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ABSTRACT 

Mechanics of the giant circle on high bar 

M.J. Hiley, Loughborough University, 1998 

In Men's Artistic Gymnastics the accelerated backward giant circle on high bar is 

used to generate the rotation required for the subsequent skill. When used prior to a 

dismount at the end of a high bar routine the gymnast performs a number of backward 

giant circles in order to generate sufficient rotation to perform the dismount. The most 

common dismounts from high bar require the gymnast to perform two backward 

somersaults in the layout position. Of all the dismounts performed by elite male 

gymnasts it is the double layout somersault dismount which requires the most rotation. 

Observations of elite gymnasts have shown that two different techniques may be adopted 

in the accelerated giant circle performed before release. Since gymnasts are able to 

perform the dismount from both types the question arises: "What is the best technique for 

increasing rotation using accelerated backward giant circles ?" 

A four segment simulation model was developed comprising arms, torso, thigh and 

lower leg. The high bar and the gymnast's shoulder structure were modelled as damped 

linear springs. The inertia data for the model were obtained from anthropometric 

measurements of an elite gymnast using the inertia model of Yeadon (1990a). Joint 

angles in the form of piecewise quintic functions of time were used as input to the model. 

Joint torques predicted by the simulation model were limited using subject specific 

muscle data collected using an isokinetic dynamometer (King, 1998). 

The simulation model was evaluated using kinetic and kinematic data recorded 

from the elite gymnast performing accelerated giant circles. Two video cameras were 

used to record the subject performing accelerated giant circles on a high bar instrumented 

with strain gauges. The simulation model was evaluated by driving the simulation model 

using spIined joint angle time histories from the video analysis and comparing the whole 

body angles of rotation and reaction forces with the measured values. 

The simulation model was implemented with an optimisation algorithm which was 

used to maximise the angular momentum about the model's mass centre after performing 

lo/.t giant circles. The optimisation algorithm manipulated the parameters which defined 

the joint angle time histories in order to obtain the optimum technique. 

During the optimisation procedure two optima were found. The first had a slightly 

higher value for the angular momentum about the model's mass centre, and was called the 

"global" optimum. The two optima closely resembled the two different techniques used 

by gymnasts. However, these optima were so close that for different muscle strength the 

local optimum would become the global optimum. This explains why there are two 

distinct techniques used by gymnast. 
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CHAPTER 1 

INTRODUCTION 

1.1 The area of study 

In Artistic Gymnastics the men compete on six pieces of apparatus: the floor, 

pommel horse, rings, vault, parallel bars and high bar. Of the six pieces only routines 

performed on the parallel bars, rings and high bar include swings in the vertical plane. 

On the rings and the parallel bars held strength positions are performed which form 

pauses between the swings. It is only on the high bar that a routine is comprised from 

only circling skills. A high bar performance in Men's Artistic Gymnastics is made up 

from a number of swinging skills which must include a release and regrasp skill and a 

dismount. Many of the swinging skills are linked by regular giant circles, whereas the 

release and dismount skills are preceded by accelerated giant circles. The backward giant 

circle is therefore a fundamental skill upon which the majority of the routine is based. 

For a regular giant circle the aim is merely to swing from handstand to handstand, 

whereas the purpose of the accelerated giant circle is to increase the gymnast's rotation 

about the bar. The basic technique of the backward giant circle comprises flexion of the 

body in the lower part of the circle and extension in the upper part. From observation of 

film and video all gymnasts flex at the hips and shoulders as they pass through the lower 

part of the giant circle, as shown in Figure 1.1. However, the timing of the extension in 

the upper part of the circle varies considerably. The two most common techniques are 

either to extend at or very close to the highest point of the circle (Figure 1.1 a) or to 

maintain the piked body shape through the highest point and extend at or near to the 

horizontal (Figure 1.1 b). The mechanics underlying these techniques is not yet clear. 

\ 

a b 

Figure 1.1. Two types of accelerated giant circle. 
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1.2 Previous research 

Previous research on the backward giant circle has been both experimental (based 

on the collection of data) and theoretical. The experimental research has provided 

valuable information about the kinetics and kinematics of the backward giant circle. 

Cheetham (1984) distinguished between three different types of giant circles: the regular 

giant circle, where the aim is only to swing from handstand to handstand; the accelerated 

giant circle, where the aim is to increase the angular velocity; and the giant circle 

immediately prior to a dismount, where the aim depends on the particular dismount used. 

This study showed that there exist differences in technique between the regular and 

accelerated backward giant circles. Briiggemann, Cheetham, Alp and Arampatzis (1994) 

established profiles for the different dismount and regrasp skills to identify similarities 

and differences between the skills under study. Part of this study looked at the giant 

circle prior to release. It was found that the major changes of mechanical energy were 

determined by shoulder and hip flexion and extension movements. It was also found that 

the knee joint action contributed to energy changes. Another valuable experimental study 

was carried out by Kopp and Reid (1980) who presented maximum values for the torque 

and reaction force at the bar during forward and backward giant circles. This information 

will be useful for comparison with the results of simulations and experimental studies 

presented in this thesis. 

Theoretical studies have modelled the gymnast as a rigid link system swinging in a 

two-dimensional plane. Dainis (1968) presented a three segment link system. The input 

to the model took the form of joint torque time histories. Morlock and Yeadon (1988) 

used a two segment model and applied it to three separate cases of swinging. Again input 

to the model was in the form of joint torques. Both of these papers have shown that a 

gymnast circling the high bar may be modelled using rigid links. They have 

demonstrated that a sufficiently developed model could be a useful tool in explaining 

gymnastic technique. However, they have also highlighted difficulties in controlling joint 

angles using joint torques due to difficulties in obtaining joint torques that would produce 

given joint angle changes. More recently Arampatzis and Briiggemann (1995) presented 

a 15 segment gymnast with a 12 segment high bar as a method of optimising the giant 

circle prior to release. The definition of the optimal solution was based on the energy 

possessed by the gynmast after the giant circle and so the timing of joint actions were 

linked with storing and retrieving energy from the bar. 

Both the experimental and the theoretical studies that have been carried out have 

limitations. The majority of the experimental studies have investigated regular giant 

circles giving only a descriptive analysis of the skill. No analysis has been performed on 

the different body shapes that may be observed as the gymnast passes through the highest 

point in the accelerated giant circle. 
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To answer questions about various skills using simulation, the model must be 

capable of attaining the body configurations used by gymnasts. This requires more 

detailed modelling of the body than the two segments used by Morlock and Yeadon 

(1988) and the three segments used by Dainis (1968). However, the model should still be 

simple enough to facilitate the understanding of the underlying mechanics. 

In previous research the elastic properties of the gymnast have been neglected. 

Although Arampatzis and Briiggemann (1995) modelled the bar as an elastic structure the 

elastic properties of the shoulder joint were ignored. Neglecting these elastic qualities 

may lead to an over-estimation of the angular velocity predicted by a simulation model. 

Any lengthening of the gymnast caused by the extension in the shoulders will lead to an 

increase in the gymnast's moment of inertia about the bar. At the same time if the 

shoulder structure behaves like a spring, energy may be stored within this spring and may 

be returned later to the gymnast/model. These assumptions may lead to limitations in the 

accuracy of any simulations performed. 

The studies of Dainis (1968) and Yeadon and Morlock (1988) used joint torques to 

alter the joint angles of their models. This approach has the drawback that the resulting 

joint angles are unknown until the simulation has run. A better method of describing a 

technique may be in terms of the body shapes the gymnast must achieve. This suggests a 

more appropriate input for such a simulation model might be time histories of the joint 

angles rather than joint torques. However, care must be taken using this method as 

simulations could be performed which exceed the strength characteristics of the gymnast. 

1.3 Statement of purpose 

In section 1.1 it was highlighted that the backward giant circle is a fundamental 

skill which forms the basis of the more advanced movements (Kopp and Reid, 1980). 

Since two gymnasts may use different techniques in the giant circle prior to the same 

release skill, it is the intention of this research project to explain why this occurs. To 

facilitate this a computer simulation model of a gymnast swinging on the high bar will be 

developed. The simulation model will be used to provide explanations of the mechanics 

underlying the techniques of the backward giant circle and to suggest possible 

improvements. The following research question will be used as a focus for the research 

project. 

What is the optimum technique for the accelerated backward giant circle on high bar? 
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As the purpose of the accelerated giant circle is to increase the gymnast's rate of 

rotation about the bar, the best technique may be defined as that which increases the 

gymnast's rate of rotation the most. The criterion for the optimised accelerated backward 

giant circle will therefore be to maximise the angular momentum possessed by the 

gymnast. Since the more advanced skills preceded by the accelerated backward giant 

circle require the gymnast to leave go of the bar, the angular momentum about the 

gymnast's mass centre will be maximised. That is, after the model has performed a 

flexion action through the lowest point and an extension through the highest point the 

model should possess greatest angular momentum about its mass centre. 

The model will comprise four rigid segments and two damped linear springs to 

represent the elastic properties of the bar and gymnast (Figure 1.2). The model will use 

personalised inertia data and use joint angle time histories as input. 

elastic shoulders upper leg 

trunk 

Figure 1.2. Components of the four segment simulation model. 

1.4 Questions 

In addressing the statement of purpose the following research questions should and 

will be answered. 

Question 1 

How does the gymnast's technique differ between regular and accelerated giant 

circles? 

By definition the gymnast should finish an accelerated giant circle with a higher 

angular velocity than when he started. But how do the actions performed at the hips, 

shoulders and knees differ between regular and accelerated giant circles? 

Question 2 

What are the reaction forces exerted by the bar on the gymnast as he performs both 

regular and accelerated giant circles? 
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Kopp and Reid (1988) presented the reaction forces experienced by gymnasts 

performing regular forward and backward giant circles. Gervais (1993) recorded the 

force on a gymnast performing giant circles prior to a dismount. However, a comparative 

study of a gymnast performing both regular and accelerated giant circles has not been 

conducted. 

Question 3 

Does the high bar behave like a damped linear spring? If it does can the kinetic 

and kinematic analysis of regular and accelerated giant circles be used to obtain stiffness 

and damping coefficients for such a spring? 

The FIG measures, dimensions, and forms manual (FIG, 1979) require the bar to 

deform by 0.10 m ± 0.01 m in the vertical direction when loaded staticalIy with 2200 N 

at its centre. On removing this load the bar must return to it natural resting position. If 

the bar behaves as a linear spring then the displacements of the bar will be proportional to 

the reaction force at the bar. If the force at the bar and the displacements were known the 

stiffness coefficient of the bar may be determined using Hooke's law. Similarly if the bar 

behaves as a damped linear spring the damping coefficients of the bar may be determined 

from the force recorded at the bar, and the bar displacements and velocities during a giant 

circle. 

Question 4 

Is there any evidence that the joints of the gymnast behave as elastic structures as 

he circles the high bar? If so which joints behave in this way? 

Engin, Peindl, Berme and Kaleps (1984, a,b) and Engin and Peindl (1987) and 

Peindl and Engin (1987) have shown that the shoulders are a highly complex structure 

with a large range of motion. When force was applied to the shoulder it was found to 

become displaced and to offer resistance. During the application of the force the subject 

was requested to remain passive. However, during giant circles the muscles surrounding 

the shoulder joint would be active and may prevent any displacement in the shoulder. If a 

displacement did occur in the shoulder structure would displacements also occur in the 

spine and other joints? 

Question 5 

What are the mechanics behind the flexion and extension actions performed by 

gymnasts during regular and accelerated giant circles? 
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Bauer (1983) used a theoretical model to explain why a gymnast should flex 

instantaneously at the lowest point of the giant circle and extend instantaneously at the 

highest point of the giant circle. Gymnasts appear unable to perform this theoretical 

technique. Is this due to the gymnast's strength limitations or was the model used by 

Bauer (1983) too simple to model a gymnast? 

Question 6 

How does the strength of the gymnast effect optimum technique? 

King (1998) presented a method of estimating subject specific peak joint torques 

based on data collected using an isokinetic dynamometer. These peak joint torques could 

be used to limit the strength of the simulation model during an optimisation. What would 

happen to the optimum technique if the peak joint torques were increased or decreased? 

Varying the strength limits could be used to study the effect of strength on technique or to 

study the amount of effort required to perform the accelerated backward giant circle. 

Question 7 

Does optimum technique of the backward giant circle differ between gymnasts or is 

there a common technique that could be adopted by all gymnasts? 

Optimum technique may depend on the strength characteristics of the individual. 

Similarly the optimal solution may be sensitive to differences in the inertia parameters of 

the gymnast. Such considerations must be evaluated before generalisations may be made 

regarding optimum technique. 

1.5 Chapter organisation 

Chapter 2 reviews the literature relating to studies on the analysis of the backward 

giant circle and also reviews the literature relating to the techniques of investigation 

within the field of performance related biomechanics relevant to the present research. 

Chapter 3 outlines the development of the four segment simulation model. The 

development includes a single segment model with a damped linear spring and the four 

segment, two spring simulation model. For both models the equations of motion and their 

solution are presented. 

Chapter 4 describes the methods used to determine the muscle parameters for use in 

the four segment simulation model. It includes the protocol for collecting joint torque and 
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goniometer data from an elite gymnast and the subsequent determination of the torque 

function used in the four segment simulation model. 

Chapter 5 outlines the methods for the kinematic and kinetic analysis of backward 

giant circles. The chapter contains the protocols for collecting force and video data and 

the analysis performed to determine model parameters. 

Chapter 6 contains the results from the methods presented in Chapters 4 and 5. 

In Chapter 7 the data obtained from Chapters 4 and 5 are used to evaluate the 

accuracy of the simulation models presented in Chapter 3. 

In Chapter 8 the accelerated backward giant circle is optimised using a three 

segment model and a four segment simulation model. The sensitivity of the optimum 

technique to the model parameters is also determined. 

Chapter 9 includes a summary of the results obtained and the answers to the 

questions raised in section 1.4. In addition there is a discussion which highlights the 

limitations of the present research and suggests possible areas for future research. 
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1 Introduction 

The review of literature is broken down into three sections. The first section 

reviews the literature relating to the development of the high bar as a piece of gymnastics 

equipment and those papers of a coaching nature. The second section reviews the 

literature on research into the backward giant circle. The final section reviews the 

techniques of investigation which relate to the present study. 

2.2 Development of the high bar and a review of coaching literature 

The beginnings of gymnastics are somewhat obscure, yet historians believe that 

they possibly began in China and Egypt over four and a half thousand years ago. 

However, it was not until the time of the Greek and Roman civilisations thatthe word 

gymnastics came into use. Between the ages of eighteen and twenty years young Greek 

males were required to undergo physical and military training (Munrow, 1963). This 

training included gymnastic type exercises such as tumbling, dancing, leaping and 

balancing. To perform these physical activities in their daily clothing would have been 

both difficult and dangerous, so they removed their clothes and performed naked. The 

Greek word for naked is "gumnos" and so these naked athletes were called gymnasts and 

the activities which they performed were called gymnastics (Prestidge, 1988). The 

Romans copied the physical training program of the Greeks to train their armies and 

cavalry. It is possible that this training may have included such activities as vaulting, for 

mounting horses, and pommel horse type work on the horse's saddle. These gymnastic 

activities can be found on the pottery and works of art that have survived to this day. It 

must also be noted that in all the specimens of art that have been found there has not been 

a single piece which depicts anything resembling modern day apparatus (Prestidge, 1988). 

The beginnings of modern day 'Artistic' Gymnastics were cultivated from the 

work of the prominent physical educationist J. C. F. GutsMuths (1759-1839). This was 

done by the Swede P. H. Ling (1776-1839) and the German J. F. C. L. Jahn (1778-1852). 

Although these two men had similar backgrounds and reasons for developing their 

individual forms of gymnastics, it was the system of Jahn, often called German 

gymnastics, which has developed into modern day Artistic Gymnastics. As a school 
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teacher J ahn would organise excursions to a clearing in a nearby woods where the boys 

would exercise on apparatus developed from the works of GutsMuths. These apparatus 

were rather crude and barely resembled those which are used in modern gymnasiums. 

However, several of the apparatus invented by Jahn have evolved into pieces which are 

still used today. These include the high bar, (sometimes called the horizontal bar), 

parallel bars, side horse and vaulting buck (Loken and Willoughby, 1959). The exercises 

that the boys performed were dictated by the apparatus and were developed along a trial 

and error basis (Munrow, 1963). Once developed the exercises were displayed for the 

others to try; even in these early beginnings the exercises were performed competitively. 

Soon boys from other schools joined in these excursions and so began the movement 

which gave rise to German gymnastics. This type of gymnastics started with school boys 

but rapidly grew through both clubs and universities into a competitive sport at national 

and international levels. 

Today Men's Artistic Gymnastics is made up of six pieces of apparatus, namely 

the floor, pommel horse, rings, vault parallel bars and high bar. This thesis is concerned 

with swinging on the high bar. During a competitive routine the gymnast is required to 

perform a number of complex circling skills culminating in a spectacular dismount where 

the gymnast may reach heights of up to four metres from the floor. The routine is 

performed on a 28 mm thick steel bar fixed some two and a half metres from the floor. 

The creation of this piece of apparatus can be credited to Friedrich Jabn who introduced 

the high bar into his famous playground in around 1812 (Loken and Willoughby, 1959). 

Knowing how children liked to play in the branches of trees he visualised the high bar as 

being a strong level branch which the children could swing and perform on. This high bar 

would probably have been made of wood with no fixed diameter or height above the 

ground. 

Around the turn of the century the high bar had developed into a fixed bar 

approximately seven feet from the floor. The construction of the bar itself varied greatly, 

from a bar with a steel core covered with a thin casing of ash or leather, which was 

approximately 1\4 inches in diameter, to a polished steel bar without any covering at all 

(Wootten, 1934). The exercises performed consisted of simple circling skills, pull ups, 

various balancing skills and dismounts. Even with this crude apparatus the gymnasts 

were performing giant circles. It was not until the late fifties/early sixties that a common 

bar was used in competition. 

Today the regulations as set down by the International Federation of Gymnastics 

(F.I.G.) require the bar to be made from stainless steel 2.4 m long and 0.028 m in 

diameter (Figures 2.1 and 2.2). The bar should be fixed 2.55 m above a mat which is 

0.20 m deep (Figure 2.1). The bar is also required to produce a vertical deflection of 

0.10 m when loaded with a weight of 2200 Newtons at its centre. When the weight is 

removed the bar must resume a straight line with no deviations from its original shape 
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(F.LG., 1979). This indicates that the high bar behaves like a spring in that when it is 

loaded there is a deflection and when the load is removed it returns to its natural resting 

position. By defining how far the bar should deflect under a known load it is possible to 

determine the stiffness. The above requirement therefore defines the elastic properties of 

the high bar so that no matter which manufacturer has constructed the bar it should 

perform consistently within the regulations set down by the F.LG. 

1----- 2400mm ----1 

46 mm 

, 0' t I. 

I 
2550 mm 

I 200mm Ir----li!----~ 

5500 mm f------ 4()()()mm ----1 

Figure 2.1. F.LG. high bar specifications. 
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Figure 2.2. Bar construction (Continental). 

As the bar has developed so has the complexity of the skills performed on it. 

Although skills had been developing through the years it was during the period between 

the early seventies to the early eighties that the greatest advances were made. In 1971 

Mark Davis of America performed the first triple somersault dismount in competition. In 

1974 Bernd Jaeger performed the first straddled forward somersault from a forward giant 

circle, then in 1975 the Russian gymnast Tkatchev performed the first backward straddle 

over the bar to regrasp (Figure 2.3). In 1977 Andrianov performed the first double layout 

somersault dismount in competition (Figure 2.4) and in the same year the first Gienger 

was performed. In 1979 Kovacs performed the first ever tucked somersault over the bar 

to regrasp from a backward giant circle (Figure 2.5). Then in 1981 Mitch Gaylord 
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performed a tucked somersault over the bar with a regrasp in reverse grip (Gajdos and 

Gohler, 1988). These skills are now common place in the exercises of today's elite 

performers who perform many of these skills in succession and in various combinations. 

Figure 2.3. The Tkatchov. 

\ 
Figure 2.4. The double layout backward somersault dismount. 

Figure 2.5. The Kovacs. 
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The double layout somersault dismount, the Tkatchov, Kovacs and Gienger all have 

one thing in common. This is that they are all performed from a backward giant circle 

(Figure 2.6). The backwards giant circle is a core skill which forms the basis of more 

advanced work on the high bar. Due to the development of the gymnast's handguards -

hand guards are worn by the gymnast to separate the hand from the bar to reduce the 

abrasion to the hands. They are made with a small dowel (Figure 2.7) whose function is 

to ensure a more positive grip and transfer a greater load from the hand to the handguard 

(Readhead, 1987) - gymnasts are able to perform accelerated giant circles which result in 

high angular velocities since they are more able to cope with the associated reaction 

forces at the bar. Gymnasts are able to perform one armed giant circles where the 

gymnast will experience a force at the supporting hand of up to four times his bodyweight 

(Enchun, 1989). 

\ 
Figure 2.6. The backward giant circle. 

Figure 2.7. A handguard (adapted from Readhead, 1987). 

The basic technique for a backward giant circle was described as follows by Lloyd 

Readhead (taken from "Men's Gymnastics Coaching Manual", Readhead 1987); 

- ------
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"In the handstand position the gymnast extends the body fully to gain 

maximum potential. A slight dish is introduced into the body to initiate the 

swing and this tensioned, extended body shape is held throughout the 

downswing. Before the gymnast reaches the lowest point of the swing the 

hips are relaxed to permit the hips to lead the swing under the bar. This 

hollow shape is introduced to produce an action, the reaction of which is to 

assist the rapid acceleration of the legs into the upswing. Once the gymnast 

has passed beneath the bar an angle is introduced into the shoulders and hips 

to help maintain the momentum of the upswing. The dished shape and 

shoulder angle are maintained until the force due to the bend in the bar is 

returned to the body. This occurs just before the handstand position and at 

this point the shoulder angle is rapidly removed and a wrist change 

introduced to give a regrasp of the hands. The dished body shape is still 

maintained so that the feet lead the swing to the handstand position where 

the body is again fully extended to commence the next downswing". 

At the time of publication Lloyd Readhead was the Great Britain men's national coach. 

His description of the technique hints at a range of biomechanical terms and principles, 

such as angular momentum and the conservation of energy. The author explains that the 

gymnast should extend from the dished position once the bar has returned to its natural 

position. This comment raises such questions as "when does the bar return to its natural 

position ?". Readhead (1987) states that this event occurs before the gymnast reaches the 

handstand position, but is this always the case and what is the benefit of re-grasping at 

this point? In addition, is there anything to be gained by extending either earlier or 

later? 

The backward giant circle is an extension of the elementary swing (Figure 2.8), 

where the mass centre of the gymnast never passes the horizontal at the apexes of the 

swing. The mechanics of the elementary swing and the backwards giant circle may be 

considered from two biomechanical stand-points. During swinging the gymnast's weight 

and location of the mass centre are very important. Bauer (1983) suggests that swinging 

may be described as pendulum with variable length. In the downwards phase of the 

swing the gymnast aims to be as extended as possible so as to create a large torque about 

the bar. Torque is the angular equivalent of force and is calculated by multiplying force 

by the shortest distance from the line of action of the force to the axis of rotation (moment 

arm). In this case the force is that of the gymnast's weight and the axis of rotation is the 

bar. If the gymnast's weight is the only force acting during the giant circle then the 

torque about the bar is the gymnast's weight multiplied by the moment arm (Figure 2.9). 

Newton's Second Law for angular motion states: 
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The rate of change of angular momentum is directly proportional 

to the applied torque and occurs in the same direction as the 

torque. 

That is, the greater the torque applied to a body the greater the change in angular 

momentum about the axis of rotation (angular momentum is the measure of the amount of 

rotational motion a body possesses and is found by multiplying angular velocity by 

moment of inertia). If the moment of inertia of the body is held constant, e.g. the gymnast 

maintains a fully extended body shape on the downswing of the giant circle then the 

angular acceleration experienced by the gymnast is proportional to the torque. Therefore 

by maintaining a fully extended body shape the gymnast creates a large torque about the 

bar which produces a large angular acceleration which leads to a large angular momentum 

as the gymnast passes through the lowest point. As the gymnast passes through the 

lowest point the moment arm become zero. Therefore the torque and the angular 

acceleration that the gymnast experiences becomes zero. Once the gymnast has passed 

through the lowest point the torque created by the gymnast's weight tends to accelerate 

the gymnast in the opposite direction to that of the swing. That is, the gymnast 

experiences a negative angular acceleration. To reduce the effect of the torque the 

gymnast adopts a dished body shape. This reduces the torque created by the gymnast's 

weight by reducing the moment arm. If the gymnast could "kick" to the dished shape . 

instantaneously with no external torques acting, then the conservation of angular 

momentum could be applied. By dishing, the gymnast reduces his moment of inertia 

about the bar; therefore by the conservation of angular momentum the gymnast's angular 

velocity will increase. As the gymnast reaches the highest point of the giant circle the 

body is extended in preparation for the next downswing. Again by extending the 

gymnast's moment of inertia about the bar is increased, and the angular velocity 

possessed by the gymnast as he passes through the highest point is therefore reduced. 

Figure 2.8. The elementary swing. 
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Figure 2,9, Torque created by the gymnast during swinging, 

To say that the only force acting during a giant circle is that created by the 

acceleration due to gravity and the gymnast's mass would be untrue, In fact the force 

created by the friction between the gymnast's hands and the bar during swinging defines 

how the gymnast grasps the bar. When the gymnast swings, the hands tend to rotate with 

the rest of the body, This is opposed by frictional forces (Hay, 1994). During the 

downswing the torque created by friction acts in the opposite direction to the torque 

created by the gymnast's weight, thus reducing the gymnast's angular acceleration. On 

the upswing the torque created by friction acts in the same direction as the torque created 

by the gymnast's weight,. tending to slow the gymnast down. Figure 2.10 shows the 

frictional forces as a gymnast swings forwards (Figure 2.1 0 a) and backwards 

(Figure 2.10 b) whilst gripping the bar in overgrasp (the grasp used during backward giant 

circles). Whilst swinging forwards the frictional forces have the effect of wrapping the 

gymnast's fingers around the bar. Thus strengthening the gymnast's grip. However, when 

swinging backwards the frictional forces tend to weaken the gymnast's grip. This 

explains why a gymnast will re-grasp the bar at the top of the backs wing when 

performing elementary swings. 

'# 
b \ 

Figure 2.10. Friction forces between the hands and the bar (adapted from Hay, 1994). 

The second approach to a mechanical description of swinging is to look at the 

energy transfers involved. In the vertical handstand position the gymnast has potential 

energy due his position relative to the ground. On the downswing the gymnast remains 

extended to maximise the effect of the gravitational moment (Smith, 1982). As the 
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gymnast passes through the lowest point the rotational energy he possesses is equivalent 

to the change in potential energy between the handstand and the hanging position minus 

any losses in energy due air resistance and friction between the gymnast's hands and the 

bar. The 'beatswing' action (Figure 2.11) which is seen as the gymnast passes through 

the lowest part of the swing is created using muscular energy and serves to replace the 

energy 'lost' due to friction, thus enabling the gymnast to return to the handstand position 

or in the case of the elementary swing to reach the horizontal. However, if the gymnast 

inputs more energy into the system during the beats wing than has been lost, then on 

completion of the giant circle the gymnast will have more energy than at the start of the 

circle. This extra energy appears in the form of rotational energy. On returning to the 

handstand position the gymnast will be rotating faster than at the start of the circle. This 

type of giant circle is often called an 'accelerated' giant circle and it is used to increase 

the gymnast's rotation about the bar in the 'wind up' to the dismounts and release and 

regrasp skills. 

Figure 2.11. The beatswing action. 

However, there appear to be two general techniques adopted by gymnasts in the 

giant circle prior to release for a dismount. In the first technique the gymnast performs 

the beats wing passing through the lowest point of the giant circle. The gymnast then 

extends at or very close to the vertical (Figure 2.12 a). In the second technique the 

gymnast performs the beatswing later than in the first technique (Figure 2.12 b). The 

gymnast then maintains this dished body shape until reaching the horizontal 

(Figure 2.12 b). Further to these existing techniques there are cases where a single 

gymnast may use both techniques when performing skills with similar release character­

istics. Briiggemann et al. (1994) presented biomechanical profiles of release and regrasp 

skills on the high bar. It was found that a gymnast would required similar amounts of 

rotation at release to perform both the Kovacs and triple tucked backward somersault 

dismount. However, it is not uncommon for two gymnasts to use different techniques in 

order to achieve the rotation necessary for the double layout dismount or for a single 

gymnast to use the first technique prior to a Kovacs and the second technique prior to a 

triple tucked backward somersault dismount. Questions as to which is the more 

beneficial and what are the advantages of each technique may be raised. 
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Figure 2.12. The two general techniques used by gymnasts winding up for a dismount. 

2.3 Research on the backward giant circle 

2.3.1 Definitions of experimental and theoretical research 

In the area of performance related sports biomechanics the researcher is attempting 

to answer questions of the nature what, how and why (Yeadon and Challis, 1994). For 

example what is the best angle of release for a double layout dismount from the high bar? 

How does a gymnast reverse his direction of rotation during a Tkatchov release? Why do 

elite gymnasts adopt different body shapes whilst passing through the upper part of the 

accelerated backward giant circle? The traditional scientific method for answering these 

questions is for the researcher to perform an experiment where some data is collected and 

analysed. Another method is to use a theoretical approach. Theoretical approaches take 

the form of idealising the activity of interest (Yeadon and Challis, 1994). Often the 

idealisation takes the form of a model. In sports biomechanics movements of both the 

athlete and the equipment obey Newton's laws of motion. This makes the theoretical 

models mathematical formulations of Newtonian systems (Yeadon and Challis, 1994). 

These models may be used to give either forwards or inverse dynamic analyses 

(Figure 2.13). Forwards dynamics is often called simulation. Input to the model 

comprises the forces acting on the system, with the output being the subsequent motion 

caused by the input forces. Variations on this idea use joint angle time histories as input 

to a simulation model when it is decided that for the activity in question the forces created 

by the muscles are not of great importance (Yeadon, 1993a). 
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INVERSE DYNAMICS 

motion ~ forces 

Figure 2.13. Forward and inverse dynamics (adapted from Yeadon and ChaIIis, 1994). 

However, theoretical research is not independent of experimental research. Yeadon 

and ChaIlis (1994) presented a model for scientific method outlined in Figure 2.14. The 

method may be explained with the following example. The researcher often starts with a 

descriptive study. It may be decided to use a theoretical approach to address the research 

question. This may take the form of developing a simulation model. The next step is to 

obtain a theoretical prediction from the simulation model. At this point the accuracy of 

the theoretical prediction is unknown. The model therefore needs to be evaluated. This 

may be done by obtaining some experimental data to compare with the output of the 

model. After a comparison of the two sets of data it may be found that the model is not 

accurate enough and that the theory needs to be improved, i.e. the researcher enters the 

feedback loop (Figure 2.14). Alternatively the model/theory may prove to be sufficiently 

accurate and so the comparison can provide an indication of the accuracy of the model 

and hence the accuracy of any predictions made using it. 

THEORETICAL }-'---l 
PREDICflON }---, __ .J 

PREDICTION 
ACCURACY 

Figure 2.14. Experimental and theoretical model of scientific method (adapted from 

Yeadon and ChaIlis, 1994). 

Research tends to be termed either experimental or theoretical depending on how 

much they rely on experiment and theory (Yeadon and Challis, 1994). In a true 

experimental design the independent and dependent variables must be identified. The 

experiment should be designed whereby the independent variable may be manipulated in 

order to observe the effect on the dependent variable. In the perfect experiment there is 

absolute control, there are no systematic errors and internal and external validity are 
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maximised. Internal validity refers to how the effect on the dependent variable is due to 

the manipulation of the independent variable. External validity refers to the general 

applicability of the results obtained. That is, how the results apply to the real world. In 

an experimental situation the researcher may attempt to impose some control in order to 

manipulate the independent variable. This may take the form of asking a gymnast to 

perform a certain aspect of the skill in question at a slightly different time (e.g. in the case 

of the accelerated giant circle the gymnast might be asked to perform the flexion action 

later than he normally would). By trying to alter one aspect of technique the gymnast 

may alter other parts of his technique. It would then not be clear whether the effect seen 

on the dependent variable was due to the manipulation of the independent variable. The 

majority of the experimental research on the backward giant circle has been without 

intervention and as such is observational in nature. These include studies where the joint 

angle time histories of the hip and shoulders joints, time histories of the angular velocity 

of the gymnast's mass centre, reaction force at the gymnast's hands, joint forces and work 

done during a giant circle have been described. 

2.3.2 Observational/experimental research 

A number of papers in the literature have performed observational data collection 

(Borms et al., 1975; Boone, 1977; Cheetham, 1985; Okamoto, Sakurai, Ikegami and 

Yabe, 1987). From these papers the backward giant circle may be broken down into four 

quadrants (Figure 2.15). In quadrant one the gymnast is usually fully extended. In 

quadrant two the gymnast hyper-extends the hips. From the simple energy and torque 

analysis of the backward giant circle given in section 2.1 how can the hyper-extension of 

the hips be explained. Is this action performed to increase the angle through which the 

flexion is performed or are there other reasons? In the third quadrant the gymnast flexes 

and in the fourth quadrant the gymnast extends and reaches the handstand position. 

Boone (1977) showed that the faster a gymnast rotated about the bar the greater the 

centripetal force. Therefore the faster a gymnast swings the greater effort required to 

maintain contact with the bar. He found that actions at the hips and shoulders were 

required to complete a giant circle. Closing the hip and shoulder angles after passing the 

lowest point appeared to increase the gymnast's angular velocity. Gymnasts could 

perform backward giant circles by using either the hips or the shoulders, but greater 

increases in angular velocity were observed when both hips and shoulders were used. 

Could this mean that the larger the flexion action through the lowest point the greater the 

increase in energy? 
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Figure 2.15. The four quadrants of the backward giant circle. 

Okamoto et al. (1987) filmed five male gymnasts performing backward giant 

circles. An eight segment mathematical model was used for analysis. The model 

comprised segments for the head, trunk, upper arms, forearms, hand, thighs, shank and 

feet. Moments of force at each joint were obtained by solving the equations of motion 

and then the muscle power was calculated by multiplying this value by the angular 

velocity of each joint. By integrating the muscle power at each joint the mechanical work 

done by each joint was obtained. 

The giant circle was broken down into four equal quadrants (Figure 2.15). During 

the first quadrant the gymnasts were extended. To maintain these angles flexor torques 

were required. The main feature of the second quadrant was the hyper-extension of the 

hip joint. In the third quadrant both the hip and shoulder angles began to flex. This was 

achieved using flexor torques. However, towards the end of the third quadrant as the hip 

and shoulder angle began to extend the torque at these joints was still a flexor torque. 

Therefore the muscles were being contracted eccentrically. 

It was calculated that the hip and shoulder joints contributed 48% and 46% 

respectively to the total mechanical work done during the giant circle. The majority of 

this work was done in the first half of the upswing (quadrant three). How was the 

remaining energy made up? Did the gymnast perform any other action other than at the 

hips and shoulders? 

Cheetham (1984) distinguished between three different types of giant circles: the 

regular giant circle, where the aim is only to swing from handstand to handstand; the 

accelerated giant circle, where the aim is to increase the angular velocity; and the giant 

circle immediately prior to a dismount, where the aims depend on the particular dismount 

used. The paths of the mass centre were compared with each other for the three types of 

giant circle. For the regular giant circle the mass centre followed a circular path during 

the downswing. During the upswing the mass centre was found to move closer to the bar 
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which made the path that the mass centre followed flatter. This was caused by the flexion 

acti.on performed by the gymnasts which brought their mass centres closer to the bar. For 

the wind-up and accelerated giant circles the path of the mass centre was tilted over and 

ovular in shape. What caused the tilted over ovular shape? Although the author did not 

state the reason it is possible that the gymnasts used in the study were extending once 

they had passed through the highest point and had commenced the downswing. 

Cheetham calculated the mass centre angular velocity for each of the gymnasts. He 

found that during all giant circles there were two peaks in angular velocity. The first peak 

coincided with the bottom of the downswing. However, in all three types of giant circle 

studied the first peak in angular velocity occurred just before the bottom of the 

downswing. Briiggemann et al. (1994) also found that during the backward giant prior to 

release for a tucked double somersault dismount the kinetic energy peaked just before the 

lowest point. It might be expected that the peak should occur at the very bottom of the 

downswing, so why does it occur before? Could this phenomenon be due to the 

gymnast's technique or to the energy being stored by the bar? The second peak in mass 

centre angular velocity was attributed to the flexion action performed by the gymnast. In 

the case of the accelerated giant circles this second peak was always larger than the first. 

In fact, during two accelerated giants prior to a double layout dismount it was shown that 

the peaks from successive giant circles increased until release (Figure 2.16). 

angular velocity 

0° 360° 720° 
rotation angle [°1 

Figure 2.16. Angular velocity during two accelerated and one dismount giant circle 

(adapted from Cheetham, 1985). 

Briiggemann et al. (1994) stated that in any dismount or flight with regrasp the 

gymnast's objectives are threefold: firstly to generate sufficient angular momentum to 

execute the number of somersaults and twists required by the particular skill; secondly to 

obtain adequate height and thus have enough time in the air to complete the designated 

rotation; and thirdly to travel safely away from the bar while performing a dismount or to 

achieve a flight curve that guarantees the safe regrasp of the bar and the continuation of 
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the bar routine after performing a release-regrasp skill. The successful achievement of all 

three objectives is dependent on the last swing prior to release. Briiggemann et al. (1994) 

filmed and analysed 70 release skills from the Barcelona Olympics. It was found that the 

major changes of mechanical energy were determined by shoulder and hip flex ion and 

extension movements. The knee joint action was also found to contribute to energy 

changes. At the point of maximum knee flexion velocity the mass centre accelerated 

sharply. It appears as though the knee flexion and extension play an important role in the 

preparatory giant circle. It was found for a double backward tucked somersault dismount 

that the total kinetic energy peaked before the bottom of the giant circle (similar to the 

findings of Cheetham, 1984). This coincided with peak hip and shoulder hyper-extension 

and mass centre velocity. However, whole body angular momentum about the gymnast's 

mass centre was found to be only 60% of its eventual maximum at this point. The 

maximum angular momentum occurred at maximum hip flexion velocity. Additional 

high speed recordings of the bar indicated maximum bending of approximately ± 10 cm . 

Kopp and Reid (1980) mounted strain gauges to a high bar in order to obtain data 

on reaction forces and torques at the gymnast's hands during forward and backward giant 

circles. The circles were regular giants under the classification of Cheetham (1984). The 

maximum reaction force recorded during the backward giant circles was between 3.45 

and 3.70 times the gymnast's body weight with a mean value of 3.57 (approximately 

2208 N for the gymnasts used in the study). This maximum reaction force occurred after 

the gymnasts had passed through the lowest point, at a mean angle of 210° (the vertical 

handstand being defined as 0°). The mean of the peak torques recorded was 23.3 Nm and 

occurred within 0.2 s of the maximum reaction force. 

The use of strain gauges is a common method for obtaining the reaction force at the 

gymnast's hands. Using this method Ishii and Komatsu obtained values of 3.5 to 4.9 

bodyweights for the peak vertical reaction force. Similarly Enchun (1989) obtained 

reaction forces between 3.5 and 3.9 bodyweights for single arm backward giant circles. 

However, none of these were accelerated giant circles. Gervais (1993) presented a 

method of calculating reaction forces at the hands from positional data. The calculated 

values were compared with those obtained from strain gauges. In one trial the subject 

performed two giant circles leading into a double somersault dismount. During the last 

giant circle the peak reaction force rose to approximately 3200 N (approximately 

5.3 bodyweights). 

Summary 

The experimental/observational research has outlined the body actions which make 

up the backward giant circle. For the regular giant circle the major actions occur at the 
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hips and shoulders. As the gymnast passes through the lowest point the angle at the hips 

and shoulders are closed (i.e. flexion of the hip joint). It has been shown that this leads to 

an increase in angular velocity and energy. For the accelerated giant circles there is a 

possibility that there is an additional action created at the knees which may contribute to 

the gymnast's rotation. However, the mechanics of why the flexion action is performed 

after the lowest point has not been established, nor have any recommendations as to 

where the subsequent extension should be. 

2.3.3 Theoretical research 

Bauer (1983) simplified a number of swinging activities by modelling them as a 

pendulum of varying length. The mass of the pendulum was used to represent the mass 

centre of the gymnast with the length of the pendulum representing the distance of the 

mass from its point of rotation. The skills investigated were described in terms of the 

mass centre trajectories. Changes in pendulum length were assumed to occur instantane­

ously. This method was used to describe the technique of the backward giant circle. The 

maximum length of the pendulum was maintained during the downswing to make full use 

of the torque created by the weight of the pendulum. Once the mass reached the lowest 

point of the circle the length of the pendulum was instantaneously shortened. This new 

pendulum length was then maintained until the highest point of the circle was reached, at 

which poi~lt the pendulum length was instantaneously increased back to maximum length. 

This explanation implies that a real gymnast should flex as quickly as possible at the 

lowest point and then extend as quickly as possible at the highest point of the circle 

(Figure 2.17). 

The author acknowledged that these instantaneous changes could not be performed 

by a real gymnast, but stated that these instantaneous changes in pendulum length 

coincide with the gymnast's "points of decision". This statement was made from 

observation and experience, and does not explain the underlying mechanics. A simple 

pendulum is not sufficient to model the gymnast's structure. Each of the gymnast's limbs 

has moments of inertia which complicate the mechanics beyond the scope of the simple 

pendulum. Also, if the decision pOint for the extension was at the highest point of the 

giant circle, by the time the gymnast had made the decision all of the extension would be 

performed after the highest point. This idea contradicts with most of the practical studies 

where the gymnast has been shown to initiate the extension before the highest point. Is 

this due to the regular "nature" of the giant circles studied to date or is there some other 

explanation? 
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Figure 2.17. Mass centre trajectory for a backward giant circle (adapted from 

Bauer, 1983). 

Bauer (1981) used a double pendulum as a two link model of the gymnast. The 

optimal hip joint movement was computed so that the gymnast exerted a minimum 

amount of energy. The model was used to simulate a giant circle. It was found that the 

optimal solution was consistent with data and theoretical formulations in biomechanics. 

This implies that the results agreed with the pendulum model. But does this explain the 

. mechanics of the giant circle· or rather the technique used by a gymnast? The result 

implies that gymnasts perform the flexion after the lowest point only because it requires 

less energy to perform. Would an altemative solution been found if the criterion for 

optimisation was to maximise the increase in energy? 

Morlock and Yeadon (1988) presented a two segment model of a gymnast swinging 

on the high bar. One segment represented the legs and the other segment represented the 

rest ofthe body. The two rigid segments were linked by a friction less pin joint which was 

used to represent the hip joint. The model was constrained to movements in the sagittal 

plane and assumed a rigid frictionless bar. The equations of motion were derived using a 

Newtonian approach. The model was applied to three separate cases of swinging. In the 

first case the model was allowed to swing with the torque at the pin joint set to zero. As 

the authors stated this was a purely theoretical situation. For the second case the torque at 

the hip joint was determined so that the angle at the hip was maintained at zero degrees 

(fully extended). In the third case the torque at the hips, obtained from case two, was 

modified in order to represent the flexion action observed in gymnasts performing 

backward giant circles. 

In case one it was found that during the downswing (swinging from handstand to 

hang) that setting the joint torque at the hip to zero caused the angle to open. For a 

gymnast this would result in hyper-extension of the hips. This action is similar to that of 

a toppling chimney. When the base is blown and the chimney starts to topple it breaks 

into sections. The more distal sections tend to lag behind the proximal sections. On the 
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upswing it was shown that setting the joint torque to zero resulted in hip flexion. Case 

two backed up this result by showing that in order to swing from handstand to handstand 

with an extended body shape a flexor torque must be exerted during the downswing and 

an extensor torque must be exerted at the hips during the upswing. The third case showed 

that by performing a flexion action at the hips through the lowest point of a giant circle 

followed by an extension during the upper part of the circle energy could be input to the 

system. Could these same aCtions be used to reduce the energy in the system? This 

question really asks how is energy input to the system and what are the techniques to do 

this. The authors highlighted that a more sophisticated model which would include a 

shoulder joint and three segments could be used to optimise the gain in energy after one 

cycle. The model was relatively simple yet was able to demonstrate the mechanics of 

swinging. However, no account was given to the effect of modelling the elastic 

properties of the bar. 

The two papers reviewed so far have used only two segments to represent the 

gymnast. The experimental research would suggest that any model should contain at least 

four segments so that the actions at the hips, shoulders and knees may be studied. Dainis 

(1968) presented a method for obtaining two-dimensional models which comprised n 

rigid links, fixed at one extremity and joined by n -1 pin joints. Lagrange's equations of 

motion were used. A three segment model was implemented using this technique for the 

purpose of representing a gymnast swinging on the high bar. Friction at the bar hand 

interface was assumed to be zero, the author stated that this would be "a good 

approximation" - Komor and Ubukata (1977) stated from their analysis that the frictional 

forces at the hands were approximately zero. Two computer programs were developed. 

The first was a forward dynamics model which was called the synthesis program. The 

input to the model was the joint torque time histories for the hip and shoulder joints. The 

output from the model was the joint angles, angular velocities and angular accelerations 

of each segment. The second program was an inverse dynamics model. The input 

comprised the body configurations (segment angle time histories) with the output being 

the joint torques necessary to bring the model to successive configurations from the 

preceding one. 

It was found that using joint torques was a difficult method for reproducing specific 

skills. The outcome of simulations could not be predicted due to the interdependence of 

the joint torques. The analysis program proved more successful. Joint torques for the hip 

and shoulder joints were calculated for two different giant circles, one performed with 

"excellent" technique, the other with "poor" technique. The giant circle performed with 

excellent technique had a peak shoulder torque (the torque represented that of the 

combined torques at each shoulder) of approximately 320 Nm and a peak hip torque of 

approximately 272 Nm. For the gymnast with poor technique these values were 500 Nm 

and 400 Nm respectively. 
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Duck (1980) developed a three segment simulation model with a frictional torque at 

the hands. The model was driven using joint angle time histories based on Fourier 

analysis of film data. Using this model Duck was able to simulate closely the path of the 

mass centre for a number of swinging skills. The frictional torque was determined from 

the normal reaction force at the hands multiplied by a constant of proportionality. From 

an experimental study this constant was found to be 0.07 for forward and backward giant 

circles. When the frictional torque is calculated for a backward giant circle using the 

force data from Kopp and Reid (1980) a peak torque of 155 Nm is obtained (based on 

peak force of 2208 N). This value is nearly seven times greater than the peak torque 

obtained by Kopp and Reid. Since Duck modelled the bar as a rigid structure it is likely 

that the coefficient of proportionality was used to account for the energy stored in the 

loaded bar and the increase in the gymnast's moment of inertia about the neutral resting 

bar position had it been modelled as an elastic structure. 

More recently Arampatzis and Brliggemann (1995) presented a 15 segment gymnast 

with a 12 segment high bar as a method of optimising the giant swing prior to release. 

The definition of the optimal solution was based on the energy possessed by the gymnast 

after the giant circle. The timing of joint actions was linked with storing and retrieving 

energy from the bar. 

Gatto and Neal (1992) presented a single segment model of a gymnast swinging on 

the high bar. The bar was modelled as two linear springs (one for the vertical displace­

ment and one for the horizontal displacement) with constant stiffness coefficients. The 

friction at the gymnast's hands was modelled using a constant coefficient of proportional­

ity in a similar manner to Duck (1980). Results were compared between conditions 

where the bar was modelled as a spring and where it was modelled as a rigid structure. 

The model was allowed to swing from a stationary position 10 from the vertical. When 

the bar was modelled as a rigid rod the peak reaction force was 4.56 bodyweights. When 

the bar was modelled as an elastic structure the peak reaction force dropped to 4.33 BW. 

This represented only a small reduction in peak reaction force (approximately 5%). Since 

the model comprises only one segment the reaction force at the bar could be approxi­

mated using the force due to the model's weight and its centripetal force. For the peak 

reaction force to be less, when modelling the bar as an elastic structure, the model's 

centripetal force must also be less. The reduction in centripetal force will be in part due 

to the increase in radius of the mass centre trajectory and to a decrease in angular velocity 

of the mass centre about the origin of the system (the neutral resting position of the bar). 

It is therefore argued that modelling the bar as a rigid structure leads to an over-estimation 

in the angular velocity of any simulation. The stiffness value used was approximately 

twice that predicted using Hooke's law and the apparatus norms set out by the FIG (1979). 

However, it was demonstrated that both doubling and halving this value made only small 

changes to the peak reaction force. 
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In addition to the displacement of the bar it has been suggested that the gymnast 

increases in length during the backward giant circle. The majority of this is believed to 

occur in the structures of the shoulders and spine. An increase in wrist to hip distance of 

between 0.10 m and 0.20 m was confirmed by Professor Nicoli Suchilin (personal 

correspondence). An extension in the gymnast would have the same implications on the 

reaction force that the elasticity of the high bar has. Incorporation of the gymnast's 

elasticity may lead to improvements in estimating both reaction forces and angular 

velocities. 

2.3.4 Summary and views on theoretical optimisations 

Both the experimental and theoretical studies that have been carried out have 

limitations. The majority of the experimental studies have investigated regular giant 

circles giving only a descriptive analysis of the skill. No analysis has been performed on 

the different body shapes that may be observed as the gymnast passes through the highest 

point in the accelerated giant circle and no attempt has been made to attribute any 

mechaniCal benefits to them. 

In general when attempting to answer such questions using a theoretical approach, 

the model should be sufficiently complex to simulate all the important actions and 

mechanisms which define the system under study. For the simulation of swinging skills 

this requires more segments than the two and three used by Morlock and Yeadon (1988), 

Dainis (1968) and Duck (1979). However, the model should still be simple enough to 

facilitate the understanding of the underlying mechanics. 

In previous research the elastic properties of the gymnast have been neglected. 

Although Arampatzis and Briiggemann (1995) modelled the bar they did not model the 

elastic properties of the shoulder joint structure. Neglecting these elastic qualities may 

lead to an over-estimation of the angular velocity predicted by a simulation model in the 

same way as modelling a rigid bar would. These assumptions may lead to limitations in 

the accuracy of any simulations performed. 

The studies of Dainis (1968) and Yeadon and Morlock (1988) used joint torques to 

alter the joint angles of their models. This approach has the drawback that the effect on 

joint angles is unknown until the simulation is run. A better method of describing a 

technique may be in terms of the body shapes the gymnast must achieve. This suggests a 

more appropriate input for such a simulation model might be time histories of the joint 

angles rather than the joint torques. However, care must be taken using this method as 

simulations could be performed which exceed the strength characteristics of the gymnast. 

In section 2.2 of the literature review the backward giant circle was introduced as a 

movement which is used to link skills and provide the necessary rotation for the more 
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complex skills. The aim of the theoretical studies outlined above have been to understand 

the mechanics of swinging. Morlock and Yeadon (1988) suggested that their model and 

hence other similar models may be used to optimise the technique of the backward giant 

circle. However, choosing an optimisation criterion for the backward giant circle is not as 

obvious as one might first think. 

Consider the following experimental studies on release skills performed on the high 

bar. Kerwin, Yeadon and Lee (1990) obtained the release characteristics for gymnasts 

performing two dismounts from the high bar in the 1988 Seoul Olympics. Half the 

dismounts studied were triple tucked backward somersaults whilst the remainder were 

double layout backward somersaults. It was found that rotation and time of flight were 

the two characteristics which were required for the successful completion of both 

dismounts. Each of the dismounts require different amounts of these two characteristics; 

the problem was therefore one of relative importance. From the analysis of the 

competitors it was clear that rotation was a premium for the double layout somersaults, 

whereas for the triple tucked somersaults the time of flight was paramount. The optimum 

backward giant circle would therefore be different for each of the dismounts. To perform 

a double layout somersault dismount the gymnast would require a preceding backward 

giant circle which produced the greatest angular momentum, whilst to perform the triple 

somersault dismount the preceding giant circle should be geared to producing a greater 

time of flight. 

Similarly Briiggemann et al. (1994) was able to distinguish between three 

movement classes identified in terms of their propulsion mechanism when investigating 

release skills on the high bar. These groups were called backward rotation category I 

(BRCI), backward rotation category 11 (BRCII) and forward rotation category I (FRCI). 

BRCI contained the tucked double, layout double and triple tucked backward somersaults, 

Kovacs and Giengers. BRCII contained the Tkatchovs, straight Tkatchovs and 

Mariniches, while FRCI contained Fliffes, the Gaylords and Jaegers. It was found that 

certain skills had similar release characteristics such as the double and triple tucked 

somersaults. However the double layout differed from these two skills by requiring 

greater angular momentum. This agrees with the study of Kerwin et al. (1990). The 

BRCII differed form the BRCI group in that during release the direction of rotation was 

reversed resulting in negative angular momentum in flight for the Tkatchov and Marinich 

skills. All skills proceeded by a backward giant circle that maintained a uniform direction 

of rotation (BRCI) demonstrated almost identical strategies. The BRCII group displayed 

a similar strategy to the BRCI group but with phase shift of both timing and position. It 

was speculated that the general propulsion strategy, which includes the possibility of 

storing energy in the bar and using this energy on the upswing, contributed in all 

variations. 

These studies (Kerwin et aI., 1990; Briiggemann et aI., 1994) indicate the different 



29 

requirements of the backward giant circle when it is used to provide the necessary 

rotation for a release skill. If the backward giant circle were to be optimised it could be 

argued that the optimisation criterion could be to maximise the angular momentum about 

the gymnast's mass centre. This would then be a suitable optimisation for a backward 

giant circle prior to the double layout backward somersault dismount. Similarly for the 

triple somersault dismount, optimising the angular momentum prior to the characteristic 

puck shape at release may be feasible. Conversely, for a Tkatchov or Marinich type 

skills, the gymnast desires rotation in the opposite direction after release, "negative" 

angular momentum, and the optimum technique for the backward somersaults may not be 

appropriate for these skills. Section 2.3.4 merely highlights the point that the optimised 

backward giant circle for one skill may not be the optimal solution for another. It must 

therefore be made clear, when performing an optimisation of technique, what is being 

optimised and for what purpose. 

2.4 Techniques of investigation 

The following sections review the techniques used in the field of performance 

related biomechanics. Techniques covered include the collection of force data, three­

dimensional analysis, simulation and optimisation. 

2.4.1 Force measurement 

The measurement of force relies on one of two principles, either deformation or 

balancing. The balancing method requires the system to be in balance in order to 

determine the force, usually weight. The second method relies on the deformation of an 

elastic structure and the principle of Hooke's law to determine the force which has created 

the deformation. The structure which is being deformed may be a simple spring, as in a 

spring balance or a force transducer. A force transducer is a device which produces an 

electrical signal in response to an applied force. The spring balance may be used to 

measure a constant force; however, in the field of sports biomechanics the forces we wish 

to observe are often changing rapidly. This section will describe force transducers and 

their applications relative to this study. 



30 

Strain gauges 

In 1856 Lord Kelvin discovered that the resistance of an electrical conductor 

changed when it was stretched. However, it was not until the 1930s that Edward 

Simmons and Arthur Ruge at independent institutes of technology in the United States 

suggested that this principle could be used in the measurement of strain. 

Electrically conductive materials possess a stress/strain relationship defined as the 

ratio of relative electrical resistance change of the conductor to the relative change in its 

length. This strain sensitivity is a function of the dimensional changes which take place 

when the conductor is deformed, plus any change in the basic resistivity of the material 

with strain. The electrical resistance of a conductor is given by: 

R= pi/A (2.1) 

where 

R resistance 

I length 

A cross sectional area 

p resistivity 

Strain sensitivity (which is also called gauge factor) is a dimensioniess relationship 

expressed mathematically as 

(2.2) 

From the above two equations the strain sensitivity due to the dimensional changes 

can be established, assuming the resistivity remains constant (Chalmers, 1992). 

There are two main types of strain gauges which are easily distinguishable from 

each other. The first is a wire strain gauge which consists of a length of wire wrapped 

around the test component. Deformations in the test component cause a deformation in 

the wire (length or/and cross-sectional area). This in turn leads to a proportional change 

in the resistance of the wire which can be measured. The second and more commonly 

used type of strain gauge is the foil strain gauge. The gauge is usually bonded to the test 

component with a strong adhesive. Any deformation in the test component will result in 

deformation of the foil gauge. The foil strain gauge consists of a grid of zig-zag lines of 

alloy (Figure 2.18). The majority of foil strain gauges are produced by printed circuit 

techniques using the appropriate alloy precision rolled to exact thicknesses (Chalmers, 

1992). Many different alloys may be used in the production of foil strain gauges; 

however, a copper-nickel alloy is most commonly used. 



31 

, 
Figure 2.18. A foil alloy strain gauge. 

The strain gauge may be considered as a passive resistor (Scott and Owens, 1992). 

In order to measure the strain in a stressed object the gauge requires a source of power 

and a method of measuring the change in resistance that occurs. Further, if the gauge is to 

be used to measure force, some manipulation of the output from the gauge is required to 

convert the measurement of strain into force. In the field these changes in resistance are 

measured using a 'bridge' circuit. This circuit is based on the Wheatstone bridge and 

comprises an arrangement of resistors (Figure 2.19) with a balanced voltage across them. 

When the resistance in one or more of the resistor arms changes an out-of-balance voltage 

is created. The small output will often need to be amplified and displayed or stored. The 

strain gauge, bridge circuit, amplifier and data logger are all components of the strain! 

force measurement system. 

Figure 2.19. Wheatstone bridge (adapted from Scott and Owens, 1992). 

The following is an example of how the Wheatstone bridge circuit works, and is 

taken from Scott and Owens (1992). Consider Figure 2.19 in which RI' R2, R3, R4 are 

resistors. Assuming that the condition R /R4 = R21R3 is satisfied then the output voltage 

VOU! will be zero, i.e. the bridge is balanced. A change in resistance RI will unbalance 

the bridge and produce a voltage across the output terminals. 
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If a similar change, in both magnitude and polarity occurs in an adjacent arm of the 

bridge, say R4, then the voltage VOU! will remain zero and the bridge will remain in 

balance. If in adjacent arms the resistance changes occur of equal magnitude but opposite 

polarity then the voltage VOU! will be twice that due to the resistance change in one arm. 

For strain gauge purposes the output equation for the bridge is: 

where 

K gauge factor 

Vin bridge volts 

e strain 

VOU! = KENVin 

4 

N number of active arms of the bridge 

(2.3) 

The arms of the Wheatstone bridge can be made up from either strain gauges or 

resistors. However, the number of gauges used will depend on the application and 

accuracy required of the system. When a single gauge is used at the measurement point, 

it is termed a quarter bridge operation (Figure 2.20). When two gauges are used in 

adjacent arms of the bridge it is known as a half bridge system (Figure 2.21). For this to 

work one gauge must experience tension and the other compression. The full bridge uses 

gauges at all four arms of the bridge and is a logical extension of the half bridge and can 

be used to further increase the sensitivity of a measuring system. Putting two gauges on 

each side of the beam instead of one gives a value of N = 4 i.e. the output is four times 

that of a quarter bridge operation. 

R, 

Figure 2.20. Quarter bridge circuit (adapted from Scott and Dwens, 1992). 



33 

gauges 1---- V.", --~ 

Figure 2.21. Half bridge circuit (adapted from Scott and Owens, 1992). 

Once the appropriate bridge circuit has been selected and implemented it must be 

connected to an amplifier so that the output voltage from the bridge circuit can be 

amplified. The type of amplifier used is dictated by the nature of the task: that is, whether 

the task requires static or dynamic measurements (Scott and Owens, 1992). A signal that 

does not change in magnitude to any extent with time would be termed static, whereas a 

dynamic signal is likely to vary rapidly with time (Scott and Owens, 1992). When taking 

, static measurements only one amplifier may be required. If more than one measurement 

point is needed, then a number of bridge circuits can be switched, feeding one at a time to 

the amplifier. In dynamic work simultaneous readings are often required. Therefore, one 

amplifier for every bridge circuit would be required. 

The measurement of force has been carried out in a number of gymnastic 

disciplines using strain gauge technology. Gauges have been bonded to the parallel bars 

(Yessis, 1972), the asymmetric bars (Hay, Putnam and Wilson, 1979; Witten, Brown, 

Witten and Wells, 1996) and the high bar (Enchun, 1989; Gervais, 1993; Ishii and 

Komatsu, 1987; Kopp and Reid, 1980 and 1983). Load cells (objects with strain gauges 

bonded to them which have been pre-calibrated to output voltages equivalent to force 

units) have been connected in series with rings cables (Nissine)J, 1983; Sale and Judd, 

1974), and force platforms have been incorporated into the vaulting horse, pommel horse 

(Yessis, 1972), and the landing area to measure the forces experienced by gymnasts 

(McNitt-Gray, Yokoi and Millward, 1993 and 1994). 

Ishii and Komatsu (1987) bonded four strain gauges to a metal bar which had the 

elastic properties similar to a competition gymnastics high bar. Two gauges were bonded 

close to each end of the bar in such a way that strain could be measured in the horizontal 

and vertical directions using half bridge circuits. For the vertical strain one gauge was 

bonded to the top side at one end of the bar and the second gauge was bonded to the 

bottom side of the opposite end (Figure 2.22). A similar arrangement was used for 

measuring strain in the horizontal direction (Figure 2.22). The bar was calibrated by 
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loading the bar with known weights at the middle and locations either side of the middle. 

With the gauges located as described it was possible to measure the force applied to the 

bar irrespective of the point of application. The signals from the bridge circuits were 

amplified and combined to give the resultant reaction force at the bar for gymnasts 

performing giant circles. Kopp and Reid (1980,83) used a similar arrangement of strain 

gauges bonded to the high bar. Calibration of the bar was carried out statically by 

applying known weights at different positions on the bar in the vertical and horizontal 

directions and known torques clockwise and anti-clockwise. It was found during the 

calibration that there was a highly linear force-voltage relationship. This might suggest 

that the force-deformation relationship of the bar was also linear. If this were so the bar 

would behave as a linear spring. There was also found to be no interaction between 

vertical and horizontal outputs during calibration. This was also found by Witten et al. 

(1996) in a similar study carried out on the asymmetric bars. 

gauges 

[6jj¥ 
Figure 2.22. Strain gauge arrangement for measuring force on the high bar (Ishii and 

Komatsu, 1987). 

In the previous studies the bar has been calibrated by applying known loads and 

measuring the deflection (Ishii and Komatsu 1987; Kopp and Reid, 1980). Neal, Kippers, 

Plooy and Forwood (1995) calibrated the bar in the horizontal direction by rotating the 

bar through 900 and loading it vertically. However, in order to calibrate the bar in the 

upwards vertical direction the bar would have to be turned over and calibrated in the 

downward vertical direction, unless the appropriate equipment was available. This may 

be better than assuming that the bar behaves the same in both vertical directions, but care 

must be taken when setting the bar up after it has been turned over. 

In the outlined studies (Gervais, 1993; Ishii and Komatsu, 1987; Kopp and Reid, 

1980, 1983; Enchun, 1989) the signal from the bridge circuits was sent to an amplifier 

before being recorded with a data logging device. The signal received by the data logger 

from the amplifier is an analogue signal. Whereas the data used in the analysis of the 

swinging skills is in general digital information (Gervais, 1993; Ishii and Komatsu, 1987; 

Kopp and Reid, 1980, 1983; Enchun, 1989). Therefore the analogue signal must be 

sampled at predefined rate. Enchun (1989) sampled at 50 Hz during one arm backward 

giant circles. With the giant circle lasting approximately two seconds this would have 

resulted in one hundred samples per circle studied. At this rate the gymnast would have 

rotated 3.60 on average between each sample. Through the lowest part of the giant circle 

the angle the gymnast would rotate through between samples may have been as large as 
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5.7° (assuming that peak angular velocity was 5.0 rad.s- I ). Ishii and Komatsu (1987) 

sampled at twice the rate of Enchun (1989) making readings at 100 Hz from a analogue 

recording. The ideal solution would be to sample at as high a rate as possible. This, 

however, leads to large amounts of data and increased processing time. Kopp and Reid 

(1980) sampled at 200 Hz for giant circles which lasted approximately two seconds. With 

a similar calculation the average angle of rotation between samples would have been 

approximately 0.9° with the largest angle of rotation between samples being approxi­

mately 1.4° (again assuming that peak angular velocity was 5.0 rad.s- I ). Gervais (1993) 

also sampled at 200 Hz but studied accelerated giant circles leading up to dismounts and 

release and regrasp skills. The higher angular velocity of the gymnasts during accelerated 

giant circles increased the average angle of rotation between samples to 1.2°. The general 

rule or sampling theorem states that "the process signal must be sampled at a frequency at 

least twice as high as the highest frequency present in the signal itself' (Winter, 1990). 

