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POLYNOMIAL MATRIX REDUCTION TO LINEARISED FORM
by
Y.L.Li

Abstract:

In many aspects of system analysis it is required to consider a set of
equations in order to infer the behaviour or, more simply, properties of the
system. In many cases these equations will be complex and consequently difficult
to analyse. It would be useful therefore from the analysis point of view if a
similar but equivalent set of equations describing the system's behaviour could
be found.

" In the case of linear systems these equations describing the system may be
represented by a general polynomial system matrix as has been proposed by
Rosenbrock (1970). By reducing this system matrix to linear polynomial form
the system can be more easily examined. In the conventional study of linear
systems this linear polynomial form is taken to be the usual state space form of
the system matrix, but if a generalised study is to be undertaken then the linear
form will be the generalised state space form of the system matrix. There are
therefore various ways of performing these reductions, all of which preserve
particular properties of the original system. The dissertation addresses these
issues.

The main contributions of the thesis are contained in chapters 6 and 7.
Described in chapter 6 are three ways of system matrix reduction to linear
polynomial form. Hayton et al. (1989) have formed matrix pencil equivalents
from a general polynomial matrix, preserving the finite and infinite zero
structure. This is based on the system matrix idea by Bosgra and Van der
Weiden (1981). A further method discussed is the reduction of a polynomial
matrix of a linear multivariable system to generalised state space form proposed
by Vardulakis (1991). A final reduction is the linearisation described by Zhang
(1989) which produces a strongly irreducible realisation for singular systems.
Some comparisons of these methods are made.

In chapter 7 the Hayton et al. algorithm which permits the reduction of a
general polynomial matrix to a similarly equivalent matrix pencil form is
computerised. The key to the reduction is an efficient method of selecting
linearly independent rows and columns from a block Toeplitz martrix. By using
the program by Demianczuk (1985) which computes the infinite frequency
structure of a given rational matrix from its Laurent expansion, the equivalent
infinite zero property of the matrix pencil and the polynomial matrix can be
verified directly.
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Addendum

| In chapters II, IV and VII it is mentioned that the Smith form and Smith McMillan
form of certain matrices will be produced. Note that in fact these forms have not actually
been found. This is because it can be seen from the working given what the finite and
infinite system poles and zeros are. The Smith form and Smith McMillan form of the

appropriate matrices will now be stated.

In examples 1 and 2 section I1.4 (p.16, p.17), example 1 section IV.2 (p.43, p.45, p.48),
example 1 section IV.3 (p.76) and in chapter VII (p.142), the Smith forms and Smith
McMillan forms can be obtained from the forms given by elementary row and column

_interchanges.

Now consider exampile 1 section IV.2. The Smith form of the matrix [T(s) U(s)) (p.42)

[(1} 3(53—2) 8}

The Smith form of the matrix [%(s) 1] (p.44) is

is

100 0 O
o1e o 0
001 o0 0
0 0 0 s(s+2) 0

1 00 0 0
01 0 0 0
0 0 1 0 0
00 0 1+2w O

Now consider example 3 section IV.2. The Smith form of T(s) (p.53) is

{(IJ s*(s + 10)(s+ 2)}

The Smith form of P(s) (p.54) is

10 0
01 0
[00 ﬁ@+nw+mJ




The Smith form of the numerator of ¥ (1) (p.56) is

1 00 0
0 10 0
0 01 0
0 0 0 w(l+w)(l+2w)

The Smith form of the numerator of P8 (1) (p.58) is

1 000 0
0100 0
0010 0

0 001 0

0 0 0 0 (1+w(l+2w)?

Now consider example 1 section IV.3. The Smith form of the numerator of [¥ () 4]

(p.71) is
1 0 0 0
01 00
0 0 w O
. T (%)]
The Smith form of the numerator of % (p.73) is
100
010
0 01
0 00

Hence it can be seen that the results determined from above are the same as those given

in the text.
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I

INTRODUCTION

Bosgra and Van der Weiden (1981) have given a procedure whereby a gen-
eral polynomial system matrix may be reduced to an equivalent generalised state
space form. The sense in which this is equivalent to the original system matrix
is that the reduced system exhibits identical systemn properties, both at finite
and infinite frequencies.

In this thesis, a computerised version of this algorithm is provided, and
it will be seen that this permits the reduction of a general polynomial matrix
to a similarly equivalent matrix pencil form (i.e. one which exhibits identical
finite and infinite zero structure). The key to this reduction is an efficient
method of selecting a set of linearly independent rows and columns from a block
Toeplitz matrix. It will also be seen that this reduction algorithm is a full
system equivalence transformation and a characterisation of this equivalence
in a matrix transformational sense is provided. The computational procedures
for the determination of the infinite frequency structure of rational matrices by
Demianczuk (1985} are used, and this illustrates the identical infinite frequency
property of the general polynomial matrix and its reduced form.

Chapters II-V contain relevant results from multivariable systems theory
necessary for this thesis. In chapter II various results concerning rational fnatri-
ces are discussed. These include definitions of finite and infinite poles and zeros
of a rational matrix via the Smith McMillan form and via the Laurent expan-
sion. Also, the McMillan degree of a rational marrix is defined, which plays an
important role in the equivalence relation between a general polynomial matrix
and its associated matrix pencil form.

Chapter III discusses the various system representations including the state

space description. the transfer function matrix description, the Rosenbrock’s
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system matrix and the matrix fraction description.

The system structure is discussed in chapter I'V. System poles and zeros at
both finite and infinite frequencies, and the matrix pencil are defined.

Finally chapter V describes the various equivalence relations between sys-
tems. In the conventional study of linear systems, the transformations are sys-
tem similarity for state space models and extended strict system equivalence
(e.s.s.e.) for polynomial models. In the generalised theory, the appropriate sys-
tem transformations are complete system equivalence {(c.s.e.) for generalised
state space models and full system equivalence (f.s.e.) for general polynomial
models.

Also discussed in this thesis in chap"cer VI are three methods of system
matrix reduction to linear polynomial form. Hayton et al. (1989} have formed
matrix pencil equivalents from a general polynomial matrix, preserving the finite
and infinite zero strueture. It can be seen how this reduction is based on the

| system matrix idea by Bosgra and Van der Weiden (1981). Another method dis-
cussed is the reductio_n of a polynomial matrix of a linear multivariable system
to generalised state space form proposed by Vardulakis (1991). The final reduc-
tion discussed is the linearisation described by Zh.ang (1989) which produceé a
strongly irreducible realisation for singular systems. Finally some comparisons
of these three methods of linearisation are made.
In the computer program the language used is Fortran 77 a;d the com-
puter used is the Macintosh, Computer Centre of Loughborough University of

“Technology.

Note

The wocked example, oue tkended Eo show the consistency
of the bheoverms gmd depinkions buke, of cruvse | do net
plove or entablgh them.
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I1

RATIONAL MATRICES

11.1 Introduction

This “chapter contains relevant results concerning rational matrices
necessary for this thesis. These include definitions of poles and zeros at finite and
infinite frequencies, which rely heavily on the Smith McMillan form (Rosenbrock
1970) of the system transfer function matrix. The idea of relative primeness
of polynomial matrices is also introduced. Also discussed in this chapter is the
Toeplitz matrix, and hence how to obtain the infinite pbles and zeros of a rational
matrix from its Laurent expansion at infinity. Finally, the McMillan degree is

defined and it—will-be—seen-in-later-chapters-the importance of the McMillan

degree in the equivalence relation between a general polynomial matrix and its
) Wl be sten On Laber choplers
associated matrix pencil form,.\

I1.2 Polynomial matrices

A POLYNQMIAL FORM is an expression of the form

p(s)=ap+ais+...+a,s" (2.1)

in which ag,ay,...,a, belong to a ficld F (more generally, a ring R) and s is
an INDETERMINATE such that s" and as are defined whenever ¢ € F and
-as = sa. _ ) '

If an # 0, the number n is the DEGREE of p(s).”If a, = 1, the polynomial
is said to be MONIC. The values of s for which p(s) takes the value 0 € F are
called the ROOTS or ZEROS of p(s).

_ A polyﬁomial g(s) DIVIDES a polynomial p(s) if there exists a polynomial
p1(8) such that

p(s) = g(s)p1(s) (2.2)




If g(s) divides p(s) and ¢(s), but no polynomial of higher degree than g(s)
divides p(s) and ¢(s), then g(s) is a GREATEST COMMON DIVISOR of p(s)
and q(s). If a greatest common divisor of p(s) and ¢(s) has degree zero, then
p(s) and ¢(s) are RELATIVELY PRIME.

Let IR[s] denote the ring of polynomials in the indeterminate s with

coefficients in JR. Now define the following:

Definition 1
Let M(s) € R[s|™™. Then M(s) is said to be UNIMODULAR if M~'(s)

exists and M~1(s) € R[s]™*™.

A POLYNOMIAL MATRIX is a matrix whose elements are polynomials.

Suppose that the matrix [T U] is reduced to
(T2 U1]=Q(s)[T U] - (23)
Then Q~1(s) is a polynomial matrix, and

T=Q'Ty

U=qQth ' (2.4)

The polynomial matrix Q~*(s)} has provided a left factorisation of T and U.
Q~1(s) is called a LEFT DIVISOR of T and U.

Suppose that [szl is further reduced to

-V
= [ @

where again R™!(s) is a polynomial matrix. This gives

T = (Q“‘TI)R‘l
V=WR! (2.6)

T,V are said to have a COMMON (RIGHT) DIVISOR R~

5




If two matrices T,U have only unimodular common divisors on the
left, they are called RELATIVELY (LEFT) PRIME, or (LEFT) COPRIME.
| Similarly, if T,V have only unimodular common divisors on the right, they are

called RELATIVELY (RIGHT) PRIME, or (RIGHT) COPRIME.

II.3 Finite poles and zeros

Elementary row and column operations on any rationai matrix A(s} €
R(s)™" where IR(s) denotes the field of rational functions, are defined as
follows: _
(a) interchange any two rows or cohumns of A(s),
(b) .multiply row or column i of A(s) by a non-zero constant in IR,
(c) add to row or column i of A(s) a multiple by any non-zero element ¢(s) € RR|s}

of row or column j.
Let P(m,l) denote the class of (r +m)x(r +{) polynomial matrices, where

m,l are fixed positive integers but r is variable and ranges over all integers

greater than max (—m,—![). A relation between polynomial matrices is now

stated as follows:

Definition 1 -
(a) Two mxl polynomial matrices Py(s), Py(s) are said to be UNIMODULAR

- EQUIVALENT (u.e.) if there exist unimodular matrices M (s), N(s) such that
Pi(s) = M(s)Py(5)N(s) (3:1)

~(b) Let Pi(s), Pa(s) € P(m.l). Then Pi(s), Ps(s) are said to be EXTENDED

UNIMODULAR EQUIVALENT (e.n.e.) if there exist polynomial matrices

M(s), N(s) of appropriate dimensions such that

M(sYPi(s) = Pa(s)N(s) (3.2)

or

[M(s) Pa(s)] [f}\f(sz)} =0 (3.3)




where Py(s), M(s) are relatively left-prime

N(s), P;(s) are relatively right-prime

Note that the extra generality of extended unimodular equivalence is
achieved by its facility for allowing matrices of different dimensions to be related.
In chapter V, it will be seen that the above definition is useful in establishing

a notion of equivalence between polynomial matrices.

The elementary row and column operations on any rational matrix A(s) can
be accomplished by multiplying the given A(s) on the left (right) by elementary
unimodular matrices which are obtained by performing the above elementary

operations on the identity matrix I, (.
By a combination of these elementary operations, an mxn rational matrix

A{s) can be reduced to its Smith McMillan form defined as follows:

Smith McMillan form (Reosenbrock 1970)

Let A{s) € R(s)™" with rank A(s) = r. By elementary row and column

operations, A(s) can be reduced to Smith McMillan form
S(s) = M(8)A(s)N(s) (3.4)

where M, N are unimodular, and where

( [Q(8) Omp—m] n>m
S(={ Q) n=m (3.5)
[ [O?EQ)J n<m
and
Q(s)=diag[%%,%%,...,%%,o,m,o (3.6)

where e; and f; are relatively prime, monic polynomials where e; divides e;41

for i =1,...,7r =1 and f; divides f,_; for j=2.... r.

7




Equation (3.4) defines an equivalence relation on IR(s)™™ which is denoted
E®R_ The Smith McMillan form S(s) € R(s)™*™ of a rational matrix A(s) is a
canonical form for E® on R(s)™*",

If fi(s) =1, i=1,...,r, in (3.6) above, that is, if S(s) is a polynomial
matrix, then it is called the SMITH FORM of A(s). Otherwise, if A(s) is

are

non-polynomial, then f;(s}, ¢ = 1,...,r, & non-constant. that is, S(s) is also

non-polynomial and is called the SMITH MACMILLAN FORM of A(s).

The poles and zeros of a scalar transfer ftlncti(;n are fundamental to the
behaviour of the corresfxmding system since the poies typify the free response
of the system while the zeros have implication for the forced response. In
a multivariable system the concepts arefof no less significance., The various
definitions of multivariable poles and zeros at finite frequencies rely heavily on
the Smith McMillan form (Rosenbrock 1970) of the system transfer function
matrix and from this their complete effect on the transmission properties of the
system may be ascertained quite readily.

Desoer and Schulman (1974) deduced that p € € is a finite pole of a rational
transfer function matrix if and only if some input creates a zero-state response
of the form ?"e?;t for ¢t > 0 (where r is a constant) i.e. the presencé of a pole in
a given transfer function matrix changes a system from its zero state at ¢t = 0~
to a s%ate at t = 0% which results in a purely exponential outputfor all £ > 0.
Also in the same paper it is deduced that z € € is a finite zero of a rational

_ transfer function matrix if it blocks the transmission of signals proportional to
¢t in that the corresponding output y(t) =0 for all £ > 0.

Multivariable transfer functions can have poles and zeros at the same

location! To reflect this fact, it is useful to rewrite the Smith McMillan form as

€i(s)
fi(s)

- | diag[ ] =[] Mals) (3.7)

where « ranges over the set of poles and zeros of A(s), and each M, (s) has the

3




form

My(s) = diag{(s — )%, (s - a)""} (3.8)

The Smith McMillan form of a rational matrix A(s) is now used to define the

finite poles and zeros of A(s) as follows:

Definition 2
| A(s) has a FINITE POLE at o of degree —o; if o; is negative. The pole at
« has multiplicity equal to the number of (s — @)%, with ¢; < 0, present in the
Smith McMillan form of A(s). |
Definition 3
A(s) has a FINITE ZERO at « of degree o; if o; ‘is positive. Thé zero at
o has multiplicity equal to the number of (s — )%, with ¢; > 0, present in the

Smith McMillan form of A(s).

Example 1

Consider the rational matrix

1
s+1
A(s) =
1 1
s+ 2 s+3

To produce the finite poles and zeros of A(s), the Smith McMillan form of A(s)

is firstly found as follows:

1
0
s+1
1 1
s+ 2 s+ 3
! 0
new row 2 = s+1
(row 2) = (row 1) -1 1

(s+1)(s+2) s+3

9



-1 -

interchange (s+1)(s+2) (s+3)
row 1 and row 2 1 0
new fowd | = — cow | s+1
1 —1
new row 2 = (s+1)(s+2) (s +3)
(row 2) — ((s + 2) x row 1) 0 s+2
- s+3
- 1 . _2 -y
new ca_l. 2= (s+1){s+2) (s +1)(s+2)(s+3)
(col. 2) + (s x col. 1) '0 s+2
L ) 5+3 _
interchange T 1 1 1
col. 1 and col. 2 (s+1)(s+2)(s+3) (s+1){s+2)
multiply new col. 1 —(s+2) 0
by —1/2 - L 2(s+ 3) |
- 0
new col. 2 = (s+1)(s+2}(s+3)
(col. 2) — ((5 + 3) x col. 1) —(s+2) (s+2)
2(s +3) 2
multiply row 2 1
by 2 . 0
N (s +1){s+2)(s+ 3)
- - new row 2=
‘)
(row 2) + ((s + 1)(s + 2)? x row 1) 0 ~s+32)
Hence, the Smith McMillan form of A(s) is
! _ 0
S(A) = (s+D{(s+2){(s+3)
0 (s+2)
Therefore, A(s) has one finite zero at s = —2 of degree 1 and multiplicity 1, a
pole at s = —1 of degree 1 and multiplicity 1, a pole at s = —2 of degree 1 and

multiplicity 1 and a pole at s = =3 of degree 1 and multiplicity 1 .
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11.4 Infinite poles and zeros

In multivariable systems theory there are several problems in which it
is important to keep track of the behaviour at infinity. Poles at s = oo
correspond to non-proper systems (or systems with differentiators), as may
arise in constructing inverse systems. The zeros at infinity are important, for
example, in studying the asymptotic behaviour of multivariable root loci. For
scalar systems with a numerator of degree m, m < n, m of the closed-loop poles
will converge towards the m finite zeros as the feedback gain goes to infinity.
The remaining n — m poles will converge to the n — m zeros at infinity. It is
cléar that the concept of poles and zeros at infinity are important in the study
of the properties of multivariable root loci.

The basis for the results derived in this section is the Smith McMillan form
at infinity of a rational matrix, as developed by Vardulakis et al. (1982). In
the following R([s| denotes the ring of polynomials in the indeterminate s with
coefficients in R, while R(s) denotes the associated field of rational functions
and R,.(s) denotes the ring of proper rational functions. Note that IR, (s)
is essentially the same as the polynomial ring R[s] in that a degree may be

associated with proper rational functions. Now define the following:

Definition 1
Let G(s) € IR(s)™*™ be an mxn rational matrix. G(s) is said to be
PROPER if
lim G(s)

exists. If this limit is zero, G{(s) is said to be STRICTLY PROPER, while if
this limit is non-zero, G(s) will be called EXACTLY PROPER.

Definition 2
The mxm rational matrix W(s) € II72*™(s) is said to be BIPROPER if
and only if

(a) limg__,m W(S) =W, € Rmx™

11




(b) det Woo #0- - (4.1)

Thus, W(s) is biproper if and only if it is exactly proper (by (a)) and has

an exactly proper inverse (by (b)).

Definition 3

The mxn rational matrices G1(s) and Ga(s) are said to be EQUIVALENT
AT INFINITY if there exist biproper rational matrices W(s) € Rp>*™(s),
V{s) € RZ"(s) such that

W(s)Ga(5)V(s) = Gals) (4.2)

In the previous section, finite poles and zeros of a rational matrix A(s) €
IR(s)™*™ were defined via its Smith McMillan form. It was seen in order that the
finite pole-zero structure of A(s) be preserved during the reduction process to
the Smith McMillan form, row and column operations represented by polynomial
matrices with no finite poles nor zeros (i.e. #2[s]-unimodular matrices) were used.
These (IR[s]-unimodular) elementary operations will in general destroy the pole-
zero structure of A(s) at infinity since their polynomial matrix representation
may have poles and zeros there. Thus, the reduction procedure to a diagonal
matrix, which gives in a simple form the pole-zero structure at s = oo of a given
rational matrix will be obtained by carrying out elementary row and column
operations whose matrix representations have no poles nor zeros at s = oo.
~These elementary operations are repr;zsentcd by quuare rational matrices whose
elements are proper rational functions (and thus have no poles at s = 00), are
non-singular and have also no zeros at s = oc.

These elementary row and column operations on any rational matrix
G(s) € IR{(s)™™ are defined as follows:

(a) interchange any two rows or columns of G(s),

(b) multiply row or column 7 of G(s) by a unit u(s) € R,.(s),

12




(c) add to row or column ¢ a multiple by a t(s) € Rp(s) of row or column j of
G(s).

These elementary operations on a rational matrix G(s) can be accomplished
by multiplying G(s) on the left (right) by elementary biproper matrices which
are obtained by performing the above elementary operations on the identity
matrix Iy

By a combination of these elementary row and column operations, an mxn
rational matrix G(s) can be reduced to its Smith McMillan form at infinity. A
canonical form for a rational matrix under the equivalence relation of Definition

3 is its Smith McMillan form at infinity, S™(G):

Smith McMillan form at infinity (Vardulakis et al., 1982)

Let G(s) € R(s)™"™ with rank G(s) = 7. Then there exist biproper rational

matrices W (s) and V'(s) such that

W(S)GEV (5) = S°(G) (4.3)
where
( [Q(s) Omp—m] n>m
se(@) =4 @ n=m (4.4)
\ [Offs)m] msm
and
Q(s) = diag[s%,s%,...,57.0,...,0] (4.5)
with G202 .. 2202002 2¢ (4.6)

5%°(G) is called the SMITH MACMILLAN FORM AT INFINITY of G(s).

The Smith McMillan form at infinity of a rational matrix G(s) is now used

to define the infinite poles and zeros of G(s), as follows:




Definition 4

If poo is the number of ¢; s in (4.5) with ¢; > 0, then G(s) has p,, POLES
AT INFINITY, each having degree ¢;, and where po, is the multiplicity.

Definition 5

If z.s-is the number of ¢; s in (4.5) with ¢; < 0, then G(s) has z,, ZEROS

" AT INFINITY, each havirig degree |¢;l, and where 24, is the multiplicity.

The effect of poles and zeros at infinity on the transmission properties
of a multivariable system may be ascertained from the Smith McMillan form
at infinity. Verghese (1978) showed that the presence of an infinite pole in
a given transfer function matrix causes the transmittance to contain a linear
combination of impulse functions which are not present in the input. Thus,
impulses are generated by a pole at infinity. Pugh and Krishnaswamy (1985)
showed that the pres;nce of an infinite zero in a given transfer function matrix
causes the non-transmittance of the impulsive part of certain inputs. Thus, zeros

at infinity enable a system to absorb certain impulses.

Proper rational functions have no infinite poles, biproper rational functions
have no infinite poles nor zeros, and polynomial matrices have only poles at
- infinity, as it will now be seen.
Every t(s) -e IR(s) can be written as

= o) -
- sy =3 505) (4.7)

where ni(s),d;(s) € R[s] with deg n,(s) = deg d,(s). This is because #(s)} can

be written as

t(s) = %((j—gs—q"sq" = u{s)s® _ (4.8)

where
_na{s) _ n(s)
ws) "_. di(s) ~ d(s)s¥

14




and

% = deg n{s) — deg d(s) @)

If ¢; < 0, then t(s) is called a proper rational function and if the inequality
is strict, then #(s) is called a strictly proper rational function. Thus, proper
rational functions have no poles at s = oo.

The set of proper rational functions R,.(s) is a commutative ring with
unity element (the real number 1) and no zero divisors. IRp-(s) is therefore
an integral domain. Biproper rational functions u(s) € IR,.(s) are those proper
rational functions for which there exist a u’(s) € IR,-(s} such that u(s)u’(s) = 1.
This implies that u(s) € n(s)/d(s) € R,+(s) is a unit if and only if deg n(s) =
deg d(s) ie. if and only if ¢; = 0. Thus, biproper rational functions have no
poles nor zeros at s = oc.

The rational matrix £(s) € R(s)™ is polynomial if and only if it has

no finite poles i.e. a polynomial matrix has all its poles at infinity. If t(s) is

polynomial, then it has a coprime factorisation
t(s) = I;'t(s) (4.10)

Hence, I, is a denominator of (s}, and clearly #(s} has no finite poles.
Conversely, suppose that

t(s) = D~H{s)N(s) (4.11)

is a coprime factorisation of £(s). If £(s) has no finite poles, then all denominators
of ¢(s) have no finite zeros. Thus the Smith form of D(s) is I,», and so D(s) is

nnimodular. Consequently, D~'(s) is a polynomial matrix and so is #(s).

Example 1

Consider the rational matrix

Gls) = [sil (1)]
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In order to find the infinite poles and zeros of G{3), if is necessary to produce

the Smith McMillan form at infinity of G{s), as follows:

[ 1 0 } interchange Fot 1 1]
s+1 1 row 1 and row 2 | ! 0

_ new col. 1 = s 1
B col. 1xs/{(s+1) |s/(s+1) 0

new col. 2 = [ s 0 }

(col. 2) — {col. 1 x 1/;3 sf(s+1) ~1/(s+1)

new row 2 = | s 0
(row?)-—(rowlxl/(s-&—l)) l:O —1/(s+1)}
~ new col. 2 = s 0

[0 l/s]

—col. 2x (s+1)/s

Hence, G(s) has Smith McMillan form at infinity

mor-[3 )

i.e. G(s) has a pole at infinity of degree 1 and a zero at infinity of degree 1

Example 2
Consider now the rational matrix
- ‘ 3 82 f
T(s)=|-1 0 0
—-s -1 0

Firstly produce the Smith McMillan form at infinity of T(s}, as follows:

] new col. 2 =
-~ {53 5% 1} {cal. 2} — (col. 1 x 1/s) {53 0 0
-1 0 0 — | -1 1/s 1/53}
-5 -1 0 new col. 3 = -5 0 1/s
(col. 3) — (col. 1 x 1/5°)
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new row 2 =
(row 2) + (row1x1/s%) [s 0 0

0 1/s 1/s°
new row 3 = 0 0 1/s
(row 3) + (row 1 x 1/s%)
new col. 3 = s 0 0
0 1/s O

(col. 3) — (col. 2x 1/s%) | 0 O 1/s®

Hence, T(S) has Smith McMillan form at infinity

30 0
M =0 1/s 0
0 0 1/s

i.e. T(s) has a pole at infinity of degree 3 and a zero at infinity with multiplicity

2 and degrees 1, 2.

