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Abstract: It is expected that soon there will be a significant number of unmanned aerial vehicles (UAVs) operating side-by-side
with manned civil aircraft in national airspace systems. To be able to integrate UAVs safely with civil traffic, a number of
challenges must be overcome first. This study investigates situational awareness of UAVs’ autonomous taxiing in an aerodrome
environment. The research work is based on a real outdoor experimental data collected at the Walney Island Airport, the UK. It
aims to further develop and test UAVs’ autonomous taxiing in a challenging outdoor environment. To address various practical
issues arising from the outdoor aerodrome such as camera vibration, taxiway feature extraction, and unknown obstacles, the
authors develop an integrated approach that combines the Bayesian-network based semantic segmentation with a self-learning
method to enhance situational awareness of UAVs. Detailed analysis of the outdoor experimental data shows that the integrated
method developed in this study improves the robustness of situational awareness for autonomous taxiing.

1 Introduction
Unmanned aerial vehicles (UAVs) are increasingly used for various
civil applications (e.g. monitoring gas pipelines [1] and
surveillance of electrical power infrastructures [2]). It is expected
that soon there will be a significant number of UAVs operating
side-by-side with manned civil aircraft in civil airspace systems
such as the U.S. National Airspace System of the Federal Aviation
Administration [3]. The biggest challenges are the safe and
effective integration of UAVs into the existing airspace [4]. This
paper considers the ground surface operation safety in aerodromes
and in particular, we investigate an important safety issue, UAVs’
situational awareness during autonomous taxiing in aerodromes.

In the existing repository, some autonomous taxiing research
has been done using the Global Hawk aircraft with DGPS and
highly accurate maps to guide the aircraft in a segregated military
controlled airport [5]. Nevertheless, such a system would need
continuous supervision by a remote pilot as no autonomous
obstacle avoidance mechanism was implemented in it and will not
be able to operate without DGPS corrections or in GPS denied
environments. Hence, there is a real need to develop autonomous
taxiing systems for UAVs so that they can autonomously take off
and land without human pilots’ intervention.

Unlike military UAVs, civil UAVs are unlikely to have their
own specialised aerodromes but more feasibly sharing the existing
civil aerodromes with manned aircraft [6, 7]. Compared with
military aerodromes, civil aerodromes can be much less tightly
controlled, with greater unpredictability in ground movements of
vehicles and aircraft. Since such dynamic information is not fully
registered in the ground traffic control (GTC) systems, the safety of
UAV taxiing cannot be guaranteed without a robust local
situational awareness system. A detailed safety study on operating
UAVs in civil aerodromes can be found in [3]. Using the vertical
take-off and landing type of UAVs may introduce less impact on
the aerodrome daily operations. However, comparing with fixed-
wing UAVs, these UAVs have limited payloads and flight
endurance. This paper, therefore, focuses on fixed-wing UAVs.

To be compatible with larger and more powerful sensors, the
size of civil fixed-wing UAVs needs to be larger as well. Hence, in

order to minimise the dedicated infrastructure for UAVs’
autonomous taxiing, we assume that UAVs observe real local
environment information for taxiing purposes using the onboard
cameras only. On the other hand, to provide safety guarantee for
UAVs’ autonomous taxiing, the situational awareness systems of
the UAVs are expected to have the same visual sensing capabilities
as a human pilot, such as obtaining information visually from signs
and taxiway markings. Vision-based approaches are required to
achieve this objective [8]. Recently, Durrie et al. [9, 10] have used
machine vision for localisation for autonomous taxiing. They use a
particle filter with a known aerodrome map to localise the aircraft.

While not much dedicated research has been conducted in the
area of UAV autonomous taxiing, some of the autonomous
roadway traffic and lane guidance techniques could be borrowed
due to the similarity of their application environments. Both are
structured environments which usually have a dark surface with
surface markings of bright colours (usually white or yellow). With
this in mind, luminosity and colour-based approaches are the
natural choices. For instance, a colour-based approach is used for
tracking unmarked road lanes in [11, 12]. However, colour-only
based approaches are sensitive to light conditions. By utilising the
‘dark-light-dark’ pattern, a lane marking extraction solution is
proposed in [13]. In this solution, the camera observations are
converted into light intensity images and mapped into the ground
plane for matching. With a Hough transform, the lane contours are
detected in [14, 15].

