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Abstract 

Chapter I introduces the need for rapid solutions of hidden surface elimination (HSE) 

problems in the interactive display of objects and scenes, as used in many application areas 

such as flight and driving simulators and CAD systems. It reviews the existing approaches 

to high-performance computer graphics and to parallel computing. It then introduces the 

central tenet of this thesis - that general purpose parallel computers may be usefully applied 

to the solution of HSE problems. Finally it introduces a set of metrics for describing sets of 

scene data, and applies them to the test scenes used in this thesis. 

Chapter 2 describes variants of several common image space hidden surface elimination 

algorithms, which solve the HSE problem for scenes described as collections of polygons. 

Implementations of these HSE algorithms on a traditional, serial, single microprocessor 

computer are introduced and theoretical estimates of their performance are derived. The 

algorithms are compared under identical conditions for various sets of test data. The results 

of this comparison are then placed in context with existing historical results. 

Chapter 3 examines the application of MIMD style parallelism to accelerate the solution of 

HSE problems. MIMD parallel implementations of the previously considered HSE 

algorithms are introduced. Their behaviour under various system configurations and for 

various data sets is investigated and compared with theoretical estimates. The theoretical 

estimates are found to match closely the experimental findings. 

Chapter 4 summarises the conclusions of this thesis, finding that HSE algorithms can be 

implemented to use an MIMD parallel computer effectively, and that of the HSE algorithms 

examined the z-buffer algorithm generally proves to be a good compromise solution. 
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Chapter 1 

Introduction 

1·1. Overview 

In the past fifteen years there has been little work on the performance of hidden surface 

elimination (HSE) algorithms. This is probably due to the area having been extensively 

considered in the early days of computer graphics, (see for instance the classic survey 

paper of Sutherland et all). 

Reductions in the cost of computer technology has allowed the more general use of 

computer graphics. Graphic displays are particularly useful in computer aided design 

(CAD) systems, giving the user a better indication of the object under design. Flight 

simulators 2.3 are becoming more common and finding new applications for similar 

cost reasons. Thus the requirement for real-time and near-real-time displays is ever 

growing. 

The HSE process has however remained a significant bottleneck in the performance of 

graphical systems. This is unlike other parts of the graphics pipeline, such as 

coordinate transformation which has largely succumbed to the vast performance 

increases of floating point numeric processing. 

The hardware of computer graphics systems evolves in a cyclical fashion 4, changing 

from a general purpose computer with a frame buffer added, to specialised hardware 

for painting in the frame buffer and supporting graphics transformations, and back to 
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the frame-buffer-on-general-purpose-computer approach as the computers of the time 

themselves evolve. 

Although the paper of Myer and Sutherland 4 was written more than twenty years ago, 

different points within this cyclical evolution may still be seen in current machine 

architectures. Many modem graphics workstation vendors supply VLSI graphics 

engines that support coordinate transformation and the painting into a z-buffer of 

simply shaded polygons 5.7. There has also been much research into such systems that 

does not directly appear in product lines 8.11. 

Other vendors have taken the approach of using comparatively simple polygon painting 

hardware and having the computer system's general purpose processor compute the 

necessary coordinate transformations 12.14. 

Specialised graphics hardware has one particular disadvantage - it is utterly inflexible. It 

provides high levels of performance for the few tasks it supports, but once the type of 

workload changes this hardware becomes useless. For example, most current graphics 

workstations support flat and Gouraud IS shading. Some also support Phong 16,17 

shading. Unfortunately, should the user move to more complex shading schemes such 

as ray tracing 18,19 then all of the computation must be done by the general purpose 

system processor, leaving the hardware graphics engine as a rather expensive white 

elephant - a waste of resources that could otherwise be spent improving overall system 

performance. Of course, hardware support for ray tracing could be added 20 but there is 

always a limit to what can reasonably be given direct hardware support. 

There is now another factor entering into the design of such hardware graphics engines: 

the bandwidth available to the frame buffer memory is becoming a practical limit While 

the relatively recent invention of video RAM 21 has improved the available bandwidth 

considerably, the matter is still of serious concern 6. It effectively caps the potential 
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performance of any graphics system, making it easier for general purpose 

microprocessors to equal the performance of dedicated hardware. 

This limit is not absolute - there are ways to circumvent it, such as by breaking the 

frame buffer up into smaller chunks of memory, giving a separate data path into each 

chunk - effectively multiplying the bandwidth by a substantial factor. The disadvantage 

to such solutions is that they usually increase the physical size, power dissipation, and 

cost of the graphics system. An interesting variant of the approach is considered in the 

research of Fuchs et. al. 22,23. Basically, the Pixel-Planes system integrates many 

simple microprocessors into the frame buffer. This is logically equivalent to breaking 

up the frame buffer and connecting each part to its own microprocessor, but the 

integration of many such frame buffer/processor pairs onto a single chip makes the 

system a more practical proposition. 

The factors discussed above are now causing the appearance of systems that form 

compromises between direct hardware support for graphics and general purpose 

microprocessors. This can be seen when considering the Texas Instruments 34010 and 

34020 graphics processors 24 which have many general purpose instructions, and the 

Intel 80860 25,26 which is a general purpose microprocessor with some graphics 

support instructions. 

General purpose parallel computers are now widely available, whose aggregate 

computing performance is more than enough to equal dedicated hardware graphics 

engines, if that aggregate performance can be usefully harnessed. Should such a system 

be an effective graphics engine, then it would have one critical advantage over special 

purpose hardware - flexibility. Once the program is changed, the entire computing 

resource may be directed against a totally different problem. This leads to a number of 

questions regarding the efficient execution of graphics algorithms on such platforms. 
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The study of parallel graphics algorithms is not new, although much of the existing 

literature concentrates on optimising algorithms for implementation as parallel 

functional units on VLSI chips 27.7• The only area in which this emphasis on 

specialised hardware design has not occurred is that of ray tracing, which as discussed 

earlier is not particularly amenable to such implementation. A good overview of 

parallelism in graphics may be found in Crow 28, which discusses both parallel 

machines and parallel algorithms. 

The solution of HSE problems on parallel machines is likewise not new. Franklin and 

Kankanhalli 29 considered parallel object space HSE, while most other researchers have 

concentrated on image space HSE 30-33. Within the literature covering image space 

HSE there is a predominance of simulated results 31-33. 

This thesis presents the results of comparative tests for HSE algorithms on polygonal 

models from two viewpoints. First, it compares the performance of several widely used 

algorithms implemented serially in the same hardware and software environments, and 

secondly it extends the comparison to parallel implementations of these algorithms. 

The four common HSE algorithms considered are recursive (quadtree) subdivision, a 

scan line algorithm 34-36, the z-buffer algorithm and the painter's algorithm. 

The relative performance figures of these algorithms given by Sutherland et all for 

serial computers are based on order of magnitude estimates, but the quality of their 

work is underlined by the correlation that exists between their figures and those 

presented in this thesis for the single processor implementations. 

The work covered in this thesis was carried out on a parallel processing system of the 

multiple-instruction multiple-data stream 37 (MIMD) distributed memory type. Such a 

system is basically a collection of independent computers, COtnlected by communication 
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links. In particular the system used was a collection of transputers. The system was 

programmed in OCCAM 38. which being based upon Hoare's CSP 39 provides a firm 

foundation for the construction of parallel programs. 

Transputers are particularly suited to use in parallel computers due to the inclusion of 

most of the required parts of a computing node. (Le. CPU, RAM, and communications 

links) in a single package. Transputers have almost alone popularised the parallel 

processing concept by being being both cheap and readily available. 

1·2. Graphics 

1·2'1. Graphic Displays 

Since their invention I introduction. graphic displays for computers have been used for 

more and more purposes. for a relentlessly growing audience. Initially highly 

expensive devices. they were first used for military flight simulators. Over the years 

these have grown in capability. producing ever more lifelike images. As an editable 

representation of a paper document they have come to be widely used in the creation of 

documents for publication. and in the design of complex systems (computer aided 

design). 

A graphic display allows a computer to feed data to its user through its user's primary 

sense. that of sight Perhaps it was only natural that the humans' need for play has 

produced games using this feature - video games. It is also the obvious channel to use 

to inform a computer user what the computer is currently doing. hence the use of 

windowing systems where a window is connected to each particular task. 
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Graphic displays normally show their pictures on cathode ray tubes (CRTs), although 

alternative display technologies are now increasingly available, particularly liquid 

crystal displays (LCDs). There have been two types of graphic display, vector and 

frame-buffer. 

Vector displays repeatedly draw lines on the screen. Each line is described by start and 

finish coordinates and perhaps by a brightness value. Within the cathode ray tube 

(CRT), an electron beam is guided along the defined line. Where the beam strikes the 

screen, a phosphor coating is excited and glows visibly. A list of such lines or vectors 

represents the entire displayed information and is repeatedly drawn upon the screen. 

Vector displays are largely obsolete since their primary advantage over frame buffers -

the small amount of memory used - is no longer relevant due to semiconductor 

technology advances. 

Frame buffers store an array of values in memory. This array represents the 

brightnesses of a rectangular array of points on the screen. This array of points is 

repeatedly redrawn on the screen, line by line. Each point is known as a pixe!. 

1'2·2. The Graphics Pipeline 

The most time consuming graphics display jobs involve the display of a three 

dimensional scene, as though seen from a particular viewpoint, with particular lighting 

and surface details. The three dimensional scene data must be processed to produce 

suitable colour information, transformed into screen coordinates, processed to avoid the 

display of objects which should be hidden behind other objects, and finally drawn into 

the frame buffer for display. This "pipe" through which all scene data must pass is 

known as the "graphics pipeline". 
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- ----------------------------------------------------------------------

Trivial 
Model Data ,. Rejection 

... Clipping 

Figure 1·1: The Graphics Pipeline. 

.. Shading 
Viewing 
Transformation 1-... 

-
Painting into 
Frame Buffer 1--toI Monitor 

The pipeline is fed by a database of objects which describes the scene to be displayed. 

These objects may in turn be constructed from common component objects which are 

transformed into the correct positions - a transformation step not shown in Figure 1·1. 

A common version of the pipeline and the one used in this thesis operates purely on 

polygons, from which all objects must be built. Conventionally these polygons have 

only one visible side. This is basically a performance enhancement which allows a later 

step to easily identify and discard polygons on the far side of an object, on the 

assumption that polygons on the far side of an object - with their visible faces facing 

away from the viewer - are hidden from the viewer by polygons on the near side of the 

object This discarding step is called "the backface cull". 

The objects are then tested for clear irrelevance to the visible part of the scene. This step 

is not fundamentally necessary as it is an approximation of the later clipping step but 

can save a great amount of work by eliminating many irrelevant objects early in the 

pipeline. 

Each object has its shading according to its surface properties and the lighting 

conditions, then transformed from the "world coordinates" used to describe the model 

and lighting to the viewer-centric "viewing coordinates" for display. This 

7 



transformation not only takes account of the viewer's position and the direction he is 

looking in but also of perspective effects. This step is known as the "perspective 

transformation". 

Objects are then "clipped" against the limits of the screen, to avoid wasting time trying 

to draw objects or parts of objects which fall outside the limits of the screen. Finally, 

the remaining objects are painted into the frame buffer for display on a screen. 

Hidden surface elimination normally occurs somewhere after the viewing 

transformation step, depending upon the precise HSE method employed. It may form 

part of the painting step or exist on its own as a distinct step. Its job is to identify the 

frontmost objects at each point of the screen, discarding hidden surfaces or parts of 

surfaces. 

Each of the steps in the display pipeline may be done to various levels of quality. If a 

large scene is to be processed the sheer quantity of scene description data may easily tax 

the computer system. The shading of the scene may be done using different numbers of 

light sources, differing levels of description of the surfaces being lit. Atmospheric 

effects may be taken into account or ignored. This shading work may be done for few 

or many points within the image. The removal of hidden objects and parts of objects 

may be solved exactly, or to the resolution of the display device (which may leave the 

question of what colour a pixel containing several edges is unanswered or fudged). 

1·2·3. Approaches to High Performance Graphics 

The paper of Myer and Sutherland 4 illustrated early approaches to increasing the 

performance of computer display systems. Unhappy with existing display systems they 
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decided to design their own, and during this effort discovered that the design of display 

systems was evolving in a cyclical fashion. 

The earliest display systems had been a simple frame buffer directly attached to a host 

computer. The problem with this method is that the host then spends much of its time 

doing simple operations on the frame buffer. Subsequently, the display hardware grew 

from a simple frame buffer to a hardware enhanced frame buffer which could handle 

simple operations with little intervention from the host This then grew to be a frame 

buffer with its own, simple processor. Soon this display processor had more general 

features added so that more of the display related work could be off-loaded from the 

host This choice resulted in a system of two processors, one with an attached frame 

buffer. Myer and Sutherland considered this point to be one complete turn of their 

wheel of display system evolution. 

In such a system the display processor spends much of its time doing simple frame 

buffer operations, which is probably a waste of resources for such a general processor. 

Hence it seems reasonable to enhance the frame buffer to remove simple jobs from the 

display processor. This step moves the display partly into the second turn of the wheel 

of evolution. 

Myer and Sutherland were able to place the designs of many contemporary display 

systems within their wheel of evolution analogy. Frustrated by this apparently endless 

cyclical evolution, they were eventually persuaded of the view that general purpose 

computing resources should be pooled into a single, central processor. This choice 

makes more efficient use of available resources and restricts display systems to less 

than one turn of the wheel of display system evolution. This choice has been reflected 

in most display systems designed since that time, though there is still some argument as 

to how complex and how flexible the display support hardware should be. 
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Major factors governing the design of display systems today are: 

(i) Most of the advanced display systems are used to show two or pseudo-three 

dimensional pictures consisting of lines andlor polygons. 

Considerable performance gains may be obtained by the addition of dedicated hardware 

to draw these lines and polygons. Both lines and polygons are drawn into frame 

buffers using simple algorithms which are amenable to hardware implementation. Such 

implementations typically calculate several partial results simultaneously, resulting in 

good performance compared with an unaided host processor. Better still, such an 

approach removes one of the most time consuming display-related jobs from the host 

processor, leaving it free for jobs of a complexity more suited to such a general purpose 

device. 

This solution is amenable to being used many times over in the same system - adding 

multiple line drawers to a frame buffer can prove worthwhile for up to several tens of 

such devices. 

(ii) Many display jobs require a lot of coordinate transformation calculations. 

This work is basically the multiplication of a coordinate vector and a transformation 

matrix to produce a result coordinate vector. Such work may be profitably offloaded to 

a dedicated vector processor. Alternatively the host processor's numerical performance 

may be improved and then be given this work. 

(iii) Currently, points (i) and (ii) have been exploited to their practical limits. Display 

systems have mn into a limiting factor - the available bandwidth to the frame buffer 

memory. One way around this is to break the frame buffer up, resulting in several 

smaller frame buffers, each with the same available bandwidth the single large frame 
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buffer would have. Some display hardware, (e.g. a polygon painter) may then be 

attached to each small frame buffer. If this approach is taken to extremes, the part count 

becomes rather high and so the processor and display memory may then be fabricated 

on the same silicon chip. Such a device is typically referred to as a logic enhanced 

memory. 

1·2·4. Examples of Graphic System Architectures 

There have been many examples of using hardware to accelerate graphics. These tend 

to support a few basic types of graphics operations, as discussed previously, generally 

line and polygon drawing/filling with simple shading equations. Hardware support for 

more complicated graphics operations do not seem to have been economically viable to 

date, but several research efforts such as the Pixel-Planes architecture (discussed 

below) have shown how this may be implemented. 

Hardware support for graphics usually implies the use of many, simple functional units 

to "execute" the graphics algorithm in parallel. 

1·2·4·1. Sun Microsystems GX Architecture 

The OX graphics accelerator architecture 6 is a good example of a mass-market display 

system. It was intended to become the "least common denominator" in Sun's graphics 

systems, and has largely done so. One of the OX's design goals was that it should 

survive for several years, requiring that the hardware support for graphics should not 

become the bottleneck of a system with a much faster processor. This implied that the 

OX should be able to saturate the frame buffer interface, which is the best an infinitely 
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fast processor could manage. [This argument assumes that frame buffer memory does 

not significantly increase in speed with time, which has so far proved true.] 

The OX contains two major functional blocks, the Transformation Engine (TB) and the 

Frame Buffer Controller (FBC). The TB handles coordinate transformation work at a 

rate of up to 50 MFLOPs. Its output is fed to the FBC, which draws flat shaded 

quadrilaterals into the frame buffer, clipping them against a rectangular region. The 

FBC can also copy rectangular areas of the screen image to another place on the screen, 

and provides some support for drawing text. The OX is one of the most simplified 

graphics accelerators, in that it implements a very restricted set of basic operations in 

hardware. 

1'2·4'2. Silicon Graphics IRIS 

This system 5 is a well known landmark of computer graphics. It used internal 

parallelism to achieve its high performance. It included five geometry engines which 

executed coordinate transformations, shading calculations and clipping. The output 

from these is fed to a polygon processor which breaks the polygon into trapezoids and 

calculates the gradients of the edges and colours for each trapezoid. The trapezoids are 

then fed to the edge processor which breaks them into vertical stripes. These are fed to 

one of five span processor, depending upon their x-coordinate. Each span processor 

turns stripes into per-pixe1 information which is fed to one of four image engines, 

depending upon y-coordinate. The image engines, (of which there are twenty in total), 

are little more than memory controllers which can do z-buffer style pixel painting. 
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5 Geometry Engines 

Polyg"" Proo~, I 
Edge Processor 

5 Graphics Processors --. 
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part of the frame buffer 

Figure 1'2: The graphics architecture of the Silicon Graphics IRIS. 

Video 
Out 

This design is a very good e1(ample of the use of hardware parallelism to support 

graphics. It consists of a large number of functional units, with each section of the 

graphics pipeline balanced in capability to support an overall throughput goal with a 

minimum of wasted resources. 

Later, low-end Silicon Graphics machines have sometimes omitted the geometry 

engines in favour of doing the coordinate transformation and shading work on the 

increasingly powerful, central microprocessor. 

1'2'4'3. Stellar GSIOOO 

The Stellar GSIOoo 12 chose from the beginning to do its coordinate transformation 

and shading work using a maths unit shared with the rest of the system. This maths 
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unit was however significantly more powerful than most workstation maths units of 

that time, in keeping with the machine's title of Graphics Supercomputer. The 

rendering hardware consists of two major blocks, the set-up engine and the foot print 

engine. The set-up engine processes incoming primitives into equations and coefficients 

of a fonn suitable for the foot print engine. 

The foot print engine consists of sixteen toe processors, arranged in a four by four 

grid. It simultaneously solves for sixteen pixels the equations it has been passed by the 

set-up engine. Apgar et. al. commented that while an eight by eight array of toe 

processors would provide a speedup of approximately three times over the four by four 

grid used, any larger a foot print would suffer from low efficiency and would most 

probably not be cost efficient. This comment is interesting in light of the contrast 

between this graphics architecture and that of the Pixel Planes series of machines 

discussed later. 