I1.5 The Laurent expansion at infinity

Van Dooren et al. (1979) used the Laurent expansion of a rational matrix
G(s) about a finite point and the corresponding Toeplitz matrix coeflicients to
determine the Smith McMillan form at s of G(s). In an analogous way the
Smith McMillan form at infinity of G(s), and hence the infinite pole and zero
structure of G(s), can be determined by considering the Laurent expansion at
infinity of G(s) and the corresponding Toeplitz matrices.

Suppose the rational matrix G(s) has a Laurent expansion at infinity of the
form:

!
G(s) = Z G;st

T=—0

=G 4+ Grs T L A Go+ GoysT L (5.1)

Now define the Toeplitz matrices as follows:




Definition 1
The TOEPLITZ MATRICES AT {NFIN ITY, T;°°(G), associated with G(s)

are defined as follows:

r Gy Gi—1 Giez e G_;
Gy L
~TR(G) = Gi : , 1> -l (5.2)
0 -
Gy

The information concerning the rank of the T:* (@) will determine the rank
indices at infinity of G(s), which are defined as follows:

Definition 2
The RANK INDICES AT INFINITY of G(s) are defined as

éf"(G)=rank[§}-°°(G)]—rank[il}cfl(G)], i=—l—l+1,..., (5.3)

where it is assumed that the non-existing T;7°, ¢ > [ , have rank zero.

These rank indices at infinity are invaria-nt under the transformation of
equivalence at inﬁnity given by Definition 3 section I1.4.
Theorem 1
~ Let G(s) and H(s) be two mxn rational matrices. If G(s) and H(s) are
equivalent at infinity then they have the same rank indices at infinity.
_Proof ' - _
See Pugh et al. (1989).

As a consequence of the above theorem, it follows that a rational matrix
G(s) has the same rank indices at infinity as its Smith McMillan form at infinity,
5§°°(G). Thus, a direct relationship between the rank indices of G(s) and its
Smith McMillan form at infinity has been established, which makes it possible to

deduce the Smith McMillan form at infinity of G{s) from the rank differences of
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its Toeplitz matrices at infinity. To derive this relationship requires the following

theorem:

Theorem 2 (Pugh et al., 1989)
Let §%°(G) denote the Smith McMillan form of the rational matrix G(s),
and p{° denote the rank indices of G (s) constructed on the basis of its Laurent

expansion about the point at infinity. Then
$°(G) £ block diag{Q:(s)} (5.4)

where Q;(s) is the (p° — p52)x(p2® — pf2;) matrix given by

st 0 0
A 0 S‘-i 0
Q=1 . (5.5)
0 0 s
fori = —I,—l+1,..., and if p* —p{>| = 0 then the corresponding matrix Q;(s)

is not present in (5.4).

The pole-zero structure at infinity may now be deduced as follows:
Corollary 1

If, in theorem 2, pf° — p$2; # 0, then
(a) G(s) will have p° — pg°; POLES AT INFINITY of degree li| if ¢ < 0, with
multiplicity (02 — p=5_1)-
(b) G(s) will have pf° — pi2, ZEROS AT INFINITY of degree ¢ if ¢ > 0, with
multiplicity (pf° — p§)-

At i =0, G(s) will have no poles nor zeros at infinity.

Example 1

Consider example 2 section I1.4. It was seen that the rational matrix

T |
Ts)=|—-1 0 0
-1 0

-5 1
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had one pole at infinity of degrce 3, one zero at infinity of degree 1 and one zero
at infinity of degree 2. The infinite pole and zeros of T'(s) will now be found via

its Laurent expansion at infinity.

1 0 0 01 0 0 0 0 0 0 1
T(s)=|0 0 0[s*+|0 0 O0}s*+|{ 0 0 Ofls+{-1 0 O
0 00 000 -1 0 0 0 -1 0

=G3s® + Gas? + G5+ G

Now construct the Toeplitz matrices as follows:
1 0 0
S =G3=10 0 O

0 0 0

rank T°5 =1
p>% =rank T°% —rank T2
—1-0

=1

Therefore, there is one infinite pole of degree 3 since p% — p= =1-0=1.

o _ |Gz G2
- =2 t] G3 :

1 0 0 0 1 07

0 00 0 0 O

|0 00 0 0 O

“l10 0 01 00

) O 0000 0
LO 0 0 0 0 0l —

rank T2 =2

0% = rank T° — rank 7°%
=2-1 '
=1

There is no other pole since p%5 — p>%3 =1-1=0.

Ga G2 Gy
=10 Gz G
0 0 Gy
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rank T5° =9
p5° = rank T3° — rank TT°
=9-6
=3

Therefore, there is one infinite zero of degree 2 since p3° —pf* =3-2=1.

Hence, T'(s) has one infinite pole of degree 3, one infinite zero of degree 1
and one infinite zero of degree 2 i.e. the poles and zeros at infinity of a rational
matrix can be obtained via its Laurent expansion at infinity or via the Smith
MecMillan form at infinity.

All the infinite poles and zcros will have been found when
e = r =rank [G(s)] (5.8)

for some k. This is because the rank difference of two successive Toeplitz

matrices cannot exceed r, which means that if (5.6) holds then

Prpi =Ty i=12... (5.7)
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Thus in this case,

pﬁo-{-i - pi?:o+i-1 =.0? i = 1? 23 e (5.8)

indicating that the search is complete.
This observation leads to the following test for the absence of infinite zeros
in a rational matrix:

Result 1

The mx! rational matrix G(s) of normal rank r will possess no infinite zeros

if and only if
rank{75°(G)] = rank (T3 (G)] + 7 : (5.9)

I1.6 The McMillan degree

In this section, the McMillan degreé of both a polynomial matrix and a
rational matrix will be defined. Firstly, the least order of a rational matrix will

be discussed.

Let T(s) € R(s)™* and let
T(s) = AT (5)Bi(s) = Bals) A7 \(s) (6

be respectively left and right coprime polynomial matrix fraction descriptions
(MFD) of T(s), where A1(s) € R{s]™™, Bi(s) € R[s|™, Ba(s) € R[s]™,

Ag(s) € Rls]™. The least order of a rational matrix is defined as-follows:

Definition 1
The LEAST ORDER of a rational matrix T(s), denoted by »(T), is defined

as -

v(T) = deg|A;(s)| = deg|Ad2(s)| (6.2)

Equivalently, the least order is given by the following:




Definition 2
The LEAST ORDER v(T) of T(s) € IR(s)™* is the degree of the product
of the denominator polynomials f;(s), 1 = 1,...,r, appearing in the Smith

McMillan form of T'(s) i.e.

UT) = deg[,ljlf‘(s)] (6.3)

Clearly, v(T) is the number of finite poles of T'(s), multiplicities and degrees
accounted for.

The least order of a rational matrix plays an important part in the definition
of the McMillan degree of a rational matrix.

Let T(s) € R(s)™ and write it as
T(s) = Tep(8) + Tpoi(s) (6.4)

where Ty,(s) € RJX(s) is strictly proper (ie. limy—,e Tep(s) = 0) and

Tpol(8) € IR[s]™ .

Definition 3
The MACMILLAN DEGREE éu (T(s)) of T'(s) is defined by

61 (7)) = v(T()) + (o) (6.5)

If T(s) is entirely polynomial i.e. if in (6.4), Ty,(s) =0, then the following

holds:




The following resuit of the McMillan degree of a polynomial matrix P(s) is

proposed:
Result 1
For an mx{ polynomial matrix P(s)}, the MACMILLAN DEGREE of P(s),

denoted &pr (P(s)), is the total number of infinite poles of P(s) (McMillan
1952), i.e—

Sm (P(S)) = i @ | (6.7)

=1
where g;, i = 1,..., k, are the orders of the poles at s = oo of P(s) in the Smith

McMillan form at s = oo of P(s), or the highest degree of minors of all orders

of P(s) (Rosenbrock 1970).

Another characterisation has been noted by Barnett (1971) and is the
following. Let the mx! polynomial matrix P(s) correspond to the matrix

polynomial defined by

P(s) = Po+ Pis+ Pos® + ... + Pps? (6.8)
where P;, i = 1,2,...,q, are mxl constant matrices with
P #0 (6.9)

The McMillan degree of P(s) is defined in the following lemma: _

Lemma 1 (Pugh 1976)

r P1 Pg - P,?_l Pq §
P P ... P 0
Sm (P(s)) =rark | : : : (6.10)
Py P, ... O 0
L P, 0 0

~ Consider now a proper rational matrix T(s) and decompose it as in (6.4)

T(s) =Typ(s)+ E (6.11)
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where E € IR™. A constant matrix £ has no finite nor infinite poles so its

McMillan degree is zero. Thus,

531(16)) = #(Tp(®)) +E)
T.(s))

(
v (T(.s)) (6.12)

Also, for any rational matrix 7°(s), (see Definition 3),

w0 (T6)) =#(T9) + (T )

= I/(T(S)) + bt (Tpoz(s)) using (6.12) and (6.6)

- deg[i:f[lfi(s)] "

Il

14

k
q; using (6.3) and (6.7)

=1

T

Now deg[l—[,f:l f«;(s)il gives the number of all finite poles of T(s). Hence, the

following results:

Result 2
The MACMILLAN DEGREE 6 (T(s)) of a rational matrix T'(s) is equal
to the total number of poles of T'(s) (finite ones and those at s = oo, and

multiplicities and degrees accounted for).

A technical result involving the McMillan degree of a polynomial matrix
will now be stated. In chapter VI, it will be seen that the theorem is useful in
establishing a notion of equivalence between a general polynomial matrix and
its associated matrix pencil form.

Theorém 1
Let P(s) be an mx! polynomial matrix.

(a) If P;(s) are mx!; polynomial matrices (i = 1,2) such that

su(1P6) Pio)] ) = b (P) (6.13)



then

5M([P(s) Py(s) PQ(S)J) =6M<[P(s) Pz(s)]) (6.14)
{(b) If B is an xn constant matrix such that

Sar (P(S)B) =M (P(S)) (6.15)

—  then for any mxp polynomial matrix C(s),

__csM( P6B C)] ) =ou( [P o)) (6.16)

Proof:

See the work by Hayton et al. (1989).
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I1I

SYSTEM REPRESENTATIONS

II1.1 Introduction

In the study of control systems it is often sufficient to examine a linear
model of the system in order to infer its behaviour. There are four principal
types of linear model, or system description, that are used in multivariable
control system studies. These arc known as the state space description, the
transfer function matrix_descriptioh, the syétem matrix (the Rosenbrock system
matrix and the generalised state space system matrix), and the matrix fraction

description. Each of these will be considered in this chapter.

II1.2 The state space description

Consider a control system whose defining equations are of the form:

z(t) = Az(t) + Bult)

y(t) = Ca(t) + D(su(t) (2.1)

where z(t) is a;l nxl vector of state variables, u(¢) is an Ix1 vector of input
functions and y(¢) is an mx1 vector of outputs. The matrices A, B, C are con-
stant ‘;md are of dimension nxn , nxl, mxn respectively. They are called
respectively the plant matrix, the input matrix and the output matrix. D(s)
_is a polynomial matrix of dimension mx{. This system is said to be in STATE

SPACE FORM. .

This state space description of the system provides a picture of the system

structure as shown below:




o N

I U
N
P STATES
U B o
: X
S
A

The internal variables z;(t) (i = 1,n) interact with one another, the inputs
ur(t) (k = 1,1) affect the system states z;(t}, and the outputs y;{t) (j = 1,m) are
obtained from various combinations of the state variables z;(t) and the inputs
uk(t). This form of description is called an INTERNAL DESCRIPTION.

Note that the eigenvalues (or poles) of the system are given by the roots of

|sI — Al = 0.

II1.3 The transfer function matrix description
Consider again the system in state space form (see equations (2.1) section
I11.2). Assume that the initial conditions are zero i.e. 2(0) = 0. Taking Laplace

transforms gives
sT{s) = Azx(s) + Bu(s)

(3.1)
¥(s) = Cz(s) + D(s)u(s)
Substituting the first equation into the second, eliminating z(s), gives
i(s) = [C(sI - ATB+ D(s)] u(s) (3.2)
The mx| rational matrix
G(s) = C(sI — A~'B + D(s) (3.3)
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summarises the response of the system so far as its external behaviour is con-
cerned. This matrix is called the TRANSFER FUNCTION MATRIX. G(s) is
an input-output map relating the Laplace transform of the vector of outputs
y(s) to the Laplace transform of the vector of inputs u(s), with zero initial

conditions, by the relationship
B j(s) = G(s)uls) ' (3.4)

For an arbitrary ordered linear model, the elements g;;(s) of the matrix G(s)
are ratios of polynomials in s representing the transfer function seen between
output y; and input u;.-This form of description provides little real information
about the internal structure of the system, and is known as an EXTERNAL
DESCRIPTION. Only the transfer function matrix description is truflly exter-
nal. All other descriptions are realisations of G (s) and so are internal to varying
degrees of detail. The matrix fraction description (see section IIL5) is the least
detailed internal description and the generalised state space system matrix de-
scription (see section II1.4) is the most detailed.

If it is assumed that no cancellations have occurred in the matrix product
C(sI — 4)~1B in (3.3), then the poles of G(sj are the roots of |sI — A| = 0.

Also note that the matrix G(s) is said to be STRICTLY PROPER if G(s) —

0 as s — oo, and is said to be PROPER if G(s} — constant matrix as s — <.

I1T1.4 Rosenbrock’s system matrix

The equations of a physical system may not always initially be in state spé.ce
_form. There are always procedures for converting a lincar model to state space
form. Often, however, the physical system is non-linear, and linear equations
are obtained by considering small perturbations from a steady state.
In such a case the resulting equations will not usually be in state space
form. For example, the equations which result from lincarisation may be mixed

algebraic and differential equations, Alternatively they may be in the form
Qi = Az + Bu (4.1)
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with Q singular. Therefore, it is desirable to have a more general way of de-
scribing a system.

Assume that the system satisfies linear algebraic and differential equations
with constant coefficients. Taking Laplace transforms with zero initial conditions
gives

T(s)z =U(s)a
(4.2)
§=V(s)z+W(s)a
where z€ R, y € R™, v € IR!. T,U,V,W are polynomial matrices of dimen-
sion rxr, rxl, mxr, mxl respectively. |T(s)| # O since otherwise the first of
equations (4.2) would be indeterminate.

The ORDER, n, of the system (4.2) is the degree of the determinant of

T(s).
0SSume,

Now emsure that r > n. If this is not true, the polynomial matrices

T,U,V,W are trivially expanded as follows:
— In—v 0 . O'n.—r,l
n-[al o we %]

Vl = [Om,n—r V] LVI =W

(4.3)

Therefore, assuming that r > n, the set of equations (4.2) can be written as

Ti(s) Ul(s)J { z } [ 0 }
= (4.4)
—Vi{s) Wi(s)) [ -2 ~7

The (r + m)x{r + [} polynomial matrix

Ti(s) | Uils)
Py=| — | — (4.5)
~Vi(s) | Wi(s)

contains all the mathematical information about the system which is needed to

discuss its behaviour, and is called a (ROSENBROCK) SYSTEM MATRIX in

polynomial form.



Substituting the first equation in (4.2) into the second gives
§={VET I ()U(s) + W(9)la (4.6)
from which the transfer function matrix can be obtained as
G(s) = V()T ()U(s) + W{(s) | (4.7)

Example 1

The system matrix

- 1 0 | 0
I
Ps)=| 0 (s+1)2 | &
— —_ i —_
0 -1 | 2-35
gives
-~ &
G(s) = m+(2—5)
) _ 3s+2
(s+1)*

Notice that the non-vanishing of W(s) does not prevent G(s) from being proper.
Indeed, there is no easy way to tell, from a general polynomial system matrix,

whether G(s) is proper or not. -

Counsider now the system in state space form {see (3.1) section 1I1.3). Equa-

I 0
- (4.8)
-1 -7
The (n + m)x(n + 1) polynomial matrix

i sl, -A | B
P(s) = | — } (4.9)
~C | Df(s)

“tions (3.1) may be written as

sl,-A B
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contains all the mathematical information about the system which is needed to
discuss its behaviour, and is called a (ROSENBROCK) SYSTEM MATRIX in
state space form.

Consider again equation (4.7). For the special case of P(s) in state space
form, the transfer function matrix G(s) becomes the relationship given previ-

ously in (3.3).

Conventional state space theory deals essentially with the strictly proper

part of the transfer function matrix

G(S) = Gspr' + Gpol
(4.10)
= C(sI — A)"!B + D(s)
Generalised state space theory considers the polynomial part of G(s) on the

same basis as the strictly proper part i.e.
G(s) =C(sE - A)"'B+D (4.11)

In linear systems theory, standard matrix theory may be considered defi-
cient. This is the failure to consider the point at infinity on an equal basis with
the rest of the points in the frequency domain. The generalised theory of linear
systems arises from an attempt to consider the point at infinity on the same
basis as the finite points of the frequency domain. This arose from the recogni-
tion that linear systems may exhibit significant infinite frequency behaviour of
an impulsive nature.

The simplest systems exhibiting significant infinite frequency dynamical
behaviour are the GENERALISED STATE SPACE SYSTEMS (gss systems).
Such systems give rise to a system matrix of the form (Rosenbrock 1974, Vergh-

ese 1978)

P(s) = |
~-C |

(4.12)

sE-A | B
D



where E, A, B, C-are constant matrices, (£ may or may not be singular), and
IsE — A} #0.

The generalised state space form (4.12) corresponds to the pair of equations

Ex(t) = Az(t) + Bu(t)
(4.13)
y(t) = Cz(t) + Dult)

The pair of equations (4.13) is also known as the descriptor form.

IT1.56 The matrix fraction description

One further form of multivariétble system description, known as the matrix
fraction description (or MFD} can now be introduced. This is an interesting
form of system model, which has led to the development of improved design
algorithms. It is a natural extension of the classical single-input single-ontput
system transfer function model. |

Assume that G(s) is a strictly proper Ixm matrix. Let G(s) be expressed

as

(5.1)

where N(s) is an {xm polynomial matrix, and d(s) is the monic least common
denominator of all elements of G(s). G(s) can be written as the MATRIX

—

FRACTIONS

G(s) = N(s) [d(s)[m] ™" ~ right fraction :
(5.2)
= [d(s)ft_]-l N(s} ~ left fraction

Note that equations (5.2) are analogous to the form given by equation (4.7) with
U(s) = Im and V(s) = I;. Also note that it is always possible to write G(s) in

the form of (5.2) i.¢, matrix fraction descriptions always exist.




Example 1

This example illustrates the construction of an MFD. Consider the strictly

proper transfer function matrix

1 1
(e—1)% (s—1){s+3)
G(s) = [ ji

—6 52
(s—1)(s+3)% {s+3)%

G(s) will now be expressed as

_ N(s)
) = 30)
Now,
d(s) = (s — 1)*(s + 3)*
=t 448 252 - 125+ 9
Hence,

[ (s +3)2 (s =1)(s+3)

1
ITE | gmny smnie-1y
; [s*+6s+9 52 +25—3
") | —6s+6 53-4324-53"2}
_ N
d(s)

Matrix fraction descriptions (MFD s) are not, in general, unique. There

exist many left and right MFD s of a given G(s). Consider the following:
G(s) = DL (s)Ne(s) (5.3)

where

(5.4)



The degree § of the denominator matrix Dz (s) is

5{|DL('S)|} =lr (5.5)
where 7 is the degree of d(s), and Dr(s) has dimension {x/. Note also that the
degree of an MFD is |

- deg of an MFD = deg det Dr(s) (or 5{|DL(3)|}) (5.6)
Now multiply Dz and Np on the left by any non-éingular polynomial matrix
W~1(s) such that o
Di(s) =W Ys)DL(s)
i - (5.7)
Ni(s) = W{(s)NL(s)
Then T
~G(s) = D' (s)NL(s)
-1
= (W(S)DL(S)) W(s)Ny.(s) (5.8)
- - =Dp'(s)Ne(s)
which is also an MFD of G(s).
Now rewrite equations (5.7) as
) Nyp(s) = W(s)Nr(s) —
_ (5.9)
DL(S) = TV(S)DL(S)
—(Note here that W(s) is a left divisor of Ny, (3) and Dy (s):) Then,
s{ipen} = s{ipuar} +o{w}
(5.10)

o{ipe(olf 2 6{1D21}

In other words, the degree of the MFD (i.e. the degree of the determinant of the

denominator matrix) can be reduced by removing left divisors of the numerator
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and denominator matrices. Therefore, a minimum degree MFD can be obtained
by removing the greatest common left divisor of Np(s) and Dr(s).

An MFD G(s) = D~!(s)N(s) is said to be IRREDUCIBLE if N(s) and
D(s) are left coprime. Irreducible MFD s are not unique, because if D~1(s)N(s)
is irreducible, so is D‘l(s)W(é) [N‘l(s)W(s)]_l for any unimodular W(s).

Similar results can be stated with respect to right MFD s.
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CHAPTER IV

SYSTEM STRUCTURE

IV.1 Introduction

This chapter discusses various results concerning the structure of a system.
Firstly the idea of decoupling zeros is introduced, and the definition of system
poles and zeros is given. It is noted that the Rosenbrock (1973) definition of the
zeros of a system is incorrect, and the correct definition of the zeros of a system
as given by Rosenbrock (1974) is stated. Also discussed is the infinite system
zero, which is seen to be a natural extension of the finite system zero defined by

Rosenbrock (1974). Finally, in this chapter the matrix pencil is defined.

IV.2 System poles and zeros

Consider a system which satisfies linear algebraic and differential equations
with constant coefficients. Taking Laplace transforms with zero initial conditions

gives

T(s)z = U(s)

F=V(s)Z+W(s)u (2.1)

where z € R", y € R™. u € R'. T, U, V, W are polynomial matrices of

dimension rxr, rxi, mxr, mxl respectively, and |T'(s)| # 0. Let

T(s) U(s)
P(s) = (2.2)
-V(s) W(s)

be the Rosenbrock system matrix. In order to obtain definitions of poles and
zeros at infinity consistent with the definitions of their finite counterparts, it is

usual (Verghese 1978) to work with an alternative form of (2.2). This is called
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the NORMALISED FORM of the system matrix P(.s-) which is denoted 3(s)

and defined as follows. Equations (2.1} may be written in the following form:

[ T(s) U(s) Om} { 3(s) } {or,}
~V(s) W(s) Im ~(s) | = | Oy | T(s)
Or  —~Ii Oum i(s) I

Z(s)
?}(3) = [Omr Om! Im] —"EL(S)
iHs)

The NORMALISED FORM B(s) of the system matrix P(s} is defined by

FT(s) U(s) 0 | 07

Ts) | U —V(s) W(s) ILm | O
Bs)=| — | —(= (2.4)

- 0 0 =1 o0 | I

i o 0 -I, ] 0.

The following definitions may now be stated:

Definition 1 (Rosenbrock 1970, 1974 b, Verghése 1978)

The INPUT DECOUPLING (i.d.} ZEROS of a linear multivariable system
T at s, = oo (at so € C) are the zeros at so = oc (at sp € €) of the polynomial
matrix 7 . _

[Z(s) U]

‘Definition 2 {Rosenbrock 1970, 1974 b, Verghese 1978)

The OUTPUT DECOUPLING (0.d.) ZEROS of a linear multivariable
system I at s, = o (at 5o € C) are the zeros at sp = oo {at so € ) of the

polynomial matrix

R {‘3(5)
-7
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Definition 3 (Rosenbrock 1970, 1974 b, Verghese 1979)
The INPUT-OUTPUT DECOQUPLING (i.0.d.) ZEROS of a linear multi-
variable system ¥ at sp = oo (at s9 € T) are those output decoupling zeros of &

which disappear when the input decoupling zeros are eliminated.

