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SYNOPSIS 

The main aim of this research was to create and analyze a compact holographic 

optical system which is illuminated through the edge of the substrate. Edge-lit 

holograms are used in order to minimize the space requirements for various possible 

replay geometries. Many aspects of the recording,analyzing, and replay techniques 

were found to be very critical for creating an efficient optical system. 

The edge-lit holograms were recorded in a photopolymer film developed by Du Pont. 

When recording an interference pattem in the film with a steep reference beam, the 

affects of attenuation, beam ratio, and refractive index matching on optical efficiency 

are much more pronounced than in traditional holography due to the effective film 

thickness and Fresnel reflections. 

Many of the practical aspects involved when recording with photopolymers were 

carefully examined. The measured physical characteristics of the film and its 

packaging considerations proved very crucial in the choice of the optimum recording 

film and conditions. 

Traditional recording geometries were explored and new recording methods were 

discovered and evaluated. 
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A new adaptation of the rigorous coupled wave diffraction theory was used to analyze 

edge-lit holograms and the regimes of validity were detailed for other approximate 

theories. Using the rigorous theory, the diffraction characteristics of the edge-lit 

hologram were investigated. The theory is compared with the measured diffraction 

characteristics of the film before and after heat processing. The discrepancies 

between the rigorous theory and the actual recordings are explained and modifications 

to the theory are suggested. 

For an edge-lit hologram, the considerations for replay are more complicated than 

those for recording. The influences of the replay source radiometry, directionality, 

wavelength, and choice of substrate on the optical characteristics are analyzed for 

different replay conditions. 

Various possible applications are examined from an optical and manufacturing 

viewpoint. In particular, the applications of an edge-lit hologram as a fingerprint 

illuminator and a liquid crystal display illuminator are discussed and their benefits are 

weighed against traditional methods. 
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Chapter 1 

INTRODUCTION AND BACKGROUND 

Many people believe that holograms of the future can be made to create three 

dimensional walking and talking people "live in your living room." This belief only 

serves to perpetuate the existing view that holograms do not live up to their potential. 

In many cases this is because other technology in the system is lacking. The main 

limitations ofM.LT.'s holographic video display (real-time hologram generation from 

computer data) for example is the processing speed of the computers being used and 

the data transfer rate [1.1]. Similarly, with many display holograms, the reason for the 

poor visible quality often lies with the light source. 

Technical advances, such as the extremely rapid growth of computer power and the 

advent of compact and powerful laser diodes, will soon be able to complement the 

theoretical performance of holographic optical devices and three-<limensional 

displays. 
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One of the areas oftechnical advancement that has only begun to reach holography is 

that of miniaturizing the entire display system. Most holographic systems have always 

been plagued with the awkward exterior lighting requirements. Methods for reducing 

the size of the holographic display system have been theorized, although very few 

extremely positive results have been demonstrated. 

One method for reducing the size of the optical system is to position the replay light 

source at or near the edge of the substrate of the hologram. These holograms are 

commonly referred to as "edge-lit" or "edge-illuminated" holograms. Other benefits 

of edge-illuminated holograms include very little diffraction of external lighting and 

the ability to be replayed using a laser without the danger of stray light escaping the 

system. 

Since most all of the compact geometries examined here are illuminated from the 

edge, they will be referred generally to as "edge-lit" holograms. The different 

techniques for recording holograms that are illuminated through the edge can 

significantly affect the replayed image. Therefore, a distinction must be made 

between the recording and replay process. The different techniques examined here 

will refer to recording only, such as steep referenced or waveguide hologram for 

example. 

The evolution of the edge-lit hologram began with Lin's [1.2] first public reference to 

the edge illuminated hologram. The history from Lin to the beginning of the work 

presented here, is described by Hemion [1.3]. The main areas of work were done 

initially by Upatnieks [1.4-1.6], followed by Benton and colleagues [1.7-1.10] and 

most recently by Phillips, this author and colleagues [1.11-1.15]. 

In order to distinguish between the different types of edge-lit holograms, one must 

first look at how traditional holograms are recorded. In general, holograms are 

created by recording the fringes produced by the interference of a reference wavefront 

with a mutually coherent object wavefront scattered by the object being recorded. 

When illuminated using the reference wavefront the scattered light from the hologram 



Chapter 1. Introduction and Background 3 

replays the object wavefront so that the object still appears to be present. When 

recording a holographic optical element, the object is removed and the second 

wavefront (referred to here as object wavefront only to distinguish the two 

wavefronts) is recorded directly. 

In a thick recording medium the recorded holographic interference fringes form planes 

which are regions of constant index of refraction in a phase hologram. These planes 

subtend an angle with a line normal to the plane of the hologram. Holograms 

recorded whereby 0' ::; [fringe angle[ < 45' are classed as transmission holograms and 

those recorded such that 45' < [fringe angle[::; 90' are classed as reflection holograms, 

depending on the notation used. However, precisely whether a hologram is acting as 

reflection or transmission depends also on the replay angle. Holograms recorded by 

the edge-referenced method are one of the few types of holograms where the fringe 

angle falls very close to the transitional boundary at ±45°. A view of the typical fringe 

angle for different types of holograms with a signal beam incident normal to the film 

is given in Fig. 1.1. 

In Fig. 1.1, the steep reference angles correspond to edge-referenced holograms 

commonly made in the laboratory. (Note: The fringe angles may also take on their 

negative values, although only the positive ones are shown here for clarity). The 

fringe angle divisions correspond to a total internal reflection (TIR) condition in the 

glass for a wave guide hologram and the maximum reference angles in the film for 

silver halide holograms. 

In conventional silver halide holography where the reference beam enters the film 

directly from the large face, the fringe angles are limited to 0°_19° for transmission 

holograms, and 7[0-90° for reflection holograms. This is due to the minimum 

reference angle of 142° for reflection holograms and a maximum reference angle of 

38° for transmission holograms (from the surface normal) in the film. Similarly, for 

conventional photopolymer holograms, the fringe angle is limited to the range of 0°_ 

20° and 70°-90° for transmission and reflection holograms, respectively. 
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Example mill I of Fringes 
in a Hologram II 

Photopolymer 
Holograms 

Silver Halide 
Holograms 

Hologram 
Classification 

0° 

Reflection 
Holograms 

4 

Figure 1.1 The fringe angles for various types of holograms with the signal angle incident normal to 

the film. The fringe angles associated with the silver halide holograms are calculated using refractive 

indices of 1.52 for the substrate and 1.64 for the emulsion. With photopolymers, the refractive indices 

can essentially be matched. 

For the wave guide holograms depicted in Fig. 1.1, the criteria was detennined by 

assuming the waveguide to be in a glass substrate (ns = 1.52). The fringe angle range 

in silver halide is limited to 19°-34° and 56°-71 ° for waveguide holograms because 

of the refractive index difference between the substrate and the film (nf = 1.64). The 

photopolymer is not as limited because the film can be made with the same refractive 

index as the glass, yielding a waveguide fringe angle range of 20° to 70°. 

From Fig. 1.1, one can see the difficulty of recording slant angles near 45°. The steep 

referenced holograms (edge-referenced) and waveguide holograms in photopolymer 

are two of the more common regimes to obtain fringe angles approaching 45° with a 

nonnal incidence signal beam. Silver halide holograms in an index matching tank may 

also have fringe angles approaching 45°, although the tank and the problem of 

obtaining a reference conjugate with the glass substrate are two major problems 

inhibiting this method. These, along with the ease of processing and mass 
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production possibilities, were the reasons photopolymers were investigated for edge­

lit holograms in the research presented here. 

Edge-lit holograms have many practical advantages over conventional holograms but 

to exploit them fully one needs to develop a rigorous theoretical understanding of how 

such holograms are recorded and replayed. 

Henrion [1.1 0] and Bimer [1.8] each have produced a masters thesis on edge-lit 

holography while Huang's doctoral thesis [1.16] focuses on substrate-guided wave 

holography. For the practical portion of their theses, they all report on silver halide 

holograms, and most all of the theory is limited to silver halide holograms. Henrion 

and Bimer assume Leith's theory [1.17] applied to the edge-lit hologram, while 

Huang redevelops Kogelnik's theory and expands it into two dimensions. Bimer 

offers a look at a dispersion compensation for edge-lit holograms and Henrion models 

the effective exposure density (in terms of how much energy reaches the emulsion 

versus the developed optical density and efficiency) and looks at stray reflections. 

Huang applies a Fourier method (used to describe two-dimensional diffraction in 

acousto--optics) to solve the two wave, two---<limensional coupled wave equations to 

model the diffraction characteristics of an edge-lit hologram. Huang's elegant analysis 

does not allow for multiple diffraction orders, however, and carmot be used for some 

real transmission hologram situations. More importantly, his theory does not account 

for diffraction at the boundaries, which always exists in real-time recording media 

The regime where his, and Kogelnik's theory are valid is shown for the specific case 

of a silver halide hologram. Huang does not show, however, that the validity of his 

theory for transmission holograms is very dependent on the film thickness and 

refractive index modulation. 

In comparison, the research presented here uses the rigorous coupled wave theory to 

model coupled wave diffraction from co sinusoidally modulated volume phase 

gratings. The theory applies to all of the edge-lit regimes except that of exactly 90° 

incidence and 90° diffraction. The theory presented here is also valid for high index 
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modulations, very thick gratings, and accounts for boundary diffraction. While the 

practical aspects of the thesis concentrate on the recording of edge-lit holograms in 

photopolymer, the theory is presented for cases of silver-halide and photopolymer and 

the results of the calculations can be translated to other recording media. Since the 

photopolymer offers the ability to record fringes from 0° to 90°, the rigorous theory is 

needed to examine the diffraction characteristics for all fringe angles. 

Chapter 2 begins by examining the intensity profile of the interference pattern of a 

signal beam (nonnal to the film) and a steep angled reference beam. Taking into 

account absorption within the recording medium, the average fringe contrast is 

maximized for the thickness of the film for various fringe angles. The practical 

results are tested against theoretical predictions and are found to correlate very well. 

The practical aspects of recording edge-lit holograms are examined in Chapter 3. The 

techniques for holding the sample, and the physical and optical properties of the 

photopolymers are examined. The importance of matching the refractive index 

between the substrate and the film is carefully examined. The real-time effects of 

recording with photopolymers are shown and their implications on efficiency are 

hypothesized. 

Chapter 4 looks at different possible recording geometries for edge-lit holograms. In 

addition to the traditional transmission and reflection geometries, the evanescent and 

waveguide hologram are examined and discussed. Two new recording possibilities, 

alternative Bragg condition recording and direct fringe copying, are investigated. 

In Chapter 5, holographic diffraction is modeled using the coupled wave equations. 

The rigorous solution is presented with new adaptations for thick holograms and high 

refractive index modulations. With the help of the rigorous theory, the approximate 

theories of Kogelnik and Vasnetsov are tested and the appropriate regimes for their 

use are described. Using the rigorous theory, the diffraction efficiency, wavelength 

sensitivity, and angular sensitivity of edge-lit holograms are predicted for the full 
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range of replay angles. The effects of slanted fringes on these parameters are 

especially detailed. 

Chapter 6 looks at techniques for measuring the physical and diffractive 

characteristics of recorded holograms. Results are presented for edge-lit holograms 

and compared with the rigorous theory developed in Chapter 5. The effects of heat 

processing on the physical and diffraction characteristics of photopolymers are 

discussed. 

Chapter 7 examines the extremely critical replay considerations for edge-lit 

holograms. When the light source is brought in very close to the hologram, as in the 

edge-lit case, the lighting requirements become much more critical than with 

traditional holograms. The affects of radiometry, directionality, and wavelength of 

the hologram illumination are presented. The choice of replay substrate also affects 

the optical characteristics of the holographic system. The use of a coupling grating 

offers an alternative replay possibility with different light source requirements. 

Different applications for edge-lit holograms are reviewed in Chapter 8. The edge-lit 

fingerprint illuminator and liquid crystal display illuminator are two important 

applications with large potential that are examined in detail. Other applications are 

described briefly and several traditional and new techniques for mass manufacture of 

edge-lit holograms are presented. 
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Chapter 2 

RECORDING EDGE-LIT HOLOGRAMS 

2.1 Introduction 

A hologram is recorded in a light sensitive medium from the intensity variations of a 

interference pattern. When referring to volume holograms, the interference pattern is 

recorded throughout a film of substantial thickness. In a perfect system, the 

maximum contrast of the intensity pattern would not change throughout the thickness 

of the layer. However, since most recording mediums absorb some of the light during 

the exposure, the intensity of the contrast pattern can vary with depth if the distance 

the light has traveled at one point in the film is not the same for the two recording 

beams. Because of the steep recording angle involved, the distance traveled by the 

reference beam is much greater than the signal beam for edge-lit holograms. Since 

the distance traveled is greater, the effects of absorption are also greater. 

One way of increasing the average fringe contrast would be to vary the amount of 

sensitizing dye throughout the volume of the recording medium. Unfortunately, this is 
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very difficult to accomplish practically. A simpler way to improve the average 

contrast is to adjust the relative intensities of the signal and reference beams. In order 

to understand these effects, one must first be able to model the contrast of the 

interference fringes created during the recording. 

2.2 Interference and Contrast 

A holographic grating is formed from the interference of two mutually coherent waves 

of light of similar frequencies in a recording medium. For simplicity, a view of the 

interference pattern formed from two plane waves is illustrated in Figure 2.1. For the 

illustrations here, only reflection phase holograms with the electric field normal to the 

plane of incidence (also known as TE, H-mode, or s polarization) will be shown. The 

equations and results are valid for transmission holograms and can be expanded to 

include amplitude or TM polarized holograms. The recording medium is in the x-z 

plane. 

Signal 
Beam 

~.'.' ........... . 

<45°+ y 

'L-
Reference 
Beam 

Thick 
Recording 
Medium 

Interference 
Fringes 

Figure 2.1. The interference fringes formed from a general two beam interference pattern. 
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2.2.1 General Wave Representation 

Assuming that the signal and reference beams have no component in the z direction, 

the signal and reference waves are represented by 

(2.1) 

These equations represent the electric fields of the signal and reference waves 

respectively with As and Ar as the signal and reference amplitudes, km the wave 

propagation constant in the medium, and eR' es the angles of the reference and signal 

beams from the surface normal inside the film. 

2.2.2 Absorption and Interference 

For the general case of recording without absorption, Eq. 2.1 would suffice. 

However, most holographic recording materials must absorb light in order to record 

the interference pattern. The absorption coefficient affects the recording of amplitude 

as well as phase holograms. If one were to consider the absorption of the reference 

and signal beams as they pass through the recording medium, the asymmetry of the 

intensity in most recordings is evident. For example, in a film with an absorption 

coefficient of a= 0.7133 Ilm'\ (such as Holographic Recording Film 352 from Du 

Pont) the intensity attenuation is represented by 

-2ay 

I(y) = eOOsBR 

10 
(2.2) 

where I(y) is the intensity at any point inside the hologram and 10 is the initial 

intensity of the reference beam before entering the film (at y=O). At a reference beam 

angle of88.7°, the light is at 10% of its original intensity at a depth of3.66 !lm. Thus, 

if the film were actually 20 Ilm thick, not much of the reference beam would penetrate 

even half of the film, creating a very thin and inefficient hologram. One can also use 
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these equations to imagine the thickness which each beam 'sees' the film. With the 

signal incident normal to the surface of the hologram, it 'sees' the film as only 20 ~m 

thick with the normal effects of absorption. However, with the reference beam at 

88.7°, it 'sees' the film as being 

thickness 20~m 
---= 881~m, 

cosS R cos(88.7) 
(2.3) 

which, with the same absorption coefficient, reduces the intensity considerably when 

the beam reaches the other side of the film. This example roughly illustrates the 

importance of the absorption of the reference beam at steep angles. One notices that 

the exponent in Eq. 2.2 grows quickly as the angle approaches 90° as in the case of 

steep edge-referenced holograms. The effect of absorption is not as crucial when the 

angles of the signal and reference beam are more relaxed as in traditional face-lit 

holography. 

Returning to the interference calculations, the effects of the absorption coefficient can 

be seen further. From Eq. 2.1 the electric fields inside the recording material are 

described by [2.1] 

.. a(y+/) 
1km (xsm9 s +y0059 S )---

E = A e ""S, and , , 
-ikm(xsin9 R+ycos8 R )+~ 

ER = A,e "'SSR (2.4) 

where a is the attenuation coefficient of the recording medium. The interference of 

these two waves is represented by the sum of the two electric fields inside the 

recording material. The total amplitude at any point in the hologram is the sum of 

these two fields Es and ER' 

. "(y+l) " 
ik",(xsmSs+ycos9s)--- -ikm (xsin9 R+ycos9R)+-Y-

A = E +E = Ae ,osS, +A e 'OSSR (2.5) 
lot sRs r 
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In the most common uses of edge-referenced holograms the signal is incident normal 

to surface of the recording medimn (Ss = 0). Eq. 2.5 is then reduced to 

Ok () -ikm (xsin8 R + yrose R )+~ 
A == A e l my-a: y+1 + A e cosG R 
~ s r 

(2.6) 

2.2.3 Intensity and Fringe Contrast Calculations 

Holographic recording materials respond to variations in intensity inside the film and 

the intensity at any point within the film can be expressed as 

1= A,o, x AM' (2.7) 

-a:(y+t)~ 
+2A,A,e oos9, xcos(km(y+ ycOS(JR +xsinO

R
») (2.8) 

For a phase hologram to be efficient it needs a high permittivity modulation, i.e. a 

high index of refraction modulation. Since the refractive index modulation of the 

recording material is directly related to the intensity variation, a high contrast 

interference pattern is desired to create a high index of refraction modulation. 

Ultimately, a high diffraction efficiency of the hologram is desired. The diffraction 

efficiency is directly related to the index of refraction modulation and is defined as the 

ratio of the intensity of the light diffracted in a defined order (usually the first order) 

to the incident intensity. To maximize diffraction efficiency one must maximize the 

average contrast. Thus, with contrast defined as 

c= lmax -lmin , 

Imax +lmin 
(2.9) 
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one can deduce the fringe contrast for any point within the hologram. Since the 

absorption does not affect the relative contrast in the x-direction, one can determine 

the contrast in the y-direction by finding the maximum and minimum intensities from 

Eq. 2.8. The argument of the cosine term in Eq. 2.8 is rapidly varying (because km is 

very large) relative to the hyperbolic terms. Therefore, the contrast (as a function of 

y) is determined when the cosine term is at a maximum (+1) or a minimum (-1), 

yielding 

-a(y+t)+~ 
2A A ",0, C = _--'."-,-,e ___ ...,,.,,_ 

2~ 
(2.10) 

This equation can be simplified by mUltiplying the numerator and denominator by 

qv Co/ia;;R r.JI 

e to yield the result 

C 2A"A, = ~ ay • 
-ay-at-- aytat+-A:e cos9/f + A?e COS8R 

(2.11) 

Eq. 2.11 defines the contrast at any pOint inside the recording medium. The highest 

diffraction efficiency would be produced from the highest average contrast inside the 

recording material. The average contrast is defined as 

1 0 
(C) =t f C dy. By letting (2.12) 

-I 

z=e ,,,0, and -= a+ z ~+at+--""- (}z ( a) 
,;:ry cose R 

(2.13) 

one can rewrite Eq. 2.12 using Eq. 2.11 as 

. 1 'fw 2A,A, 
(C)= ( ) 2' 22

dz . 1 -w As + A,z 
at 1+-- "",OR 

coseR ' 

(2.14) 
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This can be further simplified by substituting 

I; = Ar z and dl; = A, z into Eq. 2.14, giving 
As dz A, 

(c) = 2 

ut(I+_1 ) 
cose R 

15 

(2.15) 

(2.16) 

Completing the integration ofEq. 2.16 results in the average fringe contrast of 

(2.17) 

This result shows that the average fringe contrast is very dependent on the reference 

beam angle when it approaches 90°. The effect of the attenuation coefficient in the 

recording of holograms is grating non-uniformity. One can see from Eq. 2.17, that 

the contrast is very dependent on the ratio of the amplitudes of the signal and 

reference beams. By adjusting the measured intensity ratio (which is related to the 

amplitude ratio) one can optimize the average fringe contrast. In most practical 

holographic recording regimes only minor adjustments to the relative intensities of the 

2 
. Ar 

ratlO,--:;r. 
As 

reference or signal beams are needed to optimize the beam intensity 

1 
However, for the edge-referenced hologram the -- factor strongly affects the 

cose R 

absorption of the reference beam. This result suggests that the beam ratio needs to be 

adjusted more than in the normal recording situations. However, before the optimum 

beam ratio can be calculated, the absorption coefficients must be measured. 
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2.3 Measuring the Absorption Coefficients 

In order to accurately predict the contrast and diffraction efficiency of holograms, the 

absorption coefficients need to be measured directly for the various films at the 

specified laser wavelengths. Tests were attempted using standard spectrophotometers 

with very little success. The standard spectrophotometer uses non4:o11imated, non­

polarized light and the measurement speeds' are slow. Therefore, a device was 

constructed that measures the absorption coefficients correctly in real time (Fig. 2.2). 

Coupling 
Lens 

Halogen I c~>'::::::O': Light ......... . 

Fiber Optic Cable 

Polarizer 

. . ... ; " ............... . ··0····1··· ..... · ... ·0 ..... ·:= . ..... ............ ...... . 
Output Sample 
Collimating 
Lens 

Collecting 
Lens 

Figure 2.2. The spectrophotometer apparatus created to measure absorption coefficients and 

diffraction efficiencies. 

The light from a halogen bulb was used as a reference spectrum for the wavelength 

range from 400 nm to 700 nm. The Ocean Optics PClOOOTM spectrometer card in the 

computer used a blazed grating having 600/lines per millimeter giving a resolution of 

0.5 nm. The optical fibers were used to steer the light and allowed for filtering and 

convenient collimation. A reference spectrum of the halogen bulb with a clear glass 

sample (to account for the Fresnel reflection when the sample was loaded) was taken 

as a baseline and the absorption of the sample was measured relative to this. 

Transmission curves of several experimental Du Pont films (HRF 352, HRF 300x006, 

and HRF 700x071) were measured using this apparatus. Sensitization information 

and absorption coefficients of the various Du Pont films can be obtained from the 

transmission curves in Fig. 2.3. 
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Figure 2.3. The transmission curves for three types of red-sensitive Du Pont Photopoiymers using the 

spectrophotometer apparatus. 

When 647 run light is incident normal to HRF 700x071, 60% of the light is 

transmitted through the film. From this measurement, one can deduce from Eq. 2.2 

that this 20 !-lm film has an absorption coefficient of 0; = 0.0127 !-lm-I
. Thus, with the 

absorption coefficient the average contrast can be predicted for a known recording 

angle. 

With Millimask® silver halide recording film, the percent transmittance at 0° 

incidence is 78% at 647 nm and 34% at 514 nm. These equate to absorption 

coefficients of 0; = 0.018!-lm-1 and a = O.077!-lm-1 , respectively. 

2.4 The Effects of the Beam Ratio on Hologram Efficiency 

As mentioned in §2.2, the ratio of the incident intensities of the signal and reference 

beams can affect the intensity of the interference pattern. This intensity directly 
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influences the refractive index modulation in the film. One must, however, maximize 

the average fringe contrast in order to maximize the refractive index modulation. 

2.4.1 Maximizing the Average Contrast 

The beam ratio that maximizes the average contrast can be determined by 

differentiating Eq. 2.17 as below: 

d(C) 2 ea' 

d(1) a{I+ co:e J I+(~: eo,)' 

-«I 

ecos6 R 

( 

-«I )' 1 + ~: e,o,e, 

Setting d(C) 0, gives a maximum average contrast at 

d(1) 

0'(1+_1 ) 
e cos9 R -1 

a'(I __ 1 ) 
2aJ cos9 R e -e 

(2.18) 

(2.19) 

2 
One can note that lim A; = 1 as expected for the case of no absorption. In the case 

a~OAs 

of the pure Lippmann hologram (where es = 0° and eR = 0°) the beam ratio also 

2 
converges to 1 as one would expect. Since A; is a direct indication of the measured 

As 

intensity ratios, one can use this relationship to predict the optimum beam ratio for 

maximum average fringe contrast, thus maximum hologram efficiency. 
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2.4.2 Testing the Beam Ratio Calculations 

To test Eq. 2.19 numerous holograms were recorded at a reference angle of eR = 78° 

and a signal angle of es = 0° in Du Pont photopolymer with an absorption coefficient 

of a = 0.0127 flm·1 . This angle was chosen for a particular application, and is not as 

steep as the general steep reference applications. Using Eq. 2.19, one can deduce that 

the optimal beam ratio is 2.6: I (reference intensity to signal intensity), and that under 

those conditions, the average contrast will be 0.92. 

The efficiency was maximized experimentally by adjusting the beam ratio to confirm 

these calculations. To determine the beam ratio, the intensities of the signal and 

reference beams were needed. The uniform signal intensity was measured directly. 

However, the reference beam is Gaussian and diverges from the cylindrical mirror 

(Fig. 3.1) and the intensity at the film can not be directly measured. The reference 

beam intensity approximation used was based on measuring the total power and 

knowing the input beam waist. The expansion of the reference beam is due to the 

angle of incidence in the film in the x direction and depends on the divergence from 

the mirror in the z direction. The angle of incidence is measured (as in §6.2.2) and the 

new beam waist could be calculated by knowing the divergence of a collimated beam 

on the mirror. Thus, the beam waist is not symmetrical and has a different size for the 

x and z directions. Knowing the beam waist in each direction, the new intensity could 

be approximated at a particular location. 

The reference intensity was estimated at a particular location at which the efficiencies 

were measured on an optical fiber based spectrophotometer. Since one can not 

measure the fringe contrast directly, the diffraction efficiency must be measured and 

related to the beam ratio. The efficiencies of the hologram were measured prior to 

heating due to uncertainty of the effects of heat processing on the photopolymers. 

While the diffraction efficiency depends on the contrast of the fringes, it is also 

directly related to the refractive index modulation. Insufficient refractive index 

modulation will not result in 100% diffraction efficiency regardless of the fringe 

contrast. However, the contrast should be directly related to the efficiency. In order 
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to see the effects of the fringe contrast (thus beam ratio), the maximum measured 

efficiency was adjusted so that it was near the maximum fringe contrast. The 

efficiency values were scaled by adding 0.52 to all of the efficiencies so that the 

curves would overlap. These scaled efficiencies are compared with the theoretical 

results of the average fringe contrast versus beam ratio (directly from Eq. 2.17) and 

are shown in Fig. 2.4. The shape and maxima of the curve and the data demonstrate 

that our data correlates well with the theory. The data follows the same shape as the 

curve and the maxima are located at the same beam ratios. This is what one would 

expect assuming that average fringe contrast would be directly related to efficiency. 
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Figure 2.4. The measured and theoretical diffraction efficiency versus beam ratio based on the average 

fringe contrast model of Eq. 2.17. The holograms were made from the setup of Fig. 2 on HRF 

700x071 film and exposed to a total of 2.18 mW/cm2 at 647 nm for lOO seconds followed by a UV 

cure. 
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2.4.3 Expanding the Beam Ratio Calculations 

When calculating the optimum recording geometry or materials, it is useful to know 

how variables such as the recording angle and absorption will affect the final edge-lit 

hologram. From Eq. 2.17, the maximum average contrast of the hologram can be 

calculated for various absorption coefficients (characteristic to the film) and the 

recording angle (according to the setup). Some results are shown in Figures 2.5 and 

2.6. 
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Figure 2.5 Average contrast versus the beam ratio (Reference:Signal) for various absorption 

coefficients. The data is calculated from Eq. 2.17 with 8,=78°, 8,=0°, and thickness = 20 !lm. The 

values for the absorption coefficients are in !lm·'. 
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Figure 2.6 The average contrast versus the beam ratio (Reference:Signal) for various reference beam 

angles with 9,=0'. The data is calculated from Eq. 2.17 with Cl. = 0.0127 flm-1 and thickness = 20 flm. 

The graphs in Figs. 2.5 and 2.6 are similar in shape. From Fig. 2.5, one can see that 

the beam ratio is more crucial when the absorption coefficient is low and a higher 

average contrast can be achieved. If a more absorptive film is used, the ratio is not 

very crucial, however, the maximum average contrast is lower. 

Similarly, one can see that at a smaller angle, the beam ratio is more crucial and the 

average contrast is higher. As the angle approaches grazing, the maximum average 

contrast decreases and its dependence on beam ratio saturates. 

These two graphs enforce a compromise in order to record a high contrast (high 

efficiency) edge-lit hologram. If one is going to directly record a very steep 
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hologram, then one must have a low-absorption coefficient to get a reasonable 

contrast and efficiency. One should also note that the absorption coefficient may need 

to be high enough to diminish the intensity ofthe reference beam so that the reflection 

back into the film does not reduce the dynamic range of the film. 

The final efficiency of the hologram is very dependent on the linearity of the 

refractive index modulation versus incident intensity during recording. For example, 

in a non-linear recording medium the modulation increase resulting from a low light 

exposure (from a low contrast interference pattern) may be much greater, relatively 

speaking, than that of the dark area nearby. This may be exhibited if there is an 

exposure threshold with the photopolymer. Tests done with exposing the similar 

types of photopolymer through dark masks, as with the Microsharp ® material have 

shown that there is a threshold of exposure energy. Until this threshold is reached, no 

appreciable refractive index modulation is seen in the final hologram. 

The non-linearity of the heating process may also affect the efficiency. If one were to 

record a perfect sinusoidal interference pattern recorded in the medium, the index 

modulation profile would unlikely be a perfect sinusoid due to the limits of monomer 

and component diffusion [2.2]. 

As a result, with careful exposure considerations one is able to exploit the contrast 

calculations of Eq. 2.17, in combination with the exposure threshold and the heating 

effects, to achieve a higher refractive index modulation and efficiency. The effects of 

the absorption are strong, but they do not prohibit efficient recordings. Using Figs. 

2.5 and 2.6 one could easily optimize the diffraction efficiency of a hologram by 

changing the recording beam ratio to suit the recording angle and absorption of the 

film. 
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Chapter 3 

Practical Hologram Recording Considerations 

3.1 Introduction 

There are many requirements that must be met when recording a hologram in a 

laboratory: if just one of these is not satisfied, then one is unlikely to record an 

efficient hologram. Often, the most difficult requirement to meet is stability. The 

laser, the table, all of the optical components, and the hologram itself must be very 

stable for effective recording. The requirements for the light sensitive recording 

medium are also very important. The choice of the correct film, in the case of edge­

illuminated holography, is even more crucial than the stringent demands set for 

traditional face-lit holography. In addition to the normal film requirements, the 

refractive index is extremely crucial in an edge-lit hologram. Also important are the 

film packaging and the dynamic real-time effects when recording. 
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3.2 Laser and Stability Requirements 

In order for a stable holographic interference pattern to be formed within a light 

sensitive medium, one requires quasi-monochromatic light with high coherence. A 

continuous wave laser operating in the lowest transverse mode (TEMoo) is spatially 

coherent. However, temporal coherence may vary among different types of lasers. A 

high temporal coherence is needed with holography, thus a significant coherence 

length is required. An argon ion gas laser with an etalon fitted, such as that used in 

the work presented here, has a coherence length of around 10 m. Low temporal 

coherence or poor stability of the optical components can reduce the fringe contrast 

during the recording of a hologram. If one object in one beam of a holographic setup 

moves relative to the other beam during recording, then the fringe contrast is reduced 

due to the phase difference introduced. Also, in order to achieve maximum fringe 

contrast, the electric fields ofthe two interfering beams must be parallel to each other. 

If they are perpendicular, then the fringe contrast falls to zero. [3.1, 3.2] 

An argon ion laser was chosen for the research presented here because of the power 

requirements for exposing the Du Pont photopolymers (30 mJ/cm2
) over possibly 

large areas. In order to maintain stability of the setup and relative components, a large 

steel table on isolation tubes was used with magnetic mounts. Since movement of 

reflective optical components in the setup results in a larger phase change at a given 

point than transmissive components, their stability is much more crucial. Many 

standard optical component mounts are provided with spring mounts for positioning, 

which were found to be unacceptable because there was inevitable long-term creep or 

movement associated with them. Replacing these mounts with rigid, glued mounts 

provided high holographic stability and enabled long exposure times (over 3 minutes). 

Any variation in temperature in a holographic setup can also reduce the contrast of an 

interference pattern because of the refractive index (thus phase) change introduced 

from the heat convection. For this reason, the setup was isolated from air currents by 

enclosing it in a cage with acrylic panels that could be moved on hinges. 
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Normally, in simple holographic arrangements mechanical switches are used as 

shutters. However, the shutter was found to be a critical component when the laser is 

working at high powers. The typical type of shutter involves something light­

absorbing moving in and out to block the beam. However, at high powers, the 

absorbing element heats significantly and when moved out of the beam (usually about 

a centimeter at most) to commence exposure the heat convection from the heated 

element would introduce phase changes due to the change in the refractive index of 

the air. This destroyed the coherence of the exposure. To resolve this, the block was 

replaced with a mirror and the beam was 'dumped' to a block at a significant distance 

away such that the heat convection would not affect the beam. The results improved 

significantly. 

