k) 
r ru - u 

1 I.J l,j 1-1,) 

(k+3/4) (k) 
+ u 

(k) 
r = ru u 

2 l-1,j l,j l-1,j 

(k+l) 
u = r

1
d + ll r 

l-1,j 1 2 

1 = i - 2 

k = k + 1 

(k+l) 
u 
l,j 

= (ru (k+3/4l + u (kl )Ill 
l' j l' j 

m= m+ 2. 

Odd number of points on a line. Set m = 1, k = 1. 

while m :s N-2, compute 

1 = m, j = m + 1 

(k+l) 
u = 
l,j 

(ru (k+3/4l + u (kl )Ill 
l,j l,J 

1 = i - 1 

while k :s m/2 , compute 

= ru (k+3/4l + u <kl _ u (kl 
rt l,J l,J 1-t,J 

(k+3/4) 
r = ru 

2 1-1,) 

u (k+l) 
I, J = ll1r1 

1 = i - 2 

k = k + 1 

m= m + 2. 

+ 

u<kl + u<kl 
I.J 1-I.J 

r
2
d, 

(k+1) 
u 
1-l,j 

=r
1
d+a.r 

I 2 

Step 5: Repeat Step 1 t o Step 4 until convergence is achieved. 
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7.1.4 Experimental results 

Numerical results presented here are concerned with the application of 

multi-parameters on different regions for the two dimensional problem 

governed by the Dirichlet boundary conditions and the three dimensional 

problem in a unit cube governed by the Dirichlet boundary conditions. 

Again, the existing ADI multi-parameter formulae has been tested 

and it has been found that these parameters are not suitable for these 

problems where the splitting is based on the AGE method as there is no 

gain in terms of number of iterations. Other hypotheses also do not 

work well as no improvement is shown concerning the rate of convergence. 

Thus, the results obtained were purely based on the heuristic search for 

two parameters. 

Problem 1 - The Poisson Equation 

= - 2, 0 ::s x,y :::s 1, 

The exact solution is U(x,y) = sinh nx sin ny + x(1 - x). 

(A) The unit square region, see Figure 7.1.4-1. 

The boundary conditions are given by 

U(O,y) = 0, U(1,y) = sinh nx sin ny, 0 ::s y ::s 1, 

U(x,O) = U(x,1) = x(1- x), O::sx::sl. 

y 1'---------., (1 • 1) 

(0, 0) X 

Figure 7.1.4-1: The unit square region 
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The results are tabulated in Table 7.1.4-1. 

Single Parameter 2 parameter - Heuristic 
h-1 

iter iter r r r 
1 2 

10 0.97- 1. 08 27 0.59 6.17 19 
20 0.58 - 0.59 56 0.30 14.53 36 
40 0.34 116 o. 15 27.98 64 
80 0.18 228 0.08 57.00 112 

Table 7.1.4-1: Number of iterations for Problem 1- Region (A) 

(B) The unit square with a square removed from the centre, see Figure 

7. 1. 4-2. 4 4 The unit square removed is 
10 

X 10 . The outer boundary 

conditions are as given in the unit square region. 

The inner boundary conditions are given by 

U(x,y) = sinh nx sin ny + x(1 - x). 

y r-----------~(1,1) 

D 
(0,0) X 

Figure 7.1.4-2: The unit square region with a square removed 
from the centre 

The results are tabulated in Table 7.1.4-2. 

Single Parameter 2 parameter - Heuristic 
h-1 

iter iter r r r2 1 
10 1. 73 - 1. 08 12 0.99 3.59 10 
20 1.12 - 0.59 25 0.59 4.86 18 
40 0.65 - 0.69 54 0.32 10.75 34 
80 0.41 - 0.42 121 0.20 33.00 78 

Table 7. 1..4-2: Number of iterations for Problem 1 - Region (B) 
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(C) The right isosceles triangular region, see Figure 7. 1. 4-3. 

The boundary conditions on the hypotenuse are 

U(x,y) = sinh nx sin ny + x(l - x), 

and on the other sides of length unity, 

U(O,y) = 0, 0 :S y :S 1, U(x,1) = x(1 - x), Q:Sx:Sl. 

y 'F-------:: ( 1 • I) 

(0, 0) X 

Figure 7.1.4-3: The right isosceles triangular region 

The results are tabulated in Table 7.1.4-3. 

Single Parameter 2 parameter - Heuristic 
h-1 

iter iter r r1 r2 
10 1.67- 1. 71 16 0.96 3.93 13 
20 1. 10 36 0.53 2.15 25 
40 0.79 102 0.30 1. 31 60 
so 0.78 373 0.28 1. 28 202 

Table 7.1.4-3: Number of iterations for Problem 1- Region (C) 

Problem 2 - The three dimensional problem 

0 ::s x,y,z ::s 1, 

governed by the Dirichlet boundary conditions 

U(x,y,O) = U(x,y,1) = 0 o :S x,y :S 1, 

U(x,O,z) = U(x,1,z)-:=sin rrx sin nz O::sx,z:sl, 

U(O,y,z) = U(1,y,z) = 0 o:.:y,z:Sl. 

The exact solution is 

U(x,y,z) = sech ~sin nx cosh {v2n(y- 0.5)} sin nz. 
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The results are tabulated in Table 7.1.4-4. 

Single Parameter 2 parameter - Heuristic 
h-1 

iter iter r r r 
1 2 

12 1. 22 - 1. 25 26 0.62 3.01 18 
14 1.08 - 1.11 31 0.55 5.96 20 
16 0.98 35 0.49 8.80 22 
18 0.88- 0.89 40 0.44 10.41 24 
20 0.81 44 0.39 12.25 26 

Table 7.1.4-4: Number of iterations for Problem 2 

Varga [1962], has shown that in the ADI-PR method, if a certain 

single iteration parameter r >0, is used for all iterations, then the 

number of iterations varies as h - 1
• This work shows that this result 

holds well for the square and its related area, i.e., the region with a 

square removed from the centre but not for the triangular region. In 

this region, the error propagation waves cannot dissipate themselves as 

quickly over the domain as in the other regions. As a result, more 

iterations are needed at a larger number of points which shows that 

convergence is slower. 

Young and Ehrlich [1955], proved that with the ADI-PR method, the 

-1/m number of iterations was proportional to h , for m = 1, 2 and 3. In 

their work,- this seems to hold fairly well for the square and its subset 

but not for the triangular region. Nevertheless, for this region, the 

-<X number of iterations still appeared to vary like h , where 0 < ex < 1. 

Due to the similarity of the AGE-DG scheme to the ADI-PR method and 

from the theory with m = 2, one would expect the number of iterations to 

1 to h-1/2. be proportiona However, the results shows that the rate of 

-<X convergence for the first two regions varies like h , where 0 < ex < 1 

with ex= 1-, as shown in the Table 7.1.4-5 which follows: 
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Rate of Convergence 
Problem-region 

Single Parameter two Parameter 

Problem 1 - A 1. 0285 0.8879 
Problem 1 - B 1. 1113 0.9808 
Problem 1 - c 1. 5132 1. 3136 
Problem 2 0.9600 0.6727 

Table 7.1.4-5: Comparison of the rate of convergence 

The triangular region with m = 2, however, does not fall in this 

category but gives a slightly better result compared with the single 

parameter. Although the change of the rate of convergence is only 

small, the gain in the number of iterations may be considered quite 

substantial when N is large. 

For the three dimensional problem, 1. e. , Problem 2, the method 

performs slightly better when compared to the two dimensional problem. 

This can be seen from Table 7. 1. 4-5 and Table 7. 1. 4-6 which show a 

considerable gain in the number of iterations. 

Since G and G are the (2X2) block submatrices, then it was quite 
1 2 

sufficient to investigate only a small number of parameters, i.e., 2 or 

3. However, as the slope for the two parameter case does not change 

according to -1/2 
h • and moreover the heuristic search for the three 

·parameters is too cumbersome, then it is appropriate at the moment to 

consider only the 2 parameter case. 

These results obtained seem disappointing perhaps due to the 

following reasons. In our case, the matrices G
1 

and G
2 

are not 

commutative for all regions. Moreover, the block size (2x2) is too 

small compared to the large block sizes of the ADI-PR method which is 

often of size (20x20) or bigger. The small block size coupled with 

their multiplicity will cause all the eigenvalues to be clustered and 
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not distinctive as in the ADI-PR method, As a result, this may develop 

round-off error growth for the large parameter values. 

Apart from the good results where the number of iterations are 

reduced to almost half in every case, the only setback is the doubtful 

stability when solving for a larger number of points. Experimentally, 

these results show that the first parameter is close to zero so that the 

second parameter will be some distance apart. Thus, if the 2 parameter 

case is going to be considered, one must take a full consideration when 

solving larger number of points. 

7.2 The multi-parameter case Cor the semi-iterative methods 

The multi-parameter case for the semi-iterative method for one 

dimensional problems has been discussed in detail in Chapter 5. In this 

section, we will now extend the application for the two and three 

dimensional problems. Since the results for the one dimensional problem 

gave no gain in terms of the number of iterations required for 

convergence, then we would expect a similar pattern when solving a 

problem with higher dimension (as in Section 7.1), for the case of more 

than one parameter. 

7.2.1 The Richardson method 

Let us recall the Richardson Method, i.e., equation (5.2.1-2) 

where w is defined in (5.2.1-6). 
k+l 

(7.2.1-ll 

When applying the method in one dimension, we can simply use the 

CAGE algorithm, i.e., Algorithm 4.2.2-2 with the substitution of 2rw 
k+l 
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instead of 2r. Since the CAGE method for higher dimensions is more 

tedious to use, then, we will consider using the AGE-DG scheme written 

as a single equation for solving the two and three dimensional problem. 

Thus, by combining the four equations from the AGE-DG-2 scheme in 

equations (6.1.3-3)- (6.1.3-6) into the single equation, we have 

where 

We will consider only the case where r = r . 
k 

(7.2.1-2) 

(7.2.1-3) 

By interchanging from row to column ordering or vice-versa, we can 

reduce the iteration to four steps involving the matrices G
1 

and G
2

• 

Thus, a step by step calculation can be performed as follows: 

Step 1: 
(k) 

(ri + G f 1 (b - Au (k)) Compute v = 
I 

Step 2: Compute 
(k) = (ri + G )-1v (k) 

w 
2 

Step 3: Compute 
(k) = (ri + G )-lw(k) V 
c I c 

Step 4: Compute 
(k+l) (k) 3 (ri + G )-lv(k) u = u + 2r w • c c k+l 2 c 

where c denotes the columnwise ordering. 

Now, let us consider the matrices A, G
1 

and G
2 

as in (6.1.1-11) and 

(6.1.1-15) respectively. Thus, the algorithm for the Richardson method 

for the two dimensional (20) problem can be written as follows: 

Algorithm 7.2.1-1: The Richardson Method for the 2D problem. 

Set u:~~ = 0, 1, j = 0, ... , N+1, a= r + g, d = 1/(a2
- 1), a 1 =ad, 

wk, k = 1, N, from the relation (5.2.1-6). 
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Step 1. To compute v(kl = (rl + G
1
)-1(b- Au<k>). 

Step 2. 

Step 3. 

Set 1, j = 1. 

while j ~ N, compute 

while i ~ N-2, compute 

(k) 
r = u + u (k) 

1-1,] 
4 (k) + u (k) + u (k) + b 
gul,J t+t,J l,J+t l,J 1 l,j-1 

(k) 
r = u 

2 1+1, J-1 
+ u (k) 

I, J 
4 (k) + u(k) + u<k> 

gul+t,J t+2,J t+t,J+t 

(k) 
v = ex r + r d, 

l,j 1 1 2 

(k) 
v = r

1
d + ex

1
r

2 1+1, J 

1 = i + 2 

= (u<k> + u<k> 
N,j-1 N-1,] 

4gu (kl + u (kl + b )/ex 
N,j N,j+1 N,j 

j=j+l. 

To compute w(k) = (rl + G )-1v(k). 
2 

Set i = 2, j = 1. 

while j ~ N, compute 

w(kl = v<k> /ex 
l,J t,J 

while i :s N-1, compute 

(k) 
= 

(k) 
+ dv 

(k) 
w ex v 
l,j 1 I' J l+t, j 

(k) 
dv 

(k) + ex v<kl w = 
1+1, J I, j 1 l+t,j 

i = 1 + 2 

j=j+l. 

To compute v(k) = (rl + G )-1w<k>. 
c 1 c 

Set i, j = 1. (Change in direction) 

while i ~ N, compute 

while j ~ N-2, compute 

(k) = (k) + dw<k> V exw 
I, j 1 I.J l,j+l 

v<k> = dw(kl + ex w<k> 
l,j+l I, j 1 l,J+l 
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Step 4: 

j = j + 2 

wCkl = wCkl la. 
l,N l,N 

1=1+1. 

Set i = 1, j = 2. (Change in direction) 

while i s N, compute 

(k+l) 
u = u Ckl + 2r3w v(k) la. 

I, I 1,1 k+l 1,1 

while j s N-2, compute 

u!k+ll = u!kl + 2r3w d(a.v!kl + vCkl ) 
l,J l,j k+t l,j l,j+l 

u!k+ll = uCkl + 2r3w d(vCkl + a.v!kl ). 
l,j+t t,j+l k+l l,j l,j+l 

j = j + 2 

1=1+1. 

Step 5. Repeat Step 1 to Step 4 until convergence is achieved. 

Now, for the three dimensional (3D) problem, let us recall the 

AGE-DG-3 scheme, i.e., equations (6.1.3-17) - (6.1.3-22). By combining 

these six equations, we then have the single equation, 

where 

I 
-I IT (ri + G ) • 

1=6 I 

Again, we will consider only the case where r = rk. 

(7.2.1-4) 

(7.2.1-5) 

By interchanging the order of the direction, 1. e. , from x to y, 

from x to z and vice-versa, we proceed as before and only consider the 

matrices G
1 

and G
2

• 

follows: 

Thus, the whole calculation can be performed as 

328 



Step 1: Compute v<kl = (rl +G)-1 (b-
I 

Au (kl) 

Step 2: Compute w<kl = (ri + G )-lv(kl 
2 

Step 3: Compute v<kl = (rl + G )-lw(kl 
X I X 

Step 4: Compute 
(k) 

(rl + G )-lv(kl w = 
X 2 X 

Step 5: Compute v<kl 
y = (ri + G J-1w<kl 

I y 

Step 6: Compute 
(k+l) (k) 5 -1 (k) 

u = u + 2r W (rl + G ) V , 
y y k+l 2 y 

where x and y denote the change of direction along the x-axis and y-axis 

respectively. 

By considering the matrices A in (6.1.2-6), G and G in (6.1.2-10) 
1 2 

we can write the algorithm for the Richardson method for the 3D problem. 

Algorithm 7.2.1-2' The Richardson Method for the 3D problem. 

Set u<kl = 0, 1, j, k = 0, ... , N+1, a:= r + g, d = 1/(a:2 - 1), 
1, j, k 

a:
1 

= a:d, wk, k = 1, N, from the relation (5.2.1-6). 

Step 1: To compute v(k) = (ri + G f 1 (b- Au(k>). Set 1, j, k = 1. 
1 

while k ~ N, compute 

while j ~ N, compute 

while 1 ~ N-2, compute 

r = u (kl + u (k) + u (kl - 6gu (kl 
1 l,J,k-1 l,j-t,k 1-t,j,k l,j,k 

+ u (k) + u (k) + u (k) + b 
l+t,j,k l,j+l,k l,j,k+l l,j,k 

= u<kl + u<kl + u<kl 
r2 l+t,J,k-t l+t,J-t,k l,J,k 

6gu (kl 

+ u (k) 

1+2, j,k 

1 = 1 + 2 

1+1, j,k 

+ u (k) 

l+t,j+t,k 
+ u (k) 

l+t,j,k+l 

V
(k) d 

= rt + a:tr2 1+1, J,k 
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Step 2: 

Step 3: 

= (u (kl 
N,j,k-1 

+ u (k) 

N,j-t,k 
+ u (k) 

N-1, j,k 
6gu (kl 

N, j,k 

+ u(kl + u(k) + b )/oc 
N, J+l,k N, J,k+l N, j,k 

J = J + 1 

k=k+l. 

To compute w(k) = (rl + G )-1v(kl. Set 1 = 2, J, k = 1. 
2 

while k s N, compute 

while J s N, compute 

w<kl 
1, j,k 

= v (k) /oc 
1, j,k 

while 1 s N-1, compute 

(k) 
w 

(k) 
= a. V 

1 l,j,k 

= dv<kl 
1+1, j,k 1, J, k 

1 = 1 + 2 

J = J + 1 

k=k+l. 

+ dv<kl 
l+t,J,k 

+ "' v(kl 
1 1+1, j,k 

To compute v(k) = (rl + G )-lw(k). Set 1, J, k = 1. 
X I X 

(Change direction). 

while k s N, compute 

while 1 s N, compute 

while J s N-2, compute 

v<kl (k) 
=ocw 

1 f j, k 

v<kl 
l,j+l,k 

J = J + 2 

1 1, J,k 

= dw(k) 
1, j,k 

(k) 
V 

l,N,k 
= w (k) /oc 

l,N,k 

i = i + 1 

k=k+l. 