Result 1
The finite i.d. and o.d. zeros of a normalised system are those of the original

system, namely, the zeros of

[T(s). U(s)] and [-:I’T}?Z)] respectively.

Proof

From definitions 1 and 2, the finite i.d. and o.d. zeros of a normalised

system are those of the polynomial matrices

‘ respectively.
m ]

[T(s) U] and [T(s)

From (2.4), it can be seen that the finite i.d. and o.d. zeros of a normalised

system are those of the original system i.e. the zeros of

[T(s) Uf(s)] and [_I;E)q)] respectively.

Theorem 1 _ —_

For a linear multivariable system 3,

{decoupling zeros at so} ={input decoupling zeros at so }+
{output decoupling zeros at so}—

{input. — output decoupling zeros at so} (2.5)

whether sg = 00 or s9 € .




Example 1

Consider the system matrix

rst(s+1) s(s+2) | 0
l

2 2)?

P(S)“—-"— 0 54+ l (S+)
|

L0 1 | 0

In this example, the finite and infinite decoupling zeros of P(s} will be found,
and result 1 will be verified.

Firstly consider the finite decoupling zeros of P(s). From definitions 1, 2 and
3, the finite decoupling zeros are found using the normalised form of the system
matrix. However, it will now be seen that for the finite case, the decoupling
zeros may be found using the original system matrix i.e. the following verifies

result 1.

Firstly produce the finite decoupling zeros of P(s) using the original system

matrix. Produce the Smith forms of the matrices [T'(s) U(s)] and [—Tl/('a ) },

a3 follows:
Ps+1) s(s+2) 0
[T(s) Us)]=

0 s+2  (s+2)°
new row 1= ss+1) 0 —s{s+2)°
(row 1) — (3 x row Q)L 0 s+2  (s+2)?
new col. 3 = s s+1) 0 s(s+2)?

Y

(s +2) x col. 2] - (col. 3) 0 $+2 0

Hence, using the original system matrix, P(s) has finite i.d. zeros, § = 0, —2.

For s = 0, —2, the rank of {T'(s) U(s)] is reduced.

s+ 1) s(s+2)

[T(Si]= 0 s+ 2



s’(s+1) 0

new row 1 =
- 0 5+ 2
(row 1) — (s x Tow 2)
0 1
new row 2 = s2(s+1) 0
(row 2} = [(s + 2) x row 3]
_ G 1
interchange
row 2 and row 3 0 0

Hence, using the original system matrix, P(s) has finite o.d. zeros, v =0,0, —1.

Putting s =0,0,-1 reduces the rank of [_Té‘zl)] .

Now produce the finite decoupling Zeros using the normalised form of the

system matrix P(s): - .
Ty U
Po=| — ~ —
-0 1 0
rsi(s+ 1) s(s+2) 0 0 | 07
0 s+2 (s+22 0 | 0
0 1 0 1 | 0
0 0 -1 0 | 1
] _ _ I
L0 0 0 -1 1 0l

T(s
Produce the Smith forms of the matrices {(s) []-and { (Q;:I , as follows:

s2(s+1) s(s+2) 0 0 07
] 0 s+2 (s4+2)2 00
[£(s) H]=
0 1 0 1 0
0 0 -1 0 1




[T(s)

rs2(s+ 1) s(s+
new col. 2 =
(col. 2) — (col. 4) 0 s+
new col. 3 = 0 0
(col. 3) + {col. 5)
L 0 0
rs?(s+1) 0
new row 1 = 0 5+ 2
{row 1) — (s x row 2) 0 0
L0 0
5% (s + 1)
new col. 3 = 0 s+
(s +2) x col. 2] — (col. 3) 0
0

rs?(s+1) s(s+2) O 0 7
0 s+2 (s+2)7 0
] = 0 1 0 1
0 0 ~1 0
L 0 0 0 -1
rs2(s+1)
new row 2 = 0
(row 2) + [(s+2)% x row 4]
3 ]
new row 3 =
(row 3) + (row 5) 0
L 0
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y 0 0 07
(s+2)2 0 0
0 | 10
0 0 1]
—s(s+2)2 0 07
(s+2)2 0 0
0 10
0 0 1l
s(s+2)? 0
2 0 0
0 1
0 0

D"I




new row 1 = { g 0 0
(row 1) ~ (sxrow?2)

new row 2 =
(row 2) ~ [(s+2) x row 3 0 0 -1 0

Hence, using the normalised system matrix, P(s) has finite o.d. zeros, v =
0,0,-1.
Hence, it has been seen that the finite i.d. and o.d. zeres of a normalised

system are those of the original system i.e. result 1 has been verified.

Now remove the i.d. zeros, 3 = 0.~2 from P(s). At the same time this
removes one of the o.d. zeros, v = (. Hehce, P(s) has one L.o.d. zero, § = 0.

Therefore,

{finite decoupling zeros} = {0,-2} + {0,0, -1} — {0}

= {0,0,-1,-2}

The infinite i.d. and o.d. zeros of the original system (2.1) are defined as

those of the normalised system (2.3).

) %y M —
PBls) = |
-0 0
- (541 s(s+2) 0 0 | 07
g | .
0 s4+2 (422 0 | 0
|
0 1 0 1 | o0
= |
0 0 1 0 ] 1
- |
— — !
l
L0 ( 0 -1 | o J



The infinite i.d. zeros of P(s) are the zeros at w = 0 of

rL(t+1) ity 0 0 07
0 Lyo (2422 00
[T(5) U]=
0 1 0 1 0
L0 0 -1 0 1l
T (1+w) (14 2w) 0 0 07
0 L+2w) LH(A+2w)? 0 0
B 0 1 0 10
L0 0 -1 0 1]

Now express the above matrix in relatively prime form as follows:

rdy 0 0 0] 7l+w w(l+2w) 0 0 01

1 0 L 00 0 wl+2w) (Q+2w)? 0 0
5 2= 0 0 10 0 1 0 1 0
Lo o o 11l o 0 -1 0 1]
w® 0 0 07 rldw w(l+2w) - 0 0 07

0 w? 0 0 0 wl+2w) (Q1+2w)? 0 0

) 0 0 10 0 1 0 1 0
Lo o0 o 11 L 0 0 -1 0 1J

The numerator is used to determine whether P(s) has any infinite i.d. zeros.
Perform elementary row and column operations to produce the Smith form of

the numerator:

14w w(l+2w) 0 0 07
0 wl+2uw) (1+2w)? 0 0

0 1 -0 1 0

L0 0 -1 0 1]
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new c:c)l. 2=
(col. 2) — {(col. 4)

—_

new col. 3 =
(col. 3) + (col. 5}

rowd
new eget 1 =

>

(el 1) — (ol 2)

Flew w(l+2w) 0 0 07
0 w(l+2w) (1+2w)? 0 0
0 0 0 10

Lo 0 0 0 1

(1 +w 0 —(1+2w)2 0 07
0 wl+2w) (+2w)? 0 0
0 0 0 10
0 0 0 0 1l

At w = 0, the rank of the above matrix is not reduced. Therefore, there are no

zeros at w = 0 of [T(L) U] Hence, the system matrix P(s) has no infinite

i.d. zeros.

Similarly, the infinite o.d. zeros of P(s) are the zeros at w = 0 of

0

0

0

0

~Expressing the above matrix in relatively prime form gives

T 000

R
T(L

) =0 0 1
-

0 0 0

LO 0 0

0

0

0

1

(
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(1 w) (14 2u) 0 0
(1 +2w) | L(l+2w)P 0O
1 0 1
0 -1 0
0 0 Y
07 r1+w w(l+ Q—w) .U
0] 0  wl+2w) (1+2w)
0 0 1 g
0 0 ) -1
11 L 0O 0 0




rw? 000 0 077 14w w(l+2w) 0 0 7
0 w? 0 0 0 0 wl+2w) (1+2w)? 0
=|0 0 100 0 1 0 1
0 0 010 0 0 ~1 0
Lo o o0 013 L o 0 0 —~1

The numerator is used to determine whether P(s) has any infinite o.d. zeros.

Perform elementary row and column operations on the numerator to give its

Smith form:
rl 4w w(l+ 2w { 017

0 wl+2w) (Q14+2w)? 0

0 1 0 1
0 0 -1 0
L 0 0 0 1.
(1 +w w(l+2w) 0 07
new row 2 = 0 w(l+2w) 0 0
(row 2) + [(1+ 2w)? x row 4]
0 1 G 0
new row 3 =
(row 3) — {row 5) 0 0 -1 0
L 0 0 0 1
14w 0 0 07
new row 1 = 0 0 0 0
(row 1} — (row 2)
— 0 1 0 0
new row 2 =
(row 2) — [w(l+ 2w} x row 3] 0 0 -1 0
L 0 ¢ 0 1.
At w =0, the rank O‘Zf the above matrix is not reduced. Therefore, there are no
(s)
zeros at w = 0 of [ . Hence, the system matrix P(s) has no infinite o.d.
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zeros. Also, P(s) has no infinite i.0.d. zeros. Therefore,

{infinite decoupling zeros} = {¢}

The following definitions and results of system poles and zeros may now be

given:

Definition 4 {Rosenbrock 1973)
The SYSTEM POLES of ¥ in € are defined as the zeros of T'(s) in € and
the SYSTEM POLES of & at s = oo are the zeros of T(s) at 5 = cc.

Result 2 (Rosenbrock 1973, 1974)
The set of SYSTEM POLES of £ at sg = o0 (at so € C) is given as the
union of the set of poles at so = oo (at sg € €) of G(s) and the set of decoupling

zeros of & at so = oo (at so € €), ie.

{System poles at so} = {Transfer function poles at so} + {i.d. zeros at 0}

+ {o.d. zeros at so} — {i.0.d. zeros at so} (2.6)

whether sg = 00 or sg € €.

Result 3 (Rosenbrock 1973, 1974, Ferreira P.M.G., 1980)
The set of SYSTEM ZEROS of ¥ at sg = oo (at 5o € €) is given as the
union of the set of zeros at 50 = oo (at sp € C) of G(s) and the set of decoupling

zeros of I at sp = oo (at sp € T), i.e.

{System zeros at so} = {Transfer function zeros at so} + {i.d. zeros at so}

+ {o.d. zeros at so} — {i.o.d. zeros at 50} (2.7)

whether s = 00 or so €.

are
The zeros of a system is now defined. Firstly consider Rosenbrock’s (1973)

definition as follows:




Definition 5 (Rosenbrock 1973)

(a) Let the (r + m)x(r + ) system matrix

T(s) U(s)
P(s) = (2.8)
~-Vis)y Wi(s)

have Smith form
diag [e:(s)] O
S(s) = (2.9)
0 0

where some of the zero blocks may be absent. Then the SYSTEM ZEROS of %

are the zeros of the polynomials ;(s), taken all together.

The above definition of the zeros of a system is faulty. In particular, result
3 is incorrect with this definition. Rosenbrock (1974) proposed the following

definition to replace definition 5:

Definition 6 (Rosenbrock 1974)
(a’) Consider the (r + k)x(r + k) minors of the system matrix (2.8) which

have the form

P1,2,,.,.,r,r+3';,...,?'+ik (2.10)

1,2,...,n7r+71,. 0+

That is to say, the minors are formed from rows 1,2, ..., r,r +791,...,r+ ik and
columns 1,2,...,7, 7+ f1,...,7 + ji. Let p satisfying 0 < p < min (I, m) be the
Jargest value of k for which there is a minor of this form not identically zero.
Let ¢(s) be the monic greatest common divisor of all those minors (2.10} having
k = p which are not identically zero. Then the zeros of ¢ are the ZEROS OF
THE SYSTEM.

This new set {a’} includes the set {a} as defined before, but is in general
larger. If P is square and |P{s}| Z 0, the two sets coincide, which was the source
of the error. It will now be seen in the following example that definition 5 is

inconsistent with result 3.



- 3. )

Example 2

Consider the system matrix

(3—1)(31—2)| 1 1
Pl)=| ———— | — —
s—1 ] 1 0

P(s) has no i.d. zeros and one o.d. zero at s = 1. Also, P(s) has no i.o.d. zeros.

Now produce the transfer function zeros as follows:
G(s)=VT'U+w

’"GT(%[I 1]+[1 0]

= =ty

=2) T ==Y
Therefore, P(s) has no transfer function zeros. Hence, result 3 gives
- {Finite system zeros} = {1}

Now, from definition 5, the system zeros are the zeros of the polynomials
gi(s) in the Smith form of P(s). P(s) has Smith form
{1 0 0] |
0 1 0
which gives no system zeros. Therefore, definition 5 is inconsistent with result

However, definition 6 gives the zeros of the system as the zeros of

(s—=1(s=2) | 1

- —_———— e —— [ —

s—1 0

b o]

Hence, it can be seen that definition 6 gives a zero at s = 1 which is consistent

which has Smith form

with result 3. Therefore, the example shows that the correct definition of the

zeros of a system is given by definition 6.



Now define the following:

Definition 7 (Rosenbrock 1970, Pugh and Ratcliffe 1979)
The TRANSMISSION POLES AND ZEROS of £ at so = oo (at sp € )

are the poles and zeros at 5o = 0o (at so €C) of the transfer function G(s).

Infinite system zeros will now be defined and a result is stated which is an
extension for the zeros at infinity of Rosenbrock’s {1974} definition of system

zeros. Consider the normalised system matrix 3(s) defined as in (2.4):

(2.11)

Tisy Y
m(s>=[ ) }

) § S

Definition 8 (Ferreira 1980)

The INFINITE ZEROS of the original system are defined as the infinite
systemn zeros of the normalised system matrix (2.11). Note that the gystem
zeros are defined using the corrected definition of the zeros of a system as given

in Rosenbrock’s paper (1974) (see definition 6).

Result 4 (Ferreira 1980)

Consider (%) with J(s) defined as in (2.11). Let r + 1+ m + g, where
0 < ¢ < min (I, m), be the normal rank of PB(.). Let N(w)D~'(w) be a right
coprime factorisation of P(L). Consider all the (r + ¢ + m + g)-order minors
of N(w) which contain the first (r + {4+ m) rows and columns . Let d(w) be a

greatest common divisor of all these minors. Then

{Inﬁnite system zeros of the original '
= {Zeros at the origin of d(w)}

(and of the normaliged) system}
(2.12)

Example 3
The finite and infinite system poles and zeros will now be constructed ac-

cording to definitions 4, 6 and 8, and used to verify results 2 and 3.



Consider again example 1 with the system matrix

s2(s+1) s(s+2) | 0

T 2

Piy=|_0_ ox? ke
0 1 | 0

As has been seen in example 1, P(s)‘ has the following decoupling zeros:

{finite decoupling zeros} = {0,0,-1,-2}

{infinite decoupling zeros} = {6}

Firstly consider the finite system poles and zeros. From definition 4, the

finite system poles are the zeros of

2 (54 1 2
rio= [0 2]

which has Smith form ,
B s?(s+1) 0
0  s+2
Hence, P(s) has finite system poles at s = 0,0, -1, —2. From definition 6, the

finite system zeros are the zeros of

s2(s+1) s(s+2) | 0
0 s+2 | (s+2)?
——— | -
0 1 |0

Perform elementary row and column operations to give the Smith form of the

above matrix:

N s2(s+1) s(s+2) 0

0 s+2 (54 2)°
{ 1 0
s*(s+1) 0 0
- new row 1 =
0 s+2 (s+2)?
(row 1) — [s(s+ 2) x Tow J]
0 1 0




$%(s + 1) 0 0
interchange
0 (s+2)? s+2

col. 2 and col. 3
0 0 1

(s +1) 0 0
new row 2 =

0 (s+2)2 0
(row 2) — [(s + 2) x row 3]
0 0 1

Hence, P(s) has finite system zeros at s = 0,0, -1, -2, =2.

Now form the finite system poles and zeros via the transfer function poles
and zeros, and decoupling zeros. The transfer function matrix G(s) is formed

as follows:

G(s) = V(s)T™H(s)U(s) + W (s)

S+ ss+2]7 ] 0]
=[0 1]
0 5+ 2 (s +2)? |
1 Ts+2 —s(s+2)] 0
= (0 1]
2( ¢ 9
s¥ s+ 1)(s +2) 0 s2(s+1) ] [(s+2)?
=5+ 2
Therefore, P(s) has a finite transmission zero at s = —2 and no finite transmis-
sion poles. Hence,
{finite system zeros} = { — 2} + {0,0, ~1,-2}

= {0,0,-1,-2,-2}
{finite system poles} = {¢} + {0.0,-1,-2}

= {0,0,-1.-2}

It has been seen that the finite system poles and zeros formed from their

definitions are the same as those formed via the finite transmission poles and
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zeros, and finite decoupling zeros i.e. results 2 and 3 have been verified for the

finite case.

Now consider the infinite system poles and zeros. Consider the normalised

system matrix

_ rs2(s+ 1) s(s+2) 0 o | 0 7
0 s+2 (s+22 0 | O
T(s) U 0 1 0 1 | ©
B(s) = =
0 0] - 0 0 —1 0o | 1
—_ _— _ - l N
L 0 0 0 -1 | 0 |

From definition 4, the infinite system poles are the zeros at w = 0 of

Tw+D G+ 0 07
. 0 Liy2 (L4207 0
T(E)::_
0 1 - 0 1
R 0 -1 0l
b (t4+w) (14 2w) 0 07
- . 0 L +2w)  H(1+2w)’ OW—-
B 0 1 0 1
L0 0 -1 0.

Now express (L) in relatively prime form as follows:

w000 0714w w(l+2uw) 0 07
1 0 25 0 0 0 w@+2w) (I+2w)? 0
- T(2)=
v 0 0 10 0 1 0 1
Lo 0 o0 1lL o 0 ~1 04
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re? 00 077 4w w(l+ 2w) 0 07
0 w® 0 0 0 wl+2w) (1+2w)? 0
1o 0 10 0 1 0 1
Lo o o 1] Lo 0 ~1 ol

The numerator is used to determine whether P(s) has any infinite system poles.
Perform elementary row and column operations on the numerator to give its
Smith form:

rl+w w(l+2w) 0 0"

0 wl4+2w) (1+2uw)? 0

0 1 4 1
L O 0 -1 0.4
14w w(l+2w) 0 07
new col. 2 =
(col. 2) — (col. 4) 0 w(l+2w) 0 0
new row 2 = {3 0 0 1
(row 2) + [(1 + 2w)? x row 4]
L 0 0 -1 o]
14w 0 0 07
newrow l =
(row 1) — (row 2) 0 w{l+2w) 0 0
interchange 0 0 1 0
col. 3 and col. 4
Lt 0 0 0 —-1.

At w = 0, the rank of the above matrix is reduced. Therefore, there is a zero at
w =0 of T( 1—1}-) Hence, P(s) has an infinite system pole.

From definition 8, the infinite system zeros are the zeros at w =0 of



rh(E+1) (5 +2) 0 0 |
0 Lo (L49) 0 |
T(L) U
= 0 1 0 1 |
-8 0
~ 0 0 -1 0 |
- —— —_— e e [
L0 0 0 -1 |
F L1+ w) (14 2w) 0 0
0 - Ll +ow) H(1+2w)? 0
= 0 1 0 1
0 0 -1 0
L0 0 0 ~1

Now express the above matrix in relatively prime form as follows:

r 0 00 07 rl+w w(l+2w) 0
0 L 000 0 w(l+2w) (1+2w)?
TL)
=0 0 100 0 1 0
-0 0
0 0 01 0 0 0 -1
- Lo 0 00 1)L 0 0 0
f® 00 0 0 077 14w w(l+ 2w) 0
- 0 w? 0 00 0 w(l42w) (14 2w)?
=0 0 10 0 0 1 0
0 0 010 0 0 -1
Lo 0o o0 1) L oo 0 0

jan]

<

07

0
0
0

1

o

The numerator is used to determine whether P(s) has any infinite system zeros.

Perform elementary row and column operations on the numerator to give its
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Smith form:

r1+w w(l+ 2w) 0 0 07

0  w(l+2w) (L+2uw)? 0 0

0 1 0 1 0
0 0 -1 0 1
L O 0 0 -1 0l
r1+w w(l+2w) 0 0 07
new row 3 = 0 w(l+2w) (1+2w)? 0 0
(row 3) + (row 5)
0 1 0 0 0
new col. 3 =
(col. 3} + (col. &) 0 0 0 0 1
L0 0 0 -1 0l
(1+w O 0 0 07
‘pewrow 1 = 0 0 (14+2w)? 0 0
(row 1) ~ [w(l + 2w) x row J|
0 1 0 0 a
new row 2 =
(row 2) — [w(l + 2w) X row 3 0 0 0 0 1
L 0 O 0 -1 0l
fl4w 0 00 0]
interchange 0 (1+2w)? 0 0 0
col. 2 and col. 3
g 0 1 0 0
interchange
col. 4 and col. 5 0 0 01 0
L 0 0 0 0 -1

At w = 0, the rank of the above matrix is not reduced. Therefore, there are no

zeros at w = 0 of 9,3(;11;) Hence, P(s) has no infinite system zeros.

Now form the infinite system poles and zeros via the transfer function poles

and zeros, and decoupling zeros. To find the infinite transmission poles and
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zeros, put s = = in G(s):

G(s)=s+2
1 1
G(=)=—+2
(w) w+
1 +2w
T w

Therefore, P(s) has no infinite transmission zeros but has an infinite transmis-
sion pole. Hence, it has been seen that the infinite system poles and zeros formed

from their definitions are the same as those formed via the infinite transmission

“poles and zeros, and infinite decoupling zeros i.e. results 2 and 3 have been .

verified for the infinite case.

The following two terms may now be defined:

Definition 9
The GENERALISED ORDER f of & is defined as the total number of
system poles of £ in €U {oo} or equivalently, the total number of zeros of £(s)

inC U {oo}.

Definition 10 (Verghese 1978)
A system as in (2.1) is called STRONGLY IRREDUCIBLE if and only if

—

the compound polynomial matrices
C(s)
[T(s) ] and -
' —0
have no finite nor infinite zeros.

IV.3 A result for infinite system zeros
_ In the previous section, the relationship hetween infinite system zeros, infi-

nite transfer function zeros and infinite decoupling zeros was given (see result 3

section IV.2). In this section, this result will be established.
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Let r 4 ¢, where 0 < ¢ € min (I. m), be the normal rank of P(s) given as
in (2.2) :
T(s) Uls)
P(s) = (3.1)
-Vi{s) W(s)

Also, let r + 1 + m + q be the normal rank of 3(.) with the normalised system
matrix *J3(s) defined as in (2.4):
Tis) U
B(s) = (3.2)
=0 0

In Rosenbrock’s paper (1974) it is seen that the finite system zeros of the
original system are the zeros of the greatest common divisor of all (r + g)-order
minors of P(s) which have the first r rows and columns of P(s).

In Ferreira’s paper (1980) it is seen that the infinite s&stem zeros of the
original system are the zeros at the origin of the greatest common divisor of all
(r + 14 m + q)-order minors of N{(w) which contain the first (r +1+m) rows and
columns of N (w), where N(w)D~1(w) is a right coprime factorisation of P(L).

In the same Rosenbrock (1974) paper, he proved that for finite frequencies

{System zeros} = {Transfer function zeros} + {i.d. zeros}

+ {o.d. zeros} — {i.o.d. zeros} (3.3)

In this section, the ‘dual’ result concerning infinite system zeros and infinite
transfer function zeros is established, using Ferreira’s paper (1980). This ‘dual’
result relies on the definition of infinite system zeros. The key for the adequate
definition of infinite system zeros, as well as infinite system poles and decoupling
zeros. is the notion of the normalised system, introduced by Verghese (1978).
In Ferreira’s paper (1980) this definition is not immediately clear and will be

stated here as follows:

Definition 1 (Ferreira 1980}
The INFINITE ZEROS of the original system are defined as the infinite

system zeros of the normalised system matrix (3.2}, where the term ‘system
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zeros’ is defined using the corrected definition of the zeros of a system as given

in Rosenbrock’s paper (1974).

Using this definition and the result given above concerning infinite system
zeros,' which is a natural extension of the finite system zeros defined by Rosen-
brock (1974), the relationship between infinite system zeros, infinite transfer
function zeros and infinite decoupling zeros is now established.

Firstly, the infinite i.d. and o.d. zeros of the original system matrix P(s)
are given as follows. Let N(w)D~!(w) be a right coprime factorisation of T(3).