When working with small area holograms, low laser powers were needed. Simply 

turning down the current sometimes caused mode-hopping in the laser. An in-line 

linear absorbing polarizer would reduce the intensity, however, the absorbing 

polarizers introduced linear bands into the beam profile. Therefore, a rotating a Glan­

Thompson prism polarizer was sometimes used to remove a portion of the light 

without altering the rest of the setup. 

3.3 Recording Setup 

The setup used to record the edge-referenced holograms is depicted in Fig. 3.1 and a 

picture of the setup without the optical fiber can be found in Appendix A. 

The polarized light output from the argon ion laser is first passed through a half-wave 

plate. The alignment of the half-wave plate is adjusted to rotate the polarization of 

the light entering the polarizing beamsplitter, thereby controlling the beam intensity 

ratio. 
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Figure 3.1 The holographic arrangement for recording a standard edge-referenced reflection 

hologram. 

The signal beam passes through another half-wave plate to bring the polarization back 

to vertically linear polarization. The lens-pinhole spatial filter (LP SF) is used to filter 

the light yielding a homogeneous Gaussian beam profile. A further lens then 

collimates the light before reaching the mirror and then the film. It is important to use 

a light dump index matched to the back of the substrate of the film in order to 

eliminate unwanted reflections. The signal beam can be easily apodized using an 

anti-Gaussian filter. One may use an absorbing filter [3.3J or non-absorbing lens 

anti-Gaussian filter [3.4J. In order to use the absorbing filter, the lIe2 beam waist of 

the signal beam has to match the characteristic diameter of the filter in order to 

properly remove the Gaussian characteristics of the beam to give a uniform intensity 

field. When a small anti-Gaussian filter was used, diffraction rings from the apertures 

created by the lenses and the filter in the setup shown in Fig. 3.2 caused unwanted 

rings in the beam. One can reduce the visibility of these rings by using larger lenses 

and a larger filter. 

The reference beam may be launched into a fiber after the beamsplitter. The fiber 

serves two purposes: it allows easy positioning of the beam for entering into the 

substrate and more importantly, it filters the reference beam while maintaining its 

beam waist and divergence. The fiber should be polarization maintaining to keep the 

polarization matched with the signal beam, and it should be able to handle high 

powers. Unfortunately, there are inherent difficulties which may be encountered 
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while using a fiber in one ann of a holographic setup. The length of the fiber may 

become an issue since in order to filter the beam well, several meters are required. 

However, the path length difference between the reference and signal beam must be 

multiplied by the refractive index of the fiber and may contribute to a large difference 

in path length. Thus, a 3 meter fiber would result in a 4.5 meter path length difference 

between the two beams. In some arrangements this may be a problem. The fiber, 

being a reflective component, must also remain very stable during the exposure to 

prevent phase changes being introduced and destroying the contrast. The fiber was 

tacked down in the setup to prevent movement. Good results were obtained with and 

without the fiber. 

L2 NG 
Filter 

L3 

Figure 3.2 The anti-Gallssian arrangement for removing the Gallssian profile of the laser beam. Lens 

1 diverges the light to the correct diameter depending on the size of the filter and Lens 2 collimates the 

light before entering the filter. Lens 3 then converges the light down to its original size while Lens 4 

re-collimates the light. The lenses should all be NR coated to prevent stray reflections. 

The diverging optics for the reference beam are very crucial. The main application for 

the edge-lit reflection holograms required non-conjugate replay by a point light 

source. This means that the recording light needed to simulate a point source by being 

highly divergent. In the beginning, two cylindrical lenses were used in combination 

to diverge the light (in the z direction of Fig. 2.1) so that the reference beam would 

cover the film. This did not produce sufficient divergence. Later a small cylindrical 

mirror was used which had a higher divergence due to being a reflective optical 

element rather than a transmissive one. The light diverging in one direction enters the 

substrate through the narrow edge (typically 3 mm) before reaching the recording 

film. Ideally, there should be another substrate on the other side of the film which 
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would allow the reference beam to be dumped out the other side. Fortunately, the 

high absorption at a steep angle helps alleviate the need for a light dump for the 

reference beam. 

3.4 Sample Holding 

The mount which holds the sample (consisting of an unexposed film on a substrate) 

must be very rigid and stable in order for high contrast fringes to be created. Several 

different types of plate holders were examined including vertical, vacuum held, and 

horizontal holders. The first holder positioned the sample vertically so that the glass 

substrate rested on a rod with a hard plastic holder on the top attached to a vertical 

arm. The hard plastic seemed to be to flexible and allowed slight movement of the 

substrate. The second attempt at sample holding involved creating a vacuum between 

the sample and an acrylic base inside an index matching tank as illustrated in Fig. 3.3. 

An index matching tank was examined in order to try to remove stray reflection of the 

reference beam. With this method a "sandwich" geometry is created where the first 

substrate is the liquid, the second is the film, and the third is the film substrate. 

The glass window at the edge of the tank allows the reference beam to enter where it 

then passes beneath the sample and onto the cylindrical mirror which is attached to 

steering controls that reach out of the tank. The light then reflects directly off the 

mirror onto the film. The light which is not absorbed passes through the substrate and 

is absorbed at the edge of the tanle The sample is held to the acrylic by a vacuum. 

Acrylic was used so that the holder could be fabricated as one piece and the signal 

could pass through the holder. Unfortunately, the flatness between the sample and the 

acrylic holder was never sufficient to allow a perfect vacuum, leading to the index 

matching fluid being sucked through the hose creating bubbles and obvious 

movement. 
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Figure 3.3 The mirror and sample holder for the vacuum method. a) The aluminum tank geometry 

and the acrylic holder in position for recording. b) The side view of the acrylic sample holder. c) The 

top view of the acrylic sample holder. 

Another difficulty with the setup of Fig. 3.3 was the wait time required for the bubbles 

to settle after the holder was placed on the tank. The area between the sample and the 



Chapter 3. Practical Hologram Recording Considerations 32 

acrylic was originally a hollow area. This was modified to a charme1 around the 

sample with an island (Fig. 3.3 (c» to reduce the bending forced on the 

sample/substrate combination (The substrate in these cases was acrylic so that the 

Mylar cover could be removed when the film bonded to the acrylic as described in 

§3.6.5). 

The tank/vacuum method was abandoned due to low diffraction efficiency results 

attributed to the instability caused by leaks and the general difficulties involved in 

recording. A simpler technique, which used rigid kinematic support, was adopted 

with much better results (Fig. 3.4). 

Ball Bearing 

Registration Pin 

Figure 3.4 Gravity positioned, stable, sample holder 

The horizontal sample holder adopted utilizes gravity to position and hold the sample 

as a constant force. The rectangular glass substrate rests on the three ball bearings 

kinematically. The sample holder is tilted slightly in the horizontal and vertical 

directions so that the sample rests against the pins. The pins also allow precise 

registration for repositioning the sample after measurement. 
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3.5 Choice of Recording Material 

The demands on holographic film exceed those required by many other optical 

appiicationsor recordings. TypicaJiy, up to 6()00 lines permiIlilneter may be required 

to record a reflection hologram (or edge-lit hologram) while a simple photograph may 

only require 50 lines/mm. Two of the most common holographic films are silver 

halide emulsions (usually supplied by Agfa-Gevaert) and photopolymers (usually 

supplied by Du Pont). Silver halide emulsions may have typically between 3000 and 

5000 lines/mm resolution (AGFA IOE75 and AGFA 8E75 recording films 

respectively). Photopolymers nonnally have resolution of 5000 lines/mm and the 

Omnidex® HRF 352 photopolymer supplied by Du Pont has a near constant refractive 

index modulation amplitUde in the range from 3000-{)000 lines/mm [3.19). 

Recording edge-illuminated holograms has had limited success when using the 

traditional silver-halide materials [3.5-3.8]. One of the main limitation lies in the 

inherent refractive index difference between the substrate and'the film. The silver­

halide emulsion Holotest® (supplied by Agfa-Gevaert) has an average index of 

refraction of n=1.64 [3.6J. Compared with the usual glass substrate of n=1.52, the 

0.12 refractive index difference creates spurious reflections, which are a significant 

problem. At steep angles, the intensity of the transmitted light is significantly reduced 

due to the reflection. This can be a significant problem if the available laser power is 

an issue. 

Stray reflections can also create a standing "wood-grain" interference pattern within 

the film which is recorded and decreases intensity unifonnity. While some of these 

cosmetic difficulties can be alleviated by using an index matching tank [3.6], the 

index tank introduces more complications (sample holding, alignment, etc.) and 

makes processing more difficult since one has to remove the index matching fluid. 

The silver halide recording films require multi-step wet processing and careful 

calibration in order to achieve acceptable efficiencies. Despite the low exposure 

requirement (typically around 25 ~J/cm2) relative to photopolymers, the unfavorable 
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index difference between the film and substrate makes recording edge-lit holograms 

with silver halide material a very difficult process. 

The Du Pont Omnidex® photopolymers offer many advantages over the silver halide 

films when used for edge-lit holograms. These photopolymers offer higher refractive 

index modulation possibilities which can, in some situations, lead to higher diffraction 

efficiencies than the silver halide film. The processing of the photopolymers is dry 

and a significant amount of real-time development occurs. The film is easier to 

process and a quick examination without any processing can reveal important 

information and save time. Another crucial benefit of the photpolymers supplied by 

Du Pont is that they can vary in many parameters such as absorption, index of 

refraction, and modulation vs. spatial frequency (i.e. films devoted to reflection or 

transmission holograms). Despite the high exposure requirement (typically 30 

mJ/cm2), these films have a much higher potential for success in creating an efficient 

edge-lit hologram. 

3.6 Film Considerations 

Determining and understanding the optical and dynamic characteristics of the 

photopolymer recording medium are crucial to the production and optimization of 

holograms. The photopolymerization that occurs during and after exposure is a 

complex process and many variables are still not precisely defined and understood. 

The fringes of higher refractive index resulting after polymerization are dependent on 

many variables such as the effective diffusion length, the exposure intensity and 

duration, etc.. In choosing a recording material, optical qualities such as sensitization 

to a desirable wavelength and the average refractive index and modulation are 

important factors. The packaging of the commercial film can also be a deciding or 

limiting factor. 
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When all of the optical qualities (such as the average refractive index) have been 

measured before recording, one must then compare them to the final optical qualities 

after processing to understand and optimize the effects of processing on the 

photopolymer. Complications can arise in the case of photopolymers because they 

develop in real-time and the fluorescence of the absorbing dye may fog the recording. 

3.6.1 Photo polymer Composition and Polymerization 

A considerable amount of research has been conducted on the Du Pont photopolymers 

and other films similar to them. Much of the research has been conducted by Du Pont 

themselves [3.9-3.23] as well as other sources [3.24-3.34]. The Du Pont 

photopolymers are usually formulated according to the following formula: [3.18] 

• Photosensitizing dye, 0.1--0.2% 

• Initiator, 1-3% 

• Chain transfer agent, 2-3% 

• Plasticizer, 0-15% 

• Acrylic monomer, 28-46% 

• Polymeric binder, 45-65% 

These percentages are with respect to the total composition weight and the solvents 

used to prepare the films were dichloromethane and methanol. The films are usually 

25 fim thick web coated onto a 50 fim thick Mylar (polyethylene terephthalate) carrier 

with a 25 llm Mylar or polypropylene removable cover. The films are sensitized to 

various wavelengths and the absorption is usually centered close to the most popular 

laser wavelengths for the applications. 

Understanding exactly what happens within the film when it is exposed to light is a 

complicated process and the details are not precisely known. The widely accepted 

model for understanding the index modulation created inside the film is the diffusion 

model presented first by Colbum and Haines [3.30] and continued by Wopschall and 
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Pampalone [3.20] and Booth [3.13]. Small aspects of this model such as the initial 

decrease in index upon exposure and the inert characteristics of the binder have been 

criticized by Smothers et. al. [3.18]. Generally, the diffusion model is accepted and 

can be expanded to include the effects of heating in the processing of the Du Pont 

photopolymers. This process for a general Du Pont photopolymer film can be 

summarized in four steps (Table 3.1): 

STEP PROCESS DETAILS 

1. Initial exposure and polymerization Expose film to 25 mJ/cm 2 

3. Monomer diffusion Wait (occurs almost instantaneously in 

real time) 

3. Complete polymerization UV cure> 100 mJ/cm2 at 365 nm 

4. Final component diffusion Heat at 100° C for 2 hours 

Table 3.1 Tbe four main steps for high refractive index modulation in Du Pont photopolymers. 

In the first step, the chemical reaction occurring within the film is described as: 

hv 
Dye ----' .. ~ Dye' 

Dye' + Initiator ~ R-

R- + Transfer Agent + Monomer ~ Polymer 

When the film is exposed to light which is absorbed by the dye, the dye becomes 

excited and decomposes the initiator to form a free radical. This free radical then 

oxidizes the transfer agent to create another radical which when combined with the 

monomer begins the polymerization process. 

The standing wave pattern created holographically within a film during recording has 

areas of constructive (light areas) and destructive (dark areas) interference. As the 

polymerization process occurs within the light areas, the monomer concentration is 

depleted because it is forming the polymer chain. Since the polymer is more dense 

- - - ---
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than the monomer, the index of refraction is slightly higher in the regions of 

polymerization (the bright areas). Normally, this increase in index is connected with a 

volume change assuming the amount of all of the components is constant. However, 

the monomer concentration is thus different in the light and dark areas and the 

monomer diffuses into the light area to equalize the concentration. This diffusion is 

where the main initial index modulation is attributed. This produces an initial index 

gradient which is visible in real time. As the exposure continues, more of the 

monomer is polymerized and the film continues to harden which prevents further 

migration. A significant amount of diffusion occurs in real time and simply waiting 

after an exposure can demonstrate a further increase in the initial (post-heating) 

diffraction efficiency. However, further tests need to be done before concluding 

whether this results in a higher final diffraction efficiency after heat processing. 

After holographic exposure, the film is cured, or "fixed," with a uniform UV exposure 

which polymerizes most, if not all, of the remaining monomer. After this cure, the 

film is insensitive to any further exposure. 

If the film is simply left alone, a further index modulation will occur. This was 

observed on holograms left overnight that were considerably brighter the next day. 

However, in the full process suggested by Du Pont, the film is uniformly heated at 

100°C for two hours. The initial refractive index modulation can then be increased by 

up to a factor of four [3.14] with the heating. It is believed that this heating softens 

the components of the film and allows the components within the film to further 

migrate/diffuse between the photopolymer-rich and the binder-rich areas of the film. 

Without the heating step, only a small amount of migration can occur as monomer 

polymerization further plasticizes the film. 

The modulation of the film is very dependent on the feature size [3.13, 3.40] because 

of the diffusion distance and rate of diffusion inherent in the photopolymer. Du Pont 

generally characterize their films based on this modulation relative to feature size as 

reflection or transmission films. The transmission films (such as HRF 600 and HRF 

I SO) generally have a higher refractive index modulation for larger feature size while 
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the reflection films (such as HRF 352, HRF 706, and HRF 700x031) have higher 

modulation for small feature sizes. 

Observations in the lab suggest that in the edge-referenced holograms are subject to a 

failure of the reciprocity law. In general, the reciprocity law states that for a constant 

exposure the results are independent of the recording energy or recording time [3.35]. 

Failure of the reciprocity law means that a high intensity for a brief time may have a 

different effect on the recording than a low exposure for a long time. In 

photopolymers, the rate of polymerization is directly related to the intensity of the 

exposing light. Since the refractive index modulation is dependent on the rate of 

polymerization and the rate of diffusion, the modulation is dependent on the exposing 

intensity. If the rate of polymerization is much higher than the rate of diffusion, then 

less diffusion takes place and the refractive index modulation is lower. Thus, the 

lower the light level (above a threshold), the more monomer diffusion can take place 

before being polymerized. Du Pont suggest that the refractive index modulation 

decreases with higher exposure intensities for transmission holograms [3.1 0]. They 

have not noticed this dependence in reflection hologram tests. Lab results seem to 

suggest that the initial (pre-heat) refractive index modulation increases with low 

intensity exposures for slanted holograms. Since the edge-referenced hologram is 

essentially in the regime between transmission and reflection holograms, one might 

conclude that the refractive index modulation was intensity dependent. Laboratory 

results suggest that this is true. The maximum intensity for high modulation for the 

edge-referenced holograms is approximately 2 mW/cm2
• The results compare well 

with Du Pont's findings for transmission holograms [3.10, 3.13]. Lower efficiencies 

were noticed for higher intensities, while lower intensities were not very different in 

diffraction efficiency. 

In many of the Du Pont photopolymers, the refractive index modulation generally 

saturates with increasing exposure [3.14]. Thus, a hologram can be exposed for long 

periods of time to ensure complete exposure. However, with some film thicknesses 

for transmission holograms, the refractive index modulation may be such that 

ovennodulation occurs and the final diffraction efficiency may rise and fall again 
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[3.19]. In these. cases, the refractive index modulation still saturates, although the 

index modulation and film thickness combination may cause a decrease in diffraction 

efficiency. The total diffraction efficiency modulation depends on the thickness of the 

film. The film thickness is sometimes adjusted so that maximum diffraction 

efficiency will result for a particular fringe spacing. 

3.6.2 Importance of Refractive Index in Edge-Illuminated Holograms 

As explained by many authors, the index of refraction for films and substrates is very 

important in creating an edge-lit hologram [3.5-3.7, 3.36-3.38]. A large difference in 

refractive index between the substrate and the film results in spurious reflections 

which can diminish the quality of the hologram-if it can be recorded at all. In order to 

understand the possible reflections involved, a general model (Fig. 3.11) is applied to 

the various recording conditions (Table 3.2). 

For the "block recording" silver halide configuration (the silver halide plate is index 

matched to a glass block), refractive index values of nl = 1.52, n2 = 1.65, n3 = 1.497, 

and n4 = 1.52 [3.7] were used in the Fresnel equations (Eq. 3.1). For the "tank 

recording" method, refractive index values of nl = 1.497, n2 = 1.65, n3 = 1.52, and 

n4 = 1.497 were used in the Fresnel equations. For the photopolymers HRF red 352 

and 700x071, the values for Mylar (nD= 1.65) and air (nD= I) were used for n3 and n4 

respectively. The coefficients TO-T3 and RO-R3 in Fig. 3.11 and Table 3.2 are from 

the equations for the Fresnel coefficients below for S polarization [3.39]: 

sin(9; -9,) d 
,an 

sin(9; +9,) 
(3.1) 

T (
n,cos9,) 2'h 2sin9,cos9, 

.L = t.L Wit t.L = . 
n; cos9; sin(9, +9;) 

(3.2) 
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Figure 3.11 The ray diagram used to calculated the reflectances and the transmittances at the 

boundaries between layers of different indices of refraction. 

Substrate Film 
Tl R2 1'2 R3 T3 Notes 

BK7 AgHalide 80° .19 .81 .76 .24 .51 .49 66° BLOCK 
1.52 1.64 
Xylene AgHalide 87° .60 .40 .17 .83 .27 .73 66° TANK 
1.497 1.64 

BK7 red 352 87° TIR --- --- --- --- --- ---
1.52 1.504 
BKIO red 352 87° .09 .91 .39 .61 TIR --- 84° 
1.4981 1.504 
Acrylic red 352 87° .18 .82 .29 .71 TIR --- 82° 
1.491 1.504 
FK5 red 352 87° .22 .78 .25 .75 TIR --- 81° 
1.4876 1.504 
Fused Silica red 352 87° .39 .61 .12 .88 TIR --- 76° 
1.4588 1.504 

BK7 700x071 87° TIR --- --- --- --- --- ---
1.52 1.4787 
BKIO 700x071 87° TIR --- --- --- --- --- ---
1.4981 1.4787 
Acrylic 700x071 87° TIR --- --- --- --- --- --- SIM 
1.491 1.4787 
FK5 700x071 87° TIR --- --- --- --- --- --- SIM 
1.4876 1.4787 
Fused Silica 700x071 87° .24 .76 .25 .76 TIR --- 80° 
1.4588 1.4787 .. 

• The refractive mdex range for red-sensItive 352 IS from nv- 1.504 to approxnnately 1.53. The 

index range for 700x071 is from DV = 1.4787 to approximately 1.51. The Self-induced Index 

Matching (SIM) refers to coupling while the index of the film increases (§4.4.2). 

Table 3.2 The values for the reflection and transmission coefficients for various recording situations. 

The coefficients for T and R refer to the transmittance and reflectance at the previous interface. 
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The data in Table 3.2 illustrates the relative intensities of the many reflections 

involved with recording edge-referenced holograms. With the silver halide block 

method (where the reference is coupled through the edge of a substrate), the R2 

reflection occurring inside the film is 76% of the light first entering the film. This 

corresponds to multiple gratings being formed in the film and is unacceptable for 

recording efficient holograms. 

Using the silver halide tank method one can record an edge-lit hologram. However, a 

large percentage of the incident reference light (Rl=60%) is reflected away in 

recording as well as replay because of the high index of the recording film relative to 

the substrate. This can create problems in terms of light efficiency and laser powers 

during recording and replay. 

With the refractive indices of the Du Pont photopolymers, simpler and more efficient 

recording can be made by using the block method with special substrates. The low 

index of the photopolymers relative to the substrates allows more of the reference 

beam to enter the film in recording and replay. The Total Internal Reflections (TIR) 

after the film are not as much of a problem as one might first suspect. Because of the 

low index of the film, much steeper reference angles are allowed within the film 

($",80°) so the inherent absorption diminishes the intensity of the wave as mentioned 

in § 2.2.2. This is actually similar in the photopolymer case to that of the silver halide 

hologram whose angle inside the film is essentially limited to $",66°. For a 514 nm 

photopolymer recording, the percentage of the reference beam intensity at the 

reflection surface due to absorption is 8% (with a=O.OII~m·l from Fig. 2.3 and Eq. 

2.2 for light incident to HRF 700x071 at 80°). With Millimask silver halide plates, 

the reflection is 7% of the incident intensity in the film (with a=O.077~m-l and Eq. 

2.2 for light incident to 7~m Millimask at 66°). Here, the high absorption in the thin 

emulsion has a low intensity reflection just as the thick photopolymer with low 

absorption. 

The data in Table 3.2 illustrates the reflectance and transmittance for various practical 

recording substrates and films. Ideally, one would like a perfect index match between 
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the photopolymer and the substrate. The difference between the refractive indices of 

the film and the substrate determine the transmittance into the film. For very steep 

angles such as those encountered in edge-referenced holograms, the index difference 

is very crucial as illustrated in Fig. 3.12. 
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Figure 3.12 The transmittance across an interface with the index difference approaching zero for 

various steep reference angles. The graphs are calculated based on Eq. 3.2. 

From Fig. 3.12, one can see that as the reference angle approaches 90°, the substrate 

refractive index must match the refractive index of the film very closely in order for 

the reference beam to penetrate into the film. Therefore, the refractive indices of the 

substrates and the films must be measured very accurately. 
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Another view of the transmission into the film can be made if one considers a constant 

index for the substrate and looks at the transmission for various film indices as in Fig. 

3.13. 
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Figure 3.13 Showing the percent transmission into films with different indices of refraction (or a film 

whose refractive index changes) with a constant refractive index substrate. The values used were 

nD(substrate) = 1.49811 and e =88.7° and RRF 700X031(lab coating) nD= 1.5002. 

One can look at Fig. 3.13 to determine which substrate or polymer to use. Given a 

particular substrate, one must consider the transmission into the film as dynamic 

because the index of the film in the bright areas of the interference pattern increases 

and in the dark areas, decreases. Therefore, the maximum transmission into the film 

would be at a refractive index equal to or just higher than the substrate. If the index 

was less than the substrate, the transmission falls off quickly as one approaches total 

internal reflection. One could imagine an effective gain in modulation if the indices 

of the substrate and the film precisely match. With equal indices of refraction, the 

areas of low intensity during recording would decrease in refractive index and even 
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less light would reach the area from the Fresnel reflection (Fig. 3.13) This would 

effectively increase the contrast of the interference pattern. This effect would also 

increase the non-linearity of recording. 

One must be careful in measuring the refractive index using a device such as an Abbe 

refractometer as it can only measure the average refractive index. Therefore, since 

some areas of the emulsion may have a lower index (coating non-uniformity) which 

could create a localized TIR, it would be advisable to choose a photopolymer with an 

average starting index just above the substrate for a safe recording. For the same 

reasons, one might choose a recording substrate which is just slightly below that of 

the polymer. 

3.6.3 Measuring the Photopolymer Refractive Index 

A standard device for measuring the index of refraction for optical solids is the Abbe 

refractometer. This device works on the properties of total internal reflection from a 

prism to measure the precise angle (thus refractive index) where TIR occurs (Fig. 

3.14). The angle is determined by aligning cross-hairs through a viewfinder on the 

dark band which signifies the TIR. 

From SneH's law, one can see that the reference angle reaches 90° in the second 

medium at 

9, =Sin-{:} (3.3) 

thus signifying the transition between partial transmission and total reflection. The 

variables on which the Abbe refractometer depend are wavelength, temperature and 

precision of angular measurement. The temperature for the measurements remained 

constant and the angular measurement was very good because of the quality of the 

refractometer. The wavelength used was the sodium D-line. Attempts were made at 



Chapter 3. Practical Hologram Recording Considerations 45 

using the precise laser wavelength of 514 run, however, the speckle introduced made 

reading the angular measurement very difficult and imprecise. 

D 

Figure 3.14 A diagram showing the principle of total internal reflection. Subscripts t and r represent 

the transmitted and reflected components respectively. 

An inherent difficulty encountered when measuring optically sensitive films is that 

often the refractive index is desired at a wavelength at which the film is sensitive, thus 

the measurement is exposing the film. In the case of the Du Pont (real-time) 

photopolymers this was indicated by bands moving away from the main dark line of 

the TIR during measurement. The initial index of refraction was easily obtainable in 

most cases with quick measurements. In many cases, however, reading the bulk index 

of refraction of the film was difficult because of poorly coated or mixed 'experimental 

lab coatings' of the photopolymer. As the concentrations of the components varied, 

the index varied with it, thus there was more than one dark line over the viewing area 

signifying the TIR's. With a non-uniform film, measuring a smaller sample area 

(such as in the case of a ellipsometer) could yield false readings. Most of the non­

uniformity was corrected on the commercial (non-experimental) coatings provided by 

Du Pont. The refractive index modulation of the photopolymers was very difficult to 

measure using the Abbe as the index modulation would occur in a small region, not 

the large sampling region. Faint lines were visible on the Abbe corresponding to 

higher refractive indices. Since the refractive index changes continuously across the 
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pitch of the grating, many lines corresponding to specific indices of refraction are 

faintly visible. 

3.6.4 Film Packaging 

The packaging of the film is very critical in the case of edge-illuminated holograms. 

The Du Pont photopolymer film layer is usually 20 ~m or 25 ~m thick, although it 

can be coated from about 7 ~m to 90 ~m. The base, or film carrier, is a polyester 

(Mylar®) layer usually 50 ~m thick. The removable cover layer is usually 25 ~m 

thick and can be made of Mylar or poly-vinyl chloride (PVC). Thus, the film is 

usually in the layers indicated in Fig. 3.15. 

50~m Mylar'® 

Figure 3.15 The standard packaging of Du Pont Holographic Recording Film. 

The Mylar material, otherwise known as polyethylene terephthalate, is stress tri­

refringent and thus effectively has three different indices of refraction [3.41]. Within 

the plane of support of the film, the index of refraction is n",=1.50. Recording with 

light traveling in this direction is not feasible. In the direction normal to the surface, 

the refractive indices are n.,=1.66 and np=1.65, depending on the polarization. 

However, all of these indices may change depending on the exact stress introduced 

during production. If the polarization of the incident laser is not aligned precisely 

with the either the y-axis or the l3-axis of the Mylar, then optical retardance of the 

polarization results. If a reflection hologram is made, then only one beam will pass 

through the Mylar before reaching the film (after the cover sheet is removed and it is 

laminated onto a substrate). Thus, one beam will have a different state of polarization 

than the other (unless the axis is aligned), resulting in a less efficient hologram. The 

alignment of the optical axis of the Mylar is not always constant on the film and is 
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difficult to account for in advance. While in some situations (such as a vertically 

arranged single beam reflection hologram) the sample may be rotated in-situ to 

minimize the retardation, the fogging introduced by this alignment is generally 

unacceptable. For normal (non-edge referenced) holograms and most of the edge­

referenced ones, the decrease in efficiency due to the tri-refringence is very small 

based on observations. 

Another disadvantage of using a Mylar carrier is its high refractive index. Inherent 

with the high refractive index is the stray Fresnel reflection generated at the polymer­

Mylar interface. This reflection can be 12-39% in the examples presented in Table 

3.2 (reflection R2). If the index were lower, this reflection would be minimized. If 

the Mylar were to be removed, the reference beam would reflect back at the air 

surface due to a TIR regardless (unless a tank was used). Unfortunately, it is very 

difficult to remove the Mylar carrier layer as the film usually adheres to it. It may be 

removed in certain circumstances by bonding the film to another substrate using an 

epoxy, however, the film must be covered during recording as exposure to oxygen 

will quench the reaction and result in a lower modulation [3.13]. Thus, laminating the 

film to a substrate and removing the Mylar is unacceptable because the film would be 

exposed to air. In many cases of the edge-referenced hologram, the Mylar is left on 

the film and most of the reference beam is absorbed before reaching the Mylar. 

3.6.5 Photopolymer Preparation 

With the standard form of the photopolymer (Fig. 3.15), the Mylar cover sheet is 

generally removed and the film is laminated onto a substrate (by using a rolling 

laminator for example). The initial tackiness caused by the solvents in the film allows 

for good lamination. Dust is a major issue and is more important in the edge­

illuminated geometry. If there is dust present, there will be an air bubble around the 

dust in the film. In a face-referenced hologram, light would still reach the film 

around the bubble (although there may be a small reflection generated). However, in 
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an edge-referenced hologram, the reference beam will not reach the film in that area 

at all because of a TIR from the substrate-air interface. This results in a dark spot on 

the final hologram. The film can be obtained in a liquid form which could be spin­

coated onto a substrate. With this technique, the thickness is difficult to calibrate with 

many types of films and solvent concentrations over time. Also, the film would have 

to be covered with a non-permeable medium that would not allow oxygen into the 

film. Since respectable efficiencies were obtained with the film coated on Mylar, spin 

coating was not investigated. 

In many cases, the desired final substrate of the hologram is not the recording 

substrate. For most applications, the desirable final substrate would be of a very close 

index of refraction, cheap, and lightweight. Fortunately, acrylic plastic fits nicely into 

these categories. However, many attempts have been made at recording through an 

acrylic substrate with generally poor results. The optical quality of acrylic is 

generally not sufficient for edge-referenced holograms. The quality of the substrate is 

much more crucial with edge-referenced holograms because at a steep angle the 

reference beam effectively travels through the full width of the acrylic and any minor 

striae, stress, etc. will show up as non-uniform reference coverage. Another difficulty 

is the instability of the acrylic. As it is a lightweight, flexible material, it is much 

more subject to movement and bending than optical glass during a holographic 

exposure (which reduces the final diffraction efficiency). 

When recording with such substrates as BKl 0, which is expensive and heavy, the film 

ideally needs to be transferred to acrylic. Transferring the film once it has been 

recorded is a very complicated issue, and thus three methods have been studied: dry 

transfer, HRF 150 transfer, and epoxy transfer. 
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3.6.5.1 Dry Transfer 

In the dry transfer process no additional components are added when transferring the 

film to another substrate. In its original form, the photopolymer is very tacky, 

allowing good adhesion to the substrate. As the photopolymer is exposed, it gradually 

loses its tackiness. The UV cure after the exposure dramatically reduces the ability of 

the film to bond with another substrate. With a saturated holographic exposure or 

after the UV exposure, the film is not sufficiently tacky enough to re-laminate onto 

another substrate (the bond is temporary and air bubbles are trapped during the 

lamination). 

Since the photopolymer exposure will saturate, it is possible to expose for the 

minimum time or perhaps slightly underexpose to allow sufficient tackiness (before 

UV) for bonding to a different substrate. Dust and stress are important factors in re­

lamination. A second lamination is always likely to introduce more blemishes. Poor 

transfer can also result from stress induced on the film because of the handling 

difficulties. There is usually less film to handle since the excess usually needs to be 

trimmed off just before initial exposure. The stress on the film can result in a non­

uniform grating (sometimes as if the fringes are stretched) or wrinkles and air bubbles. 

