
,
\

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY
AUTHOR/FILING TITLE

:~-----________ l:ll9:J.:tf_L~~_:i)T_~_·_S-_:, _____ _
i

--':'" -- - ---- - ----------------- -- -- --- ----- - ------ -.-
ACCESSION/COPY NO.

(N-OOq(O{&"
; ------... ---------- ----------- --------------- ... --- ... _-

VOL. NO. CLASS MARK

1996 1.." .nh '
Z 21~:l6

,
"

2 8 JUi~ \996

2Sj. '999

0400910187

11111111111111111111 1111111111111111 .

Polygon Based Hidden Surface
Elimination Algorithms:

Serial and Parallel

by

Julian Charles Highfield

A Doctoral Thesis
Submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy of the Loughborough University of Technology

March 1994

© by Julian Charles Highfield, 1994.

Loughborough University
of Technology Library

Date J~.~'~;_
Class

Ace.
(J\fv<:>9lO ('i!' No.

Certificate of Originality

This is to certify that I am responsible for the work submitted in this thesis, that the

original work is my own except as specified in acknowledgements or in footnotes, and

that neither the thesis nor the original work contained therein has been submitted to this

or any other institution for a higher degree.

JULIAN CHARLES HIGHFIELD

To my parents

Acknowledgements

I would like to thank my Supervisor, Dr. Helmut Bez, for his support and

encouragement during my research. I would also like to thank my Director of Research,

Professor E. A. Edmonds, for his advice. I am grateful to the SERC for their financial

support and for use of the Edinburgh Concurrent Supercomputer. Finally, I would like

to thank my parents for their support during this period.

Part of the work in this thesis has previously been published as:

I. C. Highfield, "Parallel Scan Line Algorithms for Hidden Surface Elimination",

Occam and the Transputer - Current Developments, (proceedings of the 14th World

Occam and Transputer User Group Technical Meeting, 16th-18th September, 1991,

Loughborough), pp. 217-224, IOS Press (1991).

J. C. Highfield and H. E. Bez, "Hidden Surface Elimination on Parallel Processors",

Computer Graphics Forum 11(5), North-Holland, pp. 293-307 (1992).

Abstract

Chapter I introduces the need for rapid solutions of hidden surface elimination (HSE)

problems in the interactive display of objects and scenes, as used in many application areas

such as flight and driving simulators and CAD systems. It reviews the existing approaches

to high-performance computer graphics and to parallel computing. It then introduces the

central tenet of this thesis - that general purpose parallel computers may be usefully applied

to the solution of HSE problems. Finally it introduces a set of metrics for describing sets of

scene data, and applies them to the test scenes used in this thesis.

Chapter 2 describes variants of several common image space hidden surface elimination

algorithms, which solve the HSE problem for scenes described as collections of polygons.

Implementations of these HSE algorithms on a traditional, serial, single microprocessor

computer are introduced and theoretical estimates of their performance are derived. The

algorithms are compared under identical conditions for various sets of test data. The results

of this comparison are then placed in context with existing historical results.

Chapter 3 examines the application of MIMD style parallelism to accelerate the solution of

HSE problems. MIMD parallel implementations of the previously considered HSE

algorithms are introduced. Their behaviour under various system configurations and for

various data sets is investigated and compared with theoretical estimates. The theoretical

estimates are found to match closely the experimental findings.

Chapter 4 summarises the conclusions of this thesis, finding that HSE algorithms can be

implemented to use an MIMD parallel computer effectively, and that of the HSE algorithms

examined the z-buffer algorithm generally proves to be a good compromise solution.

Table of Contents

1 Introduction 1

1.1 Overview 1

1.2 Graphics 5

1.2.1 Graphic Displays 5

1.2.2 The Graphics Pipeline 6

1.2.3 Approaches to High Perfonnance Graphics 8

1.2.4 Examples of Graphic System Architectures 11

1.2.4.1 Sun Microsystems GX Architecture 11

1.2.4.2 Silicon Graphics IRIS 12

1.2.4.3 Stellar GSl000 13

1.2.4.4 AT &T Pixel Machine 14

1.2.4.5 Pixel Planes 5 14

1.3 Parallel Processing 16

1.3.1 Types of Parallel Computer 16

1.3.1.1 SISD Computers 17

1.3.1.2 SIMD Computers 17

1.3.1.3 MISD Computers 18

1.3.1.4 MIMD Computers 18

1.3.1.5 Shared Memory versus Distributed

Memory Parallel Computers 21

1.3.2 Programs for Parallel Computers 23

1.3.3 Programs for Distributed Memory Parallel

Computers 24

1.3.4 Measuring Parallel Systems 25

- - -----------------------------

1.4 Hidden Surface Elimination 28

1.4.1 Hidden Surface Elimination on Parallel

Computers 29

1.5 This Thesis 29

1.5.1 The Parallel Computer Used 30

1.6 Test Data & Environment Statistics 32

1.6.1 Estimating the Cost of Algorithms 35

2 A Comparison of Five Hidden Surface Elimination

Algorithms 38

2.1 Introduction 38

2.2 The HSE Algorithms 38

2.2.1 Recursive Subdivision Algorithm 39

2.2.1.1 Cost Estimate 45

2.2.2 Scan Line Algorithms 48

2.2.2.1 Cost Estimate for Scan Line

Algorithm Without Edge Tables 55

2.2.2.2 Cost Estimate for Scan Line

Algorithm With Edge Tables 57

2.2.3 Z-Buffer Algorithm 60

2.2.3.1 Cost Estimate 61

2.2.4 Painter's Algorithm 62

2.2.4.1 Cost Estimate 64

2.3 Timing Information 65

2.4 Results 66

2.4.1 Recursive Subdivision Algorithm 66

2.4.2 Scan Line Algorithm (Unoptimised) 68

2.4.3 Optimised Scan Line Algorithm 69

2.4.4 Z-Buffer Algorithm 71

2.4.5 Painter's Algorithm 73

2.5 Comparison with Sutherland et. al. 75

2.6 Conclusions 78

3 A Comparison of Five Parallel Hidden Surface Elimination

Algorithms 80

3.l Introduction 80

3.2 The Parallelisations of the Algorithms 81

3.2.1 Recursive Subdivision Algorithm 81

3.2.1.1 Cost Estimate 86

3.2.2 Scan Line Algorithms 88

3.2.2.1 Unoptimised Parallel Scan Line

Algorithm 90

3.2.2.2 Cost Estimate for the Unoptimised

Scan Line Algorithm 91

3.2.2.3 Optimised Parallel Scan Line

Algorithm 93

3.2.2.4 Cost Estimates for the Parallel

Optimised Scan Line Algorithm 94

3.2.3 Z-Buffer Algorithm 95

3.2.3.1 Cost Estimate 97

3.2.4 Painter's Algorithm 98

3.2.4.1 Cost Estimate 102

3.3 Timing Information 103

3.4 Results 104

3.4.1 Recursive Subdivision Algorithm 105

3.4.2 Scan Line Algorithms 110

3.4.3 Z-Buffer Algorithm 122

3.4.4 Painter's Algorithm 128

3.5 Comparison of the Algorithms 135

3.6 Conclusions 138

4 Conclusions 140

4.1 Serial HSE Algorithms 140

4.2 Parallel HSE Algorithms 141

4.3 Overall Conclusions 142

5 References 143

6 Appendix 149

Chapter 1

Introduction

1·1. Overview

In the past fifteen years there has been little work on the performance of hidden surface

elimination (HSE) algorithms. This is probably due to the area having been extensively

considered in the early days of computer graphics, (see for instance the classic survey

paper of Sutherland et all).

Reductions in the cost of computer technology has allowed the more general use of

computer graphics. Graphic displays are particularly useful in computer aided design

(CAD) systems, giving the user a better indication of the object under design. Flight

simulators 2.3 are becoming more common and finding new applications for similar

cost reasons. Thus the requirement for real-time and near-real-time displays is ever

growing.

The HSE process has however remained a significant bottleneck in the performance of

graphical systems. This is unlike other parts of the graphics pipeline, such as

coordinate transformation which has largely succumbed to the vast performance

increases of floating point numeric processing.

The hardware of computer graphics systems evolves in a cyclical fashion 4, changing

from a general purpose computer with a frame buffer added, to specialised hardware

for painting in the frame buffer and supporting graphics transformations, and back to

1

the frame-buffer-on-general-purpose-computer approach as the computers of the time

themselves evolve.

Although the paper of Myer and Sutherland 4 was written more than twenty years ago,

different points within this cyclical evolution may still be seen in current machine

architectures. Many modem graphics workstation vendors supply VLSI graphics

engines that support coordinate transformation and the painting into a z-buffer of

simply shaded polygons 5.7. There has also been much research into such systems that

does not directly appear in product lines 8.11.

Other vendors have taken the approach of using comparatively simple polygon painting

hardware and having the computer system's general purpose processor compute the

necessary coordinate transformations 12.14.

Specialised graphics hardware has one particular disadvantage - it is utterly inflexible. It

provides high levels of performance for the few tasks it supports, but once the type of

workload changes this hardware becomes useless. For example, most current graphics

workstations support flat and Gouraud IS shading. Some also support Phong 16,17

shading. Unfortunately, should the user move to more complex shading schemes such

as ray tracing 18,19 then all of the computation must be done by the general purpose

system processor, leaving the hardware graphics engine as a rather expensive white

elephant - a waste of resources that could otherwise be spent improving overall system

performance. Of course, hardware support for ray tracing could be added 20 but there is

always a limit to what can reasonably be given direct hardware support.

There is now another factor entering into the design of such hardware graphics engines:

the bandwidth available to the frame buffer memory is becoming a practical limit While

the relatively recent invention of video RAM 21 has improved the available bandwidth

considerably, the matter is still of serious concern 6. It effectively caps the potential

2

performance of any graphics system, making it easier for general purpose

microprocessors to equal the performance of dedicated hardware.

This limit is not absolute - there are ways to circumvent it, such as by breaking the

frame buffer up into smaller chunks of memory, giving a separate data path into each

chunk - effectively multiplying the bandwidth by a substantial factor. The disadvantage

to such solutions is that they usually increase the physical size, power dissipation, and

cost of the graphics system. An interesting variant of the approach is considered in the

research of Fuchs et. al. 22,23. Basically, the Pixel-Planes system integrates many

simple microprocessors into the frame buffer. This is logically equivalent to breaking

up the frame buffer and connecting each part to its own microprocessor, but the

integration of many such frame buffer/processor pairs onto a single chip makes the

system a more practical proposition.

The factors discussed above are now causing the appearance of systems that form

compromises between direct hardware support for graphics and general purpose

microprocessors. This can be seen when considering the Texas Instruments 34010 and

34020 graphics processors 24 which have many general purpose instructions, and the

Intel 80860 25,26 which is a general purpose microprocessor with some graphics

support instructions.

General purpose parallel computers are now widely available, whose aggregate

computing performance is more than enough to equal dedicated hardware graphics

engines, if that aggregate performance can be usefully harnessed. Should such a system

be an effective graphics engine, then it would have one critical advantage over special

purpose hardware - flexibility. Once the program is changed, the entire computing

resource may be directed against a totally different problem. This leads to a number of

questions regarding the efficient execution of graphics algorithms on such platforms.

3

The study of parallel graphics algorithms is not new, although much of the existing

literature concentrates on optimising algorithms for implementation as parallel

functional units on VLSI chips 27.7• The only area in which this emphasis on

specialised hardware design has not occurred is that of ray tracing, which as discussed

earlier is not particularly amenable to such implementation. A good overview of

parallelism in graphics may be found in Crow 28, which discusses both parallel

machines and parallel algorithms.

The solution of HSE problems on parallel machines is likewise not new. Franklin and

Kankanhalli 29 considered parallel object space HSE, while most other researchers have

concentrated on image space HSE 30-33. Within the literature covering image space

HSE there is a predominance of simulated results 31-33.

This thesis presents the results of comparative tests for HSE algorithms on polygonal

models from two viewpoints. First, it compares the performance of several widely used

algorithms implemented serially in the same hardware and software environments, and

secondly it extends the comparison to parallel implementations of these algorithms.

The four common HSE algorithms considered are recursive (quadtree) subdivision, a

scan line algorithm 34-36, the z-buffer algorithm and the painter's algorithm.

The relative performance figures of these algorithms given by Sutherland et all for

serial computers are based on order of magnitude estimates, but the quality of their

work is underlined by the correlation that exists between their figures and those

presented in this thesis for the single processor implementations.

The work covered in this thesis was carried out on a parallel processing system of the

multiple-instruction multiple-data stream 37 (MIMD) distributed memory type. Such a

system is basically a collection of independent computers, COtnlected by communication

4

links. In particular the system used was a collection of transputers. The system was

programmed in OCCAM 38. which being based upon Hoare's CSP 39 provides a firm

foundation for the construction of parallel programs.

Transputers are particularly suited to use in parallel computers due to the inclusion of

most of the required parts of a computing node. (Le. CPU, RAM, and communications

links) in a single package. Transputers have almost alone popularised the parallel

processing concept by being being both cheap and readily available.

1·2. Graphics

1·2'1. Graphic Displays

Since their invention I introduction. graphic displays for computers have been used for

more and more purposes. for a relentlessly growing audience. Initially highly

expensive devices. they were first used for military flight simulators. Over the years

these have grown in capability. producing ever more lifelike images. As an editable

representation of a paper document they have come to be widely used in the creation of

documents for publication. and in the design of complex systems (computer aided

design).

A graphic display allows a computer to feed data to its user through its user's primary

sense. that of sight Perhaps it was only natural that the humans' need for play has

produced games using this feature - video games. It is also the obvious channel to use

to inform a computer user what the computer is currently doing. hence the use of

windowing systems where a window is connected to each particular task.

5

Graphic displays normally show their pictures on cathode ray tubes (CRTs), although

alternative display technologies are now increasingly available, particularly liquid

crystal displays (LCDs). There have been two types of graphic display, vector and

frame-buffer.

Vector displays repeatedly draw lines on the screen. Each line is described by start and

finish coordinates and perhaps by a brightness value. Within the cathode ray tube

(CRT), an electron beam is guided along the defined line. Where the beam strikes the

screen, a phosphor coating is excited and glows visibly. A list of such lines or vectors

represents the entire displayed information and is repeatedly drawn upon the screen.

Vector displays are largely obsolete since their primary advantage over frame buffers -

the small amount of memory used - is no longer relevant due to semiconductor

technology advances.

Frame buffers store an array of values in memory. This array represents the

brightnesses of a rectangular array of points on the screen. This array of points is

repeatedly redrawn on the screen, line by line. Each point is known as a pixe!.

1'2·2. The Graphics Pipeline

The most time consuming graphics display jobs involve the display of a three

dimensional scene, as though seen from a particular viewpoint, with particular lighting

and surface details. The three dimensional scene data must be processed to produce

suitable colour information, transformed into screen coordinates, processed to avoid the

display of objects which should be hidden behind other objects, and finally drawn into

the frame buffer for display. This "pipe" through which all scene data must pass is

known as the "graphics pipeline".

6

- --

Trivial
Model Data ,. Rejection

... Clipping

Figure 1·1: The Graphics Pipeline.

.. Shading
Viewing
Transformation 1-...

-
Painting into
Frame Buffer 1--toI Monitor

The pipeline is fed by a database of objects which describes the scene to be displayed.

These objects may in turn be constructed from common component objects which are

transformed into the correct positions - a transformation step not shown in Figure 1·1.

A common version of the pipeline and the one used in this thesis operates purely on

polygons, from which all objects must be built. Conventionally these polygons have

only one visible side. This is basically a performance enhancement which allows a later

step to easily identify and discard polygons on the far side of an object, on the

assumption that polygons on the far side of an object - with their visible faces facing

away from the viewer - are hidden from the viewer by polygons on the near side of the

object This discarding step is called "the backface cull".

The objects are then tested for clear irrelevance to the visible part of the scene. This step

is not fundamentally necessary as it is an approximation of the later clipping step but

can save a great amount of work by eliminating many irrelevant objects early in the

pipeline.

Each object has its shading according to its surface properties and the lighting

conditions, then transformed from the "world coordinates" used to describe the model

and lighting to the viewer-centric "viewing coordinates" for display. This

7

transformation not only takes account of the viewer's position and the direction he is

looking in but also of perspective effects. This step is known as the "perspective

transformation".

Objects are then "clipped" against the limits of the screen, to avoid wasting time trying

to draw objects or parts of objects which fall outside the limits of the screen. Finally,

the remaining objects are painted into the frame buffer for display on a screen.

Hidden surface elimination normally occurs somewhere after the viewing

transformation step, depending upon the precise HSE method employed. It may form

part of the painting step or exist on its own as a distinct step. Its job is to identify the

frontmost objects at each point of the screen, discarding hidden surfaces or parts of

surfaces.

Each of the steps in the display pipeline may be done to various levels of quality. If a

large scene is to be processed the sheer quantity of scene description data may easily tax

the computer system. The shading of the scene may be done using different numbers of

light sources, differing levels of description of the surfaces being lit. Atmospheric

effects may be taken into account or ignored. This shading work may be done for few

or many points within the image. The removal of hidden objects and parts of objects

may be solved exactly, or to the resolution of the display device (which may leave the

question of what colour a pixel containing several edges is unanswered or fudged).

1·2·3. Approaches to High Performance Graphics

The paper of Myer and Sutherland 4 illustrated early approaches to increasing the

performance of computer display systems. Unhappy with existing display systems they

8

decided to design their own, and during this effort discovered that the design of display

systems was evolving in a cyclical fashion.

The earliest display systems had been a simple frame buffer directly attached to a host

computer. The problem with this method is that the host then spends much of its time

doing simple operations on the frame buffer. Subsequently, the display hardware grew

from a simple frame buffer to a hardware enhanced frame buffer which could handle

simple operations with little intervention from the host This then grew to be a frame

buffer with its own, simple processor. Soon this display processor had more general

features added so that more of the display related work could be off-loaded from the

host This choice resulted in a system of two processors, one with an attached frame

buffer. Myer and Sutherland considered this point to be one complete turn of their

wheel of display system evolution.

In such a system the display processor spends much of its time doing simple frame

buffer operations, which is probably a waste of resources for such a general processor.

Hence it seems reasonable to enhance the frame buffer to remove simple jobs from the

display processor. This step moves the display partly into the second turn of the wheel

of evolution.

Myer and Sutherland were able to place the designs of many contemporary display

systems within their wheel of evolution analogy. Frustrated by this apparently endless

cyclical evolution, they were eventually persuaded of the view that general purpose

computing resources should be pooled into a single, central processor. This choice

makes more efficient use of available resources and restricts display systems to less

than one turn of the wheel of display system evolution. This choice has been reflected

in most display systems designed since that time, though there is still some argument as

to how complex and how flexible the display support hardware should be.

9

Major factors governing the design of display systems today are:

(i) Most of the advanced display systems are used to show two or pseudo-three

dimensional pictures consisting of lines andlor polygons.

Considerable performance gains may be obtained by the addition of dedicated hardware

to draw these lines and polygons. Both lines and polygons are drawn into frame

buffers using simple algorithms which are amenable to hardware implementation. Such

implementations typically calculate several partial results simultaneously, resulting in

good performance compared with an unaided host processor. Better still, such an

approach removes one of the most time consuming display-related jobs from the host

processor, leaving it free for jobs of a complexity more suited to such a general purpose

device.

This solution is amenable to being used many times over in the same system - adding

multiple line drawers to a frame buffer can prove worthwhile for up to several tens of

such devices.

(ii) Many display jobs require a lot of coordinate transformation calculations.

This work is basically the multiplication of a coordinate vector and a transformation

matrix to produce a result coordinate vector. Such work may be profitably offloaded to

a dedicated vector processor. Alternatively the host processor's numerical performance

may be improved and then be given this work.

(iii) Currently, points (i) and (ii) have been exploited to their practical limits. Display

systems have mn into a limiting factor - the available bandwidth to the frame buffer

memory. One way around this is to break the frame buffer up, resulting in several

smaller frame buffers, each with the same available bandwidth the single large frame

10

buffer would have. Some display hardware, (e.g. a polygon painter) may then be

attached to each small frame buffer. If this approach is taken to extremes, the part count

becomes rather high and so the processor and display memory may then be fabricated

on the same silicon chip. Such a device is typically referred to as a logic enhanced

memory.