The infinite i.d. zeros of the normalised system matrix (3.2) and hence the

original system matrix (3.1) are equal in riumber to the zeros at the origin of

: - -1
(Nw)D~ Y (w) U] =[N(w) u]{Dg‘”) ?} (3.4)
Now,-since -
[N(w) $1] and [D(O“’) 2]

are right coprime, the zeros at the origin of [N(w)D~(w) L] are those of
[N(w) ] (see Wolovich 1974). Now let X(w) be a greatest common left
divisor of N(w) and U and define N1 () and Lho(w) such that

) o [N U] =X(w)[N(w) Lo(w)] — (3-5)

1t is now clear that the number of zeros at the origin of | X (w)] is equal to the
“number of infinite i.d. zeros of the original system.

Now consider the infinite o.d. zeros of the original systerh. Similarly. the

infinite o.d. zeros of the normalised system matrix (3.2) and hence the original

system matrix (3.1) are equal in number to the zeros at the origin of

Ni(w)D~(w) Ni(w)
= D_I(w) (3.6)
—i —SU D(w)
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: Ni(w)
right divisor of Ny(w) and L D(w) and define No{w) and Yof{w) such that

] and D(w) right coprime. Now let ¥'(w) be a greatest common

l: Ng (w)

= } Y (w) 3.7)
—Uo(w)

Ny (w)
—SBD(w)

It is now seen that the number of infinite o.d. zeros (which are not simultane-

ously i.d. zeros) is given by the number of zeros at the origin of Y (w)}.

_ The infinite transfer function zeros are now given. Consider the transfer

function of the original system. It is the same as that of the normalised system.

G(s) = V()T Hs)U(s) + W (s)
=0T (s)U (3.8)

Hence, the infinite zeros of the transfer function are determined by the zeros at

the origin of 2115‘1(%)11. Now

(1) = DT
= UD{w) N~ w)U
= Yo (w)Y (w)Y " H{w) N5 H w) X~ Hw) X (w) Lo (w)

= Vo (w) Ny (w)iho () (3.9)

Since No(w) and U,(w) (resp. Lo(w)) are left (resp. right) coprime, the zeros

of G{—f;) i.e. the infinite transfer function zeros are those of

No(w)  Ho(w)
=W {aw) 0

i.e. the zeros of the greatest common divisor of all its (r + 1+ m + ¢)- order

minors.



A matrix is now formed which is appropriate for the calculation of the

infinite system zeros. From definition 1, the infinite system zeros are the zeros

and perform elementary row operations:

at w=0of
] CN(w)D~tw) U
’13(7“;) =
) 0
. [ N@w) U] [Dw) 0]
 —OD(w) 0O 0 I
It will be shown here that {_%%U(L ) iﬂ and {D%w ) ﬂ are right coprime,

although this is not shown in Ferreira’s paper. Write the two matrices as follows

_Now N(w)D~(w) is right coprime. Therefore
and {

U

Ny U

~S0D(w) 0

are right coprime. Hence the matrix
N{(w)
—-UD(w) 0
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[ Nw) ] [ N(w) 07
—SUD(w)- 0 new row 1 = —0D(w) 0
D(w) 0/ (rowl) - (ﬂxroxx':) D(w) O
§ L0 - ] [0 Il
”N(w) 07
new row 2 = 0 0
. . (row 2) + (lerm:;) D(w) 0|
L o0 I

D{w) 0

|

0 I



L

is appropriate for the calculation of the infinite system zeros.

The relationship between infinite system zeros, infinite transfer function

zeros and infinite decoupling zeros can now be given . Firstly state the following

lemma.

Lemma 1

Let A, B be matrices over a ring R, respectively Ixn, nxm. Then the rxr

minors of the product matrix C = AB are
7’11 sl'r' 81,8200ty L]_,A.g, ,k,«-
Z ALI:’“?: 31132» e (3’11)

.?11.?21“-5 r

where

1<ii<in<... <4 <

I1<ji<pp<...<jr<m

and the sum is taken over all indices k, satisfying
1<ki<k<...<k.-<n

Proof
See Rosenbrock (1970, p. 5).

The above lemma will be used in the proof of the following theorem:

Theorem 1

The relationship between infinite system zeros, infinite transfer function

zeros and infinite decoupling zeros is given by the following :

Number of infinite system zeros = (no. of infinite transfer function zeros)
(no. of infinite i.d. zeros)
(no. of infinite o.d. zeros)

no. of infinite i.o.d. zeros) (3.12)



Proof

The matrix

Nw) U
-UD(w) 0

is appropriate for the calculation of the infinite system zeros (see earlier). Now,

the above matrix can be written as

Nw) U X(w) 0 No(w)  Ho(w) Y(w) 0

(3.13)
—S0D(w) 0 0 Il ]|-=Do(u) 0. 0 I

Definen=1r+ lr 4+ m. Consider the minor of
N(w)

~0D(w) 0

formed with the first n rows and columns plus the rows of order n + i1, n +
i2,...,n + ig (with 47 < iy < ... < iy) and the columns of order n + ji,n +

32400, Jq (With 1 < j2 < ... < jg). Denote this minor by

- 3 L2,nndiy,.ntiy
'Z\r(w)l,Q ..... T SRR R,

Denote the three matrices of the right -hand side of (3.13) by Xo(w), No(w) and

Yo(w) respectively. Using lemma 1,

x Looonndiy,antiy "+q N A L R T
N(w)l,...,n,n—{-;u ..... gy T Z ( )kl ko Kondy X

(3.14)
2:”’"‘_ . SIS 7 - \TLYL, TG ..,
q No(w)kl,kz-,-..,fun-i—q }/O(?U)l 1,12,..5, . n+4q

— MY, 72,0 Mt g preny N F 1, gy

All the miﬁors

..... Aty Rt g
/YO( )I"IJ"Q k'n-d—q

are either zero or equal to | X{w)}. Similarly, all the minors of Yy(w) are either

zeros or equal to |Y (w)]. Also, the zeros of G(1) are those of
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No(w)  Uo(w)
-Q]o(w) 4

(see earlier). Hence, it is concluded that

Number of infinite system zeros == (no. of infinite transfer function zeros)
+ (no. of infinite i.d. zeros)
+ (no. of infinite o.d. zeros)

no. of infinite i.0.d. zeros) (3.15)

Example 1

It will now be seen that the above result (3.15) holds true for a normalised

system but not when applied to the original system matrix. Consider the system

matrix
8 1
P{s) =
(s) |:__(32+1) _Sjl
Firstly consider the original system matrix P(s). To determine whether

P(s) has any infinite decoupling zeros, put s = + in P(s):

!
—

| —
p—
1

1

gl

—

—

The infinite i.d. zeros of P(s) are the zeros at w = 0 of

[T(s) U] =13 1]

1
— 1
w [T w]

Therefore, P(s) has no infinite i.d. zeros. The infinite o.d. zeros of P(s) are the

zeros at w = 0 of
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{_Txﬁf.)s)} = ['—u—}f(lﬁ ' wr")}

— 1 w
T w? —(1+w2)]

Therefore, P(s) has no infinite o.d. zeros. Hence, using the original system

matrix, P(s) has no infinite decoupling zeros.

Now form the transfer function matrix

The infinite transfer function zeros are the zeros at w = 0 of G (%) Now

G(—)=w

[y

Therefore, P(s) has an infinite transfer function zero.

Now determine whether P(s) has any infinite system zeros directly from
the original system matrix. The infinite system zeros of P(s) are the zeros at
w = 0 of P(ﬁ) (Remember that when finding system zeros, the Rosenbrock
(1974) definition of the zeros of a system is used.) P() needs to be expressed

in the form D~!N where matrices D and N are relatively prime:

- - 1
1 w
P(a) = , )
_—w%(l—}—w‘) —til,
1
o 0 1 w
0 -;57 —(14+w?) —-w
(w0 -1 1 ow
0 w? —(1+w?) —w
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The relatively prime form of the two above matrices is now found. Express the

two matrices as follows and perform elementary row operations:

w0 1 )
0 w? | —-(1+w?) —w
new row 2 = w0 ] 1w
(row 1) + (row 2) ’ | w w? ; —w? 0
new row 2 = C w0 1w
(row 2)/w 1w { —w 0
Therefore,

where D and N are relatively prime. The matrix
1w
vl b

is used to determine whether P(s) has any infinite system zeros. Perform ele-

mentary row and column operations to produce the Smith form of N:

1 u new row 2 = 1 w

—w 0] (row?2) + (wxrowl) [0 w?

new col. 2 = 1 0

(col. 2) — (wxcol. 1) |0 w?

From this, it can be seen that P(s) has one infinite system zero of degree 2.
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Hence, P(s) has no infinite decoupling zeros, an infinite transfer function
zero and an infinite system zero of degree 2 i.e. for the original system matrix,
Number of infinite system zeros # (no. of infinite transfer function zeros)

+ (no. of infinite decoupling zeros)

Therefore; result (3.15) does not hold true when applied to the original system
matrix. It will now be seen that result (3.15) does hold true for a normalised

system.

Consider the normalised system matrix

i 5 1 0 | 0 ]
-ts2+1) -5 1 | 0
PBs) = 0 -1 o | 1
|-
L0 0 -1 | o

B To determine whether *J3(s) has any infinite decoupling zeros, pﬁt s=-=1in

P(s):

- L 1 0 | 0 7
- (41D -3 1 [ 0
*}3(%): 0 —1 0 | 1
- .0 0 -1 | 0
r L 1 0 —'| 0
—La+w?) -1 1 | 0
. = 0 ~1 o ] 1
- - —-— |__
. 0 0 -1 | 0o




The infinite i.d. zeros of *B(s) are the zeros at w = 0 of

L 1 00
(T(E) U]= ~L@l+uw?) -1 10
0 -1 0 1

L 0 0 1 w

Lo 0 1 0 ~1
w 0 0771 1

=0 w? 0 —(1+w?) —w
o 0 1 0

T w 0 0 | 1 w 0 0
0 w* 0 | -(1+w?) —-w w? 0
| 0 0 1 | 0 -1 0 1
[ w 0 0 | 1
new row 2 =
- > w o w? 0 | —w?
(row 1) + {row 2) ‘
|l 0 0 1] o0
Cw 0 0 ] 1
new row 2 =
> 1 w 0 | -w
(row 2)/w
0 0 1] 0




Therefore,

w 0 D 1 w 0 0
(F(3)y Ul={1 w 0 -w 0 w 0
0 0 1 0 -1 0 1

=D7IN

where D and N are relatively prime. The matrix

1 w 0 0
J\T == -'uJ 0 u 0 -
0 -1 0 1

is used to determine whether 3(s) has any infinite i.d. zeros. Perform elemen-

tary row and column operations on N to give its Smith form:

1 w 0 0 new row 2 = 1 w 0 0
-w 0 w 0 0 w* w 0
0 -1 0 1|{{row?2) +{wxrowl}) (0 -1 0 1
new col. 2 = 1 w 0 0]

) - 0 w w 0
(col. 2) + (col. 4) 0 0 0 1]
new col. 2 = 1 0 0 0]

» |0 w? w 0
(col. 2) —(wxcol 1) O 0O 0 1

At w = 0, the rank of the above matrix is reduced. Therefore, *B(s) has an

infinite i.d. zero.

Similarly, the infinite o.d. zeros of *13(s) are the zeros at w = 0 of

T(L) — (1 +w?) -—% 1
al-




- ;Ul_ 0
0 L

- 0 0
LO O
w0

0 w?

N 0 O
L0 0

T w 0 0 0 |
0 w* 0 0 |
0 0 1 0 |

0 0 0 1 |

new row 2 =

(row 1) + (row 2)

new row 2 =

(row 2)/w

)

0

0

0

w

ut

0

w

0

0

w 0
—u 'w2

-1 0

0 -1 |

0o 00| 1 w 0 |
w00 | —wr 0 w?
0 1 0] 0 -1 0

0 01 [0 o -1 |
000 | 1 w 0 7]
w 0 0 | —w 0 w
010 0 ~1 0

0 014f{ 0 0 -1

1 w07
—(1+w?) —w w?
0 -1 0
0 0 -1l
r 1 w 0 7
—(1+w?) ~w w?
0 ~1 0
L0 0 -1l




Therefore,

. w0
T(E) 1w
g | {0 0
g 0

=D7IN

N =

{

v

1
-~
0
0

-1

where D and N are relatively prime. The matrix

4]

W
0
~1

is used to determine whether P(s) ) has any infinite o.d. zeros. Perform elemen-

tary row and column operations to produce the Smith form of N:

1 w 0
—~u 0 w

0 -1 0

0 0 =1

infinite decoupling zero.

G(s) = V()T (s)U(s)

{

- 0 0 1]

#
@ | =

i

W ] =

Now form the transfer function matrix

1 W 0 1w 0
new row 2 =
—-w 0 7] N 0 w w
0 ~-1L 0 0 -1 0
9
0 0 -1 (royv 2) + (w x row 1) 0 0 -1
newrow 1 =
1 0 |
_ B} (row 1) + (w x row 3) 0 w® 0
new row 2 = ¢ -1 4 ‘
s 0 0 -1

(row 2) + (w X row 4)

At w = 0, the rank of the above matrix is not reduced. Therefore, 3(s) has no

infinite 0.d. zeros. Also, 3(s) has no infinite i.o.d. zeros. Hence, J3(s) has one

(52 +l)

(82 +1)

0 0 |
-5 1 0 ‘
0 1 |



The infinite transfer function zeros are the zeros at w = 0 of G(<). Now

G(—)=w

w
Therefore, B (s) has an infinite transfer function zero.

Now determine whether P(s) has any infinite system zeros directly from
the normalised system matrix. The infinite system zeros of J3(s) are the zeros
at w = 0 of P(<;). Again. remember that the Rosenbrock (1974) definition of
the zeros of a system is used to find the system zeros. Express ‘}3(-3;) in the

form D~ !N where matrices D and N are relatively prime:

-4 1 o 1 0 7
~Li+w?) -1 1| 0
1
B(=) = 0 -1 o | 1
_— —— —— | ==

L0 0 -1 ] o
_1 - .
Lo 00y 1 w 0 0

0 L 0 o [-(1+w?) —w w? O

o 0 10 0 -1 0 1
L0 0 0 I41L 0 0 -1 0
rw 0 0 077 1 w 0 0
0 w? 0 0 -A+uw? —w w? 0
o0 0 1 0 0 -1 0 1
L0 ¢ 0 14 L 0 0 -1 0l

Now express the two above matrices in relatively prime form as follows:
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w00 0 | 1 w0 0 ]
0 w? 0 0 | —(1+w?) —w w? O
o 0 1 0 | 0 -1 0 1
| 0 0 0 1 | 0 0 -1 0 |
T w 0 0 0} 1 w 0 0
new row 2 = w w? 00 | —w? 0 w 0
ow D)4+ @ow?2) | 0 0 1 0] 0 -1 0 1
L0 0 01 0 0 =10 |
- w 0 00 | 1 w 0 0 1
new row_2 = I w 0 01 ~w 0 w 0
(row 2)/w ¢ 01611 0 -1 0 1
) o001 0 0 -1 |

Therefore,
w 00 07'r1 w0 0
1 1 w 0 O —w 0 w0
b —_) =
) p(w) 0 0 1 0 0 -1 0 1
0 0 0 0 0 -1 0J —

1 w 0 0
-w 0 w 0
N = g -1 0 1

0 0 -1 0

‘is used to determine whether ‘J3(s) has any infinite system zeros. Perform ele-

mentary row and column operations on NV to give its Smith form:
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1 w 0 0 et 9 = ‘1w 0 0]
-w 0 w 0 we= 0 w> w 0
0o -1 0O 6 -1 0 1
00 -1 0 (row 2) + (w x row 1) 0 0 -1 0l
new col. 2 = (10 0 0]
S 0 w2 w 0
0 -1 0 1
(col. 2) — {w x col. 1) 0 0 -1 ol
new col. 2 =
1 0 0 0
ol 9+ (o [
(col. 2} + (col. 4) 0 w? 0 w
interchange 8 g é _01
col. 3 and col. 4 B
new row 2 = Lo 00
- 0 w* 0 0
0 0 1 0
2
(row 2) + (w x row 4) 0 0 0 -1

Therefore, the normalised system matrix J3(s) has a zero at infinity of degree 2.

Hence, it has now be seen that 3(s) has an infinite decoupling zero, an
infinite transfer function zero and an infinite system zero of degree 2 i.e. for the

normalised system matrix,

Number of infinite system zeros = (no. of infinite transfer function zeros)

+ (110. of infinite decoupling zeros)

Therefore, it has been seen in this example that result (3.15) holds true for a

normalised system but not when applied to the original system matrix.

In this section, the relationship between infinite system zeros, infinite trans-
fer function zeros and infinite decoupling zeros has been established using a result
concerning infinite system zeros, which is a natural extension of the finite system

zeros defined by Rosenbrock (1974), and the definition of infinite system zeros.

76



The key for the adequate definition of infinite system zeros is the notion of the

normalised system, introduced by Verghese (1978).

IV.4 Matrix pencils

Recall that a generalised state space system is one whose defining equations
give rise to a system matrix of the form (Rosenbrock 1974, Verghese 1978)

sE-4 | B
P(s>=[——-— | —-~—} (1)

-C | D
where E, 4, B, C are constant matrices and |sE — A| # 0.

Definition 1
A MATRIX PENCIL is any mx! matrix of the form

T(s) = sE - A (4.2)

where F, A are constant matrices. The pencil {4.2) is sald to be REGULAR if

m ={ and

IsE - Al #£0 | (4.3)

Otherwise the pencil is called SINGULAR.

The generalised state space system matrix (4.1) contains a number of in-

teresting pencils:

(a) the POLE PENCIL sE ~ A, which determines the modes (finite and inﬁnitre)

-of the system,

(b) the INPUT PENCIL [sE — A B], which determines the controllability
properties of the system, |

(c) the OUTPUT PENCIL [(s& - A)T — C‘T]T. which determines the observ-
ability pfopérties of the system,

(d) the SYSTEM PENCIL

[SE"A B] (4.4)

~-C D
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which determines the transmission-blocking properties of the system.

It should be noted that a fine distinction is made between the system matrix
(4.1), where full account is taken of the block structure, and the system pencil
(4.4), where the block structure has no role. Also note that the pole pencil
is always regular, while both the input and output pencils are not square and
consequently are singular. Typically, the system pencil is singular but it could be

regular, in which case the system transfer function matrix would be invertible.

A relation between matrix pencils is now stated as follows:
Definition 2

Two mxl matrix pencils sEy — Ay, sE; — Ay are said to be STRICTLY
EQUIVALENT (s.e.} if there exist constant non-singular matrices M, N such

that
sE; — Ay =M(sEy; — A))N (4.5)

78




CHAPTER V

SYSTEM EQUIVALENCE



CHAPTER V
SYSTEM EQUIVALENCE

V.1 Introduction

It is often advantageous for analysis and design purposes to consider an
alternative but equivalent representation of a system model. That two system
representations give rise to the same transfer function matrix is perhaps the
most basic notion that the two representations be equivalent.

In this chapter it will be seen that in the conventional theory of linear
systems the equivalence transformation for state space models is system similar-
ity, and for general polynomial models it is extended strict system equivalence
(e.s.s.e.). In the generalised theory the appropriate transformations are complete
system equivalence (c.s.e.) for generalised state space systems and full system
equivalence (f.s.e.) for general polynomial models.

noted. whicl,

It is observed-these system properties which are preserved under an equiva-
lence transformation. In the conventional theory of linear systems all the essen-
tial finite zero and pole structures of a polynomial system matrix are invariant
under (e.s.s.e.). In the generalised theory of linear systems (c.s.e.) preserves the
finite and infinite zero / pole structures of a generalised state space system ma-
trix while under (£s.e.) all the essential finite and infinite zero / pole structures
of a general polynomial system matrix are invariant.

The relation of full equivalence also has the useful property of permitting

the given polynomial matrix to be reduced to an equivalent matrix pencil form.

This will be seen in the next chapter.

V.2 The general form of system transformations

Let

Ti(s) Ui(s)

-

Fyi(s) (2.1)

1=1,

~Vi(s) Wils)



where it is assumed that

det Ti(s) # 0 (2.2)

be two (r; 4+ m)x(r; +1) Rosenbrock system matrices. These system matrices are
called POLYNOMIAL or RATIONAL depending on whether the component ma-
trices T;(s), U;(s), Vi(s), Wi(s) are polynomial or rational (Rosenbrock 1970).

Let
Gi(s) = Vi(s)T; U (s) + Wi(s), i=1,2 (2.3)

denote the associated transfer function matrices.

The most basic form of equivalence of system matrices is then

Definition 1 u
Py(s), Pa(s) of (2.1) are said to be INPUT- OUTPUT EQUIVALENT (i/o
equivalent) if, and only if, they give rise to the same transfer function matrix

i.e. if, and only if,

Gi(s) = Ga(s) (2.4)

A question of fundamental importance in linear systems theory concerns the
nature of the relationship between two system matrices which are input-output
equivalent. Rosenbrock proposed an exact characterisation of this equivalence

in system matrix terms.

Definition 2

If Pi(s), Pa(s) of {2.1) are rational system—matrices, one of which, Py(s)
say, can be obtained from the other, Pa(s), by a finité sequence of the following
elementary opefations:
(a) mult_iply any one of the first ry rows (respectively, columns) by a non-zero
rational fun;:tion,

(b) add a multiple, by a rational function, of any one of the first r» rows (re-

spectively, columns) to any other row (respectively, column),
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(c) interchange any two among the first vy rows (respectively, columns),
(d) add a row and column to Pa(s) to form
1 0
b

0 PQ(.S‘)

then Py (s) and Pa(s) are said to be SYSTEM EQUIVALENT.

It can be shown that the transfer function matrix is invariant under system

equivalence.
Theorem 1
| The transfer function matrix G(s) is a standard form for system matrices

under system equivalence.

Proof

Operate on P as follows:
{ T U } 1 T"WU }
—
-V W -V W

(I T-'U :I

—
|0 VTTIU+W
I 77U
L
I o
- 0 G
— G

Note that the above operations can be reversed i.e.

T U
G — ... -—
-V W
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Theorem 2

Any two system matrices are system equivalent if, and only if, they give rise
to the same transfer function matrix i.e. if, and only if, they are input-output
equivalent.
Proof

If two matrices are system equivalent, they give rise to the same G(s), as
was noted above. If they give rise to the same G(s), cach can be reduced to

G(s)} by system equivalence i.e.

v Uy B : Ty U

-1 W ) : Vo Wy

Hence, the desired result follows.

It is seen from the above result that system equivalence is an exact charac-
terisation of input-output equivalence in system matrix terms in the sense that
it provides a catalogue of permitted elementary operations that can be applied
to the system matrix-without affecting the associated transfer function matrix.

A relation between two system matrices which are input-output equivalent

is now stated in the following theorem:

Theorem 3 -

Two system matrices of the form (2.1) are input-output equivalent if, and
only if, there exist system matrices M(s), N(s),-X(s), Y (s) such that

M(s) 0 Ti(s) Uyls) Ty(s)  Ua(s) N(s) Y{(s)

= (2.5)
X(S) _I -—VL(S) Wl(S) —VQ(S) I’VQ(S) 0 I

— Relation (2.5) and system equivalence are both exact characterisations of
input-output equivalence. It follows that the elementary operations defining

(2.5) are precisely those of system equivalence. The relation (2.5) is thus the
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GENERAL MATRIX FORM FOR ANY SYSTEM MATRIX TRANSFORMA-
TION. It is the zero and unit blocks in the transforming matrices which guaran-
tee the invariance of G(s) irrespective of M(s), N(s), X(s), Y(s) being poly-
nomial, rational, singular or non-singular (Pugh et al., 1989). Also note that
writing the transforming matrices on both sides of the expression (2.5) permits
system matrices of different dimensions to be related. Thus, the equivalence
clagses set up by such transformations are suitably enlarged and complete. The
further imposition of the conditions of the various matrix transformations onto
the general form (2.5) will generate the relevant system matrix transformations,

as .W'll]. be seen later.

V.3 Strict system equivalence
Let P(m, 1) denote the class of (r + m)x(r + 1) polynomial matrices, where
m,l are fixed positive integers but r is variable and ranges over all integers

greater than max (—m, —!}.

Definition 1
Let Pi(s) € P(m,l), i=1,2. Let M(s),N(s) be rxr unimodular poly-
nomial matrices. Also let X(s),Y(s) be polynomial matrices, respectively mxr

and rxI. If Pi(s) and P»(s) are related by the transformation

Tl(S) U](S) ' lVf(S) 0 T2 (S) UQ (.S) N(.S) Y(S) ( )
— 3.1
~Vi{s) Wi(s) X(8) Imj | ~Val(s) Wal(s) 0 I

then Pi(s) and Pp(s) are said to be STRICTLY SYSTEM EQUIVALENT

(s.s.e.).