1·2·4·4. AT&T Pixel Machine 

The AT&T pixel machine 28 is a MIMD parallel computing machine. It is basically an 

array of 16 to 64 processors, each of which is connected to part of the screen memory. 

This array is fed work through a single pipeline of 18 processors, or dual 9 processor 

pipelines. These pipelines are generally used for transfonnation work. 

Interestingly, these machines seem to have been used only rarely for interactive work, 

instead being used for more time consuming jobs such as ray tracing. 

1·2·4·5. Pixel Planes 5 

The Pixel Planes experimental graphics engines have explored the combination of a 

processor attached to each pixel. The combination resulting from this is called a logic 
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enhanced memory, which has the advantage of avoiding bottlenecks between the 

processors and screen memory. Each processor is one node of an SIMD processor 

array and solves quadratic equations. However, this approach unfortunately leads to a 

rather low efficiency of use of the processors, especially when rendering small 

primitives. 

In Pixel Planes 5 there is no longer one processor per screen pixe!. Instead, a variation 

on this approach is used to increase efficiency. Pixel Planes 5 22,23 has three types of 

functional blocks - graphics processors (GPs), rasterisers, and the frame buffer. The 

GPs use general purpose microprocessors to handle coordinate transformations. They 

can locally store many primitives, which avoids having to reload the primitives for each 

new frame. Each rasteriser contains an SIMD array of processor I pixel memory nodes 

which render an area of 128 by 128 pixels. All of these functional blocks communicate 

over a ring network. The system may contain any number of rasterisers. 

Frame 
Buffer 

Monitor 

Renderec 

Renderec 

Figure 1·3: The structure of Pixel Planes 5. 
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1·3. Parallel Processing 

Parallel processing is an obvious approach to high performance computing. Once the 

performance of a single processing element approaches its practical bounds. the 

combination of several such elements will possibly provide a greater performance boost 

than investing the same amount of resources in increasing the performance of a single 

element. If many such elements are combined then economies of scale may result. 

further pushing the balance toward the "multiple elements processing in parallel" 

approach. 

Parallel processing is basically the art of avoiding performance bottlenecks in computer 

systems. There are two main facets of parallel programming: 

(i) the programming of parallel computers. 

(ii) the use of parallelism within the program structure to produce more 

straightforward or simply elegant programs. 

To use a parallel processing system suitable algorithms are needed. The history of 

computing is however largely one of single processor systems. resulting in a library of 

existing algorithms which expect to be run upon a single processor. Some of these are 

trivial to extend to parallel processor systems. while others are utterly unsuited to such 

treatment. To discover whether an algorithm is suitable for parallel implementation the 

nature of available parallel systems must be considered. 

1·3·1. Types of Parallel Computer 

There have been several attempts at classifying parallel computers. Few of these are 

generally popular. The most enduring system is that of Fiynn. He classified systems 

according to the number of instruction and data streams used. Systems are then referred 
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to as "nInD" where "n" is either "S" for "single" or "M" for multiple. There are four 

possible basic types, described below. There are many variations on each of these basic 

types, and several "in between" machines. 

1·3-1-1. SISD Computers. 

This is simply a typical single processor system, with a single instruction stream and a 

single data stream. Computation is done in the ALU (arithmetic logic unit). The ALU is 

driven by the control section which gets its instructions from the instruction stream. 

Data for the ALU is acquired through a single data stream. 

(control )1--~.~@)oOIII.t---'.~1 Data Memory 

Figure 1·4: The simplest system in Flynn's taxonomy - SISD. Such a system has 

one control unit and one ALU, with a single instruction stream and a single data stream. 

1·3·1'2. SIMD Computers. 

The fIrst multiple processor systems sought to economise by having multiple ALUs to 

operate on data but only a single control unit. Such a system has only a single 

instruction stream, driving many ALUs. Each ALU has its own data stream, so there 

are multiple data streams. These machines are well suited to data parallel problems, 

where the same operations are executed on every piece of data. However, they suffer 

considerably when required to handle complex algorithms where the operations 

executed on a piece of data are a function of the data itself. 
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Control Data Memory 

Data Memory 

Data Memory 

Data Memory 

Figure 1'5: An SIMD computing system. It has one control unit driving many ALUs 

and so has a single instruction stream, but many data streams. 

1·3+3. MISD Computers. 

These are rare. They do many things at once to only one set of data. This classification 

is normally considered to refer to code breaking machines, trying many ways to decrypt 

an encoded message (the data stream). 

1·3-1-4. MIMD Computers. 

These are fully parallel. They have multiple control units, each controlling its own 

ALU. There are multiple instruction streams and multiple data streams. There are two 

notable variations on this theme - shared memory and distributed memory machines. In 

a shared memory MIMD computer, each control unit / ALU pair can access every 

memory location in the entire machine. In a distributed memory MIMD computer every 

control unit I ALU pair has its own memory which none of the other pairs can access. 

18 



Control .. ALU ..... 
~ . Data Memory 

Control • ALU ~ 

~ . Data Memory 

Control .. ALU ..... 

• Data Memory 
( Control ALU 

Figure 1·6: A shared memory MIMD computing system. It has many control units 

each driving one ALU and so has many instruction streams and many data streams. 

Every ALU can access every memory. 

Distributed memory MIMD computer systems are very similar to collections of SISD 

computers. The difference is that the SISD elements of the MIMD system must be able 

to communicate with each other. This is normally done by providing either a 

communication bus or point-to-point communication links. In the case of a bus, when 

one element transmits information it is visible, but not necessarily of interest to every 

other element. 

There are many ways of connecting point-to-point links. Ideally each element would 

have one link direct to each other element. Unfortunately this results in an impractically 

large number of links for a large system. Instead, the elements are usually connected in 

a 2- or 3-dimensional grid or as an n-dimensional (hyper)cube. Typically a single bus is . 
inadequate and point-to-point links are easier and cheaper to implement than multiple 

buses. 
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( Control .. ALU .. 
~ 

Control ALU --
~ 

Control .. ALU ... 
~ 

I Control .. ALU ... 
~ 

\ 

.. Data Memory 

Data Memory 

.. Data Memory 

.. Data Memory 

Communication 
System 

Figure 1·7: A distributed memory MIMD computing system. It has many control 

units each driving one ALU. Each control unit / ALU pair has its own memory. Each 

ALU can only access its own memory. To be useful there must be some form of 

communication between each control unit / ALU / memory section. 

• A processing node. 

• .. A communication link (bidirectional). 

Figure 1·8: A two dimensional connection network for a distributed memory MIMD 

computing system This particular example is a four node by four node network. 
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Figure 1-9: A four dimensional hypercube connection network for a distributed 

memory M/MD computing system A four dimensional hypercube may be constructed 

by connecting two three dimensional (hyper)cubes. The two component cubes are 

shown by different node shadings. 

1-3-1-5_ Shared Memory versus Distributed Memory Parallel Computers 

Shared memory systems have one particular advantage over distributed memory 

systems - all of the processors share the same view of memory. Because of this it is 

relatively simple to modify existing single processor programs to use a shared memory 

multiprocessor if there is any possible parallelism in the program. 

Shared memory MIMD systems typically do not exist with more than about thirty 

processors. This is due to the fact that in a shared memory system all of the processors 

share the same bus and memories, causing these resources to be saturated at about this 

point. 

The use of hybrid shared I distributed memory systems, where each processor in a 

shared memory system also has a purely local memory of its own, can help reduce 

traffic to the shared memories. However, for this to be really useful the local memories 
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must be used almost exclusively and the shared memories must be largely ignored, 

effectively reducing the system to a distributed memory system. 

The use of program and data caches with each processor can also reduce traffic to the 

shared memories, by storing the recent traffic and answering the requests themselves if 

a request is repeated. Unfortunately modem processors are so much faster than the 

available memories that caches are necessary for even single processor systems and 

hence cannot help much in a shared memory multiprocessor. 

There have been a few exceptions to the "thirty processor" rule. Usually these systems 

have used a switching network between the processors and shared memories in place of 

the simple bus normally used. Unfortunately these systems have seemingly proved 

unsuccessful and disappeared from the parallel computer market, perhaps because the 

switching network has usually proved to be a major component of the cost of the 

system. 

Distributed memory systems have several helpful qualities, particularly in that the 

overall cpu to memory bandwidth increases in direct proportion to the number of 

processors, (since adding a new processor implies adding a memory with it). This 

means that the practical limit on the numbers of processors that can be reasonably be 

incorporated into a distributed memory parallel computer is much higher than for shared 

memory parallel computers. 

Instead of processors communicating through the shared memory of a shared memory 

system, in a distributed memory system communication normally takes place over point 

to point links. When adding further processors, further links are also added to connect 

the new processors into the system. As a result of this, adding processors also implies 

increasing the processor to processor bandwidth, again avoiding the bottlenecks which 

stop the growth of shared memory systems. 
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The major disadvantage of distributed memory computers is that they are potentially 

difficult to write programs for, as will be explained in the next section. Also, they are 

rather hard to modify existing single processor programs for, since each processor sees 

a different memory and any communication between parts of the program executing on 

different processors must be explicitly programmed. 

1·3·2. Programs for Parallel Computers 

Since a parallel computer consists of a number of processors communicating with each 

other to coordinate their actions and pass partial results, a significant amount of inter

processor communication may result Whether such traffic actually does occur or not 

will depend upon the algorithm being used. Efficient use of a multiprocessor system 

requires that most of the processors' time is spent computing, not communicating. 

For an n-processor system to outperform a single processor system merely requires that 

each of the n processors computes for at least IIn of its time. If a system has more than 

a few processors but each does not compute for significantly more than IIn of its time it 

is probably a waste of resources, since it is not much faster than a single processor. So 

for a multiprocessor system to be useful it must spend most of its time computing, and 

as little time as possible communicating. 

Using a parallel processing system requires that the algorithm can be paralleJised. In 

some cases every step of the algorithm requires that all of the earlier steps be complete 

and have delivered their results. In this case it is impossible to para1lelise the algorithm. 

For algorithms where there is no way to avoid high levels of interprocessor 

communication or where there is no way to paralleJise the algorithm at all, an alternative 

algorithm must be found which is amenable to parallelisation. Otherwise a parallel 
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processor is of no help and the fastest solution of the algorithm will be found using the 

fastest single processor machine. 

1'3'3. Programs for Distributed Memory Parallel Computers 

In a typical shared memory parallel computer. the bus between the processors and 

shared memories is a bottleneck. In a distributed memory parallel computer there is no 

obvious bottleneck. This does not mean that there are actually no bottlenecks. but 

should one exist it is less obvious. For example. if some particular data structure 

should be central to all stages of a computation. then all parts of that computation must 

clearly be able to access the data structure. In a parallel computer these various parts of 

the computation will be executing on separate processors. The question thus arises. 

''where should the data structure be placed?" Unfortunately. no matter where it is placed 

some processor will face a considerable delay accessing it. 

There are two aspects of interprocessor communication in a distributed memory parallel 

computer which may slow the access of remote data. These are the bandwidth of the 

connections and the latency of reply. The bandwidth is the rate at which data may pass 

along a communication link and is of concern only when passing large amounts of data. 

The latency is the delay before the reply to a request starts arriving. 

The bandwidth of interprocessor connections may be increased to alleviate congestion. 

though such remote connections never equal a local memory access for bandwidth. 

Problems with latency are however becoming unavoidable - as computation rates 

increase the effect of the "speed of light" physical limit for electronic signals is 

becoming more significant. where a remote memory takes longer to access than a local 

one simply by virtue of the fact that it is further away. In a distributed memory parallel 

computer there are few obvious bottlenecks and so these systems may be built with 
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very many processors and may consequently be physically very large, making the 

latency problem severe. 

1'3'4. Measuring Parallel Systems 

Note: This section aims to create a few simple metrics of parallel computer system and 

program performance. However, no single, simple to measure figures are going to 

offer more than an approximate guide to such complex systems. 

An algorithm that can make effective use of a parallel computer must not make more 

than light use of non-local information. To take a more quantitive view of this factor, 

"light use" must be calculated with reference to the particular parallel computer under 

consideration. A good starting point for such a system of metrics is the ratio of 

interprocessor bandwidth to processor instruction rate. This is based on the assumption 

that a program will on average send/receive so much data for every so much program 

executed. Since processor instruction rate is a rather difficult quantity to measure in a 

machine independent way, an alternative measure must be used instead. For purely 

numerical computations, the possible rate of floating point calculation offers a 

reasonable approximation. For non-numeric calculations, the choice of metric is much 

harder since the instruction rate of a machine has long since been discredited as a 

measure of machine performance. For such jobs, the processor-to-memory bandwidth 

is suggested. This gives a quality factor for the machine, Qmacbine or Qm: 

Q = Processor to Processor Bandwidth 
m Processor to Memory Bandwidth 

Qm is thus basically the cost of non-local data access divided by the cost of local data 

access. The processor-to-memory bandwidth figure can still be hard to measure, for it 

25 



does not state how systems with caches are to be treated. The numerical alternative is 

thus Qmachine,numeric or Q mn: 

Q _ Processor to Processor Bandwidth 
mn Floating Point Operation Rate 

There is then an obvious similar metric for a program, the ratio of computation to 

communication within the program. The amount of communication may usually be 

estimated fairly simply by examining the program, but again the question of how to 

fairly measure computational costs over a range of machines arises. For primarily 

numerical computations the number of floating point operations may be used, leading to 

a quality factor for the program, Qprogram,numeric or Q pn: 

Q _ Floating Point Operations 
pn - Amount of Communication 

For non-numerical computations, there is no clear alternative to instruction rate. 

Experience suggests that a scheme of costs per instruction type, yielding a weighted 

instruction count, gives a reasonable approximation to the real program cost. Such a 

metric should not be taken too seriously since a single figure is never going to provide 

an accurate description of computing costs. This gives: 

_ Weighted Instruction Count 
Qp - Amount of Communication 

As a simple example of the use of these metrics, consider the performance of a highly 

numerical program on a network of Inmos T414 microprocessors and on a similar 

network of Inmos T800 microprocessors 40. For both transputer types, at 20MHz 

clock rate, with 4-cycle external memory access, the (external) memory bandwidth is 

20Mbytes per second. The link speed may be 20Mbitsls for each of four links. This 
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gives (naively) IOMbytesls interprocessor bandwidth. The floating point operation rates 

are approximately 1MFLOP for the T800 and 0.15MFLOP for the T414. Hence 

Qmn,T800 = 10 MBIMFLOP 

Qmn,T414 = 70 MBIMFLOP 

Qm,T800 = 0.5 

Qm,T414 = 0.5 

This suggests that a T414 network will be easier to use efficiently for numerical work 

than a T800 network, but that for non-numerical work they will be almost identical. It 

does not mean that the T414 network is necessarily preferable to the T800 network for 

numerical calculation, since it would take seven T414s to equal the numerical 

calculation rate of the T800. Extending this to the Inmos T9000 41 and Texas 

Instruments 32OC40 microprocessors 42 gives: 

Qmn,T9000 = 50MB/s /25MFLOPs = 3.3 MBIMFLOP 

Qmn,32OC40 = 120MB/s /50MFLOPS = 2.4 MBIMFLOP 

Qm,T9000 = 50/50 = 1.0 

Qm,32OC40 = 120/100 = 1.2 

These figures suggest that it is getting harder to efficiently use a parallel computer for 

numerical work, but slightly easier for non-numerical work. However these figures 

should not be taken too seriously for several reasons: 

1. They are all approximations anyway. 

2. They are based on manufacturer's data, which can be misleading. 

3. They ignore other aspects of the microprocessors considered, such as the T9000's 

elegant message routing system which should eliminate the software routing of 

messages, a time consuming job. 

27 



Two much more objective measures of the advantages of a parallel program are 

"speedup" and "linearity of speedup". Speedup is simply how many times faster the 

algorithm executes compared with the one processor case. Linearity of speedup could 

also be called the efficiency of parallelisation in that it measures the fraction of the 

maximum possible speedup obtained in practice. So: 

and 

Linearity of Speedup = Sp~up where n = no. of processors 

Execution Time for 1 Processor 
Speedup = Execution Time for n processors 

1·4. Hidden Surface Elimination 

Hidden surface elimination (HSE) is one of the earliest computer graphics problems. 

Given a collection of objects in three dimensional space and the point and direction 

from which they should be viewed, the problem is to decide which parts of which 

object are visible to the viewer. Alternatively, the problem may be seen as that of 

discarding or eliminating those parts of objects which cannot be seen by the viewer 

because they are hidden by other objects. The earliest HSE work was sometimes called 

"hidden line elimination", which sought to solve the same problem for scenes displayed 

as line drawings. 

Much of the early HSE work done considered only objects constructed from polygons. 

While other representations have become more popular over the years, the simplicity of 

polygon based descriptions has ensured that they are still in wide use today. Variations 

of four of the major polygon based HSE algorithms are extensively described in chapter 

two. The HSE algorithms considered are recursive (quadtree) subdivision, two variants 

of a scan line algorithm 34-36, the z-buffer algorithm and the painter's algorithm. 
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1·4·1. Hidden Surface Elimination on Parallel Computers 

The majority of the work on parallel HSE has covered ray tracing. As mentioned in 

section 1·4, most of the work on the parallel implementation of polygon based hidden 

surface elimination algorithms has taken the form of simulations, or of optimisations 

for implementation as parallel functional units on VLSI chips. 

Of the few papers on parallel computer, polygon based HSE, Franklin and Kankanhalli 

29 considered a parallel object space HSE algorithm while most other researchers have 

concentrated on image space HSE. Of these, Parke 33 simulated the performance of 

three types of multiprocessor z-buffer and Hu and Foley 31 also simulated a number of 

varieties of z-buffer. Fiume et. al. 30 experimented with a parallel scan conversion 

algorithm on the experimental shared memory Ultracomputer. Strothotte and Funt 32 

designed and simulated a parallel computer and display algorithm solely for the display 

of rotating objects. Unfortunately none of these papers investigated whether some HSE 

algorithms are more suitable for parallel implementation than others. 

1·5. This Thesis 

This thesis investigates the application of a general purpose distributed memory MIMD 

computing resource to the graphics problem of hidden surface elimination. With 

increasing numbers of such machines becoming available the possibility of using them 

as flexible, quick interactive graphics resources has become worth investigating. 

The method discussed in this thesis is the use of a collection of general purpose 

processors each with a small attached display memory. While not as fast for line 

drawing (or whatever is given hardware support) as a hardware accelerated graphics 

system such as those discussed in section 1·2·3, it still provides a reasonable way of 
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accelerating graphics work while simultaneously remaining a much more general 

purpose device. If the display algorithm is changed, a hardware graphics accelerator 

becomes unusable and must be redesigned, but the more general system described here 

could simply be loaded with a new program. 

