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Abstract 

Fe-14Cr pre-alloyed powder and pure Hf powder were mechanically alloyed to produce 

powder with nominal composition Fe-14Cr-0.22Hf (wt. %) that was consolidated by the spark 

plasma sintering (SPS) technique in order to investigate the ability of Hf to produce a 

nanometric dispersion of oxide particles in a ferritic matrix. Comprehensive microstructural 

and mechanical characterisation of the as-milled powder and the consolidated material was 

performed using electron microscopy, X-ray diffraction, atom probe tomography and 

indentation techniques. It was shown that Hf additions can effectively produce, by internal 

oxidation, a fine scale dispersion of Hf-O nanoparticles in the consolidated material. A 

uniform grain structure was produced in the alloy. Although the nanoparticle dispersion was 

not homogeneous at the finest scale, the resulting dispersion strengthening contributed 
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significantly to the hardness. According to these results, internal oxidation of reactive 

elements rather than direct addition of oxides may offer additional opportunities in the design 

and development of oxide dispersion strengthened steels. 
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Introduction 

In the development of advanced materials for fission and fusion applications, oxide dispersion 

strengthened (ODS) steels are amongst the most promising structural materials [1-4]. Their 

microstructural stability under conditions of high temperature and high stress, resistance to 

radiation damage and creep resistance, have been extensively demonstrated [5-9]. This 

performance derives from a homogeneous dispersion of stable nanoparticles in the steel 

matrix that prevents dislocation motion and grain boundary sliding at high temperature [10]. 

These nanoparticles can also act as sinks for point defects and He bubbles under irradiation 

conditions in a nuclear reactor environment [11, 12], which underpins their excellent radiation 

resistance. 

 

The manufacturing of ODS steels has been widely studied, with different combinations of 

processing routes investigated. The most common manufacturing approach usually starts with 

mechanical alloying of elemental or pre-alloyed powders with a low fraction of oxide 

particles (typically Y2O3) with the aim of providing a homogeneous dispersion of oxide 

nanoparticles in the final consolidated material [13-19]. The use of the spark plasma sintering 

(SPS) technique [20] to achieve the final densification of the milled powder, has increased in 

the last years, as it significantly shortens the time required for consolidation to a few minutes, 

compared with the several hours required for other sintering techniques such as hot isostatic 
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pressing (HIP). In SPS, high current (1000  5000 A) and low voltage (<10 V) DC pulses and 

a uniaxial pressure (up to 100 MPa) are applied to a powder constrained in a graphite mould, 

which is heated at a high rate (up to 2000 °C/min) towards a target holding temperature. 

Isothermal holding times are typically 3  20 min and, as the current flow stops, the system 

rapidly cools down. A wide range of alloys, including TaC [21], transparent Y2O3 [22], Ni 

[23], Al2O3 [23], Ti-6Al-4V [24] or W-Ni-Fe [25], have been successfully consolidated by 

SPS. The effectiveness of this technique in the manufacture of ODS alloys has also been 

confirmed [26-29]. 

 

Hafnium has diverse potential uses in nuclear power reactors, such as thermal neutron 

absorber in nuclear energy control rods or as a specialized refractory material in elemental 

form or as hafnium oxide [30]. There are only limited reports of the production and 

characterization of Fe-Cr-Hf powder so far, but the effectiveness of Hf additions in promoting 

a dispersion of nanoparticles in mechanically alloyed and annealed powder has been 

suggested [31-33]. A recent study [34] has also reported effective irradiation resistance 

enhancement of a Fe-Cr-2Hf (wt.%), cold compressed after mechanical alloying and powder 

annealing, under 200 keV He irradiation at 500 °C by reducing void swelling, which is 

significant for potential nuclear uses of this alloy type. In this work, Hf powder was added to 

Fe-14Cr (wt. %) pre-alloyed powder in order to evaluate its capacity to form a fine dispersion 

of nanoparticles in a ferritic alloy matrix and to consider the resulting performance with 

respect to more conventional ODS steels that typically contain Y2O3 [15, 16, 35]. A 0.22 wt. 