Note that relation (3.1) is a special case of theorem 3, section V.2. Strict
system equivalence is restrictive in that it only allows system matrices of the
same dimension to be related. Also note that (s.s.e.} is the system version of

unimodular equivalence (see definition 1(a), section I1.3).



Under this type of transformation it is important to note those system
properties which are preserved. It can be shown that under (s.s.e.) the dimension
r; of the matrices T,U,V, the order n of the system, and the corresponding

transfer function matrix G are all invariant.

Theorem 1

Two system matrices which are strictly system equivalent have the same
order and give rise to the same transfer function matrix.
Proof

Equation (3.1) gives
Ti(s) = M{(s)T2(s)N(s) (3.2)

On taking determinants and noticing that M and N are unimodular it follows

that |T1(s}| and {T(s)| have the same degree. Therefore P, and P, have the

same order.

On multiplying out, equation (3.1) gives

T U ) MION MY + Us)
= - (3.3)
-1 Wy —(Va — XT))N XY - WY + XU, + Ws
Therefore,

; G =WITU + Wy
. (Vo — XTO) NN ML M(TRY + Uy)
+ XToY — Y + XU, + W,

=WT; ' U+ We

G

Il

Therefore, P; and P, give rise to the same transfer function matrix.

Any relation of strict system equivalence can be generated by elementary

operations of the following types:

(.8
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(a) multiply any one of the first r rows (respectively, columns) by a non-zero
constant,

(b) add a multiple, by a polynomial, of any one of the first 7 rows (respectively,
columns) to any other row (respectively, column),

(c) interchange any two among the first r rows (respectively, columns).

Comparison with definition 2 section V.2 shows that system equivalence

includes strict system equivalence as a special case.

Theorem 2

- Any polynomial system matrix P (s) can be brought by strict system equiv-

alence to the form
I 0

0 Ps)
where P;(s) is a system matrix in state space form.

Proof
For the proof see Rosenbrock (1970, p. 53).

V.4 System similarity

Consider a system in state space form (see (2.1) section ITL.2):

21 = A1z + Biug
(4.1)
y1 = Crzy + Dy

If a system matrix Pi(s) in state space form is transformed by strict system
equivalence, the result will not generally be in state space form. Given a state
space description of a system, a new model may be obtained which evidently
preserves the state space form. This may be achieved by a change of basis in

the state space of the form

ry = Hzo (4.2)

where H is a non-singular constant matrix. Then equations (4.1) become



2y = Asxo + Boug

) (4.3)
y1 = Cywy + Daus
where

Ay = H 1A H
B,=H"'B,

- (4.4)
Co=CiH
Dy =11

This transformation is called SYSTEM SIMILARITY. It can equally be defined

in terms of Rosenbrock’s system matrix in state space form by

si— Ay By H-! 0 s — Ay Bl H 0
= . (4.5)
'_'02 D'Z 0 I-m. ’_‘C]_ Dl 0 Il

Strict system equivalence clearly includes system similarity as a special

case. It follows that the system order and the transfer function matrix are both

invariant under system similarity.
Theorem 1 -
Two systemn matrices Py () and Py(s) in state space form are system simifar
if, and only if, ‘they are strictly systemn equivalent.
Proof
For the proof see Rosenbrock (1970. p. 56) —
V.5 Extended strict system equivalence
The conventional theory of linear svstetns is built on the standard matrix
theory of equivalence by nnimodular matrices (we. ). Let P(mm, 1) denote the class
of ('r-—{-m)x(f'—#ﬂ) polynomial matrices, where m. [ are fixed positive integers but
r is variable and ranges over all integers greater than max (—mn, —1).
_In section I3 unimodular equivalence (ue.} and extended unimodular

equivalence (e.n.e.) were defined. The essential properties of the transformation

of (e.we.) can be sumnmarised as follows:
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Lemma 1

(a) Extended unimodular equivalence is an equivalence relation on P(m,! )-
(b) Pi(s), Pa(s) € P(m.l} are (e.we.} if, and only if, their Smith forms are
related by a trivial expansion.

Proof

For the proof see Pugh and Shelton (1978).

It is now apparent fromn lemma 1(b) that (e.w.e.} is simply (u.e.) together
with the addition operation of trivial expansion / deflation. It is also seen from
the above lemma that the essential invariants under {e.ae.) are the non-unit
invariant polynomials or, equimlently, the finite elementary divisor or zero struc-
ture of the polynomial matrix under consideration. In fact, (e.w.e.) represents
a complete description of the relationship which holds between any two polyno-
mial matrices from P(m, 1) whose finite zero structures are identical. However,

the infinite zero structure is not invariant under (e.n.e.).

Imposing the conditions of (e.ne.) onto the general form for any system

matrix transformation (see (2.5) section V.2) i.e.

M(s) 0O Tols)  Us(s) | [ N(s) Y(s)
X(s) I I

—Va(s) TVa(s) (}
(where M (s), N{s), X(5). Y (s) are polynomial matrices) gives rise to the follow-

Ti(s) Ui(s)
~Vi(s) Wi(s)

(5.1)

ing system transformation:

Definition 1

Let Pi(s) € P(m,1), i = 1,2. Pi(s), Py(s) are said to be EXTENDED
STRICT SYSTEM EQUIVALENT (e.s.s.e.) if there exists a transformation of

the form (5.1) such that

M(s)Ti(s) = Ta(s)N(s) (5.2)

is an (e.ne.) transformation.
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The following result shows that (e.s.s.e.) inherits the basic features of
(ewe.):
Theorem 1

Under extended strict system equivalence (e.s.s.e.) all the essential finite

zero and pole structures of a polynomial system matrix are invariant.

Note here the mechanism by which the results of theorem 1 above are
achieved. (E.s.s.e.) induces transformations of (e.n.e.) directly on those sub-

matrices of the system matrix used to define the various finite pole and zero

structures.

V.6 Complete system equivalence

The conventional systems theory transformation of (e.s.s.e.) does not pre-
serve the infinite frequency structure. A transformation is now introduced which
leaves invariant all finite and infinite frequency properties of a generalised state
space systemn.

Recall that a generalised state space system is one whose defining equations

give rise to a system matrix of the form

sE—-4 | B
Plsy=|__ __ __ | —— (6.1)
- | D
where E, A4, B,C are constant matrices and |sE — A # 0 (see (4.12) section
TIL4).

The underlying matrix transformation for such systems is one which relates

matrix pencils. Recall that a matrix pencil is any mx! matrix of the form

- | T(s) = sE~ A | (6.2)

where E, A are constant matrices. Recall also that the pencil (6.2} is said to be



REGULAR if m = { and
s — Al #0 (6.3)

Otherwise it is SINGULAR.

Let P'(m,]) denote the class of (r +m)x(r + {) matrix pencils, where m,!
are fixed positive integers but r is variable and ranges over all integers greater
than max (~m, ~{). Also let P'(0) denote the set of rxr regular matrix pencils,

where again the integer r is variable but r > 0. Now define the following:

Definition 1
© Two pencils Ty (s) = sEy; — 4;, Ta(s) = sE2 — Ay in P'(m,l) are said to
be COMPLETELY EQUIVALENT (c.e.) if there exist constant matrices M, N

such that
MT(s) = Ta(s)N (6.4)
or
(M Ty(s)] [7}_5\?} ~0 (6.5)
where
Ta(s), M are relatively left — prime (6 G)A
N, Ty{s}) are relatively right — prime '
and
[Ta(s) M)
{TL (S)] }hzwe no infinite zeros (6.7)
~-N

In the case of regular pencils i.e. Ty(s), Tu(s) € P'(0), the condition (6.6)
may be replaced by the equivalent condition that the matrices occurring in (6.7)
have no finite zeros and full normal rank.

It is noted that {c.e.) is a restriction of (e.w.e.) in that its transforming
matrices are constant and its action with respect to the point at infinity is also

constrained. The main properties of (c.e.) are then



Theorem 1

(a) Under (c.e.) the finite and infinite zero structures of a matrix pencil are
invariant.

(b) In the case of regular pencils the finite and infinite zero structures form a
complete set of independent invariants under {c.e.).

(c) (C.e) is an equivalence relation on the set of regular pencils.

Rather in the way that unimodular equivalence of polynomial matrices in-
duces an equivalence relation on the set of polynomial system matrices, called
strict system eciuivalenc‘e (Rosenbrock 1970), so the equivalence relation (c.e.)
‘ of regular matrix pencils may be taken as a basis for an equivalence transforma-
tion of generalised state space system matrices of the form (6.1). This may be
defined as follows: |

Let P{(m,!) denote the class of (r + m)x(r + ) generalised state space
system matrices of the form (6.1), where the integer r > 0 is variable and where

|sE - A| # 0.

Definition 2 )
Py(s), Pa(s) € Fj(m.l) are said to be COMPLETELY SYSTEM EQUIV-

ALENT (c.s.e.} if there exist constant matrices M, N, X, Y such that

M | o] |sEi-4A | B sEv—As | B[N | ¥
X |1 ~C | Dy —Cs | D, 0 | I
- - (6.8)
where )
.Mr(SEl - Al) = (SEQ -_— AQ)N (69)

is a statement of (c.e.).

_ Note that in the above definition, since the pencils sE; — Ay, sE, — Ay are
regular, the requirement that (6.9) be a statement of (c.e.) may be replaced by

conditions analogous to {(6.6) and (6.7) of the form that the matrices

90



[sE; — A2 M], LE:I_VAl] (6.10)

have neither finite nor infinite zeros.

The importance of (c.s.e.) is indicated by the following:

Theorem 2
Under complete system equivalence (c.s.e.) all the essential finite and infi-

nite zero / pole structures of a generalised state space system matrix are invari-

ant_.

V.7 Full system equivalence

A transformati‘on of system matrices is now introduced which plays the
same role in the generalised theory of linear systems as (e.s.s.e.) does in the
conventional theory. Let P(m,l) denote the class of (r + m)x(r +1) polynomial
matrices, where m,{ are fixed positive integers but r is variable and ranges over

all integers greater than max (—m, —I).

Definition 1
P((s), Py(s) € P(m, 1) are said to be FULLY EQUIVALENT (fe.) if there

exist polynomial matrices M (s), N(s) of the appropriate dimensions such that

et Rao)]| 0 <0 JCaY

where the compound matrices

e Bl | A (72)

satisfy the following:
(a) they have full normal rank,
(b) they have no finite nor infinite zeros,

(c) the following McMillan degree conditions hold:
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sucl (020) P ) = s (oo (73)

([ -selew) o

Note that (a) together with the condition that the matrices (7.2) have no
finite zeros is equivalent to the relative primeness requirements of (e.u.e.). Hence,

(fe.) is aspecial case of (e.u.e.). A most important feature of this transformation

is the following: _

Theorem 1
If Pi(s), Py(s) € P(m,l) are related by full equivalence then they possess

identical finite and infinite zero structures.

Proof

For the proof see Hayton et al. (1988).

Consider again the general form for any system matrix transformation (see

N{(s) Y(S)}
(7.5)
o I

(2.5) section V.2):
[M(s) 0 { T.(s) Uils)

X(s) I| [—Vi(s) Wi(s)

Ty(s)  Ua(s)

i

-%(3) IVQ (S‘)

where M(s), N(s), X(s), Y (s) are polynomial matrices. —

In the case of (e.s.s.e.) it is immaterial whether the conditions of (e.u.e.) are

_ imposed on the whole of the transformation (7.5)-er simply on the transformation

that (7.5) induces on the associated T(s) matrices i.e. the transformation

M(5)T1(s) = Ta(s) N (s) (7.6)

However, in obtaining a systems theory version of (f.e.), the manner in which
the conditions of (f.e.) are imposed on (7.5) turns out to be crucial. Consider

the following example:




Example 1

Consider

$ l 1 s | 1
Pi(s)=| —— | ——1|, Py(s) = | (7.7)
~(+1) | s -1 ] o

These matrices can be related by

1 ] 0 5 ] 1 s |1 1 ] 0
—| (78
s | 1] 1—(s*4+1) | =-s -1 ] 0 0 | 1

— = == 1 —|= |

which is a transformation of the form (7.5). The transformation induced on the

T(s)- blocks of Py(s) and Py(s) is
Ls=ys.1

or

[s | 1]1]—1|=0 (7.9)
~1

(7.9) is an-(fe.) transformation between the respective T'(s)-blocks. If the
overall transformation (7.8) is considered, then it can be seen that this is not an

(fe.) transformation. The compound matrix

s 11 -1 0

does not satisfy the required McMillan degree condition (7.3). Further Py(s),
Py(s) as matrices in their own right cannot be related by any (fe.) transfor-
mation since they actually possess different infinite zero structures (and hence
would violate theorem 1). Thus, it is seen that imposing the conditions of (f.e.)
on the transformation of the associated T'(s)-blocks of the system matrices will
not necessarily imply that the overall transformation (7.5) is (fe.). It will be
impossible to guarantee the invariance of the infinite zero structure of the system

matrix under such a transformation.
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Consider now imposing the conditions of (f.e.) on the overall transformation
(7.5). There will be two transformations arising from (7.5) depending upon

whether the system matrix or its normalised form is chosen.

Definition 2
Py(s), Pa(s) € P(m,l) are said to be NORMAL FULL SYSTEM EQUIV-

ALENT (n.f.s.e.) if there exist polynomial matrices U(s), TU(s), X(s), D(s)

such that the corresponding normalised forms 3, (s),B,(s) are related by

M) o} [ T, i T, ug} F(s) (s)

- | (7.10)
X(s) I =0, 0 -0, 0 }

0 I

where (7.10) is an (f.e.) transformation.

Definition 3
Pi(s), Pa(s) € P(m,!) are said to be FULL SYSTEM EQUIVALENT (fs.e.)

if there exist polynomial matrices M(s), N(s}, X(s), Y'(s} such that
{M(s) 0 Ti(s) Ui(s) } {: To(s)  Ua(s) }

X(s) I ! ~Va(s) Wals)

N(s) Y(s)}
- (7.11)

0 I

~Vi(s) Wi(s)
where (7.11) is an (fe.) transformation.

Although (fs.e.)} relates to a system matrix, it induces transformations of
(fe.) on the various submatrices of the normalised form rather than those of
the system matrix itself. It is the submatrices of the normalised form which are

~used to define the finite and infinite zero / pole structures of the system. It thus

follows that

Theorem 2
Under full system equivalence (f.s.e.) all the essential finite and infinite zero

/ pole structures of a general polynomial system matrix are invariant.
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V.8 Conclusions

In this chapter a number of matrix transformations together with their
systems theory analogs have been given. In the conventional analysis of linear
systems the system transformations are system similarity for state space models
and {es.s.e.) for general polynomial models. In the generalised theory the ap-
propriate system transformations are {(c.s.e.} for generalised state space models
and (fs.e.} for general polynomial models.

The system transformations arise in an identical way from the underlying
matrix transformation. The conventional way of achieving this (i.e. placing
restrictions on the transformation induced on the T'(s)-blocks of the system ma-
trix) does not carry through to the general case of the transformation (f.s.e.).
The correct method of generating a system transformation is to apply the re-
strictions of the underlying matrix transformation to the basic structural form
of system transformations.

Also in this chapter it is noted which system properties are left invariant un-
der an equivalence transformation. In the conventional theory of linear systems,
(e.s.s.e.) leaves invariant the finite zero and pole structures of a polynomial
system matrix. In the generalised theory of linear systems, {(c.s.e.) preserves
the finite and infinite zero / pole structures of a generalised state space system
matrix. Finally, under (fs.e.) all the essential finite and infinite zero / pole
structures of a general polynomial system matrix are invariant.

The relation of full equivalence also has the useful property of permitting
the given polynomial matrix to be reduced to an equivalent matrix pencil form.

This will be seen in the next chapter.
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V1

SYSTEM MATRIX REDUCTION TO
SINGULAR SYSTEM FORM

V1.1 Introduction

This chapter describes three methods of system matrix reduction to singular
system form. Hayton et al. (1989) have formed matrix pencil equivalents from
a general polynomial matrix, and it can be seen how this reduction is based on
the system matrix idea by Bosgra and Van der Weiden (1981). In chapter VII,
the algorithm which permits the polynomial matrix reduction to pencil form
is computerised and discussed further. Also discussed in this chapter is the
system matrix reduction by Vardulakis (1991) which transforms a polynomial
matrix model of a linear multivariable system to generalised state space form.
Finally, the system matrix linearisation by Zhang (1989) is discussed and all
three methods of linearisation are compared via an example. The extent to

which the resulting singular system is equivalent to the original is also discussed.

VI.2 Polynomial matrix reduction to pencil form

Bosgra and Van der Weiden (1981) have outlined a procedure whereby a
generalised state space system may be obtained from a general polynomial sys-
tem, preserving fundamental system properties at finite and infinite frequency.
This algorithm may also be used to reduce any general polynomial matrix to
an equivalent matrix pencil (in the sense of having identical finite and infinite
rzero structure). This will be seen later to be a special case of full equivalence (
Hayton et al., 1988). The algorithm is described as follows:

Let the mx/ polynomial matrix P(s) correspond to the matrix polynomial
defined by

P(s)=Py+ Pis+ Pys* + ...+ P,s? (2.1)
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where Py, i = 1.2,...,¢, are mxl constant matrices with

Py#0 (2.2)
Define the following matrices:
Py, Py Pq
P, P 0
) ne) 2| ! .
- P, 0 0
[Py Py P, 07
Py P 0 0
Al .. .
I(4) = :
P, 0 0 0
L0 0 . 0 0l
PPQ
P,
nma|’
L P,
MC)2 [P, Py ... P, (2.3)

Let p(E) 2 rank (H({S)). A method is needed to determine p(Z) linearly inde-
pendent rows (resp. columns) from II(£), althbugh as will become clear the pre-
cise choice of rows (resp. columns) is largely irrelevant. Let J = {it, 8, .. ipm) )
(resp. J £ {41,724 -+ Jp()}) be the positive sets of integers which define such
a row (resp. column) selection, denoted I (resp. J).

Let Pp (resp. P4) be that submatrix of TI(E) (resp. H(Aj)_f;)rmed from

rows of the selection I and columns of the selection J. Let Pg be the submatrix

“of TI{B) formed from the rows of the selection I, and Pc be the submatrix of

TI(C) formed from the columns of the selection J.

The matrix pencil Pr(s) is formed as follows:

. PE-—SPA PBS

PF(S) B —Pes Pys+ Py (2.4)

One particular method for determining a row and column selection is described

as follows:
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Beginning with the last row and working upwards in the matrix II(E),
select any row which is linearly independent of all other previously selected
rows. Clearly if rows hi,....h are selected from the one block row of II{E),
then these rows will always be selected when considering the next block row
of TI{E), plus any additional linearly independent rows from the correct block
row. This particular row selection will be called the “natural row selection”,
and similarly the “natural column selection” for the columns can be defined by
working from the last column to the first. This is discussed in more detail in the
next chapter where some of the numerical advantages provided by this selection

are also described.

Two examples illustrating the formation of an equivalent matrix pencil are

as follows:

Example 1

Let P(s) correspond to the matrix polynomial

101 1 0 1 0] »
P(S)“[—1 0]*[0 0]”[0 0]3

Now form the following matrices:

oo
= O oo

e BT
e

gt
TI(A) = [
T(B) = [
o-|

(s g
o o
—_ .

The row selection I = {1} corresponds to the linearly independent row from
II{E}. The column selection J is J = {1}. Therefore

Pp=1

Py=0
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Pz=[1 0]

re= o)

Hence, the matrix pencil Pr(s) is

|
\
|
\
\
\
\
\
\
1 s
PF(S) = l:-—s 8 j!
~ oD -1 7
\
\

o= O

Example 2

Let P(s) correspond to the matrix polynomial
._ 10 0O 01 1 0] o 1 0f s
P(s)-—[__I 0]—{-[0 O}S-I-{D 0]5 +[0 0]_3

Hence,

(4) =

s It Y e T o} o OO e
(=]
)

(B) =

— O o OO - OO

o

1
0

OO0 ocoooo oo oodo

-l

The row selection I = {1, 3} corresponds to the set of linearly independent rows

from II{E). The column selection J is J = {1, 3}. Therefore

et
raefs

_ el
S



Hence, the matrix pencil Pr(s) is

1-5s 1 s O

1 0 s O

Pr(s) = -s —s 0 s
0 0 -1 0

The following results arise directly from the construction of Pg, P4, P,
FPp
Lemma 1

Let Pg, P4, Py, Pc be constructed from the row selection I and column
seléction J. The following hold:
(a) Pg is non-singular
(b) Pg — sPy4 is unimodular
(c) Po(Pg — sPa) 'Pp=Py+ Pss+ ...+ Pps?™? (2.5)
(d) If P, P, Pp, Pf is aconstruction corresponding to any other row selec-
tion I’ and column selection J’, then there exist constant non-singular matrices

Ty and T3 such that
PB - SPA = TI(PE;‘ - SPA)T}. PB = Tlpé, Pc = PévT‘z (2.6)

i.e two matrix pencils, each formed from a different row and column selection
but from the same polynomial matrix. are related by strict equivalence (see

definition 2 section IV.4):

Pp — sPy Pps |y 0} | Pg— sP) Pys T 0 (2.7)
—Pes Pis+ Py 1o I —Pés Pis+ Py 0 I ’

Proof:

See Bosgra and Van der Weiden (1981).

An example illustrating the constructions described in the above lemma is

as follows:
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Example 3

Let P(s) correspond to the matrix-polynomial

1 00 1 10 00 1 001
Ps)=10 1 0|+/0 0 1]s+]1 1 0]s*+]1 0 05
110 1 01 0 0 1 00 1
Hence,
0 0 1 | 0 0 17
1 1 0 | 1 0 4
o 0 1 | 0 0 1
eg)=— — — — — — —
o0 06 1 | 0 0 O
1 0 0 | 0 0 O
Lo o 1 ] o o ol
0 0 1L - 0 0 07
1 ¢ 0 | 0 0 0
o0 0 1 1 0 0 0
oA ={— — — — — — —
- o 0 0 | 0 0 O
0o 0 0 | 0 0 O
Lo 0 0 | 0 0 0l
- - r0 0 17
1 1 0
D 0 1
(B)y=|— — —
0 0 1
i 1 0 0
- ; Lo 0 1]
0 01 ] 0 0 1
IC)=|1 10| 1 00
00 1.] 001

Firstly, let the row selection I be I = {2,3,5,6} which corresponds to a
set of linearly independent rows from II(E). Also, let the column selection J be

J ={1,3,4,6}. Then

= 1

Y

1 0 0 0
01 0 0



1 0 0 O
010 0
Pa=1g 00 0
0 0 0 O
1 1 0
0 0 1
Pe=17 9 o
L0 0 1
01 0 1
Po={1 0 1 0
(01 01
and
fl=s 0 10
0 1—s8 0 1
Pp—sPa=1 0O 0 0
) 1 00
0 0 1 0
. _ {00 0 i
(Pe=sPA™" =1 o _1-4) 0
L0 1 0 —(1-3s)

It can be seen from this that lemma 1(a) and 1(b) hold.

Now,

001 0 1 00 1 0 1 1 0
-1 0 0 0 1 0 0 1
Pc(PE—SPA) PB= 1 0 1 0 i 0 —-(1-—8) 0 1 0 0
0101l 1 "o —a-siloo1

) 0 145

=|1+s 1 0

| 0 0 145

=Py + P3s

i.e. lemma 1{c) holds.
Now consider another row sclection I = {1,2,4,5} and column selection

J =1{1,3,4,6}. Then

0101
, 1101 0
Pe=14 10 0
1000
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oo C o —
oo OO ~ D O O O
— O O O D= OO — O o=
O - oo oo S jan 2R I ]
L i I3 — | ]
i fl l
P & ®

and

The following relation holds between Pg — sP4 and Pp’ — sPy”

0
1
)
0

— O OO

OO0
o oo B oo B

o - OO

ie.

Pg = sPy=Ti{Pg' — sPA )Ty

where T} and Ts are the constant non-singular matrices

oo OO~
SO H OO
—oQoC O—AO0oC
OO —HO OO
1 1 L - |
# I
=) )
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Also, it can be seen that the following relations hold:

1 10 01 00 0 01
¢ 0 1({_{1 0 0O 1 10
1 0 o {0 0 0 1 0 0 1
0 0 1 0 01 0O 1 ¢ 0
ie.
Pp =T Py
and ) 0 0
01 01 01 01 0 (1) 0 0
1 01 0}l=1]1 0120 00 10
01 01 01 0 1 00 0 1
ie.
Pc = PLT;

i.e. lemma 1(d) holds.