1·2·4. Examples of Graphic System Architectures

There have been many examples of using hardware to accelerate graphics. These tend

to support a few basic types of graphics operations, as discussed previously, generally

line and polygon drawing/filling with simple shading equations. Hardware support for

more complicated graphics operations do not seem to have been economically viable to

date, but several research efforts such as the Pixel-Planes architecture (discussed

below) have shown how this may be implemented.

Hardware support for graphics usually implies the use of many, simple functional units

to "execute" the graphics algorithm in parallel.

1·2·4·1. Sun Microsystems GX Architecture

The OX graphics accelerator architecture 6 is a good example of a mass-market display

system. It was intended to become the "least common denominator" in Sun's graphics

systems, and has largely done so. One of the OX's design goals was that it should

survive for several years, requiring that the hardware support for graphics should not

become the bottleneck of a system with a much faster processor. This implied that the

OX should be able to saturate the frame buffer interface, which is the best an infinitely

11

fast processor could manage. [This argument assumes that frame buffer memory does

not significantly increase in speed with time, which has so far proved true.]

The OX contains two major functional blocks, the Transformation Engine (TB) and the

Frame Buffer Controller (FBC). The TB handles coordinate transformation work at a

rate of up to 50 MFLOPs. Its output is fed to the FBC, which draws flat shaded

quadrilaterals into the frame buffer, clipping them against a rectangular region. The

FBC can also copy rectangular areas of the screen image to another place on the screen,

and provides some support for drawing text. The OX is one of the most simplified

graphics accelerators, in that it implements a very restricted set of basic operations in

hardware.

1'2·4'2. Silicon Graphics IRIS

This system 5 is a well known landmark of computer graphics. It used internal

parallelism to achieve its high performance. It included five geometry engines which

executed coordinate transformations, shading calculations and clipping. The output

from these is fed to a polygon processor which breaks the polygon into trapezoids and

calculates the gradients of the edges and colours for each trapezoid. The trapezoids are

then fed to the edge processor which breaks them into vertical stripes. These are fed to

one of five span processor, depending upon their x-coordinate. Each span processor

turns stripes into per-pixe1 information which is fed to one of four image engines,

depending upon y-coordinate. The image engines, (of which there are twenty in total),

are little more than memory controllers which can do z-buffer style pixel painting.

12

5 Geometry Engines

Polyg"" Proo~, I
Edge Processor

5 Graphics Processors --.

20 Image Engines, each with
part of the frame buffer

Figure 1'2: The graphics architecture of the Silicon Graphics IRIS.

Video
Out

This design is a very good e1(ample of the use of hardware parallelism to support

graphics. It consists of a large number of functional units, with each section of the

graphics pipeline balanced in capability to support an overall throughput goal with a

minimum of wasted resources.

Later, low-end Silicon Graphics machines have sometimes omitted the geometry

engines in favour of doing the coordinate transformation and shading work on the

increasingly powerful, central microprocessor.

1'2'4'3. Stellar GSIOOO

The Stellar GSIOoo 12 chose from the beginning to do its coordinate transformation

and shading work using a maths unit shared with the rest of the system. This maths

13

unit was however significantly more powerful than most workstation maths units of

that time, in keeping with the machine's title of Graphics Supercomputer. The

rendering hardware consists of two major blocks, the set-up engine and the foot print

engine. The set-up engine processes incoming primitives into equations and coefficients

of a fonn suitable for the foot print engine.

The foot print engine consists of sixteen toe processors, arranged in a four by four

grid. It simultaneously solves for sixteen pixels the equations it has been passed by the

set-up engine. Apgar et. al. commented that while an eight by eight array of toe

processors would provide a speedup of approximately three times over the four by four

grid used, any larger a foot print would suffer from low efficiency and would most

probably not be cost efficient. This comment is interesting in light of the contrast

between this graphics architecture and that of the Pixel Planes series of machines

discussed later.

1·2·4·4. AT&T Pixel Machine

The AT&T pixel machine 28 is a MIMD parallel computing machine. It is basically an

array of 16 to 64 processors, each of which is connected to part of the screen memory.

This array is fed work through a single pipeline of 18 processors, or dual 9 processor

pipelines. These pipelines are generally used for transfonnation work.

Interestingly, these machines seem to have been used only rarely for interactive work,

instead being used for more time consuming jobs such as ray tracing.

1·2·4·5. Pixel Planes 5

The Pixel Planes experimental graphics engines have explored the combination of a

processor attached to each pixel. The combination resulting from this is called a logic

14

enhanced memory, which has the advantage of avoiding bottlenecks between the

processors and screen memory. Each processor is one node of an SIMD processor

array and solves quadratic equations. However, this approach unfortunately leads to a

rather low efficiency of use of the processors, especially when rendering small

primitives.

In Pixel Planes 5 there is no longer one processor per screen pixe!. Instead, a variation

on this approach is used to increase efficiency. Pixel Planes 5 22,23 has three types of

functional blocks - graphics processors (GPs), rasterisers, and the frame buffer. The

GPs use general purpose microprocessors to handle coordinate transformations. They

can locally store many primitives, which avoids having to reload the primitives for each

new frame. Each rasteriser contains an SIMD array of processor I pixel memory nodes

which render an area of 128 by 128 pixels. All of these functional blocks communicate

over a ring network. The system may contain any number of rasterisers.

Frame
Buffer

Monitor

Renderec

Renderec

Figure 1·3: The structure of Pixel Planes 5.

15

Renderec

Link to host
workstation.

1·3. Parallel Processing

Parallel processing is an obvious approach to high performance computing. Once the

performance of a single processing element approaches its practical bounds. the

combination of several such elements will possibly provide a greater performance boost

than investing the same amount of resources in increasing the performance of a single

element. If many such elements are combined then economies of scale may result.

further pushing the balance toward the "multiple elements processing in parallel"

approach.

Parallel processing is basically the art of avoiding performance bottlenecks in computer

systems. There are two main facets of parallel programming:

(i) the programming of parallel computers.

(ii) the use of parallelism within the program structure to produce more

straightforward or simply elegant programs.

To use a parallel processing system suitable algorithms are needed. The history of

computing is however largely one of single processor systems. resulting in a library of

existing algorithms which expect to be run upon a single processor. Some of these are

trivial to extend to parallel processor systems. while others are utterly unsuited to such

treatment. To discover whether an algorithm is suitable for parallel implementation the

nature of available parallel systems must be considered.

1·3·1. Types of Parallel Computer

There have been several attempts at classifying parallel computers. Few of these are

generally popular. The most enduring system is that of Fiynn. He classified systems

according to the number of instruction and data streams used. Systems are then referred

16

to as "nInD" where "n" is either "S" for "single" or "M" for multiple. There are four

possible basic types, described below. There are many variations on each of these basic

types, and several "in between" machines.

1·3-1-1. SISD Computers.

This is simply a typical single processor system, with a single instruction stream and a

single data stream. Computation is done in the ALU (arithmetic logic unit). The ALU is

driven by the control section which gets its instructions from the instruction stream.

Data for the ALU is acquired through a single data stream.

(control)1--~.~@)oOIII.t---'.~1 Data Memory

Figure 1·4: The simplest system in Flynn's taxonomy - SISD. Such a system has

one control unit and one ALU, with a single instruction stream and a single data stream.

1·3·1'2. SIMD Computers.

The fIrst multiple processor systems sought to economise by having multiple ALUs to

operate on data but only a single control unit. Such a system has only a single

instruction stream, driving many ALUs. Each ALU has its own data stream, so there

are multiple data streams. These machines are well suited to data parallel problems,

where the same operations are executed on every piece of data. However, they suffer

considerably when required to handle complex algorithms where the operations

executed on a piece of data are a function of the data itself.

17

Control Data Memory

Data Memory

Data Memory

Data Memory

Figure 1'5: An SIMD computing system. It has one control unit driving many ALUs

and so has a single instruction stream, but many data streams.

1·3+3. MISD Computers.

These are rare. They do many things at once to only one set of data. This classification

is normally considered to refer to code breaking machines, trying many ways to decrypt

an encoded message (the data stream).

1·3-1-4. MIMD Computers.

These are fully parallel. They have multiple control units, each controlling its own

ALU. There are multiple instruction streams and multiple data streams. There are two

notable variations on this theme - shared memory and distributed memory machines. In

a shared memory MIMD computer, each control unit / ALU pair can access every

memory location in the entire machine. In a distributed memory MIMD computer every

control unit I ALU pair has its own memory which none of the other pairs can access.

18

Control .. ALU
~ . Data Memory

Control • ALU ~

~ . Data Memory

Control .. ALU

• Data Memory
(Control ALU

Figure 1·6: A shared memory MIMD computing system. It has many control units

each driving one ALU and so has many instruction streams and many data streams.

Every ALU can access every memory.

Distributed memory MIMD computer systems are very similar to collections of SISD

computers. The difference is that the SISD elements of the MIMD system must be able

to communicate with each other. This is normally done by providing either a

communication bus or point-to-point communication links. In the case of a bus, when

one element transmits information it is visible, but not necessarily of interest to every

other element.

There are many ways of connecting point-to-point links. Ideally each element would

have one link direct to each other element. Unfortunately this results in an impractically

large number of links for a large system. Instead, the elements are usually connected in

a 2- or 3-dimensional grid or as an n-dimensional (hyper)cube. Typically a single bus is .
inadequate and point-to-point links are easier and cheaper to implement than multiple

buses.

19

(Control .. ALU ..
~

Control ALU --
~

Control .. ALU ...
~

I Control .. ALU ...
~

\

.. Data Memory

Data Memory

.. Data Memory

.. Data Memory

Communication
System

Figure 1·7: A distributed memory MIMD computing system. It has many control

units each driving one ALU. Each control unit / ALU pair has its own memory. Each

ALU can only access its own memory. To be useful there must be some form of

communication between each control unit / ALU / memory section.

• A processing node.

• .. A communication link (bidirectional).

Figure 1·8: A two dimensional connection network for a distributed memory MIMD

computing system This particular example is a four node by four node network.

20

Figure 1-9: A four dimensional hypercube connection network for a distributed

memory M/MD computing system A four dimensional hypercube may be constructed

by connecting two three dimensional (hyper)cubes. The two component cubes are

shown by different node shadings.

1-3-1-5_ Shared Memory versus Distributed Memory Parallel Computers

Shared memory systems have one particular advantage over distributed memory

systems - all of the processors share the same view of memory. Because of this it is

relatively simple to modify existing single processor programs to use a shared memory

multiprocessor if there is any possible parallelism in the program.

Shared memory MIMD systems typically do not exist with more than about thirty

processors. This is due to the fact that in a shared memory system all of the processors

share the same bus and memories, causing these resources to be saturated at about this

point.

The use of hybrid shared I distributed memory systems, where each processor in a

shared memory system also has a purely local memory of its own, can help reduce

traffic to the shared memories. However, for this to be really useful the local memories

21

must be used almost exclusively and the shared memories must be largely ignored,

effectively reducing the system to a distributed memory system.

The use of program and data caches with each processor can also reduce traffic to the

shared memories, by storing the recent traffic and answering the requests themselves if

a request is repeated. Unfortunately modem processors are so much faster than the

available memories that caches are necessary for even single processor systems and

hence cannot help much in a shared memory multiprocessor.

There have been a few exceptions to the "thirty processor" rule. Usually these systems

have used a switching network between the processors and shared memories in place of

the simple bus normally used. Unfortunately these systems have seemingly proved

unsuccessful and disappeared from the parallel computer market, perhaps because the

switching network has usually proved to be a major component of the cost of the

system.

Distributed memory systems have several helpful qualities, particularly in that the

overall cpu to memory bandwidth increases in direct proportion to the number of

processors, (since adding a new processor implies adding a memory with it). This

means that the practical limit on the numbers of processors that can be reasonably be

incorporated into a distributed memory parallel computer is much higher than for shared

memory parallel computers.

Instead of processors communicating through the shared memory of a shared memory

system, in a distributed memory system communication normally takes place over point

to point links. When adding further processors, further links are also added to connect

the new processors into the system. As a result of this, adding processors also implies

increasing the processor to processor bandwidth, again avoiding the bottlenecks which

stop the growth of shared memory systems.

22

The major disadvantage of distributed memory computers is that they are potentially

difficult to write programs for, as will be explained in the next section. Also, they are

rather hard to modify existing single processor programs for, since each processor sees

a different memory and any communication between parts of the program executing on

different processors must be explicitly programmed.

1·3·2. Programs for Parallel Computers

Since a parallel computer consists of a number of processors communicating with each

other to coordinate their actions and pass partial results, a significant amount of inter

processor communication may result Whether such traffic actually does occur or not

will depend upon the algorithm being used. Efficient use of a multiprocessor system

requires that most of the processors' time is spent computing, not communicating.

For an n-processor system to outperform a single processor system merely requires that

each of the n processors computes for at least IIn of its time. If a system has more than

a few processors but each does not compute for significantly more than IIn of its time it

is probably a waste of resources, since it is not much faster than a single processor. So

for a multiprocessor system to be useful it must spend most of its time computing, and

as little time as possible communicating.

Using a parallel processing system requires that the algorithm can be paralleJised. In

some cases every step of the algorithm requires that all of the earlier steps be complete

and have delivered their results. In this case it is impossible to para1lelise the algorithm.

For algorithms where there is no way to avoid high levels of interprocessor

communication or where there is no way to paralleJise the algorithm at all, an alternative

algorithm must be found which is amenable to parallelisation. Otherwise a parallel

23

processor is of no help and the fastest solution of the algorithm will be found using the

fastest single processor machine.

1'3'3. Programs for Distributed Memory Parallel Computers

In a typical shared memory parallel computer. the bus between the processors and

shared memories is a bottleneck. In a distributed memory parallel computer there is no

obvious bottleneck. This does not mean that there are actually no bottlenecks. but

should one exist it is less obvious. For example. if some particular data structure

should be central to all stages of a computation. then all parts of that computation must

clearly be able to access the data structure. In a parallel computer these various parts of

the computation will be executing on separate processors. The question thus arises.

''where should the data structure be placed?" Unfortunately. no matter where it is placed

some processor will face a considerable delay accessing it.

There are two aspects of interprocessor communication in a distributed memory parallel

computer which may slow the access of remote data. These are the bandwidth of the

connections and the latency of reply. The bandwidth is the rate at which data may pass

along a communication link and is of concern only when passing large amounts of data.

The latency is the delay before the reply to a request starts arriving.

The bandwidth of interprocessor connections may be increased to alleviate congestion.

though such remote connections never equal a local memory access for bandwidth.

Problems with latency are however becoming unavoidable - as computation rates

increase the effect of the "speed of light" physical limit for electronic signals is

becoming more significant. where a remote memory takes longer to access than a local

one simply by virtue of the fact that it is further away. In a distributed memory parallel

computer there are few obvious bottlenecks and so these systems may be built with

24

very many processors and may consequently be physically very large, making the

latency problem severe.

1'3'4. Measuring Parallel Systems

Note: This section aims to create a few simple metrics of parallel computer system and

program performance. However, no single, simple to measure figures are going to

offer more than an approximate guide to such complex systems.

An algorithm that can make effective use of a parallel computer must not make more

than light use of non-local information. To take a more quantitive view of this factor,

"light use" must be calculated with reference to the particular parallel computer under

consideration. A good starting point for such a system of metrics is the ratio of

interprocessor bandwidth to processor instruction rate. This is based on the assumption

that a program will on average send/receive so much data for every so much program

executed. Since processor instruction rate is a rather difficult quantity to measure in a

machine independent way, an alternative measure must be used instead. For purely

numerical computations, the possible rate of floating point calculation offers a

reasonable approximation. For non-numeric calculations, the choice of metric is much

harder since the instruction rate of a machine has long since been discredited as a

measure of machine performance. For such jobs, the processor-to-memory bandwidth

is suggested. This gives a quality factor for the machine, Qmacbine or Qm:

Q = Processor to Processor Bandwidth
m Processor to Memory Bandwidth

Qm is thus basically the cost of non-local data access divided by the cost of local data

access. The processor-to-memory bandwidth figure can still be hard to measure, for it

25

does not state how systems with caches are to be treated. The numerical alternative is

thus Qmachine,numeric or Q mn:

Q _ Processor to Processor Bandwidth
mn Floating Point Operation Rate

There is then an obvious similar metric for a program, the ratio of computation to

communication within the program. The amount of communication may usually be

estimated fairly simply by examining the program, but again the question of how to

fairly measure computational costs over a range of machines arises. For primarily

numerical computations the number of floating point operations may be used, leading to

a quality factor for the program, Qprogram,numeric or Q pn:

Q _ Floating Point Operations
pn - Amount of Communication

For non-numerical computations, there is no clear alternative to instruction rate.

Experience suggests that a scheme of costs per instruction type, yielding a weighted

instruction count, gives a reasonable approximation to the real program cost. Such a

metric should not be taken too seriously since a single figure is never going to provide

an accurate description of computing costs. This gives:

_ Weighted Instruction Count
Qp - Amount of Communication

As a simple example of the use of these metrics, consider the performance of a highly

numerical program on a network of Inmos T414 microprocessors and on a similar

network of Inmos T800 microprocessors 40. For both transputer types, at 20MHz

clock rate, with 4-cycle external memory access, the (external) memory bandwidth is

20Mbytes per second. The link speed may be 20Mbitsls for each of four links. This

26

gives (naively) IOMbytesls interprocessor bandwidth. The floating point operation rates

are approximately 1MFLOP for the T800 and 0.15MFLOP for the T414. Hence

Qmn,T800 = 10 MBIMFLOP

Qmn,T414 = 70 MBIMFLOP

Qm,T800 = 0.5

Qm,T414 = 0.5

This suggests that a T414 network will be easier to use efficiently for numerical work

than a T800 network, but that for non-numerical work they will be almost identical. It

does not mean that the T414 network is necessarily preferable to the T800 network for

numerical calculation, since it would take seven T414s to equal the numerical

calculation rate of the T800. Extending this to the Inmos T9000 41 and Texas

Instruments 32OC40 microprocessors 42 gives:

Qmn,T9000 = 50MB/s /25MFLOPs = 3.3 MBIMFLOP

Qmn,32OC40 = 120MB/s /50MFLOPS = 2.4 MBIMFLOP

Qm,T9000 = 50/50 = 1.0

Qm,32OC40 = 120/100 = 1.2

These figures suggest that it is getting harder to efficiently use a parallel computer for

numerical work, but slightly easier for non-numerical work. However these figures

should not be taken too seriously for several reasons:

1. They are all approximations anyway.

2. They are based on manufacturer's data, which can be misleading.

3. They ignore other aspects of the microprocessors considered, such as the T9000's

elegant message routing system which should eliminate the software routing of

messages, a time consuming job.

27

Two much more objective measures of the advantages of a parallel program are

"speedup" and "linearity of speedup". Speedup is simply how many times faster the

algorithm executes compared with the one processor case. Linearity of speedup could

also be called the efficiency of parallelisation in that it measures the fraction of the

maximum possible speedup obtained in practice. So:

and

Linearity of Speedup = Sp~up where n = no. of processors

Execution Time for 1 Processor
Speedup = Execution Time for n processors

1·4. Hidden Surface Elimination

Hidden surface elimination (HSE) is one of the earliest computer graphics problems.

Given a collection of objects in three dimensional space and the point and direction

from which they should be viewed, the problem is to decide which parts of which

object are visible to the viewer. Alternatively, the problem may be seen as that of

discarding or eliminating those parts of objects which cannot be seen by the viewer

because they are hidden by other objects. The earliest HSE work was sometimes called

"hidden line elimination", which sought to solve the same problem for scenes displayed

as line drawings.

Much of the early HSE work done considered only objects constructed from polygons.

While other representations have become more popular over the years, the simplicity of

polygon based descriptions has ensured that they are still in wide use today. Variations

of four of the major polygon based HSE algorithms are extensively described in chapter

two. The HSE algorithms considered are recursive (quadtree) subdivision, two variants

of a scan line algorithm 34-36, the z-buffer algorithm and the painter's algorithm.

28

1·4·1. Hidden Surface Elimination on Parallel Computers

The majority of the work on parallel HSE has covered ray tracing. As mentioned in

section 1·4, most of the work on the parallel implementation of polygon based hidden

surface elimination algorithms has taken the form of simulations, or of optimisations

for implementation as parallel functional units on VLSI chips.

