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Molecular dynamics simulation plays an important role in studying heat transport in complex
materials. The lattice thermal conductivity can be computed either using the Green-Kubo formula
in equilibrium MD (EMD) simulations or using Fourier’s law in nonequilibrium MD (NEMD) sim-
ulations. These two methods have not been systematically compared for materials with different
dimensions and inconsistencies between them were occasionally reported in the literature. Here we
give an in-depth comparison of them in terms of heat transport in three allotropes of Si: three
dimensional bulk silicon, two-dimensional silicene, and quasi-one-dimensional silicon nanowire. By
multiplying the correlation time in the Green Kubo formula with an appropriate effective group
velocity, we can express the running thermal conductivity in the EMD method as a function of
an effective length and directly compare it with the length-dependent thermal conductivity in the
NEMD method. We find that the two methods quantitatively agree with each other for all the
systems studied, firmly establishing their equivalence in computing thermal conductivity.

I. INTRODUCTION

Molecular dynamics (MD) simulation is one of the
most valuable numerical tools in investigating heat trans-
port properties, especially for complex structures where
methods based on lattice dynamics are computationally
formidable. The equilibrium MD (EMD) method based
on the Green-Kubo formula [1, 2] and the nonequilibrium
MD (NEMD) method [3–6] directly based on Fourier’s
law are the two mainstream methods for computing lat-
tice thermal conductivity in MD simulations, although
the approach-to-equilibrium method [7–9] has also be-
come popular recently.

A crucial difference between the EMD and the NEMD
methods concerns the finite-size effects introduced by us-
ing a finite simulation cell [10]. In the EMD method,
when periodic boundary conditions are applied, one usu-
ally can obtain a size-independent thermal conductivity
using a relatively small simulation cell and the cell size
does not correspond to a real sample size as in an ex-
perimental measurement setup. In the NEMD method,
the simulation cell length (in the transport direction) is
supposed to be the sample length as in real experiments.
Therefore, when the cell length is smaller than the over-
all phonon mean free path, the heat transport is partially
ballistic (transporting without scattering) and the ther-
mal conductivity should be smaller than that in an in-
finitely long system. Usually, due to the relatively large
phonon mean free path, it is hard to directly simulate up
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to the length at which the thermal conductivity becomes
fully converged, and one usually resorts to extrapolation
to estimate the length-convergent thermal conductivity.

A natural question is whether or not the converged
thermal conductivity as obtained in the NEMD method is
consistent with (within statistical errors) that calculated
using the EMD method. There have been a few works
focusing on the comparison between the two methods
[11–14]. These works have mainly studied bulk silicon,
described either by the Stillinger-Weber (SW) [15] or the
Tersoff [16] potential. In the case of the SW potential,
excellent agreement between the two methods have been
found by Howell [14]. However, in the case of the Tersoff
potential, Howell [14] did not attempt to make a compar-
ison, while He et al. [13] found that there are noticeable
discrepancies between the two methods for certain simu-
lation parameters. Comparisons between the two meth-
ods were less addressed for low-dimensional systems and
discrepancies were occasionally reported. For single-layer
silicene [17, 18], the two-dimensional (2D) allotrope of
Si, it has been reported [19] that the two methods are
inequivalent. For quasi-one-dimensional (Q1D) silicon
nanowire (SiNW) [20], divergent thermal conductivity
(with respect to system length) has been reported [21]
based on NEMD simulations, which was not supported
by recent EMD simulations [22]. Therefore, whether the
two methods are always consistent with each other is still
an open question.

In this work, we make detailed comparisons between
the EMD method and the NEMD method in the calcula-
tion of the thermal conductivity κ of three Si-based ma-
terials, including 3D bulk silicon, 2D silience and Q1D
SiNW, using the newly developed GPUMD (Graphics
Processing Units Molecular Dynamics) package [23, 24].
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In the EMD method, κ is calculated as a function of the
correlation time t; in the NEMD method, κ is calculated
as a function of the system length Lx. We find that
κ(t → ∞) from the EMD simulations and κ(Lx → ∞)
from the NEMD simulations are consistent with each
other. Furthermore, we show that by multiplying the cor-
relation time with a reasonable effective phonon group ve-
locity, the EMD and NEMD data can overlap each other
very well. Our results thus firmly establish the equiva-
lence between the two methods in different dimensions.