Hence, it has been seen that two matrix pencils each formed from the same
matrix polynomial but from different row and column selections are related by
strict equivalence, and that the precise choice of linearly independent rows (resp.

columns) from the matrix II(E) defined earlier is largely irrelevant.

The following theorem states additional properties of any construction Pg,
P4, Pg, Po and it can be seen from the proof that the natural row and column

selections are useful in establishing the results.

Theorem 1 (Hayton et al., 1989)

have full rank.

{(a) The matrices [Pg Pal, [PCJ

Py

(b) éum (Pcs(PE - sPA)*PB) = (5M(PCS(PE - sPA)"l) (= p(E)) (2.8)
Proof:

(a) Consider the matrix

5]

104



which has dimension (m+p(E))xp(E) and where Poy, Pay are matrices formed
from II{C), TI(A) respectively on the basis of the natural row and column selec-
tions. It is necessary to demonstrate the existence of p(E) linearly independent
rows in the matrix (1). Select from matrix (1) linearly independent rows in
the manner of the natural row selection. This is equivalent to performing the

natural rew and column selection on the matrix

[03((?1}1]

since the columns of matrix (1) have already been selected in this way. This

will result in the formation of the p(E)xp(E) matrix Pgy which is non-singular
(lemma, 1{a)). Thus matrix (1) contains PEN as a submatrix and so has p(E)
| linearly independent rows.
Now suppose that
_ [f;j] 2)
is formed on the basis of an arbitrary row and column selection. By lemma 1(d),

there exist non-singular constant matrices T3, T3 such that

(2] [1 2] [Fer]

Hence, matrices (1) and (2) have identical rank and so matrix (2) has full rank,

as required. Similarly, [Pg P4 has full rank. —

(b) From lemma 1(c), and lemma 1 section IL6,

Sm (Pcs(PE ~ SPA)“IPB) =8m (Pgs + st quq-l)
= rank II( E)

= p(E) (2.10)
Consider now the matrix Pcs(Pg - sPA)_l. Prp — 3P4 is unimodular, so it be-
rmokices

longs to the ring of polynomial Aand so does its inverse. Hence Pos(Pg — sPA)“1

is a polynomial matrix which means that it has only poles at infinity. Therefore
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its McMillan degree is simply the total number of such poles. To determine this,

put s = & in Pes(Pg — sP4)"!. The resulting rational matrix is given by
Po(wPg — Pa)™ (3)

The only poles that Pos(FPg — sPA)“1 possesses are at infinity. Thus the only
poles that (wPg — PA)"1 possesses are at w == 0, or alternatively the only zeros
that wPg — P4 possesses are at w = 0. Hence wPg — P4 has full rank for all

finite w # 0 and so .
Pe
[wPE - Py ] (4)

has full rank at w % 0. Also matrix (4) has full rank at w = 0 (theorem 1(a)).
Hence (4) has full rank for all finite w and hence (3) is a relatively right prime
factorisation of the rational matrix it represents. Therefore the zero structure
of wPg — P4 reflects the pole structure of this rational matrix. Since Pg is
non-singular, the total number of finite zeros of wPg — P4 (they are all at w =0

) is rank Pg = p(F). Therefore

St (PCS(PE ~ sPA)"l) = p(E), (2.11)

ie.

S (PCS(PE ~ SPA)—IPB> = 8pm (PCS(PE - SPA)_I),
as required.

Example 4
To illustrate the properties in theorem 1 above of any construction Pg, Pa,

Pg, Pc, consider example 1 again.

The matrices




obviously have full rank.

Now

Peos(Pg —SPA)_IPB = [g] {1 0]

and

Pcs(Pg—sPa) ™' = [g] \

The McMillan degree (see result 1 section I1.6) of both forms is equal to 1. Hence

theorem 1 holds true.

It will now be seen from the following theorem that the polynomial matrix
reduction to pencil form is a full equivalence transformation. The properties in

theorem 1 above are useful in establishing the proof of the following:

Theorem 2 (Hayton et al., 1989)
If P(s) is an arbitrary mxl polynomial matrix with a corresponding matrix

polynomial

P(s) =P+ Pis+ Pas* + ...+ Ppst, (2.12)

then P(s) is related to the matrix pencil Pr(s) by full equivalence where

'  Pey) = P’i}jf A p]f‘?fpo — (218
where Pg, Pa, Pp, Pc are as previously defined.
“Proof: _ *
Matrix transformations relating P(s) and Pr(s) are seen to be
[Pos(Pg — sPa)~" IPr(s)=DP(s)[0 I] (2.14)
or alternatively
m P(s) = Pp(s) [‘(PE“SfA)_IPBS (2.15)
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Tt remains to show that these are statements of full equivalence.

Equation (2.14) may be written as
[Pos(Pg —sPy)™ I ~P(s)] [[ISF(‘})]] =0 (2.16)
The matrix
(Pes(Ps—sPa)™" 1 -P(s)] (5)
has no finite nor infinite zeros, by virtue of the identity block. It must now be
verified that the McMillan degree of (5) is pr (P(s)). Any constant columns

will not contribute to this McMillan degree, so

5M( [Pos(Pg —sPa)™! I —P(S)]) = 5M([PCS(PE — sPa)"! -P(S)])
(2.17)

From theorem 1(b),
O (PcS(PE - SPA)_J) = by (PcS(PE - SPA)—IPB) (2.18)

and so, using theorem 1{b) section IL6,

5M( [ Pos(Ps — sPa)™" —P(s)])
= 6M([PCS(PE t SPA)—lpB _P(S)]>

=(5M<[P28+ .P352+...+Pq.5‘q—'1 —(P0+P18+...+quq)]>

{using lemma 1(c))

" P -Pr P =P ... 0 =B
B - P -P3 ... 0 O
—rank | 11 L
P, =P,y 0 =P, ... 0 O
L O 0 60 o0 ... 0 0.
(using lemma 1 section I1.6)
r P B P,
P, P 0
= rank :
P,y P 0
L P, O 0
= dp (P(S)) (2.19)
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Thus, matrix (5) satisfies the requirements of full equivalence. Now consider the

matrix

Pr— 3P4 Pps
[ Pr(s) ] =| —-Pgs Pis+5 (6)
[0 7] 0 I

The McMillan degree condition of full equivalence is clearly satisfied {(6) has
McMillan degree dpr (Pr(s))). Also matrix (6) has no finite zeros since Pg—sP4
is unimodular. It remains to show that (6) has no infinite zeros. Since (6) is a

matrix pencil, its McMillan degree 6y (Pr(s)) is

Py, Pp
rank [—P c P ]
From theorem 1(a), :
Py
_Pc

has full column rank. Therefore, there is some minor of (6) of degree épr (Pr(s))
which incorporates all the columns in the first block column of (6). The unit
matrix in the second block column then ensures that this minor can be extended
to give a maximum size minor of (6) with degree equal to the McMillan degree
of (6). This is the condition for no infinite zeros (Hayton et ai., 1988). Hence,
(2.14) is a relation of full equivalence between P(s) and the matrix pencil Pr(s).
Similarly, the séme applies to (2.15).

Hence, the result demonstrates that under fundamental equivalence it is

possible to reduce any polynomial matrix to matrix pencil form.

Example 5

Consider example 1. It will now be shown that the polynomial matrix with

corresponding matrix polynomial

10 1 1 0 1 0] o
P(.'s)—--[__1 O]+[O O]s—l—[o 013
is related to the matrix pencil

1

Pr(s) = \i—s
0 -1

w
S o= O
| ——
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by full equivalence.

P(s) and Pr(s) are related by

et pele| S =0

or

M(s)P(s) = Pr(s)N(s)

where M(s), N(s) are polynomial matrices of the appropriate dimension i.e.

0
1
0

—_ 0 O

1 s 0 -5 0

2

[Sff (1]]= —s s 1|1 0
0 -1 0 0 1

It now needs to be shown that

0 0 1 s 0
[M(s) Pr(s)]=1]1 0 —-s s 1
01 0o ~1 20
and 0
8§+ 58 1
ECAE S0
—~N(s) 1 0
0 -1
satisfy

(a) they have full normal rank,
(b) they have neither finite nor infinite zeros,

(c) the following McMillan degree conditions hold:

AGUER A = (Pets))

([ ]) (o)

(a) It can be scen that

() Po(s)] and | D]

clearly have full rank.
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(b) Perform elementary column operations on the matrix

00 1 s 0
[M(s) PF(s)]z[l 0 —s s 1]
01 0 -1 0

| new col. 3 = 0 01 s 0
— 1 0 0 s 1
(col.3) + (sxcol. 1) {0 1 0 -1 O]
- interchange
- col. 1 and col. 2 (1 0 0 5 O]
-+ [0 1 0 s 1
interchange 0-0 1 -1 0]

col. 1 and col. 3

It can now be seen that the matrices [M(s) Pr(s)]and [ _‘T\(r'a ) ] have neither

finite nor infinite zeros, by virtue of the icientity block.

(c) It can be seen that the following McMillan degree condition holds, since

constant columns do not contribute to the McMillan degree:

sur( (3105 Pp(s)]) - 5M(PF(3))

Also, the highest degree of minors of all orders of P(s) is equal to the highest

degree of minors of all orders of {_};\52)} i.e. the following holdsT
s+s2 1
~1 0 | 2
SRS (| B
-1 0 . A
0 —1

ie

[ 5 B

Hence, the polynomial matrix P(s) and its associated matrix pencil form Pr(s)

are related by full equivalence.
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An immediate consequence of this theorem in view of theorem 1 section V.7

is the following:

Corollary 1
If P(s) is an arbitrary mx! polynomial matrix, then P(s) and any matrix

pencil Pr(s) constructed as in (2.13) have an identical finite and infinite zero

structure.

In this section, it has been seen how a general polynomial matrix may be
reduced to its associated matrix pencil form based on an algorithm suggested by
Boégra and Van der Weiden (1981). The properties of any construction Pg, Pa,
Pg, P from the row selection I and column selection J have been discussed,
and it has been seen how the natural row and column selections have been useful
in establishing the results. Finally, it has been seen that a relationship exists
(Hayton et al., 1988), from the point of view of the matrix transformation,
between two matrix polynomials which have identical finite and infinite zero

structure. This is the relationship of full equivalence.

VI.3 Extension to system matrices

The polynomial matrix reduction to its associated matrix pencil form can be
extended to system matrices. Consider a linear multivariable system represented

by an (r + m)x(r + [} polynomial system matrix (Rosenbrock 1970)

| T(s)  Uls)
P ("’)‘[—V(s) I-I«-'(i')} (3.1)

where det T(s) # 0. P(s) can be written as
P(s)=Py+ Pis+Pys*+...+ Pst (3.2)

where P;, i = 1,2,...,q, are (r + m)x{r + [} system matrices.
Bosgra and Van der Weiden (1981) have outlined a procedure whereby

a generalised state space system matrix may be constructed from a general
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polynomial system matrix whilst preserving fundamental system properties at

both finite and infinite frequencies. This algorithm is the same as that used to

reduce any general polynomial matrix to a matrix pencil having the same finite

and infinite zeros. Based on this algorithm, the matrix pencil can be slightly

modified to give the generalised state space form:

- [ Pis+ Py

Pgs
(0 —L]

. 0

Pr(s) =

Example 1

Consider example 1 section V1.2 with P(s) now as the system matrix

[s-l—sz |
Pg)=| — —

The generalised state_space form is

Pr(s) =

(Herem=1=1))

Example 2

Consider example 2 section VI.2 with P(s) now as the system matrix

b

- 0 s

-1 0

s 0

- PR(S) = & 0
0 -1

LO O

2(s+1)

PcS

PAS - PE
g

-1 |

-1

| -
|

2.

0
0

§

0

-

0
0

|
|
I
l

0 4

o | ~moococo

(3.3)



(Harem=1[=1.)

As before, it is possible to form another construction Pg, P}, Pg, Pg
corresponding to another row selection I” and column selection J”.

Two generalised state space forms, each formed from a different row and
column selection but from the same system matrix, are related by strict system

equivalence (see definition 1 section V.3) i.e. the following relation holds:

[ Pis+Py  Pes [10 ] | 0]
Prs Psis — P 0 ] 0
[0 -] 0 0 B/
L0 0 I, | 0]
(3.4)
[ Pis+ P, Pls 0 | 0
I 0 0 0 1= 20 o I, I 0 00
lom 000 Phs Pys—Py 0 | ol|0o T, 00
=to o I o] |[0o -I] 0 0 | L|lo o I o0
0 0 0 I — —_— — — —|lo o o I
) 0 I, | ol

where T} and T, are constant non-singular matrices.

VI.4 System matrix reduction to generalised state space form by

Vardulakis’s method

Vardulakis has suggested a method of transforming a general polynomial

matrix

T(s) | Uls)

Vi) | W(s)

of a linear multivariable system into the generalised state space form

sE-A | B

-c | 0

at the same time preserving the transfer function matrix, system poles in

C U {oc}, decoupling zeros in © U {co} and the generalised order.
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Consider a system which satisfies linear algebraic and differential equations
with constant coefficients. Taking Laplace transforms with zero initial conditions

gives

§=V(s)z+ W(s)i (4.1)

where z € R", y € R™, u € R'. T, U, V, W, are polynomial matrices of
dimension rxr, rxi, mxr. mx! respectively, and |T(s}| # 0.

This can be written in normalised form (Verghese et al., 1981):

[ns) U(s) orm} 3(s) | [oﬁ}
-V(s) W(s) In —i(8) | = | Omet | U{8) (4.2)
Olr -1 Oim g(S) Il -

y(s)
Now define
T(S) U(é) Orm
(s) = | =V{(s) W(s) In (4.4)
Oy - Oum

The following shows how a generalised state space form may be obtained

from a normalised system:
Vardulakis’s reduction algorithm
(a) Form 7(s) as in (4.4) above and then 771(s).

(b) Compute zpoi(s) and zapr(s) as follows:

- 77H8) = Zapr(8) + Tpor(8) (4.5)

where Zspr(s) € REX(s), (Ryr(5) denotes the ring of proper rational functions,

p=r+1+m),isstrictly proper and z,0(s) € R[s)™".

(¢) Compute a minimal realisation (C € R™", J € R™", B € R™ where
n = deg|r(s)| ) of Zepr(s) i-e. find matrices C, J, B such that
C(sI-J) 'B=z,, (4.6)
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Compute a minimal realisation {Cos € R™*. Jo € R™#* B, € IR**) of
Tpoi(s) Le. find matrices Cooy Jooy Boo such that

é—_,o (I—“ Sjog)-‘léoo = Tpol (47)

(d) Compute the matrices

C=[Omr Om In][C Cux]

_[ L O
E= _Oﬁn —jw}
[ J On
4= Ofin _Iﬂ-]
s OT'l
B= BB ] om,} | (4.8)
L~ oe IE

and form the generalised state space system
Ei(t)y = Ax(t) + Bu(t)
y(t) = Ca(t) (4.9)
Hence, the system matrix has been reduced to an equivalent generalised state

space system, preserving the transfer function matrix, system poles inCU {oo},

decoupling zeros in CU {oc}, and the generalised order.

Example 1
{ Ty | Uls)
P(s) =
=V(s) | W(s)
s2(s+1) | s

/ S

This system matrix will now be reduced to generalised state space form by

Vardula,kis’s method:

[ T(S) U(S) Orm
(&)= | =V(s) W(s) In }

L O I O
[s*(s+1) s O

= -1 0 1
i 0 -1 0
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(Here, m=r=1=1.)

Therefore,
. 1 1 0 38
T (8)=———=|0 0 —s%(s+1)
s*(s+1) 1 s?(s-+1) s
B = Tspr(8) + Tpoi(s)
B where
1 1 0 s
Ispr(s) — T u— 0 0 0
2(s+1) 10 s

(Topr(8) is strictly proper), and

00 071
mpol(s) =10.0 -1 o
0 1 0

Now compute a minimal realisation of Ts,-(s):

irs'pr (3 C (SI _- B

] | 100 X -1 0™
0 0 0 s+1 -1
1 00 0 ]
Now compute a minimal realisation of x,x(s): ‘

Zpot(5) = Coo (T = 5J00) ™" Boo _

8~01 [1 0H010]
1 o | L0 140 0 1

Hence,

=[0 0 1][C Cwx]

- | =[001]{

=100 1 0]

— O
oo o
[ I e I
— OO
| o
—
1
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1 0 0 0 0
01 000
E=1]0 010 0
00000
L0 0 0 0 0
0 1 0 0 0
0 =11 0 0
A=10 0 0 0 O
0 0 0 -1 0
0 0 0 0 -1
= . [0
B= EB ] {o}
i1
0 0 0
00 1ffo0
=110 0|0
01 0f 1
L0 0 1
F(
1
=10
0
1

Therefore, the generalised state space system matrix is

s -1 0 0 0 | 07

0 s+1 -1 0 0 | 1

sE—A | B 0o 0 s 0 0 | 0
— — —j={0 0 0 1 o0 | o0
~C ] 0 o 0 0 0 1 | 1

(-1 0 0 -1 0 | 0]

There is also another method of transforming an arbitrary normalised
system to generalised state space form which has been noted by Verghese (1978).

Consider the normalised system

T{D)z(t) = Bu(t)
y(t) = Cz(t) (4.10)
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where T(D) is a non-singular polynomial matrix with matrix polynomial
T(D) = ToD* + T\ D1+ ...+ T} (4.11)

(D denotes the differential operator £, and B, C are constant matrices.

Equations (4.10) may be written as

e SIwI-Lel e

The following procedure transforms the above system of high order differential
equations in the variable-x to a system of first order differential equations:
Form a strongly irreducible generalised state space realisation {I — sJ, B,

¢} of the polynomial matrix T'(s), so that
T(s)=C(I —s)"'B (4.13)
Now define the variable z:
(I — DJ)z(t) = Ba(t)  (4.14)
for all . Then, from (4.12), (4.13) and (4.14),
Cz(t) = Bu(t), t2>0 (4.15)

Hence, (4.12) may be written in the form of the generalised state space system:

I-DJ -B | 0 2(t) 0
C O ] =Bl lx#)| _| 0 (4.16)
0 c | G u(t)d - Ly(t)

Hence, a generalised state space system may be formed. preserving the finite
modes, finite decoupling zero structure. and the infinite frequency free response

modes, unobservable modes and uncontroilable modes.
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V1.5 System matrix linearisation by Zhang

In applications it is of interest to develop strongly irreducible realisations
for singular systems (i.e systems with no input decoupling zeros), andv:;;em
controllable and observable in the regular sense and at infinity. This may be
done using Bosgra and Van der Weiden's algorithm to produce the system matrix
linearisation and then removing the decoupling zeros. Alternatively this may be
accompiished directly by Zhang’s method which is described as follows:

Considered is the realisation of the system that is left coprimely fractioned

as .

G(s) =T~ (s) U(s) (5.1)

The realisation is performed through the polynomial matrix linearisation of
[T(s) U(s)].

This realisation is always observable, both in the regular sense and at
infinity. The controllability at infinity depends, however, on the row reducedness
of [T(s) U(s)]. To achieve this row reducedness, a class of unimodular matrix
operations is used.

There are computer packages which can produce the transfer function
matrix of a system matrix and then produce the left coprimely fractioned form
T~1U. Zhang’s method now may be used to give the irreducible singular system.
Hence, a linearisation via Zhang's method can be aécomplished directly.

However, producing an irreducible singular system via Bosgra and Van der
Weiden’s algorithm is not so favourable. A system matrix may be linearised
to form an equivalent singular system using Bosgra and Van der Weiden’s
algorithm. Finite decoupling zeros now may be removed using computer
packages. However, as yet, there are no computer packages to remove the infinite
decoupling zeros. Hence, to produce strongly irreducible realisations for singular
systems which are controllable and observable in the regular sense and at infinity,

Zhang’s method is preferable and will be used here.
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Linearisation of polynomial matrices

i . Consider, as before, the mx! polynomial matrix with corresponding matrix
polynomial ’
P(s) = Fy+ Prs+ Pps® +... + Pys* (5.2)
Denote the row degrees of P(s) by oy, i =1,2,...,m.
P(s)nay be written in the form

P(s) = diag (s*) Ps + diag (s™™1) Py + ... + diag (s¥™*) P, (5.3)
where
o = max (o) | (5.4)

For the negative s-power bases, the rows in the coefficient matrices are all zero.

A matrix Py (s} is constructed as follows:

rsi O ... 0 P, T
~I s ... 0 Pa-l
Bris)={0 -I . : (5.5)
sl Pl
L O 0 e =1 Py

- The linearisation of P(s) is formed by deleting all rows and the same number of

columns in Pp(s) that correspond to negative s-power bases.

Realisation for singular systems

Using the linearisation of polynomial matrices given above, a realisation for

singular systems is proposed. Consider the mx! singular system (5:1). Let

P(s)=[T(s) U(s)] (5.6)

" The realisation of the singnlar system (5.1) is

(sI 0 ... 0 T, | Ua]
~I sI ... 0 Ta—-l i UQ_.l
0 -I : : [ :
: s T1 [ U1 (57)
-I T | U
0 I | 0




where the coefficients T, Uy, i = 1,..., o, are from T(s), U(s) respectively in a
similar way to (5.3).

In Zhang's paper, the * — I' in the last row of matrix (5.7) is quoted as
‘I’ In thig case,' — I’ is used because considered throughout this thesis is the

conventional Rosenbrock system matrix

[sE—A | B’
0

instead of the matrix

[sE~A | B]
O_

¢ |

Example 1

{T(S) \ U(S)}
Pls)=| — — -~
V(s) | W)

[5(5+1) I 1
15

The system is left coprimely fractioned as

G(s) =T"U
_ 1
T os(s+1)

Hence, considered now is the polynomial matrix linearisation of [s(s+1) 1).
P(s)=[s(s+1) 1]

=[1 0]s*+[1 0}s+[0 1]

il

[To U0132+[T1 Nis+{Tr Us]

Hence, the realisation of system G(s) is

s 0 0o | 1
“1 s 1 | 0
0 -1 1 |

60 0 -1 | o



Example 2

T 1 U
Pg)=| -— — —
| ~V(s} | W(s)
[s%(s+1) | s
L -1 | 0
This system has an input decoupling zero s = 0. Zhang’s method

of linearisation removes this decoupling zero and considers the polynomial
matrix linearisation of [s(s+1) 1] (example 1 above). However, consider
the system without the input decoupling zero removed. (In the next section,
the lincarisations by Zhang, Vardulakis and that based on Bosgra and Van
der Weiden’s algorithm are compared for systems with and without decoupling
7€T08. ) _

Hence, consider now the polynomial matrix linearisation of [s2(s+ 1) s].
P(s)=[s%(s+1) s]

=[1 0]s°+([1 0]s*+({0 1}s+[0 O]

=[T0 U0]33+[T1 U1]32+[T2 U2]5+[T3 Ug]

The linearisation is

B 0 0 | 07
-1 s 0 0 | 1
- - 0 -1 s 1 | 0 _
0O 0 -1 1 | 0
Lo 0 o0 -1 | 0.

V1.6 Comparison of the three types of linearisation

The computerised algorithm which permits the reduction of a general
polynorﬁial matrix to an cquivalent matrix pencil form does not include the
case of systém matrices, and hence needs to be modified as such (see VL.3) so
that it can be compared with the linearisations by Zhang and Vardulakis, which

are for system matrices.
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Example 1

Consider the system

T(s) | Uls)
Pl)=| — — —
~Vis) | W(s
[s(s+1) | 1
N EET

Zhang’s method of linearisation (see example 1 section VI.5) gives

s 0 0 | 1
-1 s 1 | O
0 -1 1 | 0
6 0 -1 | O

The lincarisation of the system matrix based on Bosgra and Van der

Weiden’s aigorithm (see example 1 section VI.3) is

rs 1 s 0} 07
-1 0 0 1 | 0
s 0 -1 0 | Q@
0 -1 0 0 [ 1

Lo 0 0 -1 | o0l

It can be seen that this can be deflated to

s s 0 | 1
-1 0 1 ] 0
s =1 0 | 0
¢ 0 -1 | 0

Firstly, it will be seen whether the two system matrices, one formed by
Zhang’s method of linearisation, the other using Bosgra and Van der Weiden’s
algorithm, are complete system equivalent.