+ dw<kl 
l,j+l,k 

+ "' w<kl 
1 l,j+t,k 
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Step 4: 

Step 5: 

Step 6: 

(k) -1 (k) 
To compute w = (rl + G ) v . 

X 2 X 

Set i = 1, j = 2, k = 1. 

(Change in direction). 

while k ~ N, compute 

while i ~ N, compute 

,.<kl (k) 
/a. = V 

1' t,k 1' 1, k 

while j ~ N-1, compute 

,.<kl 
l,j,k 

= 

,.<kl 
l,j+t,k 

j = j + 2 

1 = i + 1 

k=k+l. 

(k) 
To compute v 

y 

a.v 
(k) 

1 l,j,k 

= dv<kl 
l, J, k 

Set i, j, k = 1. 

(Change in direction). 

while 1 ~ N, compute 

+ dv<kl 
l,j+l,k 

+ a. v<kl 
1 l,j+l,k 

while j ~ N, compute 

while k ~ N-2, compute 

(k) 
V 

(k) 
=a w 

1, j, k 1 l,J,k 

v(kl 
l,J,k+l 

= dw(kl 

k = k + 2 

v(kl 
1, j,N 

j = j + 1 

1=1+1. 

(k+1) 
To compute u 

y 

1, j,k 

+ dw(kl 
1, j,k+t 

+ a. ,.<kl 
1 l,j,k+t 

Set 1, j = 1, k = 2. (Change in direction) 
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while 1 ~ N, compute 

while j ~ N, compute 

u (k+ll = 
1, j t 1 

(k) 
u 

5 (k) 
+ 2r w v /a. 

l, j, 1 k+l l,j,l 

while k s N-1, compute 

(k+1) 
u 

l,j,k 
= u(k) + 2r5w d(a.v(k) + v(k) ) 

l,j,k k+l l,j,k l,j,k+l 

u(k+1) = u(k) + 2r5w d(v(k) + a.v(k) ) 
l,j,k+l l,j,k+l k+t l,j,k l,j,k+t 

k = k + 2 

j = j + 1 

i=i+l. 

Step 7: Repeat Step 1 to Step 6 until convergence is achieved. 

7.2.2 The Chebyshev semi-iterative method 

Let us recall the Chebyshev semi-iterative method, i.e., equations 

(5. 2. 2-1) and (5. 2. 2-2) which are used to solve the one dimensional 

problem. This method can also be applied to solve 2D and 3D problems. 

We rewrite equations (5.2.2-1) and (5.2.2-2) as follows: 

and u(k+1) = wk[u(k) + N-1 (b - Au(k))] + (1 - wk)u(k-1) 

k = 1, 2, 

(7.2.2-1) 

(7.2.2-2) 

with the respective matrix N-1 for the 2D and 3D problems is in the form 

of (7.2.1-3) and (7.2.1-5). 

Unlike in the one dimensional problem, the CAGE algorithm for the 

Chebyshev method to solve the 2D and 3D problems is quite difficult to 

be implemented. Instead, we will use the step by step calculation as it 

has been shown in the Richardson method. These calculations have to be 

split into two parts. 
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(1) 
First, to compute the vector u and then the routine calculations 

to obtain the vector u!k+ll. By interchanging the direction from row to 

column, once again, we only need to consider the matrices G
1 

and G
2

. 

Obviously, the computational work for u(kl + N-l (b - Au!kl) is 

similar to the ones in the Richardson method except the multiplication 

of 2rw k+l Thus, the algorithm for the chebyshev semi-iterative method 

for solving the 2D and 3D problems may be written based on the Algorithm 

7.2.1-1 and 7.2.1-2 respectively with some amendments to the existing 

algorithms. 

7.2.3 The computational complexity 

Obviously, the Richardson and Chebyshev semi-iterative methods need just 

a little more computational effort compared to the AGE-DG scheme. In 

the Richardson method, the only extra calculation is w for each k+l 

point. Thus, for a large N, we may expect an extra ~ and N3 work for 

the respective 2D and 3D problems for every iteration. 

The chebyshev need a slightly more computational work. Apart from 

(k-1) the multiplication of wk, the term (1-wk)u need one addition and 

one multiplication for every point at each iteration. Thus, for large 

N, the extra work needed is ~ additions and 2~ multiplications for the 

2D problem, and~ additions and 2~ multiplications for the 2D problem. 

7.2.4 Experimental results 

The Problem 1 in square region and Problem 2 given in Section 7.1.5 were 

investigated further to obtain some improvements in terms of the number 

of iterations. 
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The theoretical discussed in Sections 5.2. 1 seems to be 

unsuitable for problems where the splitting of matrix A is according to 

the AGE method. Experimentally, these wk do not give any improvement 

concerning the rate of convergence. Thus, the results for the 

AGE-Richardson method obtained in this section were based on the wk 

which were determined heuristically. 

For the AGE-Chebyshev method, the Chebyshev parameters given in 

Section 5. 2. 2 seem to fit well and it is obvious that ;\. is in the 
max 

interval [0,1], i.e., for the method to converge. 

Problem 1 - The Poisson Equation 

0 :s x,y :s 1, 

The boundary conditions are given by 

U(O,y) = 0, U(1,y) = sinh nx sin ny, Q:sy:s1, 

U(x,O) = U(x,1) = x(1- x), O:sx:sl. 

The exact solution is 

U(x,y) = sinh nx sin ny + x(1 - x). 

The results are tabulated in Tables 7.2.4-1 and 7.2.4-2. 

AGE-DG-2 AGE-Richardson 

1 par 2 parameter (par) 3 parameter (par) 
h-1 

iter iter iter r w r w w2 1 

10 27 1. 02-1. os 1. 25 21 1. 14-1. 17 1.0 2.0 17 
20 56 O.SS-0.61 1. 19 4S 0.57-0.SS 0.7 1.7 43 
40 116 0.34 1.11 107 0.33 0.6 1.6 95 
so 22S 0.1S 1. 06 21S 0.17 0.5 1.5 205 

Table 7.2.4-1: Number of iterations for Problem 1 
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AGE-DG-2 AGE-Chebyshev 
h -1 

iter il. iter r r 
max 

10 0.97- 1. 08 27 1. 10 - 1. 16 0.65 19 
20 0.58 - 0.59 56 0.59- 0.62 0.62 44 
40 0.34 116 0.35 0.59 98 
80 0. 18 228 0.18 0.46 210 

Table 7.2.4-2: Number of iterations for Problem 1 

Problem 2 - The three dimensional problem 

0 ~ x,y,z :S 1, 

governed by the Dirichlet boundary conditions 

U(x,y,O) = U(x,y,1) = 0 0 ::s x,y ::s 1, 

U(x,O,z) = U(x,1,z)::=sin rrx sin rrz 0 :S X, Z :5 1, 

U(O,y,z) = U(1,y,z) = 0 O::sy,z::sl. 

The exact solution is 

U(x,y,z) = sech ~sin rrx cosh {v2rr(y- 0.5)} sin rrz. 

The results are tabulated in Tables 7.2.4-3 and 7.2.4-4. 

AGE-DG-3 AGE-Richardson 

1 par 2 parameter (par) 3 parameter (par) 
h-1 

iter iter iter r w r w w 
1 2 

10 21 1. 42-1.53 1.36 16 1. 86-1.90 1.1 2.5 13 
12 26 1. 24-1.30 1.33 20 1. 24-1.49 1.0 2.2 17 
14 31 1. 11-1. 13 1.30 24 1. 05-1. 21 0.9 2.0 21 
16 35 1. 00-1. 01 1.29 28 0.97-1.01 0.8 2.0 23 
18 40 0.91 1.28 32 0.86-0.92 0.8 2.0 27 
20 44 0.82-0.84 1.26 37 0.80 0.8 2.0 29 

Table 7.2.4-3: Number of iterations for Problem 2 
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AGE-DG-3 AGE-Chebyshev 
h-1 

iter A iter r r 
max 

10 1. 42 21 1. 91 - 1. 93 0.72 15 
12 1.22 - 1. 25 26 1. 31 - 1. 35 0.68 18 
14 1. 08 - 1. 11 31 1. 15 - 1.18 0.68 21 
16 0.98 35 1. 03 - 1. 05 0.71 24 
18 0.88- 0.89 40 0.94 - 0.95 0.72 27 
20 0.81 44 0.83 - 0.90 0.73 32 

Table 7.2.4-4: Number of iterations for Problem 2 

The results obtained show that a faster convergence can be achieved 

when using the AGE-Richardson and AGE-Chebyshev methods for solving the 

two and three dimensional problems. These improvements compensate the 

disappointing results when solving the one dimensional problem by using 

the same method. This gains agree with the arguments by Gourlay [1968] 

that the convergence can be accelerated by using these methods. 

Tables 7.2.4-1 and 7.4.2-3 show that the AGE-Richardson method 

gives better convergence when more than one parameter is used. However, 

the more parameters that are involved, the more difficult is the search 

of the parameters which has to be performed. Although, the results for 

the two parameter case (wl and w2) are better than the single parameter 

w, the difficulties in obtaining these parameters, forces the single 

parameter results to be considered. Moreover, the results deteriorate 

at larger N. 

We now compare the performance of the (single w) AGE-Richardson 

method and the multi w of the AGE-Chebyshev method. Tables 7.2.4-2 and 

7. 2. 4-4 show the impressive results for the AGE-Chebyshev method in 

terms of the number of iterations. The simplicity in obtaining the 

parameters w given in Section 5.2.2, give further arguments that this 
k+l 

method should be regarded as viable for the multi-parameter case. 
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It is obvious that if the sequence of w converges to 1, then the k+1 

AGE-Chebyshev method will converge to the AGE-DG scheme. Moreover, for 

this sequence of parameters, )1. can be shown to lie in the interval 
max 

[0, 1). By varying this )1. , the optimal number of iterations for a 
max 

specified number of points can be determined quite easily. 

Thus, for this simplicity and better convergence, the AGE-Chebyshev 

method can be considered for the application to the multi-parameter 

formula for the two and three dimensional problems. 

7.3 The Explicit Alternating Direction (EAD) method 

Let us consider the splitting of A = H + V. Then, the ADI-PR method for 

solving the two dimensional problem is given by 

(ri + H)u(k+1/2l = (ri - V)u(kl + b 

(ri + V)u(k+ll = (ri - H)u(k+1/2l + b 

(7.3-1) 

(7.3-2) 

for any iteration parameter, r > 0 and where H and V are the symmetric 

and positive definite tridiagonal matrices. 

By using a similar technique, we will now derive the EAD method. 

7.3.1 The derivation of the EAD method 

Let us consider further, 

A = (ri + H) 
1 = G + G2, 1 

(7.3.1-1) 

and A2 = (ri + V) = G + G 
3 4 

(7.3.1-2) 

which gives 

A uk+1/2 = b1, 1 
(7.3.1-3) 

where b = 1 
(ri - V)uk + b, and 
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A uk+l = b 
2 2' 

where b = (ri - H)uk + b. 
2 

(7.3.1-4) 

By using the AGE-PR(1) scheme, for any s > 0, we can solve equation 

(7.3. 1-3) as a pair (A) 

(si + G )up+l/2 = 
I 

(si - G )up + b 
2 I 

(si G ) k+l/2 (si G ) p+l/2 
b + u = - u + 

2 I 

and equation (7.3.1-4) as a pair (B) 

(si 
p+l/2 p 

+ G )u = (si - G )u + b 
3 4 2 

(si + G )uk+l = (si - G )up+l/2 + b . 
4 3 2 

I 

(7.3.1-5) 

(7.3.1-6) 

(7. 3. 1-7) 

(7. 3. 1-8) 

This is called Explicit Alternating Direction in the PR form in two 

dimensions, i.e., the EAD-PR-2 scheme. After appropriate reordering on 

columnwise, equations (7.3.1-7) and (7.3.1-8) becomes 

(si p+l/2 p + G )u = (si - G )u + b 
1 c 2 c 2c 

(7.3.1-9) 

(si + G )uk+l = (si - G )up+l/2 + b 
2 c 1 c 2c 

(7.3.1-10) 

where c denotes the columnwise ordering. 

We now seek to analyse the convergence of the EAD-PR-2 scheme. The 

respective iteration matrix of the pair (A) and pair (B) is 

~~l = (si + G
2
)-

1 
(si - G

1
) (si + G

1 
)-

1 
(si - G

2
) 

and ~:, = (si + G
4
)-

1 (si - G
3
)(si + G

3
)-

1 (si - G
4
). 

This gives the iteration matrix of the EAD-PR-2 scheme as 

TR = TR TR rs (A) (B) 

= (si + G
2
l-1 (si - G

1 
)(si + G

1 
)-

1 (si - G
2
)(si + G

4
) -I 

(si - G )(si + G )-1 (si - G ). 
3 3 4 

(7. 3. 1-11) 

(7. 3. 1-12) 

(7.3.1-13) 

Let « > 0, ~ > 0, ~ > 0 and v > 0 be the eigenvalues of G
1

, G
2

, G
3 

and G. Since these matrices have the positive eigenvalues, then 
4 

r"R l(s-r-«)(s-r-~)(s-r-~)(s-r-v)j 
11 rsll2 = (s+r+«Hs+r+~)(s+r+~Hs+r+vl < 1. (7.3.1-14) 
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If r = max (a,~) and~= max (~,v), then 

rR l(s-r-r)(s-r-~) 12 11 rsll = (s+r+rHs+r+~l · 

= l(s-r-1/J) \4 < 
(s+r+I/Jl 1. 

(7.3.1-15) 

where 1/J = max (r.~). Thus, the EAD-PR-2 scheme is convergent. 

We now derive the EAD-GT-2 scheme for solving the two dimensional 

problem, i.e., by using Guittet's form. The Guittet form to solve the 

two dimensional problem is given by 

(ri + H)uk+l/2 = [(ri + H)(ri + V) - wrA)uk + wrb 

(ri + V)uk+l = uk+l/2 

(7.3.1-16) 

(7.3.1-17) 

Now, let us consider further the matrices A
1 

and A
2 

as in (7.3.1-1) 

and (7.3.1-2) respectively, which give 

A uk+l/2 = b 
I I' 

(7.3.1-18) 

where b
1 

= (A A - wrA))uk + b, and 
I 2 

be 

A U
k+l k+l/2 = u 

2 

By using the Guittet form, for any 

written as pairs (C) and (D), 1. e.' 

(C) (si + G )up+l/2 = [(si + G
1 
)(si 

1 

(D) 

(si + G )uk+l/2 = 
p+l/2 

2 u • 

(si + G )up+1/2 [(si = 
3 

(si + G )uk+l = up+l/2. 
4 

+ G )(si 
3 

(7.3.1-19) 

s > 0, the EAD-GT-2 scheme can 

+ G ) - wsA )up + wsb 2 I 1 

(7.3.1-20) 

+ G ) - wsA )uP + k+1/2 
wsu 

4 2 

(7.3.1-21) 

After appropriate reordering on columnwise, the pair (D) becomes 

(D' ) (si + G )up+l/2 = [(si + G ) (si + G ) - wsA )uP + wsuk+l/2 
le 1 2 le c 

(si + G )uk+l = up+l/2 
2 c c 

(7.3.1-22) 

where c denotes columnwise ordering. 

The respective iteration matrix of the pairs (A) and (B) is 

(7.3.1-23) 
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and 

This gives the iteration matrix of the EAD-GT-2 scheme as 

TGT = TGT TGT 
rs (A) (B) 

(7.3.1-24) 

= [1 - ws(si + G
2

)-
1 (si + G

1
l-1\][1 - ws(si + G

4
)-

1 (si + G
3
)-

1A
2

) 

(7.3.1-25) 

We now analyse the convergence of the EAD-GT-2 scheme. 

Let oc > 0, ~ > 0, ~ > 0 and v > 0 be the eigenvalues of G
1

, G
2

, G
3 

and G
4

• Since these matrices have the positive eigenvalues, then 

11 ws(r+oc+~) jl 1 ws(r+~+v) 1 1 - (s+r+oc)(s+r+~) l - (s+r+~)(s+r+vl < 

If r = max (oc,~) and~ = max (~,v), then 

II TGTII = .1 1 ws(r+r+~l 12 
rs .2. - (s+r+r) (s+r+~) 

= I 

= I 

(s+r+r)(s+r+~)- ws(r+r+~) 12 
(s+r+r) (s+r+~) 

2 
(s+r+~) - ws;r+2~) 12 < 1 

(s+r+~) 

where ~ = max Cr.~). Thus, the scheme is convergent. 

(7.3.1-26) 

(7.3.1-27) 

It can be shown that (s-r-~) 4 < [ (s+r+~) 2 
- ws(r+2~) )2 for any r, 

If ) s > 0 and 1 < w < 2. Thus, it can be concluded that llr"RII < IITGTII which 
rs rs 

shows the EAD-PR-2 scheme converges faster than the EAD-GT-2 scheme. 