% concentration of Hf in the alloy was selected to produce a final oxide fraction comparable 

with the 0.25Y2O3 (wt. %) content in ODS alloys previously prepared and characterised by 

authors of the current work [28, 36]. Addition of Hf to steel alloys already containing Y2O3 

has been shown to promote the formation of finer oxides with respect to the original ODS 
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alloy [37]. In this work, the effectiveness of Hf addition in promoting a nanometric dispersion 

of precipitates in a Fe-14Cr (wt. %) alloy was compared with the widely studied use of direct 

Y2O3 additions. 

 

Materials and Methods 

Argon-atomised Fe-14Cr (wt. %) pre-alloyed powder (< 150 m in diameter, Aubert & 

Duval, France; composition details in Table I) and elemental Hf powder (-325 mesh, 99.6% 

pure, Alfa Aesar, UK, product number 10201) were used as starting materials to produce 

mechanically alloyed powder with nominal composition Fe-14Cr-0.22Hf (wt. %) (referred to 

as 14Hf hereafter). The powder mixture was mechanically alloyed in a planetary ball mill 

(Fritsch Pulverisette 6) for 60 h at 150 rpm in Ar atmosphere. AISI 52100 steel balls were 

used in the milling process at a ball-to powder ratio of 10:1. The grinding media were 

contained in a 500 ml chrome-steel bowl. The milled powder was loaded into a graphite 

mould lined with graphite paper in an Ar-filled glove box for SPS consolidation. 

The SPS process was performed at FCT Systeme GmbH (Rauenstein, Germany) using a 

uniaxial pressure of 50 MPa for 5 min. The hold temperature of 1150
o
C was reached at a 

heating rate of 100
o
C/min to produce a consolidated disk of  20 mm diam.  5 mm thick. 

Further details of the SPS process can be found in [28]. 

 

The milled powder was characterised by scanning electron microscopy (SEM), energy 

dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), nanoindentation and atom 

probe tomography (APT) techniques. The powder sample was prepared for characterisation 

by embedding it in a conductive phenolic resin and polishing with SiC paper and colloidal 

silica suspension. The consolidated sample was characterised by SEM, EDS, synchrotron X-

ray diffraction, electron back-scattered diffraction (EBSD), Vickers hardness measurements, 
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transmission electron microscopy (TEM) and APT. Different samples from the consolidated 

disk were cut, ground and polished with SiC paper and colloidal silica suspension (0.06 m in 

size) for direct characterisation or for further TEM and APT sample preparation. 

 

Microstructure and compositional imaging was performed in a JEOL JSM5510 scanning 

electron microscope equipped with an Oxford Instruments silicon drift detector (SDD). AZtec 

EDS analysis software was used for data processing. Standard -2 X-ray diffraction 

measurements were obtained in a Philips PW1710 diffractometer, using Cu K wavelength 

radiation (E = 8.048 keV) at a voltage of 35 kV and a current of 50 mA. The scans were 

registered in the range 2 = 20
o
 – 120

o
 in continuous mode using a step size of 0.02

o
 and a 

scan step time of 1.25 s. 

 

14Hf consolidated by SPS was mounted on an alumina holder and scanned by synchrotron X-

ray diffractometry on beamline I11 with a wavelength of 82.5770 pm at the Diamond Light 

Source (Harwell Science and Innovation Campus, Didcot, UK). EBSD was conducted in a 

JEOL JSM6500F SEM operated at 20 kV using a probe current of  10 nA; areas of 8  12.5 

m
2
 were mapped in a square array with a step size of 0.1 m. TEM was conducted in a 

JEOL 2100 equipped with STEM-EDS operating at 200 kV and in a JEOL 3000F operating at 

300 kV. Samples suitable for TEM observation were prepared by the FIB lift-out technique 

combined with flash-polishing [36]. 