The following relation holds:
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1 0 0 | 0 s o | 1
0 0 1 | O ~1 s 1 | 0
0 1 -1 | 0 0 -1 1 | 0
0o 0 0 | 1 0 0 ~1 | 0
s s 0 | 1310 1 0 | O
~1 0 1 | oll1 -1 0 | o0
N =ls -1 0 | O 0 0o 1 [ ©
0 0 -1 | ollo o o | 1

which shows that the two state space systems are, ‘in fact, complete system

equivalent.

Example 2

Now consider the system

T(s) | Uls) }

P(s) = —_ =
_ =Vi(s) | W(s)
s+l | s
Y

This system has an input decoupling zero s = 0.

Zhang’s method of linearisation (see example 2 section VI.5) gives

$ c 0 | 07
- -1 s 0 0 | 1 .
: 0 -1 s 1 | 0O
0 0 -1 1 | 0
0 0 6 -1 |- o

The system matrix linearisation based on Bosgra and Van der Weiden’s

algorithm (see example 2 section VL.3) is

ro0 s s s 0 | 07

-1 0 0 0 1 | o0

g8 0 s—-1 -1 0 | O

- s 0 -1 0 0 | o0
0 -1 0 0o 0 | 1

L0 O 0 0 -1 | 0



which can be deflated to

ro s S s | 0 7
s 0 s—-1 -1 | 0
5 -1 0 | O
0 -1 O 0o | 1

L -1 0 0 o | o .

It will now be seen whether the two system matrices, one formed by
Zhang’s method of linearisation, the other using Bosgra and Van der Weiden’s
algorithm, both formed from a system with a decoupling zero, are complete
system equivalent. |

The following relation holds:

f10 0 0 | 0 jrs 0 0 0 | 0 -

6 1 0 0 | 0 1 s 0 0 | 1

0 0 1 -1 | 0 0 -1 s 1 | 0

0 0 0 0 | 0 0 0 -1 1 | 0

o 0o 0 1 1 1 Jlo o o -1 o |

[0 s s s | 0 71710 O 1 O | O 7
s 0 s—1 -1 | 0 o 0 0 0 | 1

_ts 0 -1 0 | O 0 1 -1 0 | O

=lo -1 0o o | 1 1 -1 1 0 | -1
-1 0 o o ] o Jlo o o o | 1 |

which shows that the two state space systems are, in fact, complete system
equivalent.

Hence, it may be concluded that a relationship exists between Zhang’s
method of linearisation and the linearisation based on Bosgra and Van der
Weiden’s algorithm. This relationship exists for systems with and without

decoupling zeros.

Example 3

Consider again the system

2(s+1) | s
P(s) = — —
1o
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Zhang’s method of linearisation {see example 2 section VL5) gives

s 0 0 0 | 0
-1 s 0" 0 | 1
0 -1 s 1 | 0
0O 0 -1 1 | 0
Lo 0o 0 -1 | o |

Vardulakis’s method of linearisation (see example 1 section V1.4) gives

r 8 -1 0
0 s+1 -1
0 0 s
0- 0 0
0 0 0

0

|
|
|
|
l
{

| -1 0
It can be seen that this can be deflated to
r -1 0

S

0 s+1 -1
0 0
0

o | mooo

\
I
|
l
|

o | ow

0
1a o

It will now be seen whether this system matrix and the one formed by
Zhang’s methO(;l are complete system equivalent.

‘The following relation holds:

000 1 -1 | 0 7[5 0 0 | 07
0 1 -1 1 | O |[{-1 s 0 0 | 1
- 1 0 0 0 |- -0 0 -1 s 1 | 0
0o 0 0 1 | 0 0 0 -1 1 | 0
Lo o o t | 1 JLo o -1 | 0]
s -1 0 0 | 0 770 0 1 0 | 0 7
0 s+1 -1 0 | 1 0 1 -1 0 | 0
o o s o0 | o 1 0 0 0 | o0
=lo o o 1 | 1 0 0 -1 1 | -1
-1 0 o ¢ | o dlo o o o | 1 |




which shows that the two state space systems are, in fact, complete system

equivalent.

Hence, it may be concluded that a relationship exists between Zhang's
method of linearisation, the linearisation by Vardulakis and also the linearisation
based on Bosgra and Van der Weiden’s algorithm. This relationship exists for

systems with and without decoupling zeros.

In this chapter, it has been seen how the three types of system matrix
reduction to singular system form are related. However, although an example
has been used to illustrate the relation of complete system equivalence, further
work needs to be done in the future to prove this result on a theoretical basis.

It has been noted that to produce strongly irreducible realisations for
singular systems it is preferable to use Zhang's method of linearisation. To
extend on the work in this thesis, a computerised version of Zhang’s method of

linearisation could be provided.
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CHAPTER VII

ON COMPUTING AN ALGORITHM WHICH
PERMITS THE REDUCTION OF A GENERAL
POLYNOMIAL MATRIX TO AN EQUIVALENT

MATRIX PENCIL FORM

VIIL.1 Introduction

Bosgra and Van der Weiden (1981) have given a procedure whereby a gen-
eral polynomial system matrix may be reduced to an equivalent generalised state
space form. The sense in which this is equivalent to the original system matrix
is that the reduced system exhibits identical system properties both at finite
and infinite frequencies.

In this chapter a computerised version of this algorithm is provided which
permits the reduction of a general polynomial matrix to a similarly equivalent
matrix pencil form (i.e. one which exhibits identical finite and infinite zero
structure). The key to this reduction involves an efficient method of selecting
a set of linearly independent rows and columns from a block Toeplitz matrix
II(E). It will be seen that a set of linearly independent rows is chosen using the
“natural row selection”. However, the “natural column selection” will not be
used to choose a set of linearly independent columns.

A number of examples are used to illustrate the formation of the equivalent
matrix pencil. By using the program by Demianczuk (1985), which computes
the infinite frequency structure of a given rational matrix from its Laurent ex-
pansion, the equivalent infinite zero property of the matrix pencil and the poly-

nomial matrix can be verified directly.
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VIL.2 The natural row and column selection -
Let P(s) be an mxl polynomial matrix which corresponds to the matrix
polynomial

P(s)= Py + Pis + Pys* + ... 4 Pys! (2.1)

Recall that the basis of the reduction method proposed by Bosgra and Van der
Weiden (1981) is the selection of a maximum number of linearly independent

rows and columns from the matrix II{E), defined by

_ P2 P’i R]
P, P 0

e a|” (2.2)
P, 0 0

In view of the probable large dimensions of II{E), an efficient method is
needed for the selection of the linearly independent rows and columns from the
matrfx II(E). Since fI (E) is composed of smaller block matrices (and is block
Toeplitz), it is easier to consider each of these smaller matrices rather than the
large matrix itself wlien selecting required rows and columns. The reason for
this is to save on computer storage space. It is not necessary to store the matrix
II{ E), but instéad store each of the submatrices Py, Pa, ..., B,

Consider starting from the last row in matrix F,. Select the lé.rgest element
from this row. This will be the pivot element. If all elements inthe row are
zero, move up to the next row, etc. The reason for choosing the largest element

s for stability reasons since dividing all elements in a row by the largest element
causes a smaller percentage error in the calculations than by dividing by, say,
the smallest element.

A muatrix F is now formed such that when pre-multiplied by P, will set a
“1” in the pivot position and zero all other elements in the row. In the program,

a matrix P is that formed by multiplying P, by F.
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Example 1

Consider a polynomial matrix P(s) with matrix polynomial

P(s}=Py+Pis+ Pys* + P3s®

where
2 2 2 27
4 2 1 4
=1y 111
2 1 1 2.
and
2 6 2 27
2 4 2 2
5= 1 311
1 2 1 1

Looking at the last row in matrix P, the pivot element is “”. Hence the matrix
Fis

1 {1 0 {
~1/2 12 -1/2 -1/2

0 0 1 0

0 0 0 1

i.e PaxF produces a “1” in the pivot position and zeros all other elements in

F=

the row:
1 3 -1 -1
¢ 2 0 0
P=PxF=1_119 30 —1/2 -1/
6 1 0 0

The “1” formed in the pivot position represents linear independence l.e.
row 4 and column 2 are linearly independent. It will be noted that the method
of row selection described here is the “natural row selection”. At the same
time this produces a linearly independent column. Hence, linearly independent
columns may be selected in this way. This method is better than performing
the “natural row selection”, transposing the matrix II(E} and then performing
another selection (“natural column selection”). The method described here is
more efficient in that both a set of linearly independent rows and columns from
a matrix ITI(E) may be selected at the same time, instead of being selected by

performing the selection process twice.
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Now select from matrix P the largest element. (in modulus) from the next
row up. If this pivot element lies in the same column as that already selected
for linear independence, then it may be ignored and the next largest element
in the row is chosen as the pivot element. The reason for this can be seen by

considering example 1 again.

Looking at row 3 of matrix P. the pivot element is “3/2” which is in the
same column as the “1” from the last row of P. Forming the matrix F' as above
using “3/2” as the pivot element and pre-multiplying by P above will change
the last row in P and hence will no longer give the linearly independent row
4. Therefore, although it is important to select the largest element as a pivot,
(for stability reasons described earlier), this does not apply when the largest
element lies in a column which has already been selected for linear independence.
Instead, the next largest element in the row is chosen as the pivot element. This
does ﬁot. change the Stability of the matrix since, using example 1, the linearly

independent column 2 has already been selected and now may be ignored.

Again a matrix F is formed which when pre-muitiplied by P will set a “17

in the pivot position and zero all other elemeﬁts in the row. This process of
selecting linearly independent rows (and columns) continues until all rows in
P, have been examined for linear independence. The row and column numbers

corresponding to linear independence in the submatrix P, are nowstored.

In the program, once a linearly independent column has been selected it is
_ignored by setting other elements in-the column to zero. Consider example 1

again. Continuing the “natural row selection”, the matrix F now formed is

-2 0 -1 -1
6 1 0 0
) F= 6 0 1 ()
- 0 0 0 1

remembering that elements in column 2, rows 1. 2,3 of matrix P are set to zero
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because column 2 is linearly independent, giving

2
PxF = 2
0

=0 O o
oo O
e R vk o I e |

Row 3 and column 1 are now linearly independent and so the final matrix P

formed is

6 ¢ 0 0
60 000
10 0 @
01 04

: All'linea.rly independent rows and columns have now been selected from the sub-
matrix Ps. The row and column numbers corresponding to linear independence
in the submatrix P; (i.e. rows 3,4 and columns 1,2) are now stored.

In the program, a matrix F'1 is formed (from the F' matrices) which when
pre-multiplied by P, will produce all linearly independent rows and columns in

P,. Considering example 1, the matrix F1 is

-1 0 0 0 1f~2 0 -1 -1
e =12 12 -2 —yzflo 10 o
=l 0 0 1 0 0 0 1 0

B 1 0 0 0 1

-9 0 -1 -1
11 o120 0
=le 0o 1 0

0 0 o 1

Multiplying P3 by F1 gives

26 2 277r-2 0 -1 -1
2422001 12 0 o0

PexFl=1, ¢ 9 3ilo 0 1 o
12 1 13Lo o0 o 1
2 3 0 0
o 2 0o
=11 32 0 0
001 0 0

Hence. Ps has linearly independent rows 3,4 and linearly independent columns

1,2 (remember that a “1” represents linear independence).
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Consider now the next block up in II{¥) l.e. submatrix P,_; which in the
program is called £1. P1 is multiplied by F1 {found previously) and the result-
ing matrix is called P. P now has elements in certain rows and columns set to
zero. These rows and columns are those which correspond to linear independence
in the submatrix F,;. These are set to zero because if, say, rows hy, he,..., Ak
are selected from P, then these rows will always be selected when considering
P, 1,...,Ps. Hence, such rows and columns may be ignored by setting them
to zero. (It will be seen later that it is important to multiply P1 by F'1 firstly
and then zero the elements from particular rows and coitlmns (i.e. the rows and
columns that correspond to linear independence in Fy), rather than performing
the operations the other way round.) With the resulting matrix, the whole pro-
cess of selecting a pivot element starting from the bottom row continues until all
rows in Py have been examined for linear independence. The row and column
numbers corresponding to any linearly independent rows and columns frorﬁ this

resulting matrix are now stored. Consider again example 1. The matrix II(EF)

(defined by (2.2)) is

r2 02 2 2 | 2 6 2 27
4 2 1 4 | 2 4 2 2
1 1 1 1 | 1 3 1 1
2 1 1 2 | 1 2 1 1
ney=|— — — — — — — — — (2.3)
) 2 6 2 2 | 0 0 0 0
2 4 2 2 | 0 0 ¢ 0|
1 3 1 1 } 0 0 0 0
Lt 2 1 1 | 06 0 0 0.
Consider now the submatrix . -
2 2 2 2 B
4 2 1 4
B=1i 111
2 1 1 2
This is now muitiplied by F1 to give
- 2 2 2 2 -2 0 -1 =1
14 2 1 4 1 12 0 0
PxFl=1y v 7 11]lo o0 1 o
1 1 2 0 0 0 1
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-2 1 0 0
6 1 =30
-1 1/2 0 0D
-3 1/2 -1 0

P; had linearly independent rows 3,4 and linearly independent columns 1,2, so

setting elements from those rows and columns to zero in the above matrix gives

00 0 O
6 0 -3 0
60 0 0 0
0 0 40 ¢

With this resulting matrix, the process of selecting linearly independent rows

and columns continues giving the matrix

0

oo Qo

0 0
0 1 0
0 0 o
0 0 0
Row 2 and column 3 are now stored since they have now been selected for linear
independence.

Hence, the matrix II(E) has 5 linearly independent rows i.e. rows 2,3,4,7,8.

Also II(E) has 5 linearly independent columns i.e. columns 1,2,3,5,86.

Tt will now be seen that it is important to multiply Pl by F1 firstly and
then zero the elements from particular rows and columns (i.e. the rows and
columns that correspond to linear independence in F,), rather than performing
the operations the other way round. Consider example 1. From Fa, rows 3,4
and columns 1,2 are linearly independent. Now suppose that in matrix P, the

elements in these rows and columns are set to zero firstly i.e. suppose P; becomes

00 2 2

0 0 1 4

=14 0 0 0

0 0 0 0

Multiplying now by F1 gives

0 0 2 2772 0 =1 -1
{00 1 4 1 1/2 ¢ 0
PxFl=14s 49 po0llo 0 1 o
00 0 0 0 1




00 2 2
oo 14
T 00 00

00 0 0

|
\
\ Suppose now that the process of selecting linearly independent rows and columns
| continues. It can be seen that 2 further linearly independent rows (and columns)
i.e. rows 1,2 will be selected from the matrix above. However, this is incorrect.
It can be ;een from II{E) (see (2.3)) that rows 1 and 3 are linearly dependent
and row 3 has already been selected. Hence. P1 needs to be multiplied by F1
firstly before elements from the rows and columns are zeroed.

The selectibn process now continues until all submatrices F, to P, have

been examined for linear independence.
VI1.3 Forming the matrix pencil

A method is needed such that only linearly independent rows and columns
from II(E) are printed in the program. All row and column numbers of linearly
independent rows and columns in each submatrix have already been noted. Con-
sider the submatrix 7. All linearly independent rows and columns in P, are
those found in P, plus additional linearly indep.endent rows and columns found

inP_'i,...,Pg:

Consider example 1 section VIL2.

B =|p -
202 2 2 {2 6 2 27
~ 4 2 1 4 1 2 4 2 2
1 1 1 1t |} 1 3 1 1
201 1 2 ¢ 1 2 1 1
- - - - - - =~ — (3.1)
2 6 2 2 | 0 0 0 0
2 4 2 2 L 0 0 0 0
1 3 1 1 | 0 0 0 0
L1 2 1 1 | 0 0 0 0.

Recall that in P; rows 3 and 4 are linearly independent and in P, an additional

row, row 2, is linearly independent. Al the linearly independent rows in P» are
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those found in P; i.e. rows 3,4 and the additional row in P, i.e. row 2. Hence,
rows 2,3,4 are stored. Consider the submatrix F3. Rows 3 and 4 are linearly
independent. To correspond to the appropriate row numbers from II(E), to each
row number is added m = 4 where 1 is the number of rows in each submatrix
Py, Py ie. rows 7 and 8 are now stored. Hence, the linearly independent rows
in II(E) are rows 2,3,4,7,8.

In the program, there is a section of code which converts the row {and
column) numbers of the linearly independent rows (and columns) in each sub-
matrix to the actual row (and column) numbers that correspond to II(E). These
row (resp. column) numbers are now stored in a matrix RR (resp. CC) whose
dimension depends on the number of linearly independent rows (resp. columns).
Hence, all required rows and columns can be printed.

Let the positive sets of integers I = {it i2,..., )} (resp. J = {71, 32,
v duE )y p(E) 2 rank [I(E), define a row (resp. column) selection also de-
noted I (resp. J) from II(E) of p(E) linearly independent rows (resp. columns).
Let Pg (resp. Pa) be that submatrix of II{E) (resp. II{A)) formed from rows
of the selection I and columns of the selection J. Let Pp be the submatrix
of II(B) formed from the rows of the selection I, and P be the submatrix of
[I(C) formed from the columns of the selection J. Pg, P4, Pp, Pc may now

be assembled in the following form to give the required matrix pencil Pr(s):

_ 1 Pe—5sPa Pps
PF(S)-‘[ —Pes Pls-f-Pg}

or
P 0 —-P4 Pp
Pr(s) = [ 0 Po] + [—Pc P, ] s (3.2)

which is how the program gives the matrix pencil.

VIL.4 Examples using the algorithm

This section illustrates a number of examples where it can be seen thaf

a polynomial matrix P(s) and its associated matrix pencil form Pp(s) have
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identical finite and infinite zeros. Firstly, the program “described in this chapter
is used to produce the matrix pencil equivalent of the general polynomial matrix.
Then by using the program by Demiancziuk (1985), which computes the infinite
frequency structure of a given rational matrix from its Laurent expansion, the
zeros at infinity of both forms are produced, thus confirming that the infinite
zero structures are identical. Also, an example is performed by hand to see that
the polynomial matrix P(s) and the matrix pencil Pp(s} constructed from P(s)

do have identical finite and infinite zero structures.

Example 1 _

. , ]
s 41 s
P(S) = [“ (. : }

The program which reduces a general polynomial matrix to an equivalent

matrix pencil form gives the following:

Enter ¢, the highest power of s
4

Enter number of rows of .P
2

Enter munber of columns of P

2
Enter P .0
1 0
00 -

Enter P 1.0 -

¢ G
01

Enter P 2.0

- 1 0
t 0

Enter P 3.0
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0 0

1

0 0
00 1.00
000 .00

Enter number of Li. rows
1

Eunter row nmunbers of Li. rows
1

Euter column numbers of Li. columns
2

£H0 .00
000 .00

Enter munber of Li. rows

b
O 0 1 0 O
g1 6 00
1 00 00
0010

0 6 0 6 0

The s coetlicient is :

n -1 0 1 0
-1 0 0 0 0
a o 0 0 1
o 0 -1 0 0
0 0 0 0 1

Hence, the matrix pencil has been formed. Now, Demianczuk’s program gives,
for both P(s) and its linearisation, a zero at infinity of degree 1 ie. both the

general polynomial matrix and its associated matrix pencil form have ilentical

infinite zero structure.

\

|

|

|

|

|

|

Enter P 4.0
139 |
|

|

|

|
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The example is now performed by hand to see that the polynomial ma-
trix P(s) and its associéted matrix pencil form Pr(s) have identical finite zero
structure.

It is necessary to produce the Smith forms of P(s) and Pg(s). Firstly

consider the matrix

O

Now perform elementary row and column operations on P(s):

2 =
[82+1 54} new COl. A ‘ [32+1 82]

0. $ (s*xcol. 1) — (col. 2) 0 —¢
new col. 2 = [52+1 1J
(col. 1) — (col. 2) 0
interchange { 1§24 1]
col. 1 and col. 2 § 0
new row 2 = 1 41
L]0 s(s2+1)

(sxrow 1) — (row 2)

- new col. 2 = \ [1 0 }
2
(col. 2) — ((s+1) x col. 1) L0 ST+ 1)
Hence, P(s) has Smith form

S(F) = [é 3(320+ 1)]

Now consider the matrix

0 -s 1 s 0
-s 1 0 0 0
Pe{s)=11 0 0 0 s
0 0 -s 1 0
0 0 0 0 s

which is the matrix pencil constructed from P(s). Perform elementary row and

column operations on Pr(s):

1 - 0 s O
- interchange 0 1 —-s 00
Pr(s) -0 0 1 0 s
col. 1 and col. 3 -s 0 0 1 0
0 0 0 0 s
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Hence, Pr(s) has-Smith form

"1 0 00 0
0100 0
S(Pr)=1|0 0 1 0O 0
00 01 0
L0 0 0 0 s(s2+1)
[0
- 10 S(P)

i.e. the polynomial matrix P(s) and its associated matrix pencil form Pg(s)

have identical finite zero structure.

It may also be shown that P(s) has Smith McMillan form at infinity

o s‘i 0
§7(P) = { Q 'l/s]
i.e. P(s) has an infinite zero of degree 1 and an infinite pole of degree 4. Also

it may be shown that Pg(s) has Smith McMillan form at infinity

s 00 0 O
0 s 00 O
- SOO(PF)ﬂ 0 0 s O 0
0 00 s O
0 0 0 0 1/s

i.e. Pp(s) has an infinite zero of degree 1, and 4 infinite poles of degree 1. Hence
it may be seen that the polynomial matrix P(s) and its associated matrix pencil

form Pr(s) have identical infinite zero structure. —

It is interesting to note that the Toeplitz matrix at infinity is built up by
“including terms corresponding to decr;aasing pom;rs in s. Therefore, when using
the program by Demianczuk, it is important to enter the lowest s power as a
number low enough to include all infinite zeros. For the examples considered,
in the first instance, the lowest power “0” is entered, producing all poles at
infinity. Then the McMillan degree may be calculated from this and the lowest

power is then entered as the negative of the McMillan degree, hence producing

all zeros at infinity. The following illustrates the importance of entering in
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Demianczuk’s programn an s power lower than the lowest s power shown in the

example. Consider example 1 section I[.5.

[s9 1
T(sy=|-1 0 0
| —s -1 0

(1 0 0 01 0 0 0 0 0O 0 1

=40 0 0js*+(0 0 0ols*2+] 0 0 0ls+|-1 0 0O

00 0 0 0 0 -1 0 0 0 -1 0

= G3s° + Gos® + Gysl + Gos” + G_s~t+G_ys™?

where ' - o )
0 0 O

G_,=|0 0 0

0 0 0]

and .- -
g 0 0

G_,=10 0 0

0 0 0]

The lowest s power here is “0”. It can be seen from example 1 section IL5 that
the Toeplitz matrix TP° has been constructed using the matrix Gy and the
Toeplitz matrix T5° Has been constructed using the matrices Gy and G_3 i.e.
to produce both the infinite zeros the lowest s power needs to be enfered as
“—~2" and not “k)”. Hence. this example illustrates the importance of entering in
Demianczuk’s program the lowest s power as a number low enough to give the

infinite zeros.
Example 2

| [ 1 0
: P("’)‘L?+1 1]

The program which reduces a general polynomial matrix to an equivalent

matrix pencil form gives the following:

Enter ¢, the highest power of s
2
Enter munber of rows of P
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2
Enter munber of columns of P
2

Euter £ .0

10
11

Enter £ 1.0

0 O
G

Enter P 2.0

0 0
1 0

00 .00
1.00 .00

Enter number of 1.i. rows
1
Enter row numbers of Li. rows

2

Enter column munbers of Li. columns

1
(1 0 0
01 0
01

The & coefficient is :

0D o100
0 00
1 0 0

Hence, the matrix pencil has been formed. Now, Demianczuk’s program gives,
for both P(s) and its linearisation, a zero at infinity of degree 2 ie. both the

general polynomial matrix and its associated matrix pencil form have identical

infinite zero structure.
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|
' Example 3

P41 0 8
P(sy=1 .0 s 52
20 s

The program which reduces a general polynomial matrix to an equivalent

matrix pencil form gives the following:

~ Enter ¢, the highest power of s
3
Enter number of rows of P
3

Enter number of columns of P

3
Enter P .0
1000

0.0 0

00 0

- Euter P 1.0

0 0 0
0 1 0
0 0 1

Enter P 2.0)

0 0 1 —
0 0
1 0 0

Enter FP 3.0 ° -

10 0 )
00 0
00 0

1.00 .00 .00
000 .00 .00
000 .00 .00

Eunter numnher of Li. rows

1




Enter row munbers of Li. rows
1
Enter columm nuwnbers of L1 columns

1

000 .00 .00
00 .00 1.00
000 .00 .00

Enter nuunber of Li. rows
1
Enter row numbers of Li. rows
2
Enter coluinn munbers of Li. columns
3
|‘1 O 0 0 0 07
1 01 0 0 0
g 1 0 0 0 0
0 0 0 1 0 0

0 00 0 0 0
000 0 0 0 0l

The s coefficient is

g0 0 0 0 17
0 -1 0 0 01
0 o 0 1 090
-1 0 =1 0 00
-1 0 0 0 1 0

L0 -1 -0 0 0 14

Hence, the matrix pencil has been formed. Now. Demianczuk’s program gives,
for both P(s) and its linearisation, a zero at infinity of degree 3 ie. both the
general polynomial natrix and its associated wmatrix pencil form have identical

infinite zero structure.

