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Abstract

Currently, much research is aimed at using light as an information carrier in systems.
Photonic crystals are materials with varying dielectric properties designed to interact with
photons. 1If these crystals are arranged in a periodic structure they can control the
propagation of electromagnetic waves through the structure. Photonic Bandgap (PBG)
crystal is a periodic structure that prohibits propagation of all electromagnetic waves
within a particular frequency band. Original PBG research was done in the optical region,
but PBG properties are scaleable and applicable to a wide range of frequencies. In recent
years, there has been increasing interest in microwave and millimeter-wave applications
of PBG structures. Currently, research has also extended to Metallodielectric Photonic
crystal (MDPC) which is replacing the photonic crystal with periodic metal elements in
low dielectric region.

Frequency Selective Surfaces (FSSs) which have been extensively researched are planar
versions of a two dimensional metallodielectric PBG crystal. The emergence of the band
gap was first investigated by an earlier study on propagation behavior of periodic arrays
as FSS in rectangular waveguides and leaky wave antennas.

The research effort in this thesis concentrates on the modelling and practical
demonstration of such doubly periodic metallic arrays on dielectric sheets that prohibit
any propagation of electromagnetic fields in all planar directions within the bandgap
frequencies. In general, the resonant properties of an FSS across the reflection band make
them prime candidates for yielding a controlled photonic band-gap. Extending from the
techniques used in the analysis of FSS by the investigating the propagation constant along
the substrate’s surface, the properties of the PBG can be examined for a specific array
geometry from the dispersion curves.By varying the array parameters such as the type of
element, physical dimension, lattice parameters and dielectric constants of the substrates,
the control of the band gap is investigated. Prototypes have been fabricated and tested to
verify the simulation prediction of the location of the absolute bandgap for various types
of array elements, dimensions and lattice arrangement. Applications of such structures in

microstrip and patch antenna designs are also investigated.

Keywords- Photonic Bandgap (PBG), Frequency Selective Surface (FSS), Periodic
Structures, Surface waves, Method of Moment (MoM), 2-D Planar arrays.
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Symbols and Greek letters used in Thesis

epo cpo
R coeff T coeff

unit cell area
Conducting area of unit cell

coefficient of the basis function

lattice vectors

transverse electric vector field
transverse magnetic vector field
entire domain basis functions

current of the array element
spectrum of electric current

incident wave vector
modal wave vector
reflection and transmission coefficients (copolar)

tangential position vector

substrate thickness

lattice related angles

modal propagation constant

relative permittivity (dielectric constant)
modal admittance

incident polar angles

modal field solutions

modal unit vector m = 1 TM modes, m = 2 TE modes
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Chapter 1

Introduction to Photonic Bandgap Crystals

1.0 Introduction

Since the suggestion in 1987 [1], that creating a periodicity in dielectric materials could
prevent the propagation of electromagnetic waves at certain frequencies, there has been
much work, both theoretical and experimental, in the field of Photonic Crystals to create a

so called ‘photonic bandgap’(PBG) material.

A photonic crystal is a structure with a periodic arrangement of high dielectric constant ‘
cavities embedded within a low dielectric region, these will introduce ‘gaps’ into the
energy band structure for the photon states at Bragg planes and provoke a range of
forbidden energies for the photons [2,3]. This range of forbidden frequencies is called the
photonic bandgap in which propagation is forbidden in certain directions. For cases at
certain frequencies, the photonic crystal will prohibit propagation of an electromagnetic |
wave at any incident angle, direction and polarization; this is termed as the absolute |

photonic bandgap. |
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Photonic crystals of two and three dimensions are being intensively investigated [4]. For
the three dimensional photonic crystal, it will have its lattice periodicity in three
dimensions and at frequencies in its absolute photonic bandgap region, thereby
prohibiting propagation in any direction. Figure 1.1 shows an example of a 3-D square
lattice photonic crystal surrounded by air or a low dielectric material (not shown).

Fabrication of such a photonic crystal lattice is still a challenge at present.

Figure 1.1 : Part of a 3-D square lattice photonic crystal

Whereas a 2-D photonic crystal is easier to fabricate, it possesses periodicity only in the
x-y plane and is finite in the z direction. Figure 1.2 shows an example of a 2-D square
lattice photonic crystal surrounded by air or a low dielectric material (not shown).
Frequencies in its absolute photonic bandgap region will be prohibited for any in-plane
propagation (perpendicular to the x-y plane) for any polarization and any direction along
the x-y plane. Propagation in the z direction will not see any bandgap since there is no

dielectric variation in the z direction [5-10].
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Figure 1.2 : Part of a 2-D square lattice photonic crystal surround by air

Recent years have also seen potential applications for photonic crystals, which have been
investigated primarily in the microwave frequency region. One of the applications looked
into is an optimised dipole antenna on a photonic bandgap crystal. By fabricating the
antenna on the PBG material with the driving frequency in the stopband, no power should
be transmitted into the PBG material thus all the power should be radiated in the desired
direction [11-13].

Another application utilises the PBG to act as a band reject filter within a waveguide [14].

PBG materials have also been investigated for microstrip circuit applications and have
exhibited very high suppression in the stopband [15,16]. It has also been shown that PBG
structures can suppress surface waves from microstrip antennas and also improve their

directivity [17,18].
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1.1 Two Dimension Planar Metallodielectric Photonic Crystal

Original PBG research was done in the optical region [1], but PBG properties are
scaleable and applicable to a wide range of frequencies. In recent years, there has been an
increasing interest in microwave and millimeter-wave applications of PBG structures.

However, contributors in this field regarding PBG structures in the microwave and
millimeter-wave regions still retain the ‘photonic band gap’ terminology. This
terminology has caused some controversy in the microwave community. A recent paper
by Oliner [19] has tried to clarify that the terminology is inappropriate and it should
classified under ‘microwave periodic structure’. However, the ‘photonic bandgap’

terminology is adapted at the start of this thesis and subsequently used throughout.

Currently, research has also extended to Metallodielectric Photonic crystal (MDPC)
which is replacing the periodic high dielectric constant cavities of the photonic crystal
with periodic metallic elements. In microwave and millimeter-wave regions, such
structures exhibit a much larger electromagnetic stopband than the photonic crystal [20-
21]. The 2-D planar version of metallodielectric Photonic crystal is in effect a type of

Frequency Selective Surface (FSS).

Frequency Selective Surfaces are two dimensional periodic arrays of metallic elements or
apertures which exhibit stopband and passband characteristics when excited by an
electromagnetic wave at an arbitrary angle to the plane of the array (Figure 1.3). For
example, a periodic array of conductors will reflect polarised incident waves at some

frequencies (stopband) and remain transparant to these wave at other frequencies.

If the incident angie @ 1is increased to 90° from the normal, the incidence will be along the
plane of the FSS array. When exploring the propagation mode along the plane of the FSS
array, this structure can be regarded as a planar version of a 2-D metallodielectric PBG
crystal and it will exhibit band gap properties in the plane of the array. If the band gap

extends throughout the irreducible Brillouin zone (Section 2.6); an absolute photonic

band gap is achieved.
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Figure 1.3 : Part of a FSS array as a 2-D planar metaliodielectric PBG crystal

The research effort in this study concentrates on the modeling of such doubly periodic
metallic arrays on dielectric sheets to obtain an absolute band gap from such a structure.
The control of the band gap is investigated by varying the array parameters such as the
type of element, physical dimension, lattice parameters and dielectric constants of the

substrates.

Prototypes have been fabricated and tested to verify the simulation prediction of the
location of the absolute bandgap for various types of array elements, dimensions and
lattice geometry, Applications of such structures in microstrip and patch antenna designs

are also investigated.

1.2 Organisation of this Thesis

This thesis is organised into six chapters in the following manner.

Chapter 2 lays out the theory that the research technigues used in analysis of FSS which
this work draws upon. The analysis of propagation along the surface is achieved by
evaluating the propagation constant within the irreducible Brillouin zone to predict the
propagation modes.

Finally, this chapter also explores the properties and effects of the reciporcal lattice and

its irreducible Brillioun zone from its respective direct lattice and array element.
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Chapter 3 looks into surface waves that exist on the dielectric slab with and without a
ground plane. Using the propagation constant derived in Chapter 2, the TM/TE surface
wave modes are predicted and compared to the analytical values to verify the method of

modelling and prediction accuracy.

Chapter 4 covers the array elements of the dipole and cross dipole, with the aim of
achieving an absolute bandgap. The experimental set-up for this research work is also
described here. Finally, the test of convergence is also investigated to ensure adequate

Floquet modes and basis functions are used for the predictions.

Chapter 5 investigates array with tripole elements to achieve an absolute bandgap.
Printing a transmitting Vivaldi antenna and a tripole array on a dielectric slab, the
radiation pattern measurements are presented in the bandgap and bandpass regions. This
chapter also looks into designing the bandgap frequency by varying the eclement
dimensions and the effects on the location of bandgap with different substrate thickness

and dielectric constant. Finally, some novel applications of this technology are presented.

Chapter 6 draws conclusions of the work presented in this thesis and suggestions are

made for future research work.
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Chapter 2

Theory of Analysis

2.0 Introduction

In this chapter, the modal analysis of an infinite planar array of a single layer FSS in a
multiple dielectric substrate is presented. The approach here is based on the total fields
from an array structure of a periodic nature where the tangential field TE (transverse
electric) and TM (transverse magnetic) components can be expanded in terms of Floguet

modes [1].

This modal analysis method was applied originally by Chen [2] for indnced current on the
conducting plates of a 2-D array in free space. Montgomery [3] included a dielectric

substrate on which the periodic array of thin conductors were printed.

This section shows the theory of Floquet’s theorem using the periodicity of the FSS. In
fact Floguet's theorem is an adaptation of the Fourier series theorem for periodic
functions. It enables a modal description for the field in terms of a complete, orthogonal
set of modes (Floguet modes) in the vicinity of each element of the array, which are

excited uniformly in amplitude but with a linearly varying phase [1].
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The array element is assumed to be infinitely thin and perfectly conducting. This array is
sandwiched in between the first two dielectric layers, however the modelling program
allows up to four different layers behind the array. The fields near the surface in each
layer are expanded in terms of Floquet modes for the different dielectric media. Using the
standard electromagnetic boundary conditions, the fields are matched at the boundaries to
derive an integral equation in terms of the unknown induced current on the conducting
elements [4]. Using the Method of Moments [5,6], the integral equation is reduced into a
linear system of simultaneous equations. These equations are solved for the induced
current and then the reflected and the transmitted field amplitudes can be determined.
With the reflected and the transmitted fields, the reflection and transmission coefficients

can be derived.

For the modal analysis of FSS which will be presented first, the polarized incident plane
wave is at an arbitrary direction with the angle 0 to the z axis and the FSS array in the x-y

plane (Figure 2.1).

To determine the stopband or photonic bandgap characteristic of the FSS array, the
propagation of the incident wave is in the x-y plane (8 = 90°) at any arbitrary direction
with angle ¢, with respect to the x-axis (Figure 2.1). The array with periodicity in two
dimensions will exhibit a stopband in the plane of the double periodicity. The methed
used here to explore the possible band gap for such an array is similar to the modal
analysis of FSS. So in the first part of this chapter, the modal analysis used for FSS is
presented in detail in Sections 2.1-2.4. The difference in the analysis of band gap for the

array in the x-y plane is presented in Section 2.5.

To determine the completed bandgap for a structure, it is necessary to evaluate the
propagation modes in all directions within the two dimensional plane. This is achieved by

exploring the propagation mode within the irreducible first Brillouin zone. (Section 2.6)

In the Section 2.6, the reciprocal lattice and its respective Brillouin zone are presented [7-
11]. It is discovered that the symmetrical relationship of the first Brillouin zone and the

array elements do play a part in determining the irreducible first Brillouin zone.

11 -
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2.1 Modal Analysis Of Planar Frequency Selective Surface (FSS)

In this section, the modal analysis of a single FSS array in a multiple-dielectric substrate
is presented. With the periodic placement of the elements of the array, the modal analysis
of Floquet’s theorem is used to describe the fields which repeat themselves in terms of

Floquet modes [4].

When the array is illuminated by an incident plane wave, currents will be induced on the
conducting elements. By matching the fields at the different boundaries, an integral
equation for the unknown currents is obtained. Using the Method of Moments [5,6], the
integral equation can be reduced to a linear system of simultaneous equations. The
unknown current is expressed as a series of basis functions. With a Numerical Algorithm
Group (NAG) routine [12] which utilises Crout’s factorisation, the unknown coefficients
of the basis functions are obtained. The current coefficients allow one to obtain the
reflected and transmitted field amplitudes. Thus, from the total reflected and transmitted

field, the reflection and transmission coefficients are calculated.