Of the few papers on parallel computer, polygon based HSE, Franklin and Kankanhalli

29 considered a parallel object space HSE algorithm while most other researchers have

concentrated on image space HSE. Of these, Parke 33 simulated the performance of

three types of multiprocessor z-buffer and Hu and Foley 31 also simulated a number of

varieties of z-buffer. Fiume et. al. 30 experimented with a parallel scan conversion

algorithm on the experimental shared memory Ultracomputer. Strothotte and Funt 32

designed and simulated a parallel computer and display algorithm solely for the display

of rotating objects. Unfortunately none of these papers investigated whether some HSE

algorithms are more suitable for parallel implementation than others.

1·5. This Thesis

This thesis investigates the application of a general purpose distributed memory MIMD

computing resource to the graphics problem of hidden surface elimination. With

increasing numbers of such machines becoming available the possibility of using them

as flexible, quick interactive graphics resources has become worth investigating.

The method discussed in this thesis is the use of a collection of general purpose

processors each with a small attached display memory. While not as fast for line

drawing (or whatever is given hardware support) as a hardware accelerated graphics

system such as those discussed in section 1·2·3, it still provides a reasonable way of

29

accelerating graphics work while simultaneously remaining a much more general

purpose device. If the display algorithm is changed, a hardware graphics accelerator

becomes unusable and must be redesigned, but the more general system described here

could simply be loaded with a new program.

The problem of limited bandwidth to the frame buffer is also altering the balance

between dedicated hardware and general purpose microprocessors. Since modem

microprocessors are almost able to saturate the interface to the frame buffer, dedicated

hardware can no longer make better usage of the frame buffer. Part of the historical

advantage of dedicated hardware has been that it could draw many pixels into a frame

buffer in the time it took a general purpose microprocessor to draw one pixel. The

frame buffer bottleneck has largely negated this advantage.

This thesis presents the results of comparative tests for HSE algorithms on polygonal

models from two viewpoints. First, it compares the performance of several widely used

algorithms implemented serially in the same hardware and software environments, and

secondly it extends the comparison to parallel implementations of these algorithms.

1·5·1. The Parallel Computer Used.

This work was carried out on a network of Transputers 40. Each Transputer is a

processing element incorporating a CPU with integrated floating point unit, four serial

communications links, and some on-chip RAM. Each Transputer also had at least a

further 1 Mbyte of off-chip RAM connected to it.

Since each Transputer has only four links to its neighbours, the maximum size of a

fully connected network, (where every element has a direct connection to every other

element) is five Transputers. For relevance to larger networks a fully connected

30

-- -- --- --

network was not used. Instead the structure diagrammed in Figure 1·10 was adopted,

with one master element acting as file store, and a number of worker elements chained

to it This "processor farm" structure may be seen throughout the literature, for example

in Packer 43 and Bez 44.

This arrangement has a potential problem in that all data must pass down the "chain" of

workers instead of direct to its destination, possibly causing a communications

bottleneck. In the algorithms in this thesis all of the processors require local copies of

the polygons. With each polygon averaging 60 bytes and a single transputer link having

a bandwidth of approximately 1.5 Mbytesls, at most 25000 polygons per second may

be transmitted. So for the cases considered in this thesis, transmission time would take

at best between 0.01 and 0.1 seconds, (for the largest and smallest sets of polygons

respectively).

Master Worker 1 Worker n

20 MHzT800 2OMHzTSOO 20 MHz TSOO

Figure 1·10: The connection structure of the parallel computer.

Since the design of the transputer is such that it may simultaneously receive and

transmit data, one transputer may be passing polygon k to its downstream neighbour

while receiving polygon k+ 1 from its upstream neighbour, allowing the polygons to be

passed along at full link speed. The cost of adding a processor to a pipeline is therefore

a one polygon delay, (roughly 0.04 milliseconds).

Should this system be found inadequate, (perhaps for larger data sets), then a second

pipeline could be added using the remaining two links per processor. Even greater data

31

rates could be achieved by using a memory bus and writing the same data to all of the

processors at once. Such busses easily operate one or two orders of magnitude faster

than transputer links, but require additional hardware.

1'6. Test Data & Environment Statistics

The test data consisted of two sets of scenes. The basic designs of the scenes were

chosen for their familiarity within the computer graphics community. All of the scenes

in the first set consisted of a row of six teapots. The viewpoint and viewing direction

were set so that the row was seen almost exactly end on. Five versions of this scene

were used, the difference between them being the number of polygons used to describe

the scene. The nominal numbers of polygons in the data sets were 200, 500, 1000,

2000, and 2500 polygons. These numbers are for the backface-culled scene, (Le. there

are no backfacing polygons in the data sets). The upper limit on the number of

polygons used in a data set was a consequence of the available memory on each

processor of the development system. The lower limit was set by the practicality of

describing six teapots with a small number of polygons.

The second set of scenes were the "tetra" scene from Haines 45, a recursive1y generated

tetrahedral scene. Allowing the generating program an extra level of recursion causes

each tetrahedron in the scene to be replaced by four smaller ones, at the vertices of the

original. Three versions of this scene were used, with varying numbers of tetrahedra

(and hence polygons).

All perspective projection, back face culling, and (flat) shading was done in a

preprocessing stage since these operations are common to systems involving any of the

HSE algorithms considered. This decision is compatible with Sutherland et al 1.

32

Kev to Environment Statistics

Statistic Description Rule of Thumb

n Vertical screen resolution (in pixels) Given

ID Horizontal screen resolution (in pixels) Given

FT Number of forward facing faces Given

Fe Avera~e number offaces ner cluster Given

Dc Depth complexity Given

Ft Total number offaces 2FT

Ct Number of clusters Ft/Fe

Et Total number of edges 4 Ft

iEr Number of edges on forward facing faces Et/ 2

Ee Number of contour edges Er

w: 2 e

Es Number of edges on forward faces if sharing is allowed
1

1"2<Er- Ee)+Ee

XT Total number of edge crossings in the viewing plane Er
(De-I)T

Xv Number of intersections of visible edges ~lDe

Ht Average face height (in pixels) 2 n m Dc ,
FT

SI Average number of segments per screen line 2
DeFTm i\j

n

Sy Average number of visible segments per screen line SlIDe

Lv Total length of visible edges (in pixels) 2nSy

Table 1·1. A key to the various scene measurement statistics. After Tables I and II of

Sutherland et all.

33

--- ---

A summary of the properties of the data sets is shown in Tables 1·2 and 1·3. Table 1·1

is a key to the various statistics and the rules of thumb used for calculating many of

them. The rules of thumb are those of Sutherland et all. There are five basic statistics

which must be measured for each data set - n. m. FT' Fe and Dc. The first two are

simply measures of the vertical and horizontal display resolution respectively. FT is the

number of polygons facing toward the viewpoint. (polygons are assumed to have one

visible side and one invisible side). Fe is the average number of faces per polygon

cluster. (where a cluster is a group of polygons clearly separate from all other

polygons). Dc is the average depth complexity of the scene. which is defmed as the

number of overlapping. forward-facing polygons at a given point.

All of the other statistics are calculated from these five basic quantities using Sutherland

et. al.'s rules of thumb. These statistics are Ft. Ct• Et. Er. Ee. Es. XT• Xv' Hr. SI' Sv.

and Ly. Ft is the total number of faces in the scene. including the invisible ones facing

away from the viewer. Cl is the number of clusters in the scene. El is the total number

of edges in the scene. while ~ is the number of edges on forward-facing polygons. Bc
is the number of edges per contour. Es is the number of distinct edges on forward

facing polygons. i.e. edges shared by two polygons are counted only once. Hr is the

average face height. XT is the number of edge crossings for edges on forward-facing

polygons projected into the viewing plane. and Xv is the number of visible edge

crossings. SI is the average number of segments per screen line. i.e. the average

number of forward-facing polygons per screen line. while Sv is the average number of

visible segments per screen line. Ly is the total length of visible edges.

The properties of the data sets used in this thesis are very similar to those of the scenes

described in Sutherland et al I. except for those measures that depend upon the

clustering of the polygons. (Fe. Cl' Ee. Es). This difference should be irrelevant as

none of the algorithms described in this thesis make any use of the clustering of

34

polygons. Several of the statistics in Table 1· 3 are clearly incorrect, such as the

property Xv which is negative for all of the tetra scenes. This anomaly is due to the

depth complexity of the scenes being less than one on average, while the rule of thumb

used to calculate Xv assumes a depth complexity greater than one.

1·6'1. Estimating the Cost of Algorithms

When an algorithm's cost is estimated in this work, the cost is reduced to a number of

independent terms. Each of these terms is stated in terms of those environment

properties referred to as "given" in Table 1·1 - n, m, Fp Fc and Dc. Actually, no cost

is expressed in terms of Fe because this statistic is a measure of the clustering of

polygons within a scene, but none of the HSE algorithms uses clustering in any way.

With clustering being irrelevant, Fe may effectively be eliminated in favour of FT" Little

use is made of calculations of costs calculated in terms of n or m due to their being

I1xed for all of the work described here. Also, there is little interest in the growth of

algorithm costs as a function of screen resolution (i.e. n and m) because this has

changed little over many years.

35

Environment Statistics for the Teapot Scenes

Model Size (nominal)

Statistic 200 500 1000 2000 2500

512 512 512 512 512
n

512 512 512 512 512
m

FT
205 499 1027 2035 2575

Fe
68.33 166.33 342.33 678.33 858.33

Dc
3.029 3.005 3.005 3.019 3.015

Ft
410 998 2054 4070 5150

et 6 6 6 6 6

~t
1640 3992 8216 16280 20600

~
820 1996 4108 8140 10300

Ee
140.29 218.87 313.99 442.00 497.19

Es
480.14 1107.43 2211.00 4291.00 5398.60

XT
415.945 100.495 2059.135 4108.665 5188.625

Xv
137.32 332.94 685.24 1360.94 1720.94

Hf
62.24 39.73 27.70 19.72 17.52

SI
24.92 38.72 55.55 78.38 88.11

Sy 8.23 12.89 18.49 25.96 29.22

Lv
8424.17 13195.57 18930.54 26585.85 29925.74

Table 1·2. A sumnuzry of the properties of the five teapot scene descriptions used,

given in the format of Table 11 of Sutherland et all.

36

- ---

Environment Statistics for the Tetra Scenes

Model (Size)

Statistic Tetra 4 (156) Tetra 5 (624) Tetra 6 (2496)

n 512 512 512
512 512 512

m

F.L
156 624 2496

Fe
312 1248 4992

De
0.351 0.391 0.469

Ft
312 1248 4992

Ct
1 1 1

Et
1248 4992 19968

Er
624 2496 9984

Ec
49.96 99.92 199.84

Es
336.98 1297.96 5091.92

XT
-101.2 -380.0 -1325.4

Xv
-288.4 -971.9 -2825.96

Hf
24.29 12.82 7.02

81
7.40 15.62 34.21

Sy 21.08 39.95 72.95

Lv
21587.8 40907.6 74702.6

Table 1·3. A sUmnuJry of the properties of the three tetra scene descriptions used,

given in the format of Table 11 of Sutherland et al I. The tetra scenes have only one

cluster each and a low overall depth complexity, which causes some of the rules of

thumb to result in ridiculous values, e.g. XT and Xv

37

Chapter 2

A Comparison of Five Hidden Surface
Elimination Algorithms

2'1. Introduction

This chapter considers serial versions of four common image space hidden surface

elimination algorithms. The algorithms are described in detail, their execution costs are

roughly estimated, and their performances measured and compared. These results are

also compared with those of Sutherland et al .. The algorithms considered were:

(i) the recursive subdivision algorithm.

(ii) two versions of the scan line algorithm, with and without the edge-table

optimisation.

(iii) the z-buffer algorithm.

(iv) the painter's algorithm, (which is actually partly an object space HSE method).

2·2. The HSE Algorithms.

Descriptions of each of the five HSE algorithms studied are given here. Also, their

costs are estimated in the style of Sutherland et all, though with greater refinement.

38

2'2·1. Recursive Subdivision Algorithm

This algorithm tries to find a simple solution to the hidden surface problem for a

particular area of the screen. Should it fail to do so, it breaks the area up into a number

of sub-areas and then applies itself recursively to each of the sub-areas in turn.

First an area of the screen, (initially the entire screen) is considered. Those polygons

wholly or partially within this area are identified. Then, if the area has an easily

identified shading scheme, (i.e. a simple solution) of one of the four following types,

the shading is done immediately. The simple solutions the algorithm recognises, and

the actions taken for each one are:

1. There are no relevant polygons.

• Colour the area with the background colour.

2. There is only one relevant polygon, which is partly or completely enclosed by the

area.

• Colour the area with the background colour, overlaid with the polygon or part

of polygon.

3. There is only one relevant polygon, which completely surrounds (encloses) the

area.

• Colour the area with the polygon colour.

4. There is at least one polygon which surrounds the area, and which is in front of all

other relevant polygons within this area.

• Colour the area with the polygon colour.

In the discussion of this algorithm, a surrounding polygon is one which completely

surround the area of interest, a surrounded polygon is one which is completely

enclosed by the area and a crossing polygon is one which partly overlaps the area.

Also, a relevant polygon is one which partly or completely encloses the area of interest,

39

and may extend into neighbouring areas. An irrelevQ1'lt polygon is one which has no

overlap with the area.

Region

(a) (b)

(c) (d)

Figure 2·1: (a) A surrounding polygon, (b) a surrounded polygon, (c) an intersecting

polygon, Q1'Id (d) a disjoint polygon. (a), (b) Q1'Id (c) are relevant polygons, while (d) is

irrelevQ1'lt.

40

(a) (b)

(c) (d)

Figure 2·2: (a) and (c) are examples of situatiol1S which cannot be directly handled by

the algorithm and must be broken up. (b) and (d) are examples that the algorithm can

handle.

If none of these simple shading solutions is found to apply to the area, then the area is

subdivided. In the implementation described in this thesis, the area is subdivided into

equal quarters by splitting along the vertical and horizontal halfway points. If the area

under consideration is only one pixel in size, then it is not subdivided. Instead a

compromise solution, based on the average of the colours of the foremost polygons at

the four corners of the pixel, is used.

This technique is applied recursively until the original area has been completely shaded.

41

The recursive division of the problem may be compared to a "tree" of decisions. The

area initially considered, (the outermost area) is the root of the tree. If this is broken

into four sub-areas, they may be referred to as intermediate or branch nodes. A sub

area which is shaded rather than being further broken down is considered to be a

terminal or leaf node.

This recursive subdivision method is sometimes referred to as a quadtree subdivision

method due to the recursive four-branching of its decision tree.

Figure 2'3: An example of the recursive break up of the problem, to five levels of

recursion.

Of the four HSE algorithms considered here, this was by far the most complicated

algorithm to implement. It involves a large number of floating point mathematical

42

operations and has an extensive control flow structure. This structure is described by

the following pseudo-code.

PROC recsub (region, list_of-polygons)

SEQ

SEQ polygon = 0 FOR all-POlygons

SEQ

IF

was_found_to_surround-parent_region (polygon)

accept_as_surrounding (polygon)

was_fo~disjoint_froITLParent~egion (polygon)

reject_as_irrelevant (polygon)

TRUE

SEQ

IF

trivial rejection test to increase performance -

totally_left_right_above_or_below_region (polygon)

reject_as_irrelevant (polygon)

all-polygon_vertices_within_region (polygon)

accept_as_surrounded (polygon)

any-POlygo~edge_crosses_edge_of_region (polygon)

accept_as_crossing (polygon)

o~UITLPOly_edges_from_regio~to_infinity (polygon)

accept_as-purrounding (polygon)

TRUE

reject_as_irrelevant (polygon)

nlirnLothers = nlirnLcrossing + nlirnLsurrounded

IF

(nlirnLsurrounding = 0) AND (nlirnLothers = 0)

43

paint_region_backgroWlCLcolour ()

(num-surrounding = 0) AND (num-others = 1)

SEQ

paint..--regioILbackgroWlCLcolour ()

paint..--relevant-part_of-P01ygon ()

(num-surroWlding = 1) AND (n~others = 0)

paint_regi0n--Po1ygon_colour ()

(num-surroWlding >= 1) AND (one_of_these-nides_all_others ())

paint_region--Po1ygoIl-colour ()

TRUE

SEQ

IF

regioILis_one-pixel_in_size ()

paint-pixel_average_colour_of_corners ()

TRUE

SEQ

recsub (top_left_of_region, region's_relevant-po1ys)

recsub (top_right_of_region, region's_relevant-P01ys)

recsub (btITLleft_of_region, region's_relevant-P01ys)

recsub (btITLright_of_region, region's_relevant-P01ys)

This algorithm could be altered in many ways. For instance, the subdivision step might

be changed to divide an area in half, splitting the area vertically for even levels of

subdivision and splitting it horizontally for odd levels of subdivision. Another possible

alteration would be to no longer require the resulting parts of a subdivision step to be

equal in area, with the division being chosen after considering the relevant polygons.

More "solutions" could be recognised in order to avoid unnecessary subdivisions. All

44

of these changes would offer the possibility of reducing the eventual number of solved

areas, but would also introduce extra costs.

The version used here was chosen for its simplicity and familiarity within the computer

graphics community. The variations discussed may improve the algorithm's

performance somewhat but are unlikely to significantly alter its character.

2'2·1·1. Cost Estimate

To make a useful estimate of the cost of this algorithm, whose actions clearly depend

rather heavily upon the exact scene data, several assumptions about reasonable

workloads must be made. Even the form of the "worst case" n-polygon scene is not

immediately obvious. For instance, one possible ''worst case" involves every region

being subdivided as far as possible, with the compromise solution being used in all

cases. Such a scene implies a fairly well distributed set of polygons. An alternative

possible ''worst case" scene would involve all polygons clustering into a small region,

which involves fewer subdivisions, but increases the cost of testing for each

subdivision.

Outermost Level

On first entering the program, all polygons are tested for relevance to the outermost area

(which is normally the screen) and are classified as surrounding, surrounded, crossing

or irrelevant polygons. Assuming a reasonably well framed object, no rejections will

occur during the first pass. Also, there will be few surrounding or crossing polygons.

For a scene of P polygons:

• P trivial rejection tests are made. (No polygons are rejected) .

• P tests for surrounded polygons are made. (All P polygons are accepted).

45

• 0 tests are made for crossing polygons.

• 0 tests are made for surrounding polygons

This stage thus will have a cost of 0 (FT). This cost is only incurred once for any

execution of the algorithm, and so will be negligible compared to the costs of the later

stages.

Intermediate Levels

Similarly, for some particnlar sub-area, whose parent area had P relevant polygons:

• P trivial rejection tests are made. Assuming the polygons were evenly distributed

throughout the parent area approximately three quarters of the polygons will be

rejected, since the area being considered is a factor of four smaller than its parent area.

Very few rejectable polygons will escape this trivial rejection test and need rejecting

after testing for acceptance as a surrounded, crossing or surrounding polygon. Such

cases are thus ignored here. (3P/4 polygons are rejected). This is 0 (FT).

• P/4 tests are made for surrounded polygons. This costs 0 (FT).

• A small number of tests are made for crossing polygons.

• A small number tests are made for surrounding polygons.

Although there are likely to be many such branch nodes of the decision tree, they will

still be significantly outnumbered by the leaf nodes. Hence the cost of the branch nodes

will be swamped by the cost of the leaf nodes.

Terminal Levels

A terminal node will either be of single pixel size and therefore indivisible, or have only

one relevant polygon, or have a frontmost surrounding polygon. For the single pixel

46

-- ---

case, there will be Dc relevant polygons on average. There will be few occurrences of

the single relevant polygon case, since these consume so much more area than single

pixel terminal nodes. In the case of a frontmost surrounding polygon the number of

relevant polygons will be proportional to DC' but there will again be few such nodes .

• The number of polygons intersecting an area is on average, approximately Dc for

terminal nodes. The culling of irrelevant polygons will thus cost approximately 0 (Dc)'

• The solution for a terminal node that is of single pixel size will cost 0 (Dc). The

solution for a terminal node of greater than single pixeI size will also cost 0 (Dc).

Overall Cost

To draw useful conclusions from this analysis, two extreme cases will be considered.

These are (i) a scene consisting of very large polygons, and (ii) a scene consisting of

very small polygons.

Only "terminal" areas are considered here since they will significantly outnumber

subdivided areas. Of these, single pixel size terminal nodes will also outnumber all

other types of terminal nodes, so only these terminal nodes will be considered. Each

terminal node costs 0 (DC> for both culling and finding a solution.

Case (i):

For this case, single pixel terminal nodes will tend to occur only along visible

shared edges in the polygonal scenes. Hence the number of such nodes will be

approximately equal to the total length of visible shared edges in the scene.