Following the colour-based approach in the above studies, Lu et
al. [6] have recently investigated the extraction of the taxiway
centreline in an aerodrome environment. Rather than to solely rely
on visual approaches, Lu et al. [6] incorporate two sources of
information, i.e. an aerodrome map and camera images, to improve
the robustness of situational awareness. More specifically, the
centreline of the aerodrome under investigation in [6] is first
extracted from camera images based on the given colour, and then
it is further combined with the aerodrome map to produce an
enhanced centreline detection output. Although the centreline
extraction is improved by utilising the aerodrome map information
in [6], the real interest of such a situational awareness system is to
detect obstacles. To this end, [7] presents a self-learning framework
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that extends [6] in several aspects. First, Lu et al. [7] considered
both the static taxiway features (e.g. the centreline of aerodrome
taxiways) and moving obstacles. In addition, instead of using a
colour-based approach, it adopts the frequency tuned saliency
detection method (see, e.g. [16]) to improve the quality of image
processing. More importantly, a recursive learning mechanism is
introduced to process the information extracted from the camera
images, where the detection of the centreline, obstacles and so on is
based on not only the aerodrome map and current camera
observation, but also on the image observations obtained in the
previous time periods. This makes the detection results less
sensitive to noise in the segmentation of individual images. The
performance was validated in an indoor experiment in [7].

This paper further tests the self-learning framework proposed in
[7] in a real outdoor aerodrome environment in the Walney Island
Airport. Compared with the indoor experiment in [7], several new
challenges arise when processing the real-world data, including
camera vibration, extraction of the aerodrome's taxiway features
and unknown moving obstacles, as detailed in Section 2.

To address various practical issues arising from outdoor
aerodrome environments, we develop a new approach in this paper
by integrating the Bayesian network (BN) semantic segmentation
with the self-learning method in [7]. The former is originally
proposed in [17] and it is used in this research to extract real-world
features of the aerodrome (e.g. taxiways, grass, and the centreline)
more reliably than that used in [7]. This is because in general
certain types of objects are easier and can be more accurately
detected due to the prominence of the features: the colour-based
approaches can detect the centreline more accurately than the
texture-based ones, whereas the texture based techniques are good
at differentiating the surfaces types. By combining multiple
techniques, the performance can be improved. We incorporate the
method developed in [17] to fuse various (including colour,
texture, luminance and spatial relationship based) features together
with a Bayesian network; see an example shown in Fig. 1. With the
BN-semantic segmentation technique, we also identify the
reference horizon, upon which we can subsequently calibrate the
obtained images and hence address the issue of camera vibration. 

In practice, it is unrealistic to assume the availability of the
visual attributes of moving obstacles beforehand; their appearances
usually differ from one to another. We extend the work in [7] by
the integration of the BN-semantic segmentation in [17] and the
self-learning process in [7] to make use of knowledge acquired in
the previous time periods through a recursive Bayesian learning
process to improve the robustness of obstacle detection.

This paper is structured as follows. In the following section, we
outline various research challenges for autonomous taxiing in real
outdoor aerodrome environments. The integration of the BN-
semantic segmentation and the self-learning process is investigated
in Section 3. A detailed analysis of the outdoor data is undertaken
in Section 4. Finally, we conclude this paper in Section 5.

2 Research challenges for autonomous taxiing in
real outdoor aerodrome environments
Real-world outdoor aerodrome data was captured at Walney Island
Airport by BAE Systems. A fire truck (Fig. 2b), with a monocular
camera (GoPro), mounted to the dash alongside a commercial
GPS/IMU module, was used to drive around the aerodrome
taxiways to simulate UAV taxiing. This platform configuration was
chosen according to the specification of the targeted UAV platform
where a Jetstream aircraft (Fig. 2a) is used as a surrogate UAV for
the development and test purposes. 

Comparing with indoor environments, several new challenges
need to be addressed to make the self-learning framework proposed
in [7] work in an outdoor aerodrome environment:

• Camera vibration: The typical taxiing speed of aircraft is
between 30 and 60 km/h, and the aircraft may need to accelerate
and decelerate during the taxiing, follow signage, GTC
commands or aerodrome traffic and so on. Therefore, the pitch
angle of the camera is frequently changing, and the roll angle
also changes when the vehicle turns. These angles will
dramatically affect the accuracy of the inverse perspective
mapped camera observations. This problem has a much smaller
impact on indoor experiments due to slower speeds and smaller
camera fields of view for indoor experiments.

• Taxiway features in a real complex aerodrome environment: In
contrast to an indoor environment, more taxiway features can be
detected and more interference factors exist in an outdoor
environment. Since simple colour or saliency-based detection
approaches are not able to detect all kinds of taxiway features
robustly in such a complex environment, a better image process
approach is required.