For the two dimensional problem in a square region, let us consider 

the matrix A as in (6.1.1-11). With the splitting of A= H +V, we get 

0 

H = ••·· ....... . 

0 

with H = 

340 

2g 

-1 

0 

-1 

2g -1 

····........ ·· ......... . 
-1 

····· ... 

2g 

-1 

0 

·· .. 
-1 

2g 

(7.3.1-28) 



and 

i7 -I 
0 

Zg 
0 

-I i7 -I 2g 

V ········ .... ········· ... 
'•., 

= ····· ... ····•·•• .... with i7 = 

-I i7 -I 2g 

0 -I i7 0 Zg 

(7.3.1-29) 

For any iteration parameter, r > 0, we have 

ii, 0 
()( -1 

0 

", -1 ()( -1 

ri H 
·· .. 

with li ·· .. •····· ... ·· .. + = ·· .. = ····· ... ···· .... ·· .. I '•, 

li -1 ()( -1 
I 

0 
"I ifXN2 0 -1 ()( 

(7.3.1-30) 

and 

i7 
I 

-I 
0 

()( 

0 
-I i7 -I ()( 

I 

··· ..... ·· .. ' '• v ·· .. ri + V = '· ........ with = •••• .... ·· .. ·· .. 1 
-I ill -I ()( 

0 -I i7 
I r1XN2 0 ()( 

v I 
0 (3 

0 2 

I v I (3 
2 

ri V ·· .......... ··, .... 
with v ·· .......... - = ·,, ·· .. = ·· .. ·· .. 2 

I i7 
2 

I (3 

0 I i7 r1XN2 0 (3 
2 

(7.3.1-31) 

where ()( = r + Zg and (3 = r - 2g. 
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Now, if ri + H = G + G2, 1 

a 
0 1 

a 
1 

G 
·· .. = ·· .. 

1 ·· .. 
a 1 . 

0 a 
1 

w -1 

-1 w 
····· ... .. , 

w -1 

-1 w 
w 

where w = cx/2. 

we have 

G = 2 

ifXN
2 

and G = 
2 

a 
2 

a 
2 

0 

w 

w 

-1 

0 

····• ... 
·· .. 

a 
2 

a 
ifXN

2 
2 

-1 

w 
····· ... 

·· .. 
w -1 

-1 w 

(7. 3. 1-32) 

Evidently by interchanging the order of direction we have (G
1 

+ G
2

) 

in the form of (G
3 

+ G
4

) and vice-versa. 

si + 

For any iteration parameter s > 0, we have 

G = 
1 

G' = 
1 

G' 
1 

0 

'¥ -1 

-1 '¥ 

G' 
1 

····•••·· ... 

···•·· ...... 

'¥ 

-1 

0 

G' 
1 

G' 
1 

-1 

'¥ 
'¥ 

• si + G 

fi2XN2 

and G' = 
2 

342 

= 
2 

'¥ 

G' 
0 2 

G' 
2 

·· .. 
···· .... 

G' 
2 

0 G' 
ifXN

2 
2 

'¥ -1 

-1 '¥ 

····· ..• 
·· .. 

'¥ -1 

-1 '¥ 



si - G = 
1 

G' = 
1 

G" 
1 

0 

5 1 

1 5 

0 
G" 

1 

····· .•• 
·· .. 

G" 
1 

G' 
1 

···· ... 
·,, 

5 1 

1 5 
5 

where r = s + w and 5 = s - w. 

si G • -
2 

ff-XN2 

and G' = 
2 

= 

5 

G" 
2 

0 

5 1 

1 5 

0 
G" 

2 
·· .. 

··· ..... 
G" 

2 

G" ff-XN2 2 

·· .. 
........ 

0 1 

1 5 

(7.3.1-33) 

Since r, s > 0, -1 -1 then the matrices (si + G
1

) and (si + G
2

) do 

exist. It is obvious that these matrices consist of the (2x2) block 

submatrices, G, i.e., 

(; = [r -1] 
-1 r 

·-1 
and its inverse is G 

2 where d = 1/ ( r - 1). 

We now write the algorithm for the EAD-PR-2 and EAD-GT-2 schemes. 

Algorithm 7.3.1-1: The EAD-PR-2 scheme. 

set 
(k) 

u = 0, i, j, = 0, N+1, a = r + 2g, f3 = r - 2g, w = a/2, 
l,j 

2 
r = s + w, 5 = s - w, d = 1/(r - 1), r

1 
= rd. 

Step 1. Set u Cp+
112l = 0, i, j = 0, N+l. 

I, j 

Step 2. Compute b1 = (ri - V)u(kl + b. 

for j = 1, N, compute 

for i = 1, N, compute 
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Step 3. 

Step 4. 

b1 
l,j 

u !kl + (3u !kl + u !kl + b 
l,J-1 l,j l,J+l l,j 

Set u!pl = 
I, j 

u (k+l/2) 

I,J 
i, j = 0, N+l. 

Compute u!p+112 l = (si+ G )-1 [(si- G )u(p) + b1). 
1 2 

Set i, j = 1. 

while j ~ N, compute 

while i ~ N-2, compute 

r = u!pl + c5u !pl + b1 
1 I-1,J I,J I, j 

r = c5u !pl + u (p) + b1 
2 l+t,j 1+2.] 

U
(p+l/2) = d 7 r + r , 
1,) 1 1 2 

i = i + 1 

l +1, J 

u!p+1/2) 
1+1,j 

u !p+ti2J = (u !pl + c5u !pl + b1 ) /r 
N,j N-1, j N,j N,J 

j=j+l. 

Step 5. Compute u(k+1/ 2 l = (si + G
2

)-1 [(si - G
1 

)u(p+1/2 l + bl). 

Step 6. 

Step 7. 

Set 1 = 2, j = 1. 

while j ~ N, compute 

u !k+1/2l = (c5u !p+112l + c5u !p+t/2l + b1 )/r 
l.J t,j 2,j l,j 

while i ~ N-1, compute 

= u (p+1/2l + c5u (p+1/2l + b1 
rt t-t,J l,J t,J 

= c5u !p+1/ 2 l + u !p+1/2 l + b1 
r 2 t+t, J l+2,J l+t,J 

(k+1/2) 
u 

l+t,J 
= rd + r r 

1 1 2 

i = i + 1 

J=j+l. 

Set u !q+
112

l = 0, i, j = 0, N+l. 
1,) 

Compute b2 = (ri - V)u(k+
112

l + b . 
c c c 

for 1 = 1, N, compute 

for j = 1, N, compute 
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Step 8. 

Step 9. 

b2 U 
(k+1/2) (3 (k+1/2) (k+l/2) 

= + u +u +b 
l,j 1-t,j l,j l+l,j l,j 

Set u!ql = 
l, J 

u(k+1l 
I, j 

1, j = 0, N+l. 

Compute u (q+l/2 ) = 
c 

(si + G
1
)-1 [(si - G )u!ql + b2]. 

2 c c 

Set i, j = 1. 

while i ~ N, compute 

while j ~ N-2, compute 

r = 
u(ql + <'lu (ql + b2 

1 I ,j-1 

r = <'lu (q) 
2 l f j+t 

j = j + 1 

l,j 

+ u (q) 
l,j+2 

l,j 

+ b2 
l,j+l 

(q+1/2) 
u 

l,j+l 

u (q+1/ 2 l = (u (ql + <'lu (ql + b2 l/r 
l,N l,N-q l,N l,N 

1=1+1. 

=rd +,-r 
1 1 2 

(k+l) 
Step 10. Compute u 

c 
= (si + G )-1 [(si - G )u(q+1/ 2 l + b2 ). 

2 1 c c 

Set i = 1, j = 2. 

while 1 :S N, compute 

u!k+1l 
= (<'lu(q+1/2l + <'lu (q+1/2l 

+ b2 l/r 
I, 1 1,1 

while j :S N-1, 

r = 
u (q+1/2) 

1 l,j-1 

r = 
<'lu (q+1/2l 

2 1' j+l 

j = j + 1 

1=1+1. 

I, 2 

compute 

+ Clu (q+1/2l 
l,j 

+ u 
(q+l/2) 

l,j+2 

1,1 

+ b2 
I, j 

+ b2 
l,j+t 

(k+1) 
u 

l,J+l 

Step 11. Repeat Step 1 to Step 10 until convergence is achieved. 

and 

In the EAD-GT-2 scheme, we need to compute the matrices 

C = (ri + H)(ri +V) - wrA 
r 

D = (si+ G )(si+ G) - wsA 
s 1 2 1 
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(p+l/2) 
in order to determine the vectors bl and u respectively. The 

elements of C and D are shown in Algorithm 7.3.1-2, where they become 
r s 

the coefficients for u(k) (Step 1) and u(pl(Step 3 and 6) respectively. 

Algorithm 7.3.1-2: The EAD-GT-2 scheme. 

set 
(k) 

= 0, u 
I' J 

i, j, = 0, N+1, "' = r + 2g, w = a:/2, 7 = s + w, 

d 1/(r 
2 

1)' 7d, 
2 

4gwr, = - 71 = PI = "' - ql = wr - "'· 
2 

p2 = 7 - ocws and q2 = ws - r. 
(k) 

Step 1. Compute bl = C u + wrb. 

Step 2. 

Step 3. 

r 

for j = 1, N 

for i = 1, N 

b1 = ( (k) + u (k) + u (k) + u (k) ) 
l,J qt ul,J-1 l+l,J l,J+t 1-t,J 

+ u(kl 
1-l,j-1 

+ u (k) 
l+t,j-1 

+ u (k) + u (k) 
PI l,J 1-1,]+1 

Set u(p) = 
I' J 

(k+l/2) 
u 
l,j 

i, j = 0, N+l. 

+ u (k) 

l+l,j+l 

(k) 
+ wrb . 

I,J 

Compute u(p+l/2) = (si + G )-1D u(p) + wrbl. Set i, j = 1. 
I s 

while j ~ N, compute 

while i ~ N-2, compute 

r = + u(p) + wsb1 
I 

( (p) 
q2 ui-I,J 

+ u (p) ) 
1+1, J 

+ P u(p) 
2 l,j 1+2,j I' J 

r2 = 
u (p) 
1-l,j 

+ (p) ) 
p2ul+l, J 

(p+l/2) 
u =¥r +rd 
l,j •11 2' 

i = i + 1 

+ (u (pl 
q2 I, J 

(p+l/2) 
u 

l+t,j 

+ u (p) ) 
l+2,j 

+ wsb1 

= rd + 7 r 
I 1 2 

u (p+l/2) = ( (p) + p u (p) + wsb1 )/¥ 
N,J q2UN-I,j 2 N,J N,j • 

j=j+l. 

l+l,j 

Step 4. Compute u(k+l/2) = (si + G
2
)-1u(p+l/2). Set i = 2, j = 1. 

while j ~ N, compute 
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Step 5. 

Step 6. 

Step 7. 

J 

(k+112l (p+1/2l I 
u = u 7 

1' j 1, J 

while 1 s N-1, compute 

(k+l/2) 
u 

I, J 

(k+1/2) 
u 

l+l,j 

i = i + 1 

= J + 1. 

= (p+1/2) d (~1/2) 
7 1U1, J + Ul+1, J 

du
(p+1/2) (p+1/2) 

= + 7 u 
l,j 1 l+l,j 

Set u (pl = u (k+ll 
• i. J = 0, N+l. 

I, J I, J 

Compute 
u (p+1/2) = (si + G )-1D u<pl + wsu (k+1/2) 

c 1 • c 

Set 1, J = 1. 

while i s N, compute 

while J s N-2, compute 

r = 
1 

( (p) 
q2 ui.J-1 

+ u (p) ) 
l,j+l 

u (p) + (p) ) r = 
2 I,J-1 p2ui,J+1 

(p+l/2) u =¥r +rd 
l,j "11 2' 

J = J + 1 

+ (p) 
p2ul, J 

+ q (u<pl 
2 1, j 

(p+1/2) 
u 

l,j+l 

c 

+ u (p) 
l,j+2 

+ u (p) ) 
1, j+2 

(p+1/ 2 ) ( (p) + p u (p) + wsu (k+1/2) ) /7 
ul,N = q2ul,N-1 2 l,N l,N 

1=1+1. 

+ wsu 
(k+1/2) 

I, J 

+ wsu 
(k+l/2) 

l,j+l 

(k+1l G )-1u(p+1/2l. 
Compute u = (si + 

c 2 c 
Set 1 = 2, J = 1. 

while 1 s N, compute 

(k+1/2) (p+1/2)/ 
u = u 7 

1,1 1,1 

while J s N-1, compute 

(k+1) 
u 

I, J 

(k+ll 
u 

l,j+l 

= (p+1/2l + du (p+1/2l 
7 1UI,J 1,]+1 

= du (p+1/2l + (p+1/2l 
I,J 7 1ul,j+1 

J = J + 1 

1=1+1. 

Step 8. Repeat Step 1 to Step 7 until convergence is achieved. 
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The EAD method for solving the three dimensional problem can be 

derived as follows Let us consider the splitting of the matrix 

A = X + Y + Z, where the matrices X, Y and Z representing the directions 

along the axis x, y and z respectively. By using the PR form, for any r 

> 0, we have the set of equations as 

(rl + X)u(k+l/3) = (rl - Y - Z)u<kl + b 

(rl + Y)u(k+2/ 3) = (rl - X - Z)u(k+l/3) + b 

(rl + Z)u(k+l) = (rl - X - Y)u(k+2/3) + b 

with the iteration matrix, T , 

or 

r 

T = (rl + Z)-1 (rl -X- Y)(rl + Y)-1 (rl - X - Z) X 
r 

-1 
(rl + X) (rl - Y - Z) 

(rl + X + Y)u(k+1/3) = (rl - Z)u(k) + b 

(rl + Y + Z)u(k+2/3) = (rl - Xlu(k+l/3) + b 

(ri + X + Z)u(k+U = (rl - Y)u(k+2/3l + b, 

with the iteration matrix, T , 
r 

T = (rl + X + Z)-1 (rl - Y)(rl + Y + Z)-1 (rl - X) X 
r 

(rl +X + Y)-1 (ri - Z). 

(7.3.1-36) 

(7.3.1-37) 

(7.3. 1-38) 

(7.3.1-39) 

(7.3.1-40) 

(7. 3. 1-41) 

(7.3.1-42) 

(7.3.1-43) 

~orM of -+1-.-e. 
Equations (7.3.1-36) - (7.3.1-38)~re unstable, since the[iteration 

matrix for this scheme can be greater than one. Equations (7.3.1-40) -

(7. 3. 1-42) t<.~ stable, but it is quite difficult to implement. Instead, 

we will use the Guittet form which is given as follows: 

(ri + X)u<k+l/31 = C u<kl + wr2b 
r 

(rl + Y)u(k+2/3l = u(k+1/3l 

(rl + Zlu(k+U = u<k+2/3l 

where C = (rl + X) (rl + Y) (rl + Y) - wr2A. 
r 
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Let A
1 

= ri + X 

A
3 

= ri + Z 

which give 

= G + G , A = ri + Y = G + G , 
1 2 2 3 4 

= G + G , and bl = C u(k) + wr2b, 
5 6 r 

(G + G )u (k+1/ 3) = bl 
1 2 

(G + 
3 

(G + 
5 

G )u (k+2/3) = 
4 

(k+l/3) 
u 

G )u(k+1) = u(k+2/3) 
6 

(7.3.1-47) 

(7.3.1-48) 

(7.3.1-49) 

Then, for any s > 0, the EAD method in Guittet's form for solving 

the three dimensional problem, i.e., the EAD-GT-3 scheme is given by 

(si + G )u (p+1/2) = P u(p) + wsbt (7.3.1-50) 
1 • 

(si + G )u 
(k+1/3) u (p+l/2) (7.3.1-51) = 

2 

(si + G )u (p+1/2) Q u(p) + (k+l/3) 
(7.3.1-52) = wsu 3 • 

(si + G )u 
(k+2/3) u (p+l/2) (7.3.1-53) = 

4 

(si + G )u (p+1/2) R u(p) +wsu 
(k+2/3) 

(7.3.1-54) = 
5 • 

(si + G )u 
(k+l) (p+1/2) 

(7.3.1-55) = u 
6 

where P = (si + G )(si +G) - wsA Q
8 8 1 2 1, 

and R = (si + G ) (si + G ) - wsA
3

• 
s 5 6 

The iteration matrix for the EAD-GT-3 scheme is given by 

(7.3.1-56) 

We now analyse the convergence of the EAD-GT-3 scheme. 