Total cost is therefore 0 (Dc >I< length of visible shared edges). The total number of

shared edges will be approximately Er 12 since most polygons in the test scenes

have immediate neighbours on all sides. The number of visible, shared edges is

47

therefore Er I (2 Dc). The average edge length is approximately HI" Therefore

length of visible, shared edges is (Er HI') I (2 Dc).

(_ r;:;;:;;}
Total cost is 0 -'V ~

Case (ii):

When the scene consists of small polygons, the number of terminal nodes will be

approximately 0 (FT I Dc) and each such node costs 0 (Dc)'

Thus the total cost is 0 (FT)'

Scenes consisting of polygons of intermediate size or of different sizes should show

costs somewhere between the two extremes considered.

2·2'2. Scan Line Algorithms

Here, the screen is considered as each horizontal line in turn. First the algorithm

calculates line segments for each polygon which crosses the current screen line. These

segments are essentially horizontal stripes of colour whose descriptions consist of

starting coordinates (xl, zl), finishing coordinates (x2, z2), and the polygon's colour.

The y-coordinates of the ends of the line segments are implied by the y-coordinate of

the current screen line. All of the line segments for the current screen line are placed

into a list. The algorithm then resolves any cases of overlapping or intersecting

segments within this list. Finally the resulting list of visible segments are sent to the

screen processor for display.

48

(Seen from the front)

• Screen line being considered

Line segments output by algorithm for this polygon and screen line

(Seen from above)

a
I ll-r--+---=~_' These line segments exist in three dimensions

Figure 2·4: A polygon and its resulting line segments after scan conversion for one

particular screen line.

Two versions of this algorithm were tested. One used edge tables to take advantage of

coherence between screen lines within the scene, while the other did not. The edge table

optimisation is discnssed later. The version without edge tables is described by the first

piece of pseudo-code:

SEQ

reaCLin...;polygons ()

SEQ y = min-y FOR nlimLscre~lines

SEQ

reset (store)

49

SEQ polygon = 0 FOR all-POlygons

SEQ

find-resultant_scan_lines (polygon, y)

output_sc~lines (store)

(From the front) (From above)

_C2:::::1

Figure 2-5: An example of one polygon obscuring another, and the 'overlapping'line

segments produced by scan conversion. Correcting these line segments so that only

their visible portions are output is the primary job of the scan line algorithm.

./ Left visible fragment

~ / llidden ::~:ible fragment

~, ./'
" ~ , , , ,

1./l
V~ , , This line segment partially obscures

the other line segment

Figure 2-6: When one line segment hides part of another from view, up to three

fragments may result.

50

Figure 2'7: When two line segments intersect, due to their parent polygons

intersecting, up to sixfragments may result, of which two are always hidden and are

therefore discarded. Fragments 2 and 5 are the hidden ones, being obscured by

fragments 4 and 3 respectively.

In the following pseudo-code procedure, the tenn x-extent appears quite regularly. The

x-extent of a three dimensional line segment is the range of possible x values of a point

on that line segment When a partly hidden line segment is broken up by the algorithm,

it may consist of up to three pieces. There is the hidden fragment, possibly a visible left

end fragment, and possibly a visible right end fragment The hidden fragment is

discarded since it cannot be seen.

PROC resolve-x-overlaps (store)

SEQ

for all possible pairs of scan_lines sl and s2

SEQ

IF

x-extents_overlap (sl, 52)

IF

51

SEQ

IF

(52 extends left of 51) AND (52 extend right of 51)

SEQ

replace 52 ~ left fragment of 52

add right fragment of 52 to end of segment list

(52 extends left of 51)

replace 52 ~ left fragment of 52

(52 extends right of 51)

replace 52 ~ right fragment of 52

TRUE

delete 52

s2_in_front_of_s1 ()

** similar to previous case **

TRUE

IF

comment: z-extents of 51 and 52 overlap

51 does not intersect 52

SEQ

** Essentially a repeat of previous section.

** but with more exact in_front_of test.

** This was a small performance enhancement.

TRUE

IF

comment: 51 intersects 52

left_of~l in-front_of left_of_s2

IF

(52 extends left of 51) AND

(51 extends right of s2)

52

**

**

**

TRUE

SKIP

TRUE

SEQ

replace sl by left fragment of sl

replace s2 by left fragment of s2

append right sl fragment to segment list

append right s2 fragment to segment list

(s2 extends left of sl)

SEQ

replace sl by left fragment of sl

replace s2 by left fragment of s2

append right s2 fragment to segment list

(sl extends right of s2)

SEQ

replace sl by left fragment of sl

replace s2 by right fragment of s2

append right sl fragment to segment list

TRUE

SEQ

replace sl by left fragment of sl

replace s2 by left fragment of s2

** similar to above **

The next piece of pseudo-code describes the version of the scan line algorithm that uses

edge tables to take advantage of coherence within the scene. The rest of this version of

the scan line algorithm is identical to the unoptimised version already discussed.

53

This algorithm begins by constructing two tables, one which records which polygons

start on each screen line, and one which records which polygons end on each screen

line. The algorithm then keeps a list of currently relevant polygons, which it updates

from the two polygon tables as it moves through the screen line by line. This technique

was originally applied to tables of polygon edges and so is known as the edge table

optimisation. The variety of this technique used here works on tables of polygons due

to this being more suited to the particular scan conversion method used. It would thus

perhaps be clearer to refer to it as a polygon table optimisation, but the edge table name

is far more widely recognised. The difference between polygon tables and edge tables

is not significant in terms of algorithm cost.

This modification allows the algorithm to only consider those polygons which are

known to be relevant to the current screen line, (i.e. those polygons that will result in

scan lines). This requires some pre-processing costs but largely eliminates the costs of

examining non-relevant polygons to fmd whether they are relevant.

SEQ

reacl.....in...polygons ()

SEQ polygon = FOR all-POlygons

SEQ

obtai~bottom_ancl.....top_of_eac~lygons (bottom, top)

store-POlygo~id (addlpolys[bottom])

store-po1ygon_id (remove-polys[top])

SEQ y = minLY FOR ntimLscree~lines

SEQ

reset (store)

54

SEQ polygon = 0 FOR all-PQlygons

SEQ

find-resultant_sc~lines (polygon, y)

append-sc~lines_to~tore (store)

resolve_z_overlaps (store)

output~c~lines (store)

remove_expired-polygons (current-PQlygons, remove-PQlys[y])

add-pewly_relevant-polygons (current-PQlygons, a~lys[y])

2·2·2·1. Cost Estimate for Scan Line Algorithm Without Edge Tables

Part 1 . Initialisation Steps

• The edges are adjusted so that where a polygon's edges touch (at the ends) they do

not have identical coordinates, so only one edge occupies a vertex. This is necessary to

allow the algorithm to operate correctly. This step considers each edge in turn, and so

the cost is 0 (no. of edges).

• For each edge, a number of properties are calculated and stored. These properties

include the minimum and maximum y values, the y height, x and z gradients. For this

step the cost is again 0 (no. of edges).

Part 2 . The Scan Conversion Step

For each screen line, line segments are produced. This involves finding intersections

with relevant edges.

• Every edge is checked for relevance at a cost of 0 (edges).

• Intersections are then found for the relevant ones at a cost of 0 (relevant edges).

55

- - --

• These intersections are "paired up" using an x-sort step to produce line segments. For

each polygon. edge intersections are bubble sorted on their x-values. Assuming the

polygons are convex and hence have only two edges crossing a particular screen line.

this has a cost of 0 (polygons). All of the test scenes contain only convex polygons.

although the scan line algorithms can handle non-convex polygons.

Part 3 • The HSE Step

As in part 2. this is repeated for each screen line. The line segments created in part 2 are

then corrected for overlapping one other (hidden parts are removed). This is similar to a

bubble sort on the line segments. except that as overlapping line segments become

fragmented the extra fragments are added to the end of the list of items being sorted .

• If no line segments overlap. then each test for overlapping edges is a simple

comparison of x values. and there are 0.5 * segments
2

tests. This gives a cost of 0

(segments\ This represents the cost for a scene with a depth complexity of 1 or less at

every point of the screen .• In the worst case line segments could be broken up at every

comparison. resulting in squaring the number of line segments. Assuming these extra

line segments are created at the very beginning of this step. this has a cost of

approximately 0 (segments
2 + segments\ Such a scene would be highly unlikely.

since every initial segment would be intersecting every other initial segment! • In the

more general case. for a scene with a depth complexity Dc. there will be (segments I

Dc) sets of Dc overlapping segments at each point of the screen. In most scenes

intersecting polygons and therefore intersecting segments are unusual. so most of these

cases of overlapping segments will not produce the maximum number of extra

segments. A more likely case is the production of one extra segment for every obscured

segment. This would result in (segments I Dc) * (Dc - I) extra segments. or

approximately (2 * initial segments) overall. causing approximately (4 * 0.5 *
segments

2
) operations. with a cost of 0 (segments \

56

---------------------- -- -

Part 4 • Painting

The visible segments are then painted with a cost approximately proportional to the

number of pixels painted. i.e. 0 (nm). This step is much less complex than the

previous ones. and should contribute negligibly to the overall cost.

Total Cost

• Part 1 cost 0 (edges) + 0 (edges) = 0 (EJ + 0 (EJ = 0 (Et)

Reducing this to the basic environment variables using the rules of thumb gives a cost

• Part 2 cost 0 (lines >I< edges) + 0 (lines '" relevant edges) + 0 (lines >I< polygons)

= 0 (n Et) + 0 (...j n m FT D J + 0 (n Ft).

Reducing to basic variables gives 0 (n FT) + 0 (...j n m FT Dc).

• Part 3 cost 0 (lines >I< segments 2) = 0 (n S\ SI)

Reducing this to basic variables gives 0 (Dc FT m).

• Part 4 cost 0 (nm).

Overall cost is thus 0 (FT) + 0 (n FT) + 0 (...j n m FT Dc) + 0 (Dc FT m) + 0 (nm).

All but one of these terms are dependent upon the model size (FT) and most are directly

proportional to it. For many polygons. this algorithm's cost will grow as 0 (FT)'

2·2'2·2. Cost Estimate for Scan Line Algorithm With Edge Tables

(Optimised Scan Line Algorithm)

Part 1 • Initialisation Steps

• The edges are adjusted so that where a polygon's edges touch (at the ends) they do

not have identical coordinates. so only one edge occupies a vertex. This is necessary to

57

allow the algorithm to operate correctly. This step considers each edge in turn, and so

the cost is 0 (no. of edges).

• For each edge, a number of properties are calculated and stored. These properties

include the minimum and maximum y values, the y height, x and z gradients. For this

step the cost is again 0 (no. of edges).

• The edge tables (actually polygon tables) are prepared. This costs 0 (polygons).

Part 2 . The Scan Conversion Step

For each screen line, line segments are produced. This involves finding intersections

with relevant edges.

• The list of relevant polygons is updated using the edge tables, at a cost of 0 (change

in relevant polygon set).

• Every edge is checked for relevance at a cost of 0 (relevant polygons * no. of sides

per polygon) .

• Intersections are then found for the relevant ones at a cost of 0 (relevant edges).

• These intersections are 'paired up' using an x-sort step to produce line segments. For

each polygon, edge intersections are bubble sorted on their x-values. Assuming the

polygons are convex and hence have only two edges crossing a particular screen line,

this has a cost of 0 (polygons * (0.5 * 22»

Part 3 . The HSE Step

As in part 2, this is repeated for each screen line. The line segments created in part 2 are

then corrected for overlapping one other (hidden parts are removed). This is similar to a

bubble sort on the line segments, except that as overlapping line segments become

fragmented the extra fragments are added to the end of the list of items being sorted.

58

• If no line segments overlap, then each test for overlapping edges is a simple

comparison of x values, and there are 0.5 >10 segments
2

tests. This gives a cost of 0

(segments \ This represents the cost for a scene with a depth complexity of 1 or less at

every point of the screen .• In the worst case line segments could be broken up at every

comparison, resulting in squaring the number of line segments. Assuming these extra

line segments are created at the very beginning of this step, this has a cost of

approximately 0 (segments
2

+ segments \ Such a scene would be highly unlikely,

since every initial segment would be intersecting every other initial segment! • In the

more general case, for a scene with a depth complexity Dc, there will be (segments I

Dc) sets of Dc overlapping segments at each point of the screen. In most scenes

intersecting polygons and therefore intersecting segments are unusual, so most of these

cases of overlapping segments will not produce the maximum number of extra

segments. A more likely case is the production of one extra segment for every obscured

segment. This would result in (segments I Dc) >10 (Dc - 1) extra segments, or

approximately (2 >10 initial segments) overall, causing approximately (4 >10 0.5 >10

segments 2) operations, with a cost of 0 (segments \

Part 4 • Painting

The visible segments are then painted with a cost approximately proportional to the

number of pixels painted, i.e. 0 (nm). This step is much less complex than the

previous ones, and should contribute negligibly to the overall cost

Total Cost

• Part I cost 0 (edges) + 0 (edges) + 0 (polygons) = 0 (Et) + 0 (Et) + 0 (FT)

Reducing this to basic variables gives a cost of 0 (FT)'

• Part 2 cost 0 (lines >10 change in relevant polygon set) + 0 (lines >10 relevant polygons >10

4) + 0 (lines >10 relevant edges) + 0 (lines >10 polygons)

59

- - - - - ------------------------------

= 0 (Fr) + 0 (...J FT m n 0 c) + 0 (n FT)

• Part 3 cost 0 (lines * segments 2) = 0 (n S\ SI)

Reducing this to basic variables gives 0 (Dc FT m) .

• Part 4 cost 0 (run).

(nm).

These component costs mostly vary with model size (Fr) with powers of 0.5 to 1.0.

For large numbers of polygons, the overall cost is 0 (Fr)'

2·2'3. Z-Buffer Algorithm

This is the simplest hidden surface algorithm tested. Basically, every point of every

polygon is plotted into a z-buffer. Every pixel in a z-buffer consists of a storage

location for that pixel's displayed colour and also a storage location for the z-value of

the pixe\. When plotting into a z-buffer the algorithm must check to see if the point

being plotted is behind the one already in the z-buffer, in which case nothing is done,

or is in front of the pixel already in the z-buffer in which case the old z and colour

values are overwritten. Z-buffers are frequently supported in hardware due to their

simplicity, (and hence low cost). The implementation described here used a simple scan

conversion algorithm to calculate the points to be plotted.

The pseudo-code routine z""plot describes the method of plotting into a z-buffer. The

colour values for screen points are stored in the array screen and the corresponding z

values are stored in the array z_value. These two arrays together form the z-buffer.

The three dimensional, coloured point described by x, y, z, and colour is plotted into

this z-buffer.

60

PROC z-plot (x, y, z, colour)

SEQ

IF

z < z_value[xl [yl

SEQ

TRUE

comment: The point is in front of whatever is alreaqy in

comment: the z-buffer at these x and y coordinates.

z_value[x][y] = z

colour[x] [y] = colour

-- comment: The point is hidden, so do not draw it.

SKIP

The program processes one polygon at a time. It simultaneously works its way up the

left and right sides of the polygon, interpolating coordinates between vertices. This

scan conversion algorithm is slightly different to that used in the scan line algorithms,

but its costs are almost identical for convex polygons (which are the only son present in

the test data). The resulting scan line segments are then drawn into the z-buffer one

pixel at a time, using the method described previously.

2·2·3·1. Cost Estimate

Each polygon is convened to line segments in turn .

• A preprocessing step builds a list of edges on the left side of the polygon and a list of

right side edges. This costs 0 (Er).

61

• The scan conversion steps through the y-range of each polygon one screen line at a

time. This costs 0 (Hr) for each polygon .

• Each pixel in a line segment is tested against the z-buffer at a cost of 0 (segment

length) per segment Visible pixels are then painted into the z-buffer at a cost of 0

(visible pixels).

Total Cost

The cost is 0 <Er) + 0 (FT Hr) + 0 (segment length * segments) + 0 (visible pixels)

= 0 <Er) + 0 (FT Hr) + 0 Cn m Dc) + 0 Cn m)

=0 (FT) +0 (...jn m Dc FT)+O(nmDc)+O(nm)

This has a fixed cost of 0 (n m). The term 0 (n m Dc) is also effectively a fixed cost

for each set of test data used in this work because Dc is approximately the same for

each member of a particular set of test scenes.

The first two cost terms grow with the size of the test scene, so for large numbers of

polygons the cost of this algorithm would be 0 (FT)' However, if the polygons are of

multiple pixel area then these two costs are swamped by the per-pixel cost since they

occur only once per polygon (for the first term) or once per segment (for the second

term).

The overall cost for large or medium size polygons will therefore tend to be 0 (n m).

For large numbers of very small polygons, the overall cost would be controlled by the

o (FT) term.

2·2'4. Painter's Algorithm

Unlike the previous three algorithms, the implementation of this algorithm does not

create correct hidden surface images for scenes containing penetrating or interleaving

62

polygons. This algorithm first sorts the polygons by z order and then scan converts

them in (back to front) order onto the screen. The sorting technique used is a bucket

sort, with 2000 buckets. This sorting technique was chosen because it offers well

controlled costs for sorting large numbers of items 46. For example, a simple bubble

sort costs 0 (n2) for n items, a quicksort costs 0 (n log n) on average and 0 (n2) in the

worst case, a heapsort costs 0 (n log n) and a bucket sort (sometimes known as bin

sort) costs 0 (n + m) where m is the number of buckets.

Sorting Algorithm Cost Cost for 2500 item sort

vs. cost for 100 item sort

Bubble sort o (n2) 625

Quicksort (averaru o (n log n) 42

Ouicksort (worst case) o (n2) 625

Heapsort o (nlogn) 42

Bucket sort 100 buckets o (n + buckets) 13

Bucket sort 2000 buckets o (n + buckets) 2.1

Table 2·1. Sorting cost variation with number of items to be sorted, for several

common sorting algorithms.

As may be seen in table 2·1, the cost of a bucket sort rises far more slowly with the

number of items to be sorted than the costs of the other sort algorithms. The bucket sort

is a relatively simple algorithm, with each of its steps being of low absolute cost The

choice of the number of buckets used (2000) was made to limit the sorting cost for

large numbers of polygons in preference to limiting the cost of sorting small numbers

of polygons. The table also includes a lOO-bucket sort to illustrate this point. The 100-

bucket sort limits the absolute cost of a 100 item sort in preference to limiting the

63

growth of sorting cost for the range of quantities of items sorted, (which was 200 to

2500 polygons for this work).

Since the polygon sort is carried out in object space this algorithm is partly an object

space HSE algorithm. The remainder of the algorithm however operate in image space.

The structure of this algorithm is illustrated by the pseudo-code:

SEQ

read._.in...polygons ()

fin~an~store_average_z_of-POlygon's_vertices ()

bucketJlort"'po1ygons ()

scan_convert...P0lygons_fromLback-to_front ()

This algorithm has one potentially adjustable factor - the number of buckets used for the

bucket sort. This could possibly be changed to improve the performance of the sort in

terms of execution time for a particular scene, or in terms of the sorting time's

dependence upon model size. Two thousand buckets were used for the work described

here since the aim was to limit the growth of cost with model size, and this number is

close to the largest number of polygons handled. The sort costs 0 (buckets + polygous)

and so for small scenes the cost is 0 (buckets), and for large scenes the cost is

approximately 0 (buckets + polygons). This avoids the cost of the sort growing by

more than a factor of two or so.

2'2'4'1. Cost Estimate

• In a preprocessing step, the average z value of each polygon is found.

This costs 0 (polygon >10 4) .

• The polygons are then sorted on their average z values using a bucket sort.

This costs 0 (buckets + polygons).

64

• Each polygon is then scan converted. This costs 0 (Hr) for each polygon .

• The pixels are painted. This costs 0 (nmDc)'

Total Cost

The total cost is 0 (edges) + 0 (buckets + polygons) + 0 <Hr * polygons) + 0 (nmDc)

= 0 (Er) + 0 (buckets + FT) + 0 (Hp FT) + 0 (nmDc)'

This reduces to 0 (FT) + 0 (buckets + FT) + 0 (.-vrn=-m-D-c-F-T"'<) + 0 (nmDc)'

Thus this algorithm's cost for large numbers of polygons is 0 (FT)'

2·3. Timing Information

The fast, on-chip RAM was not used. This decision was made because the on-chip

RAM is limited in size to 4K bytes, and hence has an effect upon the execution speeds

of programs of different sizes, since differing proportions of such programs fit in this

high speed RAM. Instead, all program and data were stored instead in the slower,

expandable, external RAM.