• Unknown obstacle detection: Taxiway features are static and
follow a common set of standards, whereas moving obstacles
could be anything. Consequently, the detection accuracy for
static features can be improved with a supervised learning
approach, whereas for the obstacle detection it is more
reasonable to use approaches without such supervision.

3 Integration of the BN-semantic segmentation
with the self-learning framework
Fig. 3 shows the overall structure of the system with the proposed
integration, where the self-learning framework proposed in [7] is
used as the foundation, and the BN-semantic segmentation is
integrated to enhance situational awareness. 

As it can be seen from Fig. 3, there are three major inputs for
the system, i.e. taxiway map, GPS and camera observations. We
outline the inputs/outputs and the major functions of each
component shown in Fig. 3.

First, the taxiway map is used as prior knowledge in the system.
A taxiway feature map and an obstacle map will be generated from
it. The taxiway feature map will be used as an anchor point to find
the spatial relationship between each of the camera observations
during the taxiing. The obstacle map is normally initialised as an
empty map unless some obstacle information is already known,
and it will be used to keep the history of observed obstacles.

Second, a forward-facing camera is assumed to be the only
observation source of this system. Unlike the pixel-based saliency
method in [7], in this research, each original camera image is first
passed into the BN-semantic segmentation module, from which
two important outputs can be obtained: the horizon and semantic
segmentation information. The BN-semantic segmentation method
takes the HSV (Hue, Saturation, Value) of the input image,
segments it, and classifies the segments based on common airfield
objects. So instead of ‘important pixels’ used in [7], we have a pre-

Fig. 1  BN-semantic segmentation of an aerodrome taxiway where each
cluster is classified into one of the few aerodrome classes

 

Fig. 2  Experiment platform
(a) Jetstream, (b) Fire truck
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segmented image where each of those segments has been classified
as airport objects. This has two big advantages: (i) the boundaries
around objects will be much clearer with less noise, which in turn
helps with the map matching phase; and (ii) the map will have
known classes (e.g. building or taxiway) so image data can be
associated with the map for the map matching phase with much
greater ease.

The horizon information obtained from the BN-semantic
segmentation is used to stabilise both the original and the
segmented images, and then the inverse perspective mapping
(IPM) is employed to transform them into the top down view; this
ensures the transformed images are consistent with the taxiway
map. Finally, the IPM output of the segmented images becomes the
extracted taxiway features, while the IPM output of each original
image will be further processed into the saliency indicator for
obstacle detection.

Next, the GPS measurement provides an initial point for
matching the extracted taxiway features to the prior distribution of
the feature map. Since it is common to have multiple taxiways with
very similar sizes and shapes (e.g. identical junction layouts) in an
aerodrome, the initial GPS measurement is usually required to
avoid the locational ambiguity. As the camera observation at each
time step is already transformed into the top down view, the
matching process can be conveniently done with the rigid point set
registration. The successfully matching gives a calibrated pose of
the vehicle and a local obstacle map as the counterpart of the
obstacle observation.

Finally, in the Bayesian self-learning phase, the obstacle map
(as a prior) and the extracted obstacles from the current image
observation will be pooled together and processed, resulting in a
posterior obstacle map. This posterior map at the current time point
is regarded as a prior obstacle map for the Bayesian self-learning at
the next time point.

This process is detailed below.

3.1 Taxiway feature extraction

To perform UAV navigation, features need to be extracted from the
images so that they can be matched to an aerodrome map. The
most distinctive and robust features are the taxiway centreline, and
the edge of the taxiway, de-marked by the transition between
asphalt and grass. The method used to extract the centreline in [6]
was a simple colour-based algorithm, and in [7] was the frequency
tuned saliency indicator. In the indoor environment, these single-
feature based methods worked very well, but at a real aerodrome,
they would not be reliable enough, due to light and weather effects
and worn or faded markings. Hence, a more robust feature
extraction method is required. In this paper, we use BN-semantic
segmentation to aid feature extraction. In the process of BN-
semantic segmentation, each segmented cluster in an image is
classified into a small number of classes, e.g. grass, asphalt, yellow
centre line, and white lines.