Sampling at a lower frequency would result in aliasing errors. For the backward giant 

circle it may be estimated that there will be no signal at a frequency higher than 50 Hz. 

However, unless the signal is sampled at a higher frequency there is no way of detecting 

noise frequencies which have been picked up through the instrumentation (e.g. the 50 Hz 

buzz of electrical circuitry). 

Summary 

Where possible full bridge circuits should be used to record the force applied to the 

high bar, since they are the most sensitive of the Wheatstone bridge configurations. 

When calibrating the strain gauge-bar system using known loads it is preferable to load 

the bar in both the horizontal and vertical directions. Having separate calibration curves 

means that no assumptions about the stiffness of the bar in the horizontal and vertical 

directions are made. The rate at which the strain data are sampled will depend upon the 

application. However, for swinging activities 200 Hz appears to be sufficient. 

Isokinetic dynamometry and the Determination of muscle parameters 

In section 2.3.1 the idea of driving a simulation model using either internal joint 

forces or joint angle time histories was presented. A simulation model which is driven by 

the internal joint forces or torques requires muscle models. The muscle model should 

reproduce the joint forces and torques that the subject is capable of producing. This may 

be achieved by using subject specific muscle parameters. Driving a simulation model 

using joint angle time histories also requires information that may be gained from a 
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subject specific muscle model. Yeadon (l993a) found that the techniques for producing 

twist did not require maximum effort therefore joint angle time histories were appropriate 

for the application. However, if the application in question may depend on reaching a 

state of maximum effort a knowledge of the individual's maximum joint torques for a 

given set of joint actions may be used to limit or restrict the simulation model to joint 

actions and/or joint angle time histories that are within the strength capabilities of the 

individual athlete. 

This section reviews the literature related to obtaining subject specific muscle 

parameters using an isokinetic dynamometer. 

An isokinetic dynamometer is a machine which is capable of measuring a force or a 

torque which is applied at a constant velocity. The term isokinetic refers to a muscular 

contraction where the angle at the joint centre, which the muscle is acting across, changes 

with a constant angular velocity. The term dynamometer refers to the device which 

measures the force. The device has usually been mounted with strain gauges and 

calibrated to measure force (as described in the section on strain gauges). When referring 

to isokinetic dynamometers the device which is used to measure the force is often called 

the load cell. 

Isokinetic dynamometers are used to measure the force or torque applied to the load 

cell. The machine itself usually comprises a motor and gearing system onto which a 

crank arm is mounted. The motor and gearing system enable the crank arm to rotate in 

either direction (clockwise and anti-clockwise) at varying angular velocities. For the Kin­

Com (one make of isokinetic dynamometer) the angular velocity of the crank arm may be 

selected from a range of O°.S·I to ± 250°.s·1 (approximately 0 rad.s·1 to ± 4.4 rad.s·I). 

However, some isokinetic dynamometers consist only of the gearing system and therefore 

rely on the subject to power the crank arm through the range of movement (Sapega, 

Nicholas, Sokolow and Saraniti, 1982; Winter, Wells and Orr, 1981). When the angular 

velocity of the crank arm is set to O°.s·1 the isokinetic dynamometer is able to record 

isometric forces. An isometric contraction is one where the length of the muscle remains 

constant. 

The load cell is mounted to the crank arm in order to measure the force. When a 

force is applied to the load cell a torque is created about the axis of rotation of the crank. 

This torque may be recorded through the data capture system of the isokinetic dynamo­

meter and is approximately equal to the force applied to the load cell multiplied by the 

distance of the load cell to the axis of rotation of the crank arm. Some isokinetic 

dynamometers record force whilst others record torque. For human studies the joint 

centre of interest is aligned with the axis of the crank arm (Fuglevand, 1987; Herzog, 

1988; Marshall, Mazur and Taylor, 1990; Winter et aI., 1982; Perrine and Edgerton, 

1978). Aligning the jOint centre with the axis of the crank arm reduces the differences 

between crank and joint angles and moment arms. 
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Another feature of the isokinetic dynamometer is its ability to measure joint torques 

for both concentric and eccentric contractions (this is only possible for isokinetic 

dynamometers which are motor driven). A concentric contraction is where the points of 

insertion and origin of the muscle move closer together, i.e. the length of the muscle 

shortens. An example of a concentric contraction would be the biceps brachii shortening 

during a biceps curl. An eccentric contraction is where the points of insertion and origin 

move apart. In an eccentric contraction the force generated by the muscle acts to resist 

the lengthening of the muscle. An example of an eccentric contraction would be lowering 

of the forearm after performing the biceps curl. Studies have tended to collect data from 

concentric activities. The trials in these studies have consisted of concentric actions 

performed at a range of angular velocities. There is an argument for performing two 

repetitions of a concentric-eccentric protocol and using the middle eccentric and 

concentric phases (King et aI., 1996; King 1998). This protocol ensures that the muscle is 

under full activation at the start and finish of the contractions of interest (King, 1998). 

Isokinetic dynamometers have been used to determine the force-velocity 

relationships of muscles in vivo (Perrine and Edgerton, 1978). Several investigations 

have been interested in the relationships between the force and the velocity of shortening 

of the muscle (Perrine and Edgerton, 1978; Wichiewicz, Roy, Powell and Perrine, 1984; 

Froese and Houston, 1985). The relationship between force and velocity has been 

expressed as a hyperbolic function. This relationship was first established for in-vitro 

muscle fibres (Hill, 1970). Figure 2.23 shows the shape of the hyperbolic curve predicted 

from isolated animal muscles (Hill, 1970). Pemine and Edgerton (1978) recorded joint 

torque for knee extension, at an angle of 30°, for a range of angular velocities (O°.s-1 to 

288°.s-1). It was found that for the lower angular velocities the force-velocity curve 

obtained from the dynamometer differed from the hyperbolic curve predicted by Hill 

(1970). It was found that peak torques occurred during concentric contractions rather 

than during the isometric contractions. 

force 

velocity 

Figure 2.23. Force - velocity relationship found by Hill (1970). 
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Fuglevand (1987) recorded joint torque and angular displacement for maximal knee 

extension at various angular velocities (30 to 300°.s·1 in steps of lO°.s·I). The torque­

velocity relationship was obtained for joint angles from 75° to 165° in steps 15°. It was 

found that for the smaller angles the torque-velocity curve followed a Hill type hyperbolic 

curve. As the angle increases the torque-velocity curve departed from the hyperbolic 

curve. The data appeared similar to the curves obtained by Perrine and Edgerton (1978). 

The author suggested that the phenomenon was related to the interaction between muscle 

length and the torque produced by the muscle. In a similar study Marshal! et al. (1990) 

found that peak torque occurred at a velocity of 60°.s·1 rather than O°.s·1 as predicted by 

the hyperbolic curve. Wickiewicz et al. (1984) also obtained torque-velocity curves 

which. were biphasic. 

Edman (1988) found that the force-velocity relationship was biphasic for individual 

muscle fibres from frogs (Figure 2.24). As the velocity of shortening dropped below one 

tenth of the maximum velocity of shortening the force produced by the muscle fibre was 

less than expected. 

force 

velocity 

Figure 2.24. Force - velocity relationship found by Edman (1988). 

A number of studies have used isokinetic dynamometers to obtain three dimen­

sional surface plots of joint torque, angle and angular velocity (Marshall et aI., 1990; 

Fugelvand, 1987; King et aI., 1996; King, 1998). Fugelvand (1987) performed maximum 

knee extensions over a range of angular velocities (30° .s·1 to 300° .s·l) and plotted the 

joint torques against joint velocity and joint angle as three-dimensional surfaces. For any 

give joint angle and angular velocity the associated maximum joint torque could be 

determined. Marshall et al. (1990) obtained a similar set of three-dimensional plots for 

knee extension and plotted the muscle force against length and velocity. The three­

dimensional plots obtained by Marshall et al. (1990) were similar to those obtained by 

Fugelvand (1987). King et al. (1996) outlined a method for fitting raw torque data as a 

function of joint angle and angular velocity data. Using a Kin-Corn isokinetic 

dynamometer King et al. (1996) collected torque data at the ankle, knee, hip and shoulder 

from an elite male gymnast. In al! cases the joint centre of the subject was lined up with 
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the axis of the dynamo meter and the subject was secured with velcro straps. The subject 

performed two repetitions of concentric-eccentric muscle contractions at a range of 

different angular velocities (20, 50, 100, 150,200 and 250 o.s-l) at each joint centre. To 

create the three-dimensional surface fits of joint torque to angle and angular velocity two 

relationships were determined. Firstly an exponential relationship between the joint 

torque and angular velocity was obtained. The second relationship expressed the joint 

torque as a quadratic function of the joint angle. These two relationships were combined 

to express joint torque as a non-linear function of joint angle and angular velocity. The 

three-dimensional surface was defined using eighteen parameters. 

When using an isokinetic dynamometer the operator must take into account the 

possible errors in the the data that are recorded. Many papers in the literature refer to 

errors created by "overshoot" (Sapega et aI., 1982; Winter et aI., 1981). The problem is 

associated primarily with dynamometers which are not motor driven. In order to move 

the arm of the dynamometer the subject must apply a force. The applied force initially 

accelerates the crank arm before the gearing of the dynamometer fixes the angular 

velocity. If the subject accelerates the arm beyond the predetermined isokinetic angular 

velocity the arm is decelerated by the gearing of the dynamometer. The deceleration of 

the arm leads to a peak in force/torque recorded by the data capture system (Sapega et aI., 

1982; Winter et aI., 1981) which can lead to errors, especially if the purpose of the study 

is to determine peak force or time to peak force. 

Overshoot is less of a problem for motor driven isokinetic dynamometers as it is the 

motor which accelerates the crank arm to the predetermined angular velocity. However, 

being driven by a motor has its own set of problems. During a concentric contraction the 

purpose of the motor is to accelerate the crank arm to the predetermined angular velocity 

and then maintain this angular velocity. If the concentric contraction is to precede an 

eccentric contraction the motor and gearing must bring the crank arm to rest then 

accelerate it in the opposite direction for the eccentric phase. These accelerations and 

decelerations lead to portions of the range of motion which are not isokinetic (Herzog, 

1988; King et aI., 1996). As the angular velocity of the trial increases, the range of 

movement which is isokinetic decreases (Herzog, 1988; Marshall et aI., 1990; Perrine and 

Edgerton, 1978). To ensure the movement is isokinetic over the range of interest trials 

should be designed to allow for the acceleration and deceleration of the crank arm 

(Herzog, 1988; King, 1998). 

Herzog (1988) presented a paper outlining the difficulties of obtaining true joint 

torques. The true joint torque was expressed as a function of several components. These 

included the torque recorded by the dynamometer and terms involving the weight and 

accelerations of the crank arm and the subject's limb. Depending on the orientation of the 

subject work must be done against gravity to lift both the limb and the crank arm. This 

means that the torque created by the weight of the limb and crank arm must be overcome 
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before the dynamometer could register a torque. By neglecting this factor the torque 

recorded by the dynamometer would tend to underestimate the joint torque (Herzog, 

1988). Herzog (1988) found that the percentage differences between resultant joint 

moment recorded using the Cybex (an isokinetic dynamometer) associated with these 

terms reached maximum values of 17.2%, 11.7%, and 24.3% for the largest angles (the 

limb approaching the horizontal) at O°.s-l, 120°.s-1 and 240°.s-1 respectively. If the joint 

action were to occur in the direction of gravity the converse would be true and the 

dynamometer would tend to overestimate the joint torque. King (1998) corrected the 

torque recorded by the dynamometer for the weight of the limb in order to obtain the joint 

torques. 

The term relating to the acceleration of the arm proved to have negligible effect on 

the calculation of the jOint torque during the mid-section of the exercise analysed, with a 

maximum magnitude at 0.3%. Therefore the assumption of constant angular velocity 

during the mid-section of the exercise was good even up to 2400/s (even though the range 

where constant angular velocities of the Cybex arm can be expected to decrease with 

increasing angular velocities, Perrine and Edgerton, 1978). The error values created by 

the accelerations of the limb were larger than those for the dynamometer arm. Part of the 

reason for this was the larger moment of inertia of the limb segment compared with the 

Cybex arm. The larger error value obtained from the acceleration of the limb implied that 

even with the dynamometer arm moving at a constant angular velocity the limb may have 

considerable accelerations and thus the movement cannot be termed isokinetic (Herzog, 

1988). King (1998) differentiated data collected from a goniometer in order to obtain the 

joint angular velocity and used this data (as opposed to the velocity recorded by the 

dynamometer) to determine when the joint actions were isokinetic. 

The final source of error which Herzog (1988) looked at was how the axis of the 

knee moved relative to the axis of the dynamometer arm. If the axes were perfectly 

aligned throughout a trial the distance from the knee to the load cell should equal the 

distance from the axis of rotation of the crank to the load cell. By carefully aligning the 

joint centre with the crank and strapping the subject's limb to the dynamometer arm 

Herzog (1988) was able to keep the difference between the two distances to below 

0.01 m. King (1998) collected data from a goniometer attached to the subject and 

corrected the torque for both joint angle and the moment arm of the subject. 

Summary 

The literature has shown that isokinetic dynamometers are useful machines for 

collecting information about the characteristics of intact muscles. These data may be fit 

with an appropriate function to form a three-dimensional surface of joint torque against 
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angular displacement and velocity. It has been shown that the hyperbolic function used to 

describe the force-velocity relationship does not always hold when recording joint torques 

from muscle groups. A function which is biphasic may be more appropriate to fit the 

concentric range of the data as shown by King (1998). 

When using an isokinetic dynamometer care must be taken during the collection of 

data. The angle range over which the torque is recorded should be large enough to allow 

for the acceleration of the crank arm at the start and end of the isokinetic phase. Data 

should be corrected for gravity, limb weight and differences between crank and joint 

angle (King, 1998). 

2.4.2 Segmental inertia parameters 

The inertia parameters of an individual's body segments refer to their mass, mass 

centre locations and moments of inertia. Mass, or inertia, refers to how much matter a 

body, or segment, possesses and is a measure of its reluctance to alter its state of motion. 

The mass centre of a body, or segment, is the theoretical point where all the body's mass 

could be considered to be concentrated. Moment of inertia is the rotational equivalent of 

inertia. It is a measure of how the matter in a body is distributed about an axis. It is 

similar to inertia in that it determines how difficult it is to change a body's rotational 

motion. It is different to inertia because a body's moment of inertia will vary depending 

on its shape and the axis of rotation considered. 

In the field of performance related sports biomechanics the researcher is interested 

in how the human moves. Since most human movements involve rotations about joint 

axes the moments of inertia of an athlete's limbs are of particular interest. Using a 

knowledge of the athlete's segmental moments of inertia and their angular velocities it is 

possible to determine segmental and whole body angular momenta. 

The calculation of whole body mass, mass centre location, moments of inertia and 

subsequently angular momentum requires a knowledge of the individual segmental inertia 

parameters. In many applications it is desirable to have a set of parameters for the 

particular individual under investigation (Yeadon and Challis, 1994). Simulation models 

attempt to model the human form using rigid links (MorIock and Yeadon, 1988; Gatto 

and Neal, 1992; Dainis, 1968; Duck, 1980). To improve the external validity of the 

models the rigid links should have the inertia parameters corresponding to the segmental 

parameters of the individual who is being modelled. For example a three segment model 

used to simulate a gymnast circling the high bar may comprise an arm segment, a torso 

segment and a leg segment. It would therefore be appropriate for these three segments to 

have the same masses, mass centre locations and moments of inertia (in the sagittal plane) 

as the performer being modelled. Since any model should be evaluated against 
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experimentally obtained data it may be suggested that using individualised inertia 

parameters in both the experimental and theoretical analyses is both justifiable and likely 

to improve the accuracy and external validity of the results. 

This section of the literature review outlines the methods for obtaining individual­

ised inertia parameters for use with a simulation model and the kinematic analysis of the 

backward giant circle. The methods reviewed include experimental and theoretical 

techniques. The experimental techniques include cadaver studies and regression methods 

along with direct measures for obtaining inertia parameters in situ. The theoretical 

methods are based on geometric modelling using anthropometric measurements which 

have either been obtained directly or from photographic images. 

Several methods have been presented for the determination of segmental 

parameters. Dempster (1955) calculated the mass of both cadaver segments and limbs in 

situ using the immersion technique. The segment of interest is lowered into a tank 

containing water. The volume of water displaced is equivalent to the volume of the 

segment. To find the mass of the segment Dempster (1955) assumed that its density was 

the same as water. However, for the segments of the eight cadavers used in the study it 

was possible to calculate their density from their measured mass. The mass centre 

locations of the cadaver segments were determined using a balance plate. A technique 

more commonly used is the moment table or reaction table (Nigg, 1994). If the weight of 

the segment is known the balance plate may be used to determine the mass centre location 

by taking moments about the pivot point. This method can only be used to locate the 

mass centre in one plane at a time. Hay (1994) used a reaction board to calculate the 

mass centre location for the whole body. Moments of inertia may be determined using 

the pendulum technique. The objectlsegmentlbody is suspended from a fixed point then 

set in motion. The moment of inertia is determined from the period of one oscillation. 

This method was used by Dempster (1955). Hatze (1975) presented a method for 

determining the mass centre location and moment of inertia of body segments in situ 

using passive oscillations. Hatze's (1975) method used the time period of oscillation and 

the decay in amplitude of the oscillation to determine the moment of inertia of the 

segment. 

Gamma scanners have been used to determine the inertia parameters of segments. 

Brooks and Jacobs (1975) passed radiation from a cobalt-60 source through a leg of lamb. 

The mass calculated from the gamma scanning and from weighing differed by less than 

1 %. This method has been used on live subjects by Zatsiorsky and Seluyanov (1983). 

The entire body of 100 subjects was scanned and segmental masses determined. Nigg 

(1994) showed that the segmental masses expressed as a percentage of body weight 

obtained by Zatsiorsky and Seluyanov (1983) compared well with those obtained by 

Dempster (1955). 

Inertia parameters have been determined using whole body mass, anthropometric 

.... 
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measurements and regression techniques (Hinrichs, 1985; Forwood, Neal and Wilson, 

1985). Regression techniques for determining inertia parameters have relied on cadaver 

data. Hinrichs (1985) obtained regression equations based on the data of Chandler, 

Clauser, McConville, Reynolds and Young (1975) to predict moments of inertia based on 

anthropometric measurements. The author suggested that extrapolation using 

anthropometric measurements outside those of the cadaver sample should be done with 

care. This was due to the small number of cadavers used. Barter (1957) combined the 

data from three cadaver studies, including Dempster (1955), to express segmental mass as 

a linear function of whole body mass. The standard errors ranged from 0.3 kg to 2.9 kg 

for both feet and the head, neck and trunk respectively. The problem with regression 

techniques is that relatively few cadavers have been studied (fewer than fifty) which have 

largely consisted of adult caucasian males. Gymnasts tend not to have the physical 

dimensions of "average" people, therefore using regression equations will probable lead 

to errors caused by extrapolation. Morlock and Yeadon (1989) used non-linear regression 

equations and found them to be superior to the linear regression equations. It was also 

found that the non-linear regression equations gave reasonable estimates of the segmental 

inertia parameters even when the anthropometric measurements used lay outside the 

sample range of the cadaver data used (Chandler et aI., 1975). 

Mathematical models have been used to represent the human form as a specified 

number of rigid geometric solids (Whitsett, 1963; Hanavan, 1964; Jensen, 1976; Hatze, 

1980; Yeadon, 1990b). By obtaining the volumes of the solids and assuming their 

density, which may be fixed (Yeadon, 1990b; Hanavan, 1964) or vary (Hatze, 1980) 

throughout the solid, the mass, mass centre location and moment of inertia of the solid 

may be obtained using mathematical procedures. With the inertia parameters of the solids 

known the inertia parameters of the limbs/segments may be determined. 

In general the mathematical models require the taking of anthropometric 

measurements from the subject to be modelled. The number of measurements taken 

depends on the number of solids that the model is constructed from. An alternative 

method for obtaining the dimensions of the solids is to digitise images of the subject from 

video or photographs (Jensen, 1978). Many of the mathematical models have also 

assumed fixed densities for the solids/segments. Ackland, Henson and Bailey (1988) 

found from the dissection of the left and right thigh of a cadaver that the cross-sectional 

density showed marked variations. The author predicted the volume of the segment using 

the inertia model of Jensen (1978) and computer tomography (CT). The mass of the 

segment was predicted using the calculated volumes and actual density values determined 

from the CT scans and from the uniform density values obtained from the cadaver studies 

of Dempster (1955). It was was shown that the assumption of uniform density throughout 

the thigh segment would lead to only minor errors in the estimation of inertial parameters. 

Larger errors were obtained when the segment volume was inaccurately estimated. Since 
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the assumption of uniform density leads to only minor errors then a mathematical model 

which accurately estimates the segment volumes must be recommended. However, the 

question arises as to which density values to use. That is, the density values reported by 

either Dempster (1955) or Chandler et al. (1975) could be used. The most appropriate 

density values to use would be those that result in the estimation of whole body mass 

which is closest to the recorded mass. 

Hanavan (1964) developed a 15 segment inertia model of the human form. The 

model was constructed from spheres, circular ellipsoid, elliptical cylinders and the frustra 

of right circular cones. The model required just 25 anthropometric measurements to 

define the segment volumes. The segment masses were calculated using the regression 

equations of Barter (1957). Barter (1957) obtained the regression equations based on 

cadaver data to express segmental weight as a linear function of body weight. Hanavan 

(1964) stated that a major limitation of the geometric model approach to obtaining 

segment volumes is that segment shapes cannot be duplicated by a geometric solid of 

revolution (Jensen, 1976). 

Jensen (1976) modelled the body using 16 segments. Lateral and frontal 

photographs of an athlete were sectioned at 2 cm intervals. Each interval was recon­

structed as an elliptical zone based on the radii of the section. The volume of the 

individual segments were calculated by summing the volumes of the zones. Masses were 

calculated for each zone using uniform density values. The density values were obtained 

using the same method as Hanavan (1964). The moments of inertia for each zone were 

calculated as the moment of inertia of an elliptical plate. The moment of inertia for the 

segments was calculated using the moments of inertia of the zones and the parallel axis 

theorem. The model was able to calculate whole body mass to within 2% of the measured 

mass. 

Hatze (1980) developed a 17 segment inertia model. The 17 segments were divided 

into small mass elements of varying geometric shape. This enabled the close approxima­

tion to fluctuations in segment shape. Cross-sectional density values could be varied 

along with the density about the segment's longitudinal axis. Separate considerations 

were made when modelling the male and female with adjustments made to the density of 

certain segments based on the fat levels of the subject. The model required 242 separate 

anthropometric measurements. When results between predicted and measured whole 

body mass were compared for four subjects the model produced a maximum error of 

0.52%. Moments of inertia predicted by the model also compared well with experimen­

tally obtained values (maximum error 5%). Although the model has been shown to be 

accurate when predicting whole body mass, it should be pointed out that for use in 

performance related sports biomechanics with elite athletes the researcher does not 

always have the lUXUry of enough time to obtain 242 anthropometric measurements from 

their subject. This dilemma may be compounded if several inertia sets are required. 

J 
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Yeadon (l990b) presented a mathematical model for use with predicting 

personalised inertia parameters. The body was modelled as 40 geometric solids 

(Figure 2.25). To obtain the volumes of the 40 solids 95 anthropometric measurements 

are required. These measurements comprise 34 lengths, 41 perimeter, 17 widths and 

three depths taken at specified levels on the body. The time to record these measurements 

is less than 25 mins for an experienced operator. Previous geometric models have used 

ellipses to model the cross-section of body segments (Hanavan, 1964; Jensen, 1976; 

Hatze, 1980). Yeadon (1990b) showed that these were poor shapes for the modelling of 

the torso segments. To improve on the ellipse Yeadon developed a "stadium" solid based 

on the perimeter and width measurements. The model assumed uniform density across 

each solid and used the density values of Dempster (1955). The model was able to 

calculate the inertia parameters for up to 20 body segments (Figure 2.25). The model 

predicted the whole body mass to within 2.5% for the three subjects used. 

, 8 

a) 11 segments b) 40 solids 

Figure 2.25. The inertia model of Yeadon (1990b) (adapted from Yeadon, 1990b) 

The use of accurate subject specific inertia parameters is desirable whether it is to 

improve the external validity of a simulation model or to be used in the analysis of cine or 

video data The geometric models reviewed allow the inertia parameters to be customised 

to the individual. The model of Yeadon (l990b) has been shown to be accurate at 

predicting the whole body mass of a subject and requires only 25 mins of contact time 

with the subject. Since access to the subject is permitted in the present study the model of 

Yeadon (I 990b ) will be used to obtain inertia parameters for both the simulation model 

and the three-dimensional analysis of the backward giant circle. 

2.4.3 Three-dimensional analysis 

In the field of performance related sports biomechanics the most common and 

versatile techniques of analysis are the visual techniques. The visual techniques include 
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cine and video recordings along with the appropriate analysis procedures. 

The simplest approach is to assume that the movement occurs in two dimensions 

(i.e. planar motion). This method requires the use of only one camera. Further cameras 

may be used depending on the field of view required. By placing a calibration object in 

the plane of movement a scale factor may be determined. The scale factor is then used to 

transform the image co-ordinates from the digitised image into co-ordinates in the 

movement space (Yeadon and ChaIIis, 1994; Winter, 1990; Miller and Nelson, 1973). 

This method works on the assumption that all movement occurs in the plane of 

progression or that the movements which do not are not important. The simplicity of this 

method is not without its shortcomings. Errors are produced when the focal axis of the 

camera is not in line with the movement (Miller and Nelson, 1973) and it is also common 

for important body landmarks to be obscured by other body parts when using only one 

camera. To avoid these errors and assumptions it is often better to perform a three­

dimensional analysis even when the movement appears to be planar. The method of 

three-dimensional analysis requires the use of two or more cine or video cameras (Miller 

and Nelson, 1973; Yeadon and Challis, 1994). 

Historically, cinefiIm has been used in preference to video due to its superior 

resolution (Kennedy, Wright and Smith, 1989; Angulo and Dapena, 1992). However, 

recent developments in video cameras and video based digitising systems have reduced 

the difference in resolution. The use of more than one "charged coupled device" (CCD) 

chips in modem cameras produces a more colour refined picture than older one-chip 

systems (Tan, Kerwin and Yeadon, 1995). Recording formats have also improved with 

Hi8 tapes having 400 lines of resolution compared with the 240 lines associated with 

VHS. Kerwin and ChaIIis (1994) produced data of equal accuracy to cine using a high 

resolution video digitising system (Prisma III based). This system had a maximum 

resolution of 1,536 x 1,150. Kerwin (1995) presented an improved video digitising 

system based on the Apex imager (Target). This system was capable of four times zoom, 

line interpolation to "smooth" the images and sub pixel cursor movement. The Target 

(Apex based) system has a resolution of 12,288 x 9,200. Tan et al. (1995) found the Apex 

based system to have better precision and accuracy when compared with the Prisma III 

based system used by Kerwin and ChaIIis (1994). 

Cine and video techniques require the manual digitisation of each field of 

movement. This can be a very time consuming task and a possible source of errors. This 

has lead to the development of automatic motion analysis systems. The Mac Reflex 

system uses reflective markers attached to the athlete or object which are tracked by 

infrared cameras within a calibrated movement space. This method requires enough 

cameras so that the markers can always be seen by at least two of the infra red cameras at 

all times. Such a system reduces the process and analysis time considerably (Lindsay, 

1996). However, for complicated skills as seen in gymnastics problems arise due to the 
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large volumes of movement space required and the obscuring or dislodging of the 

markers by other body parts. It should also be noted that the markers cannot be placed at 

the joint centres of the subject, therefore some correction/analysis would be required to 

locate the joint centres from the output. 

In conclusion three-dimensional analysis should be preferred to a planar approach 

when investigating human movements. The advancement in video based analysis 

systems in terms of their accuracy and precision coupled with the flexibility they offer in 

terms of cost and processing time make them the ideal choice in performance related 

biomechanics. Although the automatic tracking systems would reduce the time for data 

analysis they still have their limitations. Two multi-chip video cameras will be used to 

collect data on an elite gymnast performing backward giant circles. The images will be 

digitised using the Target high resolution system. 

Synchronisation of force and video data 

Three-dimensional reconstruction of a single point requires image co-ordinates for 

that point simultaneously from at least two camera views (Yeadon and Challis, 1994). 

The images from the two cameras therefore need to be synchronised. Cine cameras and 

video cameras may be physically synchronised by phase-locking and gen-locking the 

cameras respectively. 

When phase/gen-locking has not been available other,methods,have been used to 

synchronise the data sets. By placing a timing device within the fields of view the times 

for each framelfield may be determined. The data from each camera view can then be 

interpolated (Yeadon and Challis, 1994 cited Walton, 1981 and Dapena, 1979). Yeadon 

(1989) presented a method of synchronising camera views by identifying common events 

from the two camera views. Greig and Yeadon (1994) matched the events of foot contact 

from two cameras during the approach phase in high jump. 

Aside from the three-dimensional reconstruction, film data is often required to be 

synchronised with force data (Cappozzo, Leo and Pedotti, 1975). When combining data 

from a video analysis and force data capture, errors in synchronisation can lead to further 

errors in the analysis. O'Connor, Yack and White (1995) demonstrated how an LED used 

to synchronise force and video could lead to an error in synchronisation of one whole 

video field. A method was presented for interpreting the video signal for improved 

synchronisation with force data collected from a force platform. 

Brewin (1995) recorded the tension in one cable for a gymnast performing giant 

circles on rings whilst simultaneously recording video images from two cameras. The 

collection of the tension data was initiated using a trigger. The video and tension data 

were synchronised by an array of LED's connected to the trigger which was placed in 
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view of both cameras. Shapiro (1978) synchronised two cameras filming a golf ball 

falling under the acceleration of gravity by illuminating a flash bulb in the view of both 

cameras. 

Where possible gen-locking should be used to synchronise multiple cameras 

recording the same event, since this reduces the additional analysis time required to 

synchronise the image data using an alternative method. O'connor et al. (1995) and 

Cappozzo et al. (1975) highlighted the problem associated with errors in synchronising 

video and force data. Using an event to trigger the force data collection and to produce a 

visible record of when this event occurred would allow the force and video data to be 

synchronised to within half the time for one frame/field of the image recording. Such a 

system will be used when collecting force and video images of a gymnast performing 

backward giant circles on the high bar. 

Three-dimensional reconstruction 

Several techniques have been developed to calculate three-dimensional locations of 

landmarks from synchronised image co-ordinates (Abdel-Aziz and Karara, 1971; Chow, 

1994; Bergemann, 1974). The most common technique used is the direct linear 

transformation (DLT) method outlined by Abdel-Aziz and Karara (1971). As with the 

other techniques a minimum of two cameras are required. A major advantage of DLT is 

that it was designed to be used with non-metric cameras. This allows the cameras to be 

placed in unknown locations (Van Gheluwe, 1978). The cost of this is that calibration of 

the movement space is required. The process of transforming comparator co-ordinates 

into object co-ordinates was usually performed in two stages (Abdel-Aziz and Karara, 

1971). The comparator co-ordinates are first transformed into image co-ordinates and 

then from image co-ordinates into object space co-ordinates. However, these steps were 

not possible using non-metric cameras. Therefore, the method of Abdel-Aziz and Karara 

set out to solve the above transformations simultaneously. 

The DLT method is based on the coIIinearity condition which relates the digitised 

co-ordinates to the spacial co-ordinates (Yeadon, 1996). Yeadon (1996) stated that for an 

ideal system a point P in space, the centre of the lens C and the image I are coIIinear 

(Figure 2.26). 

From this condition a transformation which is defined by 11 parameters may be 

obtained. These parameters are related to the location and orientation of the camera and 

the characteristics of the digitising system. There are eleven parameters for each of the 

cameras. To calibrate the camera-digitiser system control points in the movement space, 

with known locations, must be filmed. Each control point corresponds to a pair of 

digitised co-ordinates (u,v) which gives rise to two equations for the 11 DLT parameters 
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(Yeadon, 1996). Therefore to solve for the 11 DLT parameters a minimum of six control 

points are required. This results in 12 equations in 11 unknowns. The 11 DLT 

parameters are then determined using a "least squares" formulation. 

(X,y,z) 

p 
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Figure 2.26. The coIlinearity condition. 

To reconstruct the three-dimensional co-ordinates of unknown points the digitised 

co-ordinates from the two camera views are required (synchronised). Using the two sets 

of DLT parameters obtained from the calibration of the two cameras and the digitised co­

ordinates four equations in the three unknown co-ordinates of the point (x,y,z) are 

obtained. The three-dimensional co-ordinates of the point are determined using a least 

squares solution. 

Accuracy ofreconstruction 

Shapiro (1978) determined the accuracy of the 11 parameter DLT reconstruction by 

filming a calibration volume containing 48 control points. Only 20 of the points were 

used to calculate the 11 parameters. The remaining points were used to determine the 

accuracy of the reconstruction. For a 3m field of view the average error in reconstruction 

was 5 mm. To investigate the accuracy of filming a dynamic movement Shapiro filmed a 

golf ball in free flight faIling through the calibrated movement space. The acceleration 

due to gravity was calculated from the reconstructed vertical displacement data. The 

error in the calculation of the acceleration due to gravity (9.8 m.s-2) was found to be 

within 1 % to 4%. 

A number of studies have attempted to determine the effect that the number of 

control points has on reconstruction accuracy (Wood and MarshaIl, 1986; Hatze, 1988). 

The 11 parameter DLT requires a minimum of six control points; however it was found 

that the accuracy of reconstruction improved with the number of control points used 

(Wood and MarshaIl, 1986; Hatze, 1988; both studies used a maximum of 30 control 

points). 
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Studies have also been carried out to determine the accuracy of reconstruction 

outside the calibration volume (ChaIIis, 1995; Wood and Marshall, 1986; Angulo and 

Dapena, 1992). All three studies showed that reconstruction accuracy was inferior for 

points outside the calibration volume. Wood and Marshall (1986) concluded that it would 

be better to have a smaller number of control points well distributed throughout the object 

space than to use extrapolation. 

The DLT method of three-dimensional reconstruction is flexible in that it allows the 

cameras to be placed in arbitrary position. In order to reconstruct the digitised images 

into three-dimensional locations the 1 I DLT parameters must be determined from known 

control points which make up the calibration volume. The best results in terms of 

reconstruction accuracy were obtained when the points to be reconstructed fell within the 

calibration volume. Using more than the six control points was also found to improve 

reconstruction accuracy. It is therefore suggest that when constructing a calibration 

volume effort should be made incorporate the entire movement space of the activity to be 

reconstructed. 

Curve fitting 

A theoretical approach to the analysis of human movement requires a knowledge of 

the equations of motion which define the system. These equations of motion often 

contain terms relating to the linear and rotational displacement of body segments. It 

would also be necessary to obtain the first and second derivatives of these displacement­

time data. Nearly all kinematic data is obtained through some measurement and data 

reduction system (Winter, Sidwall and Hobson, 1974). As a result the data will consist of 

two parts; the true signal and the noise which has been added to the true signal (ChaIIis 

and Kerwin, 1988). Therefore a method is required to obtain the simplest representation 

of the data that adequately describes the true signal whilst eliminating the noise due to 

experimental errors (Wood, 1982). Such a process is referred to as either "curve fitting" 

or "data smoothing". 

Data may be smoothed and differentiated using a number of techniques. The most 

commonly used techniques are a digital filter with numerical differentiation based on 

finite differences, a least squares polynomial fit with analytical differentiation, a Fourier 

analysis and polynomial splines. 

Fourier analysis allows periodic data to be expressed as a weighted sum of sine and 

cosine terms of increasing frequency (Wood, 1982). Using a truncated Fourier series 

allows the frequencies associated with the noise signal to be eliminated. 

A global polynomial fit uses all the available data points and attempts to fit a Iow 

order polynomial (less than seven) (Wood, 1982) using a least squares approach. While 
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a least squares approximating polynomial provides the same degree of accuracy over all 

data points, it should be noted that outside this interval the function departs to plus or 

minus infinity. For this reason it is often better to record additional data points outside 

the time interval of interest. The drawbacks to using a polynomial fit are that decisions 

must be made regarding the order of the polynomial and the number of data points to be 

included. Another shortcoming is the inability of global polynomial functions to 

adequately fit regions of varying complexity within one data series. The need for an 

approximating function that can fit data in different regions of time with varying 

curvature has lead to the use of spline functions (Wood, 1982). 

Spline functions may be defined as piecewise polynomials of some degree 2m-1 

joined at points called knots in such a manner as to give a continues function having m 

continuous derivatives (Wood and Jennings, 1979). The condition by which the function 

has m continuous derivatives ensures that it is smooth itself but, unlike a global 

polynomial, its piecewise nature enables it to adapt quickly to changes in curvature 

(Wood, 1982). 

The spline approximation procedure commonly employed is that of Reinsch (1967, 

1971) which provides a natural spline function of degree 2m -I with knots at each data 

point (N). A set of N-I polynomials of degree 2m-1 are pieced together in such a way 

that the "smoothness integral" is minimised. 

(2.4) 

under the boundary condition that the fit is within the "accuracy measurement" 

LN (g(x.) - Y. )2 , , ~ S 
oy. '" 

i = 1 ' 
(2.5) 

where 

0Yi standard errors of measurement 

S parameter that controls the extent of smoothing 

Cubic splines have been commonly used in biomechanics for curve fitting. 

Zernicke, Caldwell and Roberts (1976) calculated the difference between the force 

determined from the second derivative of displacement-time data and those obtained from 

the force platform during a kicking activity. This procedure was used to compare the 

polynomial and cubic spline methods of curve fitting. The mean percentage difference 
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between the force recorded from the force plate and that derived from the fifth order 

polynomial fit was 10.27% (range 0.50% to 81.30%). The mean percentage difference 

for the cubic spline was 4.75% (range 0.04% to 11.43%). Zernicke et al. (1976) found 

that the spline was more flexible and was able to cope with rapid changes in the data, 

whereas the polynomial tended to over-smooth the data which lead to inaccuracies in the 

computation of force and accelerations. MCLaughlin, DiIlman and Lardner (1977) also 

found that the cubic spline was superior to the polynomial fit. 

The first and last values of the second derivative of a cubic spline function will be 

zero; consequently, spurious acceleration data may be obtained close to the end-points. 

To cope with this problem Zernicke et al. (1976) and MCLaughlin et al. (1977) suggested 

that additional data points should be collected at either end of the interval. A further 

weakness of a cubic spline is that the third derivative Gerk) has jump discontinuities, and 

to assume that forces acting within the body act in a non-smooth manner would seem to 

be inappropriate (Wood and Jennings, 1979). 

Wood and Jennings (1979) overcame the problems of the cubic spline by using a 

quintic spline. Since the third derivative Gerk) of a quintic function is both continuous 

and smooth Wood and Jennings (1979) suggested that the quintic spline would be a more 

appropriate model for biomechanical data. 

Challis and Kerwin (1988) compared the performance of a number of curve fitting 

techniques by generating mathematical functions and adding noise to them. This allowed 

the second derivative to be accurately determined prior to fitting the curve. The quintic 

splines produced superior results to the cubic splines. The cubic spline was inferior at the 

endpoints of the second derivative. Also the second differential of the cubic spline is 

piecewise-linear so does not approximate very well to a signal whose second differential 

is complex. 

Summary 

It is preferable to collect three-dimensional data rather than two-dimensional data 

even if the motion to be investigated appears to be planner. Using three-dimensional 

analysis no assumptions about the nature of the movements are made .. The difference in 

resolution between cine based and video based analysis has decreased due to the 

improvement of both the video cameras and the video based digitising systems. It is 

therefore the choice of the researcher as to which format to use. The method of three­

dimensional DLT has been proven. Care must be taken during calibration that the entire 

movement space is contained within the calibration volume. The smoothing of data will 

depend upon the individual application. However, if second derivative data is required a 

quintic spline would be most appropriate. 
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2.4.4 Simulation 

The definition of a simulation model was given in section 2.3.1 and examples of 

such models used to simulate swinging on the high bar were given in section 2.3.3. Using 

a simulation model the researcher has complete control over the experiment being 

conducted and internal validity can be maximised. That is, changes to the independent 

variable may be made without effecting or changing other variables. This is not always 

the. case when working with a live subject. Although simulation models have high 

internal validity it is the external validity which causes most concern. As stated in section 

2.3.1 external validity refers to how well the results of an experiment relate to the real 

world. For a simulation model external validity is most often related to its complexity. 

To maximise the external validity the model should contain all the components relevant to 

the activity under investigation. This statement can be interpreted in two ways. The first 

is to take the statement literally and attempt to model the finest details. For example, 

Hatze (1981) presented a human body model which was used to simulate the long jump 

takeoff. The model comprised 17 segments and 46 muscle groups. These muscles 

required neural control time histories for activation. The advantage of such a complicated 

model is that it requires so much input information that there is an increased possibility of 

mimicking the activity under investigation (Yeadon and Challis, 1994). However, since 

the model is so complex interpretation of the results is far more difficult. Often a less 

complex model will yield a better understanding of the underlying mechanics than a more 

complex model. For the simulation of giant circles models containing one or more rigid 

links have been successful (Dainis, 1968; Jade, Morlon and Canal, 1993; Morlock and 

Yeadon, 1988; Rusteburg, Figgen and Nicol, 1993). 

Simulation models may be used to predict the movements of the sporting 

equipment. An example of this is the simulation of the javelin. Hubbard and Rust (1984) 

modelled the javelin as an aerodynamic rod and simulated flight (cited by Yeadon and 

Challis,1994). Other models have been used to simulated the human body. For example 

Yeadon, Atha and Hales (1990) simulated aerial movements with an 11 segment 

simulation model. In the case of the high bar both the body and the equipment must be 

modelled. Gatto and Neal (1992) showed how the elastic properties of the high bar effect 

the reaction forces experienced at the gymnast's hands. Similarly the body must be 

adequately modelled. Gatto and Nears model overestimated the reaction forces at the bar 

by nearly one bodyweight when compared with the work of Kopp and Reid (1980). This 

may be in part due to the stiffness of the spring used to model the bar; however, a single 

segment cannot model the effect that the gymnast's technique may have on the reaction 

force. Since actions are performed at the shoulders, hips and knees (Okamoto et aI., 

1987; Briiggemann et aI., 1994) the minimum number of segments required for a two­

dimensional model is four. 
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The external validity of the simulation model is determined by evaluation with 

experimentally obtained data. Yeadon (1984) compared the twist and somersault angles 

obtained from film analysis and the simulation of twisting somersaults and expressed the 

accuracy of the model in terms of the percentage angle difference between the simulated 

and actual performance. The accuracy of the model could then be expressed in these 

terms. For the high bar application, the optimum technique for increasing energy or 

rotation may be obtained using an optimisation algorithm (section 2.3.4); yet these 

optimal solutions would be meaningless without knowing the accuracy of the model. 

2.4.5 Optimisation 

The process of optimisation may be described as the search for the maximum or 

minimum value of a given function. The function, f, will usually depend on one or more 

independent variable. If the function is dependent on only one independent variable the 

process of optimisation is referred to as one-dimensional. If the function is dependent on 

more than one variable it is termed multi-dimensional. To optimise the function the 

values of the independent variables must be found where f takes on a maximum or 

minimum value (Press, F1annery, Teukolsky and Vetterling, 1988). From this definition 

the process of optimisation is the quest for either the largest value for the function f or the 

smallest value. Maxima or minima can be either global (truly the highest or lowest 

function value) or local (the highest or lowest function value in a neighbourhood). 

To perform an optimisation requires numerous function evaluations along with 

some process of manipulating the function variables in such a way as to obtain the 

maximum or minimum value of the function. It is therefore practical to use a mathemati­

cal algorithm to solve this problem. When choosing an optimising routine/algorithm it is 

important to consider the computational costs. That is, how long the procedure will take 

to find the optimum value of f. This will be related to the complexity of the function and 

the method used by the optimising algorithm. A simple method for optimisation is the 

Golden section search. This process attempts to bracket the optimum using three points. 

It is assumed that the minimum value is within the interval defined by the outer two 

points. At each step one of the intervals is reduced until the interval is acceptably small. 

When this acceptably small interval is achieved the middle point of the triplet is the 

minimum or maximum value of the function. 

If the behaviour of the function is known an appropriate method may be adopted. 

For example if the function is parabolic near the minimum then an algorithm which fits a 

parabola through any three points on the function would be an adequate algorithm to find 

the minimum. One such method is called inverse parabolic interpolation. Here, a 

parabola is drawn through three points on the function curve. The function is then 
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evaluated at the parabola's minimum. In the next step one of the initial three points is 

replaced by the value at the parabola's minimum and so the process continues (Press et 

aI., 1988). 

The two methods described above were for one-dimensional optimisations. The 

next two methods are for multi-dimensional functions where the function is dependent on 

N variables (where N > 1). The "downhill simplex method" as developed by Nelder and 

Mead (1965) is not considered to be efficient in terms of the number of function 

evaluations required. It is based on a geometric shape which comprises N + 1 points. 

The algorithm is started with an initial guess of the function variables. The algorithm 

then moves these points in such a way that the highest point is reflected through the 

opposite face to produce a lower point. By repeating this process the simplex "walks 

downhill". If the simplex enters a valley (possibly a local or the global minima) it is able 

to flow along the bottom of it. However, if this valley is a local minimum the simplex 

may not be able to escape as the vertices will remain within the valley. This is a common 

problem with many other optimisation algorithms. To avoid obtaining a local minimum it 

is suggested that the algorithm is used a number times but from different starting 

positions (different starting values of the function variables). This may result in a number 

of different local minimums. If the process is repeated an adequate number of times the 

minimum which has the lowest function value may be accepted as the global minimum. 

The second method is called "Simulated Annealing". This process is based on how 

liquids cool to form solids. If molten metal is allowed to cool slowly (anneal) the 

molecules within are able to line themselves up to form pure crystals. When the 

molecules form the pure crystals they are in a state of minimum energy. If however, the 

molten metal is cooled too quickly it is unable to reach this minimum energy state. The 

process is based on the idea that at a temperature T the system has its energy probabilisti­

cally distributed among all different energy states. Even when at a low temperature there 

is a chance that the system is in a high energy state (Press et aI., 1988). Therefore the 

process does not give up this possibility and will continue to look for a possible escape 

from the local minimum in an attempt to find the global minimum. This is done by 

accepting uphill moves as well as the usual downhill moves. This is known as the 

Metropolis algorithm. 

Corana et al. (1987) and Goffe at al. (1994) tested the Simulated Annealing 

algorithm on a number of test functions and compared the results with other minimisation 

algorithms (including the Simplex algorithm). Having a prior knowledge of the test 

functions local and global minima allowed the authors to evaluate the success of the 

algorithms. The process of Simulated Annealing was found costly in terms of function 

evaluations when compared with the Simplex algorithm and other Adaptive Random 

Search methods (Corana et aI., 1987). However, it was able to find the global minimum 

in all but one case (a neural network function whose nature proved to be virtually 
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impossible for any method to the find the global optimum, Goffe at aI., 1994) when all 

the other methods failed. Even when the global optimum could not be found by the 

Simulated Annealing a better optimum was found than any of the other algorithms (Goffe 

et aI., 1994). 

It would seem that the cost, in terms of function evaluations, of the Simulated 

Annealing algorithm is outweighed by its robustness in its ability to find the global 

optimum even for functions with a large number of independent variables. In many cases 

the need to find the global optimum is more important than cost and therefore the 

Simulated Annealing algorithm should be used. 

2.5 Summary 

The research question posed in Chapter 1 will be addressed using a simulation 

model. The model will be simple enough to allow the mechanics of the backward giant 

circle to be determined, yet sophisticated enough to model the major contributions to 

technique. 

Subject specific inertia and muscle data will be collected and used in the simulation 

model to increase its internal validity. The inertia data will be obtained using 

anthropometric measurements and the inertia model of Yeadon (1990b). The muscle data 

will be collected using an isokinetic dynamometer. Care will be taken to address the 

limitations which arise during data collect which have been highlighted in the literature. 

Evaluation of the model will be carried out using kinetic and kinematic data. A 

gymnast performing giant circles will be videoed using two cameras so that a three­

dimensional analysis may be performed. Reaction forces at the bar will be collected 

using strain gauge technology. Full Wheatstone bridge circuits will be used to maximise 

the sensitivity of the strain measurement system. For the evaluation the simulation model 

will be driven by the joint angle time histories obtained from the video analysis. These 

will be input to the model in the form of quintic splines. Quintic splines are chosen as 

their second derivatives are smooth. 

The optimisation of the accelerated backward giant circle will be carried out using 

the simulation model in conjunction with the Simulated Annealing algorithm (Goffe, et 

aI., 1994). Although this method may take longer than the Simplex algorithm its chances 

of reaching the global optimum are higher. 
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CHAPTER 3 

DEVELOPMENT OF A FOUR SEGMENT MODEL 

3.1 Introduction 

Chapter 3 presents the development of a single segment simulation model and a 

four segment simulation model. In both cases the equations of motion are presented 

along· with the method of their solution. The inputs to the models and the outputs 

obtained from them are also presented. 

3.2 Development of a single segment simulation model of a gymnast swinging on an 

elastic high bar 

3.2.1 Introduction 

Some of the previous attempts to model a gymnast swinging on the high bar have 

assumed that the bar was rigid (Dainis, 1968; Yeadon and Morlock, 1988). Gatto and 

Neal (1992) used a simulation model to show that an elastic bar lead to a reduction in 

peak reaction force. Briiggemann et al. (1994) showed that during an accelerated giant 

circle the bar achieves a vertical displacement of approximately 0.1 0 m from its neutral 

resting position as the gymnast passes through the lowest part of the giant circle. 

Neglecting the elastic properties of the bar during simulations may lead to an over­

estimation of the model's angular velocity through the lowest point. When using an 

elastic bar, the vertical displacement of the bar away from its neutral resting position will 

increase the model's moment of inertia about that point and hence reduce the angular 

velocity when compared with a rigid system. 

This section presents a single segment simulation model of a gymnast swinging on 

the high bar. A damped linear spring will be used to model the elastic properties of the 

bar. 

3.2.2 Methods 

The model comprises a single rigid rod, constrained to move parallel to the sagittal 

plane, to represent the gymnast and a massless damped linear spring to represent the bar 
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(Figure 3.1). Friction at the hands and air resistance are assumed to be negligible. The 

free body diagram of the system is given in Figure 3.1. 

Zb: 
x 

Xb 

Figure 3.1. Free body diagram of the single segment model. 

The nomenclature is given below: 

a distance of mass centre from proximal end 

m. mass of segment 

la moment of inertia of segment about its mass centre 

e angle between the spring and the horizontal 

cl> angle between segment and the horizontal 

~ angular velocity of segment 

<Ii angular acceleration of segment 

Xb horizontal displacement of the spring 

· Xb horizontal velocity of high bar spring 
.. 
X b horizontal acceleration of the spring 

Zb vertical displacement of the spring 

· Zb vertical velocity of high bar spring 

· . Zb vertical acceleration of the spring 

k stiffness coefficient of the spring 

b damping coefficient of the spring 

R z vertical reaction force 

Rx horizontal reaction force 

r b length of the spring 
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Equations of motion 

The equations of motion are obtained by resolving in the horizontal and vertical 

directions using Newton's Second Law and by taking moments about the neutral bar 

position (Le. where the spring has zero length). The location of the mass centre relative to 

the neutral bar position is given by; 

x = xb + acosq, 

z = zb + asinq, 

(3.1) 

(3.2) 

First and second derivatives of these equations yield the velocity and acceleration of the 

mass centre. 

*- = xb asinq,~ i: = ~ + acosq,~ 

asinq,~ 
.2 

acosq,~ 
.2 

X = Xb - acosq,q, z = ~ + asinq,q, 

The tension T in the spring may be calculated from the resultant of the forces Rx and Rz· 

The horizontal and vertical reaction forces may therefore be written as follows: 

Rx = -TcosS 

Rz = - TsinS 

(3.3) 

(3.4) 

Hooke's Law states that the tension in a spring is equal to the product of extension and 

the coefficient of stiffness of the spring. 

T=kl (3.5) 

where 

k is the stiffness coefficient and I is the extension in the spring. 

Substituting T from equation (3.5) into equations (3.3) and (3.4) allows the horizontal 

and vertical reaction forces to written as follows: 

Rx = -krbcosS = - kXb 

Rz = -krbsinS = -kZb 

(3.6) 

(3.7) 

The first equation of motion is obtained by resolving horizontally using Newton's 

Second Law: 
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Rx = maX (3.8) 

The horizontal reaction force, Rx' in equation (3.8) may be substituted using 

equation (3.6) to give the following expression: 

- kl), = max (3.9) 

The second equation of motion is obtained by resolving vertically using Newton's 

Second Law: 

Rz - rn.g = maz (3.10) 

Similarly the expression for the vertical reaction force obtained in equation (3.7) may be 

substituted into equation (3.10) to give equation (3.11). 

- k21, - m.g = m.z. (3.11) 

Equation (3.5) is for a linear spring with zero damping. Equations (3.12) and (3.13) 

are for damped linear springs and include terms for the force due to damping. The 

damping force is proportional to the velocity of lengthening of the spring. The damping 

force is calculated by multiplying the lengthening velocity of the spring by the spring's 

coefficient of damping. When damping terms are introduced into equations (3.9) and 

(3.11) the following equations are obtained: 

(3.12) 

(3.13) 

The final equation of motion is obtained by taking moments about 0, the neutral bar 

position. The angular momentum for the system is given in equation (3.14). The torque 

about the bar created by the model's weight is equal to the rate of change of angular 

momentum. Differentiation of equation (3.14) gives equation (3.15). The torque created 

by the weight of the model is the product of its mass, the horizontal displacement of the 

mass centre and the acceleration due to gravity (equation (3.16». The moment equation 

is obtained by placing the torque created by the weight of the model equal to the rate of 

change of angular momentum (equation (3.16». 

- ------
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% = m"xz - m"zx - Ia~ (3.14) 

d(h,,) 
= m"xz - m"zx - Ia~ (3.15) 

dt 

m.gx = m.xz m.zx I,,~ (3.16) 

Solution of equations 

Equations (3.12), (3.13) and (3.16) are three equations in three unknowns. The 

unknowns are the accelerations of the spring (horizontal and vertical) and the angular 

acceleration of the rigid segment. The equations are solved as a set of simultaneous linear 

equations. Numerical integration is used to calculate the new length and velocities of the 

spring and the angular displacement and velocity of the body after a time interval 

(integration interval) using the three accelerations. At the start of each integration 

interval, equations (3.12), (3.13) and (3.16) are solved simultaneously for the three 

unknowns, accelerations of the bar and the angular acceleration of the model (all other 

variables are known at the start of the integration interval; these are known as the initial 

conditions). The accelerations are assumed to be constant over the integration interval. 

The new values for the displacements and velocities of the bar and segment then become 

the initial conditions for the next integration interval and so the process continues. This 

method for second order equations is similar to Euler's first order method which is the 

simplest form of numerical integration (Presse et aI., 1986). The differential equation 

may be in the form given in equation (3.17). The next function value may be obtained by 

rearranging equation (3.17) and extrapolating over the integration interval, h, from the 

starting point (equation (3.18». 

(3.17) 

(3.18) 

The assumption that the accelerations of the bar and the rotation angle will be 

constant throughout the integration interval will lead to systematic errors given that in 

reality they are constantly changing. To improve on this assumption a modified Euler 

method will be used. This will be explained in more detail in section 3.3.2. 

A listing of the Fortran 77 code for the single segment model is given in 

Appendix la. 
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Input/Output 

The input to the simulation model includes the inertia parameters of the gymnast to 

be modelled, the stiffness and damping coefficients of the bar, and the initial conditions. 

The initial conditions comprised the initial bar displacements and velocities and the initial 

angle and angular velocity ofthe body. 

Time histories of the bar and segment displacements, velocities and accelerations 

are available as output. In addition the time histories of the reaction forces at the bar and 

the mechanical energy possessed by the model are output. 

3.3 Development of a four segment elastic gymnast swinging on an elastic high bar 

3.3.1 Introduction 

Briiggemann et al. (1994) and Okamoto et al. (1987) showed that the major 

contributors to the technique of the backward giant circle came from actions at the hips, 

shoulders and knees. Gatto and Neal (1992) demonstrated the effect of introducing a 

linear spring to a rigid single segment model. However, Gatto and Neal (1992) found that 

merely using a spring that represented the stiffness and damping of the high bar and a 

single rigid segment was not sufficient to accurately model the gymnast-high bar system. 

The literature indicates that the simplest model which could accurately model a 

gymnast swinging on the high bar must include the following components. The model 

must be able to perform movements at the shoulders, hips and knees. These movements 

would require a model with a minimum of four segments, one each for the arms, torso 

(including the head), thighs, and shank (including feet). As the major movements of the 

backward giant circle appear to occur in the sagittal plane, with the left and right sides of 

the body acting in symmetry, a two-dimensional model would be appropriate. The arm, 

thigh and shank segments would represent both arms, both thighs and both shanks 

respectively. In addition some provision for the elastic properties of thc high bar and 

gymnast must be incorporated. Damped linear springs have been shown to be a simple 

and effective method of describing these phenomenon (Gatto and Neal, 1992). 

This section outlines the development of a four segment, two spring simulation 

model of a gymnast swinging on the high bar. Using the initial conditions and the joint 

angle time histories the model calculates the rotation angle of the model, the reaction 

force produced at the bar and the angular momentum of the model about the neutral bar 

and the mass centre locations. The methods of determining and solving the equations of 

motion are presented. The evaluation of the model is undertaken in Chapter 7. 
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3.3.2 Methods 

Nomenclature for the four segment simulation model 

a distance of arm segment mass centre from proximal end 

b distance of torso segment mass centre from proximal end 

c distance of thigh segment mass centre from proximal end 

d distance of shank segment mass centre from proximal end 

p length of arm segment 

q length of torso segment 

r length ofthigh segment 

ma mass of arm segment 

mb mass of torso segment 

me mass of thigh segment 

md mass of shank segment 

la moment of inertia of arm segment about its mass centre 

Ib moment of inertia of torso segment about its mass centre 

le moment of inertia of thigh segment about its mass centre 

Id moment of inertia of shank segment about its mass centre 

~ angle between arm segment and the horizontal 

$ angular velocity of arm segment 

$ angular acceleration of arm segment 

~2 angle between torso segment and the horizontal 

$2 angular velocity of the torso segment 

~ angular acceleration of the torso segment 

~3 angle between thigh segment and the horizontal 

$3 angular velocity of the thigh segment 

~ angular acceleration of the thigh segment 

~4 angle between shank and the horizontal 

$4 angular velocity of shank segment 

$4 angular acceleration of shank segment 
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IX angle between ann and torso segments (shoulder angle) 

IX angular velocity of shoulder angle 
.. 
IX angular acceleration of shoulder angle 

J3 angle between torso and thigh segments (hip angle) 

J3 angular velocity of shoulder angle 

J3 angular acceleration of hip angle 

\jI angle between thigh and shank segments 

\jI angular velocity of knee angle 

\jI angular acceleration of knee angle 

Xba horizontal displacement of spring at the high bar 

Xba horizontal velocity of high bar spring 
.. 
Xba horizontal acceleration of high bar spring 

Zba vertical displacement of high bar spring 

Zba vertical velocity of high bar spring 
.. 
Zba vertical acceleration of high bar spring 

Xs horizontal displacement of shoulder spring 
. 
Xs horizontal velocity of shoulder spring 
.. 
x, horizontal acceleration of shoulder spring 

Zs vertical displacement of shoulder spring 

Zs vertical velocity of shoulder spring 

Zs vertical acceleration of shoulder spring 

kt,a stiffness coefficient of high bar spring 

~a damping coefficient of high bar spring 

ks stiffness coefficient of shoulder spring 

bs damping coefficient of shoulder spring 

TI ; joint torque at the shoulders 

T2 ; joint torque at the hips 

T3 ; joint torque at the knees 
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The model comprises four rigid bodies representing the arms, the torso (including 

head), the thighs and the lower leg (including the foot), linked by three pin joints. The 

configuration of the system is defined by the angles shown in Figure 3.2. The system is 

fixed at point 0 and is restricted to movement in the sagittal plane. The elastic properties 

of the gymnast's shoulder structures are modelled using a massless damped linear spring. 

The bar is modelled as a damped linear spring with a known mass. It is assumed that 

there is no air resistance or friction between the hands and the bar. 

The following relationships exist between the angles and their derivatives. 

(1t - $) $2 = eX + ~ $2 = &. + $ 

~3 = eX + ~ + ~ $3 = &. + ~ + $ 

The horizontal (x) and vertical (z) mass centre location, linear velocity and 

acceleration of the arm and torso segments are given below. The velocity and 

acceleration terms are obtained by twice differentiating the location of the segment mass 

centre with respect to time. Similar terms may be obtained for the thigh and lower leg 

segments (Le. xc' zc' xd' zd and their first and second derivatives). 

segment one 

X. = xbA + acos$ z. = ;'A + asin$ 

*a = xbA asin$~ Z. = 2;,A + acos$~ 

aSin$$ 
.2 

+ acos$$ 
.2 

x,. = ~A acos$$ Z. = ~A asin$$ 

segment two 

xb = XbA + pcos$ + -"s + bcos$ 
2 

Xb = XbA psin$~ + X. - bsin$ ~ 
2 2 

psin$$ 
.2 

bsin$ $ 
• 2 

~ = XbA - - pcos$$ + X. - bcos$ $ 
2 2 2 2 

;, = ;'A + psin$ + Z. + bsin$ 
2 

2;, = 2;,A + pcos$~ + Z. + bcos$ ~ 2 2 

.2 
bcos$2$2 

. 2 
Zb = ;'A + pcos$$ - psin$$ + Z. + - bsin$ $ 

2 2 
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Figure 3.2. The angles defining the configuration of the four segment simulation model. 
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Figure 3.3. Free body diagram of the four segment model. 

-------------------------- -- --
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Equations of motion 

The equations of motion are derived by resolving horizontally and vertically using 

Newton's Second Law of motion and by taking moments about the mass centre of each 

segment. The system of forces and torques is given in Figure 3.3. 

Segment One: The arms. 

Figure 3.4 shows the free body diagram of the arm segment. It can be seen that 

there are two forces acting due to the mass of the segment, ma' and the mass of the bar, 

mbA' The mass of the bar is included into the arm segment. That is, the mass of the bar is 

treated as a point mass positioned at the end of the arm segment. This gives rise to a new 

mass centre location and moment of inertia for the arm segment (Figure 3.5). Gatto and 

Neal (1992) assumed that this point mass was half that of the whole bar mass (4.7 kg). 

The bar that will be used in the analysis of the backward giant circles (Chapter 5) has a 

mass of 15 kg. A point mass of 5 kg is chosen for the present simulation model. 

mbAg 

Figure 3.4. Free body diagram ofthe arm segment. 