 

APT analysis was carried out in a CAMECA Instruments LEAP® 3000X-HR operating in 

laser pulsing mode. The specimen base temperature was around 50 K and the laser energy 

was 0.4 nJ at a repetition rate of 200 kHz. CAMECA IVAS® 3.6.12 commercial software was 

used for data analysis and reconstruction. Samples suitable for APT characterisation, i. e. 
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needle shaped with an end radius < 100 nm, were prepared following two preparation routes: 

FIB lift-out and electropolishing. Samples from the milled powder embedded in phenolic 

conductive resin were prepared by the FIB lift-out technique [38]. The instrument used for 

APT and TEM sample preparation by the lift-out method was a Zeiss Auriga 40 FIB/SEM. 

Small bars with dimensions 0.5 mm 0.5 mm  20 mm were cut, ground and polished from 

the SPS consolidated disks. Each bar was submitted to a standard electropolishing process 

[39]: first, the specimen was repeatedly dipped into a layer of electrolyte (25 % vol. perchloric 

acid + 75 % vol. acetic acid) on top of a perfluorinated polyether (PFPE) inert liquid 

(Galden
TM

 solution). A gold wire was used as counter electrode and a DC voltage of 15 V, 

gradually reduced to 10  8 V, was applied until the bar necked in the immersion region and 

split in two parts. Each part was refined to the final shape, i. e. having a final radius below 

100 nm in the needle apex, by dipping the sample through a gold loop holding a drop of a 

milder electrolyte (2% vol. perchloric acid + 98% vol. 2-butoxyethanol) and applying a DC 

voltage of 8  4 V. 

 

Nanoindentation measurements were made using a Nanoindenter XP (MTS, TN, USA) with a 

Berkovich diamond indenter calibrated against fused silica. The measurements were 

performed at room temperature in continuous stiffness mode, using a 2 nm 45 Hz harmonic 

displacement and reaching depths up to 2 m below the sample surface. Hardness 

measurements were performed at room temperature using a Vickers indenter and a load of 1 

kg held for 10 s; 15 independent indentations were made. 

 

Results and discussion 

SEM-EDS characterisation 
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The morphology of the as-milled powder, observed by SEM in Fig. 1-a, shows that the 

powder particles were disc-shaped, with diameters of 200 to 300 m and thicknesses between 

60 and 100 m. An EDS spectrum from one of the powder particles displayed in Fig. 1-a is 

shown in Fig. 1-b with measured concentrations of Fe, Cr and Hf in the as-milled powder that 

were in good agreement with the nominal alloy composition. There was some very limited Si 

contamination, most likely linked to the manufacturing process and/or impurities in the as-

supplied Fe-14Cr pre-alloyed powder. The surface of the SPS consolidated alloy is displayed 

in Fig. 2-a, showing some randomly distributed dark particles, sized 1  4 m. The chemical 

maps shown in Fig. 2-b, performed on the central particle in Fig. 2-a, showed that these dark 

precipitates were rich in Si, again suggesting Si impurities precipitated during consolidation. 

These precipitates were present in fractions too low to be detected by either laboratory or 

synchrotron XRD (see below). 

 

Laboratory XRD characterisation 

Laboratory -2 X-ray diffractograms were obtained from the Hf powder used in the milling 

process and from the as-milled 14Hf powder. Fig. 3-a shows that the Hf powder was 

hexagonal, in accordance with the 638559 file in the FIZ Karlsruhe-ICSD database [40]. Two 

extra diffraction peaks were assigned to the phenolic resin in which the milled powder was 

embedded, confirmed by a resin-only diffraction measurement. Fig. 3-b shows the 

diffractogram from the as-milled 14Hf powder. No distinct, resolvable Hf peaks were present, 

implying that the Hf powder may have completely dissolved in the Fe-Cr matrix after the 

mechanical alloying process, producing a single BCC ferrite solid solution. 

