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Abstract 

The work in this thesis is a study of the interactions of a well 

characterized high power ultra violet excimer laser beam with solid optical 

quality surfaces , principally Al and Ge but with limited work on dielectrics. 

In order to characterize the beam and to monitor the changes induced on 

test surfaces by the beam, a computer controlled image processing system was 

developed. The system used the fluorescence from a UV absorbing glass to 

image the excimer beam and Schlieren imaging of the test surfaces with cw 

HeNe or pulsed dye laser illumination to monitor the induced changes. 

The imaging of the induced fluorescence enabled for the first time a 2 

dimensional profile of a pulsed laser beam to be obtained in a single shot 

which, when subsequently processed would yield all the required spatial 

characteristics of the beam. The monitoring of test surfaces by Schlieren 

imaging allowed both accurate determination of the onset of permanent 

changes and more significantly, for the first time, correlation to be made 

between transient and permanent changes. 

The characterised beam was used to study effects in 2 main areas .•. 

a) Laser Induced Periodic Surface Structures •• LIPSS 

b) Early Detection of Laser Induced Damage .•.• EDLID 

a) LIPSS are permanent modifications to a surface essentially caused by 

interference between the electric field of the incident light and the fields 

induced on the test surface by the incident light which, can result in 

periodic "ripple" patterns being formed on the test surface.A detailed study 

of the spacing and morphology of the patterns as a function of various 

parameters including the angle of incidence and polarization of the incident 

light was made.A comparison of these results,results from other workers and 

those predicted by a new theory developed in Canada yielded not only new 

patterns and effects but, showed that theory and experiment were in 

excellent agreement. 
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b) EDLID as developed in this work is the process whereby a non damaging 

laser pulse is used to enable for the first time accurate predictions as to 

the spatial location of potential damage sites to be made. The technique is 

based upon imaging the transient modifications (heating) of a test surface 

by a non damaging laser pulse and the subsequent determination of areas of 

anomalous absorption which, it is argued are the areas most likely to 

damage.The sample is then damaged and a comparison of the areas that damaged 

and those of anamolous absorption i.e. the predicted areas is made. Excellent 

agreement is found between predicted and observed damaged areas. 

A limited amount of work was performed on the determination and 

characterization of laser damage to a small number of novel dielectric 

coating materials based on the so called "sol-gel" technology. 
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Chapter 1 

Review of Laser Induced Damage 

1.1 General Introduction 

In the author's view four main questions need to be asked and 

answered. These are .•• 

l)What is Laser Induced Damage (hereafter known as LID or damage)? 

2)what causes LID? 

3)What are the consequences of LID? 

4)How can LID be avoided? 

To an extent, answering these questions fully would take more than a thesis 

in itself however, this section will attempt to provide concise yet 

meaningful answers to them. Further details can be found in subsequent parts 

of this and following chapters. 

1) The author defines LID to be •• 

"A detectable permanent and detrimental change in the optical properties of 

a sample caused by interaction of the sample with a laser beam." 

A detailed discussion of exactly how the damage threshold i.e. the fluence 

(Jcm-2) or power (Wcm- 2) required to caused LID is defined is undertaken 

later however,it will suffice at this stage to define the damage threshold 

as •• 

"The lowest fluence at which any area tested on a sample suffered LID." 

Before proceeding to answer the other questions it is worthwhile to stop 

and consider carefully the words chosen in the definition of LID. 

Only detectable changes are important since if a change has occurred but is 

too small to detect then for all practical purposes it may as well never 

have happened. This is relevant to multiple pulse (shot) experiments where it 

is found that the damage thresholds are almost always lower than single shot 

values which must imply that there are changes occurring each shot which, on 

a single shot basis are undetectable but, after enough shots become 
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observable. 

With today's high power lasers it is to be reasonably expected that 

components irradiated by a single pulse from such lasers will undergo at 

least transient changes in their properties. Provided that these properties 

return exactly to their original values before the next laser pulse there 

will be no cumulative effect which could lead to permanent changes i.e. 

LID.These transient changes which probably result in a laser producing less 

power than might have been ideally expected are a "fact of life" for users 

of such high performance lasers that has to be lived with. 

It is possible with a laser to induce changes that actually improve the 

performance of a sample (e.g. laser annealing) leading to higher damage 

thresholds although often there is only a fine line between improving the 

sample by irradiation and actually damaging it. 

Thirdly because the laser only interacts with a sample's optical properties 

it is only changes in these properties that are relevant to LID. However , 

changes in other properties (e.g. thermal or mechanical) cannot be ignored if ,.. 
they lead to changes in the optical poperties of a sample. 

" 
2) Answering the question as to what causes LID is by far the most difficult 

and involved of the four.However, it is generally accepted that in optically 

opaque samples e.g. metals LID is caused mostly by simple linear rather than 

complex non linear e.g. 2 photon absorption of the incident light which 

leads to either mechanical failure such as buckling or cracking or to 

thermal failure such as melting or vapo' rization.ln normal working 

conditions the absorption process and subsequent initiation of damage 

usually occurs on surface defects/contaminants such as microscopic highly 

absorbing inclusions or residual polishing compound rather than on the 

intrinsic sample. 

The situation in optically transparent samples e.g. dielectrics is much 

more complicated and there is widespread disagreement in the lit erature as 

to the exact details of the damage process.However, there is a consensus 

that damage in such materials is related to the electric field (E field) 

induced either on the surface or in the bulk of a sample by the incident 

light. 

On the surface of transparent materials the enhanced electric field 

associated with the presence of intrinsic defects such as scratches, voids, 

cracks and assorted extrinsic defects e.g. dust and embedded polishing 

compound is generally assumed to be reSpa'nsible for LID. 

Most of the disagreements in the lit erature centre around the details of 

damage in the bulk of optical transparent samples. There are two competing 
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and indeed according to some workers interacting mechanisms which)can couple 

sufficient energy from the incident laser pulse into the lattice of the 

sample to cause LID. These processes are electron avalanche and multiphoton 

ionization, both of which will be discuused in detail later. 

3) LID can produce a variety of physical results such as the creation of 

voids and defects in the bulk of a material.ln the case of LID on the 

surface of a sample such things as the removal (ablation) of material from 

the surface and the creation of totally new surface morphologies (such as 

ripple patterns) are possible. The consequences of LID are generally 

catastrophic since a sample that has been damaged will transmit or reflect 

far less light than before (i.e. show increased scatter and or absorption) 

and thus the performance of the system is greatly if not completely reduced. 

4) Avoidance of LID requires quite simply although often rather 

impractically that the power a sample is subjected to is kept sufficiently 

low.lf as is often the case in reality this is not possible then some form 

of early warning of damage should ideally be available. In this context it is 

with a degree of cautious optimism that the author points the reader to the 

work in chapter 4. 

The rest of this chapter will be divided into several sections dealing 

firstly with the basic damage mechanisms and then with Some of the factors 

that influence both damage threshold and morphology. Finally there will be a 

brief discusssion of some non damaging laser related effects that are used 

as diagnostic tools for damage work. 

It is not intended for this chapter to be an exhaustive review of LID but 

to highlight what in the author's view are the most important points and to 

provide the reader with suitable references to further his or her 

understanding of LID. 

1.2 Sources of Information on LID 

A very good basic introduction to LID and related effects is contained 

within the book by Wood1.The main source of detailed information on LID and 

indeed the main forum for exchange of such information is the annual 

conference on "Laser Induced Damage in Optical Materials" held in Boulder, 

Colorado, USA. This gathering of workers in damage and damage related areas 

started in 1970 and continues (to date, 1988) publishing through the 

National Bureau of Standards (in Washington) a comprehensive set of 

proceedings for each conference. Essentially the sum of knowledge of damage 
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is contained in these books to which the reader is referred not only to 

augment the work herein but to cover the many areas that the author hasn't. 

1.3 Historical Review 

Back in the sixties when the first high power lasers (Q switched Ruby) 

were developed it soon became clear that many new effects such as self 

focusing, second harmonic generation etc were possible with the increased 

power (by several orders of magnitude) of these pulsed lasers as compared to 

classical light sources.However, along with the advantages of high power 

came the soon observed problem that it was possible by "merely" exposing a 

sample to such a beam of light to cause what is now defined as LID.Marker et 

a12 were the first to report damage in a transparent dielectric and the 

production of a spark in air by focussing their pulsed ruby laser. 

The fact that a beam of light could cause LID may well have come as a shock 

to workers back in those days however, it is a result of not only new non 

linear mechanisms that can couple light into a material but also .• 

l)simple linear absorption, since even ab50rbing a small fraction of a lot 

of light can result in a large (by classical light source standards) amount 

of light and thus energy being coupled into a sample and 

2)the presence of defects in the samples used enhancing the coupling of 

light into the material. 

Early work on LID notably that by Bloembergen3 was greatly hampered by such 

things as irreproducibility of the spatial and temporal profiles of the 

beam, poor quality samples in terms of their purity and, particulaly in 

dielectrics, the new phenomenon of self focussing whereby the refractive 

index was found to increase with intensity causing the light to cont~allY 
converge, eventually producing catastrophic material failure. The exact 

definition of damge waS in those days unclear and to an extent even today 

this uncertaintiy persists. 

From humble empirical beginnings the subject of laser induced damage in 

optical materials has developed into a separate area of work involving many 

workers worldwide.A great deal of money and effort both theoretical and 

experimental is being applied not only to understand damage but)to design 

new optical materials which are more damage resistant since ultimately the 

advance of high power laser systems is limited by the failure of the 

materials used within it. 
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1.4 Comment on the Progress on LID 

It soon became clear that for the purposes of damage, not only do metals, 

dielectrics and to an extent thin film coatings form separate classes of 

material but, that even within a class, different damage mechanisms can and 

do operate. 

Before discussing the mechanisms of damage in the various classes due to 

their importance in the damage of samples in reality, the role of defects 

will be dicussed briefly to provide some general background. Further details 

on defects are contained within each class of materiaL 

Following the discussion of defects and before discussing effects common to 

all classes of materials such as laser annealing, photothermal and 

photoascoustic effects together with ways of increasing the damage threshold 

and exactly how the damage threshold is defined, the damage mechanisms 

operative in each class will be discussed. 

1.5 The Role of Defects - a First View 

On uniform samples it would be expected that .• 

1)damage would first occur at the point irradiated by the highest fluence 

and 

2)that if the fluence is sufficient to damage a point, then all points 

irradiated by that fluence should damage. 

In practice u~less extreme measures are taken such as working with 

ultra-pure samples in ultra-clean conditions e.g. high vacuum, what is found 

is that when a sample damages .•• 

l)the damage occurs in isolated spots which are often well away from the 

peak of the beam and 

2)not all points exposed to a given fluence damage. 

It is unanimously agreed by workers in LID (including the author) that this 

behaviour is due to defects i.e. "weak points" in the material which damage 

at lower fluences than the surrounding material. 

There are a variety of possible defects such as microscopic highly 

absorbing inclusions e.g. residual polishing compound and surface absorbed 

contaminants, areas of increased surface roughness and enhanced electric 

field and, physical imperfections such as scratches, grain boundaries, 

cracks and voids.In the bulk (for transparent samples) the term defect can 

also encompass such things as variation in the refractive index due to 
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either impurities or a variation in stoichiometry. 

The essentially random distribution of these defects accounts for damage 

occurring in isolated spots away from the peak in the beam and the fact that 

if the fluence used just causes damage on a defect then on a "good" area it 

will have no effect so accounting for ~hy not all points exposed to the same 

fluence damage. 

The reduction in damage threshold of a surface over the bulk value for a 

given sample is attributed to the increased likelihood of defects at the 

surface of a sample particularly such things as scratches, pits and absorbed 

contaminants being present. 

For the purposes of academic study the problem of defects can be greatly 

reduced if not eliminated by performing experiments using only very small 

volumes or areas of a sample and tightly focussed laser beams.However, 

whilst for academic purposes this technique may work it is totally 

impractical for "real" applications of lasers with the result that in 

practice defects are almost always the limiting factor in the performance of 

a sample. 

1.6 LID in Metals 

Damage in pure metals4 for laser pulses longer than the electron relaxation 

time (~ 10-14s ) is undoubtably thermal in origin.As to whether the mechanism 

is melting or some form of thermally induced stress fracture is much harder 

to answer.lt is certainly the case that the fluence required to induce 

mechanical slip is less than that required to produce melting. 

It is very probable that different damage mechanisms operate depending upon 

whether single or multiple pulse thresholds are being studied and 
"-consequently they will be discussed separatly. 
1\ 

1.6.1 Multiple Pulse 

It has been well documented that the multiple shot damage threshold is 

lower, often substantially lower than the single shot value.lt was initially 

suggested5 that this effect was due to an accumulative heating whereby the 

temeperature of the sample gradually increased shot to shot i.e. the heating 

effect from a given shot did not have enough time to diffuse away before the 

next pulse. This would thus require less fluence per shot to raise the sample 

to melting than attempting to do so in a single shot would. Whilst this is 

certainly possible (and known as thermal runaway) if the repetition 

frequency is too high as detailed by Wood et all, the work by Lee et a16- 7 

was performed at a sufficiently low repetition rate that any heating effect 

from a pulse had decayed before the next pulse was applied. 
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- - - - ---_._----- -

In their work performed on high quality (but not necessarily defect free) 

samples, Lee et al observed and explained several important effects namely 

that .. 

l)the multiple shot threshold was lower than the single shot value 

2)the single shot threshold decreased as the laser spot size increased from 

a few microns to about 250 ~ whereafter it remained essentially constant 

3)the multiple shot threshold increased with increasing spot size reaching 

in the limit of large spot size the same value as the single shot threshold 

-for that spot size. 

The single shot spot size effect is attributed to the probability of the 

laser beam interacting with a defect which, increases with spot size and 

becomes constant when the spot size is much larger than the average distance 

between defects.The greater the probability of interacting with a defect the 

lower the damage threshold will be as the defects damage at lower fluences 

than the host material. 

The effects for mUltiple pulses are attributed to thermally induced 

mechanical stress (slip/plastic deformation) as was initially suggested by 

Musal8 and subsequently developed by Lee et al. 

The thermal stresses induced in the surface of a metal by heating relax to 

nearly zero in a direction normal to the surface as there is no constraining 

mechanism in this direction. However, the stresses can be very large in 

directions parallel to the surface since displacement in these directions is 

inhibited by the surrounding unheated region.If these stresses exceed the 

elastic limit of the metal, the surface will suffer plastic deformation. 

Multiple pulse irradiation at sufficiently high fluence will thus create a 

succession of cycles of compressive (heating) and tensile (cooling) plastic 

deformations which will eventually result in the formation of large slip 

bands, which introduce surface roughness that can degrade the optical 

quality of the surface by increasing nonspecular scatter and or absarptance 

and ultimately lead to failure of the surface by cracking. 

In general there will be two types of stress induced by the laser which 

are .. 

l)dynamic stress directly induced by laser heating and 

2)quasistatic stress induced due to the temperature gradient associated 

with the non uniform spatial distribution of the laser beam. 

Dynamic stress will relax by launching stress waves in the material 
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propagating at the speed of sound (~5,OOO ms-I) whereas quasistatic stress 

can only relax by the relatively slow process of thermal diffusion. 

In his work Musal assumed a uniform spatial distribution of the energy in 

the laser beam i.e. he considered only dynamic stress and concluded that if 

the region heated by the laser is much larger than the distance the stress 

waves propagates during the laser pulse then, dynamic stress would cause 

damage.He further showed that under these conditions higher fluences can be 

tolerated at smaller spot sizes since the dynamic stress is able to relax 

sufficiently quickly. 

In their work Lee et al ensured the stress waves were able to propagate 

much further than the dimensions of the heated region so that quasistatic 

rather than dynamic stress was the most significant mechanism. By applying 

linearized thermoelastic theory they were able to show that the critical 

stress 0 for plastic deformation (slip) is given by 

1) 

where A is a material constant, tp the laser pulse duration and w the 

radius of the laser (which is assumed to have a GQ~ssian distribution 

spatially) at the 1/e2 points. Thus the critical stress is inversely 

depende,nt on the spot size which accounts for the multiple shot damage 

threshold increasing with spot size until the fluence equals that of the 

single shot threshold where upon the sample will fail by the appropriate 

single shot mechanism. 

Whilst 1) agrees with their experimental observations they commented on the 

fact that the spot size depende,nce of the critical stress and therefore the 

damage threshold depends upon the relative magnitudes of the pulse duration 

tp and spot size w specifically, on the relative magnitudes of w2 and 4ktp 

where k is the thermal diffusivity. In the short pulse large spot case i.e. 

w2 ~ 4ktp the critical stress is given by 1) but for the long pulse small 

spot case i.e. w2 4 4ktp it is given by an equation of the form 

2) 

1.6.2 Single Pulse 

The mechanism of single pulse damage is not as clearly defined as that for 

the multiple pulse case as it is possible to produce slip bands with a 

single laser pulse7 and it is unclear as to what if any effect these slip 

bands produced after only 1 shot would have on the optical properties of the 

sample. 
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A more widely accepted criterion9- 10 for damage involves raising the 

temperature of a sample's surface to at least the melting point.However, the 

presence of defects on the surface considerably complicates the situation as 

there is the likel~hood of severe localised heating that can result in 

damage either by 

l)straight forward localised melting or 

2)thermal expansion of the defect area resulting in sufficient stress being 

induced in either the defect or host material to cause failure by mechanical 

fracture. 

Consider first the experimental work by Porteus et al11 together with the 

theoretical work by Sparks and Loh9- 10 .In their work Porteus et al took 

exceptional precautions to try and avoid the problem of defects and used 

single crystal samples of Al and Cu which were spark cut, orientated, 

mechanically polished and electropolished before being placed in the test 

chamber.Final cleaning was performed by argon ion sputtering after bake out 

and residual argon was removed by annealing at 5000 C for one hour prior to 
t 

testing. Surface cleanliness was verified by Auger analysis but, it sho~d be 

noted that the surface was of low optical finish due to the sputtering and 

showed the characteristic "orange peel" effect of rough surfaces. 

The most important feature of their threshold results was that the surface 

when it damaged did so by melting uniformly over the entire irradiated area 

rather than at isolated spots as in almost all previous experiments thus 

indicating that the defect problem had been overcome but only at the expense 

of the optical quality of the surface. This work also showed that the 

threshold on such samples was more than twice that on "normal" samples under 

"normal" conditions i.e. ones with defects operated in air. 

In their theoretical work Sparks and Loh calculated the energy required to 

melt the surface of various metals. They also commented on and allowed for in 

their calculations the large change i.e. a factor of 5 -6 increase in the 

optical absorption with increasing temperature. Their results showed 

excellent agreement between the fluence needed to melt Al and Cu and the 

damage thresholds measured by Porteus et al thus indicating that for "clean" 

samples melting of the surface is the damage mechanism. 

Applying the criterion of surface melting to "normal" samples i.e. samples 

in air and of good optical quality, resulted in poor agreement between 

theory and experiment.lt was suggested and indeed it is the author's view 

that this discrepancy is due to the presence of defects on "normal" samples 

that are absent on the ultraclean samples. 
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In summary single shot damage in reality is almost certainly defect 

dominated i.e. extrinsic, which can result in either thermal or mechanical 

failure whereas on ultraclean samples intrinsic thermal failure is the 

damage mechanism. 

1.7 LID in Dielectrics. 

1.7.1 Introduction 

As a result of the widespread use of dielectrics both in bulk form and as 

thin film coatings more research has been performed on this class of 

material than on any other and thus there is a wealth of lit1erature on the 

subject. The author would like to draw the reader's attention to several 

review articles which serve as excellent introductions to this area, these 

are the papers by Bloembergen3, Smith12 , Sparks et al13 , Lowdermilk and 

M'i lam14 and finally that by the Soviet authors Manenkov and ProkhorovlS • 

Since under their intended operating conditions most dielectrics have very 

small absorptions (well under 1%), the defect problem (particularly where 

the defect is in the form of a highly absorbing inclusion such as Platinum 

specks in glass) is more severe in this class of material than in 

metals.Unless exceptionally pure (dielctric) samples are used the damage 

will almost certainly be defect dominated. However, for the moment the 

presence of highly absorbing inclusions that lead to damage through 

thermally induced mechanical fracture of either the defect or host material 
, 

will be ignored but, will be dicussed later. 

It is universally agreed that the damage mechanism in dielectrics is 

electric field depen~nt.Essentially as the incident fluence and hence E 

field increase, there comes a point where the E field is strong enough not 

only to accelerate any electrons initially in the conduction band but also 

via collisional excitation promote valence band electrons to the conduction 

band. The electrons promoted to the conduction band are provided either by 

the host material or more likely by impurities with energy levels near to 

the bottom of the conduction band. Once in the conduction band these 

electrons can help not only to produce more electrons but, will cause the 

absorption of the sample to increase as effectively the sample is becoming 

more and more metallic due to the increasing numbers of "free" electrons.As 

the absorption increases so will the sample's temperature (Joule heating) 

and at some point irreversible changes such as melting or fracture i.e. 

damage will occur. 

The above picture is a very simplistic description of what is obviously a 

very complex interaction and indeed one that is by no means understood. There 
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are two mechanisms generally considered to be capable of providing enough 

conduction band electrons to cause damage ... 

1)Avalanche ionization and 

2)Multiphoton ionization 

In the avalanche model it is normally assumed that there are a few 

electrons initially in the conduction band perhaps as a result of impurity 

contamination. These electrons are then accelerated by the incident E field 

until they have enough energy to produce secondary electrons. These secondary 

electrons will similarly be accelerated and yield yet more electrons causing 

an "electron avalanche", with the process continuing until the absorption is 

so high that the sample damages through excessive heating. 

The multiphoton model assumes that all the required electrons are provided 

by non linear optical processes whereby 2 or more low energy photons can 

combine to ionize an atom (i.e. provide a conduction band electron) where 

the ionization energy is greater than that of a single photon. This process, 

as in the avalanche model, continues until thermal failure occurs. 

To proceed further it is useful to discuss bulk and surface damage 

separately. 

1.7.2 Bulk Damage 

Early in the development of the theory of bulk damage in dielectrics the 

ideas of Bloembergen were paramount and strongly favoured the avalanche 

model.He did however point out that as the energy of the incident photon 

approached that of the bandgap of the sample, multiphoton ionization may 

become a means of generating large numbers of conduction band electrons.In 

the mid seventies and early eighties Sparks and his co-workers took up the 

development of a suitable theDry of bulk damage. 

Sparks16 was able to show that for the high quality samples used in damage 

experiments the probability of a photon interacting with an electr9n 't 
11 ~9'J,' io 

initially in the conduction band (i.e. starting electrons) was luq;"l,·je 

thus showing that all the electrons required for damage had to be generated 

by the laser pulse.He further showed in detail that neither the avalanche or 

multiphoton models individually could account for experimental observations 

of the damage threshold but that by using a theory which combined elements 

of both models substantial progress could be13n,~~ 

Essentially the new theory allowed for the generation of the starting 

electrons by multiphoton ionization of electrons from the valence to 

conduction bands. The electrons were then accelerated to an energy equal to 

11 



- ------------

that of the bandgap by inter conduction band transitions and or by multple 

Holstein processes.The Holstein process involves the interaction of an 

electron with both a lattice phonon and an incident photon and allows the 

electron to absorb almost all of the photon energy whilst using the phonon 

to conserve the wavevector.The main reasons for the good agreement between 

the-tor work and experiment was the use of more realistic electron phonon 

scattering rates i.e. energy loss rates by the inclusion of Umklapp 

processes and the use of temperature dependtnt lattice constants and phonon 

frequencies. The E field required to ensure that after allowing for losses an 

electron would gain energy from the incident field and thus ultimately cause 

an avalanche effect was then calculated. 

Unfortunately, as they commented on, in their calculations they used a 

mathematical formulation that requires the photon energy to be "small" 

which, they defined to correspond to wavelengths longer than about l~ with 

the consequence that their theory fails in the UV.To the author's knowledge 

there has been no attempt to extend these types of calculations into the UV 

with the result that no comprehensive UV theory appears to exist. This is not 

as serious as it might appear since unless exceptionaly pure samples are 

used the damage mechanism is almost certainly attributable to the presence 

of defects in the sample. 

Sparks et al13 showed that there was excellent agreement between theory and 

experimental results on ultra pure samples for the dependance of the 

breakdown field (and hence fluence) on temperature, pulse duration and 

wavelength (for A ~ 1~) even though the theory contained no adjustable 

parameters.This agreement marked a major advance in the understanding of 

bulk damage in dielectrics in the infra red. 

At shorter wavelengths, multiphoton ionization is expected to become 

increasingly important not only in generating the starting electrons but 

more importantly in providing generated electrons with sufficient energy to 

yield more electrons. 

Vaidyanathan et al17 performed a comparison of the critical (damaging) E 

field predicted by either the avalanche or multiphoton models as a function 

of laser wavelength from 0.355~ to 1.06 ~.They also studied the 

predictions of a combined avalanche multiphoton model by Vinogradov18 .They 

concluded that individually neither the avalanche or multiphoton models 

could account for experimental observation but that the combined model 

showed better agreement. 

It should be noted that at 1.06 ~ far better agreement between theory and 

experiment was obtained by Sparks et al as opposed to Vaidyanathan et al 

and leads the author to speculate that if Sparks et al had extended their 
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calculations into the UV (as they stated in their paper that they were going 

to do) then, a detailed understanding of damage in dielectrics from the UV 

to the IR would probably have been obtained. 

1.7.3 Surface Damage 

Since at an interface it is almost impossible to avoid defects either in 

the form of physical imperfections or impurities, surface damage more than 

bulk damage is defect limited. 

Consider for the moment samples that are impurity free.It is well known as 

initially pointed out in Bloembergen's19 classic paper that, on such samples 

the surface damage threshold is lower (often by an order of magnitude or 

more) than that of the bulk.In this paper he attributed the reduction in 

threshold to the presence of submicroscopic cracks and pores in the surface 

that cause local enhancement of the electric field which leads to damage at 

lower incident fluences. 

It was shown that the field inside a number of possible types of defect 

could be written in the form 

3) 

where EO is the incident field, Eins the field in the defect, € the 

dielectric constant and L the depolarization factor appropriate to the 

geometry of the defect in question. 

The parameter L has the value 1/3 for a spherical pore, l/Z for a 

cylindrical groove and ~1 for a crack that is much longer than it is 

thick.Hence for long thin cracks the field in the defect is enhanced by a 

factor of € over the incident field which for high index ma-rerials can 

result in enhancements of up to a factor of 10 (e.g. for CdTe or ZnSe at 

10.6 ~) in the E field and hence 100 in intensity. This results in lowering 

the apparent surface damage threshold by up to a factor of 100 compared to 

that of the bulk.It was further shown that the predicted lowering of the 

damage threshold due to E field enhancement was in good agreement with that 

found on samples of ultraclean and pure glass and AlZ03. 

Even nominally transparent solids will have a small absorption and, by 

taking reasonable values of this small absorption together with a crude 

estimate of the temperature rise associated with this absorption for a 

defect of size A, Bloembergen was able to show that the presence of defects 

of less than ~0.01 ~ in diameter is unlikely to lead to damage. 
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1.7.4 Absorbing Inclusion damage 

Now that the intrinsic damage mechanisms i.e. non impurity mechanisms have 

been discussed the role of highly absorbing inclusions (impurities) which, 

lead to what can be termed extrinsic damage can now usefully be discussed. It 

should be noted that for bulk damage the use of ultra-pure samples 

essentially removes the problem of impurities but, for surface damage it is 

much harder to eliminate such impurities as the surface is always going to 

be contaminated by the surrounding envir&fuent. 
~ 

Providing an impurity does not absorb at the laser wavelength it's presence 

will not affect the damage threshold but if it absorbs, then, as shown in 

the classic paper by Hopper and Uhlmann20 it can lead to damage via 

mechanical failure due to thermally induced stresses around the defect. This 

failure mechanism can occur both in the bulk and on the surface of a sample 

and,in practice is almost certainly the dominant damage mechanism.In general 

the most likely types of absorbing inclusion are metallic (notably Pt) and 

~ oxide particles. 

In their paper Hopper and Uhlmann considered the stresses induced in crown 

glass as a result of the presence of specks of Pt of varing sizes.By solving 

the heat conduction equation for various boundary conditions they were able 

to show that the heating of the particle goes through a maximum as the 

particle size increases.By subsequent application of elastic theory they 

concluded that for particles between 100 nm and a few microns the induced 

tensile stresses exceed the theoretical strength of the glass and thus 

mechanical failure will occur. They also concluded that the presence of oxide 

impurities such as FeO could lead to damage though excessive thermally 

induced stress. 

It should be noted as pointed out by Walker et al2l - 22 that Hopper and 

Uhlmann used certain approximations (in particular the assumption that the 

thermal diffusivity is large) in solving the heat conduction equation that 

are valid for good conducting impurities such as metallic particles but not 

for poorly conducting impurities such as dielectric materials.In the case of 

dielectric impurities an exact solution to the heat conduction equation such 

as that by Goldenberg and Tranter23 is required. 

1.7.5 Multiple Pulse and Spot Size Effects 

In the cases where the damage is depend .nt only upon the electric field 

then provided thermal runaway does not occur the damage threshold will be 

independent of both the number and frequency (rep rate) of laser pulses 

used. The presence of absorbing defects can yield a failure mechanism similar 

to that responsible for the multiple pulse faibre of metals i.e. progressive 
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slip and plastic deformation at low rep rates and increase the likeuhood of 

thermal runaway at higher rep rates.As commented on by Lange et a124 (to 

which the reader is referred for a much more detailed discussion) there is a 

great deal of confusion in the understanding of multiple pulse effects. 

As with metals, as the spot size is increased from a few microns the damage 

threshold apparently decreases reaching a constant value for sizes typically 

greater than 300 ~.'-his is explained as before by the increased probability 

of interacting with a defect as the laser spot size is increased. The author 

has not found any work which shows a non defect related spot size effect. 

1.7.6 Front and Back Surface Effects 

Early on in the study of damage it became evident that in a transparent 

solid where the incident and exit surfaces had been identically prepared, 

the exit (back) surface damaged at a lower fluence than the entrance (front 

) surface. This effect was explained by Crisp et a125 on the basis of 

interference between the incident and reflected waves at each surface. 

At the front surface the reflection is at a more dense media so the 

reflected and incident waves are out of phase whereas at the back surface 

the reflection is at a less dense media so the reflected and incident waves 

are in phase. This leads to the intensity at the rear surface being given by 

where n is the refractive index and Ii the intensity at the front 

surface. Hence for a refractive index of 1.5 the rear surface intensity is 

1.44 that at the front surface and so the rear surface threshold should be 

69% of the front surface, a value in good agreement with that found 

experimentally. 

1.8 LID in Thin Film Coatings 

Given that thin film coatings consist of many layers and hence interfaces 

deposited under conditions that are between often very different 

often far from ideal (clean) 

materials 

it is not surprising that it is this class of 

materials that suffers the greatest defect problem and thereby has the most 

inconsistencies in the literature.Excellent introductions to the area can 

be found in the work and review by Lowdermilk and Milam14 together with the 

papers by Walker et a121 - 22 . 

In their work Walker et al performed a detailed comparison between 

experimentally measured damage thresholds at various laser wavelengths and 

pulse widths and the three main theoretical mechanisms 
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(avalanche/multiphoton ionization and absorbing inclusions) in an attempt to 

determine the mechanism operative in thin films.Of the 15 effects they 

observed, the absorbing inclusion (impurity) model was able to explain 

accurately 14 whereas the other two mechanisms could not explain any of the 

observations. 

Table 1.1 shows a comparison of experimental data for the variation in 

damage threshold with wavelength, pulse length and film thickness and the 3 

main damage mechanisms together with a combined avalanche/multiphoton 

ionization model where it can be seen clearly that the dominant damage 

mechanism is absorbing inclusions i.e. impurities. 

Their impurity model though based on either the Hopper and Uhlmann or 

Goldberg and Trantor solutions to the heat conduction equation included for 

the first time a variable absorption cross section.As they commented, the 

use of a constant for the absorption cross section is only valid when the 

impurity is much larger than the wavelength of the incident radiation 

whereas in thin films the size of impurity is usually limited by the film 

thickness and is therefore of the same order as the wavelength of the 

incident light.To allow for this size effect the constant cross section was 

replaced with the cross section obtained by using Mie scattering theory 
~ 

which has a depend\nce on both size of the impurity and the wavelength of 

the incident light. The breakdown criterion was taken to be melting of the 

host material. 

Two of the strongest pieces of evidence to support their contention that 

impurities are the dominant damage mechanism are the observations that the 

damage threshold decreases as the incident laser wavelength decreases (see 

later) and the damage threshold increases as the film thickness is 

reduced.The latter is explained on the basis of the exclusion of larger, 

easier to damage impurities as the film thickness is reduced. 

Since almost all coatings are based on layers that are optically a quarter 

wave thick, the nodes and antinodes of the E field occur at the interfaces 

bewteen the high and low refractive index materials.Given that interfaces 

suffer the most from defects and physical imperfections, the occurrence of 

nodes and antinodes at such interfaces is intrinSically undesirable. 

Work by Apfel et al26 showed good correlation between damage threshold and 

the E field in multi layer silica/titania stacks. There has been a limited 

amount of work to attempt to imp 'rove the damage threshold by the use of non 

quarter wave (optically) layers but the results have in the main been 

inconclusive which the author suspects is related to not overcoming the 

impurity problem. 
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Table 1.1 

Evaluation of the Avalanche, Multiphoton and Impurity Models 

when Compared to the Experimental Data (after ref 22). 

Parameter Wavelength Pulse Film 

Model Length Thickness 

Multiphoton reasonable poor poor 

Avalanche poor poor poor 

Combined inconsistent poor poor 

Impurity good excellent excellent 

1.9 Dependance of LID on Laser and Material Parameters 

There is a lot of confusion and much contradictory evidence in the 

lit ... erature as to the dependence (Le. so called scaling factors) of the 

damage threshold on such things as laser wavelength, pulse duration, spot 

size and on material parameters such as surface roughness and methods of 

sample preparation. Since each of the 3 main damage mechanisms generally 

predict different scaling factors, it is the author's view that, at least 

some of the confusion in the lit erature arises from incorrectly attributing 

damage to a particular mechanism however, in some cases it is possible to 

extract general trends as will now be done. 