The FSS array is assumed to be infinite and each element is located in a unit cell, which is
distributed in a periodic configuration. The conducting elements are printed on a
dielectric substrate and the conductors are assumed to be infinitely thin and perfectly

conducting.

The array on the dielectric substrate is considered to lie in the x-y plane and it is excited
by a linearly polarised plane wave incident in an arbitrary direction with angle & to the z-
axis and ¢ to the x-axis (Figure 2.1). The lattice vectors D, and D, specify the two

periodicity axis on which the conducting elements are arranged.

-12-
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AZ

Dielectric
Substrate

Figure 2.1 : (a) Geometry of a square lattice array, (b) side view of the FSS array

For an arbitrary lattice (Figure 2.2), where the element as placed along an arbitrary axis
say #i and V vectors. The arbitrary lattice vectors D, and D, with ¢ as the angle between

D, and D, and ¢ as the angle between D, and the x-axis.

= D, (cosa, % + sina; 9)

D, = D, (coso, X + sinct, ) Q.1

Where ;= ¢+ @ and D,=|D,|, D,=|D,|

13-
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Figure 2.2 : A FSS array on an arbitrary lattice

2.1.1 Modal Field Representation

The modal representation of the field of the array in scalar Floquet modes [1] are given

+iB Z
Jﬁpq

B (x.y,2)= ¥pe(x,y)e 22)

Where the Floquet indices p,g =0, £1,£2,+3,..........

The negative j term denotes propagation in the positive direction and the positive j term

denotes propagation in the negative direction.

— Jkipg T
Where ¥, (ry)=e 157 (23)
Thus from Eq.(2.2) and Eq.(2.3)

.14 -
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B (r,z)=e P o 24)
Where r = xX + y ¥
And
Kipg =k X + Ky §
ZC_;pq =kt Pk; T qk,
=(koy + Pk +qks, )2+ kg, +pk;y +aks, )P 25)

And

ktOO = k.OOx + .lgOOy

=kysin6 cos @ + kysin& sin ¢ where k, =
2n . 27,
_kJ:“?Z XD, kz*‘;z xD, A
where A - Periodic unit cell area

Using the relationship given, &; and k7 can be shown to be

ky=kj, tky, ky =k, thyy

. 27 sing, _ 2m sino;g
=T p, sina =T p, sina
b = 27 COsay . = 2m costy
=y D, sinc =2y D, sina

-15-

A=D, D, sinx
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The propagation constant is given as

B,, =\fk2 = (ky® +ky") (2.6)

—-\[kz Kipg  Kipg
Where k =k, Af€,

For the propagating wave, 2k ky2 and

2 , -
pq J k tpq K g s Bpq  isreal and positive.
For the evanescent wave, B < k_f + kyz and
, 2 . . .
B pg == J\/ k—tpq -k pg k By  is imaginary and negative.

The tangential electromagnetic field in the plane of the array can be expressed in terms of

both Transverse Magnetic (TM) and Transverse Electric (TE) vector Floguet modes.

The subscript = that has the value 1 and 2 denotes TM and TE mode respectively.

The Transverse Magnetic vector has it magnetic component parallel to the plane of the

array (Hpq = 0).

TM modes — The transverse component of the TM modes

kqu
“ipq
Etpq = nx’pq Z X Kx’pq qlpq (2.8)

The transverse electric vector has its electric component parallel to the plane of the array

(Epg=0).

-15-
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TE modes ~ The transverse component of the TE modes

E..tpq = _]g2pq lIlpq (29)
Hypp= Mppg 2 X Ky ¥y (2.10)
Where 77554 and 1]2p4 are the modal admittance of TM and TE modes respectively
k
(TM) Mipy = xn 2.11)
Prq
B ol
(TE) = M (2.12)
N2pqg 3

Where n = \/E , € and u are the permittivity and permeability of the medium.
u

Thus the tangential field can be expressed as a combination of the vectors TM and TE

Floguet modes. For example, the electric field can be written as;

E(E,Z) = E(alpqEIpq(r-rZ) + a2pqE2pq(£’z))
Pq

E(alpq ¥ (E)Elpq e Prt g a2p5  pq (l‘_)ﬁzpq PRI )

pPq

E(r,z) = X an¥p (K)Empq e @13)
mpg

Where a;,, and @y, are the amplitude of the TM and TE modes

And the similarly, the magnetic field,

H—(K’Z) = £ E Ninpg Cmpg Yqu (f) eijﬁpqz Z X Empq (2.14)
mpg
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2.2 Formulation of Scattering for a Single FSS Structure

2.2.1 Fields at different interfaces

Figure 2.4 shows the cross-sectional view of an FSS array embedded in five layers of
dielectric substrates surround by air. The different dielectric substrates will modify the
admittance seen by the wave when travelling through them. The superscript presented
here in the equation denotes the different dielectric layer substrates. With S, as the
thickness, 1" as the modal admittance and T" with the negative z dependence as the field
amplitude of the froward direction travelling wave. Likewise R" with the positive z

dependence would be the field amplitude of the backward travelling waves.

FSS Dielectric Substrates

st
o

=20 =21 =22 i=23 =24 =25
I 3 4 5
n n n n n

Figure 2.4 : A single FSS array embedded in between the first two dielectric layers.
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For this example, the FSS array is assumed to be sandwiched between the first and second

layer [4]. With the incident field E™, the modal tangential electromagnetic field for

each region is as follows.

For z < z,

E(r,z) = E™ + YR, ”ﬁgq""fqu(;)gmpq (2.15)

mpq
mpq

H(r,z) = H™ - ¥ nt, R,;pqu’j’Bg?Z g (L) 2 X Ky

mpq
For 7,2 £ Zyy; (Forlayern =1,2,3,4)
~iBps" n o +jBpa"
E'(r.z) = 3 (T,,':pq MY LRyl ]'qu(g)gmpq (2.16)
mpg

ﬂ ( ) Z nmpq( mpq € "jﬁmz R::;pq +Jﬁpqz )!qu(f)ﬁ X ..K_'mpq
mpq

For 7 2 <5

E'(r,2) = 3 T e ¥ 0Ky, 217)
mpq

H_+(£: Z) = Z ﬂipq Ti’;ll-pq R lIypq(f)é X K mpq
mpq

For a single FSS structure, the incident field is given in terms of the zeroth order Floquet

mode (p,g=0) as

. 2
E™(r,z) = ZTW P 5 (£) K o (2.18)

H™(r,z)= anOO e e Pt W (1) 2 X K g
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Theory of Analysis Chapter 2

‘ However, the prediction program for propagation constants (8, ;) along in the x-y plane
‘ does not have any incidence fields; the incidence fields and scattered fields are combined

| as the total fields (see Section 2.6).

With the modal tangential electromagnetic fields for each dielectric layer defined in
Eq. (2.15 - 2.17), boundary conditions are applied by matching or equating the fields
between 2 layers at their common boundary. Working backwards from the last layer

towards the first boundary, an expression of the reflected amplitude R;,,, in terms of the

surface current density J can be derived

| The field amplitudes can be formed using mode orthogonality in Eq.(2.16) and Eq.(2.17)
| and matching at boundary Z = Zs,

{(Magnetic field)

5 5 =Bz 5 +iBpzs Y_.a ot 0Bz
Nmpq [Tmpq e T = Ropge T | F ypg Tipge T (219)

|
|
|
|
\
(Electric Field)
|

_ 3 5z +- SZ e
Trog € Bots 4 Ry,.¢ 3B o =T, e s (2.20)

Placing the magnetic field equation Eq.(2.19) over the electric field Eq.(2.20) at boundary
Zs, an expression can be obtain that related the reflective field to that of the transmitted

field for that boundary. (Magnetic field / Electric field)

5 (735 g iButs 5 +iBazs -
e - R e 7 a n Bz
nmpq( mpq mpq _ Nopglmpg€ =~
5 =Bz 5 tiBz no =Bz
(Tmpqe Wz 4 R3 e Pm ) T e
5 a
RS = | Mmpg TThmpg | -j2Blzs g5
mpq 5 a mpq
5 _ 5 g5
Rupg = Pmpg Tmpq (2.21)
20 -




Theory of Analysis Chapter 2

Likewise at boundary Z = Z; matching the fields and equating the magnetic field over the
electric field using Eq.(2.21) gives,

4 4 —jiple, 4 +iBlz, 5 5 -iB.zq 5 +iBlz,
Mnpq (Tmpqe "YU = Rypge 7" Mg T e T = Pypge 7"

mpq
4 _jﬁ;qz4 4 +.’ﬁ;q24 - 5 _jﬁngcf 5 +jﬁng4
(Tmpqe + Rmpqe Tmpq e t Popg €
4 T4 “‘jﬁ;qzt 4 +jﬁ;qz4 ]
e - R e
”mpq( mpq mpg _ 715 e 2.22)
T4 B o gt B med 4 '
mpq € mpq
4 _ 4 4
Rmpq = P mpq Tmpq
For all boundaries,
n .6+l _n+l
o _ | Npg = @n Mhapg o~ I2B et 2.23)
mpq n+l_n+l ( ‘

n
Nmpq T Pn Nipg

Where @] +fnpq is denote as @y, +
—jB;qzn—f n +jﬁ:qzn—1
e - pre
n+l mpq 4
And wn e—jﬁ;qzn_f + pn e+jﬂ;qzn_1 (2.2 )
mpq

At the last medium (Z 2 Zs5), ©F = I

Working towards Z = Z;, where the FSS array is located, the electric field is continuous
(Er = E5). The magnetic field is continuous except on the conductors where it is

discontinuous; H; — Hz = 2x J where J is the unknown surface current density.

=21 -
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AtZ =7Z; (Magnetic field)

~

J
HI(LZI)_ HZ(.Z!ZZ) = _%i

1 1 —jﬁ;qu_ 1 +jﬁ;qz.' _ 2 2 _jﬁﬁqzz__ 2 +jﬁ;qzz _ . mpq
nmpq(Tmpqe Rnpq € Nmpg| Tmpq € Prpg € A

(Electric Field)
] -jB;;q zj' I +jﬁ::qu — 2 —jﬁjq 2 — 2 +jﬁ_[27q22
Tupq € T Ropge = Topq| € Prmpg €

‘ Likewise working with the magnetic and electric fields at Z = Z;,

—~

R =pl 1 ¢ P T (2.25a)
S e

e—jﬁ;q 2y

e + ] M)

Where ¢ =

With some algebraic manipulation,

—~

| 1 ! -jBl,z 1 +iBlz Y .! I inpg
Rupg = Pmpg Topg ~ [e " Ppge T ]T’”Pq oml 4 (2.250)
2NmpgA
Where n>0
¢ pr,, €
. (2.26a)
Pq e_Jﬁ;qzn'I + n e+jﬁ;‘1z”_1
Pimpq
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e“jﬁngo + pO e+jﬁf,’q20
¢ _ mpq
Tmpg = 7 (2.26b)

Similarly working at Zy, the reflected field amplitude R ;p , can be arrived at

Ll

: J
- 0 0 1 mpd
Rmpq = Pmoo r::z)% = Tmpg Tmpg A 2.27)

Having attaining reflected field amplitude, for the transmitted field amplitude; working at

Z =Z; with R, from Eq.(2.252)

| ~
12 1al J ‘07
- Z I + 4 m, - 4
[e Jﬁpq 2 pmpqe J;BM 2 )_a Pq e Jﬁpq 2

-jBl.u 1 4Bz _ ol
+ Rmpq e = Tmpq

T,ipq e
1 (2.28)

Working towards Z = Zs; with some algebraic manipulation, the transmitted field

amplitude [4] can be arrived at

‘ -~

. , . J
+ =Bz _ .5 4 .3 .2 0| JBuz 0 inc mpy
Tmpq e " = T4 73 T2 TI TO e’ (]+pm00) moo Qmpq A
(2.29)
O T
Where ,Qmpq = Tupg Timpg elPmte 4 (2.30)

I
2 Tmpq
Where s; is the thickness of the first layer dielectric substrate

2.2.2 Electric Field Integral equation (EFIE)

With the boundary condition, that is the electric field will vanish over the perfect

conductor at Z = Z;,
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E'(r.z;) =0 r e A

T2 ) .nt ]
E (Tépq e JBMZ +Rr£1pq e+]ﬁpqz ) qu (_r_') Empq = ( (2‘31)
mpq

Working with Eq.(2.28), substituting T,ipq into T, and express it in terms of R,

using Eq. (2.27)

1 -iBz Ji +iBl 1 iB Za( 0 ) inc mpg
Topge " T Ryppe 77" = Typy | €77\t Pogo ) Tingp — £2 a

Substituting back to Eq.(2.31)

o~

E Tiﬂtpq ejﬁmzo (J+pr?100) r:tnOCO - Q ?ZU‘I qypq(z) Kmpq =0
mpg

Therefore the Electric Field Integral equation (EFIE) is

Il

- 2 .
> C,ff;; Jpg ¥pq (K)Empq Z} moo Tm. oo (K) K moo (2.32)
mpq m=

(2.33a)

(2.33b)
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2.3 Method of Moments

The Method of Moment (MoM) is used here is to solve the integral equation by reducing

it to a linear system of simultaneous equations [5-6].