 

Synchrotron X-ray diffraction 
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The synchrotron X-ray diffractogram obtained from 14Hf consolidated by SPS is shown in 

Fig. 4. Fig. 4-a shows the full synchrotron XRD pattern with both ferrite and austenite phases. 

Although Fe-14Cr (wt.%) would not usually form austenite at any temperature, based on the 

Fe-Cr phase diagram [41], Hf may act as an austenite stabilizer according to the Fe-Hf phase 

diagram [41]. Austenite formed during the 1150
o
C high temperature SPS process was retained 

at room temperature due to the rapid cooling after consolidation. Fig. 4-b shows a zoomed-in 

count region from Fig. 4-a with orthorhombic and monoclinic HfO2 phases resolved, agreeing 

with 79913 [42] and 27313 [43] files respectively in the FIZ Karlsruhe-ICSD database. An 

overlap with Cr23C6 (JCPDS file number 035-0783) and Cr2O3 (JCPDS file number 38-1479) 

was also resolved. The Al2O3 peaks were associated with the sample holder used in the 

experiment. 

 

EBSD 

Fig. 5 shows an EBSD grain orientation map as an inverse pole figure (IPF) from the 14Hf 

alloy consolidated by SPS. High angle grain boundaries were defined as being those having a 

misorientation higher than 5
o
; sub-grain boundaries were defined as having a misorientation 

between 0
o
 and 5

o
. Most grains in the alloy were ferritic, with random grain orientation and a 

grain size in the range 0.5 m to 8 m, with some occasional larger grains. The temperature 

used in the SPS process was 0.76Tm [41] of the Fe-14Cr alloy, where the growth of larger 

grains might be expected, so the presence of Hf may have conferred thermal stability to the 

microstructure. For comparison, two alloys with nominal composition Fe-14Cr-0.4Ti-

0.25Y2O3 (wt.%) and Fe-14Cr-0.25Y2O3-0.22Hf (wt.%), mechanically alloyed and SPS 

consolidated under the same conditions, showed grain sizes up to 15 m. [28, 36]. 

 

TEM characterisation 
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A general view of the microstructure of the 14Hf alloy consolidated by SPS at high 

magnification is shown in Fig. 6-a, with precipitates along grain boundaries. The grain 

microstructure was considerably uniform, with most grains in the range 1 to 5 m in size. As 

the atomic number of Hf (Z=72) is much higher than those of Fe (Z=26) and Cr (Z=24), any 

second-phase precipitates should be relatively easy to resolve by high-angle annular dark-

field (HAADF) imaging. Fig. 6-b shows dispersoids with brighter contrast than the matrix, 

arising from a higher average atomic number (Z) and/or higher average density when 

compared with the Fe-Cr matrix. To confirm the chemical composition of the dispersoids, 

EDS mapping was performed and Fig. 7 shows a dispersoid enriched in Hf and O on a grain 

boundary. HR-TEM was used to investigate similar dispersoids in the matrix, but it was not 

possible to reliably index the resulting diffraction patterns, for which a contributory factor 

may be due to non-stoichiometric HfOx. 

 

A total of 1119 particles were counted and measured from 26 micrographs taken at 5 different 

regions of the sample, including grain centres and regions containing grain boundaries, to 

produce the size distribution displayed in Fig. 8, with a typical dispersoid diameter of 2.0  ± 

1.5 nm and a number density of 0.8  10
23

 m
-3

. Dispersoids of approximately 2 nm size were 

quite uniformly distributed. There was also a small fraction of larger dispersoids, up to 26 nm 

in size, mostly found on the grain boundaries where diffusion and coarsening can be expected 

to be relatively fast, although occasionally some were present in grain centres. 