Dry transfer requires a tedious amount of care and needs a precise type of machine 

handling in a clean-room environment for successful transfer. Limited success has 

been achieved by hand and seems to only be useful for demonstrative purposes. 

3.6.5.2 HRF 150 Transfer 

Most commercially available adhesive films have a very low index of refraction 

(usually around nD=1.47 for the glue layer). This low index will not permit steep 

angles for the illumination of the hologram because of a TIR at the substrate-glue 

layer. In the search for an optical adhesive for transferring the film to another 

substrate, it was noticed that the HRF 150 film (without a visible sensitizing dye) was 
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very near the required index of refraction, was sufficiently tacky, and would provide a 

permanent bond. Since the film itself is an acrylate photopolymer, its refractive index 

is quite similar to that of the recording photopolymer and the index of the acrylic 

substrate as well. However, since the unexposed HRF 150 film has monomers within 

it, it can swell a pre-recorded hologram just as the Du Pont Color Tuning Film [3.14J. 

First tests showed non-uniform swelling effects associated with using the HRF 150 as 

a laminate. Therefore, a process was developed which would enable transfer without 

significant wavelength shift. This process is described in Fig. 3.16. 

1) Laminate HRF 150 onto polished acrylic 

2) Trim 

3) Heat combination under IR lamps for 90 seconds (at 80°-100° C) to promote polymer adhesion 

to acrylic 

4) Let cool to room temperature 

5) Laminate HRF 700x071 onto recording sUbstrate 

6) Expose 

7) UV cure 60 seconds (,,0.5 Joules) (need at least several hundred miIIijoules) 

8) Remove Mylar from HRF 150 

9) Quickly laminate HRF 700x071 onto HRF 150 

10) Wait 60 seconds for chemical bond 

11) UV cure for 3 seconds (app. 25 mJ) 

12) Trim 

Figure 3.16 The steps for a workable transfer from a recording substrate to a new substrate using HRF 

150 as a transfer film. 

The HRF 150 will naturally bond to the acrylic, however, the combination is heated to 

expedite the bonding. In step 10 of Fig. 3.15, if the wait period is to long, then the 

solvents in the HRF 150 will react and effectively destroy or swell the fringes in the 

hologram (in the HRF 700x071). If the wait period is not long enough, then the 

hologram will not bond to the HRF 150. Also, if the UV cure in step 11 is to long, 

then the HRF 150 will become cloudy and diffuse because of non-uniform density 

variations possibly created from coating non-uniformities within the thick layer. The 

results with the HRF 150 transfer are generally acceptable, however, very careful 
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control of the heating, UV, and dust is necessary. Since this method requires an 

additional lamination layer (step I), dust is more likely to contaminate the sample. 

Another disadvantage of this technique is that heating after the final lamination (after 

step 12) is not possible as this swells the fringes. This could inherently limit the final 

available refractive index modulation. 

3.6.5.3 Epoxy Transfer 

After considerable searching, a suitable one-step UV cure epoxy was found with an 

appropriate index of refraction [3.42]. It is very crucial that the solvents in the epoxy 

do not affect the film. After exposing and UV curing the sample, the epoxy was 

placed on the new substrate and the sample was rolled onto the epoxy. Then the 

combination was immediately UV cured according to the specifications of the epoxy. 

No adverse effects have been noticed after bonding. The results using this method 

appear to be very good and this method of transfer has been adopted when it is desired 

to change substrates. 

3.6.6 Real-time Effects of Photopolymers 

Holograms formed in the family of visibly sensitized Du Pont HRF photopolymers 

develop during the recording, and thus are susceptible to real-time effects inherent in 

the recording. Two of these effects, self-fluorescent fogging and real-time 

holographic diffraction, have been observed in the lab. In theory, these effects would 

reduce the diffraction efficiency of the resulting hologram. 



Chapter 3. Practical Hologram Recording Considerations 52 

3.6.6.1 Fluorescence Fogging During Recording 

The sensitizing dyes used in general holography are necessary to make the recording 

medium sensitive to desirable recording laser wavelengths. The sensitizing dyes for 

many of the Du Pont photopolymers fluoresce at wavelengths at which they are 

sensitized. Thus, during the recording, the light from the fluorescence is fogging the 

recording material and reducing its dynamic range. In theory, this is also independent 

of the exposure conditions because the fluorescence is proportional to the intensity. 

Thus, the dark areas of a holographic interference pattern would have a fog level due 

to the fluorescence. 

To verify the self-fogging characteristics, the fluorescence spectrum of HRF 705 

panchromatic film was compared with the absorption spectrum. The overlap area is a 

fog level as shown in Fig. 3.17. To measure the fluorescence, the film was 

illuminated with 514 nm laser light and the fluorescence was focused into a 

spectrometer. The absorption was measured with a spectrophotometer. 

The fluorescence from the photopolymer is not as dramatically visible in traditional 

recording as it is in the edge-referenced geometry. In normal holograms, only a small 

percentage of the incident light is actually absorbed by the hologram relative to the 

absorption as the reference beam approaches 900 incidence. Thus, at very steep 

angles, the reference beam is almost completely absorbed. This fluorescence is easily 

visible from either face of the hologram because none of the reference beam is 

escaping from the face. During the recording, the absorption due to the dye reduces 

because of the dye molecules breaking down (or bleaching). Fortunately, the intensity 

of the fluorescence does not appear to be sufficient enough to dramatically reduce the 

diffraction efficiency. Reasonably high efficiencies have still been obtained, however, 

despite the lack of a suitable non-fogging or non-fluorescent dye. The exact effects 

of the fogging on the film have not been determined conclusively. 
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Figure 3.17 The fluorescence and absorption spectrums ofHRF 705 panchromatic film. The overlap 

area is where fogging occurs, 

3.6.6.2 Real-time Diffraction During Recording 

Inherent with all real-time self-developing materials is the dynamic problem of 

diffraction of the signal and reference beams due to a grating forming. during the 

recording. As photopolymers develop a refractive index modulation during 

recording, they are very susceptible to these effects. A dynamic theory of recording 

was first proposed by Nonomiya [3.43], and later modified by Magnusson et al. 

[3.44]. It was then applied to the photorefractive effect by Moharam et at. [3.45]. 

This theory is should be generally applicable to photopolymers with considerable 

adaptation. 
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Experimental, real-time observations of diffraction in photopolymers have been 

noted, however they are not often modeled [3.47]. Rush et al. [3.46] tried a different 

model for the dynamic effects on holograms recorded in Du Pont photopolymers with 

limited success. Their theory only models correctly the first portion of exposure (not 

the entire recording period), and they defined crucial photopolymer variables 

arbitrarily to enable their results to fit the theory. Their photopolymer exposure 

variables were related to the speed of the film, representing an offset exposure related 

to the induction delay, and related the grating shrinkage to the index change. 

These variables would obviously have a major effect on how the real-time diffraction 

affects the final hologram, however, they can not be simply chosen so that a model 

fits an experimental graph. They must be measured independently and related 

appropriately. Perhaps uncertainty in these values, and the extreme complication of 

the dynamic models explains the limited papers available in this area. An ideal model 

would perhaps contain some the coefficients suggested by Rush et al. and use the 

rigorous coupled wave adaptation for 3-dimensional, slanted, volume, phase 

holograms [3.48] with the dynamic model modifications [3.46]. 

Most of the practical recording complications with edge-lit holograms can be 

overcome to record holograms with high diffraction efficiencies. By carefully 

choosing and arranging the recording setup (including the recording film, recording 

and replay substrate, and sample holder) one can ensure that the edge-lit holograms 

produced have high diffraction efficiencies and can be incorporated into various 

optical systems. 
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Chapter 4 

Recording Methods 

4.1 Introduction 

There are two main classifications for holograms: reflection and transmission. 

Waveguide holograms can be classified as either of these, however evanescent wave 

holograms must be classed differently because they are created by the interference of 

at least one inhomogeneous wave. Each of these types of holograms has important 

factors to be examined for recording. Since there is more than one way to record the 

same hologram, all of the possible recording methods must be reviewed. First, the 

traditional transmission hologram will be examined. 
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4.2 Transmission Holograms 

Transmission holograms are normally thought of as those which are recorded with 

signal and reference beam arriving in the recording medium from the same side of the 

substrate. For replay the light is incident from one side and the main diffracted light 

is transmitted through to the other side. With edge-referenced holograms various 

factors for the recording and replay beams must be considered. Edge-referenced 

transmission holograms have many additional restrictions for recording than the 

traditional face-lit transmission holograms. 

4.2.1 Transmission Recording 

A typical recording setup for an edge-referenced transmission hologram is shown in 

Fig. 4.1. 

~------1---------~ 

Reference Signal 

Black Backing 
Polymer 
Recording Substrate 

Figure 4.1 The recording geometry for an edge-referenced transmission hologram in photopolymer. 

In a transmission hologram, it is normal procedure to black back the film so that the 

reference and signal reflections do not create spurious gratings. Just as mentioned in 

§2.2.2, the reference beam intensity is very small when it reaches the full thickness of 

the film for very steep angles. Hence, this reflection is not very detrimental. 

However, the signal beam reflection does create a significant stray grating. In order to 

successfully remove these reflections, an appropriate absorbing light dump must be 

used. Removing the Mylar is not necessary for recording as the light from the signal 
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beam may be absorbed after traveling through it. However, as will be seen in many 

replay considerations, it should optimally be removed. 

4.2.2 Transmission Replay 

Typically, there are two types of transmission replay geometries for a hologram. In 

terms of normal holographic images, these are referred to as the 'real' or 'virtual' 

images. For references to Holographic Optical Elements (HOE's) they will be referred 

to here as conjugate or non-conjugate replay corresponding to the type of illumination 

required. As detailed in Fig. 4.2 (a) and (b), the two typical replay geometries are 

invoked with (a) corresponding to the non-conjugate (virtual) and (b) corresponding 

to the conjugate (real) replay geometries for a transmission hologram recorded as in 

Fig. 4.1. 

!l!'l!ll'~wiIUt~ Polym" 
~ I Recording Substrata 

Reference 
lIIuminat10n 

a) TRANSMISSION NON·CONJUGATE REPLAY 

Reference t 

Reference 
Conjugate 
Illumination 

_:E'~ 
b) TRANSMISSION CONJUGATE REPLAY 

IlIuminationr-___ -+ __ -. 
I I Replay Substrata TIR Reference 

"'j~~~~m!"m!~~PoIYmer Polymer ~~~ ?lllo~r"mJ"I"g •• I',o." 
~ _____ T~R ________ I Removed Rec. Substrata Recording Substrata ''---1+----~ 

c} FALSE REFLECTION NON·CONJUGATE REPLAY d) FALSE REFLECTION CONJUGATE REPLAY 

Figure 4.2 The replay possibilities of au edge-referenced transmission hologram. (a) and (b) are the 

traditional conjugate and non-eonjugate replay, respectively. (c) and (d) are the new 'false reflection' 

non-eonjugate and conjugate replay, respectively, which incorporate a TIR within the film. 
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4.2.3 False Reflection Replay 

Two unique additional replay geometries are possible with the edge-referenced 

hologram. As a result of the steep angles, a TIR can be generated within the polymer 

which allows a transmission hologram to be replayed in a seemingly reflection 

geometry. This geometry seems to be unique to edge-lit holograms because the TIR 

actually occurs within the film as opposed to reflecting from another element. While 

Fresnel reflections can generate these replay situations for angles not as steep, the 

intensities are not normally near the 100% as in a TIR. 

In order for the hologram to be replayed through the original recording substrate as in 

Fig. 4.2 (a) and (d), the black light dump must be removed. If the light dump were 

not removed in (a), then the light would not exit, and in (d), the TIR would not occur. 

No additional substrate lamination is necessary. The Mylar may be removed if 

desired, however, the signal reflections caused by the presence of Mylar during 

recording are minimal. Successful results have been achieved for these two types of 

replay geometries. 

For Fig. 4.2 (b) and (c), the recording substrate may be left in contact with the film 

with no effect in (b) and a TIR shifted to the substrate-air boundary in (c). In (b) and 

(c) the Mylar should be removed as the reflection from a replay substrate-Mylar 

boundary is 63% of the incident intensity which would result in inefficient replay. 

The Mylar may be removed after recording and then the replay substrate epoxied to 

the film. 

4.2.4 Removing the Mylar 

A major difficulty with transmission recordings is the packaging of the Du Pont 

photopolymers. If the film is laminated onto a glass recording substrate, then before 

recording it is extremely difficult to remove the Mylar from the film without again 
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removing the film. A new technique for removing the Mylar has been developed. 

This involves lamination of the film onto an acrylic substrate. Once on the substrate, 

the film should be left at room temperature for a day or heated for about 10 minutes at 

60° C and left to cool. In both methods, it is necessary that the sample remain 

unexposed to light. If the sample is left any longer in the oven, then the acrylic 

substrate is likely to soften and distort. The chemical permanent bond which forms 

between the photopolymer film and the acrylic appears to be related to the solvents 

within the film. The photopolymer does not appear to have any obvious reduced 

performance after this transfer. 

Thus, in order to remove the Mylar, the film must be laminated to a clear acrylic 

substrate for recording. Unfortunately, the difficulties of recording through an acrylic 

substrate as mentioned in §3.6.5 prevented definitive results for edge-referenced 

transmission hologram replayed as in Fig. 4.2 (b) and (c). Future possibilities may 

arise if a silane (a chemical used to promote bonding to a glass) is added to the film 

composition. Du Pont offer a film, HRF 750, with higher adhesion to glass, although 

this film had a refractive index to low for edge-referenced recording when used with 

the original glass substrates. 

4.3 Reflection Holograms 

Reflection holograms are those recorded with the incident light beams arriving from 

opposite sides of the film. On efficient replay, most of the diffracted light leaves the 

film on the same side which it entered. As with transmission holograms, the 

recording and replay conditions must be carefully considered when recording edge­

referenced reflection holograms. 
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4.3.1 Reflection Recording 

A typical recording setup for an edge-referenced reflection hologram is depicted in 

Fig. 4.3. 

Signal 

Polymer 

Recording Substrate 
Lw ________ w Black Backing 

Reference 

Figure 4.3 The recording geometry for an edge-referenced reflection hologram. 

The black backing is essential for a light dump for the signal beam as even the 4% 

reflection from the substrate-air interface creates a stray reflection which significantly 

affects the performance of the hologram in some applications. Again, with the 

difficulty of recording through an acrylic substrate, the Mylar is left on the polymer 

and the effects appear to be minimal on the final hologram performance. The 

possibilities for replaying the hologram recorded in Fig. 4.3 are shown in Fig. 4.4. 

4.3.2 Reflection Replay 

Replaying a non--conjugate reflection hologram is simple to do on the recording setup 

by removing the black backing. The real-time refractive index modulation from 

photopolymerization allows for quick determination of a successful recording. If the 

signal beam is blocked after the backing is removed, then the diffraction efficiency 

can be judged by the diffracted beam. If the signal beam is left unblocked, then a 

real-time interferometer is created from the recorded hologram and the real-time 

interference of the signal and reference beams. This interferometer helps determine 
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an efficient recording and allows for accurate stability checks on the optical 

components (to help determine creep and damping factors associated with the 

components). Due to the fluorescence, the real-time fringes can even be seen inside 

the photopolymer (Appendix B). These fringes also verify correct repositioning if the 

hologram has moved, for example, when the black backing is removed. The non­

conjugate reflection holograms from Fig. 4.4 (a) have proven to yield excellent HOE's 

for edge-lit fingerprint illuminators (§8.2). 

~~1I$I:11~:'::Og Sob""t, 

Reference 
Illumination 

a) REFLECTION NON-CONJUGATE REPLAY 

Reference 
Conjugate 

Replay s~~;~:~1 r -mSJ-".~-'~-'2fNj-,;;-.1;;j--.. - .. - ... -~OO 
Removed Re<;. Substrate ~ ______________ I 