Genera~ as the laser wavelength decreases so does the damage threshold 

however, it is by no means clear as to the functional dependtnce of the 

threshold on wavelength. For alkali halide crystals27 the threshold shows 

little if any variation from 10.6 ~ to about 1~ whereafter it decreases 

rapidly. For metals it is likely that the increase in linear absorption (i.e. 

the decrease in reflectivity) as the wavelength decreases is responsible for 

the reduction in damage threshold. 

It is easier to obtain an expression for the dependence of the threshold on 

the duration of the laser pulse than for laser wavelength. Both the impurity 

mode122 for thin films/dielectrics and the thermal heating model for metals9 

(even if allowance is made for the variation in optical absorption with 
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temperature) predict that the threshold varies with pulse width t as t1/2.In 

each case experimental observations confirm this depende.nce. It should 

however be pointed out that occasionally other depend~nces predicted by 

either of the other 2 main damage mechanisms or indeed by different 

formulations of the impurity model appear to be more apprpriate to the 

results obtained by some workers.lt should also be noted that for very short 

«150 ps) or very long (>300 ns) pulses the situation can become much more 

complex and these simple models may well fail. 

The effect of spot size, because of it's complications and ease of 

misinterpretation was d?cussed previously for each class of materials 
" individually. 

In the lit.erature (and from the author's own experience) there is a 

general "belief" that the damage threshold decreases as the surface 

roughness increases but almost no work to quantify this effect except that 

by House et al28 (experimental) and by Babu29 (theoretical) appears to have 

been performed. 

In their work House et al showed that the damage threshold decreased with 

increasing surface roughness and that a relation of the form .•• 

E"m = constant 5) 

can be used to describe the relationship between damage threshold and 

surface roughness where E is the breakdown field, er the rms surface 

roughness and m is a parameter of value ~O.5.The parameter m was found to 

vary somewhat with the method of surface preparation (e.g. polishing, 

etching etc). 

On the premise that the surface damage threshold depends upon the total 

exposed area Le. the area including all surface "hills and valleys" and 

with some further simplifying approximations Babu was able to theoretically 

predict the above relation with" = 0.5. 

In the author's view much work both experimental and particularly 

theoretical needs to be performed to properly quantify and understand the 

effect of surface roughness on the damage threshold. 

1.10 Laser Annealing (Polishing) 

Although laser annealing usually refers to the processing of semiconductors 

on which vast amounts of work have been performed (see chapter 3),in the 

context of LID, laser annealing (polishing) refers to irradiating samples at 

non damaging fluences with the intention of raising the damage threshold. 

In most cases the test surface is irradiated by either multiple laser 
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pulses30 belo~ the (non irradiated) single shot damage fluence or a cw 

beam31 for typically a fe~ seconds.As an illustration of this effect 

consider figs 1.la-b ~hich are of the damage on colloidal silica induced by 

an excimer laser.Fig 1.la is that produced by irradiating the sample ~ith 

1000 (non damaging) pulses (at 1hz.) at 0.15 Jcm-2 follo~ed by a single 

(damaging) pulse at 6 Jcm-2 ~hereas fig 1.lb is the damage produced by a 

single 6 Jcm-2 pulse ~ith no lo~ fluence pre irradiation. The processed 

sample sho~s far less damage than the unprocessed one thus showing the 

improvement in the sample as a result of lo~ level irradiation. 

Swain et a130 report upto a factor of 2 increase in the single shot 

threshold of colliodal silica antireflection (AR) coatings if they are 

processed by typically 10 pulses at non damaging fluences.Temple et al31 

reported more than a factor of 2 increase in threshold on some samples of 

fused silica processed by a cw C02 laser and then damaged by a pulsed C02 

laser. 

T~o mechanisms are thought to be responsible for this effect, either the 

cracks, scratches etc (i.e. physical imperfections) left in the surface 

after mechanical polishing are reduced if not removed by the heating effect 

of the laser or, the heating effect removes surface contaminants {laser 

desorption).The work by Swain et al tends to support the laser desorption 

mechanism whilst that by Temple et al supports the reduction of physical 

imperfections. 

It is the author's view that almost certainly both mechanisms occur 

simultaneously and that the condition and nature of the surface dictates 

which mechanisms dominates.lf the surface easily absorbs water vapour etc 

then the desorption process probably dominates whereas on say a clean 

metallic surface the reduction of physical imperfections mechanism probably 

dominates. 

1.11 UV LID 

Whilst nearly all of the above applies to UV LID, the reduction in incident 

wavelength brings many extra problems and imposes far more severe conditions 

on sample preparation. 

In practice and almost certainly due to increases in one or more of 

a) absorption 

b)the importance of smaller and more numerous physical imperfections 

c)the probability of multiphoton ionization 

the damage threshold of materials decreases as the incident wavelength 
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shortens. 

Whilst a reasonable amount of work has been performed on UV LID the author 

would like to draw the reader's attention to volume 476 of the conference 

proceedings32 published by the SOCiety of Photo-optical Instruementation 

Engineers (SPIE) which deals exclusively with excimer lasers and UV LID. 

In the far UV (i.e. below about 300 nm) due to the relative magnitudes of 

the photon energy and the bandgap in most materials, the main problem is 

finding transmitting materials with the result that in practice UV 

transmissive optics are almost always based on metallic fluorides (e.g. CaF2 

and HgF2) and oxides (e.g. Si02 and AI203)' 

Reflecting optics can be based on multi layer dielectric stacks or on metals 

but, it should be noted that in the far UV the reflectivity of metals can 

decrease significantly. Al is probably the most widely used metal but, due to 

the rapid formation of its oxide cannot be used below about 220 nm unless 

covered with a protective overcoat such as HgF2' 

The reduction in laser wavelength means not only that absorption (either 

intrinsically in the material or from absorbing inclusions) increases but 

that physical imperfections which are allowable at say 1.06 ~ cannot be 

tolerated in the UV and so far more care in and control of sample 

preparation is required. 

In the author's view these effects together with what often appears to be a 

very "casual" attitude by manufacturers to the conditions in which samples 

are prepared have resulted in the relatively poor damage thresholds to date 

of UV optics.However, it appears now that manufacturers are making a serious 

attempt to rectify these problems. 

1.12 Definition of 

1.12a Fluence 

Up until a few years ago it was COmmon practice to obtain the fluence in a 

beam by dividing the beam energy by the area at the 1/e2 points.Whilst this 

is reasonable for a near uniform beam it is inappropriate for a beam with 

significant variation in spatial intensity such as a true G~~ssian beam 

where the peak fluence is 2.31 that calculated by the above method. 

With improved beam profiling techniques not only the peak fluence but the 

actual fluence at any point in the beam can easily be found and it is now 

becoming much more common in quoting damage thresholds to use the actual 

fluence (rather than using the beam energy divided by the 1/e2 area) that 

did not cause damage. 
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1.1Zb Damage Threshold 

Confusion as to the definition of the damage threshold arises because the 

impurity/defect mechanism is in practice the dominant damage mechanism. If 

the laser spot size used is not much larger than the average distance 

between defects then the fluence at which an area damages will vary 

depending upon whether a defect was or was not in the irradiation area. Even 

if the spot size is much larger than the inter-defect distance problems can 

arise if the intensity of the laser beam varies significantly across the 

irradiated area. 

Hence given the above it is not surprising that if several sites are 

irradiated at the same fluence not all of them damage and thus to fully 

quantify what is happening both the fluence used and the probability of 

damage must be specified. 

The confusion in the lit erature occurs as to what probability of damage 

should be associated with the definition of the damage threshold.lt is 

probably true that most reports on LID use the 50% probability level as the • 
defin~ion of damage i.e. the fluence at which 50% of the sites tested at 

" this fluence damaged. The 0% level i.e. the highest fluence at which no site 

tested at this fluence damaged is sometimes used with only a very few 

workers using the 100% level i.e. the lowest fluence at which all sites 

tested at this fluence damaged.To an extent, exactly which level is most 

suitable depends upon both the desired application of the component and the 

laser spot size used. 

In the case of a spot size comparable to or smaller than the average 

inter-defect distance the maximum non damaging fluence corresponds to the 

intrinsic (defect free) damage threshold of the host material.For spot sizes 

much larger than the average inter-defect distance the probabilistic nature 

of the damage is associated with the location of a defect relative to the 

most intense part of the beam and with the uniformity of the beam over the 

irradiated area.ln this case a true measure of the intrinsic threshold can 

only be obtained by finding the max .imum fluence that does not cause damage 

on sites irradiated by the most intense part of the beam.ln both cases, the 

0% level is indicative of the defects present on the sample. 

Various authors e.g. Porteus and Site133 or Foltyn34 have proposed 

statistically based theories of defect dominated damage to explain the 

observed spot size effect and to extract the absolute (0%) onset level of 

damage as well as the intrinsic threshold. 

The use of small spot sizes whilst desirable for academic work is 

!mpractical in reality where, components generally have to withstand large 

area irradiation. Thus the author prefers to use large area irradiation (to 



simulate reality and eliminate spot size effects) and to define the damage 

threshold as the 0% level as this gives the maximum fluence that can be used 

in practice with no likelihood of damage to the sample. 

1.13 Photoacoustic and Photothermal Effects 

Although not directly related to LID, but because of their increasing use 

as diagnostic tools for LID, the photoacoustic (PA) and photothermal (PT) 

effects will be briefly discussed. The reader's attention is drawn to the 

detailed review of both of these effects by McDonald35 and to anyone of the 

many papers by Rosencwaig36 who pioneered most of the work in this area. 

The PA effect is the generation of acoustic (sound) waves in a solid Or in 

the ambient gas by the absorption of heat usually from a periodic heat 

source such as a chopped (repetitively pulsed) laser beam. The waves oCCur in 

any sample with a non zero coeffici,ent of thermal expansion due to the 

stress-strain conditions induced in the sample. 

The PT effect is the deflection of a probe laser beam due to interaction 

with a heated region (solid and or gaseous) produced by a second more 

powerful pump laser. The probe beam can by deflected by direct interaction 

with a heated surface although in practice the deflection due to the heated 

gas e.g. air surrounding the sample is usually orders of magnitude bigger. 

1.14 Conclusions and Comments 

LID, whilst still largely empirical is gradually becoming better 

understood theoretically with the reproducibility of samples and experiments 

slowly improving. Whilst much work both experimental and in particular 

theoretical remains to be performed, the outlook for LID appears bright. 
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Chapter 2 

Laser Beam Profiling and Damage Detection 

2.1 Introduction 

It has often been said that the Laser was a solution in search of the 

problem,however in connection with LID it is usually the laser itself that 

is the problem,not only in terms of trying to detect the effects of the 

laser beam but in particular,trying to characterize the beam itself. 

Laser beam profiling is the characterization of the spatial and temporal 

distribution of the energy within a beam. This type of analysis is essential 

if meaningful values of beam fluence are to be used in LID experiments.Once 

performed it is possible to quote such figures as peak fluence and average 

fluence (J cm-2 ) together with the "spot size" of the beam taken herein to 

be the area of the beam at the points where the intensity is reduced to 1/e2 

that of the peak value. 

Damage detection is the process of determining firstly if a sample has 

changed its optical properties in anyway and secondly,if this change 

conforms to a criteria that defines LID in which case the sample is said to 

have "damaged". 

2.2 Review 

2.2a Laser Beam Profiling 

In general the temporal profiling of a cw or long (i.e. >lns)laser beam is 

straight forward and accomplished by using suitably fast photodiodes and 

oscilloscopes although for short pulses i.e. <1 ns other techniques such as 

the use of streak camers have been developed whilst for ultra short pulses 

«lps) techniques based on the auto-correlation of the beam with a 

temporally delayed version of itself are essentially the only way to obtain 

temporal information about the beam. 

The spatial profiling of a laser beam is considerably more complicated than 

temporal profiling and,at least in the past,the techniques used have 

depended strongly on the type of laser i.e. wavelength of operation involved. 

Some of the first techniques l - 3 for spatial profiling used photographic 

recording of the beam in some form. The basis of all these techniques was to 

image the beam with suitable attenuation onto pieces of film. The major 

problem with these methods is the variation of optical density (i.e. log10T 

where T is the fraction of light transmitted ) of the film with exposure 
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(where exposure is the product of intensity of light and the time for which 

the light was incident on the film) which, as was shown by the classic paper 

of Hurter and Driffi~ld4 be highly non linear. This non linearity which can 

vary enormously from film to film requires that some form of calibration 

,which is very time consuming, be performed before each profile can be 

recorded. 

All of these techniques in some way attempted to reduce the calibration 

problem by using such things as a multiple lens elementl with a different 

neutral density filter attached to each lens to obtain a series of images of 

the beam or, using multiple beamsplitting techniques2- 3 to provide a set of 

images of the beam.The aim in providing multiple images was to obtain a set 

of images with a known intensity ratio between them, covering a total 

intensity range of typically two decades, so that by using a 

microdensitometer a linear profile of the beam could be obtained from the 

non linear photographic recording.Whilst these techniques do provide a 

spatial profile of the beam they suffer from having to use chemicals to 

develop the film (wet processing) and consequently they cannot provide real 

time information about the beam. 

To avoid wet processing and in an attempt to obtain at least near real time 

beam profiling beam scanning techniquesS were developed based on translating 

some form of detector spatially across the beam.A single detector such as a 

photodiode and a suitable aperture are translated across the beam and its 

output recorded as a function of position. When a pulsed laser is being 

profiled several values at each pOSition would be taken to reduce the 

problem of shot to shot variation of the laser energy.The output of the 

detector and its physical meaning depend greatly on the type of aperture 

used,typical apertures being pinholes slits and knife edges.A pinhole 

provides the best spatial resolution but suffers from the small amount of 

light that actually reaches the detector through the pinhole. Scanning 

techniques are most suited to beams that are axially symmetric or nearly so 

since,because the entire area is not profiled hot spots or other 

irregularities can easily be missed and cause significant errors in the beam 

parameters. 

In theory and to a large extent in practice systems based on imaging 

detectors (arrays) can solve all of the problems that photographic and beam 

scanning techniques have, and yield very simply,quickly and accurately a 

spatial profile of the beam. The basis of these systems is that an image of 

the beam ideally, but not always optical is formed,which can be subsequently 

processed (ideally by computer) to yield the required beam 

parameters. Devices used to perform the imaging can be divided into 2 
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classes .•. 

l)discrete element arrays such as pyroelectric arrays6 and CCD(CID devices? 

(usually in the form of video cameras) and 

2)integrated target detectors such as vidicon tUbes8• 

The use of pyroelectric arrays will yield the spatial profile of the beam 

but since a direct optical image of the beam is not formed, large amounts of 

computer processing are required to generate the profile in an easily 

recognisable form. 

Vidicon systems will form a direct optical image of the beam. These systems 

suffer from a variety of noise problems that severely limit their dynamic 

range (i.e. the intensity range over which the device responds in a linear 

fashion) to a factor around 100.However they have the advantage of larger 

total image area when compared to discrete element arrays.Systems based on 

charge coupl'ed devices (CCD) and charge injection devices (CID) will also 

form direct optical images of the beam and suffer very little noise problems 

enabling dynamic ranges of 103 or more to be readily obtainable. Standard 

commercial devices have pixel (i.e. each discrete element) sizes of around 

20 ~ square and come in the form of 2 dimensional arrays of typically 400 

by 600 elements.For specialist applications e.g. military use it is possible 

to get (at substantially higher cost ) arrays of 10000 by 10000 elements 

with pixel sizes smaller than 20~. 

Lasers operating ouside the direct response range of vidicon and CCD/cID 

devices which is typically 400-1100nm can be profiled by using such devices 

as fluorescing glasses (for UV lasers) and graphite blocks (for C02 lasers) 

to produce "visible" images that can be readily detected by the sensing 

device. 

Once the data for the profile of a beam has been obtained there is still 

the problem of exactly which parameters are defined and quoted for the 

beam. The most important is some measure of the beam fluence but 

unfortunately there is widespread disagreement in the lit erature about 

exactly which measure to quote. Two forms are widely used, either the peak 

fluence or an "average" fluence.The peak fluence corrsponds to the value at 

the most intense part of the beam whilst the average fluence is usually 

taken to be the energy of the beam divided by the spot size area,and hence 

the average fluence relates either to the 1/e2 area or half power area.It is 

trival to show that for a perfect Guassian beam the peak fluence is 2.31 

times the average fluence when the averaging is performed over the 1/e2 

area.Note that in what follows unless specified otherwise all quoted 
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fluences are peak fluences. 

Z.Zb Damage Detection 

It has already been discussed in chapter 1 that laser induced damage (LID) 

can be defined as a permanent change in the optical properties of a 

sample. This change is usually associated with degradation of these 

properties but phenomena such as laser polishing and annealing (see chapter 

1) show that laser induced changes can improve the optical properties of a 

sample.Given that in most cases, damage is caused by defects e.g. dust 

particles, residual polishing material,inclusions,voids,cracks and 

scratches in a sample and therefore is statistical in nature it is not 

sufficient to merely say that at fluence x the sample damaged,there must be 

a probability figure associated with the quoted threshold fluence.For 

example 0% would indicate that the sample ~ damaged at this fluence, 

whereas 100 % would mean the sample always damaged at this fluence.A value 

of 50% means that lout of every Z sites damaged.ln the lit erature there is 

a general but by no means conclusive trend towards defining the threshold 

for LID as the fluence at which there is a 50% chance of damage. 

Little appears to have been written specifically on methods for detecting 

LID except for the work by Milam8 and there is little consistency in the 

methods used by different workers. Essentially the techniques used can be 

divided into 2 classes,imaging and non imaging techniques. 

The simplest of the non imaging techniques is the scatter probe9 in which a 

photodiode and lens combination,where the lens has a stop in its focal plane 

to block specular light,is used to monitor changes in the scattered light 

coming from the test sample.The output of the photodiode is recorded on an 

oscilloscope for subsequent analysis.The photoacoustic effect la in which a 

suitable transducer has been attached to the sample has been used to detect 

LID on a real time basis.Whilst non imaging techniques involve little 

equipment and are simple to perform they give no information as to the 

spatial location and extent of the damage and it is impossible to tell from 

them if damage has been caused by blowing particles such as ''''dust'' and 

"grease" off the surface or if the surface itself has damaged which is 

extremely important to know in some experiments particularly those involving 

LID on thin film coatings. 

Traditionally, imaging techniques such as direct unaided observation of the 

surface,optical microscopy in all its forms (e.g. Nomarski,total internal 

reflection11,dark and brightfield illumination) and Schlieren/photographylZ 

based systems have required the user to make a real time judgement as to 

whether any change of a sample has occurred, as it has not been possible to 
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store the images of the sample before and after the laser pulse in order 

that comparisons can be made.On samples that have significant numbers of 

scattering sites,scratches etc before exposure to the laser (as most real 

samples do) it can be almost impossible to make reliable real time 

judgements on any changes that may have occurred.The recent availability of 

video recorders and in particular the very recent development of computer 

controlled video framestores has meant that it is now possible to save 

before and after images of a sample for either manual comparison or computer 

processing e.g image subtraction and enhancement. Passing reference to the 

use of video recorders in detection is made in the lit erature but to the 

author's knowledge the use of video framestores and computer processing as 

developed in 2.6.3 has not been reported. 

2.3 Damage Facility 

The work performed in this thesis is based upon a Krypton Fluoride (KrF) 

excimer laser operating at 249 nm i.e. well into the UV.The laser,a Lambda 

Physik model EMG 200,when operated with KrF gas is capable of producing a 

nominal 1 J pulse of duration ~20 ns (to the half power points) as shown in 

fig 2.l.Pulse energies were measured with a Laser Instrumentation 

Calorimeter and were found to vary shot to shot by approximately 57.. 

Two forms of attenuation were routinely used to reduce the laser energy to 

the desired values,these were the use of special filter glasses of varying 

optical density and a purpose built variable length dye cell 

attenuator13 .The filter glasses depending upon their physical thickness gave 

fixed attenuations of 0.5 to ~O.Ol.The dye cell consisted of 2 tubes with 

appropriate windows and seals so that one tube could slide within the other 

thereby producing a variable length between the input and output windows. The 

volume between the windows was filled with Rhodamine 6G dye (R6G) in 

distilled water.As R6G absorbs strongly at 249 nm,by varying the 

concen~tion of dye and or the length of the dye cell any desired 

attenuation could be produced. 

Fused silica was used as the material for all of the excimer optics as it 

has essentially no absorption at 249 nm and is resiliant to any heating 

effects caused by high repetition operation of the excimer laser. 

To reach fluences sufficient to cause damage,the excimer beam was focus sed 

by a fused silica lens.AII of the work performed in this thesis was done 

using a nominal 20 cm focal length lens. 

Due to space considerations and the requirements of colleagues,the excimer 

beam had to be steered to the focussing lens and hence the plane of 

operation by various combinations of mirrors and or beamsplitters.Since all 
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Fig 2.1 

Temporal profile of excimer beam 

timebase 10 ns/div 

31 

--------------------------------.----

time 



energy measurements were made with the calorimeter immediately after the dye 

cell attenuator,an allowance for losses in the beam due to the steering 

mirrors and beamspli .tters was required. 

This was done by measuring the average laser energy over 10 shots with the 

calorimeter in its normal position and then repeating the process with the 

calorimeter close to the focal plane of the focussing lens. The ratio of 

these two values represents a correction factor which allows determination 

of the energy in the operating plane from a measuremnt further back in the 

system at a far more convenient place. 

2.4 Beam Profiling - Initial Technigue 

When the damage test facility was initially setup beam profiling was 

performed by means of a scanning pinhole.In this technique a small (~1~) 

pinhole was mounted on the front of a UV photodiode and then the combination 

was placed in the beam such that the plane of the pinhole was co-incident 

with the plane in which the profile was required.By means of an "x y" 

translator equipped with micrometer drives the pinhole/photodiode was 

scanned in ~20 ~ steps along the horizontal and vertical central axes of 

the beam i.e. the beam was scanned along only ~ horizontal line and one 

vertical ~.To reduce the problem of shot to shot variation in the excimer 

energy the average photodiode output from 5-10 excimer pulses were used.Not 

only was this very time consuming taking typically 2 hrs per profile but 

since the beam is profiled only along its axis,non axial hot spots would not 

be detected causing serious errors in beam parameters. 

2.5 Beam Profiling using a Video Framestore 

2.5.1 Introduction 

To improve the quality of beam profile and reduce the time required to 

obtain it,the use of a video imaging system in which the beam is directly 

imaged was investigated. Since the response range of video cameras is around 

400 to 1100 nm a medium was required to convert the UV light to detectable 

light. The obvious choice for UV light and the one used is fluorescence. 

The intention was to use suitable fluorescers to produce a visible image of 

the UV beam which the video camera could detect and to have the camera 

linked to a computer controlled video framestore in which the video signal 

corresponding to the beam image is digitised and stored electronically 

pending image processing. 
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2.5.2 Video Basics 

In the UK the tv screen and hence the picture consists of 625 lines of 

information, with each line running essentially left to right across the 

screen and lasting 64 ~s.Each group of 625 lines is known as a frame and 

subdivided into 2 groups of 312.5 lines known as fields. The first field 

consists of lines of the odd lines e.g. 1,3,5 etc and the second the even 

lines e.g. 2,4,6 etc.The image as viewed,is built up by a process known as 

interlacing in which all the lines of one field e.g. the even field are 

displayed before all those in the other field. This conveniently results in a 

complete scan of the tv screen being performed every 20 ms with a frame 

taking 40 ms to build up. 

To "tell" the tv where the end of each line or field is, a video signal 

consists of two parts, the actual data in the form of voltage levels between 

0.3 and 1 volt together with sync pulses of 0 to 0.3 volts.To distinguish 

between line and field sync pulses the time duration of the pulse is varied 

being about 5 times longer for field sync pulses than line sync pulses.Figs 

2.2a and b show schematics of video signals.Each time the tv "sees" a line 

sync it moves the electron beam back to the left handside and starts 

scanning left to right again whilst when a field sync is seen the electron 

beam is reset to the top left hand corner and scanning recommences. 

2.5.3 Video Cameras 

In the first instance for simplicity and economic reasons standard 

commercially available video cameras were investigated for suitability for 

use in the system. Due to their high noise and low dynamic range vidicons 

were immediately ruled out. The most suitable devices were found to be CCD 

based. 

CCD devices are based on purpose built chips which can be thought of as a 

two dimensional array of photodiodes in which each pixel i.e. individual 

light detector is isolated from its neighbours and converts incident light 

to electric charge. This electric charge is then "read" on a point by point 

basis and converted to the video signal.CCD devices are produced in two 

forms, so called line or frame transfer devices.The designations of each 

device refers to how the charge on each pixel is read and the subsequent 

video image formed. 

In line transfer devices (LTD)all of the pixels image for typically 

2ms and then charge readout and conversion into the video signal starts at 

the top of the chip and works down so that by the end of each 20ms period 

every pixel has been read and cleared for the next image.In these devices 
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imaging i.e. the conversion of light to charge OCCurs at the same time as 

other pixels are being read which means that in order to obtain a complete 

image in one field, of an object that covers all of the CCD chip when using 

a pulsed light source,the light pulse must occur in the first 2ms of the 

given field. 

Frame transfer devices (FTD) have all of the pixels imaging for 18 ms and 

then imaging is stopped by applying suitable biasing pulses to the 

pixels.DuCing the last 2 ms of a field, the charge on each pixel is 

transferred to what is known as the storage area on the CCD chip on a point 

by point basis.The storage area is identical to the imaging area of the chip 

except it is protected from light.In these devices conversion to and readout 

of the video signal is performed from the storage area and takes place 

during the frame after the imaging,i.e. the video signal coming from a FTD 

is 1 field (20ms) behind what is happening in real time.Hence if the event 

to be imaged occurs at time t the video signal of the image occurrs at time 

tt20 ms. 

Initially a Hitachi KP l20U LTD was used for the beam profiling system but 

later on this was replaced by an EEV P43l0 FTD for 2 reasons.Since a FTD 

images for 18 ms the rquirements on the synchronization of the excimer pulse 

to the camera are far less severe than for LTD's and secondly the EEV FTD's 

are approximately 

blooming. Blooming 

507. more sensitive and suffer far less from 

is the effect whereby charge from a pixel that has 

exceeded its maximun charge holding capacity (i.e. saturated due to too much 

light) leaks out to corrupt adjacent pixels and produce a distorted image. 

The cameras used all had dynamic ranges greater than 200 and the EEV P4310 

had no automatic gain control (agc) i.e. built in electronics to change the 

amplification of the output signal depending upon the amount of incident 

light.The Hitachi KP l20U had an agc but averages for over ~2 seconds before 

changing the gain.Hence given that the camera always sat in darkness before 

the excimer pulse,and that the produced fluorescence was of ~l~s duration 

i.e. much less than 1 field the agc did not have time to respond and so 

could not effect the results. 

Given that the monitor used to view the images had a screen 280 by 210 mm 

and that the CCD chip is 8.8 by 6.6 mm the images as viewed are effectively 

magnified 32 times (neglecting any initial optical magnification). 

As discussed in 2.5.2 a tv picture (frame) is made up of 2 interlaced 

fields each 20 ms 10ng.To obtain this interlacing, each pixel on the CCD 

chip is actually made into 2 separate sensors so that the data for 

successive fields Comes from different halves of the pixel.This splitting of 

a pixel into 2 which,is done along a horizontal line, causes the data for 
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successive fields to be obtained from sensors that are vertically displaced 

from each other by ~10 ~. 

This then means that for successive fields the data for the same point in 

the video image has come from a different point in space and therefore is 

slightly different and results in what is termed "the half pixel shift" 

whereby, if 2 images of the same surface with identical illumination are 

captured on successive fields or such that one is on the odd field and the 

other on the even then, due to this shift subtraction of the images yields a 

non zero result. 

Obviously for the detection of changes on a sample this shift must be 

eliminated and so related images are always captured with time delays that 

are multiples of 40 ms which ensures the same field is captured each time. 

2.5.4 Video Framestore 

The heart of the system is an ImageIII video frames tore produced by Eltime 

Ltd in England.The framestore is based upon the VI500 single board field 

store developed by British Telecom Research Division and is a computer 

controlled digital picture store with variable picture resolution and 6 bit 

A/D and D/A converters giving 64 intensity levels known as greylevels.For 

beam profiling purposes the store is operated in the "2 image" mode where it 

is capable of storing 2 separate images each of 512 (horizontal) by 256 

(vertical) points whereas for the work in chapter 4 the board was run in "4 

image" mode with each of the four possible images being 256 by 256 points.By 

suitable circuitry the board can be interfaced to either Apple 11 or IBM PC 

type computers. 

The board when requested, either via the computer or from an external 

trigger source will perform a real time full field capture (snatch). The 

snatch is synchronized to and starts on the first field sync pulse after the 

request,and the entire incoming video signal for that field is captured and 

digitised. The digitisation is performed so that level 0 corresponds to 0.3 

volts on the video signal and level 63 to 0.7 volts. 

Once "in" the store an image can be thought of as being in the form of a 2 

dimensional array with parameters x (horizontal) and y (vertical).The image 

is arranged so that x=y=O is the top left hand point in the image, with 

increasing x running left to right and increasing y top to bottom. 

By suitable computer routines it is possible to write to or read from any 

point in an image 'and thereby perform such operations as image processing 

and reading/writing images to computer disc storage. 
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2.5.5 Computer Control 

At the time when the beam profiling system was initially written the only 

available computer was an Apple lIe based on a 6502A 8 bit processor with 

64k of ram and twin floppy discs each of which could hold 170k of data. Later 

on IBM PC type machines became available and parts of the original profiling 

system were rewritten for use on these faster and more sophisticated 

machines. 

2.5.6 Timing Requirements for the System 

Since the excimer induced fluorescence lasts of the order of 1 ~s (see 

2.5.9) i.e. all of the information is contained within 1 video field,there 

must be appropriate synchronization of both the excimer pulse and the 

frames tore snatch request to the field sync pulses coming from the camera. 

To perform this synchronization an electronic trigger box (later modified 

for the work in chapter 4) based upon previous work by a colleague14 was 

build. Fig 2.3a shows the basic circuit diagram for this box. 

Part A of the circuit serves to separate the data and sync pulses,and then 

to separate the line and field syncs so that the output of the 311 chip is 

one pulse every 20ms corresponding in time to the presence of a field sync 

in the video signal. Closing switch s1 activates the 7474 so that on the 

arrival of the next and only the next field sync pUlse, a pulse is provided 

to the 74121 that will initiate a snatch by the framsetore and, trigger the 

laser at the cor~ct time depending upon the type of camera being used. Switch 

s2 is included to allow a choice between LTD and FTD cameras.Figs 2.3b and c 

show the timing sequences used for the two type of camera. 

2.5.7 Video Copy Processor 

To obtain a hardcopy of the images displayed by the frames tore a Mitsubishi 

P60B video copy processor was purchased. This device provides hard copy 

prints from standard video signals with an intensity resolution of 16 

levels. Unfortunately since the copier only has 16 levels but the framestore 

has 64 there is some loss of image detail in printing which occasionally 

means that details easily visible on the tv monitor are much harder to see 

on the prints. Printed images are reduced by a factor of 3.2 compared to the 

image on the monitor. Unless specified otherwise figures quoted for 

magnification are for viewing on the monitor and therefore prints produced 

by this machine,in particular all images in chapter 2 and chapter 4 have 

magnifications reduced by 3.2 from the values quoted in the text. 
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2.5.8 Noise Considerations 

There are 2 sources of noise in the production of the viewed image, the 

noise associated with the camera and that with the digitisation in the 

framestore.Maufacturers data shows that the noise in the frames tore is not 

more than 1 grey1evel. 

There are 3 sources of camera noise, shot noise associated with the incident 

light, variations in pixel sensitivity across the chip due to variations in 

the pixel size across the chip and the so called fixed pattern noise which 

arises from the accumulation of thermally generated electrons on each 

pixel.Manufacturers data states that the noise in converting the a~uired 
1\ 

charge to a video signal is much less than any of the above. Again from 

manufacturers data, the shot noise is at most much less 17. of the peak 

signal and can be ignored,whilst across the chip the other 2 sources of 

noise are each at most 27. of the peak signal. 

The fixed pattern noise can be removed by subtracting 2 fields as this 

noise is constant for a given pixel provided the temperature remains the 

same and simply adds to the signal due to incident light.The noise due to 

variation in sensitivity can only be removed by division of fields after the 

fixed pattern noise has been removed. 

Hence in an unprocessed image the noise is not more than 47. of the peak 

signal which once digitised corresponds to ~2 levels.The subtraction 

routines used to process the data effectively half the noise and mean that 

there is a maximum of 2 greylevels of noise across the processed image,l 

level from the camera and the other from the digitisation noise.In a 

comparison of the same point between images, the only noise is the 

digitisation noise of around 1 level since the variation in pixel 

sensitivity effects only comparisons between different points •• Hence if the 

level of a given point changes by more than 1 level then this is data and 

not noise but to compare different points across the image the change must 

be more than 2 levels to guarantee that it is due to data and not noise. 

2.5.9 Fluorescence and Fluorescers 

To convert the UV light to a form that the camera can detect a fluorescing 

medium is used.Fluorescence can be defined as the emission of radiation 

(usually optical) due to an electronic transition between two energy levels 

(states) as a result of the excitation of a solid by absorption of photons 

where, the time duration of the emission is approximately equal to the 

lifetime of the transition between the levels concerned. It should be noted 

that often fluorescence results from so called "forbidden transitions" Le. 

non electric dipole transitions and therefore it's lifetime can be much 
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longer (of order 1-10 ~s) than the ~lOns associated with dipole transitions. 

Early work performed at the Rutherford Appleton Laboratory15 showed that 

the most suitable fluorescing mediums for use with a KrF laser were glass 

based.ln particular the work concentrated on commercial Borosilicate glass 

which has significant Fe2+ impurities.lt is these Fe2+ ions that act as 

extremely good absorbers16 of the UV light thus making the penetration 

depth of the light very small (~l~) and ensuring that a good two 

dimensional fluorescent image of the beam is produced.ln this early work15 

it was shown that borosilicate glass was linear in its conversion of UV 

light to visible fluorescence over the entire range of excimer fluences used 

at the time i.e. la ~J cm-2 to la mJ cm-2 .Later work performed by the author 

(see 2.5.12b) showed that when the excimer fluence exceeded approximately 50 

mJ cm-2 the fluorescent image of the excimer beam showed saturation 

effects,and therefore in practice, profiles were recorded using excimer 

fluences of ~40-50 mJ cm-2 .Further work at the Rutherford Laboratortyl6 

showed that for this type of glass the fluorescence had a lifetime of ~l~s. 