, 

RZ1 / 
a 

Figure 3.5. Amended free body diagram of the arm segment. 
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Resolving the forces vertically using Newton's Second Law for the arm segment 

gives: 

R - R - mg = m7. zl z2 "-a "-a-. (3.19) 

As discussed in section 3.2 Rzl and Rz2 are the vertical tensions in the bar and shoulder 

springs and may be replaced by by the following terms: 

where 

kbA stiffness coefficient of the bar spring 

ks stiffness coefficient of the shoulder spring 

zbA vertical displacement of the bar spring 

Zs vertical displacement of the shoulder spring 

Substituting these new terms into the first equation for R.I and Rz2 gives: 

(3.20) 

(3.21) 

(3.22) 

However, the springs at the bar and shoulders are damped springs. A damping term 

for each spring must therefore be introduced into equation (3.22). The damping force is 

proportional to the rate of change in length of the spring. For an individual damped linear 

spring, suspended vertically from one end with a mass m at the other, the equation of 

motion can be written as follows: 

- kz - bz = mz (3.23) 

where 

b damping coefficient of the spring 

In equation (3.23) the damping coefficient of the spring is multiplied by the rate of 

change in length of the spring to give the damping force. Similar damping are terms 

introduced to equation (3.22) to give: 

(3.24) 
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Equation (3.24) is derived by resolving horizontally for the arm segment using 

Newton's Second Law. 

R\-R2= mxa x x·· .. (3.25) 

Similar to the treatment of R z\ and Rz2 , Rx\ and Rx2 may be replaced by the formula for 

the damped linear spring. 

(3.26) 

(3.27) 

where 

xbA horizontal displacement of the bar spring 

Xs horizontal displacement of the shoulder 

Again substituting for Rx\ and Rx2 and introducing damping terms into equation (3.25) 

gives equation (3.28). 

(3.28) 

At this point it is assumed that the high bar is equally stiff in the vertical and horizontal 

directions. Should this assumption be proved untrue individual stiffness coefficients for 

each direction will be used. 

The third equation for the arm segment is obtained by taking moments about 0, the 

neutral bar position. The net moment about the neutral bar position is equal to the rate of 

change of angular momentum of the segment as detailed below. 

d(hJ 
= 

where 

T \ = joint torque at the shoulders. 

d(ll,,) 
dt 

(3.29) 
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Segment Two: The torso (including the head). 

The free body diagram for the torso segment is given in Figure 3.6. 

, 

R ffit,g 
x2 

Xs 

"--{ 
1 

Figure 3.6. Free body diagram of the torso segment. 

Resolving vertically for the torso segment gives: 

R - R - rn.!! = mbz. z2 z3 t>'" -b (3.30) 

-k,z, is substituted for Rz2 and the damping term is introduced to give equation (3.31). 

(3.31) 

Resolving horizontally for the second segment gives: 

(3.32) 

Substituting for Rx2 and introducing the damping term gives: 

(3.33) 

Equation (3.34) is obtained by taking moments about the mass centre of the second 

segment. 
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Segment Three: The thighs. 

Figure 3.7. Free body diagram ofthe thigh segment. 

Resolving vertically using Newton's Second Law for the thigh segment gives, 

(3.35) 

Resolving horizontally for the thigh segment gives: 

(3.36) 

Taking moments about the mass centre of the thigh segment gives equation (3.37). 

T2- T3+R 3csin4> +R 4(r - c)sin4> -R 3ccosip - R 4(r - c)cosip = I ~ (3.37) x 3 x 3 Z 3 Z 3 c3 

Segment Four: The lower leg (including the foot). 

The free body diagram of the fourth segment, representing the shank, is given in 

Figure 3.8. 

, 
ffidg 

~RX4 
T3 

Figure 3.8. Free body diagram of the shank segment. 
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Resolving vertically: 

(3.38) 

Resolving horizontally: 

(3.39) 

Taking moments about the mass centre of the fourth segment: 

(3.40) 

The final three equations are obtained by resolving horizontally and vertically and 

by taking moments about 0 for the whole system using Newton's Second Law of motion. 

Resolving in the vertical direction gives: 

(3.41) 

Resolving in the horizontal direction for the whole system: 

(3.42) 

Finally, differentiating the momentum equation (about the neutral bar position) with 

respect to time gives the moment equation for the whole system about the neutral bar 

position O. 

Torque 
d(hJ 

= dt 

Torque = - g(m.x. + II1,xb + IIIcxc + mdx~ 

d(h.) 

dt = m.x.z. m.z.x. - r.~ 

+ mbxb~ - mi'llb - ~~2 
+ IIIcxcZc - IIIcZcXc - I,,~3 

+ midzd - m}dxd - Id~4 (3.43) 
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Solution of equations 

In order to obtain all the internal joint forces and torques almost all the equations 

derived for each of the four segments will be required. However, the system may be 

reduced to five equations in five unknowns. The five equations which are required to 

solve the system are equations (3.24), (3.28), (3.41), (3.42) and (3.43). 

Equation (3.24) : 

Equation (3.28) : 

Equation (3.41): 

Equation (3.42) : 

Rxl = IDaX. + mbxb + Il\:xc + mid 

Equation (3.43) : 

Torque 
d(h,J 

= dt 

Torque = - g(IDax. + mbxb + Il\:xc + mdxd) 

d(h,J 
dt = IDaX.z" - IDaz"x. - r.~ 

+ mbxb~ - ~~xb - ~~2 
+ Il\:XcZc - Il\:z.,Xc - r.:~3 
+ midzd - mdzdxd - Id~4 
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The five unknowns are the horizontal and vertical accelerations of the bar and 

shoulder springs and the angular acceleration of the arm segment. Numerical integration 

is used to calculate the new location of the model after small successive time intervals. 

This requires the solution of the above five equations using the following method. 

At the start of the simulation process the initial conditions are known. These initial 

conditions comprise the configuration of the model, the initial angular velocity of the 

model, the displacements of the two springs and the velocities of the two springs. 

Therefore, the unknowns of the system are the angular accelerations of each segment and 

the accelerations of the two springs·. From the relationships between the segment 

orientation angles ($, $2' $3 and $4) and their first and second derivatives, the unknowns 

are the angular acceleration of the arm segment, the second derivatives with respect to 

time ofthe joint angles a, ~ and 1jI, and the accelerations of the springs. 

The model is designed to accept joint angle time histories as input. These time 

histories are in the form of either piecewise quintic functions of time or quintic splines. 

From either option (spline or quintic function) the first and second derivatives of the joint 

angle time history may be obtained at all times during a simulation. This reduces the 

unknowns to the angular acceleration of the arm segment and the accelerations of the 

springs (a total offive unknowns). 

To solve the system of five equations in five unknowns a linear equation solver is 

used (Stewart, 1973). The equation solver is used to solve a system of equations in the 

form: 

Ax=b (3.44) 

where 

A is the 5 x 5 matrix containing the coefficients of the five equations 

x is the 5 x 1 matrix containing the unknowns 

b is the 5 x I matrix containing the the solutions to the five equations 

The initial conditions and the solutions from the equation solver are then used to 

calculate the conditions at the end of the time interval (the time interval ranged between 

0.001 sand 0.00001 s). The new angles, angular velocities, spring displacements and 

velocities are calculated using Newton's equations of motion. For example, the equations 

below are for calculating the angular displacement and velocity for the arm segment 

(equations (3.44) and (3.45» and the horizontal displacement and velocity of the spring 

representing the bar (equations (3.46) and (3.47». 



where 

~=~+~t 
1 0 0 

~=~+~t 
1 0 0 

t is the integration interval 
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+ Y2~ t 2 

o 
(3.44) 

(3.45) 

(3.46) 

(3.47) 

It is assumed that the accelerations of the arm segment and the springs are constant 

over the integration interval. At the end of each time interval the new set of conditions 

become the initial conditions for the next time interval and so the process continues. This 

method of numerical integration is the equivalent of Euler's method (see equations (3.17) 

and (3.18)). 

The problems with this method are that the accelerations calculated at the start of 

the integration interval are assumed to be constant throughout the interval. During the 

backward giant circle the angular acceleration of the gymnast and the linear acceletations 

of the springs are constantly changing. Assuming that the accelerations are constant over 

an integration interval will result in either an over or under-estimation of the calculated 

displacement and velocity data. A similar problem would arise if an inappropriate 

integration interval was selected. If the interval were too long the simulation model 

would not be sensitive to small changes in acceleration. The ideal solution would be to 

have as short an integration interval as possible. However, this would lead to excessive 

amounts of computer time to run simulations. Therefore a compromise is required. 

The problem of the constant acceleration assumption was addressed by using an 

"average" estimate of the accelerations during the integration interval. The equations of 

motion are solved at the start of the integration interval. This provides the initial estimate 

of the accelerations of the arm segment and the springs. The initial accelerations are then 

used to obtain the displacements and velocities of the arm segment and springs at the end 

of the integration interval using equations (3.44) to (3.47). 

The new displacements and velocities of the arm segment and springs are used to 

calculate the accelerations at the end of the integration interval. The initial and final 

accelerations are then averaged to give the "average" estimate of the accelerations during 

the integration interval. 

The "average" accelerations are chosen to be a better estimate of the accelerations 

over the whole interval. Therefore, the "average" accelerations and the displacements and 

velocities of the arm segment and springs at the start of the interval are used to calculate 
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the displacements and velocities of the arm segment and springs at the end of the interval 

(using equations (3.44) to (3.47». The method of using average accelerations is the same 

as a modified Euler method or a second order Runge Kutta. These methods use an initial 

step to find a point half way across the interval and then use the derivative at the mid­

point to cross the whole interval (Press et aI., 1986). 

Variable step length 

To avoid the problems of a fixed integration interval a variable step length may be 

used. This approach is designed to increase the length of the integration interval during 

periods of small change and reduce the integration interval during periods of rapid 

change. This is achieved using a by-product of the average acceleration routine described 

above. At the end of each integration interval a comparison is made between the initial 

estimates of the angular and linear displacements calculated from the first estimate of the 

arm segment and spring accelerations and the angular and linear displacements calculated 

using the average accelerations. If these differences exceed a tolerance level the length 

of the integration interval is either halved or doubled. If the difference is greater than the 

tolerance level the integration interval is halved. If the difference is less than the 

tolerance level the integration interval is doubled. However, if the difference is within the 

tolerance level the current length of the integration interval is maintained. Separate 

tolerance levels were set for the angular and the linear differences in displacements. For 

this reason priority was always given to reducing the integration interval. 

Output 

The time histories of the displacements and velocities of the segments and springs 

are known from the solution of the equations of motion and the integration using 

equations (3.44) to (3.47). With the system of the equations solved it is possible to 

calculate the internal joint forces and torques at each joint using equations (3.19) to 

(3.43). For the evaluation of the simulation model it is necessary to calculate the mass 

centre location and the whole body angle of rotation. For the optimisation of the 

accelerated backward giant circle the calculation of the angular momentum of the model 

about its mass centre is required. In addition, the energy within the system is calculated 

to demonstrate the effects of strain energy stored in the bar and the effects of actions 

performed at the hips and shoulder. 
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Calculation of the mass centre location and angle of rotation 

For the evaluation of the simulation model the location of the mass centre and the 

angle through which the mass centre has rotated is required (see Chapter 7). At the end of 

each integration interval the horizontal and vertical displacements of the springs and the 

angle which each segment makes with the horizontal are known. The horizontal location 

of the mass centre from the neutral bar position is calculated by taking moments about the 

vertical axis and dividing by the sum of the segment masses. 

x = (3.48) 

The vertical location ofthe mass centre is calculated in a similar way. 

:0° , 
rotat7!'on angle i 

, , 
" : 

~------'~~ : 

* mass centre 

Figure 3.9. Definition of the rotation angle. 

The rotation angle of the model is defined as the angle made by the line joining the 

mass centre to the neutral bar position and the vertical (Figure 3.9). Using the horizontal 

and vertical locations of the mass centre relative to the neutral bar position, the sine and 

cosine are used to find the rotation angle (Yeadon, 1990a). Anti-clockwise is taken as 

positive and a rotation angle of 0° refers to the model being in the vertical handstand 

position. 

Calculation of angular momentum 

The angular momentum of a rigid segment about a fixed point, S, is given by; 

h. = loo + m(xz - zx) (3.49) 
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where 

hs angular momentum about the point S 

I moment of inertia of the rigid segment about its mass centre 

ro angular velocity of the segment 

m mass of the segment 

x horizontal displacement of the segment mass centre relative to S 

z . vertical displacement of the segment mass centre relative to S 

• above the variable signifies the first derivative with respect to time 

In tbe case of the four segment model the fixed point is chosen to be the neutral bar 

position o. The angular momentum is calculated by summing equation (3.49) for each of 

the segments (equation (3.50)). Therefore, the formula for the angular momentum about 

the neutral bar position may be written as: 

4 

h = L (Ip\ + m/xii - ziX)) (3.50) 
i = 1 

From equation (3.50) it can be seen that the angular momentum of the four segment 

system is not only dependent on the angular velocity of the segments, but is also 

dependent on the linear velocities of the segment mass centres. 

Equation (3.50) gives the angular momentum of the model about the neutral bar 

position. In certain applications it may be more appropriate to calculate the angular 

momentum about the mass centre of the model. The equation for calculating angular 

momentum about the mass centre is given in Equation (3.51). This equation is more 

appropriate if the application is to optimise the angular momentum possessed by the 

model prior to release for a double layout somersault dismount. 

h = t (Iro. + m{x.z. - z.X)) 
11 111 11 

i = 1 

where 

h angular momentum about the mass centre 

I moment of inertia of the rigid segment about its mass centre 

ro angular velocity of the segment 

m mass of the segment 

(3.51) 

x horizontal displacement of the segment mass centre relative to the mass centre 

of the model 

z vertical displacement of the segment mass centre relative to the mass centre 
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• above the variable signifies the first derivative with respect to time (in this 

case it refers to the velocity of the segment mass centers relative to the 

velocity of the mass centre of the model 

Calculation of the energy in the system 

For a given set of conditions (i.e. when the damping coefficients of the springs are 

set to zero) all the models outlined should behave as conservative systems. From the 

description of the backward giant circle given in Chapter 2 the technique used by a 

gymnast may be related to the energy within the system. In order to test whether this is 

the case an energy calculation is required. The energy within the system will comprise 

the potential energy of each segment due to its mass centre location relative to a given 

reference level, the potential strain energy which is present in the springs of the system, 

and the linear and rotational kinetic energy possessed by each of the segments. The 

potential energy possessed by each segment is calculated from: 

potential energy = m g h (3.52) 

where m is the mass of the segment, g is the acceleration due to gravity and h is the 

height of the segment's mass centre above the zero potential energy reference level. 

Therefore the potential energy of the whole system can be written as follows: 

potential energy == t 
i = 1 

(m.g h.) 
I I 

The energy stored in a linear spring can analytically be shown to be: 

strain energy = \12 k X2 

where 

k stiffness coefficient of the spring 

x displacement in the spring 

(3.53) 

(3.54) 

The strain energy for the whole system is obtained by summing the energy stored in each 

of the springs. 

strain energy = t 
i = 1 

(3.55) 
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The linear kinetic energy and rotational kinetic energy of a rigid segment may be 

written as: 

linear kinetic energy = Y2 m v2 (3.56) 

rotational kinetic energy:: Y2 I W'- (3.57) 

where 

m mass of the segment 

I moment of inertia of the segment about its mass centre 

v linear velocity of the segment's mass centre 

co angular velocity of the segment's mass centre 

The kinetic energy (linear plus rotational) of the system of segments may be expressed 

as: 

4 

kinetic energy = "" «Y2 m. v~) + (Y2 I. co' ) ) f..J 11 11 
(3.58) 

i = 1 

To obtain the total energy in the system the equations (3.53), (3.55) and (3.58) are 

summed. 

Input 

The solution of the above equations of motion requires the following input: 

i) inertia parameters 

ii) spring parameters 

iii) joint angle time histories 

Inertia parameters 

The model requires the masses, mass centre locations and moments of inertia about 

the mass centre of each segment. The inertia parameters are determined from 

anthropometric measurements taken from the subjects and the inertia model of Yeadon 

(1990b). The inertia data is also used in the data collection for the muscle parameters and 

the analysis of the backward giant circles (Chapters 4 and 5). The inertia data will be 

presented in the results chapter (Chapter 6). These results will include the modified 

inertia data which takes into account the mass of the high bar at the gymnast's hands (see 

Figures 3.4 and 3.5). 
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Spring parameters 

The spring parameters comprise the stiffness and damping coefficients of both the 

bar and the shoulder springs. These parameters are determined using experimental and 

theoretical techniques which are presented in Chapter 5. 

Joint angle time histories 

Three versions of the four segment simulation model are used in the following 

chapters. Each version is used for a separate application of the simulation model. 

In the -first version the input to the model comprises the joint angle time histories 

obtained from the video analysis of the backward giant circles. This version will be used 

to eva~uate the four segment simulation model (Chapter 7) and for obtaining the spring 

parameters (Chapter 5). The joint angles time histories are input in the form of spline 

coefficients obtained from the splined joint angle time histories of the hip, shoulder and 

knee joints. The spline fitting library of Jennings (1979) is used to evaluate the splines 

and calculate their first and second derivatives for each integration interval. The input to 

the model comprises the joint angle time histories and the initial displacements and 

velocities of the bar spring and the arm segment. The initial conditions of the bar and the 

rotation angle of the arm segment are input to the model as spline coefficients which are 

obtained from the video analysis. Initial displacements and velocities of the bar and arm 

segment are obtained from the spIine evaluation subroutines of the Jennings library 

(1979). Using splines for the joint angle time histories and initial conditions meant that a 

simulation could be initiated from any point within the time interval containing the video 

data. The output from this version of the simulation model is the time history of the 

whole body angle of rotation, the horizontal and vertical bar displacements and the 

horizontal and vertical reaction forces at the bar. The displacements of the bar and the 

rotation angle obtained from the splines are also output so that comparisons between the 

estimated and measured output could be made. 

The second version of the simulation model is used for running single simulations 

where the joint angle time histories are defined by the user. These may be the joint angle 

time histories for backward giant circles or any other high bar skill that may be 

considered to be two dimensional in nature. The joint angle time histories may be defined 

using one of two functions. Both have justifications for their implementation in the four 

segment model. A sensitivity analysis will be performed to determine which of the two 

functions is the most appropriate for defining joint angle time histories during swinging 

on the high bar (Chapter 8). 

The first of the two functions was derived by Yeadon (1984) for use with his 

simulation model of aerial movements. Yeadon used the following quintic function q(x) 

and its derivatives: 
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q(x) = ~6x2 - 15x + 10) (3.59) 

q(x) = 30x2(x - d (3.60) 

q(x) = 120x(x - !)(x - 1) (3.61) 

The function q(x) increases from ° to 1 on the interval [0, I] and has zero first and 

second derivatives at the end-points (Figure 3.11, 3.12 and 3.13). This function q(x) is 

therefore an appropriate function for modelling angle values since angular velocities and 

accelerations change smoothly. If the application requires that angle a changes from IXo 
to a, in the time interval [to, td, then angle a and its derivatives a' and a" are defined by: 

where 

aCt) = IXo + (al - ao)·q(x) 

aCt)' = (al - 1Xo)·q··(x)/(t, - to) 

a(t)" = (al - ao)·q"(x)/(tl - to)2 

x = (t - to)/(t, - to) (Yeadon, 1984). 

(3.62) 

(3.63) 

(3.64) 

By using a succession of non-overlapping intervals it is possible to define the angles 

a, ~ and 'I' and their derivatives at any time. 
Using the quintic function above it may be seen from Figure 3.12 that the second 

derivative of the joint angle time history is at a maximum and/or minimum for only an 

instant. The implication of this is that the joint torque produced by such an acceleration 

curve will only be at a maximum level at this instant. During actual performances the 

gymnast may produce a peak joint torque which is maintained for a longer period whilst 

still changing the joint angle over a smooth curve. In order to model this situation the 

acceleration curve in Figure 3.15 was derived. It can be seen that the acceleration of the 

angle change is now either at some maximum level or at a minimum level. Unlike 

Figure 3.12 the gymnast has maximum acceleration for a longer duration. 

The same principle used for the quintic function is used for the function which has 

the square wave acceleration curve. The function has first and second derivatives with 

zero end-points making it appropriate for modelling human angle changes. The duration 

of the angle change is standardised to increase over the interval [0,1]. Due to the nature 

of the acceleration curve two functions make up the curve in Figure 3.13. The following 

inequalities are used to define the angle and its first and second derivatives (Figures 3.13, 

3.15 and 3.15). 
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1 

q 

o x 1 

Figure 3.10. The quintic function q(x) used for changing joint angles. 

2 

o x 

Figure 3.11. The first derivative of the quintic function q(x) which defines the angular 

velocity of the angle change. 

6 

-6 x 

Figure 3.12. The second derivative of the quintic function q(x) which defines the angular 

acceleration of the angle change. 



For t in the interval [0,V2] : 

For t in the interval (\I:z,I] : 

2 

o 
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aCt) = ~ + (al - ao)·(2t2) 

aCt)' = (al - ~).(4t)/(tl - 10) 

a(t)" = (al - ao).(4)/(tl - 10)2 

aCt) = ~ + (al - ~).(l - 2(t - 1)2) 

aCt)' = (al - ~).(-4(t - 1))/(tl - to) 

a(t)" = (al - ~).(-4)/(tl - 10)2 

x 1 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

Figure 3.13. The curve used for changing joint angles with the square wave acceleration 

curve. 

. 
q 

o x 

Figure 3.14. The first derivative of the change in angle curve, using the square wave 

acceleration curve, which defines the angular velocity of the angle 

change. 
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x 

Figure 3.15. The square wave acceleration curve which defines the angular acceleration 

of the angle change. 

The output for the second version of the model comprises any variable which would 

be included in an inverse dynamic analysis of the skill .. This data may be output as a 

Comma Separated Variable (CSV) file which may subsequently be used to obtain 

graphics of the desired output parameters. 

The third version of the simulation model is selected for the optimisation of the 

backward giant circle (Chapter 8). The program reads the initial conditions and joint 

angle time histories from a data file. The code for the simulation model is used with the 

Simulated Annealing algorithm to optimise the angular momentum about the model's 

mass centre produced by a set of joint angle time histories (see Chapter 8). The 

Annealing process is able to manipulate the joint angle time histories until the optimal 

solution is obtained. 

Joint torque limit 

When the third version of the simulation model is used the joint angle time histories 

are manipulated until the optimal solution is obtained. For a real performer the changes 

in joint angles are created by joint torques which are in turn created by the musculature 

surrounding the joints. It is probable that during the optimisation process the Annealing 

algorithm will develop a joint angle time history that exceeds the capabilities of the 

performer. Therefore, it is necessary to limit the range of possible joint actions to those 

which are humanly possible. Chapter 4 outlines the procedure undertaken to collect joint 

angle - angular velocity - torque data from an isokinetic dynamometer. Joint torques were 

recorded for a range of angles and angular velocities. These data were used to form a 

three-dimensional surface for each joint tested (shoulder and hip). For any given angle 

and angular velocity the maximum joint torque the gymnast can produce may be 

determined. 

For each step of the numerical integration the joint torques produced by the model 
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are monitored. The torques created by the model are compared to the maximum joint 

torque produced by the gymnast for the given angle and angular velocity of model's joint 

centres. If during the Annealing process a torque created by the model exceeds the 

maximum torque produced by the gymnast, the simulation is terminated and given a score 

of zero. Since the Annealing process attempts to maximise the score of the simulation, 

only a backward giant circle performed within the limits of the gymnast's capability can 

be the optimal solution (see Chapter 8). 

A comparison of the joint torques produced by the simulation model and the joint 

torques determined by the three-dimensional torque surface during the evaluation of the 

simulation model is given in Chapter 7. 

3.4 Summary 

The equations of motion for both the single and four segment simulation models are 

based on Newtonian mechanics. The elastic properties of the bar and the gymnast are 

modelled using damped linear springs. After the equations of motion have been solved 

numerical integration equivalent to a modified Euler second order method is used to 

progress the models to the next interval. The single segment model requires only the 

initial condition for each simulation that is to be performed. The four segment simulation' 

model, however, is driven using joint angle time histories. These joint angle time 

histories may be in the form of quintic splines (obtained from video analysis) or a 

piecewise quintic function. 

The single segment simulation model will be used to investigate the effects of bar 

elasticity on peak angular velocity and reaction force. By varying the stiffness of the 

spring used to represent the bar a comparison between an elastic bar and a rigid bar may 

be made. The model will also be used in the evaluation of the four segment simulation 

model. The four segment simulation model will be evaluated against experimental data 

as suggested by Yeadon and Challis (1994). The model will then be used to optimise the 

accelerated backward giant circle. These analyses will be carried out in Chapters 7 and 8. 
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CHAPTER 4 

DETERMINATION OF MUSCLE PARAMETERS 

4.1 Introduction 

The four segment simulation model is driven by joint angle time histories. The 

requirement of the joint angle time histories is that they are continuous and have known 

first and second derivatives. These time histories may be obtained from either kinematic 

analysis of gymnastic performances or from mathematical formulae. The problem with 

the latter method is that time histories may be determined which do not take into 

consideration the gymnast's strength. It is therefore possible for the simulation model to 

perform joint actions which are humanly impossible. 

The literature has identified that there exist relationships between the amount of 

torque a person can produce at a joint centre, the angle made by the moving limb and the 

angular velocity of the moving limb (King, 1998; Fugelvand, 1987; Marshall et aI., 1990). 

These data have been collected using isokinetic dynamometers and subsequently 

presented as three-dimensional surface plots. Interpolation of the surface plots using 

angle and angular velocity may be used to obtain the joint torque produced by the subject. 

This chapter outlines the method for obtaining muscle parllmeters from data 

collected using an isokinetic dynamometer (King, 1998). The muscle parameters define 

the relationship between torque, angle and angular velocity for a given joint. These data 

will be used to determine the strength limits of the gymnast during simulations using the 

four segment model. The output from the simulation model includes the joint angles, 

angular velocities and the joint torques for each time interval. The joint torques 

determined by the simulation model will be compared with the maximum torque given by 

the muscle parameters. 

4.2 Methods 

4.2.1 Data collection 

The protocol used followed closely the methodology outlined by King (1998). Data 

were recorded simultaneously using an isokinetic dynamometer (Kin-Corn 125E) and a 

twin axis goniometer (Penny and Giles MI80). The isokinetic dynamo meter was used to 

record forces applied to a load cell (based on a full bridge circuit) mounted on the crank 
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arm. At the same time the dynamometer recorded the angle and angular velocity of the 

crank arm. The angle of the crank arm was measured using a potentiometer, the output 

from which was converted into degrees. The angular velocity of the crank arm was 

measured using a tachometer which monitored the speed of the motor which drove the 

crank arm. A further check on the angular velocity was performed by comparing the 

recordings from the tachometer with the first derivative of the potentiometer data. All 

data from the dynamometer were recorded at 100 Hz to ASCII files using an mM 
compatible computer. 

The goniometer data were recorded using a charged amplifier (Penny and Giles . 

KI00), analogue to digital converter (CED 1401) and a personal computer (Acorn 5000). 

All goniometer data were recorded at 250 Hz. The goniometer data captures were 

triggered using a control switch with four seconds before and 16 s after the trigger being 

recorded. 

Written consent 

The subject signed the written consent form agreeing to take part in the study. The 

consent form allowed the subject to withdraw from the study at any time (Appendix 2a). 

Calibration of the dynamometer 

The dynamometer was initially calibrated using the protocol supplied by the 

operators manual. The dynamometer was further calibrated using a static load. The 

crank arm was raised until it was horizontal, using a spirit level. A load of 350 N was 

at.tached to the crank arm using chains so that it hung vertically. Data were collected 

using the dynamometer software so that a comparison between the load recorded and the 

load applied could be made. 

Calibration of the goniometer 

Before testing the goniometer was placed along a straight line and zeroed according 

to the manufacturers instructions. The goniometer was calibrated after testing. The 

calibration protocol involved data being collected with the goniometer positioned at 

known angles. The angles ranged from -1800 to + 1800 with recordings taken every 22.50
• 

At each angle 20 s of data were recorded. The ADC counts recorded in each of the 

calibration trials were averaged over 5000 data points (20 s of data capture). The mean 

and standard deviations of the calibration data are presented in Appendix 2b. The mean 

ADC counts were then regressed against the known angles used in the calibration 

procedure. The rms difference between the predicted and the measured angles of the 

calibration was 2.60
• The predicted angles were calculated using the following regression 

equation: 
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angle = 237.26 - 0.027642 x ADCcount (4.1) 

The calibration data did not appear to fall on a straight line (Figure 4.1). The data 

were split into those calibration recordings from 0° to + 1 80° and those in the range 0° to 

-180°. The above calibration equation was used to convert all goniometer recordings 

obtained during dynamometer trials into degrees. It was found that the angle range for all 

trials (both hip and shoulder) fell within the calibration range of 45° to -135°. Since only 

60% of the calibration points fell within the 45° to -135° range a second regression 

analysis was performed. A linear regression was performed on the calibration recordings 

in the range of 45° to -135°. The second regression analysis yielded the following 

calibration equation: 

angle = 236.813 - 0.0275638 x ADCcount (4.2) 

Calibration equation (4.2) reduced the rms difference between the predicted and 

measured calibration angles to 2.3 0. This new calibration equation was used to convert 

all the ADC counts into degrees. The goniometer files were then transformed so that 

180° corresponded to the joint being fully closed. This was done so that both the 

goniometer data and the crank angle time histories from the isokinetic dynamo meter 

increased within the same range. 
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Figure 4.1. Mean ADC counts from calibration of the goniometer (filled circles used in 

the second linear regression). 
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Attaching the goniometer 

As recommended by the manufacturers the goniometer was attached to the subject 

when the joint was straight and fully open. The goniometer was attached, in a straight 

position, across the joint being tested using double sided sticky tape. The goniometer and 

connecting cables were further secured using self-adhesive fabric tape. 

Positioning of the subject 

During testing of both the hip and the shoulder the subject was positioned on his 

back with the joint axis and crank axis aligned. Once positioned the subject was secured 

using Velcro straps to prevent excessive movement. 

Exercise protocol 

The same exercise protocol was used for both joints (hip and shoulder) and 

directions of movement (flexion and extension). The first and last two trials of the 

protocol comprised one repetition of concentric - eccentric exercise at 20°.s·1. Due to the 

slow angular velocity of these four trials the subject only worked maximally on the 

concentric phase of the first and penultimate trial. Similarly the subject only worked 

maximally on the eccentric phase of the second and the last trial. For the remainder of the 

trials the subject performed maximally for two repetitions of concentric - eccentric 

exercise at a pre-set angular velocity. The angular velocities ranged from 20°.5.1 to 

250°.s·1 (maximum angular velocity of the dynamometer). The sequence of angular 

velocities was 200 .s·1, 20°.s·1, 50°.5.1, 1000 .s·1, 150°.5.1, 200°.s·1, 250°.5.1, 250°.s·1, 

250°.s·1, 20°.s·1 and 20°.s·1 (King, 1998). 

The range of motion for each joint was determined from performances of 

accelerated backward giant circles. Where possible the range of motion was increased to 

allow for the accelerations of the crank arm (Herzog, 1988). Where the gymnast was 

unable to achieve the desired ranges of motion the largest possible, yet comfortable, range 

was used. 

Each trial was started once the subject exceeded a 50 N force threshold. Verbal 

encouragement was given throughout the trial which was ended when the operator 

pressed the appropriate button on the computer. The goniometer data capture was 

initiated with the trigger which was operated manually once the dynamometer trial had 

started. Since four seconds of goniometer data before the trigger were recorded no data 

would be lost due to the reaction time of the operator. After testing both the dynamome­

ter and goniometer data were copied onto floppy disk. 
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4.2.2 Data Analysis 

Editing data files from the goniometer and dynamo meter 

The data files obtained from the dynamometer contained the time histories of the 

crank angle, angular velocity and force recorded from the load cell. All files were edited 

so that only the central eccentric - concentric phase of each trial remained (Figure 4.2). 

The isokinetic portions of this central eccentric - concentric phase were identified and the 

points pi to p4 were determined for each trial (Figure 4.3). 
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Figure 4.2. All files were edited to obtain the central eccentric - concentric portion of 

each trial. 
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Figure 4.3. The start and finish of the eccentric and concentric portions of the trial were 

identified and labelled pi to p4. 

The goniometer files which had been converted into degrees were edited in a 

similar manner to obtain the central eccentric - concentric portions (Figure 4.4). For the 

trials performed at 20°.s·1 the concentric part of the first trial was combined with the 

eccentric part of the second trial to form a complete data set. 
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Figure 4.4. Example of a goniometer file which has been edited to obtain the central 

eccentric - concentric portion. 

Synchronisation of the goniometer and dynamometer data files 

An optimisation procedure was used to synchronise the edited crank angle and joint 

angle time histories. The procedure assumed that the turning points in the joint angle 

time histories occurred at the same time as the turning points in the crank angle time 

histories. The turning points occurred when the direction of the crank angular velocity 

changed. These corresponded to changing from the eccentric to the concentric portions of 

the trial and vice versa. This resulted in three turning points from each edited file 

(Figures 4.2). 

Synchronisation of the crank and goniometer data required the data sets to be of 

equal length and frequency. Cubic splines (Reinsch, 1967) were fit to the crank and joint 

angle time histories. These splines were evaluated at 250 Hz over the greater interval 

between the crank and joint for each trial. 

For the purpose of fitting the cubic spline to the crank angle time history the error 

estimate was calculated from the difference between the crank time history and a pseudo 

crank time history. The pseudo crank time history was obtained by averaging the crank 

angle values at adjacent times. The standard error estimate for each data point comprised 

75% local error and 25% global error. 

Linear regressions performed on portions of the joint angle time histories of the 

20° .s-I trial where the angular velocity appeared to be constant yielded standard errors of 

fit. The error estimates used for fitting the cubic spline to the joint angle time history to 

the trials of each joint action were determined by averaging the four standard errors 

obtained from each joint action. 
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Optimisation procedure 

The joint angle time history and crank angle time histories were related by a 

transformation which mapped the joint angle time history onto the crank angle time 

history (King, 1998). The relationship between the crank and joint angle was expressed 

in terms of a horizontal translation, a translation which stretched the joint angle in the 

vertical direction and finally a translation of the joint angle in the vertical direction 

(equation (4.3)). 

where 

<Mt) transformed joint angle at time t 

<I>(t) joint angle at time t 

x I constant which allows the joint angle to be translated horizontally 

x2 constant which stretches the joint angle vertically 

x3 constant which translates the joint angle vertically 

(4.3) 

The Simplex (Nelder and Mead, 1965) and the Simulated Annealing (Goffe et aI., 

1994) algorithms were used to minimise the sum of squares difference between the crank 

angle and the transformed joint angle time histories. The Simplex algorithm was used to 

find a solution which was then confirmed or improved upon by the Simulated Annealing 

algorithm. The solution from the Simplex optimisation was used as the starting point for 

the Simulated Annealing optimisation. 

In some cases the optimisation procedure failed to find a sensible solution to the 

synchronisation of the joint angle time histories. In these cases the trials were 

synchronised by plotting the two time histories and measuring the appropriate time 

translation factor. This factor was then fixed and the optimisation procedure repeated to 

determine the remaining parameters of the transformation. 

Obtaining joint angle and joint angular velocity time histories 

The synchronised joint angle was obtained from the known crank angle by 

rearranging equation (4.3) and replacing the transformed joint angle with the crank angle 

(equation (4.4), King, 1998). The angular velocity for each trial was calculated from the 

joint angle time history (equation (4.5)). 

ro(t) 

(<I>(t) - ~) 
= 

~ 

= ....:(.:..:.<1>( t.:...) _-....:<1>..:.-( t _-I.:.:..)) 

0.01 

(4.4) 

(4.5) 
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Corrections to synchronised muscle data 

Conversion of crank force to crank torque 

The crank torque was calculated by multiplying the force recorded by the 

dynamometer by the moment arm of the crank. The moment arm was the perpendicular 

distance from the axis of the crank to the point where the force was measured. The 

moment arm of the crank was measured and recorded for each joint. The calculation is 

shown in equation (4.6). 

where-

T e crank torque 

F force recorded by the dynamometer 

de recorded moment arm length 

Segment weight correction 

It was necessary to correct for the weight of the subject's limb (Winter et aI., 1981). 

Depending on the direction of the joint action it was necessary to add or subtract the 

torque created by the weight of the subject's limb from the crank torque. The corrected 

crank torque was calculated using equation (4.7). The mass and mass centre location of 

the limb was determined using anthropometric measurements and the inertia model of 

Yeadon (l990b). 

where 

Te crank torque 

M mass of limb 

Te = T e ± (Mgdcos9) 

d perpendicular distance from mass centre location to joint centre 

9 crank angle relative to the vertical 

Conversion of crank torque to joint torque 

(4.7) 

The relationship between joint torque and crank torque was calculated as follows 

(King, 1998). 

d­
Fde...1 

de 

(4.8) 

(4.9) 



where 

T e crank torque 

Tj joint torque 

F recorded force 

de crank moment arm 

dj joint moment arm 
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(4.10) 

The crank moment arm was constant throughout each trial. However, the joint 

moment arm was not constant and varied throughout each trial since there was some 

relative movement between the limb and the crank. To estimate the relationship between 

joint and crank moment arms a ratio of joint and crank angle was used (King, 1988). 

Extrapolation of torque - angle relationship 

The angle range of the crank arm was selected to be large enough to include the 

range of interest. It was necessary to collect data either side of the range of interest to 

allow for the accelerations of the crank. In certain cases the gymnast was unable to obtain 

motion through the desired range. When this occurred the gymnast performed over the 

greatest range possible. In addition the range of motion of the crank arm may not always 

be the same as the crank arm. In order to obtain the required joint angle ranges it was 

necessary to extend the torque - angle relationship. 

King (1998) suggested three methods for extrapolation of the torque - angle 

relationship: 

1. extrapolate with a constant torque value equal to the last known torque value 

2. fit a spline to the torque - angle data and extrapolate outside the range 

3. fit a least squares quadratic function through the torque - angle data 

King (1998) found that the method of extrapolating from a spline fitted to the torque -

angle data was dependent on the end-points of the data. Extrapolating using the quadratic 

fit over large angle ranges gave poor torque values (either too high or too Iow). It was 

found that the simplest approach, extrapolating using the last known torque value, was the 

most stable and robust and did not distort the torque - angle relationship. Therefore this 

method was used to extrapolate the torque - angle data where required. 
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4.2.3 Muscle model 

The muscle model used a black box approach to fit the experimental angle, angular 

velocity and torque data to give a smooth surface of maximum torque as a function of 

angle and angular velocity (King, 1998). The following sections outline the methods used 

to fit the collected torque data so that maximum torque values can be obtained for use 

with the four segment simulation model. 

Method· Six parameter double hyperbolic relationship 

Hill (1970) found a hyperbolic relationship between force and velocity in whole 

muscle (Figure 4.5). However, Edman (1988) found a double hyperbolic function for the 

relationship between force and velocity for single muscle fibres (Figure 4.6). The muscle 

data collected in the present study showed a closer resemblance to the data of Edman than 

that of Hill. The characteristics of Edman's data were a plateau in the torque at high 

eccentric velocities, a steep drop in torque around zero velocity, a plateau in torque at low 

concentric velocities and a second drop in torque at high concentric velocities. 

force 

velocity 

Figure 4.5. Force - velocity relationship found by Hill (1970). 

force 

velocity 

Figure 4.6. Force - velocity relationship found by Edman (1988). 
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To fit the torque - angular velocity data with a double hyperbolic function two 

exponential functions of four and two parameters were combined (King, 1998). The 

general shapes of the four, two and six parameter exponential functions are given in 

Figures 4.7, 4.8 and 4.9. 

exponential function with four parameters: 

T = (4.11) 

torque 

angular velocity 

Figure 4.7. General shape of the four parameter exponential function. 

exponential function with two parameters: 

T = 1 
(4.12) 

torque 

angular velocity 

Figure 4.8. General shape of the two parameter exponential function. 
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six parameter exponential function: 

T = (4.13) 

torque 

angular velocity 

Figure 4.9. General shape of the six parameter exponential function. 

The six parameter exponential function has the general shape of Edman's data with 

same characteristics outlined above. In addition the torque tends to zero at high 

concentric velocities. King (1998) presented a seven parameter exponential function and 

tested this along with the six parameter function by attempting to fit Edman's data (1988). 

The six parameter exponential function was found to offer greater stability when 

compared with the seven parameter function. The seven parameter funCtion differed from 

the six parameter function in that it tended to a constant value at high concentric 

velocities instead of to zero. Since the six parameter function performed better it was 

chosen for fitting the data collected in the present study. 

Extension o/the torque - angular velocity relationship to include angle dependence 

King (1998) found that a quadratic fit was sufficient to fit each parameter as a 

function of joint angle. Expressing each of the six parameters as a quadratic function of 

the joint angle increased the number at parameters to 18: 

(4.13) 

with (4.14) 

(4.15) 

, ~ 
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(4.16) 

(4.17) 

(4.18) 

(4.19) 

where 

Xl - X 18 parameters 

ro joint angular velocity (radians/second) 

e joint angle (radians) 

T torque 

Optimisation procedure 

A least squares optimisation method was used for each of the functions to fit the 

torque - angular velocity relationship to obtain the optimum set of coefficients. The 

optimisation procedure was performed with both the Simplex and Simulated Annealing 

algorithms. The solutions obtained from the Simplex algorithm were used as the starting . 

point for the Simulated Annealing. 

King (1998) found that in some cases the equations obtained with the 18 parameters 

became undefined due to the exponential function becoming too large. To prevent the 

function from being undefined two alternatives of the same function were used depending 

on the values of pro and qro: 

when pro < 0 and qro < 0 

when pro> 0 and qro > 0 

T = ae-(p+q)ro + be-qro 

(e-Pro + c)(e-qro + d) 

Range of data for the sUrface fit 

(4.20) 

(4.21) 

The surface fits for each joint were optimised over different ranges of motion. 

Firstly over a range where there was no extrapolation of the torque - angle data for any 

trial (minimum range), secondly over the largest range (maximum range) and thirdly over 

a range of motion which used half real and half extrapolated data at the end points of each 

trial (average range). 
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Root mean squared (rms) differences were calculated between the raw torque data 

and the torques produced by the surface fit. The rms difference should be smallest when 

the surface is fit over the minimum angle range since none of the data will have been 

extrapolated. Depending on the rms value and the overall look of the surface fit the 

appropriate angle ranges were used (i.e. minimum, average or maximum). If the surface 

fits obtained do not appear to have been distorted by the use of extrapolated data the 

largest range will be used in the simulation model. 

The surface function would be well-defined within the range of motion of the fitted 

data. However, King (1998) found that outside the range of motion used the function was 

not well-defined. To prevent the surface function from giving spurious torque values the 

function was constrained to a constant value outside the range. 

4.3 Summary 

Isokinetic joint torque data were collected from an elite male gymnast using an 

isokinetic dynamometer. Data were recorded from the hip and shoulder whilst 

performing flexion and extension actions over a range of angular velocities (200 .s·1 to 

250°.s·I ). Each trial consisted of two repetitions of concentric - eccentric exercise. The 

middle eccentric - concentric portion of each trial (except trials at 20°.s· l ) was used to 

ensure that the subject's muscles were "switched on" at the start and finish of the portion 

used. 

Simultaneously data were recorded from a twin axis goniometer so that joint 

torques could be corrected for errors between the dynamometer crank angle and the angle 

of the subject's limb. The data were also corrected for segment weight and then converted 

from crank torque into joint torque. 

At both joints and for each action (flexionlextension) the joint torque - angular 

velocity relationship was fitted using a six parameter exponential function developed by 

King (1998). For each joint action the data were combined using a quadratic fit to include 

the joint torque - angle relationship. Therefore, using 18 parameters a three-dimensional 

surface of joint torque, angle and angular velocity was obtained. These three-dimensional 

surfaces will allow the peak joint torque to be predicted based on a knowledge of joint 

angle and angular velocity. The peak joint torques will be used to limit the joint angle 

time histories used in the optimisation of the accelerated giant circles (Chapter 8). 
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CHAPTERS 

KINETIC ANALYSIS OF THE GIANT CIRCLE 

5.1 Introduction 

The majority of the experimental research which has been carried out on the 

backward giant circle has concentrated on the regular giant circle (Borms et aI., 1975; 

Boone; 1977; Kopp and Reid, 1980; Okamoto et aI., 1987). A small number of papers 

have looked at the accelerated giant circle (Cheetham, 1984; Gervais, 1993; Briiggemann 

et aI., 1994). This chapter sets out to obtain kinetic and kinematic data from regular and 

accelerated giant circles. These data will provide a comparison between the two types of 

giant circle and provide the data required to evaluate the simulation models developed in 

Chapter 3. 

5.2 Inertia parameters 

5.2.1 Introduction 

The inertia data is required for both the video analysis of the backward giant circles 

and the simulation models. The video analysis requires inertia data for 11 body segments 

whilst the simulation models require inertia parameters for one, three and four segments. 

5.2.2 Methods 

The 95 anthropometric measurements defined by Yeadon (1990b) were taken from 

two elite male gymnasts, subjects jb01 and tv01 (see Appendix 3a for data collection 

sheets). The anthropometry was performed by two experienced measurers, who had 

carried out the 95 measurements in excess of 50 times each. The anthropometric 

measurements were entered into the inertia model of Yeadon (I 990b ) to obtain the inertia 

characteristics of the subjects. The inertia model used the density parameters of 

Dempster (1955). The subject's masses were recorded and compared with the predicted 

mass obtained from the inertia model (Yeadon, 1990b). 

The output from the inertia program, iseg90 (Yeadon, 1990b), was designed to 
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provide inertia data for an 11, four and three segment model. The simulation models 

were restricted to movements in the sagittal plane and therefore only the moments of 

inertia about the sagittal axis were required. For the four and three segment inertia sets 

the length and location of the mass centre data for the left and right sides of the body were 

averaged. The masses and moments of inertia were obtained by summing the values 

obtained for the left and right sides of the body. The inertia data for the single segment 

was obtained using the simulation program sim93 (Yeadon, 1984). The program is used 

to simulate the human during aerial movements. For each time interval of the simulation 

the program calculates the gymnast's whole body moment of inertia about the mass centre 

for the three principal axes of rotation. Using the 11 segment inertia parameters sim93 

was used to simulate the gymnast with a fully extended body with the arms above the 

head. This body configuration was used as it approximated the shape of a gymnast during 

the downswing of a giant circle and could therefore be used for the one segment 

simulation model. 

5.3 Video analysis 

5.3.1 Introduction 

The video analysis of the backward giant circles will provide a kinematic profile of 

both the accelerated and regular giant circle techniques. These kinematic data will be 

used to evaluate the simulation models developed in Chapter 3. 

5.3.2 Data collection protocol 

One senior male gymnast of international standard gave consent to perform several 

regular and accelerated backward giant circles on the high bar while force and video data 

were collected (see Appendix 3b for signed consent form). In total 12 trials were 

performed and recorded. These 12 trials were split into two groups depending on which 

type of giant circle was performed. The trials from the first group were the regular giant 

circles where the gymnast was requested to perform consecutive giant circles with good 

form. The trials from the second group were the accelerated giant circles, where the 

gymnast was requested to perform giant circles as if he were "winding up" for a double 

layout dismount. The high bar was erected inside a biomechanics laboratory. Due to the 

confines of the laboratory the gymnast wore canvas loops to prevent any loss of contact 

with the bar. The gymnast was allowed to rest between trials so that fatigue would not 
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develop and consequently lower the standard of his performance. 

All trials were recorded using two video cameras, a Sony Hi8 Hyper HAD 

(EVW-300P) and a Sony Digital Handycam (DCR-VX1000E), both operating at 50 Hz. 

The cameras were genlocked in order to synchronise their shutters which were operating 

at 11500 sand 11600 s respectively. The two cameras were located approximately 1.6 m 

above the ground at a distance of 8.5 m from the centre of the high bar (Figure 5.1). The 

field of view was approximately 6 m wide and for calibration purposes contained 24 

control points on eight calibration poles (Figure 5.2) which were placed in known 

locations within the movement space (Figure 5.3, see Appendix 3c for three-dimensional 

co-ordinates of the calibration markers). The markers on the poles were constructed from 

polystyrene balls (0.08 m in diameter) which had been drilled through their centres. In 

addition to the calibration poles four markers were placed on the uprights of the high bar 

(Figure 5.2). This gave a total of 28 control points distributed throughout the movement 

volume. The locations of the control points were chosen so that the subject would 

perform the giant circle within the calibration volume. This meant that no extrapolation 

outside the calibration volume was necessary. The calibration points were videoed prior 

to the subject performing the swinging trials. 

In order to make use of the fact that the cameras were gen-locked a synchronisation 

unit was placed in the field of view of both cameras (Figure 5.1). The synchronisation 

unit comprised an array of 18 ultra bright light emitting diodes (LED), each LED was 

0.01 m in diameter. The synchronisation unit was connected to a photocell attached to the 

upright of the high bar furthest away from the cameras (Figure 5.4). A reflective disc was 

placed on the upright nearest to the cameras facing the photocell and at the same height. 

Both the photocell and reflective disc were placed at a height so that the subject's hips 

would break the photocell beam as he passed through the uprights at the lowest point of 

each swing. The breaking of the beam acted as a switch which was used to light the 

synchronisation unit. Identifying this event from each camera view enabled the cameras 

to be synchronised. 

LED Array 0 

Computer etc 
cg;;[J 

High bar 

genlock cable 
Sony Digital Handycam Sony HiS Hyper HAD 

Figure 5.1. Arrangement ofthe video cameras and data capture system. 
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Figure 5.2. Arrangement of the calibration poles and markers. 
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Figure 5.3. Heights of the calibration markers used in the calibration volume. 
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reflective disc 

Figure 5.4. The photocell arrangement attached to uprights of the high bar. 

5.3.3 Analysis of video data 

Digitisation 

The tapes from both video cameras were time-coded for use with the video digitiser 

system. All digitisation was carried out using the Target system (Kerwin, 1995). The 

zoom on the digitiser was set to x2 giving a resolution of 6144 x 4608. 

Five images of the calibration volume were digitised prior to the movement data. 

From the measured three-dimensional locations of the 28 control points, together with the 

digitised locations, the 11 DL T camera parameters for each camera were determined 

using the method of Abdel-Aziz and Karara (1971). The calibration program produced 

root mean squared Crrns) reconstruction errors for the calibration points in each of the 

three dimensions (x,y,z). 

In each field of the movement phase the wrist, elbow, shoulder, hip, knee, ankle and 

toe of both sides of the body were digitised along with the head and the centre of the bar, 

giving a total of 16 landmarks per video field. A polystyrene ban of diameter 0.12 m, 

with a 0.028 m hole through its centre was positioned at the mid-point of the bar. This 

point was digitised as the centre of the bar. The views from both cameras were digitised 

for trial 10, trial 4 and trial 11. These trials contained three regular giant circles (trial 10) 

and two accelerated giant circles (trial 4 and trial 11). The two sets of digitised co­

ordinates for each trial were synchronised by locating the common frame containing the 

illuminated synchronisation unit. The synchronised co-ordinates, 11 DL T parameters for 
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both cameras and the 11 segment inertia data were entered into the video analysis 

program filmlSh. The film program was adapted from the program film (Yeadon, 1984) 

to obtain the required output for the high bar application. Three dimensional co-ordinates 

of each digitised point were reconstructed using the method of Abdel-Aziz and Karara 

(1971). The video analysis program determined the rms values of the reconstructed 

points about the mean of each point for each field digitised. Rms values for all points 

were determined in each of the three dimensions (x,y,z). 

The video analysis program calculated the three-dimensional co-ordinates of the 

mass centre location of the subject and the segment lengths for each video field. The 

segment lengths were compared with those obtained from the anthropometric measure­

ments taken from the subject. 

Orientation and joint angles were calculated for each frame of motion. The 

orientation angles (Yeadon, 1990a) refer to the somersault angle, defined as the angle 

created by the line joining the mass centre of the subject to the neutral bar position, the tilt 

and the twist angles. Although it was assumed that the majority of the movement 

occurred in the sagittal plane output of the tilt and twist angles will provide confirmation 

of this assumption. The angular velocity of the somersault angle was calculated by 

differentiating the somersault angle time history. This was done by evaluating the first 

derivative of the quintic spline which was fit to the somersault angle data (Jennings spline 

fitting library which fits splines using the method of Reinsch, 1967). 

The joint angles output from the analysis program were the angle made by the arm 

segment and the horizontal, the pike angle at the hips, the elevation angle of the 

shoulders, and the angle at the knees (Yeadon, 1990a). The four segment simulation 

model required the time histories of the arm segment, hip, shoulder and knee angles along 

with their first and second derivatives. These data were fit using quintic splines. Before 

the splines were fit to the angle data, the angles obtained from the right and left side of the 

body were averaged. These averaged data were then spIined using Jennings spline fitting 

library (1979). The spIine coefficients of the somersault, arm, hip, shoulder and knee 

angle were output from the analysis program. 

To determine the neutral resting location of the centre of the bar the polystyrene 

ball mounted at its centre was digitised with zero load applied to the bar. The polystyrene 

ban was digitised sixteen times in each of ten video fields from both camera views. The 

location of the centre of the bar was taken as the average of the one hundred and sixty 

reconstructed estimates. The horizontal and vertical displacements away from the neutral 

resting position of the bar were obtained by subtracting the resting position from the 

reconstructed three-dimensional co-ordinates obtained from the swinging trials. Quintic 

splines were fit to the horizontal and vertical bar displacements so that their linear 

velocities could be evaluated (Jennings spline fitting library). The coefficients of the bar 

displacement spline were output from the video analysis program. 



108 

5.4 Force measurement 

5.4.1 Introduction 

Reaction force data have been collected from gymnasts performing regular giant 

circles (Kopp and Reid, 1980) and also from gymnasts performing accelerated giant 

circles (Gervais, 1993). However, no results have been presented on force recorded from 

a gymnast performing both regular and accelerated giant circles. This section outlines the 

method for collecting force data which will be used to evaluate the simulation models 

developed in Chapter 3. 

5.4.2 Calibration of the force measurement system 

In order to measure force from a strain gauge device it is necessary to calibrate the 

system using known loads. When analysing the strain data these calibration curves may 

be used to convert the strain data into force. 

Arrangement of strain gauges 

To record the strain whilst the gymnast circled the high bar 16 strain gauges (CEN 

09/280UW/120 linear strain gauges) were bonded to the surface of the bar (Figure 5.5). 

The gauges were arranged into two full wheatstone bridges at each end of the bar, one 

bridge to measure horizontal strain and one bridge to measure vertical strain. The 

arrangement of the bridges resulted in four channels of information. Due to the 

arrangement of the four wheatstone bridges the force applied to the bar could be recorded 

independently of the point of force application. 

The bridges were connected to a six channel strain gauge amplifier (Model 2100, 

Measurement Group UK). The gain on the amplifier was set so that the output voltage 

would be in the range of ± 10 volts. This was the desired range of output so that the 

amplified signals could be passed through the analogue to digital converter (CED 1401). 

The analogue to digital converter sampled the amplified strain data at 200 Hz which was 

subsequently recorded on a PC (Acorn 5000). The arrangement of the strain data capture 

system is shown in Figure 5.6. 
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side view 

linear strain gauges 

top view 

Figure 5.5. Arrangement of strain gauges bonded to each end of the high bar. 

CED1401 
(ADC) 

amplifier 

strain gauges 

second photocell 

LED array 

12V battery 

Acorn 1"\.J\JVV computer 

CED1401l BBC micro interface 

two way trigger from the photocell 

Figure 5.6. The data capture system used to collect strain data. 

Methods 

The bar was erected and the uprights were verticalised using spirit levels. Before 

testing with the gymnast it was necessary to calibrate the high bar so that the strain 

measured from the gauges could be converted into force. The gains on the vertical and 

horizontal channels of the strain gauge amplifier were set to 400. This allowed the full 

range of load to be recorded given the restriction of the ± 10 volts output required by the 

analogue to digital converter. The bar was then loaded vertically downwards at its centre 
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using chains and two cable tensioners. The cable tensioners were of the same type as 

those used to tighten the cables supporting uprights of the high bar. One end of the 

loading system was connected to the centre of the high bar using canvas loops. The other 

end was connected to a plate mounted in the floor directly under the centre of the bar 

(Figure 5.7). A load cell was placed within the chains of the loading system to measure 

the load applied to the bar (Figure 5.7). 

cable tensioners 

load cell 

floor plate 

Figure 5.7. The load cell and loading system for vertical calibration. 

The load cell was constructed from a length of steel with eye bolts mounted at each 

end (Figure 5.8). Two cross pair strain gauges were bonded to the load cell to form a full 

bridge circuit. The load cell was loaded to 8.0 kN in steps of 0.5 kN using an Instron 

hydraulic testing machine, model 8011 (see Appendix 3d for calibration of the load cell 

data). The output, in microstrain, from the load cell was recorded on a Tinsley Sovereign 

strain gauge amplifier. 

The load cell was connected to a strain gauge amplifier (Tinsley Sovereign) which 

gave an analogue display of the strain. The bar was then loaded vertically to 3.0 kN in 

steps of 0.5 kN (see Appendix 3e for the data sheets). This was achieved by tightening 

the cable tensioners within the loading system. When the amplifier connected to the load 

cell gave the appropriate reading a recording from the high bar amplifier was taken. The 

reading (in ADC counts) was taken over a period of 7.5 s and was saved as both a comma 

separated variable file (CSV) and as a binary file. Average values from each calibration 

recording were made and entered into a separate file. By plotting the graph of load 

against amplifier reading it would be possible to convert any amplifier reading into force. 

In order to determine the interactions between channels (cross talk) data were recorded 

from all four channels during the calibration recordings, regardless of the direction of 

loading. 
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strain gauge 

Figure 5.S. The calibrated load cell used in the calibration of the force measurement 

system. 

To load the bar in the horizontal direction two eye bolts were mounted at bar level 

into the steel structure of the laboratory (Figure 5.9). The loading system was connected 

at one end to the high bar and to the eye bolts mounted in the wall at the other 

(Figure 5.9). The bar was loaded horizontally to 2.5 kN in steps of 0.5 kN (see 

Appendix 3f for data sheets). 

The data from the horizontal and vertical strain gauges may be combined to obtain 

the resultant reaction force at any time during the swinging activity. Therefore, loading 

the bar at its centre may be justified. However when the gymnast circles the bar contact 

is made at two points (i.e. where the hands contact the bar). These points will be 

approximately shoulder width apart. In order to determine the effect of loading the bar at 

two points simultaneously a second bar was suspended under the high bar using two 

canvas loops (Figure 5.10). The second bar was then loaded at its centre using the 

loading system. The high bar was loaded in this manner up to 2.5 kN. in steps of 0.5 kN 

as described previously (see Appendix 3g for data sheets). 

Figure 5.9. The load cell and loading system for horizontal calibration. 
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Figure 5.10. Arrangement of loops and chains for loading the bar at two points. 

Analysis of the calibration data 

The strain data from the two ends of the bar were combined. That is, the vertical 

strain data from channel one was added to the vertical strain data from channel four. The 

same was done for the hotizontal strain data. This meant that the strain and subsequent 

force would be independent of point of application along the bar. Linear regressions were 

performed between the load applied to the bar and the recorded strain in both directions 

(i.e. vertical and horizontal). The recordings from the amplifier were defined as the 

dependent variables, whilst the known loads were used as the independent variables. The 

regressions were forced through the origin since all the amplifier channels had been 

zeroed with no force applied to the bar. All regressions were performed on the First 

statistics package. The output from the statistics package were the equation of the 

regression lines and the coefficient of correlation between the two variables. 

5.4.3 Collection offorce data 

Data collection 

The collection of the strain data was triggered using the photocell attached to the 

uprights of the high bar (Figure 5.4). This was the same photocell used to trigger the 

synchronisation unit (section 5.3.2). The photocell worked as a switch. As the gymnast 

passed through the lowest point on the first giant circle the breaking of the beam triggered 

the data collection. The software controlling the data recorder was designed to collect the 
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strain data one full second before the trigger was activated and 6.5 s after. This delayed 

trigger allowed the strain data to be recorded during the downswing of the first giant 

circle. All data were collected at 200 Hz and recorded using the same data collection 

system used in section 5.4.2. 

5.4.4 Analysis of force data 

The strain data were converted into force (Newtons) using the regression equations 

obtained in section 5.4.2. The error in the prediction of the force applied to the bar was 

calculated from the calibration and regression information. Peak reaction forces were 

determined for each giant circle. These data were expressed in Newtons and in terms of 

the gymnast's bodyweight. Force in bodyweights was calculated by dividing the force 

calculated in Newtons by the subject'S mass and the acceleration due to gravity. 

The force traces obtained from different giant circles were compared. The rms of 

the difference between the force trace of the three regular giant circle performed in 

trial 10 were obtained. All combinations of the three regular giant circles were compared. 

The trials for the accelerated giant circles were compared in the same way. 

5.5 Synchronisation of force and video 

5.5.1 Introduction 

In Chapter 7 the four segment model will be evaluated by comparing the reaction 

forces produced by the model with those obtained from the force analysis of the backward 

giant circle. In order for these two force-time histories to correspond the simulation 

model will be driven using the joint angle time histories obtained from the video analysis. 

Therefore, the force and video data need to be synchronised so that the appropriated force 

recordings correspond to the movements of the subject. 

5.5.2 Collection offorce and synchronisation data 

The force and video data were collected simultaneously. The force data were 

recorded at 200 Hz whilst the video data were recorded at 50 Hz. Therefore, for every 

field of video data recorded there were four recordings of force. The synchronisation unit 

allowed the force and video to be synchronised to the nearest video field. In order to 
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synchronise these data and obtain the force recordings corresponding to the video data it 

was necessary to collect some additional data. 

A second photocell was attached to the furthest upright from the cameras. This was 

positioned as close to the first photocell as possible and was directed at the reflector 

attached to the nearest upright (Figure 5.4). The second photocell gave a voltage output 

of 10 volts when the beam was broken and zero volts when the beam was "made". This 

output was connected through the analogue to digital converter and recorded on a separate 

channel of the data recorder. 

The second beam was broken as the gymnast's hips passed between the uprights on 

every giant circle. It was assumed that at the mid-point of the beam break the gymnast's 

hips were directly between the uprights. That is, the location of the mid-point of the hips 

(average location of the left and right hip locations) was in line with the two uprights. 

The time that the hips were in the middle of the beam break was determined by 

interpolating the hip location time history from the video data. Since the data from the 

beam break was recorded alongside the force recordings the event of the hips breaking the 

beam could be matched to the nearest force recording. 

The force data obtained in section 5.4 were plotted against the rotation angle of the 

subject in order to determine where during the backward giant circle the peak force 

occurs. This would make it possible to determine whether features in the force traces 

correspond to the joint actions being performed by the subject. 

5.6 Obtaining spring coefficients 

5.6.1 Introduction 

The four segment simulation model described in Chapter 3 requires stiffness and 

damping coefficients for the linear springs at the bar and shoulders. This section outlines 

how these coefficients were determined. The stiffness and damping coefficients of the 

bar were determined using two independent methods. The first method used static 

loading whereas the second method used dynamic data obtained from the force and video 

analysis of the backward giant circles. The spring coefficients for the shoulders were 

obtained in two stages. An initial estimate for the stiffness of the shoulder spring was 

determined from the extension which occurred in the shoulders during the backward giant 

circles. The four segment simulation model was then used to obtain a better estimate 

using an optimisation procedure. The same optimisation procedure was used with all 

spring coefficients. The spring coefficients obtained from the optimisation will be used in 

the four segment simulation model for both the evaluation of the model (Chapter 7) and 
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the optimisation of the backward giant circle (Chapter 8). 

5.6.2 Stiffness and damping coefficients of the bar 

Determination of stiffness coefficient via static loading 

Data collection 
The high bar used in sections 5.3 and 5.4 was videoed using a Sony Handycam Hi8 

(CCD-VXlE) video camera, operating with a shutter speed of 11300 s, positioned level 

with the height of the bar and 3.67 m in front (Figure 5.11). The location and zoom of the 

video camera gave a field of view of approximately 0.40 m wide. Three markers were 

placed on the bar - one on the centre line at the middle of the bar and one 0.05 m either 

side of the central marker (Figure 5.12). Two calibration poleswere placed in the field of 

view and videoed prior to the loading to allow for calibration of the movement space 

(Figure 5.12). The markers on the poles were placed at known location so that a scale 

factor could be determined. 
The bar was loaded in the vertical direction using weights of known mass 

suspended from the bar using chains and canvas loops (Figure 5.13). The bar was loaded 

to 2165 N in steps of approximately 228 N. At each each different load the bar was 

videoed. To increase the number of data points recordings were made as the bar was 

unloaded. 