 

APT characterisation 

APT was used to investigate the as-milled 14Hf powder and the consolidated alloy, with 

datasets consisting of 22  24 million ions. The reconstructed ion maps for 14Hf powder are 

displayed in Fig. 9 and Video 1. A relatively uniform distribution of Hf in the Fe-Cr matrix 
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was obtained after the alloy milling process. APT revealed a small Cr-O precipitate that might 

have formed during milling or during subsequent powder handling. Fig. 10 shows 

reconstructed volumes from different regions in the 14Hf alloy after the SPS consolidation: a 

volume with no clusters in Fig. 10-a) and Video 2, a volume with 0.8310
23

 m
-3

 number 

density of clusters in Fig. 10-b) and Video 3, and a high number density of clusters (2.3710
23

 

m
-3

) region in Fig. 10-c) and Video 4. The regions with no clusters, low density of clusters 

and high density of clusters represent 38, 27 and 35%, respectively, of the analysed volume. 

The maximum separation method was implemented for cluster analysis [44], considering Hf-

O and O as ions being at the core of the clusters, with Cr-O ions likely to be surrounding 

them, according to previous APT reconstruction of similar ODS steels containing Y-rich 

clusters [45]. The resulting cluster size (in terms of the Guinier diameter, i.e. twice the 

Guinier radius [46]) distribution from the APT measurements in the regions containing 

clusters is shown in Fig. 11-a and summarised in Table II. The average distance between each 

cluster and its first neighbour was also calculated as the distance between their centres of 

mass [46]; results for the high and low number density of clusters regions are summarised in 

Table II. 

 

The shape of the clusters can be defined using a best-fit ellipsoid enclosing each individual 

cluster [47]. The smallest, middle and largest characteristic lengths of the best-fit ellipsoids 

were used to calculate the oblateness (smallest characteristic length / middle characteristic 

length) and the aspect ratio (middle characteristic length / largest characteristic length) of the 

clusters. Combinations of these two parameters can be used to define the cluster shape as 

sphere, rod, lath or disc. Fig. 11-b displays the oblateness and aspect ratio measurements for 

the clusters present in 14Hf consolidated by SPS, and the quantification of each cluster shape 
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is summarised in Table III. The majority of the clusters, in both the regions containing 

clusters in high and low number density, were spherical. 

 

The chemical composition of each cluster was also analysed by APT. Fig. 12 shows the O:Hf 

ratio for each individual cluster as a function of the cluster size, with a ratio close to O:Hf = 1 

for most of the clusters. An averaged ratio of O:Hf = 1.08 ± 0.07, for values in the range 1 to 

1.27 was obtained for the clusters in the high density region, and O:Hf = 0.99 ± 0.02 in a 0.93 

to 1.01 range for clusters in the low density region. This demonstrates that there was Hf and O 

enrichment of the clusters, but not reaching the HfO2 stoichiometry. Possible Hf-containing 

precipitates include HfO2, HfC and Hf-containing intermetallic compounds. The Gibbs free 

energy for the formation of HfO2 and HfC at 1150
o
C are Gf (HfO2)= 1306 kJ/mol 

according to [48] and Gf (HfC)= 219 kJ/mol according to [49]. The Gibbs free energy for 

the formation of intermetallics would be  100 kJ/mol according to [32]. In the present 

work, due to the 0.22 wt. % Hf concentration, only sub-stoichiometric Hf-O particles have 

formed. The sub-stoichiometric Hf-O dispersoids were likely responsible for the 

orthorhombic and monoclinic phases observed in the synchrotron X-ray diffractograms (Fig. 

4-b). Also, the dispersoid size being typically < 5 nm, suggests that precipitation occurred 

during the relatively short (5 min) thermal exposure of the SPS process, but there is little 

evidence for any significant dispersoid coarsening after initial nucleation. 

 

Hardness measurements 

The nanoindentation hardness profile of the as-milled 14Hf powder is shown in Fig. 13-a. 