Let a > 0, ~ > 0, ~ > 0 , r > 0, ~ > 0 and v > 0 be the eigenvalues 

of G
1

, G2, G3, G4, G
5 

and G
6

• 

eigenvalues, then 

Since these matrices have the positive 

11 ws(r+a+~) I I 1 _ ws(r+~+r) I 
- (s+r+a) (s+r+~l (s+r+~l (s+r+rl' X 

1 1 _ ws(r+~+v) I < 1 
(s+r+~l (s+r+v) • 

(7.3.1-57) 
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If~= max (a,o,~) and~= max (~.r.v), then 

11 ws(r+~+rp) 13 
- (s+r+~J(s+r+rp) 

= \ (s+r+~) (s+r+~) - ws(r+~+<p) 
1

3 

(s+r+~J(s+r+rp) 

= I (s+r+,P)
2 

- ws!r+2,P) 
1
3 < 1 

(s+r+,P) 

where .p = max (~,rp). Thus, the EAD-GT-3 scheme is convergent. 

(7.3.1-58) 

In programming, we only need to consider the matrices G1 and G2 

since after reordering the directions, equations (7.3.1-52)- (7.3.1-55) 

becomes 

(si + G )u (p+1/2l p u (p) + (k+1/3) 
= wsu 1 y • y y 

(7.3.1-59) 

(si + G )u (k+2/3l = 
(p+1/2) 

u 2 y y 
(7.3.1-60) 

(si + G ) u (p+1l2l P u(pl +wsu 
(k+2/3) 

= 1 z • z z 
(7.3.1-61) 

(si + G )u (k+1 l = u (p+112l. 
2 z z 

(7. 3. 1-62) 

When solving the three dimensional problem in a unit cube, we would 

then have the matrix A as in (6.1.2-6), and by applying the EAD method, 

the matrices G and G would be similar to the one given in (7.3. 1-32). 
1 2 

In the EAD-GT-3 scheme, we need to compute the matrices 

C = (ri + X)(ri + Y)(ri + Zl - wr2A (7.3.1-64) 
r 

and 

P = (si+ G )(si+ G) - wsA 
• 1 2 1 

(7.3.1-65) 

in order to determine the vectors bl and 
(p+112) 

u respectively. 

The elements of C and P are shown in Algorithm 7. 3. 1-3, where 
r s 

they become the coefficients for u(kl and u(pl respectively. 

We now write the algorithm for the EAD-GT-3 scheme. 
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Algorithm 7.3.1-3: The EAD-GT-3 scheme. 

(k) 
u = o, i, j, k = o, N+l, a = r + 2g, w = oc/2, r = s + w, Set 

l t J f k 
2 3 2 2 2 

d = 1/(r - 1), r
1 

= rd, p
1 

=a - 6gwr, q
1 

= wr -a, 

2 
p = r - aws and q = ws - r. 

2 2 
(k) 

Step 1. Compute b1 = C u + wrb. 
r 

Step 2. 

Step 3. 

for k = 1, N 

for j = 1, N 

for i = 1, N 

b1 
1, j,k 

= -

i = i + 1 

j = j + 1 

k=k+l. 

(k) 
u 

1-1, j-l,k-1 

(k) 
- u 

(k) 
u 

l+t,j-l,k-1 

(k) 
u 

1-l,j+l,k-1 

(k) (k) 
- u - u 

l+l,j+l' k-1 1-t,j-t,k+l l+t,j-l,k+l 

- u(k) - u(k) + a(u(k) 
1-t,j+l,k+l l+t,j+t,k+t l,j-t,k-1 

+ u 
(k) 

+ u 
(k) 

+ u(kl 

1-t,J,k-1 l+t,j,k-1 l,j+t,k-1 

+ u<kl + u 
(k) 

+ u (k) 

1-t,j-t,k l+t,j-t,k 1-t,j+t,k 

+ u(k) + u(k) + u(k) 
l+l,J+l,k l,j-l,k+l 1-t,j,k+l 

+ u (k) + u (k) ) + ( (k) 
t+t,J,k+t t,J+t,k+t qt ut,J,k-t 

+ u (k) 
l,j-l,k 

(k) (k) 
+ u + u 

l+t,j,k l,j+l,k 

+ u(k) ) + p u(k) + wr2b 
l,j,k+t 1 l,J,k l,j,k 

Set u<pl 
l,J,k 

(k+l/3) 
= u i, j, k = 0, N+1 

l,J,k 

Compute u(p+l/2) = (si + G )-1P u<pl + wsb1. Set i, j, k = 1. 
I s 

while k s N, compute 

while j s N, compute 

while i s N-2, compute 
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Step 4. 

Step 5. 

Step 6. 

r = ( (p) + u (p) ) + p u (p) + u!pl 
1 q2 u1-1, J,k l+l,j,k 2 1, j,k 1+2,J,k 

+ wsb1 
1' j,k 

r = u!pl + p u (p) + ( (p) + u (p) ) 
2 1-t,j,k 2 l+t,J,k q2 ut, J,k l+2,j,k 

+ wsb1 
l+t,j,k 

u(p+ll2l = r r + r d, 
l,j,k 11 2 

(p+1/2) 
ul 1 J k = rd1 + 7 1r2 ••• 

1 = 1 + 2 

(p+1121 ( !pi + p u (pl + wsb1 ) /r 
uN,j,k = q2uN-1.j,k 2 N,j,k N,j,k 

J=J+l. 

k=k+l. 

Compute u(k+1131 = (si + G )-1u(p+1/21. 
2 

while k $ N, compute 

while j s N, compute 

(k+1/3) (p+1/2)/ 
u = u r 

t,j,k t,j,k 

while 1 s N-1, compute 

(k+1/3) 
u 

1, j, k 

u(k+l/31 
l+t,j,k 

1 = 1 + 2 

J = J + 1 

k=k+l. 

(p+1/2) d (p+1/2l 
= r u + u 

1 1, j,k 1+1, j,k 

= du (p+112l + r u (p+1/2l 
l,j,k 1 l+t,j,k 

Set u (p) 
l,J,k 

(k+2/3) 
= u 1, j, k = 0, N+1 

l,j,k 

Set 1 = 2, J, k = 1. 

Compute u(p+1/21 = (si + G )-1P u(pl + wsu(k+1131 
y 1 • y y 

Set i, j, k = 1. 

while i s N, compute 

while k s N, compute 

while j $ N-2, compute 

r = ( (pl + u !pl ) + p u (pl + u (pl 
1 q2 ul,J-t,k t,j+t,k 2 t,J,k t,j+2,k 
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Step 7. 

Step 8. 

Step 9. 

(k+l/3) 
+ wsu 

1, J, k 

= u(pl + p u<pl + (u(pl + u(pl ) 
l,j-t,k 2 l,j+l,k q2 l,j,k l,j+2,k 

U (p+l/2) = + d 
rlrl r2 • 1, j,k 

J = J + 2 

(k+l/3) 
+ wsu 

l,j+t,k 

(p+l/2) 
u 

l,N,k 
( (pl p u<pl (k+1/3l )/ =qu + +wsu '¥ 

2 l,N-t,k 2 l,N,k l,N,k 

k=k+l. 

1=1+1. 

Compute u(k+2/ 3l = (si + G )-lu(p+l/21 . Set 1, k = 1, J = 2. 
y 2 y 

while 1 ~ N, compute 

while k ~ N, compute 

(k+2/3) (p+l/2)/ u = u '¥ 
l,t,k l,t,k 

while J ~ N-1, compute 

(k+2/3) 
u 

1, j, k 

(k+2/3) 
u 

1, j+t,k 

J = J + 2 

k = k + 1 

1=1+1. 

(p+l/2) d (p+l/2) 
=ru + u 

1 l,j,k l,j+l,k 

du
(p+l/2) (p+l/2) 

= + '¥ u 
l,j,k 1 l,j+l,k 

Set u(pl 
1, J,k 

= u (k+ll 
1, j,k 

, 1, J, k = 0, N+1 

Compute u(p+l/2) = (si + G )-1P u(pl + wsu(k+2/ 3l 
z 1 s z z 

Set 1, J, k = 1. 

while J ~ N, compute 

while 1 ~ N, compute 

while k ~ N-2, compute 

= ( (p) + u (p) ) + p u (p) + u (p) 
rt q2 ul,J,k-t t,J,k+t 2 l,J,k l,J,k+2 

353 

(k+2/3) 
+ .wsu 

l, j,k 



= u(p) + p u(p) + q (u(p) + u(p) ) 
r2 l,J,k-1 2 l,J,k+t 2 l,J,k 1,J,k+2 

(k+2/3) 
+ wsu 

l,j,k+l 

(p+l/2) 
u = rd

1 
+ ~ r 

l,j,k+l 1 2 

k = k + 2 

u (p+l/2) = (q u (p) + p u (p) + wsu (k+2/J) )/y 
l,J,N 2 l,j,N-1 2 l,j,N l,J,N 

1=1+1. 

j=j+l. 

Step 10. Compute u(k+t) = (si + G )-tu(p+t/2). Set i, j = 1, k = 2. 
z 2 z 

while j ~ N, compute 

while 1 

(k+1) 
u 

1 ,J, 1 

~ N, compute 

(p+l/2)/ 
= u ~ 

1, j, 1 

while k ~ N-1, compute 

(p+1/2l du<p+t/2) 
= r u + 

1 l,j,k l,j,k+l 

(k+1) 
u 

l,j,k+l 

k = k + 2 

1 = 1 + 1 

j=j+l. 

du 
(p+l/2) (p+l/2) 

= + r u 
l,j,k 1 l,j,k+t 

Step 11. Repeat Step 1 to Step 10 until convergence is achieved. 

7.3.2 Experimental results 

Numerical results presented in this section are concerned with the 

application of the EAD method. Four problems were tested, with the 

first two are in two dimensions and the other are in three dimensions. 

For the two dimensional problems, both results for the EAD-PR and 

EAD-GT-2 schemes are presented, whilst for three dimensional problems, 

only the EAD-GT-3 scheme is considered. 
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Problem 1 - The Laplace Equation in two dimensions 

a2u a2 u 0, 0 ::s x,y 1, + --- :s 
ax 2 ay 2 

subject to the boundary conditions 

U(x,O) = U(x,1) =sin rrx, O:sx:s1, 

U(O,y) = U(1,y) = 0, O:sy:sl. 

The exact solution is given by U(x,y) = sech ~ cosh rr(y - ~) sin nx. 

The results are tabulated in Table 7.3.2-1. 

AGE-DG-2 scheme EAD-PR scheme EAD-GT-2 scheme 
h-1 

iter iter iter r r s r s 

10 0.96- 1. 00 22 0.84 0.40 15 0.81 0.47 16 
20 0.57 - 0.58 47 0.43 0.23 29 0.45 0.26 33 
40 0.34 102 0.24 0.12 65 0.25 0.13 69 
40 0.19 209 0.13 0.06 137 0. 13 0.06 137 

Table 7.3.2-1: Number of iterations for Problem 1 

Problem 2 - The Poisson Equation 

a2u a2u 0 :s x,y 1, +--=-2 :s 
ax2 2 • 

ay 

The boundary conditions are given by 

U(O,y) = 0, U(1,y) = sinh rrx sin ny, 0 :sy:s1, 

U(x,O) = U(x,1) = x(1- x), O:sx:sl. 

The exact solution is given by U(x,y) = sinh rrx sin rry + x(1- x). 

The results are tabulated in Table 7.3.2-2. 

AGE-DG-2 scheme EAD-PR scheme EAD-GT-2 scheme 
h-1 

iter iter iter r r s r s 

10 0.97- 1. 08 27 0.80 0.48 17 0.82 0.53 19 
20 0.58- 0.59 56 0.44 0.26 38 0.44 0.30 41 
40 0.34 116 0.25 0.14 82 0.26 0.16 90 
80 0.18 228 0.14 0.07 176 0.15 0.08 198 

Table 7.3.2-2: Number of iterations for Problem 2 
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Problem 3 - The Laplace Equation in three dimensions 

0 :s x,y,z :S 1, 

subject to the boundary conditions 

U(x,y,O) = U(x,y,1) = 0, O:sx,y:s1, 

U(O,y,z) = U(1,y,z) = 0, O:sy,z:s1, 

U(x,O,z) = 0, U(x,1,z) =sin nx sin nz, 0 :::5 x, z ::5 1. 

The exact solution is given by 

U(x,y,z) = sech ~ sin nx cosh [VZn(y - ~) sin nz. 

The result is tabulated in Table 7.3.2-3. 

AGE-DG-3 (w = 2) EAD-GT-3 scheme 
h-1 

iter iter r r s 

12 1. 22 - 1.25 26 0.98 0.49 18 
14 1. 08 - 1. 11 31 0.82 0.44 20 
16 0.98 35 o. 71 0.40 23 
18 0.88- 0.89 40 0.61 0.36 25 
20 0.81 44 0.53 0.32 26 

Table 7.3.2-3: Number of iterations for Problem 3 

Problem 4 - The Laplace Equation in three dimensions 

= 0, 0 ::5 x,y,z :S 1, 

subject to the boundary condition 

U(x,y,O) = 0, U(x,y,1) = 400xy, 0 ::5 x,y ::5 1. 

U(O,y,z) = 0, U(1,y,z) = 400yz, 0 :s y,z ::5 1. 

U(x,O,z) = 0, U(x,1,z) = 400xz, 0 :S x.z :s 1. 

The exact solution is given by 

U(x,y,z) = 400xyz. 

The results are tabulated in Table 7.3.2-4. 
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AGE-DG-3 (w = 2) EAD-GT-3 scheme 
h -1 

iter iter r r s 

12 1. 42 - 1. 50 42 1. 10 0.65 30 
14 1. 25 - 1. 33 50 0.99 0.57 36 
16 1.13 - 1. 17 57 0.90 0.52 42 
18 1. 03 - 1. 06 64 0.83 0.47 49 
20 0.95 70 0.78 0.43 56 

Table 7.3.2-4: Number of iterations for Problem 4 

The results outline the performance of the EAD method compared to 

the AGE-DG scheme in terms of the number of iterations. The results for 

the two dimensional problems agree with the theory as the EAD-PR scheme 

shows a smaller number of i teratlons than the EAD-GT-2 scheme. Both 

schemes are also shown to converge faster than the AGE-DG-2 scheme. 

A better performance for the three dimensional problems is also 

obtained where the EAD-GT-3 scheme converges much faster than the 

AGE-DG-3 scheme. For the two dimensional problem, however, the rate of 

convergence becomes slower at a larger number of points. This could be 

due the rounding error growth as the value of s becomes small. 

The improvements shown in terms of the number of iterations for the 

given problems are at the expense of one more parameter, 1. e., s. 

Experimentally, this parameter is found to be given by the relation 

s ~ 0.5r. Both parameters r and s are determined heuristically but it 

is not too easy. However, from the experiments (for N = 9), we may 

expect that r is closed to 1. This approximation can be taken as a 

guide to determine the experimental parameters for other problems as the 

theory regarding these parameters has yet to be developed. 

Although there are some setbacks with these schemes such as the 

determination of parameter r and the intensive computations involved, 

nevertheless it produces good results especially when solving the three 
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dimensional problem. 

Other good points to recommend the method such as the parameters r 

and s are within the interval [0, 1] and there is a simple relation 

between them, makes the search for parameters not too difficult. Thus, 

the EAD-GT-3 scheme might be regarded as successful for the application 

of multi-parameters to solve the three dimensional problem. 

7.4 SUIIIIIai'y 

This chapter is a continuation of the application of multi-parameters to 

accelerate the AGE method as discussed earlier in Chapter 5. The 

problems considered in this chapter are of higher dimensions, i.e., two 

and three dimensional problems. 

The early section is concerned with the solution of the different 

regions of a two dimensional problem and a unit cube elliptic equation 

by using the existing ADI(AGE) parameters. However, none of these are 

suitable for the AGE method. Instead, the heuristic search is performed 

to find a better convergence. The results obtained are remarkable, but 

the difficulties in determining the correct parameters forces the 

strategy to be considered very carefully. 

The application of the AGE-Richardson and AGE-Chebyshev methods 

discussed in Chapter 5 is enlarged in the next section for the solution 

of problems with higher dimensions. The results are not as good as 

obtained in the earlier section especially for the two dimensional 

problem, but the simplicity to determine the parameter w 
k+l 

in the 

AGE-Chebyshev method, makes the method viable for the application of 

multi-parameters. 
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The newly developed technique, called the EAD method is discussed 

in Section 5.3. The method is based on the the PR and Guittet's form. 

The slight problem with these schemes is the lengthy computational 

algorithm involved, but the results obtained are competitive with others 

in the previous sections, especially for the solution for three 

dimensional problem. 

The results for two dimensional problems, again, show a little 

improvements when larger numbers of points are involved. However, all 

the parameters are well within the interval [0,1) which shows that the 

schemes are stable. The other difficulty is that the paramete~r and s 

has to be determined heuristically. However, this is compensated by the 

simple relation s = 0. 5r, which certainly will ease the parameter 

search. 

By careful considerations the AGE-Chebyshev method and the EAD-GT-3 

scheme might be recommended for solving the three dimensional problems. 

For the two dimensional problems, though the AGE-Chebyshev method seems 

viable, it is worthwhile to focus only on the application of a single 

parameter. 
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CHAPTER 8 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

8.1 Summary and conclusions 

Throughout the course of this thesis, a new explicit method, the AGE 

method has been proposed to solve ordinary and partial differential 

equations. The emphasis is on the convergence, stability, consistency, 

accuracy and efficiency of the various schemes derived from the AGE 

method. 