For use in the system the borosilicate glass was in the form of a thin 

(~100 ~) microscope cover slip approximately 2 cm square.By using the glass 

in the form of a thin cover slip a good image of the beam was ensured as 

problems such as distortion due to propagation in the glass were essentially 

eliminated. 

2.5.10 Operation of the system 

To obtain the profile of the excimer laser in any plane the front surface 

of the fluorescer was first accurately positioned at the required point in 

space. This positioning was accomplished by measuring the distance from the 

test plane to a convenient fixed point e.g. the holder of the excimer 

focussing lens by using a micrometer type depth g~uge.The fluorescer was 

then posi~ned so that the distance from its front surface to the fixed 

point was the same as that of the test plane. Experience showed that with 

care a reproducibility of better than 30 ~ could be achieved. 

By using a HeNe laser for illumination and working in transmission {see fig 

2.4),the video camera was focus sed onto the front surface of the 

fluorescer.Typically, due to the limited fluorescence of the glass,the 

system was operated with an optical magnification of only 1-2 as higher 

values resulted in very weak images at non saturating excimer fluences. 

The setting of the excimer fluence each time a beam profile was required 

was done by trial and error coupled with past experience in the following 

way. Experiments (2.5.11b) on the variation of the peak greylevel in the 

fluorescent image as a function of excimer f1uence showed that saturation of 
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of the fluorescence started to occur above level 30.Therefore the excimer 

fluence was adjusted so that the peak in the image was between 20 and 28 so 

that not only was the image a linear representation of the excimer beam but 

also to ensure that there were enough greylevels in the image to enable the 

1/e2 points to be found accurately and for there to be an adequate signal to 

noise ratio. This was achieved by repeatedly capturing and profiling images 

until the peak level was correct (see 2.5.12b). 

Once the excimer energy was set the trigger box was adjusted to give the 

correct timing sequence and the fluorescent image was then captured by the 

framestore.Once in the framestore image processing could begin. 

Prior to obtaining any profile the system had to be calibrated in terms of 

the number of pixels per cm in the horizontal and vertical directions 

which,due to the curious way in which the tv and frame store combine to 

present an image are not the same,with the ratio between them being 

typically 3/2.To do this the fluorescer was replaced by a piece of graph 

paper which was positioned (using the depth g(~ge) so as to be in the same 

plane as the front surface of the fluorescer.By using HeNe illumination the 

camera was focus sed onto the graph paper and an image of it captured on the 

framestore.By use of the horizontal and vertical profiling programs it was 

possible to move cursors around so that the number of pixels corresponding 

to a mm in the image could be found. 

2.5.11 Computer Routines 

2.5.11a Computer Processing on the Apple lIe 

Two programming languages were available on the Apple, US CD Pascal and 

Apple BASIC.lt is important to note that there was no "stand alone" 

assembler available for the Apple,the assembly programs that were written 

were done so from within either with the BASIC or Pascal operating 

systems. This meant that assembly level programs could not be run by 

themselves but had to be linked into the appropriate high level program. 

Since operation of the framestore/computer interface requires reading from 

and writing to some of the input/output (I/O) ports of the Apple it was 

dec':. ided to write the programs in a combination of useD Pascal linked to 

appropriate 6S02A assembly language routines for 2 reasons. 

l)In Apple BASIC there is no direct access to the I/O ports and therefore 

an assembly level program would have to be linked to the BASIC program. To 

use linked programs in this way from BASIC requires knowing the absolute 

memory location of the start of the low level program. This is essentially 
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impossible to determine since factors such as the number of program 

variables,the size of the program etc all have an effect on where the start 

of the program can be placed.ln Pascal the operating system automatically 

sorts out the location of programs within memory , the programmer does not 

have to know absolute locations. 

2)The file handling capabilities of BASIC are very limited and use of files 

from BASIC is very slow since only a single number can be written at 

once,whereas in Pascal numbers can be transferred in blocks of 256,greatly 

reducing the time involved. Initial tests showed that it took approximately 

25 minutes to save a 512 by 256 pixel image to floppy disc whereas from 

Pascal saving the same image took 63 seconds. 

Assembly language was used for simple input/output routines,basic image 

processing such as subtraction and enhancement and obtaining the data for 

graphical display/statistical analysis.Pascal was used for all disc 

input/output,hardcopy printout routines,performing statistical analysis of 

the image and for generating the graphics from the data obtained using the 

assembly level programs. 

Although faster in execution ,assembly language programs take far longer 

to write and in particular to debug than high level programs. This is 

because not only does any individual statement do less than a high level 

statement but the programmer directly has to set and be careful of the 

"flags" and "status registers" associated with the processor. 

2.5.11b Data Aguisition/Processing Routines 

These consisted of routines to ••• 

l)capture and subsequently display an image upon pressing a key on the 

keyboard or, to display an image resulting from a trigger box initiated 

capture. 

2)subtract 2 images on the basis that if image 1 (store a) has level A at a 

point x,y and image 2 (store b) has level B at point x,y then, written to 

store a is the subtracted image with level B-A at point x,y. 

3)read images from the framestore to disc and vice versa. 

2.5.11c Profiling Routines 

In order to actually profile a beam, the intensity along a given axis is 

required. The routines allowed profiling in 4 ways,horizontal 

44 



,vertica1,radia1 and angular. 

The horizontal and vertical modes allow profiling along horizontal/vertical 

lines respectively whilst the angular mode allows profiling along a line at 

any angle whose center can be anywhere in the image. The radial mode 

determines the average intensity value around a circle as a function of the 

radius of that circle with the centre being any chosen point in the image. 

In the horizontal mode the user would move a cursor in the form of a 

horizontal line up or down the screen until the desired position was 

reached. Upon pressing "p" a graph representing the intensity variation along 

the chosen line was superimposed upon the image as in fig 2.Sb.If the user 

was not satisfied with the position chosen, the cursor could be further 

moved but, not before the areas overwritten by the graph had been restored 

to their original values which, had been temporarily stored in the 

computer's memory. 

Once the user was satisfied with the position of the cursor pressing "g" 

would transfer the data to the computer for further processing and graphical 

disp1ay.With the data now in the computer's memory processing was carried 

out to find 1)the maximum grey1eve1 (intensity) and its position,2)the 

position and levels of the 1/e2 points and 3)the total number of grey1eve1s 

contained in the selected profile. 

Using the built in Apple graphics,a graph of the profile with the above 

parameters superimposed on it was generated and displayed on the computer 

monitor.A printout routine allowed this data to be "dumped" to an Epson FX 

80 printer.Fig 2.7a shows such a graph for the excimer beam profile shown in 

figs 2.Sa-c.On each graph the upper number labelled 1 is the total number of 

grey1eve1s in the profile whilst the lower numbers labelled 2 refer to the 

maximum and 1/e2 points. This latter data is in the form of position/level 

and from left to right corresponds to the left hand 1/e2 ,maximum and right 

hand 1/e2 points. 

All of the profiling modes work in similar ways and perform similar 

analysis on the selected data.In practice horizontal and vertical profiling 

is more than sufficient to characterize the excimer here at Loughborough.The 

angular mode was written at the request of the Rutherford App1eton 

Laboratory to whom a version of the system was given and the radial profile 

at the request of the Los Alamos National Laboratory who bought an extended 

version of the system. 

2.S.11d Statistical Analysis Routines 

The purpose of these r~ti nes was essentially to convert the recorded 

grey level at a point to a f1uence i.e. J cm- 2 and to provide such 
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information as peak and average fluences,fluence per greylevel. 

The collection of the "raw" data contained in the image was performed using 

an assembly level program and is complicated by the fact that since the 6502 

is only an 8 bit processor it can only handle directly numbers S255 and 

therefore special routines to emulate upto 24 bit addition and subtraction 

were written to cope with the size of number involved in the statistical 

routines. 

The routines herein are complicated by the fact that it is not always 

possible to have all the light in the image corresponding to fluorescence 

induced by the excimer beam and the~fore some form of allowance for this 

must be made.If for instance background light is allowed to fall on the 

camera or the camera were to pickup extraneous light such as that induced in 

the dye cell attenuator by the absorption of the excimer beam then the 

background level ("dark level") in the recorded image would not be zero.In 

the case of a lasers such as the one here at Loughborough which can be 

pulsed many times a minute it is very easy to remove this unwanted signal 

(noise) by simple subtraction of two frames,one that has the fluorescence 

and noise on and a second of just the noise.However,this method of removal 

is not practical on the big experimental lasers such as "SPRITE" at the 

Rutherford and "AURORA" at Los Alamos where the laser is working very well 

if it can be fired once ever 30 minutes. 

In order to convert greylevels to fluences the user must supply several 

parameters,specifically the number of pixels per centimetre in the 

horizontal and vertical directions,nx and ny respectively and the excimer 

energy (E) that was used to generate the fluorescence. From earlier profiling 

measurements the user will have been able to determine the background level 

gb which,will usually be near if not actually zero. 

A routine was written to allow the user if so desired to specify the area 

of the image from which the data for analysis was to be obtained from rather 

than using the entire screen which is the default mode. 

The routines first determine the number of pixels n that have a level gi 

that exceeds the background level gb and thus represent actual data rather 

than noise. The total numder of data greylevels gt and the sum of the squares 

of the greylevels gts are then determined as follows ••. 

gts = i Eni*(gi-gb)2 

where ni is the number of pixels that have greylevel gi and such that 

n = Eni 
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with the summation being carried out with i varying from gb+1 to 63. 

Hence assuming that at any point the induced fluorescence is directly 

proportional to the incident excimer fluence it is possible to convert 

greylevels to fluences as shown below. 

The energy per greylevel eg is given by eg = E/gt and therefore the energy 

(due to the excimer laser rather than noise) ep falling on a pixel of level 

gi is given by 

The area in cm2 of a pixel is 1/(nx*ny) and therfore the fluence at any 

pixel fp is given by 

The peak fluence is then found by finding the peak grey level in the 

signal,whilst the average fluence fav is found from the expression ••• 

The standard deviation of beam fluence fsd is also determined by use of the 

following expression ••.•• 

Once determined,all these values are then displayed and printed if required 

by the user.Fig 2.7b shows the output of the statistical analysis 

corresponding to the excimer profile in fig 2.Sa-c. 

2.S.12 Results 

2.S.12a Results 1 

Fig 2.Sa is a recorded image of the excimer with the fluence low enough 

that the fluorescence is linear whilst figs 2.Sb and c are respectively 

horizontal and vertical profiles of the excimer beam. Fig 2.6a is the image 

of a 5 mW cw HeNe laser with fig 2.6b showing an angular profile of the 

beam. The graph on the vertical line on the left hand side is a vertical 

profile of the beam along the angled line whilst that on the horizontal line 

is a horizontal profile of the beam along the angled line. The 2 profiles 
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would, once transferred to the computer be suitably combined to yield the 

profile of the laser along the angled line. 

2.5.12b Results 2 

The variation of the peak greylevel in the image and the width at the 1/e2 

points at a constant distance from the focussing lens as a function of 

excimer energy on the fluorescer was investigated by capturing and profiling 

the fluorescence for a number of laser energies,yielding the results shown 

in table 2.1 and graphically in fig 2.8. 

Table 2.1 

Energy* Peak greylevel Width at 1/e2 points 

llJ H V pixels** 

67 12 168 30 

135 23 170 32 

176 30 170 32 

280 35 203 34 

418 37 266 38 

627 40 290 42 

978 42 307 43 

*this is the energy that is incident on the fluorescer. 

**number are for the horizontal (H) then vertical (V) widths in pixels at 

the 1/e2 points. 

It is immediately apparent from table 2.1 and fig 2.8 that the fluorescence 

shows saturation effects i.e. the relationship between fluorescence and 

excimer energy becomes non linear at grey levels above ~30 corresponding to 

an energy of 0.176 mJ.Given that in this data was recorded such that there 

were 950 pixels per cm horizontally and 650 per cm vertically, this means 

that the peak greylevel corresponds to a fluence of ~50 mJ cm-2 • 

Figs 2.9a-c are a set of profiles for the excimer beam recorded at an 

excimer fluence well in excess of 50 mJ cm-2 and the effects of saturation 

i.e. the "flattening out" of the top of the profiles is obvious. 

If saturation is allowed to occur then it has two related effects,firstly 

the width at the 1/e2 points increases and secondly, the peak energy as 

determined by the statistical routines decreases markedly. 

Hence in operation when using the 20 cm focussing lens the excimer energy 

was always kept well below 176 llJ.Some of the work performed by colleagues 

requires greater f1uences than are possible with a 20 cm focal length lens 
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and therefore require a shorter focal length lens.Since the area of the 

laser spot at or near focus scales approximately as f2,the maximum allowable 

excimer fluence if saturation is not to occur also scales as f2. 

2.5.l2c Results 3 

In order to actually deter imine the location of the focus,an approximate 

position was found by viewing the fluorescence induced on a white card 

placed in the beam and finding the position where the beam appeared 

smallest. The profiling system was used to record profiles typically every 1 

mm for 1cm either side of this point thus obtaining the variation of spot 

size around the focus.For the 20 cm focussing lens used throughout, the spot 

size at focus is ~0.9mm.Table 2.2 shows the variation in spot size and peak 

fluence with position from a convenient fixed point. 

Table 2.2 

Position mm Spot Area mm2 Peak Fluence J cm- 2 

-4 1.30 213 

-2 1.24 226 

0 1.10 261 

1 0.95 272 

2 0.94 286 

3 0.95 277 

4 0.90 288 

6 0.89 267 

8 0.91 261 

10 1.06 215 

It is clear from table 2.2 that for several mm around the focal point the 

spot area and peak fluence do not vary appreciably (i.e. by more than 

5%).This is of particular significance for the work in chapter 3 where the 

sample was tilted at large angles to the beam and therefore interacted with 

the beam over a distance of several mm around the focal plane and means that 

the fluence over the whole of the interaction area is very nearly constant. 

It is interesting to note that the peak fluence and smallest spot area do 

not occur at the same position. This is probably the result of both the beam 

being intrinsically non GQ~ssian and aberrations/diffraction due to the 

focussing lens. 
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2.s.12d Results 4 

To illustrate the versatility of the basic ideas involved in the beam 

profiling system fig 2.10a is the image of a gain SWitched TEA C02 laser 

obtained by imaging the "burn off" of a graphite block upon which the laser 

pulse was incident.Figs 2.10b and c are the profiles for this laser and show 

that the laser was not ideally setup as it appears to be running in the 

TEMOI mode. 

2.5.13 Profiling and Damaging Simultaneously 

The operation of the system as described in 2.5.9 is such that profiling 

and damage cannot be performed simultaneously since the fluorescer is in 

place of the sample. For small lasers that generate highly reproducible 

pulses this does not matter,however in the case of large experiment lasers 

the rep rate is so low and pulse to pulse variations so great that a profile 

has to be recorded every shot whilst a sample is simultaneously being 

tested. This requires the beam to be split into two. The splitting ean be 

done at one of two points,either before or after the focussing lens. 

Splitting the beam before the lens requires using a second lens to focus 

the beam which has the problem of trying to match 2 lenses so that both 

produce identical beams which, in practice is very difficult to do with 

sufficient accuracy and therefore rarely done. 

Splitting the beam after the focussing lens requires the insertion of a 

beamsplitter into a non parallel light beam which means that the transmitted 

and reflected beams will not have the same profile.On passage through the 

beamsplitter the transmitted beam will be distorted whilst the reflected 

beam will not and represents a true image of the beam.The amount of 

distortion whilst depending in a complicated way upon such things as the 

thickness of the beamsplitter,width of the beam,focal length of the 

lens,angle of incidence on the beamsplitter ete is,in general minimised by 

using wide beams,near normal incidence on the splitter and long focal length 

lenses.In the case of the large experimental lasers which have large 

diameter beams and use long (~2m) focal length lenses,the distortion is 

sufficiently small that profiling and damage can be performed together. 

2.5.14 Comments 

Once everything is setup it takes about 10 minutes from capturing the image 

to obtaining the profiles and beam parameters,a significant improvement on 

the 2-3 hours that it required to obtain a less well defined profile by the 

scanning pinhole method. 
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2.6 Damage Detection 

2.6.1 Introduction 

Initially when the damage facility was setup at Loughborough, damage 

detection was performed by direct visual observation of the surface and or 

by the use of a photodiode together with Schlieren techniques to detect 

changes in the scattered light coming from a test surface. 

2.6.2 Schlieren Technigues 

The presence of LID on the surface of a sample will result in a changes in 

the amplitude and or phase of the parts of an illuminating probe beam that 

reflect off of the damaged areas.At or near the threshold of damage these 

changes are very small and difficult to detect,in particular the problem of 

detecting phase changes is notoriously difficult. 

One method for detecting these changes is the so called Schlieren technique 

that was originally developed and used in Germany for the detection of 

inhomgeneous regions in optical glass which are often in the form of streaks 

(The German for streaks is schlieren).A good general introduction to 

Schlieren techniques can be found in the book by Holder and North17 ,whilst 

the review paper by Davies 18 has a substantial bibliography containing 

references to nearly all the various types of Schlieren spanning a wide 

range of applications. Essentially, Schlieren involves altering the spatial 

frequency content of an image so that phase changes and refractive index 

gradients are made visible.This is achieved by using suitable apertures in 

the focal plane of the imaging lens to alter the intensity distribution 

(spatial frequency content) of this plane and hence the image and as such 

,Schlieren can be viewed as an optical processing system.A good introduction 

to spatial filtering and optical processing is to be found in the book by 

Yu19 • 

When a uniform surface is imaged by a plane wave, the light in the focal 

plane of the imaging lens is all contained in the central maxima (zeroth 

order spatial frequency)of the pattern.The presence of non uniform areas 

will result in some of the light being shifted out of the central maxima to 

outer regions of the focal plane ( i.e. to higher orders/spatial 

frequencies).Possible non uniformities are such things as defects, cracks, 

scratches ,scattering sites,phase changes due to having coating layers 

removed or,areas of anomalous absorption which when heated by the incident 

laser beam cause a refractive index gradient to appear due to the 

temperature dependance of the refractive index of the surrounding air.ln 

general the amount of light shifted out to higher orders is a small fraction 
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of the amount in the centre maxima and therefore these non uniformities when 

viewed appear as a small ripple on a large dc background. If the zeroth order 

is attenuated then the higher orders will become a larger fraction of the 

total observed signal and it will therefore be much easier to detect these 

non uniformities. 

Standard Schlieren (see fig 2.11) involves using a knife edge inserted in 

the focal plane so that half the zeorth order and all the spatial 

frequencies on one side of the pattern are blocked i.e. removed from the 

image. This then means that if the object is a uniform surface the image has 

had it's intensity reduced by a factor of 2.Should the surface now develop 

areas of non uniformity,light will be shifted out of the ze(o'th order into 

higher orders and thus these sites will show up in the image as areas of 

light or dark depending upon whether the shift was to orders that are passed 

or blocked by the knife edge. Only the areas of change (e.g. where there are 

refractive index gradients,phase gradients or regions seperating damaged 

from undamaged,or areas of anomalous absorption) will show up since areas of 

uniformity will not shift light into the higher orders. 

This form of Schlieren is the most sensitive in that it can detect both 

increases and decreases of light whereas, in the type of Schlieren that 

totally blocks the zeroth order,the contrast of the light passing the stop 

is maximised but,the system can then only detect areas that shift light into 

orders that the knife edge passes ie. it cannot detect decreases in light 

coming from an area. 

2.6.3 Detection using the Framestore and Schlieren Imaging 

The purchase of a video frames tore and related video equipment e.g. cameras 

,monitors etc allowed for the first time single picture capture of damage 

related events and their subsequent image processing. 

Modifications,based upon using 74121 TTL chips to provide delays between 

input and output pulses were made to the video trigger box to enable it to 

provide 3 pulses.One to trigger the laser and 2 others 40 ms apart to 

trigger the framestore.The framestore was initially operated in the 512 by 

256 pixel mode giving 2 stores but,this was later changed to the 256 by 256 

mode as this gave 4 stores. The framestore set to store 1, was triggered 

first and then, 20 ms later the excimer fired and a further 20 ms after that 

the framestore set to store 2 was triggered again (see fig 2.12).This would 

result in the image in store 1 (image 1) being the "before" image i.e. 

before the excimer pulse and that in store 2 (image 2) the "after" image. The 

difference in the images if any would thus represent the induced damage. 

The delay of 40 ms between images was chosen for 3 reasons •.. 
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l)images taken multiples of 40 ms apart corrspond to the same video field 

and so eliminate the half pixel shift associated with CCD devices 

2)transient effects would have decayed away 

3)40 ms rather than other multiples of 40 ms e.g. 80 ms etc was chosen as 

it would reduce the chance of room vibrations and variations in illuminating 

intensity causing differences in the images when in fact the images should 

be identical as no damage had occurred. 

The switching of the frames tore between stores 1 and 2 was done by software 

routines as it had to be performed faster than was possible manually. 

The surface of the sample under test was illuminated by a 5 mW HeNe cw 

laser and imaged by a video camera.In the focal plane of the imaging lens a 

knife edge mounted on a micrometer driven positioner was set up so as to 

remove half the zeroth order of the pattern and thus produce a Schlieren 

imaging system. 

Once everything was setup the two images were captured and stored on floppy 

disc using the same routines as were originally written for the beam 

profiling system pending processing. 

2.6.4 Damage Processing routines 

Since,as a result of damage it is quite possible to have areas darker than 

they were before damage as well as areas that are lighter,the subtraction 

routine written for beam profiling which assumed that image 2 was always 

brighter than image 1 was unusable.A separate subtraction routine was 

written which allowed the user to subtract image 1 from 2 or vice versa and 

worked in the following way,at point x,y let image 1 have level ga and image 

2 level gb then the routine would evaluate the processed level gp for point 

x,y as 

gp = 31 ± (gb-ga)/2 

and write this back to store 1 point x,y.Processing in this way enables 

positive and negative changes i.e. increases and decreases of light to be 

displayed whilst ensuring that the data always remains within the 0 to 63 

level range of the framestore. 

Note that since this was written in assembly level and therefore the 

numbers are in binary form,the divide by 2 was performed by a 1 place 

logical shift right of the binary representation of the data. This means that 

although the absolute value of the maximum value of gb-ga is 63 that of 
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(gb-ga) is 31 as 0.5 part is ignored in the shifting operation. Hence gp 

varies from 0 to 62 depending upon the data invo1ved.A1though this divide by 

2 means that the minimum change that can be detected is 2 levels this gives 

essentially no loss of resolution in practice as the noise level is of the 

order of 1-2 grey1eve1s. 

An assembly language contrast enhancement routine was written that 

increased (enhanced) the difference of the processed level gp from 31.This 

was done by determing the maximium deviation, dmax in an image from level 31 

(either above or be10w).Then if the level at point x,y in an image is g, 

then written back to point x,y in the same store is the enhanced value ge 

. given by 

ge = 31*(1+(g-31)!gmax) 

This routine thus makes full use of the available range of the framestore 

and since the subtraction was done first any deviation from level 31 

represents data and not noise. 

Figs 2.13a-d show the results of processing a test image.Figs 2.l3a and b 

represent the original images with a slight difference between them. Fig 

2.l3c is the result of subtracting the images whilst fig 2.13d shows the 

effect of the enhancement routine on the subtracted image. 

2.6.5 Imaging and Alignment of the Sample 

Typically the surface of a sample was imaged at approximately 300 times 

magnification as viewed on the monitor and given that the camera provides 

times 32 an optical magnification of around times 10 was used. This was 

achieved by using 2 simple single element lenses,the first one giving times 

2 magnification with the knife edge in its focal plane and the second times 

5.Two lenses were used because of problems of 1)avai1ab1e working space and 

2)aberations associated with using single element short focal length 

1enses.With the apertures involved resolution was limited to ~4 ~. 

Depending upon whether the sample was a reflector or transmitter of the UV 

beam it was placed a co~ient distance e.g. 1 to 3 mm respectively inside or 

outside of the focus. The reflecting type samples e.g. metals and high 

reflectance (HR) dielectric stacks were placed inside the focus so that 

there is no possibility of the beam being reflected from the sample and 

subsequently focus sed by the lens onto the output windows of the laser 

which can,and indeed did on one occasion cause damage to the output windows. 

The positioning of the sample was achieved by using a micrometer depth 

~.~ge to measure the distance from a convenient fixed point. For alignment 

p{poses the sample was then irradiated with a very high fluence excimer 
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pulse,high enough to cause large scale damage e.g. a damage site of around 

1mm in size.The illuminating HeNe laser was then centred on this damage site 

and the video system set to detect this light and so image the surface. The 

knife edge was then appropriately set. 

2.6.6 Damage Testing 

The criteria for determing the damage threshold of a sample adopted here at 

Loughborough is the fluence at which there is a 0% chance of damage 

occurring i.e. no site tested at the quoted f1uence damaged. 

A test site was chosen and irradiated with the required number of pulses 

e.g. 1 for single shot and it was noted if damage occurred.A new site was 

then chosen and the process repeated. Initially the laser energy was set 

high and gradually reduced to the point where some test areas did not 

damage. During this part of the test, damage detection was carried out by 

viewing the surface in real time via the video system. Only when the fluence 

was such that damaged occurred at some but not all sites was the frames tore 

used as it greatly increases the time required to evaluate the result on a 

given site but, it is a far more accurate and reliable method especially at 

or near the damage thresho1d.The excimer fluence was varied until none of 

the sites (typically 10) tested at a given f1uence damaged. 

The use of a beam of spot size much greater than the defect spacing 

together with multiple sites reduces the defect problem since under these 

conditions a defect is almost certain to be irradiated at or very close to 

the peak f1uence in the beam, thus justifying the use of the peak beam 

f1uence as the damage threshold rather than one averaged over the 1/e2 area. 

In performing the tests a distinction was made between changes arising from 

the "blow off" of dust etc from the surface and damage that-degraded the 

optical properties.Rea1 time observation of the surface via the video system 

enabled the differe:lce between "blow off" and damage to be determined. 

2.6.7 Laser Pre-c1eaning 

Depending upon the type of sample under test, the variation in damage 

threshold across the surface could be quite small (e.g. 20%) or in some 

cases much more than an order of magnitude.In nearly all of the samples with 

a large variation, this variation was drastically reduced by irradiating the 

surface with 2-6 very low non damaging pulses.It is the author's contention 

that these pulses remove surface contaminants such as polishing compound 

organic molecules,dust etc that were either left on the surface after 

production or picked up during transit and handling. These pulses thus 

produce a more uniform surface where the surface properties are primarily 
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those of the coating and or substrate rather than being mainly due to 

contaminants. 

In practice if a sample was found to have a large threshold variation,each 

site was pre-cleaned before irradiation by the damaging pulse.This resulted 

in not only a more reproducible threshold but a significantly higher one due 

to the elimination of easily damaged contaminants. 

2.6.8 Results 

Fig 2.l4a-f show a typical damage sequence. They are for a dielectric 

antireflection (AR) coating on a fused silica substrate.Fig 2.l4a is the 

initial surface after 4 low energy cleaning shots.Fig 2.l4b is the surface 

after 1 damaging pulse and fig 2.l4c after a second damaging pulse.Fig 

2.l4d-f are the processed (subtracted) images of respectively 2.l4a and b 

(2.l4d),a and c (2.l4e)and band c (2.l4f).The difference between 2.l4a and 

b is fairly obvious from the actual pictures but that between band c is 

very hard to tell directly and reference to 2.l4f shows the advantages that 

image processing offers in the detection of small changes i.e. damage 

between images. 

2.6.9 Comments 

Since this technique is based on imaging it allows the user to determine 

where a sample has damaged and allows for the possibility of correlating 

damage to visible defects such as scattering sites and as is shown in 

chapter 4 an extension of these ideas can be used to correlate damage to non 

visible thermal defects. 

2.7 Conclusions 

A new technique for beam profiling that enables complete spatial 

characterization of the beam to be obtained in a single laser pulse has been 

developed. The technique developed for the detection of LID is not only very 

sensitive to small changes but because it does not re.quire the user to make 

a real time judgement is very reliable and allows the spatial location of 

these changes to be determined. 
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Chapter 3 

Laser Induced Ripple Structures 

3.1 Introduction 

Over the last 25 years or so researchers working with high power laser 

beams have noted many different types of damage and damage morphology 

depending upon the material and laser involved however ,there is one type of 

widely reported surface damage known as Laser Induced Ripple Structures 

(LIRS) which, appears to be almost independent of the material and type of 

laser used. These structures appear as periodic undulations of the surface, 

akin to the ripples that appear on the surface of a river or pond if a stone 

is dropped into it. 

The structures observed can be divided into 3 types depenc~,nt upon the 

mechanism of their formation as detailed below •••• 

a)Laser Induced Thermomechanical Structures (LITS) formed by the buckling 

of an interface as a result of laser heating. 

b)Laser Induced Capillary Waves (LICW) formed by the generation and 

subsequent "freezing in" of capillary (surface tension) waves on a fully 

molten surface. 

c)Laser Induced Periodic Surface Structures (LIPSS) formed as a result of 

the interference between the incident light and a induced surface electric 

field. 

The aim of this work was initially to investigate the possibility of 

generating UV LIPSS and if this was possible, to attempt a detailed 

investigation (experimental and theoretical) of their properties. Following 

early work by Wiseall and Emmonyl samples of Al over coated with silicon 

oxide (in the form of SiOx where x is ~2) were initially used. These samples 

yielded only LITS and were soon replaced by samples of Al and Ge with no 

overcoats which yielded LICW and the desired LIPSS. 

The term LIRS will be used as a general term when reference to all 3 types 

of ripple structures is being made. The rest of this chapter will be divided 

into 3 separate sections dealing in turn with each of the above types of 

LIRS. 

Note that all fluences quoted in this chapter (except the "normalised 
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formation fluence" in 3.4.6d) are based on the area of the beam when 

normally incident on a sample. 

3.2 LITS 

3.2.1 Introduction and Review 

LITS were initially reported in connection with laser annealing of 

semiconductors, in particular silicon2- 4 . The annealing process involli.es the 

rapid heating and cooling of semiconductor surfaces which allows such things 

as recrystallization of the semiconductor, redistribution of dopants and 

most importantly provides a mechanism to removing implantation damage.A 

comprehensive introduction to laser annealing of semicondutors can be found 

in the book edited by Poate and Mayer2. 

The great majority of silicon based devices require their surface to be 

covered with a thin insulating layer.Silicon dioxide is used for this layer 

as it has exceptional masking, insulating and passivating capabilities.It is 

usually desirable to have the silicon dioxide layer on the silicon for most 

of the processing operations. 

Laser annealing of silicon covered with its oxide results in ripple 

patterns (as in fig 3.1a) being formed on the surface. The spacing of these 

ripples (typically ~2 to 10 ~) as shown in the work by Stephen3 depends 

largely on the thickness of the oxide coating ,increasing with thickness of 

oxide and is unrelated to the wavelength of the annealing laser. 

Hill and Godfrey4 proposed the generally accepted explanation of this 

effect in terms of induced stress caused by the different expansion of each 

material as a result of the laser heating. In this model the underlying 

silicon melts first as it is heated directly by the laser beam whereas the 

oxide is heated only by conduction from the silicon. This leaves the heated 

oxide layer (within the beam target interaction area) floating on a liquid 

surface but, it is still constrained at the edges where the silicon has not 

melted. Since the heated area will attempt to expand laterally but cannot as 

it is pinned by the areas that have not melted it Will, in order to relieve 

the stresses created buckle upwards as it is not constrained (except by its 

own strength) in this direction, thereby suffering permanent non elastic 

deformation. 

The thicker the oxide layer the stiffer it is and therefore for the same 

induced stress i.e. laser heating, the less the surface will buckle and 

hence the spacing of the ripples formed will increase. 
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Fig 3.1 

SE~ pictures of ripples on overcoated Al deposited on gl~ss 

Above a) magnification X5,OOO 

O\'erleaf b) magnification 5,500 The top part of the picture shot's ri?ples 

in the underlying Al v..'here the overcoati;1g has been "hIm .. -n a ... ;ayl!. The Im"ter 

part still has the overcoating layer a~d the continuation of the ripp!es 

i~:o this area can ~ith careful examination be seen. 
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3.2.2 Experimental Configuration 

The same experimental arrangement was used for all LIRS work and is shown 

in fig 3.2 

As will be discussed in 3.4.2 previous work had shown that the polarization 

of the light used has a significant effect on the generated structures and 

thus some form of UV polarizer was required. Since no purpose built polarizer 

was available, the light reflected from a single beamsplitter orientated at 

Brewster's angle was used. 

Bs2 (fig 3.2) was set to Brewster's angle for fused silica in the UV 

(~560).By using 2 photodiodes the fraction of light reflected off Bs2 was 

measured and found to be 15%, in excellent agreement with that predicted by 

using the Fresnel reflection equations for an unpolarized incident beam. This 

showed as expected that the laser output is essentially unpolarized.As only 

metal and semiconductor samples were used, having to work with at most only 

15% of the beam was not a significant problem. 

The reflected light at Brewster's angle is S polarized which given the 

orientation of the components used results in the E field of the light being 

in the vertical plane. This then allowed the variation of LIRS with angle to 

be determined for S polarized light by simply rotating the sample in a 

horizontal plane but, in order to repeat this for P polarized light a 

special mount had to be made which allowed rotation in the vertical plane as 

well. This worked because by aligning the sample in the horizontal plane to 

be normal to the beam ,and then rotating it in the vertical plane, the plane 

of incidence is rotated by 900 which ,effectively "converts" the S polarized 

light to P. 

Since the experiments involved rotation of the sample, it's surface was not 

imaged during the experiments, instead it was simply observed directly by 

eye. This was adequate for the work herein but for planned future work a 

proper imaging system which rotates with the sample will be used. 

The samples, being high reflectors were placed inside the focus of the lens 

by some 3-4 mm.Beam profiling measurements showed that for a distance of 

approximately 4 mm either side of the focus the beam profile and peak 

fluence were very nearly constant. 

3.2.3 Proce dures for Analysis of Results 

The same analysis proce dures were used for all LIRS work and consisted of 

optical (OM) ,scanning electron (SEM) and transmission (TEM) microscopy. 

The OM work which was based on a Riechart MeF3 with a maximum useful 

magnification of 1900 was mostly performed by using an interference contrast 
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technique although dark and bright field illuminations were occasionally 

used. 

