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"It is probably safe to say that clutter will 

never be understood completely because there 

. are so many variables to control " 

TOMLINSON 
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ABSTRACT 

Moaern military acquisition and tracking raaars are required to operate 

against aircraft and missiles specifically designed to have minimal 

radar cross section (RCS) and which fly at very low level to take 

maximum advantage of terrain screening. 

A model for predicting system performance is necessary for a range of 

terrain types in varying precipitation and seasonal cultural conditions. 

While the main degradation is from surface clutter and denial of sightline 

due to terrain and other local obstructions, several other factors such 

as multipath propagation, deliberate jamming and even operator performance 

contribute to the total model. The possibility that some radars may 

track obscured targets, however briefly, by using the diffraction path, 

is of particular interest. 

Although this report critically examines each of the contributory factors 

in order to select optimum values for inclusion in an overall computer 

prediction model; a new surface clutter model is specifically developed 

for sloped terrain using actual clutter measurements. The model is 

validated by comparison with an ~xtensive survey of worldwide clutter 

results from both published and unpublished sources. 

Certain constraints have been necessary to restrict the study to a 

manageable size, while meeting the requirements of the sponsors. 

Attention is therefore focussed upon performance predCc.tion for 

typical mobile tracking radar systems designed for operation against 

small RCS low level targets flying overland. 
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CHAPTER 1 

THE NATURE OF RADAR CLUTTER 

INTRODUCTION 

1. This report considers radar performance prediction when operating 

at low grazing angles with the horizon - such that radar beam illumination 

of the ground inevitably occurs, resulting in unwanted clutter echoes. 

These clutter signals diminish the probability, or even totally prevent 

the radar from detecting the wanted signal from aircraft and missiles. 

2. Minimisation of interference effects, based on a knowledge of the 

expected clutter, is possible to a certain degree at the radar design 

stage. However,it is also necessary to be able to assess the probability 

of detecting and tracking a target of given radar cross section (RCS) for 

an existing radar when the target is at very low altitude over variable terrai.n, 

or water. Probability of overall success clearly depends upon the 

likelihood of encountering competing clutter, the time for which such 

clutter persists before the target moves to a more advantageous position 

(where the target signal overrides the clutter signal) and the reaction 

time of the associated command and control or missile system which is to 

make use of the target tracking data. Hence a statistical analysis is 

necessary which takes into account the very large numbers of variables 

involved. (Annex Al. 

3. To make a complete assessment for a particular radar type and location 

it is first necessary to analyse the terrain profile to obtain sightline 

data to the target. Secondly to investigate the corresponding surface 

characteristics beneath the target, and finally to assess degradation of 

signals due to volume clutter including cloud, rain, snow etc and the 
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I 

I 

I 

I effects of deliberate clutter such as chaff (electronic countermeasures). 

Several techniques are used to reduce clutter effects but even these may 

have only minimal effect in the scenario in question. A gener,.I.selection 

of parameters to minimise clutter are set out at Table 1 below: 

EFFECTIVE AGAINST 

PARAIm'ERS GROUND WEATHER CHAFF SEA 
CLUTTER CLUTTER (ECM) CLUTTER 

.. 
. 

LOW RF X 
. 

NARROW AE :sw X X X 
.. 

SHORT PULSE 
X X X (RESOLUTION CELL) 

. 

STC X 

MrI X @ X 0 
. 

LOG RX!FTC X X X 

CIRCULAR X @ X POLARISATION 

. 

FREQ DIVERSITY! 
X ® X AGILITY 

Table 1 - Clutter Reduction Technigues 

Notes: 1. X Effective in Hmiting clutter 

2. (3) Effective in some cases 

FORMS OF CLUTTER 

. 

ANGELS 

X 

X 
. 

X 

4. In differentiating between surface-distributed and volume-distributed 

clutter the situation can be initially described by geometry, detailed 

at Annex B. In particular it is seen that the illuminated surface area 

1-2 
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and volume vary with range and pulse duration, as well aB with the 

radar aerial depression angle. The existence of clutter returns 

overland from long ranges is significantly dependent upon the height 

of the scanned terrain, since hills at short range will often shadow 

any possible signal returns (see Fig lb) from targets fUrther away. 

However, this shadowing effect :may be limited in azimuth and will therefore 

depend critically upon line of sight terrain screening as the radar 

aerial is incrementally scanned in azimuth. On the contrary, 

measurements taken at sea will be :more or less uniformly distributed 

oyer the surface. Here the surface clutter echo strength will be 

directly related to the area of the resolution cell, in contrast to 

ground clutter which varies from place to place within the cell, and 

is not therefore proportional to the resolution cell size (Warden {l} 

and Riley { 2 } ). It is however convenient to use the echoing area 

per resolution cell (00 ) as a standard; explained at p 4-82. This 

allows direct comparison with the target echoing area in studies of 

the probability of detection. At sea, multipath signal phenomena 

(see Fig la) are quite probable. whereas this effect is possible overland, 

but far less likely. 

RESEARCH PARAMETERS 

5. Detection predictions are required for radars having the typical 

parameters listed below. Monostatic radars are the main interest, 

although some bistatic work has been done (mainly in the USA) and this 

may be referred to. where applicable. The following main chare.eteristics 

are adhered to throughout the study: 

1-3 
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a. Radar Wavelength < 3 cm (10 GHz up to 18 GHz) 

b. Pencil or Fan aerial beams, with sharp beamwidths 

and mounted on masts up to 30 m high. 

c. Small radar resolution cells (15 ns < T < 2Vs). 

d. Small target radar cross section (0.05 mZ minimum). 

e. Tracking type radars, as distinct rrom surveillance radars. 

CLUTTER VARIABLES 

6. Variables contributing to the complex overall extent of clutter in 

any particular radar system include: 

a. Topographical Features 

1. Terrain TYPe - Snow, Desert, Forest, Urban, Water etc. 

2. Seasonal Variations - Defoliation, surface water content, 

surface motion. 

3. Terrain Profile - Hills, undulating, flat etc. 

b. Radar Characteristics 

1. Resolution cell size - dependent on pulse duration (PO) 

and radiated beamwidth (BW). 

2. Radio Frequency {RF}, polarisation of transmit and 

receive aerials and distribution of radiation. 

3. Aerial induced fluctuations. 

4. Grazing angle of radar beam with surface, also known 

1-4 
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as 'depression' or 'incidence' angle. (But see later definitions). 

c. Atmospheric and Propagation Effects 

1. Diffraction, Reflection and Refraction, including 

multipath. 

2. Air temperature, water vapour absorption. 

3. Rain/precipitation, chaff attenuation and backscatter. 

CLUTTER STATISTICAL DISTRIBUTIONS 

7. Weibull, Ricean, Rayleigh and Gaussian statistical distributions are 

used in clutter research and although stated in the main text, since some 

are uncommon, they are detailed at Annex A. Spatial and temporal characteristics 

of the variables at para 6 above are summarized at table 2 and each is 

investigated fully in the following chapters. (except sea clutter). 

RELIABILITY AND REPEATABILITY OF CLUTTER MEASUREMENTS AND ASSESSMENTS 

8. Despite the considerable number of clutter research programmes over 

many years it is unfortunate that few have used identical test parameters, 

particularly in relation to those areas critical to this study. 

Probabilities obtained even day to day have varied significantly and a 

large number of research workers have reported that the available data­

base 1Il!I.Y be inadequate at present for conclusive and repeata.ble relation­

ships to be stated. While there are considera.ble shortcomings in most 

clutter~odels, worse still there appears to be no standardised approach 

dis~ernable in the ~y papers read during this study. 
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TABLE 2 CLUTTER MODELLING PARAMETERS 
, 

, 

CLUTTER TYPE INPUT PARAMETERS MODELLING DESCRIPTION 
, 

-'-
, 

RAIN BACKSCATTER Rainfall.Rate, Type, Rain Frequency, Spatial distribution of Reflectivity 
Radar Frequency (RF). Spectrum and Probability of occurence. 

" 
, 

CHAFF BACKSCATTER Amount and Type, Dissemination Mode, Spatial and Temporal distribution of 
RF. Reflectivity, Spectrum. 

SEA BACKSCATTER Sea state,Incidence Angle, RF and Reflectivity (average) and Clutter 
radar polarisation. . Signal distribution. 

I 

LAND BACKSCATTER Land type, Incidence Angle, RF, Distribution of reflectivity Spectrum 
Pulse length. of motion. 

, 

REFLECTIONS/MUL'rIPATH Geometry, RF, Surface Roughness, Coherent propagation loss. Diffuse 
Polarisation scattering intensity. 

ATMOSPHERIC/RAIN RF, Range, Rain Rate, Type and Propagation loss. Attenuation rates. 
ATTENUATION Frequency, 'Atmospheric Character-

istics • 
. ' 

REFRACTION AND Geometry, RF. Propagation losses, path patterns. 
DIFFRACTION 

, 

JAMMING Type. Modulation, Signal ratios and thresholds. 
-



9. Recently, Allan· { 3 } in particular, surveyed a number of 

clutter prediction papers and found both anomalies and inadequacy of data; 

concluding that Ita completely general analytical method is probably 

an impossibility". The added complications of terrain screening, chaff 

. or atmospheric propogation effects were outside the scope of Allan's 

paper, as with many other research studies. On consideration it was 

felt necessary to include all these factors in a more comprehensive 

study. Meanwhile, itwe.s discovered (by chance) that an ongoing study 

at MIT (USA) has similar terms of research, hence the author and Dr Briggs 

{ 4 } ~e been able to exchange information on clutter research reports. 

Despite the wide resources of MIT in producing a world-wide clutter 

bibliography of some 300 items, the author's investigations at Cranwell 

have resulted in the addition of another 70 to 80 reports to the MIT 

list. (ClkI'Ml-TIL) 

REVIEW OF CLUTTER RESEARCH 

10. In preparation for the construction of a model, a comprehensive 

review of radar clutter and associated literature was a time consuming 

initial requirement. However, with respect to the radar parameters 

required for this study, the search revealed that many reports used 

parameters very widely dispersed from those of interest. Nevertheless 

several hundred papers were filtered for information. 

11. Extensive descriptions of clutter are given in several standard 

texts { 5, 6, 7 }. However, they are usually intended for the radar 

student requiring a general grasp of the problem and they invariably 

avoid the difficulty of assessing practical system performance. That 

there is a serious lack of data and that researchers, for their own specific 

purposes, have embarked on measurement programmes with a range of 
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different averaging criteria - even though ostensibly repeating research 

done by others - all serves to cast doubt on the integrity of conclusions 

drawn from comparison studies. Hence, published sets of results for 

(apparently) the same test conditions may not correlate and it is clear 

that the phenomenon of surface clutter in radar receivers remains poorly 

understood and poorly predictable. 

12. During the study. discussions and correspondence with MIT (USA), 

RSRE (~vern) and UK Industry has proved rewarding. It is clear that 

the respecti~e Departments of Defence have a particular interest at present 

in this topic, but both now realise the enormity of the task if all 

unknowns in the clutter parameter matrix are to be found. The use of the 

best published research is therefore essential, since no organisation 

could afford to undertake the vast range of measurements necessary to 

build a complete picture from the beginning. On t~e other hand, confidence 

in a·model will only be acheived if a spread of repeatable results is 

identified, and with the shortage of data, certain assumptions and judge­

uents based upon sound reasoninguust be used if any sort of useable 

algorithm is to be attempted. It is found that research papers fall, 

in general, into 3uain types: 

a. Short radar range. scientifically orientated reflectivity 

experiments, specifically radiated narrow-beam energy against 

small but highly homogeneous clutter patches eg snow, crops, 

concrete or regular vegetations. Usually the radiating and receiving 

aerials are stationary. 

b. Intermediate range measurements using large clutter 

patches, trees, fields, etc, again using narrow beamwidths, and 

often exploring stationary single resolution cells. 
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c. Surveillance radar measurements, usually involving 

3600 azimuth coverage with clutter sources varying from flat 

to rough terrain and containing both diffUse scatterers such 

as crops, weeds etc and point scatterers of the isolated type 

such as pylons, and water towers. 

13. Since a complete clutter detection model should embrace all possible 

-variables which degrade the radar performance it is appropriate at this 

point to differentiate between the amplitude, phase and other fluctuations 

leading to the clutter statistics received as signals from outside the 

receiver, and including all the effects mentioned so far including RF 

spectrum and fre~uency agility effects; contrasted with the characteristics 

of the clutter signal processing circuits which are in'side the radar. 

Published reports often attempt modelling while accounting for several 

variables but ignore others pertinent to the circumstances of a practical 

scenario. For example a seaborne radar model would not normally need to 

account for sightline screening since, unlike on land, the only screening 

at sea is the longer range horizon limiting. On land there is the infinite 

variability of the terrain to contend with and so the modelling taSk 

becomes daunting; and even worse if the model is to cover both sea and land 

mixed. Investigations have shown that the simple categorisation of 

landscape into broad types is not suitable, and it has been well 

established that detailed categorisation is necessary. Indeed it is possible 

that reliable radar prediction under all conditions may be denied until 

clutter descriptions become more elaborate. 

14. The Canadian Soil Survey Committee adopted a hierarchical classification 

scheme in 1976 { 8 } which allocates 10 first level classes (eg undulating, 

rolling, level etc); second level modifiers (eg eroded) and other levels 

specifying coverage slope, local relief and so on. Any type of terrain 

can be described by the system. The USA also have a land use and cover 
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classification system. However a truly comprehensive scheme would 

necessitate a means of describing, for example, the natural, cultural 

andman~ade vertical obstructions which tend to cluster along roads and 

field edges; and seasonal effects. United Kindom and European terrain 

data bases are also considered in the investigations at Chapter 4. 

PROBLEM AREAS 

15. The foregoing paragraphs generally highlight the shortcomings in the 

raw material to insert into a clutter model. Coupling this with the lack 

of a widely applicable analysis method, one approach would be to use 

homogeneous clutter, using perhaps 8 or 10 surface classifications and to 

assume the entire resolution cell "footprint f.' contains one type of 

scatterer. An extreme alternative would involve detailed mathematical 

representation of the reflectivity of every scatterer within the cell, 

taking for example, in the limit, grass-blades to be dipoles with associated 

phase and amplitude behaviour. After investigations a method is 

developed (and justified in later chapter~ as the most reasonable practical 

approach, given the limitations described above. 

16. Chaff and Electronic Jamming. One aspect, so far not expanded 

upon,is the use of deliberate radar clutter to reduce the probability 

of detection, ie the dispersion of "Chaff" within the resolution cell 

by~military targets or the radiation of interfering or misleading (deception) 

signals. In both cases a serious degradation of radar performance may 

result in tracking disturbance or break-lock on a target of interest. 

1-10 



17. Electronic jamming may not emanate from the target being tracked but 

from another source which is giving countermeasures support, ie a 'stand-off' 

jamming aircraft. These emissions may enter the tracking radar through the 

main beam or sidelobes. Chaff interference is also considered and it is of 

interest that statistically chaff and rain backscatter characteristics are 

similar. 

18. Diffraction and Terrain Slope. Surface obstacle diffraction and clutter 

from sloped terrain are of particular importance to the prediction of 

performance of low grazing angle tracking radars. Since few practical 

measurements have been published on these topics, they seemed to be worthwhile 

areas for detailed study. 

MINIMUM AIMS OF THE STUDY 

\ 
19. As a minimum the author sets out, it is believed uniquely, to sUIDflarize 

in one document: 

a. A reasonably detailed method of assessing the performance to be 

expected from a tracking radar and associated missile system when 

deployed on a pre-surveyed site, by computer modelling. 

b. A simpler method of performance prediction for a system deployed 

anywhere within a geographical area where terrain data may be available 

only.in general form and where radar performance data is perhaps limited. 

In both cases either the specific radar and relevant system parameters are 

known or can be varied to observe the effects, for example, with and without 

interference. 

1-11 



BIBLIOGRAPHY 

20. It should be stated that the bibliography, because of the nature 
of the study, is unusually extensive for a report of this type. Items listed 
are not all cross-referenced in the main text but it is considered 
necessary to include the entire reading list for completeness as a new 
consolidated clutter reference. Readers will find a proportion of the 
bibliography repeated in the MIT list {4} as mentioned at para 9 above. 

DEFINITION 

21. For the purpose of this study 'clutter' is generally taken to mean all 
effects which impede or degrade detection and hence tracking. It maybe 'I 

caused by the type or condition of the surface, hindrance or disturbance of 
propagation due to volume clutter, atmospheric effects, or by jamming or 
target manoeuvre. 

ORIGINAL RESEARCH 

22. It has already been mentioned that a single prediction document. is 
probably unique. To achieve the aims at para 19 above, each of the contributory 
factors to tracking radar performance (relevant to the radar characteristics 
described at para 5) have been examined in detail: 

a. To select the best method of representing terrain data for 
prediction purposes. 

b. To select the best model to describe clutter in all it's forms with 
particular emphasis on those aspects where measurements or results are 
scarce or of doubtful value. 

As a result, indeed as expected, surface clutter modelling proved to be the 
weakest link in the overall prediction model. To overcome this shortcoming, 
first an extensive survey of existing measurements was made to bring all known 
models together for comparison. But, most importantly, a new model i~ 
developed from raw radar measurements and critically com~ared with th~ 
existing real or interpolated models. 

PRESENTATION 

23. Perhaps unusually, so that the report should meet the requirements of the 
sponsors as an easily readable reference for both the scientific and non­
scientific reader, results, reasoning and models are stated in the 
appropriate chapter with a summary at each chapter end. Expanded detail 
is in the Annexures; bence the original research on the new clutter model over 
sloped terrain is detailed at Annex F, with the resulting model contrasted 
with others in the clutter chapter (Chap 4). All aspects are brought 
together at Chapter 11, for the overall performance prediction model, with 
detailed examples at Annexures G and H. 
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INTRODUCTION 

CHAPTER 2 

TERRAIN MODELLING 

1. Chapter 1 considered the various sources of radar clutter in general, 

however, a more precise examination of the system geometry pertaining to ground 

clutter is necessary for the planning of a meaningful terrain model. With the 

exception of those occasions where obstacle diffraction occurs (thus possibly 

allowing radar tracking when a direct optical sight line does not exist), a 

sight line from the radar aerial to the target is normally essential. Radar 

aerial and target heights and positions are used in a simple geometrical 

calculation in conjunction with terrain, building and obstacle data to check 

for sight-line blockage. 

2. It is also necessary to consider Earth's curvature, refraction and 

reflection effects,~~ the terrain model is built up in several stages. 

Diffraction effects are complex and they are considered separately at 

Chapter 7 

EARTH'S SURFACE MODEL 

3. The purpose of the surface model is to determine: 

a. Unobstructed Surface Sight Lines. Using contour heights from 

Ordinance Survey maps, it is possible to test. for the existence, or 

otherwise. of a tracking sight line between any 2 points at any altitude 

on the terrain. Accurate terrain data is thus a basic requirement for 

the geographical area in which the radar is to operate. Manual production 

of this type of data base is tedious, but several agencies have produced 

terrain data which is suitable for clutter studies. Terrain database 

methods are outlined in paras 16-19 below. 
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b. Surface Obstructions. Su~er-position of a surface culture and 

obstacle array upon the terrain array and which describes the mean 

height of all surface obstacles and types of reflecting surface, 

enables blocked sight lines to be identified and reflectivity to be 

accurately modelled. 

c. Tracking Times. Low level target tracking may be ~eriodically 

interrupted by terrain or obstacle screening. The time elapsing from 

a sight line being first established until the sight line ceases to 

exist (as the target again becomes obscure.d:), may be critical in the 

case of missile fire control systems or aircraft on a landing approach. 

Tracking times are, of course, a function of aircraft velocity as well 

as obstructions. (Also see Annex E). 

d. Clutter Levels. Undulations in terrain may present a situation where 

a target can be seen but the underlying ground or obstacles are in 

shadows and hence clutter returns in the main beam are not possible, 

(examples of this are noted later). Clutter may be received by side 

lobes (if the side lobe suppression is poor) from terrain not in 

the resolution cell currently being searched. 

SIGHT-LINE 

4. Given the radar aerial height and site position within the terrain array, 

together with the target height, track, and the position as it enters the 

array. the sight lines are calculated and then clutter criteria is applied. 

Radar cross section modelling of the target itself is of course necessary 

for signal comparison purposes and the signal from the target should itself 

fluctuate realistically to allow for glint (scintillation). If weather 

degradation is to be included, the attenuation due to precipitation 

can also be applied. The typical effects of weather on radar are 

considered at Chapter 3. Other assumptions made for the model are: 
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a. Initially the targets will fly straight lines and constant 

altitude and would not be planned~ for example, to take deliberate 

advantage of terrain screening. 

b. Ground tracks can transit across the terrain in any direction, 

including passing overhead the radar. 

c. No wind drift is incorporated and hence the attitude aspect of 

the target with respect to the ground radar station would be 

predictable within the limits of the scintillation required. 

d. Radial ground tracks, with a s~bsequent period when targets are 

within the radar's minimum tracking range are simulated. 

e. When RCS is modelled on a crossing target maximum signal value is 

assigned when the target is at a tangent to the radar normal. 

f. When RCS is mOdelled on an approaching target RCS is modelled to 

fluctuate statistically about a mean. 

TERRAIN SPOT HEIGHTS 

5. Terrain matrix array spacing of 500 metres was used initially for the 

Malvern area, by interpolating, as necessary, between contours. 250 metre 

and 125 metre matrix spacing is also available for areas of OK and Germany. 

A maximum useful radar tracking range of 1S' km is assumed against a low level 

target flying at altitudes between 30 metres and 150 metres (clearance above 

ground level (agl)). A 50m matrix spacing was used for slope studies. 

EARTH'S CURVATURE AND INTER-VISIBILITY 

6. Earth's curvature is a basic limitation in considering inter-visibility 

at significant ranges over the earth's surface. Approximating the Earth's 

radius as &I~'" km, there is a finite distance within which 2 points are 

inter-visible depending on their height. A general description follows which 

ignores refraction but gives an approximation of the range of values used in 

the model. Refraction is considered separately at Chapter 8, Wt..l~ I-e. i$ I-lr I t\.(1!. Pi 
~ -k.te-)L -k~if"/3); wit'?,. I:~ ..c.soAlh';"j ~)lh ..... s,o ........ f IJ." t"'~ J..~ ~LJO"'. 
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A ""'ICf----d,..--l-- R ----;d~2---l>o I B 

r = 64{)0 Km e 

7. Point A can just see point Busing a tangential sight 

R = dl + d2, where dl = J (hl + re) 2 - re2 and d2 =/(h
2 

+ 1,) 2 

line. 

2 
- r e 

Maximum range 

If h is negligible in both cases compared with the earth's radius r, then 

RFi:~ 
=/2 x 6400 x 103(jh; +{h;. 

: 3.6 {h; (h; ) km 

Example unobstructed maximum sight line ranges are given below at Table 1 • 

Targets and radars at various altitudes are assumed to be over a "smooth earth" 

and with no refraction or diffraction, 

--------

Radar Target Maximum 
Unobstructed Aerial Ht Ht Sight Line 

(m) (m) (km) 
-------- --------

5 30 27.76 
5 60 35.93 

10 30 31.10 
10 60 39.26 
30 30 39. 4 
60 60 47. 6 

._-------

TABLE 1 
MAXIMUM UNOBSTRUCTED-S-fGHT LINE RANGES 
"- !_O}L~.r..~lUiAiiAR-ANll_1'}RGET HEIGHT~-

corrections, using the simplified method above: 
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r GRAZING ANGLES 

8. Table 2 gives approximated grazing anllles to the surface (assuming the target 

to be at ground level) for various aerial heights at fixed ranges. (See figure 1). 

Bracketed figures are for the 4/3 earth correction, which is necessary for 

the more exact results required in subsequent chapters. 

Grazing Angle for Target 

Aerial Horizon Range (Degrees) 

Ht (m) 

5km 10 km 15 km 

5 0.05 (0.04) 0.03 (0.02) 0.01 (-) 

15 0.17 (0.15) 0.08 (0.05) 0.05 (-) 

20 0.22 (0.21 ) 0.11 (0,08) 0.07 (0.02) 

30 0.34 (0.32) 0.17 (0.14) 0.11 (0.06) 

9. Table 3 gives the approximate range to the surface when grazing at low 

angles for a spread of typical 3dB beamwidths. (See figure 2). 

Vert 3dB 
BEAMWIDTH 

(Deg) 

0.2 

0.4 

0.6 

0.8 

1.0 

.----------

TARGET RANGE km FOR 
AERIAL HEIGHT (m) 

30 

17 .18 km 

8.59 km 

5.73 km 

4.28 km 

3.43 km 

--------

20 

11.46 km 

5.73 km 

3.82 km 

2.86 km 

2.29 km 

----~----------~ 

15 

8.59 km 

4.30 km 

2.86 km 

2.15 km 

1.12 km 

5 

2.86 km 

1.43 km 

0.95 km 

0.11 km 

0.57 km 

----------
--'L... _____ _ 
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10. If a radar is designed for tracking rather than surveillance, it's 

vertical oeam:width is narrow, hence targets tracked at the higher angles 

enable the radar to be well clear of the ground clutter. As target 

altitudes are reduced eventually the beam will collect ground clutter. 

For tracking radars a 'rule of thumb' for radars at ground level, is to 

assume the radar beam is well clear of ground clutter if the difference 

in elevation between the target and the ground is > 0.7 times the vertical 

beamwidth. For example a tracking radar with a l oelevation beamwidth and 

target at 100 metres altitude will be free of clutter if the target is 

closer than 8 km; but at 30 metres altitude the target must be at range 

2.4 km or closer. The geometry is shown at figure 3. 
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11. The simulation model calculates the cell size and associated surface area, 

"footprint" taking into account the diverging radar beam. 

Pulse Width Resolution Cell 
Length (m) 

13 ns 

15 ns 

20 ns 

40 ns 

200 ns (0.2\1s) 

CLUTTER REFLECTORS WITHIN RESOLUTION CELLS .. --.-.'-.--- ~~~~.-~~~~-~---------~~--

1.95 

2.25 

3.00 

6.00 

3i).00 

12. Within each resolution cell the reflecting surface type can be determined 

from the obstacle matrix (see para 3b above). This is achieved by adding a 

terrain identifying factor into the terrain data and extracting this value each 

time to assess the surface clutter reflectivity likely to occur. A scale of 

identifiers is used as follows,> w,,-b. t:trlco1 ""-t~ 1>c.ckscoJtu "VcJ~s (f..r A. eo 3~ : 

1 Swamp/Marsh. (-1-I-ociS) 

2 Discrete (prominent isolated reflectors) 

3 Water (Landlocked) (~~dJ:.) 

4 Grassland/Cropped fields (- 35"0I.e.) 

5 Buildings (continuous) C-1.30U~) 

6 Buildings (scattered) (- 3Cl.,te,) 

7 Forest/Trees (-~oLP,) 

A roughness factor and hence reflectivity (backscatter) value is then allocated, 

so that clutter versus target signal levels can be studied. (u.s ~3 M."'~ r-e .. u·1.e, 

MooUM ,ok ~ If -po...rM 1"l-31f-)' 
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13. HoIiI.Ogeneity of Terrain Within a CelL It is seen tha.t the spatial 

distribution of scatterers within a resolution cell will significantly 

alter the received backilcatter. This problem is necessarily addressed again 

at Chipter 4, as it is of prime importance in the determination of a 

statistical clutter distribution. From the purely geometrical viewpoint 

the area of the surface 'footprint' can be calculated from the.resolution 

cell length and diverging aerial beamwidth at the given range. It is 

however clear that really accurate predictions from modelling will only 

be possible with an enha.nced terrain descriptive system in contrast to the 

very basic framework shown at para 12. Terrain spot heights will also be 

re'luired on afiner matrix spacing of 90, 75 or even 30 metres (US National 

Cartographic Centre qrid). 

SLOPE(TILT) OF SURFACE WITHIN RESOLUTION CELL 

14. Backscatter is not only dependent upon the resolution cell area, but 

also to some extent on the aspect or 'tilt' of the cell area or 'facet' to 

the incident wavefront. The terrain model must calculate the cell area 

and cell slope to provide the clutter subroutine with information to enable 

adjustment of the signal/clutter ratio. It is of interest tha.t the. clutter 

and target aspects presented bya particular resolution cell to a radar 

receiver at amonostatic site are 'luite different from tha.t.in a bistatic 

system, where the aspect illuminated by the transmitter is not the same 

as tha.t presented to the receiver; however this is outside the scope of the 

study. 

15. Francois {9} states tha.t the average slope of terrain ha.s only a second 

order effect on clutter patCh locations and terrain masking. Adgie {10} 

in conversation, states that slope probably has· a .'limited· effect on 
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backscatter. It is clear that little, if any, serious work has been done 

on the dependence of backscatter on slope for any of the terrain types of 

interest. As this seemed a fruitful area in which to make some basic 

research, raw measurements taken at RSRE andBAe have been obtained 

and correlation runs computed for terrain slope using a prepared terrain 

data base. The method and results are detailed at Chapter la, lA""",,-~ I\~r I . 

TERRAIN DATA BASE 

16. Paragraph 3 introduced the concept of a terrain data matrix, and 

the necessity for an adequate descriptive system for the total surface 

features was further outlined at Chapter 1. It remains to consolidate the 

options available in the representation of surface obstacles and to 

state the reasons for selecting the method used here. 

17. In the past many studies used an approach which categorised large 

areas of terrain and obstacles according to average type - and used 

statistical descriptions for terrain having like-b"'cR-scqite,. characteristics. 

Degradation was then determined over given flight profiles. This approach 

is not considered adequate (but see Chapter 11 for approximate predictions). 

18. Another alternative for representing obstacles, but also rejected, is 

briefly described here to show its disadvantages. A string of profile 

co-ordinates is produced to describe the edge profiles of each obstacle. 

Each obstacle perimeter is therefore represented by a group of points 

produced by approximating all obstacles into a series of straight lines. 

Obscuration is then determined by geometric considerations as to whether 

the intended sightline and obstacle edge lines intersect. An underlying 

basic culture data base using a matrix or lattice method would still be 
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neceB~, but the ators.ae requirement for obstacles would naturally be 

s.Y&riable quantity for each aeographical area, depending on it's constituent 

surface features~ Generation of this ty~e of data is especially tedious 

since every obstacle must be catergorised by its extremities and assigned an 

obstacle height and type to be added to the underlying terrain spot heights. 

Data production is tediOus because it isa difficult process to. ·8.utomate. 

19. Ani added complication which may arise with large obstacles when using 

this·method is shown at figure 4. Sightlines are contirmed by checking·for 

obscuration at the obstacle boundaries Bl, B2, and special arrangement'!; 

would be required to ensure the situation at figure 4 did not exist. Theresby 

{ll } states that the "co-ordinate string" method in fact has the potential 

for a more accurate obstacle representation and indeed'Hunting Engineering Ltd 

have used this approach for models ot limited geographical extent. The 

penalties, apart trom·the relatively larger volume of data preparation, 

impinge upon timing overheads, extra software, retrieval. and storage 

requirements. Theresby {ll}estimates a total storag~ requirement for a 

20 km by 20 km· area to be 4 times as great as matrix methods of obstacle 

representation. 

20. Figure 5 shows an example terrain matrix at 500 x 500 metre spacing. 

Terrain spot heights are known at each intersecting point of the matrix, 

. The figures bracketed represent the various terrain factors (see para 12). 

Reference to figure 6 shows the same area as fig 5. but with forest areas 

(r) and built-up areas (B) shown outlined. In allocating terrain factors 

two anomel ies will be seen when the figures are compared. One of the spot 

values (70) (at the South East Corner) is assigned terrain factor 6, although 
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it appears outside the B area boundary. This illustrates the difficulty of 

sharply delineating towns or villages when discrete obstructions tend to 

cluster, for example, along roads in the suburbs. 

21. A second anomaly is in the large forest area to the west where 

95 (7) would appear to be the correct value but 95 (4) is used. This 

situation can arise when a significant open area (Clearing), often several 

hundred square metres in area is surrounded by trees. As a result it is 

seen that since this particular forest does not embrace any other 

intersections (with the matrix spacing used X = Y = 500 metres) the forest 

area would not be represented correctly in the model. Interpolations made 

for the remainder of the area would be inaccurate since tree height would 

not be incorporated. Surface objects such as the more specific vertical 

reflectors eg towers, culture and buildings can therefore only be represented 

if the matrix is fine. Much data has been produced in the past using old 

maps in which the contour accuracy may be in doubt, and there is an urgent 

need to digitise data directly from stereo photos. 

INTERVISIBILITY AND SCREENING DIAGRAMS 

22. Mobile radar systems unfortunately suffer from target and terrain 

masking which is site-specific, and although a geometric model, given 

sufficient data, can predict the positions of probable clutter patches, 

clutter strength from within a patCh is far more difficult to predict 

(see Chap 4). 

23. If the target is assumed to be at zero altitude then clutter patch~~S~~ 

predictions are the same as predictions of target masking at zero altitude 

(see para 30). 
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24. Whether the clutter actua.lly prevents detection or causes break-track 

depends on the clutter strengths, clutter rejection capability of the 

system and relative radar cross section of the target. Investigations 

by Briggs and Billingsley {4} have revealed in the past that insufficient 

data is available to support an accurate low grazing angle model. 

25. Clutter Predictions. Francois {9 } has researched the sensitivity of 

clutter prediction using the geometry of aerial and target height. In 

particular it was found that on examination of some 20 sites, coverage in 

geometrical prediction was "rarely in good quantatitive agreement with the 

spherical earth". Further, the radar site must be in good fit; or very 

near to the best fit plane with the terrain data. Plots showing the 

sensitivity of coverage to the aerial and target heights typically take the 

form shown at figure 1. These are clearly site-specific, however it is 

possible.to predict (for the type of terrain prevailing in a general 

geographic area), a probability that unmask will occur out to a given range 

for a given target height and radar height. In these assessments an 

expected percentage of the 3600 scan will be denied due to terrain screening. 

26. Once a clutter prediction has been made it is further modified in 

practice by smearing due to the convolution of the clutter withi" the. 

appropriate resolution cell (see also dependence of clutter on aerial 

motion - Chapter 5 ). 

21. Actual and geometrically - predicted clutter maps have, on occasion, 

proved successful and useful, but uncertainties in terrain spot height, 

data base, culture variations and propagation effects unfortunately tend 

to degrade results. 
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INTERVISIBILITY PLOTS 

28. Figures 8 and 9 show typical intervisibility plots (using program 

SLINE.FORl'for two aerial heights. Targets were at 70 metres altitude 

in both cases. The percentage masking at a given range is plotted at 

Figure 10. Terrain spot height only was used to produce these results 

and a far more serious effect follows when the terrain surface culture 

and obstructions are included. (See also Annex El. 

29. A first approach to the production of realistic screening diagrams 

ignores the effects of microwave radar energy partially penetrating 

vegetation, diffraction effects, or multipath which causes angular errors. 

It is assumed that target range-gating will always be used by modern 

tracking radars, hence only clutter from a range close to that of the target 

has to be considered.' This implies a clutter problem only when the surface 

beneath an aircraft is illuminated by the radar. Since a sightline may 

not exist to this area beneath the target due to terrain or obstacle 

screening, there will be many occasions when clutter cannot be received. 

30. A simple way to check those cells in which clutter is obscured is to 

place the target at zero altitude and test for the existence of a sightline. 

A "Clutter Visibility" map can be drawn and combined with the terrain 

screening map to produce an overall map where the clear areas represent 

positions where the target can be seen but the ground underneath cannot. 

On flat ground, near to the radar, the ground is likely to be seen, since 

the probability of a sightline is high. Hence at close ranges the target 

will be in a clutter region. Readers of the short paper {10} could 

misinterpret the significance of this situation and it should be noted that 

paper was produced initially for an optical visibility study. At close target 
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ranges the radar beam elevation angle is likely to increase, (ta.kin<l narrow 

tracking beams clear of the. surface clutter), while simultaneously at shorter 

ranges the returned target signal will' be greater due to the shortened 

two-way transmission path length and will better compete with any remaining· 

noise or clutter. 

31. Figures 11 and 12 show typical (max range 30 km) screening diagrams 

for fairly flat terrain for aircraft at 100 metres altitude and zero 

(notionally) altitude respectively. The example . diagram at Fig 13 {lO} 

indicates where targets can be seen but the co-located clutter cells cannot. 

It is seen that many (clear) areas exist, particularly in the NE quadrant, 

where a high probability of successful and uninterrupted detection and 

tracking will exist. CF<~ ,~" ~ II-r~ .... .fwt of ~ 11..) 

32. Figures 14 and 15 compare the probabilities of target visibility (for 

targets at 100 m altitude) and clutter averaging. Om and lOm above terrain 

spot heights. Adgie's paper natural1cy assumes the same clutter from all 

ranges, since from the optical point of view all obstacles are the same. 

Chapter 4 investigates radar clutter levels in detail. Figure 14 shows' the 

typical trend for. fairly flat terrain where'the upper curve probability 

falls almost linearly witht~r~e, compared with Fig 15. where hilly terrain 

cause the corresponding curve to fall rapidly as the closest ground cover to 

the radar on some azimuths causes the inevitable loss of sightline. The 

measurements at fig 14 correspond with the plan diagram at fig 11. Two 

lower curves at figs 14 and 15 representing the combined effects (with and 

without the lOm tree cover) indicate,;, 

a. As expected the probability of detection is lower in hilly 

terrain (but not necessarily the probability of obtaining a required 

crossing track length in the same terrain - See Annex E). 
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b. Best visibility is at intermediate range (ie the highest 

probability of target sightline coincident with the lowest probability 

of clutter beneath the target). 

c. The difference in detection probability made by a 10 m coverage 

of trees is small. The differences are plotted at figure 16 where it 

can be seen that they are remarkably constant out to about 26km on 

flat terrain and out to 14-16 km on hilly ground. 

It should of course be stressed'that results are site dependent, but the trend 

perhaps indicates that constant height ground cover (ie over large tree covered 

areas) does not reduce the overall detection probability by as much as was 

expected, particularly in the intermediate ranges;important for example in 

surface to air missile tracking scenarios. (See Fig 16). 

35. Dependent on the radar type,2km may be an impractically short range for 

tracking purposes, since although the minimum range of the radar may be less 

than2km1 high speed targets at very short range present an extremely high 

sightline rate Which may well exceed the lock-follow rate of the associatedc~ler 

control loop. 

CHAPTER SUMMARY 

36. An earth's surface model has been investigated in order to set'up: 

a. Sight lines to the target. 

b. Corresponding sightline to clutter regions below the target. 

Methods of constructing a terrain data base have been examined and the 
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matrix method of spot heights and culture identification'system selected 

for this project. The necessity of allowing for ground footprint 

resolution cell "tilt" (or slope) has been recognised and some (wiq"I",,1 

work.has been done on this in a later c~~~e~. The problems of intervisi­

bility have been outlined and shown to be site-specific. C~utter 

prediction research in the USA has been investigated and this,confirms 

the necessity for fineness of terrain descriptive data to enable a 

realistic clutter prediction map to be produced. This approach is of 

course recognised as a means only of identifying the existence of a 

probable clutter patch in any particular position, and not of the signal 

nature of the clutter itself; these aspects are examined in detail in 

Chapter 4. 

37. Example intervisibility plots have been used to highlight the 

difficulty of predicting masking, even in a most arbitrary manner. 

Particularly sensitive variables in relation to mobile radars will 

therefore be: 

a. The "necessity to operate at any time in terrain which 

varies from hilly to smooth. 

b. Nearby obstacles which are fixed tie poles, pylons etc)which 

block sectors,.'but which may flot appear on maps. 

c. The inability~r inadvisability) of the radar to move to a 

better position. from the clutter viewpoint under battle conditions. 

38. Thus it is seen that a realistic assessment of the probability of a 

radar obtaining a sightline to a target at a given range and altitude when 

sited at some arbitary position that has not been painstakingly surveyed 
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- -- --------------------

~s indeed difficult, and this does not yet include the many other factors 

covered in later chapters concerning the ability of the radar to detect and 

track the target successfully when the clutter backscatter is competing with 

the target echo. 

39. Computer Program. Details of a terrain sightline computer program are 

briefl j c/.tsc-riliod. ".(- 4,,~J:). 

40. Observed Track-Lengths. A useful aspect of terrain survey data is the 

ability to predict, for a given radar position, the unmasked sectors (shown 

at Figure 10), not in unmasked percentages but as probability of observing 

given track lengths. This is an important concept since tracking of any 

consequence can only take place if a sightline exists for a minimum period. 

Taken a stage further by the author, it is shown that this can be extended to 

a probability plot for total missile firing opportunities;' by taking missile 

and target speeds and system reaction time into account. This is pursued as 

a separate part of the study, with an attempt to classify typical areas with 

deployed radars as 'high' or 'low' risk areas to an aircraft transitting 

through. (See also Annex E). 
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CHAPTER 3 

VOLUME CLUTTER - RAIN AND ATMOSPHERIC CLUTTER 

GENERAL 

1. Attempts are made to detect and track low level military aircraft in 

almost any conditions of weather, in contrast to civil operations, where 

airports maybe below safe civil operating criteria if the visibility is 

degraded under conditions of intense rainfall, low cloud or fog. 

2. The aim of this chapter is to provide realistic modelling values 

for rain and atmospheric clutter and to assess the atmospheric constraints 

on target detection for incorporation into the overall clutter model at 

chapter 11. 

• 

3. Effect of Operating Wavelength. For the purpose of the study the radar 

frequency is fixed at > 10,000 MHz; but ·where a choice is to be made for 

a radar operating in rain the preference would be for·lower frequencies 

unless of course rain is to be deliberately detected for weather avoidance 

purposes. That the echoing area of rain increases dramatically with 

frequency los clearly seen from a simple example, by taking the specific 

h . . (2 -3) 1 . ec olong area of ra1n m m. for and 3 GHz band radars respect1vely 

(with two identical radars 10 Beamwidth, 111 sec pulse.lengthand 50 nml 

range), would give a ratio of ~ 32 to 1.1. m
2

, ie approximately 15 dB extra 

echoing area in favour of the 10 cm equipment.· . And for eX8lllple, a difference 

of 20 dB (typically - 73 dB and - 53 dB).is found respectively for 

A = 3 cm and 9.3 cm·in heavy rain at precipitation rate p = 16 mm.br-l • 

Rain attenuation· effects are also important and these are considered first, 

followed by the reflectivity of rain later in the chapter at para 14. 

3-44 



ASSESSMENT OF RAIN AND CLOUD ATTENUATION 

4. ~. While the little atmospheric attenuation in good weather is 

due to gases and water vapour, precipitation in the form of rain, ice, 

hail or snow can significantly increase signal attenuation. Values can be 

calculated using Mie {12} theory and is given in graphical form for a 

range of values in Skolnik P543/544 (note graphical error in Skolnik Fig 

12.12). 