The problem of limited bandwidth to the frame buffer is also altering the balance 

between dedicated hardware and general purpose microprocessors. Since modem 

microprocessors are almost able to saturate the interface to the frame buffer, dedicated 

hardware can no longer make better usage of the frame buffer. Part of the historical 

advantage of dedicated hardware has been that it could draw many pixels into a frame 

buffer in the time it took a general purpose microprocessor to draw one pixel. The 

frame buffer bottleneck has largely negated this advantage. 

This thesis presents the results of comparative tests for HSE algorithms on polygonal 

models from two viewpoints. First, it compares the performance of several widely used 

algorithms implemented serially in the same hardware and software environments, and 

secondly it extends the comparison to parallel implementations of these algorithms. 

1·5·1. The Parallel Computer Used. 

This work was carried out on a network of Transputers 40. Each Transputer is a 

processing element incorporating a CPU with integrated floating point unit, four serial 

communications links, and some on-chip RAM. Each Transputer also had at least a 

further 1 Mbyte of off-chip RAM connected to it. 

Since each Transputer has only four links to its neighbours, the maximum size of a 

fully connected network, (where every element has a direct connection to every other 

element) is five Transputers. For relevance to larger networks a fully connected 
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-- -- --- --------------------------------------------------

network was not used. Instead the structure diagrammed in Figure 1·10 was adopted, 

with one master element acting as file store, and a number of worker elements chained 

to it This "processor farm" structure may be seen throughout the literature, for example 

in Packer 43 and Bez 44. 

This arrangement has a potential problem in that all data must pass down the "chain" of 

workers instead of direct to its destination, possibly causing a communications 

bottleneck. In the algorithms in this thesis all of the processors require local copies of 

the polygons. With each polygon averaging 60 bytes and a single transputer link having 

a bandwidth of approximately 1.5 Mbytesls, at most 25000 polygons per second may 

be transmitted. So for the cases considered in this thesis, transmission time would take 

at best between 0.01 and 0.1 seconds, (for the largest and smallest sets of polygons 

respectively). 

Master Worker 1 Worker n 

20 MHzT800 2OMHzTSOO 20 MHz TSOO 

Figure 1·10: The connection structure of the parallel computer. 

Since the design of the transputer is such that it may simultaneously receive and 

transmit data, one transputer may be passing polygon k to its downstream neighbour 

while receiving polygon k+ 1 from its upstream neighbour, allowing the polygons to be 

passed along at full link speed. The cost of adding a processor to a pipeline is therefore 

a one polygon delay, (roughly 0.04 milliseconds). 

Should this system be found inadequate, (perhaps for larger data sets), then a second 

pipeline could be added using the remaining two links per processor. Even greater data 
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rates could be achieved by using a memory bus and writing the same data to all of the 

processors at once. Such busses easily operate one or two orders of magnitude faster 

than transputer links, but require additional hardware. 

1'6. Test Data & Environment Statistics 

The test data consisted of two sets of scenes. The basic designs of the scenes were 

chosen for their familiarity within the computer graphics community. All of the scenes 

in the first set consisted of a row of six teapots. The viewpoint and viewing direction 

were set so that the row was seen almost exactly end on. Five versions of this scene 

were used, the difference between them being the number of polygons used to describe 

the scene. The nominal numbers of polygons in the data sets were 200, 500, 1000, 

2000, and 2500 polygons. These numbers are for the backface-culled scene, (Le. there 

are no backfacing polygons in the data sets). The upper limit on the number of 

polygons used in a data set was a consequence of the available memory on each 

processor of the development system. The lower limit was set by the practicality of 

describing six teapots with a small number of polygons. 

The second set of scenes were the "tetra" scene from Haines 45, a recursive1y generated 

tetrahedral scene. Allowing the generating program an extra level of recursion causes 

each tetrahedron in the scene to be replaced by four smaller ones, at the vertices of the 

original. Three versions of this scene were used, with varying numbers of tetrahedra 

(and hence polygons). 

All perspective projection, back face culling, and (flat) shading was done in a 

preprocessing stage since these operations are common to systems involving any of the 

HSE algorithms considered. This decision is compatible with Sutherland et al 1. 
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Kev to Environment Statistics 

Statistic Description Rule of Thumb 

n Vertical screen resolution (in pixels) Given 

ID Horizontal screen resolution (in pixels) Given 

FT Number of forward facing faces Given 

Fe Avera~e number offaces ner cluster Given 

Dc Depth complexity Given 

Ft Total number offaces 2FT 

Ct Number of clusters Ft/Fe 

Et Total number of edges 4 Ft 

iEr Number of edges on forward facing faces Et/ 2 

Ee Number of contour edges Er 

w: 2 e 

Es Number of edges on forward faces if sharing is allowed 
1 

1"2<Er- Ee)+Ee 

XT Total number of edge crossings in the viewing plane Er 
(De-I)T 

Xv Number of intersections of visible edges ~lDe 

Ht Average face height (in pixels) 2 n m Dc , 
FT 

SI Average number of segments per screen line 2 
DeFTm i\j 

n 

Sy Average number of visible segments per screen line SlIDe 

Lv Total length of visible edges (in pixels) 2nSy 

Table 1·1. A key to the various scene measurement statistics. After Tables I and II of 

Sutherland et all. 
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--- -------------------------------------------------------------------------

A summary of the properties of the data sets is shown in Tables 1·2 and 1·3. Table 1·1 

is a key to the various statistics and the rules of thumb used for calculating many of 

them. The rules of thumb are those of Sutherland et all. There are five basic statistics 

which must be measured for each data set - n. m. FT' Fe and Dc. The first two are 

simply measures of the vertical and horizontal display resolution respectively. FT is the 

number of polygons facing toward the viewpoint. (polygons are assumed to have one 

visible side and one invisible side). Fe is the average number of faces per polygon 

cluster. (where a cluster is a group of polygons clearly separate from all other 

polygons). Dc is the average depth complexity of the scene. which is defmed as the 

number of overlapping. forward-facing polygons at a given point. 

All of the other statistics are calculated from these five basic quantities using Sutherland 

et. al.'s rules of thumb. These statistics are Ft. Ct• Et. Er. Ee. Es. XT• Xv' Hr. SI' Sv. 

and Ly. Ft is the total number of faces in the scene. including the invisible ones facing 

away from the viewer. Cl is the number of clusters in the scene. El is the total number 

of edges in the scene. while ~ is the number of edges on forward-facing polygons. Bc 
is the number of edges per contour. Es is the number of distinct edges on forward

facing polygons. i.e. edges shared by two polygons are counted only once. Hr is the 

average face height. XT is the number of edge crossings for edges on forward-facing 

polygons projected into the viewing plane. and Xv is the number of visible edge 

crossings. SI is the average number of segments per screen line. i.e. the average 

number of forward-facing polygons per screen line. while Sv is the average number of 

visible segments per screen line. Ly is the total length of visible edges. 

The properties of the data sets used in this thesis are very similar to those of the scenes 

described in Sutherland et al I. except for those measures that depend upon the 

clustering of the polygons. (Fe. Cl' Ee. Es). This difference should be irrelevant as 

none of the algorithms described in this thesis make any use of the clustering of 
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polygons. Several of the statistics in Table 1· 3 are clearly incorrect, such as the 

property Xv which is negative for all of the tetra scenes. This anomaly is due to the 

depth complexity of the scenes being less than one on average, while the rule of thumb 

used to calculate Xv assumes a depth complexity greater than one. 

1·6'1. Estimating the Cost of Algorithms 

When an algorithm's cost is estimated in this work, the cost is reduced to a number of 

independent terms. Each of these terms is stated in terms of those environment 

properties referred to as "given" in Table 1·1 - n, m, Fp Fc and Dc. Actually, no cost 

is expressed in terms of Fe because this statistic is a measure of the clustering of 

polygons within a scene, but none of the HSE algorithms uses clustering in any way. 

With clustering being irrelevant, Fe may effectively be eliminated in favour of FT" Little 

use is made of calculations of costs calculated in terms of n or m due to their being 

I1xed for all of the work described here. Also, there is little interest in the growth of 

algorithm costs as a function of screen resolution (i.e. n and m) because this has 

changed little over many years. 
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Environment Statistics for the Teapot Scenes 

Model Size (nominal) 

Statistic 200 500 1000 2000 2500 

512 512 512 512 512 
n 

512 512 512 512 512 
m 

FT 
205 499 1027 2035 2575 

Fe 
68.33 166.33 342.33 678.33 858.33 

Dc 
3.029 3.005 3.005 3.019 3.015 

Ft 
410 998 2054 4070 5150 

et 6 6 6 6 6 

~t 
1640 3992 8216 16280 20600 

~ 
820 1996 4108 8140 10300 

Ee 
140.29 218.87 313.99 442.00 497.19 

Es 
480.14 1107.43 2211.00 4291.00 5398.60 

XT 
415.945 100.495 2059.135 4108.665 5188.625 

Xv 
137.32 332.94 685.24 1360.94 1720.94 

Hf 
62.24 39.73 27.70 19.72 17.52 

SI 
24.92 38.72 55.55 78.38 88.11 

Sy 8.23 12.89 18.49 25.96 29.22 

Lv 
8424.17 13195.57 18930.54 26585.85 29925.74 

Table 1·2. A sumnuzry of the properties of the five teapot scene descriptions used, 

given in the format of Table 11 of Sutherland et all. 
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- ---------------------------------------------------------------

Environment Statistics for the Tetra Scenes 

Model (Size) 

Statistic Tetra 4 (156) Tetra 5 (624) Tetra 6 (2496) 

n 512 512 512 
512 512 512 

m 

F.L 
156 624 2496 

Fe 
312 1248 4992 

De 
0.351 0.391 0.469 

Ft 
312 1248 4992 

Ct 
1 1 1 

Et 
1248 4992 19968 

Er 
624 2496 9984 

Ec 
49.96 99.92 199.84 

Es 
336.98 1297.96 5091.92 

XT 
-101.2 -380.0 -1325.4 

Xv 
-288.4 -971.9 -2825.96 

Hf 
24.29 12.82 7.02 

81 
7.40 15.62 34.21 

Sy 21.08 39.95 72.95 

Lv 
21587.8 40907.6 74702.6 

Table 1·3. A sUmnuJry of the properties of the three tetra scene descriptions used, 

given in the format of Table 11 of Sutherland et al I. The tetra scenes have only one 

cluster each and a low overall depth complexity, which causes some of the rules of 

thumb to result in ridiculous values, e.g. XT and Xv 
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Chapter 2 

A Comparison of Five Hidden Surface 
Elimination Algorithms 

2'1. Introduction 

This chapter considers serial versions of four common image space hidden surface 

elimination algorithms. The algorithms are described in detail, their execution costs are 

roughly estimated, and their performances measured and compared. These results are 

also compared with those of Sutherland et al .. The algorithms considered were: 

(i) the recursive subdivision algorithm. 

(ii) two versions of the scan line algorithm, with and without the edge-table 

optimisation. 

(iii) the z-buffer algorithm. 

(iv) the painter's algorithm, (which is actually partly an object space HSE method). 

2·2. The HSE Algorithms. 

Descriptions of each of the five HSE algorithms studied are given here. Also, their 

costs are estimated in the style of Sutherland et all, though with greater refinement. 
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2'2·1. Recursive Subdivision Algorithm 

This algorithm tries to find a simple solution to the hidden surface problem for a 

particular area of the screen. Should it fail to do so, it breaks the area up into a number 

of sub-areas and then applies itself recursively to each of the sub-areas in turn. 

First an area of the screen, (initially the entire screen) is considered. Those polygons 

wholly or partially within this area are identified. Then, if the area has an easily 

identified shading scheme, (i.e. a simple solution) of one of the four following types, 

the shading is done immediately. The simple solutions the algorithm recognises, and 

the actions taken for each one are: 

1. There are no relevant polygons. 

• Colour the area with the background colour. 

2. There is only one relevant polygon, which is partly or completely enclosed by the 

area. 

• Colour the area with the background colour, overlaid with the polygon or part 

of polygon. 

3. There is only one relevant polygon, which completely surrounds (encloses) the 

area. 

• Colour the area with the polygon colour. 

4. There is at least one polygon which surrounds the area, and which is in front of all 

other relevant polygons within this area. 

• Colour the area with the polygon colour. 

In the discussion of this algorithm, a surrounding polygon is one which completely 

surround the area of interest, a surrounded polygon is one which is completely 

enclosed by the area and a crossing polygon is one which partly overlaps the area. 

Also, a relevant polygon is one which partly or completely encloses the area of interest, 
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and may extend into neighbouring areas. An irrelevQ1'lt polygon is one which has no 

overlap with the area. 

Region 

(a) (b) 

(c) (d) 

Figure 2·1: (a) A surrounding polygon, (b) a surrounded polygon, (c) an intersecting 

polygon, Q1'Id (d) a disjoint polygon. ( a), (b) Q1'Id ( c) are relevant polygons, while (d) is 

irrelevQ1'lt. 
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(a) (b) 

(c) (d) 

Figure 2·2: (a) and (c) are examples of situatiol1S which cannot be directly handled by 

the algorithm and must be broken up. (b) and (d) are examples that the algorithm can 

handle. 

If none of these simple shading solutions is found to apply to the area, then the area is 

subdivided. In the implementation described in this thesis, the area is subdivided into 

equal quarters by splitting along the vertical and horizontal halfway points. If the area 

under consideration is only one pixel in size, then it is not subdivided. Instead a 

compromise solution, based on the average of the colours of the foremost polygons at 

the four corners of the pixel, is used. 

This technique is applied recursively until the original area has been completely shaded. 
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The recursive division of the problem may be compared to a "tree" of decisions. The 

area initially considered, (the outermost area) is the root of the tree. If this is broken 

into four sub-areas, they may be referred to as intermediate or branch nodes. A sub

area which is shaded rather than being further broken down is considered to be a 

terminal or leaf node. 

This recursive subdivision method is sometimes referred to as a quadtree subdivision 

method due to the recursive four-branching of its decision tree. 

Figure 2'3: An example of the recursive break up of the problem, to five levels of 

recursion. 

Of the four HSE algorithms considered here, this was by far the most complicated 

algorithm to implement. It involves a large number of floating point mathematical 
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operations and has an extensive control flow structure. This structure is described by 

the following pseudo-code. 

PROC recsub (region, list_of-polygons) 

SEQ 

SEQ polygon = 0 FOR all-POlygons 

SEQ 

IF 

was_found_to_surround-parent_region (polygon) 

accept_as_surrounding (polygon) 

was_fo~disjoint_froITLParent~egion (polygon) 

reject_as_irrelevant (polygon) 

TRUE 

SEQ 

IF 

trivial rejection test to increase performance -

totally_left_right_above_or_below_region (polygon) 

reject_as_irrelevant (polygon) 

all-polygon_vertices_within_region (polygon) 

accept_as_surrounded (polygon) 

any-POlygo~edge_crosses_edge_of_region (polygon) 

accept_as_crossing (polygon) 

o~UITLPOly_edges_from_regio~to_infinity (polygon) 

accept_as-purrounding (polygon) 

TRUE 

reject_as_irrelevant (polygon) 

nlirnLothers = nlirnLcrossing + nlirnLsurrounded 

IF 

(nlirnLsurrounding = 0) AND (nlirnLothers = 0) 
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paint_region_backgroWlCLcolour () 

(num-surrounding = 0) AND (num-others = 1) 

SEQ 

paint..--regioILbackgroWlCLcolour () 

paint..--relevant-part_of-P01ygon () 

(num-surroWlding = 1) AND (n~others = 0) 

paint_regi0n--Po1ygon_colour () 

(num-surroWlding >= 1) AND (one_of_these-nides_all_others ()) 

paint_region--Po1ygoIl-colour () 

TRUE 

SEQ 

IF 

regioILis_one-pixel_in_size () 

paint-pixel_average_colour_of_corners () 

TRUE 

SEQ 

recsub (top_left_of_region, region's_relevant-po1ys) 

recsub (top_right_of_region, region's_relevant-P01ys) 

recsub (btITLleft_of_region, region's_relevant-P01ys) 

recsub (btITLright_of_region, region's_relevant-P01ys) 

This algorithm could be altered in many ways. For instance, the subdivision step might 

be changed to divide an area in half, splitting the area vertically for even levels of 

subdivision and splitting it horizontally for odd levels of subdivision. Another possible 

alteration would be to no longer require the resulting parts of a subdivision step to be 

equal in area, with the division being chosen after considering the relevant polygons. 

More "solutions" could be recognised in order to avoid unnecessary subdivisions. All 
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of these changes would offer the possibility of reducing the eventual number of solved 

areas, but would also introduce extra costs. 

The version used here was chosen for its simplicity and familiarity within the computer 

graphics community. The variations discussed may improve the algorithm's 

performance somewhat but are unlikely to significantly alter its character. 

2'2·1·1. Cost Estimate 

To make a useful estimate of the cost of this algorithm, whose actions clearly depend 

rather heavily upon the exact scene data, several assumptions about reasonable 

workloads must be made. Even the form of the "worst case" n-polygon scene is not 

immediately obvious. For instance, one possible ''worst case" involves every region 

being subdivided as far as possible, with the compromise solution being used in all 

cases. Such a scene implies a fairly well distributed set of polygons. An alternative 

possible ''worst case" scene would involve all polygons clustering into a small region, 

which involves fewer subdivisions, but increases the cost of testing for each 

subdivision. 

Outermost Level 

On first entering the program, all polygons are tested for relevance to the outermost area 

(which is normally the screen) and are classified as surrounding, surrounded, crossing 

or irrelevant polygons. Assuming a reasonably well framed object, no rejections will 

occur during the first pass. Also, there will be few surrounding or crossing polygons. 

For a scene of P polygons: 

• P trivial rejection tests are made. (No polygons are rejected) . 

• P tests for surrounded polygons are made. (All P polygons are accepted). 
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• 0 tests are made for crossing polygons. 

• 0 tests are made for surrounding polygons 

This stage thus will have a cost of 0 (FT). This cost is only incurred once for any 

execution of the algorithm, and so will be negligible compared to the costs of the later 

stages. 

Intermediate Levels 

Similarly, for some particnlar sub-area, whose parent area had P relevant polygons: 

• P trivial rejection tests are made. Assuming the polygons were evenly distributed 

throughout the parent area approximately three quarters of the polygons will be 

rejected, since the area being considered is a factor of four smaller than its parent area. 

Very few rejectable polygons will escape this trivial rejection test and need rejecting 

after testing for acceptance as a surrounded, crossing or surrounding polygon. Such 

cases are thus ignored here. (3P/4 polygons are rejected). This is 0 (FT). 

• P/4 tests are made for surrounded polygons. This costs 0 (FT). 

• A small number of tests are made for crossing polygons. 

• A small number tests are made for surrounding polygons. 