The purpose is to approximate the unknown current induced on the conductors within the
unit cell in terms of an infinite series of N orthogonal basis functions. But the solution
converges as N — <o, Therefore for computational efficiency, a certain N is chosen when
the results converged. Although the approximation of the induced current will be better if
N is increased, this is at the expense of computation time and resources. To save
computation time and resources, a finite V is chosen such that with N increased the result
will only differ by a very small amount. In section 4.2, N and the pg (Floquet modes) will
be tested to ensure satisfactory modes are chosen to represent the problem.

With N series of basis functions, the induced current can be expressed as

N
I(r) = Yeuh,(r,) r,€A (2.34)
n=1 .

Where A’ is the conducting area of the unit cell.

h,(r,) are the current basis functions.

¢, are the complex amplitude of the unknown currents.

The choice of the basis functions depends on the type of conductor (dipole, tripole). The
choice of basis functions for each type of conductor will be dealt with in their respective

chapters (Section 4.2 and 5.1).
By substitﬁting Eq.(2.34) into EFIE Eq.(2.32) and taking the inner product with the

weighting functions A; according to Galerkin’s method, the result is in a set of equations

that can be written in matrix form as:
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-Zu Z;, e Ly ] rczﬁ ~~,{m-
Z,, Zy, .o Zyy |, E;m
. . L, . . o= . (2.35)
Zyr Zys - Zyn )€ By |

Where E[* is the excitation vector. Eq.(2.36)
[Zun]1 is a matrix M x N and is independent of the excitation. Eq.(2.37)

C,, is the unknown coefficient of the current

And
N 2
Epe =% Coy T b (krpq) (2.36)
m=]
= 3 Gt i (k) (ki) (2.37)
mpg ‘

Where * is the conjugate

Here the weighting functions are the same as the basis functions; a method known as the
Ritz-Galerkin method. Therefore to obtain the unknown coefficients ¢, in Eq.(2.35); a
matrix inversion of [Zyy] is performed which utilises the Crout’s factorisation in a NAG

routine [12] from the Numerical Algorithms Group Library (NAG).

[cn] = [ZMN ]-I [Eim] (2.38)

With the coefficients, ¢,, computed, the unknown induced current can be determined from

Eq.(2.34). Substituting the induced current Eq.(2.27) and Eq.(2.29), the reflected and the
transmitted field amplitudes can be determined. And in Section 2.4, with the reflected and

the transmitted fields, the reflection and transmission coefficients can be derived.
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2.4 Reflection and Transmission Coefficients

This section is not used in the analysis of propagation constant along the surface for this
research. However, for completeness sake, the study of FSS structures would require the

attaining of reflection and transmission coefficients.

From electric field equation Eq.(2.15) and substituting the reflected field amplitude
Eq.(2.27) into it and takes only the total reflected field at Z = Z,.

-‘E:(ﬁ’ZO) = X Rypg e +Jﬁ,,,,zo ¥, ( ) K mpq (2.39)
mpq

The zero order mode being the dominant mode and always propagating; the total reflected

electric field is given by

. d
E/(r.2)= Phoo Tt ¥oo(r) kmon = 3 TopTmpa fq ¥y () K g

mpq
(2.40)
And for the tofal tangential transmitted electric field at Z = Zs
t J,B zZ
ET( ) E mpq e 'P ( ) mpq (2.41)

mpq

Likewise substituting the transmitted field amplitude Eq.(2.29) into the total tangential
transmitted electric field. Eq.(2.41)

_E_;'.(I’Z.? ) = Tr?zpq Z ejﬁmzo (J+pr?100) ;:1(;‘0 !POO(K) Kw.mOO
mpg

- 29, "m""’ ¥ (£) K g (2.42)

mpq
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5 4 3 2 1

o  _
Whete T, = Thpg Tonpg Tmpg Trapg Trnpg

The total reflected electric field at Z = Z4 and total transmitted electric field at Z = Zs can

also be expressed in terms of

E"(r,z)= (RI2+ R 9+ RI2)eP™w (r) (2.43)

Where Ri = R, K,00x (2.43a)
R, = R,,, Kooy (2.43b)
pr_ _ Rsin0 cosg + R} sind sing) 0430

¢ cosf
The total transmitted electric field at £ = Zs
T ~ ~ A -

E"(r.z5) = (Tx‘ X+TH+ T2 )e Puisw (r) (2.44)

Where Ty = T,po K ougox (2.43a)
Ty = Ty Kooy (2.43b)

T! sinf cos¢ + T sinf sin¢

T! = - (" > ) (2.43¢c)

cosf

The copolar components of the total reflected and transmitted field are obtained by

projecting them onto the total incident field direction B’
E"(r,z,)= E*{r,z,)B™ (2.44)

Where Erc(j:,zo )___ «E_TT(!_‘_,ZO)'B!“C
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And for the copolar component of the transmitted electric field
E“(r.25)= E“(r,2;)B™

Where Ew&,zs)z l_?tT(z, Zj).gf"c

(2.45)

For a given FSS with a plane wave incident at an arbitrary direction with the angle 0 to

the Z-axis; the reflection and transmission coefficient in the copolar direction is given as,

rc
R = E &’ZO) __RrB:'nc + RrBinc + R’ Binc
coeff ‘Erfnc(rz i" x Py y Py z Pz
&0

o E!C(I’ZS) — TtBinc + Tr Binc + Tr Binc
coeff E.Tmc r,ZS x “x y =y z z

-29.
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2.5 Propagation along the surface (X-Y plane)

The purpose of this research is to determine if there exist any bandgap (stopband) that
appeared in the 2-D plane of periodicity. Thus it is essential to explore all possible
propagation mode that exist along the two dimensional plane of the array. For the analysis

of propagation along the xy plane the angle 0 from Eq.(2.5) is set to 90° giving

Kipg =Ko+ Pk; +9k; (2.48)

Where &TOO = E—OUJC + -]-(-00)’ (2.48&)

= kpsinf@cos¢ + k,sinfsin¢

And sin@ =1

For alossless case, kgg, = B, koo, = ﬁy

The analysis is similar to that described in the derivation for the planar FSS problem up to

the Method of Moments in Eq.(2.35). Solving for the total fields where £ g E’ =0,

the equation Eq.(2.35) becomes

Zy Zp .« . Iyl 0
Zy Zp . Z,y |l€; 0
. . Ly oo o=, (2.49)
L_ZMI ZMZ * * ZMN __1 _cﬂ_J _0..
whichis [Z,,,}[c,] = [0] (2.50)

For this set of homogeneous linear equation to have non-trivial solutions {13], the
determinant of the matrix {Z] must be zero. This is known as the characteristic
determinant of [Z}. Likewise, with Eq.(2.37), the matrix {Z] is determined with another

NAG routine {12] which also utilises Crout’s factorisation to determine the characteristic
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determinant. By varying the 3 from zero to the boundary of the irreducible Brillouin zone
(see explanation in Section 2.6), all the corresponding characteristic determinants of [Z]
are plotted out for each f. From the characteristic determinant plot, all the true set minima

obtained correspond to each individual propagation mode.

In Figure 2.5, an example shows a graph of computed characteristic determinant. In this
case, f is varied from 0 to w/a (boundary of the irreducible Brillouin zone). From the
graph, it shows that there is a propagation mode for § normalised values 0.133, 0.152,
0.173, 0.193 and 0.22 at frequencies 5.5 GHz, 6 GHz, 6.5 GHz, 7 GHz and 7.5 GHz.

(Characteristic Determinant

*  Figure 2.5 : Propagation mode determined from the plot of characteristic determinant

Using a simple bisection method, which is evaluating the characteristic determinant
values before and after each point; all the propagation constants associate to each of the

minima, are recorded.

By exploring the whole 2-D irreducible Brillouin zone, all the possible modes that exist
on the x-y plane could be found. For the range of frequencies where there is an absence of

any propagation mode, that range of frequencies is considered a bandgap (stopband).
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2.6 Direct and Reciprocal Lattices in Two Dimensions

A direct lattice describes the way the physical elements are arranged [11]. Usually it is a
periodic array in which the identical elements are spaced at equal distances from one
" another along two lines intersecting at an arbitrary angle o. In other words, it is an array
with an arrangement and orientatton that appears exactly the same from whichever point

the array is viewed. This type of lattice is also called a Bravais lattice. From the triangular
lattice shown in Figure 2.6, taking @; and a; as basis vectors drawn from the element

chosen as the origin of the lattice. The vector coordinate of any element in the lattice is

given by

R,,I,, nyjay; + nyao (2.51)

i

/\

Figure .2.6 : Direct Triangle Lattice

5 —_—

Where 1; and 1, are integers.

From the direct lattice, the vectors @; and @», if written in their matrix Cartesian

coordinates as row vectors are given by:

A = {a”( a”'] (2.52)
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The concept of a reciprocal Iattice can be found in many solid-state physics book [7— 11].

From the example above, the reciprocal lattice which is transposed from the matrix A will

arrange its vectors b; and b, as column vectors:

by b
B = { 1X 2X:| (2.53)
bIY bZY

For the given direct lattice with vectors @y and a; a reciprocal lattice can be define with

its own basis vector by and b; given by the Eq.(2.53).

(a;.by) = Oy where i=1,2 (2.54)
k=12

Where Oy is the Kronecker 8 symbol, defined by

O =1 i=k (2.56)
= 0 izk

Therefore the matrix product of the direct lattice and the reciprocal lattice are:

A-B = [ ax an'] {bjx bzx] 2.57)
dax Gy | by Dby :

_ _(al'bl) (al'bz):l
L(bz'az) (az'bz)

From Eq.(2.56),

1 0
A-B = = U (2.58)
0 1

-33-



Theory of Analysis Chapter 2

Where IJ is the unit matrix. From this it follows that

B = A
B = HXC (2.59)

Where C7 is the adjoint of matrix A

And matrix C consist the cofactors of the elements in A

It can be concluded from the above equation, Eq.(2.59), that @; is perpendicular to b, and

a; is perpendicular to b; (see Figure 2.6). The components of the reciprocal lattice can be

obtained from the direct lattice by the relationship given by Eq.(2.59) [8]:

_ dyy _ Ay
b,y = by =
Ayx Aoy — Qyy Aoy px Aay = Ay dyyx
_ — Gyx ' _ a;x
b, = — by =
iy Qyy — Gy Qyx Arx Aoy — Qpy dpx

With a hexagonal direct lattice based on the vectors ¢; and @, with an angle o of 7/3
between them, the respective reciprocal lattice is another hexagonal lattice, turned

thought an angle 7/6 with vectors b; and b.

AN

a) ()

Figure 2.7 : (a) The direct lattice and (b) it respective reciprocal lattice
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The parallelogram formed by b; and b; defines the unit cell of the two dimensional
reciprocal lattice (Figure 2.8). The reciprocal lattice is also a periodic array with its
clements spaced at equal distances from one another along two lines, &; and b2,

intersecting at a arbitrary angle which in this case is also equal c.

However, it is more convenient to build a unit cell of the same area but which is
symmetrical with respect to the elements of the reciprocal lattice Figure 2.8 [11]. This is
defined as the two dimensional first Brillouin zone. The first Brillouin zone also known
as the Wigner-Seitz cell [12] of the reciprocal lattice, states that the region of space in the
reciprocal lattice that is closer to the lattice element than any other, is known the first
Brillouin zone. For each element, there exists higher order zones and each of these zones

covers an area equal to that of the first zone.