5. For 3 cm radars calculated values are found to be different than those 

summarised by Nathanson {13} p 197 see figure 1, who presents measurements 

by a number of researchers, mostly at frequencies above 10 GHz (3 cm), and 

arrives at a mean curve which is fitted by the equation: 

Log A = 1.85 Log (f x 10-9) - 3.0 --------------------------------(1) 
'vJh~tt.. J\ .. hW~ t\.~~. f ... f>t.~"t."'_j H2o 

"t~.~-! Mm.f..t--1 
Both sets of values are summarised at Table 1 below (for 10 GHz). Hayes uses 

0.00919rl.16 and Ht· 64 dB.Km-1 for 9.4 GHz and 94 GHz respectively {54}. 

Rainfall rJ:e., TWO-WAY ATrENUATION dB. Km -1 

-1 10 GHz 10 GHz 9.4 GHz 94 GHz (r) mm.hr Mie Nathanson Hayes Hayes 

0.25 (Drizzle) 0.008 0.016 0.002 0.65 

1.0 (Light Rain) 0.04 0.063 0.009 1.6 

4.0 (Moderate 
Rain) 0.16 0.25 0.046 3.88 I 

16 (Heavy Rain) 1.2 1.0 0.229 9.4 

40 4.0 - - -
64 (Excessive) - 4.0 - -

TABLE 1 - Rain Attenuation of Radar Signals 
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-----------------------------------------------------------------------------------

6. -Attenuation Modelling Values. Specific values for attenuation and 

reflectivity for rain and cloud for use in the overall model are considered 

in the summary to this chapter at para 37. 

over 

a. 
as 

Cloudand-Fgg. Water droplets are small compared with A, and summing 

1m3 the Rayleigh approximation is used {l4}. 

1 _!~2. Attn (dB.km- ) = 0.434 ~ (tD3) Im (-K)! ----------~------ (2) 

D • Particle Diameter (cm) 

Im(-K) = Imaginary part of -K (0.0247 for A = 3.2 cm), the 

dielectric dependent factor. 

re-writing (2) 

Attn (dB.km-l ) = 0.434 ~~ MIm 
P 

(-K) -------------------------- (3) 

- ( -3) M = Liquid water content g.m 

p = Density of water (taken as unity) 

A = Wavelength (cm) 

Since it has been shown empirically that at A = 3 cm, Im varies 

A-l , eqn (3) -can be approximated within 5% to be: 

----------------------- (4) 

Together with M = 1660v-l •43 , where V. = optical visibility (feet) and M 
= average moisture content (g.m -3) the one way attenuation curve at 

figure 2 is produced at laoe. (Two way attenuation variation with Hr -

is shown at Fig 3.) 
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9. It is seen that one way attenuation values at A = 3 cm spread from 

1 -1 about 0.10 db.km- for heavy fog to 0.001 dlUun for light fog. These 

values decrease by more than a factor of 3 as the temperature varies 

over the range OOC to 400 c. 

10. Figure 3a. presents two atmospheric attenuations curves interpolated for 

the radar parameters for this study, from which it is seen that within 

the low ranges and low grazing angles limits, there is an almost linear 

relationship. These were calculated from the US Central Radio Propogation 

Laboratory exponential reference atmosphere for refraction and the 

International Civil Aviation Organisation (ICAO) standard atmosphere for 

pres sure - temperature values. The atmosphere is assumed to be regular 

and the one way attenuation factor (F) is given by: 

F = e-aR or e-2aR (for two-way) --------------------- (5) 

a = attenuation coefficient 

R = target range 

a = one-way attenuation loss 
range 

--------------------- (6) 

11. Attenuation coefficients for a 10 GHz (3 cm) radar with 00 and 0.5
0 

elevation angles have been calculated at intervals from figure 3, and 

graphed at figure ,4a (1). It is seen that the curve of the attenuation 

coefficients is not linear with range. Using a constant value for the 

attenuation coefficient introduces an error that can be significant 

for high frequency radars at low grazing angles. Table 2 gives the 

one way attenuation losses for 10 GHz at 0.50 grazing angle. Fig 3b 

(from an alternative source) confirms the -lO GHz cPand 0.50 spot, 

values. 
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Range 
(nml) 

, 

Loss dB 
, Per:nml 

-- -- -- -- -------------------------

-

5 10 15 20 25 30 35 40 45 50 

0.0250 0.0241 0.0230 0.0225 0.0220 0.0217 0.0214 0.0212 0.0208 0.0205 
-

TABLE 2 - ONE WAY ATTEN, LOSSES 10 GHz AND 0.50 ANGLE 

12. To determine the attenuation coefficient a natural logarithm curve 
fitting techni~ue was used with e~n (7) as the regression e~uation. 
Regression coefficients are 0, and 02. 

° = 01 + 02 Loge R ----------------------------- (7) 

changing to attenuation loss fram Fig 4. 

R ° = R 01 + R 02 Loge R ---------------------- (8) 

L = Ll + L2 LogeR ---------------------------- (9) 

L = attn loss for range R at 0.50 = 0.0283 - 0.001972 Log R (See figure 4a(2» 
e 

13. The theoretical values are plotted at figure 5 using eqn (9) and 

compared with the values from figure 3. Conclusions as to the most 

reasonable values to use in the model are at para 37 below. 

ASSESSMENT OF RAIN-REFLECTIVITY 

14. Rain. The second effect of precipitation produces backscatter, or 

clutter. Surveillance radars are designed to detect targets in rainfall 

-1 
up to 15 mm.hr • Heavier rainfall is the exception and normally only 

OCCllrs for a small percentage of the time and it's spatial extent is 

usually limited. Modification to the basic radar equation is necessary to 

take account of the reflectivity of rain. When viewed with linear 

polarisation the echoing area of a single raindrop whose diameter is very 

small compared with A, is given by- {l5}p 38, as: 
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m2 -1 \2 6 
mZ + 2 d 

___ ~(m~2.L.l ______ (10) 

m = complex refractive index of water 

d = diameter of raindrop 

15. Up to a frequency of 10 GHz (3 cm) the raindrop size assumption holds 

but beyond 10 GHz in heavy rain the Mie scattering theory is required. 

Using a figure of 0.93 for A = 3.2 cm {l8}, for I:~ ~ ~12, the radar 

reflectivity a is the echoing area of unit volume of rain: 
v 5 6 
av = (0.93) ~ Ed ----------- (m3.m-3) -------- (11) 

Quantity Ed6 is the reflectivity factor, normally denoted Z, and the 

relationship between precipitation rate p (mm.hr-l ) and Z is taken' l18} and 

{16} to be ~ ",-b. m-?): 

(a) Stratiform rain Z = 200l· 6 

Cb) Orgraphic rain Z = 31l·71 

(c) Thunderstorm rain Z = 486p1.37 

16. Nathanson {13} p200 and Barton' on pl05 quote the value for 

stratiform rain as the most representative, and so this value is used 

here. Taking the value Z and changing units in eqn (11): 

for A in metres and f in Hz: 

-48 1 6 4 2 -3 or 7.05 x 10 p' f -------(m m ) ----- (13) 
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In terms of dB relative to )m2 

10 log cr = - 471 5 + 16 log p + 40 log f ------------------ (14) v • 10 10 

Hence for A = 3·~ the reflectivity in dB relative to )m2 is at Table 3. 

Rainfall -1 4 mm..hr-l -1 4 -1 
.Rate 1 mm.hr 16 mm.hr 6 mm.hr 

dB -72.6 -63 -53.4 -43.7 

Table 3 Radar Reflectivity for A = 3·2cm for Rain 

17. According to Battan {19} p 100 it has been shown that on the average 

the calculated rain echo will be 1.4 dB greater than the measured 

value but it is not usual to make any allowance for this. Figure 6 

shows radar reflectivity of rain for given radar frequency and precipitation 

rate. hoveyer variation in drop size causes minor variations regardless of rate. 

ECHOING AREA OF RADAR PENCIL BEAM FILLED WITH RAIN 

18. Since this study is concerned solely with monostatic pencil beam 

tracking radar performance(which are often mobile}, it is assumed that 

the radar uses the same beam for both transmit and receive. It must 

also be assumed that the precipitation rate is uniform within the radar 

resolution cell. If the resolution cell is completely filled (worst 

case radar condition), and the polar diagram in both planes is rectangular, 

a first approximation of the echoing area of the rain in the beam is 

given by: 

2 
(m ) ---------- (15) 
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_ .. _--------------------------------------

eA . = azimuth 3dll beam.width (~) 

eE = e1.evation 3dll beam.width (~) 

R = range of rain (metres) 

19. A more exact result .would be obtained by taking into account the 

variation in aerial gain over the beam. cross section. If the polar diagram. 

is assumed Gaussian in both planes the azimuth polar diagram power pattern is: 

------------------------------- (16) 

and, the two-way pattern in terms of power is: 

exp [-~ (3.33ea )21 

6A 

ea = Angular departure 

s..!.Jo&J ~e. c" .. 

------------------------------- (IT) 

in azimuth fram the beam. ~is (radians) 
.. .. .. 

20. Considering now a horizontal slice of beam. with this pattern. of 

width d~ and a maximum value of power: 

P(slice) 

+00 

= Pd~ ! exp I-~ (3.33ea )2 1 de ---------- (18) 
BA 

= Pd~ 1 ;.~; IBA = 0.T52T6A Pd~ --------------(19) 

Also, P = exp [-~ (3.336 e)2 1 ------------------------------(20) 
6

E 
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+00 

Total. J;'ower = 0.7527 eAr Fd '" = o. 566 eA eE ------------- (2l) -
Com~ared with * eA eE at eqn (15) above. 

21. Beam EchOing Area. With linear ~olarisation the beam echoing area of 

the gaussian beam filled with rain is: 

(
1f }2 2 . 
180 R.£.t. 

2 

If rain exists between the radar transmitter and the resolution cell. 

attenuation effects will make the resolution cell rain echoing area 

a~~ear to be less (see attenuation effects at ~aras 4 and 5 above). 

22. The case where a beam is partially filled with rain . {20, 16} 

is not ~ursued, since only low level targets are of interest. For radar 

modelling it is customary to assume {16} that preci~itation is constant 

below some arbitrary ceiling and zero above, hence with a pencil beam at 

low grazing angles and short range it is reasonable to assume that only 

rain filled resolution cells are pertinent. For very low angles part of 

the beam may intercept the ground but the small effect of this is ignored. 

23. An exception to this situation would exist if the resolution cell 

was just below the oOe al.titude l.evel, where the so cal.led "bright band" 

is situated and the reflectivity suddenly increases, because water has 

a greater reflectivity than snow and so the particles also change size 

and shape. Battan {l~} p 192 gives the increase in the bright band as 
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12-15 dB above that of snow 500 metres above, while the value of the 

rain at lower altitudes beneath the bright band may be 6-10 dB lower. 

Harrold {21} suggests 9 dB and 8 dB respectively. The OOC level may 

occur at any altitude. It is assumed that there exists an exponential 

change of reflectivity above the 00 level, and a~ exp (-0.6 x 10-6 h 2) ---- (24) 

h = height above the freezing level (metres). 

POLARISATION EFFECTS 

24. If in an ideal situation a perfectly spherical raindrop is 

illuminated by a circularly polarized wave, the reflected signal will 

have the opposite hand of polarisation and can be totally rejected on 

reception. In practice,raindrops are not perfectly spherical and it 

is not practicable to generate perfectly polarised waves, particularly 

over the whole of the beam. Rain rejection is not perfect although 

a significant degree of cancellation can be achieved. Warden· {~2} 

gives experimental results averaging 20 dB. Reiss et al {23} using results 

taken over a year averages 16 dB and this is accepted as a typical figure 

(cancellation = ratio of return using linear polarisation to the accepted 

part of the return with circular polarisation). 

25. Since raindrops can be regarded as oblate spheroids,optimised 

elliptical polarisation will give better cancellation than circular. 

However the optimum cancellation characteristics vary with range and the 

nature of the precipitation. This point is not pursued for the study in 

hand. On the average the backscatter for horizontal polarisation is 

larger than that for vertical polarisation. 
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DOPPLER SPECTRUM OF RAIN 

26. Assuming the rain moved with the wind {24} pp 205-212, the doppler 

spectrum arises from the resolved radial component of the wind velocity 

as it changes across the resolution volume. To this is added a component 

representing turbulence. The worst cases exist when looking up or down 

wind. Mean wind velocity and change of velocity with height (wind shear) 

src:. the main parameters. Assuming a two-way power pattern, Gaussian beam 

vertical polar diagram: 

Power ~ exp \ _ ~ (3.33e e )2\ 
eE 

eE ~ 3dB beamwidth 

----------------------------- (25) 

e e ~ Angular departure in elevation from the beam axis (rads) 

21.' If it is assumed that wind velocity changes unifo~y with height 

and therefore uniformly' with elevation angle, the standard deviation 

of velocity due to wind shear is {24}: 

eE 
s.d (Vel) ~ KR 3.33 11 

180 
-1 

------------ ms -------------

K ~ Windshear coefficientm.sec~lm-l 
" 

R ~ Range in metres 

~ (5.24 x 10-3) KReE 
-1 

m.s --------------------

(26) 

28. The turbulent component is assumed to have a standard deviation of 

lm.sec-l • So that the total standard deviation of velocity is: 



m.s-
l 

---------------- (28) 

the corresponding standard deviation o~ the doppler spectrum is thus: 

(Hz) ---------- (29) 

where f is the ~requency in hertz. 

29. This spectrum is Gaussian in shape and centred o,n the hequency 

corresponding to the mean wind velocity in the resolution cell and can 

be written as: 

S (~d) = exp {_~ (~d~-,~W)21 
sd 

~d = doppler hequency (Hz) 

------------------------ (31) 

~ = doppler hequency corresponding to mean wind velocity (Hz) 

SHORT TERM FLUCTUATION OF RAIN ECHOES 

30. As the rain echo is made up o~ contributions ~rom a very large 

number o~ droplet scatterers the probability distributions o~ the 

envelope can be expected to be Rayleigh in characteristic, providing 

precipitation is constant. Warden 122} has con~irmed this experimentally. 

The rain echo there~ore has the srune distribution as thermal noise but 

with a much longer correlation time which can be Bigni~icant when 

integration over the berunwidth o~ a scanning radar is considered. Any 

improvement in signal detectability as a result o~ integration will 

depend on the number o~ independent srunples integrated. For thermal 

noise this would be equal to the number o~ pulses integrated, but ~or 

'rain clutter it can be considerably less. 
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correlation function of Gaussian Shape and sd = ~WiSd" Assuming a 

time equal to two standard deviations represents near complete decorrelation • 

. this is typically of the order of 10 millisecs when fsd is near to it's 

lower limit, and this may be a substantial fraction of, or even exceed, 

the integration time. 

SPATIAL CONSIDERATIONS 

32. Nathanson {13} p 217 states that the mean echoing area may change by 

as much as ~ 10 dB over 10 nmls under showery conditions and by as 

little as ~ 1 dB in uniform rain. There is evidence {25}from 

measurements at Cardington that considerably larger fluctuations can 

occur; 20 dB:in 0.5 km on occasions. Nathanson also stated a fall in 

spatial correlation to 0.5 in 0.6 to 1.4 nmls in showers, and in 2 to 3 

nmls in uniform rain. 

33. Fl'eguencyCorl'ela.tion 6fRain. Nathanson {13} p 213 shows that a 

change of frequency by the reciprocal of the pulse length is sufficient 

to reduce the correlation to near zero. 

FREQUENCY AND DURATION OF INTENSE RAINFALL 

34. Bilham {26} quotes an empirical formula relating rainfall, its 

duration and frequency of occurence in the UK. 

log n = 0.0952 + loglO t - 3.55 10glO (A + 1.01) ---------- (32) 

3-56 



n = number of occasions in 10 years 

t = duration in hours 

A = total rainfall in inches in time t 

Re-written for p = precipitation rate in mm/hour ~v~t~!d over time t . 
.J 

This is plotted at figure 7 and relates to rainfall at a point on the 

ground. 

RAIN OVER . "SMOOTH EARTH" 

35. Extensive small random scatterers over a smooth earth or sea can be 

considered to be uniformly distributed. With certain combinations of 

polarisation at low grazing angles (HH/VV) the relative radar cross section 

of the scatterers is enhanced by the smooth surface. This is shown by 

Long and Zehner {27} to be as much as 7.B dB larger at " = 10 cm over! the 

aea. It is not clear it this wou14 "&ffect IIIUlt:l.path at 1"~CM... " 

The rain scatterers are assumed to extend at least several interference 

lobes in altitude above the earth's surface. As the depression (gra.zing) 

angle approaches zero specular reflection increases. Work reported upon in 

this field suggests that the problem is camplac and that information is 

incomplete, no results have been found for. A = 3 cm. 

CHAPTER· SUMMARY 
. '; 

36. From the foregoing, extensive readin& and by contrasting the findings 

of many reports, a number of main .~.onclusions applicable to the radar 

parameters required have been selected. These are set out below as the 

basis for the rain and atmospheric clutter inputs to the overall model 

at Chapter 11. 

3-57 



37. . Sel.eeted Values. Using as far as possible practical measurements from 

the sources quoted and including opinions from unpublished sources: 

a. Rain Attenuation. Rain attenuation values used are those 

from Nathanson shown at Table 1 at para 5. The set of results 

graphed at figure 1 are considered the most representative and the 

curves show the important trends" as both radar operating frequency 

and rainfall increase. 

b. "Cloud/FOS"Attenuation. Modelling values for cloud and fog 

attenuation are rel.ativel.y small compared with the other sources 

interfering with radar detection. However this value is included 

for completeness and under certain conditions cloud or fog 

attenuation effects may just take the radar system below detection 

threshold or introduce uncertainty." Values calculated from eqn (9) 

are used. These are plotted at Figure 5 and also tabulated for 

several values. Curve fitting for eqn 9 was done by computer 

program, correlation coefficient 0.996. 

c. "Rain Reflectivity. Rain reflectivity values at Table 3 are 

considered suitable. 

d. "Pencil Beam Rain EChOips"Area. Resolution cells within pencil 

radar beams are always considered to be rain-filled, never partially 

filled because of the geanetry of the situation. Aerial polar 

diagrams are taken to be Gaussian in power distribution. 
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e. Polarisation Effects. Figures from Reiss (see para 24) are taken 

to be statistically sound. 

f. DopPler Spectrum of Rain. Total standard deviation of doppler 

shift due to wind effects are incorporated by using equations (30) and 

g. Rain Fluctuation and Spatial Extent. Probability meterological 

statistics for precipitation frequency, duration, short-term fluctuation 

and intensity are well documented. The model initially operates without 

reference to the statistics, by using fixed rain values for each 

target run. 

38. Details of the programs used for signal'and statistical analysis are 

briefly described at Annex D. 

39. Anomalous Propagation. Finally, atmospheric conditions might exist to 

produce 'aucting', allowing the unexpected detection of low level targets at 

greater ranges than normal. Such conditions cannot be predicted overland with 

total accuracy; but are probable over water as 'evaporation ducts'. Overland 

there is a 35% probability of some ducting in Europe. Prediction can be 

enhanced by using radiosonde data, and by using software such as the Ferranti 

prediction programs. Ducting is not considered to be of interest for a lot.,) !jl.vd 

tracking radar since 'ducting' ranges are likely to exceed missile system ranges. 

Ducting might however allow an off-site search radar to detect the target 

at greater range and thus direct a tracking radar onto a target at an earlier 

time. 
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INTRODUCTION 

CHAPTER 4 

DEPENDENCE OF TERRAIN BACKSCATTER ON 
1lADARAND SURFACE PARAMETERS 

1. Non-uniform scatterers surrounding a radar cannot be easily described 

by a single coefficient, since the subject of radar energy scatter from 

terrain is. complex. Standard texts often describe surface returns, which 

produce clutter, in a relatively simple way, but research into terrain 

response has been the subject of many detailed research reports in past 

years. It could perhaps be reasonably expected that the multiplicty of 

~easurements taken over some 30 years (although each producing results 

pertinent to a particular requirement), would nevertheless leave few gaps. 

in the overall knowledge. This is not the case - and so an extensive survey 

of past surface clutter ~easurement programmes, and information from other 

sources has been made and summarised. Many of the clutter measurements 

made since World War II can be found at {28 } {29 } {30 } {3l }. 

RESEARCH AIMS 

2. In order to assess radar performance with a reasonable degree of 

confidence, wo main aims must be met.: 

a. A description is required, in mathematical terms, for 

the expected clutter from any terrain radar resolution cell 

over which a target is flying, or from which clutter is 

received (eg sidelobes). The description should account for 
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the clutter dependence or the surrace itselr, radar grazing 

angle,resolution cell size, radar frequency, polarisation 

and spectra; since 00 = f(e, R, T, ~) etc. 

b. An assessment of the degrading efrect on radar detection, 

which a specific type of clutter is likely to have on a radar, 

given the various signal processing options which could be 

incorporated in the radar, together with its other parameters. 

3. Taking 2(a) above, it is suggested that an ideal model should examine 

the terrain beneath each target resolution cell, by accessing a terrain 

culture data base ror the area overrlown. Predetermined reflectivity 

co-efficients or the reflectivity distribution should be used for the 

various types of terrain cover, suitably adjUsted for the parameters at 

para 2(a) and further scaled after using local terrain spot heights to 
",",,ol 

calculate slope' aspect angle. With terrain rerlectivity as a function ,.. 
of aspect angle it shOUld be possible to finally produce a single value 

for clutter power to represent the cell under investigation. 

4. Initially each contributory clutter ractor, in an ideal approach, 

should be separated from the others, proven experimentally and later 

~de available for recombination with the other detection ractors. 

Separation of the individual dependencies is however extremely dirficult 

in the first place. 
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5. The observable clutter values have rarely been collected in a 

useful manner for this purpose; since many researchers have usually 

collected clutter amplitude, temporal and polarisation characteristics 

separately but not simultaneously - thus not allowing best correlation 

to be investigated between the variables. Others have usually ignored 

terrain slope effects, or radar resolution cell size. 

CLUTTER DEPENDENCE 

6. Surface clutter characteristics overall can be divided into 

two categories: 

a. Clutter-Processing Dependent. This grouping includes 

radar signal characteristics, such as amplitude fluctuation 

statistics, spectrum and frequency agility. 

b.· Clutter-Backscatter Dependent. Including previously 

listed parameters, such as grazing angle, Rds terrain type, 

polarisation, RF and spatial distribution. 

7. It is necessary to apportion the probability of detection and false 

alarm rate (FAR) factors correctly between the two groupings above. A 

simplified. approach is then taken for the purpose of meeting the geometry 

and target parameters. Detection and FAR probabilities can be obtained. 

from target and clutter fluctuation models - depending upon the effective 

numbers of statistically independent target clutter samples integrated by 

a postulated radar signal processing system. 

4-74 

I 

!I 
:1 

I' 



8. Detection probability (high) and FAR (low) thresholds can then be, 

established, based on clutter statistics and the desired FAR. Overall 

detection probability, above the mean integrated clutter level, can then 

be computed, based on signal statistics. 

STATISTICAL DISTRIBUTIONS 

9. Three example statistical distributions {32} are detailed at 

Annex A: 

a. The exponential statistic (Wiebull with exponent 

parameter = 1) is used when many independent scatterers 

are within a radar resolution cell. 

b. A surface clutter (Ricean) distribution which is 

used in the case of a single dominant non-fluctuating 

scatterer (point specular) plus many smaller scatterers 

in the same resolution cell. 

c. The Log-Normal distribution has a longer "tail", is 

applicable to modelling 'spiky' clutter, and which has also 

been shown {33 }, to give a reasonable description of 

scattering from randomly orientated shapes which can be 

represented as plates or cylinders. 
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DEPENDENCE OF ~Q ON TERRAIN 

10. Of the clutter-dependent parameters at para 2(b) above, terrain is 

the most significant. When observed by pulsed radar at low grazing angles 

most terrain is non-homogeneous and so a statistical approach is required, 

·since the character of the surface, its slope (see Chapter 10) and 

consequently the backscatter coefficient,will vary almost from one 

resolution cell to the next. An overall probability density function 

(pdf) is required to describe the amplitude distribution. This will 

provide the probability that a resolution cell selected at random, within 

the terrain area, will contain clutter with a particular average of 

clutter power •. The model at Chapter 11 will account for those cases 

where the surface is 'shadowed' using the sightline techniques described 

at Chapter 2 , and will also indicate if diffraction or refraction could 

take effect and possibly produce clutter from a cell in 'shadow'. 

11. The typical radar resolution cell clutter footprint geometry assumes 

that any cell will contribute an average clutter value for the particular 

type of terrain dependent upon grazing angle; slope and. the applicable 

pdf or coefficient of reflectivity. 

12 •. It is seen that the amplitude probability for a single cell does 

not describe spatial distribution; since each cell is taken independently 

fram within the overall area of radar tracking •. Also adjacent cells 

could be 'shadowed' in hilly terrain, while at other times in a given 

area there will be extensive regions with the same surface reflectivity 
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characteristics and slope. Spatial distribution must be necessarily 

considered whenever a quick {overview} prediction is required for a 

given area of interest, since backscatter from adjacent cells will 

of'ten be spatially correlated. 

PROBLEMS OF MODELLING THE TERRAIN AMPLITUDE PROBABILITY FUNCTION 

13. It has recently {34 } been acknowledged that "more comprehensive and 

carefully controlled backscatter measurement progrannnes" are necessary 

at low grazing angles. A preliminary survey in this area by Allan has 

indicated both disparities and consistencies in an examination of a 

sample of' results f'rom the UK and USA. No attempt is niade here to repeat 

Allan I s SUIIIlD8.ries, but rather to extend his results to include several 

more sets of measurements which have now become available. 

FORMULATION OF. STATISTICS 

14. It is widely accepted that terrain clutter is the result of' 2 basic 

mechanisms; .the individual or specular reflections from strong point 

reflectors, arid a Rayleigh distribution for diffuse clutter. The process 

can be developed· { 35} in terms of the statistical properties of the 

scintillating returns from the elementary point scatterer, with the more 

complex distribution obtained by superposition of many point scatterers 

within the radar beam. 
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15. TYpe of Terrain. Investigations' {36} deduce as a general rule 

that the. type of terrain is identified most markedly in the ~ of the 

Normalised Radar Cross section (NRCS) and in general clutter is neither 

Gaussian nor Log-normal. This has been demonstrated by means of a 

KOLMOGOROV-SMIRNOV test of the cur~ulative distribution of the NRCS {37}. 

The return from a point scatterer within the resolution cell will be of the 

complex form: 

yet) = A(t) 
R(t) 

iC(t) -iw (t) e e 0 ------------------(1) 

for O.:'it~T 

c = 2SR(t) is the phase, where S = 2~/A (propagation factor) 

t is the observation time (dependent on aerial beamwidth) 

A(t) contains both the.amplitude component of the 2-way aerial radiation 

pattern and the intrinsic amplitude of the scatterer. R(t) = I(R 2 + v2t2) 
o 

is the range to the scatterers at the extremities of the beam and R ~s 
o 

the range along the beam centreline. As the aircraft moves at velocity V 

this sets the observation time for a given range and beamwidth; for example, 

if mean R o 
-1 0 

= 5 km, V = 300 m.s and beamwidth 0.4 , then t = 0.058 Sec. 

Generally Vt « R , giving an approximation of the return signal ("scintillating" o 

linear FM signal due to aircraft velocity causing raa.ar resolution cell 

motion across the point ~catterer): 

yet) = A(t) i(Q + Kt2) 
-R- e . o 

2SR 
o 

o 

- iw t e 0 

2 
K = SV IRo' the scintillation rate 

------------------ (2) 

Assuming t>O, then representing terrain clutter as a superposition of 

many individual scintillating targets: 

yet) 
. t n = e~wo l: 

k=l 
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16. Several ·assumptions are made above, since in practice, even 

with the observation time T, with a moving radar aerial the amplitudes 

and phases and the number of scatterers will be varying. All 

amplitude eff'ects at (3) are lumped into ak' Figure 1 shows the 

. general concept of' evenly distributed scatterers within a resolution 

cell. 

17. It is normal when following the 'point scatterer' approach to 

consider fluctuations from a single scatterer, using equation (1) 

where fluctuations about zero frequency for a linear frequency 

modulated signal are based upon: 

yet) = ACos(Kt Z + 0) ----------------------~--------- (4) 

It is shown {37 } that as KTZ-+ '" the spectrum of tne scintillating 

signal tends to 0.. constant, and this is assumed during the· observation 

time. The characteristic function of equation (4) is obtained from: 

= So eie:ACos EXl/K) + ~ 
o 

Where X =Kt 

p(X) = -1- 1 
2Xo = 2KT 

p(X)dx --------------- (5) 

18. By manipulation, reversing the order of integration, summation and by 

changes in variables and, since by definition the pdf is the Fourier 

transform of the cnaracteristic function then: 
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l: 
m=o 

_ (m) b Cos(mSin-l ! + !!!!!.) 
m A 2 

--- (6) 
Y<A 

o ---------------------------------------- Y>A 

19. From (6} the mean value of the scintillating signal and the 

convergence of the distribution function are shown at{38 } in some 

detail. Finally, since in practical terms terrain clutter is the result 

of many point scatterers within the aerial beam, the mean, variance 

and other useful descriptive parameters can be obtained so that the 

statistics of the distribution envelope are evolved. , Cumulative 

distributions at { 39} over city areas clearly show the specular 

nature of clutter from this type of target, however, one of the 

difficult areas in this report is the correlation of statistics found 

by one researcher at a specific location, with those of others at 

different locations. Much of the early work on the point scatterer 

formulation of the statistics of terrain clutter was by { 40}, but 

more recent and extensive work using this technique {4l } invariably 

recommends the necessity for many more measurements. In general'{42 } 

concluded,: that the Gaussian distribution applied over homogeneous 

surfaces 'such as desert and farmland and lognormal (long tail) 

distributions would be likely over urban and moutainous areas. Many 

researchers used smooth surfaces to develop reflectivity models { 43}, 

however { 44} states that the accompanying theories do not apply 

directly to the earths vegetation. 
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SIMULATION OF CLUTTER 

20. An alternative approach for the assessment of radar performance 

in clutter is the use of clutter simulation. However,the simple 

simulation of clutter as noise alone ignores the need for time, 

spatial correlation, or of frequency effects. Time correlation could 

perhaps be introduced in an appropriate way by numerical filtering 

of the random numbers used to simulate the noise,but frequency and 

spectral effects are complex. Andre et al {45 } recommends an 

'open loop' approach to .clutter simulations for basic performance 

prediction, with a 'closed loop' method preferred for detailed 

analysis. In the open loop case the sum of the signals from clutter 

and target signals (from clutter and target signal generators)are fed 

to the simulated radar receiver. The essential difference for the 

closed loop solution involves the simulation of a·radar transmitter 

signal which is then processed to obtain signals for target and radar 

clutter which are mutually coupled to allow signal modification. 

Finally target.and clutter signals are merged for processing by the 

simulatecl ·radar receiver. 

21. Considerable effort has also been expended,.{ 46}, in modelling 

clutter maps for other purposes, such as flight simulation, where the 

simulated airborne radar is 'looking down' for targets flying over 

a clutter-producing surface. In the main such simulations aim to 

evaluate system reaction to the clutter, Lognormal distributions 

8t"eoften used, and since moving radar platforms are being simulated, 
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a measure of the rapidity of clutter variation is ideally incorporated. 

These simulations do not investigate the clutter itself and merely 

reproduce approximate (but nevertheless representative). visual 

effects for training purposes. The reader is directed to the reference 

for further general reading, but the technique cannot realistically 

contribute to this study. 

BACKSCATTER FROM VARIOUS TERRAIN TYPES 

22. Although most terrain is composite in character, giving an 

observed wide dynamic range of land clutter distributions for the 

differing combinations of woods, fields, rocks, man-made objects and 

shadowed regions; the following paragraphs briefly consider individual 

terrain-type reflectivity characteristics, prior to investigations 

of the dependence of clutter upon the radar parameters T, RF, polarisation 

and~. Normalised ReS per unit surface area is used throughout: 

°0 = 10 Loglo 
Effective RCS Area 2 2 
Effective Illuminated Surface Area (m .• m- )-(7) 

23. Several hundred sets of conditions would be necessary to specify 

all backscatter, with 8 or 10 different terrain type classifications. 

Some researchers { 47} have included an extra parameter to account for 

the practical inconsistencies of °
0

, For exampl·e, the large number 

of small scatterers which under normal circumstances would be labelled 

'Rayleigh' in character are found in practice to occur on less than 

50% of ocassions { 48}. For the low grazing angles required in 

this report land backscatter amplitude distributions are often 

contaminated by shadowing due to trees, hills etc. Taking the extra 
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problems of backscatter coefficient variations with surface moisture 

content, and the past measurements taken with fixed and moving radar 

platforms (ie spatial average v time average), it is seen that 

uncertainty can easily occur when attempting to survey findings and 

arrive at a reasonable model. 

24. Trees/Forests. Electromagnetic radiation at 10 GHz or above 

does not significantly penetrate dense areas {49 } • . Diffuse returns 

therefore come predominantly from the upper part of the tree canopy. 

Raising the aerial above trees and using pencil beam radar reduces 

clutter only for high flying aircraft { 50}, but gives limited signal 

to clutter improvement for ultra-low flying aircraft.· Aircraft which 

would otherwise suffer blocked optical sightline may therefore be 

observed. subject to clutter limitations. 

25. Researchers in the past {51} p 221, have investigated backscatter 

from differing types of tree, ie pine, deciduous, under different 

moisture conditions and seasons of the year. The average RCS per 

unit area for trees seems to be about -.2.0tlS ., with horizontal 

polarisation exceeding vertical by 1 or 2 dB. Evergreen (pine trees) 

tend towards a slightly lower RCS per unit area than deciduous (3 dB), 

using A=lO GHz {53}. Clearly those trees which retain their foliage 

will not vary appreciably in reflectivity with the seasons. From 

reported data { 54} a survey of amplitude returns from trees, using 

horizontal polarisation, with log-normal fit is given at equation (8). 

Contrary to {52} above vertically polarised values were 3 to 4 dB higher. 



L 8 A 2 -2 
rJo = -15 + 15 LoglO 25 - LoglO 0.32 dB m ,m --:-----( 8) 

No other parameters were included, however it is thought that (8) was derived 

for ~ < 25
0

, ~ 95 GHz. The dependence upon ~ and his considered further 

at paras 47 and 68. 

26. Effects of Precipitation. Moisture probably contributes 5 dB 

extra reflectivity compared with dry trees· { 55}; snow and ice cover 

are separately examined at para 29 below. 

27. Urban and City. Significant shadowing can be expected from 

buildings when operating at low grazing angles, but results must be 

analysed carefully. For example, Linnells results { 56} were 

obtained under conditions where perhaps reduced shadowing is probabl~ 

because of his radar location on a high tower (30 m). Medi<\.11. back-

scatter from urban and city areas at h = 3 cm are ltkely to fall 

2 -2 
between-e4-30 d.B (below 1 m .m ), for very low grazing angles. Katz 

{ 57}. and others· { 58}, { 59}, have also produced results for 

buildings. In general, { 60} concluded that the log-normal distribution 

is the best fit for reflectivity from buildings. 

28. Flat Farmland and Cultivated Land. Linnell {6l } also obtained 

results for farmland; these ranged from -33 dB in March to -21 dB in 

August, for a spread of values fo~ ~, discussed below. As expected 

a maximum ~o occurred when the area contained fully grown crops. Also 

confirmed were other previously assumed conditions, such as that of 

ploughed ground giving a greater value before a rainstorm, since 

the surface is rougher in texture compared with values after the rain; 

the dielectric constant of soil being moisture dependent. The reader 
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is referred to {62 } for detailed information on the variation 

in average height and reflectivity of farm crops for given ground 

height above sea level in Germany. Land utilisation for certain 

. crops is predominant in given geographical areas and in N Germany culture 

data is held to a grid spacing of 150 m (N/s) x 95 m (E/w) in the 

German Military Geophysical Office Databank. 

29. Snow and Ice. In some respects limited data is available 

concerning clutter directly from ice or snow, especially in those 

measurements which allow a comparison of the clutter plot from the 

same terrain both with and without snow cover. Some values obtained 

with an aerial height of 2 m, RF's at 10, 35 and 94 GHz were made 

between 0.4 to 10 grazing angle {63 }, but ~ith limitations in range 

and with·the snow overlaying fresh-water ice rather than over trees 

or soil. Krason and Randig { 64} made reflectivity coefficient 

measurements at 3 and 10 GHz for 'I' ,. 0.5 to 4 degrees using common 

terrain, and with leaves both on and off the trees, AT 9.405 GHz 

values were consistently shifted by+3 dB due to snow cover. 

30. Results obtained using short pulse durations of 0.125, 0·,17 and 

0.10 u secs (Hoekstra. and Spanogle), together with aerial beamwidths 

of 1.3, 1.9 arid 0.38 uegrees, are of particular interest here, since 

they are appropriate to high performance tracking radars. Unfortunately 

the 500 to 600 ID range is not representative andthe results could 

only be used if they ~trt\:polate satisfactorily to longer ranges. 

Further at short ranges it is thought possible that the clutter returns 

may come from beneath the dry snow cover, which varied in depth from 

o to 30 cm. Small amounts of free water in snow can significantly 
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affect the measured value, which ·cho.ttjett due to this effect by about 

~lOdB in the case of Hoekstra. 

31. Temporal Changes. More recently dramatic differences have been 

observed over short time periods. These may be as much as 10 dB in 

30 minutes· {65 } {66 }, and specifically occur when free water 

freezes, usually - though not exclusively, at night. Transition time 

is unequal between the two extremes as freezing generally takes longer 

than thawing. Hayes {67 } observes that at least 0.15 m depth of 

snow is necessary to ensure no reflections from the underlying terrain, 

and that "calibrated data are insufficient to permit comparison with 

theoretical calculations". 

32. Polarisation in Snow •. Fblarisation effects under normal conditions 

are again considered at para 64 below, however it is well established 

that horizontal aerial polarisation in snow gives approximately 10 dB 

more than vertical when the snow is dry, but this difference reduces when 

the snow is wet. 

33. Reflectivity Models for Snow. The above comments are included 

here to show.the uncertainty associated with selecting a suitable 

model, since it is proposed that the underlying snow which receives 

a proportion of energy (variable with RF), may refract the energy 

towards the normal; thus allowing backscatter to occur at a higher 

grazing angle~. In practical terms there will be difficulty, 
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for example, in predicting the freeze-thaw cycles and possibly 

sporadic rain on variable-depth snow. It seems probable that 

a very general statistical clutter value for snow is the best 

to be hoped for. Other effects noted include evidence of returns 

from "blown snow" from hill tops {68} getting into sidelobes, 

and snow in forward scatter (at 35. 95 and 140 GHz). measurements 

producing as much as 25 dB variation in multipath· signals , leading 

to serious angle tracking errors against horizon targets. 

34. Tomlinson {69} obtained backscatter information for space-based 

radars for seven terrain types, and by regression analysis as a function 

of RF and ~ obtained analytical models. for snow and other surfaces: 

a = A + Bw + (C + Dw) log f -------------------------------(9) o 

Much larger resolution cells were used than is the case for low 

level tracking radars, and the applicability of the model calls for 

caution. However it·is seen later that the values produced by this 

model equate reasonably well with those from other sources. The choice 

of an absolute value of a to be used for a particular assessment is o 

much more of a problem than the gradient, for example, as the value of 

W changes. Equation (9) above for snow compute~ with A, B, C and D 

as -32.97, 0.340, - 1.797 and 0.035 respectively. An 'adjustment 

factor' of + 2.9dB is applicable. 
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DEPENDENCE OF q ON T 
o 

-- -- -----~----1 

35. Results {70} as far back as 1969 indicated that clutter levels, as 

expected, must be a function of the area of the illumin~ted clutter patch 

and therefore dependent on T and beamwidth. Measurements made at that time 

with long and short pulses transmitted alternately from the same radar gave 

differences in clutter levels of about 18 dB. 

36.- It seems that the effect of T on clutter lies somewhere between two 

extremes. On the one hand with a very large number of scatterers, the power 

returned is proportional to pulse length. But with a very small number of 

scatterers the probability of any power level being returned is proportional 

to pulse length. A note on each of these conditions follows, before the 

results of various research papers and reports are discussed and a suitable 

model selected. 

37. Many Scatterers. As an aerial is moved the short term clutter returns 

are assumed to be Rayleigh distributed with a mean value which varies slowly to 

give a lognormal distribution with sd about 20 dB, (ie lognormal running mean 

with superimposed Rayleigh for the difference between the clutter signal 

and the running mean). The scatterers are often located in patches so with T 

reduced there is some probability that no scatterers are in the reduced 

resolution cell. It is assumed each large cell (if unshadowed) does contain 

some clutter. 

38. On the average the scatterers in those cells containing them are more 

densely packed in the smaller cells (to give the same clutter levels). A 

situation can arise for very small values of T, where some cells return no power 

while others may return (since clutter is spatially distributed in patches), 
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proportionately more. For example ,r T is reduced o.rbi.~I'j ~ 

a factor of 10 and (~) half the new cells contain clutter 

then: 

T 
·1 

L.o" f" .::- o.~Loj"'S" ----------------------------- (10) 

p is the probability of the smaller (new) cell containing clutter. 

. TT. 
·1, '2 are the short and long values of T respectl.vely. 

1: 
1 

P = 7 Log -- dB ----------------------------- (11) T2 

P is the power level returned by the small cell relative to the large 

cell. 

. 39. Dodsworth t 7l} proposed a deduction of the effect of a change 

of pulse length on the probability distribution of clutter. Using 
\ 

a numerical example where p = 0.5 and 1: = 0.1, giving P =-7 dB; 
2 

for the small cell to have an ReS of OdB (ref 1m2), the large cell 

must have a echoing area of +7 dB, and the probability that this is 

exceeded is 37%. But p = 0.5, hence the probability of the small 

cell exceeding OdB is 18.5%. The results are plotted at Figure 2 

for 5 ratios of \, T2• In modelling clutter {71·}· chose a 

lognormal distribution for uniformly reflecting points expressed 

as a departure from the running mean of the clutter signal, ie 

the short term clutter component. Using an appropriate number 

of integrations and by adjustment to the pulse length T, the sd 

of the clutter signal increases as pulse length is reduced. 
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40. If it is assumed that the many clutter points from a large 

cell are more or less uniform and varying from cell to cell in 

a lognormal manner, this can be plotted with an arbitrary sd of 

25 dB and replotted after T is reduced by a factor of 10, reducing 

. all echoing areas by 10 dB as shown at figure ~ If only one 

echoing point exists within each large resolution cell and the same 

distribution applies as in the first curve above; and T is now 

reduced by a factor of 10, a third curve results with a difference 

fram the. first of about 40 dB at the 5% level and 25 dB at the 

1% level. This gives the approximate result in para 39 above. 