The first observation is in Chapter 3, where a comparative study of 

the existing methods, i.e., SOR, with the AGE method is given to solve 

the two point boundary value problem. The AGE method, based on the ADI 

method in PR form, has been shown to perform better than the SOR method 

especially when solving the linear problems when matrix A is strongly 

diagonally dominant, irrespective of the boundary conditions. The 

method has also been shown to be stable for a higher order accuracy, 

i.e., on using the Numerov method for approximation. 

The solution of the two point boundary problem by the AGE method is 

enlarged in Chapter 4. In this chapter, the AGE method has been 

rewritten in various alternative forms in order to achieve the 

possibility of time saving, its expansion to solve problems in higher 

dimension, and more important to make full use of the explicitness of 

the method so that, it may well be suitable to use in parallel 

computation. The SMAGE scheme is found to be the fastest especially for 

solving a nonlinear problem, the AGE-DG scheme can also be extended for 

solving the mul ti-dimenslonal problem and the CAGE method can also be 

considered when parallelism is concerned. 
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The solution for the two point boundary value problems are 

investigated further in Chapter 5, concerning the application of multi-

parameters. The results appear to be disappointing and only show 

improvement in terms of the number of iterations, when solving the 

linear problem governed by periodic boundary conditions. The 

commutativity properties of the matrices G and G in this problem make 
1 2 

the AGE method converge faster. It has also been shown that for this 

problem, the application of 2 parameters is better than the 3 parameter 

case. Thus, the 2 parameter case might well be considered when applying 

the multi-parameter formulae. However, it is suspected that better 

results can be obtained from larger orders of matrices. 

Chapter 6 begins with the extension of the AGE-DG scheme for 

solving the two and three dimensional problems subject to different 

boundary conditions. As shown, the AGE method is capable for solving 

these problems and is better than the SOR method. The difficulty in 

determining the theoretical optimal parameter has been overcome by using 

some rather simple heuristic assumptions. 

The AGE-DG scheme is also shown to be viable when solving the two 

and three dimensional problems governed by periodic and Neumann boundary 

conditions. On comparison with the SOR method, again, the AGE-DG scheme 

has the edge. Although the AGE-DG scheme needs more computational 

effort, the simplicity of the scheme and the facile way to obtain of the 

parameter r, give the scheme the advantage. 

The alternative computational forms for reducing the CPU time are 

also tested in this chapter. However, for sequential computation, the 

best form is the AGE-DG scheme. Nevertheless, the CAGE method for the 

two dimensional problems can be applied on parallel computers. 
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The thesis is concluded in Chapter 7, by extending the discussion 

of the multi-parameter case in elliptic problems. The application of 

the existing ADI (AGE) parameters, the AGE-Richardson and AGE-Chebyshev 

methods are extended for two and three dimensional problem. The new 

technique based on the PR and Guittet's form, called the EAD method, for 

solving the problem with higher dimensions are added to this chapter as 

another strategy for the use of multi-parameters for accelerating the 

AGE method. 

The conclusions of this section is that the EAD method is well 

ahead of other strategies when the solution with two parameters is 

concerned. The second choice is the AGE-Chebyshev method. The 

heuristic search cannot be regarded as a good strategy since it may 

develop a rounding error growth which will then affect the stability of 

the method. 

The disappointing results for the multi-parameter case might be 

explained as follows. The bigger block (40x40) for the ADI-PR method 

will definitely be suitable for a sequence of parameters. If we reduce 

the problem to the (2x2) block ADI-PR method, it will automatically 

become the AGE method. Thus, we would not expect to use the same 

• sequence of parameters for this particular problem. In other words, 

this can be attributed to a scaling factor. 

To conclude, the AGE method is viable for solving any two point 

boundary value problems and elliptic equations regardless of boundary 

conditions by using a single parameter. The method is also stable for a 

problem with higher order accuracy. 

For the application of multi-parameters, only the two parameter 

case can be considered for the AGE method. This is due to the fact 
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that, the AGE method is comprised only of small (2x2) blocks, which 

naturally will only have two eigenvalues with higher order multiplicity. 

8.2 Suggestions for further research 

The AGE method to date has been investigated for a limited number of 

problems and clearly further numerical investigations into a wider class 

of problems, especially nonlinear, would be beneficial for the wider 

understanding of the method. 

Further applications of the method to non self-adjoint partial 

differential equations, would also be advantageous for now the matrix A 

will become unsymmetric and have complex eigenvalues. 

Extension of the AGE method can also be considered by the use of 

alternative approximations for the differential operators, i.e., spline 

and finite elements methods, and the use of variational methods such as 

Galerkin and Conjugate Gradient methods. 

Recently, the use of the preconditioning method has become a 

standard strategy for the acceleration of iterative methods. 

Consequently, a suitable preconditioner for the AGE method would be of 

great importance. 

Finally, for any implicit method, often we are not able to exploit 

the method to the full when the issue of parallelism is concerned. 

Thus, although the AGE method appear to require slightly more 

computational work, i.e., in developing the CAGE method, however, with 

its principal advantage, i.e., explicitness, could serve as an efficient 

technique for achieving parallel computation. 
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c program AGE for accuracy with F.D. formula 
c Problem 2: u" = 3U2/2, 
c u(O) = 4, u(1) = 1 
c The acceleration parameter is rho 

implicit real*8 (a-h,o-z) 
parameter (kk=502) 
dimension uk1(0:kk), uhalf(O:kk), uk(O:kk), b(1:kk), 

1 g(1:kk), beta(1:kk), alfa(1:kk) 
print*, 'n(even), nrho, strho, rhoinc' 
read *, n, nrho, strho, rhoinc 
eps = 1.0d-08 
h = 1. o; (n+1) 
do 555 i = 1, n 

555 b(i) = o.o 
b(1) = 4.0 
b(n) = 1. o 
write (*, 122) n 

122 format(/, 'Number of points', i5 ,/) 
do 55 mk = 1, nrho 
iter = o 
rho = strho + rhoinc*mk 
do 10 i = o, n+1 

10 uk1(i) = o.o 
c 
c start iterate 
c 
15 iter = iter + 1 

do 28 i = o, n+1 
28 uk(i) = ukl(i) 

do 556 i = 1, n 
xi = i*h 
g(i) = 1.0 + J.O*uk(i)*h*h/4.0 
alfa(i) = rho + g(i) 
beta(i) = rho - g(i) 

556 continue 
c 
c first sweep 
c 

do 30 i = 1, n-1, 2 
r1 = b(i) + uk(i-1} + beta(i)*uk(i) 
r2 = b(i+1) + beta(i+1}*uk(i+1) + uk(i+2} 
d = 1.0f(alfa(i)*alfa(i+1) - 1.0) 
uhalf(i) = (alfa(i+1)*r1 + r2)*d 
uhalf(i+1) = (r1 + alfa(i)*r2)*d 

30 continue 
c 
c second sweep 
c 

uk1(1} = (b(1} + beta(1)*uhalf(1) + uhalf(2)}/alfa(1) 
do 45 i = 2, n-2, 2 
r1 = b(i) + uhalf(i-1) + beta(i)*uhalf(i) 
r2 = b(i+1) + beta(i+1}*uhalf(i+1) + uhalf(i+2) 
d = 1.0/(alfa(i)*alfa(i+l} - 1.0} 
uk1(i) = (alfa(i+1)*r1 + r2}*d 
uk1(i+1) = (r1 + alfa(i)*r2)*d 

45 continue 
uk1(n) = (b(n} + uhalf(n-1} + beta(n)*uhalf(n))/alfa(n) 

373 



c 
c test for convergence 
c 

* 50 
c 

do 50 i = 1, n 
if (dabs(uk1(i) 

continue 

- uk(i))/(1.0 + dabs(uk(i))).gt.eps) 
go to 15 

c results 
c 

print*, 'rho no. of iter' 
print*, ' ' 
write (*, 125) rho, iter 

125 format (f7.4, i10) 
c go to 55 

print*, ' ' 
print*, 1 Problem 2: -u" + 3u**2/2 = 0, u(O) = 4, u(1) = 1' 
print*, ' ' 
print*, 1 double-precision, tol = 1.00-08' 
print*, • usual F.D. formula' 
write(*,112) 

112 format (//,' x Exact Computed', 
1 1 Abs error Prc Trc Err',/) 

do 123 i = 1, n 
xi = i*h 
ftrue = 4.0/(1 + xi)**2 
abserr = dabs(ftrue - uk1(i)) 
prcerr = 5*h*h*uk1(i)**3/8.0 
write (*,124) xi, ftrue, uk1(i), abserr, prcerr 

124 format (f4.2, 4d17.8) 
123 continue 
55 continue 

end 
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c Program AGE for accuracy - Numerov formula 
c Problem 2: u" = 3U2/2 
c u(O) = 4, u(1) = 1 
c The acceleration parameter is rho 

implicit real*8 (a-h,o-z) 
parameter (kk=502) 
dimension ukl(O:kk), uhalf(O:kk), uk(O:kk), b(l:kk), 

* g(1:kk), beta(1:kk), alfa(1:kk), a(1:kk), c(l:kk) 
print*, 'n(even), nrho, strho, rhoinc' 
read *, n, nrho, strho, rhoinc 
eps = 1. Od-08 
h = 1. 0/ (n+1) 
hh8 = h*h/8.0 
do 555 i = 1, n 

555 b(i) = o.o 
b(1) = b(1) + 4.0*(1.0 - 4.0*hh8) 
b(n) = b(n) + 1.0 - hh8 
write (*, 122) n 

122 format (/, 'Number of points', i5 ,/) 
do 55 mk = 1, nrho 
iter = o 
rho = strho + rhoinc*mk 
do 10 i = o, n+1 

10 uk1(i) = o.o 
c 
c start iterate 
c 
15 iter = iter + 1 

do 28 i = 0, n+1 
28 uk(i) = uk1(i) 

do 556 i = 1, n 
g(i) = 1.0 + 5.0*uk(i)*hh8 
alfa(i) = rho + g(i) 
beta(i) = rho - g(i) 

556 continue 
a(1) = 0.0 
do 601 i = 2, n 

601 a(i) = hh8*uk(i-1) - 1.0 
do 602 i = 1, n-1 

602 c(i) = hh8*uk(i+1) - 1.0 
c(n) = o.o 

c 
c first sweep 
c 

do 30 i = 1, n-1, 2 
r1 = b(i) - a(i)*uk(i-1) + beta(i)*uk(i) 
r2 = b(i+1) + beta(i+1)*uk(i+1) - c(i+1)*uk(i+2) 
d = 1.0j(alfa(i)*alfa(i+1) - a(i+1)*c(i)) 
uhalf(i) = (alfa(i+1)*r1 - c(i)*r2)*d 
uhalf(i+l) = (-a(i+1)*r1 + alfa(i)*r2)*d 

30 continue 
c 
c second sweep 
c 

uk1(1) = (b(1) + beta(1)*uhalf(1) - c(1)*uhalf(2))/alfa(1) 
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do 45 i = 2, n-2, 2 
r1 = b(i) - a(i)*uhalf(i-1) + beta(i)*uhalf(i) 
r2 = b(i+1) + beta(i+1)*uhalf(i+1) - c(i+1)*uhalf(i+2) 
d = 1.0j(alfa(i)*alfa(i+1) - a(i+1)*c(i)) 
uk1(i) = (alfa(i+1)*r1- c(i)*r2)*d 
uk1(i+1) = (-a(i+1)*r1 + alfa(i)*r2)*d 

45 continue 
uk1(n) = (b(n) - a(n)*uhalf(n-1) 

* + beta(n)*uhalf(n))/alfa(n) 
c 
c test of convergence 
c 

* 50 
c 

do 50 i = 1, n 
if (dabs(uk1(i) 

continue 

- uk(i))/(1.0 + dabs(uk(i))).gt.eps) 
go to 15 

c results 
c 

print*, 'rho no. of iter' 
print*, ' ' 
write (*, 125) rho, iter 

125 format (f7.4, i10) 
print*, ' ' 
print*, 'Problem 2: -u" + 3u**2/2 = 0, u(O) = 4, u(1) = 1' 
print*, ' ' 
print*, 'double-precision, eps = 1.00-08' 
print*, 'Numerov formula' 
write(*,112) 

112 format(//,' x Exact Computed', 
1 1 Abs error Prc Trc Err',/) 
do 123 i = 1, n 
xi = i*h 
ftrue = 4.0/(1 + xi)**2 
abserr = dabs(ftrue- uk1(i)) 
prcerr = 21*h**4*uk1(i)**4/64 
write (*,124) xi, ftrue, uk1(i), abserr, prcerr 

124 format (f4.2, 4d17.8) 
123 continue 
55 continue 

end 
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c 
c 
c 
c 

239 

555 

122 

118 

129 

221 
218 

10 

15 

28 

program AGE - two point boundary value problem 
with Douglas-Rachford (D-R) and Douglas Scheme 
omg = 1 for D-R, omg = 2 for Douglas 
The acceleration parameter is rho 
implicit real*8 (a-h,o-z) 
parameter (kk=502) 
dimension uk1(0:kk), uhalf(O:kk), uk(O:kk), b(1:kk) 
print *, ' ' 
print*, 'n(even), coeff(real), nrho, strho, rhoinc' 
read *, n, coeff, nrho, strho, rhoinc 
eps = 1. Od-05 
phi = 3.1415927 
halfpi = phi/2 
h = halfpi/(n+1) 
do 555 i = 1, n 
xi = i*h 
b(i) = (coeff+1)*h*h*(dsin(xi) + dcos(xi)) 
b(1) = b(1) + 1.0 
b(n) = b(n) + 1.0 
g = 1.0 + coeff*h*h*0.5 
aa = g - 1 
bb = g + 1 
rhoth = dsqrt(aa*bb) 
write (*, 122) n,coeff 
format(/, ' Number of points=', i5 ,' I , 

* ' Coefficient=', f7.2,//, 

* 
* 
* 
* 

' Dirichlet Boundary condition',//, 
1 Enter Method:', j, 
' 1- Douglas-Rachford Method',/, 
' 2 - Douglas Method') 

read (*,*) method 
go to (118,129) method 
print*, ' ' 
print*, ' 
omg = 1.0 
go to 221 

Douglas-Rachford Method' 

Douglas Method' 
print* I I I 

print*, ' 
omg = 2.0 
write(*, 218) 
format (/, ' rho(exp) rho(th) a b 

* I exact(3) computed(3)',/) 
do 55 mk = 1, 
iter = o 

nrho 

rho = strho + rhoinc*mk 
do 10 i = o, n+1 
uk1(i) = o.o 
alfa = rho + g 
d = 1.0/(alfa*alfa - 1.0) 
alfa1 = d*alfa 
t = alfa - 2*g*omg 
ss = omg - 1 
iter = iter + 1 
do 28 i = 0, n+1 
uk(i) = uk1(i) 
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c 
c first sweep 
c 

do 30 i = 1, n-1, 2 
r1 = omg*uk(i-1) + t*uk(i) + ss*uk(i+1) + omg*b(i) 
r2 = ss*uk(i) + t*uk(i+1) + omg*uk(i+2) + omg*b(i+1) 
uhalf(i) = alfa1*r1 + r2*d 
uhalf(i+1) = r1*d + alfa1*r2 

30 continue 
c 
c second sweep 
c 

uk1(1) = (rho*uhalf(1) + g*uk(1))/alfa 
do 45 i = 2, n-2, 2 
r1 = rho*uhalf(i) + g*uk(i) - uk(i+1) 
r2 = rho*uhalf(i+1) - uk(i) + g*uk(i+1) 
uk1(i) = alfa1*rl + r2*d 
uk1(i+1) = r1*d + alfa1*r2 

45 continue 
uk1(n) = (rho*uhalf(n) + g*uk(n))/alfa 

c 
c convergence test 
c 

50 
c 

do 50 i = 1, n 
if (abs(uk1(i) 

* continue 

c results 
c 

- uk(i))/(1.0 + abs(uk(i))).gt.eps) 
go to 15 

uk3 = dsin(3*h) + dcos(3*h) 
write (*, 125) rho, rhoth, aa, bb, iter, uk3, uk(3) 

125 format (4f9.3, i6, 2dl7.8) 
55 continue 

go to 239 
end 
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c program The CAGE Method 
c Problem 3: u" - 3U2/2 = 0 
c u(O) = 4, u(1) = 1 
c The acceleration parameter is rho 

implicit real*S (a-h,o-z) 
parameter (kk=502) 
dimension uk1(0:kk), uk(O:kk), b(1:kk), g(1:kk), 

* alfa(1:kk), res(1:kk), beta(1:kk) 
102 print*, ' ' 

print*, 'n(even), nrho, strho, rhoinc' 
read *, n, nrho, strho, rhoinc 
eps = 1. Od-05 
h = 1. 0/ (n+l) 
h75 = 0.75*h*h 
do 555 i = 1, n 