<:> i* Zone

A Fi
4 94 2" Zone
L 2 ..
ANEIANY \l\ W ?I ?I » 3" Zone
75 7t
2 4 o

: in: /// 4" Zone
+ A\
y

\ £ 2R 5™ Zone

© Reciprocal lattice element
position

Figure 2.8 : The reciprocal lattice of Figure 2.6 and its zones distribution

Any individual zone can be reduced to the first zone by taKing its sections and giving
them a translation parallel and equal to one of the vectors of the reciprocal lattice. This is
obvious for the second zone in Figure 2.8. For the third zone, by a2 mosaic arrangement,
the different sections of the third zone can be exactly put together to cover the first one

given the necessary translation.
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Due to the symmetric and periodic properties within the first Brillouin zone, the smallest
region (the shaded portion in Figure 2.9) of the first Brillouin zone is irreducible. Thus it

will be sufficient to just consider only the irreducible zone as the rest are just mirror

<:> 1*' BrillowinZone

Irreducible Brillouin zone

images of it.

Figure 2.9 : The ireducible first Brillouin zone

As another example, for a two dimension square direct lattice, the corresponding

reciprocal lattice is also a square lattice with its vector b.

(a)

(b)

[ ® @ Reciprocal lattice element
position

Trreducible Brillouin zone (c)

Figure 2.10 : (a) Square direct lattice, (b) the respective reciprocal lattice,

{c) its irreducible first Brillouin zone
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2.6.1 Irreducible Brillouin zone and the array element

It has been discovered in the course of this research through modeling results from the
whole first Brillouin zone that the irreducible Brillouin zone also depends on the
circularly symmetrical nature of the array element. This is also been verified in both the
modeling and measurement results for dipole arrays in Chapter 4. The angles between
lines of symmetry for the array element and the first Brillouin zone of the lattice must be
taken into the consideration. The larger angle of the two symmetry properties is chosen
for the irreducible Brillouin zone provided that the smaller angle is a multiple factor of it.
If not, the next larger angle is chosen as the irreducible Brillouin zone which is a multiple

factor of the two angles.

As in Figure 2.9, if the array element is assumed to have circular symmetry like a dot or
circle, the irreducible Brillovin zone will be determined by the angle between the lines of
symmetry of its first Brillouin zone. In Figure 2.11a, for a triangular lattice, the angle
between the lines of symmetry of its first Brillouin zone is 30°. For the square lattice in

Figure 2.11b the angle will be 45°.

Irreducible Brillouin zone

Figure 2.11b : Lines of symmetry in the first Brillouin zone of a square lattice
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In the case of a dipole as the array element, it has only two lines of symmetry (Figure
2.12a). Thus the dipole is only quarterly circular symmetric (90°). Whereas the angle of
symmetry for first Brillouin zone of a square and triangular lattice is 45° and 30° (Figure
2.11a,b) respectively. Therefore the irreducible Brillouin zone must cover at least 90° of

the first Brilliouin zone. (Figure 2.12)

1
!
]
1

- o

\ Irreducible Brillouin
(a) (b) (c)

Figure 2.12 : (a) Line of symmetry of the dipole, (b) Irreducible first Brillouin zone of a dipole in
a square reciprocal lattice. (¢) Irreducible first Brillovin zone of a dipole in a

hexagonal reciprocal lattice.

For the tripole array element, the response depends on the contribution of the current in
each of the three legs of the tripole. The response would be the same in the direction of A
and A’, B and B’ and C and C’. Thus the angle of symmetry for the tripole array is 30°,
coincidentally for the first Brillouin zone of the triangular lattice is also 30°(Figure 2.13).

So the irreducible Brilloyin zone will be 30°,

Figure 2.13 : Lines of symmetry for a tripole and the first Brillouin zone of a triangular lattice
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For a tripole on a square lattice, the angle of symmetry for its first brillouin zone is 45°
and the angle of symmetry for the tripole array is 30°. The angle of 45° cannot be chosen
as the irreducible Brillouin zone because 30° is not a factor of it, thus the next higher

angle is chosen. In this case it is 90° which both angles are a factor of it.

" Figure 2.14 : The irreducible Brillouin zone of a tripole in a square lattice.
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2.7 Conclusions

This chapter discusses the theory of the research, which draws upon techniques used in
analysis of FSS. Changes were made for the first time to the computer modelling to
enable calculation of propagation modes in the plane of the array. In the first part of this

chapter, the modal analysis used for FSS is presented in detail in Sections 2.1-2.4.

The difference in the analysis of band gap for the array in the xy plane is presented in
Section 2.5. The analysis of propagation along the surface is achieved by evaluating the
propagation constant within the irreducible Brillouin zone to predict the propagation

modes in all directions within the two dimensional plane.

Finally, in Section 2.6, the reciprocal lattice and its respective Brillouin zone are
presented. It is found that the symmetrical relationship of the first Brillouin zone of the

lattice and the array elements do play a part in determining the irreducible first Brillouin

Z0ne.
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Chapter 3

Surface Waves on a Dielectric Slab

3.0 Introduction

A surface wave is defined simply as a wave propagating along an interface between two
different media without radiating. It is distingnished from a leaky wave by the fact that
there is not a continuous radiation of energy but rather a wave that is bounded closely to
the surface. The chief characteristic of a surface wave is that its phase velocity is less than
the surrounding medium, which is usually free space. Another characteristic is that for a

plane uniform structure, the fields decay exponentially away from the structure [1].

Surface waves have been investigated here on two types of dielectric slabs; the dielectric

slab with and without a ground plane [2-4].

For the propagating modes on the dielectric slab, there exist similar modes for a dielectric
slab with twice the thickness as one with a ground plane. So the evaluation in this Chapter

is of a dielectric slab with a thickness 2d and a grounded dielectric slab with a dielectric

thickness of d.
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The planar structure lies in the y-z plane with the propagation in the z direction.

Figure 3.1 : Geometry of a grounded dielectric slab with thickness d

3.1 Propagation Modes of a Dielectric Slab on a Ground Plane

3.1

(3.2)

3.1.1 TM_modes
For the TM modes (H, =0) and no variation in the y-direction ((-;— = (), E, is obtained
Y
from the wave equation for each region [2].
J k2 — B? = 0 0<x<d
-'a—x-z—'i"gr O_ﬁ ez(x,y) = =X
d k2 2 = 9 < x<oo
FYe I 0 =B le.(xy) = =X=

Where E_(x,y,2) = e, (x,y)e"j'BZ
k=€ k; - B°

=B -k}

The cutoff wave number for the two regions is expressed in Eq.(3.3) and Eq.(3.4).
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Matching the solution of Eq(3.1) and Eq.(3.2), the general solution is

e,(x,y) = Asink,x+Bcosk,x 0<x<d (3.5)

Ce™ + De™ 0< x<L oo (3.6)

it

e, (x,y)

With E( x,3,2) specified in its respective regions, Eq.( 3.6 ) is equal:

E(x,y,z) = 0 X =20 (3.62)
E,(x,y,2) < oo X e (3.6b)
Ez(x, y,z) continuous X =d (3.6¢)
H y(x,y,z) continuous X =d (3.6d)

And by matching the boundary condition at x = 4. The continuity of E, and H, lead
Eq.(3.4) and Eq.(3.5) to

k tank,d = ¢€h (3.7)

r

The plot of the positive real solutions of Eq.(3.6) implies that TM modes exist on the
grounded dielectric slab. It is shown in the plot of Eq.(3.6) [2] with any non-zero
thickness of dielectric slab, there is at least one propagating mode which is the TMj. This

is the dominant mode that has zero cutoff frequency.

The cutoff frequencies of all the TM modes are defined as

foom — n=0,1,2,3,....... (3.8)

Or

i
=
fl
=)
'I—'
N
Nt

—_— o n=0,1,2,3,....... (3.9)
2. €. —1

C?-,

- A5
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3.1.2 TE modes

Likewise for TE modes (E, = 0), the H, field for the two regions are

aiz+k§ h(xy) = 0 0<x<d (3.10)
\

J R (h(x,y) = 0 0L x<o (3.11)
x| A - '
\

Where H, (x,y,2) = h, (x,y)e""

Where K, is defined in Eq.(3.3) and 4 in Eq.(3.4), the general solution of Eq.(3.10) and
Eq.(3.11) 1s

hz(x,y) = Asink.x+ Bcosk.x 0<x=d (3.12)
h(x,y) = Ce™ + De™ 0<x< oo (3.13)
Likewise with the solution from H, (x,y} and the cutoff wave numbers of both region, by

matching the boundary condition at x = 0 and x = d. The field of E, and continuity H, lead

Eq.(3.12) and Eq.(3.13) to
—k, cotk,d = h (3.14)

Plotting out Eq.(3.14) which is a cotangent function (with positive real solutions) implied
that there is no TEg mode on the grounded dielectric slab. It is shown in the plot of
Eq.(3.14), that the first TE mode is TE;

The cutoff frequencies of the TE modes are

2n—1
fC = _(_rl_—).c._, n=0, 1, 2’ 3, ........ (3-15)
2d e, -1
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And the TE modes are

(2n-1)

———t n=0,1,2,3,....... (3.16)
4. e, —1

4
2

The propagation modes that exist for a grounded dielectric slab stated in [3-4] is said to
be TM (EVEN) and TE (ODD) such as TMy, TE, TM;, TE3;, TMy,.....

As for a dielectric slab without a ground plane, it will exhibit both TM (EVEN and ODD)
and TE (EVEN and ODD) modes {2,3]. If the dielectric slab without a ground plane has
twice the thickness as a grounded dielectric slab; their TM (EVEN) and TE (ODD) will

be the same.

3.2 Program simulation and results

From the theory in Section 2.5, computer simulations were carried out to check if they
could predict propagation modes along the surface of the dielectric substrate, in another

words along the x-y plane specified in Section 2.5.

By setting the parameters of the conducting elements of the array to be infinitely small.
The array will be almost nonexistent on the dielectric sheet, thus it should provide the

same response as a normal dielectric slab.

To simulate a dielectric slab with a ground plane, a very thin layer with a very high loss
tangent is introduced behind the dielectric sheet. Alternatively for its respective dielectric

slab without a ground plane, the dielectric thickness is doubled.

With the simulation of each frequency, the values of f are obtained at the occurrence of
each characteristic determinant minima. These £ are associated with each of the true
minima for the predicted propagation modes of the surface waves that exist on the

dielectric structure,
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For comparison, the example in [2] is used and the result for each mode is calculated.
The example given is a grounded dielectric slab with & = 2.55 and thickness d = 6mm,

plotting d / A, with 8/k, in Figure 3.2.

Applying Eq.(3.8) and Eq.(3.9) for TM modes (EVEN),

T™, f. = 0 Ghz; 4 _y
Ao
d

™,, f. = 20Ghz; — = 0.4016
Ao
d

™,, f. = 40Ghz; o 0.8032
0

Applying Eq.(3.15) and Eq.(3.16) for TE modes (ODD),

d

TE,, f. = 10Ghz; — = 0.2008
Ao
d

TE,, f, = 30Ghz; - = 06024
0

The comparisons between simulated results for the grounded dielectric slab and the

example from Pozar (2] shown in Figure 3.2 are in excellent agreement.
The simulated results for a dielectric slab without the ground plane (Figure 3.3a and

Figure 3.3b) with twice the thickness also show that its TM (EVEN) and TE (ODD) are in

excellent agreement with the example in [2].
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Bk

"o 0.2 0.4 0.6 0.8 1.0 1.2

* Predicted TM even
A Predicted TE odd
e TM even from Pozar [2]

mssmw  TE odd from Pozar [2]

Figure 3.2 : Simulation results for TM EVEN and TE ODD modes of a grounded dielectric slab
with £ =2.55, TM Even and TE odd from Pozar [2] example.
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1.6

1.5

14

ﬂ/ko 1.

0 0.2 0.4 0.6 0.8 1.0 1.2

d/ AO A Predicted TM modes

s TM even from [2]

Figure 3.3a : Simulation results for TM ODD and EVEN modes of a dielectric slab with thickness
24, TM EVEN from Pozar [2] of a grounded dielectric slab with thickness d.

1.6 “““““““““A“A‘A‘AAL‘AAL.n
aadhadiad
A

1-5 “A- / “““A‘AAA
A . “A‘
1.4 AL aAd
| TEe .,
87k, . /
a A

1'00 0.2 0.4 0.6 0.8 1.0 1.2

d/ Aﬂ A Predicted TE modes
= TE o0dd from [2]

Figure 3.3b : Simulation results for TE ODD and EVEN modes of a dielectric slab with thickness
24, TE ODD from Pozar [2] of a grounded dielectric slab with thickness d.
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3.3 Conclusions

This chapter looked into surface waves that exist on the dielectric slab with and without a
ground plane. From the theory in Section 2.5, the program simulation was carried out to

derive the propagation constant along the surface of the dielectric substrate.