The SEM work was performed on a Cambridge Steroscan device which in 

practice was limited to magnifications of ~X10.000 if picture quality was to 

be maintained. The samples were inserted directly into the SEM and only the 

over coated samples (because of their lack of surface conductivity) had 

problems (albeit small ones) with surface charging due to the electron beam. 

The TEM work was performed using a JOEL TEM 1000CVI which was easily 

capable of X100.000 or more.In order to actually perform the TEM work 

replicas of the surface using a standard acetate/carbon coating technique 

were made. Since the replication process involves carbon coating an acetate 

replica of the surface this ,at high magnification results in a roughness 

(i.e. grain structure) on the pictures which is not related at all to the 

original surface. 

3.2.4 Samples Tested 

The samples tested were provided by Comar Instruments Ltd. of Cambridge and 

consisted of an optically thick layer of Aluminium on a glass substrate flat 

to A/5 (at A ~550nm) either with or without a half wave thick overcoat layer 

of silicon oxide in the form SiOx where x is ~2. 

3.2.5 Experimental Proce ,dure 

Once suitably positioned relative to the focal plane of the lens, areas on 

the samples were irradiated by either single or multiple (2 -40) excimer 

pulses of varying fluence.The f1uence was varied from being so low that 

there was no visible damage through to fluences so high that they produced a 

large plasma immediately above the surface of the sample which was 

accompanied by an audible "cracking" sound. The angle of incidence and the 

polarization of the incident light were varied by suitably rotating the 

sample. 

3.2.6 Results 

The ripples found on the overcoated samples showed no dependence of the 

spacing on either the angle of incidence or the polarization of the incident 

light.No ripples were detected on the samples of bare Al i.e. those with no 

overcoating. 

At very low fluences no ripples were ~str~~ but on sites exposed to 

higher f1uences e.g. above 0.2 Jcm- 2 ripples were readily detectable. Fig 

3.1a is typical of the ripples produced on the over coated samples and shows 

a spacing of ~2~. 
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In this picture the oxide overcoat has been left covering the entire metal 

surface, however in fig 3.1b observed on a site exposed to ~10 pulses of 

fluence 0.4 Jcm- 2 it is clearly evident that there are areas of rippling 

that have no overcoat on them and indeed the continuation of the ripples 

into overcoated regions is apparent. 

The ripple spacing was not constant and indeed appeared to vary randomly 

even within a single damage site with values of ~2 to 4~ being observed. 

Fig 3.3 is typical of the surface of non overcoated samples and was 

observed on a site exposed to the excimer beam in the same way as 3.1b.It is 

obvious that there is no evidence of the rippling that occurs on over coated 

samples. 

3.2.7 Analysis of Results 

The absence of ripples on non over coated samples which clearly indicates 

that the rippling is related to heating of the metal oxide interface, 

together with the lack of depend~ce of the ripple spacing on the angle of 

incidence or polarization of the incident light is in the_.author I s view 

sufficient to label the ripples as LITS.The labelling of these ripples as 

LITS can be justified since the conditions for LIPSS (which-are electric 

field related) are essentially satisfied for both types of sample whilst 

those for LICW (which require a surface to be fully molten to a suitable 

depth) are more likely to be satisfied on the non overcoated samples (as the 

surface is not constrained by the overcoat) on which no ripples are found. 

3.2.8 Conclusions 

This work shows that ideally annealing processes should be carried out 

without any form of overcoating layer and that if the process has to be 

performed with an overcoat layer than the heating should be mimimal and 

performed extremely slowly to try and maintain equilibrium at the substrate 

overcoat interface. 

The results of this section clearly show that overcoated samples are not 

suitable for LICW/LIPSS studies and that bare Al coated on glass is not 

suitable either. This latter conclusion whilst initially somewhat surprising 

is, as will be shown later, explainable in terms of the Al coating being too 

thin to surport any form of LIRS. 

The samples were then changed to solid polished blocks (~3-6 mm thick) of 

Al and Ge upon which it proved possible, as will now be dicussed, to produce 

LICW (particularly on Al) and LIPSS (particularly on Ge). 
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Fig 3.3 

SEM picture of the substrate (left side), Al coating (right side) interface 

on the non overcoated Al on glass samples.Magnification 2,OOO.Note the 

absence of any ripples. 
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3.3 LICW 

3.3.1 Introduction and Review 

Capillary (surface tension) waves are a well known and documented phenomena 

on liquid surfaces,in particular on water surfaces.Excellent introductions 

to this effect can be found in the book by Landau and Liftshitz5 or Main6• 

Essentially the waves occur as a result of the effect that surface tension 

forces have on the equilibrium shape of a fluid surface. From ref 6 it can be 

shown that if a fluid has depth h, density p and surface tension 0 then the 

dispersion relation of its surface waves can be written as •• 

w2 = (gk + ak3/p)tanh(kh) 1) 

where g is the acceleration due to gravity ,w angular frequency of the wave 

and k it's wave number. 

On the assumption that the liquid depth is much greater than the wavelength 

of the oscillation and that k2 ~ pg/a then surface tension is the dominant 

restoring force and the dispersion relation can be written as •• 

2) 

For metals and semiconductors in the liquid state a is typically 10 times 

that of water i.e. ~0.8 Nm- 1 amd with p ~5000 kgm- 3 requires the wavelength 

of the oscillation to be much less than 2.6 cm for surface tension to be the 

dominant restoring force which, since typically the wavelength of observed 

str~~tures is less than 2~ is well satisfied in practice by the samples 

used in these experiments. 

Viscous forces within the liquid will act to damp the oscillations with 

time t, causing the amplitude A of the capillary waves to decay as .•• 

A a: exp( --yt) 3) 

with 

4) 

where ~ is the shear viscosity and v the kinematic viscosity of the liquid. 

Both the phase and group velocities of capillary waves are proportional to 

the square root of k and are given by •.. 
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vp = w/k = (crk/p)1/2 and Vg = dw/dk = 1.5vp 5) 

where vp and Vg are respectively the phase and group velocities. 

Capillary waves can be initiated on a liquid surface by various "driving 

forces" such as the impact of particles onto the surface,ablation of 

particles off the surface ,localised anomalous heating which sets up stress 

waves in the sample or by the propagation of shock waves into the molten 

regions either up through the bulk of the material or as a result of a 

pressure wave in the air above caused by such things as the presence of a 

small volume of plasma. 

The first report of LICW appears to be that by Rozniakowski7 where the 

pattern generated on an Al surface exposed to high laser fluences (in the 

infrared ) was, with little detailed justification attributed to laser 

induced capillary waves. 

A much more detailed analysis was performed by Keilmann8 where the 

dispersion of the waves induced (by a pulsed C02 laser) on the surface of 

liquid metals such as Hg was determined and shown to be that of capillary 
... l 

motion.To obtain the required information , princip~ly the oscillation period 

and the decay time, the diffraction caused by interaction of the capillary 

waves with a cw laser beam incident within the area irradiated by the high 

energy pulsed laser was monitored as a function of time. 

Young et al9 (hereafter known as Ill) performed a detailed analysis of the 

structures generated on Ge irradiated by intense 1.06 ~ light and concluded 

that for fluences sufficient to cause uniform melting of the surface 

capillary waves were induced on the liquid surface. They further showed that 

if the decay of the capillary waves was not complete by the time that the 

surface resolidifies then a permanent record of the ripples is "frozen" into 

the surface forming what are termed LICW. 

Assuming that the surface still has ripples on it at the time of 

resolidification then, exactly what is permanently recorded on the surface 

will depend upon the relative magnitudes of the oscillation period of the 

wave and the time it takes to solidify the surface by removing the latent 

heat of fusion once the surface has cooled to its melting temperature (known 

as the "freezing time").It is the author's contention that to record well 

defined ripples requires the freezing time to be much less than the period 

of oscillation otherwise the ripple will have changed significantly during 

the freezing time and thus be recorded as a somewhat blurred out structure. 

The mechanism of initiating these waves ("seeding") will depend upon the 

laser fluences being used. The fluences used in ref 8 and 9 were sufficiently 
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low that no plasma was produced above the surface and in these cases the 

seeding of the waves is attributed to scattering of the incident laser light 

by surface roughness. The fluences used by the author always produced a small 

volume of plasma above the sample's surface and in this case, it is the 

author's contention that in addition to the previous mechanism, the forces 

induced on the surface by the presence of the plasma provide a possible 

second seeding mechanism. 

Given that these waves require a liquid surface and as this takes a finite 

time to produce then, the seeding of the waves can only occur for the time 

(seeding time) that the molten surface is subject to the driving force i.e. 

to the incident laser pulse and or the induced plasma.In order to relate 

accurately the frequency of the generated waves to the seeding time a 

Fourier transform would have to be performed however, a measure of the 

generated frequency f maybe obtained by simply taking f ~l/(Zti) where ti is 

the seeding time. 

Table 3.3 lists the wavelength ,decay time and velocity that capillary 

waves generated on Al with the stated interaction times would have. The 

material parameters for Al are taken from table 3.1. 

3.3.Z Samples Tested 

The same types of samples were used for LICW and LIPSS work and consisted 

05 50 mm diameter 6 mm thick discs of Al and 3smm diameter 3 mm thick discs 

of Ge.There was no overcoat layer on any of these samples. 

The Al samples were of a commercially pure grade (997. Al) and polished by 

Struers Ltd of Birmingham to a low quality optical finish.On these samples 

it was possible to see the so called "orange peel" effect characteristic of 

grain boundaries. 

The Ge samples were polycrystalline high purity COZ laser mirrors polished 

on both faces to a good optical finish. The surfaces were flat to around A/s. 

3.3.3 Experimental Proce ~ 

Initially the samples were irradiated by single excimer pulses at normal 

incidence with the fluence range as discussed in 3.Z.s.Subsequent 

experiments involved varying the number of excimer pulses and both the angle 

of incidence and polarization of the incident light by suitably rotating the 

sample. 

Attem,ts were made to monitor the diffraction of a probe beam by the 

capillary waves by using a cw laser linked to a fast 

photomultiplier.Unfortunately the largest available cw laser was only a 10 

mW HeNe and as a result these experiments failed due to insufficient light 

82 



being incident on the detector for the timescales (of order 100 ns) involved. 

3.3.4 Comment 

In the course of performing these experiments both LICW and LIPSS were 

observed, often existing in neighbouring regions of a damage area. The 

results in this section will concentrate exclusively on LICW, the results 

etc for LIPSS can be found in 3.4. 

3.3.5 Results 

The ripple spacing produced showed no depend4!.nce on the angle of incidence 

and polarization of the incident light. The fluence required to form ripples 

was dependent on the number of shots used ,the angle of incidence and 

polarization of the incident light. 

Single shot normal incidence type experiments showed that at fluences below 

~2 Jcm-2 no ripples were produced although the sample would badly 

damage.Bewteen 2 and 3 Jcm-2 the ripples were found to form near the centre 

of the damage site as in figs 3.4a-b.As the fluence was further increased, 

the ripples formed progressivly further out from the centre in an annulus 

surrounding the badly damaged centre of the site (fig 3.6b). 

Multiple shot experiments showed the same trend except that the formation 

fluence was significantly lower e.g. 2-4 times lower depending upon the 

number of shots used. 

Experiments involving varying the angle of incidence and polarization of 

the incident light showed the same trends as those at normal incidence with 

the formation threshold being higher (up to a factor of 4) than the normal 

incidence case for the same number of laser pulses. 

The uniformity and definition of the ripples improved with increasing 

numbers of shots.Fig 3.6a shows the pattern generated after 20 moderate 

fluence pulses where,the generated ripples are quite uniform and well 

defined with a spacing of around l.4vm. 

In general the spacing of the ripples as determined from OM work was found 

to be in the range ~ 0.8 to 2vm,with the spacing decreasing towards the 

outer edge of the damage site. 

SEM work was performed in an attempt to determine the lower limit on the 

size of the ripples.Figs 3.Sa-b show typical SEM pictures of the induced 

ripples where,the ripple spacing is found to vary from a few hundred 

nanometres upwards.In areas that had ripples visible in the OM it was ,in 

general found that smaller and smaller ripple patterns were found as the 

magnification was increased ,there appeared to be no lower limit on the size 

of the ripple spacing. 
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Fig 3.4 

Ai samples irradiated by a single excimer pulse of fluence 2 Jcm- 2 at 

normal incidence. 

Above a) Magnification XSOO Observe how the capillary waves have formed in 

the centre of the damage site, 

Overleaf b) Magnification X3,OOO The variation in wavelength of the 

capillary waves is evident and in particular the very fine structure at the 

edge of the damage area (top right hand corner). 
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Fig 3.5 

SR~ pictures of capillary waves on Al samples. 

Above a) Single excimer pulse incident normally magnification 5,000 

Overleaf b) Multiple P polarised excimer pulses incident at 60 0 

magnification I3,000.The capillary waves have been generated from the vortex 

at the top of the picture and subsequently frozen in.Note how the ~aves have 

begun to break over and also the variation in the period of the waves. 
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Fig 3.6 

Multiple pulse induced capillary waves on Al by P polarised light. 

Above a) 60 0 incidence magnification 1,500 Note the uniformity of the 

capillary waves and the increase in their spacing as the centre of the 

damage site (centre of picture) is approached. 

Overleaf b) 75 0 incidence magnification X750 The capillary waves in this 

case have formed in an annulus around the centre of the damage site. 
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3.3.6 Laser Heating - Theory 

Before these results can be analysed and as it is the author's contention 

that the ripples are LICW which require a molten surface some indication of 

the heating of the surface by the laser beam must be obtained. 

The theory used herein and indeed by many workers is that developed by 

ReadylO which uses as a starting point the generalised equations developed 

by Cars law and Jaegarll. 

In the model all material parameters such as thermal conductivity, specific 

heat capacity and density are assumed to be independtnt of temperature. This 

assumption is not too unreasonable for Al but, Ge being a semiconductor will 

have a temperature variation of its material parameters so large that it 

cannot be ignored and for this reason coupled with the fact that the LICW 

were far more prevalent on Al ,the heat conduction calculations were 

performed for Al only. 

The conduction of heat is assumed to occur only in the metal, any loss to 

the surrounding air is ignored.In view of the relative diffusivity of metals 

and air this is not an unreasonable approximation. Hence the conduction is 

assumed to occur in a semi infinjte medium with the laser pulse incident on 

the z = 0 plane and the sample extending along the positive z axis. 

The model further assumes that the absorption of the incident light occurs 

in a distance small compared to the distance that the heat will diffuse into 

the bulk of the sample in the duration of the laser pulse i.e. it is a 

surface heating model. This assumption can be justified for metals by 

comparison of the optical penetration depth and the thermal diffusion 

distance. 

Consider a light wave propagating in a medium of refractive index nt then, 

the amplitude of the electric field can be written in the form ••• 

E « exp(i(wt-ntkx» 6) 

where w is the angular frquency ,k the vacuum wavenumber, nt the refractive 

index, t time and x distance.If the refractive index is complex as it is in 

metals and semiconductors then writing 
• nt= nr +lni 7) 

where nr and ni are respectively the real and imaginary parts of the 

refractive index yields by 6) an exponential decay in the E field given by .. 

Typically ni is of order 3 for metals and semiconductors at 249nm hence 
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giving as the skin depth at 249run ~lOrun and given that the intensity is <xE2,. 

the intensity is down by a factor of more than 103. in a distance of SOrun. 

In general solutions to the heat conduction equation for laser heating of a 

solid surface have a term(s) of the general form 

T <X exp(-x2/(4kt)) 9) 

where T is temperature and k the thermal diffusivity. The thermal 

diffusivity is defined as 

k =K/(pc) 10) 

where K is the thermal conductivty, p the density and c the specific heat 

capacity. 

Hence a measure of the thermal diffusion of heat with time is •• 

x = (4kt)1/2 11) 

Typically for a metal k is ~lO-4 giving a diffusion distance for a 30 ns 

laser pulse of ~3~ i.e. much greater than the optical skin depth and thus 

justifying the surface heating model. 

The presence of a plasma above the sample which ideally should be included 

in any model would at first sight appear to render the situation 

intractable.Since the spatial extent of the plasma is closely related to the 

spatial profile of the beam .it is the author's contention that to first 

order the plasma will simply scale uniformly the heating effects due 

directly to the laser beam i.e. change the temperature of any point by the 

same fraction as any other point. Thus for the purposes of these calculations 

there is no direct allowance for the presence of plasma.However, indirectly. 

throug~ the use of a coupling factor an attempt is made to allow for the 

presence of a plasma as now discussed. 

Based upon the optical values in table 3.2 and using the Fresnel equations 

,at 249 run the reflectivity of Al at normal incidence is 927.. thus 87. of the 

incident light is absorbed (coupled) as heat into the sample.Woodroffe et 

al12 have shown that at the fluences used in this work the coupling of light 

as heat into Al is significantly greater than that theoretically predicted 

(i.e. 87.).This increase they attribute to a plasma surface interaction and 

at the fluences used in this work approximately 407. of the incident light 

was found to couple into Al as heat. Thus for these calculations a 407. 

conversion of incident light energy into heat (thennal energy) is used. 
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Cars law and Jaegar11 give the following expression for the temperature at a 

point r,z and time t in a semi infinlte solid due to heating of the surface 

(z = 0 plane) by an instantaneous ring source of radius r' and total 
I 

absorbed energy q(r ) •..•. 

T(r,z,t) 
(
r2+rI2+Z2) 

= __ --=1'-,-_ ~f ( ') 4kt I (rrl)2 'd I 7 q reo 2kt 'lTr r 
4(1Tkt)' 'pc 0 12) 

where r is the distance from the centre of the beam, z the depth below the 

Alsurface and 10 is a modified Bessel function of order zero. 

Temporally for these calculations the beam is modelled as a square pulse of 

25 ns (=to) duration.Reference to fig 2.1 will show that a 25 ns square 

pulse is not an unreasonable representation of the beam. 

Again from Carslaw and Jaegar11, if the instantaneous temperature at a 

point r,z,t is g(r,z,t) and the heat is provided at a rate a(t)pc per unit 

time from t= 0 to t= t then the temperature at r,z,t is given by •• 

T(r,z,t) = 6f$(t l )g(r,z,t-t l )dt l 13) 

For the purposes of these calculations the excimer beam is assumed to be a 

perfectly symmetric Guassian beam of the form ••• 

(~) 
E(r') = Eoe w' 

and temporally a rectangular pulse of duration to. The radius of the assumed 

perfect G' .. u.sian beam is chosen so that it I S area at the 1/ e2 points is the 

same as that of the excimer beam in reality. Thus for such a distribution 

q(r') is given by 

q(r') 
(~) 2aE - w2 

= --- e 
2 

1TW to 
15) 

where E is the total pulse energy and a the coupling factor representing 

the fraction of incident energy that is coupled into the sample as heat and 

taken as 0.4 (i.e. 407.). 

Substitution of 15) and 12) into 13) and performing the integration by use 

of suitable Bessel function identities as first performed by Ready10 yields 

the temperature at a point r,z at time t as •••... 
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T(r,z,t) = 2aE 'C I J 1 
to~pclnk 0 (t-tl)i • 

1 

(Sk(t-t')+w') 

[ 
z, 2r' 1 

- 4k(t-t ' ) + (Sk(t-t')+w') 
x e dt ' 

where 'C' = to t) beam duration 

= t t< beam duration 

16) 

A computer program was written to evaluate the above expression as a 

function of r,z,t and beam fluence.The parameters for Al and the excimer 

beam that were used in the calculations are listed in table 3.1.The values 

for Al are all taken from ref 13 except the viscosity which is from ref 14. 

Figs 3.7a-c are typical graphs of the temperature distribution on Al 

calculated using the above theory, figs 3.7a and b are the radial 

distributions for different beam fluences with 3.7a being for 2 Jcm-2 and 

3.7b for 3 Jcm- 2 whilst 3.7c shows the temperature as a function of depth at 

the centre of the excimer beam for a fluence of 2 Jcm- 2.To avoid possible 

problems with ablation due to the high fluences being used the profiles were 

evaluated 100 nm below the surface. The melting point (6600 C) and the 

vapc •. risation point (:::24000C) will have a Significant bearing on the 

interpretations of these temperature profiles. 

3.3.7 Analysis of Results 

The calculated temperature profiles show that the Al is easily melted at 

the fluences used and, can stay molten for upto 200ns near the centre of the 

beam. The neglect of any phase changes (solid to liquid and liquid to vapour) 

in the calculations is a serious limitation that means truly quantitative 

data cannot be obtained from these graphs but, will not alter the general 

trends shown in the graphs which are ,that the peak temperature,the fraction 

of the surface that melts and the time that the surface is molten all 

increase with increasing fluence. 

The lack of any depend~nce of the ripples on angle of incidence and 

polarization of the incident light eliminates the possibility that the 

ripples are generated by E field interference effects. 

The formation of ripples near the centre at lower fluence whilst they are 

formed only near the edge at higher is consftent with the fact that at 

" higher fluences ,the centre of the surface is molten long enough that any 

induced ripples will have decayed away before resolidification occurs. 

Table 3.3 shows that in the centre only widely spaced ripples with their 
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Temperature profile of Al for an incident laser fluence of 2 Jcm-2• 

The first number in the legend is the distance from the centre of the beam 

and the second is the depth below the surface, both in microns. 

Label A is the vaporization temperature and label B is the melting point. 
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long decay time could be left when the surface resolidifies.The lack of such 

large ripples the author attributes to the slow velocity of these ripples 

since, even if such ripples were initiated they would not be able to travel 

more than about 1 2~ in the time that the surface is molten which is a 

small fraction of their wavelength •• 

The observation that the ripple spacing decreased towards the outer edge of 

the damage site is consistent with LICW since, at the outer edges if the 

surface melts at all, it will only be for a short time due to the reduced 

fluence at the edge which, will enable short wavelength ripples to be frozen 

in before they have decayed away. 

The increase in the fluence required to generate the ripples with 

increasing angle of incidence can be attributed to two effects, the increase 

in both the reflectivity and beam target interaction area with increasing 

angle of incidence. The former results in less light being absorbed and the 

latter to the incident light being spread over a larger area of the sample. 

The reduced formation fluence required with multiple laser pulses can 

probably be attributed to a preferential coupling mechanism whereby once the 

ripples have been initiated as very small surface undulations, it is then 

"easier" for further shots to enhance the pattern to a detectable point, and 

thus the formation fluence is effectively reduced. 

3.3.8 Conclusions 

It is the author's contention that even without time depend(~t studies, 

that based on the evidence discussed above these ripples can be uniquely 

attributed to LICW. 
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Table 3.1 

Material Parameters of Al 

thermal conductivity 

specific heat capacity 

density of solid 

density of liquid 

surface tension 

viscosity 

Excimer Beam Parameters 

pulse length 

normal incidence spot size 

coupling factor 

Table 3.2 

Material Wavelength 

nm 

Al 1060 

249 

Ge 1060 

249 

Table 3.3 

201 

913 

2700 

2400 

0.84 

0.001 

25 

0.55 

0.4 

nr 

1.8 

0.2 

4.0 

1.4 

ti wavelength decay time 

ns JlIII ns 

1 0.2 1.2 

5 0.6 11. 0 

10 1.0 28.0 

20 1.5 70.0 

30 2.0 120.0 

100 4.5 600.0 

200 7.1 1500.0 
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Wm- 1r1 

JKg-1r 1 

Kgm-3 

Kgm- 3 

Nm- 1 

Nsm-2 

ns 

mm 

ni 

9.3 

2.9 

0.1 

3.2 

velocity 

ms- 1 

105 

61 

47 

38 

33 

22 

18 



3.4 LIPSS 

3.4.1 Introduction 

Of the three type of LIRS ,LIPSS are not only the most difficult to 

generate but are also the most difficult to accurately theoretically explain. 

LIPSS (fig 3.8) are a widely observed phenomenon and consequently there are 

many differing explanations as to their cause. Common to all these 

explanations and the generally excepted cause of LIPSS is interference 

between the incident E field and that due to a "surface field" caused by 

scattering of the incident light by surface roughness. This interference 

produces via the resulting E field a periodically varying surface 

temperature which, it is argued causes periodic melting, producing on 

resolidification the observed ripple patterns. 

Since interference involving the incident light is involved in the 

formation of LIPSS, the observed spacings are directly related to the 

wavelength of the incident light. When in the course of attempting to obtain 

LIPSS the author used very high fluences, sets of ripples were observed that 

had the same depend~nce on the angle of incident and polarization of the 

incident light as did the LIPSS produced at low fluences but, had spacings 

consistent with the wavelength of the incident light being many times larger 

than it really was. These ripples designated as anomalous LIPSS (ALIPSS) by 

the author are discussed in detail in section 3.5 along with the author's 

contention that they can be attributed to the interaction of the incident 

light with the large plasma above the sample's surface that was always 

associated with their formation. 

Most of the reported work has been performed in the infrared using pulsed 

lasers (at 1.06 or 10.6~) using semiconductor samples15- 17 , in particular 

on Ge which has been shown to be especially suitable for LIPSS 

formation. Limited work on crystal insulators such as NaCl and on metals 

,notably Al has also been performed. 

At the time of writing ,to the author's knowledge, the work herein is the 

first quantitative study of LIPSS at DV wavelengths which, since in the UV 

Ge behaves optically as a metal {i.e. € (-1 where € is the dielectic 

constant) is a region of particular significance for two reasons.Firstly, 

new and previous unreported structures are observed to be generated by S 

polarized light and secondly, by using information from these new 

structures, a more testing comparison between experiment and current theory 

is possible than can be achieved in the infrared. 

For reasons to be discussed, the theory used in this work is based upon 

that developed by Sipe et al18 (hereafter known as I) with parameters 
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Fig 3.8 

Germanium sample irradiated by P polarised light incident at 750 

magnification X2500. 
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appropriate to 249 nm laser irradiation. 

3.4.2 Review 

3.4.2a Theories 

LIPSS were first reported some 20 years ago by Birnbaum19 on semiconductors 

irradiated by a pulsed ruby laser and at the time were attributed to 

diffraction effects associated with the optical elements used in the 

experiments. It was not until Emmony et aIlS first reported LIPSS generated 

on Ge by a pulsed C02 laser that the basis of currently accepted theory i.e. 

interference between the incident light and some form of "surface wave" was 

first invoked. In their paper these authors assumed that a surface scattered 

wave of wavelength equal to that of the incident radiation was induced on 

the sample surface and that this interfered with the incident light yielding 

regions of large electric field which caused damage and resulted in the 

observed patterns.From a simple geometric argument they predicted and 

subsequently experimentally verified that for light incident of wavelength A 

at an angle a there should be two patterns with spacings 

VU ± sinS) 17) 

Whilst this phenomological model (here after known as the "surface 

scattered wave" model) is appealing it is 

l)physically incorrect since it requires longitudinally polarized waves 

which would violate Maxwell's equations and 

2)is unable to explain the dependence of the ripple spacing on the 

polarization of the incident light. 

Two approaches depending upon whether metals/semiconductors or low index 

dielectrics are involved were developed in the late seventies/early eighties. 

l)Insulators 

Temple and Soileau20 initially reported that LIPSS on dielectrics such as 

NaCl could be explained on the basis of resonant defect enhancement of the 

electric field in the dielectric.Subsequently2l they explained the 

phenomenon on the basis of the non radiative parts of the electric field 

associated with induced polarization charges and were able to show that at 

normal incidence the spacing on dielectrics of refractive index, n, should 
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be A/n.The importance of the non radiative parts of the E field was 

subsequently shown rigourously in I. 

2)Metals 

Within this area there are two clearly identifiable approaches used to 

explain LIPSS •• 

A) Surface electromagnetic waves (SEW) and 

B) Solutions to Maxwell's equations in the presence of a rough 

surface. 

A)SEW22 are polarized waveforms that form valid interfacial solutions to 

Maxwell's equations provided that at least one of the media involved has E 

( *) . <-1 where E is the dielectric constant given by E = nt.nt 1.e. behaves 

optically like a metal.Prokhorov et a123 have solved Maxwell's equations to 

obtain the amplitude of the SEW as it propagates along a rippled 

interface.Emel'yanov et a124 have performed a two step analysis whereby 

solutions are found to the diffraction of an incident electromagnetic wave 

by an arbitrary Fourier component k of surface roughness and the resulting 

electric fields used to provide a surface heating term in a non linear heat 

conduction equation.A temperature profile is then obtained as a function of 

Fourier component and it is argued that if this is large at a component k 

then, LIPSS of spacing k are formed. 

Both approaches predict ripples of spacing given by 17) for P polarized 

light and orientated perpendicular to the plane of incidence and spacings of 

A/cosS 18) 

for S polarized light orientated parallel to the plane of incidence. 

Given that for SEW to exist at least one of the media must have E<-1 and as 

the experiments are usually carried out in air it is difficult to reconcile 

this mechanism with the generation of LIPSS in dielectric solids, although 

the work of Keilmann and Bai25 can be explained by SEW as the material used 

(quartz) has a dielectric resonance around the laser wavelength used 

(10. 6\lIll). 

B)In this approach as proposed by Guosheng et a1 16 Maxwell's equations are 

solved in the presence of a corrugated surface of arbitrary period 

corresponding to a general Fourier component (k) of surface 

roughness.Expressions are developed for the total diffracted light as a 

102 



function of surface roughness.lt is then argued that when this is large 

LIPSS are formed. They predict that for P polarized light the spacing is 

given by equation 17 and that there are no LIPSS for S polarized light. 

Although a formal solution of Maxwell's equations is undertaken in this 

work there is, a requirement for the surface to melt uniformly which is 

inconsistent with the work in III where, it is shown that LIPSS can form at 

sufficiently low fluences that there can only be melting in the immediate 

vicinity of the maxima in the E field i.e. localised surface melting. 

The main problem with the above theories is that none of them can explain 

all of the following three important experimental observations ••• 

l)The existence of LIPSS of spacing A/cosS orientated parallel to the 

component of incident wavevector that is parallel to the surface for p 

polarized light, as first reported in Young et al17 (hereafter known as 11). 

2)The existence in the UV of spacings of the order of A/(l - sinS) for S 

polarized light and 

3)The large deviations at large angles of incidence of the observed 

spacings from A/(l - sinS) in the case of P polarized light. 

Observations 2 and 3 are those of the author and are discussed in more 

detail in subsequent sections. 

The theory derived in I based on an integral solution method for Maxwell's 

equations in the presence of a randomly rough surface is able to explain all 

of the above points and is discussed in detail in section 3.4.6b. 

3.4.2b Experimental Work 

LIPSS have been found on a wide range of materials for lasers ranging from 

high power picosecond to low power cw beams26 - 27 with most of the work being 

performed on Ge at 1.06 microns. 

LIPSS can be produced by a single pulse as in 11 but in general around 

30-40 shots are required to establish a distinct pattern which, if the 

fluence is too high or the number of shots used too great, can be destroyed. 

As shown in I it is the component of wavevector parallel to the surface 

that is important and thus the convention that the component of wavevector 

parallel to the surface is designated by!£ (fig 3.9a) is introduced. 

The orientation of the ripples is expressed in terms of the angle between 

!£ and a "ripple vector" which is defined by consideration of the Fo{ier 

transform of the pattern as now detailed. 
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Fig 3.9a 

El? ~ K. sine. -l.n 

Fig 3.9b 

K (induced surface wave) 
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If the Fraunhofer diffraction (i.e. Fourier transform) pattern of a 

diffraction grating with vertical lines is observed, dots are seen in the 

horizontal direction and a grating vector in the horizontal direction can be 

defined.By analogy to this, the ripple vector is defined to be perpendicular 

to the lines of ripples in a pattern i.e. horizontal if the ripples are in 

vertical lines and vertical if they occur as horizontal lines as this 

definition makes the ripple vector occur in the same direction as the maxima 

in the Fourier transform pattern of the ripples.Hence for example, the 

ripple vector in fig 3.8 would be in the vertical direction. 

LIPSS can be formed with both P and S polarized light with the former being 

far more widely reported. For P polarized light the induced fringes are 

generally parallel to ~.These ripples of spacing given by 17) for small 

angles are labelled p± type fringes (the + corresponds to the ripple of 

smaller spacing).Structures perpendicular to ~ and of spacing given by 18) 

have been reported28 , particularly in II.For S polarized light essentially 

the only previous report of fringes is in 11 where a complex pattern with no 

simple wavelength or orientational dependence is reported. As will be shown 

later S polarized LIPSS can, at least in the UV, exist with both simple 

wavelength and orientational dependences. 

Generally speaking for high index dielectrics/metals/semiconductors the 

normal incidence ripple spacing is given by A but for low index transparent 

dielectrics the spacing is A/n where n is the refractive index. However , 

recently27 it has been shown that anomalous ripples of spacings 2A/(n+l) can 

exist.Non-linear LIPSS resulting from high order interference terms have 

been reported by Fauchet and SfBman29 who attributed the effects to 
"-

interference between induced surface gratings of varying wave vectors. 

Time dependent studies of LIPSS have been done, notably by Ehrlich et a130 

and in III.In the former, Ge was irradiated at high enough fluences to 

effectively uniformly melt (i.e. homogeneously melt) the surface, thereby, 

since liquid Ge is optically metallic, allow SEW's to exist which, it is 

then argued, cause the observed effects.ln III the fluence is kept 

sufficiently low that from reflectivity measurements the authors deduce that 

the surface melts only in the Vicinity of the peak in the E field (i.e. 

localised or inhomogeneous melting) and under these conditions SEW's cannot 

exist. They argue that it is the non radiative parts of the induced E field 

(see I) that provide the "waves" required for the interference effect that 

produces LIPSS. 

The work in III and results by the author herein show that the spacing and 

morphology of the induced ripples is dependant upon the degree of surface 

melting.These differences arise respectively from the different dielectric 
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constants and formation mechanisms that occur in each phase. 

A few workers have used UV light in LIPSS experiments, in particular Os good 

and Ehr lich32 and Ursu et a133 .Osgood and Ehrlich used a low power cw beam 

in laser photodeposition of thin metal films.SEW's are generated on the 

metal surfaces which interfere with the incident light producing a periodic 

heating of the surface which dramatically effects the nucleation rate 

leading to preferential periodic photodeposition.Ursu et a133 have looked in 

some detail at the interaction of 308nm XeCl radiation with metallic 

surfaces and have reported finding a multitude of structures, some non 

periodic and some periodic but with no obvious dependence on wavelength or 

angle of incidence of the light.It is the author's suggestion that the 

observed periodic structures with anomalously large spacings could be due to 

the interaction of the incident light with the plasma immediately above the 

sample's surface that was always associated with their formation. This is 

further dicussed in 3.5. 