2.725 m 

3.67 m 

Figure 5.11. Location of the camera relative to the high bar during static loading. 
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Figure 5.12. The calibration poles and markers placed in the field of view in order to 

determine the scale factor. 

Figure 5.13. Method used to load the high bar. 

Data analysis 

Each of the video fields was digitised using the Target digitising system. The 

reference poles were digitised to calibrate the movement space. From the known 

co-ordinates and the digitisation of the reference markers the vertical displacement of the 

loaded bar from its neutral resting position was determined using a scale factor. 

A linear regression was performed on the vertical bar displacement and the load 

applied to the bar. Since no vertical displacement occurred when zero load was applied to 

the bar, the regression was forced through the origin. Using Hooke's Law (equation 5.1) 

the gradient of the regression line may be used to determine the stiffness coefficient of the 

bar. 

T=kx (5.1) 
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where 

T tension in the spring 

x extension in the spring 

k stiffness coefficient of the spring 

The stiffness coefficient obtained from the static loading was compared with that 

obtained from the kinetic and kinematic analysis of the backward giant circles. 

Determination from kinetic and kinematic analysis 

The horizontal and vertical displacements of the high bar about its neutral resting 

position were calculated. The horizontal and vertical coordinates of the centre of the bar 

in its neutral resting position were subtracted from the bar displacements obtained from 

the video analysis program. 

Linear regressions were performed between the' vertical bar displacement and the 

synchronised vertical force recordings for trial 10 circle one, circle two, and the combined 

data from circle one and two. The same regressions were performed in the horizontal 

direction. Similar regressions were performed on the data obtained from the accelerated 

giant circles performed in trial 4. 

The gradient of the regression equations was defined as the stiffness coefficient of 

the bar (Hooke's Law). Using Hooke's Law the stiffness coefficient of the bar was used 

to calculated the estimated force. This was done by multiplying the stiffness coefficient 

with the bar displacement. Rms values, in the horizontal and vertical directions, were 

determined for the difference between the estimated and the recorded force. The same 

procedure was carried out to obtain rms difference values between estimated and recorded 

force using the stiffness coefficient obtained from the static loading of the bar. 

The equation of motion for a damped linear spring was given in Chapter 3. The 

magnitude of the damping force is related to the damping coefficient and the rate of 

lengthening of the spring. To determine the damping coefficient of the bar a multiple 

regression was performed between the force recorded from the high bar, the displacement 

of the bar and the splined linear velocity of the bar obtained from the video analysis. The 

multiple regression yielded coefficients for the stiffness and the damping of the high bar. 

The multiple regressions were performed separately with the horizontal and vertical data. 

The estimated force was calculated using the stiffness and damping coefficients 

determined from the regression equations. The rms differences for the measured and 

estimated force using the stiffness and damping coefficients were calculated. 
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5.6.3 Stiffness and damping coefficients of the shoulder spring 

Initial estimate of shoulder spring stiffness coeffICient 

The video analysis program calculated the lengths of the subjects limbs for each 

field of movement. It was hypothesised that the gymnast increased in length during the 

lowest part of the giant circle. It is thought that the majority of this extension occurs in 

the structures of the shoulders and the spine. In order to calculate the extension that 

occurs between the wrists and the hips. the video analysis program was modified to sum 

the average length of the arms to the length of the torso for each field of movement 

(section 5.3.3). Linear regressions were performed between the time history of the wrist 

to hip length and the resultant reaction force at the bar. 

5.6.4 Optimisation of the spring parameters 

The methods of obtaining the spring parameters outlined thus far have been 

dependent on regressions performed on the kinetic and kinematic data. Since no data has 

been collected on the internal joint forces at the shoulders and throughout the structures of 

the spine, any stiffness coefficient obtain from these results may be expected to be "ball 

park" at best. In addition no values for the damping coefficient for the shoulder spring 

have been determined. The current section outlines the method used to obtain stiffness 

and damping coefficients for the shoulder spring. The same method was also used to 

optimise the spring coefficients of the bar. 

Methods 

The four segment model outlined in Chapter 3 was used to obtain stiffness and 

damping coefficients for the shoulder spring using the Simulated Annealing optimisation 

routine. Splined joint angle time histories obtained from the video analysis were used to 

drive the simulation model. The optimisation procedure used a criterion based on a cost 

function. The cost function was derived from the whole body angle of rotation and the 

horizontal and vertical displacements of the bar. The rms difference between the 

simulated and the splined variables were calculated by the simulation program. The 

rotation angle obtained from the simulation model was called the "estimated" angle of 

rotation, whilst the angle of rotation obtained from the video analysis of the backward 

giant circles was called the "measured" angle of rotation. A similar notation was used for 

the horizontal and vertical bar displacements. The rms difference between the estimated 
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and measured variables were calculated for every integration interval of the simulation. 

At the end of the simulation the rms difference for each of the variables was produced for 

the whole simulation. The cost function contained the rms differences for the angle of 

rotation and the bar displacements with the appropriate weighting (see equation 5.2). 

Since the aim of the optimisation was to reduce the difference between the data obtained 

from the simulation model and the data obtained from the video analysis the cost function 

was minimised. 

Cost = 1.0 * RMSRA + 12.7 * RMSHBD + 12.7 * RMSVBD (5.2) 

where" 

RMSRA rms error in rotation angle [in radians] 

RMSHBD rms error in horizontal bar displacement [in metres] 

RMSVBD rms error in vertical bar displacement [in metres] 

The weighting of the function is such that a 20° error in the rotation angle is equivalent to 

a 0.026 m error in the displacements of the bar. Using the stiffness coefficient of the bar 

obtained in section 5.6.2, a 0.026 m error in bar displacement would correspond to an 

error in the estimated reaction force of one bodyweight. The 0.026 m error in bar 

displacement therefore corresponds to approximately 1)j of the maximum force recorded 

during a backward giant circle. Similarly, multiplying the 20° error in rotation angle 

results in an unacceptably large difference between the simulation model and the video 

analysis. The weightings of the cost function were such that a 20° error in rotation angle 

and a 0.026 m error in each of the bar displacements would result in a score of 1.0. 

The parameters varied in the optimisation were the stiffness and damping 

coefficients of the bar and shoulder springs. Upper and lower bounds were set to each of 

the parameters so that appropriate results could be obtained. The aim of the optimisation 

was not to find completely new spring coefficients but to test the sensitivity of the 

experimentally obtained values. The maximum number of function evaluations was set to 

8000. That is, the Annealing process was given a maximum of 8000 simulations to vary 

the spring parameters within the upper and lower bounds to find the smallest value for the 

cost function. 

The trial used to optimise the spring parameters was the third regular giant circle 

from trial 10. This giant circle was chosen since it was not used in section 5.6.2. In 

addition the evaluation of the four segment model will be carried out using the trials from 

the accelerated giant circles. Optimising the spring parameters using an accelerated giant 

circle may influence the results of the evaluation of the four segment model. It was 

therefore decided to use spring parameters obtained from a different movement. 

The input to the simulation model were the initial estimates of the spring 
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parameters obtained from the regression equations performed on the experimental data 

(section 5.6.2), the spline coefficients for the joint angle time histories, the spline 

coefficients for the time history of the arm segment angle, the spline coefficients for the 

bar displacements and the rotation angle obtained from the video analysis. The initial 

velocities of the bar and the segments of the model were obtained from the evaluation of 

the first derivative of the spline data. 

The optimisation performed using the regular giant circle was started from a 

rotation angle of 90° It was found that the angular velocity during the rotation from 0° to 

90° created problems with the simulation model. The gymnast initiated the giant circle 

from a near s.tationary position. The low angular velocity caused the rotation of the 

simulation model to deviate from the video data since the springs at the bar were prone to 

oscillations until sufficient angular velocity had been obtained. 

The results of the optimisations would be used in the evaluation of the simulation 

models outlined in Chapter 3. 

5.7 Summary 

Chapter 5 has outlined the techniques used to collect three-dimensional coordinate 

data from a gymnast swinging on the high bar. Simultaneously force recordings from the 

bar were obtained and synchronised with the video data. The analysis of the video data 

will provide the necessary information to compare and contrast the regular and 

accelerated giant circles. The splined joint angle time histories will be used to drive the 

four segment simulation model. The force data will provide information relating to the 

loading of the high bar during both regular and accelerated giant circles. These data will 

also be used in the evaluation of the four segment simulation model. 

Two techniques for obtaining spring parameters for the four segment simulation 

model were presented. The first used the synchronised force and video data, the second 

used the four segment simulation model and an optimisation algorithm. The results 

obtained from the first method may be used to answer the question as to whether the 

displacements of a calibrated high bar may be used as a force dynamometer. The results 

from the optimisation procedure will be used in the evaluation of the four segment 

simulation model (Chapter 7). 

All results obtained from the methods presented in this chapter may be found in 

Chapter 6. 
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CHAPTER 6 

RESULTS OF THE EXPERIMENTAL METHODS 

6.1 Introduction 

Chapter 6 contains the results from the methods outlined in Chapters 4 and 5. 

These include the data obtained from the isokinetic dynamometry and the kinetic and 

kinematic analysis of backward giant circles. The data presented in this chapter will be 

used in both the evaluation of the simulation models and the optimisation of the 

accelerated backward giant circle. 

6.2 Muscle parameters 

6.2.1 Introduction 

A method for obtaining subject specific muscle parameters was outlined in 

Chapter 5. The method results in eighteen parameters which defines the relationship 

between the torque, angle and angular. velocity of a joint. Since data were collected on 

four joint actions (flexion and extension at the hip and shoulder) four sets of the eighteen 

parameters were obtained. Each set of parameters defines the maximum joint torque the 

subject can produce given the angle and angular velocity at the joint. The muscle model 

is therefore a surface which represents the torque - angle - angular velocity relationship. 

6.2.2 Calibration of the Kin-Com machine and goniometer 

Estimate of accuracy 
The average force measurement recorded by the dynamometer over aSs period 

with the crank arm in a horizontal position was within 1 N of the load hung from it. 

These errors are within the tolerance quoted by the manufacturers and of the same order 

of magnitude as the resolution of the machine. The resolution of the isokinetic 

dynamometer was therefore deemed acceptable. 

The regression analysis performed on the goniometer calibration data yielded a 

standard deviation of 2.3°. Given the large angle ranges under investigation this was 

thought to be acceptable. 
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6.2.3 Raw joint torque data 

Table 6.1 shows the chosen range of motion for the crank, the actual isokinetic 

range of motion of the crank and the isokinetic ranges of motion of the joint during hip 

flexion (similar tables for shoulder flexion and extension and hip extension may be found 

in Appendix 2c). In all cases (both direction and joint) the range of the crank angle was 

greater than that of the joint angle. This meant that the ranges of motion for which there 

were data were less than the ranges of motion that the subject was likely to use in 

performing accelerated giant circles. When fitting the surface to the raw data extrapola­

tion of the torque - angle relationship was required on all joint ranges, except for when the 

minimum joint range was used. 

Table 6.1. Ranges of motion during hipflexion 

angle 

crank 

isokinetic 
crank 

minimum 

average 

maximum 

isokinetic 
joint 

minimum 

average 

maximum 

3.0 

33.6 

13.8 

3.4 

40.5 

28.9 

11.3 

116.0 

73.6 

103.3 

116.0 

69.8 

90.4 

107.9 

113.0 

40.0 

89.5 

112.6 

29.3 

61.5 

96.6 

The raw data were corrected for gravity and joint angle. In Figure 6.1 the raw data 

surface obtained from the average joint angle range for hip flexion is given. Since the 

average angle range is shown in Figure 6.1 some of the torque - angle data has been 

extrapolated using the last known torque value. The raw data for the average angle range 

from hip flexion and shoulder flexion and extension are shown in Figures 6.2, 6.3 and 6.4. 
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torque [N. m] 

29.5 
angular velocity [o.S·I] 

Figure 6.1. Raw data obtained using the average angle range for hip flexion. 

122.07 

torque [N.m] 

1000 

800 

Figure 6.2. Raw data obtained using the average angle range for hip extension. 

torque [N.m] 

25.61 angular velocity [o.S·I] 

Figure 6.3. Raw data obtained using the average angle range for shoulder flexion. 
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torque [N.m] 

-184.2 

102.21 angular velocity [0,5'1] 

Figure 6.4. Raw data obtained using the average angle range for shoulder extension. 

6.2.4 Smoothed 3-D joint torque surfaces 

Estimate of accuracy 
The rms difference between the raw and surface data were calculated for each of 

the joint angle ranges and for each joint action. These data are presented in Table 6.2. It 

might have been expected that the rms differences would have increased with increasing 

angle range since more extrapolated data would have been used. 

Given the rms differences presented in Table 6.2, the joint angle ranges (see 

Table 6.1 and Appendix 2c) and the shape of the surface fits it was decided that the 

surfaces obtained using the average joint angle should be used in the simulation model. 

This gave a compromise between the angle range and the amount of extrapolated torque 

data. The surface fits for both of the hip and shoulder actions are shown in Figures 6.5, 

6.6, 6.7 and 6.8. 

Table 6.2. Rms differences between the raw data and the surface fits 

action rms difference over joint range [N.m] 

minimum average maximum 

shoulder 26.4 30.8 38.9 
flexion 

shoulder 33.3 31.0 29.4 
extension , 

hip 
flexion 40.0 50.9 62.1 

hip 
extension 182.7 102.1 121.9 
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torque [N.m] 

angle n 
29.5 angular velocity [o.s·l] 

Figure 6.5. Surface fit using the average angle range for hip flexion. 

torque [N.m] 

angle [0] 
122.07 angular velocity [o.S·I] 

Figure 6.6. Surface fit using the average angle range for hip extension. 

angle [0] 25.61 

torque [N.m] 

300 

200 

100 

-250 
angular velocity [o.S·I] 

Figure 6.7. Surface fit using the average angle range for shoulder flexion. 
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102.21 

torque [N.m] 

150 

100 

50 

angular velocity [o.S·I] 

Figure 6.8. Surface fit using the average angle range for shoulder extension. 

6.3 Kinematic analysis of the giant circle 

6.3.1 Introduction 

The following results were obtained from the methods presented in Chapter 5 from 

the collection and analysis of three-dimensional video data of the subject performing 

regular and accelerated giant circles. The results include the time histories of the path of 

the mass centre and the angular velocity of the whole body rotation angle, linear 

displacements of the bar, joint angle time histories and the segment lengths calculated 

from the video analysis program. Before the video analysis could be perfomed the inertia 

parameters of the subject used were required, therefore these results will be presented 

first. 

6.3.2 Inertia parameters 

The recorded masses of the two subject's were 62.8 kg and 65.0 kg for jb01 and 

tv01 respectively. The inertia model under-estimated the mass of subjectjbOI by 0.75 kg, 

a difference of 1.2% when expressed as a percentage of the recorded whole body mass. 

The predicted mass for subject tvOI was over-estimated by 0.78 kg, a percentage 

difference of 1.2%. These percentage differences compare favourably with the results of 

Yeadon (1990b), Hatze (1980) and Hanavan (1978) who obtained mean values of 2.3%, 

0.5% and 1.8% respectively. 
The I1 segment inertia data are presented in Appendix 4a and 4b. The inertia data 

for the four, three and single segments are presented in Table 6.3 and Table 6.4 for the 

subjects jbOI and tvOI, respectively. 
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Table 6.3. The four, three and single segment inertia data for subject jbO 1 

segment mass length cmloc moment of inertia 
(kg) (m) (m) (kg.m') 

arms 6.868 0.548 0.239 0.205 

torso 33.566 0.435 0.337 1.610 

thigh 14.074 0.374 0.151 0.173 

1. leg 7.543 NA 0.227 0.164 

legs 21.617 NA 0.308 1.329 

whole 62.050 NA 0.833 11.12 
body 

(where cmloc is the distance of the segment mass centre from the proximal joint centre 

and 1. leg refers to the shank and foot) 

Table 6.4. The four, three and single segment inertia data for subject tvOl 

segment mass length cmloc moment of inertia 
(kg) (m) (m) (kg.m') 

arms 7.796 0.575 0.250 0.252 

torso 34.450 0.466 0.351 1.617 

thigh 15.412 0.403 0.171 0.212 

1. leg 8.124 NA 0.228 0.199 

legs 23.554 NA 0.330 1.539 

whole 65.780 NA 0.891 12.70 
body 

6.3.3 Estimation of accuracy 

The overall rms error between the re-constructed co-ordinates and the known 

locations of the 28 markers in the calibration volume was 0.011 m. The rms error in each 

of the three directions were calculated. The largest rms error was in the direction parallel 

to the bar and was found to be 0.012 m. The smallest rms error was in the vertical 

direction and was found to be 0.008 m. 
The average standard deviations for the reconstructed three-dimensional 

co-ordinates of the body points from a pseudo data was 0.009 m. The pseudo data set was 

created by averaging the data points in the two fields either side of the data point in 
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question. The average standard deviation gives an indication of the errors due 

digitisation. 

6.3.4 Obtaining model parameters 

Regular giant circles 

Path and velocity of the mass centre 

During a regular backward giant circle the gymnast tries to maintain a straight body 

line. It might therefore be expected that the gymnast's mass centre will maintain a fixed 

distance from the axis of rotation. Figure 6.9 shows the vertical displacement of the mass 

centre against the horizontal displacement for the second giant circle of trial 10. 
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Figure 6.9. Path of the mass centre during one regular giant circle from trial 10. 

In Figure 6.9 the gymnast circles in an anti-clockwise direction starting from the 

highest point. The path of the mass centre during the downswing is almost circular in 

nature. However, during the upswing the path of the mass centre appears to be squashed. 

As the subject swings from the handstand position he is accelerated by the torque created 

by his weight and its distance from the bar. The gymnast therefore tries to keep his mass 

centre as far away from the axis of rotation as possible during the downswing. On the 

upswing the torque created by his weight tends to accelerate him in the opposite direction 

to his swing. By moving the mass centre closer to the axis of rotation this torque and its 
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effect are reduced. The mass centre is brought closer to the bar by closing the angles at 

the hips and shoulders. At the end of the backward giant circle the gymnast extends by 

opening the angles at the hips and shoulders. This can be seen in Figure 6.9 where the 

mass centre starts and finishes the giant circle at the same height. The circular 

downswing followed by a squashed circular upswing shape for the path followed by the 

mass centre was found in the regular giant circles studied by Cheetham (1984). 

The angular velocity of the rotation angle for one giant circle is shown in 

Figure 6.10. The angular velocity is graphed against rotation angle. Peak angular 

velocity occurred at a rotation angle of 1670 and was approximately 5.0 rad.s· l . 

Cheetham (1984) found a double peak in the angular velocity of the regular giant circles 

he studied. The first peak occurred before the gymnast had reach the lowest point of the 

giant circle and the second peak followed shortly afterwards. The second peak was 

associated with the closing of the hip and shoulder angles. It was found that the second 

peak was always greater than the first. The history of the angular velocity in the present 

study, Figure 6.10, also shows a double peak. However, the first peak is greater than the 

second. It may be that the subjects in Cheetham's study performed more vigorous 

"piking" actions than the subject in the current study. 
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Figure 6.10. History of the angUlar velocity of the rotation angle during one regular giant 

circle from trial 10. 

Table 6.5 shows the peak angular velocities and the angle at which these peaks 

occurred for all three regular giant circles analysed. The peak angular velocities in the 

present study compare wen with those obtained by Cheetham (1984). Cheetham obtained 

peak angular velocities of between 5.1 rad.s· l and 6.1 rad.s· l for five subjects performing 

regular giant circles. The subject who achieved a peak angular velocity of 6.1 rad.s· l for 
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the regular giant circle was only able to increase his angular velocity to 6.2 rad.s·! when 

performing accelerated giant circles. Boone (1977) obtained a peak angular velocity of 

4.8 rad.s·! for regular backward giant circles. 

Table 6.5. Peak angular velocities for regular giant circles (trial 10) 

circle peak angular velocity rotation angle at peak 
(trial 10) (rad.s- I) CO) 

first 5.1 164.1 

second 5.0 166.8 

third 5.1 166.8 

Bar displacements 

displacement [m) 
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Figure 6.11. Time history of the vertical displacement of the centre of the bar for the 

first regular giant circle of trial 10. 

For all trials the centre of the bar was digitised. Figures 6.11 and 6.12 show the 

vertical, horizontal and lateral displacement of the centre of the bar from the first giant 

circle of trial 10. So that data from the video analysis can be compared with the 

simulation model in subsequent chapters the sign of the horizontal displacement has been 

reversed so that a displacement from left to right is positive. The neutral resting position 

of the centre of the bar was at the three-dimensional co-ordinates (0,0.01,2.72). It can be 

seen that the bar moves in the range of ± 0.10 m in the horizontal and vertical directions, 

as found by Briiggemann et al. (1994). In the lateral direction the movement of the bar is 

minimal as would be expected. The range of the lateral movement is mostly as a result of 

the errors due to digitisation. 
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Figure 6.12. Time history ofthe horizontal and lateral displacement (dashed line) 

of the centre of the bar for the first regular giant circle of trial 10. 

The range of the vertical and horizontal bar displacements for all three regular giant 

circles performed in trial 10 are presented in Table 6.6. The horizontal range of 

displacement was found to be larger than the vertical range. However, the peak absolute 

displacement of the bar from its neutral resting position was greater in the vertical 

direction. This occurs since there is a greater load on the bar in the vertical direction 

during regular giant circles. From Table 6.6 it can be seen that the ranges in bar 

displacements are very similar for each of the three giant circles performed in trial 10. 

Table 6.6. The range of vertical and horizontal bar displacement during regular giant 

circles 

circle vertical displacement horizontal displacement 
(trial 10) range (m) range (m) 

first 0.091 0.143 

second 0.091 0.145 

third 0.095 0.150 

mean 0.092 0.146 

The rms difference between bar displacements of the three regular giant circles was 

calculated for both the horizontal and vertical directions and are presented in Table 6.7. 

The displacement of the bar appears to be very similar in all three regular giant circles. 

Since the displacement of the bar is related to the load applied to it, this may imply that 

the gymnast loads the bar using a similar technique for each of the three regular giant 

circles. 
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Table 6.7. Rms values for the difference in bar displacement (m) between regular giant 

circles from trial 10 

circles rms difference rms difference 
compared vertical (m) horizontal (m) 

first vs second 0.0041 0.0028 

first vs third 0.0046 0.0044 

second vs third 0.0025 0.0036 

Figure 6.13 shows the horizontal and vertical displacements of the bar against 

rotation angle. The height of the bar has been subtracted from the vertical bar displace­

ment so that it would fit on the same axes as the horizontal displacement. The peak 

vertical displacement occurred at a rotation angle of 175° when the gymnast is almost at 

the lowest point of the circle. The peak horizontal displacements occurred at rotation 

angles of 121 ° and 227°. 
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Figure 6.13. History of the horizontal and vertical displacement of the centre of the bar 

plotted against rotation angle for the second regular giant circle from trial 

10. 

Joint angle time histories 

Throughout the simulation the tilt angle was minimal (less than ± 6°) and the twist 

angle was negligible (the largest twist angle was 7°). It may therefore be concluded that 

all major actions occurred in the sagittal plane. Hence the assumption made by using a 

two-dimensional model to simulate swinging movements is justified. The time history of 

the hip and shoulder angles for one regular giant circle are plotted against rotation angle 



133 

in Figures 6.14 and 6.15, respectively. These figures contain the raw data calculated from 

the reconstructed co-ordinate data which have not been splined. Pseudo joint angles for 

the hips, shoulders and knees where created by averaging the angles on both sides of the 

movement field in question. An error estimate for the joint angles was calculated by 

obtaining the standard deviation between the actual joint angle time histories and the 

pseudo joint angle time histories. The error estimates for the hip, shoulder, and knee 

angles as calculated by the film program were 0.8°, 2.0° and 1.3° respectively. The error 

for the rotation angle, which was calculated in the same way was found to be 0.3 0. 

The hips and shoulders are defined as being fully extended at an angle of 180°. For 

simplicity closing the shoulder angle is termed shoulder flexion and opening the shoulder 

angle is termed shoulder extension. Hyper-extension at the hips and shoulders therefore 

results in a joint angle less than 180°. Whereas, flexion at the hips and shoulders results 

in ajoint angle greater than 180°. 
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Figure 6.14. History of the hip angle against rotation angle for the third regular giant 

circle of trial 10. 

During the first quadrant of the giant circle the hips are initially extended 

(Figure 6.14). On entering the second quadrant the hip joint starts to hyper-extend. At a 

rotation angle of approximately 160° a hyper-extension of 35° is achieved. As the subject 

nears the end of the second quadrant the hyper-extension of the hips is completed. The 

following flexion action is performed through the third quadrant, where the majority of 

the action occurs. The maximum flexion angle is approximately 40° for this giant circle 

(Le. an angle of 220° at the hips). Before the end of the third quadrant is reached the hip 

angle starts to open as the gymnast extends. The extension is completed by the time the 

subject has reached a rotation angle of 360°. These actions are consistent with the 
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findings in the literature (Borms et aI., 1975; Boone, 1977; Briiggemann et aI., 1994; 

Cheetham, 1985; Okamoto et aI., 1987). The joint angle time history of the shoulders is 

different to that of the hips (Figure 6.15). During the downswing the angle at the 

shoulder remained fixed. That is, no hyper-extension is performed in the first or second 

quadrants. This was also found by Okamoto et al. (1987). Once the subject had passed 

through the lowest point of the giant circle the shoulder angle was closed. This occurred 

entirely within the third quadrant. At the end of the third quadrant the shoulder angle had 

closed by approximately 40°. On entering the fourth quadrant the shoulder angle was 

opened, reaching full extension by the end of the giant circle. 
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Figure 6.15. History of the shoulder angle against rotation angle for the third regular 

giant circle oftrial 10. 

Rms differences between the three regular giant circles of trial 10 were calculated 

for the hip and shoulder joint angle time histories (Table 6.8). The results are presented 

in degrees. In general the difference between the joint angle time histories of the regular 

giant circles was less than 10%. The rms differences for the hip and shoulder angles were 

small, approximately 6.7" and 3.0° respectively. The subject must therefore use the same 

technique when performing regular giant circles. It is possible that the rms differences 

would be less had the comparison been made after the joint angle time histories had been 

splined. 
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Table 6.8. Rms values for the difference in hip and shoulder joint angle time histories (0) 

between the regular giant circles from trial 10 

circles rms difference rms difference 
compared hip joint shoulder joint 

(0) (0) 

first vs second 5.4° 2.4° 

first vs third 9.4° 3.8° 

second vs third 5.1° 2.8° 

Accelerated giant circles 

The accelerated giant circles under investigation comprise a wind up giant circle 

and a three quarter giant circle after which the gymnast would have released the bar for 

the dismount. The release would have occurred occur after approximately 622° of 

rotation (Briiggemann et aI., 1994). As the circle containing the release is dependent on 

the wind up giant circle both phases will be considered together. 

Path and velocity of the mass centre 

The path of the mass centre during an accelerated giant circle (Figure 6.16) is 

similar to that of the regular backward giant circle (Figure 6.5). On ~he downswing the 

subject is extended causing the mass centre to follow a what appears to be a circular path. 

The path of the mass centre is not completely circular during the downswing since at the 

start of the circle the gymnast has flexion angles at the hips and shoulders and also hyper­

extends at the hips. On the upswing the subject reduced the distance between his mass 

centre and the axis of rotation by closing the hip and shoulder angles. However, unlike 

the regular giant circle the subject does not extend at the top of the circle. Instead the 

subject continues to reduce the distance of the mass centre from the axis of rotation. The 

subject does not appear to extend until he is well into the downswing of the second giant 

circle (Figure 6.16). Prior to release the subject reduces the distance between the mass 

centre and the axis of rotation. This reduction is greater than the reduction made in the 

previous giant circle. It must be noted that mass centre location includes the displacement 

of the bar from its resting position. Therefore, the increased reduction in the displace­

ment of the mass centre from the axis of rotation seen in the giant circle containing the 

release may be due, in part, to the displacement of the bar as well as his body 

configuration. 
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Figure 6.16. Path of the mass centre during an accelerated giant circle with release 

(trial 4). 

The time history ofthe angular velocity ofthe rotation angle is given in Figure 6.17. 

The three major peaks correspond to the first and second time the subject passes through 

the lowest point and the point at which release would have occurred. These peak angular 

velocities are presented in Table 6.9. On the first giant circle the peak angular velocity 

occurred just before the lowest point of the circle. 
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Figure 6.17. Time history of the angular velocity of the rotation angle (trial 4). 
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On the second giant circle the peak angular velocity occurred 20° before the lowest 

point. Like Cheetham (1987) the peaks in angular velocity increase with each giant 

circle. However, the double peak in angular velocity associated with closing the hip and 

shoulder angles found by Cheetham does not occur and the final angular velocity, at 

release, is less than the previous peak. It is possible that the gymnasts used in Cheetham's 

study used a different technique in the wind up giant circle prior to release. This may 

account for the differences in the time histories of the angular velocity. However, even 

though different techniques were used the peak angular velocities are comparable. 

Table 6.9. Peak angular velocities for accelerated giant circles 

trial 

4 

11 

Bar displacements 

peak angular velocity 
(rad.s· l ) 

5.5 

5.9 

5.4 

5.4 

6.0 

5.6 

rotation angle at peak 
(0) 

175.9° 

519.2° 

621.9° 

177.3° 

520.0° 

623.7° 

The horizontal and vertical displacements of the centre of the bar during the wind 

up and release in trial 4 are given in Figures 6.18 and 6.19 respectively. The range of the 

vertical and horizontal displacements for trials 4 and 11 are given in Table 6.10. The 

ranges in displacement for the accelerated giant circles are larger when compared with the 

results obtained from the regular giant circles. Unlike the regular giant circles the peak 

absolute displacements about the bar's neutral resting position are equal in both the 

vertical and horizontal directions. Since the displacement of the bar was larger for the 

accelerated giant circles the load on the bar must also have been greater, when compared 

with the regular giant circles. 

Table 6.10. The range in vertical and horizontal bar displacements during the accelerated 

giant circles 

trial vertical displacement horizontal displacement 
range (m) range (m) 

4 0.125 0.200 

11 0.129 0.206 

mean 0.127 0.203 



138 

displacement [m] 

2.74 

2.72 

2.70 

2.68 

2.66 

2.64 

2.62 

2.60 
0 0.5 1.0 1.5 2.0 2.5 3.0 

time [s] 

Figure 6.18. Time history of the vertical displacement of the centre of the bar during 

trial 4. 
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Figure 6_19. Time history of the horizontal displacement of the centre of the bar during 

trial 4. 

The rms difference in the horizontal and vertical bar displacements between trial 4 

and 11 are presented in Table 6.11. The rms differences for the two accelerated giant 

circle trials, like the regular giant circles, are small. It might therefore be assumed that 

the subject used a similar technique to load the bar in each trial. Note also that there is a 

double peak in vertical bar displacement during the release giant circle not seen in the 

regular giant circle trials (Figure 6.18). 
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Table 6.11. Rms values for the difference in bar displacement between the accelerated 

giant circle trials 

trials 
compared 

4 vs 11 

rms difference 
vertical (m) 

0.004 

rms difference 
horizontal (m) 

0.004 

Figure 6.20 shows the horizontal and vertical displacements of the bar plotted 

against rotation angle. The neutral resting height of the bar has been subtracted from the 

vertical bar displacement so that it would fit on the same axes as the horizontal 

displacement. The first peak in vertical displacement occurs at a rotation angle of 173°, 

when the gymnast is almost at the lowest point of the circle. The second peak in vertical 

displacement was at a rotation angle of 569°. This corresponds to 30° past the lowest 

point of the giant circle. The small peak prior to this, as described earlier, occurred at a 

rotation angle of approximately 500°. The first two peaks in horizontal displacements 

occurred at rotation angles of 126° and 250°. Both of these angles correspond to the 

gymnast being in the lower half of the giant circle. The second two peaks occurred at 

467° and 578°. The first of these two peaks occurs some 20° earlier than the same peak 

for the first giant circle. Similarly the second peak of the second giant occurred 30° 

earlier than in the previous giant circle. It appears that the technique the gymnast uses as 

he passes through the highest point alters the way that the bar is displaced during the 

release giant circle. The displacements are different both in terms of magnitude and 

timing. It is speculated that there may be a mechanical benefit from altering the loading 

of the bar when performing accelerated backward giant circles. 

When comparing the displacements of the bar at 262° and 622° for the two 

accelerated trials the most striking thing is that at the release angle of 622° the vertical bar 

displacement was zero, compared with 0.02 m at the rotation angle of 262°. Similarly for 

the horizontal displacements, at 622° the bar had a positive horizontal displacement of 

less than 0.02 m compared with 0.08 m at a rotation angle of 262°. Figure 6.21 shows the 

horizontal and vertical velocities of the bar leading up to the point of release in trial 4. 

The velocities of the bar were obtained from evaluating the first derivative of a quintic 

spline which was fitted to the bar displacement data. At release the vertical bar velocity 

was very close to zero. That is, in the vertical direction, at or very close to release, the bar 

was stationary. This may have implications for the angular momentum the subject 

possessed at release. Clearly, if the hands were stationary at release the angular 

momentum about the subject's mass centre would be greater than if the bar were displaced 

vertically downwards with a positive vertical velocity. This idea will be explored further 

later in the thesis. 



140 

displacement [ml 

0.08 

0.04 

-0.04 

-0.08 

-0.12 

60\/" 700' 
rotatidn angle [°1 

I 
I 

/\ I 
\ I 
\ I 
\ I 
J 

Figure 6.20. Histories of the horizontal and the vertical displacements of the bar 

(trial 4). 
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Joint angle time histories 

The histories of the hip and shoulder angles for trial 4 are shown against rotation 

angle in Figures 6.22 and 6.23. Both figures show the joint angle histories for 13.4 giant 

circles. 
At the start of the first quadrant of the circle the hip angle is fully extended (Le. 

1800 ). As with the regular giant circle this angle is maintained throughout the first 

quadrant. On entering the second quadrant the hips start to hyper-extend. This hyper­

extension continues into the third quadrant reaching a maximum angle of between 35
0 

and 400 • After passing a rotation angle of 2000 the hips begin to flex. Remember, for the 

regular giant circles the flexion at the hips started before the subject had reached the 
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lowest point of the giant circle. The flexion action does not finish until the end of the 

fourth quadrant. On passing through the highest point the gymnast has a hip flexion angle 

of approximately 90°. At the same point during a regular giant circle the gymnast has 

already extended the hip and shoulder angles ready for the next circle. The extension of 

the hips is performed through the first and second quadrants of the circle containing the 

release. The hip angle passes through full extension during the second quadrant and 

continues to open until a hyper-extension angle of approximately 50° is achieved 

(Figure 6.22). This occurs before the end of the second quadrant. Upon reaching the 

maximum hyper-extension the hip angle is closed. Figure 6.20 shows the vertical bar 

displacement against rotation angle. The first smaller peak in vertical bar displacement 

occurs at the same instant that the hip stops hyper-extending and starts to flex. The 

flexion is initiated in the second quadrant and continues through and past the point of 

release, in the third quadrant. 
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Figure 6.22. History of the hip angle against rotation angle from trial 4. 

The joint angle time history of the shoulder (Figure 6.23) follows a similar phasing 

to that of the hip angle. This is in contrast to the joint angle time histories of the regular 

giant circles. However, the shoulder time history shows no hyper-extension in the first . 

two quadrants. The maximum flexion angle of the shoulders is less than that of the hips, 

reaching a flexion angle of approximately 55°, compared with 90° for the hips. Similarly 

during the second downswing, leading to the release, the shoulder hyper-extension is less 

than that of the hips. 
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Figure 6.23. History of the shoulder angle against rotation angle from trial 4 . 

. The joint angle time history of the knees is shown in Figure 6.24. Unlike the 

regular giant circle there is a definite flexion and extension action occurring during the 

second quarter of each phase of the giant circle. This must be a useful part of the 

gymnast's technique since. the flexion angle is in excess of 35° and would therefore be 

clearly noticeable. Knee flexion and extension was also found during accelerated giant 

circles prior to release skills by Briiggemann et al. (1994). Note also that the maximum 

knee flexion occurred at the same rotation angle as the small peak in vertical bar 

displacement seen in Figure 6.18. 
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Figure 6.24. History of the knee angle against rotation angle from trial 4. 
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Rms differences were calculated for the joint angle time histories obtained from 

trial 4 and 11. The results are presented in Table 6.12. The rms differences are small 

« 5°) which implies that the subject used a similar technique each time he performed 

giant circles prior to the release for a double layout backward somersault dismount. 

Table 6.12. Rms values for the difference in hip and shoulder joint angle time histories 

(0) between accelerated giant circles from trials 4 and 11 

trials rms difference rms difference rms difference 
compared hip joint shoulder joint knee joint 

CO) (0) CO) 

4vs 11 4.1° 5.0° 2.4° 
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Figure 6.25. Splined and raw hip and shoulder angles from trial 4. 

In order to evaluate the four segment simulation model the joint angle time histories 

of the hips, shoulders and knees are required. In addition the first and second derivatives 

of these joint angle time histories are required. All joint angle data were obtained using 

quintic splines as outlined in Chapter 5. Figure 6.25 shows the splined joint angle time 

histories of the hip and shoulder laid on top of the raw data for the accelerated giant 

circles from tria14. The velocity and acceleration of the joint angles were evaluated using 

the Jennings spline fitting library (1979). The angular velocities of the hip and shoulder 

angles are graphed against rotation angle in Figure 6.26. These data are smooth as would 

be expected from the first derivative of a quintic spline. The shoulder joint angular 

velocity ranges from -233°.s-1 to 215°.s-l • These angular velocities lie within the range of 
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angular velocities used when collecting the isokinetic muscle data. The range of the hip 

angular velocities determined from the spline data are greater than those obtained from 

the shoulder. The hip angular velocities range from -784°.s-1 to 694°.s-1• At the limit of 

the hip joint angular velocity the velocity of the isokinetic data are exceeded by more than 

275%. During these regions extrapolation will be required to obtain maximum joint 

torques from the 18 parameter torque data. 
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Figure 6.26. Angular velocities obtained from the evaluation of the splined joint angle 

histories of the hips and shoulders from trial 4. 

The angular accelerations of the hip and shoulder are presented in Figure 6.27. 

Again the acceleration curves are smooth, and do not tend to infinity at the end points. 

The accelerations of the hip joint angle are greater than those obtained from the shoulder 

joint. Since the hip angle, during the accelerated giant circle, goes through a larger range 

than the shoulder angle during a similar time interval it would be expected that this would 

be the case. The greater acceleration suggests a greater torque is produced by the 

musculature surrounding the hip joint This hypothesis will be examined in Chapter 7, 

the evaluation of the four segment simulation model. 
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Figure 6.27. Angular accelerations obtained from the evaluation of the splined joint 

angle histories of the hips and shoulders from trial 4. 

Segment lengths calculated/rom the reconstructed co-ordinates 

The mean lengths of the limbs calculated from each field of trial 10 are presented 

with standard deviations in Table 6.13. The values of the left and right side of the body 

have been averaged. The calculated segment lengths of the legs compare well with the 

anthropometric measurements, yet the calculated arm and torso segment lengths appears 

to be considerably larger than the anthropometric measurements. The length of the 

gymnast from wrist to ankle has been calculated from both the anthropometric and video 

based measurements (Table 6.13). As well as the lengths of the arms and torso the wrist 

to ankle length of the gymnast obtained from the video analysis appears to be greater than 

the same value calculated from the anthropometric measurements. The difference is over 

0.2 m. This difference may be in part due to the difficulty in locating the shoulder joint 

centre during digitisation. If the arm segment were calculated to be longer due to an error 

in digitising the shoulder joint centre one would expect the torso segment to be shorter 

due to the same error in locating the shoulder. Yet the mean values for the arm and torso 

segments are both larger than the anthropometric measurements. This is because when 

the arms are raised from the gymnast's sides to a position above the head, similar to the 

position adopted during swinging, the shoulder girdle experiences both elevation and 

upward rotation (Thompson, 1989). 
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Table 6.13. Segment lengths calculated from trial 10 (regular giant circles) 

segment anthropometric mean digitised range 
length length (m) 

(m) (m) 

arms 0.477 0.537 ± 0.023 0.09 

torso 0.435 0.621 ± 0.021 0.10 

arm+torso 0.912 1.158 ± 0.036 0.15 

thigh 0.374 0.360 ± 0.019 0.09 

shank 0.403 0.409 ± 0.013 0.07 

legs 0.776 0.773 ±0.017 0.08 

arm+torso 1.688 1.931 ± 0.029 0.12 
+legs 

The time history of the arm segment and the torso segment lengths are presented in 

Figures 6.28 and 6.29, respectively. The minimum length of the arm segment appears to 

be 0.51 m (Figure 6.28), approximately 0.03 m longer than the anthropometric 

measurement. Similarly the minimum length of the torso segment appears to be 0.60 m 

(Figure 6.29). That is, the torso segment appears to be 0.165 m longer than it should be. 

This may be accounted for by the elevation and upward rotation that occurs in the 

shoulder girdle when the arms are elevated from the sides to above the subject's head. 

The length of the torso (Table 6.13) was based on the anthropometric measurement from 

the hip to the shoulder with the subject's arms by his sides. The length of the arm was 

taken from the same shoulder point to the wrist. When these two lengths are summed, to 

represent the distance from wrist to hip with arms above the head, no consideration is 

made for the elevation that occurs in the shoulder girdle. 

To account for the elevation of the shoulder girdle the length of the torso segment 

will be increased from 0.44 m to 0.60 m. Similarly the length of the arm segment will be 

increased from 0.55 m to 0.58 m. Note that the length of the arm segment includes both 

the length of the arm from wrist to shoulder and the length of the hand from wrist to the 

centre of the bar. The length of the arm has therefore been increased by only 0.03 m. 

The increase in segment length alters the location of the segment mass centre relative to 

joint centre. The new segment lengths and mass centre locations for subject jbOl are 

given in Table 6.14. The second set of inertia values for the arm segment are those 

obtained when a mass of 5 kg, representing the bar is placed at the hands. It is the second 

set of arm inertia parameters that will be used in the four segment simulation model in 

Chapters 7 and 8. 
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Figure 6.28. Arm length during trial 10. 
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Figure 6.29. Torso length during trial 10. 

Table 6.14. New inertia parameters for subjectjbOl 

segment mass length cmloc moment of inertia 
(kg) (m) (m) (kg.m2) 

arms 6.868 0.548 0.239 0.205 

arms 11.868 0.582 0.403 0.481 
+ bar 

torso 33.566 0.601 0.337 1.610 

thigh 14.074 0.374 0.151 0.173 

leg 7.543 NA 0.227 0.164 

I 

I 

I 
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The fourth column of Table 6.13 contains the range of segment lengths. The largest 

range for a single segment belongs to the torso followed by the arms. When the length of 

the arms is added to the length of the torso the combined range is larger than the two 

individual ranges. Compare this to when the length of the thigh segment is added to the 

length of the shank segment. Both leg segments have similar ranges, approximately 

0.08 m. When added together their combined range is also 0.08 m. This suggests that the 

change in length of the leg segments is random and due to errors in locating the joint 

centres of the hip, knee and ankle. For the torso and arm segments, however, the increase 

in combined range suggests that they are either lengthening and/or shortening at the same 

time.+ 

The time history of the wrist to ankle length obtained from the video analysis is 

shown in Figure 6.30. It appears that the subject's wrist to ankle length increases as he 

passes through the lower part of the giant circle. The increase in length is of the order of 

0.1 0 m. The time history of the subject's length and the length from wrist to hip (Le. 

length of arm plus torso segments) during one regular giant circle (from trial 10) is shown 

in Figure 6.31. The wrist to hip length also displays an increase in length through the 

lower part of the giant circle. The size of this increase is also in the region of 0.10 m. In 

the same figure (Figure 6.31) the time history of the subject's length has been overlaid. 

The increase in wrist to shoulder length follows reasonably closely the increase in wrist to 

ankle length. 
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Figure 6.30. Sum of the arm, torso and leg segment lengths during trial 10. 

Similar analyses were performed with the data from an accelerated giant circle. 

Again, the wrist to hip length increased as the subject passed through the lower part of the 

circle, and again the time history of the wrist to hip length closely followed that of the 

wrist to ankle time history. The wrist to hip and the wrist to ankle length both showed a 
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range of up to 0.14 m. Through the highest part of the giant circle these lengths were at 

their shortest, whilst through the lower parts of the circle they were at their longest. 
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Figure 6.31. Sum of the arm and torso segment lengths during trial 1 0 (dashed line is the 

sum of the arm, torso and leg lengths overlaid). 

The majority of the lengthening and shortening of the gymnast appears to occur in 

the region from the wrists to the hips. It is possible that the lengthening occurs due to the 

elastic properties/structures of the joints within that region. Since the increases in length 

occur with increasing reaction force at the bar (Kopp and Reid, 1980), it is suggested that 

the joints at the elbow, shoulder and spine act as springs which are able to extend and 

recoil under the fluctuating load. 

6.3.5 Summary 

The path of the mass centre and the angular velocity of the rotation angle for both 

regular and accelerated giant circles compared well with similar results in the literature 

(Cheetham, 1984). It was shown that in general the gymnast attempts to keep his mass 

centre away from the axis of rotation during the downswing. On the upswing the 

gymnast reduced this distance, by changing body shape so as to reduce the effect of the 

torque created by his weight. The peak angular velocity for the accelerated giant circles 

was greater than the peak value for the regular giant circles, and approached 6.0 rad.s· l . 

Cheetham (1984) obtained peak angular velocities of between 5.6 rad.s-I and 6.3 rad.s-1 

for accelerated giant circles 

The displacements of the bar for the regular giant circles were in the region of 

± 0.10 m in both the horizontal and vertical directions. This agreed with previous data 
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presented in the literature (Briiggemann et aI., 1994). The bar displacements for the 

accelerated giant circles were greater than those for the regular giant circles. When the 

bar displacements were compared between trials/circles they were found to be very 

similar. That is, when the bar displacements for two regular giant or two accelerated 

circles were compared the differences between them were small. 

The major joint actions performed during the regular giant circle occurred at the 

hips and the shoulders, with a small contribution from the knees. The timing of the joint 

actions at the hips and the shoulders for the regular giant circles confirmed the findings in 

the literature (Cheetham, 1984; Briiggemann et aI., 1994; Okamoto et aI., 1987). The 

size of the flexion angles at the hips and shoulders were larger for the accelerated giant 

circles compared with the regular giant circles. It was also found that the timing of the 

flexion and extension actions were slightly different for the accelerated giant circles. The 

flexion at the hips started later and lasted longer (in terms of body angle rotated through). 

Similarly the extension at the hips started later and finished later. It is speculated that this 

altered action may be used to affect the loading of the bar which results in increased 

angular momentum at release. 

It was found that during giant circles the gymnast increases in length between 0.05 

and 0.14 m. The majority of this increase occurred between the wrists and the hips. It is 

suggested that the increase is a result of extensions in the shoulder and spine structures of 

the gymnast. Since the increase in gymnast length occurred through the lower part of the 

giant circle it is speculated that part of this extension is as a result of the elastic properties 

of the shoulders and spine. In addition it was found that the length of the gymnast's torso 

was greater when the arms were elevated than when they were by his sides. This is due to 

the elevation in the shoulder girdle and therefore the length of the torso segment used in 

the four segment simulation model will be 0.60 m instead of 0.435 m . 

Fitting splines to the joint angle time histories removed excess noise from the raw 

joint angle data. Evaluation of the spline coefficients using Jennings spline fitting library 

(1979) revealed smooth first and second derivatives of the joint angle data. These data 

will be used in the evaluation chapter (Chapter 7) to drive the four segment simulation 

model. Spline coefficients were also obtained for the bar displacements and angle of 

rotation. These too will be used in the four segment simulation model. 



151 

6.4 Kinetic analysis of the giant circle 

6.4.1 Introduction 

The following results were obtained from the methods described in Chapter 5. The 

section covers the results obtained from calibrating the high bar and converting the strain 

data recorded whilst the subject performed regular and accelerated giant circles into force. 

6.4.2 .Calibration oftheforce measurement system 

The load cell 

The error in the load applied to the load cell by the Instron hydraulic testing 

machine was ± 5 N. Over the range of zero to 3,0 kN this would result in an average 

error of less than one third of a percent. The strain recordings from the strain gauge 

amplifier were plotted against the load applied by the Instron testing machine 

(Figure 6.32). It can be seen that when the data points are connected they do not fall on a 

straight line. The difference between the readings on the amplifier correspond to the 

increase in microstrain when the load is increased by 0,5 kN. For perfect linearity it 

would be expected that the increase in microstrain would be proportional to the increase 

in load. The non-linearity was a result of the resolution of the recordings taken from the 

strain gauge amplifier. The amplifier readings were made to the nearest whole number 

(i.e. no decimal places were recorded). Therefore the resolution of the amplifier was half 

a microstrain, 

Since the amplifier reading was used when calibrating the high bar, the resolution 

would lead to errors in the exact load applied to the bar. The bar was loaded using the 

cable tensioners. It was assumed that the load applied to the bar corresponded to the load 

applied to the load cell, This load was determined from the amplifier reading and the load 

cell calibration data. It was calculated that the maximum error in the load applied to the 

bar, due to the resolution of the strain gauge amplifier readings was ± 21 N. Over the 

range of 0 to 3,0 kN this results in a "most probable" fractional error of 0.53%, or an 

average error of 1.36% (Topping, 1962). 

Cross talk 

Figure 6.33 shows the vertical strain plotted against the load applied to the bar in 

the vertical direction (circles joined by solid lines). On the same graph the horizontal 

strain, recorded simultaneously, is plotted against the load applied in the vertical direction 

(squares joined by dashed lines), The horizontal and vertical strain data appear to be 
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reasonably linear in nature. The horizontal strain is minimal, approximately 1 % of the 

strain recorded in the vertical direction. Observation of the strain data recorded with zero 

load applied to the bar revealed that there was a horizontal and vertical offset in the data 

recorded. The channels on the amplifier were "zeroed" before the bar was loaded. 

However, when the strain was recorded with zero load applied to the bar a strain 

equivalent to approximately 30 N was obtained in the horizontal direction and a strain 

equivalent to 3 N was recorded in the vertical direction. To correct for this error the 

appropriate amount of strain was subtracted from all data points and subsequently all 

strain recordings during the giant circle activities. The data used in Figure 6.33 has been 

corrected for the horizontal and vertical offsets and is plotted in Figure 6.34. Having 

corrected for the offset the cross talk was found to be minimal. This was also found to be 

true by Kopp and Reid (1980) and Witten et al. (1996). 
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Figure 6.32. Data points obtained during the calibration of the load cell. 

Regression/Calibration equations 

The ADC (analogue to digital converter) counts recorded from the strain gauges 

attached to the bar were regressed against the load applied to the bar. The results of the 

linear regressions are presented in Table 6.15. In Table 6.15 the coefficient of the 

regression line is given along with its standard error. Table 6.15 contains the data 

obtained from the regressions performed in the vertical direction (using one and two 

points of force application) and the horizontal direction. The correlation coefficient 

between the load applied and the recorded strain data are also presented. 
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Figure 6.33. Strain recorded in the vertical direction (filled circles) plot against vertical 

load with strain recorded simultaneously in the horizontal direction (filled 

squares). 
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Figure 6.34. Strain recorded in the vertical direction plotted against vertical load with 

strai!l recorded simultaneously in the horizontal direction after 

correcting for the offset. 

Table 6.15. Results of linear regressions forced through the origin 

direction correlation gradient 
ofload coefficient 

vertical 0.997 - 9.30 ± 0.11 

vertical 0.997 - 9.82 ±0.18 
(at 2 points) 

horizontal 0.997 10.00 ±0.12 
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The linear regressions between the recorded strain and the load applied to the bar 

are displayed in Figures 6.35, 6.36 and 6.37. In these Figures it can be seen that the loads 

applied to the bar follow the same pattern as those seen in the calibration curve of the load 

cell (Figure 6.32). In Figure 6.35 (vertical load) it could be suggested that the bar is 

becoming stiffer as the load increases. However, if the loadings continued to follow the 

pattern of the load cell calibration curve this would not be the case. 

If the first loading and unloading of the bar in the vertical direction were plotted 

(Figure 6.35) then it can be seen that the recordings from the strain gauges are different 

for loading and unloading. That is, the regression line drawn through the points obtained 

for loading would be different from the regression line obtained from the unloading. This 

may be as a result of a hysteresis effect. However, by performing the regression through 

all points the best average result is obtained. DUring an accelerated giant circle followed 

by a dismount the bar is likely to be loaded to over 3.0 kN and then unloaded. This 

loading and unloading will occur twice, once for the wind up giant circle and once for the 

giant circle containing the release. A regression which takes into account both the 

loading and the unloading of the bar would therefore be more appropriate. 
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Figure 6.35. Linear regression between the load applied to the bar and the strain recorded 

in the vertical direction. 
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Figure 6.36. Linear regression between the load applied to the bar and the strain recorded 

in the vertical direction when loading at two points. 
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Figure 6.37. Linear regression between the load applied to the bar and the strain recorded 

in the horizontal direction. 
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The regressions performed on the data obtained from loading using one point of 

support appeared to be different to that obtained from loading using two points of support 

(Table 6.15). Although no statistics were used to determine whether the results obtained 

from the regressions were significantly different it was decided that they were close 

enough given the errors in the calibration procedure. Hence, the regression data obtained 

from loading using one point of support would be used to convert the strain data into 

force since the range of the calibration data was larger. 

6.4.3. Converting strain data into force 

The horizontal and vertical strain data from the trials where the gymnast circled the 

bar were converted into force using the following equations, based on the regressions 

performed with the calibration data. 

vertical force = ADC counts / -9.30 

horizontal force = ADC counts /10.00 

Estimate of accuracy 

The regression equations obtained from the calibration data were used to convert 

the ADC amplifier counts into force. The standard errors of the calibration data about the 

regression line were 0.11 and 0.12 for the vertical and horizontal directions respectively 

(Table 6.15). This was calculated to be 1.2% when expressed as a percentage error in the 

gradient of the regression line. The standard error is the average estimate of the error for 

all points about the regression line. The standard error therefore incorporates all the 

errors accumulated during the loading of the bar (Le. the error in the calibration of the 

load cell and the error resulting from the resolution of the strain gauge amplifier used to 

load the bar). When using the regression equations to convert the ADC counts into force 

the error in the recorded force will be ± 1.2%. 

Using the calibration equations outlined above the strain data were converted into 

force. Figure 6.38 shows the vertical force trace for the first regular giant circle recorded 

from trial 10. The two dashed lines in Figure 6.38 represent the possible error in the 

calculation of the force. That is, the true force applied to the bar lies within the two sets 

of dashed lines. Only at the extremes of the force recorded do the solid and the dotted 

lines diverge. The data presented in Figure 6.38 was sampled at 50 Hz from the recorded 

force. Only a quarter of the data recorded for the giant circle is presented in this figure. 

The force curve even at this sample frequency is smooth and free from random noise .. 
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Since this was the case for all recorded trials the data were not smoothed. Figure 6.39 is 

the corresponding force trace in the horizontal direction for the same giant circle (with the 

± 1.2% interval plotted as dashed lines). 
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Figure 6.38. Vertical force trace with error estimates (the dashed lines) for a regular 

giant circle. 
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Figure 6.39. Horizontal force trace for a regular giant circle. 

Calibration data were recorded for loading the bar vertically using one and two 

points of force application. The results are presented in Table 6.15. The rms difference 

between the force calculated when using both calibration equations for all three giant 

circles of trial 10 was 44.6 N (2.0% when expressed as a percent of the total range of 

force). Since more calibration data were collected when loading at one point of support 

and since the . rms difference between the two loading conditions was small, the 
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calibration data obtained when using one point of support was used to convert all the 

strain data into force. In the literature resultant reaction forces as high as 3200 N have 

been recorded (Gervais, 1993). Further, the force data will be used in the evaluation of 

the simulation model. The model is two-dimensional and therefore has only one point of 

support during swinging. The data obtained when loading at one point will therefore be 

more appropriate. 

Comparison of the force produced during different trials/swings 

Regular giant circles 

For the three giant circles performed during trial 10 the peak force in the vertical, 

and horizontal directions were obtained. Table 6.16 contains these peak forces expressed 

both in Newtons and in bodyweights. The third column of Table 6.1 6 contains the peak 

resultant force for trial 10. The results compare well with those obtained by Kopp and 

Reid (1980) and with the forces recorded by Enchun (1989) for one arm giant circles. 

Table 6.16. Peak forces expressed in Newtons and bodyweights for trial 10 

circle vertical peak force horizontal peak force resultant peak force 
(trial 10) (N, (BW» (N,(BW» (N, (BW» 

first 2036.42 (3.31) 1440.84 (2.34) 2037.60 (3.31) 

second 2036.42 (3.31) 1501.63 (2.44) 2047.58 (3.33) 

third 2110.43 (3.43) 1484.03 (2.41) 2110.99 (3.43) 

mean 2061.09 (3.35) 1475.50 (2.40) 2065.39 (3.36) 

The force traces for the three regular giant circles performed in trial I 0 were 

compared. Circle one was compared with circle two and three and then circle two was 

compared with circle three. The rms values for the difference between vertical, 

horizontal, and resultant force were calculated. These rms values were expressed as a 

percentage of the range of force recorded in each case. Table 6.17 contains the results of 

the rms calculations. In all cases the rms differences were less than one fifth of a 

bodyweight. Figures 6.40 and 6.41 show the vertical and horizontal force trace of circle 

two and circle three (trial 10) overlaid. The results show that the forces produced in the 

three regular giant circles analysed were very similar. It is likely that the gymnast used a 

similar technique for each giant circle and did not attempt to increase his rate of rotation 

with each successive giant circle. 
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Table 6.17. Rms values for the difference in force between regular giant circles from 

trial 10 (also expressed as a percentage of the range of force) 

circles rms difference 
compared vertical (%) 

first vs second 93.89 (4.3%) 

first vs third 100.54 (4.5%) 

second vs third 47.45 (2.1%) 
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Figure 6.40. Vertical force trace for two regular giant circles. 
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Figure 6.41. Horizontal force trace for two regular giant circles. 
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Accelerated giallt circles (illcludillg the release giallt) 

The accelerated giant circles contained one complete circle and a further three­

quarter circle after which the gymnast would normally release the bar. All peak forces 

were found to occur in the final three-quarter circle leading up to the release. The peak 

forces for the accelerated giant circles in trials 4 and 11 are given in Table 6.18. These 

results compare well with those obtained by Gervais (1993) for a giant circle leading into 

a double somersault dismount. The mean peak resultant force was found to be 50% larger 

than the mean peak resultant force of the regular giant circles. Note that the peak 

horizontal force for the accelerated giant circles exceeds the peak vertical force obtained 

during the regular giant circles. 

Table 6.18. Peak forces expressed in Newtons and bodyweights for trials 4 and 11 

circle vertical peak force horizontal peak force resultant peak force 
(trial) (N, (BW» (N, (BW» (N, (BW» 

4 2656.07 (4.31) 2498.35 (4.06) 3050.01 (4.95) 

11 2792.05 (4.53) 2431.12 (3.95) 3134.46 (5.09) 

mean 2724.06 (4.42) 2464.74 (4.01) 3092.24 (5.02) 

Table 6.19 shows the peak forces obtained if the final three-quarter giant circle 

containing the release for the dismount had been ignored. The mean peak resultant force 

for the giant circle performed before the three-quarter release giant is 24% smaller than 

the peak resultant force obtained from the three-quarter release circle. It may be 

speculated that the technique used in the giant circle prior to the release giant must result 

in the larger forces obtained in the release giant circle. 

Table 6.19. Peak forces for the giant circle performed before the three-quarter circle 

containing the release for trials 4 and 11 

circle vertical peak force horizontal peak force resultant peak force 
(trial) (N, (BW» (N,(BW» (N,(BW» 

4 2396.16 (3.89) 1622.92 (2.64) 2413.91 (3.92) 

11 2289.44 (3.72) 1645.32 (2.67) 2313.44 (3.76) 

mean 2342.80 (3.81) 1643.12 (2.66) 2363.68 (3.84) 



161 

The force traces for the giant circle prior to and the giant circle containing the 

release for trials 4 and 11 were compared. The rms values for the difference between 

vertical, horizontal, and resultant force were calculated as for the regular giant circles. 

These rms values were expressed as a percentage of the range of force in each case. 

Table 6.20 contains the results of the rms calculations. Figure 6.42 and Figure 6.43 show 

the vertical and horizontal force traces from trial four 4 and 1 I overlaid. The two 

accelerated giant circles appear to be very similar with only a 3.4% difference in the 

resultant force. Again, it is likely that the gymnast uses the same technique each time he 

performs accelerated giant circles prior to a double layout dismount. 

When comparing the trace obtained from the regular and accelerated giant circles 

(especially the portion containing the release circle) there appear to be obvious 

differences. The vertical reaction force for the accelerated giant circle has two peaks 

(Figure 6.42) compared with the single peak for the regular giant circle (Figure 6.40). As 

in the vertical bar displacements of the accelerated giant circles (section 6.3.4) the first of 

the double peaks corresponded to the gymnast's maximum hip hyper-extension and 

maximum knee flexion angle. This first peak in force may be used as a timing 

mechanism by the gymnast. Once the gymnast feels the force increase the hyper­

extension of the hips is reduced in order to initiate the flexion of the hip joint. 

Table 6.20. Rms values for the difference in force between two accelerated giant circle 

trials (also expressed as a percentage of the range of force) 

trials 
compared 
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Figure 6.42. Vertical force trace for two accelerated giant circles. 
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It has been shown that the force traces obtained from two accelerated giant circles 

are very similar. It may be generalised that for this subject a similar force trace would be 

obtained every time a wind up prior to release for a double layout somersault dismount 

was requested. Therefore, the technique the gymnast used must produce the characteristic 

double peak in the force trace. 

The force trace in Figure 6.42 shows the vertical force up until the point where the 

gymnast would release the bar for a double layout backward somersault dismount. This 

would occur at a rotation angle of approximately 622°. At this point the force in the 

vertical and horizontal directions (Figures 6.42 and 6.43, respectively) drops near to zero. 

Had this been a wind up giant circle the vertical reaction force would be closer to one 

bodyweight in the vertical direction and 2.5 bodyweights in the horizontal direction. Is 

the vertical and horizontal force dropping to zero at release a coincidence or is there some 

mechanical benefit to this when performing a double layout backward somersault 

dismount. Again this cannot be answered using the force trace alone. 
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Figure 6.43. Horizontal force trace for two accelerated giant circles. 

6.4.4 Summary 

The regressions performed on the calibration data enabled the strain recorded from 

the bar to be converted into force to within ± 1.2%. The coefficients obtained in the 

vertical and horizontal directions were found to be different. It is likely that the bar is less 

stiff in the horizontal direction, based on this result. Using the regression equations the 

strain data were converted to force. 

The peak resultant reaction force for the regular giant circles was approximately 

2065.4 N (Table 6.16). This was equivalent of 3.4 bodyweights. For a similar study 
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Kopp and Reid (1980) obtained a peak reaction force of 2208 N, or 3.6 body weights, 

which compares well with the results of this study. The reaction forces for the 

accelerated giant circles were found to be larger than those obtained from the regular 

giant circles. The peak resultant reaction force was 3092.2 N (5.0 bodyweights). This 

peak value lay just outside the maximum load applied during the calibration of the high 

bar (3.0 kN). However, the peak horizontal and vertical components of force were 2464.7 

and 2724.1 N respectively. These peak values were both within the range of the 

horizontal and vertical calibrations. 

The force traces were compared between circles and trials. It was found when 

comparing two regular giant circles or two accelerated giant circles that the time histories 

of the force were very similar. It was suggested, as in section 6.3.4 that the gymnast used 

the same technique each time to load the bar. 