Although there are likely to be many such branch nodes of the decision tree, they will 

still be significantly outnumbered by the leaf nodes. Hence the cost of the branch nodes 

will be swamped by the cost of the leaf nodes. 

Terminal Levels 

A terminal node will either be of single pixel size and therefore indivisible, or have only 

one relevant polygon, or have a frontmost surrounding polygon. For the single pixel 
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case, there will be Dc relevant polygons on average. There will be few occurrences of 

the single relevant polygon case, since these consume so much more area than single 

pixel terminal nodes. In the case of a frontmost surrounding polygon the number of 

relevant polygons will be proportional to DC' but there will again be few such nodes . 

• The number of polygons intersecting an area is on average, approximately Dc for 

terminal nodes. The culling of irrelevant polygons will thus cost approximately 0 (Dc)' 

• The solution for a terminal node that is of single pixel size will cost 0 (Dc). The 

solution for a terminal node of greater than single pixeI size will also cost 0 (Dc). 

Overall Cost 

To draw useful conclusions from this analysis, two extreme cases will be considered. 

These are (i) a scene consisting of very large polygons, and (ii) a scene consisting of 

very small polygons. 

Only "terminal" areas are considered here since they will significantly outnumber 

subdivided areas. Of these, single pixel size terminal nodes will also outnumber all 

other types of terminal nodes, so only these terminal nodes will be considered. Each 

terminal node costs 0 (DC> for both culling and finding a solution. 

Case (i): 

For this case, single pixel terminal nodes will tend to occur only along visible 

shared edges in the polygonal scenes. Hence the number of such nodes will be 

approximately equal to the total length of visible shared edges in the scene. 

Total cost is therefore 0 (Dc >I< length of visible shared edges). The total number of 

shared edges will be approximately Er 12 since most polygons in the test scenes 

have immediate neighbours on all sides. The number of visible, shared edges is 
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therefore Er I (2 Dc). The average edge length is approximately HI" Therefore 

length of visible, shared edges is (Er HI') I (2 Dc). 

(_ r;:;;:;;} 
Total cost is 0 -'V ~ 

Case (ii): 

When the scene consists of small polygons, the number of terminal nodes will be 

approximately 0 (FT I Dc) and each such node costs 0 (Dc)' 

Thus the total cost is 0 (FT)' 

Scenes consisting of polygons of intermediate size or of different sizes should show 

costs somewhere between the two extremes considered. 

2·2'2. Scan Line Algorithms 

Here, the screen is considered as each horizontal line in turn. First the algorithm 

calculates line segments for each polygon which crosses the current screen line. These 

segments are essentially horizontal stripes of colour whose descriptions consist of 

starting coordinates (xl, zl), finishing coordinates (x2, z2), and the polygon's colour. 

The y-coordinates of the ends of the line segments are implied by the y-coordinate of 

the current screen line. All of the line segments for the current screen line are placed 

into a list. The algorithm then resolves any cases of overlapping or intersecting 

segments within this list. Finally the resulting list of visible segments are sent to the 

screen processor for display. 
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(Seen from the front) 

• Screen line being considered 

Line segments output by algorithm for this polygon and screen line 

(Seen from above) 

a 
I ll-r--+---=~_' These line segments exist in three dimensions 

Figure 2·4: A polygon and its resulting line segments after scan conversion for one 

particular screen line. 

Two versions of this algorithm were tested. One used edge tables to take advantage of 

coherence between screen lines within the scene, while the other did not. The edge table 

optimisation is discnssed later. The version without edge tables is described by the first 

piece of pseudo-code: 

SEQ 

reaCLin...;polygons () 

SEQ y = min-y FOR nlimLscre~lines 

SEQ 

reset (store) 
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SEQ polygon = 0 FOR all-POlygons 

SEQ 

find-resultant_scan_lines (polygon, y) 

output_sc~lines (store) 

(From the front) (From above) 

_C2:::::1 

Figure 2-5: An example of one polygon obscuring another, and the 'overlapping'line 

segments produced by scan conversion. Correcting these line segments so that only 

their visible portions are output is the primary job of the scan line algorithm. 

./ Left visible fragment 

~ / llidden ::~:ible fragment 

~, ./' 
" ~ , , , , 

1./l 
V~ , , This line segment partially obscures 

the other line segment 

Figure 2-6: When one line segment hides part of another from view, up to three 

fragments may result. 
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Figure 2'7: When two line segments intersect, due to their parent polygons 

intersecting, up to sixfragments may result, of which two are always hidden and are 

therefore discarded. Fragments 2 and 5 are the hidden ones, being obscured by 

fragments 4 and 3 respectively. 

In the following pseudo-code procedure, the tenn x-extent appears quite regularly. The 

x-extent of a three dimensional line segment is the range of possible x values of a point 

on that line segment When a partly hidden line segment is broken up by the algorithm, 

it may consist of up to three pieces. There is the hidden fragment, possibly a visible left 

end fragment, and possibly a visible right end fragment The hidden fragment is 

discarded since it cannot be seen. 

PROC resolve-x-overlaps (store) 

SEQ 

for all possible pairs of scan_lines sl and s2 

SEQ 

IF 

x-extents_overlap (sl, 52) 

IF 
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SEQ 

IF 

(52 extends left of 51) AND (52 extend right of 51) 

SEQ 

replace 52 ~ left fragment of 52 

add right fragment of 52 to end of segment list 

(52 extends left of 51) 

replace 52 ~ left fragment of 52 

(52 extends right of 51) 

replace 52 ~ right fragment of 52 

TRUE 

delete 52 

s2_in_front_of_s1 () 

** similar to previous case ** 

TRUE 

IF 

comment: z-extents of 51 and 52 overlap 

51 does not intersect 52 

SEQ 

** Essentially a repeat of previous section. 

** but with more exact in_front_of test. 

** This was a small performance enhancement. 

TRUE 

IF 

comment: 51 intersects 52 

left_of~l in-front_of left_of_s2 

IF 

(52 extends left of 51) AND 

(51 extends right of s2) 

52 

** 

** 

** 



TRUE 

SKIP 

TRUE 

SEQ 

replace sl by left fragment of sl 

replace s2 by left fragment of s2 

append right sl fragment to segment list 

append right s2 fragment to segment list 

(s2 extends left of sl) 

SEQ 

replace sl by left fragment of sl 

replace s2 by left fragment of s2 

append right s2 fragment to segment list 

(sl extends right of s2) 

SEQ 

replace sl by left fragment of sl 

replace s2 by right fragment of s2 

append right sl fragment to segment list 

TRUE 

SEQ 

replace sl by left fragment of sl 

replace s2 by left fragment of s2 

** similar to above ** 

The next piece of pseudo-code describes the version of the scan line algorithm that uses 

edge tables to take advantage of coherence within the scene. The rest of this version of 

the scan line algorithm is identical to the unoptimised version already discussed. 
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This algorithm begins by constructing two tables, one which records which polygons 

start on each screen line, and one which records which polygons end on each screen 

line. The algorithm then keeps a list of currently relevant polygons, which it updates 

from the two polygon tables as it moves through the screen line by line. This technique 

was originally applied to tables of polygon edges and so is known as the edge table 

optimisation. The variety of this technique used here works on tables of polygons due 

to this being more suited to the particular scan conversion method used. It would thus 

perhaps be clearer to refer to it as a polygon table optimisation, but the edge table name 

is far more widely recognised. The difference between polygon tables and edge tables 

is not significant in terms of algorithm cost. 

This modification allows the algorithm to only consider those polygons which are 

known to be relevant to the current screen line, (i.e. those polygons that will result in 

scan lines). This requires some pre-processing costs but largely eliminates the costs of 

examining non-relevant polygons to fmd whether they are relevant. 

SEQ 

reacl.....in...polygons () 

SEQ polygon = FOR all-POlygons 

SEQ 

obtai~bottom_ancl.....top_of_eac~lygons (bottom, top) 

store-POlygo~id (addlpolys[bottom]) 

store-po1ygon_id (remove-polys[top]) 

SEQ y = minLY FOR ntimLscree~lines 

SEQ 

reset (store) 
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SEQ polygon = 0 FOR all-PQlygons 

SEQ 

find-resultant_sc~lines (polygon, y) 

append-sc~lines_to~tore (store) 

resolve_z_overlaps (store) 

output~c~lines (store) 

remove_expired-polygons (current-PQlygons, remove-PQlys[y]) 

add-pewly_relevant-polygons (current-PQlygons, a~lys[y]) 

2·2·2·1. Cost Estimate for Scan Line Algorithm Without Edge Tables 

Part 1 . Initialisation Steps 

• The edges are adjusted so that where a polygon's edges touch (at the ends) they do 

not have identical coordinates, so only one edge occupies a vertex. This is necessary to 

allow the algorithm to operate correctly. This step considers each edge in turn, and so 

the cost is 0 (no. of edges). 

• For each edge, a number of properties are calculated and stored. These properties 

include the minimum and maximum y values, the y height, x and z gradients. For this 

step the cost is again 0 (no. of edges). 

Part 2 . The Scan Conversion Step 

For each screen line, line segments are produced. This involves finding intersections 

with relevant edges. 

• Every edge is checked for relevance at a cost of 0 (edges). 

• Intersections are then found for the relevant ones at a cost of 0 (relevant edges). 
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• These intersections are "paired up" using an x-sort step to produce line segments. For 

each polygon. edge intersections are bubble sorted on their x-values. Assuming the 

polygons are convex and hence have only two edges crossing a particular screen line. 

this has a cost of 0 (polygons). All of the test scenes contain only convex polygons. 

although the scan line algorithms can handle non-convex polygons. 

Part 3 • The HSE Step 

As in part 2. this is repeated for each screen line. The line segments created in part 2 are 

then corrected for overlapping one other (hidden parts are removed). This is similar to a 

bubble sort on the line segments. except that as overlapping line segments become 

fragmented the extra fragments are added to the end of the list of items being sorted . 

• If no line segments overlap. then each test for overlapping edges is a simple 

comparison of x values. and there are 0.5 * segments 
2 

tests. This gives a cost of 0 

(segments\ This represents the cost for a scene with a depth complexity of 1 or less at 

every point of the screen .• In the worst case line segments could be broken up at every 

comparison. resulting in squaring the number of line segments. Assuming these extra 

line segments are created at the very beginning of this step. this has a cost of 

approximately 0 (segments
2 + segments\ Such a scene would be highly unlikely. 

since every initial segment would be intersecting every other initial segment! • In the 

more general case. for a scene with a depth complexity Dc. there will be (segments I 

Dc) sets of Dc overlapping segments at each point of the screen. In most scenes 

intersecting polygons and therefore intersecting segments are unusual. so most of these 

cases of overlapping segments will not produce the maximum number of extra 

segments. A more likely case is the production of one extra segment for every obscured 

segment. This would result in (segments I Dc) * (Dc - I) extra segments. or 

approximately (2 * initial segments) overall. causing approximately (4 * 0.5 * 
segments

2
) operations. with a cost of 0 (segments \ 
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Part 4 • Painting 

The visible segments are then painted with a cost approximately proportional to the 

number of pixels painted. i.e. 0 (nm). This step is much less complex than the 

previous ones. and should contribute negligibly to the overall cost. 

Total Cost 

• Part 1 cost 0 (edges) + 0 (edges) = 0 (EJ + 0 (EJ = 0 (Et) 

Reducing this to the basic environment variables using the rules of thumb gives a cost 

• Part 2 cost 0 (lines >I< edges) + 0 (lines '" relevant edges) + 0 (lines >I< polygons) 

= 0 (n Et) + 0 ( ...j n m FT D J + 0 (n Ft). 

Reducing to basic variables gives 0 (n FT) + 0 ( ...j n m FT Dc). 

• Part 3 cost 0 (lines >I< segments 2) = 0 (n S\ SI) 

Reducing this to basic variables gives 0 (Dc FT m). 

• Part 4 cost 0 (nm). 

Overall cost is thus 0 (FT) + 0 (n FT) + 0 (...j n m FT Dc) + 0 (Dc FT m) + 0 (nm). 

All but one of these terms are dependent upon the model size (FT) and most are directly 

proportional to it. For many polygons. this algorithm's cost will grow as 0 (FT)' 

2·2'2·2. Cost Estimate for Scan Line Algorithm With Edge Tables 

(Optimised Scan Line Algorithm) 

Part 1 • Initialisation Steps 

• The edges are adjusted so that where a polygon's edges touch (at the ends) they do 

not have identical coordinates. so only one edge occupies a vertex. This is necessary to 

57 



allow the algorithm to operate correctly. This step considers each edge in turn, and so 

the cost is 0 (no. of edges). 

• For each edge, a number of properties are calculated and stored. These properties 

include the minimum and maximum y values, the y height, x and z gradients. For this 

step the cost is again 0 (no. of edges). 

• The edge tables (actually polygon tables) are prepared. This costs 0 (polygons). 

Part 2 . The Scan Conversion Step 

For each screen line, line segments are produced. This involves finding intersections 

with relevant edges. 

• The list of relevant polygons is updated using the edge tables, at a cost of 0 (change 

in relevant polygon set). 

• Every edge is checked for relevance at a cost of 0 (relevant polygons * no. of sides 

per polygon) . 

• Intersections are then found for the relevant ones at a cost of 0 (relevant edges). 

• These intersections are 'paired up' using an x-sort step to produce line segments. For 

each polygon, edge intersections are bubble sorted on their x-values. Assuming the 

polygons are convex and hence have only two edges crossing a particular screen line, 

this has a cost of 0 (polygons * (0.5 * 22» 

Part 3 . The HSE Step 

As in part 2, this is repeated for each screen line. The line segments created in part 2 are 

then corrected for overlapping one other (hidden parts are removed). This is similar to a 

bubble sort on the line segments, except that as overlapping line segments become 

fragmented the extra fragments are added to the end of the list of items being sorted. 
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• If no line segments overlap, then each test for overlapping edges is a simple 

comparison of x values, and there are 0.5 >10 segments 
2 

tests. This gives a cost of 0 

(segments \ This represents the cost for a scene with a depth complexity of 1 or less at 

every point of the screen .• In the worst case line segments could be broken up at every 

comparison, resulting in squaring the number of line segments. Assuming these extra 

line segments are created at the very beginning of this step, this has a cost of 

approximately 0 (segments 
2 

+ segments \ Such a scene would be highly unlikely, 

since every initial segment would be intersecting every other initial segment! • In the 

more general case, for a scene with a depth complexity Dc, there will be (segments I 

Dc) sets of Dc overlapping segments at each point of the screen. In most scenes 

intersecting polygons and therefore intersecting segments are unusual, so most of these 

cases of overlapping segments will not produce the maximum number of extra 

segments. A more likely case is the production of one extra segment for every obscured 

segment. This would result in (segments I Dc) >10 (Dc - 1) extra segments, or 

approximately (2 >10 initial segments) overall, causing approximately (4 >10 0.5 >10 

segments 2) operations, with a cost of 0 (segments \ 

Part 4 • Painting 

The visible segments are then painted with a cost approximately proportional to the 

number of pixels painted, i.e. 0 (nm). This step is much less complex than the 

previous ones, and should contribute negligibly to the overall cost 

Total Cost 

• Part I cost 0 (edges) + 0 (edges) + 0 (polygons) = 0 (Et) + 0 (Et) + 0 (FT) 

Reducing this to basic variables gives a cost of 0 (FT)' 

• Part 2 cost 0 (lines >10 change in relevant polygon set) + 0 (lines >10 relevant polygons >10 

4) + 0 (lines >10 relevant edges) + 0 (lines >10 polygons) 
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- - - - - ------------------------------

= 0 (Fr) + 0 ( ...J FT m n 0 c ) + 0 (n FT) 

• Part 3 cost 0 (lines * segments 2) = 0 (n S\ SI) 

Reducing this to basic variables gives 0 (Dc FT m) . 

• Part 4 cost 0 (run). 

(nm). 

These component costs mostly vary with model size (Fr) with powers of 0.5 to 1.0. 

For large numbers of polygons, the overall cost is 0 (Fr)' 

2·2'3. Z-Buffer Algorithm 

This is the simplest hidden surface algorithm tested. Basically, every point of every 

polygon is plotted into a z-buffer. Every pixel in a z-buffer consists of a storage 

location for that pixel's displayed colour and also a storage location for the z-value of 

the pixe\. When plotting into a z-buffer the algorithm must check to see if the point 

being plotted is behind the one already in the z-buffer, in which case nothing is done, 

or is in front of the pixel already in the z-buffer in which case the old z and colour 

values are overwritten. Z-buffers are frequently supported in hardware due to their 

simplicity, (and hence low cost). The implementation described here used a simple scan 

conversion algorithm to calculate the points to be plotted. 

The pseudo-code routine z""plot describes the method of plotting into a z-buffer. The 

colour values for screen points are stored in the array screen and the corresponding z

values are stored in the array z_value. These two arrays together form the z-buffer. 

The three dimensional, coloured point described by x, y, z, and colour is plotted into 

this z-buffer. 

60 



PROC z-plot (x, y, z, colour) 

SEQ 

IF 

z < z_value[xl [yl 

SEQ 

TRUE 

comment: The point is in front of whatever is alreaqy in 

comment: the z-buffer at these x and y coordinates. 

z_value[x][y] = z 

colour[x] [y] = colour 

-- comment: The point is hidden, so do not draw it. 

SKIP 

The program processes one polygon at a time. It simultaneously works its way up the 

left and right sides of the polygon, interpolating coordinates between vertices. This 

scan conversion algorithm is slightly different to that used in the scan line algorithms, 

but its costs are almost identical for convex polygons (which are the only son present in 

the test data). The resulting scan line segments are then drawn into the z-buffer one 

pixel at a time, using the method described previously. 

2·2·3·1. Cost Estimate 

Each polygon is convened to line segments in turn . 

• A preprocessing step builds a list of edges on the left side of the polygon and a list of 

right side edges. This costs 0 (Er). 
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• The scan conversion steps through the y-range of each polygon one screen line at a 

time. This costs 0 (Hr) for each polygon . 

• Each pixel in a line segment is tested against the z-buffer at a cost of 0 (segment 

length) per segment Visible pixels are then painted into the z-buffer at a cost of 0 

(visible pixels). 

Total Cost 

The cost is 0 <Er) + 0 (FT Hr) + 0 (segment length * segments) + 0 (visible pixels) 

= 0 <Er) + 0 (FT Hr) + 0 Cn m Dc) + 0 Cn m) 

=0 (FT) +0 (...jn m Dc FT)+O(nmDc)+O(nm) 

This has a fixed cost of 0 (n m). The term 0 (n m Dc) is also effectively a fixed cost 

for each set of test data used in this work because Dc is approximately the same for 

each member of a particular set of test scenes. 

The first two cost terms grow with the size of the test scene, so for large numbers of 

polygons the cost of this algorithm would be 0 (FT)' However, if the polygons are of 

multiple pixel area then these two costs are swamped by the per-pixel cost since they 

occur only once per polygon (for the first term) or once per segment (for the second 

term). 