3.4.3 Coordinate System Used 

In order to use the results of the theoretical calculations and indeed to 

appreciate the experimental results it is essential that the reader is fully 

conversant with the coordinate system used and the orientation of the E 

field of the incident light in this system. 

The system used is shown in fig 3.10 where the excimer beam is taken to be 

travelling in the positive z direction away from the reader.When viewed in 

the direction of beam propagation the x direction runs right to left and the 

y direction vertically up. Under this system the E field of the incident 

light is always in the y direction irrespective of the polarization incident 

on the samples. 

When S polarized light was used the sample was rotated in the xz plane 

whereas for P polarized light the sample was tilted in the yz plane and kept 

normal to the beam in the xz plane.Hence for S polarization the incident 

light had the component of its wavevector that was parallel to the surface 

in the xz direction whilst for P polarized light the parallel component was 

in the yz direction. This meant that effectively the geometries for Sand P 

polarized light were rotated by 900 relative to each other which, as will be 

shown later is critical to understanding the orientation dependance of the 

ripples on the polarization of the incident light. 

3.4.4 Experimental Froce ~ 

The same experimental proctdures and fluence ranges were used in this work 

as was used in the LITS work.However, the work initially concentrated on 
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angles of incidence of the incident light of at least 300, although later 

work was performed at normal incidence. 

The reason for this can be seen by considering the spacing of the generated 

ripples which, was expected to follow 17) and possibly 18).For reasons of 

convenience,cost and speed of operation OM was, in the first instance the 

preferred analysis technique. The available microscope had a resolution limit 

of ~0.5~ which, with a wavelength of 249nm corresponds to ripples that have 

been generated at an angle of incidence of 300 .Use of angles smaller than 

this would have meant that even if LIPSS had been produced they could not 

have been resolved optically, necessitating the use of time consuming and 

expensive SEM and TEM as primary rather than secondary analysis techniques. 

3.4.5 Results 

LIPSS formation was found to be a function of on-target fluence, number of 

shots incident and, the angle of incidence and polarization of the incident 

light.At low fluence and or number of shots, the ripples tended to form in 

the centre of the damage site i.e. where the beam is most intense but, at 

higher fluences the centre part became badly damaged and the ripples formed 

in an annulus towards the edge of the damage site where the local fluence 

was lower.If too many shots were used then, in general the_pattern was 

'washed out' leaving a badly damaged site with a variety of intricate 

anomalous structures on it.At still higher fluences. LIPSS were obtained 

with the spacing in the centre of the site different to that found at the 

outer edges as shown in figs 3.11a and b. 

As far as the author was able to observe, even if several hundred shots 

were used no LIPSS were formed unless there was some form of surface 

breakdown i.e. damage that was clearly visible, usually in the form of a 

laser induced plasma. Typically, the most well defined ripples were seen 

after 40 to 50 shots, with breakdown having occurred after 15 to 20 

shots.Even at fluences that would give breakdown after 20 shots unless at 

least 4 shots during which there was a small plasma (breakdown) had occurred 

there was no detectable LIPSS although the surface had been modified, 

typically breaking up into small globules (fig 3.12). 

If surface breakdown occurred after less than 10 shots and even if only a 

few subsequent shots were used. the surface was left badly damaged and 

generally with no normally spaced LIPSS discerni.ble.Under these conditions 

of early breakdown periodic structures were observed but with very large 

spacings e.g. 50 ~ (fig 3.13) when the observed/predicted spacing for LIPSS 

was an order of magnitude or more smaller. The author has designated these as 

ALIPSS and they are discussed in 3.5 but ignored for the rest of this 
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Fig 3 .11 

Germanium sample P polarised light incident at 750 

Above a) Magnification X.\OOO Note the transition from ripples formed on a 

locally melted surface (smaller spacing) to those formed on a uniformly 

melted surface (larger spacing) and the region between where there is 

essentially no patterning. 

Overleaf b) Magnification xtSOO. This photo sho~s both types of p' fringes 

together ~ith the extremely uniform c type orientated perpendicularly to the 

others. Note that the ripples formed on the locally melted surface appear 

to have a much flatter more sinusoidal profile. 
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Fig 3.12 

Germanium sample P polarised light incident at 750 magnification 

X950.Surface has broken up into small globules following the incidence of 

One laser pulse. 
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Fig 3.13 

Germanium sample P polarised light normally incident magnification 

XSOO.Sample hit by multiple high energy pulses and shows complex structure 

of very large spacing and depth. 
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section. 

It is not clear as to the role of the plasma in the formation of LIPSS but 

it is the author's contention thatJthe presence of a plasma in under these 

conditions is an indication that the surface has at least in parts reached 

melting point. 

As the number of shots during which a plasma occurred was increased the 

pattern would build up becoming observable after about 4 plasma shots, 

reaching its most distinct after some 20 to 40 shots and then being 

gradually 'washed out' as the number of shots increased. 

The fluence required to form the fringes in general increased with the 

angle of incidence and was higher for S polarized light than for P. 

Four types of patterns two each for Sand P polarized light were 

observed. For S polarized light (fig 3.14) the ripples were found to run 

parallel to kE and have a spacing given by A/(l - sinS) even for large 

angles.Following the nomenclature introduced in 11 we label these as s type 

fringes.A second well defined pattern was observed to run almost 

perpendicular to kE with a spacing that has no simple dependQ.nce on either 

the angle of incidence or polarization of the incident light. The author has, 

for reasons to be discussed deSignated these as b type fringes. 

For P polarized light (fig 3.1la and b) two types of ripples were found 

,the more common pattern runs parallel to kE but with a spacing that shows 

substantial deviations from A/(l - sine) at large angles i.e. angles 

)60
o

.The author has designated these as p- type fringes.At large angles of 

incidence an extremely uniform set of fringes that run perpendicular to kE 
i.e. parallel to the electric field are produced with a spacing of the order 

of A/cose and again following 11 these are labelled as c type fringes.It is 

interesting to note that the c type frin~es form at lower energies than the 

p- type. These c type fringes were often found to cover areas of lmm2 or more. 

Within the p type fringes two distinct types of pattern with different 

spacings were observed particularly at large angles (figs. lla and b).Of the 

patterns produced the one with larger wavelength occurred nearer the centre 

of the damage site (where the fluence is highest) than the other which, 

occurred towards the edge. 

In general the fringes that formed on Al (figs 3.15a and b) showed the same 

depend~nce on the angle of incidence and polarization of the incident light 

as Ge but were less well defined than their counterparts on Ge with, the 

fringes on Al requiring typically two to three times more fluence to form 

than those on Ge.A noticeable difference was the complete absence of any of 

the uniform c type fringes. 

TEM studies revealed a variety of sub excimer wavelength (i.e. <249 nm) 
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Fig 3.14 

Germanium sample S polarised light incident at 700 magnification X12S0.Note 

variation of spacing vertically along the picture which is attributed to a 

varying dielectric constant due to a temperature gradient.Also note large 

near horizontal b type fringes of spacing =8 ~. 
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Fig 3.1Sa 

Aluminium sample irradiated by P polarised light incident· at 60 0 

magnification X12S0.Note the poor quality of fringes as compared to those on 

Germanium. 
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Fig 3.1Sb 

Aluminium sample irradiated by S polarised light incident.at 450 

magnification X5000.Fringe quality comparable to that in Germanium.Note the 

large (~2 ~) near horizontal b type fringes. 
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structures ranging from approximately 300 nm to 90 nm depending upon angle 

of incidence, polarization and the type of sample. Unfortunately due to both 

the replication process and the intrinsic uncontrollable rotation of the 

image in the TEM itself it was essentially impossible to accurately 

determine the orientation of the observed fringes, only their spacing could 

be found. 

Results for LIPSS are summarised in table 3.4 with, table 3.2 listing the 

optical constants3? of Al and Ge (solid phase) at 249nm and also those at 

1.06 microns for comparison purposes (see 3.4.7).The figures quoted in table 

3.4 for formation fluence are based on using the normal incidence beam 

target interaction area whereas· those quoted for normalised formation 

fluence have an allowance for the variation of absorption and beam target 

interaction area with angle of incidence built into them (see 3.4.6d). 

3.4.6 Theory 

3.4.6a Introduction 

Ideally the theory (or theories) used should be able to explain three main 

effects •• 

l)the spacing and orientation of the ripples 

2)why the surface does not resolidify to its original profile 

3)the depend~nce of the formation energy on angle of incidence and 

polarization of the incident light. 

Three separate pieces of theory are used to explain the above effects, of 

which that used to explain the last effect was developed by the author. 

3.4.6.b Spacing and Orientation Theory 

Given that LIPSS are generally accepted to be due to interference between 

the incident light and a "surface wave" which has been initiated by 

scattering due to the microscopic roughness of the surface then, the obvious 

starting point in any theory to explain these effects is Maxwell's equations 

and ideally these should be solved to yield the electric field on a 

microscopically randomly rough surface. This to say the least is extremely 

difficult and not surprising alternative approaches or models were sought. 

Various theories have thus been put forward over the last ten years or so, 

each of which can explain some of the observations, but to date the only one 

which can account for all previously reported observations is that developed 

in I based on a formal solution of Maxwell's equations in the presence of a 
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Table 3./, 

Fringe orientation is measured relative to the dh-ection of kp for each polarisation. 

11 Fringes formed in the centre of damage site on a liquiJ pool. see text. 



randomly rough surface yielding an expression for the inhomogeneous 

deposition of energy into the material.As the work in I is to the author's 

knowledge the most comprehensive and rigourous attempt to model LIPSS it is 

used as the basic theory in the work herein. 

The work in I is a solution to Maxwell's equations, based on an integral 

transform method developed by Sipe some years earlier and works by 

decomposing the electric fields into their various Fourier components (k), 

written in terms of dyadic Green's functions which enables explicit 

identification of the Sand P polarized components. 

Solutions are then built up to the electric fields in what is called the 

selvedge region (i.e. a region of roughness bounded by air/vacuum on one 

side and the material bulk on the other but where the depth of roughness is 

restricted to being « incident wavelength) by separately treating the 

longitudinal and transverse components as well as using a variational 

approach to allow for local field effects with parameters to model the 

roughness of the surface being incorporated. 

Once the selvedge fields have been found, they are added vectorially (to 

allow for phase variations) to the normally refracted electric field 

component (which has wavevector !£ parallel to the surface) to yield the 

total electric field in the selvedge region.By taking the time average of 

the square of the total field, a measure of the energy deposited 

(inhomogeneously) into the material as a function of !,angle of incidence 

and polarization of the incident light is obtained. 

The final expressions, reproduced herein, have only two adjustable factors 

known as the shape (s) and filling factors (f) and as explained in Ill! the 

expression for S polarized light is essentially independent of these factors 

although the one for P polarized light depends upon their ratio. 

The f factor corresponds to the ratio of the volume actually occupied by 

the material in the selvedge to that available if the region was entirely 

filled, and following II the value of 0.1 was used in all calculations. The 

shape factor is derived from the modell~ng of the microscopic random 

roughness of the surface which, was performed by assuming a square wave type 

filling of the surface but of random periodicity and essentially relates the 

width of any occupied area to the depth of roughness within that area.To 

this end it should be noted that the value of 0.4 used throughout (as in 11) 

corresponds to spherically shaped surface sites. 

In the theory it is shown that the inhomogeneous absorption of energy can 

be written as the product of two terms, both functions of !, where! is the 

induced surface wavevector, normalised to the incident wavevector (2TI/A) and 

given by .• 
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19) 

where the second term in 19) is a slowly varying function of ! and 

essentially relates to the amplitude of surface roughness at wavevector k 

whereas, the term ~(!,!£), known as the efficacy factor, is a reponse 

function describing the efficacy with which surface roughness at ! leads to 

inhomogeneous energy deposition in the selvedge. It is shown in I that the 

efficacy factor exhibits sharp peaks as a function of k and is essentially 

responsible for the observed spectra. 

The basi~premiss in I is that whenever ~(!,!£) and therefore I(!) is large 

i.e. has sharp peaks in it then the surface will damage (melt) and LIPSS 

formation is likely.Since be!) is shown to vary slowly with!, it can be 

ignored and only the efficacy factor need be calculated. Indeed it is because 

b(k),which essentially is the term representing the effects of surface 

roughness varies so slowly with! that the formation of LIPSS is as shown in 

11 and herein largely independ~nt of the quality of the surface used 

provided it is not too rough, which in practice means that a surface must 

have been finished by polishing with at least a coarse paste. 

To facilitate calculation of ~ and, following 11, the convention that the 

angle between !£ and the induced wave vector ! is designated as angle ~ is 

introduced. Fig 3.9b shows the orientations of $,!£ and! • 

The expressions used in the calculations are given below. 

w = (",' - k') ~ 
0 

20) 

where 
, 2" and k' = !.! w = X-

w = (:2£ _ k') ~ 21) 

where E = '2. ' nt 

tp = 2Wont(wo.: + w r1 22) 

where s = shape factor, f = filling factor and R = (E - 1)/(.: + 1) 

24) 
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hss = 2i:("'ot",r
l 

hkk = --I( r1 2i",,,,0,,, "'0£ + '" 

hzz = .--I( r1 2ik '" "'0£ + '" 

hzk = --1( r1 2ik",0", "'0£ + W 

hkz = --1 ( 2iwkw woe + w r
1 

giving as final expressions, 

for S polarized light 

and 

for P polarized light 

where 

- I 
tx = ",(kp)(",n)- tp(kp) 

tz = kp(:n)-I tp(kp) 

and R meams unit vector A 

26) 

27) 

28) 

29) 

To greatly simplify the calculations, ~ is taken as being in the xz plane 

for both polarizations and hence there is a 90° rotation in the definition 

of angle ~ between Sand P polarizations.Thus ~ = 0 for S polarized light 

lies along the xz plane but along the yz plane for P polarized light. 

The main omission in this theory is the neglect of any feedback mechanism 
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either inter or intra pulse whereby once preferential coupling at a given k 

has begun. the process can be enhanced by positive feedback to yield LIPSS 

(refer to III for a full discussion of this). 

An extensive literature search failed to reveal any values for the optical 

constants of liquid Ge in the UV although in 11 there are values for the IR. 

therefore for the purposes of a comparison following the idea of Ehrlich et 

al34 the author has used a free electron model in an attempt to derive at 

least very approximate values as described below. 

On the free electron model the dielectric constant is given by 

30) 

where wp is the plasma frequency and w the angular frequency of incident 

light.For this calculation the plasma frequency was determined as 

follows. Essentially no matter what the excitation mechanism of the electrons 

an upper limit on the electron density is that obtained by having all four 

valence electrons free for conduction and on this basis the electron density 

was set equal to four times the atomic density which upon substitution into 

30) yields nr= 0 andnl= 5, figures which were duly used in the calculations. 

Whilst this model is wholly inadequate the author is only intent upon 

shoWing that a refractive index of the order of that given above (which 

corresponds to a large negative dielectric constant) can be used to explain 

the existence of the two differently spaced p type patterns. 

A computer program was written to evaluate the efficacy factor as a 

function of induced wavevector ! , angle of incidence and polarization of 

the incident light for Al and Ge at 249 and 1060 nm. 

3.4.6c Reso1idification Theory 

Given that to a greater or lesser degree the surface is melted by the 

increased E field due to interference effects the question as to why the 

surface as it solidifies does not return to its original profile must be 

asked. 

Some insight as to the answer to this problem can be gained by reference to 

the work of Emmony et al35 in which the shape of a surface upon 

resolidification is determined. 

In their work these authors showed that if a section of a metal was melted 

then. under certain conditions it would not resolidify to its original 

profile. 

The authors used a two dimensional model based ultimately on the fact that 

the solid and liquid phase of the materials used. occupy different volumes 
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due to their different densities (Ps and Pl for the solid and liquid 

respectively) and that surface tension was the dominant restoring force on 

the liquid surface. 

The assumption of the dominance of surface tension forces over gravity is 

justified since the coefficient of surface tension for liquid metals is 

typically ten times that of water. They then argued that for a pool of liquid 

metal whose cross section forms an arc of a circle in an otherwise solid 

structure, the solid liqUid interface will always be instantaneously 

semicircular (as the model is two dimensional) so as to minimize the free 

surface energy.It was further assumed that the main form of heat loss is by 

conduction to the solid. 

An expression was then derived for the deviation (normalised to the 

original surface) of the surface profile of the melted area (assumed to 

initally form an arc of a circle of depth ha) as a function of the fraction 

of the melt resolidified. 

Fig 3.16 shows the main details for this theory. The functions fs(t) and 

fl(t) represent respectively the profile of the solid and liquid parts of 

the melt as it resolidifies. 

Defining e = t/ta where to is the radius of the initially molten pool and t 

that when some fraction has resolidifed and e* to be the pOSition at which 

the surface makes the transition from solid to liquid where e* is obtained 

from the relation 

31) 

where 6/hO is the normalised incremental solidification layer thickness and 

T] = ps/Pl' 

The normalised deviation from the original surface is then given by 

f/ha- 1 = 

where 
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Fig 3.16 

(c) 

I 

lS'·t,) I.' ... ' . .. ", 

' .. 'I ' .. 

A 

B 

Geometry for resolidification calculations from ref 35. 

Above top a) Section through the initially molten pool, assumed to form an 

arc of a circle 

Above b) Section through partially resolidified system. The dotted lines 

represent the solid liquid interface which is always semicircular. 
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To perform the calculations, the left hand side of 31) i.e. ~/hO was given 

ten increments between 0 and 1 which then determined ~*.This was then used 

in 32) to determine the new surface profile.A computer program was written 

that performed this calculation for both Ge (ps = 5200 kgm- 3, PI = 5600 

kgm- 3) and Al (Ps = 2700 kgm- 3 , PI = 2400 kgm- 3). 

3.4.6d Energy of Formation Theory 

It is generally accepted that the formation of the ripples occurs on 

resolidification of the surface as was first suggested by Willis and 

Emmony36 and later, and more formally, in III and by van Drie131 .It is the 

contention of van Drie1 and the author that it is this fact that accounts 

for the observation of LIPSS on samples irradiated by short (picosecond) or 

long (nanosecond) laser pulses since, formation of ripples under this 

assumption, requires only that some degree of surface melting occurs and is 

indepencll.nt of the processes that actually bring the surface to melting. 

On this premiss, it is the absorbed fluence that is the important parameter 

as it is this that determines the degree of melting (if any) that is present 

on the surface and hence, the author has calculated a "normalised f1uence of 

formation" as now detailed. 

If the formation of LIPSS is depen~~nt only on reaching some degree of 

surface melting then when allowance is made for polarization, the variation 

with angle of incidence of the fraction of the light absorbed and the beam 

target interaction area then the formation fluence should be constant for a 

given material. 

As LIPSS are formed at lower fluences than the LICW, the reflectivity of a 

sample and thus the absorption of incident light is assumed to be given by 

the Fresnel equations with optical constants characteristic of the solid 

state being used in the calculations. 

As the angle of incidence increases so does the beam target interaction 

area as the light is now "spread" over a larger fraction of the surface of 

the sample and if (fig 3.17) at normal incidence the area is a(O) whilst at 

angle e the area is aCe) then 

aCe) = a(O)/cosa 35) 

If the fluence of formation at angle e is fee) and as the fraction of this 

absorbed is 1-R(e) where R(e) is the reflectivity at angle e then the 

abosrbed f1uence at angle e is 

fab(e) = f(a)(l-R(e» 36) 

125 



---------------------------------------------------------------------------- - -
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The fraction absorbed at normal incidence is thus l-R(O) and hence the 

"expected" fluence of formation at normal incidence is 

f(O) = f(e)cose(l-R(e»/(l-R(O» 37) 

Hence if the basic premiss is correct then for a given material when the 

appropriate values of R and the experimental values of f(e) are used, f(O) 

should be constant and independ~nt of the angle of incidence and 

polarization of the incident light.A computer program was written to 

evaluate 37) with the optical constants being taken from table 3.2 and the 

formation fluences from table 3.4.The results of these calculations are in 

table 3.4 under the heading of normalised formation fluences. 

3.4.7 Comparison of Theory and Experiment 

3.4.7a - Spacing and Orientation 

The depend~nce of these ripples on the angle of incidence and polarization 

of the incident light justifies their LIPSS attributation. 

Figs 3.18-20 are the efficacy factors for selected angles of incidence and 

polarization of the incident ligth chosen to correspond to the pictures of 

ripples in figs 3.11 and 3.13-15. 

Within each graph,D is plotted for two values of angle ~.By definition, the 

peaks in the graphs of D at ~ = 00 (corresponding to k being parallel to !E) 
represent the ~ values of the sand p type fringes for Sand P polarized 

light respectively. Similarly the peaks in the graphs of D for ~ = 900 

(corresponding to ! being perpendicular to !E) represent the! values of the 

c type fringes. 

By taking the value of ! that produces the peak in D for each value of ~ in 

graphs such as these. table 3.5 was constructed and shows the experimental 

and theoretical fringe spacings and orientations in terms of k for all 

experimentally observed s-.P- and c type fringes.Also included in table 3.5 

are the values of k at which the "surface scattered wave" theory predicts 

LIPSS. 

From table 3.5 it is apparent that the values of ! found experimentally and 

those predicted by the efficacy factor are in very good agreement for all 

the observed fringes. The scattered wave model cannot account for the c type 

fringes at all and it predicts spacings far too big (i.e. k too small) for p 

polarized light at large (>600) angles of incidence. 

From the graphs of D it can be seen that for both sand p type fringes 

there are two peaks in the graph one at small k corresponding to the s- and 
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EXPERIMENTAL THEORETICAL 
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all k values normalised lo incident wavevector 
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fringes on 1 iquill sut-face with llquhl dielcct.ric constants 

k(1 scattered w[lve 

--(Ill 

0.0)" 

0.0)1, 

0.11, 

0.29 

0.50 

0.06 

0.11, 

0.031, 

0.1/, 

0.31 

0.50 



----------~--------------- ------------------------ --

p- type fringes that are observed experimentally and the other corresponds 

to s+ and p+ type fringes where the spacing is less than the incident 

wavelength i.e. k >1.It was as discussed in 3.4.5 impossible to determine 

the orientation of the small ripple structures that the TEM revealed. Typical 

of these patterns are figs 3.21a and b where the spacing is ~200rum i.e. ~ 

~1.2.Essentially no fringes with the predicted s+ and p+ spacings were found 

by the author but, many other workers (particularly II) have reported p+ 

ripples and thus, it was not possible to compare theory and experiment for 

this type of ripple.T~e lack of these types of ripple could be due to one or 

more of several possible causes such as ••. 

1)The extreme difficulty of observing any subwavelength ripples due to 

their very shallow profile and narrow spacing with the consequence that the 

samples have to be tilted at quite large angles in the TEM to observe 

anything at all, thereby reducing the likelihood of seeing the ripples even 

if they are present. 

2)A different threshold formation fluence for the smaller fringes than for 

the larger fringes. 

3) A tendency during the formation of the larger spaced ripples to destroy 

(wash out) the smaller structures. 

4)The influence of feedback on the size of the formed fringes.It is not 

inconceivable that once feedback is allowed for in the theory it would show 

that the larger spaced structures are more likely to occur than the smaller 

ripples. 

Reference to figs 3.18-20 will show that the uniform fine c type fringes 

are predicted for p polarized light only ,as confirmed by experiment. The 

absence of c type ripples on Al despite an appropriate peak in n is probably 

explained by feedback which undoubtedly occurs in practice but is lacking in 

the theory used.The fact that these fringes were only observed at large 

angles is explained at least in part by their size which, makes dectection 

at 600 or less essentially impossible by OM. 

To facilitate a comparison, fig 3.19a is the efficacy factor for Ge at 249 

nm whilst fig 3.19b is that in the infra-red at 1.06 ~.It is apparent that 

the transition from behaving optically as a dielectric at 1.06~ to a metal 

at 249 rum allows new surface modes (which are essentially surface plasmons) 

that have definite peaks in their efficacy factor and result in the readily 

observed LIPSS with S polarized light. 

Though the peaks in the graphs of n for S polarized light incident on Al 

are only very slight, the fringes are strongly present in reality.This 
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Fig 3.18 

Efficacy factors as a function of normalised k and angle $ for Ge under 

P polarised 249 nm irradiation at 75° incidence. 

Above a) Solid Ge with optical properties nt = 1.4 + i3.2 and surface 

properties s = 0.4, f = 0.1 

Overleaf b) Liquid Ge with optical properties nt = 0 + is. 

The first number in the legend is the angle of incidence and the second the 

value of angle ~, both in degrees. 
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Efficacy factors as a function of normalised k and angle $ for Ge under S 

polarised irradiation at 70· incidence with surface properties s = 0.4 f = 

0.1. 

Above a) At 249 nm with nt = 1.4 + i3.2 

Overleaf Top b) At 1060 nrn with nt = 0.1 + i4.0 

Overleaf Bottom c) At 249 nm with nt = 1.4 + 13.2 and $ = 870 

See fig 3.18 for explanation of the legend. 

Note how the change to metallic behaviour (figs 3.19a-b) results in well 

defined peaks appearing in ~.Also note the closely spaced double peak in fig 

3.19c 
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discrepancy and the absence on both Al and Ge of s- fringes at certain 

angles is, once more, probably attributable to the role of feedback 

mechanisms in generating the ripples. 

A careful examination of fig 3.14 reveals that the ripple spacing varies in 

the vertical direction being largest at the bottom of the picture which is 

nearer to the centre of the excimer beam than at the top where the spacing 

is somewhat less. This effect is attributed by the author to be due to the 

variation in the optical constants of Ge with temperature. 

Since the morphology of the ripples (see 3.4.5.b) remains the same as the 

spacing varies,it is the author's contention that this means that all the 

ripples were formed by localised (inhomogeneous) melting (and subsequent 

resolidification) but with the surface E fields (selvedge and the normally 

refracted components) being initiated at different temperatures.Since Ge is 

a semiconductor it's optical constants will have a very strong temperature 

dependtnce, becoming more metall ic as the temperature increases due to the 

increasing number of conduction band electrons. This variation in the optical 

constants manifests itself as a variation in the wavelength of the surface E 

fields which, when they interfere, results in a slight variation in the 

separation of the peaks and hence in ripple spacing. Calculations by the 

author of the efficacy factor of Ge as it's dielectric constant becomes more 

negative i.e. metallic, show that the predicted ripple spacing increases 

slightly in agreement with the above proposal. 

The existence of two quite separate sets of ripples with different spacings 

and morphologies as evident from fig 3.11 is probably due to the formation 

of LIPSS on surfaces that have substantially different degrees of melting. 

The narrower spaced ripples are formed away from the beam centre where the 

local fluence is lower and appear to have a narrow profile i.e. the surface 

appears to be sharply peaked in the vicinity of the ripples.On the other 

hand, the more widely spaced ripples are formed nearer the beam centre under 

higher fluences and have a very broad almost sinusoidal profile to them. 

The spacing of the narrow ripples is consistent with that obtained using 

the solid state optical constants for Ge and their presence is thus 

attributed to LIPSS formation by localised (inhomogeneous) melting. The 

spacing of the larger ripples is consistent with that predicted by 

calculating the n factor for a liquid Ge surface (i.e. assuming homogeneous 

melting of the surface) using the optical constants determined from a free 

electron model (as discussed in 3.4.4b).A formation mechanism for ripples 

under the assumption of a liquid surface is discussed in the next section. 

Whilst the use of a free electron model in the way done herein cannot be 

justified it has served the author's original intention, which was to show 
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that a large negative dielectric constant caused by heating the surface to 

or near melting can explain not only the existence of the two sets of ripple 

patterns but, accurately predict the spacings. 

The origin of the well defined large spacing b type fringes that occur with 

S polarized light was initially unclear. Calculations of D for ~ angles of 

85-900 (i.e. ~ almost perpendicular to ~) using different values of the 

shape (s), filling factors (f) and optical constants failed to reveal peaks 

at the extremely small ~ values that these widely spaced ripples correspond 

to.However,these calculations revealed that for ~ ~ 900 the efficacy factor 

has 2 closely spaced peaks. 

Fig 3.19c shows D for S polarized light incident on Ge at 700 for 

~ = 870,with peaks at 0.3 and 0.39~.It is the author's suggestion that the 

"waves" corresponding to these peaks "interfere" (beat) with each other to 

give the observed ripples as now detailed.It is from the word beat that the 

author obtained the designation b type fringes. 

Consider fig 3.l9d which shows the positions on a surface at which 

individually the peaks in D would predict surface melting. The peaks at 0.3 

and 0.39~ correspond respectively to spacings of 0.83 and 0.638~ as shown 

in the diagram.If the "waves" start off at the same point, the location of 

the melting is usually different for each wave but, it is possible that 

after a sufficient number of periods (which will be different for each wave) 

the melt locations will once more overlap.In the case shown this occurs 

after 10 periods of the 0.3~ wave i.e. 8.3 ~ which, corresponds exactly to 

13 periods of the 0.39~ wave.Hence every 8.3 ~ the amount of melting (to 

first order) will be doubled. 

On a shot to shot basis it does notse~m unreasonable to argue that due to 

this increased melting, more of the incident energy is coupled into these 

areas than into the areas where the melting is due to only one wave. Thus 

after multiple shot irradiation the most likely structures to have formed 

are those with a spacing corresponding to the distance between the points of 

double melting.Reference to fig 3.14 shows that the spacing of these b type 

fringes is 8~, in very good agreement with the above mechanism. 

The generalised condition for the above to be a possible mechanism for 

generating LIPSS is simply that the values of ~ corresponding to the peaks 

in D can be written as the product of an integer and a factor common to both 

values.Under these conditions the predicted ripple spacing is given by the 

reciprocal of the common factor multiplied by the laser wavelength. 

In the above case, the common factor is 0.03 with the integers being 10 and 

13 and the predicted spacing being 1/0.031'0.249 ~ Le. 8.3 ~. 

Performing the same calculations for Al again revealed a double peak in D 
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Efficacy factor as a function of normalised k and angle ~ for Al under 249 

nm irradiation with optical properties nt = 0.2 + i 2.9 and surface 

properties s = 0.4 f = 0.1. 

Above a) P polarised, 60' incidence 

Overleaf b) S polarised, 45' incidence 

See fig 3.18 for explanation of the legend. 
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Fig 3.21 

TEM pictures of sub wavelength ripples. 

Above a) For Ai S polarised light incident at30 0 magnification X100,000 

Overleaf b) For Ge S polarised light incident at 70 0 magnification X100,OOO 

Note the fine grain structure which is due to the replication process. 
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which for $ = 860 occurred at 0.75 and 0.87~ which, if slight allowances for 

the approximate nature of the calculation are made is almost exactly 

consistent with the peaks being related by a common factor of 0.125 i.e. a 

spacing of 2 ~.Reference to fig 3.15b shows the spacing of the 

experimentally obtained ripples to be 2 ~, giving further support to the 

proposed mechanism. 

Overall from table 3.5 and the above it is evident that there is good 

agreement between theory and experiment which, if. slight allowances are made 

for all the approximations used in the theory shows that the theory 

developed in I is essentially valid. 

3.4.7b Ripple Morphology 

Attempts were made to obtain pictures of the cross sectional proj<le of the 

ripples so that a comparison between ripples formed under different degrees 

of surface melting could be made. Essentially due to the polycrystalline 

nature of the samples and the limitations of the TEM these attempts failed 

and so the discussion in this section has to rely on inferences from the 

"face on" ripple pictures and the work by van Drie131 and Emmony et a135 • 

Fig 3.11b shows quite clearly that the morphology of the large and small 

ripples is different as the former produces what appears to be a flat slowly 

varying ripple profile whereas the latter produces sharply peaked 

ripples.Figs 3.22a and b are the resolidification profiles calculated using 

the theory in 3.4.6c for Ge and Al. These quite clearly show that if an 

isolated area of the surface is melted it can resolidify to a different 

profile to that which it had originally. 

By assuming melting only in the vicinity of the peaks in the surface E 

field i.e. each melt pool is totally separate from all others and that upon 

resolidification the surface takes up the profile in fig 3.22a, fig 3.23a 

shows the expected cross sectional profiles for ripples on Ge generated 

under conditions of localised melting and fig 3.23b shows that for Ge 

obtained experimentally by van Driel. 

The agreement is excellent, in particular note the dip in the surface 

either side of the peak that is present experimentally and reproduced by the 

theory. It is the author's view that this agreement between theory and 

experiment (which is a more rigorous version of that performed in 11,111 and 

by van Driel) is sufficient to justify attributing the formation of these 

ripples to "localised melting". 

The larger ripples (fig 3.11b) are attributed by the author to LIPSS 

formation on a molten surface as now detailed.Consider a Ge surface 

irradiated by a laser such that interference between the incident and 

141 



------------------------------------------------------------------------------------ -

0.0", 
.:-< 

Ge resoiidification profiie 

i C.oo l··································~.~~:~::.~::.:.... r 

:; 00'-- - -- - --:=::..... -/. -:7' 
. ~ -... - ... .".~.~/. / 
"0 ~ 
E --- . ./"' 

"---- - - - ------- ---- ~ 5 .. ~. /' 
t: -0.04 ~. ,/ 

~ . ...--' " 
. -.---. ..---' / 

_0.0,J

1 

.-

-.-'"' 
:l;---~ 

I 
-0.08 ';',--,.--...,----,,---:..,-, ---:':' --::r:' --::':---:::-:---;:----; o C.1 0.2. C.3 C., C., O.~ 0.' C'.! t.i 

normalised width 

Fig 3.22 

Legend 
• ,,-c __ 

Cl ' __ • 

.£.--
0_3 _ •• 

A _" _ ..... 

x § ••••••• 

" ~ .......... . 
+ '-_. 
08=-__ 

0_9 _._ 
3 '_0 __ 
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profile as re-solidification proceeds. The vertical axis is a measure of the 

deviation from the original surface whilst the horizontal axis corresponds 

to the position across the solidifying pool. 

The numbers in the legend correspond to the fraction, in tenths that is 

molten and hence 10 is completely molten and 0 is totally solid. 

Above a) For Ge. 

Overleaf b) For Al. 
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A 

B 

Fig 3.23 

Resolidification profiles under localised melting conditions. 

Above top a) Calculated profile using the shape from fig 3.22a. 

Above b) Experimentally obtained profile by van Driel 
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induced E fields leads to a periodic temperature distribution on the 

surface.If the pulse fluence is high enough the surface will melt uniformly 

(Le. to cause the localised melting in the vicinity of the E field maxima 

to spread out until the melt from adjacent maxima overlap at which point the 

entire surface will be melted) and take up an essentially flat profile.Due 

to the periodic temperature profile not only will the surface have "hot" and 

"cool" regions but, the melt depth will vary across the surface as shown in 

fig 3.24a. 