Example 4
T |
Plsy=|-1 0 0
-5 -1 0




The prograin which reduces a general polynomial matrix to an equivalent
& : ) i

matrix pencil form gives the following:

Enter ¢, the highest power of s
3
Enter number of rows of P
3
Enter munber of columns of P -
-3

Enter P .0

() 0 1
-1 O 0
0O =1 0
Fnter P 1.0

= 0 0 0
0 0 0
-1 0 0

Enter P 2.0

01 0
0 0 0
0o 00

Enter P 3.0

- 1 00
0 0 0
0o 0 0

1.00 .00 .00
- - 000 000 .00
000 .00 .00

Enter munber of Li. rows
1
Enter row munbers of L. rows
1
Enter column munbers of L1, columns
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000 .00 .00
000 .00 .00
000 .00 .00

Enter number of Li. rows

(}

1 0 0 0 0
0 0 0 1
o0 -1 0 0
oo 0o -1 0

Now, Demianczuk’s program gives, for both P(s) and its linearisation, a zero
at infinity of degree 1 and a zero at infinity of degree 2 i.e. both forms have
identical infinite zero structure. (It was seen earlier in example 2 section 1.4

and example 1 section IL5 that P(s) had one infinite zero of degree 1 and one

infinite zero of degree 2.)

Example 5
0821
Psy=11 0 0
10

The program which reduces a general polynomial matrix to an equivalent

matrix pencil form gives the following:

Euter ¢, the highest power of s
5

Enter munber of rtows of P
3

Enter munber of columns of P
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Enter P 2.0

Enter P 3.0

[ e R e
[ R o B v
o oo

Enter P 4.0

|
jev Rl we B an]
fan B e
o B R e

Enter P 5.0

fon B N S
S oo
o OO

1.00
.00
.00

00 .00
00 .00
.00 .00

Enter number of Li. rows

1

Enter row numbers of l.i. rows

1

Enter column numbers of Li. columns

1
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000 .00 .00
000 .00 .00
000 .00 .00

Enter number

of Li. rows

(

ro 0 0 1 0 0 07

0o 010 0 00

g 1 0 0 0 00

1 00 0 0 0 0

Hn 0o 6 0 0 01
000601 00

Lo 00 0 0 1 0l

The s coetficient is

" () 0 =1 g 0 1 (7
0 -1 Q O 0 0 Q
-1 0 0 O 0 0 0
0 n 0 0 1 0 0
4] 0 n =1 000
( ] (1 6 00 0
Lo -1 0 0 0 0 0u

Now, Demianczuk’s program gives, for both P(s) and its linearisation, a zero
at infinity of degree 2 and a zero at infinity of degree 3 i.e. both forms have

jidentical infinite zero structure.

Example 6
G$on st os
_ 71 81
PO=17 4 ¢ o
0 100

The program which reduces a general polynomial matrix to an equivalent

matrix peneil form gives the following:

Enter ¢, the highest power of s
8

Enter nuinber of rows of P
4

Enter number of columns of P
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P 0

Enter

o - O

oo o

o~ o

o o

o

L |

<

o

Enter P 1.0

— O OO

u e I wn I o

o O C o

oo oo

P 20

Enter

ocCcCc oo
co oo
oD

o
o B e I e I

Do oo
oo o
codoo

oo oo

Enter P 3.0

P 40

Enter

cCooCo
- o oc
'cooc oo

oo o

P 50

Enter

oo O C
o oo
oo C o

oo oo

Enter P 6.0

o<

oo

oo

o o

0 0

0

0 0 0

0
Enter P 7.0

0

0

0

0
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Enter

0
0
0

0
(
0
)

1.00

.00
.00
.00

P 3.0

0
f)
0
Y

.00
00
00
.00

00
00
00
00

Enter munber of Li. rows

1

A0
00
(0
{30

Enter row numnbers of 1.1, rows

1

Enter colunn numbers of LI columns

1

00
00
00
.0

Enter number

0

0
0
0
0
0
0
1
0
0
{
L O

00
.0
(0
A0

(0
00
00
00

of L1 rows

0
0

0
0
0
0
{
0
0
0

00
3
10
L0

0
0
(
0
0

0
0
0

0

0

0
0
0
0

0

0
0




- Enter munber of colunns of P

r 0 0 0 (J g -1 0 -6 0 0 07
{) 0 {) 0 ~1 0 0O 0 0 6 0
Q) 0 0 -1 0 0 0 0 01 ¢
) 0 =1 0 0 0 0o 0 0 0 0
0 =1 0 0 0 0 0o 0 000
-1 0 ) 0 {) 0 0 0 0 0 0
0 { 0 0 Y 0 0 1 0 00
¢ b {1 (1 0 0 -1 0 0 01
0 0 ( (1 O -1 0 0000
0 0 0 ( 0 (} 0 ¢ 0 0 0
L 0 0 -1 0 0 { g o 0 6 0l

Now, Demianczuk’s program gives, for both P(s) and its linearisation, a zero
at infinity of degree 3 and a zero-at infinity of degree 4 i.e. both forms have

identical infinite zero structure.

Example 7
PRI R S
53 s 1 0
& I 0 0
41 52 1 0

P(s) =

The program which reduces a general polynomial matrix to an equivalent

matrix pencil form gives the following:

"Enter g, the highest power of s
6
Enter nuinber of rows of P

4

4
Enter P .0
0O 0 0 1
0O 0 1 0
- 0O 1 0 0
1 0 1 0

Euter P 1.0




Q= O o
o v B B
oo oo
oo O O

Enter P 2.0

(a3 e B o BN e}
=S = Oo
o It o B e Y
o oo

Enter P 3.0

=D e ped
oo O D
fes Bl an i an B
oo oo

Enter P 4.0

oo oo
SO oo
o oS O
e e Y e B

Enter P 5.0

o B co Y e S e
o it an B e Y
oo
SO O @

Enter P 8.0

[ome B B e I
(oI eI e 2 e
o o o o

1. .00
.00
.00 .00

00 .00

=
o
S8 ocooo

.00
.00
.00
.00

Enter number of L.i. rows

1

.00
00
00
.00

Enter row numbers of Li. rows

1

Enter column numbers of i, columns
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000 .00 .00 .00
00 .00 .00 .00
000 .00 .00 .00
000 .00 .00 .00

Enter number of Li. rows

(}

001 001 00 0 07 :
1 00 1 00000
00100000 0 |
01 0000000
1000000 00
0000000 01
000000010
000 000100
00 0 0 0 1 0 1 0d

The s coefficient is

r—1 0 0o =1 0 0 0 0 07
-1 0 0 -1 0 0 1 0 1 0
0 -1 0 0 0 0 0 0 0
-1 0 0 () 0 01 00
() 0 0 () 0 1 0 0 0
-1 0 =1 G ¢ -1 0 0 0 0 :
0 =1 0 () 0- 0 0 0 0 -
0 () 0 () 0 1.0 0 0
L0 -1 0 () ¢ 0o 0 0 0l

Now, Demianczuk’s programn gives, for both P(s) and its linearisation, a zero
at infinity with multiplicity 3 and degrees 1,2.3 ie. both forms have identical — _

infinite zero structure,

In this section a number of examples have heen- nsed to tlustrate the for-
mation of the equivalent matrix pencil of & general polynomial matrix. Then,
by using Demianczuk’s programn (1985). which computes the infinite frequency
structure of a given rational matrix fromn its Laurent expansion, the equivalent

infinite zero property of the matrix pencil and the polynomial matrix has been

verified directly.
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VIII

CONCLUSIONS

In this thesis, the Hayton et al. (1989) algorithm which produces a matrix
pencil equivalent of a given polynomial matrix has been coﬁiputerised. The
sense in which this is equivalent has been described from two points of view.
Firstly, it has been seen that the reduction algorithm is a full system equivalence
transformation. Secondly, the polynomial matrix and the associated matrix
pencﬂ have identical finite and infinite zero structures.

The computerised algorithm has been tested by a number of examples to
see that the linearised form produced does have the same finite and infinite zero
structure as the given polynomial matrix. Here, Demianczuk’s program (1985},
which- computes the infinite frequency structure of a given rational matrix from
its Laurent expansion, has been used to produce the infinite zeros of both the
original polynomial matrix and its associated matrix pencil form, and it has been
seen that the infinite frequency property has,b'een preserved. An example has
been performed by hand to see that the finite frequency property is preserved. .

Three methods of system matrix reduction to linear polynomial form have
been described. Firstly discussed is the Hayton et al. (1989) algorithm, and
it has been seeﬁ how this is based on the Bosgra and Van der Weiden (1981)
reduction procedure whereby a general polynomial system matrix may be re-
“duced to an equivalent generalised state space form. Another method discussed
is the reduction of a polynomial matrix of a linear multivariable system to gen-
eralised state space forrp proposed by Vardulakis (1991). The final reduction
is the linearisation described by Zhang (1989) which produces a strongly irre-
dueible realisation for singular systems. These three types of linearisations have
beeﬁ compared via an example. It has been seen using the example that all

‘three types of linearisation are, in fact, related by complete system equivalence.
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However, in the future, further work needs to be done to prove this result on a
theoretical basis. Also, it has been seen that to produce an irreducible singular
system Zhang’s method of linearisation is preferable to the other two methods.
To extend on the work in this thesis, a computerised version of Zhang’s method

of linearisation could be provided.
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APPENDIX



[ ol

AU

Program which reduces a general polynomial matrix to an equivalent matrix pencil

form.

double precision P(10,10),P0(10,10),P1(10,10),P2{(10,10)

double precision PP(0:10,10,10)

double precision E(50,50),A(50,50),B(50,50),C(50,50)

double precision F(10,10},F1(10,10),F2(10,10)
double precision FF1(30,30),FF2(30,30)
double precision RR{20),CC(20)
real v,s
integer m,1,q,k,r(2:10),aa(2:10,10),bb(2:10,10)
integer w,x,y
wal(
x=10
y=10
print*,' Enter q,the highest power of s !
read*, q
print*,' Enter number of rows of P '
read*, m
print*,*' Enter number of columns of P '
read*, 1l
do 1 h=0,qg
print*, ' !
print*,! Enter P ',h
read*, ({ PP(h,1,3),3=1,1),i=1,m)
continue
do 2 h=qg+1,10
do 3 i=1,m
do ¢4 j=1,1
PP(h,1i,3)=0
centinue
continue
continue
do 5 ki=0,qg-2
do 6 i=(kl*m)+1, (k1l+1)*m
do 7 n=0,qg-2
do 8 j=(n*1)+1, (n+1l}*1
E(ifj)=PP(n+kl+2ri“(kl*m)fj_(n*l))
continue
continue
continue
continue
do 9 k1=0,q9-3
do 10 i=(k1*m)+1, (k1+1) *m
do 11 n=0,q-3
do 12 j=(n*1}+1, (n+l)*1
A(i, §)=PP{n+kl+3,i-(kl*m), j—-{n*Ll))
continue
continue
continue
continue
do 13 i=((g-2)*m}+1, (gq-1)*m
do 14 j=1, (g~1)*1
A(i,j)=0
continue
continue ‘
de 15 i=1, (g~1)*
do 16 3=((g-2)*1)+1, {(g-1)*1
A(irj)=0
continue
continue
do 17 kl1=0,q-2
do 18 i={kl*m)+1, (kl1+1l)*m
dO 19 j=1rl
B(i, J)=PP(k1+2,i-(kl*m}, j)



19 continue
ﬁS continue
7 continue
1 do 20 i=1,m
‘ do 21 n=0,g-2
’ do 22 j=(n*1l)+1, (n+l)*1 -
C(i,J)=PP(n+2, i,3-{(n*1))
2 continue
1 continue
gO continue
do 23 h=g,2,-1
do 24 i=1l,m
do 25 j=1,1
P(i, j)=‘PP(h,i, 3)
P 5 ~ continue
4 continue
100 do 26 il=m,1,-1
do 27 12=1,1
if ( P{(il,i2).ne.0 ) then
v=abs (P (il,1i2))~
s=i2
do 28 i3=i2+1,1 )
if ( abs(P(il,1i3}}.gt.v } then
v=abs {P{il,13})
s=i3
endif
2 8 continue
F(s,s)=1/P{iil, s)
if { s.ge.2 ) then
do 29 j=1,s-1
F(s,3)=-P(il,3)/P(il,s)

L continue ‘
do 30 i=1,s-1
- F(i,i)=1
0 continue . .

do 31 i=1,s-1
do 32 j=i+1,1

F(ilj)=0
2 continue
1 continue
- endif

if ( s.ge.3 ) then -
do 33 j=1,s-2
do 34 i=3j+1,3-1

F(i,j3)=0
4 continue ) _
3 , - continue
endif

if ( s.le.{l1-1}) then -
do 35 J=s+1,1
F(s,j)=-P(il, 3)/P(il,s)

5 continue
do 36 i=s+1,1
F{i,i)=1

6 continue

— do 37 i=s+1,1
deo 38 j=1,i-1

F(irj)=0
8 continue
7 continue
endif

if ( s.le.{1-2)) then




10
3G

do 39 i=s+1,1-1
do 40 Z=i+1,1
F(i, j)=0
continue
continue
endif
if ( i1l.1=.k ) then
ifail=0
call fOlckf(f2,£fl,f,w,%,v,2,1,1,1fail)
do 41 i=1,m
de 42 3=1,1
Fl(i,J)=F2(1, j)
continue
continue
goto 200
endif
do 43 i=1,m
do 44 :=1,1
F1(i,j)=F(i,3)
continue
continue
k=il
ifail=0
call £0lckf(pO,p,£fl,w,x,y,2,1,1,ifail}
goto 201
ifail=0
call fO0lckf(pl,p,f,w,%,v,2,1,1,ifail)
do 45 i=1,m
do 46 i=1,1
P{i, 5)=PO(1i,
continue
continue
else
goto 27
endif
do 47 i=1,i1-1
P(if5)=0
continue
goto 26
continue
continue
print*, ' !
do 48 i=1l,m
print'(20£F9.2) ', (P(i, 3),3=1,1)
continue
print*,* :
print*, ' Enter number of l1.i. rows '
read*,r{h)
if ( z{(h).eq.Q0 } then
goto 300
endif
print*, ' Enter row numbers of l.i. rows
read*, { aa(h,i),i=1,c(h))
print*, ' Enter column numbers of 1.i. colums !
read*, ( bb(h,1),i=1,z(h})
if ( h.eqg.2 } then
ii1=0
do 49 n=0,g-2 .
do 50 hl=n+2,q
do 51 i=1,r(hl}
1il=1i1+41
RR(iil)=aa(hl, i)+ (n*m)

T




wm o

[§ 1)

WO o

continue
continue
continue
1i2=0
do 52 ni={,q-2
do 53 h2=nl+2,q -
do 54 il=1,r(h2)
1312=112+1
CC(ii2)=bb(h2,11}+(nl*1)
continue
continue
continue
do 55 i=1,1iil
do 56 3=1,ii2
- FF1 (i, j)=E(RR{i},CC(j})
continue
centinue
do 57 i=ii1+1,iil+m
do 58 j=1i2+1,1i2+1
FF1(i,j)=PP(0,1-1i1, j-1i2)
continue
continue
do 59 i=1,iil
do 60 j=ii2+1,iiZ2+1
FF1(i,3)=0
continue
continue
do 61 i=1iil+l,iil+m
do 62 j=1,iiz2
FF1{i, j)=0
continue
continue
do 63 i=1,iil
do 64 j=1,ii2 -
FF2(i,j)=-A(RR{i},CC(3))
continue
continue
do 65 i=iil+1,iil+m
do 66 j=1iiZ2+1,ii2+l
FF2 (i, j)=P? (1,1i-1i1, j-1i2)
continue
continue ~
do 67 i=1,1iil
do 68 j=ii2+1,ii2+l
FFr2 (i, jy=B{RR({1),]j-1i2)}
continue
continue
do 69 i=iil+1,iil+m
do 70 j=1,ii2
FF2 (i, j)y=-C{i-iil,CC(}))
continue
centinue
print*,' !
do 71 i=1,iil+m
print' (20I13)"', ( FF1(i,]},j=1,1i2+1)
contimue
print*, '
print*,' The s coefficient is
print*,' °*
do 72 i=1,iil+m
print*(2013)"', ( FF2(i,3),J=1,1ii2+1
continue ‘



stop
elseif { h.eq.q } then
goto 400
else
| goto 73

]

endif
3 centinue
100 do 73 h=g-1,2,-1
do 74 i=1,m
do 75 j=1,1
Pi(i, 3)=PP(h,i, )
f 5 continue
[ 4 continue
ifail=0
call fQlckf(p2,pl,fl,w,x,y,2,1,1,ifail)
do 76 1=1,m
do 77 3=1,1
P{i,3)=P2(1,3)
/7 continue i
fG continue
do 78 hl=h+l,qg
do 79 i=1,r{hl}

do 80 j=1,1
P{aathl,i}, ) =0
FO continue
do 81 ii=l,m
P{il,bb{hl,i})=0
1 continue
9 continue
L8 continue
goto 100
3 continue
stop
end




Demianczuk’s program which computes the infinite frequency structure of a
given rational matrix from its Laurent expansion.

integer row,col,hi,lo,ro(=30:30)
double precision d(30,30,-30:30),dsq(30,30,-30: 30) dum {30, 30)
double precision pt(30,30),9(30,30),qt(30,30),2a(30,30)
double precision sv{30),work(130) i
print*, 'The transfer function matrix G(s) has an expansion '
print*, ‘at infinity of the form:'
print*,’ G{s)=D{1l)s**) + D{l=-1)s**1-1 + ,........ !
print*,' ... + D{0) + D(-1)ys**=1 + ..,.... !
print*, 'Enter dimensions of the matrix G(s)'
print*,'-no of rows followed by no. of columns'’
read*, row,col
print*, 'What is the normal rank of G(s)?'
read *,norank
print*, '"What is the highest power?'
read#*,hi
print*, "What is. the lowest power?'
read*, lo
if{le.gt.hi)then -
print*, 'The lowest power you have given is greater than'
print*, ‘the highest power.Please re-enter:
goto 1 ’
endif
if{row.gt.col)then
min=col
else
min=row
endif
lwork=(3*min) +(min**2} ~
call one({row,col,hi,lo,ncrank, lwork,min,ro,d,dsq,dum, sv,pt,qg, qt,

+ Work, aa' -30,1 30' 30, 130)

stop
_end
" subroutine one(r,c,u,l,norank lwork,min, ro,d,dsq, dum, sv,pt,q, qt, _

+ work,aa,minl,maxu, maxdim,maxlw)

integer r,c,u,diff,rank,rp,rdif,ro(~30:30)

double precision d(r,c,l:u),dsql(r,c,-30:u),dum(r,c},sv{min)}
double precision pt(min,c),qg(r,min),qt{min,r),work (lwork)
double precision z(l},dmin(30,30,-30:30),dplus(30,30,-30:30)

- double precision aa(min,¢)

J=u .
print*, 'Enter the elements of the matrix which corresponds to' -
print*, 'the highest power,row by row'
read*, ( (d(i,k,3) . k=1,¢c},i=1,1)
if(u.eq.l)goto 41
jprev=j
print*, 'Enter the next power (descenalng) in the Laurent series'
read*, j - :
if{j.ge.jprev)then
print*, 'This pewer is higher than the previocus one.'’
print*, 'Please re-enter:'
goto 31
endif )
if(j.lt.l)then
print*, 'This power is lower than the lowest power'
print*, 'Please re-enter:'
geto 31
endif
diff=jprev-7j
if(diff.gt.1l)then
jmin=jprev-1
Jpls=3+1
do 40 n=jmin, jpls, -1




do 50 i=1,r

do 60 k=1,c
| d(i,k,n}=0.0
50 continue
50 continue
ﬁO continue

endif
‘ print*, 'Enter the elements of the matrix which corresponds’
‘ print*,'to this power,row by row'

read*, ((d(i,k, ]}, k=1,c},i=1,r)

if{j.gt.l)goto 30

L 11=1-1
1 do 70 i=1,r
’ do 80 k=1,c

do 85 n=u,l,-1
dsg(i,k,n}=d(i,k,n}
5 continue
do 87 m=11,-30,-1
| dSq(irkim)=OoO
7 . continue
0 continue
0 centinue
J=u
00 do 90 i=1,r
do 95 k=1,c
dum({i, k) =dsqg(i,k, 3}
gS continue
0 continue
ifail=0
call £02wcf(xr,c,min,dum, r,q,z,sv,pt,min,work,lwork,ifail)
rank=0
do 25 i=1,min
if(sv(i).gt.0.0000001) rank=rank+l
5 continue
ro{j)=rank
rp=rank+1l
rdif=r-rank
"mindif=min-rank
do 110 i=1,min
do 120 k=1,r
gt (i, k)=q(k,i)
}20 continue
TlO centinue
do 130 k=j,-30,-1
do 140 i=1,r
do 150 n=1,c
dum{i,n)=dsqg(i,n,k)

50 continue
40 continue
ifail=0

call £01ckf (aa,qgt,dun,min,c,r,z,1,1,1ifail)
call next(rank,rp,aa,min,c,rdif,dsq,r,1,u, j k,mindif, dmin, dplus,
+ 30,-~30,30)
30 continue
if(j.eq.-30)then
print*, '"More terms are required in the expansion'
return
endif
if{(j.gt.l).or.((j.ge.l).and. (ro(J) .lt.norank)))then
J=3-1
goto 100
endif
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print*,' '
ipel=0
if{u.le.0)then )
print*, 'There is no pole at infinity'
gotoe 108
endif -
J=u
if{ro(]j) .gt.0) then
print*, 'There is a pole at infinity of order',]
ipol=l
endif
last=rec(3)
j=3-1 -
if{({j.eq.0) .and. {ipol.eq.l))goto 108
if{(j.eq.0) .and. (ipel.eq.0))then
print*, 'There is no pole at infinity'’
print*,' !
goto 108
endif ,
new=ro{j)-last -
if (new.gt.0)then
do 766 jk=1,new
print*, 'There is a pole at infinity of order’',]
continue
ipol=1
else
goto 404
endif
if(l.gt.0)goto 499
j=u
new=ro (j)
goto 408
if(j.eq.1l)goto 498
last=ro(3j) -
j=3-1
new=ro (j}-last
if ({ro(3j).eqg.norank).and. (j.ge.0))goto 499
if ({ro(j) .eq.norank).and. (j.1t.Q))then
L2-3
do 409 ii=1,new
print*, 'There is a zero at infinity of oxder',ij
continue” -
goto 129 ’
endif
if{({new.gt.0).and.{j.1lt.0)}then
ig==3 , _
do 498 ii=l,new .
print*,'There is a zero at infinity of ordex',ij
continue - :
endif
goto 407
print*,'There is no zero at infinity!
if(l.gt.0)goto 128
if{ro(j).lt.norank)then
print*, * !
print*, 'LESS THAN NORANK'
print*, ' '
endif
return
end
subroutine next {rank,rp,aa,min,c,rdif,dsq,r,l,u, j, k,mindif,

1 dmin,dplus,maxdim, minl, maxu)



220
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270

80
260
E

integer rank,rp,rdif,u,r,c
double precision aa(min,c),dmin(rank,c,~30:])
double precision dplus{min,c,-30:j),dsq(r,c,~30:u)
do 210 i=1,rank
do 220 n=1,c
dmin{i,n,k}=aa(i,n}
continue
continue
do 230 i=rp,min
do 240 n=1,c¢c
dplus{i,n,k}=aa{i,n)
continue
continue
if{k.eq.]j)return
kplus=k+1
do 260 n=1,c
do 270 i=1,rank
dsq(i,n,k)=dmin(i,n, kplusj
continue
do 280 i=rp,min
dsqg(i,n,k)=dplus(i,n, k)
continue
continue
return
end