6.5 Synchronisation offorce and video 

6.5.1 Introduction 

In order to evaluate the simulation model it will be necessary to relate the reaction 

forces recorded at the bar to both the whole body angle of rotation and the joint angle 

time histories at the shoulder, hip and knee joints. For this reason the kinetic and 

kinematic data was synchronised. 

6.5.2 Synchronised data 

Estimate of accuracy 

Since the synchronisation of the video cameras and the trigger for the force data 

occurred simultaneously the accuracy of the synchronisation could be at best to the 

nearest video field. The force and the video data were therefore synchronised to within 

0.01 s, half the sampling frequency of the video camera. Although, interpolation of the 

video data were performed to locate the time at which the hips passed through the 

photocell beam the overall accuracy of the synchronisation was dependent on the 

sampling frequency of the video cameras. 
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Regular giant circles 

Figure 6.44 shows the vertical· and horizontal force traces plotted against the 

rotation angle for trial 10. The peak vertical force for each of the three regular giant 

circles perfonned in trial 10 occurred at a mean rotation angle of 178.0°. That is, just 

before the lowest point of the giant circle. In the horizontal direction the mean peak 

forces for this trial occurred at 118.5° and 233.4°. Figure 6.45 shows the resultant force 

plotted against rotation angle for trial 10. The peak resultant force occurred at a rotation 

angle of 176.1°. These coincide with the peak horizontal and vertical bar displacements. 

However, the peak angular velocity of the rotation angle occurred earlier at 167° 

(Table 6.21). 

Table 6.21. Rotation angle at peak horizontal and vertical reaction forces (trial 4) 

peak 

first 

seco.nd 

third 

fourth 

rotation angle 
at vertical peak 

e) 

177° 

496° 

576° 

NA 

rotation angle 
at horizontal peak 

(0) 

124° 

235° 

473° 

581° 

Kopp and Reid (1980) found that the resultant peak force occurred at a rotation 

angle of 2 I 0°. This means that the peak force occurred after the gymnast had passed 

through the lowest point. In the present study the peak force was recorded just before the 

gymnast passed through the lowest point. This may have occurred as a result of the 

su bjects using a slightly different technique. From Figure 6.45 it can be seen that when 

the resultant force is at its highest there appears to be a flattening of the force time curve. 

A similar effect was seen in the data of Kopp and Reid (1980). The gymnasts in the 1980 

study may therefore have used a slightly different technique to the one used in the current 

study which lead to the peak resultant reaction force occurring at a slightly different point. 
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Figure 6.44. The vertical and horizontal force recorded in trial 10 plot against rotation 

angle. 
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Figure 6.45. The resultant force recorded in trial 10 plotted against rotation angle. 

Accelerated giant circles 

The horizontal and vertical reaction forces recorded during trial 4 are plot against 

the angle of rotation in Figure 6.46. The rotation angles at which the peak forces occur 

are presented in Table 6.21. The peak vertical reaction force for the first accelerated 

giant circle occurred at a rotation angle of 177". For the accelerated giant circle 

containing the release, the peak reaction force occurs at a rotation angle of 576°. This is 

approximately 36° after passing through the lowest point. The subject has therefore 

loaded the bar differently on passing through the lowest point for the second time. Just 
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before the second peak there is a smaller peak in the vertical reaction force (similar to that 

seen in the vertical bar displacement in section 6.3.4). This smaller peak occurs at 496°. 

The four peaks in horizontal reaction force occurred at rotation angles of 124°, 235°, 473° 

and 581 ° respectively. The corresponding peaks in linear bar displacements for trial 4 are 

given in Table 6.22. The differences between the rotation angle at the peak bar 

displacements and reaction forces are small with a mean of less than 7°. The mean 

would be less than 4° except for the difference between the second peak in the horizontal 

bar displacement and reaction force. On inspection of Figure 6.46 it can be seen that 

there is a plateau where the second peak in horizontal reaction force occurs. The range of 

this plateau contains the rotation angle at which the horizontal bar displacement is also at 

a peak: It is apparent from the these results (Table 6.21 and Table 6.22) that the peaks in 

reaction force occur at or very near to the peaks in the bar displacements. This is further 

evidence of the relationship between the two sets of data. 
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Figure 6.46. Horizontal and vertical reaction forces plot against rotation angle 

(trial 4). 

Table 6.22. Rotation angle at peak horizontal and vertical bar displacements (trial 4) 

peak 

first 

second 

third 

fourth 

rotation angle 
at vertical peak 

(0) 

176° 

489° 

571° 

NA 

rotation angle 
at horizontal peak 

(0) 

126° 

259° 

470° 

578° 
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6.6 Spring parameters 

6.6.1 Introduction 

Spring parameters are among the required input to the four segment simulation 

model. Section 6.6 outlines how these values were obtained using the data obtained from 

the kinetic and kinematic analysis of the backward giant circles. 

6.6.2 Stiffness and damping coefficients of the bar 

Determination via static loading 

The reference frames were repeatedly digitised so that an estimation of the accuracy 

of the digitisation could be made. Average root mean square values, of the difference 

between the digitised and repeat digitised data sets, of 0.128 mm and 0.095 mm were 

found in the vertical and horizontal directions respectively. The rms values were small 

due to the size of the field of view. 

vertical displacement [m] 

o load [N] 
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-0.02 

-0.04 

-0.06 

-0.08 

-0.10 

-0.12 

Figure 6.47. Regression line and single points for load against vertical bar displacement. 

Figure 6.47 shows the vertical bar displacement plotted on the vertical axis against 

the load applied to the bar. It appears that the relationship between load and vertical 

displacement is linear. The linear regression produced a stiffness coefficient of 
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-23305.9 ± 210.0N.m-l. The standard error for the regression was 29.2 N. This means 

that the average error in predicting the reaction force using the bar displacement was 29.2 

N. This is the equivalent of 0.05 of a body weight, or 1 % when expressed as a percentage 

of the range of force applied to the bar_ The correlation coefficient between load and bar 

displacement was 0.999. 

The FIG manual of measures dimensions and forms states that the high bar must 

produce a "sag" of 0.10 ± 0.01 m under a load of 2200 N. Therefore, the bar may have a 

stiffness coefficient of between 20000.0 and 24444.4 N.m-I (using Hooke's law and the 

FIG regulations). It would appear that the bar calibrated in this study was within the 

range required by the governing body. 

Continental Sports (supplier of the tested high bar) perform a number of tests on the 

equipment it supplies, one of which is to load the high bar with 2200 N and measure its 

vertical displacement. In the Norms-testing manual supplied by Continental Sports a 

vertical displacement of 0.08 - 0.10 m was reported. This would yield a stiffness 

coefficient of between 22000 and 27500 N.m-I. The value obtained in this investigation 

lies within this range. 

Determination from force analysis of the giant circle 
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Figure 6.48. Vertical and horizontal bar displacements for regular giant circle one of 

trial 10. 

The location of the centre of the bar was found to be at co-ordinates (-0.011, 2.721). 

These values were subtracted from the reconstructed three-dimensional co-ordinates. 

Figure 6.48 has the vertical and horizontal bar displacements plotted against time for 

circle one of trial 10. Note that the shape of the vertical force trace in Figure 6.40 is 

almost a reflection of Figure 6.11, vertical bar displacement, in the horizontal axis. 
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Table 6.23 contains the peak horizontal and vertical bar displacements for the regular 

giant circles performed in trial 10. Similar results for the accelerated giant circle 

performed in trials 4 and 11 are given in Table 6.24. The bar displacements were larger 

for the accelerated giant circles when compared with the regular giant circles. The values 

obtained are consistent with those obtained by Briiggemann et al. (1994) for the bar 

displacements during the giant circle prior to release. For the regular giant circles the 

peak vertical bar displacement was larger than the peak horizontal bar displacement. 

However, during the accelerated giant circles the peak bar displacements in the horizontal 

and vertical directions were similar. 

Table 6.23. Peak bar displacements in the horizontal and vertical directions for trail 10 

circle peak vertical peak horizontal 
(trial 10) bar displacement bar displacement 

first 

second 

third 

mean 

(m) (m) 

- 0.089 

- 0.089 

- 0.093 

- 0.090 

0.072 

0.074 

0.077 

0.074 

Table 6.24. Peak bar displacements in the horizontal and vertical directions for trails 4 

and 11 

circle peak vertical peak horizontal 
(trial) bar displacement bar displacement 

(m) (m) 

4 - 0.114 0.116 

11 - 0.118 0.118 

mean - 0.116 0.117 

The results of the linear regressions performed between the vertical bar displace­

ments and the vertical force recordings for giant circles one and two of trial 10 are given 

in Table 6.25. The regressions were not forced through the origin since the data being 

regressed were obtained during dynamic conditions. When the bar has zero displacement 

it does not follow that there will be zero force applied to the bar. If the bar has a velocity 

when there is zero displacement there may be a force due to the damping of the bar. This 

damping would be due to the characteristics of the material the bar was constructed from. 

The damping force is calculated as the product of the spring velocity and the damping 

coefficient of the spring. Therefore, in Table 6.25 the stiffness of the bar is determined 
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from the coefficient of the regression line and the constant term indicates that the 

regression line does not pass through the origin. The value for the constant is less than 

2% of the force recorded in the vertical direction for the regular giant circles. However, 

when expressed as an error in the displacement data the constant obtained from the 

regressions in the vertical direction correspond to less than 0.002 m. This value is less 

than the rms value of the reconstructed three-dimensional co-ordinates (approximately 

0.011 m). The standard error for the regressions are displayed in the fifth column of 

Table 6.25. The mean rms difference for the regular giant circles was 60.1. The 

regression line was therefore able to predict the reaction force in the bar from the bar 

displacement with an average error of 60.1 N. This corresponds to an average error of 

0.1 0 bodyweights. The stiffness coefficients determined from the regression of the force 

and displacement data were not significantly different from the coefficient obtained from 

the static loading experiment. 

Table 6.25 also contains the results of the regression performed on the data from 

trial 4 (accelerated giant circle). The stiffness coefficient is not significantly different 

from those obtained from the regular giant circle data. It may therefore be inferred that 

the bar has a constant stiffness which does not change with increasing load. However, 

the standard error for the regression performed using the data from trial 4 was consider­

ably larger than the standard errors obtained from the regular giant circles (Table6.25). 

Table 6.25. Results of linear regressions between vertical bar displacement and force 

giant circles correlation gradient constant standard 
(trial 10) coefficient error 

first 0.990 - 23409.9 ± 231.9 - 35.3 ± 8.6 63.8 

second 0.992 - 23461.5 ± 204.9 - 36.8 ±7.6 56.6 

first & second 0.991 - 23435.8 ± 153.7 - 36.0 ± 5.7 59.9 

tria14 0.972 - 23221.8 ± 353.2 - 54.9 ± 16.9 152.0 

The horizontal data were regressed in the same way as the vertical data. The results 

are presented in Table 6.26. The constant coefficient is less than 1 % of the force recorded 

in the horizontal direction. Which again corresponds to a displacement error of less than 

0.001 m. The gradient of the regression lines are significantly different from those 

obtained in the vertical direction. It may be inferred that the bar is less stiff in the 

horizontal direction. Table 6.18 (peak horizontal and vertical forces) indicated that the 

peak vertical forces during the accelerated giant circles were larger than those in the 

horizontal direction. However, Table 6.24 (peak bar displacements) shows that the bar 

was displaced similar amounts in both the horizontal and vertical directions. Using 
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Hooke's law it would therefore be expected that the bar is more stiff in the vertical 

direction. This difference in stiffness may be explained by the way the bar is mounted to 

the uprights. In the vertical direction the bar may pivot about two pins which pass 

through the middle of the bar mountings. In the horizontal direction the mounting is 

designed so that it can twist about its vertical axis. The twisting allows the bar to be 

displaced in the horizontal direction with less force. 

The standard errors for the regressions in Table 6.26 for the regular giant circles 

have a mean of 48.2 N. Like the standard error for the regressions in the vertical 

direction this corresponds to a standard error of 0.10 bodyweights. The standard error for 

the regression performed on the data from trial 4 is considerably larger than those 

obtained for the regular giant circles (Table 6.26). 

Table 6.26. Results of linear regressions between horizontal bar displacement and force 

giant circles correlation gradient constant standard 
(trial 10) coefficient error 

first 0.990 - 20359.0 ± 152.5 - 20.9 ±5.0 5004 

second 0.992 - 20456.0 ± 137.3 - 13.3 ± 4.5 46.1 

first & second 0.991 - 20407.3 ± 102.3 -17.1 ±3.3 48.2 

trial 4 0.972 - 20069.3 ± 181.0 - 59.0 ± 9.1 103.0 

Figure 6049 shows a plot of the vertical force against the vertical bar displacement, 

for regular giant circle three, trial 10 (dashed line). The force data is sampled at 50 Hz, 

since it has been synchronised with the video data. The solid line is the force estimated 

using the regression equation below; 

estimated vertical force = vertical bar displacement x gradient form regression line 

In Figure 6.49 the gradient of the solid line was -23409.9, the stiffness coefficient 

obtained from the regression using the data from the first giant circle of trial 10. The rms 

difference between the recorded force and the force calculated using the above equation is 

68.8 N. This is equivalent of a 3.1 % difference when expressed as a percent of the range 

of vertical force. The same analyses were perfomed using the stiffness values obtained 

from the static loading of the bar and from the regressions using the dynamic data. The 

process was repeated using the force and bar displacement data obtained from trial 11 

(accelerated backward giant circle). The results are presented for the rms differences in 

the vertical and horizontal directions in Tables 6.27 and 6.28, respectively. 
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Figure 6.49. Estimated force and recorded force against vertical bar displacement. 

Table 6.27. Rms difference between estimated and recorded vertical force 

stiffness coefficient circle 3 (trial 10) trial 4 
(N.m- I) rms difference rms difference 

(N, %) (N, %) 

- 23305.9 67.5 (3.0%) 168.6 (5.5%) 

- 23409.9 68.8 (3.1%) 169.9 (5.6%) 

- 23461.5 69.4 (3.1%) 170.5 (5.6%) 

- 23435.8 69.1 (3.1%) 170.2 (5.6%) 

Table 6.28. Rms difference between estimated and recorded horizontal force 

stiffness coefficient circle 3 (trial 10) trial 4 

(N.m- I) rms difference rms difference 
(N, %) (N, %) 

- 20359.0 53.2 (1.7%) 125.8 (3.1%) 

- 20456.0 53.9 (1.8%) 126.6 (3.1%) 

- 20407.3 53.5 (1.8%) 126.2 (3.1%) 

The stiffness coefficients obtained from the static loading and the regression 

analyses were successfully able to predict the vertical reaction for the regular and 

accelerated giant circle.s Rms difference values of between 67.5 Nand 69.4 N were 

obtained when comparing estimated and recorded vertical reaction forces for the regular 

giant circle. The rms difference compares well with the standard errors obtained from the 

linear regressions in Table 6.25 (regression results table). This was approximately 3% 
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when expressed as a percentage of the range of vertical force. Larger rms differences 

were obtained when the stiffness coefficients were used to predict the vertical force 

during an accelerated giant circle (approximately 170 N, 5.6%). However, the standard 

error obtained from the linear regression using the data from the accelerated giant circle 

was also considerably larger than those which used the data from the regular giant circles. 

In the horizontal direction the rms differences between the recorded and the 

estimated force were slightly less when compared with the results obtained in the vertical 

direction (Table 6.26). The rms difference when estimating the horizontal force for the 

regular giant circle was approximately 54.0 N (approximately 2% when expressed as a 

percent of the range of horizontal force). When estimating the horizontal force for the 

accelerated giant circle the rms difference with the recorded force was approximately 

126.0 N (3%). 

To investigate the hypothesis that a relationship exists between the recorded force, 

bar displacement and bar velocity stepwise regressions were perfomed using these data. 

The results of the regressions performed on the vertical data are are given in Table 6.29. 

The stiffness coefficients are largely unchanged by introducing a second coefficient 

(Table 6.25). From the regressions the damping coefficient lies within the range of 193.0 

to 234.9 N.s2.m-l for the regular giant circles. The damping coefficient for the accelerated 

giant circle is considerably larger at 412.5 N.s2.m-l. Introducing the damping coefficient 

also improved the correlation coefficients in all cases. Similarly the standard errors 

obtained for these regressions (Table 6.29) are smaller than those obtained for the 

regressions which did not account for the velocity of the bar. The mean standard error 

was reduced from 60.1 to 48.5 for the regular giant circles. The standard error for the 

regression performed on the accelerated giant circle data was reduced by 47% by 

introducing the damping coefficient. 

Stepwise regressions were also performed for the horizontal force and bar 

displacement data. In order to obtain a damping coefficient the second coefficient, i.e. the 

damping term, had to be forced into the regression. When forced into the regression the 

correlation coefficient increased and the standard error of the regressions were reduced, 

Table 6.30. The stiffness coefficients are largely unchanged form the regression 

performed without the damping term. This is because, for the regular giant circles, the 

damping term does not really improve the regression (Table 6.26 and Table 6.30). It can 

also be seen that the standard deviations for the damping coefficients are large. In the 

case of the accelerated giant circle the the damping coefficient is large, when compared 

with the regular giant circles (Table 6.30). Introduction of the damping term improved 

the standard error by 50%. It may be inferred from this result that the damping of the bar 

has greater effect on the reaction force when the bar has greater displacements and 

velocities. 
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Table 6.29. Results of linear regressions between vertical bar displacement and velocity 

and vertical force 
giant circles 

(trial 10) 

first 

second 

first & second 

trial 4 

correlation 
coefficient 

0.995 

0.994 

0.994 

0.992 

stiffness 
coefficient 

- 23426.2 ± 172.4 

- 23455.6 ± 179.2 

- 23438.8 ± 125.0 

- 23213.9 ± 190.9 

damping constant standard 
coefficient error 

234.9 ± 25.8 - 37.4 ± 6.4 47.4 

152.7 ± 26.5 - 36.3 ± 6.6 49.5 

193.0 ± 18.6 - 36.6 ± 4.6 48.7 

412.5 ± 23.7 -54.3 ±9.1 81.0 

Table 6.30. Results of linear regressions between horizontal bar displacement and 

velocity an.d horizontal force 

giant circles correlation stiffness damping constant standard 
(trial 10) coefficient coefficient coefficient error 

first 0.994 - 20359.3 ± 152.2 28.0 ±23.3 - 20.9 ± 5.0 50.3 

second 0.995 - 20456.1 ± 136.3 34.1 ± 21.0 - 13.2 ± 4.4 45.7 

first & second 0.995 - 20407.5 ± 101.6 31.1 ± 15.6 - 17.0 ± 3.3 47.9 

trial 4 0.997 - 20071.4 ± 95.3 228.0 ± 12.6 - 58.0 ±4.8 51.6 

The regression equations including the term for damping were used to estimate the 

force in one regular giant and one accelerated giant circle. None of the data from these 

trials were used to obtain the regression equations. The force was estimated using the 

following formula: 

Force = bar displacement x stiffness coefficient + bar velocity x damping coefficient 

Figure 6.50 a) shows the recorded vertical force plot against vertical bar 

displacement. Figure 6.50 b) shows the estimated vertical force plot against vertical bar 

displacement. The introduction of the damping term into the formula used to estimate the 

force produces a force trace which is more representative of the actual recorded force. 

The rms difference between the recorded and estimated force was calculated. The results 

are presented in Tables 6.31 and 6.32 (vertical and horizontal data, respectively) . 

. Introducing the damping coefficient reduced the rms difference in all cases when 

compared with rms differences obtained with no damping term. The rms differences 

were largest when using the coefficients obtained from the regular giant circles to 

estimate the reaction forces during trial 4. However, in all cases, regular and accelerated, 

the rms differences are all less than a quarter of a bodyweight. 
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Figure 6.50. Recorded force (a) and estimated force (b) against vertical bar displacement. 

Table 6.31. Rms difference between estimated and recorded vertical force 

stiffness coefficient damping coefficient circle 3 (trial 10) tria14 
(N.m· l ) (N.m ) rms difference rms difference 

- 23426.2 

- 23455.6 

- 23438.8 

234.9 

152.7 

193.0 

(N, %) (N, %) 

65.0 (2.9%) 

63.9 (2.8%) 

64.0 (2.8%) 

119.1 (3.9%) 

134.4 (4.4%) 

126.4 (4.1%) 

Table 6.32. Rms difference between estimated and recorded horizontal force 

stiffness coefficient damping coefficient circle 3 (trial 10) trial 4 
(N.m- I) (N.m) rms difference rms difference 

(N, %) (N, %) 

- 20359.3 28.0 52.1 (1.7%) 133.8 (3.3%) 

- 20456.1 34.1 52.8 (1.7%) 136.5 (3.3%) 

- 20407.5 31.1 52.4 (1.7%) 135.1 (3.3%) 

- 20071.4 228.0 64.7 (2.2%) 202.1 (5.0%) 

6.6.3 Stiffness coefficient of the shoulders 

Estimate obtained/ram displacement time history a/the shoulders 

The results of the regressions performed on the resultant reaction force and the 

displacement in the subject's shoulders are given in Table 6.33. The regressions yielded 

stiffness coefficients for the shoulders of between 12500 N.m- I and 16500 N.m- I . The 
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large constant values in Table 6.33 refer to where the regression line crosses the vertical 

axis. This is a theoretical value since the ann and torso segments have a minimum length 

greater than zero. The correlation coefficients imply that the wrist to hip length increases 

with increasing reaction force at the bar. However the standard errors for the regressions 

are large, corresponding to an average error of nearly one bodyweight when using the 

wrist to hip length to estimate the reaction force at the bar. These results may lead to the 

conclusion that the extension that occurs between the gymnast's wrist and hips is not best 

modelled using a linear spring. The increase in length may be better modelled using a 

more complex system or possibly a non-linear spring. Since the regressions revealed that 

there is a relationship between the increase in length of the subject and the increase in 

reaction force the assumption of a linear spring will be maintained. The optimisation of 

all the spring parameters may yield a more appropriated stiffness and damping coefficient 

for the shoulder spring. Since the damping coefficient of the shoulder could not be 

detennined from the above regressions it may be speculated that any spring at the 

shoulders would require considerable damping (when compared with the high bar). 

Table 6.33. Results of the regressions performed on the wrist to hip length and the 

resultant reaction force at the bar 

giant circles correlation 
(trial 10) coefficient 

first 0.400 

second 0.464 

first & second 0.422 

trial 4 0.579 

gradient 

12816 ± 1561 

13059 ± 1362 

12634 ± 1023 

16467 ± 1257 

constant 

- 13908 ± 1796 

- 14338 ± 1581 

- 13774 ± 1182 

-17966± 1461 

6.6.4 Damping coefficient of the bar and shoulder springs 

Initial estimates 

standard 
error 

540.4 

511.9 

528.7 

605.2 

The initial spring parameters used in the Annealing process are presented in 

Table 6.34. The bar coefficient were taken from the regression performed on the data 

from the first two regular giant circles of trial 10. The initial stiffness coefficient of the 

shoulder spring was taken as a "ball park" figure based on the results of the regressions 

performed in section 6.6.3. 
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Table 6.34. Initial spring parameters used in the optimisation procedure 

spring 
coefficients 

bar. horiz. 

bar. vert. 

shoulder 

stiffness 
(N.m!) 

20407.5 

23438.8 

16000.0 

damping 

31.1 

193.0 

0.0 

The initial value of the cost function based on the initial parameter values in 

Table 6.34 was 0.86. This corresponded to a rms difference of 13.50 in rotation angle, 

0.033 m in horizontal bar displacement, and 0.016 m in vertical bar displacement. 

After 8000 evaluations the final value of the cost function was 0.54. The value of 

the cost function corresponded to a rms difference of 4.170 in rotation angle, 0.012 m in 

horizontal bar displacement, and 0.009 m in vertical bar displacement. All three 

contributions to the cost function show an improvement on the initial evaluation of the 

cost function based on the spring parameters in Table 6.34. The final values for the 

spring parameters obtained after the optimisation are given in Table 6.35. 

Table 6.35. Final spring parameters obtained from the optimisation procedure 

spring 
coefficients 

bar. horiz. 

bar. vert. 

shoulder 

stiffness 
(N.m! ) 

22236.0 

26784.0 

124.5 

damping 

540.8 

325.9 

18418.0 

On comparison of the two sets of spring parameters in Tables 6.34 and 6.35 there 

are certain similarities and some marked differences. Both before and after the 

optimisation the stiffness in the vertical direction is greater than that in the horizontal 

direction. However, both the bar stiffness coefficients are greater after the optimisation 

than the values estimated by the regression analyses carried out in section 6.6.2. The 

damping coefficients are also larger than those estimated by the regression analysis on the 

data obtained from the regular giant circles. Instead, the damping coefficients compare 

better with the damping coefficients obtained from the regressions performed on the data 

obtained from the accelerated giant circles. 

The most significant difference between the two sets of spring parameters are the 

stiffness and damping coefficients of the shoulder spring. It appears as though the 

shoulder spring has minimal stiffness and large damping when compared with the bar 
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coefficients. It is likely that these spring coefficients would prevent the extension in the 

shoulders behaving like the data obtained from the video analysis (Figure 6.31). The 

spring would probably increase in length initially, but when it would be expected to "re­

coil" the lack of stiffness in the spring would prevent this. Yet the data from section 6.2.2 

(Figure 6.31) showed that there was a definite increase followed by a decrease in the 

distance from the subject's wrists to hips during the backward giant circles. 

The theory behind the Simulated Annealing algorithm is based on the theory of 

cooling liquids and finding a state of minimum energy. Each time the Annealing changes 

temperature the current optimum value of the cost function is output along with the 

function parameters. In Figure 6.51 the value of the cost function at each temperature 

change has been plotted. Almost immediately a plateau in the function was obtained. A 

likely explanation is that the algorithm had found a local optimum. However, the 

algorithm continued to search for a better value of the cost function and eventually 

departs from the plateau. Figure 6.52 shows the history of the horizontal and vertical 

stiffness coefficients of the bar during the optimisation. Compared with the history of the 

shoulder stiffness and damping coefficients, Figures 6.52 and 6.53 respectively, the bar 

stiffness and damping coefficients remain fairly constant (Figures 6.52 and 6.54). 

Similarly after the initial plateau the damping coefficient of the shoulder spring remains 

constant (Figure 6.53). The initial plateau in the shoulder stiffness occurred at a value of 

12086.0 N.m-I. This shoulder stiffness value compares with those obtained from the 

regression analysis in section 6.5.2 (Table 6.33). With such a stiffness coefficient the 

shoulders are more likely to behave as a spring capable of re-coiling after extension. 
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Figure 6.51. History of the cost function value. 

It is, therefore, hypothesised that had the extension in the shoulders been included 

into the cost function the initial plateau may have been the global optimum rather than a 

- ------------------
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local optimum. However, it is the strength of the Annealing algorithm that it is able to 

distinguish between local and global optima. 

The value of the cost function at the initial plateau was 0.56. This corresponded to 

a rms difference of 4.90° in rotation angle, 0.012 m in horizontal bar displacement, and 

0.009 m in vertical bar displacement. These rms values are only marginally different 

from those obtained at the end of the optimisation procedure. The spring coefficients 

obtained at the initial plateau are given in Table 6.36. The spring parameters in 

Table 6.36 will be used in the evaluation of the four segment simulation model. 
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Figure 6.52. History of the stiffness coefficients. 
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Figure 6,53. History of the shoulder damping coefficient. 
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Table 6.36. Spring parameters obtained from the initial plateau in cost function 

spring stiffness damping 
coefficients (N.m!) (N.s2.m-!) 

bar. horiz. 22560.0 419.6 

bar. vert. 26297.0 379.4 

shoulder 12086.0 18309.0 

damping [N.s'.m-'l 
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Figure 6.54. History of the bar damping coefficients. 

6.7 Summary 

The data collected from the isokinetic dynamometer was expressed in two 

relationships between torque and joint angle and torque and joint angular velocity. These 

two relationships were combined to form a three-dimensional surface. Given a joint 

angle and angular velocity it will be possible to estimate the peak joint torque the subject 

can produce. As stated earlier, these muscle model surfaces will be used to limit the joint 

torques at the hip and shoulder joints during the optimisation of the accelerated backward 

giant circles. 

The kinetic and kinematic data compared well with similar results obtained in the 

literature. For the comparisons with the literature see the summary sections 6.3.5 and 

6.4.4. The force and the video data were synchronised to within 0.01 s, to the nearest half 

of a video field. The synchronised data were then used to estimated the stiffness and 
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damping coefficients of the high bar. Reaction forces recorded during regular and 

accelerated giant circles were regressed against the dispiacements of the bar for the same 

trials. The gradient of the regression line being the stiffness coefficient of the high bar. 

Theses data were compared with a stiffness coefficient obtained from a static loading of 

the bar, which compared favourably. It was found that the standard deviation between the 

data points and the regression line improved when the velocities of the bar were included 

in the regressions. The coefficient relating to the velocities of the bar was the damping 

coefficient. The stiffness and damping coefficients obtained in the regressions were then 

used to estimate the reaction forces during different trials of giant circles on the high bar. 

For the regular giant circle the reaction forces were estimated to within 65 N (0.11 BW). 

For the accelerated giant circles. the reaction forces were estimated to within 136 N 

(0.22 BW). Therefore, if the stiffness and damping coefficients of the bar are known the 

reaction forces at the bar can be estimated with reasonable accuracy based purely on the 

displacement and velocity of the bar. 

The coefficients obtained from the experimental data were used with the four 

segment simulation model to obtain optimised stiffness and damping coefficients which 

will be used in the evaluation and optimisation of the accelerated backward giant circles. 
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CHAPTER 7 

EVALUATION OF THE SIMULATION MODELS 

7.1 Introduction 

The development of the single segment and four segment models was dealt with in 

Chapter 3. Yeadon and Challis (1994) described the need to evaluate theoretical 

predictions by comparing the results with experimental data. This chapter outlines the 

method used to determine the external validity of the models by using a combination of 

simulations and data obtained from the analysis of the backward giant circle. 

The process of evaluating the models has been broken down into four sections. The 

first three of these sections are used to evaluated the assumptions made in the develop­

ment of the simulation models and to determine whether there are any errors in the 

computer code. 

Section 7.2 tests the assumption that the bar may be modelled as a linear spring. 

Simulations are performed to determine the peak angular velocity and reaction force 

during the downswing of a backward giant circle. The results of these are compared with 

data obtained from the video and force analyses of the backward giant circle. 

Section 7.3 is used to check the computer code of the four segment model. If the 

four segment model is constrained to behave like the single segment model a similar set 

of results to section 7.2 should be obtained. In addition section 7.3 tests the assumption 

that a spring may be used to model the extension in the gymnast's shoulders. 

The third section (7.4) investigates the use of joint angle time histories. A 

simplification of the four segment model will be used to demonstrate the use of the 

functions used to define the joint angle time histories. A three segment model which 

assumes rigid structures for the bar and gymnast will be used. 

The final section (7.5) performs a complete kinetic and kinematic evaluation of the 

four segment simulation model. The joint angle time histories from the video analysis are 

used to drive the simulation model. A comparison between various output from the 

model are made with data obtained from the video and force analysis. An overall 

estimation of the accuracy of the four segment model will be determined from these 

results. An evaluation of the joint torques predicted by the model and those obtained 

from the muscle model will be made. 
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7.2 One segment model vs. kinetic and kinematic analysis 

7.2.1 Introduction 

Previous attempts to model a gymnast swinging on high bar have assumed that the 

bar was rigid (Dainis, 1968; Morlock and Yeadon, 1988). The analysis of the accelerated 

giant circle has shown that the bar achieves a vertical displacement of approximately 

0.10 m as the gymnast passes through the lowest point. Neglecting the elastic properties 

of the bar during simulations may lead to an over-estimation of the model's angular 

velocity through the lowest point. 

The purpose of this section is to determine the effect of an elastic bar on angular 

velocity and reaction force during a giant circle. 

7.2.2 Methods 

The equations of motion and their solution for the single segment model were dealt 

with in Chapter 3. The single segment inertia data of subject jb01 was used for all 

simulations (Table 7.1). The stiffness and damping coefficients for the spring represent­

ing the bar were those obtained from the analysis of the backward giant circle (Table 7.2). 

It was assumed that the bar was equally stiff in the horizontal and vertical directions. 

Table 7.1. Inertia data used in the single segment simulation model GbOl) 

segment 

whole 
body 

mass 
(kg) 

62.050 

length 
(m) 

NA 

cmloc 
(m) 

0.833 

moment of inertia 
(kg.m2) 

11.12 

Three simulations were run, one where the bar was modelled as a rigid structure, 

one where the bar was modelled as a linear spring and one where the bar was modelled as 

a damped linear spring. For the purposes of modelling the bar as a rigid structure the 

stiffness coefficient was set to a value of 999999.0 N.m·1 and the damping was set to 

zero. To model the bar as a linear spring with no damping the damping coefficient was 

set to zero. In each case the simulation was started with the model in the vertical 

handstand position with an initial angular velocity of 2.5 rad.s·l . This was the angular 

velocity of the rotation angle as the subject through the handstand position at the 

beginning of the first giant circle of trial 4. The spring was given an initial length and 

velocity corresponding to those obtained from trial 4 as the gymnast passed through the 
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handstand position. The initial displacements and velocities of the bar are given in 

Table 7.3. 

The outputs from the model comprised the peak angular velocity, reaction force, 

bar displacements and the energy possessed within the single segment system. 

Table 7.2. Stiffness and damping coefficients used in the single segment model 

bar 

rigid 

spring 

spring 
damped 

stiffness coefficient 
[N.m· l ] 

99999999.0 

26297.0 

26297.0 

damping coefficient 
[N.s2.m·l ] 

0.0 

0.0 

379.4 

Table 7.3. Initial bar displacements and velocities obtained from the video analysis of 

the accelerated giant circle 

direction 

horizontal 

vertical 

7.2.3 Results and Discussion 

bar displacement 

[m] 

0.0019 

- 0.0002 

bar velocity 
[m.s· l ] 

- 0.0416 

- 0.0264. 

Figure 7.1 shows the energy during the simulation where the bar was modelled as a 

linear spring with no damping. The total energy is the sum of the potential, strain (stored 

in the bar) and kinetic energy. The model was designed and behaves as a conservative 

system, with no energy being lost during the simulation of one giant circle. 

The peak angular velocity and reaction force (measured in bodyweights) for the 

three simulations and the results from the video analysis are presented in Table 7.4. 

Introducing an elastic bar reduced the peak angular velocity from 6.59 to 5.86 rad.s· l , a 

reduction of 11 %, and reduced the peak reaction force from 4.69 to 4.37 bodyweights, a 

reduction of 7%. However, the peak angular velocity obtained from the simulations 

where the bar was modelled as an elastic structure was still 6% greater than that obtained 

from the video analysis. 

------.---- ---
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Figure 7.1. Total energy in the system and its components when the bar is modelled as a 

linear spring with no damping. 

Table 7.4. Results obtained from the simulations using the single segment model and 

those obtained form the video analysis 

video rigid spring spring 
analysis damped 

peak angular velocity 5.52 6.59 6.01 5.84 [ S-l] 

reaction force 3.97 4.69 4.55 ·4.37 [BW] 

The reduction in the peak angular velocity may be accounted for in the following 

way. Figure 7.2 shows the kinetic energies (linear and rotational) and strain energy for 

the simulation where the bar was modelled as a linear spring without damping. Had the 

bar been modelled as a rigid structure the linear and rotational energy would have been 

greater, as the strain energy would have been distributed between them. As a conse­

quence the peak angular velocity would be decreased when modelling the bar as an elastic 

structure. To determine the contribution of the strain energy to the reduction of peak 

angular velocity, the strain energy (133.0 J) stored in the bar at the lowest point of the 

giant circle was distributed proportionally between the linear and rotational energy. It 

was found that the strain energy accounted for 6% of the reduction in peak angular 

velocity. 
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Figure 7.2. Contributions of the kinetic energies (linear and rotational) and strain energy 

to the total energy when the bar is modelled as a linear spring with no 

damping . 

. At the lowest point the bar became vertically displaced by 0.099 m (Figure 7.3). 

This in effect increases the moment of inertia of the model about the neutral bar position. 

Comparing this with results using a rigid bar model shows that the increase in moment of 

inertia reduces the peak angular velocity by 5%. Similarly the reduction in reaction force 

between the rigid and elastic models could be accounted for. It was found that the strain 

energy accounted for 1 % and the increase in moment of inertia accounted for 4% of the 

reduction in reaction force. 
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Figure 7.3. Vertical bar displacement when the bar is modelled as a linear spring with no 

damping. 
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7.2.4 Conclusions 

The aim of this section was to detennine the effect of bar elasticity on angular 

velocity and reaction force. It was found that the introduction of bar elasticity reduced 

the peak angular velocity by 11 % and the reaction force by 7%. The reduction in peak 

angular velocity and reaction force could be explained in terms of the strain energy stored 

in the bar and the increase in moment of inertia of the model about the neutral bar 

position. When comparing the simulation model with the video analysis, the model over­

estimated the peak angular velocity by 6%, indicating that a single segment model which 

models the elasticity of the bar is close to representing a gymnast during the downswing 

phase of the giant circle. To reduce the differences in peak angular velocity and reaction 

force, obtained from the model and the video analysis, will require a more sophisticated 

model. In Chapter 6 it was found that the distance from the gymnast's wrist to hips varied 

during the backward giant circle, with the largest increase occurring as the gymnast 

passed through the lower part of the circle. This may lead to a further increase in the 

moment of inertia of the gymnast and to a possible storage of energy, similar to that seen 

in the bar. It was also found that the bar was less stiff in the horizontal direction than in 

the vertical direction. It is therefore suggested that when modelling a gymnast swinging 

on the high bar, both the elastic properties of the bar and of the gymnast are taken into 

consideration. 

7.3 One segment model vs. four segment model 

7.3.1 Introduction 

The obvious limitation of the one segment model is its inability to simulate the 

techniques used by the gymnasts. However, it may be used to check the mechanics and 

programming of the more complex four segment model. If the four segment model is 

constrained to swing with a fully extended body shape, and the spring at the shoulders is 

made extremely stiff, it should behave as a single segment model. A comparison between 

the four segment and the single segment model would then be possible. 

In section 7.2.4 it was hypothesised that the remaining difference in peak angular 

velocity obtained by the single segment model and that from the video analysis may be 

due to the extension in the shoulder region of the gymnast (Chapter 6). By introducing 

the correct spring parameters for the shoulder spring this hypothesis may be tested. 
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7.3.2 Methods 

The same stiffness and damping coefficients were used for the single and four 

segment model. These were the same as those used in section 7.2 when the bar was 

model as a damped linear spring (Table 7.2). The inertia data from subjectjbOI was used 

for both the single and four segment models (Tables 7.1 and 7.5). Since the one segment 

model did not account for the shoulder elevation found in Chapter 6 the inertia data in 

Table 7.5 was used. This inertia data has the segment lengths based on the anthropome­

tric measurements taken from the subject and does not account for the elevation in the 

shoulder girdle. Similarly, so that a comparison between the single and four segment 

models can be made the bar was assumed to be massless in both cases. 

Table 7.5. Inertia data used in the four segment simulation model (jbOI) 

segment mass length cmloc moment of inertia 
(kg) (m) (m) (kg.m2) 

arms 6.868 0.548 0.239 0.205 

torso 33.566 0.435 0.337 1.610 

thigh 14.074 0.374 0.151 0.173 

I. leg 7.543 NA 0.227 0.164 

For the purposes of comparing the four segment model and the single segment 

model the stiffness and damping coefficients of the shoulder spring were set to 

999999.0 N.m-I and zero, respectively. To test whether the four segment model behaved 

as a conservative system a simulation was run with the damping coefficient of the bar 

spring set to zero. 

The stiffness of the shoulder spring was reduced to test the hypothesis that a closer 

agreement to the video data may be obtained by introducing a spring at the shoulders. For 

this simulation the stiffness and damping coefficients of the shoulder spring were set to 

12086.0 N.m-I and 18309.0 N.s2.m- l , respectively (Chapter 6). For all simulations the 

four segment model maintained a rigid and fully extended body shape. 

Each simulation was started from the vertical handstand with an initial angular 

velocity of 2.5 rad.s-I . The initial spring lengths and velocities are given in Table 7.3. 

The outputs from the model comprised the peak angular velocity, reaction force, 

bar displacement, extension in shoulders and the energy possessed within the single and 

four segment systems. 
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7.3.3 Results and Discussion 

Figure 7.4 shows the energy during the four segment simulation where the bar was 

modelled as a linear spring with no damping and the shoulders were modelled as a stiff 

structure. The total energy remained constant during the simulation of one giant circle, 

indicating that the model behaves as a conservative system. When the four segment 

model was compared with the single segment model the total energy in the system 

differed by less than 2%. This difference was most likely due to small differences in the 

whole body moment of inertia about the neutral bar position. 
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Figure 7.4. Total energy in the four segment system and its components when the bar is 

modelled as a linear spring with no damping. 

The peak angular velocity and reaction force (measured in bodyweights) for the 

simulations and the results from the video analysis are presented in Table 7.6. When the 

four segment model is constrained to behave as a single segment model with rigid 

shoulders the appropriate results are obtained. Minor differences may occur due to the 

assumption that using a high stiffness coefficient results in a perfectly rigid structure and! 

or small differences in the whole body moment of inertia. However, the results of the 

single segment model and the constrained four segment model are practically identical. 

The introduction of the elastic shoulder structure caused a reduction in both peak angular 

velocity and peak reaction force. This small reduction will be due to the strain energy 

stored in the shoulder spring and the increase in moment of inertia about the neutral bar 

position caused by the lengthening of the shoulder spring. The peak strain energy 

increased from 133 J to 140 J with the introduction of the elastic shoulder structure. This 

corresponded to an increase in length at the shoulders of approximately 0.05 m. 
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Table 7.6. Results obtained from the simulations using the single and four segment 

model and those obtained form the video analysis 

video 1 seg 4 seg 4 seg 
analysis 2 springs 

peak angular velocity 5.52 5.84 5.83 5.78 [ S-l] 

reaction force 3.97 4.37 4.38 4.33 [BW] 

Since the reductions in peak angular velocity and reaction force are only small 

when compared with the results of the single segment simulation model it may be 

speculated that the difference between the simulation model and the video analysis is due 

to the assumptions made in the models. Increasing the length of the torso to account for 

the elevation found in the shoulder girdle would increase the moment of inertia about the 

neutral bar position leading to a further reduction in peak angular velocity and reaction 

force as described in section 7.2. Similarly in Chapter 6 it was found that the bar was less 

stiff in the horizontal direction than in the vertical. With a less stiff bar the model would 

have a greater displacement about the neutral bar position, again increasing the moment 

of inertia of the model about the neutral bar position. The third explanation for the 

difference in peak angular .velocities and reaction forces is the techniques adopted by the 

gymnast as he circles the bar. In Chapter 6 it was shown that during the downswing the 

gymnast performed actions at both the hips and shoulders. 

The peak vertical displacements of the bar are given in Table 7.7 for the video 

analysis and the simulations. In all cases the displacements compare well. The closest 

agreement with the displacement obtained from the video analysis was when the 

shoulders were modelled as an elastic structure. 

Table 7.7. Vertical bar displacements obtained from the simulations using the single and 

four segment model and those obtained form the video analysis 

vertical 
displacement 

bar 

7.3.4 Conclusions 

video 
analysis 

-0.11 

1 seg 4seg 4seg 
2 springs 

-0.10 -0.10 - 0.11 [m] 

The aim of this section was to see if the four segment model would behave like the 

single segment model and to see whether the introduction of the spring at the shoulders 

improved the comparison between the video analysis and simulation. It was found that 
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the four segment model compared well with the single segment model, both in terms of 

peak angular velocity and reaction force. The single and four segment models were found 

to differ from the video analysis by 6% and 11 % for peak angular velocity and reaction 

force. The introduction of the spring at the shoulders reduced the difference between 

video and simulation to 5% and 9%. The reduction in peak angular velocity and reaction 

force could be explained in terms of the strain energy stored in the shoulders and the 

increase in moment of inertia of the model about the neutral bar position. The vertical 

displacement of the bar and shoulders at the lowest point for the simulation and video 

compared well. It may be inferred that the use of springs to model the movements of the 

bar and shoulder structures is appropriate in this situation. 

To reduce the differences in peak angular velocity and reaction force, obtained from 

the model and the video analysis, will require a more sophisticated model. Although the 

gymnast appears to be fully extended during the downswing phase of the backward giant 

circle this is not entirely the case. From Chapter 6 it was shown that the gymnast 

performs actions at the shoulders, hips and knees during the downswing. It is therefore 

suggested that in order to model the gymnast during the downswing, or during any part of 

the giant circle, the model must be capable of performing actions at least at the hips and 

shoulders and must also model the elastic properties of the bar and gymnast. 

7.4 Three segment model 

7.4.1 Introduction 

Section 7.3 showed how linear springs improved estimates of peak angular velocity 

and reaction force when compared with data obtained from video analysis. In order to 

improve on these results and increase the number of applications the models are 

appropriate for use with, it is necessary that they are capable of performing actions at the 

shoulders, hips and to some extent the knees. 

From sections 7.2 and 7.3 it could be argued that a three segment model assuming a 

rigid bar and gymnast is limited. However, this assumption reduces the complexity of the 

model so that a more clear understanding of the mechanics behind the techniques used on 

the high bar may be obtained without being complicated by the transfer of energy to and 

from the high bar. 

Two simulations will be performed to demonstrate the use of the quintic function 

for defining joint angle time histories. The same method for defining joint angle time 

histories will be the proposed method in the optimisation of the accelerated giant circle, 

Chapter 8. In Chapter 3 a function was proposed which used a square acceleration 
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function for the angle changes. The application and implementation of this function is the 

same as the quintic function. The function with the square acceleration curve will be 

evaluated against the quintic function in Chapter 8. The three segment model will 

optimise a backward giant circle using both the quintic and square acceleration function. 

7.4.2 Methods 

The inertia parameters of subject jbOl were used in the three segment simulation 

model (Table 7.8). The three segments represent the arms, torso and leg segments of a 

gymnast. The model assumed that the bar and the gymnast's shoulders were rigid 

structures. Since there are no damped springs the system is designed to behave as a 

conservative system provided the configuration of the model is maintained. Two 

simulations were performed to evaluate the use of the two functions (described in 

Chapter 3) which are used to define the joint angle time histories of the model. 

Table 7.8. Inertia data used in the three segment simulation model GbOl) 

segment mass 
(kg) 

arms 6.868 

torso 33.566 

legs 21.617 

length 
(m) 

0.584 

0.601 

NA 

cmloc 
(m) 

0.239 

0.337 

0.308 

moment of inertia 
(kg.m2) 

0.205 

1.610 

1.329 

The first simulation was initiated with the model hanging in a stationary position 

vertically under the bar. Initially both the hip and shoulder angles were fully extended. 

After one second the shoulder angle was closed by 20°. This joint action took 0.3 s to 

complete. Once the joint action was complete the angle at the shoulder was maintained. 

The joint action was performed using the quintic function. Although the action has been 

termed "closing" the shoulder angle, due to the definition of the simulation model the 

angle at the shoulder will increase from 180° (fully extended) to 200°, a change of 20°. 

The second simulation was initiated from the handstand position with both the hip 

and shoulders fully extended. The model had an initial angular velocity of 1.0 rad.s· l . 

The model was allowed to swing to the lowest point (rotation angle of 180°) with both 

joints fully extended. After a rotation angle of 180° the hip angle was closed by 20°. 

This action also took 0.3 s to complete. After the joint action had been performed the 

angle at the hip was maintained. The joint angle time history was defined using the 

quintic function. 
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The output from the simulation models comprised time histories of the joint angles, 

whole body rotation angles, angular velocities, energy, reaction forces at the bar and 

internal joint torques. 

7.4.3 Results and Discussion 

The joint angle time history of the shoulder jointJor the first simulation is shown in 

Figure 7.5. The joint angle was initially at 1800 and increased to 2000 in 0.3 s as defined 

by the quintic function. The path of the mass centre during the simulation is given in 

Figure 7.6. Initially the mass centre is directly beneath the bar, as would be expected if 

the model were hanging in a stationary position. As the joint action at the shoulders is 

initiated the mass centre is displaced both upwards and backwards. After the joint action 

was completed the mass centre began to move in a circular path. Displacing the mass 

centre in the horizontal direction created a torque due the model's weight about the bar. 

This torque in turn created an angular acceleration of the model about the bar and hence 

the model started to swing. The vertical reaction force at the bar is shown in Figure 7.7. 

Since the mass centre was displaced upwards one would expect the force curve obtained 

in Figure 7.7. 
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Figure 7.5. Joint angle time history of the shoulder joint from simulation one. 

The angular velocity and acceleration of the change in the shoulder joint angle are 

presented in Figure 7.8. Both the angular velocity and acceleration start and finish at zero 

as defined by the quintic function. The torque required to produce the joint action is 

presented in Figure 7.9. The torque represents the muscular force produced by the 
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muscles surrounding the shoulder joint. The joint torque is initially zero since no 

muscular force is required to maintain the joint angle in the hanging position. During the 

joint action the torque follows a similar shape as the acceleration of the joint angle 

(Figure 7.8). The similarity between the joint torque and acceleration may not be as well 

defined in the second simulation due to the torques required to maintain the joint angles 

during the swing. The torque required to perform the joint action is positive, as would be 

expected. At the end of the joint action the torque does not return to zero (Figure 7.9). 

The joint torque is required to maintain the new joint angle as it swings about the bar. 

The sign of the torque remains positive, indicating that a joint torque that tends to close 

the shoulder angle is required to maintain the joint angle. 
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Figure 7.6. Time history of the rotation angle during simulation one. 
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Figure 7.7. Time history ofthe vertical reaction force during simulation one. 
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Figure 7.B. Time history of the shoulder joint angular velocity (solid line) and 

acceleration (dashed line, in .s-2) from simulation one. 
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Figure 7.9. Time history of the shoulder torque during simulation one. 

During the joint action the mass centre was displaced vertically. Raising the mass 

centre would lead to an increase in potential energy. The joint action, if performed by a 

gymnast, would be created by the muscles surrounding the shoulder structure. The action 

is performed using muscular energy which is transformed in mechanical energy. It would 

therefore be expected that closing the joint angle would lead to an increase in energy in 

the system. Figure 7.10 shows the time history of the energy during the first simulation. 

Initially the energy is zero as the model hangs beneath the bar. As the joint action occurs 

the energy in the system is increased. At the end of the simulation the model has more 

energy than at the start. 
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Figure 7.10. Time history of the energy during simulation one. 

The joint angle time history of the hip joint from the second simulation is plot 

against rotation angle in Figure 7.11 a) and against time in Figure 7.11 b). The hip angle 

is maintained until a rotation angle of 1800 is achieved. Thereafter the hip angle increases 

by 200 as defined by the quintic function. The shape of the graph in Figure 7.11 b) is 

identical to the graph in Figure 7.5. This would be expected since both the hip and 

shoulder angles were changed by the same amount in the same time period. Similarly the 

angular velocity and acceleration of the hip joint angle is shown in Figure 7.12 a) and b) 

against rotation angle and time respectively. Again Figure 7.12 b) is identical to 

Figure 7.8 as would be expected. 
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Figure 7.11. Angle at the hip during simulation two. 
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Figure 7.12. Time history of the shoulder joint angular velocity (solid line) and 

acceleration (dashed line, in .s·2) from simulation two. 

The joint torque at the hips for the second simulation is shown in Figure 7.13. The 

torque has been graphed against rotation angle. During the downswing the torque at the 

hips increases to 28 Nm then decreases back to zero as the rotation angle reaches 180°. In 

the first simulation it was shown that no torque at the shoulders was required to hang 

beneath the bar. Similarly, if the model were in a stationary handstand above the bar the 

same would be true. During the downswing a torque tending to close the hip angle is 

produced. If, therefore, at the start of the downswing the torque was set to zero, and 

maintained at zero, the hip angle would open as the model circled the bar. That is, the 

model would hyper-extend at the hips. These results were also obtained by Morlock and 

Yeadon (1988). Figure 7.13 shows the joint torque obtained from the second simulation 

with the torque at the hips had the joint action not occurred overlaid (dashed line). Had 

the joint action not occurred the torque at the hips would have changed from positive to 

negative as the model passed through the lowest point of the giant circle. To maintain a 

180° angle at the hips during the upswing a negative joint torque is required 

(Figure 7.13). That is, a torque tending to openlhyper-extend the hip angle. If at the 

lowest point the joint torque at the hips was set to zero and maintained at zero the hip 

angle would close during the upswing performing a flexion action. 

The total energy in the system is graphed against rotation angle in Figure 7.14. As 

in the first simulation the joint action at the hip increased the energy in the system. The 

most noticeable difference between Figure 7.1 4 and Figure 7.1 0 is the initial drop in 

energy prior to the increase. The initial drop in energy is due to the torque required to 

perform the angle change. As explained above, as the the model passes through the 

lowest point the torque required to maintain the extended body shape changes from a 

torque which tends close the hip angle to one which tends to open the hip angle. 

Therefore, if at the lowest point the torque at the hip were set to zero the hip angle would 

close by itself. If, however, the model were made to perform a flexion action at the 
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lowest point which resulted in an angle change slower than if the joint torque were set to 

zero, eccentric work would be performed. This would therefore result in a loss of energy 

from the system. The angle change in this simulation starts slowly, hence the small drop 

in energy. It is therefore feasible that a hip flexion could be performed that would result 

in an overall loss in energy. 
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Figure 7.13. Torque at the hip during simulation two (solid line) along with the torque at 

the hip had the angle change not occurred. 
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Figure 7.14. Energy during simulation two. 
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7.4.4 Conclusions 

It has been shown that the quintic function can be used to change joint angles 

during simulations whether the model is stationary or swinging. The second simulation 

confirmed the findings of Morlock and Yeadon (1988) and Okamoto et al. (1987) that 

torques tending to close the angles at the hip and shoulder joints are required to maintain 

the extended body shape durin¥ the downswing. Similarly on the upswing it was found 

that torques tending to open the hip and shoulder angles are required to maintain a fully 

extended shape. In both simulations it was shown that closing the hip or shoulder angle 

lead to an increase in energy. In simulation one the increase in energy would be mainly 

due to the increase in potential energy caused by raising the mass centre. In simulation 

two the increase would be due to raising the mass centre, and also due to the reduction in 

moment of inertia of the model about the bar which leads to a proportional increase in the 

angular velocity and also, therefore, to \121(1)2. 

The use of the flexion action to increase the energy in the system is common 

knowledge. However, it has been shown that it would be possible to perform a flexion 

action through the bottom of the giant circle that would result in a loss of energy. This is 

due to the joint torques required to perform the action. If the action were such that 

eccentric work was required then energy would be lost. 

7.5 Four segment model vs. kinetic and kinematic analysis 

7.5.1 Introduction 

In tbe previous three sections an evaluation of the concepts behind the four segment 

model have been evaluated. It has been shown that modelling the movements of the bar 

and extension in the gymnast's shoulders using springs improves the comparison between 

simulated and experimental results. Section 7.4 has shown that the actions at the hips and 

shoulders may be performed using a quintic function. 

This section compares the output from the four segment simulation model with the 

video and force data collected in Chapter 5. The results of the comparisons will give an 

indication as to the accuracy of the four segment model. 

7.5.2 Methods 

The four segment simulation model was evaluated by comparing the output with 
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the results from the analysis of the backward giant circles (Chapter 6). The simulation 

model was used to simulate the accelerated giant circles from trials 4 and 11. The input 

to the simulation model comprised the inertia data for the subject who performed the 

trials analysed in Chapters 5 (Table 6.14), the eighteen muscle parameters for each joint 

(Appendix 2d), the bar and shoulder spring coefficients (Table 6.36) and the spline 

coefficients for the bar displacements, joint angle time histories of the hips, shoulders and 

knees, the angle time history of the arm segment and the rotation angle. 

The initial conditions for the body configuration and orientation were obtained from 

evaluating the splined joint angle time history data and the arm segment orientation data. 

The first and second derivatives of these angles were also obtained by evaluating the first 

and second derivatives of the spline data. Similarly the initial bar displacements and 

velocities were obtained from spline data. Both simulations were started from a rotation 

angle of 90° and finished at a rotation angle of approximately 630°. To test the sensitivity 

of the angle at which the simulations were started an additional two simulations were 

performed with an initial rotation angle of 0°. 

The output from the model comprised the whole body angle of rotation from both 

the simulation model and the splined equivalent, the time histories of the bar displace­

ments, the time histories of the joint torques and the horizontal and vertical reaction 

forces at the bar. 

Rms differences between the recorded (data from the force and video analysis) and 

the simulated rotation angle, bar displacements and reaction forces at the bar were 

calculated. The percentage differences between the maximum joint torques produced 

using the 18 parameter muscle models and those produced by the simulation model were 

calculated. The comparisons between recorded and simulated output were carried out for 

both trials. 

7.5.3 Results and Discussion 

The rms differences between simulated and recorded rotation angle for the both 

trials are presented in Table 7.9. The rms differences in rotation angle indicates by how 

much on average the simulations differed from the video data. In the same table the peak 

absolute errors in rotation angle for both trials are presented. The peak absolute errors are 

also expressed as a percentage of the whole angle rotated through in the trial. In both 

trials the rms differences in rotation angle are less than 5°. This corresponds to a 

difference of less than 0.02 revolutions. In Figure 7.15 the simulated and recorded 

rotation angle from trial 4 are plot against time. The two curves lie very close to one 

another. From Table 7.9 the maximum deviation of the two curves seen in Figure 7.15 is 

6.9°. Both simulations were started from a rotation angle of 90°. This angle was chosen 
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to be the same as the start angle used in the optimisation of the spring parameters 

(Chapter 5). To test the sensitivity of the simulation model both simulations were 

repeated at an initial rotation angle of 0°. For trial 4 the fIllS difference was reduced from 

4.2° to 4.0° when starting from the handstand position. However, for trial 11 the fIllS 

difference increased from 2.2° to 9.5°. The fIllS difference of 9.5° still corresponds to an 

error in rotation of less than 0.03 revolutions and less than 2% when expressed as a 

percentage of the angle rotated through. It appears as though the model is sensitive to the 

angle at which the simulation is initiated from. For trial 11 the fIllS difference has been 

shown to range from 2.2° to 9.5°. Based on the four simulations the model is able on 

average to predict the rotation angle to within 5° at any point during the simulation of the 

accelerated giant circles. 

Table 7.9. Maximum and fIllS differences between simulated and recorded rotation 

angles 

trial 

4 

11 

rotation angle ['l 
700' 

600' 

500' 

400' 

200' 

lOO' 

fIllS difference 
(0, revs, %) 

4.21, 0.01, 0.8% 

2.21, 0.01, 0.4% 

max difference 
(0, revs, %) 

6.87, 0.02, 1.3% 

3.97, 0.01, 0.7% 
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Figure 7.15. The simulated (solid line) and recorded (dashed line) time history of the 

rotation angle from trial 4. 

The fIllS differences for the bar displacements are given in Table 7.10. The fIllS 

differences are slightly larger in the horizontal direction than in the vertical direction. On 

average the fIllS differences of the bar displacements is 0.011 m. This is of the same 
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magnitude as the error that was found in the reconstruction of the three-dimensional co­

ordinates in the video analysis (Chapter 6). The bar displacements from the simulation 

model compare well with those obtained from the video analysis. The horizontal 

displacement of the bar during the simulated trial 4 and the the horizontal displacements 

from the video analysis are shown in Figure 7.16. The equivalent diagram for the vertical 

displacements is shown in Figure 7.17. In Figures 7.16 and 7.17 the simulated and 

recorded bar displacements are very similar. However, in both the horizontal and vertical 

directions the maximum difference between the two sets of data is over 0.02 m 

(Table 7.10). In both trials the simulation model produced peak bar displacements which 

were greater than those from the video analysis. Since the force recorded at the bar has 

been shown to be closely related to the displacement in the bar it might be expected that 

the simulation model will also over-estimate the forces at the bar. 

Table 7.10. Maximum and rms differences between simulated and recorded bar 

displacements 

trial 

4 

11 

displacement [ml 
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rms difference max difference 
(m) (m) 

horiz. vert. horiz. vert. 

0.011 0.008 0.031 0.021 

0.015 0.010 0.037 0.025 

Figure 7.16. The simulated (solid line) and recorded (dashed line) time history of the 

horizontal bar displacements trial 11. 

The rms differences for the simulated and recorded force in both the horizontal and 

vertical directions are presented in Table 7.11. In the horizontal direction the simulation 
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model was able to predict the force at the bar on average to within a third of a body­

weight. As expected from the bar displacement the peak force in the horizontal direction 

predicted by the model is greater than the peak recorded horizontal force. At worst the 

largest difference between simulated and recorded horizontal force was 0.62 body­

weights. It must be noted that this is the largest error in the horizontal direction and that 

on average the model was able to predict the horizontal force to within a third of a 

bodyweight (Figure 7.18). 

displacement [m] 

0.02 

-0.02 

-0.04 

-0.06 

-0.08 

-0.1 

-0.12 

-0.14 

1.8 2 2.2 
ti e [si 

Figure 7.17. The simulated (solid line) and recorded (dashed line) time history of the 

vertical bar displacements from trial 11. 
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Figure 7.18. The simulated (solid line) and recorded (dashed line) time history of the 

horizontal force at the bar from trial 11. 
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Table 7.11. Maximum and rms differences between simulated and recorded forces 

trial 

4 

11 

rms difference 
(BW) 

horiz. vert. 

0.291 0.457 

0.262 0.472 

max difference 
(BW) 

horiz. vert. 

0.824 1.245 

0.615 1.345 

The simulated and recorded forces in the vertical direction are shown Figure 7.19. 

In the vertical direction the simulation model was able to predict the force at the bar to 

within half a body weight. Like the simulated force in the horizontal direction, the peak 

force in the vertical direction estimated by the model is greater than the peak recorded 

vertical force. At worst the largest difference between estimated and recorded horizontal 

force was 1.35 bodyweights. It again must be noted that this is the largest error in the 

vertical direction and that on average the model was able to predict the horizontal force to 

within a half a bodyweight during a simulation lasting over 2 s and passing through a 

rotation angle of 6300 (Figure 7.19). 
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Figure 7.19. The simulated (solid line) and recorded (dashed line) time history ofthe 

vertical force at the bar from trial 11. 

The time histories of the joint torques obtained from the simulation model and the 

maximum joint torques given by the three-dimensional muscle surfaces are given in 

Figures 7.20 and 7.21 (shoulders and hips respectively). In Figure 7.20 it can be seen that 

the joint torque at the shoulders obtained from the simulation model never exceeds the 

maximum joint torques given by the muscle surfaces. By expressing the shoulder torque 

as a percentage of the maximum torque obtained from the muscle surface fits it was found 
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that on average the gymnast required only 20% of the joint torque available to perform 

the accelerated giant circles. 
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Figure 7.20. Joint torques at the shoulders obtained from the simulation model (solid 

line) and the maximum joint torques estimated by the 3D muscle surface 

fits (dashed line) during trial 11. 

Figure 7.21. Joint torques at the hips obtained from the simulation model (solid line) 

and the maximum joint torques estimated by the 3D muscle surface fits 

(dashed line) during trial 11. 

In Figure 7.21 there are three points where the hip torque obtained from the 

simulation model exceeds that given by the muscle surface fits. The first two occur 

between the rotation angles of 200° and 300° and the third occurs between the rotation 

angles of 575° and 590°. In all three cases this occurs when there is a large angular 
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velocity at the hip (Figure 7.22). That is, when the angle at the hip is changing rapidly the 

muscle surface predicts that the gymnast was unable to produce sufficient torque to 

perform the accelerated giant circle. However, at all three pOints that the maximum joint 

torque is exceeded the actual torque used by the simulation model is small (between 0 and 

190 Nm). Also at the high angular velocities, in excess of 250 O.s-1 no isokinetic data 

were recorded. Therefore, the muscle surfaces rely on the surface fit to predict the joint 

torques at these high angular velocities. Given these considerations the muscle models 

behave well and will be used in the optimisation of the accelerated giant circles. 

torque [N.ml 

angular velocity ['.s-'] 

800 

600 

400 

200 

o -W",,'-AiI<h--+:F---rl+-'*tP--"""sf-'6tCo"", --<:1-
6
"'0"0-' -7"'00' 

/ rotation angle ['] 

\ I 

-200 

-400 
\ I 
\ I 
\ I 

-600 

-800 " 
Figure 7.22. Joint torques at the hips obtained from the simulation model (solid line) 

and the angular velocity of the hip joint ( dashed line) during trial 11. 