The overall cost for large or medium size polygons will therefore tend to be 0 (n m). 

For large numbers of very small polygons, the overall cost would be controlled by the 

o (FT) term. 

2·2'4. Painter's Algorithm 

Unlike the previous three algorithms, the implementation of this algorithm does not 

create correct hidden surface images for scenes containing penetrating or interleaving 

62 



polygons. This algorithm first sorts the polygons by z order and then scan converts 

them in (back to front) order onto the screen. The sorting technique used is a bucket 

sort, with 2000 buckets. This sorting technique was chosen because it offers well 

controlled costs for sorting large numbers of items 46. For example, a simple bubble 

sort costs 0 (n2) for n items, a quicksort costs 0 (n log n) on average and 0 (n2) in the 

worst case, a heapsort costs 0 (n log n) and a bucket sort (sometimes known as bin 

sort) costs 0 (n + m) where m is the number of buckets. 

Sorting Algorithm Cost Cost for 2500 item sort 

vs. cost for 100 item sort 

Bubble sort o (n2) 625 

Quicksort (averaru o (n log n) 42 

Ouicksort (worst case) o (n2) 625 

Heapsort o (nlogn) 42 

Bucket sort 100 buckets o (n + buckets) 13 

Bucket sort 2000 buckets o (n + buckets) 2.1 

Table 2·1. Sorting cost variation with number of items to be sorted, for several 

common sorting algorithms. 

As may be seen in table 2·1, the cost of a bucket sort rises far more slowly with the 

number of items to be sorted than the costs of the other sort algorithms. The bucket sort 

is a relatively simple algorithm, with each of its steps being of low absolute cost The 

choice of the number of buckets used (2000) was made to limit the sorting cost for 

large numbers of polygons in preference to limiting the cost of sorting small numbers 

of polygons. The table also includes a lOO-bucket sort to illustrate this point. The 100-

bucket sort limits the absolute cost of a 100 item sort in preference to limiting the 

63 



growth of sorting cost for the range of quantities of items sorted, (which was 200 to 

2500 polygons for this work). 

Since the polygon sort is carried out in object space this algorithm is partly an object 

space HSE algorithm. The remainder of the algorithm however operate in image space. 

The structure of this algorithm is illustrated by the pseudo-code: 

SEQ 

read._.in...polygons () 

fin~an~store_average_z_of-POlygon's_vertices () 

bucketJlort"'po1ygons () 

scan_convert...P0lygons_fromLback-to_front () 

This algorithm has one potentially adjustable factor - the number of buckets used for the 

bucket sort. This could possibly be changed to improve the performance of the sort in 

terms of execution time for a particular scene, or in terms of the sorting time's 

dependence upon model size. Two thousand buckets were used for the work described 

here since the aim was to limit the growth of cost with model size, and this number is 

close to the largest number of polygons handled. The sort costs 0 (buckets + polygous) 

and so for small scenes the cost is 0 (buckets), and for large scenes the cost is 

approximately 0 (buckets + polygons). This avoids the cost of the sort growing by 

more than a factor of two or so. 

2'2'4'1. Cost Estimate 

• In a preprocessing step, the average z value of each polygon is found. 

This costs 0 (polygon >10 4) . 

• The polygons are then sorted on their average z values using a bucket sort. 

This costs 0 (buckets + polygons). 
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• Each polygon is then scan converted. This costs 0 (Hr) for each polygon . 

• The pixels are painted. This costs 0 (nmDc)' 

Total Cost 

The total cost is 0 (edges) + 0 (buckets + polygons) + 0 <Hr * polygons) + 0 (nmDc) 

= 0 (Er) + 0 (buckets + FT) + 0 (Hp FT) + 0 (nmDc)' 

This reduces to 0 (FT) + 0 (buckets + FT) + 0 ( .-vrn=-m-D-c-F-T"'<) + 0 (nmDc)' 

Thus this algorithm's cost for large numbers of polygons is 0 (FT)' 

2·3. Timing Information 

The fast, on-chip RAM was not used. This decision was made because the on-chip 

RAM is limited in size to 4K bytes, and hence has an effect upon the execution speeds 

of programs of different sizes, since differing proportions of such programs fit in this 

high speed RAM. Instead, all program and data were stored instead in the slower, 

expandable, external RAM. 

In all cases, the clock was started after the polygons had been loaded into memory from 

disk. This was done to avoid attributing a cost to the algorithms for which they are not 

responsible. The timing of the optimised scan line algorithm includes the creation of the 

edge tables. All timings were taken using the transputer's low priority clock, which 

ticks 15625 times per second. 
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2·4. Results 

For each of the five HSE algorithms previously described. timings were taken for the 

solution of the hidden surface problem for each of the five teapot scenes and three tetra 

scenes discussed. 

2·4·1. Recursive Subdivision Algorithm 

Figures 2·8 and 2·9 show an interesting compound behaviour. For small numbers of 

large polygons. the execution time grows as some fractional power of the model size. 

As the model size increases and the polygons decrease in size. (since the depth 

complexity is held constant for the test scenes). the behaviour alters to a linear growth 

of execution time with model size. This strongly supports the cost analyses for this 

algorithm which suggested a square root growth of execution time for small numbers of 

polygons and a linear growth for larger numbers of smaller polygons. The execution 

times are tabulated in Table 2·2. 
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Figure 2'8: Execution time versus model size for the recursive subdivision algorithm 

and teapot models. 
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Figure 2·9: Execution time versus model size for the recursive subdivision algorithm 

and tetra models. 

Model Type and Size Execution Time (in ticks) 

Teapot 205 1222352 

Teapot 499 2055422 

Teapot 1027 2672128 

Teapot 2035 4210430 

Teapot 2575 4947562 

Tetra 156 385115 

Tetra 624 784343 

Tetra 2496 1528651 

Table 2·2: Execution times for the recursive subdivision algorithm. 
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2·4·2. Scan Line Algorithm (Unoptimised) 

4 

Time 3 

(1e6 ticks) 
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0 
0 1000 2000 3000 

Model Size (polygons) 

Figure 2·10: Execution time versus model size for the unoptimised scan line 

algorithm and teapot models. 
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Figure 2·11: Execution time versus model size for the unoptimised scan line 

algorithm and tetra models. 
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Figures 2·10 and 2·11 show that the execution time of the algorithm is roughly 

proportional to the model size. This is supported by the cost analysis which concluded 

that the cost of the algorithm was proportional to the model size, (with small fixed costs 

etc.). 

Model Type_and Size Execution Time (in ti cks) 

Teapot 205 208212 

Teapot 499 652933 

Teapot 1027 I 255844 

Teapot 2035 2 651283 

Teapot 2575 3 559407 

Tetra 156 96931 

Tetra 624 363791 

Tetra 2496 1 403996 

Table 2·3: Execution times for the unoptimised scan line algorithm. 

2'4'3. Optimised Scan Line Algoritbm 

For this algorithm, Figures 2·12 and 2·13 suggest that execution time is approximately 

proportional to model size. This is supported by the cost analysis which noted many 

steps of linear cost. Comparing the two figures for small models shows some 

difference in execution costs between the two models, presumably due to a dependence 

upon depth complexity - the major difference between the two set of models. This 

implies that the 0 (Dc FT m) term is a major component of the total cost, which is 

reasonable since this is the HSE step. 

Comparing the unoptimised scan line algorithm results (figures 2·10 and 2·11) shows a 

much smaller dependence on depth complexity, and implies that the HSE step is a 
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smaller part of the total cost than for the optimised scan line algorithm. The optimised 

version may thus be considered as being more "focussed" on the HSE job rather than 

on the "book-keeping" jobs which support it. 

3~--------------------------~ 
Time 
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Figure 2·12: Execution time versus model size for the optimised SCaII line algorithm 

and teapot models. 
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Figure 2'13: Execution time versus model size for the optimised SCaII line algorithm 

and tetra models. 

70 



Model Type and Size Execution Time (in ticks) 

Teapot 205 150692 

Teapot 499 483806 

Teapot 1027 897526 

Teapot 2035 2069488 

Teapot 2575 2880572 

Tetra 156 44162 

Tetra 624 146107 

Tetra 2496 568946 

Table 2,4: Execution times for the optimised scan line algorithm. 

2,4,4. Z·Buffer Algorithm 

Figures 2·14 and 2·15 show that this algorithm has an execution time which shows a 

small growth in proportion to the model size, with a large fixed cost This is supported 

by the cost analysis which found both a linear dependence on the model size and steps 

whose costs depend on the total number of pixels in the scene but not on the model 

size. (The number of pixels in the scene is almost independent of model size for each 

set of scenes), 

Extrapolating the results graphs toward Iow numbers of polygons gives an estimate of 

the fixed (Le. non number-of-polygon dependent) costs. The teapot results extrapolate 

to a y·axis intersection of about 500000 ticks and the tetra results to about 60000 ticks. 

This factor of ten difference shows the relative importance of the two fixed cost terms 

of the cost analysis. These fixed costs were the 0 (nmDc) term due to testing points 

against the z-buffer and the 0 (nm) term due to actually painting a point into the z-
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buffer. Since the difference between the teapot and tetra data sets was mostly a factor of 

ten difference in DC' it can be seen that the 0 (nmDc) tenn dominates the fixed costs. 

As already discussed, the fixed costs in turn dominate the cost of the algorithm. 

0.6 ...a c 
~ 

c-
0.5 

Time 
(186 ticks) 0.4 

0.3 

0.2 

0.1 

0.0 
0 1000 2000 3000 

Model Size (polygons) 

Figure 2·14: Execution time versus model size for the z-buffer algorithm and teapot 

models. 
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Figure 2·15: Execution time versus model size for the z-buffer algorithm and tetra 

models. 

72 



Model Type and Size Execution Tim e (in ticks) 

Teapot 205 509952 

Teapot 499 531721 

Teapot 1027 539235 

Teapot 2035 565572 

Teapot 2575 581151 

Tetra 156 60846 

Tetra 624 73994 

Tetra 2496 104037 

Table 2-5: Execution times for the z-bufJer algorithm. 

2-4-5_ Painter's Algorithm 

0.3 

Time El'" 

(1e6 ticks) 0.2 - ~ 
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Figure 2-16: Execution time versus model s ize for the painter's algorithm and teapot 

models. 
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Figure 2·17: Execution time versus model size for the painter's algorithm and tetra 

models. 

In figures 2·16 and 2·17, this algorithm shows a linear dependence upon model size, 

with some apparently fixed overhead costs. This is supported by the cost analysis 

which found several separate costs for this algorithm including a linear dependence 

upon model size and a linear dependence upon the number of pixe1s in the scene. With 

the number of pixe1s being constant for each scene in a given set, the dependence on the 

number of pixels forms the fixed cost component. 

Extrapolating the graphs to the y-axis to give the fixed costs shows an approximately 

factor of ten difference in the size of the fixed costs between the teapot and tetra data 

sets. Since the difference between these data sets is mostly a factor of ten difference in 

Dc' it can be seen that the 0 (nmDc) term dominates the costs of the painter's 

algorithm. 
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Model Type and Size Execution Time (in ticks) 

Teapot 205 194052 

Teapot 499 207781 

Teapot 1027 216999 

Teapot 2035 238060 

Teapot 2575 250232 

Tetra 156 27166 

Tetra 624 36167 

Tetra 2496 59161 

Table 2·6: Execution times for the painter's algorithm. 

2'5. Comparison with Sutherland et. al. 

A landmark in the discussion of polygon processing algorithms was the survey paper 

of Sutherland, Sproull, and Schumacker 1. They produced a table showing the relative 

cost of several algorithms for various numbers of polygons. A reduced version, taken 

from Foley and van Dam 47 is shown below, (Table 2·7). This table was based upon 

the estimated costs of executing the various algorithms. The author's results are also 

shown for purposes of comparison, (Table 2·8). 
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Relative Cost 

Model Size (polygons) 

Algorithm lOO 2500 

Painter's 1 10 

Z-Buffer 54 54 

Scan Line (with Edge Tables) 5 21 

Recursive Subdivision 11 64 

Table 2'7: Estimated relative costs o/the algorithms, (relative to the 100 polygon, 

painter's algorithm case). 

Measured Relative Cost 

Model Size (polygons) 

Algorithm 200 2500 

Painter's 1.0 1.3 

Z-Buffer 2.6 3.0 

Scan Line (with Edge Tables) 0.8 14.8 

Scan Line 1.1 18.3 

Recursive Subdivision 6.3 25.5 

Table 2'8: Measured relative peiformance of the algorithms, (relative to the 200 

polygon, painter's algorithm case). 

The algorithms' relative performance varies significantly with the number of polygons 

in the scene description. While the z-buffer algorithm is largely independent of model 

size and the painter's algorithm is only slightly more dependent on model size, the 

76 



growth of the recursive subdivision algorithm's cost is somewhere between square root 

and linear growth. depending upon the sizes of the polygons in the model. The 

unoptimised scan conversion algorithm has a linear increase in cost as the model size 

increases. as does the edge-table optimised version. 

These differences mean that while for 205 polygons the scan line algorithm using edge 

tables is faster than the z-buffer. it actually becomes far worse for 2575 polygons. By 

comparison with the other scan line algorithm. the edge table version suffers as the 

model size rises. 

Extrapolating the relative performance trends toward larger model sizes suggests that 

the recursive subdivision algorithm could become cheaper. or at least no more 

expensive than either of the scan line algorithms. Also. the z-buffer will probably cost 

less than the painter's algorithm for large model sizes. The latter two algorithms are 

much faster than either of the former. 

Table 2·7 was created only as an order of magnitude guide I. The differences between 

that table and the author's. (Table 2·8). are interesting. The relative performances for 

small numbers of polygons appear comparable except for the large cost of the z-buffer 

in Table 2·8. This appears to be largely due to Sutherland et all giving a high estimate 

for the costs of the operations involved in the z-buffer compared to those of the other 

algorithms. 

The changes due to increased model size also appear comparable except for the 

painter's algorithm case where the sorting algorithm considered for this case in 

Sutherland et all was more expensive than the bucket sort used for this case in this 

work. 
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The absolute perfonnance of the implemented algorithms is good for a software 

graphics system. but compared to a hardware graphics system it is not as impressive. 

This is not greatly surprising since the implementations discussed have not been 

optimised significantly. There is still much room for improvement, particularly in the 

routines which paint into the frame buffer. 

2·6 Conclusions 

The algorithms' dependence on model size may be largely attributed to a combination of 

the sorting techniques used and some overhead costs. The sorting in the z-buffer 

algorithm is entirely buried in the painting process; the sorting in the painter's algorithm 

is a low rate of growth bucket sort giving a small dependence upon linear growth; the 

sorting in the recursive subdivision algorithm is both area and polygon size dependent 

and hence a hybrid of square-root and linear behaviour; and finally the scan line 

algorithms depend upon collections of linear growth techniques. This conclusion is 

much the same as that of Sutherland et al l ,48. 

Also of note is that several of the HSE algorithms showed significant dependence upon 

depth complexity. This dependence corresponded for each algorithm to the cost tenn 

derived from the major HSE step. The dependence is also more noticable for the faster 

algorithms. This suggests a correlation between an algorithm's perfonnance and its 

focus on a single. major HSE step. 

For almost any HSE job where the output is to appear on a pixel type display. the z

buffer algorithm gives a very good compromise solution with little dependence upon 

model size. It is also almost as fast as and is more exact than the fastest HSE algorithm 

tested. the painter's algorithm. 
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Although all of the algorithms discussed here only operate upon scenes consisting of 

flat shaded polygons, extending them to handle some simple smooth shading scheme 

(such as Gouraud shading) would be a minor modification. This would not 

significantly alter the costs of the algorithms and so these conclusions should also apply 

to systems which handle simply shaded polygon scenes. 
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Chapter 3 

A Comparison of Five Parallel Hidden 
Surface Elimination Algorithms 

3·1. Introduction 

This chapter considers parallel implementation of five hidden surface elimination 

algorithms. The algorithms are those discussed in their classical, serial versions in the 

previous chapter. They are: 

i) recursive subdivision algorithm 

ii) two hidden scan line algorithms (with and without the edge table optimisation) 

ill) z-buffer algorithm 

iv) painter's algorithm 

Each of these algorithms has been modified to allow its use on a parallel computer of 

the distributed memory multiprocessor type. The cost of the modified algorithms has 

been estimated. These parallel implementations have also been tested on a moderately 

large multiprocessor to test how well they actually perform for various sizes of the 

scene description and numbers of processors used. Limiting factors are discussed. The 

estimated and actual costs have been compared. 
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3·2. The Parallelisations of the Algorithms 

In this section, each of the modified algorithms is discussed in turn. The costs of these 

algorithms are estimated as for the serial cases, in the style of Sutherland et all, but 

with greater refmement 

3·2·1. Recursive Subdivision Algorithm 

The original, serial recursive subdivision algorithm has a structure which lends itself to 

being distributed across a number of processors. Since the algorithm ordinarily breaks 

the screen area up into smaller parts for solution, the algorithm is easily parallelised by 

giving each processor a subdivision of the screen to work on. 

Figure 3·1: For the sixteen processor case the screen is broken into sixteen parts, as 

shown, and one part is assigned to each processor for solution. 
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Due to the subdivision step of this implementation dividing an area into four parts, this 

implementation has only been tested for (a) one worker processor, which considers the 

entire screen area, (b) four worker processors, each of which considers a quarter of the 

screen area, (c) sixteen worker processors, each of which considers a sixteenth of the 

screen area and (d) sixty-four worker processors, each of which considers a sixty

fourth of the screen area. In the general case the algorithm can handle 4D processors, n 

= 0, I, 2, 3, etc .. 

Figure 3·2: The way each area is subdivided, for the four processor case. Some parts 

are subdivided far more often than others. This can lead to bad load balancing. 

Using this method of breaking the problem up into enough pieces for a large number of 

processors, the resulting parallelised recursive subdivision algorithm is almost identical 
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to the original serial version. On each processor a copy of the serial recursive 

subdivision program is run, but instead of always starting by considering the full 

screen area the program instead considers a fraction of the full screen area. This is 

equivalent to starting after a number of levels of subdivision. 

There is one major potential problem with this simple approach to parallelising the 

algorithm - that of load balancing. As can be seen in figure 3·1, the different areas of 

the screen will contain images of varying complexity. In the worst case some areas will 

hold no polygons at all, while others have many polygons forming a complicated HSE 

problem. This property of the image becomes a problem because each area of the screen 

is assigned to one particular processor, so some processors may quickly solve their 

simple areas while others have only just begun solving their complicated areas. 

Bad load balancing may be avoided to some extent by allowing processors that have 

completed their areas to take over the solution of parts of the more complicated areas. 

Such a scheme of redistributing work imposes certain extra costs. The processor that 

releases part of its work has to know when other processors are free. There are 

communication costs in passing descriptions of unsolved areas between processors. 