555 b(i) = o.o 
b(1) = 4.0 
b(n) = 1.0 

234 write (*, 122) n 
122 format(/, ' Number of points=', i5 ,;;, 

* ' The CAGE method- problem 3',/, 
* ' Dirichlet Boundary condition',//, 
* ' Enter Scheme:',;, 
* ' 1- Peaceman-Rachford-(1) Scheme',/, 
* ' 2- Peaceman-Rachford-(2) Scheme',/, 
* 1 3- DouglasjGuittet scheme',/, 
* ' 4- Next point',/, 
* ' 5 - Quit') 
read (*,*) method 
go to (118,129,159,102,169) method 

118 print*, ' ' 
print*, ' CAGE-Peaceman-Rachford-(1) Scheme' 
write(*,1010) 

1010 format(/,' rho no of iter exact(3)', 
* ' computed(3)',/) 
do 558 mk = 1, nrho 
iter = o 
rho = strho + rhoinc*mk 
do 1000 i = o, n+1 

1000 uk1(i) = o.o 
1555 iter = iter + 1 

if (iter.gt.200) go to 552 
do 2811 i = o, n+1 

2811 uk(i) = uk1(i) 
do 2581 i = 1, n 
g(i) = 1 + h75*uk(i) 
alfa(i) = rho + g(i) 
beta(i) = rho - g(i) 

2581 continue 
c 
c The sweep 
c 

d = l.O/(alfa(1)*alfa(2) - 1.0) 
a1 = d*beta(1)*(alfa(2)*beta(1) + 1)jalfa(1) 
b1 = d*beta(2)*(alfa(1) + beta(1))/alfa(1) 
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c 

cl= d*(alfa(1) + beta(1))jalfa(1) 
d1 = (d*alfa(2)*beta(1) + d + 1)/alfa(l) 
e1 = d1*b(1) + c1*b(2) 
uk1(1) = a1*uk(1) + b1*uk(2) + c1*uk(3) + e1 

do 2555 i = 2, n-2, 2 
d1 = 1.0/(alfa(i-l)*alfa(i) - 1.0) 
d2 = l.Oj(alfa(i)*alfa(i+1) - 1.0) 
d3 = 1.0j(alfa(i+1)*alfa(i+2) - 1.0) 
w1 = d1*d2 
W2 = d2*d3 
ak = w1*alfa(i+1)*(alfa(i) + beta(i)) 
bk = ak*beta(i-1) 
ck1 = alfa(i-1)*beta(i) + 1 
ck2 = alfa(i+2)*beta(i+1) + 1 
ck = w1*alfa(i+1)*beta(i)*ck1 + w2*ck2 
dk = w1*alfa(i+1)*ck1 + w2*beta(i+1)*ck2 
ek = w2*beta(i+2)*(alfa(i+1) + beta(i+1)) 
fk = w2*(alfa(i+1) + beta(i+1)) 
pk = w1*alfa(i+1)*(alfa(i) + beta(i)) 
qk = a1fa(i+1)*(d2 + w1*ck1) 
rk = d2 + w2*ck2 
sk = w2*(alfa(i+l) + beta(i+1)) 
gk = pk*b(i-1) + qk*b(i) + rk*b(i+1) + sk*b(i+2) 
ukl(i) = ak*uk(i-2) + bk*uk(i-1) + ck*uk(i) 

* + dk*uk(i+l) + ek*uk(i+2) 
* + fk*uk(i+3) + gk 

ak = wl*(alfa(i) + beta(i)) 
bk = ak*beta(i-1) 
ck = w2*alfa(i)*ck2 + w1*beta(i)*ck1 
dk = w2*alfa(i)*beta(i+1)*ck2 + w1*ck1 
ek = w2*alfa(i)*beta(i+2)*(alfa(i+1) + beta(i+1)) 
fk = w2*alfa(i)*(alfa(i+1) + beta(i+1)) 
pk = wl*(alfa(i) + beta(i)) 
qk = d2 + w1*ck1 
rk = alfa(i)*(d2 + w2*ck2) 
sk = W2*alfa(i)*(alfa(i+1) + beta(i+1)) 
gk = pk*b(i-1) + qk*b(i) + rk*b(i+1) + sk*b(i+2) 
uk1(i+1) = ak*uk(i-2) + bk*uk(i-1) + ck*uk(i) 

* + dk*uk(i+1) + ek*uk(i+2) 
* + fk*uk(i+3) + gk 

2555 continue 

c 

d = 1.0j(alfa(n-1)*alfa(n) - 1.0) 
an= d*(alfa(n) + beta(n))jalfa(n) 
bn = d*beta(n-1)*(alfa(n) + beta(n))jalfa(n) 
en= d*beta(n)*(alfa(n-1)*beta(n) + 1)/alfa(n) 
dn = (d*alfa(n-1)*beta(n) + d + 1)/alfa(n) 
en = an*b(n-1) + dn*b(n) 
ukl(n) = an*uk(n-2) + bn*uk(n-1) + cn*uk(n) + en 

c convergence test 
c 

do 5250 i = 1, n 
if (abs(ukl(i) - uk(i))/(1.0 + abs(uk(i))) .gt.eps) 

* go to 1555 
5250 continue 
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c 
c results 
c 

ukl3 = 4.0/(1 + 3*h)**2 
552 write (*, 125) rho, iter, ukl3, uk(3) 
125 format (f8.3, ilO, 2d20.8) 
558 continue 

go to 221 
129 print*, ' ' 

print*, ' CAGE-Peaceman-Rachford-(2) scheme' 
write(*,2020) 

2020 format(/,' rho no of iter exact(3)', 
* ' computed(3)',/) 

do 5595 mk = 1, nrho 
iter = o 
rho = strho + rhoinc*mk 
do 100 i = o, n+l 

100 ukl(i) = 0.0 
twor = 2*rho 

155 iter = iter + 1 
if (iter.gt.200) go to 5595 
do 281 i = o, n+l 

281 uk(i) = ukl(i) 
do 2881 i = 1, n 
g(i) = 1 + h75*uk(i) 
alfa(i) = rho + g(i) 
beta(i) = rho - g(i) 

2881 continue 
c 
c The sweep 
c 

c 

d = l.Oj(alfa(l)*alfa(2) - 1.0) 
w1 = twor*d 
cl = w1jalfa(l) 
al = beta(l)*(wl*alfa(2) - 1)/alfa(l) 
bl = cl*beta(2) 
d1 = c1*alfa(2) 
el = d1*b(l) + c1*b(2) 
ukl(1) = al*uk(l) + b1*uk(2) + cl*uk(3) + e1 

do 255 i = 2, n-2, 2 
dl = l.Oj(alfa(i-l)*alfa(i) - 1.0) 
d2 = 1.0/(alfa(i)*alfa(i+l) - 1.0) 
d3 = l.Oj(alfa(i+l)*alfa(i+2) - 1.0) 
wl = twor*d1*d2 
w2 = twor*d2*d3 
ak = w1*alfa(i+1) 
bk = ak*beta(i-1) 
ckl = wl*alfa(i-1) - d2 
ck2 = w2*alfa(i+2) - d2 
ck = alfa(i+l)*beta(i)*ckl + ck2 
dk = alfa(i+l)*ckl + beta(i+l)*ck2 
ek = w2*beta(i+2) 
qk = ak*alfa(i-1) 
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rk = w2*alfa(i+2) 
fk = ak*b(i-1) + qk*b(i) + rk*b(i+1) + w2*b(i+2) 
uk1(i) = ak*uk(i-2) + bk*uk(i-1) + ck*uk(i) 

* + dk*uk(i+1) + ek*uk(i+2) 
* + w2*uk(i+3) + fk 
qk = w1*beta(i-1) 
rk = alfa(i)*ck2 + beta(i)*ck1 
sk = ck1 + alfa(i)*beta(i+1)*ck2 
tk = w2*a1fa(i)*beta(i+2) 
vk = w2*alfa(i) 
bk = w1*alfa(i-1) 
ck = w2*alfa(i)*alfa(i+2) 
dk = w2*alfa(i) 
fk = w1*b(i-1) + bk*b(i) + ck*b(i+1) + dk*b(i+2) 
uk1(i+1) = w1*uk(i-2) + qk*uk(i-1) + rk*uk(i) 

* + sk*uk(i+1) + tk*uk(i+2) 
* + vk*uk(i+3) + fk 

255 continue 

c 

d = 1.0j(alfa(n-1)*alfa(n) - 1.0) 
wn = twor*d 
an = wnjalfa (n) 
bn = an*beta(n-1) 
en = beta(n)*(wn*alfa(n-1) - 1)/alfa(n) 
dn = an*alfa(n-1) 
en = an*b(n-1) + dn*b(n) 
uk1(n) = an*uk(n-2) + bn*uk(n-1) + cn*uk(n) + en 

c convergence test 
c 

do 5350 i = 1, n 
if (abs(uk1(i)- uk(i))/(1.0 + abs(uk(i))).gt.eps) 

* go to 155 
5350 continue 
c 
c results 
c 

uk13 = 4.0/(1 + 3*h)**2 
write (*, 125) rho, iter, uk13, uk(3) 

5595 continue 
go to 221 

159 print*, 1 1 

print*, ' CAGE-DouglasjGuittet Scheme' 
write(*,3030) 

3030 format(/,' rho no of iter exact(3)', 
* ' computed(3)',/) 

do 55 mk = 1, nrho 
iter = o 
rho = strho + rhoinc*mk 
twor = 2*rho 
do 10 i = o, n+1 

10 uk1(i) = o.o 
15 iter = iter + 1 

if (iter.gt.200) go to 515 
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do 7815 i = 0, n+l 
7815 uk(i) = ukl(i) 

do 956 i = 1, n 
g(i) = 1 + h75*uk(i) 
alfa(i) = rho + g(i) 

956 continue 
c 
c The sweep 
c 

c 

c 

c 

c 

45 

d = l.Oj(alfa(l)*alfa(2) - 1.0) 
cl = twor*d/alfa(l) 
al = 1 + cl*(l- 2*alfa(2)*g(l)) 
bl = cl*(alfa(2) - 2*g(2)) 
dl = cl*alfa(2) 
el = dl*b(l) + cl*b(2) 
ukl(l) = al*uk(l) + bl*uk(2) + cl*uk(3) + el 

do 45 i = 2, n-2, 2 
dl = l.Of(alfa(i-l)*alfa(i) - 1.0) 
d2 = 1.0/(alfa(i)*alfa(i+l) - 1.0) 
d3 = l.Oj(alfa(i+l)*alfa(i+2) - 1.0) 
wl = twor*dl*d2 
w2 = twor*d2*d3 
ak = wl*alfa(i+l) 
rk = w2*alfa(i+2) 
qk = ak*alfa(i-1) 
bk = ak*(alfa(i-1) - 2*g(i-l)) 
ck = 1 + rk + ak*(l- 2*alfa(i-l)*g(i)) 
dk = qk - 2*rk*g(i+l) + w2 
ek = rk - 2*w2*g(i+2) 
fk = ak*b(i-1) + qk*b(i) + rk*b(i+l) + w2*b(i+2) 

ukl(i) = ak*uk(i-2) + bk*uk(i-1) + ck*uk(i) 
* + dk*uk(i+l) + ek*uk(i+2) 
* + w2*uk(i+3) + fk 

qk = wl*(alfa(i-1) - 2*g(i-l)) 
rk = w2*alfa(i)*alfa(i+2) - 2*wl*alfa(i-l)*g(i) + wl 
sk = 1 + wl*alfa(i-1) 

* + w2*alfa(i)*(l- 2*alfa(i+2)*g(i+l)) 
tk = w2*alfa(i)*(alfa(i+2) - 2*g(i+2)) 
ul = w2*alfa(i) 
bk = wl*alfa(i-1) 
ck = w2*alfa(i)*alfa(i+2) 
dk = w2*alfa(i) 
fk = wl*b(i-1) + bk*b(i) + ck*b(i+l) + dk*b(i+2) 

ukl(i+l) = wl*uk(i-2) 
* 
* continue 

+ qk*uk(i-1) 
+ sk*uk(i+l) 
+ ul*uk(i+3) 

d = l.Oj(alfa(n-l)*alfa(n) - 1.0) 
an = twor*d/alfa(n) 
bn = an*(alfa(n-1) - 2*g(n-l)) 
en= 1 + an*(l - 2*alfa(n-l)*g(n)) 
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dn = an*alfa(n-1) 
en = an*b(n-1) + dn*b(n) 
uk1(n) = an*uk(n-2) + bn*uk(n-1) + cn*uk(n) + en 

c 
c convergence test 
c 

do 5359 i = 1, n 
if (abs(uk1(i) - uk(i))/(1.0 + abs(uk(i))).gt.eps) 

* go to 15 
5359 continue 
c 
c results 
c 

uk3 = 4.0/(1 + 3*h)**2 
515 write (*, 125) rho, iter, uk3, uk(3) 
55 continue 
221 continue 

go to 234 
169 continue 

end 

384 



c 
c 
c 
c 
c 
c 

921 

555 

122 

10 

15 

28 

2581 

30 
c 

program smartAGE (SMAGE-NONLINEAR) 
in Peaceman-Rachford form 
Problem 3: u" = 3u2/2 
u(O) = 4, u(1) = 1 
to measure the CPU time 
The acceleration parameter is rho 
implicit real*8 (a-h,o-z) 
parameter (kk=502) 
dimension uk1(0:kk), uhalf(O:kk), uk(O:kk), b(1:kk), 

* psi(O:kk), alfa(1:kk), beta(1:kk), g(1:kk) 

* 
* 
* 
* 

print*, 'n(even), nrho, strho, rhoinc' 
read *, n, nrho, strho, rhoinc 
eps = 1.0d-05 
h = 1. 0/ (n+1) 
h75 = 0.75*h*h 
do 555 i = 1, n 
b(i) = 0.0 
b(1) = 4.0 

n 
b(n) = 1.0 
write (*, 122) 
format (/, ' , 

I , 

Number of points=', i5 ,' ',//, 
Dirichlet Boundary condition',/, 
SMAGE in Peaceman-Rachford form',//, 

rho no of iter exact(3)', , computed(3) CPU time',/) 
do 55 mk = 1, nrho 
iter = o 
rho = strho + rhoinc*mk 
twor = 2*rho 
do 10 i = 0, n+1 
uk1(i) = o.o 
call clock time(itime1) 
iter-= iter + 1 
if (iter.gt.650) go to 1111 
do 28 i = o, n+1 
uk(i) = uk1(i) 
do 2581 i = 1, n 
g(i) = 1 + h75*uk(i) 
alfa(i) = rho + g(i) 
beta(i) = rho - g(i) 
continue 
do 30 i = 1, n-1, 2 
psi(i) = uk(i-1) + beta(i)*uk(i) 
psi(i+1) = beta(i+1)*uk(i+1) + uk(i+2) 
continue 

c first sweep 
c 

do 300 i = 1, n-1, 2 
r1 = psi(i) + b(i) 
r2 = psi(i+1) + b(i+1) 
d = 1.0/(alfa(i)*alfa(i+1) - 1.0) 
uhalf(i) = (alfa(i+1)*r1 + r2)*d 
uhalf(i+1) = (rl + r2*alfa(i))*d 

300 continue 
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c 
c second sweep 
c 

do 304 i = 1, n 
304 psi(i) = - psi(i) + twor*uhalf(i) 

uk1(1) = psi(1)/alfa(1) 
do 45 i = 2;;<n-2, 2 
d = 1.0j(alfa(i)*alfa(i+1) - 1.0) 
uk1(i) = (alfa(i+1)*psi(i) + psi(i+1))*d 
uk1(i+1) = (psi(i) + psi(i+l)*alfa(i))*d 

45 continue 
uk1(n) = psi(n)jalfa(n) 

c 
c convergence test 
c 

do 50 i = 1, n 
if (abs(uk1(i) - uk(i))/(1.0 + abs(uk(i))).gt.eps) 

* go to 15 
50 continue 

call clock time(itime2) 
time3 = real(itime2 - itime1)/100.00 

c 
c results 
c 
1111 uk3 = 4.0/(1 + 3*h)**2 

write (*, 125) rho, iter, uk(3), uk3, time3 
125 format (f8.2, i10, 2d19.8,f10.2) 
55 continue 

go to 921 
end 
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c The AGE-DG-2 scheme for Helmholtz's (20) equation 
c the acceleration parameter rho 

implicit real*S (a-h,o-z) 
parameter (kk=99) 
dimension uk1(0:kk,O:kk), uk34(0:kk,O:kk), 

* uk12(0:kk,O:kk), uk14(0:kk,O:kk), 
* uk(O:kk,O:kk), exact(O:kk,O:kk), 
* b(1:kk,1:kk) 

1111 print *, 'n(odd), coeff(real)' 
read *, n, coeff 
eps = 1. Od-05 
h = 1. Of (n+1) 
nn = n*n 

c 
c the vector b 
c 

do 3555 j = 1, n 
yj = j*h 
do 3555 i = 1, n 
xi = i*h 
terms = coeff*(2*xi*xi + yj*yj) - 6 