b) REFLEcnON CONJUGATE REPLAY 

Reference t 
Illumination 

~ I Replay Substrata TIR Reference 
~~~ Polymer Polymer Conjugate 
~ ____ _ T~ __ , ____ ~ R,mo~d Re" Sob,.,t, R_"og Sob",." L'---______ ---+J'''''llIumination 

c) FALSE TRANSMISSION NON-CONJUGATE REPLAY d) FALSE TRANSMISSION CONJUGATE REPLAY 

Figure 4.4 The replay possibilities of an edge-referenced reflection hologram. (a) and (b) are the 

traditional conjugate and non--<:onjugate replay, respectively. (c) and (d) are the new 'false 

transmission' non--<:onjugate and conjugate replay geometries, respectively, which incorporate a TIR 

within the film. 

The same difficulties which arise with transmission holograms for adding a new 

replay substrate also arise in reflection holograms. In theory, the photopolymer can 

be transferred to a replay substrate as in Fig. 4.4 (b) and (c), however, this transfer is 

very difficult to accomplish. This transfer is not necessary in most of the applications 

studied because it is possible to replay in the non--conjugate reflection mode. 
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4.3.3 False Transmission Replay 

Replaying a reflection hologram in a transmission mode has many attractive benefits. 

The dispersion normally attributed to a transmission hologram is not as severe as in a 

reflection hologram. Also, transmission holograms are generally preferred in optical 

systems because of the ability of placing the next or previous element in close 

proximity without blocking the replaying light. 

For example, in an edge-lit LeD illuminator, the hologram would need to be as close 

as possible to the LeD to precisely illuminate the correct pixels. In reflection replay, 

the LeD would have to be at least the thickness of the substrate away. In a false 

transmission replay geometry, the LeD could be essentially in contact with the 

hologram. Reflection edge-lit LeD illuminators and display holograms have been 

made which replay very well in the false transmission geometry of Fig. 4.4 (d). 

4.4 Evanescent Holograms and SIM 

Traditionally, holograms are recorded with homogeneous waves (waves whose planes 

of constant amplitude coincide with those of constant phase). Stetson [4.1] first 

proposed that holograms could be made from inhomogeneous waves Ca wave whose 

planes of constant amplitude cross planes of constant phase at an angle) [4.2]. Since 

then, many applications involving evanescent waves have been studied [4.2-4.19]. 

Evanescent waves can be created from edge-referenced holograms depending on the 

refractive indices of the substrate and film. In general, there are three possible 

recording regimes for the edge-referenced reflection hologram depending on the 

refractive indices as indicated in Fig. 4.5. 

When the substrate refractive index is less than the photopolymer Ca), reference beam 

coupling into the film is possible. However, depending on the angle and index 
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difference, there can be a Fresnel reflection of significant intensity (§3.6.2). The most 

effective recording regime is that of Fig. 4.5 (b) because is couples the full incident 

intensity of the reference beam into an appreciable depth of the recording medium. 

Signal 

___ '-___ ---!'"'-", "'!I"u n. > n 

Reference Reference Reference 

a) Partial coupling Into polymer b) Complete coupling into polymer cl Evanescent coupling into polymer 

Figure 4.5 The three possible recording regimes for edge-referenced holograms which depend on the 

substrate index. 

4.4.1 Evanescent Holograms 

When the index of the substrate is higher than that ofthe polymer as in Fig. 4.5 (c), a 

steep reference beam at an angle greater than the critical angle is totally internally 

reflected at the substrate--polymer boundary. In a static hologram (one which does not 

develop in real time), this would create an evanescent hologram (Fig. 4.6). 

The amount of light which enters the rarer medium depends on the angle and the 

indices of refraction of the two mediums. The depth, Aa is derived from rigorous 

treatment of Maxwell's equations: [4.2] 

Aa = ~ Ao , and the beam displacement is 
n2 sin2 e _ n2 

, p 

(4.1) 

(4.2) 
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where 1.,0 is the wavelength in a vacuum, e is the angle inside the denser medium, ng 

and np are the indices of refraction of the denser medium (substrate) and rarer medium 

(polymer) respectively. The evanescent wave amplitude falls to 1/e of its incident 

value at a depth in the rarer medium of A,,j21t. The lateral beam displacement, d , is 

commonly known as the Goos-Hanchen effect and here is defined for the case of TE 

polarized light. The depth and the displacement become very significant when the 

refractive index of the polymer is such that the angle of incidence for the reference 

beam is at the critical angle. This phenomenon can occur in a dynamic recording 

medium such as the photopolymers. 

a) Total Internal Reflection ray diagram b) Ray displacement and penetration 

Figure 4.6 The representation of the reflected beam path in an evanescent hologram Ca). The 

reflection is displaced by a distance d, and the beam penetrates to a depth of le, as shown in Cb). The 

arrows in the rarer medium represent the direction of energy flow. [4.2] 

4.4.2 SIM Holograms 

Recording an edge-referenced hologram with a dynamic recording medium (such as 

with the Du Pont photopolymers) can result in a unique phenomenon. In a TIR 

situation at the substrate-polymer interface, an evanescent hologram is recorded and 

in this area the index increases. Since the index is increasing (and the index 

difference between the substrate and the film is decreasing), the penetration depth of 

the reference beam increases and continuous evanescent holograms are recorded (Fig. 
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4.7). This process continues until the modulation is insufficient to allow further 

penetration or the light traverses the depth of the film. This phenomenon is referred to 

as Self-induced Index Matching. 

1=0 1=1 

1=2 1=3 

Figure 4.7 A simplified model for the continuous recording of an evanescent hologram in a medium 

with a time-varying index of refraction. The horizontal lines represent density of photo polymer. 

4.4.2.1 Penetration Depth and Lateral Displacement 

In Fig. 4.7, when the recording begins (t=O), an evanescent wave is penetrating into 

the film. The gradual index increase in this exposed area allows more coupling of 

light into the higher index areas while simultaneously increasing the penetration depth 

(Fig. 4.8). The depth would increase until it reaches the edge of the film, however, 

most of the light is absorbed before it reaches the opposite side of the film due to the 

steep angle involved and the absorption of the film. When the polymer index reaches 

the 'critical index' corresponding to the critical angle, the evanescent coupling 

converts to direct coupling and is depicted in the asymptotes in Fig. 4.8. 
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Figure 4.8 The evanescent penetration depth as the photopolymer index of refraction increases during 

exposure for various steep reference angles for a substrate with n, ~ 1.4876. 

The values obtained for Figs. 4.8 and 4.9 are from Eqs. 4.1 and 4.2 where ns = 1.4876, 

A = 0.647 /lm, and the photopolymer is HRF 700x071. From Fig. 4.8, one can see 

that the closer the angle of incidence is to the initial critical angle (83.7°), the larger 

the initial penetration depth. The evanescent depth is at least 5 /lm into the film for 

the steep angles between 84°-89°. Thus, with the lie depth of A,/2rc (which is in this 

case at least O.8/lm) there is sufficient amount of exposure area to initiate 

polymerization. This shows that in this steep referenced system with closely matched 

indices, any angle above the critical angle will record a SIM evanescent hologram. 
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Since the signal beam is exposing the area where the reference beam has not yet 

reached throughout the exposure, it is inherently fogging the material and reducing 

the dynamic range of the material. This reduction inhibits the further penetration of 

the evanescent beam and reduces the refractive index modulation available in the 

areas yet unexposed to the reference beam. One would therefore want to minimize 

this fogging by reducing the amount of refractive index modulation needed for full 

reference beam penetration. This would result in a thicker hologram with higher 

modulation. In Fig. 4.8, for example, one would choose a recording angle of 84° as 

opposed to 85° so that the penetration would reach the film before the signal exposed 

(fogged) the area significantly. Therefore, it is more desirable to work near the 

critical angle when recording edge referenced evanescent or SIM holograms. Fig. 4.8 

also shows the high angular dependence on the refractive index modulation required 

for full film penetration. In other words, when recording with a reference beam angle 

of 84°, a refractive index modulation near 0.0008 is required for full film penetration 

while at 88°, a refractive index modulation near 0.008 is required. Therefore, 

recording a volume SIM hologram (using the full film thickness) requires ten times 

more index modulation at 88° than at 84°. This example shows the small angular 

range within which to record an evanescent hologram of moderate thickness and 

efficiency. 

From Eqs. 4.1 and 4.2, one can see that the lateral displacement as well as the 

penetration depth also maximizes at the critical angle. A very large lateral 

displacement may cause spurious reflections if it is larger than the recording area. As 

can be see from Fig. 4.9, the displacements grow towards infinity when they approach 

the critical angle (or in this case when the polymer approaches the critical index). 

Fortunately, as the polymer approaches the critical index, the penetration depth is also 

increased and most all of the reference light is absorbed and does not cause spurious 

reflections of significant intensity. 
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Figure 4.9 The lateral displacement of the reflected beam as the photopolymer index increases for 

various steep angles in a substrate with n, = 1.4876. 

4.4.2.2 Increased fluorescence 

Since the film absorbs light at the recording wavelength, the reflection in an 

evanescent or SIM hologram is an Attenuated Total Internal Reflection (ATIR). The 

reflection is not a Frustrated Total Internal Reflection (FTIR) because direct coupling 

does not occur. Since the average index of the entire film does not increase enough to 
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provide complete coupling, an ATIR exists throughout the recording. Some of this 

absorbed light is re--emitted as fluorescence from the sensitizing dye. As the 

penetration depth increases, more of the sensitizing dye is exposed and the 

fluorescence increases. This increase in fluorescence was the first indicator of the 

occurrence of the SIM phenomenon and an example is shown in Fig. 4.10 [4.20] . 
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Figure 4.10 The increase in fluorescence from a constant intensity reference beam for 215 seconds in 

the setup of Fig. 3.1 (without the signal beam) with the substrate refractive index higher than the index 

of the photopolymer. 

For the measurement of Fig. 4.1 0, no signal beam is used and the detector is placed 

behind the sample instead of the black light dump in Fig. 3.1. The exposure begins at 

point A, and most of the diffusion begins at point B where the reference begins to 

penetrate through the film until point C where the fluorescence begins to saturate and 

gradually fall-off due to bleaching. When the reference beam is turned on, the 

fluorescence emission is constant. The fall-offfrom point A to B in Fig. 4.10 is due to 

bleaching of the dye. During the polymerization process, the sensitizing dye is broken 

down and thus there is less of it to fluoresce. This effect is quicker than the diffusion 

process which explains the slight decrease in fluorescence intensity from points A to 

B. When the diffusion begins and the monomer moves to the exposed regions, the 
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local index of refraction increases. The reference penetrates further in these areas, 

reaching more unexposed dye and thus the total fluorescence increases. The 

fluorescence intensity reaches a saturation value at C which indicates it has penetrated 

as far into the film as possible with the available refractive index modulation. This 

saturation occurs during the direct recording of an edge-illuminated hologram and 

indicates that the reference beam has penetrated as far into the film as possible. 

Since at point A, the reference beam may have penetrated approximately 5 ~m before 

any diffusion takes place (based on the calculations of Fig. 4.8), one can assume that 

an evanescent hologram has been formed in this region. This portion of the hologram 

is formed from an evanescent wave which is inhomogeneous. Later, as the index of 

refraction increases in this area, the coupling becomes more direct, and the wave 

becomes more homogeneous closer to the boundary. Since the refractive index is 

changing, the path and angle at which the reference beam travels also changes. Thus, 

the real-time effect of these recordings would inevitably create dynamic fringes with 

slightly varying angles and spacing. This would inherently reduce the efficiency of the 

hologram. Lab results have confirmed the reduced efficiency which could be 

attributed to this effect in combination with the fogging of the signal wave. 

The SIM phenomenon is only specific to a situation of TIR where the lower refractive 

index increases to allow penetration and could apply to non-edge-illuminated 

geometries as well. The low diffraction efficiency of SIM holograms does not make it 

a preferred method, however, monitoring the fluorescence in the TIR situation may 

also be useful in measuring other characteristics of the photopolymer such as diffusion. 

4.5 Alternative Bragg Condition 

In the basic recording geometry for edge-lit holograms (Figs. 4.1, 4.3) the angular 

restriction imposed on the reference beam because of the thin recording substrate 
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limits the light coverage on the surface of the film. The thin substrate also imposes 

strict intensity uniformity since the small area of the reference beam is spread over a 

much larger area in the photopolymer. Diffraction effects at the edges ofthe substrate 

can prevent a uniform reference intensity. In order to alleviate some of these 

difficulties, Bragg's Law [4.21] was examined in order to determine other possible 

recording regimes: 

(4.3) 

where A is the absolute fringe spacing, 4> is the fringe angle, 90 is the Bragg angle, L is 

the Bragg order, 1.,0 is the Bragg wavelength and n is the index of refraction of the 

film. Thus, looking at different first order Bragg conditions (L= 1) for a particular 

grating (A, 4>, and n are constant) yields an infinite number of wavelength and angle 

combinations which will result in maximum diffraction. (Normally the first order of 

diffraction has a higher efficiency than other orders for cosinusoidal volume phase 

gratings). As a result, one may record a specific grating at other Bragg angle and 

wavelength combinations that satisfies Eq. 4.3. 

Therefore, with a given grating structure (periodic with constant fringe angle and 

spacing), one can visualize that the same grating (or interference pattern) could be 

created by a large number of combinations of wavelength and recording angles. One 

could also view this by noting that there are always different Bragg conditions for 

replay of a hologram. It is possible to record at one Bragg condition (defined by the 

fringe spacing and two recording angles) and replay at another Bragg condition 

(imposing a different combination of replay angles and wavelength). This hypothesis 

led to an alternative recording geometry to generate an edge-lit hologram which 

would have more relaxed recording angles (thUS making it easier to align, filter, and 

measure the recording beams.). 
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4.5.1 Alternative Bragg Condition Recording 

Using the diagram in Figure 2.1, one can deduce the equation for the absolute fringe 

spacing, A, and the equation for the fringe spacing in the x-direction, d x> from 

Bragg's Law: 

d _ Am 
x - Isine s - sine RI' 

(4.4) 

Using the term for the wavelength in air, one can rewrite this using A m = '}.. a which 
n 

yields, 

dx = I I . n(sine s -sine R) 
(4.5) 

From this, an equation for the absolute fringe spacing, A = d x cos$ , is deduced: 

A = '}.. a cos$ where 
nClsine s - sine RI) 

(4.6) 

A __ eS+eR 
'f is the fringe angle. 

2 
(4.7) 

U sing the trigonometric identity 

sinu -sin~ =2cos.!.(u +~)sin.!.(u -p), 
2 2 

(4.8) 

it can also be shown that the fringe spacing can be written in terms of the wavelength 

in air and the two recording angles as 
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(4.9) 

One can think of a simple volume phase hologram formed from two collimated 

wavefronts as simply a set of fringes of refractive index modulation with a specific 

angle and spacing. With this view, different recording regimes are possible which 

could create the same set of fringes, thus the same hologram. 

Equations 4.7 and 4.9 give the defining characteristics of the fringes which make the 

hologram. To make the same hologram through a different technique, it would have 

to have the same fringe spacing and fringe angle. The two methods are denoted by 

subscripts I and 2. Thus, A I = A2 , and ~ I = h . For two different recording 

methods Eq. 4.9 becomes 

n(sin9 SI - sin9 RI) n(sin9 S2 - sin9 R2) 
(4.10) 

Since the fringe angles must be the same, this reduces to 

A _(sin9 s2 -sin9 R2 JA 
a2 - . 9 . 9 al' sm SI -sm RI 

(4.11) 

Thus, it is possible to use two or more different recording geometries to achieve the 

same grating structure. 

4.5.2 Dual Prism Method 

As an alternative to recording a slanted fringe hologram with a steep reference beam, 

an alternative Bragg condition recording method was attempted which involved two 
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prisms and a different recording wavelength. The recording geometry using the 

prisms is denoted with the subscript 1, and the steep edge-referenced recording is 

denoted with the subscript 2 as indicated in Fig. 4.11 and 4.12. 

Film 

Prism 

6
S1

-("",·" .... ".' ...-
" ........ -----'1 .... 

Prism 

Figure 4.11 The slanted fringe hologram recorded using two prisms. 

Substrate 

Figure 4.12 The slanted fringe hologram recorded using a steep-angled reference beam through the 

edge, 

In order to eliminate edge-referencing, the signal and reference beam angles had to be 

significantly altered while keeping the fringe angle constant. Therefore, the prism 

geometry of Fig, 4.11 was conceived so that the reference angle would not be as steep 

and the uniformity and coupling restrictions would not be as severe. As a result, the 

recording wavelength was adjusted according to Eq, 4,11, Thus, a blue edge­

referenced hologram recorded as in Fig, 4.12 could also be recorded using a red 
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wavelength and the geometry of Fig. 4.11. The main drawback of this technique is 

the requirement that the interference fringes have a constant fringe angle over the 

entire recording area (i.e. parallel fringes). This forces the recording and replay beams 

to be co llimated. 

A hologram was made using a single beam and the two prism geometry as illustrated 

in Fig. 4.13 with a mirror reflecting light back at a specific angle. The single beam 

method was used for simplicity and higher vibration stability because of the lack of 

beam separation. However the single beam method introduced an undesirable beam 

ratio due to the absorption of the film. The hologram was not heated to be certain that 

a Bragg wavelength shift would not be introduced. 

Mirror Interference 
Fringes 

Film 

Figure 4.13 The recording setup for a single-beam slanted fringe hologram using two prisms and a 

mirror. 

Another drawback of the single beam method is smaller overlap area of the two 

beams. This can be seen from Fig. 4.13 where the recorded fringes occupy a smaller 

area than the beam exposing the film. For large areas, this is a major drawback as the 

prisms and optics would need to be much larger than the final hologram size. In the 

dual prism method of recording, the prisms must be mounted kinematically while 

allowing for easy sample retrieval. A dual prism holder was constructed as illustrated 

in Fig. 4.14. 
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Figure 4.14 The dual prism kinematic holder. The ball bearings support the holder as well as the 

prisms. The dark area on the top view is a channel for the index matching fluid to drain. The fihn is 

laminated to a substrate and the combination is index matched to both prisms. 

4.5.3 Prism Method Results 

For the application of the edge-illuminated holograms examined in this research, the 

geometry restricted the angles to e S2 = 0° and e R2 = 98.3° for replay. These angles 

define the fringe angle to be (according to Eq. 4.7) 

(4.12) 

Therefore, if the same hologram is to be made using the prism method, the criterion 

$1 = $ 2 must be met. For convenience, two 45° prisms were used with the signal 

and reference beams at angles of e SI = -45° and e RI = 143.3° which gave the same 

fringe angle as the edge-illuminated hologram. These angles can be substituted into 

Eq. 4.11 which yields the relationship 
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A. = sinCOO)-sin(98.3°) A. =0.758A. . 
02 sin(-450 )-sin(143.30 ) 01 01 

(4.13) 

If one were to record using the prism geometry and a wavelength of A.ol = 647nm, 

this hologram could be replayed in an edge-illuminated geometry at 

A.02 = (O.758)(647nm) = 490nm. (4.14) 

A hologram recorded using the dual prism method at 647 nm can be replayed as an 

edge-lit hologram at 490 nm. The beam uniformity is easier to control in the 

alternative (prism) method in contrast to that of the direct edge-referenced recording. 

Recording using the prism method is also of significant importance when one 

considers the difficulty in obtaining high powered blue lasers (if one wanted to record 

directly using the edge-referenced technique). One could extend these results to 

recording with the dual prism with a visible blue wavelength to generate a UV edge­

lit hologram, although for replay, the UV absorption in the photopolymer is much 

higher. 

The transmission spectrum of the prism recorded hologram of Fig. 4.13 is measured in 

Fig. 4.15 at normal incidence (replaying as eS2 = 0°). The transmission minimum for 

the hologram (corresponding to a reflection of light from the hologram at OR2 = 98.3 ° 

out of the edge of the substrate) is at 491 nm which is just as expected from Eq. 4.14 

(allowing for possible angular measurement errors). 
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Figure 4.15 The zer<Hlrder transmission spectrum of a dual prism method hologram illuminated 

normal to the film. The recording wavelength was 647 run with the signal and reference angles at 

e,= _45° and S, = 143.3°. 

4.5.4 Other Bragg Conditions 

Using the rigorous coupled wave theory (described in §5.3), one can also analyze 

other possible Bragg conditions. With a particular grating, one can see all of the 

possible first order Bragg conditions by looking at the diffraction efficiencies of the 

first diffracted order. All of the possible wavelength and replay angle combinations 

for the Bragg condition occur when the first order diffraction efficiency is maximized. 

These are the same conditions that result from Eq. 4.11. The example given in the 

previous section is analyzed using the rigorous coupled wave theory and the results 

are graphed in Fig. 4.16. 

The tail-like structure in Fig. 4.16 (a) shows the recording and replay possibilities for 

a hologram produced by recording using the dual prism method while (b) illustrates 

the recording and replay possibilities of an edge-referenced hologram. The second 
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Bragg condition is usually much weaker in diffraction efficiency for volume phase 

sinusoidal holograms. The second Bragg condition is shown in (b) as the faint mark 

near 90° and 270 um. In Fig. 4.16, a vertica1line drawn at a particular wavelength 

(one which will cross the curve) will intersect the curve at two angles, thus describing 

the two possible recording angles and a wavelength for recording the same hologram 

(Note that since these are reflection holograms, one of the recording angles would be 

8r=8graph(replay)-1800). 

1st Bragg Conditions, Recorded 8! -45 and 143.3 degrees at S47nm 
160 

160 

140 

20 
, ;IIl_ .. , 

300 400 500 600 700 
Replay Wavelength (nm) 

a) 9.=-45". er =143.3~ 9,01'l",,=0010 180: d=25I-1m, 
A'eoord=647nm, "'1.~ay=300 10 aQOnm, rlmod=O.02 
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Figure 4.16 The possible Bragg replay (or recording regimes) for two slanted fringe holograms. 

An advantage of calculating the possible Bragg conditions from Eq. 4.11 is that it is 

quick and simple (while the rigorous program can take an hour to calculate 90 x 90 

data points on an IBM PC compatible 486-66DX). However, the rigorous method 

also shows the angular and wavelength bandwidth at all of the possible Bragg replay 

conditions. For example, in Fig. 4.16 (a), the hologram has its highest angular 

bandwidth near the 647 urn recording angle and a high wavelength bandwidth closer 

to the 90° limit. 
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4.5.5 Advantages of Alternative Bragg Condition Recording 

Many of the difficulties associated with recording edg<>--illuminated holograms can be 

overcome by recording at a different Bragg condition. By using the dual prism 

method, the angles are much less restrictive. With this method, the beam alignment 

and uniformity are much simpler to maintain. Since the size of the beams can be 

larger than in the edge-referenced method, the anti-Gaussian filtering is much easier 

to accomplish. The refractive index matching of the substrate and film for recording 

is virtually eliminated because the angles of incidence are much smaller (for edge-lit 

replay, the restrictions still apply). The attenuation of the reference beam is much 

less, so the profile ofthe recorded grating is much less likely to be tapered. One of 

the few disadvantages is that the grating fringes must be parallel, thus one could not 

use diverging or converging wavefronts efficiently on replay. 

4.6 Waveguide Holograms 

Whereas in a steep reference hologram the light reaches the film directly, in a 

waveguide hologram the reference beam is bounced through a total internal reflection 

inside a substrate before it reaches the recording film. Many authors have reported on 

waveguide holography, beginning with Suhara [4.22] in 1976. Since then "waveguide 

holography" referred to here has also been called "guided-wave holography" [4.25], 

variations of "gratings in waveguides" [4.26, 4.23], "waveguide holograms" [4.27, 

4.28, 4.22, 4.29, 4.32, 4.33, 4.34, 4.35, 4.37], "substrate-mode holograms" [4.30, 

4.31], "substrate guided-wave holograms" [4.36], "guided-mode holograms" [4.38], 

and others [4.39]. 

As a result of the bouncing, the main differences between waveguide holograms and 

steep reference holograms are the non-uniform reftrence coverage and the formation 

of unwanted gratings. 
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4.6.1 Non-uniform Reference Coverage 

When the reference beam in a waveguide hologram reaches the film, the beam either 

overlaps itself from several modes, or has a discontinuous coverage leaving 

unexposed areas. In recording the wave guide hologram, two types of conventional 

reference wavefronts can be used-collimated or diverging (as shown in Fig. 4.17). 

Converging wavefronts are rarely used because the beam would focus and would 

result in a diverging wavefront after the focus. This would create serious non­

uniformities near the focus. Waveguide holograms with collimated wavefronts result 

in linear patches of light while waveguide holograms which have diverging 

wavefronts result in multi-moding patch overlap. 

a} CQ\!imated Waveguitle b) Diverging Waveguide 

Figure 4.17 The reference coverage through a substrate onto a film from a collimated waveguide (a) 

and a diverging waveguide (b). 

The linear patches created from a collimated waveguide result in dark areas where no 

hologram is formed at all. Therefore, the collimated wave front is usually 

unacceptable cosmetically. In the diverging waveguide, the areas of overlap have 

higher intensities resulting in a non-uniform intensity pattern which affects the 

refractive index modulation uniformity. 

The inherent absorption of the holographic recording material also affects the 

uniformity of the reference beam. As the beam passes in and out of the film, it is 

gradually absorbed. The angle the beam travels in the film for a waveguide hologram 

is steep and the absorption depends on the cosine of the angle (as in Eq. 2.2). This 

results in a highly attenuated reference beam. The attenuation is repeated for every 

reflection in a waveguide hologram. Thus, the intensity of the reference beam at the 
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last reflection is much less than at the first reflection. This unidirectional non­

uniformity alters the effective beam ratio at various places in the film and therefore 

reduces the diffraction efficiency as discussed in § 2.4.3. 

4.6.2 Formation of Unwanted Gratings 

After a reference beam with an angle of incidence of S reaches the surface of the film 

in a waveguide, the light reflects back into the substrate at an angle, SR' with the value 

SR=180o-e for a reflection hologram, or SR=S+90° for a transmission hologram using 

the angular conventions of Fig. 2.1. The area where two reference beams overlap is 

represented as the gray patches in the top view (corresponding to the film) in Fig. 

4.17b. When this bouncing reference beam interferes with the signal beam, three 

gratings (three sets offringes) are produced as in a Stetson TIR hologram [4.40]. This 

significantly reduces the dynamic range (the amplitude of the refractive index 

modulation) available to the desired fringes in this area of overlap, and therefore, the 

diffraction efficiency is reduced. In the black areas of Fig. 4.17, there are two 

reference beams incident on the surface, both of which reflect. Thus, there are four 

reference waves in these areas interfering together with one signal wave which 

produces ten different interference patterns or sets of fringes in the volume hologram. 

Not only is the efficiency of the hologram reduced, but in replay the light reaching the 

desired set of fringes is reduced. On replay, the multiple angles in the overlap areas 

arriving at an unwanted set of fringes may diffract out of the film in unwanted 

directions. This corresponds to stray light in HOE's or false images in display 

holography. Therefore, the overlap areas create fringes with lower refractive index 

modulation in recording and unwanted diffracted light in replay which dramatically 

reduce the overall efficiency of the system. 
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4.6.3 Comparisons with Steep Reference Holograms 

Steep referenced holograms may have collimated, diverging, or converging reference 

wavefronts in recording just as waveguide holograms. The difficulty of matching the 

replay source is also a factor in steep reference holograms. However, the existence of 

only one set of fringes and the possibility of a collimated reference in a steep­

referenced hologram increases the system efficiency and replay flexibility. 

As the thickness of the substrate decreases in a wave guide hologram, the maximum 

possible divergence decreases as well. As the divergence decreases and the direction 

of the reference beam approaches 90°, the angle of the reflected beam approaches 90° 

as well. Thus, as the angular difference in the incident and reflected beams in the 

overlap areas decreases, the fringes approach 45° (with a 0° signal angle). This type 

of waveguide hologram is essentially the same as an edge reference hologram 

recorded with a reference beam angle of 90°. One might think that this is irrelevant 

since one can not practically record at angles extremely close or at 90° anyway. 

However, 45° fringes with the correct spacing can be created by other methods, such 

as alternative Bragg condition recording (§4.4) or possibly using the direct fringe 

copying method. 

4.7 Direct Fringe Copy Holograms 

Advances in Microsharp ™ diffuser technology developed in the laboratory led to the 

idea that one could copy an amplitude hologram into photopolymer using incoherent 

UV light [4.41]. To attempt this type of recording, the photopolymer was laminated 

onto a rainbow amplitude H2 hologram recorded in silver halide. When the 

photopolymer was exposed to broadband UV light, the amplitude hologram could be 

transferred to a volume phase hologram within the film. Two experimental models 

and arrangements were developed for the copying as illustrated in Fig. 4.18. 
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Directed (Collimated) W Light Directed (Collimated) UV L.ight 

H.-____ ~---~--_'_1Photopolymer 

"i .............. Mylar • Black Light Dump 

a) b) 

Figure 4.18 The two models for copying the amplitude hologram into a phase hologram. (a) uses a 

Bragg reconstruction model where e is the Bragg angle. (b) uses the 'light tunnel' model where <I> is the 

fringe angle. 

Contact copymg amplitude holograms with the incident UV light at an angle 

normal to the surface was attempted. This yielded very poor results. Then, attempts 

were made at copying the holograms at an angle similar to the Bragg angle, e, as 

when copying a reflection hologram with a laser (Fig. 4.1Sa). These seemed to record 

partially with aberrations. Later it was theorized that a slightly steeper angle, ~, was 

needed which would enable the light to run parallel to the fringes (channeling it 

through at the correct angle). These results seemed to work better, yielding brighter 

samples with better field of view. 

This method worked better because the light is not in an interference recording mode 

as in reflection contact copying. If the copy is recorded as in 4. 1 Sa, then in order to 

get a phase hologram equivalent to the original amplitude hologram, the transmitted 

first order diffracted light must interfere with the zero order light. Due to the 

extremely low temporal coherence of the UV source, any interference pattern would 

be virtually negligible. An image was visible, although this is probably due to 

copying the volume amplitude hologram into a plane phase hologram at the surface of 

the polymer. With the recording angle as in Fig. 4.1Sb, the fringes are copied directly, 

virtually irrelevant of the temporal coherence, and only specific to the spatial 

coherence which is related to the degree of collimation of the incident beam. 
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The period of the fringes in the transmission amplitude master was near 4 J.lm (with an 

aperture of 2 J.lm). For the equivalent hologram to be recorded as a reflection 

hologram the fringe spacing will be considerably smaller and diffraction from the 

edges may become an issue. However, the self-modifying characteristics of the 

photopolymer will increase the local refractive index in the regions between the 

amplitude fringes (inside the 'light tunnels') which may help counteract the spreading 

of the light due to diffraction (which would increase the spacing of the fringes and 

reduce the diffraction efficiency). 

In early experiments, Du Pont recording films HRF 150 and HRF 600 (both 100 

microns thick) were used for the copies, however, the images seemed to be over­

modulated. The holograms had remarkable efficiency (more efficiency than the 

master), however they seemed to have a lensing effect on replay. This was attributed 

to a formation of a very thick hologram and possibly poor collimation of the UV 

source. Results were more efficient and had better angle of view when copied into 

thinner emulsions (such as 25 micron HRF 352). Due to the high contrast of the 

amplitude copy holograms, the amplitude modulation is almost binary. This results in 

an extremely good mask for copying into the photopolymer, best described by Phillips 

et al.[4.41]: 

"The unusual aspect of this type of contact copy method lies in its use 

of high contrast (non-sinusoidal) patterns of interference. Thus the 

driving force behind monomer migration is greater than that present in 

conventional holographic recordings where the optical patterns involve 

at best cos2 fringes. Once the monomer diffuses, then it contributes to 

a linearization of the high gamma silver recording. Were the copy 

hologram to retain the effects of such high gamma, it would lose 

efficiency due to the need for a high level of beam ratio consistent with 

image linearity." 

------------------------------------------------------
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The amplitude holograms were made using a special low-noise process. The 

optimum process was found to be a 4: 1 reference to signal ratio and a 500 I!J!cm2 

exposure of an Agfa Millimask® silver halide film which is developed in 4-Amino 

Phenol developer [4.41] for 2 minutes. This yielded a high contrast amplitude 

hologram with low noise. Some of the speckle noise was reduced by adjusting the slit 

width used in the rainbow copy hologram to a ratio of 50 cm object distance: 1 cm slit 

width. 

For the exposure of the photopolymer through the amplitude hologram, it was 

necessary to use low intensity UV (broadband) light in order for the rate of diffusion 

to be greater than the rate of polymerization so that the photopolymer would not 

'freeze' and polymerize everywhere without the diffusion (which is needed for a high 

index of refraction modulation and diffraction efficiency). Good results were 

obtained using a 4 mW!cm2 broadband UV light source (Fig. 4.19) and a 5 minute 

exposure (1.2 Joules!cm2). 
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Figure 4.19 The broadband spectral output of tbe mercury discharge lamp used for the direct fringe 

copying oftbe amplitude masters into photopolymer. 
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When the copy geometry was altered to replay at the angle ~ (Fig. 4.18) higher 

efficiencies and viewing angles were noted. Unfortunately, the illumination 

wavefront used was not at an optimum as it was later realized that since the fringes of 

the amplitude rainbow hologram are not parallel, the UV light needs to be diverging 

similar with the fringes for the light to travel down the 'tunnels'. Thus, much better 

results should be obtainable with a diverging UV recording instead of collimated. 
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ChapterS 

Diffraction Theories 

5.1 Introduction 

This chapter describes the various theories used to model diffraction from a hologram. 

In particular, the coupled wave diffraction theory is analyzed, and the assumptions 

made in Kogelnik and Vasnetsov theories are evaluated for the regime of heavily 

slanted holograms. In order to verity or invalidate these theories, the rigorous form of 

couple wave diffraction of Moharam and Gaylord [5.4] is solved and a modification 

of the theory is made in order to rigorously compute the diffraction intensities for 

thick holograms with many possible space harmonics (pairs of diffracted orders). 

Over the years, many people have attempted to describe the diffraction effects when a 

plane wave is incident on a dielectric medium with a sinusoidal variation in 

permittivity, such as the case in holography. These theories are all derived from 

Maxwell's equations and have been classed into two categories: 'dynamic' and 

'kinematic' theories. The kinematic theory has important flaws-the main one being 
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that power conservation is not satisfied. Thus, this theory is not usually used, and will 

be disregarded here. All of the dynamic theories can be classified into three main 

groups: coupled wave, modal, and perturbation theory [5.1]. These theories vary 

according to how the mUltiple scattering within the media is described. The coupled 

wave theory uses differential equations, the modal theory uses simultaneous linear 

equations, and the perturbation theory uses integral equations. These three theories 

have been proven to be equivalent [5.2, 5.3]. Since the coupled wave theory is the 

most commonly used and is easy to associate with experimental results, it is the one 

examined here. 

5.2 Coupled Wave Equations 

First, conditions for which the diffraction will be modeled must be defined. In the 

work presented here, the light is TE polarized (H mode or S polarized) from a medium 

with dielectric constant, Eb incident on a slab phase grating with a dielectric 

permittivity which can be represented by 

E(X,Z) = E2 + E m cos[K(x sin~ + zcos~)], (5.1) 

with Em«E2, and in terms of refractive index, 

n(x,z) = n2 + nm cos[K(x sin~ + zcos~)] where (5.2) 

Em = 2nm and the commonly used term ~n is defined by (5.3) 
E2 11z 

(5.4) 
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K is the magnitude of the grating vector at an angle ~ with the z-axis and is defined 

by K = 27t where A is the fringe spacing (distance between regions of constant 
A 

permittivity) as indicated in Fig. 5.1. 

Incident 

T 
d 

~ 

+3 +2 

z 

Backward 
Diffracted 

+1 0 Forward 
Diffracted 
Waves 
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1 

X 

Region 2 

" 

Region 3 , 
3 

Figure 5.1 The geometry for diffraction from a slanted planar grating. [5.5] 

The light leaves the opposite side of the grating through a medium with a dielectric 

constant E3' The grating does not vary in the y~irection and all three regions are 