The receiving processor must already contain all polygons relevant to the transferred 

area, which it may not necessarily do so if the previous stages in the graphics pipeline 

only passed along those polygons relevant to each processor's initial area. The 

receiving processor must also either carry out an expensive initial cull from all the 

polygons it "knows", or a list of polygons in the transferred area's parent area must be 

communicated. 

This redistribution technique was not implemented for this work because it would have 

taken considerable extra work to implement, while if the load balancing problem was 

considered, the character of the algorithm could still be ascertained without it. 
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The basic recursive subdivision algorithm is "wrapped" in an extra layer of program to 

handle communication with other processors. This wrapper program receives the 

original scene description and information describing the fraction of the screen area to 

be considered. The multiprocessor used for this work consisted of a master processor 

with an attached chain of up to one hundred and twenty eight processors, as discussed 

elsewhere. The structure of the parallel program naturally reflects this machine 

structure. 

Splitter 

Screen Data 

Combiner 

Figure 3·3: The processes running on each worker node for the recursive subdivision 

algorithm. 

In operation, the program on the master processor passes the polygon data to the 

worker processors, and also passes any returned screen painting information to the 

screen processor. Each worker processor therefore runs three processes in pseudo

parallel - as shown in Figure 3·3 - one for handling and passing along data from the 

master processor, one that actually runs the implemented recursive subdivision 
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algorithm, and finally one that handles the transmission and passing along of control 

signals back to the master. 

Since the recursive subdivision algorithm used in the parallel implementation is 

essentially identical to that used in the serial implementation described in the previous 

chapter, it is not redescribed here. The structure of the program on each worker node is 

described by the following pseudo code: 

PAR 

splitter( ) 

recursive_subdivision() 

combiner() 

The splitter process is described in the next piece of pseudo code. It simply 

forwards data to the relevant destination. The polygons of the scene description are 

passed to both the local HSE process and the next processor in the chain of worker 

processors. Messages telling a particular processor which area of the image space it is 

to solve the HSE problem for are either: 

(a) forwarded along the processor chain for messages which have not yet reached their 

destination processors, or 

(b) passed to the HSE process if this processor is the message's destination. 

PROC splitter () 

SEQ 

receive (no_of-polygons) 

send (no_of-PQlygons) 

SEQ poly = 0 FOR no_of-polygons 

SEQ 

85 



receive (polygon) 

send-to_recursive~ubdivision-process (polygon) 

send-to....next-processor (polygon) 

WHILE (not finished) 

SEQ 

receive (processor, region) 

IF 

(processor <> this-processor) 

send-to....next-processor (processor, region) 

TRUE 

send-to_recursive_subdivision-process (region) 

The recursive_subdivision process is simply the serial recursive subdivision 

algorithm with some extra lines to receive the scene data and send out the resulting 

screen information to be painted. The combiner process combines incoming screen 

information from further along the processor chain with similar, locally generated 

screen information and passes it all back along the chain towards the master processor. 

It is similar to the splitter process. 

3·2+1. Cost Estimate 

Since the algorithm executing on each processor is essentially identical to the serial 

case, the costs are very similar. The only major difference is that initially all of the 

processors must cull the full scene description against their particular regions. 

Subsequent levels of subdivision will be identical to those of the serial case, (except 

that several of them are now being executed simultaneously). The duplication of start-
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up costs may be expected to reduce the speedup possible for parallel execution of this 

algorithm, and will limit the maximum possible speedup. However, other limits of the 

maximum reasonably attainable speedup, such as bad load balancing, will most likely 

limit the performance before this becomes a major factor. 

As for the serial case, two cases will be considered, scenes with large polygons and 

scenes with small polygons. Considering only terminal nodes as before, the costs are 

as follows. 

Large polygons: 

For this case, single pixel terminal nodes will tend to occur only along visible 

shared edges in the polygonal scenes. Hence the number of such nodes will be 

approximately equal to the total length of visible shared edges in the scene. 

TOtalCostisO(~ n ~cFT ) 

Small polygons: 

When the scene consists of small polygons, the number of terminal nodes will be 

approximately 0 (FT I Dc) and each such node costs 0 (Dc). 

Thus the total cost is 0 (FT). 

Unlike the serial case, the parallel case now has other potentially significant costs, the 

initial cull and other intermediate stages. One initial cull will take place for each 

processor used. The cost of culling full scene description against a window of an area 

(screen area I no. of processors) is 0 (FT). For large numbers of processors the cost of 

these root nodes could approach or exceed that of the terminal nodes. 
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For scenes with small polygons, the cost wiJI be 0 (FT) + 0 (FT) = 0 (FT)' So although 

the extra cost wiJI reduce the speedup for many processors, the cost of the algorithm 

wiJI grow as 0 (FT) as for the serial case. 

(~~ For scenes with large polygons, the cost will be 0 (FT) + 0 -'I ~ 
only wiIJ the extra cost reduce the speedup for large numbers of processors but the cost 

will now grow more as 0 (FT) than 0 ( ...fF.r), resulting in an even worse 

performance than for the small polygon, many processor case. 

3'2·2. Scan Line Algorithms 

Since the two variations of this algorithm consider each screen line in turn, they were 

parallelised by giving each processor every nth screen line to consider, (while using n 

worker processors). This division of work results in good load balancing for small to 

medium numbers of processors because areas of unusually high detail wiIJ extend 

across several screen lines, and hence wiJI be handled by several processors. As the 

number of processors approaches the number of screen lines, load balancing becomes 

more problematic. While areas of exceptional detail are still likely to spread across 

several screen lines, this wiJI only occupy a limited number of processors. Also, the 

processors corresponding to the top and bottom of the screen may be very lightly 

loaded if the image is conventionally framed, with most of the image in the centre of the 

screen. 
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Splitter 

Packet of scan lines 
.=.;;;;;;;.;...;--~ 

Combiner 

Figure 3'5: The processes running on each worker node for the scan line algorithm. 

Screen Border 

Processor 0 

Processor 1 

Screen Lines 

Processor 2 

Processor 3 

Figure 3·4: The division of work for four processors. Every fourth screen line is 

given to each processor. 
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As for the recursive subdivision case, the master processor passes the polygon data to 

the worker processors, and also passes any returned screen painting information to the 

screen processor. Each worker processor runs four processes in pseudo-parallel, 

(Figure 3·5) - one for handling and passing along data from the master processor, one 

that actually runs the implemented scan line algorithm, one that buffers one screen lines 

worth of output data, and fmally one that handles the transmission and passing along of 

data back to the master processor. 

3·2·2·1. Unoptimised Parallel Scan Line Algorithm 

The parallel scan line algorithm (without the edge table optimisation) is described by the 

following pseudo code. As previously discussed, each processor handles every 'n'th 

screen line. The scan conversion is done a screen line at a time, starting at the lowest 

relevant screen line. The lowest relevant screen line is calculated from the lowest screen 

line (min-y) and the processor identification number (this_processor). 

SEQ 

read.....in...:polygons () 

y = lowest_relevant_scre~line (this-processor. miDLY) 

WHILE Y <= max....Y 

SEQ 

reset (store) 

SEQ polygon = 0 FOR all-POlygons 

SEQ 

find.....resultant_sc~lines (polygon. y) 

append.....scan_lines_to_store (store) 

resolve_z_overlaps (store) 

output_sc~lines (store) 
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y = y + no_of-processors 

Apart from stepping up the screen in steps equal to the number of processors being 

used, this is very similar to the serial version. None of the major program blocks are 

significantly altered. The splitter and combiner processes are conceptually very similar 

to those described for the parallel recursive subdivision algorithm, and so are not 

described here. The buffer process simply paints resulting line segments into the screen 

buffer. 

3·2'2·2. Cost Estimate for the Unoptimised Scan Line Algorithm 

In the serial version, the HSE problem was solved for each screen line almost totally 

independently of the solution of the other screen lines. The only cost shared by the 

screen line solutions is a small initial step which calculates some items which describe 

the polygon edges, (such as their slopes). This step was used in the serial program to 

avoid repeating the calculation of frequently used variables and was inexpensive. Due 

to the similarities between the parallel and serial versions of this HSE algorithm, the 

cost estimates for the serial version are relevant here. 

Initialisation steps: 

• The edges ends are adjusted. This step costs 0 (no. of edges). 

• For each edge, a number of properties are calculated and stored. 0 (no. of edges). 

For each screen line handled by a particular processor: 

• Every edge is checked for relevance at a cost of 0 (edges). 

• Intersections are then found for the relevant ones at a cost of 0 (relevant edges). 

• These intersections are "paired up" using a bubble sort. Assuming the polygons are 

convex, this has a cost of 0 (polygons) 
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The HSE Step. For each screen line handled by a particular processor: 

• If no line segments overlap, a cost of O(segments\ • In the worst case, O(segments 
2 

+ segments \ • For a scene with a depth complexity Dc, a cost of 0 (segments \ 

The painting step. The visible pixels for each processor's screen space are painted: 

• A simple step costing 0 (pixels). 

Total Cost, using N as the number of processors: 

• Part 1 cost 0 (edges) + 0 (edges) = 0 (FT). 

• Part 2 cost 0 ((lines/processors) '" edges) + 0 ((lines/processors) + relevant edges) + 

o ((lines/processors) + polygons) = 0 (n Ell N) + 0 (~ -V nm FT Dc) + 0 (n Ft I 

N). 

• Part 3 cost 0 ((lines/processors) '" segments 2) = 0 (Dc FT m I N). 

• Part 4 cost 0 (nm / N). 

Overall cost is thus 0 (FT) + O(n FT/N) + O(~ -V n m FT Dc) + 0 (Dc FTm / N) 

+ 0 (nm I N). All but one of these terms are dependent upon the model size (FT) and 

most are directly proportional to it. The other term should be negligible due to its 

relative simplicity. As in the serial case, for large numbers of polygons this algorithm's 

cost will grow as 0 (FT). The cost of the initialisation steps now forms a greater part of 

the overall cost since it does not depend upon the number of processors in use while the 

other costs decrease with more processors. However, these initialisation steps are 

inexpensive by comparison with the other costs and will not greatly affect the available 

speedup. They will eventually limit the available speedup for some very large number 

of processors, but this number is likely to be large enough not to be a practical 

problem. 
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3'2'2·3. Optimised Parallel Scan Line Algorithm 

This version uses edge tables to avoid recalculating which polygons are relevant to the 

screen line currently being considered. It is described by the pseudo code: 

SEQ 

read...in..polygons () 

SEQ polygon = FOR all-polygons 

SEQ 

obtaiD-Pottam-and...top_of_eachLpolygons (bottom, top) 

store-PQlygon...id (adQ..polys (bottom] ) 

store-PQlygon...id (remove-polys(top]) 

find-PQlygons_intersecting_first_screen...1ine (current-PQlygons) 

y = lowest_relevant_screen...line (this-processor, mi~) 

WHILE Y <= llW(..Y 

SEQ 

reset (store) 

SEQ polygon = 0 FOR all-polygons 

SEQ 

find...resultant_scan...lines (polygon, y) 

append...scan...lines_to_store (store) 

resolve_z_overlaps (store) 

output_scan...lines (store) 

SEQ i = 0 FOR no_of-processors 

SEQ 

remove_expired...polygons (current-polygons, remove-polys(y]) 

add..Jlew_relevant-POlygons (current""polygons, add-PQlys[y]) 
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y = y + 1 

This is almost identical to the serial case, except that every nth screen line is considered 

instead of every screen line being considered. Unlike the unoptimised scan line case, 

there is a considerable cost shared between the solutions of the screen lines - that of the 

creation of the edge tables. The splitter, combiner and buffer processes are identical to 

those of the unoptimised scan line case. 

3·2·2·4. Cost Estimates for the Parallel Optimised Scan Line Algorithm 

Due to the similarities with the serial version, most of the cost estimates are identical. 

Initialisation Steps: 

• The ends of the edges are adjusted. The cost is 0 (no. of edges). 

• For each edge, a number of properties are calculated and stored. 0 (no. of edges). 

• The edge tables are prepared. This costs 0 (polygons). 

The Scan Conversion Step. For each screen line considered by a processor: 

• The list of relevant polygons is updated, cost of 0 (change in relevant polygon set). 

• The edges are checked for relevance at a cost of 0 (relevant polygons * 4). 

• Intersections are then found at a cost of 0 (relevant edges). 

• These intersections are bubble sorted. Assuming the polygons are convex this has a 

cost of 0 (polygons) 

The HSE Step. This is repeated for each screen line considered by a processor: 

• If no line segments overlap, this costs 0 (segments \ • In the worst case, this costs 

approximately 0 (segments 
2 

+ segments \ • For a scene with a depth complexity Dc, a 

2 
cost of 0 (segments ). 

The painting step. The visible pixels for each processor's screen space are painted: 
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• A simple step costing 0 (pixels). 

Total Cost, using N as the number of processors: 

• Part 1 cost 0 (edges) + 0 (edges) + 0 (polygons) 

= 0 (Et) + 0 (I;) + 0 (FT) = 0 (FT)' 

• Part 2 cost 0 (lines * change in relevant polygon set) + 0 «lines/processors) * 
relevant polygons * 4) + 0 ((lines/processors) * relevant edges) + 0 «lines/processors) 

* polygons) 

=O(FT) + O(~...J FT m n Dc )+ 0 (n FT/N)· 

• Part 3 cost 0 ((lines/processors) * segments 2) = 0 (Dc FT m/N). 

• Part 4 cost 0 (nm / N). 

The overall cost is therefore 0 (FT) + 0 (~ ...J FT m n Dc) + 0 (n FT / N) + 

o (Dc FTm/N) +0 (nm/N). 

As for the serial case, most of these component costs vary with model size (FT) with 

powers of 0.5 to 1.0. For large numbers of polygons the overall cost is 0 (FT)' 

For increasing numbers of processors, the initialisation costs grow in comparison with 

the other costs. Since they are already a significant cost they will considerably reduce 

the available speedup and will limit the maximum reasonably attainable speedup. 

3'2'3. Z·Burrer Algorithm 

Initially this algorithm was parallelised by using multiple processors to scan convert 

polygons, (each processor converts a precalculated portion of the polygon database), all 

feeding one z-buffer running in software on the screen processor. However, the screen 

processor formed a bottleneck so subsequently an alternative parallelisation was 

devised. 
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This alternative scheme used n worker processors calculating scan lines for all 

polygons but for every nth screen line, (as for the hidden scan line algorithms). Also 

residing on each worker processor is a z-buffer process which handles the screen for 

every nth screen line. In this case the screen is treated as being distributed, Le. part of 

its hardware is considered to be placed on each of the worker processors. Since such a 

distributed screen was not actually present, it was emulated by storing the images in 

normal memory. 

This unusual distributed "virtual" screen is not as unrealistic as it may sound - several 

"real" versions have been constructed by researchers, though the author knows of none 

that are available on a large scale commercial basis. (For the benefit of the user, and to 

verify output, the sub-images are subsequently sent to a real screen and combined for 

display). 

Splitter 

Scan lines 

Combiner 

(a) 
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Figure 3·6: The processes running on each worker node for the z-buffer algorithm, 

(a) without and (b) with the "virtual" screen, respectively. 

Like the serial version, this program processes one polygon at a time. It simultaneously 

works its way up the left and right sides of the polygon, interpolating coordinates 

between vertices. The resulting scan line segments are then drawn into the z-buffer one 

pixel at a time, using the method described previously. The only difference from the 

serial version is that the algorithm works its way up the polygon n lines at a time, for a 

system with n processors. 

3-2'3-1. Cost Estimate 

Each polygon is converted to line segments in turn: 

• A initialisation step builds lists of edges, this costs 0 <Er) for each polygon. 

• The scan conversion steps through the y-range of each polygon at a cost of 

o (Hr I processors) for each polygon. 

• Each pixel in a line segment is tested against the z-buffer at a cost of 

o (segment length) per segment. Visible pixels are then painted into the z-buffer at a 

cost of 0 (visible pixels I processors). 

Total Cost per processor, using N as the number of processors: 

• The cost is 0 <Er) + 0 (Hr I N) + 0 (screen area * Dc I N) + 0 (screen area I N) 

= 0 (FT) +0 (~ ~ n m Dc FT )+ 0 (n m Dc/N) +0 (n m/N), 

As for the serial version, the first two cost terms grow with the size of the test scene, so 

for large numbers of polygons the cost of this algorithm will be 0 (FT)' However, if 

the polygons are of multiple pixel area then these two costs are swamped by the per

pixel cost since they occur only once per polygon (for the first term) or once per 
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segment (for the second term). The overall cost for large or medium size polygons will 

therefore tend to be 0 (n m). For large numbers of very small polygons, the overall 

cost would be controlled by the 0 (FT) term. 

For large numbers of processors, the first term remains fixed while the other terms 

decrease. This will result in the parallelised algorithm behaving more as 0 (FT) for 

many processors than the serial case did. Since the initialisation step must be done by 

all processors it reduces the available speedup, particularly for scenes with many small 

polygons. This factor will also limit the maximum available speedup. 

3·2·4. Painter's Algorithm 

The initial parallel implementation used n worker processors to each sort an nth of the 

polygon database, merged these sorted portions of the database (in the process of 

passing these portions back to the master), retransmitted the now sorted database from 

the master to the workers, and scan converted these polygons in order, sending the 

scan lines to the screen processor for display. As for the z-buffer case, the screen 

processor became a limiting factor and so the screen was again treated as being 

distributed. 

A potentially limiting factor for this algorithm is the bottleneck caused by having to 

return the sorted portions of the database in order to merge them. 
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Splitter Splitter 

(a) (b) 

Figure 3-7: The processes running on each worker node for the painter's (depth sort) 
algorithm, (a) without and (b) with the 'virtual' screen, respectively_ 

The following pseudo code describes the main HSE process: 

[running on processor 'j' of 'n'; 0 <= j <= (n-l)] 

SEQ 

Get polygons 

Wait for start flag 

Pass start flag upstream (to the next processor in the chain) 

Bucket sort (py depth) the subset of polygon indices for the 'j'th 

part of the polygon store 

Send the sorted subset of indices (with polygon z-values) in order, 

to the combiner process 
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WHILE not finished 

SEQ 

Get a polygon index 

Scan convert that polygon for every 'n'th line 

Output resulting scan lines to screen process 

The combiner process merges the sorted parts of the polygon database into a sorted full 

database in the process of passing them back to the master. The merge is illustrated by 

figure 3·8. The combiner process itself is described by the next piece of pseudo code. 