By setting the parameters of the conducting elements of the array to be infinitely small.
The array will be almost nonexistent on the dielectric sheet and it provided the same
response as a normal dielectric slab. To simulate a dielectric slab with a ground plane, a

very thin layer with a very high loss tangent is introduced behind the dielectric sheet.

The TM/TE surface wave modes predicted by the simulation are compared with the

theoretical values from Pozar [2] verified the method and prediction accuracy.
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Chapter 4

Planar 2-D Array using Dipole and Cross Dipole

Conductors

4.0 Introduction

This chapter covers the investigation of dipoles and cross dipoles as the conductor
clements for the 2-D planar metallodielectric structure referred to in Chapter 2. It
incorporates the study of propagation and bandgap properties of surface waves present on

such structures with arrays printed on them.

First, the experimental set-up is presented with the choice of antenna and the method used
to study the propagation of surface waves along all direction over a large frequency

range.

The predicted and measured results of propagation in all planar directions for the dipole
and cross dipole arrays are also presented to validate the modelling. The objective is to

achieve an absolute bandgap where propagation is prohibited in all planar directions.
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Different lattice and element dimensions are also studied in order to design and control

the bandgap to any desired frequency.

Finally, the test of convergence is also investigated to ensure adequate Floquet modes and

basis functions are used for the predictions.

4.1 Practical Measurement

To study surface wave propagation on a dielectric slab over a wide range of frequencies, a

wide bandwidth antenna which is able to excite surface waves is needed.

For this research work, the antenna chosen is a Vivaldi antenna (Figure 4.1a) which is an
ultrawide bandwidth slow'leaky end-fire travelling wave antenna [1,2]. It is printed on a
dielectric slab made of RT-Duriod 5880 with a dielectric constant of 2.2 and has a
thickness of 1.125mm.

The Vivaldi antenna on the dielectric slab is a slow wave structure, and the wave
generated by it will be bound to the surface of the slab until a discontinuity or

nonuniformities appear where subsequently it will be radiated.

The feeding of the Vivaldi antenna is by a smooth transition from a microstrip line fo a
parallel strip line and then to a symmetrically flared out slot line, which is the antenna
element itself. The radiating part of the antenna is the inner edge of the antenna, which is
exponentially curved out. Therefore at different frequencies, different locations of the

antenna inner edge radiate. The distance between the radiating edge is constant with the

wavelength of the radiating frequency (Figures 4.1b,c).
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Figure 4.1: (a) Vivaldi antenna on RT-Duriod slab, thickness(s) = 1.125mm (b) Vivaldi antenna

radiating at a low frequency, (¢) Vivaldi antenna radiating at a higher frequency

It can be seen from Figure 4.1 that the E field component is skewed with respect to the
alignment of the antenna. With a small dielectric slab thickness, at low frequencies the
ratio of the radiating E field component to the thickness of the slab is large thus the skew
will be small (Figure 4.1b). But at high frequency, the skew angle will increase and give
high crosspolarisation. The Vivaldi antenna in this case is mainly a TE mode slow leaky
end-fire travelling wave antenna but the slew angle due by the finite thickness of the slab

enables it to pick up the TM mode with low efficiency.

The Vivaldi antenna was designed to operate in the range 6-20 GHz. Figure 4.2 shows
the plot of the reflection coefficient (S11) of the transition and the antenna. It has an

insertion loss of about —15 dB from 8.3 to 20 GHz. The gain was measured to be between

6 dB and 3 dB over this frequency range.
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The normalised radiation pattern measured for the E and H plane at 10 GHz is shown in

Figure 4.3.

1 L L ) L L 1 5 L L L L 1 1 1 1

5
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Figure 4.2: Reflection coefficient (S11) of the transition and the Vivaldi antenna.,
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Figure 4.3: Normalised radiation pattern measured for the E and H plane at 10 GHz.
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To examine surface wave propagation on a dielectric slab, two Vivaldi antennas are
printed directly opposite each other on the RT-Duriod slab (Figure 4.4). The transmitting
antenna will concentrate most of its field as surface waves bounded on the dielectric slab,
while the receiving Vivaldi antenna printed directly at the opposite end will measure the
surface waves propagated on the slab. Given that Vivaldi antenna is mainly a TE mode
slow leaky end-fire travelling wave antenna, it will transmit and detect mainly TE modes

only.

To investigate the surface wave propagation modes properties for the 2-D conducting
element arrays, they can be printed on the dielectric slab between the two antennas.
However, this technique only enables the study of the bandgap properties along one
direction from the transmitting to the receiving antenna with respect to the 2-D conductor
array. To study the bandgap properties in ail directions along the surface, either the
receiving antenna must scan in all directions by moving all around the array or the array
must be rotated on the slab while fixing the receiving antenna, The first method is not
feasible as it is desirable to keep the receiving antenna at a fixed distance from the
transmitter. Furthermore judging from the radiation pattern, the received power is
different at different angle position, even if the distance is kept the same. The latter

method would be a better method as the distance and positions of the antenna are fixed.

The latter method is achieved by printing the array on a very thin dielectric sheet, which
is then placed on the slab for measurement. To study the propagation in all directions with
respect to the array, it is achieved simply by rotating the dielectric sheet on which the
array is printed. The thin dielectric sheet used has a thickness of 0.05mm and a dielectric
constant of 3. The modelling program that was written to accommodate up to five
different dielectric layers can readily include this. It is also noticed that the dielectric
sheet has very little effect on the bandgap properties of the slab as it has a dielectric

constant close to the RT-Duriod used, and its thickness is small compared to the thickness

~ of the slab. This is also a cost effective method as it not only enables the study of

different propagation directions by rotating the array on the dielectric sheet, but it can
also provide measurements for different arrays just by printing them on different

dielectric sheets.
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Finally, the measurements presented in this Chapter are calibrated with the inclusive of
the cable and the two Vivaldi antennas printed on the RT-Duriod slab. Using the
HP8757A Network Analyser, the dynamic range is about + 60dB. The supply power is
5dbm; taking into the account of the cable loss and the two Vivaldi antennas performance
over this range of frequency, the measured s21 is about —25 dB. This limits the negative

dynamic range for the measurement to around —30 dB.

Figure 4.4b : Bottom side of a Vivaldi antenna
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4.2 Planar 2-D array using Dipole and Cross Dipole conductor

The first choice for the initial modeling is be the dipole conductor array. This is due to its

simple geometry and relatively straightforward computational demands.

From Section 2.5, the characteristic determinants of [Z] are needed to determine
propagation constants for all possible propagation modes that exist along the two
dimension plane of the array. For the calculation of Z;, Eq.(2.37) to form the matrix
(Zyn], assuming the width of the dipole element is small compared to the length and does
not contribute to the computing of the basis functions. Thus the current induced in the

dipole elements will be along its length. The bases functions are sinusoidal and in an

arbitrary direction ¥ [3].

h= = cos (4.1a)

n {——NR I

h® = sin (4.1b)

Where 711 is the number of the basis function

NR =

WL . - ;
- is the normalisation factor due to the orthogonality of these bases

For example, assuming five basis functions across the conductors (n = 5), which would

consist of cosine terms n = 1, 3, 5 and sine terms n = 2, 4. In Figure 4.5, the conductor is

aligned along the y-axis (§ = V).
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Figure 4.5 : Dipole with 5 bases functions along the y-axis, (a) cosine terms (b) sine terms

Assuming the width of the dipole to be small, thus the contribution to the basis functions
will come from the length of the dipole (which is position along the y axis). The Floquet

transform of Eq.(4.1a) and Eq.(4.1b) are

P o
h, = h,J (4.22)
h, = k)3 (4.2b)
ﬁncy = ﬁi_\'( ﬁny it any ) (43:‘.1)
h’f,‘r’ - -] ﬁi-‘f ( . F)”y + Ejn_v ) (43b)
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Where
Qe sin {(%+k",)§} e sin [(%—k )—:|
- nim L ;A nm '
—+ k, )— ——k. )=
( L ")2 ( ¥ § ")2
And
ol
sm —
- 2
m, W
ke —
* 5

For the cross dipole, 8 basis functions are applied, 4 basis functions will represent the
vertical conductor element as in dipole element case (Figure 4.5) and another 4 basis
functions will represent the horizontal element (Figure 4.6). The Floquet transform of the
basis functions for the horizontal element can be readily obtained from Eq.(4.2) and

Eq.(4.3) with changes made for the contribution comes from the x-axis.

(a)

Figure 4.6 : Cross dipole with another 4 bases functions representing the horizontal element,

(a) cosine terms (b) sine terms
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4.3 Dipole array results and discussion

The process of prediction is to scan the phase constants (f3) for each frequency and obtain
the respective characteristic determinant of the matrix [Z] in Eq.(2.37). The whole range
of the characteristic determinant for each frequency is plotted out. From the plot, all
minimas are recorded (see Section 2.5) and this is repeated for the whole range of
frequencies. Finally, the corresponding phase constants (f3) for all the true minimas are

plotted out against frequency to determine the location of the bandgap.

The process of determining the minima of the characteristic determinant Eq.(2.37) while
scanning the irreducible Brillioun zone is a tedious and time consuming task. The
condition for selection is that the minima should be of a sharp and deep nature. But
sometimes the minima might not be obvious. A few selection criteria have to be taken
into consideration to determine a true set of minima that represent a propagation mode.
First, the minima should be obvious and of a sharp and deep nature. Second, the set of
true minimas will shift as the frequency increases. Third, the set of true minimas will
continue when the Brillouin zone scan change directions. Fourth, when the Brillouin zone
scan ends in a closed loop, the set of minima must meet at the same frequency that the

scan began.

Finally, caution has to be taken to discard the minimas that correspond to the TEM mode
(Transverse Electromagnetic) which does not exist that will also appear as a true set of

minima in the simulation result.

The step size used for the frequency and phase constants (f3) have to be tested to ensure
that all the propagating modes are recorded. This is a case of accuracy at the expense of
computational time and resources. The usual step size used is 0.2 GHz and 0.00167 rad/m

but in cases of ambiguity that arise, finer step sizes are taken to extract the solution.

The dipole arrays are modeled with different lattice and element dimension. The array
discussed in this section has a lattice of periodicity D = 10mm and 8mm, the dipole length

L=7.5 mm and 6 mm and width W = 0.6mm.
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4.3.1 Dipole Dimension ( D = 10mm, L = 7.5mm )

The square lattice has its element spaced out periodically on two axes separated by angle
oo = 90°. The two arrays modeled have a dielectric constant of 2.2 and thickness(s)
1.125mm. Due to the symmetric and periodic properties of the first Brillouin zone and the
dipole element (Section 2.6.1), the shaded region is determined as the irreducible
Brillouin zone (Figure 4.7b). Propagation in this region is the same as the other 3

quadrants and this has been verified from the modeling. The maximum phase constant (3,

and f3,) in the direction of x and y-axis within the irreducible Brillouin zone is 7*_.
a

For the graph in Figure 4.7, the horizontal axis represent the phase constant of the
propagation mode in various directions, and the vertical axes are the normalised

frequency and frequency respectively.

For the dipole array in Figure 4.7, with €, =2.2, thickness s =1.125mm, the first mode

which is the surface wave starts at zero frequency. In the direction (I" - X) where the
plane of propagation is paralle! to the dipole; the surface wave has ceased at 11.6 GHz.
(reached a stop band). This is the beginning of the bandgap along the x-direction, which
starts at 11.6 GHz and ends at 30.5 GHz. As the propagation direction moves from x
towards the y-axis, the stopband narrows until it meets at 14.7 Ghz and in the y-direction,
it ceased to have a stopband. Thus from the modelling, it showed that there is no absolute

bandgap for this dipole array.

=B =
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Figure 4.7 : Band structure for the first few TE modes of the vertical dipole array, (a) direct

lattice, (b) reciprocal lattice and its first Brillouin zone L = 7.5mm, W = 0.6mm, D =

10mm, & = 2.2, Thickness s = 1.125mm, & = 90°.

Figure 4.8 shows the s21 measurements carried out with the Vivaldi transmitting and

receiving antennas in three different directions with respect to the dipole element array.

Assuming that the band gap is determined at a level of — 6 dB of the s21 measurement. At

0° which is propagation in the x-axis, the beginning of the bandgap is measured to be 11.7

GHz. As the propagation direction changes to 75° the bangap closes up to around 1 GHz,

from 14.5 - 15.5 GHz. Finally, at 90° (which is the y-direction) there is full propagation.
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Figure 4.9 shows the photo of the dipole array with the transmitting and measuring
Vivaldi antennas. It is observed that there is a gain of 5 dB before the stopband in the x-
direction, this is because the dipole array behaves as guiding slow wave elements for the
transmitting Vivaldi antenna. In the passband frequencies, it concentrates the fields on the
dielectric slab in the direction of the receiving antenna. Naturally, in the y-direction,
where the dipole is aligned along the propagation direction, this gain diminishes. A more

detailed explanation of the gain is included in Section 5.3.