assumed to have the permeability of free space. The following derivation follows 

closely that of Moharam and Gaylord [5.5} and uses their notation wherever possible. 

The total electric field in region I can be thought of as a sum of the incident wave, 

plus the sum of all of the reflected (backward diffracted) waves. The backward 

diffracted waves in region I are as a result of grating (bulk) diffraction as well as 

boundary diffraction. In region 2, the electric field is a supposition of all of the 

forward and backward diffracted waves. In region 3, the electric field is simply the 

sum of all of the forward diffracted waves. These waves may be normalized and 

expressed by 
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(5.5) 

(5.6) 

E, = L:Z;expE-j(r3,x+~3i(z-d)] , 
(5.7) 

with 

i3, = kJ sinS -iKsin$, (5.8) 

(5.9) 

~ ,/ = k/ - i3 / , forregions I and 3, and (5.10) 

~2' = k2 cos9' - iK cos~ for region 2, (5.11) 

where 1=1,2, 3 is the region index; i is the wave index; Ri and Ti are the nonnalized 

amplitudes of the ith reflected and transmitted wave; Si is the amplitude of the ith 

wave in region 2; A. is the free space wavelength of the incident light; 9 is the angle of 

incidence in region 1; and 9' is the angle of incidence inside region 2. The waves 

represented by Eqs. (5.5), (5.6), and (5.7) are phase matched at the two interfaces and 

derived with the assumption that the modulation inside region 2 is periodic. However, 

if the slant angle, ~, equals zero, the modulation is no longer periodic and there are a 

finite number of cycles. Thus, the Floquet theorem which was used to describe the 

waves [5.4] is no longer valid, and the rigorous chain-matrix method solution should 

be used [5.6], and not the "adaptation" of the rigorous coupled wave theory suggested 

by Zylberberg [5.7] as indicated by Moharam [5.8]. 
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In order to accurately predict the diffraction behavior, the amplitudes of the waves are 

needed. These can be obtained by solving Maxwell's wave equation for the 

modulated region: 

(5.12) 

Thus, by substituting Eqs. (5.6) and (5.1) into (5.12), the differentiation yields the 

infinite set of coupled wave equations without the usual approximations: 

with 

Em d 2S,(u) 

8E 2 du2 

S () SA ( ) jnB m • A, 21.,2 d 
,u = ,Z,u= r::-Z=}KZ,)J= r::-' p=-2-'an 

2A,,,E 2 A"E 2 A Em 

2A,Je; 
B= A, 2cos(~-e'). 

(5.13) 

(5.14) 

(5.15) 

This version of the coupled wave equations is as stated in [5.4] and is simply derived 

as in Appendix 2 of Syms [5.1]. Eq. (5.13) is an infinite set of second order coupled 

differential equations. These equations do not have an exact solution. However, one 

may compute an approach to the solution by letting i reach very high values, and 

solving the resulting equations at the desired accuracy. 

An approximate theory is much simpler to use and program than the rigorous theory. 

Some of the approximate theories can be ruled out for the slanted fringe regime 

without even the need for comparison with the rigorous results (such as Kogelnik 

[5.9]). Unfortunately some approximate methods (such as Vasnetsov [5.10]) must be 
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compared with the rigorous solution to test their validity. By first solving the rigorous 

equations, one can then verify whether or not an approximate theory is valid for a 

certain diffraction regime (such as a hologram with fringes near 45°). 

5.3 Rigorous Solution of the Coupled Wave Equations 

The computational solution of the rigorous coupled wave (ReW) theory begins by 

following Moharam [5.5] and converting the equations to unforced state equations. 

The infinite set of second order coupled wave equations is represented by two first 

order infinite state equations. By representing them in a state-space, a solution can be 

obtained from computation of the eigenvalues and eigenvectors of the state-space 

coefficient matrix such as in Liu [5.11]. 

5.3.1 Solution of the Coupled Wave Equations 

By substituting column vectors of S, S', and S" for Si> dS/du, and d2S/di, Eq. (5.13) 

can be re-written in state space as 

(5.16) 

where the matrix brs is determined from the substitutions: 

(5.17) 

(5.18) 
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By substituting Eqs. (5.17) and (5.18) into Eq. (5.13), the state equations for Eq. 

(5.13) can be written as 

(5.19) 

(5.20) 

a = 8&, , b, = -api(i - B), and C, = a(cos9' - il-L COSq,). (5.21) 
Em 

One can rewrite Eqs. (5.19) and (5.20) in a matrix fotnl as 

8", 0 0 0 0 0 1 0 0 0 0 S, , 

811 0 0 0 0 0 0 1 0 0 0 S" 
8'0 

0 0 0 0 0 0 0 1 0 0 S"O 
8,_, 0 0 0 0 0 0 0 0 1 0 S,_, 

8,_, 0 0 0 0 0 0 0 0 0 1 S,,_, 

= 

8, , b, a 0 0 0 c, 0 0 0 0 S", 
821 a b, a 0 0 0 C, 0 0 0 S, , 

8'0 0 a bo a 0 0 0 Co 0 0 S,o 

8,,_, 0 0 a b_. a 0 0 0 C_I 0 S, -I 

8,,_, 0 0 0 a b_, 0 0 0 0 C_2 S, _, 

(5.22) 

Thus, Eq. (5.16) is represented in full matrix fotnl in Eq. (5.22). The coefficients of 

the matrix brs are as defined above and the solution to the equation can be found in 

tetnls of the eigenvectors and eigenvalues of brs. Moharam and Gaylord [5.4] use a 

solution expressed in the fotnl 
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S;(u) = 2: Cmw;,mexp(qmu) , (5.23) 
m 

where Wim is the mth element (i.e. column m) of the row in the matrix [w] consisting of 

the eigenvectors (the eigenvectors are in the rows) where i is the ith row of the matrix 

corresponding to the ith order and qm is the mth eigenvalue. The coefficients Cm are to 

be determined from the boundary conditions. Eq. (5.13) may also be written in terms 

ofzas 

(5.24) 
m 

With this expression for S;(z), one can note that the exponential term has the potential 

to reach extremely high values if the eigenvalues (qm) have large, negative imaginary 

components. This is computationally very difficult for a computer to handle because 

the large values obtained are placed within the boundary conditions and the resulting 

system of equations must be solved without numerical overflow. When the very large 

values of the equations are placed with the other very small values, calculations are 

much more difficult for any computer and possible errors are generated. For the case 

of very deep gratings or when one is considering many harmonics (diffractive orders), 

some of the eigenvalues have large, negative imaginary components. 

This difficulty occurs more often in the case of binary gratings and Mohararn 

addresses the computational difficulties by exploiting the symmetry of binary gratings 

[5.12] and redefining the solution (such as redefining Eq. (5.24». The symmetry 

involved with binary gratings allowed him to use only the positive eigenvalues. 

However, the symmetry of binary gratings is not present in slanted fringe gratings. 

The eigenvalues generated from slanted gratings do exhibit half with positive 

imaginary components, and half with negative imaginary components, though they are 

not necessarily equal nor complex conjugates. A solution to this type of 

computational problem in diffraction has not been published. Therefore, as suggested 
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through conversation with Dr. Moharam, a new solution is created by replacing Eq. 

(5.24) with 

S,(z) = L [pm+ w;,m+ exp(jqm+kz) + Qm- w;,m_ expl!qm_kz(z - d)] (5.25) 
m 

where P m+ and w;,m+ are the coefficients and eigenvectors corresponding to the 

positive imaginary eigenvalues qm+; and Qm. and w;,m. are the coefficients and 

eigenvectors corresponding to the negative imaginary eigenvalues qm.' Thus, one 

essentially changes the single wave solution of Eq. (5.24) into the supposition of two 

separate waves traveling in opposite directions (the +z and +(z--d) directions). By 

separating the qm values into qm+ and qm. at the boundary conditions of z = 0 and 

z = d, the arguments of the exponential of Eq. 5.25 will always be zero or negative. 

This will preempt numerical overflow and computational difficulties. 

In order to determine the coefficients P m+ and Qm., Eq, (5.25) must be placed back 

into Eq. (5.6), and then the waves must be solved at the boundary conditions of z=O 

and z = d. At the boundary conditions (surfaces 1-2 and 2-3) the tangential 

component of the electric fields must be continuous as well as the tangential 

component of the magnetic fields. Since with H mode polarization, the component of 

the electric field is only in the y-direction, the tangential component is simply the 

electric field itself. The tangential component of the magnetic field, however, is in the 

x--direction and is determined by MaxweII's Equation 

v x E = - fiB, thus the tangential component for the magnetic field is (5.26) 
Bt 

_(-i) BEy Hx - --. 
Ol~ Bz 

(5.27) 

By matching the electric and magnetic fields at the boundary conditions at z = 0 and 

z = d from Eqs. (5.5), (5.6), (5,7), (5.26), and (5.27), one forms the equations: 
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Tangential E at z = 0: 

Tangential H at z = 0: 

o dE2 ~li(R, -u 10) = -(z=O), 
dz 

Tangential E at z = d: 

Tangential H at z = d: 
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(5.28) 

(5.29) 

(5.30) 

(5.31) 

where Ow is the Kroneker delta function and is zero unless i=O. Putting Eqs. (5.25) 

and (5.6) into Eqs. (5.28) to (5.31) yields 

Tangential E at z = 0: 

o iD + R, = L Pm+ w"m+ + Qm-w,,m_Xm_, 
m 

Tangential H at z = 0: 

(5.28) 

~li(R, -( 10 ) = L Pm+ w',m+ (qm+K -~2J+ Qm- w,,m_(qm_K -~2j )xm- , (5,29) 
m 
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Tangential E at z ~ d: 

1; = I Pm+ Wi,m+X m+Y; + Qm- Wi,m_Y; , 
m 

(5.30) 

Tangential H at z ~ d: 

-~3i7; = Ipm+w"m+Xm+r.(qm+K -~2")+Qm-W,,m-r.(qm-K -~2i)' (5.31) 
m 

where 

Eliminating Tj and Rj from Eqs. (5.28) through (5.31) gives 

I Pm+ [(~l,i +~2,i - qm+K )w"m+ ]+ Qm- [(~li + ~2i - qm_K )w,,m-Xm-]~ 2~1,,8 10 , 
m 

I Pm+ [(~2" -~3i -qm+K )w,,m+Xm+]+ Qm-[(~2i -~3" -qms )w"m-]= o. 
m 

In matrix form, Eqs. (5.33) and (5.34) can be written as 

[ 
W.Gl-V,W. 

X+w.G3 - xy+w. 
Xw.G1-XJ:_w.][P]=[D] h re w.G

3
-v.w. Q Z,w e 

n is the number of space harmonics retained in the calculations and 

(5.33) 

(5.34) 

(5.35) 
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W+ is the (n x n) eigenvector matrix with the eigenvectors of matrix brs corresponding 

to the eigenvalues with the positive imaginary components in the columns, 

W is the (n x n) eigenvector matrix with the eigenvectors of matrix brs corresponding 

to the eigenvalues with the negative imaginary components in the columns, 

V+ is the (n x n) diagonal matrix of eigenvalues with positive imaginary components 

obtained from matrix brs, 

V. is the (n x n) diagonal matrix of eigenvalues with negative imaginary components 

obtained from matrix brs, 

X+ is the (n x n) diagonal matrix with the diagonal elements equal to 

exp(jq m+Kd) where q m+ are the eigenvalues with the positive imaginary components, 

X is the (n x n) diagonal matrix with the diagonal elements equal to 

exp( - jqm_Kd) where qm. are the eigenvalues with the positive imaginary components, 

G] is the (n x n) diagonal matrix with the ith diagonal equal to ~l,i + ~2i' 

G3 is the (n x n) diagonal matrix with the ith diagonal equal to ~2i -~3i' 

P is the (n xl) matrix with the coefficients corresponding to P m+' 

Q is the (n xl) matrix with the coefficients corresponding to Qm-, 

D is the (n x 1) matrix with all of the matrix elements zero except the element 

corresponding to i=O, which has the value of 2~ 10' 

Z is the (n x 1) null matrix. 
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The system oflinear equations represented by Eq. (S.3S) can be solved for P and Q by 

various techniques such as Gaussian elimination. One may note that there are 2n 

systems of equations with 2n constants to be determined (n for P m+ and n for Qm.}. 

Once P m+ and Qm. have been determined, these can be put back into Eqs. (S.28) and 

(S.30) to solve for the amplitudes of the reflected and transmitted waves. The 

diffraction efficiencies ofthese waves are then given by 

(S.36) 

(~,) . DE,. = Re -' TT, ,I j:: , I 

~I,O 

(S.37) 

where the quantity Re( ~ I i) is the ratio of cosines of the ith wave to the zero order 
~1,O 

wave inside the lth medium. These results are verified by the law of conservation of 

power such that 

(S.38) 

The results of the rigorous coupled wave theory are shown in §S.S and were computed 

from a program written to calculate the results in the matrix based computational 

software MATLAB® (Appendix C), 

5.3.2 Limitations of the Rigorous Coupled Wave Solutions 

There are two main difficulties with the current format of the rigorous coupled wave 

equations. The setup of the equations does not allow for angles of incidence or 
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diffraction at exactly 90°. The solutions are not valid in these regimes. The Floquet 

condition, upon which this rigorous solution is based, is valid only for periodic 

gratings. To define a boundary for the diffracted (or incident wave) at 90°, one must 

have a finite number of fringes. Thus, the Floquet condition would not be valid. This 

limitation surprisingly arose when comparing the rigorous coupled wave theory with 

the Vasnetsov two wave solution (§5.4.2). The limitation occurred when the angle of 

diffraction of the second order was at 90°. This discrepancy shows that the rigorous 

coupled wave solution is invalid in all regimes where any diffraction order is at 90°. 

The rigorous theory seems to be continuous and is deemed to be valid at reference or 

replay angles approaching 90° from either side. 

While the calculations presented here are only for co sinusoidal index modulated phase 

gratings, the input into the rigorous method can be adapted to include any type of 

modulation phase or amplitude grating. This can be inputted by breaking down any 

grating profile into its Fourier harmonics to any level of desired accuracy. The 

rigorous theory has been calculated for both TE, TM or arbitrary degree of 

polarization [5.15] although only TE mode has been examined here. 

5.4 Approximate Theories 

Because many researchers have not been interested in the full rigorous solutions of the 

coupled wave equation, there have been many approximate solutions to suit the more 

common regimes or those in which they were working. As a result there have been 

many proposed theories or solutions to the equations~some of which are equivalent, 

and some of which are only applicable to very few situations. Gaylord and Moharam 

depicted the differences between the various theories in [5.5] as indicated in Fig. 5.2. 
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Figure 5.2 The planar diffraction theory hierarchy (Gaylord and Moharam [5.5]). 
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The method most referred to for analyzing diffraction from a hologram is Kogelnik's 

coupled wave theory [5.9]. This theory, while simple and easy to use for some 

gratings, is only an approximate theory. Unfortunately, Kogelnik's theory is not valid 

for steep-reference holograms, mainly because it leaves out the second order 

derivatives. This will be shown in the next section, as his theory can be shown to be 

invalid for steep slanted or highly modulated holograms without the need to compare 

with the rigorous coupled wave theory. 

5.4.1 Kogelnik's Two-Wave Coupled Wave Theory 

Kogelnik's coupled wave equations [5.9] do not involve the second order derivatives, 

boundary diffraction effects or contain information regarding higher orders. His 

second order equations are reduced to simple first order equation for phase gratings: 

R' cosS = - jKS (5.39) 
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(cose - : cos~ )s'+ jSS = - jKR (5.40) 

where R, S, R', S' are the reference wave, signal wave and their first derivatives 

respectively, e is the angle of incidence, Cl is the average absorption constant, j is 

..r:i, K is the coupling constant, K is the grating vector, ~ is the propagation constant, 

~ is the grating slant angle, and S is the dephasing measure. 

The effect of the second order derivatives is dependent on the grating slant angle, ~, 

and the modulation. One may hypothesize with Kogelnik [5.9] that the second order 

components do not significantly affect the equation. Kogelnik assumes that "the 

energy interchange between S and R is slow and that the energy is absorbed slowly, if 

at all." However, when the slant angle approaches 45°, as in the regime of steep 

referenced holograms, or when the modulation reaches high values (such as n.n = 0.06 

with some of Du Pont's photopolymers), this may not be true. A slant angle of 45° is 

the boundary between reflection and transmission holograms. (One may also refer to 

the fringe angle when classifYing a hologram because it is simply half of the sum of 

the two recording angles. The fringe angle is the angle between the K vector and the 

x-axis as in Fig. 5.1 and is simply 90-<\> where ~ is the slant angle defined as the angle 

between the K vector and the z-axis). 

In order to detennine if the second order derivatives are valid, the grating must first be 

defined, specifically the fringe angle. In the classification of steep referenced 

holograms here, the fringe angle is usually between 40° and 50°. In waveguide 

holograms, the fringe angle is much more relaxed than steep reference holograms and 

one might hypothesize as Huang [5.13] that the second order derivatives might be 

ignored. 

In a paper on the diffraction properties of substrate guided-wave holograms, Huang 

[5.13] limited the second-order derivatives to ten times less than the first order 

derivatives. With this restriction, silver-halide waveguide holograms can use the 
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first-order derivative solution for fringe angles from 0°-41.25° and 45.15°-90° for 

the parameters given in the paper. These results essentially suggest that reflection 

silver halide waveguide holograms can use the Koge1nik first-derivative solution for 

the coupled wave equations, and transmission waveguide holograms can use 

Kogelnik's solution unless the reference angle is such that the fringe angle is greater 

than 41 0. Huang's results must be taken one step further to show that the validity of 

the theory is still very dependent on the index modulation and thickness when 

combined with the heavily slanted fringes. 

In order to verify the range for which the first--{)rder solution is valid for slanted 

holograms, one can first assume that the first order solution holds true. Then, with 

this solution, the first order derivatives must be compared with the second order 

derivatives. If the second order derivatives are, for example, one tenth of the value of 

the first order derivatives, then the approximation which ignores the second order 

derivatives is not valid. Mathematically, Huang [5.13] represented this by 

a''!' la'!' I --,-' «--' where 
OZ az 

(5.41) 

'!', is the complex envelope of the waves propagating inside the grating which after 

substituting in the first order solutions becomes 

vltanvl« k,d cose o for reflection and (5.42) 

v Itaohv I «k,d co se 0 for transmission holograms (5.43) 

where 

dk,nm 

v = 2n,~±cose, cose, ' 
(5.44) 
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€I, , €Is and eo are the reference, signal, and replay angles from the film surface nonnal, 

respectively, and the other parameters are as defined in the previous section with the 

assumption of replay at the first Bragg angle, eo=6,. One may suggest as Huang that 

the second derivatives become influential when they are one-tenth of the value of the 

first derivatives. Huang illustrated for one simple case of silver-halide holograms 

where the first order derivative approximation was valid. For his case of silver halide 

with a 7J.lm thickness and a modulation ofnm= O.oI, the approximation was valid for 

reference angles between 0° and 82.5° for transmission holograms and between 90.3° 

and 180° for reflection holograms. However, he did not expand his results to include 

different modulations or other recording materials. His results are expanded here 

(showing the regimes where the Kogelnik approximation is not valid) for variations in 

modulation and thickness for various recording angles in silver halide and 

photopolymer holograms (Fig. 5.3). 

Huang shows that for his particular recording case of substrate guided wave 

holograms, he can use Kogelnik's theory. However, by expanding the calculations, 

one can see that if the thickness increases, Fig. 5.3(d), or the modulation increases, 

Fig. 5.3(b), one can not use Kogelnik's theory for silver halide holograms. For 

transmission silver halide holograms, one can not effectively use Kogelnik's theory at 

all for thicknesses of 32 J.lm. While many of the conunercial film producers such as 

AGFA produce at 7 J.lm, some holographers coat emulsions much thicker. For silver 

halide reflection holograms, one is essentially safe using Kogelnik's approximation 

unless recording an extremely steep referenced hologram (or substrate guided 

hologram). The index modulation does not usually affect the use of Kogelnik's theory 

for reflection holograms because the modulation would not be extremely high (such as 

the nm = 0.08 required for e,~ 95°) to invalidate Kogelnik's theory. 

Huang uses Kogelnik's theory to make claims regarding the angular and wavelength 

bandwidths. Huang's angular and wavelength analysis of edge-referenced reflection 

holograms illuminated from the edge does show the correct trends when compared to 

the rigorous theory of §5.5, however, the results are still valid only for some regimes. 
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As a result, Kogelnik's theory is not applicable for analyzing steep referenced 

holograms and should only be used in perhaps a limiting single case and should not be 

generally applied. 

Photopolymer Holograms Silver Halide Holograms 
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180 180 

180 160 

140 140 

.120 .120 
;; ;; 

~ 100 ~ 100 · . • 0 0 
0 0 

~ BD ~ 80 
~ • • 
~ 60 It 60 

40 40 

20 20 

0
0 

0 

a) Index Modulation b) 0 

Non-valid Approximation Regimes for Pholopo~mer Non-valid Approximation Regimes for Silver Halide 
180 180 

160 160 

140 140 

~ 120 ~ 120 
~ ~ 

~ 100 ~ 100 • • 0 0 
0 0 

~ BD ~ 80' 
~ ~ • • 
~ 60 It 60 

40 40 

20 20 

0 
20 40 60 60 100 

0 

C) d) 20 40 60 60 100 
Thickness (Microns) Thickness (Microns) 

Figure 5.3 The regimes where the Kogelnik approximatiou of ignoring the second derivatives is not 

valid. The black areas (the invalid regimes) represent where vltanvl2: (O.I)k2d cos8 0 for reflection or 

vltanhvl2: (O.I)k2dcos8 0 for transmission holograms. The gray shading areas represent values 

proportionately less than 0.1. (b) and (d) are for silver halide holograms where n,=1.63, 1.=647 nm, 

with nm= 0.01 for (d) and d=7 ~m for (b). (a) and (c) are for photopolymer holograms where n,=1.5, 

1.=647 nm, with nm = 0.02 for (c) and d=25 ~m for (a). 
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Huang only analyzes holograms with a fixed signal angle at 0°, and does not examine 

the efficiency, wavelength or angular bandwidth with respect to signal angle 

illumination. In other words, Huang does not examine grazing diffraction. Another 

approximate theory suggested specifically for very steep referenced holograms and 

grazing diffraction was described by Vasnetsov et. al. [5.10]. 

5.4.2 Vasnetsov's Two Wave Second Order Coupled Wave Theory 

In 1977, Kong [5.14], expanded Kogelnik's work to include the second order 

derivatives and analyzed grazing diffraction for unslanted holograms. Vasnetsov et 

al. [5.10], further expanded this theory for grazing diffraction of heavily slanted fringe 

holograms. Vasnetsov's solution takes the two wave coupled wave equation and omits 

the terms corresponding to the -I order because they are evanescent (Vasnetsov refers 

to them as "non-existent") in the case of grazing diffraction from a heavily slanted 

fringe grating (44.45° in the case examined). Also, in Vasnetsov's solution, one can 

not account for higher orders, such as those which occur in an unslanted hologram. 

Thus, one can rule out Vasnetsov's solution for slightly slanted or very thin 

transmission holograms which normally exhibit efficiencies in the higher harmonics. 

In order to determine the exact regimes where V asnetsov' s theory can be used, the 

results for Vasnetsov's calculations were compared with results from the rigorous 

coupled wave theory and are shown in Fig. 5.4. The dark areas correspond to regimes 

where the difference in first order diffraction efficiencies between the rigorous method 

and Vasnetsov's method are greater than or equal to 5%. The gray areas correspond 

to values proportionately close to 5%. In other words, the black areas of Fig. 5.4 are 

regimes where one can not use Vasnetsov's theory. 
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Figure 5.4 The regimes where Vasnetsov's two-wave coupled wave theory is not valid. The black 

areas correspond to a 5% or more error in the computed diffraction efficiency of the fIrst order. The 

faint lines or marks at 300 for transmission holograms and 1500 for reflection holograms correspond to 

regimes where the second order of diffraction is at 900 and the rigorous coupled wave theory is not 

valid. The holograms were recorded with a 00 signal angle and the reference and replay angle varied 

for transmission or reflection cases. The recording and replay wavelength was 647 mu in air and the 

indices of refraction are nt = n, = n, = 1.5. In (a) and (b), the emulsion is 7 I'm thick, while in (c) and 

(d) the emulsion is 25 I'm thick. 

As can be seen from Fig. 5.4, Vasnetsov's theory can essentially be used for reflection 

holograms. However, in transmission holograms, a high refractive index modulation 

severely limits the applicable regimes. Also, as the fringe angle approaches 45° (the 
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reference angle approaches 90°), the refractive index modulation at which the theory 

becomes inapplicable decreases. Interestingly, the regime just before 45° degrees is 

valid for most index modulations. The example examined by Vasnetsov falls into this 

regime and is therefore valid. However, the theory is not valid at most refractive 

index modulation values when the fringe angle is near 43° (this invalid regime is 

larger with thicker emulsions as can be seen in Fig. 504 (a) and (c». Therefore, like 

Kogelnik's theory, the range of Vasnetsov's theory is very limited and should not be 

used in the general case of steep reference holograms. 

The faint lines on Fig. 5 A at 30° and 150° are actually areas where the rigorous 

coupled wave theory is not valid. As explained in §5.3.1, the rigorous theory is not 

valid where the angle of diffraction for any order is 90°. Thus, in these very limited 

cases where the 2nd order of diffraction is at exactly 90°, the Vasnetsov calculations 

are actually closer to being rigorously correct. 

5.5 Theoretical Diffraction Characteristics using RCW theory 

Holograms inherently have many important qualities which enable them to be useful 

in many optical applications. Some of the most important qualities include diffraction 

efficiency, angular sensitivity, wavelength sensitivity, and polarization sensitivity. 

All of these characteristics are crucial to the performance of a hologram as an optical 

element and can be modeled using the RCW theory. 

Using the RCW theory one can draw conclusions about the characteristics that are not 

analytically obvious from the coupled wave equations. Thus, for example, one could 

predict how the wavelength bandwidth will vary with slant angle or index modulation. 

In this section the angular sensitivity, wavelength sensitivity and diffraction efficiency 

will be analyzed with regards to the normal variables of slant angle, index modulation, 

and thickness. Polarization sensitivity is not examined here due to the additional 

complication involved with writing the computer program, although basic RCW 
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theory can be expanded to include arbitrary polarization [5.15]. As most of the 

traditional holographic recordings are done with TE polarized light, this is the 

polarization examined here. 

In all of the graphs in this section, es is the recording signal angle and is always equal 

to 0°, er is the recording reference angle, 9replay is the replay angle, nmod is the 

amplitude of the refractive index modulation, d is the film thickness, "-record and ~eplay 

are the recording and replay wavelengths in air respectively. Therefore, the fringe 

angle of the hologram is always half of the reference angle. To analyze only.the 

diffractive effects within the medium (thus ignoring boundary diffraction), the 

hologram is surrounded by a medium with the same average index of refraction (Le. 

nl = n2 = n3). All of the data for the graphs was created while retaining at least 3 

harmonics (+3 order to -3 order). 

The RCW theory can analyze the diffraction efficiency in any order desired, while 

most common orders examined are those corresponding to 0, +1, and -1 for the 

forward and backward diffracted waves. The graphs in this section are representations 

of 3-D graphs where the darker the area, the higher the diffraction efficiency. 

Therefore, conclusions about the diffraction efficiency can be made from all of them. 

Since angular and wavelength bandwidth are usually defined based on the diffraction 

efficiency, the effects of certain physical parameters on diffraction efficiency will be 

examined first. 

5.5.1 Diffraction Efficiency 

The diffraction efficiency of the first diffracted order of a hologram will vary 

depending on the fringe angle, index modulation, and the thickness (Fig. 5.5). 
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Figure 5.5 The diffraction efficiency of a hologram for varying thicknesses, fringe angles, and index 

modulations. The black areas represent diffraction efficiency near 100% with the gray areas 

proportionately less. (a) shows the effect of varying the thickness on the efficiency ofa hologram with 

various fringe angles. In (b) the effect of the refractive index modulation on diffraction efficiency is 

shown for all fringe angles. (c) and (d) are enlargements of (b) showing the regions near 900 and 00 

respectively. 

From Fig. 5.5, one can see the expected modulation of the diffraction efficiency for 

transmission holograms as the refractive index modulation or thickness is increased. 

For reflection holograms, one can see the saturation of diffraction efficiency when the 

refractive index modulation or the thickness is increased. As the fringe angle 

approaches 45°, the frequency of the modulation of diffraction efficiency for 

transmission holograms seems to increase (Fig. 5.5(a)). However, as the fringe angle 
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becomes very close to 45° for a transmission hologram, the diffraction efficiency does 

not vary with index, and only one index of refraction modulation will yield the 

maximum diffraction efficiency (Fig. 5.5(c) at 89.5° for example). 

Upon examining Fig. 5.5(a) and (b), one can also see that the minimum refractive 

index modulation required for maximum diffraction efficiency is reduced the closer 

the fringe angle is to 45° for a reflection or transmission hologram. This has 

important implications if the holographic recording medium has an inherent low 

refractive index modulation. 

5.5.2 Wavelength Selectivity 

The Bragg condition defines the possible angle and wavelength combinations for 

efficient diffraction. When replaying at a Bragg angle with a different wavelength, 

the diffraction efficiency will decrease. The rate at which the diffraction efficiency 

falls off for deviations from the Bragg wavelength is described as the hologram's 

wavelength selectivity. The wavelength bandwidth of the hologram is a measured 

value used to describe the wavelength selectivity. Wavelength bandwidth is usually 

defined as the wavelength range at which the diffraction efficiency is above half of the 

maximum value (otherwise known as Full Width at Half Maximum, FWHM). 

The wavelength selectivity of holograms has been analyzed by many different 

methods, the most common of which is based on Kogelnik's theory [5.9]. In general, 

transmission hologram are associated with low wavelength selectivity (high 

wavelength bandwidth) and reflection holograms are associated with high wavelength 

selectivity (Iow wavelength bandwidth). Most theories suggest a continuous decrease 

in wavelength bandwidth as the fringe angle increases from a transmission hologram 

to a reflection hologram. Leith et. al. [5.16] in 1966 used a kinematic theory to model 

the wavelength and angular selectivity. Unfortunately, his kinematic theory can not 

account for interaction between the zero-order wave and the diffracted first order 
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wave. This, in addition to the fact that he states within the paper that his theory is 

inapplicable at angles approaching 90°, would rule out this theory as a basis for 

determining the angular or wavelength bandwidth for steep reference angle 

holograms. However, Bimer [5.17] and then Henrion [5.18] each used the 

assumptions made by Leith for bandwidth analysis in their thesis on edge-lit 

holograms. 

The RCW theory supports the diffraction characteristics of examples seen in the lab 

and it suggests very different wavelength bandwidth results from those of Leith. 

The diffraction efficiency of the first order when light is incident at the 

reference angle is equivalent to that when the light is incident at the signal angle (for 

all lossless, uniform, volume, phase holograms surrounded by a medium with the 

same average refractive index). The RCW theory predicts this as well as most other 

theories. However, one might not realize that the angular and wavelength bandwidths 

are going to differ very significantly (in the case of a slanted volume hologram). The 

asymmetry introduced by a slanted grating introduces a strong asymmetry in the 

bandwidth characteristics as well. A simple way to see this asymmetry is to realize 

that when a replay beam is incident at a steep reference angle, the effective thickness 

of the film is much larger than when the light is incident at a 0° signal angle. The 

results of this asymmetry in wavelength bandwidth can be seen clearly in Fig. 5.6 

In Fig. 5.6, (a) and (b) represent the first order diffraction characteristics versus replay 

wavelength of a hologram with a refractive index modulation of nmod = 0.003 as the 

fringe angle varies from 0° to 90°. Similarly, (c) and (d) with nmod= 0.02 and (e) and 

(f) with nmod = 0.04 show the wavelength bandwidth characteristics where the replay 

light is incident at the reference angle (0° to 1800
) in the left column and the light is 

incident at the signal angle (0°) in the right column. 
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Figure 5.6 The dependence of wavelength selectivity on fringe angle and replay angle for three 

refractive index modulations for volume phase holograms. The black areas represent diffraction 

efficiency near 100% with the gray areas proportionately less. 
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Firstly, one can easily see from Fig. 5.6 that the wavelength bandwidth is smaller with 

signal replay than with reference replay. The vertical linear bands on the left sides of 

the graphs represent the large bandwidth associated with transmission holograms. 

One can see that these bands begin to curve (or bend) the closer the fringe angle is to 

45° as seen easily from (c) and (d). This suggests that the wavelength bandwidth 

decreases with increasing fringe angle as suggested by most diffraction theories. 

Also, when looking at a constant reference angle (choosing one which corresponds to 

a high diffraction efficiency) the transmission bands seem to bend as the replay is 

changed from the reference angle to the signal angle. This corresponds to a reduced 

wavelength bandwidth. This is noticed mostly moving from (c) to (d). The bending 

is not as significant from (e) to (t) because of the effects of the high index modulation. 

At first look, the diffraction characteristics of the transmission holograms in Fig. 5.6 

seem to generally agree with accepted theory. However, upon close inspection, one 

can see that from (b) that an efficient transmission hologram can be made with a very 

small wavelength bandwidth. If the reference angle is just less than 90° and the 

refractive index modulation is low, the resulting bandwidth is very low (at a reference 

angle of 85° in Fig. 5.6 (b), the efficiency is 89% and the wavelength bandwidth 

(FWHM) is near 1.25 nm with very small sidelobes). 

Reflection gratings with a steep reference angle also seem to have diffraction 

characteristics not predicted by previous theories. While for reference replay the 

wavelength bandwidth appears to be continuously decreasing from the transmission 

case through the reflection case, the wavelength bandwidth for signal replay appears 

to decrease as the reference beam angle moves from 0° to 90°, then increases as the 

reference angle approaches 180°. From Fig. 5 .6 (e), one can see that the wavelength 

bandwidth of a reflection hologram can be high as well. This can be viewed another 

way with regards to the asymmetry. As the reference angle approaches 90° for a 

reflection hologram the wavelength bandwidth increases if replayed at the reference 

angle and the wavelength bandwidth decreases if replayed at the signal angle. 
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One should note that the results in Fig. 5.6 are self-consistent. The values on the far 

left side of the graphs in the left column approach those on the far left side in the right 

column, and similarly with the right sides. These results are as expected when the 

reference angle approaches the signal angle. 

The three rows in Fig. 5.6 indicate that in general, the bandwidth increases with 

increasing index modulation for transmission and reflection holograms (assuming one 

looks at the next high diffraction peak in a transmission hologram). This effect is seen 

more clearly in Fig. 5.7. 

The white lines at exactly 90° in Fig. 5.6 are due to the fact that the rigorous coupled 

wave theory is not valid at 90° incidence (left column) or diffraction (right column). 

Also, the white areas of parabolic shape in the top middle of (b), (d), and (t) are the 

off-Bragg conditions of zero efficiency which result when the first order diffracted 

beam is evanescent. 

For the transmission hologram of Fig. 5.7 (a) and (c) one can see that moving to the 

next diffraction efficiency maximum (dark area) when increasing the refractive index 

modulation will increase the bandwidth. A vertical line drawn at nmod~ 0.015 in (c) 

will essentially cross more black area than a line at nmod = 0.005. One must be careful 

to choose a line at the peak diffraction efficiency for these conclusions to be valid. 

The peak diffraction efficiency here is represented by a dark area, and it could be 

assumed for these illustrations that the peak efficiency was at an index modulation in 

the middle of the dark patch on the horizontal axis. Therefore, one could conclude 

from Fig. 5.7 that the wavelength bandwidth increases with increasing index 

modulation for transmission and reflection holograms. 

The conclusion drawn from Fig. 5.6 that the wavelength bandwidth is smaller when 

the replay angle is at the signal angle as opposed to the reference angle is seen much 

more clearly in Fig. 5.7 for both reflection and transmission holograms. 
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Figure 5.7 The dependence of wavelength bandwidth on index modulation for a transmission and 

reflection hologram. The wavelength bandwidth is shown for a transmission hologram in (a) and (c) 

and a reflection hologram in (b) and (d) for replay at the signal and reference angles. 

The data in Fig. 5.7 is consistent with the accepted theory that the diffraction 

efficiency at the Bragg condition (wavelength deviation of 0°) is the same whether the 

replay angle is the signal or reference. This can be seen on the graphs by a horizontal 

line at a wavelength deviation of 0° passing through bright and dark areas at the same 

index modulations for (a) and (c) and then again for (b) and (d). 

The thickness of a hologram can also affect the wavelength bandwidth as is seen from 

Fig. 5.8. 

------------________________________________________________________________________________ -J 
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Figure 5.8 The dependence of wavelength bandwidth on film thickness for a transmission and 

reflection hologram. The wavelength bandwidth is shown for transmission hologram (a) and (c) and a 

reflection hologram (b) and (d) for replay at the signal and reference angles. 

Once high diffraction efficiency has been obtained in a reflection hologram, the 

wavelength bandwidth is essentially independent of film thickness as can be seen 

from Fig. 5.8 (b) and (d). For transmission holograms, an increase in film thickness 

decreases the wavelength bandwidth. The increase in thickness increases the number 

of side-lobes and increases the proximity (in terms of wavelength proximity) of the 

side lobe peaks with respect to the on-Bragg peak. When considering only the main 
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peak at the Bragg condition and not the sidelobes, the wavelength bandwidth 

diminishes as the thickness increases for transmission holograms. 

5.5.3 Angular Selectivity 

Similarly with wavelength deviations from the Bragg condition, angular deviations 

from the Bragg condition result in a decrease in diffraction efficiency. This angular 

selectivity is measured by the angular bandwidth which is usually defined at the 

FWHM of the diffraction efficiency versus replay angle curve. 

In addition to small wavelength bandwidths, a transmission hologram can have small 

angular bandwidths. The angular bandwidth for reference replay is very different than 

for signal replay in the regime of heavily slanted transmission and reflection 