SEQ 

Get Polygon-indexl:Z_valuel pair from local main process 

Get polygon-index2:z_value2 pair from upstream (next processor in 

chain) 

WHILE not finished 

SEQ 

IF 

Z_valuel > Z_value2 

SEQ 

Send Polygon-indexl:Z_valuel downstream (to previous 

processor) 

Get Polygon-indexl:Z_valuel pair from local main process 

Z_valuel <= Z_value2 

SEQ 

Send Polygon-index2:Z_value2 downstream 

Get Polygon-index2:Z_value2 pair from upstream 
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Wait for END flag from local main process 

Wait for END flag from upstream 

Send END flag downstream 

Pass screen data from upstream to downstream 

Pass locally generated screen data downstream 

, 

Main 
Process 

IlemA: 

, 
Ilem'B . , 

Sorted Jndices from 
local process. , 

Sortedind 
from rest ( 

' ....................... : , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ,~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

Figure 3'8: An illustration of the "merge" part of the merge-son of polygons. When a 

"combiner" process is working on the "merge" of the pre-sorted pieces of the polygon 

database it will see two incoming indices to polygons, one from the local son process, 

and one from the merged results of the upstream processors. It simply passes along the 

index to the polygon with the greatest z-value. This is repeated until the merge is 

complete. [ An index into a list of polygons is used rather than the actual polygon to 

reduce the amount of informotion to be transferred.] 
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3'2'4'1. Cost Estimate 

• In an initialisation step, the average z value of each polygon is found. 

This costs 0 (polygons * 4). 

• The polygons are then sorted on their average z values using a bucket sort. This costs 

o (buckets + (polygons I processors» for each part of the sort, plus 0 (polygons) for 

the data transfer part of the merge and 0 (processors) for filling and emptying the 

pipeline, (as discussed in section 1·5·1). These last two terms are dependent upon the 

communication architecture used for this particular implementation of the algorithm. 

• Each polygon is then scan converted. This costs 0 (Hf I processors) for each 

polygon. 

(nmDc) 
• The pixels are painted. This costs approximately 0 ~ for each processor. 

Total Cost, using N as the number of processors is : 

O(FT)+O(buckets+(FTIN»+o(~"'n m Dc FT )+ 0 (N) + o (nm:c) 
As for the serial case, the algorithm still costs 0 (FT) for large numbers of polygons. 

For increasing numbers of processors, the initialisation and merge terms remain fIXed. 

Also the sort term decreases in cost very slowly unless the number of buckets is 

adjusted to suit the number of processors in use. Thus much of the cost of this 

algorithm cannot be spread over multiple processors, greatly reducing the speedup and 

placing a rather low limit on the maximum possible speedup. Also, for large numbers 

of processors arranged in the pipeline architecture used for this implementation of the 

algorithm, the 0 (N) term which is due to pipeline filling and emptying delay may 

become significant and actually increase the time to complete the work compared with 

smaller numbers of processors. 
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3,3. Timing Information 

In all cases, the screen store(s) were initialised before the clock was started. The fast, 

on-chip RAM was not used. This decision was made because the on-chip RAM is 

limited in size to 4K bytes and hence affects the execution speeds of programs of 

different sizes, since differing proportions of such programs fit in this high speed 

RAM. Instead, all program and data were stored instead in the slower, expandable, 

external RAM. 

There are many possible ways to connect a number of transputers together. In 

particular, the way data is fed to graphical stages such as those tested in this work can 

depend heavily on the architecture of the previous stage of the system. To give the 

results presented here relevance to connection schemes other than the one used for this 

work, machine dependencies have been avoided where possible. 

Since the machine architecture (of a MIMD machine) primarily affects only the 

communication rates within a parallel system, the ignored costs are simply a function of 

the amount of data being moved around the system and the available communications 

bandwidth. Note that in each case the clock is started after transferring the polygon data 

to the worker processors, in order to avoid these machine dependencies. 

For the recursive subdivision algorithm the polygon data were first sent to the worker 

processors, which precalculated and stored the plane coefficients before the clock was 

started. The clock was stopped upon reception of completion flags from all of the 

workers. 

For the two scan line algorithms the polygon data were first sent to the worker 

processors before the clock was started. The clock was stopped upon reception of 
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completion flags from all of the workers. For the version using edge tables, the time 

taken to create the edge tables is included in the execution time. 

For the z-buffer and painter's algorithms the polygons were sent to the worker 

processors, then the clock was started. The clock was stopped upon reception of 

completion flags from all of the workers. 

All timings were made by the master processor using its low priority clock, which ticks 

15625 times per second. 

3·4. Results 

For each of the five parallel HSE algorithms previously described, for fourteen 

different numbers of processors (except for the recursive subdivision algorithm), 

timings were taken for the solution of the hidden surface problem for each of the five 

teapot scenes and three tetra scenes discussed. 

As mentioned in section 1·3·4, two particularly useful measures of the advantages of a 

parallel program are "speedup" and "linearity of speedup", (the latter is simply referred 

to as linearity in the results tables). Speedup is simply how many times faster the 

algorithm executes compared with the one processor case. Linearity of speedup could 

also be called the efficiency of parallelisation in that it measures the fraction of the 

maximum possible speedup obtained in practice. i.e. if a program runs three times 

faster on four processors than on one, then the linearity is 3/4 or 75 percent These two 

measures of how well the algorithms performed when parallelised are used often in the 

following consideration of the results. 
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In order to improve the correlation between the actual results and the theoretically 

derived cost estimates, the cost estimates were simplified and suitable coefficients 

deduced to show the similarity between the theory and practice. This is similar to the 

method used by Dixon et. al. 49, although their analysis was unfortunately not directly 

applicable to this work. 

3·4·1. Recursive Subdivision Algorithm 

The recursive subdivision algorithm showed falling linearity for increasing numbers of 

processors, (Figures 3·9 and 3·10). A speedup of twelve times by using sixty-four 

processors is useful but far from the ideal. These losses were almost certainly a 

consequence of bad load balancing. Watching the program run, it becomes obvious that 

some of the processors fmish their parts of the screen well before the others, due to the 

images being of uneven complexity. Some of this lost performance could be regained 

by allowing those processors which have finished their parts of the screen to take over 

some of the unfinished screen areas, though this would not be a perfect solution. 

The differences in speedup between the models are not consistent between the teapot 

and tetra test scenes, probably due to the significant difference in depth complexity 

between these sets of test scenes. No strong correlations may be drawn between the 

cost estimates made for this algorithm and the results, due to the load balancing 

problems swamping other effects. 

Another point of interest is the way in which the execution time increases with the 

number of polygons in the image, as shown by Figures 3·11 and 3·12. These figures 

are for the parallel algorithm using sixty-four processors, and are very similar to those 

for the serial case. They show execution time increasing as some fractional power of 
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the number of polygons. This gives an indication as to how long the algorithm would 

take to execute images with far larger numbers of polygons than any tested here. 

The similarity between Figures 3·11 and 3·12 and their serial algorithm equivalents 

suggests that the initial cull overhead has not yet become a significant factor in the total 

cost. If larger numbers of processors were used, this factor may still become important. 

In any case, the recursive subdivision algorithm visibly suffers too greatly from bad 

load balancing to show a good correlation with the cost estimates considered earlier. 

Teapot model size 200 2500 

Run time, 1 processor 1222352 4947562 

Run time, 16 processors 211406 827771 

Run time, 64 processors 69794 413791 

Speedup 17.5 12.0 

Linearity 0.27 0.19 

Table 3·1. Sample execution times and peiformance statistics for the recursive 

subdivision algorithm. 
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Figure 3·9: Speedup versus no. of processors for the recursive subdivision algorithm and teapot models. 



Speed up 

80 

60 

--a-- Ideal result 

• Tetra 4 
40 

a Tetra 5 -0 -<>-- Tetra 6 
00 

20 

o 
o 20 40 60 80 

No. of Processors 

Figure 3·10: Speedup versus no. of processors for the recursive subdivision algorithm and tetra models. 
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Figure 3·11: Execution time versus model size for the parallel recursive subdivision 

algorithm and teapot models, using sixty-four processors. 
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Figure 3·12: Execution time versus model size for the parallel recursive subdivision 

algorithm and tetra models, using sixty-four processors. 
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3·4·2. Scan Line Algorithms 

The scan line algorithm proved to be quite efficient when parallelised. The basic, 

unoptimised version showed a gentle fall off in linearity as the number of processors 

was increased, (Figures 3·13 and 3·14), but was still some fifty to eighty percent of the 

ideal for one hundred and twenty-eight processors. 

This small loss of speedup may be attributed to the unshareable cost of calculating 

various properties for each edge. This irreducible overhead become more important as 

the number of processors increases since all other costs are divided between the many 

processors. Thus there is not a simple, constant loss of speedup, but an increasing loss 

of speedup as the number of processors is increased. 

The tetra scenes resulted in slightly lower speedup than the teapot scenes. This is due to 

the smaller polygon sizes of the tetra scenes causing the fixed overhead to be a greater 

part of the total cost than for the large polygons of the teapot scenes, since smaller 

polygons take less work to turn into scanlines than large polygons but the overhead 

cost is identical. This effect may also be noted separating the speedups of the various 

teapot scenes in Figure 3·13. 

The growth of execution time with model size for the sixty-four processor case is 

approximately linear for both set of test scenes, (Figures 3·15 and 3·16). This is 

consistent both with the cost estimates for this algorithm and with the serial version of 

this algorithm. 
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Figure 3·13: Speedup versus no. of processors for the scan line algorithm and teapot models. 
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Figure 3·14: Speedup versus no. of processors for the scan line algorithm and tetra models. 



Tea ot model size 200 2500 

Run time, I rocessor 208212 3559407 

Run time, 16 rocessors 14597 236438 

Run time, 64 rocessors 4803 71955 

43.4 49.5 

Lineari 0.68 0.77 

Table 3'2. Sample execution times for the scan line (unoptimised) algorithm 
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Figure 3'15: Execution time versus model size for the unoptimised scan line 

algorithm and teapot models, using sixty10ur processors. 
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Figure 3·16: Execution time versus model size for the unoptimised scan line 

algorithm and tetra models, using sixty-four processors. 

The time-cost estimate derived earlier for the scan line algorithm was 

o (FT) +0 (nFT/N) +o(~"" n m FT Dc )+ 0 (Dc FTm/N) + 0 (nm/N) 

which, for a given set of test data, may be reduced to 
B 

A+N 

where A is the cost of the serial, unparallelisable part of the algorithm and B is the cost 

of the parallel part of the algorithm. If the costs are normalised with respect to the one 

processor case then A and B become the fractions of the algorithm which are serial and 

parallel, respectively. Applying this to the test cases and using regression to calculate 

the best-fit values of the A and B constants for each scene gives Table 3·3. 
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Scene A (fraction serial) B (fraction parallel) 

Teapot 200 0.00745 0.99255 

TeapotSOO 0.00639 0.99361 

Teapot 1000 0.00669 0.99331 

Teapot 2000 0.00543 0.99457 

Teapot 2500 0.00574 0.99426 

Tetra 4 0.01092 0.98908 

Tetra 5 0.01003 0.98997 

Tetra 6 0.01081 0.98919 

Table 3·3: Regression produced coefficients for the theoretical estiTrUlte of the 

perjoTTrUlnce of the (unoptimised) scan line algorithm. 
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Figure 3'17. Comparison of actual and expected perforTrUlnce, tetra 4 scene, 

unoptimised scan line algorithm. 

115 



The cost estimate derived earlier is not perfect, particularly in that it takes no account of 

where the polygons are within a scene. This means that it is particularly difficult to 

accurately compare the performance of the HSE algorithm on different scenes, as 

attested by the wide variations in the A and B coefficients between various scenes, (see 

table 3·3). Another factor not taken into account in any of the cost estimates is bad load 

b I . . th h no. of screen lines . . . 
a ancmg m e cases w ere no. of processors IS non mteger, I.e. some processors 

get one more screen line to solve than others. Fortunately, this effect is usually 

minimised by there little or no detail on the bottom lines of a scene. This effect may 

however be seen in some of the cases, particularly at the large no. of processors end of 

some of the tetra scenes where it causes the real ninety-one processor result to appear 

low. 

For a given scene the cost estimate provides a very good prediction of real performance 

as the number of processors is varied. An example of this close match may be seen in 

figure 3·17. 

The parallel edge-table optimised scan line algorithm showed a sharply limited speedup. 

The tetra case, (Figure 3·18) even showed almost no change in performance when 

using more than thirty-two processors. The teapot case was not much better, still being 

limited to a speedup of only about twenty times for one hundred and twenty-eight 

processors. 

This "performance ceiling" effect is completely in agreement with the cost analysis, 

which concluded that the edge-table method considerably reduced the scope for the 

effective use of parallelism. This is a good example of Amdahl's law so, with the serial 

portion of the algorithm - the creation of the edge-tables - limiting the performance 

increases available using parallel processing. While the edge-table method formed a 

useful optimisation for the single processor case, giving a gain of perhaps thirty percent 

116 



over the unoptimised scan line algorithm, it has become a serious problem for the 

multiprocessor case. 

The parallel edge-table method also suffers from a corollary of its virtue. Since the 

spacing between subsequent scan lines on a given processor increases as the number of 

processors increases, then the similarity between these scan lines decreases - losing the 

property of coherence which the edge table method exploits. When no polygon has a 

height in scanlines greater than the number of processors, then there is no exploitable 

coherence remaining, and the cost of the edge tables brings no benefits. For small 

numbers of processors this effect could be partially avoided by having each processor 

handle every nth small group of scan lines rather than every nth scan line, but this 

might cause load balancing problems. 

Figures 3·19 and 3·20 show the growth of execution time with mode size for the sixty

four processor case to be somewhat more linear than their serial equivalents. This is in 

agreement with the cost analyses which concluded that the linear growth overheads 

would become more important as the number of processors increased, and would thus 

reduce the effect of the small non-linear costs. 

Teapot model size 200 2500 

Run time, 1 processor 150692 2880572 

Run time, 16 processors 15881 297713 

Run time, 64 processors 8967 168752 

Speedup 16.8 17.1 

Linearity 0.26 0.27 

Table 3·4. Sample execution times and performance statistics for the scan line (edge 

table) algorithm. 
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Figure 3-18: Speedup versus no. of processors for the scan line (optimised) algorithm and teapot models. 
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Figure 3'19: Speedup versus no. of processors for the scan line (optimised) algorithm and tetra models. 
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Figure 3·20: Execution time versus rrwdel size for the optimised parallel scan line 

algorithm and teapot rrwdels, using sixty-four processors. 
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Figure 3·21: Execution time versus rrwdel size for the optimised parallel scan line 

algorithm and tetra rrwdels, using sixty-four processors. 
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The cost estimate derived earlier for the optimised scan line algorithm was 

o (FT) + O(~...j FT m n Dc ) +0 (nFT/N) + 0 (Dc FTm/N) +0 (nm/N) 

which, for a given set of test data, may be reduced to 
B 

A + N as for the unoptimised case. Applying this to the test cases and using regression 

to derive A and B gives: 

Scene A (fraction serial) B (fraction parallel) 

Teapot 200 0.04511 0.95489 

Teapot 500 0.03823 0.96177 

Teapot 1000 0.04577 0.95423 

Teapot 2000 0.04525 0.95475 

Teapot 2500 0.04489 0.95511 

Tetra 4 0.07519 0.92481 

Tetra 5 0.08465 0.91535 

Tetra 6 0.11669 0.88331 

Table 3-5: Regression produced coefficients for the theoretical estimate of the 

peiformance of the optimised scan line algorithm 

Again, the variations in the coefficients between scenes is largely unpredictable (table 

3·5), but the variation of performance with the number of processors for a given scene 

is very well predicted, (figure 3·22). 
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Figure 3·22. Comparison of actual and expected performance, 2000 polygon teapot 

scene, optimised scan line algorithm. 

3'4'3. Z·Buffer Algorithm 

When using a single processor for screen painting tasks, the z-buffer algorithm did not 

gain a significant speedup as more processors were used. This was because the screen 

painting formed a bottleneck in the system. When the bottleneck was avoided by 

allocating part of the screen painting process to each processor, the speedup obtained 

varied considerably with model size, (Figures 3·21 and 3·22). 

This drop in speedup with increasing model size is consistent with the cost analysis 

which shows the fixed, unparallelisable cost of calculating edge properties becoming 

more important as the number of processors increases. Also this per-polygon overhead 

has a greater effect for small polygons where it forms a large fraction of the total cost, 

than for large polygons where it forms a smaller fraction of the total cost, (since 

painting costs are the same within each set of test scenes). Thus the speedup falls 

roughly in proportion to the height of the polygons in the scene, as may be seen in 

Figures 3·21 and 3·22. 
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The increases in execution time with model size is more linear for the sixty-four 

processor case, (Figures 3·23 and 3·24) than it was for the serial case because the fixed 

overhead is a linear cost and grows in importance with the number of processors. 

Indeed the tetra scenes, Figure 3·24, show an almost perfectly linear growth of 

execution time with model size. This is more linear than for the teapot case because the 

polygons in the tetra scenes are significantly smaller than those of the teapot scenes. 

Teapot model size 200 2500 

Run time, 1 processor 509952 581151 

Run time, 16 !ll'ocessors 33698 43602 

Run time, 64 processors 10243 16323 

Speedup 49.8 35.6 

Linearity 0.78 0.56 

Table 3·6. Sample execution times and performance statistics for the z-buffer 

algorithm. 
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Figure 3'23: Speedup versus no. of processors for the z-buffer algorithm and teapot models. 



Speedup 

200 

-e-- Ideal result 

• Tetra 4 
100 

a Tetra 5 -t-) 
<> Tetra 6 VI 

o 
o 100 200 

No. 01 processor. 

Figure 3,24: Speedup versus no. of processors for the z-buffer algorithm and tetra models. 
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Figure 3-25: Execution time versus model size for the parallel z-buffer algorithm and 

teapot models, using sixty-four processors. 
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Figure 3-26: Execution time versus model size for the parallel z-buffer algorithm and 

tetra models, using sixty-four processors. 
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The z-buffer algorithm cost estimate derived earlier was 

O(FT)+O(~...j n m Dc FT )+O(nmDc/N)+O(nm/N) 

which, for a given set of test data, may be reduced to 
B 

A + N . Applying this to the test cases and using regression to derive A and B gives: 

Scene A (fraction serial) B (fraction parallel) 

Teapot 200 0.00397 0.99603 

TeapotSOO 0.00346 0.99654 

Teapot 1000 0.00632 0.99368 

Teapot 2000 0.01045 0.98955 

Teapot 2500 0.01263 0.98737 

Tetra 4 0.01105 0.98895 

Tetra 5 0.02482 0.97518 

Tetra 6 0.05926 0.94074 

Table 3'7: Regression produced coefficients for the theoretical esti11Ulte of the 

peTjomumce of the z-buffer algorithm. 

For the z-buffer case, as for the two scan line algorithms, the variation of cost between 

scenes is largely unpredictable (table 3·7). The variation of cost versus the number of 

processors is however very well predicted, (figure 3·27) 
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Figure 3·27. Comparison of actual and expected pe/formance, tetra 6 scene, z-buffer 

algorithm. 