In all cases, the clock was started after the polygons had been loaded into memory from

disk. This was done to avoid attributing a cost to the algorithms for which they are not

responsible. The timing of the optimised scan line algorithm includes the creation of the

edge tables. All timings were taken using the transputer's low priority clock, which

ticks 15625 times per second.

65

2·4. Results

For each of the five HSE algorithms previously described. timings were taken for the

solution of the hidden surface problem for each of the five teapot scenes and three tetra

scenes discussed.

2·4·1. Recursive Subdivision Algorithm

Figures 2·8 and 2·9 show an interesting compound behaviour. For small numbers of

large polygons. the execution time grows as some fractional power of the model size.

As the model size increases and the polygons decrease in size. (since the depth

complexity is held constant for the test scenes). the behaviour alters to a linear growth

of execution time with model size. This strongly supports the cost analyses for this

algorithm which suggested a square root growth of execution time for small numbers of

polygons and a linear growth for larger numbers of smaller polygons. The execution

times are tabulated in Table 2·2.

5.-------------------~~_,

4
Time
(186 ticks)

3

2

O+-------~--~--_r--~--~
o 1000 2000 3000

Model Size (polygons)

Figure 2'8: Execution time versus model size for the recursive subdivision algorithm

and teapot models.

66

2~----------------------~

Time
(186 ticks)

1 -

o 4---.----r----.-----,,--..,......--!
o 1000 2000 3000

Model Size (polygons)

Figure 2·9: Execution time versus model size for the recursive subdivision algorithm

and tetra models.

Model Type and Size Execution Time (in ticks)

Teapot 205 1222352

Teapot 499 2055422

Teapot 1027 2672128

Teapot 2035 4210430

Teapot 2575 4947562

Tetra 156 385115

Tetra 624 784343

Tetra 2496 1528651

Table 2·2: Execution times for the recursive subdivision algorithm.

67

- - - - ---------------------------------------

2·4·2. Scan Line Algorithm (Unoptimised)

4

Time 3

(1e6 ticks)

2

1

0
0 1000 2000 3000

Model Size (polygons)

Figure 2·10: Execution time versus model size for the unoptimised scan line

algorithm and teapot models.

2~-----------------------'

Time
(186 ticks)

1

o 1000 2000 3000

Model Size (polygons)

Figure 2·11: Execution time versus model size for the unoptimised scan line

algorithm and tetra models.

68

Figures 2·10 and 2·11 show that the execution time of the algorithm is roughly

proportional to the model size. This is supported by the cost analysis which concluded

that the cost of the algorithm was proportional to the model size, (with small fixed costs

etc.).

Model Type_and Size Execution Time (in ti cks)

Teapot 205 208212

Teapot 499 652933

Teapot 1027 I 255844

Teapot 2035 2 651283

Teapot 2575 3 559407

Tetra 156 96931

Tetra 624 363791

Tetra 2496 1 403996

Table 2·3: Execution times for the unoptimised scan line algorithm.

2'4'3. Optimised Scan Line Algoritbm

For this algorithm, Figures 2·12 and 2·13 suggest that execution time is approximately

proportional to model size. This is supported by the cost analysis which noted many

steps of linear cost. Comparing the two figures for small models shows some

difference in execution costs between the two models, presumably due to a dependence

upon depth complexity - the major difference between the two set of models. This

implies that the 0 (Dc FT m) term is a major component of the total cost, which is

reasonable since this is the HSE step.

Comparing the unoptimised scan line algorithm results (figures 2·10 and 2·11) shows a

much smaller dependence on depth complexity, and implies that the HSE step is a

69

- --

smaller part of the total cost than for the optimised scan line algorithm. The optimised

version may thus be considered as being more "focussed" on the HSE job rather than

on the "book-keeping" jobs which support it.

3~--------------------------~
Time
(1e6 ticks)

2

1

O+----r--~----~--~--~--~
o 1000 2000 3000

Model Size (polygons)

Figure 2·12: Execution time versus model size for the optimised SCaII line algorithm

and teapot models.

0.6

Time 0.5

(1e6 ticks)
0.4

0.3

0.2

0.1

0.0

0 1000 2000 3000

Model Size (polygons)

Figure 2'13: Execution time versus model size for the optimised SCaII line algorithm

and tetra models.

70

Model Type and Size Execution Time (in ticks)

Teapot 205 150692

Teapot 499 483806

Teapot 1027 897526

Teapot 2035 2069488

Teapot 2575 2880572

Tetra 156 44162

Tetra 624 146107

Tetra 2496 568946

Table 2,4: Execution times for the optimised scan line algorithm.

2,4,4. Z·Buffer Algorithm

Figures 2·14 and 2·15 show that this algorithm has an execution time which shows a

small growth in proportion to the model size, with a large fixed cost This is supported

by the cost analysis which found both a linear dependence on the model size and steps

whose costs depend on the total number of pixels in the scene but not on the model

size. (The number of pixels in the scene is almost independent of model size for each

set of scenes),

Extrapolating the results graphs toward Iow numbers of polygons gives an estimate of

the fixed (Le. non number-of-polygon dependent) costs. The teapot results extrapolate

to a y·axis intersection of about 500000 ticks and the tetra results to about 60000 ticks.

This factor of ten difference shows the relative importance of the two fixed cost terms

of the cost analysis. These fixed costs were the 0 (nmDc) term due to testing points

against the z-buffer and the 0 (nm) term due to actually painting a point into the z-

71

_ .. -- ----------------------------

buffer. Since the difference between the teapot and tetra data sets was mostly a factor of

ten difference in DC' it can be seen that the 0 (nmDc) tenn dominates the fixed costs.

As already discussed, the fixed costs in turn dominate the cost of the algorithm.

0.6 ...a c
~

c-
0.5

Time
(186 ticks) 0.4

0.3

0.2

0.1

0.0
0 1000 2000 3000

Model Size (polygons)

Figure 2·14: Execution time versus model size for the z-buffer algorithm and teapot

models.

0.12 -r---------------...,
Time 0.10
(186 ticks)

0.08

0.06

0.04

0.02

0.00 +---...---r---.----r---.----!
o 1000 2000 3000

Model Size (polygons)

Figure 2·15: Execution time versus model size for the z-buffer algorithm and tetra

models.

72

Model Type and Size Execution Tim e (in ticks)

Teapot 205 509952

Teapot 499 531721

Teapot 1027 539235

Teapot 2035 565572

Teapot 2575 581151

Tetra 156 60846

Tetra 624 73994

Tetra 2496 104037

Table 2-5: Execution times for the z-bufJer algorithm.

2-4-5_ Painter's Algorithm

0.3

Time El'"

(1e6 ticks) 0.2 - ~

0.1 •

0.0 ,
0 1000 2000 3000

Model Size (polygons)

Figure 2-16: Execution time versus model s ize for the painter's algorithm and teapot

models.

73

0.06,.-------------,:rr----.

Time 0.05
(le6 ticks)

0.04

0.03

0.02

0.01

0.00 ;---.---r--...... --,--....---;
o 1000 2000 3000

Model Size (polygons)

Figure 2·17: Execution time versus model size for the painter's algorithm and tetra

models.

In figures 2·16 and 2·17, this algorithm shows a linear dependence upon model size,

with some apparently fixed overhead costs. This is supported by the cost analysis

which found several separate costs for this algorithm including a linear dependence

upon model size and a linear dependence upon the number of pixe1s in the scene. With

the number of pixe1s being constant for each scene in a given set, the dependence on the

number of pixels forms the fixed cost component.

Extrapolating the graphs to the y-axis to give the fixed costs shows an approximately

factor of ten difference in the size of the fixed costs between the teapot and tetra data

sets. Since the difference between these data sets is mostly a factor of ten difference in

Dc' it can be seen that the 0 (nmDc) term dominates the costs of the painter's

algorithm.

74

Model Type and Size Execution Time (in ticks)

Teapot 205 194052

Teapot 499 207781

Teapot 1027 216999

Teapot 2035 238060

Teapot 2575 250232

Tetra 156 27166

Tetra 624 36167

Tetra 2496 59161

Table 2·6: Execution times for the painter's algorithm.

2'5. Comparison with Sutherland et. al.

A landmark in the discussion of polygon processing algorithms was the survey paper

of Sutherland, Sproull, and Schumacker 1. They produced a table showing the relative

cost of several algorithms for various numbers of polygons. A reduced version, taken

from Foley and van Dam 47 is shown below, (Table 2·7). This table was based upon

the estimated costs of executing the various algorithms. The author's results are also

shown for purposes of comparison, (Table 2·8).

75

- - - - -- ----------------------

Relative Cost

Model Size (polygons)

Algorithm lOO 2500

Painter's 1 10

Z-Buffer 54 54

Scan Line (with Edge Tables) 5 21

Recursive Subdivision 11 64

Table 2'7: Estimated relative costs o/the algorithms, (relative to the 100 polygon,

painter's algorithm case).

Measured Relative Cost

Model Size (polygons)

Algorithm 200 2500

Painter's 1.0 1.3

Z-Buffer 2.6 3.0

Scan Line (with Edge Tables) 0.8 14.8

Scan Line 1.1 18.3

Recursive Subdivision 6.3 25.5

Table 2'8: Measured relative peiformance of the algorithms, (relative to the 200

polygon, painter's algorithm case).

The algorithms' relative performance varies significantly with the number of polygons

in the scene description. While the z-buffer algorithm is largely independent of model

size and the painter's algorithm is only slightly more dependent on model size, the

76

growth of the recursive subdivision algorithm's cost is somewhere between square root

and linear growth. depending upon the sizes of the polygons in the model. The

unoptimised scan conversion algorithm has a linear increase in cost as the model size

increases. as does the edge-table optimised version.

These differences mean that while for 205 polygons the scan line algorithm using edge

tables is faster than the z-buffer. it actually becomes far worse for 2575 polygons. By

comparison with the other scan line algorithm. the edge table version suffers as the

model size rises.

Extrapolating the relative performance trends toward larger model sizes suggests that

the recursive subdivision algorithm could become cheaper. or at least no more

expensive than either of the scan line algorithms. Also. the z-buffer will probably cost

less than the painter's algorithm for large model sizes. The latter two algorithms are

much faster than either of the former.

Table 2·7 was created only as an order of magnitude guide I. The differences between

that table and the author's. (Table 2·8). are interesting. The relative performances for

small numbers of polygons appear comparable except for the large cost of the z-buffer

in Table 2·8. This appears to be largely due to Sutherland et all giving a high estimate

for the costs of the operations involved in the z-buffer compared to those of the other

algorithms.

The changes due to increased model size also appear comparable except for the

painter's algorithm case where the sorting algorithm considered for this case in

Sutherland et all was more expensive than the bucket sort used for this case in this

work.

77

- - - - - ------------------------------

The absolute perfonnance of the implemented algorithms is good for a software

graphics system. but compared to a hardware graphics system it is not as impressive.

This is not greatly surprising since the implementations discussed have not been

optimised significantly. There is still much room for improvement, particularly in the

routines which paint into the frame buffer.

2·6 Conclusions

The algorithms' dependence on model size may be largely attributed to a combination of

the sorting techniques used and some overhead costs. The sorting in the z-buffer

algorithm is entirely buried in the painting process; the sorting in the painter's algorithm

is a low rate of growth bucket sort giving a small dependence upon linear growth; the

sorting in the recursive subdivision algorithm is both area and polygon size dependent

and hence a hybrid of square-root and linear behaviour; and finally the scan line

algorithms depend upon collections of linear growth techniques. This conclusion is

much the same as that of Sutherland et al l ,48.

Also of note is that several of the HSE algorithms showed significant dependence upon

depth complexity. This dependence corresponded for each algorithm to the cost tenn

derived from the major HSE step. The dependence is also more noticable for the faster

algorithms. This suggests a correlation between an algorithm's perfonnance and its

focus on a single. major HSE step.

For almost any HSE job where the output is to appear on a pixel type display. the z

buffer algorithm gives a very good compromise solution with little dependence upon

model size. It is also almost as fast as and is more exact than the fastest HSE algorithm

tested. the painter's algorithm.

78

Although all of the algorithms discussed here only operate upon scenes consisting of

flat shaded polygons, extending them to handle some simple smooth shading scheme

(such as Gouraud shading) would be a minor modification. This would not

significantly alter the costs of the algorithms and so these conclusions should also apply

to systems which handle simply shaded polygon scenes.

79

Chapter 3

A Comparison of Five Parallel Hidden
Surface Elimination Algorithms

3·1. Introduction

This chapter considers parallel implementation of five hidden surface elimination

algorithms. The algorithms are those discussed in their classical, serial versions in the

previous chapter. They are:

i) recursive subdivision algorithm

ii) two hidden scan line algorithms (with and without the edge table optimisation)

ill) z-buffer algorithm

iv) painter's algorithm

Each of these algorithms has been modified to allow its use on a parallel computer of

the distributed memory multiprocessor type. The cost of the modified algorithms has

been estimated. These parallel implementations have also been tested on a moderately

large multiprocessor to test how well they actually perform for various sizes of the

scene description and numbers of processors used. Limiting factors are discussed. The

estimated and actual costs have been compared.

80

3·2. The Parallelisations of the Algorithms

In this section, each of the modified algorithms is discussed in turn. The costs of these

algorithms are estimated as for the serial cases, in the style of Sutherland et all, but

with greater refmement

3·2·1. Recursive Subdivision Algorithm

The original, serial recursive subdivision algorithm has a structure which lends itself to

being distributed across a number of processors. Since the algorithm ordinarily breaks

the screen area up into smaller parts for solution, the algorithm is easily parallelised by

giving each processor a subdivision of the screen to work on.

Figure 3·1: For the sixteen processor case the screen is broken into sixteen parts, as

shown, and one part is assigned to each processor for solution.

81

Due to the subdivision step of this implementation dividing an area into four parts, this

implementation has only been tested for (a) one worker processor, which considers the

entire screen area, (b) four worker processors, each of which considers a quarter of the

screen area, (c) sixteen worker processors, each of which considers a sixteenth of the

screen area and (d) sixty-four worker processors, each of which considers a sixty

fourth of the screen area. In the general case the algorithm can handle 4D processors, n

= 0, I, 2, 3, etc ..

Figure 3·2: The way each area is subdivided, for the four processor case. Some parts

are subdivided far more often than others. This can lead to bad load balancing.

Using this method of breaking the problem up into enough pieces for a large number of

processors, the resulting parallelised recursive subdivision algorithm is almost identical

82

to the original serial version. On each processor a copy of the serial recursive

subdivision program is run, but instead of always starting by considering the full

screen area the program instead considers a fraction of the full screen area. This is

equivalent to starting after a number of levels of subdivision.

There is one major potential problem with this simple approach to parallelising the

algorithm - that of load balancing. As can be seen in figure 3·1, the different areas of

the screen will contain images of varying complexity. In the worst case some areas will

hold no polygons at all, while others have many polygons forming a complicated HSE

problem. This property of the image becomes a problem because each area of the screen

is assigned to one particular processor, so some processors may quickly solve their

simple areas while others have only just begun solving their complicated areas.

Bad load balancing may be avoided to some extent by allowing processors that have

completed their areas to take over the solution of parts of the more complicated areas.

Such a scheme of redistributing work imposes certain extra costs. The processor that

releases part of its work has to know when other processors are free. There are

communication costs in passing descriptions of unsolved areas between processors.

The receiving processor must already contain all polygons relevant to the transferred

area, which it may not necessarily do so if the previous stages in the graphics pipeline

only passed along those polygons relevant to each processor's initial area. The

receiving processor must also either carry out an expensive initial cull from all the

polygons it "knows", or a list of polygons in the transferred area's parent area must be

communicated.

This redistribution technique was not implemented for this work because it would have

taken considerable extra work to implement, while if the load balancing problem was

considered, the character of the algorithm could still be ascertained without it.

83

The basic recursive subdivision algorithm is "wrapped" in an extra layer of program to

handle communication with other processors. This wrapper program receives the

original scene description and information describing the fraction of the screen area to

be considered. The multiprocessor used for this work consisted of a master processor

with an attached chain of up to one hundred and twenty eight processors, as discussed

elsewhere. The structure of the parallel program naturally reflects this machine

structure.

Splitter

Screen Data

Combiner

Figure 3·3: The processes running on each worker node for the recursive subdivision

algorithm.

In operation, the program on the master processor passes the polygon data to the

worker processors, and also passes any returned screen painting information to the

screen processor. Each worker processor therefore runs three processes in pseudo

parallel - as shown in Figure 3·3 - one for handling and passing along data from the

master processor, one that actually runs the implemented recursive subdivision

84

algorithm, and finally one that handles the transmission and passing along of control

signals back to the master.

Since the recursive subdivision algorithm used in the parallel implementation is

essentially identical to that used in the serial implementation described in the previous

chapter, it is not redescribed here. The structure of the program on each worker node is

described by the following pseudo code:

PAR

splitter()

recursive_subdivision()

combiner()

The splitter process is described in the next piece of pseudo code. It simply

forwards data to the relevant destination. The polygons of the scene description are

passed to both the local HSE process and the next processor in the chain of worker

processors. Messages telling a particular processor which area of the image space it is

to solve the HSE problem for are either:

(a) forwarded along the processor chain for messages which have not yet reached their

destination processors, or

(b) passed to the HSE process if this processor is the message's destination.

PROC splitter ()

SEQ

receive (no_of-polygons)

send (no_of-PQlygons)

SEQ poly = 0 FOR no_of-polygons

SEQ

85

receive (polygon)

send-to_recursive~ubdivision-process (polygon)

send-to....next-processor (polygon)

WHILE (not finished)

SEQ

receive (processor, region)

IF

(processor <> this-processor)

send-to....next-processor (processor, region)

TRUE

send-to_recursive_subdivision-process (region)

The recursive_subdivision process is simply the serial recursive subdivision

algorithm with some extra lines to receive the scene data and send out the resulting

screen information to be painted. The combiner process combines incoming screen

information from further along the processor chain with similar, locally generated

screen information and passes it all back along the chain towards the master processor.

It is similar to the splitter process.

3·2+1. Cost Estimate

Since the algorithm executing on each processor is essentially identical to the serial

case, the costs are very similar. The only major difference is that initially all of the

processors must cull the full scene description against their particular regions.

Subsequent levels of subdivision will be identical to those of the serial case, (except

that several of them are now being executed simultaneously). The duplication of start-

86

- ._- ._- -- -- ------

up costs may be expected to reduce the speedup possible for parallel execution of this

algorithm, and will limit the maximum possible speedup. However, other limits of the

maximum reasonably attainable speedup, such as bad load balancing, will most likely

limit the performance before this becomes a major factor.

As for the serial case, two cases will be considered, scenes with large polygons and

scenes with small polygons. Considering only terminal nodes as before, the costs are

as follows.

Large polygons:

For this case, single pixel terminal nodes will tend to occur only along visible

shared edges in the polygonal scenes. Hence the number of such nodes will be

approximately equal to the total length of visible shared edges in the scene.

TOtalCostisO(~ n ~cFT)

Small polygons:

When the scene consists of small polygons, the number of terminal nodes will be

approximately 0 (FT I Dc) and each such node costs 0 (Dc).

Thus the total cost is 0 (FT).

Unlike the serial case, the parallel case now has other potentially significant costs, the

initial cull and other intermediate stages. One initial cull will take place for each

processor used. The cost of culling full scene description against a window of an area

(screen area I no. of processors) is 0 (FT). For large numbers of processors the cost of

these root nodes could approach or exceed that of the terminal nodes.

87

For scenes with small polygons, the cost wiJI be 0 (FT) + 0 (FT) = 0 (FT)' So although

the extra cost wiJI reduce the speedup for many processors, the cost of the algorithm

wiJI grow as 0 (FT) as for the serial case.

(~~ For scenes with large polygons, the cost will be 0 (FT) + 0 -'I ~
only wiIJ the extra cost reduce the speedup for large numbers of processors but the cost

will now grow more as 0 (FT) than 0 (...fF.r), resulting in an even worse

performance than for the small polygon, many processor case.