From the measurement results, it agrees well with the modelling prediction that there is

no bandgap in the y-direction. The predicted bandgap of this array for all the planar

directions from the modelling also coincide well with the measurements.
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Figure 4.8 : Measurement results of the dipole array from Figure 4.7

(a) 0° (x-direction), (b) 75°, (c) 90° (y-direction)
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Figure 4.9 : Photo of a dipole array with the transmitting and measuring Vivaldi antennas

4.3.2 Dipole Dimension ( D =8mm, L = 6mm )

The second dipole array (Figure 4.10) has a square lattice of 8mm and dipole length of
6mm with the same dielectric constant and thickness as in Section 4.3.1. The bandgap
starts at 14.2 GHz in the x-direction for this array. Likewise the bandgap narrows as the
propagation direction changes towards the y-axis. Finally, when the propagation direction
is along the length of the dipole, there is full propagation. The reason that the dipole does
not have an absolute bandgap is because the width of the dipole is small, thus the
contribution will come from the length of the dipole. With respect to the length of the

dipole along the y-axis, the propagation in the x-axis will evidently achieve the largest

bandgap.
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It is observed that as the lattice and dipole dimensions reduces, the bandgap frequency

shifts up. The beginning of the stop band for the x-direction shifts up from 11.6 GHz to

14.2 GHz between these two dipole arrays. In the y-direction, the bandgap narrows and

end at 14.7 GHz and 17.9 GHz for the two dipole arrays. From these examples, different

arrays can be designed to control the desired frequency stopband for a dielectric slab.
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Figure 4.10 : Band structure for the first few modes of the vertical dipole array, (a) direct lattice,

(b) reciprocal lattice and its first Brillouin zone L = 6mm, W = 0.6mm, D = 8mm,

& =2, Thickness T= 1.125mm, ¢ = 90°.
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The measurements for this dipole array are also presented in three directions with respect
to the dipole element (Figure 4.11). At 0° where propagation is in the x-direction, the
beginning of the bandgap is measured to be at 14.3 GHz. At 75° where the band gap
narrows to 17.75 GHz and ends at 19.1 GHz before full propagation at 90° (y-direction).

The measurements agree well with the modeling of the bandgap frequency for this array

in all the planar directions on the plane.
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Figure 4.11 : Measurement results of the dipole array from Figure 4.10

(a) 0° (x-direction), (b) 75°, (c) 90° (y-direction)
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4.4 Cross Dipole Array Results and Discussion

The next obvious choice for a square lattice would be the cross dipole array to achieve an
absolute bandgap. The reason is that the horizontal arm of the cross dipole will account

for the propagation in the y-direction.

The cross dipole is also the natural choice for a square lattice as the symmetry properties
of the cross dipole and the first Brillouin zone of the square lattice is 45°. As the
propagation direction changes from x-axis to the xy-axis then to the y-axis, the beginning
of the bandgap will shift from (I" - X) to (I" - M) and back to (I" - X) again (Figure 4.12).
Hence it would only be necessary to explore only 45° of the first Brillouin zone to

determine the propagation in all directions along the plane of the array.

The cross dipole array presented in Figure 4.12 has an array periodicity of 10mm and the
cross dipole length is 8mm with the same dielectric constant (& =2.2) and thickness
(s = 1.125mm). From the modelling, the TE mode bandgap starts at 11.1 GHz in the x-
direction for this array. The bandgap narrows as the propagation direction changes
towards the xy-axis (45°) where it achieved a TE absolute bandgap of 7 GHz from 14
GHz to 21 GHz.

The graph also includes the TM modes, the predicted TM mode bandgap starts at 14 GHz
in the xy-direction and it shifts up to 14.5 GHz in the x-direction. The TM absolute
bandgap for this array is 3.1 GHz from 14.5 GHz to 17.6 GHz. It is observed that the TE
and TM bandgap overlap each other and thus achieve a common absolute bandgap from

14.5 GHz to 17.6 GHz, refer by the gray block in Figure 4.12.
In Figure 4.12, the long dash line represents the TMy mode above the TEM line (small

dash line) of the medium. The TMy mode here is in the fast wave region and it is

internally reflected within the substrate [6].
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Figure 4.12 : Band structure for the first few TE modes (lines) and TM modes (dash) of the cross

dipole array in a square lattice. (a) Direct lattice, (b) cross dipole dimensions (c) The

first Brillouin zone of its reciprocal lattice and its irreducible Brillouin zone, L = 8

m, W= 0.6mm, D= 10mm, & = 2.2, Thickness s = 1.125mm, ¢ = 90°.

The measurement results are shown in Figure 4.13. The stopband in the x-direction starts

at 11.25 GHz and it extends up to the measurement limit of 20 GHz. The beginning of

stopband frequency increases as the propagation direction moves towards the xy-

direction. It is noted that as the propagation direction moves from the xy-direction to the

y-direction, the start of the bandgap moves back to 11.25 GHz, which is the same as that

in the x-direction.
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From the measurement results in the xy-direction, the start of the bandgap begins at

around 14.2 GHz. It is observed that there is some sort of propagation starting from 18
GHz to 20 Ghz. in the xy-direction but the received power is low, from the prediction in
Figure 4.12, this would be the TM; mode. The Vivaldi antenna used is not a perfect TE

mode antenna, the slew angle caused by the finite thickness of the slab enables it to pick
up this TM; mode with a low efficiency.

Once again the measurements agree well with the modeling prediction regarding the
location of the stopband. The common absolute bandgap of both the TE/TM modes is
also observed to exist at around 14.5 GHz to 18 GHz. From the results, the maximum

gain in the passband is about 6 dB in the x-direction and 9.8 dB in the xy-direction.
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4.5 Testing for convergence

Since only a finite number of basis functions, N, are used (Section 2.5), it is important to
test for convergence of the solution. The purpose is to choose an appropriate number of
basis functions N to represent the problem [3]. Also, a sufficient number of Floquet
modes (p,q) are needed to included at least the main lobe of the spectrum. The ratio A =
PQ /N can be used as a figure of merit and it is recommended to keep the ratio fixed once

convergence is achieved.

The first convergence test is carried out by fixing the bases functions at N =5 and varying
the number of Floquet modes until there is little different in the results. In Figure 4.14, the
horizontal axis refers to the number of Floquet modes used and on the vertical axis, it
represents the beginning and end frequencies of its corresponding bandgap for the TE
mode. From the results for modeling a dipole, it can be observed that the bandgap
converges to a fixed range when the number of Floquet modes increase above 13. The
ratio A = 34 for 13 Floquet modes and 5 bases functions. As for a cross dipole, it was

found to have 4 basis functions is sufficient for each arm (A = 21).
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Figure 4.14 : TE bandgap of a dipole array with different number of Floquet modes for N = 3.
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The second convergence test carried out was to vary the number of basis functions with
the number of Floquet modes fixed. Floquet modes of 13 and 25 were used and as the
number of basis functions increased, the ratio A will decrease with 13 Floquet modes, the
results (Figure 4.15) deteriorated when the number of basis functions used increased
above 10

(A = 17). Whereas, using 25 Floquet modes, the result remains constant but it is very
computationally taxing. Also it is noted from Figure 4.7 that 5 basis functions would be

sufficient to approximate the solution for a dipole array.

30

Frequency GHz

0 T T T T

2 3 4 5 6 7 8 9 10 11 12
basis function - N

Figure 4.15 : TE bandgap with different number of bases functions; 13 Floquet modes (line),

25 Floquet modes (dash)
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4.6 Conclusions

For the predicted and measured results shown, by varying the element dimension and
lattice periodicity, the bandgap frequency can readily be changed. This means that there is
a possibility of designing and controlling the bandgap frequency [4]. In Section 5.3, an
investigation is carried out to study the effects of the element dimension have on the

bandgap.

In Section 4.2, the dipole array does not exhibit an absolute bandgap [5]. The dipole
element, that is a polarised element, produces the largest bandgap when the direction of
the incident field is perpendicular to its length. Thus the dipole is not suitable for
achieving an absolute bandgap for 2-D planar propagation. However, it is suitable to be
used as a 1-D “photonic crystal” where the propagation incidence is only restricted to one
direction that is perpendicular to the length of the dipole [6]. With the shape of a dipole
element, it can be packed closely together thus increasing the packing density. For
applications where there is a limited space available, the dipole array might be a good

choice to achieve the bandgap properties needed.

In Section 4.3, the cross dipole array does exhibit an absolute bandgap for all planar
propagation directions [5]. It can be chosen as a 2-D planar ‘photonic crystal’. However,
the beginning of the bandgap varies over a large frequency range as the propagation
direction changes. The next research effort will be looking into ‘stabilising’ the bandgap

so that the beginning of the bandgap does not vary with the direction of propagation.
Finally, the test of convergence was carried out to ensure enough Floquet modes and

basis functions are used for the modelling. From the modelling, the predicted bandgap of

the arrays agree well with the measurements in all planar directions.
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Chapter 5

Planar 2-D Array using Tripole Conductors and

Applications

5.0 Introduction

Tripole arrays were initially designed on hexagonal lattice for curved FSS. They have

revealed good reflection bandwidth and band spacing [1,2].

One disadvantage of using dipole element is that it is a singly polarised element hence it
does not produce the desired absolute bandgap. Although a cross dipole array does have
an absolute bandgap but the large variation of the TE bandgap starting frequency with
respect to the different propagation directions might make the cross dipole array
undesirable for certain applications. It is suggested that a tripole element would be a more
desirable element as it is not polarised only in one direction and it also possess the same

symmetric properties as the brillouin zone of a triangle lattice (Section 2.6.1).
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This chapter covers the investigation of a tripole as the conductor element for 2-D planar
metallodielectric structure. It incorporates both the prediction and measurement of

bandpass and bandgap properties of the surface waves presence on such structures.

Radiation patterns with regard to the Vivaldi antenna with and without the array are also

measured to study the bandgap properties in the E- and H-planes.

A more thorough study is presented for controlling the bandgap with different element

dimensions and dielectric constant,

Finally, the chapter covers some novel applications that were investigated for these

structures.

5.1 Planar 2-D array using Tripole conductor

The tripole consists of three dipoles arranged at 120° angularly with respect to each other
and connected together at the centre of the unit cell. Its is sufficient to use only one basis
function for each arm of the tripole for the modal analysis. The method used is to
calculate the basis function of one arm that is aligned at an arbitrary angle ¢ with respect
to the y-axis. By changing the angle @ to the angular position of each arm, all the three

basis functions of the tripole can be obtained.

Like modeling the dipole element, the width of the arms of the tripole is assumed to be

small and current only flows along the arm of the tripole. The basis functions [3] are

h: = L g LY (5.1a)

h /N_Rc 2L
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B = gin 2 Y (5.1b)
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Where n is the number of the basis function

W ;
NR = bl is the normalisation factor due to the orthogonality of these bases
2
The Floquet transform of Eq.(5.1a) and Eq.(5.1b) set of bases functions in an arbitrary
direction.
h. = ht (cosep—singi) (5.2a)
s 8 A . A o=
Iin = hm' (COS @y—sm@ )C) (5.2b)
And
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5.2 Tripole Array Simulation Results and Discussion

The method of obtaining the results and selection is described in section 4.3. The tripoles

are modeled with the similar parameters as the dipole array but in a triangular lattice with

a =60° [4].

Figure 5.1 shows a photo of a tripole array printed on RT-Duriod 5880 with the

transmitting and receiving Vivaldi antennas.

Figure 5.1: Prototype fabricated to measure propagation properties of a tripole periodic array

P
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The tripole modeled in Figure 5.2 has the lattice periodicity D = 8mm, length L = 3.5mm,
dielectric constant & = 2.2, Thickness = 1.125mm and & = 60°. The results show an
absolute stopband of 3.5 GHz, starting from 18.3 GHz. to 21.8 GHz. The TM stopband of
6.7 GHz starts from 18.3 Ghz to 25 Ghz and the TE bandgap of 6.6 GHz starts at 15.2
GHz to 21.8 GHz.

Comparing the tripole array to the cross dipole array (Section 4.4), the TE mode starting
bandgap frequency of the tripole array does not vary over a large range with the
propagation direction. This would be an advantage in an application that requires a

‘stable’ bandgap.