Apart from a slight variation associated with the initial penetration of the polished surface of 

powders, the hardness tends to an approximately constant value of 7.74 ± 0.27 GPa with 

increasing indentation depth. This comparatively high hardness could be associated with 



12 

 

strain hardening induced during the mechanical alloying process and/or the indentation size 

effect by which hardness values at sub-m indentation depths can be 2-3 times those of 

macroscopic indentations [50]. Vickers hardness measurements were performed on the 

consolidated 14Hf (Fig. 13-b), with 15 random indentations over the sample surface giving an 

average 2.31 ± 0.13 GPa,  30% lower than that for a Fe-14Cr-0.3Y2O3 (wt. %) alloy 

consolidated by HIP (hardness = 3.60 ± 0.08 GPa) [27]. The hardness of a Fe-14Cr (wt. %) 

alloy manufactured by SPS at 1150
o
C was 1.74 ± 0.04 GPa [27]; this will be taken as a “base 

value” when assessing effects of possible hardening mechanisms. The difference in hardness 

between the ODS alloys containing Hf and Y might be due to differences in the contributions 

to the flow stress of solid solution strengthening, dislocation strengthening, dispersion 

strengthening and/or fine grain strengthening [31, 51]. It is likely that the contributions from 

solid solution strengthening contribution are similar in the two alloys, as the matrix is Fe-

14Cr (wt. %) in both cases and both Y and Hf are virtually insoluble in the matrix at 

equilibrium. It may be assumed that dislocation strengthening had a relatively weak effect 

because no dislocations were observed by TEM (Fig. 6 and [16, 45]). 

Regarding grain size strengthening (‘Hall-Petch’ effect [52]), the 14Hf alloy has a relatively 

uniform grain size of 1 to 5 m; Fe-14Cr-0.3Y2O3 consolidated by HIP also had a uniform 

grain structure with slightly smaller grains, in the range 0.5 to 3 m [16]), significantly 

contributing to the hardness as shown in Table IV. 

The dispersion strengthening contribution,   , can be estimated by assuming Orowan 

strengthening, according to [31, 53]: 

       
        

        
 
     

 

        

  
  (1) 

where d is the precipitate size (taken as the cluster diameter from APT measurements in Table 

II), L is the interprecipitate spacing (taken as the intercluster distance from APT 

measurements in Table II), G is the shear modulus for Fe (82 GPa), b is the Burgers vector 
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(0.384 nm) and    is the dislocation core radius, assumed to be four times the Burgers vector 

(1.536 nm). As the dispersion of nanoparticles is not homogeneous, the contributions to 

Orowan hardening from the regions of high and low number density of clusters has been 

considered separately taking into account the respective cluster analysis and volumes 

represented by each region type obtained by APT characterisation. The calculations are 

detailed in Table V and summarised in Table IV. The most significant contribution to the total 

hardness in both alloys is Orowan hardening. The Orowan hardening is significantly higher 

for the Fe-14Cr-0.3Y2O3 (wt. %) alloy consolidated by HIP than for 14Hf consolidated by 

SPS because the cluster number density is higher (3.3010
23

 m
-3

 [45]), the cluster size is 

smaller (3.06 ± 0.68 nm [45]) and the clusters are closer together (intercluster distance = 9.87 

± 2.37 nm). 

 

Conclusions 

 The effectiveness of elemental Hf addition to a ferritic steel powder to promote a 

nanometric distribution of clusters in the densified steel has been demonstrated. 

Elemental Hf dissolved in the Fe-14Cr (wt. %) matrix during the mechanical alloying and 

then precipitated as Hf-O rich clusters during SPS consolidation. The approach is an 

alternative to the more common adding of ceramic oxides, such as Y2O3, directly to 

ferritic powders. 

 Hf-O dispersoids stabilised a relatively uniform grain structure, with grain sizes between 

1 and 5 m, although Hf-O nanoparticle dispersion was not homogeneous at the finest 

scale, as both regions with no particles and regions with high and low number density of 

Hf-O rich precipitates were observed by APT. The cluster size of the precipitates was 

approximately 2 nm by TEM, with a number density of 0.8  10
23

 m
-3

. The cluster size 

measured by APT was 2.34 ± 0.77 nm in the region with a high number density of 



14 

 

clusters (2.37  10
23

 m
-3

) and 3.64 ± 0.98 nm in the region with a low number density of 

clusters (0.83  10
23

 m
-3

). 