41. Relationship of T With Wiebull Shape Parameter. In practice, 

for e. given cell, ground clutter is not uniform, leading to 

a non-proportionate change in clutter when a resolution cell is 

shortened due to shadowing and other effects. Whereas a radar 

·designer may wish to select a set of radar parameters and then 

find a suitable distribution - typical of the parameters, or 

alternatively to estimate the distribution change likely when 

T alters; performance prediction of existing r.adar can only be based 

on the known parameters of the radar. { 71 }, using the pulse -

length -beamwidth product has made empirical estimates of the 

effect of changing the resolution cell by factor N, on surface 

clutter distribution. It is established for a range of T x eA of 

2.5 x 10-9 to 2.5 x 10-7 radian seconds that a relationship 

exists between the size T and the Weibull shape parameter; 
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42. In practical terms here, with an assumed pulse length 

~ ~ 0.5 p sec and eA = 20
, giving 0.0349 x 0.5 x 10-6 radian 

seconds = 1.7 x 10-a. Given the Wiebull shape parameter 

relationship: 

c ~ 0.192 - 0.0764 Log (eA't) ----------------- (12) 

From which scale parameter b can be obtained. An empirical method 

of estimating the clutter distribution for other resolution cell 

sizes is possible. (See also Annex A). 

43. The existence of the Weibull distribution as being applicable to 

land clutter returns was probably first reported by Boothe {72} in 

1969. But again, like so many others since he took Linell's results -

presumably because they were almost the only ones available at that 

time which offered a spread of values. It will be shown at para 51 

that certain characteristics of Linell's results differ significantly 

from the majority taken elsewhere - although it must be recognised 

that this may in part be due to different terrain in Sweden. Also 

there is a general absence of available measuremen"bl from Continental 

Europe. 

·44. Boothe's Weibull values, based on Linell's results have been 

Compared by the author here with 11 other sources, now available. 

Data is listed at ~able 1, and correlation computations made between 
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TABLE 1 DATA FOR WEIBULL INVESTIGATION 

'[ eA 0' m 
()Is) . (m.rad) . (dB) . 

1 RILEY 3.0 33.1 - 43 
5 GHz 1.5 33.1 - 46 

• {76} 0.9 33.1 - 51 
0.3 33.1 - 51 

2 RIGDEN $·15G.l!z 0.015 33.1 - 47 

3 DODSWORTH 3.5 8.7 - 80 (Est) 
{7T} 5 GHz 0.5 8.7 - 80 (Est) 

4 WARDEN et a1 5.0 8.7 - 70 (Est) 
{78} 5 GHz 0.5 8.7 - 70 (Est) 

5.0 8.7 - 70 (Est) 
0.5 8.7 - 70 (Est) 

5 DE LOOR et a1 0.5 31.4 - 28 
{79} 10 GHz - 16 

- 14 

6 SURADS 0.25 27.9 - 34 
{80J 10 GHz 

7 WARDEN 0.4 26.17 - 27 
{81} 12.0 8.7 - 70 (Est) 
5 GHz 5.0 26.17 ~ 70 (Est) 

8 '. ERICSON 1.0 57.5 - 25 
{83} - 30 

9 APt 0.34 34.9 - 40 
{85} 5 GHz 

10 NATHANSON 2.0 26.1 - 46.25 
{8li} 3 GHz . 

11 APt 0.25 20.0 - 52 
{85} 8.8 GHz 

12 LINELL a 0.17 24.4 - 48 
{BB} 10 GHz b - 46 

c - 36.4 
d - 42 

~ 
Selected Data - Serials 1 to 7 rural/farmland 

Serials 8-11 (inc1) Rural 
Serial 12a, 12b rural 
Serial l2c, 12d forest 
c (calc uses Eqn (12) 
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~I)") 
c b 

(CALC) . (meas) . 

0.343 2.7 
0.366 3.6 
0.382 4.2 
0.419 4.3 

0.518 3.0 

0.382 7.7 
0.446 9.0 

0.370 6.6 
0.446 9.5 
0.370. 6.8 
0.446 5.9 

0.404 9.5 
0.404 7.0 

.0.404 9.5 

0.431 5.7 

0.417 2.16 
0.348 -
0.333 3.05 

0.361 (not 
0.361 avail) 

0.413 3.4 

0.364 3.9 

0.442 3.8 

0.524 3.3 
0.524 2.84 
0.524 3.76 

. 0.524 3.95 

1 
, 

. 

Estimated 
O'm 

Estimated 
O'm 

APR 
JUL 
SEP 

Es fl_"fe,,( 

O'M 

1j> = 5° 
° 1j> = 0.5 

1j> .. 1.25 APR 
1/1 = 1.25 MAY 
1/1 ., 0.7 NOV 
t/I ., 0.7 MAR/AV 



eA' T. product and shape parameter c, and between SA T product and 

o. Few values are still available at A = 3cm. Detailed results 
m 

are at Annex A, App 1. 

45. Sea Clutter. Observations made in Japan in 1980 {73} relating 

sea clutter to Weibull, but at A = 30 cm, were made down to very low 

values of 1/1 (0.13 to 0.250
). Sekine et al concluded that a Log Weibull 

relationship exists, and are currently checking this at A = 3 cm. 

Other relevant papers are by Shelerher {74} at about 24 GHz and 

RSRE {75} at 3 cm - all for sea clutter. 

46. In view of the above conclusion in favour of Weibull -

which for temporal and small scale fluctuations has implications for 

CFAR arrangements - it was considered useful here to check some of the 

measurements taken by Dodsworth and others to see if they also 

exhibited Weibull for land'backscatter. Results of the author's 

investigations into this are also at Annex A, App 1. False alarm rates 

are considered later in this chapter at para 85. 

DEPENDENCE ON TjJ 

47. It has been clearly demonstrated {86} that 00 increases 

rapidly as near grazing angles are reached; and as expected, Go will 

also be higher at low grazing angles for rougher surfaces. 

median RCS, is used here for a brief investigation into the 

° , the m 

dependence of ° on the grazing angle. Many reports use average RCS 

or "I( (see AlUlex B and para 49 below), caution should be exercised 

if comparisons are made. 
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48. While the quantity of measurements is now incre,asing, 

principly from space-based observation platforms' {87}, these are 

mostly taken at high grazing angles - usually down to about ~ = 20
0

• 

It is often difficult and imprecise to .t){tfru,olate the low angle 

significance of these measurements. 

49. It is assumed that all targets of interest are in the near 

grazing zone - in which the use of the conversion i = sin w/ao is of 

little use. As ~ reduces, an appreciable rate of change in 

reflectivity seems to be initiated at values 100<~< 15
0 and 

unfortunately this corresponds to the lowest value of ~ chosen by the 

majority of researchers in the past. Ex~polation difficulties can 

be seen from the general curve at Figure 4. This of course has 

limited the uslable results from which to evolve a model. 
, 

50. In Chapter 1, mention was made of the 'slope' or 'aspect angle' 

of terrain and the scant attention which appears to have been paid to 

this effect when measurements were taken. Clearly a change in terrain 

slope implies a change in ~ for the particular resolution cell under 

investigation. This chapter confines investigations to selecting a 

model from those measurements already available. It is assumed that 

the values of ~ are correct and the statistical spread of terrain 

slope within all the resolution cells scanned did not affect the 

measured RCS. The author's investigations into slope effects are 

considered separately at Chapter 10, i. A"" ...... F.~I,' 
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51. Trend of a . with ~ The well documented and widely quoted m • 

measurements of Linell {88}, together with as many others available 

with like (or near like) parameters were plotted by extracting am 

for variation of~. In all cases the results used were for rural, 

farmland, cultivated terrain and forest/woods. Many results were 

rejected. A few were interpolated, with care, into the lower values 

of ~ (eg 150 ~ ~ ~700). The resulting plot at Figure 5 suggests the 

following conclusions for cultivated terrain: 

a. A remarkable number of the curves give similar gradients 

which average approximately 1.25 dB per degree for ~~3°. 

Linell's results give a significantly different gradient. 

b. There is a wide spread of absolute values of a. However, 
. . 0 

it seems reasonable to expect this spread of values, taken in 

different countries, under variable conditions of moisture, 

wind, measurement accuracy, calibration differences and 

instrumentation (monitor losses). 

c. The point at Which the rate of change of reflectivity 

becomes more marked is around ~ = 20. o Below 2 .the slope could 

be reasonably be approximated by a second straight line with a 

gradient of approximately 5 dB per degree. 

d. Linell's results (figure ;, curve 12) appear to come from a 

system which is far more sensitive to changes in ~ than the 

others. It is not clear why this is so, but is may be a direct 

consequence of the 33 metre aerial height -and that a less 

shadowed area might provide a greater dynamic range of clutter 

levels. 

4-95 



52. A fUrther point to consider is that of aerial gain towards a 

particular clutter patch. Some researchers mention this as part of 

their calibration Process. Others, indeed few have not apparently 

corrected for this, or for "e1ectrical tilt angle", side10be clutter, 

or variation of gain with range. 

53. Forests and Woods. Figure 6, a similar plot for forest and 

wooded areas, is less explicit. A maximum of 0.5 dB per degree is taken 

as a reasonable value to use. 

SURVEY OF MODELS 

54. Incorporation of 'fi into a set of model equations together with 

other parameters has been attempted by several researchers, but again 

these are often for higher grazing angles such as expected from space 

and using excessively large dimensions of resolution cell. Models 

investigated for similarity of results (in regression form) include: 

a. 0
0 

= -20 + 10 log 'fi/25 - 15 log A 2 -2 
dB m.m --------(13) 

where l/J is in degrees, :\ in cm. 

b. 00 = -15 + 15 log 'fi/25 - 8 log ~ dB m2.m-2 __________ (14) 
0.32 

where l/J is in degrees, A is in metres. 

c. 00 = A + BB + et dB m~ m-2 ---------------------------(15) 

where e = 90 - l/J (deg) f is in GHz. 

4-96 



e. cr
o 

= A(W + C)B eXP[:-D/(l + O.035h):] dB m
2

.m-
2 ------------(17) 

where W is grazing angle in radians crh is RMS surface 
roughness (cm) 

f. cr = F 4 2 x 10-6f sin W dBm2.m-2 --------------------------(18) 
o s 

where F = spherical earth shadow factor 
s 

f = freq (MHz) 

k 

F = 2 (~ X)1.5 E 
s n=l 

( 
.A X) fn (h) dB m2.m-2 ____________ (19) 

exp -J n 

F = 1 - o.465X 
s 

for x>l 
x<l 

X = 
2 2 1/3 

R(2~/A r ) 
e 

Where R = Range (metres) 

r = 4/3 earth radius 
e 

A = set of complex constants 
n 

n = mode 1, 2 ----- K 

K = maximum of 40 

f (h) = height gain function. 
n 

1 k 2-2 
g. cro = cro/(l + R/Rh) ) dB m.m ----------------------------- (20) 

R = Range to clutter (km) 

Rh = Clutter horizon (km) 

k = Constant (Value 4-12) 

crI (typical value as a constant 34dB m2.m-2) 
.0 
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h. 

Typical values are: Cl 
C2 
C3 

11.3 
26 

8 1Ji = lm 
o 

------------------------- (22) 

Eqns 21, 22. Cl' °2, °3, 1Jio and Yt are terrain sensitive 

Typical values are: Y
t 

2.1 

m ;: 0 

n 1.8 

c 0.008 
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55. Equation (13) above is an empirical formula based on 

statistical information. 10dB extra should be added for foliated 

trees (dry) and 15 dB for wet trees. '{90}. Fig 5 curve 11. 

56. Equation (14) above {9l} is taken as reasonable for Horizontal 

polarisation and more accurate at higher RFs than 10GHz. Fig 6 curve 2. 

57. ,Equation (15) is applicable over the range of frequencies 

6-17 OHz but to be used with caution at angles of 0/< 200 {92}. 

Maore et,al also include a general model with different coefficients. 

Referring to Figure 5, curve (6), the coefficients used for A, Band 

C were respectively -7.09, -0.131 and 0.315. While for Figure 6, 

curve (7) the results of Maore fit over Tomlinsons with negligible 

difference. Hence curves (3) and (7) are identical; with values of 

-9.1, -0.12, and 0.25 respectively. 

58. Equation (16) contains the coefficients for forest plotted (3) 

at Figure 6 and is subject to an adjustment factor of +0.91 dB' {93}. 

This equation format is the same for rural terrain (curve (1) at 

figure 5) but in this case the coefficients for equation (16) change 

to give: 

a = -23.61 + 0.9940/ + (3.53 + 0.0910/) Log f ------------- (23) o 

and the 'adjustment factor' is + 0.79 dB. {94} goes further to 

discuss snow, desert, terrain and sea, with models for each type. His 

main objective was to obtain models for space based radars and so 

detailed measurements at low grazing angles were not required. 
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59. Equation (17) {95} is the first equation to incorporate HMS surface 

roughness, presumably to indirectly quantify RF in the model. Plots at 

Figs 5 and 6 (curves 14, 15 and 8, 9 respectively) use the stated 

empirical constants for ABC, as 0.079. 1.5 and 0.012 for rural and 

0.019, 0.64, 0.002 for forests. There is insufficient data to compute 

constant D in both cases, although this is stated as 2.3 for soil, sand 

or rocks. 

60. Equation (18), the FTD model {96} is based on generalised site 

geometry for $ = 0.17 to 0.050
, but not validated above 2.8 GHz, until 

present measurements at MIT are completed. Curve 16 at figure 5 shows this 

result using a K of 3. 

61. Equation (20) {97} describes clutter as range dependent remaining 

constant up to the radar horizon. Beyond Rh the clutter decreases at 

10 kdB per decade of range. It is not included on the curves at Figs 5 

or 6. 

62. Equations (21) and (22). Both developed by Georgia Institute of 

Technology~ are, included for completeness but have unfortunately not been 

validated at low values of $ and are not included at Fig 5 or 6. 

63. From the results examined, replotted and recalculated where necessary 

to fit the required parameters, it is concluded that the effect of ~ on 

ao is such that the median (a ) backscatter increases 1inetly with $ in the 
m '" 

o 0 0 
range approx 0.5 to 10 , but below 0.5 the variance is likely to increase 

quite markedly. Values selected for the model here are considered at the 

Chapter Summary. 
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° DEPENDENCE ON' POLARISATION 
o 

64. The main cause for polarisation sensitivity of bacKscatter is 

multipath reflections, hence polarisation effects are of concern only 

over relatively smooth surfaces. At X = 3 cm (or greater EF), and very 

low values of ~, the surface is not considered smooth in terms of the 

Rayleigh Roughness Criterion. 

65. Linear Polarisation. For practical purposes, over general terrain a few 

dB dirrerence may exist between 0RR and 0vv linear polarisations; with 

horizontal being the h.'3h.U. This has been well supported with a good spread 

of measurements over 9 different surfaces at Ohio State University {96}, 

by Cos griffe et al, and is reprinted in Barton's textbook {99} pp 165-286 

for easy reference. For general terrain it is proposed to neglect small 

differences at low grazing angles in the model at Chapter 11, and for this 

reason polarisation was ignored in comparing the effects of ~ and T from the 

various sources earlier in this chapter. At the lowest values of ~. where 

multipath surfaces exist, a maximum or 10 dB should be applied for horizontal 

polarisation. 

66. Cross and Circular Polarisation. Cross and circular polarisation are 

of interest here in performance prediction, sincethe~'! techniques 
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may be employed to reduce clutter returns compared with the wanted aircraft 

signals. Few new polarisation results have become available since 

Al.lan's recent summary,except Tomlinson {lOO}, who rein:forces earlier 

findings. The :following conclusions apply: 

a. For linear (plane) polarisation with cross-polar 

reception,the backscatter is likely to be up to lO·dB lower 

in the orthogonal plane than in the parallel plane. For 

isolated dominant re:flectors (eg pylons), this di:f:ference may 

be over 20 dB. 

b. At the :frequencies in use and low values o:f W, lower 

. ( 0 0 0 ) than Brewster' s angle 20 :for earth, 5 to 10 :for sea , 

the sense o:f circular polarisation is prObably not reversed. 

67. The reader is cross re:ferred to remarks on polarisation change 

:for raindrop rejection at Chapter 3, and reminded that the RCS o:f 

·aircraftmay be reduced, (typically by 3 to 5 dB). with the.same-

sense circular polarisation; compared to perhaps 7 dB with crossed 

linear polarisation. Finally, polarisation e:f:fects are use:fully 

considered in the :following papers: Ament {lOl}, Rider {l02} , 

Reiss et al {l03}. Gent et al {l04}, Brindley {105}, Daley et al 

. {lo6}, Goodyear {lon, Linell {88 }, Katz and Spetner (:for W> 100) 

. {lo8}. 

00 DEPENDENCE ON RF 

68. It has previously been stated that backscatter :for snow covered 

terrain is di:f:ficult to predict, because o:f penetration, and it is 
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here that can be seen an analogous situation in attempting to 
- . -

isolate the effects of RF on backscatter. The dielectric properties 

of the surface are clearl~ all~important, since earth, like snow, is 

penetrated to an extent b~ microwaves and the actual electromagnetic 

roughness of the surface ma~. not be visuall~ apparent.· Since the 

dielectric constant of terrain is also a function of A, that which is 

seen as 'smooth' b~ a particular vavelength will be seen as rough ~ 

a shorter wavelength. An upwards change in RF therefore implies a 

change ·from 'smooth' to 'rough' if the change is such that: 

• •. A 
"h sw 1/1> 8" 

_________________________________________ (24) 

where Ah = rms height of surface irregularities 

1jI = Grazing Angle (after Rayleigh).:· 

69. However, as stated above, microwaves 'will penetrate the surface 

(typically 1 to 10 cm {106}) dependent on the conditions - which 

might var~from one resolution cell to the next - even for the same 

surface material. And so it is seen that a general tendenc~ can be 

concluded rather than absolute values. Long {86} surv~ed results 

in this area and states "the totalit~of experimental results do not 

yield agreement". It is probabl~ reasonably to state that the 

waveleDgth dependance of 0 can be expressed generally in terms of o - .. 

A -n (normal~ O<n <1). Classical interference effects (see Long 

{86 } pp 219-220) can in principle cause 0 to vary as fast as o 

A -4 at grazing incidence, but this is for the ideal surface, and is 

perhaps applicable at sea. 
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70~ It should also be noted that 'roughness', as viewed along the 

radar beam will depend on ~, as in equation (24) at para 68, Once 

again because of the shortage of measurements available at low ~, 

reliable data relating cr, f and W cannot be used to produce a 

model of adequate validity. Since this project involves RF's of 

10 GHz (or above) it is assumed that all (land) surfaces are 'rough', 

and indeed this would be the case for measurements used here from all 

the sources used in earlier paragraphs. 

DISTRIBUTION AND CORRELATION OF SPATIAL AND TEMPORAL CLUTTER 

71. Distribution. A composite scattering model where the probability 

density function {cr
o
)= f ex. y, t} is considered by {109}, who derive 

pdf's for use at sea, built-up areas, forest and rural conditions, 

measurements show time variations to be exponentially distributed. 

If the required value 

'" S Pt (aim) Ps(m) am ----------------------- (25) 

- '" 

m is the average a 0' te.'.:irl2: into account local terrain slope in the 

resolution cell. If the surface is flat (facet tilt zero - see 

Chapter 10), Ps (m) = d(m - jl). f.t..1: 
This is to be expected at sea with many independent scatterers. on\land 

if a log normal distribution is assumed then: 

P(a
o

) = 10 exp [- 100 (log a - log a )2) 
,l2;T log 10sa 2s2 0 om 

e 0 

jlexp [ 
2 

8
2

) with median cr = - ~ (lOgelO ) 
om 

10 
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Pt (0
0

1 m) = l~ exp ( - 0 )00 II 0 __________ (26) 
.....!!. 
m 

= (o ) 0 0 <0. ------------- (27) 

P(oo) = Pt (oolp) (~ exp (-0 ) 1 0 llO ------------- (28) 
(l~) ~ 0 

P 

(0 ) 0 <0 ------------- (29) 0 

P (m) is s the spatial variation pdf 

\l is the spatial mean value of m 

72. Correlation. The few published data on spatial correlation of 

land clutter are usually concerned with scanning (rotating) search radars. 

Results may not be applicable at all times to the pencil beam tracking 

raaars under investigation here. With a circular scanning pattern the 

clutter components change continuously since clutter elements are regularly 

entering and leaving the illuminated surface footprint. For a narrow 

beam tracking radar this would occur most markedly for crossing target 

nown past at.a velocity and range to produce a high sightline 

rate; reaching a peak rate at the tangential point. Radially- or near 

radically approaching or receding targets could cause less effect. 

73. In areas where large single man made objects occur, giving 

predominant specular returns, the probability of spatial correlation is 

leas likely between adjacent resolution cells, but in normal terrain 

or torest,spatial correlation is likely to be higher,providing adjacent 
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cells are similarly tilted to the incident surface illumination. 

Seek Igloo {110} confirms distributions tending towards log-normal 

as sampled terrain becomes more homogeneous, although other recent 

research has shown a distribution falling somewhere between log-normal 

and contaminated normal. Earlier work by Dodsworth {lll} isolated 

'fast' and 'slow' components as the radar aerial scans the clutter 

surface. ,'Fast' components are found to fluctuate with the median 

Value equal to the running mean, while 'slow'conponents reflect the 

majority features of the terrain and are regarded as the running mean.' 

14. Strong clutter tends to occur in patches, giving good spatial 

correlation, sloped terrain giving the strongest'values. For a pre­

surveyed radar site position a terrain data base of the type proposed 

in Chapter 2 can indicate with fair accuracy the likelihood of positions 

of clutter patches. At the shorter(millimetric)wavelengths a good 

indication can be, gained from large scale ordinance surveyor more 

particularly vertical photographs of the area. 

15. Since clutter is not evenly distributed in practice and it has 

been shown experimentally (see paras 38 to 40 above) that a change in 

resolution cell size does not bring about a proportional change in 

clutter, it is clear that as the radar beam scans with a fixed 

resolution cell size, 6;let by T and eA) the loss' or gain' of surface 

reflectors for part of the resolution cell, due to aerial rotation, 

will increase or re,duce the number of cluttel" producing elements in the 

'cell and have a temporary effect as though actual resolution cell size 

is changing. With very" large resolution cells (not usually applicable 

to the tracking radars), they become more likely to contain partly 

man-made and partly natural reflectors. In a mobile battle situation 
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there is some reason to suppose a higher probability that man-made 

objects will appear in tracker resolution cells since many vehicles 

are likely to be dispersed in the S8me area. However this will be 

dependent on local terrain screening conditions for a ground based 

radar •. If a log-normal distribution is assumed, this will. strictly 

only be applicable to a fraction of the resolution cells in an area 

(since many are shadowed). or for only parts of .cells - if the cells 

are large. This approach is confirmed at {1l2} where the cell values 

aggregated would produce a threshold which is applied to every cell. 

76 •. Spatial Clutter Decorrelation. Autocorrelation factors derived 

tor RFchanges (frequency agility) have been researched at {1l3} 

where it is proposed that the autocorrelation function of clutter may 

beperiodic,with increasing pulse to pulse RF change. Conditions will 

be expected to vary with 1 and the number of dominant scatterers in the 

resolution cell, although {1l4} found that decorrelation times of 

clutter were not appreciably affected by changes in 1. Autocorrelation 

lengths investigated by Tomlinson {115} over several terrain types show 

almost like. variations in autocorrelation coefficient irrespective of 

terrain tyPe at ranges' greater than approximately 4 km. 

CLUTTER PATCH LENGTH STATISTICS 

77. It will be shown in succeeding chapters that the factors 

affecting an overall effectiveness prediction madel for a given 

tracking radar located at a known geogr~phical position are closely 

related. No single aspect can be taken in isolation without 

considering the others. Although this report first attempts to 

separate these factors for more detailed examination before bringing 
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them finally together as a complete model, it is difficult to ignore the 

closely related topic of 'probability of obtaining a given track length' 

at this early point in the report. The importance of observable track 

length can be seen from Annex E, but the overall requirement for a certain 

system must include the probability of maintaining signal detection above 

the set threshold.for the duration of the observable track length. Taking 

this a stage further, it concerns the probability of maintaining track 

under .these conditions. Probability of holding radar track, loonine; track or 

gaining a new track is also considered at Annex E. 

78. Spatial clutter statistics can be presented in various ways: 

a. Probability of clutter exceeding a given track iength. 

b. Probability of clutter patch separations exceeding given 

lengths. 

c. Probability of exceeding set threshold levels. 

d. Probability of clutter variations with range •. 

79. Clutter Patch Lengths and Discrimination. Two reports by the SHAPE 

Technical Centre fl.lG {u'ji on clutter in Europe, together with Rigden 

hllt in the UK and. Briggs {I.l9l in the USA, have been considered, the results 

are .interpolated, and re-presented in different forms at Figs 7 to 

10. Clutter patches vary in length from a few metres up to l400m, although 

of course at varying signal levels. UK figures for a specific site Q.2Q} 

show that clutter >lm2 . does not exceed about 30m length. while strong 
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levels such as 10m2 are limited to pattlhes about 6m in length. It is 

not clear whether the available US results are wrt 1m2 : however the main 

point ot interest is .the similarity ot distributions at Fig 7. When 

replotted (plot not included) on log-normal graph paper these give 

sensibly straight lines over most ot the patch lengths tor 0.1<P<0.7. 

80. Clutter can be reduced by using pulse length discrimination. For 

the UK site about 75% ot the clutter exceeds 0.1m2 (Fig 8) and is in 

patches longer than 30m - these could be removed simply by setting the 

appropriate thresholds. Fig 9 compares UK and European measurements. 

81. It the probability ot clutter exceeding given equivalent reflecting 

areas can be plotted trom a knowledge ot the terrain, this, together with 

the earlier data and data. on clutter patch separations could lead to a 

model tor radar tracking conditions by assessing the statistical 

opportunities when tracking can take place tor given track lengths. 

These would ot course be site specitic assessments. 

82. For tracking in clutter to be successful (as opposed to intermittent 

detection) the two cases are essentially: 

a. Statistical likelihood ot clutter patch separation such 

that. the target may be tracked with no clutter present (ie 

target track held tor a minimum time period). 

and b. Those occasions where the target can be (additionally) 

tracked where the clutter level, thoughpresent. is negligibly 
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.. low - or can be processed out in the receiver. 

In both a. and b. above, conditions must exist with a sightline to the 

target (see Chap 2 - Screening) and a sightline to the clutter(in case b .. 

above). 

83. It is fUrther proposed that from the statistics for a particular 

terrain area, an examination of track length unscreened, clutter patch 

length and the distribution of resolution cell slope facets, could 

produce a prediction for example "when a target enters an area TYPe A 

(eg flat terrain with 30% vegetation cover up to s~ lOm high) with known 

target velocity and altitude, with missile and radar type 'X' deployed, 

there will be a 20% probability of' the system obtaining a firing 

opportunity in which a complete engagement could occur". Further it 

might be possible to vary the prediction to take account of the higher 

probability expected where the radar system is deployed in a premeditated 

manner on a previously surveyed (optimum) site •. For example a higher 

probability would be expected from a presurYeyed site in undulating 

terrain - sinc~ the probability of' obtaining a target sightline is more 

likely as the target cannot maintain a. set altitude clearan(£e over 

terrain which undulates with a fast period. These points are considered 

further at Annex E and Chapter 10. 

84. Variation of Clutter with Range. The SHAPE ·reports also express 

clutter probability in terms of range, the median values of which are 

replotted at Figure 10 (from f'ig 9 in {12l} and Fig 4a in fi2:?J), converted 

in each case to give relative echoing area by· applying a R" correction 

by taking the average range in each interval. The UK and USA results 

M"e also shown for comparison. It is seen that the median clutter 
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value reduces almost linearly with range for all sites and although the 

individual values are site-specific, the rate of change of clutter 

level with range varies between approximately 0.5 dB.Km-1 to 1.5 dB.Km-l. 

FALSE ALARM RATES 

85. .It is not the intention here to repeat receiver processing options, 

such as MTI, which are well covered in many standard texts. However a brief 

mention of false alarm rates is appropriate. 

86. At· the receiver input will be a combined signal of noise, clutter and 

wanted target; from which the receiver will adjust the ratios to separate the 

target from the other unwanted signals. The distribution of· the noise 

envelope at the detector input is given by the Rayleigh·distribution. 

In weak signal conditions (ie wanted signal near noise level) the action of 

a detector is square law and the distribution of the signal envelope modified 

by the square law action will be: 

Pn (v) dv = _1_· 
2 2ao 

exp (-~) dv 
2ao 

(30) 

. 2 .... 
where 2aa is the mean value; a is a constant. v is the detector output 

voltage.. If the noise envelope exceeds a threshold Vta false alarm with 

probability Pfa is given: 

L e 
v 

2 2ao 
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----------- ---

= e-kn (normalised threshold for noise) = Vt 
--2 
2acr 

-6 A threshold is chosen to give a tOlerable false alarm rate eg.10 and 

the probability of detecting the presence of a signal (or the probability 

that signal + noise exceeds the threshold Vt ) is then: 

P d = _--"....:!l=--__ 

2ai (1 + 'X) 

-k = exp s 

1 k s 

Where ksis a normalised threshold (signal + noise) = _~ __ V-,t::.-_ 

2ai (1 + xl 
x is the mean signal to'noise power ratio at the receiver input. 

-·k hence P =~. n 
fe. 

. P = e 
d 

and hJ!d = 103t-P fa 

(1 + xl 

( 33) 

. (34) 

( 35) 

87. For example if Pfa = 10-6 and SIN = 10 then on the. basis of a single 

echo: . 
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= - 1.26 

and P = exp - 1.26 = 0.284 (ie 28.4%) 
d 

88. Assuming a number of successive pulses N are integrated, each having 

crossed the threshold Vt then: 

I x N - 1 ( exp - NJdx 

n 

Where kn " V t . ; x is the value at any instant, 

2a02 

The solution to this integral is tabulated by standard methods as the 

incomplete Gamma function, of which a solution is: 

P = e - Nx 
fa 

2 
(1 + Nk + (Nk) ...... , .... 

_-,:n,:-. 
2! (N - 1) ! 

) 

( 36) 

(37) 

and the probability of detection after integrating N samples of the signal 

noise is: 

If .', ·1·. ·k"'.· N - 1 P = (N -1) x exp - Nx dx 
d 

A solution is: 
-Nk " s 

Pa = e 

s 

+ Nk 
s 

2 
+ (Nks) 

2! 
+ ......... . 

4-113 

(;1 - 1) 

7~~S:"'_--:1")-. .,--) 

(38) 

(39 ) 

-1 
, 



-6 
Assuming N = 2, Pfa = 10 and x = 10 then P

d 
= ·55%, compared 

with 28.4% when N = 1 (see para 87 above). 

90. Figure 11 shows P·d when N = 8 for a radar operating on a number of 

frequencies (Nf ), where the probability density function of N integrated 

pulses is: 

for which the general case is 

b P (x) = a 
7( bC=-+-:l")-

1 a, bare constants where if b = 1 and a = - then 

p(x) 1 x 
= = exp = 

x x 

a . and b.are deduced from: 

N
f 

(1 - x) 
a = 2 

Nf - 1 + (1 + NF x) 

x 

2 
b = NN

f 
(1 + x) 

---'''------,--- 2 
N

f 
- 1 + (1 + N~) 

(40) 

(41) 

(42) 

91. For further details the readeris referred to Swerling {123}.: {89} or 

Marcum {124}, to Chapter 6, para 14, and to Annex E """"DL'y!. . , r- -

92. Ideally an adaptive value of V
t 

is required to take account of the 

variations in clutter received from each resolution cell since the probability 

of detection is a function of false alarm probability and signal to noise 
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ratio as dictated by the statistical model. The overall probability- of 

detection is found from: 

(overall) Pd =100 . Pd P (c) dC 

. 0 

( 43) 

93. If T and C are received Target and Clutter power respectively-; r r . 

and N is noise power (referred to receiver input) and if I is the 

improvement factor then, from (35):-

(44) 

From (43) above the overall probability- of detection in clutter will be , . 

obtained: 

. 100 (1/(1 + IT /C + IN))) 
(overall) P d = P fa r r . P(C)dC 

. ·0. 

and with C (assuming a log-normal pdf) : 
r 

1 

... . of 
Where Cm is the median .... clutter power Cr-. 

Combining together (46) and (45): 

(overall) P d = 

m I p'. (1/(1 
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exp (- OOJ£C/C
m

))2/2i) dCr 

.f2.;: a C
r 

( 45) 

(46) 
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I 

I 

I 

94. Some assumptions have been made here concerning the false alarm 

probability since the work by Marcum and Swerling are based on a constant 

false alarm rate whereas las at para 92) this will not strictly be the 

case. However any prediction model will necessarily operate within constraints; 

since niany modern radars will have MrI filters the basic eqns above 

will not always apply directly but will be subject to certain assumptions of 

clutter residue characteristics after passing through the MrI filter compared 

with receiver thermal noise lev:els'. 'Similarly there may be receiver non-

'linearities which introduce changed statistics, however the above equations 

assume no receiver limiting. Pursuance of the relative'performance of 

limiting circuitry is beyond the scope of this report. 1l.,tu:4Iel "-t .. H,,,,s fer 
Ra..~ lets "', Rl ~lI\ 0.."".(. L....,5 ~N.n""",1 c..\ v Lt-er (;I.~e r>J: 'M~ s' 2.-IIj.. 

CHAPTER SUMMARY 

95. At the outset of this research it was decided to include many terrain 

types from a wide variety of sources to provide a broad basis for a 

general prediction model; rather than basing the conclusions on a few models 

albeit with more precise values which 11U3..Y be site-specific. A model is 

thus sought which is bO,th simple and contains adequate statistical information 

to give, reasonable integrity for a generalised prediction. 

96. In the past it 11U3..Y be that excessive importance has been attached, to 

distributions and curve fitting to clutter predict ton. statistics. For 

acceptable false alarm rates the signal to clutter ratio must pe very high, 

hence only the tails of distributions are of real interest. Predictions at 

these extremes maYbe based on excessive interpolation. 
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GRAZING ANGLES 

97. It is clear that land statistics are less easily related to the surface 

than sea clutter statistics and that 10';' grazing angles produce "8-,..tA.blt.. 

statistics which are much affected by 'shadowing'. As the grazing angle 

increases the shadowing effect diminishes and the s.d. decreases. 

Rural Terrain 

9B. By careful examination of the plots of clutter values (figure 5) for 

grazing angle, and by rejecting the space~based results {94} {92} and {BB} 

respectively shown at Figure 5 as curves (1) (2) and (12), a model is proposed 

for rural terrain as follows: 

(f "A+Bl/I 
m 

(48) 

By regression analysis A =-32.22, B = 1.017, with correlation coefficient 

- 0.99. This is plotted at Figure 5 at curve (17). It is seen that the 

model forms "-reasonable median of the world~wide results survey'ed. 
A 

A gradient of 1.25 dB/degree is taken for ljJ >30 and 5dB/deg for 1)1 < 3
0 

Forest Terrain 

99. SimilarlY the c~efficients proposed for forest are A = -3~.\ 

B = ,+ \. 61.5". This is plotted at figure 6, curve (10). This proposal 

equates well with the model at eqn (8). An adjustment of 3 dB is necessary 

for vertical polarisation or with snow cover, and 5 dB for wet tre,es , 
, <i 

(see also para 101 below). Both rural and forest results are based upon 

analysis of worldwide data. 
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Radar Frequency 

100. The general trend for low ~ and homogeneous terrain is that the median 

backscatter coefficient increases linearly' with frequency for most terrain 

types ,o..t- t<. '\O...t.. ,,"0.'''-0''-) ".....,{...,.>f.. '{<v-< .... (,/.~ {1\.ue ... ftu lfu.."lto ?"'j)e.. F I-Lt')' 

&_M~ "'...l .... \ h ~f>'2.L.t~~ K \?,....,.o{ . ..c AI"i"_U~ A~:~"'l<J=. 

Snow Cover 

101. Due to temporal, snow depth, water content and polarisation variations 

a reliable backscatter model is probably impossible to assess especially as 

these parameters may vary from one resultion cell to another in any but the most 

homogeneous conditions. Up to 10 dB should be added if conditions of 

free-water exist due to partial thawing and re-freezing. 

Pulse Length 

102. Median (Jo is taken to vary with T as suggested by Dodsworth buk(.N:<Ml:IIISlvd!l) 

related to the Weibull shape parameter as investigated at Appendix 1 to Annex A. 

Simulation of Clutter 

103. Computer simulation of site specific data is possible within reasonable 

limits if a precise digital data matrix is available. In general however a 

digital landmass data base does not provide precise terrain screening 

informati?n for vegetation. Therefore sightline information would be 

unreliable for an unknown site. 
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New Backscatter V Grazin~J0~ Model Based on Measurements at K Band: 

104. The model developed by the author from raw radar measu.rements is 

also plotted at Figure 5 (Curve 18). Details of the analysis method 

are at Annex F, Appendix 1. They confirm the general model, 

although at a higher value of RF. When the data was taken as an 

entity it did not exhibit the reversal of ao at 10'1 grazing angles 

reported by some other researchers. It is on interest that the values 

obtained clearly plot as a Weibull distribution and statistical tests 

show they are definitely not log-normal. 

105. Selective Analysis: when the K Band data (at Annex F, Appendix 

1) was examined critically, and outlying values from specular 

reflectors and probable sidelobe leakage removed; it became apparent 

that the clutter values did in fact rise at very low grazing angles. 

This confirms the reports mentioned above. Possible causes of this 

phenomena, including the possibility of terrain measurement errors, 

~ at Annex F, Appendix 1, with many of the results. In the course of 

this analysis considerable care was taken in matching the measured 

backscatter to the terrain matrix and hence to the surface gradient 

concerned. 

106. The results obtained compare favourably with Barton's latest 

unified clutter model proposed at this frequency, but not apparently 

supported by published measurements at present. 
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CHAPTER 5 

NON STATIONARY CLUTTER 

WIND, AIR TURBULENCE, CHAFF AND BIRDS 

WIND EFFECT ON GROUND SCATTERERS 

1. Since the re-radiation of electromagnetic energy from ground objects 

~nd chaf~moved by the wind can have significant effects on backscatter, 

a survey was made to isolate practical wind or turbulence parameters for 

incorporation into the detection model. Twigs, branches, grass, crops etc 

all oscillate in the wind and when illuminated with centimetric (and 

especially millimetric) radar energy will contribute almost all possible 

electrical phases to the overall backscatter signal. Hayes {125} has 

shown a directly increasing relationship in signal fluctuation rate with 

increasing windspeed, as would be expected; but researchers have generally 

found a lack in correlation for measurements of tree fluctuations for 

varying polarisations; in particular when using a pencil beam at 3 cm 

wavelength. Radar observations on foliage have generally yielded Rayleigh­

type statistics (See Annex A), with many researchers concluding that the 

ground echo from a resolution cell is likely to contain a sensibly steady 

component plus fluctuating echoes caused by oscillating surface motion; thus 

modifying the components into a Ricean distribution (also see Annex A). 

2. Land and sea doppler spectra and surface radar cross section of 

foliage are all windspeed dependent. Kerr {126} confirmed ground echo 

amplitude to be peaked at a value near the amplitude of the constant 

component. As the wind increase~the ratio of the clutter emanating from 

the moving component increased, compared with the steady component of the 

overall signal. When the steady to moving ratio m2 is small, ie <1, 
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there is little difference between equations (9) and (10) at Annex A. 

As m2 increases,the distribution approaches a Gaussian shape centred about 

the ratio of the steady echo component. This effect has been well 

established at A = 3cm to show variation with surface culture {127} with 

various polarisations, with and without snow cover, with small grazing 

angles and at different times of the year. 

3. Sensitivity at Certain Windspeeds. Hayes and Walsh {128} found an abrupt 

increase in fluctuation rate comprising positive to negative reversals in 

slope and vice versa near windspeeds of 10 mph (44 ms -1), and that leaves 

and twigs are likely to be in constant, rather than intermittent, motion 

at 8-12nph. Other researchers (Barlow, Fishbein, Graveline, Kerr and 

Ritenbach) agree that the spectra are more complex than the basic Gaussian 

distribution. As an example, in wooded areas the sd of clutter using Gaussian 

values would be 25 Hz in 11 GHz. Wind-produced clutter is part of the 

overall clutter characteristic, where, for example, the Rayleigh characteristic 

is often seen in the homogeneous clutter of urban areas and very rough 

terrain having high intensity tails tending towards the lognorrnal. 

4. .Motion of Radar Beam. Additionally, wind spectra are found to be 

broadened by the motion of a radar beam {129}. but this is more appropriate 

to radars on moving platforms such as aircraft and it is not thought to be 

applicable to this particular study; since it is assumed that a low-level 

tracking radar. will be stationary when tracking even though in a mobile 

radar system some associated acquisition radars may have limited ability 

to acquire on the move. When tracking, the land-based radar tracker beam 

only moves slowly. compared with aircraft speeds. 

SURVEY 

5. Table 1 summarizes a survey of 30 years work on windspeed effects 
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TABLE 1 SURVEY OF EFFECTS OF WIND ON SURFACE CLUTTER 

. 

I 

). Wind 
Serial Year Researcher. Scatterer (cm) Velocity . Pol Distribution Remarks 

. 
. (MPH) . 

... 
. 

1 1949· BARLOW *. Woods, Sea, Rain, Chaff 30 - - See para 5 
.. 

. . 

2 1951 KERB * Woods, Sparse, Rocky 9.2 25-50 - Gaussian (Approx) 
3.2 Gusts 
1.25 

.. 

. 

3 1956 IVEY*et al Deciduous and - Moderate H&V Also at 35 GHz 
Coniferous 

4 1951 HAYES et al " " " 3 0-7 //&X See para 5 1.860 Pencil Beam 
2-15 //&X PW o. 251Jsec 

5 1959 HAYES et al Deciduous 3 - All Rayleigh 

6 1963 LINNELL Forest and 3 - Variable Lognormal (approx) Grazing An§les 
CultiVated and Rayleigh 0.70 , 1.25 and 50 

1 1961 GUlNARD * Unknown 3 - H&V Ricean Also P, L & C 
et al Bands down to 50 

8 1961 FISHBEIN * Deciduous 3 10 H See para 5 
et al 

9 1968 DALEY et al Udknown 3 - HH&VV Rayleigh (see Also P, L & C Bands 
also Valenzuela) 

.. 



. 

Serial Year 

. 

10 1974 

Note 1. 
--2. 

* .. 

A 
Wind 

Researcher Scatterer (cm) Velocity 
(MPH) 

... 

ROSENBAUM* Forest 23 Variable -
et al 
. 

//&X represent parallel and cross-polarisations 
"All" includes circular polarisation with I/&x polarisations 
Details of this reference in Part II bibliography 

. 

. 

Pol Distribution Remarks 

Rayleigh 
.. 