It is observed that the TMp mode which begins at 0 Hz is above the TEM line of the
dielectric slab until approximately 17.4 GHz in the (I" - X) direction and 17.3 GHZ in the
(I' - M) direction; then the TMy mode goes below the TEM line into the slow wave
region. The TM, mode above the TEM line of the dielectric slab yields very shallow
minima from its characteristic determinant. The TM mode in this fast wave region is

classified as transmitted wave off the substrate [5].

From the measurement (Figure 5.3), the TE bandgap starts at (4.2 GHz in the 30°
propagation direction (I" - X)) and moves up to 14.5 GHz at 0° propagation direction (I" -
M). The result does show the tripole is a more stable element for achieving TE bandgap

in all planar directions.

From Figure 5.3, it is also observed that there is some sort of propagation around 17.15
GHz in the 0° direction (I' - M) and 17.6 GHz in the 30° direction (I" - X); from the
modelling this would be the TMy mode. In addition, it is noticed that the TMy mode is
only being measured after it goes below the TEM line of the dielectric slab into the slow

wave region.

It is found that there is a gain of 6-8 dB before the stopband, likewise the tripole elements
have also become guiding elements for the transmitting Vivaldi antenna. In the passband
frequencies, it concentrates the fields in the direction of the antenna onto the dielectric
slab thus increasing its directivity. In fact, from the prediction in Figure 5.2, the TEg

surface mode is below the TEM line of the dielectric substrate. This means that the array
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is slowing the wave propagation down even more and effectively it is like increasing the
effective dielectric constant of the substrate. From the point of view of a higher dielectric
constant substrate, the fields are naturally more bounded to the substrate and therefore

increases its directivity and gain.
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Figure 5.2 : TE (line) and TM (dash) modes of a tripole array in a triangle lattice. (a) Direct
lattice, (b) Reciprocal lattice and its irreducible Brillouin zone, (c) L = 3.5mm, W =

0.5mm, periodicity D = 8mm, &. = 12, Thickness s = 0.5mm, & = 60°.
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Figure 5.3 : Measurement results of the tripole array from Figure 5.2,

(a) 0° (x direction), (b) 30° (xy direction)



Planar 2D array using Tripole conductors and Applications Chapter 5

5.3 Radiation Pattern of a Tripole Periodic Array on a Vivaldi Antenna

The tripole array used for the measurement of radiation pattern has a triangular lattice
(or = 60°) with the periodicity D = 12mm, Length L = 5Smm and it is printed on a RT-

Duroid dielectric slab with & =2.2 and Thickness s =1.125mm [6].
The predicted dispersion diagram of the tripole array is shown in Figure 5.4. The TE

bandgap begins at 10.4 GHz in the (I" - X) direction and increase to 10.7 GHz in the
(I" - M) direction. The TM bandgap start around 12.3 GHz for all directions.
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Figure 5.4 : TE (line) and TM (dash) modes of a tripole array in a triangle lattice (insert -
Reciprocal lattice and its irreducible Brillouin zone), L = 5mm, W = 0.5mm,

periodicity D = 12mm, €, = 12, Thickness s = 0.5mm, ¢ = 60°.
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From the measured results in Figure 5.5 which are of good agreement with the prediction,

the TE bandgap begins at 10.3 GHz in (I" - X) direction and increases to 10.7 GHz in (" - ‘
M) direction. The TM bandgap starts at 12.2 GHz in (I' - M) direction and increases to

124 GHz in (I" - X) direction.
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Figure 5.5 : Measurement results of the tripole array from Figure 5.4,

(a) 0° (x direction), (b) 30° (xy direction)
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The radiation patterns presented for comparison are of a Vivaldi antenna with and without
a tripole periodic array. The setup of radiation pattern measurement is shown in Figure
5.6a. The displayed result shows the radiation patterns for 4 frequencies before and after

the bandgap in the E- and H-planes.

In Figure 5.6 b and c , the radiation pattern is before the stop band at 10 GHz. Both the E-
and H-planes of the antenna with the tripole array show the radiating properties of a leaky
wave antenna. The main beam indicates the power is concentrated towards the direction
that the antenna is pointing and having many small side lobes all round. This explains the

gain experienced before the bandgap mentioned both in this chapter and in Chapter 4.

In Figure 5.6d, using a X band horn placed 50 inches (117 cm) in the direction of the
antenna, the system is normalised from 8.2 to 10.5 GHz. With the tripole array on, the
stopband begins at around 10.2 GHz. The tripole is in the position where propagation is in
the (I" - X) direction and it exhibits gain from 8.2 to 9.4 GHz with a maximum gain of 3.5
dB at 8.4 GHz.

Figure 5.6a: Photo of the setup for radiation pattern measurement
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Figure 5.6b : H-plane radiation pattern at 10 GHz
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8.200 8.775 9.350 9.925 10.500
frequency, GHz.

Figure 5.6d: Gain measurement for a tripole periodic array on a Vivaldi antenna.
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Figure 5.7 shows radiation pattern at the beginning of the bandgap at 10.5 GHz. In the H-
plane, the bandgap has just been formed with a suppression of 22 dB at an angle of + 10°
in the direction of the antenna. The energy is reflected back towards the feed. From the

measurement, the energy seems to concentrate at + 50° behind the feed.

The E-plane measurement is on the same plane as the dielectric slab where the antenna
and tripole array is printed. On this plane, the tripole array that is printed in front of the
transmitting antenna is expected to stop any propagation in front of the antenna. From the
measurement, the suppression extends to a much wider angle in the direction of the

antenna.

Figure 5.8 presents the measurements at 11 GHz where the TE bandgap is well
established. The suppression in the H-plane has extended to £ 20° and in the E-plane the
suppression is almost + 90°. Comparing with the radiation pattern in Figure 5.7, there are

signs that the main beam is moving from either side of the antenna towards the front.

Figure 5.9 presents the radiation pattern at 11.6 GHz where, in the H-plane the main beam
has moved to + 45° in the direction of the antenna. Comparing the E-plane for 10.5 GHz,
11 GHz and 11.6 GHz, it is evident that main beam has moved in the same direction as in
the H-plane but at a slower rate. Likewise due to the position of tripole array in front of
the antenna, the E-plane has exhibited suppression at a large angle in the direction of the

antenna.

From the observation made from the radiation patterns, when the bandgap occurs the
energy is prohibited from propagating in the direction of the tripole array; it is reflected
and radiated as leaky waves at an angle to the dielectric slab. The main beam of the leaky
waves also moves as the frequency increases which is a characteristic of a leaky wave
antenna. Since for a certain design of the array elements can yield a large bandgap and
design requirements can be set to not only stop the propagation in an unwanted direction,
but it could also control and steer the reflected beam by varying the element dimensions

by a little.
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Figure 5.7b : E-plane radiation pattern at 10.5 GHz
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Figure 5.8a : H-plane radiation pattern at 11 GHz
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Figure 5.8b : E-plane radiation pattern at 11 GHz
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5.4 Designing the Bandgap Frequency

The bandgap exhibited by such metallodielectric arrays is relatively large and usually
more than adequate to cover the range of frequencies an application might require. An
important point is where the bandgap begins and how can one design this. As an example,
this section covers the effect that the tripole length dimension, dielectric constant and
substrate thickness have on the absolute TE bandgap starting frequency. However in

some applications, it might be essential to operate in the common TE and TM bandgap.

As observed in the tripole arrays examples given in this chapter, the absolute TE bandgap
frequency is governed by the M point of the Brillouin zone which is propagation in the

(" - M) direction with respect to the tripole orientation shown in Figure 5.1b.

Figure 5.10 shows the beginning of the TE absolute bandgap with respect to different
tripole arm lengths for different dielectric constant substrates. The triangular lattice
periodicity is fixed at 12mm and the substrate thickness is 1.125mm. Various arm lengths

of the tripole element on different dielectric constant substrates are considered.

It is observed that for higher dielectric constant the TE absolute bandgap shifts down in
frequecy for a fixed tripole length; in fact as expected at a higher dielectric constant, the
modes tend to ‘compress’ down towards lower frequencies. From the prediction, it also

suggested that a larger /D ratio would give rise to a larger bandgap [7].

Using trendline equations to describe the curves, one can easily design the beginning of

the TE bandgap with respect to different tripole dimensions using such equations:

For £,=2.2, wherex=L/D and D=12mm

TE bandgap (absolute) = 195.14x” - 200.6x? + 42.441x +13.652
For &= 3,
TE bandgap (absolute) = 214.69 x> - 21077 x* +42.857 x +12.941
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For €.=4,

TE bandgap (absolute) = 175.94x> -166.73x* +27.966 x +13.522

Por &-<5,;

TE bandgap (absolute) = 153.85x> -142.37 x* +20.514 x +13.388

For €,=0,

TE bandgap (absolute) = 139.99x> -127.84 x> +16.708 x +12.974

17

15

-
w

frequency, GHz

0.1 0.2 0.3 0.4 0.5
L/D

Figure 5.10 : Beginning of the TE absolute bandgap with respect to tripole’s arm length and

dielectric constant
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In Figure 5.11, different substrate thicknesses and dielectric constants are modeled for a
fixed lattice periodicity (D = I2Zmm) and tripole arm length (L = 5Smm). From the
observation, the TE absolute bandgap shifts down as the thickness increases and tends to

‘stabilise’.
Likewise, using trendline equations to describe the curves:

For §,=2.2, where Thickness x in millimeter and D = 12mm, L = 5Smm

TE bandgap (absolute) = - 0.0012x +0.0258x* -0.216 x> +0.9x% +1.974x+12.1

For £.= 3,

TE bandgap (absolute ) = - 0.0014 x> +0.0294 x* -0.2512 x> +1.07 x% + 241 x+11.49

For €.=4,

TE bandgap (absolute) = - 0.0017x" +0.037x" -03144x> +133x% +2.96x+11

The work achieved in this part of research has shown that with different substrate
properties, the physical dimensions of the elements can be used to design and control the
bandgap start frequency. Using the trendline equations as listed above could easily predict
the beginning of the bandgap but this would [imit to a tripole array on triangular lattice

with fixed periodicity of 12mm as studied in this case.
Much work would be needed to be done as to the design requirements needed to be taken

into consideration such as different lattices, different elements and different elements

orientations to fully design the location of the absolute bandgap.
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Figure 5.11: Beginning of the TE absolute bandgap with respect to substrate thickness and

dielectric constant
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5.5 Some Applications Investigated

5.5.1 Application for Tripole Array

Patch antennas were one application area investigated [8,9]. It is known that the main
loss mechanism of a patch antenna is surface wave loss. This surface wave loss is mainly
due to the TM, mode, which has no cutoff frequency. The objective is to enhance the
performance of the patch antenna by surrounding it with an array that has an absolute
bandgap in the region of the transmitting frequency. This 2-D periodic array will prevent
any TMg mode surface wave at the transmitting frequency propagating in any direction
along the surface of the dielectric slab. Therefore as desired, more energy is radiated from

of the patch antenna.

Unlike in Chapter 4 and in this Chapter, the patch antenna is printed on a dielectric slab
with a ground plane. It was shown in Chapter 3 that the computer model can incorporate
this easily by reducing the thickness of the dielectric slab by half and including a very

thin layer behind the slab with a very high loss tangent, to simulate a ground plane.

Different patch antennas are printed on 3 commercially available materials with different
dielectric constants, RT-Duroid, MC3D and FR4. Tripole elements are chosen for the
arrays because of its ‘stable’ and absolute bandgap properties (Section 5.2). All the
arrays are designed to have the transmitting frequencies fall within their absolute TM

bandgap region.

In Figure 5.14a, the patch antenna is printed on RT-Duroid 5880 with a dielectric constant
2.2 and a thickness of 1.125 mm. It operating (resonant) frequency is at 12.07 GHz with a
bandwidth of 0.2 GHz at -10 dB, and it establishes a measured reflection coefficient (s11)
of -14.9 dB. With the tripole array surrounding it, the operating frequency shifts a little to
12.11 GHz with a measured reflection coefficient (s11) of -25.4 dB. Generally, a patch
antenna has a very narrow frequency bandwidth and it is often desirable to increase this.
From this design, the tripole array has improved the reflection coefficient by -10.5 dB and
the bandwidth has increased to 0.25 GHz (25% increment) at —10 dB.