3555 b(i,j) = h*h*terms 
do 3155 i = 1, n 
xi = i*h 
b(i,1) = b(i,1) + 2*xi*xi 
b(i,n) = b(i,n) + 1 + 2*xi*xi 

3155 continue 
do 3255 j = 1, n 
yj = j*h 
b(1,j) = b(1,j) + yj*yj 
b(n,j) = b(n,j) + 2 + yj*yj 

3255 continue 
c 
c the exact value for the problem 
c 

do 314 j = 1, n 
yj = j*h 
do 314 i = 1, n 
xi = i*h 
exact(i,j) = 2*xi*xi + yj*yj 

314 continue 
c 
c 
c 
1113 
122 

* 
* 
* 
* 
* 
* 
* 

choose method 

write (*, 122) 
format (/, , 

, 
, 
, 
, 
, 
, 
, 

nn, coeff 
Solving POE (20) - Helmholtz equation',/, 
Elliptic type using:',/, 
Number of points =',i5,/, 
Coefficient= 'f6.2,/, 
Enter option:',/, 

1- The AGE-OG-2 Scheme:',/, 
2- Change point:',/, 
3- Quit',/) 
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1112 

222 

256 

11 

1.5 

28 
c 

read*, nopt 
.go to (1112,1111,1119) nopt 
omg = 2.0 
write (*, 222) nn, coeff 
format(/, ' Number of points =',iS, 

* ' Coefficient = 'f6.2,/) 
g = 1.0 + coeff*h*h*0.25 
aa = g - 1.0 
bb=g+l.O 
cc = (aa+bb)/2 
rhoth = dsqrt(aa*bb) 
print *, 'nrho, strho, rhoinc' 
read *, nrho, strho, rhoinc 
write (*, 256) 
format(/, ' iter', 

* I 

rho 
exact 

* I 

do 55 mk = 1, nrho 
iter = o 

a 

rho = strho + rhoinc*mk 
do 11 j = o, n+1 
do 11 i = 0, n+1 
uk1(i,j) = 0.0 
alfa = rho + g 
d = 1.0/(alfa*alfa - 1.0) 
t = alfa - 4*g*omg 
alfa1 = alfa*d 
ss = omg-1 
iter = iter + 1 
if (iter.gt.250) go to 1211 
do 28 j = o, n+1 
do 28 i = o, n+1 
uk(i,j) = uk1(i,j) 

b 
computed', 
(a+b)/2 sqrt(ab)',/) 

c level k+1/4 
c 

do 10 j = 1, n 
do 20 i = 1, n-2, 2 
r1 = omg*uk(i,j-1) + omg*uk(i-1,j) + t*uk(i,j) 

* + ss*uk(i+l,j) + omg*uk(i,j+1) + omg*b(i,j) 
r2 = omg*uk(i+1,j-1) + ss*uk(i,j) + t*uk(i+1,j) 

* + omg*uk(i+2,j) + omg*uk(i+1,j+1) + omg*b(i+1,j) 
uk14(i,j) = alfa1*r1 + r2*d 
uk14(i+1,j) = r1*d + alfa1*r2 

20 continue 
uk14(i,j) = (omg*uk(i,j-1) + omg*uk(i-1,j) + t*uk(i,j) 

* + omg*uk(i,j+1) + omg*b(i,j))/alfa 
10 continue 
c 
c level k+1/2 
c 

do 90 j = 1, n 
ukl2(1,j) = (rho*ukl4(l,j) + g*uk(l,j))/alfa 
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do 90 i = 2, n-1, 2 
rl = rho*uk14(i,j) + g*uk(i,j) - uk(i+l,j) 
r2 = rho*uk14(i+l,j) - uk(i,j) + g*uk(i+l,j) 
uk12(i,j) = alfal*rl + r2*d 
uk12(i+l,j) = rl*d + alfal*r2 

90 continue 
c 
c level k+J/4 
c 

do 900 i = 1, n 
do 910 j = 1, n-2, 2 
rl = rho*ukl2(i,j) + g*uk(i,j) - uk(i,j+l) 
r2 = rho*uk12(i,j+l) - uk(i,j) + g*uk(i,j+l) 
uk34(i,j) = alfal*rl + r2*d 
uk34(i,j+l) = rl*d + alfal*r2 

910 continue 
uk34(i,j) = (rho*uk12(i,j) + g*uk(i,j))jalfa 

900 continue 
c 
c level k+l 
c 

do 920 i = 1, n 
ukl(i,1) = (rho*uk34(i,1) + g*uk(i,l))/alfa 
do 920 j = 2, n-1, 2 
r1 = rho*uk34(i,j) + g*uk(i,j) - uk(i,j+1) 
r2 = rho*uk34(i,j+l) - uk(i,j) + g*uk(i,j+1) 
uk1(i,j) = alfa1*rl + r2*d 
uk1(i,j+1) = r1*d + alfa1*r2 

920 continue 
c 
c test for convergence 
c 

do 550 j = 1, n 
do 550 i = 1, n 
if (dabs(ukl(i,j) - uk(i,j))/(1.0 + dabs(uk(i,j))) 

* .gt.eps) go to 15 
550 continue 
1211 write (*,192) rho,iter,exact(9,9), ukl(9,9), 

* aa, bb, cc, rhoth 
192 format (f7.J, i6, 2d16.8, 4f8.3) 
55 continue 

go to 1113 
1119 continue 

end 
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c AGE for PDE Elliptic (20) 
c nonstationary - 2 parameter case, Hueristic search 
c The acceleration parameters are called rho-1 and rho-2 

implicit real*S (a-h,o-z) 
parameter (kk=99) 
dimension uk1(0:kk,O:kk), uk34(0:kk,O:kk), 

* uk12(0:kk,O:kk), uk14(0:kk,O:kk), 
* uk(O:kk,O:kk), exact(O:kk,O:kk), 
* b(1:kk,1:kk) 
print*, 'Enter n(odd)' 
read *, n 
eps = 1. Od-05 
h = 1. 0/ (n+1) 
phi = 3.1415927 
halfpi = phi/2 
chlpi = dcosh(halfpi) 
nn = n*n 
do 555 j = 1, n 
do 555 i = 1, n 

555 b(i,j) = 0.0 
print *I I I 

print *, 'Enter Problem: 1 - 3' 
read (*,*) iprob 
go to (1,2,3) iprob 

c 
c Problem 1 
c 
1 do 1555 i = 1, n 

xi = i*h 
b(i,1) = dsin(phi*xi) 
b(i,n) = dsin(phi*xi) 

1555 continue 
c 
c the exact value - Problem 1 
c 

do 114 j = 1, n 
yj = j*h 
do 114 i = 1, n 
xi = i*h 
exact(i,j) = dcosh(phi*(yj-0.5))*dsin(phi*xi)jchlpi 

114 continue 
go to 6 

c 
c Problem 2 
c 
2 do 2555 i = 1, n 

xi = i*h 
b(i,n) = 400*xi 

2555 continue 
do 2255 j = 1, n-1 
yj = j*h 
b(n,j) = 400*yj 

2255 continue 
yn = n*h 
b(n,n) = b(n,n) + 400*yn 
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c 
c the exact value - Problem 2 
c 

do 214 j = 1, n 
yj = j*h 
do 214 i = 1, n 
xi = i*h 
exact(i,j) = 400*xi*yj 

214 continue 
go to 6 

c 
c Problem 3 
c 
3 do 3555 j = 1, n 

do 3555 i = 1, n 
3555 b(i,j) = 2*h*h 

do 3155 i = 1, n 
xi = i*h 
b(i,1) = b(i,1) + xi*(1-xi) 
b(i,n) = b(i,n) + xi*(1-xi) 

3155 continue 
do 3255 j = 1, n 
yj = j*h 
b(n,j) = b(n,j) + dsinh(phi)*dsin(phi*yj) 

3255 continue 
c 
c the exact value - Problem 3 
c 

do 314 j = 1, n 
yj = j*h 
do 314 i = 1, n 
xi = i*h 
exact(i,j) = dsinh(phi*xi)*dsin(phi*yj) + xi*(1-xi) 

314 continue 
c 
c choose method 
c 
6 
122 

221 

229 

329 

write (*, 122) 
format (/, ' 

* I 

* I 

* I 

* I 

omg = 2.0 
print*,' ' 

nn, iprob 
Number of points=', i5,//, 
Solving PDE (2D) - Problem',i2,/, 
2- parameter, Heuristic search',/, 
Elliptic type using:',/, 
The AGE-DG-2 Scheme:',) 

print*,' Enter rho-1, rho-2, rinc' 
read (*,*) rho1, rho2, rinc 

* 

write (*,229) 
format(/,' Increment: 1- rho1, 2- rho2',/) 
read (*,*) irho 
write (*,329) 
format (/,' 

I 
rho-1 

exact 
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105 go to (101,102) irho 
101 rho1 = rho1 + rinc 

go to 108 
102 rho2 = rho2 + rinc 
108 iter = o 

do 11 j = 0, n+1 
do 11 i = 0, n+1 

11 uk1(i,j) = o.o 
icyc = o 

15 iter = iter + 1 
if (iter.gt.200) go to 105 
icyc = icyc + 1 
go to (201,202) icyc 

201 rho = rho1 
go to 991 

202 rho = rho2 
991 alfa = 1.0 + rho 

d = l.Oj(alfa*alfa - 1.0) 
t = alfa - 4*omg 
alfa1 = alfa*d 
ss = omg - 1 
do 28 j = 0, n+1 
do 28 i = 0, n+1 

28 uk(i,j) = uk1(i,j) 
c 
c level k+1/4 
c 

do 10 j = 1, n 
do 20 i = 1, n-2, 2 
r1 = omg*uk(i,j-1) + omg*uk(i-l,j) + t*uk(i,j) 

* + ss*uk(i+1,j) + omg*uk(i,j+1) + omg*b(i,j) 
r2 = omg*uk(i+1,j-1) + ss*uk(i,j) + t*uk(i+1,j) 

* + omg*uk(i+2,j) + omg*uk(i+1,j+1) + omg*b(i+1,j) 
uk14(i,j) = alfa1*r1 + r2*d 
uk14(i+1,j) = r1*d + alfa1*r2 

20 continue 
uk14(i,j) = (omg*uk(i,j-1) + omg*uk(i-1,j) + t*uk(i,j) 

* + omg*uk(i,j+1) + omg*b(i,j))/alfa 
10 continue 
c 
c level k+1/2 
c 

do 90 j = 1, n 
uk12(1,j) = (rho*uk14(1,j) + uk(1,j))/alfa 
do 90 i = 2, n-1, 2 
r1 = rho*uk14(i,j) + uk(i,j) - uk(i+1,j) 
r2 = rho*uk14(i+1,j) - uk(i,j) + uk(i+1,j) 
uk12(i,j) = alfa1*r1 + r2*d 
uk12(i+1,j) = r1*d + alfa1*r2 

90 continue 

392 



c 
c level k+J/4 
c 

do 900 i = 1, n 
do 910 j = 1, n-2, 2 
r1 = rho*uk12(i,j) + uk(i,j) - uk(i,j+1) 
r2 = rho*uk12(i,j+1) - uk(i,j) + uk(i,j+1) 
uk34(i,j) = alfa1*r1 + r2*d 
uk34(i,j+1) = r1*d + alfa1*r2 

910 continue 
uk34(i,j) = (rho*uk12(i,j) + uk(i,j))/alfa 

900 continue 
c 
c level k+1 
c 

do 920 i = 1, n 
uk1(i,1) = (rho*uk34(i,1) + uk(i,1))jalfa 
do 920 j = 2, n-1, 2 
r1 = rho*uk34(i,j) + uk(i,j) - uk(i,j+1) 
r2 = rho*uk34(i,j+1) - uk(i,j) + uk(i,j+1) 
uk1(i,j) = alfa1*r1 + r2*d 
uk1(i,j+1) = r1*d + alfal*r2 

920 continue 
if (icyc.eq.2) icyc = o 

c 
c test for convergence 
c 

do 550 j = 1, n 
do 550 i = 1, n 
if (dabs(uk1(i,j) - uk(i,j))/(1.0 + ~bs(uk(i,j))) 

* .gt.eps) go to 15 
550 continue 

write (*,129) rho1,rho2,iter,exact(9,9),uk1(9,9) 
129 format (2f10.3, i10, 2d19.8) 

go to 105 
end 
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c AGE for PDE Elliptic (3D) - 1st problem 
c second order - Chebyshev extrapolation 
c The acceleration parameters are rho and wk1 

implicit real*8 (a-h,o-z) 

c 

parameter (kk=20) 
dimension uk1(0:kk,O:kk,O:kk), vk(O:kk,O:kk,O:kk), 

* wk(O:kk,O:kk,O:kk), b(1:kk,1:kk,1:kk), 
* exact(O:kk,O:kk,O:kk), uk(O:kk,O:kk,O:kk), 
* ukO(O:kk,O:kk,O:kk) 
print*, 'n(odd), nrho, strho, rhoinc' 
read *, n, nrho, strho, rhoinc 
eps = 1.0d-05 
phi= 3.1415927 
h = 1. 0/ (n+l) 
nnn = n*n*n 

c the vector b 
c 

do 555 k = 1, n 
do 555 j = 1, n 
do 555 i = 1, n 

555 b(i,j,k) = 0.0 
do 2555 k = 1, n 
zk = k*h 
do 2555 i = 1, n 
xi = i*h 
b(i,1,k) = dsin(phi*xi)*dsin(phi*zk) 
b(i,n,k) = dsin(phi*xi)*dsin(phi*zk) 

2555 continue 
c 
c the exact value 
c 

tr1 = dcosh(phijsqrt(2.0)) 
tr2 = phi*sqrt(2.0) 
do 114 k = 1, n 
zk = k*h 
do 114 j = 1, n 
yj = j*h 
do 114 i = 1, n 
xi = i*h 
exy = dsin(phi*xi)*dcosh(tr2*(yj - 0.5)) 
exact(i,j,k) = exy*dsin(phi*zk)/tr1 

114 continue 
write(*, 122), nnn 

122 format (/, ' Solving PDE (3D) -1st problem',/, 
* ' Number of points =',i5,//, 
* ' Elliptic type using:',/, 
* ' The Douglas Method:',/, 
* ' Rho No of Iter',/) 

1000 print*,' maxeig' 
read*, eigmax 
kmin = 1000 
do 55 mk = 1, nrho 
iter = 1 
rho = strho + rhoinc*mk 
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do 11 k = 0, n+1 
do 11 j = 0, n+1 
do 11 i = o, n+1 

11 uk(i,j,k) = o.o 
alfa = rho + 1.0 

c 

d = 1.0/(alfa*alfa - 1.0) 
alfa1 = alfa*d 
rhoS = rho**5 
coeff1 = 2*rho5 

c to compute uk1 = Muk + g 
c 
c the calculation vk = (ri+G1)-1(b-Au) 
c 

do 107 k = 1, n 
do 107 j = 1, n 
do 207 i = 1, n-2, 2 
r1 = uk(i,j,k-1) + uk(i,j-1,k) + uk(i-1,j,k) 

* - 6*uk(i,j,k) + uk(i+1,j,k) + uk(i,j+1,k) 
* + uk(i,j,k+1) + b(i,j,k) 
r2 = uk(i+1,j,k-1) + uk(i+1,j-1,k) + uk(i,j,k) 

* - 6*uk(i+1,j,k) + uk(i+2,j,k) + uk(i+1,j+1,k) 
* + uk(i+1,j,k+1) + b(i+1,j,k) 
vk(i,j,k) = alfa1*r1 + r2*d 
vk(i+1,j,k) = r1*d + alfa1*r2 

207 continue 
. vk(n,j,k) = (uk(n,j,k-1) + uk(n,j-1,k) + uk(n-1,j,k) 
* - 6*uk(n,j,k) + uk(n,j+1,k) 
* + uk(n,j,k+1) + b(n,j,k))/alfa 

107 continue 
c 
c wk = (ri+G2)-1vk 
c 

do 907 k = 1, n 
do 907 j = 1, n 
wk(1,j,k) = vk(1,j,k)jalfa 
do 907 i = 2, n-1, 2 
wk(i,j,k) = alfa1*vk(i,j,k) + vk(i+1,j,k)*d 
wk(i+1,j,k) = vk(i,j,k)*d + alfa1*vk(i+1,j,k) 

907 continue 
c 
c vk(y) = (ri+G1)-1wk(y) 
c 

do 9007 k = 1, n 
do 9007 i = 1, n 
do 9107 j = 1, n-2, 2 
vk(i,j,k) = alfa1*wk(i,j,k) + wk(i,j+1,k)*d 
vk(i,j+1,k) = wk(i,j,k)*d + alfa1*wk(i,j+1,k) 