(made on A = 3cm wherever possible), however few measurements are available 

at the lower grazing angles necessary for this study. The results of 

Hayes (serial 4) and Linnell(serial 6) most nearly use parameters of 

particular interest. Linnell {130} used a 25 metre resolution-cell radar 

·mounted on a 30 metre tower with a vertical beamwidth of 300 and horizontal 

beamwidth 1.40 • Results included 15-17 dB standard deviation at O.ro 
grazing angle and an approximately lognormal distribution. Fishbein et al 

(serial 8) produced a relationship which gave good agreement with measured 

power spectra but for deciduous foliage only and horizontal polarisation: 

----------------------- (1) 

Where fc = 1.33eO.1356v v = Windspeed (knots) 

6. Wind Effect at Sea. Wind effects on the surface at sea also cause 

significant radar signal pertubations but since this report is only 

concerned with radar tracking overland, values for wind effects at sea 

are not required for the model. 

CHAFF CHARACTERISTICS 

7. Chaff is a feature of the modern military electronic countermeasures 

scenario and it is not the intention of this study to examine the possible 

disturbance effects of chaff on the radar tracking !Unction when streamed 

or rapidly bloomed, but only as a clutter source. Statistical characteristics 

of chaff aresimilar·to rain and therefore demand similar signal processing 

requirements to minimise degradation of radar performance; dependent on RF 

and the spectral width of the clutter so caused. The instantaneous position 

of chaff within the radar tracking beam is dependent upon windshear, windspeed 

and air turbulence. Windshear occurs when the radial wind speed varies 
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vertically through a radar beam. Dodsworth {13l} in a note on windshear 

refers to {132} which shows windshear to be largely indepentent of altitude. 

Ref {133} gives typical windshear values of 1 or 2 m sec -Ikm-I of altitude. 

A typical MTI canceller can be made to eliminate the mean effect of wind 

velocity within limits. 

8. Beam Broadening, Turbulence and Chaff Fall-Velocity distribution can 

all be considered as producing independent Spectra, but if all effects 

are summed, {134}, a Gaussian variance distribution can be taken as a good 

fit. Beam Broadening is a wind effect (small compared with windshear or 

turbulence) with a ,typical sd Cbeam = 0.42V0 02SinB, where Vo = Wind Velocity, 

02 = 2 way half power beamwidth (rads) and 8= ,azimuth angle relative to 

wi" ldirectionak ~trQ. .. F-kAA'l.. 

9. Chaff Dispersion. Once dispensed, chaff will disperse under the influence 

of the local turbulence. Windshear rates in the USA appear to be more 

severe than those in Europe, perhaps as high as 5 m sec -I km -I in altitude. 

This is contrasted with a typical maximum chaff fall-rate of 0.7 m sec-I 

for,3cm wavelength chaff. Under turbulent conditions it has been shown 

{135} that chaff under the influence of eddy transport speeds can exceed mean 

wind speeds {l36}, and this causes a considerable problem in assessment. 

Haddow' {137}, concluded that the time-distance movement of eddy carried 

chaff cannot be quantified with any degree of accuracy under all conditions. 

Two aspects ofcbsff must however be considered - attenuation andbackscatter. 

10. Chaff Attenuation. The total ReS of dispersed chaff seen within the 

radar resolution cell will naturally depend upon a sightline, and. as 

described in earlier chapters, this may be intermittent, clear with no 

underlying clutter, or additional to underlying surface clutter. To 

completely obscure a target, ie to prevent energy reaching the target or 
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returning to the radar rrom the target, it can be shown that an exceptionally 

dense charr cloud would bc necessary. For 2-way attenuation or a unirorm 

charr cloud or /h.·'tIl.nUSl>,....J. charr dipole density or N per unit volume, 

then: 

attn = e -as ND (.~J.----------,:,-------- (2) 

is the average radar cross section per dipole. The product 

as N is the volume rerlectivity density Ea in m2 per unit volume. Expressing 

this in dB per metre 

2-wayattn (dB.m -1) = -4.34 (Ea) 

Where Ea is in units m2 m-3 • A heavy charr cloud may comprise a charr 

rerlectivity density or approximately 3000 m2 nm-3 (corresponding to 

475 x 10-9 m2 m-3). Thererore to attenuate a radar-return by 3 dB would 

require a chart cloud or thickness 800 nautical miles (1500 km); clearly 

an impracticable situation!. 

11. Charr Backscatter. Although signal attenuation due to charr could 

occur momentarily under certain conditions when the charr is selt-dispensed 

and providing the dipole spacings are ror a short period or the order 

a wavelength apart, signiricant volume attenuation is not a ractor or 

consequence compared with that or backscatter. As implied at para 7 above, 

charr may be dispensed by military aircrart so as to bloom rapidly within 

the radar resolution cell in the hope or breaking tracking capability or at 

the very least to disturb tracking accuracy by rorcing the radar boresight 

to move to a dirrerent tracking centroid. Success or otherwise depends upon 

many ractors in the radar system, such as tracking loop time constants, 
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resolution cell size, deceleration of the chaff, causing range gate 

pull-off and the effects caused upon velocity gates, and several other 

factors {138}. 

12. After dispersion the chaff dipoles are randomly distributed by 

turbulence and researchers {139}, {140}, have discovered as many as six 

modes of fall when chaff of mixed characteristics is dispensed. Vakin and 

Shustor {141} suggest 2 main fall modes, one predominantly horizontal 

and the other vertical. In the absence of shadowing and clumping effects 

the idealised ReS of a number of dipoles N is: 

. . - 2 atotal - 0.18A N -------------- (4) 

However the chaff may not be cut to precisely the radar transmission 

freqUency (particularly with frequency agile radars), all dipoles may not 

contribute ideally and the chaff material will have some finite conductivity. 

More recent1neasurements {142} state that the ReS based on o.14A2 is more 

likely. Res varies with dipole thickness as well as length, and maximum 

Res can be approximated for practical purposes as: 

atotal • 0.14l2EN ---------------- (5) 

E is the dispersal efficiency (ie a scatteririg efficiency factor) which may 

vary between 0.3 and 0.6. Actual ReS acheived per unit weight of dispensed 

chaff is of course also dependent upon the chaff type. 

13. The use of MTI is likely to cancel most of the chaff spectral effects, 

where low frequency clutter over several KHz may be eliminated by a notch 

filter. If the entire chaff cloud was subjected to wind gusting in the 

same direction as an aircraft flying it could be evident in more than one 
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resolution cell, but it is of diminishing importance when using MTI; and 

as explained above could not shield radar energy from reaching a target 

at greater range. 

BIRD ECHOES 

14. Backscatter from birds can cause clutter at the very low altitudes 

relevant to this study. Bird clutter (also known as "angels") is briefly . 

explored under the following headings: 

a. Height and Velocity distribution. 

b. Bird Radar Cross Section and distribution within a 

population. 

c.Radar resolution cel~ polarisation effects and spatial density. 

Limited~easurements were found at A. 3cm, but the results of several 

papers at other RF's are in reasonable agreement. 

15. Height and Velocity Distribution. Results from several researchers 

at different geographical locations show that 80% of all birds are encountered 

below altitudes of 250 metres and velocities spread between 10 and 25 m sec-I. 

16. Bird RCS and Distribution. Mean RCS per single (medium sized) bird 

is unlikeiy to exceed 10 cm2 (pigeon at A· 3cm), and in isolation will 

not be confused with an aircraft RCS. However flocks of birds very close 

together can reach clutter proportions. The distribution of echoing areas 

will naturally depend upon the proportion of birds of various sizes in 

a particular location, but in general will be lognormal. 
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17. Resolution Cell and Radar Polarisation. Effects of resolution cell 

size investigated by several workers, eg, {143}, {144}, were in some cases 

made using a pencil beam tracking radar, but with longer pulse lengths than 

applicable here. Although there is no accurate prediction of the effect 

of varying resolution cell size on bird echoes, a smaller cell size would 

split up larger groups of birds into perhaps a number of adjacent cells, 

reducing the observed RCS from the flock. Minimisation of bird returns 

by using circular polarisation has been shown {145} to be non.productive 

since the clutter reduction obtained is approximately the same as for the 

wanted aircraft targets and hence target filtering is not acheived. 

18. Spatial Density. Several researchers have attempted to quantifY the 

density of bird clutter echoes likely to be present within a PPI search 

area (assuming these are not filtered out by the signal processing). 

Averaged over one year in UK, the probability of one bird echo per km2 

is slightly less than. 0.5%. However, a typical PPI may typically scan 

1000 km2 on each 3600 sweep, and so the probability of some bird activity 

at most locations is high. with a target tracking radar following at target 

sight-line rate (or almost stationary for closing or receding targets), 

birds m~ enter, leave, or pass through the resolution cell of interest 

at. any time. 

CHAPTER SUMMARY 

19. Factors selected for incorporation in the overall prediction 

algorithm frOlllthili chapter are: 
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a. Wind Effects. Values researched by Hayes are used in 

conjunction with the surface cover discussed at Chapter 4 • 

• 1 "94 1 Hayes uses F 1+(~)3 .or • GHz and ~1~+(~~~5~)~2 at 95 GHz, 

giving, for a windspeed of 12 kts a half-power value of9 Hz. 

b. Chaff Attenuation and Backscatter. Equations (2) and 

(3) are used for modelling radar signal attenuation due to 

dispersed chaff between target and radar. Backscatter is 

incorporated using equation (5), for non-HTI radarS only. 

c.· Bird Clutter - 'Angels'. Bird clutter can be expected 

in wooded locations and may cause significant signal returns at 

any time, but more particularly so in migratory periods and at 

sunrise and sunset. However, it is assumed that once a target 

is correctly range-gated and velocity-gated by a narrow-beam 

tracking radar with good discrimination (and since total. tracking 

periods are likely to last for no more than 60 secs for really 

low level fast targets); then 'angel' effects are minimal for the 

tracking radar itself. It should be noted that overall system 

effectiveness may be reduced if 'angels' clutter degrades an 

area search radar's pertormance to the extent that "hand-on" 

to the associated tracking radar is del~ed or prevented. 
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CHAPTER 6 

RADAR SYSTEM AND TARGET DETECTION PARAMETERS 

1. Preceding chapters have shown that the probability of successtul 

detection and tracking very low - altitude targets is dependent on a great 

~ variables. Additional to the very basic requirement of a direct 

sightline (or a set of fortuitous diffraction conditions), together with 

the imposition of clutter - and even jamming signals - the end result is 

finally dependent upon the radar system characteristics and the given 

target response. This chapter summarises the radar system parameters 

considered and their relationship in the radar equations used in the model. 

Some parameters, when varied slightly, become critical; since the very 

nature of the study involves targets which are likely to be often on the 

threshold of detection. 

RADAR SYSTEM 

2. Within the radar system, account must be taken of the radiation 

pattern, the transmitter waveform characteristics and the signal processing 

of the target and clutter returns in the radar receiver. Equations to 

describe clutter and target power received, receiver noise and jamming 

effects are fairly standard, however many basic texts generalise certain 

losses which have been considered here in more detail. Specialised 

references such as' {146};and. {147 } give adequate relationships for such 

topics as aerial motion and jamming. It has been necessary to include 

the whole range of parameters for a complete model, but it is not the 

intention to investigate every parameter in detail. Once the model vas 

comple~further investigations, based on the model, vere made into 

diffraction and terrain slope effects (Chapters 7 and 10). 
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3. Radar system parameters considered, together with typical values are 
shown below. A sample calculation for this system is shown at Annex G. 

Example System 

TRACK-WHILE SCAN (TWS) 

a. Aerial Gain (Mainlobe) 2290 33.6dB (dB) • 

b. Aerial Gain (Sidelobea) - 20dB 
(dB) 

c. 
(Kw) 

Peak Transmitter Power 150 

d. Operating Frequency 10 GHz (3cml - 15.2dBm 
(GHzl 

e. Receiver Noise Fi~re ~B) 8 9.03dB 
. 

f. Srstem Losses (dB) - 12dB 

g. Pulse Duration (~ sec) 1 
.. 

h. Azimuth & Elevation 2 x 9 
Half Pwr· Beamwidths {des) 

j. Aerial Polarisation H 

k. Intesration ImErovement -
in SLN ratio dB 

1. Radar Aerial Heisht 
above datum ?ml 

20 

m. Radar Type (es MT1a PD) PD 

n. Aerial Radiation Pattern -
p. PRF (Hzl 12000/10750 

q. Rotation {scan) 60tp~ 

Priority Tarset Size (ReS) 2 r. 0.05 -13 dBm 
(m2) 

s. SiSEal Processins -
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t. Range ." Aq;.",ecj_ (m) :!: 30 (~o% .f uol"I;~) 
u. Velocitl Resolution :!: 15 
( .-1) m.s 
v. Azimuth Resolution :!:0.5 
~) 

w. Freguencl ~ilitl -
x. Tracker mode TWS 

. 

(eg monopulse) 

y. Transmitter Character- 4 bursts of 10 pulse 
istics per scan . . 

RECEIVED TARGET. CLUTTER AND JAMMING POWERS 

4. At the receiver, target, clutter, attenuation and jamming powers are 

largely dependent on statistical distribution dependent upon cross section 

and on PRF, pulse duration, transmitted power, and multipath. The overall 

signal/noise ratio is given by: 

§. = Sig (tgt). F (Attn 2). F (mult) 
N NRX + F(attn 2) (Sig Cc1t ) + Sig(wtr)} + FCattn 1). 

where Sig( tgt) " Signal from target 

F(attn 2) = 2 way attenuation factor 

F (mult) = 2 way multipath effect 

NRX = Receiver Noise 

Sig(C1t) " Surface Clutter Signal 

Sig(wtr) = Clutter Signal (Atmospheric and Weather) 

Sig(jam) = Jamming Signal from Target 

F(attn 1) = 1 way attenuation factor 
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5. Only the self-screening jamming signal (assumed to be noise) in the 

main beam is considered. Later it will also be seen that the numerator 

at (1) can be modified to allow for diffraction and the denominator 

adjusted to incorporate a factor for terrain clutter. variation with slope. 

6. Using the standard (unmodified) radar e~uation (pulsed radar) the 

received SiN ratio is: 

S 
N 

where 

R 

PT 

L 

b 

°t 

S 

K 

To 

NF 

/.. 

nL.(n) 
1 

GT 

" 

= 

= 

= 

" 

" 

" 

= 

" 

" 

= 

= 

" 

P G 2 2 
T. T. /.. 0t.nLi (n) • • • • • • • • • • •• ( 2) 

3 4 (4,,) .K.To.b.NF.R .L 

Target range (m) 

Peak Transmitter Power (watts) 

System Losses (but see para 7 

Receiver noise bandwidth Hz (ej 3".\(<tP.Ifz.P l)...ooll-:z.) 

RCS of target (m2 ) 

Minimum detectable signal (watts) 

Boltzmans Constant (- 204 dEW) 

Temperature (oK) (2900
) 

Noise Figure 

Wavelength (m) 

Integration Improvement Factor 

Aerial Power Gain (Receiver or Transmitter) 

7. Losses. System losses included as L, in this general form, can also be 

more exactly specified, according to conditions. The following losses are 

applicable, as appropriate to paragraphs 6 above and paragraphs 9 and 13 below: 
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L = 

L.r = 

~ = 

~ = 

La = 

LC = 

L's = 

All losses, both transmit, receive, propagation. and 
beam pattern factor losses. 

All transmitter losses eg waveguide. feeder, re.dome, 
TR-switching. 

All receiver losses eg waveguides etc as above for L.r' 

Beam shape and pattern lobing eg tracking radar 
cross-over losses. 

Two 'Way absorption or e.tmosphericprop'lation losses. 

Collapsing losses. 

Signal processing losses applicable to jamming. 

NOTE L'a and L'p are the one-way losses applicable to jamming. 

8. G, the· aerial power gain. must be modified according to the aerial 

radiation pattern. For example, if the (fairly common) cosine 

distribution is used G2
T becomes (Go Oos2 (rra/2S))2 where Go is the on­

axis power gain and e the one way 3dB beamwidth. 

9. Received Surface Clutter. Taking the basic equation the surface clutter 

power C· at the receiver input is: 
p 

c = 
p R 4 

c 

Tbe illuminated surface clutter area Ac is: 

•• . •• . .•• (3) 

Ac .. R SA.9.I. ......... (4) 
c 2 
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I 

I 

but at very low grazing angles where tan '" < 2Rc Sin e /2 

CT/ 2 

the clutter area is modified 

A .. R eA CT Sec '" c c 2 

(Tan'" < eA Rc ) See Annex'bc.1so, 
cT!2 

giving 
C 
P 

Sec '" 

This modifies the basic sic ratio (target/clutter ratio) 

li .. 
C 

into LS Lp ~ Cos ",Ot 

R{CT/2) eA 00 

where 00 .. Average surface clutter per unit area (m2) 

• • • • • • • •• ( 5) 

• • • • • ... •• (6) 

· . . • .• . .• (1) 

• • • • •• • •• (8) 

• • • • • •• •• (9) 

eA" Azimuth 3dB beamwidth, Ae .. Effective Aerial Aperture 

LF = Loss factor in clutter receive chain (not necessarily the same 
as L in eqn (2» (non-dimensional factor) 

Cp .. Received clutter power (watts) 

RC .. Range of clutter cell 

? ' Av.u~~t- d ..... tt~t R.c.S 

(t' ''"'Stk 12..("$ 
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10. Detection Range in Clutter. It is often convenient to assess the 

detection range in clutter simply by re-arranging (9). Calculations for 

an example radar system are included at Annex G. 

11. Received Volume Clutter. Volume clutter is a combination of back-

scatter, attenuation and chaff (see chaps 3 & 5). 

Fe" t'/I.l",: 

Sig(wtr) = 
4 0.93 PT GT CTW Z 

128 ).2R2 

where Z = 2001"1.6 (See Chap 3). 

. . . . . . . .• (10) 

It is assumed that only the single resolution volume containing the target 

is· contributing volume clutter. Skolnik {148} produces a composite 

expression incorporating both attenuation and backscatter from the two 

terms at (12): 

where P= received echo power from target 

and 

Nr = receiver noise power 

S PT 
if "N + N r c 

.. 
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where NC = Clutter backscatter power 

a = Attenuation coefficient 

12. Chaff Clutter. Chaff backscatter is modelled at equation (5) Chapter 5. 

13. Received Jamming Clutter. Although the foregoing clutter sources are 

almost always present, jamming will only apply to specific situations, and 

so the computer model can be initialised to include or ignore"the jamming 

segment, as necessary. If the radar is modern, and assumed to have 

minimum sidelobes, with the mainlobe on the target all noise jamming energy 

enters along, or close to the mainbeam axis. Allowing for all losses the 

equation for signal to jamming noise ratio is: 

L' s 

where RJ (=Rt ) = Range to j ammer ( ie target) 

GJ = Jammer Aerial Gain 

• • . • • •• .• (13) 

PJ = Power of jammer per unit bandwidth (watts for Hz) 

BN = Noise bandwidth of receiver (before detection) 

Since only self screening jamming is considered RJ and R
t 

are equal: 

TARGET CHARACTERISTICS 

14. Targets are generally taken to comprise a predominant (steady) signal 
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re-inforced by many small reflectors (ie Ricean distribution of reflectors). 

Target fluctuations are taken to be independent scan to scan and based upon 

Swerling Type 3 detection probability. 

p (a) • • • •• • • •• ~14) 

for a~o (= 0 elsewhere) 

where aAV is the average target RCS (m2) and a t,,<- (",~t".,k ... "eo\,)s RCS. 

All relevant priority targets are 'aspect sensitive', as shown at fig 1, 

where. a 0.05 (m2) RCS target head-on can produce an enormous RCS on the 

beam (crossing target). since the overall model detection probability is 

roughly the probability (excluding sightline blocking) that the target 

return signal will cross a detection threshold with a sufficient sic ratio; 

it is seen that RCS can be a critical parameter. Because of the uncertainty 

of the instantaneous value of ReS, present when an aircraft is ostensibly 

in straight and level flight (and even more variable when the aircraft is 

deliberately manoeuvring), target RCS must be considered statistically. A 

Rayleigh distribution for larger targets has been found suitable by 

Ament et al {149} but aircraft and missiles of small RCS tend towards higher 

order chi-square functions. TYPical radar cross sections. for small aircraft 

range from 1.2 m2 (head-on) to 20 to 60 m2 (beam-on), giving a median of 

1.3 to 5m2 over 3600 and all roll plane aspects. For the purpose of the 

2 4 2 model 0.05 to lm has been used for head on targets and m for beam targets. 

It is further assumed that the targets of interest are designed with 

profiled structures to minimise RCS and may compris.e dielectric panels and 

possibly radar absorbent coating for a proportion of the observed echoing 

skin area (see also Chap 4 and Annex E). 
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15. Res Spectra. Turbine and/or Propeller, and airframe spectra investigations 

are outside the scope of this report. Briefly, the airframe spectrum is due 

to the relative motion between target scattering points, and although an 

RCS range (eg 1.3 to 5m2) was easily selected for assessment purposes, the 

selection of a suitable airframe spectrum (due to random and systematic changes) 

is far more difficult. According to {150} the width of. the airframe spectrum 

has the relationship: 

••••.•••. (15) 

With smaller targets likely to have a greater random motion than large 

aircraft •. Further spectra information is available from the reference 

{151}. Measurement of the rate of change of target aspect (M/Ilt) is 

complex although the factor Lo/A, the characteristic length of the target, 

is more readily available. K is a proportionality constant. 

16. Frequency Agility. FreqUency agile radars have improved performance 

against fluctuating targets since the probability is reduced that the 

target will be at an aspect angle which gives a very low RCS or a null. 

Frequency agility can also reduce range and tracking errors caused by 

target glint and multipath (see Chap 9). Improvements in detectability 

of several dB have .been measured when using frequency agility· {152} at 

10 cm wavelength. At the same time frequency agility can be used to 

decorrele.te distributed clutter echoes (see Chap 4 ). The model incorporates 

an allowance, if required,to improve detection probability for frequency 

agile systems. 
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CHAPTER SUMMARY 

IT. Relationships stated in the chapter for Received Target power, 

Surface Clutter power, Jamming power, Signal/Noise ratio, Volume 

Clutter and Fluctuating target characteristics are incorporated in the 

model. 

18. Radar Cross Section. Experimental distributions made by the US 

Applied Physics Laboratory indicate no simple solution for RCS 

modelling of all aircraft aspects. Much of the uncertainty in modelling 

RCS lies in the observation time used to obtain the distribution. 

Although the Rayleigh distribution is suitable for large aircre.1't, 

RCS modelling is necessarily a coarse procedure. Cumulative detection 

curves can be used if detection is required on an approaching target 

before it reaches a certain range. Missile targets have larger mean 

to median ratios; a log-normal distribution is more accurate in this case than 

Rayleigh. Equation (14) is used, for example, based on an average 

RCS with at varied using a random number generated in the model to 

simulate target glinting. Distributions, Rayleigh or Log-Normal, are 

selected according to target type and appropriately for fixed RF or 

frequency agile radars, ie change of Swer1ing case. 

19. Although the RCS of future aircraft will be reduced by careful 

design, stealth - low reflectivity coating, perhaps to lower than OdBSm; 

the range of terrain Res (per m2) may vary between - 30dB to possibly 

+30dB with -15dBas a typical average (see Chapter 4). A clutter 

signal may be present even when clutter from the target range gate is 
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masked but enters due to sidelobe clutter reception. Experience has 

shown that parruneters such as target doppler, beamwidth (azimuth 

resolution) or range resolution may not be sufficient to separate 

targets from clutter, particularly at low level. The fluctuating 

target RCS can therefore be critical in the detection and tracking 

process since a tactical aircraft RCS may be of the order 10 to 20 dBSm. 

20. Fluctuating Target. The problem of fluctuating target returns is closely 

related to FAR (see Chapter 4) and further considered at Annex E, where it 

is shown that a target fluctuating with low runplitude peaking is more 

easily detected at short range, while a more excessively fluctuating signal 

is more easily detected at longer range. 
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CHAPTER 7 

DIFFRACTION 

1. Computer-aided and manual literature searches have revealed several 

comprehensive reports covering diffraction of data links at UHF and VHF, but 

with very limited research at microwave link frequencies. No detailed 

reports could be found on low level tracking radar diffraction, indeed 

practical prediction algorithms are thought not to exist. As recently as 

1980 a report from the Lincoln Laboratory, MIT, {154}, stated "diffraction 

of radar transmissions over terrain obstacles has not received as much 

attention as refraction"; and, "diffraction has effects which should worry 

military mission planners "(military context of planning low level terrain­

routing profiles to avoid detection). Also, "some obstacle problems remain 

unsolved - the debate continues over the proper way to estimate losses over 

terrain obstacles". To complete the radar performance prediction algorithm 

a detailed investigation is clearly necessary into diffraction effects. 

DIFFRACTION PARAMETERS AND AIMS 

2. There are several approaches to the theory of diffraction, including 

extended wave theory. The following research aims were selected: 

a.' Research the nature of diffraction in practical terms. 

b. Determine the criteria under which diffraction is likely 

to enhance low level tracking. 

c. Consider the substitution of terrain with cylinders or 

baffles for diffraction modelling purposes. 
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d. Consider diffraction effects with reference to 

modifications by reflection and multipath. 

e. Determine diffraction pa.th radar power valueR on 

outward and return paths. 

f. Generate a diffraction subroutine for the main radar 

performance prediction algorithm. 

g. Produce a subroutine capable of scanning a land area; 

given the terrain data base, and determining a general 

probability of diffraction from the nature of the surface profile 

for given target· altitudes. 

KNIFE-EDGE DIFFRACTION 

·3. Assuming that the local terrain does not support reflection, knife 

edge diffraction approxi~tions are often used with the geometry shown 

at figures 1 and 2. With the radar transmitter near.the earth's surface, 

and the target airborne (unlike the data-link case); the diffraction angle 

can be considered at figure 2 as fixed, while distance d2 and hence Rare 

reduced. This has the effect of moving the target upwards on the figure 

to the dotted position, changing d
2 

to d~ and R to Rl From Fig 1, if" 

the radius of" the assumed diff"raction edge (cylinder in practice) is large 

compared with A, then.: 

E 2 
S 

E7 
I 

= = ----------------------- (1) 

21f 
Where k = r-. ES = Scattered intensity from the target and Er = Incident 

intensity .• R, hand "i are shown in the f"igure. However, both f"igures are 

essentially the same as explained above. 
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4. The geometry at figure 2 is used to derive the further approximations 

at para 5 below, but at this stage it is necessary to discard the negative 

knife edge situation (ie diffraction ridge below radar horizon) since a 

direct sightline would exist simultaneously; hence detection capability would 

not be significantly impaired. Nevertheless, it is recognised that if 

the diffracted ray received via a negative knife edge exceeded the signal 

strength of the direct ray, an angle tracking error.could occur. 

5. Taking v as the dimensionless parameter of the Fresnel - Kirchoff diffraction 

formula (see Annex cl then: 

v'" +21¥ -------------------------------------------(2) 

Where ~r '" r l + r 2 - R (or Rl if the airborne target is used) 

or v '" +J2~"'f3 -----------------------------------------(3) 

or.v'" --------------------------------------(h) 

Where ht is the obstacle height 

"', f3and e are in radians 

A, R, dl and d2 are in consistent units. 

6. Comparison of the free space and diffracted fields to obtain the 

diffraction loss ratio A( v) S,"es : 

A(v) '" -20 10glO tF(v) IdB ------------------------------(5) 

7-160 



'" 
Where F = l;J JI exp (J~u2/21du ---------------------------(6) 

V 

0.5 

as v becomes large and positive IF(v)1 ~ 2 21lv 

and A(vl becomes approx -20 10glO ----(7) 

e is the angle of diffraction. 

7. For a single edge diffraction obstacle Deygout {155} uses a criteria to 

characterise the diffraction path to check that the first Fresnel Zone, of 

radiun r, is not obstructed. Assuming A « h
t 

. dl d2 
< 10· and A « ht < 10' 

at a frequency f(MHz) separated by R kilometers, the free space loss is: 

ao = 32.5 + 20 10glO f + 20 10glO R (dB) ------------------(8) 

Expressing the diffraction loss as a function 

Where rem) = 548 

h 
for llt"r, am = 20 10glO G + 16) ----------------------------- - ( 9 ) 

r 

Where a = diffraction loss; total loss = a + a 
m 0 m 

8. When ht is used the results differ by f2 (see equation for v below). 
r 

For comparison purposes in the use of v fig 3 shows the diffraction loss while 

figure 4 shows diffraction loss a against ht Again, using the diffraction 
m -

r 
loss ratio and including phase angle results and practical values for v: 
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E 
A(v) = -20 loglO IEol = - 20 log a(v) -------------------(10) 10 

~v) = Phase lag of diffracted field with respect to free 

space field. 

E, E respectively diffracted and free space fields o 
E 

aCvl = 1....2.1 E 

~(vl = 9Ov2 (degl ie, the phase difference in degrees attributable 

to the path length difference ~r. 

9. Ref {156} gives typical values for v~O, v~O and A(v) versus v: 

A(v) = 12.953 + 20 log10 v for v ~ 2.4 -----------------(11) 

A(Yl = 6.02 + 9.11v - 1.27vZ for 0 ~ v ~ 2.4 --------------(12) 

A(vl = 6.02 +9.0v + 1.65v2 for - 0.8 ~ v·~ 0 ------------(13) 

and Larson {157} gives: 

A(v) = 6.0 + 11.28v+ 4.28v2 for -1.4 , v ,0 ---~---------(14} 

10. Fig 3 shows the variation of A(v) and phase shift with v, and Table 1 

giYes a selection of practical values for typical low level targets. In practice 

it is assumed that target altitudes vary between 30 m and 60 m and that the 

radar aerial will be no higher than 30 m AGL. 
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Obstacle dl d2 
(Ht (m) (Km) (Km) v 

50 15 15 4.7 
40 15 15 3.5 

30 15 15 2.6 

20 15 15 1.7 

50 25 5 8.2 

40 25 5 6.5 

30 25 5 4.9 

20 25 5 3.2 

500 10 20 50.0 

500 25 5 141.0 

250 15 15 14.1 

Table 1 Example Values -v- for given Obstacle 
Heights and Ranges 

INTERPRETATION 

11. Where knife edge approximations are used, based on the relationship 

at Annex C, and the simplified criteria ~s used at paras 5 to 10; predictions 

have been found to be several dB above the measured values {158}, {159} 

and {160} •. However, when account is taken of the practical situation, ie 

rounded hillcrests, as is so often the case instead of idealised knife edges, 

{16!}, {l62}, {163}, and a rough conducting surface is present; then {l64} 

found general agreement with the conventional Fresnel-Kirchoff approach of 

ignoring the obstacle thickness. However {165} states that an additional 

or "excess loss" is largely dependent upon the crest curvature, the angle 

of diffraction and wavelength, but almost independent of distance for a given 

angle of diffraction. The Fresnel integral is sometimes produced as a set 

of curves or tables· 
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DIFFRACTION OVER ROUNDED HILLCR~STS 

12. Up to 10,000 MHz it is considered at {166} that any rounded obstacle 

can be approximated by a knife edge, providing its radius of curvature R c, 

satisfies:-

R < 
c -------------------~------------(15) 

((}.:.., -.(s) 

. The geometry used for rounded hillcrests is shown at Figure 5, and {16n ... 1so 

suggested that the radius of curvature may be estimated by: 

Radius (m) -------------------------(16) 

Where DS = distance between transmitter and target horizons 

(ieDS = d - ~tx - dLtgt ) 

d t = distance between transmitter horizon and horizon ray s x 

intersection points. 

dstgt = distance between target horizon and horizon ray intersection 

points. 

A simplified solution {168} for rounded hillcrests assumes each obstacle 

to be represented as a cylinder of radius equal to the radius of curvature 

at the obstacle top. The following parameters are used and marked where 

appropriate on Fig 5. 
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HI Obstacle height 

RI = ~Adld2/(dl + d2~ ~ = First Fresnel zone radius 

( dl , d2 as at Fig 2.) 

tt = Ao/3 rllh/~ where r l is the radius of curvature at the 

top of the obstacle, tt is a cUrvature factor. 

The main obstacle, 
HI 

assuming several lie on the path, is the one with the 
H 

Figure 6 shows the relationship between ~ and attenuation largest R: value. 
1 

for various curvature factors. 

EFFECTS OF SLOPE INCLINATION AND ROUGHNESS 

RI 

13. Practical implications of diffraction are considered later in the 

chapter, but slope inclination and roughness should be mentioned since 

waves incident upon diffraction ridges ma~ be expected to suffer depolarisation 

due to these factors. Experiments by Carlson {169} revealed no appreciable 

complications (in diffraction effects) by terrain scattering, but his 

conclusion may only have been applicable to conditions pertaining locally 

at the time. Similarly it is difficult to quanti:fy .the effects of foreground 

scattering and also of interference diffraction signals at longer ranges. 

EFFECTS OF FREgUENCY ON DIFFRACTION 

14. Delaney {170}, has shown that lower radar frequencies are better than 

higher frequencies in terrain where diffraction is dominant. Other results 

show that the coverage of lower frequency radars in reflection-dominated 

terrain can be quite adequate if sufficient power is transmitted. 
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RADAR POWER 

15. In terms of radar power, the power at the target via the diffraction 

path will be: 

--------------------------(17) 

Troposcatter power is not considered here when using radars with narrow beams 

in the vertical, it could however be a contributory factor under other 

circumstances. Signals returned to the tracking radar are assumed to travel 

the same path in reverse and suffer therefore the same diffraction loss. 

CHAPTER SUMMARY 

16. By careful interpretation of the few available results it is found that, 

adequate diffraction loss calculations can be made - subject to the existence 

of the necessary site-specific target, radar and terrain data. However, it 

is possible that the existence of diffracting paths over mobile or small fixed 

obstacles, close to the radar site, cannot be accurately assessed unless 

diffraction measurements are made in situ. Precise obstacle positions will 

be unknown and will not, of course, be recorded in the terrain data base 

overlay. Indeed many such objects would not be included - such as isolated 

buildings, unless the data base was very finely spaced. 

17. It is shown to be possible to predict the likelihood that diffraction­

path tracking may take place; by incrementally testing the data base azimuth 

profile using equations (15 and 16) together with the necessary radar receiver 

sensitivity values, radar transmission and target parameters. A segment of 

the computer program at 'Chapter 11 was developed to produce a plan output plot 

of the first assessed diffraction ridge - behind which a target would not~(w~~ 

be invulnerable to radar tracking. (See also page F-IO). 
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CHAPTER 8 

PROPAGATION - REFRACTION AND REFLECTION 

1. A number of standard texts and research papers are available on 

refraction and reflection, covering these phenomena in detail. However, 

some aspects are especially pertinent to the low level tracking case and 

so refraction and reflection are studied as a preliminary to the complete 

propagation model, which will finally include multipath and diffraction. 

REFRACTION 

2. Radar waves are bent primarily by water content in the atmosphere, 

which is normally denser at lower altitude. Two practical effects are 

considered here: 

a. Radar range may be considerably increased by refraction under 

certain conditions; where the system may be able to detect targets 

around the curvature of the earth. 

b. Tracking radars in particular, may obtain a false target 

elevation angle by measuring the tracker .dish boresight angle 

which is in fact not the true target sightline (Fig 1). 

3. Radar wave·refractivity due to the variation in the velocity of wave 

prop~ation is given by{172} as: 

5 
3.73 x 10 e 

T2 
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Where N = refractivity 

p = barometric pressure (mb) 

e = partial pressure of water (mb) 

n = atmospheric refractive index at zero altitude 

T = Temperature (oK) 

The effective earth's radius is given by 

a = ao ~ - 0.04665 exp (0.005577N;]-~ km 

Where N = refractivity at surface of earth. 
s 

If aa, the actual earths radius is taken as 6370 km; 

---------(2) 

a 4 for N = 301, -- = - = k, a good approximation to 
s ao 3 

conditions in. Europe. 

4. Low Level Targets. Refraction effects can be significant at low grazing 

angles. For targets at 300 metres(or les~)the 4/3 earth correction is an 

adequate approximation. Since radar ranges are limited for this study, 

extended refraction (duc~ing) is not relevant. A representative refractivity 

model from Bear;.. and Thayers h 73} is 

N = Ns exp [ Ce (htgt - htx~ ---------------------------- (3) 

Where Ce = In(Ns/Nl ) NI = refractivity at 1 km altitude 

htgt = altitude of target (m) 

htx = altitude of radar aerial (m) 

At the earth's surface a typical value for n is 1.0003, with a decrease rate 
-8 

of approximately 4 x 10 per metre increase in .altitude. Computed values for 

low level targets and various radar mast heights are at Table 1. 
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Altitude (m) Refractive 
Index 

Target Radar 
(n) 

, 

30 0 1.0003 

60 0 1.0006 

30 It 1.0002 

60 30 1.0003 

30 30 1.0000 

60 It 1.0006 

.. Table 1 Variation of Refractive Index with Radar and Target Altitude 

5. Refraction Errors. From {174} and interpolation from CRPL National 

Bureau of Standards data for appropriate target altitudes and given radar 

grazing angles, the vertical error values were obtained at Table 2. 

GRAZING 
Angular Error (m rad) for Target 

Angle 
Alti tude (m) 

(deg) Om 30m 60m 150m 300m 

0 1.6 1.7 1.72 1.75 1.8 

1 0.3 0.32 0.33 0.37 0.42 

3 0.13 0.13 0.135 0.15 0.17 

5 - - - - 0.1 

Table 2 Elevation Angular Error Due to Refraction 

, ' 

Taking, for example, the angular error and converting to altitude error 
o ' 

at 17 km range a 300 m target at 1 grazing would be measured with a 
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vertical error of 7.2 metres; Or 0.5 metres for a similar target flying at 

30 m. In each case the angular error is the angle between a straight line 

to the target and the apparent target elevation. Under refraction 

conditions the radar always measures a greater angle Cie greater altitude) 

of sightline than is actually the case. 

6. Range Errors. Atmospheric refraction may also cause small errors in 

range, as shown at Table 3. To obtain the 2-way transmission path range 

errors the figures should be doubled. 

Grazing Range Error Angle (m) (Deg) 

5 1.5 

3 3 

1 6 

0 22 

Table 3 Range Errors for Variation in Grazing Angle 

7. The errors in both range and elevation angle, though small, are 

nevertheless present and may become significant where a tracking radar is 

being used in a commanded guided weapon system; since target position is 

degraded and eventual commanded miss distance may exceed the radius of effect 

of the weapon's warhead. 

PROp,t';GATION OVER TERRAIN PROFILES 

8. Spot terrain heights must be adjusted to allow for the effect of the 

average curvature of the earth's surface, as well as the refraction of the 

radar waves. Modified terrain height (y.) at any distance (x.) from the 
~ ~ 
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radar location, taken alonp; a great circle patb is the height above a 

plane which is horizontal at the transmitter: 

y, = h . 
~ s~ 

x. 2 
~ 

- 2a 
-------------------------------------(4) 

Where h . is the unmodified terrain spot height above sea level (m) 
s~ 

a = effective earths radius (km) 

A proof of the valid:i.ty of this approach is at {l75} , and the geometry 

is shown at Figure 2 for a clear path. 

9. Obstructed Sightline. When a path is obstructed the horizon ray 

grazing angles from the radar to the obstruction and from the target back 

to the obstruction are respectively given by: 

and 

e 
tgt = 

RI. tx 
- "'2a ------------------------------(5) 

hI. t6t - htgt 

Rt. tx 

RI. tgt 
2a ------------------------- (6) 

Obstructed target sightline geometry is shown at Figs 3 and 4. Note that 

etx and etgt could be positve or negative - although a negative situation 

is unlikely to arise here since a levelled tracking radar does not usually 

depress below its nominal minimum tracking angle. Subsequent discussion 

of geometry will use the same notation as at (4) and (5) where: 

hl.tx and hl. tgt = the horizon range of terrain obstacles from 

transmitter and target respectively. h
tx 

and h
tgt 

= radar 

transmitter and target heights respectively. 
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10. The geometry for obstructed sight lines is only of significance 

for tracking radars if diffraction occurs. In this case a single 

'knife-edge' formed by terrain must be located beneath point X on 

fig 3 or 4. Multiple knife-edge diffraction is also considered at 

Chapter 7. 

11. Unobstructed Sightlines. Figure 5 shows the situation where radars 

could be sited on a mast (at height htx) with a target flying at low level 

or nominally at surface level, (Point Q); or the target clutter on the surface 

(at point Q). It is assumed that targets will always be outside the 

Fresnel Zone since for A = 0.03 m and for an aerial dimension D = 3 m, 

~ 600 m; for D= 4 m the Zone boundary would be about 1 km. 

REFLECTION 

12. Radar wave reflection theory is well covered in {176} and {177}. 

It is of prime importance under conditions of approximately plane (flat) 

reflecting surfaces such as the sea and under more isolated cases overland 

at low grazing angles. The reflection coeffic·ients for vertical and horizontal 

polarisation respectively are: 

.. 
H .. = R. ej~Vn .::....:S::..:i::.:.nr......;.:....,::~;...::.:~ 
-y -Y - n:lSinljl + n - CosljI 

I.I~ ii: \ u. d.Lf':"'ul ,.,c ~At..t: a ,-CL I J • 

:z .. f~"'-e"t""r 
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Sinljl - Z 
= sinili + Z (7) 

;; • "'...,pl .... ~ .. t.ut,.~, ~. of w..r..u­

If' ,.;.~...s.....u. 1'.AJ'.e.w~oJ I<osw-(..u 
n..o~"'''' 

Sinl/J - z 
= Sinl/J + Z --------- (8) 



These equations may be approximated for low grazing angles for overland 

paths providing ~ < 0.1 rads (5.7
0

) and f » 30 MHz, and are included in 

the computer programs described at Annex D. It is well established 

that horizontally polarised energy produces a greater reflection coefficient 

than vertically polarised energy. (See also Annex B page B-3). 

13. A plane reflecting surface causes the continuous radar elevation 

coverage to break up into a lobed structure; where the approximate angle of 

the lowest lobe is approximately ~ radians. 
tx 

Where h
tx 

= radar mast height (above local terrain level) for a 

30 m mast at A = 0.03 m the angle is 0.00025 rads and if the 

target elevation is less than a beamwidth direct ground reflected 

signals are received. 

14. Multipath signal reception and reflected ray paths are synonomous, 

and curve fitting for terrain reflectivity profiles for smooth and rough 

earth situations using ray theory are considered at Chapter 9. In general, 

ray theory calculations are valid out to the radar horizon where radar 

aerial heights are sufficient for the surface wave to be neglected and with 

the restriction on grazing angle '!' given by: 

Tan~ > 0.3 r: ~ 
1/3 

21Ta f 

(Where f is in MHz and a = effective earths radius in km). 