3'2·2. Scan Line Algorithms

Since the two variations of this algorithm consider each screen line in turn, they were

parallelised by giving each processor every nth screen line to consider, (while using n

worker processors). This division of work results in good load balancing for small to

medium numbers of processors because areas of unusually high detail wiIJ extend

across several screen lines, and hence wiJI be handled by several processors. As the

number of processors approaches the number of screen lines, load balancing becomes

more problematic. While areas of exceptional detail are still likely to spread across

several screen lines, this wiJI only occupy a limited number of processors. Also, the

processors corresponding to the top and bottom of the screen may be very lightly

loaded if the image is conventionally framed, with most of the image in the centre of the

screen.

88

Splitter

Packet of scan lines
.=.;;;;;;;.;...;--~

Combiner

Figure 3'5: The processes running on each worker node for the scan line algorithm.

Screen Border

Processor 0

Processor 1

Screen Lines

Processor 2

Processor 3

Figure 3·4: The division of work for four processors. Every fourth screen line is

given to each processor.

89

As for the recursive subdivision case, the master processor passes the polygon data to

the worker processors, and also passes any returned screen painting information to the

screen processor. Each worker processor runs four processes in pseudo-parallel,

(Figure 3·5) - one for handling and passing along data from the master processor, one

that actually runs the implemented scan line algorithm, one that buffers one screen lines

worth of output data, and fmally one that handles the transmission and passing along of

data back to the master processor.

3·2·2·1. Unoptimised Parallel Scan Line Algorithm

The parallel scan line algorithm (without the edge table optimisation) is described by the

following pseudo code. As previously discussed, each processor handles every 'n'th

screen line. The scan conversion is done a screen line at a time, starting at the lowest

relevant screen line. The lowest relevant screen line is calculated from the lowest screen

line (min-y) and the processor identification number (this_processor).

SEQ

read.....in...:polygons ()

y = lowest_relevant_scre~line (this-processor. miDLY)

WHILE Y <= max....Y

SEQ

reset (store)

SEQ polygon = 0 FOR all-POlygons

SEQ

find.....resultant_sc~lines (polygon. y)

append.....scan_lines_to_store (store)

resolve_z_overlaps (store)

output_sc~lines (store)

90

y = y + no_of-processors

Apart from stepping up the screen in steps equal to the number of processors being

used, this is very similar to the serial version. None of the major program blocks are

significantly altered. The splitter and combiner processes are conceptually very similar

to those described for the parallel recursive subdivision algorithm, and so are not

described here. The buffer process simply paints resulting line segments into the screen

buffer.

3·2'2·2. Cost Estimate for the Unoptimised Scan Line Algorithm

In the serial version, the HSE problem was solved for each screen line almost totally

independently of the solution of the other screen lines. The only cost shared by the

screen line solutions is a small initial step which calculates some items which describe

the polygon edges, (such as their slopes). This step was used in the serial program to

avoid repeating the calculation of frequently used variables and was inexpensive. Due

to the similarities between the parallel and serial versions of this HSE algorithm, the

cost estimates for the serial version are relevant here.

Initialisation steps:

• The edges ends are adjusted. This step costs 0 (no. of edges).

• For each edge, a number of properties are calculated and stored. 0 (no. of edges).

For each screen line handled by a particular processor:

• Every edge is checked for relevance at a cost of 0 (edges).

• Intersections are then found for the relevant ones at a cost of 0 (relevant edges).

• These intersections are "paired up" using a bubble sort. Assuming the polygons are

convex, this has a cost of 0 (polygons)

91

The HSE Step. For each screen line handled by a particular processor:

• If no line segments overlap, a cost of O(segments\ • In the worst case, O(segments
2

+ segments \ • For a scene with a depth complexity Dc, a cost of 0 (segments \

The painting step. The visible pixels for each processor's screen space are painted:

• A simple step costing 0 (pixels).

Total Cost, using N as the number of processors:

• Part 1 cost 0 (edges) + 0 (edges) = 0 (FT).

• Part 2 cost 0 ((lines/processors) '" edges) + 0 ((lines/processors) + relevant edges) +

o ((lines/processors) + polygons) = 0 (n Ell N) + 0 (~ -V nm FT Dc) + 0 (n Ft I

N).

• Part 3 cost 0 ((lines/processors) '" segments 2) = 0 (Dc FT m I N).

• Part 4 cost 0 (nm / N).

Overall cost is thus 0 (FT) + O(n FT/N) + O(~ -V n m FT Dc) + 0 (Dc FTm / N)

+ 0 (nm I N). All but one of these terms are dependent upon the model size (FT) and

most are directly proportional to it. The other term should be negligible due to its

relative simplicity. As in the serial case, for large numbers of polygons this algorithm's

cost will grow as 0 (FT). The cost of the initialisation steps now forms a greater part of

the overall cost since it does not depend upon the number of processors in use while the

other costs decrease with more processors. However, these initialisation steps are

inexpensive by comparison with the other costs and will not greatly affect the available

speedup. They will eventually limit the available speedup for some very large number

of processors, but this number is likely to be large enough not to be a practical

problem.

92

3'2'2·3. Optimised Parallel Scan Line Algorithm

This version uses edge tables to avoid recalculating which polygons are relevant to the

screen line currently being considered. It is described by the pseudo code:

SEQ

read...in..polygons ()

SEQ polygon = FOR all-polygons

SEQ

obtaiD-Pottam-and...top_of_eachLpolygons (bottom, top)

store-PQlygon...id (adQ..polys (bottom])

store-PQlygon...id (remove-polys(top])

find-PQlygons_intersecting_first_screen...1ine (current-PQlygons)

y = lowest_relevant_screen...line (this-processor, mi~)

WHILE Y <= llW(..Y

SEQ

reset (store)

SEQ polygon = 0 FOR all-polygons

SEQ

find...resultant_scan...lines (polygon, y)

append...scan...lines_to_store (store)

resolve_z_overlaps (store)

output_scan...lines (store)

SEQ i = 0 FOR no_of-processors

SEQ

remove_expired...polygons (current-polygons, remove-polys(y])

add..Jlew_relevant-POlygons (current""polygons, add-PQlys[y])

93

y = y + 1

This is almost identical to the serial case, except that every nth screen line is considered

instead of every screen line being considered. Unlike the unoptimised scan line case,

there is a considerable cost shared between the solutions of the screen lines - that of the

creation of the edge tables. The splitter, combiner and buffer processes are identical to

those of the unoptimised scan line case.

3·2·2·4. Cost Estimates for the Parallel Optimised Scan Line Algorithm

Due to the similarities with the serial version, most of the cost estimates are identical.

Initialisation Steps:

• The ends of the edges are adjusted. The cost is 0 (no. of edges).

• For each edge, a number of properties are calculated and stored. 0 (no. of edges).

• The edge tables are prepared. This costs 0 (polygons).

The Scan Conversion Step. For each screen line considered by a processor:

• The list of relevant polygons is updated, cost of 0 (change in relevant polygon set).

• The edges are checked for relevance at a cost of 0 (relevant polygons * 4).

• Intersections are then found at a cost of 0 (relevant edges).

• These intersections are bubble sorted. Assuming the polygons are convex this has a

cost of 0 (polygons)

The HSE Step. This is repeated for each screen line considered by a processor:

• If no line segments overlap, this costs 0 (segments \ • In the worst case, this costs

approximately 0 (segments
2

+ segments \ • For a scene with a depth complexity Dc, a

2
cost of 0 (segments).

The painting step. The visible pixels for each processor's screen space are painted:

94

• A simple step costing 0 (pixels).

Total Cost, using N as the number of processors:

• Part 1 cost 0 (edges) + 0 (edges) + 0 (polygons)

= 0 (Et) + 0 (I;) + 0 (FT) = 0 (FT)'

• Part 2 cost 0 (lines * change in relevant polygon set) + 0 «lines/processors) *
relevant polygons * 4) + 0 ((lines/processors) * relevant edges) + 0 «lines/processors)

* polygons)

=O(FT) + O(~...J FT m n Dc)+ 0 (n FT/N)·

• Part 3 cost 0 ((lines/processors) * segments 2) = 0 (Dc FT m/N).

• Part 4 cost 0 (nm / N).

The overall cost is therefore 0 (FT) + 0 (~ ...J FT m n Dc) + 0 (n FT / N) +

o (Dc FTm/N) +0 (nm/N).

As for the serial case, most of these component costs vary with model size (FT) with

powers of 0.5 to 1.0. For large numbers of polygons the overall cost is 0 (FT)'

For increasing numbers of processors, the initialisation costs grow in comparison with

the other costs. Since they are already a significant cost they will considerably reduce

the available speedup and will limit the maximum reasonably attainable speedup.

3'2'3. Z·Burrer Algorithm

Initially this algorithm was parallelised by using multiple processors to scan convert

polygons, (each processor converts a precalculated portion of the polygon database), all

feeding one z-buffer running in software on the screen processor. However, the screen

processor formed a bottleneck so subsequently an alternative parallelisation was

devised.

95

This alternative scheme used n worker processors calculating scan lines for all

polygons but for every nth screen line, (as for the hidden scan line algorithms). Also

residing on each worker processor is a z-buffer process which handles the screen for

every nth screen line. In this case the screen is treated as being distributed, Le. part of

its hardware is considered to be placed on each of the worker processors. Since such a

distributed screen was not actually present, it was emulated by storing the images in

normal memory.

This unusual distributed "virtual" screen is not as unrealistic as it may sound - several

"real" versions have been constructed by researchers, though the author knows of none

that are available on a large scale commercial basis. (For the benefit of the user, and to

verify output, the sub-images are subsequently sent to a real screen and combined for

display).

Splitter

Scan lines

Combiner

(a)

96

Splitter

Scan lines

'Finished' flag

Combiner

(b)

Figure 3·6: The processes running on each worker node for the z-buffer algorithm,

(a) without and (b) with the "virtual" screen, respectively.

Like the serial version, this program processes one polygon at a time. It simultaneously

works its way up the left and right sides of the polygon, interpolating coordinates

between vertices. The resulting scan line segments are then drawn into the z-buffer one

pixel at a time, using the method described previously. The only difference from the

serial version is that the algorithm works its way up the polygon n lines at a time, for a

system with n processors.

3-2'3-1. Cost Estimate

Each polygon is converted to line segments in turn:

• A initialisation step builds lists of edges, this costs 0 <Er) for each polygon.

• The scan conversion steps through the y-range of each polygon at a cost of

o (Hr I processors) for each polygon.

• Each pixel in a line segment is tested against the z-buffer at a cost of

o (segment length) per segment. Visible pixels are then painted into the z-buffer at a

cost of 0 (visible pixels I processors).

Total Cost per processor, using N as the number of processors:

• The cost is 0 <Er) + 0 (Hr I N) + 0 (screen area * Dc I N) + 0 (screen area I N)

= 0 (FT) +0 (~ ~ n m Dc FT)+ 0 (n m Dc/N) +0 (n m/N),

As for the serial version, the first two cost terms grow with the size of the test scene, so

for large numbers of polygons the cost of this algorithm will be 0 (FT)' However, if

the polygons are of multiple pixel area then these two costs are swamped by the per

pixel cost since they occur only once per polygon (for the first term) or once per

97

segment (for the second term). The overall cost for large or medium size polygons will

therefore tend to be 0 (n m). For large numbers of very small polygons, the overall

cost would be controlled by the 0 (FT) term.

For large numbers of processors, the first term remains fixed while the other terms

decrease. This will result in the parallelised algorithm behaving more as 0 (FT) for

many processors than the serial case did. Since the initialisation step must be done by

all processors it reduces the available speedup, particularly for scenes with many small

polygons. This factor will also limit the maximum available speedup.

3·2·4. Painter's Algorithm

The initial parallel implementation used n worker processors to each sort an nth of the

polygon database, merged these sorted portions of the database (in the process of

passing these portions back to the master), retransmitted the now sorted database from

the master to the workers, and scan converted these polygons in order, sending the

scan lines to the screen processor for display. As for the z-buffer case, the screen

processor became a limiting factor and so the screen was again treated as being

distributed.

A potentially limiting factor for this algorithm is the bottleneck caused by having to

return the sorted portions of the database in order to merge them.

98

Splitter Splitter

(a) (b)

Figure 3-7: The processes running on each worker node for the painter's (depth sort)
algorithm, (a) without and (b) with the 'virtual' screen, respectively_

The following pseudo code describes the main HSE process:

[running on processor 'j' of 'n'; 0 <= j <= (n-l)]

SEQ

Get polygons

Wait for start flag

Pass start flag upstream (to the next processor in the chain)

Bucket sort (py depth) the subset of polygon indices for the 'j'th

part of the polygon store

Send the sorted subset of indices (with polygon z-values) in order,

to the combiner process

99

WHILE not finished

SEQ

Get a polygon index

Scan convert that polygon for every 'n'th line

Output resulting scan lines to screen process

The combiner process merges the sorted parts of the polygon database into a sorted full

database in the process of passing them back to the master. The merge is illustrated by

figure 3·8. The combiner process itself is described by the next piece of pseudo code.

SEQ

Get Polygon-indexl:Z_valuel pair from local main process

Get polygon-index2:z_value2 pair from upstream (next processor in

chain)

WHILE not finished

SEQ

IF

Z_valuel > Z_value2

SEQ

Send Polygon-indexl:Z_valuel downstream (to previous

processor)

Get Polygon-indexl:Z_valuel pair from local main process

Z_valuel <= Z_value2

SEQ

Send Polygon-index2:Z_value2 downstream

Get Polygon-index2:Z_value2 pair from upstream

100

Wait for END flag from local main process

Wait for END flag from upstream

Send END flag downstream

Pass screen data from upstream to downstream

Pass locally generated screen data downstream

,

Main
Process

IlemA:

,
Ilem'B . ,

Sorted Jndices from
local process. ,

Sortedind
from rest (

' : , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ,~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Figure 3'8: An illustration of the "merge" part of the merge-son of polygons. When a

"combiner" process is working on the "merge" of the pre-sorted pieces of the polygon

database it will see two incoming indices to polygons, one from the local son process,

and one from the merged results of the upstream processors. It simply passes along the

index to the polygon with the greatest z-value. This is repeated until the merge is

complete. [An index into a list of polygons is used rather than the actual polygon to

reduce the amount of informotion to be transferred.]

101

3'2'4'1. Cost Estimate

• In an initialisation step, the average z value of each polygon is found.

This costs 0 (polygons * 4).

• The polygons are then sorted on their average z values using a bucket sort. This costs

o (buckets + (polygons I processors» for each part of the sort, plus 0 (polygons) for

the data transfer part of the merge and 0 (processors) for filling and emptying the

pipeline, (as discussed in section 1·5·1). These last two terms are dependent upon the

communication architecture used for this particular implementation of the algorithm.

• Each polygon is then scan converted. This costs 0 (Hf I processors) for each

polygon.

(nmDc)
• The pixels are painted. This costs approximately 0 ~ for each processor.

Total Cost, using N as the number of processors is :

O(FT)+O(buckets+(FTIN»+o(~"'n m Dc FT)+ 0 (N) + o (nm:c)
As for the serial case, the algorithm still costs 0 (FT) for large numbers of polygons.

For increasing numbers of processors, the initialisation and merge terms remain fIXed.

Also the sort term decreases in cost very slowly unless the number of buckets is

adjusted to suit the number of processors in use. Thus much of the cost of this

algorithm cannot be spread over multiple processors, greatly reducing the speedup and

placing a rather low limit on the maximum possible speedup. Also, for large numbers

of processors arranged in the pipeline architecture used for this implementation of the

algorithm, the 0 (N) term which is due to pipeline filling and emptying delay may

become significant and actually increase the time to complete the work compared with

smaller numbers of processors.

102

3,3. Timing Information

In all cases, the screen store(s) were initialised before the clock was started. The fast,

on-chip RAM was not used. This decision was made because the on-chip RAM is

limited in size to 4K bytes and hence affects the execution speeds of programs of

different sizes, since differing proportions of such programs fit in this high speed

RAM. Instead, all program and data were stored instead in the slower, expandable,

external RAM.

There are many possible ways to connect a number of transputers together. In

particular, the way data is fed to graphical stages such as those tested in this work can

depend heavily on the architecture of the previous stage of the system. To give the

results presented here relevance to connection schemes other than the one used for this

work, machine dependencies have been avoided where possible.

Since the machine architecture (of a MIMD machine) primarily affects only the

communication rates within a parallel system, the ignored costs are simply a function of

the amount of data being moved around the system and the available communications

bandwidth. Note that in each case the clock is started after transferring the polygon data

to the worker processors, in order to avoid these machine dependencies.

For the recursive subdivision algorithm the polygon data were first sent to the worker

processors, which precalculated and stored the plane coefficients before the clock was

started. The clock was stopped upon reception of completion flags from all of the

workers.

For the two scan line algorithms the polygon data were first sent to the worker

processors before the clock was started. The clock was stopped upon reception of

103

completion flags from all of the workers. For the version using edge tables, the time

taken to create the edge tables is included in the execution time.

For the z-buffer and painter's algorithms the polygons were sent to the worker

processors, then the clock was started. The clock was stopped upon reception of

completion flags from all of the workers.

All timings were made by the master processor using its low priority clock, which ticks

15625 times per second.

3·4. Results

For each of the five parallel HSE algorithms previously described, for fourteen

different numbers of processors (except for the recursive subdivision algorithm),

timings were taken for the solution of the hidden surface problem for each of the five

teapot scenes and three tetra scenes discussed.

As mentioned in section 1·3·4, two particularly useful measures of the advantages of a

parallel program are "speedup" and "linearity of speedup", (the latter is simply referred

to as linearity in the results tables). Speedup is simply how many times faster the

algorithm executes compared with the one processor case. Linearity of speedup could

also be called the efficiency of parallelisation in that it measures the fraction of the

maximum possible speedup obtained in practice. i.e. if a program runs three times

faster on four processors than on one, then the linearity is 3/4 or 75 percent These two

measures of how well the algorithms performed when parallelised are used often in the

following consideration of the results.

104

In order to improve the correlation between the actual results and the theoretically

derived cost estimates, the cost estimates were simplified and suitable coefficients

deduced to show the similarity between the theory and practice. This is similar to the

method used by Dixon et. al. 49, although their analysis was unfortunately not directly

applicable to this work.

3·4·1. Recursive Subdivision Algorithm

The recursive subdivision algorithm showed falling linearity for increasing numbers of

processors, (Figures 3·9 and 3·10). A speedup of twelve times by using sixty-four

processors is useful but far from the ideal. These losses were almost certainly a

consequence of bad load balancing. Watching the program run, it becomes obvious that

some of the processors fmish their parts of the screen well before the others, due to the

images being of uneven complexity. Some of this lost performance could be regained

by allowing those processors which have finished their parts of the screen to take over

some of the unfinished screen areas, though this would not be a perfect solution.

The differences in speedup between the models are not consistent between the teapot

and tetra test scenes, probably due to the significant difference in depth complexity

between these sets of test scenes. No strong correlations may be drawn between the

cost estimates made for this algorithm and the results, due to the load balancing

problems swamping other effects.

Another point of interest is the way in which the execution time increases with the

number of polygons in the image, as shown by Figures 3·11 and 3·12. These figures

are for the parallel algorithm using sixty-four processors, and are very similar to those

for the serial case. They show execution time increasing as some fractional power of

105

the number of polygons. This gives an indication as to how long the algorithm would

take to execute images with far larger numbers of polygons than any tested here.

The similarity between Figures 3·11 and 3·12 and their serial algorithm equivalents

suggests that the initial cull overhead has not yet become a significant factor in the total

cost. If larger numbers of processors were used, this factor may still become important.

In any case, the recursive subdivision algorithm visibly suffers too greatly from bad

load balancing to show a good correlation with the cost estimates considered earlier.

Teapot model size 200 2500

Run time, 1 processor 1222352 4947562

Run time, 16 processors 211406 827771

Run time, 64 processors 69794 413791

Speedup 17.5 12.0

Linearity 0.27 0.19

Table 3·1. Sample execution times and peiformance statistics for the recursive

subdivision algorithm.

106

Speedup

80

60 -a-- 200 polygon model

• 500 polygon model

-a-- 1000 polygon model
40

0 2000 polygon model -0 • 2500 polygon model
-...l

20 --0- Ideal resull

o
o 20 40 60 80

No. of Processors

Figure 3·9: Speedup versus no. of processors for the recursive subdivision algorithm and teapot models.

Speed up

80

60

--a-- Ideal result

• Tetra 4
40

a Tetra 5 -0 -<>-- Tetra 6
00

20

o
o 20 40 60 80

No. of Processors

Figure 3·10: Speedup versus no. of processors for the recursive subdivision algorithm and tetra models.