The BN-semantic segmentation method is originally developed
in [17] to combine colour, texture, luminance and contextual
information probabilistically to improve classification
performance, as shown in Fig. 4. Here we integrate this method
with the self-learning framework for an aerodrome environment.
During the autonomous taxiing, the captured image at each time
step is first segmented into clusters; this is achieved using SLIC
superpixels to get an initial fine segmentation, and then the density-
based spatial clustering of applications with noise algorithm
combines similarly coloured adjacent superpixels into clusters of
pixels of the same class. The colour and texture are extracted and
discretised from each cluster and used to give an initial estimate of
the class of each cluster. An example is shown in Fig. 5, where first
the HSV colour of each cluster is discritsed, and then the trained
colour classifier subsection of the BN estimates the class of each
cluster. Luminance is used to find the high reflectance surface
markings. If the position of the cluster is known relative to the
horizon, logic can be applied to better find close obstacles that
appear on both sides of the horizon and differentiate between a
ground object and sky classes. The advantage of pre-segmenting
the image is that the boundary between classes will be more
accurate and much better defined than it would be if a per-pixel
classification was used. These smoother and more coherent
boundaries will make map matching much easier. 

At this stage, the horizon is also extracted as a reference to
address the camera vibration issue, as detailed in the following
section.

Fig. 3  Self-learning framework integrated with the BN-semantic
segmentation module

 

Fig. 4  BN structure
 

Fig. 5  Discretised HSV colour image and subsequent BN colour classifier
output
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3.2 Horizon-based video stabilisation

As stated in the first challenge, camera vibration is not an issue in a
highly controlled indoor experiment, where the vehicle moved in a
relatively slow, constant speed on a smooth indoor floor surface.
However, in the outdoor test, the vehicle's moving speed is much
higher with frequent acceleration and deceleration on a relatively
rough surface. In addition, the pitch (while accelerating/
decelerating) and roll (while turning) angles will affect the
accuracy of the IPM drastically, especially for distant objects.

Many video stabilisation approaches in the literature are based
on local feature points (corners, edges etc.); they may be not
suitable for large open environments. However, we also note that,
as aerodromes are in large open-air locations, the horizon is almost
always a feature that can be relied upon to give a pitch and roll
reference. Fig. 6 shows an example of using horizon for video
stabilisation: here the red dashed line is the reference horizon; this
is achieved using dark channel detection, further detailed in [17]. 

From the detected horizon, the registration can be achieved with
a rotation and a translation. In this example, the image is rotated
counter-clockwise and translated downward so the horizon of the
image matches to the reference horizon.

Fig. 7 gives a pair of typical IPM outputs from the original and
segmented camera observations, in which green, grey, and yellow
colours indicate the detected grass surface, asphalt surface and
centreline, respectively. It can be observed that the centreline is the
most robust feature, while the detected grass surface contains some
false positives (FP) and asphalt surface has some false negatives
(FN). The map matching in this paper relies on the extracted
centreline, but the interface between the grass and asphalt could be
matched with the taxiway map. 

In summary, the BN-semantic segmentation and the image
stabilisation are inter-connected to each other; they work jointly for
the improvement of performance. During the stage of the BN-
semantic segmentation, various features are extracted, including
the taxiway centreline, taxiway boundaries, and horizon. The
horizon is then used to address the image stabilisation issue. In
addition, as the boundaries between objects will be clearer due to
the BN-semantic segmentation, the map matching phase will be
able to match the image to the map even though the camera will
not be perfectly stable.

3.3 Obstacle extraction with Bayesian learning

The frequency tuned saliency detection method in [18] can be
implemented with (1) and is applied to the original camera
observation, as displayed in Fig. 7a:

S(X) = ∥ Iμ − IG(X) ∥ , (1)

where X denotes all the pixel locations in the image,
Iμ = [Lμ, aμ, bμ] is the average colour vector of the observation
image in the L*a*b* colour space, and IG = [LG, aG, bG] is the
blurred observation image with a Gaussian filter. The blurry
process removes fine texture details and high spatial-frequency
noise (see e.g. [7]). ∥ ⋅ ∥ is the L2 norm (Euclidean distance).

For the autonomous taxiing system developed in this paper, the
aerodrome layout is assumed to be known and a UAV only requires
obstacle detection within the asphalt taxiway area. Therefore, the
average colour vector Iμ can be computed within the asphalt area.
The advantage of this is that the contrast between asphalt and the
obstacle will be more significant. We then apply the saliency
detection with the two average colour vector definitions to the
image in Fig. 7a. A comparison is given in Fig. 8 which shows that
the saliency indicator of the asphalt area is much lower when Iμ is
defined with the asphalt mask, and the saliency indicators outside
the asphalt area are ignored. 