For A = 0.03 m and f = 10 GHz Tan ~ must exceed 0.0009 giving 

~ > 0.050
• 

15. Smith U78} contrasts ray and mode prop~gation theory and observes that 

prop~gation theory is incomplete in some areas. A detailed discussion of 

the theory is outside the scope of this report, however figure 6 shows 
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measurements which compare the two approaches. The full line uses ray theory 

and 

VI > 

the dotted line mode theory. Millington {179} uses the ~riterion 
A 1/3 

(211a) to give the transition point (marked in Fig 6). Beyond 

this point as the horizon is approached the spreading of the rays due to 

earths curvature causes the ray theory to become unrealistic. For a 

radar mast height of 10 m at 3 cm wavelength it. is of interest that the 

transition occurs at about l~km, hence ray theory is used here with some 

confidence for targets out to 15 km range. 

CHAPTER SUMMARY 

16. Comments upon suitable factors to be incorporated in the radar 

performance prediction algorithm are: 

a. Refraction. Out to 30 km range curvature (refraction) 

effects are small. However, it will be shown that small. vertical 

errors may become significant under combined refraction and 

diffraction conditions. The 4/3 value for k is reasonable, but more 

precise values can be used for n from Table 1 and errors from 

. Tables 2 and 3. 

b. Refraction and Reflection Geometry. The approximations stated are 

used (see also Annex B), but these aspects are closely allied to the 

multipath and diffraction work covered :l.nGhapters 7 and. 9. 

For radar trackers associated with low level SAM systems'Ra.y theory'is 

. used. 
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INTRODUCTION 

_ ... _ ... -_. ------------------_. -

CHAPTER 9 

MULTIPATH 

1. Target tracking at very low grazing angles may be disturbed by 

the presence or unwanted surrace-rerlected waves; giving rise to two 

main errects which have been recognized since the early days or radar 

{180}: 

a. Signals arriving from spurious angles cause the radar 

tracker boresight axis to be driven ofr the real target 

sightline. 

b. The direct signal is contaminated by additional 

surrace - rerlected signals. 

2. Surface rerlections are usually classified as either 'specular' or 

'.dUruse', but here the objective is to consider practical means of 

incorporating multipath assessments into the computer model; rather than 

the detailed scattering processes. A brief survey of the effects of 

multipath on different tracker types is included. Minimisation or 

multipath at the design stage could be achieved by using narrower aerial 

beamwidths. This is not usually practicable with mobile systems since 

there is a limit to dish size, however there is a tendency for trackers 

to use higher RF's, giving some advantage in this respect. A number of 

techniques have been proposed {18l}, but it is seen that the problem 

is mainly one of understanding terrain reflections rather than the 

hardware options available {182}. Indeed some techniques ror reducing 

multipath may introduce other problems. One example of this {183} is to 
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insert a screen ('barrier' or 'fence') to prevent reception of signals 

from surface reflections. Although this can help at a pre-surveyed 

and prepared site, the screen itself introduces a diffracting edge 

with consequent interference with tracking results. The alternative is 

to accept multipath and use other techniques to minimise the effects. 

~SrumCHADffi 

3. Specifically, the following aspects have been investigated: 

a, Adjustment of SiN for variable (indirect) path lengths 

when transmit and receive signals are subject to multi path. 

b. To achieve (a), identify the conditions under which 

multipath is likely to occur overland. 

c. Quantify uncertainties in elevation angle measurement 

due to multipath. 

d. Estimate likelihood of multipath combining with 

diffraction edges. 

e. Assess the probability of degradation of target tracking 

due to multipath as the target traverses a specific area of 

terrain. 

Items 3d and 3e above are also dependent upon some factors considered at 

Chapters 4 and 8. 
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4. Many papers are found to address multipath phenomena from the 

inevitable occurence at sea, but few results or conclusions are 

available for overland operation. Several overland research reports, 

eg, {184} {185} unfortunately quote results not applicable to this 

study - since they are concerned only with relatively close-range 

targets over smooth approaches relevant to airport runway approach 

radars. Delaney {186} has reported on the wider overland applications 

and it is clear that further data is required before really satisfactory 

assessment can be made. Delaney's model did not include target signal 

versus multipath clutter, but only the reflected signal for vertical 

angular errors. 

5. The need for a multipath model which can be applied over general 

terrain with varying degrees of roughness has led to the development 

of a theory {187} which describes the effects of scattering from the 

terrain between the source and the receiver. Determination of the 

point at which diffuse reflections predominate over specular is dependent 

upon surface roughness 4t - the rougher the surface, the lower the elevation 

aqgle at which diffuse scattering dominate!!" Separation of the resulting 

elevation errors has been the objective of {188}· {189} and others. A 

good survey of options can be found at {190} {191} on bistatic solutions, 

and {192} {193} {194} {195} deal with other multipath compensation methods 

such as frequency agility, phased array processing and sidelobe reduction 

{196} • However, Barton {197} concludes that test data is extremely 

sparse in considering the arrival of diffuse multipath from angles other 

than the specular direction. 

MULTIPATH GEOMETRY 

7. Figure I shows the basic multipath geometry where illumination arriving 
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---------------

at the target via Rl R2 will be: 

------------------------------(1) 

Where G is the aerial voltage gain in the direction of the Specular point, 

p is the surface reflection coefficient. 
£l:"k L trO\."-i""dt~'(' c4"-ct ~~d~t:- f,·.dcl. (.;"I:e,.:..H{I(>.S 

The total illuminating field is the vector sum of the direct and indirect 

rays. Path lengths, direct and indirect are: 

ReDirect) ----------------(2) 

R(Indirect) = --------------(3) 

hl and h2 are small in practice compared to R, hence taking the first 

2 terms of the binomial expansion of each: 

h2 - hI 
Ru ~ R + ( 2R )2 ------------------~--------(4) 

h2 + hI 
RI " R + ( 2R .) 2 --------------------------- ( 5 ) 

8. Path Difference. RI - Ru = ~R 

--------------------------------------(6) 

Phase difference -----------(7) 
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To introduce a practical example here; given an aerial height o~ 

7.5 metres at 11 = 0.03 m and e1evatioI1 '''''''~Ie. or 0.5°, the mu1tipath 

path-length di~~erence will be o~ the order 511 (15 cm). 

9. Modi~ied Signal. Interference ~= multiple lobes caused by the low 

grazing angle results in Inodit'ied signal values. For small angles o~ '" the 
pattern propagation factor (F) is: 

F = 1 + pe-J(2~/A) aR + 0 ----------------------(8) 

= Ed [1 + pe-J (2~/A) aR +~] -----------------(10) 

p is the ret'lection coe~~icient 
f'd is diNlc:![:1 J,,,,c:kscQ:!t.e(~ 4!l\erj~ 

For small grazing angles (lobe raised by ~ = A ): 
4htx 

F(e) = --------------------------(11) 

Where htgt , htx are target and transmitter heights. Rtgt .. Target Range 

Since the maximum range of a radar ~or detecting low ~lying 

targets is: 

J 4~ h4 h4 P G 2a 
tgt tx ~~ ---------------(12) 

= 8 :\2S . 
m:m 
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then R max 

Where 

LOW LEVEL TRACKING 

-- -----------

(4,,)3 Smn ------------(13) 

is the maximum free space range 

10. Fig 2 shows the multipath effect as a target reduces in altitude. 

At A the target is well clear of the surface without .multipath, at B 

reflected energy enters the sidelobes causing oscillations of the aerial 

about a mean. Once the reflected energy enters the main beam at C 

considerable angular uncertainty can arise. Figure 3 indicates the 

typical situation where the tracking boresight moves from real to image 

target angular displacement. In a practical situation where the target 

is assumed to be moving rapidly through the fluctuations the tracking 

stability will much depend upon the inertia of the tracking control 

loop. At other times the system will jump to the image and lose track. 

Elevation. tracking errors are considered below at para 12. 

!B!9KING MODES 

11. As several tracking designs may be encountered in radar system assessment 

it is necessary here to take account of their individual vulnerability 

to multipath, briefly: 

a. Monopulse. Standard monopulse uses Sum and Difference 

Channels to drive the aerial servo to zero error in the bore-

sight. Under multipath conditions reflection signals also 

enter the Sum and Difference Channels. System vulnerable to 

multipath. 
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b. 'On-Boresight' Conical Scan. Derivation of the error 

voltage takes a significant time in contrast to monopulse. 

There remains the problem of boresight target motion during 

a typical scan period (eg ~O sec). Vulnerable system to 

multipath. 

c. Off BoresiSht. The boresight is held at a fixed angle 

some 0.7 X beamwidth above the horizon. The error voltage 

is taken as giving the target elevation below this angle. Some 

angular discrimination is achieved since the image signal 

is attenuated by being apprecially further off-boresight than 

the target. Since the aerial is fixed, it cannot move onto 

the image, the system having switched from closed-loop to open­

loop operation. The same technique can be used in both con-scan 

and monopulse systems. System resists elevation errors, but 

still susceptible to multipath clutter/noise. 

d. 1?2.uble-Null. Closed loop tracking is continued into 

the multipath region by generating an aerial pattern using 

monopulse, such that the difference function has 2 nulls 

equally dispersed about the horizon. Resistant to angular 

errors. 

e. Quadrature Components. Three independent beams are 

used to make in-phase and quadrature measurements {l98}. 

Resistant to angular errors. 
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f. Complex Indicated Angle Monopulse. Complex sum and difference 

signal can be processed to yield a complex indicated angle, and 

by combining this with more than one RF {199} the real angle can be 

uniquely determined. A marginal improvement is claimed overland, 

with a factor of 2 or better at sea. Some resistance to elevation 

angular errors. 

g. Frequency and Boresight Diversity. One complex indicated 

angle technique uses frequency and boresight diversity as a means 

of resolving ambiguities. The radar must have frequency agility 

or beam steering respectively. The principle relies on storing 

representative calibration spirals using 2 or more boresight 

angles. Calibrations can be made for specific sites or a 

generalised model used. Howard {200} {20l} {202} surveys these 

techniques and claims good. results under multipath conditions 

on 90% measurements with elevation error ~ (rads) 0 ~ t ~ 0.5. 

ELEVATION TRACKING ERRORS 

12. Para 10 introduced the oscillatory nature of the signals received 

through multi path. It is possible to find the optimum target height 

for a given range when using a specific tracker control loop bandwidth.~ 

t4 ........ "jf;.w \.~.u;,. rJ.l~c1::: 0,......01. ~f-l~d.u;l !...t~-Is IS ,,6W.1:.-c:J>ll1; 

------------------------ (14) 

Assuminghtx varies 5, 15 and 30 m, Ft = 1 Hz or 2 Hz, and V is the 

target velocity - nominally 300 m sec -1 (ie Mach 1 at mean sea level) 

the following target table is produced for a spread of target 

altitudes: 
9-193 



Target Altitude (m) 

30 50 70 100 

Tracker 2 Hz 

Radar Ht (m) 5 1.22 km 1.58 km 1.87 km 2.23 km 

15 2.12 2.73 3.24 . 3.87 

30 3.00 3.87 4.82 5.48 

Tracker 1 Hz 

Radar Ht (m) 30 4.24 5.47 6.48 7.74 

.. 

Table 1 Target Range at which Tracker Bandwidth is Critical 

13. If the error cyclic variations fall within the radar tracker 

bandwidth the practical result shown above will be that targets at ranges 

greater than those shown will be difficult to track in the presence of 

multi path , unless one of the compensatory systems such as off-boresight 

tracking is used. Equation (14) above is obtained from the derivative 

of the phase difference expression: 

rf,::::: (4 Tr/A) (htgt htxfR)+ rf,R. ------------------- (15) 

(Ji..I->L tit =~roH,....( ~?Ie.cft. ...... 0. .... 0<.. otkr f>~ "l.,d.(-tkt-c£s (:-. ~t-'-f{~ ro..ft..s . 

.1-, Ft = 1(1/2 IT) (d~ IdtH" 12 htgt btx V/>.. R21 ------------ (16) 

Example results are shown graphically at Figure 4. 

HMS ELEVATION ERROR 

14. Evans {203} conducted tests at A = 0.03 m overland (p " 0.4), using a 

10 beamwidth and shows = 10' elevation tracking error at 00 target 

elevation. A suitable equation is derived, stated to be accurate down to 
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elevation angles of 0.50 (for a two beam static split system in elevation) • 

At 10 elevation angle errors peaked at ~ 3'. Targets were however at 

high level and long range. A graph of elevation tracking error is given 

by Barton {204} p 330 which illustrates these typical values, but his 

figures were obtained at "c' Band. The approximate HMS error can be 

found {205} from: 

--------------- (17) 

where p is the coefficient of surface reflectivity G is 
s 

main lobe gain ( ) - as a power ratio taken at an angle 2E below the beam side lobe gain 

axis (E is target elevation angle, SE is elevation beamwidth). Annex E 

contains more detailed analysis of track errors for low level systems. 

CONDITIONS FOR MULTIPATH 

15. Propagation Path Length. With a ground-based tracking radar, where 

the aerial and terrain remain fixed,the target scattering properties are 

strongly aspect dependent (see Chap 6). If the range gate width is 

T secs, then all scatterers contributing to the overall signal return must 

be located such that their return arrives in time interval t such that: 

(2R _ 1) 
c 2 < t < (gJ! + T) and (2R - cT) <D< (2R + CT) ( 

c ~ c 2 c"2 ----- 18) 

·cT 
Hence 2R + .~ , is the maximum path length a signal can travel and still 

remain in the range gate (see fig 5). Distance = PSl + 81 82 + S2P (max path D), 

hence: 

9-195 



(19) 

This shows that some scatterers beyond the target will be in the range 

gate. At low elevations R ~ RG and the maximum range of a scatterer of 

interest is then Rmax = (R + ~) 

If hl «R then: max 

---------... ------ (20) 

16. The foregoing is expanded upon at {206}, where the minimum range at 

which an unwanted scatterer could interfere is calculated. Clearly if 

the range gate duration was zero, the problem would be eliminated, hence 

the need for a small gate width is established for low level tracking 

systems. 

17. Burk addresses the problem of power levels arriving at the aerial 

via the multipath. Assuming the target is scatterer 1 (81) and the 

surface scatterer 2 (8
2
), Then (using the notation at Fig, 5): 

--------------------- (21) 

Overall Power scattered towards the surface scatterer S2 (point sI. 

--------------------- (22) 
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-- -------------------- -----------------------

Power P2 arriving at 82 is: 

------------------------- (23) 

1-",. o<t.U; S, l:;. r,.. 
Overall power re-radiated as scatter: 

------------------------- (24) 

Power at radar receiver 

) Ae 
( 1:"4 ~1I:=:r"-J2""" ) 

(25) 

Where Ae is the effective receiver .aerial aperture towards the surface 

scatterer. If multiple scatterers exist the problem becomes complex. 

11ethods to obtain the incident and scattered total field are beyond 

the scope of this study but can be found at {2071. 

18. Path Calculations. The method used at {208} is used for path length 

determination, see fig 6 With the multipath angle very small R.r ... 
RI + R2 and hI + 2 RE ... O. shows that: 

from which RI' one of the three roots of ( 27) can be found, R2 is then 

found from. 

--------------------- (28) 
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The accuracy of R2 clecreaoen at long range usinp: equation (Z8), but it is 

satisfactory for the relatively short ranges in this study. An iterative 

process is used: 

(RE + hl)2 + (RE + h2)2 - RT2 

2 (RE + hl) (RE + h2) 
-------- (29) 

Although the s~ of e1 + e2 is known, their individual values are not. 

In the first iteration· let e
1 

= ; (e
1 

+ 6
2

) and calculate R
l

: 

= RE2 + (RE + h1)2 - R12 

2 RE (RE + hl ) 

Using Rl , 6
1 

and 71 are found (Cosine Law). 

Cos (!!. - '1') 
2 1 

+ R 2 _ (RE + h )2 
1 1 

Sin .pl = (RE + hl )2 - (REF) - (R12) 
2 RE (R

l
) 

Hence R2 can be found: 
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19. Testing ~l against ~2' if ~l < ~2 the interval is re-defined for 

e
l 

(as e
l

+e2). It ~l <~2' re-define the interval 0 degrees to el degrees. 

~l and ~2 are then recalculated with el assumed to be half the new 

interval. An extremely accurate result is obtained in 31 iterations; 

in excess of the accuracy required here to determine the location of 

the surface specular point. The method reduces the error between the 

initially assumed 61 and the actual el by .1:.; 
2N 

where N is the number of 

i terat ions; 

MONOPULSE RADAR TRACKING ERRORS 

20. One agency has produced a desk-top computer program {209} which 

splits the multipath signal components into diffuse and specular; and 

assumes small angles over a "flat earth". For completeness the relevant 

equations to achieve the error calculation are shown at Annex E. 

CHAPTER SUMMARY 

21. To meet the aims at para 3 the following items are incorporated 

in the model for low level tracking: 

a. Multipath Conditions. After determination of the position 

of the·probable specular point using equations (27) to (34), 

the algorithm (see programs at Annex D) examines the slope 

and surface material to assess whether multipath is likely. 
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b. Elevation Tracking Errors. Equation (12) is used as a 

check to ascertain the target is within radar range; while 

equation (14) is used to find the optimum target range beyond 

which elevation tracking accuracy will probably become 

degraded. 

c. Adjustment of Signal Levels. If multipath is assessed 

as likely, equation (1) is used to adjust Ei , incorporating 

the assessed p from the terrain data base (see Annex B). 

d. Multipath Coincident with Diffraction. Using the terrain 

data base the algorithm can produce a radial PPI-type plot 

for small azimuthal increments to indicate where diffraction 

edges could exist. Multiple diffraction edge assessment is 

complex and not thought to be particularly reliable at the 

higher ID" s; especially since it is unlikely that more than 

one really significant diffraction edge will occur within the 

range brackets of interest here. 

Further, double diffraction is only probable under limited conditions 

when plateaus between adjacent diffraction edges are sensibly smooth 

and horizontal. However, by using the same method as at (a) above, 

the fitting of a second specular point could be achieved by treating 

the first diffraction edge as the position of the radar transmitting 

source. The first diffracting edge would of course be considered in the 

first instance and would probably be the only edge relevant to short-range 

tracking systems. 
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CHAPTER 10 

TERRAIN SLOPE - CLUTTER 
EFFECTS WITH AND WITHOUT TREE COVER 

1. Sloping terrain implies a chnnge in ,radar grazing angle since the 

surface .resolution cell "tilt" as viewed by the radar, will vary. 

Land surface tilted away from the radar will be shadowed. Changes in 

slope gradient (1) and 'aspect angle' (2) may vary from cell to cell 

in areas of the roughest terrain, although spatially 'there is fairlY 

high probability that adjacent cells may have the same slope and aspect 

in gently undulating conditions. If the perio~ of undulation is less 

than the resolution cell length, the actual grazing angle could vary 

within the cell. Since clutter is strongly dependent upon f. cro can 

be expected to show significant variation with slope, Of the many radar 

research papers studied none considers slope in any detail; {210} 

and {211} mention that the 'slope effect' exists. The general 

geometry is shown at Figure 1. It is seen that the resolution cell 

'footprint' on the surface, or 'facet', can be tilted at almost any angle 

depending on the local terrain aspect when viewed along the radar 

boresight. If gradient is zero, aspect is indeterminate. For """'rp~ ~ 

geomorphological purposes Evans {2l2} proposes methods of slope 

representation and statistical terrain comparison; this is explained 

in some detail at Annex Fcx-ol C'O .... lIl..tul t<. ~ rMo..r skl't.. ~ "-'ruk 
~......,);~ fo~ ~ ~t-~ ~~ 6:1 ~ tW;tAor. 

(1) Gradient is defined as the rate of Change of terrain altitude with 
horizontal displacement (range 0-90°) ie. gradient is tangent to 
profile. 

(2) Aspect angle is the compass azimuth angle (either with respect to 
the radar beam, or measured from North datum), along which the 
maximum gradient falls (range 0-3600

) 
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GEOMETRY 

2. For investigative purposes terrain with regular undulations could be 

approximated to a sinusoidal profile. Amplitude and period would then 

dictate the probability density function for any grazing angle and surface ReS 

could be computed for given values of 8E and e AZ and or, as a function of 

amplitude and period. Gentle rolling hills for example may give an 

amplitude to period ratio of 0.05 (figure 2a), whereas very hilly terrain 

might produce a ratio of 0.1. Such a surface profile would have to be 

considered together with the existence of a sight1ine to the aircraft 

target. At. the lowest grazing angles shadowing is of course at a maximum. 

In every case a sightline is assumed to the clutter patch with no 

intervening obstaCles,apart from shadowing. 

3. From Figure 3, the revised value of 'Pl (ta.ken to be 'Pl), towards .a 

clutter patch is given by: 

~. 

'PI = Sin -1 
h - h t.. tx._ 

R ~.J' ---
Where h t = height (average) of clutter patch (m) 

h = height of radar aerial (m) tx 

R = range to clutter area (m) 

ro = Earths radius (nominal 6500 km, ~587 n.ml.) 

Figure 2b shows the pdf's for the probability that the actual 

grazing angle ~ falls between 'P and 'P + d'P for a nominal value 'P = 50 

for amplitude/period ratios of 0.05 and 0.1(respective1Y~~j i.-~ lerro.i",,) 
Cl-c( J.l.W";"j f' ~,;,,~~, 14 AA,,", M rM.uL(6-t' ~ "t~a..c:... ~Lo.&~ 
iJV.'- ~I>J.-.,.Q.. r......w pk1~-)n..u.J:. hl..J: b.4. uA:. 1I/aA..t.1 r ,0 ~ ~. ,;Wt-";"a- ll.. 

IY..I>b~ ~. Got.a-a (>"-....A: ~ (h" b~ 1 ~':"t A e.k~ 'P ...;, vtrlj e,,,,. 
C u.t-- J.o A ",Ne-lL f: M'Pr..rbl'>< I rue.. 11 . 

1<:1-.)0(, 



5. It has been observed {2l3} that as large areas of shadowing and 

hence facing slopes are illuminated, a pronounced 'knee' appears 

in the curves, for example where about 20% of the area was shadowed and 

50% of the area sloped. Therefore the expected probability distribution 

is most likely to be contaminated in some way. 

6. Providing radar reflectivity measurements are available it was 

realised that using terrain spot heights and a culture database, it 

should be possible to isolate-and study those cells containing like 

foliage and with a particular slope - perhaps using V and V + dV as a 

working range of aspect angles - to make correlation studies. Various 

errors such as aerial gain and propagation loss error should be taken 

into account, since these are site - specific, together with other 

relevant radar parameters present at the time. 

7. It will be expected that the more heterogeneous the data becomes, 

then more areas are shadowed. However, if very large resolution cells 

are observed (large value of T), the probability distribution 

will take on a smooth transition from a small rate of change at 

the 50% percentile to a large rate of change at low percentiles. Detailed 

results of the author's correlation studies are at Appendix 1 to Annex F for 

radar measurements taken by British Aerospace over varying 'terrain., 

PRACTICAL EFFECTS OF 'SLOPE' 

8. ~. Equation 1 (above), does not however contain all the geometrical 

information necessary to define the slope and the associated radar footprint. 

If a very narrow (tracking) beam radar is considered several other effects 

are observed. Some examples are shown at Annex F, where the illuminated 

10-207 



plane dimensions CRn be less than the resolution cell dimensions with very 

steeply sloping terrain. Within the bounds of the. aerial vertical beamwidth 

the surface footprint may exceed the resolution cell length T if the plane 

is located at a maximum defined by the diagonally opposite edges of the 

resolution volume. As the terrain slope increases beyond a (CHIT) the 

surface footprint is reduced, and if it is assumed that the slope is centred 

on the point 0, at the plane centre; then the illuminated plane is reduced 

in length and hence area at both ends by an amount dependent upon the 

slope. This extreme condition would occur in practice only in very rough 

terrain. 

9. If small resolution cells are used (and ignoring the occasions when 

a specular reflector happens to be centred in the cell), it is assumed 

that the clutter from the cell centre gives a reflection typical of the 

whole cell. Surfaces tilted to the left or right similarly cause 

variations in radar footprint size. 

10. Curvature. It is clear that:many researchers have found it is in­

convenient - or perhaps too tedious - to consider these effects in detail. 

Apart from the more obvious variations in radar footprint area caused by 

gradient, and calculated from the terrain altitude matrix, (shown at 

Annex F) the second derivative is that of curvature. In this study 

curvature is of interest; both convexity and concavity." Surface concavity 

is likely to produce radar shadowing, while profile convexity may be used 

to predict the curvature values necessary to test for the likelihood of 

diffraction in acc.ordance with the criteria selected at Chapter 7 and also 

detailed in Annex F; 
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VARIATION OF VEGETATION (TREE COVER) WITH TERRAIN ALTITUDE 

11. In an attempt to obtain correct terrain screening data (see Chap 2), 

it has been the normal practice in the worldwide clutter mOdels studied, 

to add a set value for tree height to the terrain (contour) spot heights. 

Investigations by the author have shown that this approach is not strictly 

correct. For a given type of treeeover, measurements {214} {2l5} suggest 

that trees at the bottom of sloped terrain grow to'a greater height than 

trees at the top of the slope. Nature's reasons for this phenomena are 

of no concern here, however the practice of adding a constant height for 

tree cover must result in slight inaccuracies in the calculated grazing 

angle of radar energy striking the tree canopy. 

12. Tree growth rates vary with tree types as well as with altitude, 

, • • d .. (? h -1) further, all tree mensuratloon loG ma e on a volume YJ.eld baslos m~. a .' 

A brief examination of a forest of pine/spruce types - prevalent in larger 

quantities than deciduous in some parts of Europe - has shown a probable 

variation of the order 25% over a slope altitude change of 200 m. 

Interpolation of measurements provided by {216}, (assuming tree height 

(h) is approximately proportional to volume yield), leads to the conclusion 

that a nominal 20 m tree cover over the terrain can be expected to reduce 

to 19 m if the terrain rises 30 m; ie, an approximate rate of reduction of 

tree cover of -lm per 30 m elevation increase. The relationship between 

yield and elevation is linear. 

13. Translating this into practical significance means that grazing angle 

can only be approximate since the rate of change of tree height with 

terrain altitude also varies geographically. For example, the effect is 

more marked in the North. For precise clutter investigations under 

laboratory instrumentation conditions against a sloping forest area the 

effect should be noted as an extra input variable. 
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GRAZING ANGLES 

14. Nathanson {217} uses a simplification for depression angle ~d 

( see figure 3a» w M>t. re.." ~ ro : 

Cl = sin -1 
d 

then if htx 
r e 

< < 1 

approximation gives: 

-1 
ad = Sin [h~X 

h and tx 
2rR e 

< < 

--------------- (2) 

( htx +.1Lj 
r 2r e 

an 

---------------- (3) 

and similarly for grazing angle (assuming flat terrain) as at 

figure 3b 

-1 
'I' = Sin 

reducing to: 

-1 
'I' = Sin 

E
htx (1 + htX ) -

R 2r 
e 

-1L J' 2r 
e 

----------------- (4) 

----------------- (5) 

A plot of W v Range for typical radar mast heights is at Figure 4. 
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15 •. Using the above equations and applying the error and hence slope 

variation in estimating true gradients over tree-tops, we get the 

situation where the appropriate gradient must be added to the result at 

Eqn (4) to get the true grazing angle; since Nathansons model is for the 

illumination to strike the surface at nominal sea level. It is usually 

the case that the terrain facet is not only sloped but raised above see 

level (or above radar transmitter level for land-based radars). The 

geometry is shown at figure 5 and is assumed to have forest cover of 

varying depth as explained at paras 11-13 above. 

16. Actual grazing angle, at which radar boresight energy strikes the 

sloped tree tops will be (1fJl + a t ):-

a. Sloged Terrain near Transmitter Level 

[h;X 
(
1 + htx) - ..L] 

2r 2r e e 

---------- (6) 

b. Sloped Terrain ('do~ Transmitter Level. 1fJl is ~l't!o.rQI" ; the calculation 

is repeated but assuming the radar height to be at a greater height 

than the terrain thus: 

When htlC = ht' 1fJl + '''t 

)- ..1L] 
2r 

e 

+ a --- (7) 
t 

17. If terrain height exceeds radar transmitter height (as will often be the 

case with ground based radars), the same equation can be used for vl by 

't h . h ht • E () 1n erc anglng tx and 1n qn 7 and subtracting from gradient: 
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(1' + - R 
2r 

e· 
J- (8) 

18. with increasing height o~ tree cover and the radar height ~ixed, the 

grazing angle intersecting the terrain becomes shallower and as trees and terrain 

reduce in height grazing angle ~ approaches the value at Eqn (4) •. 

19. In practice the di~~erence in gradient, A~l, is:-

Al [- htll: . h - h 

~;J = "t -" - 2sin -1 t. (1 + t tx ) ------- (9) t2 -
1 R 2r e 

For example, if the terrain rises 30 m (in a 1 in 4 gradient) then X 

(horizontal distance) = 120 m, Assuming tree cover of 20m (19 m at top 

of slope),thenA~ = 0.450
• Similarly ~or a terrain gradient of 1 in 10 

the value of A~ 0;:::: 
o 0.2. It is seen therefore that the radar energy 

striking angle does vary significantly, and that the correct allowance 

should be made for tree cover height variations. This may explain why some 

results, such as those plotted at Chapter 4 Figure 6, exhibit such a wide 

spread of rate of change of median 00 at low values of ~. 

POLARISATION WITH SLOPE 

20. Hevenor {2l8}. made measurements which strongly indicate that slope in 

the field o~ incidence"influences the calculation of radar backscatter in 

an entirely dinerent manner than the slope in a plane orthogonal to the 

plane· o~ incidence ~or a given polarisation ". His experiments concerned 

a slightly roughened sur~ace, although an analysis of his results shows that 

they are probably applicable to the homogeneous surfaces presented by 

continuous ~orest cover or rural terrain, since the correlation period will 

be shorter than the roughness period. 

10-212 



21. It is clear that significant errors of up to 5 dB will occur, C\S>lhe<\S"t-M {2.lgrtf 

for example, single slope only is used. This may explain why, in the 

absence of computing in the past, many sets of raw results could not be 

fully reduced but were plotted and compared - such that often like has not 

been compared with like - leading to inaccurate conclusions. 

SUMMARY 

22. A method of categorising aspect and slope of terrain which is 

'tilted' to the incident radar energy is recommended at Annex F. 

Backscatter effects caused by·terrain 'tilt', ie aspect and gradient, 

have been investigated using raw radar data on a specific site with 

controlled radar parameters. These results are detailed at Appendix 1 to 

I 
Annex F. 

23. The computer program is also capable of separating resolution cell 

footprints of like 'slope' and 'aspect' and will plot these on a PPI­

type layout on hard copy. This information is then converted onto acetate 

overlays for comparison purposes on survey maps. 

24. Probability statistics for slope for any gra~ing angle can be produced 

for a terrain area where the database of spot-height matrix and culture 

exists. 

25. It is possible that backscatter from terrain sloped at exceptionally 

low angles may have little practical effect upon radars using modern 

anticlutter processing. 
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26. The majority or clutter is likely to r~ll in the rirst 5-10 n miles 

or range, and within the amplitude range O.I-'OO"",'2.'t.)r-~ \"",2..)witt..o.J.:1 CL 

small proportion in the range lOO-100Om2, although these values would 

increase in rough terrain. About 95% or clutter is typically> 30dB 

above minimum detectable signal out to 5 n mls and 60% out to 15 n mls, 

however precise measurements should always allow rorthe changing 

grazing angle as the terrain slope varies. It is possible that Linell's 

(and others) results (see Chapter 4) would have been dirrerent ir 

some slope errect had been incorporated. 

27. ModelS. Equations shown in paras 14 to 19 are used, as appropriate, 

ror investigations and the perrormance prediction algorithm. 3dB boundaries 

are used ror statistical analysis although it is naturally understood that the 

radar footprint spreads over a larger area in practice. It is rurther 

assumed that the radar aerial distribution is such that energy levels rall 

rapidly outside the 3dB limits while energy distribution within the 3dB 

volume is sensibly evenly spread. 

28. Surrace Rerlectivity Reversal Phenomenon. The pdf's at figure 2b are of 

particular interest since they clearly show the wide variation in actual grazing 

angle obtained in practice when illuminating undulating terrain. Several sets 

or worldwide research results have shown a hitherto unexplained reversal 

in the clutter values obtained at very low grazing angles (see Chapter 4, 

rigure 4). It is the author's opinion that this c..c..Jd. b~pfl.l:-l~ explained 

by the pdf's shown. For example when nominally grazing at 1/1 = 5°, the 

probability or obtaining the expected grazing angle is extremely low. As 

the terrain gently undulates 1/1 = 5° occurs on only 8% or occasions, while 

more hilly terrain reduces the probability to 4%. The pdf's at Figure 2b clearly 
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show that >p = 11 0 or 27 0 would be obtained as the actual grazing 

angles on the majority of occasions, hence the radar reflectivity 

measured would be greater at these a~gles that the ,value to be 

expected at the shallower angles. There is, of course, zero (main 

beam) backscatter from the shado"ed areas caused by surface 

undulations, unless diffraction occurs, and the pdf "ill depend upon 

the period of undlA'lations - how many reflecting facets are contained 

"ithin the resolution cell, their angles and amplitude. 

29. Slope Correlation Studies: Some additional investigations have 

been made into the above proposals and detailed at Appendix 1 to Annex 

F. Actual grazing angles are shown to be larger than measured grazing 

angles in all cases when the suggestions at paragraph 28 above are 

applied to the author's terrain data base. Backscatter Distributions 

plotted, give a straight line on Wiebull paper, and detailed methods 

and discussion are at Appendix 1 to Annex F. Care 11as taken to 

identify slope and aspect for every terrain facet and to correct slope 

for radar boresight. Correlation tests were carried out between those 

parameters which were likely to be in relationship, for grazing angles 

taken in steps of 20 and 30 and by median and mean filtering • 
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CHAPTER 11 

SYSTEM PERFORMANCE ASSESSMENT MODEL 

1. The general se~uence of inputs necessary for the assessment model are 

shown at Fig 1. A more detailed procedure is at Fig 2, showing the inter­

relationship of optical and radar tracking with the terrain data and with 

certain operational factors which directly affect overall system assessment. 

2. In applying the se~uence, different circumstances may pertain, for 

example, assessments may be re~uired for: 

a. A general (and ~uickly produced) assessment, where reasonably 

accurate radar emission characteristics are known but with limited 

detail on the terrain obscuration affecting a deployed mobile system. 

The signal processing capability of the radar under these terrain 

conditions may also have to be assessed empirically. 

OR b. Fully documented terrain data available from presurveyed sites 

to which a radar may be deployed and where details of the radar are 

known. Examples, which use typical figures are at Annexes G and H. 

TERRAIN MODEL 

3. Typical results for observable target track lengths in various types of 

terrain are shown at Annex E Fig 5a. It should be noted that the lower 

curve on this figure shows flat terrain with evenly distributed but not 

dense surface obscuration. A curve for flat terrain with sparse surface 

cover will usually approximate to the position of the higher curve on 
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Fig 5a and thus possess a higher probability of obtaining a given track 

length. 

MISSILE SYSTEM MODEL 

4. For a particular system reaction time, target altitude and target and 

missile velocity, the probability of obtaining minimum track length 

required at a given crossing range is calculated using the technique at 

Annex E paras 16-21. This is considered sufficiently accurate for prediction 

purposes without getting into the detail of missile trajectory shaping. 

Further factors which may affect a prediction might be included, for example, 

radars associated with point defence systems are more likely to engage 

radially approaching targets than those area coverage systems which will 

also engage crossing targets. Radial observable track lengths are often 

likely to be longer than the majority of crossing observable track lengths. 

The value of PT~ obtained from this process is not of course the tracking or 

missile success rate - merely the opportunity value for a particular area 

which meet the minimum track length requirements. In an optically controlled 

system the assessment sequence next moves into POE and P~as seen at Fig 2 

(but see also paras 6 and 7 below). 

RADAR SYSTEM MODEL 

5. In a radar tracking system the next step is to assess the probability 

of gaining and maintaining radar track within the observed track length 

periods. At times the sightline will include clutter plus target, while at 

other times clutter will be shadowed. Terrain may be flat or sloped hence 

backscatter model values proposed at Chapters 10, Chapter 4 and Appendix 1 

to Annex F should be used; together with the known'or assessed radar 
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parameters. Propagation conditions should be incorporated, as nccessary. It 

may be advantageous to work through the sequence under 'best case' and 

'worse case' conditions to determine the 'spread' of performance to be 

expected. Ideally, System, Environmental and Statistical values should be 

taken into account each time with a range of possible values. Attempts 

have been made to simplify the 'paper' operation of the sequence at 

Annexes G and H, however a modular computer program was also written in 

Fortran for analysis purposes for terrain and radar signals. 

SYSTEM AVAILABILITY AND OPERATOR PERFORMANCE 

6. Adjustment of the predictions at the bottom of Figure 2 are often a 

matter of "military judgement" in an operational environment. A point of 

contention between manufacturers and the author in the past! In some cases 

fairly reliable figures may be available, eg MTBF, while in others, such as 

availability of spares for radars and associated equipments and reloads for 

missile systems may be more difficult to assess. The effect of learning 

curves and operator climatic degradation are also part of the equation and 

cannot be ignored. 

SYSTEM PERFORMANCE IN COUNTERMEASURES 

7. This is considered separately from the system performance in a benign 

environment because two aspects exist - that of inherent or incorporated 

automatic deSlgn features which minimise the effectiveness of countermeasures 

and that of operator inVOlvement of reducing countermeasures effectiveness 

by his skill. The effect of target manoeuvre and chaff degradation in any 

given situation is applied as a reduction factor, for example, due to target 
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glinting or range gate disturbance leading to an increase guidance system 

miss-dis.tance. (See Annex E Figs 1 to 4) and is at present often a matter 

of considered judgement rather than hard fact from trials because of the 

number of variables involved. 

APPROXIMATE PREDICTIONS 

8. Approximate predictions can be obtained by applying empirical values, 

based on experience to the simple model PDET x PTLx PMxwith the extra 

factor POE inserted as appropriate. Further adjustment may be necessary for 

multiple fire channel or refire situations where a second attempt is necessary 

if the initial tracking and the first missile fails - providing of course 

sufficient observable track length is available to accommodate target 

response analysis, refire reaction time and missile flyout time for a 

refire. 

HIGH AND LOW RISK TRACKING AREAS 

9. Aircraft in transit, while encountering point defences at their 

destination - which they must radially approach, will inevitably be forced 

to transit through area defences en-route in both directions. Area defences 

may also be enhanced by other point defences,both mobile and fixed. 

10. Area defences are likely to be on pre-determined sites in the main 

with higher PTL ; the value of FTL varying invalue with terrain cover and 

surface undulation. Sharp ridges in an area will enhance the possibility of 

tracking under diffraction conditions, and may slightly increase the system 

performance in these areas. 
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CHAPTER 12 

SUMMARY OF RESEARCH AND RECOMMENDATIONS 

GENERAL OBSERVATIONS 

1. Sightline. It has been shown that the predominant factor in detecting 

and tracking a low level target successfully is the ability to obtain a 

sightline, ie, a minimum unscreened, or 'unmasked' track length. For most 

terrain this will only occur with certainty if the radar aerial is raised 

on a mast, clear of immediate obstacles and vegetation. In flat terrain this 

may be sufficient for all-round coverage, however in undulating and hilly 

terrain targets at longer range may remain obscured due to shadowing. 

A terrain data base allows an initial assessment of sightline probability 

in a given area to be made on a statistical basis. Precise sightline 

information can only be obtained by optical survey of the actual radar site 

and this will vary from season to season and with changes in local obstacles' 

such as the proximity of mobile vehicles (or smoke in optical systems). In 

the past it has not been the normal practice to raise tracking radars on 

masts bec~use of the difficulties of stabilising the radar beam under 

conditions of wind-gusting. Although raised tracking radars may now be 

(theoretically) possible, while maintaining accuracy by the use of mast­

mounted accelerometers and associated error correction by computer; radars 

with low aerial heights will be widespread for many years, hence the sight­

line prediction will be of continued importance, since all other radar tracking 

functions are dependent upon it. 

2. Clutter. Given a sightline, clutter is of next importance Slnce the 

radar beam will invariably strike the surface when directed at low level 

targets even if on a raised mast. It is then necessary to model the clutter 

levels expected at the low grazing angles as suggested at Chapter 4, and 
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extended with actual results at Annex F. At this point the significance of 

the prediction model depends on whether an offensive or defensive viewpoint 

is taken. The clutter model will enhance the apparent performance of a 

defensive radar if the clutter level is assessed as lower than is actually 

the case; or if the radar's clutter processing capability is over-assessed. 

Conversely if the clutter level is assessed as 'high' radar performance will 

be predicted as relatively 'poor', where even the best clutter processing may 

not enable a target to be separated from the clutter for tracking purposes. 

Example predictions at both extremes have been shown in the report {J,wrJe;>, \\). 

3. Validation of Models. Clutter models are difficult to validate because 

of the paucity of reliable measurements. It is the author's opinion that 

although a particular clutter model may be selected for practical purposes -

if for no other reason than to give a starting point for predictions - it would 

be wrong to assume that this can be much better than a reasonable estimate. 

No existing clutter model could be said to be really adequate or 

scientifically precise unless it is site-specific and radar-specific, resulting 

from on-site measurement in all weather and seasonal conditions. Much of the 

uncertainty is due to the very large number of variables which are so 

dependent on local conditions. 

4. It is seen therefore that the scope for 11 study of' this type could be 

almost open-ended, since, as more results of clutter research become 

available the conclusions can be influenced slightly - first one way and then 

the other. However clutter itself is just one part of the overall input 

required for a useful prediction model for a low level tracking radar. 
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5. Results from some systems and measurements studies have been made using 

search (acquisition) radars, where clutter is often measured over longer 

ranges, at different RF's and longer pulse durations (hence larger 

resolution cells); such results often indirectly affect the overall performance 

of a radar tracking system - since search radars are often used to 'hand-on' 

targets to associated tracking radars which operate in the same area. Both 

surface scanning and airborne radars, though providing clutter measurements are 

noted to suffer "smeared" clutter effects because of the speed of the radar 

beam's swift traverse from one resolution cell to the next. These effects have 

not been considered significant for stationary systems. 

6. It is possible that too much is made of the clutter problem in isolation 

in the context of tracking radars, since in practical terms clutter is only 

of interest on those azimuths where a target sightline exists simultaneously 

with a sightline to the underlying clutter. FUrthermore it is of interest 

only in those sectors where SUfficient track length can be observed for a 

useful period of time (distance). Once within the "useful" part of the radar 

site's field of view the radar parameters and the many other variables such as 

chaff, multipath, diffraction and weather also become important. 

SENSITIVITY TO PARAMETER CHANGES 

7. The sensitivity of the overall prediction to variations in the individual 

paraneters is of particular interest. Target altitude is a critical 

parameter in determination of observable track length probability (PTL ). 