7.5.4 Conclusions 

The simulation model is able to predict the rotation angle on average to within 5° at 

any point during the simulations. This is during a simulation lasting almost one and three 

quarter revolutions. The four segment model is able to successfully simulate a gymnast 

performing accelerated giant circles on the high bar. The bar displacements estimated by 

the simulation model also compare well with the data obtained from the video analysis. 

The average difference between the simulated and measured bar displacements was 

approximately 0.011 m. 

In the horizontal direction the simulation model estimated the reaction force to 

within a third of a bodyweight. The same value in the vertical direction was less than half 

a bodyweight. Although the comparisons between the estimated and recorded reaction 

forces were good (Figures 7.18 and 7.19) the peak force estimated by the simulation 
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model was greater than the peak force recorded during the analysis of the accelerated 

backward giant circles. 

For the accelerated giant circle the shoulder joint torques obtained from the 

simulation model were on average 20% less than the maximum torques predicted by the 

muscle surfaces. On three occasions the hips torques predicted by the simulation model 

were greater than the maximum torques predicted by the muscle surfaces. The hip torque 

required by the simulation model were relatively small and given that at the high angular 

velocities the muscle model relies of the shape of the surface fit, since no data were 

available in that range, the muscle models performed well. 

7.6 Summary 

In section 7.2 it was shown that a damped linear spring representing the elastic 

properties of the high bar reduced the peak angular velocity and reaction force of a single 

segment model. These reductions were accounted for by the strain energy stored in the 

bar and the increase in moment of inertia about the neutral bar position caused by the 

displacement of the linear spring. When' compared with the results from the video 

analysis of the backward giant circles the single segment model was able to successfully 

simulate the downswing. Peak angular velocity estimated by the single segment model 

was only 6% greater than that obtained from the video analysis. 

In section 7.3 the four segment model was shown to behave like the single segment 

model when it was forced to maintain a fully extended configuration and assume a rigid 

structure for the shoulders. The shoulders were made rigid by the use of a large stiffness 

coefficient for the shoulder spring. This result confirmed that the model behaved as it 

was designed to. Introducing elasticity into the shoulders further reduced the peak 

angular velocity and reaction force. Again these reductions could be explained in terms 

of the energy stored in the bar and shoulders and the increase in moment of inertia about 

the neutral bar position. This second reduction was not sufficient to reduce the difference 

between simulated and recorded peak angular velocity below 5%. It was speculated that 

further reduction would probably occur as a result of the actions performed at the hips, 

shoulders and knees. 

The quintic function described in Chapter 3 was used in a three segment simulation 

model to demonstrate its use in defining joint angle time histories. Using two simulations 

it was shown that performing a flexion action at the hips or shoulders during the lower 

part of the giant circle would lead to an increase in energy. It was also shown that for a 

gymnast to swing from handstand to handstand with an extended configuration, torques at 

the hips and shoulders tending to close the joint angles would be required during the 
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downswing and torques tending to open the joint angles would be required during the 

upswing. 
The evaluation of the four segment model using force and video data was carried 

out in section 7.5. The model was able to estimate rotation angle to within 0.015 of a 

revolution during a simulation covering a range of 6300
• Reaction forces also compared 

well within the experimental data with horizontal and vertical reaction forces being 

estimated to with one third and one half of a bodyweight respectively. 

It is therefore concluded that the four segment simulation model is sufficiently 

accurate to be applied to the task of optimising the accelerated giant circles prior to 

release for a double layout backward somersault dismount. 
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CHAPTER 8 

OPTIMISATION OF THE ACCELERATED BACKWARD GIANT CIRCLE 

8.1 Introduction 

The simulation models developed in Chapter 3 were evaluated in Chapter 7. With 

the accuracy of the models known it is now possible to apply them to specific tasks. The 

task chosen for this thesis is the optimisation of the accelerated backward giant circle. 

The optimisation of the giant circle will first be carried out using the three segment 

simulation model introduced in Chapter 7. Then the four segment simulation model will 

be used to optimise the backward giant circle prior to release for a double layout 

backward somersault dismount. 

The aim of the optimisations is to obtain techniques which may be used by all 

gymnasts. For this reason sensitivity analyses will be performed to determine the effects 

of varying the model parameters. 

8.2 Three segment simulation model 

8.2.1 Introduction 

Although the external validity of the model is less than that of the four segment 

model, useful information regarding the mechanics of swinging may be obtained. The 

underlying mechanics of swinging will be determined from the three segment model 

which can then be applied to the results obtained from the four segment model. Since the 

four segment model is more complex these underlying principles may not be observed so 

easily. 

8.2.2 Methods 

The three segment simulation model used in Chapter 7 to evaluate the piecewise 

quintic function as a method of defining joint angle time histories was used to optimise 

the backward giant circle. It was assumed that the bar and the gymnast were rigid 

structures. The inertia data of both subjects, jbO 1 and tvO 1, were used in the three 
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segment model (Table 8.1). The centre of mass location (cmloc) is measured from the 

proximal joint centre and the moments of inertia are about the mass centre of each 

segment. For the application of optimising the backward giant circle the computer code 

of the three segment model was implemented with the Simulated Annealing algorithm 

(Goffe et aI., 1994). 

The criteria for the optimisation was to maximise the rotation possessed by the 

model after rotating through an angle of 450°. All simulations performed in the 

optimisation were started at a rotation angle of 0° (the handstand position). At the end of 

each simulation the model will have passed through 1',4 rotations. Within each simulation 

the model was required to perform a flexion and extension action at the hips and 

shoulders (Figure 8.1). In all simulations the angles at the hips and shoulders were 

initially extended (180°). It was decided that the model should also finish the simulation 

in the fully extended shape. Simulations not finishing in the extended shape were given a 

score of zero. Since the model would finish each simulation at the same rotation angle 

and in the same shape the angular velocity of the model was a sufficient indicator of the 

angular momentum it possessed. 

Table 8.1. Inertia data used in the three segment optimisation of the backward giant 

circle 

subject segment mass length cmloc moment of inertia 
(kg) (m) (m) (kg.m2) 

arms 6.868 0.548 0.239 0.205 

jbOl torso 33.566 0.435 0.337 1.610 

legs 21.617 NA 0.308 1.329 

arms 6.796 0.575 0.250 0.252 

tvOl torso 34.450 0.466 0.351 1.617 

legs 23.554 NA 0.330 1.539 

Three restrictions were placed on the flexion and extension actions. Firstly the 

flexion had to be performed before the extension. This meant that the model would not 

simulate the hyper-extension at the hips seen in the giant circles analysed in Chapter 5. 

Secondly the hip and shoulder angles were closed and opened simultaneously and by the 

same amount. Finally the duration of the flexion and extension movements were forced 

to last longer than 0.01 s. With the integration interval used with the three segment 

model, 0.0001 s, this would result in a minimum of 100 integrations being performed for 

each flexion or extension movement. 



--- ----- -------------------------------------------------------------------------

211 

Two initial optimisations were performed using the inertia data of subject jbO 1. 

The simulations performed within the optimisation were started from a rotation angle of 

00 with an initial angular velocity of 1.0 rad.s-1• During the flexion movement the hip and 

shoulder angles were closed by 40° (Figure 8.1). During the extension movement the hip 

and shoulder joints were therefore opened by 40°. The joint angle time histories were 

defined using the piece wise quintic function. The initial angular velocity and size of the 

joint angle changes were chosen from the analysis of the backward giant circles in 

Chapter 5. The first optimisation was performed without a joint torque limit. The second 

optimisation was performed using a joint torque limit of 250 Nm at the shoulder joint. 

The shoulder torque was chosen to be limited since it was more likely that this limit 

would be exceeded when compared with the hip torque of a real gymnast. If during the 

second optimisation the joint torque at the shoulders exceeded 250 Nm the simulation was 

given a score of zero. 
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Figure 8. I. Angles at the hips and shoulders. 

The above optimisations were repeated so as to perform a sensitivity analysis on the 

inertia parameters and the function used to define the joint angle time histories. The 

initial two optimisations were performed using the three segment inertia parameters of 

subject jbOI (Table 8.1) and the piecewise quintic function to define the joint angle time 

histories. The second pair of optimisations were performed using the square acceleration 

function and the inertia parameters of subject jbO 1. The third pair of optimisations were 

performed using the inertia data of subject tvO 1 (Table 8.1) and the piecewise quintic 

function. 
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8.2.3 Results and discussion 

Without joint torque limit 

The optimal solution for optimisation with no torque limit is given in Table 8.2. 

The table displays the rotation angle at the initiation of the joint angle changes during the 

flexion and extension phases of the giant circle. It can be seen that the flexion was 

initiated before the model had reached the lowest point of the circle (Figure 8.2). 

Table 8.2. The optimum accelerated giant circle (without joint torque limit) 

phase 
start finish start finish 

body angle joint angles 

flexion 

extension 

For simplicity the backward giant circle has been broken down into the flexion and 

extension actions. Figure 8.3 shows the angular velocity of the model at a rotation angle 

of 270° plot against the rotation angle at the mid point of the flexion action. The curve is 

that of the optimum duration with each circle representing a single simulation. It can be 

seen that the optimal flexion occurs with a mid-point of 160°. However, the curve is 

shallow. This shows that the optimal solution is not very sensitive to where the flexion 

action is started. That is, the flexion may be started from a wide range of angles without a 

great difference in final angular velocity. 

• 
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191' 

Figure 8.2. Optimal solution with no joint torque limit. 
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To explain the mechanics behind the flexion and why it was initiated before the 

lowest point of the giant circle, consider the giant circle as four separate quadrants 

(Figure 8.4). Using these quadrants (Figure 8.4) the majority of the flex ion occurred in 

the second quadrant. The purpose of the flexion is to increase the energy in the system by 

increasing both the potential and rotational energy. If the flexion were to occur in the first 

or fourth quadrant the rotational energy possessed by the model would increase but the 

potential energy would decrease. It would therefore be expected that the flex ion should 

occur in either the second or third quadrant. 
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Figure 8.3. Angular velocity at a rotation angle of 2700 against rotation angle at 

mid-flexion. 
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Figure 8.4. The four quadrants of the giant circle. 
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During the downswing phase of the giant circle, where the model swings from 0° to 

180°, it has been shown that if the torques at the hips and shoulders were set to zero the 

model would perform an arching action, that is, the hip and shoulder angles would open 

(Chapter 7; Morlock and Yeadon, 1988). Therefore during the downswing phase torques 

tending to close the hip and shoulder angles must be exerted in order to maintain the 

extended configuration. Once the model has passed through the lowest point of the giant 

circle it commences the upswing (defined as swinging from 180° to 360°). If during the 

upswing the torques at the hip and shoulder joints were set to zero the model would 

perform a piking action, i.e. the hip and shoulder angles would close. Therefore, if a 

gymnast were to swing from handstand to handstand with a straight body, torques tending 

close the hip and shoulder angles must be exerted on the downswing whilst torques 

tending to open these angles must be exerted during the upswing (Figure 8.5). 

if Torque =0 
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Figure 8.5. Torques required to maintain a straight body during a backward giant circle. 

Consider two flexions, one performed either side of the lowest point of the giant 

circle (Figure 8.6), with the same change in hip angle and performed over the same 

duration. For the two flexions described above the flexion performed in the second 

quadrant will require a larger torque than the flexion performed in the third quadrant. 

Therefore more concentric work is done and the increase in energy is more. This is 

because in the third quadrant the model would tend to close the joint angles if the torques 

at those joints were set to zero. Therefore less work is required to produce the angle 

change. This was demonstrated in Chapter 7. Energy could be dissipated by performing 

a slow flexion after passing through the lowest point of the giant circle. If the torques 

required to produce the angle changes are negative, eccentric work would be done. This 

dissipates energy from the system. The eccentric work is the equivalent of work being 

done to prevent the angle change from occurring too rapidly. Therefore, in order to 
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maximise the increase in energy during the flexion it is of benefit to start the flexion 

before the lowest point of the giant circle. This is because the torques required to close 

the hip and shoulder angles during the downswing phase are concentric contractions 

which increase the energy in the system. 

Figure 8.6. Two flexion actions performed either side of the lowest point. 

A similar explanation to performing the flexion before the lowest point may be 

applied to performing the extension before the highest point. The angles at which the 

optimum extension started and finished are given in Table 8.2. When the extension 

occurs there is an increase in potential energy and a decrease in rotational energy due to 

the lengthening of the model. This would suggest that the optimum time to extend would 

be instantaneously at the vertical. However, by again examining the torque required to 

perform the extension it may be explained why the extension occurs in the fourth 

quadrant (Figure 8.4). 

quadrant 1 quadrant 4 
----------------- ---------------_. 

Figure 8.7. Two extensions performed either side of the highest point. 

Consider two extensions, one performed either side of the vertical handstand 

position (360°, Figure 8.7), with the same change in hip angle and performed over the 

same duration. In the fourth quadrant the torques at the hip and shoulder joints are 

extensor torques, whilst in the first quadrant they are flexor torques. By extending in the 

fourth quadrant (to extend before the vertical) the energy in the system is increased more 

than if the extension occurs in the first quadrant. 
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With joint torque limit 

Introducing the joint torque limit reduced the final angular velocity of the optimal 

simulation from 5.6 rad.s-I to 5.4 rad.s-1. This is a reduction in final angular velocity of 

only 4%. The results of the optimisation using a shoulder joint torque limit of 250 Nm 

are shown in Table 8.3. A graphical display is given in Figures 8.8 and 8.9. 

Table 8.3. The optimum accelerated giant circle with torque limit 

torque limit phase 
body angle joint angles 

start finish start finish 

flexion 1270 191 0 1800 2200 

without 
extension 3340 3470 2200 1800 

flexion 1360 2690 1800 2200 

with 
extension 3040 3770 2200 1800 

3040 

" 

Figure 8.8. Optimal solution with 250 Nm joint torque limit at the shoulders. 

When the torque limit is used more of the flexion action is performed after the 

lowest point and full extension occurs after passing through the highest point. This is 

closer to the technique used by gymnasts when compared with the optimisation 

performed with no torque limit (Figure 8.3). Figure 8.10 shows the peak shoulder joint 

torque plotted against the rotation angle at the point of mid-flex ion (each triangle 

represents a simulation) for the optimal duration (0.4 s). The dotted line represents the 

torque limit which was used during the optimisation procedure. Only those triangles 

which are filled in would have received a score during the optimisation. Whereas the 

unfilled triangles would have received a score of zero as they have clearly exceeded the 

torque limit. 
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without torque limit with torque limit 

Figure 8.9. The effect of joint torque limit on the optimal solution using the three 

segment simulation model. 

The torque limit had two major effects on the optimal solution. The first was the 

effect on the duration of the flex ion and extension actions. When using the torque limit 

the optimal duration for the flexion was increased from 0.2 s to 0.4 s and for the extension 

0.03 s to 0.30 s. It is clear that the shorter the duration the greater the torque required to 

perform that action. The second effect was to change where the action occurred. For the 

unlimited solution the mid-point of the optimal flexion was at approximately 160° 

(Figure 8.3). When the torque limit was introduced this angle was increased to 

approximately 202° (Figure 8.\0). 

joint torque [N.m] 
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200 

o~--~--~----~--~--~ 

rotation angle at mid-flexion [0] 

Figure 8.10. Peak shoulder joint torque against rotation angle at mid-flexion. 
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Although the flexion is initiated before the lowest point in both optimisations 

(Table 8.3) the effect of the torque limit would be more clearly seen if the simulations 

were performed in real time. For the solution with no torque limit the flexion occurred in 

0.2 s, to an observer the action would appear as though it had occurred at the lowest point. 

However, due to the torque limit the duration for the flexion was increased to 0.4 s. To 

the observer it would appear that the majority of the flexion occurred after the lowest 

point. 

Sensitivity analysis/additional optimisations 

Varying the function used to define the joint angle time history 

The first sensitivity analysis was performed on the function used to define the joint 

angle time histories of the hips and shoulders. The optimal simulation where the joint 

angle time histories were defined using the function with a square acceleration curve and 

where there was no torque limit produced a final angular velocity of 5.6 rad.s-1. 

Compared with the same result using the quintic function there is a difference in peak 

angular velocity in only the third decimal place. The use of the function with the square 

acceleration curve did not result in a better performance when compared with the quintic 

function. When the torque limit at the shoulders was introduced the final angular velocity 

of the optimal simulation was 5.2 rad.s·! which was less than the final angular velocity 

obtained using the quintic function (5.4 rad.s·!). However, this represents a difference of 

less than 4%. It could therefore be argued that both functions used to define the joint 

angle time histories perform equally well. 

Table 8.4 shows the rotation angles at which the flexion and extension actions 

started and finished in the optimal solutions using the square acceleration functions. A 

graphical display of these results is given in Figure 8.11. Introducing the torque limit 

increased the time over which the flexion and extensions occurred. The duration of the 

flexion was increased from 0.2 s to 0.7 s whilst the duration of the extension was 

increased from 0.03 s to 0.3 s. 

The joint angle time histories of the optimal solutions obtained using the two 

different functions to define the joint angle time histories without a torque limit are shown 

in Figure 8.12. It can be seen that the time histories are practically identical. A larger 

difference in joint angle time histories is found when the joint torque limit is introduced 

(Tables 8.3 and 8.4). Although the flexion and extension actions in these two optimis­

ations started and finished at different rotation angles, the joint angle time histories are 

still very similar in terms of the phasing of these actions (Figure 8.13). 
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Table 8.4. The optimum accelerated giant circle using the function with a square 

acceleration curve 

torque limit phase 

flexion 
without 

extension 

flexion 
with 

extension 

343' 

• 
189' 

without torque limit 

body angle 

start finish 

1280 1890 

3300 3430 

970 3W 

3170 3760 

376' 

97' 

joint angles 

start 

1800 

2200 

1800 

2200 

finish 

316' , , 

2200 

1800 

2200 

1800 

with torque limit 

Figure 8.11. Optimal solutions obtained using the function with the square acceleration 

curve to define the joint angle time histories. 

quintic function square acceleration function 

Figure 8.12. Optimal solutions obtained using the quintic function and the function with 

the square acceleration curve to define the joint angle time histories when 

no joint torque limit is used. 
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Figure 8.13. Histories of the joint angle from the optimum simulations using the 250 Nm 

torque limit where the joint angles were defined using the function with the 

square acceleration curve (solid line) and the quintic function (dashed line). 

Varying the inertia data 

For the third set of optimisations the inertia data of subject tvO I (Table 8.1) and the 

quintic function were used. The backward giant circle was again optimised with and 

without the joint torque limit at the shoulders. The final angular velocities for the two 

optimisations were 5.5 rad.s'! (without torque limit) and 5.1 rad.s'! (with torque limit). 

The two angular velocities are similar to those obtained using the inertia data of subject 

jbOl. This differences in final angular velocity between the two sets of inertia were 2% 

and 6% without and with the torque limit (respectively). In both cases the the normalised 

angular momentum of subject jbO 1 was slightly larger than that of subject tvOl. 

Table 8.5. The optimum accelerated giant circle with and without torque limit using the 

. inertia data tvO 1 

torque limit phase 
body angle joint angles 

start finish start finish 

flexion 1260 1960 1800 2200 

without 
extension 3320 3450 2200 1800 

flexion 1450 2850 1800 2200 

with 
extension 3060 381" 2200 1800 
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The results from the third set of optimisations are shown in Table 8.5. Despite the 

difference in final angular momentum the phasing of the flexion and extension actions are 

almost identical to those obtained from the original optimisations (Table 8.3). The 

optimal solutions using no torque limit for both inertia sets are shown in Figure 8.14. 

Similarly the results obtained using the joint torque limits are shown in Figure 8.15. 

Although the final solution obtained when using a different inertia sets are not identical 

the phasing of the flexion and extension actions are very similar. In Figures 8.14 and 8.15 

the only noticeable difference is at the start and finish of the flexion action when the joint 

torque limit is used (Figure 8.15). The start and finish of the flexion action occurs later 

for subject tvOl when compared with subject jbOl (Figure 8.15). Subject tvOl had a 

greater body mass and larger moments of inertia than subject jbOl (Table 8.1). It might 

therefore be expected that subject tvOl would require larger joint torques to perform the 

same actions as subject jbO 1. Even though the rotation angle at the start and finish of the 

flexion action in Figure 8.15 appear to be different, on inspection of the joint angle time 

histories (Figure 8.16) this difference is small. 

jbD! (vD! 

Figure 8.14. The effect of using different inertia data on the optimal solution obtained 

using no joint torque limit. 

8.2.4 Conclusion 

It was found that with no joint torque limit the optimum times to perform the flexion 

and extension actions were before the lowest point and before the highest point 

respectively. This optimum solution for accelerated giant circles differed from the 

technique used by elite gymnasts who generally perform the flexion after the lowest point 

and the extension whilst passing through the highest point. It was demonstrated that 

performing the flexion before the lowest point and the extension before the highest point 
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would result in more work being done by the gymnast and therefore a greater increase in 

energy. 

With the introduction of a shoulder joint torque limit it was found that the majority 

of the flexion was performed after the lowest point and the extension was started before 

the highest point and finished after the highest point. This solution was a closer 

representation of the technique used by gymnasts. It is therefore concluded that the 

phasing of the flexion and extension actions are dependent on the joint torque limits. 

However, the introduction of the joint torque limit reduced the final angular velocity of 

the optimal solution by 4%. This difference corresponded to 0.2 rad.s·1 which is less than 

12° .s·l. 

In Chapter 3 it was speculated that an improved performance may be obtained by 

using the function with the square acceleration curve to define the joint angle time 

histories. When no joint torque limit was used the optimisation produced a solution 

which was practically identical to that obtained when the quintic function was used to 

define the joint angle time histories (5.6 rad.s· I ). It was found that both the final angular 

velocities and joint angle time histories were very similar (Figure 8.12). When the joint 

torque limit was introduced the final angular velocities dropped to 5.4 rad.s·l and 

5.2 rad.s·1 for the quintic and square acceleration functions, respectively. Although the 

quintic function performed better than the function with the square acceleration curve the 

difference in final angular velocity was only 4%. For the optimisations in section 8.3 the 

quintic function will be used since its third derivative is smooth. 

134' 
jbOl 

Figure 8.15. The effect of using different inertia data on the optimal solution obtained 

using a 250 Nm joint torque limit at the shoulders. 
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Figure 8.16. Histories of the joint angle from the optimum simulations using the quintic 

function and the inertia data of tvOI (solid line) andjbOI (dashed line) and 

the joint torque limit. 

Varying the inertia data used in the optimisation did not appear to greatly effect the 

phasing of the flexion and extension actions whether or not the joint torque limit was 

used. Only small differences in the joint angle time histories were found when using the 

different inertia sets and the joint torque limit. Subject tvO I had a greater mass and larger 

moments of inertia than subject jbOI. It is therefore likely that the differences were due to 

the torque limit. Given the same joint angle time histories, the larger moments of inertia 

would have resulted in requiring larger joint torques. Even though the phasing of the 

flexion and extension actions were not greatly different for the two sets of inertia used the 

subject who had the larger mass and moments of inertia (tvOI) possessed less angular 

momentum at the end of the optimum simulation. It is therefore possible that there exists 

an optimal technique that may be used for any gymnast given the appropriate strength 

characteristics. 

It has been found that the phasing of the flexion and extension actions is dependent 

on the limits placed on the joint torques. However, introducing a joint torque limit 

reduced the final angular velocity by 4%. Varying the function used to define the joint 

angle time history and the inertia data did not appear to have a large effect on the phasing 

of the flexion and extension actions. This may point the way to a common technique for 

all gymnasts. These results have been obtained using a simulation model that assumed a 

rigid bar and rigid gymnast. From the analysis of the backward giant circle in Chapters 5 

and 6 the structure of the bar and gymnast are known to exhibit elastic properties. 

Therefore the accelerated giant circle will be optimised using the four segment simulation 

model in the next section (section 8.3). However, the mechanics of swinging that have 

been identified in the current section will still be valid in the next section. 



224 

8.3 Four segment simulation model 

8.3.1 Introduction 

The results of the optimisations using the three segment simulation model showed 

that the phasing of the flexion and extension actions were not greatly altered by varying 

the inertia parameters of the model or the function used to define the joint angle time 

histories. However, the introduction of a joint torque limit did alter the phasing of the 

hip and shoulder actions. 

The major actions performed during backward giant circles occur at the hips and 

shoulders (Chapter 6; Briiggemann et al., 1994; Okamoto et aI., 1987; Gervais & Tally, 

1993). These actions were found to be independent of one-another (Chapter 6; Borms et 

al., 1977; Briiggemann et aI., 1994; Okamoto et aI., 1987; Gervais & Tally, 1993) both in 

terms of the timing and the angles through which the actions were performed. For this 

reason it is necessary that the joint angle time histories are independent of one-another 

during the optimisation (this was not the case for the optimisation with the three segment 

model). 

In Chapter 2 it was proposed that the accelerated giant circle should be optimised 

for the individual skill which it precedes. For example the release conditions for the 

Tkatchov are considerably different to those of the double layout backward somersault 

dismount (Briiggemann et aI., 1994). Therefore, one might expect the optimum technique 

for the accelerated backward giant circle prior to these two skills to be different. 

Of all the dismounts that have been analysed in the literature, the double layout 

backward somersault dismount requires the greatest angular momentum in flight 

(Briiggemann et aI., 1994; Kerwin et aI., 1990). Since the angular momentum during 

flight is determined at release the only way it can be accumulated is during the 

accelerated giant circles prior to the release. Therefore, the accelerated backward giant 

circle and the giant circle prior to release for the double layout backward somersault 

dismount will be optimised in order to maximise the angular momentum about the 

gymnast's mass centre at the point of release. 

The four segment simulation model developed in Chapter 3 will used to optimise 

the accelerated giant circles prior to release. This includes one complete accelerated giant 

circle and the following giant circle containing the release. During the optimisation the 

joint angle time histories which are used to define the giant circles will be manipulated in 

order to maximise the model's angular momentum about its mass centre at release. In 

addition further optimisations will be performed to test the sensitivity of the optimal 

solution. 
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8.3.2 Methods 

The four segment simulation model was implemented with the Simulated 

Annealing algorithm (Goffe et ai., 1994). In all simulations the four segment inertia data 

of subjectjbOl was used (Table 8.6). The spring parameters obtained in Chapter 6 for the 

bar and shoulder springs were also used in all simulations (Table 8.7). The aim of the 

optimisation was to maximise the angular momentum about the gymnast's mass centre 

after performing one accelerated giant circle and the giant circle containing release. 

Table 8.6. Inertia parameters for subjectjbOl 

segment mass length cmloc moment of inertia 
(kg) (m) (m) (kg.m2) 

arms 6.868 0.548 0.239 0.205 

arms 11.868 0.582 0.403 0.481 
+ bar 

torso 33.566 0.601 0.337 1.610 

thigh 14.074 0.374 0.151 0.173 

leg 7.543 NA 0.227 0.164 

Table 8.7. Spring parameters used in the optimisation 

spring stiffness damping 
coefficients (N.m!) 

bar (horiz) 22560 419.6 

bar (vert) 26297 379.4 

shoulder 12086 18309.0 

All simulations performed within the optimisation were initiated from a rotation 

angle of zero degrees (the vertical handstand position) with the model in a fully extended 

configuration. The initial angular velocity of the model for each simulation was 

2.24 rad.s· l . This value was obtained from the video analysis of the accelerated backward 

giant circles. Similarly the initial displacements and velocities of the bar were obtained 

from the video analysis (Table 8.8). Each simulation ended after the model had rotated 

through a rotation angle of 622°. The rotation angle at the end of each simulation 

corresponded to a possible release angle for the double layout somersault dismount 

(Brtiggemann et aI., 1994). Brtiggemann et al. (1994) reported a mean angle at release of 

8° below the horizontal for four double layout somersault dismounts. 
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Table 8.8. Initial bar displacements and velocities obtained from the video analysis of 

the accelerated giant circles 

direction 

horizontal 

vertical 

bar displacement 

[m] 

0.0033 

- 0.0033 

bar velocity 
[m.s· l ] 

- 0.0173 

- 0.1055 

The joint angle time histories at each joint were defined using four non-overlapping 

quintic functions (Figure 8.17). Each of the quintic functions used to make up the joint 

angle time histories required four pieces of information. These were the start and finish 

angles and the start and finish times of the joint action. Since the model started each 

simulation with angles of 1800 at the hips and shoulders and since the four joint actions 

were non-overlapping, 12 parameters were required to define each joint angle time history 

(i.e. 24 parameters to define both joint angle time histories). 
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8.17. The joint angle time history comprised four non-overlapping quintic functions. 

The Simulated Annealing algorithm was used to manipulate the parameters which 

defined the joint angle time histories of the hips and shoulders. The 12 parameters for 

each angle were defined as follows: 

1 magnitude of the first change in joint angle 

2 duration from the start of the simulation to the first joint action 

3 duration of the first joint action 

4 magnitude of the second joint action 

5 duration from the finish of the first joint action to the start of the second joint 

action 
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6 duration of the second joint action 

7 magnitude of the third joint action 

8 duration from the finish of the second joint action to the start of the third joint 

action 

9 duration of the third joint action 

10 magnitude of the fourth joint action 

11 duration from the finish of the third joint action to the start of the fourth joint 

action 

12 duration of the fourth joint action 

Certain restrictions were placed on the joint angle time histories. It was decided 

that the model should not be able to hyper-extend by more than 50° at either joint. This 

restriction was used to represent the possible ranges of motion of the gymnast. Similarly 

the flexion angles at the hips and shoulders were restricted to a maximum flexion angle of 

180°. For the hip joint a flexion angle of 180° would correspond the gymnast having his 

knees touching his nose. If either of the joint angle limits were exceeded during the 

optimisation the simulation was given a score of zero. 

The joint torques produced by the simulation model during the optimisation 

procedure were limited using the three-dimensional surface muscle models obtained in 

Chapter 5. During a simulation at each step of the integration the joint angle and angular 

velocity of the hip and shoulder joints were used to obtain maximum joint torque values 

from the muscle models. If these values were exceeded by the torques produced by the 

simulation model the simuiation was given a score of zero. 

A final restriction was placed on the horizontal velocity of the mass centre at 

release. For a safe performance of a double layout somersault dismount the gymnast must 

not contact the bar during the flight phase. This may be achieved by forcing the 

horizontal velocity of the model's mass centre to be positive (in the direction away from 

the bar). To enable the optimisation to consider simulations which result in negative 

horizontal velocities at release a cost function which penalised a negative horizontal 

velocity was used. Since small negative horizontal velocities may pose a great problem 

the cost function was as follows: 

If horizontal velocity at release> 0 then 

Cost function = angular momentum about the model's mass centre 

If horizontal velocity at release < 0 then 

Cost function = angular momentum + 100*horizontal velocity of the mass centre 
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The value for the angular momentum about the model's mass centre will be in the region 

of 120 units. Therefore, if the mass centre of the model has a velocity of 0.1 m.s· l 

towards the bar at release a deduction of 10 units would be made from the simulation's 

score. This means that only small deductions are made for small horizontal velocities at 

release. 

Two preliminary optimisations were performed on the first accelerated giant circle 

and the giant circle containing the release so that a suitable starting point for the complete 

optimisation could be obtained. The results of the two preliminary optimisations were 

combined and used as the initial guess for the Annealing process. The optimisation 

procedure was given 12000 simulations to find the optimum solution. This resulted in 

2400 simulations per drop in temperature. Since the optimisation was started from the 

results of the preliminary optimisations the initial temperature was reduced. 

Output from the simulation driven by the optimal joint angle time histories included 

the time histories of the bar displacements, reaction forces at the bar, joint torques 

produced by the simulation model and those estimated by the muscle models, total energy 

and its components, angular momentum about the model's mass centre, rotation angle, 

mass centre location and mass centre velocity. The angular momentum at release was 

normalised to the number of straight somersaults the model would be capable of 

performing during the flight phase of the dismount (Yeadon et aL, 1990). The flight time 

was calculated from the point of release until the mass was a fixed level above the landing 

surface which was used to represent the height of the mass centre at landing (0.82 m). 

Sensitivity Analyses 

In order to test the sensitivity of the optimal solution a further set of simulations and 

optimisations were performed. 

Varying the strength of the muscle models 

Since a gymnast's conditioning is specific to the skills he performs it is possible that 

a gymnast may be able to produce slightly larger joint torques whilst performing 

accelerated giant circles compared with similar performances (in terms and joint angle 

and angular velocity) on the isokinetic dynamometer. To see whether this would have an 

effect on the optimal solution an optimisation was performed where the peak joint torques 

given by the muscle models were increased by 10%. Similarly an optimisation was 

performed where the strength of the gymnast was decreased by 10%. The results of this 

optimisation could provide an insight into the effect the level of conditioning of a 

gymnast has on performance. 
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Varying the inertia parameters 

To test the effect of varying the inertia parameters on the optimal performance the 

joint angle time histories from the initial optimisation were used with the four segment 

inertia data of tvOI (Table 8.9). In addition the backward giant circle and the giant circle 

containing release were optimised with the tvOI inertia set (Table 8.9). The initial 

simulation of the optimisation used the optimal joint angle time histories from the initial 

optimisation. The initial temperature and range of the upper and lower bounds were 

reduced so that a reduced number of simulations would be required to find a solution. 

Table 8.9. Inertia parameters for subject tvOl 

segment mass length cmloc moment of inertia 
(kg) (m) (m) (kg.m» 

arms 7.796 0.575 0.250 0.252 

arms 12.796 0.609 0.390 0.644 
+ bar 

torso 34.450 0.720 0.351 1.670 

thigh 15.412 0.403 0.171 0.212 

leg 8.124 NA 0.330 0.199 

Varying the release angle 

The mean release angle reported by Briiggemann et al. (1994) was 8° below the 

horizontal. The number of dismounts analysed and the standard deviation for the release 

angle were four and 300 respectively. This meant that some of the dismounts had release 

angles above the horizontal. Mechanics suggest that this would result in the gymnast 

somersaulting back over the bar after release. Similarly releasing at an angle one standard 

deviation lower than the mean is likely to produce a poor dismount. Therefore, a release 

angle of half a standard deviation below the mean was chosen to represent the angle of 

release for the sensitivity analysis. 

Varying the stiffness coefficients of the bar 

The high bar is required to have certain elastic properties which are described by 

the Code of Points (FIG, 1979). The bar is required to produce a sag of 100 mm ± 10 mm 

when loaded at its centre with a weight of 2200 N. This would produce a range of 

stiffness coefficients of between 20000 N.m·1 and 24444 N.m-I. However, due to 

different manufacturers, different materials used in the construction and the tension in the 

supporting cables of the uprights it is possible for the high bar to have a greater range of 
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possible stiffness values. The high bar used in Chapter 5 was reported to have a stiffness 

of between 22000 N.m·1 and 27500 N.m-I (Norm-testing, Continental, 1994). Since a 

gymnast may train on one high bar and compete on another, which mayor may not be of 

equal stiffness, the effect of varying the stiffness of the bar was investigated. 

Two optimisations were performed, one where the stiffness coefficients of the bar 

were increased by 5% and one where the stiffness of the bar was decreased by 5% 

(Table 8.10). All the parameters except for one (where the vertical stiffness of the bar 

was increased by 5%) lie within the norms set by both the Code of Points and the Norms­

testing manual. In each optimisation the initial estimate of the parameters defining the 

joint angle time histories was taken from the solution of the original optimisation. As in 

the optimisation performed using the alternative inertia set the initial temperature and 

range of the upper and lower bounds were reduced so that a smaller number of 

simulations would be required to find a solution. 

Table 8.10. Spring parameters used in the sensitivity analysis 

stiffness coefficient 

hori. vert. 
(N.ml) (N.ml) 

original 22560.0 26297.0 

5% increase 24816.0 28926.7 

5% decrease 20304.0 23667.3 

Varying the initial angular velocity 

In a gymnastics routine on high bar the dismount will usually be performed after a 

number of circling skills. During the wind-up prior to the dismount the gymnast will be 

penalised for using too many giant circles to acquire the necessary rotation. Therefore an 

optimisation was performed where the initial angular velocity of each simulation was 

approximately 50% of that used in all previous simulations (approximately 1.10 rad.s-I). 

This initial angular velocity is equivalent to that possessed by a gymnast on passing 

through the highest point of a regular giant circle performed during the data collection. 

The initial bar displacements and velocities corresponding to the new angular velocity 

were obtained from the video analysis of the regular giant circles and are presented in 

Table 8.11. 
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Table 8.11. Initial bar displacements and velocities obtained from the video analysis of 

the regular giant circles 

direction bar displacement 
[m] 

bar velocity 
[m.s"] 

horizontal 0.0016 0.0287 

vertical - 0.0126 0.0227 

8.3.3 Results and Discussion 

After performing 12000 simulations the optimum value for the angular momentum 

about the model's mass centre at release was 125.1 kg.m>.s·l. From the height and 

vertical velocity of the mass centre at release (Table 8.12) the time of flight for the 

dismount was calculated to be 1.1 s. With the body in a fully extended configuration with 

the arms by the side of the body the moment of inertia about the whole body mass centre 

was calculated to be 8.78 kg.m>. The angular momentum at release was normalised into 

straight somersaults per unit flight time. If the model had let go of the bar at release it 

would have completed 2.5 straight somersaults during the flight time. If the angular 

momentum were normalised using just the moment of inertia of the gymnast in the layout 

position, a value of 14.2 rad.s· l would be obtained. 

Table 8.12. Displacement and velocity of the mass centre at release 

displacement velocity 

hori. vert. hori. vert. 
(m) (m) (m.s") (m.s") 

1.03 -0.15 0.04 4.00 

Yeadon et al. (1990) obtained a mean value of 1.53 (± 0.12) straight somersaults 

per unit flight time for four double layout somersault dismounts performed at the Seoul 

Olympics (1988). This value (1.53 units) is slightly less than the 1.75 somersaults (0.25 

of a revolution is performed before the release) that would be expected for a successful 

completion of the double layout dismount. The gymnasts studied by Yeadon et al. (1990) 

were able to complete the double somersault dismounts because the straight body 

configuration was not maintained throughout the flight and the body must land short of 

vertical. The gymnasts released the bar in a dished shape, with flexion angles at the hips 

and shoulders. During the flight phase the gymnasts passed through the straight position 

into an arched shape, from which the gymnasts "piked down" at landing (Figure 8.18). 
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This meant that for the majority of the flight phase the gymnasts' moments of inertia 

about the lateral axis were less than if they had adopted a fully extended configuration. It 

may therefore be inferred from the optimum solution that gymnasts are more than capable 

of producing enough rotation at release to perform the double layout somersault dismount 

completely in the straight position. 

The optimal solution for the backward giant circle is shown as a sequence of 

graphics which are spaced at intervals of 45° in Figure 8.19. The joint angle time 

histories of the hip and shoulder angles from the optimum solution are shown in 

Figures 8.20 and 8.21. 

Figure 8.18. Simulation of an actual double layout somersault dismount performance 

from the Seoul Olympics (adapted from Yeadon et aI., 1990). 

3 

15 

4 

Figure 8.19. Sequence of figures representing the optimum technique. 

In Figure 8.21 it can be seen that a small hyper-extension of the hips occurred 

during the first quadrant of the giant circle. The hyper-extension angle was smaller than 

that reported in Chapter 6. Once the model entered the second quadrant the hips began to 

flex. The majority of the hip flexion occurred throughout the second quadrant. 
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Figure 8.20. Joint angle time histories of the hip and shoulder joints from the optimal 

solution. 
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Figure 8.21. Histories of the hip and shoulder joints from the optimal solution plot 

against rotation angle. 

In the video analysis the majority of the hip flexion occurred in the third quadrant. 

However, the flexion action performed in the present optimisation agrees with the results 

obtained from the three segment simulation model (section 8.2.3). It was shown with the 

three segment model that it is advantageous to perform the flexion before the lowest point 

of the giant circle. The introduction of a joint torque limit suggested that real gymnasts 

do not flex before the lowest point as they may not be strong enough to do so. It may be 

that the gymnast under investigation was strong enough to flex before the lowest point or 

it may be that the data collected for the muscle models over-estimated the gymnast's 



L_ 

234 

strength. 

The flexion of the hip angle continued into the third quadrant. The maximum hip 

flexion angle was maintained for a short period of time before the angle at the hip started 

to open in the fourth quadrant. The hips passed through full extension at a rotation angle 

of 360°. The hip angle continued to open until a hyper-extension angle of approximately 

1 r degrees was achieved. The hyper-extension angle was then maintained throughout 

the first and second quadrants of the second circle and into the third quadrant until the 

hips were flexed just prior to release. At release the flexion angle at the hips was only 3° 

beyond the fully extended position. 

The history of the shoulder angle follows more closely that obtained from the video 

analysis of the accelerated backward giant circles in Chapter 6. During the downswing 

the angle at the shoulder was maintained close to full extension (1800 in Figure 8.21). 

The closing of the shoulder angle occurred throughout the third and into the fourth 

quadrant of the first giant circle. Once the model had passed through the highest point of 

the circle the angle at the shoulders started to open. The shoulder angle passed through 

full extension at a rotation angle of 450°. The angle continued to open until just before 

the lowest point of the giant circle containing the release. This was found to be the case 

with the giant circles analysed in Chapter 6. Similar to the hip angle, the shoulder angle 

was closed prior to the release. At release a flexion angle of approximately 19° was 

achieved at the shoulder joint. 
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Figure 8.22. History of the maximum shoulder torques given by the muscle models and 

the torques produced by the simulation model. 

The size of the maximum flexion angles at the hip and shoulder joint during the 

first accelerated giant circle were smaller than those obtained from Chapter 6 (see 

Figures 6.14 and 6.15). This might suggest that the flexion actions were restricted by the 
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joint torque limits imposed by the muscle models, counter to the idea suggested earlier 

that the muscle models may have over-estimated the muscle moments. The maximum 

joint torques given by the muscle models and those produced by the simulation model are 

shown in Figures 8.22 and 8.23 for the shoulders and hips respectively. Throughout the 

majority of the optimum simulation the joint torques produced by the simulation model 

were well within the torque limits set by the muscle models. This means that for the 

majority of the optimal technique the gymnast would not require maximum effort. The 

model was therefore strong enough to perform the majority of the first flexion action at 

the hips before the lowest point of the first giant circle. Since this would lead to an 

increase in the energy the optimisation confirms the results from section 8.2.3. 
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Figure 8.23. History of the maximum hip torques given by the muscle models and the 

torques produced by the simulation model. 

Why then, does the optimum solution not require maximum effort for the majority 

of the simulation? Close to release the joint torques produced by the simulation model lie 

very close to the torque limits set by the muscle models. Therefore at release the gymnast 

requires maximum effort to perform the required actions. It is likely in the giant circles 

leading up to the release that the joint torque limits are not approached in order that the 

model is capable of producing the most effective joint actions at release. That is, if a 

more vigorous wind up had been performed prior to the release the model may not have 

been strong enough to close the hip and shoulder angles sufficiently to produce the 

maximum rotation. These ideas may be confirmed using the results of the sensitivity 

analyses. 

The horizontal and vertical displacements of the bar for the optimum simulation are 

shown in Figure 8.24. The maximum displacement of the bar about its neutral resting 
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position was - 0.12 m which occurred as the model passed through the lowest point of the 

giant circle containing the release. This value compares well with the peak vertical bar 

displacement obtained from the video analysis of the accelerated giant circles (mean of 

- 0.12 m). However the double peak in vertical bar displacement seen in the trials of the 

accelerated giant circles was not present in the optimum solution. This is because of the 

timing of the extension performed in the first accelerated giant circle. In Chapter 6 the 

hip angle passed through full extension at a rotation angle of approximately 4500 and 

reached maximum hyper-extension just after 5000
• The shoulder angle followed a similar 

pattern of phasing. These actions lead to the initial peak in vertical force and bar 

displacement seen before the major peak which occurred as the gymnast passed through 

the lowest point. In the optimal technique the hip angle was opened much earlier 

(Figure 8.21) leading to a more gradual loading of the bar. 
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Figure 8.24. Histories of the horizontal and vertical bar displacements of the bar during 

the optimal solution. 

An interesting feature of the bar displacements can be seen just prior to the release. 

As the gymnast approaches the point of release the bar is unloading (Figure 8.25 a). 

however. just before the model would have released the bar its velocity changes direction 

(Figure 8.25 b). At the point of release the bar was moving vertically downwards and 

horizontally to the right (Le. in the direction of the dismount). The velocity and 

displacement of the bar are shown in Figure 8.25. The velocities of the bar would serve 

to further increase the rotation of the model about its mass centre. The loading of the bar 

produced by the joint angle time histories of the hips and shoulders may have served to 

produce this action of the bar at release to facilitate the subsequent rotation of the model. 

If this is true then it is likely that the change in velocity of the bar will also occur in the 

results of the sensitivity analyses. 
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Figure 8.25. DispIacements (a) and velocities (b) of the bar prior to release in the 

optimum solution. 

The peak reaction forces that the gymnast would experience whilst performing the 

optimum technique are given in Table 8.13. The peak vertical reaction force occurred as 

the model passed through the lowest point on the giant circle containing the release. The 

peak vertical reaction force from the optimum simulation was approximately 11 % greater 

than the peak reaction force recorded from trial 11 (Table 6.18). Although the peak 

vertical reaction force estimated by the optimal simulation is greater than those recorded 

during the force and video analysis of the accelerated giant circles it is still within the 

capabilities of the gymnast. Gervais (1993) recorded a similar reaction force during 

wind-up giant circles and Enchun (1989) reported reaction forces up to four bodyweights 

for single arm giant circles. Similarly gymnasts are able to hold onto the rings whilst 

experiencing reaction forces in the region of nine bodyweights (Briiggemann, 1987). 

However, the peak horizontal reaction forces estimated by the optimum simulation 

were up to 19% less than those recorded in the force and video analysis. The decreased 

peak horizontal reaction forces are likely to be as a result of the different techniques 

adopted in the accelerated giant circles. The most notable difference between the 

horizontal reaction forces produced by the simulation model and those recorded in the 

force analysis of the accelerated giant circles occurs at release. For the optimum 

technique there is a large horizontal reaction force at release as opposed to a very small 

horizontal reaction force obtained from the video analysis (Figure 8.26). Again this is 

due to the different techniques used to load the bar. 
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Figure 8.26. Histories of the horizontal and vertical reaction forces at the bar produced 

by the optimal solution. 

Table 8.13. Maximum and minimum reaction forces during the optimum simulation 

reaction force 

ma~ 

min 

Sensitivity analysis 

vertical horizontal 
(N, BW) (N, BW) 

3106.0 5.03 

- 529.8 - 0.86 

1917.7 3.11 

- 2017.0 - 3.27 

Varying the strength of the muscle models 

By increasing the strength of the gymnast one might expect an increase in 

performance given that the action prior to release requires maximum effort from the 

gymnast. After performing 7200 simulations the optimum value for the angular 

momentum about the model's mass centre at release was 127.4 kg.m2.s-l • Increasing the 

peak joint torques of the muscle models by 10% resulted in a 2% increase in angular 

momentum. When expressed in terms of straight somersaults this resulted in an increase 

in rotation of 0.04 revolutions in the given flight time. 

Figure 8.27 shows the history of the hip and shoulder angles from the optimum 

solution where the strength of the muscle model was increased by 10%. The joint angle 

histories for the original optimisation are overlaid in dashed lines. The histories of both 

the hip and shoulder angles obtained from the two optimisations are similar in both the 

phasing and the size of the joint angle changes. As might have been expected the 

majority of the first hip flexion occurred before the lowest point of the giant circle 

(Figures 8.27). 
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Figure 8.27. Histories of the hip and shoulder joint angles from the optimisation where 

the strength ofthe muscle models was increased by I 0% (original 

optimisation overlaid in dashed lines). 

Inspection of the joint torque histories also shows a similar story to the original 

optimisation (Figures 8.28 and 8.29). For the majority of the simulation the joint torques 

produced by the simulation model are well within the joint torque limits set by the muscle 

models. During the first flexion action the hip joint torque used by the simulation model 

approaches the torque limit set by the muscle model (Figure 8.29). In the flexion action 

just before the release the shoulder torque used by the simulation model approaches the 

shoulder joint torque limit (Figure 8.28). It appears that the hip flexion performed at 

release could have been performed more vigorously (i.e. there is room for the torque used 

by the simulation model to be greater without exceeding the torque limit). However, this 

would have an effect on the joint torque produced at the shoulder which may lead to the 

shoulder torque limit being exceeded. 

Figure 8.30 shows the horizontal and vertical displacements of the bar for the 

optimisation where the torques given by the muscle models were increased by 10%. The 

trajectory of the bar is for all intents and purposes the same as in the original optimisation. 

Even the change in direction of the bar movement at release is reproduced in the second 

optimisation. 
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optimum simulation where the joint torque limits were increased. 

The second optimisation used to test the sensitivity of the optimum solution 

reduced the peak joint torques given by the muscle models by 10%. After performing 

7200 simulations the optimum value for the angular momentum about the model's mass 

centre at release was 120.9 kg.m2.s-1. Decreasing the peak joint torques of the muscle 

models by 10% resulted in a 3% decrease in angular momentum. When expressed in 

terms of straight somersaults per unit flight time this resulted in a decrease in rotation of 

0.09 revolutions (still more than two thirds of a revolution more than required to perform 

a double layout dismount). 

In section 8.2 introducing a joint torque affected the timing of the flexion action as 

the model passed through the lowest point. Instead of performing the action before the 

lowest point as in the unconstrained optimisation the majority of the flexion action was 

performed after the lowest point. Figure 8.31 shows the histories of the hip and shoulder 

angle from the optimum simulation where the strength of the muscle models used to limit 

the joint torques were reduced by 10%. It appears as though the first flexion action 

performed at the hips was still performed before the lowest point of the giant circle. A 

number of explanations are possible for this. In section 8.2 all angle changes were over a 

fixed range, that is, in every simulation the hip was flexed by an angle of 40°. In the 

present optimisation the size of the flexion could be varied from 0° to 240° (Le. from 60° 

of hyper-extension through to 180° of flexion). Therefore, if the joint torques that the 

model is able to use were reduced, the options available are to (a) alter the timing of the 

flexion action (make the action longer and later), (b) reduce the size of the angle change 

(reduce the flexion angle) or (c) a combination of (a) and (b). From Figure 8.31 it appears 

as though the size of the flexion angle has been reduced (cf Figure 8.27). 
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Figure 8.31. Histories of the hip and shoulder joint angles from the optimisation where 

the strength of the muscle models was decreased by 10%. 

The timing of the actions at the hips and shoulders are similar to those from the 

original optimisation. Since the size of the hip flexion action in the first giant circle was 

reduced from approximately 53° to 39°, it might be expected that the joint torques 

produced by the simulation model would have approached those given by the muscl~ 

models. The histories of the hip and shoulder joint torques are shown in Figures 8.32 and 

8.33. 
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Figure 8.32. History of the maximum shoulder torques given by the muscle models and 

the torques produced by the simulation model when the strength of the 

muscle models was decreased by 10%. 
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Figure 8.33. History of the maximum hip torques given by the muscle models and the 

torques produced by the simulation model when the strength of the 

muscle models was decreased by 10%. 

As with the original optimisation the torques produced by the simulation model 

only approach the limits set by the muscle models in the action just before release. Again 

it appears as though the actions performed leading up to release have been limited to 

,allow for the vigorous extension-flexion action at the shoulder joint just before release. 

The bar displacements for the present optimisation are shown in Figure 8.34. When 

the histories of the bar displacements from the first three optimisations are overlaid it can 

be seen that the trajectory of the bar is almost identical in each case (Figure 8.35). In 

particular all three vertical traces show the change in velocity of the bar just before 

release. This negative vertical velocity of the bar would have facilitated the production of 

rotation about the model's mass centre at release. 

In general the final values for the angular momentum about the model's mass centre 

at release were not greatly affected by the increase or decrease in peak joint torques given 

by the muscle models. In all cases the model had more than enough rotation to complete 

two and a half somersaults in the subsequent flight phase. In each case the techniques 

used at the hips and shoulders displayed similar patterns of timing, whether the torque 

limits were increased or decrease. However, the size of the joint actions were different, 

particularly when the joint torque limits were reduced. For the optimisations carried out 

so far the most important part of the technique appears to be the actions at the shoulder 

prior to release. The actions in the preceding giant circle do not appear to be as vigorous 

as might have been expected. In the video analysis of the accelerated giant circles the 

gymnast had a hip flexion angle of around 90° compared with 55° used in the original 

optimisation. The histories of the joint torque suggests that the model was capable of 

producing a more vigorous action at the hips yet the optimisation chose not to use this. 
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This may be explained in part by the actions occurring at release. When the shoulder 

angle is hyper-extended then flexed prior to release the shoulder joint torques produced 

by the model were at the joint torque limit. This meant that maximum effort was required 

to perform this action. It seems that the more vigorous this action the greater the increase 

in rotation at release. Therefore the actions performed in the wind up to the release are 

compromised to allow the model to perform as vigorous an action as possible. In addition 

the common timing of the actions used in the optimum simulations produce a change in 

vertical velocity of the bar just before release which facilitates the increase in rotation. 
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Figure 8.34. History of the horizontal and vertical displacements of the bar during the 

optimum simulation where the joint torque limits were decreased. 
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In an attempt to repeat the results obtained using the three segment model 

(section 8.2.3) a further optimisation was performed where the peak joint torques given 

by the muscle model were decreased by 25 percent. It was hoped that this reduction 

would be sufficient to cause the gymnast to flex at the hips after passing through the 

lowest point. Inspection of the joint torque time histories obtained from the evaluation of 

the four segment simulation model showed that for most of the simulation the joint 

torques produced by the simulation model were below 75 percent of the torques given by 

the muscle models. 

After performing 7200 simulations the final value for the angular momentum about 

the model's mass centre at release was 110.9 kg.m2.s·1• The final value for the angular 

momentum was 11 % less than for the original optimisation. Given that the optimum 

technique so far has relied on maximum effort at the end of the technique this drop in 

angular momentum would have been expected. When expressed as straight somersaults 

per unit flight time a value of 2.18 is obtained. Had the technique obtained from the 

present optimisation been used to perform a dismount the gymnast would have more than 

enough rotation to complete the double somersault. 

The histories of the hip and shoulder angles from the optimisation where the 

strength of the muscle models were decreased by 25 percent are shown in Figure 8.36. 

As expected the timing of the flexion action has changed. With the reduction in the joint 

torque limits, over 70% of the flexion action at the hips was performed after the lowest 

point. Other changes to the history of the hip joint angle include the timing of the 

extension performed after the initial flexion action. In the previous optimisation the 

extension action was initiated before the highest point of the giant circle and was 

completed close to or just after the highest point. In the present optimisation the 

extension is not initiated until 200 past the highest point. The hips passed through full 

extension at a rotation angle of 4420 and reached full hyper-extension at 4800
• The 

hyper-extension was maintained until close to the end of the simulation where the hyper­

extension angle was removed. The history of the shoulder angle follows a similar pattern 

to the optimisations already performed. 

The joint torque at the shoulder joint, as in the previous optirnisations, approached 

the joint torque limit only during the hyper-extension and flexion actions performed at the 

end of the simulation (Figure 8.37). The joint torque at the hips, however, approached the 

joint torque limit during the initial flexion action (Figure 8.38). This agrees with the 

findings from the three segment simulation model. By setting the joint torque limit low 

enough the model was forced to perform the flexion action later. In contrast, the joint 

torque limit, at the hips, was not approached during the extension performed at the hips 

between the rotation angles of 3800 and 4500 (Figure 8.38). This could point to a separate 

technique being used when compared with the original optimisation. 
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Figure 8.36. Histories of the hip and shoulder joint angles from the optimisation where 

the strength of the muscle models was decreased by 25%. 

Figure 8.37. History of the maximum shoulder torques given by the muscle models and 

the torques produced by the simulation model when the strength of the 

muscle models was decreased by 25%. 

When the present optimisation is shown as a set of graphic sequences it can be seen 

that the technique more closely represents the accelerated giant circles performed in the 

video analysis in Chapter 5/6. The model "scoops" over the top of the giant circle, passes 

through full extension close to the horizontal (450°), hyper-extends then flexes before 

release. The horizontal and vertical bar displacements for the present optimum simulation 

are shown in Figure 8.39. The vertical displacement of the bar is similar to those 

obtained from the previous optimisations, including the change in velocity of the bar just 

before the end of the simulation. One difference between the bar displacements of the 
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present optimisation and the previous optimisations is the small feature seen in the 

vertical trace as the bar is displaced vertically down for the second time. It appears as 

though the technique is starting to produce the double peak in vertical displacement seen 

in the video analysis of the accelerated giant circles. This is due to the later extension of 

the hip angle. 
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Figure 8.38. History of the maximum hip torques given by the muscle models and the 

torques produced by the simulation model when the strength of the muscle 

models was decreased by 25%. 
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Figure 8.39. History of the horizontal and vertical displacements of the bar during the 

optimum simulation where the joint torque limits were decreased by 25%. 

The technique found by optimising the accelerated giant circle with the strength of 

the muscle models decreased by 25% clearly bares closer resemblance to the technique 

used by the gymnast in the force and video analysis than the original optimisation does. 

Therefore, there may be two distinct techniques that may be used to perform the 
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accelerated giant circle. This could mean that the technique found by the optimisation 

with the 25% reduced muscle strength may be a local optimum with the original 

optimisation being the global solution. Since the final values for the angular momentum 

result in the gymnast having sufficient rotation to perform more than two straight 

somersaults the solution that required the least effort may be adopted by the gymnast. At 

the end of a gymnastic routine on the high bar the gymnast may not be capable of using 

maximum effort and would therefore choose a technique which did not rely on this for 

successful performance of the subsequent dismount. 

To test whether the technique obtained from the reduced strength optimisation was 

a local optimum, another optimisation was performed. The optimisation was started from 

the solution obtained from the reduced strength optimisation but with the strength of the 

muscle models set to maximum. A lower initial temperature was set for the Simulated 

Annealing algorithm so that only simulations which are an improvement on the current 

optimum are accepted. In addition the rate at which the temperature dropped was 

increased so that a "quenching" effect would take place. If the starting point is a local 

optimum a solution close to this will be obtained. If not the optimisation should produce 

a technique similar to that obtained by the original optimisation. 

After the "quenching" optimisation had been performed the optimum value for the 

angular momentum about the model's mass centre was 122.1 kg.m2.s· l . This represents a 

value that is less than 3% smaller than the global optimum. When expressed in terms of 

straight somersaults per unit flight time the present optimum produces 0.14 revolutions 

less than the original optimisation. Figure 8.40 shows the current optimum technique as a 

sequence of graphic figures. The technique obtained from the present optimisation has 

remained very similar to the technique obtained from the optimisation where the strength 

of the muscle models was reduced by 25% (Figures 8.36 and 8.41). 

1 
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3 11 
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Figure 8.40. Sequence of figures representing the local optimum technique. 
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Figure 8.41. Histories of the hip and shoulder joint angles from the optimisation used to 

find the local optimum. 

Small differences occurred between the local optimum and the optimum obtained 

from the optimisation where the strength of the muscle models were decreased. Both the 

initial hip flexion and second hip hyper-extension angles were slightly larger for the local 

optimum. This is to be expected since the local optimum used full strength muscle 

models to limit the joint torques at the hips and shoulders. Similarly in the local optimum 

the first hip flexion action was performed slightly earlier. Again this might be expected 

due to the higher joint torque limits. 

The displacements of the bar during the local optimum are shown in Figure 8.42. 

As with the joint angle time histories, the displacements of the bar are very similar to 

those obtained from the optimisation where the strength of the muscle models was 

decreased by 25%. 

It therefore appears as though there are two local optima on the solution surface 

which are very close to each other in terms of the final value of the cost function. In the 

first technique the gymnast extends shortly after passing through the highest point of the 

giant circle. This is a more "classic" style of backward giant circle. The second 

technique involves the gymnast "scooping" through the highest point and extending close 

to the horizontal. This is a modern technique which is now used by many elite gymnasts. 

The fact that both optima are so close in the angular momentum values they generate 

would explain why some gymnasts use the classic style of backward giant circle whilst 

others use the modern "scooping" technique. Since both techniques may be used to 

increase the gymnast's rotation by similar amounts it would seem that the choice of 

technique used lies with the gymnast's preference. However, under certain circumstances 

the "scooping" local optimum becomes the global optimum and the classical global 
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optimum becomes a local optimum. When the strength of the muscle models was 

decreased by 25% the "scooping" technique became the optimum technique. This 

presents a number of questions for the researcher and choices for the gymnast. A less 

well-conditioned gymnast may opt for the "scooping" technique since he can achieve 

more rotation given his state of physical preparation. Similarly a well-conditioned 

gymnast may choose the "scooping" technique because he feels that he can achieve 

similar amounts of rotation for slightly less effort than the classic technique. The 

gymnast is therefore using a technique where he knows he will not require maximal 

effort. This would be an obvious advantage since the gymnast is likely to be most 

fatigued at the end of his gymnastic routine which is when the dismount is performed. 
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Figure 8.42. History of the horizontal and vertical displacements of the bar during the 

local optimum simulation. 

Varying the inertia parameters 

The optimum joint angle time histories obtained from the original optimisation 

were used to drive one simulation using the inertia data of subject tvDl (Table 8.9). It 

was found, using these joint angle time histories and the inertia data of subject tvD l, that 

the joint torque limits at both the hip and shoulder joints were exceeded (Figures 8.43 and 

8.44). In both cases the joint torque limits were exceeded at the points in the simulation 

where the joint torques produced when using inertia datajbDl approached the joint torque 

limits. Since the individual moments of inertia for subject tvDl were all slightly larger 

than those for subject jbOl (Tables 8.6 and 8.9) the fact that the joint torque limits were 

exceeded is not surprising. 
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Figure 8.43. History of the shoulder joint torques and the maximum joint torques given 

by the muscle models when the optimum joint angle time histories were 

used with the inertia data of subject tvO 1. 
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Figure 8.44. History ofthe hip joint torques and the maximum joint torques given by the 

muscle models when the optimum joint angle time histories were used with 

the inertia data of subject tvO 1. 

An optimisation was then performed using the inertia data from subject tvO 1 with 

the joint torque limits of jbOl. The optimum value for the angular momentum about the 

model's mass centre was 148.2 kg.m2.s-1. This is higher than the value reported for the 

original optimisation (125.1 kg.m2.s-1). However, when normalised into rad.s-1 the 

percentage difference dropped to less than 3%. In the layout body shape subjects jbOI 

and tvO 1 had moments of inertia about their mass centre of 8.78 kg.m2 and 10.11 kg.m2 

respectively. 
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The joint angle histories from the present optimisation are shown in Figure 8.45. 

As with the original optimisation the model passes through full extension at the hips 

shortly after passing through the highest point of the giant circle. It appears as though the 

optimum technique is again the "classic" backward giant circle technique. The initial 

flexion action at the hips was performed later in the present optimisation when compared 

with the original optimisation. However, from Figure 8.46 it can be seen that the joint 

torque at the hip approached the joint torque limit during this action, therefore the model 

was probably not strong enough to perform this action earlier. Again this would have 

most likely been as a result of the larger moments of inertia of subject tvOl. Both the hip 

and shoulder joint torque limits were approached close to the end of the optimal 

simulation (Figure 8,46 and 8,47) which has been the case with each of the optimisations 

performed so far. 
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Figure 8.45. Histories of the hip and shoulder joint in the optimisation where the inertia 

data of subject tvOl was used. 

Varying the release angle 

When the original optimisation was performed each simulation ended at exactly the 

same rotation angle. There are cases where the gymnast may not always release at the 

desired angle due to the timing of the preceding actions or through spacial awareness. 

Therefore an optimisation was performed where the release angle was different to that 

used in the original optimisation. Each simulation performed in this sensitivity analysis 

ended after the model had passed through a rotation angle of 607° as opposed to 622°. 