To make the self-learning process possible for moving obstacle
detection purposes, map matching based on the BN-semantic
segmentation plays a key role: the BN-semantic segmentation
significantly enhances the accuracy of map matching. A pose popt
can be obtained from the map matching via careful calibration.

On the basis of the map matching, the global obstacle map
q(M) is cut off to obtain a local map, denoted as q(M; popt), upon
which the self-learning-based obstacle detection is undertaken.
This is detailed below.

Specifically, each pixel in the obstacle map and obstacle
observation is assumed to follow a Gaussian distribution,
respectively,

Obstaclemap: q(M; popt) = N(M; ℳ, σmap
2 ), (2)

Obstacleobservation: q(S | M) = N(S; M, σobs
2 ), (3)

where M denotes the parameter matrix corresponding to the ground
truth of the obstacle layout, ℳ is the obstacle map, and S is the
saliency indicator. σmap

2  and σobs
2  are the variances specifying the

noise levels of the map and observation.
Based on the pose popt, the observed obstacle is now ready to be

updated into the local obstacle map. Applying Bayes rule yields the
following posterior distribution of the obstacle map q(M |S; popt):

q(M |S; popt) ∝ q(S | M)q(M; popt) . (4)

Fig. 6  Stabilised video frame with the reference horizon
 

Fig. 7  Inverse perspective mapped camera view
(a) Original, (b) Segmented
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It is straightforward to show that the posterior distribution
q(M |S; popt) is a Gaussian distribution, N M; ℳpost, σpost

2 , with

ℳpost = σobs
2

σmap
2 + σobs

2 ℳ + σmap
2

σmap
2 + σobs

2 S, (5)

σpost
2 = σmap

2 σobs
2

σmap
2 + σobs

2 . (6)

Then the local obstacle posterior q(M |S; popt) is updated back into
the global obstacle map q(M |S). This updating process is
recursively undertaken whenever a new obstacle observation is
obtained. In addition, a forgetting factor 0 < λ < 1 is introduced to
inflate the variance of the obstacle map at each time step, so the
new obstacle observation is not overwhelmed by the previous
observations; see [7] for details.

4 Outdoor experiment
In this section, we provide a detailed analysis of the outdoor
experiment.

The outdoor experiment consisted of two phases. Phase-1 was
the data collection phase. In this phase, a satellite map of the
Walney Island airport was obtained from Microsoft Bing Maps and
was further processed into the taxiway feature map (Fig. 3). This
feature map contained the taxiway centrelines, taxiway boundaries
and stop signs. In order to simulate a taxiing UAV, we used a fire
truck as a surrogate. The autonomous flight capable BAE Jetstream
was used as the example aircraft in this experiment. The camera
used was mounted on the fire truck at the height of the Jetstream's
cockpit. The fire truck taxied around the aerodrome adhering at all
times to standard taxiing procedures and rules, moving at a speed
within the range of common aircraft taxiing speed. Three types of
data were collected: video (from camera), attitude (from IMU) and
positioning (from GPS) information.

Phase-2 was the analysis phase based on the collected data. By
using the positioning and attitude information as an initial position,
a gradient-based search was then applied to match the actual view
(video) from the camera with the map features. By doing so, the
vision and the taxiway map were aligned. With this alignment as a
prerequisite, the self-learning process was then carried out and the
dynamic navigation map was updated continuously based on the
posterior distribution of the obstacle map.

During the outdoor experiment of testing the real-world taxiing
process, the fire truck was driven along an aerodrome taxiway, as
shown in Fig. 9. We focus on one particular scenario, where a
yellow line marks the taxiway stop sign on the map, and an
obstacle vehicle (marked with a red rectangle) was stopped in front
of it. A curve in the figure shows the trajectory of the fire truck,
where the solid blue line indicates when the obstacle vehicle
appeared in the camera's view. 

The performance of the self-learning improved saliency
detection for various types of obstacles (large/small) in different
light conditions (bright/dark) were compared against the original
saliency detection in [7], which shows that the self-learning
improved detection gives a robust and consistent result in the
indoor environment. By integrating this self-learning framework
with the BN-semantic segmentation and applying it to the outdoor
aerodrome environment, our experiment shows that the system
remains a performance as well as in the indoor environment.

To demonstrate the performance in the outdoor environment,
we follow a similar routine as in the indoor environment by first
giving an intuitive detection result in Fig. 10. Both of the results,
obtained by using the original saliency and the self-learning
improved saliency methods, respectively, are illustrated with the
‘false colour’ fused images, where the green colour indicates the
camera observation and magenta marks the detected obstacles. We
can see from the figures that the detection result with self-learning
covers the true obstacle roughly the same as the original saliency
detection, but with far fewer FP detections. 