9107 continue 
vk(i,n,k) = wk(i,n,k)jalfa 

9007 continue 
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c 
c wk(y) = (ri+G2)-1vk(y) 
c 

do 9207 k = 1, n 
do 9207 i = 1, n 
wk(i,1,k) = vk(i,1,k)/alfa 
do 9207 j = 2, n-1, 2 
wk(i,j,k) = alfa1*vk(i,j,k) + vk(i,j+l,k)*d 
wk(i,j+l,k) = vk(i,j,k)*d + alfal*vk(i,j+l,k) 

9207 continue 
c 
c vk = (ri+G1)-1wk(z) 
c 

do 9507 i = 1, n 
do 9507 j = 1, n 
do 9407 k = 1, n-2, 2 
vk(i,j,k) = alfa1*wk(i,j,k) + wk(i,j,k+1)*d 
vk(i,j,k+1) = wk(i,j,k)*d + alfa1*wk(i,j,k+1) 

9407 continue 
vk(i,j,n) = wk(i,j,n)/alfa 

9507 continue 
c 
c uk1 = uk + dm*rho**5*(ri+G2)-1vk(z) 
c 

do 9307 i = 1, n 
do 9307 j = 1, n 
uk1(i,j,1) = uk(i,j,1) + coeff1*vk(i,j,1)/alfa 
do 9307 k = 2, n-1, 2 
uk1(i,j,k) = uk(i,j,k) + coeff1*(alfa1*vk(i,j,k) 

* + d*vk(i,j,k+1)) 
uk1(i,j,k+1) = uk(i,j,k+1) + coeff1*(d*vk(i,j,k) 

* + alfa1*vk(i,j,k+1)) 
9307 continue 

wk1 = 1.0/(1 - eigmax*eigmaxj2) 
15 iter = iter + 1 

if (iter.gt.58) go to 553 
do 28 k = o, n+1 
do 28 j = o, n+1 
do 28 i = o, n+1 
ukO(i,j,k) = uk(i,j,k) 
uk(i,j,k) = uk1(i,j,k) 

28 continue 
c 
c to compute uk2 = Muk1 + CukO 
c 
c the calculation vk = (ri+G1)-1(b-Au) 
c 

do 10 k = 1, n 
do 10 j = 1, n 
do 20 i = 1, n-2, 2 
r1 = uk(i,j,k-1) + uk(i,j-1,k) + uk(i-1,j,k) 

* - 6*uk(i,j,k) + uk(i+1,j,k) + uk(i,j+1,k) 
* + uk(i,j,k+1) + b(i,j,k) 
r2 = uk(i+1,j,k-1) + uk(i+1,j-1,k) + uk(i,j,k) 

* - 6*uk(i+1,j,k) + uk(i+2,j,k) + uk(i+1,j+1,k) 
* + uk(i+1,j,k+1) + b(i+1,j,k) 
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alfa1*r1 + r2*d vk(i,j ,k) = 
vk(i+1,j ,k) 
continue 
vk(n,j ,k) = 

= r1*d + a1fa1*r2 
20 

* 
(uk(n,j,k-1) + uk(n,j-1,k) + uk(n-1,j,k) 

- 6*uk(n,j,k) + uk(n,j+1,k) 

* continue 
+ uk(n,j,k+1) + b(n,j,k))/alfa 

10 
c 
c wk = (ri+G2)-1vk 
c 

do 90 k = 1, n 
do 90 j = 1, n 
wk(1,j,k) = vk(1,j,k)/alfa 
do 90 i = 2, n-1, 2 
wk(i,j,k) = alfa1*vk(i,j,k) + vk(i+1,j,k)*d 
wk(i+1,j,k) = vk(i,j,k)*d + alfa1*vk(i+1,j,k) 

90 continue 
c 
c vk(y) = (ri+G1)-1wk(y) 
c 

do 900 k = 1, n 
do 900 i = 1, n 
do 910 j = 1, n-2, 2 
vk(i,j,k) = alfa1*wk(i,j,k) + wk(i,j+1,k)*d 
vk(i,j+1,k) = wk(i,j,k)*d + alfa1*wk(i,j+1,k) 

910 continue 
vk(i,n,k) = wk(i,n,k)/alfa 

900 continue 
c 
c wk(y) = (ri+G2)-lvk(y) 
c 

do 920 k = 1, n 
do 920 i = 1, n 
wk(i,1,k) = vk(i,1,k)jalfa 
do 920 j = 2, n-1, 2 
wk(i,j,k) = alfa1*vk(i,j,k) + vk(i,j+1,k)*d 
wk(i,j+1,k) = vk(i,j,k)*d + alfa1*vk(i,j+1,k) 

920 continue 
c 
c vk(z) = (ri+G1}-1wk(z) 
c 

do 950 i = 1, n 
do 950 j = 1, n 
do 940 k = 1, n-1, 2 
vk(i,j,k) = alfa1*wk(i,j,k) + wk(i,j,k+1)*d 
vk(i,j,k+1) = wk(i,j,k)*d + alfa1*wk(i,j,k+1) 

940 continue 
vk(i,j,n) = wk(i,j,n)jalfa 

950 continue 
c 
c uk1(z) = wk1*(uk(z) + dm*rho**5*(ri+G6)-1vk(z)) 
c + (1-wk1)*ukO(z) 

wk2 = 1-wk1 
do 930 i = 1, n 
do 930 j = 1, n 
uk1(i,j,1) = wk1*(uk(i,j,1) 

* 
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do 930 k = 2, n-1, 2 
uk1(i,j,k) = wk1*(uk(i,j,k) + coeff1*(alfa1*vk(i,j,k) 

* + d*vk(i,j,k+1))) + wk2*ukO(i,j,k) 
uk1(i,j,k+1) = wk1*(uk(i,j,k+1) + coeff1*(d*vk(i,j,k) 

* + alfa1*vk(i,j,k+1))) + wk2*ukO(i,j,k+1) 
930 continue 

wk1 = 1.0/(1 - eigmax*eigmax*wk1/4) 
c 
c test for convergence 
c 

do 550 k = 1, n 
do 550 j = 1, n 
do 550 i = 1, n 
if (dabs(uk1(i,j,k) - uk(i,j,k))/(1.0 + dabs(uk(i,j,k))) 

* .gt.eps) go to 15 
550 continue 
553 write (*,129) rho,eigmax,wk1,iter,uk1(9,9,9),exact(9,9,9) 
129 format (3f8.3, i6, 2d18.8) 

if (kmin.lt.iter) go to 1000 
kmin = iter 

55 continue 
go to 1000 
end 
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c The EAD-GT-3 scheme for PDE Elliptic (3D) 
c with Guittet formula for omg = 2 
c The acceleration parameters are called rho and s 

implicit real*B (a-h,o-z) 
parameter (kk=29) 
dimension uk(O:kk,O:kk,O:kk), uk13(0:kk,O:kk,O:kk), 

* uk23(0:kk,O:kk,O:kk), ukl(O:kk,O:kk,O:kk), 
* up(O:kk,O:kk,O:kk), upl2(0:kk,O:kk,O:kk), 
* exact(O:kk,O:kk,O:kk), b(l:kk,l:kk,l:kk), 
* bl(l:kk,l:kk,l:kk) 
print*, 1 n(odd), nrho, strho, rhoinc 1 

read *, n, nrho, strho, rhoinc 
eps = 1. Od-05 
h = 1. 0/ (n+l) 
phi = 3.1415927 
halfpi = phi/2 
nnn = n*n*n 
do 555 k = 1, n 
do 555 j = 1, n 
do 555 i = 1, n 

555 b(i,j,k) = 0.0 
print *, 1 1 

print *, 1 Enter problem: 1- 2 1 

read (*,*) iprob 
go to (1,2) iprob 

c 
c Problem 1 
c 
1 do 1555 k = 1, n 

zk = k*h 
do 1555 i = 1, n 
xi = i*h 
b(i,l,k) = dsin(phi*xi)*dsin(phi*zk) 
b(i,n,k) = dsin(phi*xi)*dsin(phi*zk) 

1555 continue 
c 
c the exact value - Problem 1 
c 

trl = dcosh(phijsqrt(2.0)) 
tr2 = phi*sqrt(2.0) 
do 114 k = 1, n 
zk = k*h 
do 114 j = 1, n 
yj = j*h 
do 114 i = 1, n 
xi = i*h 
exy = dsin(phi*xi)*dcosh(tr2*(yj-0.5)) 
exact(i,j,k) = exy*dsin(phi*zk)/trl 

114 continue 
go to 6 

c 
c Problem 2 
c 
2 do 2555 j = 1 1 n 

yj = j*h 
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do 2555 i = 1, n 
xi = i*h 
b(i,j,n) = 400*xi*yj + b(i,j,n) 

2555 continue 
do 2255 k = 1, n 
zk = k*h 
do 2255 i = 1, n 
xi = i*h 
b(i,n,k) = 400*xi*zk + b(i,n,k) 

2255 continue 
do 2355 k = 1, n 
zk = k*h 
do 2355 j = 1, n 
yj = j*h 
b(n,j,k) = 400*yj*zk + b(n,j,k) 

2355 continue 
c 
c the exact value - Problem 2 
c 

do 214 k = 1, n 
zk = k*h 
do 214 j = 1, n 
yj = j*h 
do 214 i = 1, n 
xi = i*h 
exact(i,j,k) = 400*xi*yj*zk 

214 continue 
c 
c 
c 
6 
122 

888 

222 

* 
* 

choose method 

write (*, 122) 
format (/, ' 

I , 

iprob 
Solving PDE (JD) - Problem',i2,/, 
Elliptic type using:',/, 

* , 
Guittet formula for omg = 2:',/, 
The EAD-GT-3 Scheme:',/) 

print*, 's1' 
read*, s1 
write (*, 222) 
format (/, ' 

nnn 
Number of points =',i5,//, 

* , rho iter', 

* 
, 

do 55 mk = 1, nrho 
iter = o 

exact computed',/) 

rho = strho + r~oinc*mk 
do 11 k = 0, n+1 
do 11 j = o, n+1 
do 11 i = 0, n+1 
up12(i,j,k) = o.o 
uk13(i,j,k) = o.o 
uk23(i,j,k) = 0.0 

11 uk1(i,j,k) = o.o 
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c 
c coefficients 
c 

omg = 2.0 
alfa = rho + 2 
dmr2 = omg*rho*rho 
dms = 2*s1 
beta = s1 + alfa/2 
d = 1.0/(beta*beta - 1.0) 
btd = beta*d 
p1 = alfa*alfa*alfa - 6*dmr2 
q1 = dmr2 - a1fa*alfa 
p2 = beta*beta - alfa*dms 
q2 = dms - beta 
p2b = p2/beta 
q2b = q2jbeta 
dmsb = dmsjbeta 

15 iter = iter + 1 
if (iter.gt.58) go to 789 
do 28 k = o, n+1 
do 28 j = o, n+1 
do 28 i = o, n+1 

28 uk(i,j,k) = uk1(i,j,k) 
c 
c rhs vector b1 = [(ri+X)*(ri+Y)*(ri+Z) - mr2A]uk + mr2b 
c 

900 
c 

do 900 k = 1, n 
do 900 j = 1, n 
do 900 i = 1, n 
b1(i,j,k) =- uk(i-1,j-1,k-1) - uk(i+1,j-1,k-1) 

* - uk(i-1,j+1,k-1) - uk(i+1,j+1,k-1) 
* - uk(i-1,j-1,k+1) - uk(i+1,j-1,k+1) 
* - uk(i-1,j+1,k+1) - uk(i+1,j+1,k+1) 
* + alfa*(uk(i,j-1,k-1) + uk(i-1,j,k-1) 
* + uk(i+1,j,k-1) + uk(i,j+1,k-1) 
* + uk(i-1,j-1,k) + uk(i+1,j-1,k) 
* + uk(i-1,j+1,k) + uk(i+1,j+1,k) 
* + uk(i,j-1,k+1) + uk(i-1,j,k+1) 
* + uk(i+1,j,k+1) + uk(i,j+1,k+1)) 
* + q1*(uk(i,j,k-1) + uk(i,j-1,k) 
* + uk(i-1,j,k) + uk(i+1,j,k) 
* + uk(i,j+1,k) + uk(i,j,k+1)) 
* + p1*uk(i,j,k) + dmr2*b(i,j,k) 
continue 

c level k+1/3 
c 

do 281 k = o, n+1 
do 281 j = o, n+1 
do 281 i = o, n+1 

281 up(i,j,k) = uk13(i,j,k) 
c 
c up12 = (si+G1)-1[(si+G1)*(si+G2) - msX]up + msb1] 
c 
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do 90 k = 1, n 
do 90 j = 1, n 
do 901 i = 1, n-2, 2 
rl = q2*(up(i-l,j,k) + up(i+l,j,k)) + p2*up(i,j,k) 

* + up(i+2,j,k) + dms*bl(i,j,k) 
r2 = up(i-l,j,k) + q2*(up(i,j,k) + up(i+2,j,k)) 

* + p2*up(i+l,j,k) + dms*bl(i+l,j,k) 
upl2(i,j,k) = btd*rl + r2*d 
upl2(i+l,j,k) = rl*d + btd*r2 

901 continue 
upl2(n,j,k) = q2b*up(n-l,j,k) + p2b*up(n,j,k) 

* + dmsb*bl(n,j,k) 
90 continue 
c 
c ukl3 = (si+G2)-l(up12) 
c 

do 80 k = 1, n 
do 80 j = 1, n 
uk13(1,j,k) = upl2(1,j,k)jbeta 
do 80 i = 2, n-1, 2 
uk13(i,j,k) = btd*upl2(i,j,k) + upl2(i+l,j,k)*d 
uk13(i+l,j,k) = upl2(i,j,k)*d + btd*upl2(i+l,j,k) 

80 continue 
c 
c level k+2/3 
c 

do 2811 k = o, n+l 
do 2811 j = o, n+l 
do 2811 i = o, n+l 

2811 up(i,j,k) = uk23(i,j,k) 
c 
c upl2 = (si+Gl)-l[(si+Gl)*(si+G2) - msX)up(y) + ms*uk13 
c 

do 98 i = 1, n 
do 98 k = 1, n 
do 981 j = 1, n-2, 2 
rl = q2*(up(i,j-l,k) + up(i,j+l,k)) + p2*up(i,j,k) 

* + up(i,j+2,k) + dms*uk13(i,j,k) 
r2 = up(i,j-l,k) + q2*(up(i,j,k) + up(i,j+2,k)) 

* + p2*up(i,j+l,k) + dms*uk13(i,j+l,k) 
up12(i,j,k) = btd*rl + r2*d 
upl2(i,j+l,k) = rl*d + btd*r2 

981 continue 
up12(i,n,k) = q2b*up(i,n-l,k) + p2b*up(i,n,k) 

* + dmsb*uk13(i,n,k) 
98 continue 
c 
c uk13 = (si+G2)-l(upl2(y)) 
c 

do 800 i = 1, n 
do 800 k = 1, n 
uk23(i,l,k) = upl2(i,1,k)jbeta 
do 800 j = 2, n-1, 2 
uk23(i,j,k) = btd*upl2(i,j,k) + upl2(i,j+l,k)*d 
uk23(i,j+l,k) = upl2(i,j,k)*d + btd*upl2(i,j+l,k) 

800 continue 
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c 
c level k+1 
c 

do 3811 k = o, n+1 
do 3811 j = o, n+1 
do 3811 i = o, n+1 

3811 up(i,j,k) = uk1(i,j,k) 
c 
c up12 = (si+G1)-1((si+G1)*(ri+G2) - msX)up(z) + ms*uk23 
c 

do 99 j = 1, n 
do 99 i = 1, n 
do 999 k = 1, n-2, 2 
r1 = q2*(up(i,j,k-1) + up(i,j,k+1)) + p2*up(i,j,k) 

* + up(i,j,k+2) + dms*uk23(i,j,k) 
r2 = up(i,j,k-1) + q2*(up(i,j,k) + up(i,j,k+2)) 

* + p2*up(i,j,k+1) + dms*uk23(i,j,k+1) 
up12(i,j,k) = btd*r1 + r2*d 
up12(i,j,k+1) = r1*d + btd*r2 

999 continue 
up12(i,j,n) = q2b*up(i,j,n-l) + p2b*up(i,j,n) 

* + dmsb*uk23(i,j,n) 
99 continue 
c 
c uk1 = (si+G2)-1(up12(z)) 
c 

do 8000 j = 1, n 
do 8000 i = 1, n 
uk1(i,j,1) = up12(i,j,1)/beta 
do 8000 k = 2, n-1, 2 
uk1(i,j,k) = btd*up12(i,j,k) + up12(i,j,k+1)*d 
uk1(i,j,k+1) = up12(i,j,k)*d + btd*up12(i,j,k+1) 

8000 continue 
c 
c test for convergence 
c 

do 550 k = 1, n 
do 550 j = 1, n 
do 550 i = 1, n 
if (dabs(uk1(i,j,k) - uk(i,j,k))/(1.0 

* + dabs(uk(i,j,k))).gt.eps) go to 15 
550 continue 
789 write (*,192) rho, iter, exact(9,9,9), uk1(9,9,9) 
192 format (f10.3, i10, 3d19.8) 
55 continue 

go to 888 
end 
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