After performing 7200 simulations the angular momentum about the model's mass centre 

at release was 129.6 kg.m2.s- l . This resulted in an increase of 4% in angular momentum 

at release and an increase in rotation of 0.07 revolutions in the subsequent flight phase. 
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Figure 8.46. History of the hip joint torques and the maximum joint torques given by the 

muscle models during the optimum solution when the inertia data of subject 

tvO 1 was used with the torque limits of jbO 1. 
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Figure 8.47. History of the shoulder joint torques and the maximum joint torques given 

by the muscle models during the optimum solution when the inertia data 

of subject tvO 1 was used with the torque limits of jbO 1. 

The joint angle histories of the optimum simulation for the earlier release are shown 

in Figure 8.48. It can be seen that the model extends at the hips just after passing through 

the highest point of the giant circle. The timing of the first flexion action at the hips 

occurred later than in the original optimisation. This may have been as a result in the 

changing the angle at which each simulation finished. 

The bar displacements from the current optimisation are shown in Figure 8.49. The 

characteristic change in direction of the vertical bar displacement appears just before the 

end of the simulation. This may explain why the joint angle time histories are slightly 
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different in the current optimisation. Slight alterations may have been required to 

produce the correct loading of the bar to produce this phenomenon. 
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Figure 8.48. Histories of the hip and shoulder joint angles from the optimisation where 

each simulation finished at 60r. 
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Figure 8.49. Histories of the horizontal and vertical bar displacements from the 

optimisation where each simulation finished at 60r. 

Varying the stiffness coefficients of the bar 

Initially two simulations were performed where the optimum joint angle time 

histories from the original optimisation were used with the increased and decreased bar 

stiffness coefficients. The final values for the angular momentum about the model's mass 

centre for the two simulations where the stiffness of the bar was increased and decreased 
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were 121.7 kg.m2.s-1 and 126.51 kg.m2.s-1, respectively. These two values are less than 

3% different from the original optimum value. However, in both cases the shoulder joint 

torque limits were exceeded. These limits were exceeded within the last 20% of the 

simulation. In all the previous optimisations the joint torques produced by the simulation 

model have approached the joint torques given by the muscle models. Figures 8.50 and 

8.51 show the joint torques produced by the simulation model expressed as a percentage 

of the peak joint torques given by the muscle models. For both simulations the joint 

torque limits are exceeded by less the 1.2%. Therefore performance at the optimum 

solution does not appear to be sensitive to the stiffness coefficients of the bar. The 

stiffness of the bar was increased and decreased to cover the range of stiffnesses that 

would be expected from the manufacture of the bar. This range was larger than the 

acceptable range quoted by the FIG. 

To confirm the insensitivity of the optimum solution the backward giant circle was 

optimised using the increased and decreased high bar stiffness coefficients. After the 

optimisations were completed the values for the angular momentum about the model's 

mass centre were 125.1 kg.m2.s-1 and 124.6 kg.m2.s-1 respectively. Again, these values 

are very close to the original optimised values «v,% different). 
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Figure 8.50. Time history of the hip and shoulder joint torques produced by the 

simulation model expressed as a percentage of the peak torques 

given by the muscle models when the stiffness of the bar was 

increased. 
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Figure 8.51. Time history of the hip and shoulder joint torques produced by the 

simulation model expressed as a percentage of the peak torques 

given by the muscle models when the stiffness of the bar was 

decreased. 

Varying the initial angular velocity 

The sensitivity analysis performed on the initial angular velocity of each simulation 

yielded a final value for the angular momentum about the model's mass centre of 

120.8 kg.m2.s-1• This is a decrease of less than 5% when compared to the original 

optimisation. It therefore appears as though starting each simulation with an angular 

velocity of half that used in the original optimisation does not result in a large difference 

in final angular momentum. 

The history of the hip and shoulder angles from the present optimum simulation are 

shown in Figure 8.52. The histories of the hip and shoulder angles are very similar to 

those obtained from the original optimisation. Obvious differences would be the timing 

of the action when compared in a temporal sense as opposed to the angular equivalent. 

The first flexion and extension actions at the hip joint are very similar in terms of where 

they occur in the giant circle. In the present optimisation the hip joint passes through full 

extension at a rotation angle of 345°. 

It would be of interest to see what local optima lie around this solution. It may be 

that the "scooping" technique that was found close to the global optimum may have an 

equivalent close to the present solution. This would be a promising result since it would 

then appear as though both the global and "scooping" techniques could be used under 

numerous different conditions to produce equivalent amounts of rotation. 
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Figure 8.52. Time histories of the hip and shoulder joint angles from the optimisation 

where the initial angular velocity of the model was reduced by half. 

8.3.4 Conclusions 

The technique obtained from the global optimum produced more rotation than was 

required to perform a double layout backward somersault dismount from high bar. The 

technique followed the "classic" style of giant circle where the gymnast achieves full 

extension at the hips close to the highest point of the giant circle (360°). When the 

strength of the muscle models used to limit the simulation model were increased or 

decreased by 10% there appeared to be only small differences between the techniques 

obtained and the final value for the angular momentum about the model's mass centre. 

Most of the differences could be explained using the findings from section 8.2. However, 

when the strength of the muscle models was reduced by 25% a "scooping" optimum 

technique was obtained. That is, full extension at the hips was achieved closer to the 

horizontal (450°), than the vertical handstand (360°). When the strength of the muscle 

models was returned to 100% it was found that this technique was a local optimum whose 

final value for the angular momentum about the model's mass centre was only 3% less 

than the value obtained from the global optimum. Therefore, under certain circumstances 

the global and local optimum solutions can become interchanged. 

The displacements of the bar all displayed similar trajectories close to the end of the 

optimum simulations. The vertical displacement of the bar changed from moving upward 

to moving downwards. When considering the angular momentum about the model's mass 

centre this phenomenon is of benefit to the gymnast. Even when the release angle of the 

model was changed the characteristic displacement of the bar was found by the 

optirnisation procedure. 



258 

When the inertia data was changed from subject jbO I to subject tvO I a similar set of 

results were obtained. It was found that the optimum result was also not sensitive to 

changes in the stiffness of the high bar. Although, had the stiffness of the bar been 

increased or decreased by an unrealistic amount changes to the optimum technique would 

probably have been invoked. 

The initial angular velocity of each simulation was halved in order to see its effect 

on optimum technique. It was found that reducing the initial angular velocity had only a 

small effect on the final angular momentum about the model's mass centre. 
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CHAPTER 9 

SUMMARY AND DISCUSSION 

9.1 Introduction 

This section will outline the answers to the research questions posed in the first 

chapter and will refer to the relevant sections for further details and summaries. In 

addition a section on future research will pose questions relating to both the present work 

and work which may carried out in the future. 

9.2 Answers to the research questions 

Question I 

How does the gymnast's technique differ between regular and accelerated giant 

circles? 

As stated in Chapter I both the regular and accelerated giant circles use actions at 

the shoulders, hips and knees. This was shown to be the case in Chapter 6. In general the 

size of the flexion angles used in the accelerated giant circles were larger than those used 

in the regular giant circles. Other differences included the timing of the flexion at the 

hips and shoulders. The subject, used in the video analysis of the accelerated giant 

circles, used a "scooping" technique during his accelerated giant circles. This resulted in 

the f1exion action at the hips being performed through a larger angle of rotation than a 

gymnast performing a more classical accelerated giant circle. Similarly the extension 

action during the "scooping" accelerated giant circle occurs later (after the gymnast has 

passed through the highest point) and is performed over a larger angle of rotation. In the 

regular giant circle the gymnast was fully extended as he passed through the highest 

point. 

The displacements of the high bar were also larger for the accelerated giant circles. 

In the vertical direction the difference between the peak displacements was approximately 

0.03 m. In the horizontal direction the difference in peak bar displacements was 0.04 m. 

An interesting feature of the accelerated giant circles was that the peak horizontal and 

vertical displacements of the bar were approximately equal. In the regular giant circles 

the horizontal displacement of the bar was consistently smaller than the peak vertical 
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displacements (approximately 20%). This indicates that the "scooping" technique 

adopted in the accelerated giant circles leads to a larger horizontal loading of the high bar. 

Question 2 

What are the reaction forces exerted by the bar on the gymnast as he performs both 

regular and accelerated giant circles? 

During the regular giant circles the peak reaction forces in the horizontal and 

vertical directions were 2.4 and 3.4 bodyweights, respectively. The peak resultant 

reaction force was also 3.4 bodyweights. . This value compared well with the value of 

3.6 bodyweights obtained by Kopp and Reid (1980). During the accelerated giant circles 

the peak reaction forces in the horizontal and vertical directions were 4.0 and 

4.4 bodyweights, respectively. The peak resultant reaction force was 5.0 bodyweights. 

The 5.0 bodyweights equates to approximately 3092.2 N. 

Question 3 

Does the high bar behave like a damped linear spring? If it does can the kinetic 

and kinematic analysis of regular and accelerated giant circles be used to obtain stiffness 

and damping coefficients for such a spring? 

The results from the regressions performed between the reaction forces at the bar 

and the linear velocities and displacements of the bar were presented in Chapter 6. Using 

just the linear regressions between the reaction forces and the bar displacements, standard 

errors for the regression line in the horizontal and vertical directions of 48.2 Nand 

60.1 N, respectively, were obtained. These values equate to less than 0.1 of a body­

weight. When the regression equation was used to estimate the reaction force for another 

regular giant circle (whose data had not been included in the regression analysis), based 

purely on the displacement of the bar during the trial, the rms difference between the 

recorded and the estimated reaction forces was 69.1 N « 0.12 bodyweights). It therefore 

appeared as though the high bar behaved as a linear spring. 

When the linear velocity of the bar was entered into the regressions the standard 

errors were reduced to 48.0 Nand 48.5 N, respectively. The rms difference between the 

recorded and estimated reaction forces was 64.3 N « 0.11 bodyweights). Although there 

did not appear to be a great difference between the two sets of regressions, the standard 

errors always improved with the introduction of bar velocity. 

The coefficients from the linear regressions represent the stiffness and damping 

coefficients of the bar. These could be used to estimate the reaction forces at the bar or 

could be used as the stiffness and damping coefficients of a damped linear spring in a 

simulation model. In Chapter 7, section 7.2, the introduction of a damped linear spring to 
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a single segment simulation model was shown to improve the accuracy of the model (see 

section 7.2.3). 

Question 4 

Is there any evidence that the joints of the gymnast behave as elastic structures as 

he circles the high bar? If so which joints behave this way? 

In Chapter 6 the video analysis program was used to output the segment lengths for 

each video field. Table 6.13 shows the mean length of each segment and its standard 

deviation. It was found that during the backward giant circles the gymnast increased in 

length as he circled the bar. As the gymnast passed through the lower part of the circle 

the increase in length was the greatest. By looking at the time histories of the length of 

each segment it was found that the majority of the increase in length occurred between the 

gymnast's wrists and hips. It is speculated that this could be attributed to shoulder 

extension and to extension between the vertebrae of the spine. During the giant circles 

analysed in this study the extension between the wrist and hips was between 0.10 and 

0.14 m. This agreed with the findings of Suchilin (personal correspondence). 

To see if this extension could be represented by a linear spring, the extension in the 

gymnast was regressed against the reaction force at the bar. When the regressions were 

performed on the data obtained from both regular and accelerated giant circle trials the 

stiffness coefficient ranged from 12816 to 16467 N.m-I. The standard error for the 

regression approached one bodyweight, with the correlation coefficient approaching 0.5. 

However, looking at the raw data there did appear to be a general trend that as the 

reaction force increased so did the extension in the gymnast. Had the internal joint forces 

been available a better correlation may have been obtained. This would be something to 

investigate in the future. 

Question 5 

What are the mechanics behind the flexion and extension actions performed by 

gymnasts during regular and accelerated giant circles? 

Bauer (1983) represented the technique of swinging as a pendulum of varying 

length. In order to perform giant circles the pendulum maintained maximum length on 

the downswing, instantaneously shortened at the lowest point and then returned to 

maximum length instantaneously at the highest point. This is a simplistic approach since 

a gymnast is far more complex than a pendulum. The gymnast's segment have mass and 

moments of inertia which need to be considered. 

In section 8.2 the three segment simulation model was used to optimise a backward 

giant circle. Initially there were no constraints placed on the size of the joint torques the 
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model could produce. The optimum solution had the model performing the flexion action 

at the hip and shoulder joint before the lowest point, a technique not used by gymnasts. 

By looking at the joint torques involved in performing an early flexion action it was 

shown that doing so lead to a greater increase in energy. A similar explanation was 

provided when it was found that the model extended before reaching the highest point. 

The optimisation was repeated using a joint torque limit at the shoulders. The 

flexion action was then performed as the model passed through the lowest point. This 

was because the model was no longer strong enough to perfonn the action before the 

lowest point. Similarly the model perfonned the extension action as it passed through the 

highest point. This technique more closely represented the techniques used by gymnasts. 

When using the four segment simulation model with the muscle models used to 

limit the joint torques at the hip and shoulder joints a similar result was obtained. The 

model performed the flexion action passing through the lowest point and the extension 

action passing through the highest point. Since the four segment model was used to 

optirnise the angular momentum about the model's mass centre after perfonning 1% giant 

circles, had the more simple three segment model not been used to optimise the backward 

giant circle the underlying mechanics may have been missed. 

Question 6 

How does the strength of the gymnast effect optimum technique? 

In section 8.2 the introduction of a joint torque limit changed the optimum 

technique found by the three segment model from a theoretical solution to one which 

represented the techniques used by real gymnasts. When using the joint torque limit the 

model was not strong enough to perfonn the theoretical solution and adjusted the 

technique accordingly. Therefore it could be stated that gymnasts do not perfonn the 

flexion action before the lowest point either because they are not strong enough or 

because they choose to conserve energy. A third reason may be due to the skill 

perfonned after the giant circle. Flexing before the lowest point may produce an 

undesired loading of the bar. This is a question for further research. 

In section 8.3 the strength of the muscle models was increased and decreased by 

10% to see the effect this would have on the optimum solution. The change in rotation 

was found to be less than 3% when the strength of the muscle models was changed. The 

change in muscle strength caused small changes in the joint angle time histories which 

could be explained in terms of the results obtained in section 8.2. 

When the strength of the muscle models was decreased by 25% the final angular 

momentum was reduced by 11 %. Given that this still represented more rotation than is 

required to perfonn a double layout backward somersault dismount and that the gymnast 

is only % as strong as he was, this is not a large drop in perfonnance. However, when the 
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joint angle time histories were compared the model was performing a "scooping" 

technique through the upper part of the accelerated giant circle. This technique was found 

to be a local optimum when the strength of the muscle models was returned to 100% and 

the difference in angular momentum from the original optimisation was less than 3%. 

For the majority of both the local and global optimum techniques the model used 

30% of the maximum joint torques given by the muscle models. Only during the first 

f1exion action and the last quadrant of the optimum simulations did the joint torques used 

by the simulation model approach the maximum values. 

At the end of a gymnastic routine it may not be in the gymnast's interest to rely on a 

technique that will require maximum effort. Alternatively, since both techniques appear 

to produce similar amounts of rotation gymnasts are able to make a choice about which 

technique to use. As yet I have not found an intermediate technique which connects the 

two optima found so far. That is, the two techniques are distinct and separate. To 

perform a technique half way between these results in less angular momentum than either. 

Question 7 

Does optimum technique of the backward giant circle differ between gymnasts or is 

there a common technique that could be adopted by all gymnasts? 

In section 8.2 there was found to be only small differences between the joint angle 

time histories when the backward giant circle was optimised using the inertia data of jbO 1 

and tvO 1. Even when the joint torque limit at the shoulder was introduced the two 

optimum giant circles were very similar (Figures 8.14 and 8.15). It may therefore be 

suggested that although small changes in the joint angle time histories will occur the 

underlying technique and mechanics will remain the same. 

When the optimum joint angle time histories from the four segment model were 

used with the inertia data obtained from subject tvO 1 and the maximum torque data of 

subject jbOI it was found that the model was not strong enough to complete the 1 % giant 

circles. However, after optimising the backward giant circle using the inertia set tvO 1 an 

optimum solution was obtained. Using the inertia set tvOl resulted in an increase in 

angular momentum about the model's mass centre of 28%. When this was normalised so 

that the two gymnasts could be compared the difference dropped to 3%. When the sets of 

joint angle time histories were compared they were very similar; again any small 

differences could be explained in terms of the results obtained from section 8.2. 

Gymnasts are a select group of individuals whose inertia parameters differ from the 

general population. Given these characteristics and that the laws of mechanics apply to 

everyone it is likely that given a set of inertia data for a gymnast the optimum solution 

will lie close to the one found in the present study. Small differences in the joint angle 

time histories will occur due to the different strength characteristics; however, the general 
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technique can be explained by the mechanics highlighted in Chapter 8. 

9.3 Future Directions 

9.3.1 Introduction 

The work carried out in this thesis has provided a platform from which to carry out 

further research. This section will highlight the limitations in the present research so as to 

offer avenues for future research. 

9.3.2 Data collection 

From the data collection it has been shown that the reaction force at the bar can be 

estimated from its horizontal and vertical displacements, as long as the stiffness of the bar 

is known. The use of a third camera trained on the centre of the bar may therefore lead to 

improved accuracy in the estimation of reaction forces. Should this be the case a protocol 

could be established for recording reaction forces at the bar without using strain gauge 

technology. 

All the simulation models used in this thesis assumed zero friction between the bar 

and the model. In reality this is not the case (Hay, 1994; Kopp and Reid, 1980). Based 

on the evaluation of the simulation model this does not appear to have been a problem. 

Strain gauges can be arranged to measure the torque produced at the bar (Kopp and Reid, 

1980). However, from personal experience it is a non-trivial task to apply known torques 

to the bar in order to calibrate the strain gauges. 

9.3.3 Simulation 

The bar 

Arampatzis and Briiggemann (1995) modelled the high bar as a 12 segment 

structure. Compared with a damped linear spring this is very sophisticated. The damped 

linear spring performed well in terms of estimating bar displacements and reaction forces. 

However, the mass of the bar was represented as a point mass at the end of the model's 

proximal segment (the arm). It is likely that if the structure of the bar, in terms of mass 

distribution and moment of inertia, were to effect performance that these would have been 

incorporated into the spring coefficients during the optimisation of the spring coefficients. 
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A closer look at the structure of the bar may be necessary in the future so as to gain 

greater understanding of how its loading and unloading effect technique. 

Knee flexion 

In the literature the major contributions to technique were attributed to the hips and 

shoulders (Okamoto et aI., 1987; Briiggemann et aI., 1994). This was confirmed by the 

findings in Chapter 6. It was also found that the knees contributed to technique 

(Briiggemann et aI., 1994; Chapter 6), with the knees flexing and extending through the 

lower part of the giant circle. These knee flex ions were used in the evaluation of the 

simulation model but were left out of the optimisation. The knees were assumed to stay 

fully extended throughout the optimisation as this both represented good form and 

reduced the number of parameters to be optimised. The introduction of knee flexion and 

extension would have increased the number of parameters to be optimised from 24 to 36. 

It would therefore be of interest to establish the contribution of knee flexion to 

either existing techniques or to the optimum technique. This could be achieved by 

removing the knee flexion and extensions from the simulations used to evaluate the 

simulation model. Alternatively knee f1exion could be introduced into the optimum 

solution. Further, the knee flexion could be optimised by fixing the joint angle time 

histories of the hip and shoulder angles and varying the timing and size of knee f1exion 

and extension each time the model passed through the lowest point. 

For the introduction of the knee actions into the optimisation it may be necessary to 

collect more subject specific muscle data so that muscle models can be used to represent 

the maximum strength of the knee flexors and extensors. 

Double layout backward somersault dismount 

The optimisations performed in Chapter 8 have been geared to maximising the 

model's rotation. Normalised values for the angular momentum about the model's mass 

centre have so far exceeded those required to perform the double layout somersault 

dismount. It would therefore be of interest to optimise a set of accelerated giant circles to 

produce the best release conditions for the double layout somersault dismount. This 

would no longer be a case of maximising the angular momentum about the model's mass 

centre. A cost function could be developed to incorporate a score for producing the 

correct amount of rotation but also including bonus for time of flight. 

Strength of the muscle models 

In the optimised accelerated backward giant circles found in section 8.3 the model 

used 30% of the maximum peak joint torque throughout the majority of the simulation. 

How far could the strength of the muscle models be reduced with the model still able to 

perform a double layout somersault dismount? When the strength of the muscle models 
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was reduced in section 8.3 a local optimum was found which represented a distinctly 

different technique to the original optimum. Investigating further the strength of the 

muscle models may yet yield more interesting results. 

Airborne skills 

Simulation models have been used to investigate new skills and techniques which 

have not been tried by real gymnasts (Nissinen, Preiss and Briiggemann, 1985). The 

theoretical solutions obtained in this thesis could be used as a basis for finding out what 

would be possible in the subsequent release skill. By using the release conditions from 

the four segment simulation model as initial conditions for a simulation model of aerial 

movements (e.g. Yeadon, Atha and Hales, 1990) it would be possible to determine what 

dismount could be performed given the optimum amount of rotation. 

Other skills 

For some release skills maximising the rotation of the model during the wind-up 

giant circles is not appropriate. For instance, the Tkatchov has been shown to have 

rotation in flight in the opposite direction to the preceding backward giant circle 

(Briiggemann et aI, 1994; Gervais and Tally, 1993). To optimise the backward giant 

circle prior to release may require the angular momentum about the model's mass centre 

to be minimised at the point of release. This could be incorporated into a cost function 

which included the release conditions which would allow the model to clear the bar in the 

subsequent release. 

In short it would be possible to optimise the accelerated giant circles for most 

dismounts and release skills which are performed from either a backward or forward giant 

circle. Similarly it would also be interesting to investigate regrasping the bar after a 

release and regrasp skill. In the current Code of Points bonus is awarded for performing 

skills in succession. For example, it is not uncommon in elite competition to see three 

Tkatchovs (with varying technique) or two Kovacs to be performed in succession. When 

performing skills one after another the regrasp after the first skill is vital. Optimum 

regrasp conditions could be determined to allow for the subsequent release skill to be 

performed. 

Asymmetric bars 

The future directions outlined so far have all concerned the high bar. This thesis is 

entitled "The mechanics of swinging on the high bar". However, many of the ideas and 

techniques could be applied to swinging on the asymmetric bars. Obvious differences are 

the construction of the bar, inertia and strength characteristics of the female gymnast and 

the presence of a second bar which the gymnast must avoid during the downswing. The 

bar would require different spring coefficients and would therefore need to be calibrated 
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along the lines of the high bar. Due to the asymmetric bar's larger surface area frictional 

forces between the gymnast's hand and bar would also need to be quantified and taken 

into consideration. 

The four segment simulation model assumed that the hand was an extension of the 

arm. The hand was forced, by this assumption, to slide around the bar. For the high bar 

this is a close representation of the bar - hand interface. However, the diameter of the 

asymmetric bar is larger than that of the high bar. This results in female gymnasts 

performing a distinct "wrist change" during the fourth quadrant of the giant circle. 

Although men also perform a wrist change it is not as large or as obvious as the one used 

by women. For this reason a hand segment may need to be incorporated into the 

simulation model. Even if the hand were not used the present simulation model could 

still be used to investigate the strategies used to avoid the lower bar. 

The future directions outlined above show the power of an accurate simulation 

model to address unanswered research questions. The future directions have highlighted 

areas in which the simulation model could be improved and how the optimisation 

procedure could be adapted to answer different research questions. Through the findings 

of this study and further investigations it is hoped that the understanding of the whole area 

of swinging and swinging related skills will be increased. 
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APPENDIXl 

Listing of the Fortran 77 code from the single segment 

simulation model 

Listing of the Fortran 77 code from the four segment 

simulation model (version used to optimise the 

backward giant circle) 
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Appendix la 

Listing of the Fortran 77 code from the single segment simulation model 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c One.f is a single segment model with a damped bar 

c with average acceleration loop 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
parameter(nn = 1000) 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c relating to model parameters: 

c phi - rotation angle of segment 

c phid - angular velocity of segment 

c phidd - angular acceleration of segment 

c dt - integration interval 

c g - acceleration due to gravity 

c pi - pi 

c rtd = conversion from radians to degrees 

c t - time that the simulation has been running 

c ma - mass of the segment 

c a - mass centre location from proxial end of segment 

c p - length of segment 

c la - moment of inertia of segment about its mass centre 

c ni - number of integration steps performed 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

double precision 

* phi, phid, phidd, 

* dt, g, pi, rtd, t, 

* ma, a, p, 

* la, ni 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 



c 

c relating to the bar: 

c xb - horizontal displacement of the bar 

c xbd - horizontal velocity of the bar 
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c xbdd - horizontal acceleration of the bar 

c zb - vertical displacement of the bar 

c zbd - vertical velocity of the bar 

c zbdd - vertical acceleration of the bar 

c k - stiffness coefficient of the spring 

c b - damping coefficient of the spring 

c x - horizontal location of the segment mass centre 

c xd - horizontal velocity of the segment mass centre 

c xdd - horizontal acceleration of the segment mass centre 

c z - vertical location of the segment mass centre 

c zd - vertical velocity of the segment mass centre 

c zdd - vertical acceleration of the segment mass centre 

c rb - length of the spring 

c ten - tension in the spring 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

double precision 

* xb, xbd, xbdd, zb, zbd, zbdd, 

* k, b, x, xdd, z, zdd, 

* xd, zd, 

* rb, ten, vten, hten, rten 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c relating to the average acceleration loop 

c terms ending with ° are used in the calculation of new 

c conditions at the start and end of the integration interval 

c which are used for the average acceleration loop 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
double precision 

* xbO, zbO, 

* phiO, phidO 
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c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c relating to the calculation of energy 

c pe - potential energy 

c se - potential strain energy 

c re - rotational kinetic energy 

c ke - kinetic energy 

c energy - total kinetic energy 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

double precision 

* pe, se, 

* re, ke, 

* energy 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c relating to the radial force 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

double precision 

* rf, r 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c relating to the output 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

double precision 

* phiw, phidw 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
integer i, j 

c 



284 

character* 15 input, out!, out2, out3 

c 

print * ,'state initial data filename' 

read(*,15) input 

c 

print * ,'state solutions 1 filename' 

read(*,15) outl 

c 

print * ,'state solutions 2 filename' 

read(*,15) out2 

c 

print * ,'state solutions 3 filename' 

read(*,15) out3 

c 

15 format(3a) 

c 

open( 16,fi le=input,form='formatted') 

open( 1 O,file=out 1 ,form='formatted') 

open( 11 ,file=out2,form='formatted') 

open(12,file=out3,form='formatted') 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c write headings for the output files 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c write(10,*)' time phi phid zd 

c *xb zbd' 

c 

c write(1l, *)' time pe time se time ke' 

c 

c write(l2, *)' time ten time rf phi rf 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c read in initial conditions of the bar and segment 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 



c 

read(l6, *) phi,phid 
read(l6, *) xb,xbd,zb,zbd,ni,k,b 
read( 16, *) ma,a,p,Ia 
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c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c For now have one set of anthropomentric data from Mark 

c instead of reading it in. 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

pi = 3.141592654 
rtd = 180/pi 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c initial values 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

g =9.806 
dt = 0.0005 
t =0.0 

j = 1 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c define x and z, the location of the segment mass centre 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

do 100, i = 0, ni 

231 x = xb + a*cos(phi) 
Z = zb + a*sin(phi) 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c find xdd from equation (2) 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
xdd = « -k*xb - b*xbd)/ma) 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c find zdd from equation (1) 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

zdd = «-k*zb - b*zbd) - ma*g)/ma 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c find phidd from equation (3) as xdd and zdd are now known 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

phidd = (ma*xdd*z - ma*zdd*x - ma*g*x)lIa 

c 

102 formate IOfl 0.3) 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c calculate the new values for phi, phid, xb, xbd, zb, zdd 

c if j = I calculate the average acceleration 

c if j = 0 calculate the new conditions 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
if (j.eq.l) then 

c find xbdd and zbdd from xdd and zdd 

c 

xbdd = xdd + a*sin(phi)*phidd + a*cos(phi)*(phid**2) 

zbdd = zdd - a*cos(phi)*phidd + a*sin(phi)*(phid**2) 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c find xb, xbd, zb and zbd 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

xbO=xb 

xbdO= xbd 

xb = xb + xbd*dt + O.5*xbdd*(dt**2) 

xbd = xbd + xbdd*dt 

zbO= zb 

zbdO= zbd 

zb = zb + zbd*dt + 0.5*zbdd*(dt**2) 

zbd = zbd + zbdd*dt 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c find phi and phid 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
phiO = phi 

phidO = phid 

phi = phi + phid*dt + 0.5*phidd*(dt**2) 

phid = phid + phidd*dt 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c calculate average intial conditions 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

phi = (phi + phiO)/2 

phid = (phid + phidO)/2 

xb = (xbO + xb)/2 

zb = (zbO + zb )/2 

j=O 



c 

c 

goto 231 

endif 

if G .eq .0) then 

288 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c calculate new initial conditions using new phidd 

c and original initial conditions 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c find xbdd and zbdd from xdd and zdd 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

xbdd = xdd + a*sin(phiO)*phidd + a*cos(phiO)*(phidO**2) 

zbdd = zdd - a*cos(phiO)*phidd + a*sin(phi)*(phidO**2) 

c 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCccccccccccccccccccccccccccccccccccc 

c 
c find xb, xbd, zb and zbd 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

xb = xbO + xbdO*dt + 0.5*xbdd*(dt**2) 

xbd = xbdO + xbdd*dt 

zb = zbO + zbdO*dt + 0.5*zbdd*(dt**2) 

zbd = zbdO + zbdd*dt 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c find phi and phid 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
phi = phiO + phidO*dt + 0.5*phidd*(dt**2) 

phid = phidO + phidd*dt 



c 

c 

j = 1 
endif 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c calculate the velocities of the mass centre 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

xd = xbd - a*sin(phi)*phid 

zd = zbd + a*cos(phi)*phid 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c Calculate the energy in the system 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c energy = p.e(position + strain) + k.e(lin + rot) 

c 

c 

c 

pe = ma*g*(a*sin(phi) + zb + 2.55) 

se = O.5*k*(xb**2 + zb**2) 

re = 0.5*Ia*(phid**2) 

ke = O.5*ma*(zd**2 + xd**2) + re 

c Alternative energy equation 

c pe = O.5*ma*g*(z + 2.55) 

c se = O.5*k*(xb**2 + zb**2) 

c re = O.5*ia*phid*phid 

c ke = 0.5*ma*(zd**2 + xd**2) 

c 

energy = pe + se + ke 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c calculate the radial force 

c 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

r = sqrt(x**2 + z**2) 

rf = (phid**2*r - g*r*sin(phi))*ma 

rf = rf/(ma*g) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c write output to a file 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

c 

c 

c 

c 

c 

calculate tension in the spring 

rb = sqrt(xb**2 + zb**2) 

ten = rb*k 

vten = ma*zdd + ma*g 

hten = ma*xdd 

rten = sqrt(vten**2 + hten**2) 

phiw = -(phi*rtd - 90) 

phidw = - phid 

if (mod(i, 1O).eq.O) then 

write(l 0, 105) t,phiw,phidw,zb,xb 

write( 11,106) t,phiw,pe,se,ke,re,energy 

write(12, 1 06) t,phiw,rten,vten,hten 

endif 

105 format(fl .3,',' ,n 0.2,',' ,n 0.3,' ,',n 0.4,',' ,n 0.4,',' ,n 0.2) 

106 format(fl .3,',' ,n 0.2,' ,',n 0.2,' ,',n 0.2,', ',n 0.2, ',' ,n 0.2, 

*',',flO.3) 

t = t + dt 

100 continue 

end 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
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c 

c close all files 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c end end end end end end end end end end end end end end 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
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Appendix Ib 

Listing of the Fortran 77 code from the four segment simulation model 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c This program will optimise the angular momentum 

c after 622 degrees of rotation. The bar is modelled as 

c two linear springs of different stiffness and damping. 

c The joint torques are limited by the 18 parameter 

c data obtained from isokinetic data from the subject using 

c the method of King (1998). 

c Inertia data were obtained from 95 anthropometric 

c measurements taken from the subject and using the inertia 

c model of Yea don (1990). 

c The model optimises one complete giant circle an one 

c three quarter giant circle which contains the release 

c 
c All joint torques will be doubled to represent the torque 

c produced at two joints 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

PARAMETER (N = 24, NEPS = 4) 

DOUBLE PRECISION LB(N), UB(N), X(N), XOPT(N), C(N), VM(N), 

I FSTAR(NEPS), XP(N), T, EPS, RT, FOPT 

INTEGER NACP(N), NS, NT, NFCNEV, IER, ISEEDI, ISEED2, 

I MAXEVL, IPRINT, NACC, NOBDS 

LOGICAL MAX 

EXTERNALFCN 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Read in the input file which contains initial parameters 

c and information regarding the angle changes 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

c 

c 

c 

c 

double precision 

* initphi, initphid, initxba, initxbad, initzba, initzbad, 

* initxs, initxsd, initzs, initzsd, 

* barsp( 4), ks, dmps, 

* angd(2), fin, finang, initstep 

commonlb3! initphi,initphid,initxba,initxbad,initzba,initzbad, 

* initxs,initxsd,initzs,initzsd, 

* barsp,ks,dmps, 

* angd,fin,finang,trials,initstep 

character* IS input 

print*, 'state initial data filename' 

read(*,15) input 

IS format(3a) 

open( 16,file=input,form='formatted') 

read(16, *) initphi,initphid,initxba,initxbad,initzba,initzbad 

read( 16, *) initxs,initxsd,initzs,initzsd 

read(l6,*) barsp(l), barsp(2), barsp(3), barsp(4) 

read( 16, *) ks,dmps 

read(16,*) angd(l), X(I), X(2), X(3) 

read(l6,*) X(4), X(5), X(6) 

read(16,*) X(7), X(8), X(9), X(10), X(lI), X(l2) 

read(l6,*) angd(2), X(l3), X(14), X(l5) 

read(l6, *) X(l6), X( 17), X( 18) 

read(l6,*) X(l9), X(20), X(21), X(22), X(23), X(24) 

read( 16, *) trials, fin, initstep 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c Set input parameters. 

c 

MAX=.TRUE. 

EPS = 1.0D-2 

RT= 0.5 

ISEEDl = 1 

ISEE02=2 

NS=20 

NT=5 

MAXEVL = trials 

IPRINT = I 

0010,1= 1,N 

LB(I) = -0.001 

UB(I) = 1.0000 

ql) = 2.0 

10 CONTINUE 

c 

c 

UB(1) = 0.9 

UB(4) = 2.5 

UB(7) = 2.5 

UB(10) = 2.5 

UB(13) =0.9 

UB(l6) = 2.5 

UB(l9)=2.5 

UB(22) =2.5 

c Set input values of the input/output parameters. 

T=5.0 

DO 20, 1= I, N 

VM(I) = 0.1 

20 CONTINUE 

c 

c 

WRITE(*,lOOO) N, MAX, T, RT, EPS, NS, NT, NEPS, MAXEVL, IPRINT, 

I ISEEOI,ISEE02 

CALL PRTVEC(X,N,'STARTING VALUES') 

CALL PRTVEqVM,N,'INITIAL STEP LENGTH') 



c 

c 
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CALL PRTVEC(LB,N,'LOWER BOUND') 

CALL PRTVEC(UB,N,'UPPER BOUND') 

CALL PRTVEC(C,N,'C VECTOR') 

WRITE(*,'(I," **** END OF DRIVER ROUTINE OUTPUT ****" 

I I," **** BEFORE CALL TO SA. ****")') 

CALL SA(N,X,MAX,RT,EPS,NS,NT,NEPS,MAXEVL,LB,UB,C,IPRlNT,ISEEDI, 

I ISEED2,T,VM,XOPT,FOPT,NACC,NFCNEV,NOBDS,IER, 

2 FSTAR,XP,NACP) 

WRITE(*,'(I," **** RESULTS AFTER SA **** ")') 

CALL PRTVEC(XOPT,N,'SOLUTION') 

CALL PRTVEC(VM,N,'FINAL STEP LENGTH') 

WRlTE(*,IOOI) FOPT, NFCNEV, NACC, NOBDS, T, IER 

1000 FORMAT(I,' SIMULATED ANNEALING EXAMPLE',I, 

I I,' NUMBER OF PARAMETERS: ',13,' MAXIMAZATION: ',L5, 

2 I,' INITIAL TEMP: " GS.2,' RT: ',GS.2,' EPS: ',GS.2, 

3 I,' NS: ',13,' NT: ',12,' NEPS: ',12, 

4 I,' MAXEVL: ',110,' IPRINT: ',11,' ISEED1: ',14, 

5 'ISEED2: ',14) 

1001 FORMAT(I,' OPTIMAL FUNCTION VALUE: ',G20.13 

c 

c 

c 

I I,'NUMBEROFFUNCTIONEVALUATIONS: ',110, 

2 I,' NUMBER OF ACCEPTED EVALUATIONS: ',110, 

3 I,' NUMBER OF OUT OF BOUND EVALUATIONS: ',110, 

4 I,' FINAL TEMP: ',020.13,' IER:', 13) 

STOP 

END 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
subroutine FCN(N,V,amtmopt) 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c subroutine FCN(N,V,amtmopt):-

c is a four segment two damped spring simulation model 
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c of the gymnast. five equations in five unknowns are solved 

c using the linear equation solver solve. In order to increase 

c the accuracy of the simulation model a corrective step length 

c routine and an average estimate of the angular acceleration 

c during the time interval routine are included. 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c relating to the inertia parameters 

c 
c m* - is the mass of the segment, a for the arms, b for the 

c torso, c for the thighs and d for the shank 

c 1* - is the momentof inertia of the segment about its mass 

c centre 

c a - distance from hands to mass centre of the arms 

c b - distance from shoulders to mass centre of the torso 

c c - distance from hips to mass centre of the thigh 

c d - distance from knee to mass centre of the shank 

c p - length of arms 

c q - length of torso 

c r - length of thigh 

c mass = ma + mb + mc + md, the mass of the gymnast 

c mass2 = mb + mc + md, this used in calculations 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

double precision 

* ma, mb, mc, md, a, b, c, d, p, q, r, 

* la, Ib, le, Id, 

* mass, mass2 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c relating to common parameters 

c 

c g - acceleration due to gravity 

c pi - pi 

c rtd - radians to degrees 

c t - the time which passes during a simulation 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

double precision 

* g, pi, rtd, t 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c relating to variable step length 

c 

c step - the steplength 

c newvsl - contains new values of phi,xba, .. etc using first 

c angular acceleration estimate 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

double precision 

* step, new vs 1 (I 0) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c relating to angles angular velocities and accelerations 

c 

c phi - angle of arm segment 

c phi2 - angle of torso segment 

c phi3 - angle of thigh segment 

c phi4 - angle of shank segment 

c alp - angle between arms and torso 

c bet - angle between torso and thigh 

c tie - angle between thigh and shank 

c if any of the above expressions has d or dd attached to the 

c end it referes to the angular velocity or acceleration 

c respectively 

c new vs - contains new estimates of phi,xba, .. etc when 

c subroutine newvals is called 

c oldvs - contains the intial coditions phi,xba, .. etc when 

c subroutine newvals is called 

c avervs - contains the average of the above two sets of 

c phi,xba, .. etc. These are used to calculate the 
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c average angular acceleration 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

double precision 

* phi, phi2, phi3, phi4, 

* phid, phi2d, phi3d, phi4d, 

* phidd, 

* phi2dd, phi3dd, phi4dd, 

* alp, bet, tie, 

* alpd, betd, tied, 

* alpdd, betdd, tiedd, 

* newvs(10), oldvs(lO), avervs(lO) 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c relating to horizontal and vertical forces and torques 

c 
c rz - referes to vertical reaction and joint forces 

c rx - refers to horizontal reaction and joint forces 

c 1 is .the force at the hands whilst 4 is the force in 

c the knee joint 

c tor - are the joint torques where 1 is the shoulder and 

c 3 is the knee 

c rxz - is used in subroutine forces to store the values 

c for rxl to rz4 

c torq - is used in subroutine forces to store the values 

c tor I to tor3 

c tit - is the torque limit returned from the 3D torque 

c plots 

c max**tq - used for printing out the values obtained from 

c the eighteen parameter plots 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

double precision 

* rzl, rz2, rz3, rz4, 

* rxl, rx2, rx3, rx4, 



299 

* rxz(8), 

* tor 1, torZ, tor3, 

* torq(3),tlt, shldtorq, hiptorq 

c 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c relating to springs (disp/vel/acce/stif) 

c 

c ba - refers to the bar 

c s - refers to the shoulders 

c rba - resultant extension in the bar 

c rs - resultant extension in the shoulders 

c if preceeded by z or x refers to vertical or 

c horizontal displacement of the spring rsespectively 

c if followed by d or dd refers to the linear velocity 

c or acceleration of the spring respectively 

c if preceeded by k refers to the stiffness coefficient 

c of the spring 

c dmpb - damping coeficient of the bar 

c dmps - damping coeficient of the shoulders 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

double precision 

* xba, zba, xs, zs, rs, 

* xbad, zbad, xsd, zsd, 

* xbadd, zbadd, xsdd, zsdd, 

* rba, ks, dmps 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c relating to the mass centre locations of each segment 

c and the linear velocities of that segment 

c 

c x - horizontal mass centre location of the segment 

c z - vertical location of the segment mass centre 

c if followed by a d refers to the velocity of the 
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c mass centre 

c I v - contains all the values listed below plus phi,phid, 

c phi2-4. This array is used when calling the locvel 

c subroutine which calculates all these values 

c angmtm - angular momentum of model about the neutral bar 

c (I) - angular momentum of the arms about 0 

c (2) - angular momentum of the torso about 0 

c (3) - angular momentum of the thigh about 0 

c (4) - angular momentum of the shank about 0 

c (5) - angular momentum of the whole body about 0 

c amcm - angular momentum of model about the mass centre 

c (1) - angular momentum of the arms about cm 

c (2) - angular momentum of the torso about cm 

c (3) - angular momentum of the thigh about cm 

c (4) - angular momentum of the shank about cm 

c (5) - angular momentum of the whole body about cm 

c amtmopt - this is the value of an individual simulation 

c which is the angular momentum the model 

c possesses at the end of the simulation 

c moi - calculates the moment of inertia about the neutral 

c bar position 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

double precision 

* xa, xb, xc, xd, 

* za, zb, zc, zd, 

* xad, xbd, xcd, xdd, 

* zad, zbd, zcd, zdd, Iv(22), 

* angmtm(5), amcm(5), amtmopt, 

* moi(5) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c relating to mass centre location and angle 

c 

c cmloc - angle made by the line joining the mass centre to 

c the neutral bar position 
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c cmlocO - used in an if statement during an optimisation, 

c to end simulations where the model does not 

c reach 360 degrees of rotation 

c xloc - horizontal location of the mass centre from the 

c neutral bar position 

c zloc - vertical location of the mass centre from the 

c neutral bar position 

c xlocd - horizontal velocity of the mass centre 

c zlocd - vertical velocity of the mass centre 

c res - distance of the mass centre from the neutral bar 

c position 

c an - used in the subroutines csang and angO 

c aO - used in the subroutines csang and angO 

c ca - cos value calculated from xloc/res which is used in 

c csang and angO 

c sa - sin value calculated from zloc/res which is used in 

c csang and angO 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 
c 

double precision 

* cmloc, cmlocO, xloc, zloc, xlocd, zlocd, 

* res, an, aD, ca, sa 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c relating to the calculation of energy 

c 

c energy - total energy in the system which is found using 

c the subroutine cm 

c nrgs - contains values for strain, potential, kinetic 

c and rotational energy found using the subroutine cm 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

double precision 

* energy, nrgs( 4) 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c relating to the coefficients used in solve 

c 

c coefa - contains the coeficients of the matrix A in the 

c Ax =b form 

c coetb - contains the coeficients of the matrix b in the 

c Ax =bform 

c solux - contains the solutions from Ax = b after the 

c 

c 

c 

equation solver solve has been called. The 

solutions are phidd. xbadd ........ , zsdd 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

double precision 

* coefa(7,6), coetb(5). solux(5) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c relating to cbanging the angles at the shoulders 

c hi ps and knees 

c 

c cc - contains the variables needed to call the subroutines 

c varang. vdang and d2ang. The values are the start 

c and finish angles and times of the angle change 

c angdata - contains the above information for one change 

c at each of the three joint angles 

c f - is the solution when calling the subroutines varang. 

c vdang and d2ang 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

double precision 

* cc(4). angdata(36). f 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c These are the initial conditions read in from the main 

c part of the program they have the same meaning except 

c the prefix init means they are the initial values 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

double precision 

* initphi, initphid, initxba, initxbad, initzba, initzbad, 

* initxs, initxsd, initzs, initzsd, 

* V(24), angd(2), barsp(4) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c the common block contain common information which can be used 

c in any subroutine 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

commonlb31 initphi,initphid,initxba,initxbad,initzba,initzbad, 

* initxs,initxsd,initzs,initzsd, 

* barsp,ks,dmps, 

* angd,fin,finang,trials,initstep 

commonlb l/pi,g,ma,mb,mc,md,a,b,c,d,p,q,r 

commonIb2IIa,Ib,Ic,Id 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Integer values 

c 
c i-counter used in the main do loop 

c mm,m,n - used in the equation slover solve 

c counter - used so that angO can be called only once 

c aac - average acceleration counter, used so that solve 

c is used twice, i.e. once for first phidd estimate 
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c and once for average phidd estimate 
c nums - number of times the main do loop is executed 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

integer i, mm, m, n, counter, aae 

e 

e 

ececceeececceceecceeecceececeececccccccccccccccccccccccccccccccccccc 

c 

c inertia data corresponding to subject jbO I 

c 
ccccccccccccccccccccccccccccccccccccccececeececeeceeceeeeeeeeececeee 

c 
e inertia data for 4 segments for jbOI 

c 

ma = 6.868 + 5.0 

mb = 33.566 

me = 14.074 

md = 7.543 

a=0.309 

b = 0.098 + 0.165 

e = 0.151 

d=0.277 

P = 0.548 + 0.0335 

q = 0.435 + 0.165 

r = 0.3735 

la = 0.481 

Ib = 1.610 

le = 0.173 

Id = 0.1637 

e inertia data for 4 segments for tvO I 

ma= 7.796 + 5.0 

mb= 34.45 

me = 15.412 

md= 8.124 

a = 0.318 

b=0.115 +0.165 

c=0.171 



c 

c 

d =0.228 

P = 0.575 + 0.0335 

q = 0.555 + 0.165 

r = 0.403 

la = 0.644 

Ib = 1.670 

lc = 0.212 

Id = 0.199 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c parameter values 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

phi = initphi 

phid = initphid 

xba = initxba 

xbad = initxbad 

zba = initzba 

zbad = initzbad 

xs = initxs 

xsd = initxsd 

zs = initzs 

zsd = initzsd 

t=O.O 

c 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Definitions of the parameter array YeN) 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c V (1) = angle of hyperextension at the shoulders 

c V (2) = initiation time of hyperextension at the shoulders 

c V(3) = duration of hyperextension at the shoulders 

c V(4) = angle offlexion at the shoulders 
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c V(5) = duration between end of hyperextension and beginning of 

c shoulder flexion (my definition of flex ion) 

c V(6) = duration of flexion at the shoulders 

c V(7) = angle of extension at the shoulders 

c V(8) = duration between end of flexion and beginning of 

c shoulder extension 

c V(9) = duration ofthe extension at the shoulders 

c V (10) = size ofthe final flexion at the shoulders 

c V(11) = initiation of final flexion at the shoulders 

c V(12) = duration of the final flexion at the shoulders 

c 

c 

c V(13) = size of hyper-extension angle at the hips 

c V(14) = initiation time of hyperextension at the hips 

c V(15) = duration of hyperextension at the hips 

c V (16) = angle of flexion at the hips 

c V(17) = duration between end of hyperextension and beginning of 

c shoulder flexion (my definition of flexion) 

c V(18) = duration of flexion at the hips 

c V (19) = angle of extension at the hips 

c V(20) = duration between flexion and extension at the hips 

c shoulder extension 

c V(21) = duration of the extension at the hips 

c V(22) = size of final flexion at the hips 

c V(23) = duration from extension to final flexion at the hips 

c V(24) = duration of the final flexion at the hips 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Joint angle time history for the shoulders 

c 

c 

c 

angdata(l) = angd(1) 

angdata(2) = angd(1) - abs(V(1)) 

angdata(3) = t + abs(V(2)) 

angdata(4) = angdata(3) + 0.025 + abs(V(3)) 

angdata(5) = angdata(2) 

angdata(6) = angdata(2) + abs(V(4)) 



c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 
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angdata(7) = angdata(4) + abs(V(5» 

angdata(8) = angdata(7) + 0.025 + abs(V(6» 

angdata(9) = angdata(6) 

angdata(10) = angdata(6) - abs(V(7» 

angdata(1l) = angdata(8) + abs(V(8)) 

angdata(12) = angdata(11) + 0.025 + abs(V(9» 

angdata(13) = angdata(10) 

angdata(l4) = angdata(13) + abs(V(10» 

angdata(15) = angdata(12) + abs(V(ll» 

angdata(l6) = angdata(15) + 0.025 + abs(V(l2» 

Joint angle time history for the hips 

angdata(l7) = angd(2) 

angdata(l8) = angd(2) - abs(V(13» 

angdata(l9) = t + abs(V(l4» 

angdata(20) = angdata(l9) + 0.025 + abs(V(l5» 

angdata(21) = angdata(l8) 

angdata(22) = angdata(18) + abs(V(l6» 

angdata(23) = angdata(20) + abs(V(l7» 

angdata(24) = angdata(23) + 0.025 + abs(V(18» 

angdata(25) = angdata(22) 

angdata(26) = angdata(22) - abs(V(l9)) 

angdata(27) = angdata(24) + abs(V(20» 

angdata(28) = angdata(27) + 0.025 + abs(V(21» 

angdata(29) = angdata(26) 

angdata(30) = angdata(26) + abs(V(22)) 

angdata(31) = angdata(28) + abs(V(23» 

angdata(32) = angdata(31) + 0.025 + abs(V(24» 



c 

c 
c Joint angle time history of the knees 

c 

c 

c 

c 

pi = 3.1415926536dO 

angdata(33) = pi 

angdata(34) = pi 

angdata(35) = 10.0 

angdata(36) = 10.0 
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ccccccccccccccccccccccccccccccceecceeceeecccceeceeeceecccecececeeecce 

c 
e Set the initial values and simulation parameters 

e 

ccecccccccccccecccccccccccceccccccccccccccccceccccceccccccccccccccccc 

c 

g = 9.806 

pi = 3.l4l5926536dO 

rtd = ISO.O/pi 

mass = ma + mb + me + md 

mass2 = mb +mc + md 

mm=7 

m=5 

mn=5 

alp = angdata(l) 

alpd = 0.0 

alpdd = 0.0 

bet = angdata(17) 

betd= 0.0 

betdd = 0.0 

tie = angdata(33) 

tied = 0.0 

tiedd = 0.0 

counter = 0 

amtmopt = 0.0 

cmloc =0.0 

phidd = 0.0 



c 

c 

angmtm(S) = 0.0 

amcm(S) = 0.0 
step = initstep 

aac =0 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

cc 
cc 

cc This is where the main do loop starts 

cc 

cc 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c call the subroutines varang, vdang and d2ang three times 

c to find the angle, angular velocity and angular 
c acceleration of the three joint angles 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

do 100, i = 0, 32S0000 

step = O.OOOS 

if (t,gt,3.S) then 

amtmopt = 0.0 
print* ,'time limit exceeded' 

goto 647 
endif 
if (i.eq.O) then 

if ((V(2)+V(S)+V(8)+V(lI)).gt,(4.S)) then 
amtmopt = 0.0 
print*,'time limit exceeded' 

goto 647 



c 

c 

c 

c 

c 
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endif 

if ((V(3)+V(6)+V(9)+V(l2».gt.(4.5)) then 

amtmopt = 0.0 

print* ,'time limit exceeded' 

goto 647 

endif 

if ((V(14)+V(17)+V(20)+V(23».gt.(4.5» then 

amtmopt = 0.0 

print* ,'time limit exceeded' 

goto 647 

endif 

if ((V(l3)+V(16)+V(19)+V(22».gt.(4.5» then 

amtmopt = 0.0 

print* ,'time limit exceeded' 

goto 647 

endif 

c if statements limits the size of the shoulder 

c hyperextension to 50 degrees 

c 

c 

c 

if (angdata(2).lt.(2.27» then 

amtmopt = 0.0 

print*, 'shoulder hyperextension angle too large' 

goto 647 

endif 

if (angdata(IO).lt.(2.27» then 

amtmopt = 0.0 

print*, 'shoulder hyperextension angle 2 too large' 

goto 647 

endif 

c if statements limits the size of the shoulder 

c flexion to 180 degrees 

c 

-



c 

if (angdata(6).gt.(6.2S» then 

amtmopt = 0.0 
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print*, 'shoulder flexion angle too large' 

goto 647 

endif 

c if statements limits the size of the hip hyperextension 

c to 50 degrees 

c 

c 

c 

if (angdata(lS).lt,(2.27» then 

amtmopt = 0.0 

print*, 'hip hyperextension angle too large' 

goto 647 

endif 

if (angdata(26).lt,(2.27» then 

amtmopt = 0.0 

print*, 'hip hyperextension angle 2 too large' 

goto 647 

endif 

c jf statement limits the size of the hip flexion to 

c ISO degrees 

c 

c 

c 

c 

c 

if (angdata(22).gt,(6.2S» then 

amtmopt = 0.0 

print*, 'hip flexion angle too large' 

goto 647 

endif 

endif 

cc(l) = angdata(l) 

cc(2) = angdata(2) 

cc(3) = angdata(3) 

cc(4) = angdata(4) 

if (t,gt,angdata(4» then 
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cc(l) = angdata(5) 

cc(2) = angdata( 6) 

cc(3) = angdata(7) 

cc( 4) = angdata(8) 

endif 

c 

if (t.gt.angdata(8)) then 

cc(l) = angdata(9) 

cc(2) = angdata(lO) 

cc(3) = angdata(ll) 

cc(4) = angdata(l2) 

endif 

c 

if (t.gt.angdata(l2)) then 

cc(l) = angdata(l3) 

cc(2) = angdata(l4) 

cc(3) = angdata(l5) 

cc( 4) = angdata(l6) 

endif 

c 

f= alp 

call varang(f,cc,t) 

alp = f 

c 

f=O.O 

call vdang(f,cc,t) 

alpd= f 

c 

f=O.O 

call d2ang(f,cc,t) 

alpdd = f 

c 

c 

cc( 1) = angdata( 17) 

cc(2) = angdata(l8) 

cc(3) = angdata(19) 

cc(4) = angdata(20) 

c 

if (t.gt.angdata(20)) then 
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cc( 1) = angdata(21) 

cc(2) = angdata(22) 

cc(3) = angdata(23) 

cc( 4) = angdata(24) 

endif 

c 

if (t.gt.angdata(24)) then 

cc(l) = angdata(25) 

cc(2) = angdata(26) 

cc(3) = angdata(27) 

cc( 4) = angdata(28) 

endif 

c 

if (t.gt.angdata(28)) then 

cc(l) = angdata(29) 

cc(2) = angdata(30) 

cc(3) = angdata(31) 

cc(4) = angdata(32) 

endif 

c 

f = bet 

call varang(f,cc,t) 

bet = f 

c 

f=O.O 

call vdang(f,cc,t) 

betd = f 

c 

f=O.O 

call d2ang(f,cc,t) 

betdd = f 

c 

cc(1) = angdata(33) 

cc(2) = angdata(34) 

cc(3) = angdata(35) 

cc(4) = angdata(36) 

f= tie 

call varang(f,cc,t) 

tie = f 
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c 

f=O.O 

call vdang(f,cc,t) 

tied = f 

c 

f=O.O 

call d2ang(f,cc,t) 

tiedd = f 

c 

c 

if (alpd.eq.O.O.and.betd.eq.O.O) then 

step = 0.0005 

else 

step = 0.00005 

endif 

c 

if (cmloc.gt.620.0) step = 0.00005 

c 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Define angles and angular velocities in terms of 

c alp, bet, tie, phi, alpd, betd, tied and phid 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

call1ocvel(lv,phi,phid,alp,alpd,bet,betd,tie,tied, 

* xba,zba,xbad,zbad,xs,zs,xsd,zsd) 

phi2 = lv(l) 

phi3 = Iv(2) 

phi4 = Iv(3) 

phi2d = Iv(4) 

phi3d = Iv(5) 

phi4d = Iv(6) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Define mass centre locations of each segment 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

xa = Iv(7) 

za = Iv(8) 

c 

xb = IV(ll) 

zb = Iv(12) 

c 

xc = Iv(15) 

zc = lv(16) 

c 

xd = Iv(19) 

zd = Iv(20) 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Calculate the coeficients for use in subroutine solve 

c Solve uses the form Ax = b 

c 
c coefa(5,5) is used for matric A. It contains the coeficients 

c for the five equations in the five unknowns phidd, .... ,zsdd 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c coefficients coefa(1,1-5) 

c 

c 

c 

coefa(l,l) = ma*a*cos(phi) + mb*(p*cos(phi) + b*cos(phi2» + 
* mc*(p*cos(phi) + q*cos(phi2) + c*cos(phi3» + 
* md*(p*cos(phi) + q*cos(phi2) + r*cos(phi3) + d*cos(phi4» 

coefa(1,2) = 0.0 

coefa(1,3) = mass 

coefa(1,4) = 0.0 

coefa(1,5) = mass2 
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c coeficients coefa(2,1-5) 

c 

c 

c 

coefa(2,1) = ma*(-a*sin(phi)) + mb*(-p*sin(phi) - b*sin(phi2) 

* ) + mc*(-p*sin(phi) - q*sin(phi2) - c*sin(phi3» + 
* md*(-p*sin(phi) - q*sin(phi2) - r*sin(phi3) - d*sin(phi4» 

coefa(2,2) = mass 

coefa(2,3) = 0.0 

coefa(2,4) = mass2 

coefa(2,5) = 0.0 

c coeficients coefa(3,1-3) 

c 

c 

c 

c 

c 

c 

c 

c 

c 

coefa(3,l) = ma*xa*(a*cos(phi» - ma*za*(-a*sin(phi» + la 

* + mb*xb*(p*cos(phi) + b*cos(phi2» - mb*zb*(-p*sin(phi) -

* b*sin(phi2» + lb + mc*xc*(p*cos(phi) + q*cos(phi2) + 
* c*cos(phi3» - mc*zc*( -p*sin(phi) - q*sin(phi2) -

* c*sin(phi3» + le + md*xd*(p*cos(phi) + q*cos(phi2) + 
* r*cos(phi3) + d*cos(phi4)) - md*zd*(-p*sin(phi)-

* q*sin(phi2) - r*sin(phi3) - d*sin(phi4)) + Id 

coefa(3,2) = -ma*za - mb*zb - mc*zc - md*zd 

coefa(3,3) = ma*xa + mb*xb + mc*xc + md*xd 

coefa(3,4) = -mb*zb - mc*zc - md*zd 

coefa(3,5) = mb*xb + mc*xc + md*xd 

coeficients coefa(4,1-5) 

coefa(4,I) = ma*a*cos(phi) 

coefa( 4,2) = 0.0 

coefa(4,3) = ma 

coefa(4,4) = 0.0 

coefa( 4,5) = 0.0 

coeficients coefa(5,1-5) 

coefa(5,1) =: -ma*a*sin(phi) 

coefa(5,2) = ma 



c 

coefa(5,3) = 0.0 

coefa(5,4) = 0.0 

coefa(5,5) = 0.0 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c coefb(5) contains the sulutions to the five equations 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c coeficients of coefb(I-5) 

c 

c 

c 

coefb(l) = -g*(mass) - (ma*(-a*sin(phi)*(phid**2)) + 

* mb*(-p*sin(phi)*(phid**2) + b*cos(phi2)*alpdd-

* b*sin(phi2)*(phi2d**2)) + mc*( -p*sin(phi)*(phid**2) + 

* q*cos(phi2)*alpdd - q*sin(phi2)*(phi2d**2) + c*cos(phi3)*( 

* alpdd + betdd) - c*sin(phi3)*(phi3d**2))+ md*(-p*sin(phi)* 

* (phid**2) + q*cos(phi2)*alpdd - q*sin(phi2)*(phi2d**2) + 

* r*cos(phi3)*(alpdd + betdd) - r*sin(phi3)*(phi3d**2) + 

* d*cos(phi4)*(alpdd + betdd + tiedd) - d*sin(phi4)*( 

* phi4d**2))) - zba*barsp(l) - zbad*barsp(2) 

coefb(2) = -( ma*(-a*cos(phi)) + mb*(-p*cos(phi)*(phid**2) 

* - b*sin(phi2)*alpdd - b*cos(phi2)*(phi2d**2)) + mc*( 

* -p*cos(phi)*(phid**2) -q*sin(phi2)*alpdd - q*cos(phi2)* 

* (phi2d**2) - c*sin(phi3)*(alpdd + betdd) - c*cos(phi3)* 

* (phi3d**2)) + md*(-p*cos(phi)*(phid**2) - q*sin(phi2)* 

* alpdd - q*cos(phi2)*(phi2d**2) - r*sin(phi3)*(alpdd + 

* betdd) - r*cos(phi3)*(phi3d**2) - d*sin(phi4)*(alpdd + 

* betdd + tiedd) - d*cos(phi4)*(phi4d**2))) -

* xba*barsp(3) - xbad*barsp(4) 

coefb(3) = -g*(ma*xa + mb*xb + mc*xc + md*xd) -

* (ma*xa*(-a*sin(phi)*(phid**2)) - ma*za*(-a*cos(phi)*(phid 

* **2)) + mb*xb*(-p*sin(phi)*(phid**2) + b*cos(phi2)*alpdd 

* - b*sin(phi2)*(phi2d**2)) - mb*zb*(-p*cos(phi)*(phid**2)­

* b*sin(phi2)*alpdd - b*cos(phi2)*(phi2d**2)) + Ib*alpdd + 

* mc*xc*(-p*sin(phi)~(phid**2) + q*cos(phi2)*alpdd -

* q*sin(phi2)*(phi2d**2) + c*cos(phi3)*(alpdd + betdd) -



c 

c 

c 

c 
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* c*sin(phi3)*(phi3d**2» - mc*zc*(-p*cos(phi)*(phid**2) -