 After SPS consolidation, Hf was predominantly in the form of Hf-O precipitates, with 

orthorhombic and monoclinic crystalline structures, with a O:Hf ratio close to 1. No other 

Hf-rich compounds such as HfC or Fe-Cr-Hf were detected. 

 Dispersion strengthening was the primary contribution to the final hardness, consistent 

with conventional ODS steels using direct oxide additions. 
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Table captions 

 

Table I. Chemical composition of the Fe-14Cr (wt. %) pre-alloyed powder. 

 

Table II. Summary of the cluster size, intercluster distance and number density of clusters in 

the 14Hf alloy consolidated by SPS in the low and high cluster density regions. 

 

Table III. Summary of the cluster shape in the regions with low and high number density of 

clusters in the14Hf alloy consolidated by SPS. 

 

Table IV. Summary of hardness, total hardening, Orowan and Hall-Petch contributions to the 

total hardening for the 14Hf alloy consolidated by SPS and Fe-14Cr-0.3Y2O3 (wt.%) alloy 

consolidated by HIP [27, 45]. Hardness of Fe-14Cr consolidated by SPS is shown as the 

reference value [27]. 

 

Table V. Orowan hardness calculations for the 14Hf alloy consolidated by SPS considering 

the different cluster density regions observed by APT. 
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Figure captions 

 

Fig. 1. a) SEM image of as-milled 14Hf powder. b) EDS quantification of one 14Hf powder particle. 

 

Fig. 2 a) SEM image of 14Hf alloy consolidated by SPS. b) SEM image, mapping and EDS 

analysis of Fe, Cr and Si of one dark particle in the 14Hf alloy consolidated by SPS. 

 

Fig. 3. X-ray diffraction patterns of a) elemental Hf powder and b) as-milled 14Hf powder 

highlighting the phases present. 

 

Fig. 4. Synchrotron X-ray diffraction patterns of 14Hf alloy consolidated by SPS. a) 

Overview of the pattern. b) zoomed-in pattern to show minor phases. 

 

Fig. 5. EBSD inverse pole figure (IPF) map of 14Hf alloy consolidated by SPS. Grain 

orientations are colour-coded according to the inset standard triangle. 

 

Fig. 6. a) Bright field TEM and b) HAADF images of 14Hf alloy consolidated by SPS. 

 

Fig. 7. STEM DF image and EDS mapping of Fe, Cr, Hf and O in 14Hf alloy consolidated by 

SPS. 

 

Fig. 8. Size distribution of the nanoparticles from TEM analysis in the 14Hf alloy 

consolidated by SPS (Diameter size = 2.0 ± 1.5 nm). 

 

Fig. 9. 3D ion maps of 14Hf mechanically alloyed powder (Video 1) 

 

Fig. 10. 3D ion maps from 3 different regions of the 14Hf alloy consolidated by SPS. Volume 

with a) no clusters (Video 2), b) volume with a low number density of clusters (Video 3) and 

c) volume with a high number density of clusters (Video 4). 

 

Fig. 11. a) Cluster size (Guinier diameter) distribution for high and low cluster density regions (cluster 

size = 2.34 ± 0.77 and 3.64 ± 0.98, respectively) and b) cluster shape for high and low cluster density 

regions in the 14Hf alloy consolidated by SPS. 
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Fig. 12. O:Hf ratio as a function of the cluster size for for high and low cluster density regions in the 

14Hf alloy consolidated by SPS. 

 

Fig. 13. a) Nanoindentation hardness profiles for 14Hf as-milled powder and b) Vickers 

hardness measurements on 14Hf alloy consolidated by SPS. 
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Video captions 

 

Video 1. 3D view of the ion maps displayed in Fig. 9 for the 14Hf mechanically alloyed powder. 