holograms. This was first noticed by Vasnetsov [5.10] for the case of heavily slanted 

(fringe angles near 45°) transmission holograms. He noted that for a 44.45° fringe 

angle in a transmission hologram, the angular bandwidth (FWHM) for the reference 

replay was approximately 50 times that of the signal replay. Vasnetsov did not 

expand these calculations to include reflection holograms or wavelength sensitivity 

for the regime of a steep referenced hologram. These regimes can be seen using the 

rigorous coupled wave theory as shown in Fig. 5.9. Vasnetsov's results are verified 

for the angular bandwidth as his theory is valid in his specific case hologram as 

mention in §5.4.2. 

In Fig. 5.9, (a) and (b) represent the first order diffraction characteristics versus replay 

angle for a hologram with a refractive index modulation of nmod = 0.003 as the fringe 

angle varies from 0° to 90°. Similarly, (c) and (d) with nmod= 0.02, and (e) and (f) 

with nmod = 0.04 show the angular bandwidth characteristics when the replay light is 

incident near the reference angle (8,-10° to 8,+10°) in the left column and the light is 

incident near the signal angle (-10° to 10°) in the right column. 
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Figure 5.9 The dependence of angular selectivity on fringe angle and replay angle for three index 

modulations for volume phase holograms. The black areas represent diffraction efficiency near 100% 

with the gray areas proportionately less. 
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One can see from Fig. 5.9 that the angular bandwidth is smaller when the replay angle 

is near the signal angle as opposed to near the reference angle. One can also see from 

the left side of all the graphs in Fig. 5.9 that for a transmission hologram the angular 

bandwidth relationship to the fringe angle is not as easily quantified. Here,. the 

angular bandwidth will be defined at the peak diffraction efficiency with the 

successive angular bandwidth at the next peak and the side-lobe characteristic of the 

transmission hologram will be ignored. On the graphs of Fig. 5.9, this could be 

represented by a vertical line in the dark band which enables the bandwidth to be 

calculated. With these definitions for the angular bandwidth of a transmission 

hologram, one could infer from the graphs that angular bandwidth decreases the closer 

the fringe angle is to 45° from 0°. This is seen most easily in Fig. 5.9 (f). 

The angular bandwidth of reflection holograms exhibit unexpected dependencies on 

the fringe angle. When replaying near the signal angle, the angular bandwidth 

decreases the closer the fringe angle is to 45° from 90° (Fig. 5.9 (d) and (f)). 

However, when the replay angle is near the reference angle, the angular bandwidth 

initially decreases as the fringe angle approaches about 60° from 90°, then it begins to 

increase to high angular bandwidths as it approaches 450
• 

The white lines at exactly 900 in Fig. 5.9 are where the rigorous coupled wave theory 

is not valid. In (a), (c), and (e), the white area line is slanted because the replay angle 

is changing, therefore, the recorded reference angle which would result in a 900 

diffraction angle is also changing. The lines have a white area associated with them 

just as the upper parts of (b), (d), and (f) have white parabolic areas above them. 

These areas represent the off-Bragg condition where the first order of diffraction is 

evanescent just as in the wavelength bandwidth analysis. 

The angular bandwidth increases with increasing refractive index modulation for both 

transmission and reflection holograms, as seen from the three rows of Fig. 5.9. Often 

the effects of refractive index modulation and hologram thickness on diffraction 
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characteristics are similar. The effect of increasing the film thickness can be seen in 

Fig. 5.10. 
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Figure 5.10 The dependence of angular bandwidth on film thickness for a transmission and reflection 

hologram. The angular bandwidth is shown for transmission hologram (a) and (c) and a reflection 

hologram (b) and (d) for replay at the signal and reference angles. 

The effects of the film thickness on the angular bandwidth are as traditionally 

expected from approximate theories such as Kogelnik's. For transmission holograms, 

the angular bandwidth decreases with increasing thickness as indicated from Fig. 5.10. 

The number and proximity of side-lobes increases as the thickness increases just as 
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with the wavelength bandwidth. Additionally, as in the wavelength bandwidth 

analysis, the angular bandwidth for a reflection hologram is essentially independent of 

thickness once a minimum thickness has been obtained. 

5.5.4 Theoretical Results Summary 

The results of the calculations on volume holograms can be summarized in Table 5.1 

where 'inv' refers to inversely proportional and 'prop' refers to proportional and unless 

indicated, bandwidth refers to both wavelength and angular bandwidth. 
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Transmission Holograms 

Slant 

(inv) The larger the fringe angle (closer to 45°), the smaller the bandwidth. 

Replay Angle 

(prop) The larger the replay angle (closer to 45°), the larger the bandwidth. 

Index Modulation 

(prop) The larger the index modulation, the larger the bandwidth. 

Thickness 

(inv) The larger the thickness, the smaller the bandwidth. 

Reflection Holograms 

Slant 

129 

Replay Reftrence (inv, varies) The smaller the fringe angle (closer to 45°) the larger 

the wavelength bandwidth. The smaller the fringe angle, the angular bandwidth 

decreases then increases. 

Replay Signal (prop) The smaller the fringe angle (closer to 45°) the smaller the 

bandwidth. 

Replay Angle 

(prop) The smaller the replay angle (closer to 0°), the smaller the bandwidth. 

Index Modulation 

(prop) The larger the index modulation, the larger the bandwidth. 

Thickness 

(ind) Once the minimum thickness for high efficiency has been obtained, the 

bandwidth is independent of thickness. 

Diffraction Efficiency 

The closer to 45° the fringes become, the index modulation and thickness required for 

maximum diffraction efficiency are both lower for transmission and reflection 

holograms. 

Table 5.1 A summary of the effects of physical parameters on diffraction characteristics 
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Chapter 6 

MEASUREMENT AND ANALYSIS OF 

PHYSICAL AND DIFFRACTION 

CHARACTERISTICS 

6.1 Introduction 

-In order to fully understand the diffraction characteristics of a hologram, one must 

first be able to measure or accurately predict the physical characteristics of the 

hologram. The difficulty in measuring the physical characteristics lies in the fact that 

the physical 'parts' of the hologram are just patterns of gradual refractive index 

differences. These differences are not finite, and are difficult to measure. Also, the 

size of the features is very small. For edge-lit holograms, the pitch of the features can 

be near 300 mn, which limits the type of measuring device which can be used. Many 
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people use different diffraction theories to try to model the some of these 

characteristics instead of physically measuring them. 

With information on the physical characteristics, one still must have accurate 

techniques for measuring the diffraction characteristics of the hologram. The 

diffraction characteristics are much simpler to measure. Most of the diffraction 

characteristics can be based on wavelength, polarization, and intensity and angle of 

diffracted light. All of these characteristics are relatively easy to measure. This is 

why diffraction characteristics are sometimes used to model the complicated physical 

characteristics. 

6.2 Physical Characteristics 

The recorded fringes of modulated index of refraction in a volume hologram are the 

distinguishing physical features. Many aspects of these fringes are crucial in defining 

the diffraction characteristics. The amplitude of the refractive index modulation and 

the thickness (or depth profile) are very crucial in determining the diffraction 

efficiency of a hologram. The physical spacing of the fringes determines the 

wavelength of diffracted light, while the angle of the fringes in a volume hologram 

determines the angle of diffraction. 

6.2.1 Refractive Index Modulation 

A sufficient refractive index modulation is necessary for a hologram to have high 

diffraction efficiency. However, a lower diffraction efficiency may be acceptable if 

the holograms is sufficiently thick. Measuring the modulation is critical, as the 

modulation may be too low or too high (transmission holograms) resulting in a low 

efficiency hologram. 
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The most common theory for determining the index modulation is Kogelnik's coupled 

wave theory [6.1]. Kogelnik's theory is the basis for Du Pont's predictions on 

refractive index modulation, or Lln [6.2]. Kogelnik's theory has been proven to be 

quite valid [6.3] for explaining the diffraction effects of non-slanted (0° or 90° fringe 

angles) reflection or transmission holograms. Du Pont base their measurements on 

the transmission of the zero order undiffracted beam through a hologram and use this 

transmission for the first order diffraction efficiency in Kogelnik's calculations. A 

very important consideration here is that Du Pont [6.2] quote Kogelnik's theory 

incorrectly by replacing n] with 8n. This is not correct because n] is the amplitude of 

the modulation factor as 

n(x) = no + nl cos(Kx) and with (6.1) 

(6.2) 

(6.3) 

The Du Pont values for their predicted illl are actually half of the value that they 

should be reporting. This is taken into account whenever the predicted refractive 

index modulation is analyzed. For Du Pont photopolymers the amplitude of the 

refractive index modulation crucially depends on the fringe spacing. The amplitude 

of the modulation also varies with different types of photopolymers and this is how 

Du Pont differentiate between their films for reflection and transmission use. Thus, in 

order to predict the refractive index modulation for steep referenced holograms, one 

must look at the refractive index modulation in previous calculations corresponding to 

a similar spatial frequency. 

One might imagine measurmg the refractive index modulation using a non­

holographic method such as an Abbe refractometer. Using an Abbe refractometer for 

measuring the refractive index of photopolymers has been partially successful as 

mentioned in §3.6.3. One might imagine that when recording in photopolymer, the 
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bright areas (constructive interference) result in a higher refractive index and the dark 

areas ( destructive interference) result in a lower refractive index and that the average 

index of refraction remains the same. Du Pont report a slight shrinkage in the film 

after the various processing stages [6.15], although this is based on the Kogelnik 

theory and does not take into account any non-linear fringe recording aspects of the 

film. 

If the maximum value for the area of higher refractive index was constant over a 

region, then this would show up on the Abbe as a fairly dark line, with other faint 

lines beneath it corresponding to the maximum TIR angle. As seen with Eq. 2.11, the 

contrast varies throughout the thickness of the film due to absorption. However, at the 

y=O plane (the surface of the film in Fig. 2.1), the maximum should remain constant 

over the surface (the x-z plane, assuming uniform, collimated reference and signal 

coverage during recording) and this is the plane which the Abbe would measure. 

Unfortunately, due to the need for strict uniformity over the large sampling area, tests 

on the Abbe were not useful in determining the amplitude of the index modulation. 

Some thin lines were visible and a faint dark area appeared in the range of the index 

modulation, although the edges of this area were not distinctive enough for 

measurement. 

6.2.2 Fringe Angle 

The fringe angle is much simpler to predict than the refractive index modulation. One 

can simply predict the fringe angle based on the angular bisector of the reference and 

signal beams as in Eq. 4.6. When recording an edge-referenced hologram with the 

signal normal to the plane, the reference beam angle is sometimes difficult to 

accurately measure. The performance of the hologram is very critical as the angle 

approaches 90° as shown in Fig. 5.9 and must be accurately measured. This can be 

done with reasonable accuracy from the depiction of Fig. 6.1 
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Signal 

L-__________ ~~~ 

Reference 

Film 

Substrate 

Figure 6.1 The technique used for measuring the reference beam angle in air for an edge referenced 

hologram. 

From the law of reflection, one can measure the reference beam angle in air as 

e =tan-1(a) 
R b ' 

thus, using Snell's law the reference angle in the recording film, nm, is 

. [90 . _1[sine R ]] nsslll -Sill --

e R(ft/m) = sin-1 __ -,=-__ ~=--_n:..s ~ 
nm 

(6.4) 

(6.5) 

One may also measure the fringe angle by looking at the diffracted light from an 

unaltered laser beam at the recording wavelength and measuring the angles. Although 

this requires a measurement similar to the one above for the diffracted or incident 

light depending on which replay geometry was used. If one is looking at the 

possibilities of film shrinkage, then the angle of diffraction should be examined. 

Another method for measurement of the fringe angle as well as the fringe spacing is 

the Scanning Electron Microscope (SEM). 
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6.2.3 Scanning Electron Microscope Measurement 

In a reflection SEM electrons from a field-emission source are focused into a probe 

(of a size near 0.2-0.5 nm) which can be scanned across a sample [6.4]. Electrons 

which are reflected and scattered by each point in the specimen are collected by an 

electron collector and the energies are recorded and can be displayed by a computer in 

real-time. Reflection SEMIs are usually used for topographical contrast and show the 

reflections from the surface profile. 

In order to 'see' the fringes recorded in the photopolymer, the sample had to be freeze­

cracked to see a cross section showing the slant of the fringes. A significant amount 

of experimental sample preparation was needed to enable detection of the fringe 

structure. In general, four requirements should be met for electron microscopy of 

significant detail [6.4]: 

1) Avoiding Specimen Collapse 

Since specimens must be measured in a vacuum, collapsing of the structure must not 

occur. When a photopolymer sample is first recorded and UV cured, the sample is 

still evolving solvent vapors. These vapors emit a slight odor and will evolve until 

after a long heating process. The higher solvent content before heating promotes the 

bonding to the Mylar carrier of the film. The Mylar film can not be easily removed 

until after heating. This would not be a significant problem, however, the samples 

needed to be freeze-fractured in order to have a 'clean' break across the film. The 

Mylar carrier does not freeze-fracture well in liquid nitrogen and no results were 

obtained with the Mylar. This means that the fringe pattern on unheated samples were 

not obtained using an SEM. 

--------------------------------------------------------------------------------~ 
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2) Sufficiently Thin Sample 

In transmission electron microscopy, the object specimen must be sufficiently thin so 

that multiple scattering does not occur from within the sample and confuse the image. 

In attempts to create a sample for TEM, freeze-microtoning was tried with very poor 

success with Mylar, and better, though not usable, success without the Mylar. Sample 

preparation was attempted with an epoxy used for acrylic fibers. However, no 

measurements were obtainable because the photopolymer appeared to be slightly 

soluble to the solvents in the epoxy. While the TEM can examine detail down to near 

atomic resolution, the fringe spacing is on the order of 300 nm. The SEM which has a 

resolution of a maximum around 2 nm is much more ideal. With a reflection SEM, 

one can measure the average fringe angle [Appendix DJ because a fringe ('" 0.15Ilm) 

can just barely be seen relative to the thickness of the film (20 Ilm). The entire film 

thickness could not be seen on the TEM. Thus, due to the microtoning problems and 

the size limitations, the main focus for electron measurement was reflection SEM. 

Thick samples are not a problem in reflection microscopy since normally the electrons 

are reflected from the specimen surface. However, the photopolymer sample must be 

less than 1 cm in length and about 5 mm in depth to be supported in the SEM 

apparatus. 

3) Electron Beam Damage Avoidance 

If the current and voltage on the SEM are sufficiently high, they can cause damage to 

the sample. This was noticed in the photopolymer samples at high voltage. The 

samples were heated and the surface profile was altered due to the applied voltage. 

This limited the effective operating range, but the range was still sufficient for 

measurement. 
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4) Maximizing Image Contrast 

In order to promote electron reflection and improve contrast, a standard technique for 

organic materials is to sputter coat them with a thin metal coating (usually about 10 

nm of gold/palladium). This was attempted with the photopolymer samples. 

Unfortunately, sputter coating was not possible because the heat required for the glow 

discharge completely melted the photopolymer. 

6.2.4 Fringe Spacing 

The fringe spacing may be predicted as in Eq. 4.6. This is verified if the diffraction 

efficiency is at a maximum at the recording angle and wavelength with the proper 

diffraction angle. The fringe spacing may also be verified with the SEM. By freeze 

fracturing the sample, the fringes may be seen [Appendix DJ, although the position of 

the index maximum/minimum is vague. An average of the spacing over many periods 

offers the closest approximation. In conventional transmission holography, a standard 

phase microscope can measure the fringe spacing because the sample does not need to 

be freez~racked to look along the plane of the hologram (no fringe slant) and the 

spacing is usually larger. Due to the slant and size ofthe edge-lit hologram, an SEM 

measurement is required. 

6.2.5 Depth Profile 

Predicting the refractive index profile throughout the thickness of the film for a steep 

referenced hologram is a difficult task. One can estimate the contrast throughout the 

medium from Eq. 2.11, although a steep reference hologram has a varying fringe 

contrast with depth, and therefore the refractive index modulation with depth also 

varies. Since the exact relationship between the contrast and the final index 
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modulation in three dimensions is not known, one can not accurately predict the 

modulation variation or the effective thickness. Another factor inhibiting this 

prediction is the fact that the sensitizing dye actually bleaches in real time, thus 

changing the absorption constant during recording. 

Using the rigorous coupled-wave theory for diffraction (§5.3), one might be able to 

model the refractive index modulation profile by breaking down the thickness into 

discrete sections of constant index modulation. This could be compared with the 

measured angular selectivity and other diffraction characteristics to confirm the 

predictions. In a simpler model, one may predict an average modulation and compare 

that with the diffraction characteristics. 

Exact measurement of the refractive index profile is very difficult as well. A rough 

measurement can be made from the SEM pictures as in Appendix D. One could 

perhaps see chirping, tapering [6.3], shrinking, or even multiple sets of fringes 

through the pictures, although this also relies on the uniformity of freeze-cracking. 

The distortion in the fringes in Appendix E at the top surface could be caused from a 

spurious reflection at the surface causing three sets of fringes to be formed in that 

area. These fringes would strengthen the photopolymer in that area and perhaps make 

the break in the freeze-cracking non--uniform. 

6.3 Diffraction Characteristics 

The important diffraction characteristics generally related to HOE's are diffraction 

efficiency (normally 1st order), angular sensitivity, wavelength sensitivity, and 

polarization sensitivity. The desired values for each of these characteristics depends 

on the application for the HOE. Measurement of these can be done with 

spectrophotometers and rotation stages with the proper arrangements and 

considerations (allowing for Fresnel reflections, polarization, etc.). 
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6.3.1 Spectrophotometer 

A system has been developed which will measure all of these characteristics quickly 

with the data recorded in a computer (Fig. 6.2). 
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Figure 6.2 The spectrophotometer setup for measuring diffraction efficiency, angular sensitivity, 

wavelength sensitivity, and polarization sensitivity. (The rotation stage for the sample and the 

polarizer are not shown). 

When using the conjugate signal replay of an edge-referenced reflection hologram, 

the diffracted light leaves the substrate through the edge and the zero--{)rder 

transmitted light passes through the hologram. Assuming that the light not 

transmitted through the hologram is due only to first order diffraction (reflected 

order), one thus measures the diffraction efficiency of the first order. However, in the 

case of steep reference holograms, both the + 1 forward and backward diffracted 

orders may have significant intensities. Therefore, one must keep in mind that in the 

above setup, only the zero order transmittance is measured and the exact diffraction 

efficiency of the first order light (reflected or transmitted) can not be determined. 

The samples were examined using the spectrophotometer setup in Fig. 6.2. One can 

relate the term 'diffraction efficiency' to any order by considering the percent of light 

diffracted relative to the incident light. Since the spectrometer measures the intensity 

(relative to a reference which is an unexposed portion of the film) for a wavelength 
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range, one immediately knows the diffraction efficiency and wavelength sensitivity. 

By rotating the sample one can measure the angular sensitivity, and by rotating the 

polarizer, the polarization sensitivity is determined. 

If one were measuring all of the different diffracted orders, such as in the case of 

unslanted transmission holograms, one could use a goniophotometer to measure the 

intensity and angle of each diffracted order. 

6.3.2 Diffraction Efficiency Analysis 

One of the most crucial factors which determines the diffraction efficiency is the 

refractive index modulation. When using photopolymers, the index modulation 

depends on the diffusion of the components as mentioned in §3.6.1. The final 

location of the chemical components determines the density and refractive index 

profile within the photopolymer. Since the diffusion length is limited, photopolymers 

can be considered to be non-linear recording materials. This diffusion length is 

different for each composition of photopolymer and usually distinguishes the 

transmission films (low spatial frequency or large fringe spacing) from the reflection 

films (high spatial frequency or small fringe spacing). Since the fringe spacing 

changes with wavelength and recording angles, to obtain accurate information 

regarding diffraction efficiency the angles and wavelength must be held constant (as 

when measuring the effects of beam ratio on diffraction efficiency in §2.4.2). The 

possible effects of the non-linear recordings on diffraction efficiency of holograms 

are briefly discussed by Bjelkhagen [6.5] with references to other work. 

The value for the refractive index modulation can also change due to absorption in the 

recording process. This effect is known as taper [6.3]. As mentioned in §2.2, the 

fringe contrast can vary dramatically throughout the volume of a steep referenced 

hologram. Thus, the value for Lln is actually a function of the depth in the film. 
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Another critical factor for detennining the diffraction efficiency is the actual refractive 

index profile. One might assume that the interference profile is exactly sinusoidal, 

however, one can definitely not assume that this is true after the exposure. For a 

particular film with a specific diffusion length, there may be a precise, unique, fringe 

spacing which would result in a perfect sinusoidal profile, however, this is not usually 

the case. In order to assume that the index profile was completely sinusoidal, one 

would have to say that the resulting index modulation was linearly proportional to the 

intensity of the recording interference pattern. 

In order to accurately predict the diffraction efficiency, one should represent the 

refractive index profile as 

n(x,z) = no + nl(z)c1 (A,x) cos(Kx) where (6.6) 

nl varies in the z---<lirection as a result of the absorption during recording, and Cl is a 

function for the photopolymer related to the diffusion length which is related to fringe 

spacing and position in the x---<lirection. The affects of non-linear recording could 

also be represented by the addition of cosinusoidal tenns representing further 

harmonics instead of the function Cl. Due to the additional complexity involved with 

programming these variables in a computational program, the 'real' recording effects 

of taper and non-linear recording were not introduced to the rigorous coupled wave 

calculations for diffraction efficiency. 

Due to the non-linear recording characteristics of the photopolymer, different films 

can easily result in different index profiles as well as varying amplitudes of refractive 

index modulations. For example, when making reflection edge-referenced 

holograms, by simply changing experimental photopolymer films, the maximum 

diffraction efficiency increased by 54% before heating. 

---------------------------------------------------
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While examining different photopolymers for reflection edge-referenced holograms, 

different maximum diffraction efficiencies were obtained just after recording (Table 

6.1). 

Experimental Film Maximum Diffraction Efficiency 

Red Sensitized HRF 352 8% 

HRF 300xOO6 8% 

HRF 700x071 62% 

Table 6.1 Maximum flfst order diffraction efficieneies obtained for steep referenced holograms just 

after recording for three different Du Pant photopolymers. 

Therefore, the successive tests on steep referenced holograms were done using the 

HRF 700x071 film. In order for the diffraction efficiency to be accurately predicted, 

one must know the amplitude ofthe refractive index modulation. Unfortunately, since 

an acceptable technique for measuring the index modulation in photopolymers was 

not found (§6.2.1), the index modulation is usually predicted from the diffraction 

efficiency results. 

6.3.3 Wavelength Bandwidth Analysis 

Steep referenced reflection holograms were recorded using HRF 700x071 laminated 

onto fused silica. The recording angles used were 00 for the signal and 1030 for the 

reference. The resulting bandwidth before heating is illustrated in Fig. 6.3. 

In Fig. 6.3, the rigorous coupled wave calculations were based on a refractive index 

modulation which would yield the same diffraction efficiency at the Bragg condition. 

The FWHM wavelength bandwidth measured is approximately 7 nm compared to the 

2 nm predicted value. The discrepancy here is believed to be due from tapering 

effects and a deviation from an exact sinusoidal profile. There are many papers which 
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describe the affects of taper on the angular and wavelength bandwidth [6.6-6.1 0]. 

Even though these papers do not use a rigorous form of the coupled wave theory, their 

results and experimental verifications show that the angular and wavelength 

bandwidths increase for non-uniform holograms recorded with increasing values of 

the absorption coefficient. Since the affect of absorption is more critical in steep 

referenced holograms, one could conclude that this is possibly a significant reason for 

the experimental results having a larger bandwidth than predicted. 
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Figure 6.3 The measured zero-order transmitted diffraction efficiency versus replay wavelength 

compared with the predicted diffraction efficiencies using the rigorous coupled wave theory. 

6.3.4 Angular Bandwidth Analysis 

The angular bandwidth was measured for the same sample as in Fig. 6.3. The results 

are displayed in Fig. 6.4. 
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Figure 6.4 The measured zero--order transmitted diffraction effieiency versus deviation from the Bragg 

replay angle (0°) compared with the predicted diffraction efficieneies using the rigorous coupled wave 

theory. 

From Fig. 6.4, the measured angular bandwidth is approximately 1 ° and the predicted 

angular bandwidth is 0.28°. The 0.5° resolution of the rotation stage introduces some 

error, although the bandwidth can clearly be seen to be slightly larger than predicted. 

Again, this slight increase in bandwidth is attributed to the tapering and non-perfect 

sinusoidal index profile within the film as described in the previous section. 
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6.4 Effects of Heating 

As mentioned in §3.6.l, the normal procedure with Du Pont photopolymers is to heat 

the recorded film at about 100°C for 2 hours. This causes further mono mer diffusion 

as well as diffusion of other components within the film, which can result in a higher 

index modulation depending on the initial recording conditions. 

6.4.1 Heating Effects on Diffraction Characteristics 

The effects of heating on Du Pont films has been reported by Masso [6.11] and Weber 

[6.12]. Weber reports that when recording non--slanted reflection holograms, the 

replay wavelength shifts toward the blue after heating, which would correspond to a 

shrinkage in the film. Masso reports similar results, but noticed that when the slant 

angle of a hologram is increased, the playback wavelength after heating red-shifts 

(replays at a longer wavelength), which would correspond to swelling. The highest 

slant angle he analyzes is 9°, and he makes the conclusion-"the effective shrinkage 

decreases with increasing slant angle and in some cases the optical thickness actually 

increases rather than decreases during processing for slanted fringe holograms." 

Results obtained for heavily slanted holograms (40° fringe angles) show that the 

Bragg replay wavelength and replay angle are affected very little (if at all) from heat 

processing (i.e. no shrinkage) as shown in Fig. 6.5 and Fig. 6.6. 
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Figure 6.6 The effect of heat processing on the angular bandwid1h for a slanted fringe hologram. The 

angular bandwidth of the transmitted zero order remains about the same (FWHM of 1°) as the similarly 

recorded (unheated) hologram in Fig. 6.4 except for the appearance of a side-lobe. The hologram was 

recorded with e, = 0°, 9, ~ 103°, 9repl,y = 0° and ,""o'd = 647 nm. 
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Initially, interpreting the effects of heating on edge-lit holograms was incorrectly 

attributed to swelling in Coleman [6.13] because of the increased bandwidth and the 

dramatically higher efficiency at another Bragg condition. When the heated holograms 

were viewed with white light, the apparent peak wavelength is shifted because of the 

increased bandwidth and the chromatic sensitivity of the eye. This effect showed up 

on display holograms as well as HOE's. In addition, the appearance of an increase in 

diffraction efficiency at another Bragg angle and wavelength, as presented in Fig. 6.7 

[6.13], was interpreted to mean that the film had swelled. 
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Figure 6.7 The decrease in transmission of the zero order (increase in diffraction efficiency of the first 

order) of a hologram as the Bragg replay angle is changed [6.13]. The hologram was recorded with 

9s = 0°, er = 103°, 9replay:::: 0° and "-record = 647 run. 

If one were given the hologram of Fig. 6.7 without knowing how it was recorded, one 

might guess that the hologram was recorded at a wavelength of 746 mu since it has 

the highest diffraction efficiency. However, results and the theory predict that the 

diffraction efficiency can change for different Bragg conditions as shown in Fig. 6.8 
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Figure 6.S The percent transmission of the zero order illumination on a heated (O's) and unheated ("'s) 

steep referenced hologram for various Bragg conditions. The holograms were recorded as in Fig. 6.3 

and the index modulation used to match the heated data was nmod = 0.0105 for the RCW theory (X's). 

The hologram was recorded with e, = 00
, e, = 103", erepl.y = 0" and ""oood = 647 run. 

The hologram in Fig. 6.8 was recorded with a 0° signal angle, and as can be seen, the 

zero order transmission for the heated hologram decreases significantly as the replay 

angle approaches -10°. The decrease in the zero order transmission corresponds to an 

increase in diffraction efficiency. This higher diffraction efficiency near the -10° 

Bragg condition is predicted by the rigorous coupled wave theory. However, the 

rigorous coupled wave theory predicts that the decrease in diffraction efficiency 

(increase in transmission) occurs just after the 0° Bragg condition and the slope is 

very steep. The recorded holograms do not demonstrate the steep rise in transmission 

probably due to a non-perfect sinusoidal refractive index profile. The curve is 

- - -----------------------------------------------------------------------------------~ 



Chapter 6. Measurement and Analysis of Physical and Diffraction Characteristics ISO 

effectively smoothed by the deviation from a perfect sinusoidal refractive index 

modulation. 

One might imagine the reason that the diffraction efficiency of a hologram could 

change for different Bragg conditions by looking at a reflection hologram in general. 

In a reflection hologram, for example, a steeper Bragg angle would reflect more light 

off of a fringe plane (a region of constant index of refraction) just as if it were a 

boundary to another medium as indicated by Fresnel's law. This high reflection off of 

the fringe plane would not allow as much coupling into the first diffracted orders as 

one with a shallower angle. 

The effects of heating on the diffraction efficiency for all edge-referenced holograms 

is very dependent on the original recording conditions. In some samples, such as that 

in Fig. 6.5, the diffraction efficiency did not appear to change when the sample was 

heated. Other samples have shown a slight increase in diffraction efficiency. In some 

of the samples, the heated diffraction efficiency was still below other samples before 

heating at the recorded Bragg condition (Fig. 6.8). Nonnally, the samples were 

exposed for long times and large exposure values as this seemed to maximize the pre­

heat diffraction efficiency. This may suggest that the maximum refractive index 

modulation can be obtained during exposure, and that when the sample is heated, the 

heat softens the film allowing further re--distribution of components (and the index of 

refraction) in-between the maximum and minimum values. This mayor may not 

equate to a more sinusoidal index profile depending on the initial recording 

conditions. The increase in bandwidth after heating could be interpreted as a 

redistribution of index to a less sinusoidal profile. 

As mentioned by Masso, the type of cover film used when heating can effect the 

shrinkage in a hologram. In the holograms examined here, the heating was done with 

only the Mylar as a cover material. Near the edges of the film and Mylar, non­

unifonn heating effects could be seen that were not visible in the middle. This 
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suggests that the permeability and rigidity of the Mylar is unacceptable for heating 

and a cover film such as Microglass should be used. 

6.4.2 Heating Effects on Physical Characteristics 

As mentioned in §6.2.3, in order to view the fringe profile on the SEM, the hologram 

had to be heated for freeze-cracking. The hologram in Appendices D and E was 

heated before examination on the SEM and the fringe structure appears to be 

completely parallel confirming that there is no curve to the fringes (chirping) when 

heated. Unfortunately, using an SEM, one can not exactly determine the uniformity 

of the grating, nor compare a heated sample with an unheated sample. 

6.4.3 Controlled Swelling/Shrinking 

Du Pont photopolymers have the interesting ability to be controllably swelled as 

mentioned by Gambogi [6.15]. By laminating a tuning film onto a surface of the 

hologram before heating, the hologram can be swelled to replay at a longer 

wavelength. This process involves the further diffusion of monomers from the tuning 

film to the hologram during the heating process. Using different tuning films, Du 

Pont suggest that they can achieve a peak Bragg wavelength shift from 508 nm to 635 

nm on a non-slanted reflection hologram recorded at 514 nm. Gambogi states that the 

"swelling is uniform and reproducible and maintains reflection efficiency and 

bandwidth." Lab results suggest that this may only be the case for precisely uniform 

exposures of non-slanted reflection holograms. Results of holograms with different 

pre--heat diffraction efficiencies seems to yield different replay wavelengths and 

bandwidths. 



Chapter 6. Measurement and Analysis of Physical and Diffraction Characteristics 152 

Du Pont later stated [6.16] that the bandwidth does increase moderately. Various 

other films were tried and results were obtained on slanted holograms which appear to 

have increased wavelength bandwidths after heating with a tuning film. Also, as 

discovered in the lab, the glue layer on a protective adhesive laminate seems to have 

the effect of shrinking the layer (blue-shifting) as shown in Fig. 6.9. 
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Figure 6.9 The replay wavelength of two different film laminates and no film laminate on a heated, 

slanted hologram recorded at 514 urn. 

With slanted holograms such as the one in Fig. 6.9, the slanted hologram red-shifts 

when there is no cover layer (no Mylar) and it is heated. Unfortunately, it appears that 

for slanted holograms, this shift is a swelling effect, and the fringe angle also changes. 

This means that if one wanted to change the wavelength on a hologram, but have it 

replay at the same angle, one would have to pre-compensate the for the angle shift 

during recording. The shrinkage theory for holograms has been analyzed for silver 
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halide holograms by Belendez et. al. [6.17,6.18], photopolymer holograms by Masso 

[6.11] and general volume holograms by Gallo [6.19]. These models could be applied 

to the shrinkage effects of the Du Pont photopolymers to predict the resulting 

shrinkage or swelling. 

The effects of the heating process appear to be diminished if their is a sufficient time 

between recording the hologram and the heating stage. This is believed to occur 

because the solvents evolve through the Mylar from the film. The solvent seems to 

help act as a medium for the components to diffuse, thus less of it would inhibit the 

diffusion. This effect is greatly increased if a portion of the film is left exposed to the 

air. Some samples heated with a Mylar cover exhibited non-uniform swelling effects 

near the edge which could be explained by solvent evolution from the edge. 

By measuring the physical characteristics of edge-lit holograms using an SEM, one 

can obtain sufficient information (the fringe angle spacing) to verify the rigorous 

coupled wave diffraction modeling of the recorded samples. The results agree well 

with the theory except for the increase in angular and wavelength bandwidth which is 

probably due to the non-sinusoidal refractive index profile. 
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Chapter 7 

REPLAY CONSIDERATIONS 

7.1 Introduction 

Illuminating an edge-lit hologram has proven to be a complicated task. While one of 

the main aims of edge-lit holograms is to reduce the size of the final package (light 

source and hologram) this has to be done very carefully in order to maintain proper 

holographic replay. The replay considerations are actually more complicated than 

those for recording. The radiometry, directionality, and wavelength of the light 

source along with the replay substrate all affect the replay of the hologram. Some of 

the replay restrictions can be removed by the use of a coupling grating. Most of the 

comments presented here are applicable to replaying HOE's as well as display 

holograms. 
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7.2 Radiometry 

In typical hologram illumination, the apparent brightness of the hologram depends on 

Fresnel reflections, diffraction efficiency, angular and wavelength bandwidths, and 

the radiometry of the light source. The Fresnel reflection from the front of a typical 

face-lit reflection hologram would be approximately 5% for a 20° illumination angle. 

In an edge-lit hologram, the Fresnel reflection before the hologram can easily be 24% 

(Table 3.2) plus an additional 4% reflection at the edge surface in most cases. The 4% 

reflections could be essentially eliminated with anti-reflection coatings for both cases. 