* q*sin(phi2)*alpdd - q*cos(phi2)*(phi2d**2) - c*sin(phi3)* 

* (alpdd + betdd) - c*cos(phi3)*(phi3d**2» + Ic*(alpdd + 

* betdd) + md*xd*( -p*sin(phi)*(phid**2) + q*cos(phi2)*alpdd 

* - q*sin(phi2)*(phi2d**2) + r*cos(phi3)*(alpdd + betdd) -

* r*sin(phi3)*(phi3d**2) + d*cos(phi4)*(alpdd + betdd + 

* tiedd) - d*sin(phi4)*(phi4d**2» - md*zd*(-p*cos(phi)* 

* (phid**2) - q*sin(phi2)*alpdd - q*cos(phi2)*(phi2d**2) -

* r*sin(phi3)*(alpdd + betdd) - r*cos(phi3)*(phi3d**2) -

* d*sin(phi4)*(alpdd + betdd + tiedd) - d*cos(phi4)* 

* (phi4d**2» + Id*(alpdd + betdd + tiedd» 

coefb(4) = -barsp(l)*zba - barsp(2)*zbad + ks*zs + 

* dmps*zsd-

* ma*g + ma*a*sin(phi)*(phid**2) 

coefb(S) = - barsp(3)*xba - barsp(4)*xbad + ks*xs + 

* dmps*xsd+ 

* ma*a*cos(phi)*(phid**2) 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c call the equation solver with the above coefficients 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

call solve(solux,coefa,coefb,mm,m,mn) 

c 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c name solutions retrieved from solve subroutine 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

phidd = solux( 1) 

xbadd = solux(2) 



c 

c 

zbadd = solux(3) 

xsdd = solux( 4) 

zsdd = solux(5) 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c The next set of if and call statements is used to 

c calculate the average acceleration for the iteration 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

if (aac.eq.O) then 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c remember the initial values by placing them in oldvs 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

oldvs(l) = phi 

0Idvs(2) = phid 

01dvs(3) = xba 

01dvs(4) = xbad 

0Idvs(5) = zba 

0Idvs(6) = zbad 

oldvs(7) = xs 

0Idvs(8) = xsd 

0Idvs(9) = zs 

oldvs(lO) = zsd 

c 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c obtain the first estimates of phi, ..... ,zs by calling the 

c subroutine newvals 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
call newvals(newvs,solux,oldvs,step) 

c 
c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c to make an estimate of the average phidd the initial values 

c of phi, .... ,zs are needed in the middle of the step interval 

c therefore average the oldvs and newvs and place in avervs 

c which are now used as the average phi, ..... ,zs 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

avervs(l) = (oldvs(l) + newvs(l»/2.0 

avervs(2) = (0Idvs(2) + newvs(2»/2.0 

avervs(3) = (0Idvs(3) + newvs(3»/2.0 

avervs(4) = (0Idvs(4) + newvs(4»12.0 

avervs(5) = (0Idvs(5)+ newvs(5»/2.0 

avervs(6) = (0Idvs(6) + newvs(6»/2.0 

avervs(7) = (0Idvs(7) + newvs(7»/2.0 

avervs(8) = (0Idvs(8) + newvs(8»12.0 

avervs(9) = (0Idvs(9) + newvs(9»/2.0 

avervs(lO) = (oldvs(lO) + newvs(1O»/2.0 

c 

phi = avervs(l) 

phid = avervs(2) 

xba = avervs(3) 

xbad = avervs(4) 

zba = avervs(5) 

zbad = avervs(6) 

xs = avervs(7) 

xsd = avervs(8) 

zs = avervs(9) 

zsd = avervs(lO) 

c 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c remember the initial values using the first estimate of the 

c angular acceleration. These will be used in the variable 

c step length subroutine tol(step,newvs,newvsl) 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

newvs I (l) = newvs(l) 

newvs I (2) = newvs(2) 

newvs I (3) = newvs(3) 

newvsl(4) = newvs(4) 

newvsl(5) = newvs(5) 

newvsl(6) = newvs(6) 

newvs 1 (7) = newvs(7) 

new vs 1 (8) = newvs(8) 

newvs 1 (9) = newvs(9) 

newvs I (l 0) = newvs(lO) 

c 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccceccccccccccccccc 

c 

c set ace to 1 so that the above is not repeated 

c set t to the mid point of the current step interval so that 

c the average acceleration may be calculated 

c goto 100 to calculate average acceleration 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

aac = 1 

t = t + O.5*step 

goto 100 

c 

endif 

c 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c .now that the average acceleration has been calculated find 
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c phi, ..... ,zsd at the end of the time interval using phiddav 

c oldvs and the subroutine newvaL t is set to the end of the 

c current step 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

if (aac.eq.l) then 

c 

eaU newvals(newvs,solux,oldvs,step) 

c 

phi = newvs( I) 

phid = newvs(2) 

xba = newvs(3) 

xbad = newvs(4) 

zba = newvs(5) 

zbad = newvs(6) 

xs = newvs(7) 

xsd = newvs(8) 

zs = newvs(9) 

zsd = newvs(10) 

c 

aac =0 

t = t + 0.5*step 

c 

endif 

c 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c Calculate the energy in the system using the newly calculated 

c values above 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

call locvel(lv,phi,phid,alp,alpd,bet,betd,tie,tied, 

* xba,zba,xbad,zbad,xs,zs,xsd,zsd) 

call nrg( energy ,nrgs,lv ,phi ,phid,xba,zba,xs,zs,barsp,ks) 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c calculate the angle of rotation for the mass centre of the 

c gymnast and the energy of the system 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

counter = counter + 1 

call cm(xloc,zloc,xlocd,zlocd,res,lv) 

ca = xloc/res 

sa = zloc/res 

if (counter.eq.1) call angO(an,aO,sa,ca) 

if (counter.gt.1) call csang(an,aO,sa,ca) 

cmloc = an*rtd - 90.0 

if (cmloc.lt.cmlocO) then 

amtmopt = 0.0 

i = 250001 

goto lOO 

endif 

cmlocO = cmloc 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c Calculate the angular momentum about the neutral bar position 

c And about the mass centre 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
call anglamtm(angmtm,moi,lv,phi,phid) 

c 
call cmangmtm( amcm,xloc,zloc,xlocd,zl ocd,lv ,phi,phid) 

c 



324 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c Calculate rzl, rxl, rz2, rx2, rz3, rx3, rx4, rz4, tor!, 

c tor2 and tor3 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

c 

c 

call forces (rxz,torq,solux,lv,phi2dd,phi3dd,phi4dd, 

* xba,zba, 

* xs,zs,barsp,dmps,ks,alpdd,betdd,tiedd,phi,phid) 

rxl = rxz(l) 

rzl = rxz(2) 

torI = torq (l) 

rx2 = rxz(3) 

rz2 = rxz(4) 

tor2 = torq(2) 

rx3 = rxz(5) 

rz3 = rxz(6) 

tor3 = torq(3) 

rx4 = rxz(7) 

rz4 = rxz(8) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c Torque limit 

c If the torque values calculated in the subroutine forces 

c exceed the torque limits calculated from the 3D plots 

c the simulation is halted and given a score of zero 

c Step one is to determine the direction of the joint action 

c from the angles (i.e. shoulder/ 

chip flexion or extension may be either ecentric or concentric 

c Step two is to call the appropriate 3D surface with the 

c current joint angle and angular velocity 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c is the shoulder angle opening or closing? 

c 
c and when is the action eccentric? 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Shoulder extension (opening the shoulder angle 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

if (alpd.lt.O.O) then 

c the shoulder angle is opening! 

c opening is called extensio.n in this model! 

c but is the action concentric or eccentric? 

c 

c the following statement says that if the torque at the 

c shoulders is possitive then the muscle action is eccentric 

c 

c 

if (tor1.ge.O.O) then 

call flexsh3d(tlt,alp,alpd) 

shldtorq = tit 
endif 

c the following statement says that if the torque at the 

c shoulders is negative then the muscle action is concentric 

c 

c 

c 

if (tor1.lt.O.O) then 

call extsh3d(tlt,alp,alpd) 

shldtorq = -tit 

endif 

endif 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Shoulder flexion (closing the shoulder angle) 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

if (alpd.ge.O.D) then 

c 
c the shoulder angle is closing! 

c Closing the shoulder angle is called flexion in this model 

c but is the action concentric or eccentric? 

c 

c the following statement says that if the torque at the 

c shoulders is possitive then the muscle action is concentric 

c 

c 

if (torl.gt.O.O) then 

call flexsh3d(tlt,alp,alpd) 

shldtorq = tit 
endif 

c the following statement says that if the torque at the 

c shoulders is negative then the muscle action is eccentric 

c 

c 

c 

if (torl.Je.O.O) then 

call extsh3d(tlt,alp,alpd) 

shldtorq = -tit 
endif 

endif 

c the following if statement checks to see if the torque 

c limit has been exceeded 

c 

if (abs(torl).gt.abs(shldtorq)) then 

c if (abs(torl).gt.550) then 

amtmopt = 0.0 

amtmopt = cmlocl20.0 

print*, t,' ',cmloc,' shoulder torque limit exceeded' 

goto 647 
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endif 

c 

maxshtq = tIt 

c 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c is the hip angle opening or closing? 

c 

c and when is the action eccentric? 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Hip extension (opening the hip angle) 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

if (betd.lt.O.O) then 

c the hip angle is opening 

c opening is extension 

c but is the action concentric or eccentric? 

c 

c the following statement says that if the torque at the 

c hips is possitive then the muscle action is eccentric 

c 

c 

if (tor2.ge.O.O) then 

call flexhp3d(tlt,bet,betd) 

hiptorq = tit 

endif 

c the following statement says that if the torque at the 

c hips is negative then the muscle action is concentric 

c 

c 

if (tor2.lt.O.O) then 

call exthp3d(tlt,bet,betd) 

hiptorq = -tIt 

endif 



c 

c 

endif 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c Hip F1exion (closing the hip angle) 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
if (betd.ge.O.O) then 

c 

c the hip angle is closing 

c Closing the hip angle is flexion 

c but is the action concentric or eccentric? 

c 

c the following statement says that if the torque at the 

c hips is possitive then the muscle action is concentric 

c 

c 

if (tor2.gt.0.0) then 

call flexhp3d(tlt,bet,betd) 

hiptorq = tit 
endif 

c the following statement says that if the torque at the 

c shoulders is negative then the muscle action is eccentric 

c 

c 

c 

if (tor2.le.0.0) then 

call exthp3d(tlt,bet,betd) 

hiptorq = -tit 

endif 

endif 

c the following if statement checks to see if the torque 

c limit has been exceeded 

c 

if (abs(tor2).gt.abs(hiptorq)) then 

c if (abs(tor2).gt.11S0) then 

amtmopt = 0.0 



c 

c 

c 
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amtmopt = cmloc/20.0 

print*, t,' ',cmloc,' hip torque limit exceeded' 

goto 647 

endif 

maxshtq =tlt 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c the following if statements stop the simulation once the 

c mass centre has rotated through 630 degrees. If an angle 

c change is occuring once the model has rotated through 540 

c degrees the simulation is given a score of zero. 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

c 

if (cmloc.gt.621.000) then 

if (t.lt.angdata(l5)) then 

amtmopt = 0.0 

print*, 'time limit exceeded' 

goto 647 

endif 

endif 

if (cmloc.gt.621.000) then 

if (t.lt.angdata(31)) then 

amtmopt = 0.0 

print*, 'time limit exceeded' 

goto 647 

endif 

endif 

if (cmloc.gt.621.975) then 

if (alp.gt.3.897244) then 

amtmopt = 0.0 

print*, 'shoulder angle too large at release' 



----------------------------------------------------------------------------- -
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goto 647 

endif 

endif 

c 

c 

if (cmloc.gt.621.975) then 

if (bet.gt.3.897244) then 

amtmopt = 0.0 

print*, 'hip angle too large at release' 

goto 647 

endif 

endif 

c 

c 

if (cmloc.gt.62J.975) then 

c if (cmloc.gt.(fin-O.OJO)) then 

finang = cmloc 

amtmopt = amcm(5) 

c 

if (xlocd.Jt.O.O) then 

amtmopt = amcm(5) + 100.0*x/ocd 

endif 

c 

print7l,t, cmloc, amcm(5), amtmopt, 

* angdata(2), angdata(6), angdata(JO), alp, 

* angdata(I8), angdata(22), angdata(26), bet 

goto 647 

endif 

c 

71 format(f6.2,3f8.2,JOf5.2) 

55 format(9flOA) 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c call the variable steplength subroutine tol(step,newvsl, 

c newvs) 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

c call tol(step,newvs,newvs 1) 

c 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cc 
cc end of the do loop occurs here! 

cc 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

100 continue 

c 

647 continue 

c 

c 

return 

end 

c 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

cc 

cc Start of the subroutines 

cc 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

c subroutine newvals:-

c calculate the new values of phi, phid, xba, xbad, zba, zbad, 

c xs, xsd, zs and zsd 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 



c 

c 

c 
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subroutine newvals(newvs,solux,oldvs,step) 

double precision newvs(l O),solux(5),oldvs(l O),step,phi,phid, 

* phidd,xba,zba,xbad,zbad,xbadd,zbadd,xs,zs,xsd,zsd,xsdd,zsdd 

phidd = solux( 1) 

xbadd = solux(2) 

zbadd = solux(3) 

xsdd = solux( 4) 

zsdd = solux(5) 

phi = oldvs(1) 

phid = oldvs(2) 

xba = oldvs(3) 

xbad = oldvs(4) 

zba = oldvs(5) 

zbad = oldvs(6) 

xs = oldvs(7) 

xsd = oldvs(8) 

zs = oldvs(9) 

zsd = oldvs(lO) 

c calculate new phi from angular acceleration 

c 

phi = phi + phid*step + O.5*phidd*step*step 

newvs(l) = phi 

c calculate new phid from angular acceleration 

phid = phid + phidd*step 

newvs(2) = phid 

c 

c calculate new horizontal displacement of the bar 

c 

xba = xba + xbad*step + O.5*xbadd*step*step 

newvs(3) = xba 

c calculate new horizontal velocity of the bar 

xbad = xbad + xbadd*step 

newvs(4) = xbad 

c 

c calculate new vertical displacement of the bar 



c 
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zba = zba + zbad*step + 0.5*zbadd*step*step 

newvs(5) = zba 

c calculate new vertical velocity of the bar 

zbad = zbad + zbadd*step 

newvs(6) = zbad 

c 
c calculate new horizontal displacement of the shoulders 

xs = xs + xsd*step + 0.5*xsdd*step*step 

newvs(7) = xs 

c 

c calculate new horizontal velocity of the shoulders 

xsd = xsd + xsdd*step 

newvs(8) = xsd 

c 
c calculate new vertical displacement of the shoulders 

zs = zs + zsd*step + 0.5*zsdd*step*step 

newvs(9) = zs 

c 

c calculate new vertical velocity of the shoulders 

c 

c 

c 

zsd = zsd + zsdd*step 

newvs(10) = zsd 

return 

end 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c subroutine tol wich varies the step length based on the 

c difference between the end points of an iteration from 

c the first estimate of angular acceleration and the average 

c estimate of angular acceleration 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

subroutine tol(step,newvs,newvs 1) 

double precision step,newvs(10),newvs 1(1 O),tolang,tollin, 

* angdiff,lindiff( 4 ),stepmax,stepmin,stepang,steplin,maxdiff 



c 

c 

c 

c 

c 

c 

c 

c 

c 

tolang = 0.000000003 

tollin = 0.00000000001 

stepmax = 0.001 

stepmin = 0.0001 

angdiff= abs(newvsl(l) - newvs(l» 

Iindiff(l) = abs(newvsl(3) - newvs(3)) 

maxdiff = Iindiff(l) 

lindiff(2) = abs(newvsl(5) - newvs(5» 
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if (Iindiff(2).gt.maxdiff) maxdiff = Iindiff(2) 

Iindiff(3) = abs(newvs 1 (7) - newvs(7» 

if (Iindiff(3).gLmaxdiff) maxdiff = lindiff(3) 

lindiff(4) = abs(newvsl(9) - newvs(9» 

if (lindiff(4).gt.maxdiff) maxdiff = lindiff(4) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c check the diffs with the tolerance value 

c if the tolerance is exceeded change the step length 

c the smallest step length is chosen from stepang 

c and steplin 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

stepang = step 

steplin = step 

if (angdiff.lt.(0.5*tolang» stepang = 2.0*stepang 

if (angdiff.gt.(2.0*tolang» stepang = 0.5*stepang 

if (maxdiff.lt.(0.5*tolang» steplin = 2.0*steplin 

------_. 



c 

c 

c 

c 

c 

c 
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if (maxdiff.gt.(2.0*tolang» steplin = O.5*steplin 

step = stepang 

if (steplin.lt.stepang) step == steplin 

if (step.gt.stepmax) step = stepmax 

if (step.lt.stepmin) step = stepmin 

return 

end 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c to locate the cm at the end of any given time period 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

c 

c 

c 

subroutine cm(xloc,zioc,xiocd,zlocd,res,lv) 

double precision xloc,zloc,xlocd,zlocd,lv(22), 

* pi,g,rna,mb,mc,md,a,b,c,d,p,q,r,res 

commonlb l/pi,g,ma,mb,mc,md,a,b,c,d,p,q,r 

xloc == ma*lv(7) + mb*lv(ll) + mc*lv(15) + md*lv(19) 

xloc == xloc/(ma+mb+mc+md) 

~loc == ma*lv(8) + mb*lv(12) + mc*lv(16) + md*lv(20) 

zloc == zloc/(ma+mb+mc+md) 

res = sqrt(xloc**2 + zloc**2) 

xlocd = ma*lv(9) + mb*lv(l3) + mc*lv(17) + md*lv(21) 

xlocd = xlocd/(ma+mb+mc+md) 

zIocd = ma*Iv(lO) + mb*Iv(I4) + mc*lv(l8) + md*lv(22) 

zlocd = zlocd/(ma+mb+mc+md) 



c 

c 

c 

return 

end 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c subroutine nrg calculates the enrgy of the system at any 

c time during the simulation 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

c 

c 

c 

c 

subroutine nrg(energy,nrgs,lv,phi,phid,xba,zba,xs,zs,barsp 

* ,ks) 

double precision Iv(22),phi,phid,nrgs(4),energy, 

* pi,g,ma,mb,mc,md,a,b,c,d,p,q,r, 

* xba,zba,xs,zs,barsp( 4) ,ks,se,re,pe,ke,Ia,Ib,Ic,Id 

common/b I/pi,g,ma,mb,mc,md,a,b,c,d,p,q,r 

commonlb2IIa,Ib,Ic,Id 

se = O.5*barsp(l)*(zba**2) + O.5*barsp(3)*(xba**2) + 

* O.5*ks*(xs**2 + zs**2) 

nrgs(l) = se 

pe = ma*lv(8)*g + mb*lv(l2)*g + mc*lv(l6)*g + md*lv(20)*g 

nrgs(2) = pe 

ke = 0.5*ma*(lv(9)**2 + Iv(IO)**2) + 
* O.5*mb*(lv(l3)**2 + Iv(l4)**2) + 
* 0.5*mc*(lv(17)**2 + Iv(l8)**2) + 
* 0.5*md*(lv(21)**2 + Iv(22)**2) 

nrgs(3) = ke 

re = O.5*Ia*(phid**2) + O.5*Ib*(lv( 4)**2) + 
* 0.5*Ic*(lv(5)**2) + O.5*Id*(lv(6)**2) 

nrgs(4) = re 



c 

c 

c 

energy = se + pe + ke + re 

return 

end 
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c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c Subroutine locvel:-

c Defines mass centre locations of each segment and their 

c linear velocities 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

c 

c 

subroutine locvel(lv,phi,phid,alp,alpd,bet,betd,tie,tied, 

* xba,zba,xbad,zbad,xs,zs,xsd,zsd) 

double precision Iv(22),phi,phid,alp,alpd,bet,betd,tie,tied, 

* pi,g,ma,mb,mc,md,a,b,c,d,p,q,r,phi2,phi2d,phi3,phi3d,phi4, 

* phi4d,xa,za,xad,zad,xb,zb,xbd,zbd,xc,zc,xcd,zcd,xd,zd,xdd, 

* zdd,xba,zba,xbad,zbad,xs,zs,xsd,zsd,Ia,Ib,Ic,Id 

commonlb I/pi,g,ma,mb,mc,md,a,b,c,d,p,q,r 

commonIb2/1a,Ib,Ic,Id 

phi2 = alp - (pi - phi) 

phi3 = alp + bet + phi - 2.0*pi 

phi4 = alp + bet + tie + phi - 3.0*pi 

phi2d = alpd + phid 

phi3d = alpd + betd + phid 

phi4d = alpd + betd + tied + phid 

c put these solutions into array Iv(22) 

Iy(!) = phi2 

ly(2) = phi3 

ly(3) = phi4 

ly(4) = phi2d 



c 

Iv(S) = phi3d 

Iv(6) = phi4d 
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c segment one -locations 

xa = xba + a*cos(phi) 

za = zba + a*sin(phi) 

c 

c segment one - velocities 

c 

xad = xbad - a*sin(phi)*(phid) 

zad = zbad + a*cos(phi)*(phid) 

c segment two - locations 

c 

xb = xba + xs + p*cos(phi) + b*cos(phi2) 

zb = zba + zs + p*sin(phi) + b*sin(phi2) 

c segment two - velocities 

c 

xbd = xbad - p*sin(phi)*(phid) + xsd - b*sin(phi2)*(phi2d) 

zbd = zbad + p*cos(phi)*(phid) + zsd + b*cos(phi2)*(phi2d) 

c segment three - locations 

c 

xc = xba + xs + p*cos(phi) + q*cos(phi2) + c*cos(phi3) 

zc = zba + zs + p*sin(phi) + q*sin(phi2) + c*sin(phi3) 

c segment three - veolocities 

c 

xcd = xbad - p*sin(phi)*(phid) + xsd - q*sin(phi2)*(phi2d) 

* - c*sin(phi3)*(phi3d) 

zcd = zbad + p*cos(phi)*(phid) + zsd + q*cos(phi2)*(phi2d) 

* + c*cos(phi3)*(phi3d) 

c segment four - locations 

c 

xd = xba + xs + p*cos(phi) + q*cos(phi2) + r*cos(phi3) + 
* d*cos(phi4) 

zd = zba + zs + p*sin(phi) + q*sin(phi2) + r*sin(phi3) + 
* d*sin(phi4) 

c segment four - velocities 

xdd = xbad - p*sin(phi)*(phid) + xsd - q*sin(phi2)*(phi2d) 

* - r*sin(phi3)*(phi3d) - d*sin(phi4)*(phi4d) 

zdd = zbad + p*cos(phi)*(phid) + zsd + q*cos(phi2)*(phi2d) 
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* + r*cos(phi3)*(phi3d) + d*cos(phi4)*(phi4d) 

c 
c put these solutions into array Iv(22) 

c 

c 

c 

Iv(7) = xa 

Iv(8) = za 

Iv(9) = xad 

Iv(lO) = zad 

Iv(ll) = xb 

Iv(l2) = zb 

Iv(l3) = xbd 

Iv(l4) = zbd 

Iv(l5) = xc 

Iv(l6) = zc 

Iv(!7) = xcd 

Iv(!8) = zed 

Iv(!9) = xd 

Iv(20) = zd 

Iv(2!) = xdd 

Iv(22) = zdd 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Subroutine anglamtm:-

c Calculates the angular momentum of the model about the 

c neutral bar position 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

subroutine anglamtm(angmtm,moi,!v,phi,phid) 

double precision angmtm(5),moi(5),lv(22),phi,phid, 

* pi,g,ma,mb,mc,md,a,b,c,d,p,q,r, 

* Ia,Ib,Ic,Id 

common/b !/pi,g,ma,mb,mc,md,a,b,c,d,p,q,r 



340 

common!b2IIa,lb,Ic,ld 

c 

c 

c angular momentum equals the sum of 

c mi * [xi*zdi - zi*xdil + Ii*wi 

c where i is summed from 1 to 4 

c 

c 

c 

angmtm(l) = ma*(lv(7)*lv(lO) - Iv(8)*lv(9» + la*phid 

angmtm(2) = mb*(lv(lI)*lv(l4) - Iv(12)*lv(l3» + Ib*lv(4) 

angmtm(3) = mc*(lv(l5)*lv(l8) - Iv(16)*lv(l7» + 1e*lv(5) 

angmtm(4) = md*(lv(19)*lv(22) - Iv(20)*lv(21» + Id*lv(6) 

angmtm(5) = angmtm(l) + angmtm(2) + angmtm(3) + angmtm(4) 

c calculate the moment of inertia about the neutral bar 

c 

c 

c 

c 

moi(l) = la + ma*(lv(7)**2 + Iv(8)**2) 

moi(2) = Ib + mb*(lv(11)**2 + Iv(12)**2) 

moi(3) = le + mc*(lv(15)**2 + Iv(16)**2) 

moi(4) = Id + md*(lv(19)**2 + Iv(20)**2) 

moi(5) = moi(l) + moi(2) + moi(3) + moi(4) 

return 

end 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Subroutine cmangmtm:-

c Calculates the angular momentum of the model about the 

c mass centre position 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

subroutine cmangmtm(amcm,xloc,zloc,xlocd,zlocd,lv,phi,phid) 

double precision amcm(5),xloc,zloc,xlocd,zlocd,lv(22),phi, 

* phid,mk,lk,ak, 



c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

* pi,g,ma,mb,mc,md,a,b,c,d,p,q,r, 

* Ia,Ib,Ic,Id 
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common/b I/pi,g,ma,mb,mc,md,a,b,c,d,p,q,r 

common/b2/1a,Ib,Ic,Id 

mk=ma-5.0 

Ik = 0.205 

ak = 0.309 

amcm(l) = Ik*phid + mk*((lv(7)-xloc)*(lv(lO)-zlocd)­

* (lv(8)-zloc)*(lv(9)-xlocd» 

amcm(2) = Ib*lv(4) + mb*((lv(lI)-xloc)*(lv(14)-zlocd)­

* (lv(12)-zloc)*(lv(13)-xlocd» 

amcm(3) = Ic*lv(5) + mc*((lv(l5)-xloc)*(lv(18)-zlocd) -

* (lv( 16)-zloc)*(lv(17)-xlocd» 

amcm(4) = Id*lv(6) + md*((lv(l9)-xloc)*(lv(22)-zlocd)­

* (lv(20)-zloc)*(lv(21)-xlocd» 

amcm(5) = amcm(l) + amcm(2) + amcm(3) + 
* amcm(4) 

return 

end 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Subroutine forces:-

c Calculate rz 1, rx 1, rz2, rx2, tor! and tor2 and tor3 

c and stores them in array rxz(8) and torq(3) 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

subroutine forces(rxz,torq,solux,lv,phi2dd,phi3dd,phi4dd, 



c 

c 

c 

c 
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* xba, 

* zba,xs,zs,barsp,dmps,ks,alpdd,betdd,tiedd,phi,phid) 

double precision rxz(8),torq(3),solux(5),lv(22),phi2dd, 

* phi3dd, 

* phi4dd,xba,zba,xs,zs,barsp(4),dmps,ks,alpdd,betdd,tiedd, 

* phi, 

* phid,pi,g,ma,mb,mc,md,a,b,c,d,p,q,r,Ia,Ib,Ic,ld 

commonlb I/pi,g,ma,mb,mc,md,a,b,c,d,p,q,r 

commonIb2Ila,Ib,Ic,Id 

c calculate phi2dd to phi4dd 

c 

phi2dd = solux(l) + alpdd 

phi3dd = solux(l) + alpdd + betdd 

phi4dd = solux(l) + alpdd + betdd + tiedd 

c 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c calculate rz4 the vertical force at the knees and store in 

c rxz(8) 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

rxz(8) = md*g + md*(solux(3) + p*cos(phi)*solux(l)-

* p*sin(phi)*(phid**2) + solux(5) + q*cos(lv(l»*phi2dd -

* q*sin(lv(l»*(Iv(4)**2) + r*cos(lv(2»*phi3dd -

* r*sin(lv(2»*(lv(5)**2) + d*cos(lv(3»*phi4dd -

* d*sin(lv(3»*(Iv(6)**2» 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c calculate rx4 the horizontal force at the knees and store in 

c rxz(7) 

c 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

rxz(7) = md*(solux(2) - p*sin(phi)*solux(l) - p*cos(phi)* 

* (phid**2) + solux(4) - q*sin(lv(I))*phi2dd - q*cos(lv(l))* 

* (Iv(4)**2) - r*sin(lv(2))*phi3dd - r*cos(lv(2))*(lv(5)**2) -

* d*sin(lv(3))*phi4dd - d*cos(lv(3))*(Iv(6)**2)) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c calculate tor3 from the moment equationnd stor in torq(3) 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

torq(3) = Id*phi4dd + rxz(8)*d*cos(lv(3)) -

* rxz(7)*d*sin(lv(3)) 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c calculate rz3 the vertical force at the hips and store it 

c in rxz(6) 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

rxz(6) = mc*g + mc*(solux(3) + p*cos(phi)*solux(l) -

* p*sin(phi)*(phid**2) + solux(5) + q*cos(lv(l))*phi2dd 

* - q*sin(lv(1))*(Iv(4)**2) + c*cos(lv(2))*phi3dd-

* c*sin(lv(2))*(lv(5)**2)) + rxz(8) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c calculate rx3 the horizontal force at the hips and store it 

c in rxz(5) 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

rxz(5) = mc*(solux(2) - p*sin(phi)*solux(l) - p*cos(phi)* 



c 

c 
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* (phid**2) + solux(4) - q*sin(lv(1»*phi2dd - q* 

* cos(lv(I»*(lv(4)**2) - c*sin(lv(2»*phi3dd-

* c*cos(lv(2»*(lv(5)**2» + rxz(7) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c calculate tor2 the torque at the hips from the moment 

c equation about the mass centre of the thigh and store it 

c it in torq(2) 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

torq(2) = Ic*phi3dd + torq(3) + rxz(8)*(r-c)*cos(lv(2» + 

* rxz(6)*c*cos(lv(2» - rxz(7)*(r-c)*sin(lv(2» -

* rxz(5)*c*sin(lv(2» 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c calculate rz2 the vertical force at the shoulders and store it 

c in rxz(4) 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

rxz(4) = mb*(solux(3) + p*cos(phi)*solux(l) -

* p*sin(phi)*(phid**2) + solux(5) + b*cos(lv(1»*phi2dd 

* - b*sin(lv(I»*(lv(4)**2» + mb*g + rxz(6) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c calculate rx2 the horizontal force at the shoulders and store 

c it in rxz(3) 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

rxz(3) = mb*(solux(2) - p*sin(phi)*solux(l) - p*cos(phi)* 

* (phid**2) + solux(4) - b*sin(lv(l»*phi2dd - b* 



c 

c 

* cos(lv(l»*(lv(4)**2» + rxz(5) 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c calculate tor! the torque at the shoulders and store it in 

c torq(l) 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

torq(l) = Ib*phi2dd + torq(2) + rxz(6)*(q-b)*cos(Jv(l) + 
* rxz(4)*b*cos(lv(l» - rxz(5)*(q-b)*sin(lv(l»-

* rxz(3)*b*sin(Jv(l» 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c calculate rz 1 the vertical force at the hands and store it in 

c rxz(2) 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

rxz(2) = ma*(solux(3) + a*cos(phi)*solux(l) -

* a*sin(phi)*(phid**2» 

* + ma*g + rxz(4) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c calculate rx 1 the horizontal force at the hands and store 

c it in rxz(l) 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

rxz(l) = ma*(solux(2) - a*sin(phi)*solux(l) - a*cos(phi)* 

* (phid**2» + 

* rxz(3) 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

return 
end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Subroutine flexsh3d:-
c Calculates the torque limit at the shoulder when the 
c shoulder angle is closing (i.e. moving towards the trunk) 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

subroutine flexsh3d(tlt,theta,thetad) 

c 
double precision tlt,theta,thetan,thetad,thetand,cvx(9) 

c 

pi = 3.1415926536dO 

c 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c muscle data defines arms above the head as 0 
c and arms by the sides as 180 degrees. Therefore an 
c adjustment is required 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

c 

thetan = theta 

thetan = thetan - pi 

thetand = thetad 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c the muscle data is in the range of 

c 
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c average angle range used: 25.6 to 97.3 degrees 

c 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 
c 

if (thetan.lt.0.44700) then 

thetan = 0.44700 

endif 

if (thetan.gt.1.69855) then 

thetan = 1.69855 

endif 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Is the action concentric flexion or eccentric flexion? 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

cvx(l) = «thetan**2)*-156.3815) + thetan*332.4548 + 

* 119.0235 

cvx(2) = «thetan**2)*155.4236) + thetan*443.721O + 

* 872.7217 

cvx(3) = «thetan**2)*-0.5740) + thetan*5.9575 + 2.2015 

cvx(4) = «thetan**2)*1.0083) - thetan*1.l174 + 0.3095 

cvx(5) = «thetan**2)*424.043I) - thetan*808.5071 + 
* 392.6954 

cvx(6) = «thetan**2)*0.251O) + thetan*0.2276 + 0.1006 

if (thetand.ge.O) then 

cvx(7) = cvx(l)*exp(-cvx(5)*thetand) + cvx(2) 

cvx(8) = exp(-cvx(5)*thetand) + cvx(3) 

cvx(9) = I + cvx(4)*exp(cvx(6)*thetand) 

endif 

if (thetand.1t.O) then 

cyx(7) = cvx(2)*exp(cyx(5)*thetand) + cvx(l) 

CYx(8) = cyx(3)*exp(cvx(5)*thetand) + 1 



c 

c 

c 

c 
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cvx(9);: 1 + cvx(4)*exp(cvx(6)*thetand) 

endif 

tIt;: cvx(7)/(cvx(8)*cvx(9» 

tIt;: 2.0*t1t 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c Subroutine extsh3d:-

c Calculates the torque limit at the shoulder when the 

c shoulder angle is opening (i.e. moving away from the trunk) 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

subroutine extsh3d(tlt,theta,tbetad) 

c 
double precision tlt,theta,thetan,thetad,thetand,cvx(9) 

c 

pi;: 3.1415926536dO 

c 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c muscle data defines arms above the head as 180 

c and arms by the sides as 0 degrees. Therefore an 

c adjustment is required 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

thetand ;: -thetad 

thetan ;: theta 

thetan ;: 2*pi - thetan 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c data is in the angle range of: 101.69 to 153.15 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

if (thetan.lt.1.77483) then 

thetan = 1.77483 

endif 

if (thetan.gt.2.67297) then 

thetan = 2.67297 

endif 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Is the action concentric f1exion or eccentric f1exion? 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

cvx(l) = ((thetan**2)*-43.4818) + thetan* 100. 1297 + 141.7587 

cvx(2) = ((thetan**2)*-186.9144) + thetan*686.8814 - 16.6832 

cvx(3) = ((thetan**2)*2.3679) - thetan*8.2293 + 10.6123 

cvx(4) = ((thetan**2)*0.0287) - thetan*0.0403 + 0.0297 

cvx(5) = «thetan**2)*-221.0725) + thetan*388.99 + 540.8123 

cvx(6) = ((thetan**2)*1.0362) - thetan*3.0372 + 2.7924 

if (thetand.ge.O) then 

cvx(7) = cvx(l)*exp(-cvx(5)*thetand) + cvx(2) 

cvx(8) = exp( -cvx(5)*thetand) + cvx(3) 

cvx(9) = 1 + cvx(4)*exp(cvx(6)*thetand) 

endif 

if (thetand.lt.O) then 

cvx(7) = cvx(2)*exp(cvx(5)*thetand) + cvx(l) 

cvx(8) = cvx(3)*exp(cvx(5)*thetand) + 1 

cvx(9) = 1 + cvx(4)*exp(cvx(6)*thetand) 

endif 



c 

c 

c 

c 

tit = cvx(7)/(cvx(8)*cvx(9» 
tit = 2.0*tlt 

return 
end 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c Subroutine f1exhp3d:-
c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

subroutine f1exhp3d(tlt,theta,thetad,torx) 

double precision t1t,theta,thetan,thetad,thetand,cvx(9), 

* torx,veloc 

pi = 3.l415926536dO 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c The hip is fully flexed at 180 degrees, therefore an 
c adjustment is required 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

thetand = thetad 
veloc = thetad 

thetan = theta 
thetan = thetan - pi 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c muscle data is in the range: 28.88 to 90.42 degrees 
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c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

if (thetan.lt.0.48158) then 

thetan = 0.48158 

endif 

if (thetan.gt.1.50778) then 

thetan = 1.50778 

endif 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c Is the action concentric flexion or eccentric flexion? 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

cvx(l) = «thetan**2)*-178.0374) + thetan*271.0765 + 

* 210.1572 

cvx(2) = «thetan**2)*6.8391) - thetan*9.7552 + 5.1818 

cvx(3) = «thetan**2)*0.0806) + thetan*-0.1067 + 0.0427 

cvx(4) = «thetan**2)*0.0361) - thetan*0.0634 + 0.0281 

cvx(5) = «thetan**2)*167.0400) - thetan*136.5402 + 39.2337 

cvx(6) = «thetan**2)*-3.2439) + thetan*6.6142 - 0.9990 

if (thetand.ge.O) then 

cvx(7) = cvx(1)*exp(-cvx(5)*thetand) + cvx(2) 

cvx(8) = exp( -cvx(5)*thetand) + cvx(3) 

cvx(9) = 1 + cvx(4)*exp(cvx(6)*thetand) 

endif 

if (thetand.lt.O) then 

cvx(7) = cvx(2)*exp(cvx(5)*thetand) + cvx(l) 

cvx(8) = cvx(3)*exp(cvx(5)*thetand) + 1 

cvx(9) = 1 + cvx(4)*exp(cvx(6)*thetand) 

endif 

tit = cvx(7)/(cvx(8)*cvx(9» 



c 

c 

c 

tit = 2.0*t1t 

return 
end 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Subroutine exthp3d:-

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

c 

subroutine exthp3d(tlt,theta,thetad,torx) 

double precision tlt,theta,thetan,thetad,thetand,cvx(9), 

* torx, veloc 

pi = 3. 1415926536dO 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c The hip is fully extended at 180 degrees, therefore an 
c adjustment is required 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

thetand = thetad 
veloc = thetad 

thetan = theta 
thetan = 2*pi - thetan 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c muscle data in the range: 121.47 to 180.85 degrees 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 



c 

c 

c 

if (thetan.1t.2.02556) then 

thetan = 2.02556 

endif 

if (thetan.gt.3.01573) then 

thetan = 3.01573 

endif 
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c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Is the action concentric flexion or eccentric flexion? 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

cvx(l) = «thetan**2)*-152.5566) + thetan*340.9290 + 

* 565.7294 

cvx(2) =' «thetan**2)*-4.8751) + thetan*10.6016 + 27.3913 

cvx(3) = «thetan**2)*0.2779) + thetan*-1.2676 + 1.5123 

cvx(4) = «thetan**2)*0.0082) - thetan*0.0327 + 0.0332 

cvx(5) = «thetan**2)*-74.6758)+ thetan*559.9121 - 834.8059 

cvx(6) = «thetan**2)*-0.0393) - thetan*2.6927 + 8.8912 

if (thetand.ge.O) then 

cvx(7) = cvx(1)*exp(-cvx(5)*thetand) + cvx(2) 

cvx(8) = exp( -cvx(5)*thetand) + cvx(3) 

cvx(9) = 1 + cvx(4)*exp(cvx(6)*thetand) 

endif 

if (thetand.1t.O) then 

cvx(7) = cvx(2)*exp(cvx(5)*thetand) + cvx(1) 

cvx(8) = cvx(3)*exp(cvx(5)*thetand) + 1 

cvx(9) = 1 + cvx(4)*exp(cvx(6)*thetand) 

endif 

tit = cvx(7)/(cvx(8)*cvx(9» 

tit = 2.0*tlt 



c 

c 

return 

end 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Subroutine varang:-

c For t < albst varang leaves the value of alp unchanged 

c For albst < t < albft alp=angq 

c For t > albft alp=albfa 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

c 

subroutine varang(f,cc,t) 

double precision f,cc( 4 ),t,fO,fl ,to,tl ,angq 

fO = cc(l) 

f1 = cc(2) 

to = cc(3) 

tl = cc(4) 

if (t.lttO) go to 500 

if (t.lttl) go to 200 

go to 500 

200 f = angq(fO,fl,tO,tl,t) 

500 continue 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Subroutine angq:-

c angq is the monotonic quintic on the interval to, t 1. Which 

c takes end-point values fO,fl and which has zero first and 

c second derivatives at the end points. 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 



c 

c 
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double precision function angq(fO,fl,tO,tl,t) 

double precision fO,fl,tO,tl,t,z 

Z = (t-tO)/(tl-tO) 

angq = fO + (fl-fO)*(z*z*z)*«6*z*z) - (l5*z) + 10) 

return 

end 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Subroutine vdang:-

c vdang defines derivatives in the same way that varang defines 

c functions 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

subroutine vdang(f,cc,t) 

double precision f,cc(4),t,fO,fl,tO,tl,dangq 

fO = cc(l) 

fl = cc(2) 

to = cc(3) 

tl = cc(4) 

f=O.O 

if (t.1t.t0) go to 500 

if (t.1t.tI) go to 200 

go to 500 

200 f = dangq(fO,fl,tO,tl,t) 

500 continue 

c 

c 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Function dangq:-

c dangq is the derivative ofthe quintic angq 

c 
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

double precision function dangq(fO,fl,tO,tl,t) 

double precision fO,fl ,to,tl,t,z 

z = (t-tO)/(tl-tO) 

dangq = ((fl-fO)*((z*z*30)*(z-1)*(z-I»)/(tl-tO) 

return 

end 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c Function d2angq:-

c d2angq is the second derivative of the quintic angq 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

subroutine d2ang(f,cc,t) 

double precision f,cc(4),t,fO,fl,tO,tJ,ddangq 

fO = cc(l) 

fl = cc(2) 

to = cc(3) 

tl = cc(4) 

f=O.O 

if (t.1t.t0) go to 500 

if (t.1 t.t1) go to 200 

go to 500 

200 f = ddangq(fO,fl,tO,tl,t) 

500 continue 

return 

end 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Function ddangq:-

c ddangq is the second derivative of the quintic angq 
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c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

double precision function ddangq(fO,fl,tO,tl,t) 

double precision fO,fl,tO,tl,t,z 

z = (t-tO)/(tl-tO) 

ddangq = ((fl-fO)*(120*z*(z-O.5)*(z-1)))/((tl-tO)*(tl-tO)) 

return 

end 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Subroutine angO:-

c angO calculates the angle from its sin and cosine and sets 

c initial value a for use in csang 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

c 

c 

subroutine angO(a,aO,sa,ca) 

double precision a, aO, sa, ca, pi 

intrinsic acos 

pi = 3.1415926536dO 

if (ca.gt.1.1 dO.or.ca.lt.-1.1 dO) ca=sign(1.0dO,ca) 

a=acos(ca) 

if (sa.lt.O.OdO) a = -a 

aO=a 

return 

end 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c Subroutine csang:-

c csang calculates angle a from its cosine ca using the 
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c previous value aO and the sign of sin (a) 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c 

c 

c 

c 

c 

c 

c 

subroutine csang(a,aO,sa,ca) 

double precision a,sa,ca,aO,saO,caO,b,sb,cb 

intrinsic acos,cos,sin,sign,sqrt 

if (ca.gt.l.1dO.or.ca.lt.-l.ldO) ca =sign(l.OdO,ca) 

if (l.O-ca**2.ge.O.OdO) sa=sign(sqrt(l.O-ca**2),sa) 

caO=cos( aO) 

saO=sin( aO) 

cb=ca*caO+sa*saO 

sb=sa*caO-ca*saO 

if (cb.gt.1.OdO.or.cb.lt.-1.OdO) cb=sign( l.OdO,cb) 

b=acos(cb) 

b=sign(b,sb) 

a=aO+b 

aO=a 

return 

end 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
c subroutine solve( x, a, b, mm, m, n ) obtains the least squares 

c solution to the matrix equation ax=b. 

c 

c parameters: 

c mm : first dimension of array a as declared in the 

c calling program 

cm: number of equations 

c n : number of unknowns 

ca: dp array of dimension (mm,nn) where: 

c mm>m+l andnn>n 



c 

c 

c 

c 

c 

c 
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a is overwritten on exit 

b : dp array of dimension at least n 

on entry b contains the rhs of the equation 

on exit b contains the residuals 

x : dp array of dimension at least n 

on exit x contains the solution vector 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c The least squares calculation. The algorithm used is based 

c on Algorithms 3.8 and 3.10 in: G. W. Stewart's "Introduction to 

c Matrix Computations", Academic Press, 1973. 

c 

c This algorithm, unlike the conventional normal equations approach, 

c is virtually bomb proof, allowing models with a large number of 

c degrees of freedom to be used without worry. 

c 

c This section essentially factors the matrix A (algorithm 3.8) 

c 

c 

return 

end 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c end end end end end end end end end end end end end end 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
SUBROUTINE SA(N,X,MAX,RT,EPS,NS,NT,NEPS,MAXEVL,LB,UB,C,IPRINT, 

1 ISEEDl,ISEED2,T,VM,XOPT,FOPT,NACC,NFCNEV,NOBDS,IER, 

2 FSTAR,XP,NACP) 

c Version: 3.2 

c Date: 1122/94. 

c Differences compared to Version 2.0: 

c 1. If a trial is out of bounds, a point is randomly selected 

c from LB(i) to UB(i). Unlike in version 2.0, this trial is 

c evaluated and is counted in acceptances and rejections. 

c All corresponding documentation was changed as well. 
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c Differences compared to Version 3.0: 

c 1. If VMCi) > (UB(i) - LB(i)), VM is set to VBCi) - LB(i). 

c The idea is that if T is high relative to LB & VB, most 

c points will be accepted, causing VM to rise. But, in this 

c situation, VM has little meaning; particularly if VM is 

c larger than the acceptable region. Setting VM to this size 

c still allows all parts of the allowable region to be selected. 

c Differences compared to Version 3.1: 

c 1. Test made to see if the initial temperature is positive. 

c 2. WRITE statements prettied up. 

c 3. References to paper updated. 

c 

c Synopsis: 

c This routine implements the continuous simulated annealing global 

c optimization algorithm described in Corana et al.'s article 

c "Minimizing Multimodal Functions of Continuous Variables with the 

c "Simulated Annealing" Algorithm" in the September 1987 (vol. 13, 

c no. 3, pp. 262-280) issue of the ACM Transactions on Mathematical 

c Software. 

c 

return 

end 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
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APPENDIX 2 

Written consent fonn signed by the subject 

Mean and standard deviations of ADC counts recorded 

during calibration of the goniometer 

Ranges of motion during trials on the isokinetic 

dynamometer 

The eighteen parameters for each muscle model 
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Appendix 2b 

Written consent form signed by the subject 

PURPOSE 

PROCEDURES 

To obtain torque, angle and angular velocity data from a 

gymnast performing shoulder and hip flexions and 

extensions using an isokinetic dynamometer. In order to 

develop and evaluate a mathematical model of a gymnast 

swinging on the high bar. 

An isokinetic dynamometer will be used to collect the 

torque, angle and angular velocity data. In addition a 

goniometer will be used to confirm/correct the angle data 

collected from the dynamometer. A number of trials will 

be requested for each joint action. These will include 

variations in the angular velocity of the joint action and a 

number of repeat measurements. Suitable breaks will be 

allowed between trials to minimise fatigue and boredom. 

A video camera will be used as a visual log of what 

occurred. 

QUESTIONS The researcher will be pleased to answer any questions 

which you may have at any time. 

WITHDRAWAL You are free to withdraw from the study at any time 

whatever reason without prejudice. 

CONFIDENTIALITY Your identity will remain confidential in any material 

resulting from this work. 

I have read and understood the information on this form and agree to participate in this 

study. As far as I am aware I do not have any injury nor infirmity which would be 

affected by the procedures outlined. 

Name ........................................................... Name ........................................................ . 

Signed ......................................... (gymnast) Signed ........................................... (parent) 

In the presence of: 

Name ........................................ .. 

Signed ............................................. (coach) Date ........................................................ .. 
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Appendix 2b 

Mean and standard deviations of ADC counts recorded during calibration of the 

goniometer 

angle adc count standard 
[0] (mean) deviation 

0.0 8598.4 30.00 

22.5 7707.8 42.93 

45.0 6909.0 45.23 

67.5 6145.0 43.17 

90.0 5402.1 42.08 

112.5 4431.4 57.00 

135.0 3522.1 61.45 

180.0 2153.1 62.23 

- 22.5 9549.3 36.73 

-45.0 10336.7 35.30 

- 67.5 10990.5 35.01 

- 90.0 11798.4 59.65 

- 112.5 12666.0 59.31 

- 135.0 13460.1 59.61 

- 180.0 14973.2 56.57 
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Appendix 2c 

Ranges of motion during trials on the isokinetic dynamometer 

Shoulder extension 

angle from to range 
(0) (0) (0) 

crank 48.0 173.0 125.0 

isokinetic 
crank 

minimum 71.4 116.1 44.7 

average 62.5 132.6 70.1 

maximum 49.9 154.2 104.3 

isokinetic 
joint 

minimum 111.4 140.7 29.3 

average 101.7 153.2 51.5 

maximum 96.4 170.4 74.0 

shoulder flex ion 

angle from to range 
(0) n (0) 

crank 5.0 125.0 120.0 

isokinetic 
crank 

minimum 24.8 89.8 65.8 

average 12.2 114.1 101.9 

maximum 5.3 125.9 120.6 

isokinetic 
joint 

minimum 39.4 76.2 36.8 

average 24.9 97.3 72.4 

maximum - 3.6 115.3 118.9 
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hip extension 

angle from to range 
(0) (0) (0) 

crank 68.0 182.0 114.0 

isokinetic 
crank 

minimum 95.5 169.0 73.5 

average 77.2 175.9 98.7 

maximum 68.1 182.3 114.2 

isokinetic 
joint 

minimum 131.4 169.3 37.9 

average 121.5 180.9 59.4 

maximum 111.1 190.8 79.7 
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Appendix 2d 

The eighteen parameters for each muscle model 

hip hip shoulder shoulder 
parameter extension flexlOn extension flex ion 

Xl - 152.56 - 178.04 - 43.48 - 156.38 

x2 340.93 271.08 100.13 332.45 

X3 565.73 210.16 141.76 119.02 

x 4 - 4.88 6.84 - 186.91 155.42 

Xs 10.60 - 9.76 686.88 443.72 

X6 27.39 5.18 - 16.68 872.72 

x 7 0.28 0.08 2.37 - 0.57 

X8 - 1.27 - 0.11 - 8.23 5.96 

X9 1.51 0.04 10.61 2.20 

xlO 0.01 0.04 0.03 1.01 

xll - 0.03 -0.06 -0.04 - 1.12 

x12 0.03 0.03 0.03 0.31 

x13 -74.68 167.04 - 221.07 424.04 

Xl4 559.91 - 136.54 388.99 - 808.51 

XIS - 834.81 39.23 540.81 392.70 

x l6 - 0.04 - 3.24 1.04 0.25 

xl? - 2.69 6.61 - 3.04 0.23 

Xl8 8.89 -1.00 2.79 0.10 
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APPENDIX 3 

Anthropometric data taken from subjects jbO 1 and tvO 1 

Written consent form signed by the subject 

Three-dimensional locations of the 28 calibration markers 

Calibration data obtained from the loading of the load cell 

Average ADC counts for vertical loading 

Average ADC counts for horizontal loading 

Average ADC counts for vertical loading with two points 

of support 
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Appendix 3a 

Anthropometric measurements taken from subjectjbOl 

ANTHROPOMETRIC MEASUREMENTS FOR SEGMENTAL INERTIA PARAMETERS 

NAME IL __ ;:..ib_OI __ ..J1 AGEi 20 

MEASURER LI --=1:.:.,P ___ --' 

HEIGHT I 1637 I DATE I 11109196 

WEIGHT 1~=6=2'::8 =~ 
All measurements in millimetres 

TORSO 
level 

length 

perimeter 

width 

depth 

LEFT ARM 

hip umbilicus ribcage nipple shoulder neck -. nose ear 

level shoulder midarm elbow forearm wrist -.. thumb knuckle nails 

length 

perimeter 

width 

RIGlIT ARM 

1 0 

1 362 291 

231 300 485 

256 270 171 

57 

0 55 87 178 

252 218 112 

101 82 48 

level shoulder midarm elbow forearm wrist -.. thumb knuckle nails 

length 

perimeter 

width 

LFETLEG 
level 

length 

perimeter 

width 

depth 

RIGHT LEG 
level 

length 

perimeter 

width 

depth 

0 

372 

hip 

I 0 I 
1 

hip 

I 0 

226 298 

290 264 260 

crotch midthigh knee 

99 372 1 
515 435 321 1 

crotch mldthigh knee 

101 375 

527 445 326 

468 0 57 98 185 

169 250 197 113 

58 101 80 47 

calf ankle -+ heel arch 

496 1 774 101 27 1 
347 1 202 I I 293 I 230 

110 

ealf ankle -+ heel arch 

498 778 101 27 I 
347 202 I I 291 I 229 

111 

top 

ball 

132 

222 

90 

ball 

130 

219 

85 

nails 

194 

127 

50 

nails 

195 

124 

49 
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Appendix 3a 

Anthropometric measurements taken from subject tvOl 

ANTHROPOMETRIC MEASUREMENTS FOR SEGMENTAL INERTIA PARAMETERS 

NAMEI tvOl I AGEI 22 HEIGHTIL-_1_67_5_ .... 1 DATE I 26/07/95 

MEASURER I M.H WEIGHT I 65.0 I 

All measurements in millimetres 

TORSO 
level 

length 

perimeter 

width 

depth 

LEFT ARM 
level 

length 

perimeter 

width 

RIGlIT ARM 
level 

length 

perimeter 

width 

LFETLEG 
level 

length 

perimeter 

width 

depth 

RIGHT LEG 
level 

length 

perimeter 

width 

depth 

hip umbilicus ribcage nipple shoulder neck ---+ nose ear 

shoulder midann elbow forearm wrist --+ thumb knuckle nails 

0 250 314 509 0 55 92 180 

395 285 270 280 175 250 209 115 

59 99 87 49 

shoulder midann elbow forearm wrist --+ thumb knuckle nails 

I 0 I I 258 I 323 520 0 53 92 180 

I 387 I 289 I 280 I 275 186 243 208 113 

61 100 89 49 

hip crotch midthigh knee calf ankle ---+ heel 
~~~=. .--.~~~-.~~, 

o ~ ill ~ mOD 
arch 

537 476 329 350 203 310 240 

119 

hip crotch midthigh knee calf ankle --+ heel arch 

I 0 I 63 I I 411 I 555 I 805 10 28 I 

L 538 I 485 I 336 I 365 I 205 I 316 I 232 

120 

top 

ball 

140 

239 

100 

ball 

140 

240 

101 

nails 

202 

147 

65 

nails 

202 

148 

62 
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Appendix 3b 

Written consent form signed by the subject 

PURPOSE 

PROCEDURES 

QUESTIONS 

WITHDRAWAL 

To obtain anthropometric and kinematic data of a 

gymnast during giant circles on high bar. In order to 

develop and evaluate a mathematical model of this 

activity. 

Video cameras will be used to collect information during 

the performance of the giant circles on high bar, in 

addition forces and torques at the bar will be measured 

using strain gauges bonded to the high bar. A number of 

trials will be requested, with suitable breaks to minimise 

fatigue and boredom. Anthropometric data will be 

collected using tape measures and specialist 

anthropometers. 

The researcher will be pleased to answer any questions 

which you may have at any time. 

You are free to withdraw from the study at any time 

whatever reason without prejudice. 

CONFIDENTIALITY Your identity will remain confidential in any material 

resulting from this work. 

I have read and understood the information on this form and agree to participate in this 

study. As far as I am aware I do not have any injury nor infirmity which would be 

affected by the procedures outlined. 

Name ........................................................... Name ........................................................ . 

Signed ......................................... (gymnast) Signed ........................................... (parent) 

In the presence of: 

Name ......................................... . 

Signed ............................................. (coach) Date ......................................................... . 
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Appendix 3c 

Three-dimensiona11ocations of the 28 calibration markers 

Marker Co-ordinate Cm) 

X y Z 

1 - 0.500 - 0.500 0.596 

2 - 0.500 - 0.500 3.171 

3 - 0.500 - 0.500 4.660 

4 - 0.500 - 2.000 0.596 

5 - 0.500 - 2.000 3.171 

6 - 0.500 - 2.000 4.660 

7 0.500 - 2.000 0.596 

8 0.500 - 2.000 3.171 

9 0.500 - 2.000 4.660 

10 0.500 - 0.500 0.596 

11 0.500 - 0.500 3.171 

12 0.500 - 0.500 4.660 

13 0.500 0.500 0.596 

14 0.500 0.500 3.171 

15 0.500 0.500 4.660 

16 0.500 2.000 0.596 

17 0.500 2.000 3.171 

18 0.500 2.000 4.660 

19 - 0.500 2.000 0.596 

20 - 0.500 2.000 3.171 

21 - 0.500 2.000 4.660 

22 - 0.500 0.500 0.596 

23 - 0.500 0.500 3.171 

24 - 0.500 0.500 4.660 

25 1.245 0.000 0.513 

26 1.245 0.000 2.322 

27 - 1.245 0.000 0.513 

28 - 1.245 0.000 2.322 
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Calibration data obtained from the loading of the load cell 

load amplifier micro-strain 

[kN] reading 

0.0 - 500 0 

0.5 - 486 14 

1.0 - 475 25 

1.5 -462 38 

2.0 -450 50 

2.5 - 437 63 

3.0 - 426 74 

3.5 - 415 85 

4.0 - 403 97 

4.5 - 392 108 

5.0 - 380 120 

5.5 -369 131 

6.0 - 358 142 

6.5 -347 153 

7.0 - 335 . 165 

7.5 - 321 179 

8.0 - 312 188 
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Average ADC counts for vertical loading 

trial load amplifier ADC counts comments 

[kN] reading chan1 chan3 

ca1vOOc 0.0 NA 28 18 no chains 

calv01c NA - 500 - 164 - 176 loops and chains 

calv05c 0.5 - 486 -2648 - 2642 loading 

calvlOc 1.0 -475 -4670 -4658 

calv15c 1.5 -462 -7188 -7178 

calv20c 2.0 -450 - 9254 - 9251 

calv25c 2.5 - 437 - 11397 -11386 

calv30c 3.0 -426 - 13069 - 13049 

calv30cu 3.0 -426 - 13415 - 13400 unloading 

calv25cu 2.5 - 437 - 11859 -11850 

calv20cu 2.0 - 450 - 9771 -9786 

calv15cu 1.5 -462 -7664 -7669 

calvlOcu 1.0 -475 - 5185 - 5186 

calv05cu 0.5 - 486 - 3038 - 3037 

calv01cu NA - 500 - 211 - 209 loops and chains 

calvOOcu 0.0 NA 12 6 no chains 

calv01d NA - 500 - 210 - 215 loops and chains 

calv05d 0.5 - 486 - 2719 - 2698 loading 

calvlOd 1.0 -475 - 4809 - 4787 

calv15d 1.5 -462 -7258 -7205 

calv20d 2.0 - 450 - 9354 -9295 

calv25d 2.5 -437 - 11412 -11337 

calv30d 3.0 - 426 - 13015 - 12945 

calv25du 2.5 -437 - 11765 -11686 

calv20du 2.0 - 450 - 9746 - 9686 

calv15du 1.5 - 462 -7703 -7657 

calv10du 1.0 -475 - 5145 - 5125 

calv05du 0.5 - 486 - 2997 - 2984 

calv01du NA - 500 - 299 - 306 loops and chains 

ca1vOOdu 0.0 NA 27 14 no chains 
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Average ADC counts for horizontal loading 

trial load amplifier ADC counts comments 

[kN] reading chanl chan3 

calhOOc 0.0 NA 49 51 no chains 

calh05c 0.5 - 486 - 2879 - 2934 loading 

calhlOc 1.0 - 475 - 5164 - 5152 

calh15c 1.5 - 462 -7718 -7766 

calh20c 2.0 - 450 - 9882 - 9863 

calh25c 2.5 - 437 - 12109 -12047 

calh20cu 2.0 - 450 - 10215 - 10168 unloading 

calh15cu 1.5 - 462 - 8231 - 8218 

calhlOcu 1.0 - 475 - 5444 - 5494 

calh05cu 0.5 - 486 - 3152 - 3165 

calhl0d 1.0 - 475 - 5240 - 5225 loading 

calh15d 1.5 - 462 -7862 -7830 

calh20d 2.0 - 450 - 9879 - 9800 

calh25d 2.5 -437 - 12016 -11985 

calh20du 2.0 - 450 - 10380 - 10369 unloading 

calh15du 1.5 - 462 - 8262 - 8281 

calhlOdu 1.0 - 475 - 5542 - 5573 

calh05du 0.5 - 486 - 3098 - 3115 

calhOOdu 0.0 NA 215 230 no chains 

. 
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Average ADC counts for vertical loading with two points of support 

trial 

calv20l 

calv205 

calv210 

calv215 

calv220 

calv225 

calv220u 

calv215u 

calv210u 

calv205u 

calv20lu 

calvbaru 

calv200u 

load 

[kN] 

NA 

0.5 

1.0 

1.5 

2.0 

2.5 

2.0 

1.5 

1.0 

0.5 

NA 

0.0 

amplifier 

reading 

- 500 

- 486 

- 475 

- 462 

- 450 

- 437 

- 450 

- 462 

- 475 

- 486 

- 500 

- 500 

NA 

ADC counts 

chanl chan3 

- 387 -431 

- 2896 - 2914 

- 4918 -4949 

-7359 -7415 

- 9508 - 9576 

- 11601 -11679 

- 9847 - 9891 

-7800 -7855 

- 5348 - 5390 

- 3226 - 3260 

- 483 -492 

-79 -79 

13 17 

comments 

loops and chains 

loading 

unloading 

loops and chains 

second bar only 

no chains 
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APPENDIX 4 

Eleven segment inertia data for subjectjbOI 

Eleven segment inertia data for subject tv01 
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Appendix4a 

Eleven segment inertia data for subject jbO 1 

SEGMENTAL INERTIA PARAMETER VALUES 

UNITS: MASS IN KG 

DISTANCE IN METRES 

MOMENT OF INERTIA IN KG*M**2 

FORMAT AND SEQUENCE OF DATA PRESENTATION 

SEGMENT NAME 

MASS, DISTANCE OF MASS CENTRE FROM PROXIMAL JOINT, 

SEGMENT LENGTH 

PRINCIPAL MOMENTS OF INERTIA 

SUBJECT: jbOl 

HEADH 

4.751 0.130 0.259 

0.027 0.027 0.014 

TRUNKPTC 

28.815 0.277 0.569 

0.856 0.903 0.256 

UPPER ARM lA 

1.791 0.102 0.231 

0.009 0.009 0.002 

UPPER ARM 1B 

1.801 0.099 0.226 

0.009 0.009 0.002 

FOREARM2A 

1.252 0.109 0.254 

0.006 0.006 0.001 

HAND3A 

0.448 0.071 0.178 

0.001 0.001 0.000 

FOREARM2B 

1.157 0.103 0.242 

0.005 0.006 0.001 
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HAND3B 

0.419 0.072 0.185 

0.001 0.001 0.000 

THIGH 11 

6.880 0.150 0.372 

0.084 0.084 0.021 

THIGH 1K 

7.194 0.152 0.375 

0.089 0.089 0.023 

CALF2J 

3.064 0.170 0.402 

0.037 0.037 0.004 

FOOT3J 

0.702 0.074 0.194 

0.002 0.002 0.000 

CALF2K 

3.085 0.170 0.403 

0.038 0.038 0.004 

FOOT3K 

0.692 0.074 0.195 

0.002 0.002 0.000 

WHOLE BODY 

MASS = 62.05 DENSITY = 1.024 
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Eleven segment inertia data for subject tv01 

SEGMENTAL INERTIA PARAMETER VALUES 

UNITS: MASS IN KG 

DISTANCE IN METRES 

MOMENT OF INERTIA IN KG*M**2 

FORMAT AND SEQUENCE OF DATA PRESENTATION 

SEGMENT NAME 

MASS, DISTANCE OF MASS CENTRE FROM PROXIMAL JOINT, 

SEGMENT LENGTH 

PRINCIPAL MOMENTS OF INERTIA 

SUBJECT: tv01 

HEADH 

5.530 0.134 0.268 

0.034 0.034 0.018 

TRUNKPTC 

28.920 0.286 0.555 

0.829 0.877 0.277 

UPPER ARM lA 

2.064 0.108 0.250 

0.012 0.012 0.003 

UPPER ARM 1B 

2.156 0.114 0.258 

0.014 0.014 0.003 

FOREARM2A 

1.358 0.110 0.259 

0.007 0.007 0.001 

HAND3A 

0.420 0.069 0.180 

0.001 0.001 0.000 

FOREARM2B 

1.404 0.113 0.262 

0.008 0.008 0.001 
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HAND3B 

0.394 0.066 0.180 

0.001 0.001 0.000 

THIGH 1J 

70488 0.167 0.395 

0.099 0.099 0.023 

THIGH 1K 

7.924 0.175 00411 

0.113 0.113 0.025 

CALF2J 

3.185 0.170 00400 

0.038 0.038 0.004 

FOOT3J 

0.792 0.076 0.202 

0.002 0.002 0.001 

CALF2K 

3.347 0.167 0.394 

0.038 0.038 0.005 

FOOT3K 

0.800 0.076 0.202 

0.002 0.002 0.001 

WHOLE BODY 

MASS = 65.78 DENSITY = 1.024 