Next, we conduct a quantitative assessment for the obstacle
detection analysis. We note that the obstacle vehicle appeared in
the camera observation only when the fire truck was approaching
the obstacle (as indicated by the solid blue section of the curve in
Fig. 9). Hence, the following analysis focuses on this section of
taxiing only.

In the literature, there are several commonly used measures for
the assessment of pattern recognition results, including recall and
false discovery rate (FDR).

Recall (also termed sensitivity) measures the proportion of
positives that are correctly identified as such. FDR, on the other

Fig. 8  Saliency indicator computed from Fig. 7a
(a) Original saliency, (b) With map information

 

Fig. 9  Aerodrome map
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hand, is the proportion of discoveries that are false among all.
More precisely, we have

recall = TP
TP + FN,

FDR = FP
FP + TP,

where TP and FP are defined to be true positives and false
positives, respectively, and FN is defined to be false negatives.

FDR is related to precision: precision = 1 − FDR. Recall and
FDR (and hence precision) measures are sometimes used together
in the F1 score to provide a single measurement

F1 = 2precision × recall
precision + recall .

To test the self-learning ability of the system in the outdoor
environment, we compare the two methods, i.e. the original
saliency method and self-learning improved saliency method, in
terms of recall, FDR, and F1 score. The obtained recall, FDR, and
F1 score in the outdoor experiment are displayed in Figs. 11–13. 

The video data was captured at 30 frames per second. To
calculate the assessment measures (recall, FDR, and F1 score), we
evenly chose 3 frames per second to manually mark the ground
truth, as displayed in Figs. 11–13, where the tick unit of the x-axis
was 1/3 of a second. This covers a detection period of about 15 s
and corresponds to the taxiing trajectory section indicated the solid
blue curve in Fig. 9.

From Fig. 11, it can be seen that the two methods maintain a
similar level of recall rates. This observation also applies to the F1
scores displayed in Fig. 12. Comparing Fig. 10a with Fig. 10b, this
is not surprising: a majority of the TP were captured by both
methods.

From Fig. 13, on the other hand, we can see a very large
performance difference. To highlight this difference, we mark the
mean value of the FDR for the original saliency detection (8.35%)
and the mean value of the FDR for the self-learning saliency
method (3.07%) with two horizontal lines in Fig. 13, respectively.
It can be seen from Fig. 13 that the FDR for the 44th data point is
particularly high for the original saliency method. From the
corresponding image frame for the obstacle detection displayed in
Fig. 10, we can see clearly that the original saliency detection
method had a much higher FP detection level, resulting in a higher
FDR. Overall, with the self-learning method, the FDR was reduced
by 63.23% in this detection period.

The above analysis shows that, by controlling for the recall rate
level, the self-learning method can substantially reduce FDR.

In summary, with the integrated method that combines the self-
learning method with the BN-semantic segmentation, the outdoor
experiment has demonstrated its improved robustness: the camera
vibration problem in the outdoor aerodrome is overcome and
aerodrome features can be extracted more accurately. Furthermore,
based on the more accurately extracted features, images can be
precisely matched with the maps. Finally, knowledge about
obstacles can be self-learned and obstacles can be detected in a
robust manner.

5 Conclusions
This paper investigates autonomous taxiing of UAVs in a real
outdoor aerodrome environment. The self-learning framework
developed in [7] was tested only in an indoor laboratory. When
applying [7] in an outdoor aerodrome environment, various
research challenges arose. To address these practical issues, we

Fig. 10  Image frame of the obstacle detection
(a) Original saliency, (b) Self-learning improved saliency

 

Fig. 11  Recall
 

Fig. 12  F1 score
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have integrated a BN-semantic segmentation image processing
technique with the self-learning framework in [7] to enhance
situational awareness in autonomous taxiing. Through testing
against the real aerodrome environment, we have demonstrated that
the integrated approach in this paper can overcome the camera
vibration problem, and better extract taxiway features of an
aerodrome. The enhanced self-learning framework also improves
the robustness of the obstacle detection by taking into account the
obstacle observations acquired in the previous time periods.

In the current integration structure, the self-learning framework
takes the output of the BN-semantic segmentation module, but the
enhanced result from the self-learning framework is not fed back to
the BN-semantic segmentation module. Adding an interaction
element between them may lead to a more robust result; this is a
potential future work to be explored in our future research.
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