II. MODELS AND METHODS

In this work, we used both the EMD method and the
NEMD method for thermal conductivity calculations as
implemented in the GPUMD package [23, 24].

A. Models

We studied three Si-based materials: 3D bulk silicon
crystal, 2D silence, and Q1D SiNW, which are schemat-
ically shown in Fig. 1. For simplicity, we only consider
isotopically pure systems although this is not a restriction
of the methods used. We used classical MD simulations
with empirical many-body potentials. For 3D bulk sili-
con, we chose to use the Tersoff potential [16] with the
original parameterization because a comprehensive com-
parison between the EMD and the NEMD methods has
already been done by Howell [14] using the SW poten-
tial [15]. For 2D silience, we used the SW potential [15]
re-parameterized by Zhang et al. [19]. To be consistent
with Zhang et al. [19], the thicknesses of single-layer sil-
icene was chosen as 4.20 Å when calculating the sample
volume in the EMD method and the cross-sectional area
in the NEMD method. Last, for Q1D SiNW, we used the
SW [15] potential with the original parameterization, as
was used by Yang et al. [21]. In all the MD simulations,
we first equilibrated the system to room temperature and
zero pressure conditions. Effects of temperature and ex-
ternal pressure could be studied but they are not the
focuses of this work.

Different boundary conditions were adopted for differ-
ent model systems. In the EMD simulations, we use pe-
riodic boundary conditions in all the three directions for
bulk silicon, the in-plane directions (xy plane) of silicene,
and the longitudinal direction (x direction) of SiNW. Free
boundary conditions were used for the out-of-plane direc-
tion in silicene and ripples formed automatically during
the MD simulations (Fig. 1(b)). For SiNW, we adopted
fixed boundary conditions in the transverse directions (y
and z) in order to be consistent with the simulations by
Yang et al. [21], although free boundary conditions can
also be used. In the NEMD simulations, the two ends of
system in the transport direction were fixed.

The simulation cells were chosen as follows. For bulk
silicon and SiNW, the coordinate axes were aligned along

the [100] lattice directions. A simulation cell consisting
of Nx × Ny × Nz = 6 × 6 × 6 conventional cubic cells
with a total of N = 1728 atoms was used for bulk silicon
in the EMD simulations. In the NEMD simulations, we
kept Ny and Nz unchanged and chose a few values of Nx
such that the length Lx varies from about 82 nm to 1 µm.
For SiNW, we chose Ny = Nz = 3 and fixed the surface
layer of atoms (same as in Ref. [21]) in both the EMD
and the NEMD simulations. The length Lx was cho-
sen to be about 50 nm in the EMD simulations and was
varied from 0.5 µm to 3 µm in the NEMD simulations.
For silicene, the x and y axes pointed to the zigzag and
armchair directions, respectively. and a roughly square-
shaped simulation cell with N = 8640 atoms was used
in the EMD simulations. In the NEMD simulations, the
width was kept to be about Ly = 10 nm and the length
Lx was varied from about 40 nm to 320 nm. We have
checked that the cell sizes used in the EMD simulations
were large enough to eliminate finite-size effects.

B. The EMD method

The EMD method for thermal conductivity calcula-
tions is based on the Green-Kubo formula [1, 2], which ex-
presses the (running) thermal conductivity tensor κµν(t)
as an integral of the heat current autocorrelation func-
tion (HCACF) 〈Jµ(0)Jν(t)〉 with respect to the correla-
tion time t:

κµν(t) =
1

kBTV

∫ t

0

〈Jµ(0)Jν(t′)〉dt′. (1)

Here, kB is the Boltzmann constant, T is the absolute
temperature of the system, V is the volume, and Jµ is
the heat current in the µ direction. Generally, one can
obtain the whole conductivity tensor, but we are only
interested in the diagonal elements.