 

Video 2. 3D view of the ion maps displayed in Fig. 10-a) for the volume with no clusters in the 14Hf 

alloy consolidated by SPS. 

 

Video 3. 3D view of the ion maps displayed in Fig. 10-b) for the volume with a low number density 

of clusters in the 14Hf alloy consolidated by SPS. 

 

Video 4. 3D view of the ion maps displayed in Fig. 10-c) for the volume with a high number density 

of clusters in the 14Hf alloy consolidated by SPS. 



Highlights 

 Fe-14Cr (wt.%) and pure Hf powders were mechanically alloyed and consolidated by SPS 

 Microstructural and mechanical characterisation has been performed 

 The ability of Hf to produce a dispersion of oxide nanoparticles is demonstrated 

*Highlights (for review)



 

Table I. Chemical composition of the Fe-14Cr (wt. %) pre-alloyed powder 

 

Element Fe Cr Si Mn C N O 

Wt. % Bal. 14.13 0.281 0.194 0.004 0.0095 0.052 

 

 

Table I



 

Table II. Summary of the cluster size, intercluster distance and number density of clusters in 

the 14Hf alloy consolidated by SPS in the low and high cluster density regions. 

 

Alloy 

Cluster size 

(nm) 

Intercluster distance 

(nm) 

Number density 

of clusters 

(10
23

 m
-3

) 

Range 

(nm) 

Median 

(nm) 

Mean value 

(nm) 

Range 

(nm) 

Median 

(nm) 

Mean value 

(nm) 
 

Fe-14Cr-0.22Hf-SPS 

(low cluster density) 
2.48-6.64 3.67 3.64 ± 0.98 6.63-26.59 16.86 17.81 ± 6.84 0.83 

Fe-14Cr-0.22Hf-SPS 

(high cluster density) 
0.78-3.82 2.26 2.34 ± 0.77 2.55-30.83 13.39 14.43 ± 7.81 2.37 

 

Table II



 

Table III. Summary of the cluster shape in the regions with low and high number density of 

clusters in the14Hf alloy consolidated by SPS 

 

Alloy 
Cluster shape 

Spherical Disc shaped Rod shaped Lath shaped 

Fe-14Cr-0.22Hf-SPS 

(low cluster density) 
87% 0% 13% 0% 

Fe-14Cr-0.22Hf-SPS 

(high cluster density) 
84% 12% 4% 0% 

 

Table III



 

Table IV. Summary of hardness, total hardening, Orowan and Hall-Petch contributions to the 

total hardening for the 14Hf alloy consolidated by SPS and Fe-14Cr-0.3Y2O3 (wt.%) alloy 

consolidated by HIP [27, 45]. Hardness of Fe-14Cr consolidated by SPS is shown as the 

reference value [27]. 

 

Alloy 
Hardness 

(GPa) 

Total hardening 

(GPa) 

Orowan hardening Hall-Petch hardening 

(GPa) (%) (GPa) (%) 

Fe-14Cr-SPS [27] 1.74 ± 0.04 - - - - - - - - - - - - - - - - - - - - 

Fe-14Cr-0.3Y2O3-HIP 

[27, 45] 
3.60 ± 0.08 1.86 1.11 59.5 0.75 40.5 

Fe-14Cr-0.22Hf-SPS 

(this study) 
2.31 ± 0.13 0.57 0.32 56.1 0.25 43.9 

 

Table IV



 

Table V. Orowan hardness calculations for the 14Hf alloy consolidated by SPS considering 

the different cluster density regions observed by APT. 

 

Fe-14Cr-0.22Hf-SPS 
Partial Orowan hardening 

(GPa) 

Volume fraction 

(%) 

Contribution to total 

Orowan hardening 

(GPa) 

High cluster density region 0.329 35 0.115 

Low cluster density region 0.749 27 0.202 

No clusters region 0.000 38 0.000 

 

 

Table V
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