For example a reduction in height (seen in one practical case from 300 ft to 

200 ft) gave a 10% reduction in PTL - a much more significant effect in the 

overall result than say a change in target speed of 40 m.s-l which, in the 

same case, changed P
TL 

by 4%. Similarly degradation due to target scintillation, 

multipath and the many other factors considered in the report Cause only minor 
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changes in the overall prediction, varying to a greater or lesser extent 

due to circumstances. 

MODEL VALUES 

8. Suitable model values, included in each chapter summary must be 

supplemented by an assessment of the signal processing capability of the 

particular radar. This may be difficult to assess, since clutter processing 

may be assisted by pulse to pulse frequency agility, polarisation agility,r'lllI) 

multiple channel operation with different processing in each channel, (such 

as ground clutter filtering and moving clutter filtering) noise or 

precipitation or chaff filtering. For the relatively short ranges for tracking, 

clutter is always assumed to be present at low grazing angles unless 

shadowing is present. A reduced effect will be felt if off-boresight modes 

are used (see Chap 9 para llc). 

9. Assuming the clutter values to be averaged and taking figures from the 

extensive survey and measured values, a reliable median value for cr 
o 

(in flat terrain) is about - ~~dBm2m-2 with a standard deviation of 9 to 

2 -2 10 dBm m • These values will vary slightly with changes in pulse d~tation, 

RF, polarisation etc, but are considered suitable for I and J band tracking 

radars. (10,000 MHz to 18,000 MHz). As RF increases cr is likely to 
m 

reduce to -'~9dBm~m -2. \'e.e. ,,1>0 ,L<c<>-'s;o,,- ..t: A-pp \ lA A~""-><. 1=") 

10. From the purely radar aspects the overall PD used (Chap 4 eqn 47) must 

be converted to the probability of tracking. Given the observable track length 

probability for a given geo' graphical area and assuming a percentage of shadowing 

during ~observed track length, multipath and other radar degradations are 

applied as reduction factors which will affect different tracking systems in 
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different ways. For example, a judgement must be made on the effect of 

short-term loss of sightline for optical or radar tracking as appropriate. 

Some systems will be able (by rate-aided tracking) to withstand narrow 

sectors of obscuration quite successfully. For Bome optical systems a 

slight adjustment will be necessary for the improved tracking of targets 

through deciduous trees when defoliation occurs in winter. 

CONCLUSIONS 

11. The selected method of overall system performance prediction is suggested 

to be the most reliable approach available within the constraints set out at 

Chapter 1, the limited worldwide results directly applicable to this study, and 

the large number of variables involved. It is thought that overall performance 

predictions will never be exact in the scientific sense, since apart from 

the measurable parameters there are also those human factors in an unknown 

operational environment. In addition the possibility of such occupances 

as electro-magnetic incompatibility, the variable and surprise effects of 

jamming and the largely unknown effectiveness of ECCM response all influence 

the results in practice. 

12. Many related studies have been made but totally accurate predictions 

cannot be made for all theunknowns... since even those results obtained from 

tracker radars and associated missile systems used in action in N Vietnam, 

the Middle East or in the Falklands cannot be read-across to other geographical 

locations with any degree of reliability. 

RECOMMENDATIONS 

13. Since raised tracker aerials will not totally overcome the problem of 

obscuration in hilly terrain, and since PTL is such a predominant factor in the 
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prediction process it is recommended that: 

a. Further studies should be made into the distribution (density) of 

surface culture and buildings in those areas for which P
TL 

is known, in order to search for possible correlation between PTL , 

undulation and surface coverage. The intention would be to assign a 

PTL to an area (of limited extent) by examination of accurate maps and 

stereo photographs. 'Good' or 'Bad' areas for deployment could possible 

be determined - or conversely safe or less safe areas to fly. 

b. More clutter measurements are needed using carefully controlled 

conditions with as many radar parameters varied as possible. These 

should be made in areas typical of the intended deployment with particular 

attention to terrain slope measurement. 

c. Some practical diffraction trials are required where an aircraft 

transits behind ridged terrain with and without tree cover 

ridge profile 'measurements. Accurate instrumentation over a number of 

target runs would be necessary to compensate for target RCS 

fluctuations due to minor manoeuvres. Alternatively it might be 

possible to make diffraction measurements using a balloon-mounted 

reflector tethered behind the ridge. 
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DISTRIBUTIONS FOR FLUCTUATING RADAR SIGNALS 

THE WEIBULL DISTRIBUTION 

ANNEX A TO 
"THE PROBABILITY OF DETECTING 
AND TRACKING RADAR TARGETS 
IN CLUTTER AT LOW GRAZING 
ANGLES" 
DATED So SEPTEMBER 1982 

1. The Weibull distribution (1951) is widely applicable and has a 

probability density fUnction given by: 

.m _1 [..m 1 
f(x) = mAX _ exp -A x J _-'-___ (1) 

Variable m and A are .known as the shape and scale parameters respectively, 

and must be estimated from the data available. The fUnction is re-written: 

() c (x) C-1 P x = - -b b expo [- ~r ________ (2) 

Where band c are now the scale and shape parameters. The use of A is 

avoided here, since A is used for radar wavelength elsewhere. 

When c = 2 this distribution reduces to the Rayleigh Distribution (see below). 

From (2), the probability of a signal level x being exceeded is 

[- (~)~f dt 

If Xm is the median value then: 

expo [- l~)~ = 0.5 

hence - (- 0.69315) 

and b = Xm 1 
(o.69315)c 

(3) 

2. The second moment of distribution is: 

2 
x dt 

(4) 

Where r (n) is the Gamma fUnction. 

A-l 
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i 
3. If the Weibull parruneters for "'-llOtmalized distribution are bo 

and Co and new values are required after scaling for a different resolution 

cell size (by a factor N), then: 

1. 
N 

As the medj~~value for the normalised distribution is: 

, 
Xmo· = (O.l)~ = 0.31623 

( 5) 

from (3), b - 0.31623 
o - (0.69315)i 

~ ___ (6) 

o 
The median value of the new distribution is: 

JSn = 0.31623N 

and b =0.31623N 1 

(0.69315) -; 

SUbstituting (7) in (5) gives 

______ -'--_ (7) 

(8) can be solved graphically to 

then be found from (7). 

RAYLEIGH DISTRIBUTION 

obtain a value for 2 
c 

____ (8) 

hence c, and b can 

4. If the average returned signal level is essentially constant in time 

and there are a large number of statistically (independently positioned) 

scatterers, the probability of echo amplitude being between a level P and 

an infinitesimally larger level P + dP is given by the pdf: 

W(p)dP 1 
= -

P 

p is the average power. 

RICEAN (RICIAN) DISTRIBUTION 

exp c _P ) dP 
P 

5. Also called the non-central Rayleigh density function. This distri-

bution describes a received signal containing an essentially constant echo 

in addition to a Rayleigh-distributed fluctuation. 

1 8~......Je.~ ~ ~ "- S-.A.Y:t:.-6& (A.!fA. .. --t..uA,.,~ ~ (oLj C)., .... ~s.e..t ~ 
fl.A, d..ui.N..Di ~"" ft;.~t..()lefr':'2 



Io is the Bessel function ( J., (jx) ,:- J;,6<)) 
6 

x 

NORMAL (GAUSSIAN) AND LOGNORMAL DISTRIBUTIONS 

I p /.,. ) (dP/p ) __ (10) 
P 

+------

6. Large amplitude signal components may cause an appreciable departure 

from the Rayleigh or Ricean distributions. The Lognormal distribution can 

be used, and the normal distribution curve is: 
x 

f(x) f= . 1 expo [- (x - 1l)2/ 2S2J 
., s.;;::rr 

___ Ell) 

where s.= standard deviation (to avoid cr, used elsewhere for target echoing 

areal. 

~ = median value of x 

x = normally distributed variable 

The pdf for the lognormal distribution can be obtained from (11) by using 

the transformation x = In Y: 
x 

giving f(Y) = r. 1 expo 

j ~:; I21C ., 

Where Y = Lognormally distributed variable 

Ym = Median value of Y 

s = standard deviation of . lnj (r ) 
~ y 

m 

------------(12) 



WEIBULL SHAPE PARAMETER AND "M CORRELATIONS 

1. Investigations were made into: 

APPENDIX 1 TO 

ANNEX A TO 

"THE PROBABILITY OF 

DETECTING AND TRACKING 

RADAR TARGETS IN CLUTTER 

AT LOW GRAZING ANGLES" 

DATED ?v SEPTEMBER 1982 

a. Correlation between Beamwidth - Pulse Duration product and 

median backscatter a • 
m 

b. Correlation between Beamwidth - Pulse Duration product and 

Weibull Shape Parameter 'Cl, for each of the following: 

(1) By applying Dodsworth's algorithm to the calculated 

values (6
A
Y) for the worldwide survey. 

(2) By applying the author's model for 'Cl derived by statistical 

analysis of the worldwide results by measuring slopes of all 

results replotted on Weibull paper. 

2. It was also possible to compare measured results for 'e' (obtained 

from slope) with values predicted by the algorithms. 

Al-l 



3. No account was taken of different RF's. It was however noticed that 

some values were suspect or at extreme values (eg Serial 7 at Table 1 

Chapter 4 page 4-92). This was confirmed by computer plots where the 

correlations could be seen if extremes were deleted. ' Several other sets 

of data became available in addition to those at Chapter 4, and the total 

test was run with a reasonable selection of data from USA, UK and 

Continental Europe. 

4. Correlation Matrix. Correlation results for C with eT 

~ 2 0.32 

Uo~c 
(0.31) 

R.....t.fu 3 0.74 0.24 

Bit 'Y (0.75) (0.19) 

4 0.70 0.30 0.68 Authors 

(0.72) (0.23) (0.57) Model 

1 2 3 

Dodsworth Measured Rad Sec 

Slope (e AT) 

c 
. 
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5. Correlation between measured slope (2) and proposed models by 

Dodsworth (1) and the author (4) are not high. Correlation between 

eAT product and the mOdels proposed by Dodsworth and the author are good. 

Correlation between the author's and Dodsworth's values are also high. 

It is noted that the correlations did not change significantly in most 

cases when Dodsworth's and Warden's UK figures (on which Dodsworth 

originally based his premise) were deleted and the correlation tests 

repeatea. The figures shown in brackets on the correlation matrix are 

those using USA and European results other than RSRE results. 

6. A poor correlation of 0.11 was found between eAT 

Al-3 

and a with 
m 
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ANNEX B TO 
"THE PROBABILITY OF 
DETECTING AND TRACKING 
RADAR TARGETS 1NCLUTTER 
AT LOW GRAZING ANGLES" 
IlATED:k, SEPTEMBER 1982 

RECEIVED CLUTTER POWER FROM RESOLUTION CELL AND REFLECTION COEFFICIENTS 

1. The Radar Cross Section (RCS) is defined as the area intercepting 

that amount of power, which, when scattered isotropically, produces an echo 

equivalent to that received from the object. An idealised received signal 

clutter power can be found using the radar range equation: 

SR = PT G Ae a 

(411 )2R4 

_________ -\(1) 

or, since G = 411Ae 
.)7" 

SR = PTG2x2a 

(411 )3R4L 

___________ ~(2) 

Where PT = Peak Transmitted Power 

G = Peak Aerial Gain 

Ae = Effective Aerial Capture Area 

R = Range to Target (assuming Ri = R r' ie monostatic radar) 

a = RCS 

L = Combined System Losses 

X = Wavelength 

2. Figure Bl shows the resolution cell geometry; from which it can be seen 

that the resolution cell range dimension AB approaches CT as ~-'O. SA is 
2 

the azimuth 3dB beamwidth. T is the radar pulse length. 
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SCATTERING RCS PER UNIT AREA 

3. .To express the clutter in terms of the scattering cross section per 

(j '" (joR eA £1. sec IjJ 
2 

------------'(3) 

Eqn (3) is the result of introducing a characteristic Y such that 

(jo '" Y Sin 1jJ, thus removing the geometrical dependence of (jo' and the other 

assumptions are made at para 4 below. 

4. The area of illuminated terrain depends upon the grnzing angle. If. 

for example a flat plate (ideal) reflector is used, and assuming sidelobes are 

minimal at practical ranges, the effective capture area and gain are dependent· 

on· crazing angle. The incident area will then be: 

.£l Tan IjJ -----------\(4) 
2 

Where eA and eE are respectively the 3dB azimuthal and vertical beamwidths. 

A pencil beam (having small eA = SE) produces an elliptical ground "footprint" 

such that the ellipse axis lengths are R,eA • and Re
E 

Cosec e (providing Tan 

Area of footprint is hence (2R Tan l) (.£I. Sec'!') ---\(5) 
2 2 

If Tan IjJ < 2R 

5. It is also assumed that the clutter scatterers are small in relation to A, 
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4 
the transmitted wavelength, ln which case 0 varies as A (dependent on the 

Rayleigh Law). For general angles of depression the RCS (of a flat target 

perpendicular to the incident beam) is a function of the angle of incidence 

which varies rapidly if the wavelength is small compared with the target 

size. This is more complex at sea because dependence of reflectivity varies 

with both the sea state and the angle of arrival. The radar cross section 

variation with shape has been researched by RUCK {2l9}' 

SURFACE REFLECTION,~_C",O""E",F-=-F=-IC",I",E~N""TS=-

6. Mulripath and backscatter values are dependent upon the magnitude and 

spatial origin of surface refJ ected waves. The effect of surface roughness 

in changing the relative proportions of amplitude and phase from specular 

towards dHfused has been expressedCl.,S ~ l>r ... c. .... I"" ~c. ... ltv.:...~ f...e-tor : 

= slnliJ ) . 2] -------------------------------(5) 

Oh is the rms height standard deviation relative to an idealised surface. 

Values such that Oh sinliJ>O.Olob significantly reduce the specular reflection 

(ie p <0.7). 
s 

A • 
For most terra~n the largest part of the non-specular energy 

appears as forward scatter, or is absorbed by the vegetation. 

7. It has been shown {220}, using small scale diffuse reflection theory 

that a scatter lobe of width 40 will be formed about an axis corresponding 
Cl 

to the position of the specular reflector. (0 is the rms slope of the 
a 

illuminat'ed facet). Viewed from the radar receiver this diffuse scattering 

"will appear to originate from a glistening surface surrounding the specular 

centre of the facet". 
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8. The diffuse scattering coefficient (Pd ) depends upon the integration 

of the reflected power density'lt,t ' .. :, together with the radar receiver aerial 

gain over the angular extent of the glistening surface: 

P~ = In dGrdG ________________________________ ---------------(6) 

Thus when 4o
a

>SE (elevation Beamwidth), SE rather than the surface becomes 

the predominant factor in establishing the reflected fraction of diffuse 

power. 

9. Magnitude of Reflection Coefficients. Terrain coefficient values near 

1 give strong specular reflections. Reflection coefficients can be 

established over an interval from the relationship: 

J21TMl/A 
p = - P

A 
P
B 

PSe ---------------------------------------(7) 

Reflectiol\.- coefficient P is therefore dependent upon: 

~R = Difference in path length (direct and indirect) 

P
A 

= Absorption coefficient 

P
B 

= exp [_ (411oh:inljJ/A)2] 

Ps = 1 + erf (a) 

2 -a r 
1 + erf (a) + e / "11 a 

Where a = sinljJ 
/2(J"' 

s 
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Ps is a correction to PB to account for shadowing in the Fresnel Zone (S",;tt. Fi;.c:fp,,) 

{221}. P
B 

is known as the Bechmann-Spizzichino factor. crs is the slope 

(facet) standard deviation (rads). oi c -le1JM: Ja.....,.k s~dkv~..d-Uo .... 

10. For the above conditions for strong specular reflection w~O.Q37"/cr 
h 

and \IJ~.4cr$' . Taking (1 <lOlll':'-Il.il,(1h>lOm then strong specular reflection 

would be rare at A = 0.03m. 

11. Reference is made to Chapter 8 eqns 
2 

t\ = £ -
r 

j60crl = £ - jl.8crl04 
r f 

MHz 

f d · 't mh -2 cr = sur ace con uct~v~ y o.m.m 

E = relative permittivity r . 

(7) and (8), where 

Typi?al values for insertion at Chapter 8 and Annex E are given at Table 1: 

SURFACE CONDUCTIVITY DIELECTRIC TY"'''''',--;:, 
I cr £ f".. '1'<'10 r . 

Dry, Flat 1 x 10-4 
5 0-3 

Farmland Rural 1 x 10-2 15 0-1-0-2, 
Low Hills 

Medium Hills 5 x 10-3 13 

City 2 x 10-3 5 

Sea 8 x 10-5 81 0-1,-1'0 

Table 1. Table of TYpical Values for Reflecting Terrain 
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ANNEX C TO 
"THE PROBABILITY OF DETECTING 
AND TRACKING RADAR TARGETS IN CLUTTER 
AT LOW GRAZING ANGLES" 
DATED ~ SEPTEMBER 1982 

FRESNEL-KIRCHOFF SINGLE KNIFE EDGE DIFFRACTION SOLUTION 

1. Assuming small grazing angles ,and using the previous notation at Chapter 7 

figure 2: 

Where E = Electric Field at receiver (target) from unit source 

S,C = Fresnel integrals of argument 

e = diffraction angle (see diagram), ie cc + e 

v = aJdo/A 

k = 211/A (known as wavenumber) 

d = 2dl d/d cl,"oL,Hi2 
0 

Simplified {222} then (1) becomes: 

--------------(2) 

2. This approximation is develo~ed from {223}: 

-) (x 2 -!- "'/2) 
e 0 i"or x »1 

o ----------(3) 
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v 

Thus C(v) - JS(v) 
r -JlIU2/2 ' 

= 0 e du -----------------------------(4) 

o 

forjll/2 v »1 

3. For engineering purposes the approximation condition is: 

-------------------------------------------(6) 

Which is interpreted physically as requiring the receiver (target position 

in this report) to be deep in the shadow zone, or equivalently, that the 

first Fresnel zone on the obstacle path is well masked by the obstacle. This 

condition is satisfied by most microwave diffraction 'paths. 

4. Although the above is included here for completeness, extended rigourous 

treatment of the wave theory of the solutions are often complex and cannot 

be directly applied to this practical case. 

C-2 



ANNEX D TO 

'.'THE PROBABILITY OF 

DETECTING AND TRACKING 

RADAR TARGETS IN CLUTTER 

AT LOW GRAZING ANGLES" 

DATED 3c, SEP 82 

COMPUTER PROGRAMS AND FLOWCHARTS 

DATA 

2. The following data was available for clutter and other investigations 

either at the start of, or was generated as the project progressed: 

a. Plotted results from the worldwide clutter survey, from which 

values could be interpolated for correlation studies for W, 

Wei bull, etc. 

b. Raw radar measurements taken at a set range over a known sector 

in the Malvern area (E J Dodsworth RSRE on his retirement). 

c. A Malvern terrain data base (produced at Malvern) but with a 

larger matrix spacing than satisfactory for the particular work 

envisaged. 
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d. Two area data matrix (manually produced by the author) 

to a finer spacing for the project. (Malvern and Scottish). 

e. Raw radar measurements in considerable quantity (unfortunately 

no tape available), from British Aerospace Stevenage. From these 

extensive listings,data was re-entered onto disc for the slope 

correlation studies. 

f. Files generated for radar parameters. 

PROGRAMS 

3. A brief resume follows for each of the main programs (written in 

FORTRAN to run on the DEC 20 at Cranwell) which were used to calculate, 

process or plot results during the research. A number of smaller programs 

were also written to manipulate data bases in support. 

a. Sr,INE.FOR Scans through 3600 in any increment and to any 

b. RADS.FOR 

range, from any given site location within a terrain 

matrix (spot height) data base; for ani target and 

radar site height and produces sightline 

(obscuration) data for plots of the type at Chapter 

2 (2-36). Incorporates height of surface obstacles 

eg trees, which it combines with the terrain/matrix 

data from the files at para 2c and 2e above. 

Makes terrain data for a particular resolution cell 

match the corresponding backscatter signal. 

Calculates terrain slope, aspect, actual grazing 

angle and a. Creates a new file containing all 
m 
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data necessary for slope correlation studies. 

Also produces terrain profile data and through 

convexity calculations diffraction plot data files. 

c. SNOISE.FOR Makes all radar propagation, range equation, pencil 

beam weather and surface clutter calculations. 

Including fluctuating target, main and sidelobe 

jamming and chaff jamming subroutines. Also 

includes multipath calcul.lI.tions and tracker range 

checks. 

d, 

e. 

IRADAW.ALG/PAS Originally in ALGOL but now also in PASCAL and 

modified, this program flys the actual missile 

aerodynamic and control functions to produce a time 

readout of the missile trajectory. Apart from some 

interest in the tracker control functions it was 

decided for this report that a mean missile 

flyout range was adequate for the t~pe of prediction 

envisaged. 

This plotter program produces a circular (PPI) 

radar type display. for surface obscuration or 

diffraction plots of the type shown at 

Chapter 2 (2-38). 

4. STATPK. STATPK, the college statistical library, was used to produce 

correlation matrices, regression and all other statistical results. 
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DOCUMENTATION 

5. Working flowcharts were made for each program, and hard-cop,y program 

and data listings were maintained for each revision. All outputs from 

STATPK were taken on hard copy for detailed analysis; these include 

regression plots, scatter plots, sorts, correlation matrices, histographs, 

bargraphs, frequency tables, Kolmorogov-Smirnov tests, and basic statistical 

measurements. 

~4 
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ANNEX E TO 
"THE PROBABILITY OF 
DETECTING AND TRACKING 
RADAR TARGETS IN CLUTTER 
AT LOW GRAZING ANGLES" 
DATED 3<;> SEPTEHBER'1982 

LOW LEVEL TRACKING ERRORS AND TRACK LENGTH PROBABILITY 

1. Probability Density Function for Tracking Error. An expression can 

be derived for the probability density fUnction of the tracking error, in 

terms of target altitude htgt , linear error E, and the power ratio of the direct 

signal renected from the target compared to the multipath (surface 

reflection signal - see fig 1) q 2:_ 
s 

w(x) = 

. x = e/ht t' the relative centroid tracking error. 
g . 

From Figure 2, the mean relative error Me iS9IvU\.I..j: 

= ! ,x;w(.x.) dx 
-oc 

= q2 _ 1 
s 

___ (1) 

____ (2) 

___ (3) 

2. Assuming the target maximum dimension (ie wingspan or fuselage length) 

is s, then the probability that the sightline will fall on the target during 

tracking is shown'at Figure 3 {224}, from: 
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p = I 
E2 

Where rJ (E) = 

E2 = 2h - s tgt 

___ (4) 

___ (5) 

3. Figure 3 shows the relationship, where for a target'flying at an 

altitude of 5Om, target size lOm, linear error E of lOm and q2 = 10, then 
s 

the probability of the sightline falling on the target is approximately 10%. 

At maximum tracking range it would be expected that to track correctly 

the system should remain within lOm vertical error for 70% of the time. (Fig 4a) 

4. Angular Tracking Error. Assuming the radar aerial receives 2 signals, 

ie direct and multipath, respectively SI = VI Cos w1t, 82 = V2 Cos w2t . (6) 

If Wo is the carrier frequency and VI and v2 are the apparent approach 

(radial) velocities of the target and its image, then 
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Combining (6) above (SI + S2) 

___ (7) 

= 2 VIV2 COS(WI - (2)t COS(WI + w~t ___ (8) 

2 2 

5. Assuming a quadratic detector in the radar receiver then its output 

voltage is: 

K is a constant. A beat frequency WI-W2 causes disturbance in the 

tracking accuracy if the radial velocities VI and v2 are close to the ~~~ .. I 

scanning frequency 0sc u., 2;:0 (V'l-"") ~ Jl.sc. 

6. Multipath propagation causes the output from the radar tracker aerial 

to be: 

Cos o il 
sc J 

ml (01.) = r (cC.o -..-..) - f (oe.o + 0<.) 

f (cC. - ..c.) + f (.t. + 0/..) o 0 

____ (10) 

____ (J.l) 

____ (12) 

____ (J.3) 

SI lS K.<yltit-ul ~ij-.I. S)... '$ i""f.t.,. f~ ... ~ s.i.O .... ~(· 
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m2 (0<, lldo) = f ("'\, - ~ + ADf.) - f ~o +"" - ll"'l 

l' (cl.
o 

- 04 + ll04 +f ("0 +,.0; - llO<) 

~o = Displacement of aerial beam peak relative to equal signal line. 

o£ .... t, ... t.kl':'5 vrll-( i-r !:-""j~. 
lld. = Angular separation between true target and image. 

Signal detection and amplification at F = nsc ' assuming WI - W2 = nsc ' 

the phase detector output voltage S3 (zero at balanced condition) is: 

2 2 2 2 
S3 = SlL1 (.,.;) ml(oC.) + SlL1(Qt,llol.)m2 (o<,llot1 "" SILl(d-) S2L2cP<,bO<) 

SI S2Ll (ot.) Lz (ot,llc4 ml (oe.) [mz (ot,lloel] 

Using equations (la) to (15) above1 the angular radar tracker error is 

given by: 

1'2(...cO -cc) - 1'2 ("0 + oe.) + ~ ~z(co(o -"" "" ll~ - 1'2(oC.o "" ~ - bot.U + 

~ {f (oe - oC. + ll~ ri1' (ot. - cot.) + f Cot. + DC.)1 + f (cl. + DC. - I:J:4 '4 0 t.: 0 0 ~ 0 

~ (.,c.o -.,c.) + 7f (0(.0 +oe.)] } = 0 (16) 

7. Placing practical values into eqn (16), provides the relationship 

between tracking error and angular separation angle between target or 

image. If plotted with normalized error and separation over a range of 

lla and ~ values, it is seen that for conditions where the interfering 
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signal is comparable to the wanted signal (~~ 1) the effective target 

position is above the real target position. whilst for a swamping value 

of interference signal for very shallow grazing (ie lI"''''O) the effective 

target position is lower than the actual target position. Interference, 

causing inaccuracies may be minimised in practice by changing the scanning 

frequency or narrowing the tracker receiver pass band. Alternatively the 

technique known as 'complex indicated angle' can be used to minimise the 

multipath effect {225} For accurate tracking it is stated {226} p 330 

that for a 10 beam width and 0.1 mrad measuring accuracy: 

p « 0.005 

I8'G s 

A value of p = 0.3 (typical for land) is used. 

G = Specular rower Gain Ratio 
s 

____ (17) 

8. Effect of Terrain Slope. It is of course possible that multipath 

reflections, (including tracker error), could come from a sloping patch 

of terrain, and for clutter and other effects, the relative height of the 

radar transmitter, slope of the terrain and target altitude must be used for 

calculations. 

MULTIPATII TRACKING ERROR USING MONOPULSE TRACKER 

9. For short ranges and assuming a flat earth the multipath tracking 

error of a monopulse radar is given by {227}: 
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1 

E (mrads) = 8E Pv ja (~ I + I ) 
i=l i s 

km 

____ (18) 

Where \, Is are the diffuse and specular components, (~ .... s lea,:2..o ~..t.II!"J) 

eE the aerial beamwidth in elevation 

( ,J 1 '- Jr 't'-O.'S'"~.2...us). P'I vegetation absorption to ... """ 'i1 O· .... ~. r...- -

k monopulse slope (~ 2) m . 

n number of depression angle elements summed 

Eqn (18) then uses Eqns (19) to (26) below. 

Separately Ii and Is are gi'len by 

____ (19) 

(20) 

The Fresnel reflection coefficients are not repeated here, . '"'l di 

is the diffuse reflection density, 6. and 6 the difference pattern 
l. s 

gains, 6e the width of element in depression angle, Ps the specular 

scattering factor. 

10. The difference channel illumination is assumed to be of the distribution 

x cos x. For which 

2U Cos U (21) 
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a = ab + tjJl where ab is elevation of beam axiS.(tUl). 

tjJl' tjJ2 grazing angle from radar to surface 

and target to surface.l,.....lS). 

For the reflection coefficients it is taken that tjJ = >/11 .'f- 1/12 and the surface 

2 

complex dielectric constant is calculated in the usual way to get Po. 

Assume Sin tjJ~tjJ~Tan tjJ.l'o>o.gf..,t'f..( 2.,°f.r ~"ti... V ~ H~ .. I/).tiJaJioNl. 

11. Diffuse power density per radian of depression angle is: 

R 
R-x 

tjJ, + tjJ, ____ (22) 

4 fi S tjJl o 

Where 

S is the RMS surface slope deviation o 

tjJl = htx/X' and tjJ2 = htgt /R-x (,.dI) 

x = range from radar to surface 

R = radar range of target 

F d = Roughness Factor ( ~ 2.-!. Wo..,) 

Z = Low grazing angle correction factor C ~ ~s .2:f;;-1 '-'" ") 

12. Roughness Factor and specular scattering factor are given by: 

F = h-p 
d s 

hence F2 = h-p 
d SI 

• 
~r I fsj. f-- ~~('-'t)t If, tt,. ~rcJ.:Jd:J .. 
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~t = RMS surface height deviation corrected for shadowing 

= critical angle for p2 = 1 
s 

e 

13. For low grazing angles 2 correction terms are used 

a l = min (a,c) cl = max (a,e) 

(which is used depends on the smaller of the 2 angles). 

Effective surface roughness is corrected for shadowing 

oh = Oh 511ia' where 4a' ... 1 

or oh = Oh where 4a' .) 1 

(24) 

14. Low grazing angle correction for diffuse power 'density, where b = 

for b ,;:; 1 + a' ___ (25) 

1 + 4 + 3a' - b2 - b 
a' 3a' 

Z2 = 24 
2 +..1 + 12 + 5a' 8.'Z a' 

forb 7 1+a' (26) 

Where 

b = ~ = ). 

81r a~so 2S 
0 

2 
P = exp (-a' /b2) sa 
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15. The specular error component is only present in the absence of 

nosediving ie for Sb>0.7 SE or for lower angles if PosPs < 0.5 (pos is 

Fresnel specular reflection coefficient). A calculator program for the 

aboVe is available as a Texas Instruments master library module. 

TRACK LENGTH PROBABILITY 

16. An initial surveyor terrain data base may be used to produce (see Fig 5a) 

unscreened track lengths. This may be difficult in practice, but it is 

hoped that by examination of typical sites a pattern of probabilities might 

emerge so as to act as a starting point in predicting defensive performance 

or conversely offensive survivability when operating aircraft against these 

low level radar systems. Short periods of target obscuration might be 

considered negligible since modern systems, rate aide~may be able to 

track a target 'through' a narrowly obscured sector of, say, 10
; the 

exception is of course when the target is headed radially towards the 

radar along (\.n. obscured H~~ Fth.· 

17. Example. For explanation purposes an example is used: 

a. Target Parameters. Velocity 300m sec -1 (Vtgt)' meet!\. !:a~~t-t tCll'\ge 

(crossing target) 3 km (Rtgt ), Altitude 60m (htgt ). 

b. Missile Parameters. Velocity 600 m sec-1 (Vm), Radar 

Site Reaction Time 15 sec (t ). V,.. i$ O'S$v ..... d (.,O .... ~(: ()II~ 
r 

u..../N\.fA.5.&'t..d.. I;~t. ~h .. Mlc.J. 

c. Obscuration. Probability of obtaining track length ofx 

metres is p. 
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18. For a given aircraft velocity a non-obscured target must be tracked on 

radar for T secs. Useful tracks are dependent on range from the radar and 

V tgt, since the geometry of a track at longer ranges (though perhaps visible 

for the same time as a track at shorter range) may not allow an engagement to 

succeed because of the longer missile flight-time to reach the required range. 

This is especially so in a commanded missile system where missile and 

target must be observable at all times up to impact if they are to be tracked 

on radar and the appropriate guidance commands derived and transmitted to the 

missile •. Using the example figures an approximation for crossing targets 

at mean range is: 

= 3000 

600 

= 5 secs and T = t f + tr = 20 secs 

where t f + tr is the minimum observation time required. An approximate track 

length Tc necessary for an engagement for a target crossing.at sensibly 

~onstant range is: 

The probability of obtaining this track length is about 0.25 at Figure 5b. 

For a radially approaching target a close approximation is: 

Tc = tr Vtgt + t (Vtgt + Vm) where t > ~ given that 

d is the minimum possible impact range.m If d = 600 m, for this example 

t>l, hence t· (Vtgt + V ) > 900 and T '" 5.4 Km. m c 'V . 

Accurate computations for system and target parameter change can be made from 

weapon trajectory programs written by the author, however the above method 

is adequate for manual predic tion purposes. 

t 
19. If the aircraft altitude is changed to htgt = 200 m, the same timing 

calculations apply if the range is unchanged. However, a decrease in 
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obscuration due to the increased target altitude will cause the 

probability of obtaining the critical track length T to (typicallY) c 

rise to 0.7 for flat terrain. Table 1 shows the effect in similar terrain 

but with changes in target and missile parameters. 

TABLE 1 PROBABILITY OF OBTAINING MINIMUM TRACK LENGTH REQUIRED 

Target: Vm = 600 m sec -I System Reaction 10 sec 

Terrain: typical flat terrain with scattered clumps of trees. 

TARGET PARAMETERS 

Vt t Vtgt g -I 
260 m sec 220 m sec- I 

(500 kts) (420 kts) 

~ htgt htgt htgt htgt Range to 
target Km 200 (ft) 300 (ft) 200 (ft) 300 (ft) 

1 0.62 0.75 0.66 0.77 

3 0.37 0.52 0.41 0.55 

5 0.22 0.37 0.26 0.40 

20. As expected the probability figures are more sensitive to a change 

of target height, than of target velocity. It is of interest to note that 

dOubling the missile speed (and using the same t ) would marginally (0.01) 
r . 

increases the probability of engaging targets at close range, tr is more 

sensitive for close range targets. However, the higher missile speed 

increases probability values by 0.08, ie almost 10% at 5 Km range, /.Jl~ ~ 
-e)<.Il ..... ~[~ "b.r(tl..v.... "lLUl N..~ . 

21. In the above examples the radar aerial is almost at ground level and 

it is assumed the missile flies in a straight line (rather than the more 
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usual curved traj~ctory). This approximation will make little difference 

for a general assessment, since it is assumed also that the target is .being 

tracked at a mean range. In practice with the variation of ground tracks 

sometimes the target will be nearer at the beginning or end of an engagement 

if no evasive manoeuvres are used, the missile velocity will also vary, 

depending on range. Clutter is ignored for the moment. If the tracking 

aerial is raised above the immediate obscuration the situation will be 

changed significantly and in general at short ranges the target's only 

hope of evading a tracking situation 1S either by the inability of the radar 

to follow the high sightline rate, to separate the target from surface clutter, 

or by deliberately degrading the sytem by introducing noise or deception 

jamming and hard target manoeuvre. 

TRACKING ALGCRITHM 

22. It may seem from the foregoing in this Annex that radar detection 

theory has been temporarily forgotten. The picture is now completed by 

considering an example tracking algorithm as part of the overall detection 

process. Assuming a tracking situation (unobscuredtarget - which mayor may 

not last for.mlnimum track length Tc at para 18), then a statistical 

algorithm to separate genuine detection opportunities from false alarms can 

be used to detect an acceptable sequence of detections and a track is then 

declared. Markov chains can be used to study such sequences with the 

criterion that a tracking state should be held for a minimum number of 

time intervals and at a correct signals to"noise ratio. The relationship 

between p (detection probability) and declared tracking status is derivable. 

Results are not only dependent upon the number of observations chosen when 

setting up the algorithm, {228} but the degree of correlation between 

individual target returns (hits) during the observation time interval. 
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23. Derivation of Algorithm. If the detection opportunities are taken 

in time sequence, as triplets, where p = P (next digit is a 1), q = P 

(next digit is a 0), then there are 8 3-bit patterns. Initial and final 

states (i, j) are plotted below; where P .. occurs in one change: 
~J 

J 
0 1 2 3 4 5 6 7 

i 

0 q P 

1 q P 

2 q P 

3 q p (q=l-p) 

4 q p 

5 q p 

6 q p 

7 q p 

If two 1 states are required for tracking (2 our of 3, ie n = 3, k = 2), then 

non tracking will be represented by the binary pattern for 0, 1, 2 or 4 and 

tracking by 3, 5, 6 or 7. The above plot can be re-written, with T and T 

representing tracking and non-tracking respectively. Although the example used 

here assumes 2 "hits" out of " any successive observations (ie 2 signal 

returns out of 3 produce 1 states by crossing the detection threshold), other 

radars may use algorithms which use a larger number of observations (n) and 

. require more hits (k). The values of the transition matrix at equation 35 

will change accordingly. Performance prediction of a radar with unknown tracker' 

processing characteristics will require exploration of a range of values for 

nand k. The technique used here is known as a 'sliding window' algorithm. 
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j T T 

0 1 2 4 3 5 6 7 
i 

0 q P 

1 q P -T 
2 q p 

4 q P 

3 q P 
T 

5 q p 

6 q p 

7 q p 

p = p (000) 3 
0 

=q 

p = p (001) = p = P4 
2 

= P'l. 1 2 

P = P (011) 2 
2 

= P
5 

= P6 = p q 

P
3 

= P (111) = p3 

24. If each quadrant (ie TT, TT, TT and ~) is taken separately: 
. (:rOINT" "1I..oM8-<~'T1'S) 

a. TT = P (T and T) Tracking to Non Tracking. Starting in a 

tracking state, ie 3, 5, 6 or 7. Moving from state 3 to 

state 1. P (of being in state 1 at (time t) x P (transition 

from state 3 to state 1 at t + 1) • 

2 2 2 
P3, P3,1 = P q x Cl. = P 'l. (p3 x q) 

The only other non-zero term is P
5 

x P
5

,2 

2 2 2 
=P'l.X'l.=P'l. 
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• P (TT) "1:P.P •. 2 2 
• • l. l.J 

.. 2p q _~ _____ (27) 

i, 3, 5, 6, 7 

j, 0, 1, 2, 4 

b. TT .. P CT and T) - Non Tracking to Tracking. We have 

• 

i, 0, 1, 2, 4 

j,3,5,6,7 

c. TT .. P (T and T) - Tracking Maintained. Six items are 

'considered 

• 2 ( •• P (TT) .. 1: P. P .... P 2pq + 1) 
l. l.J 

.. i, 3, 5, 6, 7 

j,3,5,6,7 
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d. TT = P (T and T) - Non-Tracking Maintained 

3 2 2 ( 2 = (q + pq ) + (pq x q) + pq x q) 

••• PTT = E P. P •• = q2 (2f'1+ 1) 
1. lJ ¥ 

_______ (30) 

i, 0, 1, 2, 4 

j,O,l,2,4 

25. The transition matrix is that of conditional probability. 

a. To get the entry for Tr, start in state T and finish in T 

if peT) = P (TT) + P (TT) 

222 
= P 9 

2 2 2 ( 2p q + q 2pq + 1) 

_________ (31) 

b. Similarly for P (T/-r)then P ( ... /r)= : gp 

_______ (32) 



c. For p(.{.) then, 

p (TT) P (TT) 
P (T) = P (TT) + P (TT? 

2 P (:p'1+ 1) 

d. Finally for P (T/f) then, 

P (TT) '12 (2P'1 + 1) 

(T) = , 

P 2p2'12 + '12 (2p'1 + 1) 

Giving the matrix, after cancellation: 

Initial 
State 

T 

-T 

Final State 

T 

2p'1 + 1 

2l + 2,p'1 + 1 

2p'2 

2l + 2P'1 + 1 

From matrix above PT,T = 1 - P1.'T 

T 

2 2 
9. 

2 2q + 2p'1 + 1 

2p'1 + 1 

2l + 2p'1 + 1 

( 34) 

. 

= 2p'1 + 1 _______ (36) 

2'12 + 2p'1 + 1 

26. The probability of Obtaining a number of successive detections N is: 
(tt.t.cl",,,,ho..1) 
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2q2+2Pq+1 
_____ (37) 

The mean track length (taken from the geometric distribution at (3&» and 

meauured in terms of the number of successive detections is plotted at Fig 6. 

L = 
2q2 + 2pq + 1 

2q 2 

P 1+-= q ______ (38) 

27. From the above, the probabilities of interest are; '" Stlt'l'l'M') (GI\..{W~ I-. 
.... Co....t'...:..~ ";r'-k'~ ~ .... +r~ '" cUc-lMdJ:-

_......,.. ____ (39) 

~ (no tracking) = q3 + 3pq2 _______ (40) 

PRACTICAL INTERPRETATION 

28. Each detection is of course dependent on the signal/clutter ratio, both 

of which are fluctuating. In the first case this is due to target RCS 

variations (glint) and secondly as a function of the clutter level being 

simultaneously received. Swerling and Rayleigh distributions {229}, and 

Heidbreder and Mitche11 {230} show that lognorma1 distributions may be 

applicable to certain types of target. 
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29. The probability of an integrated group of N signals (with noise 

samples) exceeding a threshold Vt has been examined by Powell {231}. 

For the distribution (Swerling 3) this can be approximated with four 

degrees of freedom as: 

)

N-2 [ 

= (1 + i~ r - 2 (N - 2jl ex:pf V.t J--(42) NOAV . 1+ NOAV 
2 

and may be compared with the other Swerling distributions with two degrees 

of freedom (from p(o) = 1 expo 
o 

expo 

(- ~)): 

(- l·+V;OA;) -----------------------(43) 

30. At short ranges NOAV ~, therefore in equations (42) and (43) above 

At longer ranges No will decrease. I~ strong signal peaks are 

received from time to time from targets at range they may nevertheless 

exceed Vt ' even though the required target mean signals are below detection 

threshold. A critical or "crossover" range must exist, where P" '" P" , 
"2 '" "4 

at which this takes place. By further approximations taken over shorter 

. ranges the "crossover range" may be deduced which shows that a low 'noise' 

target is more easily detected at short ranges, while a noisy, peaking or 

spiky target is more easily detected at long ranges. Using the range at 

which signal/noise ratio is I (0 dB), PH < P when p < 1.256 ie: 
2 N4 

R = 1.059 ~Vt -NN + ~a R(OdB) ------------------------------ (44) 
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31. wi th. FAR = 10-6 and N = 1000 the cros.sover range is O. 835RCdB ) . 

Beyond this range the target signal fluctuations enhance the probability of 

detection'and hence tracking. If ReOdS ) is approximately twice the detection 

ranGe for P
det 

= 0.9, then R (crossover) is ~ l.TR(P
d 

= 0.9). 

It is seen therefore that a large signal variance does not always coincide 

with a high probability of detection. 

32. Although this approach may be acceptable for certain aircraft targets, 

it is thought that they must exhibit fairly angular structural shapes, ie 

mutually orthogonal reflecting surfaces, in order to produce the large 

dynamic range of "spiked" returns. The technique is probably not 

applicable to small targets with smooothed profi10s. 