500~--------------------------~

Time 400
(183 ticks)

300

200

100

O+---__ ---,----~--_r---T--~
o 1000 2000 3000

Model Size (polygons)

Figure 3·11: Execution time versus model size for the parallel recursive subdivision

algorithm and teapot models, using sixty-four processors.

200~----------------------------~

Time
(183 ticks)

100

O+---~--'--------r--~--~
o 1000 2000 3000

Model Size (polygons)

Figure 3·12: Execution time versus model size for the parallel recursive subdivision

algorithm and tetra models, using sixty-four processors.

109

3·4·2. Scan Line Algorithms

The scan line algorithm proved to be quite efficient when parallelised. The basic,

unoptimised version showed a gentle fall off in linearity as the number of processors

was increased, (Figures 3·13 and 3·14), but was still some fifty to eighty percent of the

ideal for one hundred and twenty-eight processors.

This small loss of speedup may be attributed to the unshareable cost of calculating

various properties for each edge. This irreducible overhead become more important as

the number of processors increases since all other costs are divided between the many

processors. Thus there is not a simple, constant loss of speedup, but an increasing loss

of speedup as the number of processors is increased.

The tetra scenes resulted in slightly lower speedup than the teapot scenes. This is due to

the smaller polygon sizes of the tetra scenes causing the fixed overhead to be a greater

part of the total cost than for the large polygons of the teapot scenes, since smaller

polygons take less work to turn into scanlines than large polygons but the overhead

cost is identical. This effect may also be noted separating the speedups of the various

teapot scenes in Figure 3·13.

The growth of execution time with model size for the sixty-four processor case is

approximately linear for both set of test scenes, (Figures 3·15 and 3·16). This is

consistent both with the cost estimates for this algorithm and with the serial version of

this algorithm.

110

Speedup

200

-a--- 200 polygon model

• SOD polygon model

-a-- 1000 polygon model
100

0 2000 polygon model • 2500 polygon model

-0-- Ideal result

o
o 100 200

No. of processors

Figure 3·13: Speedup versus no. of processors for the scan line algorithm and teapot models.

Speedup

200

---G-- Ideal resuH

• Tetra 4
100

-g Tetra 5
N 0 Tetra 6

o
o 100 200

No. of processors

Figure 3·14: Speedup versus no. of processors for the scan line algorithm and tetra models.

Tea ot model size 200 2500

Run time, I rocessor 208212 3559407

Run time, 16 rocessors 14597 236438

Run time, 64 rocessors 4803 71955

43.4 49.5

Lineari 0.68 0.77

Table 3'2. Sample execution times for the scan line (unoptimised) algorithm

80,---------------------------~

Time
(183 ticks)

60

40

20

o4---~----~--~--~----~--~
o 1000 2000 3000

Model Size (polygons)

Figure 3'15: Execution time versus model size for the unoptimised scan line

algorithm and teapot models, using sixty10ur processors.

113

40~---------------------------,

Time 30
(1 e3 ticks)

20

10

04----r---,----~--_r---T--~

o 1000 2000 3000

Model Size (polygons)

Figure 3·16: Execution time versus model size for the unoptimised scan line

algorithm and tetra models, using sixty-four processors.

The time-cost estimate derived earlier for the scan line algorithm was

o (FT) +0 (nFT/N) +o(~"" n m FT Dc)+ 0 (Dc FTm/N) + 0 (nm/N)

which, for a given set of test data, may be reduced to
B

A+N

where A is the cost of the serial, unparallelisable part of the algorithm and B is the cost

of the parallel part of the algorithm. If the costs are normalised with respect to the one

processor case then A and B become the fractions of the algorithm which are serial and

parallel, respectively. Applying this to the test cases and using regression to calculate

the best-fit values of the A and B constants for each scene gives Table 3·3.

114

Scene A (fraction serial) B (fraction parallel)

Teapot 200 0.00745 0.99255

TeapotSOO 0.00639 0.99361

Teapot 1000 0.00669 0.99331

Teapot 2000 0.00543 0.99457

Teapot 2500 0.00574 0.99426

Tetra 4 0.01092 0.98908

Tetra 5 0.01003 0.98997

Tetra 6 0.01081 0.98919

Table 3·3: Regression produced coefficients for the theoretical estiTrUlte of the

perjoTTrUlnce of the (unoptimised) scan line algorithm.

Speed up

60

50

40

30 a Tetra 4

• Theoretical Tetra 4

20

10

0
0 100 200

No. of Processors

Figure 3'17. Comparison of actual and expected perforTrUlnce, tetra 4 scene,

unoptimised scan line algorithm.

115

The cost estimate derived earlier is not perfect, particularly in that it takes no account of

where the polygons are within a scene. This means that it is particularly difficult to

accurately compare the performance of the HSE algorithm on different scenes, as

attested by the wide variations in the A and B coefficients between various scenes, (see

table 3·3). Another factor not taken into account in any of the cost estimates is bad load

b I . . th h no. of screen lines . . .
a ancmg m e cases w ere no. of processors IS non mteger, I.e. some processors

get one more screen line to solve than others. Fortunately, this effect is usually

minimised by there little or no detail on the bottom lines of a scene. This effect may

however be seen in some of the cases, particularly at the large no. of processors end of

some of the tetra scenes where it causes the real ninety-one processor result to appear

low.

For a given scene the cost estimate provides a very good prediction of real performance

as the number of processors is varied. An example of this close match may be seen in

figure 3·17.

The parallel edge-table optimised scan line algorithm showed a sharply limited speedup.

The tetra case, (Figure 3·18) even showed almost no change in performance when

using more than thirty-two processors. The teapot case was not much better, still being

limited to a speedup of only about twenty times for one hundred and twenty-eight

processors.

This "performance ceiling" effect is completely in agreement with the cost analysis,

which concluded that the edge-table method considerably reduced the scope for the

effective use of parallelism. This is a good example of Amdahl's law so, with the serial

portion of the algorithm - the creation of the edge-tables - limiting the performance

increases available using parallel processing. While the edge-table method formed a

useful optimisation for the single processor case, giving a gain of perhaps thirty percent

116

over the unoptimised scan line algorithm, it has become a serious problem for the

multiprocessor case.

The parallel edge-table method also suffers from a corollary of its virtue. Since the

spacing between subsequent scan lines on a given processor increases as the number of

processors increases, then the similarity between these scan lines decreases - losing the

property of coherence which the edge table method exploits. When no polygon has a

height in scanlines greater than the number of processors, then there is no exploitable

coherence remaining, and the cost of the edge tables brings no benefits. For small

numbers of processors this effect could be partially avoided by having each processor

handle every nth small group of scan lines rather than every nth scan line, but this

might cause load balancing problems.

Figures 3·19 and 3·20 show the growth of execution time with mode size for the sixty

four processor case to be somewhat more linear than their serial equivalents. This is in

agreement with the cost analyses which concluded that the linear growth overheads

would become more important as the number of processors increased, and would thus

reduce the effect of the small non-linear costs.

Teapot model size 200 2500

Run time, 1 processor 150692 2880572

Run time, 16 processors 15881 297713

Run time, 64 processors 8967 168752

Speedup 16.8 17.1

Linearity 0.26 0.27

Table 3·4. Sample execution times and performance statistics for the scan line (edge

table) algorithm.

117

Speedup

200

-n-- 200 polygon model

• 500 polygon model

a 1000 polygon model
100

0 2000 polygon model
.....
..... J! 2500 polygon model
00

-n-- Ideal result

o
o 100 200

No. of procenor8

Figure 3-18: Speedup versus no. of processors for the scan line (optimised) algorithm and teapot models.

Speedup

200

--a--- Ideal result

• Tetra 4
tOO

a Tetra 5 -- Tetra 6
\0 0

o
o 100 200

No. of processors

Figure 3'19: Speedup versus no. of processors for the scan line (optimised) algorithm and tetra models.

200~----------------------------~

Time
(1e3 ticks)

100

O+---~--~----~--.---~--~
o 1000 2000 3000

Model Size (polygons)

Figure 3·20: Execution time versus rrwdel size for the optimised parallel scan line

algorithm and teapot rrwdels, using sixty-four processors.

80~----------------------------~

Time 60
(le3 ticks)

40

20

O+---~--~----~--,---~--~
o 1000 2000 3000

Model Size (polygons)

Figure 3·21: Execution time versus rrwdel size for the optimised parallel scan line

algorithm and tetra rrwdels, using sixty-four processors.

120

The cost estimate derived earlier for the optimised scan line algorithm was

o (FT) + O(~...j FT m n Dc) +0 (nFT/N) + 0 (Dc FTm/N) +0 (nm/N)

which, for a given set of test data, may be reduced to
B

A + N as for the unoptimised case. Applying this to the test cases and using regression

to derive A and B gives:

Scene A (fraction serial) B (fraction parallel)

Teapot 200 0.04511 0.95489

Teapot 500 0.03823 0.96177

Teapot 1000 0.04577 0.95423

Teapot 2000 0.04525 0.95475

Teapot 2500 0.04489 0.95511

Tetra 4 0.07519 0.92481

Tetra 5 0.08465 0.91535

Tetra 6 0.11669 0.88331

Table 3-5: Regression produced coefficients for the theoretical estimate of the

peiformance of the optimised scan line algorithm

Again, the variations in the coefficients between scenes is largely unpredictable (table

3·5), but the variation of performance with the number of processors for a given scene

is very well predicted, (figure 3·22).

121

Speed up

20 r------=:;;;;:::::T--i

10 Teapots 2000

• Estimated Teapot 2000

O+-----~~----_r------~----~
o 100 200

No. of Processors

Figure 3·22. Comparison of actual and expected performance, 2000 polygon teapot

scene, optimised scan line algorithm.

3'4'3. Z·Buffer Algorithm

When using a single processor for screen painting tasks, the z-buffer algorithm did not

gain a significant speedup as more processors were used. This was because the screen

painting formed a bottleneck in the system. When the bottleneck was avoided by

allocating part of the screen painting process to each processor, the speedup obtained

varied considerably with model size, (Figures 3·21 and 3·22).

This drop in speedup with increasing model size is consistent with the cost analysis

which shows the fixed, unparallelisable cost of calculating edge properties becoming

more important as the number of processors increases. Also this per-polygon overhead

has a greater effect for small polygons where it forms a large fraction of the total cost,

than for large polygons where it forms a smaller fraction of the total cost, (since

painting costs are the same within each set of test scenes). Thus the speedup falls

roughly in proportion to the height of the polygons in the scene, as may be seen in

Figures 3·21 and 3·22.

122

The increases in execution time with model size is more linear for the sixty-four

processor case, (Figures 3·23 and 3·24) than it was for the serial case because the fixed

overhead is a linear cost and grows in importance with the number of processors.

Indeed the tetra scenes, Figure 3·24, show an almost perfectly linear growth of

execution time with model size. This is more linear than for the teapot case because the

polygons in the tetra scenes are significantly smaller than those of the teapot scenes.

Teapot model size 200 2500

Run time, 1 processor 509952 581151

Run time, 16 !ll'ocessors 33698 43602

Run time, 64 processors 10243 16323

Speedup 49.8 35.6

Linearity 0.78 0.56

Table 3·6. Sample execution times and performance statistics for the z-buffer

algorithm.

123

Speed up

200

o
o 100 200

No. of processors

Figure 3'23: Speedup versus no. of processors for the z-buffer algorithm and teapot models.

Speedup

200

-e-- Ideal result

• Tetra 4
100

a Tetra 5 -t-)
<> Tetra 6 VI

o
o 100 200

No. 01 processor.

Figure 3,24: Speedup versus no. of processors for the z-buffer algorithm and tetra models.

20~----------------------------~

Time
(183 ticks)

10

o+---~--~----~---.--~--~
o 1000 2000 3000

Model Size (polygons)

Figure 3-25: Execution time versus model size for the parallel z-buffer algorithm and

teapot models, using sixty-four processors.

8~-------------------------,

Time 6
(1e3 ticks)

4

2

o+---~----~--~----~--~----~
o 1000 2000 3000

Model Size (polygons)

Figure 3-26: Execution time versus model size for the parallel z-buffer algorithm and

tetra models, using sixty-four processors.

126

The z-buffer algorithm cost estimate derived earlier was

O(FT)+O(~...j n m Dc FT)+O(nmDc/N)+O(nm/N)

which, for a given set of test data, may be reduced to
B

A + N . Applying this to the test cases and using regression to derive A and B gives:

Scene A (fraction serial) B (fraction parallel)

Teapot 200 0.00397 0.99603

TeapotSOO 0.00346 0.99654

Teapot 1000 0.00632 0.99368

Teapot 2000 0.01045 0.98955

Teapot 2500 0.01263 0.98737

Tetra 4 0.01105 0.98895

Tetra 5 0.02482 0.97518

Tetra 6 0.05926 0.94074

Table 3'7: Regression produced coefficients for the theoretical esti11Ulte of the

peTjomumce of the z-buffer algorithm.

For the z-buffer case, as for the two scan line algorithms, the variation of cost between

scenes is largely unpredictable (table 3·7). The variation of cost versus the number of

processors is however very well predicted, (figure 3·27)

127

Speedup

20,-----------------------------~

10 Tetra 6

• Estimated Tetra 6

O+-----~------~----~----_;
o 100 200

No. of Processors

Figure 3·27. Comparison of actual and expected pe/formance, tetra 6 scene, z-buffer

algorithm.

3·4·4. Painter's Algorithm

For small numbers of processors, the painter's algorithm showed a good speedup,

(Figures 3·25 and 3·26). However, for large numbers of processors the speedup

became sharply limited and sometimes even fell for more than thirty-two processors.

This agrees with the cost estimate, which found that much of the algorithm could not be

shared over multiple processors with the per-polygon overhead and merge steps

remaining fixed, and the pipeline filling part of the merge step actually growing with the

number of processors.

The fall in speedup was due to the performance becoming absolutely limited by the

merge step, with the addition of extra processors to the processor chain actually

slowing down the transfer of information slightly. The merge step does not limit the

smaller teapot scenes, which have large polygons and for which the merge step is not

as large a part of the total cost This problem of the merge step limiting performance

may be trivially overcome by using a higher bandwidth merge channel or a tree

128

structured merge. Were this done, the results would be more similar to those of the z

buffer case, but would still not be as good due to the extra fIxed cost of the merge step.

The growth of execution time with model size for the sixty-four processor, tetra case is

more nearly linear than for the serial case, as shown in Figure 3·28. This corresponds

to the increased importance of the fIxed, linear costs as the other costs are shared

amongst the many processors. The teapot case shows an interesting curve, (Figure

3·27). This is an artefact of the combination of the not seriously limited speedup for the

smaller teapot scenes followed by the limited speedup of the larger scenes.

129

Spe.dup

200

-a-- 200 polygon model

• 500 polygon model

a 1000 polygon model
100

-0--- 2000 polygon model
.....
w I!I 0 2500 polgon model

-0-- Ideal result

o
o 100 200

No. of processors

Figure 3·28: Speedup versus no. of processors for the painter's algorithm and teapot models.

Speedup

200

--0-- Ideal result

• Tetra 4
100

a Tetra 5
.....
(..>

0 Tetra 6

o
o 100 200

No. of processors

Figure 3'29: Speedup versus no. of processors for the painter's algorithm and tetra models.

Teapot model size 200 2500

Run time, I processor 194052 250232 .

Run time, 16 processors 16577 26967

Run time, 64 processors 9224 23350

Speedup 21.0 10.7

Linearity 0.33 0.17

Table 3'8. Sample execution times and performance statistics for the painters

algorithm.

30~----------------------------~

Time
(le3 ticks)

20

10

O+---~----~--~--~----T---~
o 1000 2000 3000

Model Size (polygons)

Figure 3'30: Execution time versus model size for the parallel painters algorithm and

teapot models, using sixty{our processors.

132

12

Time 10

(183 ticks)
8

6

4

2

0
0 1000 2000 3000

Model Size (polygons)

Figure 3'31: Execution time versus 11UJdel size for the parallel painter's algorithm and

tetra 11UJdels, using sixty-four processors.

The painter's algorithm cost estimate derived earlier was

o (FT) + 0 (buckets + (FT' N) + 0 (FT) + o(~" n m Dc FT) + 0 (N) which, for

B
a given set of test data, may be reduced to A + N + CN.

The CN term derives solely from the delay involved in filling the pipeline during the

merge step. As discussed elsewhere this structure and therefore the cost could be

significantly altered by altering the design of the communications network. Applying

the cost estimate to the test cases and using regression to derive A, B and C gives table

3-9.

Again, the coefficients show no great predictability. However the cost versus the

number of processors is very well predicted, even in the regions where the CN term

becomes dominant and the performance reduces with increasing numbers of

processors. Figure 3·32 shows an example where the CN term is not yet significant

and figure 3·33 shows an example where the CN term results in the distinctive fall off

of performance after about forty-five processors.

133

Scene A (fraction serial) B (fraction parallel) C (fraction subserial)

Teapot 200 0.034865 0.965135 0.000000

Teapot 500 0.027207 0.972523 0.000270

Teapot 1000 0.025787 0.973640 0.000573

Teapot 2000 0.032883 0.966480 0.000637

Teapot 2500 0.037444 0.961926 0.000630

Tetra 4 0.075123 0.924861 0.000016

Tetra 5 0.089502 0.910100 0.000398

Tetra 6 0.140667 0.855653 0.000368

Table 3·9: Regression produced coefficients for the theoretical estimate of the

pe/formance of the painter's algorithm.

Speedup

14~---------------------------'

12

10

8
Tetra 4

6 • Estimated Tetra 4

4

2

O+-----~------~------~----~
o 100 200

No. of Processors

Figure 3·32. Comparison of actual and expected performance, tetra 4 scene,

painters algorithm.

134

Speedup

12,-----~--------------------~

10

8

6 Teapot 2500

• Estimated Teapot 2500

4

2

O+-----~------~-----r----~
o 100 200

No. of Processors

Figure 3·33. Comparison of actual and expected performance, 2500 polygon teapot

scene, painter's algorithm.

3·5. Comparison of the Algorithms

The recursive subdivision algorithm showed useful gains in performance when

parallelised, but was not particularly efficient in its use of the extra processors. It

showed a speedup of between eight and twenty times for sixty-four processors.

The unoptimised scan line algorithm parallelised well, resulting in a speedup of

between fifty and eighty times for one hundred and twenty-eight processors.

Extrapolating these results suggests that this algorithm would still show good

performance gains for even greater numbers of processors, although the algorithm is

probably slowly approaching its limits for gains through increased para11elism.

The edge-table based scan line algorithm did not parallelise as well as the unoptimised

version. It appeared to reach its limits of useful parallelism at around thirty or forty

processors. When using up to twenty processors useful gains in performance were

135

realised. but there is little point in using more processors than this as the gains through

adding processors quickly diminish.

The z-buffer algorithm parallelised well for small scenes but showed lower gains for

large scenes. The speed ups varied between ten and ninety for one hundred and twenty

eight processors. In some cases the algorithm appeared to hit its limits of useful

parallelism at around sixty processors. although other cases showed only small signs of

approaching such a limit. The limited cases were those which had many small

polygons. so the irreducible per polygon overhead was more significant than for the

other cases.

The painter's algorithm parallelised badly. with there being little point in using more

than twenty processors to execute it. Although some of its limitations could be

overcome, the remaining ones would still significantly limit the parallel algorithm's

performance to below that of the z-buffer algorithm.

Measured Relative Cost - I Processor

Model Size (polygons)

Algorithm 200 2500

Painter's 1.0 1.3

Z-Buffer 2.6 3.0

Scan Line (with Edge Tables) 0.8 14.8

Scan Line l.l 18.3

Recursive Subdivision 6.3 25.5

Table 3'10. Measured relative performance of the algorithms for the one processor

case, (relative to the cost of the one processor, 200 polygon, painter's algorithm case).

136

Measured Relative Cost - 16 Processors

Model Size (polv~ons)

Algorithm 200 2500

Painter's 1.0 1.6

Z-Buffer 2.0 2.6

Scan Line (with Edge Tables) 1.0 18.0

Scan Line 0.9 14.3

Recursive Subdivision 12.8 49.9

Table 3·11. Measured relative performance of the algorithms for the sixteen

processor case, (relative to the cost of the sixteen processor, 200 polygon, painter's

algorithm case).