Upon resolidification, the surface profile will remain flat until the point 

shown in 3,24b where the coolest points on the surface itself have 

frozen.After this point has been reached, the surface which is now 

effectively "pinned" by the solidified coolest parts must ripple upwards in 

order to conserve mass since, the density of Ge decreases upon 

solidification. The result of this is to leave the surface permanently 

rippled with a smooth almost sinusoidal profile as shown in 3.24c. 

Without experiment cross sections of these high fluence ripples a proper 

test of the above hypothesis and attributing their formation to a "uniform 

melting" mechanism cannot be totally justified but, this mechanism at least 

is consistent with experimental observations to date. 

3.4.7c Formation Fluence 

The "normalised formation fluence" Le. the fluence to form ripples at 

normal incidence for all s-,p- and c type fringes is listed in table 3.4 

where two clear trends can be seen. 

Firstly there is a substantial difference between Al and Ge which ,at least 

in part will be due to their difference in normal incidence reflectivity and 

thermal properties. 

Secondly and more difficult to explain is the fact that for each material 

there is agreement of the values within either S or P polarizations but not 

between them with, the formation fluence for S being lower than that for P 

particularly for Ge.It would not appear unreasonable to suggest that this 

difference is due in some way to a difference in the coupling of the light 

into the selvedge but,beyond this tentative statement the author has no 

explanation of this effect. 

The good agreement within each polarization of the normalised formation 

fluence in the author's view confirms the basic idea that it is the absorbed 

fluence that is the important parameter in LIPSS formation and also gives 

support to the generallY accepted idea that the ripples are formed on 

resolidification. 
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Fig 3.24 

Proposed ripple formation mechanism from a liquid surface .. 

a) Fully oolten surface. Note how the depth of melting \·;;.ries, follo"'ing the 

periodic t~~perature profile on the surface. 

b) Coolest points just solidified and the,eby "pin" the reoaining oolten 
material. 

c) Surface ripp2.es -=0 co~se=ve mass \. .. hi:h :s up .... ·a:ocs for Ge due to -:he 

dec:-ease ef ~e~sity on sclicificat:on. 
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3.4.8 Conclusions 

Good agreement between experiment and theory for the spacing , orientation 

and morphology of the riples has been shown.Most of the discrepancies in the 

spacing and orientation of the ripples are probably linked to the role of 

feedback and the details of the damage mechanism for each material. The 

premiss that ripple formation depends upon reaching some degree of surface 

melting has been studied and it has been shown that the formation fluence is 

independent of angle of incidence but dependant on the polarization used. The 

formation of ripples on the Al samples which were of low optical finish 

shows that the degree of surface finish is at least to first order 

relatively unimportant. 

3.5 ALIPSS 

3.5.1 Introduction and Review 

The work reported in the lit -erature on LIPSS has been concerned 

essentially solely with those structures that had their spacings based on 

the normal (vacuum) wavelength on the incident laser beam.To the author'.s. 

knowledge the only report of anomalous structures was that by Ursu et alJ3 

where ripples of large spacing with no obvious dependence on the wavelength 

or angle of incidence of the light used were reported. The fluences used to 

generate these ripples was such that they produced a large plasma above the 

sample's surface on every shot incident on the sample.It is the author's 

contention that at least in part these anomalous ripples can be explained by 

the presence of the plasma. 

At these fluences, there will be considerable ablation of material and thus 

a considerable pressure wave on the surface due to the rapidly expanding 

volume of plasma both of which are possible "seeding" mechanisms for 

capillary waves.However, since the plasma will be generated very early in 

the pulse ,the effect that it might have on the remaining light before it 

reaches the surface cannot be ignored. 

It is the author's contention that under certain conditions, the plasma 

immediately above the surface can effectively alter the wavelength of the 

incident light as seen by the surface. 

3.5.2 Propagation in a Plasma - Theory 

The plasma above a surface will be formed by vapo rization and subsequent 

ionization of material from the surface. Due to their large mass, the 

presence of (and therefore any effects from) the generated positive ions is 

ignored and only the generated electrons are considered.It is further 
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assumed that the fluences, plasma temperature etc are sufficiently low that· 

the plasma can be treated as essentially a free electron gas.On this basis 

the dielectric constant and hence refractive index of the plasma reduces to 

that given by 30).It is apparent from 30) that for a given frequency, 

refractive indices n (where n = e1/2 ) of less than 1 are possible. 

Consider the situation where light of wavelength Aa and thus frequency fa 

(in air) is incident on a region of plasma immediately above a sample's 

surface.To satisfy the boundary conditions the frequency must be the same in 

both media and hence the wavelength in the plasma Ap is given by .• 

38) 

where np is the refractive index of the plasma. Hence if np < 1 the 

wavelength in the plasma and thus that seen by the sample's surface is 

longer than that of the original light. 

3.5.3 Experimental Results 

In the course of attempting to· generate LIPSS the author performed the same 

experiments as those in 3.4. but at fluences 2,3 or more times higher than 

the formation fluences in table 3.4. 

The results under these conditions were badly damaged sites with a variety 

of complex structures of various orientations (fig 3.13) and spacings 

varying from less than 1 to more than 20 ~.In general these structures 

showed no simple depend~.nce of their morphology, spacing and orientation on 

either the fluence used or the angle of incidence and polarization of the 

incident light.However, for certain fluences and numbers of shots structures 

whose orientation and depend~nce on angle of incidence was identical to that 

of p- and c type fringes but, with a much larger spacing such as those in 

fig 3.25 were observed. 

This picture (fig 3.25) of the structures generated on an Al sample by P 

polarized light incident at 600 of fluence 3.5 Jcm-2 shows two sets of 

ripples, one parallel to ke labelled as p*- type of spacing 10~ and the 

other perpendicular to !E labelled as c* type with a spacing of ~3~ giving 

a ratio of 3.3 in the spacing of the two types of ripple.The morphology of 

the ripples is similar to that observed for the ripples formed on a liquid 

Ge surface (fig 3.11). 

3.5.4 Analysis of Results 

Calculation of the peaks in the efficacy factor for Al with P polarized 

light incident at 600 predict spacings of 1.25~ parallel to ke and 0.39~ 
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Fig 3.25 

ALIPSS on Al P polarised light incident at 60° magnification X1250 Observe 

the p*- (horizontal with large spacing) and c* (vertical and of smaller 

spacing) ripples.Ripple morphology similar to the normal LIPSS but the 

spacing is about 8 times too big. 
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perpendicular to k2 i.e. a ratio of 3.25 in the spacing of the two types. 

Although the spacing of the experimental ripples is too large, it is too 

large by the essentially the same factor (times 8) for both sets of ripples 

with the ratio of their spacings being in good agreement with that predicted 

above. 

In this case the sample had ripples over an area of order 0.4 by 0.1 

mm.Assuming that the plasma that was produced by the laser pulse to be 

confined to an area of 0.4 by 0.1 mm and estimating its depth to be 10~ 

with the further assumption that 50% of the incident photons result in free 

electrons being generated then at the fluence used equation 30) yields a 

refractive index of 0.16 which, would result in the wavelength as seen by 

the surface being ~6 times the vacuum value. 

The purpose of this calculation was to show that at the fluences used and 

with "reasonable" estimates of the plasma volume and the fraction of photons 

that generate electrons,the plasma frequency wp and angular frequency w of 

the incident light are nearly the same with the result that the refractive 

index of the plasma is much less than 1. 

It is thus the author's contention that these observed ripples (p*- and c* 

type) are LIPSS generated by a laser pulse whose wavelength as seen by the 

surface has been greatly increased due to passage through the plasma 

immediately above the surface and are thus designated as ALIPSS. 

3.6 Comment 

As all of the LIRS formed on non overcoated samples have a substantial 

depth to them it is the author's contention that the coating of Al on the 

non over coated samples which is less than 100 nm thick is simply too thin to 

support any form of oscillation and hence shows no LICW/LIPSS. 

3.7 Overall Conclusions 

Three separate mechanisms mechanical buckling (LITS) ,capillary waves 

(LICW) and E field interference (LIPSS) for the generation of LIRS have been 

detailed. 

Mechanical buckling was identified as the mechanism for ripple generation 

on overcoated (constrained ) surfaces whilst on molten surfaces at least 

some of the ripples were shown to be attributable to induced capillary waves. 

The work on LIPSS has shown that not only are such structures possible in 

the UV but that entirely new types of ripples can exist for S polarized 

light in the UV.A detailed comparison was made between theory (I) and 
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experiment which at least to first order validated the theory. Progress on 

understanding the morphology of the ripples was made, with two separate 

mechansims being shown to generate ripples of differing morphologies but 

ones consistent with experimental observation. 

The existence of ripples of anomalous spacing was shown together with a 

tentative explanation as to the origin of at least some of them. 

There are inadequacies in both the theory used and experiments performed 

and whilst the former waits for an inspired theoretician, the author and 

colleagues here at Loughborough intend to redress the latter by studying the 

development of LIPSS both inter and intra shot (by use of a short pulse dye 

laser) and if equipment permits to perform time dependant diffraction 

studies. 
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Chapter 4 

Early Detection of Laser Induced Damage 

4.1) Introduction 

By its very nature laser induced damage is a destructive phenomena and it 

is ironic that the practicalities of using high power lasers are such that a 

non destructive technique for the detection of the onset of LID before it 

becomes a "problem" would be of great use to many organisations. The early 

detection of laser induced damage (hereafter EDLID) is an idea whereby some 

form of "transient" non damaging effect associated with the interaction of 

the laser beam and the component in question is "monitored" so that 

predictions as to where and hopefully when the component will damage can be 

made. 

In an ideal situation in which the surface of the sample under test was 

completely uniform i.e. no variation spatially in the optical, thermal and 

mechanical properties then the sample when it damaged would do so uniformly 

over the Whole of the beam-target interaction area1- 3 , however in reality 

where optical quality surfaces are used residual mechanical stress, strain 

and surface scratches together with contamination from polishing material 

and the general surroundings ensures that the samples do not have uniform 

surfaces with the consequence that damage tends to occur in isolated places 

corresponding to the location of these defects ("weak spots"). 

The presence of these defects means that there are areas of the surface that 

will damage more easily than others,a factor of 5-10 difference between 

"good" and "bad" areas not being uncommon and hence if the surface is probed 

by suitable technique it should be possible to find the spatial location of 

these weak spots. 

4.2 Review 

As discussed in chapter 1 in real situations LID for large beams i.e. 

larger than a few tens of square microns and long pulses i.e. longer than a 

nanosecond can be attributed to the presence of surface defects which 

absorb large amounts of the incident radiation which causes its temperature 

to rise exce~ve1Y leading to damage via melting, vapourisation or 

mechanical failure of the surface. 

Essentially then the failure mechanism is thermal in nature and the 

majority of previous workers have attempted to perform EDLID by means of 

thermal probes4- 7 although other techniques such as predam)e electron 
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emission phenomena8 have been studied. The thermal probes used rely on one of 

two effects, either the photoacoustic4- S or phototherma16- 7 effect (see 

chapter 1). 

In the work by Jeen and Green4 the photoacoustic signal generated as a 

result of the laser sample interaction was studied as a function of incident 

laser fluence for NaCl and KBr crystals and was found to be linear at low 

fluences but at high enough fluence there was a step in the gradient of the 

signal versus fluence graph which the authors called a "super-linear 

rise".It was found that the fluence at which this step occurred could always 

be associated with the onset of LID although it was often very difficult to 

observe this damage. They then built a simple electronic system that would 

compare the photoacoustic voltage generated at any laser fluence with a 

preset voltage corresponding to the photoacoustic signal produced just below 

damage and, if it exceeded the preset level the system would activate a 

warning light.ln this way they were able to setup a system that would warn 

the user about the onset of damage before it actually occurred. The major 

problem with this technique is that no information as to the spatial 

location of the defects/damage areas is obtainable however there is the 

advantage of continuously monitoring the sample for any signs of LID. 

The work by Freese and TeegardenS again used the photoacoustic signal but 

by using a suitably non damaging focused laser beam the samples, which were 

thin films of Ge deposited on Ge substrates, were scanned in raster fashion 

to yield the photoacoustic signal at any point.By doing this it is then 

possible to determine the spatial locations of defects before the damaging 

laser pulse is applied.Excellent correlation was seen b~een the defects 

picked out by the pre-damage photoacoustic scans and the location of the 

isolated low damage "weak spots" found after the sample was damaged by a 40 

ns C02 laser pulse. This technique has the advantage of giving spatial 

information on the damage but as it is a scanning technique is very time 

consU ming requiring many laser pulses which themselves may change the 

surface and, it cannot be used to monitor the surface in real time. 

The work performed by Abate and Roides6 uses a computer controlled raster 

scanning technique, but probes by means of the photothermal effect.The beam 

from a cw Argon ion laser that is chopped at several kilohertz is used as 

the non damaging photothermal excitation source and is raster scanned across 

the surface causing localised heating.A cw HeNe laser beam is then skimmed 

acroSs the surface so as to interact with this localised heating causing the 

HeNe beam to be deflected from its original path.A position sensor connected 

to a set of lock-in amplifiers arranged in quadrature was used to detect 

both the amplitude and phase of the deflected signal.A computer waS then 
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used to convert the signals into an absorption map of the surface.Once the 

surface had been mapped out it was exposed to a damaging pulse from a 

frequency triple Nd.Yag laser at approximately 20% above its single shot 

threshold. Moderate correlation between the sites measured as having high 

absorption and the actual damage sites was obtained, significant numbers of 

areas not showing up as having high absorption were also found to have 

damaged. Based upon the work to be discussed later in the chapter it is the 

author's contention that the "moderate" performance of this technique is due 

to either using different pulse lengths in the probing and damaging parts of 

the experiment or to using a laser fluence that is too much in excess of the 

damage fluence such that once damage has been initiated, intrapulse feedback 

processes result in the damage "spreading out" across the surface away from 

the original defect position giving s~mingly poor correlation between the 

precdicted and actual damage sites, whereas if the fluence had been lower 

i.e. at the damage level there would not have been enough energy for the 

damage to "spread" out thereby preserving good correlation. This technique 

gives information as to the spatial location of the defects but due to its 

scanning basis is time consuming (requiring about 8 hours to scan an area 

0.1 by 0.1 mm) and requires many heating pulses on the surface which may 

themselves change the surface. 

The work performed by Mars and Porteus7 was a first attempt to devise a 

technique that would allow a single non damaging laser pulse to yield the 

spatial location of "all" the defects. The technique was based upon the 

direct imaging of the defects in the surface by imaging the scattered (non 

specularly reflected) light off of the surface. The light source for both the 

imaging and damaging was a tunable dye laser operating between 460 and 530 

nm, and in both cases the light was suitably focussed and arranged to be 

near normally incident on the sample. The surface was then viewed at an 

angle of 15 deg. to the normal i.e. such that only light scattered from the 

defects could reach the camera.A non damaging laser pulse was then appli ed 

to the surface which enabled the spatial location of the defects to be 

recorded via the video system.A pulse approximately 200% greater than the 

non damaging pulse was then used to actually damage the sample and provide a 

picture of the surface scattering after damage.ln general correlation 

between the areas that damaged and the illuminated defects was good, but 

sometimes it took several non damaging shots of increasing energy to make 

the defects visible and by no means all the defects damaged and no 

indication of which one(s) would damage first was possible although, there 

was some suggestion of a correlation with defect size. It is by no means 

clear that 
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l)the use of several so called nOn damaging pulses is not in itself 

damaging the sample and 

2)the direct use of scattered light will yield information about areas that 

are optically perfect but contain thermal defects since it will be shown in 

the chapter that areas that are optically good can contain thermal flaws 

which result in them damaging early. 

In addition the lack of information concerning which area(s) will damage 

first is another significant drawback. 

4.3) System Reguirements 

Ideally the technique for EDLID should be able to 

i)Obtain spatial information about the surface weak spots both optical and 

or thermal in nature, prefer ably in the form of a direct picture of the 

surface. 

ii)Require only a single non damaging laser pulse to obtain all the above 

information 

iii)Use the same laser for both non damaging and damaging pulses to avoid 

any possible problems relating to different pulse lengths or beam profiles 

iv)Use a recording system such as a video framestore that can be interfaced 

to a computer so that data processing e.g. the comparison of two images can 

easily, accurately and quickly be performed 

4.4 The use of Interferometry 

Since the heating of the air surrounding a sample that has absorbed 

significant amounts of laser radiation causes the refractive index in the 

locality and hence the optical path to change the first approach adopted was 

to look at the possibilty of using interferometry to perform EDLID. 

Following close discussions and collaboration with Dr.P.A~emple9 a 

pizeoelectrically controllable Fabry Perot Interferometer (FPI) was 

setup. The basis of this was that by using high reflectivity mirrors a high 

finesse system and therefore one very sensitive to small phase changes and 

hence changes in optical path could be built. Two configurations of the 

system depending upon whether the sample was a reflective or transmissive 

were envisaged as shown in fig 4.1.The sample surface illuminated by a SOmw 

HeNe laser that was fitted with an eta Ion to ensure single longitudinal mode 

operation was imaged using the video imaging system described in chapter 2. 

Although the mirrors used were 9Si, reflecting and flat to A/lOO which 

according to theorylO would give a finesse of around 60 and in reality gave 

a figure around 30, the overall finesse of the system would in practice be 
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limited by the flatness (typically A/IO or worse) of the sample used. 

particularly if it were transmissive when. there is the possibility of a 

secondary etalon being formed by the sample itself. 

Initial experiments and calculations lO indicated that with the experime~tal 

setup avaliable the modal stability and divergence of the HeNe beam would 

not cause a problem. however the problem of multiple images in the FPI is 

much more serious. 

It can be shownll that to first order the finesse in a FPI corresponds to 

the number of round cavity passes that a beam of light makes before it has 

totally emerged from the FPI and consequently the imaging of a surface 

within the FPI can be thought of as the summation of multiple images of the 

surface each separated in space by a distance 21 where 1 is the cavity 

length. Thus although the camera may be focussed onto the surface i.e. the 

first image. subsequent images will be out of focus. leading to a final 

image that is a smeared out version of the original object. Experiments were 

carried out using a thin piece of wire as test object to determine the 

severity of this problem. 

Fig 4.2a shows the image that is produced from a single thin piece of wire. 

note the evenly spaced vertical "lines" either side of the wire which are 

characteristic of a badly out of focus object.In fig 4.2b the intensity 

profile across the wire is shown on the image and it can be seen that the 

profile in the vicinity of the wire is similar to the Fresnel diffaction 

pattern from a single opaque strip as in fig 4.2c.This similarity can at 

least qualitatively be explained by simple diffraction ideas as folLows. The 

light from the first image will be perfectly focussed on the plane that 

contains the camera chip. subsequent images will be focussed back from this 

plane towards the focus of the imaging lens as effectively they come from 

objects successively further behind the lens.Light then has to propagate 

from each of these focus planes to the plane that contains the camera chip 

and as it does so its propagation can be described by the simplified 

Kirchoff diffraction integrall2 which given the experimental dimensions 

involved is well approximated by the form at,[opriate to Fresnel 

diffraction. Thus the image seen is the sum of a rep/i ca of the object and a 

number (i.e. the finesse -1) of images that are similar to the Fresnel 

diffraction pattern of the object giving a final image that will have 

similarities to the Fresnel diffraction pattern of the original object. 

The variation of intensity with path length in the FPI follows the well 

known Airy pattern10 and fig 4.3 shows the actual pattern obtained for the 

FPI used.In order to detect both increases and decreases of optical path one 

of the mirrors of the FPI was adjusted piezoelectrically so that the output 
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Fig 4.2a 

Image of Single Wire in FPI 

Note multiple lines (images) as arrowed 
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corresponded to being half way up any given peak. This of course meant that a 

significant amount of light was always on the camera which, in practice 

meant that the difference between areas that showed the transient, often 

intense but short lived effects (in comparison to the 20 ms imaging time per 

field of the video camera) and the unaffected areas was considerably reduced 

by the continuous background light, since effectively the transient changes 

were a small a.c. effect on a large d.c. background. Ideally the image would 

have been a uniformly illuminated field but in practice the image always had 

rings (or parts of rings) of light and dark. 

Despite these problems it was possible to detect some transient effects in 

highly absorbing samples e.g. metals as shown in fig 4.4 although 

unfortunately to detect these changes the laser energy that was used had to 

be very close (~95%) of the damage thresh old with the result that the 

sample would often damage in the attempt to detect transient effects. 

The requirement to work so close to the damage threshold clearly made this 

system an impractical technique and emphasis was placed on finding an 

alternative method for EDLID. 

4.5 A Pulsed Laser Schlieren Imaging System 

The work on the FP! had shown that cw illumination with long imaging times 

was not a suitable technique leaving two choices either cw illumination with 

a gated camera or, pulsed illumination with ordinary cameras, of which the 

latter waS chosen due to the availablitiy of equipment. 

The basic experimental setup was to use the excimer laser for both the 

damaging pUlse(s) and non damaging pulse where it would transiently heat 

both the surface and, by re-radiation from the surface the surrounding air 

whilst, a separate pulsed dye laser would be used to image.the surface. The 

imaging light would be focus sed by a first lens which had a knife edge 

suitably placed in its focal plane so as to remove the undeflected beam to 

form an intermediate image (i.e. Schlieren imaging).This intermediate image 

would then via suitable microscope objectives be imaged onto the camera chip 

and recorded by the video processing system. 

The physical idea that the experiment was based on is that the "weak spots" 

on the surface would absorb anomalous amounts of the incident excimer 

radiation and thereby become hotter than the surrounding areas which would 

cause more deflection of the pulsed dye laser in these areas due to the 

temperature depen~nce of the refractive index of air and thus show up as 

anomalously bright or dark areas in the Schlieren image. 

Since the samples to be used Were real optical surfaces they inevitably 

contained scratches, small defects etc. which would mean that the initial 
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Schlieren image was not totally uniform across the field of view, allowance 

for the light in the image before the transient heating would have to be 

made necessitating 3 images of the surface being taken.The images would 

contain the following 

i)The initial surface 

ii)The surface showing transient effects 

iii)The surface after the transient effects have decayed to zero. 

with each image being stored in the video proccessing system decribed in 

chapter 2.Processing (see later in this chapter) of images ii and i would 

yield only transient effects whilst comparison of i and iii would reveal if 

the pulse had caused any permanent damage. 

Due to the way in which the video framestore works and the requirement to 

avoid the half pixel shift that exists between the even and odd fields in 

CCD cameras the dye (1maging) laser would be fired 3 times with a gap of 80 

ms between pulses thus enabling 3 separate images (but all on either the odd 

or even video field) to be captured,digitised and stored in the 

framestore.lnitial experiments and previous experience showed that 

background vibrations, air currents etc would not cause any movement of the 

image between dye pulses on this time scale nor indeed on the scale of the 1 

to 5 minuites it would take to expose the sample to a suitable number of 

excimer pulses for damage to occur. 

The excimer laser would be fired only during the the second imaging period 

with the dye laser being fired a known "short" time after the excimer and so 

capture the transient heating of the surface. Fig 4.5 shows the timing 

sequence of the framestore, dye laser and excimer laser. Based upon the 

general "belief" amongst workers in the field that the heating of sample and 

surrounding air lasts of the order of a microsecond and that the peak of the 

heating is around the end of the laser pulse, modifications to the video/dye 

laser trigerring box were made so that initially the dye laser could be 

triggered up to 400ns after the excimer laser although later, after 

measurements of the time duration of the transient heating effects for the 

excimer fluences used had been made this was extended to 10~s. 

4.5.1 System Configuration 

4.5.1a Hardware 

The available pulsed laser was a model LNI03 nitrogen pumped dye laser 

manufactured by PRA of Canada. The system consisted of a 80 ~J N2 laser 
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operating at 337 rum that would pump a small dye laser attachment which could 

give up to 12 ~J of energy depending upon the dye and operating wavelength 

used, with a pulse length of around 0.5 ns i.e. much shorter than the 

excimer pulse (25ns).The spatial profile of the beam from the dye laser 

was, after being spatially filtered, to a good approximation G~ssian.As 

with the general damage work,the triggering of this laser,through a purpose 

built electronic delay box (based on TTL chips 74121) was linked to the 

field sync pulses coming from the video camera. 

Whenever 2 separate lasers are required to produce pulses that are 

temporally linked to each other there will be some temporal jitter i.e. 

variation in the time between the two pulses on a shot to shot basis caused 

by small variations in a number of parameters such as the time the discharge 

breaksdown to initiate laser action,noise on the electronics of each device 

etc and in particular noise on the electronics of the device that is 

controlling both lasers.Experiments using a fast uv photodiode and suitable 

storage oscilloscope which measured the time between the application of a 

suitable triggering pulse to the excimer and the arrival of the excimer 

radiation at a point in space very close to where one of the monitoring 

photodiodes that this experiment requires would be situated, showed that the 

jitter in the excimer laser (relative to the triggering pulse) was less than 

6n s. 

The dye laser has two modes of operation one with a trigger jitter of ~60 

nS (regular mode) and the other,the "low jitter" mode of ~l ns 
(manufactJers figures).Operation in the low jitter mode requires two TTL 

~ . 
trigger pulses to separate parts of the trigger circuit with the second 

between 30 and SOl'S, after the first.Further modifications were made to the 

video/dye triggering box so that two pulses 40 )5- apart could be applied to 

the dye laser. After extensive optimisation of the settings for discharge 

voltage,gas pressure,lasing volume and the spark gap of the N2 pumping laser 

,the trigger jitter of the dye laser on a shot to shot basis was measured in 

the same way as that of the excimer and found to to vary randomly between 10 

and 30 os. 

The controlling electronics was found to have approximately 10 0$ of jitter 

shot to shot between its output of the pulses to either laser on any given 

single shot. 

Overall therefore the jitter shot to shot between the two lasers varied 

from about 10 n3 to 40 nS.A fast photodiode pdl in fig 4.6a linked to a fast 

digital storage scope was used to monitor the delay on each pulse between 

the excimer and dye lasers.For the purposes of these experiments the time 

delay between the excimer and dye pulses is defined as the time between the 
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end of the excimer pulse and the start of the dye pulse.A small fraction 

(8i.) of the dye beam was split off and directed onto pdl whilst there was 

enough scattered excimer radiation for the diode to respond to without 

specifically having to split a fraction off of the beam. 

Initial experiments showed that during the first 100 n.s or so the magnitude 

of the transient effect decayed very rapidly and so early experiments were 

conducted with the delay set at the maximum then available (375 ~.).Later 

experiments and in particular (see 4.5.9) the one to investigate how the 

transient effect changes with increasing number of shots as the multiple 

shot (arbitarily chosen as either 10 or 50 shots) damage threshold is 

approached were conducted with a longer delay (~l ~s) to reduce the problem 

of variation in the transient effct caused by jitter in the system. 

A number of images of the same area on a sample were taken and analysed on 

the video system revealing a large shot to shot variation in the output 

energy of the dye laser.In order to usefully compare the required images 

either the energy in each would have to be the same or some measure of the 

difference between the images would be required, and since experiment 

clearly showed the former was impossible, a system was devised to indicate 

at least the relative energy of each dye shot. 

Ideally some form of calorimeter or pyroelectric device would be used to 

meaSUre absolutely the beam energy but no device capable of measuring the 

few ~J's output of the laser was available ther~ore only the change in 

energy between pulses could be found, this was done by using a simple fast 

photodiode, pdZ in fig 4.6a.The scope used to record the output of pd2 was a 

Phi lips PM 3311 60 MHz digital storage scope as this model has built in the 

facility to cap·ture and store in separate memories 4 successive incoming 

signals without any manual intervention, however there must be at least 50 

ms between each of the signals which is part of the reason that the time 

between each of the three dye laser pulses was set at 80 rn'.Unfortunately, 

this scope would not work in single shot mode faster than 200 ns per 

division which corresponds to a sampling time of 8 ns per point. The time 

duration of the dye pulses when measured with the fastest available scope (a 

Tektronix 466) and using pd2 suitably terminated (when according to the 

manufactuers figures the rise time should be 0.5 ns) was found to be ~5ns, a 

time corresponding to the limitations of the scope electronics rather than 

to the actual pulse length which, from manufactuers data obtained by a 

Streak camera is of the order of 0.5 ns:!rhus given that the scope to be used 

for measuring the dye pulse energies could only sample to 8 ns i.e. provide 

only 1-2 sample points per dye pulse it was decided to use pdZ without a 50 

n terminator which gave a rise time of around l~S when connected directly 
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into the Philips scope. This meant that pd2 would effectively act like a 

capacitor discha'ing through the high impedance of the scope where, the 
" total initial charge induced into pd2 by the incident laser pulse during its 

0.5 nS duration equalled the number of created electrons which are directly 

dependant on the number of incident photons and hence to the incident 

energy.Since the charge takes of the order of 1~S to start to leak out of 

pd2 i.e. much longer than the time to create it, the voltage output of pd2 

at any time is a measure of the incident energy,thus to obtain a measure of 

the energy in each pulse the output of pd2 was recorded and the voltage 

produced at a convrent time usually 2-3 Il'S after the dye pulse was used as a 

measure of the energy of each pulse. 

A small 10 mW cw HeNe laser was arranged via suitable mirrors and 

beamsp1itters (fig 4.6a) to be co-axial with the dye beam so that it could 

be used for both aligning the system i.e. camera(s), sample and excimer 

laser which, is substantially easier and more accurately performed with cw 

illumination than with pulsed light and to allow real time direct monitoring 

of the surface during the multiple shot experiments. 

Initially when only one camer a was available a piece of card suitably 

mounted was used to block either the cw or pulsed beam depending upon which 

was required.At this stage to avoid having to refocus the camera when 

changing light sources the dye laser was set to work at the HeNe wavelength 

632 '8 nm.The major disadvantage of this single camera setup is that it does 

not allow the simultaneous real time cw monitoring of the surface (for any 

obvious signs of damage) and the capture of transient information using the 

dye laser. Towards the end of the experiment a second camera became available 

which allowed the setup to be modified (fig 4.7) so that one camera imaged 

the surface in real time using the cw HeNe and the other was linked to the 

video system and recorded the dye pu1ses.The dye laser was,in this setup set 

to operate at 514 nm.The separation of the co-axial beams was achieved by 

means of narrow band pass filters ,one set at 632, 9 nm and one at 514 nm 

and experiments readily showed that no detectable amount of the 514 light 

was passed by the 633 filter and vice versa. To allow for the differences in 

intensity of each laser and the responsivity of the cameras at the two 

wave1engths,each camerea was prOVided with its own knife edge sO that the 

cut off point could be set indepenJent1y on each camera. 

The cameras used were all EEV CCD frame transfer devices which would image 

an object for 18 mS out of the 20 ms field time and take the other 2 IT.s to 

transfer the image to the store area on the chip from where it would be read 

out during the next field. 
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4.5.lb Optics 

Due to experiments being performed by colleagues the space available to 

setup the experiment was limited particularly once the dye laser had been 

inserted on the optical table. Initially metallic samples were to be used and 

the system was setup to work with the light that was reflected from the 

sample although at the end transparent dielectric samples were used which 

required the system to be rearranged to view the transmitted light. With 

space limited the optics at the target area were setup as shown in detail in 

fig 4.6b. 

In order to use Schlieren imaging, access to the focal plane of the imaging 

lens is required and it was de med that this would be far easier if an 

intermediate lens 12 was used rather than trying to perform Schlieren in the 

focal plane of the micrscope objectives that were to be attached to the 

camera to provide the required magnification. The knife edge was accordingly 

setup in the focal plane of this intermediate lens. The use of an 

intermediate lens would also have the advantage that some initial 

magnification could be accomplished which would mean objectives of less 

power could be used with a reduction in the problems of depth of focus and 

aberrations caused by having "the tube length" of the system not exactly 

correct. 

The diameter of lens 12 and that of mirror m4 were chosen so that with the 

space available they would be consistent with resolving objects of the order 

of 3 ~ in diameter,this was done by reference to the Abbe theory of 

resolution12 • 

The Abbe theory requires that in order to resolve an object of diameter d 

using light of wavelength A the detecting system must have an acceptance 

angle for the light coming from the object at least equal and pref erably 

greater than e, where sine = AId i.e. at least the first order diffracted 

ray from the object must be detected in order to resolve the object. With d=3 

~ and A=633nm requires e ~ 12.2 deg. 

The distance p between the sample and the reflecting mirror m4 was limited 

to 80 mm thus with e= 12.2 deg requires the radius of the mirror given by D 

=p*tane to be greater than 18 mm.A 60 mm diameter mirror was used. 

The distance to lens 12 was limited to a minimum of 145 mm thus requiring a 

diameter 63 mm or greater.A 63 mm diameter lens with a focal length of 100 

mm was used. 

By means of a suitable adapter tube a microscope nOse turret with 2 

objectives on it was attached to the camera(s).The adapter tube was made 

such that the distance from the shoulder of the objectives, which were all 

par focal types, to the plane containing the CCD chip was approximately 160 
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mm i.e. such that the image formed by the objectives was focussed onto the 

CCD chip at a working distance close to that for which the objectives were 

designed so that l)aberrations are kept to a minimum, 2)advantage of the 

parfocal nature of the objectives could be taken to avoid gross re-focussing 

on changing objective and 3)the magnification produced by the objectives was 

close to the value that they would have when used in a normal microscope. 

The objectives chosen were a X4 with a numerical aperture (n.a.) of 0.12 and 

a XIO with n.a. of 0.17.The XIO is consistent with a resolution of around 4 

~ and was the only readily available version of this objective.The spacing 

of the pixels on the video camera was 22 ~ which when the image has been 

through a XIO objective corresponds to 2.2 ~ well inside the 4 ~ 

limitation of the objectives. Thus overall the resolution of the system was 
o 

limited by the micrscope objective to a value around 4 ~. 
~ 

4.5.1c Computing 

On the basis that on each shot 3 images (i.e. 192 kbytes of information) of 

the surface of a sample would have to be stored and pro cessed the Sperry 

PC/IT with it's fast 80286 pro cessor, 45 Mbyte hard disk and 1.2 MByte 

floppy disks was chosen over the slower Arnstrad PC 1512 to be the system 

computer. 

The programming was divided into two areas •• 

l)General data handling such as image capture, storage to disc and simple 

proccessing such as image subtraction and enhancement were written in 

assembly level language for maximum speed of operation. 