The maximum diffraction efficiency for edge-illuminated holograms is theoretically 

100%, although this has not been achieved in practice at the recorded wavelength with 

the work presented here. For face-lit diffuse object holograms, the maximum 

practically achievable diffraction efficiency would be closer to 64% [7.1 J compared to 

100% for face-lit HOE's. The edge-lit holograms recorded in this research have only 

achieved efficiencies near 62% for HOE's, and a similar or less value for a diffuse 

holograms. Thus, at least with HOE's and the current technology, non-edge-

referenced holograms are more efficient. 

The apparent brightness of a hologram is also dependent on the size and location of 

the illuminating light source. Light irradiating a hologram from a point source must 

obey the cosine law of illumination, and the inverse square law which are the basic 

equations of photometry. These equations state that the illumination, E, of a surface is 

proportional to the cosine of the angle, e, between the normal to the surface and the 

line directly to the source, and is inversely proportional to the square of the distance, r, 

from the source with irradiance, 1. Mathematically, this is expressed by [7.2] 

E = lcose 
r2 (7.1) 
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With standard face-lit holograms, e is approximately 20°, thus the cosine factor is 

approximately 0.94. With edge-lit holograms, e is near 87° and the cosine factor is 

approximately 0.05. Therefore, based on the cosine law, the irradiance on a typical 

hologram is about 19 times brighter for face-lit holograms than with edge-lit 

holograms. This is one of the main difficulties with lighting a edge-lit hologram. 

The distance from the source to the hologram is usually about 2 meters for face-lit 

display holograms, while with an edge-lit hologram, it may be about 10 centimeters. 

Considering only the inverse square law, the edge-lit hologram is about 400 times 

brighter. Therefore, an edge-lit hologram has the potential to be much brighter at a 

given point on the hologram. 

However, when displaying a typical face-lit hologram with something such as a 

halogen bulb, a reflector is usually used to gather a larger solid angle of light from the 

source. This increase in size of the source from a point source to an extended source 

dramatically increases the intensity reaching the hologram without degrading the 

image because the distance is large enough for it to be considered a point source. Due 

to the close proximity of the source with edge-lit holograms, a reflector can not be 

used without changing the appearance of the source from a point to an extended area. 

This creates spurious images in an edge-lit hologram which degrade the appearance 

of the hologram as described in the next section. 

7.3 Directionality 

The wavefront of the illuminating light is very crucial to the perfonnance of a 

hologram. Ideally, a hologram should be replayed with the same wavefront as 

recording for virtual replay, or the conjugate wavefront for real replay. Light incident 

at angles far from the Bragg condition will not diffract efficiently due to the limits 

imposed by the angular bandwidth. Edge-lit reflection holograms can have angular 

bandwidths which are similar to non--edge-referenced holograms (excluding non­

slanted holograms with high angular bandwidth), although the wavelength bandwidth 
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is usually higher. With transmission edge-lit holograms the angular and wavelength 

bandwidth are smaller than the typical transmission holograms. 

In order for an image hologram to be clear (or an HOE to be selective), it should have 

a low angular bandwidth. Replay angles which deviate slightly from the Bragg replay 

angle diffract light at angles different from the desired angle of diffraction. The 

angular spread of light from undesired angular replay and the wavelength spread from 

different wavelengths diffracting at undesired replay angles can create significant 

dispersion. 

In a practical holographic replay system, one must consider three dimensional 

diffraction, and therefore, the angle of polarization. The polarization can change when 

the angle of illumination is changed by such means as reflective optics. The 

polarization sensitivity of a hologram is a determining factor for the diffraction 

efficiency of a hologram. The polarization selectivity factors on replay are generally 

the same for all types of holograms, and the polarization requirements on edge-lit 

holograms are effectively the same as for traditional face-lit holograms. 

If a hologram is recorded with collimated light, the resulting grating is composed of 

fringe planes that are parallel to each other. When the replay angle is changed, the 

apparent fringe spacing changes. If this hologram is then illuminated with diverging 

light of the same wavelength as recording, most of the light will not diffract because 

the apparent fringe spacing is different and the Bragg condition is not satisfied (as 

shown in Fig. 7.1). The fringe spacing defines which wavelength will diffract 

efficiently for a given angle. 

Similarly, converging light will not efficiently diffract from a holographic grating 

recorded with collimated light. When collimated light is used to illuminate a grating 

recorded with converging or diverging waves, only the central, or axial, waves will 

diffract as they are the only rays at the correct replay angle. 
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Figure 7.1 A model showing the inability of a hologram to efficiently diffract light when the apparent 

fringe spacing is not correct for the replay wavelength. 

With edge-lit holograms, the recording could use collimated, converging or diverging 

beams. However, uniform intensities are easier to obtain for collimated than 

converging or diverging recording. The replay distance is critical in determining the 

type of replay source. For most face-lit display holograms, collimated or slowly 

diverging wavefronts can be used because the replay light sources are usually a meter 

or two away, thus the illumination is close to being collimated. The small distances 

from the light source to the hologram needed with edge-lit holograms implies that the 

replay optic must have a low f/# (strong divergence compared to its size) for diverging 

illumination. When recording a collimated edge-lit hologram, one must squeeze the 

replay collimating optics into a small area. Converging optics are not normally used 

because of the need for large, low f1# optics which are very expensive. 
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Linked with the directionality, the size of an illuminating source is also a crucial 

factor. Extended light sources can be thought of as an area of point light sources. The 

angle of the light arriving in a specific area on a hologram is different from each point 

on an extended source. As shown in Fig. 7.1, the light at the incorrect angle will not 

diffract efficiently. In other words, extended sources have a very low spatial 

coherence and thus do not make good holographic illuminators. The effect of an 

extended source illumination on an HOE is chromatic and angular dispersion. For 

this reason, linear light sources do not replay holograms well as shown in Fig. 7.2. 
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Figure 7.2 A model showing the undifftacted light from a linear light source when illuminating a 

grating formed from collimated beams. 

Therefore, when using a linear white light source to illuminate a hologram recorded 

with collimated beams, the only high efficiency diffraction at the desired angle is from 

the collimated light near the recording wavelength. Uncollimated light at the 

recording wavelength will pass through the hologram (depending on the angular 

bandwidth). The light at angles and wavelengths far from those used in recording will 

create spurious images in a display hologram or increase the angular or chromatic 

dispersion of an HOE. 
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In a real system, some of the light reaching a hologram will be undiffracted. In 

display holograms, this is typically absorbed by a black light dump behind the 

hologram (for reflection displays). For edge-lit reflection holograms the index of the 

black background is crucial in its ability to absorb, as the undiffracted light is incident 

at a steep angle. Also, in edge-lit holograms, all of the edges except the entrance 

must normally act as light dumps and absorb the light to prevent spurious images. 

However, a carefully designed edge-lit replay system could be designed so that the 

reflected light could be recycled to re-illuminate the hologram at the correct angle. 

7.4 Replay Wavelength 

The wavelength bandwidth associated with display holograms is usually a problem 

with regards to image brightness. Generally, the larger the wavelength and angular 

bandwidth, the brighter the image. The tradeoff with bandwidth for display 

holograms is image clarity as the more wavelength and angular selective a hologram 

is, the clearer the image. With HOE's, the low bandwidth is usually desired to achieve 

the selectivity. 

In order for a hologram to have high resolution, the illuminating source should have a 

high degree of temporal coherence. The temporal coherence of a light source is 

usually measured in terms of coherence length which is related to wavelength 

bandwidth. Illumination sources with high wavelength bandwidths generally lower 

the resolution of the image for a display hologram. Two regimes around this problem 

which produce achromatic images are the dispersion compensation grating discussed 

generally in [7.3] and applied to edge-lit holograms in [7.4], or the achromatic angle 

as discussed in [7.3]. 

The diffraction efficiency of the hologram for light of a wavelength different that the 

Bragg wavelength (for a specific angle) is determined by the hologram's wavelength 
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bandwidth. Generally, the wavelength bandwidth is low for reflection holograms and 

is high for transmission holograms. The wavelength selectivity of edge-lit 

transmission holograms is similar to typical face-lit transmission holograms. 

However, with regards to edge-lit reflection holograms, the wavelength bandwidth for 

reference replay can be quite high while the wavelength bandwidth for signal replay 

for the same hologram is much lower. The appearance of a hologram with a high 

wavelength bandwidth illuminated by white light is quite bright relative to a low 

wavelength bandwidth hologram because of the combined intensity of all of the 

diffracted wavelengths. A relatively high wavelength bandwidth is sometimes very 

desirable for HOE's and edge-lit holograms as well. 

Exactly how much the wavelength bandwidth of the hologram affects the replay 

depends on the wavelength bandwidth of the source. The ideal source for replay is 

usually the laser which recorded the hologram, although this depends on the 

application of the hologram. If a ion gas laser such as an argon or krypton is used, 

then the wavelength bandwidth for single frequency operation with an etalon is 

extremely low. For typical display holograms, the preferred light source is a halogen 

bulb with a FWHM bandwidth of around 325 um. With edge-lit holograms, however, 

the heat, energy efficiency, and high bandwidth from a halogen bulb may inhibit it 

being used in a compact system. Laser diodes offer a solution with a wavelength 

bandwidth of around a FWHM of 3 nm. A cheaper, lighter, and even more compact 

source is a light emitting diode (LED). Bright red LED's usually have wavelength 

bandwidths around a FWHM of25 nm while a superbright blue LED from Nichia has 

a wavelength bandwidth of FWHM of 70 nm. 

7.5 Replay Substrate 

Most commercially available silver halide films are coated onto glass and that is 

therefore the replay substrate. Du Pont photopolymer is a film laminate usually 

recorded on glass, which may be transferred to plastic for replay (§3.6.5). Normally, 
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the preferred type of plastic for replay is acrylic because it is cheap and its index of 

refraction is close to that of the Du Pont photopolymers (they are both made from 

methyl methacrylate monomer). The major difference between glass and acrylic 

replay substrates are outlined in Table 7.1. 

Glass Acrylic 

Heavy Lightweight 

Expensive if refractive index is matched Cheap and no polishing necessary 

to photopolymer 

No straie or blemishes May have straie and blemishes 

Can not be easily shaped (to fit in a Can be molded to most any shape 

device or to use the entrance edge as an 

optical element) 

Relatively heat resistant Can melt or soften with heat 

Relatively scratch resistant Soft and susceptible to surface scratches 

Can be left on recording substrate Must be transferred 

Table 7.1 The major advantages and disadvantages in using a glass or acrylic substrate for the replay 

of an edge-lit hologram. 

The substrate preferred in this research was the glass substrate because of the 

additional variables introduced into the results when using acrylic. The effects of the 

epoxy on the photopolymer when transferring to acrylic, the difficulty recording on 

acrylic, and the acrylic edge polish contributed to this general decision to use the more 

expensive glass substrates. 

The substrate thickness is also a crucial factor. Obviously, from a packaging point of 

view, the thinner the better. However, the thinner the substrate, the more difficult the 

edge-referenced recording and replay. During recording, the reference beam should 

underfill the edge to prevent diffraction lines created from the edges of the substrate, 

thus the thickness can not feasibly be very thin for direct edge reference recording (i.e. 

- _ .. _-----------------------
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no wave guiding). A replay substrate should not normally need to be thicker than the 

recording substrate. However, replaying with a thick substrate can allow steep as well 

as shallow angles for recording and replay. Since the angular bandwidth for reference 

replay can be moderately high (Fig. 5:ge), this could create image blur. Therefore, in 

the results presented here, a compromise thickness of 3 mm was normally used. 

Results with 0.8 mm thickness did look promising, although they were significantly 

more difficult to record. 

7.6 Coupling Grating 

Two of the difficulties encountered when replaying an edge-lit hologram include 

coupling the replay light through the edge of the substrate at the correct angle and the 

image degradation or dispersion introduced from the high wavelength bandwidth of 

the edge-lit hologram (§5.5.2). These difficulties can be overcome by the use of a 

coupling grating on the face of a recording substrate as illustrated in Fig. 7.3. 

ELH 

(;;)~ 
U Substrat 

CH CH 
So'''mto @ 

Transmission Coupling Hologram Reflection Coupling Hologram 

Figure 7.3 The two types of coupling holograms (CH) and their replay geometries for illuminating an 

edge-lit hologram (ELH). The ELH shown here is a reflection type, although it may also be a 

transmission or 'false transmission' hologram (§4.3.3) 
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The coupling hologram takes light incident normal to the face and diffracts it a steep 

angle towards the edge-lit hologram. The coupling and edge-lit holograms are made 

as typical edge-referenced transmission or reflection holograms. However, in order 

for the coupling between the two holograms to be within same substrate, both the 

coupling and edge-lit holograms must be transforred to another substrate. 

The coupling hologram diffracts a small bandwidth of light from a broadband source 

at a the Bragg angle for the edge-lit hologram. The wavelength selectivity of the 

coupling hologram is very high for signal replay as can be seen in Fig. 5.6 (b). Also, 

since the light enters the face, less of the non-diffracted light is waveguided within 

the replay substrate than in the edge-lit case. This helps clarify the image and lower 

the dispersion. Thus, the non-selective edge-lit hologram is illuminated with the 

directed low bandwidth light diffracted from a 'face-lit' hologram. The result is a 

compact system which is clearer, yet just as bright as a conventional edge-lit 

hologram from the same source. 
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Chapter 8 

APPLICATIONS AND MASS PRODUCTION 

8.1 Introduction 

Most of the markets for holography could benefit from the smaller space requirements 

that an edge-lit hologram can offer. Unfortunately, edge-lit holograms in some areas 

are virtually unfeasible, such as with very large display holograms (because of the 

disadvantages of the wave guiding light). Just as with traditional reflection or 

transmission holograms, the diffraction characteristics of edge-lit holograms often 

define the full range of applications in which the hologram can be used. Although, as 

mentioned in the previous chapter, the replay considerations can seriously limit the 

types of applications for edge-lit holograms. 

First, two specific applications will be examined and then other general applications 

will be described. Since the production capability of a hologram is crucial to its 
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general acceptance and use, various mass production techniques for edge-lit 

holograms will be reviewed. 

8.2 Fingerprint Illuminator 

Upon observation of one of the edge-illuminated holograms, Mike Metz of ImEdge 

Technology Inc., was able to see the image of a fingerprint when the finger was 

located in a certain position. This discovery led to the research into what is currently 

known as an Edge-Lit Fingerprint Illuminating Device (ELFID). 

8.2.1 Background of Traditional Fingerprint Illuminators 

With the growth of technology, the traditional means of ink pad and paper for 

obtaining a fingerprint is quickly becoming obsolete. Some systems have used a 

beamsplitter while most current fingerprinting devices use Frustrated Total Internal 

Reflection (FTIR) as a basis for imaging the fingerprint. These systems and the optics 

of general TIR systems are described by Harrick [8.1-8.7] and others [8.8-8.19]. 

Methods for obtaining a frustrated TIR image of a fingerprint usually require a camera 

with imaging lens, a light source, and the finger each at one face of a prism as shown 

in Fig. 8.1. 

Unfortunately, the prism is very bulky, and the CCD camera has to be positioned 

laterally as well as a relatively large distance away due to the geometry and the 

imaging lens required. Other techniques have been recently developed which use a 

waveguide hologram to couple out the fingerprint image, such as those by 

Chennankara [8.20] and Igaki [8.21]. In these systems, the image of the fingerprint is 

actually wave guided back out the edge. 
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Figure 8.1 A traditional method for viewing a fingerprint using a prism and Total Internal Reflection. 

8.2.2 Optics of the ELFID 

The wave guide coupling method of Chennankara for viewing a fingerprint must use 

an imaging lens as the angles are not usually sufficiently collimated to maintain the 

relative locations of the ridges and valleys on the fingerprint image. The ELFID offers 

a clearer and less dispersive method for viewing the fingerprint with the CCD, 

hologram and finger co-axial. 

The co-axial fingerprint imaging technology using the FresneJ reflection instead of a 

FTIR first developed by ImEdge for the ELFID can also be seen in the work of Drake 

[8.22]. In Drake's paper, he mentions looking at the 'grease print' which is left when 

an oily finger is removed from a substrate. This grease print was originally seen on 

ELFID's although the contrast is usually not as good as when the finger is in contact. 

The greaseprint is due to the surface profile left on a substrate when an oily finger in 

contact is removed. The uneven surface profile scatters light in some areas more than 

others, and in the far field view, light reflected from the substrate side appears brighter 

in the regions of the surface profile which are flatter or more planar (which usually 

correspond to the ridges of a fingerprint). The greaseprint image may have a higher 

contrast in some regimes where the substrate to CCD distance is small and the 

reflection from the finger is considerable (as explained later in §8.2.8). 

- - -------------------------------------------------------------------------------
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Later in Drakes paper, he refers to the contrast in his waveguide holograms as being 

better in the "contact case" implying that the contrast is better when the finger is in 

contact (as his diagrams suggest) as opposed to in contact and removed. Essentially, 

there is very little difference in the optical systems of Drake than its predecessor the 

imaging ELFID (§8.2.3) except he uses a transmission waveguide hologram where the 

ELFID normally uses a reflection hologram. The basic viewing geometry of the 

reflection ELFID is illustrated in Fig. 8.2. 

~ 'r-,---_ 
"--_-_J 

3mm Acrylic Illumination 
(Laser Diode or LED) 

Hologram 

CCD 

Figure 8.2 The basic optics involved with the ELFID. Where the finger is in contact with the 

substrate, the light is coupled into the fmger. In the other areas, approximately 4% is directly reflected 

back toward the CCD. 

Since the edge-lit hologram diffracts light in a single direction (collimated), the light 

reaching the CCD is a one to one correspondence to the exact size of the fingerprint 

area. In other words, an imaging lens is not necessary because there is just one 

direction of travel for all of the information bearing light reaching the CCD. This in 

its simplest form is much smaller than the prism methods and can be reduced to very 

small sizes. Since the hologram, finger, and CCD are in-line, the aberrations inherent 

with all TIR systems are not present. With the system setup of Fig. 8.2, much higher 

resolution can be obtained since the light carrying the fingerprint information is not 

imaged and reduced. With the ELFID system, remarkable information such as the 

detail of the pores on the ridges can be seen. Since the whole finger is illuminated 
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directly, information of features within the valleys of the finger could also be 

obtained. 

In an ELFID light enters the hologram from a steep angle through the edge of the 

substrate and then is directed normal to the finger. Where the finger is not in contact 

with the surface (no coupling), the light is reflected (normally about 4% from the 

Fresnel equations) back toward the CCD. Since the light is collimated from the 

hologram, the CCD needs to be the same size as the fingerprint area examined, but it 

does not require a lens to image onto the CCD. 

An important factor regarding the replay of the hologram is matching the wavefront of 

the source for virtual replay (in the commonly used case of the non-transferred 

reflection edge-referenced hologram). Ideally, the light illuminating the hologram 

would be from a small halogen light bulb, an LED, or a laser diode very close to the 

edge. In order for these illuminators to work, the recording must have a diverging 

reference (the hologram is not being replayed in the normal phase conjugate mode). 

Thus, most of the research was done with diverging references during recording. 

One difficulty with the replay configuration is spatial filtering of the reflected light. 

In other words, it is difficult to filter out the light which is coupled into the finger and 

remitted, and that which is scattered from the surface of the finger (both reach the 

CCD and degrade the image). Two possibilities of spatial filtering are shown in Fig. 

8.3. 

The two methods presented in Fig. 8.3 could spatially filter the light, thus removing a 

portion of the light reflected or scattered from the finger at angles which do not pass 

through the filtering elements. In (a) the light which is not within the numerical 

aperture of the microlens element or fiber optic faceplate will not pass through the 

lens. Unfortunately, a characteristic of the microlens array is that the image on each 

separate group of pixels ofthe CCD is inverted with respect to the group next to it. 
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Figure 8.3 Two possible methods for spatially filtering the reflected light from the finger. (a) involves 

a micro lens array or Fiber Optic Faceplate (FOF) while (b) uses a 'louver' type material. 

In Fig. 8.3 (b) the light is filtered by being absorbed if it does not fall within the 

acceptable angle range for the vertical stripes of a clear material with black slats such 

as the louver material from 3M. The disadvantage with this method, however, is the 

linear shadows which are created on the pixels directly under the bands. While 

neither of these two methods are ideal, they do offer possibilities. 

Optical clarity is also an important consideration. The reference and replay 

wavefronts must not be disturbed due to optical striae or poor polishing. Therefore, if 

one is considering recording or replaying on acrylic, it must have a very good edge 

polish. Even after careful hand polishing, a coherent, highly directional wavefront 

such as that from a laser may be disturbed through a poor surface finish on the edge of 
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the acrylic. Acrylic is not a good recording medium in general because of its optical 

properties when viewed at a steep angle. Also, its high elasticity means that it is more 

likely to bend or move than glass in recording. When recording an edge referenced 

hologram on acrylic, intensity variation bands are seen instead of a uniform reference. 

The inherently poor optical qualities of acrylic were one of the main reasons for the 

move to leaving the polymer on the recording substrate. 

8.2.3 The Imaging ELFID 

While one of the unique properties of the ELFID is that it does not need a lens to 

capture the image on the CCD, one may use a lens in order to image the fingerprint 

onto a smaller CCD. The tradeoff here is resolution for cost in most cases as the 

smaller CCD's are cheaper, yet some of the information is lost when focusing the 

image down. The first ELFID's were created using the collimated signal wave 

reflected off of the substrate surface and focused onto a CCD with a lens. However, 

since the hologram is itself a recordable, directional optical element, the lens can be 

recorded within the hologram by putting a lens in the signal beam during recording. 

When the effect was first discovered, and in subsequent testing, the light had to appear 

from the whole finger, so it was necessary for the light to converge to the pupil of the 

eye as in Fig. 8.4. 

In order for the light to converge on replay, the light had to be converging in the 

recording of the initial hologram since it was being used in virtual replay. This made 

a large area of the fingerprint visible with the naked eye or aided with a lens for 

normal inspection. One might imagine a system where the image of the fingerprint 

was focused onto a CCD using the hologram only. However, if one were to limit the 

distance from the CCD to the finger to 5 mm, with a CCD size of 113", and a 

maximum fingerprint length of 1.5 inches, the lens would need to be extremely fat 

(with an f-number of aboutfl0.169). This 5 mm distance from the finger to the CCD 

is an important distance and makes the ELFID unit very compact. Since the lens 
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which would be required for such a thin device would have a very low f-number and 

be very expensive, a more reasonable solution would be to use a collimated light­

normal lens imaging system or the direct lensless system of Fig. 8.2. 

cnSdvR ELFID recording 
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Figure 8.4 The recording and replay geometries of the cnSdvR ELFID (CoNverging Signal­

DiVerging Reference). The fringes in this geometry are not parallel. The enS series is good for 

viewing the entire fingerprint at a large distance with the eye or with the aid of a lens. The light from 

all of the fmgerprint can converge to the pupil. 

An important factor regarding the imaging is the distance of the CCD from the finger. 

When the image of the fingerprint is focused onto the CCD, this distance is increased 

(compared to the direct method of Fig. 8.2). The effect of this is to actually improve 

the image contrast because of the scattered light from the finger. The light remitted 

from the finger is scattered in many directions, and the amount reaching the CCD 

(through the solid angle of remittance) is proportional to the distance squared just as 

in the inverse square law of §7.2. This conclusion is dramatically realized when one 

tries to reduce the thickness of the device. Also, the numerical aperture of the lens 

can limit the angles 'seen' by the CCD which can also increase the contrast. 

The detail available with the imaging lens ELFID system is very high. One can see 

the pore detail on the ridges with very high resolution. Depending on the imaging 
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lens and CCD, one could see the large fingerprint pattern as in Appendix F or have 

high, detailed resolution of a small area as in Appendix G. 

8.2.4 Angular Selectivity 

When looking at Fig. 8.2, one would believe that the light from the surface of the 

substrate would bounce back to the hologram and then be diffracted out towards the 

edge instead of reaching the CCD. There are two main reasons why the system can 

still operate with light reaching the CCD. First, since the holograms recorded are not 

100% efficient, some of the light reflected would pass through the hologram and reach 

the CCD. Since current CCD technology pennits very low light level operation, this 

is not a problem. 

Secondly, the inherent high angular selectivity of the edge-referenced hologram when 

illuminated from the face can help prevent the light from diffracting back out the 

edge. When replaying an ELFID, the reflected light from the substrate surface is 

incident to the hologram the second time near 0°. Therefore, some of the light at 

angles which deviate from 00 will pass through the hologram to the CCD. 

If the incident light from the edge is directed and at angle which is slightly off-Bragg, 

it will still be diffracted towards the finger because of the reasonable angular 

bandwidth when illuminated through the edge. The diffracted angular deviation, 8, 

from the hologram nonnal will result in a reflection from the top surface at an angle 

28. However, when reaching the hologram for the second time, the angular selectivity 

is much higher in this direction and the angle of incidence is 28 after the reflection. 

Thus, a large percentage of this light passes through the hologram to the CCD. This 

can also be accomplished by recording the hologram at a very slight angle such as 2° 

which will be 40 off-Bragg after reflection and most of the light will pass through the 

hologram (although this may introduce unwanted reflections and aberrations). 
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These two reasons help explain why the light reflecting off of the substrate does not 

diffract back towards the edge. However, one can utilize the polarization selectivity 

of the hologram to purposely minimize this diffraction back to the edge of the 

substrate. 

8.2.5 Polarization Filtering 

Since the hologram is polarization sensitive, one may rotate the polarization and the 

light will pass through the hologram undiffracted. This may be accomplished with the 

ELFID as in Fig. 8.5. 

Quarter Wave 
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Hologram 

Polarizer 
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Illumination 
(Laser Diode or LED) 

Figure 8.5 The ELFID replay geometry which uses a quarter-waveplate to rotate the reflection 

polarization by 90° relative to the beam incident on the hologram. The light passes through the 

hologram and the polarizer to the CCD. 

The light diffracting from the hologram is still s-polarized. This light, after reflection 

at the substrate-air boundary, passes through the quarter wave material twice which 

rotates the polarization by 90°. This then passes through the hologram undiffracted. 

The polarizer in front of the CCD acts as a filter by absorbing any light which 
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changed its polarization after scattering from the finger. To further increase the 

contrast, one can also polarize the illumination light (if it is an LED) or align the laser 

diode polarization to s-polarization and possibly filter it as well. Results using the 

polarization filtering showed an increase in contrast. 

8.2.6 Wavelength Considerations 

Unfortunately, all of the wavelengths of diffracted light which do not carry 

information regarding the fingerprint may reflect back towards the CCD. Much of the 

light which is not diffracted may wave guide toward the finger and thus may also be 

scattered or reflected from the finger towards the CCD. These unwanted wavelengths 

fog the directed light which contains the fingerprint information. Originally, when 

gas ion lasers were used for illumination, wavelength filters were used before the 

CCD. Unfortunately, the laser line filters are very expensive and would not normally 

be used in a commercial device. Thus, not only is the spectrum of light entering the 

edge important, but just as important is the light which is reflected or scattered from 

the finger. The wavelengths of light reaching the hologram can be controlled by 

changing the light source to one with a small bandwidth as discussed in §7.4. The 

amount of light scattered from the finger can be altered by choosing a different 

recording wavelength as described in the next section. 

8.2.7 Skin Optics 

Ideally, in the configuration of Fig. 8.2, the image would look better if there was no 

reflectance from the finger. Unfortunately, there can be a significant reflectance from 

the finger depending on the incident wavelength. In order to determine the reflectance 

from the finger, the refractive index was needed, as well as information regarding the 

scattering and reflectance for various wavelengths. Many authors have examined the 



Chapter 8. Applicatiom and Mass Production 177 

optics and reflectance of the skin [8.23-8.36] and the most thorough research which is 

applicable to the ELFID was conducted by Anderson and Parrish [8.37]. The three 

layers of the human skin-stratum corneum, epidermis, and the dermis each have 

different optical qualities. The optical effects of each layer can be represented 

schematically as in Fig. 8.6 [8.37]. 

Stratum Corneum ------\-i'---/~--~ (10",m)-

Epidermis 
(100 llm) 

Dermis 

(3mm) 

Figure 8.6 A schematic diagram of the optical properties of the three layers of skin [8.37]. 

The surface reflection of Fig. 8.6 is present in the valleys of the finger as on the 

ELFID of Fig. 8.2 where the finger is not in contact with the substrate. This surface 

reflection is not present in the ridges where the finger is in contact with the substrate 

surface. The stratum corneum and the epidermis contain melanin which absorbs 

shorter wavelengths more strongly than longer wavelengths. However, the melanin 

content can vary significantly between individuals. The thickness of the stratum 

corneum does not usually allow significant absorption to take place (although the 

thumb and fingers have a thicker stratum corneum than the one illustrated). The 

remittance of the incident light in the stratum corneum and the epidermis is minimal 

at visible and near IR wavelengths [8.37]. 

In the dermis, which does not contain any melanin, the scattering and reflecting is 

higher than in the other two layers. The transmittance through this layer is higher and 

forward directed for higher wavelengths within the range of 500 nm to 1.2 ~m. Thus, 

the shorter wavelengths are absorbed and reflected within this layer. 
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Anderson presents data showing that the reflectance from a 200 J.lm layer of dermis is 

about 32% at 400 nm while the transmittance is near 10%. At 700 nm, the reflectance 

is about 28% and the transmittance is near 43%. Thus, if one were to look at only the 

dermis it would appear blue. Without knowing exactly how much of the shorter or 

longer wavelengths is absorbed in the stratum corneum or the epidermis, one can not 

determine exactly which portion of the spectrum has a lower reflectance. 

Since the reflectance is what needs to be minimized in the basic ELFID setup of Fig. 

8.2, the total reflectance of the finger was measured in an edge-lit setnp and is shown 

in Fig. 8.7 

The reflectance of Fig. 8.7 was measured normal to the substrate with the light 

incident at a steep angle so that the spectral reflectance of stray light (or diffracted 

light) in the ELFID could be determined. The reflectance of light incident at a steep 

angle is essentially the same as many other measurements of skin reflectance using 

spectrophotometers and diffuse reflectance spheres [8.33-8.37]. 

As one can see from Fig. 8.7, the light reflecting off of the finger decreases with 

wavelength. This occurs despite the stronger tendency of the dermis to reflect the 

shorter wavelength light because of the stronger absorption of the shorter wavelength 

light in the epidermis and stratum corneum. Therefore, to reduce the reflectance 

which reaches the CCD, the recording wavelength was changed from 647 nm to 

458 nm which should result in a reflection reduction of approximately 33% (from Fig. 

8.7). 

When recording with 647 run, one is able to replay with laser diodes (thus narrow 

bandwidths near 3 nm). However, for replaying a blue recorded hologram, one must 

resort to blue LED's until the commercial availability of blue laser diodes. 

Unfortunately, the LED's reduce the contrast of the fingerprints because of the large 

bandwidth (FWHM of70 nm). 
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Figure 8.7 The nonnal reflectance of the author's fmger when illuminated with white light at a steep 

angle. 

8.2.8 Contrast Considerations 

The final fingerprint image contrast on the CCD is based on the light arriving from all 

angles. Some incident light is remitted from the finger towards the CeD in all of the 

fingerprint illuminating methods. However, the effects of the remittance on the 

contrast are minimized in some illumination geometries as shown Fig. 8.8. 
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a) 

b) 

c) 
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Figure 8.8 The direct and remitted light reaching the CCD in the <a) FTIR prism, (b) transmission 

coupled ELFID, and (c) reflection ELFID geometries for fmgerprint illumination. The incident light, 

1" passes through the substrate with refractive index n, at an angle, e, and reaches the finger, nf. The 

remittance from the fmger which reaches a particular spot on the CCD is dependent on the angle, 

wavelength, individual skin characteristics and is represented here by the factor, r. The contrast, C, for 

the fingerprint image depends on Fresnel reflections, diffracted light from the hologram, and remitted 

light from the fmger. 
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As can be seen from Fig. 8.8 in the FTIR and the reflection ELFID geometries, the 

light leaves the substrate to the CCD from Fresnel transmittance. In the transmission 

coupled ELFID, the light is coupled out of the substrate by means of a transmission 

hologram (this is similar to the waveguide hologram devices of Chennankara [8.20] 

and Igaki [8.21]). 

The system with the best contrast is the FTIR prism geometry regardless of the 

remittance factor, r. The coefficient of 0.4 for the remittance in (a) and (b) is based on 

the finger reflectance at a wavelength of 458 nm from [8.34]. In the calculations, the 

holograms are assumed to have a diffraction efficiency of 100% for simplicity of 

comparison. The diagram does not illustrate the transmission ELFID geometry or the 

'false' transmission ELFID geometry as these have similar contrast considerations as 

the reflection ELFID hologram. The transmission coupled and reflection ELFID 

cases (b) and (c) have lower contrasts which depend crucially on the remittance from 

the finger. In (b) the Fresnel reflection from the finger is a strong contributing factor 

which is believed to be larger than the remittance factor, thus playing a large role in 

decreasing the contrast. In (c), the Fresnel reflection from the finger is very small and 

virtually negligible. The remittance factor for all of these cases depends on the angle 

and the distance from the finger where it is measured. Thus, when the distance from 

the finger to the CCD is considerable (approximately 10 mm for example), the 

remittance factor r, is quite small. Therefore, between (b) or (c), the one with the 

higher contrast for small values ofr is (c). This is believed to be the reason why the 

ELFID's with the best contrast have been produced by the reflection geometry of (c). 

In terms of the replay geometries (b) and (c), the only difference in the r values is 

essentially the difference in the light remitted normal to the finger surface when 

illuminated from a steep angle (b) and when illuminated normal to the surface (c). In 

both of these cases, the r value is believed to be similar. 

In the prism geometry, the illumination light is at 45° and the examined light is at 45° 

from the plane of the fingerprint (which can vary depending on the FTIR geometry or 

prism chosen). However, in the prism geometry, since the large face must be 
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approximately the size of the finger, this fixes the maximum distance from the 

fingerprint plane to the imaging lens. For example, in a 45° prism, if the large surface 

of the prism is 2 cm x 2 cm, then the minimum distance to the lens for full field of 

view in the imaging system is 1.41 cm. This distance combined with the distance in 