For many-body potentials such as the Tersoff ans the
SW potentials used in this work, the heat current J can
be expressed as [25]

J =
∑
i

∑
j 6=i

rij
∂Uj
∂rji

· vi, (2)

where rij ≡ rj − ri and ri, vi, and Ui are respectively
the position, velocity, and potential energy of atom i.
Following Ref. [26], we considered the in-out decomposi-

tion of the heat current for 2D systems, J = J in + Jout,
where J in only includes the terms with vx and vy and

Jout only includes the terms with vz. With this heat
current decomposition, the running thermal conductiv-
ity along the x direction can be naturally decomposed
into three terms:

κx(t) = κinx (t) + κoutx (t) + κcrossx (t), (3)
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FIG. 1. Schematic illustration of the model systems studied in this work: (a) 3D bulk silicon; (b) 2D silicene; (c) Q1D SiNW.
The cell size shown here for bulk silicon is the same as that used in the EMD simulations, but for clarity, the cell sizes for
silicene and SiNW shown here are smaller than those used in the EMD simulations. In the NEMD simulations, the cell sizes
in the transport direction (x direction) can be much larger. See text and Table I for details.

where

κinx (t) =
1

kBT 2V

∫ t

0

dt′〈J in
x (t′)J in

x (0)〉; (4)

κoutx (t) =
1

kBT 2V

∫ t

0

dt′〈Jout
x (t′)Jout

x (0)〉; (5)

κcrossx (t) =
2

kBT 2V

∫ t

0

dt′〈J in
x (t′)Jout

x (0)〉. (6)

In the EMD simulations, we first equilibrated the sys-
tem in the NPT ensemble with a temperature of T = 300
K and a pressure of p = 0 GPa for 2 ns. After equilibra-
tion, we evolved the system for another 20 ns in the NVE
ensemble and recorded the heat current data for later
post-processing. We performed 50 independent simula-
tions for each material to ensure accurate results.

C. The NEMD method

The NEMD method can be used to calculate the ther-
mal conductivity κ(L) of a system of finite length L ac-
cording to Fourier’s law,

κ(L) =
Q

|∇T |
, (7)

in the linear-response regime where the temperature gra-
dient ∇T across the system is sufficiently small. We gen-
erate the nonequilibrium steady-state heat current Q by
coupling a source region of the system to a thermostat
(realized by using the Nosé-Hoover chain method [27–29])
with a higher temperature of 330 K and a sink region to
a thermostat with a lower temperature of 270 K. When

steady state is achieved, the heat current Q can be cal-
culated from the energy transfer rate dE/dt between the
source/sink and the thermostats:

Q =
dE/dt

S
, (8)

where S is the cross-sectional area perpendicular to the
transport direction. Both the temperature gradient and
the energy transfer rate were determined by linear fitting,
as illustrated in Fig. 2 for one independent simulation in
the case of bulk silicon with a system length of 1 µm.

In the NEMD simulations, we first equilibrated the sys-
tem in the NPT ensemble (T = 300 K and p = 0 GPa) for
2 ns and then generated the nonequilibrium heat current
for 10 ns. Steady state can be well achieved within 5 ns,
and we thus used the data during the later 5 ns to deter-
mine the temperature gradient and the nonequilibrium
heat current. We performed 5 independent simulations
for each system with a given length. In both the EMD
and the NEMD simulations, we used the velocity-Verlet
integration scheme [30] with a time step of 1 fs in all the
simulations.

III. RESULTS AND DISCUSSION

A. 3D bulk silicon

We start with discussing the results for bulk silicon.
Figure 3(a) shows the running thermal conductivities
from 50 independent simulations as thinner lines, each
with a different set of initial velocities. The running ther-
mal conductivity can vary from simulation to simulation
and the variation increases with increasing correlation
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TABLE I. Major data from the EMD and NEMD simulations: simulation cell length Lx (in units of nm), number of atoms
N (including the fixed atoms), the average thermal conductivity κave (in units of W m−1 K−1) from a number of independent
simulations (50 in the EMD simulations and 5 in the NEMD simulations), and the standard error κerr.

bulk silicon silicene (SW1) silicene (SW2) SiNW

Lx N κave κerr Lx N κave κerr Lx N κave κerr Lx N κave κerr

82 44064 61 1 38 6528 8.4 0.4 38 6528 11.9 0.4 500 66312 40 1

163 88128 95 1 75 13056 8.8 0.2 75 13056 13.0 0.1 1000 132552 52 1

327 176256 139 1 150 26112 9.0 0.2 150 26112 13.2 0.3 1500 198792 58 2

653 352512 180 3 224 39168 9.0 0.2 225 39168 13.2 0.2 2000 265032 63 3

1000 529920 206 2 298 52224 9.1 0.2 300 52224 13.4 0.2 3000 397512 64 1

EMD 1728 250 10 EMD 8640 9.3 0.1 EMD 8640 13.4 0.1 EMD 6624 65 2
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FIG. 2. (a) Steady-state temperature profile in the longest (1
µm) bulk silicon system. A linear fit to the block tempera-
tures excluding a few blocks around the heat source and sink
regions gives the absolute value of the temperature gradient
|∇T |. (b) The energy of the thermostat (averaged over the
source and the sink) as a function of the time in steady state.
The heat transfer rate dE/dt is calculated as the slope of the
linear fit (dashed lines).