2)Advanced image proceesing e.g. subtraction where allowance is made for 

the variation in the energy of the laser pulse that was used to record each 

image, because this invclv.es multiplication and'division was written in 

complied BASIC. 

Details of area 1 are given in chapter 2 and a discussion of the concepts 

and mathematical expressions (but no actual programming) used in area 2 is 

given below. 

A program was written to subtract and then automatically enhance the 3 

images on the assumption that as the pulse energy increased/decreased the 

recorded greylevel increased/decreased linearly. With the framestore in the 

256 by 256 pixel mode giving 4 stores a,b,c,d the images were always 

arranged to be (when processing transient data) 
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Store a ..•• image of initial surface 

Store b ..•• image of the transient effect 

Store c .••. image of the surface after the transient has decayed 

Store d ...• spare, used as a temporary store during proccessing 

or if the data collection was complete i.e. the transient data collected, 

sample damaged and an image of the damaged surface collected the images by 

suitable manipulation of the stored data would be arranged to be 

Store a .•• image of initial surface 

Store b .•. image of transient effect 

Store c ••• image of damaged surface 

Store d .•• spare 

Denoting the energy of each image by Ea,Eb,Ec, the grey1eve1 at any point 

in the image by a in store a, b in store b etc •• , taking the energy of the 

first image to be the "correct energy" and noting that as before in order to 

represent both increased and decreased light levels that the zero point is 

set at level 31 the program would process the images on a point by point 

basis so that the greylevel at a point appropriately rounded is given as 

below ••• 

Store a .•• unchanged ••• image of initial surface 

Store b ••• 31+f*(a-(Ea/Eb*b) Le. a-b ••• net transient effect 

Store c ••• 31+f*(a-(Ea/Ec*c) i.e. a-c •.. net permanent cnange 

Store d ••. 31+f*Ea*(b/Eb-c/Ec) i.e. b-c .•• transient-permanent 

where f is a factor determined by the program that enhances the deviation of 

the processed images from level 31 such that the maximum deviation from 31 

be it positive or negative is set to 31 levels making the overall signal 

either 0 if the maximum deviation was <31 or 63 if it was >31.The use of 

this factor f automatically enhances the images to their maximum contrast 

level. 

Processing in this way requires only the fractional change in energy shot 

to shot rather than the absolute energy of each shot and therfore the use of 

pd2 is adequate, and enables the net transient and permanent effects to be 

separated from the dust,scratches etc that are present on the initial image. 

Experience of recording the dye laser images showed that if the energy 

varied by more than about 40% shot to shot the spatial location of the 

centre of the beam moved e.g. if the centre i.e. most intense part of the 
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dye beam was arranged to be in the centre of the image then if the pulse 

energy varied too much the centre part could move up to a few mm as viewed 

on the monitor. Thus in practice if the shot to shot energy variation 

exceeded 207. the images which were recorded were ignored and new ones with 

less than 207. variation obtained. 

Whilst this simple approach of merely subtracting the images worked very 

well in correcting for the shot to shot energy variations it made no 

allowance for the spatial variation of either the dye laser beam or the 

excimer beam. 

In order to calibrate the magnification of the system and therfore the size 

of the imaged area as viewed on the television monitor connected to the 

framestore, a ruled graticule was placed in the same position as the surface 

of a test sample would have been and then imaged through the video system 

yielding the following values 

Objective 

X4 

X10 

Table 4.1 

Magnification 

260 

6S0 

Comments 

Low mag setup 

High mag setup 

These figure meant that since the viewing area on the TV monitor was 

approximately (horizontal figure first then vertical) 2S0mm by 210 mm the 

area actually imaged was 1.OS mm by O.Sl mm in the low mag setup and 0.41mm 

by 0.31 mm in the high mag setup.At the target plane used the excimer beam 

was approximately G~~sian with a l/e2 diameters of 2mm horizontally and 0.5 

mm vertically.The dye laser was spatially filtered such that it had a l/e2 

diameter of approximately 2mm.Using the formula 

I = Ioexp(-2*(r/ro)2) 1) 

where ro is the l/e2 radius and noting that the images from the dye laser 

where always arranged to be centred on the screen as was the excimer beam, 

tables 4.2a and 4.2b show the variation in intensity in each beam across the 

viewed area. 
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Table 4.2a 

Variation of dye laser intensity with distance and magnification 

Magnification Axis Max r mm Edge ratio* 

low Horizontal 0.54 0.56 

" Vertical 0.41 0.71 

High Horizontal 0.21 0.92 

" Vertical 0.16 0.95 

* The edge ratio is the ratio of the intensity at a distance corresponding 

to the edge of the observed area in each d~ction (i.e. the values in the 

max r column above) and that at the centre (r =0 ) of the pattern using 1) 

with ro = 1mm. 

Table 4.2b 

Variation of excimer intensity with magnification and distance 

Magnification Axis Max r mm Edge ratio'" 

Low Horizontal 0.54 0.56 

" Vertical 0.41 0.004 

High Horizontal 0.21 0.92 

" Vertical 0.16 0.44 

*edge ratio calculated as in table 4.2a but using rO= 1 mm for the 

horizontal axis and 0.25 mm vertically. 

It is immediately obvious that in the high mag setup which was the one that 

almost all the data was recorded in, the variation in the dye beam can be 

ignored whilst that of the excimer can only be ignored along the horizontal 

axis.To correct for the variation in the excimer a factor of the order of 

exp-(2*(ro!r)2) would have to be applied to the net transient signal, but 

this requires knowing the spatial centre of the excimer beam relative to the 

centre of the recorded image which is in practice very hard to obtain. Thus 

in the first instance it was decided not to use any correction factors and 

process the images by simple subtraction. 

Hence in the recorded images the heating and damaging intensities 
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(fluences) are essentially uniform in the horizontal direction but vary 

vertically across the image such that if the surface was completely uniform 

the damage would occur first along a horizontal axis in the centre of the 

image due to the higher intensity there,but if damage is found to first 

occur away from the centre vertically then it must be due to the presence of 

"weaks spots" in the surface and as such is a good indication of the 

presence of these defects. 

A second high level program was written to allow a form of semi-automatic 

monitoring of the transient signal at user selected points as a function of 

the number of excimer laser pulses that had been incident on the target (see 

4.5.9). 

4.5.Z Samples 

4.5.Za Samples Used 

Three sets of samples were used ••. 

l)Commercially pure Al (997. Al min.) pOlished commercially as described in 

chapter 3 

Z)Laser quality (for COZ use) polished to A/ID polycrystalline Ge 

3)Multi layer (quarter wave) dielectric stacks on fused silica substrates 

setup to be high reflectors at a wavelength of 249 nm 

4.5.Zb Pre-Imaging Cleaning of the Samples 

The Al samples were found to have surfaces that were contaminated by 

dirt,dust and polishing residue that would cause large scale damage at very 

low fluences,leading to intolerably large variations of the damage threshold 

area to area unless, such contamination was removed from the surface by 

exposure to very low level "cleaning" pulses from the excimer 

laser. Typically the surface would be pre cleaned before imaging by 5 pulses 

at a fluence around 0.1 J cm-Z. These very low fluence pulses would 
0-

essentially cause the dirt etc to be "blown off " the surf,fe leaving a much 

cleaner and more uniform surface. 

The Ge and dielectric samples were also pre cleaned at appropriate levels 

to ensure that dust etc picked up on the surface would not cause poor 

reproducibility of the results. 

4.5.3 Experiments Performed 

Three types of experiments were performed on the samples although not all 

types were performed on all samples ••• 

178 



l)To investigate the correlation between areas of anomalous absorption as 

revealed by the transient signal and the areas that first damage on a single 

shot damage basis 

2)As in 1 but on a multiple shot basis 

3)To investigate the magnitude of the transient effect as the number of 

incident shots approaches the number required to cause damage at the fluence 

used to determine if it is possible to predict the onset of damage i.e. how 

many more shots are required to cause damage by monitoring the transient 

signal. 

4.5.4 Experimental Operation of the System 

Once the samples had been inserted into the correct posiuon the dye, HeNe 

and excimer laser beams had to be aligned. This was performed by using a very 

high excimer fluence which would damage the sample over a large area 

i.e. almost the complete field of view when set to high magnification. The dye 

and HeNe lasers were then set so that the centre of each passed through the 

centre of this large damage area and the cameras adjusted and focussed so 

that the image of this area was centred on the tv screen. The excimer laser 

fluence was then reduced to appropriate levels (see 4.5.5). 

The knife edge(s) were set so as to cut off half of the beam (i.e. half the 

zeroth order and all the spatial frequencies on one side) for both dye and 

HeNe lasers. The setting for the dye laser was particularly critical since 

the transient effects could show up as either increases or decreases in the 

amount of light passing the knife edge and if this was set too far either 

way i.e. too much or too little was cut off the system would lose its 

sensitivity. Experience proved to be the best way to set the knife edge so 

that for both the amount of light reaching the surface and the nature of the 

surface, the system was at its most sensitive. 

Each time a new area was chosen it was pre-cleaned as described before it 

was imaged.The video system was then placed in its triple frame grabbing 

mode and the transient signal recorded. If it appeared after processing that 

the sample had permanently damaged the process was repeated on a new area.If 

there was more than 207. variation in the dye pulse energy between the shots 

another transient signal was recorded on the same site, should three 

attempts on anyone site to record the transient signal fail, a new site was 

chosen and the process stared again. 

Once the transient signal was recorded the sample was damaged either by a 

single shot or by multiple shots and an image of the damaged sample using 

the dye laser was obtained so that comparisons between the initial,transient 

and damaged states could be made.For the experiments where the magnitude of 
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transient as a function of number of excimer pulses were being performed a 

transient signal (using the appropriate excimer fluence) was recorded every 

5 or 10 excimer pulses. 

The excimer fluence of the transient and damaging pulses,shot to shot dye 

pulse energy and the time between excimer and dye pulses were also recorded 

each time. Use of the computer processing routines would enable the net 

transient and damage signals to be determined and compared. 

4.5.5 Selection of Excimer Fluence 

The fluence used to record the transient image was that found by experiment 

to be the lowest fluence i.e. furthest below the single shot damage 

threshold that would give a readily detectable signal and for the metallic 

samples was about 1/3 to 1/4 of the Single shot threshold level whilst being 

slightly higher at about 1/2 the single shot level for the dielectric 

samples.The limit as to how far below threshold the system would work at is 

controlled by 2 parameters, l)the sensitivity of the camera and 2)the output 

energy of the dye laser. 

The output energy of the dye laser was such that in operation, the camera 

was typically operating in the lower half of it s dynamic range with the 

result that the system was "short" of light.A more powerful dye laser 

coupled with a more sensitive camera would not only increase the amount of 

light in the system but, also allow smaller changes to be detected and 

therefore the use of reduced excimer fluences. 

4.5.6 Noise Considerations 

There are 2 sources of noise in the system, the variation in the output of 

the dye laser and the noise associated with the electronics i.e. the camera 

and framestore.The noise in the camera has been discussed in chapter 2 where 

it is estimated as 1 to 2 greylevels.As already mentioned with the variation 

in output energy of the dye laser came a slight variation in the spatial 

location of the beam which could mean that 2 images of an identical surface 

would not yield a uniformly blank screen if subtracted but one that had a 

random distribution of speckles on it. Somewhat of a more serious problem is 

that as the output energy varies, light from certain areas would be detected 

when the output was high but a small reduction e.g. 10% in output would mean 

that the light from these areas would no longer be detected and the image 

would show a dark spot.This would result in the processed image showing 

significant change associated with these areas indicative of damage but 

actually due to the simple failure to detect the light due to reduction of 

the dye pulse energy. 
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4.5.7 Results 1 

4.5.7a Al single shot 

The first set of experiments were performed on one of the Al samples with a 

damaging fluence of approximately 0.7 J cm-2 ,a transient recording fluence 

of ~0.22 Jcm-2 and a delay of 375 ns bewteen the excimer and dye pulses,the 

retlts of which are shown in figs 4.8a-e.Comparison of figs 4.8a and c shows 
~ 

that at the fluence used, the surface damaged over the width of the field of 

view and vertically between the points marked by the arrows.Closer 

inspection of fig 4.8c reveals a darker area within the 2 bright lines which 

at first sight possibly seems not to have damaged,this appearance is due to 

using Schlieren based imaging.A Schlieren system is only sensitive to 

discontinuities in the optical properties of a surface and thus only areas 

near to such discontinuities will show up as bright patches in the image 

whilst areas of uniformity will show up as dark patches.Hence the changeover 

from non-damaged to damaged areas shows up brightly but areas that are 

either uniformly damaged or undamaged will be imaged as dark 

patches.Processing of figs 4.8a and b yields the net transient signal (fig 

4.8d) and that of figs 4.8a and c yields f.8e the net damage.It is obvious 

from figs 4.8d and e that the correlation between the transient and damaged 

images is quite poor. This poor correlation is attributed to excessively 

damaging the surface with the excimer. 

The damaging fluence was gradually reduced to a value of 0.56 Jcm-2 at 

which level, when the surface damaged it did so at isolated points which 

then enabled comparisons between the transient and damaged images to be 

made.A fluence of 0.18 Jcm- 2 was used to record the transient effects.The 

time delay between excimer and dye pulses remainded constant at 375 ns. 

Typical of the results obtained when the excimer fluence was sufficiently 

low to cause damage only at isolated points is shown in fig 4.8 f-l obtained 

in the high mag (X680) setup.Fig's 4.8f-i show resectively the image of the 

surface after the cleaning pulses,the image of the transient heating,the 

surface after the transient pulse and the damaged surface after one damaging 

excimer pulse. Processing of the difference between figs 4.8f and h to give 

fig 4.8j reveals a maximum difference between the images of only 1 level 

which is within the noise of the recorded image. Processing of figs 4.8 f and 

g to give fig 4.8k shows the net transient Signal, where as indicated on the 

diagram there are several areas of anomalous absorption which show up as a 

decrease in the processed signal i.e. the area becomes blacker.Processing of 

figs 4.8f and i to give 4.81 shows the areas that have actually 

damaged. Comparison of figs 4.8k and 1 shows that there is excellent 
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agreement between not only the areas of large anomalous absorption and the 

more heavily damaged areas but between the general location of the damage 

sites and the somewhat less black areas of the transient image and it is 

encouraging to see that in these secondary areas,the "amount" of damage is 

less than that predicted and seen in the blackest areas of the images. The 

fact that damage occurs over areas that are well separated from each other 

particularly in the vertical direction over which the excimer intensity can 

vary significantly indicates that the damage has been caused by the presence 

of localised defects on the surface rather than by thermal induced changes 

on a uniform surface. 

4.5.7b Al multiple shot 

The excimer fluence was gradually reduced to a value of 0.27 Jcm-2 at which 

point it would require approximately 10 shots to damage the sample,the 

transient effect waS still recorded at 0.18 Jcm-2 with a delay of 375 ns 

between excimer and dye pulses. Figs 4.9a-e show a sequence recorded at such 

excimer fluences in the low mag setup with fig 4.9a being the initial 

surface, 4.9b the transient effect and 4.9c the surface after 10 excimer 

pulses. Processing of fig 4.9a and b to give the net transient effect (4.9d) 

and 4.9a and c to give fig 4.ge the net damage, shows the excellent 

correlation between the areas of greatest absorption in the transient signal 

and the first areas to damage. 

The damage in this case initiates along a line in the centre of the field 

of view corresponding to the most intense part of the excimer beam but it is 

important to note that the damage occurs in 2 separate areas with no damage 

in between. The lack of damage vertically (in which direction the excimer 

intensity decays rapidly in the low mag setup) away from the centre implies 

that the damage is being caused by thermal effects but gives no information 

about damage at defects.More significantly, the fact that in the horizontal 

direction the damge occurs in two well separated areas with nothing between 

when the spatial profile of the excimer is known to have no localised hot 

spots in it is indicative of damage due to the pres. ;ence of defects ("weak 

spots") on the surface. 

Further reductions in the damaging fluence where made until it was equal to 

the fluence used to record the transient image (0.18 Jcm-2) at which point 

it required approximately 50 excimer pulses to damage the surface of the 

sample. Figs 4.10a-j obtained in the low mag (X260) setup show a typical 

multi shot sequence at this fluence,with fig 4.10a being the initial 

surface, 4.10b the transient effect and 4.10c the surface immediately after 

recording the transient pulse. Comparison of fig 4.10c which was recorded at 
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~15% more energy than 4.10a shows immediately the problem of new areas of 

light (e.g. those circled in fig 4.10c) being detected simply due to a 

change in the dye pulse energy between shots. Processing of figs 4.10a and c 

giving fig 4.10d shows that in the centre of the field where both the laser 

fluence and detected transient effect are greatest no damage has occurred 

and that the areas of change between 4.10a and c are simply due to a change 

of dye pulse energy. This conclusion is reinforced by the extra light that 

appears in the top right hand corner of 4.10c which in real space 

corresponds to an area where the excimer beam is <1/100 of that at the 

centre where no damage was found. 

Figs 4.10 f-j are respectively the processed difference between the initial 

surface and 50,100,150,200 and 400 excimer pulses incident on the sample 

surface. The sequence shows the gradual development of the damage site from a 

few isolated areas in the centre to a heavily damaged area with dimensions 

corresponding to that of the transient effect.It can be seen (fig 4.10f) 

that the first stages of damage occur in the centre areas that according to 

the transient effect (fig 4.10e) shows the greatest heating effect and that 

the damage as it propagates across the field of view generally first occurs 

in those places that on the transient image are darkest. 

The relatively poor correlation between the areas of damage on the left 

hand side of fig 4.10j and the transient (4.10e) is probably due to a form 

of positive feedback whereby once initiated at a particular site damage can 

more easily increase around this area and propagate outwards than it could 

on an as yet undamaged site. 

4.5.7c Ge single shot 

The Ge sample was first pre-cleaned by 5 excimer pulses at 0.03 Jcm-2 and 

then the transient effects were imaged using an excimer fluence of 0.06Jcm-2 

and a time delay of 375 ns bewteen excimer and dye pulses. The sample was 

then damaged at a fluence of 0.18 Jcm- 2 and a further image recorded. Fig 

4.11 a-e recorded in the high mag setup show a sequence at this fluence. 

The greylevels found in the images were all quite low in the range 0 -16 

and so do not show up well on the video copier prints as this is only a 16 

level device which essentially means it takes 4 greylevels to correspond to 

one level on the printout and thus the actual surface images 4.11a-c are not 

very clear on the printouts.After processing to give the net transient 

signal (4.11d) and the actual damage (4.11e) excellent agreement is seen 

between the areas of anomalous absorption in the transient and those areas 

that actually damaged. The fact that the damage is essentially in isolated 

areas particularly well spread out in the vertical direction in which the 
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excimer fluence varies by about a factor of 2.5 over the field of view shows 

that defects are again the prime cause of damage. 

The energy required to damage the Ge sample was approximately 1/3 that for 

the Al which is consistent with the assumption that damage is thermal in 

nature since, at 249 nm, Ge absorbs around 3 times as much light as AI, and 

thus (with the further assumption of similar overall thermal properties) 

should damage at about 1/3 the fluence of Al. 

4.5.7d Dielectric single shot 

Although the dielectric sample used was an HR at 249nm it was transparent 

at visible wavelengths thus requiring the system to be rearranged to work 

with the dye laser light transmitted through the sample as opposed to the 

~4% reflected of the front surface which initial experiments showed was 

undetectable. 

Earlier work had shown that these samples had a single shot threshold of 

around 3.5 Jcm-2 so initially the fluence for transient recording was set to 

~1 Jcm-2 but this proved insufficient to produce a detectable transient 

effect.The fluence was gradually increased to a value of 1.7 Jcm-2 at which 

point there was a detectable transient signal. 

The transient effect on the sample Was then recorded in the high mag setup 

at a fluence of 1.7 Jcm-2 and a delay of 375 ns between the excimer and dye 

pulses before the sample was damaged at 3.5 Jcm-2 and re-imaged.Figs 4.12a-g 

show such a sequence with 4.12a being the initial surface b the transient 

effect c the surface after the transient pulse and d after one damaging 

excimer pulse. 

Processing 4.12a and c to give 4.12e shows an essentially uniform image 

with only the slightest indication in the area marked as 1.that a small 

change occurred although no change Was detected on the surface as a result 

of the excimer pulse when viewed in real time on the second camera. There is 

absolutely no indication of a change in area 2 which is where most of the 

damage occurrs. 

Figs 4.12a and b are processed to give 4.12f the net transient effect and 

4.12a and d to give 4.12g the net damage. Initial comparison of 4.12f and g 

reveals excellent agreement between the area (marked as 1 in fig 4.12f) of 

anomalous absorption in the transient and the area of main damage (marked as 

1 in fig 4.12g).A more detailed study of 4.12f and g reveals the transient 

signal shows definite effects at the sites of the 3 secondary areas of 

damage (labelled 2-4) although they are not as well defined as that at area 

1. 

The nature of the damage on this sample i.e. very isolated areas of point 
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damage very strongly indicates that thermal failure through the presence of 

surface defects such as scratches, voids,inclusions etc is the main cause of 

damage on these samples. 

4.5.8 Time Dependence of Transient Effects 

The results obtained in 4.5.7 were all obtained at a delay of around 375 ns 

between excimer and dye laser pulses but this was subject to variation of up 

to 40 ns which would make comparison of the transient shots on the same site 

impossible as the magnitude of the transient has significant variation over 

the time delay range 350 to 410 ns.To overcome the effect of the jitter the 

transients should be recorded at a long enough time delay such that 40 ns of 

jitter has negr~ible effect on the magnitude of the signal.To determine if 

this was possible an investigation into the time duration of the transient 

effect was made. 

Two types of experiments where performed to determine the time dependance 

of the transient heating on Al samples •••• 

l)Use of a photomultiplier set to record the transient deflection (heating 

effect) of a cw HeNe laser beam that had been arranged to illuminate the 

same area on the sample as the dye laser if it were used. 

2)Use of the video system and dye laser to record images of the transient 

effect as a function of the delay bewteen excimer and dye pulses. 

4.5.Sa Time Depend~nce - -Photomultiplier monitoring 

A second 10 mW cw HeNe laser was was used to provide a beam that 

illuminated the same area on the sample as the dye laser did.After 

reflection from the surface the beam was passed through a suitable lens with 

a knife edge in its focal plane.A suitable fast photomultiplier was situated 

immediately behind the knife edge so that only the deflected light would be 

in cident on the front surface of the photomultiplier.An Al sample was used 

as the test surface and was pre cleaned in the standard way with the time 

duration signals being recorded at the excimer fluence used to image the 

transient effects (O.lS Jcm- 2). 

Figs 4.13 a and b show typical traces of transient signal (vertical axis) 

versus time (horizontal axis).It should be noted that the photomultiplier 

produces a signal that becomes more negative as the light level 

increases.From 4.l3a it can be seen that detectable signal persists for ~ 40 

~s although a more realistic measure of the signal is the time to the half 

peak point which is of the order of 10 ~s.Reference to fig 4.13b shows that 
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the peak of the signal occurrs almost immediately after the end of the 

excimer pulse (lower trace) and after a rapid initial decay during the first 

200 ns th decay rate slows drastically and the signal is almost constant 

from ~SOO ns to 2~s.Thus for a delay of around 1 ~s between excimer and dye 

pulses the transient signal is essentially constant and therefore 

insensitive to the 40 ns of jitter present in the system,thereby making it 

possible to accurately compare transient images at this delay. 

4.S.Sb Time Dependt.nce of the Transient Image 

Sequences of transient images as a function of the delay between excimer 

and dye pulses on a given site were recorded. Figs 4.14a-f show such a 

sequence recorded at delays of 30 ns,SO ns,320 ns,9S0 ns,3 ~s and 9 ~s 

respectively. They quite clearly show that the transient is very large at 

small delays but from ~320 ns to 1 ~s the magnitude of the signal does not 

change appreciably but that after ~10 ~s the signal has all but decayed. 

4.S.9 Results 2 - Transient Variations 

The variation of the transient signal as a function of the number of 

incident excimer pulses was investigated using a sample of Ge with a delay 

of 1 ~s between excimer and dye pulses. The excimer fluence was set at 0.18 

Jcm-2 i.e. the same fluence was used to record both the transient image and, 

after a sufficient number of pulses to damage the sample. The initial 

transient image was processed to yield the areas of high absorption. By means 

of a computer program a the co-ordinates of a number of these points e.g. 10 

were stored in memory. Transient images where then recorded every 5 or 10 

excimer pulses and the magnitude of the signal at the stored co ordinates 

was compared to the initial transient signal. 

In all cases the same trend in the transient signal as a function of the 

number of excimer pulses was found i.e. the transient signal would increase 

with increasing excimer pulses up to the first point that damage occurred 

where it would decrease substantially. Further excimer pulses would cause the 

transient to either dramatically decrease or increase. 

Fig 4.1S shows the data for several points from a typical sequence. The 

first row concerns the initial image of the surface and can be ignored for 

this discussion, the second row corresponds to the initial transient image 

of the surface. The column headed deviation shows the net change (after 

allowing for the energy variation shot to shot of the dye laser) in 

greYleve1s of the transients from the initial steady state image of the 

surface. The last column headed ratio is the ratio of the transient effect 

after n shots and that at the start after 1 shot and represents the 
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Fig 4.15 

point 1 

Dicrimination level set to ... % 

No. shots ................. Deviation .................... ratio .. 
o 6.222222 1 
1 1.333333 1 
10 1.733334 1.300001 
20 3.333333 2.500001 
30 1.692307 1.269231 
45 1.333333 1 
55 1.111111 .8333336 
65 -.6666665 -1. 5 

t,ype any key to continue .. 

point 2 

Dicrimination level set to , .. % 

No. shots ................. Deviation .................... ratio .. 
o 7.777778 1 
1 1.777778 1 
10 2.933332 1.649999 
20 4.4 2.474999 
30 1. 435898 .8076924 
45 4 2.25 
55 3.666667 2.0625 
65 2.444445 1. 375 

t.ype any key to continue .. " 

point 3 

Dicrimination level set to ... % 

No. shots ................. Deviation .................... ratio .. 
o 6.333334 1 
1 2.111111 1 
10 3.066667 1.452632 
20 3.733333 1.768421 
30 2.102564 .9959514 
45 3.333333 1.578947 
55 4.222222 2 
65 3.333333 1.578947 

t.ype any key tc, continue .. 
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fractional change in the transient effect with increasing numbers of excimer 

pulses. 

For each of the points the transient signal as recorded after 10 and 20 

excimer pulses has increased but after 30 pulses has decreased. Detailed 

analysis of steady state images obtained following each transient image show 

that there was no detectable damage on the images after 10 or 20 excimer 

pulses but that there was damage present after 30 pulses. 

At the time of writing it had not been possible to determine if the 

transient signal simply increased unn'l damage occurred or if it started to 

decrease before a permanent change occurred on the surface,in which case 

monitoring of the transient signal would provide a way to determine how many 

more pulses a sample could survive before damaging and further work into 

this needs to be done. 

4.6 The Physical Basis of the Deflection of the Probe Beam 

Subsequent to the investigation of the time depend~nce of the transient 

heating an investigation was made to attempt to determine the contribution 

to the deflection of a probe beam that each of the following made •••• 

l)The heated surface itself 

2)The re-radiation of heat from the surface into the surrounding air 

3)The small volume of plasma that is always present when damage occurs 

In order to disting~,sh between the effects , some of the experiments were 

performed in a purpose built vacuum chamber capable of reaching a pressure 

of 10-5 torr.The chamber had suitable windows so that the excimer radiation 

could be focus sed onto the sample whilst a cw HeNe laser was used to probe 

the surface. The experiments of section 4.5.8a were then repeated at suitable 

damaging and non damaging fluences. 

4.6.1 Damaging Fluences at Atmospheric Pressure 

The signal recorded by the photomultiplier as a function of the excimer 

energy was now investigated. Since it was not the alignment laser that was 

providing the light source for the photomultiplier,it was pOSSible to use 

the alignment HeNe to monitor the surface in both real time and via the 

frames tore for any signs of damage whilst the variation in photomultiplier 

signal with excimer energy was being recorded. The signal so obtained 

increased with increasing laser energy but remained identical in pulse shape 
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until the damage threshold was reached. 

Signals recorded at or very slightly above the damage threshold had a very 

significantly different pulse shape to those recorded either below the 

damage level or at the damage level but after enough excimer pulses had been 

incident on the surface to sufficiently "surface harden" it,so that at the 

fluence used no more damage occurred. Typical of these signals is fig 4.16 

where the upper trace shows the signal recorded during a pulse in which 

damage was detected whilst the lower trace is recorded on the same site and 

fluence as the upper one but after 15 shots by which point further excimer 

pulses produced no further damage. The upper trace has 2 clearly separate 

peaks marked 1 and 2.For reasons to be justified in the next section the 

peak in the lower trace is attributed to the heating of the air by re_ 

radiation of heat from the Al surface across the whole of the excimer target 

interaction area. This gives a moderate sized effect but one that persists 

for a "long" time. 

The shape of the upper trace is attributed to the combination of 2 

effects,the overall heating from the surface which gives peak 2 and a short 

lived intense effect which gives peak I.This short lived effect is 

attributed to the small volume of plasma that is produced whenever the 

surface damages.This plasma which is produced by the vapc.rization of a 

small fraction of the excimer target interaction area contributes to the 

observed signal in 2 ways.Firstly the plasma emits its own intense broad 

band light,of which,only some of the component at 632, 8 nm will be detected 

by the photomultiplier as the light is emitted in all directions. Secondly, 

the plasma will cause a very intense but due to the small volume of plasma 

relatively short lived heating effect in the air surrounding the plasma 

volume)which will give a large deflected signal. The first peak in 4.16 is 

attributed to the plasma but after =10 ~s this effect has decayed 

sufficiently for the less intense but longer lived heating effect from the 

whole surface area to become detectable. 

4.6.2 Beam Deflection Depend~nce on Pressure 

In order to determine the contribution of the heating of the air to the 

deflection of the probe beam qsdicussed in the previous section an Al sample 

was placed in the vacuum chamber and subjected to damaging and non damaging 

excimer fluences. 

Typical of non damaging excimer fluences is fig 4.17a.Trace a was obtained 

at atmospheric pressure,the system was then evacuated and trace b obtained 

and finally after returning the system back to atmospheric pressure trace c 

was obtained. Since no damage occurred there is only 1 peak in trace a and c 
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but there is no deflection on the trace obtained in vacuum. This confirms 

that at least for non damaging pulses and therefore in the absence of plasma 

formation the deflection of the beam is produced by the re-radiation of heat 

from the sample surface into the surrounding air and not by the presence of 

hot areas on the surface itself. 

Typical of damaging fluences is fig 4.l7b where traces a and c were 

obtained at atmospheric pressure and trace b in a vacuum.It can be seen that 

traces a and c have 2 peaks whilst b only has l.In each of the 3 traces 

damage together with a visible spark i.e. plasma formation was observed. Thus 

the first peak in the traces is attributed to the deflection associated with 

the plasma and the second peak in a and c with the heating of the air which, 

as there is no air in vacuum, is absent from trace b. 

These experiments confirm that for no plasma formation i.e. no damage the 

deflection of probe beams is due to the re-radiation of heat from the 

surface of a sample and not the hot areas on the surface itself whilst if 

damage occur s then most of the deflection can be associated with the 

presence of a small plasma. 

, 
4.6.3 Beam Deflection Theory 

A great deal of theoretical work13- l7 has been done in analysing the 

propagation of a light beam through heated media, mostly in connection with 

the photothermal effect with the consequence that the solutions obtained 

therein to the heat and beam deflection equations are for a periodically 

varying heat source i.e. a chopped cw laser beam and not for the case of 

heating by a single laser pulse.As commented on by Jackson et al16 it is 

technically possible to obtain the solution for pulsed heating from that of 

periodic heating by means of the Laplace transform inversion formula but 

because of the nature of the solutions involv.ed is impossible to perform in 

practice. The authors l6 derive expressions for the deflection of a beam 

through an infinitely weakly absorbing media that has been heated by a 

single pulse. Therefore in the absence of published work a very simplistic 

theory of the beam deflection due to a pulsed laser was developed by the 

author with the aim of obtaining at least qualitative agreement with 

experiment. 

The problem in making a theoretical analysis of the beam deflection in the 

experiments described in this chapter is complicated by the fact that the 

air is heated by the surface of the sample and not directly by the laser 

beam. Therefore in order to solve the problem rigorously,the heat .conduction 

equation would have to be solved in both the sample and air simultaneously 

for a heat source induced on the sample surface by the excimer radiation 
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which would be extremely difficult to perform. 

The approach adopted here is to assume that the surface temperature of the 

sample is determined by loss to the bulk of the sample rather than by loss 

to the air which in view of the sample being a metal and good heat conductor 

whilst the air is a poor conductor is ajudged to be reasonable. This then 

means that the temperature of the surface can be found by a straight forward 

solution (i.e. one ignoring the presence of the air on one side of the 

surface) of the heat equation for a surface source as was discussed in 

chapter 3.0nce the temperature on the surface is known it is used to 

determine the temperature distribution in the air by assuming the air has no 

initial temperature distribution but is heated via conduction by the known 

temperature distribution on the sample's surface and ignoring any heating by 

convection. Once the distribution in the air is found it is used in an 

equation that describes the propagation of light in an inhomogenous medium 

to determine the beam deflection. 

4.6.3a Surface Temperature of the Metal 

From chapter 3 the temperature on the surface which is taken as the z=O 

plane is given by 

1 1 

(t-t')! (8km(t-t')tw2) 

[ 
2r2 ) 

x e (8km(t-t')tw
2

) dt' 

where t' = to t~ beam duration 
= t t< beam duration 

2) 

and Pm,cm amd km are respectively the density, specific heat capacity and 
thermal diffusivity of the metal (see chapter 3 for further details). 