Measured Relative Cost - 64 Processors

Model Size (polv~ons)

Algorithm 200 2500

Painter's 1.0 2.5

Z-Buffer 1.1 1.8

Scan Line (with Edge Tables) 0.9 18.3

Scan Line 0.5 7.8

Recursive Subdivision 7.6 44.9

Table 3·12. Measured relative performance of the algorithms for the sixty-four

processor case, (relative to the cost of the sixty-four processor, 200 polygon, painter's

algorithm case).

137

As may be seen in Tables 3·10, 3-11 and 3·12, the algorithms' relative performances

do not alter greatly with the number of processors used, although there are several

points worth noting. The painter's algorithm doubles in cost for the 2500 polygon case,

(relative to the 200 polygon case) when moving from one processor to sixty-four

processors. This is undoubtedly due to the merge sort step bottlenecking on the

communications pipeline. This effect may thus be expected to grow in a linear fashion

with model size.

The recursive subdivision algorithm for 2500 polygons slightly increases in cost

compared to the 200 polygon case when moving to sixty-four processors due to bad

load balancing in the parallel case - a consequence of the uneven complexity of the test

scenes. The z-buffer algorithm performs just slightly better in this respect, and the two

scan line algorithms show almost no change in the relative costs of the 2500 and 200

polygon scenes when moving from one to sixty-four processors.

In absolute terms the implemented algorithms performed reasonably well compared to

existing graphics systems, particularly in view of their being generally unoptimised and

that they were run on quite old hardware, (the T800 having been introduced in 1987).

3·6. Conclusions

The z-buffer algorithm consistently performed well, with execution times that were

either the smallest or close to the smallest for all the test scenes. For test scenes of

increasing size, this algorithm's execution time grew more slowly than any other and

for the largest test scenes it was always the fastest full HSE algorithm tested. Only the

painter's algorithm performed comparably, but the implementation of this tested did not

provide the correct HSE solution for intersecting or interleaved polygons. When using

many processors, the z-buffer algorithm was faster than even the painter's algorithm.

138

The z-buffer algorithm proves to be an even better choice of HSE algorithm for parallel

execution than it did for serial execution.

Theoretical estimation of the HSE algorithms' performance variations with the number

of processors used can clearly provide accurate predictions of the algorithms' real

performance. It is also a valuable tool in understanding the underlying reasons for the

algorithms' behaviour.

139

Chapter 4

Conclusions

4'1. Serial HSE Algorithms

The serial implementations of the hidden surface elimination algorithms examined in

this thesis proved to perform in relative terms much as Sutherland et al. estimated. The

only major differences from their estimates were caused by their surprisingly high

estimate of the basic painting operation for the z-buffer algorithm and by the author's

choice of a different sort algorithm for the implementation of the painter's algorithm.

The algorithms' dependence on model size may be largely attributed to a combination of

the sorting techniques used and some overhead costs. The cost of the z-buffer

algorithm is almost entirely due to its painting process, giving it the favourable property

of almost total independence of model size. Instead the z-buffer's cost changes with the

depth complexity of the scene displayed. The cost of the painter's algorithm is mostly

the cost of its main sort step. The implementation considered in this thesis used a low

rate of growth bucket sort which gives the painter's algorithm a small linear dependence

upon model size. The recursive subdivision algorithm's costs grow approximately as

the square-root of model size for scenes with large polygons due to its two dimensional

recursive division of screen area, but this becomes linear for scenes with small

polygons where the per pixel sorting costs dominate. The unoptimised scan line

algorithm's cost grows almost linearly with model size due to its collection of mostly

linear growth operations. The optimised scan line algorithm's cost grows slightly more

rapidly than the unoptimised version.

140

4'2. Parallel HSE Algorithms

The parallel z-buffer algorithm gained significant speedups, up to 90% of the maximum

possible in some cases, but proved susceptible to much worse performance for models

with small polygons. This was due to the unparallelisable per polygon overheads

overtaking the parallelisable painting operations as the main cost component This effect

seriously limited the performance of the z-buffer in some cases.

The parallel recursive subdivision algorithm made limited gains from parallelism, never

achieving more than about a quarter of the possible gains. This was almost totally due

to bad load balancing. The algorithm's cost appeared to grow in a sub-linear fashion

with model size for large numbers of processors, but this may be misleading since the

bad load balancing probably swamps all other effects.

The parallel unoptimised scan line algorithm parallelised well, consistently reaching at

least half of the maximum possible speedup. The parallel version's cost depends almost

linearly upon model size, as for its serial ancestor. The parallel optimised scan line

algorithm did not parallelise at all well, effectively hitting a performance limit at a

speedup of between ten and twenty times. This was due to the optimisation destroying

the algorithm's suitability for parallel implementation, by introducing unparallelisable

steps.

The parallel painter's algorithm proved to be limited both by its per polygon overheads

(as in the z-buffer case) and by its sorting step for all but the smallest models with the

largest polygons.

For four of the five HSE algorithms, the performance improvements obtainable from

parallelism were shown to be accurately predictable by theoretical means.

141

4·3. Overall Conclusions

For almost any HSE job where the output is to appear on a pixel type display, the z

buffer algorithm proves to be preferable to the other algorithms investigated. It provides

a very good compromise solution with little dependence upon model size and high

efficiency when parallelised. It was never much slower than the fastest HSE method in

any of the tested cases.

This work has shown that hidden surface algorithms in general parallelise well and can

with care be designed to make efficient use of a number of parallel processors, if

adequate connections can be made between the processors and the frame buffer. A

distributed frame buffer has been shown to both provide these connections and be well

suited to the parallel HSE algorithms investigated.

This work has also shown that the performance of the parallel HSE algorithms

investigated may be well predicted from their serial counterparts using theoretical

means.

In absolute terms the implemented HSE algorithms performed reasonably well

compared to existing graphics systems, particularly in view of their unoptimised state

and that they were run on quite old hardware.

This work has also shown that a general purpose parallel computer may usefully be

applied to near real time HSE.

142

References

1. I.E. Sutherland, R.F. Sproul1 and R.A. Schumacker, "A Characterisation of

Ten Hidden Surface Algorithms", Computing Surveys, 6(1), pp. 1 - 55

(1974).

2. B.I. Schacter, "Computer Image Generation For Flight Simulation", IEEE

Computer Graphics And Applications, 1(4), pp. 29-68 (1981).

3. I.K. Yan, "Advances In Computer Generated Images For Flight Simulation",

IEEE Computer Graphics And Applications, 5(8), pp. 37-51 (1985).

4. T.H. Myer and I.E. Sutherland, "On The Design Of Display Processors",

Communications Of The ACM, 11[61, pp. 410-414 (1968).

5. K. Ake1ey and T. Iermoluk, "High-Performance Polygon Rendering",

Computer Graphics, 22(4), pp. 239-246 (1988).

6. C.R. Priem, "Developing The GX Graphics Accelerator Architecture", IEEE

Micro, 10(1), pp. 44-54 (1990).

7. R.W. Swanson and L.I. Thayer, "A Fast Shaded-Polygon Renderer",

Computer Graphics, 20[41, pp. 95-101 (1986).

8. I. Clark, "A VLSI Geometry Processor For Graphics", Computer, 13(7),

pp. 59-69 (1980).

143

9. M. Deering, S. Winner, B. Schediwy, C. Duffy and N. Hunt, "The Triangle

Processor And Nonnal Vector Shader: A VLSI System For High Perfonnance

Graphics", Computer Graphics, 22[4], pp. 21-30 (1988).

10. N. Gharachorloo, S. Gupta, E. Hokenek, P. Balasubramanian, B. Bogholtz,

C. Matieu and C. Zoulas, "Subnanosecond Pixe! Rendering With Million

Transistor Chips", Computer Graphics, 22[4], pp. 41-49 (1988).

11. K. Guttag, I.Van Aken, M. Asal, "Requirements For A VLSI Graphics

Processor", IEEE Computer Graphics And Applications, 6(1), pp. 32-47

(1986).

12. B. Apgar, B. Bersack and A. Mammen, "A Display System For The Stellar

Graphics Supercomputer Model GSlOOO", Computer Graphics, 22(4),

pp. 255-262 (1988).

13. B.S. Borden, "Graphics processing on A Graphics Supercomputer", IEEE

Computer Graphics And Applications, 9(4), pp. 56-62 (1989).

14. D. Kirk and D. Voorhies, "The Rendering Architecture Of The DNl0000VS",

Computer Graphics, 24[4], pp. 299-307 (1990).

15. H. Gouraud, "Continuous Shading Of Curved Surfaces", IEEE Transactions

On Computers, C20[6], pp. 623-629 (1971).

16. B.T. Phong, "Illumination For Computer Generated Pictures",

Communications O/The ACM,18[6], pp. 311-317 (1975).

144

17. G. Bishop and D.M. Weimer, "Fast Phong Shading", Computer Graphics,

20[4], pp. 103-106 (1986).

18. A. Appel, "Some Techniques For Shading Machine Renderings Of Solids",

AFIPS 1968 Spring Joint Computer Conference, pp. 37-45, Atlantic City,

New Jersey (1968).

19. T. Whitted, "An Improved 1l1umination Model For Shaded Display",

Communications Of The ACM ,23[6], pp. 343-349 (1980).

20. R. Pulleybank and J. Kapenga, "The Feasibility Of A VLSI Chip For Ray

Tracing Bicubic Patches", IEEE Computer Graphics And Applications, 7(3),

pp. 33-44 (1987).

21. J.-D. Nicoud, "Video RAMs: Structure And Applications" ,IEEE Micro, 8(1),

pp. 8-27 (1988).

22. H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D. Ellsworth, S.

Molnar, G. Turk, B. Tebbs and L. Israel, "Pixel-Planes 5: A Heterogeneous

Multiprocessor Graphics System Using Processor Enhanced Memories",

Computer Graphics, 23[3], pp. 79-88 (1989).

23. J. Goldfeather, J.P.M. Hultquist and H. Fuchs, "Fast Constructive Solid

Geometry Display In The Pixel-Powers Graphics System", Computer

Graphics, 20[4], pp. 107-116 (1986).

24. R. Peterson, C.R. Killebrew, T. Albers and G. Guttag, "Taking The Wraps

Off The 34020", Byte, 13[9], pp. 257-272 (1988).

145

25. J. Grimes, L. Kohn and R. Bharadhwaj, "The Intel i860 64-bit Processor: A

General-Purpose CPU With 3D Graphics Capailities", Computer Graphics And

Applications, 9(4), pp. 85-94 (1989).

26. N. Margulis, "The Intel 80860", Byte,14[131, pp. 333-340 (1989).

27. J. Pineada, "A Parallel Algorithm For Polygon Rasterization", Computer

Graphics, 22[41, pp. 17-20 (1988).

28. F.C Crow, "Parallelism In Rendering Algorithms." Graphics Interface,

pp. 87-96 (1988).

29. W.R. Franklin and M. Kankanhalli, "Parallel Object Space Hidden Surface

Removal", Computer Graphics, 24[41, pp. 87-94 (1990).

30. E. Fiume, A. Foumier and L. Rudolph, "A Parallel Scan Conversion Algorithm

With Anti-Aliasing For A General-Purpose Ultracomputer", Computer

Graphics,17[31, pp. 141-150 (1983).

31. M.-C. Hu, and I.D. Foley, "Parallel Processing Approaches To Hidden

Surface Removal In Image Space", Comput. & Graphics, 9[31, pp. 303-317

(1985).

32. T. Strothotte and B. Funt, "Raster Display Of A Rotating Object Using Parallel

Processing", Computer Graphics Forum 2, North-Holland, pp. 209-217

(1983).

33. F.l Parke, "Simulation and Expected Performance Analysis of Multiple

Processor Z-Buffer Systems", Computer Graphics, 14[3], pp. 48-56 (1980).

146

34. W.I. Bouknight, "A Procedure For Generation Of Three-Dimensional Half

Toned Computer Graphics Presentations", Communications Of The ACM,

13[9], pp. 527-536 (1970).

35. G.S. Watkins, "A Real-Time Visible Surface Algorithm", Technical Report

UTECH-CSC-70-10l, Department Of Computer Science, University Of Utah.

36. C. Wylie, G.W. Romney, D.C. Evans and A. Erdahl, "Halftone Perspective

Drawings By Computer", Proceedings AFlPS Fall Joint Computer

Comference 1967, pp. 49-58, Anaheim, California (1967).

37. M.I. Flynn, "Very High-Speed Computing Systems", Proceedings Of The

IEEE, 54[12], pp. 1901-1909 (1966).

38. INMOS, OCCAM 2 Reference Manual, Prentice-Hall, (1987).

39. C.A.R. Hoare, "Communicating Sequential Processes", Communications Of

The ACM, 21[8], pp. 666-677 (1978).

40. INMOS, Transputer Databook, 2nd. Ed., Prentice-HalI, (1989).

41. INMOS, The T9000 Transputer Products Overview, SGS-Thompson

Microelectronics Group, 1991.

42. Texas Instruments, TMS320C4x User's Guide, 1991.

147

43. J. Packer, "Exploiting Concurrency: A Ray Tracing Example", INMOS

Technical Note 7. Also in INMOS, Communicating Process Architectures,

Prentice Hall, (1988).

44. H.E. Bez, "On Parallel Scan-Conversion Algorithms for Transputer

Networks", Journal of Microcomputer Applications, 13, pp. 43-55 (1990).

45. E. Haines, "A Proposal for Standard Graphics Environments", IEEE Computer

Graphics And Applications, 7(11), pp. 3-5 (1987).

46. A.V. Abo, I.E. Hopcroft and 1.0. Ullman, Data Structures and Algorithms,

Addison-Wesley, (1983).

47. 1.0. Foley, A. van Dam, S.K. Feiner and I.F. Hughes, Computer Graphics

Principles and Practice (Systems Programming Series), Addison-Wesley,

(1990).

48. I.E. Sutherland, RF. Sproull and RA. Schumacker, "Sorting And The Hidden

Surface Problem", National Computer Conference 1973, pp. 685-693, New

York (1973).

49. R M. Dixon, 1. R. Vaughan, and G. R Brookes, "Timing Analysis for

Processor Farm Environments" , Microprocessors and Microsystems, 15 (7),

pp. 355-358 (1991).

50. G. M. Amdahl, "Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities", Proc. AFIPS Spring Joint Computer

Conference 30, pp. 483-485, Atlantic City, New Iersey (1967).

148

Appendix

Program Timings

The following tables provide the full results referred to in this thesis. They include the

measured execution times of the HSE algorithms, stated in ticks of the transputer's low

priority timer, (15625 ticks per second).

149

No. of Teapot 200 Teapot 500 Teapot 1000 Teapot 2000 Teapot 2500

Processors

1 1222352 2055422 2672128 4210430 4947562

4 592243 703353 985405 1510597 1779768

16 211406 256187 348863 705486 827771

64 69794 131977 241436 361502 413791

Table A·I. Execution times of the recursive subdivision algorithmfor the teapot

scenes.

No. of Tetra 4 Tetra 5 Tetra 6

Processors (156) (624) (2496)

1 385115 784343 1528651

4 128521 252244 485449

16 122201 236158 445852

64 47771 87752 157246

Table A ,2. Execution times of the recursive subdivision algorithm for the tetra

scenes.

150

No. of Teapot 200 Teapot 500 Teapot 1000 Teapot 2000 Teapot 2500

Processors

1 208212 652933 1255844 2651283 3559407

2 104665 328671 630300 1332546 1786348

3 70645 220190 422975 895441 1198955

4 53287 166158 319729 672808 899815

6 36051 112417 214333 452265 608088

8 27306 85167 162616 345348 457518

11 20246 62696 120821 253379 339697

16 14597 44657 85700 177710 236438

23 10521 31954 62383 127840 173644

32 7980 24182 46346 94994 128768

45 6129 18262 36288 74850 100568

64 4803 13761 27032 52974 71955

91 3916 11598 22733 46303 62827

128 3121 9240 18044 34239 47266

Table A·3. Execution times o/the unoptimised scan line algorithm/or the teapot

scenes.

151

No. of Tetra 4 Tetra 5 Tetra 6

Processors (156) (624) (2496)

1 96931 363791 1403996

2 48913 183066 706769

3 32878 123267 474418

4 24947 93030 358186

6 16883 62816 242055

8 12837 47805 184205

11 9697 35722 136387

16 6929 25134 97434

23 5093 18424 71396

32 3922 14288 55424

45 3022 11362 44058

64 2447 8889 35402

91 2170 7571 29852

128 1824 6647 27211

Table A·4. Execution times of the unoptimised scan line algorithm for the tetra

scenes.

152

No. of Teapot 200 Teapot 500 Teapot 1000 Teapot 2000 Teapot 2500

Processors

1 150692 483806 897526 2069488

2 78517 251021 466711 1080821

3 54803 172987 325956 756335

4 42925 134745 254319 585013

6 30618 94995 181728 421279

8 24778 76648 146886 342175

11 19774 60115 116819 273510

16 15881 47060 91770 215091

23 12874 37815 79935 180562

32 11145 32847 66262 156104

45 9926 28537 61743 139615

64 8967 25527 53266 122312

91 8553 23835 51083 117175

128 7919 22362 47826 107994

Table A·S. Execution times of the optimised scan line algorithm for the teapot

scenes.

153

2880572

1501884

1044789

812650

584695

469237

375091

297713

249822

212589

193424

168752

161673

151000

No. of Tetra 4 Tetra 5 Tetra 6

Processors (156) (624) (2496)

1 44162 146107 568946

2 23678 78507 314369

3 16775 56294 230254

4 13460 45072 188075

6 9959 34020 146185

8 8249 28210 125227

11 6971 23905 107978

16 5741 19749 93869

23 4872 17100 85421

32 4476 15856 79399

45 4117 15532 77372

64 3867 14137 74063

91 3953 14472 74276

128 3760 13940 73428

Table A·6. Execution times o/the optimised scan line algorithm for the tetra scenes.

154

No. of Teapot 200 Teapot 500 Teapot 1000 Teapot2()()(} Teapot 2500

Processors

1 509952 531721 539235 565572 581151

2 255528 266786 271415 286046 294902

3 171332 178371 182643 192996 199287

4 128214 134217 137912 146327 151524

6 86383 90055 93091 99717 103730

8 65084 67930 70847 76432 79875

11 47766 49881 52482 37437 60038

16 33698 34966 37138 41194 43602

23 23445 24732 27068 30667 32826

32 17980 18297 20128 23588 25660

45 13099 13443 15512 18829 20487

64 10243 10066 11785 14680 16323

91 7560 7784 9503 12047 13714

128 5984 5947 7489 10227 11707

Table A·7. Execution times of the z-buffer algorithmfor the teapot scenes.

155

No. of Tetra 4 Tetra 5 Tetra 6

Processors (156) (624) (2496)

1 60846 73994 104037

2 30651 37848 55301

3 20580 25786 39071

4 15578 19776 30914

6 10521 13732 22822

8 8031 10773 18833

11 5965 8328 15472

16 4244 6208 12406

23 3093 4827 10336

32 2403 4003 9200

45 1932 3427 8333

64 1462 2771 7415

91 1418 2767 7381

128 1160 2422 6991

Table A "S. Execution times of the z-buffer algorithm for the tetra scenes.

156

No. of Teapot 200 Teapot 500 Teapot 1000 Teapot 2000 Teapot 2500

Processors

1 194052 207781 216999 238060 250232

2 98030 105365 110840 123025 130205

3 66465 71283 75903 84904 90181

4 50293 54357 58350 65762 70281

6 34962 37609 40909 46891 50539

8 27222 29353 32485 37897 40814

11 21379 22836 25847 30476 33082

16 16577 17749 20349 24558 26967

23 13352 14859 17297 21194 23427

32 11664 13509 16149 19842 21893

45 9906 13578 16211 19789 21737

64 9224 12870 17401 21310 23350

91 7313 13321 19236 24361 26451

128 5807 13494 22124 28502 31243

Table A '9. Execution times of the painter's algorithm for the teapot scenes.

157

No. of Tetra 4 Tetra 5 Tetra 6

Processors (156) (624) (2496)

1 27166 36167 59161

2 14226 19417 33563

3 9935 13866 25197

4 7803 11087 20936

6 5781 8454 16882

8 4733 7131 14948

11 3888 6188 13305

16 3416 5410 11933

23 3038 4896 11176

32 2736 4806 10719

45 2780 4785 10684

64 2609 4716 10881

91 2499 5161 11428

128 2156 5003 11295

Table A·IO. Execution times of the painter's algorithm for the tetra scenes.

158