time, which means that the variation in the HCACF does
not decay with increasing correlation time. This is a gen-
eral property of time-correlation functions and transport
coefficients in MD simulation [31]. The average κave(t)
of the independent results is shown as a thicker line in
Fig. 3(a). To quantify the error bounds, we calculate
the standard error κerr(t) (standard deviation divided by
the square root of the number of simulations) and plot
κave(t)±κerr(t) as dashed lines. It can be seen that κave(t)
converges well in the time interval [0.5 ns, 1 ns]. By av-

FIG. 3. (a) Running thermal conductivity for bulk silicon
at 300 K and zero pressure as a function of correlation time.
The thiner lines represent the results from 50 independent
simulations and the thicker line their average. (b) Thermal
conductivity as a function of system length from EMD and
NEMD simulations. An effective phonon group velocity of
vg = 8.5 km/s was used to obtain the effective system length
from the correlation time in the Green-Kubo formula.

eraging κave(t) and κerr(t) within this range, we finally
get an average value of the thermal conductivity and an
error estimate: κave±κerr = 250±10 W m−1 K−1. These
and other important data in this work are listed in Table
I.

Figure 3(b) shows the NEMD results as markers with
error bars, representing respectively the average and the
standard error from 5 independent simulations for each
system length. The same data are listed in Table I. It
can be seen that κ calculated from the NEMD simula-
tions increases with increasing length, which is a sign of
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ballistic-to-diffusive transition. Similar information is in-
corporated in the running thermal conductivity from the
EMD simulations. Actually, we can make closer compar-
isons between the EMD and the NEMD results. One can
define an effective system length Lx in the EMD method
by multiplying the upper limit of the correlation time t in
the Green-Kubo formula Eq. (1) by an effective phonon
group velocity vg:

Lx ≈ vgt. (9)

Then the running thermal conductivity κ(t) in the EMD
method can also be regarded as a function of the system
length κ(Lx), which can be directly compared with the
NEMD results. The concept of effective phonon group
velocity has been extensively used in the study of heat
transport in low-dimensional lattice models [32] and has
also been recently used for graphene [26]. By treating vg
as a free parameter, we can obtain a good match between
the EMD and the NEMD data, as shown in Fig. 3(b).
This effective group velocity is by no means to be taken as
an accurate value for the average phonon group velocity,
because Eq. (9) is not an exact expression. Nonetheless,
the fitted value, vg = 8.5 km s−1, is comparable to the
longitudinal (8.69 km s−1) and transverse (5.28 km s−1)
acoustic phonon group velocities calculated using den-
sity functional theory [33]. The important result here
is that the length-convergence trends of thermal conduc-
tivity from both EMD and NEMD simulations are con-
sistent with each other. To fully demonstrate the con-
sistency between the two methods, we need to consider
longer systems (up to a few microns) in the NEMD sim-
ulations, which is computationally prohibitive for bulk
silicon.

B. 2D silicene

We next consider 2D silicene. Figure 4 shows the run-
ning thermal conductivity components, κin, κout, κcross,
using the two SW parameter sets given by Ref. [19]. We
have checked that there is no noticeable difference be-
tween κx and κy, which means that the system is largely
isotropic in terms of heat transport. In view of this, we
report the average κ = (κx+κy)/2 in Fig. 4. The dashed
lines in Fig. 4 indicate standard errors calculated from
50 independent simulations, similar to the case of bulk
silicon.