For the times to be considered (up to ~lO ~s) in this analysis the factor 

8km(t-ti) is always much less than w2 and can safely be ignored e.g.for the 

beam used w2 is ~lO-7 m2 which would require for the 2 terms to be equal t 

to be of the order of lO-3s .Hence ignoring this factor it is possible to 

perform the integration with respect to time to give the temperature on the 

metal surface in closed form as 

= f(t) 3) 
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where f(t) = It t< beam duration 

= It - It-to t~ beam duration 

4.6.3b Determination of the Air Temperature 

Cars law and Jaegar17 show that the temperature T of a solid at a point 
, , , ) 

p(x ,y ,z at a time t due to zero initial temperature in the volume of the 

solid and with the temperature on the surface z=O given by ~(x,y,t) for any 

x,y and t is given by 

T(x',y',z' ,t) = ka~f[ff~(x,y,t') ~~i dS]dt' 4) 

where ds = dx.dy and ani = az 

and U is the Green's function for temperature such that Uz=O = 0 for all 

t,and is given by 

( 
-Z2 ) 

- 4ka (t-t') 
x e 

5) 

which yields the following integral for the temperature distribution in the 

gas 

4aEka 
T(r,z,t) = -------- otJOOoJ2~oJ 

~PmcmtOhkm 
ze 
-(7) 

1 

x 2~r'dr'de'dt' 

_(r2+r I2 - 2rr'cos(S-S'») 
(4k (t-t') x e a 

and thus the temperature in the air as 
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where Pa,ca and ka are respectively the density, specific heat capacity and 

thermal diffusivity of the air. 

4.6.3c Equation of Optical Deflection 

Theoretical work has yielded a number of essentially equivalent expressions 

for the equation governing the propagation of a light beam in an 

inhomogenous media of which the one developed by Aamodt and Murphyl8 is used 

here.There expression for the probe beam deflection angle,is given in vector 

form by the line integral 

J 1 dn $ = - - -- Grad T x dL P n dT 
8) 

where T is the temperature,n the refractive index and P the path of the 

probe beam with dL being an incremental distance along P. 

The co-ordinate system used was to have the excimer beam propagate in the z 

direction and be incident normally on the sample which is situated in the 

z=O plane. The probe beam propagates in the xz plane and is incident on the 

sample at an angle of ~15° corresponding to the angle between the excimer 

and dye beams in fig 4.7b.For the purposes of the calculation the cross 

section of the probe beam will be assumed small and any effects it might 

produce ignored.The knife edge was mounted so that the system was sensitive 

to deflections in the y direction. Hence the angle of deflection in the y 

direction is given by 

= - _~n ~x - ~z 1591 (aT aT) 
nJr P az ax 9) 

Careful consideration as to the path that the beam traverses is required.To 

first order, following Aamodt and Murphy18 the beam is assumed to make small 

deviations from straight line propagation in the xz plane allowing the path 

P to be written in the form 
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P = xi + zk where x = mz + c 

Where arctan(m) is the angle between the excimer (heating beam) and the HeNe 

probe beam (see fig 4.7b).The sign of m must change on reflection from the 

surface since the beam will have crossed the x=O axis as shown in fig 

4.18.For propagation toward the sample ••• 

dL = dxi dz! 

direction as 

with x= -mz + c giving the deflection in the y 

~<b1: ~f(aT - ~)dz drn 0 ax az 10) 

and for propagation away from the sample •••••. 

db = dxi + dz! 

direction as 

with x= mz + c giving the deflection in the y 

<Pout =-<h 1: ~f(aT - ~)dz d:r n 0 ax az 11) 

Substitution of 7) into 10) and 11) yields the following expression for the 

deflection of the probe beam as a function primarily of time ••• 

<Pto tal = + <Pout 

= <p(x = -mz+c) + <p(x = mz+c 

where 

e 
-e') 

12) 

f(t-t') 

(t-t')'/' 

13) 

A computer program was written to numerically evaluate the above expression 
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as a function of time and the constant c which represents the point at which 

the excimer and probe beams intersect. The evaluation of the integration over 

z which should ideally be from ° to ~ was actually carried out over a range 

° to 100 ~ as initial running of the program with various values of z 

showed that for the times used evaluation for z >100 ~ produced answers 

identical to that of z=lOO ~.A measure of the distance that heat diffuses 

in a given time is 

x =(Kt)0.5 

where t is the time and K the diffusivity. 

By the end of the excimer pulse (25 ns) heat will have diffused of the 

order of 0.5 ~ into the air. The sampling distance for the z integration was 

set equal to this value since the temperature distribution will not be 

accuratly(spatially) to any better than the diffusion length. 

4.6.4 Results of Calculations 

Typical results of the calculation of the beam deflection for different 

time scales are shown in figs 4.l9a and b.For ease of comparison an 

experimentally recorded deflection signal on a time scale similar to the one 

in the graph in each fig is included. 

Comparison of the theoretical and experimental signals shows that the 

catulated signal has the correct gross features in that it has a very fast 

initial decay which slows down and shows that appreciable signal relative to 

the peak signal persists for many microseconds. In detail the agreement is 

very poor with the calculated signal falling off too fast initially and too 

slowly at later times. 

The fact that the detailed agreement is very poor is not surprising since a 

very crude model has been used but at least it gives a basis for 

understanding the deflection of the probe beam due to the heating of the 

sample's surface and subsequently the surrounding air by the excimer laser. 

4.7 Conclusions 

It has been shown that the transient effects and their subsequent probing 

that are associated with an excimer laser heating a surface can be 

attributed to 2 mechanisms,the formation of plasma if damage occur'S and the 

heating of the air by the samples surface leading to a deflection of a probe 

beam. This deflection has at least qualitatively been explained theoretically. 

A simpe practical technique has been developed for EDLID which gives 

excellent correlation between predicted and actual damage locations.A more 

powerful probe (dye) laser would enable the transient effect to be recorded 

at a smaller fraction of the damage threshold than these results were 
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obtained at thereby improving the sensitivity and usefulness of the 

technique. Further work is required to determine if monitoring the transient 

image will provide a basis for predicting how many more laser pulses a 

sample can withstand before damaging. 
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Chapter 5 

Colloidal Silica as a High Damage UV Antireflection Coating 

5.1 Introduction 

In large complex laser systems which have many transmitting surfaces,the 

~4% reflection loss associated with each surface rapidly becomes totally 

unacceptable and thus over the years much work has been done to develop high 

quality antireflection (AR) coatings which can reduce the loss per surface 

to <O.l%.The development of colloidal silica as an AR coating has not only 

proved very successful but, due to the morphology of the colloidal silica 

coating, interaction with an intense laser beam reveals in a simple 

explainable manner "well known" effects)which can be considerably more 

complex in other materials. 

5.2 Antireflection Theory 

In order to determine the conditions for a coating/substrate combination to 

be AR, calculations to find the electric (E) field within the materials must 

be made.The following section applies ideas from standard electromagnetic 

(EM) theory to the problem of determining E fields in dielectric stacks. The 

basic EM ideas can be found in numerous books such as those by Jackson1 or 

Lorrain and Corson2 .The book by Born and Wolf3 gives a very through 

discussion of the problem in hand but,for the purposes of the work herein a 

modified version of the analysis by Brooker4 is adequate. 

Consider an EM wave travelling left to right incident on the interface at x 

= 0 between two dielectrics as shown in fig s.l.Let the incident,reflected 

and transmitted electric fields be described respectively by .•. 

= 

Eref = Er *exp(i(w1t +k1X)) 

Etrans =Et *exp(i(w2t -k2X)) 

where w1,2 are angular frequencies (2nf) in media 1 and 2 respectively, 

k1,2 is the wavenumber (2n/~) in each media,t is time and x distance.A 

similar set of equations will describe the magnetic(H) fields. 

In order to satify the boundary conditions of Maxwell's equations for all 

time,the time dependance of each wave must be the same ,hence 
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Applying the boundary conditions of continuous tangential E and H fields at 

x = 0 and eliminating the commom time dependent terms gives .• 

Ei + Er = Et 

Hi - Hr = Ht 

1 

2) 

As all the waves are transverse electromagnetic (TEM) it is possible to 

write 

E = zH 3) 

where z is known as the impedance.Since only non magnetic media are being 

considered 

z = c~o/n 

where c is the vacuum speed of light,~o the permeability of free space and 

n the refractive index for the media concerned. 

substituting 3) into 1) and 2) and by either addition or subtraction of 1) 

and 2) yields .. 

Er/Ei = (Z2-Z1)/(z1+Z2) = r 

Et/Ei = 2Z2/(z1+Z2) = t 
4) 

5) 

where rand t are respectively the amplitude reflection and transmission 

coefficients. 

The customary treatmentS of the E fields within a given layer in a 

multilayer dielectric stack involves representing the E field as the sum of 

2 sinusoidal waves travelling in opposite directions within the 

layer. Consider fig 5.2 which shows a single layer coating (media 2) on a 

substrate (media 3) with air on the other side (media 1) where the opposite 

travelling waves have amplitudes Uo and Ul-

At the air coating interface (z = -1) the fields are 

Ex(-l) = UOexp(-ik21) + Ulexp(ik21) 6) 

Hy(-l) = UO!z2*exp(-ik21) - U1!z2*exp(ik21) 7) 

Similarly the fields at the coating substrate interface (z = 0) are 
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ExCO) = Uo + Ul 

Hy(O) = uo/zz - U1/z2 

8) 

9) 

Elimination of Uo and Ul from 6)-9) and noting that kZ and zz are real as 

the media are non absorbing yields 

Ex(-l) = cos(kZl)*Ex(O) - iZZ*sin(kZl)*Hy(O) la) 

Hy(-I) = -i/zz*sin(kzl)*Ex(O) + cos(k2l)I'HyCO) 11) 

The load impedance of the system is defined as zl = (Ex/Hy)z=O whilst the 

input impedance is zin = (Ex/Hy)z=-l and hence by dividing la and 11 

Zin = 

In the special case that the coating is a quarter wave layer i.e. kZl = ~/Z 

then 

lZ) 

The amplitude reflection coefficient for this quarter wave case with the 

light incident from the left is given by substituting 12) into 4) and 

denoting zair by zo gives 

13) 

Since for antireflection r must be zero i.e zZ2 = zlzO and. using the 

definition of z means that 

nzZ = ns 14) 

where ns is the substrate refractive index. 

5.3 Electric Field Considerations 

With reference to the previous section and from fig 1 it can be seen that 

on the interface the electric field is different from the incident field by 

a factor of l+r.Using 4) and the definition of z, 

q = l+r = Znl(n1+nZ) 15) 

In the case of an air glass interface n1 = 1 and nZ = 1.5 giving q = 0.8 

i.e. the field is less on the interface than the incident field.However for 
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a glass air interface n1= 1.5 and n2=1 giving q= 1.2 i.e. the interface 

field exceeds the incident field. 

In the case of a single layer AR coating the field at the air coating 

interface, Ein must equal that of the incident wave i.e. q= l,but what of 

the field at the coating substrate interface?Using 6),7) and k2l= TI/2 for 

a quarter wave layer Uo and U1 can be found •. 

Uo = iEin/2*(1+l/n2) Ul = -iEin/2*(1-1/nz) 

and hence the field at the coating substrate interface by 8) is 

16) 

Consider a thick glass slab of index ns = 1.5 subjected to an incident 

field E. 

The field on the incident air glass interface and thus the field in the 

bulk of the glass is O.8E.The exit surface field is on a glass air interface 

and thus has a field 1.2 times that of the field incident on the interface. 

It is the bulk field that is incident on the exit interface and hence the 

field at the glass air interface is 1.Z*O.8EO = O.96EO' 

In order to make glass with ns= 1.5 antireflecting a quarter wave coating 

with n2 = 1.22 is required. In this case if a field EO is incident from air 

the field at the air coating interface must still be EO.From 15) the field 

at the coating substrate will be O.82EO and thus the field at the exit 

surface of the substrate is O.98EO' 

5.4 Review 

There are an enormous variety of both coating materials and techniques that 

are used to make high reflectors (HR) and antireflectors (AR).Macleod6 gives 

a comprehensive review of the commonly used coating techniques. 

Optical coating materials for the UV generally fall into two classes,oxides 

and fluorides.Nearly all other materials cannot be used due to their 

intrinsic absorption at UV wavelengths.To minimize scattering and 

absorption, low surface roughness and high purity materials are required.A 

detailed discussion of material requirements can be found in the work by' 

Pawlewicz7 . 

The remainder of this section now concentrates on colloidal silica and the 

sol-gel process. 

The deposition of coatings from solution is a well established method of 

providing good quality coatings,indeed Fraunhofer8 back in 1817 mentions 
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such a process. Coatings deposited from solution have been found to have high 

damage thresholds9 and it is because of this that much effort has been 

devoted in recent years to improving solution deposition techniques. The 

sol-gel process is one such recent develpment that can produce exceptionally 

good coatings of almost any metal oXideIO-II.Detailed descriptions of the 

various stages and materials invo ed in the sol-gel process can be found in 

a number of references IZ -14 • 

Briefly, the sol-gel process to deposition of oxide layers is based upon 

the formulation of organometallic solutions containing mainly 

alkoxides,which are deposited onto the substrate and can be taken to 

gelation in a controlled manner.Upon formation, the gel is slowly dried and 

then baked to form a sem1-porous film. The solution is actually deposited on 

the substrate either by dipping or spinning techniques l4 • 

The performance of SiOZ coatings (silica) deposited by this process is 

critically depend~nt upon the materials and catalyst used to produce the 

colloidal silica.Early workl3 - 14 not only showed that if the wrong catalyst 

was used the coatings would become contaminated with carbon and have low 

damage thresholds but that the use of thin films improved the threshold. 

5.5 Coatings Tested 

The coatings tested at Loughborough were provided by Dr.I.N.Ross of the 

Rutherford Appleton Laboratory.They consisted of colloidal silica deposited 

onto 3 inch square fused silica plates. The coatings consisting of colloidal 

silica prepared in a variety of ways were in the form of quarter wave 

(optical thickness) antireflectors for a number of UV wavelengths.The 

refractive index of the fused silica is ~1.52 at 250 nm thus requiring a 

coating of index 1.23 to form a perfect AR combination. The refractive index 

of the colloidal silica (see next section) is ~1.22 thus using the fused 

silica substrate the theoretical reflectivity is 0.001%. 

The bare silica coating is very susceptible to contamination (and thus a 

low damage threshold) via absorption of molecules into the voids in the 

coating structure, in particular organic molecules pose a very significant 

problem.To overcome this problem overcoating with a half wave (optical 

thickness) layer of various barrier materials was tried. 

5.6 Structure of Colloidal Silica Coatings 

Colloidal silica consists of silica particles suspended in a suitable 

solvenSusually ethanol, with the particles being kept apart by 

electrostatic repulsion as the particles carry the same charge. The size of 

the particles depends upon the method and materials used to produce the 
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solution. Transmission Electron Microscopy (TEM) both here and at the 

Rutherford showed (fig 5.3) that the particles are near spherical with a 

diameter of ~20nm. 

Given that the refractive index of silica at 249nm is 1.44 and using a mean 

polarizability model as in Born and Wolf3 to estimate the refractive index 

of the mixture of silica and air,the particles,in order to reach an index of 

1.22 must be arranged so as to occupy ~50% of the available space in the 

quarter wave layer.For an index of 1.22 a quarter wave layer at 249 nm is 

~50nm thick i.e. a little over 2 particles thick.As evident from fig 5.3,the 

particles are randomly distributed within the available space;however,as 

will be shown later in coatings that have been exposed to the excimer beam 

the particles can take up an ordered distribution. 

5.7 Damage Thresholds 

Damage tests Were performed on a variety of samples according to the method 

discussed in chapter 2 the results of which are summarised in tables 5.1 and 

5.2. 

As discussed in chapter 1 for a parallel incident beam the intensity due to 

the E field as a result of an in phase reflection is higher at the back 

(exit) surface of a sample by a factor of 4n2/(1+n)2 which for glass is 

~1.44.To avoid problems of exit (back) surface damage due to this increased 

electric field,the samples were positioned well past the focal plane of the 

lens such that the area of the beam at the exit surface was at least 1.5 

times that at the entrance surface. 

During the tests a variation of the effects associated with the so called 

"breath test,,15 (see 5.9) was observed.TEM studies of the samples revealed 

not only the cause and explanation of the observed effects but the presence 

of LIPSS on the samples (see 5.10). 

5.8 Analysis and Comments on the Damage Results 

The spot nature of the damage to sample 1 indicates that it is isolated 

defects that are damaging.Given that prior to the development of colloidal 

silica it was essentially impossible to obtain AR coatings for the UV with 

thresholds above ~4 Jcm-2,the results for sample 2 show that colloidal 

silica has the potential to be a major step forward in AR coating technology. 

Due to the complications involv.ed in having to distil the colloidal silica 

to remove the non silica particles, samples of distilled and undistilled 

colloidal silica were prepared to allow a comparison of the damage 

thresholds and morphology.On sites with no initial scattering (clean sites) 

the thresholds of samples 2 and 3 were identical.However sample 3 has large 
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Fig 5.3 

T~M picture of the Colloidal Silica coating.Magnification X250,OOO 

Note how the colloidal silica appears as near spherical particles of ~20 nm 

diameter. 
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numbers of initial scattering (dirty) sites which sample 2 does not have and 

on these the threshold is substantially lower. The morphology of the damage 

was identical on each. These results show that the distillation process is 

essential and must be used to produce the optimum coatings. 

Further work at the Rutherford resulted in an improvement in the technology 

and lead to samples 4 and 5 being tested. The GR650 overcoat is a highly 

transmitting UV polymer which was applied to act as a barrier layer to 

reduce the contamination of the colloidal silica. With reference to the 

figures for spot/blow off type damage it is apparent that the improved 

coatings have a much higher threshold and that though the GR650 reduces this 

figure, it is to a level that is still better than that available with other 

coatings and coating technologies. 

However all of the coatings showed a change on exposure to a single low 

fluence pulse which showed no further change with subsequent pulses and, 

which the author has named "darkening".AII the damage tests were performed 

according to the method in chapter 2 and thus had the knife edge set to cut 

off 50% of the light.As a result of a low energy excimer pulse a significant 

fraction of the beam target interaction area went darker i.e. less light was 

observed to come 
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Sample no. 

1 

* 2 

Table 5.1 

Description 

bare fused silica substrate 

distilled colloidal silica 

undisti11ed colloidal silica 

improved colloidal silica 

improved colloidal silica with GR6S0 overcoat** 

* all coatings on fused silica substrates. 

~,* overcoat in the from of a half wave layer 
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Sample no. 

1 

2 

3 

4 

5 

Table 5.2 

Damage Threshold Jcm- 2 

16.5 

7.7 - 7.9 

*<3.0 

7.7 - 7.9** 

<6.5*** 

<3.0 

10.8 - 11.2 

<3.0 

4.0 - 4.4 

<3.4 

Morphology of Damage 

spot+ 

" 11 

darkening++ 

spot 

blowoff+++ 

darkening 

spot/blow off 

darkening 

spot/blow off 

darkening 

* h figures preceeded by a < sign mean that t e sample was not tested at lower 

values. 

figures for a "clean" site Le. one where there was no detectable 

scatter prior to the laser pulse. 

figures for a "dirty" site Le. one where there was detectable scatter 

prior to the laser pulse. 

+ "spot" refers to the creation of isolated small (spot ) scattering sites 

as a result of the damage on what were initially "clean" sites. 

++ "darkening" refers to a uniform reduction over the a significant fraction 

of the laser target interaction area in the detected light (see 5.8). 

+++ "blow off" refers to increased scatter as a result of the laser pulse 

on an initially dirty site.Damage on these dirty sites when viewed,appears 

to result in the expulsion of material from the surface (blow off). 
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from this area. There was no damage in the sense that there was no blow off 

from existing scattering sites and no new sites were created ,nor did the 

darkening appear to effect the optical properties of the samples. 

Ellipsometry measurements were performed to try and determine if there was 

any change in either the refractive index or optical thickness of the 

coating in the areas that darkened. These measurements were severely 

restricted by both the difficulty of aligning the probe laser with the areas 

that had darkened and the size of the probe laser spot in relation to that 

of the darkened areas. The changes found if any were extremely small and well 

within the variation found across the undamaged areas of the sample and 

hence these measurements were inconclusive. 

The cause of this darkening which is similar to that observed in laser 

annealing (chapters 1 and 3) is not clear ,but in the course of dicussions 

with Dr. Ross there was the suggestion that it is caused by 

photo-ablation/photo-decomposition of the coating. Further detailed work is 

obviously required to fully explain this effect. 

On the assumption that the fused silica and the COlloidal silica have the 

same intrinsic damage threshold then, from the analysis in 5.3 the ratio of 

the electric fields at the damage threshold of the bare substrate to that of 

the coated sample should be l/O.S.Since in any actual experiment what is 

measured is the energy of the beam which is proportional to E2 ,the ratio of 

the damage fluences should be 12/0.82 = 1.56.The ratio of the experimentally 

determined thresholds (using the best coating) is ~1.5.This analysis 

although very crude shows that the coatings using the improved colloidal 

silica are performing in a near optimal manner and it is the author's 

contention that further development (based on quarter wave layers) will not 

significantly improve the damage threshold. However the use of an overcoat 

material is a very recent innovation and further work on this may result in 

the over coated samples approaching the non over coated damage threshold. 

5.9 The "Breath Test" 

5.9.1 Introduction 

The so called breath testIS refers to the deliberate fogging of a surface 

in order to detect any changes in that surface. The fogging is usually 

achieved by literally breathing heavily near the sample so as to raise the 

local water vapour content of the air which subsequently condenses on the 

sample's surface forming a very thin layer of moisture. 

The size of water molecules on the surface and thus its appearance when 

viewed (particularly at near grazing incidence) will depend critically on 

232 



local surface conditions. Thus the breath test (when the sample is suitably 

imaged) can be a very sensitive test for changes in the surface of a 

sample. However , the breath test is in practice, of little use in damage 

testing for two reasons 

l)Since the nucleation rate depends so critically on the first atomic 

layer i.e. first few nm whereas even in metals a light wave can propagate 40 

nm or more (especially in the UV) it is highly questionable as to whether a 

small change in the first few nm would significantly change the optical 

. properties of the sample. Hence it is quite possible that the breath test is 

responding to changes that are of no consequence optically. 

2)Since this method requires water i.e. a contaminant to be regularly 

condensed onto the surface it is not suitable for a large number of the 

coatings and samples used since they can be hygroscopic. 

To understand the sensitivity of this method a review of some basic 

nucleation theory must first be undertaken. 

5.9.2 Nucleation Theory 

A comprehensive introduction to nucleation theory can be found in the book 

edited by Zettlemoyer16 whilst the use of lasers in modifying nucleation 

barriers has been docuemented by several authors, in particular by Tsao and 

Ehrlich17.The theory now presented is based upon the analysis in ref 16. 

Homogeneous nucleation i.e. the condensation of a substance from a vapour 

onto itself occurs via the random growth of small condensed aggregates or 

clusters of vapour molecules. The barrier to this process is the increase in 

the free energy (6G) associated with the cluster as compared to the vapour 

phase.It can be shown that this increase 6G can be written as the sum of two 

terms one positive and associated with the excess free energy needed to form 

the surface of a cluster ,the other negative and associated with the 

difference in free energy of the vapour and condensed phases.Since both of 

these terms depend upon r the radius of the cluster, 6G exhibits a maximum 

6G* at what is termed the critical cluster size r*.Fig 5.4 is a sketch of 

* the typical variation of 6G with r.Clusters smaller than r are unstable 

relative to the vapour phase and tend to evapc,rate whilst clusters larger 
~ than r' become progessively more stable and thus tend to grow. Under these 

conditions the nucleation rate N for critically sized clusters can be 

written as 

17) 
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Fig 5.4 

Free energy of embryo formation versus size 

* Note peak at r (from ref 16) 
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where A is a normalization constant, k the Boltmann's constant and T the 

absolute temperature. 

Heterogeneous nucleation i.e. the condensation of a vapour onto a different 

substrate material yields a similar expression to l7)jhowever, the ~G term 

is considerably more complicated as the vapour phase and substrate material 

are no longer the same but again has a maximum value.Denoting the 

coefficient of surface tension between liquid and substrate by ~,the contact 

angle between liquid and substrate by a,the volume of one condensed molecule 

by v, the local pressure by p and the saturation pressure at the local 

temperature T by Ps the maximum in ~G is given by 

17 

where 

~(e) = (2-3cosa + cos3a)/4 18) 

and 

19) 

The nucleation rate of these critically sized clusters is then given (to 

within a constant) by substitution of 17) into 16). 

5.9.3 Effects of surface Properties on the Nucleation Rate 

Considering the nucleation of water on glass at a temperature of around 

250 C ,with v = 3 E-29 m3 and pips = 2 table 5.3 shows the effect on the 

nucleation rate of varying ~ or a. 

Table 5.3 

~ Nm- 1 e Deg ~G* xE-19 exp(-~G*/kT) xE-66 

0.072 130 6.26 2.2 

0.072 132 6.34 0.34 

0.071 130 6.00 1100 

From table 5.3 it is evident that small changes in the surface properties 

particularly in the coefficient of surface tension ~ can enormously effect 

the nucleation rate. 

5.9.4 Results 
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5.9.4a Observed Effects 

It was found that if an area was irradiated by a non damaging fluence and 

then fogged by breathing on it, a clear imprint of the laser beam could 

always be seen. 

Fig 5.5a shows the surface of sample 2 after irradiation by a single pulse 

of fluence 3 Jcm-2 .Fig 5.5b shows the same area as 5.5a but after it has 

been fogged just sufficiently for the difference in the areas to show up and 

before the moisture has evapo rated. The laser irradiated area shows up quite 

clearly as a dark patch with the characteristic size and shape of the laser 

beam. Since a Schlieren imaging system was used this means that, either at 

the time the picture was taken no condensation (nucleation) had occurred on 

the irradiated area or if it had, it was insufficient to cause detectable 

deviation of the light.In order to try and elucidate the mechanism 

responsible for this effect TEM and Laser Induced Mass Analysis (LIMA) 

studies were carried out.For the purposes of these studies an area on sample 

2 was irradiated by a single excimer pulse at 4Jcm- 2• 

5.9.4b LIMA Results 

LIMA ,being a technique for determining the elemental/molecular composition 

of a substance, was used to determine if there was any difference in the 

composition of irradiated and non irradiated areas.LIMA involves using a 

laser (in this case a quadrupled Nd.YAG) to vapo,~ize and ionize a small 

area of the test sample.By suitably applied electric fields this plasma is 

directed into a time of flight mass spectrometer for analysis. 

Figs 5.6a-d show the results of the LIMA studies. The labelling "damage 

zone" refers to an irradiated area and "background" to a non irradiated area 

close to the irradiated area. LIMA can be set to detect either positive ions 

(+ve labelling) or negative ions (-ve labelling).It is apparent from these 

graphs that there is no difference in composition between the areas and 

hence the observed effects are not compositional dependent. 

On a coating/substrate combination that is nominally just silicon and 

oxygen it is interesting to note that there is a whole range of impurities 

present of which the main peaks in the graphs are appropriately labelled. 

5.9.4c TEM Results 

Replicas of the surface (irradiated and non irradiated areas) using a 

standard acetate/carbon coating technique were made for use in the TEM 

studies.Figs 5.7a-b show typical TEM pictures for non irradiated (S.7a) and 

irradiated (S.7b) areas. 

In S.7a it can be seen that the the particles occur singularly and 
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Fig 5.5 

Top a) colloidal silica coated surface exposed to non d~agins :aser puls~ 

Bottom b) breath test effect on the s~~e surface as in a) 
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Fig 5.7 

TE~ pictures of colloical silica s~rfaces. ~agn:f:cation X:2S,OOO 

Top a)non irradia:eo 
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essentially randomly distributed across the observed area, whereas those in 

5.7b occur predominantly in clusters each of which contains several 

particles. This predominance of clusters is probably the due to the rapid 

heating and cooling that the surface undergoes as a result of excimer 

irradiation. 

5.9.5 The "breath test" - Explanation 

In view of the LIMA and TEM results it is the author's contention that the 

observed breath test effects are due to a difference in nucleation 

conditions between irradiated and non irradiated areas resulting from the 

change in physical structure of the coating. From the limited results 

obtained it is not possible to determine if the change in nucleation 

conditions simply results in less particles being nucleated and or a 

significant change in the physical size of the nucleated particles. 

5.10 Dielectric UV LIPSS 

In the course of the TEM studies it was observed that some of the 

irradiated areas had what apF eared to be ripple patterns (LIPSS) on them 

and is to the author's knowledge the first time that UV generated LIPSS have 

been detected on dielectric materials. 

Since these structures were generated by only a single pulse it is perhaps 

not surprising that they are poorly defined in comparison to those in 

chapter 3 where 20 -40 pulses were used. Figs 5.8a is typical of the 

majority of observed patterns where it can be seen that each ripple which 

occurS as a vertical line is formed by the ordered coalescence of several 

particles and that the ripple spacing is ~240nm. 

Since the colloidal silica is a dielectric and the irradiation was 

performed at normal incidence, calculation of the efficacy factor (chapter 

3) yields graphs such as 5.8b and predicts spacings of 210 or 240 nm 

depending upon the orientation of the fringes,in broad agreement with that 

observed experimentally. 

Occasionally well defined ripples such as those in figs S.9a-b but with 

substantially different spacing were observed. It is clear particularly from 

fig 5.9b that the ripples are formed by the alignment of small clusters each 

of which comprises several particles and have a spacing of ~350 -400nm i.e. 

almost a factor of 2 larger than the above theory predicts. 

The difference in the morphogy of the two types of ripples (heavily damaged 

areas to areas of small change) suggests that the patterns were formed at 

significantly different temperatures and thus electric fields.At the time of 

writing the author has no detailed explanation as to the cause of these 
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Fig 5.8a 

TR~ picture of LIPSS on colloidal silica magnification X50,OOO.Fringes are 

of poor quality and form in vertical lines. 
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Fig S.8b 

Efficacy factor for colloidal silica irradiated at normal 

incidence. Obtained by using s = 0.4 and f = 0.5 (see chapter 3). 
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Fig 5.9 

T~~ pictures of anomalously spaced LIPSS on colloidal silica 

Top a)magnification X25,OOO 

Bottom b)magnification X83,500 246 



anomalous ripples. 

5.11 Conclusion 

The results herein show that colloidal silica is potentially a very good AR 

coating material and at the time of writing. has been used to provide a 

large fraction of the required AR coatings for the UV laser work at the 

Rutherford Appleton Laboratory. 

A simple demonstration and explanation of the so called "breath test" based 

on the coalescence of the silica particles has been given together with the 

first report of UV generated LIPSS on dielectrics. 
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Chapter 6 

Conclusions and Recommendations 

The work in this thesis can be divided into 2 categories, that primarily of 

academic interest i.e. the LIPSS work (chapter 3) and that of primarily 

practical interest (chapters 2,4 and 5), in particular the beam profiling 

work (chapter 2) and the EDLID work (chapter 4). 

The LIPSS work consisted of a detailed comparison of theory and experiment 

under conditions that severely tested the theory. The results showed in 

general the validity of the theory to at least first order if not beyond. 

An investigation of LIPSS for different samples , laser wavelengths and pulse 

durations would provide further tests for the current theories.The use of 

ultra short (~ lps) pulses may well reveal new types of structures as both 

the coherence time and the number of optical cycles that the pulse duration 

corresponds to decrease. 

Unfortunately it was not possible with the equipment available at the time 

to obtain time dependent information on the formation and subsequent growth 

of the ripples which almost certainly would yield valuable information. With 

the current availability of a short pulse dye laser with relatively low 

trigger jitter (as used in chapter 4) and as a part of the ongoing program 

of LIPSS research at Loughborough, the author together with colleagues plans 

to investigate the growth of these ripple structures.By varying the delay 

between the excimer and dye lasers it will be possible to built up over a 

number of shots and test areas data on the formation of the ripples as a 

function of time. 

One of the basic assumptions in all of the proposed ripple theories is that 

the interference effect leads to some degree of periodiC melting which; to 

the author's knowledge has never been directly experimentally verified.Use 

of a suitably powerful dye laser timed to arrive at the end of the excimer 

pulse coupled with Schlieren imaging of a suitably angled sample should 

allow direct probing of the surface temperature and thus test this 

hypothesis. 

The beam profiling work has shown the advantages of a system that enables a 

complete spatial profile of a pulsed laser beam to be obtained in a singl~ 

shot although the use of a more sensitive camera would reduce the problem of 

saturating the fluorescence and still produce a large enough video signal 
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whilst one that responded directly to the UV light would eliminate the need 

for a fluorescer.Essentially finance controls the former whilst material and 

technological problems dominate the latter. 

The use of video framestores has been shown to improve damage detection 

but. from a practical viewpoint it is somewhat pointless to have a system so 

sensitive to damage that it responds to changes much smaller than those of 

significance when the sample is used in reality. The "breath test" is a 

potential prime example of this. 

In the author's view the most important work in this thesis is that on 

EDLID,wherp a technique has been developed which 

a single non damaging laser pulse to provide all 

for the first time enables 

the 

make accurate predictions as to the spatial location 

information required to 

of damage sites. 

The most important question touched on briefly in the text concerns the 

magnitude of the transient heating effect as the number of shots incident on 

the target approaches that required to cause damage.The work showed that as 

damage was approached the transient effect increased and that immediately 

after damage it was reduce~but was not able to resolve the main question 

which is ••• 

"does the magnitude of the transient effect decrease before permanent 

damage occurs?" 

If the answer to this is "yes" then monitoring the transient effect will 

not only yield the spatial locations of the damage sites but. with 

processing subject to suitable criteria will yield the extra number of shots 

that a sample can withstand before damaging i.e. essentially tell the 

operator how far away damage is.If the answer is "no" then the technique 

still gives the spatial locations of damage sites.Detailed investigation of 

this is obviously required. 

There are several ways of improving the technique such as simply using more 

sensitive cameras and or the use of a more powerful dye laser.However based 

upon all of the work performed and techniques used. one method of improving 

the technique clearly stands out as now detailed. 

The technique developed here allows the location of defects to be found but 

is limited to optical resolutions and provides no information on the nature 

i.e. physical imperfection or impurity of the defect.If the above technique 

could be combined with in-situ LIMA and SEM equipment then an extremely 

powerful setup would result since the SEM would enable the defect area 

(optically identified) to be inspected at high magnification and so reveal 

if it is a physical imperfection whilst the LIMA would enable the 
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composition of any defect to be determined. This would have to be all done in 

situ due to the problems of finding the defect if the sample was transferred 

between mounts and machines. 

At the time of writing the author together with his supervisor IS actively 

seeking funds for equipment with the aim of trying to answer some of the 

above questions. Ideally the funds would be adequate for all of the above 

equipmen~ but even funds only sufficient for improved cameras and or dye 

laser would enable the technique to be made substantially more sensitive. 

The results of chapter 5 clearly show that colloidal silica is a major step 

forward in AR coating technology but that further work particular~n half 

wave barrier layers is urgently required to fully realize the potential of 

this technique. 
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