-96 -



Planar 2D array using Tripole conductors and Applications Chapter 5

Figure 5.14a : Patch antenna printed on RT-Duriod with and without tripole array
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Figure 5.14b : Reflection coefficient (s11) of Patch antenna printed on RT-Duriod with and

without tripole array
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Figure 5.15a shows a patch antenna printed on a MC3D with a dielectric constant of 3.53
and thickness of 1.575 mm. Its operating frequency is 16.64 GHz with a bandwidth of 0.8
GHz at -10 dB and it shows a measured reflection coefficient of -21.9 dB. With the
tripole array surrounding it, the operating frequency shifts slightly to 16.6 GHz with a
measured reflection coefficient of -31.9 dB. From this design, the array has improved the

reflection coefficient by -10 dB and the bandwidth has increased to 0.9 GHz at —10 dB.

Finally, Figure 5.16a shows a patch antenna printed on a FR4 with a dielectric constant of
4.88 and thickness of 1.6 mm. Its operating frequency is at 12.41 GHz with a bandwidth
of 0.36 GHz at -10 dB and it shows a measured reflection coefficient of -22.7 dB. With
the tripole array surrounding it, the operating frequency shifts a little to 16.6 GHz with a
measured reflection coefficient of -38.2 dB. From this design, the tripole array has
improved reflection coefficient by -10 dB and the bandwidth has increased to 0.43 GHz at
-15.5 dB. For the other resonant which is another harmonics, it is introduced by the

spurious effect due to the feeding method.

'wPatch ante;uia Satdantapywih Im[zmr.ovemen'tx
o Tripole array o o
Dieiectric Operating | Reflection Bandwidii Reflection Eiddsdm Reflection | Bandwidth
S frequency coeff. (GHz) coeff. (GH2) coeff. Increment
(GHz) (dB) (dB) (dB) (%)
RT-Duriod | 12.07 -14.9 0.2 -25.4 0.25 -10.5 25
‘Mc;m_ _:' 16.64 -21.9 0.8 -31.9 0.9 -10 12
FR4 1241 -22.7 0.36 -38.2 0.43 -15.5 194

From the results summarised in the table above, it can be seen that with the tripole arrays
there is an apparent improvement in the performance of the patch antenna by eliminating
the TMy mode surface waves. Another positive effect from the inclusive of tripole array

was that it increases the bandwidth of the patch antenna.

It is known that for patch antenna with higher dielectric constant substrate, the surface
wave losses become more apparent and thus the patch antenna become highly inefficient.

Arrays of such can be design around the patch antenna to improve their performance. As
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a comparision with the design in Qian [8] which needed vias to connect the square pads

(the array) to the ground, the tripole array option might be easier to fabricate to achieve

desired improvement.

| ===— Patch only
30| == PBG-Patch

O D S S . S, s, e | S 18
15.5 15.7 15.9 16.1 16.3 16.5 16.7 16.9 171 17.3 17.5
frequency, GHz

Figure 5.15b : Reflection coefficient (s11) of Patch antenna printed on MC3D with and without

tripole array
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Figure 5.16b : Reflection coefficient (s11) of Patch antenna printed on FR4 with and without

tripole array
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5.5.2 Application for Dipole Array

Another application presented, uses a periodic array of conducting dipoles which is a
form of 1-D ‘photonic crystal’. The propagation incidence is only restricted to one
direction, which is perpendicular to the length of the dipole. The advantage is with the
shape of a dipole element, it can be packed closely together thus increases the packing

density and reduces the size of the device.

Here we discuss the bandgap arising from a two dimensional array of conducting dipole
elements printed on a grounded dielectric substrate. Figure 5.17a shows a 50Q microstrip
line printed on top of a double sided polyester dielectric sheet (& = 3) with a thickness of
0.071 mm. Beneath the dielectric sheet, a dipole periodic array is printed with the dipole
length L=15mm, width w=Imm and a periodicities Dx and Dy of Smm and 16.5mm
respectively.

The dielectric sheet is pasted on an RT-Duroid 5880 with dielectric constant and
thickness of 2.2 and 1.125 mm respectively. For the electromagnetic analysis, EMSighITM
(Applied Wave Research) [10] has been used. The effect of the connectors was removed

in the simulation by de-embedding it to about on guided wavelength (at 10 GHz) from the

edge of the substrate.

Figure 5.17b shows the predicted and measured S21 of the microstrip line with the dipole
array designed to gives a centre bandgap frequency of 10 GHz. The predicted bandgap of
this structure is from 8.9 to 12 GHz and the measured bandgap is from 8.9 to 12.9 GHZ.
Regarding the stopband, the measured bandgap has a width of 40% between the —10 dB

points, whereas in the predictions is about 30%.
From the results in Figure 5.17b, the dipole array can be used as 1-D planar ‘photonic

crystai’ and the tripole array as 2-D planar ‘photonic crystal’ for filtering purpose in

microstrip technology [11,12].
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Figure 15.7a photograph of the geometry of a microstrip line on a dipole array
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Figure 5.17b : Insertion loss (s21) of the microstrip line with the dipole array
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With the results observed in Figure 5.17b, the microstrip line is replaced with a 5 GHz
resonator. It is known that a resonator has harmonic frequencies multiple to its
fundamental frequency. The objective in this section is to suppress the first harmonic (10

GHz).

The resonator in Figure 5.18a has a conducting dipole array with parameters as in Figure
5.17a. The dipoles underneath the resonator have been deliberately removed in order to
alleviate any strong coupling that may adversely degrade its performance. The effects of
having dipoles under the resonator will cause the fundamental resonant to shift down in
frequency and the higher harmonics will not be absolute multiples of its fundamental

frequency.

In Figure 5.19a (predicted) and 5.19b (measured), the dipole array was able to eliminate
the first harmonic (10 GHz) but it is accompanied with a 2 dB degradation of the insertion
loss at 5 GHz. However, it can be observed that the resonator with the dipole array has a
higher Q factor by about 30% as compared with the conventional half-wavelength

resonator [ 13].

In order to improve the band gap near 9 GHz, a pragmatic approach has been taken
whereby two dipole arrays were situated either side of the resonator (Figure 5.18b).
Varying the dimensions of the dipoles by about 15%, two distinct but close resonances
(near 10 GHz) appear and thus an increase of the bandgap is obtained. The Q-factor has
also improved by about 30% with a 3dB degradation of the insertion loss at 5 GHz

compared with the conventional half-wavelength resonator (Figure 5.19b).

With regards to the single resonator, a narrower Q factor has been observed as a result of
the loading of the dipole array. In addition, its first harmonic has been eradicated by
placing the band gap near 10 GHz. These kind of resonant structures are expected to find
applications particularly in low phase noise microwave and mm-wave oscillators, highly

selective mm-wave filters [14], active FSS and antennas.

- 103 -



Planar 2D array using Tripole conductors and Applications Chapter 5

Figure 5.18a : Photograph of the geometry of a microstrip line and resonator with a dipole array.

Figure 5.18b :Photograph of the geometry of a microstrip line and resonator with 2 different

dipole arrays.
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Figure 5.19a :Predicted insertion loss of a single resonator and with 1 and 2 types of dipole arrays.
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Figure 5.19b :Measured insertion loss of a single resonator and with 1 and 2 types of dipole arrays
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5.6 Conclusions

The bandgap and bandpass properties for a tripole array on a triangular lattice have been
assessed in this chapter. It incorporated both predictions and measurements of the
propagation and bandgap properties and these were found to be in good agreement with

each other.

The tripole conductor periodic array was shown to produce considerable large (TM and
TE) bandgaps. This is one of the properties of Metallodielectric Photonic Crystals
(MDPC) and they are known to exhibit much larger electromagnetic stopband than the
photonic crystal [15]. The tripole array also posses large a overlapping between the TE

and TM stopband which is the absolute bandgap on a two dimensional plane.

In the passband, the gain experienced before the bandgap is due to the tripole array. The
conducting tripoles act as guiding elements for the transmitting antenna and thus
concentrates the fields in the direction of the antenna. The radiation pattern confirms the

narrowing of the main beam at the passband frequencies [16].

The radiation patterns are also presented in the E- and H- planes for frequencies before
and after the bandgap. It is observed that when the bandgap occurs the energy is
prohibited from propagating in the direction of the tripole array; it is reflected and
radiated as leaky waves at an angle to the dielectric substrate. The main beam of the leaky
waves tilts as the frequency increases, which is a characteristic of a leaky wave antenna.
Since a typical tripole array can yield a large bandgap, design requirements can be made
to not only stop the propagation in an unwanted direction but it could also control and

steer the reflected beam by varying the element dimensions.
The effect of different dielectric constants and physical dimensions has also been

examined and these properties could be used to design and control an array for different

bandgap frequencies and different ranges of stopbands.
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Two applications were investigated to try and utilise the benefits of such periodic
conductor arrays. First, the efficiency of a well-designed patch antenna depends mainly
on the surface wave losses to the substrate. The tripole array that has an absolute bandgap
in all planar directions was chosen to eliminate the TMy mode surface waves and thus
increases the patch antenna efficiency. Another positive effect is that the tripole array has

increased the bandwidth of the patch antenna.

The other application examined a microstrip line and a resonator on a dipole array. Since
the main propagation is restricted in one direction along the microstrip or resonator, a
dipole array would be sufficient. Furthermore, due to the physical dimension of the
dipole, it can be easily packed into a small area, an important factor for MMIC
fabrication. It is illustrated that it is able to eradicate the first harmonic of the resonator.

Also, a narrower Q factor has been observed as a result of loading it by the dipole array.
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Chapter 6

Conclusions

This thesis has described the theory and practical demonstration of a novel kind of planar
‘photonic’ bandgap crystal substrate that prohibits any propagation of electromagnetic

fields in all planar directions within the bandgap frequencies.

The method of modeling has been adopted from past ESS programs for modal analysis of
scattering from a single layer infinite array. Changes were made for the first time to the
computer modeling to enable calculation of propagation modes in the plane of the array.
Selection criteria are established to enable the analysis of propagation modes along the
plane of the array. The purpose is to find the ‘photonic’ bandgap where propagation is
prohibited in all directions in the array’s plane. Such array structures can also be termed

as ‘Planar Metallodielectric Bandgap Crystals’ (MPBG).

Modelling results for a dielectric slab and a grounded dielectric slab have successfully

predicted all the propagation modes that exist on the plane of the array.
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The ‘Photonic’ bandgap for dipole, cross dipole and tripole arrays were investigated and
the effects of lattice configuration, dielectric constant and element parameters on the

bandgap width and location have also been studied.

The dipole array has exhibited a bandgap over a wide range of propagation direction but
it does not have an absolute bandgap due to its singly polarised nature of the dipole
element. However, due to its physical shape (small width size) it can be packed closely
together and thus increases the packing density. It can be used as a planar 1-D ‘photonic’

crystal where the only propagation is perpendicular to the length of the dipole.

The cross dipole does demonstrate an absolute bandgap in all planar directions. It can be
chosen as a 2-D planar ‘photonic crystal’ for a square lattice. However, the beginning of
the TE bandgap tends to vary over a large frequency range as the propagation direction
changes. Futher research effort looks into ‘stabilising’ the bandgap so that the beginning

of the bandgap does not vary with the direction of propagation.

The tripole was chosen because it is not a linearly polarised element and it proves to
provide a ‘stable’ bandgap, as its starting bandgap frequency is almost constant with
respect to all propagation directions. The properties of the tripole array were investigated
in more detail; this included the gain demonstrated in the passband frequencies and the
radiation patterns in E and H planes in both the region of the passband and the stopband
[1-2].

From the modeling results and practical demonstrations presented in this thesis for doubly
periodic conductor arrays, the propagation and bandgap properties have been shown to be

in good agreement with each other.
Different dielectric constants and physical dimensions can be designed to vary the

stopband location and width; these properties could be used in as a means of controlling

bandgap start frequencies and range [3-4].
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Two applications were investigated for the benefits of having such conductor periodic
arrays. The tripole periodic array is chosen to eliminate TMy mode surface waves and

thus enhance the patch antenna performance and bandwidth [5].

The other application examined a microstrip line and resonator on the dipole array [6,7].
From the microstrip example, a stopband was revealed with respect to the dipole array
used. For the resonator, it is illustrated that it is possible to eradicate the first harmonic

and produce a narrower Q as a result of loading by the dipole array.

Possibilities of future research efforts might cover the modeling and study of doubly
periodic aperture arrays. Such arrays can be used as PBG ground plane in applications for

microwave circuits [8,9].

Future research efforts might also include the modeling of doubly periodic arrays in
multiple layers to produce periodicity in three dimensions. This will be a form of 3-D
photonic crystal and at frequencies in its absolute bandgap region, it will prohibit

propagation in all directions [10].

Other possible experiments might include placing the array in a waveguide and using its
bandgap for filtering purposes [11]. The array could also be used to channel and focus the

radiating beam of an antenna in certain direction thus increasing its intensity [12,13].
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