the imaging optics dramatically reduces the r value, thus helping to explain the high 

contrast in the prism method. Also, this shows some of the size constraints associated 

with using the prism system. 

One can determine the maximum contrast possible by letting r approach zero. While 

the maximum contrast in the prism system is approximately 0.99, the system occupies 

a large volume. The maximum contrast in the transmission coupled ELFID is 0.4 and 

the maximum in the reflection ELFID is 0.989. Thus, the reflection geometry (or a 

similarly equivalent transmission or false transmission geometry) has the greater 

potential for a high contrast compact fingerprint illumination system. 

8.3 LeO Illuminator 

One of the largest costs in full color liquid crystal displays is applying the red, 

green, and blue dyes on the individual pixels. Since holograms can inherently diffract 

selected wavelengths of light from a white light source, they seem a definite 

possibility for illuminating a LeD. An edge-illuminated LeD also seems feasible for 

lighting an LeD panel in a compact device. This opens the possibility for televisions 

hanging on the wall with no external illumination or projection. 

The LeD illuminator termed Holographic Edge-Lit Panel, or HELP for short, consists 

of the basic edge-lit hologram, but includes a mask pattern and a special illuminating 

geometry. The HELP is created using the geometry of Fig. 8.9. 
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Figure 8.9 The basic recording geometry for a HELP 

In Fig. 8.9 the cylindrical lens diverges the reference and the mirror collimates the 

light which then passes through the mask. The set-up can be modified for the below 

replay possibilities (The abbreviations cl, cn, and dv represent collimated, converging, 

and diverging beams respectively, and S, and R, represent the Signal and Reference. 

For example, clSdvR represents collimated signal and diverging reference): 

a) clSdvR Recording b) clSdvR Virtual Replay 

Signal Beam 

Cylindrical Lens 

DivergIng Ught .",,!i~\i'f" ... ",r:e.·~. --t\.w...-, Polymer 

~ .... " .. " ............ "'''r''' , , , I Substrata 

Llllrlll: LCD _'loo 

1 

,-_~"~"_8--:t·'~~ :=. 

Figure S.10 The clSdvR recording Ca) and replay (b) geometry for the HELP. 

With a clSdvR recording, a diverging point source for the virtual (non-conjugate) 

replay will reproduce the collimated signal beam which may pass through the 

individual pixels of an LCD. Note that there will be a minimum distance factor from 

the hologram to the LCD which is the thickness of the replay substrate. The real 
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(conjugate) replay geometry of this recording would require a converging light source 

which is not practical in terms of size restraints. 

a) clScnR Recording 

Signal Beam 

-~!~--O- :l~! :=. 
Low F/# 
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b) clScnR Real Replay 
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............................. 

Figure 8.11 Recording a reflection clScnR hologram (a) and replaying it as a 'false transmission' 

hologram (b) as a result of the total internal reflection (TIR) inside the hologram. 

In Fig. 8.11 the TIR results from the polymer-Mylar interface, or the polymer-air 

interface if the Mylar support layer is removed. The hologram diffracts the TIR light 

from apertures corresponding to the same positions in the mask. Note that in this 

geometry, the LeD can be essentially in contact with the polymer. Results seem to 

show that replaying in this geometry is not as bright as the normal reflection replay as 

in Fig. 8.1 O. The reason for this diminished brightness is uncertain, however it may 

partially be a result of absorption from residual dye as the light passes through the 

layer once before reaching the fringes at the Bragg angle. 

The difficulty with a clSclR HELP (Fig. 8.12) is the reconstruction using collimated 

light. Tests have shown that a linear light source reconstructs several images because 

the light is still not collimated as described in §7.3. A collimated source would 

normally involve large space considerations relative to the display. A method using a 

film with black slats which absorbs light not within a defined angular range (such as 

3M's louver material) in combination with a linear bulb may be possible to simulate 
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linear collimated light (however, this may leave dark 'streaks' on the illumination area 

from the shadows of the slats or create diffraction effects ifthe slats are to small). 

a) clSclR Recording b) clSclR Real Replay 

Signal Beam 4 4 , 

Leo Position 1[11 ILl I 
I \~',.;;.: .... ,\. I Collimated Light 

$ubstrate L-_---'I, 

Figure 8.12 Recording (a) and replaying (b) an edge referenced hologram with a collimated reference 

and collimated signal. 

In Figs. 8.10 through 8.12, the signal may be converging or diverging as well. One 

would hope that having diverging light from the pixels in replay would increase the 

angle of view, however, the light is specular and not diffuse. This would result in 

seeing only those pixels close to the viewer off to one side. For example, if the a 

viewer looked from the left side of the screen, only the pixels from the left side would 

be visible. The light from the pixels on the right side of the screen would be traveling 

in the opposite direction unless each individual pixel was recorded with a diverging 

beam. 

The collimated light from the hologram on replay through the CCD essentially has no 

field of view. A simple method to increase the angle of view is to add a diffuser to the 

surface of the LCD (such as the MicrosharpTM diffusion film developed by Nashua 

Corporation) so that the light diverges from the LCD as illustrated in Fig. 8.13. 

Another method to increase the field of view of the light from the LCD would be to 

add a microlens structure on top of the LCD or introduce it into the recording mask. 

Thus, each individual pixel would have its own diverging wavefront. 
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Figure 8.13 The reflection Ca) and transmission Cb) replay geometries for a collimated signal HELP 

with an LeD and diffuser. 

One might also try to incorporate a diffuser in the hologram during recording. Tests 

were made using a diffuser in the recording by laminating it onto the mask so that the 

signal beam becomes diffuse just before entering the mask. In this geometry, the area 

of signal light that reaches the hologram is larger than the pixel size (due to the spread 

of the diffuser). Thus, the size of each holographic pixel (defined as the area of the 

grating which diffracts to one pixel in the mask) has a larger surface area which can 

use more ofthe incident light for one pixel. 

Several advantages of the HELP over normal LeD backlights (where light directing 

sheets and crude diffusers are used) is the reduction in size, the correct replay of the 

corresponding color on the correct pixel (three holograms-red, green, and blue can be 

created to give the separate colors of the pixels), and no polarizer is needed because 

the hologram is polarization sensitive. Almost half of the cost of LeD's are involved 

in dying each of the pixels in the redlgreenlblue pattern. With the HELP, the color 

separation is in the holographic optics. 

A HELP is in a sense, a series of minute holograms the same size as the pixels (unless 

a diffuser is used in recording). Thus, only registration is required for correct 

illumination of the LeD. To determine the ability for the hologram to illuminate the 

LeD at varying distances from the LeD with a white light source, a test hologram 
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was illuminated with a halogen bulb. The light appeared to be emanating from the 

individual pixels out of the large face of the substrate. When the original mask is 

place on the substrate as in recording, the alignment can be judged based on the Moire 

fringe pattern (the visible dark bands which appear when two amplitude masks are 

mis-aligned). The Moire pattern also proves that the recording was successful in 

generating the light in the proper mask pattern. The results appeared to be very 

successful for a single 514 nm recording with white light replay. 

The wavelength bandwidth of edge-illuminated holograms is very crucial in creating 

a bright, colorful liquid crystal display system. Fortunately, the reflection edge­

referenced holograms can have relatively high wavelength bandwidths when replayed 

through the edge of the substrate (Fig. 5.6e). The bandwidth is very dependent on the 

refractive index profile, but a FWHM of 60 nm should not be difficult to obtain and 

should have a considerable apparent brightness as an illuminator for an LCD. 

A difficulty which may arise is the angular dispersion from the hologram. The off­

Bragg wavelengths will diffract from the hologram (as defined by the wavelength 

bandwidth) and these wavelengths will diffract at different angles. If this dispersion is 

significant, it could result in a problem with image quality with the illuminated LCD. 

Some of the problems which arise from this dispersion may be alleviated by a using a 

diffuser on replay. By virtue of being an edge-lit hologram, the HELP suffers from 

illumination difficulties as mentioned in Chapter 7. Some of these, can be alleviated 

as described by the use of a coupling hologram (§7.6). 

8.4 Other Applications 

An edge-illuminated hologram can be used in place of a face-lit hologram in many 

different optical systems. The diffraction characteristics of the edge-lit hologram, are 

different than most typical holograms and may restrict its use in some applications. In 

addition, some of the special characteristics of the edge-lit hologram make it very 
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useful in other applications. The different types of edge-lit hologram applications can 

be divided into HOE's and display holograms. 

8.4.1 Holographic Optical Elements 

The size reduction which an edge-lit hologram offers is very appealing in most 

applications and some systems may be easily altered to compensate for the diffraction 

characteristics distinctive to edge-lit holograms. In some cases, the diffraction 

characteristics may open up the edge-lit hologram to applications. The wavelength 

and angular bandwidths of an edge-lit hologram as the fringes approach 45° can be 

significantly small when replayed at the signal angle (Figs. 5.6b and 5.9b). Thus, the 

edge-lit hologram could be used as a wavelength or spatial filter which diffracts the 

unwanted light out the edge of the substrate. 

Most HOE's can be converted to similar edge-lit hologram if desired. There is no 

difference with the signal beam since it can have any wavefront which a face-lit 

hologram can have. The only difference is the reference beam wavefront. The basic 

edge-lit geometry will limit the reference angles for recording and replay and the 

degree of divergence or convergence. 

One HOE mentioned early in the history of edge-illuminated holograms is the Head­

Up Display, or HUD. This is a very useful application of an edge-lit hologram as first 

described by Upatnieks [8.38]. In display systems such as those in a cockpit or even 

in cars of the future, the illumination must not occupy a large volume and the 

transmitted zero-order light must not be seen. 

A potentially large market for edge-lit holograms is using them as HOE's for 

illuminating signs. Illuminating signs usually wastes a tremendous amount of light 

and electricity. Since the edge-lit hologram can recycle the replay light which is not 

diffracted, it potentially has a much better optical efficiency. In addition to the 
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obvious size benefits, the diffraction characteristics of an edge-lit hologram such as 

bandwidth or field of view may be beneficial for some types of signs such as those 

which should not be viewed at some angles. 

8.4.2 Display Holograms 

As one of the first applications of holography, display holograms have always had the 

potential for creating a beautiful three-dimensional image which could hang on 

anyone's wall. Unfortunately, one of the main drawbacks in display holography is the 

lighting requirements. One of the main driving forces in edge-lit holography research 

has been the potential for removing the external lighting difficulties of holograms and 

simply bring the light source into the frame. 

Most of the researchers in the field of edge-illuminated or waveguide holography 

have demonstrated display holograms because it is usually a simple method for 

demonstrating the specific type of hologram. Special techniques which apply to 

traditional face-lit display holograms can also apply to edge-lit holograms. Benton et 

al. [8.39] successfully demonstrated that a transmission rainbow hologram could be 

made as an edge-lit hologram. Bimer [8.40] showed that a dispersion compensation 

grating could be used with an edge-lit hologram to create an achromatic hologram. 

An interesting phenomenon discovered in this research is the ability to display a 

reflection hologram in a 'false transmission' mode as illustrated in Fig. 8.14. 

The false transmission mode of Fig. 8.14(c) offers and unique method for viewing the 

orthoscopic image of a reflection H2 hologram by using the reflected TIR light within 

the hologram as the illumination. This bounce can occur at the Mylar-air boundary or 

at the hologram-air boundary if the Mylar is removed. This replay geometry is 

unique to the edge-lit hologram and offers the possibility to replay a reflection 



Chapter 8. Applications and Mass Production 190 

hologram in a transmission geometry while maintaining the diffraction characteristics 

of a an edge-referenced reflection hologram. 

Reflection Copying Virtual Reflection Replay False Transmission Replay 

a) 

Edge-referenced 
(collimated) 

b) 

PseudosooplC 
Virt\Jallmage Replay Orthoscopic 

A 
ReaJJmage 

J~tl!lm ........-c- '., .. " I 

c) 

Figure 8.14 Two replay possibilities of an edge-referenced reflection hologram recorded and replayed 

with collimated light. 

8.5 Mass Production 

The stability and coherence requirements for direct recording of volume holograms 

often rules out the quick and typical mass production techniques employed with other 

optical elements. However, three different techniques have emerged which can 

possibly allow mass reproduction of edge-lit volume holograms. These techniques 

are reflection contact copying, alternative Bragg recording, and direct fringe copying. 

8.5.1 Reflection Contact Copying 

Reflection holograms have the ability to be copied by illuminating the hologram 

through a recording medium in contact with the hologram. The first order reflected 

(diffracted) light then interferes with the incident light inside the unexposed film. 

This creates an exact copy of the original hologram in a single beam geometry. 



Chapter 8. Applications and Mass Production 191 

Contact copying was attempted with an ELFID and yielded reasonable efficiency 

(slightly less than the original). The set-up for copying was arranged as in Fig. 8.15. 

Collimated 
Signal 

Substrata 

Figure 8.15 The contact copying geometry for ELFID's with a collimated laser for the replayed signal 

beam. The light diffracts in the direction of the original reference beam and interferes with the replay 

light within the film. 

The efficiency of the contact copy holograms could have been less than the original 

because the effective beam ratio is much less than unity (due to the absorption) as is 

the case with most single beam recording geometries. Contact copying using the 

reference beam would be extremely difficult to set-up on a mass production scale due 

to the tight angle constraints. Therefore, copying using the signal beam seems to be 

the best method for copying using a laser. Unfortunately, this is virtually limited to 

collimated signal holograms. When contact copying display holograms with the 

signal beam (i.e. the projected image from a transmission master) it is very difficult to 

align the image at exactly the same angle and focus depth as the copy hologram. The 

same difficulties applies for HOE's when matching a non-collimated wavefront for 

signal beam contact copying. The high angular selectivity of the edge-referenced 

hologram when replayed through the signal makes alignment for non--{:ollimated 

wavefronts very difficult, thus yielding inefficient copies. 

In order to copy more than one hologram at a time, one must record the holograms 

using a collimated signal beam. With a collimated signal one could copy several 

holograms at a time by putting them together and using a large collimated beam, or 

alternatively, one could use a laser line scanner to scan across a sample such as in the 
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Du Pont copying machine [8.40]. This continuous copying roll-fed format can offer 

excellent production times and capacities. 

One of the benefits of using the contact copying method is the lower spatial coherence 

required on the copying laser. Since the copy and the original hologram are in contact 

with each other, movement relative to each other is much less likely. Also, \he 

distance between the original and the copy is usually just the thickness of the Mylar 

cover layer (50 Ilm), This thickness could be reduced in the packaging which could 

lower the coherence requirements of the laser (or other light source). There must, 

however, be a separation layer between the original and copy if they both are 

photopolymer because the solvents in the fresh, unexposed photopolymer will react 

with the original recorded hologram. If the original is silver-halide, then solvent 

damage is much less likely, although a protective film is advised. 

8.5.2 Alternative Bragg Condition Recording 

Using the alternative Bragg recording method described in §4.5, a hologram with 

parallel fringes can be directly made with relaxed angles at a different Bragg 

condition. This technique is limited to collimated wavefronts for the reference and 

signal beams (unless a complex wavefront conversion technique is applied). This 

could be accomplished on a roller for continuous or on a pair of prisms for non­

continuous recording as illustrated in Fig. 8.16. 

The reflective component in Fig. 8.16 could be a mirror, retroreflector, blazed grating 

or another device depending on the desired fringe angle within the photopolymer. 

Large format holograms could be made using this technique. If glass rollers are used 

instead of prisms, then the recording angles must be adjusted for the angles of 

refraction in the rollers. One must note that if the fringe angle is not at 45°, then the 

angle introduced by the reflective component means that the area of interference is 
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smaller than the total area exposed. One must realize this and be careful not to fog the 

area before the subsequent exposure. 

Blazed grating, or 
other reflective 
optical element 

~""'''"~.-t---I Scanning 
laser 

Figure 8.16 One possibility for recording a large hologram using the alternative Bragg recording 

geometry. 

8.5.3 Direct Fringe Copying 

The non--coherent conversion of amplitude fringes to volume phase fringes has been 

described in §4.7 and is referred to here as direct fringe copying. Some of the benefits 

of this method are very useful when considering mass manufacture techniques. The 

light source required for copying does not need to be a laser as a broadband UV 

source will work very well. The cost of a high power lamp is very cheap compared to 

that of a laser and the maintenance is significantly easier. However, the directionality 

of the light from the lamp must be controlled to match the amplitude holograms fringe 

angles for proper copying. 

The size of the copy hologram in the direct fringe copying method is only limited to 

the size of the transmission master or similar amplitude grating. Also, the system can 

easily be set up on a roll-feed continuous copy arrangement. This method is limited 

to slanted holograms, and the coupling into the copy film becomes more difficult as 

the angle is increased due to reflections. A prism allowing UV penetration would 

then be required. Also, as the fringe angle increases towards a pure reflection 

hologram, the fringe spacing will decrease and diffraction effects from the edges of 
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the amplitude grating may become a problem. Testing the diffraction effects on small 

fringe spacing holograms in the direct fringe copying method is left for further 

research. 
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Chapter 9 

CONCLUDING REMARKS AND 

DIRECTIONS FOR FURTHER RESEARCH 

The large potential for edge-illuminated holograms still remains largely untapped. As 

a result of the difficulties involved with recording and replaying edge-lit holograms, 

they have not been the center of widespread research. The recording and illumination 

difficulties are carefully examined here and the limits imposed by current technology, 

such as replay light sources, crucially affects edge-lit hologram performance. 

When recording an edge-referenced hologram, the absorption of the dye in the film 

can play a significant role in reducing the recorded fringe contrast. Knowing the 

thickness, absorption of the dye, and the angles involved in recording, one can 

maximize the average contrast and improve the diffraction efficiency of the hologram. 

The recording material used for recording an edge-lit hologram is very crucial to the 

performance of the hologram. Results shown here illustrate the extreme importance 
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of closely matching the refractive index of the substrate and the film. With silver 

halide holograms, the indices are not matched close enough for efficient recording and 

replay. The coupling of light from the substrate to the film is much higher when 

using a recording film such as Du Pont photopolymer which can be index matched 

with a recording substrate. Excellent results have been obtained from holograms 

recorded and replayed at steep angles using special glass substrates with the index of 

refraction very near (less than) that of the Du Pont photopolymers. 

Other photopolymers or recording films may be used, but the refractive indices, 

packaging, and possible real-time effects must be considered. Fortunately, the real­

time effects of the Du Pont photopolymers can offer diagnostic information and the 

fogging and real-time diffraction do not seem to significantly degrade the 

performance in experimental samples. 

Both transmission and reflection edge-lit holograms have traditional as well as unique 

replay geometries. The false transmission geometry enables a reflection recorded 

hologram to be replayed as a transmission hologram from a total internal reflection 

within the film layer (and similarly with a false reflection hologram). Edge-lit 

holograms can also be evanescent holograms. These holograms are usually very thin 

and are therefore not usually very efficient. However, edge-referenced evanescent 

holograms lead to a new type of hologram where the reference beam coupling into the 

film is gradual as the index of the film increases. These self-induced index matching 

holograms can offer unique possibilities for further research into precise index 

matching and diffusion characteristics of photopolymers. 

The complications and non-uniformities involved with recording and replaying edge­

lit waveguide holograms prohibit them from many applications where uniformity and 

efficiency are major requirements. 

Two new methods for making slanted fringe holograms offer great potential for 

simple recording and mass manufacturing. The alternative Bragg condition recording 

can bypass many of the difficulties associated with steep-referenced recording. 
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Holograms recorded at other Bragg conditions have proven to be very useful and 

efficient as well as being much simpler to record. An apparent limitation is that one 

can only record parallel fringes from collimated wavefronts. An even simpler method 

involving copying amplitude gratings to volume holograms in photopolymer has been 

proposed and tested for amplitude transmission holograms. This direct fringe copying 

method has a very large potential for mass production as a laser is not required for 

copying. 

A new adaptation of the rigorous coupled wave theory was developed to analyze the 

diffraction characteristics of edge-lit holograms. With the theory, the regions of 

validity of two approximate models were illustrated for the particular case of slant 

angles near 45°. While some further modifications are needed on the rigorous theory 

presented here to perfectly model experimental edge-referenced holograms, the 

general diffraction characteristics of measured samples were similar to those predicted 

by the rigorous model. In general, edge-referenced holograms near 45° fringe angles 

have high wavelength and moderate angular bandwidth when replayed as edge-lit 

holograms. When they are replayed with the signal, the holograms have very low 

angular and wavelength bandwidths. Heat processing the samples generally increases 

the bandwidth and the index modulation. 

Replaying an edge-lit hologram is more complicated than recording. The radiometry, 

directionality, and wavelength of the illuminating source are all important 

considerations complicated by the compact optical system of the edge-lit hologram. 

While the radiometry can improve the brightness of the edge-lit hologram, the 

directionality restrictions severely limit the efficiency and size of the system. Also, 

the wavelength bandwidth of the source can seriously limit the use of the edge-lit 

hologram in some systems such as fingerprint illuminators. Coupling gratings can 

offer some relief to the stringent illumination restrictions imposed on the edge-lit 

hologram while still maintaining a compact system size. 

Many optical systems incorporating a holographic optical element would benefit 

tremendously if the HOE was a compact edge-lit hologram. The fingerprint and LCD 
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illuminators are excellent examples of optical systems which can use an edge-lit 

hologram to reduce their size. 

The edge-lit fingerprint illuminating device offers many advantages over the 

traditional fingerprint illuminators. It is inherently smaller, can resolve higher detail, 

and is free of optical aberrations. There are many considerations regarding the replay 

of a fingerprint illuminator. The most important considerations are the bandwidth and 

reflectance from the finger which will lower the contrast on a detector very close to 

the finger. Edge-lit display holograms or HOE's, such as an LeD illuminator, have 

many important limitations and restrictions on the replay. High wavelength 

bandwidth and off-Bragg diffraction are two important considerations which can 

degrade the image or increase the dispersion in an HOE. 

The traditional technique of reflection contact copying, along with the new techniques 

of alternative Bragg condition recording and direct fringe copying are possible 

avenues for mass production. The reflection contact copying and the direct fringe 

copying offer lower coherence requirements for copying and would normally be 

preferred to the alternative Bragg condition recording. When using the direct fringe 

copying method, the ability to copy features with a very small fringe spacing is 

undetermined. 

Further areas of research on edge-lit holograms include diffraction modeling, further 

heating experiments, measurement techniques, recording techniques, and testing 

various photopolymers. The rigorous coupled wave theory presented here could be 

modified to include 90° diffraction and incidence. The dynamic effects of the 

photopolymer could also be introduced to the theory along with non-perfect 

cosinusoidal modulation. The polarization selectivity can be modeled using the 

rigorous theory to model three-dimensional conical diffraction. Since in real 

holograms the absorption inherent in recording adds to tapering, this and other non­

uniformities could be incorporated into the theory. Evanescent holograms could be 

incorporated into the interference contrast calculations for recording and the rigorous 

theory could be altered to examine evanescent replay. 
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The effects of heating on the index profile of photopolymers is not fully understood. 

A spectrophotometer setup such as the one illustrated here could be used to analyze 

the diffraction while the sample is heated under various conditions and cover layers 

(such as tuning film or Microglass). The spectrophotometer could also be transferred 

to an angular stage to look at the diffraction at steep angles of incidence. Other 

recording techniques such as the direct fringe copying need to be evaluated at high 

spatial frequencies and for various thicknesses. 

New types of photopolymer are currently being developed in Du Pont and other 

companies which may result in higher refractive index modulation, index profiles 

closer to a cosinusoidal response, or other benefits. Continuously testing and 

experimenting with these films may soon enable edge-lit holograms to be used in 

many optical systems, helping to fuUill the great promise of holography. 
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Appendix A 

A photograph showing the setup for recording edge-referenced holograms as in 

Fig. 3.1. The blue area is 458nm light from an argon ion laser. The red light is 

from a safelight and is used to see the components of the setup. 
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Appendix B 

photograph showing the real-time interferometric fringes genera ted from the 

fluorescence of Ule dye when a recorded edge- referenced hologram i moved on 

the setup. 
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Appendix C 

The following program detennines the mathematical solution of the rigorous coupled 

wave theory of Moharam (JOSA 1981, pS14) for any number of desired space 

harmonics using the Coleman adaptation for thick gratings and a large number of 

space harmonics. The program was written for the MATLABTM software version 4.0. 

Notational remarks are made using a "%" for the introduction and variable 

descriptions and references to the equations in the text of the thesis. 

% This MATLAB program uses the rigorous coupled wave theory ofMoharam 
% (JOSA '81 pS14) with the Coleman adaptation for thick gratings with 
% many possible space harmonics. This will work for cosinusoidal 
% modulation with slant and many diffraction orders. The boundary 
% condition matrix is well conditioned. The fringe angle and phi vary between 
% -90:0:90 degrees. This allows for input angles from -90 to 90 degrees. 

% This particular version will show the higher Diffraction Efficiency 
% as a darker area in a 3-Dimensional graph versus the Bragg 
% wavelength deviation and versus the reference beam angle where the 
% replay angle is at the signal angle. This program will generate 
% the graph in Figure 5.6( d) and will take appx. 40 minutes 
% to compute. Where possible, the notation for section 5.2 will 
% be used. This program is NOT valid for 0 degree slant, 90 degree diffraction 
% for any order, or 90 degree incidence. 

%%% INITIALIZATION 

clear; 
count~O; 

countl~O; 

num-'points~90; % This detennines the number of points to graph in a 
% square plot (i.e. 90 x 90 points). Decrease this to decrease the calculation time 

I 

I 

I 

~ 
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%%% HARMONIC VARIABLES 

MM=3; % which means that the total number of retained orders is 2*MM+l 
% Thus in this case, the orders -3,-2,-1,0,1,2,3 are included 

nn=2*MM+1; 
NN=2*MM+2; 

%%%REC ORDING VARIABLES 

% This section is used to compute the slant and period of a grating 
% recorded and to be analyzed. 
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theta _s=O; % This is the angle of incidence for the signal IN THE FILM 
thetaJ_min=.OOI; % This is the minimum reference angle 
thetaJ_max=180; % This is the maximum reference angle 
for theta _ r=theta J J1lin:(theta J _ max-theta J_ min)/num .Jloints:theta _r _max; 
% This is the reference angle loop (for recording in this case) 

fringe_angle=(thetaJ+theta_s)/2; % This is the fringe angle 
rlambda=.647; % This is the replay wavelength in microns 
rt= 1; % rt is a variable in case one has defined a negative fringe angle which 

% allows the correct computation ofthe slant phi. 
if fringe _ angle<O 

rt=l; 
end 
phi=fringe _ angle-90*rt; 

nholo=1.5; %This is the average refractive index of the hologram 
ninc=nholo;npost=nholo;e _I =ninc"2;e _3=npost"2; e _ avg=nholo"2; 
% These define the other permittivities and refractive indices. In this example, they 
% are equal across the boundaries. 

period=r1ambda/(2 *nholo* abs(sin(pi/180*0.5*(theta _ s-theta J)))); 
% This is the absolute period (or fringe spacing) of the hologram grating. 

%%%REPLA Y VARIABLES 

%%%% REPLAY ANGLE LOOP 
theta=theta_s; % This is the replay angle in first medium (degrees). In this 

% case it is the signal angle. 

if theta r==90 
theta=89.9999; 

end 

iftheta>90 

% This is because the program can not handle 90 degree 
% incidence. 

% This is necessary to change the direction for the same grating 
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theta=theta-lS0; 
end 

% when replaying a reflection hologram. (i.e. so that the zero 
% order transmitted light always travels in the same direction). 

if theta<-90 
theta=theta+ ISO; 

end 

% This is in case one wants to consider a large negative replay 
% angle as above for a reflection hologram 

% The previous secti()n essentially ensures that -90<theta replay<90 

%tmin=S5; 
%tmax=S9.99; 
%for theta=tmin:(tmax-tmin)/num jJoints:tmax % This is the replay angle loop 
thetaprime= ISO/pi * asin(nholo/ninc * sin(pil180*theta)); 
% This is the replay angle in the hologram 

%%%% REPLAY WAVELENGTH LOOP 

Imax=.647+.03; %This shows the Bragg deviation in microns 
Imin=.647-.03; 
for lambda=lmin:(lmax-Imin)/num --.Jloints:lmax 
% This is the replay wavelength loop 
%lambda=.647; % This is needed if one is not varying the replay wavelength 

%%%% THICKNESS LOOP 

%dmin=O; 
%dmax=50; 
depth=25; % This is the thickness of the film in microns 
%for depth=O:(dmax-dmin)/num jJoints:dmax % This is the thickness loop 

%%%% MODULATION LOOP 

%nmodmin=.OOOOOOOOI; 
%nmodmax=.02; 
%for nmod=nmodmin:(nmodmax-mnodmin)/num --.Jloints:nmodmax 
nmod=.02; % This is the amplitude of the ref. index modulation 
%emod=.2526; 
emod=e_avg*nmod*2/nholo; % This is the amplitude of the permittivity modulation 
%delta _ n=2*nmod; % This is the relationship between delta n and the refractive 

% index modulation amplitude 
%nmod=emod/(2 *nholo); % This relates the permittivity modulation amplitude 

% with the ref. index modulation amplitude 
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%%%% CALCULATIONS 

k=pi*emodl(2*lambda*nholo); %This is the coupling constant, defined in Eq. 5.14 
mu=lambdal(period*nholo); % Defined as in Eq. 5.14 
p=2*lambdaA2/(periodA2*emod); % Defined as in Eq. 5.14 
B=2 *period *nholo* cos(Pi/ 180* (Phi -thetaprime) )/Iambda; 
% This is the Bragg indicator (B=I is at first Bragg condition) defined in Eq. 5.15 
kO=2*pi/lambda; 

%%% CALCULATE el,e2,e3 Matrix NOTE positive order on top (10 -I) 

e I =zeros(nn);e2=zeros(nn);e3=zeros(nn);kx=zeros(nn); 
form=l:nn 
kx(m,m)=sin(pi/180*thetaprime )-(MM+ l-m)*mu*sin(pi/180*phi); 
% This is Beta of Eq. 5.8 divided by kl of 5.9 

el(m,m)=kO*nholo*sqrt(e_1Ie_avg-(kx(m,m)A2»*sign(e_1Ie_avg-(kx(m,m»A2); 
e3(m,m)=kO*nholo*sqrt( e _3/e _ avg-(kx(m,m)A2»*sign( e _3/e _ avg-(kx(m,m»A2); 
% These are the matrices for el and e3 as in Eq. 5.10 
e2(m,m)=kO*nholo*( cos(thetaprime*pi/180)-(MM+ I-m)*mu *cos(pilI80*phi»; 
end 
% This is the matrix for e2 as in Eq. 5.11 

%difC angles= 180/pi *atan( diag(kx )*kO*nholo./ diag( e3»; 
% This can calculate the angles of diffraction 

%%%% Calculate the variables for the matrix brs ofEq. 5.16 
% These use Eqs. 5.21 NOTE positive orders on top 
b=eye(nn);cc=eye(nn);g=zeros(nn); 
a=8*e_avg/emod; 
g(NN-I)=a; 
g(NN+I)=a; 
form=l:nn 

forn=l:nn 
b(m,n)=g(m-n+NN); 

end 
end 
form=l:nn 

cc(m,m)=a*( cos(Pi/180*thetaprime )-(MM+ l-m)*mu*cos(pilI80*phi»; 
b(m,m)=-a*p*(MM+ l-m)*(MM+ I-rn-B); 

end 

A=[zeros(nn) eye(nn) % This is the matrix brs represented in Eq. 5.22 
bee]; 
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[W,eigenvalue ]=eig(A); % W is a full matrix of eigenvectors 
% eigenvalue is a diagonal matrix of corr. eigenvalues 

% This section re-orders the eigenvectors and eigenvalues so that the matrix 
% X has the higher values in the bottom half 
test=diag(i*eigenvalue); 
old=W; 
temp=imag(test); 
[yy ,pp ]=sort(real( test»; 
for n=1 :2*nn 

ok(n, I )=yy(n)+i*(temp(pp(n»); 
testW(:,n)=old(:,pp(n»; 

end 
eigenvalue=diag( ok )li; 
W=testW; 

%%%%%%%%% BOUNDARY CONDITIONS 

%%% Calculate the total amplitude matrix (tam) at the 2 boundary conditions 
tam=zeros(2 *nn, I); % Initialize 
tam(3*MM+2)=2*el(MM+1,MM+1); % This corresponds to D and Z in Eq. 5.35 
% by being 3*MM+2, the transmission orders are on top of the bcm matrix 

208 

elements=diag( eigenvalue); % This is a matrix of all the eigenvalues on the diagonal 
EV=k*eigenvalue; 
pEV=k*diag(elements(l:nn»; % This is matrix V+ ofEq. 5.35 
qEV=k*diag(e1ements(nn+ 1 :2*nn»; %This is matrix V- ofEq. 5.35 
X=expm(i*EV*depth);% This is full matrix of X 
xp=expm(i*pEV*depth);% This is the top half of X and is X+ ofEq. 5.35 
xq=expm(-i*qEV*depth); % This is the bottom half of X and is X- ofEq. 5.35 

Y=expm(-i*e2*depth);% This is Y ofEq. 5.31 
E1=(el+e2);% This is GI ofEq. 5.35 
E3=(e2-e3);% This is G3 ofEq. 5.35 

% bcm will use the eigenvectors in the ROWS! 
ww=W(I:nn,I:2*nn); %This is the full matrix ofW 
wwp=W(l :nn, I :nn);% This is W+ of Eq. 5.35 
wwq=W(I:nn,nn+1 :2*nn);% This is W- ofEq. 5.35 

bcm=[E3 *wwp*xp-wwp*pEV*xp E3 *wwq-wwq*qEV 
El *wwp-wwp*pEV El *wwq*xq-wwq*qEV*xq); 

% This is the large matrix ofEq. 5.35 

c=bcm\tam; %This solves Eq. 5.35 
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P=c(1 :nn); % This is the solution P ofEq. 5.35 
Q=c(nn+ 1 :2*nn);% This is the solution Q ofEq. 5.35 

%%%%%%%%%%CALCULATE THE COEFFICIENTS OF REFLECTION 

R_amp=wwp*P+wwq*xq*Q; 
%This is the solution for the amplitude of the reflection coefficients as in Eq. 5.28 
R_amp(MM+1)=R_amp(MM+1)-I;% This is the amplitude of the zero order 
% reflection coefficient which needs the kronecker delta in Eq. 4.28 
R _int=real( e1l( el (MM+ I,MM+ 1 »)*(abs(R_amp )./\2); 
% This is the intensity of the reflected diffracted orders as in Eq. 5.36 

%%%%%%%%%% CALCULATE THE COEFFICIENTS OF TRANSMISSION 

T_amp=Y*wwp*xp*P+Y*wwq*Q; 
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% This is the solution for the amplitude ofthe transmission coefficients as in Eq. 5.30 
T_int=real( e3/( el (MM+ 1 ,MM+ 1 »)*(abs(T _amp )./\2); 
% This is the intensity ofthe transmitted diffracted orders as in Eq. 5.37 

% The following tests that the total diffraction efficiency is not greater than I. 
DEtest=sum(T jnt)+sum(R jnt)-I; 

if abs(DEtest) > 0.0000001 
disp('error of the energy conservation') 
disp(DEtest) 
end 

% The following stores the values for the various diffraction orders 
count=count+ I; 
DE2(count)=T_int(MM-I); % Diff. Eff. of the +2 Transmitted diffracted order 
DEI (count)=Tjnt(MM); % Diff. Eff. of the +1 Transmitted diffracted order 
DEO( count)=T jnt(MM+ I); % Diff. Eff. of the 0 Transmitted diffracted order 
DE_I(count)=Tjnt(MM+2); % Diff. Eff. of -lTransmitted diffracted order 
DE_2(count)=Tjnt(MM+3); % Diff. Eff. of -2 Transmitted diffracted order 
RDE3(count)=Rjnt(MM-2); % Diff. Eff. of +3 Reflected diffracted order 
RDE2( count)=R jnt(MM-I); % Diff. Eff. of +2 Reflected diffracted order 
RDEI(count)=Rjnt(MM); % DifT. EfT. of + I Reflected diffracted order 
RDEO(count)=Rjnt(MM+I); % Diff. Eff. of 0 Reflected diffracted order 
RDE_I(count)=Rjnt(MM+2); % Diff. Eff. of -I Reflected diffracted order 
RDE_2(count)=R_int(MM+3); % Diff. Eff. of -2 Reflected diffracted order 
lam(count)=(lambda-.647)*JOOO; %This stores the wavelength from the loop 
%aDEI(count)=-difCangles(MM); % This can store the diffracted angles 
%aDE_I(count)=difCangles(MM+2); 
end 
count1=count1+ I; 
THETA(countl)=theta_r; % This stores the replay angle 
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Diff( I :num Jloints+ I ,countl )= DEI'; 
% This stores the diff. eff. of the +1 transmitted order 
if theta r>90 

Diff(l :numJloints+ l,countl)=RDEI '; 
% This stores the diff. eff. of the reflected order if it is a reflection grating 
end 
count=O; 
end 

% The following draws the graph 
figure 
[replay, bandwidth ]=meshgrid(THETA,lam); 
pcolor( replay, bandwidth,Dift); 
xlabel(,Reference Angle'); 
ylabel(,Bragg Wavelength Deviation (run)'); 
mymap= I-gray; 
colormap(mymap ); 
shading interp; 
title('lst Order Diffraction Efficiency, Replay at Signal (0 Degrees)'); 

210 



AppendixD 

Appendix D 

Angular measnrement 

M=319.6 Dog , 
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An SEM photograph of a steep reference reflection hologram showing the fringe 

angle measured as approximately 40° (360°·319.6°). The non·uniformities on the 

top surface of the picture could be from multiple sets of fringes recorded from a 

reference beam reflection. 
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Appendix E 

An SEM photograph of a steep reference reflection hologram with the full 20llm 

film thickness. The fringes of the hologram are slightly visible. 
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Appendix F 

An example of a fingerprint taken from an imaging ELFID. The detail of the 

pores and the absence of aberrations are clearly visible. The resolution is near 

2500 dots per inch. (Photo courtesy of U.s. Dept. of Defense). 
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Appendix G 

An high resolution view of a small portion of a fingerprint taken from an 

imaging ELFID. The resolution is near 8000 dots per inch. (Photo courtesy of 

V.S. Dept. of Defense). 