All the running thermal conductivity components well
converge within a fraction of one nanosecond, faster than
the case of bulk silicon. The converged total thermal
conductivity value is also significantly smaller than that
in bulk silicon. The parameter set SW1 gives noticeably
smaller κin, while both parameter sets give comparable
κout. For each parameter set, κin converges to a much
higher value than κout does, which is opposite to the case
of graphene [26]. It is also interesting to note that, κcross

does not converge to zero, which can be understood by
the fact that there are intrinsic corrugations in silicene,
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FIG. 4. The running thermal conductivity for silicene at 300
K and zero pressure as a function of the correlation time for
the (a) in-plane component, (b) the out-of-plane component,
and (c) the cross term. The red and blue lines correspond to
the results obtained by using the SW1 and the SW2 parameter
sets, respectively. The solid and dashed lines respectively
represent the averages and the standard errors from the 50
independent simulations.

similar to the case of polycrystalline graphene [34]. Based
on visual inspection, we choose the time interval [0.3 ns−
0.5 ns] to evaluate the converged thermal conductivity,
which are determined to be 9.3 ± 0.1 W m−1 K−1 and
13.4 ± 0.1 W m−1 K−1, respectively, for the SW1 and
SW2 parameter sets.

The NEMD results for silicene are shown in Fig. 5.
We can obtain a good match between the EMD and the
NEMD data for both parameter sets, with the effective
group velocities being fitted to be 6.3 km s−1 and 8.5 km
s−1, respectively. The ratio between the effective group
velocities from the two parameter sets is close to that be-
tween the thermal conductivity. The fact that the SW1
parameter set gives a smaller effective phonon group ve-
locity can also be confirmed by examining the phonon
dispersions given in Ref. [19]. In Ref. [19], it was found
that the EMD method gives significantly smaller κ com-
pared to the NEMD method, which put the consistency
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FIG. 5. (a) Direct comparison between NEMD (markers) and
EMD (dashed lines) results. For the EMD data, the system
length is calculated from the correlation time according to Eq.
(9). See text for details.

between the two methods into question. However, our
results undeniably show that the two methods can give
consistent results for both parameter sets. The reason for
the inconsistency in the previous work is that the heat
current formula as implemented in the LAMMPS code
[35, 36] used in Ref. [19] is not applicable to many-body
potentials such as the SW potential, as pointed out in
Ref. [25] and further demonstrated in Ref. [37]. In con-
trast, the heat current formula as implemented in the
GPUMD code [23, 24] used in the current work has been
fully validated [26, 37].

C. Q1D silicon nanowire

Last, we consider Q1D SiNW. Figure 6(a) shows the
thermal conductivity values from EMD and NEMD sim-
ulations as a function of system length, where an effective
phonon group velocity of vg = 7.5 km s−1 was used to
convert the correlation time to an effective system length
in the EMD method. Because the cross-sectional area
used here is much smaller than that used in the case of
bulk silicon, we have reached to a system length of 3 µm
in the NEMD simulations. At this length, we obtain a
thermal conductivity of 64±1 W m−1 K−1, which agrees
with the converged value from the EMD simulations,
65± 2 W m−1 K−1. This suggests that the two methods
gives consistent results and ultra-thin SiNW with fixed
boundaries in the transverse direction has much smaller
converged thermal conductivity compared to bulk silicon.
Yang et al. [21] reported a power-law divergent thermal
conductivity with respect to the system length based on
their NEMD data. Our results do not support this view-
point. In Fig. 6(b), we plot the same data from Fig.
6(a) but with a log-log scale. There might be some re-
gion where one can make a power-law fit, but the thermal
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FIG. 6. Thermal conductivity as a function of system length
from EMD and NEMD simulations with the x axis in normal
(a) and logarithmic (b) scales. An effective phonon group
velocity of vg = 7.5 km/s was used to obtain the effective
system length from the correlation time in the Green-Kubo
formula.

conductivity eventually converges.

IV. CONCLUSIONS

In summary, we have compared the EMD method and
the NEMD method for computing thermal conductivity
in three Si-based systems: 3D bulk silicon, 2D silicene,
and Q1D SiNW. Particularly, by converting the corre-
lation time in the EMD method to an effective system
length according to Eq. (9) with an appropriate value of
the effective phohon group velocity, we can compare the
EMD results directly with the the NEMD results. For all
the systems, we found excellent agreement between the
two methods. While it is computationally prohibitive to
directly obtain length-convergent thermal conductivity in
the case of bulk silicon, we do have achieved this for sil-
icence and SiNW, where the length-convergent thermal
conductivities from the NEMD method were found to
be consistent with the time-converged thermal conduc-
tivities from the EMD method. Our results thus firmly
establish the equivalence of the two methods and draw
attention to the incorrectness (for many-body potentials)
of the heat current formula as implemented in the popu-
lar MD package LAMMPS.
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