3·4·4. Painter's Algorithm 

For small numbers of processors, the painter's algorithm showed a good speedup, 

(Figures 3·25 and 3·26). However, for large numbers of processors the speedup 

became sharply limited and sometimes even fell for more than thirty-two processors. 

This agrees with the cost estimate, which found that much of the algorithm could not be 

shared over multiple processors with the per-polygon overhead and merge steps 

remaining fixed, and the pipeline filling part of the merge step actually growing with the 

number of processors. 

The fall in speedup was due to the performance becoming absolutely limited by the 

merge step, with the addition of extra processors to the processor chain actually 

slowing down the transfer of information slightly. The merge step does not limit the 

smaller teapot scenes, which have large polygons and for which the merge step is not 

as large a part of the total cost This problem of the merge step limiting performance 

may be trivially overcome by using a higher bandwidth merge channel or a tree 
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structured merge. Were this done, the results would be more similar to those of the z

buffer case, but would still not be as good due to the extra fIxed cost of the merge step. 

The growth of execution time with model size for the sixty-four processor, tetra case is 

more nearly linear than for the serial case, as shown in Figure 3·28. This corresponds 

to the increased importance of the fIxed, linear costs as the other costs are shared 

amongst the many processors. The teapot case shows an interesting curve, (Figure 

3·27). This is an artefact of the combination of the not seriously limited speedup for the 

smaller teapot scenes followed by the limited speedup of the larger scenes. 
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Figure 3·28: Speedup versus no. of processors for the painter's algorithm and teapot models. 
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Figure 3'29: Speedup versus no. of processors for the painter's algorithm and tetra models. 



Teapot model size 200 2500 

Run time, I processor 194052 250232 . 

Run time, 16 processors 16577 26967 

Run time, 64 processors 9224 23350 

Speedup 21.0 10.7 

Linearity 0.33 0.17 

Table 3'8. Sample execution times and performance statistics for the painters 

algorithm. 
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Figure 3'30: Execution time versus model size for the parallel painters algorithm and 

teapot models, using sixty{our processors. 

132 



12 

Time 10 

(183 ticks) 
8 

6 

4 

2 

0 
0 1000 2000 3000 

Model Size (polygons) 

Figure 3'31: Execution time versus 11UJdel size for the parallel painter's algorithm and 

tetra 11UJdels, using sixty-four processors. 

The painter's algorithm cost estimate derived earlier was 

o (FT) + 0 (buckets + (FT' N) + 0 (FT) + o(~" n m Dc FT ) + 0 (N) which, for 

B 
a given set of test data, may be reduced to A + N + CN. 

The CN term derives solely from the delay involved in filling the pipeline during the 

merge step. As discussed elsewhere this structure and therefore the cost could be 

significantly altered by altering the design of the communications network. Applying 

the cost estimate to the test cases and using regression to derive A, B and C gives table 

3-9. 

Again, the coefficients show no great predictability. However the cost versus the 

number of processors is very well predicted, even in the regions where the CN term 

becomes dominant and the performance reduces with increasing numbers of 

processors. Figure 3·32 shows an example where the CN term is not yet significant 

and figure 3·33 shows an example where the CN term results in the distinctive fall off 

of performance after about forty-five processors. 
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Scene A (fraction serial) B (fraction parallel) C (fraction subserial) 

Teapot 200 0.034865 0.965135 0.000000 

Teapot 500 0.027207 0.972523 0.000270 

Teapot 1000 0.025787 0.973640 0.000573 

Teapot 2000 0.032883 0.966480 0.000637 

Teapot 2500 0.037444 0.961926 0.000630 

Tetra 4 0.075123 0.924861 0.000016 

Tetra 5 0.089502 0.910100 0.000398 

Tetra 6 0.140667 0.855653 0.000368 

Table 3·9: Regression produced coefficients for the theoretical estimate of the 

pe/formance of the painter's algorithm. 
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Figure 3·32. Comparison of actual and expected performance, tetra 4 scene, 

painters algorithm. 
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Figure 3·33. Comparison of actual and expected performance, 2500 polygon teapot 

scene, painter's algorithm. 

3·5. Comparison of the Algorithms 

The recursive subdivision algorithm showed useful gains in performance when 

parallelised, but was not particularly efficient in its use of the extra processors. It 

showed a speedup of between eight and twenty times for sixty-four processors. 

The unoptimised scan line algorithm parallelised well, resulting in a speedup of 

between fifty and eighty times for one hundred and twenty-eight processors. 

Extrapolating these results suggests that this algorithm would still show good 

performance gains for even greater numbers of processors, although the algorithm is 

probably slowly approaching its limits for gains through increased para11elism. 

The edge-table based scan line algorithm did not parallelise as well as the unoptimised 

version. It appeared to reach its limits of useful parallelism at around thirty or forty 

processors. When using up to twenty processors useful gains in performance were 
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realised. but there is little point in using more processors than this as the gains through 

adding processors quickly diminish. 

The z-buffer algorithm parallelised well for small scenes but showed lower gains for 

large scenes. The speed ups varied between ten and ninety for one hundred and twenty

eight processors. In some cases the algorithm appeared to hit its limits of useful 

parallelism at around sixty processors. although other cases showed only small signs of 

approaching such a limit. The limited cases were those which had many small 

polygons. so the irreducible per polygon overhead was more significant than for the 

other cases. 

The painter's algorithm parallelised badly. with there being little point in using more 

than twenty processors to execute it. Although some of its limitations could be 

overcome, the remaining ones would still significantly limit the parallel algorithm's 

performance to below that of the z-buffer algorithm. 

Measured Relative Cost - I Processor 

Model Size (polygons) 

Algorithm 200 2500 

Painter's 1.0 1.3 

Z-Buffer 2.6 3.0 

Scan Line (with Edge Tables) 0.8 14.8 

Scan Line l.l 18.3 

Recursive Subdivision 6.3 25.5 

Table 3'10. Measured relative performance of the algorithms for the one processor 

case, (relative to the cost of the one processor, 200 polygon, painter's algorithm case). 
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Measured Relative Cost - 16 Processors 

Model Size (polv~ons) 

Algorithm 200 2500 

Painter's 1.0 1.6 

Z-Buffer 2.0 2.6 

Scan Line (with Edge Tables) 1.0 18.0 

Scan Line 0.9 14.3 

Recursive Subdivision 12.8 49.9 

Table 3·11. Measured relative performance of the algorithms for the sixteen 

processor case, (relative to the cost of the sixteen processor, 200 polygon, painter's 

algorithm case). 

Measured Relative Cost - 64 Processors 

Model Size (polv~ons) 

Algorithm 200 2500 

Painter's 1.0 2.5 

Z-Buffer 1.1 1.8 

Scan Line (with Edge Tables) 0.9 18.3 

Scan Line 0.5 7.8 

Recursive Subdivision 7.6 44.9 

Table 3·12. Measured relative performance of the algorithms for the sixty-four 

processor case, (relative to the cost of the sixty-four processor, 200 polygon, painter's 

algorithm case). 

137 



As may be seen in Tables 3·10, 3-11 and 3·12, the algorithms' relative performances 

do not alter greatly with the number of processors used, although there are several 

points worth noting. The painter's algorithm doubles in cost for the 2500 polygon case, 

(relative to the 200 polygon case) when moving from one processor to sixty-four 

processors. This is undoubtedly due to the merge sort step bottlenecking on the 

communications pipeline. This effect may thus be expected to grow in a linear fashion 

with model size. 

The recursive subdivision algorithm for 2500 polygons slightly increases in cost 

compared to the 200 polygon case when moving to sixty-four processors due to bad 

load balancing in the parallel case - a consequence of the uneven complexity of the test 

scenes. The z-buffer algorithm performs just slightly better in this respect, and the two 

scan line algorithms show almost no change in the relative costs of the 2500 and 200 

polygon scenes when moving from one to sixty-four processors. 

In absolute terms the implemented algorithms performed reasonably well compared to 

existing graphics systems, particularly in view of their being generally unoptimised and 

that they were run on quite old hardware, (the T800 having been introduced in 1987). 

3·6. Conclusions 

The z-buffer algorithm consistently performed well, with execution times that were 

either the smallest or close to the smallest for all the test scenes. For test scenes of 

increasing size, this algorithm's execution time grew more slowly than any other and 

for the largest test scenes it was always the fastest full HSE algorithm tested. Only the 

painter's algorithm performed comparably, but the implementation of this tested did not 

provide the correct HSE solution for intersecting or interleaved polygons. When using 

many processors, the z-buffer algorithm was faster than even the painter's algorithm. 

138 



The z-buffer algorithm proves to be an even better choice of HSE algorithm for parallel 

execution than it did for serial execution. 

Theoretical estimation of the HSE algorithms' performance variations with the number 

of processors used can clearly provide accurate predictions of the algorithms' real 

performance. It is also a valuable tool in understanding the underlying reasons for the 

algorithms' behaviour. 
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Chapter 4 

Conclusions 

4'1. Serial HSE Algorithms 

The serial implementations of the hidden surface elimination algorithms examined in 

this thesis proved to perform in relative terms much as Sutherland et al. estimated. The 

only major differences from their estimates were caused by their surprisingly high 

estimate of the basic painting operation for the z-buffer algorithm and by the author's 

choice of a different sort algorithm for the implementation of the painter's algorithm. 

The algorithms' dependence on model size may be largely attributed to a combination of 

the sorting techniques used and some overhead costs. The cost of the z-buffer 

algorithm is almost entirely due to its painting process, giving it the favourable property 

of almost total independence of model size. Instead the z-buffer's cost changes with the 

depth complexity of the scene displayed. The cost of the painter's algorithm is mostly 

the cost of its main sort step. The implementation considered in this thesis used a low 

rate of growth bucket sort which gives the painter's algorithm a small linear dependence 

upon model size. The recursive subdivision algorithm's costs grow approximately as 

the square-root of model size for scenes with large polygons due to its two dimensional 

recursive division of screen area, but this becomes linear for scenes with small 

polygons where the per pixel sorting costs dominate. The unoptimised scan line 

algorithm's cost grows almost linearly with model size due to its collection of mostly 

linear growth operations. The optimised scan line algorithm's cost grows slightly more 

rapidly than the unoptimised version. 
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4'2. Parallel HSE Algorithms 

The parallel z-buffer algorithm gained significant speedups, up to 90% of the maximum 

possible in some cases, but proved susceptible to much worse performance for models 

with small polygons. This was due to the unparallelisable per polygon overheads 

overtaking the parallelisable painting operations as the main cost component This effect 

seriously limited the performance of the z-buffer in some cases. 

The parallel recursive subdivision algorithm made limited gains from parallelism, never 

achieving more than about a quarter of the possible gains. This was almost totally due 

to bad load balancing. The algorithm's cost appeared to grow in a sub-linear fashion 

with model size for large numbers of processors, but this may be misleading since the 

bad load balancing probably swamps all other effects. 

The parallel unoptimised scan line algorithm parallelised well, consistently reaching at 

least half of the maximum possible speedup. The parallel version's cost depends almost 

linearly upon model size, as for its serial ancestor. The parallel optimised scan line 

algorithm did not parallelise at all well, effectively hitting a performance limit at a 

speedup of between ten and twenty times. This was due to the optimisation destroying 

the algorithm's suitability for parallel implementation, by introducing unparallelisable 

steps. 

The parallel painter's algorithm proved to be limited both by its per polygon overheads 

(as in the z-buffer case) and by its sorting step for all but the smallest models with the 

largest polygons. 

For four of the five HSE algorithms, the performance improvements obtainable from 

parallelism were shown to be accurately predictable by theoretical means. 
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4·3. Overall Conclusions 

For almost any HSE job where the output is to appear on a pixel type display, the z

buffer algorithm proves to be preferable to the other algorithms investigated. It provides 

a very good compromise solution with little dependence upon model size and high 

efficiency when parallelised. It was never much slower than the fastest HSE method in 

any of the tested cases. 

This work has shown that hidden surface algorithms in general parallelise well and can 

with care be designed to make efficient use of a number of parallel processors, if 

adequate connections can be made between the processors and the frame buffer. A 

distributed frame buffer has been shown to both provide these connections and be well 

suited to the parallel HSE algorithms investigated. 

This work has also shown that the performance of the parallel HSE algorithms 

investigated may be well predicted from their serial counterparts using theoretical 

means. 

In absolute terms the implemented HSE algorithms performed reasonably well 

compared to existing graphics systems, particularly in view of their unoptimised state 

and that they were run on quite old hardware. 

This work has also shown that a general purpose parallel computer may usefully be 

applied to near real time HSE. 
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Appendix 

Program Timings 

The following tables provide the full results referred to in this thesis. They include the 

measured execution times of the HSE algorithms, stated in ticks of the transputer's low 

priority timer, (15625 ticks per second). 
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No. of Teapot 200 Teapot 500 Teapot 1000 Teapot 2000 Teapot 2500 

Processors 

1 1222352 2055422 2672128 4210430 4947562 

4 592243 703353 985405 1510597 1779768 

16 211406 256187 348863 705486 827771 

64 69794 131977 241436 361502 413791 

Table A·I. Execution times of the recursive subdivision algorithmfor the teapot 

scenes. 

No. of Tetra 4 Tetra 5 Tetra 6 

Processors (156) (624) (2496) 

1 385115 784343 1528651 

4 128521 252244 485449 

16 122201 236158 445852 

64 47771 87752 157246 

Table A ,2. Execution times of the recursive subdivision algorithm for the tetra 

scenes. 
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No. of Teapot 200 Teapot 500 Teapot 1000 Teapot 2000 Teapot 2500 

Processors 

1 208212 652933 1255844 2651283 3559407 

2 104665 328671 630300 1332546 1786348 

3 70645 220190 422975 895441 1198955 

4 53287 166158 319729 672808 899815 

6 36051 112417 214333 452265 608088 

8 27306 85167 162616 345348 457518 

11 20246 62696 120821 253379 339697 

16 14597 44657 85700 177710 236438 

23 10521 31954 62383 127840 173644 

32 7980 24182 46346 94994 128768 

45 6129 18262 36288 74850 100568 

64 4803 13761 27032 52974 71955 

91 3916 11598 22733 46303 62827 

128 3121 9240 18044 34239 47266 

Table A·3. Execution times o/the unoptimised scan line algorithm/or the teapot 

scenes. 
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No. of Tetra 4 Tetra 5 Tetra 6 

Processors (156) (624) (2496) 

1 96931 363791 1403996 

2 48913 183066 706769 

3 32878 123267 474418 

4 24947 93030 358186 

6 16883 62816 242055 

8 12837 47805 184205 

11 9697 35722 136387 

16 6929 25134 97434 

23 5093 18424 71396 

32 3922 14288 55424 

45 3022 11362 44058 

64 2447 8889 35402 

91 2170 7571 29852 

128 1824 6647 27211 

Table A·4. Execution times of the unoptimised scan line algorithm for the tetra 

scenes. 
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No. of Teapot 200 Teapot 500 Teapot 1000 Teapot 2000 Teapot 2500 

Processors 

1 150692 483806 897526 2069488 

2 78517 251021 466711 1080821 

3 54803 172987 325956 756335 

4 42925 134745 254319 585013 

6 30618 94995 181728 421279 

8 24778 76648 146886 342175 

11 19774 60115 116819 273510 

16 15881 47060 91770 215091 

23 12874 37815 79935 180562 

32 11145 32847 66262 156104 

45 9926 28537 61743 139615 

64 8967 25527 53266 122312 

91 8553 23835 51083 117175 

128 7919 22362 47826 107994 

Table A·S. Execution times of the optimised scan line algorithm for the teapot 

scenes. 
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No. of Tetra 4 Tetra 5 Tetra 6 

Processors (156) (624) (2496) 

1 44162 146107 568946 

2 23678 78507 314369 

3 16775 56294 230254 

4 13460 45072 188075 

6 9959 34020 146185 

8 8249 28210 125227 

11 6971 23905 107978 

16 5741 19749 93869 

23 4872 17100 85421 

32 4476 15856 79399 

45 4117 15532 77372 

64 3867 14137 74063 

91 3953 14472 74276 

128 3760 13940 73428 

Table A·6. Execution times o/the optimised scan line algorithm for the tetra scenes. 
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No. of Teapot 200 Teapot 500 Teapot 1000 Teapot2()()(} Teapot 2500 

Processors 

1 509952 531721 539235 565572 581151 

2 255528 266786 271415 286046 294902 

3 171332 178371 182643 192996 199287 

4 128214 134217 137912 146327 151524 

6 86383 90055 93091 99717 103730 

8 65084 67930 70847 76432 79875 

11 47766 49881 52482 37437 60038 

16 33698 34966 37138 41194 43602 

23 23445 24732 27068 30667 32826 

32 17980 18297 20128 23588 25660 

45 13099 13443 15512 18829 20487 

64 10243 10066 11785 14680 16323 

91 7560 7784 9503 12047 13714 

128 5984 5947 7489 10227 11707 

Table A·7. Execution times of the z-buffer algorithmfor the teapot scenes. 
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No. of Tetra 4 Tetra 5 Tetra 6 

Processors (156) (624) (2496) 

1 60846 73994 104037 

2 30651 37848 55301 

3 20580 25786 39071 

4 15578 19776 30914 

6 10521 13732 22822 

8 8031 10773 18833 

11 5965 8328 15472 

16 4244 6208 12406 

23 3093 4827 10336 

32 2403 4003 9200 

45 1932 3427 8333 

64 1462 2771 7415 

91 1418 2767 7381 

128 1160 2422 6991 

Table A "S. Execution times of the z-buffer algorithm for the tetra scenes. 
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No. of Teapot 200 Teapot 500 Teapot 1000 Teapot 2000 Teapot 2500 

Processors 

1 194052 207781 216999 238060 250232 

2 98030 105365 110840 123025 130205 

3 66465 71283 75903 84904 90181 

4 50293 54357 58350 65762 70281 

6 34962 37609 40909 46891 50539 

8 27222 29353 32485 37897 40814 

11 21379 22836 25847 30476 33082 

16 16577 17749 20349 24558 26967 

23 13352 14859 17297 21194 23427 

32 11664 13509 16149 19842 21893 

45 9906 13578 16211 19789 21737 

64 9224 12870 17401 21310 23350 

91 7313 13321 19236 24361 26451 

128 5807 13494 22124 28502 31243 

Table A '9. Execution times of the painter's algorithm for the teapot scenes. 
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No. of Tetra 4 Tetra 5 Tetra 6 

Processors (156) (624) (2496) 

1 27166 36167 59161 

2 14226 19417 33563 

3 9935 13866 25197 

4 7803 11087 20936 

6 5781 8454 16882 

8 4733 7131 14948 

11 3888 6188 13305 

16 3416 5410 11933 

23 3038 4896 11176 

32 2736 4806 10719 

45 2780 4785 10684 

64 2609 4716 10881 

91 2499 5161 11428 

128 2156 5003 11295 

Table A·IO. Execution times of the painter's algorithm for the tetra scenes. 
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