33. In all cllses there is a crossover range beyond which fluctuations 

enhance P
d

, but inside \,hich fluctuations detract from Pd' Vlhon 

integration number N is plotted against crossover range, the follo;,ing applies: 

a. La\'! Integration Numbers e.g. Acquisition raciars, crossover ranee 

is low. 

b. High Integration Numbers e.g. TrackinG radars Pd at corssover 

( R· 
is at greater range 0.75< R < 0.90). Vii thin this range a closing 

o 
small. target Hill be more difficult to track if it is "spiky". 
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ILLUMINATED SURFACE ARFAS AND TERRAIN CURVATURE 

ANNEX F TO 
"THE PROBABILITY OF DETECTING 
AND TRACKING RADAR TA~GETS IN. 
CLUTTER AT LOW GRAZING ANGLES 
DATED .3 0 SEPTEMBER 1982 

1. Reference is made to Figure 1, where the average gradients of a surface-

illuminated tilted 'facet' between adjacent matrix terrain spot heights 

(ABCD) are: 

a. In Range 

(1) 

b. In Azimuth 

(2) 

2. . The simple facet shown can be taken as the illuminated area beneath the 

resolution cell for shallow surface gradients. fl~lthough it is realised 

that the radar energy will also strike the surroullding area, for the following 

statistical studies the 3dB area is taken. Sidelobes are ignored since only 

sharp-beamed tracking radars are considered here. Facet range (along beam 

boresight) gradients will cause radar reflectivity to vary appreciably due to 

the changes in the illuminated surface area, as seen with the aspect 

variation at Figure 2. The critical condition for a reduced area in the 

range direction (as T, SE and eA vary) is given by (3) and (4). R is 

1 11 taken as the radar range to the facet centre, R and R as range to the 

nearest and furthest cell edges respectively: 
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QR(CRIT) = Arctan 

QAZ(CRIT) = Arctan eER = Arctan eE 
eAR eA 

(4) 

3. If the illuminated facet is assumed to be a flat plane (ie no significant 

undulations within the area bounds) its area can be calculated for any tilt 

angle within the volume of the result ion cell. Only those terrain facets 

which are tilted towards the source of radar energy are assumed to create 

backscatter. These are declared "illuminated" by the computer program. For 

this to occur Q
R 

must be a positive value or zero. 

4. Non-Critical Slope Values. For a simple set of conditions (Fig 1) 

aR < QR(CRIT) and aAZ < aAZ(CRIT); the average dimensions of the sides of the 

illuminated area areT/cos Q
R 

and ReA/COS aAZ ' More.precisely, account should 

be taken of the accurate lengths of all four boundaries of the illuminated area 

by allowing for the slight beam divergence in azimuth; such that RleA/cos aAZI 

11 < R eAZ2 

The basic shape is a regular quadilateral with maximum possible side-lengths 

for aAZ(CRIT) > aAZ )0, QR(CRIT) > aR )0 will be: 

~ ReA/COS aAZ2 

Front ReA/cosaAZ2 
(5) 

Sides T/COS aRl 0:- T/CeS aR2 
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Giving average azimuth ~ Range product area: 

Area = T (cos aRl + cos aR2 ) ReA (cos aAZl + cosaAZ2) 

4 cos aRl cos aR2 cos aAZl cos aAZ2 

5. critical Slope Values. Figure 2 shows the effect of 

(6) 

(7) 

Calculation of illuminated areas for any condition thus becomes more difficult 

than the first case, since facet tilt either results in an irregular hexagon 

(figure 4) or a reduced area in which the plane does not cut either the range 

boundaries or the azimuth boundaries as at Figure 3. For calculative purposes 

the area at figure .4 is taken as a plane quadilateral TD1QBll and the area 

within the resolution cell is defined by TUVQRS (ie TD~Bll less the corner 

areas). Calculations are detailed at para 17 below. 

6. Terrain data base interpolation can provide the spot heights TD1QBll 

if required. However, as will be shown below, these are not strictly 

necessary if facet gradient and aspect can be calculated from nearby data 

matrix points without the need for interpolation. In any event spot heights 

U, V, R, S cannot be obtained by simple interpolation. 

F-3 



-----------~-~--~-.. -~~--~--- ~-.. --------------------

7. Gradient and Curvature. Several techniques for the optimum calculation 

of surface parameters have been developed by geomorphological researchers as 

part of their studies for soil erosion, drainage and similar requirements. 

Such a study is considered at {232}, giving a demonstrably satisfactory 

method for estimating both surface gradient and curvature derivatives directly 

from the altitude matrix. 

8. To apply this to radar here, using gradient to investigate clutter 

returns (as a function of facet slope and aspect) and curvature on a larger 

scale (for diffraction investigations); involves the inclusion of the eight 

nearest spot heights surrounding the centre of the required cell - which 

is the centre of the radar resolution cell "footprint". 

9. The central spot height with the four nearest points define simple 

gradient, with the furthest four points additionally for curvature. It is 

assumed that the basic matrix dimensions are adequate to produce the 

required accuracy. It should be noted that gradient or curvature 'maps' 

produced by this method cannot be compared with others unless the matrix 

spacing is similarly defined. 

10. Grid Definition. A nine-point altitude sub-matrix is defined at 

Figure 5a. By using the full quadratic a complete surface description can be 

obtained at equation (8). Gradient is more accurately calculated using 

9 data points for the coefficients at eqns (9) to (14). 
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A = ax2 + by2 + cxy + dx + ey + f (8) 

Using the notation defined for the matrix of spacing (m) the coefficients ~re 

calculated as follows: 

b = A1 + A2 + A3 + A7 + A8 + A9 - A4 

6m2 

c = A3 + A7 - A1 - A9 

4m2 

d 

e = 

= A3 + A6 + A9 - A1 - A4 - A7 
6m 

A1 + A2 + A3 - A7 - A8 - A9 
6m 

f = 3(A4 + A2 + A8 + A6 ) - (A1 + A3 + A7 + A9) + 5A
5 

9 

(10) 

(11) 

(12) 

(13) 

(14) 

Hence gradient, aspect and profile convexity are obtained respectively from: 

2 2 ~ grad = arctan (d + e) deg 
(15) 

or arctan (d cos 8 + e sin 8) 
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e 
aspect = 8= Arctan d deg 

Conv 
2 

= - 200 (ad 

e2 + d2 (1 
deg 

(16) 

(100 m)-l (17) 

(for lOOm matrix) 

11. Frequency Distributions. Gradient frequency distributions were also 

considered by the author as a possible aid to the overall prediction process 

for a given area. Gradient steepness distribution shows an increase with altitude 

with moderately strong correlation, but in a non-linear way {232}. In general 

no single transformation is found to be universally valid {233J. 

12. Therefore although it is possible to statistically summarize a surveyed 

area in terms of gradient frequency distribution, the results would be 

site-specific. However it seems quite possible that a frequency distribution 

for an area might be representative (within reasonable limits of judgement) 

of another area, unsurveyed, but with similar general characteristics. 

13. Convexity distributions tend to be balanced by concavity (ne.gative 

convexity) since the mean or medi~~convexities tend to cancel {232}. 

Profile convexity has a weak positive correlation with altitude. 

14. Gradient and Aspect Examples. Gradient calCulations present no 

problems using the above method, but aspect values have orientations which 

depend upon simple rules developed below. 

15. Aspect. It is seen that the actual aspect value can be d.efined with 

respect to North or with respect to the radar beamboresight. With respect to 

the beam boresight the relative direction of aspect depends upon the 

arithmetic sign combination of both numerator and denominator of eqn (16), as 
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seen at Table 2; where the terrain surface is in the quadrant 0 to 900 

(wrt North). Similar tables can be deduced for other quadrants. The 

slope reflectivity studies in this report were made using the 0~900 

quadrant. Actual angle "Aspect" .:t (90- angle of Radar' (wrt N)) = 0 in 

this quadrant. 

Table 2 Determination of Terrain Aspects 

Serial e d Orientation 

1 + 0 + 
2 0 - -. Negative Slope 

. 

3 0 + +-

4 - 0 t Negative Slope 

5 + 1 '-
6 - + '" 
7 + + ]I Towards Radar 

8 - - Jf Negative Slope 

9 0 0 Flat Terrain 

16. Serials 2, 4 and 8 produce radar shadowing(ie zero backscatter is 

assumed), aspect values close to serial 7 would be expected to give a 

maximum backscatter, serials 1 and 3 intermediate levels and serials 5 and 

6 minimum levels. Absolute values of aspect (degrees) are measured as shown 

at figure 5b. 

17. Calculation of Area - First Critical Case. The illuminated facet at 

figure 3 can be calculated as follows, since once aspect (e) is known this 

also corresponds to the angle e marked on the diagram. The conditions are 

aAZ > aAZ(CRIT) and aR < aR(CRIT) then: 

Since TS = or --' cose 
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Quadrilateral PQST 

(18) 

R ~ mean range, as before. 

18. Calculation of Area - Second Critical Case. Consideration was given to 

the use of Direction Cosines since the required area of a surface can be 

calculated with respect to its normal position. 

<lA 

dS 

<lA = dS cos e Terrain ~ = (1, m, n) 

Radar Beam1>l ~ (A, \l, y) 

Cos e ~ ~l~ = (AI + \lID + yn) etc •••••••• 

But to produce the required area a three-co-ordinate direction cosine system 

would be needed and the required terrain co-ordinates are not readily accessible 
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for the typical, but awkward shapes, as at figure 4. Hence in the long term 

it was simpler to use trigonometric methods. 

19. If QAZ > QAZ(CRIT) of if ~aR(CRIT) the side 'I'Dl (fig 4) will cut AD 

and with aR < aR(CRIT) then QDl must cut ~C. Hence the quadrilateral 

'I'DIQB11 . . 1 . th t' . t 1S a terra1n pane pass1ng rough the resolu 10n cell. P01n s 

UVSR are positioned dependent upon aR, aAZ ' It is points TUVQRS which 

define the illuminated area and which are not directly available from the 

spot height data base. The plan diagram accentuates the beam divergence, but 

for practical purposes, with small values of T, sides UA, CR are assumed to be 

parallel. Aspect is calculated from the terrain matrix - it's direction is 

shown in the diagram (in direction OBll since this is the lowest terrain point). 

Gradient is available from eqn (15) and is angle 01 BIl 011. a
AZ 

and a
R 

are computed as'Arctan (eqn 12) and Arctan (eqn 13) respectively. 

20. From the figure, if the centre of the illuminated terrain is also the 

centre of the resolution cell, then 

1 11 Area UD V = Area SB R. 

and TBll = eAR (19) 
Cos QAZ 

(20) 

hence UT = U01=Bl1R=RQ = T (21) 
2Cosa

R 
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giving TS = Sin (J.AZ Cos(J.R 

ReECos(J.R-TSin(J.R 

Hence Side SBll = eAR 
Cos(J.AZ 

(22) 

(23) 

from (19) 

(24) 

Area of both triangles is given by the product of eqn (24) and eqn (21). 

Subtraction from eqn (20) gives the radar illuminated area: 

A = TeAR 

Cos(J.RCos(J.AZ ~ (

eR 
- T A -

2CoSelR COSel AZ 

It is therefore possible to obtain the required area without direct 

(25) 

knowledge of the terrain spot heights which define the illuminated area 

spot heights. 

TERRAIN CURVATURE APPLIED TO DIFFRACTION CONDITIONS 

21. Reference is made to Chap 7 eqns (15) and (16), which define the 

criteria for approximating the terrain as a diffracting knife edge. The 

intention here is to use the convexity calculation at eqn (17) above to 

estimate the curvature - and then to test it against the criteria. By 

taking typical dispositions for target, obstacle and radar site together 

with the matrix values at figure 5a, example calculations are: 
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From Fig 5a,coefficients are: a = -0.00055 

b = 0.001833 

c = 0 

d = _5_ 
600 

e = - 30 
600 

f = 35.5 

hence from eqn (17) convexity = 0.356 deg (lOOm)-l 

22. The criteria for approximating an obstacle as a knife edge can be 

expressed from known obstacle radius or diffraction angle 6. However, 6 

is normally available only if a complete set of conditions are known (ie 

range from radar to obstacle, and beyond to the target). Converting the 

above value to the rate of change of slope (~) by taking the tangent at 

In. ..1' r. c....w,.):...,e. Dr ... bst-ucle.(t>L): 
2 successive matrix points; 1.J",e.1"4 " .. s """"Ulf or r 

R = 180m 
~ 

= 180 x 100 
0.356" 

Clearly the rate of change of slope is insufficient to produce 

diffraction. R is excessively large, as shown by the typical values 

at Table 1. Typical terrain profiles obtained from the terrain database used 

for slope reflectivity reported at Appendix 1 to this Annex had limited azimuth 

cover. In practice a full 3600 sweep would be required to produce an area 

assessement. If it is found that the correct conditions exist to aid tracking 

on a small % of occasions then the probability of tracking is increased for the 

area in question eg PTL = PTL x Difj" Factor where Diff Factor >1. An example 

diffraction plot is at Figure 6. 
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Table 1 TYpical Radar. Obstacle and Target Conditions 

Tgt Ht Radar Obstacle Obstacle Target RadiuB 
Ser (m) Ht (m) Ht (m) Rng Km Range (m) (m) 

htgt htx \ dl dl + d2 R 

1 70 0 100 10 15 7.46 

2 70 15 100 10 15 19.7 

3 70 20 100 10 15 22.17 

4 70 30 100 10 15 27.0 

5 70 30 100 5 10 7.6 

6 20 0 50 10 15 60.0 

7 30 0 50 10 15 82.0 

8 30 0 30 10 15 2221 

9 40 0 30 10 15 480 
--:-

Using the. notation at Chap 7. 

a = Arctan ht - ht ( 27) x 
dl 

13 = Arctan ht - ht 
gt ( 28) 

d2 

Diffraction Angle e = a + e 

23. Retracing the steps to obtain e for R = 16094 gives e = 0.08880
• 

Using the scenario at Table 1 serial 8, the target would have to climb by 

approximately 7 metres (ie new target height 37~) if this larger terrain 

radius existed at the same obstacle range. The conditions at Serial 8 are 

such that the target would be just visible by direct sightline at an altitude 

of 45m. 
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APPENDIX' 1 TO ANNEX F TO 
"THE PROBABILITY OF DETECTING 
AND TRACKING RADAR TARGETS 

. IN CLUTTER AT LOW GRAZING 
ANGLES" 

Dated SEPTEMBER 1982 

STATISTICAL ANALYSIS OF RAW RADAR MEASUREMENTS 

TO OBTAIN A DISTRIBUTED CL~'TER MODEL OVER 

SLOPED TERRAIN 

1. Full statistical analysis of the raw radar measurements commenced 

after initially correcting the range (see 'para 5 below), with the formation 

of a multi variable array containing some 20k of measured and calculated 

values. All data . reduction programs were written by the author 'in 

FORTRAN to run on the RAF College DEC 20 computer facility. Initial , 

analysis was backed by a terrain data bas~ interpolated (tediously) by 

hand from non-standard survey maps specially provided by the Mapping and 

Charting Establishment at Tolworth with a contour notation at 5 metre 

intervals. By photographic enlargement it was possible to interpolate 
, , 

matrix spot heights to within ~ I metre or better, subject to the 

original accuracy of the .contours. 'Using 50 metre, grid spacing the 

data base produced extends for 9 square kilometres. 

2. For calculative purposes, given the range and azimuth bearing of each 

radar discrete clutter signal, it was thus possible to extract the 

corresronding terrain data using the,matrix method· for terrain slope and 
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TRUE -c._ " 

-2 (J !", :"1 

RANGE SiN CLT ERG TERR ASPECT (J m AR~A GRAZE dEs 
;(m)" (J (Dee) SLOPE (Deg) (!" ) (re;:) , 

6125 21.7 0.5185 58.5' 6.322236 12.28579 0.0008034 645.3984 6.162382 -30.9507900 
6130 20.7 0.4132 58.5 " 6.322236 12.28579 0.0006397 645.9253 6.162395 -31.9402200 
6135 19.7 0.3294 58.5 6.322236 12.28579 0.0005096' 646.4522 6.162408 -32.9281300 
6140 22.8 0.6690 58.5 6.322236 12.28579 0.0010340 '646.9790 6.162420 -29.8546400 
6145 29.0 2.8330 58.5 6.322236 12.28579 0.0043752 647.5059 6.162433 -23.5899700 
6150 35.3 12.0000 58.5 6.322236 12.28579 0.0185176 ' 648.0327 6.162446 -17.3241600 
6155 31.3 4.8210 58.5 6.322236 12.28579 0.00743)4' ,648.5596 6.162459 -21.2881300 
6160 20.3 0.3788 58.5 6.322236 12.285~9 0.0005836 ",' 649.0864 6.162471 -32.3389300 

"'1\ 6165 9.2 0.0297 58.5 6.322236 12.285 9 0.0000458 649.6133 6.162484 -43.3902200 
\ 6100 22.3 0.5859 57.8' 6.322236 11.58579 0.0009115' 642.7642 6.176984 -30.4022800 
tJ 6105 20.0 0.3438 57.8 6.322236 11.58579 0.0005344' 643.2911 6.176998 -32.7210200 

6110 17.7 0.2018 57.8 6.322236 11.585p 0.0003134 643.8119 6.177012 -35.0384200 
6115 15.3 0.1184 57.8 "6.322236 11.585 9 0.0001838 644.3448 6.177026 -37.3576700 
6120 13.0 0.0695 57.8 '6.322236 11.58579 0.0001078' ' 644.8717 6.177040 -39.6748800 
6125 10.7 0.0407 57.8 6.322236 11.58579 0.0000632 645.3985 6.177054 -41.9927400 
6130 8.4 0.0239 57.8 ' 6.322236 11.58579 0.0000371' " 645.9254 6.177068 -44.3105800 
6135 6.0 0.0140 57.8 6.322236 11.58579 0.0000217 646.4522 6.177081 -46.6286000 
6140 7.2 0.0182 57.8 6.322236 11.58579 0.0000283 646.9791 6.117095 -45.4861700 
6145 11.0 0.0445 57.8 6.322236 11.58579 0.0000687 647.5059 6.177109 -41.6288400 
6150 14.9 0.1083 57.8 6.322236 11.58579 0.0001671 648.0328 6.177123 -37.7696900 
6155 18.7 0.2635 57.8 6.322236 11.58579 0.0004063 648.5597 6.177137 -33.9116900 
6175 13.8 0.0870 59.5 6.299493 1.60725 0.0001338 650.6391 6.283281 -38.7357100 
6180 7.3 0.0193 59.5 6.299493 1.60725 0.0000297 651.1659 6.283292 -45.2723500 
6185 B.O 0.0229 59.5 6.299493 1.60725 0.0000352 651.6928 6.2B3304 -44.5345000 
6190 12.6 0.0668 59.5 6.299493 1.60725 0.0001024 652.2196 6.283316 -39.8955200 
6195 17.3 0.1946 59.5 6.299493 1.60725 0.0002981 652.7464 6.283327 -35.2560200 
6200 21.9 0.5668 59.5 6.299493 1.60725 0.0008676 653.2733 6.283339 -30.6166500 
6205 26.5 1.6510 59.5 6.299493 1.60725 0.0025252 653.8001 6.283351 -25.9769800 
6210 31.2 4.8090 59.5 6.299493 1.60725 0.0073495 654.3270 6.283362 -21.3374000 
6215 30.2 3.8710 59.5 6.299493 1.60725 0.0059204 654.8538 6.283374 -22.2764900 
6220 27.0 1.8500 59.5 6.299493 1.60725 0.0028228 655.3806 6.283385 -25.4932200 

__ 6105 32.5 __ 6.07.40 59.5, 6.299493 1.60725 0.00.94425 .643.2635 6.283525 -20.2491400 

TABLE 1 SAMPLE DATA ARRAY 



aspect detailed at Annex F. Illuminated radar footprint size could then 

be calculated, taking into account resolution cell size, slope and aspect 

and. (by mean terrain height) the actual arrival angle of the radar wave­

front. Generated data examples are at Table 1. 

3. Clutter returns were processed radially (ie incrementally by increasing 

range at 5 metre steps) and incrementally in azimuth at either 0.3 or 0.40 

steps. The geographical area was chosen to include both flat and sloped 

terrain. For convenience this was divided into 4 sectors which contain 

predominately 'sloped' terrain and one sector which is mostly 'flat' 

- although it will be shown below that terrain is rarely flat in the 

scientific sense. Data was analysed by sectors and as an integral data 

bank.. Figure la is -" photograph ,with OS map showing the location of the 

measurements, at Figure lb. 

4. Generally the extent of range measurements did not greatly exceed 

7 km as indeed many would fall in shadow at this range. behind the hill 

ridges; as seen on the map. The terrain, ~s viewed in the photograph 

along the boresigh~contains scattered trees, but not in sufficient 

density to classify as 'forest'; for the purpose of backscatter 

studies the terrain is clearly 'rural'. There are a few features which may 

exhibit specular reflector .characteristics in the form of small buildings 

- and possibly in places the railway line or associated fencing. It is 

difficult to specify how much of this is masked by the earth railway 

cu~tings. However, much of the area of interest was at a higher angle 

of elevation than these reflectors - or excluded by the sharp beamwidth 

of the trials radar. It should be mentioned that some of the analysis 

was made by filtering out spurious values, taking these to be 'outliers' 

in the statistical sense. 



5. It is' re-iterated,at this point that by assuming 3dB aerial beamwidth 

limits the backscattered energy is taken to be that only from the idealised 

surface "footprint" area. Clearly any sidelobe effects or backscatter, 

(for example from a large reflector just outside the 3dB beamwidth) will 

contribute in some instances. However, it is proposed that although 

this instance can occur they are likely to do so with relatively low 

incidence. As can be see~ the area immediately ahead of the radar is 

clear of such obstacles. Further, th~ terrain chosen is more or less 

homoGeneous at any given time, at the least for several 'footprints' 

dimension in both the range and azimuth directions. This was prove~ by 

making a correlation study between adjaoent footprints in both along­

boresight and across-boresight directions. 

EXPERIMENTAL ERRORS AND LIMITATIONS 

6. Although the raw radar signal measurements were not taken by the 

author, the prevailing conditions are known. Wind was light; weather 

'fine and time of year - June. Other information suggested the possibility 

of range errors for which a correction would be necessary. Clearly any constant 

range error would cause the incorrect terrain data to be coupled'to each 

,backscatter reading - hence an incorrect grazing angle model could result. 

7. At the outset the areas selected for distributed clutter analysis 

were especiallY chosen to avoid any major man-made specular reflectors 

such'as pylons or metal buildings which might contaminate the 

statistical distributions. It is of COurse realised that such reflectors 

may occur when 'a tracking radar is deployed in practice. The absence of 

a really distinct reflector to act as a range calibrator in the sector of 

intere$"o~ resulted in an additional computation task - that of producing 

several additional data files, each with an iterative signal strength 



shift relative to range along all azimuths, while simultaneously 

checking correlation values. These shifts were made in 5 metre increments 

both towards and away from the radar with correlation checks between several 

variables on each occasion. Although there was reason to believe that an 

error of up to 100 metres might exist, the plot at figure 2 most 

convincingly shows a range under-reading by only 5 metres. All data was 

therefore range-corrected by +5m before statistical analysis commenced. 

Table 1 shows example data after processing to obtain a for g-;ven terrain 

conditions. 

ERRORS IN CALCULATE D TRUE GRAZING ANGLE 

8. True grazing angle comprises 2 main components. The first lS obtained 

by calculation of the terrain slope and aspect angles, with the remaining 

part determined by the angle of arrival of the wave front from the radar. 

Slope and aspect are critically dependent upon the accuracy of the terrain 

data base as is the mean terrain height used in the determination of angle 

of arrival, always calculated at the centre of the radar footprint. 

9. Raw signal amplitudes were corrected at source by a calibrated standard 

at the time of measurement. There may be slight propagation 

errors to apply, disc,ussed at paras 26 & '27 below. 

10. On the majority of occasions terra;in whic,h appears to be flat will 

undulate slightly, giving rise to f~se grazing angles if the mean slope 

is used. Additionally, slope (and h'ence grazing angle) will depend on the 

accuracy of each of the spot heights representing a 'facet' on which the radar 

energy is impinging. Precise grazing angle will also depend upon range, 

earth's curvature, propagation, radar transmitter height; each of which is 

subject to small angular error. Additionally the surface culture varies, er! 

trees (see Chapter 10 page 209). There are 2 ways of considering the 



magnitude of surface error. Either way it is clear th"t t~e effect of 

errors, as a proportion will be greatest at small grazing angles. 

11. GENERAL SLOPE ERROR The magnitude of errors in t~ grazing 

angle ~ can be easily demonstrated by using the example at Figure 3. 

A sinusoidally varying surface with A = 7.5 m and T = 150 m is used to 

represent gently undulating terrain. Ignoring vegetation the surface 

gradient at point P will be: 

~ = tan-1 .<L A sin e 
de 

where P is defined y(P) = 7.5 Sin e, x(P) = 37.58 
90 

hence at any point 

~ = tan-1 0.314 cOS'S 

..... (1) 

• • • •• (2 ) 

12. Accurate grazing angles are therefore not only dependent upon 

the underlying mean terrain gradient, since the true value of ~ can be 

significantly different than that obtained by pure facet geometry 

using spot heights, radar range and radar transmitter height. 

13. Direct energy cannot reach point R, which is shadowed. Point S 

is the highest point to which a direct energy path exists at a grazing 

tangent (i.e. ~ = 0°). If the underlying terrain is flat and the 

elevation angle E is known, e, (which defines point S) will be given 

by: 
I I 

e = cos-1 Itan El 
10.3141 
1- _I 

..... (3) 

If the terrain is sloped, as on Figure 3, pOint S will move to a 

higher point on the curve. 

FI-to 



·14. For example, for E = 2.5° energy will reach S at e = 82°, with 

distance OT = 82/90 x 37.5 m. The surface distance·OS will be 

slightly longer and is the distance over which the wavefront is 

spread, depending upon the resolution cell dimension. At point S the 

true grazing angle is zero. At point 0 the surface gradient is 17.4°, 

hence the value of V is 14.9. Thus, no single value of V is correct 

for the surace illuminated. A mean could be taken (7.45°) which does 

not compare favourably with the value using facet geometry 

(Tan-1 4A = 11.3). 
T 

15. PROBABILITY DENSITY FUNCTION. Only at e = 73.5° will a true 

graze of 2.5° be obtained. If it is assumed that N parallel direct 

energy paths exist from the emitter to the surface then the 

probability of obtaining 2.5° is l in this particular case -providing 

N the resolution cell length ~ 37.5 m. If cell length is increased 

(due to ·larger T), shadowing beyond the point V will eventually occur, 

as shown at Figure 4; where it is seen that the resolution footprint 

could embrace a number of sloped and shado;led areas, dependent on its 

length. By considering changes in the variables A, T, T, E it is seen 

that the pdf will change. In the example shown energy arising at the 

surface between point 0 and 73.5° will graze at a steeper angle than 

2.5°; almost 90% of the energy is grazing at angles greater than 2.5°. 

This leads to the conclusion, that in general terrain observations it 

is likely that "the actual grazing angle from which backscatter is 

measured is higher in value than plane terrain geometry suggests, and 

wOllld reasonably be expected to produce higher backscatter values". 

Practical results will of .course depend also on the finer terrain 

texture and wavelength used. 



·16. For any grazing angle or terrain amplitude and period, mean 

surface gradient and mean true grazing angle, taken over N intervals 

with respect to mean terrain gradient, are respectively given by: 

s 
cp = 1 m _ L tan-1 {.'!- A sin e} ..... (5) 

N 0 de 

and 
s 

1/Jm='!'L ( tan- l {.'!- A sin e} -E) • • • •• (6) 
N 0 de 

17. COMPARISON OF METHODS. A comparison of mean wand mean surface 

gradients calculated from data base terrain spot heights (which 

assumes a plane facet between adjacent values) with the example method 

above show significant differences and confirms the hypothesis that 

backscatter values have almost certainly in the past been attributed 

to incorrect grazing angles. Ranges are those to give grazing angles 

of zero with the A/T ratio shown. 

RADAR SINUSOIDAL POSTULATION PLANE FACET 

ELEVATION RANGE W MEAN MEAN SURFACE MEAN 

E S + 0 W GRADIENT W 

0.5° 0°+ 16.9° 8.54° 11.3° 10.8° 

1.5° 0°+ 15.9° 7.95° 11.3° 10.8° 

2.5° 0°+ 14.9° 7.45° 11.3· 10.8° 

Error values will clearly vary with terrain conditions and the above 

figures are used only to show that a more rigorous treatment is 

necessary in studying and representing terrain than is at first 

apparent; hence the importance placed on terrain studies at Chapters 

2, 10 and Annex F. In practice, with typical ranges of 6 km, E will 

PH' 
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be very small unless the mean terrain height is about 'ZSO'metres above 

the radar. 

18. It is seen that the method shown above for illustrative purposes 

for obtaining true grazing angle would be difficult to use for 

experimental measurements -since a sinusoidal approximation may not be 

representative. Further there are usually insignificant terrain data 

to set up accurate concavity and convexity profiles along any specific 

azimuth -especially with aspect changes and discontinuities with 

shadowing. However, the concept shows how easily errors can occur in 

mean grazing angle measurements within the radar footprint even under 

experimental conditions. 



19. Effect of Matrix Errors. It was argued earlier that the matrix method 

of terrain ~epresentation was preferable for practical as well as 

experimental expediency, despite, the greater overheads in digital storage 

requirements. 

20. Returning to the 2 components of true grazing angle which change due to 

spot height errors, sensitivity of each is outlined below, taking a spot 

height error of 6h
t

. True slope angle ~s seen from the'rada~ is slope times 

,(cos e), where e is the aspect. Sensitivity' of aspect change with 6ht 

is important since it is not constant"and depends significantly upon 

errors being across, rather than along, boresight. "A small error across 
-

boresight will significantJy change e, with error magnitudes proportionally 

greatest at low slope angles (both along and acrossj,and least when near 

slope angles are highest. 

21. The reader is referred to Annex F (eqns 9 to 16) together with diagram 

5 at page F17, for~atrix slope and aspect methods; and to Chap 10 page 

211 for the equations for b"8am bore sight angles. 

22. Beam Boresight Angular Errors. Referring to Chap 10 Eqn 8 and applying 

a 6ht of 2:. 1 metre, each of the 3 terms, wh'en examined, have differing 

significance. When h
t 

- h
t 

is very small or zero, 6ht can impose a 
x 

shadow situation, a small gradient where non existed before;or can change 

a shadowed situation into a flat terrain, Shadowed'areas are detected 

and discarded by the computer program, whereas some shadowed areas should 

be included if errors exist; while other areas included should have been 

deleted. There is no reason to believe that instances of positive or 

negative errors predominate, and over the large amount of data they may 

well cancel for statistical purposes. The magnitude of beam boresight 

rHo 



errors, if they exi:;t, was calculated to be approximately + 0.010 ie 

- S' -1 llht 
- ~n R 
an error of 

where llht = ~ 1 and R = 6 Km. This holds at approximately 

:01
0 

for each metre of error in spot height at the centre of 

the footprint. 

23. Slope Errors. Slope is calculated by using 8 of the 9 spot heights 

representing a group or 'facet' in which the illuminated footprint falls. 

The facet is dimensioned 100 m x 100 m with heights at 50 metre intervals. 

Slope (given by Arctan Id2 + e2),is thus susceptible to errors in e or d 

or both. It is assumed that 1,2 or 3 errors may occur in any se~;of 9 

since the spacing of contours (though at 5 metres) are spatially spread 

across the terrain such that it is considered that at least 80% of the 

jEterpolated figures are good, and probably more so. Three errors is 

taken as a worst case condition with the greatest effect of 3 errors when 

all 3 occur along the same 'edge', thus having greatest effect on e or d. 

Errors are approximately constant for changing slopes and are summarized 

at Table 2; 

TABLE 2 SLOPE ANGULAR ERROR DUE TO + IM SPOT HEIGHT ERROR 

Max Angular Error (Deg) 

Single Error in 'Corner' ~ 0.20 

Single Error (Centre-side) ~ 0.19 
,'; ,', , 

Two Errors (same side) ~ 0.38 
• 

Three Errors (same side) ~ 0.56 

. -. 
f\-lJ 
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24. Aspect Errors. Aspect e = Arctan e 
d 

, hence the change in ratio 

is important, with an increase in e relative to d altering the aspect acros~ 

boresight. The magnitude of aspect errors cannot be represen~ed in simple 

form since a,change in any of 9 positions affect both slope and aspect. 

At extreme cases a 1 metre change in one COrner can swing the aspect 

angle from 140 to 8
0 but fortunately this has little overall effect on true grazing 

anele, as (slope (Cos e)) does not change much for low angles of e. 

Aspect angles reached a maximum of 540 during the experimental analysis, for 

the terrain measured, and spot hei~ht errors cou"ld have produced this" 

value with an error of:' 100. Hence Cos e would be represented as 0.58 

where addition to the slope error of: say 0.20
, described at Table 2, causes 

the multiplier Cos e to be significantly in error. 

25. Combined 'Errors. ' Assuming a boresight error of 0.01
0 

(para 22), 

slope errors as shown (Tabie 2) and typical aspect errors as discussed 

o 
(at para 24), the combined errors can be >' 0.25 for a single error and, 

exceed 0.50 for 3 errOrS. In practice errOrS may have occurred in various 

senses and combinations, however if they inevitably act in the same 

direction on SOme occasions the result could be as shown at Table 3. 

TABLE 3 COMBINED ERRORS 

Corre,ct 1 2 3 

Error Errors Errors 

" 

Slope (Deg) 1.14 1.34 1. 52 1. 70 

Boresight (Deg) 1.0 1.01 1.01 1.01 

Aspect (Deg), 540 440 440 400 

, 

Overall l/J 1.67 1.97 2.10 2.31 
, 

fH'L 



26. Other Errors - Refraction. There is a slight change in refractive 

index between ground (radar) level and terrain surface levels which will 

give small angular pointing errors. As explained at Chap 8 the radar 

elevation angle is always slightly higher than the target at which it 

is aimed. However, for the purposes of clutter measurement here, elevation 

angle is not measured by the radar aerial position but by goemetry 

through radar range and terrain data base. Even though the radar energy 

is following a curved path the range measurement is assumed to be correct 

over such a short distance. Ray curvature will be slight and cause 

energy to impinge onto the surface at a slightly greater angle. The overall 

effect of refraction is taken to be negligible for the experimental 

readings. 

27. Other Effects - Diffraction. Although the distributed clutter analysis 

~as intended to be upon terrain backscatter from sloped and flat terrain, 

because of the extent of the area,flat terrain raised above sea level ie 

as small plateaus, appeared as a small negative slope during the analysis. 

On these occasions complete shadowing did not occur. They were detected 

by the program and flagged correctly on the data output. All fell in the 

range-O.OOOlo to 1.2
0 

negative slope, but all produced backscatter, 

presumably due to diffraction effects. Backscatter values obtained did 

not indicate shadowing of the main lobe with residual side-lobe or wider 

beamwidth collection of back-scatter (>3dB), but remained substantially 

similar in value to the forward sloping terrain values which immediately 

preceeded and followed the negative slope values. InSUfficient of thes~ 

were available to carry out a full statistical and diffraction-analysis, 

however, a rough check has shown changes in backscatter median of the 

order of 10-14 dB, and could reasonably correspond to the diffraction 

loss over the ridges. 



VALIDITY OF BACKSCATTER POPULATION ANALYSED 

28. Homogeneity of Terrain. It is reasonable to assume for rural terrain 

that a high spatial correlation value should be obtained from adjacent 

resolution cells (both in the range and azimuth directions). Spatial 

correlation was tested over a sample sector at azimuth increments of a 

beamwidth and in range for both 5 and 10 metre increments. Correlations 

were respectively 0.94 and 0.83, indicating also a consistency of measurement 

of backscatter since values were measured at different times in practice - less 

so in range but significantly so in azimuth. 

29. It was not considered necessary to validate terrain homogeneity further, 

although even higher correlations would have been likely if adjacent cells 

with like grazing angle had been isolated and compared. As expected the 

terrain selected is truly representative of 'rur-al', with scattered isolated 

specular reflectors within a broadly representative backscatter range of 

__ ~20 to -4 -'2. 1 
- 0 dB.'" '" 

30. The point should be made that sloping terrain does not necessarily imply 

a high grazing angle, since the actual arrival angle of the radar energy 

also depends on the relative radar transmitter height and elevation 

angle. Hence some of the lowest grazing angles are obtained at the crest of 

hills. 

31. All radar measurements including calculated results for grazing angles, 

areas, ranges and aspect angles were thoroughly analysed in a number of 

ways: 

a. As a total data base. 



b. As a total package but rejecting outlying values. 

c. By examination of means and medians at grazing angle class 

intervals. 

d. By grazing angle steps by arbitrary division into 20 and 30 

steps. 

e. By contrasting data from different azimuth sectors. 

f. By comparison of data from adjacent radar resolutions cells -

as described above at para 28. 

In each case standard statistical methods were applied, hypotheses tested, 

correlations made and distributions plotted. The aim was to deduce a 

backscatter-grazing angle relationship which can be applied in practice. 

32. Regressions. Straight-line regressions, with· grazing angle as the 

independent variable were interpreted with caution, since treatment of 

all results as an entity (for this purpose! could lead to major 

inaccuracies. The author was aware that some researchers had found the 

o v W relationship to be a curve, at the lower values of w. One way to 

minimise this problem was to separate the data into sets based on grazing 
o 

angle ie above and below say 2 or 3 , and thus obtain separate regressions 

from the two parts of the plot. 

33. It was decided to analyse the data, which covered grazing angles up to 

120
, as 4 sets of 30 and also 6.sets of 2°. Because the number of observations 

is less in each set ,care must be taken to ensure that those outlying results 

do not have undue influence on the results of the smaller data set. 



34. By comparison of scattergraphs, bargraphs and histograms several 

important factors were noted and plots of cumulative frequenices were ~ 

made against Weibull and Lognormal distributions while KOLMOROV-SMIRNOV 

tests were also made using a standard computer routine. A quantity of 

relevant data is included here for future reference purposes. It should 

of course be stated that although the terrain statistics are site 

specific - they may nevertheless be reasonably applied to any other similar 

terrain and radar conditions. 

SECTOR RESULTS 

35. Data was initially analysed in 5 azimuth sectors with statistical 

results shown at Table 4, and as an entity. Sections I to-4 each contain 

predominantly sloping, undulating or hilly backscatter measurements. 

Sector 5 is predominantly flat grassland at slightly less radar range. 

Table 5 summfu'ises the regressions and correlations for Table 4. All 

results are commented upon at para 52 below, with reference to relevant 

plots. 

36. Partition at 30 Steps. It was observed that the deduction of any 

significant relationship was being distorted by a scatter of extreme values, 

caused presumably by scattered specular reflectors; although not obvious 

from the maps, but probably sufficiently reflective rocks, boulders and 

fence posts etc - to act as K band reflectors. Although it is 

appreciated that these objects will occur in rural terrain in practice in 

a somewhat random way, it was thought prudent to filter these peak values 

to expose the underlying trend. 

fl-I(,. 



TABLE 4 SUMMARY OF ALL DATA (NO FILTERING) 

PARAMETER MEDIAN MEAN STD.DEV MAX MIN STD.ERR 

cr (dBs) - 25.49 - 25.99 12.14 - 5.26 - 59.85 0.27 

ljJ (deg) 5.85 5·53 3.16 11.58 0.07 0.07 

2 Area (m ) 636 622 63.85 721 473 1.43 

Aspect e (deg) 23.25 24.06 12.85 59.79 0.09 0.29 

Range (lan) ..• 6.03 5.98 0.59 6.88 4.:;2 13.63 l 

. 

Signal Received 0.28E - 2 0.28E - 1· 0.05 0.29 O.lE - 5 O.lE- 2 
.. -



'. 

TABLE 5 CORRELATIONS AND REGRESSIONS 

SECTORS 

1 2 3 4 5 OVERALL 

.. : 

Correlation 

,p v er O.lS 0.05 O.oS 0.4 0.15 0.12 

8 v er O.lS 0.06 0.37 0.67 0.39 0.35 

Re5ression 

,p v er - 3S.06 + .52,p - 24.93 - 0.2,p - 27.79 + 0.35,p - 39.S + 1.9,p - lS.S9 + 1.9,p - 31.6 + 0.53,p 
I -

R v er - 24.6 - O.OOSR 

8 v er . - 36.4 + 0.158 

Median er - 36.07 - 24.9S ,'" 24.27 - 23.9 - 13.36 - 25.49 

and s.d 9.1 9.S 12.2 .. 12.9 10.lS 12.14 
J 

/ 



37. At the other extreme a random scatter of very small values were 

present. These are attributed to sidelobe reception and small 

backscatter levels from partially shadowed areas, perhaps partly due to 

diffraction in a few caSes or spurious propagation effects. Those 

cells which were shadowed were detected by the computer program and 

excluded from the working data. 

38. Several options were considered; peak and trough values could be 

arbitrarily discarded by inspection or a cut off could be imposed to 

exclude all but the majority of the data. 

39. Data Selection. Scatter plots indicated that it would be reasonable to 

exclude peaks and troughs by using only those values falling between - 20 

and - 40 dB. Statistical values were then recalculated by taking results 

for each grazing angle. For example, the database was scanned for all like 

values of grazing angle and then relationships were considered by class 

interval, by, reducing the data by taking the median and mean of each class. 

"Median filtering" (as suggested in some signal processing' applications) 

could not be used since this would mean the imposition of an assumed rate 

of change in backscatter with grazing angle and thus defeat the objective of 

the analysis. 

40. Reduction of the data in this way was justified for the following 

reasons: 

a. Any particular backscatter value for a given grazing angle is the 

result of combining measurements (to get mean or median) taken at' 

various azimuths, ranges and terrain heights. Since the terrain has 

been shown to be homogeneous1, the individual values obtained 

should be more representative than 'an isolated backscatter value. 

It should also minimise signal measurement fluctuations and errors 

F= \-\~ • 
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TABLE 6 ANALYSIS BY 30 STEPS IN TRUE GRAZING ANGLE UNFILTERED DATA 

MEDIAN MEAN s.d MAX MIN STD.ERR 

0_30 (a) IjJ (Deg) 0.70 1.34 1.00 2.86 0.07 0.45E - 1 
12.01 i 

, 
i 

(b) e (Deg) 27.65 27.80 58.30 8.12 0.53 
(c) 2 -2 cr (m m ) 0.87E - 2 10.49E - 1 0.61E - 1 0.24 0.15E - 4 0.27E - 2 · (d) cr (dEs) - 20.58 - 21. 55 11.81 - 6.09 - 4& • 11 0.53 
(e) 2 Area (m ) 509 559 85.12 721 473 3.82 

3.60 (a) IjJ (Deg) 4.54 4.52 0.89 5.93 3.07 0.40E - 1 
(b) e (Deg) 22.41 27.22 15.61 59.79 7.95 0.70 
(c) 2 -2 cr (m m ) 0.17E - 2 0.14E - 1 0.30E - 1 0.20 0.12E - 4 0.14E - 2 · ( d) cr (dEs) - 27.59 - 27.95 11.00 - 6.89 - 49.08 0.49 

(e) 2 Area (m ) 652 651 33.79 720 523 1.52 

6-90 (a) IjJ (Deg) 7.03 7.4 0.87 8.73 6.15 0.03 
(b) e (Deg) 23.95 21.4 11.18 44.18 1.2 0.45 
(c) 2 -2 cr (m m· ) O.11E - 2 0.2E - 1 0.4E - 1 0.19 O.lE - 5 0.17E - 2 · ( d) cr (dEs) - 29.4 - 28.2 12.46 - 7.2 - 59.8 0.50 
(e) 

. 2 
Area (m ) 645 651 31.6 706 581 1.27 

9-120 (a) 1jJ (Deg) 9.55 9.9 0.77 11.57 9.17 0.04 

(b) e (Deg) 20.02 18.5 8.75 29.5 0.09 0.49 
(c) 2 -2 

cr ,(m. m ) 0.3E - 2 0.27E - 1 0.46E - 1 0.29 O.OlE - 4 0.02E - 2 
(d) cr (dEs) - 24.5 - 25.5 11.88 - 5.2 - 49.7 0.66 

(e) 2 Area (m ) 617 618 21.5 679 560 1.20 



TABLE 7 ANALYSIS BY 20 STEPS IN TRUE GRAZING ANGLE - UNFILTERED DATA 

MEDIAN MEAN s.d MAX MIN STD.ERR 

0_20 (a) W (Deg) 0.65 0.64 0.38 1.5 0.7E - 1 0.21E - 1 

(b) a (Deg) 27.65 24.3 9.9 58.3 8.1 0.55 
(c) 2 -2 a (m m ) 0.32E- 1 0.64E - 1 0.65E ;.. 1 0.24 0.15E - 4 0.36E - 2 

(d) a (dEs.l - 14.9 - 18.57 11.06 - 6.09 • - 48.11 0.61 
. 

(e) 
, 2 

Area (m ) 498 ' 524 68.2 705 473 3.80 

2_40 (a) W (Deg) 2.84 3.00 0.47 3.97 2.26 0.26E - 1 

(b) a (Deg) 27.28 35.2 ' is .38 59.70 15.Bo 0.85 

(c) 2 -2 
a (m m ) 0.15E - 2 0.13E - 1 0.30E - 1 0.14 0.19E - 4 0.17E - 2 . 

(d) a (dEs) - 28.21 - 28.25 10.4 - 8.42 - 47.05 ,0.57 

(e) 2 Area (m ) 658 645 63.2 721 511 3.49 

4-~ (a) W (Deg) 4.87 4.97 0.57 5.93 4.27 0.31E - 1 

(b) a (Deg) 22.28 22.54 12.45 45.39 7.95 0.68 

(c) 2 -2 a (m m ) 0.21E - 2 0.16E - 1 0.33E - 1 0.19 0.12E - 4 0.18E - 2 . 
( d) a (dEs) - 26.61 ,- 27.69 11.46 - 7.21. - 49.08 0.63 

( e) 2 Area (m ) 644 642 I 33.9 I 711 523 1.87 



-------
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TABLE 7 CONT 

6_80 (a) 
(b) 

(c) 
(d) 

(e) 

8-100 (a) 
(b) 

(c) 

, (d) 

(e) 

10-12° (a) 
(b) 

(c) 
, ( d) 

(e) 

MEDIAN 

Vi (Deg) 6.74 

(J (Deg) 23.25 
(2 -2) (J I)l m 0.65E - 3 · 

(J ,( d13s) - 31.8 
2 Area (m ) 672 

Vi (Deg) 8.70 
(J (Deg) 25.46 
. 2-2 

cr (m m ) 0.62E - 2 
· ci (d13s) .:.. 22.06 

2 Area (m ) 624· 

Vi (Deg) 10.55 
o (Deg) , 20.02 

'2 -2 o. (m m ) 0.51E - 2 · o (dBs) - 22.91 
Area (n?) 606 

MEAN s.d MA]{ MIN STD.ERR 
. 

·6.66 0.26 7.06 6.15 0.:l.4E - 1 

20.43 14.41 44.6 L20 0.79 
.. 

0.43E - 2 0.10E' - 1 0.08 0.16E - 4 0.57E - 3 

- 3L7 9.22 - 10.6 - 47.7 0.51 

6b9 23.69 706 630 L31 

8.88 0.49 9.79. 8.02 0.24E - 1 

22.60 6.42 29.52 8.14 0.32 

0.41E - 1 0.53E - 1 0.29 0.10E - 5 0.26E - 2 
, 

- 24.01 13.48 . - 5.26 - 59.80 0.67 
19.12 I 

; 

622 680. 560 0.95 
. 

10.77 0.51 11.57 10.24 0.43E - 1 

15.68 8.45 22.85 0.9E - 1 0.71 

0.35E - 1 0.5E - 1 0.20 0.14E - 4 0.42E - 2 

- 23.23 11.33 - 6.97 - 48.58 0.95 

609 16.22 655 588 L37 



by taking a sample which is statistically large. 

·b. Since data originates .from a number of different surface 

textures and inaccuracies in terrain slope calculations, as 

explained previously; the use of a large number of !eadings at 

each grazing angle is likely to minimise error. 

c. The method is likely to result in the most representative 

practical values for a for all values of ~. 

RESULTS BY 20 AND 30 STEPS IN GRAZING·ANGLE. 

41. Tables 6 and 7 include as much statistical data as necessary· for 

future reference •. Figures 5 and 6 show other results graphically rather 

than as tables. 

42 •. Observation. Parameters. were tested for statistical distributions. 

For example, altho~gh aspect and grazing angle are site-specific, these 

were tested in case of future cross reference of work in the same type of 

terrain. No recognisable dis.tributibn was found. This is to be expected 

since all negative slopes (shadowed terrain - as seen from the unigue 

radar position) had been eliminated from the database. Therefore a general 

terrain analysis (as made by geographic surveyors) is. not applicable, 

since here the terrain· is viewed from a specific position • 

. . :"." ' .. ", 



43. '$jgp~le Spread of Grazing Angles, Areas and Aspect Angles. From the 

statistical viewpoint the author was well satisified by the spread of data 

in each parameter. The range of values was considered to well represent 

typical terrain. Although, ~s is expected, the data was not spread 

linearly, there were no significant gaps in the values or shortage of 

measurements at any particular point. In places a small spread of data 

did appear to be distributed normally, however, as seen below Weibull 

and Lognormal plots confirm the preference for using "Weibull" to 

represent·this rural terrain. 

44. Differences Between Means. It has been assUmed that (although the 1jJ v a 

gradient may be less at K Band than other frequency bands), the data 

would nevertheless exhibit an increase in backscatter for an increase in 

grazing angle. It was therefore necessary to test ~ignal values obtained 

at different grazing angles to see if their differences could happen by 

statistical chance or whether differences could be attributed to a cause.An example 

Comparison of means for 2_4°' and 8-10°, respectively - 28.25 dB and - 24.01 dB 

with 5d's of 10.4 and 13.4 dB's and 327, 404 samples, l.s shown: 

Hence 10.4 = 0.575, 

1327 

13.4 = 0.666 

.hi04 

=0.880 

2 X + 0.880 = + 1.76 dB 

28.25 - 24.01 = - 4.24 dB 

.. 



Since 4.24 is not less than 1.76, the difference has not happened by 

chance but is due to a definite cause. Similarly, a test between means 

for 0-20 with 8-100 also proved significant. However, taking two means 

(originating from 8-100 and 10-120
) from angles closer together the test 

failed - the difference in means could occur by chance. It is also 

observed that the difference in mean is likely to be less since the 

- 0 0 
backscatter at 9 is not expected to be greatly different from that at 11 • 

TOTAL DATA PACKAGE ANALYSIS' 

The-results at Table 4 were obtained'by taking all backscatter 

results (from all azimuths angles and grazing angles) and analysing as a 

complete data set, on the initial assumption that there were sufficient 

measurements to treat as a continuous result without significant gaps in 

the various parameters. 

Distributions were plotted at Figures 7a-' and 7b to test for 

Weibull and Log Normal characteristics. 

46. General Comments. Bargraphs produced by computer statistical package 

were used to examine the spread _ of data for each parameter. - Observations 

are as follows: 

a. Backscatter er (dEs) • An unusual number of readings occurred at 

about-9dEs. These were attributed to the rail~line o~ associated fencing, 

or both, as the obstacle could probably be seen at the lower grazing cycles 

(at the single range) over several azimuths. Backscatter plots well on 

Weibull paper, but a Kolmorov-Smirnov test gave a clearly negative result 

for all other distributions. 



b. True- Gre.zing Angle 1/1 (Deg). As expected, with the deliberate 

choice of low grazing angles, the histogram was strongly skewed 

towards the lower values. On examination the bargraph (not shown here) 

looks almost random. Indeed it would not be expected that the facets of a 

rand>m piece of terrain, (illuminated by a radar operationally), should, for 1j;, 

exhibit any particular distribution. For experimental purposes 

all shadowed terrain was excluded. Any distribution here would not be 

expected to accord with distributions made by geomorphological surveys, 

'for example, for drainage purposes. On plotting the values, however, 

a good number of the data produced a log-normal distribution. 

c. Illuminated 3dB Area (m2 ). Area is a function of resolution cell 

parameters and terrain slope. The concept is -nominal since, as 

explained previously it assumes a fairly sharp cut-off of energy 

at 3dB, whereas there will be backscatter also received from sidelobes 

or just outside the "footprint" area. With the tracking radar used 

here the sidelobe levels 'are' extremely low. Further, any additional 

backscatter from the fringes of the nominal 3dB footprint will most 

probably'be reflected from an adjacent facet which is likely to be 

at the same angle or nearly so. Area bargraphs show two distinct 

peaks in the general distribution; one centred on 498mz and a second, 

more pronounced, centred on 64Omz • There is no obvious reason for 

this, other than the likelihood of a fall-off in area due to the large 

number of measurements taken at both azimuth extremes of Challoch Hill, 

ie the occurence of high aspect angles becomes larger because of the 

geographical location. Thus no particular significance is attached 

the the Area distribution., 
'.".\ 



d. Aspect e (deg). Aspect values are distributed lognormally for 

part of the spread but are not at all Weibull. They are slightly 

skewed to the left and relatively few values fall below So. It 

is pertinent to comment again that aspect is essential to calculate 

the true grazing angle. The spread of aspect was therefore considered 

important and an analysis at 0.30 class intervals showed that only 

a few intervals did not contain observations. 

e. Range R (Km). Most measurements occurred at a range of 5 to 

7 Km with a predominance around 6 Km, which is this radar's typical 

operational working range when acting as a low-level target tracker. 

The overall statistics do not give a strictly true picture here, 

since Sector 5 contributes about 20% of the readings taken mainly 

between 4.5 and 5 KM. 

f. Backscatter Signal. An examination of the raw measurements before 

conversion to the decibel scale shows SO% to fall below 0.006 and 

a clear distribution of Weibull is even more strongly seen after the 

extreme values were removed as discussed. Because of the inclusion 

of the extremes, observed on the scattergraph correlations c~~ be 

significantly distorted. Correlation between ljJ and bac]tscatter was 

weakly negative (-0.11) and has little meaning when all data 

meaurerients . 'are lumped together • 

. FILTERED DATA 

47. Data was next' filtered to remove the outlying values < -20dB and< 40dB, 

and statistical tests repeated. Results and comments are as follows: 

48. Effect of Reducing Data.File. The complete backscatter measurements 

PH-7 



1jJ (Deg) 

2 -2 
a dBm .m 

All Data no 
Filter a (7) 

1jJ 

(J 

1jJ (Deg) 

2 -2 
a dBm m 

CORRELATION 

TABLE Ba SUMMARY OF STATISTICAL RESULTS - WHOLE DATA-BASE (FILTERED) 

MEDIAN MEAN sd MAX MIN STD.ERR 

5.90 5.57 3.02 11.54 0.07 0.10 

- 29.10 - 29.30 5.53 - 20.06 - 39.93 O.lS 

5.85 5.53 3.16 . 11.57 0.70E - 1 0.07 

0.28E - 2 0.28E - 1 0.48E - 1 0.29 0.10E - 5 O.11E - 2 
. 

. 

TABLE?b SUMMARY OF STATISTICAL RESULTS - UNFILTERED DATA-BASE 

(WITH ALL RESULTS BELOW 1jJ = 30 REMOVED) 

MEDIAN . MEAN sd MAX MIN STD.ERR 

6.81 6.98 2.22 11.54 3.07 0.06 
. 

- 27.63 - 27.53 11-89 -5.26 - 59.85 0.31 

+ 0.15 

, " 



TABLE Gc SUMMARY OF STATISTICAL RESULTS DATA-BASE (WITH FILTERED SIGNALS AND ALL 

. BELOW 1/J = 3° REMOVED) 

MEDIAN MEAN sd MAX MIN STD.ERR 

1/J Deg 6.74 6.76 2.27 11.54 3.07 0.08 

" 2 -2 - 29,20 - 29~44 5.58" - 20.07 - 39.93 0.20 crdBm m 

CORRELATION + .01 REGR .cr = - 29.68 + .031/J 

.--- .. ~--------------------------------------------------------------~------------------~------------
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approximate rouchl~- to both Weibull- and Lognormal for much of the range 

of values. After excluding the extreme values the total data exhibits a 

closer Weibull distribution, and if the values for 11><3° are eliminated an 

even stronger Weibull fit exists. These are plotted at Figure 7. 

Results of the reduced data file are at Table 6. Under these 

conditions a check on the statistical distribution of ~ was also Weibull -

although this may have no significance, being site-specific. Median and 

mean of each ~ class interval were also used, and these are plotted at 

figs 8a and 8b in comparison with the other results. In addition 

I- - to the Weibull and Lognormal plots, the Kolmorov Smirnov Test indicated 

I a strong normal tendency. 

ANALYSIS IN 3° GRAZING ANGLE STEPS 

50. Data in four sets enabled the 0- 30 values to be analysised separately 

to ensure that any reversal of characteristics would be isolated from any 

influence of backscatter values from the higher angles. Data was analysised 

in 2 ways: 

a. All data included (Identified as 03C,. 36c, 69C, 9l2C). 

b. Data reduced in each set by a >-20 <-40dll filter (Identified as 

03M, 36M etc) and means applied for each class set. Class sets were 

determined, _p.ot_ by arb;i. trary equal- steps, but by· grouping, all backscatter 

readings from terrain of the same grazing angle. For example, the 

mean was found of all the backscatter readings at ~ "4.860 and so on. 

Since ~ = 4.36
0 

occurred a large number of times at differe;t ranges 

and on different azimuths (and aspect is accounted for - since ~ 

grazing angle is used), the backscatter mean is taken to be the most 
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FILTERED DATA 
(J (dEs) 

1jJ (Deg) 

Signal 

TABLE 9 STATISTICAL RESULTS - REDUCED DATA BY FIL~ER, 
MEANS AND MEDIANS OF CLASS INTERVALS 

MEDIAN MEAN s.d MAX 

- 29.39 - 29.52 5.56 - 20.07 

6.52 6.12 2.73 11.57 

0.12E - 2 0.22E - 2 0.24E - 2 0.98E - 2 

MEANS OF CLASS· INTERVALS 
(J (dEs) - 29.72 - 29.77 3.37 - 21.91 

1jJ (Deg) 6.25 6.09 3.23 11.625 

Signal 0.20E - 2 0.21E - 2 0.14E - 2 0.68E - 2 

MEDIANS OF CLASS 
INTERVALS 

. (J (dEs) - 29.65 - 29.87 3.46 - 22.95 

1jJ (Deg) 6.125 6.00 3.21 11.875 

FILTERED AND ALL 
BELOW ~ = 3° REMOVED 

(J (dEs) - 29.20 - 29.44 5.58 - 20.07 

1jJ (Deg) 6.74 6.76 2.27 11.54 

UNFILTERED AND ALL 
BELOW ~ = 3° REHOVED 

(J (dEs) - 27.63 . - 27.53 11.89 - 46.9 

1jJ (Deg) 6.81 6.98 2.27 11.57 

HIll STD.ERR 

- 39.93 0.19 

0.07 0.09 

a.IOE - 3 0.86E - 4 

- 36.54 0.54 

0.125 0.53 

0.25E - 3 0.23E - 3 

- 36.54 0.58 

0.25 0.54 

- 39.93 0.20 

3.07 0.08 

- 5.2 0.31 

3.07 0.06 



, ,. 

TABLE 9D BY METHOD OF MEANS OF BACKSCATTER FOR LIKE ANGLES - FILTERED DATA 

MEDIAN MEAN s.d MA)( MIN STD.ERR 

0-30 

'1jJ (Deg) 0.25 0.47 0.50 2.61 0.07 0.08 

2 -2 a (m m ) 0.26E - 2 0.21E - 2 0.23E - 2 0.88E - 2 O.l1E - 3 0.37E - 3 
, , 

I 
, 

i 

a (dBs) - 27.75 - 28.51 5.35 - 20.52 - 39.43 0.85 

3-60 

1jJ (Deg) 3.95 3.85 1.00 5.79 2.26 0.06 

2 -2 a (m m ) 0.12E - 2 0.22E - 2 0.23E - 2 0.98E - 2 0.10E - 3 0.14E - 3 

a (dBs) - 29.1 - 29.3 5.46 - 20.08 - 39.88 0.32 

6-90 

1jJ (Deg) 6.79 6.71 0.88 0.98E - 2 0.10E - 3 0.05 

( 2 -2) a m m 0.96E - 3 0.21E - 2 0.24E - 2 0.98E - 2 0.10E - 3 0.15E - 3 

cr (dBs) - 30.16 - 29.83 5.56 - 20.07 - 39.89 0.35 



iI -\ 
V> 
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TABLE 9 CONT 

MEDIAN 

9-12° 

tJ! (Deg) 9.44 

2 -2 a (m m ) 0.12E - 2 

a (dEs) - 29.14 

MEAN 

9.31 

0.22E - 2 

- 29.57 

, 'i' 

s.d MAX MIN STD.ERR 

1.39 11.57 6.76 0.09 

0.24E - 2 0.95E - 2 O.lOE - 3 0.16E - 3 

5.62 - 20.18 - 39.93 0.37 



practical value to represent the particular grazing angle of interest on each 

occasion. Results using this method are at Table 9 and plotted at figures 

9a, 9b and 10. The same process was applied for raw signal strength. Values 

obtained for the means of the total data file are included for comparison. 

ANALYSIS IN 20 GRAZING ANGLE STEPS 

51. Six data sets identified as 02, 24, 46 etc were analysed in the same 

o way as the 3 sets. 

COMMENTS ON TABULATED DATA - TABLES 4 TO 9 

52. Within the overall data summarised at Table 4 considerable fluctuation 

occurred, not obvious until seen by sector at Table 5 and sul'sequent analysis 

in 20 and 30 steps. For example, the variation in regressiorl models (~ v 0) 

shows that quite different models are obtained from adjacent-cerrain sectors. , 

These are inaccurate being distorted by extreme values and correlations are 

seen to vary widely. 

53. Tables 6 and 7 reveal much more information about the general nature of 

the backscatter. The data in both tables is unfiltered, ie all measurements 

are included. Thus an examination and comparison of values (while showing 

trends as grazing angle varies) also highlights any unusual results due to 

extreme values falling within any particular step. The ratio of mean to 

median increased significantly as ~ decreased. This finding is in accord 

with observations in the USA (Report "Seek Igloo"). It is not clear why 

the standard error for aspect e is significantly different for 8-100 at 

0.32. Despite the various methods of data reduction, made to eliminate and 



minimise undue influence .of .outlying values, it is .of interest that a 
m 

remains at appraximately - 29 dB; as seen in summary table 9b 

COMMENTS ON PLOTTED DATA - FIGURES 5-9 

54. It is assumed that a Weibull distributian exists if. platted values 

fit between the 10% and 90% levels. Several impart ant facts are canfirmed 

by the distributians at Figure 5(a). It is immediately apparent that a 

gaad Weibull fit exists, that the slape parameters are sensibly the same 

(slape·parameter apprax 2.57, shape parameter 0.39)far 5 .of the 6 sets 

.of data • a The data set with a different slape (8-10 ) warranted further 

invest igat ian. Values were back platted anta a large-scale map, since an 

unusually large ntimber .of high readings were faund (- 8.5 ta - 9.6 dB, at 

56.4.0 ta 56.7.0 azimuth and 5750 ta 5800 metres range). These were faund 

·ta came from a rail line, an an embankment, and rail bridge aver the trunk 

road A75 between E and W Challach. By remaving these readings from an 

.otherwise 'standard' set .of results the distributiQn plat far 8-10.0 moves 

towards the slope .of the .other data sets. This confirmed the contaminatian 

in this case and it was thought reasonable ta make- this adjustment ta the 

data. It shauld be nated that the median (50% Weibull) level fixes the 

position .of the curves an the plato These results most clearly demanstrate 

(confirmed again at figure 10) that backscatter values app~ently increase 

at very low grazing angles - assuming .of caurse that these angles are 

carrectly measured (subject to terrain measurement errars discussed at 

para 25 aboye). 



---- ---------

55. The 10gnorma1 plot at figure 5(b) shows that the ~l-L distribution 

could almost equally be used as a representative distribution. o 
For 3 

steps the mean slope parameter is approx 2.8. As before, these distributions 

clearly show an increase in signal strength at the lower grazing angles. 

56. Results at figure 7 were connnented upon at paras 45-46., however it is 

noted that introduction of the signal filter changes the slope (as 

expected), but does not change the excellent alignment of the plotted 

readings on Weibull paper. If all data for 1jJ < 30 is removed (postulating 

removal of data below the possible minimum in the a v 1jJ curVe) • Figure 

7 (Curve *) also shows_a very good fit with a slope parametel.':identical 

to that at Figure 8 (means and medians). 

57. The results at Figure 9·are for data taken in 4 sets .~th signal filter 

applied. Data was then separated into mean and median values by grazing 

angle class intervals. It is shown that a good Weibul1 fit exists 

(Figure 9(a)), for which the Weibull shape parameter is almost identical 

- for the 4 sets (0.9 with slope parameter 1.1). Kolmorov-Smirnov'tests 

indicated a strong tendency also to Lognormal, as seen at Figure 9(b). 

SKEWNESS , VARIABILITY, REGRESSION AND CORRELATION 

58. Data distribution were checked for skewness during the 1jJ = 20 

intervals, where the a (dB) skews .were near zero on 2 occasions and negatively 

skewed on all others. A significantly higher coefficient of variation 

o 8 0 occurred below 1jJ = 2 and also between -10. In the latter case this is 

probably due to the problem at this angle recognised at para 54 above. It 

was also noted that both true grazing angle and backscatter values became 

. more variable as 1jJ reduced; markedly so for angles below 20. 
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59. Regression. Regressions were made between 0 and 1/J, however once it 

became clear that 0 increased for small values of 1/J, it became clear that 

a straight line regression could not be used for the whole data base, 

but only to that portion to the right of the minimum. Reference to figure 

10 shows that this minimum occurs at some point about 1/J ~ 20. The best 

model for this section of the curve probably lies between odE ~ - 29.6 + 0.05 1J! 

and -31'S-+ O· r31j' .L!!.S. 

60. Correlations. Correlations between 0 and 1/J-is shown to be positi~e 

(for 1/J ,,- :30
). The variability of data in some sets is such that without 

a greater number of samples a stronger correlation is unlikely. 

61. General. Apart from -the- statistical values shown, a very large 

number of supporting calculations, -computer file handling procedures an 

plots were made. It is not consider.ed necessary to include bargraphs, 

scattergraphs, histograms or frequency tabulations, as this information 

appears on the various plots. 

62. Weibull Relationships and Cell Size. o Above 1J! ~ 3 , as also found 

{7l} (see para 39 page 4-89), the s.d increased as pulse length effectively 

decreased (ie illuminated area reduced- '.due to surface tilting effects), 

however the empirical relationships between T and the Weibull shape parameter 

could not be established. As seen from the consistency of the curves at 

Figure 5(a) the shape parameter is approximately constant despite 

fluctuations in cell size by as much as 16% from the standardised value. 

Neither could the shape parameter found be fitted into the tables, curves 

or relationship given by {71} at _~ ~ 10 cm. 



CONCLUSIONS 

63. It is proposed that the results here are statistically valid and that 

reasonable . .assumptions, with correct· and careful procedures were used to 

expose the underlying trends in the backscatter data. l:or", hypotheses were 

tested than have been shown; they are not included here if the results were 

inconclusive. For example a correlation matrix was made at each stage 

between all variables, together with all regressions and cumulative 

distributions; many were null or inadmissible relationships, or were 

site-specific. 

64. The results compare well with other published findings as seen at· Figure 

5 Chapter 4; where the proposed model falls close to several others; although 

at a slightly shallower rate of change of 0 for W at about 1.5 

dB per deg; down to the minimum. Since there are few other published results 

at K Band, the results shown are inevitably contrasted with those from 

I or J Band, or with other models which take· account of frequency by postulation 

rather than actual measurement. 

65. A most difficult area to be sure about is that at very low· grazing 
, 

angles, where, as found by some other researchers, 0 values inexplicably c 

rise. It has already been postulated here that terrain slope angles are 

rarely what they appear to be, since even within a 50 or 100 metre square 

area terrain undulates appreciably. It may always be questioned as to the 

proportion of illumination actually impinging at the presQ~ed mean angle. 

At shorter wavelengths this becomes even more relevant. A large part of 

a facet may be in shadow due to high frequency undulations of the surface 

eg in rows of crops, banks and hedegrows. In practice there will almost 

FI-3& 



-----------------------~-~ .. -

al'lays be. a proportion of. the c;eHfl cont~d.ijing (for the "rural" description), 

brick buildings, fences, metal farm buildings, vehicles and so on. 

Therefore the contamination these produce cannot be ignored. Production 

.of a 2 part clutter model may be. possible, ie under lying trend plus' an 

allowance for peaking. 

66 •. It may be questioned whether there is some unknown mechanism which 

applies only at very low grazing angles and causes cr to rise; or is the c 

rise entirely due to inaccuracies in terrain angles? Consideration of 

.... this possibility connnenced with a critical examination of possible terrain 

measurement errors. Correlation was definitely~positive for W > 30 and 

reversed at some point W < 30
• The variability of the data Has such that 

a greater number of observations' would be preferable to obtainst:t'onger 

correlations. What errors were likely and where might the model fail? 

Every effort was made to minimise terrain errors and worst ca·se errors 

would have to be present in large numbers to significantly cb;oUge the 

underlying trend. Errors which did exist will have contribu·i:';.,d to the 

fluctuations found. 

67.. It is suggested that the model is accurate within the constraints of 

such a study, especially at K Band wavelengths. There is a remarkable 

consistency in the culmulative distribution slopes when the data is 

analysed in arbitrary steps of 2 or 3°. Further, if it is assumed that 

errors do exist in W, causing values to be misplaced on the curve at 

Figure 10, an angular error far larger than the worst case calculated above would 

have to be applied in order to correcting reposition the backscatter reading 

elsewhere on the curve. It is concluded therefore that a rise in backscatter 

level does occur at very low grazing angles. It is nevertheless re-iterated 



that true grazing angle errors can also be included, and that these may not be 

obvious without careful consideration. 

68. For "rural" terrain it is suggested that the proposed model 

shouldbe applicable to similar tracking radars in similar terrain 

conditions, in:; the context of detectability and tracking of LLSAM systems. 

69. Returning finally to 2 aspects, those of useful TeA product relationships 

and the mechanism causing a to rise at very low angles. First, a lot of . c 

effort was exp,ended to try and apply Dodsworths proposal for scaling 

distributions to obtain new median values, and to compare shape parameters 

. as suggested at Chapter 4 and Annex A, wothout success.. It is clear that 

for meaningful Weibull conclusions a series of measurements must be made with 

a variable pulse duration radar at the same time and place for cell 

scaling relationships to be studied. In summary no conclusive evidence was 

found to link the shape parameter to the TeA product. 

70. Secondly, the rise in a definitely occurs at low graz1ng angles, as c . 

distinct from low terrain slopes. Calculated grazing angles were as much as 

3.60 lower than slope angles, and many of the lower grazing angles were from 

terrain sloped at quite diverse angles. Above ~ = 3° the ratio of ~ to mean 

terrain slope increased almost linearly (from 0.78 at ~ = 3° to 0.98 at ~ = 12
0

), 

but dropped abruptly to 0.63 at ~ = 1°. The implication is that as terrain slope 

increases, low values of ~ are less likely. Greatest incident signal 

attenuation could be expected at the higher values of ~, since the depth of 

penetration into surface cover is probably greater. It is proposed that below 

\ - 0 ' 
a critical angle .(here about 2.5 )., despite the fact that the rms surface 

roughness appears to be smoother 1n the general sense, ~ reaches a value where 

the signal finds it difficult to propagate into the culture; since the majority 

of reflectors in 'rural' terrain are seen increasingly as vertical structures 



(grass blades as long cylinders), as V reduces. All other 

refl~ctivity factors, e.g. ground conductivity, relative dielectric 

constant, A, etc. have not .changed. Further, the mechinism would be 

more noticeable at higher frequencies, where absorption is higher. It 

is of interest that the experimental result here (Figure 10 and see 

Chapter 4, Figure 5) is generally below the other world-wide curves. 

Only Trebits at 95 GHz is lower. 

71. Reliance of Findings to Overall Tracking Predictions: 

Irrespective of the terrain slope it is confirmed that any target 

flying at near grazing angles could enter a region (unless the 

underlying ground is shadowed) where a rise in clutter values may 

occur to a level which may compete with the target RCS. Targets 

should fly such that an angle of 1° or less occurs, typically 100 m 

altitude at 6 km range. Th·is is easily achievable by manned aircraft 

and eVen more so by terrain following missiles with minimum RCS where 

grazing angles can be even lower. 

72. Compatibility With Other Models: Within the past year Barton(ll~l 

has proposed a unified clutter model for flat or rolling terrain, at a 

number of RF's. Although V is implicit in his model out to 

RI = 41Thrl<1hr1 A, for both flat or rolling terrain, the model does not 

set out to relate <1 with V in isolation. The short-range model, 

<1 = y sin V is plotted at Figure 10 in contrast to the K Band results 

obtained here. y is a 'terrain constant' set at 0.04 for USA 

test-sites. It is observed that the K Band results here are not 

scaleable to meet Barton's proposals by simple adjustment of y; since 

the <1 V !fi gradient is shallower. Beyond RI, out to the horizon, 

Barton used <1 = Y (hr
1 /R)F,. based on prop<\Ilation factor 

F = (R1)4, hr
1 = htx + 2<1h where <1h is the terrain surface standard 

R 
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• 

deviation. It may be concluded that although the Barton unified model 

is a good assess·ment for flat or rolling terrain, it may not be as 

applicable when a target is being tracked against a backgio~d of 

gradually rising terrain, since the filtered model (-29.6 + 0.05~) 

diverges significantly from Barton as ~ increased. However, the 

median model over comparable ranges (-30.8 + 0.875~) confirms Barton's 

proposel within 1.5 dB or less, but it is only applicable for ~<3. 

Below ~ = 3° the values of 0 rise at a rate which it would be 

inadvisable to quote as a general rule until more results become 

available to confirm the phenomenon and the mechanism becomes 

understood • 
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ANNEX G TO 
"THE PROBABILITY OF 
DETECTING AND TRACKING 
RADAR TARGETS IN 
CLUTTER AT LC)\{ GRAZING 
ANGLES" 

DATED 

APPLICATION OF MODEL TO EXAMPLE SYSTEM AND LOCATION -----
1. It is assumed that clutter is present in the resolution cell for 

the entire observable track length, taking the worst-case condition; 

,although there will be occasions when clutter is 'shadowed'. Certain other 

initial assumptions are necessary, either assessed'or postulated according 

to the situation. For this example calculation the basic assumption are:-

(a) Terrain: Rural almost flat with vegetation and buildings 

giving a terrain sightline response as at Annex E, Figure 5a, page 

E-25. It is assumed that the mean terrain slope produces 

q. ~ -28 dBm2.m-~ at 5 km range, and has a surface reflection 

coefficient of 0.3. 

(b) Missile System' Parameters: Considered next (since it 

dictates the required radar traci{ length) a Reaction time of 10 

seconds and Vm = 600 m.s-l . 

(c) Target Parameters: Transitting target at 300 ms-l, and 60 m 

(200 ft) altitude and dimension maximum apprOximately 10 metres. 

RCS minimum 0.05 m2 (see page E-22). Crossing the site at a range 

of 5 km. 

(d) Tracking Algorithm: A tracl<ing algorithm of the type 

described at Annex E (page E-12) is al'stlmed. 
// 
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(e) Radar Parameters: Radar parameters from the list at Chapter 

6 (page 6-146) are used, but the aerial height is lowered to 4 m 

(i.e. not clear of 'obscuration). A diode mixer receiver is assumed 

on this occasion with a 1200 Hi filter bandl<idth, 10 velocity gates 

and 90 range gates, i.e. 900 decisions per target pulse burst using 

a pulse-burst system of 4 bursts of 10 pulses,PRF's 12000 and 

10750. For 60 rpm the dwell-time will be 5.5 maec. 

2. Other assumptions on ECM degradation etc. are made later in the 

sequence "hichfollows. 

ASSESSED PROBABlLI'lY VALUES 

3. Track Length: A combination of parameters from paragraph l(a), 

1 (b) and 1(c) above when applied to Table 1 and Figure Sa at Annex E gives 

IPTL= 0.221 

It is important to remember that this is the minimum tracklength necessary 

for an engagement (see also paragraph 4 below). 

4. Tracking: It is assumed that the equipment under consideration 

was dS!signed to give a probability of detection (given a sightline) of a 

0.9 overall. Applying this to the tracking algorithm at page E-18, "here 2 

in any successive 3 looks must cross the threshold to delarc a track (2 out 

of 3 sliding windOl" algorithm) hence: 

5. 

(a) Probability of declaring a ne'" track PTT = 0.57 
(b) Probability of maintaining track, 

once obtained PTT = 0.972 
Hence, (c) Probability of loosing track, 

once obtained PTT= 0.028 

Detection: Time between false alarms is assessed as 900 secs (15 

mins). Transmission time of each burst of pulses is 10 x 83.3 ps (for PRF 

12000) and 10 x 93.02 ]JS (for PRF 10750); totalling 5.28 ,m.sec if 3 bursts 
/ , 

of each are completed "ithin the dwell time of 5.5 m.Gce, i.e. at least 60 
I , 

, , 
hits' per antenna sweep. Probability of false alarm depends upon the number 

of decisions per second and the false alarm interval. 

G-2 



r------------------------------------------------------------------------------------- ---- , 

No. of decisions = 900 
5.28 

6 
x 6 " 1 x 10 and Pfa " 1 x 10-9 
x 10-3 

The target is observed at least six times per antenna sweep, hence the 

probability of detection per burst for a Po of 0.9 is given by 

P = 1-(1-0.9) 1/6 = 0.32. Using the standard curves at Figure 3, the 

required SIN is 12.5 dB. Co'rrecting for 10 pulses using Swerlings 

Integration Improvement factor adds 0.6 dB for the Swerling 3 Case. 

6. Use of Clutter Model at Annex F: Usi,ng the standard equations, 

the total receiver clutter reduction for a target to be detected at 5 km, 

for 'In = -28 dB, is [-29.2 dB + (-12.5 - 0.6)] = -42.3 dB. librst case rain 

conditions give -24.1 dB, well within the radar's capability. In practice 

the radar may have a far better performance in rain due to circular 

polarisation. If the target is reduced tn altitude so that the radar 

grazing angle '!' = <2 0 and the clutter level rises (as shown in the research 

at Appendix 1 to Annex F) to a level of -18 dB at '!' = 10
, the values above 

become :-

[-39.2 dB + (-12.5 + 0.6)] = -52.3 dB 

If a clutter rejection capability is postulated for a system it is thus 

possible, by the insertion of the clutter model, to reverse the calculation 

process to detennine the detection performance, tracking performance and 

hence the total system prediction. 

7. Area Assessment: For a particular terrain, given target size and 

full terrain data, for a given site position i.t is possible to assess a 

percentage of occasions when the target may be lost in clutter. Many modern 

radars can process clutter to a high standard. It is assumed that in the 

terrain 
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in question targets are lost in clutter for only 2% of the time a sightline 

exists. 

Clutter 

8. Chaff, Noise and Deception ECM. Chaff may pose a detection problem 

unless filtered by MTI. In the basic detection mode, forward firing chaff 

from a radially approaching target can usually hide a target 

because of the large RCS produced. This would be a worst-case condition 

for a point defence tracking radar (failing MTI). 1 Kg of broadband 

chaff produces 660 m
2 

(since C1 chaff = 1365W !fGHz ). The te~d.e.r- ~s 

referred to Haddow {137} and subsequent reports on the technique of radar 

tracker break-lock as a distinctly different use of chaff. For example 

purposes here it is postulated that system radar performance is degraded 

to 50% of its undergraded value by the use of ECM, ie tracking error is 

increased to an unacceptable level 50% of the time 

B 
9. Tracking Errors. Para 4 above considers tracking probabilities given 

a sightline. Scanning radars will attract azimuth tracking errors 

(E Cl _1_) Skolnik (p 1~;8 Fig 5.16), while tracking radars will be 

sUbjet~/~o errors discussed at 9-187 and 9-193. Range, refraction and 

elevation errors should be applied as appropriate Pages B-174 to B~l76. 

These are also calculated by reference to Annex E - probability of sight-

line falling on target. For this example it is taken (page E-23) that a 

target at 5 km can be tracked successfully when there is a surface 

reflection coefficient of 0.3. From Annex E (equations (4) and (5)) it 

is calcula~ed that the probability of the sightline falling on the specified 

target is 

[ P, " 0,"1 
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A ratio of 10 was assumed for q; givirigc~ (el ), (e2) as respectively 

0.43 and 0.18. 

10. Diffraction. The effect of diffraction, which could enhance track 

lengths, is more difficult to assess in the absence of site - specific 

data. A computer program was written by the author to produce the example 

plot at Annex F Fig 6. Page FIO together with Chap 7 provide the criteria. 

For this examnle a diffraction factor of 1 is used • 
. 

D = 1 
f 

(ie no enhancement). 

11. Missile Performance. If an overall assessment of radar tracker 

system performance is to include a missile engagement, a 
( 

lethality figure must be included. This will depend on many factors 

including trials results under idealised and. possible under countermeasure 

conditions. A figure Pk = 60% is used here for example purposes. 

[ >«' 0,'1 
12. Operator Performance. In those systems where an operator is used 

several sources of degradation m~ occur which can seriously affect overall 

system performance but which are often difficult to quanti~. Conditions 

may also change day to day and reflect, for example, on morale, fear, 

training standards, coldness if exposed or lack of confidence in the 

system (following possible earlier failures). The operator may be using 

a system but forced into the optical mode by the enemy jamming of his 

associated tracking radar; the system is thus already in a degraded 

or reversionary mode of operation. He may of course be assisted if the 

system is semi-automatic (ie SACLOS compared with CLOS). For this example 

operator efficienty is taken to be 70% ie daylight with good visibility 

.--!,,, .0.7 1 
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13. System Availability. If a system is mobile it may not be in an 

immediately operational condition, while others in a similar location 

may be able to partially defend the air space during its redeployment. 

System equipment availability is calculated from MTBF and MTTR (see Fig 

2 page 11-226), taken to be 75 and 4 respectively. With redeployments 

and reload availability to account for, overall probability of 

readiness is taken here as 70% 

IpR = 0.7 I 
this may of course degrade after a redeployment due to vibration, weather 

etc. 

14. Target Re-engagement. If an engagement fails for one reason or 

another it may be possible, depending on target speed, sightline and 

available time to re-acquire and refire. There will always be a low 

probability of obtaining a larger track length than the minimum, but the 

re fire reaction time . is often much faster than the original reaction 

time. The re-establishment of tracking will naturally depend on clutter, 

operator skill or auto-system ability etc. To assist in the prediction 

process two nomograms are included at figs 1 and 2 (pages G 10 and 

G 11) Fig 2 is a standard multiple trial (engagement) nomogram to be 

used where required for salvo engagements. Fig 1 was deliberately 

produced as two 3rd order nomograms rather than a single (5th order Genus 1) 

nomogram so that either the track length covered by a target during missile 

flyout or tracklength flown during system reaction time can be read off a 

common scale. This means that the target velocity/reaction time grid 

on the nomogram can also be used to read off re-engagement track lengths. 
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OVERALL PREDICTION 

15. Results can be easily read from the simple multiplying nomogram at 

figure 4_ 

a. Mobile System - Operator Controlled (No EOCM) 

P = 0.22 x 0.7 x 0.6 X 0.7 

P = 0.06 (6%) this result is shown on the nomogram 

b. Mobile System - Radar/Automatic Fire Control 

additionally multiply by ECM, clutter and diffraction factors, 

as appropriate. 

P = 0.22 x 0.6 x 0.7 x 0.57 x 0.24 

P = 0.013 (1.3%) - this result is shown on the nomogram 

16. This method assumes that tracking and hence engagement opportunities 

can always be used and that they apply to 3600 azimuth cover. There will 

be cases where PTL can be very much higher in value but only applicable 

to a limited sector in azimuth; advantage can, of course, only be taken 

from these sites if targets fly into the high P
TL 

sector. The 

probability of targets entering these sectors then also becomes of 
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interest. However such siting is usually deliberate in order to protect a 

sector along which targets may be constrained to fly due to type or 

alignment of the intended surface target. It is suggested that another 

factor PE' ie probability of converting a detection to an engagement 

might be incorporated. 

17. The importance of PTL is re-iterated since in flat and gently 

undulating terrain it can be significantly improved by simply raising the 

tracker aerial clear of immediate obstructions. In the two cases at para 

15 placing PTL to 1 immediately changes the results to 29% and 6% respectively. 

Similarly on a fixed site PR might be much better. 

18. Interpretation. It is also necessary to remind the reader exactly 

what the results mean, since much misunderstanding of similar results has 

occurred in the past. The result (6%) at para 15a does not mean that 6% 

of all targets will be successfully engaged, however, 6% could ideally 

be engaged if every opportunity is taken since it is a statistical value. 

There may be slightly more - or far likely, less - opportunities in 

practice since it has been assumed that no target appears as a surprise 

and that targets are engaged (tracked) either approaching or crossing but 

not receding. 

19. Further, improvements may occur in a radar tracked system if off­

site assistance is given by other radars in the area; while on the other 

hand degradation will occur if electronic countermeasures or target 

manoeuvre is used to degrade the tracking function. Notice that with the 

tracking algorithm chosen there is a 3% probability of loosing a 
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successful track after obtaining it ~ith a 90% detection probability 

once it became unmasked. Conversely there is a 97% probability that 

tracking will continue successfully subject to a sightline or diffraction 

path and no other degradation. 
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